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Part 1

Preliminaries





CHAPTER 1

Introduction

1. Overview

Besides the book by Laumon and Moret-Bailly, see [?], and the work (in progress) by Fulton
et al, we think there is a place for an open source textbook on algebraic stacks and the
algebraic geometry that is needed to define them. The Stacks Project attempts to do this
by building the foundations starting with commutative algebra and proceeding via the
theory of schemes and algebraic spaces to a comprehensive foundation for the theory of
algebraic stacks.

We expect this material to be read online as a key feature are the hyperlinks giving quick
access to internal references spread over many different pages. If you use an embedded pdf
or dvi viewer in your browser, the cross file links should work.

This project is a collaborative effort and we encourage you to help out. Please email any
typos or errors you find while reading or any suggestions, additional material, or examples
you have to stacks.project@gmail.com. You can download a tarball containing all source
files, extract, run make, and use a dvi or pdf viewer locally. Please feel free to edit the
LaTeX files and email your improvements.

2. Attribution

The scope of this work is such that it is a daunting task to attribute correctly and suc-
cinctly all of those mathematicians whose work has led to the development of the theory
we try to explain here. We hope eventually to generate enough community interest to find
contributors willing to write sections with historical remarks for each and every chapter.

Those who contributed to this work are listed on the title page of the book version of this
work and online. Here we would like to name a selection of major contributions:

(1) Jarod Alper contributed a chapter discussing the literature on algebraic stacks,
see Guide to Literature, Section 1.

(2) Bhargav Bhatt wrote the initial version of a chapter on étale morphisms of schemes,
see Étale Morphisms, Section 1.

(3) Bhargav Bhatt wrote the initial version of More on Algebra, Section 89.
(4) Kiran Kedlaya contributed the initial writeup of Descent, Section 4.
(5) The initial versions of

(a) Algebra, Section 28,
(b) Injectives, Section 2, and
(c) the chapter on fields, see Fields, Section 1.

are from The CRing Project, courtesy of Akhil Mathew et al.
(6) Alex Perry wrote the material on projective modules, Mittag-Leffler modules,

including the proof of Algebra, Theorem 95.6.
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(7) Alex Perry wrote the chapter on deformation theory a la Schlessinger and Rim,
see Formal Deformation Theory, Section 1.

(8) Thibaut Pugin, Zachary Maddock and Min Lee took notes for a course which
formed the basis for a chapter on étale cohomology and a chapter on the trace
formula. See Étale Cohomology, Section 1 and The Trace Formula, Section 1.

(9) David Rydh has contributed many helpful comments, pointed out several mis-
takes, helped out in an essential way with the material on residual gerbes, and
was the originator for the material in More on Groupoids in Spaces, Sections 12
and 15.

(10) Burt Totaro contributed Examples, Sections 64, 65, and Properties of Stacks, Sec-
tion 12.

(11) The chapter on pro-étale cohomology, see Pro-étale Cohomology, Section 1, is
taken from a paper by Bhargav Bhatt and Peter Scholze.

(12) Bhargav Bhatt contributed Examples, Sections 71 and 75.
(13) Ofer Gabber found mistakes, contributed corrections and he contributed Vari-

eties, Lemma 7.17, Formal Spaces, Lemma 14.7, the material in More on Groupoids,
Section 15, the main result of Properties of Spaces, Section 17, and the proof of
More on Flatness, Proposition 25.13.

(14) János Kollár contributed Algebra, Lemma 119.2 and Local Cohomology, Propo-
sition 8.7.

(15) Kiran Kedlaya wrote the initial version of More on Algebra, Section 90.
(16) Matthew Emerton, Toby Gee, and Brandon Levin contributed some results on

thickenings, in particular More on Morphisms of Stacks, Lemmas 3.7, 3.8, and
3.9.

(17) Lena Min Ji wrote the initial version of More on Algebra, Section 125.
(18) Matthew Emerton and Toby Gee wrote the initial versions of Geometry of Stacks,

Sections 3 and 5.

3. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules

(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes

(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
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CHAPTER 2

Conventions

1. Comments

The philosophy behind the conventions used in writing these documents is to choose those
conventions that work.

2. Set theory

We use Zermelo-Fraenkel set theory with the axiom of choice. See [?]. We do not use
universes (different from SGA4). We do not stress set-theoretic issues, but we make sure
everything is correct (of course) and so we do not ignore them either.

3. Categories

A category C consists of a set of objects and, for each pair of objects, a set of morphisms
between them. In other words, it is what is called a “small” category in other texts. We
will use “big” categories (categories whose objects form a proper class) as well, but only
those that are listed in Categories, Remark 2.2.

4. Algebra

In these notes a ring is a commutative ring with a 1. Hence the category of rings has an
initial object Z and a final object {0} (this is the unique ring where 1 = 0). Modules are
assumed unitary. See [?].

5. Notation

The natural integers are elements of N = {1, 2, 3, . . .}. The integers are elements of
Z = {. . . ,−2,−1, 0, 1, 2, . . .}. The field of rational numbers is denoted Q. The field of
real numbers is denoted R. The field of complex numbers is denoted C.

6. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra

(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
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CHAPTER 3

Set Theory

1. Introduction

We need some set theory every now and then. We use Zermelo-Fraenkel set theory with
the axiom of choice (ZFC) as described in [?] and [?].

2. Everything is a set

Most mathematicians think of set theory as providing the basic foundations for mathe-
matics. So how does this really work? For example, how do we translate the sentence “X
is a scheme” into set theory? Well, we just unravel the definitions: A scheme is a locally
ringed space such that every point has an open neighbourhood which is an affine scheme.
A locally ringed space is a ringed space such that every stalk of the structure sheaf is a lo-
cal ring. A ringed space is a pair (X,OX) consisting of a topological space X and a sheaf
of rings OX on it. A topological space is a pair (X, τ) consisting of a set X and a set of
subsets τ ⊂ P(X) satisfying the axioms of a topology. And so on and so forth.

So how, given a set S would we recognize whether it is a scheme? The first thing we
look for is whether the set S is an ordered pair. This is defined (see [?], page 7) as saying
that S has the form (a, b) := {{a}, {a, b}} for some sets a, b. If this is the case, then we
would take a look to see whether a is an ordered pair (c, d). If so we would check whether
d ⊂ P(c), and if so whether d forms the collection of sets for a topology on the set c. And
so on and so forth.

So even though it would take a considerable amount of work to write a complete formula
φscheme(x) with one free variable x in set theory that expresses the notion “x is a scheme”,
it is possible to do so. The same thing should be true for any mathematical object.

3. Classes

Informally we use the notion of a class. Given a formula φ(x, p1, . . . , pn), we call

C = {x : φ(x, p1, . . . , pn)}

a class. A class is easier to manipulate than the formula that defines it, but it is not strictly
speaking a mathematical object. For example, ifR is a ring, then we may consider the class
of all R-modules (since after all we may translate the sentence “M is an R-module” into a
formula in set theory, which then defines a class). A proper class is a class which is not a
set.

In this way we may consider the category of R-modules, which is a “big” category—in
other words, it has a proper class of objects. Similarly, we may consider the “big” category
of schemes, the “big” category of rings, etc.
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4. Ordinals

A set T is transitive if x ∈ T implies x ⊂ T . A set α is an ordinal if it is transitive and
well-ordered by∈. In this case, we define α+1 = α∪{α}, which is another ordinal called
the successor of α. An ordinal α is called a successor ordinal if there exists an ordinal β
such that α = β + 1. The smallest ordinal is ∅ which is also denoted 0. If α is not 0, and
not a successor ordinal, then α is called a limit ordinal and we have

α =
⋃

γ∈α
γ.

The first limit ordinal is ω and it is also the first infinite ordinal. The first uncountable
ordinal ω1 is the set of all countable ordinals. The collection of all ordinals is a proper
class. It is well-ordered by ∈ in the following sense: any nonempty set (or even class) of
ordinals has a least element. Given a set A of ordinals, we define the supremum of A to
be supα∈A α =

⋃
α∈A α. It is the least ordinal bigger or equal to all α ∈ A. Given any

well-ordered set (S,<), there is a unique ordinalα such that (S,<) ∼= (α,∈); this is called
the order type of the well-ordered set.

5. The hierarchy of sets

We define by transfinite recursion V0 = ∅, Vα+1 = P (Vα) (power set), and for a limit
ordinal α,

Vα =
⋃

β<α
Vβ .

Note that each Vα is a transitive set.

Lemma 5.1. Every set is an element of Vα for some ordinal α.

Proof. See [?, Lemma 6.3]. �

In [?, Chapter III] it is explained that this lemma is equivalent to the axiom of foundation.
The rank of a set S is the least ordinal α such that S ∈ Vα+1. By a partial universe we
shall mean a suitably large set of the form Vα which will be clear from the context.

6. Cardinality

The cardinality of a set A is the least ordinal α such that there exists a bijection between
A and α. We sometimes use the notation α = |A| to indicate this. We say an ordinal α
is a cardinal if and only if it occurs as the cardinality of some set A—in other words, if
α = |A|. We use the greek letters κ, λ for cardinals. The first infinite cardinal is ω, and in
this context it is denoted ℵ0. A set is countable if its cardinality is≤ ℵ0. If α is an ordinal,
then we denote α+ the least cardinal > α. You can use this to define ℵ1 = ℵ+

0 , ℵ2 = ℵ+
1 ,

etc, and in fact you can define ℵα for any ordinal α by transfinite recursion. We note the
equality ℵ1 = ω1.

The addition of cardinals κ, λ is denoted κ⊕ λ; it is the cardinality of κ q λ. The multi-
plication of cardinals κ, λ is denoted κ ⊗ λ; it is the cardinality of κ × λ. If κ and λ are
infinite cardinals, then κ⊕λ = κ⊗λ = max(κ, λ). The exponentiation of cardinals κ, λ
is denoted κλ; it is the cardinality of the set of (set) maps from λ to κ. Given any setK of
cardinals, the supremum of K is supκ∈K κ =

⋃
κ∈K κ, which is also a cardinal.
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7. Cofinality

A cofinal subset S of a well-ordered set T is a subset S ⊂ T such that ∀t ∈ T∃s ∈ S(t ≤
s). Note that a subset of a well-ordered set is a well-ordered set (with induced ordering).
Given an ordinal α, the cofinality cf(α) of α is the least ordinal β which occurs as the
order type of some cofinal subset of α. The cofinality of an ordinal is always a cardinal.
Hence alternatively we can define the cofinality of α as the least cardinality of a cofinal
subset of α.

Lemma 7.1. Suppose that T = colimα<β Tα is a colimit of sets indexed by ordinals
less than a given ordinal β. Suppose that ϕ : S → T is a map of sets. Then ϕ lifts to a map
into Tα for some α < β provided that β is not a limit of ordinals indexed by S , in other
words, if β is an ordinal with cf(β) > |S|.

Proof. For each element s ∈ S pick a αs < β and an element ts ∈ Tαs which maps
to ϕ(s) in T . By assumption α = sups∈S αs is strictly smaller than β. Hence the map
ϕα : S → Tα which assigns to s the image of ts in Tα is a solution. �

The following is essentially Grothendieck’s argument for the existence of ordinals with
arbitrarily large cofinality which he used to prove the existence of enough injectives in
certain abelian categories, see [?].

Proposition 7.2. Let κ be a cardinal. Then there exists an ordinal whose cofinality
is bigger than κ.

Proof. If κ is finite, then ω = cf(ω) works. Let us thus assume that κ is infinite.
Consider the smallest ordinal αwhose cardinality is strictly greater than κ. We claim that
cf(α) > κ. Note that α is a limit ordinal, since if α = β + 1, then |α| = |β| (because α
and β are infinite) and this contradicts the minimality of α. (Of course α is also a cardinal,
but we do not need this.) To get a contradiction suppose S ⊂ α is a cofinal subset with
|S| ≤ κ. For β ∈ S , i.e., β < α, we have |β| ≤ κ by minimality of α. As α is a limit
ordinal and S cofinal in α we obtain α =

⋃
β∈S β. Hence |α| ≤ |S| ⊗ κ ≤ κ ⊗ κ ≤ κ

which is a contradiction with our choice of α. �

8. Reflection principle

Some of this material is in the chapter of [?] called “Easy consistency proofs”.

Let φ(x1, . . . , xn) be a formula of set theory. Let us use the convention that this notation
implies that all the free variables inφ occur amongx1, . . . , xn. LetM be a set. The formula
φM (x1, . . . , xn) is the formula obtained from φ(x1, . . . , xn) by replacing all the ∀x and
∃x by ∀x ∈ M and ∃x ∈ M , respectively. So the formula φ(x1, x2) = ∃x(x ∈ x1 ∧ x ∈
x2) is turned into φM (x1, x2) = ∃x ∈ M(x ∈ x1 ∧ x ∈ x2). The formula φM is called
the relativization of φ to M .

Theorem 8.1. Suppose given φ1(x1, . . . , xn), . . . , φm(x1, . . . , xn) a finite collection
of formulas of set theory. Let M0 be a set. There exists a set M such that M0 ⊂ M and
∀x1, . . . , xn ∈M , we have

∀i = 1, . . . ,m, φMi (x1, . . . , xn)⇔ ∀i = 1, . . . ,m, φi(x1, . . . , xn).

In fact we may take M = Vα for some limit ordinal α.

Proof. See [?, Theorem 12.14] or [?, Theorem 7.4]. �
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We view this theorem as saying the following: Given any x1, . . . , xn ∈ M the formulas
hold with the bound variables ranging through all sets if and only if they hold for the
bound variables ranging through elements of Vα. This theorem is a meta-theorem because
it deals with the formulas of set theory directly. It actually says that given the finite list
of formulas φ1, . . . , φm with at most free variables x1, . . . , xn the sentence

∀M0 ∃M, M0 ⊂M ∀x1, . . . , xn ∈M
φ1(x1, . . . , xn) ∧ . . . ∧ φm(x1, . . . , xn)↔ φM1 (x1, . . . , xn) ∧ . . . ∧ φMm (x1, . . . , xn)

is provable in ZFC. In other words, whenever we actually write down a finite list of for-
mulas φi, we get a theorem.
It is somewhat hard to use this theorem in “ordinary mathematics” since the meaning of
the formulas φMi (x1, . . . , xn) is not so clear! Instead, we will use the idea of the proof of
the reflection principle to prove the existence results we need directly.

9. Constructing categories of schemes

We will discuss how to apply this to produce, given an initial set of schemes, a “small”
category of schemes closed under a list of natural operations. Before we do so, we introduce
the size of a scheme. Given a scheme S we define

size(S) = max(ℵ0, κ1, κ2),
where we define the cardinal numbers κ1 and κ2 as follows:

(1) We let κ1 be the cardinality of the set of affine opens of S.
(2) We let κ2 be the supremum of all the cardinalities of all Γ(U,OS) for all U ⊂ S

affine open.

Lemma 9.1. For every cardinal κ, there exists a setA such that every element ofA is
a scheme and such that for every scheme S with size(S) ≤ κ, there is an element X ∈ A
such that X ∼= S (isomorphism of schemes).

Proof. Omitted. Hint: think about how any scheme is isomorphic to a scheme ob-
tained by glueing affines. �

We denote Bound the function which to each cardinal κ associates
(9.1.1) Bound(κ) = max{κℵ0 , κ+}.
We could make this function grow much more rapidly, e.g., we could set Bound(κ) =
κκ, and the result below would still hold. For any ordinal α, we denote Schα the full
subcategory of category of schemes whose objects are elements of Vα. Here is the result
we are going to prove.

Lemma 9.2. With notations size, Bound and Schα as above. Let S0 be a set of
schemes. There exists a limit ordinal α with the following properties:

(1) We have S0 ⊂ Vα; in other words, S0 ⊂ Ob(Schα).
(2) For any S ∈ Ob(Schα) and any scheme T with size(T ) ≤ Bound(size(S)),

there exists a scheme S′ ∈ Ob(Schα) such that T ∼= S′.
(3) For any countable1 diagram category I and any functorF : I → Schα, the limit

limI F exists in Schα if and only if it exists in Sch and moreover, in this case,
the natural morphism between them is an isomorphism.

1Both the set of objects and the morphism sets are countable. In fact you can prove the lemma with ℵ0
replaced by any cardinal whatsoever in (3) and (4).
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(4) For any countable index category I and any functor F : I → Schα, the colimit
colimI F exists in Schα if and only if it exists in Sch and moreover, in this case,
the natural morphism between them is an isomorphism.

Proof. We define, by transfinite induction, a function f which associates to every
ordinal an ordinal as follows. Let f(0) = 0. Given f(α), we define f(α + 1) to be the
least ordinal β such that the following hold:

(1) We have α+ 1 ≤ β and f(α) ≤ β.
(2) For any S ∈ Ob(Schf(α)) and any scheme T with size(T ) ≤ Bound(size(S)),

there exists a scheme S′ ∈ Ob(Schβ) such that T ∼= S′.
(3) For any countable index category I and any functor F : I → Schf(α), if the

limit limI F or the colimit colimI F exists in Sch, then it is isomorphic to a
scheme in Schβ .

To seeβ exists, we argue as follows. Since Ob(Schf(α)) is a set, we see thatκ = supS∈Ob(Schf(α)) Bound(size(S))
exists and is a cardinal. Let A be a set of schemes obtained starting with κ as in Lemma
9.1. There is a set CountCat of countable categories such that any countable category is
isomorphic to an element of CountCat. Hence in (3) above we may assume that I is an
element inCountCat. This means that the pairs (I, F ) in (3) range over a set. Thus, there
exists a set B whose elements are schemes such that for every (I, F ) as in (3), if the limit
or colimit exists, then it is isomorphic to an element in B. Hence, if we pick any β such
that A ∪ B ⊂ Vβ and β > max{α + 1, f(α)}, then (1)–(3) hold. Since every nonempty
collection of ordinals has a least element, we see that f(α + 1) is well defined. Finally, if
α is a limit ordinal, then we set f(α) = supα′<α f(α′).

Pick β0 such that S0 ⊂ Vβ0 . By construction f(β) ≥ β and we see that also S0 ⊂ Vf(β0).
Moreover, as f is nondecreasing, we see S0 ⊂ Vf(β) is true for any β ≥ β0. Next, choose
any ordinal β1 > β0 with cofinality cf(β1) > ω = ℵ0. This is possible since the cofinality
of ordinals gets arbitrarily large, see Proposition 7.2. We claim thatα = f(β1) is a solution
to the problem posed in the lemma.

The first property of the lemma holds by our choice of β1 > β0 above.

Since β1 is a limit ordinal (as its cofinality is infinite), we get f(β1) = supβ<β1 f(β).
Hence {f(β) | β < β1} ⊂ f(β1) is a cofinal subset. Hence we see that

Vα = Vf(β1) =
⋃

β<β1
Vf(β).

Now, letS ∈ Ob(Schα). We defineβ(S) to be the least ordinalβ such thatS ∈ Ob(Schf(β)).
By the above we see that always β(S) < β1. Since Ob(Schf(β+1)) ⊂ Ob(Schα), we see
by construction of f above that the second property of the lemma is satisfied.

Suppose that {S1, S2, . . .} ⊂ Ob(Schα) is a countable collection. Consider the function
ω → β1, n 7→ β(Sn). Since the cofinality of β1 is > ω, the image of this function cannot
be a cofinal subset. Hence there exists a β < β1 such that {S1, S2, . . .} ⊂ Ob(Schf(β)). It
follows that any functor F : I → Schα factors through one of the subcategories Schf(β).
Thus, if there exists a scheme X that is the colimit or limit of the diagram F , then, by
construction of f , we seeX is isomorphic to an object of Schf(β+1) which is a subcategory
of Schα. This proves the last two assertions of the lemma. �

Remark 9.3. The lemma above can also be proved using the reflection principle.
However, one has to be careful. Namely, suppose the sentence φscheme(X) expresses the
property “X is a scheme”, then what does the formulaφVαscheme(X) mean? It is true that the
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reflection principle says we can find α such that for all X ∈ Vα we have φscheme(X) ↔
φVαscheme(X) but this is entirely useless. It is only by combining two such statements that
something interesting happens. For example suppose φred(X,Y ) expresses the property
“X , Y are schemes, andY is the reduction ofX” (see Schemes, Definition 12.5). Suppose we
apply the reflection principle to the pair of formulas φ1(X,Y ) = φred(X,Y ), φ2(X) =
∃Y, φ1(X,Y ). Then it is easy to see that any α produced by the reflection principle has
the property that given X ∈ Ob(Schα) the reduction of X is also an object of Schα (left
as an exercise).

Lemma 9.4. Let S be an affine scheme. LetR = Γ(S,OS). Then the size of S is equal
to max{ℵ0, |R|}.

Proof. There are at most max{|R|,ℵ0} affine opens of Spec(R). This is clear since
any affine open U ⊂ Spec(R) is a finite union of principal opens D(f1) ∪ . . . ∪ D(fn)
and hence the number of affine opens is at most supn |R|n = max{|R|,ℵ0}, see [?, Ch. I,
10.13]. On the other hand, we see that Γ(U,O) ⊂ Rf1× . . .×Rfn and hence |Γ(U,O)| ≤
max{ℵ0, |Rf1 |, . . . , |Rfn |}. Thus it suffices to prove that |Rf | ≤ max{ℵ0, |R|} which is
omitted. �

Lemma 9.5. LetS be a scheme. LetS =
⋃
i∈I Si be an open covering. Then size(S) ≤

max{|I|, supi{size(Si)}}.

Proof. Let U ⊂ S be any affine open. Since U is quasi-compact there exist finitely
many elements i1, . . . , in ∈ I and affine opens Ui ⊂ U ∩ Si such that U = U1 ∪ U2 ∪
. . . ∪ Un. Thus

|Γ(U,OU )| ≤ |Γ(U1,O)| ⊗ . . .⊗ |Γ(Un,O)| ≤ supi{size(Si)}

Moreover, it shows that the set of affine opens of S has cardinality less than or equal to
the cardinality of the set∐

n∈ω

∐
i1,...,in∈I

{affine opens of Si1} × . . .× {affine opens of Sin}.

Each of the sets inside the disjoint union has cardinality at most supi{size(Si)}. The index
set has cardinality at most max{|I|,ℵ0}, see [?, Ch. I, 10.13]. Hence by [?, Lemma 5.8]
the cardinality of the coproduct is at most max{ℵ0, |I|} ⊗ supi{size(Si)}. The lemma
follows. �

Lemma 9.6. Let f : X → S , g : Y → S be morphisms of schemes. Then we have
size(X ×S Y ) ≤ max{size(X), size(Y )}.

Proof. Let S =
⋃
k∈K Sk be an affine open covering. Let X =

⋃
i∈I Ui, Y =⋃

j∈J Vj be affine open coverings with I , J of cardinality ≤ size(X), size(Y ). For each
i ∈ I there exists a finite set Ki of k ∈ K such that f(Ui) ⊂

⋃
k∈Ki Sk. For each j ∈ J

there exists a finite set Kj of k ∈ K such that g(Vj) ⊂
⋃
k∈Kj Sk. Hence f(X), g(Y ) are

contained in S′ =
⋃
k∈K′ Sk with K ′ =

⋃
i∈I Ki ∪

⋃
j∈J Kj . Note that the cardinality

of K ′ is at most max{ℵ0, |I|, |J |}. Applying Lemma 9.5 we see that it suffices to prove
that size(f−1(Sk)×Sk g−1(Sk)) ≤ max{size(X), size(Y ))} for k ∈ K ′. In other words,
we may assume that S is affine.

Assume S affine. Let X =
⋃
i∈I Ui, Y =

⋃
j∈J Vj be affine open coverings with I , J of

cardinality≤ size(X), size(Y ). Again by Lemma 9.5 it suffices to prove the lemma for the
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products Ui ×S Vj . By Lemma 9.4 we see that it suffices to show that
|A⊗C B| ≤ max{ℵ0, |A|, |B|}.

We omit the proof of this inequality. �

Lemma 9.7. Let S be a scheme. Let f : X → S be locally of finite type with X
quasi-compact. Then size(X) ≤ size(S).

Proof. We can find a finite affine open covering X =
⋃
i=1,...n Ui such that each Ui

maps into an affine open Si of S. Thus by Lemma 9.5 we reduce to the case where both S
and X are affine. In this case by Lemma 9.4 we see that it suffices to show

|A[x1, . . . , xn]| ≤ max{ℵ0, |A|}.
We omit the proof of this inequality. �

In Algebra, Lemma 107.13 we will show that if A → B is an epimorphism of rings, then
|B| ≤ max(|A|,ℵ0). The analogue for schemes is the following lemma.

Lemma 9.8. Let f : X → Y be a monomorphism of schemes. If at least one of the
following properties holds, then size(X) ≤ size(Y ):

(1) f is quasi-compact,
(2) f is locally of finite presentation,
(3) add more here as needed.

But the bound does not hold for monomorphisms which are locally of finite type.

Proof. Let Y =
⋃
j∈J Vj be an affine open covering of Y with |J | ≤ size(Y ). By

Lemma 9.5 it suffices to bound the size of the inverse image of Vj in X . Hence we reduce
to the case that Y is affine, say Y = Spec(B). For any affine open Spec(A) ⊂ X we have
|A| ≤ max(|B|,ℵ0) = size(Y ), see remark above and Lemma 9.4. Thus it suffices to show
that X has at most size(Y ) affine opens. This is clear if X is quasi-compact, whence case
(1) holds. In case (2) the number of isomorphism classes of B-algebras A that can occur is
bounded by size(B), because eachA is of finite type overB, hence isomorphic to an algebra
B[x1, . . . , xn]/(f1, . . . , fm) for some n,m, and fj ∈ B[x1, . . . , xn]. However, asX → Y
is a monomorphism, there is a unique morphism Spec(A) → X over Y = Spec(B) if
there is one, hence the number of affine opens of X is bounded by the number of these
isomorphism classes.
To prove the final statement of the lemma consider the ring B =

∏
n∈N F2 and set Y =

Spec(B). For every ultrafilter U on N we obtain a maximal ideal mU with residue field
F2; the mapB → F2 sends the element (xn) to limU xn. Details omitted. The morphism
of schemes X =

∐
U Spec(F2) → Y is a monomorphism as all the points are distinct.

However the cardinality of the set of affine open subschemes ofX is equal to the cardinal-
ity of the set of ultrafilters on N which is 22ℵ0 . We conclude as |B| = 2ℵ0 < 22ℵ0 . �

Lemma 9.9. Let α be an ordinal as in Lemma 9.2 above. The category Schα satisfies
the following properties:

(1) If X,Y, S ∈ Ob(Schα), then for any morphisms f : X → S , g : Y → S the
fibre product X ×S Y in Schα exists and is a fibre product in the category of
schemes.

(2) Given any at most countable collection S1, S2, . . . of elements of Ob(Schα),
the coproduct

∐
i Si exists in Ob(Schα) and is a coproduct in the category of

schemes.
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(3) For any S ∈ Ob(Schα) and any open immersion U → S , there exists a V ∈
Ob(Schα) with V ∼= U .

(4) For any S ∈ Ob(Schα) and any closed immersion T → S , there exists an S′ ∈
Ob(Schα) with S′ ∼= T .

(5) For any S ∈ Ob(Schα) and any finite type morphism T → S , there exists an
S′ ∈ Ob(Schα) with S′ ∼= T .

(6) Suppose S is a scheme which has an open covering S =
⋃
i∈I Si such that there

exists a T ∈ Ob(Schα) with (a) size(Si) ≤ size(T )ℵ0 for all i ∈ I , and (b)
|I| ≤ size(T )ℵ0 . Then S is isomorphic to an object of Schα.

(7) For any S ∈ Ob(Schα) and any morphism f : T → S locally of finite type
such that T can be covered by at most size(S)ℵ0 open affines, there exists an
S′ ∈ Ob(Schα) with S′ ∼= T . For example this holds if T can be covered by at
most |R| = 2ℵ0 = ℵℵ0

0 open affines.
(8) For any S ∈ Ob(Schα) and any monomorphism T → S which is either locally

of finite presentation or quasi-compact, there exists an S′ ∈ Ob(Schα) with
S′ ∼= T .

(9) Suppose that T ∈ Ob(Schα) is affine. Write R = Γ(T,OT ). Then any of the
following schemes is isomorphic to a scheme in Schα:
(a) For any ideal I ⊂ Rwith completionR∗ = limnR/I

n, the scheme Spec(R∗).
(b) For any finite type R-algebra R′, the scheme Spec(R′).
(c) For any localization S−1R, the scheme Spec(S−1R).
(d) For any prime p ⊂ R, the scheme Spec(κ(p)).
(e) For any subring R′ ⊂ R, the scheme Spec(R′).
(f) Any scheme of finite type over a ring of cardinality at most |R|ℵ0 .
(g) And so on.

Proof. Statements (1) and (2) follow directly from the definitions. Statement (3)
follows as the size of an open subscheme U of S is clearly smaller than or equal to the size
ofS. Statement (4) follows from (5). Statement (5) follows from (7). Statement (6) follows
as the size of S is ≤ max{|I|, supi size(Si)} ≤ size(T )ℵ0 by Lemma 9.5. Statement (7)
follows from (6). Namely, for any affine open V ⊂ T we have size(V ) ≤ size(S) by
Lemma 9.7. Thus, we see that (6) applies in the situation of (7). Part (8) follows from
Lemma 9.8.
Statement (9) is translated, via Lemma 9.4, into an upper bound on the cardinality of the
rings R∗, S−1R, κ(p), R′, etc. Perhaps the most interesting one is the ring R∗. As a set,
it is the image of a surjective map RN → R∗. Since |RN| = |R|ℵ0 , we see that it works
by our choice of Bound(κ) being at least κℵ0 . Phew! (The cardinality of the algebraic
closure of a field is the same as the cardinality of the field, or it is ℵ0.) �

Remark 9.10. Let R be a ring. Suppose we consider the ring
∏

p∈Spec(R) κ(p). The
cardinality of this ring is bounded by |R|2|R|

, but is not bounded by |R|ℵ0 in general. For
example if R = C[x] it is not bounded by |R|ℵ0 and if R =

∏
n∈N F2 it is not bounded

by |R||R|. Thus the “And so on” of Lemma 9.9 above should be taken with a grain of salt.
Of course, if it ever becomes necessary to consider these rings in arguments pertaining to
fppf/étale cohomology, then we can change the function Bound above into the function
κ 7→ κ2κ .

In the following lemma we use the notion of an fpqc covering which is introduced in
Topologies, Section 9.
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Lemma 9.11. Let f : X → Y be a morphism of schemes. Assume there exists an fpqc
covering {gj : Yj → Y }j∈J such that gj factors through f . Then size(Y ) ≤ size(X).

Proof. Let V ⊂ Y be an affine open. By definition there exist n ≥ 0 and a :
{1, . . . , n} → J and affine opens Vi ⊂ Ya(i) such that V = ga(1)(V1) ∪ . . . ∪ ga(n)(Vn).
Denotehj : Yj → X a morphism such that f◦hj = gj . Thenha(1)(V1)∪. . .∪ha(n)(Vn) is
a quasi-compact subset of f−1(V ). Hence we can find a quasi-compact openW ⊂ f−1(V )
which contains ha(i)(Vi) for i = 1, . . . , n. In particular V = f(W ).

On the one hand this shows that the cardinality of the set of affine opens of Y is at most
the cardinality of the set S of quasi-compact opens ofX . Since every quasi-compact open
ofX is a finite union of affines, we see that the cardinality of this set is at most sup |S|n =
max(ℵ0, |S|). On the other hand, we haveOY (V ) ⊂

∏
i=1,...,nOYa(i)(Vi) because {Vi →

V } is an fpqc covering. Hence OY (V ) ⊂ OX(W ) because Vi → V factors through W .
Again since W has a finite covering by affine opens of X we conclude that |OY (V )| is
bounded by the size of X . The lemma now follows from the definition of the size of a
scheme. �

In the following lemma we use the notion of an fppf covering which is introduced in
Topologies, Section 7.

Lemma 9.12. Let {fi : Xi → X}i∈I be an fppf covering of a scheme. There ex-
ists an fppf covering {Wj → X}j∈J which is a refinement of {Xi → X}i∈I such that
size(

∐
Wj) ≤ size(X).

Proof. Choose an affine open coveringX =
⋃
a∈A Ua with |A| ≤ size(X). For each

a we can choose a finite subset Ia ⊂ I and for i ∈ Ia a quasi-compact open Wa,i ⊂ Xi

such that Ua =
⋃
i∈Ia fi(Wa,i). Then size(Wa,i) ≤ size(X) by Lemma 9.7. We conclude

that size(
∐
a

∐
i∈IaWi,a) ≤ size(X) by Lemma 9.5. �

10. Sets with group action

Let G be a group. We denote G-Sets the “big” category of G-sets. For any ordinal α, we
denoteG-Setsα the full subcategory ofG-Sets whose objects are in Vα. As a notion for size
of a G-set we take size(S) = max{ℵ0, |G|, |S|} (where |G| and |S| are the cardinality of
the underlying sets). As above we use the function Bound(κ) = κℵ0 .

Lemma 10.1. With notations G, G-Setsα, size, and Bound as above. Let S0 be a set
of G-sets. There exists a limit ordinal α with the following properties:

(1) We have S0 ∪ {GG} ⊂ Ob(G-Setsα).
(2) For any S ∈ Ob(G-Setsα) and any G-set T with size(T ) ≤ Bound(size(S)),

there exists an S′ ∈ Ob(G-Setsα) that is isomorphic to T .
(3) For any countable index category I and any functor F : I → G-Setsα, the limit

limI F and colimit colimI F exist in G-Setsα and are the same as in G-Sets.

Proof. Omitted. Similar to but easier than the proof of Lemma 9.2 above. �

Lemma 10.2. Let α be an ordinal as in Lemma 10.1 above. The category G-Setsα
satisfies the following properties:

(1) The G-set GG is an object of G-Setsα.
(2) (Co)Products, fibre products, and pushouts exist in G-Setsα and are the same as

their counterparts in G-Sets.
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(3) Given an object U of G-Setsα, any G-stable subset O ⊂ U is isomorphic to an
object of G-Setsα.

Proof. Omitted. �

11. Coverings of a site

Suppose that C is a category (as in Categories, Definition 2.1) and that Cov(C) is a proper
class of coverings satisfying properties (1), (2), and (3) of Sites, Definition 6.2. We list them
here:

(1) If V → U is an isomorphism, then {V → U} ∈ Cov(C).
(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji ∈ Cov(C),

then {Vij → U}i∈I,j∈Ji ∈ Cov(C).
(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C , then Ui×U V exists

for all i and {Ui ×U V → V }i∈I ∈ Cov(C).
For an ordinal α, we set Cov(C)α = Cov(C) ∩ Vα. Given an ordinal α and a cardinal κ,
we set Cov(C)κ,α equal to the set of elements U = {ϕi : Ui → U}i∈I ∈ Cov(C)α such
that |I| ≤ κ.

We recall the following notion, see Sites, Definition 8.2. Two families of morphisms, {ϕi :
Ui → U}i∈I and {ψj : Wj → U}j∈J , with the same target of C are called combinatorially
equivalent if there exist maps α : I → J and β : J → I such that ϕi = ψα(i) and
ψj = ϕβ(j). This defines an equivalence relation on families of morphisms having a fixed
target.

Lemma 11.1. With notations as above. Let Cov0 ⊂ Cov(C) be a set contained in
Cov(C). There exist a cardinal κ and a limit ordinal α with the following properties:

(1) We have Cov0 ⊂ Cov(C)κ,α.
(2) The set of coverings Cov(C)κ,α satisfies (1), (2), and (3) of Sites, Definition 6.2

(see above). In other words (C,Cov(C)κ,α) is a site.
(3) Every covering in Cov(C) is combinatorially equivalent to a covering in Cov(C)κ,α.

Proof. To prove this, we first consider the set S of all sets of morphisms of C with
fixed target. In other words, an element of S is a subset T of Arrows(C) such that all
elements of T have the same target. Given a family U = {ϕi : Ui → U}i∈I of morphisms
with fixed target, we define Supp(U) = {ϕ ∈ Arrows(C) | ∃i ∈ I, ϕ = ϕi}. Note
that two families U = {ϕi : Ui → U}i∈I and V = {Vj → V }j∈J are combinatorially
equivalent if and only if Supp(U) = Supp(V). Next, we define Sτ ⊂ S to be the subset
Sτ = {T ∈ S | ∃ U ∈ Cov(C) T = Supp(U)}. For every element T ∈ Sτ , set β(T ) to
equal the least ordinal β such that there exists a U ∈ Cov(C)β such that T = Supp(U).
Finally, set β0 = supT∈Sτ β(T ). At this point it follows that every U ∈ Cov(C) is
combinatorially equivalent to some element of Cov(C)β0 .

Let κ be the maximum of ℵ0, the cardinality |Arrows(C)|,
sup{Ui→U}i∈I∈Cov(C)β0

|I|, and sup{Ui→U}i∈I∈Cov0 |I|.

Since κ is an infinite cardinal, we have κ ⊗ κ = κ. Note that obviously Cov(C)β0 =
Cov(C)κ,β0 .

We define, by transfinite induction, a function f which associates to every ordinal an
ordinal as follows. Let f(0) = 0. Given f(α), we define f(α + 1) to be the least ordinal
β such that the following hold:
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(1) We have α+ 1 ≤ β and f(α) ≤ β.
(2) If {Ui → U}i∈I ∈ Cov(C)κ,f(α) and for each i we have {Wij → Ui}j∈Ji ∈

Cov(C)κ,f(α), then {Wij → U}i∈I,j∈Ji ∈ Cov(C)κ,β .
(3) If {Ui → U}i∈I ∈ Cov(C)κ,α and W → U is a morphism of C , then {Ui ×U

W →W}i∈I ∈ Cov(C)κ,β .
To see β exists we note that clearly the collection of all coverings {Wij → U} and {Ui×U
W →W} that occur in (2) and (3) form a set. Hence there is some ordinal β such that Vβ
contains all of these coverings. Moreover, the index set of the covering {Wij → U} has
cardinality

∑
i∈I |Ji| ≤ κ⊗κ = κ, and hence these coverings are contained in Cov(C)κ,β .

Since every nonempty collection of ordinals has a least element we see that f(α + 1) is
well defined. Finally, if α is a limit ordinal, then we set f(α) = supα′<α f(α′).

Pick an ordinal β1 such that Arrows(C) ⊂ Vβ1 , Cov0 ⊂ Vβ0 , and β1 ≥ β0. By construc-
tion f(β1) ≥ β1 and we see that the same properties hold for Vf(β1). Moreover, as f is
nondecreasing this remains true for any β ≥ β1. Next, choose any ordinal β2 > β1 with
cofinality cf(β2) > κ. This is possible since the cofinality of ordinals gets arbitrarily large,
see Proposition 7.2. We claim that the pair κ, α = f(β2) is a solution to the problem posed
in the lemma.

The first and third property of the lemma holds by our choices of κ, β2 > β1 > β0 above.

Since β2 is a limit ordinal (as its cofinality is infinite) we get f(β2) = supβ<β2 f(β).
Hence {f(β) | β < β2} ⊂ f(β2) is a cofinal subset. Hence we see that

Vα = Vf(β2) =
⋃

β<β2
Vf(β).

Now, let U ∈ Covκ,α. We define β(U) to be the least ordinal β such that U ∈ Covκ,f(β).
By the above we see that always β(U) < β2.

We have to show properties (1), (2), and (3) defining a site hold for the pair (C,Covκ,α).
The first holds because by our choice of β2 all arrows of C are contained in Vf(β2). For the
third, we use that given a covering U = {Ui → U}i∈I ∈ Cov(C)κ,α we have β(U) < β2
and hence any base change of U is by construction of f contained in Cov(C)κ,f(β+1) and
hence in Cov(C)κ,α.

Finally, for the second condition, suppose that {Ui → U}i∈I ∈ Cov(C)κ,f(α) and for each
i we haveWi = {Wij → Ui}j∈Ji ∈ Cov(C)κ,f(α). Consider the function I → β2, i 7→
β(Wi). Since the cofinality ofβ2 is> κ ≥ |I| the image of this function cannot be a cofinal
subset. Hence there exists a β < β1 such thatWi ∈ Covκ,f(β) for all i ∈ I . It follows
that the covering {Wij → U}i∈I,j∈Ji is an element of Cov(C)κ,f(β+1) ⊂ Cov(C)κ,α as
desired. �

Remark 11.2. It is likely the case that, for some limit ordinal α, the set of coverings
Cov(C)α satisfies the conditions of the lemma. This is after all what an application of
the reflection principle would appear to give (modulo caveats as described at the end of
Section 8 and in Remark 9.3).

12. Abelian categories and injectives

The following lemma applies to the category of modules over a sheaf of rings on a site.

Lemma 12.1. Suppose given a big category A (see Categories, Remark 2.2). Assume
A is abelian and has enough injectives. See Homology, Definitions 5.1 and 27.4. Then for
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any given set of objects {As}s∈S of A, there is an abelian subcategory A′ ⊂ A with the
following properties:

(1) Ob(A′) is a set,
(2) Ob(A′) contains As for each s ∈ S ,
(3) A′ has enough injectives, and
(4) an object ofA′ is injective if and only if it is an injective object ofA.

Proof. Omitted. �
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CHAPTER 4

Categories

1. Introduction

Categories were first introduced in [?]. The category of categories (which is a proper class)
is a 2-category. Similarly, the category of stacks forms a 2-category. If you already know
about categories, but not about 2-categories you should read Section 28 as an introduction
to the formal definitions later on.

2. Definitions

We recall the definitions, partly to fix notation.

Definition 2.1. A category C consists of the following data:
(1) A set of objects Ob(C).
(2) For each pair x, y ∈ Ob(C) a set of morphisms MorC(x, y).
(3) For each triple x, y, z ∈ Ob(C) a composition map MorC(y, z)×MorC(x, y)→

MorC(x, z), denoted (φ, ψ) 7→ φ ◦ ψ.
These data are to satisfy the following rules:

(1) For every element x ∈ Ob(C) there exists a morphism idx ∈ MorC(x, x) such
that idx ◦ φ = φ and ψ ◦ idx = ψ whenever these compositions make sense.

(2) Composition is associative, i.e., (φ ◦ ψ) ◦ χ = φ ◦ (ψ ◦ χ) whenever these com-
positions make sense.

It is customary to require all the morphism sets MorC(x, y) to be disjoint. In this way a
morphism φ : x → y has a unique source x and a unique target y. This is not strictly
necessary, although care has to be taken in formulating condition (2) above if it is not the
case. It is convenient and we will often assume this is the case. In this case we say thatφ and
ψ are composable if the source of φ is equal to the target ofψ, in which case φ◦ψ is defined.
An equivalent definition would be to define a category as a quintuple (Ob,Arrows, s, t, ◦)
consisting of a set of objects, a set of morphisms (arrows), source, target and composition
subject to a long list of axioms. We will occasionally use this point of view.

Remark 2.2. Big categories. In some texts a category is allowed to have a proper class
of objects. We will allow this as well in these notes but only in the following list of cases
(to be updated as we go along). In particular, when we say: “Let C be a category” then it is
understood that Ob(C) is a set.

(1) The category Sets of sets.
(2) The category Ab of abelian groups.
(3) The category Groups of groups.
(4) Given a group G the category G-Sets of sets with a left G-action.
(5) Given a ring R the category ModR of R-modules.
(6) Given a field k the category of vector spaces over k.

105
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(7) The category of rings.
(8) The category of divided power rings, see Divided Power Algebra, Section 3.
(9) The category of schemes.

(10) The category Top of topological spaces.
(11) Given a topological space X the category PSh(X) of presheaves of sets over X .
(12) Given a topological space X the category Sh(X) of sheaves of sets over X .
(13) Given a topological spaceX the category PAb(X) of presheaves of abelian groups

over X .
(14) Given a topological space X the category Ab(X) of sheaves of abelian groups

over X .
(15) Given a small category C the category of functors from C to Sets.
(16) Given a category C the category of presheaves of sets over C.
(17) Given a site C the category of sheaves of sets over C.

One of the reason to enumerate these here is to try and avoid working with something
like the “collection” of “big” categories which would be like working with the collection
of all classes which I think definitively is a meta-mathematical object.

Remark 2.3. It follows directly from the definition that any two identity morphisms
of an object x of A are the same. Thus we may and will speak of the identity morphism
idx of x.

Definition 2.4. A morphism φ : x→ y is an isomorphism of the category C if there
exists a morphism ψ : y → x such that φ ◦ ψ = idy and ψ ◦ φ = idx.

An isomorphism φ is also sometimes called an invertible morphism, and the morphism ψ
of the definition is called the inverse and denoted φ−1. It is unique if it exists. Note that
given an object x of a category A the set of invertible elements AutA(x) of MorA(x, x)
forms a group under composition. This group is called the automorphism group of x in
A.

Definition 2.5. A groupoid is a category where every morphism is an isomorphism.

Example 2.6. A groupG gives rise to a groupoid with a single objectx and morphisms
Mor(x, x) = G, with the composition rule given by the group law in G. Every groupoid
with a single object is of this form.

Example 2.7. A setC gives rise to a groupoid C defined as follows: As objects we take
Ob(C) := C and for morphisms we take Mor(x, y) empty if x 6= y and equal to {idx} if
x = y.

Definition 2.8. A functor F : A → B between two categories A,B is given by the
following data:

(1) A map F : Ob(A)→ Ob(B).
(2) For every x, y ∈ Ob(A) a map F : MorA(x, y)→ MorB(F (x), F (y)), denoted

φ 7→ F (φ).
These data should be compatible with composition and identity morphisms in the follow-
ing manner: F (φ ◦ ψ) = F (φ) ◦ F (ψ) for a composable pair (φ, ψ) of morphisms of A
and F (idx) = idF (x).

Note that every category A has an identity functor idA. In addition, given a functor
G : B → C and a functor F : A → B there is a composition functor G ◦ F : A → C
defined in an obvious manner.
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Definition 2.9. Let F : A → B be a functor.
(1) We say F is faithful if for any objects x, y ∈ Ob(A) the map

F : MorA(x, y)→ MorB(F (x), F (y))

is injective.
(2) If these maps are all bijective then F is called fully faithful.
(3) The functor F is called essentially surjective if for any object y ∈ Ob(B) there

exists an object x ∈ Ob(A) such that F (x) is isomorphic to y in B.

Definition 2.10. A subcategory of a category B is a category A whose objects and
arrows form subsets of the objects and arrows of B and such that source, target and com-
position in A agree with those of B and such that the identity morphism of an object of
Amatches the one in B. We sayA is a full subcategory of B if MorA(x, y) = MorB(x, y)
for all x, y ∈ Ob(A). We sayA is a strictly full subcategory of B if it is a full subcategory
and given x ∈ Ob(A) any object of B which is isomorphic to x is also inA.

If A ⊂ B is a subcategory then the identity map is a functor from A to B. Furthermore
a subcategory A ⊂ B is full if and only if the inclusion functor is fully faithful. Note
that given a category B the set of full subcategories of B is the same as the set of subsets of
Ob(B).

Remark 2.11. Suppose that A is a category. A functor F from A to Sets is a math-
ematical object (i.e., it is a set not a class or a formula of set theory, see Sets, Section 2)
even though the category of sets is “big”. Namely, the range of F on objects will be a set
F (Ob(A)) and then we may think of F as a functor between A and the full subcategory
of the category of sets whose objects are elements of F (Ob(A)).

Example 2.12. A homomorphism p : G → H of groups gives rise to a functor be-
tween the associated groupoids in Example 2.6. It is faithful (resp. fully faithful) if and
only if p is injective (resp. an isomorphism).

Example 2.13. Given a category C and an object X ∈ Ob(C) we define the category
of objects over X , denoted C/X as follows. The objects of C/X are morphisms Y → X
for some Y ∈ Ob(C). Morphisms between objects Y → X and Y ′ → X are morphisms
Y → Y ′ in C that make the obvious diagram commute. Note that there is a functor pX :
C/X → C which simply forgets the morphism. Moreover given a morphism f : X ′ → X
in C there is an induced functor F : C/X ′ → C/X obtained by composition with f , and
pX ◦ F = pX′ .

Example 2.14. Given a category C and an object X ∈ Ob(C) we define the category
of objects under X , denoted X/C as follows. The objects of X/C are morphisms X → Y
for some Y ∈ Ob(C). Morphisms between objects X → Y and X → Y ′ are morphisms
Y → Y ′ in C that make the obvious diagram commute. Note that there is a functor pX :
X/C → C which simply forgets the morphism. Moreover given a morphism f : X ′ → X
in C there is an induced functor F : X/C → X ′/C obtained by composition with f , and
pX′ ◦ F = pX .

Definition 2.15. Let F,G : A → B be functors. A natural transformation, or a
morphism of functors t : F → G, is a collection {tx}x∈Ob(A) such that

(1) tx : F (x)→ G(x) is a morphism in the category B, and
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(2) for every morphism φ : x→ y ofA the following diagram is commutative

F (x) tx //

F (φ)
��

G(x)

G(φ)
��

F (y)
ty // G(y)

Sometimes we use the diagram

A
F
%%

G

99�� t B

to indicate that t is a morphism from F to G.

Note that every functor F comes with the identity transformation idF : F → F . In
addition, given a morphism of functors t : F → G and a morphism of functors s : E → F
then the composition t ◦ s is defined by the rule

(t ◦ s)x = tx ◦ sx : E(x)→ G(x)
for x ∈ Ob(A). It is easy to verify that this is indeed a morphism of functors from E to
G. In this way, given categories A and B we obtain a new category, namely the category
of functors betweenA and B.

Remark 2.16. This is one instance where the same thing does not hold ifA is a “big”
category. For example consider functors Sets→ Sets. As we have currently defined it such
a functor is a class and not a set. In other words, it is given by a formula in set theory (with
some variables equal to specified sets)! It is not a good idea to try to consider all possible
formulae of set theory as part of the definition of a mathematical object. The same problem
presents itself when considering sheaves on the category of schemes for example. We will
come back to this point later.

Definition 2.17. An equivalence of categories F : A → B is a functor such that
there exists a functor G : B → A such that the compositions F ◦ G and G ◦ F are
isomorphic to the identity functors idB , respectively idA. In this case we say that G is a
quasi-inverse to F .

Lemma 2.18. Let F : A → B be a fully faithful functor. Suppose for every X ∈
Ob(B) we are given an object j(X) ofA and an isomorphism iX : X → F (j(X)). Then
there is a unique functor j : B → A such that j extends the rule on objects, and the
isomorphisms iX define an isomorphism of functors idB → F ◦ j. Moreover, j and F are
quasi-inverse equivalences of categories.

Proof. To construct j : B → A, there are two steps. Firstly, we define the map
j : Ob(B) → Ob(A) that associates j(X) to X ∈ B. Secondly, if X,Y ∈ Ob(B) and
φ : X → Y , we consider φ′ := iY ◦ φ ◦ i−1

X . There is an unique ϕ verifying F (ϕ) = φ′,
using that F is fully faithful. We define j(φ) = ϕ. We omit the verification that j is a
functor. By construction the diagram

X
iX
//

φ

��

F (j(X))

F◦j(φ)
��

Y
iY // F (j(Y ))
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commutes. Hence, as each iX is an isomorphism, {iX}X is an isomorphism of functors
idB → F ◦j. To conclude, we have to also prove that j ◦F is isomorphic to idA. However,
since F is fully faithful, in order to do this it suffices to prove this after post-composing
withF , i.e., it suffices to show thatF ◦j◦F is isomorphic toF ◦idA (small detail omitted).
Since F ◦ j ∼= idB this is clear. �

Lemma 2.19. A functor is an equivalence of categories if and only if it is both fully
faithful and essentially surjective.

Proof. Let F : A → B be essentially surjective and fully faithful. As by con-
vention all categories are small and as F is essentially surjective we can, using the ax-
iom of choice, choose for every X ∈ Ob(B) an object j(X) of A and an isomorphism
iX : X → F (j(X)). Then we apply Lemma 2.18 using that F is fully faithful. �

Definition 2.20. Let A, B be categories. We define the product category A × B to
be the category with objects Ob(A× B) = Ob(A)×Ob(B) and

MorA×B((x, y), (x′, y′)) := MorA(x, x′)×MorB(y, y′).
Composition is defined componentwise.

3. Opposite Categories and the Yoneda Lemma

Definition 3.1. Given a category C the opposite category Copp is the category with
the same objects as C but all morphisms reversed.

In other words MorCopp(x, y) = MorC(y, x). Composition in Copp is the same as in C
except backwards: if φ : y → z and ψ : x → y are morphisms in Copp, in other words
arrows z → y and y → x in C , then φ ◦opp ψ is the morphism x → z of Copp which
corresponds to the composition z → y → x in C.

Definition 3.2. Let C , S be categories. A contravariant functor F from C to S is a
functor Copp → S .

Concretely, a contravariant functor F is given by a map F : Ob(C) → Ob(S) and for
every morphism ψ : x→ y in C a morphism F (ψ) : F (y)→ F (x). These should satisfy
the property that, given another morphism φ : y → z, we have F (φ ◦ ψ) = F (ψ) ◦ F (φ)
as morphisms F (z)→ F (x). (Note the reverse of order.)

Definition 3.3. Let C be a category.
(1) A presheaf of sets on C or simply a presheaf is a contravariant functor F from C

to Sets.
(2) The category of presheaves is denoted PSh(C).

Of course the category of presheaves is a proper class.

Example 3.4. Functor of points. For anyU ∈ Ob(C) there is a contravariant functor

hU : C −→ Sets
X 7−→ MorC(X,U)

which takes an object X to the set MorC(X,U). In other words hU is a presheaf. Given
a morphism f : X → Y the corresponding map hU (f) : MorC(Y, U) → MorC(X,U)
takes φ to φ ◦ f . We will always denote this presheaf hU : Copp → Sets. It is called
the representable presheaf associated to U . If C is the category of schemes this functor is
sometimes referred to as the functor of points of U .
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Note that given a morphism φ : U → V in C we get a corresponding natural transforma-
tion of functors h(φ) : hU → hV defined by composing with the morphismU → V . This
turns composition of morphisms in C into composition of transformations of functors. In
other words we get a functor

h : C −→ PSh(C)
Note that the target is a “big” category, see Remark 2.2. On the other hand, h is an actual
mathematical object (i.e. a set), compare Remark 2.11.

Lemma 3.5 (Yoneda lemma). Let U, V ∈ Ob(C). Given any morphism of functors
s : hU → hV there is a unique morphism φ : U → V such that h(φ) = s. In other words
the functor h is fully faithful. More generally, given any contravariant functorF and any
object U of C we have a natural bijection

MorPSh(C)(hU , F ) −→ F (U), s 7−→ sU (idU ).
Proof. For the first statement, just take φ = sU (idU ) ∈ MorC(U, V ). For the second

statement, given ξ ∈ F (U) define s by sV : hU (V ) → F (V ) by sending the element
f : V → U of hU (V ) = MorC(V,U) to F (f)(ξ). �

Definition 3.6. A contravariant functor F : C → Sets is said to be representable if
it is isomorphic to the functor of points hU for some object U of C.

Let C be a category and let F : Copp → Sets be a representable functor. Choose an objectU
of C and an isomorphism s : hU → F . The Yoneda lemma guarantees that the pair (U, s)
is unique up to unique isomorphism. The object U is called an object representing F . By
the Yoneda lemma the transformation s corresponds to a unique element ξ ∈ F (U). This
element is called the universal object. It has the property that for V ∈ Ob(C) the map

MorC(V,U) −→ F (V ), (f : V → U) 7−→ F (f)(ξ)
is a bijection. Thus ξ is universal in the sense that every element of F (V ) is equal to the
image of ξ via F (f) for a unique morphism f : V → U in C.

4. Products of pairs

Definition 4.1. Let x, y ∈ Ob(C). A product of x and y is an object x× y ∈ Ob(C)
together with morphisms p ∈ MorC(x × y, x) and q ∈ MorC(x × y, y) such that the
following universal property holds: for any w ∈ Ob(C) and morphisms α ∈ MorC(w, x)
and β ∈ MorC(w, y) there is a unique γ ∈ MorC(w, x× y) making the diagram

w
β

**
γ

''
α

  

x× y
p

��

q
// y

x

commute.

If a product exists it is unique up to unique isomorphism. This follows from the Yoneda
lemma as the definition requires x× y to be an object of C such that

hx×y(w) = hx(w)× hy(w)
functorially in w. In other words the product x× y is an object representing the functor
w 7→ hx(w)× hy(w).
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Definition 4.2. We say the category C has products of pairs of objects if a product
x× y exists for any x, y ∈ Ob(C).

We use this terminology to distinguish this notion from the notion of “having products”
or “having finite products” which usually means something else (in particular it always
implies there exists a final object).

5. Coproducts of pairs

Definition 5.1. Let x, y ∈ Ob(C). A coproduct, or amalgamated sum of x and y is an
objectxqy ∈ Ob(C) together with morphisms i ∈ MorC(x, xqy) and j ∈ MorC(y, xqy)
such that the following universal property holds: for any w ∈ Ob(C) and morphisms
α ∈ MorC(x,w) and β ∈ MorC(y, w) there is a unique γ ∈ MorC(x q y, w) making the
diagram

y

j

�� β

��

x
i //

α

**

xq y
γ

''
w

commute.

If a coproduct exists it is unique up to unique isomorphism. This follows from the Yoneda
lemma (applied to the opposite category) as the definition requires x q y to be an object
of C such that

MorC(xq y, w) = MorC(x,w)×MorC(y, w)

functorially in w.

Definition 5.2. We say the category C has coproducts of pairs of objects if a coprod-
uct xq y exists for any x, y ∈ Ob(C).

We use this terminology to distinguish this notion from the notion of “having coproducts”
or “having finite coproducts” which usually means something else (in particular it always
implies there exists an initial object in C).

6. Fibre products

Definition 6.1. Let x, y, z ∈ Ob(C), f ∈ MorC(x, y) and g ∈ MorC(z, y). A
fibre product of f and g is an object x ×y z ∈ Ob(C) together with morphisms p ∈
MorC(x×y z, x) and q ∈ MorC(x×y z, z) making the diagram

x×y z q
//

p

��

z

g

��
x

f // y

commute, and such that the following universal property holds: for any w ∈ Ob(C) and
morphisms α ∈ MorC(w, x) and β ∈ MorC(w, z) with f ◦ α = g ◦ β there is a unique
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γ ∈ MorC(w, x×y z) making the diagram

w
β

**
γ

''
α

  

x×y z
p

��

q
// z

g

��
x

f // y

commute.

If a fibre product exists it is unique up to unique isomorphism. This follows from the
Yoneda lemma as the definition requires x×y z to be an object of C such that

hx×yz(w) = hx(w)×hy(w) hz(w)

functorially in w. In other words the fibre product x ×y z is an object representing the
functor w 7→ hx(w)×hy(w) hz(w).

Definition 6.2. We say a commutative diagram

w //

��

z

��
x // y

in a category is cartesian if w and the morphisms w → x and w → z form a fibre product
of the morphisms x→ y and z → y.

Definition 6.3. We say the category C has fibre products if the fibre product exists
for any f ∈ MorC(x, y) and g ∈ MorC(z, y).

Definition 6.4. A morphism f : x→ y of a category C is said to be representable if
for every morphism z → y in C the fibre product x×y z exists.

Lemma 6.5. Let C be a category. Let f : x → y, and g : y → z be representable.
Then g ◦ f : x→ z is representable.

Proof. Let t ∈ Ob(C) and ϕ ∈ MorC(t, z). As g and f are representable, we obtain
commutative diagrams

y ×z t q
//

p

��

t

ϕ

��
y

g // z

x×y (y×z t)
q′

//

p′

��

y ×z t

p

��
x

f // y

with the universal property of Definition 6.1. We claim that x×z t = x×y (y×z t) with
morphisms q ◦ q′ : x ×z t → t and p′ : x ×z t → x is a fibre product. First, it follows
from the commutativity of the diagrams above that ϕ ◦ q ◦ q′ = f ◦ g ◦ p′. To verify the
universal property, let w ∈ Ob(C) and suppose α : w → x and β : w → y are morphisms
with ϕ ◦ β = f ◦ g ◦ α. By definition of the fibre product, there are unique morphisms δ
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and γ such that
w

β

**
δ ''

f◦α

  

y ×z t
p

��

q
// t

ϕ

��
y

g // z

and
w

δ

++
γ ((

α

""

x×y (y×z t)

p′

��

q′
// y ×z t

p

��
x

f // y

commute. Then, γ makes the diagram

w
β

**
γ ((
α

  

x×z t

p′

��

q◦q′
// t

ϕ

��
x

g◦f // z

commute. To show its uniqueness, let γ′ verify q ◦ q′ ◦ γ′ = β and p′ ◦ γ′ = α. Because γ
is unique, we just need to prove that q′ ◦ γ′ = δ and p′ ◦ γ′ = α to conclude. We supposed
the second equality. For the first one, we also need to use the uniqueness of delta. Notice
that δ is the only morphism verifying q ◦ δ = β and p ◦ δ = f ◦ α. We already supposed
that q ◦ (q′ ◦ γ′) = β. Furthermore, by definition of the fibre product, we know that
f ◦ p′ = p ◦ q′. Therefore:

p ◦ (q′ ◦ γ′) = (p ◦ q′) ◦ γ′ = (f ◦ p′) ◦ γ′ = f ◦ (p′ ◦ γ′) = f ◦ α.

Then q′ ◦ γ′ = δ, which concludes the proof. �

Lemma 6.6. Let C be a category. Let f : x → y be representable. Let y′ → y be a
morphism of C. Then the morphism x′ := x×y y′ → y′ is representable also.

Proof. Let z → y′ be a morphism. The fibre product x′×y′ z is supposed to represent
the functor

w 7→ hx′(w)×hy′ (w) hz(w)
= (hx(w)×hy(w) hy′(w))×hy′ (w) hz(w)
= hx(w)×hy(w) hz(w)

which is representable by assumption. �



114 4. CATEGORIES

7. Examples of fibre products

In this section we list examples of fibre products and we describe them.

As a really trivial first example we observe that the category of sets has fibre products and
hence every morphism is representable. Namely, if f : X → Y and g : Z → Y are maps
of sets then we define X ×Y Z as the subset of X × Z consisting of pairs (x, z) such that
f(x) = g(z). The morphisms p : X ×Y Z → X and q : X ×Y Z → Z are the projection
maps (x, z) 7→ x, and (x, z) 7→ z. Finally, if α : W → X and β : W → Z are morphisms
such that f ◦ α = g ◦ β then the map W → X × Z , w 7→ (α(w), β(w)) obviously ends
up in X ×Y Z as desired.

In many categories whose objects are sets endowed with certain types of algebraic struc-
tures the fibre product of the underlying sets also provides the fibre product in the cate-
gory. For example, suppose that X , Y and Z above are groups and that f , g are homo-
morphisms of groups. Then the set-theoretic fibre productX ×Y Z inherits the structure
of a group, simply by defining the product of two pairs by the formula (x, z) · (x′, z′) =
(xx′, zz′). Here we list those categories for which a similar reasoning works.

(1) The category Groups of groups.
(2) The category G-Sets of sets endowed with a left G-action for some fixed group

G.
(3) The category of rings.
(4) The category of R-modules given a ring R.

8. Fibre products and representability

In this section we work out fibre products in the category of contravariant functors from
a category to the category of sets. This will later be superseded during the discussion of
sites, presheaves, sheaves. Of some interest is the notion of a “representable morphism”
between such functors.

Lemma 8.1. Let C be a category. Let F,G,H : Copp → Sets be functors. Let a : F →
G and b : H → G be transformations of functors. Then the fibre product F ×a,G,b H in
the category PSh(C) exists and is given by the formula

(F ×a,G,b H)(X) = F (X)×aX ,G(X),bX H(X)

for any object X of C.

Proof. Omitted. �

As a special case suppose we have a morphism a : F → G, an object U ∈ Ob(C) and
an element ξ ∈ G(U). According to the Yoneda Lemma 3.5 this gives a transformation
ξ : hU → G. The fibre product in this case is described by the rule

(hU ×ξ,G,a F )(X) = {(f, ξ′) | f : X → U, ξ′ ∈ F (X), G(f)(ξ) = aX(ξ′)}

If F , G are also representable, then this is the functor representing the fibre product, if
it exists, see Section 6. The analogy with Definition 6.4 prompts us to define a notion of
representable transformations.

Definition 8.2. Let C be a category. Let F,G : Copp → Sets be functors. We say a
morphism a : F → G is representable, or that F is relatively representable over G, if for
every U ∈ Ob(C) and any ξ ∈ G(U) the functor hU ×G F is representable.



9. PUSHOUTS 115

Lemma 8.3. Let C be a category. Let a : F → G be a morphism of contravariant
functors from C to Sets. If a is representable, and G is a representable functor, then F is
representable.

Proof. Omitted. �

Lemma 8.4. Let C be a category. Let F : Copp → Sets be a functor. Assume C has
products of pairs of objects and fibre products. The following are equivalent:

(1) the diagonal ∆ : F → F × F is representable,
(2) for every U in C , and any ξ ∈ F (U) the map ξ : hU → F is representable,
(3) for every pair U, V in C and any ξ ∈ F (U), ξ′ ∈ F (V ) the fibre product

hU ×ξ,F,ξ′ hV is representable.

Proof. We will continue to use the Yoneda lemma to identify F (U) with transfor-
mations hU → F of functors.

Equivalence of (2) and (3). Let U, ξ, V, ξ′ be as in (3). Both (2) and (3) tell us exactly that
hU ×ξ,F,ξ′ hV is representable; the only difference is that the statement (3) is symmetric
in U and V whereas (2) is not.

Assume condition (1). Let U, ξ, V, ξ′ be as in (3). Note that hU × hV = hU×V is rep-
resentable. Denote η : hU×V → F × F the map corresponding to the product ξ × ξ′ :
hU×hV → F×F . Then the fibre productF×∆,F×F,ηhU×V is representable by assump-
tion. This means there exist W ∈ Ob(C), morphisms W → U , W → V and hW → F
such that

hW

��

// hU × hV

ξ×ξ′

��
F // F × F

is cartesian. Using the explicit description of fibre products in Lemma 8.1 the reader sees
that this implies that hW = hU ×ξ,F,ξ′ hV as desired.

Assume the equivalent conditions (2) and (3). Let U be an object of C and let (ξ, ξ′) ∈
(F ×F )(U). By (3) the fibre product hU ×ξ,F,ξ′ hU is representable. Choose an objectW
and an isomorphism hW → hU×ξ,F,ξ′ hU . The two projections pri : hU×ξ,F,ξ′ hU → hU
correspond to morphisms pi : W → U by Yoneda. Consider W ′ = W ×(p1,p2),U×U U .
It is formal to show that W ′ represents F ×∆,F×F hU because

hW ′ = hW ×hU×hU hU = (hU ×ξ,F,ξ′ hU )×hU×hU hU = F ×F×F hU .

Thus ∆ is representable and this finishes the proof. �

9. Pushouts

The dual notion to fibre products is that of pushouts.

Definition 9.1. Let x, y, z ∈ Ob(C), f ∈ MorC(y, x) and g ∈ MorC(y, z). A
pushout of f and g is an objectxqyz ∈ Ob(C) together with morphisms p ∈ MorC(x, xqy
z) and q ∈ MorC(z, xqy z) making the diagram

y
g
//

f

��

z

q

��
x

p // xqy z
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commute, and such that the following universal property holds: For any w ∈ Ob(C) and
morphisms α ∈ MorC(x,w) and β ∈ MorC(z, w) with α ◦ f = β ◦ g there is a unique
γ ∈ MorC(xqy z, w) making the diagram

y
g
//

f

��

z

q

�� β

  

x
p //

α

**

xqy z
γ

''
w

commute.

It is possible and straightforward to prove the uniqueness of the triple (xqy z, p, q) up to
unique isomorphism (if it exists) by direct arguments. Another possibility is to think of
the pushout as the fibre product in the opposite category, thereby getting this uniqueness
for free from the discussion in Section 6.

Definition 9.2. We say a commutative diagram

y //

��

z

��
x // w

in a category is cocartesian if w and the morphisms x→ w and z → w form a pushout of
the morphisms y → x and y → z.

10. Equalizers

Definition 10.1. Suppose thatX , Y are objects of a category C and that a, b : X → Y
are morphisms. We say a morphism e : Z → X is an equalizer for the pair (a, b) if
a ◦ e = b ◦ e and if (Z, e) satisfies the following universal property: For every morphism
t : W → X in C such that a ◦ t = b ◦ t there exists a unique morphism s : W → Z such
that t = e ◦ s.

As in the case of the fibre products above, equalizers when they exist are unique up to
unique isomorphism. There is a straightforward generalization of this definition to the
case where we have more than 2 morphisms.

11. Coequalizers

Definition 11.1. Suppose thatX , Y are objects of a category C and that a, b : X → Y
are morphisms. We say a morphism c : Y → Z is a coequalizer for the pair (a, b) if
c ◦ a = c ◦ b and if (Z, c) satisfies the following universal property: For every morphism
t : Y → W in C such that t ◦ a = t ◦ b there exists a unique morphism s : Z → W such
that t = s ◦ c.

As in the case of the pushouts above, coequalizers when they exist are unique up to unique
isomorphism, and this follows from the uniqueness of equalizers upon considering the
opposite category. There is a straightforward generalization of this definition to the case
where we have more than 2 morphisms.
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12. Initial and final objects

Definition 12.1. Let C be a category.
(1) An object x of the category C is called an initial object if for every object y of C

there is exactly one morphism x→ y.
(2) An object x of the category C is called a final object if for every object y of C there

is exactly one morphism y → x.

In the category of sets the empty set ∅ is an initial object, and in fact the only initial object.
Also, any singleton, i.e., a set with one element, is a final object (so it is not unique).

13. Monomorphisms and Epimorphisms

Definition 13.1. Let C be a category and let f : X → Y be a morphism of C.
(1) We say that f is a monomorphism if for every object W and every pair of mor-

phisms a, b : W → X such that f ◦ a = f ◦ b we have a = b.
(2) We say that f is an epimorphism if for every object W and every pair of mor-

phisms a, b : Y →W such that a ◦ f = b ◦ f we have a = b.

Example 13.2. In the category of sets the monomorphisms correspond to injective
maps and the epimorphisms correspond to surjective maps.

Lemma 13.3. Let C be a category, and let f : X → Y be a morphism of C. Then
(1) f is a monomorphism if and only if X is the fibre product X ×Y X , and
(2) f is an epimorphism if and only if Y is the pushout Y qX Y .

Proof. Let suppose that f is a monomorphism. Let W be an object of C and α, β ∈
MorC(W,X) such that f ◦ α = f ◦ β. Therefore α = β as f is monic. In addition, we
have the commutative diagram

X
idX //

idX
��

X

f

��
X

f // Y

which verify the universal property with γ := α = β. ThusX is indeed the fibre product
X ×Y X .

Suppose that X ×Y X ∼= X . The diagram

X
idX //

idX
��

X

f

��
X

f // Y

commutes and if W ∈ Ob(C) and α, β : X → Y such that f ◦ α = f ◦ β, we have a
unique γ verifying

γ = idX ◦ γ = α = β

which proves that α = β.

The proof is exactly the same for the second point, but with the pushoutY qXY = Y . �
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14. Limits and colimits

Let C be a category. A diagram in C is simply a functor M : I → C. We say that I is the
index category or thatM is anI-diagram. We will use the notationMi to denote the image
of the object i of I . Hence for φ : i→ i′ a morphism in I we have M(φ) : Mi →Mi′ .

Definition 14.1. A limit of the I-diagramM in the category C is given by an object
limI M in C together with morphisms pi : limI M →Mi such that

(1) for φ : i→ i′ a morphism in I we have pi′ = M(φ) ◦ pi, and
(2) for any object W in C and any family of morphisms qi : W → Mi (indexed by

i ∈ Ob(I)) such that for all φ : i→ i′ in I we have qi′ = M(φ) ◦ qi there exists
a unique morphism q : W → limI M such that qi = pi ◦ q for every object i of
I .

Limits (limI M, (pi)i∈Ob(I)) are (if they exist) unique up to unique isomorphism by the
uniqueness requirement in the definition. Products of pairs, fibre products, and equalizers
are examples of limits. The limit over the empty diagram is a final object of C. In the
category of sets all limits exist. The dual notion is that of colimits.

Definition 14.2. A colimit of the I-diagram M in the category C is given by an
object colimI M in C together with morphisms si : Mi → colimI M such that

(1) for φ : i→ i′ a morphism in I we have si = si′ ◦M(φ), and
(2) for any object W in C and any family of morphisms ti : Mi → W (indexed by

i ∈ Ob(I)) such that for all φ : i→ i′ in I we have ti = ti′ ◦M(φ) there exists
a unique morphism t : colimI M → W such that ti = t ◦ si for every object i
of I .

Colimits (colimI M, (si)i∈Ob(I)) are (if they exist) unique up to unique isomorphism by
the uniqueness requirement in the definition. Coproducts of pairs, pushouts, and coequal-
izers are examples of colimits. The colimit over an empty diagram is an initial object of C.
In the category of sets all colimits exist.

Remark 14.3. The index category of a (co)limit will never be allowed to have a proper
class of objects. In this project it means that it cannot be one of the categories listed in
Remark 2.2

Remark 14.4. We often write limiMi, colimiMi, limi∈I Mi, or colimi∈I Mi instead
of the versions indexed by I . Using this notation, and using the description of limits and
colimits of sets in Section 15 below, we can say the following. LetM : I → C be a diagram.

(1) The object limiMi if it exists satisfies the following property

MorC(W, limiMi) = limi MorC(W,Mi)

where the limit on the right takes place in the category of sets.
(2) The object colimiMi if it exists satisfies the following property

MorC(colimiMi,W ) = limi∈Iopp MorC(Mi,W )

where on the right we have the limit over the opposite category with value in
the category of sets.

By the Yoneda lemma (and its dual) this formula completely determines the limit, respec-
tively the colimit.
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Remark 14.5. Let M : I → C be a diagram. In this setting a cone for M is given
by an object W and a family of morphisms qi : W → Mi, i ∈ Ob(I) such that for all
morphisms φ : i→ i′ of I the diagram

W
qi

}}

qi′

!!
Mi

M(φ) // Mi′

is commutative. The collection of cones forms a category with an obvious notion of mor-
phisms. Clearly, the limit ofM , if it exists, is a final object in the category of cones. Dually,
a cocone for M is given by an object W and a family of morphisms ti : Mi → W such
that for all morphisms φ : i→ i′ in I the diagram

Mi

M(φ) //

ti !!

Mi′

ti′}}
W

commutes. The collection of cocones forms a category with an obvious notion of mor-
phisms. Similarly to the above the colimit of M exists if and only if the category of
cocones has an initial object.

As an application of the notions of limits and colimits we define products and coproducts.

Definition 14.6. Suppose that I is a set, and suppose given for every i ∈ I an object
Mi of the category C. A product

∏
i∈IMi is by definition limI M (if it exists) where I is

the category having only identities as morphisms and having the elements of I as objects.

An important special case is where I = ∅ in which case the product is a final object of the
category. The morphisms pi :

∏
Mi →Mi are called the projection morphisms.

Definition 14.7. Suppose that I is a set, and suppose given for every i ∈ I an object
Mi of the category C. A coproduct

∐
i∈IMi is by definition colimI M (if it exists) where

I is the category having only identities as morphisms and having the elements of I as
objects.

An important special case is where I = ∅ in which case the coproduct is an initial object
of the category. Note that the coproduct comes equipped with morphisms Mi →

∐
Mi.

These are sometimes called the coprojections.

Lemma 14.8. Suppose thatM : I → C , andN : J → C are diagrams whose colimits
exist. Suppose H : I → J is a functor, and suppose t : M → N ◦H is a transformation
of functors. Then there is a unique morphism

θ : colimI M −→ colimJ N

such that all the diagrams
Mi

ti

��

// colimI M

θ

��
NH(i) // colimJ N

commute.
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Proof. Omitted. �

Lemma 14.9. Suppose that M : I → C , and N : J → C are diagrams whose limits
exist. Suppose H : I → J is a functor, and suppose t : N ◦H → M is a transformation
of functors. Then there is a unique morphism

θ : limJ N −→ limI M

such that all the diagrams

limJ N

θ

��

// NH(i)

ti

��
limI M // Mi

commute.

Proof. Omitted. �

Lemma 14.10. Let I , J be index categories. Let M : I × J → C be a functor. We
have

colimi colimjMi,j = colimi,jMi,j = colimj colimiMi,j

provided all the indicated colimits exist. Similar for limits.

Proof. Omitted. �

Lemma 14.11. Let M : I → C be a diagram. Write I = Ob(I) and A = Arrows(I).
Denote s, t : A→ I the source and target maps. Suppose that

∏
i∈IMi and

∏
a∈AMt(a)

exist. Suppose that the equalizer of

∏
i∈IMi

φ //

ψ
//
∏
a∈AMt(a)

exists, where the morphisms are determined by their components as follows: pa ◦ ψ =
M(a) ◦ ps(a) and pa ◦ φ = pt(a). Then this equalizer is the limit of the diagram.

Proof. Omitted. �

Lemma 14.12. Let M : I → C be a diagram. Write I = Ob(I) and A = Arrows(I).
Denote s, t : A→ I the source and target maps. Suppose that

∐
i∈IMi and

∐
a∈AMs(a)

exist. Suppose that the coequalizer of

∐
a∈AMs(a)

φ //

ψ
//
∐
i∈IMi

exists, where the morphisms are determined by their components as follows: The compo-
nentMs(a) maps via ψ to the componentMt(a) via the morphismM(a). The component
Ms(a) maps via φ to the component Ms(a) by the identity morphism. Then this coequal-
izer is the colimit of the diagram.

Proof. Omitted. �
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15. Limits and colimits in the category of sets

Not only do limits and colimits exist in Sets but they are also easy to describe. Namely, let
M : I → Sets, i 7→Mi be a diagram of sets. Denote I = Ob(I). The limit is described as

limI M = {(mi)i∈I ∈
∏

i∈I
Mi | ∀φ : i→ i′ in I,M(φ)(mi) = mi′}.

So we think of an element of the limit as a compatible system of elements of all the sets
Mi.

On the other hand, the colimit is

colimI M = (
∐

i∈I
Mi)/ ∼

where the equivalence relation ∼ is the equivalence relation generated by setting mi ∼
mi′ if mi ∈ Mi, mi′ ∈ Mi′ and M(φ)(mi) = mi′ for some φ : i → i′. In other words,
mi ∈Mi and mi′ ∈Mi′ are equivalent if there are a chain of morphisms in I

i1

|| ��

i3

��

i2n−1

$$
i = i0 i2 . . . i2n = i′

and elements mij ∈ Mij mapping to each other under the maps Mi2k−1 → Mi2k−2 and
Mi2k−1 →Mi2k induced from the maps in I above.

This is not a very pleasant type of object to work with. But if the diagram is filtered then
it is much easier to describe. We will explain this in Section 19.

16. Connected limits

A (co)limit is called connected if its index category is connected.

Definition 16.1. We say that a category I is connected if the equivalence relation
generated by x ∼ y ⇔ MorI(x, y) 6= ∅ has exactly one equivalence class.

Here we follow the convention of Topology, Definition 7.1 that connected spaces are
nonempty. The following in some vague sense characterizes connected limits.

Lemma 16.2. Let C be a category. Let X be an object of C. Let M : I → C/X be a
diagram in the category of objects over X . If the index category I is connected and the
limit of M exists in C/X , then the limit of the composition I → C/X → C exists and is
the same.

Proof. Let L→ X be an object representing the limit in C/X . Consider the functor

W 7−→ limi MorC(W,Mi).

Let (ϕi) be an element of the set on the right. Since each Mi comes equipped with a
morphism si : Mi → X we get morphisms fi = si ◦ ϕi : W → X . But as I is connected
we see that all fi are equal. Since I is nonempty there is at least one fi. Hence this common
valueW → X defines the structure of an object ofW in C/X and (ϕi) defines an element
of limi MorC/X(W,Mi). Thus we obtain a unique morphism φ : W → L such that ϕi is
the composition of φ with L→Mi as desired. �
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Lemma 16.3. Let C be a category. Let X be an object of C. Let M : I → X/C be a
diagram in the category of objects under X . If the index category I is connected and the
colimit of M exists in X/C , then the colimit of the composition I → X/C → C exists
and is the same.

Proof. Omitted. Hint: This lemma is dual to Lemma 16.2. �

17. Cofinal and initial categories

In the literature sometimes the word “final” is used instead of cofinal in the following
definition.

Definition 17.1. LetH : I → J be a functor between categories. We say I is cofinal
in J or that H is cofinal if

(1) for all y ∈ Ob(J ) there exist an x ∈ Ob(I) and a morphism y → H(x), and
(2) given y ∈ Ob(J ), x, x′ ∈ Ob(I) and morphisms y → H(x) and y → H(x′)

there exist a sequence of morphisms

x = x0 ← x1 → x2 ← x3 → . . .→ x2n = x′

in I and morphisms y → H(xi) in J such that the diagrams

y

xx �� &&
H(x2k) H(x2k+1)oo // H(x2k+2)

commute for k = 0, . . . , n− 1.

Lemma 17.2. Let H : I → J be a functor of categories. Assume I is cofinal in J .
Then for every diagram M : J → C we have a canonical isomorphism

colimI M ◦H = colimJ M

if either side exists.

Proof. Omitted. �

Definition 17.3. LetH : I → J be a functor between categories. We say I is initial
in J or that H is initial if

(1) for all y ∈ Ob(J ) there exist an x ∈ Ob(I) and a morphism H(x)→ y,
(2) for any y ∈ Ob(J ), x, x′ ∈ Ob(I) and morphisms H(x) → y, H(x′) → y in
J there exist a sequence of morphisms

x = x0 ← x1 → x2 ← x3 → . . .→ x2n = x′

in I and morphisms H(xi)→ y in J such that the diagrams

H(x2k)

&&

H(x2k+1)oo //

��

H(x2k+2)

xx
y

commute for k = 0, . . . , n− 1.

This is just the dual notion to “cofinal” functors.
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Lemma 17.4. Let H : I → J be a functor of categories. Assume I is initial in J .
Then for every diagram M : J → C we have a canonical isomorphism

limI M ◦H = limJ M

if either side exists.

Proof. Omitted. �

Lemma 17.5. Let F : I → I ′ be a functor. Assume
(1) the fibre categories (see Definition 32.2) of I over I ′ are all connected, and
(2) for every morphism α′ : x′ → y′ in I ′ there exists a morphism α : x → y in I

such that F (α) = α′.
Then for every diagram M : I ′ → C the colimit colimI M ◦ F exists if and only if
colimI′ M exists and if so these colimits agree.

Proof. One can prove this by showing that I is cofinal in I ′ and applying Lemma
17.2. But we can also prove it directly as follows. It suffices to show that for any object T
of C we have

limIopp MorC(MF (i), T ) = lim(I′)opp MorC(Mi′ , T )
If (gi′)i′∈Ob(I′) is an element of the right hand side, then setting fi = gF (i) we obtain
an element (fi)i∈Ob(I) of the left hand side. Conversely, let (fi)i∈Ob(I) be an element of
the left hand side. Note that on each (connected) fibre category Ii′ the functor M ◦ F is
constant with value Mi′ . Hence the morphisms fi for i ∈ Ob(I) with F (i) = i′ are all
the same and determine a well defined morphism gi′ : Mi′ → T . By assumption (2) the
collection (gi′)i′∈Ob(I′) defines an element of the right hand side. �

Lemma 17.6. Let I and J be a categories and denote p : I ×J → J the projection.
If I is connected, then for a diagramM : J → C the colimit colimJ M exists if and only
if colimI×J M ◦ p exists and if so these colimits are equal.

Proof. This is a special case of Lemma 17.5. �

18. Finite limits and colimits

A finite (co)limit is a (co)limit whose index category is finite, i.e., the index category has
finitely many objects and finitely many morphisms. A (co)limit is called nonempty if
the index category is nonempty. A (co)limit is called connected if the index category is
connected, see Definition 16.1. It turns out that there are “enough” finite index categories.

Lemma 18.1. Let I be a category with
(1) Ob(I) is finite, and
(2) there exist finitely many morphisms f1, . . . , fm ∈ Arrows(I) such that every

morphism of I is a composition fj1 ◦ fj2 ◦ . . . ◦ fjk .
Then there exists a functor F : J → I such that

(a) J is a finite category, and
(b) for any diagram M : I → C the (co)limit of M over I exists if and only if the

(co)limit of M ◦ F over J exists and in this case the (co)limits are canonically
isomorphic.

Moreover, J is connected (resp. nonempty) if and only if I is so.
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Proof. Say Ob(I) = {x1, . . . , xn}. Denote s, t : {1, . . . ,m} → {1, . . . , n} the
functions such that fj : xs(j) → xt(j). We set Ob(J ) = {y1, . . . , yn, z1, . . . , zn} Besides
the identity morphisms we introduce morphisms gj : ys(j) → zt(j), j = 1, . . . ,m and
morphisms hi : yi → zi, i = 1, . . . , n. Since all of the nonidentity morphisms in J go
from a y to a z there are no compositions to define and no associativities to check. Set
F (yi) = F (zi) = xi. Set F (gj) = fj and F (hi) = idxi . It is clear that F is a functor. It
is clear that J is finite. It is clear that J is connected, resp. nonempty if and only if I is
so.

LetM : I → C be a diagram. Consider an objectW of C and morphisms qi : W →M(xi)
as in Definition 14.1. Then by taking qi : W → M(F (yi)) = M(F (zi)) = M(xi) we
obtain a family of maps as in Definition 14.1 for the diagramM ◦F . Conversely, suppose
we are given maps qyi : W →M(F (yi)) and qzi : W →M(F (zi)) as in Definition 14.1
for the diagram M ◦ F . Since

M(F (hi)) = id : M(F (yi)) = M(xi) −→M(xi) = M(F (zi))
we conclude that qyi = qzi for all i. Set qi equal to this common value. The compatibility
of qs(j) = qys(j) and qt(j) = qzt(j) with the morphism M(fj) guarantees that the fam-
ily qi is compatible with all morphisms in I as by assumption every such morphism is a
composition of the morphisms fj . Thus we have found a canonical bijection

limB∈Ob(J ) MorC(W,M(F (B))) = limA∈Ob(I) MorC(W,M(A))
which implies the statement on limits in the lemma. The statement on colimits is proved
in the same way (proof omitted). �

Lemma 18.2. Let C be a category. The following are equivalent:
(1) Connected finite limits exist in C.
(2) Equalizers and fibre products exist in C.

Proof. Since equalizers and fibre products are finite connected limits we see that (1)
implies (2). For the converse, let I be a finite connected index category. LetF : J → I be
the functor of index categories constructed in the proof of Lemma 18.1. Then we see that
we may replace I by J . The result is that we may assume that Ob(I) = {x1, . . . , xn} q
{y1, . . . , ym} with n,m ≥ 1 such that all nonidentity morphisms in I are morphisms
f : xi → yj for some i and j.

Suppose that n > 1. Since I is connected there exist indices i1, i2 and j0 and morphisms
a : xi1 → yj0 and b : xi2 → yj0 . Consider the category

I ′ = {x} q {x1, . . . , x̂i1 , . . . , x̂i2 , . . . xn} q {y1, . . . , ym}
with

MorI′(x, yj) = MorI(xi1 , yj)qMorI(xi2 , yj)
and all other morphism sets the same as in I . For any functorM : I → C we can construct
a functor M ′ : I ′ → C by setting

M ′(x) = M(xi1)×M(a),M(yj0 ),M(b) M(xi2)

and for a morphism f ′ : x → yj corresponding to, say, f : xi1 → yj we set M ′(f) =
M(f) ◦ pr1. Then the functor M has a limit if and only if the functor M ′ has a limit
(proof omitted). Hence by induction we reduce to the case n = 1.

If n = 1, then the limit of any M : I → C is the successive equalizer of pairs of maps
x1 → yj hence exists by assumption. �
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Lemma 18.3. Let C be a category. The following are equivalent:
(1) Nonempty finite limits exist in C.
(2) Products of pairs and equalizers exist in C.
(3) Products of pairs and fibre products exist in C.

Proof. Since products of pairs, fibre products, and equalizers are limits with nonempty
index categories we see that (1) implies both (2) and (3). Assume (2). Then finite nonempty
products and equalizers exist. Hence by Lemma 14.11 we see that finite nonempty limits
exist, i.e., (1) holds. Assume (3). If a, b : A→ B are morphisms of C , then the equalizer of
a, b is

(A×a,B,b A)×(pr1,pr2),A×A,∆ A.

Thus (3) implies (2), and the lemma is proved. �

Lemma 18.4. Let C be a category. The following are equivalent:
(1) Finite limits exist in C.
(2) Finite products and equalizers exist.
(3) The category has a final object and fibre products exist.

Proof. Since finite products, fibre products, equalizers, and final objects are limits
over finite index categories we see that (1) implies both (2) and (3). By Lemma 14.11 above
we see that (2) implies (1). Assume (3). Note that the product A× B is the fibre product
over the final object. If a, b : A→ B are morphisms of C , then the equalizer of a, b is

(A×a,B,b A)×(pr1,pr2),A×A,∆ A.

Thus (3) implies (2) and the lemma is proved. �

Lemma 18.5. Let C be a category. The following are equivalent:
(1) Connected finite colimits exist in C.
(2) Coequalizers and pushouts exist in C.

Proof. Omitted. Hint: This is dual to Lemma 18.2. �

Lemma 18.6. Let C be a category. The following are equivalent:
(1) Nonempty finite colimits exist in C.
(2) Coproducts of pairs and coequalizers exist in C.
(3) Coproducts of pairs and pushouts exist in C.

Proof. Omitted. Hint: This is the dual of Lemma 18.3. �

Lemma 18.7. Let C be a category. The following are equivalent:
(1) Finite colimits exist in C.
(2) Finite coproducts and coequalizers exist in C.
(3) The category has an initial object and pushouts exist.

Proof. Omitted. Hint: This is dual to Lemma 18.4. �

19. Filtered colimits

Colimits are easier to compute or describe when they are over a filtered diagram. Here is
the definition.

Definition 19.1. We say that a diagram M : I → C is directed, or filtered if the
following conditions hold:
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(1) the category I has at least one object,
(2) for every pair of objects x, y of I there exist an object z and morphisms x → z,

y → z, and
(3) for every pair of objects x, y of I and every pair of morphisms a, b : x → y of
I there exists a morphism c : y → z of I such that M(c ◦ a) = M(c ◦ b) as
morphisms in C.

We say that an index category I is directed, or filtered if id : I → I is filtered (in other
words you erase the M in part (3) above).

We observe that any diagram with filtered index category is filtered, and this is how fil-
tered colimits usually come about. In fact, ifM : I → C is a filtered diagram, then we can
factor M as I → I ′ → C where I ′ is a filtered index category1 such that colimI M exists
if and only if colimI′ M ′ exists in which case the colimits are canonically isomorphic.
Suppose that M : I → Sets is a filtered diagram. In this case we may describe the equiva-
lence relation in the formula

colimI M = (
∐

i∈I
Mi)/ ∼

simply as follows
mi ∼ mi′ ⇔ ∃i′′, φ : i→ i′′, φ′ : i′ → i′′,M(φ)(mi) = M(φ′)(mi′).

In other words, two elements are equal in the colimit if and only if they “eventually become
equal”.

Lemma 19.2. Let I and J be index categories. Assume that I is filtered and J is
finite. Let M : I × J → Sets, (i, j) 7→Mi,j be a diagram of diagrams of sets. In this case

colimi limjMi,j = limj colimiMi,j .

In particular, colimits over I commute with finite products, fibre products, and equalizers
of sets.

Proof. Omitted. In fact, it is a fun exercise to prove that a category is filtered if
and only if colimits over the category commute with finite limits (into the category of
sets). �

We give a counter example to the lemma in the case whereJ is infinite. Namely, let I con-
sist of N = {1, 2, 3, . . .}with a unique morphism i→ i′ whenever i ≤ i′. LetJ be the dis-
crete category N = {1, 2, 3, . . .} (only morphisms are identities). LetMi,j = {1, 2, . . . , i}
with obvious inclusion maps Mi,j → Mi′,j when i ≤ i′. In this case colimiMi,j = N
and hence

limj colimiMi,j =
∏

j
N = NN

On the other hand limjMi,j =
∏
jMi,j and hence

colimi limjMi,j =
⋃

i
{1, 2, . . . , i}N

which is smaller than the other limit.

Lemma 19.3. Let I be a category. Let J be a full subcategory. Assume that I is
filtered. Assume also that for any object i of I , there exists a morphism i → j to some
object j of J . Then J is filtered and cofinal in I .

1Namely, let I′ have the same objects as I but where MorI′ (x, y) is the quotient of MorI(x, y) by the
equivalence relation which identifies a, b : x → y if M(a) = M(b).
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Proof. Omitted. Pleasant exercise of the notions involved. �

It turns out we sometimes need a more finegrained control over the possible conditions
one can impose on index categories. Thus we add some lemmas on the possible things one
can require.

Lemma 19.4. Let I be an index category, i.e., a category. Assume that for every pair
of objects x, y of I there exist an object z and morphisms x→ z and y → z. Then

(1) If M and N are diagrams of sets over I , then colim(Mi × Ni) → colimMi ×
colimNi is surjective,

(2) in general colimits of diagrams of sets overI do not commute with finite nonempty
products.

Proof. Proof of (1). Let (m,n) be an element of colimMi × colimNi. Then we can
find m ∈ Mx and n ∈ Ny for some x, y ∈ Ob(I) such that m maps to m and n maps to
n. See Section 15. Choose a : x→ z and b : y → z in I . Then (M(a)(m), N(b)(n)) is an
element of (M ×N)z whose image in colim(Mi ×Ni) maps to (m,n) as desired.

Proof of (2). Let G be a non-trivial group and let I be the one-object category with endo-
morphism monoid G. Then I trivially satisfies the condition stated in the lemma. Now
let G act on itself by translation and view the G-set G as a set-valued I-diagram. Then

colimI G× colimI G ∼= G/G×G/G

is not isomorphic to
colimI(G×G) ∼= (G×G)/G

This example indicates that you cannot just drop the additional condition Lemma 19.2
even if you only care about finite products. �

Lemma 19.5. Let I be an index category, i.e., a category. Assume that for every pair of
objects x, y of I there exist an object z and morphisms x→ z and y → z. LetM : I → Ab
be a diagram of abelian groups overI . Then the colimit ofM in the category of sets surjects
onto the colimit of M in the category of abelian groups.

Proof. Recall that the colimit in the category of sets is the quotient of the disjoint
union

∐
Mi by relation, see Section 15. Similarly, the colimit in the category of abelian

groups is a quotient of the direct sum
⊕
Mi. The assumption of the lemma means that

given i, j ∈ Ob(I) andm ∈Mi and n ∈Mj , then we can find an object k and morphisms
a : i → k and b : j → k. Thus m + n is represented in the colimit by the element
M(a)(m) +M(b)(n) of Mk. Thus the

∐
Mi surjects onto the colimit. �

Lemma 19.6. Let I be an index category, i.e., a category. Assume that for every solid
diagram

x

��

// y

��
z // w

in I there exist an object w and dotted arrows making the diagram commute. Then I
is either empty or a nonempty disjoint union of connected categories having the same
property.
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Proof. If I is the empty category, then the lemma is true. Otherwise, we define a
relation on objects of I by saying that x ∼ y if there exist a z and morphisms x→ z and
y → z. This is an equivalence relation by the assumption of the lemma. Hence Ob(I) is
a disjoint union of equivalence classes. Let Ij be the full subcategories corresponding to
these equivalence classes. Then I =

∐
Ij with Ij nonempty as desired. �

Lemma 19.7. Let I be an index category, i.e., a category. Assume that for every solid
diagram

x

��

// y

��
z // w

in I there exist an object w and dotted arrows making the diagram commute. Then
(1) an injective morphism M → N of diagrams of sets over I gives rise to an injec-

tive map colimMi → colimNi of sets,
(2) in general the same is not the case for diagrams of abelian groups and their col-

imits.

Proof. If I is the empty category, then the lemma is true. Thus we may assume I is
nonempty. In this case we can write I =

∐
Ij where each Ij is nonempty and satisfies

the same property, see Lemma 19.6. Since colimI M =
∐
j colimIj M |Ij this reduces the

proof of (1) to the connected case.

Assume I is connected and M → N is injective, i.e., all the maps Mi → Ni are injective.
We identify Mi with the image of Mi → Ni, i.e., we will think of Mi as a subset of Ni.
We will use the description of the colimits given in Section 15 without further mention.
Let s, s′ ∈ colimMi map to the same element of colimNi. Say s comes from an element
m of Mi and s′ comes from an element m′ of Mi′ . Then we can find a sequence i =
i0, i1, . . . , in = i′ of objects of I and morphisms

i1

|| ��

i3

��

i2n−1

$$
i = i0 i2 . . . i2n = i′

and elements nij ∈ Nij mapping to each other under the maps Ni2k−1 → Ni2k−2 and
Ni2k−1 → Ni2k induced from the maps in I above with ni0 = m and ni2n = m′. We will
prove by induction on n that this implies s = s′. The base case n = 0 is trivial. Assume
n ≥ 1. Using the assumption on I we find a commutative diagram

i1

�� ��
i0

  

i2

~~
w

We conclude that m and ni2 map to the same element of Nw because both are the image
of the element ni1 . In particular, this element is an elementm′′ ∈Mw which gives rise to
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the same element as s in colimMi. Then we find the chain

i3

�� ��

i5

��

i2n−1

$$
w i4 . . . i2n = i′

and the elements nij for j ≥ 3 which has a smaller length than the chain we started with.
This proves the induction step and the proof of (1) is complete.

Let G be a group and let I be the one-object category with endomorphism monoid G.
Then I satisfies the condition stated in the lemma because given g1, g2 ∈ G we can find
h1, h2 ∈ G with h1g1 = h2g2. An diagram M over I in Ab is the same thing as an
abelian group M with G-action and colimI M is the coinvariants MG of M . Take G
the group of order 2 acting trivially on M = Z/2Z mapping into the first summand of
N = Z/2Z×Z/2Z where the nontrivial element ofG acts by (x, y) 7→ (x+ y, y). Then
MG → NG is zero. �

Lemma 19.8. Let I be an index category, i.e., a category. Assume

(1) for every pair of morphisms a : w → x and b : w → y in I there exist an object
z and morphisms c : x→ z and d : y → z such that c ◦ a = d ◦ b, and

(2) for every pair of morphisms a, b : x→ y there exists a morphism c : y → z such
that c ◦ a = c ◦ b.

Then I is a (possibly empty) union of disjoint filtered index categories Ij .

Proof. If I is the empty category, then the lemma is true. Otherwise, we define a
relation on objects of I by saying that x ∼ y if there exist a z and morphisms x→ z and
y → z. This is an equivalence relation by the first assumption of the lemma. Hence Ob(I)
is a disjoint union of equivalence classes. Let Ij be the full subcategories corresponding to
these equivalence classes. The rest is clear from the definitions. �

Lemma 19.9. Let I be an index category satisfying the hypotheses of Lemma 19.8
above. Then colimits over I commute with fibre products and equalizers in sets (and
more generally with finite connected limits).

Proof. By Lemma 19.8 we may write I =
∐
Ij with each Ij filtered. By Lemma 19.2

we see that colimits of Ij commute with equalizers and fibre products. Thus it suffices to
show that equalizers and fibre products commute with coproducts in the category of sets
(including empty coproducts). In other words, given a set J and sets Aj , Bj , Cj and set
maps Aj → Bj , Cj → Bj for j ∈ J we have to show that

(
∐

j∈J
Aj)×(

∐
j∈J

Bj) (
∐

j∈J
Cj) =

∐
j∈J

Aj ×Bj Cj

and given aj , a′
j : Aj → Bj that

Equalizer(
∐

j∈J
aj ,
∐

j∈J
a′
j) =

∐
j∈J

Equalizer(aj , a′
j)

This is true even if J = ∅. Details omitted. �
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20. Cofiltered limits

Limits are easier to compute or describe when they are over a cofiltered diagram. Here is
the definition.

Definition 20.1. We say that a diagramM : I → C is codirected or cofiltered if the
following conditions hold:

(1) the category I has at least one object,
(2) for every pair of objects x, y of I there exist an object z and morphisms z → x,

z → y, and
(3) for every pair of objects x, y of I and every pair of morphisms a, b : x → y of
I there exists a morphism c : w → x of I such that M(a ◦ c) = M(b ◦ c) as
morphisms in C.

We say that an index category I is codirected, or cofiltered if id : I → I is cofiltered (in
other words you erase the M in part (3) above).

We observe that any diagram with cofiltered index category is cofiltered, and this is how
this situation usually occurs.

As an example of why cofiltered limits of sets are “easier” than general ones, we mention
the fact that a cofiltered diagram of finite nonempty sets has nonempty limit (Lemma 21.7).
This result does not hold for a general limit of finite nonempty sets.

21. Limits and colimits over preordered sets

A special case of diagrams is given by systems over preordered sets.

Definition 21.1. Let I be a set and let ≤ be a binary relation on I .
(1) We say ≤ is a preorder if it is transitive (if i ≤ j and j ≤ k then i ≤ k) and

reflexive (i ≤ i for all i ∈ I).
(2) A preordered set is a set endowed with a preorder.
(3) A directed set is a preordered set (I,≤) such that I is not empty and such that
∀i, j ∈ I , there exists k ∈ I with i ≤ k, j ≤ k.

(4) We say ≤ is a partial order if it is a preorder which is antisymmetric (if i ≤ j
and j ≤ i, then i = j).

(5) A partially ordered set is a set endowed with a partial order.
(6) A directed partially ordered set is a directed set whose ordering is a partial order.

It is customary to drop the ≤ from the notation when talking about preordered sets, that
is, one speaks of the preordered set I rather than of the preordered set (I,≤). Given a
preordered set I the symbol ≥ is defined by the rule i ≥ j ⇔ j ≤ i for all i, j ∈ I . The
phrase “partially ordered set” is sometimes abbreviated to “poset”.

Given a preordered set I we can construct a category: the objects are the elements of I ,
there is exactly one morphism i → i′ if i ≤ i′, and otherwise none. Conversely, given
a category C with at most one arrow between any two objects, the set Ob(C) is endowed
with a preorder defined by the rule x ≤ y ⇔ MorC(x, y) 6= ∅.

Definition 21.2. Let (I,≤) be a preordered set. Let C be a category.
(1) A system over I in C , sometimes called a inductive system over I in C is given

by objects Mi of C and for every i ≤ i′ a morphism fii′ : Mi → Mi′ such that
fii = id and such that fii′′ = fi′i′′ ◦ fii′ whenever i ≤ i′ ≤ i′′.
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(2) An inverse system over I in C , sometimes called a projective system over I in C
is given by objects Mi of C and for every i′ ≤ i a morphism fii′ : Mi → Mi′

such that fii = id and such that fii′′ = fi′i′′ ◦ fii′ whenever i′′ ≤ i′ ≤ i. (Note
reversal of inequalities.)

We will say (Mi, fii′) is a (inverse) system over I to denote this. The maps fii′ are some-
times called the transition maps.

In other words a system over I is just a diagram M : I → C where I is the category we
associated to I above: objects are elements of I and there is a unique arrow i → i′ in I if
and only if i ≤ i′. An inverse system is a diagramM : Iopp → C. From this point of view
we could take (co)limits of any (inverse) system over I . However, it is customary to take
only colimits of systems over I and only limits of inverse systems over I . More precisely:
Given a system (Mi, fii′) over I the colimit of the system (Mi, fii′) is defined as

colimi∈IMi = colimI M,

i.e., as the colimit of the corresponding diagram. Given a inverse system (Mi, fii′) over I
the limit of the inverse system (Mi, fii′) is defined as

limi∈IMi = limIoppM,

i.e., as the limit of the corresponding diagram.

Remark 21.3. Let I be a preordered set. From I we can construct a canonical par-
tially ordered set I and an order preserving map π : I → I . Namely, we can define an
equivalence relation ∼ on I by the rule

i ∼ j ⇔ (i ≤ j and j ≤ i).
We set I = I/ ∼ and we let π : I → I be the quotient map. Finally, I comes with a
unique partial ordering such that π(i) ≤ π(j)⇔ i ≤ j. Observe that if I is a directed set,
then I is a directed partially ordered set. Given an (inverse) system N over I we obtain
an (inverse) system M over I by setting Mi = Nπ(i). This construction defines a functor
between the category of inverse systems over I and I . In fact, this is an equivalence. The
reason is that if i ∼ j , then for any systemM over I the mapsMi →Mj andMj →Mi are
mutually inverse isomorphisms. More precisely, choosing a section s : I → I of π a quasi-
inverse of the functor above sendsM toN withNi = Ms(i). Finally, this correspondence
is compatible with colimits of systems: if M and N are related as above and if either
colimI N or colimIM exists then so does the other and colimI N = colimIM . Similar
results hold for inverse systems and limits of inverse systems.

The upshot of Remark 21.3 is that while computing a colimit of a system or a limit of an
inverse system, we may always assume the preorder is a partial order.

Definition 21.4. Let I be a preordered set. We say a system (resp. inverse system)
(Mi, fii′) is a directed system (resp. directed inverse system) if I is a directed set (Defini-
tion 21.1): I is nonempty and for all i1, i2 ∈ I there exists i ∈ I such that i1 ≤ i and
i2 ≤ i.

In this case the colimit is sometimes (unfortunately) called the “direct limit”. We will not
use this last terminology. It turns out that diagrams over a filtered category are no more
general than directed systems in the following sense.

Lemma 21.5. Let I be a filtered index category. There exist a directed set I and a
system (xi, ϕii′) over I in I with the following properties:
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(1) For every category C and every diagram M : I → C with values in C , denote
(M(xi),M(ϕii′)) the corresponding system over I . If colimi∈IM(xi) exists
then so does colimI M and the transformation

θ : colimi∈IM(xi) −→ colimI M

of Lemma 14.8 is an isomorphism.
(2) For every categoryC and every diagramM : Iopp → C in C , denote (M(xi),M(ϕii′))

the corresponding inverse system over I . If limi∈IM(xi) exists then so does
limIoppM and the transformation

θ : limIoppM −→ limi∈IM(xi)
of Lemma 14.9 is an isomorphism.

Proof. As explained in the text following Definition 21.2, we may view preordered
sets as categories and systems as functors. Throughout the proof, we will freely shift be-
tween these two points of view. We prove the first statement by constructing a category
I0, corresponding to a directed set2, and a cofinal functor M0 : I0 → I . Then, by Lemma
17.2, the colimit of a diagram M : I → C coincides with the colimit of the diagram
M ◦M0 : I0 → C , from which the statement follows. The second statement is dual to
the first and may be proved by interpreting a limit in C as a colimit in Copp. We omit the
details.
A category F is called finitely generated if there exists a finite set F of arrows in F , such
that each arrow in F may be obtained by composing arrows from F . In particular, this
implies that F has finitely many objects. We start the proof by reducing to the case when
I has the property that every finitely generated subcategory of I may be extended to a
finitely generated subcategory with a unique final object.
Let ω denote the directed set of finite ordinals, which we view as a filtered category. It
is easy to verify that the product category I × ω is also filtered, and the projection Π :
I × ω → I is cofinal.
Now let F be any finitely generated subcategory of I × ω. By using the axioms of a
filtered category and a simple induction argument on a finite set of generators of F , we
may construct a cocone ({fi}, i∞) in I × ω for the diagram F → I × ω. That is, a
morphism fi : i→ i∞ for every object i in F such that for each arrow f : i→ i′ in F we
have fi = fi′ ◦f . We can also choose i∞ such that there are no arrows from i∞ to an object
in F . This is possible since we may always post-compose the arrows fi with an arrow
which is the identity on the I-component and strictly increasing on the ω-component.
Now let F+ denote the category consisting of all objects and arrows in F together with
the object i∞, the identity arrow idi∞ and the arrows fi. Since there are no arrows from
i∞ in F+ to any object of F , the arrow set in F+ is closed under composition, so F+ is
indeed a category. By construction, it is a finitely generated subcategory of I which has
i∞ as unique final object. Since, by Lemma 17.2, the colimit of any diagram M : I → C
coincides with the colimit of M ◦Π , this gives the desired reduction.
The set of all finitely generated subcategories of I with a unique final object is naturally
ordered by inclusion. We take I0 to be the category corresponding to this set. We also
have a functor M0 : I0 → I , which takes an arrow F ⊂ F ′ in I0 to the unique map
from the final object of F to the final object of F ′. Given any two finitely generated
subcategories of I , the category generated by these two categories is also finitely generated.

2In fact, our construction will produce a directed partially ordered set.
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By our assumption on I , it is also contained in a finitely generated subcategory of I with
a unique final object. This shows that I0 is directed.

Finally, we verify that M0 is cofinal. Since any object of I is the final object in the sub-
category consisting of only that object and its identity arrow, the functorM0 is surjective
on objects. In particular, Condition (1) of Definition 17.1 is satisfied. Given an object i of
I , objects F1,F2 in I0 and maps ϕ1 : i → M0(F1) and ϕ2 : i → M0(F2) in I , we can
take F12 to be a finitely generated category with a unique final object containing F1, F2
and the morphisms ϕ1, ϕ2. The resulting diagram commutes

M0(F12)

M0(F1)

99

M0(F2)

ee

i

ff 88

since it lives in the category F12 and M0(F12) is final in this category. Hence also Con-
dition (2) is satisfied, which concludes the proof. �

Remark 21.6. Note that a finite directed set (I,≥) always has a greatest object i∞.
Hence any colimit of a system (Mi, fii′) over such a set is trivial in the sense that the
colimit equals Mi∞ . In contrast, a colimit indexed by a finite filtered category need not
be trivial. For instance, let I be the category with a single object i and a single non-trivial
morphism e satisfying e = e ◦ e. The colimit of a diagram M : I → Sets is the image of
the idempotentM(e). This illustrates that something like the trick of passing to I ×ω in
the proof of Lemma 21.5 is essential.

Lemma 21.7. If S : I → Sets is a cofiltered diagram of sets and all the Si are finite
nonempty, then limi Si is nonempty. In other words, the limit of a directed inverse system
of finite nonempty sets is nonempty.

Proof. The two statements are equivalent by Lemma 21.5. Let I be a directed set and
let (Si)i∈I be an inverse system of finite nonempty sets over I . Let us say that a subsystem
T is a family T = (Ti)i∈I of nonempty subsets Ti ⊂ Si such that Ti′ is mapped into Ti
by the transition map Si′ → Si for all i′ ≥ i. Denote T the set of subsystems. We order
T by inclusion. Suppose Tα, α ∈ A is a totally ordered family of elements of T . Say
Tα = (Tα,i)i∈I . Then we can find a lower bound T = (Ti)i∈I by setting Ti =

⋂
α∈A Tα,i

which is manifestly a finite nonempty subset of Si as all the Tα,i are nonempty and as
the Tα form a totally ordered family. Thus we may apply Zorn’s lemma to see that T has
minimal elements.

Let’s analyze what a minimal element T ∈ T looks like. First observe that the maps
Ti′ → Ti are all surjective. Namely, as I is a directed set and Ti is finite, the intersection
T ′
i =

⋂
i′≥i Im(Ti′ → Ti) is nonempty. Thus T ′ = (T ′

i ) is a subsystem contained in T
and by minimality T ′ = T . Finally, we claim that Ti is a singleton for each i. Namely, if
x ∈ Ti, then we can define T ′

i′ = (Ti′ → Ti)−1({x}) for i′ ≥ i and T ′
j = Tj if j 6≥ i. This

is another subsystem as we’ve seen above that the transition maps of the subsystem T are
surjective. By minimality we see that T = T ′ which indeed implies that Ti is a singleton.
This holds for every i ∈ I , hence we see that Ti = {xi} for some xi ∈ Si with xi′ 7→ xi
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under the map Si′ → Si for every i′ ≥ i. In other words, (xi) ∈ limSi and the lemma is
proved. �

22. Essentially constant systems

Let M : I → C be a diagram in a category C. Assume the index category I is filtered.
In this case there are three successively stronger notions which pick out an object X of C.
The first is just

X = colimi∈I Mi.

ThenX comes equipped with the coprojectionsMi → X . A stronger condition would be
to require that X is the colimit and that there exist an i ∈ I and a morphism X → Mi

such that the composition X → Mi → X is idX . An even stronger condition is the
following.

Definition 22.1. Let M : I → C be a diagram in a category C.
(1) Assume the index category I is filtered and let (X, {Mi → X}i) be a cocone

for M , see Remark 14.5. We say M is essentially constant with value X if there
exist an i ∈ I and a morphism X →Mi such that
(a) X →Mi → X is idX , and
(b) for all j there exist k and morphisms i → k and j → k such that the

morphism Mj →Mk equals the composition Mj → X →Mi →Mk.
(2) Assume the index category I is cofiltered and let (X, {X → Mi}i) be a cone

for M , see Remark 14.5. We say M is essentially constant with value X if there
exist an i ∈ I and a morphism Mi → X such that
(a) X →Mi → X is idX , and
(b) for all j there exist k and morphisms k → i and k → j such that the

morphism Mk →Mj equals the composition Mk →Mi → X →Mj .
Please keep in mind Lemma 22.3 when using this definition.

Which of the two versions is meant will be clear from context. If there is any confusion
we will distinguish between these by saying that the first version means M is essentially
constant as an ind-object, and in the second case we will say it is essentially constant as a
pro-object. This terminology is further explained in Remarks 22.4 and 22.5. In fact we
will often use the terminology “essentially constant system” which formally speaking is
only defined for systems over directed sets.

Definition 22.2. Let C be a category. A directed system (Mi, fii′) is an essentially
constant system if M viewed as a functor I → C defines an essentially constant diagram.
A directed inverse system (Mi, fii′) is an essentially constant inverse system if M viewed
as a functor Iopp → C defines an essentially constant inverse diagram.

If (Mi, fii′) is an essentially constant system and the morphisms fii′ are monomorphisms,
then for all i ≤ i′ sufficiently large the morphisms fii′ are isomorphisms. On the other
hand, consider the system

Z2 → Z2 → Z2 → . . .

with maps given by (a, b) 7→ (a + b, 0). This system is essentially constant with value Z
but every transition map has a kernel.

Here is an example of a system which is not essentially constant. Let M =
⊕

n≥0 Z and
to let S : M → M be the shift operator (a0, a1, . . .) 7→ (a1, a2, . . .). In this case the
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system M → M → M → . . . with transition maps S has colimit 0 and the composition
0→M → 0 is the identity, but the system is not essentially constant.
The following lemma is a sanity check.

Lemma 22.3. Let M : I → C be a diagram. If I is filtered and M is essentially
constant as an ind-object, then X = colimMi exists and M is essentially constant with
value X . If I is cofiltered and M is essentially constant as a pro-object, then X = limMi

exists and M is essentially constant with value X .

Proof. Omitted. This is a good excercise in the definitions. �

Remark 22.4. Let C be a category. There exists a big category Ind-C of ind-objects of
C. Namely, if F : I → C and G : J → C are filtered diagrams in C , then we can define

MorInd-C(F,G) = limi colimj MorC(F (i), G(j)).
There is a canonical functor C → Ind-C which mapsX to the constant system onX . This
is a fully faithful embedding. In this language one sees that a diagram F is essentially
constant if and only if F is isomorphic to a constant system. If we ever need this material,
then we will formulate this into a lemma and prove it here.

Remark 22.5. Let C be a category. There exists a big category Pro-C of pro-objects of
C. Namely, if F : I → C and G : J → C are cofiltered diagrams in C , then we can define

MorPro-C(F,G) = limj colimi MorC(F (i), G(j)).
There is a canonical functor C → Pro-C which mapsX to the constant system onX . This
is a fully faithful embedding. In this language one sees that a diagram F is essentially
constant if and only if F is isomorphic to a constant system. If we ever need this material,
then we will formulate this into a lemma and prove it here.

Example 22.6. Let C be a category. Let (Xn) and (Yn) be inverse systems in C over
N with the usual ordering. Picture:

. . .→ X3 → X2 → X1 and . . .→ Y3 → Y2 → Y1

Let a : (Xn) → (Yn) be a morphism of pro-objects of C. What does a amount to? Well,
for each n ∈ N there should exist an m(n) and a morphism an : Xm(n) → Yn. These
morphisms ought to agree in the following sense: for all n′ ≥ n there exists anm(n′, n) ≥
m(n′),m(n) such that the diagram

Xm(n,n′) //

��

Xm(n)

an

��
Xm(n′)

an′ // Yn′ // Yn

commutes. After replacing m(n) by maxk,l≤n{m(n, k),m(k, l)} we see that we obtain
. . . ≥ m(3) ≥ m(2) ≥ m(1) and a commutative diagram

. . . // Xm(3)

a3

��

// Xm(2)

a2

��

// Xm(1)

a1

��
. . . // Y3 // Y2 // Y1

Given an increasing mapm′ : N→ N withm′ ≥ m and setting a′
i : Xm′(i) → Xm(i) →

Yi the pair (m′, a′) defines the same morphism of pro-systems. Conversely, given two
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pairs (m1, a1) and (m1, a2) as above then these define the same morphism of pro-objects
if and only if we can find m′ ≥ m1,m2 such that a′

1 = a′
2.

Remark 22.7. Let C be a category. Let F : I → C and G : J → C be cofiltered
diagrams in C. Consider the functors A,B : C → Sets defined by

A(X) = colimi MorC(F (i), X) and B(X) = colimj MorC(G(j), X)

We claim that a morphism of pro-systems from F to G is the same thing as a transfor-
mation of functors t : B → A. Namely, given t we can apply t to the class of idG(j) in
B(G(j)) to get a compatible system of elements ξj ∈ A(G(j)) = colimi MorC(F (i), G(j))
which is exactly our definition of a morphism in Pro-C in Remark 22.5. We omit the con-
struction of a transformation B → A given a morphism of pro-objects from F to G.

Lemma 22.8. Let C be a category. Let M : I → C be a diagram with filtered (resp.
cofiltered) index category I . Let F : C → D be a functor. If M is essentially constant as
an ind-object (resp. pro-object), then so is F ◦M : I → D.

Proof. If X is a value for M , then it follows immediately from the definition that
F (X) is a value for F ◦M . �

Lemma 22.9. Let C be a category. Let M : I → C be a diagram with filtered index
category I . The following are equivalent

(1) M is an essentially constant ind-object, and
(2) X = colimiMi exists and for any W in C the map

colimi MorC(W,Mi) −→ MorC(W,X)

is bijective.

Proof. Assume (2) holds. Then idX ∈ MorC(X,X) comes from a morphism X →
Mi for some i, i.e., X →Mi → X is the identity. Then both maps

MorC(W,X) −→ colimi MorC(W,Mi) −→ MorC(W,X)

are bijective for allW where the first one is induced by the morphismX →Mi we found
above, and the composition is the identity. This means that the composition

colimi MorC(W,Mi) −→ MorC(W,X) −→ colimi MorC(W,Mi)

is the identity too. Setting W = Mj and starting with idMj
in the colimit, we see that

Mj → X → Mi → Mk is equal to Mj → Mk for some k large enough. This proves (1)
holds. The proof of (1)⇒ (2) is omitted. �

Lemma 22.10. Let C be a category. LetM : I → C be a diagram with cofiltered index
category I . The following are equivalent

(1) M is an essentially constant pro-object, and
(2) X = limiMi exists and for any W in C the map

colimi∈Iopp MorC(Mi,W ) −→ MorC(X,W )

is bijective.

Proof. Assume (2) holds. Then idX ∈ MorC(X,X) comes from a morphism Mi →
X for some i, i.e., X →Mi → X is the identity. Then both maps

MorC(X,W ) −→ colimi MorC(Mi,W ) −→ MorC(X,W )
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are bijective for allW where the first one is induced by the morphismMi → X we found
above, and the composition is the identity. This means that the composition

colimi MorC(Mi,W ) −→ MorC(X,W ) −→ colimi MorC(Mi,W )

is the identity too. Setting W = Mj and starting with idMj
in the colimit, we see that

Mk → Mi → X → Mj is equal to Mk → Mj for some k large enough. This proves (1)
holds. The proof of (1)⇒ (2) is omitted. �

Lemma 22.11. Let C be a category. Let H : I → J be a functor of filtered index
categories. If H is cofinal, then any diagram M : J → C is essentially constant if and
only if M ◦H is essentially constant.

Proof. This follows formally from Lemmas 22.9 and 17.2. �

Lemma 22.12. Let I and J be filtered categories and denote p : I × J → J the
projection. Then I ×J is filtered and a diagramM : J → C is essentially constant if and
only if M ◦ p : I × J → C is essentially constant.

Proof. We omit the verification that I×J is filtered. The equivalence follows from
Lemma 22.11 because p is cofinal (verification omitted). �

Lemma 22.13. Let C be a category. Let H : I → J be a functor of cofiltered index
categories. IfH is initial, then any diagramM : J → C is essentially constant if and only
if M ◦H is essentially constant.

Proof. This follows formally from Lemmas 22.10, 17.4, 17.2, and the fact that if I is
initial in J , then Iopp is cofinal in J opp. �

23. Exact functors

In this section we define exact functors.

Definition 23.1. Let F : A → B be a functor.
(1) Suppose all finite limits exist inA. We say F is left exact if it commutes with all

finite limits.
(2) Suppose all finite colimits exist inA. We sayF is right exact if it commutes with

all finite colimits.
(3) We say F is exact if it is both left and right exact.

Lemma 23.2. Let F : A → B be a functor. Suppose all finite limits exist in A, see
Lemma 18.4. The following are equivalent:

(1) F is left exact,
(2) F commutes with finite products and equalizers, and
(3) F transforms a final object ofA into a final object of B, and commutes with fibre

products.

Proof. Lemma 14.11 shows that (2) implies (1). Suppose (3) holds. The fibre product
over the final object is the product. If a, b : A→ B are morphisms ofA, then the equalizer
of a, b is

(A×a,B,b A)×(pr1,pr2),A×A,∆ A.

Thus (3) implies (2). Finally (1) implies (3) because the empty limit is a final object, and
fibre products are limits. �
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Lemma 23.3. Let F : A → B be a functor. Suppose all finite colimits exist in A, see
Lemma 18.7. The following are equivalent:

(1) F is right exact,
(2) F commutes with finite coproducts and coequalizers, and
(3) F transforms an initial object ofA into an initial object ofB, and commutes with

pushouts.

Proof. Dual to Lemma 23.2. �

24. Adjoint functors

Definition 24.1. Let C , D be categories. Let u : C → D and v : D → C be functors.
We say that u is a left adjoint of v, or that v is a right adjoint to u if there are bijections

MorD(u(X), Y ) −→ MorC(X, v(Y ))

functorial in X ∈ Ob(C), and Y ∈ Ob(D).

In other words, this means that there is a given isomorphism of functors Copp×D → Sets
from MorD(u(−),−) to MorC(−, v(−)). For any object X of C we obtain a morphism
X → v(u(X)) corresponding to idu(X). Similarly, for any object Y of D we obtain a
morphism u(v(Y )) → Y corresponding to idv(Y ). These maps are called the adjunction
maps. The adjunction maps are functorial in X and Y , hence we obtain morphisms of
functors

η : idC → v ◦ u (unit) and ε : u ◦ v → idD (counit).
Moreover, if α : u(X) → Y and β : X → v(Y ) are morphisms, then the following are
equivalent

(1) α and β correspond to each other via the bijection of the definition,
(2) β is the composition X → v(u(X)) v(α)−−−→ v(Y ), and
(3) α is the composition u(X) u(β)−−−→ u(v(Y ))→ Y .

In this way one can reformulate the notion of adjoint functors in terms of adjunction maps.

Lemma 24.2. Let u : C → D be a functor between categories. If for each y ∈ Ob(D)
the functor x 7→ MorD(u(x), y) is representable, then u has a right adjoint.

Proof. For each y choose an object v(y) and an isomorphism MorC(−, v(y)) →
MorD(u(−), y) of functors. By Yoneda’s lemma (Lemma 3.5) for any morphism g : y →
y′ the transformation of functors

MorC(−, v(y))→ MorD(u(−), y)→ MorD(u(−), y′)→ MorC(−, v(y′))

corresponds to a unique morphism v(g) : v(y) → v(y′). We omit the verification that v
is a functor and that it is right adjoint to u. �

Lemma 24.3. Let u be a left adjoint to v as in Definition 24.1.
(1) If v ◦ u is fully faithful, then u is fully faithful.
(2) If u ◦ v is fully faithful, then v is fully faithful.

Proof. Proof of (2). Assume u ◦ v is fully faithful. Say we have X , Y in D. Then
the natural composite map

Mor(X,Y )→ Mor(v(X), v(Y ))→ Mor(u(v(X)), u(v(Y )))
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is a bijection, so v is at least faithful. To show full faithfulness, we must show that the
second map above is injective. But the adjunction between u and v says that

Mor(v(X), v(Y ))→ Mor(u(v(X)), u(v(Y )))→ Mor(u(v(X)), Y )
is a bijection, where the first map is natural one and the second map comes from the counit
u(v(Y ))→ Y of the adjunction. So this says that Mor(v(X), v(Y ))→ Mor(u(v(X)), u(v(Y )))
is also injective, as wanted. The proof of (1) is dual to this. �

Lemma 24.4. Let u be a left adjoint to v as in Definition 24.1. Then
(1) u is fully faithful⇔ id ∼= v ◦ u⇔ η : id→ v ◦ u is an isomorphism,
(2) v is fully faithful⇔ u ◦ v ∼= id⇔ ε : u ◦ v → id is an isomorphism.

Proof. Proof of (1). Assume u is fully faithful. We will show ηX : X → v(u(X))
is an isomorphism. Let X ′ → v(u(X)) be any morphism. By adjointness this corre-
sponds to a morphism u(X ′) → u(X). By fully faithfulness of u this corresponds to a
unique morphism X ′ → X . Thus we see that post-composing by ηX defines a bijection
Mor(X ′, X) → Mor(X ′, v(u(X))). Hence ηX is an isomorphism. If there exists an iso-
morphism id ∼= v ◦u of functors, then v ◦u is fully faithful. By Lemma 24.3 we see that u
is fully faithful. By the above this implies η is an isomorphism. Thus all 3 conditions are
equivalent (and these conditions are also equivalent to v ◦ u being fully faithful).
Part (2) is dual to part (1). �

Lemma 24.5. Let u be a left adjoint to v as in Definition 24.1.
(1) Suppose that M : I → C is a diagram, and suppose that colimI M exists in
C. Then u(colimI M) = colimI u ◦ M . In other words, u commutes with
(representable) colimits.

(2) Suppose that M : I → D is a diagram, and suppose that limI M exists in D.
Then v(limI M) = limI v ◦M . In other words v commutes with representable
limits.

Proof. A morphism from a colimit into an object is the same as a compatible system
of morphisms from the constituents of the limit into the object, see Remark 14.4. So

MorD(u(colimi∈I Mi), Y ) = MorC(colimi∈I Mi, v(Y ))
= limi∈Iopp MorC(Mi, v(Y ))
= limi∈Iopp MorD(u(Mi), Y )

proves that u(colimi∈I Mi) is the colimit we are looking for. A similar argument works
for the other statement. �

Lemma 24.6. Let u be a left adjoint of v as in Definition 24.1.
(1) If C has finite colimits, then u is right exact.
(2) If D has finite limits, then v is left exact.

Proof. Obvious from the definitions and Lemma 24.5. �

Lemma 24.7. Let u : C → D be a left adjoint to the functor v : D → C. Let
ηX : X → v(u(X)) be the unit and εY : u(v(Y ))→ Y be the counit. Then

u(X) u(ηX)−−−−→ u(v(u(X))
εu(X)−−−→ u(X) and v(Y )

ηv(Y )−−−→ v(u(v(Y ))) v(εY )−−−→ v(Y )
are the identity morphisms.

Proof. Omitted. �
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Lemma 24.8. Let u1, u2 : C → D be functors with right adjoints v1, v2 : D → C.
Let β : u2 → u1 be a transformation of functors. Let β∨ : v1 → v2 be the corresponding
transformation of adjoint functors. Then

u2 ◦ v1
β
//

β∨

��

u1 ◦ v1

��
u2 ◦ v2 // id

is commutative where the unlabeled arrows are the counit transformations.
Proof. This is true because β∨

D : v1D → v2D is the unique morphism such that the
induced maps Mor(C, v1D)→ Mor(C, v2D) is the map Mor(u1C,D)→ Mor(u2C,D)
induced by βC : u2C → u1C. Namely, this means the map

Mor(u1v1D,D
′)→ Mor(u2v1D,D

′)
induced by βv1D is the same as the map

Mor(v1D, v1D
′)→ Mor(v1D, v2D

′)
induced by β∨

D′ . Taking D′ = D we find that the counit u1v1D → D precomposed by
βv1D corresponds to β∨

D under adjunction. This exactly means that the diagram commutes
when evaluated on D. �

Lemma 24.9. Let A, B, and C be categories. Let v : A → B and v′ : B → C be
functors with left adjoints u and u′ respectively. Then

(1) The functor v′′ = v′ ◦ v has a left adjoint equal to u′′ = u ◦ u′.
(2) Given X inA we have

(24.9.1) εvX ◦ u(εv
′

v(X)) = εv
′′

X : u′′(v′′(X))→ X

Where ε is the counit of the adjunctions.
Proof. Let us unwind the formula in (2) because this will also immediately prove

(1). First, the counit of the adjunctions for the pairs (u, v) and (u′, v′) are maps εvX :
u(v(X)) → X and εv

′

Y : u′(v′(Y )) → Y , see discussion following Definition 24.1. With
u′′ and v′′ as in (1) we unwind everything

u′′(v′′(X)) = u(u′(v′(v(X))))
u(εv

′
v(X))

−−−−−→ u(v(X)) εvX−−→ X

to get the map on the left hand side of (24.9.1). Let us denote this by εv
′′

X for now. To
see that this is the counit of an adjoint pair (u′′, v′′) we have to show that given Z in C
the rule that sends a morphism β : Z → v′′(X) to α = εv

′′

X ◦ u′′(β) : u′′(Z) → X is
a bijection on sets of morphisms. This is true because, this is the composition of the rule
sending β to εv

′

v(X) ◦u
′(β) which is a bijection by assumption on (u′, v′) and then sending

this to εvX ◦ u(εv′

v(X) ◦ u
′(β)) which is a bijection by assumption on (u, v). �

25. A criterion for representability

The following lemma is often useful to prove the existence of universal objects in big
categories, please see the discussion in Remark 25.2.

Lemma 25.1. Let C be a big3 category which has limits. LetF : C → Sets be a functor.
Assume that

3See Remark 2.2.
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(1) F commutes with limits,
(2) there exist a family {xi}i∈I of objects of C and for each i ∈ I an element fi ∈

F (xi) such that for y ∈ Ob(C) and g ∈ F (y) there exist an i and a morphism
ϕ : xi → y with F (ϕ)(fi) = g.

Then F is representable, i.e., there exists an object x of C such that

F (y) = MorC(x, y)
functorially in y.

Proof. Let I be the category whose objects are the pairs (xi, fi) and whose mor-
phisms (xi, fi)→ (xi′ , fi′) are maps ϕ : xi → xi′ in C such that F (ϕ)(fi) = fi′ . Set

x = lim(xi,fi)∈I xi

(this will not be the x we are looking for, see below). The limit exists by assumption. As
F commutes with limits we have

F (x) = lim(xi,fi)∈I F (xi).
Hence there is a universal element f ∈ F (x) which maps to fi ∈ F (xi) under F applied
to the projection map x→ xi. Using f we obtain a transformation of functors

ξ : MorC(x,−) −→ F (−)
see Section 3. Let y be an arbitrary object of C and let g ∈ F (y). Choose xi → y such that
fi maps to g which is possible by assumption. Then F applied to the maps

x −→ xi −→ y

(the first being the projection map of the limit defining x) sends f to g. Hence the trans-
formation ξ is surjective.

In order to find the object representing F we let e : x′ → x be the equalizer of all self
maps ϕ : x → x with F (ϕ)(f) = f . Since F commutes with limits, it commutes with
equalizers, and we see there exists an f ′ ∈ F (x′) mapping to f inF (x). Since ξ is surjective
and since f ′ maps to f we see that also ξ′ : MorC(x′,−) → F (−) is surjective. Finally,
suppose that a, b : x′ → y are two maps such that F (a)(f ′) = F (b)(f ′). We have to show
a = b. Consider the equalizer e′ : x′′ → x′. Again we find f ′′ ∈ F (x′′) mapping to f ′.
Choose a map ψ : x→ x′′ such that F (ψ)(f) = f ′′. Then we see that e◦e′ ◦ψ : x→ x is
a morphism withF (e◦e′◦ψ)(f) = f . Hence e◦e′◦ψ◦e = e. Since e is a monomorphism,
this implies that e′ is an epimorphism, thus a = b as desired. �

Remark 25.2. The lemma above is often used to construct the free something on
something. For example the free abelian group on a set, the free group on a set, etc. The
idea, say in the case of the free group on a set E is to consider the functor

F : Groups→ Sets, G 7−→Map(E,G)
This functor commutes with limits. As our family of objects we can take a family E →
Gi consisting of groups Gi of cardinality at most max(ℵ0, |E|) and set maps E → Gi
such that every isomorphism class of such a structure occurs at least once. Namely, if
E → G is a map from E to a group G, then the subgroup G′ generated by the image has
cardinality at most max(ℵ0, |E|). The lemma tells us the functor is representable, hence
there exists a group FE such that MorGroups(FE , G) = Map(E,G). In particular, the
identity morphism of FE corresponds to a map E → FE and one can show that FE is
generated by the image without imposing any relations.
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Another typical application is that we can use the lemma to construct colimits once it is
known that limits exist. We illustrate it using the category of topological spaces which
has limits by Topology, Lemma 14.1. Namely, suppose that I → Top, i 7→ Xi is a functor.
Then we can consider

F : Top −→ Sets, Y 7−→ limI MorTop(Xi, Y )

This functor commutes with limits. Moreover, given any topological space Y and an ele-
ment (ϕi : Xi → Y ) of F (Y ), there is a subspace Y ′ ⊂ Y of cardinality at most |

∐
Xi|

such that the morphisms ϕi map into Y ′. Namely, we can take the induced topology on
the union of the images of the ϕi. Thus it is clear that the hypotheses of the lemma are
satisfied and we find a topological space X representing the functor F , which precisely
means that X is the colimit of the diagram i 7→ Xi.

Theorem 25.3 (Adjoint functor theorem). Let G : C → D be a functor of big cat-
egories. Assume C has limits, G commutes with them, and for every object y of D there
exists a set of pairs (xi, fi)i∈I with xi ∈ Ob(C), fi ∈ MorD(y,G(xi)) such that for any
pair (x, f) withx ∈ Ob(C), f ∈ MorD(y,G(x)) there are an i and a morphismh : xi → x
such that f = G(h) ◦ fi. Then G has a left adjoint F .

Proof. The assumptions imply that for every object y ofD the functorx 7→ MorD(y,G(x))
satisfies the assumptions of Lemma 25.1. Thus it is representable by an object, let’s call it
F (y). An application of Yoneda’s lemma (Lemma 3.5) turns the rule y 7→ F (y) into a
functor which by construction is an adjoint to G. We omit the details. �

26. Categorically compact objects

A little bit about “small” objects of a category.

Definition 26.1. Let C be a big4 category. An object X of C is called a categorically
compact if we have

MorC(X, colimiMi) = colimi MorC(X,Mi)

for every filtered diagram M : I → C such that colimiMi exists.

Often this definition is made only under the assumption that C has all filtered colimits.

Lemma 26.2. Let C and D be big categories having filtered colimits. Let C′ ⊂ C be
a small full subcategory consisting of categorically compact objects of C such that every
object of C is a filtered colimit of objects of C′. Then every functor F ′ : C′ → D has a
unique extension F : C → D commuting with filtered colimits.

Proof. For every object X of C we may write X as a filtered colimit X = colimXi

with Xi ∈ Ob(C′). Then we set

F (X) = colimF ′(Xi)

in D. We will show below that this construction does not depend on the choice of the
colimit presentation of X .

Suppose given a morphism α : X → Y of C and X = colimi∈I Xi and Y = colimj∈J Yi
are written as filtered colimit of objects in C′. For each i ∈ I since Xi is a categorically

4See Remark 2.2.
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compact object of C we can find a j ∈ J and a commutative diagram

Xi
//

��

X

α

��
Yj // Y

Then we obtain a morphism F ′(Xi) → F ′(Yj) → F (Y ) where the second morphism is
the coprojection into F (Y ) = colimF ′(Yj). The arrow βi : F ′(Xi) → F (Y ) does not
depend on the choice of j. For i ≤ i′ the composition

F ′(Xi)→ F ′(Xi′)
βi′−−→ F (Y )

is equal to βi. Thus we obtain a well defined arrow

F (α) : F (X) = colimF (Xi)→ F (Y )

by the universal property of the colimit. If α′ : Y → Z is a second morphism of C and
Z = colimZk is also written as filtered colimit of objects in C′, then it is a pleasant exercise
to show that the induced morphisms F (α) : F (X)→ F (Y ) and F (α′) : F (Y )→ F (Z)
compose to the morphism F (α′ ◦ α). Details omitted.

In particular, if we are given two presentations X = colimXi and X = colimX ′
i′ as

filtered colimits of systems in C′, then we get mutually inverse arrows colimF ′(Xi) →
colimF ′(X ′

i′) and colimF ′(X ′
i′) → colimF ′(Xi). In other words, the value F (X) is

well defined independent of the choice of the presentation of X as a filtered colimit of
objects of C′. Together with the functoriality of F discussed in the previous paragraph,
we find that F is a functor. Also, it is clear that F (X) = F ′(X) if X ∈ Ob(C′).

The uniqueness statement in the lemma is clear, provided we show that F commutes with
filtered colimits (because this statement doesn’t make sense otherwise). To show this, sup-
pose that X = colimλ∈Λ Xλ is a filtered colimit of C. Since F is a functor we certainly
get a map

colimλ F (Xλ) −→ F (X)

On the other hand, writeX = colimXi as a filtered colimit of objects of C′. As above, for
each i ∈ I we can choose a λ ∈ Λ and a commutative diagram

Xi
//

  

Xλ

~~
X

As above this determines a well defined morphism F ′(Xi) → colimλ F (Xλ) compatible
with transition morphisms and hence a morphism

F (X) = colimi F
′(Xi) −→ colimλ F (Xλ)

This morphism is inverse to the morphism above (details omitted) and proves thatF (X) =
colimλ F (Xλ) as desired. �
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27. Localization in categories

The basic idea of this section is given a category C and a set of arrows S to construct a
functor F : C → S−1C such that all elements of S become invertible in S−1C and such
that F is universal among all functors with this property. References for this section are
[?, Chapter I, Section 2] and [?, Chapter II, Section 2].

Definition 27.1. Let C be a category. A set of arrows S of C is called a left multi-
plicative system if it has the following properties:

LMS1 The identity of every object of C is in S and the composition of two composable
elements of S is in S.

LMS2 Every solid diagram

X

t

��

g
// Y

s

��
Z

f // W

with t ∈ S can be completed to a commutative dotted square with s ∈ S.
LMS3 For every pair of morphisms f, g : X → Y and t ∈ S with target X such that

f ◦ t = g ◦ t there exists an s ∈ S with source Y such that s ◦ f = s ◦ g.
A set of arrows S of C is called a right multiplicative system if it has the following prop-
erties:

RMS1 The identity of every object of C is in S and the composition of two composable
elements of S is in S.

RMS2 Every solid diagram

X

t

��

g
// Y

s

��
Z

f // W

with s ∈ S can be completed to a commutative dotted square with t ∈ S.
RMS3 For every pair of morphisms f, g : X → Y and s ∈ S with source Y such that

s ◦ f = s ◦ g there exists a t ∈ S with target X such that f ◦ t = g ◦ t.
A set of arrows S of C is called a multiplicative system if it is both a left multiplicative
system and a right multiplicative system. In other words, this means that MS1, MS2, MS3
hold, where MS1 = LMS1 + RMS1, MS2 = LMS2 + RMS2, and MS3 = LMS3 + RMS3.
(That said, of course LMS1 = RMS1 = MS1.)

These conditions are useful to construct the categories S−1C as follows.

Left calculus of fractions. Let C be a category and let S be a left multiplicative system. We
define a new category S−1C as follows (we verify this works in the proof of Lemma 27.2):

(1) We set Ob(S−1C) = Ob(C).
(2) Morphisms X → Y of S−1C are given by pairs (f : X → Y ′, s : Y → Y ′)

with s ∈ S up to equivalence. (The equivalence is defined below. Think of the
equivalence class of a pair (f, s) as s−1f : X → Y .)

(3) Two pairs (f1 : X → Y1, s1 : Y → Y1) and (f2 : X → Y2, s2 : Y → Y2)
are said to be equivalent if there exist a third pair (f3 : X → Y3, s3 : Y → Y3)
and morphisms u : Y1 → Y3 and v : Y2 → Y3 of C fitting into the commutative



27. LOCALIZATION IN CATEGORIES 145

diagram
Y1

u

��
X

f1

>>

f3 //

f2   

Y3 Y

s1

__

s3oo

s2��
Y2

v

OO

(4) The composition of the equivalence classes of the pairs (f : X → Y ′, s : Y →
Y ′) and (g : Y → Z ′, t : Z → Z ′) is defined as the equivalence class of a pair
(h ◦ f : X → Z ′′, u ◦ t : Z → Z ′′) where h and u ∈ S are chosen to fit into a
commutative diagram

Y

s

��

g
// Z ′

u

��
Y ′ h // Z ′′

which exists by assumption.
(5) The identity morphism X → X in S−1C is the equivalence class of the pair

(id : X → X, id : X → X).

Lemma 27.2. Let C be a category and let S be a left multiplicative system.
(1) The relation on pairs defined above is an equivalence relation.
(2) The composition rule given above is well defined on equivalence classes.
(3) Composition is associative (and the identity morphisms satisfy the identity ax-

ioms), and hence S−1C is a category.

Proof. Proof of (1). Let us say two pairs p1 = (f1 : X → Y1, s1 : Y → Y1) and
p2 = (f2 : X → Y2, s2 : Y → Y2) are elementary equivalent if there exists a morphism
a : Y1 → Y2 of C such that a ◦ f1 = f2 and a ◦ s1 = s2. Diagram:

X
f1

// Y1

a

��

Y
s1
oo

X
f2 // Y2 Y

s2oo

Let us denote this property by saying p1Ep2. Note that pEp and aEb, bEc ⇒ aEc.
(Despite its name, E is not an equivalence relation.) Part (1) claims that the relation p ∼
p′ ⇔ ∃q : pEq ∧ p′Eq (where q is supposed to be a pair satisfying the same conditions as
p and p′) is an equivalence relation. A simple formal argument, using the properties of E
above, shows that it suffices to prove p3Ep1, p3Ep2 ⇒ p1 ∼ p2. Thus suppose that we
are given a commutative diagram

Y1

X

f1

>>

f3 //

f2   

Y3

a31

OO

a32

��

Y

s1

__

s3oo

s2��
Y2
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with si ∈ S. First we apply LMS2 to get a commutative diagram

Y

s1

��

s2
// Y2

a24

��
Y1

a14 // Y4

with a24 ∈ S. Then, we have

a14 ◦ a31 ◦ s3 = a14 ◦ s1 = a24 ◦ s2 = a24 ◦ a32 ◦ s3.

Hence, by LMS3, there exists a morphism s44 : Y4 → Y ′
4 such that s44 ∈ S and s44 ◦

a14 ◦ a31 = s44 ◦ a24 ◦ a32. Hence, after replacing Y4, a14 and a24 by Y ′
4 , s44 ◦ a14 and

s44 ◦ a24, we may assume that a14 ◦ a31 = a24 ◦ a32 (and we still have a24 ∈ S and
a14 ◦ s1 = a24 ◦ s2). Set

f4 = a14 ◦ f1 = a14 ◦ a31 ◦ f3 = a24 ◦ a32 ◦ f3 = a24 ◦ f2

and s4 = a14 ◦ s1 = a24 ◦ s2. Then, the diagram

X
f1

// Y1

a14

��

Y
s1
oo

X
f4 // Y4 Y

s4oo

commutes, and we have s4 ∈ S (by LMS1). Thus, p1Ep4, where p4 = (f4, s4). Similarly,
p2Ep4. Combining these, we find p1 ∼ p2.

Proof of (2). Let p = (f : X → Y ′, s : Y → Y ′) and q = (g : Y → Z ′, t : Z → Z ′) be
pairs as in the definition of composition above. To compose we choose a diagram

Y

s

��

g
// Z ′

u2

��
Y ′ h2 // Z2

with u2 ∈ S. We first show that the equivalence class of the pair r2 = (h2 ◦ f : X →
Z2, u2 ◦ t : Z → Z2) is independent of the choice of (Z2, h2, u2). Namely, suppose
that (Z3, h3, u3) is another choice with corresponding composition r3 = (h3 ◦ f : X →
Z3, u3 ◦ t : Z → Z3). Then by LMS2 we can choose a diagram

Z ′

u2

��

u3
// Z3

u34

��
Z2

h24 // Z4

with u34 ∈ S. We have h2 ◦ s = u2 ◦ g and similarly h3 ◦ s = u3 ◦ g. Now,

u34 ◦ h3 ◦ s = u34 ◦ u3 ◦ g = h24 ◦ u2 ◦ g = h24 ◦ h2 ◦ s.

Hence, LMS3 shows that there exist a Z ′
4 and an s44 : Z4 → Z ′

4 such that s44 ◦u34 ◦h3 =
s44 ◦ h24 ◦ h2. Replacing Z4, h24 and u34 by Z ′

4, s44 ◦ h24 and s44 ◦ u34, we may assume
that u34 ◦ h3 = h24 ◦ h2. Meanwhile, the relations u34 ◦ u3 = h24 ◦ u2 and u34 ∈ S
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continue to hold. We can now set h4 = u34 ◦h3 = h24 ◦h2 and u4 = u34 ◦u3 = h24 ◦u2.
Then, we have a commutative diagram

X
h2◦f

// Z2

h24

��

Z
u2◦t
oo

X
h4◦f // Z4 Z

u4◦too

X
h3◦f // Z3

u34

OO

Z
u3◦too

Hence we obtain a pair r4 = (h4 ◦ f : X → Z4, u4 ◦ t : Z → Z4) and the above diagram
shows that we have r2Er4 and r3Er4, whence r2 ∼ r3, as desired. Thus it now makes
sense to define p ◦ q as the equivalence class of all possible pairs r obtained as above.

To finish the proof of (2) we have to show that given pairs p1, p2, q such that p1Ep2 then
p1 ◦ q = p2 ◦ q and q ◦ p1 = q ◦ p2 whenever the compositions make sense. To do this,
write p1 = (f1 : X → Y1, s1 : Y → Y1) and p2 = (f2 : X → Y2, s2 : Y → Y2) and let
a : Y1 → Y2 be a morphism of C such that f2 = a ◦ f1 and s2 = a ◦ s1. First assume that
q = (g : Y → Z ′, t : Z → Z ′). In this case choose a commutative diagram as the one on
the left

Y

s2

��

g // Z ′

u

��
Y2

h // Z ′′

⇒

Y

s1

��

g // Z ′

u

��
Y1

h◦a // Z ′′

(with u ∈ S), which implies the diagram on the right is commutative as well. Using
these diagrams we see that both compositions q ◦ p1 and q ◦ p2 are the equivalence class of
(h ◦ a ◦ f1 : X → Z ′′, u ◦ t : Z → Z ′′). Thus q ◦ p1 = q ◦ p2. The proof of the other case,
in which we have to show p1 ◦ q = p2 ◦ q, is omitted. (It is similar to the case we did.)

Proof of (3). We have to prove associativity of composition. Consider a solid diagram

Z

��
Y

��

// Z ′

��
X

��

// Y ′

��

// Z ′′

��
W // X ′ // Y ′′ // Z ′′′

(whose vertical arrows belong to S) which gives rise to three composable pairs. Using
LMS2 we can choose the dotted arrows making the squares commutative and such that
the vertical arrows are in S. Then it is clear that the composition of the three pairs is the
equivalence class of the pair (W → Z ′′′, Z → Z ′′′) gotten by composing the horizontal
arrows on the bottom row and the vertical arrows on the right column.

We leave it to the reader to check the identity axioms. �
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Remark 27.3. The motivation for the construction of S−1C is to “force” the mor-
phisms in S to be invertible by artificially creating inverses to them (at the cost of some
existing morphisms possibly becoming identified with each other). This is similar to the
localization of a commutative ring at a multiplicative subset, and more generally to the
localization of a noncommutative ring at a right denominator set (see [?, Section 10A]).
This is more than just a similarity: The construction of S−1C (or, more precisely, its ver-
sion for additive categories C) actually generalizes the latter type of localization. Namely,
a noncommutative ring can be viewed as a pre-additive category with a single object (the
morphisms being the elements of the ring); a multiplicative subset of this ring then be-
comes a set S of morphisms satisfying LMS1 (aka RMS1). Then, the conditions RMS2
and RMS3 for this category and this subset S translate into the two conditions (“right
permutable” and “right reversible”) of a right denominator set (and similarly for LMS
and left denominator sets), and S−1C (with a properly defined additive structure) is the
one-object category corresponding to the localization of the ring.

Definition 27.4. Let C be a category and let S be a left multiplicative system of
morphisms of C. Given any morphism f : X → Y ′ in C and any morphism s : Y → Y ′

in S , we denote by s−1f the equivalence class of the pair (f : X → Y ′, s : Y → Y ′).
This is a morphism from X to Y in S−1C.

This notation is suggestive, and the things it suggests are true: Given any morphism f :
X → Y ′ in C and any two morphisms s : Y → Y ′ and t : Y ′ → Y ′′ in S , we have
(t ◦ s)−1 (t ◦ f) = s−1f . Also, for any f : X → Y ′ and g : Y ′ → Z ′ in C and all
s : Z → Z ′ in S , we have s−1 (g ◦ f) =

(
s−1g

)
◦
(

id−1
Y ′ f

)
. Finally, for any f : X → Y ′

in C , all s : Y → Y ′ in S , and t : Z → Y in S , we have (s ◦ t)−1
f =

(
t−1idY

)
◦
(
s−1f

)
.

This is all clear from the definition. We can “write any finite collection of morphisms with
the same target as fractions with common denominator”.

Lemma 27.5. Let C be a category and let S be a left multiplicative system of mor-
phisms of C. Given any finite collection gi : Xi → Y of morphisms of S−1C (indexed by
i), we can find an element s : Y → Y ′ of S and a family of morphisms fi : Xi → Y ′ of C
such that each gi is the equivalence class of the pair (fi : Xi → Y ′, s : Y → Y ′).

Proof. For each i choose a representative (Xi → Yi, si : Y → Yi) of gi. The lemma
follows if we can find a morphism s : Y → Y ′ inS such that for each i there is a morphism
ai : Yi → Y ′ with ai ◦ si = s. If we have two indices i = 1, 2, then we can do this by
completing the square

Y

s1

��

s2
// Y2

t2
��

Y1
a1 // Y ′

with t2 ∈ S as is possible by Definition 27.1. Then s = t2 ◦ s2 ∈ S works. If we have
n > 2 morphisms, then we use the above trick to reduce to the case of n − 1 morphisms,
and we win by induction. �

There is an easy characterization of equality of morphisms if they have the same denomi-
nator.

Lemma 27.6. Let C be a category and let S be a left multiplicative system of mor-
phisms of C. Let A,B : X → Y be morphisms of S−1C which are the equivalence classes
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of (f : X → Y ′, s : Y → Y ′) and (g : X → Y ′, s : Y → Y ′). The following are
equivalent

(1) A = B
(2) there exists a morphism t : Y ′ → Y ′′ in S with t ◦ f = t ◦ g, and
(3) there exists a morphism a : Y ′ → Y ′′ such that a ◦ f = a ◦ g and a ◦ s ∈ S.

Proof. We are going to use that S−1C is a category (Lemma 27.2) and we will use the
notation of Definition 27.4 as well as the discussion following that definition to identify
some morphisms in S−1C. Thus we write A = s−1f and B = s−1g.

If A = B then (id−1
Y ′ s) ◦A = (id−1

Y ′ s) ◦B. We have (id−1
Y ′ s) ◦A = id−1

Y ′ f and (id−1
Y ′ s) ◦

B = id−1
Y ′ g. The equality of id−1

Y ′ f and id−1
Y ′ g means by definition that there exists a

commutative diagram

Y ′

u

��
X

f

>>

h //

g   

Z Y ′

idY ′

``

too

idY ′~~
Y ′

v

OO

with t ∈ S. In particular u = v = t ∈ S and t ◦ f = t ◦ g. Thus (1) implies (2).

The implication (2)⇒ (3) is immediate. Assume a is as in (3). Denote s′ = a◦s ∈ S. Then
id−1
Y ′′s′ is an isomorphism in the category S−1C (with inverse (s′)−1idY ′′ ). Thus to check

A = B it suffices to check that id−1
Y ′′s′ ◦ A = id−1

Y ′′s′ ◦ B. We compute using the rules
discussed in the text following Definition 27.4 that id−1

Y ′′s′ ◦ A = id−1
Y ′′(a ◦ s) ◦ s−1f =

id−1
Y ′′(a ◦ f) = id−1

Y ′′(a ◦ g) = id−1
Y ′′(a ◦ s) ◦ s−1g = id−1

Y ′′s′ ◦ B and we see that (1) is
true. �

Remark 27.7. Let C be a category. Let S be a left multiplicative system. Given an
object Y of C we denote Y/S the category whose objects are s : Y → Y ′ with s ∈ S and
whose morphisms are commutative diagrams

Y

s

~~

t

  
Y ′ a // Y ′′

where a : Y ′ → Y ′′ is arbitrary. We claim that the category Y/S is filtered (see Definition
19.1). Namely, LMS1 implies that idY : Y → Y is in Y/S; hence Y/S is nonempty. LMS2
implies that given s1 : Y → Y1 and s2 : Y → Y2 we can find a diagram

Y

s1

��

s2
// Y2

t

��
Y1

a // Y3

with t ∈ S. Hence s1 : Y → Y1 and s2 : Y → Y2 both have maps to t ◦ s2 : Y → Y3 in
Y/S. Finally, given two morphisms a, b from s1 : Y → Y1 to s2 : Y → Y2 in Y/S we see
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that a ◦ s1 = b ◦ s1; hence by LMS3 there exists a t : Y2 → Y3 in S such that t ◦ a = t ◦ b.
Now the combined results of Lemmas 27.5 and 27.6 tell us that

(27.7.1) MorS−1C(X,Y ) = colim(s:Y→Y ′)∈Y/S MorC(X,Y ′)

This formula expressing morphism sets in S−1C as a filtered colimit of morphism sets in
C is occasionally useful.

Lemma 27.8. Let C be a category and let S be a left multiplicative system of mor-
phisms of C.

(1) The rules X 7→ X and (f : X → Y ) 7→ (f : X → Y, idY : Y → Y ) define a
functor Q : C → S−1C.

(2) For any s ∈ S the morphism Q(s) is an isomorphism in S−1C.
(3) If G : C → D is any functor such that G(s) is invertible for every s ∈ S , then

there exists a unique functor H : S−1C → D such that H ◦Q = G.

Proof. Parts (1) and (2) are clear. (In (2), the inverse of Q(s) is the equivalence class
of the pair (idY , s).) To see (3) just set H(X) = G(X) and set H((f : X → Y ′, s : Y →
Y ′)) = G(s)−1 ◦G(f). Details omitted. �

Lemma 27.9. Let C be a category and let S be a left multiplicative system of mor-
phisms of C. The localization functor Q : C → S−1C commutes with finite colimits.

Proof. Let I be a finite category and let I → C , i 7→ Xi be a functor whose colimit
exists. Then using (27.7.1), the fact that Y/S is filtered, and Lemma 19.2 we have

MorS−1C(Q(colimXi), Q(Y )) = colim(s:Y→Y ′)∈Y/S MorC(colimXi, Y
′)

= colim(s:Y→Y ′)∈Y/S limi MorC(Xi, Y
′)

= limi colim(s:Y→Y ′)∈Y/S MorC(Xi, Y
′)

= limi MorS−1C(Q(Xi), Q(Y ))

and this isomorphism commutes with the projections from both sides to the set MorS−1C(Q(Xj), Q(Y ))
for each j ∈ Ob(I). Thus, Q(colimXi) satisfies the universal property for the colimit of
the functor i 7→ Q(Xi); hence, it is this colimit, as desired. �

Lemma 27.10. Let C be a category. Let S be a left multiplicative system. If f : X →
Y , f ′ : X ′ → Y ′ are two morphisms of C and if

Q(X)

Q(f)
��

a
// Q(X ′)

Q(f ′)
��

Q(Y ) b // Q(Y ′)

is a commutative diagram in S−1C , then there exist a morphism f ′′ : X ′′ → Y ′′ in C and
a commutative diagram

X

f

��

g
// X ′′

f ′′

��

X ′

f ′

��

s
oo

Y
h // Y ′′ Y ′too

in C with s, t ∈ S and a = s−1g, b = t−1h.
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Proof. We choose maps and objects in the following way: First write a = s−1g for
some s : X ′ → X ′′ in S and g : X → X ′′. By LMS2 we can find t : Y ′ → Y ′′ in S and
f ′′ : X ′′ → Y ′′ such that

X

f

��

g
// X ′′

f ′′

��

X ′

f ′

��

s
oo

Y Y ′′ Y ′too

commutes. Now in this diagram we are going to repeatedly change our choice of

X ′′ f ′′

−−→ Y ′′ t←− Y ′

by postcomposing both t and f ′′ by a morphism d : Y ′′ → Y ′′′ with the property that d ◦
t ∈ S. According to Remark 27.7 we may after such a replacement assume that there exists
a morphism h : Y → Y ′′ such that b = t−1h holds5. At this point we have everything
as in the lemma except that we don’t know that the left square of the diagram commutes.
But the definition of composition in S−1C shows that b ◦ Q (f) is the equivalence class
of the pair (h ◦ f : X → Y ′′, t : Y ′ → Y ′′) (since b is the equivalence class of the pair
(h : Y → Y ′′, t : Y ′ → Y ′′), while Q (f) is the equivalence class of the pair (f : X →
Y, id : Y → Y )), whileQ (f ′)◦a is the equivalence class of the pair (f ′′ ◦g : X → Y ′′, t :
Y ′ → Y ′′) (since a is the equivalence class of the pair (g : X → X ′′, s : X ′ → X ′′),
while Q (f ′) is the equivalence class of the pair (f ′ : X ′ → Y ′, id : Y ′ → Y ′)). Since
we know that b ◦Q (f) = Q (f ′) ◦ a, we thus conclude that the equivalence classes of the
pairs (h ◦ f : X → Y ′′, t : Y ′ → Y ′′) and (f ′′ ◦ g : X → Y ′′, t : Y ′ → Y ′′) are equal.
Hence using Lemma 27.6 we can find a morphism d : Y ′′ → Y ′′′ such that d ◦ t ∈ S and
d ◦ h ◦ f = d ◦ f ′′ ◦ g. Hence we make one more replacement of the kind described above
and we win. �

Right calculus of fractions. Let C be a category and let S be a right multiplicative system.
We define a new category S−1C as follows (we verify this works in the proof of Lemma
27.11):

(1) We set Ob(S−1C) = Ob(C).
(2) Morphisms X → Y of S−1C are given by pairs (f : X ′ → Y, s : X ′ → X)

with s ∈ S up to equivalence. (The equivalence is defined below. Think of the
equivalence class of a pair (f, s) as fs−1 : X → Y .)

(3) Two pairs (f1 : X1 → Y, s1 : X1 → X) and (f2 : X2 → Y, s2 : X2 → X) are
said to be equivalent if there exist a third pair (f3 : X3 → Y, s3 : X3 → X) and
morphisms u : X3 → X1 and v : X3 → X2 of C fitting into the commutative
diagram

X1
s1

~~

f1

  
X X3

s3oo

u

OO

v

��

f3 // Y

X2

s2

``

f2

>>

5Here is a more down-to-earth way to see this: Write b = q−1i for some q : Y ′ → Z in S and some
i : Y → Z. By LMS2 we can find r : Y ′′ → Y ′′′ in S and j : Z → Y ′′′ such that j ◦ q = r ◦ t. Now, set
d = r and h = j ◦ i.
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(4) The composition of the equivalence classes of the pairs (f : X ′ → Y, s : X ′ →
X) and (g : Y ′ → Z, t : Y ′ → Y ) is defined as the equivalence class of a pair
(g ◦ h : X ′′ → Z, s ◦ u : X ′′ → X) where h and u ∈ S are chosen to fit into a
commutative diagram

X ′′

u

��

h // Y ′

t

��
X ′ f // Y

which exists by assumption.
(5) The identity morphism X → X in S−1C is the equivalence class of the pair

(id : X → X, id : X → X).

Lemma 27.11. Let C be a category and let S be a right multiplicative system.
(1) The relation on pairs defined above is an equivalence relation.
(2) The composition rule given above is well defined on equivalence classes.
(3) Composition is associative (and the identity morphisms satisfy the identity ax-

ioms), and hence S−1C is a category.

Proof. This lemma is dual to Lemma 27.2. It follows formally from that lemma by
replacing C by its opposite category in which S is a left multiplicative system. �

Definition 27.12. Let C be a category and let S be a right multiplicative system of
morphisms of C. Given any morphism f : X ′ → Y in C and any morphism s : X ′ → X
in S , we denote by fs−1 the equivalence class of the pair (f : X ′ → Y, s : X ′ → X).
This is a morphism from X to Y in S−1C.

Identities similar (actually, dual) to the ones in Definition 27.4 hold. We can “write any
finite collection of morphisms with the same source as fractions with common denomina-
tor”.

Lemma 27.13. Let C be a category and let S be a right multiplicative system of mor-
phisms of C. Given any finite collection gi : X → Yi of morphisms of S−1C (indexed by
i), we can find an element s : X ′ → X of S and a family of morphisms fi : X ′ → Yi of C
such that gi is the equivalence class of the pair (fi : X ′ → Yi, s : X ′ → X).

Proof. This lemma is the dual of Lemma 27.5 and follows formally from that lemma
by replacing all categories in sight by their opposites. �

There is an easy characterization of equality of morphisms if they have the same denomi-
nator.

Lemma 27.14. Let C be a category and let S be a right multiplicative system of mor-
phisms of C. Let A,B : X → Y be morphisms of S−1C which are the equivalence classes
of (f : X ′ → Y, s : X ′ → X) and (g : X ′ → Y, s : X ′ → X). The following are
equivalent

(1) A = B,
(2) there exists a morphism t : X ′′ → X ′ in S with f ◦ t = g ◦ t, and
(3) there exists a morphism a : X ′′ → X ′ with f ◦ a = g ◦ a and s ◦ a ∈ S.

Proof. This is dual to Lemma 27.6. �
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Remark 27.15. Let C be a category. Let S be a right multiplicative system. Given an
object X of C we denote S/X the category whose objects are s : X ′ → X with s ∈ S and
whose morphisms are commutative diagrams

X ′

s
  

a
// X ′′

t}}
X

where a : X ′ → X ′′ is arbitrary. The category S/X is cofiltered (see Definition 20.1).
(This is dual to the corresponding statement in Remark 27.7.) Now the combined results
of Lemmas 27.13 and 27.14 tell us that
(27.15.1) MorS−1C(X,Y ) = colim(s:X′→X)∈(S/X)opp MorC(X ′, Y )

This formula expressing morphisms in S−1C as a filtered colimit of morphisms in C is
occasionally useful.

Lemma 27.16. Let C be a category and let S be a right multiplicative system of mor-
phisms of C.

(1) The rules X 7→ X and (f : X → Y ) 7→ (f : X → Y, idX : X → X) define a
functor Q : C → S−1C.

(2) For any s ∈ S the morphism Q(s) is an isomorphism in S−1C.
(3) If G : C → D is any functor such that G(s) is invertible for every s ∈ S , then

there exists a unique functor H : S−1C → D such that H ◦Q = G.

Proof. This lemma is the dual of Lemma 27.8 and follows formally from that lemma
by replacing all categories in sight by their opposites. �

Lemma 27.17. Let C be a category and let S be a right multiplicative system of mor-
phisms of C. The localization functor Q : C → S−1C commutes with finite limits.

Proof. This is dual to Lemma 27.9. �

Lemma 27.18. Let C be a category. Let S be a right multiplicative system. If f : X →
Y , f ′ : X ′ → Y ′ are two morphisms of C and if

Q(X)

Q(f)
��

a
// Q(X ′)

Q(f ′)
��

Q(Y ) b // Q(Y ′)

is a commutative diagram in S−1C , then there exist a morphism f ′′ : X ′′ → Y ′′ in C and
a commutative diagram

X

f

��

X ′′
s

oo

f ′′

��

g
// X ′

f ′

��
Y Y ′′too h // Y ′

in C with s, t ∈ S and a = gs−1, b = ht−1.

Proof. This lemma is dual to Lemma 27.10. �

Multiplicative systems and two sided calculus of fractions. If S is a multiplicative system
then left and right calculus of fractions give canonically isomorphic categories.
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Lemma 27.19. Let C be a category and let S be a multiplicative system. The category
of left fractions and the category of right fractions S−1C are canonically isomorphic.

Proof. Denote Cleft, Cright the two categories of fractions. By the universal prop-
erties of Lemmas 27.8 and 27.16 we obtain functors Cleft → Cright and Cright → Cleft.
By the uniqueness statement in the universal properties, these functors are each other’s
inverse. �

Definition 27.20. Let C be a category and let S be a multiplicative system. We say
S is saturated if, in addition to MS1, MS2, MS3, we also have

MS4 Given three composable morphisms f, g, h, if fg, gh ∈ S , then g ∈ S.

Note that a saturated multiplicative system contains all isomorphisms. Moreover, if f, g, h
are composable morphisms in a category and fg, gh are isomorphisms, then g is an isomor-
phism (because then g has both a left and a right inverse, hence is invertible).

Lemma 27.21. Let C be a category and let S be a multiplicative system. Denote Q :
C → S−1C the localization functor. The set

Ŝ = {f ∈ Arrows(C) | Q(f) is an isomorphism}

is equal to

S′ = {f ∈ Arrows(C) | there exist g, h such that gf, fh ∈ S}

and is the smallest saturated multiplicative system containing S. In particular, if S is
saturated, then Ŝ = S.

Proof. It is clear thatS ⊂ S′ ⊂ Ŝ because elements ofS′ map to morphisms inS−1C
which have both left and right inverses. Note that S′ satisfies MS4, and that Ŝ satisfies
MS1. Next, we prove that S′ = Ŝ.

Let f ∈ Ŝ. Let s−1g = ht−1 be the inverse morphism in S−1C. (We may use both
left fractions and right fractions to describe morphisms in S−1C , see Lemma 27.19.) The
relation idX = s−1gf in S−1C means there exists a commutative diagram

X ′

u

��
X

gf

==

f ′
//

idX !!

X ′′ X

s

aa

s′
oo

idX}}
X

v

OO

for some morphisms f ′, u, v and s′ ∈ S. Hence ugf = s′ ∈ S. Similarly, using that
idY = fht−1 one proves that fhw ∈ S for some w. We conclude that f ∈ S′. Thus
S′ = Ŝ. Provided we prove that S′ = Ŝ is a multiplicative system it is now clear that this
implies that S′ = Ŝ is the smallest saturated system containing S.

Our remarks above take care of MS1 and MS4, so to finish the proof of the lemma we have
to show that LMS2, RMS2, LMS3, RMS3 hold for Ŝ. Let us check that LMS2 holds for Ŝ.
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Suppose we have a solid diagram

X

t

��

g
// Y

s

��
Z

f // W

with t ∈ Ŝ. Pick a morphism a : Z → Z ′ such that at ∈ S. Then we can use LMS2 for S
to find a commutative diagram

X

t

��

g
// Y

s

��

Z

a

��
Z ′ f ′

// W

and setting f = f ′ ◦ a we win. The proof of RMS2 is dual to this. Finally, suppose given
a pair of morphisms f, g : X → Y and t ∈ Ŝ with target X such that ft = gt. Then we
pick a morphism b such that tb ∈ S. Then ftb = gtb which implies by LMS3 for S that
there exists an s ∈ S with source Y such that sf = sg as desired. The proof of RMS3 is
dual to this. �

28. Formal properties

In this section we discuss some formal properties of the 2-category of categories. This will
lead us to the definition of a (strict) 2-category later.

Let us denote Ob(Cat) the class of all categories. For every pair of categories A,B ∈
Ob(Cat) we have the “small” category of functors Fun(A,B). Composition of transfor-
mation of functors such as

A

F ′′

""�� t′

F ′
//
==

F

�� t
B composes to A

F ′′

((

F

66�� t◦t′ B

is called vertical composition. We will use the usual symbol ◦ for this. Next, we will define
horizontal composition. In order to do this we explain a bit more of the structure at hand.

Namely for every triple of categoriesA, B, and C there is a composition law

◦ : Ob(Fun(B, C))×Ob(Fun(A,B)) −→ Ob(Fun(A, C))

coming from composition of functors. This composition law is associative, and identity
functors act as units. In other words – forgetting about transformations of functors –
we see that Cat forms a category. How does this structure interact with the morphisms
between functors?

Well, given t : F → F ′ a transformation of functors F, F ′ : A → B and a functor
G : B → C we can define a transformation of functors G ◦ F → G ◦ F ′. We will denote
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this transformationGt. It is given by the formula (Gt)x = G(tx) : G(F (x))→ G(F ′(x))
for all x ∈ A. In this way composition with G becomes a functor

Fun(A,B) −→ Fun(A, C).
To see this you just have to check that G(idF ) = idG◦F and that G(t1 ◦ t2) = Gt1 ◦ Gt2.
Of course we also have that idAt = t.
Similarly, given s : G→ G′ a transformation of functors G,G′ : B → C and F : A → B
a functor we can define sF to be the transformation of functorsG ◦F → G′ ◦F given by
(sF )x = sF (x) : G(F (x)) → G′(F (x)) for all x ∈ A. In this way composition with F
becomes a functor

Fun(B, C) −→ Fun(A, C).
To see this you just have to check that (idG)F = idG◦F and that (s1 ◦ s2)F = s1,F ◦ s2,F .
Of course we also have that sidB = s.
These constructions satisfy the additional properties

G1(G2t) = G1◦G2t, (sF1)F2 = sF1◦F2 , and H(sF ) = (Hs)F
whenever these make sense. Finally, given functors F, F ′ : A → B, and G,G′ : B → C
and transformations t : F → F ′, and s : G→ G′ the following diagram is commutative

G ◦ F Gt //

sF
��

G ◦ F ′

sF ′

��
G′ ◦ F

G′ t
// G′ ◦ F ′

in other words G′t ◦ sF = sF ′ ◦ Gt. To prove this we just consider what happens on any
object x ∈ Ob(A):

G(F (x))
G(tx) //

sF (x)

��

G(F ′(x))

sF ′(x)

��
G′(F (x))

G′(tx)
// G′(F ′(x))

which is commutative because s is a transformation of functors. This compatibility rela-
tion allows us to define horizontal composition.

Definition 28.1. Given a diagram as in the left hand side of:

A
F
%%

F ′

99�� t B
G
%%

G′

99�� s C gives A
G◦F

((

G′◦F ′

66�� s?t C

we define the horizontal composition s? t to be the transformation of functors G′t◦sF =
sF ′ ◦ Gt.

Now we see that we may recover our previously constructed transformations Gt and sF
as Gt = idG ? t and sF = s ? idF . Furthermore, all of the rules we found above are
consequences of the properties stated in the lemma that follows.

Lemma 28.2. The horizontal and vertical compositions have the following properties
(1) ◦ and ? are associative,
(2) the identity transformations idF are units for ◦,
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(3) the identity transformations of the identity functors ididA are units for ? and ◦,
and

(4) given a diagram

A

F

""�� t

F ′
//
==

F ′′

�� t′
B

G

!!�� s

G′
//
==

G′′

�� s′
C

we have (s′ ◦ s) ? (t′ ◦ t) = (s′ ? t′) ◦ (s ? t).

Proof. The last statement turns using our previous notation into the following equa-
tion

s′
F ′′ ◦ G′t′ ◦ sF ′ ◦ Gt = (s′ ◦ s)F ′′ ◦ G(t′ ◦ t).

According to our result above applied to the middle composition we may rewrite the left
hand side as s′

F ′′ ◦ sF ′′ ◦ Gt′ ◦ Gt which is easily shown to be equal to the right hand
side. �

Another way of formulating condition (4) of the lemma is that composition of functors
and horizontal composition of transformation of functors gives rise to a functor

(◦, ?) : Fun(B, C)× Fun(A,B) −→ Fun(A, C)
whose source is the product category, see Definition 2.20.

29. 2-categories

We will give a definition of (strict) 2-categories as they appear in the setting of stacks. Be-
fore you read this take a look at Section 28 and Example 30.2. Basically, you take this exam-
ple and you write out all the rules satisfied by the objects, 1-morphisms and 2-morphisms
in that example.

Definition 29.1. A (strict) 2-category C consists of the following data
(1) A set of objects Ob(C).
(2) For each pair x, y ∈ Ob(C) a category MorC(x, y). The objects of MorC(x, y)

will be called 1-morphisms and denoted F : x → y. The morphisms between
these 1-morphisms will be called 2-morphisms and denoted t : F ′ → F . The
composition of 2-morphisms in MorC(x, y) will be called vertical composition
and will be denoted t ◦ t′ for t : F ′ → F and t′ : F ′′ → F ′.

(3) For each triple x, y, z ∈ Ob(C) a functor
(◦, ?) : MorC(y, z)×MorC(x, y) −→ MorC(x, z).

The image of the pair of 1-morphisms (F,G) on the left hand side will be called
the composition of F and G, and denoted F ◦ G. The image of the pair of 2-
morphisms (t, s) will be called the horizontal composition and denoted t ? s.

These data are to satisfy the following rules:
(1) The set of objects together with the set of 1-morphisms endowed with composi-

tion of 1-morphisms forms a category.
(2) Horizontal composition of 2-morphisms is associative.
(3) The identity 2-morphism ididx of the identity 1-morphism idx is a unit for hor-

izontal composition.
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This is obviously not a very pleasant type of object to work with. On the other hand,
there are lots of examples where it is quite clear how you work with it. The only example
we have so far is that of the 2-category whose objects are a given collection of categories,
1-morphisms are functors between these categories, and 2-morphisms are natural trans-
formations of functors, see Section 28. As far as this text is concerned all 2-categories will
be sub 2-categories of this example. Here is what it means to be a sub 2-category.

Definition 29.2. Let C be a 2-category. A sub 2-category C′ of C , is given by a sub-
set Ob(C′) of Ob(C) and sub categories MorC′(x, y) of the categories MorC(x, y) for all
x, y ∈ Ob(C′) such that these, together with the operations ◦ (composition 1-morphisms),
◦ (vertical composition 2-morphisms), and ? (horizontal composition) form a 2-category.

Remark 29.3. Big 2-categories. In many texts a 2-category is allowed to have a class
of objects (but hopefully a “class of classes” is not allowed). We will allow these “big”
2-categories as well, but only in the following list of cases (to be updated as we go along):

(1) The 2-category of categories Cat.
(2) The (2, 1)-category of categories Cat.
(3) The 2-category of groupoids Groupoids; this is a (2, 1)-category.
(4) The 2-category of fibred categories over a fixed category.
(5) The (2, 1)-category of fibred categories over a fixed category.

See Definition 30.1. Note that in each case the class of objects of the 2-category C is a proper
class, but for all objects x, y ∈ Ob(C) the category MorC(x, y) is “small” (according to our
conventions).

The notion of equivalence of categories that we defined in Section 2 extends to the more
general setting of 2-categories as follows.

Definition 29.4. Two objects x, y of a 2-category are equivalent if there exist 1-
morphisms F : x → y and G : y → x such that F ◦G is 2-isomorphic to idy and G ◦ F
is 2-isomorphic to idx.

Sometimes we need to say what it means to have a functor from a category into a 2-
category.

Definition 29.5. LetA be a category and let C be a 2-category.

(1) A functor from an ordinary category into a 2-category will ignore the 2-morphisms
unless mentioned otherwise. In other words, it will be a “usual” functor into the
category formed out of 2-category by forgetting all the 2-morphisms.

(2) A weak functor, or a pseudo functor ϕ fromA into the 2-category C is given by
the following data
(a) a map ϕ : Ob(A)→ Ob(C),
(b) for every pair x, y ∈ Ob(A), and every morphism f : x→ y a 1-morphism

ϕ(f) : ϕ(x)→ ϕ(y),
(c) for every x ∈ Ob(A) a 2-morphism αx : idϕ(x) → ϕ(idx), and
(d) for every pair of composable morphisms f : x → y, g : y → z of A a

2-morphism αg,f : ϕ(g ◦ f)→ ϕ(g) ◦ ϕ(f).
These data are subject to the following conditions:
(a) the 2-morphisms αx and αg,f are all isomorphisms,
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(b) for any morphism f : x→ y inA we have αidy,f = αy ? idϕ(f):

ϕ(x)
ϕ(f)

**

ϕ(f)
44�� idϕ(f) ϕ(y)

idϕ(y)
**

ϕ(idy)
44��αy ϕ(y) = ϕ(x)

ϕ(f)
**

ϕ(idy)◦ϕ(f)
44��αidy,f ϕ(y)

(c) for any morphism f : x→ y inA we have αf,idx = idϕ(f) ? αx,
(d) for any triple of composable morphisms f : w → x, g : x → y, and

h : y → z ofA we have

(idϕ(h) ? αg,f ) ◦ αh,g◦f = (αh,g ? idϕ(f)) ◦ αh◦g,f

in other words the following diagram with objects 1-morphisms and arrows
2-morphisms commutes

ϕ(h ◦ g ◦ f)

αh,g◦f

��

αh◦g,f
// ϕ(h ◦ g) ◦ ϕ(f)

αh,g?idϕ(f)

��
ϕ(h) ◦ ϕ(g ◦ f)

idϕ(h)?αg,f // ϕ(h) ◦ ϕ(g) ◦ ϕ(f)

Again this is not a very workable notion, but it does sometimes come up. There is a theorem
that says that any pseudo-functor is isomorphic to a functor. Finally, there are the notions
of functor between 2-categories, and pseudo functor between 2-categories. This last notion
leads us into 3-category territory. We would like to avoid having to define this at almost
any cost!

30. (2, 1)-categories

Some 2-categories have the property that all 2-morphisms are isomorphisms. These will
play an important role in the following, and they are easier to work with.

Definition 30.1. A (strict) (2, 1)-category is a 2-category in which all 2-morphisms
are isomorphisms.

Example 30.2. The 2-category Cat, see Remark 29.3, can be turned into a (2, 1)-
category by only allowing isomorphisms of functors as 2-morphisms.

In fact, more generally any 2-category C produces a (2, 1)-category by considering the sub
2-category C′ with the same objects and 1-morphisms but whose 2-morphisms are the in-
vertible 2-morphisms of C. In this situation we will say “let C′ be the (2, 1)-category asso-
ciated to C” or similar. For example, the (2, 1)-category of groupoids means the 2-category
whose objects are groupoids, whose 1-morphisms are functors and whose 2-morphisms are
isomorphisms of functors. Except that this is a bad example as a transformation between
functors between groupoids is automatically an isomorphism!

Remark 30.3. Thus there are variants of the construction of Example 30.2 above
where we look at the 2-category of groupoids, or categories fibred in groupoids over a
fixed category, or stacks. And so on.
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31. 2-fibre products

In this section we introduce 2-fibre products. Suppose that C is a 2-category. We say that
a diagram

w //

��

y

��
x // z

2-commutes if the two 1-morphisms w → y → z and w → x → z are 2-isomorphic.
In a 2-category it is more natural to ask for 2-commutativity of diagrams than for actu-
ally commuting diagrams. (Indeed, some may say that we should not work with strict
2-categories at all, and in a “weak” 2-category the notion of a commutative diagram of 1-
morphisms does not even make sense.) Correspondingly the notion of a fibre product has
to be adjusted.

Let C be a 2-category. Let x, y, z ∈ Ob(C) and f ∈ MorC(x, z) and g ∈ MorC(y, z).
In order to define the 2-fibre product of f and g we are going to look at 2-commutative
diagrams

w
a
//

b

��

x

f

��
y

g // z.

Now in the case of categories, the fibre product is a final object in the category of such
diagrams. Correspondingly a 2-fibre product is a final object in a 2-category (see definition
below). The 2-category of 2-commutative diagrams over f and g is the 2-category defined
as follows:

(1) Objects are quadruples (w, a, b, φ) as above where φ is an invertible 2-morphism
φ : f ◦ a→ g ◦ b,

(2) 1-morphisms from (w′, a′, b′, φ′) to (w, a, b, φ) are given by (k : w′ → w,α :
a′ → a ◦ k, β : b′ → b ◦ k) such that

f ◦ a′
idf?α

//

φ′

��

f ◦ a ◦ k

φ?idk
��

g ◦ b′ idg?β // g ◦ b ◦ k

is commutative,
(3) given a second 1-morphism (k′, α′, β′) : (w′′, a′′, b′′, φ′′) → (w′, α′, β′, φ′) the

composition of 1-morphisms is given by the rule

(k, α, β) ◦ (k′, α′, β′) = (k ◦ k′, (α ? idk′) ◦ α′, (β ? idk′) ◦ β′),

(4) a 2-morphism between 1-morphisms (ki, αi, βi), i = 1, 2 with the same source
and target is given by a 2-morphism δ : k1 → k2 such that

a′

α2 ""

α1
// a ◦ k1

ida?δ
��

b ◦ k1

idb?δ
��

b′
β1

oo

β2}}
a ◦ k2 b ◦ k2

commute,
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(5) vertical composition of 2-morphisms is given by vertical composition of the mor-
phisms δ in C , and

(6) horizontal composition of the diagram

(w′′, a′′, b′′, φ′′)
(k′

1,α
′
1,β

′
1) --

(k′
2,α

′
2,β

′
2)
11�� δ′ (w′, a′, b′, φ′)

(k1,α1,β1)
,,

(k2,α2,β2)
22�� δ (w, a, b, φ)

is given by the diagram

(w′′, a′′, b′′, φ′′)
(k1◦k′

1,(α1?idk′
1

)◦α′
1,(β1?idk′

1
)◦β′

1)
--

(k2◦k′
2,(α2?idk′

2
)◦α′

2,(β2?idk′
2

)◦β′
2)

11�� δ?δ′ (w, a, b, φ)

Note that if C is actually a (2, 1)-category, the morphisms α and β in (2) above are auto-
matically also isomorphisms6. In addition the 2-category of 2-commutative diagrams is
also a (2, 1)-category if C is a (2, 1)-category.

Definition 31.1. A final object of a (2, 1)-category C is an object x such that
(1) for every y ∈ Ob(C) there is a morphism y → x, and
(2) every two morphisms y → x are isomorphic by a unique 2-morphism.

Likely, in the more general case of 2-categories there are different flavours of final objects.
We do not want to get into this and hence we only define 2-fibre products in the (2, 1)-case.

Definition 31.2. Let C be a (2, 1)-category. Let x, y, z ∈ Ob(C) and f ∈ MorC(x, z)
and g ∈ MorC(y, z). A 2-fibre product of f and g is a final object in the category of
2-commutative diagrams described above. If a 2-fibre product exists we will denote it
x ×z y ∈ Ob(C), and denote the required morphisms p ∈ MorC(x ×z y, x) and q ∈
MorC(x×z y, y) making the diagram

x×z y
p //

q

��

x

f

��
y

g // z

2-commute and we will denote the given invertible 2-morphism exhibiting this by ψ :
f ◦ p→ g ◦ q.

Thus the following universal property holds: for any w ∈ Ob(C) and morphisms a ∈
MorC(w, x) and b ∈ MorC(w, y) with a given 2-isomorphism φ : f ◦ a→ g ◦ b there is a
γ ∈ MorC(w, x×z y) making the diagram

w

a

**
γ

((

b

  

x×z y p
//

q

��

x

f

��
y

g // z

6In fact it seems in the 2-category case that one could define another 2-category of 2-commutative diagrams
where the direction of the arrows α, β is reversed, or even where the direction of only one of them is reversed.
This is why we restrict to (2, 1)-categories later on.
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2-commute such that for suitable choices of a→ p ◦ γ and b→ q ◦ γ the diagram

f ◦ a //

φ

��

f ◦ p ◦ γ

ψ?idγ

��
g ◦ b // g ◦ q ◦ γ

commutes. Moreover γ is unique up to isomorphism. Of course the exact properties are
finer than this. All of the cases of 2-fibre products that we will need later on come from
the following example of 2-fibre products in the 2-category of categories.

Example 31.3. Let A, B, and C be categories. Let F : A → C and G : B → C be
functors. We define a categoryA×C B as follows:

(1) an object of A ×C B is a triple (A,B, f), where A ∈ Ob(A), B ∈ Ob(B), and
f : F (A)→ G(B) is an isomorphism in C ,

(2) a morphism (A,B, f)→ (A′, B′, f ′) is given by a pair (a, b), where a : A→ A′

is a morphism inA, and b : B → B′ is a morphism in B such that the diagram

F (A) f //

F (a)
��

G(B)

G(b)
��

F (A′) f ′
// G(B′)

is commutative.
Moreover, we define functors p : A×C B → A and q : A×C B → B by setting

p(A,B, f) = A, q(A,B, f) = B,

in other words, these are the forgetful functors. We define a transformation of functors
ψ : F ◦ p → G ◦ q. On the object ξ = (A,B, f) it is given by ψξ = f : F (p(ξ)) =
F (A)→ G(B) = G(q(ξ)).

Lemma 31.4. In the (2, 1)-category of categories 2-fibre products exist and are given
by the construction of Example 31.3.

Proof. Let us check the universal property: letW be a category, let a :W → A and
b :W → B be functors, and let t : F ◦ a→ G ◦ b be an isomorphism of functors.

Consider the functor γ : W → A×C B given by W 7→ (a(W ), b(W ), tW ). (Check this
is a functor omitted.) Moreover, consider α : a→ p ◦ γ and β : b→ q ◦ γ obtained from
the identities p ◦ γ = a and q ◦ γ = b. Then it is clear that (γ, α, β) is a morphism from
(W,a, b, t) to (A×C B, p, q, ψ).

Let (k, α′, β′) : (W,a, b, t)→ (A×C B, p, q, ψ) be a second such morphism. For an object
W of W let us write k(W ) = (ak(W ), bk(W ), tk,W ). Hence p(k(W )) = ak(W ) and
so on. The map α′ corresponds to functorial maps α′ : a(W ) → ak(W ). Since we are
working in the (2, 1)-category of categories, in fact each of the maps a(W ) → ak(W )
is an isomorphism. We can use these (and their counterparts b(W ) → bk(W )) to get
isomorphisms

δW : γ(W ) = (a(W ), b(W ), tW ) −→ (ak(W ), bk(W ), tk,W ) = k(W ).
It is straightforward to show that δ defines a 2-isomorphism between γ and k in the 2-
category of 2-commutative diagrams as desired. �
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Remark 31.5. Let A, B, and C be categories. Let F : A → C and G : B →
C be functors. Another, slightly more symmetrical, construction of a 2-fibre product
A ×C B is as follows. An object is a quintuple (A,B,C, a, b) where A,B,C are ob-
jects of A,B, C and where a : F (A) → C and b : G(B) → C are isomorphisms. A
morphism (A,B,C, a, b) → (A′, B′, C ′, a′, b′) is given by a triple of morphisms A →
A′, B → B′, C → C ′ compatible with the morphisms a, b, a′, b′. We can prove di-
rectly that this leads to a 2-fibre product. However, it is easier to observe that the functor
(A,B,C, a, b) 7→ (A,B, b−1 ◦ a) gives an equivalence from the category of quintuples to
the category constructed in Example 31.3.

Lemma 31.6. Let
Y

I

��

K

��
X H //

L

  

Z
M

��

B

G
��

A F // C
be a 2-commutative diagram of categories. A choice of isomorphisms α : G ◦K →M ◦ I
and β : M ◦H → F ◦ L determines a morphism

X ×Z Y −→ A×C B

of 2-fibre products associated to this situation.

Proof. Just use the functor

(X,Y, φ) 7−→ (L(X),K(Y ), α−1
Y ◦M(φ) ◦ β−1

X )
on objects and

(a, b) 7−→ (L(a),K(b))
on morphisms. �

Lemma 31.7. Assumptions as in Lemma 31.6.
(1) If K and L are faithful then the morphism X ×Z Y → A×C B is faithful.
(2) If K and L are fully faithful and M is faithful then the morphism X ×Z Y →
A×C B is fully faithful.

(3) If K and L are equivalences and M is fully faithful then the morphism X ×Z
Y → A×C B is an equivalence.

Proof. Let (X,Y, φ) and (X ′, Y ′, φ′) be objects of X ×Z Y . Set Z = H(X) and
identify it with I(Y ) via φ. Also, identify M(Z) with F (L(X)) via αX and identify
M(Z) with G(K(Y )) via βY . Similarly for Z ′ = H(X ′) and M(Z ′). The map on
morphisms is the map

MorX (X,X ′)×MorZ (Z,Z′) MorY(Y, Y ′)

��
MorA(L(X), L(X ′))×MorC(M(Z),M(Z′)) MorB(K(Y ),K(Y ′))

Hence parts (1) and (2) follow. Moreover, if K and L are equivalences and M is fully
faithful, then any object (A,B, φ) is in the essential image for the following reasons: Pick
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X , Y such that L(X) ∼= A and K(Y ) ∼= B. Then the fully faithfulness of M guarantees
that we can find an isomorphism H(X) ∼= I(Y ). Some details omitted. �

Lemma 31.8. Let

A

��

C

�� ��

E

��
B D

be a diagram of categories and functors. Then there is a canonical isomorphism

(A×B C)×D E ∼= A×B (C ×D E)

of categories.

Proof. Just use the functor

((A,C, φ), E, ψ) 7−→ (A, (C,E, ψ), φ)

if you know what I mean. �

Henceforth we do not write the parentheses when dealing with fibre products of more
than 2 categories.

Lemma 31.9. Let

A

��

C

��   

E

��
B

F ��

D

G~~
F

be a commutative diagram of categories and functors. Then there is a canonical functor

pr02 : A×B C ×D E −→ A×F E

of categories.

Proof. If we writeA×B C ×D E as (A×B C)×D E then we can just use the functor

((A,C, φ), E, ψ) 7−→ (A,E,G(ψ) ◦ F (φ))

if you know what I mean. �

Lemma 31.10. Let
A → B ← C ← D

be a diagram of categories and functors. Then there is a canonical isomorphism

A×B C ×C D ∼= A×B D

of categories.

Proof. Omitted. �

We claim that this means you can work with these 2-fibre products just like with ordinary
fibre products. Here are some further lemmas that actually come up later.
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Lemma 31.11. Let
C3 //

��

S

∆
��

C1 × C2
G1×G2 // S × S

be a 2-fibre product of categories. Then there is a canonical isomorphism C3 ∼= C1×G1,S,G2

C2.

Proof. We may assume that C3 is the category (C1×C2)×S×SS constructed in Exam-
ple 31.3. Hence an object is a triple ((X1, X2), S, φ) whereφ = (φ1, φ2) : (G1(X1), G2(X2))→
(S, S) is an isomorphism. Thus we can associate to this the triple (X1, X2, φ

−1
2 ◦φ1). Con-

versely, if (X1, X2, ψ) is an object of C1×G1,S,G2C2, then we can associate to this the triple
((X1, X2), G2(X2), (ψ, idG2(X2))). We claim these constructions given mutually inverse
functors. We omit describing how to deal with morphisms and showing they are mutually
inverse. �

Lemma 31.12. Let
C′ //

��

S

∆
��

C G1×G2// S × S
be a 2-fibre product of categories. Then there is a canonical isomorphism

C′ ∼= (C ×G1,S,G2 C)×(p,q),C×C,∆ C.

Proof. An object of the right hand side is given by ((C1, C2, φ), C3, ψ) where φ :
G1(C1) → G2(C2) is an isomorphism and ψ = (ψ1, ψ2) : (C1, C2) → (C3, C3) is an
isomorphism. Hence we can associate to this the triple (C3, G1(C1), (G1(ψ−1

1 ), φ−1 ◦
G2(ψ−1

2 ))) which is an object of C′. Details omitted. �

Lemma 31.13. Let A → C , B → C and C → D be functors between categories. Then
the diagram

A×C B

��

// A×D B

��
C

∆C/D //// C ×D C
is a 2-fibre product diagram.

Proof. Omitted. �

Lemma 31.14. Let
U

��

// V

��
X // Y

be a 2-fibre product of categories. Then the diagram

U

��

// U ×V U

��
X // X ×Y X
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is 2-cartesian.

Proof. This is a purely 2-category theoretic statement, valid in any (2, 1)-category
with 2-fibre products. Explicitly, it follows from the following chain of equivalences:

X ×(X ×Y X ) (U ×V U) = X ×(X ×Y X ) ((X ×Y V)×V (X ×Y V))
= X ×(X ×Y X ) (X ×Y X ×Y V)
= X ×Y V = U

see Lemmas 31.8 and 31.10. �

32. Categories over categories

In this section we have a functor p : S → C. We think of S as being on top and of C as
being at the bottom. To make sure that everybody knows what we are talking about we
define the 2-category of categories over C.

Definition 32.1. Let C be a category. The 2-category of categories over C is the
2-category defined as follows:

(1) Its objects will be functors p : S → C.
(2) Its 1-morphisms (S, p)→ (S ′, p′) will be functorsG : S → S ′ such that p′◦G =

p.
(3) Its 2-morphisms t : G → H for G,H : (S, p) → (S ′, p′) will be morphisms of

functors such that p′(tx) = idp(x) for all x ∈ Ob(S).
In this situation we will denote

MorCat/C(S,S ′)
the category of 1-morphisms between (S, p) and (S ′, p′)

In this 2-category we define horizontal and vertical composition exactly as is done for Cat
in Section 28. The axioms of a 2-category are satisfied for the same reason that the hold
in Cat. To see this one can also use that the axioms hold in Cat and verify things such as
“vertical composition of 2-morphisms over C gives another 2-morphism over C”. This is
clear.

Analogously to the fibre of a map of spaces, we have the notion of a fibre category, and
some notions of lifting associated to this situation.

Definition 32.2. Let C be a category. Let p : S → C be a category over C.
(1) The fibre category over an object U ∈ Ob(C) is the category SU with objects

Ob(SU ) = {x ∈ Ob(S) : p(x) = U}

and morphisms

MorSU (x, y) = {φ ∈ MorS(x, y) : p(φ) = idU}.

(2) A lift of an object U ∈ Ob(C) is an object x ∈ Ob(S) such that p(x) = U , i.e.,
x ∈ Ob(SU ). We will also sometime say that x lies over U .

(3) Similarly, a lift of a morphism f : V → U in C is a morphism φ : y → x in S
such that p(φ) = f . We sometimes say that φ lies over f .

There are some observations we could make here. For example if F : (S, p)→ (S ′, p′) is
a 1-morphism of categories over C , then F induces functors of fibre categories F : SU →
S ′
U . Similarly for 2-morphisms.
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Here is the obligatory lemma describing the 2-fibre product in the (2, 1)-category of cat-
egories over C.

Lemma 32.3. Let C be a category. The (2, 1)-category of categories over C has 2-fibre
products. Suppose that F : X → S and G : Y → S are morphisms of categories over C.
An explicit 2-fibre product X ×S Y is given by the following description

(1) an object ofX ×S Y is a quadruple (U, x, y, f), whereU ∈ Ob(C), x ∈ Ob(XU ),
y ∈ Ob(YU ), and f : F (x)→ G(y) is an isomorphism in SU ,

(2) a morphism (U, x, y, f) → (U ′, x′, y′, f ′) is given by a pair (a, b), where a :
x→ x′ is a morphism in X , and b : y → y′ is a morphism in Y such that
(a) a and b induce the same morphism U → U ′, and
(b) the diagram

F (x) f //

F (a)
��

G(y)

G(b)
��

F (x′) f ′
// G(y′)

is commutative.
The functors p : X ×S Y → X and q : X ×S Y → Y are the forgetful functors in this
case. The transformation ψ : F ◦ p → G ◦ q is given on the object ξ = (U, x, y, f) by
ψξ = f : F (p(ξ)) = F (x)→ G(y) = G(q(ξ)).

Proof. Let us check the universal property: let pW : W → C be a category over C ,
let X : W → X and Y : W → Y be functors over C , and let t : F ◦ X → G ◦ Y be
an isomorphism of functors over C. The desired functor γ : W → X ×S Y is given by
W 7→ (pW(W ), X(W ), Y (W ), tW ). Details omitted; compare with Lemma 31.4. �

Example 32.4. The constructions of 2-fibre products of categories over categories
given in Lemma 32.3 and of categories in Lemma 31.4 (as in Example 31.3) produce non-
equivalent outputs in general. Namely, let S be the groupoid category with one object and
two arrows, and letX be the discrete category with one object. Taking the 2-fibre product
X ×S X as categories yields the discrete category with two objects. However, if we view
all of these as categories over S , the 2-fiber product X ×S X as categories over S is the
discrete category with one object. The difference is that (in the notation of Lemma 32.3),
we were allowed to choose any comparison isomorphism f in the first situation, but could
only choose the identity arrow in the second situation.

Lemma 32.5. Let C be a category. Let f : X → S and g : Y → S be morphisms of
categories over C. For any object U of C we have the following identity of fibre categories

(X ×S Y)U = XU ×SU YU

Proof. Omitted. �

33. Fibred categories

A very brief discussion of fibred categories is warranted.

Let p : S → C be a category over C. Given an object x ∈ S with p(x) = U , and given
a morphism f : V → U , we can try to take some kind of “fibre product V ×U x” (or a
base change of x via V → U ). Namely, a morphism from an object z ∈ S into “V ×U x”
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should be given by a pair (ϕ, g), where ϕ : z → x, g : p(z)→ V such that p(ϕ) = f ◦ g.
Pictorially:

z

p

��

? //

p

��

x

p

��
p(z) // V

f // U

If such a morphism V ×U x→ x exists then it is called a strongly cartesian morphism.

Definition 33.1. Let C be a category. Let p : S → C be a category over C. A strongly
cartesian morphism, or more precisely a strongly C-cartesian morphism is a morphism
ϕ : y → x of S such that for every z ∈ Ob(S) the map

MorS(z, y) −→ MorS(z, x)×MorC(p(z),p(x)) MorC(p(z), p(y)),
given by ψ 7−→ (ϕ ◦ ψ, p(ψ)) is bijective.

Note that by the Yoneda Lemma 3.5, given x ∈ Ob(S) lying over U ∈ Ob(C) and the
morphism f : V → U of C , if there is a strongly cartesian morphism ϕ : y → x with
p(ϕ) = f , then (y, ϕ) is unique up to unique isomorphism. This is clear from the defini-
tion above, as the functor

z 7−→ MorS(z, x)×MorC(p(z),U) MorC(p(z), V )
only depends on the data (x,U, f : V → U). Hence we will sometimes use V ×U x→ x
or f∗x→ x to denote a strongly cartesian morphism which is a lift of f .

Lemma 33.2. Let C be a category. Let p : S → C be a category over C.
(1) The composition of two strongly cartesian morphisms is strongly cartesian.
(2) Any isomorphism of S is strongly cartesian.
(3) Any strongly cartesian morphism ϕ such that p(ϕ) is an isomorphism, is an iso-

morphism.

Proof. Proof of (1). Let ϕ : y → x and ψ : z → y be strongly cartesian. Let t be an
arbitrary object of S . Then we have

MorS(t, z)
= MorS(t, y)×MorC(p(t),p(y)) MorC(p(t), p(z))
= MorS(t, x)×MorC(p(t),p(x)) MorC(p(t), p(y))×MorC(p(t),p(y)) MorC(p(t), p(z))
= MorS(t, x)×MorC(p(t),p(x)) MorC(p(t), p(z))

hence z → x is strongly cartesian.

Proof of (2). Let y → x be an isomorphism. Then p(y) → p(x) is an isomorphism too.
Hence MorC(p(z), p(y))→ MorC(p(z), p(x)) is a bijection. Hence MorS(z, x)×MorC(p(z),p(x))
MorC(p(z), p(y)) is bijective to MorS(z, x). Hence the displayed map of Definition 33.1 is
a bijection as y → x is an isomorphism, and we conclude that y → x is strongly cartesian.

Proof of (3). Assume ϕ : y → x is strongly cartesian with p(ϕ) : p(y) → p(x) an
isomorphism. Applying the definition with z = x shows that (idx, p(ϕ)−1) comes from
a unique morphism χ : x→ y. We omit the verification that χ is the inverse of ϕ. �

Lemma 33.3. Let F : A → B and G : B → C be composable functors between
categories. Let x→ y be a morphism of A. If x→ y is strongly B-cartesian and F (x)→
F (y) is strongly C-cartesian, then x→ y is strongly C-cartesian.



33. FIBRED CATEGORIES 169

Proof. This follows directly from the definition. �

Lemma 33.4. Let C be a category. Let p : S → C be a category over C. Let x→ y and
z → y be morphisms of S . Assume

(1) x→ y is strongly cartesian,
(2) p(x)×p(y) p(z) exists, and
(3) there exists a strongly cartesian morphism a : w → z in S with p(w) =

p(x)×p(y) p(z) and p(a) = pr2 : p(x)×p(y) p(z)→ p(z).
Then the fibre product x×y z exists and is isomorphic to w.

Proof. Since x→ y is strongly cartesian there exists a unique morphism b : w → x
such that p(b) = pr1. To see that w is the fibre product we compute

MorS(t, w)
= MorS(t, z)×MorC(p(t),p(z)) MorC(p(t), p(w))
= MorS(t, z)×MorC(p(t),p(z)) (MorC(p(t), p(x))×MorC(p(t),p(y)) MorC(p(t), p(z)))
= MorS(t, z)×MorC(p(t),p(y)) MorC(p(t), p(x))
= MorS(t, z)×MorS (t,y) MorS(t, y)×MorC(p(t),p(y)) MorC(p(t), p(x))
= MorS(t, z)×MorS (t,y) MorS(t, x)

as desired. The first equality holds because a : w → z is strongly cartesian and the last
equality holds because x→ y is strongly cartesian. �

Definition 33.5. Let C be a category. Let p : S → C be a category over C. We say
S is a fibred category over C if given any x ∈ Ob(S) lying over U ∈ Ob(C) and any
morphism f : V → U of C , there exists a strongly cartesian morphism f∗x → x lying
over f .

Assume p : S → C is a fibred category. For every f : V → U and x ∈ Ob(SU ) as in
the definition we may choose a strongly cartesian morphism f∗x → x lying over f . By
the axiom of choice we may choose f∗x → x for all f : V → U = p(x) simultaneously.
We claim that for every morphism φ : x → x′ in SU and f : V → U there is a unique
morphism f∗φ : f∗x→ f∗x′ in SV such that

f∗x
f∗φ
//

��

f∗x′

��
x

φ // x′

commutes. Namely, the arrow exists and is unique because f∗x′ → x′ is strongly cartesian.
The uniqueness of this arrow guarantees that f∗ (now also defined on morphisms) is a
functor f∗ : SU → SV .

Definition 33.6. Assume p : S → C is a fibred category.
(1) A choice of pullbacks7 for p : S → C is given by a choice of a strongly cartesian

morphism f∗x → x lying over f for any morphism f : V → U of C and any
x ∈ Ob(SU ).

7This is probably nonstandard terminology. In some texts this is called a “cleavage” but it conjures up the
wrong image. Maybe a “cleaving” would be a better word. A related notion is that of a “splitting”, but in many
texts a “splitting” means a choice of pullbacks such that g∗f∗ = (f ◦g)∗ for any composable pair of morphisms.
Compare also with Definition 36.2.
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(2) Given a choice of pullbacks, for any morphism f : V → U of C the functor
f∗ : SU → SV described above is called a pullback functor (associated to the
choices f∗x→ x made above).

Of course we may always assume our choice of pullbacks has the property that id∗
Ux = x,

although in practice this is a useless property without imposing further assumptions on
the pullbacks.

Lemma 33.7. Assume p : S → C is a fibred category. Assume given a choice of
pullbacks for p : S → C.

(1) For any pair of composable morphisms f : V → U , g : W → V there is a unique
isomorphism

αg,f : (f ◦ g)∗ −→ g∗ ◦ f∗

as functors SU → SW such that for every y ∈ Ob(SU ) the following diagram
commutes

g∗f∗y // f∗y

��
(f ◦ g)∗y //

(αg,f )y

OO

y

(2) If f = idU , then there is a canonical isomorphism αU : id→ (idU )∗ as functors
SU → SU .

(3) The quadruple (U 7→ SU , f 7→ f∗, αg,f , αU ) defines a pseudo functor from Copp
to the (2, 1)-category of categories, see Definition 29.5.

Proof. In fact, it is clear that the commutative diagram of part (1) uniquely deter-
mines the morphism (αg,f )y in the fibre category SW . It is an isomorphism since both the
morphism (f ◦ g)∗y → y and the composition g∗f∗y → f∗y → y are strongly cartesian
morphisms lifting f ◦ g (see discussion following Definition 33.1 and Lemma 33.2). In the
same way, since idx : x → x is clearly strongly cartesian over idU (with U = p(x)) we
see that there exists an isomorphism (αU )x : x → (idU )∗x. (Of course we could have
assumed beforehand that f∗x = x whenever f is an identity morphism, but it is better
for the sake of generality not to assume this.) We omit the verification that αg,f and αU
so obtained are transformations of functors. We also omit the verification of (3). �

Lemma 33.8. Let C be a category. Let S1, S2 be categories over C. Suppose that S1
and S2 are equivalent as categories over C. Then S1 is fibred over C if and only if S2 is
fibred over C.

Proof. Denote pi : Si → C the given functors. Let F : S1 → S2, G : S2 → S1
be functors over C , and let i : F ◦ G → idS2 , j : G ◦ F → idS1 be isomorphisms
of functors over C. We claim that in this case F maps strongly cartesian morphisms to
strongly cartesian morphisms. Namely, suppose that ϕ : y → x is strongly cartesian in
S1. Set f : V → U equal to p1(ϕ). Suppose that z′ ∈ Ob(S2), with W = p2(z′), and we
are given g : W → V and ψ′ : z′ → F (x) such that p2(ψ′) = f ◦ g. Then

ψ = j ◦G(ψ′) : G(z′)→ G(F (x))→ x

is a morphism in S1 with p1(ψ) = f ◦ g. Hence by assumption there exists a unique
morphism ξ : G(z′)→ y lying over g such that ψ = ϕ◦ ξ. This in turn gives a morphism

ξ′ = F (ξ) ◦ i−1 : z′ → F (G(z′))→ F (y)
lying over g with ψ′ = F (ϕ) ◦ ξ′. We omit the verification that ξ′ is unique. �
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The conclusion from Lemma 33.8 is that equivalences map strongly cartesian morphisms
to strongly cartesian morphisms. But this may not be the case for an arbitrary functor
between fibred categories over C. Hence we define the 2-category of fibred categories as
follows.

Definition 33.9. Let C be a category. The 2-category of fibred categories over C is
the sub 2-category of the 2-category of categories over C (see Definition 32.1) defined as
follows:

(1) Its objects will be fibred categories p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that p′ ◦

G = p and such thatGmaps strongly cartesian morphisms to strongly cartesian
morphisms.

(3) Its 2-morphisms t : G → H for G,H : (S, p) → (S ′, p′) will be morphisms of
functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

In this situation we will denote
MorFib/C(S,S ′)

the category of 1-morphisms between (S, p) and (S ′, p′)
Note the condition on 1-morphisms. Note also that this is a true 2-category and not a
(2, 1)-category. Hence when taking 2-fibre products we first pass to the associated (2, 1)-
category.

Lemma 33.10. Let C be a category. The (2, 1)-category of fibred categories over C has
2-fibre products, and they are described as in Lemma 32.3.

Proof. Basically what one has to show here is that givenF : X → S andG : Y → S
morphisms of fibred categories over C , then the categoryX ×S Y described in Lemma 32.3
is fibred. Let us show that X ×S Y has plenty of strongly cartesian morphisms. Namely,
suppose we have (U, x, y, φ) an object ofX ×S Y . And suppose f : V → U is a morphism
in C. Choose strongly cartesian morphisms a : f∗x → x in X lying over f and b :
f∗y → y in Y lying over f . By assumption F (a) and G(b) are strongly cartesian. Since
φ : F (x) → G(y) is an isomorphism, by the uniqueness of strongly cartesian morphisms
we find a unique isomorphism f∗φ : F (f∗x)→ G(f∗y) such thatG(b)◦f∗φ = φ◦F (a).
In other words (a, b) : (V, f∗x, f∗y, f∗φ) → (U, x, y, φ) is a morphism in X ×S Y . We
omit the verification that this is a strongly cartesian morphism (and that these are in fact
the only strongly cartesian morphisms). �

Lemma 33.11. Let C be a category. Let U ∈ Ob(C). If p : S → C is a fibred category
and p factors through p′ : S → C/U then p′ : S → C/U is a fibred category.

Proof. Suppose thatϕ : x′ → x is strongly cartesian with respect to p. We claim that
ϕ is strongly cartesian with respect to p′ also. Set g = p′(ϕ), so that g : V ′/U → V/U for
some morphisms f : V → U and f ′ : V ′ → U . Let z ∈ Ob(S). Set p′(z) = (W → U).
To show that ϕ is strongly cartesian for p′ we have to show

MorS(z, x′) −→ MorS(z, x)×MorC/U (W/U,V/U) MorC/U (W/U, V ′/U),
given by ψ′ 7−→ (ϕ ◦ψ′, p′(ψ′)) is bijective. Suppose given an element (ψ, h) of the right
hand side, then in particular g◦h = p(ψ), and by the condition thatϕ is strongly cartesian
we get a unique morphism ψ′ : z → x′ with ψ = ϕ ◦ ψ′ and p(ψ′) = h. OK, and now
p′(ψ′) : W/U → V/U is a morphism whose corresponding map W → V is h, hence
equal to h as a morphism in C/U . Thus ψ′ is a unique morphism z → x′ which maps to
the given pair (ψ, h). This proves the claim.
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Finally, suppose given g : V ′/U → V/U and x with p′(x) = V/U . Since p : S → C
is a fibred category we see there exists a strongly cartesian morphism ϕ : x′ → x with
p(ϕ) = g. By the same argument as above it follows that p′(ϕ) = g : V ′/U → V/U . And
as seen above the morphismϕ is strongly cartesian. Thus the conditions of Definition 33.5
are satisfied and we win. �

Lemma 33.12. LetA → B → C be functors between categories. IfA is fibred over B
and B is fibred over C , thenA is fibred over C.

Proof. This follows from the definitions and Lemma 33.3. �

Lemma 33.13. Let p : S → C be a fibred category. Let x → y and z → y be
morphisms of S with x → y strongly cartesian. If p(x) ×p(y) p(z) exists, then x ×y z
exists, p(x×y z) = p(x)×p(y) p(z), and x×y z → z is strongly cartesian.

Proof. Pick a strongly cartesian morphism pr∗
2z → z lying over pr2 : p(x) ×p(y)

p(z)→ p(z). Then pr∗
2z = x×y z by Lemma 33.4. �

Lemma 33.14. Let C be a category. Let F : X → Y be a 1-morphism of fibred
categories over C. There exist 1-morphisms of fibred categories over C

X
u // X ′ v //
w
oo Y

such that F = v ◦ u and such that
(1) u : X → X ′ is fully faithful,
(2) w is left adjoint to u, and
(3) v : X ′ → Y is a fibred category.

Proof. Denote p : X → C and q : Y → C the structure functors. We construct
X ′ explicitly as follows. An object of X ′ is a quadruple (U, x, y, f) where x ∈ Ob(XU ),
y ∈ Ob(YU ) and f : y → F (x) is a morphism in YU . A morphism (a, b) : (U, x, y, f)→
(U ′, x′, y′, f ′) is given by a : x → x′ and b : y → y′ with p(a) = q(b) : U → U ′ and
such that f ′ ◦ b = F (a) ◦ f .

Let us make a choice of pullbacks for both p and q and let us use the same notation to
indicate them. Let (U, x, y, f) be an object and leth : V → U be a morphism. Consider the
morphism c : (V, h∗x, h∗y, h∗f)→ (U, x, y, f) coming from the given strongly cartesian
maps h∗x → x and h∗y → y. We claim c is strongly cartesian in X ′ over C. Namely,
suppose we are given an object (W,x′, y′, f ′) of X ′, a morphism (a, b) : (W,x′, y′, f ′)→
(U, x, y, f) lying over W → U , and a factorization W → V → U of W → U through h.
As h∗x→ x and h∗y → y are strongly cartesian we obtain morphisms a′ : x′ → h∗x and
b′ : y′ → h∗y lying over the given morphism W → V . Consider the diagram

y′

f ′

��

// h∗y //

h∗f

��

y

f

��
F (x′) // F (h∗x) // F (x)

The outer rectangle and the right square commute. Since F is a 1-morphism of fibred
categories the morphism F (h∗x) → F (x) is strongly cartesian. Hence the left square
commutes by the universal property of strongly cartesian morphisms. This proves that
X ′ is fibred over C.
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The functor u : X → X ′ is given by x 7→ (p(x), x, F (x), id). This is fully faithful. The
functor X ′ → Y is given by (U, x, y, f) 7→ y. The functor w : X ′ → X is given by
(U, x, y, f) 7→ x. Each of these functors is a 1-morphism of fibred categories over C by
our description of strongly cartesian morphisms of X ′ over C. Adjointness of w and u
means that

MorX (x, x′) = MorX ′((U, x, y, f), (p(x′), x′, F (x′), id)),
which follows immediately from the definitions.

Finally, we have to show that X ′ → Y is a fibred category. Let c : y′ → y be a morphism
in Y and let (U, x, y, f) be an object of X ′ lying over y. Set V = q(y′) and let h = q(c) :
V → U . Let a : h∗x→ x and b : h∗y → y be the strongly cartesian morphisms covering
h. Since F is a 1-morphism of fibred categories we may identify h∗F (x) = F (h∗x) with
strongly cartesian morphism F (a) : F (h∗x) → F (x). By the universal property of
b : h∗y → y there is a morphism c′ : y′ → h∗y in YV such that c = b ◦ c′. We claim that

(a, c) : (V, h∗x, y′, h∗f ◦ c′) −→ (U, x, y, f)
is strongly cartesian in X ′ over Y . To see this let (W,x1, y1, f1) be an object of X ′, let
(a1, b1) : (W,x1, y1, f1) → (U, x, y, f) be a morphism and let b1 = c ◦ b′

1 for some
morphism b′

1 : y1 → y′. Then

(a′
1, b

′
1) : (W,x1, y1, f1) −→ (V, h∗x, y′, h∗f ◦ c′)

(where a′
1 : x1 → h∗x is the unique morphism lying over the given morphism q(b′

1) :
W → V such that a1 = a ◦ a′

1) is the desired morphism. �

34. Inertia

Given fibred categories p : S → C and p′ : S ′ → C over a category C and a 1-morphism
F : S → S ′ we have the diagonal morphism

∆ = ∆S/S′ : S −→ S ×S′ S
in the (2, 1)-category of fibred categories over C.

Lemma 34.1. Let C be a category. Let p : S → C and p′ : S ′ → C be fibred categories.
Let F : S → S ′ be a 1-morphism of fibred categories over C. Consider the category IS/S′

over C whose
(1) objects are pairs (x, α) where x ∈ Ob(S) and α : x → x is an automorphism

with F (α) = id,
(2) morphisms (x, α)→ (y, β) are given by morphisms φ : x→ y such that

x
φ
//

α

��

y

β

��
x

φ // y

commutes, and
(3) the functor IS/S′ → C is given by (x, α) 7→ p(x).

Then
(1) there is an equivalence

IS/S′ −→ S ×∆,(S×S′ S),∆ S
in the (2, 1)-category of categories over C , and
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(2) IS/S′ is a fibred category over C.

Proof. Note that (2) follows from (1) by Lemmas 33.10 and 33.8. Thus it suffices to
prove (1). We will use without further mention the construction of the 2-fibre product
from Lemma 33.10. In particular an object of S ×∆,(S×S′ S),∆ S is a triple (x, y, (ι, κ))
where x and y are objects of S , and (ι, κ) : (x, x, idF (x)) → (y, y, idF (y)) is an iso-
morphism in S ×S′ S . This just means that ι, κ : x → y are isomorphisms and that
F (ι) = F (κ). Consider the functor

IS/S′ −→ S ×∆,(S×S′ S),∆ S
which to an object (x, α) of the left hand side assigns the object (x, x, (α, idx)) of the right
hand side and to a morphism φ of the left hand side assigns the morphism (φ, φ) of the
right hand side. We claim that a quasi-inverse to that morphism is given by the functor

S ×∆,(S×S′ S),∆ S −→ IS/S′

which to an object (x, y, (ι, κ)) of the left hand side assigns the object (x, κ−1 ◦ ι) of the
right hand side and to a morphism (φ, φ′) : (x, y, (ι, κ)) → (z, w, (λ, µ)) of the left
hand side assigns the morphism φ. Indeed, the endo-functor of IS/S′ induced by compos-
ing the two functors above is the identity on the nose, and the endo-functor induced on
S ×∆,(S×S′ S),∆ S is isomorphic to the identity via the natural isomorphism

(idx, κ) : (x, x, (κ−1 ◦ ι, idx)) −→ (x, y, (ι, κ)).
Some details omitted. �

Definition 34.2. Let C be a category.
(1) Let F : S → S ′ be a 1-morphism of fibred categories over C. The relative inertia

of S over S ′ is the fibred category IS/S′ → C of Lemma 34.1.
(2) By the inertia fibred category IS of S we mean IS = IS/C .

Note that there are canonical 1-morphisms
(34.2.1) IS/S′ −→ S and IS −→ S
of fibred categories over C. In terms of the description of Lemma 34.1 these simply map
the object (x, α) to the object x and the morphism φ : (x, α) → (y, β) to the morphism
φ : x→ y. There is also a neutral section
(34.2.2) e : S → IS/S′ and e : S → IS

defined by the rules x 7→ (x, idx) and (φ : x→ y) 7→ φ. This is a right inverse to (34.2.1).
Given a 2-commutative square

S1

F1

��

G
// S2

F2

��
S ′

1
G′
// S ′

2

there are functoriality maps
(34.2.3) IS1/S′

1
−→ IS2/S′

2
and IS1 −→ IS2

defined by the rules (x, α) 7→ (G(x), G(α)) and φ 7→ G(φ). In particular there is always
a comparison map
(34.2.4) IS/S′ −→ IS

and all the maps above are compatible with this.
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Lemma 34.3. Let F : S → S ′ be a 1-morphism of categories fibred over a category
C. Then the diagram

IS/S′

F◦(34.2.1)
��

(34.2.4)
// IS

(34.2.3)
��

S ′ e // IS′

is a 2-fibre product.

Proof. Omitted. �

35. Categories fibred in groupoids

In this section we explain how to think about categories fibred in groupoids and we see
how they are basically the same as functors with values in the (2, 1)-category of groupoids.

Definition 35.1. Let p : S → C be a functor. We say that S is fibred in groupoids
over C if the following two conditions hold:

(1) For every morphism f : V → U in C and every liftx ofU there is a liftφ : y → x
of f with target x.

(2) For every pair of morphisms φ : y → x and ψ : z → x and any morphism
f : p(z)→ p(y) such that p(φ) ◦ f = p(ψ) there exists a unique lift χ : z → y
of f such that φ ◦ χ = ψ.

Condition (2) phrased differently says that applying the functor p gives a bijection be-
tween the sets of dotted arrows in the following commutative diagram below:

y // x p(y) // p(x)

z

OO AA

p(z)

OO <<

Another way to think about the second condition is the following. Suppose that g : W →
V and f : V → U are morphisms in C. Let x ∈ Ob(SU ). By the first condition we can
lift f to φ : y → x and then we can lift g to ψ : z → y. Instead of doing this two step
process we can directly lift g ◦ f to γ : z′ → x. This gives the solid arrows in the diagram

(35.1.1)

z′

��

γ

''
z

OO

ψ //

p

��

y
φ //

p

��

x

p

��
W

g // V
f // U

where the squiggly arrows represent not morphisms but the functor p. Applying the sec-
ond condition to the arrows φ◦ψ, γ and idW we conclude that there is a unique morphism
χ : z → z′ in SW such that γ ◦ χ = φ ◦ ψ. Similarly there is a unique morphism z′ → z.
The uniqueness implies that the morphisms z′ → z and z → z′ are mutually inverse, in
other words isomorphisms.
It should be clear from this discussion that a category fibred in groupoids is very closely
related to a fibred category. Here is the result.
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Lemma 35.2. Let p : S → C be a functor. The following are equivalent
(1) p : S → C is a category fibred in groupoids, and
(2) all fibre categories are groupoids and S is a fibred category over C.

Moreover, in this case every morphism ofS is strongly cartesian. In addition, given f∗x→
x lying over f for all f : V → U = p(x) the data (U 7→ SU , f 7→ f∗, αf,g, αU )
constructed in Lemma 33.7 defines a pseudo functor from Copp in to the (2, 1)-category of
groupoids.

Proof. Assume p : S → C is fibred in groupoids. To show all fibre categories SU
for U ∈ Ob(C) are groupoids, we must exhibit for every f : y → x in SU an inverse
morphism. The diagram on the left (in SU ) is mapped by p to the diagram on the right:

y
f // x U

idU // U

x

OO

idx

@@

U

OO

idU

??

Since only idU makes the diagram on the right commute, there is a unique g : x → y
making the diagram on the left commute, so fg = idx. By a similar argument there is a
unique h : y → x so that gh = idy . Then fgh = f : y → x. We have fg = idx, so
h = f . Condition (2) of Definition 35.1 says exactly that every morphism of S is strongly
cartesian. Hence condition (1) of Definition 35.1 implies that S is a fibred category over
C.

Conversely, assume all fibre categories are groupoids and S is a fibred category over C.
We have to check conditions (1) and (2) of Definition 35.1. The first condition follows
trivially. Let φ : y → x, ψ : z → x and f : p(z) → p(y) such that p(φ) ◦ f = p(ψ) be
as in condition (2) of Definition 35.1. Write U = p(x), V = p(y), W = p(z), p(φ) = g :
V → U , p(ψ) = h : W → U . Choose a strongly cartesian g∗x → x lying over g. Then
we get a morphism i : y → g∗x in SV , which is therefore an isomorphism. We also get a
morphism j : z → g∗x corresponding to the pair (ψ, f) as g∗x→ x is strongly cartesian.
Then one checks that χ = i−1 ◦ j is a solution.

We have seen in the proof of (1) ⇒ (2) that every morphism of S is strongly cartesian.
The final statement follows directly from Lemma 33.7. �

Lemma 35.3. Let C be a category. Let p : S → C be a fibred category. Let S ′ be the
subcategory of S defined as follows

(1) Ob(S ′) = Ob(S), and
(2) for x, y ∈ Ob(S ′) the set of morphisms between x and y in S ′ is the set of

strongly cartesian morphisms between x and y in S .
Let p′ : S ′ → C be the restriction of p to S ′. Then p′ : S ′ → C is fibred in groupoids.

Proof. Note that the construction makes sense since by Lemma 33.2 the identity
morphism of any object of S is strongly cartesian, and the composition of strongly carte-
sian morphisms is strongly cartesian. The first lifting property of Definition 35.1 follows
from the condition that in a fibred category given any morphism f : V → U and x lying
over U there exists a strongly cartesian morphism ϕ : y → x lying over f . Let us check
the second lifting property of Definition 35.1 for the category p′ : S ′ → C over C. To
do this we argue as in the discussion following Definition 35.1. Thus in Diagram 35.1.1
the morphisms φ, ψ and γ are strongly cartesian morphisms of S . Hence γ and φ ◦ ψ are
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strongly cartesian morphisms of S lying over the same arrow of C and having the same
target in S . By the discussion following Definition 33.1 this means these two arrows are
isomorphic as desired (here we use also that any isomorphism in S is strongly cartesian,
by Lemma 33.2 again). �

Example 35.4. A homomorphism of groups p : G → H gives rise to a functor
p : S → C as in Example 2.12. This functor p : S → C is fibred in groupoids if and only if
p is surjective. The fibre category SU over the (unique) object U ∈ Ob(C) is the category
associated to the kernel of p as in Example 2.6.

Given p : S → C , we can ask: if the fibre category SU is a groupoid for all U ∈ Ob(C),
must S be fibred in groupoids over C? We can see the answer is no as follows. Start with a
category fibred in groupoids p : S → C. Altering the morphisms in S which do not map
to the identity morphism on some object does not alter the categories SU . Hence we can
violate the existence and uniqueness conditions on lifts. One example is the functor from
Example 35.4 when G→ H is not surjective. Here is another example.

Example 35.5. Let Ob(C) = {A,B, T} and MorC(A,B) = {f}, MorC(B, T ) =
{g}, MorC(A, T ) = {h} = {gf}, plus the identity morphism for each object. See
the diagram below for a picture of this category. Now let Ob(S) = {A′, B′, T ′} and
MorS(A′, B′) = ∅, MorS(B′, T ′) = {g′}, MorS(A′, T ′) = {h′}, plus the identity mor-
phisms. The functor p : S → C is obvious. Then for everyU ∈ Ob(C), SU is the category
with one object and the identity morphism on that object, so a groupoid, but the mor-
phism f : A → B cannot be lifted. Similarly, if we declare MorS(A′, B′) = {f ′

1, f
′
2}

and MorS(A′, T ′) = {h′} = {g′f ′
1} = {g′f ′

2}, then the fibre categories are the same and
f : A→ B in the diagram below has two lifts.

B′ g′
// T ′ B

g // T

A′

??

OO

h′

>>

above

A

f

OO

gf=h

??

Later we would like to make assertions such as “any category fibred in groupoids over C is
equivalent to a split one”, or “any category fibred in groupoids whose fibre categories are
setlike is equivalent to a category fibred in sets”. The notion of equivalence depends on
the 2-category we are working with.

Definition 35.6. Let C be a category. The 2-category of categories fibred in groupoids
over C is the sub 2-category of the 2-category of fibred categories over C (see Definition
33.9) defined as follows:

(1) Its objects will be categories p : S → C fibred in groupoids.
(2) Its 1-morphisms (S, p)→ (S ′, p′) will be functorsG : S → S ′ such that p′◦G =

p (since every morphism is strongly cartesian G automatically preserves them).
(3) Its 2-morphisms t : G → H for G,H : (S, p) → (S ′, p′) will be morphisms of

functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that every 2-morphism is automatically an isomorphism! Hence this is actually a
(2, 1)-category and not just a 2-category. Here is the obligatory lemma on 2-fibre products.

Lemma 35.7. Let C be a category. The 2-category of categories fibred in groupoids
over C has 2-fibre products, and they are described as in Lemma 32.3.
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Proof. By Lemma 33.10 the fibre product as described in Lemma 32.3 is a fibred cat-
egory. Hence it suffices to prove that the fibre categories are groupoids, see Lemma 35.2.
By Lemma 32.5 it is enough to show that the 2-fibre product of groupoids is a groupoid,
which is clear (from the construction in Lemma 31.4 for example). �

Remark 35.8. Let C be a category. Let f : X → S and g : Y → S be 1-morphisms
of categories fibred in groupoids over C. Let p : S → C be the given functor. We claim
the 2-fibre product of Lemma 35.7 is canonically equivalent (as a category) to the one
in Example 31.3. Objects of the former are quadruples (U, x, y, α) where p(α) = idU
(see Lemma 32.3) and objects of the latter are triples (x, y, α) (see Example 31.3). The
equivalence between the two categories is given by the rules (U, x, y, α) 7→ (x, y, α) and
(x, y, α) 7→ (p(f(x)), x, y′, α′) where α′ = g(γ)−1 ◦ α and γ : y′ → y is a lift of the
arrow p(α) : p(f(x))→ p(g(y)). Details omitted.

Lemma 35.9. Let p : S → C and p′ : S ′ → C be categories fibred in groupoids, and
suppose that G : S → S ′ is a functor over C.

(1) Then G is faithful (resp. fully faithful, resp. an equivalence) if and only if for
each U ∈ Ob(C) the induced functor GU : SU → S ′

U is faithful (resp. fully
faithful, resp. an equivalence).

(2) If G is an equivalence, then G is an equivalence in the 2-category of categories
fibred in groupoids over C.

Proof. Let x, y be objects of S lying over the same object U . Consider the commu-
tative diagram

MorS(x, y)

p
''

G
// MorS′(G(x), G(y))

p′
vv

MorC(U,U)

From this diagram it is clear that if G is faithful (resp. fully faithful) then so is each GU .
Suppose G is an equivalence. For every object x′ of S ′ there exists an object x of S such
thatG(x) is isomorphic to x′. Suppose that x′ lies overU ′ and x lies overU . Then there is
an isomorphism f : U ′ → U in C , namely, p′ applied to the isomorphism x′ → G(x). By
the axioms of a category fibred in groupoids there exists an arrow f∗x→ x ofS lying over
f . Hence there exists an isomorphism α : x′ → G(f∗x) such that p′(α) = idU ′ (this time
by the axioms for S ′). All in all we conclude that for every object x′ of S ′ we can choose
a pair (ox′ , αx′) consisting of an object ox′ of S and an isomorphism αx′ : x′ → G(ox′)
with p′(αx′) = idp′(x′). From this point on we proceed as usual (see proof of Lemma 2.19)
to produce an inverse functor F : S ′ → S , by taking x′ 7→ ox′ and ϕ′ : x′ → y′ to the
unique arrow ϕϕ′ : ox′ → oy′ with α−1

y′ ◦G(ϕϕ′) ◦ αx′ = ϕ′. With these choices F is a
functor over C. We omit the verification that G ◦ F and F ◦ G are 2-isomorphic to the
respective identity functors (in the 2-category of categories fibred in groupoids over C).
Suppose that GU is faithful (resp. fully faithful) for all U ∈ Ob(C). To show that G
is faithful (resp. fully faithful) we have to show for any objects x, y ∈ Ob(S) that G
induces an injection (resp. bijection) between MorS(x, y) and MorS′(G(x), G(y)). Set
U = p(x) and V = p(y). It suffices to prove that G induces an injection (resp. bijection)
between morphism x → y lying over f to morphisms G(x) → G(y) lying over f for
any morphism f : U → V . Now fix f : U → V . Denote f∗y → y a pullback. Then
also G(f∗y) → G(y) is a pullback. The set of morphisms from x to y lying over f is
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bijective to the set of morphisms between x and f∗y lying over idU . (By the second axiom
of a category fibred in groupoids.) Similarly the set of morphisms from G(x) to G(y)
lying over f is bijective to the set of morphisms between G(x) and G(f∗y) lying over
idU . Hence the fact that GU is faithful (resp. fully faithful) gives the desired result.

Finally suppose for allGU is an equivalence for all U , so it is fully faithful and essentially
surjective. We have seen this implies G is fully faithful, and thus to prove it is an equiv-
alence we have to prove that it is essentially surjective. This is clear, for if z′ ∈ Ob(S ′)
then z′ ∈ Ob(S ′

U ) whereU = p′(z′). SinceGU is essentially surjective we know that z′ is
isomorphic, in S ′

U , to an object of the form GU (z) for some z ∈ Ob(SU ). But morphisms
in S ′

U are morphisms in S ′ and hence z′ is isomorphic to G(z) in S ′. �

Lemma 35.10. Let C be a category. Let p : S → C and p′ : S ′ → C be categories
fibred in groupoids. Let G : S → S ′ be a functor over C. Then G is fully faithful if and
only if the diagonal

∆G : S −→ S ×G,S′,G S
is an equivalence.

Proof. By Lemma 35.9 it suffices to look at fibre categories over an objectU of C. An
object of the right hand side is a triple (x, x′, α) where α : G(x)→ G(x′) is a morphism
in S ′

U . The functor ∆G maps the object x of SU to the triple (x, x, idG(x)). Note that
(x, x′, α) is in the essential image of ∆G if and only if α = G(β) for some morphism
β : x → x′ in SU (details omitted). Hence in order for ∆G to be an equivalence, every
α has to be the image of a morphism β : x → x′, and also every two distinct morphisms
β, β′ : x→ x′ have to give distinct morphisms G(β), G(β′). This proves the lemma. �

Lemma 35.11. Let C be a category. Let Si, i = 1, 2, 3, 4 be categories fibred in
groupoids over C. Suppose that ϕ : S1 → S2 and ψ : S3 → S4 are equivalences over
C. Then

MorCat/C(S2,S3) −→ MorCat/C(S1,S4), α 7−→ ψ ◦ α ◦ ϕ
is an equivalence of categories.

Proof. This is a generality and holds in any 2-category. �

Lemma 35.12. Let C be a category. If p : S → C is fibred in groupoids, then so is the
inertia fibred category IS → C.

Proof. Clear from the construction in Lemma 34.1 or by using (from the same lemma)
that IS → S ×∆,S×CS,∆ S is an equivalence and appealing to Lemma 35.7. �

Lemma 35.13. Let C be a category. Let U ∈ Ob(C). If p : S → C is a category
fibred in groupoids and p factors through p′ : S → C/U then p′ : S → C/U is fibred in
groupoids.

Proof. We have already seen in Lemma 33.11 that p′ is a fibred category. Hence it
suffices to prove the fibre categories are groupoids, see Lemma 35.2. For V ∈ Ob(C) we
have

SV =
∐

f :V→U
S(f :V→U)

where the left hand side is the fibre category of p and the right hand side is the disjoint
union of the fibre categories of p′. Hence the result. �
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Lemma 35.14. Let A → B → C be functors between categories. If A is fibred in
groupoids over B and B is fibred in groupoids over C , then A is fibred in groupoids over
C.

Proof. One can prove this directly from the definition. However, we will argue
using the criterion of Lemma 35.2. By Lemma 33.12 we see that A is fibred over C. To
finish the proof we show that the fibre category AU is a groupoid for U in C. Namely, if
x → y is a morphism of AU , then its image in B is an isomorphism as BU is a groupoid.
But then x → y is an isomorphism, for example by Lemma 33.2 and the fact that every
morphism ofA is strongly B-cartesian (see Lemma 35.2). �

Lemma 35.15. Let p : S → C be a category fibred in groupoids. Let x → y and
z → y be morphisms of S . If p(x)×p(y) p(z) exists, then x×y z exists and p(x×y z) =
p(x)×p(y) p(z).

Proof. Follows from Lemma 33.13. �

Lemma 35.16. Let C be a category. Let F : X → Y be a 1-morphism of categories
fibred in groupoids over C. There exists a factorization X → X ′ → Y by 1-morphisms of
categories fibred in groupoids over C such thatX → X ′ is an equivalence over C and such
that X ′ is a category fibred in groupoids over Y .

Proof. Denote p : X → C and q : Y → C the structure functors. We construct X ′

explicitly as follows. An object of X ′ is a quadruple (U, x, y, f) where x ∈ Ob(XU ), y ∈
Ob(YU ) and f : F (x)→ y is an isomorphism in YU . A morphism (a, b) : (U, x, y, f)→
(U ′, x′, y′, f ′) is given by a : x → x′ and b : y → y′ with p(a) = q(b) and such that
f ′ ◦ F (a) = b ◦ f . In other words X ′ = X ×F,Y,id Y with the construction of the 2-fibre
product from Lemma 32.3. By Lemma 35.7 we see thatX ′ is a category fibred in groupoids
over C and that X ′ → Y is a morphism of categories over C. As functor X → X ′ we take
x 7→ (p(x), x, F (x), idF (x)) on objects and (a : x → x′) 7→ (a, F (a)) on morphisms.
It is clear that the composition X → X ′ → Y equals F . We omit the verification that
X → X ′ is an equivalence of fibred categories over C.

Finally, we have to show that X ′ → Y is a category fibred in groupoids. Let b : y′ → y be
a morphism in Y and let (U, x, y, f) be an object ofX ′ lying over y. BecauseX is fibred in
groupoids over C we can find a morphism a : x′ → x lying over U ′ = q(y′)→ q(y) = U .
Since Y is fibred in groupoids over C and since both F (x′) → F (x) and y′ → y lie over
the same morphism U ′ → U we can find f ′ : F (x′) → y′ lying over idU ′ such that
f ◦F (a) = b◦f ′. Hence we obtain (a, b) : (U ′, x′, y′, f ′)→ (U, x, y, f). This verifies the
first condition (1) of Definition 35.1. To see (2) let (a, b) : (U ′, x′, y′, f ′) → (U, x, y, f)
and (a′, b′) : (U ′′, x′′, y′′, f ′′)→ (U, x, y, f) be morphisms ofX ′ and let b′′ : y′ → y′′ be a
morphism ofY such that b′◦b′′ = b. We have to show that there exists a unique morphism
a′′ : x′ → x′′ such that f ′′ ◦ F (a′′) = b′′ ◦ f ′ and such that (a′, b′) ◦ (a′′, b′′) = (a, b).
Because X is fibred in groupoids we know there exists a unique morphism a′′ : x′ → x′′

such that a′ ◦ a′′ = a and p(a′′) = q(b′′). Because Y is fibred in groupoids we see that
F (a′′) is the unique morphism F (x′) → F (x′′) such that F (a′) ◦ F (a′′) = F (a) and
q(F (a′′)) = q(b′′). The relation f ′′ ◦ F (a′′) = b′′ ◦ f ′ follows from this and the given
relations f ◦ F (a) = b ◦ f ′ and f ◦ F (a′) = b′ ◦ f ′′. �
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Lemma 35.17. Let C be a category. Let F : X → Y be a 1-morphism of categories
fibred in groupoids over C. Assume we have a 2-commutative diagram

X ′

f   

X
a
oo

F

��

b
// X ′′

g
~~

Y

where a and b are equivalences of categories over C and f and g are categories fibred in
groupoids. Then there exists an equivalence h : X ′′ → X ′ of categories over Y such
that h ◦ b is 2-isomorphic to a as 1-morphisms of categories over C. If the diagram above
actually commutes, then we can arrange it so that h◦b is 2-isomorphic to a as 1-morphisms
of categories over Y .

Proof. We will show that both X ′ and X ′′ over Y are equivalent to the category
fibred in groupoidsX ×F,Y,idY over Y , see proof of Lemma 35.16. Choose a quasi-inverse
b−1 : X ′′ → X in the 2-category of categories over C. Since the right triangle of the
diagram is 2-commutative we see that

X

F

��

X ′′
b−1
oo

g

��
Y Yoo

is 2-commutative. Hence we obtain a 1-morphism c : X ′′ → X ×F,Y,idY by the universal
property of the 2-fibre product. Moreover c is a morphism of categories over Y (!) and an
equivalence (by the assumption that b is an equivalence, see Lemma 31.7). Hence c is an
equivalence in the 2-category of categories fibred in groupoids over Y by Lemma 35.9.

We still have to construct a 2-isomorphism between c ◦ b and the functor d : X →
X ×F,Y,id Y , x 7→ (p(x), x, F (x), idF (x)) constructed in the proof of Lemma 35.16. Let
α : F → g ◦b and β : b−1 ◦b→ id be 2-isomorphisms between 1-morphisms of categories
over C. Note that c ◦ b is given by the rule

x 7→ (p(x), b−1(b(x)), g(b(x)), αx ◦ F (βx))

on objects. Then we see that

(βx, αx) : (p(x), x, F (x), idF (x)) −→ (p(x), b−1(b(x)), g(b(x)), αx ◦ F (βx))

is a functorial isomorphism which gives our 2-morphism d→ b◦c. Finally, if the diagram
commutes thenαx is the identity for allx and we see that this 2-morphism is a 2-morphism
in the 2-category of categories over Y . �

36. Presheaves of categories

In this section we compare the notion of fibred categories with the closely related notion
of a “presheaf of categories”. The basic construction is explained in the following example.

Example 36.1. Let C be a category. Suppose that F : Copp → Cat is a functor to the
2-category of categories, see Definition 29.5. For f : V → U in C we will suggestively
write F (f) = f∗ for the functor from F (U) to F (V ). From this we can construct a fibred
category SF over C as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}.
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For (U, x), (V, y) ∈ Ob(SF ) we define
MorSF ((V, y), (U, x)) = {(f, φ) | f ∈ MorC(V,U), φ ∈ MorF (V )(y, f∗x)}

=
∐

f∈MorC(V,U)
MorF (V )(y, f∗x)

In order to define composition we use that g∗ ◦ f∗ = (f ◦ g)∗ for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define the
composition of ψ : z → g∗y and φ : y → f∗x to be g∗(φ) ◦ ψ. The functor pF : SF → C
is given by the rule (U, x) 7→ U . Let us check that this is indeed a fibred category. Given
f : V → U in C and (U, x) a lift of U , then we claim (f, idf∗x) : (V, f∗x) → (U, x) is
a strongly cartesian lift of f . We have to show a h in the diagram on the left determines
(h, ν) on the right:

V
f // U (V, f∗x)

(f,idf∗x)// (U, x)

W

h

OO

g

??

(W, z)

(h,ν)

OO

(g,ψ)

::

Just take ν = ψ which works because f ◦ h = g and hence g∗x = h∗f∗x. Moreover, this
is the only lift making the diagram (on the right) commute.

Definition 36.2. Let C be a category. Suppose that F : Copp → Cat is a functor
to the 2-category of categories. We will write pF : SF → C for the fibred category
constructed in Example 36.1. A split fibred category is a fibred category isomorphic (!)
over C to one of these categories SF .

Lemma 36.3. Let C be a category. Let S be a fibred category over C. Then S is split if
and only if for some choice of pullbacks (see Definition 33.6) the pullback functors (f ◦g)∗

and g∗ ◦ f∗ are equal.

Proof. This is immediate from the definitions. �

Lemma 36.4. Let p : S → C be a fibred category. There exists a contravariant functor
F : C → Cat such that S is equivalent to SF in the 2-category of fibred categories over C.
In other words, every fibred category is equivalent to a split one.

Proof. Let us make a choice of pullbacks (see Definition 33.6). By Lemma 33.7 we
get pullback functors f∗ for every morphism f of C.
We construct a new category S ′ as follows. The objects of S ′ are pairs (x, f) consisting
of a morphism f : V → U of C and an object x of S over U , i.e., x ∈ Ob(SU ). The
functor p′ : S ′ → C will map the pair (x, f) to the source of the morphism f , in other
words p′(x, f : V → U) = V . A morphism ϕ : (x1, f1 : V1 → U1) → (x2, f2 : V2 →
U2) is given by a pair (ϕ, g) consisting of a morphism g : V1 → V2 and a morphism
ϕ : f∗

1x1 → f∗
2x2 with p(ϕ) = g. It is no problem to define the composition law:

(ϕ, g) ◦ (ψ, h) = (ϕ ◦ ψ, g ◦ h) for any pair of composable morphisms. There is a natural
functor S → S ′ which simply maps x over U to the pair (x, idU ).
At this point we need to check that p′ makes S ′ into a fibred category over C , and we need
to check that S → S ′ is an equivalence of categories over C which maps strongly cartesian
morphisms to strongly cartesian morphisms. We omit the verifications.
Finally, we can define pullback functors on S ′ by setting g∗(x, f) = (x, f ◦ g) on objects
if g : V ′ → V and f : V → U . On morphisms (ϕ, idV ) : (x1, f1) → (x2, f2) between
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morphisms inS ′
V we set g∗(ϕ, idV ) = (g∗ϕ, idV ′) where we use the unique identifications

g∗f∗
i xi = (fi ◦g)∗xi from Lemma 33.7 to think of g∗ϕ as a morphism from (f1 ◦g)∗x1 to

(f2◦g)∗x2. Clearly, these pullback functors g∗ have the property that g∗
1 ◦g∗

2 = (g2◦g1)∗,
in other words S ′ is split as desired. �

37. Presheaves of groupoids

In this section we compare the notion of categories fibred in groupoids with the closely
related notion of a “presheaf of groupoids”. The basic construction is explained in the
following example.

Example 37.1. This example is the analogue of Example 36.1, for “presheaves of
groupoids” instead of “presheaves of categories”. The output will be a category fibred in
groupoids instead of a fibred category. Suppose thatF : Copp → Groupoids is a functor to
the category of groupoids, see Definition 29.5. For f : V → U in C we will suggestively
write F (f) = f∗ for the functor from F (U) to F (V ). We construct a category SF fibred
in groupoids over C as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}.

For (U, x), (V, y) ∈ Ob(SF ) we define

MorSF ((V, y), (U, x)) = {(f, φ) | f ∈ MorC(V,U), φ ∈ MorF (V )(y, f∗x)}

=
∐

f∈MorC(V,U)
MorF (V )(y, f∗x)

In order to define composition we use that g∗ ◦ f∗ = (f ◦ g)∗ for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define the
composition of ψ : z → g∗y and φ : y → f∗x to be g∗(φ) ◦ ψ. The functor pF : SF → C
is given by the rule (U, x) 7→ U . The condition that F (U) is a groupoid for every U
guarantees that SF is fibred in groupoids over C , as we have already seen in Example 36.1
that SF is a fibred category, see Lemma 35.2. But we can also prove conditions (1), (2) of
Definition 35.1 directly as follows: (1) Lifts of morphisms exist since given f : V → U in
C and (U, x) an object of SF over U , then (f, idf∗x) : (V, f∗x)→ (U, x) is a lift of f . (2)
Suppose given solid diagrams as follows

V
f // U (V, y)

(f,φ) // (U, x)

W

h

OO

g

??

(W, z)

(h,ν)

OO

(g,ψ)

;;

Then for the dotted arrows we have ν = (h∗φ)−1 ◦ ψ so given h there exists a ν which is
unique by uniqueness of inverses.

Definition 37.2. Let C be a category. Suppose that F : Copp → Groupoids is a
functor to the 2-category of groupoids. We will write pF : SF → C for the category
fibred in groupoids constructed in Example 37.1. A split category fibred in groupoids is a
category fibred in groupoids isomorphic (!) over C to one of these categories SF .

Lemma 37.3. Let p : S → C be a category fibred in groupoids. There exists a con-
travariant functor F : C → Groupoids such that S is equivalent to SF over C. In other
words, every category fibred in groupoids is equivalent to a split one.
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Proof. Make a choice of pullbacks (see Definition 33.6). By Lemmas 33.7 and 35.2
we get pullback functors f∗ for every morphism f of C.

We construct a new category S ′ as follows. The objects of S ′ are pairs (x, f) consisting
of a morphism f : V → U of C and an object x of S over U , i.e., x ∈ Ob(SU ). The
functor p′ : S ′ → C will map the pair (x, f) to the source of the morphism f , in other
words p′(x, f : V → U) = V . A morphism ϕ : (x1, f1 : V1 → U1) → (x2, f2 : V2 →
U2) is given by a pair (ϕ, g) consisting of a morphism g : V1 → V2 and a morphism
ϕ : f∗

1x1 → f∗
2x2 with p(ϕ) = g. It is no problem to define the composition law:

(ϕ, g) ◦ (ψ, h) = (ϕ ◦ ψ, g ◦ h) for any pair of composable morphisms. There is a natural
functor S → S ′ which simply maps x over U to the pair (x, idU ).

At this point we need to check that p′ makes S ′ into a category fibred in groupoids over
C , and we need to check that S → S ′ is an equivalence of categories over C. We omit the
verifications.

Finally, we can define pullback functors on S ′ by setting g∗(x, f) = (x, f ◦ g) on objects
if g : V ′ → V and f : V → U . On morphisms (ϕ, idV ) : (x1, f1) → (x2, f2) between
morphisms inS ′

V we set g∗(ϕ, idV ) = (g∗ϕ, idV ′) where we use the unique identifications
g∗f∗

i xi = (fi ◦g)∗xi from Lemma 35.2 to think of g∗ϕ as a morphism from (f1 ◦g)∗x1 to
(f2◦g)∗x2. Clearly, these pullback functors g∗ have the property that g∗

1 ◦g∗
2 = (g2◦g1)∗,

in other words S ′ is split as desired. �

We will see an alternative proof of this lemma in Section 42.

38. Categories fibred in sets

Definition 38.1. A category is called discrete if the only morphisms are the identity
morphisms.

A discrete category has only one interesting piece of information: its set of objects. Thus
we sometime confuse discrete categories with sets.

Definition 38.2. Let C be a category. A category fibred in sets, or a category fibred
in discrete categories is a category fibred in groupoids all of whose fibre categories are
discrete.

We want to clarify the relationship between categories fibred in sets and presheaves (see
Definition 3.3). To do this it makes sense to first make the following definition.

Definition 38.3. Let C be a category. The 2-category of categories fibred in sets
over C is the sub 2-category of the category of categories fibred in groupoids over C (see
Definition 35.6) defined as follows:

(1) Its objects will be categories p : S → C fibred in sets.
(2) Its 1-morphisms (S, p)→ (S ′, p′) will be functorsG : S → S ′ such that p′◦G =

p (since every morphism is strongly cartesian G automatically preserves them).
(3) Its 2-morphisms t : G → H for G,H : (S, p) → (S ′, p′) will be morphisms of

functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category is
actually a (2, 1)-category. Here is the obligatory lemma on the existence of 2-fibre prod-
ucts.
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Lemma 38.4. Let C be a category. The 2-category of categories fibred in sets over C
has 2-fibre products. More precisely, the 2-fibre product described in Lemma 32.3 returns
a category fibred in sets if one starts out with such.

Proof. Omitted. �

Example 38.5. This example is the analogue of Examples 36.1 and 37.1 for presheaves
instead of “presheaves of categories”. The output will be a category fibred in sets instead
of a fibred category. Suppose that F : Copp → Sets is a presheaf. For f : V → U in C we
will suggestively write F (f) = f∗ : F (U) → F (V ). We construct a category SF fibred
in sets over C as follows. Define

Ob(SF ) = {(U, x) | U ∈ Ob(C), x ∈ Ob(F (U))}.
For (U, x), (V, y) ∈ Ob(SF ) we define

MorSF ((V, y), (U, x)) = {f ∈ MorC(V,U) | f∗x = y}

Composition is inherited from composition in C which works as g∗ ◦ f∗ = (f ◦ g)∗ for
a pair of composable morphisms of C. The functor pF : SF → C is given by the rule
(U, x) 7→ U . As every fibre category SF,U is discrete with underlying set F (U) and we
have already see in Example 37.1 that SF is a category fibred in groupoids, we conclude
that SF is fibred in sets.

Lemma 38.6. Let C be a category. The only 2-morphisms between categories fibred in
sets are identities. In other words, the 2-category of categories fibred in sets is a category.
Moreover, there is an equivalence of categories{

the category of presheaves
of sets over C

}
↔
{

the category of categories
fibred in sets over C

}
The functor from left to right is the construction F → SF discussed in Example 38.5.
The functor from right to left assigns to p : S → C the presheaf of objects U 7→ Ob(SU ).

Proof. The first assertion is clear, as the only morphisms in the fibre categories are
identities.

Suppose that p : S → C is fibred in sets. Let f : V → U be a morphism in C and
let x ∈ Ob(SU ). Then there is exactly one choice for the object f∗x. Thus we see that
(f ◦ g)∗x = g∗(f∗x) for f, g as in Lemma 35.2. It follows that we may think of the
assignments U 7→ Ob(SU ) and f 7→ f∗ as a presheaf on C. �

Here is an important example of a category fibred in sets.

Example 38.7. Let C be a category. Let X ∈ Ob(C). Consider the representable
presheaf hX = MorC(−, X) (see Example 3.4). On the other hand, consider the category
p : C/X → C from Example 2.13. The fibre category (C/X)U has as objects morphisms h :
U → X , and only identities as morphisms. Hence we see that under the correspondence
of Lemma 38.6 we have

hX ←→ C/X.
In other words, the category C/X is canonically equivalent to the category ShX associated
to hX in Example 38.5.

For this reason it is tempting to define a “representable” object in the 2-category of cate-
gories fibred in groupoids to be a category fibred in sets whose associated presheaf is rep-
resentable. However, this is would not be a good definition for use since we prefer to have



186 4. CATEGORIES

a notion which is invariant under equivalences. To make this precise we study exactly
which categories fibred in groupoids are equivalent to categories fibred in sets.

39. Categories fibred in setoids

Definition 39.1. Let us call a category a setoid8 if it is a groupoid where every object
has exactly one automorphism: the identity.

If C is a set with an equivalence relation ∼, then we can make a setoid C as follows:
Ob(C) = C and MorC(x, y) = ∅ unless x ∼ y in which case we set MorC(x, y) = {1}.
Transitivity of∼means that we can compose morphisms. Conversely any setoid category
defines an equivalence relation on its objects (isomorphism) such that you recover the cat-
egory (up to unique isomorphism – not equivalence) from the procedure just described.

Discrete categories are setoids. For any setoid C there is a canonical procedure to make a
discrete category equivalent to it, namely one replaces Ob(C) by the set of isomorphism
classes (and adds identity morphisms). In terms of sets endowed with an equivalence rela-
tion this corresponds to taking the quotient by the equivalence relation.

Definition 39.2. Let C be a category. A category fibred in setoids is a category fibred
in groupoids all of whose fibre categories are setoids.

Below we will clarify the relationship between categories fibred in setoids and categories
fibred in sets.

Definition 39.3. Let C be a category. The 2-category of categories fibred in setoids
over C is the sub 2-category of the category of categories fibred in groupoids over C (see
Definition 35.6) defined as follows:

(1) Its objects will be categories p : S → C fibred in setoids.
(2) Its 1-morphisms (S, p)→ (S ′, p′) will be functorsG : S → S ′ such that p′◦G =

p (since every morphism is strongly cartesian G automatically preserves them).
(3) Its 2-morphisms t : G → H for G,H : (S, p) → (S ′, p′) will be morphisms of

functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category is
actually a (2, 1)-category.
Here is the obligatory lemma on the existence of 2-fibre products.

Lemma 39.4. Let C be a category. The 2-category of categories fibred in setoids over C
has 2-fibre products. More precisely, the 2-fibre product described in Lemma 32.3 returns
a category fibred in setoids if one starts out with such.

Proof. Omitted. �

Lemma 39.5. Let C be a category. Let S be a category over C.
(1) If S → S ′ is an equivalence over C with S ′ fibred in sets over C , then

(a) S is fibred in setoids over C , and
(b) for each U ∈ Ob(C) the map Ob(SU ) → Ob(S ′

U ) identifies the target as
the set of isomorphism classes of the source.

(2) If p : S → C is a category fibred in setoids, then there exists a category fibred in
sets p′ : S ′ → C and an equivalence can : S → S ′ over C.

8A set on steroids!?
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Proof. Let us prove (2). An object of the category S ′ will be a pair (U, ξ), where
U ∈ Ob(C) and ξ is an isomorphism class of objects of SU . A morphism (U, ξ)→ (V, ψ)
is given by a morphism x→ y, where x ∈ ξ and y ∈ ψ. Here we identify two morphisms
x → y and x′ → y′ if they induce the same morphism U → V , and if for some choices
of isomorphisms x → x′ in SU and y → y′ in SV the compositions x → x′ → y′ and
x → y → y′ agree. By construction there are surjective maps on objects and morphisms
from S → S ′. We define composition of morphisms in S ′ to be the unique law that turns
S → S ′ into a functor. Some details omitted. �

Thus categories fibred in setoids are exactly the categories fibred in groupoids which are
equivalent to categories fibred in sets. Moreover, an equivalence of categories fibred in sets
is an isomorphism by Lemma 38.6.

Lemma 39.6. Let C be a category. The construction of Lemma 39.5 part (2) gives a
functor

F :
{

the 2-category of categories
fibred in setoids over C

}
−→

{
the category of categories

fibred in sets over C

}
(see Definition 29.5). This functor is an equivalence in the following sense:

(1) for any two 1-morphisms f, g : S1 → S2 with F (f) = F (g) there exists a
unique 2-isomorphism f → g,

(2) for any morphism h : F (S1) → F (S2) there exists a 1-morphism f : S1 → S2
with F (f) = h, and

(3) any category fibred in sets S is equal to F (S).
In particular, defining Fi ∈ PSh(C) by the rule Fi(U) = Ob(Si,U )/ ∼=, we have

MorCat/C(S1,S2)
/

2-isomorphism = MorPSh(C)(F1, F2)

More precisely, given any map φ : F1 → F2 there exists a 1-morphism f : S1 → S2
which induces φ on isomorphism classes of objects and which is unique up to unique 2-
isomorphism.

Proof. By Lemma 38.6 the target of F is a category hence the assertion makes sense.
The construction of Lemma 39.5 part (2) assigns to S the category fibred in sets whose
value over U is the set of isomorphism classes in SU . Hence it is clear that it defines a
functor as indicated. Let f, g : S1 → S2 with F (f) = F (g) be as in (1). For each
object U of C and each object x of S1,U we see that f(x) ∼= g(x) by assumption. As S2
is fibred in setoids there exists a unique isomorphism tx : f(x) → g(x) in S2,U . Clearly
the rule x 7→ tx gives the desired 2-isomorphism f → g. We omit the proofs of (2) and
(3). To see the final assertion use Lemma 38.6 to see that the right hand side is equal to
MorCat/C(F (S1), F (S2)) and apply (1) and (2) above. �

Here is another characterization of categories fibred in setoids among all categories fibred
in groupoids.

Lemma 39.7. Let C be a category. Let p : S → C be a category fibred in groupoids.
The following are equivalent:

(1) p : S → C is a category fibred in setoids, and
(2) the canonical 1-morphism IS → S , see (34.2.1), is an equivalence (of categories

over C).
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Proof. Assume (2). The category IS has objects (x, α) where x ∈ S , say with p(x) =
U , and α : x → x is a morphism in SU . Hence if IS → S is an equivalence over C
then every pair of objects (x, α), (x, α′) are isomorphic in the fibre category of IS over
U . Looking at the definition of morphisms in IS we conclude that α, α′ are conjugate
in the group of automorphisms of x. Hence taking α′ = idx we conclude that every
automorphism of x is equal to the identity. Since S → C is fibred in groupoids this
implies that S → C is fibred in setoids. We omit the proof of (1)⇒ (2). �

Lemma 39.8. Let C be a category. The construction of Lemma 39.6 which associates
to a category fibred in setoids a presheaf is compatible with products, in the sense that
the presheaf associated to a 2-fibre product X ×Y Z is the fibre product of the presheaves
associated to X ,Y,Z .

Proof. Let U ∈ Ob(C). The lemma just says that

Ob((X ×Y Z)U )/∼= equals Ob(XU )/∼= ×Ob(YU )/∼= Ob(ZU )/∼=

the proof of which we omit. (But note that this would not be true in general if the category
YU is not a setoid.) �

40. Representable categories fibred in groupoids

Here is our definition of a representable category fibred in groupoids. As promised this is
invariant under equivalences.

Definition 40.1. Let C be a category. A category fibred in groupoids p : S → C is
called representable if there exist an object X of C and an equivalence j : S → C/X (in
the 2-category of groupoids over C).

The usual abuse of notation is to say thatX represents S and not mention the equivalence
j. We spell out what this entails.

Lemma 40.2. Let C be a category. Let p : S → C be a category fibred in groupoids.
(1) S is representable if and only if the following conditions are satisfied:

(a) S is fibred in setoids, and
(b) the presheaf U 7→ Ob(SU )/ ∼= is representable.

(2) If S is representable the pair (X, j), where j is the equivalence j : S → C/X , is
uniquely determined up to isomorphism.

Proof. The first assertion follows immediately from Lemma 39.5. For the second,
suppose that j′ : S → C/X ′ is a second such pair. Choose a 1-morphism t′ : C/X ′ →
S such that j′ ◦ t′ ∼= idC/X′ and t′ ◦ j′ ∼= idS . Then j ◦ t′ : C/X ′ → C/X is an
equivalence. Hence it is an isomorphism, see Lemma 38.6. Hence by the Yoneda Lemma
3.5 (via Example 38.7 for example) it is given by an isomorphism X ′ → X . �

Lemma 40.3. Let C be a category. Let X , Y be categories fibred in groupoids over C.
Assume that X , Y are representable by objects X , Y of C. Then

MorCat/C(X ,Y)
/

2-isomorphism = MorC(X,Y )

More precisely, given φ : X → Y there exists a 1-morphism f : X → Y which induces φ
on isomorphism classes of objects and which is unique up to unique 2-isomorphism.
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Proof. By Example 38.7 we have C/X = ShX and C/Y = ShY . By Lemma 39.6 we
have

MorCat/C(X ,Y)
/

2-isomorphism = MorPSh(C)(hX , hY )

By the Yoneda Lemma 3.5 we have MorPSh(C)(hX , hY ) = MorC(X,Y ). �

41. The 2-Yoneda lemma

Let C be a category. The 2-category of fibred categories over C was constructed/defined in
Definition 33.9. If S , S ′ are fibred categories over C then

MorFib/C(S,S ′)

denotes the category of 1-morphisms in this 2-category. Here is the 2-category analogue
of the Yoneda lemma in the setting of fibred categories.

Lemma 41.1 (2-Yoneda lemma for fibred categories). Let C be a category. Let S → C
be a fibred category over C. Let U ∈ Ob(C). The functor

MorFib/C(C/U,S) −→ SU
given by G 7→ G(idU ) is an equivalence.

Proof. Make a choice of pullbacks for S (see Definition 33.6). We define a functor

SU −→ MorFib/C(C/U,S)

as follows. Given x ∈ Ob(SU ) the associated functor is
(1) on objects: (f : V → U) 7→ f∗x, and
(2) on morphisms: the arrow (g : V ′/U → V/U) maps to the composition

(f ◦ g)∗x
(αg,f )x−−−−−→ g∗f∗x→ f∗x

where αg,f is as in Lemma 33.7.
We omit the verification that this is an inverse to the functor of the lemma. �

Let C be a category. The 2-category of categories fibred in groupoids over C is a “full” sub
2-category of the 2-category of categories over C (see Definition 35.6). Hence if S , S ′ are
fibred in groupoids over C then

MorCat/C(S,S ′)

denotes the category of 1-morphisms in this 2-category (see Definition 32.1). These are all
groupoids, see remarks following Definition 35.6. Here is the 2-category analogue of the
Yoneda lemma.

Lemma 41.2 (2-Yoneda lemma). Let S → C be fibred in groupoids. Let U ∈ Ob(C).
The functor

MorCat/C(C/U,S) −→ SU
given by G 7→ G(idU ) is an equivalence.

Proof. Make a choice of pullbacks for S (see Definition 33.6). We define a functor

SU −→ MorCat/C(C/U,S)

as follows. Given x ∈ Ob(SU ) the associated functor is
(1) on objects: (f : V → U) 7→ f∗x, and
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(2) on morphisms: the arrow (g : V ′/U → V/U) maps to the composition

(f ◦ g)∗x
(αg,f )x−−−−−→ g∗f∗x→ f∗x

where αg,f is as in Lemma 35.2.
We omit the verification that this is an inverse to the functor of the lemma. �

Remark 41.3. We can use the 2-Yoneda lemma to give an alternative proof of Lemma
37.3. Let p : S → C be a category fibred in groupoids. We define a contravariant functor
F from C to the category of groupoids as follows: for U ∈ Ob(C) let

F (U) = MorCat/C(C/U,S).
If f : U → V the induced functor C/U → C/V induces the morphism F (f) : F (V ) →
F (U). Clearly F is a functor. Let S ′ be the associated category fibred in groupoids from
Example 37.1. There is an obvious functor G : S ′ → S over C given by taking the pair
(U, x), where U ∈ Ob(C) and x ∈ F (U), to x(idU ) ∈ S . Now Lemma 41.2 implies that
for each U ,

GU : S ′
U = F (U) = MorCat/C(C/U,S)→ SU

is an equivalence, and thus G is an equivalence between S and S ′ by Lemma 35.9.

42. Representable 1-morphisms

Let C be a category. In this section we explain what it means for a 1-morphism between
categories fibred in groupoids over C to be representable.
Let C be a category. Let X , Y be categories fibred in groupoids over C. Let U ∈ Ob(C).
Let F : X → Y and G : C/U → Y be 1-morphisms of categories fibred in groupoids over
C. We want to describe the 2-fibre product

(C/U)×Y X //

��

X

F

��
C/U G // Y

Let y = G(idU ) ∈ YU . Make a choice of pullbacks for Y (see Definition 33.6). Then G is
isomorphic to the functor (f : V → U) 7→ f∗y, see Lemma 41.2 and its proof. We may
think of an object of (C/U) ×Y X as a quadruple (V, f : V → U, x, φ), see Lemma 32.3.
Using the description of G above we may think of φ as an isomorphism φ : f∗y → F (x)
in YV .

Lemma 42.1. In the situation above the fibre category of (C/U)×Y X over an object
f : V → U of C/U is the category described as follows:

(1) objects are pairs (x, φ), where x ∈ Ob(XV ), and φ : f∗y → F (x) is a morphism
in YV ,

(2) the set of morphisms between (x, φ) and (x′, φ′) is the set of morphismsψ : x→
x′ in XV such that F (ψ) = φ′ ◦ φ−1.

Proof. See discussion above. �

Lemma 42.2. Let C be a category. Let X , Y be categories fibred in groupoids over C.
Let F : X → Y be a 1-morphism. Let G : C/U → Y be a 1-morphism. Then

(C/U)×Y X −→ C/U
is a category fibred in groupoids.
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Proof. We have already seen in Lemma 35.7 that the composition
(C/U)×Y X −→ C/U −→ C

is a category fibred in groupoids. Then the lemma follows from Lemma 35.13. �

Definition 42.3. Let C be a category. LetX , Y be categories fibred in groupoids over
C. Let F : X → Y be a 1-morphism. We say F is representable, or that X is relatively
representable over Y , if for every U ∈ Ob(C) and any G : C/U → Y the category fibred
in groupoids

(C/U)×Y X −→ C/U
is representable.

Lemma 42.4. Let C be a category. Let X , Y be categories fibred in groupoids over C.
Let F : X → Y be a 1-morphism. If F is representable then every one of the functors

FU : XU −→ YU
between fibre categories is faithful.

Proof. Clear from the description of fibre categories in Lemma 42.1 and the charac-
terization of representable fibred categories in Lemma 40.2. �

Lemma 42.5. Let C be a category. Let X , Y be categories fibred in groupoids over C.
Let F : X → Y be a 1-morphism. Make a choice of pullbacks for Y . Assume

(1) each functor FU : XU −→ YU between fibre categories is faithful, and
(2) for each U and each y ∈ YU the presheaf

(f : V → U) 7−→ {(x, φ) | x ∈ XV , φ : f∗y → F (x)}/ ∼=
is a representable presheaf on C/U .

Then F is representable.
Proof. Clear from the description of fibre categories in Lemma 42.1 and the charac-

terization of representable fibred categories in Lemma 40.2. �

Before we state the next lemma we point out that the 2-category of categories fibred in
groupoids is a (2, 1)-category, and hence we know what it means to say that it has a final
object (see Definition 31.1). And it has a final object namely id : C → C. Thus we define
2-products of categories fibred in groupoids over C as the 2-fibre products

X × Y := X ×C Y.
With this definition in place the following lemma makes sense.

Lemma 42.6. Let C be a category. Let S → C be a category fibred in groupoids.
Assume C has products of pairs of objects and fibre products. The following are equivalent:

(1) The diagonal S → S × S is representable.
(2) For every U in C , any G : C/U → S is representable.

Proof. Suppose the diagonal is representable, and let U,G be given. Consider any
V ∈ Ob(C) and any G′ : C/V → S . Note that C/U × C/V = C/U × V is representable.
Hence the fibre product

(C/U × V )×(S×S) S //

��

S

��
C/U × V

(G,G′) // S × S
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is representable by assumption. This means there exists W → U × V in C , such that

C/W

��

// S

��
C/U × C/V // S × S

is cartesian. This implies that C/W ∼= C/U ×S C/V (see Lemma 31.11 and Remark 35.8)
as desired.

Assume (2) holds. Consider any V ∈ Ob(C) and any (G,G′) : C/V → S × S . We have
to show that C/V ×S×S S is representable. What we know is that C/V ×G,S,G′ C/V is
representable, say by a : W → V in C/V . The equivalence

C/W → C/V ×G,S,G′ C/V

followed by the second projection to C/V gives a second morphism a′ : W → V . Consider
W ′ = W ×(a,a′),V×V V . There exists an equivalence

C/W ′ ∼= C/V ×S×S S

namely

C/W ′ ∼= C/W ×(C/V×C/V ) C/V
∼=

(
C/V ×(G,S,G′) C/V

)
×(C/V×C/V ) C/V

∼= C/V ×(S×S) S

(for the last isomorphism see Lemma 31.12 and Remark 35.8) which proves the lemma. �

Bibliographic notes: Parts of this have been taken from Vistoli’s notes [?].

43. Monoidal categories

Let C be a category. Suppose we are given a functor

⊗ : C × C −→ C

We often want to know whether⊗ satisfies an associative rule and whether there is a unit
for ⊗.

An associativity constraint for (C,⊗) is a functorial isomorphism

φX,Y,Z : X ⊗ (Y ⊗ Z)→ (X ⊗ Y )⊗ Z

such that for all objects X,Y, Z,W the diagram

X ⊗ (Y ⊗ (Z ⊗W )) //

��

(X ⊗ Y )⊗ (Z ⊗W ) // ((X ⊗ Y )⊗ Z)⊗W

X ⊗ ((Y ⊗ Z)⊗W ) // (X ⊗ (Y ⊗ Z))⊗W

OO

is commutative where every arrow is determined by a suitable application of φ and func-
toriality of ⊗. Given an associativity constraint there are well defined functors

C × . . .× C −→ C, (X1, . . . , Xn) 7−→ X1 ⊗ . . .⊗Xn

for all n ≥ 1.
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Let φ be an associativity constraint. A unit for (C,⊗, φ) is an object 1 of C together with
functorial isomorphisms

1⊗X → X and X ⊗ 1→ X

such that for all objects X,Y the diagram

X ⊗ (1⊗ Y )
φ

//

&&

(X ⊗ 1)⊗ Y

xx
X ⊗ Y

is commutative where the diagonal arrows are given by the isomorphisms introduced
above.

An equivalent definition would be that a unit is a pair (1, 1) where 1 is an object of C
and 1 : 1 ⊗ 1 → 1 is an isomorphism such that the functors L : X 7→ 1 ⊗ X and
R : X 7→ X⊗1 are equivalences. Certainly, given a unit as above we get the isomorphism
1 : 1⊗1→ 1 for free andL andR are equivalences as they are isomorphic to the identity
functor. Conversely, given (1, 1) such thatL andR are equivalences, we obtain functorial
isomorphisms l : 1⊗X → X and r : X ⊗ 1→ X characterized by L(l) = 1⊗ idX and
R(r) = idX ⊗ 1. Then we can use r and l in the notion of unit as above.

A unit is unique up to unique isomorphism if it exists (exercise).

Definition 43.1. A triple (C,⊗, φ) where C is a category,⊗ : C×C → C is a functor,
and φ is an associativity constraint is called a monoidal category if there exists a unit 1.

We always write 1 to denote a unit of a monoidal category; as it is determined up to
unique isomorphism there is no harm in choosing one. From now on we no longer write
the brackets when taking tensor products in monoidal categories and we always identify
X ⊗ 1 and 1 ⊗ X with X . Moreover, we will say “let C be a monoidal category” with
⊗, φ,1 understood.

Definition 43.2. Let C and C′ be monoidal categories. A functor of monoidal cate-
gories F : C → C′ is given by a functor F as indicated and a isomorphism

F (X)⊗ F (Y )→ F (X ⊗ Y )
functorial in X and Y such that for all objects X , Y , and Z the diagram

F (X)⊗ (F (Y )⊗ F (Z)) //

��

F (X)⊗ F (Y ⊗ Z) // F (X ⊗ (Y ⊗ Z))

��
(F (X)⊗ F (Y ))⊗ F (Z) // F (X ⊗ Y )⊗ F (Z) // F ((X ⊗ Y )⊗ Z)

commutes and such that F (1) is a unit in C′.

By our conventions about units, we may always assume F (1) = 1 if F is a functor of
monoidal categories. As an example, ifA→ B is a ring homomorphism, then the functor
M 7→M ⊗A B is functor of monoidal categories from ModA to ModB .

Lemma 43.3. Let C be a monoidal category. Let X be an object of C. The following
are equivalent

(1) the functor L : Y 7→ X ⊗ Y is an equivalence,
(2) the functor R : Y 7→ Y ⊗X is an equivalence,
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(3) there exists an object X ′ such that X ⊗X ′ ∼= X ′ ⊗X ∼= 1.

Proof. Assume (1). Choose X ′ such that L(X ′) = 1, i.e., X ⊗X ′ ∼= 1. Denote L′

andR′ the functors corresponding to X ′. The equation X ⊗X ′ ∼= 1 implies L ◦L′ ∼= id.
Thus L′ must be the quasi-inverse to L (which exists by assumption). Hence L′ ◦ L ∼= id.
Hence X ′ ⊗X ∼= 1. Thus (3) holds.

The proof of (2)⇒ (3) is dual to what we just said.

Assume (3). Then it is clear that L′ and L are quasi-inverse to each other and it is clear
that R′ and R are quasi-inverse to each other. Thus (1) and (2) hold. �

Definition 43.4. Let C be a monoidal category. An objectX of C is called invertible
if any (or all) of the equivalent conditions of Lemma 43.3 hold.

Observe that if F : C → C′ is a functor of monoidal categories, then F sends invertible
objects to invertible objects.

Definition 43.5. Given a monoidal category (C,⊗, φ) and an objectX a left dual is
an object Y together with morphisms η : 1 → X ⊗ Y and ε : Y ⊗X → 1 such that the
diagrams

X

1
%%

η⊗1
// X ⊗ Y ⊗X

1⊗ε
��
X

and

Y

1
%%

1⊗η
// Y ⊗X ⊗ Y

ε⊗1
��
Y

commute. In this situation we say that X is a right dual of Y .

Observe that if F : C → C′ is a functor of monoidal categories, then F (Y ) is a left dual of
F (X) if Y is a left dual of X .

Lemma 43.6. Let C be a monoidal category. If Y is a left dual to X , then

Mor(Z ′ ⊗X,Z) = Mor(Z ′, Z ⊗ Y ) and Mor(Y ⊗ Z ′, Z) = Mor(Z ′, X ⊗ Z)
functorially in Z and Z ′.

Proof. Consider the maps

Mor(Z ′ ⊗X,Z)→ Mor(Z ′ ⊗X ⊗ Y, Z ⊗ Y )→ Mor(Z ′, Z ⊗ Y )
where we use η in the second arrow and the sequence of maps

Mor(Z ′, Z ⊗ Y )→ Mor(Z ′ ⊗X,Z ⊗ Y ⊗X)→ Mor(Z ′ ⊗X,Z)
where we use ε in the second arrow. A straightforward calculation using the properties of
η and ε shows that the compositions of these are mutually inverse. Similarly for the other
equality. �

Remark 43.7. Lemma 43.6 says in particular that Z 7→ Z ⊗ Y is the right adjoint
of Z ′ 7→ Z ′ ⊗X . In particular, uniqueness of adjoint functors guarantees that a left dual
of X , if it exists, is unique up to unique isomorphism. Conversely, assume the functor
Z 7→ Z ⊗ Y is a right adjoint of the functor Z ′ 7→ Z ′ ⊗X , i.e., we’re given a bijection

Mor(Z ′ ⊗X,Z) −→ Mor(Z ′, Z ⊗ Y )
functorial in both Z and Z ′. The unit of the adjunction produces maps

ηZ : Z → Z ⊗X ⊗ Y
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functorial in Z and the counit of the adjoint produces maps

εZ′ : Z ′ ⊗ Y ⊗X → Z ′

functorial in Z ′. In particular, we find η = η1 : 1 → X ⊗ Y and ε = ε1 : Y ⊗X → 1.
As an exercise in the relationship between units, counits, and the adjunction isomorphism,
the reader can show that we have

(ε⊗ idY ) ◦ ηY = idY and εX ◦ (η ⊗ idX) = idX

However, this isn’t enough to show that (ε⊗ idY ) ◦ (idY ⊗ η) = idY and (idX ⊗ ε) ◦ (η⊗
idX) = idX , because we don’t know in general that ηY = idY ⊗η and we don’t know that
εX = ε⊗ idX . For this it would suffice to know that our adjunction isomorphism has the
following property: for every W,Z,Z ′ the diagram

Mor(Z ′ ⊗X,Z) //

idW⊗−
��

Mor(Z ′, Z ⊗ Y )

idW⊗−
��

Mor(W ⊗ Z ′ ⊗X,W ⊗ Z) // Mor(W ⊗ Z ′,W ⊗ Z ⊗ Y )

If this holds, we will say the adjunction is compatible with the given tensor structure.
Thus the requirement that Z 7→ Z ⊗ Y be the right adjoint of Z ′ 7→ Z ′ ⊗X compatible
with the given tensor structure is an equivalent formulation of the property of being a left
dual.

Lemma 43.8. Let C be a monoidal category. IfYi, i = 1, 2 are left duals ofXi, i = 1, 2,
then Y2 ⊗ Y1 is a left dual of X1 ⊗X2.

Proof. Follows from uniqueness of adjoints and Remark 43.7. �

A commutativity constraint for (C,⊗) is a functorial isomorphism

ψ : X ⊗ Y −→ Y ⊗X

such that the composition

X ⊗ Y ψ−→ Y ⊗X ψ−→ X ⊗ Y

is the identity. We say ψ is compatible with a given associativity constraint φ if for all
objects X,Y, Z the diagram

X ⊗ (Y ⊗ Z)
φ
//

ψ

��

(X ⊗ Y )⊗ Z
ψ
// Z ⊗ (X ⊗ Y )

φ

��
X ⊗ (Z ⊗ Y ) φ // (X ⊗ Z)⊗ Y ψ // (Z ⊗X)⊗ Y

commutes.

Definition 43.9. A quadruple (C,⊗, φ, ψ) where C is a category, ⊗ : C ⊗ C → C is
a functor, φ is an associativity constraint, and ψ is a commutativity constraint compatible
with φ is called a symmetric monoidal category if there exists a unit.

To be sure, if (C,⊗, φ, ψ) is a symmetric monoidal category, then (C,⊗, φ) is a monoidal
category.
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Lemma 43.10. Let (C,⊗, φ, ψ) be a symmetric monoidal category. LetX be an object
of C and let Y , η : 1 → X ⊗ Y , and ε : Y ⊗X → 1 be a left dual of X as in Definition
43.5. Then η′ = ψ ◦ η : 1 → Y ⊗X and ε′ = ε ◦ ψ : X ⊗ Y → 1 makes X into a left
dual of Y .

Proof. Omitted. Hint: pleasant exercise in the definitions. �

Definition 43.11. Let C and C′ be symmetric monoidal categories. A functor of
symmetric monoidal categories F : C → C′ is given by a functor F as indicated and an
isomorphism

F (X)⊗ F (Y )→ F (X ⊗ Y )
functorial in X and Y such that F is a functor of monoidal categories and such that for
all objects X and Y the diagram

F (X)⊗ F (Y ) //

��

F (X ⊗ Y )

��
F (Y )⊗ F (X) // F (Y ⊗X)

commutes.

Remark 43.12. Let C be a monoidal category. We say C has an internal hom if for
every pair of objects X,Y of C there is an object hom(X,Y ) of C such that we have

Mor(X,hom(Y, Z)) = Mor(X ⊗ Y, Z)
functorially inX,Y, Z. By the Yoneda lemma the bifunctor (X,Y ) 7→ hom(X,Y ) is de-
termined up to unique isomorphism if it exists. Given an internal hom we obtain canonical
maps

(1) hom(X,Y )⊗X → Y ,
(2) hom(Y, Z)⊗ hom(X,Y )→ hom(X,Z),
(3) Z ⊗ hom(X,Y )→ hom(X,Z ⊗ Y ),
(4) Y → hom(X,Y ⊗X), and
(5) hom(Y, Z)⊗X → hom(hom(X,Y ), Z) in case C is symmetric monoidal.

Namely, the map in (1) is the image of idhom(X,Y ) by Mor(hom(X,Y ), hom(X,Y )) →
Mor(hom(X,Y )⊗X,Y ). To construct the map in (2) by the defining property ofhom(X,Z)
we need to construct a map

hom(Y, Z)⊗ hom(X,Y )⊗X −→ Z

and such a map exists since by (1) we have maps hom(X,Y )⊗X → Y and hom(Y, Z)⊗
Y → Z. To construct the map in (3) by the defining property of hom(X,Z⊗Y ) we need
to construct a map

Z ⊗ hom(X,Y )⊗X → Z ⊗ Y
for which we use idZ⊗awhere a is the map in (1). To construct the map in (4) we note that
we already have the map Y ⊗ hom(X,X)→ hom(X,Y ⊗X) by (3). Thus it suffices to
construct a map 1→ hom(X,X) and for this we take the element in Mor(1, hom(X,X))
corresponding to the canonical isomorphism 1⊗X → X in Mor(1⊗X,X). Finally, we
come to (5). By the universal property of hom(hom(X,Y ), Z) it suffices to construct a
map

hom(Y, Z)⊗X ⊗ hom(X,Y ) −→ Z

We do this by swapping the last two tensor products using the commutativity constraint
and then using the maps hom(X,Y )⊗X → Y and hom(Y, Z)⊗ Y → Z.
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44. Categories of dotted arrows

We discuss certain “categories of dotted arrows” in (2, 1)-categories. These will appear
when formulating various lifting criteria for algebraic stacks, see for example Morphisms
of Stacks, Section 39 and More on Morphisms of Stacks, Section 8.

Definition 44.1. Let C be a (2, 1)-category. Consider a 2-commutative solid diagram

(44.1.1)

S
x
//

j

��

X

f

��
T

y //

>>

Y

in C. Fix a 2-isomorphism

γ : y ◦ j → f ◦ x

witnessing the 2-commutativity of the diagram. Given (44.1.1) and γ, a dotted arrow is a
triple (a, α, β) consisting of a morphism a : T → X and and 2-isomorphismsα : a◦j → x,
β : y → f ◦ a such that γ = (idf ? α) ◦ (β ? idj), in other words such that

f ◦ a ◦ j
idf?α

$$
y ◦ j

β?idj
::

γ // f ◦ x

is commutative. A morphism of dotted arrows (a, α, β) → (a′, α′, β′) is a 2-arrow θ :
a→ a′ such that α = α′ ◦ (θ ? idj) and β′ = (idf ? θ) ◦ β.

In the situation of Definition 44.1, there is an associated category of dotted arrows. This
category is a groupoid. It may depend on γ in general. The next two lemmas say that
categories of dotted arrows are well-behaved with respect to base change and composition
for f .

Lemma 44.2. Let C be a (2, 1)-category. Assume given a 2-commutative diagram

S
x′
//

j

��

X ′

p

��

q
// X

f

��
T

y′
// Y ′ g // Y

in C , where the right square is 2-cartesian with respect to a 2-isomorphism φ : g◦p→ f ◦q.
Choose a 2-arrow γ′ : y′ ◦ j → p ◦ x′. Set x = q ◦ x′, y = g ◦ y′ and let γ : y ◦ j → f ◦ x
be the 2-isomorphism γ = (φ ? idx′) ◦ (idg ? γ′). Then the category D′ of dotted arrows
for the left square and γ′ is equivalent to the category D of dotted arrows for the outer
rectangle and γ.

Proof. There is a functor D′ → D which is (a, α, β) 7→ (q ◦ a, idq ? α, (φ ? ida) ◦
(idg ? β)) on objects and θ 7→ idq ? θ on arrows. Checking that this functor D′ → D
is an equivalence follows formally from the universal property for 2-fibre products as in
Section 31. Details omitted. �
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Lemma 44.3. Let C be a (2, 1)-category. Assume given a solid 2-commutative diagram

S
x
//

j

��

X

f

��
Y

g

��
T

z //

GG

Z

in C. Choose a 2-isomorphism γ : z ◦j → g ◦f ◦x. LetD be the category of dotted arrows
for the outer rectangle and γ. LetD′ be the category of dotted arrows for the solid square

S
f◦x
//

j

��

Y

g

��
T

z //

??

Z

and γ. ThenD is equivalent to a categoryD′′ which has the following property: there is a
functorD′′ → D′ which turnsD′′ into a category fibred in groupoids over D′ and whose
fibre categories are isomorphic to categories of dotted arrows for certain solid squares of
the form

S
x
//

j

��

X

f

��
T

y //

>>

Y

and some choices of 2-isomorphism y ◦ j → f ◦ x.

Proof. Construct the categoryD′′ whose objects are tuples (a, α, β, b, η) where (a, α, β)
is an object of D and b : T → Y is a 1-morphism and η : b → f ◦ a is a 2-isomorphism.
Morphisms (a, α, β, b, η) → (a′, α′, β′, b′, η′) in D′′ are pairs (θ1, θ2), where θ1 : a → a′

defines an arrow (a, α, β)→ (a′, α′, β′) inD and θ2 : b→ b′ is a 2-isomorphism with the
compatibility condition η′ ◦ θ2 = (idf ? θ1) ◦ η.
There is a functorD′′ → D′ which is (a, α, β, b, η) 7→ (b, (idf?α)◦(η?idj), (idg?η−1)◦β)
on objects and (θ1, θ2) 7→ θ2 on arrows. Then D′′ → D′ is fibred in groupoids.
If (y, δ, ε) is an object of D′, write Dy,δ for the category of dotted arrows for the last
displayed diagram with y ◦ j → f ◦ x given by δ. There is a functorDy,δ → D′′ given by
(a, α, η) 7→ (a, α, (idg ? η) ◦ ε, y, η) on objects and θ 7→ (θ, idy) on arrows. This exhibits
an isomorphism from Dy,δ to the fibre category of D′′ → D′ over (y, δ, ε).
There is also a functorD → D′′ which is (a, α, β) 7→ (a, α, β, f ◦a, idf◦a) on objects and
θ 7→ (θ, idf ? θ) on arrows. This functor is fully faithful and essentially surjective, hence
an equivalence. Details omitted. �
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CHAPTER 5

Topology

1. Introduction

Basic topology will be explained in this document. A reference is [?].

2. Basic notions

The following is a list of basic notions in topology. Some of these notions are discussed
in more detail in the text that follows and some are defined in the list, but others are
considered basic and will not be defined. If you are not familiar with most of the italicized
concepts, then we suggest looking at an introductory text on topology before continuing.

(1) X is a topological space,
(2) x ∈ X is a point,
(3) E ⊂ X is a locally closed subset,
(4) x ∈ X is a closed point,
(5) E ⊂ X is a dense subset,
(6) f : X1 → X2 is continuous,
(7) an extended real function f : X → R ∪ {∞,−∞} is upper semi-continuous if
{x ∈ X | f(x) < a} is open for all a ∈ R,

(8) an extended real function f : X → R ∪ {∞,−∞} is lower semi-continuous if
{x ∈ X | f(x) > a} is open for all a ∈ R,

(9) a continuous map of spaces f : X → Y is open if f(U) is open in Y for U ⊂ X
open,

(10) a continuous map of spaces f : X → Y is closed if f(Z) is closed in Y forZ ⊂ X
closed,

(11) a neighbourhood of x ∈ X is any subset E ⊂ X which contains an open subset
that contains x,

(12) the induced topology on a subset E ⊂ X ,
(13) U : U =

⋃
i∈I Ui is an open covering of U (note: we allow any Ui to be empty

and we even allow, in case U is empty, the empty set for I),
(14) a subcover of a covering as in (13) is an open covering U ′ : U =

⋃
i∈I′ Ui where

I ′ ⊂ I ,
(15) the open covering V is a refinement of the open covering U (if V : U =

⋃
j∈J Vj

and U : U =
⋃
i∈I Ui this means each Vj is completely contained in one of the

Ui),
(16) {Ei}i∈I is a fundamental system of neighbourhoods of x in X ,
(17) a topological space X is called Hausdorff or separated if and only if for every

distinct pair of points x, y ∈ X there exist disjoint opens U, V ⊂ X such that
x ∈ U , y ∈ V ,

(18) the product of two topological spaces,

201
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(19) the fibre productX×Y Z of a pair of continuous maps f : X → Y and g : Z →
Y ,

(20) the discrete topology and the indiscrete topology on a set,
(21) etc.

3. Hausdorff spaces

The category of topological spaces has finite products.

Lemma 3.1. Let X be a topological space. The following are equivalent:
(1) X is Hausdorff,
(2) the diagonal ∆(X) ⊂ X ×X is closed.

Proof. We suppose that X is Hausdorff. Let (x, y) 6∈ ∆(X), i.e., x 6= y. There
are U and V disjoint open sets of X such that x ∈ U and y ∈ V . This implies that
U × V ⊂ (X ×X) \∆(X). This shows that (X ×X) \∆(X) is an open set of X ×X
which is equivalent to say that the diagonal ∆(X) ⊂ X × X is closed in X × X . The
converse is similar: The complement (X×X)\∆(X) consist precisely of (x, y) ∈ X×X
with x 6= y. Thus, if ∆(X) ⊂ X × X is closed, then, by the definition of the product
topology, for every such (x, y), there are opens U, V ⊂ X with (x, y) ∈ U × V and
(U × V ) ∩∆(X) = ∅. In other words, with x ∈ U and y ∈ V such that U ∩ V = ∅. �

Lemma 3.2. Let f : X → Y be a continuous map of topological spaces. If Y is
Hausdorff, then the graph of f is closed in X × Y .

Proof. The graph is the inverse image of the diagonal under the map X × Y →
Y × Y . Thus the lemma follows from Lemma 3.1. �

Lemma 3.3. Let f : X → Y be a continuous map of topological spaces. Let s : Y →
X be a continuous map such that f ◦ s = idY . If X is Hausdorff, then s(Y ) is closed.

Proof. This follows from Lemma 3.1 as s(Y ) = {x ∈ X | x = s(f(x))}. �

Lemma 3.4. Let X → Z and Y → Z be continuous maps of topological spaces. If Z
is Hausdorff, then X ×Z Y is closed in X × Y .

Proof. This follows from Lemma 3.1 asX ×Z Y is the inverse image of ∆(Z) under
X × Y → Z × Z. �

4. Separated maps

Just the definition and some simple lemmas.

Definition 4.1. A continuous map f : X → Y of topological spaces is called sepa-
rated if and only if the diagonal ∆ : X → X ×Y X is a closed map.

Lemma 4.2. Let f : X → Y be continuous map of topological spaces. The following
are equivalent:

(1) f is separated,
(2) ∆(X) ⊂ X ×Y X is a closed subset,
(3) given distinct points x, x′ ∈ X mapping to the same point of Y , there exist

disjoint open neighbourhoods of x and x′.
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Proof. If f is separated, by Definition 4.1, ∆ is a closed map. The fact that X is
closed in X gives us that ∆(X) is closed in X ×Y X . Thus (1) implies (2).

Assune ∆(X) ⊂ X ×Y X is a closed subset and denote U the complementary open. This
means we have an open set W ⊂ X ×X such that W ∩ (X ×Y X) = U . However, by
definition of the product topology, if (x, x′) ∈ W ∩ (X ×Y X), we have V and V ′ open
sets of X such that x ∈ V , x′ ∈ V ′ and V × V ′ ⊂ W . If we had V ∩ V ′ 6= ∅, we would
have z ∈ V ∩ V ′. However, (z, z) ∈ X ×Y X , so (z, z) ∈ (V × V ′) ∩ (X ×Y X) ⊂ U ,
which is absurd. Therefore V ∩V ′ = ∅, and we have two disjoint open neighborhoods for
x and x′. It proves that (2) implies (3).

Finally, we suppose that given distinct points x, x′ ∈ X mapping to the same point of
Y , there exist disjoint open neighbourhoods of x and x′. Let F be a closed set of X . We
will show that ∆(F ) is a closed subset of X ×Y X . Let (x, x′) ∈ X ×Y X be a point
not contained in ∆(F ). Then either x 6= x′ or x 6∈ F . In the first case, we choose
disjoint open neighbourhoods V, V ′ ⊂ X of x, x′ and we see that (V × V ′) ∩ X ×Y X
is an open neighbourood of (x, x′) not meeting ∆(F ). In the second case, we see that
((X \ F ) × X) ∩ X ×Y X is an open neighbourood of (x, x′) not meeting ∆(F ). We
have shown that (3) implies (1). �

Lemma 4.3. Let f : X → Y be continuous map of topological spaces. If X is Haus-
dorff, then f is separated.

Proof. Clear from Lemmas 4.2 and 3.1 as ∆(X) closed inX×X implies ∆(X) closed
in X ×Y X . �

Lemma 4.4. Let f : X → Y and Y ′ → Y be continuous maps of topological spaces.
If f is separated, then f ′ : Y ′ ×Y X → Z is separated.

Proof. Follows from characterization (3) of Lemma 4.2. Namely, withX ′ = Y ′×Y
X the image ∆(X ′) of the diagonal in the fibre product X ′ ×Y ′ X ′ is the inverse image
of ∆(X) in X ×Y X . �

5. Bases

Basic material on bases for topological spaces.

Definition 5.1. LetX be a topological space. A collection of subsets B ofX is called
a base for the topology on X or a basis for the topology on X if the following conditions
hold:

(1) Every element B ∈ B is open in X .
(2) For every open U ⊂ X and every x ∈ U , there exists an element B ∈ B such

that x ∈ B ⊂ U .

The following lemma is sometimes used to define a topology.

Lemma 5.2. Let X be a set and let B be a collection of subsets. Assume that X =⋃
B∈B B and that given x ∈ B1 ∩B2 with B1, B2 ∈ B there is a B3 ∈ B with x ∈ B3 ⊂

B1 ∩B2. Then there is a unique topology on X such that B is a basis for this topology.

Proof. Let σ(B) be the set of subsets ofX which can be written as unions of elements
of B. We claim σ(B) is a topology. Namely, the empty set is an element of σ(B) (as an
empty union) and X is an element of σ(B) (as the union of all elements of B). It is clear
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that σ(B) is preserved under unions. Finally, if U, V ∈ σ(B) then write U =
⋃
i∈I Ui

and V =
⋃
j∈J Vj with Ui, Vj ∈ B for all i ∈ I and j ∈ J . Then

U ∩ V =
⋃

i∈I,j∈J
Ui ∩ Vj

The assumption in the lemma tells us that Ui ∩ Vj ∈ σ(B) hence we see that U ∩ V is
too. Thus σ(B is a topology. Properties (1) and (2) of Definition 5.1 are immediate for this
topology. To prove the uniqueness of this topology let T be a topology on X such that
B is a base for it. Then of course every element of B is in T by (1) of Definition 5.1 and
hence σ(B ⊂ T . Conversely, part (2) of Definition 5.1 tells us that every element of T is
a union of elements of B, i.e., T ⊂ σ(B). This finishes the proof. �

Lemma 5.3. LetX be a topological space. Let B be a basis for the topology onX . Let
U : U =

⋃
i Ui be an open covering of U ⊂ X . There exists an open covering U =

⋃
Vj

which is a refinement of U such that each Vj is an element of the basis B.

Proof. If x ∈ U =
⋃
i∈I Ui, there is an ix ∈ I such that x ∈ Uix . Thus we have a

Bix ∈ B verifying x ∈ Bix ⊂ Uix . Set J = {ix|x ∈ U} and for j = ix ∈ J set Vj = Bix .
This gives the desired open covering of U by {Vj}j∈J . �

Definition 5.4. Let X be a topological space. A collection of subsets B of X is
called a subbase for the topology on X or a subbasis for the topology on X if the finite
intersections of elements of B form a basis for the topology on X .

In particular every element of B is open.

Lemma 5.5. Let X be a set. Given any collection B of subsets of X there is a unique
topology on X such that B is a subbase for this topology.

Proof. By convention
⋂

∅ B = X . Thus we can apply Lemma 5.2 to the set of finite
intersections of elements from B. �

Lemma 5.6. LetX be a topological space. LetB be a collection of opens ofX . Assume
X =

⋃
U∈B U and for U, V ∈ B we have U ∩ V =

⋃
W∈B,W⊂U∩V W . Then there is a

continuous map f : X → Y of topological spaces such that
(1) for U ∈ B the image f(U) is open,
(2) for U ∈ B we have f−1(f(U)) = U , and
(3) the opens f(U), U ∈ B form a basis for the topology on Y .

Proof. Define an equivalence relation ∼ on points of X by the rule
x ∼ y ⇔ (∀U ∈ B : x ∈ U ⇔ y ∈ U)

Let Y be the set of equivalence classes and f : X → Y the natural map. Part (2) holds by
construction. The assumptions on B exactly mirror the assumptions in Lemma 5.2 on the
set of subsets f(U), U ∈ B. Hence there is a unique topology on Y such that (3) holds.
Then (1) is clear as well. �

6. Submersive maps

If X is a topological space and E ⊂ X is a subset, then we usually endow E with the
induced topology.

Lemma 6.1. Let X be a topological space. Let Y be a set and let f : Y → X be an
injective map of sets. The induced topology on Y is the topology characterized by each of
the following statements:
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(1) it is the weakest topology on Y such that f is continuous,
(2) the open subsets of Y are f−1(U) for U ⊂ X open,
(3) the closed subsets of Y are the sets f−1(Z) for Z ⊂ X closed.

Proof. The set T = {f−1(U)|U ⊂ X open} is a topology onY . Firstly, ∅ = f−1(∅)
and f−1(X) = Y . So T contains ∅ and Y .

Now let {Vi}i∈I be a collection of open subsets where Vi ∈ T and write Vi = f−1(Ui)
where Ui is an open subset of X , then⋃

i∈I
Vi =

⋃
i∈I

f−1(Ui) = f−1
(⋃

i∈I
Ui

)
So
⋃
i∈I Vi ∈ T as

⋃
i∈I Ui is open inX . Now let V1, V2 ∈ T . We have U1, U2 open inX

such that V1 = f−1(U1) and V2 = f−1(U2). Then

V1 ∩ V2 = f−1(U1) ∩ f−1(U2) = f−1(U1 ∩ U2)

So V1 ∩ V2 ∈ T because U1 ∩ U2 is open in X .

Any topology on Y such that f is continuous contains T according to the definition of a
continuous map. Thus T is indeed the weakest topology on Y such that f is continuous.
This proves that (1) and (2) are equivalent.

The equivalence of (2) and (3) follows from the equality f−1(X \ E) = Y \ f−1(E) for
all subsets E ⊂ X . �

Dually, if X is a topological space and X → Y is a surjection of sets, then Y can be
endowed with the quotient topology.

Lemma 6.2. Let X be a topological space. Let Y be a set and let f : X → Y be a
surjective map of sets. The quotient topology on Y is the topology characterized by each
of the following statements:

(1) it is the strongest topology on Y such that f is continuous,
(2) a subset V of Y is open if and only if f−1(V ) is open,
(3) a subset Z of Y is closed if and only if f−1(Z) is closed.

Proof. The set T = {V ⊂ Y |f−1(V ) is open} is a topology on Y . Firstly ∅ =
f−1(∅) and f−1(Y ) = X . So T contains ∅ and Y .

Let (Vi)i∈I be a family of elements Vi ∈ T . Then⋃
i∈I

f−1(Vi) = f−1
(⋃

i∈I
Vi

)
Thus

⋃
i∈I Vi ∈ T as

⋃
i∈I f

−1(Vi) is open in X . Furthermore if V1, V2 ∈ T then

f−1(V1) ∩ f−1(V2) = f−1(V1 ∩ V2)

So V1 ∩ V2 ∈ T because f−1(V1) ∩ f−1(V2) is open in X .

Finally a topology on Y such that f is continuous is included in T according to the def-
inition of a continuous function, so T is the strongest topology on Y such that f is con-
tinuous. It proves that (1) and (2) are equivalent.

Finally, (2) and (3) equivalence follows from f−1(X \ E) = Y \ f−1(E) for all subsets
E ⊂ X . �
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Let f : X → Y be a continuous map of topological spaces. In this case we obtain a
factorization X → f(X) → Y of maps of sets. We can endow f(X) with the quotient
topology coming from the surjection X → f(X) or with the induced topology coming
from the injection f(X)→ Y . The map

(f(X), quotient topology) −→ (f(X), induced topology)

is continuous.

Definition 6.3. Let f : X → Y be a continuous map of topological spaces.
(1) We say f is a strict map of topological spaces if the induced topology and the

quotient topology on f(X) agree (see discussion above).
(2) We say f is submersive1 if f is surjective and strict.

Thus a continuous map f : X → Y is submersive if f is a surjection and for any T ⊂ Y
we have T is open or closed if and only if f−1(T ) is so. In other words, Y has the quotient
topology relative to the surjection X → Y .

Lemma 6.4. Let f : X → Y be surjective, open, continuous map of topological
spaces. Let T ⊂ Y be a subset. Then

(1) f−1(T ) = f−1(T ),
(2) T ⊂ Y is closed if and only if f−1(T ) is closed,
(3) T ⊂ Y is open if and only if f−1(T ) is open, and
(4) T ⊂ Y is locally closed if and only if f−1(T ) is locally closed.

In particular we see that f is submersive.

Proof. It is clear that f−1(T ) ⊂ f−1(T ). If x ∈ X , and x 6∈ f−1(T ), then there
exists an open neighbourhood x ∈ U ⊂ X with U ∩ f−1(T ) = ∅. Since f is open we see
that f(U) is an open neighbourhood of f(x) not meeting T . Hence x 6∈ f−1(T ). This
proves (1). Part (2) is an easy consequence of (1). Part (3) is obvious from the fact that
f is open and surjective. For (4), if f−1(T ) is locally closed, then f−1(T ) ⊂ f−1(T ) =
f−1(T ) is open, and hence by (3) applied to the map f−1(T ) → T we see that T is open
in T , i.e., T is locally closed. �

Lemma 6.5. Let f : X → Y be surjective, closed, continuous map of topological
spaces. Let T ⊂ Y be a subset. Then

(1) T = f(f−1(T )),
(2) T ⊂ Y is closed if and only if f−1(T ) is closed,
(3) T ⊂ Y is open if and only if f−1(T ) is open, and
(4) T ⊂ Y is locally closed if and only if f−1(T ) is locally closed.

In particular we see that f is submersive.

Proof. It is clear that f−1(T ) ⊂ f−1(T ). Then T ⊂ f(f−1(T )) ⊂ T is a closed
subset, hence we get (1). Part (2) is obvious from the fact that f is closed and surjective.
Part (3) follows from (2) applied to the complement of T . For (4), if f−1(T ) is locally
closed, then f−1(T ) ⊂ f−1(T ) is open. Since the map f−1(T ) → T is surjective by (1)
we can apply part (3) to the map f−1(T )→ T induced by f to conclude that T is open in
T , i.e., T is locally closed. �

1This is very different from the notion of a submersion between differential manifolds! It is probably a
good idea to use “strict and surjective” in stead of “submersive”.
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7. Connected components

Definition 7.1. Let X be a topological space.
(1) We say X is connected if X is not empty and whenever X = T1 q T2 with

Ti ⊂ X open and closed, then either T1 = ∅ or T2 = ∅.
(2) We say T ⊂ X is a connected component of X if T is a maximal connected

subset of X .

The empty space is not connected.

Lemma 7.2. Let f : X → Y be a continuous map of topological spaces. If E ⊂ X is
a connected subset, then f(E) ⊂ Y is connected as well.

Proof. Let A ⊂ f(E) an open and closed subset of f(E). Because f is continuous,
f−1(A) is an open and closed subset ofE. AsE is connected, f−1(A) = ∅ or f−1(A) = E.
However, A ⊂ f(E) implies that A = f(f−1(A)). Indeed, if x ∈ f(f−1(A)) then there
is y ∈ f−1(A) such that f(y) = x and because y ∈ f−1(A), we have f(y) ∈ A i.e.
x ∈ A. Reciprocally, if x ∈ A, A ⊂ f(E) implies that there is y ∈ E such that f(y) = x.
Therefore y ∈ f−1(A), and then x ∈ f(f−1(A)). ThusA = ∅ orA = f(E) proving that
f(E) is connected. �

Lemma 7.3. Let X be a topological space.
(1) If T ⊂ X is connected, then so is its closure.
(2) Any connected component of X is closed (but not necessarily open).
(3) Every connected subset of X is contained in a unique connected component of

X .
(4) Every point ofX is contained in a unique connected component, in other words,

X is the disjoint union of its connected components.

Proof. Let T be the closure of the connected subset T . Suppose T = T1 q T2 with
Ti ⊂ T open and closed. Then T = (T ∩ T1)q (T ∩ T2). Hence T equals one of the two,
say T = T1 ∩ T . Thus T ⊂ T1. This implies (1) and (2).

Let A be a nonempty set of connected subsets of X such that Ω =
⋂
T∈A T is nonempty.

We claim E =
⋃
T∈A T is connected. Namely, E is nonempty as it contains Ω. Say

E = E1 q E2 with Ei closed in E. We may assume E1 meets Ω (after renumbering).
Then each T ∈ A meets E1 and hence must be contained in E1 as T is connected. Hence
E ⊂ E1 which proves the claim.

Let W ⊂ X be a nonempty connected subset. If we apply the result of the previous
paragraph to the set of all connected subsets of X containing W , then we see that E is a
connected component of X . This implies existence and uniqueness in (3).

Let x ∈ X . Taking W = {x} in the previous paragraph we see that x is contained in
a unique connected component of X . Any two distinct connected components must be
disjoint (by the result of the second paragraph).

To get an example where connected components are not open, just take an infinite product∏
n∈N{0, 1} with the product topology. Its connected components are singletons, which

are not open. �

Remark 7.4. Let X be a topological space and x ∈ X . Let Z ⊂ X be the connected
component of X passing through x. Consider the intersection E of all open and closed
subsets of X containing x. It is clear that Z ⊂ E. In general Z 6= E. For example,
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let X = {x, y, z1, z2, . . .} with the topology with the following basis of opens, {zn},
{x, zn, zn+1, . . .}, and {y, zn, zn+1, . . .} for all n. Then Z = {x} and E = {x, y}. We
omit the details.

Lemma 7.5. Let f : X → Y be a continuous map of topological spaces. Assume that
(1) all fibres of f are connected, and
(2) a set T ⊂ Y is closed if and only if f−1(T ) is closed.

Then f induces a bijection between the sets of connected components of X and Y .

Proof. Let T ⊂ Y be a connected component. Note that T is closed, see Lemma 7.3.
The lemma follows if we show that f−1(T ) is connected because any connected subset of
X maps into a connected component of Y by Lemma 7.2. Suppose that f−1(T ) = Z1qZ2
withZ1,Z2 closed. For any t ∈ T we see that f−1({t}) = Z1∩f−1({t})qZ2∩f−1({t}).
By (1) we see f−1({t}) is connected we conclude that either f−1({t}) ⊂ Z1 or f−1({t}) ⊂
Z2. In other words T = T1 q T2 with f−1(Ti) = Zi. By (2) we conclude that Ti is closed
in Y . Hence either T1 = ∅ or T2 = ∅ as desired. �

Lemma 7.6. Let f : X → Y be a continuous map of topological spaces. Assume that
(a) f is open, (b) all fibres of f are connected. Then f induces a bijection between the sets
of connected components of X and Y .

Proof. This is a special case of Lemma 7.5. �

Lemma 7.7. Let f : X → Y be a continuous map of nonempty topological spaces.
Assume that (a) Y is connected, (b) f is open and closed, and (c) there is a point y ∈ Y such
that the fiber f−1(y) is a finite set. Then X has at most |f−1(y)| connected components.
Hence any connected component T ofX is open and closed, and f(T ) is a nonempty open
and closed subset of Y , which is therefore equal to Y .

Proof. If the topological space X has at least N connected components for some
N ∈ N, we find by induction a decompositionX = X1q. . .qXN ofX as a disjoint union
of N nonempty open and closed subsets X1, . . . , XN of X . As f is open and closed, each
f(Xi) is a nonempty open and closed subset of Y and is hence equal to Y . In particular
the intersection Xi ∩ f−1(y) is nonempty for each 1 ≤ i ≤ N . Hence f−1(y) has at least
N elements. �

Definition 7.8. A topological space is totally disconnected if the connected compo-
nents are all singletons.

A discrete space is totally disconnected. A totally disconnected space need not be discrete,
for example Q ⊂ R is totally disconnected but not discrete.

Lemma 7.9. Let X be a topological space. Let π0(X) be the set of connected compo-
nents ofX . LetX → π0(X) be the map which sends x ∈ X to the connected component
of X passing through x. Endow π0(X) with the quotient topology. Then π0(X) is a
totally disconnected space and any continuous map X → Y from X to a totally discon-
nected space Y factors through π0(X).

Proof. By Lemma 7.5 the connected components of π0(X) are the singletons. We
omit the proof of the second statement. �

Definition 7.10. A topological space X is called locally connected if every point
x ∈ X has a fundamental system of connected neighbourhoods.
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Lemma 7.11. Let X be a topological space. If X is locally connected, then
(1) any open subset of X is locally connected, and
(2) the connected components of X are open.

So also the connected components of open subsets ofX are open. In particular, every point
has a fundamental system of open connected neighbourhoods.

Proof. For all x ∈ X let write N (x) the fundamental system of connected neigh-
bourhoods of x and let U ⊂ X be an open subset of X . Then for all x ∈ U , U is a
neighbourhood of x, so the set {V ∈ N (x)|V ⊂ U} is not empty and is a fundamental
system of connected neighbourhoods of x in U . Thus U is locally connected and it proves
(1).
Let x ∈ C ⊂ X where C is the connected component of x. BecauseX is locally connected,
there existsN a connected neighbourhood ofx. Therefore by the definition of a connected
component, we have N ⊂ C and then C is a neighbourhood of x. It implies that C is a
neighbourhood of each of his point, in other words C is open and (2) is proven. �

8. Irreducible components

Definition 8.1. Let X be a topological space.
(1) We sayX is irreducible, ifX is not empty, and wheneverX = Z1 ∪Z2 with Zi

closed, we have X = Z1 or X = Z2.
(2) We say Z ⊂ X is an irreducible component of X if Z is a maximal irreducible

subset of X .

An irreducible space is obviously connected.

Lemma 8.2. Let f : X → Y be a continuous map of topological spaces. If E ⊂ X is
an irreducible subset, then f(E) ⊂ Y is irreducible as well.

Proof. Clearly we may assume E = X (i.e., X irreducible) and f(E) = Y (i.e., f
surjective). First, Y 6= ∅ since X 6= ∅. Next, assume Y = Y1 ∪ Y2 with Y1, Y2 closed.
ThenX = X1 ∪X2 withXi = f−1(Yi) closed inX . By assumption onX , we must have
X = X1 or X = X2, hence Y = Y1 or Y = Y2 since f is surjective. �

Lemma 8.3. Let X be a topological space.
(1) If T ⊂ X is irreducible so is its closure in X .
(2) Any irreducible component of X is closed.
(3) Any irreducible subset of X is contained in an irreducible component of X .
(4) Every point of X is contained in some irreducible component of X , in other

words, X is the union of its irreducible components.

Proof. Let T be the closure of the irreducible subset T . If T = Z1∪Z2 with Zi ⊂ T
closed, then T = (T ∩Z1)∪ (T ∩Z2) and hence T equals one of the two, say T = Z1∩T .
Thus clearly T ⊂ Z1. This proves (1). Part (2) follows immediately from (1) and the
definition of irreducible components.
Let T ⊂ X be irreducible. Consider the set A of irreducible subsets T ⊂ Tα ⊂ X .
Note that A is nonempty since T ∈ A. There is a partial ordering on A coming from
inclusion: α ≤ α′ ⇔ Tα ⊂ Tα′ . Choose a maximal totally ordered subsetA′ ⊂ A, and let
T ′ =

⋃
α∈A′ Tα. We claim that T ′ is irreducible. Namely, suppose that T ′ = Z1 ∪Z2 is a

union of two closed subsets of T ′. For each α ∈ A′ we have either Tα ⊂ Z1 or Tα ⊂ Z2,
by irreducibility of Tα. Suppose that for some α0 ∈ A′ we have Tα0 6⊂ Z1 (say, if not
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we’re done anyway). Then, since A′ is totally ordered we see immediately that Tα ⊂ Z2
for all α ∈ A′. Hence T ′ = Z2. This proves (3). Part (4) is an immediate consequence of
(3) as a singleton space is irreducible. �

Lemma 8.4. Let X be a topological space and suppose X =
⋃
i=1,...,nXi where each

Xi is an irreducible closed subset of X and no Xi is contained in the union of the other
members. Then eachXi is an irreducible component ofX and each irreducible component
of X is one of the Xi.

Proof. Let Y be an irreducible component of X . Write Y =
⋃
i=1,...,n(Y ∩ Xi)

and note that each Y ∩Xi is closed in Y since Xi is closed in X . By irreducibility of Y
we see that Y is equal to one of the Y ∩ Xi, i.e., Y ⊂ Xi. By maximality of irreducible
components we get Y = Xi.

Conversely, take one of the Xi and expand it to an irreducible component Y , which we
have already shown is one of the Xj . So Xi ⊂ Xj and since the original union does not
have redundant members, Xi = Xj , which is an irreducible component. �

Lemma 8.5. Let f : X → Y be a surjective, continuous map of topological spaces.
If X has a finite number, say n, of irreducible components, then Y has ≤ n irreducible
components.

Proof. Say X1, . . . , Xn are the irreducible components of X . By Lemmas 8.2 and
8.3 the closure Yi ⊂ Y of f(Xi) is irreducible. Since f is surjective, we see that Y is the
union of the Yi. We may choose a minimal subset I ⊂ {1, . . . , n} such that Y =

⋃
i∈I Yi.

Then we may apply Lemma 8.4 to see that the Yi for i ∈ I are the irreducible components
of Y . �

A singleton is irreducible. Thus if x ∈ X is a point then the closure {x} is an irreducible
closed subset of X .

Definition 8.6. Let X be a topological space.
(1) Let Z ⊂ X be an irreducible closed subset. A generic point of Z is a point ξ ∈ Z

such that Z = {ξ}.
(2) The space X is called Kolmogorov, if for every x, x′ ∈ X , x 6= x′ there exists a

closed subset of X which contains exactly one of the two points.
(3) The space X is called quasi-sober if every irreducible closed subset has a generic

point.
(4) The spaceX is called sober if every irreducible closed subset has a unique generic

point.

A topological space X is Kolmogorov, quasi-sober, resp. sober if and only if the map
x 7→ {x} from X to the set of irreducible closed subsets of X is injective, surjective, resp.
bijective. Hence we see that a topological space is sober if and only if it is quasi-sober and
Kolmogorov.

Lemma 8.7. Let X be a topological space and let Y ⊂ X .
(1) If X is Kolmogorov then so is Y .
(2) Suppose Y is locally closed in X . If X is quasi-sober then so is Y .
(3) Suppose Y is locally closed in X . If X is sober then so is Y .
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Proof. Proof of (1). Suppose X is Kolmogorov. Let x, y ∈ Y with x 6= y. Then
{x} ∩ Y = {x} 6= {y} = {y} ∩ Y . Hence {x} ∩ Y 6= {y} ∩ Y . This shows that Y is
Kolmogorov.

Proof of (2). Suppose X is quasi-sober. It suffices to consider the cases Y is closed and Y
is open. First, suppose Y is closed. Let Z be an irreducible closed subset of Y . Then Z is
an irreducible closed subset of X . Hence there exists x ∈ Z with {x} = Z. It follows
{x} ∩ Y = Z. This shows Y is quasi-sober. Second, suppose Y is open. Let Z be an
irreducible closed subset of Y . Then Z is an irreducible closed subset of X . Hence there
exists x ∈ Z with {x} = Z. If x /∈ Y we get the contradiction Z = Z ∩ Y ⊂ Z ∩ Y =
{x} ∩ Y = ∅. Therefore x ∈ Y . It follows Z = Z ∩ Y = {x} ∩ Y . This shows Y is
quasi-sober.

Proof of (3). Immediately from (1) and (2). �

Lemma 8.8. Let X be a topological space and let (Xi)i∈I be a covering of X .
(1) SupposeXi is locally closed inX for every i ∈ I . Then,X is Kolmogorov if and

only if Xi is Kolmogorov for every i ∈ I .
(2) Suppose Xi is open in X for every i ∈ I . Then, X is quasi-sober if and only if

Xi is quasi-sober for every i ∈ I .
(3) Suppose Xi is open in X for every i ∈ I . Then, X is sober if and only if Xi is

sober for every i ∈ I .

Proof. Proof of (1). IfX is Kolmogorov then so isXi for every i ∈ I by Lemma 8.7.
Suppose Xi is Kolmogorov for every i ∈ I . Let x, y ∈ X with {x} = {y}. There exists
i ∈ I with x ∈ Xi. There exists an open subsetU ⊂ X such thatXi is a closed subset ofU .
If y /∈ U we get the contradiction x ∈ {x} ∩ U = {y} ∩ U = ∅. Hence y ∈ U . It follows
y ∈ {y} ∩ U = {x} ∩ U ⊂ Xi. This shows y ∈ Xi. It follows {x} ∩ Xi = {y} ∩ Xi.
Since Xi is Kolmogorov we get x = y. This shows X is Kolmogorov.

Proof of (2). If X is quasi-sober then so is Xi for every i ∈ I by Lemma 8.7. Suppose Xi

is quasi-sober for every i ∈ I . Let Y be an irreducible closed subset of X . As Y 6= ∅ there
exists i ∈ I withXi∩Y 6= ∅. AsXi is open inX it followsXi∩Y is non-empty and open
in Y , hence irreducible and dense in Y . ThusXi ∩Y is an irreducible closed subset ofXi.
AsXi is quasi-sober there exists x ∈ Xi∩Y withXi∩Y = {x}∩Xi ⊂ {x}. SinceXi∩Y
is dense in Y and Y is closed in X it follows Y = Xi ∩ Y ∩ Y ⊂ Xi ∩ Y ⊂ {x} ⊂ Y .
Therefore Y = {x}. This shows X is quasi-sober.

Proof of (3). Immediately from (1) and (2). �

Example 8.9. Let X be an indiscrete space of cardinality at least 2. Then X is quasi-
sober but not Kolmogorov. Moreover, the family of its singletons is a covering of X by
discrete and hence Kolmogorov spaces.

Example 8.10. Let Y be an infinite set, furnished with the topology whose closed sets
are Y and the finite subsets of Y . Then Y is Kolmogorov but not quasi-sober. However,
the family of its singletons (which are its irreducible components) is a covering by discrete
and hence sober spaces.

Example 8.11. Let X and Y be as in Example 8.9 and Example 8.10. Then, X q Y is
neither Kolmogorov nor quasi-sober.
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Example 8.12. LetZ be an infinite set and let z ∈ Z. We furnishZ with the topology
whose closed sets are Z and the finite subsets of Z \ {z}. Then Z is sober but its subspace
Z \ {z} is not quasi-sober.

Example 8.13. Recall that a topological space X is Hausdorff iff for every distinct
pair of points x, y ∈ X there exist disjoint opens U, V ⊂ X such that x ∈ U , y ∈ V .
In this case X is irreducible if and only if X is a singleton. Similarly, any subset of X is
irreducible if and only if it is a singleton. Hence a Hausdorff space is sober.

Lemma 8.14. Let f : X → Y be a continuous map of topological spaces. Assume that
(a) Y is irreducible, (b) f is open, and (c) there exists a dense collection of points y ∈ Y
such that f−1(y) is irreducible. Then X is irreducible.

Proof. SupposeX = Z1∪Z2 withZi closed. Consider the open setsU1 = Z1\Z2 =
X \ Z2 and U2 = Z2 \ Z1 = X \ Z1. To get a contradiction assume that U1 and U2 are
both nonempty. By (b) we see that f(Ui) is open. By (a) we have Y irreducible and
hence f(U1) ∩ f(U2) 6= ∅. By (c) there is a point y which corresponds to a point of this
intersection such that the fibre Xy = f−1(y) is irreducible. Then Xy ∩ U1 and Xy ∩ U2
are nonempty disjoint open subsets of Xy which is a contradiction. �

Lemma 8.15. Let f : X → Y be a continuous map of topological spaces. Assume
that (a) f is open, and (b) for every y ∈ Y the fibre f−1(y) is irreducible. Then f induces
a bijection between irreducible components.

Proof. We point out that assumption (b) implies that f is surjective (see Definition
8.1). Let T ⊂ Y be an irreducible component. Note that T is closed, see Lemma 8.3. The
lemma follows if we show that f−1(T ) is irreducible because any irreducible subset of X
maps into an irreducible component of Y by Lemma 8.2. Note that f−1(T )→ T satisfies
the assumptions of Lemma 8.14. Hence we win. �

The construction of the following lemma is sometimes called the “soberification”.

Lemma 8.16. Let X be a topological space. There is a canonical continuous map

c : X −→ X ′

from X to a sober topological space X ′ which is universal among continuous maps from
X to sober topological spaces. Moreover, the assignment U ′ 7→ c−1(U ′) is a bijection be-
tween opens ofX ′ andX which commutes with finite intersections and arbitrary unions.
The image c(X) is a Kolmogorov topological space and the map c : X → c(X) is universal
for maps of X into Kolmogorov spaces.

Proof. Let X ′ be the set of irreducible closed subsets of X and let

c : X → X ′, x 7→ {x}.

For U ⊂ X open, let U ′ ⊂ X ′ denote the set of irreducible closed subsets of X which
meet U . Then c−1(U ′) = U . In particular, if U1 6= U2 are open in X , then U ′

1 6= U ′
2.

Hence c induces a bijection between the subsets of X ′ of the form U ′ and the opens of X .

Let U1, U2 be open in X . Suppose that Z ∈ U ′
1 and Z ∈ U ′

2. Then Z ∩U1 and Z ∩U2 are
nonempty open subsets of the irreducible space Z and hence Z ∩ U1 ∩ U2 is nonempty.
Thus (U1 ∩ U2)′ = U ′

1 ∩ U ′
2. The rule U 7→ U ′ is also compatible with arbitrary unions

(details omitted). Thus it is clear that the collection of U ′ form a topology onX ′ and that
we have a bijection as stated in the lemma.
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Next we show thatX ′ is sober. Let T ⊂ X ′ be an irreducible closed subset. Let U ⊂ X be
the open such thatX ′ \T = U ′. Then Z = X \U is irreducible because of the properties
of the bijection of the lemma. We claim that Z ∈ T is the unique generic point. Namely,
any open of the form V ′ ⊂ X ′ which does not containZ must come from an open V ⊂ X
which misses Z , i.e., is contained in U .

Finally, we check the universal property. Let f : X → Y be a continuous map to a sober
topological space. Then we let f ′ : X ′ → Y be the map which sends the irreducible closed
Z ⊂ X to the unique generic point of f(Z). It follows immediately that f ′◦c = f as maps
of sets, and the properties of c imply that f ′ is continuous. We omit the verification that
the continuous map f ′ is unique. We also omit the proof of the statements on Kolmogorov
spaces. �

Lemma 8.17. Let X be a connected topological space with a finite number of irre-
ducible componentsX1, . . . , Xn. If n > 1 there is an 1 ≤ j ≤ n such thatX ′ =

⋃
i 6=j Xi

is connected.

Proof. This is a graph theory problem. Let Γ be the graph with verticesV = {1, . . . , n}
and an edge between i and j if and only if Xi ∩ Xj is nonempty. Connectedness of X
means that Γ is connected. Our problem is to find 1 ≤ j ≤ n such that Γ \ {j} is still
connected. You can do this by choosing j, j′ ∈ E with maximal distance and then j works
(choose a leaf!). Details omitted. �

9. Noetherian topological spaces

Definition 9.1. A topological space is called Noetherian if the descending chain
condition holds for closed subsets of X . A topological space is called locally Noetherian
if every point has a neighbourhood which is Noetherian.

Lemma 9.2. Let X be a Noetherian topological space.
(1) Any subset of X with the induced topology is Noetherian.
(2) The space X has finitely many irreducible components.
(3) Each irreducible component of X contains a nonempty open of X .

Proof. Let T ⊂ X be a subset of X . Let T1 ⊃ T2 ⊃ . . . be a descending chain of
closed subsets of T . Write Ti = T ∩ Zi with Zi ⊂ X closed. Consider the descending
chain of closed subsets Z1 ⊃ Z1 ∩ Z2 ⊃ Z1 ∩ Z2 ∩ Z3 . . . This stabilizes by assumption
and hence the original sequence of Ti stabilizes. Thus T is Noetherian.

Let A be the set of closed subsets of X which do not have finitely many irreducible com-
ponents. Assume that A is not empty to arrive at a contradiction. The set A is partially
ordered by inclusion: α ≤ α′ ⇔ Zα ⊂ Zα′ . By the descending chain condition we may
find a smallest element of A, say Z. As Z is not a finite union of irreducible components,
it is not irreducible. Hence we can write Z = Z ′ ∪Z ′′ and both are strictly smaller closed
subsets. By construction Z ′ =

⋃
Z ′
i and Z ′′ =

⋃
Z ′′
j are finite unions of their irreducible

components. HenceZ =
⋃
Z ′
i∪
⋃
Z ′′
j is a finite union of irreducible closed subsets. After

removing redundant members of this expression, this will be the decomposition of Z into
its irreducible components (Lemma 8.4), a contradiction.

Let Z ⊂ X be an irreducible component of X . Let Z1, . . . , Zn be the other irreducible
components ofX . ConsiderU = Z\(Z1∪. . .∪Zn). This is not empty since otherwise the
irreducible spaceZ would be contained in one of the otherZi. BecauseX = Z∪Z1∪. . . Zn
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(see Lemma 8.3), also U = X \ (Z1 ∪ . . . ∪ Zn) and hence open in X . Thus Z contains a
nonempty open of X . �

Lemma 9.3. Let f : X → Y be a continuous map of topological spaces.
(1) If X is Noetherian, then f(X) is Noetherian.
(2) If X is locally Noetherian and f open, then f(X) is locally Noetherian.

Proof. In case (1), suppose that Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . is a descending chain of closed
subsets of f(X) (as usual with the induced topology as a subset of Y ). Then f−1(Z1) ⊃
f−1(Z2) ⊃ f−1(Z3) ⊃ . . . is a descending chain of closed subsets of X . Hence this chain
stabilizes. Since f(f−1(Zi)) = Zi we conclude that Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . stabilizes also.
In case (2), let y ∈ f(X). Choose x ∈ X with f(x) = y. By assumption there exists a
neighbourhoodE ⊂ X of xwhich is Noetherian. Then f(E) ⊂ f(X) is a neighbourhood
which is Noetherian by part (1). �

Lemma 9.4. LetX be a topological space. LetXi ⊂ X , i = 1, . . . , n be a finite collec-
tion of subsets. If each Xi is Noetherian (with the induced topology), then

⋃
i=1,...,nXi

is Noetherian (with the induced topology).

Proof. Let {Fm}m∈N a decreasing sequence of closed subsets of X ′ =
⋃
i=1,...,nXi

with the induced topology. Then we can find a decreasing sequence {Gm}m∈N of closed
subsets ofX verifyingFm = Gm∩X ′ for allm (small detail omitted). AsXi is noetherian
and {Gm ∩ Xi}m∈N a decreasing sequence of closed subsets of Xi, there exists mi ∈ N
such that for all m ≥ mi we have Gm ∩ Xi = Gmi ∩ Xi. Let m0 = maxi=1,...,nmi.
Then clearly

Fm = Gm ∩X ′ = Gm ∩ (X1 ∪ . . . ∪Xn) = (Gm ∩X1) ∪ . . . (Gm ∩Xn)
stabilizes for m ≥ m0 and the proof is complete. �

Example 9.5. Any nonempty, Kolmogorov Noetherian topological space has a closed
point (combine Lemmas 12.8 and 12.13). Let X = {1, 2, 3, . . .}. Define a topology on X
with opens ∅, {1, 2, . . . , n}, n ≥ 1 and X . Thus X is a locally Noetherian topological
space, without any closed points. This space cannot be the underlying topological space
of a locally Noetherian scheme, see Properties, Lemma 5.9.

Lemma 9.6. Let X be a locally Noetherian topological space. Then X is locally con-
nected.

Proof. Let x ∈ X . Let E be a neighbourhood of x. We have to find a connected
neighbourhood of x contained inE. By assumption there exists a neighbourhoodE′ of x
which is Noetherian. ThenE∩E′ is Noetherian, see Lemma 9.2. LetE∩E′ = Y1∪. . .∪Yn
be the decomposition into irreducible components, see Lemma 9.2. Let E′′ =

⋃
x∈Yi Yi.

This is a connected subset ofE∩E′ containing x. It contains the openE∩E′\(
⋃
x 6∈Yi Yi)

of E ∩ E′ and hence it is a neighbourhood of x in X . This proves the lemma. �

10. Krull dimension

Definition 10.1. Let X be a topological space.
(1) A chain of irreducible closed subsets of X is a sequence Z0 ⊂ Z1 ⊂ . . . ⊂ Zn ⊂

X with Zi closed irreducible and Zi 6= Zi+1 for i = 0, . . . , n− 1.
(2) The length of a chain Z0 ⊂ Z1 ⊂ . . . ⊂ Zn ⊂ X of irreducible closed subsets

of X is the integer n.
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(3) The dimension or more precisely the Krull dimension dim(X) of X is the ele-
ment of {−∞, 0, 1, 2, 3, . . . ,∞} defined by the formula:

dim(X) = sup{lengths of chains of irreducible closed subsets}
Thus dim(X) = −∞ if and only if X is the empty space.

(4) Let x ∈ X . The Krull dimension of X at x is defined as
dimx(X) = min{dim(U), x ∈ U ⊂ X open}

the minimum of dim(U) where U runs over the open neighbourhoods of x in
X .

Note that if U ′ ⊂ U ⊂ X are open then dim(U ′) ≤ dim(U). Hence if dimx(X) = d
then x has a fundamental system of open neighbourhoods U with dim(U) = dimx(X).

Lemma 10.2. LetX be a topological space. Then dim(X) = sup dimx(X) where the
supremum runs over the points x of X .

Proof. It is clear that dim(X) ≥ dimx(X) for all x ∈ X (see discussion following
Definition 10.1). Thus an inequality in one direction. For the converse, let n ≥ 0 and
suppose that dim(X) ≥ n. Then we can find a chain of irreducible closed subsets Z0 ⊂
Z1 ⊂ . . . ⊂ Zn ⊂ X . Pick x ∈ Z0. For every open neighbourhood U of x we get a chain
of irreducible closed subsets

Z0 ∩ U ⊂ Z1 ∩ U ⊂ . . . ⊂ Zn ∩ U
in U . Namely, the sets U ∩ Zi are irreducible closed in U and the inclusions are strict
(details omitted; hint: the closure of U ∩ Zi is Zi). In this way we see that dimx(X) ≥ n
which proves the other inequality. �

Example 10.3. The Krull dimension of the usual Euclidean space Rn is 0.

Example 10.4. LetX = {s, η}with open sets given by {∅, {η}, {s, η}}. In this case a
maximal chain of irreducible closed subsets is {s} ⊂ {s, η}. Hence dim(X) = 1. It is easy
to generalize this example to get a (n + 1)-element topological space of Krull dimension
n.

Definition 10.5. Let X be a topological space. We say that X is equidimensional if
every irreducible component of X has the same dimension.

11. Codimension and catenary spaces

We only define the codimension of irreducible closed subsets.

Definition 11.1. Let X be a topological space. Let Y ⊂ X be an irreducible closed
subset. The codimension of Y in X is the supremum of the lengths e of chains

Y = Y0 ⊂ Y1 ⊂ . . . ⊂ Ye ⊂ X
of irreducible closed subsets in X starting with Y . We will denote this codim(Y,X).

The codimension is an element of {0, 1, 2, . . .} ∪ {∞}. If codim(Y,X) < ∞, then every
chain can be extended to a maximal chain (but these do not all have to have the same
length).

Lemma 11.2. LetX be a topological space. Let Y ⊂ X be an irreducible closed subset.
Let U ⊂ X be an open subset such that Y ∩ U is nonempty. Then

codim(Y,X) = codim(Y ∩ U,U)
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Proof. The rule T 7→ T defines a bijective inclusion preserving map between the
closed irreducible subsets of U and the closed irreducible subsets of X which meet U .
Using this the lemma easily follows. Details omitted. �

Example 11.3. Let X = [0, 1] be the unit interval with the following topology: The
sets [0, 1], (1− 1/n, 1] for n ∈ N, and ∅ are open. So the closed sets are ∅, {0}, [0, 1− 1/n]
for n > 1 and [0, 1]. This is clearly a Noetherian topological space. But the irreducible
closed subset Y = {0} has infinite codimension codim(Y,X) = ∞. To see this we just
remark that all the closed sets [0, 1− 1/n] are irreducible.

Definition 11.4. Let X be a topological space. We say X is catenary if for every
pair of irreducible closed subsets T ⊂ T ′ we have codim(T, T ′) <∞ and every maximal
chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

has the same length (equal to the codimension).

Lemma 11.5. Let X be a topological space. The following are equivalent:
(1) X is catenary,
(2) X has an open covering by catenary spaces.

Moreover, in this case any locally closed subspace of X is catenary.

Proof. Suppose that X is catenary and that U ⊂ X is an open subset. The rule
T 7→ T defines a bijective inclusion preserving map between the closed irreducible subsets
of U and the closed irreducible subsets of X which meet U . Using this the lemma easily
follows. Details omitted. �

Lemma 11.6. Let X be a topological space. The following are equivalent:
(1) X is catenary, and
(2) for every pair of irreducible closed subsets Y ⊂ Y ′ we have codim(Y, Y ′) <∞

and for every triple Y ⊂ Y ′ ⊂ Y ′′ of irreducible closed subsets we have
codim(Y, Y ′′) = codim(Y, Y ′) + codim(Y ′, Y ′′).

Proof. Let suppose that X is catenary. According to Definition 11.4, for every pair
of irreducible closed subsets Y ⊂ Y ′ we have codim(Y, Y ′) <∞. Let Y ⊂ Y ′ ⊂ Y ′′ be a
triple of irreducible closed subsets of X . Let

Y = Y0 ⊂ Y1 ⊂ ... ⊂ Ye1 = Y ′

be a maximal chain of irreducible closed subsets betweenY andY ′ where e1 = codim(Y, Y ′).
Let also

Y ′ = Ye1 ⊂ Ye1+1 ⊂ ... ⊂ Ye1+e2 = Y ′′

be a maximal chain of irreducible closed subsets betweenY ′ andY ′′ where e2 = codim(Y ′, Y ′′).
As the two chains are maximal, the concatenation

Y = Y0 ⊂ Y1 ⊂ ... ⊂ Ye1 = Y ′ = Ye1 ⊂ Ye1+1 ⊂ ... ⊂ Ye1+e2 = Y ′′

is maximal too (between Y and Y ′′) and its length equals to e1 + e2. As X is catenary,
each maximal chain has the same length equals to the codimension. Thus the point (2)
that codim(Y, Y ′′) = e1 + e2 = codim(Y, Y ′) + codim(Y ′, Y ′′) is verified.
For the reciprocal, we show by induction that : if Y = Y1 ⊂ ... ⊂ Yn = Y ′, then
codim(Y, Y ′) = codim(Y1, Y2) + ... + codim(Yn−1, Yn). Therefore, it forces maximal
chains to have the same length. �
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12. Quasi-compact spaces and maps

The phrase “compact” will be reserved for Hausdorff topological spaces. And many spaces
occurring in algebraic geometry are not Hausdorff.

Definition 12.1. Quasi-compactness.
(1) We say that a topological space X is quasi-compact if every open covering of X

has a finite subcover.
(2) We say that a continuous map f : X → Y is quasi-compact if the inverse image

f−1(V ) of every quasi-compact open V ⊂ Y is quasi-compact.
(3) We say a subset Z ⊂ X is retrocompact if the inclusion map Z → X is quasi-

compact.

In many texts on topology a space is called compact if it is quasi-compact and Hausdorff;
and in other texts the Hausdorff condition is omitted. To avoid confusion in algebraic
geometry we use the term quasi-compact. The notion of quasi-compactness of a map is
very different from the notion of a “proper map”, since there we require (besides closedness
and separatedness) the inverse image of any quasi-compact subset of the target to be quasi-
compact, whereas in the definition above we only consider quasi-compact open sets.

Lemma 12.2. A composition of quasi-compact maps is quasi-compact.

Proof. This is immediate from the definition. �

Lemma 12.3. A closed subset of a quasi-compact topological space is quasi-compact.

Proof. LetE ⊂ X be a closed subset of the quasi-compact spaceX . LetE =
⋃
Vj be

an open covering. ChooseUj ⊂ X open such thatVj = E∩Uj . ThenX = (X\E)∪
⋃
Uj

is an open covering of X . Hence X = (X \ E) ∪ Uj1 ∪ . . . ∪ Ujn for some n and indices
ji. Thus E = Vj1 ∪ . . . ∪ Vjn as desired. �

Lemma 12.4. Let X be a Hausdorff topological space.
(1) If E ⊂ X is quasi-compact, then it is closed.
(2) If E1, E2 ⊂ X are disjoint quasi-compact subsets then there exists opens Ei ⊂

Ui with U1 ∩ U2 = ∅.

Proof. Proof of (1). Let x ∈ X , x 6∈ E. For every e ∈ E we can find disjoint opens
Ve and Ue with e ∈ Ve and x ∈ Ue. Since E ⊂

⋃
Ve we can find finitely many e1, . . . , en

such that E ⊂ Ve1 ∪ . . . ∪ Ven . Then U = Ue1 ∩ . . . ∩ Uen is an open neighbourhood of
x which avoids Ve1 ∪ . . . ∪ Ven . In particular it avoids E. Thus E is closed.

Proof of (2). In the proof of (1) we have seen that given x ∈ E1 we can find an open
neighbourhood x ∈ Ux and an open E2 ⊂ Vx such that Ux ∩ Vx = ∅. Because E1 is
quasi-compact we can find a finite number xi ∈ E1 such thatE1 ⊂ U = Ux1 ∪ . . .∪Uxn .
We take V = Vx1 ∩ . . . ∩ Vxn to finish the proof. �

Lemma 12.5. Let X be a quasi-compact Hausdorff space. Let E ⊂ X . The following
are equivalent: (a) E is closed in X , (b) E is quasi-compact.

Proof. The implication (a)⇒ (b) is Lemma 12.3. The implication (b)⇒ (a) is Lemma
12.4. �

The following is really a reformulation of the quasi-compact property.
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Lemma 12.6. Let X be a quasi-compact topological space. If {Zα}α∈A is a collection
of closed subsets such that the intersection of each finite subcollection is nonempty, then⋂
α∈A Zα is nonempty.

Proof. We suppose that
⋂
α∈A Zα = ∅. So we have

⋃
α∈A(X \Zα) = X by comple-

mentation. As the subsets Zα are closed,
⋃
α∈A(X \Zα) is an open covering of the quasi-

compact space X . Thus there exists a finite subset J ⊂ A such that X =
⋃
α∈J(X \Zα).

The complementary is then empty, which means that
⋂
α∈J Zα = ∅. It proves there exists

a finite subcollection of {Zα}α∈J verifying
⋂
α∈J Zα = ∅, which concludes by contrapo-

sition. �

Lemma 12.7. Let f : X → Y be a continuous map of topological spaces.
(1) If X is quasi-compact, then f(X) is quasi-compact.
(2) If f is quasi-compact, then f(X) is retrocompact.

Proof. If f(X) =
⋃
Vi is an open covering, then X =

⋃
f−1(Vi) is an open cov-

ering. Hence if X is quasi-compact then X = f−1(Vi1) ∪ . . . ∪ f−1(Vin) for some
i1, . . . , in ∈ I and hence f(X) = Vi1 ∪ . . . ∪ Vin . This proves (1). Assume f is quasi-
compact, and let V ⊂ Y be quasi-compact open. Then f−1(V ) is quasi-compact, hence
by (1) we see that f(f−1(V )) = f(X) ∩ V is quasi-compact. Hence f(X) is retrocom-
pact. �

Lemma 12.8. Let X be a topological space. Assume that
(1) X is nonempty,
(2) X is quasi-compact, and
(3) X is Kolmogorov.

Then X has a closed point.

Proof. Consider the set

T = {Z ⊂ X | Z = {x} for some x ∈ X}

of all closures of singletons in X . It is nonempty since X is nonempty. Make T into
a partially ordered set using the relation of inclusion. Suppose Zα, α ∈ A is a totally
ordered subset of T . By Lemma 12.6 we see that

⋂
α∈A Zα 6= ∅. Hence there exists some

x ∈
⋂
α∈A Zα and we see that Z = {x} ∈ T is a lower bound for the family. By Zorn’s

lemma there exists a minimal element Z ∈ T . As X is Kolmogorov we conclude that
Z = {x} for some x and x ∈ X is a closed point. �

Lemma 12.9. LetX be a quasi-compact Kolmogorov space. Then the setX0 of closed
points of X is quasi-compact.

Proof. Let X0 =
⋃
Ui,0 be an open covering. Write Ui,0 = X0 ∩ Ui for some open

Ui ⊂ X . Consider the complement Z of
⋃
Ui. This is a closed subset of X , hence quasi-

compact (Lemma 12.3) and Kolmogorov. By Lemma 12.8 if Z is nonempty it would have
a closed point which contradicts the fact that X0 ⊂

⋃
Ui. Hence Z = ∅ and X =

⋃
Ui.

Since X is quasi-compact this covering has a finite subcover and we conclude. �

Lemma 12.10. Let X be a topological space. Assume
(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.



12. QUASI-COMPACT SPACES AND MAPS 219

For any x ∈ X the connected component ofX containing x is the intersection of all open
and closed subsets of X containing x.

Proof. Let T be the connected component containing x. Let S =
⋂
α∈A Zα be the

intersection of all open and closed subsets Zα of X containing x. Note that S is closed in
X . Note that any finite intersection of Zα’s is a Zα. Because T is connected and x ∈ T
we have T ⊂ S. It suffices to show that S is connected. If not, then there exists a disjoint
union decomposition S = B q C with B and C open and closed in S. In particular,
B and C are closed in X , and so quasi-compact by Lemma 12.3 and assumption (1). By
assumption (2) there exist quasi-compact opens U, V ⊂ X with B = S ∩ U and C =
S ∩ V (details omitted). Then U ∩ V ∩ S = ∅. Hence

⋂
α U ∩ V ∩ Zα = ∅. By

assumption (3) the intersection U ∩ V is quasi-compact. By Lemma 12.6 for some α′ ∈ A
we have U ∩ V ∩ Zα′ = ∅. Since X \ (U ∪ V ) is disjoint from S and closed in X
hence quasi-compact, we can use the same lemma to see that Zα′′ ⊂ U ∪ V for some
α′′ ∈ A. Then Zα = Zα′ ∩ Zα′′ is contained in U ∪ V and disjoint from U ∩ V . Hence
Zα = U ∩ Zα q V ∩ Zα is a decomposition into two open pieces, hence U ∩ Zα and
V ∩ Zα are open and closed in X . Thus, if x ∈ B say, then we see that S ⊂ U ∩ Zα and
we conclude that C = ∅. �

Lemma 12.11. Let X be a topological space. Assume X is quasi-compact and Haus-
dorff. For any x ∈ X the connected component of X containing x is the intersection of
all open and closed subsets of X containing x.

Proof. Let T be the connected component containing x. Let S =
⋂
α∈A Zα be the

intersection of all open and closed subsets Zα of X containing x. Note that S is closed in
X . Note that any finite intersection of Zα’s is a Zα. Because T is connected and x ∈ T
we have T ⊂ S. It suffices to show that S is connected. If not, then there exists a disjoint
union decomposition S = B q C with B and C open and closed in S. In particular, B
and C are closed in X , and so quasi-compact by Lemma 12.3. By Lemma 12.4 there exist
disjoint opens U, V ⊂ X with B ⊂ U and C ⊂ V . Then X \ U ∪ V is closed in X hence
quasi-compact (Lemma 12.3). It follows that (X \U ∪V )∩Zα = ∅ for some α by Lemma
12.6. In other words, Zα ⊂ U ∪ V . Thus Zα = Zα ∩ V qZα ∩U is a decomposition into
two open pieces, hence U ∩Zα and V ∩Zα are open and closed in X . Thus, if x ∈ B say,
then we see that S ⊂ U ∩ Zα and we conclude that C = ∅. �

Lemma 12.12. Let X be a topological space. Assume
(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of two quasi-compact opens is quasi-compact.

For a subset T ⊂ X the following are equivalent:
(a) T is an intersection of open and closed subsets of X , and
(b) T is closed in X and is a union of connected components of X .

Proof. It is clear that (a) implies (b). Assume (b). Let x ∈ X , x 6∈ T . Let x ∈ C ⊂ X
be the connected component of X containing x. By Lemma 12.10 we see that C =

⋂
Vα

is the intersection of all open and closed subsets Vα of X which contain C. In particular,
any pairwise intersection Vα∩Vβ occurs as a Vα. As T is a union of connected components
of X we see that C ∩ T = ∅. Hence T ∩

⋂
Vα = ∅. Since T is quasi-compact as a closed

subset of a quasi-compact space (see Lemma 12.3) we deduce that T ∩ Vα = ∅ for some α,
see Lemma 12.6. For this α we see that Uα = X \ Vα is an open and closed subset of X
which contains T and not x. The lemma follows. �
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Lemma 12.13. Let X be a Noetherian topological space.
(1) The space X is quasi-compact.
(2) Any subset of X is retrocompact.

Proof. Suppose X =
⋃
Ui is an open covering of X indexed by the set I which

does not have a refinement by a finite open covering. Choose i1, i2, . . . elements of I
inductively in the following way: Choose in+1 such that Uin+1 is not contained in Ui1 ∪
. . .∪Uin . Thus we see thatX ⊃ (X \Ui1) ⊃ (X \Ui1 ∪Ui2) ⊃ . . . is a strictly decreasing
infinite sequence of closed subsets. This contradicts the fact that X is Noetherian. This
proves the first assertion. The second assertion is now clear since every subset of X is
Noetherian by Lemma 9.2. �

Lemma 12.14. A quasi-compact locally Noetherian space is Noetherian.

Proof. The conditions imply immediately that X has a finite covering by Noether-
ian subsets, and hence is Noetherian by Lemma 9.4. �

Lemma 12.15 (Alexander subbase theorem). Let X be a topological space. Let B be a
subbase for X . If every covering of X by elements of B has a finite refinement, then X is
quasi-compact.

Proof. Assume there is an open covering of X which does not have a finite refine-
ment. Using Zorn’s lemma we can choose a maximal open covering X =

⋃
i∈I Ui which

does not have a finite refinement (details omitted). In other words, if U ⊂ X is any open
which does not occur as one of the Ui, then the covering X = U ∪

⋃
i∈I Ui does have a

finite refinement. Let I ′ ⊂ I be the set of indices such that Ui ∈ B. Then
⋃
i∈I′ Ui 6= X ,

since otherwise we would get a finite refinement covering X by our assumption on B.
Pick x ∈ X , x 6∈

⋃
i∈I′ Ui. Pick i ∈ I with x ∈ Ui. Pick V1, . . . , Vn ∈ B such that

x ∈ V1 ∩ . . . ∩ Vn ⊂ Ui. This is possible as B is a subbasis for X . Note that Vj does not
occur as a Ui. By maximality of the chosen covering we see that for each j there exist
ij,1, . . . , ij,nj ∈ I such that X = Vj ∪ Uij,1 ∪ . . . ∪ Uij,nj . Since V1 ∩ . . . ∩ Vn ⊂ Ui we
conclude that X = Ui ∪

⋃
Uij,l a contradiction. �

13. Locally quasi-compact spaces

Recall that a neighbourhood of a point need not be open.

Definition 13.1. A topological spaceX is called locally quasi-compact2 if every point
has a fundamental system of quasi-compact neighbourhoods.

The term locally compact space in the literature often refers to a space as in the following
lemma.

Lemma 13.2. A Hausdorff space is locally quasi-compact if and only if every point
has a quasi-compact neighbourhood.

Proof. LetX be a Hausdorff space. Let x ∈ X and let x ∈ E ⊂ X be a quasi-compact
neighbourhood. Then E is closed by Lemma 12.4. Suppose that x ∈ U ⊂ X is an open
neighbourhood of x. Then Z = E \U is a closed subset of E not containing x. Hence we
can find a pair of disjoint open subsets W,V ⊂ E of E such that x ∈ V and Z ⊂ W , see

2This may not be standard notation. Alternative notions used in the literature are: (1) Every point has
some quasi-compact neighbourhood, and (2) Every point has a closed quasi-compact neighbourhood. A scheme
has the property that every point has a fundamental system of open quasi-compact neighbourhoods.
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Lemma 12.4. It follows that V ⊂ E is a closed neighbourhood of x contained in E ∩ U .
Also V is quasi-compact as a closed subset of E (Lemma 12.3). In this way we obtain a
fundamental system of quasi-compact neighbourhoods of x. �

Lemma 13.3 (Baire category theorem). Let X be a locally quasi-compact Hausdorff
space. Let Un ⊂ X , n ≥ 1 be dense open subsets. Then

⋂
n≥1 Un is dense in X .

Proof. After replacing Un by
⋂
i=1,...,n Ui we may assume that U1 ⊃ U2 ⊃ . . ..

Let x ∈ X . We will show that x is in the closure of
⋂
n≥1 Un. Thus let E be a neigh-

bourhood of x. To show that E ∩
⋂
n≥1 Un is nonempty we may replace E by a smaller

neighbourhood. After replacing E by a smaller neighbourhood, we may assume that E is
quasi-compact.

Set x0 = x and E0 = E. Below, we will inductively choose a point xi ∈ Ei−1 ∩ Ui and
a quasi-compact neighbourhood Ei of xi with Ei ⊂ Ei−1 ∩ Ui. Because X is Hausdorff,
the subsetsEi ⊂ X are closed (Lemma 12.4). Since theEi are also nonempty we conclude
that

⋂
i≥1 Ei is nonempty (Lemma 12.6). Since

⋂
i≥1 Ei ⊂ E ∩

⋂
n≥1 Un this proves the

lemma.

The base case i = 0 we have done above. Induction step. Since Ei−1 is a neighbourhood
of xi−1 we can find an open xi−1 ∈W ⊂ Ei−1. SinceUi is dense inX we see thatW ∩Ui
is nonempty. Pick any xi ∈W ∩Ui. By definition of locally quasi-compact spaces we can
find a quasi-compact neighbourhoodEi of xi contained inW ∩Ui. ThenEi ⊂ Ei−1∩Ui
as desired. �

Lemma 13.4. LetX be a Hausdorff and quasi-compact space. LetX =
⋃
i∈I Ui be an

open covering. Then there exists an open covering X =
⋃
i∈I Vi such that Vi ⊂ Ui for

all i.

Proof. Let x ∈ X . Choose an i(x) ∈ I such that x ∈ Ui(x). Since X \ Ui(x)
and {x} are disjoint closed subsets of X , by Lemmas 12.3 and 12.4 there exists an open
neighbourhoodUx ofxwhose closure is disjoint fromX\Ui(x). ThusUx ⊂ Ui(x). SinceX
is quasi-compact, there is a finite list of points x1, . . . , xm such thatX = Ux1 ∪ . . .∪Uxm .
Setting Vi =

⋃
i=i(xj) Uxj the proof is finished. �

Lemma 13.5. Let X be a Hausdorff and quasi-compact space. LetX =
⋃
i∈I Ui be an

open covering. Suppose given an integer p ≥ 0 and for every (p + 1)-tuple i0, . . . , ip of
I an open covering Ui0 ∩ . . . ∩ Uip =

⋃
Wi0...ip,k. Then there exists an open covering

X =
⋃
j∈J Vj and a mapα : J → I such that Vj ⊂ Uα(j) and such that eachVj0∩. . .∩Vjp

is contained in Wα(j0)...α(jp),k for some k.

Proof. Since X is quasi-compact, there is a reduction to the case where I is finite
(details omitted). We prove the result for I finite by induction on p. The base case p = 0
is immediate by taking a covering as in Lemma 13.4 refining the open covering X =⋃
Wi0,k.

Induction step. Assume the lemma proven for p − 1. For all p-tuples i′0, . . . , i′p−1 of I
let Ui′0 ∩ . . . ∩ Ui′p−1

=
⋃
Wi′0...i

′
p−1,k

be a common refinement of the coverings Ui0 ∩
. . . ∩ Uip =

⋃
Wi0...ip,k for those (p+ 1)-tuples such that {i′0, . . . , i′p−1} = {i0, . . . , ip}

(equality of sets). (There are finitely many of these as I is finite.) By induction there
exists a solution for these opens, say X =

⋃
Vj and α : J → I . At this point the

covering X =
⋃
j∈J Vj and α satisfy Vj ⊂ Uα(j) and each Vj0 ∩ . . . ∩ Vjp is contained in
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Wα(j0)...α(jp),k for some k if there is a repetition in α(j0), . . . , α(jp). Of course, we may
and do assume that J is finite.

Fix i0, . . . , ip ∈ I pairwise distinct. Consider (p + 1)-tuples j0, . . . , jp ∈ J with i0 =
α(j0), . . . , ip = α(jp) such that Vj0 ∩ . . .∩Vjp is not contained inWα(j0)...α(jp),k for any
k. Let N be the number of such (p+ 1)-tuples. We will show how to decrease N . Since

Vj0 ∩ . . . ∩ Vjp ⊂ Ui0 ∩ . . . ∩ Uip =
⋃
Wi0...ip,k

we find a finite set K = {k1, . . . , kt} such that the LHS is contained in
⋃
k∈KWi0...ip,k.

Then we consider the open covering

Vj0 = (Vj0 \ (Vj1 ∩ . . . ∩ Vjp)) ∪ (
⋃

k∈K
Vj0 ∩Wi0...ip,k)

The first open on the RHS intersects Vj1 ∩ . . . ∩ Vjp in the empty set and the other opens
Vj0,k of the RHS satisfy Vj0,k∩Vj1 . . .∩Vjp ⊂Wα(j0)...α(jp),k. Set J ′ = JqK. For j ∈ J
set V ′

j = Vj if j 6= j0 and set V ′
j0

= Vj0 \ (Vj1 ∩ . . . ∩ Vjp). For k ∈ K set V ′
k = Vj0,k.

Finally, the map α′ : J ′ → I is given by α on J and maps every element of K to i0. A
simple check shows that N has decreased by one under this replacement. Repeating this
procedure N times we arrive at the situation where N = 0.

To finish the proof we argue by induction on the numberM of (p+1)-tuples i0, . . . , ip ∈ I
with pairwise distinct entries for which there exists a (p + 1)-tuple j0, . . . , jp ∈ J with
i0 = α(j0), . . . , ip = α(jp) such that Vj0 ∩ . . . ∩ Vjp is not contained in Wα(j0)...α(jp),k
for any k. To do this, we claim that the operation performed in the previous paragraph
does not increaseM . This follows formally from the fact that the map α′ : J ′ → I factors
through a map β : J ′ → J such that V ′

j′ ⊂ Vβ(j′). �

Lemma 13.6. Let X be a Hausdorff and locally quasi-compact space. Let Z ⊂ X be
a quasi-compact (hence closed) subset. Suppose given an integer p ≥ 0, a set I , for every
i ∈ I an open Ui ⊂ X , and for every (p + 1)-tuple i0, . . . , ip of I an open Wi0...ip ⊂
Ui0 ∩ . . . ∩ Uip such that

(1) Z ⊂
⋃
Ui, and

(2) for every i0, . . . , ip we have Wi0...ip ∩ Z = Ui0 ∩ . . . ∩ Uip ∩ Z.
Then there exist opens Vi of X such that we have Z ⊂

⋃
Vi, for all i we have Vi ⊂ Ui,

and we have Vi0 ∩ . . . ∩ Vip ⊂Wi0...ip for all (p+ 1)-tuples i0, . . . , ip.

Proof. Since Z is quasi-compact, there is a reduction to the case where I is finite
(details omitted). Because X is locally quasi-compact and Z is quasi-compact, we can find
a neighbourhood Z ⊂ E which is quasi-compact, i.e., E is quasi-compact and contains an
open neighbourhood of Z in X . If we prove the result after replacing X by E , then the
result follows. Hence we may assume X is quasi-compact.

We prove the result in case I is finite andX is quasi-compact by induction on p. The base
case is p = 0. In this case we have X = (X \ Z) ∪

⋃
Wi. By Lemma 13.4 we can find a

covering X = V ∪
⋃
Vi by opens Vi ⊂Wi and V ⊂ X \ Z with Vi ⊂Wi for all i. Then

we see that we obtain a solution of the problem posed by the lemma.

Induction step. Assume the lemma proven for p−1. SetWj0...jp−1 equal to the intersection
of all Wi0...ip with {j0, . . . , jp−1} = {i0, . . . , ip} (equality of sets). By induction there
exists a solution for these opens, say Vi ⊂ Ui. It follows from our choice ofWj0...jp−1 that
we have Vi0 ∩ . . .∩ Vip ⊂Wi0...ip for all (p+ 1)-tuples i0, . . . , ip where ia = ib for some



14. LIMITS OF SPACES 223

0 ≤ a < b ≤ p. Thus we only need to modify our choice of Vi if Vi0 ∩ . . .∩Vip 6⊂Wi0...ip

for some (p+ 1)-tuple i0, . . . , ip with pairwise distinct elements. In this case we have

T = Vi0 ∩ . . . ∩ Vip \Wi0...ip ⊂ Vi0 ∩ . . . ∩ Vip \Wi0...ip

is a closed subset of X contained in Ui0 ∩ . . . ∩ Uip not meeting Z. Hence we can replace
Vi0 by Vi0 \ T to “fix” the problem. After repeating this finitely many times for each of
the problem tuples, the lemma is proven. �

Lemma 13.7. Let X be a topological space. Let Z ⊂ X be a quasi-compact subset
such that any two points of Z have disjoint open neighbourhoods in X . Suppose given
an integer p ≥ 0, a set I , for every i ∈ I an open Ui ⊂ X , and for every (p + 1)-tuple
i0, . . . , ip of I an open Wi0...ip ⊂ Ui0 ∩ . . . ∩ Uip such that

(1) Z ⊂
⋃
Ui, and

(2) for every i0, . . . , ip we have Wi0...ip ∩ Z = Ui0 ∩ . . . ∩ Uip ∩ Z.
Then there exist opens Vi of X such that

(1) Z ⊂
⋃
Vi,

(2) Vi ⊂ Ui for all i,
(3) Vi ∩ Z ⊂ Ui for all i, and
(4) Vi0 ∩ . . . ∩ Vip ⊂Wi0...ip for all (p+ 1)-tuples i0, . . . , ip.

Proof. Since Z is quasi-compact, there is a reduction to the case where I is finite
(details omitted). We prove the result in case I is finite by induction on p.

The base case is p = 0. For z ∈ Z ∩ Ui and z′ ∈ Z \ Ui there exist disjoint opens
z ∈ Vz,z′ and z′ ∈Wz,z′ ofX . SinceZ \Ui is quasi-compact (Lemma 12.3), we can choose
a finite nunber z′

1, . . . , z
′
r such that Z \ Ui ⊂ Wz,z′

1
∪ . . . ∪ Wz,z′

r
. Then we see that

Vz = Vz,z′
1
∩ . . . ∩ Vz,z′

r
∩ Ui is an open neighbourhood of z contained in Ui with the

property that Vz ∩ Z ⊂ Ui. Since z and i where arbitrary and since Z is quasi-compact
we can find a finite list z1, i1, . . . , zt, it and opens Vzj ⊂ Uij with Vzj ∩ Z ⊂ Uij and
Z ⊂

⋃
Vzj . Then we can set Vi = Wi ∩ (

⋃
j:i=ij Vzj ) to solve the problem for p = 0.

Induction step. Assume the lemma proven for p−1. SetWj0...jp−1 equal to the intersection
of all Wi0...ip with {j0, . . . , jp−1} = {i0, . . . , ip} (equality of sets). By induction there
exists a solution for these opens, say Vi ⊂ Ui. It follows from our choice ofWj0...jp−1 that
we have Vi0 ∩ . . .∩ Vip ⊂Wi0...ip for all (p+ 1)-tuples i0, . . . , ip where ia = ib for some
0 ≤ a < b ≤ p. Thus we only need to modify our choice of Vi if Vi0 ∩ . . .∩Vip 6⊂Wi0...ip

for some (p+ 1)-tuple i0, . . . , ip with pairwise distinct elements. In this case we have

T = Vi0 ∩ . . . ∩ Vip \Wi0...ip ⊂ Vi0 ∩ . . . ∩ Vip \Wi0...ip

is a closed subset of X not meeting Z by our property (3) of the opens Vi. Hence we can
replace Vi0 by Vi0 \ T to “fix” the problem. After repeating this finitely many times for
each of the problem tuples, the lemma is proven. �

14. Limits of spaces

The category of topological spaces has products. Namely, if I is a set and for i ∈ I we
are given a topological space Xi then we endow

∏
i∈I Xi with the product topology. As

a basis for the topology we use sets of the form
∏
Ui where Ui ⊂ Xi is open and Ui = Xi

for almost all i.
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The category of topological spaces has equalizers. Namely, if a, b : X → Y are morphisms
of topological spaces, then the equalizer of a and b is the subset {x ∈ X | a(x) = b(x)} ⊂
X endowed with the induced topology.

Lemma 14.1. The category of topological spaces has limits and the forgetful functor
to sets commutes with them.

Proof. This follows from the discussion above and Categories, Lemma 14.11. It fol-
lows from the description above that the forgetful functor commutes with limits. Another
way to see this is to use Categories, Lemma 24.5 and use that the forgetful functor has a left
adjoint, namely the functor which assigns to a set the corresponding discrete topological
space. �

Lemma 14.2. Let I be a cofiltered category. Let i 7→ Xi be a diagram of topological
spaces over I . Let X = limXi be the limit with projection maps fi : X → Xi.

(1) Any open of X is of the form
⋃
j∈J f

−1
j (Uj) for some subset J ⊂ I and opens

Uj ⊂ Xj .
(2) Any quasi-compact open of X is of the form f−1

i (Ui) for some i and some Ui ⊂
Xi open.

Proof. The construction of the limit given above shows that X ⊂
∏
Xi with the

induced topology. A basis for the topology of
∏
Xi are the opens

∏
Ui where Ui ⊂ Xi

is open and Ui = Xi for almost all i. Say i1, . . . , in ∈ Ob(I) are the objects such that
Uij 6= Xij . Then

X ∩
∏

Ui = f−1
i1

(Ui1) ∩ . . . ∩ f−1
in

(Uin)
For a general limit of topological spaces these form a basis for the topology onX . However,
if I is cofiltered as in the statement of the lemma, then we can pick a j ∈ Ob(I) and
morphisms j → il, l = 1, . . . , n. Let

Uj = (Xj → Xi1)−1(Ui1) ∩ . . . ∩ (Xj → Xin)−1(Uin)

Then it is clear that X ∩
∏
Ui = f−1

j (Uj). Thus for any open W of X there is a set A
and a map α : A → Ob(I) and opens Ua ⊂ Xα(a) such that W =

⋃
f−1
α(a)(Ua). Set

J = Im(α) and for j ∈ J set Uj =
⋃
α(a)=j Ua to see that W =

⋃
j∈J f

−1
j (Uj). This

proves (1).

To see (2) suppose that
⋃
j∈J f

−1
j (Uj) is quasi-compact. Then it is equal to f−1

j1
(Uj1) ∪

. . . ∪ f−1
jm

(Ujm) for some j1, . . . , jm ∈ J . Since I is cofiltered, we can pick a i ∈ Ob(I)
and morphisms i→ jl, l = 1, . . . ,m. Let

Ui = (Xi → Xj1)−1(Uj1) ∪ . . . ∪ (Xi → Xjm)−1(Ujm)

Then our open equals f−1
i (Ui) as desired. �

Lemma 14.3. Let I be a cofiltered category. Let i 7→ Xi be a diagram of topological
spaces over I . Let X be a topological space such that

(1) X = limXi as a set (denote fi the projection maps),
(2) the sets f−1

i (Ui) for i ∈ Ob(I) and Ui ⊂ Xi open form a basis for the topology
of X .

Then X is the limit of the Xi as a topological space.

Proof. Follows from the description of the limit topology in Lemma 14.2. �
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Theorem 14.4 (Tychonov). A product of quasi-compact spaces is quasi-compact.

Proof. Let I be a set and for i ∈ I let Xi be a quasi-compact topological space. Set
X =

∏
Xi. LetB be the set of subsets ofX of the formUi×

∏
i′∈I,i′ 6=iXi′ whereUi ⊂ Xi

is open. By construction this family is a subbasis for the topology on X . By Lemma 12.15
it suffices to show that any covering X =

⋃
j∈J Bj by elements Bj of B has a finite

refinement. We can decompose J =
∐
Ji so that if j ∈ Ji, then Bj = Uj ×

∏
i′ 6=iXi′

with Uj ⊂ Xi open. If Xi =
⋃
j∈Ji Uj , then there is a finite refinement and we conclude

that X =
⋃
j∈J Bj has a finite refinement. If this is not the case, then for every i we can

choose an point xi ∈ Xi which is not in
⋃
j∈Ji Uj . But then the point x = (xi)i∈I is an

element of X not contained in
⋃
j∈J Bj , a contradiction. �

The following lemma does not hold if one drops the assumption that the spaces Xi are
Hausdorff, see Examples, Section 4.

Lemma 14.5. Let I be a category and let i 7→ Xi be a diagram over I in the category
of topological spaces. If each Xi is quasi-compact and Hausdorff, then limXi is quasi-
compact.

Proof. Recall that limXi is a subspace of
∏
Xi. By Theorem 14.4 this product is

quasi-compact. Hence it suffices to show that limXi is a closed subspace of
∏
Xi (Lemma

12.3). If ϕ : j → k is a morphism of I , then let Γϕ ⊂ Xj ×Xk denote the graph of the
corresponding continuous map Xj → Xk. By Lemma 3.2 this graph is closed. It is clear
that limXi is the intersection of the closed subsets

Γϕ ×
∏

l 6=j,k
Xl ⊂

∏
Xi

Thus the result follows. �

The following lemma generalizes Categories, Lemma 21.7 and partially generalizes Lemma
12.6.

Lemma 14.6. Let I be a cofiltered category and let i 7→ Xi be a diagram over I in
the category of topological spaces. If eachXi is quasi-compact, Hausdorff, and nonempty,
then limXi is nonempty.

Proof. In the proof of Lemma 14.5 we have seen thatX = limXi is the intersection
of the closed subsets

Zϕ = Γϕ ×
∏

l 6=j,k
Xl

inside the quasi-compact space
∏
Xi where ϕ : j → k is a morphism of I and Γϕ ⊂

Xj×Xk is the graph of the corresponding morphismXj → Xk. Hence by Lemma 12.6 it
suffices to show any finite intersection of these subsets is nonempty. Assume ϕt : jt → kt,
t = 1, . . . , n is a finite collection of morphisms of I . Since I is cofiltered, we can pick an
object j and a morphism ψt : j → jt for each t. For each pair t, t′ such that either (a)
jt = jt′ , or (b) jt = kt′ , or (c) kt = kt′ we obtain two morphisms j → l with l = jt in
case (a), (b) or l = kt in case (c). Because I is cofiltered and since there are finitely many
pairs (t, t′) we may choose a map j′ → j which equalizes these two morphisms for all such
pairs (t, t′). Pick an element x ∈ Xj′ and for each t let xjt , resp. xkt be the image of x
under the morphism Xj′ → Xj → Xjt , resp. Xj′ → Xj → Xjt → Xkt . For any index
l ∈ Ob(I) which is not equal to jt or kt for some t we pick an arbitrary element xl ∈ Xl

(using the axiom of choice). Then (xi)i∈Ob(I) is in the intersection
Zϕ1 ∩ . . . ∩ Zϕn
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by construction and the proof is complete. �

15. Constructible sets

Definition 15.1. Let X be a topological space. Let E ⊂ X be a subset of X .
(1) We sayE is constructible3 inX ifE is a finite union of subsets of the formU∩V c

where U, V ⊂ X are open and retrocompact in X .
(2) We sayE is locally constructible inX if there exists an open coveringX =

⋃
Vi

such that each E ∩ Vi is constructible in Vi.

Lemma 15.2. The collection of constructible sets is closed under finite intersections,
finite unions and complements.

Proof. Note that ifU1,U2 are open and retrocompact inX then so isU1∪U2 because
the union of two quasi-compact subsets of X is quasi-compact. It is also true that U1 ∩
U2 is retrocompact. Namely, suppose U ⊂ X is quasi-compact open, then U2 ∩ U is
quasi-compact because U2 is retrocompact in X , and then we conclude U1 ∩ (U2 ∩ U) is
quasi-compact because U1 is retrocompact in X . From this it is formal to show that the
complement of a constructible set is constructible, that finite unions of constructibles are
constructible, and that finite intersections of constructibles are constructible. �

Lemma 15.3. Let f : X → Y be a continuous map of topological spaces. If the inverse
image of every retrocompact open subset of Y is retrocompact in X , then inverse images
of constructible sets are constructible.

Proof. This is true because f−1(U ∩V c) = f−1(U)∩ f−1(V )c, combined with the
definition of constructible sets. �

Lemma 15.4. Let U ⊂ X be open. For a constructible set E ⊂ X the intersection
E ∩ U is constructible in U .

Proof. Suppose that V ⊂ X is retrocompact open in X . It suffices to show that
V ∩ U is retrocompact in U by Lemma 15.3. To show this let W ⊂ U be open and quasi-
compact. Then W is open and quasi-compact in X . Hence V ∩ W = V ∩ U ∩ W is
quasi-compact as V is retrocompact in X . �

Lemma 15.5. Let U ⊂ X be a retrocompact open. Let E ⊂ U . If E is constructible
in U , then E is constructible in X .

Proof. Suppose that V,W ⊂ U are retrocompact open in U . Then V,W are retro-
compact open in X (Lemma 12.2). Hence V ∩ (U \W ) = V ∩ (X \W ) is constructible
in X . We conclude since every constructible subset of U is a finite union of subsets of the
form V ∩ (U \W ). �

Lemma 15.6. Let X be a topological space. Let E ⊂ X be a subset. Let X = V1 ∪
. . . ∪ Vm be a finite covering by retrocompact opens. Then E is constructible in X if and
only if E ∩ Vj is constructible in Vj for each j = 1, . . . ,m.

Proof. If E is constructible in X , then by Lemma 15.4 we see that E ∩ Vj is con-
structible in Vj for all j. Conversely, suppose that E ∩ Vj is constructible in Vj for each
j = 1, . . . ,m. Then E =

⋃
E ∩ Vj is a finite union of constructible sets by Lemma 15.5

and hence constructible. �

3In the second edition of EGA I [?] this was called a “globally constructible” set and a the terminology
“constructible” was used for what we call a locally constructible set.
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Lemma 15.7. Let X be a topological space. Let Z ⊂ X be a closed subset such that
X \ Z is quasi-compact. Then for a constructible set E ⊂ X the intersection E ∩ Z is
constructible in Z.

Proof. Suppose that V ⊂ X is retrocompact open in X . It suffices to show that
V ∩ Z is retrocompact in Z by Lemma 15.3. To show this let W ⊂ Z be open and quasi-
compact. The subsetW ′ = W ∪(X \Z) is quasi-compact, open, andW = Z∩W ′. Hence
V ∩ Z ∩W = V ∩ Z ∩W ′ is a closed subset of the quasi-compact open V ∩W ′ as V is
retrocompact in X . Thus V ∩ Z ∩W is quasi-compact by Lemma 12.3. �

Lemma 15.8. Let X be a topological space. Let T ⊂ X be a subset. Suppose
(1) T is retrocompact in X ,
(2) quasi-compact opens form a basis for the topology on X .

Then for a constructible set E ⊂ X the intersection E ∩ T is constructible in T .

Proof. Suppose thatV ⊂ X is retrocompact open inX . It suffices to show thatV ∩T
is retrocompact in T by Lemma 15.3. To show this letW ⊂ T be open and quasi-compact.
By assumption (2) we can find a quasi-compact open W ′ ⊂ X such that W = T ∩W ′

(details omitted). Hence V ∩T ∩W = V ∩T ∩W ′ is the intersection of T with the quasi-
compact open V ∩W ′ as V is retrocompact inX . Thus V ∩T ∩W is quasi-compact. �

Lemma 15.9. Let Z ⊂ X be a closed subset whose complement is retrocompact open.
Let E ⊂ Z. If E is constructible in Z , then E is constructible in X .

Proof. Suppose that V ⊂ Z is retrocompact open in Z. Consider the open subset
Ṽ = V ∪ (X \ Z) of X . Let W ⊂ X be quasi-compact open. Then

W ∩ Ṽ = (V ∩W ) ∪ ((X \ Z) ∩W ) .
The first part is quasi-compact as V ∩W = V ∩ (Z ∩W ) and (Z ∩W ) is quasi-compact
open in Z (Lemma 12.3) and V is retrocompact in Z. The second part is quasi-compact as
(X \ Z) is retrocompact in X . In this way we see that Ṽ is retrocompact in X . Thus if
V1, V2 ⊂ Z are retrocompact open, then

V1 ∩ (Z \ V2) = Ṽ1 ∩ (X \ Ṽ2)
is constructible in X . We conclude since every constructible subset of Z is a finite union
of subsets of the form V1 ∩ (Z \ V2). �

Lemma 15.10. LetX be a topological space. Every constructible subset ofX is retro-
compact.

Proof. LetE =
⋃
i=1,...,n Ui∩V ci with Ui, Vi retrocompact open inX . LetW ⊂ X

be quasi-compact open. Then E ∩W =
⋃
i=1,...,n Ui ∩ V ci ∩W . Thus it suffices to show

that U ∩V c ∩W is quasi-compact if U, V are retrocompact open andW is quasi-compact
open. This is true because U ∩ V c ∩W is a closed subset of the quasi-compact U ∩W so
Lemma 12.3 applies. �

Question: Does the following lemma also hold if we assume X is a quasi-compact topo-
logical space? Compare with Lemma 15.7.

Lemma 15.11. LetX be a topological space. AssumeX has a basis consisting of quasi-
compact opens. For E,E′ constructible in X , the intersection E ∩ E′ is constructible in
E.

Proof. Combine Lemmas 15.8 and 15.10. �
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Lemma 15.12. LetX be a topological space. AssumeX has a basis consisting of quasi-
compact opens. Let E be constructible in X and F ⊂ E constructible in E. Then F is
constructible in X .

Proof. Observe that any retrocompact subset T of X has a basis for the induced
topology consisting of quasi-compact opens. In particular this holds for any constructible
subset (Lemma 15.10). WriteE = E1∪ . . .∪En withEi = Ui∩V ci whereUi, Vi ⊂ X are
retrocompact open. Note that Ei = E ∩ Ei is constructible in E by Lemma 15.11. Hence
F ∩Ei is constructible in Ei by Lemma 15.11. Thus it suffices to prove the lemma in case
E = U ∩ V c where U, V ⊂ X are retrocompact open. In this case the inclusion E ⊂ X
is a composition

E = U ∩ V c → U → X

Then we can apply Lemma 15.9 to the first inclusion and Lemma 15.5 to the second. �

Lemma 15.13. LetX be a quasi-compact topological space having a basis consisting of
quasi-compact opens such that the intersection of any two quasi-compact opens is quasi-
compact. Let T ⊂ X be a locally closed subset such that T is quasi-compact and T c is
retrocompact in X . Then T is constructible in X .

Proof. Note thatT is quasi-compact and open inT . Using our basis of quasi-compact
opens we can write T = U ∩ T where U is quasi-compact open in X . Then V = U \ T =
U ∩T c is retrocompact in U as T c is retrocompact inX . Hence V is quasi-compact. Since
the intersection of any two quasi-compact opens is quasi-compact any quasi-compact open
of X is retrocompact. Thus T = U ∩ V c with U and V = U \ T retrocompact opens of
X . A fortiori, T is constructible in X . �

Lemma 15.14. Let X be a topological space which has a basis for the topology con-
sisting of quasi-compact opens. LetE ⊂ X be a subset. LetX = E1 ∪ . . .∪Em be a finite
covering by constructible subsets. Then E is constructible in X if and only if E ∩ Ej is
constructible in Ej for each j = 1, . . . ,m.

Proof. Combine Lemmas 15.11 and 15.12. �

Lemma 15.15. Let X be a topological space. Suppose that Z ⊂ X is irreducible. Let
E ⊂ X be a finite union of locally closed subsets (e.g. E is constructible). The following
are equivalent

(1) The intersection E ∩ Z contains an open dense subset of Z.
(2) The intersection E ∩ Z is dense in Z.

If Z has a generic point ξ, then this is also equivalent to

(3) We have ξ ∈ E.

Proof. The implication (1)⇒ (2) is clear. Assume (2). Note that E ∩ Z is a finite
union of locally closed subsets Zi of Z. Since Z is irreducible, one of the Zi must be dense
in Z. Then this Zi is dense open in Z as it is open in its closure. Hence (1) holds.

Suppose that ξ ∈ Z is a generic point. If the equivalent conditions (1) and (2) hold, then
ξ ∈ E. Conversely, if ξ ∈ E then ξ ∈ E ∩ Z and hence E ∩ Z is dense in Z. �
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16. Constructible sets and Noetherian spaces

Lemma 16.1. Let X be a Noetherian topological space. The constructible sets in X
are precisely the finite unions of locally closed subsets of X .

Proof. This follows immediately from Lemma 12.13. �

Lemma 16.2. Let f : X → Y be a continuous map of Noetherian topological spaces.
If E ⊂ Y is constructible in Y , then f−1(E) is constructible in X .

Proof. Follows immediately from Lemma 16.1 and the definition of a continuous
map. �

Lemma 16.3. Let X be a Noetherian topological space. Let E ⊂ X be a subset. The
following are equivalent:

(1) E is constructible in X , and
(2) for every irreducible closed Z ⊂ X the intersection E ∩ Z either contains a

nonempty open of Z or is not dense in Z.

Proof. Assume E is constructible and Z ⊂ X irreducible closed. Then E ∩ Z is
constructible in Z by Lemma 16.2. Hence E ∩ Z is a finite union of nonempty locally
closed subsets Ti of Z. Clearly if none of the Ti is open in Z , then E ∩ Z is not dense in
Z. In this way we see that (1) implies (2).
Conversely, assume (2) holds. Consider the set S of closed subsets Y ofX such thatE∩Y
is not constructible in Y . IfS 6= ∅, then it has a smallest element Y asX is Noetherian. Let
Y = Y1 ∪ . . .∪ Yr be the decomposition of Y into its irreducible components, see Lemma
9.2. If r > 1, then each Yi ∩ E is constructible in Yi and hence a finite union of locally
closed subsets of Yi. Thus E ∩ Y is a finite union of locally closed subsets of Y too and
we conclude that E ∩ Y is constructible in Y by Lemma 16.1. This is a contradiction and
so r = 1. If r = 1, then Y is irreducible, and by assumption (2) we see that E ∩ Y either
(a) contains an open V of Y or (b) is not dense in Y . In case (a) we see, by minimality of
Y , that E ∩ (Y \ V ) is a finite union of locally closed subsets of Y \ V . Thus E ∩ Y is
a finite union of locally closed subsets of Y and is constructible by Lemma 16.1. This is
a contradiction and so we must be in case (b). In case (b) we see that E ∩ Y = E ∩ Y ′

for some proper closed subset Y ′ ⊂ Y . By minimality of Y we see that E ∩ Y ′ is a finite
union of locally closed subsets of Y ′ and we see that E ∩ Y ′ = E ∩ Y is a finite union of
locally closed subsets of Y and is constructible by Lemma 16.1. This contradiction finishes
the proof of the lemma. �

Lemma 16.4. Let X be a Noetherian topological space. Let x ∈ X . Let E ⊂ X be
constructible in X . The following are equivalent:

(1) E is a neighbourhood of x, and
(2) for every irreducible closed subset Y of X which contains x the intersection

E ∩ Y is dense in Y .

Proof. It is clear that (1) implies (2). Assume (2). Consider the set S of closed subsets
Y of X containing x such that E ∩ Y is not a neighbourhood of x in Y . If S 6= ∅, then
it has a minimal element Y as X is Noetherian. Suppose Y = Y1 ∪ Y2 with two smaller
nonempty closed subsets Y1, Y2. If x ∈ Yi for i = 1, 2, then Yi ∩E is a neighbourhood of
x in Yi and we conclude Y ∩E is a neighbourhood of x in Y which is a contradiction. If
x ∈ Y1 but x 6∈ Y2 (say), then Y1 ∩ E is a neighbourhood of x in Y1 and hence also in Y ,
which is a contradiction as well. We conclude that Y is irreducible closed. By assumption
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(2) we see thatE∩Y is dense in Y . ThusE∩Y contains an open V of Y , see Lemma 16.3.
If x ∈ V thenE∩Y is a neighbourhood of x in Y which is a contradiction. If x 6∈ V , then
Y ′ = Y \ V is a proper closed subset of Y containing x. By minimality of Y we see that
E ∩ Y ′ contains an open neighbourhood V ′ ⊂ Y ′ of x in Y ′. But then V ′ ∪ V is an open
neighbourhood of x in Y contained in E , a contradiction. This contradiction finishes the
proof of the lemma. �

Lemma 16.5. Let X be a Noetherian topological space. Let E ⊂ X be a subset. The
following are equivalent:

(1) E is open in X , and
(2) for every irreducible closed subset Y ofX the intersectionE∩Y is either empty

or contains a nonempty open of Y .

Proof. This follows formally from Lemmas 16.3 and 16.4. �

17. Characterizing proper maps

We include a section discussing the notion of a proper map in usual topology. We define a
continuous map of topological spaces to be proper if it is universally closed and separated.
Although this matches well with the definition of a proper morphism in algebraic geome-
try, this is different from the definition in Bourbaki. With our definition of a proper map
of topological spaces, the proper base change theorem (Cohomology, Theorem 18.2) holds
without any further assumptions. Furthermore, given a morphism f : X → Y of finite
type schemes over C one has: f is proper as a morphism of schemes if and only if the
continuous map f : X(C) → Y (C) on C-points with the classical topology is proper.
This is explained in [?, Exp. XII, Prop. 3.2(v)] which also has a footnote pointing out that
they take properness in topology to be Bourbaki’s notion with separatedness added on.

We find it useful to have names for three distinct concepts: separated, universally closed,
and both of those together (i.e., properness). For a continuous map f : X → Y of
locally compact Hausdorff spaces the word “proper” has long been used for the notion
“f−1(compact) = compact” and this is equivalent to universal closedness for such nice
spaces. In fact, we will see the preimage condition formulated for clarity using the word
“quasi-compact” is equivalent to universal closedness in general, if one includes the as-
sumption of the map being closed. See also [?, Exercises 22-26 in Chapter II] but beware
that Lang uses “proper” as a synonym for “universally closed”, like Bourbaki does.

Lemma 17.1 (Tube lemma). Let X and Y be topological spaces. Let A ⊂ X and
B ⊂ Y be quasi-compact subsets. Let A × B ⊂ W ⊂ X × Y with W open in X × Y .
Then there exists opens A ⊂ U ⊂ X and B ⊂ V ⊂ Y such that U × V ⊂W .

Proof. For every a ∈ A and b ∈ B there exist opensU(a,b) ofX and V(a,b) of Y such
that (a, b) ∈ U(a,b) × V(a,b) ⊂W . Fix b and we see there exist a finite number a1, . . . , an
such that A ⊂ U(a1,b) ∪ . . . ∪ U(an,b). Hence

A× {b} ⊂ (U(a1,b) ∪ . . . ∪ U(an,b))× (V(a1,b) ∩ . . . ∩ V(an,b)) ⊂W.

Thus for every b ∈ B there exists opens Ub ⊂ X and Vb ⊂ Y such that A× {b} ⊂ Ub ×
Vb ⊂W . As above there exist a finite number b1, . . . , bm such that B ⊂ Vb1 ∪ . . . ∪ Vbm .
Then we win because A×B ⊂ (Ub1 ∩ . . . ∩ Ubm)× (Vb1 ∪ . . . ∪ Vbm). �

The notation in the following definition may be slightly different from what you are used
to.
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Definition 17.2. Let f : X → Y be a continuous map between topological spaces.
(1) We say that the map f is closed if the image of every closed subset is closed.
(2) We say that the map f is Bourbaki-proper4 if the map Z×X → Z×Y is closed

for any topological space Z.
(3) We say that the map f is quasi-proper if the inverse image f−1(V ) of every

quasi-compact subset V ⊂ Y is quasi-compact.
(4) We say that f is universally closed if the map f ′ : Z ×Y X → Z is closed for

any continuous map g : Z → Y .
(5) We say that f is proper if f is separated and universally closed.

The following lemma is useful later.

Lemma 17.3. A topological space X is quasi-compact if and only if the projection
map Z ×X → Z is closed for any topological space Z.

Proof. (See also remark below.) If X is not quasi-compact, there exists an open cov-
ering X =

⋃
i∈I Ui such that no finite number of Ui cover X . Let Z be the subset of the

power setP(I) of I consisting of I and all nonempty finite subsets of I . Define a topology
on Z with as a basis for the topology the following sets:

(1) All subsets of Z \ {I}.
(2) For every finite subset K of I the set UK := {J ⊂ I | J ∈ Z, K ⊂ J}).

It is left to the reader to verify this is the basis for a topology. Consider the subset ofZ×X
defined by the formula

M = {(J, x) | J ∈ Z, x ∈
⋂

i∈J
U ci )}

If (J, x) 6∈ M , then x ∈ Ui for some i ∈ J . Hence U{i} × Ui ⊂ Z ×X is an open subset
containing (J, x) and not intersecting M . Hence M is closed. The projection of M to Z
is Z − {I} which is not closed. Hence Z ×X → Z is not closed.

Assume X is quasi-compact. Let Z be a topological space. Let M ⊂ Z × X be closed.
Let z ∈ Z be a point which is not in pr1(M). By the Tube Lemma 17.1 there exists an
open U ⊂ Z such that U × X is contained in the complement of M . Hence pr1(M) is
closed. �

Remark 17.4. Lemma 17.3 is a combination of [?, I, p. 75, Lemme 1] and [?, I, p. 76,
Corollaire 1].

Theorem 17.5. Let f : X → Y be a continuous map between topological spaces.
The following conditions are equivalent:

(1) The map f is quasi-proper and closed.
(2) The map f is Bourbaki-proper.
(3) The map f is universally closed.
(4) The map f is closed and f−1(y) is quasi-compact for any y ∈ Y .

Proof. (See also the remark below.) If the map f satisfies (1), it automatically satisfies
(4) because any single point is quasi-compact.

4This is the terminology used in [?]. Sometimes this property may be called “universally closed” in the
literature.
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Assume map f satisfies (4). We will prove it is universally closed, i.e., (3) holds. Let g :
Z → Y be a continuous map of topological spaces and consider the diagram

Z ×Y X
g′

//

f ′

��

X

f

��
Z

g // Y

During the proof we will use that Z ×Y X → Z × X is a homeomorphism onto its
image, i.e., that we may identify Z ×Y X with the corresponding subset of Z ×X with
the induced topology. The image of f ′ : Z ×Y X → Z is Im(f ′) = {z : g(z) ∈ f(X)}.
Because f(X) is closed, we see that Im(f ′) is a closed subspace of Z. Consider a closed
subset P ⊂ Z ×Y X . Let z ∈ Z , z 6∈ f ′(P ). If z 6∈ Im(f ′), then Z \ Im(f ′) is an open
neighbourhood which avoids f ′(P ). If z is in Im(f ′) then (f ′)−1{z} = {z}×f−1{g(z)}
and f−1{g(z)} is quasi-compact by assumption. Because P is a closed subset of Z ×Y X ,
we have a closed P ′ of Z ×X such that P = P ′ ∩ Z ×Y X . Since (f ′)−1{z} is a subset
of P c = P ′c ∪ (Z ×Y X)c, and since (f ′)−1{z} is disjoint from (Z ×Y X)c we see
that (f ′)−1{z} is contained in P ′c. We may apply the Tube Lemma 17.1 to (f ′)−1{z} =
{z} × f−1{g(z)} ⊂ (P ′)c ⊂ Z × X . This gives V × U containing (f ′)−1{z} where
U and V are open sets in X and Z respectively and V × U has empty intersection with
P ′. Then the set V ∩ g−1(Y − f(U c)) is open in Z since f is closed, contains z, and has
empty intersection with the image of P . Thus f ′(P ) is closed. In other words, the map f
is universally closed.

The implication (3)⇒ (2) is trivial. Namely, given any topological space Z consider the
projection morphism g : Z × Y → Y . Then it is easy to see that f ′ is the map Z ×X →
Z × Y , in other words that (Z × Y ) ×Y X = Z × X . (This identification is a purely
categorical property having nothing to do with topological spaces per se.)

Assume f satisfies (2). We will prove it satisfies (1). Note that f is closed as f can be
identified with the map {pt} × X → {pt} × Y which is assumed closed. Choose any
quasi-compact subset K ⊂ Y . Let Z be any topological space. Because Z ×X → Z × Y
is closed we see the map Z × f−1(K)→ Z ×K is closed (if T is closed in Z × f−1(K),
write T = Z × f−1(K) ∩ T ′ for some closed T ′ ⊂ Z ×X). Because K is quasi-compact,
K×Z → Z is closed by Lemma 17.3. Hence the compositionZ×f−1(K)→ Z×K → Z
is closed and therefore f−1(K) must be quasi-compact by Lemma 17.3 again. �

Remark 17.6. Here are some references to the literature. In [?, I, p. 75, Theorem 1]
you can find: (2)⇔ (4). In [?, I, p. 77, Proposition 6] you can find: (2)⇒ (1). Of course,
trivially we have (1)⇒ (4). Thus (1), (2) and (4) are equivalent. The equivalence of (3)
and (4) is [?, Chapter II, Exercise 25].

Lemma 17.7. Let f : X → Y be a continuous map of topological spaces. If X is
quasi-compact and Y is Hausdorff, then f is universally closed.

Proof. Since every point ofY is closed, we see from Lemma 12.3 that the closed subset
f−1(y) ofX is quasi-compact for all y ∈ Y . Thus, by Theorem 17.5 it suffices to show that
f is closed. If E ⊂ X is closed, then it is quasi-compact (Lemma 12.3), hence f(E) ⊂ Y is
quasi-compact (Lemma 12.7), hence f(E) is closed in Y (Lemma 12.4). �

Lemma 17.8. Let f : X → Y be a continuous map of topological spaces. If f is
bijective, X is quasi-compact, and Y is Hausdorff, then f is a homeomorphism.
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Proof. It suffices to prove f is closed, because this implies that f−1 is continuous. If
T ⊂ X is closed, then T is quasi-compact by Lemma 12.3, hence f(T ) is quasi-compact by
Lemma 12.7, hence f(T ) is closed by Lemma 12.4. �

18. Jacobson spaces

Definition 18.1. Let X be a topological space. Let X0 be the set of closed points of
X . We say that X is Jacobson if every closed subset Z ⊂ X is the closure of Z ∩X0.

Note that a topological space X is Jacobson if and only if every nonempty locally closed
subset of X has a point closed in X .

Let X be a Jacobson space and let X0 be the set of closed points of X with the induced
topology. Clearly, the definition implies that the morphism X0 → X induces a bijection
between the closed subsets ofX0 and the closed subsets ofX . Thus many properties ofX
are inherited by X0. For example, the Krull dimensions of X and X0 are the same.

Lemma 18.2. Let X be a topological space. Let X0 be the set of closed points of X .
Suppose that for every point x ∈ X the intersection X0 ∩ {x} is dense in {x}. ThenX is
Jacobson.

Proof. Let Z be closed subset of X and U be and open subset of X such that U ∩ Z
is nonempty. Then for x ∈ U ∩ Z we have that {x} ∩ U is a nonempty subset of Z ∩ U ,
and by hypothesis it contains a point closed in X as required. �

Lemma 18.3. LetX be a Kolmogorov topological space with a basis of quasi-compact
open sets. If X is not Jacobson, then there exists a non-closed point x ∈ X such that {x}
is locally closed.

Proof. As X is not Jacobson there exists a closed set Z and an open set U in X such
that Z ∩ U is nonempty and does not contain points closed in X . As X has a basis of
quasi-compact open sets we may replace U by an open quasi-compact neighborhood of a
point inZ ∩U and so we may assume thatU is quasi-compact open. By Lemma 12.8, there
exists a point x ∈ Z ∩ U closed in Z ∩ U , and so {x} is locally closed but not closed in
X . �

Lemma 18.4. LetX be a topological space. LetX =
⋃
Ui be an open covering. Then

X is Jacobson if and only if each Ui is Jacobson. Moreover, in this case X0 =
⋃
Ui,0.

Proof. Let X be a topological space. Let X0 be the set of closed points of X . Let
Ui,0 be the set of closed points of Ui. Then X0 ∩ Ui ⊂ Ui,0 but equality may not hold in
general.

First, assume that each Ui is Jacobson. We claim that in this caseX0∩Ui = Ui,0. Namely,
suppose thatx ∈ Ui,0, i.e., x is closed inUi. Let {x} be the closure inX . Consider {x}∩Uj .
If x 6∈ Uj , then {x} ∩ Uj = ∅. If x ∈ Uj , then Ui ∩ Uj ⊂ Uj is an open subset of Uj
containing x. Let T ′ = Uj \ Ui ∩ Uj and T = {x} q T ′. Then T , T ′ are closed subsets of
Uj and T contains x. As Uj is Jacobson we see that the closed points of Uj are dense in T .
Because T = {x}qT ′ this can only be the case if x is closed inUj . Hence {x}∩Uj = {x}.
We conclude that {x} = {x} as desired.

Let Z ⊂ X be a closed subset (still assuming each Ui is Jacobson). Since now we know
that X0 ∩ Z ∩ Ui = Ui,0 ∩ Z are dense in Z ∩ Ui it follows immediately that X0 ∩ Z is
dense in Z.
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Conversely, assume thatX is Jacobson. Let Z ⊂ Ui be closed. ThenX0 ∩Z is dense in Z.
Hence also X0 ∩ Z is dense in Z , because Z \ Z is closed. As X0 ∩ Ui ⊂ Ui,0 we see that
Ui,0 ∩ Z is dense in Z. Thus Ui is Jacobson as desired. �

Lemma 18.5. LetX be Jacobson. The following types of subsets T ⊂ X are Jacobson:
(1) Open subspaces.
(2) Closed subspaces.
(3) Locally closed subspaces.
(4) Unions of locally closed subspaces.
(5) Constructible sets.
(6) Any subset T ⊂ X which locally on X is a union of locally closed subsets.

In each of these cases closed points of T are closed in X .

Proof. Let X0 be the set of closed points of X . For any subset T ⊂ X we let (∗)
denote the property:

(*) Every nonempty locally closed subset of T has a point closed in X .
Note that alwaysX0∩T ⊂ T0. Hence property (∗) implies that T is Jacobson. In addition
it clearly implies that every closed point of T is closed in X .
Suppose that T =

⋃
i Ti with Ti locally closed in X . Take A ⊂ T a locally closed

nonempty subset in T , then there exists a Ti such that A ∩ Ti is nonempty, it is locally
closed in Ti and so in X . As X is Jacobson A has a point closed in X . �

Lemma 18.6. A finite Jacobson space is discrete.

Proof. If X is finite Jacobson, X0 ⊂ X the subset of closed points, then, on the one
hand, X0 = X . On the other hand, X , and hence X0 is finite, so X0 = {x1, . . . , xn} =⋃
i=1,...,n{xi} is a finite union of closed sets, hence closed, soX = X0 = X0. Every point

is closed, and by finiteness, every point is open. �

Lemma 18.7. Suppose X is a Jacobson topological space. Let X0 be the set of closed
points of X . There is a bijective, inclusion preserving correspondence
{finite unions loc. closed subsets of X} ↔ {finite unions loc. closed subsets of X0}

given by E 7→ E ∩ X0. This correspondence preserves the subsets of locally closed, of
open and of closed subsets.

Proof. We just prove that the correspondence E 7→ E ∩ X0 is injective. Indeed
if E 6= E′ then without loss of generality E \ E′ is nonempty, and it is a finite union
of locally closed sets (details omitted). As X is Jacobson, we see that (E \ E′) ∩ X0 =
E ∩X0 \ E′ ∩X0 is not empty. �

Lemma 18.8. Suppose X is a Jacobson topological space. Let X0 be the set of closed
points of X . There is a bijective, inclusion preserving correspondence

{constructible subsets of X} ↔ {constructible subsets of X0}
given by E 7→ E ∩ X0. This correspondence preserves the subset of retrocompact open
subsets, as well as complements of these.

Proof. From Lemma 18.7 above, we just have to see that ifU is open inX thenU∩X0
is retrocompact inX0 if and only if U is retrocompact inX . This follows if we prove that
for U open in X then U ∩ X0 is quasi-compact if and only if U is quasi-compact. From
Lemma 18.5 it follows that we may replace X by U and assume that U = X . Finally
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notice that any collection of opens U ofX coverX if and only if they coverX0, using the
Jacobson property ofX in the closedX\

⋃
U to find a point inX0 if it were nonempty. �

19. Specialization

Definition 19.1. Let X be a topological space.
(1) If x, x′ ∈ X then we say x is a specialization of x′, or x′ is a generalization of x

if x ∈ {x′}. Notation: x′  x.
(2) A subset T ⊂ X is stable under specialization if for all x′ ∈ T and every special-

ization x′  x we have x ∈ T .
(3) A subset T ⊂ X is stable under generalization if for all x ∈ T and every gener-

alization x′  x we have x′ ∈ T .

Lemma 19.2. Let X be a topological space.
(1) Any closed subset of X is stable under specialization.
(2) Any open subset of X is stable under generalization.
(3) A subset T ⊂ X is stable under specialization if and only if the complement T c

is stable under generalization.

Proof. Let F be a closed subset of X , if y ∈ F then {y} ⊂ F , so {y} ⊂ F = F as F
is closed. Thus for all specialization x of y, we have x ∈ F .

Let x, y ∈ X such that x ∈ {y} and let T be a subset of X . Saying that T is stable under
specialization means that y ∈ T implies x ∈ T and reciprocally saying that T is stable
under generalization means that x ∈ T implies y ∈ T . Therefore (3) is proven using
contraposition.

The second property follows from (1) and (3) by considering the complement. �

Lemma 19.3. Let T ⊂ X be a subset of a topological space X . The following are
equivalent

(1) T is stable under specialization, and
(2) T is a (directed) union of closed subsets of X .

Proof. Suppose that T is stable under specialization, then for all y ∈ T we have
{y} ⊂ T . Thus T =

⋃
y∈T {y} which is an union of closed subsets of X . Reciprocally,

suppose that T =
⋃
i∈I Fi where Fi are closed subsets of X . If y ∈ T then there exists

i ∈ I such that y ∈ Fi. As Fi is closed, we have {y} ⊂ Fi ⊂ T , which proves that T is
stable under specialization. �

Definition 19.4. Let f : X → Y be a continuous map of topological spaces.
(1) We say that specializations lift along f or that f is specializing if given y′  y

in Y and any x′ ∈ X with f(x′) = y′ there exists a specialization x′  x of x′

in X such that f(x) = y.
(2) We say that generalizations lift along f or that f is generalizing if given y′  y

in Y and any x ∈ X with f(x) = y there exists a generalization x′  x of x in
X such that f(x′) = y′.

Lemma 19.5. Suppose f : X → Y and g : Y → Z are continuous maps of topolog-
ical spaces. If specializations lift along both f and g then specializations lift along g ◦ f .
Similarly for “generalizations lift along”.
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Proof. Let z′  z be a specialization in Z and let x′ ∈ X such as g ◦ f(x′) = z′.
Then because specializations lift along g, there exists a specialization f(x′)  y of f(x′)
in Y such that g(y) = z. Likewise, because specializations lift along f , there exists a
specialization x′  x of x′ in X such that f(x) = y. It provides a specialization x′  x
of x′ in X such that g ◦ f(x) = z. In other words, specialization lift along g ◦ f . �

Lemma 19.6. Let f : X → Y be a continuous map of topological spaces.
(1) If specializations lift along f , and if T ⊂ X is stable under specialization, then

f(T ) ⊂ Y is stable under specialization.
(2) If generalizations lift along f , and if T ⊂ X is stable under generalization, then

f(T ) ⊂ Y is stable under generalization.

Proof. Let y′  y be a specialization in Y where y′ ∈ f(T ) and let x′ ∈ T such that
f(x′) = y′. Because specialization lift along f , there exists a specialization x′  x of x′ in
X such that f(x) = y. But T is stable under specialization so x ∈ T and then y ∈ f(T ).
Therefore f(T ) is stable under specialization.

The proof of (2) is identical, using that generalizations lift along f . �

Lemma 19.7. Let f : X → Y be a continuous map of topological spaces.
(1) If f is closed then specializations lift along f .
(2) If f is open, X is a Noetherian topological space, each irreducible closed subset

ofX has a generic point, and Y is Kolmogorov then generalizations lift along f .

Proof. Assume f is closed. Let y′  y in Y and any x′ ∈ X with f(x′) = y′ be
given. Consider the closed subset T = {x′} of X . Then f(T ) ⊂ Y is a closed subset, and
y′ ∈ f(T ). Hence also y ∈ f(T ). Hence y = f(x) with x ∈ T , i.e., x′  x.

Assume f is open, X Noetherian, every irreducible closed subset ofX has a generic point,
and Y is Kolmogorov. Let y′  y in Y and any x ∈ X with f(x) = y be given. Consider
T = f−1({y′}) ⊂ X . Take an open neighbourhood x ∈ U ⊂ X of x. Then f(U) ⊂ Y is
open and y ∈ f(U). Hence also y′ ∈ f(U). In other words, T ∩ U 6= ∅. This proves that
x ∈ T . SinceX is Noetherian, T is Noetherian (Lemma 9.2). Hence it has a decomposition
T = T1∪ . . .∪Tn into irreducible components. Then correspondingly T = T1∪ . . .∪Tn.
By the above x ∈ Ti for some i. By assumption there exists a generic point x′ ∈ Ti, and
we see that x′  x. As x′ ∈ T we see that f(x′) ∈ {y′}. Note that f(Ti) = f({x′}) ⊂
{f(x′)}. If f(x′) 6= y′, then since Y is Kolmogorov f(x′) is not a generic point of the
irreducible closed subset {y′} and the inclusion {f(x′)} ⊂ {y′} is strict, i.e., y′ 6∈ f(Ti).
This contradicts the fact that f(Ti) = {y′}. Hence f(x′) = y′ and we win. �

Lemma 19.8. Suppose that s, t : R → U and π : U → X are continuous maps of
topological spaces such that

(1) π is open,
(2) U is sober,
(3) s, t have finite fibres,
(4) generalizations lift along s, t,
(5) (t, s)(R) ⊂ U × U is an equivalence relation on U and X is the quotient of U

by this equivalence relation (as a set).
Then X is Kolmogorov.
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Proof. Properties (3) and (5) imply that a point x corresponds to an finite equiva-
lence class {u1, . . . , un} ⊂ U of the equivalence relation. Suppose that x′ ∈ X is a second
point corresponding to the equivalence class {u′

1, . . . , u
′
m} ⊂ U . Suppose that ui  u′

j

for some i, j. Then for any r′ ∈ R with s(r′) = u′
j by (4) we can find r  r′ with

s(r) = ui. Hence t(r)  t(r′). Since {u′
1, . . . , u

′
m} = t(s−1({u′

j})) we conclude that
every element of {u′

1, . . . , u
′
m} is the specialization of an element of {u1, . . . , un}. Thus

{u1}∪. . .∪{un} is a union of equivalence classes, hence of the form π−1(Z) for some sub-
setZ ⊂ X . By (1) we see thatZ is closed inX and in factZ = {x} because π({ui}) ⊂ {x}
for each i. In other words, x x′ if and only if some lift of x in U specializes to some lift
of x′ in U , if and only if every lift of x′ in U is a specialization of some lift of x in U .
Suppose that both x  x′ and x′  x. Say x corresponds to {u1, . . . , un} and x′ corre-
sponds to {u′

1, . . . , u
′
m} as above. Then, by the results of the preceding paragraph, we can

find a sequence
. . . u′

j3
 ui3  u′

j2
 ui2  u′

j1
 ui1

which must repeat, hence by (2) we conclude that {u1, . . . , un} = {u′
1, . . . , u

′
m}, i.e.,

x = x′. Thus X is Kolmogorov. �

Lemma 19.9. Let f : X → Y be a morphism of topological spaces. Suppose that Y
is a sober topological space, and f is surjective. If either specializations or generalizations
lift along f , then dim(X) ≥ dim(Y ).

Proof. Assume specializations lift along f . Let Z0 ⊂ Z1 ⊂ . . . Ze ⊂ Y be a chain of
irreducible closed subsets ofX . Let ξe ∈ X be a point mapping to the generic point of Ze.
By assumption there exists a specialization ξe  ξe−1 in X such that ξe−1 maps to the
generic point of Ze−1. Continuing in this manner we find a sequence of specializations

ξe  ξe−1  . . . ξ0

with ξi mapping to the generic point ofZi. This clearly implies the sequence of irreducible
closed subsets

{ξ0} ⊂ {ξ1} ⊂ . . . {ξe}
is a chain of length e in X . The case when generalizations lift along f is similar. �

Lemma 19.10. LetX be a Noetherian sober topological space. LetE ⊂ X be a subset
of X .

(1) If E is constructible and stable under specialization, then E is closed.
(2) If E is constructible and stable under generalization, then E is open.

Proof. Let E be constructible and stable under generalization. Let Y ⊂ X be an
irreducible closed subset with generic point ξ ∈ Y . IfE∩Y is nonempty, then it contains
ξ (by stability under generalization) and hence is dense in Y , hence it contains a nonempty
open of Y , see Lemma 16.3. Thus E is open by Lemma 16.5. This proves (2). To prove (1)
apply (2) to the complement of E in X . �

20. Dimension functions

It scarcely makes sense to consider dimension functions unless the space considered is sober
(Definition 8.6). Thus the definition below can be improved by considering the sober
topological space associated to X . Since the underlying topological space of a scheme is
sober we do not bother with this improvement.

Definition 20.1. Let X be a topological space.
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(1) Let x, y ∈ X , x 6= y. Suppose x y, that is y is a specialization of x. We say y
is an immediate specialization of x if there is no z ∈ X \ {x, y} with x z and
z  y.

(2) A map δ : X → Z is called a dimension function5 if
(a) whenever x y and x 6= y we have δ(x) > δ(y), and
(b) for every immediate specialization x y in X we have δ(x) = δ(y) + 1.

It is clear that if δ is a dimension function, then so is δ + t for any t ∈ Z. Here is a fun
lemma.

Lemma 20.2. LetX be a topological space. IfX is sober and has a dimension function,
then X is catenary. Moreover, for any x y we have

δ(x)− δ(y) = codim
(
{y}, {x}

)
.

Proof. Suppose Y ⊂ Y ′ ⊂ X are irreducible closed subsets. Let ξ ∈ Y , ξ′ ∈ Y ′ be
their generic points. Then we see immediately from the definitions that codim(Y, Y ′) ≤
δ(ξ)− δ(ξ′) <∞. In fact the first inequality is an equality. Namely, suppose

Y = Y0 ⊂ Y1 ⊂ . . . ⊂ Ye = Y ′

is any maximal chain of irreducible closed subsets. Let ξi ∈ Yi denote the generic point.
Then we see that ξi  ξi+1 is an immediate specialization. Hence we see that e = δ(ξ)−
δ(ξ′) as desired. This also proves the last statement of the lemma. �

Lemma 20.3. Let X be a topological space. Let δ, δ′ be two dimension functions on
X . If X is locally Noetherian and sober then δ − δ′ is locally constant on X .

Proof. Let x ∈ X be a point. We will show that δ−δ′ is constant in a neighbourhood
of x. We may replaceX by an open neighbourhood of x inX which is Noetherian. Hence
we may assumeX is Noetherian and sober. Let Z1, . . . , Zr be the irreducible components
of X passing through x. (There are finitely many as X is Noetherian, see Lemma 9.2.)
Let ξi ∈ Zi be the generic point. Note Z1 ∪ . . . ∪ Zr is a neighbourhood of x in X (not
necessarily closed). We claim that δ − δ′ is constant on Z1 ∪ . . . ∪ Zr. Namely, if y ∈ Zi,
then
δ(x)− δ(y) = δ(x)− δ(ξi) + δ(ξi)− δ(y) = −codim({x}, Zi) + codim({y}, Zi)

by Lemma 20.2. Similarly for δ′. Whence the result. �

Lemma 20.4. Let X be locally Noetherian, sober and catenary. Then any point has
an open neighbourhood U ⊂ X which has a dimension function.

Proof. We will use repeatedly that an open subspace of a catenary space is catenary,
see Lemma 11.5 and that a Noetherian topological space has finitely many irreducible com-
ponents, see Lemma 9.2. In the proof of Lemma 20.3 we saw how to construct such a func-
tion. Namely, we first replace X by a Noetherian open neighbourhood of x. Next, we let
Z1, . . . , Zr ⊂ X be the irreducible components of X . Let

Zi ∩ Zj =
⋃
Zijk

be the decomposition into irreducible components. We replace X by

X \
(⋃

x 6∈Zi
Zi ∪

⋃
x6∈Zijk

Zijk

)
5This is likely nonstandard notation. This notion is usually introduced only for (locally) Noetherian

schemes, in which case condition (a) is implied by (b).
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so that we may assume x ∈ Zi for all i and x ∈ Zijk for all i, j, k. For y ∈ X choose any
i such that y ∈ Zi and set

δ(y) = −codim({x}, Zi) + codim({y}, Zi).

We claim this is a dimension function. First we show that it is well defined, i.e., indepen-
dent of the choice of i. Namely, suppose that y ∈ Zijk for some i, j, k. Then we have
(using Lemma 11.6)

δ(y) = −codim({x}, Zi) + codim({y}, Zi)

= −codim({x}, Zijk)− codim(Zijk, Zi) + codim({y}, Zijk) + codim(Zijk, Zi)

= −codim({x}, Zijk) + codim({y}, Zijk)

which is symmetric in i and j. We omit the proof that it is a dimension function. �

Remark 20.5. Combining Lemmas 20.3 and 20.4 we see that on a catenary, locally
Noetherian, sober topological space the obstruction to having a dimension function is an
element of H1(X,Z).

21. Nowhere dense sets

Definition 21.1. Let X be a topological space.
(1) Given a subset T ⊂ X the interior of T is the largest open subset ofX contained

in T .
(2) A subset T ⊂ X is called nowhere dense if the closure of T has empty interior.

Lemma 21.2. Let X be a topological space. The union of a finite number of nowhere
dense sets is a nowhere dense set.

Proof. Omitted. �

Lemma 21.3. Let X be a topological space. Let U ⊂ X be an open. Let T ⊂ U be a
subset. If T is nowhere dense in U , then T is nowhere dense in X .

Proof. Assume T is nowhere dense in U . Suppose that x ∈ X is an interior point of
the closure T of T in X . Say x ∈ V ⊂ T with V ⊂ X open in X . Note that T ∩ U is the
closure of T in U . Hence the interior of T ∩ U being empty implies V ∩ U = ∅. Thus x
cannot be in the closure of U , a fortiori cannot be in the closure of T , a contradiction. �

Lemma 21.4. Let X be a topological space. Let X =
⋃
Ui be an open covering. Let

T ⊂ X be a subset. If T ∩ Ui is nowhere dense in Ui for all i, then T is nowhere dense in
X .

Proof. Denote T i the closure of T ∩ Ui in Ui. We have T ∩ Ui = T i. Taking the
interior commutes with intersection with opens, thus

(interior of T ) ∩ Ui = interior of (T ∩ Ui) = interior in Ui of T i
By assumption the last of these is empty. Hence T is nowhere dense in X . �

Lemma 21.5. Let f : X → Y be a continuous map of topological spaces. Let T ⊂ X
be a subset. If f is a homeomorphism of X onto a closed subset of Y and T is nowhere
dense in X , then also f(T ) is nowhere dense in Y .

Proof. Omitted. �
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Lemma 21.6. Let f : X → Y be a continuous map of topological spaces. Let T ⊂ Y
be a subset. If f is open and T is a closed nowhere dense subset of Y , then also f−1(T ) is
a closed nowhere dense subset of X . If f is surjective and open, then T is closed nowhere
dense if and only if f−1(T ) is closed nowhere dense.

Proof. Omitted. (Hint: In the first case the interior of f−1(T ) maps into the interior
of T , and in the second case the interior of f−1(T ) maps onto the interior of T .) �

22. Profinite spaces

Here is the definition.
Definition 22.1. A topological space is profinite if it is homeomorphic to a limit of

a diagram of finite discrete spaces.
This is not the most convenient characterization of a profinite space.

Lemma 22.2. Let X be a topological space. The following are equivalent
(1) X is a profinite space, and
(2) X is Hausdorff, quasi-compact, and totally disconnected.

If this is true, then X is a cofiltered limit of finite discrete spaces.
Proof. Assume (1). Choose a diagram i 7→ Xi of finite discrete spaces such that

X = limXi. As each Xi is Hausdorff and quasi-compact we find that X is quasi-compact
by Lemma 14.5. If x, x′ ∈ X are distinct points, then x and x′ map to distinct points
in some Xi. Hence x and x′ have disjoint open neighbourhoods, i.e., X is Hausdorff. In
exactly the same way we see that X is totally disconnected.
Assume (2). Let I be the set of finite disjoint union decompositions X =

∐
i∈I Ui with

Ui nonempty open (and closed) for all i ∈ I . For each I ∈ I there is a continuous map
X → I sending a point of Ui to i. We define a partial ordering: I ≤ I ′ for I, I ′ ∈ I if
and only if the covering corresponding to I ′ refines the covering corresponding to I . In
this case we obtain a canonical map I ′ → I . In other words we obtain an inverse system
of finite discrete spaces over I . The maps X → I fit together and we obtain a continuous
map

X −→ limI∈I I

We claim this map is a homeomorphism, which finishes the proof. (The final assertion
follows too as the partially ordered set I is directed: given two disjoint union decomposi-
tions of X we can find a third refining both.) Namely, the map is injective as X is totally
disconnected and hence {x} is the intersection of all open and closed subsets of X con-
taining x (Lemma 12.11) and the map is surjective by Lemma 12.6. By Lemma 17.8 the map
is a homeomorphism. �

Lemma 22.3. A limit of profinite spaces is profinite.
Proof. Let i 7→ Xi be a diagram of profinite spaces over the index category I . Let

us use the characterization of profinite spaces in Lemma 22.2. In particular each Xi is
Hausdorff, quasi-compact, and totally disconnected. By Lemma 14.1 the limitX = limXi

exists. By Lemma 14.5 the limit X is quasi-compact. Let x, x′ ∈ X be distinct points.
Then there exists an i such that x and x′ have distinct images xi and x′

i in Xi under the
projection X → Xi. Then xi and x′

i have disjoint open neighbourhoods in Xi. Taking
the inverse images of these opens we conclude thatX is Hausdorff. Similarly, xi and x′

i are
in distinct connected components of Xi whence necessarily x and x′ must be in distinct
connected components ofX . HenceX is totally disconnected. This finishes the proof. �
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Lemma 22.4. Let X be a profinite space. Every open covering of X has a refinement
by a finite covering X =

∐
Ui with Ui open and closed.

Proof. Write X = limXi as a limit of an inverse system of finite discrete spaces
over a directed set I (Lemma 22.2). Denote fi : X → Xi the projection. For every point
x = (xi) ∈ X a fundamental system of open neighbourhoods is the collection f−1

i ({xi}).
Thus, as X is quasi-compact, we may assume we have an open covering

X = f−1
i1

({xi1}) ∪ . . . ∪ f−1
in

({xin})

Choose i ∈ I with i ≥ ij for j = 1, . . . , n (this is possible as I is a directed set). Then we
see that the covering

X =
∐

t∈Xi
f−1
i ({t})

refines the given covering and is of the desired form. �

Lemma 22.5. LetX be a topological space. IfX is quasi-compact and every connected
component of X is the intersection of the open and closed subsets containing it, then
π0(X) is a profinite space.

Proof. We will use Lemma 22.2 to prove this. Since π0(X) is the image of a quasi-
compact space it is quasi-compact (Lemma 12.7). It is totally disconnected by construction
(Lemma 7.9). Let C,D ⊂ X be distinct connected components ofX . Write C =

⋂
Uα as

the intersection of the open and closed subsets ofX containingC. Any finite intersection
of Uα’s is another. Since

⋂
Uα ∩ D = ∅ we conclude that Uα ∩ D = ∅ for some α (use

Lemmas 7.3, 12.3 and 12.6) Since Uα is open and closed, it is the union of the connected
components it contains, i.e., Uα is the inverse image of some open and closed subset Vα ⊂
π0(X). This proves that the points corresponding to C and D are contained in disjoint
open subsets, i.e., π0(X) is Hausdorff. �

23. Spectral spaces

The material in this section is taken from [?] and [?]. In his thesis Hochster proves (among
other things) that the spectral spaces are exactly the topological spaces that occur as the
spectrum of a ring.

Definition 23.1. A topological spaceX is called spectral if it is sober, quasi-compact,
the intersection of two quasi-compact opens is quasi-compact, and the collection of quasi-
compact opens forms a basis for the topology. A continuous map f : X → Y of spectral
spaces is called spectral if the inverse image of a quasi-compact open is quasi-compact.

In other words a continuous map of spectral spaces is spectral if and only if it is quasi-
compact (Definition 12.1).

Let X be a spectral space. The constructible topology on X is the topology which has as
a subbase of opens the sets U and U c where U is a quasi-compact open of X . Note that
since X is spectral an open U ⊂ X is retrocompact if and only if U is quasi-compact.
Hence the constructible topology can also be characterized as the coarsest topology such
that every constructible subset ofX is both open and closed (see Section 15 for definitions
and properties of constructible sets). It follows that a subset of X is open, resp. closed in
the constructible topology if and only if it is a union, resp. intersection of constructible
subsets. Since the collection of quasi-compact opens is a basis for the topology on X we
see that the constructible topology is stronger than the given topology on X .
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Lemma 23.2. Let X be a spectral space. The constructible topology is Hausdorff,
totally disconnected, and quasi-compact.

Proof. Let x, y ∈ X with x 6= y. SinceX is sober, there is an open subsetU contain-
ing exactly one of the two points x, y. Say x ∈ U . We may replace U by a quasi-compact
open neighbourhood of x contained in U . Then U and U c are open and closed in the con-
structible topology. Hence X is Hausdorff in the constructible topology because x ∈ U
and y ∈ U c are disjoint opens in the constructible topology. The existence of U also im-
plies x and y are in distinct connected components in the constructible topology, whence
X is totally disconnected in the constructible topology.
Let B be the collection of subsets B ⊂ X with B either quasi-compact open or closed
with quasi-compact complement. If B ∈ B then Bc ∈ B. It suffices to show every
covering X =

⋃
i∈I Bi with Bi ∈ B has a finite refinement, see Lemma 12.15. Taking

complements we see that we have to show that any family {Bi}i∈I of elements of B such
thatBi1∩. . .∩Bin 6= ∅ for alln and all i1, . . . , in ∈ I has a common point of intersection.
We may and do assume Bi 6= Bi′ for i 6= i′.
To get a contradiction assume {Bi}i∈I is a family of elements of B having the finite in-
tersection property but empty intersection. An application of Zorn’s lemma shows that
we may assume our family is maximal (details omitted). Let I ′ ⊂ I be those indices such
that Bi is closed and set Z =

⋂
i∈I′ Bi. This is a closed subset of X which is nonempty

by Lemma 12.6. If Z is reducible, then we can write Z = Z ′ ∪ Z ′′ as a union of two
closed subsets, neither equal to Z. This means in particular that we can find a quasi-
compact open U ′ ⊂ X meeting Z ′ but not Z ′′. Similarly, we can find a quasi-compact
open U ′′ ⊂ X meeting Z ′′ but not Z ′. Set B′ = X \ U ′ and B′′ = X \ U ′′. Note that
Z ′′ ⊂ B′ and Z ′ ⊂ B′′. If there exist a finite number of indices i1, . . . , in ∈ I such that
B′ ∩ Bi1 ∩ . . . ∩ Bin = ∅ as well as a finite number of indices j1, . . . , jm ∈ I such that
B′′∩Bj1∩. . .∩Bjm = ∅ then we find thatZ∩Bi1∩. . .∩Bin∩Bj1∩. . .∩Bjm = ∅. How-
ever, the setBi1∩ . . .∩Bin∩Bj1∩ . . .∩Bjm is quasi-compact hence we would find a finite
number of indices i′1, . . . , i′l ∈ I ′ withBi1∩. . .∩Bin∩Bj1∩. . .∩Bjm∩Bi′1∩. . .∩Bi′l = ∅,
a contradiction. Thus we see that we may add either B′ or B′′ to the given family con-
tradicting maximality. We conclude that Z is irreducible. However, this leads to a con-
tradiction as well, as now every nonempty (by the same argument as above) open Z ∩Bi
for i ∈ I \ I ′ contains the unique generic point of Z. This contradiction proves the
lemma. �

Lemma 23.3. Let f : X → Y be a spectral map of spectral spaces. Then
(1) f is continuous in the constructible topology,
(2) the fibres of f are quasi-compact, and
(3) the image is closed in the constructible topology.

Proof. Let X ′ and Y ′ denote X and Y endowed with the constructible topology
which are quasi-compact Hausdorff spaces by Lemma 23.2. Part (1) says X ′ → Y ′ is
continuous and follows immediately from the definitions. Part (3) follows as f(X ′) is
a quasi-compact subset of the Hausdorff space Y ′, see Lemma 12.4. We have a commuta-
tive diagram

X ′ //

��

X

��
Y ′ // Y
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of continuous maps of topological spaces. Since Y ′ is Hausdorff we see that the fibres X ′
y

are closed inX ′. AsX ′ is quasi-compact we see thatX ′
y is quasi-compact (Lemma 12.3). As

X ′
y → Xy is a surjective continuous map we conclude that Xy is quasi-compact (Lemma

12.7). �

Lemma 23.4. Let X and Y be spectral spaces. Let f : X → Y be a continuous map.
Then f is spectral if and only if f is continuous in the constructible topology.

Proof. The only if part of this is Lemma 23.3. Assume f is continuous in the con-
structible topology. Let V ⊂ Y be quasi-compact open. Then V is open and closed in
the constructible topology. Hence f−1(V ) is open and closed in the constructible topol-
ogy. Hence f−1(V ) is quasi-compact in the constructible topology as X is quasi-compact
in the constructible topology by Lemma 23.2. Since the identity f−1(V ) → f−1(V ) is
surjective and continuous from the constructible topology to the usual topology, we con-
clude that f−1(V ) is quasi-compact in the topology of X by Lemma 12.7. This finishes
the proof. �

Lemma 23.5. Let X be a spectral space. Let E ⊂ X be closed in the constructible
topology (for example constructible or closed). Then E with the induced topology is a
spectral space.

Proof. Let Z ⊂ E be a closed irreducible subset. Let η be the generic point of the
closure Z of Z inX . To prove thatE is sober, we show that η ∈ E. If not, then sinceE is
closed in the constructible topology, there exists a constructible subset F ⊂ X such that
η ∈ F and F ∩ E = ∅. By Lemma 15.15 this implies F ∩ Z contains a nonempty open
subset of Z. But this is impossible as Z is the closure of Z and Z ∩ F = ∅.

Since E is closed in the constructible topology, it is quasi-compact in the constructible
topology (Lemmas 12.3 and 23.2). Hence a fortiori it is quasi-compact in the topology com-
ing from X . If U ⊂ X is a quasi-compact open, then E ∩ U is closed in the constructible
topology, hence quasi-compact (as seen above). It follows that the quasi-compact open
subsets of E are the intersections E ∩ U with U quasi-compact open in X . These form a
basis for the topology. Finally, given two U,U ′ ⊂ X quasi-compact opens, the intersec-
tion (E ∩ U) ∩ (E ∩ U ′) = E ∩ (U ∩ U ′) and U ∩ U ′ is quasi-compact as X is spectral.
This finishes the proof. �

Lemma 23.6. Let X be a spectral space. Let E ⊂ X be a subset closed in the con-
structible topology (for example constructible).

(1) If x ∈ E , then x is the specialization of a point of E.
(2) If E is stable under specialization, then E is closed.
(3) IfE′ ⊂ X is open in the constructible topology (for example constructible) and

stable under generalization, then E′ is open.

Proof. Proof of (1). Let x ∈ E. Let {Ui} be the set of quasi-compact open neigh-
bourhoods of x. A finite intersection of the Ui is another one. The intersection Ui ∩ E is
nonempty for all i. Since the subsetsUi∩E are closed in the constructible topology we see
that

⋂
(Ui∩E) is nonempty by Lemma 23.2 and Lemma 12.6. Since {Ui} is a fundamental

system of open neighbourhoods of x, we see that
⋂
Ui is the set of generalizations of x.

Thus x is a specialization of a point of E.

Part (2) is immediate from (1).
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Proof of (3). Assume E′ is as in (3). The complement of E′ is closed in the constructible
topology (Lemma 15.2) and closed under specialization (Lemma 19.2). Hence the comple-
ment is closed by (2), i.e., E′ is open. �

Lemma 23.7. LetX be a spectral space. Let x, y ∈ X . Then either there exists a third
point specializing to both x and y, or there exist disjoint open neighbourhoods containing
x and y.

Proof. Let {Ui} be the set of quasi-compact open neighbourhoods of x. A finite
intersection of the Ui is another one. Let {Vj} be the set of quasi-compact open neigh-
bourhoods of y. A finite intersection of the Vj is another one. If Ui ∩ Vj is empty for
some i, j we are done. If not, then the intersection Ui ∩ Vj is nonempty for all i and j.
The sets Ui ∩ Vj are closed in the constructible topology on X . By Lemma 23.2 we see
that

⋂
(Ui ∩ Vj) is nonempty (Lemma 12.6). Since X is a sober space and {Ui} is a funda-

mental system of open neighbourhoods of x, we see that
⋂
Ui is the set of generalizations

of x. Similarly,
⋂
Vj is the set of generalizations of y. Thus any element of

⋂
(Ui ∩ Vj)

specializes to both x and y. �

Lemma 23.8. Let X be a spectral space. The following are equivalent:
(1) X is profinite,
(2) X is Hausdorff,
(3) X is totally disconnected,
(4) every quasi-compact open is closed,
(5) there are no nontrivial specializations between points,
(6) every point of X is closed,
(7) every point of X is the generic point of an irreducible component of X ,
(8) the constructible topology equals the given topology on X , and
(9) add more here.

Proof. Lemma 22.2 shows the implication (1) ⇒ (3). Irreducible components are
closed, so if X is totally disconnected, then every point is closed. So (3) implies (6). The
equivalence of (6) and (5) is immediate, and (6)⇔ (7) holds because X is sober. Assume
(5). Then all constructible subsets of X are closed (Lemma 23.6), in particular all quasi-
compact opens are closed. So (5) implies (4). Since X is sober, for any two points there
is a quasi-compact open containing exactly one of them, hence (4) implies (2). Parts (4)
and (8) are equivalent by the definition of the constructible topology. It remains to prove
(2) implies (1). Suppose X is Hausdorff. Every quasi-compact open is also closed (Lemma
12.4). This implies X is totally disconnected. Hence it is profinite, by Lemma 22.2. �

Lemma 23.9. If X is a spectral space, then π0(X) is a profinite space.

Proof. Combine Lemmas 12.10 and 22.5. �

Lemma 23.10. The product of two spectral spaces is spectral.

Proof. LetX , Y be spectral spaces. Denote p : X×Y → X and q : X×Y → Y the
projections. Let Z ⊂ X × Y be a closed irreducible subset. Then p(Z) ⊂ X is irreducible
and q(Z) ⊂ Y is irreducible. Let x ∈ X be the generic point of the closure of p(X) and
let y ∈ Y be the generic point of the closure of q(Y ). If (x, y) 6∈ Z , then there exist
opens x ∈ U ⊂ X , y ∈ V ⊂ Y such that Z ∩ U × V = ∅. Hence Z is contained in
(X \U)×Y ∪X× (Y \V ). SinceZ is irreducible, we see that eitherZ ⊂ (X \U)×Y or
Z ⊂ X×(Y \V ). In the first case p(Z) ⊂ (X \U) and in the second case q(Z) ⊂ (Y \V ).
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Both cases are absurd as x is in the closure of p(Z) and y is in the closure of q(Z). Thus
we conclude that (x, y) ∈ Z , which means that (x, y) is the generic point for Z.

A basis of the topology of X × Y are the opens of the form U × V with U ⊂ X and
V ⊂ Y quasi-compact open (here we use that X and Y are spectral). Then U × V is
quasi-compact as the product of quasi-compact spaces is quasi-compact. Moreover, any
quasi-compact open of X × Y is a finite union of such quasi-compact rectangles U × V .
It follows that the intersection of two such is again quasi-compact (since X and Y are
spectral). This concludes the proof. �

Lemma 23.11. Let f : X → Y be a continuous map of topological spaces. If
(1) X and Y are spectral,
(2) f is spectral and bijective, and
(3) generalizations (resp. specializations) lift along f .

Then f is a homeomorphism.

Proof. Since f is spectral it defines a continuous map between X and Y in the con-
structible topology. By Lemmas 23.2 and 17.8 it follows that X → Y is a homeomor-
phism in the constructible topology. Let U ⊂ X be quasi-compact open. Then f(U) is
constructible in Y . Let y ∈ Y specialize to a point in f(U). By the last assumption we
see that f−1(y) specializes to a point of U . Hence f−1(y) ∈ U . Thus y ∈ f(U). It fol-
lows that f(U) is open, see Lemma 23.6. Whence f is a homeomorphism. To prove the
lemma in case specializations lift along f one shows instead that f(Z) is closed if X \ Z
is a quasi-compact open of X . �

Lemma 23.12. The inverse limit of a directed inverse system of finite sober topological
spaces is a spectral topological space.

Proof. Let I be a directed set. LetXi be an inverse system of finite sober spaces over I .
Let X = limXi which exists by Lemma 14.1. As a set X = limXi. Denote pi : X → Xi

the projection. Because I is directed we may apply Lemma 14.2. A basis for the topology
is given by the opens p−1

i (Ui) for Ui ⊂ Xi open. Since an open covering of p−1
i (Ui)

is in particular an open covering in the profinite topology, we conclude that p−1
i (Ui) is

quasi-compact. Given Ui ⊂ Xi and Uj ⊂ Xj , then p−1
i (Ui) ∩ p−1

j (Uj) = p−1
k (Uk) for

some k ≥ i, j and open Uk ⊂ Xk. Finally, if Z ⊂ X is irreducible and closed, then
pi(Z) ⊂ Xi is irreducible and therefore has a unique generic point ξi (because Xi is a
finite sober topological space). Then ξ = lim ξi is a generic point of Z (it is a point of Z
as Z is closed). This finishes the proof. �

Lemma 23.13. Let W be the topological space with two points, one closed, the other
not. A topological space is spectral if and only if it is homeomorphic to a subspace of a
product of copies of W which is closed in the constructible topology.

Proof. Write W = {0, 1} where 0 is a specialization of 1 but not vice versa. Let I
be a set. The space

∏
i∈IW is spectral by Lemma 23.12. Thus we see that a subspace of∏

i∈IW closed in the constructible topology is a spectral space by Lemma 23.5.

For the converse, letX be a spectral space. Let U ⊂ X be a quasi-compact open. Consider
the continuous map

fU : X −→W
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which maps every point in U to 1 and every point in X \ U to 0. Taking the product of
these maps we obtain a continuous map

f =
∏

fU : X −→
∏

U
W

By construction the map f : X → Y is spectral. By Lemma 23.3 the image of f is closed in
the constructible topology. If x′, x ∈ X are distinct, then sinceX is sober either x′ is not a
specialization ofx or conversely. In either case (as the quasi-compact opens form a basis for
the topology of X) there exists a quasi-compact open U ⊂ X such that fU (x′) 6= fU (x).
Thus f is injective. Let Y = f(X) endowed with the induced topology. Let y′  y
be a specialization in Y and say f(x′) = y′ and f(x) = y. Arguing as above we see
that x′  x, since otherwise there is a U such that x ∈ U and x′ 6∈ U , which would
imply fU (x′) 6 fU (x). We conclude that f : X → Y is a homeomorphism by Lemma
23.11. �

Lemma 23.14. A topological space is spectral if and only if it is a directed inverse
limit of finite sober topological spaces.

Proof. One direction is given by Lemma 23.12. For the converse, assume X is spec-
tral. Then we may assume X ⊂

∏
i∈IW is a subset closed in the constructible topology

where W = {0, 1} as in Lemma 23.13. We can write∏
i∈I

W = limJ⊂I finite
∏

j∈J
W

as a cofiltered limit. For each J , let XJ ⊂
∏
j∈JW be the image of X . Then we see

that X = limXJ as sets because X is closed in the product with the constructible topol-
ogy (detail omitted). A formal argument (omitted) on limits shows that X = limXJ as
topological spaces. �

Lemma 23.15. LetX be a topological space and let c : X → X ′ be the universal map
from X to a sober topological space, see Lemma 8.16.

(1) If X is quasi-compact, so is X ′.
(2) IfX is quasi-compact, has a basis of quasi-compact opens, and the intersection of

two quasi-compact opens is quasi-compact, then X ′ is spectral.
(3) If X is Noetherian, then X ′ is a Noetherian spectral space.

Proof. Let U ⊂ X be open and let U ′ ⊂ X ′ be the corresponding open, i.e., the
open such that c−1(U ′) = U . Then U is quasi-compact if and only if U ′ is quasi-compact,
as pulling back by c is a bijection between the opens of X and X ′ which commutes with
unions. This in particular proves (1).

Proof of (2). It follows from the above that X ′ has a basis of quasi-compact opens. Since
c−1 also commutes with intersections of pairs of opens, we see that the intersection of two
quasi-compact opens X ′ is quasi-compact. Finally, X ′ is quasi-compact by (1) and sober
by construction. Hence X ′ is spectral.

Proof of (3). It is immediate thatX ′ is Noetherian as this is defined in terms of the acc for
open subsets which holds for X . We have already seen in (2) that X ′ is spectral. �

24. Limits of spectral spaces

Lemma 23.14 tells us that every spectral space is a cofiltered limit of finite sober spaces.
Every finite sober space is a spectral space and every continuous map of finite sober spaces
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is a spectral map of spectral spaces. In this section we prove some lemmas concerning limits
of systems of spectral topological spaces along spectral maps.

Lemma 24.1. Let I be a category. Let i 7→ Xi be a diagram of spectral spaces such
that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.

(1) Given subsets Zi ⊂ Xi closed in the constructible topology with fa(Zj) ⊂ Zi
for all a : j → i in I , then limZi is quasi-compact.

(2) The space X = limXi is quasi-compact.

Proof. The limitZ = limZi exists by Lemma 14.1. DenoteX ′
i the spaceXi endowed

with the constructible topology and Z ′
i the corresponding subspace of X ′

i . Let a : j → i
in I be a morphism. As fa is spectral it defines a continuous map fa : X ′

j → X ′
i . Thus

fa|Zj : Z ′
j → Z ′

i is a continuous map of quasi-compact Hausdorff spaces (by Lemmas 23.2
and 12.3). Thus Z ′ = limZi is quasi-compact by Lemma 14.5. The maps Z ′

i → Zi are
continuous, hence Z ′ → Z is continuous and a bijection on underlying sets. Hence Z is
quasi-compact as the image of the surjective continuous map Z ′ → Z (Lemma 12.7). �

Lemma 24.2. Let I be a cofiltered category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.

(1) Given nonempty subsets Zi ⊂ Xi closed in the constructible topology with
fa(Zj) ⊂ Zi for all a : j → i in I , then limZi is nonempty.

(2) If each Xi is nonempty, then X = limXi is nonempty.

Proof. Denote X ′
i the space Xi endowed with the constructible topology and Z ′

i

the corresponding subspace of X ′
i . Let a : j → i in I be a morphism. As fa is spectral

it defines a continuous map fa : X ′
j → X ′

i . Thus fa|Zj : Z ′
j → Z ′

i is a continuous map
of quasi-compact Hausdorff spaces (by Lemmas 23.2 and 12.3). By Lemma 14.6 the space
limZ ′

i is nonempty. Since limZ ′
i = limZi as sets we conclude. �

Lemma 24.3. Let I be a cofiltered category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral. Let
X = limXi with projections pi : X → Xi. Let i ∈ Ob(I) and let E,F ⊂ Xi be subsets
with E closed in the constructible topology and F open in the constructible topology.
Then p−1

i (E) ⊂ p−1
i (F ) if and only if there is a morphism a : j → i in I such that

f−1
a (E) ⊂ f−1

a (F ).

Proof. Observe that

p−1
i (E) \ p−1

i (F ) = lima:j→i f
−1
a (E) \ f−1

a (F )

Since fa is a spectral map, it is continuous in the constructible topology hence the set
f−1
a (E) \ f−1

a (F ) is closed in the constructible topology. Hence Lemma 24.2 applies to
show that the LHS is nonempty if and only if each of the spaces of the RHS is nonempty.

�

Lemma 24.4. Let I be a cofiltered category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral. Let
X = limXi with projections pi : X → Xi. Let E ⊂ X be a constructible subset. Then
there exists an i ∈ Ob(I) and a constructible subset Ei ⊂ Xi such that p−1

i (Ei) = E. If
E is open, resp. closed, we may choose Ei open, resp. closed.
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Proof. Assume E is a quasi-compact open of X . By Lemma 14.2 we can write E =
p−1
i (Ui) for some i and some open Ui ⊂ Xi. Write Ui =

⋃
Ui,α as a union of quasi-

compact opens. AsE is quasi-compact we can find α1, . . . , αn such thatE = p−1
i (Ui,α1 ∪

. . . ∪ Ui,αn). Hence Ei = Ui,α1 ∪ . . . ∪ Ui,αn works.
Assume E is a constructible closed subset. Then Ec is quasi-compact open. So Ec =
p−1
i (Fi) for some i and quasi-compact open Fi ⊂ Xi by the result of the previous para-

graph. Then E = p−1
i (F ci ) as desired.

IfE is general we can writeE =
⋃
l=1,...,n Ul∩Zl withUl constructible open andZl con-

structible closed. By the result of the previous paragraphs we may write Ul = p−1
il

(Ul,il)
and Zl = p−1

jl
(Zl,jl) with Ul,il ⊂ Xil constructible open and Zl,jl ⊂ Xjl constructible

closed. As I is cofiltered we may choose an object k of I and morphism al : k → il and
bl : k → jl. Then takingEk =

⋃
l=1,...,n f

−1
al

(Ul,il)∩f−1
bl

(Zl,jl) we obtain a constructible
subset of Xk whose inverse image in X is E. �

Lemma 24.5. Let I be a cofiltered index category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral.
Then the inverse limitX = limXi is a spectral topological space and the projection maps
pi : X → Xi are spectral.

Proof. The limit X = limXi exists (Lemma 14.1) and is quasi-compact by Lemma
24.1.
Denote pi : X → Xi the projection. Because I is cofiltered we can apply Lemma 14.2.
Hence a basis for the topology on X is given by the opens p−1

i (Ui) for Ui ⊂ Xi open.
Since a basis for the topology of Xi is given by the quasi-compact open, we conclude that
a basis for the topology on X is given by p−1

i (Ui) with Ui ⊂ Xi quasi-compact open. A
formal argument shows that

p−1
i (Ui) = lima:j→i f

−1
a (Ui)

as topological spaces. Since each fa is spectral the sets f−1
a (Ui) are closed in the con-

structible topology of Xj and hence p−1
i (Ui) is quasi-compact by Lemma 24.1. Thus X

has a basis for the topology consisting of quasi-compact opens.

Any quasi-compact open U of X is of the form U = p−1
i (Ui) for some i and some quasi-

compact open Ui ⊂ Xi (see Lemma 24.4). Given Ui ⊂ Xi and Uj ⊂ Xj quasi-compact
open, then p−1

i (Ui)∩ p−1
j (Uj) = p−1

k (Uk) for some k and quasi-compact open Uk ⊂ Xk.
Namely, choose k and morphisms k → i and k → j and let Uk be the intersection of the
pullbacks of Ui and Uj to Xk. Thus we see that the intersection of two quasi-compact
opens of X is quasi-compact open.
Finally, let Z ⊂ X be irreducible and closed. Then pi(Z) ⊂ Xi is irreducible and there-
fore Zi = pi(Z) has a unique generic point ξi (because Xi is a spectral space). Then
fa(ξj) = ξi for a : j → i in I because fa(Zj) = Zi. Hence ξ = lim ξi is a point of X .
Claim: ξ ∈ Z. Namely, if not we can find a quasi-compact open containing ξ disjoint from
Z. This would be of the form p−1

i (Ui) for some i and quasi-compact open Ui ⊂ Xi. Then
ξi ∈ Ui but pi(Z) ∩ Ui = ∅ which contradicts ξi ∈ pi(Z). So ξ ∈ Z and hence {ξ} ⊂ Z.
Conversely, every z ∈ Z is in the closure of ξ. Namely, given a quasi-compact open neigh-
bourhood U of z we write U = p−1

i (Ui) for some i and quasi-compact open Ui ⊂ Xi. We
see that pi(z) ∈ Ui hence ξi ∈ Ui hence ξ ∈ U . Thus ξ is a generic point of Z. We omit
the proof that ξ is the unique generic point of Z (hint: show that a second generic point
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has to be equal to ξ by showing that it has to map to ξi in Xi since by spectrality of Xi

the irreducible Zi has a unique generic point). This finishes the proof. �

Lemma 24.6. Let I be a cofiltered index category. Let i 7→ Xi be a diagram of spectral
spaces such that for a : j → i in I the corresponding map fa : Xj → Xi is spectral. Set
X = limXi and denote pi : X → Xi the projection.

(1) Given any quasi-compact open U ⊂ X there exists an i ∈ Ob(I) and a quasi-
compact open Ui ⊂ Xi such that p−1

i (Ui) = U .
(2) GivenUi ⊂ Xi andUj ⊂ Xj quasi-compact opens such that p−1

i (Ui) ⊂ p−1
j (Uj)

there exist k ∈ Ob(I) and morphisms a : k → i and b : k → j such that
f−1
a (Ui) ⊂ f−1

b (Uj).
(3) If Ui, U1,i, . . . , Un,i ⊂ Xi are quasi-compact opens and p−1

i (Ui) = p−1
i (U1,i) ∪

. . .∪p−1
i (Un,i) then f−1

a (Ui) = f−1
a (U1,i)∪. . .∪f−1

a (Un,i) for some morphism
a : j → i in I .

(4) Same statement as in (3) but for intersections.

Proof. Part (1) is a special case of Lemma 24.4. Part (2) is a special case of Lemma 24.3
as quasi-compact opens are both open and closed in the constructible topology. Parts (3)
and (4) follow formally from (1) and (2) and the fact that taking inverse images of subsets
commutes with taking unions and intersections. �

Lemma 24.7. Let W be a subset of a spectral space X . The following are equivalent:
(1) W is an intersection of constructible sets and closed under generalizations,
(2) W is quasi-compact and closed under generalizations,
(3) there exists a quasi-compact subset E ⊂ X such that W is the set of points

specializing to E ,
(4) W is an intersection of quasi-compact open subsets,
(5) there exists a nonempty set I and quasi-compact opens Ui ⊂ X , i ∈ I such that

W =
⋂
Ui and for all i, j ∈ I there exists a k ∈ I with Uk ⊂ Ui ∩ Uj .

In this case we have (a)W is a spectral space, (b)W = limUi as topological spaces, and (c)
for any open U containing W there exists an i with Ui ⊂ U .

Proof. Let W ⊂ X satisfy (1). Then W is closed in the constructible topology,
hence quasi-compact in the constructible topology (by Lemmas 23.2 and 12.3), hence quasi-
compact in the topology ofX (because opens inX are open in the constructible topology).
Thus (2) holds.

It is clear that (2) implies (3) by taking E = W .

Let X be a spectral space and let E ⊂ W be as in (3). Since every point of W specializes
to a point of E we see that an open of W which contains E is equal to W . Hence since E
is quasi-compact, so is W . If x ∈ X , x 6∈ W , then Z = {x} is disjoint from W . Since W
is quasi-compact we can find a quasi-compact open U with W ⊂ U and U ∩ Z = ∅. We
conclude that (4) holds.

IfW =
⋂
j∈J Uj then setting I equal to the set of finite subsets of J and Ui = Uj1 ∩ . . .∩

Ujr for i = {j1, . . . , jr} shows that (4) implies (5). It is immediate that (5) implies (1).

Let I and Ui be as in (5). SinceW =
⋂
Ui we haveW = limUi by the universal property

of limits. Then W is a spectral space by Lemma 24.5. Let U ⊂ X be an open neighbour-
hood of W . Then Ei = Ui ∩ (X \ U) is a family of constructible subsets of the spectral
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space Z = X \ U with empty intersection. Using that the spectral topology on Z is
quasi-compact (Lemma 23.2) we conclude from Lemma 12.6 that Ei = ∅ for some i. �

Lemma 24.8. Let X be a spectral space. Let E ⊂ X be a constructible subset. Let
W ⊂ X be the set of points of X which specialize to a point of E. Then W \ E is a
spectral space. If W =

⋂
Ui with Ui as in Lemma 24.7 (5) then W \ E = lim(Ui \ E).

Proof. Since E is constructible, it is quasi-compact and hence Lemma 24.7 applies
to W . If E is constructible, then E is constructible in Ui for all i ∈ I . Hence Ui \ E is
spectral by Lemma 23.5. Since W \ E =

⋂
(Ui \ E) we have W \ E = limUi \ E by the

universal property of limits. Then W \ E is a spectral space by Lemma 24.5. �

25. Stone-Čech compactification

The Stone-Čech compactification of a topological space X is a map X → β(X) from X
to a Hausdorff quasi-compact space β(X) which is universal for such maps. We prove this
exists by a standard argument using the following simple lemma.

Lemma 25.1. Let f : X → Y be a continuous map of topological spaces. Assume
that f(X) is dense in Y and that Y is Hausdorff. Then the cardinality of Y is at most the
cardinality of P (P (X)) where P is the power set operation.

Proof. Let S = f(X) ⊂ Y . Let D be the set of all closed domains of Y , i.e., subsets
D ⊂ Y which equal the closure of its interior. Note that the closure of an open subset of
Y is a closed domain. For y ∈ Y consider the set

Iy = {T ⊂ S | there exists D ∈ D with T = S ∩D and y ∈ D}.

Since S is dense in Y for every closed domain D we see that S ∩D is dense in D. Hence,
if D ∩ S = D′ ∩ S for D,D′ ∈ D, then D = D′. Thus Iy = Iy′ implies that y = y′

because the Hausdorff condition assures us that we can find a closed domain containing y
but not y′. The result follows. �

Let X be a topological space. By Lemma 25.1, there is a set I of isomorphism classes of
continuous maps f : X → Y which have dense image and where Y is Hausdorff and
quasi-compact. For i ∈ I choose a representative fi : X → Yi. Consider the map∏

fi : X −→
∏

i∈I
Yi

and denote β(X) the closure of the image. Since each Yi is Hausdorff, so is β(X). Since
each Yi is quasi-compact, so is β(X) (use Theorem 14.4 and Lemma 12.3).

Let us show the canonical mapX → β(X) satisfies the universal property with respect to
maps to Hausdorff, quasi-compact spaces. Namely, let f : X → Y be such a morphism.
Let Z ⊂ Y be the closure of f(X). Then X → Z is isomorphic to one of the maps
fi : X → Yi, say fi0 : X → Yi0 . Thus f factors asX → β(X)→

∏
Yi → Yi0

∼= Z → Y
as desired.

Lemma 25.2. Let X be a Hausdorff, locally quasi-compact space. There exists a map
X → X∗ which identifies X as an open subspace of a quasi-compact Hausdorff space
X∗ such that X∗ \ X is a singleton (one point compactification). In particular, the map
X → β(X) identifies X with an open subspace of β(X).



26. EXTREMALLY DISCONNECTED SPACES 251

Proof. SetX∗ = Xq{∞}. We declare a subset V ofX∗ to be open if either V ⊂ X
is open inX , or∞ ∈ V andU = V ∩X is an open ofX such thatX \U is quasi-compact.
We omit the verification that this defines a topology. It is clear that X → X∗ identifies
X with an open subspace of X .

Since X is locally quasi-compact, every point x ∈ X has a quasi-compact neighbourhood
x ∈ E ⊂ X . Then E is closed (Lemma 12.4 part (1)) and V = (X \E)q {∞} is an open
neighbourhood of∞ disjoint from the interior of E. Thus X∗ is Hausdorff.

Let X∗ =
⋃
Vi be an open covering. Then for some i, say i0, we have ∞ ∈ Vi0 . By

construction Z = X∗ \ Vi0 is quasi-compact. Hence the covering Z ⊂
⋃
i 6=i0 Z ∩ Vi has

a finite refinement which implies that the given covering of X∗ has a finite refinement.
Thus X∗ is quasi-compact.

The map X → X∗ factors as X → β(X) → X∗ by the universal property of the Stone-
Čech compactification. Let ϕ : β(X) → X∗ be this factorization. Then X → ϕ−1(X)
is a section to ϕ−1(X) → X hence has closed image (Lemma 3.3). Since the image of
X → β(X) is dense we conclude that X = ϕ−1(X). �

26. Extremally disconnected spaces

The material in this section is taken from [?] (with a slight modification as in [?]). In
Gleason’s paper it is shown that in the category of quasi-compact Hausdorff spaces, the
“projective objects” are exactly the extremally disconnected spaces.

Definition 26.1. A topological spaceX is called extremally disconnected if the clo-
sure of every open subset of X is open.

If X is Hausdorff and extremally disconnected, then X is totally disconnected (this isn’t
true in general). If X is quasi-compact, Hausdorff, and extremally disconnected, then X
is profinite by Lemma 22.2, but the converse does not hold in general. For example the
p-adic integers Zp = lim Z/pnZ is a profinite space which is not extremally disconnected.
Namely, if U ⊂ Zp is the set of nonzero elements whose valuation is even, then U is open
but its closure is U ∪ {0} which is not open.

Lemma 26.2. Let f : X → Y be a continuous map of topological spaces. Assume f
is surjective and f(E) 6= Y for all proper closed subsets E ⊂ X . Then for U ⊂ X open
the subset f(U) is contained in the closure of Y \ f(X \ U).

Proof. Pick y ∈ f(U) and let V ⊂ Y be any open neighbourhood of y. We will
show that V intersects Y \ f(X \ U). Note that W = U ∩ f−1(V ) is a nonempty open
subset of X , hence f(X \W ) 6= Y . Take y′ ∈ Y , y′ 6∈ f(X \W ). It is elementary to
show that y′ ∈ V and y′ ∈ Y \ f(X \ U). �

Lemma 26.3. Let X be an extremally disconnected space. If U, V ⊂ X are disjoint
open subsets, then U and V are disjoint too.

Proof. By assumption U is open, hence V ∩ U is open and disjoint from U , hence
empty becauseU is the intersection of all the closed subsets ofX containingU . This means
the open V ∩ U avoids V hence is empty by the same argument. �

Lemma 26.4. Let f : X → Y be a continuous map of Hausdorff quasi-compact
topological spaces. If Y is extremally disconnected, f is surjective, and f(Z) 6= Y for
every proper closed subset Z of X , then f is a homeomorphism.
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Proof. By Lemma 17.8 it suffices to show that f is injective. Suppose that x, x′ ∈
X are distinct points with y = f(x) = f(x′). Choose disjoint open neighbourhoods
U,U ′ ⊂ X of x, x′. Observe that f is closed (Lemma 17.7) hence T = f(X \ U) and
T ′ = f(X \ U ′) are closed in Y . Since X is the union of X \ U and X \ U ′ we see that
Y = T ∪ T ′. By Lemma 26.2 we see that y is contained in the closure of Y \ T and the
closure of Y \ T ′. On the other hand, by Lemma 26.3, this intersection is empty. In this
way we obtain the desired contradiction. �

Lemma 26.5. Let f : X → Y be a continuous surjective map of Hausdorff quasi-
compact topological spaces. There exists a quasi-compact subsetE ⊂ X such that f(E) =
Y but f(E′) 6= Y for all proper closed subsets E′ ⊂ E.

Proof. We will use without further mention that the quasi-compact subsets ofX are
exactly the closed subsets (Lemma 12.5). Consider the collection E of all quasi-compact
subsets E ⊂ X with f(E) = Y ordered by inclusion. We will use Zorn’s lemma to show
that E has a minimal element. To do this it suffices to show that given a totally ordered
family Eλ of elements of E the intersection

⋂
Eλ is an element of E . It is quasi-compact

as it is closed. For every y ∈ Y the sets Eλ ∩ f−1({y}) are nonempty and closed, hence
the intersection

⋂
Eλ ∩ f−1({y}) =

⋂
(Eλ ∩ f−1({y})) is nonempty by Lemma 12.6.

This finishes the proof. �

Proposition 26.6. Let X be a Hausdorff, quasi-compact topological space. The fol-
lowing are equivalent

(1) X is extremally disconnected,
(2) for any surjective continuous map f : Y → X with Y Hausdorff quasi-compact

there exists a continuous section, and
(3) for any solid commutative diagram

Y

��
X

>>

// Z

of continuous maps of quasi-compact Hausdorff spaces with Y → Z surjective,
there is a dotted arrow in the category of topological spaces making the diagram
commute.

Proof. It is clear that (3) implies (2). On the other hand, if (2) holds and X → Z
and Y → Z are as in (3), then (2) assures there is a section to the projectionX×Z Y → X
which implies a suitable dotted arrow exists (details omitted). Thus (3) is equivalent to
(2).

AssumeX is extremally disconnected and let f : Y → X be as in (2). By Lemma 26.5 there
exists a quasi-compact subset E ⊂ Y such that f(E) = X but f(E′) 6= X for all proper
closed subsets E′ ⊂ E. By Lemma 26.4 we find that f |E : E → X is a homeomorphism,
the inverse of which gives the desired section.

Assume (2). Let U ⊂ X be open with complement Z. Consider the continuous surjection
f : U q Z → X . Let σ be a section. Then U = σ−1(U) is open. Thus X is extremally
disconnected. �
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Lemma 26.7. Let f : X → X be a surjective continuous selfmap of a Hausdorff
topological space. If f is not idX , then there exists a proper closed subset E ⊂ X such
that X = E ∪ f(E).

Proof. Pick p ∈ X with f(p) 6= p. Choose disjoint open neighbourhoods p ∈ U ,
f(p) ∈ V and setE = X \U ∩ f−1(V ). Then p 6∈ E henceE is a proper closed subset. If
x ∈ X , then either x ∈ E , or if not, then x ∈ U ∩f−1(V ) and writing x = f(y) (possible
as f is surjective) we find y ∈ V ⊂ E and x ∈ f(E). �

Example 26.8. We can use Proposition 26.6 to see that the Stone-Čech compactifica-
tion β(X) of a discrete spaceX is extremally disconnected. Namely, let f : Y → β(X) be
a continuous surjection whereY is quasi-compact and Hausdorff. Then we can lift the map
X → β(X) to a continuous (!) mapX → Y asX is discrete. By the universal property of
the Stone-Čech compactification we see that we obtain a factorization X → β(X)→ Y .
Since β(X)→ Y → β(X) equals the identity on the dense subsetX we conclude that we
get a section. In particular, we conclude that the Stone-Čech compactification of a discrete
space is totally disconnected, whence profinite (see discussion following Definition 26.1
and Lemma 22.2).

Using the supply of extremally disconnected spaces given by Example 26.8 we can prove
that every quasi-compact Hausdorff space has a “projective cover” in the category of quasi-
compact Hausdorff spaces.

Lemma 26.9. Let X be a quasi-compact Hausdorff space. There exists a continuous
surjection X ′ → X with X ′ quasi-compact, Hausdorff, and extremally disconnected. If
we require that every proper closed subset of X ′ does not map onto X , then X ′ is unique
up to isomorphism.

Proof. Let Y = X but endowed with the discrete topology. Let X ′ = β(Y ). The
continuous map Y → X factors as Y → X ′ → X . This proves the first statement of the
lemma by Example 26.8.
By Lemma 26.5 we can find a quasi-compact subset E ⊂ X ′ surjecting onto X such that
no proper closed subset ofE surjects ontoX . BecauseX ′ is extremally disconnected there
exists a continuous map f : X ′ → E over X (Proposition 26.6). Composing f with
the map E → X ′ gives a continuous selfmap f |E : E → E. Observe that f |E has to
be surjective as otherwise the image would be a proper closed subset surjecting onto X .
Hence f |E has to be idE as otherwise Lemma 26.7 shows that E isn’t minimal. Thus the
idE factors through the extremally disconnected spaceX ′. A formal, categorical argument
(using the characterization of Proposition 26.6) shows that E is extremally disconnected.
To prove uniqueness, suppose we have a second X ′′ → X minimal cover. By the lifting
property proven in Proposition 26.6 we can find a continuous map g : X ′ → X ′′ over
X . Observe that g is a closed map (Lemma 17.7). Hence g(X ′) ⊂ X ′′ is a closed subset
surjecting onto X and we conclude g(X ′) = X ′′ by minimality of X ′′. On the other
hand, if E ⊂ X ′ is a proper closed subset, then g(E) 6= X ′′ as E does not map onto X by
minimality of X ′. By Lemma 26.4 we see that g is an isomorphism. �

Remark 26.10. LetX be a quasi-compact Hausdorff space. Let κ be an infinite cardi-
nal bigger or equal than the cardinality of X . Then the cardinality of the minimal quasi-
compact, Hausdorff, extremally disconnected coverX ′ → X (Lemma 26.9) is at most 22κ .
Namely, choose a subset S ⊂ X ′ mapping bijectively to X . By minimality of X ′ the set
S is dense in X ′. Thus |X ′| ≤ 22κ by Lemma 25.1.
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27. Miscellany

The following lemma applies to the underlying topological space associated to a quasi-
separated scheme.

Lemma 27.1. Let X be a topological space which
(1) has a basis of the topology consisting of quasi-compact opens, and
(2) has the property that the intersection of any two quasi-compact opens is quasi-

compact.
Then

(1) X is locally quasi-compact,
(2) a quasi-compact open U ⊂ X is retrocompact,
(3) any quasi-compact open U ⊂ X has a cofinal system of open coverings U : U =⋃

j∈J Uj with J finite and all Uj and Uj ∩ Uj′ quasi-compact,
(4) add more here.

Proof. Omitted. �

Definition 27.2. Let X be a topological space. We say x ∈ X is an isolated point of
X if {x} is open in X .

28. Partitions and stratifications

Stratifications can be defined in many different ways. We welcome comments on the
choice of definitions in this section.

Definition 28.1. Let X be a topological space. A partition of X is a decomposition
X =

∐
Xi into locally closed subsets Xi. The Xi are called the parts of the partition.

Given two partitions of X we say one refines the other if the parts of one are unions of
parts of the other.

Any topological space X has a partition into connected components. If X has finitely
many irreducible componentsZ1, . . . , Zr , then there is a partition with partsXI =

⋂
i∈I Zi\

(
⋃
i 6∈I Zi) whose indices are subsets I ⊂ {1, . . . , r} which refines the partition into con-

nected components.

Definition 28.2. Let X be a topological space. A good stratification of X is a parti-
tion X =

∐
Xi such that for all i, j ∈ I we have

Xi ∩Xj 6= ∅ ⇒ Xi ⊂ Xj .

Given a good stratification X =
∐
i∈I Xi we obtain a partial ordering on I by setting

i ≤ j if and only if Xi ⊂ Xj . Then we see that

Xj =
⋃

i≤j
Xi

However, what often happens in algebraic geometry is that one just has that the left hand
side is a subset of the right hand side in the last displayed formula. This leads to the
following definition.

Definition 28.3. Let X be a topological space. A stratification of X is given by a
partition X =

∐
i∈I Xi and a partial ordering on I such that for each j ∈ I we have

Xj ⊂
⋃

i≤j
Xi

The parts Xi are called the strata of the stratification.
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We often impose additional conditions on the stratification. For example, stratifications
are particularly nice if they are locally finite, which means that every point has a neigh-
bourhood which meets only finitely many strata. More generally we introduce the fol-
lowing definition.

Definition 28.4. LetX be a topological space. Let I be a set and for i ∈ I letEi ⊂ X
be a subset. We say the collection {Ei}i∈I is locally finite if for all x ∈ X there exists an
open neighbourhood U of x such that {i ∈ I|Ei ∩ U 6= ∅} is finite.

Remark 28.5. Given a locally finite stratification X =
∐
Xi of a topological space

X , we obtain a family of closed subsets Zi =
⋃
j≤iXj of X indexed by I such that

Zi ∩ Zj =
⋃

k≤i,j
Zk

Conversely, given closed subsets Zi ⊂ X indexed by a partially ordered set I such that
X =

⋃
Zi, such that every point has a neighbourhood meeting only finitely many Zi,

and such that the displayed formula holds, then we obtain a locally finite stratification of
X by setting Xi = Zi \

⋃
j<i Zj .

Lemma 28.6. Let X be a topological space. Let X =
∐
Xi be a finite partition of X .

Then there exists a finite stratification of X refining it.

Proof. Let Ti = Xi and ∆i = Ti \Xi. Let S be the set of all intersections of Ti and
∆i. (For example T1 ∩ T2 ∩∆4 is an element of S.) Then S = {Zs} is a finite collection
of closed subsets of X such that Zs ∩ Zs′ ∈ S for all s, s′ ∈ S. Define a partial ordering
on S by inclusion. Then set Ys = Zs \

⋃
s′<s Zs′ to get the desired stratification. �

Lemma 28.7. Let X be a topological space. Suppose X = T1 ∪ . . . ∪ Tn is written as
a union of constructible subsets. There exists a finite stratification X =

∐
Xi with each

Xi constructible such that each Tk is a union of strata.

Proof. By definition of constructible subsets, we can write each Ti as a finite union of
U ∩V c withU, V ⊂ X retrocompact open. Hence we may assume that Ti = Ui∩V ci with
Ui, Vi ⊂ X retrocompact open. Let S be the finite set of closed subsets of X consisting
of ∅, X, U ci , V ci and finite intersections of these. If Z ∈ S , then Z is constructible in X
(Lemma 15.2). Moreover, Z ∩Z ′ ∈ S for all Z,Z ′ ∈ S. Define a partial ordering on S by
inclusion. ForZ ∈ S setXZ = Z \

⋃
Z′<Z, Z′∈S Z

′ to get a stratificationX =
∐
Z∈S XZ

satisfying the properties stated in the lemma. �

Lemma 28.8. LetX be a Noetherian topological space. Any finite partition ofX can
be refined by a finite good stratification.

Proof. Let X =
∐
Xi be a finite partition of X . Let Z be an irreducible component

of X . Since X =
⋃
Xi with finite index set, there is an i such that Z ⊂ Xi. Since Xi is

locally closed this implies that Z ∩Xi contains an open of Z. Thus Z ∩Xi contains an
open U of X (Lemma 9.2). Write Xi = U q X1

i q X2
i with X1

i = (Xi \ U) ∩ U and
X2
i = (Xi \ U) ∩ U c. For i′ 6= i we set X1

i′ = Xi′ ∩ U and X2
i′ = Xi′ ∩ U

c. Then

X \ U =
∐

Xk
l

is a partition such that U \U =
⋃
X1
l . Note thatX \U is closed and strictly smaller than

X . By Noetherian induction we can refine this partition by a finite good stratification
X \U =

∐
α∈A Tα. ThenX = U q

∐
α∈A Tα is a finite good stratification ofX refining

the partition we started with. �
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29. Colimits of spaces

The category of topological spaces has coproducts. Namely, if I is a set and for i ∈ I
we are given a topological space Xi then we endow the set

∐
i∈I Xi with the coproduct

topology. As a basis for this topology we use sets of the form Ui where Ui ⊂ Xi is open.

The category of topological spaces has coequalizers. Namely, if a, b : X → Y are mor-
phisms of topological spaces, then the coequalizer of a and b is the coequalizer Y/ ∼ in
the category of sets endowed with the quotient topology (Section 6).

Lemma 29.1. The category of topological spaces has colimits and the forgetful func-
tor to sets commutes with them.

Proof. This follows from the discussion above and Categories, Lemma 14.12. An-
other proof of existence of colimits is sketched in Categories, Remark 25.2. It follows
from the above that the forgetful functor commutes with colimits. Another way to see
this is to use Categories, Lemma 24.5 and use that the forgetful functor has a right ad-
joint, namely the functor which assigns to a set the corresponding chaotic (or indiscrete)
topological space. �

30. Topological groups, rings, modules

This is just a short section with definitions and elementary properties.

Definition 30.1. A topological group is a group G endowed with a topology such
that multiplication G × G → G, (x, y) 7→ xy and inverse G → G, x 7→ x−1 are con-
tinuous. A homomorphism of topological groups is a homomorphism of groups which is
continuous.

If G is a topological group and H ⊂ G is a subgroup, then H with the induced topology
is a topological group. If G is a topological group and G → H is a surjection of groups,
then H endowed with the quotient topology is a topological group.

Example 30.2. Let E be a set. We can endow the set of self maps Map(E,E) with
the compact open topology, i.e., the topology such that given f : E → E a fundamental
system of neighbourhoods of f is given by the sets US(f) = {f ′ : E → E | f ′|S = f |S}
where S ⊂ E is finite. With this topology the action

Map(E,E)× E −→ E, (f, e) 7−→ f(e)

is continuous when E is given the discrete topology. If X is a topological space and X ×
E → E is a continuous map, then the map X → Map(E,E) is continuous. In other
words, the compact open topology is the coarsest topology such that the “action” map
displayed above is continuous. The composition

Map(E,E)×Map(E,E)→Map(E,E)

is continuous as well (as is easily verified using the description of neighbourhoods above).
Finally, if Aut(E) ⊂ Map(E,E) is the subset of invertible maps, then the inverse i :
Aut(E) → Aut(E), f 7→ f−1 is continuous too. Namely, say S ⊂ E is finite, then
i−1(US(f−1)) = Uf−1(S)(f). Hence Aut(E) is a topological group as in Definition 30.1.

Lemma 30.3. The category of topological groups has limits and limits commute with
the forgetful functors to (a) the category of topological spaces and (b) the category of
groups.
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Proof. It is enough to prove the existence and commutation for products and equal-
izers, see Categories, Lemma 14.11. LetGi, i ∈ I be a collection of topological groups. Take
the usual productG =

∏
Gi with the product topology. SinceG×G =

∏
(Gi×Gi) as a

topological space (because products commutes with products in any category), we see that
multiplication on G is continuous. Similarly for the inverse map. Let a, b : G → H be
two homomorphisms of topological groups. Then as the equalizer we can simply take the
equalizer of a and b as maps of topological spaces, which is the same thing as the equalizer
as maps of groups endowed with the induced topology. �

Lemma 30.4. Let G be a topological group. The following are equivalent
(1) G as a topological space is profinite,
(2) G is a limit of a diagram of finite discrete topological groups,
(3) G is a cofiltered limit of finite discrete topological groups.

Proof. We have the corresponding result for topological spaces, see Lemma 22.2.
Combined with Lemma 30.3 we see that it suffices to prove that (1) implies (3).

We first prove that every neighbourhoodE of the neutral element e contains an open sub-
group. Namely, since G is the cofiltered limit of finite discrete topological spaces (Lemma
22.2), we can choose a continuous map f : G → T to a finite discrete space T such that
f−1(f({e})) ⊂ E. Consider

H = {g ∈ G | f(gg′) = f(g′) for all g′ ∈ G}
This is a subgroup of G and contained in E. Thus it suffices to show that H is open. Pick
t ∈ T and set W = f−1({t}). Observe that W ⊂ G is open and closed, in particular
quasi-compact. For each w ∈ W there exist open neighbourhoods e ∈ Uw ⊂ G and
w ∈ U ′

w ⊂ W such that UwU ′
w ⊂ W . By quasi-compactness we can find w1, . . . , wn

such that W =
⋃
U ′
wi . Then Ut = Uw1 ∩ . . . ∩ Uwn is an open neighbourhood of e such

that f(gw) = t for all w ∈ W . Since T is finite we see that
⋂
t∈T Ut ⊂ H is an open

neighbourhood of e. Since H ⊂ G is a subgroup it follows that H is open.

Suppose thatH ⊂ G is an open subgroup. SinceG is quasi-compact we see that the index
of H in G is finite. Say G = Hg1 ∪ . . . ∪Hgn. Then N =

⋂
i=1,...,n giHg

−1
i is an open

normal subgroup contained in H . Since N also has finite index we see that G→ G/N is
a surjection to a finite discrete topological group.

Consider the map
G −→ limN⊂G open and normal G/N

We claim that this map is an isomorphism of topological groups. This finishes the proof
of the lemma as the limit on the right is cofiltered (the intersection of two open normal
subgroups is open and normal). The map is continuous as each G→ G/N is continuous.
The map is injective as G is Hausdorff and every neighbourhood of e contains an N by
the arguments above. The map is surjective by Lemma 12.6. By Lemma 17.8 the map is a
homeomorphism. �

Definition 30.5. A topological group is called a profinite group if it satisfies the
equivalent conditions of Lemma 30.4.

IfG1 → G2 → G3 → . . . is a system of topological groups then the colimitG = colimGn
as a topological group (Lemma 30.6) is in general different from the colimit as a topological
space (Lemma 29.1) even though these have the same underlying set. See Examples, Section
77.
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Lemma 30.6. The category of topological groups has colimits and colimits commute
with the forgetful functor to the category of groups.

Proof. We will use the argument of Categories, Remark 25.2 to prove existence of
colimits. Namely, suppose that I → Top, i 7→ Gi is a functor into the category TopGroup
of topological groups. Then we can consider

F : TopGroup −→ Sets, H 7−→ limI MorTopGroup(Gi,H)

This functor commutes with limits. Moreover, given any topological group H and an
element (ϕi : Gi → H) of F (H), there is a subgroup H ′ ⊂ H of cardinality at most
|
∐
Gi| (coproduct in the category of groups, i.e., the free product on theGi) such that the

morphisms ϕi map into H ′. Namely, we can take the induced topology on the subgroup
generated by the images of the ϕi. Thus it is clear that the hypotheses of Categories,
Lemma 25.1 are satisfied and we find a topological group G representing the functor F ,
which precisely means that G is the colimit of the diagram i 7→ Gi.

To see the statement on commutation with the forgetful functor to groups we will use
Categories, Lemma 24.5. Indeed, the forgetful functor has a right adjoint, namely the
functor which assigns to a group the corresponding chaotic (or indiscrete) topological
group. �

Definition 30.7. A topological ring is a ring R endowed with a topology such that
addition R × R → R, (x, y) 7→ x + y and multiplication R × R → R, (x, y) 7→ xy are
continuous. A homomorphism of topological rings is a homomorphism of rings which is
continuous.

In the Stacks project rings are commutative with 1. If R is a topological ring, then (R,+)
is a topological group since x 7→ −x is continuous. If R is a topological ring and R′ ⊂ R
is a subring, then R′ with the induced topology is a topological ring. If R is a topological
ring and R → R′ is a surjection of rings, then R′ endowed with the quotient topology is
a topological ring.

Lemma 30.8. The category of topological rings has limits and limits commute with
the forgetful functors to (a) the category of topological spaces and (b) the category of rings.

Proof. It is enough to prove the existence and commutation for products and equal-
izers, see Categories, Lemma 14.11. Let Ri, i ∈ I be a collection of topological rings. Take
the usual product R =

∏
Ri with the product topology. Since R × R =

∏
(Ri × Ri)

as a topological space (because products commutes with products in any category), we see
that addition and multiplication on R are continuous. Let a, b : R → R′ be two homo-
morphisms of topological rings. Then as the equalizer we can simply take the equalizer of
a and b as maps of topological spaces, which is the same thing as the equalizer as maps of
rings endowed with the induced topology. �

Lemma 30.9. The category of topological rings has colimits and colimits commute
with the forgetful functor to the category of rings.

Proof. The exact same argument as used in the proof of Lemma 30.6 shows existence
of colimits. To see the statement on commutation with the forgetful functor to rings we
will use Categories, Lemma 24.5. Indeed, the forgetful functor has a right adjoint, namely
the functor which assigns to a ring the corresponding chaotic (or indiscrete) topological
ring. �
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Definition 30.10. LetR be a topological ring. A topological module is anR-module
M endowed with a topology such that addition M ×M →M and scalar multiplication
R ×M → M are continuous. A homomorphism of topological modules is a homomor-
phism of modules which is continuous.

If R is a topological ring and M is a topological module, then (M,+) is a topological
group since x 7→ −x is continuous. If R is a topological ring, M is a topological module
andM ′ ⊂M is a submodule, thenM ′ with the induced topology is a topological module.
If R is a topological ring, M is a topological module, and M → M ′ is a surjection of
modules, then M ′ endowed with the quotient topology is a topological module.

Lemma 30.11. LetR be a topological ring. The category of topological modules over
R has limits and limits commute with the forgetful functors to (a) the category of topo-
logical spaces and (b) the category of R-modules.

Proof. It is enough to prove the existence and commutation for products and equal-
izers, see Categories, Lemma 14.11. Let Mi, i ∈ I be a collection of topological mod-
ules over R. Take the usual product M =

∏
Mi with the product topology. Since

M×M =
∏

(Mi×Mi) as a topological space (because products commutes with products
in any category), we see that addition on M is continuous. Similarly for multiplication
R ×M → M . Let a, b : M → M ′ be two homomorphisms of topological modules over
R. Then as the equalizer we can simply take the equalizer of a and b as maps of topologi-
cal spaces, which is the same thing as the equalizer as maps of modules endowed with the
induced topology. �

Lemma 30.12. LetR be a topological ring. The category of topological modules over
R has colimits and colimits commute with the forgetful functor to the category of modules
over R.

Proof. The exact same argument as used in the proof of Lemma 30.6 shows existence
of colimits. To see the statement on commutation with the forgetful functor toR-modules
we will use Categories, Lemma 24.5. Indeed, the forgetful functor has a right adjoint,
namely the functor which assigns to a module the corresponding chaotic (or indiscrete)
topological module. �
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CHAPTER 6

Sheaves on Spaces

1. Introduction

Basic properties of sheaves on topological spaces will be explained in this document. A
reference is [?].

This will be superseded by the discussion of sheaves over sites later in the documents. But
perhaps it makes sense to briefly define some of the notions here.

2. Basic notions

The following is a list of basic notions in topology.
(1) LetX be a topological space. The phrase: “LetU =

⋃
i∈I Ui be an open covering”

means the following: I is a set and for each i ∈ I we are given an open subset
Ui ⊂ X such that U is the union of the Ui. It is allowed to have I = ∅ in which
case there are no Ui and U = ∅. It is also allowed, in case I 6= ∅ to have any or
all of the Ui be empty.

(2) etc, etc.

3. Presheaves

Definition 3.1. Let X be a topological space.
(1) A presheafF of sets onX is a rule which assigns to each openU ⊂ X a setF(U)

and to each inclusion V ⊂ U a map ρUV : F(U)→ F(V ) such that ρUU = idF(U)
and whenever W ⊂ V ⊂ U we have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves of sets on X is a rule which assigns to
each open U ⊂ X a map of sets ϕ : F(U)→ G(U) compatible with restriction
maps, i.e., whenever V ⊂ U ⊂ X are open the diagram

F(U) ϕ //

ρUV
��

G(U)

ρUV
��

F(V ) ϕ // G(V )

commutes.
(3) The category of presheaves of sets on X will be denoted PSh(X).

The elements of the set F(U) are called the sections of F over U . For every V ⊂ U
the map ρUV : F(U) → F(V ) is called the restriction map. We will use the notation
s|V := ρUV (s) if s ∈ F(U). This notation is consistent with the notion of restriction of
functions from topology because if W ⊂ V ⊂ U and s is a section of F over U then
s|W = (s|V )|W by the property of the restriction maps expressed in the definition above.

263
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Another notation that is often used is to indicate sections over an open U by the symbol
Γ(U,−) or by H0(U,−). In other words, the following equalities are tautological

Γ(U,F) = F(U) = H0(U,F).
In this chapter we will not use this notation, but in others we will.

Definition 3.2. Let X be a topological space. Let A be a set. The constant presheaf
with valueA is the presheaf that assigns the setA to every open U ⊂ X , and such that all
restriction mappings are idA.

4. Abelian presheaves

In this section we briefly point out some features of the category of presheaves that allow
one to define presheaves of abelian groups.

Example 4.1. LetX be a topological space. Consider a ruleF that associates to every
open subset ofX a singleton set. Since every set has a unique map into a singleton set, there
exist unique restriction maps ρUV . The resulting structure is a presheaf of sets on X . It is
a final object in the category of presheaves of sets on X , by the property of singleton sets
mentioned above. Hence it is also unique up to unique isomorphism. We will sometimes
write ∗ for this presheaf.

Lemma 4.2. Let X be a topological space. The category of presheaves of sets on X
has products (see Categories, Definition 14.6). Moreover, the set of sections of the product
F × G over an open U is the product of the sets of sections of F and G over U .

Proof. Namely, suppose F and G are presheaves of sets on the topological space X .
Consider the rule U 7→ F(U) × G(U), denoted F × G. If V ⊂ U ⊂ X are open then
define the restriction mapping

(F × G)(U) −→ (F × G)(V )
by mapping (s, t) 7→ (s|V , t|V ). Then it is immediately clear that F × G is a presheaf.
Also, there are projection maps p : F × G → F and q : F × G → G. We leave it to the
reader to show that for any third presheaf H we have Mor(H,F × G) = Mor(H,F) ×
Mor(H,G). �

Recall that if (A,+ : A× A→ A,− : A→ A, 0 ∈ A) is an abelian group, then the zero
and the negation maps are uniquely determined by the addition law. In other words, it
makes sense to say “let (A,+) be an abelian group”.

Lemma 4.3. Let X be a topological space. Let F be a presheaf of sets. Consider the
following types of structure on F :

(1) For every open U the structure of an abelian group on F(U) such that all re-
striction maps are abelian group homomorphisms.

(2) A map of presheaves + : F × F → F , a map of presheaves − : F → F and a
map 0 : ∗ → F (see Example 4.1) satisfying all the axioms of +,−, 0 in a usual
abelian group.

(3) A map of presheaves + : F × F → F , a map of presheaves − : F → F and a
map 0 : ∗ → F such that for each open U ⊂ X the quadruple (F(U),+,−, 0)
is an abelian group,

(4) A map of presheaves + : F ×F → F such that for every open U ⊂ X the map
+ : F(U)×F(U)→ F(U) defines the structure of an abelian group.

There are natural bijections between the collections of types of data (1) - (4) above.
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Proof. Omitted. �

The lemma says that to give an abelian group object F in the category of presheaves is
the same as giving a presheaf of sets F such that all the sets F(U) are endowed with
the structure of an abelian group and such that all the restriction mappings are group
homomorphisms. For most algebra structures we will take this approach to (pre)sheaves
of such objects, i.e., we will define a (pre)sheaf of such objects to be a (pre)sheaf F of sets
all of whose sets of sections F(U) are endowed with this structure compatibly with the
restriction mappings.

Definition 4.4. Let X be a topological space.
(1) A presheaf of abelian groups onX or an abelian presheaf overX is a presheaf of

setsF such that for each openU ⊂ X the setF(U) is endowed with the structure
of an abelian group, and such that all restriction maps ρUV are homomorphisms
of abelian groups, see Lemma 4.3 above.

(2) A morphism of abelian presheaves overX ϕ : F → G is a morphism of presheaves
of sets which induces a homomorphism of abelian groupsF(U)→ G(U) for ev-
ery open U ⊂ X .

(3) The category of presheaves of abelian groups on X is denoted PAb(X).

Example 4.5. LetX be a topological space. For each x ∈ X suppose given an abelian
group Mx. For U ⊂ X open we set

F(U) =
⊕

x∈U
Mx.

We denote a typical element in this abelian group by
∑n
i=1 mxi , where xi ∈ U and

mxi ∈Mxi . (Of course we may always choose our representation such that x1, . . . , xn are
pairwise distinct.) We define for V ⊂ U ⊂ X open a restriction mappingF(U)→ F(V )
by mapping an element s =

∑n
i=1 mxi to the element s|V =

∑
xi∈V mxi . We leave it to

the reader to verify that this is a presheaf of abelian groups.

5. Presheaves of algebraic structures

Let us clarify the definition of presheaves of algebraic structures. Suppose that C is a cat-
egory and that F : C → Sets is a faithful functor. Typically F is a “forgetful” functor.
For an object M ∈ Ob(C) we often call F (M) the underlying set of the object M . If
M → M ′ is a morphism in C we call F (M) → F (M ′) the underlying map of sets. In
fact, we will often not distinguish between an object and its underlying set, and similarly
for morphisms. So we will say a map of sets F (M)→ F (M ′) is a morphism of algebraic
structures, if it is equal to F (f) for some morphism f : M →M ′ in C.

In analogy with Definition 4.4 above a “presheaf of objects of C” could be defined by the
following data:

(1) a presheaf of sets F , and
(2) for every open U ⊂ X a choice of an object A(U) ∈ Ob(C)

subject to the following conditions (using the phraseology above)
(1) for every open U ⊂ X the set F(U) is the underlying set of A(U), and
(2) for every V ⊂ U ⊂ X open the map of sets ρUV : F(U)→ F(V ) is a morphism

of algebraic structures.
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In other words, for every V ⊂ U open in X the restriction mappings ρUV is the image
F (αUV ) for some unique morphismαUV : A(U)→ A(V ) in the category C. The uniqueness
is forced by the condition that F is faithful; it also implies that αUW = αVW ◦αUV whenever
W ⊂ V ⊂ U are open in X . The system (A(−), αUV ) is what we will define as a presheaf
with values in C on X , compare Sites, Definition 2.2. We recover our presheaf of sets
(F , ρUV ) via the rules F(U) = F (A(U)) and ρUV = F (αUV ).

Definition 5.1. Let X be a topological space. Let C be a category.
(1) A presheaf F on X with values in C is given by a rule which assigns to every

openU ⊂ X an objectF(U) of C and to each inclusion V ⊂ U a morphism ρUV :
F(U)→ F(V ) in C such that whenever W ⊂ V ⊂ U we have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves with value in C is given by a morphism
ϕ : F(U)→ G(U) in C compatible with restriction morphisms.

Definition 5.2. Let X be a topological space. Let C be a category. Let F : C → Sets
be a faithful functor. Let F be a presheaf on X with values in C. The presheaf of sets
U 7→ F (F(U)) is called the underlying presheaf of sets of F .

It is customary to use the same letter F to denote the underlying presheaf of sets, and this
makes sense according to our discussion preceding Definition 5.1. In particular, the phrase
“let s ∈ F(U)” or “let s be a section of F over U” signifies that s ∈ F (F(U)).

This notation and these definitions apply in particular to: Presheaves of (not necessarily
abelian) groups, rings, modules over a fixed ring, vector spaces over a fixed field, etc and
morphisms between these.

6. Presheaves of modules

Suppose that O is a presheaf of rings on X . We would like to define the notion of a
presheaf of O-modules over X . In analogy with Definition 4.4 we are tempted to define
this as a presheaf of sets F such that for every open U ⊂ X the set F(U) is endowed
with the structure of an O(U)-module compatible with restriction mappings (of F and
O). However, it is customary (and equivalent) to define it as in the following definition.

Definition 6.1. Let X be a topological space, and letO be a presheaf of rings on X .
(1) A presheaf ofO-modules is given by an abelian presheaf F together with a map

of presheaves of sets
O ×F −→ F

such that for every open U ⊂ X the map O(U) × F(U) → F(U) defines the
structure of anO(U)-module structure on the abelian group F(U).

(2) A morphism ϕ : F → G of presheaves of O-modules is a morphism of abelian
presheaves ϕ : F → G such that the diagram

O ×F //

id×ϕ
��

F

ϕ

��
O × G // G

commutes.
(3) The set ofO-module morphisms as above is denoted HomO(F ,G).
(4) The category of presheaves ofO-modules is denoted PMod(O).
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Suppose that O1 → O2 is a morphism of presheaves of rings on X . In this case, if F is a
presheaf ofO2-modules then we can think of F as a presheaf ofO1-modules by using the
composition

O1 ×F → O2 ×F → F .
We sometimes denote this by FO1 to indicate the restriction of rings. We call this the
restriction of F . We obtain the restriction functor

PMod(O2) −→ PMod(O1)

On the other hand, given a presheaf of O1-modules G we can construct a presheaf of O2-
modulesO2 ⊗p,O1 G by the rule

(O2 ⊗p,O1 G) (U) = O2(U)⊗O1(U) G(U)
The index p stands for “presheaf” and not “point”. This presheaf is called the tensor prod-
uct presheaf. We obtain the change of rings functor

PMod(O1) −→ PMod(O2)

Lemma 6.2. With X ,O1,O2, F and G as above there exists a canonical bijection

HomO1(G,FO1) = HomO2(O2 ⊗p,O1 G,F)
In other words, the restriction and change of rings functors are adjoint to each other.

Proof. This follows from the fact that for a ring mapA→ B the restriction functor
and the change of ring functor are adjoint to each other. �

7. Sheaves

In this section we explain the sheaf condition.

Definition 7.1. Let X be a topological space.
(1) A sheafF of sets onX is a presheaf of sets which satisfies the following additional

property: Given any open covering U =
⋃
i∈I Ui and any collection of sections

si ∈ F(Ui), i ∈ I such that ∀i, j ∈ I

si|Ui∩Uj = sj |Ui∩Uj
there exists a unique section s ∈ F(U) such that si = s|Ui for all i ∈ I .

(2) A morphism of sheaves of sets is simply a morphism of presheaves of sets.
(3) The category of sheaves of sets on X is denoted Sh(X).

Remark 7.2. There is always a bit of confusion as to whether it is necessary to say
something about the set of sections of a sheaf over the empty set ∅ ⊂ X . It is necessary,
and we already did if you read the definition right. Namely, note that the empty set is
covered by the empty open covering, and hence the “collection of sections si” from the
definition above actually form an element of the empty product which is the final object
of the category the sheaf has values in. In other words, if you read the definition right you
automatically deduce that F(∅) = a final object, which in the case of a sheaf of sets is a
singleton. If you do not like this argument, then you can just require that F(∅) = {∗}.
In particular, this condition will then ensure that if U, V ⊂ X are open and disjoint then

F(U ∪ V ) = F(U)×F(V ).
(Because the fibre product over a final object is a product.)
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Example 7.3. Let X , Y be topological spaces. Consider the rule F which associates
to the open U ⊂ X the set

F(U) = {f : U → Y | f is continuous}

with the obvious restriction mappings. We claim that F is a sheaf. To see this suppose
that U =

⋃
i∈I Ui is an open covering, and fi ∈ F(Ui), i ∈ I with fi|Ui∩Uj = fj |Ui∩Uj

for all i, j ∈ I . In this case define f : U → Y by setting f(u) equal to the value of fi(u)
for any i ∈ I such that u ∈ Ui. This is well defined by assumption. Moreover, f : U → Y
is a map such that its restriction to Ui agrees with the continuous map fi. Hence clearly
f is continuous!

We can use the result of the example to define constant sheaves. Namely, suppose that A
is a set. EndowAwith the discrete topology. LetU ⊂ X be an open subset. Then we have

{f : U → A | f continuous} = {f : U → A | f locally constant}.

Thus the rule which assigns to an open all locally constant maps into A is a sheaf.

Definition 7.4. LetX be a topological space. LetA be a set. The constant sheaf with
valueA denotedA, orAX is the sheaf that assigns to an open U ⊂ X the set of all locally
constant maps U → A with restriction mappings given by restrictions of functions.

Example 7.5. Let X be a topological space. Let (Ax)x∈X be a family of sets Ax
indexed by points x ∈ X . We are going to construct a sheaf of sets Π from this data. For
U ⊂ X open set

Π(U) =
∏

x∈U
Ax.

For V ⊂ U ⊂ X open define a restriction mapping by the following rule: An element
s = (ax)x∈U ∈ Π(U) restricts to s|V = (ax)x∈V . It is obvious that this defines a presheaf
of sets. We claim this is a sheaf. Namely, let U =

⋃
Ui be an open covering. Suppose that

si ∈ Π(Ui) are such that si and sj agree over Ui ∩ Uj . Write si = (ai,x)x∈Ui . The
compatibility condition implies that ai,x = aj,x in the set Ax whenever x ∈ Ui ∩ Uj .
Hence there exists a unique element s = (ax)x∈U in Π(U) =

∏
x∈U Ax with the property

that ax = ai,x whenever x ∈ Ui for some i. Of course this element s has the property
that s|Ui = si for all i.

Example 7.6. Let X be a topological space. Suppose for each x ∈ X we are given an
abelian group Mx. Consider the presheaf F : U 7→

⊕
x∈U Mx defined in Example 4.5.

This is not a sheaf in general. For example, ifX is an infinite set with the discrete topology,
then the sheaf condition would imply that F(X) =

∏
x∈X F({x}) but by definition we

have F(X) =
⊕

x∈XMx =
⊕

x∈X F({x}). And an infinite direct sum is in general
different from an infinite direct product.

However, if X is a topological space such that every open of X is quasi-compact, then F
is a sheaf. This is left as an exercise to the reader.

8. Abelian sheaves

Definition 8.1. Let X be a topological space.
(1) An abelian sheaf on X or sheaf of abelian groups on X is an abelian presheaf on

X such that the underlying presheaf of sets is a sheaf.
(2) The category of sheaves of abelian groups is denoted Ab(X).
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LetX be a topological space. In the case of an abelian presheafF the sheaf condition with
regards to an open covering U =

⋃
Ui is often expressed by saying that the complex of

abelian groups

0→ F(U)→
∏

i
F(Ui)→

∏
(i0,i1)

F(Ui0 ∩ Ui1)

is exact. The first map is the usual one, whereas the second maps the element (si)i∈I to
the element

(si0 |Ui0 ∩Ui1 − si1 |Ui0 ∩Ui1 )(i0,i1) ∈
∏

(i0,i1)
F(Ui0 ∩ Ui1)

9. Sheaves of algebraic structures

Let us clarify the definition of sheaves of certain types of structures. First, let us reformu-
late the sheaf condition. Namely, suppose that F is a presheaf of sets on the topological
spaceX . The sheaf condition can be reformulated as follows. LetU =

⋃
i∈I Ui be an open

covering. Consider the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

Here the left map is defined by the rule s 7→
∏
i∈I s|Ui . The two maps on the right are

the maps ∏
i
si 7→

∏
(i0,i1)

si0 |Ui0 ∩Ui1 resp.
∏

i
si 7→

∏
(i0,i1)

si1 |Ui0 ∩Ui1 .

The sheaf condition exactly says that the left arrow is the equalizer of the right two. This
generalizes immediately to the case of presheaves with values in a category as long as the
category has products.

Definition 9.1. Let X be a topological space. Let C be a category with products. A
presheaf F with values in C on X is a sheaf if for every open covering the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

is an equalizer diagram in the category C.

Suppose that C is a category and that F : C → Sets is a faithful functor. A good example
to keep in mind is the case where C is the category of abelian groups and F is the forgetful
functor. Consider a presheaf F with values in C on X . We would like to reformulate the
condition above in terms of the underlying presheaf of sets (Definition 5.2). Note that the
underlying presheaf of sets is a sheaf of sets if and only if all the diagrams

F (F(U)) // ∏
i∈I F (F(Ui))

//
//
∏

(i0,i1)∈I×I F (F(Ui0 ∩ Ui1))

of sets – after applying the forgetful functor F – are equalizer diagrams! Thus we would
like C to have products and equalizers and we would like F to commute with them. This
is equivalent to the condition that C has limits and that F commutes with them, see Cate-
gories, Lemma 14.11. But this is not yet good enough (see Example 9.4); we also need F to
reflect isomorphisms. This property means that given a morphism f : A→ A′ in C , then
f is an isomorphism if (and only if) F (f) is a bijection.

Lemma 9.2. Suppose the category C and the functorF : C → Sets have the following
properties:

(1) F is faithful,
(2) C has limits and F commutes with them, and
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(3) the functor F reflects isomorphisms.

Let X be a topological space. Let F be a presheaf with values in C. Then F is a sheaf if
and only if the underlying presheaf of sets is a sheaf.

Proof. Assume that F is a sheaf. Then F(U) is the equalizer of the diagram above
and by assumption we see F (F(U)) is the equalizer of the corresponding diagram of sets.
Hence F (F) is a sheaf of sets.

Assume that F (F) is a sheaf. LetE ∈ Ob(C) be the equalizer of the two parallel arrows in
Definition 9.1. We get a canonical morphism F(U)→ E , simply because F is a presheaf.
By assumption, the induced map F (F(U)) → F (E) is an isomorphism, because F (E)
is the equalizer of the corresponding diagram of sets. Hence we see F(U) → E is an
isomorphism by condition (3) of the lemma. �

The lemma in particular applies to sheaves of groups, rings, algebras over a fixed ring,
modules over a fixed ring, vector spaces over a fixed field, etc. In other words, these are
presheaves of groups, rings, modules over a fixed ring, vector spaces over a fixed field, etc
such that the underlying presheaf of sets is a sheaf.

Example 9.3. Let X be a topological space. For each open U ⊂ X consider the R-
algebra C0(U) = {f : U → R | f is continuous}. There are obvious restriction mappings
that turn this into a presheaf of R-algebras over X . By Example 7.3 it is a sheaf of sets.
Hence by the Lemma 9.2 it is a sheaf of R-algebras over X .

Example 9.4. Consider the category of topological spaces Top. There is a natural
faithful functor Top → Sets which commutes with products and equalizers. But it does
not reflect isomorphisms. And, in fact it turns out that the analogue of Lemma 9.2 is
wrong. Namely, suppose X = N with the discrete topology. Let Ai, for i ∈ N be a
discrete topological space. For any subset U ⊂ N define F(U) =

∏
i∈U Ai with the

discrete topology. Then this is a presheaf of topological spaces whose underlying presheaf
of sets is a sheaf, see Example 7.5. However, if each Ai has at least two elements, then this
is not a sheaf of topological spaces according to Definition 9.1. The reader may check that
putting the product topology on eachF(U) =

∏
i∈U Ai does lead to a sheaf of topological

spaces over X .

10. Sheaves of modules

Definition 10.1. Let X be a topological space. LetO be a sheaf of rings on X .

(1) A sheaf ofO-modules is a presheaf ofO-modulesF , see Definition 6.1, such that
the underlying presheaf of abelian groups F is a sheaf.

(2) A morphism of sheaves ofO-modules is a morphism of presheaves ofO-modules.
(3) Given sheaves of O-modules F and G we denote HomO(F ,G) the set of mor-

phism of sheaves ofO-modules.
(4) The category of sheaves ofO-modules is denoted Mod(O).

This definition kind of makes sense even ifO is just a presheaf of rings, although we do not
know any examples where this is useful, and we will avoid using the terminology “sheaves
ofO-modules” in caseO is not a sheaf of rings.
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11. Stalks

Let X be a topological space. Let x ∈ X be a point. Let F be a presheaf of sets on X . The
stalk of F at x is the set

Fx = colimx∈U F(U)
where the colimit is over the set of open neighbourhoods U of x in X . The set of open
neighbourhoods is partially ordered by (reverse) inclusion: We say U ≥ U ′ ⇔ U ⊂ U ′.
The transition maps in the system are given by the restriction maps of F . See Categories,
Section 21 for notation and terminology regarding (co)limits over systems. Note that the
colimit is a directed colimit. Thus it is easy to describe Fx. Namely,

Fx = {(U, s) | x ∈ U, s ∈ F(U)}/ ∼

with equivalence relation given by (U, s) ∼ (U ′, s′) if and only if there exists an open
U ′′ ⊂ U ∩ U ′ with x ∈ U ′′ and s|U ′′ = s′|U ′′ . By abuse of notation we will often denote
(U, s), sx, or even s the corresponding element in Fx. Also we will say s = s′ in Fx for
two local sections of F defined in an open neighbourhood of x to denote that they have
the same image in Fx.

An obvious consequence of this definition is that for any open U ⊂ X there is a canonical
map

F(U) −→
∏

x∈U
Fx

defined by s 7→
∏
x∈U (U, s). Think about it!

Lemma 11.1. Let F be a sheaf of sets on the topological space X . For every open
U ⊂ X the map

F(U) −→
∏

x∈U
Fx

is injective.

Proof. Suppose that s, s′ ∈ F(U) map to the same element in every stalk Fx for all
x ∈ U . This means that for every x ∈ U , there exists an open V x ⊂ U , x ∈ V x such that
s|V x = s′|V x . But then U =

⋃
x∈U V

x is an open covering. Thus by the uniqueness in
the sheaf condition we see that s = s′. �

Definition 11.2. LetX be a topological space. A presheaf of setsF onX is separated
if for every open U ⊂ X the map F(U)→

∏
x∈U Fx is injective.

Another observation is that the construction of the stalk Fx is functorial in the presheaf
F . In other words, it gives a functor

PSh(X) −→ Sets, F 7−→ Fx.

This functor is called the stalk functor. Namely, ifϕ : F → G is a morphism of presheaves,
then we define ϕx : Fx → Gx by the rule (U, s) 7→ (U,ϕ(s)). To see that this works we
have to check that if (U, s) = (U ′, s′) inFx then also (U,ϕ(s)) = (U ′, ϕ(s′)) in Gx. This
is clear since ϕ is compatible with the restriction mappings.

Example 11.3. Let X be a topological space. Let A be a set. Denote temporarily Ap
the constant presheaf with value A (p for presheaf – not for point). There is a canonical
map of presheavesAp → A into the constant sheaf with valueA. For every point we have
canonical bijections A = (Ap)x = Ax, where the second map is induced by functoriality
from the map Ap → A.
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Example 11.4. SupposeX = Rn with the Euclidean topology. Consider the presheaf
of C∞ functions on X , denoted C∞

Rn . In other words, C∞
Rn(U) is the set of C∞-functions

f : U → R. As in Example 7.3 it is easy to show that this is a sheaf. In fact it is a sheaf of
R-vector spaces.
Next, let x ∈ X = Rn be a point. How do we think of an element in the stalk C∞

Rn,x?
Such an element is given by a C∞-function f whose domain contains x. And a pair of such
functions f , g determine the same element of the stalk if they agree in a neighbourhood
of x. In other words, an element if C∞

Rn,x is the same thing as what is sometimes called a
germ of a C∞-function at x.

Example 11.5. LetX be a topological space. LetAx be a set for each x ∈ X . Consider
the sheaf F : U 7→

∏
x∈U Ax of Example 7.5. We would just like to point out here that

the stalk Fx of F at x is in general not equal to the set Ax. Of course there is a map
Fx → Ax, but that is in general the best you can say. For example, suppose x = lim xn
with xn 6= xm for all n 6= m and suppose that Ay = {0, 1} for all y ∈ X . Then Fx maps
onto the (infinite) set of tails of sequences of 0s and 1s. Namely, every open neighbourhood
ofx contains almost all of thexn. On the other hand, if every neighbourhood ofx contains
a point y such that Ay = ∅, then Fx = ∅.

12. Stalks of abelian presheaves

We first deal with the case of abelian groups as a model for the general case.

Lemma 12.1. Let X be a topological space. Let F be a presheaf of abelian groups on
X . There exists a unique structure of an abelian group on Fx such that for every U ⊂ X
open, x ∈ U the map F(U)→ Fx is a group homomorphism. Moreover,

Fx = colimx∈U F(U)
holds in the category of abelian groups.

Proof. We define addition of a pair of elements (U, s) and (V, t) as the pair (U ∩
V, s|U∩V + t|U∩V ). The rest is easy to check. �

What is crucial in the proof above is that the partially ordered set of open neighbourhoods
is a directed set (Categories, Definition 21.1). Namely, the coproduct of two abelian groups
A,B is the direct sum A⊕B, whereas the coproduct in the category of sets is the disjoint
union A q B, showing that colimits in the category of abelian groups do not agree with
colimits in the category of sets in general.

13. Stalks of presheaves of algebraic structures

The proof of Lemma 12.1 will work for any type of algebraic structure such that directed
colimits commute with the forgetful functor.

Lemma 13.1. Let C be a category. Let F : C → Sets be a functor. Assume that
(1) F is faithful, and
(2) directed colimits exist in C and F commutes with them.

Let X be a topological space. Let x ∈ X . Let F be a presheaf with values in C. Then
Fx = colimx∈U F(U)

exists in C. Its underlying set is equal to the stalk of the underlying presheaf of sets of F .
Furthermore, the constructionF 7→ Fx is a functor from the category of presheaves with
values in C to C.
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Proof. Omitted. �

By the very definition, all the morphisms F(U) → Fx are morphisms in the category C
which (after applying the forgetful functor F ) turn into the corresponding maps for the
underlying sheaf of sets. As usual we will not distinguish between the morphism in C and
the underlying map of sets, which is permitted since F is faithful.

This lemma applies in particular to: Presheaves of (not necessarily abelian) groups, rings,
modules over a fixed ring, vector spaces over a fixed field.

14. Stalks of presheaves of modules

Lemma 14.1. Let X be a topological space. Let O be a presheaf of rings on X . Let F
be a presheaf ofO-modules. Let x ∈ X . The canonical mapOx×Fx → Fx coming from
the multiplication map O ×F → F defines a Ox-module structure on the abelian group
Fx.

Proof. Omitted. �

Lemma 14.2. LetX be a topological space. LetO → O′ be a morphism of presheaves
of rings on X . Let F be a presheaf ofO-modules. Let x ∈ X . We have

Fx ⊗Ox
O′
x = (F ⊗p,O O′)x

asO′
x-modules.

Proof. Omitted. �

15. Algebraic structures

In this section we mildly formalize the notions we have encountered in the sections above.

Definition 15.1. A type of algebraic structure is given by a category C and a functor
F : C → Sets with the following properties

(1) F is faithful,
(2) C has limits and F commutes with limits,
(3) C has filtered colimits and F commutes with them, and
(4) F reflects isomorphisms.

We make this definition to point out the properties we will use in a number of arguments
below. But we will not actually study this notion in any great detail, since we are prohib-
ited from studying “big” categories by convention, except for those listed in Categories,
Remark 2.2. Among those the following have the required properties.

Lemma 15.2. The following categories, endowed with the obvious forgetful functor,
define types of algebraic structures:

(1) The category of pointed sets.
(2) The category of abelian groups.
(3) The category of groups.
(4) The category of monoids.
(5) The category of rings.
(6) The category of R-modules for a fixed ring R.
(7) The category of Lie algebras over a fixed field.

Proof. Omitted. �
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From now on we will think of a (pre)sheaf of algebraic structures and their stalks, in terms
of the underlying (pre)sheaf of sets. This is allowable by Lemmas 9.2 and 13.1.

In the rest of this section we point out some results on algebraic structures that will be
useful in the future.

Lemma 15.3. Let (C, F ) be a type of algebraic structure.
(1) C has a final object 0 and F (0) = {∗}.
(2) C has products and F (

∏
Ai) =

∏
F (Ai).

(3) C has fibre products and F (A×B C) = F (A)×F (B) F (C).
(4) C has equalizers, and if E → A is the equalizer of a, b : A → B, then F (E) →

F (A) is the equalizer of F (a), F (b) : F (A)→ F (B).
(5) A→ B is a monomorphism if and only if F (A)→ F (B) is injective.
(6) if F (a) : F (A)→ F (B) is surjective, then a is an epimorphism.
(7) givenA1 → A2 → A3 → . . ., then colimAi exists andF (colimAi) = colimF (Ai),

and more generally for any filtered colimit.

Proof. Omitted. The only interesting statement is (5) which follows becauseA→ B
is a monomorphism if and only ifA→ A×BA is an isomorphism, and then applying the
fact that F reflects isomorphisms. �

Lemma 15.4. Let (C, F ) be a type of algebraic structure. Suppose that A,B,C ∈
Ob(C). Let f : A → B and g : C → B be morphisms of C. If F (g) is injective, and
Im(F (f)) ⊂ Im(F (g)), then f factors as f = g ◦ t for some morphism t : A→ C.

Proof. ConsiderA×B C. The assumptions imply that F (A×B C) = F (A)×F (B)
F (C) = F (A). HenceA = A×B C because F reflects isomorphisms. The result follows.

�

Example 15.5. The lemma will be applied often to the following situation. Suppose
that we have a diagram

A // B

��
C // D

in C. Suppose C → D is injective on underlying sets, and suppose that the composition
A → B → D has image on underlying sets in the image of C → D. Then we get a
commutative diagram

A //

��

B

��
C // D

in C.

Example 15.6. Let F : C → Sets be a type of algebraic structures. Let X be a topo-
logical space. Suppose that for every x ∈ X we are given an objectAx ∈ Ob(C). Consider
the presheaf Π with values in C on X defined by the rule Π(U) =

∏
x∈U Ax (with ob-

vious restriction mappings). Note that the associated presheaf of sets U 7→ F (Π(U)) =∏
x∈U F (Ax) is a sheaf by Example 7.5. Hence Π is a sheaf of algebraic structures of type

(C, F ). This gives many examples of sheaves of abelian groups, groups, rings, etc.
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16. Exactness and points

In any category we have the notion of epimorphism, monomorphism, isomorphism, etc.

Lemma 16.1. Let X be a topological space. Let ϕ : F → G be a morphism of sheaves
of sets on X .

(1) The map ϕ is a monomorphism in the category of sheaves if and only if for all
x ∈ X the map ϕx : Fx → Gx is injective.

(2) The map ϕ is an epimorphism in the category of sheaves if and only if for all
x ∈ X the map ϕx : Fx → Gx is surjective.

(3) The map ϕ is an isomorphism in the category of sheaves if and only if for all
x ∈ X the map ϕx : Fx → Gx is bijective.

Proof. Omitted. �

It follows that in the category of sheaves of sets the notions epimorphism and monomor-
phism can be described as follows.

Definition 16.2. Let X be a topological space.

(1) A presheafF is called a subpresheaf of a presheaf G ifF(U) ⊂ G(U) for all open
U ⊂ X such that the restriction maps of G induce the restriction maps of F . If
F and G are sheaves, then F is called a subsheaf of G. We sometimes indicate
this by the notation F ⊂ G.

(2) A morphism of presheaves of sets ϕ : F → G onX is called injective if and only
if F(U)→ G(U) is injective for all U open in X .

(3) A morphism of presheaves of sets ϕ : F → G on X is called surjective if and
only if F(U)→ G(U) is surjective for all U open in X .

(4) A morphism of sheaves of sets ϕ : F → G on X is called injective if and only if
F(U)→ G(U) is injective for all U open in X .

(5) A morphism of sheaves of sets ϕ : F → G onX is called surjective if and only if
for every openU ofX and every section s of G(U) there exists an open covering
U =

⋃
Ui such that s|Ui is in the image of F(Ui)→ G(Ui) for all i.

Lemma 16.3. Let X be a topological space.

(1) Epimorphisms (resp. monomorphisms) in the category of presheaves are exactly
the surjective (resp. injective) maps of presheaves.

(2) Epimorphisms (resp. monomorphisms) in the category of sheaves are exactly the
surjective (resp. injective) maps of sheaves, and are exactly those maps which are
surjective (resp. injective) on all the stalks.

(3) The sheafification of a surjective (resp. injective) morphism of presheaves of sets
is surjective (resp. injective).

Proof. Omitted. �

Lemma 16.4. letX be a topological space. Let (C, F ) be a type of algebraic structure.
Suppose that F , G are sheaves on X with values in C. Let ϕ : F → G be a map of the
underlying sheaves of sets. If for all points x ∈ X the map Fx → Gx is a morphism of
algebraic structures, then ϕ is a morphism of sheaves of algebraic structures.
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Proof. Let U be an open subset of X . Consider the diagram of (underlying) sets

F(U) //

��

∏
x∈U Fx

��
G(U) // ∏

x∈U Gx

By assumption, and previous results, all but the left vertical arrow are morphisms of al-
gebraic structures. In addition the bottom horizontal arrow is injective, see Lemma 11.1.
Hence we conclude by Lemma 15.4, see also Example 15.5 �

Short exact sequences of abelian sheaves, etc will be discussed in the chapter on sheaves of
modules. See Modules, Section 3.

17. Sheafification

In this section we explain how to get the sheafification of a presheaf on a topological space.
We will use stalks to describe the sheafification in this case. This is different from the gen-
eral procedure described in Sites, Section 10, and perhaps somewhat easier to understand.

The basic construction is the following. Let F be a presheaf of sets on a topological space
X . For every open U ⊂ X we define

F#(U) = {(su) ∈
∏

u∈U
Fu such that (∗)}

where (∗) is the property:
(*) For every u ∈ U , there exists an open neighbourhood u ∈ V ⊂ U , and a section

σ ∈ F(V ) such that for all v ∈ V we have sv = (V, σ) in Fv .
Note that (∗) is a condition for each u ∈ U , and that given u ∈ U the truth of this
condition depends only on the values sv for v in any open neighbourhood of u. Thus it is
clear that, if V ⊂ U ⊂ X are open, the projection maps∏

u∈U
Fu −→

∏
v∈V
Fv

maps elements of F#(U) into F#(V ). Using these maps as the restriction mappings, we
turn F# into a presheaf of sets on X .

Furthermore, the map F(U) →
∏
u∈U Fu described in Section 11 clearly has image in

F#(U). In addition, if V ⊂ U ⊂ X are open then we have the following commutative
diagram

F(U) //

��

F#(U) //

��

∏
u∈U Fu

��
F(V ) // F#(V ) // ∏

v∈V Fv
where the vertical maps are induced from the restriction mappings. Thus we see that there
is a canonical morphism of presheaves F → F#.

In Example 7.5 we saw that the rule Π(F) : U 7→
∏
u∈U Fu is a sheaf, with obvious

restriction mappings. And by construction F# is a subpresheaf of this. In other words,
we have morphisms of presheaves

F → F# → Π(F).
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In addition the rule that associates to F the sequence above is clearly functorial in the
presheaf F . This notation will be used in the proofs of the lemmas below.

Lemma 17.1. The presheaf F# is a sheaf.

Proof. It is probably better for the reader to find their own explanation of this than
to read the proof here. In fact the lemma is true for the same reason as why the presheaf
of continuous function is a sheaf, see Example 7.3 (and this analogy can be made precise
using the “espace étalé”).
Anyway, letU =

⋃
Ui be an open covering. Suppose that si = (si,u)u∈Ui ∈ F#(Ui) such

that si and sj agree overUi∩Uj . Because Π(F) is a sheaf, we find an element s = (su)u∈U
in
∏
u∈U Fu restricting to si on Ui. We have to check property (∗). Pick u ∈ U . Then

u ∈ Ui for some i. Hence by (∗) for si, there exists a V open, u ∈ V ⊂ Ui and a σ ∈ F(V )
such that si,v = (V, σ) in Fv for all v ∈ V . Since si,v = sv we get (∗) for s. �

Lemma 17.2. Let X be a topological space. Let F be a presheaf of sets on X . Let
x ∈ X . Then Fx = F#

x .

Proof. The map Fx → F#
x is injective, since already the map Fx → Π(F)x is

injective. Namely, there is a canonical map Π(F)x → Fx which is a left inverse to the
map Fx → Π(F)x, see Example 11.5. To show that it is surjective, suppose that s ∈ F#

x .
We can find an open neighbourhood U of x such that s is the equivalence class of (U, s)
with s ∈ F#(U). By definition, this means there exists an open neighbourhood V ⊂ U
of x and a section σ ∈ F(V ) such that s|V is the image of σ in Π(F)(V ). Clearly the class
of (V, σ) defines an element of Fx mapping to s. �

Lemma 17.3. Let F be a presheaf of sets on X . Any map F → G into a sheaf of sets
factors uniquely as F → F# → G.

Proof. Clearly, there is a commutative diagram

F //

��

F# //

��

Π(F)

��
G // G# // Π(G)

So it suffices to prove that G = G#. To see this it suffices to prove, for every point x ∈ X
the map Gx → G#

x is bijective, by Lemma 16.1. And this is Lemma 17.2 above. �

This lemma really says that there is an adjoint pair of functors: i : Sh(X) → PSh(X)
(inclusion) and # : PSh(X)→ Sh(X) (sheafification). The formula is that

MorPSh(X)(F , i(G)) = MorSh(X)(F#,G)
which says that sheafification is a left adjoint of the inclusion functor. See Categories,
Section 24.

Example 17.4. See Example 11.3 for notation. The map Ap → A induces a map
A#
p → A. It is easy to see that this is an isomorphism. In words: The sheafification of the

constant presheaf with value A is the constant sheaf with value A.

Lemma 17.5. Let X be a topological space. A presheaf F is separated (see Definition
11.2) if and only if the canonical map F → F# is injective.

Proof. This is clear from the construction of F# in this section. �
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18. Sheafification of abelian presheaves

The following strange looking lemma is likely unnecessary, but very convenient to deal
with sheafification of presheaves of algebraic structures.

Lemma 18.1. Let X be a topological space. Let F be a presheaf of sets on X . Let
U ⊂ X be open. There is a canonical fibre product diagram

F#(U)

��

// Π(F)(U)

��∏
x∈U Fx // ∏

x∈U Π(F)x

where the maps are the following:
(1) The left vertical map has components F#(U)→ F#

x = Fx where the equality
is Lemma 17.2.

(2) The top horizontal map comes from the map of presheavesF → Π(F) described
in Section 17.

(3) The right vertical map has obvious component maps Π(F)(U)→ Π(F)x.
(4) The bottom horizontal map has components Fx → Π(F)x which come from

the map of presheaves F → Π(F) described in Section 17.

Proof. It is clear that the diagram commutes. We have to show it is a fibre product
diagram. The bottom horizontal arrow is injective since all the maps Fx → Π(F)x are
injective (see beginning proof of Lemma 17.2). A section s ∈ Π(F)(U) is in F# if and
only if (∗) holds. But (∗) says that around every point the section s comes from a section
of F . By definition of the stalk functors, this is equivalent to saying that the value of s in
every stalk Π(F)x comes from an element of the stalk Fx. Hence the lemma. �

Lemma 18.2. Let X be a topological space. Let F be an abelian presheaf on X . Then
there exists a unique structure of abelian sheaf on F# such that F → F# is a morphism
of abelian presheaves. Moreover, the following adjointness property holds

MorPAb(X)(F , i(G)) = MorAb(X)(F#,G).

Proof. Recall the sheaf of sets Π(F) defined in Section 17. All the stalks Fx are
abelian groups, see Lemma 12.1. Hence Π(F) is a sheaf of abelian groups by Example 15.6.
Also, it is clear that the map F → Π(F) is a morphism of abelian presheaves. If we
show that condition (∗) of Section 17 defines a subgroup of Π(F)(U) for all open subsets
U ⊂ X , then F# canonically inherits the structure of abelian sheaf. This is quite easy to
do by hand, and we leave it to the reader to find a good simple argument. The argument we
use here, which generalizes to presheaves of algebraic structures is the following: Lemma
18.1 show that F#(U) is the fibre product of a diagram of abelian groups. Thus F# is an
abelian subgroup as desired.

Note that at this point F#
x is an abelian group by Lemma 12.1 and that Fx → F#

x is a
bijection (Lemma 17.2) and a homomorphism of abelian groups. Hence Fx → F#

x is an
isomorphism of abelian groups. This will be used below without further mention.

To prove the adjointness property we use the adjointness property of sheafification of
presheaves of sets. For example if ψ : F → i(G) is morphism of presheaves then we
obtain a morphism of sheaves ψ′ : F# → G. What we have to do is to check that this is
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a morphism of abelian sheaves. We may do this for example by noting that it is true on
stalks, by Lemma 17.2, and then using Lemma 16.4 above. �

19. Sheafification of presheaves of algebraic structures

Lemma 19.1. LetX be a topological space. Let (C, F ) be a type of algebraic structure.
Let F be a presheaf with values in C on X . Then there exists a sheaf F# with values in C
and a morphism F → F# of presheaves with values in C with the following properties:

(1) The mapF → F# identifies the underlying sheaf of sets ofF# with the sheafi-
fication of the underlying presheaf of sets of F .

(2) For any morphism F → G , where G is a sheaf with values in C there exists a
unique factorization F → F# → G.

Proof. The proof is the same as the proof of Lemma 18.2, with repeated application
of Lemma 15.4 (see also Example 15.5). The main idea however, is to define F#(U) as the
fibre product in C of the diagram

Π(F)(U)

��∏
x∈U Fx // ∏

x∈U Π(F)x

compare Lemma 18.1. �

20. Sheafification of presheaves of modules

Lemma 20.1. Let X be a topological space. LetO be a presheaf of rings on X . Let F
be a presheaf O-modules. Let O# be the sheafification of O. Let F# be the sheafification
of F as a presheaf of abelian groups. There exists a map of sheaves of sets

O# ×F# −→ F#

which makes the diagram
O ×F //

��

F

��
O# ×F# // F#

commute and which makes F# into a sheaf ofO#-modules. In addition, if G is a sheaf of
O#-modules, then any morphism of presheaves ofO-modulesF → G (into the restriction
of G to aO-module) factors uniquely as F → F# → G where F# → G is a morphism of
O#-modules.

Proof. Omitted. �

This actually means that the functor i : Mod(O#) → PMod(O) (combining restriction
and including sheaves into presheaves) and the sheafification functor of the lemma # :
PMod(O)→Mod(O#) are adjoint. In a formula

MorPMod(O)(F , iG) = MorMod(O#)(F#,G)

Let X be a topological space. Let O1 → O2 be a morphism of sheaves of rings on X . In
Section 6 we defined a restriction functor and a change of rings functor on presheaves of
modules associated to this situation.
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If F is a sheaf of O2-modules then the restriction FO1 of F is clearly a sheaf of O1-
modules. We obtain the restriction functor

Mod(O2) −→Mod(O1)

On the other hand, given a sheaf ofO1-modules G the presheaf ofO2-modulesO2⊗p,O1 G
is in general not a sheaf. Hence we define the tensor product sheafO2⊗O1G by the formula

O2 ⊗O1 G = (O2 ⊗p,O1 G)#

as the sheafification of our construction for presheaves. We obtain the change of rings
functor

Mod(O1) −→Mod(O2)

Lemma 20.2. With X ,O1,O2, F and G as above there exists a canonical bijection
HomO1(G,FO1) = HomO2(O2 ⊗O1 G,F)

In other words, the restriction and change of rings functors are adjoint to each other.

Proof. This follows from Lemma 6.2 and the fact that HomO2(O2 ⊗O1 G,F) =
HomO2(O2 ⊗p,O1 G,F) because F is a sheaf. �

Lemma 20.3. Let X be a topological space. LetO → O′ be a morphism of sheaves of
rings on X . Let F be a sheafO-modules. Let x ∈ X . We have

Fx ⊗Ox
O′
x = (F ⊗O O′)x

asO′
x-modules.

Proof. Follows directly from Lemma 14.2 and the fact that taking stalks commutes
with sheafification. �

21. Continuous maps and sheaves

Let f : X → Y be a continuous map of topological spaces. We will define the pushforward
and pullback functors for presheaves and sheaves.
Let F be a presheaf of sets on X . We define the pushforward of F by the rule

f∗F(V ) = F(f−1(V ))
for any open V ⊂ Y . Given V1 ⊂ V2 ⊂ Y open the restriction map is given by the
commutativity of the diagram

f∗F(V2)

��

F(f−1(V2))

restriction for F
��

f∗F(V1) F(f−1(V1))

It is clear that this defines a presheaf of sets. The construction is clearly functorial in the
presheaf F and hence we obtain a functor

f∗ : PSh(X) −→ PSh(Y ).

Lemma 21.1. Let f : X → Y be a continuous map. Let F be a sheaf of sets on X .
Then f∗F is a sheaf on Y .

Proof. This immediately follows from the fact that if V =
⋃
Vj is an open covering

in Y , then f−1(V ) =
⋃
f−1(Vj) is an open covering in X . �
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As a consequence we obtain a functor
f∗ : Sh(X) −→ Sh(Y ).

This is compatible with composition in the following strong sense.

Lemma 21.2. Let f : X → Y and g : Y → Z be continuous maps of topological
spaces. The functors (g ◦ f)∗ and g∗ ◦ f∗ are equal (on both presheaves and sheaves of
sets).

Proof. This is because (g ◦ f)∗F(W ) = F((g ◦ f)−1W ) and (g∗ ◦ f∗)F(W ) =
F(f−1g−1W ) and (g ◦ f)−1W = f−1g−1W . �

Let G be a presheaf of sets on Y . The pullback presheaf fpG of a given presheaf G is
defined as the left adjoint of the pushforward f∗ on presheaves. In other words it should
be a presheaf fpG on X such that

MorPSh(X)(fpG,F) = MorPSh(Y )(G, f∗F).
By the Yoneda lemma this determines the pullback uniquely. It turns out that it actually
exists.

Lemma 21.3. Let f : X → Y be a continuous map. There exists a functor fp :
PSh(Y ) → PSh(X) which is left adjoint to f∗. For a presheaf G it is determined by the
rule

fpG(U) = colimf(U)⊂V G(V )
where the colimit is over the collection of open neighbourhoods V of f(U) in Y . The
colimits are over directed partially ordered sets. (The restriction mappings of fpG are
explained in the proof.)

Proof. The colimit is over the partially ordered set consisting of open subsets V ⊂
Y which contain f(U) with ordering by reverse inclusion. This is a directed partially
ordered set, since if V, V ′ are in it then so is V ∩ V ′. Furthermore, if U1 ⊂ U2, then every
open neighbourhood of f(U2) is an open neighbourhood of f(U1). Hence the system
defining fpG(U2) is a subsystem of the one defining fpG(U1) and we obtain a restriction
map (for example by applying the generalities in Categories, Lemma 14.8).
Note that the construction of the colimit is clearly functorial in G , and similarly for the
restriction mappings. Hence we have defined fp as a functor.
A small useful remark is that there exists a canonical map G(U)→ fpG(f−1(U)), because
the system of open neighbourhoods of f(f−1(U)) contains the elementU . This is compat-
ible with restriction mappings. In other words, there is a canonical map iG : G → f∗fpG.
Let F be a presheaf of sets on X . Suppose that ψ : fpG → F is a map of presheaves of
sets. The corresponding map G → f∗F is the map f∗ψ ◦ iG : G → f∗fpG → f∗F .
Another small useful remark is that there exists a canonical map cF : fpf∗F → F .
Namely, let U ⊂ X open. For every open neighbourhood V ⊃ f(U) in Y there ex-
ists a map f∗F(V ) = F(f−1(V )) → F(U), namely the restriction map on F . And this
is compatible with the restriction mappings between values ofF on f−1 of varying opens
containing f(U). Thus we obtain a canonical map fpf∗F(U) → F(U). Another trivial
verification shows that these maps are compatible with restriction maps and define a map
cF of presheaves of sets.
Suppose that ϕ : G → f∗F is a map of presheaves of sets. Consider fpϕ : fpG →
fpf∗F . Postcomposing with cF gives the desired map cF ◦ fpϕ : fpG → F . We omit
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the verification that this construction is inverse to the construction in the other direction
given above. �

Lemma 21.4. Let f : X → Y be a continuous map. Let x ∈ X . Let G be a presheaf
of sets on Y . There is a canonical bijection of stalks (fpG)x = Gf(x).

Proof. This you can see as follows

(fpG)x = colimx∈U fpG(U)
= colimx∈U colimf(U)⊂V G(V )
= colimf(x)∈V G(V )
= Gf(x)

Here we have used Categories, Lemma 14.10, and the fact that any V open in Y containing
f(x) occurs in the third description above. Details omitted. �

Let G be a sheaf of sets on Y . The pullback sheaf f−1G is defined by the formula

f−1G = (fpG)#.

The pullback f−1 is a left adjoint of pushforward on sheaves. In other words,

MorSh(X)(f−1G,F) = MorSh(Y )(G, f∗F).
Namely, we have

MorSh(X)(f−1G,F) = MorPSh(X)(fpG,F)
= MorPSh(Y )(G, f∗F)
= MorSh(Y )(G, f∗F)

For the first equality we use that sheafification is a left adjoint to the inclusion of sheaves
in presheaves. For the second equality we use that fp is a left adjoint to f∗ on presheaves.
We will return to this statement in the proof of Lemma 21.8.

Lemma 21.5. Let x ∈ X . Let G be a sheaf of sets on Y . There is a canonical bijection
of stalks (f−1G)x = Gf(x).

Proof. This is a combination of Lemmas 17.2 and 21.4. �

Lemma 21.6. Let f : X → Y and g : Y → Z be continuous maps of topological
spaces. The functors (g ◦ f)−1 and f−1 ◦ g−1 are canonically isomorphic. Similarly
(g ◦ f)p ∼= fp ◦ gp on presheaves.

Proof. To see this use that adjoint functors are unique up to unique isomorphism,
and Lemma 21.2. �

Definition 21.7. Let f : X → Y be a continuous map. Let F be a sheaf of sets
on X and let G be a sheaf of sets on Y . An f -map ξ : G → F is a collection of maps
ξV : G(V )→ F(f−1(V )) indexed by open subsets V ⊂ Y such that

G(V )
ξV

//

restriction of G
��

F(f−1V )

restriction of F
��

G(V ′)
ξV ′ // F(f−1V ′)

commutes for all V ′ ⊂ V ⊂ Y open.
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In the literature we sometimes find this defined alternatively as in part (4) of Lemma 21.8
but as the lemma shows there is really no difference.

Lemma 21.8. Let f : X → Y be a continuous map. There are bijections between the
following four sets

(1) the set of maps G → f∗F ,
(2) the set of maps f−1G → F ,
(3) the set of f -maps ξ : G → F , and
(4) the set of all collections of maps ξU,V : G(V ) → F(U) for all U ⊂ X and

V ⊂ Y open such that f(U) ⊂ V compatible with all restriction maps,
functorially in F ∈ Sh(X) and G ∈ Sh(Y ).

Proof. A map of sheaves a : G → f∗F is by definition a rule which to each open V
of Y assigns a map aV : G(V ) → f∗F(V ) and we have f∗F(V ) = F(f−1(V )). Thus
at least the ”data” corresponds exactly to what you need for an f -map ξ from G to F . To
show that the sets (1) and (3) are in bijection we observe that a is a map of sheaves if and
only if corresponding family of maps aV satisfy the condition in Definition 21.7.
Recall that f−1G is the sheafification of fpG. By the universal property of sheafification
a map of sheaves b : f−1G → F is the same thing as a map of presheaves bp : fpG → F
where fp is the functor defined earlier in the section. To give such a map bp you need to
specify for each open U of X a map

bp,U : colimf(U)⊂V G(V ) −→ F(U)
compatible with restriction mappings. We may and do view bp,U as a collection of maps
bp,U,V : G(V ) → F(U) for all V open in Y with f(U) ⊂ V . These maps have to be
compatible with all possible restriction mappings you can think of. In other words, we see
that bp corresponds to a collection of maps as in (4). Of course, conversely such a collection
defines a map bp and in turn a map b : f−1G → F .
To finish the proof of the lemma you have to show that by ”forgetting structure” the
rule that to a collection ξU,V as in (4) associates the f -map ξ with ξV = ξf−1(V ),V is
bijective. To do this, if ξ is a usual f -map then we just define ξ̃U,V to be the composition
of ξV : G(V ) → F(f−1(V )) by the restruction map F(f−1(V )) → F(U) which makes
sense exactly because f(U) ⊂ V , i.e., U ⊂ f−1(V ). This finishes the proof. �

It is sometimes convenient to think about f -maps instead of maps between sheaves either
on X or on Y . We define composition of f -maps as follows.

Definition 21.9. Suppose that f : X → Y and g : Y → Z are continuous maps of
topological spaces. Suppose that F is a sheaf on X , G is a sheaf on Y , andH is a sheaf on
Z. Let ϕ : G → F be an f -map. Let ψ : H → G be an g-map. The composition of ϕ and
ψ is the (g ◦ f)-map ϕ ◦ ψ defined by the commutativity of the diagrams

H(W )
(ϕ◦ψ)W

//

ψW %%

F(f−1g−1W )

G(g−1W )
ϕg−1W

77

We leave it to the reader to verify that this works. Another way to think about this is to
think of ϕ ◦ ψ as the composition

H ψ−→ g∗G
g∗ϕ−−→ g∗f∗F = (g ◦ f)∗F



284 6. SHEAVES ON SPACES

Now, doesn’t it seem that thinking about f -maps is somehow easier?

Finally, given a continuous map f : X → Y , and an f -map ϕ : G → F there is a natural
map on stalks

ϕx : Gf(x) −→ Fx
for all x ∈ X . The image of a representative (V, s) of an element in Gf(x) is mapped to
the element in Fx with representative (f−1V, ϕV (s)). We leave it to the reader to see
that this is well defined. Another way to state it is that it is the unique map such that all
diagrams

F(f−1V ) // Fx

G(V ) //

ϕV

OO

Gf(x)

ϕx

OO

(for f(x) ∈ V ⊂ Y open) commute.

Lemma 21.10. Suppose that f : X → Y and g : Y → Z are continuous maps of
topological spaces. Suppose that F is a sheaf on X , G is a sheaf on Y , andH is a sheaf on
Z. Let ϕ : G → F be an f -map. Let ψ : H → G be an g-map. Let x ∈ X be a point. The
map on stalks (ϕ ◦ ψ)x : Hg(f(x)) → Fx is the composition

Hg(f(x))
ψf(x)−−−→ Gf(x)

ϕx−−→ Fx

Proof. Immediate from Definition 21.9 and the definition of the map on stalks above.
�

22. Continuous maps and abelian sheaves

Let f : X → Y be a continuous map. We claim there are functors

f∗ : PAb(X) −→ PAb(Y )
f∗ : Ab(X) −→ Ab(Y )
fp : PAb(Y ) −→ PAb(X)
f−1 : Ab(Y ) −→ Ab(X)

with similar properties to their counterparts in Section 21. To see this we argue in the
following way.

Each of the functors will be constructed in the same way as the corresponding functor in
Section 21. This works because all the colimits in that section are directed colimits (but
we will work through it below).

First off, given an abelian presheaf F on X and an abelian presheaf G on Y we define

f∗F(V ) = F(f−1(V ))
fpG(U) = colimf(U)⊂V G(V )

as abelian groups. The restriction mappings are the same as the restriction mappings for
presheaves of sets (and they are all homomorphisms of abelian groups).

The assignments F 7→ f∗F and G → fpG are functors on the categories of presheaves
of abelian groups. This is clear, as (for example) a map of abelian presheaves G1 → G2
gives rise to a map of directed systems {G1(V )}f(U)⊂V → {G2(V )}f(U)⊂V all of whose
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maps are homomorphisms and hence gives rise to a homomorphism of abelian groups
fpG1(U)→ fpG2(U).

The functors f∗ and fp are adjoint on the category of presheaves of abelian groups, i.e., we
have

MorPAb(X)(fpG,F) = MorPAb(Y )(G, f∗F).

To prove this, note that the map iG : G → f∗fpG from the proof of Lemma 21.3 is a map
of abelian presheaves. Hence if ψ : fpG → F is a map of abelian presheaves, then the
corresponding map G → f∗F is the map f∗ψ ◦ iG : G → f∗fpG → f∗F is also a map of
abelian presheaves. For the other direction we point out that the map cF : fpf∗F → F
from the proof of Lemma 21.3 is a map of abelian presheaves as well (since it is made out of
restriction mappings of F which are all homomorphisms). Hence given a map of abelian
presheaves ϕ : G → f∗F the map cF ◦ fpϕ : fpG → F is a map of abelian presheaves as
well. Since these constructions ψ 7→ f∗ψ and ϕ 7→ cF ◦ fpϕ are inverse to each other as
constructions on maps of presheaves of sets we see they are also inverse to each other on
maps of abelian presheaves.

If F is an abelian sheaf on Y , then f∗F is an abelian sheaf on X . This is true because of
the definition of an abelian sheaf and because this is true for sheaves of sets, see Lemma
21.1. This defines the functor f∗ on the category of abelian sheaves.

We define f−1G = (fpG)# as before. Adjointness of f∗ and f−1 follows formally as in
the case of presheaves of sets. Here is the argument:

MorAb(X)(f−1G,F) = MorPAb(X)(fpG,F)
= MorPAb(Y )(G, f∗F)
= MorAb(Y )(G, f∗F)

Lemma 22.1. Let f : X → Y be a continuous map.
(1) Let G be an abelian presheaf on Y . Let x ∈ X . The bijection Gf(x) → (fpG)x of

Lemma 21.4 is an isomorphism of abelian groups.
(2) Let G be an abelian sheaf on Y . Let x ∈ X . The bijection Gf(x) → (f−1G)x of

Lemma 21.5 is an isomorphism of abelian groups.

Proof. Omitted. �

Given a continuous map f : X → Y and sheaves of abelian groups F on X , G on Y , the
notion of an f -map G → F of sheaves of abelian groups makes sense. We can just define
it exactly as in Definition 21.7 (replacing maps of sets with homomorphisms of abelian
groups) or we can simply say that it is the same as a map of abelian sheaves G → f∗F . We
will use this notion freely in the following. The group of f -maps between G and F will
be in canonical bijection with the groups MorAb(X)(f−1G,F) and MorAb(Y )(G, f∗F).

Composition of f -maps is defined in exactly the same manner as in the case of f -maps of
sheaves of sets. In addition, given an f -map G → F as above, the induced maps on stalks

ϕx : Gf(x) −→ Fx

are abelian group homomorphisms.
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23. Continuous maps and sheaves of algebraic structures

Let (C, F ) be a type of algebraic structure. For a topological space X let us introduce the
notation:

(1) PSh(X, C) will be the category of presheaves with values in C.
(2) Sh(X, C) will be the category of sheaves with values in C.

Let f : X → Y be a continuous map of topological spaces. The same arguments as in the
previous section show there are functors

f∗ : PSh(X, C) −→ PSh(Y, C)
f∗ : Sh(X, C) −→ Sh(Y, C)
fp : PSh(Y, C) −→ PSh(X, C)
f−1 : Sh(Y, C) −→ Sh(X, C)

constructed in the same manner and with the same properties as the functors constructed
for abelian (pre)sheaves. In particular there are commutative diagrams

PSh(X, C) f∗ //

F

��

PSh(Y, C)

F

��

Sh(X, C) f∗ //

F

��

Sh(Y, C)

F

��
PSh(X) f∗ // PSh(Y ) Sh(X) f∗ // Sh(Y )

PSh(Y, C)
fp //

F

��

PSh(X, C)

F

��

Sh(Y, C) f−1
//

F

��

Sh(X, C)

F

��
PSh(Y )

fp // PSh(X) Sh(Y ) f−1
// Sh(X)

The main formulas to keep in mind are the following

f∗F(V ) = F(f−1(V ))
fpG(U) = colimf(U)⊂V G(V )
f−1G = (fpG)#

(fpG)x = Gf(x)

(f−1G)x = Gf(x)

Each of these formulas has the property that they hold in the category C and that upon
taking underlying sets we get the corresponding formula for presheaves of sets. In addition
we have the adjointness properties

MorPSh(X,C)(fpG,F) = MorPSh(Y,C)(G, f∗F)
MorSh(X,C)(f−1G,F) = MorSh(Y,C)(G, f∗F).

To prove these, the main step is to construct the maps

iG : G −→ f∗fpG

and
cF : fpf∗F −→ F
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which occur in the proof of Lemma 21.3 as morphisms of presheaves with values in C. This
may be safely left to the reader since the constructions are exactly the same as in the case
of presheaves of sets.

Given a continuous map f : X → Y and sheaves of algebraic structures F on X , G on
Y , the notion of an f -map G → F of sheaves of algebraic structures makes sense. We can
just define it exactly as in Definition 21.7 (replacing maps of sets with morphisms in C) or
we can simply say that it is the same as a map of sheaves of algebraic structures G → f∗F .
We will use this notion freely in the following. The set of f -maps between G and F will
be in canonical bijection with the sets MorSh(X,C)(f−1G,F) and MorSh(Y,C)(G, f∗F).

Composition of f -maps is defined in exactly the same manner as in the case of f -maps of
sheaves of sets. In addition, given an f -map G → F as above, the induced maps on stalks

ϕx : Gf(x) −→ Fx

are homomorphisms of algebraic structures.

Lemma 23.1. Let f : X → Y be a continuous map of topological spaces. Suppose
given sheaves of algebraic structures F on X , G on Y . Let ϕ : G → F be an f -map
of underlying sheaves of sets. If for every V ⊂ Y open the map of sets ϕV : G(V ) →
F(f−1V ) is the effect of a morphism in C on underlying sets, then ϕ comes from a unique
f -morphism between sheaves of algebraic structures.

Proof. Omitted. �

24. Continuous maps and sheaves of modules

The case of sheaves of modules is more complicated. The reason is that the natural setting
for defining the pullback and pushforward functors, is the setting of ringed spaces, which
we will define below. First we state a few obvious lemmas.

Lemma 24.1. Let f : X → Y be a continuous map of topological spaces. Let O be
a presheaf of rings on X . Let F be a presheaf of O-modules. There is a natural map of
underlying presheaves of sets

f∗O × f∗F −→ f∗F

which turns f∗F into a presheaf of f∗O-modules. This construction is functorial in F .

Proof. Let V ⊂ Y is open. We define the map of the lemma to be the map

f∗O(V )× f∗F(V ) = O(f−1V )×F(f−1V )→ F(f−1V ) = f∗F(V ).

Here the arrow in the middle is the multiplication map on X . We leave it to the reader
to see this is compatible with restriction mappings and defines a structure of f∗O-module
on f∗F . �

Lemma 24.2. Let f : X → Y be a continuous map of topological spaces. Let O be
a presheaf of rings on Y . Let G be a presheaf of O-modules. There is a natural map of
underlying presheaves of sets

fpO × fpG −→ fpG

which turns fpG into a presheaf of fpO-modules. This construction is functorial in G.
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Proof. Let U ⊂ X is open. We define the map of the lemma to be the map

fpO(U)× fpG(U) = colimf(U)⊂V O(V )× colimf(U)⊂V G(V )
= colimf(U)⊂V (O(V )× G(V ))
→ colimf(U)⊂V G(V )
= fpG(U).

Here the arrow in the middle is the multiplication map on Y . The second equality holds
because directed colimits commute with finite limits, see Categories, Lemma 19.2. We leave
it to the reader to see this is compatible with restriction mappings and defines a structure
of fpO-module on fpG. �

Let f : X → Y be a continuous map. LetOX be a presheaf of rings on X and letOY be a
presheaf of rings on Y . So at the moment we have defined functors

f∗ : PMod(OX) −→ PMod(f∗OX)
fp : PMod(OY ) −→ PMod(fpOY )

These satisfy some compatibilities as follows.

Lemma 24.3. Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on Y . Let G be a presheaf of O-modules. Let F be a presheaf of
fpO-modules. Then

MorPMod(fpO)(fpG,F) = MorPMod(O)(G, f∗F).

Here we use Lemmas 24.2 and 24.1, and we think of f∗F as an O-module via the map
iO : O → f∗fpO (defined first in the proof of Lemma 21.3).

Proof. Note that we have

MorPAb(X)(fpG,F) = MorPAb(Y )(G, f∗F).

according to Section 22. So what we have to prove is that under this correspondence, the
subsets of module maps correspond. In addition, the correspondence is determined by the
rule

(ψ : fpG → F) 7−→ (f∗ψ ◦ iG : G → f∗F)
and in the other direction by the rule

(ϕ : G → f∗F) 7−→ (cF ◦ fpϕ : fpG → F)

where iG and cF are as in Section 22. Hence, using the functoriality of f∗ and fp we see that
it suffices to check that the maps iG : G → f∗fpG and cF : fpf∗F → F are compatible
with module structures, which we leave to the reader. �

Lemma 24.4. Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on X . Let F be a presheaf of O-modules. Let G be a presheaf of
f∗O-modules. Then

MorPMod(O)(O ⊗p,fpf∗O fpG,F) = MorPMod(f∗O)(G, f∗F).

Here we use Lemmas 24.2 and 24.1, and we use the map cO : fpf∗O → O in the definition
of the tensor product.



24. CONTINUOUS MAPS AND SHEAVES OF MODULES 289

Proof. This follows from the equalities

MorPMod(O)(O ⊗p,fpf∗O fpG,F) = MorPMod(fpf∗O)(fpG,Ffpf∗O)
= MorPMod(f∗O)(G, f∗(Ffpf∗O))
= MorPMod(f∗O)(G, f∗F).

The first equality is Lemma 6.2. The second equality is Lemma 24.3. The third equality is
given by the equality f∗(Ffpf∗O) = f∗F of abelian sheaves which is f∗O-linear. Namely,
idf∗O corresponds to cO under the adjunction described in the proof of Lemma 21.3 and
thus idf∗O = f∗cO ◦ if∗O. �

Lemma 24.5. Let f : X → Y be a continuous map of topological spaces. Let O be a
sheaf of rings on X . Let F be a sheaf of O-modules. The pushforward f∗F , as defined in
Lemma 24.1 is a sheaf of f∗O-modules.

Proof. Obvious from the definition and Lemma 21.1. �

Lemma 24.6. Let f : X → Y be a continuous map of topological spaces. Let O be a
sheaf of rings on Y . Let G be a sheaf of O-modules. There is a natural map of underlying
presheaves of sets

f−1O × f−1G −→ f−1G
which turns f−1G into a sheaf of f−1O-modules.

Proof. Recall that f−1 is defined as the composition of the functor fp and sheafifi-
cation. Thus the lemma is a combination of Lemma 24.2 and Lemma 20.1. �

Let f : X → Y be a continuous map. Let OX be a sheaf of rings on X and let OY be a
sheaf of rings on Y . So now we have defined functors

f∗ : Mod(OX) −→ Mod(f∗OX)
f−1 : Mod(OY ) −→ Mod(f−1OY )

These satisfy some compatibilities as follows.

Lemma 24.7. Let f : X → Y be a continuous map of topological spaces. Let O be a
sheaf of rings on Y . Let G be a sheaf of O-modules. Let F be a sheaf of f−1O-modules.
Then

MorMod(f−1O)(f−1G,F) = MorMod(O)(G, f∗F).
Here we use Lemmas 24.6 and 24.5, and we think of f∗F as an O-module by restriction
viaO → f∗f

−1O.

Proof. Argue by the equalities

MorMod(f−1O)(f−1G,F) = MorMod(fpO)(fpG,F)
= MorMod(O)(G, f∗F).

where the second is Lemmas 24.3 and the first is by Lemma 20.1. �

Lemma 24.8. Let f : X → Y be a continuous map of topological spaces. Let O be
a sheaf of rings on X . Let F be a sheaf of O-modules. Let G be a sheaf of f∗O-modules.
Then

MorMod(O)(O ⊗f−1f∗O f−1G,F) = MorMod(f∗O)(G, f∗F).
Here we use Lemmas 24.6 and 24.5, and we use the canonical map f−1f∗O → O in the
definition of the tensor product.
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Proof. This follows from the equalities

MorMod(O)(O ⊗f−1f∗O f−1G,F) = MorMod(f−1f∗O)(f−1G,Ff−1f∗O)
= MorMod(f∗O)(G, f∗F).

which are a combination of Lemma 20.2 and 24.7. �

Let f : X → Y be a continuous map. LetOX be a (pre)sheaf of rings on X and letOY be
a (pre)sheaf of rings on Y . So at the moment we have defined functors

f∗ : PMod(OX) −→ PMod(f∗OX)
f∗ : Mod(OX) −→ Mod(f∗OX)
fp : PMod(OY ) −→ PMod(fpOY )
f−1 : Mod(OY ) −→ Mod(f−1OY )

Clearly, usually the pair of functors (f∗, f
−1) on sheaves of modules are not adjoint, be-

cause their target categories do not match. Namely, as we saw above, it works only if
by some miracle the sheaves of rings OX ,OY satisfy the relations OX = f−1OY and
OY = f∗OX . This is almost never true in practice. We interrupt the discussion to define
the correct notion of morphism for which a suitable adjoint pair of functors on sheaves of
modules exists.

25. Ringed spaces

LetX be a topological space and letOX be a sheaf of rings onX . We are supposed to think
of the sheaf of rings OX as a sheaf of functions on X . And if f : X → Y is a “suitable”
map, then by composition a function on Y turns into a function onX . Thus there should
be a natural f -map from OY to OX , see Definition 21.7 and Lemma 21.8. For a precise
example, see Example 25.2 below. Here is the relevant abstract definition.

Definition 25.1. A ringed space is a pair (X,OX) consisting of a topological space
X and a sheaf of rings OX on X . A morphism of ringed spaces (X,OX) → (Y,OY )
is a pair consisting of a continuous map f : X → Y and an f -map of sheaves of rings
f ] : OY → OX .

Example 25.2. Let f : X → Y be a continuous map of topological spaces. Consider
the sheaves of continuous real valued functions C0

X on X and C0
Y on Y , see Example 9.3.

We claim that there is a natural f -map f ] : C0
Y → C0

X associated to f . Namely, we simply
define it by the rule

C0
Y (V ) −→ C0

X(f−1V )
h 7−→ h ◦ f

Strictly speaking we should write f ](h) = h ◦ f |f−1(V ). It is clear that this is a family of
maps as in Definition 21.7 and compatible with the R-algebra structures. Hence it is an
f -map of sheaves of R-algebras, see Lemma 23.1.
Of course there are lots of other situations where there is a canonical morphism of ringed
spaces associated to a geometrical type of morphism. For example, if M , N are C∞-
manifolds and f : M → N is a infinitely differentiable map, then f induces a canonical
morphism of ringed spaces (M, C∞

M )→ (N, C∞
N ). The construction (which is identical to

the above) is left to the reader.

It may not be completely obvious how to compose morphisms of ringed spaces hence we
spell it out here.
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Definition 25.3. Let (f, f ]) : (X,OX) → (Y,OY ) and (g, g]) : (Y,OY ) →
(Z,OZ) be morphisms of ringed spaces. Then we define the composition of morphisms of
ringed spaces by the rule

(g, g]) ◦ (f, f ]) = (g ◦ f, f ] ◦ g]).

Here we use composition of f -maps defined in Definition 21.9.

26. Morphisms of ringed spaces and modules

We have now introduced enough notation so that we are able to define the pullback and
pushforward of modules along a morphism of ringed spaces.

Definition 26.1. Let (f, f ]) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
(1) Let F be a sheaf of OX -modules. We define the pushforward of F as the sheaf

of OY -modules which as a sheaf of abelian groups equals f∗F and with module
structure given by the restriction via f ] : OY → f∗OX of the module structure
given in Lemma 24.5.

(2) Let G be a sheaf of OY -modules. We define the pullback f∗G to be the sheaf of
OX -modules defined by the formula

f∗G = OX ⊗f−1OY
f−1G

where the ring map f−1OY → OX is the map corresponding to f ], and where
the module structure is given by Lemma 24.6.

Thus we have defined functors

f∗ : Mod(OX) −→ Mod(OY )
f∗ : Mod(OY ) −→ Mod(OX)

The final result on these functors is that they are indeed adjoint as expected.

Lemma 26.2. Let (f, f ]) : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX -modules. Let G be a sheaf of OY -modules. There is a canonical
bijection

HomOX
(f∗G,F) = HomOY

(G, f∗F).
In other words: the functor f∗ is the left adjoint to f∗.

Proof. This follows from the work we did before:

HomOX
(f∗G,F) = MorMod(OX)(OX ⊗f−1OY

f−1G,F)
= MorMod(f−1OY )(f−1G,Ff−1OY

)
= HomOY

(G, f∗F).

Here we use Lemmas 20.2 and 24.7. �

Lemma 26.3. Let f : X → Y and g : Y → Z be morphisms of ringed spaces. The
functors (g ◦ f)∗ and g∗ ◦ f∗ are equal. There is a canonical isomorphism of functors
(g ◦ f)∗ ∼= f∗ ◦ g∗.

Proof. The result on pushforwards is a consequence of Lemma 21.2 and our defini-
tions. The result on pullbacks follows from this by the same argument as in the proof of
Lemma 21.6. �
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Given a morphism of ringed spaces (f, f ]) : (X,OX) → (Y,OY ), and a sheaf of OX -
modules F , a sheaf ofOY -modules G on Y , the notion of an f -map ϕ : G → F of sheaves
of modules makes sense. We can just define it as an f -map ϕ : G → F of abelian sheaves
(see Definition 21.7 and Lemma 21.8) such that for all open V ⊂ Y the map

G(V ) −→ F(f−1V )

is anOY (V )-module map. Here we think of F(f−1V ) as anOY (V )-module via the map
f ]V : OY (V ) → OX(f−1V ). The set of f -maps between G and F will be in canonical
bijection with the sets MorMod(OX)(f∗G,F) and MorMod(OY )(G, f∗F). See above.

Composition of f -maps is defined in exactly the same manner as in the case of f -maps of
sheaves of sets. In addition, given an f -map G → F as above, and x ∈ X the induced map
on stalks

ϕx : Gf(x) −→ Fx
is an OY,f(x)-module map where the OY,f(x)-module structure on Fx comes from the
OX,x-module structure via the map f ]x : OY,f(x) → OX,x. Here is a related lemma.

Lemma 26.4. Let (f, f ]) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let
G be a sheaf ofOY -modules. Let x ∈ X . Then

(f∗G)x = Gf(x) ⊗OY,f(x) OX,x

asOX,x-modules where the tensor product on the right uses f ]x : OY,f(x) → OX,x.

Proof. This follows from Lemma 20.3 and the identification of the stalks of pullback
sheaves at x with the corresponding stalks at f(x). See the formulae in Section 23 for
example. �

27. Skyscraper sheaves and stalks

Definition 27.1. Let X be a topological space.
(1) Let x ∈ X be a point. Denote ix : {x} → X the inclusion map. Let A be

a set and think of A as a sheaf on the one point space {x}. We call ix,∗A the
skyscraper sheaf at x with value A.

(2) If in (1) above A is an abelian group then we think of ix,∗A as a sheaf of abelian
groups on X .

(3) If in (1) above A is an algebraic structure then we think of ix,∗A as a sheaf of
algebraic structures.

(4) If (X,OX) is a ringed space, then we think of ix : {x} → X as a morphism
of ringed spaces ({x},OX,x) → (X,OX) and if A is a OX,x-module, then we
think of ix,∗A as a sheaf ofOX -modules.

(5) We say a sheaf of sets F is a skyscraper sheaf if there exists a point x of X and a
set A such that F ∼= ix,∗A.

(6) We say a sheaf of abelian groups F is a skyscraper sheaf if there exists a point x
of X and an abelian group A such that F ∼= ix,∗A as sheaves of abelian groups.

(7) We say a sheaf of algebraic structures F is a skyscraper sheaf if there exists a
point x of X and an algebraic structure A such that F ∼= ix,∗A as sheaves of
algebraic structures.

(8) If (X,OX) is a ringed space and F is a sheaf of OX -modules, then we say F is
a skyscraper sheaf if there exists a point x ∈ X and aOX,x-module A such that
F ∼= ix,∗A as sheaves ofOX -modules.
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Lemma 27.2. LetX be a topological space, x ∈ X a point, andA a set. For any point
x′ ∈ X the stalk of the skyscraper sheaf at x with value A at x′ is

(ix,∗A)x′ =
{
A if x′ ∈ {x}
{∗} if x′ 6∈ {x}

A similar description holds for the case of abelian groups, algebraic structures and sheaves
of modules.

Proof. Omitted. �

Lemma 27.3. Let X be a topological space, and let x ∈ X a point. The functors
F 7→ Fx and A 7→ ix,∗A are adjoint. In a formula

MorSets(Fx, A) = MorSh(X)(F , ix,∗A).

A similar statement holds for the case of abelian groups, algebraic structures. In the case
of sheaves of modules we have

HomOX,x
(Fx, A) = HomOX

(F , ix,∗A).

Proof. Omitted. Hint: The stalk functor can be seen as the pullback functor for the
morphism ix : {x} → X . Then the adjointness follows from adjointness of i−1

x and ix,∗
(resp. i∗x and ix,∗ in the case of sheaves of modules). �

28. Limits and colimits of presheaves

Let X be a topological space. Let I → PSh(X), i 7→ Fi be a diagram.
(1) Both limi Fi and colimi Fi exist.
(2) For any open U ⊂ X we have

(limi Fi)(U) = limi Fi(U)

and
(colimi Fi)(U) = colimi Fi(U).

(3) Let x ∈ X be a point. In general the stalk of limi Fi at x is not equal to the limit
of the stalks. But if the index category is finite then it is the case. In other words,
the stalk functor is left exact (see Categories, Definition 23.1).

(4) Let x ∈ X . We always have

(colimi Fi)x = colimi Fi,x.

The proofs are all easy.

29. Limits and colimits of sheaves

Let X be a topological space. Let I → Sh(X), i 7→ Fi be a diagram.
(1) Both limi Fi and colimi Fi exist.
(2) The inclusion functor i : Sh(X) → PSh(X) commutes with limits. In other

words, we may compute the limit in the category of sheaves as the limit in the
category of presheaves. In particular, for any open U ⊂ X we have

(limi Fi)(U) = limi Fi(U).
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(3) The inclusion functor i : Sh(X) → PSh(X) does not commute with colim-
its in general (not even with finite colimits – think surjections). The colimit is
computed as the sheafification of the colimit in the category of presheaves:

colimi Fi =
(
U 7→ colimi Fi(U)

)#
.

(4) Let x ∈ X be a point. In general the stalk of limi Fi at x is not equal to the limit
of the stalks. But if the index category is finite then it is the case. In other words,
the stalk functor is left exact.

(5) Let x ∈ X . We always have
(colimi Fi)x = colimi Fi,x.

(6) The sheafification functor # : PSh(X) → Sh(X) commutes with all colimits,
and with finite limits. But it does not commute with all limits.

The proofs are all easy. Here is an example of what is true for directed colimits of sheaves.

Lemma 29.1. Let X be a topological space. Let I be a directed set. Let (Fi, ϕii′) be a
system of sheaves of sets over I , see Categories, Section 21. Let U ⊂ X be an open subset.
Consider the canonical map

Ψ : colimi Fi(U) −→ (colimi Fi) (U)
(1) If all the transition maps are injective then Ψ is injective for any open U .
(2) If U is quasi-compact, then Ψ is injective.
(3) If U is quasi-compact and all the transition maps are injective then Ψ is an iso-

morphism.
(4) If U has a cofinal system of open coverings U : U =

⋃
j∈J Uj with J finite and

Uj ∩ Uj′ quasi-compact for all j, j′ ∈ J , then Ψ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf F ′ :
V 7→ colimi Fi(V ) is separated (see Definition 11.2). By the discussion above we have
(F ′)# = colimi Fi. By Lemma 17.5 we see that F ′ → (F ′)# is injective. This proves (1).
AssumeU is quasi-compact. Suppose that s ∈ Fi(U) and s′ ∈ Fi′(U) give rise to elements
on the left hand side which have the same image under Ψ. Since U is quasi-compact this
means there exists a finite open coveringU =

⋃
j=1,...,m Uj and for each j an index ij ∈ I ,

ij ≥ i, ij ≥ i′ such thatϕiij (s) = ϕi′ij (s′). Let i′′ ∈ I be≥ than all of the ij . We conclude
thatϕii′′(s) andϕi′i′′(s) agree on the opensUj for all j and hence thatϕii′′(s) = ϕi′i′′(s).
This proves (2).
AssumeU is quasi-compact and all transition maps injective. Let s be an element of the tar-
get of Ψ. Since U is quasi-compact there exists a finite open covering U =

⋃
j=1,...,m Uj ,

for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj comes from sj for all j. Pick
i ∈ I which is ≥ than all of the ij . By (1) the sections ϕiji(sj) agree over the overlaps
Uj ∩Uj′ . Hence they glue to a section s′ ∈ Fi(U) which maps to s under Ψ. This proves
(3).
Assume the hypothesis of (4). In particular we see that U is quasi-compact and hence
by (2) we have injectivity of Ψ. Let s be an element of the target of Ψ. By assumption
there exists a finite open covering U =

⋃
j=1,...,m Uj , with Uj ∩ Uj′ quasi-compact for

all j, j′ ∈ J and for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj is the image
of sj for all j. Since Uj ∩ Uj′ is quasi-compact we can apply (2) and we see that there
exists an ijj′ ∈ I , ijj′ ≥ ij , ijj′ ≥ ij′ such that ϕijijj′ (sj) and ϕij′ ijj′ (sj′) agree over
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Uj ∩Uj′ . Choose an index i ∈ I wich is bigger or equal than all the ijj′ . Then we see that
the sections ϕiji(sj) of Fi glue to a section of Fi over U . This section is mapped to the
element s as desired. �

Example 29.2. Let X = {s1, s2, ξ1, ξ2, ξ3, . . .} as a set. Declare a subset U ⊂ X to
be open if s1 ∈ U or s2 ∈ U implies U contains all of the ξi. Let Un = {ξn, ξn+1, . . .},
and let jn : Un → X be the inclusion map. Set Fn = jn,∗Z. There are transition maps
Fn → Fn+1. Let F = colimFn. Note that Fn,ξm = 0 if m < n because {ξm} is an open
subset ofX which misses Un. Hence we see that Fξn = 0 for all n. On the other hand the
stalk Fsi , i = 1, 2 is the colimit

M = colimn

∏
m≥n

Z

which is not zero. We conclude that the sheafF is the direct sum of the skyscraper sheaves
with value M at the closed points s1 and s2. Hence Γ(X,F) = M ⊕M . On the other
hand, the reader can verify that colimn Γ(X,Fn) = M . Hence some condition is neces-
sary in part (4) of Lemma 29.1 above.

There is a version of the previous lemma dealing with sheaves on a diagram of spectral
spaces. To state it we introduce some notation. Let I be a cofiltered index category. Let
i 7→ Xi be a diagram of spectral spaces over I such that for a : j → i in I the corre-
sponding map fa : Xj → Xi is spectral. Set X = limXi and denote pi : X → Xi the
projection.

Lemma 29.3. In the situation described above, let i ∈ Ob(I) and let G be a sheaf on
Xi. For Ui ⊂ Xi quasi-compact open we have

p−1
i G(p−1

i (Ui)) = colima:j→i f
−1
a G(f−1

a (Ui))

Proof. Let us prove the canonical map colima:j→i f
−1
a G(f−1

a (Ui))→ p−1
i G(p−1

i (Ui))
is injective. Let s, s′ be sections of f−1

a G over f−1
a (Ui) for some a : j → i. For b : k → j

let Zk ⊂ f−1
a◦b(Ui) be the closed subset of points x such that the image of s and s′ in the

stalk (f−1
a◦bG)x are different. If Zk is nonempty for all b : k → j , then by Topology,

Lemma 24.2 we see that limb:k→j Zk is nonempty too. Then for x ∈ limb:k→j Zk ⊂ X

(observe that I/j → I is initial) we see that the image of s and s′ in the stalk of p−1
i G at

x are different too since (p−1
i G)x = (f−1

b◦aG)pk(x) for all b : k → j as above. Thus if the
images of s and s′ in p−1

i G(p−1
i (Ui)) are the same, then Zk is empty for some b : k → j.

This proves injectivity.

Surjectivity. Let s be a section of p−1
i G over p−1

i (Ui). By Topology, Lemma 24.5 the set
p−1
i (Ui) is a quasi-compact open of the spectral space X . By construction of the pullback

sheaf, we can find an open covering p−1
i (Ui) =

⋃
l∈LWl, opens Vl,i ⊂ Xi, sections sl,i ∈

G(Vl,i) such that pi(Wl) ⊂ Vl,i and p−1
i sl,i|Wl

= s|Wl
. Because X and Xi are spectral

and p−1
i (Ui) is quasi-compact open, we may assume L is finite and Wl and Vl,i quasi-

compact open for all l. Then we can apply Topology, Lemma 24.6 to find a : j → i and
open covering f−1

a (Ui) =
⋃
l∈LWl,j by quasi-compact opens whose pullback to X is the

covering p−1
i (Ui) =

⋃
l∈LWl and such that moreover Wl,j ⊂ f−1

a (Vl,i). Write sl,j the
restriction of the pullback of sl,i by fa to Wl,j . Then we see that sl,j and sl′,j restrict to
elements of (f−1

a G)(Wl,j ∩Wl′,j) which pullback to the same element (p−1
i G)(Wl∩Wl′),

namely, the restriction of s. Hence by injectivity, we can find b : k → j such that the
sections f−1

b sl,j glue to a section over f−1
a◦b(Ui) as desired. �
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Next, in addition to the cofiltered system Xi of spectral spaces, assume given
(1) a sheaf Fi on Xi for all i ∈ Ob(I),
(2) for a : j → i an fa-map ϕa : Fi → Fj

such that ϕc = ϕb ◦ ϕa whenever c = a ◦ b. Set F = colim p−1
i Fi on X .

Lemma 29.4. In the situation described above, let i ∈ Ob(I) and let Ui ⊂ Xi be a
quasi-compact open. Then

colima:j→i Fj(f−1
a (Ui)) = F(p−1

i (Ui))

Proof. Recall that p−1
i (Ui) is a quasi-compact open of the spectral spaceX , see Topol-

ogy, Lemma 24.5. Hence Lemma 29.1 applies and we have

F(p−1
i (Ui)) = colima:j→i p

−1
j Fj(p

−1
i (Ui)).

A formal argument shows that

colima:j→i Fj(f−1
a (Ui)) = colima:j→i colimb:k→j f

−1
b Fj(f

−1
a◦b(Ui))

Thus it suffices to show that

p−1
j Fj(p

−1
i (Ui)) = colimb:k→j f

−1
b Fj(f

−1
a◦b(Ui))

This is Lemma 29.3 applied to Fj and the quasi-compact open f−1
a (Ui). �

30. Bases and sheaves

Sometimes there exists a basis for the topology consisting of opens that are easier to work
with than general opens. For convenience we give here some definitions and simple lem-
mas in order to facilitate working with (pre)sheaves in such a situation.

Definition 30.1. Let X be a topological space. Let B be a basis for the topology on
X .

(1) A presheaf F of sets on B is a rule which assigns to each U ∈ B a set F(U) and
to each inclusion V ⊂ U of elements of B a map ρUV : F(U)→ F(V ) such that
ρUU = idF(U) for allU ∈ BwheneverW ⊂ V ⊂ U inBwe have ρUW = ρVW ◦ρUV .

(2) A morphism ϕ : F → G of presheaves of sets on B is a rule which assigns to each
element U ∈ B a map of sets ϕ : F(U) → G(U) compatible with restriction
maps.

As in the case of usual presheaves we use the terminology of sections, restrictions of sec-
tions, etc. In particular, we may define the stalk of F at a point x ∈ X by the colimit

Fx = colimU∈B,x∈U F(U).

As in the case of the stalk of a presheaf on X this limit is directed. The reason is that the
collection of U ∈ B, x ∈ U is a fundamental system of open neighbourhoods of x.

It is easy to make examples to show that the notion of a presheaf on X is very different
from the notion of a presheaf on a basis for the topology on X . This does not happen in
the case of sheaves. A much more useful notion therefore, is the following.

Definition 30.2. Let X be a topological space. Let B be a basis for the topology on
X .
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(1) A sheaf F of sets on B is a presheaf of sets on B which satisfies the following
additional property: Given any U ∈ B, and any covering U =

⋃
i∈I Ui with

Ui ∈ B, and any coverings Ui ∩ Uj =
⋃
k∈Iij Uijk with Uijk ∈ B the sheaf

condition holds:
(**) For any collection of sections si ∈ F(Ui), i ∈ I such that ∀i, j ∈ I , ∀k ∈

Iij
si|Uijk = sj |Uijk

there exists a unique section s ∈ F(U) such that si = s|Ui for all i ∈ I .
(2) A morphism of sheaves of sets on B is simply a morphism of presheaves of sets.

First we explain that it suffices to check the sheaf condition (∗∗) on a cofinal system of
coverings. In the situation of the definition, suppose U ∈ B. Let us temporarily denote
CovB(U) the set of all coverings ofU by elements of B. Note that CovB(U) is preordered
by refinement. A subset C ⊂ CovB(U) is a cofinal system, if for every U ∈ CovB(U)
there exists a covering V ∈ C which refines U .

Lemma 30.3. With notation as above. For each U ∈ B, let C(U) ⊂ CovB(U)
be a cofinal system. For each U ∈ B, and each U : U =

⋃
Ui in C(U), let coverings

Uij : Ui ∩ Uj =
⋃
Uijk , Uijk ∈ B be given. Let F be a presheaf of sets on B. The

following are equivalent
(1) The presheaf F is a sheaf on B.
(2) For everyU ∈ B and every covering U : U =

⋃
Ui inC(U) the sheaf condition

(∗∗) holds (for the given coverings Uij).

Proof. We have to show that (2) implies (1). Suppose that U ∈ B, and that U : U =⋃
i∈I Ui is an arbitrary covering by elements of B. Because the system C(U) is cofinal we

can find an element V : U =
⋃
j∈J Vj in C(U) which refines U . This means there exists

a map α : J → I such that Vj ⊂ Uα(j).

Note that if s, s′ ∈ F(U) are sections such that s|Ui = s′|Ui , then

s|Vj = (s|Uα(j))|Vj = (s′|Uα(j))|Vj = s′|Vj
for all j. Hence by the uniqueness in (∗∗) for the covering V we conclude that s = s′.
Thus we have proved the uniqueness part of (∗∗) for our arbitrary covering U .

Suppose furthermore that Ui ∩ Ui′ =
⋃
k∈Iii′

Uii′k are arbitrary coverings by Uii′k ∈ B.
Let us try to prove the existence part of (∗∗) for the system (U ,Uij). Thus let si ∈ F(Ui)
and suppose we have

si|Uii′k = si′ |Uii′k
for all i, i′, k. Set tj = sα(j)|Vj , where V and α are as above.

There is one small kink in the argument here. Namely, let Vjj′ : Vj ∩ Vj′ =
⋃
l∈Jjj′ Vjj′l

be the covering given to us by the statement of the lemma. It is not a priori clear that

tj |Vjj′l = tj′ |Vjj′l

for all j, j′, l. To see this, note that we do have

tj |W = tj′ |W for all W ∈ B,W ⊂ Vjj′l ∩ Uα(j)α(j′)k

for all k ∈ Iα(j)α(j′), by our assumption on the family of elements si. And since Vj∩Vj′ ⊂
Uα(j)∩Uα(j′) we see that tj |Vjj′l and tj′ |Vjj′l agree on the members of a covering ofVjj′l by
elements of B. Hence by the uniqueness part proved above we finally deduce the desired
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equality of tj |Vjj′l and tj′ |Vjj′l . Then we get the existence of an element t ∈ F(U) by
property (∗∗) for (V,Vjj′).

Again there is a small snag. We know that t restricts to tj on Vj but we do not yet know
that t restricts to si on Ui. To conclude this note that the sets Ui ∩ Vj , j ∈ J cover Ui.
Hence also the sets Uiα(j)k ∩ Vj , j ∈ J , k ∈ Iiα(j) cover Ui. We leave it to the reader to
see that t and si restrict to the same section ofF on anyW ∈ B which is contained in one
of the open sets Uiα(j)k ∩ Vj , j ∈ J , k ∈ Iiα(j). Hence by the uniqueness part seen above
we win. �

Lemma 30.4. Let X be a topological space. Let B be a basis for the topology on
X . Assume that for every triple U,U ′, U ′′ ∈ B with U ′ ⊂ U and U ′′ ⊂ U we have
U ′ ∩ U ′′ ∈ B. For each U ∈ B, let C(U) ⊂ CovB(U) be a cofinal system. Let F be a
presheaf of sets on B. The following are equivalent

(1) The presheaf F is a sheaf on B.
(2) For every U ∈ B and every covering U : U =

⋃
Ui in C(U) and for every

family of sections si ∈ F(Ui) such that si|Ui∩Uj = sj |Ui∩Uj there exists a
unique section s ∈ F(U) which restricts to si on Ui.

Proof. This is a reformulation of Lemma 30.3 above in the special case where the
coverings Uij each consist of a single element. But also this case is much easier and is an
easy exercise to do directly. �

Lemma 30.5. Let X be a topological space. Let B be a basis for the topology on X .
Let U ∈ B. Let F be a sheaf of sets on B. The map

F(U)→
∏

x∈U
Fx

identifies F(U) with the elements (sx)x∈U with the property
(*) For any x ∈ U there exists a V ∈ B, with x ∈ V ⊂ U and a section σ ∈ F(V )

such that for all y ∈ V we have sy = (V, σ) in Fy .

Proof. First note that the map F(U)→
∏
x∈U Fx is injective by the uniqueness in

the sheaf condition of Definition 30.2. Let (sx) be any element on the right hand side
which satisfies (∗). Clearly this means we can find a covering U =

⋃
Ui, Ui ∈ B such

that (sx)x∈Ui comes from certain σi ∈ F(Ui). For every y ∈ Ui ∩ Uj the sections σi
and σj agree in the stalk Fy . Hence there exists an element Vijy ∈ B, y ∈ Vijy such that
σi|Vijy = σj |Vijy . Thus the sheaf condition (∗∗) of Definition 30.2 applies to the system
of σi and we obtain a section s ∈ F(U) with the desired property. �

Let X be a topological space. Let B be a basis for the topology on X . There is a natural
restriction functor from the category of sheaves of sets on X to the category of sheaves
of sets on B. It turns out that this is an equivalence of categories. In down to earth terms
this means the following.

Lemma 30.6. Let X be a topological space. Let B be a basis for the topology on X .
Let F be a sheaf of sets on B. There exists a unique sheaf of sets Fext on X such that
Fext(U) = F(U) for all U ∈ B compatibly with the restriction mappings.

Proof. We first construct a presheafFext with the desired property. Namely, for an
arbitrary open U ⊂ X we define Fext(U) as the set of elements (sx)x∈U such that (∗)
of Lemma 30.5 holds. It is clear that there are restriction mappings that turn Fext into
a presheaf of sets. Also, by Lemma 30.5 we see that F(U) = Fext(U) whenever U is an
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element of the basis B. To see Fext is a sheaf one may argue as in the proof of Lemma
17.1. �

Note that we have
Fx = Fextx

in the situation of the lemma. This is so because the collection of elements ofB containing
x forms a fundamental system of open neighbourhoods of x.

Lemma 30.7. Let X be a topological space. Let B be a basis for the topology on X .
Denote Sh(B) the category of sheaves on B. There is an equivalence of categories

Sh(X) −→ Sh(B)

which assigns to a sheaf on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 30.6 above. Checking the obvious
functorialities is left to the reader. �

This ends the discussion of sheaves of sets on a basis B. Let (C, F ) be a type of algebraic
structure. At the end of this section we would like to point out that the constructions
above work for sheaves with values in C. Let us briefly define the relevant notions.

Definition 30.8. Let X be a topological space. Let B be a basis for the topology on
X . Let (C, F ) be a type of algebraic structure.

(1) A presheaf F with values in C on B is a rule which assigns to each U ∈ B an
object F(U) of C and to each inclusion V ⊂ U of elements of B a morphism
ρUV : F(U) → F(V ) in C such that ρUU = idF(U) for all U ∈ B and whenever
W ⊂ V ⊂ U in B we have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves with values in C on B is a rule which
assigns to each element U ∈ B a morphism of algebraic structures ϕ : F(U) →
G(U) compatible with restriction maps.

(3) Given a presheaf F with values in C on B we say that U 7→ F (F(U)) is the
underlying presheaf of sets.

(4) A sheaf F with values in C on B is a presheaf with values in C on B whose un-
derlying presheaf of sets is a sheaf.

At this point we can define the stalk at x ∈ X of a presheaf with values in C on B as the
directed colimit

Fx = colimU∈B,x∈U F(U).
It exists as an object of C because of our assumptions on C. Also, we see that the underlying
set of Fx is the stalk of the underlying presheaf of sets on B.

Note that Lemmas 30.3, 30.4 and 30.5 refer to the sheaf property which we have defined
in terms of the associated presheaf of sets. Hence they generalize without change to the
notion of a presheaf with values in C. The analogue of Lemma 30.6 need some care. Here
it is.

Lemma 30.9. LetX be a topological space. Let (C, F ) be a type of algebraic structure.
LetB be a basis for the topology onX . LetF be a sheaf with values in C onB. There exists
a unique sheaf Fext with values in C on X such that Fext(U) = F(U) for all U ∈ B
compatibly with the restriction mappings.
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Proof. By the conditions imposed on the pair (C, F ) it suffices to come up with a
presheaf Fext which does the correct thing on the level of underlying presheaves of sets.
Thus our first task is to construct a suitable objectFext(U) for all openU ⊂ X . We could
do this by imitating Lemma 18.1 in the setting of presheaves on B. However, a slightly
different method (but basically equivalent) is the following: Define it as the directed col-
imit

Fext(U) := colimU FIB(U)
over all coverings U : U =

⋃
i∈I Ui by Ui ∈ B of the fibre product

FIB(U) //

��

∏
x∈U Fx

��∏
i∈I F(Ui) // ∏

i∈I
∏
x∈Ui Fx

By the usual arguments, see Lemma 15.4 and Example 15.5 it suffices to show that this
construction on underlying sets is the same as the definition using (∗∗) above. Details left
to the reader. �

Note that we have
Fx = Fextx

as objects in C in the situation of the lemma. This is so because the collection of elements
of B containing x forms a fundamental system of open neighbourhoods of x.

Lemma 30.10. Let X be a topological space. Let B be a basis for the topology on X .
Let (C, F ) be a type of algebraic structure. Denote Sh(B, C) the category of sheaves with
values in C on B. There is an equivalence of categories

Sh(X, C) −→ Sh(B, C)
which assigns to a sheaf on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 30.9 above. Checking the obvious
functorialities is left to the reader. �

Finally we come to the case of (pre)sheaves of modules on a basis. We will use the easy fact
that the category of presheaves of sets on a basis has products and that they are described
by taking products of values on elements of the bases.

Definition 30.11. Let X be a topological space. Let B be a basis for the topology on
X . LetO be a presheaf of rings on B.

(1) A presheaf of O-modules F on B is a presheaf of abelian groups on B together
with a morphism of presheaves of sets O × F → F such that for all U ∈ B the
mapO(U)×F(U)→ F(U) turns the group F(U) into anO(U)-module.

(2) A morphism ϕ : F → G of presheaves of O-modules on B is a morphism of
abelian presheaves onBwhich induces anO(U)-module homomorphismF(U)→
G(U) for every U ∈ B.

(3) Suppose thatO is a sheaf of rings onB. A sheafF ofO-modules onB is a presheaf
ofO-modules on B whose underlying presheaf of abelian groups is a sheaf.

We can define the stalk at x ∈ X of a presheaf ofO-modules on B as the directed colimit
Fx = colimU∈B,x∈U F(U).

It is aOx-module.
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Note that Lemmas 30.3, 30.4 and 30.5 refer to the sheaf property which we have defined
in terms of the associated presheaf of sets. Hence they generalize without change to the
notion of a presheaf ofO-modules. The analogue of Lemma 30.6 is as follows.

Lemma 30.12. Let X be a topological space. Let B be a basis for the topology on X .
LetO be a sheaf of rings on B. Let F be a sheaf ofO-modules on B. LetOext be the sheaf
of rings onX extendingO and letFext be the abelian sheaf onX extendingF , see Lemma
30.9. There exists a canonical map

Oext ×Fext −→ Fext

which agrees with the given map over elements of B and which endows Fext with the
structure of anOext-module.

Proof. It suffices to construct the multiplication map on the level of presheaves of
sets. Perhaps the easiest way to see this is to prove directly that if (fx)x∈U , fx ∈ Ox and
(mx)x∈U , mx ∈ Fx satisfy (∗), then the element (fxmx)x∈U also satisfies (∗). Then we
get the desired result, because in the proof of Lemma 30.6 we construct the extension in
terms of families of elements of stalks satisfying (∗). �

Note that we have
Fx = Fextx

asOx-modules in the situation of the lemma. This is so because the collection of elements
of B containing x forms a fundamental system of open neighbourhoods of x, or simply
because it is true on the underlying sets.

Lemma 30.13. Let X be a topological space. Let B be a basis for the topology on X .
LetO be a sheaf of rings onX . Denote Mod(O|B) the category of sheaves ofO|B-modules
on B. There is an equivalence of categories

Mod(O) −→Mod(O|B)
which assigns to a sheaf ofO-modules on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 30.12 above. Checking the obvious
functorialities is left to the reader. �

Finally, we address the question of the relationship of this with continuous maps. This is
now very easy thanks to the work above. First we do the case where there is a basis on the
target given.

Lemma 30.14. Let f : X → Y be a continuous map of topological spaces. Let (C, F )
be a type of algebraic structures. Let F be a sheaf with values in C on X . Let G be a sheaf
with values in C on Y . Let B be a basis for the topology on Y . Suppose given for every
V ∈ B a morphism

ϕV : G(V ) −→ F(f−1V )
of C compatible with restriction mappings. Then there is a unique f -map (see Definition
21.7 and discussion of f -maps in Section 23) ϕ : G → F recovering ϕV for V ∈ B.

Proof. This is trivial because the collection of maps amounts to a morphism between
the restrictions of G and f∗F to B. By Lemma 30.10 this is the same as giving a morphism
from G to f∗F , which by Lemma 21.8 is the same as an f -map. See also Lemma 23.1 and the
discussion preceding it for how to deal with the case of sheaves of algebraic structures. �

Here is the analogue for ringed spaces.
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Lemma 30.15. Let (f, f ]) : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf ofOX -modules. Let G be a sheaf ofOY -modules. Let B be a basis for the
topology on Y . Suppose given for every V ∈ B aOY (V )-module map

ϕV : G(V ) −→ F(f−1V )

(where F(f−1V ) has a module structure using f ]V : OY (V ) → OX(f−1V )) compatible
with restriction mappings. Then there is a unique f -map (see discussion of f -maps in
Section 26) ϕ : G → F recovering ϕV for V ∈ B.

Proof. Same as the proof of the corresponding lemma for sheaves of algebraic struc-
tures above. �

Lemma 30.16. Let f : X → Y be a continuous map of topological spaces. Let (C, F )
be a type of algebraic structures. Let F be a sheaf with values in C on X . Let G be a sheaf
with values in C on Y . Let BY be a basis for the topology on Y . Let BX be a basis for the
topology on X . Suppose given for every V ∈ BY , and U ∈ BX such that f(U) ⊂ V a
morphism

ϕUV : G(V ) −→ F(U)
of C compatible with restriction mappings. Then there is a unique f -map (see Defini-
tion 21.7 and the discussion of f -maps in Section 23) ϕ : G → F recovering ϕUV as the
composition

G(V ) ϕV−−→ F(f−1(V )) restr.−−→ F(U)
for every pair (U, V ) as above.

Proof. Let us first proves this for sheaves of sets. Fix V ⊂ Y open. Pick s ∈ G(V ).
We are going to construct an element ϕV (s) ∈ F(f−1V ). We can define a value ϕ(s)x
in the stalk Fx for every x ∈ f−1V by picking a U ∈ BX with x ∈ U ⊂ f−1V and
setting ϕ(s)x equal to the equivalence class of (U,ϕUV (s)) in the stalk. Clearly, the fam-
ily (ϕ(s)x)x∈f−1V satisfies condition (∗) because the maps ϕUV for varying U are com-
patible with restrictions in the sheaf F . Thus, by the proof of Lemma 30.6 we see that
(ϕ(s)x)x∈f−1V corresponds to a unique element ϕV (s) of F(f−1V ). Thus we have de-
fined a set map ϕV : G(V )→ F(f−1V ). The compatibility between ϕV and ϕUV follows
from Lemma 30.5.

We leave it to the reader to show that the construction ofϕV is compatible with restriction
mappings as we vary V ∈ BY . Thus we may apply Lemma 30.14 above to “glue” them to
the desired f -map.

Finally, we note that the map of sheaves of sets so constructed satisfies the property that
the map on stalks

Gf(x) −→ Fx
is the colimit of the system of maps ϕUV as V ∈ BY varies over those elements that contain
f(x) and U ∈ BX varies over those elements that contain x. In particular, if G and F
are the underlying sheaves of sets of sheaves of algebraic structures, then we see that the
maps on stalks is a morphism of algebraic structures. Hence we conclude that the associated
map of sheaves of underlying sets f−1G → F satisfies the assumptions of Lemma 23.1. We
conclude that f−1G → F is a morphism of sheaves with values in C. And by adjointness
this means that ϕ is an f -map of sheaves of algebraic structures. �
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Lemma 30.17. Let (f, f ]) : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX -modules. Let G be a sheaf of OY -modules. Let BY be a basis for
the topology on Y . Let BX be a basis for the topology on X . Suppose given for every
V ∈ BY , and U ∈ BX such that f(U) ⊂ V aOY (V )-module map

ϕUV : G(V ) −→ F(U)
compatible with restriction mappings. Here theOY (V )-module structure onF(U) comes
from the OX(U)-module structure via the map f ]V : OY (V ) → OX(f−1V ) → OX(U).
Then there is a unique f -map of sheaves of modules (see Definition 21.7 and the discussion
of f -maps in Section 26) ϕ : G → F recovering ϕUV as the composition

G(V ) ϕV−−→ F(f−1(V )) restr.−−→ F(U)
for every pair (U, V ) as above.

Proof. Similar to the above and omitted. �

31. Open immersions and (pre)sheaves

Let X be a topological space. Let j : U → X be the inclusion of an open subset U into X .
In Section 21 we have defined functors j∗ and j−1 such that j∗ is right adjoint to j−1. It
turns out that for an open immersion there is a left adjoint for j−1, which we will denote
j!. First we point out that j−1 has a particularly simple description in the case of an open
immersion.

Lemma 31.1. Let X be a topological space. Let j : U → X be the inclusion of an
open subset U into X .

(1) Let G be a presheaf of sets on X . The presheaf jpG (see Section 21) is given by
the rule V 7→ G(V ) for V ⊂ U open.

(2) Let G be a sheaf of sets on X . The sheaf j−1G is given by the rule V 7→ G(V )
for V ⊂ U open.

(3) For any point u ∈ U and any sheaf G on X we have a canonical identification
of stalks

j−1Gu = (G|U )u = Gu.
(4) On the category of presheaves of U we have jpj∗ = id.
(5) On the category of sheaves of U we have j−1j∗ = id.

The same description holds for (pre)sheaves of abelian groups, (pre)sheaves of algebraic
structures, and (pre)sheaves of modules.

Proof. The colimit in the definition of jpG(V ) is over collection of allW ⊂ X open
such that V ⊂ W ordered by reverse inclusion. Hence this has a largest element, namely
V . This proves (1). And (2) follows because the assignment V 7→ G(V ) for V ⊂ U
open is clearly a sheaf if G is a sheaf. Assertion (3) follows from (2) since the collection
of open neighbourhoods of u which are contained in U is cofinal in the collection of all
open neighbourhoods of u in X . Parts (4) and (5) follow by computing j−1j∗F(V ) =
j∗F(V ) = F(V ).

The exact same arguments work for (pre)sheaves of abelian groups and (pre)sheaves of
algebraic structures. �

Definition 31.2. LetX be a topological space. Let j : U → X be the inclusion of an
open subset.
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(1) Let G be a presheaf of sets, abelian groups or algebraic structures on X . The
presheaf jpG described in Lemma 31.1 is called the restriction of G to U and
denoted G|U .

(2) Let G be a sheaf of sets on X , abelian groups or algebraic structures on X . The
sheaf j−1G is called the restriction of G to U and denoted G|U .

(3) If (X,O) is a ringed space, then the pair (U,O|U ) is called the open subspace of
(X,O) associated to U .

(4) If G is a presheaf of O-modules then G|U together with the multiplication map
O|U × G|U → G|U (see Lemma 24.6) is called the restriction of G to U .

We leave a definition of the restriction of presheaves of modules to the reader. Ok, so in
this section we will discuss a left adjoint to the restriction functor. Here is the definition
in the case of (pre)sheaves of sets.

Definition 31.3. Let X be a topological space. Let j : U → X be the inclusion of
an open subset.

(1) Let F be a presheaf of sets on U . We define the extension of F by the empty set
jp!F to be the presheaf of sets on X defined by the rule

jp!F(V ) =
{
∅ if V 6⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(2) LetF be a sheaf of sets on U . We define the extension ofF by the empty set j!F

to be the sheafification of the presheaf jp!F .

Lemma 31.4. Let X be a topological space. Let j : U → X be the inclusion of an
open subset.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma 31.1).
(2) The functor j! is a left adjoint to restriction, in a formula

MorSh(X)(j!F ,G) = MorSh(U)(F , j−1G) = MorSh(U)(F ,G|U )
bifunctorially in F and G.

(3) LetF be a sheaf of sets on U . The stalks of the sheaf j!F are described as follows

j!Fx =
{
∅ if x 6∈ U
Fx if x ∈ U

(4) On the category of presheaves of U we have jpjp! = id.
(5) On the category of sheaves of U we have j−1j! = id.

Proof. To map jp!F into G it is enough to map F(V ) → G(V ) whenever V ⊂ U
compatibly with restriction mappings. And by Lemma 31.1 the same description holds for
maps F → G|U . The adjointness of j! and restriction follows from this and the prop-
erties of sheafification. The identification of stalks is obvious from the definition of the
extension by the empty set and the definition of a stalk. Statements (4) and (5) follow by
computing the value of the sheaf on any open of U . �

Note that if F is a sheaf of abelian groups on U , then in general j!F as defined above, is
not a sheaf of abelian groups, for example because some of its stalks are empty (hence not
abelian groups for sure). Thus we need to modify the definition of j! depending on the
type of sheaves we consider. The reason for choosing the empty set in the definition of
the extension by the empty set, is that it is the initial object in the category of sets. Thus
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in the case of abelian groups we use 0 (and more generally for sheaves with values in any
abelian category).

Definition 31.5. Let X be a topological space. Let j : U → X be the inclusion of
an open subset.

(1) LetF be an abelian presheaf on U . We define the extension jp!F ofF by 0 to be
the abelian presheaf on X defined by the rule

jp!F(V ) =
{

0 if V 6⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(2) Let F be an abelian sheaf on U . We define the extension j!F of F by 0 to be the

sheafification of the abelian presheaf jp!F .
(3) Let C be a category having an initial object e. Let F be a presheaf on U with

values in C. We define the extension jp!F of F by e to be the presheaf on X
with values in C defined by the rule

jp!F(V ) =
{

e if V 6⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(4) Let (C, F ) be a type of algebraic structure such that C has an initial object e. LetF

be a sheaf of algebraic structures onU (of the give type). We define the extension
j!F of F by e to be the sheafification of the presheaf jp!F defined above.

(5) Let O be a presheaf of rings on X . Let F be a presheaf of O|U -modules. In
this case we define the extension by 0 to be the presheaf of O-modules which
is equal to jp!F as an abelian presheaf endowed with the multiplication map
O × jp!F → jp!F .

(6) LetO be a sheaf of rings onX . Let F be a sheaf ofO|U -modules. In this case we
define the extension by 0 to be theO-module which is equal to j!F as an abelian
sheaf endowed with the multiplication mapO × j!F → j!F .

It is true that one can define j! in the setting of sheaves of algebraic structures (see below).
However, it depends on the type of algebraic structures involved what the resulting object
is. For example, ifO is a sheaf of rings on U , then j!,ringsO 6= j!,abelianO since the initial
object in the category of rings is Z and the initial object in the category of abelian groups
is 0. In particular the functor j! does not commute with taking underlying sheaves of sets,
in contrast to what we have seen so far! We separate out the case of (pre)sheaves of abelian
groups, (pre)sheaves of algebraic structures and (pre)sheaves of modules as usual.

Lemma 31.6. LetX be a topological space. Let j : U → X be the inclusion of an open
subset. Consider the functors of restriction and extension by 0 for abelian (pre)sheaves.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma 31.1).
(2) The functor j! is a left adjoint to restriction, in a formula

MorAb(X)(j!F ,G) = MorAb(U)(F , j−1G) = MorAb(U)(F ,G|U )
bifunctorially in F and G.

(3) Let F be an abelian sheaf on U . The stalks of the sheaf j!F are described as
follows

j!Fx =
{

0 if x 6∈ U
Fx if x ∈ U

(4) On the category of abelian presheaves of U we have jpjp! = id.
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(5) On the category of abelian sheaves of U we have j−1j! = id.

Proof. Omitted. �

Lemma 31.7. Let X be a topological space. Let j : U → X be the inclusion of an
open subset. Let (C, F ) be a type of algebraic structure such that C has an initial object
e. Consider the functors of restriction and extension by e for (pre)sheaves of algebraic
structure defined above.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma 31.1).
(2) The functor j! is a left adjoint to restriction, in a formula

MorSh(X,C)(j!F ,G) = MorSh(U,C)(F , j−1G) = MorSh(U,C)(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf on U . The stalks of the sheaf j!F are described as follows

j!Fx =
{
e if x 6∈ U
Fx if x ∈ U

(4) On the category of presheaves of algebraic structures on U we have jpjp! = id.
(5) On the category of sheaves of algebraic structures on U we have j−1j! = id.

Proof. Omitted. �

Lemma 31.8. Let (X,O) be a ringed space. Let j : (U,O|U ) → (X,O) be an open
subspace. Consider the functors of restriction and extension by 0 for (pre)sheaves of mod-
ules defined above.

(1) The functor jp! is a left adjoint to restriction, in a formula

MorPMod(O)(jp!F ,G) = MorPMod(O|U )(F ,G|U )

bifunctorially in F and G.
(2) The functor j! is a left adjoint to restriction, in a formula

MorMod(O)(j!F ,G) = MorMod(O|U )(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf ofO-modules on U . The stalks of the sheaf j!F are described as

follows

j!Fx =
{

0 if x 6∈ U
Fx if x ∈ U

(4) On the category of sheaves ofO|U -modules on U we have j−1j! = id.

Proof. Omitted. �

Note that by the lemmas above, both the functors j∗ and j! are fully faithful embeddings
of the category of sheaves on U into the category of sheaves on X . It is only true for the
functor j! that one can easily describe the essential image of this functor.

Lemma 31.9. Let X be a topological space. Let j : U → X be the inclusion of an
open subset. The functor

j! : Sh(U) −→ Sh(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that Gx = ∅
for all x ∈ X \ U .
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Proof. Fully faithfulness follows formally from j−1j! = id. We have seen that any
sheaf in the image of the functor has the property on the stalks mentioned in the lemma.
Conversely, suppose that G has the indicated property. Then it is easy to check that

j!j
−1G → G

is an isomorphism on all stalks and hence an isomorphism. �

Lemma 31.10. Let X be a topological space. Let j : U → X be the inclusion of an
open subset. The functor

j! : Ab(U) −→ Ab(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that Gx = 0
for all x ∈ X \ U .

Proof. Omitted. �

Lemma 31.11. Let X be a topological space. Let j : U → X be the inclusion of an
open subset. Let (C, F ) be a type of algebraic structure such that C has an initial object e.
The functor

j! : Sh(U, C) −→ Sh(X, C)
is fully faithful. Its essential image consists exactly of those sheaves G such that Gx = e
for all x ∈ X \ U .

Proof. Omitted. �

Lemma 31.12. Let (X,O) be a ringed space. Let j : (U,O|U ) → (X,O) be an open
subspace. The functor

j! : Mod(O|U ) −→Mod(O)
is fully faithful. Its essential image consists exactly of those sheaves G such that Gx = 0
for all x ∈ X \ U .

Proof. Omitted. �

Remark 31.13. Let j : U → X be an open immersion of topological spaces as above.
Let x ∈ X , x 6∈ U . Let F be a sheaf of sets on U . Then j!Fx = ∅ by Lemma 31.4. Hence
j! does not transform a final object of Sh(U) into a final object of Sh(X) unless U = X .
According to our conventions in Categories, Section 23 this means that the functor j! is
not left exact as a functor between the categories of sheaves of sets. It will be shown later
that j! on abelian sheaves is exact, see Modules, Lemma 3.4.

32. Closed immersions and (pre)sheaves

Let X be a topological space. Let i : Z → X be the inclusion of a closed subset Z into X .
In Section 21 we have defined functors i∗ and i−1 such that i∗ is right adjoint to i−1.

Lemma 32.1. LetX be a topological space. Let i : Z → X be the inclusion of a closed
subset Z into X . Let F be a sheaf of sets on Z. The stalks of i∗F are described as follows

i∗Fx =
{
{∗} if x 6∈ Z
Fx if x ∈ Z

where {∗} denotes a singleton set. Moreover, i−1i∗ = id on the category of sheaves of
sets on Z. Moreover, the same holds for abelian sheaves on Z , resp. sheaves of algebraic
structures on Z where {∗} has to be replaced by 0, resp. a final object of the category of
algebraic structures.
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Proof. If x 6∈ Z , then there exist arbitrarily small open neighbourhoods U of x
which do not meet Z. Because F is a sheaf we have F(i−1(U)) = {∗} for any such
U , see Remark 7.2. This proves the first case. The second case comes from the fact that
for z ∈ Z any open neighbourhood of z is of the form Z ∩ U for some open U of X .
For the statement that i−1i∗ = id consider the canonical map i−1i∗F → F . This is an
isomorphism on stalks (see above) and hence an isomorphism.
For sheaves of abelian groups, and sheaves of algebraic structures you argue in the same
manner. �

Lemma 32.2. LetX be a topological space. Let i : Z → X be the inclusion of a closed
subset. The functor

i∗ : Sh(Z) −→ Sh(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that Gx = {∗}
for all x ∈ X \ Z.

Proof. Fully faithfulness follows formally from i−1i∗ = id. We have seen that any
sheaf in the image of the functor has the property on the stalks mentioned in the lemma.
Conversely, suppose that G has the indicated property. Then it is easy to check that

G → i∗i
−1G

is an isomorphism on all stalks and hence an isomorphism. �

Lemma 32.3. LetX be a topological space. Let i : Z → X be the inclusion of a closed
subset. The functor

i∗ : Ab(Z) −→ Ab(X)
is fully faithful. Its essential image consists exactly of those sheaves G such that Gx = 0
for all x ∈ X \ Z.

Proof. Omitted. �

Lemma 32.4. LetX be a topological space. Let i : Z → X be the inclusion of a closed
subset. Let (C, F ) be a type of algebraic structure with final object 0. The functor

i∗ : Sh(Z, C) −→ Sh(X, C)
is fully faithful. Its essential image consists exactly of those sheaves G such that Gx = 0
for all x ∈ X \ Z.

Proof. Omitted. �

Remark 32.5. Let i : Z → X be a closed immersion of topological spaces as above.
Let x ∈ X , x 6∈ Z. Let F be a sheaf of sets on Z. Then (i∗F)x = {∗} by Lemma 32.1.
Hence if F = ∗ q ∗, where ∗ is the singleton sheaf, then i∗Fx = {∗} 6= i∗(∗)x q i∗(∗)x
because the latter is a two point set. According to our conventions in Categories, Section
23 this means that the functor i∗ is not right exact as a functor between the categories of
sheaves of sets. In particular, it cannot have a right adjoint, see Categories, Lemma 24.6.
On the other hand, we will see later (see Modules, Lemma 6.3) that i∗ on abelian sheaves is
exact, and does have a right adjoint, namely the functor that associates to an abelian sheaf
on X the sheaf of sections supported in Z.

Remark 32.6. We have not discussed the relationship between closed immersions
and ringed spaces. This is because the notion of a closed immersion of ringed spaces is best
discussed in the setting of quasi-coherent sheaves, see Modules, Section 13.
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33. Glueing sheaves

In this section we glue sheaves defined on the members of a covering of X . We first deal
with maps.

Lemma 33.1. Let X be a topological space. Let X =
⋃
Ui be an open covering. Let

F , G be sheaves of sets on X . Given a collection
ϕi : F|Ui −→ G|Ui

of maps of sheaves such that for all i, j ∈ I the maps ϕi, ϕj restrict to the same map
F|Ui∩Uj → G|Ui∩Uj then there exists a unique map of sheaves

ϕ : F −→ G
whose restriction to each Ui agrees with ϕi.

Proof. For each open subset U ⊂ X define
ϕU : F(U)→ G(U), s 7→ ϕU (s)

where ϕU (s) is the unique section verifying
(ϕU (s))|U∩Ui = (ϕi)U∩Ui(s|U∩Ui).

Existence and uniqueness of such a section follows from the sheaf axioms due to the fact
that

((ϕi)U∩Ui(s|U∩Ui))|U∩Ui∩Uj = (ϕi)U∩Ui∩Uj (s|U∩Ui∩Uj )
= (ϕj)U∩Ui∩Uj (s|U∩Ui∩Uj )
= ((ϕj)U∩Uj (s|U∩Uj ))|U∩Ui∩Uj .

This family of maps gives us indeed a map of sheaves: Let V ⊂ U ⊂ X be open subsets
then

(ϕU (s))|V = ϕV (s|V )
since for each i ∈ I the following holds

(ϕU (s))|V ∩Ui = ((ϕU (s))|U∩Ui)|V ∩Ui

= ((ϕi)U∩Ui(s|U∩Ui))|V ∩Ui

= (ϕi)V ∩Ui(s|V ∩Ui)
= ϕV (sV )|V ∩Ui .

Furthermore, its restriction to each Ui agrees with ϕi since given U ⊂ X open subset and
s ∈ F(U ∩ Ui) then

ϕU∩Ui(s) = ϕU∩Ui(s)|U∩Ui

= (ϕi)U∩Ui(s|U∩Ui)
= (ϕi)U∩Ui(s).

�

The previous lemma implies that given two sheaves F , G on the topological space X the
rule

U 7−→ MorSh(U)(F|U ,G|U )
defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the setting of
sheaves of sets, and more usually in the setting of sheaves of modules, see Modules, Section
22.
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LetX be a topological space. LetX =
⋃
i∈I Ui be an open covering. For each i ∈ I let Fi

be a sheaf of sets on Ui. For each pair i, j ∈ I , let
ϕij : Fi|Ui∩Uj −→ Fj |Ui∩Uj

be an isomorphism of sheaves of sets. Assume in addition that for every triple of indices
i, j, k ∈ I the following diagram is commutative

Fi|Ui∩Uj∩Uk ϕik
//

ϕij
''

Fk|Ui∩Uj∩Uk

Fj |Ui∩Uj∩Uk

ϕjk

77

We will call such a collection of data (Fi, ϕij) a glueing data for sheaves of sets with
respect to the covering X =

⋃
Ui.

Lemma 33.2. Let X be a topological space. Let X =
⋃
i∈I Ui be an open covering.

Given any glueing data (Fi, ϕij) for sheaves of sets with respect to the coveringX =
⋃
Ui

there exists a sheaf of sets F on X together with isomorphisms
ϕi : F|Ui → Fi

such that the diagrams
F|Ui∩Uj ϕi

//

id
��

Fi|Ui∩Uj
ϕij

��
F|Ui∩Uj

ϕj // Fj |Ui∩Uj
are commutative.

Proof. First proof. In this proof we give a formula for the set of sections of F over
an open W ⊂ X . Namely, we define

F(W ) = {(si)i∈I | si ∈ Fi(W ∩ Ui), ϕij(si|W∩Ui∩Uj ) = sj |W∩Ui∩Uj}.
Restriction mappings forW ′ ⊂W are defined by the restricting each of the si toW ′∩Ui.
The sheaf condition for F follows immediately from the sheaf condition for each of the
Fi.
We still have to prove that F|Ui maps isomorphically to Fi. Let W ⊂ Ui. In this case
the condition in the definition of F(W ) implies that sj = ϕij(si|W∩Uj ). And the com-
mutativity of the diagrams in the definition of a glueing data assures that we may start
with any section s ∈ Fi(W ) and obtain a compatible collection by setting si = s and
sj = ϕij(si|W∩Uj ).

Second proof (sketch). Let B be the set of opens U ⊂ X such that U ⊂ Ui for some i ∈ I .
Then B is a base for the topology onX . For U ∈ B we pick i ∈ I with U ⊂ Ui and we set
F(U) = Fi(U). Using the isomorphismsϕij we see that this prescription is “independent
of the choice of i”. Using the restriction mappings of Fi we find that F is a sheaf on B.
Finally, use Lemma 30.6 to extend F to a unique sheaf F on X . �

Lemma 33.3. Let X be a topological space. Let X =
⋃
Ui be an open covering. Let

(Fi, ϕij) be a glueing data of sheaves of abelian groups, resp. sheaves of algebraic struc-
tures, resp. sheaves of O-modules for some sheaf of rings O on X . Then the construction
in the proof of Lemma 33.2 above leads to a sheaf of abelian groups, resp. sheaf of algebraic
structures, resp. sheaf ofO-modules.
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Proof. This is true because in the construction the set of sectionsF(W ) over an open
W is given as the equalizer of the maps∏

i∈I Fi(W ∩ Ui)
//
//
∏
i,j∈I Fi(W ∩ Ui ∩ Uj)

And in each of the cases envisioned this equalizer gives an object in the relevant category
whose underlying set is the object considered in the cited lemma. �

Lemma 33.4. Let X be a topological space. Let X =
⋃
i∈I Ui be an open covering.

The functor which associates to a sheaf of sets F the following collection of glueing data
(F|Ui , (F|Ui)|Ui∩Uj → (F|Uj )|Ui∩Uj )

with respect to the covering X =
⋃
Ui defines an equivalence of categories between

Sh(X) and the category of glueing data. A similar statement holds for abelian sheaves,
resp. sheaves of algebraic structures, resp. sheaves ofO-modules.

Proof. The functor is fully faithful by Lemma 33.1 and essentially surjective (via an
explicitly given quasi-inverse functor) by Lemma 33.2. �

This lemma means that if the sheafF was constructed from the glueing data (Fi, ϕij) and
if G is a sheaf on X , then a morphism f : F → G is given by a collection of morphisms of
sheaves

fi : Fi −→ G|Ui
compatible with the glueing mapsϕij . Similarly, to give a morphism of sheaves g : G → F
is the same as giving a collection of morphisms of sheaves

gi : G|Ui −→ Fi
compatible with the glueing maps ϕij .
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CHAPTER 7

Sites and Sheaves

1. Introduction

The notion of a site was introduced by Grothendieck to be able to study sheaves in the
étale topology of schemes. The basic reference for this notion is perhaps [?]. Our notion
of a site differs from that in [?]; what we call a site is called a category endowed with a
pretopology in [?, Exposé II, Définition 1.3]. The reason we do this is that in algebraic
geometry it is often convenient to work with a given class of coverings, for example when
defining when a property of schemes is local in a given topology, see Descent, Section 15.
Our exposition will closely follow [?]. We will not use universes.

2. Presheaves

Let C be a category. A presheaf of sets is a contravariant functorF from C to Sets (see Cat-
egories, Remark 2.11). So for every object U of C we have a setF(U). The elements of this
set are called the sections of F over U . For every morphism f : V → U the map F(f) :
F(U) → F(V ) is called the restriction map and is often denoted f∗ : F(U) → F(V ).
Another way of expressing this is to say that f∗(s) is the pullback of s via f . Functoriality
means that g∗f∗(s) = (f ◦ g)∗(s). Sometimes we use the notation s|V := f∗(s). This
notation is consistent with the notion of restriction of functions from topology because if
W → V → U are morphisms in C and s is a section of F over U then s|W = (s|V )|W by
the functorial nature of F . Of course we have to be careful since it may very well happen
that there is more than one morphism V → U and it is certainly not going to be the case
that the corresponding pullback maps are equal.

Definition 2.1. A presheaf of sets on C is a contravariant functor from C to Sets.
Morphisms of presheaves are transformations of functors. The category of presheaves of
sets is denoted PSh(C).
Note that for any object U of C the functor of points hU , see Categories, Example 3.4
is a presheaf. These are called the representable presheaves. These presheaves have the
pleasing property that for any presheaf F we have
(2.1.1) MorPSh(C)(hU ,F) = F(U).
This is the Yoneda lemma (Categories, Lemma 3.5).
Similarly, we can define the notion of a presheaf of abelian groups, rings, etc. More gen-
erally we may define a presheaf with values in a category.

Definition 2.2. Let C , A be categories. A presheaf F on C with values in A is a
contravariant functor from C toA, i.e.,F : Copp → A. A morphism of presheavesF → G
on C with values inA is a transformation of functors from F to G.
These form the objects and morphisms of the category of presheaves on C with values in
A.

313
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Remark 2.3. As already pointed out we may consider the category of presheaves with
values in any of the “big” categories listed in Categories, Remark 2.2. These will be “big”
categories as well and they will be listed in the above mentioned remark as we go along.

3. Injective and surjective maps of presheaves

Definition 3.1. Let C be a category, and let ϕ : F → G be a map of presheaves of
sets.

(1) We say that ϕ is injective if for every objectU of C the map ϕU : F(U)→ G(U)
is injective.

(2) We say thatϕ is surjective if for every objectU of C the mapϕU : F(U)→ G(U)
is surjective.

Lemma 3.2. The injective (resp. surjective) maps defined above are exactly the monomor-
phisms (resp. epimorphisms) of PSh(C). A map is an isomorphism if and only if it is both
injective and surjective.

Proof. We shall show that ϕ : F → G is injective if and only if it is a monomor-
phism of PSh(C). Indeed, the “only if” direction is straightforward, so let us show the “if”
direction. Assume that ϕ is a monomorphism. Let U ∈ Ob(C); we need to show that ϕU
is injective. So let a, b ∈ F(U) be such that ϕU (a) = ϕU (b); we need to check that a = b.
Under the isomorphism (2.1.1), the elements a and b of F(U) correspond to two natural
transformations a′, b′ ∈ MorPSh(C)(hU ,F). Similarly, under the analogous isomorphism
MorPSh(C)(hU ,G) = G(U), the two equal elements ϕU (a) and ϕU (b) of G(U) correspond
to the two natural transformations ϕ ◦ a′, ϕ ◦ b′ ∈ MorPSh(C)(hU ,G), which therefore
must also be equal. So ϕ ◦ a′ = ϕ ◦ b′, and thus a′ = b′ (since ϕ is monic), whence a = b.
This finishes (1).

We shall show that ϕ : F → G is surjective if and only if it is an epimorphism of PSh(C).
Indeed, the “only if” direction is straightforward, so let us show the “if” direction. Assume
that ϕ is an epimorphism.

For any two morphisms f : A → B and g : A → C in the category Sets, we let inlf,g
and inrf,g denote the two canonical maps from B and C to B

∐
A C. (Here, the pushout

is evaluated in Sets.)

Now, we define a presheaf H of sets on C by setting H(U) = G(U)
∐

F(U) G(U) (where
the pushout is evaluated in Sets and induced by the map ϕU : F(U) → G(U)) for every
U ∈ Ob(C); its action on morphisms is defined in the obvious way (by the functoriality
of pushout). Then, there are two natural transformations i1 : G → H and i2 : G → H
whose components at an object U ∈ Ob(C) are given by the maps inlϕU ,ϕU and inrϕU ,ϕU ,
respectively. The definition of a pushout shows that i1 ◦ϕ = i2 ◦ϕ, whence i1 = i2 (since
ϕ is an epimorphism). Thus, for every U ∈ Ob(C), we have inlϕU ,ϕU = inrϕU ,ϕU . Thus,
ϕU must be surjective (since a simple combinatorial argument shows that if f : A→ B is
a morphism in Sets, then inlf,f = inrf,f if and only if f is surjective). In other words, ϕ
is surjective, and (2) is proven.

We shall show that ϕ : F → G is both injective and surjective if and only if it is an
isomorphism of PSh(C). This time, the “if” direction is straightforward. To prove the
“only if” direction, it suffices to observe that if ϕ is both injective and surjective, then ϕU
is an invertible map for every U ∈ Ob(C), and the inverses of these maps for all U can be
combined to a natural transformation G → F which is an inverse to ϕ. �
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Definition 3.3. We say F is a subpresheaf of G if for every object U ∈ Ob(C) the
set F(U) is a subset of G(U), compatibly with the restriction mappings.

In other words, the inclusion maps F(U) → G(U) glue together to give an (injective)
morphism of presheaves F → G.

Lemma 3.4. Let C be a category. Suppose thatϕ : F → G is a morphism of presheaves
of sets on C. There exists a unique subpresheaf G′ ⊂ G such that ϕ factors asF → G′ → G
and such that the first map is surjective.

Proof. To prove existence, just set G′(U) = ϕU (F(U)) for every U ∈ Ob(C) (and
inherit the action on morphisms from G), and prove that this defines a subpresheaf of G
and that ϕ factors as F → G′ → G with the first map being surjective. Uniqueness is
straightforward. �

Definition 3.5. Notation as in Lemma 3.4. We say that G′ is the image of ϕ.

4. Limits and colimits of presheaves

Let C be a category. Limits and colimits exist in the category PSh(C). In addition, for any
U ∈ Ob(C) the functor

PSh(C) −→ Sets, F 7−→ F(U)
commutes with limits and colimits. Perhaps the easiest way to prove these statements is
the following. Given a diagram F : I → PSh(C) define presheaves

Flim : U 7−→ limi∈I Fi(U) and Fcolim : U 7−→ colimi∈I Fi(U)
There are clearly projection maps Flim → Fi and canonical maps Fi → Fcolim. These
maps satisfy the requirements of the maps of a limit (resp. colimit) of Categories, Defi-
nition 14.1 (resp. Categories, Definition 14.2). Indeed, they clearly form a cone, resp. a
cocone, overF . Furthermore, if (G, qi : G → Fi) is another system (as in the definition of
a limit), then we get for every U a system of maps G(U)→ Fi(U) with suitable functori-
ality requirements. And thus a unique map G(U)→ Flim(U). It is easy to verify these are
compatible as we vary U and arise from the desired map G → Flim. A similar argument
works in the case of the colimit.

5. Functoriality of categories of presheaves

Let u : C → D be a functor between categories. In this case we denote
up : PSh(D) −→ PSh(C)

the functor that associates to G onD the presheaf upG = G ◦u. Note that by the previous
section this functor commutes with all limits.
For V ∈ Ob(D) let IuV denote the category with

(5.0.1) Ob(IuV ) = {(U, φ) | U ∈ Ob(C), φ : V → u(U)}
MorIu

V
((U, φ), (U ′, φ′)) = {f : U → U ′ in C | u(f) ◦ φ = φ′}

We sometimes drop the subscript u from the notation and we simply write IV . We will
use these categories to define a left adjoint to the functor up. Before we do so we prove a
few technical lemmas.

Lemma 5.1. Let u : C → D be a functor between categories. Suppose that C has fibre
products and equalizers, and that u commutes with them. Then the categories (IV )opp
satisfy the hypotheses of Categories, Lemma 19.8.
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Proof. There are two conditions to check.

First, suppose we are given three objects φ : V → u(U), φ′ : V → u(U ′), and φ′′ :
V → u(U ′′) and morphisms a : U ′ → U , b : U ′′ → U such that u(a) ◦ φ′ = φ and
u(b) ◦ φ′′ = φ. We have to show there exists another object φ′′′ : V → u(U ′′′) and
morphisms c : U ′′′ → U ′ and d : U ′′′ → U ′′ such that u(c) ◦ φ′′′ = φ′, u(d) ◦ φ′′′ = φ′′

and a ◦ c = b ◦ d. We take U ′′′ = U ′×U U ′′ with c and d the projection morphisms. This
works as u commutes with fibre products; we omit the verification.

Second, suppose we are given two objects φ : V → u(U) and φ′ : V → u(U ′) and
morphisms a, b : (U, φ) → (U ′, φ′). We have to find a morphism c : (U ′′, φ′′) → (U, φ)
which equalizes a and b. Let c : U ′′ → U be the equalizer of a and b in the category C. As
u commutes with equalizers and since u(a) ◦ φ = u(b) ◦ φ = φ′ we obtain a morphism
φ′′ : V → u(U ′′). �

Lemma 5.2. Let u : C → D be a functor between categories. Assume
(1) the category C has a final object X and u(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then the index categories (IuV )opp are filtered (see Categories, Definition 19.1).

Proof. The assumptions imply that the assumptions of Lemma 5.1 are satisfied (see
the discussion in Categories, Section 18). By Categories, Lemma 19.8 we see that IV is a
(possibly empty) disjoint union of directed categories. Hence it suffices to show that IV is
connected.

First, we show that IV is nonempty. Namely, let X be the final object of C , which exists
by assumption. Let V → u(X) be the morphism coming from the fact that u(X) is final
in D by assumption. This gives an object of IV .

Second, we show that IV is connected. Let φ1 : V → u(U1) and φ2 : V → u(U2) be in
Ob(IV ). By assumption U1 ×U2 exists and u(U1 ×U2) = u(U1)× u(U2). Consider the
morphism φ : V → u(U1 × U2) corresponding to (φ1, φ2) by the universal property of
products. Clearly the object φ : V → u(U1 × U2) maps to both φ1 : V → u(U1) and
φ2 : V → u(U2). �

Given g : V ′ → V in D we get a functor g : IV → IV ′ by setting g(U, φ) = (U, φ ◦ g)
on objects. Given a presheaf F on C we obtain a functor

FV : IoppV −→ Sets, (U, φ) 7−→ F(U).
In other words, FV is a presheaf of sets on IV . Note that we have FV ′ ◦ g = FV . We
define

upF(V ) = colimIopp
V
FV

As a colimit we obtain for each (U, φ) ∈ Ob(IV ) a canonical map F(U) c(φ)−−→ upF(V ).
For g : V ′ → V as above there is a canonical restriction map g∗ : upF(V ) → upF(V ′)
compatible with FV ′ ◦ g = FV by Categories, Lemma 14.8. It is the unique map so that
for all (U, φ) ∈ Ob(IV ) the diagram

F(U)
c(φ) //

id
��

upF(V )

g∗

��
F(U)

c(φ◦g)// upF(V ′)
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commutes. The uniqueness of these maps implies that we obtain a presheaf. This presheaf
will be denoted upF .

Lemma 5.3. There is a canonical map F(U) → upF(u(U)), which is compatible
with restriction maps (on F and on upF ).

Proof. This is just the map c(idu(U)) introduced above. �

Note that any map of presheavesF → F ′ gives rise to compatible systems of maps between
functors FV → F ′

V , and hence to a map of presheaves upF → upF ′. In other words, we
have defined a functor

up : PSh(C) −→ PSh(D)

Lemma 5.4. The functor up is a left adjoint to the functor up. In other words the
formula

MorPSh(C)(F , upG) = MorPSh(D)(upF ,G)
holds bifunctorially in F and G.

Proof. Let G be a presheaf onD and let F be a presheaf on C. We will show that the
displayed formula holds by constructing maps either way. We will leave it to the reader
to verify they are each others inverse.
Given a map α : upF → G we get upα : upupF → upG. Lemma 5.3 says that there is a
map F → upupF . The composition of the two gives the desired map. (The good thing
about this construction is that it is clearly functorial in everything in sight.)
Conversely, given a map β : F → upG we get a map upβ : upF → upu

pG. We claim that
the functor upGY on IY has a canonical map to the constant functor with value G(Y ).
Namely, for every object (X,φ) of IY , the value of upGY on this object is G(u(X)) which
maps to G(Y ) by G(φ) = φ∗. This is a transformation of functors because G is a functor
itself. This leads to a map upupG(Y ) → G(Y ). Another trivial verification shows that
this is functorial in Y leading to a map of presheaves upupG → G. The composition
upF → upu

pG → G is the desired map. �

Remark 5.5. Suppose that A is a category such that any diagram IY → A has a
colimit in A. In this case it is clear that there are functors up and up, defined in exactly
the same way as above, on the categories of presheaves with values in A. Moreover, the
adjointness of the pair up and up continues to hold in this setting.

Lemma 5.6. Let u : C → D be a functor between categories. For any object U of C
we have uphU = hu(U).

Proof. By adjointness of up and up we have
MorPSh(D)(uphU ,G) = MorPSh(C)(hU , upG) = upG(U) = G(u(U))

and hence by Yoneda’s lemma we see that uphU = hu(U) as presheaves. �

6. Sites

Our notion of a site uses the following type of structures.

Definition 6.1. Let C be a category, see Conventions, Section 3. A family of mor-
phisms with fixed target in C is given by an object U ∈ Ob(C), a set I and for each i ∈ I
a morphism Ui → U of C with target U . We use the notation {Ui → U}i∈I to indicate
this.
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It can happen that the set I is empty! This notation is meant to suggest an open covering
as in topology.

Definition 6.2. A site1 is given by a category C and a set Cov(C) of families of mor-
phisms with fixed target {Ui → U}i∈I , called coverings of C , satisfying the following
axioms

(1) If V → U is an isomorphism then {V → U} ∈ Cov(C).
(2) If {Ui → U}i∈I ∈ Cov(C) and for each i we have {Vij → Ui}j∈Ji ∈ Cov(C),

then {Vij → U}i∈I,j∈Ji ∈ Cov(C).
(3) If {Ui → U}i∈I ∈ Cov(C) and V → U is a morphism of C then Ui ×U V exists

for all i and {Ui ×U V → V }i∈I ∈ Cov(C).

Clarifications. In axiom (1) we require there should be a covering {Ui → U}i∈I of C
such that I = {i} is a singleton set and such that the morphism Ui → U is equal to the
morphism V → U given in (1). In the following we often denote {V → U} a family of
morphisms with fixed target whose index set is a singleton. In axiom (3) we require the
existence of the covering for some choice of the fibre products Ui ×U V for i ∈ I .

Remark 6.3. (On set theoretic issues – skip on a first reading.) The main reason for
introducing sites is to study the category of sheaves on a site, because it is the generalization
of the category of sheaves on a topological space that has been so important in algebraic
geometry. In order to avoid thinking about things like “classes of classes” and so on, we
will not allow sites to be “big” categories, in contrast to what we do for categories and
2-categories.

Suppose that C is a category and that Cov(C) is a proper class of coverings satisfying (1),
(2) and (3) above. We will not allow this as a site either, mainly because we are going to
take limits over coverings. However, there are several natural ways to replace Cov(C) by
a set of coverings or a slightly different structure that give rise to the same category of
sheaves. For example:

(1) In Sets, Section 11 we show how to pick a suitable set of coverings that gives the
same category of sheaves.

(2) Another thing we can do is to take the associated topology (see Definition 48.2).
The resulting topology on C has the same category of sheaves. Two topologies
have the same categories of sheaves if and only if they are equal, see Theorem
50.2. A topology on a category is given by a choice of sieves on objects. The
collection of all possible sieves and even all possible topologies on C is a set.

(3) We could also slightly modify the notion of a site, see Remark 48.4 below, and
end up with a canonical set of coverings.

Each of these solutions has some minor drawback. For the first, one has to check that
constructions later on do not depend on the choice of the set of coverings. For the second,
one has to learn about topologies and redo many of the arguments for sites. For the third,
see the last sentence of Remark 48.4.

Our approach will be to work with sites as in Definition 6.2 above. Given a category C with
a proper class of coverings as above, we will replace this by a set of coverings producing a
site using Sets, Lemma 11.1. It is shown in Lemma 8.8 below that the resulting category of
sheaves (the topos) is independent of this choice. We leave it to the reader to use one of
the other two strategies to deal with these issues if he/she so desires.

1This notation differs from that of [?], as explained in the introduction.
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Example 6.4. Let X be a topological space. Let XZar be the category whose objects
consist of all the open sets U in X and whose morphisms are just the inclusion maps.
That is, there is at most one morphism between any two objects in XZar. Now define
{Ui → U}i∈I ∈ Cov(XZar) if and only if

⋃
Ui = U . Conditions (1) and (2) above are

clear, and (3) is also clear once we realize that in XZar we have U × V = U ∩ V . Note
that in particular the empty set has to be an element of XZar since otherwise this would
not work in general. Furthermore, it is equally important, as we will see later, to allow the
empty covering of the empty set as a covering! We turn XZar into a site by choosing a
suitable set of coverings Cov(XZar)κ,α as in Sets, Lemma 11.1. Presheaves and sheaves (as
defined below) on the site XZar agree exactly with the usual notion of a presheaves and
sheaves on a topological space, as defined in Sheaves, Section 1.

Example 6.5. LetG be a group. Consider the categoryG-Sets whose objects are setsX
with a leftG-action, withG-equivariant maps as the morphisms. An important example is
GG which is the G-set whose underlying set is G and action given by left multiplication.
This category has fiber products, see Categories, Section 7. We declare {ϕi : Ui → U}i∈I
to be a covering if

⋃
i∈I ϕi(Ui) = U . This gives a class of coverings on G-Sets which

is easily seen to satisfy conditions (1), (2), and (3) of Definition 6.2. The result is not a
site since both the collection of objects of the underlying category and the collection of
coverings form a proper class. We first replace by G-Sets by a full subcategory G-Setsα
as in Sets, Lemma 10.1. After this the site (G-Setsα,Covκ,α′(G-Setsα)) gotten by suitably
restricting the collection of coverings as in Sets, Lemma 11.1 will be denoted TG.

As a special case, if the group G is countable, then we can let TG be the category of count-
ableG-sets and coverings those jointly surjective families of morphisms {ϕi : Ui → U}i∈I
such that I is countable.

Example 6.6. Let C be a category. There is a canonical way to turn this into a site
where {f : V → U | f is an isomorphism} are the coverings of U . Sheaves on this site
are the presheaves on C. This corresponding topology is called the chaotic or indiscrete
topology.

7. Sheaves

Let C be a site. Before we introduce the notion of a sheaf with values in a category we
explain what it means for a presheaf of sets to be a sheaf. Let F be a presheaf of sets on
C and let {Ui → U}i∈I be an element of Cov(C). By assumption all the fibre products
Ui ×U Uj exist in C. There are two natural maps

∏
i∈I F(Ui)

pr∗
0 //

pr∗
1

//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)

which we will denote pr∗
i , i = 0, 1 as indicated in the displayed equation. Namely, an

element of the left hand side corresponds to a family (si)i∈I , where each si is a section of
F over Ui. For each pair (i0, i1) ∈ I × I we have the projection morphisms

pr(i0,i1)
i0

: Ui0 ×U Ui1 −→ Ui0 and pr(i0,i1)
i1

: Ui0 ×U Ui1 −→ Ui1 .

Thus we may pull back either the section si0 via the first of these maps or the section si1
via the second. Explicitly the maps we referred to above are

pr∗
0 : (si)i∈I 7−→

(
pr(i0,i1),∗
i0

(si0)
)

(i0,i1)∈I×I
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and
pr∗

1 : (si)i∈I 7−→
(

pr(i0,i1),∗
i1

(si1)
)

(i0,i1)∈I×I
.

Finally consider the natural map

F(U) −→
∏

i∈I
F(Ui), s 7−→ (s|Ui)i∈I

where we have used the notation s|Ui to indicate the pullback of s via the map Ui → U .
It is clear from the functorial nature of F and the commutativity of the fibre product
diagrams that pr∗

0((s|Ui)i∈I) = pr∗
1((s|Ui)i∈I).

Definition 7.1. Let C be a site, and let F be a presheaf of sets on C. We say F is a
sheaf if for every covering {Ui → U}i∈I ∈ Cov(C) the diagram

(7.1.1) F(U) // ∏
i∈I F(Ui)

pr∗
0 //

pr∗
1

//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)

represents the first arrow as the equalizer of pr∗
0 and pr∗

1.

Loosely speaking this means that given sections si ∈ F(Ui) such that

si|Ui×UUj = sj |Ui×UUj
in F(Ui ×U Uj) for all pairs (i, j) ∈ I × I then there exists a unique s ∈ F(U) such that
si = s|Ui .

Remark 7.2. If the covering {Ui → U}i∈I is the empty family (this means that
I = ∅), then the sheaf condition signifies that F(U) = {∗} is a singleton set. This is
because in (7.1.1) the second and third sets are empty products in the category of sets,
which are final objects in the category of sets, hence singletons.

Example 7.3. Let X be a topological space. Let XZar be the site constructed in Ex-
ample 6.4. The notion of a sheaf on XZar coincides with the notion of a sheaf on X
introduced in Sheaves, Definition 7.1.

Example 7.4. Let X be a topological space. Let us consider the site X ′
Zar which is

the same as the site XZar of Example 6.4 except that we disallow the empty covering of
the empty set. In other words, we do allow the covering {∅ → ∅} but we do not allow the
covering whose index set is empty. It is easy to show that this still defines a site. However,
we claim that the sheaves on X ′

Zar are different from the sheaves on XZar. For example,
as an extreme case consider the situation whereX = {p} is a singleton. Then the objects of
X ′
Zar are ∅, X and every covering of ∅ can be refined by {∅ → ∅} and every covering ofX

by {X → X}. Clearly, a sheaf on this is given by any choice of a set F(∅) and any choice
of a set F(X), together with any restriction map F(X)→ F(∅). Thus sheaves on X ′

Zar

are the same as usual sheaves on the two point space {η, p}with open sets {∅, {η}, {p, η}}.
In general sheaves onX ′

Zar are the same as sheaves on the spaceXq{η}, with opens given
by the empty set and any set of the form U ∪ {η} for U ⊂ X open.

Definition 7.5. The category Sh(C) of sheaves of sets is the full subcategory of the
category PSh(C) whose objects are the sheaves of sets.

Let A be a category. If products indexed by I , and I × I exist in A for any I that occurs
as an index set for covering families then Definition 7.1 above makes sense, and defines a
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notion of a sheaf on C with values inA. Note that the diagram inA

F(U) // ∏
i∈I F(Ui)

pr∗
0 //

pr∗
1

//
∏

(i0,i1)∈I×I F(Ui0 ×U Ui1)

is an equalizer diagram if and only if for every object X ofA the diagram of sets

MorA(X,F(U)) // ∏MorA(X,F(Ui))
pr∗

0 //

pr∗
1

//
∏

MorA(X,F(Ui0 ×U Ui1))

is an equalizer diagram.

Suppose A is arbitrary. Let F be a presheaf with values in A. Choose any object X ∈
Ob(A). Then we get a presheaf of sets FX defined by the rule

FX(U) = MorA(X,F(U)).

From the above it follows that a good definition is obtained by requiring all the presheaves
FX to be sheaves of sets.

Definition 7.6. Let C be a site, letA be a category and let F be a presheaf on C with
values in A. We say that F is a sheaf if for all objects X of A the presheaf of sets FX
(defined above) is a sheaf.

8. Families of morphisms with fixed target

This section is meant to introduce some notions regarding families of morphisms with the
same target.

Definition 8.1. Let C be a category. LetU = {Ui → U}i∈I be a family of morphisms
of C with fixed target. Let V = {Vj → V }j∈J be another.

(1) A morphism of families of maps with fixed target of C from U to V , or simply a
morphism from U to V is given by a morphism U → V , a map of sets α : I → J
and for each i ∈ I a morphism Ui → Vα(i) such that the diagram

Ui //

��

Vα(i)

��
U // V

is commutative.
(2) In the special case that U = V and U → V is the identity we call U a refinement

of the family V .

A trivial but important remark is that if V = {Vj → V }j∈J is the empty family of maps,
i.e., if J = ∅, then no family U = {Ui → V }i∈I with I 6= ∅ can refine V !

Definition 8.2. Let C be a category. Let U = {ϕi : Ui → U}i∈I , and V = {ψj :
Vj → U}j∈J be two families of morphisms with fixed target.

(1) We say U and V are combinatorially equivalent if there exist maps α : I → J
and β : J → I such that ϕi = ψα(i) and ψj = ϕβ(j).
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(2) We say U and V are tautologically equivalent if there exist maps α : I → J and
β : J → I and for all i ∈ I and j ∈ J commutative diagrams

Ui

��

// Vα(i)

}}

Vj

��

// Uβ(j)

}}
U U

with isomorphisms as horizontal arrows.

Lemma 8.3. Let C be a category. Let U = {ϕi : Ui → U}i∈I , and V = {ψj : Vj →
U}j∈J be two families of morphisms with the same fixed target.

(1) If U and V are combinatorially equivalent then they are tautologically equiva-
lent.

(2) If U and V are tautologically equivalent then U is a refinement of V and V is a
refinement of U .

(3) The relation “being combinatorially equivalent” is an equivalence relation on all
families of morphisms with fixed target.

(4) The relation “being tautologically equivalent” is an equivalence relation on all
families of morphisms with fixed target.

(5) The relation “U refines V and V refines U” is an equivalence relation on all fam-
ilies of morphisms with fixed target.

Proof. Omitted. �

In the following lemma, given a category C , a presheafF on C , a familyU = {Ui → U}i∈I
such that all fibre products Ui ×U Ui′ exist, we say that the sheaf condition for F with
respect to U holds if the diagram (7.1.1) is an equalizer diagram.

Lemma 8.4. Let C be a category. Let U = {ϕi : Ui → U}i∈I , and V = {ψj : Vj →
U}j∈J be two families of morphisms with the same fixed target. Assume that the fibre
products Ui ×U Ui′ and Vj ×U Vj′ exist. If U and V are tautologically equivalent, then
for any presheaf F on C the sheaf condition for F with respect to U is equivalent to the
sheaf condition for F with respect to V .

Proof. First, note that if ϕ : A → B is an isomorphism in the category C , then
ϕ∗ : F(B)→ F(A) is an isomorphism. Let β : J → I be a map and let χj : Vj → Uβ(j)
be isomorphisms over U which are assumed to exist by hypothesis. Let us show that the
sheaf condition forV implies the sheaf condition forU . Suppose given sections si ∈ F(Ui)
such that

si|Ui×UUi′ = si′ |Ui×UUi′
in F(Ui ×U Ui′) for all pairs (i, i′) ∈ I × I . Then we can define sj = χ∗

jsβ(j). For any
pair (j, j′) ∈ J × J the morphism χj ×idU χj′ : Vj ×U Vj′ → Uβ(j) ×U Uβ(j′) is an
isomorphism as well. Hence by transport of structure we see that

sj |Vj×UVj′ = sj′ |Vj×UVj′

as well. The sheaf condition w.r.t. V implies there exists a unique s such that s|Vj = sj for
all j ∈ J . By the first remark of the proof this implies that s|Ui = si for all i ∈ Im(β) as
well. Suppose that i ∈ I , i 6∈ Im(β). For such an i we have isomorphisms Ui → Vα(i) →
Uβ(α(i)) over U . This gives a morphism Ui → Ui ×U Uβ(α(i)) which is a section of the
projection. Because si and sβ(α(i)) restrict to the same element on the fibre product we



8. FAMILIES OF MORPHISMS WITH FIXED TARGET 323

conclude that sβ(α(i)) pulls back to si via Ui → Uβ(α(i)). Thus we see that also si = s|Ui
as desired. �

Lemma 8.5. Let C be a category. Let V = {Vj → U}j∈J → U = {Ui → U}i∈I be
a morphism of families of maps with fixed target of C given by id : U → U , α : J → I
and fj : Vj → Uα(j). Let F be a presheaf on C. If F(U)→

∏
j∈J F(Vj) is injective then

F(U)→
∏
i∈I F(Ui) is injective.

Proof. Omitted. �

Lemma 8.6. Let C be a category. Let V = {Vj → U}j∈J → U = {Ui → U}i∈I be a
morphism of families of maps with fixed target of C given by id : U → U , α : J → I and
fj : Vj → Uα(j). Let F be a presheaf on C. If

(1) the fibre products Ui ×U Ui′ , Ui ×U Vj , Vj ×U Vj′ exist,
(2) F satisfies the sheaf condition with respect to V , and
(3) for every i ∈ I the map F(Ui)→

∏
j∈J F(Vj ×U Ui) is injective.

Then F satisfies the sheaf condition with respect to U .

Proof. By Lemma 8.5 the map F(U) →
∏
F(Ui) is injective. Suppose given si ∈

F(Ui) such that si|Ui×UUi′ = si′ |Ui×UUi′ for all i, i′ ∈ I . Set sj = f∗
j (sα(j)) ∈ F(Vj).

Since the morphisms fj are morphisms overU we obtain induced morphisms fjj′ : Vj×U
Vj′ → Uα(i)×U Uα(i′) compatible with the fj , fj′ via the projection maps. It follows that

sj |Vj×UVj′ = f∗
jj′(sα(j)|Uα(j)×UUα(j′)) = f∗

jj′(sα(j′)|Uα(j)×UUα(j′)) = sj′ |Vj×UVj′

for all j, j′ ∈ J . Hence, by the sheaf condition for F with respect to V , we get a section
s ∈ F(U) which restricts to sj on each Vj . We are done if we show s restricts to si on
Ui for any i ∈ I . Since F satisfies (3) it suffices to show that s and si restrict to the same
element over Ui ×U Vj for all j ∈ J . To see this we use

s|Ui×UVj = sj |Ui×UVj = (id×fj)∗sα(j)|Ui×UUα(j) = (id×fj)∗si|Ui×UUα(j) = si|Ui×UVj
as desired. �

Lemma 8.7. Let C be a category. Let Covi, i = 1, 2 be two sets of families of mor-
phisms with fixed target which each define the structure of a site on C.

(1) If everyU ∈ Cov1 is tautologically equivalent to someV ∈ Cov2, then Sh(C,Cov2) ⊂
Sh(C,Cov1). If also, every U ∈ Cov2 is tautologically equivalent to some V ∈
Cov1 then the category of sheaves are equal.

(2) Suppose that for each U ∈ Cov1 there exists a V ∈ Cov2 such that V refines U .
In this case Sh(C,Cov2) ⊂ Sh(C,Cov1). If also for every U ∈ Cov2 there exists
a V ∈ Cov1 such that V refines U , then the categories of sheaves are equal.

Proof. Part (1) follows directly from Lemma 8.4 and the definitions.

Proof of (2). Let F be a sheaf of sets for the site (C,Cov2). Let U ∈ Cov1, say U = {Ui →
U}i∈I . By assumption we may choose a refinement V ∈ Cov2 of U , say V = {Vj →
U}j∈J and refinement given by α : J → I and fj : Vj → Uα(j). Observe that F satisfies
the sheaf condition for V and for the coverings {Vj×U Ui → Ui}j∈J as these are in Cov2.
Hence F satisfies the sheaf condition for U by Lemma 8.6. �

Lemma 8.8. Let C be a category. Let Cov(C) be a proper class of coverings satisfying
conditions (1), (2) and (3) of Definition 6.2. Let Cov1,Cov2 ⊂ Cov(C) be two subsets
of Cov(C) which endow C with the structure of a site. If every covering U ∈ Cov(C)
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is combinatorially equivalent to a covering in Cov1 and combinatorially equivalent to a
covering in Cov2, then Sh(C,Cov1) = Sh(C,Cov2).

Proof. This is clear from Lemmas 8.7 and 8.3 above as the hypothesis implies that
every covering U ∈ Cov1 ⊂ Cov(C) is combinatorially equivalent to an element of Cov2,
and similarly with the roles of Cov1 and Cov2 reversed. �

9. The example of G-sets

As an example, consider the site TG of Example 6.5. We will describe the category of
sheaves on TG. The answer will turn out to be independent of the choices made in defining
TG. In fact, during the proof we will need only the following properties of the site TG:

(a) TG is a full subcategory of G-Sets,
(b) TG contains the G-set GG,
(c) TG has fibre products and they are the same as in G-Sets,
(d) given U ∈ Ob(TG) and a G-invariant subset O ⊂ U , there exists an object of
TG isomorphic to O, and

(e) any surjective family of maps {Ui → U}i∈I , with U,Ui ∈ Ob(TG) is combina-
torially equivalent to a covering of TG.

These properties hold by Sets, Lemmas 10.2 and 11.1.

Remark that the map

HomG(GG,GG) −→ Gopp, ϕ 7−→ ϕ(1)

is an isomorphism of groups. The inverse map sends g ∈ G to the map Rg : s 7→ sg (i.e.
right multiplication). Note that Rg1g2 = Rg2 ◦Rg1 so the opposite is necessary.

This implies that for every presheaf F on TG the value F(GG) inherits the structure of
a G-set as follows: g · s for g ∈ G and s ∈ F(GG) defined by F(Rg)(s). This is a left
action because

(g1g2) · s = F(Rg1g2)(s) = F(Rg2 ◦Rg1)(s) = F(Rg1)(F(Rg2)(s)) = g1 · (g2 · s).

Here we’ve used that F is contravariant. Note that if F → G is a morphism of presheaves
of sets on TG then we get a mapF(GG)→ G(GG) which is compatible with theG-actions
we have just defined. All in all we have constructed a functor

PSh(TG) −→ G-Sets, F 7−→ F(GG).

We leave it to the reader to verify that this construction has the pleasing property that
the representable presheaf hU is mapped to something canonically isomorphic to U . In a
formula hU (GG) = HomG(GG,U) ∼= U .

Suppose that S is a G-set. We define a presheaf FS by the formula2

FS(U) = MorG-Sets(U, S).

This is clearly a presheaf. On the other hand, suppose that {Ui → U}i∈I is a covering in
TG. This implies that

∐
i Ui → U is surjective. Thus it is clear that the map

FS(U) = MorG-Sets(U, S) −→
∏
FS(Ui) =

∏
MorG-Sets(Ui, S)

2It may appear this is the representable presheaf defined by S. This may not be the case because S may not
be an object of TG which was chosen to be a sufficiently large set of G-sets.
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is injective. And, given a family of G-equivariant maps si : Ui → S , such that all the
diagrams

Ui ×U Uj

��

// Uj

sj

��
Ui

si // S

commute, there is a unique G-equivariant map s : U → S such that si is the composition
Ui → U → S. Namely, we just define s(u) = si(ui) where i ∈ I is any index such that
there exists some ui ∈ Ui mapping to u under the map Ui → U . The commutativity
of the diagrams above implies exactly that this construction is well defined. All in all we
have constructed a functor

G-Sets −→ Sh(TG), S 7−→ FS .

We now have the following diagram of categories and functors

PSh(TG)
F7→F(GG) // G-Sets

S 7→FS

zz
Sh(TG)

ee

It is immediate from the definitions thatFS(GG) = MorG(GG,S) = S , the last equality
by evaluation at 1. This almost proves the following.

Proposition 9.1. The functors F 7→ F(GG) and S 7→ FS define quasi-inverse
equivalences between Sh(TG) and G-Sets.

Proof. We have already seen that composing the functors one way around is isomor-
phic to the identity functor. In the other direction, for any sheafH there is a natural map
of sheaves

can : H −→ FH(GG).

Namely, for any object U of TG we let canU be the map

H(U) −→ FH(GG)(U) = MorG(U,H(GG))
s 7−→ (u 7→ α∗

us).

Here αu : GG → U is the map αu(g) = gu and α∗
u : H(U) → H(GG) is the pullback

map. A trivial but confusing verification shows that this is indeed a map of presheaves. We
have to show that can is an isomorphism. We do this by showing canU is an isomorphism
for all U ∈ Ob(TG). We leave the (important but easy) case that U = GG to the reader.
A general object U of TG is a disjoint union of G-orbits: U =

∐
i∈I Oi. The family of

maps {Oi → U}i∈I is tautologically equivalent to a covering in TG (by the properties
of TG listed at the beginning of this section). Hence by Lemma 8.4 the sheaf H satisfies
the sheaf property with respect to {Oi → U}i∈I . The sheaf property for this covering
impliesH(U) =

∏
iH(Oi). Hence it suffices to show that canU is an isomorphism when

U consists of a single G-orbit. Let u ∈ U and let H ⊂ G be its stabilizer. Clearly,
MorG(U,H(GG)) = H(GG)H equals the subset of H-invariant elements. On the other
hand consider the covering {GG→ U} given by g 7→ gu (again it is just combinatorially
equivalent to some covering of TG, and again this doesn’t matter). Note that the fibre
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product (GG) ×U (GG) is equal to {(g, gh), g ∈ G,h ∈ H} ∼=
∐
h∈H GG. Hence the

sheaf property for this covering reads as

H(U) // H(GG)
pr∗

0 //

pr∗
1

//
∏
h∈H H(GG).

The two maps pr∗
i into the factor H(GG) differ by multiplication by h. Now the result

follows from this and the fact that can is an isomorphism for U = GG. �

10. Sheafification

In order to define the sheafification we study the zeroth Čech cohomology group of a
covering and its functoriality properties.
Let F be a presheaf of sets on C , and let U = {Ui → U}i∈I be a covering of C. Let us use
the notation F(U) to indicate the equalizer

H0(U ,F) = {(si)i∈I ∈
∏

i
F(Ui) | si|Ui×UUj = sj |Ui×UUj ∀i, j ∈ I}.

As we will see later, this is the zeroth Čech cohomology of F over U with respect to the
covering U . A small remark is that we can define H0(U ,F) as soon as all the morphisms
Ui → U are representable, i.e., U need not be a covering of the site. There is a canoni-
cal map F(U) → H0(U ,F). It is clear that a morphism of coverings U → V induces
commutative diagrams

Ui // Vα(i)

Ui ×U Uj //

;;

##

Vα(i) ×V Vα(j)

88

&&
Uj // Vα(j)

.

This in turn produces a map H0(V,F)→ H0(U ,F), compatible with the map F(V )→
F(U).
By construction, a presheafF is a sheaf if and only if for every covering U of C the natural
mapF(U)→ H0(U ,F) is bijective. We will use this notion to prove the following simple
lemma about limits of sheaves.

Lemma 10.1. Let F : I → Sh(C) be a diagram. Then limI F exists and is equal to
the limit in the category of presheaves.

Proof. Let limi Fi be the limit as a presheaf. We will show that this is a sheaf and
then it will trivially follow that it is a limit in the category of sheaves. To prove the
sheaf property, let V = {Vj → V }j∈J be a covering. Let (sj)j∈J be an element of
H0(V, limi Fi). Using the projection maps we get elements (sj,i)j∈J in H0(V,Fi). By
the sheaf property for Fi we see that there is a unique si ∈ Fi(V ) such that sj,i = si|Vj .
Let φ : i → i′ be a morphism of the index category. We would like to show that
F(φ) : Fi → Fi′ maps si to si′ . We know this is true for the sections si,j and si′,j
for all j and hence by the sheaf property for Fi′ this is true. At this point we have an
element s = (si)i∈Ob(I) of (limi Fi)(V ). We leave it to the reader to see this element has
the required property that sj = s|Vj . �
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Example 10.2. A particular example is the limit over the empty diagram. This gives
the final object in the category of (pre)sheaves. It is the presheaf that associates to each
objectU of C a singleton set, with unique restriction mappings and moreover this presheaf
is a sheaf. We often denote this sheaf by ∗.
Let JU be the category of all coverings of U . In other words, the objects of JU are the
coverings of U in C , and the morphisms are the refinements. By our conventions on sites
this is indeed a category, i.e., the collection of objects and morphisms forms a set. Note
that Ob(JU ) is not empty since {idU} is an object of it. According to the remarks above
the construction U 7→ H0(U ,F) is a contravariant functor on JU . We define

F+(U) = colimJ opp
U

H0(U ,F)
See Categories, Section 14 for a discussion of limits and colimits. We point out that later
we will see that F+(U) is the zeroth Čech cohomology of F over U .
Before we say more about the structure of the colimit, we turn the collection of setsF+(U),
U ∈ Ob(C) into a presheaf. Namely, let V → U be a morphism of C. By the axioms of a
site there is a functor3

JU −→ JV , {Ui → U} 7−→ {Ui ×U V → V }.
Note that the projection maps furnish a functorial morphism of coverings {Ui ×U V →
V } → {Ui → U} and hence, by the construction above, a functorial map of setsH0({Ui →
U},F) → H0({Ui ×U V → V },F). In other words, there is a transformation of func-

tors from H0(−,F) : J oppU → Sets to the composition J oppU → J oppV

H0(−,F)−−−−−−→ Sets.
Hence by generalities of colimits we obtain a canonical map F+(U)→ F+(V ). In terms
of the description of the set F+(U) above, it just takes the element associated with s =
(si) ∈ H0({Ui → U},F) to the element associated with (si|V×UUi) ∈ H0({Ui×U V →
V },F).

Lemma 10.3. The constructions above define a presheafF+ together with a canonical
map of presheaves F → F+.

Proof. All we have to do is to show that given morphisms W → V → U the com-
position F+(U) → F+(V ) → F+(W ) equals the map F+(U) → F+(W ). This can be
shown directly by verifying that, given a covering {Ui → U} and s = (si) ∈ H0({Ui →
U},F), we have canonically W ×U Ui ∼= W ×V (V ×U Ui), and si|W×UUi corresponds
to (si|V×UUi)|W×V (V×UUi) via this isomorphism. �

More indirectly, the result of Lemma 10.6 shows that we may pullback an element s as
above via any morphism from any covering of W to {Ui → U} and we will always end
up with the same element in F+(W ).

Lemma 10.4. The association F 7→ (F → F+) is a functor.
Proof. Instead of proving this we state exactly what needs to be proven. LetF → G

be a map of presheaves. Prove the commutativity of:

F //

��

F+

��
G // G+

3This construction actually involves a choice of the fibre productsUi×U V and hence the axiom of choice.
The resulting map does not depend on the choices made, see below.
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�

The next two lemmas imply that the colimits above are colimits over a directed set.

Lemma 10.5. Given a pair of coverings {Ui → U} and {Vj → U} of a given object
U of the site C , there exists a covering which is a common refinement.

Proof. Since C is a site we have that for every i the family {Vj ×U Ui → Ui}j is a
covering. And, then another axiom implies that {Vj ×U Ui → U}i,j is a covering of U .
Clearly this covering refines both given coverings. �

Lemma 10.6. Any two morphisms f, g : U → V of coverings inducing the same
morphism U → V induce the same map H0(V,F)→ H0(U ,F).

Proof. Let U = {Ui → U}i∈I and V = {Vj → V }j∈J . The morphism f consists
of a map U → V , a map α : I → J and maps fi : Ui → Vα(i). Likewise, g determines a
map β : I → J and maps gi : Ui → Vβ(i). As f and g induce the same map U → V , the
diagram

Vα(i)

!!
Ui

fi
==

gi !!

V

Vβ(i)

==

is commutative for every i ∈ I . Hence f and g factor through the fibre product

Vα(i)

Ui
ϕ //

fi
99

gi
%%

Vα(i) ×V Vβ(i)

pr1

OO

pr2

��
Vβ(i).

Now let s = (sj)j ∈ H0(V,F). Then for all i ∈ I :
(f∗s)i = f∗

i (sα(i)) = ϕ∗pr∗
1(sα(i)) = ϕ∗pr∗

2(sβ(i)) = g∗
i (sβ(i)) = (g∗s)i,

where the middle equality is given by the definition of H0(V,F). This shows that the
maps H0(V,F)→ H0(U ,F) induced by f and g are equal. �

Remark 10.7. In particular this lemma shows that if U is a refinement of V , and if V
is a refinement of U , then there is a canonical identification H0(U ,F) = H0(V,F).

From these two lemmas, and the fact that JU is nonempty, it follows that the diagram
H0(−,F) : J oppU → Sets is filtered, see Categories, Definition 19.1. Hence, by Categories,
Section 19 the colimitF+(U) may be described in the following straightforward manner.
Namely, every element in the set F+(U) arises from an element s ∈ H0(U ,F) for some
covering U of U . Given a second element s′ ∈ H0(U ′,F) then s and s′ determine the
same element of the colimit if and only if there exists a covering V of U and refinements
f : V → U and f ′ : V → U ′ such that f∗s = (f ′)∗s′ in H0(V,F). Since the trivial
covering {idU} is an object of JU we get a canonical map F(U)→ F+(U).
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Lemma 10.8. The map θ : F → F+ has the following property: For every object U
of C and every section s ∈ F+(U) there exists a covering {Ui → U} such that s|Ui is in
the image of θ : F(Ui)→ F+(Ui).

Proof. Namely, let {Ui → U} be a covering such that s arises from the element
(si) ∈ H0({Ui → U},F). According to Lemma 10.6 we may consider the covering
{Ui → Ui} and the (obvious) morphism of coverings {Ui → Ui} → {Ui → U} to
compute the pullback of s to an element of F+(Ui). And indeed, using this covering we
get exactly θ(si) for the restriction of s to Ui. �

Definition 10.9. We say that a presheaf of sets F on a site C is separated if, for all
coverings of {Ui → U}, the map F(U)→

∏
F(Ui) is injective.

Theorem 10.10. With F as above
(1) The presheaf F+ is separated.
(2) If F is separated, then F+ is a sheaf and the map of presheaves F → F+ is

injective.
(3) If F is a sheaf, then F → F+ is an isomorphism.
(4) The presheaf F++ is always a sheaf.

Proof. Proof of (1). Suppose that s, s′ ∈ F+(U) and suppose that there exists some
covering {Ui → U} such that s|Ui = s′|Ui for all i. We now have three coverings of
U : the covering {Ui → U} above, a covering U for s as in Lemma 10.8, and a similar
covering U ′ for s′. By Lemma 10.5, we can find a common refinement, say {Wj → U}.
This means we have sj , s′

j ∈ F(Wj) such that s|Wj = θ(sj), similarly for s′|Wj , and such
that θ(sj) = θ(s′

j). This last equality means that there exists some covering {Wjk →Wj}
such that sj |Wjk

= s′
j |Wjk

. Then since {Wjk → U} is a covering we see that s, s′ map to
the same element of H0({Wjk → U},F) as desired.

Proof of (2). It is clear that F → F+ is injective because all the maps F(U)→ H0(U ,F)
are injective. It is also clear that, if U → U ′ is a refinement, thenH0(U ′,F)→ H0(U ,F)
is injective. Now, suppose that {Ui → U} is a covering, and let (si) be a family of ele-
ments of F+(Ui) satisfying the sheaf condition si|Ui×UUi′ = si′ |Ui×UUi′ for all i, i′ ∈ I .
Choose coverings (as in Lemma 10.8) {Uij → Ui} such that si|Uij is the image of the
(unique) element sij ∈ F(Uij). The sheaf condition implies that sij and si′j′ agree
over Uij ×U Ui′j′ because it maps to Ui ×U Ui′ and we have the equality there. Hence
(sij) ∈ H0({Uij → U},F) gives rise to an element s ∈ F+(U). We leave it to the reader
to verify that s|Ui = si.

Proof of (3). This is immediate from the definitions because the sheaf property says exactly
that every map F → H0(U ,F) is bijective (for every covering U of U ).

Statement (4) is now obvious. �

Definition 10.11. Let C be a site and let F be a presheaf of sets on C. The sheaf
F# := F++ together with the canonical map F → F# is called the sheaf associated to
F .

Proposition 10.12. The canonical map F → F# has the following universal prop-
erty: For any map F → G , where G is a sheaf of sets, there is a unique map F# → G such
that F → F# → G equals the given map.
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Proof. By Lemma 10.4 we get a commutative diagram

F //

��

F+ //

��

F++

��
G // G+ // G++

and by Theorem 10.10 the lower horizontal maps are isomorphisms. The uniqueness fol-
lows from Lemma 10.8 which says that every section of F# locally comes from sections
of F . �

It is clear from this result that the functor F 7→ (F → F#) is unique up to unique
isomorphism of functors. Actually, let us temporarily denote i : Sh(C) → PSh(C) the
functor of inclusion. The result above actually says that

MorPSh(C)(F , i(G)) = MorSh(C)(F#,G).
In other words, the functor of sheafification is the left adjoint to the inclusion functor i.
We finish this section with a couple of lemmas.

Lemma 10.13. Let F : I → Sh(C) be a diagram. Then colimI F exists and is the
sheafification of the colimit in the category of presheaves.

Proof. Since the sheafification functor is a left adjoint it commutes with all colimits,
see Categories, Lemma 24.5. Hence, since PSh(C) has colimits, we deduce that Sh(C) has
colimits (which are the sheafifications of the colimits in presheaves). �

Lemma 10.14. The functor PSh(C)→ Sh(C), F 7→ F# is exact.

Proof. Since it is a left adjoint it is right exact, see Categories, Lemma 24.6. On the
other hand, by Lemmas 10.5 and Lemma 10.6 the colimits in the construction of F+ are
really over the directed set Ob(JU ) where U ≥ U ′ if and only if U is a refinement of U ′.
Hence by Categories, Lemma 19.2 we see that F → F+ commutes with finite limits (as a
functor from presheaves to presheaves). Then we conclude using Lemma 10.1. �

Lemma 10.15. Let C be a site. Let F be a presheaf of sets on C. Denote θ2 : F → F#

the canonical map of F into its sheafification. Let U be an object of C. Let s ∈ F#(U).
There exists a covering {Ui → U} and sections si ∈ F(Ui) such that

(1) s|Ui = θ2(si), and
(2) for every i, j there exists a covering {Uijk → Ui ×U Uj} of C such that the

pullback of si and sj to each Uijk agree.
Conversely, given any covering {Ui → U}, elements si ∈ F(Ui) such that (2) holds, then
there exists a unique section s ∈ F#(U) such that (1) holds.

Proof. Omitted. �

11. Injective and surjective maps of sheaves

Definition 11.1. Let C be a site, and let ϕ : F → G be a map of sheaves of sets.
(1) We say that ϕ is injective if for every object U of C the map ϕ : F(U)→ G(U)

is injective.
(2) We say that ϕ is surjective if for every object U of C and every section s ∈ G(U)

there exists a covering {Ui → U} such that for all i the restriction s|Ui is in the
image of ϕ : F(Ui)→ G(Ui).



12. REPRESENTABLE SHEAVES 331

Lemma 11.2. The injective (resp. surjective) maps defined above are exactly the monomor-
phisms (resp. epimorphisms) of the category Sh(C). A map of sheaves is an isomorphism
if and only if it is both injective and surjective.

Proof. Omitted. �

Lemma 11.3. Let C be a site. Let F → G be a surjection of sheaves of sets. Then the
diagram

F ×G F
//
// F // G

represents G as a coequalizer.

Proof. Let H be a sheaf of sets and let ϕ : F → H be a map of sheaves equalizing
the two mapsF ×G F → F . Let G′ ⊂ G be the presheaf image of the mapF → G. As the
product F ×G F may be computed in the category of presheaves we see that it is equal to
the presheaf productF ×G′ F . Hence ϕ induces a unique map of presheaves ψ′ : G′ → H.
Since G is the sheafification of G′ by Lemma 11.2 we conclude that ψ′ extends uniquely to
a map of sheaves ψ : G → H. We omit the verification that ϕ is equal to the composition
of ψ and the given map. �

12. Representable sheaves

Let C be a category. The canonical topology is the finest topology such that all repre-
sentable presheaves are sheaves (it is formally defined in Definition 47.12 but we will not
need this). This topology is not always the topology associated to the structure of a site on
C. We will give a collection of coverings that generates this topology in case C has fibered
products. First we give the following general definition.

Definition 12.1. Let C be a category. We say that a family {Ui → U}i∈I is an
effective epimorphism if all the morphisms Ui → U are representable (see Categories,
Definition 6.4), and for any X ∈ Ob(C) the sequence

MorC(U,X) // ∏
i∈I MorC(Ui, X) //

//
∏

(i,j)∈I2 MorC(Ui ×U Uj , X)

is an equalizer diagram. We say that a family {Ui → U} is a universal effective epimor-
phism if for any morphism V → U the base change {Ui ×U V → V } is an effective
epimorphism.

The class of families which are universal effective epimorphisms satisfies the axioms of
Definition 6.2. If C has fibre products, then the associated topology is the canonical topol-
ogy. (In this case, to get a site argue as in Sets, Lemma 11.1.)

Conversely, suppose that C is a site such that all representable presheaves are sheaves. Then
clearly, all coverings are universal effective epimorphisms. Thus the following definition
is the “correct” one in the setting of sites.

Definition 12.2. We say that the topology on a site C is weaker than the canoni-
cal topology, or that the topology is subcanonical if all the coverings of C are universal
effective epimorphisms.

A representable sheaf is a representable presheaf which is also a sheaf. Since it is perhaps
better to avoid this terminology when the topology is not subcanonical, we only define it
formally in that case.
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Definition 12.3. Let C be a site whose topology is subcanonical. The Yoneda em-
bedding h (see Categories, Section 3) presents C as a full subcategory of the category of
sheaves of C. In this case we call sheaves of the form hU with U ∈ Ob(C) representable
sheaves on C. Notation: Sometimes, the representable sheaf hU associated to U is denoted
U .

Note that we have in the situation of the definition

MorSh(C)(hU ,F) = F(U)

for every sheaf F , since it holds for presheaves, see (2.1.1). In general the presheaves hU
are not sheaves and to get a sheaf you have to sheafify them. In this case we still have

(12.3.1) MorSh(C)(h#
U ,F) = MorPSh(C)(hU ,F) = F(U)

for every sheaf F . Namely, the first equality holds by the adjointness property of # and
the second is (2.1.1).

Lemma 12.4. Let C be a site. If {Ui → U}i∈I is a covering of the site C , then the
morphism of presheaves of sets ∐

i∈I
hUi → hU

becomes surjective after sheafification.

Proof. By Lemma 11.2 above we have to show that
∐
i∈I h

#
Ui
→ h#

U is an epimor-
phism. LetF be a sheaf of sets. A morphism h#

U → F corresponds to a section s ∈ F(U).
Hence the injectivity of Mor(h#

U ,F)→
∏
i Mor(h#

Ui
,F) follows directly from the sheaf

property of F . �

The next lemma says, in the case the topology is weaker than the canonical topology, that
every sheaf is made up out of representable sheaves in a way.

Lemma 12.5. Let C be a site. Let E ⊂ Ob(C) be a subset such that every object of C
has a covering by elements ofE. LetF be a sheaf of sets. There exists a diagram of sheaves
of sets

F1
//
// F0 // F

which representsF as a coequalizer, such thatFi, i = 0, 1 are coproducts of sheaves of the
form h#

U with U ∈ E.

Proof. First we show there is an epimorphismF0 → F of the desired type. Namely,
just take

F0 =
∐

U∈E,s∈F(U)
(hU )# −→ F

Here the arrow restricted to the component corresponding to (U, s) maps the element
idU ∈ h#

U (U) to the section s ∈ F(U). This is an epimorphism according to Lemma 11.2
and our condition on E. To construct F1 first set G = F0 ×F F0 and then construct an
epimorphism F1 → G as above. See Lemma 11.3. �

Lemma 12.6. Let C be a site. LetF be a sheaf of sets on C. Then there exists a diagram
I → C , i 7→ Ui such that

F = colimi∈I h
#
Ui

Moreover, ifE ⊂ Ob(C) is a subset such that every object of C has a covering by elements
of E , then we may assume Ui is an element of E for all i ∈ Ob(I).
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Proof. Let I be the category whose objects are pairs (U, s) with U ∈ Ob(C) and
s ∈ F(U) and whose morphisms (U, s) → (U ′, s′) are morphisms f : U → U ′ in C
with f∗s′ = s. For each object (U, s) of I the element s defines by the Yoneda lemma a
map s : hU → F of presheaves. Hence by the universal property of sheafification a map
h#
U → F . These maps are immediately seen to be compatible with the morphisms in the

category I . Hence we obtain a map colim(U,s) hU → F of presheaves (where the colimit is
taken in the category of presheaves) and a map colim(U,s)(hU )# → F of sheaves (where
the colimit is taken in the category of sheaves). Since sheafification is the left adjoint
to the inclusion functor Sh(C) → PSh(C) (Proposition 10.12) we have colim(hU )# =
(colim hU )# by Categories, Lemma 24.5. Thus it suffices to show that colim(U,s) hU →
F is an isomorphism of presheaves. To see this we show that for every object X of C
the map colim(U,s) hU (X) → F(X) is bijective. Namely, it has an inverse sending the
element t ∈ F(X) to the element of the set colim(U,s) hU (X) corresponding to (X, t)
and idX ∈ hX(X).
We omit the proof of the final statement. �

13. Continuous functors

Definition 13.1. Let C and D be sites. A functor u : C → D is called continuous if
for every {Vi → V }i∈I ∈ Cov(C) we have the following

(1) {u(Vi)→ u(V )}i∈I is in Cov(D), and
(2) for any morphism T → V in C the morphism u(T ×V Vi)→ u(T )×u(V ) u(Vi)

is an isomorphism.

Recall that given a functor u as above, and a presheaf of sets F onD we have defined upF
to be simply the presheaf F ◦ u, in other words

upF(V ) = F(u(V ))
for every object V of C.

Lemma 13.2. Let C and D be sites. Let u : C → D be a continuous functor. If F is a
sheaf on D then upF is a sheaf as well.

Proof. Let {Vi → V } be a covering. By assumption {u(Vi) → u(V )} is a covering
in D and u(Vi ×V Vj) = u(Vi)×u(V ) u(Vj). Hence the sheaf condition for upF and the
covering {Vi → V } is precisely the same as the sheaf condition for F and the covering
{u(Vi)→ u(V )}. �

In order to avoid confusion we sometimes denote
us : Sh(D) −→ Sh(C)

the functor up restricted to the subcategory of sheaves of sets. Recall that up has a left
adjoint up : PSh(C)→ PSh(D), see Section 5.

Lemma 13.3. In the situation of Lemma 13.2. The functor us : G 7→ (upG)# is a left
adjoint to us.

Proof. Follows directly from Lemma 5.4 and Proposition 10.12. �

Here is a technical lemma.

Lemma 13.4. In the situation of Lemma 13.2. For any presheaf G on C we have
(upG)# = (up(G#))#.
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Proof. For any sheaf F on D we have

MorSh(D)(us(G#),F) = MorSh(C)(G#, usF)
= MorPSh(C)(G#, upF)
= MorPSh(C)(G, upF)
= MorPSh(D)(upG,F)
= MorSh(D)((upG)#,F)

and the result follows from the Yoneda lemma. �

Lemma 13.5. Let u : C → D be a continuous functor between sites. For any object U
of C we have ush#

U = h#
u(U).

Proof. Follows from Lemmas 5.6 and 13.4. �

Remark 13.6. (Skip on first reading.) Let C and D be sites. Let us use the definition
of tautologically equivalent families of maps, see Definition 8.2 to (slightly) weaken the
conditions defining continuity. Let u : C → D be a functor. Let us call u quasi-continuous
if for every V = {Vi → V }i∈I ∈ Cov(C) we have the following

(1’) the family of maps {u(Vi) → u(V )}i∈I is tautologically equivalent to an ele-
ment of Cov(D), and

(2) for any morphism T → V in C the morphism u(T ×V Vi)→ u(T )×u(V ) u(Vi)
is an isomorphism.

We are going to see that Lemmas 13.2 and 13.3 hold in case u is quasi-continuous as well.
We first remark that the morphisms u(Vi) → u(V ) are representable, since they are iso-
morphic to representable morphisms (by the first condition). In particular, the family
u(V) = {u(Vi)→ u(V )}i∈I gives rise to a zeroth Čech cohomology group H0(u(V),F)
for any presheaf F on D. Let U = {Uj → u(V )}j∈J be an element of Cov(D) tautolog-
ically equivalent to {u(Vi) → u(V )}i∈I . Note that u(V) is a refinement of U and vice
versa. Hence by Remark 10.7 we see thatH0(u(V),F) = H0(U ,F). In particular, if F is
a sheaf, then F(u(V )) = H0(u(V),F) because of the sheaf property expressed in terms
of zeroth Čech cohomology groups. We conclude that upF is a sheaf if F is a sheaf, since
H0(V, upF) = H0(u(V),F) which we just observed is equal to F(u(V )) = upF(V ).
Thus Lemma 13.2 holds. Lemma 13.3 follows immediately.

14. Morphisms of sites

Definition 14.1. Let C and D be sites. A morphism of sites f : D → C is given by a
continuous functor u : C → D such that the functor us is exact.

Notice how the functor u goes in the direction opposite the morphism f . If f ↔ u is a
morphism of sites then we use the notation f−1 = us and f∗ = us. The functor f−1 is
called the pullback functor and the functor f∗ is called the pushforward functor. As in
topology we have the following adjointness property

MorSh(D)(f−1G,F) = MorSh(C)(G, f∗F)
The motivation for this definition comes from the following example.

Example 14.2. Let f : X → Y be a continuous map of topological spaces. Recall that
we have sites XZar and YZar , see Example 6.4. Consider the functor u : YZar → XZar ,
V 7→ f−1(V ). This functor is clearly continuous because inverse images of open coverings
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are open coverings. (Actually, this depends on how you chose sets of coverings for XZar

and YZar. But in any case the functor is quasi-continuous, see Remark 13.6.) It is easy to
verify that the functor us equals the usual pushforward functor f∗ from topology. Hence,
since us is an adjoint and since the usual topological pullback functor f−1 is an adjoint as
well, we get a canonical isomorphism f−1 ∼= us. Since f−1 is exact we deduce that us is
exact. Hence u defines a morphism of sites f : XZar → YZar , which we may denote f as
well since we’ve already seen the functors us, us agree with their usual notions anyway.

Example 14.3. Let C be a category. Let

Cov(C) ⊃ Cov′(C)
be two sets of families of morphisms with fixed target which turn C into a site. Denote
Cτ the site corresponding to Cov(C) and Cτ ′ the site corresponding to Cov′(C). We claim
the identity functor on C defines a morphism of sites

ε : Cτ −→ Cτ ′

Namely, observe that id : Cτ ′ → Cτ is continuous as every τ ′-covering is a τ -covering.
Thus the functor ε∗ = ids is the identity functor on underlying presheaves. Hence the left
adjoint ε−1 of ε∗ sends a τ ′-sheafF to the τ -sheafification ofF (by the universal property
of sheafification). Finite limits of τ ′-sheaves agree with finite limits of presheaves (Lemma
10.1) and τ -sheafification commutes with finite limits (Lemma 10.14). Thus ε−1 is left
exact. Since ε−1 is a left adjoint it is also right exact (Categories, Lemma 24.6). Thus ε−1

is exact and we have checked all the conditions of Definition 14.1.

Lemma 14.4. Let Ci, i = 1, 2, 3 be sites. Let u : C2 → C1 and v : C3 → C2 be
continuous functors which induce morphisms of sites. Then the functor u ◦ v : C3 → C1
is continuous and defines a morphism of sites C1 → C3.

Proof. It is immediate from the definitions that u ◦ v is a continuous functor. In
addition, we clearly have (u◦v)p = vp ◦up, and hence (u◦v)s = vs ◦us. Hence functors
(u ◦ v)s and us ◦ vs are both left adjoints of (u ◦ v)s. Therefore (u ◦ v)s ∼= us ◦ vs and we
conclude that (u ◦ v)s is exact as a composition of exact functors. �

Definition 14.5. Let Ci, i = 1, 2, 3 be sites. Let f : C1 → C2 and g : C2 → C3 be
morphisms of sites given by continuous functors u : C2 → C1 and v : C3 → C2. The
composition g ◦ f is the morphism of sites corresponding to the functor u ◦ v.

In this situation we have (g ◦ f)∗ = g∗ ◦ f∗ and (g ◦ f)−1 = f−1 ◦ g−1 (see proof of
Lemma 14.4).

Lemma 14.6. Let C and D be sites. Let u : C → D be continuous. Assume all the
categories (IuV )opp of Section 5 are filtered. Then u defines a morphism of sitesD → C , in
other words us is exact.

Proof. Since us is the left adjoint of us we see that us is right exact, see Categories,
Lemma 24.6. Hence it suffices to show that us is left exact. In other words we have to show
that us commutes with finite limits. Because the categories IoppY are filtered we see that up
commutes with finite limits, see Categories, Lemma 19.2 (this also uses the description of
limits in PSh, see Section 4). And since sheafification commutes with finite limits as well
(Lemma 10.14) we conclude because us = # ◦ up. �

Proposition 14.7. Let C and D be sites. Let u : C → D be continuous. Assume
furthermore the following:
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(1) the category C has a final object X and u(X) is a final object of D , and
(2) the category C has fibre products and u commutes with them.

Then u defines a morphism of sites D → C , in other words us is exact.

Proof. This follows from Lemmas 5.2 and 14.6. �

Remark 14.8. The conditions of Proposition 14.7 above are equivalent to saying that
u is left exact, i.e., commutes with finite limits. See Categories, Lemmas 18.4 and 23.2. It
seems more natural to phrase it in terms of final objects and fibre products since this seems
to have more geometric meaning in the examples.

Lemma 19.4 will provide another way to prove a continuous functor gives rise to a mor-
phism of sites.

Remark 14.9. (Skip on first reading.) Let C and D be sites. Analogously to Defini-
tion 14.1 we say that a quasi-morphism of sites f : D → C is given by a quasi-continuous
functor u : C → D (see Remark 13.6) such that us is exact. The analogue of Propo-
sition 14.7 in this setting is obtained by replacing the word “continuous” by the word
“quasi-continuous”, and replacing the word “morphism” by “quasi-morphism”. The proof
is literally the same.

In Definition 14.1 the condition that us be exact cannot be omitted. For example, the
conclusion of the following lemma need not hold if one only assumes that u is continuous.

Lemma 14.10. Let f : D → C be a morphism of sites given by the functor u : C → D.
Given any object V of D there exists a covering {Vj → V } such that for every j there
exists a morphism Vj → u(Uj) for some object Uj of C.

Proof. Since f−1 = us is exact we have f−1∗ = ∗where ∗ denotes the final object of
the category of sheaves (Example 10.2). Since f−1∗ = us∗ is the sheafification of up∗ we
see there exists a covering {Vj → V } such that (up∗)(Vj) is nonempty. Since (up∗)(Vj)
is a colimit over the category IuVj whose objects are morphisms Vj → u(U) the lemma
follows. �

15. Topoi

Here is a definition of a topos which is suitable for our purposes. Namely, a topos is the
category of sheaves on a site. In order to specify a topos you just specify the site. The real
difference between a topos and a site lies in the definition of morphisms. Namely, it turns
out that there are lots of morphisms of topoi which do not come from morphisms of the
underlying sites.

Definition 15.1 (Topoi). A topos is the category Sh(C) of sheaves on a site C.
(1) Let C ,D be sites. A morphism of topoi f from Sh(D) to Sh(C) is given by a pair

of functors f∗ : Sh(D)→ Sh(C) and f−1 : Sh(C)→ Sh(D) such that
(a) we have

MorSh(D)(f−1G,F) = MorSh(C)(G, f∗F)
bifunctorially, and

(b) the functor f−1 commutes with finite limits, i.e., is left exact.
(2) Let C , D, E be sites. Given morphisms of topoi f : Sh(D) → Sh(C) and g :

Sh(E)→ Sh(D) the composition f ◦ g is the morphism of topoi defined by the
functors (f ◦ g)∗ = f∗ ◦ g∗ and (f ◦ g)−1 = g−1 ◦ f−1.
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Suppose that α : S1 → S2 is an equivalence of (possibly “big”) categories. If S1, S2
are topoi, then setting f∗ = α and f−1 equal to a quasi-inverse of α gives a morphism
f : S1 → S2 of topoi. Moreover this morphism is an equivalence in the 2-category of
topoi (see Section 36). Thus it makes sense to say “S is a topos” if S is equivalent to the
category of sheaves on a site (and not necessarily equal to the category of sheaves on a site).
We will occasionally use this abuse of notation.

The empty topos is topos of sheaves on the site C , where C is the empty category. We
will sometimes write ∅ for this site. This is a site which has a unique sheaf (since ∅ has
no objects). Thus Sh(∅) is equivalent to the category having a single object and a single
morphism.

The punctual topos is the topos of sheaves on the site C which has a single object pt and
one morphism idpt and whose only covering is the covering {idpt}. We will simply write
pt for this site. It is clear that the category of sheaves = the category of presheaves = the
category of sets. In a formula Sh(pt) = Sets.

Let C and D be sites. Let f : Sh(D) → Sh(C) be a morphism of topoi. Note that f∗
commutes with all limits and that f−1 commutes with all colimits, see Categories, Lemma
24.5. In particular, the condition on f−1 in the definition above guarantees that f−1 is
exact. Morphisms of topoi are often constructed using either Lemma 21.1 or the following
lemma.

Lemma 15.2. Given a morphism of sites f : D → C corresponding to the functor
u : C → D the pair of functors (f−1 = us, f∗ = us) is a morphism of topoi.

Proof. This is obvious from Definition 14.1. �

Remark 15.3. There are many sites that give rise to the topos Sh(pt). A useful exam-
ple is the following. Suppose that S is a set (of sets) which contains at least one nonempty
element. Let S be the category whose objects are elements of S and whose morphisms are
arbitrary set maps. Assume that S has fibre products. For example this will be the case if
S = P(infinite set) is the power set of any infinite set (exercise in set theory). Make S
into a site by declaring surjective families of maps to be coverings (and choose a suitable
sufficiently large set of covering families as in Sets, Section 11). We claim that Sh(S) is
equivalent to the category of sets.

We first prove this in case S contains e ∈ S which is a singleton. In this case, there is an
equivalence of topoi i : Sh(pt)→ Sh(S) given by the functors

(15.3.1) i−1F = F(e), i∗E = (U 7→ MorSets(U,E))
Namely, suppose that F is a sheaf on S . For any U ∈ Ob(S) = S we can find a covering
{ϕu : e→ U}u∈U , whereϕu maps the unique element of e to u ∈ U . The sheaf condition
implies in this case that F(U) =

∏
u∈U F(e). In other words F(U) = MorSets(U,F(e)).

Moreover, this rule is compatible with restriction mappings. Hence the functor

i∗ : Sets = Sh(pt) −→ Sh(S), E 7−→ (U 7→ MorSets(U,E))
is an equivalence of categories, and its inverse is the functor i−1 given above.

If S does not contain a singleton, then the functor i∗ as defined above still makes sense.
To show that it is still an equivalence in this case, choose any nonempty ẽ ∈ S and a map
ϕ : ẽ→ ẽ whose image is a singleton. For any sheaf F set

F(e) := Im(F(ϕ) : F(ẽ) −→ F(ẽ))
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and show that this is a quasi-inverse to i∗. Details omitted.

Remark 15.4. (Set theoretical issues related to morphisms of topoi. Skip on a first
reading.) A morphism of topoi as defined above is not a set but a class. In other words it
is given by a mathematical formula rather than a mathematical object. Although we may
contemplate the collection of all morphisms between two given topoi, it is not a good idea
to introduce it as a mathematical object. On the other hand, suppose C and D are given
sites. Consider a functor Φ : C → Sh(D). Such a thing is a set, in other words, it is a
mathematical object. We may, in succession, ask the following questions on Φ.

(1) Is it true, given a sheaf F on D, that the rule U 7→ MorSh(D)(Φ(U),F) defines
a sheaf on C? If so, this defines a functor Φ∗ : Sh(D)→ Sh(C).

(2) Is it true that Φ∗ has a left adjoint? If so, write Φ−1 for this left adjoint.
(3) Is it true that Φ−1 is exact?

If the last question still has the answer “yes”, then we obtain a morphism of topoi (Φ∗,Φ−1).
Moreover, given any morphism of topoi (f∗, f

−1) we may set Φ(U) = f−1(h#
U ) and ob-

tain a functor Φ as above with f∗ ∼= Φ∗ and f−1 ∼= Φ−1 (compatible with adjoint prop-
erty). The upshot is that by working with the collection of Φ instead of morphisms of
topoi, we (a) replaced the notion of a morphism of topoi by a mathematical object, and (b)
the collection of Φ forms a class (and not a collection of classes). Of course, more can be
said, for example one can work out more precisely the significance of conditions (2) and
(3) above; we do this in the case of points of topoi in Section 32.

Remark 15.5. (Skip on first reading.) Let C andD be sites. A quasi-morphism of sites
f : D → C (see Remark 14.9) gives rise to a morphism of topoi f from Sh(D) to Sh(C)
exactly as in Lemma 15.2.

16. G-sets and morphisms

Let ϕ : G → H be a homomorphism of groups. Choose (suitable) sites TG and TH as in
Example 6.5 and Section 9. Let u : TH → TG be the functor which assigns to a H-set U
the G-set Uϕ which has the same underlying set but G action defined by g · ξ = ϕ(g)ξ
for g ∈ G and ξ ∈ U . It is clear that u commutes with finite limits and is continuous4.
Applying Proposition 14.7 and Lemma 15.2 we obtain a morphism of topoi

f : Sh(TG) −→ Sh(TH)
associated with ϕ. Using Proposition 9.1 we see that we get a pair of adjoint functors

f∗ : G-Sets −→ H-Sets, f−1 : H-Sets −→ G-Sets.
Let’s work out what are these functors in this case.
We first work out a formula for f∗. Recall that given a G-set S the corresponding sheaf
FS on TG is given by the rule FS(U) = MorG(U, S). And on the other hand, given a
sheaf G on TH the corresponding H-set is given by the rule G(HH). Hence we see that

f∗S = MorG-Sets((HH)ϕ, S).
If we work this out a little bit more then we get

f∗S = {a : H → S | a(gh) = ga(h)}
with left H-action given by (h · a)(h′) = a(h′h) for any element a ∈ f∗S.

4Set theoretical remark: First choose TH . Then choose TG to contain u(TH) and such that every covering
in TH corresponds to a covering in TG. This is possible by Sets, Lemmas 10.1, 10.2 and 11.1.
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Next, we explicitly compute f−1. Note that since the topology on TG and TH is sub-
canonical, all representable presheaves are sheaves. Moreover, given an object V of TH we
see that f−1hV is equal to hu(V ) (see Lemma 13.5). Hence we see that f−1S = Sϕ for
representable sheaves. Since every sheaf on TH is a coproduct of representable sheaves we
conclude that this is true in general. Hence we see that for any H-set T we have

f−1T = Tϕ.

The adjunction between f−1 and f∗ is evidenced by the formula

MorG-Sets(Tϕ, S) = MorH-Sets(T, f∗S)

with f∗S as above. This can be proved directly. Moreover, it is then clear that (f−1, f∗)
form an adjoint pair and that f−1 is exact. So alternatively to the above the morphism of
topoi f : G-Sets→ H-Sets can be defined directly in this manner.

17. Quasi-compact objects and colimits

To be able to use the same language as in the case of topological spaces we introduce the
following terminology.

Definition 17.1. Let C be a site. An objectU of C is quasi-compact if given a covering
U = {Ui → U}i∈I in C there exists another covering V = {Vj → U}j∈J and a morphism
V → U of families of maps with fixed target given by id : U → U , α : J → I , and
Vj → Uα(j) (see Definition 8.1) such that the image of α is a finite subset of I .

Of course the usual notion is sufficient to conclude that U is quasi-compact.

Lemma 17.2. Let C be a site. Let U be an object of C. Consider the following condi-
tions

(1) U is quasi-compact,
(2) for every covering {Ui → U}i∈I in C there exists a finite covering {Vj →

U}j=1,...,m of C refining U , and
(3) for every covering {Ui → U}i∈I in C there exists a finite subset I ′ ⊂ I such

that {Ui → U}i∈I′ is a covering in C.
Then we always have (3)⇒ (2)⇒ (1) but the reverse implications do not hold in general.

Proof. The implications are immediate from the definitions. Let X = [0, 1] ⊂ R as
a topological space (with the usual ε-δ topology). Let C be the category of open subspaces
of X with inclusions as morphisms and usual open coverings (compare with Example
6.4). However, then we change the notion of covering in C to exclude all finite coverings,
except for the coverings of the form {U → U}. It is easy to see that this will be a site as
in Definition 6.2. In this site the object X = U = [0, 1] is quasi-compact in the sense of
Definition 17.1 but U does not satisfy (2). We leave it to the reader to make an example
where (2) holds but not (3). �

Here is the topos theoretic meaning of a quasi-compact object.

Lemma 17.3. Let C be a site. Let U be an object of C. The following are equivalent
(1) U is quasi-compact, and
(2) for every surjection of sheaves

∐
i∈I Fi → h#

U there is a finite subset J ⊂ I such
that

∐
i∈J Fi → h#

U is surjective.
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Proof. Assume (1) and let
∐
i∈I Fi → h#

U be a surjection. Then idU is a section of
h#
U over U . Hence there exists a covering {Ua → U}a∈A and for each a ∈ A a section sa

of
∐
i∈I Fi over Ua mapping to idU . By the construction of coproducts as sheafification

of coproducts of presheaves (Lemma 10.13), for each a there exists a covering {Uab →
Ua}b∈Ba and for all b ∈ Ba an ι(b) ∈ I and a section sb of Fι(b) over Uab mapping to
idU |Uab . Thus after replacing the covering {Ua → U}a∈A by {Uab → U}a∈A,b∈Ba we
may assume we have a map ι : A → I and for each a ∈ A a section sa of Fι(a) over
Ua mapping to idU . Since U is quasi-compact, there is a covering {Vc → U}c∈C , a map
α : C → A with finite image, and Vc → Uα(c) over U . Then we see that J = Im(ι ◦
α) ⊂ I works because

∐
c∈C h

#
Vc
→ h#

U is surjective (Lemma 12.4) and factors through∐
i∈J Fi → h#

U . (Here we use that the composition h#
Vc
→ hUα(c)

sα(c)−−−→ Fι(α(c)) → h#
U is

the map h#
Vc
→ h#

U coming from the morphism Vc → U because sα(c) maps to idU |Uα(c) .)

Assume (2). Let {Ui → U}i∈I be a covering. By Lemma 12.4 we see that
∐
i∈I h

#
Ui
→ h#

U

is surjective. Thus we find a finite subset J ⊂ I such that
∐
j∈J h

#
Uj
→ h#

U is surjective.
Then arguing as above we find a covering {Vc → U}c∈C of U in C and a map ι : C → J

such that idU lifts to a section of sc of h#
Uι(c)

over Vc. Refining the covering even further
we may assume sc ∈ hUι(c)(Vc) mapping to idU . Then sc : Vc → Uι(c) is a morphism
over U and we conclude. �

The lemma above motivates the following definition.

Definition 17.4. An objectF of a topos Sh(C) is quasi-compact if for any surjective
map

∐
i∈I Fi → F of Sh(C) there exists a finite subset J ⊂ I such that

∐
i∈J Fi → F is

surjective. A topos Sh(C) is said to be quasi-compact if its final object ∗ is a quasi-compact
object.

By Lemma 17.3 if the site C has a final object X , then Sh(C) is quasi-compact if and only
if X is quasi-compact.

Lemma 17.5. Let C be a site.
(1) If U → V is a morphism of C such that h#

U → h#
V is surjective and U is quasi-

compact, then V is quasi-compact.
(2) If F → G is a surjection of sheaves of sets and F is quasi-compact, then G is

quasi-compact.

Proof. Omitted. �

Lemma 17.6. Let C be a site. If n ≥ 1 and F1, . . . ,Fn are quasi-compact sheaves on
C , then

∐
i=1,...,n Fi is quasi-compact.

Proof. Omitted. �

The following two lemmas form the analogue of Sheaves, Lemma 29.1 for sites.

Lemma 17.7. Let C be a site. Let I → Sh(C), i 7→ Fi be a filtered diagram of sheaves
of sets. Let U ∈ Ob(C). Consider the canonical map

Ψ : colimi Fi(U) −→ (colimi Fi) (U)
With the terminology introduced above:

(1) If all the transition maps are injective then Ψ is injective for any U .
(2) If U is quasi-compact, then Ψ is injective.
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(3) If U is quasi-compact and all the transition maps are injective then Ψ is an iso-
morphism.

(4) IfU has a cofinal system of coverings {Uj → U}j∈J with J finite andUj×U Uj′

quasi-compact for all j, j′ ∈ J , then Ψ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf F ′ :
V 7→ colimi Fi(V ) is separated (see Definition 10.9). By Lemma 10.13 we have (F ′)# =
colimi Fi. By Theorem 10.10 we see that F ′ → (F ′)# is injective. This proves (1).

AssumeU is quasi-compact. Suppose that s ∈ Fi(U) and s′ ∈ Fi′(U) give rise to elements
on the left hand side which have the same image under Ψ. This means we can choose a
covering {Ua → U}a∈A and for each a ∈ A an index ia ∈ I , ia ≥ i, ia ≥ i′ such that
ϕiia(s) = ϕi′ia(s′). Because U is quasi-compact we can choose a covering {Vb → U}b∈B ,
a map α : B → A with finite image, and morphisms Vb → Uα(b) over U . Pick i′′ ∈ I to
be ≥ than all of the iα(b) which is possible because the image of α is finite. We conclude
that ϕii′′(s) and ϕi′i′′(s) agree on Vb for all b ∈ B and hence that ϕii′′(s) = ϕi′i′′(s).
This proves (2).

Assume U is quasi-compact and all transition maps injective. Let s be an element of the
target of Ψ. There exists a covering {Ua → U}a∈A and for each a ∈ A an index ia ∈ I
and a section sa ∈ Fia(Ua) such that s|Ua comes from sa for all a ∈ A. Because U is
quasi-compact we can choose a covering {Vb → U}b∈B , a map α : B → A with finite
image, and morphisms Vb → Uα(b) over U . Pick i ∈ I to be ≥ than all of the iα(b) which
is possible because the image of α is finite. By (1) the sections sb = ϕiα(b)i(sα(b))|Vb agree
over Vb ×U Vb′ . Hence they glue to a section s′ ∈ Fi(U) which maps to s under Ψ. This
proves (3).

Assume the hypothesis of (4). By Lemma 17.2 the object U is quasi-compact, hence Ψ is
injective by (2). To prove surjectivity, let s be an element of the target of Ψ. By assumption
there exists a finite covering {Uj → U}j=1,...,m, with Uj ×U Uj′ quasi-compact for all
1 ≤ j, j′ ≤ m and for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj is the image
of sj for all j. Since Uj ×U Uj′ is quasi-compact we can apply (2) and we see that there
exists an ijj′ ∈ I , ijj′ ≥ ij , ijj′ ≥ ij′ such that ϕijijj′ (sj) and ϕij′ ijj′ (sj′) agree over
Uj ×U Uj′ . Choose an index i ∈ I wich is bigger or equal than all the ijj′ . Then we see
that the sections ϕiji(sj) of Fi glue to a section of Fi over U . This section is mapped to
the element s as desired. �

Lemma 17.8. Let C be a site. Let I → Sh(C), i 7→ Fi be a filtered diagram of sheaves
of sets. Consider the canonical map

Ψ : colimi Γ(C,Fi) −→ Γ(C, colimi Fi)

We have the following:
(1) If all the transition maps are injective then Ψ is injective.
(2) If Sh(C) is quasi-compact, then Ψ is injective.
(3) If Sh(C) is quasi-compact and all the transition maps are injective then Ψ is an

isomorphism.
(4) Assume there exists a set S ⊂ Ob(Sh(C)) with the following properties:

(a) for every surjection F → ∗ there exists a K ∈ S and a map K → F such
that K → ∗ is surjective,

(b) for K ∈ S the product K ×K is quasi-compact.
Then Ψ is bijective.
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Proof. Proof of (1). Assume all the transition maps are injective. In this case the
presheaf F ′ : V 7→ colimi Fi(V ) is separated (see Definition 10.9). By Lemma 10.13 we
have (F ′)# = colimi Fi. By Theorem 10.10 we see that F ′ → (F ′)# is injective. This
proves (1).
Proof of (2). Assume Sh(C) is quasi-compact. Recall that Γ(C,F) = Mor(∗,F) for all F
in Sh(C). Let ai, bi : ∗ → Fi and for i′ ≥ i denote ai′ , bi′ : ∗ → Fi′ the composition with
the transition maps of the system. Set a = colimi′≥i ai′ and similary for b. For i′ ≥ i
denote

Ei′ = Equalizer(ai′ , bi′) ⊂ ∗ and E = Equalizer(a, b) ⊂ ∗
By Categories, Lemma 19.2 we have E = colimi′≥iEi′ . It follows that

∐
i′≥iEi′ → E is

a surjective map of sheaves. Hence, ifE = ∗, i.e., if a = b, then because ∗ is quasi-compact,
we see thatEi′ = ∗ for some i′ ≥ i, and we conclude ai′ = bi′ for some i′ ≥ i. This proves
(2).
Proof of (3). Assume Sh(C) is quasi-compact and all transition maps are injective. Let a :
∗ → colimFi be a map. Then Ei = a−1(Fi) ⊂ ∗ is a subsheaf and we have colimEi = ∗
(by the reference above). Hence for some i we have Ei = ∗ and we see that the image of a
is contained in Fi as desired.
Proof of (4). Let S ⊂ Ob(Sh(C)) satisfy (4)(a), (b). Applying (4)(a) to id : ∗ → ∗ we
find there exists a K ∈ S such that K → ∗ is surjective. The maps K × K → K → ∗ are
surjective. By (4)(b) and Lemma 17.5 we conclude that K and Sh(C) are quasi-compact.
Thus Ψ is injective by (2). Set F = colimFi. Let s : ∗ → F be a global section of the
colimit. Since

∐
Fi → F is surjective, we see that the projection∐

i∈I
∗ ×s,F Fi → ∗

is surjective. By (4)(a) we obtain K ∈ S and a map K →
∐
i∈I ∗ ×s,F Fi with K → ∗

surjective. Since K is quasi-compact we obtain a factorization K →
∐
i′∈I′ ∗ ×s,F Fi′

for some finite subset I ′ ⊂ I . Let i ∈ I be an upper bound for the finite subset I ′. The
transition maps define a map

∐
i′∈I′ Fi′ → Fi. This in turn produces a map K → ∗×s,F

Fi. In other words, we obtain K ∈ S with K → ∗ surjective and a commutative diagram

K ×K //
// K

��

// ∗

s

��
Fi // F colimFi

Observe that the top row of this diagram is a coequalizer. Hence it suffices to show that
after increasing i the two induced maps ai, bi : K×K → Fi are equal. This is done shown
in the next paragraph using the exact same argument as in the proof of (2) and we urge
the reader to skip the rest of the proof.
For i′ ≥ i denote ai′ , bi′ : K×K → Fi′ the composition of ai, bi with the transition maps
of the system. Set a = colimi′≥i ai′ : K × K → F and similary for b. We have a = b by
the commutativity of the diagram above. For i′ ≥ i denote

Ei′ = Equalizer(ai′ , bi′) ⊂ K ×K and E = Equalizer(a, b) ⊂ K ×K
By Categories, Lemma 19.2 we have E = colimi′≥iEi′ . It follows that

∐
i′≥iEi′ → E is

a surjective map of sheaves. Since a = b we have E = K×K. AsK×K is quasi-compact
by (4)(b), we see that Ei′ = K × K for some i′ ≥ i, and we conclude ai′ = bi′ for some
i′ ≥ i. �
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Remark 17.9. Let C be a site. There are several ways to ensure that the hypotheses
of part (4) of Lemma 17.8 are satisfied. Here are a few.

(1) Assume there exists a set B ⊂ Ob(C) with the following properties:
(a) for every surjection F → ∗ there exist m ≥ 0 and U1, . . . , Um ∈ B with
F(Uj) nonempty and

∐
h#
Uj
→ ∗ surjective,

(b) for U,U ′ ∈ B the sheaf h#
U × h

#
U ′ is quasi-compact.

(2) Assume there exists a set B ⊂ Ob(C) with the following properties:
(a) there exist m ≥ 0 and U1, . . . , Um ∈ B with

∐
h#
Uj
→ ∗ surjective,

(b) for U ∈ B any covering of U can be refined by a finite covering {Uj →
U}j=1,...,m with Uj ∈ B, and

(c) forU,U ′ ∈ B there existm ≥ 0, U1, . . . , Um ∈ B, and morphismsUj → U

and Uj → U ′ such that
∐
h#
Uj
→ h#

U × h
#
U ′ is surjective.

(3) Suppose that
(a) Sh(C) is quasi-compact,
(b) every object of C has a covering whose members are quasi-compact objects,
(c) if U and U ′ are quasi-compact, then the sheaf h#

U × h
#
U ′ is quasi-compact.

In cases (1) and (2) we set S ⊂ Ob(Sh(C)) equal to the set of finite coproducts of the
sheaves h#

U for U ∈ B. In case (3) we set S ⊂ Ob(Sh(C)) equal to the set of finite
coproducts of the sheaves h#

U for U ∈ Ob(C) quasi-compact.

Later we will need a bound on what can happen with colimits as follows.

Lemma 17.10. Let C be a site. Let β be an ordinal. Let β → Sh(C), α 7→ Fα be a
system of sheaves over β. For U ∈ Ob(C) consider the canonical map

colimα<β Fα(U) −→ (colimα<β Fα) (U)

If the cofinality of β is large enough, then this map is bijective for all U .

Proof. The left hand side is the value onU of the colimitFcolim taken in the category
of presheaves, see Section 4. Recall that colimα<β Fα is the sheafificationF#

colim ofFcolim,
see Lemma 10.13. Let U = {Ui → U}i∈I be an element of the set Cov(C) of coverings of
C. If the cofinality of β is larger than the cardinality of I , then we claim

H0(U ,Fcolim) = colimH0(U ,Fα) = colimFα(U) = Fcolim(U)

The second and third equality signs are clear. For the first, say s = (si) ∈ H0(U ,Fcolim).
Then for each i the element si comes from an element si,αi ∈ Fαi(Ui) for some αi < β.
By the assumption on cofinality, we can choose αi = α independent of i. Then si and sj
map to the same element of Fαi,j (Ui ×U Uj) for some αi,j < β. Since the cardinality if
I × I is also less than the cofinality of β, we see that we may after increasing α assume
αi,j = α for all i, j. This proves that the natural map colimH0(U ,Fα)→ H0(U ,Fcolim)
is surjective. A very similar argument shows that it is injective. In particular, we see that
Fcolim satisfies the sheaf condition for U . Thus if the cofinality of β is larger than the
supremum of the cardinalities of the set of index sets I of coverings, then we conclude. �

18. Colimits of sites

We need an analogue of Lemma 17.7 in the case that the site is the limit of an inverse
system of sites. For simplicity we only explain the construction in case the index sets of
coverings are finite.
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Situation 18.1. Here we are given
(1) a cofiltered index category I ,
(2) for i ∈ Ob(I) a site Ci such that every covering in Ci has a finite index set,
(3) for a morphism a : i → j in I a morphism of sites fa : Ci → Cj given by a

continuous functor ua : Cj → Ci,
such that fa ◦ fb = fc whenever c = a ◦ b in I .

Lemma 18.2. In Situation 18.1 we can construct a site (C,Cov(C)) as follows
(1) as a category C = colim Ci, and
(2) Cov(C) is the union of the images of Cov(Ci) by ui : Ci → C.

Proof. Our definition of composition of morphisms of sites implies that ub◦ua = uc
whenever c = a ◦ b in I . The formula C = colim Ci means that Ob(C) = colim Ob(Ci)
and Arrows(C) = colim Arrows(Ci). Then source, target, and composition are inherited
from the source, target, and composition on Arrows(Ci). In this way we obtain a category.
Denote ui : Ci → C the obvious functor. Remark that given any finite diagram in C there
exists an i such that this diagram is the image of a diagram in Ci.

Let {U t → U} be a covering of C. We first prove that if V → U is a morphism of C , then
U t ×U V exists. By our remark above and our definition of coverings, we can find an i, a
covering {U ti → Ui} of Ci and a morphism Vi → Ui whose image by ui is the given data.
We claim that U t ×U V is the image of U ti ×Ui Vi by ui. Namely, for every a : j → i
in I the functor ua is continuous, hence ua(U ti ×Ui Vi) = ua(U ti ) ×ua(Ui) ua(Vi). In
particular we can replace i by j , if we so desire. Thus, if W is another object of C , then we
may assume W = ui(Wi) and we see that

MorC(W,ui(U ti ×Ui Vi))
= colima:j→i MorCj (ua(Wi), ua(U ti ×Ui Vi))
= colima:j→i MorCj (ua(Wi), ua(U ti ))×MorCj (ua(Wi),ua(Ui)) MorCj (ua(Wi), ua(Vi))

= MorC(W,U t)×MorC(W,U) MorC(W,V )

as filtered colimits commute with finite limits (Categories, Lemma 19.2). It also follows
that {U t ×U V → V } is a covering in C. In this way we see that axiom (3) of Definition
6.2 holds.

To verify axiom (2) of Definition 6.2 let {U t → U}t∈T be a covering of C and for each t
let {U ts → U t} be a covering of C. Then we can find an i and a covering {U ti → Ui}t∈T
of Ci whose image by ui is {U t → U}. Since T is finite we may choose an a : j → i in
I and coverings {U tsj → ua(U ti )} of Cj whose image by uj gives {U ts → U t}. Then we
conclude that {U ts → U} is a covering of C by an application of axiom (2) to the site Cj .

We omit the proof of axiom (1) of Definition 6.2. �

Lemma 18.3. In Situation 18.1 let ui : Ci → C be as constructed in Lemma 18.2. Then
ui defines a morphism of sites fi : C → Ci. For Ui ∈ Ob(Ci) and sheaf F on Ci we have

(18.3.1) f−1
i F(ui(Ui)) = colima:j→i f

−1
a F(ua(Ui))

Proof. It is immediate from the arguments in the proof of Lemma 18.2 that the func-
tors ui are continuous. To finish the proof we have to show that f−1

i := ui,s is an exact
functor Sh(Ci) → Sh(C). In fact it suffices to show that f−1

i is left exact, because it is
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right exact as a left adjoint (Categories, Lemma 24.6). We first prove (18.3.1) and then we
deduce exactness.
For an arbitrary object V of C we can pick a a : j → i and an object Vj ∈ Ob(C) with
V = uj(Vj). Then we can set

G(V ) = colimb:k→j f
−1
a◦bF(ub(Vj))

The value G(V ) of the colimit is independent of the choice of b : j → i and of the
object Vj with uj(Vj) = V ; we omit the verification. Moreover, if α : V → V ′ is a
morphism of C , then we can choose b : j → i and a morphism αj : Vj → V ′

j with
uj(αj) = α. This induces a map G(V ′) → G(V ) by using the restrictions along the
morphisms ub(αj) : ub(Vj) → ub(V ′

j ). A check shows that G is a presheaf (omitted). In
fact, G satisfies the sheaf condition. Namely, any covering U = {U t → U} in C comes
from a finite level. Say Uj = {U tj → Uj} is mapped to U by uj for some a : j → i in I .
Then we have
H0(U ,G) = colimb:k→j H

0(ub(Uj), f−1
b◦aF) = colimb:k→j f

−1
b◦aF(ub(Uj)) = G(U)

as desired. The first equality holds because filtered colimits commute with finite limits
(Categories, Lemma 19.2). By construction G(U) is given by the right hand side of (18.3.1).
Hence (18.3.1) is true if we can show that G is equal to f−1

i F .

In this paragraph we check that G is canonically isomorphic to f−1
i F . We strongly en-

courage the reader to skip this paragraph. To check this we have to show there is a bijection
MorSh(C)(G,H) = MorSh(Ci)(F , fi,∗H) functorial in the sheafH on C where fi,∗ = upi .
A map G → H is the same thing as a compatible system of maps

ϕa,b,Vj : f−1
a◦bF(ub(Vj)) −→ H(uj(Vj))

for all a : j → i, b : k → j and Vj ∈ Ob(Cj). The compatibilities force the maps ϕa,b,Vj
to be equal to ϕa◦b,id,ub(Vj). Given a : j → i, the family of maps ϕa,id,Vj corresponds to
a map of sheaves ϕa : f−1

a F → fj,∗H. The compatibilities between the ϕa,id,ua(Vi) and
the ϕid,id,Vi implies that ϕa is the adjoint of the map ϕid via

MorSh(Cj)(f−1
a F , fj,∗H) = MorSh(Ci)(F , fa,∗fj,∗H) = MorSh(Ci)(F , fi,∗H)

Thus finally we see that the whole system of maps ϕa,b,Vj is determined by the map ϕid :
F → fi,∗H. Conversely, given such a map ψ : F → fi,∗H we can read the argument
just given backwards to construct the family of maps ϕa,b,Vj . This finishes the proof that
G = f−1

i F .

Assume (18.3.1) holds. Then the functor F 7→ f−1
i F(U) commutes with finite limits

because finite limits of sheaves are computed in the category of presheaves (Lemma 10.1),
the functors f−1

a commutes with finite limits, and filtered colimits commute with finite
limits. To see that F 7→ f−1

i F(V ) commutes with finite limits for a general object V of
C , we can use the same argument using the formula for f−1

i F(V ) = G(V ) given above.
Thus f−1

i is left exact and the proof of the lemma is complete. �

Lemma 18.4. In Situation 18.1 assume given
(1) a sheaf Fi on Ci for all i ∈ Ob(I),
(2) for a : j → i a map ϕa : f−1

a Fi → Fj of sheaves on Cj
such that ϕc = ϕb ◦ f−1

b ϕa whenever c = a ◦ b. Set F = colim f−1
i Fi on the site C of

Lemma 18.2. Let i ∈ Ob(I) and Xi ∈ Ob(Ci). Then
colima:j→i Fj(ua(Xi)) = F(ui(Xi))
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Proof. A formal argument shows that

colima:j→i Fi(ua(Xi)) = colima:j→i colimb:k→j f
−1
b Fj(ua◦b(Xi))

By (18.3.1) we see that the inner colimit is equal to f−1
j Fj(ui(Xi)) hence we conclude by

Lemma 17.7. �

Lemma 18.5. In Situation 18.1 assume we have a sheaf F on C. Then

F = colim f−1
i fi,∗F

where the transition maps are f−1
j ϕa for a : j → i where ϕa : f−1

a fi,∗F → fj,∗F is a
canonical map satisfying a cocycle condition as in Lemma 18.4.

Proof. For the morphism

ϕa : f−1
a fi,∗F → fj,∗F

we choose the adjoint to the identity map

fi,∗F → fa,∗fj,∗F

Hence ϕa is the counit for the adjunction given by (f−1
a , fa,∗). We must prove that for

all a : j → i and b : k → i with composition c = a ◦ b we have ϕc = ϕb ◦ f−1
b ϕa.

This follows from Categories, Lemma 24.9. Lastly, we must prove that the map given by
adjunction

colimi∈I f
−1
i fi,∗F −→ F

is an isomorphism. For an object U of C we need to show the map

(colimi∈I f
−1
i Fi)(U)→ F(U)

is bijective. Choose an i and an object Ui of Ci with ui(Ui) = U . Then the left hand side
is equal to

(colimi∈I f
−1
i Fi)(U) = colima:j→i fj,∗F(ua(Ui))

by Lemma 18.4. Since uj(ua(Ui)) = U we have fj,∗F(ua(Ui)) = F(U) for all a : j → i
by definition. Hence the value of the colimit is F(U) and the proof is complete. �

19. More functoriality of presheaves

In this section we revisit the material of Section 5. Let u : C → D be a functor between
categories. Recall that

up : PSh(D) −→ PSh(C)
is the functor that associates to G on D the presheaf upG = G ◦ u. It turns out that this
functor not only has a left adjoint (namely up) but also a right adjoint.

Namely, for any V ∈ Ob(D) we define a category V I = u
V I . Its objects are pairs (U,ψ :

u(U) → V ). Note that the arrow is in the opposite direction from the arrow we used
in defining the category IuV in Section 5. A morphism (U,ψ) → (U ′, ψ′) is given by a
morphism α : U → U ′ such that ψ = ψ′ ◦ u(α). In addition, given any presheaf of
sets F on C we introduce the functor V F : V Iopp → Sets, which is defined by the rule
V F(U,ψ) = F(U). We define

pu(F)(V ) := lim
V Iopp V F
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As a limit there are projection maps c(ψ) : pu(F)(V )→ F(U) for every object (U,ψ) of
V I . In fact,

pu(F)(V ) =

 collections s(U,ψ) ∈ F(U)
∀β : (U1, ψ1)→ (U2, ψ2) in V I
we have β∗s(U2,ψ2) = s(U1,ψ1)


where the correspondence is given by s 7→ s(U,ψ) = c(ψ)(s). We leave it to the reader
to define the restriction mappings pu(F)(V ) → pu(F)(V ′) associated to any morphism
V ′ → V of D. The resulting presheaf will be denoted puF .

Lemma 19.1. There is a canonical map puF(u(U)) → F(U), which is compatible
with restriction maps.

Proof. This is just the projection map c(idu(U)) above. �

Note that any map of presheavesF → F ′ gives rise to compatible systems of maps between
functors V F → V F ′, and hence to a map of presheaves puF → puF ′. In other words, we
have defined a functor

pu : PSh(C) −→ PSh(D)

Lemma 19.2. The functor pu is a right adjoint to the functor up. In other words the
formula

MorPSh(C)(upG,F) = MorPSh(D)(G, puF)
holds bifunctorially in F and G.

Proof. This is proved in exactly the same way as the proof of Lemma 5.4. We note
that the map uppuF → F from Lemma 19.1 is the map that is used to go from the right
to the left.
Alternately, think of a presheaf of sets F on C as a presheaf F ′ on Copp with values in
Setsopp, and similarly on D. Check that (puF)′ = up(F ′), and that (upG)′ = up(G′). By
Remark 5.5 we have the adjointness of up and up for presheaves with values in Setsopp.
The result then follows formally from this. �

Thus given a functor u : C → D of categories we obtain a sequence of functors
up, u

p, pu

between categories of presheaves where in each consecutive pair the first is left adjoint to
the second.

Lemma 19.3. Let u : C → D and v : D → C be functors of categories. Assume that
v is right adjoint to u. Then we have

(1) uphV = hv(V ) for any V in D,
(2) the category IvU has an initial object,
(3) the category u

V I has a final object,
(4) pu = vp, and
(5) up = vp.

Proof. Proof of (1). Let V be an object of D. We have uphV = hv(V ) because
uphV (U) = MorD(u(U), V ) = MorC(U, v(V )) by assumption.
Proof of (2). Let U be an object of C. Let η : U → v(u(U)) be the map adjoint to the map
id : u(U)→ u(U). Then we claim (u(U), η) is an initial object of IvU . Namely, given an
object (V, φ : U → v(V )) of IvU the morphism φ is adjoint to a map ψ : u(U)→ V which
then defines a morphism (u(U), η)→ (V, φ).
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Proof of (3). Let V be an object of D. Let ξ : u(v(V )) → V be the map adjoint to the
map id : v(V ) → v(V ). Then we claim (v(V ), ξ) is a final object of uV I . Namely, given
an object (U,ψ : u(U) → V ) of uV I the morphism ψ is adjoint to a map φ : U → v(V )
which then defines a morphism (U,ψ)→ (v(V ), ξ).
Hence for any presheaf F on C we have

vpF(V ) = F(v(V ))
= MorPSh(C)(hv(V ),F)
= MorPSh(C)(uphV ,F)
= MorPSh(D)(hV , puF)
= puF(V )

which proves part (4). Part (5) follows by the uniqueness of adjoint functors. �

Lemma 19.4. A continuous functor of sites which has a continuous left adjoint defines
a morphism of sites.

Proof. Let u : C → D be a continuous functor of sites. Let w : D → C be a
continuous left adjoint. Then up = wp by Lemma 19.3. Hence us = ws has a left adjoint,
namely ws (Lemma 13.3). Thus us has both a right and a left adjoint, whence is exact
(Categories, Lemma 24.6). �

20. Cocontinuous functors

There is another way to construct morphisms of topoi. This involves using cocontinuous
functors between sites defined as follows.

Definition 20.1. Let C and D be sites. Let u : C → D be a functor. The functor
u is called cocontinuous if for every U ∈ Ob(C) and every covering {Vj → u(U)}j∈J
of D there exists a covering {Ui → U}i∈I of C such that the family of maps {u(Ui) →
u(U)}i∈I refines the covering {Vj → u(U)}j∈J .

Note that {u(Ui)→ u(U)}i∈I is in general not a covering of the site D.

Lemma 20.2. Let C and D be sites. Let u : C → D be cocontinuous. Let F be a sheaf
on C. Then puF is a sheaf on D, which we will denote suF .

Proof. Let {Vj → V }j∈J be a covering of the site D. We have to show that

puF(V ) // ∏
puF(Vj)

//
//
∏

puF(Vj ×V Vj′)

is an equalizer diagram. Since pu is right adjoint to up we have

puF(V ) = MorPSh(D)(hV , puF) = MorPSh(C)(uphV ,F) = MorSh(C)((uphV )#,F)
Hence it suffices to show that
(20.2.1)

∐
uphVj×V Vj′

//
//
∐
uphVj // uphV

becomes a coequalizer diagram after sheafification. (Recall that a coproduct in the category
of sheaves is the sheafification of the coproduct in the category of presheaves, see Lemma
10.13.)
We first show that the second arrow of (20.2.1) becomes surjective after sheafification.
To do this we use Lemma 11.2. Thus it suffices to show a section s of uphV over U lifts
to a section of

∐
uphVj on the members of a covering of U . Note that s is a morphism
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s : u(U) → V . Then {Vj ×V,s u(U) → u(U)} is a covering of D. Hence, as u is
cocontinuous, there is a covering {Ui → U} such that {u(Ui)→ u(U)} refines {Vj ×V,s
u(U) → u(U)}. This means that each restriction s|Ui : u(Ui) → V factors through a
morphism si : u(Ui)→ Vj for some j , i.e., s|Ui is in the image of uphVj (Ui)→ uphV (Ui)
as desired.

Let s, s′ ∈ (
∐
uphVj )#(U) map to the same element of (uphV )#(U). To finish the proof

of the lemma we show that after replacing U by the members of a covering that s, s′ are
the image of the same section of

∐
uphVj×V Vj′ by the two maps of (20.2.1). We may

first replace U by the members of a covering and assume that s ∈ uphVj (U) and s′ ∈
uphVj′ (U). A second such replacement guarantees that s and s′ have the same image in
uphV (U) instead of in the sheafification. Hence s : u(U) → Vj and s′ : u(U) → Vj′ are
morphisms of D such that

u(U)
s′
//

s

��

Vj′

��
Vj // V

is commutative. Thus we obtain t = (s, s′) : u(U) → Vj ×V Vj′ , i.e., a section t ∈
uphVj×V Vj′ (U) which maps to s, s′ as desired. �

Lemma 20.3. Let C and D be sites. Let u : C → D be cocontinuous. The functor
Sh(D) → Sh(C), G 7→ (upG)# is a left adjoint to the functor su introduced in Lemma
20.2 above. Moreover, it is exact.

Proof. Let us prove the adjointness property as follows

MorSh(C)((upG)#,F) = MorPSh(C)(upG,F)
= MorPSh(D)(G, puF)
= MorSh(D)(G, suF).

Thus it is a left adjoint and hence right exact, see Categories, Lemma 24.6. We have seen
that sheafification is left exact, see Lemma 10.14. Moreover, the inclusion i : Sh(D) →
PSh(D) is left exact by Lemma 10.1. Finally, the functor up is left exact because it is a
right adjoint (namely to up). Thus the functor is the composition # ◦ up ◦ i of left exact
functors, hence left exact. �

We finish this section with a technical lemma.

Lemma 20.4. In the situation of Lemma 20.3. For any presheaf G on D we have
(upG)# = (up(G#))#.

Proof. For any sheaf F on C we have

MorSh(C)((up(G#))#,F) = MorSh(D)(G#, suF)
= MorSh(D)(G#, puF)
= MorPSh(D)(G, puF)
= MorPSh(C)(upG,F)
= MorSh(C)((upG)#,F)

and the result follows from the Yoneda lemma. �
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Remark 20.5. Let u : C → D be a functor between categories. Given morphisms
g : u(U)→ V and f : W → V in D we can consider the functor

Copp −→ Sets, T 7−→ MorC(T,U)×MorD(u(T ),V ) MorD(u(T ),W )
If this functor is representable, denote U ×g,V,fW the corresponding object of C. Assume
that C and D are sites. Consider the property P : for every covering {fj : Vj → V } of D
and any morphism g : u(U)→ V we have

(1) U ×g,V,fi Vi exists for all i, and
(2) {U ×g,V,fi Vi → U} is a covering of C.

Please note the similarity with the definition of continuous functors. If u has P then u
is cocontinuous (details omitted). Many of the cocontinuous functors we will encounter
satisfy P .

21. Cocontinuous functors and morphisms of topoi

It is clear from the above that a cocontinuous functor u gives a morphism of topoi in the
same direction as u. Thus this is in the opposite direction from the morphism of topoi
associated (under certain conditions) to a continuous u as in Definition 14.1, Proposition
14.7, and Lemma 15.2.

Lemma 21.1. Let C and D be sites. Let u : C → D be cocontinuous. The functors
g∗ = su and g−1 = (up )# define a morphism of topoi g from Sh(C) to Sh(D).

Proof. This is exactly the content of Lemma 20.3. �

Lemma 21.2. Let u : C → D, and v : D → E be cocontinuous functors. Then v ◦ u is
cocontinuous and we haveh = g◦f where f : Sh(C)→ Sh(D), resp. g : Sh(D)→ Sh(E),
resp. h : Sh(C)→ Sh(E) is the morphism of topoi associated to u, resp. v, resp. v ◦ u.

Proof. LetU ∈ Ob(C). Let {Ei → v(u(U))} be a covering ofU in E . By assumption
there exists a covering {Dj → u(U)} inD such that {v(Dj)→ v(u(U))} refines {Ei →
v(u(U))}. Also by assumption there exists a covering {Cl → U} in C such that {u(Cl)→
u(U)} refines {Dj → u(U)}. Then it is true that {v(u(Cl)) → v(u(U))} refines the
covering {Ei → v(u(U))}. This proves that v ◦ u is cocontinuous. To prove the last
assertion it suffices to show that sv◦su = s(v◦u). It suffices to prove that pv◦pu = p(v◦u),
see Lemma 20.2. Since pu, resp. pv, resp. p(v◦u) is right adjoint to up, resp. vp, resp. (v◦u)p
it suffices to prove that up ◦ vp = (v ◦ u)p. And this is direct from the definitions. �

Example 21.3. Let X be a topological space. Let j : U → X be the inclusion of an
open subspace. Recall that we have sites XZar and UZar , see Example 6.4. Recall that we
have the functor u : XZar → UZar associated to j which is continuous and gives rise to a
morphism of sites UZar → XZar , see Example 14.2. This also gives a morphism of topoi
(j∗, j

−1). Next, consider the functor v : UZar → XZar , V 7→ v(V ) = V (just the same
open but now thought of as an object of XZar). This functor is cocontinuous. Namely, if
v(V ) =

⋃
j∈JWj is an open covering inX , then eachWj must be a subset ofU and hence

is of the form v(Vj), and trivially V =
⋃
j∈J Vj is an open covering in U . We conclude

by Lemma 21.1 above that there is a morphism of topoi associated to v
Sh(U) −→ Sh(X)

given by sv and (vp )#. We claim that actually (vp )# = j−1 and that sv = j∗, in
other words, that this is the same morphism of topoi as the one given above. Perhaps the
easiest way to see this is to realize that for any sheaf G on X we have vpG(V ) = G(V )



21. COCONTINUOUS FUNCTORS AND MORPHISMS OF TOPOI 351

which according to Sheaves, Lemma 31.1 is a description of j−1G (and hence sheafification
is superfluous in this case). The equality of sv and j∗ follows by uniqueness of adjoint
functors (but may also be computed directly).

Example 21.4. This example is a slight generalization of Example 21.3. Let f : X →
Y be a continuous map of topological spaces. Assume that f is open. Recall that we have
sites XZar and YZar , see Example 6.4. Recall that we have the functor u : YZar → XZar

associated to f which is continuous and gives rise to a morphism of sitesXZar → YZar , see
Example 14.2. This also gives a morphism of topoi (f∗, f

−1). Next, consider the functor
v : XZar → YZar , U 7→ v(U) = f(U). This functor is cocontinuous. Namely, if
f(U) =

⋃
j∈J Vj is an open covering in Y , then setting Uj = f−1(Vj) ∩ U we get an

open coveringU =
⋃
Uj such that f(U) =

⋃
f(Uj) is a refinement of f(U) =

⋃
Vj . We

conclude by Lemma 21.1 above that there is a morphism of topoi associated to v

Sh(X) −→ Sh(Y )

given by sv and (vp )#. We claim that actually (vp )# = f−1 and that sv = f∗,
in other words, that this is the same morphism of topoi as the one given above. For
any sheaf G on Y we have vpG(U) = G(f(U)). On the other hand, we may compute
upG(U) = colimf(U)⊂V G(V ) = G(f(U)) because clearly (f(U), U ⊂ f−1(f(U)))
is an initial object of the category IuU of Section 5. Hence up = vp and we conclude
f−1 = us = (vp )#. The equality of sv and f∗ follows by uniqueness of adjoint functors
(but may also be computed directly).

In the first Example 21.3 the functor v is also continuous. But in the second Example 21.4
it is generally not continuous because condition (2) of Definition 13.1 may fail. Hence the
following lemma applies to the first example, but not to the second.

Lemma 21.5. Let C and D be sites. Let u : C → D be a functor. Assume that
(a) u is cocontinuous, and
(b) u is continuous.

Let g : Sh(C)→ Sh(D) be the associated morphism of topoi. Then
(1) sheafification in the formula g−1 = (up )# is unnecessary, in other words g−1(G)(U) =
G(u(U)),

(2) g−1 has a left adjoint g! = (up )#, and
(3) g−1 commutes with arbitrary limits and colimits.

Proof. By Lemma 13.2 for any sheaf G on D the presheaf upG is a sheaf on C. And
then we see the adjointness by the following string of equalities

MorSh(C)(F , g−1G) = MorPSh(C)(F , upG)
= MorPSh(D)(upF ,G)
= MorSh(D)(g!F ,G)

The statement on limits and colimits follows from the discussion in Categories, Section
24. �

In the situation of Lemma 21.5 above we see that we have a sequence of adjoint functors

g!, g
−1, g∗.

The functor g! is not exact in general, because it does not transform a final object of Sh(C)
into a final object of Sh(D) in general. See Sheaves, Remark 31.13. On the other hand,
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in the topological setting of Example 21.3 the functor j! is exact on abelian sheaves, see
Modules, Lemma 3.4. The following lemma gives the generalization to the case of sites.

Lemma 21.6. Let C and D be sites. Let u : C → D be a functor. Assume that
(a) u is cocontinuous,
(b) u is continuous, and
(c) fibre products and equalizers exist in C and u commutes with them.

In this case the functor g! above commutes with fibre products and equalizers (and more
generally with finite connected limits).

Proof. Assume (a), (b), and (c). We have g! = (up )#. Recall (Lemma 10.1) that lim-
its of sheaves are equal to the corresponding limits as presheaves. And sheafification com-
mutes with finite limits (Lemma 10.14). Thus it suffices to show that up commutes with
fibre products and equalizers. To do this it suffices that colimits over the categories (IuV )opp
of Section 5 commute with fibre products and equalizers. This follows from Lemma 5.1
and Categories, Lemma 19.9. �

The following lemma deals with a case that is even more like the morphism associated to
an open immersion of topological spaces.

Lemma 21.7. Let C and D be sites. Let u : C → D be a functor. Assume that
(a) u is cocontinuous,
(b) u is continuous, and
(c) u is fully faithful.

For g!, g
−1, g∗ as above the canonical maps F → g−1g!F and g−1g∗F → F are isomor-

phisms for all sheaves F on C.

Proof. Let X be an object of C. In Lemmas 20.2 and 21.5 we have seen that sheafifi-
cation is not necessary for the functors g−1 = (up )# and g∗ = (pu )#. We may compute
(g−1g∗F)(X) = g∗F(u(X)) = limF(Y ). Here the limit is over the category of pairs
(Y, u(Y ) → u(X)) where the morphisms u(Y ) → u(X) are not required to be of the
form u(α) with α a morphism of C. By assumption (c) we see that they automatically
come from morphisms of C and we deduce that the limit is the value on (X,u(idX)), i.e.,
F(X). This proves that g−1g∗F = F .

On the other hand, (g−1g!F)(X) = g!F(u(X)) = (upF)#(u(X)), and upF(u(X)) =
colimF(Y ). Here the colimit is over the category of pairs (Y, u(X)→ u(Y )) where the
morphisms u(X)→ u(Y ) are not required to be of the form u(α) with α a morphism of
C. By assumption (c) we see that they automatically come from morphisms of C and we
deduce that the colimit is the value on (X,u(idX)), i.e.,F(X). Thus for everyX ∈ Ob(C)
we have upF(u(X)) = F(X). Since u is cocontinuous and continuous any covering of
u(X) in D can be refined by a covering (!) {u(Xi) → u(X)} of D where {Xi → X}
is a covering in C. This implies that (upF)+(u(X)) = F(X) also, since in the colimit
defining the value of (upF)+ on u(X) we may restrict to the cofinal system of coverings
{u(Xi)→ u(X)} as above. Hence we see that (upF)+(u(X)) = F(X) for all objects X
of C as well. Repeating this argument one more time gives the equality (upF)#(u(X)) =
F(X) for all objects X of C. This produces the desired equality g−1g!F = F . �

Finally, here is a case that does not have any corresponding topological example. We
will use this lemma to see what happens when we enlarge a “partial universe” of schemes
keeping the same topology. In the situation of the lemma, the morphism of topoi g :
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Sh(C) → Sh(D) identifies Sh(C) as a subtopos of Sh(D) (Section 43) and moreover, the
given embedding has a retraction.

Lemma 21.8. Let C and D be sites. Let u : C → D be a functor. Assume that
(a) u is cocontinuous,
(b) u is continuous,
(c) u is fully faithful,
(d) fibre products exist in C and u commutes with them, and
(e) there exist final objects eC ∈ Ob(C), eD ∈ Ob(D) such that u(eC) = eD.

Let g!, g
−1, g∗ be as above. Then, u defines a morphism of sites f : D → C with f∗ = g−1,

f−1 = g!. The composition

Sh(C) g // Sh(D) f // Sh(C)

is isomorphic to the identity morphism of the topos Sh(C). Moreover, the functor f−1 is
fully faithful.

Proof. By assumption the functor u satisfies the hypotheses of Proposition 14.7.
Hence u defines a morphism of sites and hence a morphism of topoi f as in Lemma 15.2.
The formulas f∗ = g−1 and f−1 = g! are clear from the lemma cited and Lemma 21.5.
We have f∗ ◦ g∗ = g−1 ◦ g∗ ∼= id, and g−1 ◦ f−1 = g−1 ◦ g! ∼= id by Lemma 21.7.

We still have to show that f−1 is fully faithful. Let F ,G ∈ Ob(Sh(C)). We have to show
that the map

MorSh(C)(F ,G) −→ MorSh(D)(f−1F , f−1G)
is bijective. But the right hand side is equal to

MorSh(D)(f−1F , f−1G) = MorSh(C)(F , f∗f
−1G)

= MorSh(C)(F , g−1f−1G)
= MorSh(C)(F ,G)

(the first equality by adjunction) which proves what we want. �

Example 21.9. Let X be a topological space. Let i : Z → X be the inclusion of a
subset (with induced topology). Consider the functor u : XZar → ZZar , U 7→ u(U) =
Z ∩ U . At first glance it may appear that this functor is cocontinuous as well. After all,
sinceZ has the induced topology, shouldn’t any covering ofU∩Z it come from a covering
of U in X? Not so! Namely, what if U ∩ Z = ∅? In that case, the empty covering is a
covering of U ∩ Z , and the empty covering can only be refined by the empty covering.
Thus we conclude that u cocontinuous⇒ every nonempty open U of X has nonempty
intersection withZ. But this is not sufficient. For example, ifX = R the real number line
with the usual topology, and Z = R \ {0}, then there is an open covering of Z , namely
Z = {x < 0} ∪

⋃
n{1/n < x} which cannot be refined by the restriction of any open

covering of X .

22. Cocontinuous functors which have a right adjoint

It may happen that a cocontinuous functor u has a right adjoint v. In this case it is often
the case that v is continuous, and if so, then it defines a morphism of topoi (which is the
same as the one defined by u).
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Lemma 22.1. Let C andD be sites. Let u : C → D, and v : D → C be functors. Assume
that u is cocontinuous, and that v is a right adjoint to u. Let g : Sh(C) → Sh(D) be the
morphism of topoi associated to u, see Lemma 21.1. Then g∗F is equal to the presheaf vpF ,
in other words, (g∗F)(V ) = F(v(V )).

Proof. We have uphV = hv(V ) by Lemma 19.3. By Lemma 20.4 this implies that
g−1(h#

V ) = (uph#
V )# = (uphV )# = h#

v(V ). Hence for any sheaf F on C we have

(g∗F)(V ) = MorSh(D)(h#
V , g∗F)

= MorSh(C)(g−1(h#
V ),F)

= MorSh(C)(h#
v(V ),F)

= F(v(V ))

which proves the lemma. �

In the situation of Lemma 22.1 we see that vp transforms sheaves into sheaves. Hence we
can define vs = vp restricted to sheaves. Just as in Lemma 13.3 we see that vs : G 7→
(vpG)# is a left adjoint to vs. On the other hand, we have vs = g∗ and g−1 is a left adjoint
of g∗ as well. We conclude that g−1 = vs is exact.

Lemma 22.2. In the situation of Lemma 22.1. We have g∗ = vs = vp and g−1 =
vs = (vp )#. If v is continuous then v defines a morphism of sites f from C to D whose
associated morphism of topoi is equal to the morphism g associated to the cocontinuous
functor u. In other words, a continuous functor which has a cocontinuous left adjoint
defines a morphism of sites.

Proof. Clear from the discussion above the lemma and Definitions 14.1 and Lemma
15.2. �

Example 22.3. This example continues the discussion of Example 14.3 from which
we borrow the notation C, τ, τ ′, ε. Observe that the identity functor v : Cτ ′ → Cτ is
a continuous functor and the identity functor u : Cτ → Cτ ′ is a cocontinuous functor.
Moreover u is left adjoint to v. Hence the results of Lemmas 22.1 and 22.2 apply and we
conclude v defines a morphism of sites, namely

ε : Cτ −→ Cτ ′

whose corresponding morphism of topoi is the same as the morphism of topoi associated
to the cocontinuous functor u.

23. Cocontinuous functors which have a left adjoint

It may happen that a cocontinuous functor u has a left adjoint w.

Lemma 23.1. Let C andD be sites. Let g : Sh(C)→ Sh(D) be the morphism of topoi
associated to a continuous and cocontinuous functor u : C → D, see Lemmas 21.1 and 21.5.

(1) If w : D → C is a left adjoint to u, then
(a) g!F is the sheaf associated to the presheaf wpF , and
(b) g! is exact.

(2) if w is a continuous left adjoint, then g! has a left adjoint.
(3) If w is a cocontinuous left adjoint, then g! = h−1 and g−1 = h∗ where h :

Sh(D)→ Sh(C) is the morphism of topoi associated to w.
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Proof. Recall that g!F is the sheafification of upF . Hence (1)(a) follows from the
fact that up = wp by Lemma 19.3.

To see (1)(b) note that g! commutes with all colimits as g! is a left adjoint (Categories,
Lemma 24.5). Let i 7→ Fi be a finite diagram in Sh(C). Then limFi is computed in the
category of presheaves (Lemma 10.1). Since wp is a right adjoint (Lemma 5.4) we see that
wp limFi = limwpFi. Since sheafification is exact (Lemma 10.14) we conclude by (1)(a).

Assume w is continuous. Then g! = (wp )# = ws but sheafification isn’t necessary and
one has the left adjoint ws, see Lemmas 13.2 and 13.3.

Assumew is cocontinuous. The equality g! = h−1 follows from (1)(a) and the definitions.
The equality g−1 = h∗ follows from the equality g! = h−1 and uniqueness of adjoint
functor. Alternatively one can deduce it from Lemma 22.1. �

24. Existence of lower shriek

In this section we discuss some cases of morphisms of topoi f for which f−1 has a left
adjoint f!.

Lemma 24.1. Let C , D be two sites. Let f : Sh(D)→ Sh(C) be a morphism of topoi.
Let E ⊂ Ob(D) be a subset such that

(1) for V ∈ E there exists a sheaf G on C such that f−1F(V ) = MorSh(C)(G,F)
functorially for F in Sh(C),

(2) every object of D has a covering by objects of E.
Then f−1 has a left adjoint f!.

Proof. By the Yoneda lemma (Categories, Lemma 3.5) the sheafGV corresponding to
V ∈ E is defined up to unique isomorphism by the formula f−1F(V ) = MorSh(C)(GV ,F).
Recall that f−1F(V ) = MorSh(D)(h#

V , f
−1F). Denote iV : h#

V → f−1GV the map cor-
responding to id in Mor(GV ,GV ). Functoriality in (1) implies that the bijection is given
by

MorSh(C)(GV ,F)→ MorSh(D)(h#
V , f

−1F), ϕ 7→ f−1ϕ ◦ iV
For any V1, V2 ∈ E there is a canonical map

MorSh(D)(h#
V2
, h#
V1

)→ HomSh(C)(GV2 ,GV1), ϕ 7→ f!(ϕ)

which is characterized by f−1(f!(ϕ)) ◦ iV2 = iV1 ◦ϕ. Note that ϕ 7→ f!(ϕ) is compatible
with composition; this can be seen directly from the characterization. Hence h#

V 7→ GV
and ϕ 7→ f!ϕ is a functor from the full subcategory of Sh(D) whose objects are the h#

V .

Let J be a set and let J → E , j 7→ Vj be a map. Then we have a functorial bijection

MorSh(C)(
∐
GVj ,F) −→ MorSh(D)(

∐
h#
Vj
, f−1F)

using the product of the bijections above. Hence we can extend the functor f! to the full
subcategory of Sh(D) whose objects are coproducts of h#

V with V ∈ E.

Given an arbitrary sheafH on D we choose a coequalizer diagram

H1
//
// H0 // H
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where Hi =
∐
h#
Vi,j

is a coproduct with Vi,j ∈ E. This is possible by assumption (2),
see Lemma 12.5 (for those worried about set theoretical issues, note that the construction
given in Lemma 12.5 is canonical). Define f!(H) to be the sheaf on C which makes

f!H1
//
// f!H0 // f!H

a coequalizer diagram. Then

Mor(f!H,F) = Equalizer( Mor(f!H0,F) //
// Mor(f!H1,F) )

= Equalizer( Mor(H0, f
−1F) //

// Mor(H1, f
−1F) )

= Hom(H, f−1F)

Hence we see that we can extend f! to the whole category of sheaves on D. �

25. Localization

Let C be a site. Let U ∈ Ob(C). See Categories, Example 2.13 for the definition of the cat-
egory C/U of objects over U . We turn C/U into a site by declaring a family of morphisms
{Vj → V } of objects over U to be a covering of C/U if and only if it is a covering in C.
Consider the forgetful functor

jU : C/U −→ C.
This is clearly cocontinuous and continuous. Hence by the results of the previous sections
we obtain a morphism of topoi

jU : Sh(C/U) −→ Sh(C)

given by j−1
U and jU∗, as well as a functor jU !.

Definition 25.1. Let C be a site. Let U ∈ Ob(C).
(1) The site C/U is called the localization of the site C at the object U .
(2) The morphism of topoi jU : Sh(C/U) → Sh(C) is called the localization mor-

phism.
(3) The functor jU∗ is called the direct image functor.
(4) For a sheaf F on C the sheaf j−1

U F is called the restriction of F to C/U .
(5) For a sheaf G on C/U the sheaf jU !G is called the extension of G by the empty

set.

The restriction j−1
U F is the sheaf defined by the rule j−1

U F(X/U) = F(X) as expected.
The extension by the empty set also has a very easy description in this case; here it is.

Lemma 25.2. Let C be a site. Let U ∈ Ob(C). Let G be a presheaf on C/U . Then
jU !(G#) is the sheaf associated to the presheaf

V 7−→
∐

ϕ∈MorC(V,U)
G(V ϕ−→ U)

with obvious restriction mappings.

Proof. By Lemma 21.5 we have jU !(G#) = ((jU )pG#)#. By Lemma 13.4 this is
equal to ((jU )pG)#. Hence it suffices to prove that (jU )p is given by the formula above
for any presheaf G on C/U . OK, and by the definition in Section 5 we have

(jU )pG(V ) = colim(W/U,V→W ) G(W )
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Now it is clear that the category of pairs (W/U, V → W ) has an object Oϕ = (ϕ : V →
U, id : V → V ) for every ϕ : V → U , and moreover for any object there is a unique
morphism from one of the Oϕ into it. The result follows. �

Lemma 25.3. Let C be a site. Let U ∈ Ob(C). LetX/U be an object of C/U . Then we
have jU !(h#

X/U ) = h#
X .

Proof. Denote p : X → U the structure morphism of X . By Lemma 25.2 we see
jU !(h#

X/U ) is the sheaf associated to the presheaf

V 7−→
∐

ϕ∈MorC(V,U)
{ψ : V → X | p ◦ ψ = ϕ}

This is clearly the same thing as MorC(V,X). Hence the lemma follows. �

We have jU !(∗) = h#
U by either of the two lemmas above. Hence for every sheaf G over

C/U there is a canonical map of sheaves jU !G → h#
U . This characterizes sheaves in the

essential image of jU !.

Lemma 25.4. Let C be a site. Let U ∈ Ob(C). The functor jU ! gives an equivalence
of categories

Sh(C/U) −→ Sh(C)/h#
U

Proof. Let us denote objects of C/U as pairs (X, a) where X is an object of C and
a : X → U is a morphism of C. Similarly, objects of Sh(C)/h#

U are pairs (F , ϕ). The
functor Sh(C/U)→ Sh(C)/h#

U sends G to the pair (jU !G, γ) where γ is the composition
of jU !G → jU !∗ with the identification jU !∗ = h#

U .

Let us construct a functor from Sh(C)/h#
U to Sh(C/U). Suppose that (F , ϕ) is given.

For an object (X, a) of C/U we consider the set Fϕ(X, a) of elements s ∈ F(X) which
under ϕ map to the image of a ∈ MorC(X,U) = hU (X) in h#

U (X). It is easy to see that
(X, a) 7→ Fϕ(X, a) is a sheaf on C/U . Clearly, the rule (F , ϕ) 7→ Fϕ defines a functor
Sh(C)/h#

U → Sh(C/U).

Consider also the functor PSh(C)/hU → PSh(C/U), (F , ϕ) 7→ Fϕ where Fϕ(X, a) is
defined as the set of elements ofF(X) mapping to a ∈ hU (X). We claim that the diagram

PSh(C)/hU //

��

PSh(C/U)

��
Sh(C)/h#

U
// Sh(C/U)

commutes, where the vertical arrows are given by sheafification. To see this5, it suffices
to prove that the construction commutes with the functor F 7→ F+ of Lemmas 10.3 and
10.4 and Theorem 10.10. Commutation with F 7→ F+ follows from the fact that given

5An alternative is to describe Fϕ by the cartesian diagram

Fϕ //

��

∗

��
F|C/U // hU |C/U

for presheaves and

Fϕ //

��

∗

��
F|C/U // h#

U |C/U

for sheaves and use that restriction to C/U commutes with sheafification.



358 7. SITES AND SHEAVES

(X, a) the categories of coverings of (X, a) in C/U and coverings ofX in C are canonically
identified.

Next, let PSh(C/U) → PSh(C)/hU send G to the pair (jPShU ! G, γ) where jPShU ! G the
presheaf defined by the formula in Lemma 25.2 and γ is the composition of jPShU ! G → jU !∗
with the identification jPShU ! ∗ = hU (obvious from the formula). Then it is immediately
clear that the diagram

PSh(C/U) //

��

PSh(C)/hU

��
Sh(C/U) // Sh(C)/h#

U

commutes, where the vertical arrows are sheafification. Putting everything together it
suffices to show there are functorial isomorphisms (jPShU ! G)γ = G for G in PSh(C/U) and
jPShU ! Fϕ = F for (F , ϕ) in PSh(C)/hU . The value of the presheaf (jPShU ! G)γ on (X, a) is
the fibre of the map ∐

a′:X→U
G(X, a′)→ MorC(X,U)

over awhich is G(X, a). This proves the first equality. The value of the presheaf jPShU ! Fϕ
is on X is ∐

a:X→U
Fϕ(X, a) = F(X)

because given a set map S → S′ the set S is the disjoint union of its fibres. �

Lemma 25.4 says the functor jU ! is the composition

Sh(C/U)→ Sh(C)/h#
U → Sh(C)

where the first arrow is an equivalence.

Lemma 25.5. Let C be a site. Let U ∈ Ob(C). The functor jU ! commutes with fibre
products and equalizers (and more generally finite connected limits). In particular, ifF ⊂
F ′ in Sh(C/U), then jU !F ⊂ jU !F ′.

Proof. Via Lemma 25.4 and the fact that an equivalence of categories commutes with
all limits, this reduces to the fact that the functor Sh(C)/h#

U → Sh(C) commutes with
fibre products and equalizers. Alternatively, one can prove this directly using the de-
scription of jU ! in Lemma 25.2 using that sheafification is exact. (Also, in case C has fibre
products and equalizers, the result follows from Lemma 21.6.) �

Lemma 25.6. Let C be a site. Let U ∈ Ob(C). The functor jU ! reflects injections and
surjections.

Proof. We have to show jU ! reflects monomorphisms and epimorphisms, see Lemma
11.2. Via Lemma 25.4 this reduces to the fact that the functor Sh(C)/h#

U → Sh(C) reflects
monomorphisms and epimorphisms. �

Lemma 25.7. Let C be a site. Let U ∈ Ob(C). For any sheaf F on C we have
jU !j

−1
U F = F × h#

U .

Proof. This is clear from the description of jU ! in Lemma 25.2. �
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Lemma 25.8. Let C be a site. Let f : V → U be a morphism of C. Then there exists a
commutative diagram

C/V

jV !!

j
// C/U

jU~~
C

of continuous and cocontinuous functors. The functor j : C/V → C/U , (a : W → V ) 7→
(f ◦ a : W → U) is identified with the functor jV/U : (C/U)/(V/U) → C/U via the
identification (C/U)/(V/U) = C/V . Moreover we have jV ! = jU ! ◦ j!, j−1

V = j−1 ◦ j−1
U ,

and jV ∗ = jU∗ ◦ j∗.

Proof. The commutativity of the diagram is immediate. The agreement of j with
jV/U follows from the definitions. By Lemma 21.2 we see that the following diagram of
morphisms of topoi

(25.8.1)

Sh(C/V )

jV %%

j
// Sh(C/U)

jUyy
Sh(C)

is commutative. This proves that j−1
V = j−1 ◦ j−1

U and jV ∗ = jU∗ ◦ j∗. The equality
jV ! = jU ! ◦ j! follows formally from adjointness properties. �

Lemma 25.9. Notation C , f : V → U , jU , jV , and j as in Lemma 25.8. Via the
identifications Sh(C/V ) = Sh(C)/h#

V and Sh(C/U) = Sh(C)/h#
U of Lemma 25.4 we

have
(1) the functor j−1 has the following description

j−1(H ϕ−→ h#
U ) = (H×ϕ,h#

U
,f h

#
V → h#

V ).

(2) the functor j! has the following description

j!(H
ϕ−→ h#

V ) = (H hf◦ϕ−−−→ h#
U )

Proof. Proof of (2). Recall that the identification Sh(C/V ) → Sh(C)/h#
V sends G

to jV !G → jV !(∗) = h#
V and similarly for Sh(C/U) → Sh(C)/h#

U . Thus j!G is mapped
to jU !(j!G)→ jU !(∗) = h#

U and (2) follows because jU !j! = jV ! by Lemma 25.8.
The reader can now prove (1) by using that j−1 is the right adjoint to j! and using that
the rule in (1) is the right adjoint to the rule in (2). Here is a direct proof. Suppose that
ϕ : H → h#

U is an object of Sh(C)/h#
U . By the proof of Lemma 25.4 this corresponds to

the sheafHϕ on C/U defined by the rule
(a : W → U) 7−→ {s ∈ H(W ) | ϕ(s) = a}

on C/U . The pullback j−1Hϕ to C/V is given by the rule
(a : W → V ) 7−→ {s ∈ H(W ) | ϕ(s) = f ◦ a}

by the description of j−1 = j−1
U/V as the restriction of Hϕ to C/V . On the other hand,

applying the rule to the object

H′ = H×ϕ,h#
U
,f h

#
V

ϕ′
// h#
V
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of Sh(C)/h#
V we getH′

ϕ′ given by

(a : W → V ) 7−→{s′ ∈ H′(W ) | ϕ′(s′) = a}

={(s, a′) ∈ H(W )× h#
V (W ) | a′ = a and ϕ(s) = f ◦ a′}

which is exactly the same rule as the one describing j−1Hϕ above. �

Remark 25.10. Localization and presheaves. Let C be a category. LetU be an object of
C. Strictly speaking the functors j−1

U , jU∗ and jU ! have not been defined for presheaves.
But of course, we can think of a presheaf as a sheaf for the chaotic topology on C (see
Example 6.6). Hence we also obtain a functor

j−1
U : PSh(C) −→ PSh(C/U)

and functors
jU∗, jU ! : PSh(C/U) −→ PSh(C)

which are right, left adjoint to j−1
U . By Lemma 25.2 we see that jU !G is the presheaf

V 7−→
∐

ϕ∈MorC(V,U)
G(V ϕ−→ U)

In addition the functor jU ! commutes with fibre products and equalizers.

Remark 25.11. Let C be a site. Let U → V be a morphism of C. The cocontinuous
functors C/U → C and j : C/U → C/V (Lemma 25.8) satisfy property P of Remark 20.5.
For example, if we have objects (X/U), (W/V ), a morphism g : j(X/U)→ (W/V ), and a
covering {fi : (Wi/V )→ (W/V )} then (X×WWi/U) is an avatar of (X/U)×g,(W/V ),fi
(Wi/V ) and the family {(X ×W Wi/U)→ (X/U)} is a covering of C/U .

26. Glueing sheaves

This section is the analogue of Sheaves, Section 33.

Lemma 26.1. Let C be a site. Let {Ui → U} be a covering of C. Let F , G be sheaves
on C. Given a collection

ϕi : F|C/Ui −→ G|C/Ui
of maps of sheaves such that for all i, j ∈ I the maps ϕi, ϕj restrict to the same map
ϕij : F|C/Ui×UUj → G|C/Ui×UUj then there exists a unique map of sheaves

ϕ : F|C/U −→ G|C/U
whose restriction to each C/Ui agrees with ϕi.

Proof. The restrictions used in the lemma are those of Lemma 25.8. Let V/U be an
object of C/U . Set Vi = Ui ×U V and denote V = {Vi → V }. Observe that (Ui ×U
Uj)×U V = Vi ×V Vj . Then we have F|C/Ui(Vi/Ui) = F(Vi) and F|C/Ui×UUj (Vi ×V
Vj/Ui×U Uj) = F(Vi×V Vj) and similarly for G. Thus we can define ϕ on sections over
V as the dotted arrows in the diagram

F(V ) H0(V,F)

��

// ∏F(Vi)∏
ϕi

��

//
//
∏
F(Vi ×V Vj)∏
ϕij

��
G(V ) H0(V,G) // ∏G(Vi)

//
//
∏
G(Vi ×V Vj)

The equality signs come from the sheaf condition; see Section 10 for the notationH0(V,−).
We omit the verification that these maps are compatible with the restriction maps. �
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The previous lemma implies that given two sheaves F , G on a site C the rule

U 7−→ MorSh(C/U)(F|C/U ,G|C/U )

defines a sheaf Hom(F ,G). This is a kind of internal hom sheaf. It is seldom used in
the setting of sheaves of sets, and more usually in the setting of sheaves of modules, see
Modules on Sites, Section 27.

Lemma 26.2. Let C be a site. Let F , G and H be sheaves on C. There is a canonical
bijection

MorSh(C)(F × G,H) = MorSh(C)(F ,Hom(G,H))
which is functorial in all three entries.

Proof. The lemma says that the functors −× G andHom(G,−) are adjoint to each
other. To show this, we use the notion of unit and counit, see Categories, Section 24. The
unit

ηF : F −→ Hom(G,F × G)
sends s ∈ F(U) to the map G|C/U → F|C/U × G|C/U which over V/U is given by

G(V ) −→ F(V )× G(V ), t 7−→ (s|V , t).

The counit
εH : Hom(G,H)× G −→ H

is the evaluation map. It is given by the rule

MorSh(C/U)(G|C/U ,H|C/U )× G(U) −→ H(U), (ϕ, s) 7−→ ϕ(s).

Then for each ϕ : F × G → H, the corresponding morphism F → Hom(G,H) is given
by mapping each section s ∈ F(U) to the morphism of sheaves on C/U which on sections
over V/U is given by

G(V ) −→ H(V ), t 7−→ ϕ(s|V , t).

Conversely, for each ψ : F → Hom(G,H), the corresponding morphism F × G → H is
given by

F(U)× G(U) −→ H(U), (s, t) 7−→ ψ(s)(t)
on sections over an object U . We omit the details of the proof showing that these con-
structions are mutually inverse. �

Lemma 26.3. Let C be a site and U ∈ Ob(C). Then Hom(h#
U ,F) = j∗(F|C/U ) for

F in Sh(C).

Proof. This can be shown by directly constructing an isomorphism of sheaves. In-
stead we argue as follows. Let G be a sheaf on C. Then

Mor(G, j∗(F|C/U )) = Mor(G|C/U ,F|C/U )
= Mor(j!(G|C/U ),F)

= Mor(G × h#
U ,F)

= Mor(G,Hom(h#
U ,F))

and we conclude by the Yoneda lemma. Here we used Lemmas 26.2 and 25.7. �
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Let C be a site. Let {Ui → U}i∈I be a covering of C. For each i ∈ I let Fi be a sheaf of
sets on C/Ui. For each pair i, j ∈ I , let

ϕij : Fi|C/Ui×UUj −→ Fj |C/Ui×UUj
be an isomorphism of sheaves of sets. Assume in addition that for every triple of indices
i, j, k ∈ I the following diagram is commutative

Fi|C/Ui×UUj×UUk ϕik
//

ϕij
))

Fk|C/Ui×UUj×UUk

Fj |C/Ui×UUj×UUk

ϕjk

55

We will call such a collection of data (Fi, ϕij) a glueing data for sheaves of sets with
respect to the covering {Ui → U}i∈I .

Lemma 26.4. Let C be a site. Let {Ui → U}i∈I be a covering of C. Given any glueing
data (Fi, ϕij) for sheaves of sets with respect to the covering {Ui → U}i∈I there exists a
sheaf of sets F on C/U together with isomorphisms

ϕi : F|C/Ui → Fi
such that the diagrams

F|C/Ui×UUj

id
��

ϕi
// Fi|C/Ui×UUj

ϕij

��
F|C/Ui×UUj

ϕj // Fj |C/Ui×UUj
are commutative.

Proof. Let us describe how to construct the sheaf F on C/U . Let a : V → U be an
object of C/U . Then

F(V/U) = {(si)i∈I ∈
∏
i∈I
Fi(Ui ×U V/Ui) | ϕij(si|Ui×UUj×UV ) = sj |Ui×UUj×UV }

We omit the construction of the restriction mappings. We omit the verification that this
is a sheaf. We omit the construction of the isomorphisms ϕi, and we omit proving the
commutativity of the diagrams of the lemma. �

Let C be a site. Let {Ui → U}i∈I be a covering of C. Let F be a sheaf on C/U . Associated
toF we have its canonical glueing data given by the restrictionsF|C/Ui and the canonical
isomorphisms (

F|C/Ui
)
|C/Ui×UUj =

(
F|C/Uj

)
|C/Ui×UUj

coming from the fact that the composition of the functors C/Ui ×U Uj → C/Ui → C/U
and C/Ui ×U Uj → C/Uj → C/U are equal.

Lemma 26.5. Let C be a site. Let {Ui → U}i∈I be a covering of C. The category
Sh(C/U) is equivalent to the category of glueing data via the functor that associates to F
on C/U the canonical glueing data.

Proof. In Lemma 26.1 we saw that the functor is fully faithful, and in Lemma 26.4 we
proved that it is essentially surjective (by explicitly constructing a quasi-inverse functor).

�
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Let C be a site. We are going to discuss a version of glueing sheaves on the entire site C. For
each object U in C , let FU be a sheaf on C/U . Recall that there is a functor jf : C/V →
C/U associated to each morphism f : V → U in C , given by (a : W → V ) 7→ (f ◦ a :
W → U). For each such f , let

cf : j−1
f FU → FV

be an isomorphism of sheaves. Assume that given any two arrows f : V → U and g :
W → V in C , the composition cg ◦ j−1

g cf is equal to cf◦g . We will call such a collection
of data (FU , cf ) an absolute glueing data for sheaves of sets on C. A morphism of absolute
glueing data (FU , cf ) → (GU , c′

f ) is given by a collection (ϕU ) of morphisms of sheaves
ϕU : FU → GU , such that

j−1
f FU cf

//

j−1
f
ϕU

��

FV

ϕV

��
j−1
f GU

c′
f // GV

commutes for every morphism f : V → U in C.

Associated to any sheaf F on C is its canonical absolute glueing data (F|C/U , cf ), where
the canonical isomorphisms cf : j−1

f F|C/U → F|C/V for f : V → U come from the
relation jV = jU ◦ jf as in Lemma 25.8. Any morphism ϕ : F → G of sheaves of C
induces a morphism (ϕ|C/U ) of canonical absolute glueing data.

Lemma 26.6. Let C be a site. The category Sh(C) is equivalent to the category of ab-
solute glueing data via the functor that associates toF on C the canonical absolute glueing
data.

Proof. Given an absolute glueing data (FU , cf ), we construct a sheaf F on C by
setting F(U) = FU (U), where restriction along f : V → U given by the commutative
diagram

FU (U) // FU (V )
cf // FV (V )

F(U) // F(V )

The compatibility condition cg ◦ j−1
g cf = cf◦g ensures that F is a presheaf, and also

ensures that the maps cf : FU (V ) → F(V ) define an isomorphism FU → F|C/U for
each U . Since each FU is a sheaf, this implies that F is a sheaf as well. The functor
(FU , cf ) 7→ F just constructed is quasi-inverse to the functor which takes a sheaf on C to
its canonical glueing data. Further details omitted. �

Remark 26.7. There is a variant of Lemma 26.6 which comes up in algebraic geom-
etry. Namely, suppose that C is a site with all fibre products and for each U ∈ Ob(C) we
are given a full subcategory Uτ ⊂ C/U with the following properties

(1) U/U is in Uτ ,
(2) for V/U in Uτ and covering {Vj → V } of C we have Vj/U in Uτ and
(3) for a morphism U ′ → U of C and V/U in Uτ the base change V ′ = V ×U U ′ is

in U ′
τ .



364 7. SITES AND SHEAVES

In this setting Uτ is a site for all U in C and the base change functor Uτ → U ′
τ defines

a morphism fτ : Uτ → U ′
τ of sites for all morphisms f : U ′ → U of C. The glueing

statement we obtain then reads as follows: A sheaf F on C is given by the following data:
(1) for every U ∈ Ob(C) a sheaf FU on Uτ ,
(2) for every f : U ′ → U in C a map cf : f−1

τ FU → FU ′ .
These data are subject to the following conditions:

(a) given f : U ′ → U and g : U ′′ → U ′ in C the composition cg ◦ g−1
τ cf is equal to

cf◦g , and
(b) if f : U ′ → U is in Uτ then cf is an isomorphism.

If we ever need this we will precisely state and prove this here. (Note that this result is
slightly different from the statements above as we are not requiring all the maps cf to be
isomorphisms!)

27. More localization

In this section we prove a few lemmas on localization where we impose some additional
hypotheses on the site on or the object we are localizing at.

Lemma 27.1. Let C be a site. Let U ∈ Ob(C). If the topology on C is subcanonical,
see Definition 12.2, and if G is a sheaf on C/U , then

jU !(G)(V ) =
∐

ϕ∈MorC(V,U)
G(V ϕ−→ U),

in other words sheafification is not necessary in Lemma 25.2.

Proof. Let V = {Vi → V }i∈I be a covering of V in the site C. We are going to check
the sheaf condition for the presheafH of Lemma 25.2 directly. Let (si, ϕi)i∈I ∈

∏
iH(Vi),

This means ϕi : Vi → U is a morphism in C , and si ∈ G(Vi
ϕi−→ U). The restriction of the

pair (si, ϕi) to Vi×V Vj is the pair (si|Vi×V Vj/U , pr1 ◦ϕi), and likewise the restriction of
the pair (sj , ϕj) toVi×V Vj is the pair (sj |Vi×V Vj/U , pr2◦ϕj). Hence, if the family (si, ϕi)
lies in Ȟ0(V,H), then we see that pr1 ◦ϕi = pr2 ◦ϕj . The condition that the topology on
C is weaker than the canonical topology then implies that there exists a unique morphism
ϕ : V → U such that ϕi is the composition of Vi → V with ϕ. At this point the sheaf
condition for G guarantees that the sections si glue to a unique section s ∈ G(V ϕ−→ U).
Hence (s, ϕ) ∈ H(V ) as desired. �

Lemma 27.2. Let C be a site. Let U ∈ Ob(C). Assume C has products of pairs of
objects. Then

(1) the functor jU has a continuous right adjoint, namely the functor v(X) = X ×
U/U ,

(2) the functor v defines a morphism of sites C/U → C whose associated morphism
of topoi equals jU : Sh(C/U)→ Sh(C), and

(3) we have jU∗F(X) = F(X × U/U).

Proof. The functor v being right adjoint to jU means that given Y/U andX we have

MorC(Y,X) = MorC/U (Y/U,X × U/U)
which is clear. To check that v is continuous let {Xi → X} be a covering of C. By the
third axiom of a site (Definition 6.2) we see that

{Xi ×X (X × U)→ X ×X (X × U)} = {Xi × U → X × U}
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is a covering of C also. Hence v is continuous. The other statements of the lemma follow
from Lemmas 22.1 and 22.2. �

Lemma 27.3. Let C be a site. Let U → V be a morphism of C. Assume C has fibre
products. Let j be as in Lemma 25.8. Then

(1) the functor j : C/U → C/V has a continuous right adjoint, namely the functor
v : (X/V ) 7→ (X ×V U/U),

(2) the functor v defines a morphism of sites C/U → C/V whose associated mor-
phism of topoi equals j , and

(3) we have j∗F(X/V ) = F(X ×V U/U).

Proof. Follows from Lemma 27.2 since j may be viewed as a localization functor by
Lemma 25.8. �

A fundamental property of an open immersion is that the restriction of the pushforward
and the restriction of the extension by the empty set produces back the original sheaf. This
is not always true for the functors associated to jU above. It is true when U is a “subobject
of the final object”.

Lemma 27.4. Let C be a site. Let U ∈ Ob(C). Assume that every X in C has at most
one morphism to U . Let F be a sheaf on C/U . The canonical maps F → j−1

U jU !F and
j−1
U jU∗F → F are isomorphisms.

Proof. This is a special case of Lemma 21.7 because the assumption onU is equivalent
to the fully faithfulness of the localization functor C/U → C. �

Lemma 27.5. Let C be a site. Let

U ′

��

// U

��
V ′ // V

be a commutative diagram of C. The morphisms of Lemma 25.8 produce commutative
diagrams

C/U ′

jU′/V ′

��

jU′/U

// C/U

jU/V

��
C/V ′

jV ′/V // C/V

and

Sh(C/U ′)

jU′/V ′

��

jU′/U

// Sh(C/U)

jU/V

��
Sh(C/V ′)

jV ′/V // Sh(C/V )

of continuous and cocontinuous functors and of topoi. Moreover, if the initial diagram of
C is cartesian, then we have j−1

V ′/V ◦ jU/V,∗ = jU ′/V ′,∗ ◦ j−1
U ′/U .

Proof. The commutativity of the left square in the first statement of the lemma is
immediate from the definitions. It implies the commutativity of the diagram of topoi
by Lemma 21.2. Assume the diagram is cartesian. By the uniqueness of adjoint functors,
to show j−1

V ′/V ◦ jU/V,∗ = jU ′/V ′,∗ ◦ j−1
U ′/U is equivalent to showing j−1

U/V ◦ jV ′/V ! =
jU ′/U ! ◦ j−1

U ′/V ′ . Via the identifications of Lemma 25.4 we may think of our diagram of
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topoi as

Sh(C)/h#
U ′

��

// Sh(C)/h#
U

��
Sh(C)/h#

V ′
// Sh(C)/h#

V

and we know how to interpret the functors j−1 and j! by Lemma 25.9. Thus we have to
show given F → h#

V ′ that

F ×h#
V ′
h#
U ′ = F ×h#

V
h#
U

as sheaves with map to h#
U . This is true because hU ′ = hV ′ ×hV hU and hence also

h#
U ′ = h#

V ′ ×h#
V
h#
U

as sheafification is exact. �

28. Localization and morphisms

The following lemma is important in order to understand relation between localization
and morphisms of sites and topoi.

Lemma 28.1. Let f : C → D be a morphism of sites corresponding to the contin-
uous functor u : D → C. Let V ∈ Ob(D) and set U = u(V ). Then the functor
u′ : D/V → C/U , V ′/V 7→ u(V ′)/U determines a morphism of sites f ′ : C/U → D/V .
The morphism f ′ fits into a commutative diagram of topoi

Sh(C/U)
jU

//

f ′

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D).

Using the identifications Sh(C/U) = Sh(C)/h#
U and Sh(D/V ) = Sh(D)/h#

V of Lemma
25.4 the functor (f ′)−1 is described by the rule

(f ′)−1(H ϕ−→ h#
V ) = (f−1H f−1ϕ−−−→ h#

U ).

Finally, we have f ′
∗j

−1
U = j−1

V f∗.

Proof. It is clear that u′ is continuous, and hence we get functors f ′
∗ = (u′)s = (u′)p

(see Sections 5 and 13) and an adjoint (f ′)−1 = (u′)s = ((u′)p )#. The assertion f ′
∗j

−1
U =

j−1
V f∗ follows as

(j−1
V f∗F)(V ′/V ) = f∗F(V ′) = F(u(V ′)) = (j−1

U F)(u(V ′)/U) = (f ′
∗j

−1
U F)(V ′/V )

which holds even for presheaves. What isn’t clear a priori is that (f ′)−1 is exact, that the
diagram commutes, and that the description of (f ′)−1 holds.
LetH be a sheaf on D/V . Let us compute jU !(f ′)−1H. We have

jU !(f ′)−1H = ((jU )p(u′
pH)#)#

= ((jU )pu′
pH)#

= (up(jV )pH)#

= f−1jV !H
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The first equality by unwinding the definitions. The second equality by Lemma 13.4. The
third equality because u ◦ jV = jU ◦ u′. The fourth equality by Lemma 13.4 again. All
of the equalities above are isomorphisms of functors, and hence we may interpret this as
saying that the following diagram of categories and functors is commutative

Sh(C/U)
jU!

// Sh(C)/h#
U

// Sh(C)

Sh(D/V ) jV ! //

(f ′)−1

OO

Sh(D)/h#
V

//

f−1

OO

Sh(D)

f−1

OO

The middle arrow makes sense as f−1h#
V = (hu(V ))# = h#

U , see Lemma 13.5. In particular
this proves the description of (f ′)−1 given in the statement of the lemma. Since by Lemma
25.4 the left horizontal arrows are equivalences and since f−1 is exact by assumption we
conclude that (f ′)−1 = u′

s is exact. Namely, because it is a left adjoint it is already right
exact (Categories, Lemma 24.5). Hence we only need to show that it transforms a final
object into a final object and commutes with fibre products (Categories, Lemma 23.2). Both
are clear for the induced functor f−1 : Sh(D)/h#

V → Sh(C)/h#
U . This proves that f ′ is a

morphism of sites.

We still have to verify that (f ′)−1j−1
V = j−1

U f−1. To see this use the formula above and
the description in Lemma 25.7. Namely, combined these give, for any sheaf G on D, that

jU !(f ′)−1j−1
V G = f−1jV !j

−1
V G = f−1(G × h#

V ) = f−1G × h#
U = jU !j

−1
U f−1G.

Since the functor jU ! induces an equivalence Sh(C/U)→ Sh(C)/h#
U we conclude. �

The following lemma is a special case of the more general Lemma 28.1 above.
Lemma 28.2. Let C , D be sites. Let u : D → C be a functor. Let V ∈ Ob(D). Set

U = u(V ). Assume that
(1) C and D have all finite limits,
(2) u is continuous, and
(3) u commutes with finite limits.

There exists a commutative diagram of morphisms of sites

C/U
jU

//

f ′

��

C

f

��
D/V

jV // D

where the right vertical arrow corresponds to u, the left vertical arrow corresponds to the
functor u′ : D/V → C/U , V ′/V 7→ u(V ′)/u(V ) and the horizontal arrows correspond
to the functors C → C/U , X 7→ X × U and D → D/V , Y 7→ Y × V as in Lemma 27.2.
Moreover, the associated diagram of morphisms of topoi is equal to the diagram of Lemma
28.1. In particular we have f ′

∗j
−1
U = j−1

V f∗.
Proof. Note that u satisfies the assumptions of Proposition 14.7 and hence induces

a morphism of sites f : C → D by that proposition. It is clear that u induces a functor
u′ as indicated. It is clear that this functor also satisfies the assumptions of Proposition
14.7. Hence we get a morphism of sites f ′ : C/U → D/V . The diagram commutes by our
definition of composition of morphisms of sites (see Definition 14.5) and because

u(Y × V ) = u(Y )× u(V ) = u(Y )× U
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which shows that the diagram of categories and functors opposite to the diagram of the
lemma commutes. �

At this point we can localize a site, we know how to relocalize, and we can localize a
morphism of sites at an object of the site downstairs. If we combine these then we get
the following kind of diagram.

Lemma 28.3. Let f : C → D be a morphism of sites corresponding to the continuous
functor u : D → C. Let V ∈ Ob(D), U ∈ Ob(C) and c : U → u(V ) a morphism of C.
There exists a commutative diagram of topoi

Sh(C/U)
jU

//

fc

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D).

We have fc = f ′ ◦ jU/u(V ) where f ′ : Sh(C/u(V )) → Sh(D/V ) is as in Lemma 28.1
and jU/u(V ) : Sh(C/U) → Sh(C/u(V )) is as in Lemma 25.8. Using the identifications
Sh(C/U) = Sh(C)/h#

U and Sh(D/V ) = Sh(D)/h#
V of Lemma 25.4 the functor (fc)−1 is

described by the rule

(fc)−1(H ϕ−→ h#
V ) = (f−1H×f−1ϕ,h#

u(V ),c
h#
U → h#

U ).

Finally, given any morphisms b : V ′ → V , a : U ′ → U and c′ : U ′ → u(V ′) such that

U ′
c′
//

a

��

u(V ′)

u(b)
��

U
c // u(V )

commutes, then the diagram

Sh(C/U ′)
jU′/U

//

fc′

��

Sh(C/U)

fc

��
Sh(D/V ′)

jV ′/V // Sh(D/V ).
commutes.

Proof. This lemma proves itself, and is more a collection of things we know at this
stage of the development of theory. For example the commutativity of the first square fol-
lows from the commutativity of Diagram (25.8.1) and the commutativity of the diagram
in Lemma 28.1. The description of f−1

c follows on combining Lemma 25.9 with Lemma
28.1. The commutativity of the last square then follows from the equality

f−1H×h#
u(V ),c

h#
U ×h#

U
h#
U ′ = f−1(H×h#

V
h#
V ′)×h#

u(V ′),c′
h#
U ′

which is formal using that f−1h#
V = h#

u(V ) and f−1h#
V ′ = h#

u(V ′), see Lemma 13.5. �

In the following lemma we find another kind of functoriality of localization, in case the
morphism of topoi comes from a cocontinuous functor. This is a kind of diagram which
is different from the diagram in Lemma 28.1, and in particular, in general the equality
f ′

∗j
−1
U = j−1

V f∗ seen in Lemma 28.1 does not hold in the situation of the following lemma.
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Lemma 28.4. Let C , D be sites. Let u : C → D be a cocontinuous functor. Let U be
an object of C , and set V = u(U). We have a commutative diagram

C/U
jU

//

u′

��

C

u

��
D/V

jV // D

where the left vertical arrow is u′ : C/U → D/V , U ′/U 7→ V ′/V . Then u′ is cocontinu-
ous also and we get a commutative diagram of topoi

Sh(C/U)
jU

//

f ′

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D)

where f (resp. f ′) corresponds to u (resp. u′).

Proof. The commutativity of the first diagram is clear. It implies the commutativity
of the second diagram provided we show that u′ is cocontinuous.

Let U ′/U be an object of C/U . Let {Vj/V → u(U ′)/V }j∈J be a covering of u(U ′)/V in
D/V . Since u is cocontinuous there exists a covering {U ′

i → U ′}i∈I such that the family
{u(U ′

i) → u(U ′)} refines the covering {Vj → u(U ′)} in D. In other words, there exists
a map of index sets α : I → J and morphisms φi : u(U ′

i) → Vα(i) over U ′. Think of
U ′
i as an object over U via the composition U ′

i → U ′ → U . Then {U ′
i/U → U ′/U} is a

covering of C/U such that {u(U ′
i)/V → u(U ′)/V } refines {Vj/V → u(U ′)/V } (use the

same α and the same maps φi). Hence u′ : C/U → D/V is cocontinuous. �

Lemma 28.5. Let C , D be sites. Let u : C → D be a cocontinuous functor. Let V be
an object of D. Let uV I be the category introduced in Section 19. We have a commutative
diagram

u
V I j

//

u′

��

C

u

��
D/V

jV // D

where j : (U,ψ) 7→ U
u′ : (U,ψ) 7→ (ψ : u(U)→ V )

Declare a family of morphisms {(Ui, ψi)→ (U,ψ)} of uV I to be a covering if and only if
{Ui → U} is a covering in C. Then

(1) u
V I is a site,

(2) j is continuous and cocontinuous,
(3) u′ is cocontinuous,
(4) we get a commutative diagram of topoi

Sh(uV I)
j
//

f ′

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D)

where f (resp. f ′) corresponds to u (resp. u′), and
(5) we have f ′

∗j
−1 = j−1

V f∗.
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Proof. Parts (1), (2), (3), and (4) are straightforward consequences of the definitions
and the fact that the functor j commutes with fibre products. We omit the details. To see
(5) recall that f∗ is given by su = pu. Hence the value of j−1

V f∗F on V ′/V is the value of
puF on V ′ which is the limit of the values of F on the category u

V ′I . Clearly, there is an
equivalence of categories

u
V ′I → u′

V ′/V I
Since the value of f ′

∗j
−1F on V ′/V is given by the limit of the values of j−1F on the

category u′

V ′/V I and since the values of j−1F on objects of uV I are just the values of F (by
Lemma 21.5 as j is continuous and cocontinuous) we see that (5) is true. �

The following two results are of a slightly different nature.

Lemma 28.6. Assume given sites C′, C,D′,D and functors

C′
v′
//

u′

��

C

u

��
D′ v // D

Assume
(1) u, u′, v, and v′ are cocontinuous giving rise to morphisms of topoi f , f ′, g, and

g′ by Lemma 21.1,
(2) v ◦ u′ = u ◦ v′,
(3) v and v′ are continuous as well as cocontinuous, and
(4) for any object V ′ of D′ the functor u

′

V ′I → u
v(V ′)I given by v is cofinal.

Then f ′
∗ ◦ (g′)−1 = g−1 ◦ f∗ and g′

! ◦ (f ′)−1 = f−1 ◦ g!.

Proof. The categories u
′

V ′I and u
v(V ′)I are defined in Section 19. The functor in con-

dition (4) sends the object ψ : u′(U ′) → V ′ of u
′

V ′I to the object v(ψ) : uv′(U ′) =
vu′(U ′) → v(V ′) of u

v(V ′)I . Recall that g−1 is given by vp (Lemma 21.5) and f∗ is given
by su = pu. Hence the value of g−1f∗F on V ′ is the value of puF on v(V ′) which is the
limit

limu(U)→v(V ′)∈Ob( u
v(V ′)Iopp) F(U)

By the same reasoning, the value of f ′
∗(g′)−1F on V ′ is given by the limit

limu′(U ′)→V ′∈Ob(u′
V ′ Iopp) F(v′(U ′))

Thus assumption (4) and Categories, Lemma 17.4 show that these agree and the first equal-
ity of the lemma is proved. The second equality follows from the first by uniqueness of
adjoints. �

Lemma 28.7. Assume given sites C′, C,D′,D and functors

C′
v′
// C

D′ v //

u′

OO

D

u

OO

With notation as in Sections 14 and 21 assume
(1) u and u′ are continuous giving rise to morphisms of sites f and f ′,
(2) v and v′ are cocontinuous giving rise to morphisms of topoi g and g′,



29. MORPHISMS OF TOPOI 371

(3) u ◦ v = v′ ◦ u′, and
(4) v and v′ are continuous as well as cocontinuous.

Then6 f ′
∗ ◦ (g′)−1 = g−1 ◦ f∗ and g′

! ◦ (f ′)−1 = f−1 ◦ g!.

Proof. Namely, we have

f ′
∗(g′)−1F = (u′)p((v′)pF)# = (u′)p(v′)pF

The first equality by definition and the second by Lemma 21.5. We have

g−1f∗F = (vpupF)# = ((u′)p(v′)pF)# = (u′)p(v′)pF
The first equality by definition, the second because u ◦ v = v′ ◦ u′, the third because we
already saw that (u′)p(v′)pF is a sheaf. This proves f ′

∗◦(g′)−1 = g−1◦f∗ and the equality
g′

! ◦ (f ′)−1 = f−1 ◦ g! follows by uniqueness of left adjoints. �

29. Morphisms of topoi

In this section we show that any morphism of topoi is equivalent to a morphism of topoi
which comes from a morphism of sites. Please compare with [?, Exposé IV, Proposition
4.9.4].

Lemma 29.1. Let C , D be sites. Let u : C → D be a functor. Assume that
(1) u is cocontinuous,
(2) u is continuous,
(3) given a, b : U ′ → U in C such that u(a) = u(b), then there exists a covering
{fi : U ′

i → U ′} in C such that a ◦ fi = b ◦ fi,
(4) given U ′, U ∈ Ob(C) and a morphism c : u(U ′) → u(U) in D there exists a

covering {fi : U ′
i → U ′} in C and morphisms ci : U ′

i → U such that u(ci) =
c ◦ u(fi), and

(5) given V ∈ Ob(D) there exists a covering of V in D of the form {u(Ui) →
V }i∈I .

Then the morphism of topoi
g : Sh(C) −→ Sh(D)

associated to the cocontinuous functor u by Lemma 21.1 is an equivalence.

Proof. Assume u satisfies properties (1) – (5). We will show that the adjunction
mappings

G −→ g∗g
−1G and g−1g∗F −→ F

are isomorphisms.

Note that Lemma 21.5 applies and we have g−1G(U) = G(u(U)) for any sheaf G on D.
Next, let F be a sheaf on C , and let V be an object ofD. By definition we have g∗F(V ) =
limu(U)→V F(U). Hence

g−1g∗F(U) = limU ′,u(U ′)→u(U) F(U ′)
where the morphisms ψ : u(U ′) → u(U) need not be of the form u(α). The category of
such pairs (U ′, ψ) has a final object, namely (U, id), which gives rise to the map from the
limit into F(U). Let (s(U ′,ψ)) be an element of the limit. We want to show that s(U ′,ψ)
is uniquely determined by the value s(U,id) ∈ F(U). By property (4) given any (U ′, ψ)

6In this generality we don’t know f ◦ g′ is equal to g ◦ f ′ as morphisms of topoi (there is a canonical
2-arrow from the first to the second which may not be an isomorphism).
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there exists a covering {U ′
i → U ′} such that the compositions u(U ′

i) → u(U ′) → u(U)
are of the form u(ci) for some ci : U ′

i → U in C. Hence

s(U ′,ψ)|U ′
i

= c∗
i (s(U,id)).

Since F is a sheaf it follows that indeed s(U ′,ψ) is determined by s(U,id). This proves
uniqueness. For existence, assume given any s ∈ F(U), ψ : u(U ′) → u(U), {fi : U ′

i →
U ′} and ci : U ′

i → U such that ψ ◦ u(fi) = u(ci) as above. We claim there exists a
(unique) element s(U ′,ψ) ∈ F(U ′) such that

s(U ′,ψ)|U ′
i

= c∗
i (s).

Namely, a priori it is not clear the elements c∗
i (s)|U ′

i
×U′U ′

j
and c∗

j (s)|U ′
i
×U′U ′

j
agree, since

the diagram
U ′
i ×U ′ U ′

j pr2
//

pr1

��

U ′
j

cj

��
U ′
i

ci // U

need not commute. But condition (3) of the lemma guarantees that there exist coverings
{fijk : U ′

ijk → U ′
i ×U ′ U ′

j}k∈Kij such that ci ◦ pr1 ◦ fijk = cj ◦ pr2 ◦ fijk. Hence

f∗
ijk

(
c∗
i s|U ′

i
×U′U ′

j

)
= f∗

ijk

(
c∗
js|U ′

i
×U′U ′

j

)
Hence c∗

i (s)|U ′
i
×U′U ′

j
= c∗

j (s)|U ′
i
×U′U ′

j
by the sheaf condition for F and hence the exis-

tence of s(U ′,ψ) also by the sheaf condition for F . The uniqueness guarantees that the
collection (s(U ′,ψ)) so obtained is an element of the limit with s(U,ψ) = s. This proves
that g−1g∗F → F is an isomorphism.

Let G be a sheaf on D. Let V be an object of D. Then we see that

g∗g
−1G(V ) = limU,ψ:u(U)→V G(u(U))

By the preceding paragraph we see that the value of the sheaf g∗g
−1G on an object V of the

form V = u(U) is equal to G(u(U)). (Formally, this holds because we have g−1g∗g
−1 ∼=

g−1, and the description of g−1 given at the beginning of the proof; informally just by
comparing limits here and above.) Hence the adjunction mapping G → g∗g

−1G has the
property that it is a bijection on sections over any object of the form u(U). Since by
axiom (5) there exists a covering of V by objects of the form u(U) we see easily that the
adjunction map is an isomorphism. �

It will be convenient to give cocontinuous functors as in Lemma 29.1 a name.

Definition 29.2. Let C , D be sites. A special cocontinuous functor u from C to D is
a cocontinuous functor u : C → D satisfying the assumptions and conclusions of Lemma
29.1.

Lemma 29.3. Let C ,D be sites. Let u : C → D be a special cocontinuous functor. For
every object U of C we have a commutative diagram

C/U
jU

//

��

C

u

��
D/u(U)

ju(U) // D
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as in Lemma 28.4. The left vertical arrow is a special cocontinuous functor. Hence in the
commutative diagram of topoi

Sh(C/U)
jU

//

��

Sh(C)

u

��
Sh(D/u(U))

ju(U) // Sh(D)

the vertical arrows are equivalences.

Proof. We have seen the existence and commutativity of the diagrams in Lemma
28.4. We have to check hypotheses (1) – (5) of Lemma 29.1 for the induced functor u :
C/U → D/u(U). This is completely mechanical.

Property (1). This is Lemma 28.4.

Property (2). Let {U ′
i/U → U ′/U}i∈I be a covering of U ′/U in C/U . Because u is

continuous we see that {u(U ′
i)/u(U) → u(U ′)/u(U)}i∈I is a covering of u(U ′)/u(U)

in D/u(U). Hence (2) holds for u : C/U → D/u(U).

Property (3). Let a, b : U ′′/U → U ′/U in C/U be morphisms such that u(a) = u(b)
in D/u(U). Because u satisfies (3) we see there exists a covering {fi : U ′′

i → U ′′} in C
such that a ◦ fi = b ◦ fi. This gives a covering {fi : U ′′

i /U → U ′′/U} in C/U such that
a ◦ fi = b ◦ fi. Hence (3) holds for u : C/U → D/u(U).

Property (4). LetU ′′/U,U ′/U ∈ Ob(C/U) and a morphism c : u(U ′′)/u(U)→ u(U ′)/u(U)
in D/u(U) be given. Because u satisfies property (4) there exists a covering {fi : U ′′

i →
U ′′} in C and morphisms ci : U ′′

i → U ′ such that u(ci) = c ◦ u(fi). We think of U ′′
i

as an object over U via the composition U ′′
i → U ′′ → U . It may not be true that ci is a

morphism over U ! But since u(ci) is a morphism over u(U) we may apply property (3)
for u and find coverings {fik : U ′′

ik → U ′′
i } such that cik = ci ◦ fik : U ′′

ik → U ′ are
morphisms over U . Hence {fi ◦ fik : U ′′

ik/U → U ′′/U} is a covering in C/U such that
u(cik) = c ◦ u(fik). Hence (4) holds for u : C/U → D/u(U).

Property (5). Let h : V → u(U) be an object of D/u(U). Because u satisfies property (5)
there exists a covering {ci : u(Ui) → V } in D. By property (4) we can find coverings
{fij : Uij → Ui} and morphisms cij : Uij → U such that u(cij) = h ◦ ci ◦ u(fij). Hence
{u(Uij)/u(U)→ V/u(U)} is a covering inD/u(U) of the desired shape and we conclude
that (5) holds for u : C/U → D/u(U). �

Lemma 29.4. Let C be a site. Let C′ ⊂ Sh(C) be a full subcategory (with a set of
objects) such that

(1) h#
U ∈ Ob(C′) for all U ∈ Ob(C), and

(2) C′ is preserved under fibre products in Sh(C).
Declare a covering of C′ to be any family {Fi → F}i∈I of maps such that

∐
i∈I Fi → F

is a surjective map of sheaves. Then
(1) C′ is a site (after choosing a set of coverings, see Sets, Lemma 11.1),
(2) representable presheaves on C′ are sheaves (i.e., the topology on C′ is subcanon-

ical, see Definition 12.2),
(3) the functor v : C → C′,U 7→ h#

U is a special cocontinuous functor, hence induces
an equivalence g : Sh(C)→ Sh(C′),

(4) for any F ∈ Ob(C′) we have g−1hF = F , and
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(5) for any U ∈ Ob(C) we have g∗h
#
U = hv(U) = hh#

U
.

Proof. Warning: Some of the statements above may look be a bit confusing at first;
this is because objects of C′ can also be viewed as sheaves on C! We omit the proof that the
coverings of C′ as described in the lemma satisfy the conditions of Definition 6.2.

Suppose that {Fi → F} is a surjective family of morphisms of sheaves. Let G be another
sheaf. Part (2) of the lemma says that the equalizer of

MorSh(C)(
∐
i∈I Fi,G) //

// MorSh(C)(
∐

(i0,i1)∈I×I Fi0 ×F Fi1 ,G)

is MorSh(C)(F ,G). This is clear (for example use Lemma 11.3).

To prove (3) we have to check conditions (1) – (5) of Lemma 29.1. The fact that v is cocon-
tinuous is equivalent to the description of surjective maps of sheaves in Lemma 11.2. The
functor v is continuous because U 7→ h#

U commutes with fibre products, and transforms
coverings into coverings (see Lemma 10.14, and Lemma 12.4). Properties (3), (4) of Lemma
29.1 are statements about morphisms f : h#

U ′ → h#
U . Such a morphism is the same thing

as an element of h#
U (U ′). Hence (3) and (4) are immediate from the construction of the

sheafification. Property (5) of Lemma 29.1 is Lemma 12.5. Denote g : Sh(C) → Sh(C′)
the equivalence of topoi associated with v by Lemma 29.1.

Let F be as in part (4) of the lemma. For any U ∈ Ob(C) we have

g−1hF (U) = hF (v(U)) = MorSh(C)(h#
U ,F) = F(U)

The first equality by Lemma 21.5. Thus part (4) holds.

Let F ∈ Ob(C′). Let U ∈ Ob(C). Then

g∗h
#
U (F) = MorSh(C′)(hF , g∗h

#
U )

= MorSh(C)(g−1hF , h
#
U )

= MorSh(C)(F , h#
U )

= MorC′(F , h#
U )

as desired (where the third equality was shown above). �

Using this we can massage any topos to live over a site having all finite limits.

Lemma 29.5. Let Sh(C) be a topos. Let {Fi}i∈I be a set of sheaves on C. There exists
an equivalence of topoi g : Sh(C) → Sh(C′) induced by a special cocontinuous functor
u : C → C′ of sites such that

(1) C′ has a subcanonical topology,
(2) a family {Vj → V } of morphisms of C′ is (combinatorially equivalent to) a

covering of C′ if and only if
∐
hVj → hV is surjective,

(3) C′ has fibre products and a final object (i.e., C′ has all finite limits),
(4) every subsheaf of a representable sheaf on C′ is representable, and
(5) each g∗Fi is a representable sheaf.

Proof. Consider the full subcategory C1 ⊂ Sh(C) consisting of all h#
U for all U ∈

Ob(C), the given sheaves Fi and the final sheaf ∗ (see Example 10.2). We are going to
inductively define full subcategories

C1 ⊂ C2 ⊂ C2 ⊂ . . . ⊂ Sh(C)
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Namely, given Cn let Cn+1 be the full subcategory consisting of all fibre products and
subsheaves of objects of Cn. (Note that Cn+1 has a set of objects.) Set C′ =

⋃
n≥1 Cn.

A covering in C′ is any family {Gj → G}j∈J of morphisms of objects of C′ such that∐
Gj → G is surjective as a map of sheaves on C. The functor v : C → C′ is given by

U 7→ h#
U . Apply Lemma 29.4. �

Here is the goal of the current section.

Lemma 29.6. Let C , D be sites. Let f : Sh(C) → Sh(D) be a morphism of topoi.
Then there exists a site C′ and a diagram of functors

C
v
// C′ D

u
oo

such that
(1) the functor v is a special cocontinuous functor,
(2) the functor u commutes with fibre products, is continuous and defines a mor-

phism of sites C′ → D, and
(3) the morphism of topoi f agrees with the composition of morphisms of topoi

Sh(C) −→ Sh(C′) −→ Sh(D)

where the first arrow comes from v via Lemma 29.1 and the second arrow from
u via Lemma 15.2.

Proof. Consider the full subcategory C1 ⊂ Sh(C) consisting of all h#
U and all f−1h#

V

for allU ∈ Ob(C) and allV ∈ Ob(D). Let Cn+1 be a full subcategory consisting of all fibre
products of objects of Cn. Set C′ =

⋃
n≥1 Cn. A covering in C′ is any family {Fi → F}i∈I

such that
∐
i∈I Fi → F is surjective as a map of sheaves on C. The functor v : C → C′ is

given by U 7→ h#
U . The functor u : D → C′ is given by V 7→ f−1h#

V .

Part (1) follows from Lemma 29.4.

Proof of (2) and (3) of the lemma. The functor u commutes with fibre products as both
V 7→ h#

V and f−1 do. Moreover, since f−1 is exact and commutes with arbitrary colimits
we see that it transforms a covering into a surjective family of morphisms of sheaves.
Hence u is continuous. To see that it defines a morphism of sites we still have to see that
us is exact. In order to do this we will show that g−1 ◦us = f−1. Namely, then since g−1

is an equivalence and f−1 is exact we will conclude. Because g−1 is adjoint to g∗, and us
is adjoint to us, and f−1 is adjoint to f∗ it also suffices to prove that us ◦ g∗ = f∗. Let U
be an object of C and let V be an object of D. Then

(usg∗h
#
U )(V ) = g∗h

#
U (f−1h#

V )

= MorSh(C)(f−1h#
V , h

#
U )

= MorSh(D)(h#
V , f∗h

#
U )

= f∗h
#
U (V )

The first equality because us = up. The second equality by Lemma 29.4 (5). The third
equality by adjointness of f∗ and f−1 and the final equality by properties of sheafification
and the Yoneda lemma. We omit the verification that these identities are functorial in U
and V . Hence we see that we have us ◦ g∗ = f∗ for sheaves of the form h#

U . This implies
that us ◦ g∗ = f∗ and we win (some details omitted). �
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Remark 29.7. Notation and assumptions as in Lemma 29.6. If the site D has a final
object and fibre products then the functor u : D → C′ satisfies all the assumptions of
Proposition 14.7. Namely, in addition to the properties mentioned in the lemma u also
transforms the final object ofD into the final object of C′. This is clear from the construc-
tion of u. Hence, if we first apply Lemmas 29.5 toD and then Lemma 29.6 to the resulting
morphism of topoi Sh(C) → Sh(D′) we obtain the following statement: Any morphism
of topoi f : Sh(C)→ Sh(D) fits into a commutative diagram

Sh(C)

g

��

f
// Sh(D)

e

��
Sh(C′) f ′

// Sh(D′)

where the following properties hold:
(1) the morphisms e and g are equivalences given by special cocontinuous functors
C → C′ and D → D′,

(2) the sitesC′ andD′ have fibre products, final objects and have subcanonical topolo-
gies,

(3) the morphism f ′ : C′ → D′ comes from a morphism of sites corresponding to a
functor u : D′ → C′ to which Proposition 14.7 applies, and

(4) given any set of sheavesFi (resp. Gj) on C (resp.D) we may assume each of these
is a representable sheaf on C′ (resp. D′).

It is often useful to replace C and D by C′ and D′.

Remark 29.8. Notation and assumptions as in Lemma 29.6. Suppose that in addition
the original morphism of topoi Sh(C)→ Sh(D) is an equivalence. Then the construction
in the proof of Lemma 29.6 gives two functors

C → C′ ← D

which are both special cocontinuous functors. Hence in this case we can actually factor
the morphism of topoi as a composition

Sh(C)→ Sh(C′) = Sh(D′)← Sh(D)

as in Remark 29.7, but with the middle morphism an identity.

30. Localization of topoi

We repeat some of the material on localization to the apparently more general case of
topoi. In reality this is not more general since we may always enlarge the underlying sites
to assume that we are localizing at objects of the site.

Lemma 30.1. Let C be a site. Let F be a sheaf on C. Then the category Sh(C)/F is a
topos. There is a canonical morphism of topoi

jF : Sh(C)/F −→ Sh(C)

which is a localization as in Section 25 such that
(1) the functor j−1

F is the functorH 7→ H×F/F , and
(2) the functor jF ! is the forgetful functor G/F 7→ G.
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Proof. Apply Lemma 29.5. This means we may assume C is a site with subcanonical
topology, and F = hU = h#

U for some U ∈ Ob(C). Hence the material of Section
25 applies. In particular, there is an equivalence Sh(C/U) = Sh(C)/h#

U such that the
composition

Sh(C/U)→ Sh(C)/h#
U → Sh(C)

is equal to jU !, see Lemma 25.4. Denote a : Sh(C)/h#
U → Sh(C/U) the inverse functor,

so jF ! = jU ! ◦ a, j−1
F = a−1 ◦ j−1

U , and jF,∗ = jU,∗ ◦ a. The description of jF ! follows
from the above. The description of j−1

F follows from Lemma 25.7. �

Lemma 30.2. In the situation of Lemma 30.1, the functor jF,∗ is the one associates to
ϕ : G → F the sheaf

U 7−→ {α : F|U → G|U such that α is a right inverse to ϕ|U}.

Proof. For any ϕ : G → F , let us use the notation G/F to denote the corresponding
object of Sh(C)/F . We have

(jF,∗(G/F))(U) = MorSh(C)(h#
U , jF,∗(G/F)) = MorSh(C)/F (j−1

F h#
U , (G/F)).

By Lemma 30.1 this set is the fiber over the element h#
U ×F → F under the map of sets

MorSh(C)(h#
U ×F ,G) ϕ◦−−→ MorSh(C)(h#

U ×F ,F).
By the adjunction in Lemma 26.2, we have

MorSh(C)(h#
U ×F ,G) = MorSh(C)(h#

U ,Hom(F ,G))
= MorSh(C/U)(F|C/U ,G|C/U ),

MorSh(C)(h#
U ×F ,F) = MorSh(C)(h#

U ,Hom(F ,F))
= MorSh(C/U)(F|C/U ,F|C/U ),

and under the adjunction, the map ϕ◦ becomes the map
MorSh(C/U)(F|C/U ,G|C/U ) −→ MorSh(C/U)(F|C/U ,F|C/U ), ψ 7−→ ϕ|C/U ◦ ψ,

the element h#
U × F → F becomes idF|C/U . Therefore (jF,∗G/F)(U) is isomorphic to

the fiber of idF|C/U under the map

MorSh(C/U)(F|C/U ,G|C/U )
ϕ|C/U◦
−−−−→ MorSh(C/U)(F|C/U ,F|C/U ),

which is {α : F|U → G|U such that α is a right inverse to ϕ|U} as desired. �

Lemma 30.3. Let C be a site. Let F be a sheaf on C. Let C/F be the category of pairs
(U, s) where U ∈ Ob(C) and s ∈ F(U). Let a covering in C/F be a family {(Ui, si) →
(U, s)} such that {Ui → U} is a covering of C. Then j : C/F → C is a continuous and
cocontinuous functor of sites which induces a morphism of topoi j : Sh(C/F)→ Sh(C).
In fact, there is an equivalence Sh(C/F) = Sh(C)/F which turns j into jF .

Proof. We omit the verification that C/F is a site and that j is continuous and cocon-
tinuous. By Lemma 21.5 there exists a morphism of topoi j as indicated, with j−1G(U, s) =
G(U), and there is a left adjoint j! to j−1. A morphism ϕ : ∗ → j−1G on C/F is the same
thing as a rule which assigns to every pair (U, s) a section ϕ(s) ∈ G(U) compatible with
restriction maps. Hence this is the same thing as a morphism ϕ : F → G over C. We
conclude that j!∗ = F . In particular, for everyH ∈ Sh(C/F) there is a canonical map

j!H → j!∗ = F
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i.e., we obtain a functor j′
! : Sh(C/F)→ Sh(C)/F . An inverse to this functor is the rule

which assigns to an object ϕ : G → F of Sh(C)/F the sheaf
a(G/F) : (U, s) 7−→ {t ∈ G(U) | ϕ(t) = s}

We omit the verification that a(G/F) is a sheaf and that a is inverse to j′
! . �

Definition 30.4. Let C be a site. Let F be a sheaf on C.
(1) The topos Sh(C)/F is called the localization of the topos Sh(C) at F .
(2) The morphism of topoi jF : Sh(C)/F → Sh(C) of Lemma 30.1 is called the

localization morphism.

We are going to show that whenever the sheaf F is equal to h#
U for some object U of the

site, then the localization of the topos is equal to the category of sheaves on the localization
of the site at U . Moreover, we are going to check that any functorialities are compatible
with this identification.

Lemma 30.5. Let C be a site. Let F = h#
U for some object U of C. Then jF :

Sh(C)/F → Sh(C) constructed in Lemma 30.1 agrees with the morphism of topoi jU :
Sh(C/U)→ Sh(C) constructed in Section 25 via the identification Sh(C/U) = Sh(C)/h#

U

of Lemma 25.4.

Proof. We have seen in Lemma 25.4 that the composition Sh(C/U)→ Sh(C)/h#
U →

Sh(C) is jU !. The functor Sh(C)/h#
U → Sh(C) is jF ! by Lemma 30.1. Hence jF ! = jU !

via the identification. So j−1
F = j−1

U (by adjointness) and so jF,∗ = jU,∗ (by adjointness
again). �

Lemma 30.6. Let C be a site. If s : G → F is a morphism of sheaves on C then there
exists a natural commutative diagram of morphisms of topoi

Sh(C)/G

jG $$

j
// Sh(C)/F

jFyy
Sh(C)

where j = jG/F is the localization of the topos Sh(C)/F at the object G/F . In particular
we have

j−1(H → F) = (H×F G → G)
and

j!(E
e−→ F) = (E s◦e−−→ G).

Proof. The description of j−1 and j! comes from the description of those functors
in Lemma 30.1. The equality of functors jG! = jF ! ◦ j! is clear from the description of
these functors (as forgetful functors). By adjointness we also obtain the equalities j−1

G =
j−1 ◦ j−1

F , and jG,∗ = jF,∗ ◦ j∗. �

Lemma 30.7. Assume C and s : G → F are as in Lemma 30.6. If G = h#
V and

F = h#
U and s : G → F comes from a morphism V → U of C then the diagram in Lemma

30.6 is identified with diagram (25.8.1) via the identifications Sh(C/V ) = Sh(C)/h#
V and

Sh(C/U) = Sh(C)/h#
U of Lemma 25.4.

Proof. This is true because the descriptions of j−1 agree. See Lemma 25.9 and Lemma
30.6. �
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31. Localization and morphisms of topoi

This section is the analogue of Section 28 for morphisms of topoi.

Lemma 31.1. Let f : Sh(C)→ Sh(D) be a morphism of topoi. Let G be a sheaf onD.
Set F = f−1G. Then there exists a commutative diagram of topoi

Sh(C)/F
jF

//

f ′

��

Sh(C)

f

��
Sh(D)/G

jG // Sh(D).

The morphism f ′ is characterized by the property that

(f ′)−1(H ϕ−→ G) = (f−1H f−1ϕ−−−→ F)

and we have f ′
∗j

−1
F = j−1

G f∗.

Proof. Since the statement is about topoi and does not refer to the underlying sites
we may change sites at will. Hence by the discussion in Remark 29.7 we may assume that f
is given by a continuous functor u : D → C satisfying the assumptions of Proposition 14.7
between sites having all finite limits and subcanonical topologies, and such that G = hV
for some object V of D. Then F = f−1hV = hu(V ) by Lemma 13.5. By Lemma 28.1 we
obtain a commutative diagram of morphisms of topoi

Sh(C/U)
jU

//

f ′

��

Sh(C)

f

��
Sh(D/V ) jV // Sh(D),

and we have f ′
∗j

−1
U = j−1

V f∗. By Lemma 30.5 we may identify jF and jU and jG and jV .
The description of (f ′)−1 is given in Lemma 28.1. �

Lemma 31.2. Let f : C → D be a morphism of sites given by the continuous functor
u : D → C. Let V be an object of D. Set U = u(V ). Set G = h#

V , and F = h#
U = f−1h#

V

(see Lemma 13.5). Then the diagram of morphisms of topoi of Lemma 31.1 agrees with
the diagram of morphisms of topoi of Lemma 28.1 via the identifications jF = jU and
jG = jV of Lemma 30.5.

Proof. This is not a complete triviality as the choice of morphism of sites giving
rise to f made in the proof of Lemma 31.1 may be different from the morphisms of sites
given to us in the lemma. But in both cases the functor (f ′)−1 is described by the same
rule. Hence they agree and the associated morphism of topoi is the same. Some details
omitted. �

Lemma 31.3. Let f : Sh(C) → Sh(D) be a morphism of topoi. Let G ∈ Sh(D),
F ∈ Sh(C) and s : F → f−1G a morphism of sheaves. There exists a commutative
diagram of topoi

Sh(C)/F
jF

//

fs

��

Sh(C)

f

��
Sh(D)/G

jG // Sh(D).
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We have fs = f ′ ◦ jF/f−1G where f ′ : Sh(C)/f−1G → Sh(D)/F is as in Lemma 31.1 and
jF/f−1G : Sh(C)/F → Sh(C)/f−1G is as in Lemma 30.6. The functor (fs)−1 is described
by the rule

(fs)−1(H ϕ−→ G) = (f−1H×f−1ϕ,f−1G,s F → F).
Finally, given any morphisms b : G′ → G , a : F ′ → F and s′ : F ′ → f−1G′ such that

F ′
s′
//

a

��

f−1G′

f−1b

��
F s // f−1G

commutes, then the diagram

Sh(C)/F ′
jF′/F

//

fs′

��

Sh(C)/F

fs

��
Sh(D)/G′

jG′/G // Sh(D)/G.
commutes.

Proof. The commutativity of the first square follows from the commutativity of
the diagram in Lemma 30.6 and the commutativity of the diagram in Lemma 31.1. The
description of f−1

s follows on combining the descriptions of (f ′)−1 in Lemma 31.1 with
the description of (jF/f−1G)−1 in Lemma 30.6. The commutativity of the last square then
follows from the equality

f−1H×f−1G,s F ×F F ′ = f−1(H×G G′)×f−1G′,s′ F ′

which is formal. �

Lemma 31.4. Let f : C → D be a morphism of sites given by the continuous functor
u : D → C. Let V be an object of D. Let c : U → u(V ) be a morphism. Set G = h#

V

and F = h#
U = f−1h#

V . Let s : F → f−1G be the map induced by c. Then the diagram
of morphisms of topoi of Lemma 28.3 agrees with the diagram of morphisms of topoi of
Lemma 31.3 via the identifications jF = jU and jG = jV of Lemma 30.5.

Proof. This follows on combining Lemmas 30.7 and 31.2. �

32. Points

Definition 32.1. Let C be a site. A point of the topos Sh(C) is a morphism of topoi
p from Sh(pt) to Sh(C).

We will define a point of a site in terms of a functor u : C → Sets. It will turn out later
that uwill define a morphism of sites which gives rise to a point of the topos associated to
C , see Lemma 32.8.
Let C be a site. Let p = u be a functor u : C → Sets. This curious language is introduced
because it seems funny to talk about neighbourhoods of functors; so we think of a “point”
p as a geometric thing which is given by a categorical datum, namely the functor u. The
fact that p is actually equal to u does not matter. A neighbourhood of p is a pair (U, x)
with U ∈ Ob(C) and x ∈ u(U). A morphism of neighbourhoods (V, y) → (U, x) is
given by a morphism α : V → U of C such that u(α)(y) = x. Note that the category of
neighbourhoods isn’t a “big” category.
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We define the stalk of a presheaf F at p as

(32.1.1) Fp = colim{(U,x)}opp F(U).

The colimit is over the opposite of the category of neighbourhoods of p. In other words, an
element of Fp is given by a triple (U, x, s), where (U, x) is a neighbourhood of p and s ∈
F(U). Equality of triples is the equivalence relation generated by (U, x, s) ∼ (V, y, α∗s)
when α is as above.

Note that if ϕ : F → G is a morphism of presheaves of sets, then we get a canonical map
of stalks ϕp : Fp → Gp. Thus we obtain a stalk functor

PSh(C) −→ Sets, F 7−→ Fp.

We have defined the stalk functor using any functor p = u : C → Sets. No conditions
are necessary for the definition to work7. On the other hand, it is probably better not to
use this notion unless p actually is a point (see definition below), since in general the stalk
functor does not have good properties.

Definition 32.2. Let C be a site. A point p of the site C is given by a functor u : C →
Sets such that

(1) For every covering {Ui → U} of C the map
∐
u(Ui)→ u(U) is surjective.

(2) For every covering {Ui → U} of C and every morphism V → U the maps
u(Ui ×U V )→ u(Ui)×u(U) u(V ) are bijective.

(3) The stalk functor Sh(C)→ Sets, F 7→ Fp is left exact.

The conditions should be familiar since they are modeled after those of Definitions 13.1
and 14.1. Note that (3) implies that ∗p = {∗}, see Example 10.2. Hence u(U) 6= ∅ for
at least some U (because the empty colimit produces the empty set). We will show below
(Lemma 32.7) that this does give rise to a point of the topos Sh(C). Before we do so, we
prove some lemmas for general functors u.

Lemma 32.3. Let C be a site. Let p = u : C → Sets be a functor. There are functorial
isomorphisms (hU )p = u(U) for U ∈ Ob(C).

Proof. An element of (hU )p is given by a triple (V, y, f), where V ∈ Ob(C), y ∈
u(V ) and f ∈ hU (V ) = MorC(V,U). Two such (V, y, f), (V ′, y′, f ′) determine the same
object if there exists a morphismφ : V → V ′ such that u(φ)(y) = y′ and f ′◦φ = f , and in
general you have to take chains of identities like this to get the correct equivalence relation.
In any case, every (V, y, f) is equivalent to the element (U, u(f)(y), idU ). If φ exists as
above, then the triples (V, y, f), (V ′, y′, f ′) determine the same triple (U, u(f)(y), idU ) =
(U, u(f ′)(y′), idU ). This proves that the map u(U) → (hU )p, x 7→ class of (U, x, idU ) is
bijective. �

Let C be a site. Let p = u : C → Sets be a functor. In analogy with the constructions in
Section 5 given a set E we define a presheaf upE by the rule

(32.3.1) U 7−→ upE(U) = MorSets(u(U), E) = Map(u(U), E).

This defines a functor up : Sets→ PSh(C), E 7→ upE.

Lemma 32.4. For any functor u : C → Sets. The functor up is a right adjoint to the
stalk functor on presheaves.

7One should try to avoid the case where u(U) = ∅ for all U .
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Proof. Let F be a presheaf on C. Let E be a set. A morphism F → upE is given by
a compatible system of maps F(U) → Map(u(U), E), i.e., a compatible system of maps
F(U)×u(U)→ E. And by definition ofFp a mapFp → E is given by a rule associating
with each triple (U, x, σ) an element in E such that equivalent triples map to the same
element, see discussion surrounding Equation (32.1.1). This also means a compatible system
of maps F(U)× u(U)→ E. �

In analogy with Section 13 we have the following lemma.

Lemma 32.5. Let C be a site. Let p = u : C → Sets be a functor. Suppose that for
every covering {Ui → U} of C

(1) the map
∐
u(Ui)→ u(U) is surjective, and

(2) the maps u(Ui ×U Uj)→ u(Ui)×u(U) u(Uj) are surjective.
Then we have

(1) the presheaf upE is a sheaf for all sets E , denote it usE ,
(2) the stalk functor Sh(C) → Sets and the functor us : Sets → Sh(C) are adjoint,

and
(3) we have Fp = F#

p for every presheaf of sets F .

Proof. The first assertion is immediate from the definition of a sheaf, assumptions
(1) and (2), and the definition of upE. The second is a restatement of the adjointness of up
and the stalk functor (Lemma 32.4) restricted to sheaves. The third assertion follows as,
for any set E , we have

Map(Fp, E) = MorPSh(C)(F , upE) = MorSh(C)(F#, usE) = Map(F#
p , E)

by the adjointness property of sheafification. �

In particular Lemma 32.5 holds when p = u is a point. In this case we think of the sheaf
usE as the “skyscraper” sheaf with value E at p.

Definition 32.6. Let p be a point of the site C given by the functor u. For a set E
we define p∗E = usE the sheaf described in Lemma 32.5 above. We sometimes call this a
skyscraper sheaf.

In particular we have the following adjointness property of skyscraper sheaves and stalks:

MorSh(C)(F , p∗E) = Map(Fp, E)

This motivates the notation p−1F = Fp which we will sometimes use.

Lemma 32.7. Let C be a site.
(1) Let p be a point of the site C. Then the pair of functors (p∗, p

−1) introduced
above define a morphism of topoi Sh(pt)→ Sh(C).

(2) Let p = (p∗, p
−1) be a point of the topos Sh(C). Then the functor u : U 7→

p−1(h#
U ) gives rise to a point p′ of the site C whose associated morphism of topoi

(p′
∗, (p′)−1) is equal to p.

Proof. Proof of (1). By the above the functors p∗ and p−1 are adjoint. The functor
p−1 is required to be exact by Definition 32.2. Hence the conditions imposed in Definition
15.1 are all satisfied and we see that (1) holds.

Proof of (2). Let {Ui → U} be a covering of C. Then
∐

(hUi)# → h#
U is surjective, see

Lemma 12.4. Since p−1 is exact (by definition of a morphism of topoi) we conclude that
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u(Ui) → u(U) is surjective. This proves part (1) of Definition 32.2. Sheafification is

exact, see Lemma 10.14. Hence if U ×V W exists in C , then

h#
U×VW = h#

U ×h#
V
h#
W

and we see that u(U ×V W ) = u(U)×u(V ) u(W ) since p−1 is exact. This proves part (2)
of Definition 32.2. Let p′ = u, and letFp′ be the stalk functor defined by Equation (32.1.1)
using u. There is a canonical comparison map c : Fp′ → Fp = p−1F . Namely, given a
triple (U, x, σ) representing an element ξ of Fp′ we think of σ as a map σ : h#

U → F and
we can set c(ξ) = p−1(σ)(x) since x ∈ u(U) = p−1(h#

U ). By Lemma 32.3 we see that
(hU )p′ = u(U). Since conditions (1) and (2) of Definition 32.2 hold for p′ we also have
(h#
U )p′ = (hU )p′ by Lemma 32.5. Hence we have

(h#
U )p′ = (hU )p′ = u(U) = p−1(h#

U )

We claim this bijection equals the comparison map c : (h#
U )p′ → p−1(h#

U ) (verification
omitted). Any sheaf on C is a coequalizer of maps of coproducts of sheaves of the form h#

U ,
see Lemma 12.5. The stalk functorF 7→ Fp′ and the functor p−1 commute with arbitrary
colimits (as they are both left adjoints). We conclude c is an isomorphism for every sheaf
F . Thus the stalk functor F 7→ Fp′ is isomorphic to p−1 and we in particular see that
it is exact. This proves condition (3) of Definition 32.2 holds and p′ is a point. The final
assertion has already been shown above, since we saw that p−1 = (p′)−1. �

Actually a point always corresponds to a morphism of sites as we show in the following
lemma.

Lemma 32.8. Let C be a site. Let p be a point of C given by u : C → Sets. Let S0 be
an infinite set such that u(U) ⊂ S0 for all U ∈ Ob(C). Let S be the site constructed out
of the powerset S = P(S0) in Remark 15.3. Then

(1) there is an equivalence i : Sh(pt)→ Sh(S),
(2) the functor u : C → S induces a morphism of sites f : S → C , and
(3) the composition

Sh(pt)→ Sh(S)→ Sh(C)
is the morphism of topoi (p∗, p

−1) of Lemma 32.7.

Proof. Part (1) we saw in Remark 15.3. Moreover, recall that the equivalence asso-
ciates to the set E the sheaf i∗E on S defined by the rule V 7→ MorSets(V,E). Part (2) is
clear from the definition of a point of C (Definition 32.2) and the definition of a morphism
of sites (Definition 14.1). Finally, consider f∗i∗E. By construction we have

f∗i∗E(U) = i∗E(u(U)) = MorSets(u(U), E)

which is equal to p∗E(U), see Equation (32.3.1). This proves (3). �

Contrary to what happens in the topological case it is not always true that the stalk of the
skyscraper sheaf with value E is E. Here is what is true in general.

Lemma 32.9. Let C be a site. Let p : Sh(pt)→ Sh(C) be a point of the topos associated
to C. For any set E there are canonical maps

E −→ (p∗E)p −→ E

whose composition is idE .
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Proof. There is always an adjunction map (p∗E)p = p−1p∗E → E. This map is an
isomorphism when E = {∗} because p∗ and p−1 are both left exact, hence transform the
final object into the final object. Hence given e ∈ E we can consider the map ie : {∗} → E
which gives

p−1p∗{∗}
p−1p∗ie

//

∼=
��

p−1p∗E

��
{∗} ie // E

whence the map E → (p∗E)p = p−1p∗E as desired. �

Lemma 32.10. Let C be a site. Let p : Sh(pt) → Sh(C) be a point of the topos
associated to C. The functor p∗ : Sets→ Sh(C) has the following properties: It commutes
with arbitrary limits, it is left exact, it is faithful, it transforms surjections into surjections,
it commutes with coequalizers, it reflects injections, it reflects surjections, and it reflects
isomorphisms.

Proof. Because p∗ is a right adjoint it commutes with arbitrary limits and it is left
exact. The fact that p−1p∗E → E is a canonically split surjection implies that p∗ is
faithful, reflects injections, reflects surjections, and reflects isomorphisms. By Lemma 32.7
we may assume that p comes from a point u : C → Sets of the underlying site C. In this
case the sheaf p∗E is given by

p∗E(U) = MorSets(u(U), E)
see Equation (32.3.1) and Definition 32.6. It follows immediately from this formula that
p∗ transforms surjections into surjections and coequalizers into coequalizers. �

33. Constructing points

In this section we give criteria for when a functor from a site to the category of sets defines
a point of that site.

Lemma 33.1. Let C be a site. Let p = u : C → Sets be a functor. If the category of
neighbourhoods of p is cofiltered, then the stalk functor (32.1.1) is left exact.

Proof. Let I → Sh(C), i 7→ Fi be a finite diagram of sheaves. We have to show that
the stalk of the limit of this system agrees with the limit of the stalks. Let F be the limit
of the system as a presheaf. According to Lemma 10.1 this is a sheaf and it is the limit in
the category of sheaves. Hence we have to show that Fp = limI Fi,p. Recall also that F
has a simple description, see Section 4. Thus we have to show that

limi colim{(U,x)}opp Fi(U) = colim{(U,x)}opp limi Fi(U).
This holds, by Categories, Lemma 19.2, because the opposite of the category of neighbour-
hoods is filtered by assumption. �

Lemma 33.2. Let C be a site. Assume that C has a final object X and fibred products.
Let p = u : C → Sets be a functor such that

(1) u(X) is a singleton set, and
(2) for every pair of morphisms U →W and V →W with the same target the map

u(U ×W V )→ u(U)×u(W ) u(V ) is bijective.
Then the the category of neighbourhoods of p is cofiltered and consequently the stalk
functor Sh(C)→ Sets, F → Fp commutes with finite limits.
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Proof. Please note the analogy with Lemma 5.2. The assumptions on C imply that
C has finite limits. See Categories, Lemma 18.4. Assumption (1) implies that the category
of neighbourhoods is nonempty. Suppose (U, x) and (V, y) are neighbourhoods. Then
u(U ×V ) = u(U ×X V ) = u(U)×u(X) u(V ) = u(U)×u(V ) by (2). Hence there exists
a neighbourhood (U ×X V, z) mapping to both (U, x) and (V, y). Let a, b : (V, y) →
(U, x) be two morphisms in the category of neighbourhoods. Let W be the equalizer of
a, b : V → U . As in the proof of Categories, Lemma 18.4 we may write W in terms of
fibre products:

W = (V ×a,U,b V )×(pr1,pr2),V×V,∆ V

The bijectivity in (2) guarantees there exists an element z ∈ u(W ) which maps to ((y, y), y).
Then (W, z) → (V, y) equalizes a, b as desired. The “consequently” clause is Lemma
33.1. �

Proposition 33.3. Let C be a site. Assume that finite limits exist in C. (I.e., C has fibre
products, and a final object.) A point p of such a site C is given by a functor u : C → Sets
such that

(1) u commutes with finite limits, and
(2) if {Ui → U} is a covering, then

∐
i u(Ui)→ u(U) is surjective.

Proof. Suppose first that p is a point (Definition 32.2) given by a functor u. Con-
dition (2) is satisfied directly from the definition of a point. By Lemma 32.3 we have
(hU )p = u(U). By Lemma 32.5 we have (h#

U )p = (hU )p. Thus we see that u is equal to
the composition of functors

C h−→ PSh(C)
#

−→ Sh(C) ()p−−→ Sets
Each of these functors is left exact, and hence we see u satisfies (1).
Conversely, suppose that u satisfies (1) and (2). In this case we immediately see that u
satisfies the first two conditions of Definition 32.2. And its stalk functor is exact, because
it is a left adjoint by Lemma 32.5 and it commutes with finite limits by Lemma 33.2. �

Remark 33.4. In fact, let C be a site. Assume C has a final objectX and fibre products.
Let p = u : C → Sets be a functor such that

(1) u(X) = {∗} a singleton, and
(2) for every pair of morphisms U →W and V →W with the same target the map

u(U ×W V )→ u(U)×u(W ) u(V ) is surjective.
(3) for every covering {Ui → U} the map

∐
u(Ui)→ u(U) is surjective.

Then, in general, p is not a point of C. An example is the category C with two objects
{U,X} and exactly one non-identity arrow, namely U → X . We endow C with the
trivial topology, i.e., the only coverings are {U → U} and {X → X}. A sheaf F is the
same thing as a presheaf and consists of a triple (A,B,A → B): namely A = F(X),
B = F(U) and A → B is the restriction mapping corresponding to U → X . Note that
U ×X U = U so fibre products exist. Consider the functor u = p with u(X) = {∗}
and u(U) = {∗1, ∗2}. This satisfies (1), (2), and (3), but the corresponding stalk functor
(32.1.1) is the functor

(A,B,A→ B) 7−→ B qA B
which isn’t exact. Namely, consider (∅, {1}, ∅ → {1}) → ({1}, {1}, {1} → {1}) which
is an injective map of sheaves, but is transformed into the noninjective map of sets

{1} q {1} −→ {1} q{1} {1}
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by the stalk functor.

Example 33.5. Let X be a topological space. Let XZar be the site of Example 6.4.
Let x ∈ X be a point. Consider the functor

u : XZar −→ Sets, U 7→
{
∅ if x 6∈ U
{∗} if x ∈ U

This functor commutes with product and fibred products, and turns coverings into sur-
jective families of maps. Hence we obtain a point p of the site XZar. It is immediately
verified that the stalk functor agrees with the stalk at x defined in Sheaves, Section 11.

Example 33.6. LetX be a topological space. What are the points of the topos Sh(X)?
To see this, let XZar be the site of Example 6.4. By Lemma 32.7 a point of Sh(X) cor-
responds to a point of this site. Let p be a point of the site XZar given by the functor
u : XZar → Sets. We are going to use the characterization of such a u in Proposition
33.3. This implies immediately that u(∅) = ∅ and u(U ∩ V ) = u(U)× u(V ). In particu-
lar we have u(U) = u(U)× u(U) via the diagonal map which implies that u(U) is either
a singleton or empty. Moreover, if U =

⋃
Ui is an open covering then

u(U) = ∅ ⇒ ∀i, u(Ui) = ∅ and u(U) 6= ∅ ⇒ ∃i, u(Ui) 6= ∅.
We conclude that there is a unique largest open W ⊂ X with u(W ) = ∅, namely the
union of all the opens U with u(U) = ∅. Let Z = X \W . If Z = Z1 ∪ Z2 with Zi ⊂ Z
closed, then W = (X \ Z1) ∩ (X \ Z2) so ∅ = u(W ) = u(X \ Z1)× u(X \ Z2) and we
conclude that u(X \ Z1) = ∅ or that u(X \ Z2) = ∅. This means that X \ Z1 = W or
that X \Z2 = W . In other words, Z is irreducible. Now we see that u is described by the
rule

u : XZar −→ Sets, U 7→
{
∅ if Z ∩ U = ∅
{∗} if Z ∩ U 6= ∅

Note that for any irreducible closed Z ⊂ X this functor satisfies assumptions (1), (2) of
Proposition 33.3 and hence defines a point. In other words we see that points of the site
XZar are in one-to-one correspondence with irreducible closed subsets ofX . In particular,
if X is a sober topological space, then points of XZar and points of X are in one to one
correspondence, see Example 33.5.

Example 33.7. Consider the site TG described in Example 6.5 and Section 9. The
forgetful functor u : TG → Sets commutes with products and fibred products and turns
coverings into surjective families. Hence it defines a point of TG. We identify Sh(TG) and
G-Sets. The stalk functor

p−1 : Sh(TG) = G-Sets −→ Sets
is the forgetful functor. The pushforward p∗ is the functor

Sets −→ Sh(TG) = G-Sets
which maps a set S to the G-set Map(G,S) with action g · ψ = ψ ◦ Rg where Rg is
right multiplication. In particular we have p−1p∗S = Map(G,S) as a set and the maps
S →Map(G,S)→ S of Lemma 32.9 are the obvious ones.

Example 33.8. Let C be a category endowed with the chaotic topology (Example
6.6). For every object U0 of C the functor u : U 7→ MorC(U0, U) defines a point p of C.
Namely, conditions (1) and (2) of Definition 32.2 are immediate as the only coverings are
given by identity maps. Condition (2) holds because Fp = F(U0) and since the topology
is discrete taking sections over U0 is an exact functor.
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34. Points and morphisms of topoi

In this section we make a few remarks about points and morphisms of topoi.

Lemma 34.1. Let u : C → D be a functor. Let v : D → Sets be a functor and set
w = v ◦ u. Denote q, resp., p the stalk functor (32.1.1) associated to v, resp. w. Then
(upF)q = Fp functorially in the presheaf F on C.

Proof. This is a simple categorical fact. We have
(upF)q = colim(V,y) colimU,φ:V→u(U) F(U)

= colim(V,y,U,φ:V→u(U)) F(U)
= colim(U,x) F(U)
= Fp

The first equality holds by the definition of up and the definition of the stalk functor.
Observe that y ∈ v(V ). In the second equality we simply combine colimits. To see the
third equality we apply Categories, Lemma 17.5 to the functor F of diagram categories
defined by the rule

F ((V, y, U, φ : V → u(U))) = (U, v(φ)(y)).
This makes sense because w(U) = v(u(U)). Let us check the hypotheses of Categories,
Lemma 17.5. Observe that F has a right inverse, namely (U, x) 7→ (u(U), x, U, id :
u(U) → u(U)). Again this makes sense because x ∈ w(U) = v(u(U)). On the other
hand, there is always a morphism

(V, y, U, φ : V → u(U)) −→ (u(U), v(φ)(y), U, id : u(U)→ u(U))
in the fibre category over (U, x) which shows the fibre categories are connected. The
fourth and final equality is clear. �

Lemma 34.2. Let f : D → C be a morphism of sites given by a continuous functor
u : C → D. Let q be a point of D given by the functor v : D → Sets, see Definition 32.2.
Then the functor v ◦u : C → Sets defines a point p of C and moreover there is a canonical
identification

(f−1F)q = Fp
for any sheaf F on C.

First proof Lemma 34.2. Note that since u is continuous and since v defines a point,
it is immediate that v ◦ u satisfies conditions (1) and (2) of Definition 32.2. Let us prove
the displayed equality. Let F be a sheaf on C. Then

(f−1F)q = (usF)q = (upF)q = Fp
The first equality since f−1 = us, the second equality by Lemma 32.5, and the third by
Lemma 34.1. Hence now we see that p also satisfies condition (3) of Definition 32.2 because
it is a composition of exact functors. This finishes the proof. �

Second proof Lemma 34.2. By Lemma 32.8 we may factor (q∗, q
−1) as

Sh(pt) i−→ Sh(S) h−→ Sh(D)
where the second morphism of topoi comes from a morphism of sites h : S → D induced
by the functor v : D → S (which makes sense as S ⊂ Sets is a full subcategory containing
every object in the image of v). By Lemma 14.4 the composition v ◦ u : C → S defines
a morphism of sites g : S → C. In particular, the functor v ◦ u : C → S is continuous
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which by the definition of the coverings in S , see Remark 15.3, means that v ◦ u satisfies
conditions (1) and (2) of Definition 32.2. On the other hand, we see that

g∗i∗E(U) = i∗E(v(u(U)) = MorSets(v(u(U)), E)

by the construction of i in Remark 15.3. Note that this is the same as the formula for
which is equal to (v ◦ u)pE , see Equation (32.3.1). By Lemma 32.5 the functor g∗i∗ =
(v ◦ u)p = (v ◦ u)s is right adjoint to the stalk functor F 7→ Fq . Hence we see that
the stalk functor p−1 is canonically isomorphic to i−1 ◦ g−1. Hence it is exact and we
conclude that p is a point. Finally, as we have g = f ◦ h by construction we see that
p−1 = i−1 ◦h−1 ◦f−1 = q−1 ◦f−1, i.e., we have the displayed formula of the lemma. �

Lemma 34.3. Let f : Sh(D) → Sh(C) be a morphism of topoi. Let q : Sh(pt) →
Sh(D) be a point. Then p = f ◦ q is a point of the topos Sh(C) and we have a canonical
identification

(f−1F)q = Fp
for any sheaf F on C.

Proof. This is immediate from the definitions and the fact that we can compose mor-
phisms of topoi. �

35. Localization and points

In this section we show that points of a localization C/U are constructed in a simple man-
ner from the points of C.

Lemma 35.1. Let C be a site. Let p be a point of C given by u : C → Sets. Let U be an
object of C and let x ∈ u(U). The functor

v : C/U −→ Sets, (ϕ : V → U) 7−→ {y ∈ u(V ) | u(ϕ)(y) = x}

defines a point q of the site C/U such that the diagram

Sh(pt)

p

��

q

yy
Sh(C/U) jU // Sh(C)

commutes. In other words Fp = (j−1
U F)q for any sheaf on C.

Proof. Choose S and S as in Lemma 32.8. We may identify Sh(pt) = Sh(S) as in
that lemma, and we may write p = f : Sh(S)→ Sh(C) for the morphism of topoi induced
by u. By Lemma 28.1 we get a commutative diagram of topoi

Sh(S/u(U))
ju(U)

//

p′

��

Sh(S)

p

��
Sh(C/U) jU // Sh(C),

where p′ is given by the functor u′ : C/U → S/u(U), V/U 7→ u(V )/u(U). Consider
the functor jx : S ∼= S/x obtained by assigning to a set E the set E endowed with the
constant map E → u(U) with value x. Then jx is a fully faithful cocontinuous functor
which has a continuous right adjoint vx : (ψ : E → u(U)) 7→ ψ−1({x}). Note that
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ju(U) ◦ jx = idS , and vx ◦ u′ = v. These observations imply that we have the following
commutative diagram of topoi

Sh(S)
a

&&
q

��

p

oo

Sh(S/u(U))
ju(U)

//

p′

��

Sh(S)

p

��
Sh(C/U) jU // Sh(C)

Namely:
(1) The morphism a : Sh(S) → Sh(S/u(U)) is the morphism of topoi associated

to the cocontinuous functor jx, which equals the morphism associated to the
continuous functor vx, see Lemma 21.1 and Section 22.

(2) The composition p ◦ ju(U) ◦ a = p since ju(U) ◦ jx = idS .
(3) The composition p′ ◦a gives a morphism of topoi. Moreover, it is the morphism

of topoi associated to the continuous functor vx ◦ u′ = v. Hence v does indeed
define a point q of C/U which fits into the diagram above by construction.

This ends the proof of the lemma. �

Lemma 35.2. Let C , p, u, U be as in Lemma 35.1. The construction of Lemma 35.1
gives a one to one correspondence between points q of C/U lying over p and elements x
of u(U).

Proof. Let q be a point of C/U given by the functor v : C/U → Sets such that
jU ◦ q = p as morphisms of topoi. Recall that u(V ) = p−1(h#

V ) for any object V of C , see
Lemma 32.7. Similarly v(V/U) = q−1(h#

V/U ) for any object V/U of C/U . Consider the
following two diagrams

MorC/U (W/U, V/U) //

��

MorC(W,V )

��
MorC/U (W/U,U/U) // MorC(W,U)

h#
V/U

//

��

j−1
U (h#

V )

��
h#
U/U

// j−1
U (h#

U )

The right hand diagram is the sheafification of the diagram of presheaves on C/U which
mapsW/U to the left hand diagram of sets. (There is a small technical point to make here,
namely, that we have (j−1

U hV )# = j−1
U (h#

V ) and similarly for hU , see Lemma 20.4.) Note
that the left hand diagram of sets is cartesian. Since sheafification is exact (Lemma 10.14)
we conclude that the right hand diagram is cartesian.
Apply the exact functor q−1 to the right hand diagram to get a cartesian diagram

v(V/U) //

��

u(V )

��
v(U/U) // u(U)

of sets. Here we have used that q−1 ◦ j−1 = p−1. Since U/U is a final object of C/U we
see that v(U/U) is a singleton. Hence the image of v(U/U) in u(U) is an element x, and
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the top horizontal map gives a bijection v(V/U) → {y ∈ u(V ) | y 7→ x in u(U)} as
desired. �

Lemma 35.3. Let C be a site. Let p be a point of C given by u : C → Sets. Let U be an
object of C. For any sheaf G on C/U we have

(jU !G)p =
∐

q
Gq

where the coproduct is over the points q of C/U associated to elements x ∈ u(U) as in
Lemma 35.1.

Proof. We use the description of jU !G as the sheaf associated to the presheaf V 7→∐
ϕ∈MorC(V,U) G(V/ϕU) of Lemma 25.2. Also, the stalk of jU !G at p is equal to the stalk

of this presheaf, see Lemma 32.5. Hence we see that

(jU !G)p = colim(V,y)
∐

ϕ:V→U
G(V/ϕU)

To each element (V, y, ϕ, s) of this colimit, we can assign x = u(ϕ)(y) ∈ u(U). Hence we
obtain

(jU !G)p =
∐

x∈u(U)
colim(ϕ:V→U,y), u(ϕ)(y)=x G(V/ϕU).

This is equal to the expression of the lemma by our construction of the points q. �

Remark 35.4. Warning: The result of Lemma 35.3 has no analogue for jU,∗.

36. 2-morphisms of topoi

This is a brief section concerning the notion of a 2-morphism of topoi.

Definition 36.1. Let f, g : Sh(C) → Sh(D) be two morphisms of topoi. A 2-
morphism from f to g is given by a transformation of functors t : f∗ → g∗.

Pictorially we sometimes represent t as follows:

Sh(C)
f

++

g

33�� t Sh(D)

Note that since f−1 is adjoint to f∗ and g−1 is adjoint to g∗ we see that t induces also a
transformation of functors t : g−1 → f−1 (usually denoted by the same symbol) uniquely
characterized by the condition that the diagram

MorSh(D)(G, f∗F)

t◦−
��

MorSh(C)(f−1G,F)

−◦t
��

MorSh(D)(G, g∗F) MorSh(C)(g−1G,F)

commutes. Because of set theoretic difficulties (see Remark 15.4) we do not obtain a 2-
category of topoi. But we can still define horizontal and vertical composition and show
that the axioms of a strict 2-category listed in Categories, Section 29 hold. Namely, vertical
composition of 2-morphisms is clear (just compose transformations of functors), composi-
tion of 1-morphisms has been defined in Definition 15.1, and horizontal composition of

Sh(C)
f ++

g
33�� t Sh(D)

f ′
++

g′
33��

s Sh(E)
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is defined by the transformation of functors s?t introduced in Categories, Definition 28.1.
Explicitly, s ? t is given by

f ′
∗f∗F

f ′
∗t // f ′

∗g∗F
s // g′

∗g∗F or f ′
∗f∗F

s // g′
∗f∗F

g′
∗t // g′

∗g∗F

(these maps are equal). Since these definitions agree with the ones in Categories, Section
28 it follows from Categories, Lemma 28.2 that the axioms of a strict 2-category hold with
these definitions.

37. Morphisms between points

Lemma 37.1. Let C be a site. Let u, u′ : C → Sets be two functors, and let t : u′ → u be
a transformation of functors. Then we obtain a canonical transformation of stalk functors
tstalk : Fp′ → Fp which agrees with t via the identifications of Lemma 32.3.

Proof. Omitted. �

Definition 37.2. Let C be a site. Let p, p′ be points of C given by functors u, u′ :
C → Sets. A morphism f : p→ p′ is given by a transformation of functors

fu : u′ → u.

Note how the transformation of functors goes the other way. This makes sense, as we will
see later, by thinking of the morphism f as a kind of 2-arrow pictorially as follows:

Sets = Sh(pt)
p

++

p′
33�� f Sh(C)

Namely, we will see later that fu induces a canonical transformation of functors p∗ → p′
∗

between the skyscraper sheaf constructions.

This is a fairly important notion, and deserves a more complete treatment here. List of
desiderata

(1) Describe the automorphisms of the point of TG described in Example 33.7.
(2) Describe Mor(p, p′) in terms of Mor(p∗, p

′
∗).

(3) Specialization of points in topological spaces. Show that if x′ ∈ {x} in the
topological space X , then there is a morphism p → p′, where p (resp. p′) is the
point of XZar associated to x (resp. x′).

38. Sites with enough points

Definition 38.1. Let C be a site.
(1) A family of points {pi}i∈I is called conservative if every map of sheaves φ :
F → G which is an isomorphism on all the fibresFpi → Gpi is an isomorphism.

(2) We say that C has enough points if there exists a conservative family of points.

It turns out that you can then check “exactness” at the stalks.

Lemma 38.2. Let C be a site and let {pi}i∈I be a conservative family of points. Then
(1) Given any map of sheaves ϕ : F → G we have ∀i, ϕpi injective implies ϕ injec-

tive.
(2) Given any map of sheaves ϕ : F → G we have ∀i, ϕpi surjective implies ϕ

surjective.
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(3) Given any pair of maps of sheaves ϕ1, ϕ2 : F → G we have ∀i, ϕ1,pi = ϕ2,pi
implies ϕ1 = ϕ2.

(4) Given a finite diagram G : J → Sh(C), a sheaf F and morphisms qj : F → Gj
then (F , qj) is a limit of the diagram if and only if for each i the stalk (Fpi , (qj)pi)
is one.

(5) Given a finite diagram F : J → Sh(C), a sheaf G and morphisms ej : Fj →
G then (G, ej) is a colimit of the diagram if and only if for each i the stalk
(Gpi , (ej)pi) is one.

Proof. We will use over and over again that all the stalk functors commute with any
finite limits and colimits and hence with products, fibred products, etc. We will also use
that injective maps are the monomorphisms and the surjective maps are the epimorphisms.
A map of sheaves ϕ : F → G is injective if and only if F → F ×G F is an isomorphism.
Hence (1). Similarly,ϕ : F → G is surjective if and only ifGqFG → G is an isomorphism.
Hence (2). The maps a, b : F → G are equal if and only if F ×a,G,b F → F × F
is an isomorphism. Hence (3). The assertions (4) and (5) follow immediately from the
definitions and the remarks at the start of this proof. �

Lemma 38.3. Let C be a site and let {(pi, ui)}i∈I be a family of points. The family
is conservative if and only if for every sheaf F and every U ∈ Ob(C) and every pair of
distinct sections s, s′ ∈ F(U), s 6= s′ there exists an i and x ∈ ui(U) such that the triples
(U, x, s) and (U, x, s′) define distinct elements of Fpi .

Proof. Suppose that the family is conservative and that F , U , and s, s′ are as in the
lemma. The sections s, s′ define maps a, a′ : (hU )# → F which are distinct. Hence, by
Lemma 38.2 there is an i such that api 6= a′

pi . Recall that (hU )#
pi = ui(U), by Lemmas 32.3

and 32.5. Hence there exists an x ∈ ui(U) such that api(x) 6= a′
pi(x) in Fpi . Unwinding

the definitions you see that (U, x, s) and (U, x, s′) are as in the statement of the lemma.
To prove the converse, assume the condition on the existence of points of the lemma. Let
φ : F → G be a map of sheaves which is an isomorphism at all the stalks. We have to
show that φ is both injective and surjective, see Lemma 11.2. Injectivity is an immediate
consequence of the assumption. To show surjectivity we have to show that GqF G → G is
an isomorphism (Categories, Lemma 13.3). Since this map is clearly surjective, it suffices to
check injectivity which follows asGqFG → G is injective on all stalks by assumption. �

In the following lemma the points qi,x are exactly all the points of C/U lying over the
point pi according to Lemma 35.2.

Lemma 38.4. Let C be a site. Let U be an object of C. let {(pi, ui)}i∈I be a family
of points of C. For x ∈ ui(U) let qi,x be the point of C/U constructed in Lemma 35.1. If
{pi} is a conservative family of points, then {qi,x}i∈I,x∈ui(U) is a conservative family of
points of C/U . In particular, if C has enough points, then so does every localization C/U .

Proof. We know that jU ! induces an equivalence jU ! : Sh(C/U) → Sh(C)/h#
U , see

Lemma 25.4. Moreover, we know that (jU !G)pi =
∐
x Gqi,x , see Lemma 35.3. Hence the

result follows formally. �

The following lemma tells us we can check the existence of points locally on the site.

Lemma 38.5. Let C be a site. Let {Ui}i∈I be a family of objects of C. Assume
(1)
∐
h#
Ui
→ ∗ is a surjective map of sheaves, and

(2) each localization C/Ui has enough points.
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Then C has enough points.

Proof. For each i ∈ I let {pj}j∈Ji be a conservative family of points of C/Ui. For
j ∈ Ji denote qj : Sh(pt)→ Sh(C) the composition of pj with the localization morphism
Sh(C/Ui) → Sh(C). Then qj is a point, see Lemma 34.3. We claim that the family of
points {qj}j∈∐ Ji

is conservative. Namely, letF → G be a map of sheaves on C such that
Fqj → Gqj is an isomorphism for all j ∈

∐
Ji. LetW be an object of C. By assumption (1)

there exists a covering {Wa → W} and morphisms Wa → Ui(a). Since (F|C/Ui(a))pj =
Fqj and (G|C/Ui(a))pj = Gqj by Lemma 34.3 we see that F|Ui(a) → G|Ui(a) is an isomor-
phism since the family of points {pj}j∈Ji(a) is conservative. Hence F(Wa) → G(Wa) is
bijective for each a. Similarly F(Wa ×W Wb) → G(Wa ×W Wb) is bijective for each
a, b. By the sheaf condition this shows that F(W )→ G(W ) is bijective, i.e., F → G is an
isomorphism. �

Lemma 38.6. Let u : C → D be a continuous functor of sites. Let {(qi, vi)}i∈I be a
conservative family of points of D. If each functor ui = vi ◦ u defines a point of C , then
u defines a morphism of sites f : D → C.

Proof. Denote pi the stalk functor (32.1.1) on PSh(C) corresponding to the functor
ui. We have

(f−1F)qi = (usF)qi = (upF)qi = Fpi
The first equality since f−1 = us, the second equality by Lemma 32.5, and the third by
Lemma 34.1. Hence if pi is a point, then pulling back by f and then taking stalks at qi is
an exact functor. Since the family of points {qi} is conservative, this implies that f−1 is
an exact functor and we see that f is a morphism of sites by Definition 14.1. �

39. Criterion for existence of points

This section corresponds to Deligne’s appendix to [?, Exposé VI]. In fact it is almost liter-
ally the same.

Let C be a site. Suppose that (I,≥) is a directed set, and that (Ui, fii′) is an inverse system
over I , see Categories, Definition 21.2. Given the data (I,≥, Ui, fii′) we define

u : C −→ Sets, u(V ) = colimi MorC(Ui, V )
Let F 7→ Fp be the stalk functor associated to u as in Section 32. It is direct from the
definition that actually

Fp = colimi F(Ui)
in this special case. Note that u commutes with all finite limits (I mean those that are
representable in C) because each of the functors V 7→ MorC(Ui, V ) do, see Categories,
Lemma 19.2.

We say that a system (I,≥, Ui, fii′) is a refinement of (J,≥, Vj , gjj′) ifJ ⊂ I , the ordering
on J induced from that of I and Vj = Uj , gjj′ = fjj′ (in words, the inverse system over
J is induced by that over I). Let u be the functor associated to (I,≥, Ui, fii′) and let u′

be the functor associated to (J,≥, Vj , gjj′). This induces a transformation of functors

u′ −→ u

simply because the colimits for u′ are over a subsystem of the systems in the colimits for u.
In particular we get an associated transformation of stalk functors Fp′ → Fp, see Lemma
37.1.
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Lemma 39.1. Let C be a site. Let (J,≥, Vj , gjj′) be a system as above with associated
pair of functors (u′, p′). Let F be a sheaf on C. Let s, s′ ∈ Fp′ be distinct elements.
Let {Wk → W} be a finite covering of C. Let f ∈ u′(W ). There exists a refinement
(I,≥, Ui, fii′) of (J,≥, Vj , gjj′) such that s, s′ map to distinct elements of Fp and that
the image of f in u(W ) is in the image of one of the u(Wk).

Proof. There exists a j0 ∈ J such that f is defined by f ′ : Vj0 →W . For j ≥ j0 we
set Vj,k = Vj ×f ′◦fjj0 ,W

Wk. Then {Vj,k → Vj} is a finite covering in the site C. Hence
F(Vj) ⊂

∏
k F(Vj,k). By Categories, Lemma 19.2 once again we see that

Fp′ = colimj F(Vj) −→
∏

k
colimj F(Vj,k)

is injective. Hence there exists a k such that s and s′ have distinct image in colimj F(Vj,k).
Let J0 = {j ∈ J, j ≥ j0} and I = J q J0. We order I so that no element of the second
summand is smaller than any element of the first, but otherwise using the ordering on J .
If j ∈ I is in the first summand then we use Vj and if j ∈ I is in the second summand
then we use Vj,k. We omit the definition of the transition maps of the inverse system. By
the above it follows that s, s′ have distinct image in Fp. Moreover, the restriction of f ′

to Vj,k factors through Wk by construction. �

Lemma 39.2. Let C be a site. Let (J,≥, Vj , gjj′) be a system as above with associated
pair of functors (u′, p′). Let F be a sheaf on C. Let s, s′ ∈ Fp′ be distinct elements.
There exists a refinement (I,≥, Ui, fii′) of (J,≥, Vj , gjj′) such that s, s′ map to distinct
elements of Fp and such that for every finite covering {Wk → W} of the site C , and any
f ∈ u′(W ) the image of f in u(W ) is in the image of one of the u(Wk).

Proof. Let E be the set of pairs ({Wk → W}, f ∈ u′(W )). Consider pairs (E′ ⊂
E, (I,≥, Ui, fii′)) such that

(1) (I,≥, Ui, gii′) is a refinement of (J,≥, Vj , gjj′),
(2) s, s′ map to distinct elements of Fp, and
(3) for every pair ({Wk → W}, f ∈ u′(W )) ∈ E′ we have that the image of f in

u(W ) is in the image of one of the u(Wk).
We order such pairs by inclusion in the first factor and by refinement in the second. De-
note S the class of all pairs (E′ ⊂ E, (I,≥, Ui, fii′)) as above. We claim that the hypothe-
sis of Zorn’s lemma holds forS . Namely, suppose that (E′

a, (Ia,≥, Ui, fii′))a∈A is a totally
ordered subset of S . Then we can defineE′ =

⋃
a∈AE

′
a and we can set I =

⋃
a∈A Ia. We

claim that the corresponding pair (E′, (I,≥, Ui, fii′)) is an element of S . Conditions (1)
and (3) are clear. For condition (2) you note that

u = colima∈A ua and correspondingly Fp = colima∈A Fpa
The distinctness of the images of s, s′ in this stalk follows from the description of a di-
rected colimit of sets, see Categories, Section 19. We will simply write (E′, (I, . . .)) =⋃
a∈A(E′

a, (Ia, . . .)) in this situation.

OK, so Zorn’s Lemma would apply if S was a set, and this would, combined with Lemma
39.1 above easily prove the lemma. It doesn’t since S is a class. In order to circumvent this
we choose a well ordering on E. For e ∈ E set E′

e = {e′ ∈ E | e′ ≤ e}. Using transfinite
recursion we construct pairs (E′

e, (Ie, . . .)) ∈ S such that e1 ≤ e2 ⇒ (E′
e1
, (Ie1 , . . .)) ≤

(E′
e2
, (Ie2 , . . .)). Let e ∈ E , say e = ({Wk → W}, f ∈ u′(W )). If e has a predecessor

e − 1, then we let (Ie, . . .) be a refinement of (Ie−1, . . .) as in Lemma 39.1 with respect
to the system e = ({Wk → W}, f ∈ u′(W )). If e does not have a predecessor, then we
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let (Ie, . . .) be a refinement of
⋃
e′<e(Ie′ , . . .) with respect to the system e = ({Wk →

W}, f ∈ u′(W )). Finally, the union
⋃
e∈E Ie will be a solution to the problem posed in

the lemma. �

Proposition 39.3. Let C be a site. Assume that
(1) finite limits exist in C , and
(2) every covering {Ui → U}i∈I has a refinement by a finite covering of C.

Then C has enough points.

Proof. We have to show that given any sheaf F on C , any U ∈ Ob(C), and any dis-
tinct sections s, s′ ∈ F(U), there exists a point p such that s, s′ have distinct image inFp.
See Lemma 38.3. Consider the system (J,≥, Vj , gjj′) with J = {1}, V1 = U , g11 = idU .
Apply Lemma 39.2. By the result of that lemma we get a system (I,≥, Ui, fii′) refining our
system such that sp 6= s′

p and such that moreover for every finite covering {Wk → W}
of the site C the map

∐
k u(Wk) → u(W ) is surjective. Since every covering of C can be

refined by a finite covering we conclude that
∐
k u(Wk) → u(W ) is surjective for any

covering {Wk →W} of the site C. This implies that u = p is a point, see Proposition 33.3
(and the discussion at the beginning of this section which guarantees that u commutes
with finite limits). �

Lemma 39.4. Let C be a site. Let I be a set and for i ∈ I let Ui be an object of C such
that

(1)
∐
hUi surjects onto the final object of Sh(C), and

(2) C/Ui satisfies the hypotheses of Proposition 39.3.
Then C has enough points.

Proof. By assumption (2) and the proposition C/Ui has enough points. The points
of C/Ui give points of C via the procedure of Lemma 34.2. Thus it suffices to show: if
φ : F → G is a map of sheaves on C such that φ|C/Ui is an isomorphism for all i, then φ
is an isomorphism. By assumption (1) for every object W of C there is a covering {Wj →
W}j∈J such that for j ∈ J there is an i ∈ I and a morphism fj : Wj → Ui. Then the
mapsF(Wj)→ G(Wj) are bijective and similarly forF(Wj×WWj′)→ G(Wj×WWj′).
The sheaf condition tells us that F(W )→ G(W ) is bijective as desired. �

40. Weakly contractible objects

A weakly contractible object of a site is one that satisfies the equivalent conditions of the
following lemma.

Lemma 40.1. Let C be a site. Let U be an object of C. The following conditions are
equivalent

(1) For every covering {Ui → U} there exists a map of sheaves h#
U →

∐
h#
Ui

right
inverse to the sheafification of

∐
hUi → hU .

(2) For every surjection of sheaves of sets F → G the map F(U)→ G(U) is surjec-
tive.

Proof. Assume (1) and letF → G be a surjective map of sheaves of sets. For s ∈ G(U)
there exists a covering {Ui → U} and ti ∈ F(Ui) mapping to s|Ui , see Definition 11.1.
Think of ti as a map ti : h#

Ui
→ F via (12.3.1). Then precomposing

∐
ti :

∐
h#
Ui
→ F

with the map h#
U →

∐
h#
Ui

we get from (1) we obtain a section t ∈ F(U) mapping to s.
Thus (2) holds.
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Assume (2) holds. Let {Ui → U} be a covering. Then
∐
h#
Ui
→ h#

U is surjective (Lemma
12.4). Hence by (2) there exists a section s of

∐
h#
Ui

mapping to the section idU of h#
U .

This section corresponds to a map h#
U →

∐
h#
Ui

which is right inverse to the sheafification
of
∐
hUi → hU which proves (1). �

Definition 40.2. Let C be a site.
(1) We say an object U of C is weakly contractible if the equivalent conditions of

Lemma 40.1 hold.
(2) We say a site has enough weakly contractible objects if every object U of C has a

covering {Ui → U} with Ui weakly contractible for all i.
(3) More generally, if P is a property of objects of C we say that C has enough P

objects if every object U of C has a covering {Ui → U} such that Ui has P for
all i.

The small étale site of A1
C does not have any weakly contractible objects. On the other

hand, the small pro-étale site of any scheme has enough contractible objects.

41. Exactness properties of pushforward

Let f be a morphism of topoi. The functor f∗ in general is only left exact. There are
many additional conditions one can impose on this functor to single out particular classes
of morphisms of topoi. We collect them here and note some of the logical dependencies.
Some parts of the following lemma are purely category theoretical (i.e., they do not depend
on having a morphism of topoi, just having a pair of adjoint functors is enough).

Lemma 41.1. Let f : Sh(C)→ Sh(D) be a morphism of topoi. Consider the follow-
ing properties (on sheaves of sets):

(1) f∗ is faithful,
(2) f∗ is fully faithful,
(3) f−1f∗F → F is surjective for all F in Sh(C),
(4) f∗ transforms surjections into surjections,
(5) f∗ commutes with coequalizers,
(6) f∗ commutes with pushouts,
(7) f−1f∗F → F is an isomorphism for all F in Sh(C),
(8) f∗ reflects injections,
(9) f∗ reflects surjections,

(10) f∗ reflects bijections, and
(11) for any surjectionF → f−1G there exists a surjectionG′ → G such that f−1G′ →

f−1G factors through F → f−1G.
Then we have the following implications

(a) (2)⇒ (1),
(b) (3)⇒ (1),
(c) (7)⇒ (1), (2), (3), (8), (9), (10).
(d) (3)⇔ (9),
(e) (6)⇒ (4) and (5)⇒ (4),
(f) (4)⇔ (11),
(g) (9)⇒ (8), (10), and
(h) (2)⇔ (7).
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Picture
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Proof. Proof of (a): This is immediate from the definitions.

Proof of (b). Suppose that a, b : F → F ′ are maps of sheaves on C. If f∗a = f∗b, then
f−1f∗a = f−1f∗b. Consider the commutative diagram

F //
// F ′

f−1f∗F //
//

OO

f−1f∗F ′

OO

If the bottom two arrows are equal and the vertical arrows are surjective then the top two
arrows are equal. Hence (b) follows.

Proof of (c). Suppose that a : F → F ′ is a map of sheaves on C. Consider the commutative
diagram

F // F ′

f−1f∗F //

OO

f−1f∗F ′

OO

If (7) holds, then the vertical arrows are isomorphisms. Hence if f∗a is injective (resp. sur-
jective, resp. bijective) then the bottom arrow is injective (resp. surjective, resp. bijective)
and hence the top arrow is injective (resp. surjective, resp. bijective). Thus we see that (7)
implies (8), (9), (10). It is clear that (7) implies (3). The implications (7)⇒ (2), (1) follow
from (a) and (h) which we will see below.

Proof of (d). Assume (3). Suppose that a : F → F ′ is a map of sheaves on C such that f∗a
is surjective. As f−1 is exact this implies that f−1f∗a : f−1f∗F → f−1f∗F ′ is surjective.
Combined with (3) this implies that a is surjective. This means that (9) holds. Assume (9).
LetF be a sheaf on C. We have to show that the map f−1f∗F → F is surjective. It suffices
to show that f∗f

−1f∗F → f∗F is surjective. And this is true because there is a canonical
map f∗F → f∗f

−1f∗F which is a one-sided inverse.

Proof of (e). We use Categories, Lemma 13.3 without further mention. If F → F ′ is
surjective then F ′ qF F ′ → F ′ is an isomorphism. Hence (6) implies that

f∗F ′ qf∗F f∗F ′ = f∗(F ′ qF F ′) −→ f∗F ′

is an isomorphism also. And this in turn implies that f∗F → f∗F ′ is surjective. Hence
we see that (6) implies (4). If F → F ′ is surjective then F ′ is the coequalizer of the two
projectionsF×F ′F → F by Lemma 11.3. Hence if (5) holds, then f∗F ′ is the coequalizer
of the two projections

f∗(F ×F ′ F) = f∗F ×f∗F ′ f∗F −→ f∗F
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which clearly means that f∗F → f∗F ′ is surjective. Hence (5) implies (4) as well.

Proof of (f). Assume (4). Let F → f−1G be a surjective map of sheaves on C. By (4) we
see that f∗F → f∗f

−1G is surjective. Let G′ be the fibre product

f∗F // f∗f
−1G

G′

OO

// G

OO

so that G′ → G is surjective also. Consider the commutative diagram

F // f−1G

f−1f∗F //

OO

f−1f∗f
−1G

OO

f−1G′

OO

// f−1G

OO

and we see the required result. Conversely, assume (11). Let a : F → F ′ be surjective map
of sheaves on C. Consider the fibre product diagram

F // F ′

F ′′

OO

// f−1f∗F ′

OO

Because the lower horizontal arrow is surjective and by (11) we can find a surjection γ :
G′ → f∗F ′ such that f−1γ factors through F ′′ → f−1f∗F ′:

F // F ′

f−1G′ // F ′′

OO

// f−1f∗F ′

OO

Pushing this down using f∗ we get a commutative diagram

f∗F // f∗F ′

f∗f
−1G′ // f∗F ′′

OO

// f∗f
−1f∗F ′

OO

G′

OO

// f∗F ′

OO

which proves that (4) holds.

Proof of (g). Assume (9). We use Categories, Lemma 13.3 without further mention. Let
a : F → F ′ be a map of sheaves on C such that f∗a is injective. This means that f∗F →
f∗F×f∗F ′ f∗F = f∗(F×F ′F) is an isomorphism. Thus by (9) we see thatF → F×F ′F
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is surjective, i.e., an isomorphism. Thus a is injective, i.e., (8) holds. Since (10) is trivially
equivalent to (8) + (9) we are done with (g).

Proof of (h). This is Categories, Lemma 24.4. �

Here is a condition on a morphism of sites which guarantees that the functor f∗ transforms
surjective maps into surjective maps.

Lemma 41.2. Let f : D → C be a morphism of sites associated to the continuous
functor u : C → D. Assume that for any object U of C and any covering {Vj → u(U)} in
D there exists a covering {Ui → U} in C such that the map of sheaves∐

h#
u(Ui) → h#

u(U)

factors through the map of sheaves ∐
h#
Vj
→ h#

u(U).

Then f∗ transforms surjective maps of sheaves into surjective maps of sheaves.

Proof. Let a : F → G be a surjective map of sheaves on D. Let U be an object of C
and let s ∈ f∗G(U) = G(u(U)). By assumption there exists a covering {Vj → u(U)} and
sections sj ∈ F(Vj) with a(sj) = s|Vj . Now we may think of the sections s, sj and a as
giving a commutative diagram of maps of sheaves∐

h#
Vj ∐ sj

//

��

F

a

��
h#
u(U)

s // G

By assumption there exists a covering {Ui → U} such that we can enlarge the commuta-
tive diagram above as follows ∐

h#
Vj ∐ sj

//

��

F

a

��∐
h#
u(Ui)

//

;;

h#
u(U)

s // G

Because F is a sheaf the map from the left lower corner to the right upper corner corre-
sponds to a family of sections si ∈ F(u(Ui)), i.e., sections si ∈ f∗F(Ui). The commu-
tativity of the diagram implies that a(si) is equal to the restriction of s to Ui. In other
words we have shown that f∗a is a surjective map of sheaves. �

Example 41.3. Assume f : D → C satisfies the assumptions of Lemma 41.2. Then
it is in general not the case that f∗ commutes with coequalizers or pushouts. Namely,
suppose that f is the morphism of sites associated to the morphism of topological spaces
X = {1, 2} → Y = {∗} (see Example 14.2), where Y is a singleton space, andX = {1, 2}
is a discrete space with two points. A sheafF onX is given by a pair (A1, A2) of sets. Then
f∗F corresponds to the set A1 × A2. Hence if a = (a1, a2), b = (b1, b2) : (A1, A2) →
(B1, B2) are maps of sheaves onX , then the coequalizer of a, b is (C1, C2) whereCi is the
coequalizer of ai, bi, and the coequalizer of f∗a, f∗b is the coequalizer of

a1 × a2, b1 × b2 : A1 ×A2 −→ B1 ×B2
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which is in general different from C1 × C2. Namely, if A2 = ∅ then A1 × A2 = ∅, and
hence the coequalizer of the displayed arrows is B1 × B2, but in general C1 6= B1. A
similar example works for pushouts.

The following lemma gives a criterion for when a morphism of sites has a functor f∗ which
reflects injections and surjections. Note that this also implies that f∗ is faithful and that
the map f−1f∗F → F is always surjective.

Lemma 41.4. Let f : D → C be a morphism of sites given by the functor u : C → D.
Assume that for every object V ofD there exist objectsUi of C and morphisms u(Ui)→ V
such that {u(Ui)→ V } is a covering of D. In this case the functor f∗ : Sh(D)→ Sh(C)
reflects injections and surjections.

Proof. Let α : F → G be maps of sheaves on D. By assumption for every object
V of D we get F(V ) ⊂

∏
F(u(Ui)) =

∏
f∗F(Ui) by the sheaf condition for some

Ui ∈ Ob(C) and similarly forG. Hence it is clear that if f∗α is injective, thenα is injective.
In other words f∗ reflects injections.

Suppose that f∗α is surjective. Then for V,Ui, u(Ui) → V as above and a section s ∈
G(V ), there exist coverings {Uij → Ui} such that s|u(Uij) is in the image of F(u(Uij)).
Since {u(Uij) → V } is a covering (as u is continuous and by the axioms of a site) we
conclude that s is locally in the image. Thus α is surjective. In other words f∗ reflects
surjections. �

Example 41.5. We construct a morphism f : D → C satisfying the assumptions of
Lemma 41.4. Namely, let ϕ : G → H be a morphism of finite groups. Consider the sites
D = TG and C = TH of countable G-sets and H-sets and coverings countable families
of jointly surjective maps (Example 6.5). Let u : TH → TG be the functor described in
Section 16 and f : TG → TH the corresponding morphism of sites. If ϕ is injective, then
every countable G-set is, as a G-set, the quotient of a countable H-set (this fails if ϕ isn’t
injective). Thus f satisfies the hypothesis of Lemma 41.4. If the sheafF on TG corresponds
to the G-set S , then the canonical map

f−1f∗F −→ F
corresponds to the map

MapG(H,S) −→ S, a 7−→ a(1H)
If ϕ is injective but not surjective, then this map is surjective (as it should according to
Lemma 41.4) but not injective in general (for example take G = {1}, H = {1, σ}, and
S = {1, 2}). Moreover, the functor f∗ does not commute with coequalizers or pushouts
(for G = {1} and H = {1, σ}).

42. Almost cocontinuous functors

Let C be a site. The category PSh(C) has an initial object, namely the presheaf which
assigns the empty set to each object of C. Let us denote this presheaf by ∅. It follows from
the properties of sheafification that the sheafification ∅# of ∅ is an initial object of the
category Sh(C) of sheaves on C.

Definition 42.1. Let C be a site. We say an objectU of C is sheaf theoretically empty
if ∅# → h#

U is an isomorphism of sheaves.

The following lemma makes this notion more explicit.
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Lemma 42.2. Let C be a site. Let U be an object of C. The following are equivalent:
(1) U is sheaf theoretically empty,
(2) F(U) is a singleton for each sheaf F ,
(3) ∅#(U) is a singleton,
(4) ∅#(U) is nonempty, and
(5) the empty family is a covering of U in C.

Moreover, if U is sheaf theoretically empty, then for any morphism U ′ → U of C the
object U ′ is sheaf theoretically empty.

Proof. For any sheaf F we have F(U) = MorSh(C)(h#
U ,F). Hence, we see that (1)

and (2) are equivalent. It is clear that (2) implies (3) implies (4). If every covering of U is
given by a nonempty family, then ∅+(U) is empty by definition of the plus construction.
Note that ∅+ = ∅# as ∅ is a separated presheaf, see Theorem 10.10. Thus we see that (4)
implies (5). If (5) holds, thenF(U) is a singleton for every sheafF by the sheaf condition
forF , see Remark 7.2. Thus (5) implies (2) and (1) – (5) are equivalent. The final assertion
of the lemma follows from Axiom (3) of Definition 6.2 applied the empty covering of
U . �

Definition 42.3. Let C , D be sites. Let u : C → D be a functor. We say u is almost
cocontinuous if for every object U of C and every covering {Vj → u(U)}j∈J there exists
a covering {Ui → U}i∈I in C such that for each i in I we have at least one of the following
two conditions

(1) u(Ui) is sheaf theoretically empty, or
(2) the morphism u(Ui)→ u(U) factors through Vj for some j ∈ J .

The motivation for this definition comes from a closed immersion i : Z → X of topo-
logical spaces. As discussed in Example 21.9 the continuous functor XZar → ZZar ,
U 7→ Z ∩ U is not cocontinuous. But it is almost cocontinuous in the sense defined
above. We know that i∗ while not exact on sheaves of sets, is exact on sheaves of abelian
groups, see Sheaves, Remark 32.5. And this holds in general for continuous and almost
cocontinuous functors.

Lemma 42.4. Let C , D be sites. Let u : C → D be a functor. Assume that u is con-
tinuous and almost cocontinuous. Let G be a presheaf on D such that G(V ) is a singleton
whenever V is sheaf theoretically empty. Then (upG)# = up(G#).

Proof. Let U ∈ Ob(C). We have to show that (upG)#(U) = up(G#)(U). It suf-
fices to show that (upG)+(U) = up(G+)(U) since G+ is another presheaf for which the
assumption of the lemma holds. We have

up(G+)(U) = G+(u(U)) = colimV Ȟ
0(V,G)

where the colimit is over the coverings V of u(U) in D. On the other hand, we see that

up(G)+(U) = colimU Ȟ
0(u(U),G)

where the colimit is over the category of coverings U = {Ui → U}i∈I of U in C and
u(U) = {u(Ui) → u(U)}i∈I . The condition that u is continuous means that each u(U)
is a covering. Write I = I1 q I2, where

I2 = {i ∈ I | u(Ui) is sheaf theoretically empty}
Then u(U)′ = {u(Ui)→ u(U)}i∈I1 is still a covering of because each of the other pieces
can be covered by the empty family and hence can be dropped by Axiom (2) of Definition
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6.2. Moreover, Ȟ0(u(U),G) = Ȟ0(u(U)′,G) by our assumption on G. Finally, the con-
dition that u is almost cocontinuous implies that for every covering V of u(U) there exists
a covering U of U such that u(U)′ refines V . It follows that the two colimits displayed
above have the same value as desired. �

Lemma 42.5. Let C , D be sites. Let u : C → D be a functor. Assume that u is
continuous and almost cocontinuous. Then us = up : Sh(D) → Sh(C) commutes with
pushouts and coequalizers (and more generally finite connected colimits).

Proof. Let I be a finite connected index category. Let I → Sh(D), i 7→ Gi by a
diagram. We know that the colimit of this diagram is the sheafification of the colimit in the
category of presheaves, see Lemma 10.13. Denote colimPsh the colimit in the category of
presheaves. Since I is finite and connected we see that colimPsh

i Gi is a presheaf satisfying
the assumptions of Lemma 42.4 (because a finite connected colimit of singleton sets is a
singleton). Hence that lemma gives

us(colimi Gi) = us((colimPsh
i Gi)#)

= (up(colimPsh
i Gi))#

= (colimPSh
i up(Gi))#

= colimi u
s(Gi)

as desired. �

Lemma 42.6. Let f : D → C be a morphism of sites associated to the continuous
functor u : C → D. If u is almost cocontinuous then f∗ commutes with pushouts and
coequalizers (and more generally finite connected colimits).

Proof. This is a special case of Lemma 42.5. �

43. Subtopoi

Here is the definition.

Definition 43.1. Let C and D be sites. A morphism of topoi f : Sh(D)→ Sh(C) is
called an embedding if f∗ is fully faithful.

According to Lemma 41.1 this is equivalent to asking the adjunction map f−1f∗F → F
to be an isomorphism for every sheaf F on D.

Definition 43.2. Let C be a site. A strictly full subcategoryE ⊂ Sh(C) is a subtopos
if there exists an embedding of topoi f : Sh(D) → Sh(C) such that E is equal to the
essential image of the functor f∗.

The subtopoi constructed in the following lemma will be dubbed ”open” in the definition
later on.

Lemma 43.3. Let C be a site. Let F be a sheaf on C. The following are equivalent
(1) F is a subobject of the final object of Sh(C), and
(2) the topos Sh(C)/F is a subtopos of Sh(C).

Proof. We have seen in Lemma 30.1 that Sh(C)/F is a topos. In fact, we recall the
proof. First we apply Lemma 29.5 to see that we may assume C is a site with a subcanonical
topology, fibre products, a final object X , and an object U with F = hU . The proof of
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Lemma 30.1 shows that the morphism of topoi jF : Sh(C)/F → Sh(C) is equal (modulo
certain identifications) to the localization morphism jU : Sh(C/U)→ Sh(C).

Assume (2). This means that j−1
U jU,∗G → G is an isomorphism for all sheaves G on C/U .

For any object Z/U of C/U we have
(jU,∗hZ/U )(U) = MorC/U (U ×X U/U,Z/U)

by Lemma 27.2. Setting G = hZ/U in the equality above we obtain
MorC/U (U ×X U/U,Z/U) = MorC/U (U,Z/U)

for all Z/U . By Yoneda’s lemma (Categories, Lemma 3.5) this implies U ×X U = U . By
Categories, Lemma 13.3 U → X is a monomorphism, in other words (1) holds.

Assume (1). Then j−1
U jU,∗ = id by Lemma 27.4. �

Definition 43.4. Let C be a site. A strictly full subcategory E ⊂ Sh(C) is an open
subtopos if there exists a subsheafF of the final object of Sh(C) such thatE is the subtopos
Sh(C)/F described in Lemma 43.3.

This means there is a bijection between the collection of open subtopoi of Sh(C) and the
set of subobjects of the final object of Sh(C). Given an open subtopos there is a ”closed”
complement.

Lemma 43.5. Let C be a site. Let F be a subsheaf of the final object ∗ of Sh(C). The
full subcategory of sheaves G such that F × G → F is an isomorphism is a subtopos of
Sh(C).

Proof. We apply Lemma 29.5 to see that we may assume C is a site with the properties
listed in that lemma. In particular C has a final objectX (so that ∗ = hX ) and an object U
with F = hU .
Let D = C as a category but a covering is a family {Vj → V } of morphisms such that
{Vi → V } ∪ {U ×X V → V } is a covering. By our choice of C this means exactly that

hU×XV q
∐

hVi −→ hV

is surjective. We claim that D is a site, i.e., the coverings satisfy the conditions (1), (2), (3)
of Definition 6.2. Condition (1) holds. For condition (2) suppose that {Vi → V } and
{Vij → Vi} are coverings of D. Then the composition∐(

hU×XVi q
∐

hVij

)
−→ hU×XV q

∐
hVi −→ hV

is surjective. Since each of the morphisms U ×X Vi → V factors through U ×X V we see
that

hU×XV q
∐

hVij −→ hV

is surjective, i.e., {Vij → V } is a covering of V in D. Condition (3) follows similarly as a
base change of a surjective map of sheaves is surjective.
Note that the (identity) functor u : C → D is continuous and commutes with fibre prod-
ucts and final objects. Hence we obtain a morphism f : D → C of sites (Proposition 14.7).
Observe that f∗ is the identity functor on underlying presheaves, hence fully faithful.
To finish the proof we have to show that the essential image of f∗ is the full subcategory
E ⊂ Sh(C) singled out in the lemma. To do this, note that G ∈ Ob(Sh(C)) is in E if and
only if G(U ×X V ) is a singleton for all objects V of C. Thus such a sheaf satisfies the
sheaf property for all coverings of D (argument omitted). Conversely, if G satisfies the
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sheaf property for all coverings of D, then G(U ×X V ) is a singleton, as in D the object
U ×X V is covered by the empty covering. �

Definition 43.6. Let C be a site. A strictly full subcategory E ⊂ Sh(C) is an closed
subtopos if there exists a subsheafF of the final object of Sh(C) such thatE is the subtopos
described in Lemma 43.5.

All right, and now we can define what it means to have a closed immersion and an open
immersion of topoi.

Definition 43.7. Let f : Sh(D)→ Sh(C) be a morphism of topoi.
(1) We say f is an open immersion if f is an embedding and the essential image of

f∗ is an open subtopos.
(2) We say f is a closed immersion if f is an embedding and the essential image of

f∗ is a closed subtopos.

Lemma 43.8. Let i : Sh(D)→ Sh(C) be a closed immersion of topoi. Then i∗ is fully
faithful, transforms surjections into surjections, commutes with coequalizers, commutes
with pushouts, reflects injections, reflects surjections, and reflects bijections.

Proof. Let F be a subsheaf of the final object ∗ of Sh(C) and let E ⊂ Sh(C) be the
full subcategory consisting of those G such thatF×G → F is an isomorphism. By Lemma
43.5 the functor i∗ is isomorphic to the inclusion functor ι : E → Sh(C).

Let jF : Sh(C)/F → Sh(C) be the localization functor (Lemma 30.1). Note that E can
also be described as the collection of sheaves G such that j−1

F G = ∗.

Let a, b : G1 → G2 be two morphism of E. To prove ι commutes with coequalizers it
suffices to show that the coequalizer of a, b in Sh(C) lies in E. This is clear because the
coequalizer of two morphisms ∗ → ∗ is ∗ and because j−1

F is exact. Similarly for pushouts.

Thus i∗ satisfies properties (5), (6), and (7) of Lemma 41.1 and hence the morphism i sat-
isfies all properties mentioned in that lemma, in particular the ones mentioned in this
lemma. �

44. Sheaves of algebraic structures

In Sheaves, Section 15 we introduced a type of algebraic structure to be a pair (A, s), where
A is a category, and s : A → Sets is a functor such that

(1) s is faithful,
(2) A has limits and s commutes with limits,
(3) A has filtered colimits and s commutes with them, and
(4) s reflects isomorphisms.

For such a type of algebraic structure we saw that a presheaf F with values in A on a
space X is a sheaf if and only if the associated presheaf of sets is a sheaf. Moreover, we
worked out the notion of stalk, and given a continuous map f : X → Y we defined adjoint
functors pushforward and pullback on sheaves of algebraic structures which agrees with
pushforward and pullback on the underlying sheaves of sets. In addition extending a sheaf
of algebraic structures from a basis to all opens of a space, works as expected.

Part of this material still works in the setting of sites and sheaves. Let (A, s) be a type of
algebraic structure. Let C be a site. Let us denote PSh(C,A), resp. Sh(C,A) the category
of presheaves, resp. sheaves with values inA on C.
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(α) A presheaf with values in A is a sheaf if and only if its underlying presheaf
of sets is a sheaf. See the proof of Sheaves, Lemma 9.2.
(β) Given a presheaf F with values in A the presheaf F# = (F+)+ is a sheaf.
This is true since the colimits in the sheafification process are filtered, and even
colimits over directed sets (see Section 10, especially the proof of Lemma 10.14)
and since s commutes with filtered colimits.
(γ) We get the following commutative diagram

Sh(C,A) //

s

��

PSh(C,A)
#

oo

s

��
Sh(C) //

PSh(C)oo

(δ) We have F = F# if and only if F is a sheaf of algebraic structures.
(ε) The functor # is adjoint to the inclusion functor:

MorPSh(C,A)(G,F) = MorSh(C,A)(G#,F)
The proof is the same as the proof of Proposition 10.12.
(ζ) The functor F 7→ F# is left exact. The proof is the same as the proof of
Lemma 10.14.

Definition 44.1. Let f : D → C be a morphism of sites given by a functor u :
C → D. We define the pushforward functor for presheaves of algebraic structures by the
rule upF(U) = F(uU), and for sheaves of algebraic structures by the same rule, namely
f∗F(U) = F(uU).

The problem comes with trying the define the pullback. The reason is that the colimits
defining the functor up in Section 5 may not be filtered. Thus the axioms above are not
enough in general to define the pullback of a (pre)sheaf of algebraic structures. Nonethe-
less, in almost all cases the following lemma is sufficient to define pushforward, and pull-
back of (pre)sheaves of algebraic structures.

Lemma 44.2. Suppose the functor u : C → D satisfies the hypotheses of Proposition
14.7, and hence gives rise to a morphism of sites f : D → C. In this case the pullback func-
tor f−1 (resp. up) and the pushforward functor f∗ (resp. up) extend to an adjoint pair of
functors on the categories of sheaves (resp. presheaves) of algebraic structures. Moreover,
these functors commute with taking the underlying sheaf (resp. presheaf) of sets.

Proof. We have defined f∗ = up above. In the course of the proof of Proposition
14.7 we saw that all the colimits used to define up are filtered under the assumptions of
the proposition. Hence we conclude from the definition of a type of algebraic structure
that we may define up by exactly the same colimits as a functor on presheaves of algebraic
structures. Adjointness of up and up is proved in exactly the same way as the proof of
Lemma 5.4. The discussion of sheafification of presheaves of algebraic structures above
then implies that we may define f−1(F) = (upF)#. �

We briefly discuss a method for dealing with pullback and pushforward for a general mor-
phism of sites, and more generally for any morphism of topoi.

Let C be a site. In the case A = Ab, we may think of an abelian (pre)sheaf on C as a
quadruple (F ,+, 0, i). Here the data are

(D1) F is a sheaf of sets,
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(D2) + : F × F → F is a morphism of sheaves of sets,
(D3) 0 : ∗ → F is a morphism from the singleton sheaf (see Example 10.2) to F , and
(D4) i : F → F is a morphism of sheaves of sets.

These data have to satisfy the following axioms
(A1) + is associative and commutative,
(A2) 0 is a unit for +, and
(A3) + ◦ (1, i) = 0 ◦ (F → ∗).

Compare Sheaves, Lemma 4.3. Let f : D → C be a morphism of sites. Note that since
f−1 is exact we have f−1∗ = ∗ and f−1(F × F) = f−1F × f−1F . Thus we can define
f−1F simply as the quadruple (f−1F , f−1+, f−10, f−1i). The axioms are going to be
preserved because f−1 is a functor which commutes with finite limits. Finally it is not
hard to check that f∗ and f−1 are adjoint as usual.

In [?] this method is used. They introduce something called an “espèce the structure al-
gébrique �définie par limites projectives finie�”. For such an espèce you can use the
method described above to define a pair of adjoint functors f−1 and f∗ as above. This
clearly works for most algebraic structures that one encounters in practice. Instead of for-
malizing this construction we simply list those algebraic structures for which this method
works (to be verified case by case). In fact, this method works for any morphism of topoi.

Proposition 44.3. Let C ,D be sites. Let f = (f−1, f∗) be a morphism of topoi from
Sh(D) → Sh(C). The method introduced above gives rise to an adjoint pair of functors
(f−1, f∗) on sheaves of algebraic structures compatible with taking the underlying sheaves
of sets for the following types of algebraic structures:

(1) pointed sets,
(2) abelian groups,
(3) groups,
(4) monoids,
(5) rings,
(6) modules over a fixed ring, and
(7) lie algebras over a fixed field.

Moreover, in each of these cases the results above labeled (α), (β), (γ), (δ), (ε), and (ζ) hold.

Proof. The final statement of the proposition holds simply since each of the listed
categories, endowed with the obvious forgetful functor, is indeed a type of algebraic struc-
ture in the sense explained at the beginning of this section. See Sheaves, Lemma 15.2.

Proof of (2). We think of a sheaf of abelian groups as a quadruple (F ,+, 0, i) as explained
in the discussion preceding the proposition. If (F ,+, 0, i) lives on C , then its pullback is
defined as (f−1F , f−1+, f−10, f−1i). If (G,+, 0, i) lives on D, then its pushforward is
defined as (f∗G, f∗+, f∗0, f∗i). This works because f∗(G ×G) = f∗G × f∗G. Adjointness
follows from adjointness of the set based functors, since

MorAb(C)((F1,+, 0, i), (F2,+, 0, i)) =
{

ϕ ∈ MorSh(C)(F1,F2)
ϕ is compatible with +, 0, i

}
Details left to the reader.

This method also works for sheaves of rings by thinking of a sheaf of rings (with unit) as
a sextuple (O,+, 0, i, ·, 1) satisfying a list of axioms that you can find in any elementary
algebra book.



45. PULLBACK MAPS 407

A sheaf of pointed sets is a pair (F , p), where F is a sheaf of sets, and p : ∗ → F is a map
of sheaves of sets.

A sheaf of groups is given by a quadruple (F , ·, 1, i) with suitable axioms.

A sheaf of monoids is given by a pair (F , ·) with suitable axiom.

Let R be a ring. An sheaf of R-modules is given by a quintuple (F ,+, 0, i, {λr}r∈R),
where the quadruple (F ,+, 0, i) is a sheaf of abelian groups as above, and λr : F → F
is a family of morphisms of sheaves of sets such that λr ◦ 0 = 0, λr ◦ + = + ◦ (λr, λr),
λr+r′ = + ◦ λr × λr′ ◦ (id, id), λrr′ = λr ◦ λr′ , λ1 = id, λ0 = 0 ◦ (F → ∗). �

We will discuss the category of sheaves of modules over a sheaf of rings in Modules on
Sites, Section 10.

Remark 44.4. Let C , D be sites. Let u : D → C be a continuous functor which gives
rise to a morphism of sites C → D. Note that even in the case of abelian groups we have not
defined a pullback functor for presheaves of abelian groups. Since all colimits are repre-
sentable in the category of abelian groups, we certainly may define a functor uabp on abelian
presheaves by the same colimits as we have used to define up on presheaves of sets. It will
also be the case that uabp is adjoint to up on the categories of abelian presheaves. However,
it will not always be the case that uabp agrees with up on the underlying presheaves of sets.

45. Pullback maps

It sometimes happens that a site C does not have a final object. In this case we define the
global section functor as follows.

Definition 45.1. The global sections of a presheaf of sets F over a site C is the set

Γ(C,F) = MorPSh(C)(∗,F)
where ∗ is the final object in the category of presheaves on C , i.e., the presheaf which
associates to every object a singleton.

Of course the same definition applies to sheaves as well. Here is one way to compute global
sections.

Lemma 45.2. Let C be a site. Let a, b : V → U be objects of C such that

h#
V

//
// h

#
U

// ∗

is a coequalizer in Sh(C). Then Γ(C,F) is the equalizer of a∗, b∗ : F(U)→ F(V ).

Proof. Since MorSh(C)(h#
U ,F) = F(U) this is clear from the definitions. �

Now, let f : Sh(D)→ Sh(C) be a morphism of topoi. Then for any sheaf F on C there is
a pullback map

f−1 : Γ(C,F) −→ Γ(D, f−1F)
Namely, as f−1 is exact it transforms ∗ into ∗. Hence a global section s ofF over C , which
is a map of sheaves s : ∗ → F , can be pulled back to f−1s : ∗ = f−1∗ → f−1F .

We can generalize this a bit by considering a pair of sheaves F , G on C , D together with
a map f−1F → G. Then we compose the construction above with the obvious map
Γ(D, f−1F)→ Γ(D,G) to get a map

Γ(C,F) −→ Γ(D,G)



408 7. SITES AND SHEAVES

This map is sometimes also called a pullback map.

A slightly more general construction which occurs frequently in nature is the following.
Suppose that we have a commutative diagram of morphisms of topoi

Sh(D)

h $$

f
// Sh(C)

g
{{

Sh(B)

Next, suppose that we have a sheaf F on C. Then there is a pullback map

f−1 : g∗F −→ h∗f
−1F

Namely, it is just the map coming from the identification g∗f∗f
−1F = h∗f

−1F together
with g∗ applied to the canonical map F → f∗f

−1F . If g is the identity, then this map on
global sections agrees with the pullback map above.

In the situation of the previous paragraph, suppose we have a pair of sheaves F , G on C ,
D together with a map f−1F → G , then we compose the pullback map above with h∗
applied to f−1F → G to get a map

g∗F −→ h∗G

Restricting to sections over an object of B one recovers the “pullback map” on global sec-
tions discussed above (with suitable choices of sites).

An even more general situation is where we have a commutative diagram of topoi

Sh(D)

h

��

f
// Sh(C)

g

��
Sh(B) e // Sh(A)

and a sheaf G on C. Then there is a base change map

e−1g∗G −→ h∗f
−1G.

Namely, this map is adjoint to a map g∗G → e∗h∗f
−1G = (e ◦ h)∗f

−1G which is the
pullback map just described.

Remark 45.3. Consider a commutative diagram

Sh(B′)
k
//

f ′

��

Sh(B)

f

��
Sh(C′) l //

g′

��

Sh(C)

g

��
Sh(D′) m // Sh(D)
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of topoi. Then the base change maps for the two squares compose to give the base change
map for the outer rectangle. More precisely, the composition

m−1 ◦ (g ◦ f)∗ = m−1 ◦ g∗ ◦ f∗

→ g′
∗ ◦ l−1 ◦ f∗

→ g′
∗ ◦ f ′

∗ ◦ k−1

= (g′ ◦ f ′)∗ ◦ k−1

is the base change map for the rectangle. We omit the verification.

Remark 45.4. Consider a commutative diagram

Sh(C′′)
g′
//

f ′′

��

Sh(C′)
g
//

f ′

��

Sh(C)

f

��
Sh(D′′) h′

// Sh(D′) h // Sh(D)

of ringed topoi. Then the base change maps for the two squares compose to give the base
change map for the outer rectangle. More precisely, the composition

(h ◦ h′)−1 ◦ f∗ = (h′)−1 ◦ h−1 ◦ f∗

→ (h′)−1 ◦ f ′
∗ ◦ g−1

→ f ′′
∗ ◦ (g′)−1 ◦ g−1

= f ′′
∗ ◦ (g ◦ g′)−1

is the base change map for the rectangle. We omit the verification.

46. Comparison with SGA4

Our notation for the functors up and up from Section 5 and us and us from Section 13 is
taken from [?, pages 14 and 42]. Having made these choices, the notation for the functor
pu in Section 19 and su in Section 20 seems reasonable. In this section we compare our
notation with that of SGA4.

Presheaves: Let u : C → D be a functor between categories. The functor up is denoted u∗

in [?, Exposee I, Section 5]. The functor up is denoted u! in [?, Exposee I, Proposition 5.1].
The functor pu is denoted u∗ in [?, Exposee I, Proposition 5.1]. In other words, we have

up, u
p, pu (SP ) versus u!, u

∗, u∗ (SGA4)
The reader should be cautioned that different notation is used for these functors in differ-
ent parts of SGA4.

Sheaves and continuous functors: Suppose that C and D are sites and that u : C → D is
a continuous functor (Definition 13.1). The functor us is denoted us in [?, Exposee III,
1.11]. The functor us is denoted us in [?, Exposee III, Proposition 1.2]. In other words, we
have

us, u
s (SP ) versus us, us (SGA4)

When u defines a morphism of sites f : D → C (Definition 14.1) we see that the associated
morphism of topoi (Lemma 15.2) is the same as that in [?, Exposee IV, (4.9.1.1)].

Sheaves and cocontinuous functors: Suppose that C and D are sites and that u : C → D
is a cocontinuous functor (Definition 20.1). The functor su (Lemma 20.2) is denoted u∗
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in [?, Exposee III, Proposition 2.3]. The functor (up )# is denoted u∗ in [?, Exposee III,
Proposition 2.3]. In other words, we have

(up )#, su (SP ) versus u∗, u∗ (SGA4)

Thus the morphism of topoi associated to u in Lemma 21.1 is the same as that in [?, Exposee
IV, 4.7].

Morphisms of Topoi: If f is a morphism of topoi given by the functors (f−1, f∗) then the
functor f−1 is denoted f∗ in [?, Exposee IV, Definition 3.1]. We will use f−1 to denote
pullback of sheaves of sets or more generally sheaves of algebraic structure (Section 44).
We will use f∗ to denote pullback of sheaves of modules for a morphism of ringed topoi
(Modules on Sites, Definition 13.1).

47. Topologies

In this section we define what a topology on a category is as defined in [?]. One can develop
all of the machinery of sheaves and topoi in this language. A modern exposition of this
material can be found in [?]. However, the case of most interest for algebraic geometry is
the topology defined by a site on its underlying category. Thus we strongly suggest the
first time reader skip this section and all other sections of this chapter!

Definition 47.1. Let C be a category. LetU ∈ Ob(C). A sieveS onU is a subpresheaf
S ⊂ hU .

In other words, a sieve on U picks out for each object T ∈ Ob(C) a subset S(T ) of the
set of all morphisms T → U . In fact, the only condition on the collection of subsets
S(T ) ⊂ hU (T ) = MorC(T,U) is the following rule

(47.1.1) (α : T → U) ∈ S(T )
g : T ′ → T

}
⇒ (α ◦ g : T ′ → U) ∈ S(T ′)

A good mental picture to keep in mind is to think of the map S → hU as a “morphism
from S to U”.

Lemma 47.2. Let C be a category. Let U ∈ Ob(C).
(1) The collection of sieves on U is a set.
(2) Inclusion defines a partial ordering on this set.
(3) Unions and intersections of sieves are sieves.
(4) Given a family of morphisms {Ui → U}i∈I of C with target U there exists a

unique smallest sieve S on U such that each Ui → U belongs to S(Ui).
(5) The sieve S = hU is the maximal sieve.
(6) The empty subpresheaf is the minimal sieve.

Proof. By our definition of subpresheaf, the collection of all subpresheaves of a presheaf
F is a subset of

∏
U∈Ob(C) P(F(U)). And this is a set. (Here P(A) denotes the powerset

of A.) Hence the collection of sieves on U is a set.

The partial ordering is defined by: S ≤ S′ if and only if S(T ) ⊂ S′(T ) for all T → U .
Notation: S ⊂ S′.

Given a collection of sieves Si, i ∈ I on U we can define
⋃
Si as the sieve with values

(
⋃
Si)(T ) =

⋃
Si(T ) for all T ∈ Ob(C). We define the intersection

⋂
Si in the same

way.
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Given {Ui → U}i∈I as in the statement, consider the morphisms of presheaveshUi → hU .
We simply defineS as the union of the images (Definition 3.5) of these maps of presheaves.
The last two statements of the lemma are obvious. �

Definition 47.3. Let C be a category. Given a family of morphisms {fi : Ui →
U}i∈I of C with target U we say the sieve S on U described in Lemma 47.2 part (4) is the
sieve on U generated by the morphisms fi.

Definition 47.4. Let C be a category. Let f : V → U be a morphism of C. Let
S ⊂ hU be a sieve. We define the pullback of S by f to be the sieve S ×U V of V defined
by the rule

(α : T → V ) ∈ (S ×U V )(T )⇔ (f ◦ α : T → U) ∈ S(T )

We leave it to the reader to see that this is indeed a sieve (hint: use Equation 47.1.1). We
also sometimes call S ×U V the base change of S by f : V → U .

Lemma 47.5. Let C be a category. LetU ∈ Ob(C). LetS be a sieve onU . If f : V → U
is in S , then S ×U V = hV is maximal.

Proof. Trivial from the definitions. �

Definition 47.6. Let C be a category. A topology on C is given by a rule which
assigns to every U ∈ Ob(C) a subset J(U) of the set of all sieves on U satisfying the
following conditions

(1) For every morphism f : V → U in C , and every element S ∈ J(U) the pullback
S ×U V is an element of J(V ).

(2) If S and S′ are sieves on U ∈ Ob(C), if S ∈ J(U), and if for all f ∈ S(V ) the
pullback S′ ×U V belongs to J(V ), then S′ belongs to J(U).

(3) For every U ∈ Ob(C) the maximal sieve S = hU belongs to J(U).

In this case, the sieves belonging to J(U) are called the covering sieves.

Lemma 47.7. Let C be a category. Let J be a topology on C. Let U ∈ Ob(C).
(1) Finite intersections of elements of J(U) are in J(U).
(2) If S ∈ J(U) and S′ ⊃ S , then S′ ∈ J(U).

Proof. Let S, S′ ∈ J(U). Consider S′′ = S ∩ S′. For every V → U in S(U) we
have

S′ ×U V = S′′ ×U V
simply because V → U already is in S. Hence by the second axiom of the definition we
see that S′′ ∈ J(U).
Let S ∈ J(U) and S′ ⊃ S. For every V → U in S(U) we have S′ ×U V = hV by
Lemma 47.5. Thus S′×U V ∈ J(V ) by the third axiom. Hence S′ ∈ J(U) by the second
axiom. �

Definition 47.8. Let C be a category. Let J , J ′ be two topologies on C. We say that
J is finer or stronger than J ′ if and only if for every objectU of C we have J ′(U) ⊂ J(U).
In this case we also say that J ′ is coarser or weaker than J .

In other words, any covering sieve of J ′ is a covering sieve of J . There exists a finest
topology on C , namely that topology where any sieve is a covering sieve. This is called the
discrete topology of C. There also exists a coarsest topology. Namely, the topology where
J(U) = {hU} for all objects U . This is called the chaotic or indiscrete topology.
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Lemma 47.9. Let C be a category. Let {Ji}i∈I be a set of topologies.
(1) The rule J(U) =

⋂
Ji(U) defines a topology on C.

(2) There is a coarsest topology finer than all of the topologies Ji.

Proof. The first part is direct from the definitions. The second follows by taking the
intersection of all topologies finer than all of the Ji. �

At this point we can define without any motivation what a sheaf is.

Definition 47.10. Let C be a category endowed with a topology J . Let F be a
presheaf of sets on C. We say that F is a sheaf on C if for every U ∈ Ob(C) and for
every covering sieve S of U the canonical map

MorPSh(C)(hU ,F) −→ MorPSh(C)(S,F)
is bijective.

Recall that the left hand side of the displayed formula equals F(U). In other words, F is
a sheaf if and only if a section of F over U is the same thing as a compatible collection of
sections sT,α ∈ F(T ) parametrized by (α : T → U) ∈ S(T ), and this for every covering
sieve S on U .

Lemma 47.11. Let C be a category. Let {Fi}i∈I be a collection of presheaves of sets
on C. For each U ∈ Ob(C) denote J(U) the set of sieves S with the following property:
For every morphism V → U , the maps

MorPSh(C)(hV ,Fi) −→ MorPSh(C)(S ×U V,Fi)
are bijective for all i ∈ I . Then J defines a topology on C. This topology is the finest
topology in which all of the Fi are sheaves.

Proof. If we show that J is a topology, then the last statement of the lemma imme-
diately follows. The first and third axioms of a topology are immediately verified. Thus,
assume that we have an object U , and sieves S, S′ of U such that S ∈ J(U), and for all
V → U in S(V ) we have S′ ×U V ∈ J(V ). We have to show that S′ ∈ J(U). In other
words, we have to show that for any f : W → U , the maps

Fi(W ) = MorPSh(C)(hW ,Fi) −→ MorPSh(C)(S′ ×U W,Fi)
are bijective for all i ∈ I . Pick an element i ∈ I and pick an elementϕ ∈ MorPSh(C)(S′×U
W,Fi). We will construct a section s ∈ Fi(W ) mapping to ϕ.

Suppose α : V → W is an element of S ×U W . According to the definition of pullbacks
we see that the composition f ◦ α : V →W → U is in S. Hence S′ ×U V is in J(W ) by
assumption on the pair of sieves S, S′. Now we have a commutative diagram of presheaves

S′ ×U V //

��

hV

��
S′ ×U W // hW

The restriction of ϕ to S′ ×U V corresponds to an element sV,α ∈ Fi(V ). This we see
from the definition of J , and because S′ ×U V is in J(W ). We leave it to the reader to
check that the rule (V, α) 7→ sV,α defines an element ψ ∈ MorPSh(C)(S ×U W,Fi). Since
S ∈ J(U) we see immediately from the definition of J that ψ corresponds to an element
s of Fi(W ).
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We leave it to the reader to verify that the construction ϕ 7→ s is inverse to the natural
map displayed above. �

Definition 47.12. Let C be a category. The finest topology on C such that all repre-
sentable presheaves are sheaves, see Lemma 47.11, is called the canonical topology of C.

48. The topology defined by a site

Suppose that C is a category, and suppose that Cov1(C) and Cov2(C) are sets of coverings
that define the structure of a site on C. In this situation it can happen that the categories
of sheaves (of sets) for Cov1(C) and Cov2(C) are the same, see for example Lemma 8.7.

It turns out that the category of sheaves on C with respect to some topology J determines
and is determined by the topology J . This is a nontrivial statement which we will address
later, see Theorem 50.2.

Accepting this for the moment it makes sense to study the topology determined by a site.

Lemma 48.1. Let C be a site with coverings Cov(C). For every object U of C , let
J(U) denote the set of sieves S on U with the following property: there exists a covering
{fi : Ui → U}i∈I ∈ Cov(C) so that the sieve S′ generated by the fi (see Definition 47.3)
is contained in S.

(1) This J is a topology on C.
(2) A presheaf F is a sheaf for this topology (see Definition 47.10) if and only if it

is a sheaf on the site (see Definition 7.1).

Proof. To prove the first assertion we just note that axioms (1), (2) and (3) of the def-
inition of a site (Definition 6.2) directly imply the axioms (3), (2) and (1) of the definition
of a topology (Definition 47.6). As an example we prove J has property (2). Namely, let
U be an object of C , let S, S′ be sieves on U such that S ∈ J(U), and such that for every
V → U in S(V ) we have S′×U V ∈ J(V ). By definition of J(U) we can find a covering
{fi : Ui → U} of the site such that S the image of hUi → hU is contained in S. Since
each S′×U Ui is in J(Ui) we see that there are coverings {Uij → Ui} of the site such that
hUij → hUi is contained in S′ ×U Ui. By definition of the base change this means that
hUij → hU is contained in the subpresheaf S′ ⊂ hU . By axiom (2) for sites we see that
{Uij → U} is a covering of U and we conclude that S′ ∈ J(U) by definition of J .

Let F be a presheaf. Suppose that F is a sheaf in the topology J . We will show that F is
a sheaf on the site as well. Let {fi : Ui → U}i∈I be a covering of the site. Let si ∈ F(Ui)
be a family of sections such that si|Ui×UUj = sj |Ui×UUj for all i, j. We have to show that
there exists a unique section s ∈ F(U) restricting back to the si on the Ui. Let S ⊂ hU be
the sieve generated by the fi. Note that S ∈ J(U) by definition. In stead of constructing
s, by the sheaf condition in the topology, it suffices to construct an element

ϕ ∈ MorPSh(C)(S,F).

Take α ∈ S(T ) for some object T ∈ U . This means exactly that α : T → U is a morphism
which factors through fi for some i ∈ I (and maybe more than 1). Pick such an index i
and a factorization α = fi ◦αi. Define ϕ(α) = α∗

i si. If i′, α = fi ◦α′
i′ is a second choice,

then α∗
i si = (α′

i′)∗si′ exactly because of our condition si|Ui×UUj = sj |Ui×UUj for all
i, j. Thus ϕ(α) is well defined. We leave it to the reader to verify that ϕ, which in turn
determines s is correct in the sense that s restricts back to si.
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Let F be a presheaf. Suppose that F is a sheaf on the site (C,Cov(C)). We will show that
F is a sheaf for the topology J as well. Let U be an object of C. Let S be a covering sieve
on U with respect to the topology J . Let

ϕ ∈ MorPSh(C)(S,F).
We have to show there is a unique element in F(U) = MorPSh(C)(hU ,F) which restricts
back to ϕ. By definition there exists a covering {fi : Ui → U}i∈I ∈ Cov(C) such that
fi : Ui ∈ U belongs to S(Ui). Hence we can set si = ϕ(fi) ∈ F(Ui). Then it is a pleasant
exercise to see that si|Ui×UUj = sj |Ui×UUj for all i, j. Thus we obtain the desired section
s by the sheaf condition for F on the site (C,Cov(C)). Details left to the reader. �

Definition 48.2. Let C be a site with coverings Cov(C). The topology associated to
C is the topology J constructed in Lemma 48.1 above.

Let C be a category. Let Cov1(C) and Cov2(C) be two coverings defining the structure of
a site on C. It may very well happen that the topologies defined by these are the same. If
this happens then we say Cov1(C) and Cov2(C) define the same topology on C. And if
this happens then the categories of sheaves are the same, by Lemma 48.1.
It is usually the case that we only care about the topology defined by a collection of cover-
ings, and we view the possibility of choosing different sets of coverings as a tool to study
the topology.

Remark 48.3. Enlarging the class of coverings. Clearly, if Cov(C) defines the struc-
ture of a site on C then we may add to C any set of families of morphisms with fixed target
tautologically equivalent (see Definition 8.2) to elements of Cov(C) without changing the
topology.

Remark 48.4. Shrinking the class of coverings. Let C be a site. Consider the set
S = P (Arrows(C))×Ob(C)

where P (Arrows(C)) is the power set of the set of morphisms, i.e., the set of all sets of
morphisms. Let Sτ ⊂ S be the subset consisting of those (T,U) ∈ S such that (a) all
ϕ ∈ T have targetU , (b) the collection {ϕ}ϕ∈T is tautologically equivalent (see Definition
8.2) to some covering in Cov(C). Clearly, considering the elements of Sτ as the coverings,
we do not get exactly the notion of a site as defined in Definition 6.2. The structure (C,Sτ )
we get satisfies slightly modified conditions. The modified conditions are:

(0’) Cov(C) ⊂ P (Arrows(C))×Ob(C),
(1’) If V → U is an isomorphism then ({V → U}, U) ∈ Cov(C).
(2’) If (T,U) ∈ Cov(C) and for f : U ′ → U in T we are given (Tf , U ′) ∈ Cov(C),

then setting T ′ = {f ◦ f ′ | f ∈ T, f ′ ∈ Tf}, we get (T ′, U) ∈ Cov(C).
(3’) If (T,U) ∈ Cov(C) and g : V → U is a morphism of C then

(a) U ′ ×f,U,g V exists for f : U ′ → U in T , and
(b) setting T ′ = {pr2 : U ′ ×f,U,g V → V | f : U ′ → U ∈ T} for some choice

of fibre products we get (T ′, V ) ∈ Cov(C).
And it is easy to verify that, given a structure satisfying (0’) – (3’) above, then after suit-
ably enlarging Cov(C) (compare Sets, Section 11) we get a site. Obviously there is little
difference between this notion and the actual notion of a site, at least from the point of
view of the topology. There are two benefits: because of condition (0’) above the coverings
automatically form a set, and because of (0’) the totality of all structures of this type forms
a set as well. The price you pay for this is that you have to keep writing “tautologically
equivalent” everywhere.
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49. Sheafification in a topology

In this section we explain the analogue of the sheafification construction in a topology.

Let C be a category. Let J be a topology on C. Let F be a presheaf of sets. For every
U ∈ Ob(C) we define

LF(U) = colimS∈J(U)opp MorPSh(C)(S,F)
as a colimit. Here we think of J(U) as a partially ordered set, ordered by inclusion, see
Lemma 47.2. The transition maps in the system are defined as follows. If S ⊂ S′ are
in J(U), then S → S′ is a morphism of presheaves. Hence there is a natural restriction
mapping

MorPSh(C)(S′,F) −→ MorPSh(C)(S,F).
Thus we see that S 7→ MorPSh(C)(S,F) is a directed system as in Categories, Definition
21.2 provided we reverse the ordering on J(U) (which is what the superscript opp is sup-
posed to indicate). In particular, since hU ∈ J(U) there is a canonical map

` : F(U) −→ LF(U)
coming from the identificationF(U) = MorPSh(C)(hU ,F). In addition, the colimit defin-
ing LF(U) is directed since for any pair of covering sieves S, S′ on U the sieve S ∩ S′ is
a covering sieve too, see Lemma 47.2.

Let f : V → U be a morphism in C. Let S ∈ J(U). There is a commutative diagram

S ×U V //

��

hV

��
S // hU

We can use the left vertical map to get canonical restriction maps

MorPSh(C)(S,F)→ MorPSh(C)(S ×U V,F).
Base change S 7→ S ×U V induces an order preserving map J(U) → J(V ). And the
restriction maps define a transformation of functors as in Categories, Lemma categories-
lemma-functorial-colimit. Hence we get a natural restriction map

LF(U) −→ LF(V ).

Lemma 49.1. In the situation above.
(1) The assignment U 7→ LF(U) combined with the restriction mappings defined

above is a presheaf.
(2) The maps ` glue to give a morphism of presheaves ` : F → LF .
(3) The rule F 7→ (F `−→ LF) is a functor.
(4) If F is a subpresheaf of G , then LF is a subpresheaf of LG.
(5) The map ` : F → LF has the following property: For every section s ∈ LF(U)

there exists a covering sieve S on U and an element ϕ ∈ MorPSh(C)(S,F) such
that `(ϕ) equals the restriction of s to S.

Proof. Omitted. �

Definition 49.2. Let C be a category. Let J be a topology on C. We say that a
presheaf of sets F is separated if for every object U and every covering sieve S on U the
canonical map F(U)→ MorPSh(C)(S,F) is injective.
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Theorem 49.3. Let C be a category. Let J be a topology on C. Let F be a presheaf of
sets.

(1) The presheaf LF is separated.
(2) If F is separated, then LF is a sheaf and the map of presheaves F → LF is

injective.
(3) If F is a sheaf, then F → LF is an isomorphism.
(4) The presheaf LLF is always a sheaf.

Proof. Part (3) is trivial from the definition of L and the definition of a sheaf (Def-
inition 47.10). Part (4) follows formally from the others.

We sketch the proof of (1). SupposeS is a covering sieve of the objectU . Suppose thatϕi ∈
LF(U), i = 1, 2 map to the same element in MorPSh(C)(S,LF). We may find a single cov-
ering sieve S′ on U such that both ϕi are represented by elements ϕi ∈ MorPSh(C)(S′,F).
We may assume that S′ = S by replacing both S and S′ by S′∩S which is also a covering
sieve, see Lemma 47.2. Suppose V ∈ Ob(C), and α : V → U in S(V ). Then we have
S ×U V = hV , see Lemma 47.5. Thus the restrictions of ϕi via V → U correspond to
sections si,V,α of F over V . The assumption is that there exist a covering sieve SV,α of
V such that si,V,α restrict to the same element of MorPSh(C)(SV,α,F). Consider the sieve
S′′ on U defined by the rule

(f : T → U) ∈ S′′(T ) ⇔ ∃ V, α : V → U, α ∈ S(V ),
∃ g : T → V, g ∈ SV,α(T ),(49.3.1)
f = α ◦ g

By axiom (2) of a topology we see that S′′ is a covering sieve on U . By construction we
see that ϕ1 and ϕ2 restrict to the same element of MorPSh(C)(S′′, LF) as desired.

We sketch the proof of (2). Assume thatF is a separated presheaf of sets on C with respect
to the topology J . Let S be a covering sieve of the object U of C. Suppose that ϕ ∈
MorC(S,LF). We have to find an element s ∈ LF(U) restricting to ϕ. Suppose V ∈
Ob(C), and α : V → U in S(V ). The value ϕ(α) ∈ LF(V ) is given by a covering sieve
SV,α of V and a morphism of presheaves ϕV,α : SV,α → F . As in the proof above, define
a covering sieve S′′ on U by Equation (49.3.1). We define

ϕ′′ : S′′ −→ F

by the following simple rule: For every f : T → U , f ∈ S′′(T ) choose V, α, g as in
Equation (49.3.1). Then set

ϕ′′(f) = ϕV,α(g).

We claim this is independent of the choice ofV, α, g. Consider a second such choiceV ′, α′, g′.
The restrictions of ϕV,α and ϕV ′,α′ to the intersection of the following covering sieves on
T

(SV,α ×V,g T ) ∩ (SV ′,α′ ×V ′,g′ T )

agree. Namely, these restrictions both correspond to the restriction of ϕ to T (via f ) and
the desired equality follows because F is separated. Denote the common restriction ψ.
The independence of choice follows because ϕV,α(g) = ψ(idT ) = ϕV ′,α′(g′). OK, so
now ϕ′′ gives an element s ∈ LF(U). We leave it to the reader to check that s restricts
to ϕ. �
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Definition 49.4. Let C be a category endowed with a topology J . LetF be a presheaf
of sets on C. The sheaf F# := LLF together with the canonical map F → F# is called
the sheaf associated to F .

Proposition 49.5. Let C be a category endowed with a topology. LetF be a presheaf
of sets on C. The canonical map F → F# has the following universal property: For
any map F → G , where G is a sheaf of sets, there is a unique map F# → G such that
F → F# → G equals the given map.

Proof. Same as the proof of Proposition 10.12. �

50. Topologies and sheaves

Lemma 50.1. Let C be a category endowed with a topology J . Let U be an object of
C. Let S be a sieve on U . The following are equivalent

(1) The sieve S is a covering sieve.
(2) The sheafification S# → h#

U of the map S → hU is an isomorphism.

Proof. First we make a couple of general remarks. We will use that S# = LLS , and
h#
U = LLhU . In particular, by Lemma 49.1, we see that S# → h#

U is injective. Note that
idU ∈ hU (U). Hence it gives rise to sections of LhU and h#

U = LLhU over U which we
will also denote idU .

Suppose S is a covering sieve. It clearly suffices to find a morphism hU → S# such that
the composition hU → h#

U is the canonical map. To find such a map it suffices to find
a section s ∈ S#(U) wich restricts to idU . But since S is a covering sieve, the element
idS ∈ MorPSh(C)(S, S) gives rise to a section of LS over U which restricts to idU in LhU .
Hence we win.

Suppose that S# → h#
U is an isomorphism. Let 1 ∈ S#(U) be the element corresponding

to idU in h#
U (U). Because S# = LLS there exists a covering sieve S′ on U such that 1

comes from a
ϕ ∈ MorPSh(C)(S′, LS).

This in turn means that for every α : V → U , α ∈ S′(V ) there exists a covering sieve
SV,α on V such that ϕ(α) corresponds to a morphism of presheaves SV,α → S. In other
words SV,α is contained in S ×U V . By the second axiom of a topology we see that S is a
covering sieve. �

Theorem 50.2. Let C be a category. Let J , J ′ be topologies on C. The following are
equivalent

(1) J = J ′,
(2) sheaves for the topology J are the same as sheaves for the topology J ′.

Proof. It is a tautology that if J = J ′ then the notions of sheaves are the same.
Conversely, Lemma 50.1 characterizes covering sieves in terms of the sheafification func-
tor. But the sheafification functor PSh(C)→ Sh(C, J) is the left adjoint of the inclusion
functor Sh(C, J) → PSh(C). Hence if the subcategories Sh(C, J) and Sh(C, J ′) are the
same, then the sheafification functors are the same and hence the collections of covering
sieves are the same. �

Lemma 50.3. Assumption and notation as in Theorem 50.2. Then J ⊂ J ′ if and only
if every sheaf for the topology J ′ is a sheaf for the topology J .
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Proof. One direction is clear. For the other direction suppose that Sh(C, J ′) ⊂
Sh(C, J). By formal nonsense this implies that if F is a presheaf of sets, and F → F#,
resp. F → F#,′ is the sheafification wrt J , resp. J ′ then there is a canonical map F# →
F#,′ such that F → F# → F#,′ equals the canonical map F → F#,′. Of course,
F# → F#,′ identifies the second sheaf as the sheafification of the first with respect to
the topology J ′. Apply this to the map S → hU of Lemma 50.1. We get a commutative
diagram

S //

��

S# //

��

S#,′

��
hU // h#

U
// h#,′
U

And clearly, if S is a covering sieve for the topology J then the middle vertical map is an
isomorphism (by the lemma) and we conclude that the right vertical map is an isomor-
phism as it is the sheafification of the one in the middle wrt J ′. By the lemma again we
conclude that S is a covering sieve for J ′ as well. �

51. Topologies and continuous functors

Explain how a continuous functor gives an adjoint pair of functors on sheaves.

52. Points and topologies

Recall from Section 32 that given a functor p = u : C → Sets we can define a stalk functor
PSh(C) −→ Sets,F 7−→ Fp.

Definition 52.1. Let C be a category. Let J be a topology on C. A point p of the
topology is given by a functor u : C → Sets such that

(1) For every covering sieve S on U the map Sp → (hU )p is surjective.
(2) The stalk functor Sh(C)→ Sets, F → Fp is exact.
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CHAPTER 8

Stacks

1. Introduction

In this very short chapter we introduce stacks, and stacks in groupoids. See [?], and [?].

2. Presheaves of morphisms associated to fibred categories

Let C be a category. Let p : S → C be a fibred category, see Categories, Section 33. Suppose
that x, y ∈ Ob(SU ) are objects in the fibre category over U . We are going to define a
functor

Mor(x, y) : (C/U)opp −→ Sets.

In other words this will be a presheaf on C/U , see Sites, Definition 2.2. Make a choice of
pullbacks as in Categories, Definition 33.6. Then, for f : V → U we set

Mor(x, y)(f : V → U) = MorSV (f∗x, f∗y).

Let f ′ : V ′ → U be a second object of C/U . We also have to define the restriction map
corresponding to a morphism g : V ′/U → V/U in C/U , in other words g : V ′ → V and
f ′ = f ◦ g. This will be a map

MorSV (f∗x, f∗y) −→ MorSV ′ (f ′∗x, f ′∗y), φ 7−→ φ|V ′

This map will basically be g∗, except that this transforms an element φ of the left hand side
into an element g∗φ of MorSV ′ (g∗f∗x, g∗f∗y). At this point we use the transformation
αg,f of Categories, Lemma 33.7. In a formula, the restriction map is described by

φ|V ′ = (αg,f )−1
y ◦ g∗φ ◦ (αg,f )x.

Of course, nobody thinks of this restriction map in this way. We will only do this once in
order to verify the following lemma.

Lemma 2.1. This actually does give a presheaf.

Proof. Let g : V ′/U → V/U be as above and similarly g′ : V ′′/U → V ′/U be
morphisms in C/U . So f ′ = f ◦g and f ′′ = f ′◦g′ = f ◦g◦g′. Let φ ∈ MorSV (f∗x, f∗y).
Then we have

(αg◦g′,f )−1
y ◦ (g ◦ g′)∗φ ◦ (αg◦g′,f )x

= (αg◦g′,f )−1
y ◦ (αg′,g)−1

f∗y ◦ (g′)∗g∗φ ◦ (αg′,g)f∗x ◦ (αg◦g′,f )x
= (αg′,f ′)−1

y ◦ (g′)∗(αg,f )−1
y ◦ (g′)∗g∗φ ◦ (g′)∗(αg,f )x ◦ (αg′,f ′)x

= (αg′,f ′)−1
y ◦ (g′)∗

(
(αg,f )−1

y ◦ g∗φ ◦ (αg,f )x
)
◦ (αg′,f ′)x

421
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which is what we want, namely φ|V ′′ = (φ|V ′)|V ′′ . The first equality holds because αg′,g

is a transformation of functors, and hence

(g ◦ g′)∗f∗x
(g◦g′)∗φ

//

(αg′,g)f∗x

��

(g ◦ g′)∗f∗y

(αg′,g)f∗y

��
(g′)∗g∗f∗x

(g′)∗g∗φ // (g′)∗g∗f∗y

commutes. The second equality holds because of property (d) of a pseudo functor since
f ′ = f ◦ g (see Categories, Definition 29.5). The last equality follows from the fact that
(g′)∗ is a functor. �

From now on we often omit mentioning the transformations αg,f and we simply identify
the functors g∗ ◦ f∗ and (f ◦ g)∗. In particular, given g : V ′/U → V/U the restriction
mappings for the presheaf Mor(x, y) will sometimes be denoted φ 7→ g∗φ. We formalize
the construction in a definition.

Definition 2.2. Let C be a category. Let p : S → C be a fibred category, see Cate-
gories, Section 33. Given an objectU of C and objectsx, y of the fibre category, the presheaf
of morphisms from x to y is the presheaf

(f : V → U) 7−→ MorSV (f∗x, f∗y)
described above. It is denoted Mor(x, y). The subpresheaf Isom(x, y) whose values over
V is the set of isomorphisms f∗x→ f∗y in the fibre category SV is called the presheaf of
isomorphisms from x to y.

If S is fibred in groupoids then of course Isom(x, y) = Mor(x, y), and it is customary to
use the Isom notation.

Lemma 2.3. Let F : S1 → S2 be a 1-morphism of fibred categories over the category
C. Let U ∈ Ob(C) and x, y ∈ Ob((S1)U ). Then F defines a canonical morphism of
presheaves

MorS1(x, y) −→ MorS2(F (x), F (y))
on C/U .

Proof. By Categories, Definition 33.9 the functor F maps strongly cartesian mor-
phisms to strongly cartesian morphisms. Hence if f : V → U is a morphism in C , then
there are canonical isomorphisms αV : f∗F (x) → F (f∗x), βV : f∗F (y) → F (f∗y)
such that f∗F (x) → F (f∗x) → F (x) is the canonical morphism f∗F (x) → F (x), and
similarly for βV . Thus we may define

MorS1(x, y)(f : V → U) MorS1,V (f∗x, f∗y)

��
MorS2(F (x), F (y))(f : V → U) MorS2,V (f∗F (x), f∗F (y))

by φ 7→ β−1
V ◦ F (φ) ◦ αV . We omit the verification that this is compatible with the

restriction mappings. �

Remark 2.4. Suppose that p : S → C is fibred in groupoids. In this case we can
prove Lemma 2.1 using Categories, Lemma 36.4 which says that S → C is equivalent to
the category associated to a contravariant functor F : C → Groupoids. In the case of the
fibred category associated to F we have g∗ ◦ f∗ = (f ◦ g)∗ on the nose and there is no
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need to use the maps αg,f . In this case the lemma is (even more) trivial. Of course then
one uses that the Mor(x, y) presheaf is unchanged when passing to an equivalent fibred
category which follows from Lemma 2.3.

Lemma 2.5. Let C be a category. Let p : S → C be a fibred category, see Categories,
Section 33. Let U ∈ Ob(C) and let x, y ∈ Ob(SU ). Denote x, y : C/U → S also the
corresponding 1-morphisms, see Categories, Lemma 41.2. Then

(1) the 2-fibre product S ×S×S,(x,y) C/U is fibred in setoids over C/U , and
(2) Isom(x, y) is the presheaf of sets corresponding to this category fibred in setoids,

see Categories, Lemma 39.6.

Proof. Omitted. Hint: Objects of the 2-fibre product are (a : V → U, z, (α, β))
where α : z → a∗x and β : z → a∗y are isomorphisms in SV . Thus the relationship with
Isom(x, y) comes by assigning to such an object the isomorphism β ◦ α−1. �

3. Descent data in fibred categories

In this section we define the notion of a descent datum in the abstract setting of a fibred
category. Before we do so we point out that this is completely analogous to descent data
for quasi-coherent sheaves (Descent, Section 2) and descent data for schemes over schemes
(Descent, Section 34).

We will use the convention where the projection maps pri : X× . . .×X → X are labeled
starting with i = 0. Hence we have pr0, pr1 : X×X → X , pr0, pr1, pr2 : X×X×X →
X , etc.

Definition 3.1. Let C be a category. Let p : S → C be a fibred category. Make a
choice of pullbacks as in Categories, Definition 33.6. Let U = {fi : Ui → U}i∈I be a
family of morphisms of C. Assume all the fibre products Ui ×U Uj , and Ui ×U Uj ×U Uk
exist.

(1) A descent datum (Xi, ϕij) in S relative to the family {fi : Ui → U} is given
by an object Xi of SUi for each i ∈ I , an isomorphism ϕij : pr∗

0Xi → pr∗
1Xj in

SUi×UUj for each pair (i, j) ∈ I2 such that for every triple of indices (i, j, k) ∈
I3 the diagram

pr∗
0Xi

pr∗
01ϕij ##

pr∗
02ϕik

// pr∗
2Xk

pr∗
1Xj

pr∗
12ϕjk

::

in the category SUi×UUj×UUk commutes. This is called the cocycle condition.
(2) A morphism ψ : (Xi, ϕij) → (X ′

i, ϕ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms ψi : Xi → X ′
i in SUi such that all the diagrams

pr∗
0Xi ϕij

//

pr∗
0ψi

��

pr∗
1Xj

pr∗
1ψj

��
pr∗

0X
′
i

ϕ′
ij // pr∗

1X
′
j

in the categories SUi×UUj commute.
(3) The category of descent data relative to U is denoted DD(U).



424 8. STACKS

The fibre products Ui ×U Uj and Ui ×U Uj ×U Uk will exist if each of the morphisms
fi : Ui → U is representable, see Categories, Definition 6.4. Recall that in a site one of
the conditions for a covering {Ui → U} is that each of the morphisms is representable,
see Sites, Definition 6.2 part (3). In fact the main interest in the definition above is where
C is a site and {Ui → U} is a covering of C. However, a descent datum is just an abstract
gadget that can be defined as above. This is useful: for example, given a fibred category
over C one can look at the collection of families with respect to which descent data are
effective, and try to use these as the family of coverings for a site.

Remarks 3.2. Two remarks on Definition 3.1 are in order. Let p : S → C be a fibred
category. Let {fi : Ui → U}i∈I , and (Xi, ϕij) be as in Definition 3.1.

(1) There is a diagonal morphism ∆ : Ui → Ui ×U Ui. We can pull back ϕii via
this morphism to get an automorphism ∆∗ϕii ∈ AutUi(Xi). On pulling back
the cocycle condition for the triple (i, i, i) by ∆123 : Ui → Ui ×U Ui ×U Ui we
deduce that ∆∗ϕii ◦∆∗ϕii = ∆∗ϕii; thus ∆∗ϕii = idXi .

(2) There is a morphism ∆13 : Ui ×U Uj → Ui ×U Uj ×U Ui and we can pull back
the cocycle condition for the triple (i, j, i) to get the identity (σ∗ϕji) ◦ ϕij =
idpr∗

0Xi
, where σ : Ui ×U Uj → Uj ×U Ui is the switching morphism.

Lemma 3.3. (Pullback of descent data.) Let C be a category. Let p : S → C be a fibred
category. Make a choice pullbacks as in Categories, Definition 33.6. Let U = {fi : Ui →
U}i∈I , and V = {Vj → V }j∈J be a families of morphisms of C with fixed target. Assume
all the fibre products Ui ×U Ui′ , Ui ×U Ui′ ×U Ui′′ , Vj ×V Vj′ , and Vj ×V Vj′ ×V Vj′′

exist. Let α : I → J , h : U → V and gi : Ui → Vα(i) be a morphism of families of maps
with fixed target, see Sites, Definition 8.1.

(1) Let (Yj , ϕjj′) be a descent datum relative to the family {Vj → V }. The system(
g∗
i Yα(i), (gi × gi′)∗ϕα(i)α(i′)

)
is a descent datum relative to U .

(2) This construction defines a functor between descent data relative to V and de-
scent data relative to U .

(3) Given a second α′ : I → J , h′ : U → V and g′
i : Ui → Vα′(i) morphism

of families of maps with fixed target, then if h = h′ the two resulting functors
between descent data are canonically isomorphic.

Proof. Omitted. �

Definition 3.4. With U = {Ui → U}i∈I , V = {Vj → V }j∈J , α : I → J ,
h : U → V , and gi : Ui → Vα(i) as in Lemma 3.3 the functor

(Yj , ϕjj′) 7−→ (g∗
i Yα(i), (gi × gi′)∗ϕα(i)α(i′))

constructed in that lemma is called the pullback functor on descent data.

Given h : U → V , if there exists a morphism h̃ : U → V covering h then h̃∗ is indepen-
dent of the choice of h̃ as we saw in Lemma 3.3. Hence we will sometimes simply write h∗

to indicate the pullback functor.

Definition 3.5. Let C be a category. Let p : S → C be a fibred category. Make
a choice of pullbacks as in Categories, Definition 33.6. Let U = {fi : Ui → U}i∈I
be a family of morphisms with target U . Assume all the fibre products Ui ×U Uj and
Ui ×U Uj ×U Uk exist.
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(1) Given an objectX of SU the trivial descent datum is the descent datum (X, idX)
with respect to the family {idU : U → U}.

(2) Given an object X of SU we have a canonical descent datum on the family of
objects f∗

i X by pulling back the trivial descent datum (X, idX) via the obvious
map {fi : Ui → U} → {idU : U → U}. We denote this descent datum
(f∗
i X, can).

(3) A descent datum (Xi, ϕij) relative to {fi : Ui → U} is called effective if there
exists an object X of SU such that (Xi, ϕij) is isomorphic to (f∗

i X, can).

Note that the rule that associates to X ∈ SU its canonical descent datum relative to U
defines a functor

SU −→ DD(U).
A descent datum is effective if and only if it is in the essential image of this functor. Let
us make explicit the canonical descent datum as follows.

Lemma 3.6. In the situation of Definition 3.5 part (2) the maps canij : pr∗
0f

∗
i X →

pr∗
1f

∗
jX are equal to (αpr1,fj

)X ◦ (αpr0,fi
)−1
X where α·,· is as in Categories, Lemma 33.7

and where we use the equality fi ◦ pr0 = fj ◦ pr1 as maps Ui ×U Uj → U .

Proof. Omitted. �

Lemma 3.7. Let C be a category. Let V = {Vj → U}j∈J → U = {Ui → U}i∈I be a
morphism of families of maps with fixed target of C given by id : U → U , α : J → I and
fj : Vj → Uα(j). Let p : S → C be a fibred category. If

(1) for 0 ≤ p ≤ 3 and 0 ≤ q ≤ 3 with p+ q ≥ 2 and i1, . . . , ip ∈ I and j1, . . . , jq ∈
J the fibre products Ui1 ×U . . .×U Uip ×U Vj1 ×U . . .×U Vjq exist,

(2) the functor SU → DD(V) is an equivalence,
(3) for every i ∈ I the functor SUi → DD(Vi) is fully faithful, and
(4) for every i, i′ ∈ I the functor SUi×UUi′ → DD(Vii′) is faithful.

Here Vi = {Ui ×U Vj → Ui}j∈J and Vii′ = {Ui ×U Ui′ ×U Vj → Ui ×U Ui′}j∈J . Then
SU → DD(U) is an equivalence.

Proof. Condition (1) guarantees we have enough fibre products so that the statement
makes sense. We will show that the functor SU → DD(U) is essentially surjective. Sup-
pose given a descent datum (Xi, ϕii′) relative to U . By Lemma 3.3 we can pull this back to
a descent datum (Xj , ϕjj′) for V . By assumption (2) this descent datum is effective, hence
we get an object X of SU such that the pullback of the trivial descent datum (X, idX) by
the morphism V → {U → U} is isomorphic to (Xj , ϕjj′). Next, observe that we have a
diagram

Vi //

��

V // U

��
{Ui → Ui} //

55

{U → U}
of morphisms of families of maps with fixed target of C. This diagram does not commute,
but by Lemma 3.3 the pullback functors on descent data one gets are canonically isomor-
phic. Hence (X, idX) and (Xi, idXi) pull back to isomorphic objects in DD(Vi). Hence
by assumption (3) we obtain an isomorphism (Ui → U)∗X → Xi in the category SUi .
We omit the verification that these arrows are compatible with the morphisms ϕii′ ; hint:
use the faithfulness of the functors in condition (4). We also omit the verification that the
functor SU → DD(U) is fully faithful. �
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4. Stacks

Here is the definition of a stack. It mixes the notion of a fibred category with the notion
of descent.

Definition 4.1. Let C be a site. A stack over C is a category p : S → C over C which
satisfies the following conditions:

(1) p : S → C is a fibred category, see Categories, Definition 33.5,
(2) for any U ∈ Ob(C) and any x, y ∈ SU the presheaf Mor(x, y) (see Definition

2.2) is a sheaf on the site C/U , and
(3) for any covering U = {fi : Ui → U}i∈I of the site C , any descent datum in S

relative to U is effective.

We find the formulation above the most convenient way to think about a stack. Namely,
given a category over C in order to verify that it is a stack you proceed to check properties
(1), (2) and (3) in that order. Certainly properties (2) and (3) do not make sense if the
category isn’t fibred. Without (2) we cannot prove that the descent in (3) is unique up to
unique isomorphism and functorial.

The following lemma provides an alternative definition.

Lemma 4.2. Let C be a site. Let p : S → C be a fibred category over C. The following
are equivalent

(1) S is a stack over C , and
(2) for any covering U = {fi : Ui → U}i∈I of the site C the functor

SU −→ DD(U)
which associates to an object its canonical descent datum is an equivalence.

Proof. Omitted. �

Lemma 4.3. Let p : S → C be a stack over the site C. Let S ′ be a subcategory of S .
Assume

(1) if ϕ : y → x is a strongly cartesian morphism of S and x is an object of S ′, then
y is isomorphic to an object of S ′,

(2) S ′ is a full subcategory of S , and
(3) if {fi : Ui → U} is a covering of C , and x an object of S over U such that f∗

i x is
isomorphic to an object of S ′ for each i, then x is isomorphic to an object of S ′.

Then S ′ → C is a stack.

Proof. Omitted. Hints: The first condition guarantees that S ′ is a fibred category.
The second condition guarantees that the Isom-presheaves of S ′ are sheaves (as they are
identical to their counter parts in S). The third condition guarantees that the descent
condition holds in S ′ as we can first descend in S and then (3) implies the resulting object
is isomorphic to an object of S ′. �

Lemma 4.4. Let C be a site. Let S1, S2 be categories over C. Suppose that S1 and S2
are equivalent as categories over C. Then S1 is a stack over C if and only if S2 is a stack
over C.

Proof. Let F : S1 → S2, G : S2 → S1 be functors over C , and let i : F ◦G→ idS2 ,
j : G ◦ F → idS1 be isomorphisms of functors over C. By Categories, Lemma 33.8 we
see that S1 is fibred if and only if S2 is fibred over C. Hence we may assume that both S1
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and S2 are fibred. Moreover, the proof of Categories, Lemma 33.8 shows that F and G
map strongly cartesian morphisms to strongly cartesian morphisms, i.e., F and G are 1-
morphisms of fibred categories over C. This means that givenU ∈ Ob(C), and x, y ∈ S1,U
then the presheaves

MorS1(x, y),MorS1(F (x), F (y)) : (C/U)opp −→ Sets.

are identified, see Lemma 2.3. Hence the first is a sheaf if and only if the second is a sheaf.
Finally, we have to show that if every descent datum in S1 is effective, then so is every
descent datum in S2. To do this, let (Xi, ϕii′) be a descent datum in S2 relative the cover-
ing {Ui → U} of the site C. Then (G(Xi), G(ϕii′)) is a descent datum in S1 relative the
covering {Ui → U}. Let X be an object of S1,U such that the descent datum (f∗

i X, can)
is isomorphic to (G(Xi), G(ϕii′)). Then F (X) is an object of S2,U such that the descent
datum (f∗

i F (X), can) is isomorphic to (F (G(Xi)), F (G(ϕii′))) which in turn is isomor-
phic to the original descent datum (Xi, ϕii′) using i. �

The 2-category of stacks over C is defined as follows.

Definition 4.5. Let C be a site. The 2-category of stacks over C is the sub 2-category
of the 2-category of fibred categories over C (see Categories, Definition 33.9) defined as
follows:

(1) Its objects will be stacks p : S → C.
(2) Its 1-morphisms (S, p) → (S ′, p′) will be functors G : S → S ′ such that p′ ◦

G = p and such thatGmaps strongly cartesian morphisms to strongly cartesian
morphisms.

(3) Its 2-morphisms t : G → H for G,H : (S, p) → (S ′, p′) will be morphisms of
functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Lemma 4.6. Let C be a site. The (2, 1)-category of stacks over C has 2-fibre products,
and they are described as in Categories, Lemma 32.3.

Proof. Let f : X → S and g : Y → S be 1-morphisms of stacks over C as defined
above. The category X ×S Y described in Categories, Lemma 32.3 is a fibred category
according to Categories, Lemma 33.10. (This is where we use that f and g preserve strongly
cartesian morphisms.) It remains to show that the morphism presheaves are sheaves and
that descent relative to coverings of C is effective.

Recall that an object ofX×SY is given by a quadruple (U, x, y, φ). It lies over the objectU
of C. Next, let (U, x′, y′, φ′) be second object lying over U . Recall that φ : f(x) → g(y),
and φ′ : f(x′) → g(y′) are isomorphisms in the category SU . Let us use these isomor-
phisms to identify z = f(x) = g(y) and z′ = f(x′) = g(y′). With this identifications it
is clear that

Mor((U, x, y, φ), (U, x′, y′, φ′)) = Mor(x, x′)×Mor(z,z′) Mor(y, y′)
as presheaves. However, as the fibred product in the category of presheaves preserves
sheaves (Sites, Lemma 10.1) we see that this is a sheaf.

Let U = {fi : Ui → U}i∈I be a covering of the site C. Let (Xi, χij) be a descent datum
in X ×S Y relative to U . Write Xi = (Ui, xi, yi, φi) as above. Write χij = (ϕij , ψij)
as in the definition of the category X ×S Y (see Categories, Lemma 32.3). It is clear that
(xi, ϕij) is a descent datum in X and that (yi, ψij) is a descent datum in Y . Since X and
Y are stacks these descent data are effective. Thus we get x ∈ Ob(XU ), and y ∈ Ob(YU )
with xi = x|Ui , and yi = y|Ui compatibly with descent data. Set z = f(x) and z′ = g(y)
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which are both objects of SU . The morphisms φi are elements of Isom(z, z′)(Ui) with
the property that φi|Ui×UUj = φj |Ui×UUj . Hence by the sheaf property of Isom(z, z′)
we obtain an isomorphism φ : z = f(x) → z′ = g(y). We omit the verification that the
canonical descent datum associated to the object (U, x, y, φ) of (X ×S Y)U is isomorphic
to the descent datum we started with. �

Lemma 4.7. Let C be a site. Let S1, S2 be stacks over C. Let F : S1 → S2 be a
1-morphism. Then the following are equivalent

(1) F is fully faithful,
(2) for every U ∈ Ob(C) and for every x, y ∈ Ob(S1,U ) the map

F : MorS1(x, y) −→ MorS2(F (x), F (y))
is an isomorphism of sheaves on C/U .

Proof. Assume (1). ForU, x, y as in (2) the displayed mapF evaluates to the mapF :
MorS1,V (x|V , y|V )→ MorS2,V (F (x|V ), F (y|V )) on an object V of C lying overU . Now,
sinceF is fully faithful, the corresponding map MorS1(x|V , y|V )→ MorS2(F (x|V ), F (y|V ))
is a bijection. Morphisms in the fibre category S1,V are exactly those morphisms between
x|V and y|V in S1 lying over idV . Similarly, morphisms in the fibre category S2,V are
exactly those morphisms between F (x|V ) and F (y|V ) in S2 lying over idV . Thus we find
that F induces a bijection between these also. Hence (2) holds.
Assume (2). Suppose given objects U , V of C and x ∈ Ob(S1,U ) and y ∈ Ob(S1,V ).
To show that F is fully faithful, it suffices to prove it induces a bijection on morphisms
lying over a fixed f : U → V . Choose a strongly Cartesian f∗y → y in S1 lying above
f . This results in a bijection between the set of morphisms x → y in S1 lying over f
and MorS1,U (x, f∗y). Since F preserves strongly Cartesian morphisms as a 1-morphism
in the 2-category of stacks over C , we also get a bijection between the set of morphisms
F (x)→ F (y) inS2 lying over f and MorS2,U (F (x), F (f∗y)). SinceF induces a bijection
MorS1,U (x, f∗y)→ MorS2,U (F (x), F (f∗y)) we conclude (1) holds. �

Lemma 4.8. Let C be a site. Let S1, S2 be stacks over C. Let F : S1 → S2 be a
1-morphism which is fully faithful. Then the following are equivalent

(1) F is an equivalence,
(2) for every U ∈ Ob(C) and for every x ∈ Ob(S2,U ) there exists a covering {fi :

Ui → U} such that f∗
i x is in the essential image of the functor F : S1,Ui →

S2,Ui .

Proof. The implication (1)⇒ (2) is immediate. To see that (2) implies (1) we have
to show that every x as in (2) is in the essential image of the functor F . To do this choose
a covering as in (2), xi ∈ Ob(S1,Ui), and isomorphisms ϕi : F (xi) → f∗

i x. Then we get
a descent datum for S1 relative to {fi : Ui → U} by taking

ϕij : xi|Ui×UUj −→ xj |Ui×UUj
the arrow such that F (ϕij) = ϕ−1

j ◦ ϕi. This descent datum is effective by the axioms
of a stack, and hence we obtain an object x1 of S1 over U . We omit the verification that
F (x1) is isomorphic to x over U . �

Remark 4.9. (Cutting down a “big” stack to get a stack.) Let C be a site. Suppose that
p : S → C is functor from a “big” category to C , i.e., suppose that the collection of objects
of S forms a proper class. Finally, suppose that p : S → C satisfies conditions (1), (2), (3)
of Definition 4.1. In general there is no way to replace p : S → C by a equivalent category
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such that we obtain a stack. The reason is that it can happen that a fibre categories SU may
have a proper class of isomorphism classes of objects. On the other hand, suppose that

(4) for every U ∈ Ob(C) there exists a set SU ⊂ Ob(SU ) such that every object of
SU is isomorphic in SU to an element of SU .

In this case we can find a full subcategory Ssmall of S such that, setting psmall = p|Ssmall ,
we have

(a) the functor psmall : Ssmall → C defines a stack, and
(b) the inclusion Ssmall → S is fully faithful and essentially surjective.

(Hint: For every U ∈ Ob(C) let α(U) denote the smallest ordinal such that Ob(SU ) ∩
Vα(U) surjects onto the set of isomorphism classes of SU , and set α = supU∈Ob(C) α(U).
Then take Ob(Ssmall) = Ob(S) ∩ Vα. For notation used see Sets, Section 5.)

5. Stacks in groupoids

Among stacks those which are fibred in groupoids are somewhat easier to comprehend.
We redefine them as follows.

Definition 5.1. A stack in groupoids over a site C is a category p : S → C over C
such that

(1) p : S → C is fibred in groupoids over C (see Categories, Definition 35.1),
(2) for all U ∈ Ob(C), for all x, y ∈ Ob(SU ) the presheaf Isom(x, y) is a sheaf on

the site C/U , and
(3) for all coverings U = {Ui → U} in C , all descent data (xi, φij) for U are effec-

tive.

Usually the hardest part to check is the third condition. Here is the lemma comparing this
with the notion of a stack.

Lemma 5.2. Let C be a site. Let p : S → C be a category over C. The following are
equivalent

(1) S is a stack in groupoids over C ,
(2) S is a stack over C and all fibre categories are groupoids, and
(3) S is fibred in groupoids over C and is a stack over C.

Proof. Omitted, but see Categories, Lemma 35.2. �

Lemma 5.3. Let C be a site. Let p : S → C be a stack. Let p′ : S ′ → C be the
category fibred in groupoids associated to S constructed in Categories, Lemma 35.3. Then
p′ : S ′ → C is a stack in groupoids.

Proof. Recall that the morphisms in S ′ are exactly the strongly cartesian morphisms
of S , and that any isomorphism of S is such a morphism. Hence descent data in S ′ are
exactly the same thing as descent data in S . Now apply Lemma 4.2. Some details omitted.

�

Lemma 5.4. Let C be a site. Let S1, S2 be categories over C. Suppose that S1 and S2
are equivalent as categories over C. Then S1 is a stack in groupoids over C if and only if
S2 is a stack in groupoids over C.

Proof. Follows by combining Lemmas 5.2 and 4.4. �

The 2-category of stacks in groupoids over C is defined as follows.
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Definition 5.5. Let C be a site. The 2-category of stacks in groupoids over C is the
sub 2-category of the 2-category of stacks over C (see Definition 4.5) defined as follows:

(1) Its objects will be stacks in groupoids p : S → C.
(2) Its 1-morphisms (S, p)→ (S ′, p′) will be functorsG : S → S ′ such that p′◦G =

p. (Since every morphism is strongly cartesian every functor preserves them.)
(3) Its 2-morphisms t : G → H for G,H : (S, p) → (S ′, p′) will be morphisms of

functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that any 2-morphism is automatically an isomorphism, so that in fact the 2-category
of stacks in groupoids over C is a (strict) (2, 1)-category.

Lemma 5.6. Let C be a category. The 2-category of stacks in groupoids over C has
2-fibre products, and they are described as in Categories, Lemma 32.3.

Proof. This is clear from Categories, Lemma 35.7 and Lemmas 5.2 and 4.6. �

6. Stacks in setoids

This is just a brief section saying that a stack in sets is the same thing as a sheaf of sets.
Please consult Categories, Section 39 for notation.

Definition 6.1. Let C be a site.
(1) A stack in setoids over C is a stack over C all of whose fibre categories are setoids.
(2) A stack in sets, or a stack in discrete categories is a stack over C all of whose fibre

categories are discrete.

From the discussion in Section 5 this is the same thing as a stack in groupoids whose fibre
categories are setoids (resp. discrete). Moreover, it is also the same thing as a category
fibred in setoids (resp. sets) which is a stack.

Lemma 6.2. Let C be a site. Under the equivalence{
the category of presheaves

of sets over C

}
↔
{

the category of categories
fibred in sets over C

}
of Categories, Lemma 38.6 the stacks in sets correspond precisely to the sheaves.

Proof. Omitted. Hint: Show that effectivity of descent corresponds exactly to the
sheaf condition. �

Lemma 6.3. Let C be a site. Let S be a category fibred in setoids over C. Then S
is a stack in setoids if and only if the unique equivalent category S ′ fibred in sets (see
Categories, Lemma 39.5) is a stack in sets. In other words, if and only if the presheaf

U 7−→ Ob(SU )/∼=
is a sheaf.

Proof. Omitted. �

Lemma 6.4. Let C be a site. Let S1, S2 be categories over C. Suppose that S1 and S2
are equivalent as categories over C. Then S1 is a stack in setoids over C if and only if S2 is
a stack in setoids over C.

Proof. By Categories, Lemma 39.5 we see that a category S over C is fibred in setoids
over C if and only if it is equivalent over C to a category fibred in sets. Hence we see that
S1 is fibred in setoids over C if and only if S2 is fibred in setoids over C. Hence now the
lemma follows from Lemma 6.3. �
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The 2-category of stacks in setoids over C is defined as follows.

Definition 6.5. Let C be a site. The 2-category of stacks in setoids over C is the sub
2-category of the 2-category of stacks over C (see Definition 4.5) defined as follows:

(1) Its objects will be stacks in setoids p : S → C.
(2) Its 1-morphisms (S, p)→ (S ′, p′) will be functorsG : S → S ′ such that p′◦G =

p. (Since every morphism is strongly cartesian every functor preserves them.)
(3) Its 2-morphisms t : G → H for G,H : (S, p) → (S ′, p′) will be morphisms of

functors such that p′(tx) = idp(x) for all x ∈ Ob(S).

Note that any 2-morphism is automatically an isomorphism, so that in fact the 2-category
of stacks in setoids over C is a (strict) (2, 1)-category.

Lemma 6.6. Let C be a site. The 2-category of stacks in setoids over C has 2-fibre
products, and they are described as in Categories, Lemma 32.3.

Proof. This is clear from Categories, Lemmas 35.7 and 39.4 and Lemmas 5.2 and
4.6. �

Lemma 6.7. Let C be a site. Let S, T be stacks in groupoids over C and let R be a
stack in setoids over C. Let f : T → S and g : R → S be 1-morphisms. If f is faithful,
then the 2-fibre product

T ×f,S,g R
is a stack in setoids over C.

Proof. Immediate from the explicit description of the 2-fibre product in Categories,
Lemma 32.3. �

Lemma 6.8. Let C be a site. Let S be a stack in groupoids over C and let Si, i = 1, 2
be stacks in setoids over C. Let fi : Si → S be 1-morphisms. Then the 2-fibre product

S1 ×f1,S,f2 S2

is a stack in setoids over C.

Proof. This is a special case of Lemma 6.7 as f2 is faithful. �

Lemma 6.9. Let C be a site. Let

T2 //

G′

��

T1

G

��
S2

F // S1

be a 2-cartesian diagram of stacks in groupoids over C. Assume
(1) for every U ∈ Ob(C) and x ∈ Ob((S1)U ) there exists a covering {Ui → U}

such that x|Ui is in the essential image of F : (S2)Ui → (S1)Ui , and
(2) G′ is faithful,

then G is faithful.

Proof. We may assume that T2 is the category S2 ×S1 T1 described in Categories,
Lemma 32.3. By Categories, Lemma 35.9 the faithfulness ofG,G′ can be checked on fibre
categories. Suppose that y, y′ are objects of T1 over the object U of C. Let α, β : y → y′

be morphisms of (T1)U such that G(α) = G(β). Our object is to show that α = β.
Considering instead γ = α−1 ◦ β we see that G(γ) = idG(y) and we have to show that
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γ = idy . By assumption we can find a covering {Ui → U} such that G(y)|Ui is in the
essential image of F : (S2)Ui → (S1)Ui . Since it suffices to show that γ|Ui = id for each
i, we may therefore assume that we have f : F (x) → G(y) for some object x of S2 over
U and morphisms f of (S1)U . In this case we get a morphism

(1, γ) : (U, x, y, f) −→ (U, x, y, f)
in the fibre category of S2 ×S1 T1 over U whose image under G′ in S1 is idx. As G′ is
faithful we conclude that γ = idy and we win. �

Lemma 6.10. Let C be a site. Let
T2 //

��

T1

G

��
S2

F // S1

be a 2-cartesian diagram of stacks in groupoids over C. If
(1) F : S2 → S1 is fully faithful,
(2) for every U ∈ Ob(C) and x ∈ Ob((S1)U ) there exists a covering {Ui → U}

such that x|Ui is in the essential image of F : (S2)Ui → (S1)Ui , and
(3) T2 is a stack in setoids.

then T1 is a stack in setoids.

Proof. We may assume that T2 is the category S2 ×S1 T1 described in Categories,
Lemma 32.3. Pick U ∈ Ob(C) and y ∈ Ob((T1)U ). We have to show that the sheaf
Aut(y) on C/U is trivial. To to this we may replace U by the members of a covering of
U . Hence by assumption (2) we may assume that there exists an object x ∈ Ob((S2)U )
and an isomorphism f : F (x) → G(y). Then y′ = (U, x, y, f) is an object of T2 over U
which is mapped to y under the projection T2 → T1. Because F is fully faithful by (1) the
map Aut(y′) → Aut(y) is surjective, use the explicit description of morphisms in T2 in
Categories, Lemma 32.3. Since by (3) the sheaf Aut(y′) is trivial we get the result of the
lemma. �

Lemma 6.11. Let C be a site. Let F : S → T be a 1-morphism of categories fibred in
groupoids over C. Assume that

(1) T is a stack in groupoids over C ,
(2) for every U ∈ Ob(C) the functor SU → TU of fibre categories is faithful,
(3) for each U and each y ∈ Ob(TU ) the presheaf

(h : V → U) 7−→ {(x, f) | x ∈ Ob(SV ), f : F (x)→ f∗y over V }/ ∼=
is a sheaf on C/U .

Then S is a stack in groupoids over C.

Proof. We have to prove descent for morphisms and descent for objects.
Descent for morphisms. Let {Ui → U} be a covering of C. Let x, x′ be objects of S over
U . For each i let αi : x|Ui → x′|Ui be a morphism over Ui such that αi and αj restrict to
the same morphism x|Ui×UUj → x′|Ui×UUj . Because T is a stack in groupoids, there is a
morphism β : F (x)→ F (x′) overU whose restriction toUi is F (αi). Then we can think
of ξ = (x, β) and ξ′ = (x′, idF (x′)) as sections of the presheaf associated to y = F (x′) over
U in assumption (3). On the other hand, the restrictions of ξ and ξ′ toUi are (x|Ui , F (αi))
and (x′|Ui , idF (x′|Ui )). These are isomorphic to each other by the morphism αi. Thus ξ
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and ξ′ are isomorphic by assumption (3). This means there is a morphism α : x→ x′ over
U with F (α) = β. Since F is faithful on fibre categories we obtain α|Ui = αi.

Descent of objects. Let {Ui → U} be a covering of C. Let (xi, ϕij) be a descent datum
for S with respect to the given covering. Because T is a stack in groupoids, there is an
object y in TU and isomorphisms βi : F (xi) → y|Ui such that F (ϕij) = βj |Ui×UUj ◦
(βi|Ui×UUj )−1. Then (xi, βi) are sections of the presheaf associated to y over U defined
in assumption (3). Moreover, ϕij defines an isomorphism from the pair (xi, βi)|Ui×UUj to
the pair (xj , βj)|Ui×UUj . Hence by assumption (3) there exists a pair (x, β) over U whose
restriction toUi is isomorphic to (xi, βi). This means there are morphisms αi : xi → x|Ui
with βi = β|Ui ◦ F (αi). Since F is faithful on fibre categories a calculation shows that
ϕij = αj |Ui×UUj ◦ (αi|Ui×UUj )−1. This finishes the proof. �

7. The inertia stack

Let p : S → C and p′ : S ′ → C be fibred categories over the category C. Let F : S → S ′

be a 1-morphism of fibred categories over C. Recall that we have defined in Categories,
Definition 34.2 a relative inertia fibred category IS/S′ → C as the category whose objects
are pairs (x, α) where x ∈ Ob(S) and α : x → x with F (α) = idF (x). There is also an
absolute version, namely the inertia IS of S . These inertia categories are actually stacks
over C provided that S and S ′ are stacks.

Lemma 7.1. Let C be a site. Let p : S → C and p′ : S ′ → C be stacks over the site C.
Let F : S → S ′ be a 1-morphism of stacks over C.

(1) The inertia IS/S′ and IS are stacks over C.
(2) If S,S ′ are stacks in groupoids over C , then so are IS/S′ and IS .
(3) If S,S ′ are stacks in setoids over C , then so are IS/S′ and IS .

Proof. The first three assertions follow from Lemmas 4.6, 5.6, and 6.6 and the equiv-
alence in Categories, Lemma 34.1 part (1). �

Lemma 7.2. Let C be a site. IfS is a stack in groupoids, then the canonical 1-morphism
IS → S is an equivalence if and only if S is a stack in setoids.

Proof. Follows directly from Categories, Lemma 39.7. �

8. Stackification of fibred categories

Here is the result.

Lemma 8.1. Let C be a site. Let p : S → C be a fibred category over C. There exists
a stack p′ : S ′ → C and a 1-morphism G : S → S ′ of fibred categories over C (see
Categories, Definition 33.9) such that

(1) for every U ∈ Ob(C), and any x, y ∈ Ob(SU ) the map

Mor(x, y) −→ Mor(G(x), G(y))
induced by G identifies the right hand side with the sheafification of the left
hand side, and

(2) for every U ∈ Ob(C), and any x′ ∈ Ob(S ′
U ) there exists a covering {Ui →

U}i∈I such that for every i ∈ I the object x′|Ui is in the essential image of the
functor G : SUi → S ′

Ui
.

Moreover the stack S ′ is determined up to unique 2-isomorphism by these conditions.
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Proof by naive method. In this proof method we proceed in stages:

First, given x lying over U and any object y of S , we say that two morphisms a, b : x→ y
of S lying over the same arrow of C are locally equal if there exists a covering {fi : Ui →
U} of C such that the compositions

f∗
i x→ x

a−→ y, f∗
i x→ x

b−→ y

are equal. This gives an equivalence relation ∼ on arrows of S . If b ∼ b′ then a ◦ b ◦ c ∼
a ◦ b′ ◦ c (verification omitted). Hence we can quotient out by this equivalence relation to
obtain a new category S1 over C together with a morphism G1 : S → S1.

One checks thatG1 preserves strongly cartesian morphisms and thatS1 is a fibred category
over C. Checks omitted. Thus we reduce to the case where locally equal morphisms are
equal.

Next, we add morphisms as follows. Given x lying over U and any object y of lying over
V a locally defined morphism from x to y is given by

(1) a morphism f : U → V ,
(2) a covering {fi : Ui → U} of U , and
(3) morphisms ai : f∗

i x→ y with p(ai) = f ◦ fi
with the property that the compositions

(fi × fj)∗x→ f∗
i x

ai−→ y, (fi × fj)∗x→ f∗
j x

aj−→ y

are equal. Note that a usual morphism a : x → y gives a locally defined morphism
(p(a) : U → V, {idU}, a). We say two locally defined morphisms (f, {fi : Ui → U}, ai)
and (g, {gj : U ′

j → U}, bj) are equal if f = g and the compositions

(fi × gj)∗x→ f∗
i x

ai−→ y, (fi × gj)∗x→ g∗
jx

bj−→ y

are equal (this is the right condition since we are in the situation where locally equal
morphisms are equal). To compose locally defined morphisms (f, {fi : Ui → U}, ai)
from x to y and (g, {gj : Vj → V }, bj) from y to z lying overW , just take g◦f : U →W ,
the covering {Ui ×V Vj → U}, and as maps the compositions

x|Ui×V Vj
pr∗

0ai−−−→ y|Vj
bj−→ z

We omit the verification that this is a locally defined morphism.

One checks that S2 with the same objects as S and with locally defined morphisms as
morphisms is a category over C , that there is a functor G2 : S → S2 over C , that this
functor preserves strongly cartesian objects, and thatS2 is a fibred category over C. Checks
omitted. This reduces one to the case where the morphism presheaves of S are all sheaves,
by checking that the effect of using locally defined morphisms is to take the sheafification
of the (separated) morphisms presheaves.

Finally, in the case where the morphism presheaves are all sheaves we have to add objects in
order to make sure descent conditions are effective in the end result. The simplest way to
do this is to consider the category S ′ whose objects are pairs (U , ξ) where U = {Ui → U}
is a covering of C and ξ = (Xi, ϕii′) is a descent datum relative U . Suppose given two
such data (U , ξ) = ({fi : Ui → U}, xi, ϕii′) and (V, η) = ({gj : Vj → V }, yj , ψjj′). We
define

MorS′((U , ξ), (V, η))
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as the set of (f, aij), where f : U → V and

aij : xi|Ui×V Vj −→ yj

are morphisms of S lying over Ui ×V Vj → Vj . These have to satisfy the following
condition: for any i, i′ ∈ I and j, j′ ∈ J set W = (Ui ×U Ui′)×V (Vj ×V Vj′). Then

xi|W
aij |W

//

ϕii′ |W
��

yj |W

ψjj′ |W
��

xi′ |W
ai′j′ |W // yj′ |W

commutes. At this point you have to verify the following things:
(1) there is a well defined composition on morphisms as above,
(2) this turns S ′ into a category over C ,
(3) there is a functor G : S → S ′ over C ,
(4) for x, y objects of S we have MorS(x, y) = MorS′(G(x), G(y)),
(5) any object of S ′ locally comes from an object of S , i.e., part (2) of the lemma

holds,
(6) G preserves strongly cartesian morphisms,
(7) S ′ is a fibred category over C , and
(8) S ′ is a stack over C.

This is all not hard but there is a lot of it. Details omitted. �

Less naive proof. Here is a less naive proof. By Categories, Lemma 36.4 there exists
an equivalence of fibred categories S → S ′ where S ′ is a split fibred category, i.e., one in
which the pullback functors compose on the nose. Obviously the lemma for S ′ implies
the lemma for S . Hence we may think of S as a presheaf in categories.

Consider the 2-category Cat temporarily as a category by forgetting about 2-morphisms.
Let us think of a category as a quintuple (Ob,Arrows, s, t, ◦) as in Categories, Section 2.
Consider the forgetful functor

forget : Cat→ Sets× Sets, (Ob,Arrows, s, t, ◦) 7→ (Ob,Arrows).
Then forget is faithful, Cat has limits and forget commutes with them, Cat has directed
colimits and forget commutes with them, and forget reflects isomorphisms. We can
sheafify presheaves with values in Cat, and by an argument similar to the one in the first
part of Sites, Section 44 the result commutes with forget. Applying this to S we obtain
a sheafification S# which has a sheaf of objects and a sheaf of morphisms both of which
are the sheafifications of the corresponding presheaves for S . In this case it is quite easy
to see that the map S → S# has the properties (1) and (2) of the lemma.

However, the category S# may not yet be a stack since, although the presheaf of objects
is a sheaf, the descent condition may not yet be satisfied. To remedy this we have to add
more objects. But the argument above does reduce us to the case where S = SF for some
sheaf(!) F : Copp → Cat of categories. In this case consider the functor F ′ : Copp → Cat
defined by

(1) The set Ob(F ′(U)) is the set of pairs (U , ξ) where U = {Ui → U} is a covering
of U and ξ = (xi, ϕii′) is a descent datum relative to U .

(2) A morphism in F ′(U) from (U , ξ) to (V, η) is an element of

colim MorDD(W)(a∗ξ, b∗η)
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where the colimit is over all common refinements a : W → U , b : W → V .
This colimit is filtered (verification omitted). Hence composition of morphisms
in F (U) is defined by finding a common refinement and composing inDD(W).

(3) Given h : V → U and an object (U , ξ) of F ′(U) we set F ′(h)(U , ξ) equal to
(V ×U U , pr∗

1ξ). More precisely, if U = {Ui → U} and ξ = (xi, ϕii′), then
V ×U U = {V ×U Ui → V } which comes with a canonical morphism pr1 :
V ×U U → U and pr∗

1ξ is the pullback of ξ with respect to this morphism (see
Definition 3.4).

(4) Given h : V → U , objects (U , ξ) and (V, η) and a morphism between them,
represented by a : W → U , b : W → V , and α : a∗ξ → b∗η, then F ′(h)(α) is
represented by a′ : V ×U W → V ×U U , b′ : V ×U W → V ×U V , and the
pullback α′ of the morphism α via the map V ×U W → W . This works since
pullbacks in SF commute on the nose.

There is a map F → F ′ given by associating to an object x of F (U) the object ({U →
U}, (x, triv)) of F ′(U). At this point you have to check that the corresponding functor
SF → SF ′ has properties (1) and (2) of the lemma, and finally that SF ′ is a stack. Details
omitted. �

Lemma 8.2. Let C be a site. Let p : S → C be a fibred category over C. Let p′ : S ′ → C
and G : S → S ′ the stack and 1-morphism constructed in Lemma 8.1. This construction
has the following universal property: Given a stack q : X → C and a 1-morphism F :
S → X of fibred categories over C there exists a 1-morphism H : S ′ → X such that the
diagram

S
F

//

G ��

X

S ′
H

>>

is 2-commutative.

Proof. Omitted. Hint: Suppose that x′ ∈ Ob(S ′
U ). By the result of Lemma 8.1

there exists a covering {Ui → U}i∈I such that x′|Ui = G(xi) for some xi ∈ Ob(SUi).
Moreover, there exist coverings {Uijk → Ui ×U Uj} and isomorphisms αijk : xi|Uijk →
xj |Uijk with G(αijk) = idx′|Uijk . Set yi = F (xi). Then you can check that

F (αijk) : yi|Uijk → yj |Uijk
agree on overlaps and therefore (as X is a stack) define a morphism βij : yi|Ui×UUj →
yj |Ui×UUj . Next, you check that the βij define a descent datum. Since X is a stack these
descent data are effective and we find an object y of XU agreeing withG(xi) over Ui. The
hint is to set H(x′) = y. �

Lemma 8.3. Notation and assumptions as in Lemma 8.2. There is a canonical equiv-
alence of categories

MorFib/C(S,X ) = MorStacks/C(S ′,X )
given by the constructions in the proof of the aforementioned lemma.

Proof. Omitted. �

Lemma 8.4. Let C be a site. Let f : X → Y and g : Z → Y be morphisms of fibred
categories over C. In this case the stackification of the 2-fibre product is the 2-fibre product
of the stackifications.
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Proof. Let us denoteX ′,Y ′,Z ′ the stackifications andW the stackification ofX ×Y
Z . By construction of 2-fibre products there is a canonical 1-morphismX×YZ → X ′×Y′

Z ′. As the second 2-fibre product is a stack (see Lemma 4.6) this 1-morphism induces a 1-
morphism h :W → X ′×Y′ Z ′ by the universal property of stackification, see Lemma 8.2.
Now h is a morphism of stacks, and we may check that it is an equivalence using Lemmas
4.7 and 4.8.
Thus we first prove that h induces isomorphisms of Mor-sheaves. Let ξ, ξ′ be objects of
W over U ∈ Ob(C). We want to show that

h : Mor(ξ, ξ′) −→ Mor(h(ξ), h(ξ′))
is an isomorphism. To do this we may work locally on U (see Sites, Section 26). Hence by
construction ofW (see Lemma 8.1) we may assume that ξ, ξ′ actually come from objects
(x, z, α) and (x′, z′, α′) of X ×Y Z over U . By the same lemma once more we see that in
this case Mor(ξ, ξ′) is the sheafification of

V/U 7−→ MorXV (x|V , x′|V )×MorYV (f(x)|V ,f(x′)|V ) MorZV (z|V , z′|V )

and that Mor(h(ξ), h(ξ′)) is equal to the fibre product
Mor(i(x), i(x′))×Mor(j(f(x)),j(f(x′)) Mor(k(z), k(z′))

where i : X → X ′, j : Y → Y ′, and k : Z → Z ′ are the canonical functors. Thus the first
displayed map of this paragraph is an isomorphism as sheafification is exact (and hence the
sheafification of a fibre product of presheaves is the fibre product of the sheafifications).
Finally, we have to check that any object ofX ′×Y′Z ′ overU is locally onU in the essential
image of h. Write such an object as a triple (x′, z′, α). Then x′ locally comes from an
object of X , z′ locally comes from an object of Z , and having made suitable replacements
for x′, z′ the morphism α of Y ′

U locally comes from a morphism of Y . In other words, we
have shown that any object of X ′ ×Y′ Z ′ over U is locally on U in the essential image of
X ×Y Z → X ′ ×Y′ Z ′, hence a fortiori it is locally in the essential image of h. �

Lemma 8.5. Let C be a site. Let X be a fibred category over C. The stackification of
the inertia fibred category IX is inertia of the stackification of X .

Proof. This follows from the fact that stackification is compatible with 2-fibre prod-
ucts by Lemma 8.4 and the fact that there is a formula for the inertia in terms of 2-fibre
products of categories over C , see Categories, Lemma 34.1. �

9. Stackification of categories fibred in groupoids

Here is the result.

Lemma 9.1. Let C be a site. Let p : S → C be a category fibred in groupoids over C.
There exists a stack in groupoids p′ : S ′ → C and a 1-morphism G : S → S ′ of categories
fibred in groupoids over C (see Categories, Definition 35.6) such that

(1) for every U ∈ Ob(C), and any x, y ∈ Ob(SU ) the map
Mor(x, y) −→ Mor(G(x), G(y))

induced by G identifies the right hand side with the sheafification of the left
hand side, and

(2) for every U ∈ Ob(C), and any x′ ∈ Ob(S ′
U ) there exists a covering {Ui →

U}i∈I such that for every i ∈ I the object x′|Ui is in the essential image of the
functor G : SUi → S ′

Ui
.
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Moreover the stack in groupoids S ′ is determined up to unique 2-isomorphism by these
conditions.

Proof. Apply Lemma 8.1. The result will be a stack in groupoids by applying Lemma
5.2. �

Lemma 9.2. Let C be a site. Let p : S → C be a category fibred in groupoids over
C. Let p′ : S ′ → C and G : S → S ′ the stack in groupoids and 1-morphism constructed
in Lemma 9.1. This construction has the following universal property: Given a stack in
groupoids q : X → C and a 1-morphism F : S → X of categories over C there exists a
1-morphism H : S ′ → X such that the diagram

S
F

//

G ��

X

S ′
H

>>

is 2-commutative.

Proof. This is a special case of Lemma 8.2. �

Lemma 9.3. Let C be a site. Let f : X → Y and g : Z → Y be morphisms of
categories fibred in groupoids over C. In this case the stackification of the 2-fibre product
is the 2-fibre product of the stackifications.

Proof. This is a special case of Lemma 8.4. �

10. Inherited topologies

It turns out that a fibred category over a site inherits a canonical topology from the un-
derlying site.

Lemma 10.1. Let C be a site. Let p : S → C be a fibred category. Let Cov(S) be the
set of families {xi → x}i∈I of morphisms in S with fixed target such that (a) each xi → x
is strongly cartesian, and (b) {p(xi) → p(x)}i∈I is a covering of C. Then (S,Cov(S)) is
a site.

Proof. We have to check the three conditions of Sites, Definition 6.2.
(1) If x → y is an isomorphism of S , then it is strongly cartesian by Categories,

Lemma 33.2 and p(x)→ p(y) is an isomorphism of C. Thus {p(x)→ p(y)} is a
covering of C whence {x→ y} ∈ Cov(S).

(2) If {xi → x}i∈I ∈ Cov(S) and for each i we have {yij → xi}j∈Ji ∈ Cov(S),
then each composition p(yij)→ p(x) is strongly cartesian by Categories, Lemma
33.2 and {p(yij) → p(x)}i∈I,j∈Ji ∈ Cov(C). Hence also {yij → x}i∈I,j∈Ji ∈
Cov(S).

(3) Suppose {xi → x}i∈I ∈ Cov(S) and y → x is a morphism of S . As {p(xi) →
p(x)} is a covering of C we see that p(xi) ×p(x) p(y) exists. Hence Categories,
Lemma 33.13 implies that xi ×x y exists, that p(xi ×x y) = p(xi) ×p(x) p(y),
and that xi ×x y → y is strongly cartesian. Since also {p(xi) ×p(x) p(y) →
p(y)}i∈I ∈ Cov(C) we conclude that {xi ×x y → y}i∈I ∈ Cov(S)

This finishes the proof. �
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Note that if p : S → C is fibred in groupoids, then the coverings of the site S in Lemma
10.1 are characterized by

{xi → x} ∈ Cov(S)⇔ {p(xi)→ p(x)} ∈ Cov(C)

because every morphism of S is strongly cartesian.

Definition 10.2. Let C be a site. Let p : S → C be a fibred category. We say
(S,Cov(S)) as in Lemma 10.1 is the structure of site on S inherited from C. We sometimes
indicate this by saying that S is endowed with the topology inherited from C.

In particular we obtain a topos of sheaves Sh(S) in this situation. It turns out that this
topos is functorial with respect to 1-morphisms of fibred categories.

Lemma 10.3. Let C be a site. Let F : X → Y be a 1-morphism of fibred categories
over C. Then F is a continuous and cocontinuous functor between the structure of sites
inherited from C. Hence F induces a morphism of topoi f : Sh(X ) → Sh(Y) with
f∗ = sF = pF and f−1 = F s = F p. In particular f−1(G)(x) = G(F (x)) for a sheaf G
on Y and object x of X .

Proof. We first prove that F is continuous. Let {xi → x}i∈I be a covering ofX . By
Categories, Definition 33.9 the functor F transforms strongly cartesian morphisms into
strongly cartesian morphisms, hence {F (xi)→ F (x)}i∈I is a covering of Y . This proves
part (1) of Sites, Definition 13.1. Moreover, let x′ → x be a morphism ofX . By Categories,
Lemma 33.13 the fibre product xi ×x x′ exists and xi ×x x′ → x′ is strongly cartesian.
Hence F (xi ×x x′) → F (x′) is strongly cartesian. By Categories, Lemma 33.13 applied
to Y this means that F (xi ×x x′) = F (xi) ×F (x) F (x′). This proves part (2) of Sites,
Definition 13.1 and we conclude that F is continuous.

Next we prove that F is cocontinuous. Let x ∈ Ob(X ) and let {yi → F (x)}i∈I be a
covering in Y . Denote {Ui → U}i∈I the corresponding covering of C. For each i choose
a strongly cartesian morphism xi → x in X lying over Ui → U . Then F (xi) → F (x)
and yi → F (x) are both a strongly cartesian morphisms in Y lying over Ui → U . Hence
there exists a unique isomorphism F (xi)→ yi in YUi compatible with the maps to F (x).
Thus {xi → x}i∈I is a covering of X such that {F (xi) → F (x)}i∈I is isomorphic to
{yi → F (x)}i∈I . Hence F is cocontinuous, see Sites, Definition 20.1.

The final assertion follows from the first two, see Sites, Lemmas 21.1, 20.2, and 21.5. �

Lemma 10.4. Let C be a site. Let p : X → C be a category fibred in groupoids.
Let x ∈ Ob(X ) lying over U = p(x). The functor p induces an equivalence of sites
X/x→ C/U where X is endowed with the topology inherited from C.

Proof. Here C/U is the localization of the site C at the object U and similarly for
X/x. It follows from Categories, Definition 35.1 that the rule x′/x 7→ p(x′)/p(x) defines
an equivalence of categories X/x → C/U . Whereupon it follows from Definition 10.2
that coverings of x′ in X/x are in bijective correspondence with coverings of p(x′) in
C/U . �

Lemma 10.5. Let C be a site. Let p : X → C and q : Y → C be stacks in groupoids.
Let F : X → Y be a 1-morphism of categories over C. If F turns X into a category fibred
in groupoids over Y , then X is a stack in groupoids over Y (with topology inherited from
C).
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Proof. Let us prove descent for objects. Let {yi → y} be a covering ofY . Let (xi, ϕij)
be a descent datum in X with respect to this covering. Then (xi, ϕij) is also a descent
datum with respect to the covering {q(yi)→ q(y)} of C. As X is a stack in groupoids we
obtain an object x over q(y) and isomorphisms ψi : x|q(yi) → xi over q(yi) compatible
with the ϕij , i.e., such that

ϕij = ψj |q(yi)×q(y)q(yj) ◦ ψ−1
i |q(yi)×q(y)q(yj).

Consider the sheaf I = IsomY(F (x), y) on C/p(x). Note that si = F (ψi) ∈ I (q(xi))
because F (xi) = yi. Because F (ϕij) = id (as we started with a descent datum over
{yi → y}) the displayed formula shows that si|q(yi)×q(y)q(yj) = sj |q(yi)×q(y)q(yj). Hence
the local sections si glue to s : F (x) → y. As F is fibred in groupoids we see that x
is isomorphic to an object x′ with F (x′) = y. We omit the verification that x′ in the
fibre category of X over y is a solution to the problem of descent posed by the descent
datum (xi, ϕij). We also omit the proof of the sheaf property of the Isom-presheaves of
X/Y . �

Lemma 10.6. Let C be a site. Let p : X → C be a stack. Endow X with the topology
inherited from C and let q : Y → X be a stack. Then Y is a stack over C. If p and q define
stacks in groupoids, then Y is a stack in groupoids over C.

Proof. We check the three conditions in Definition 4.1 to prove thatY is a stack over
C. By Categories, Lemma 33.12 we find that Y is a fibred category over C. Thus condition
(1) holds.

Let U be an object of C and let y1, y2 be objects of Y over U . Denote xi = q(yi) in X .
Consider the map of presheaves

q : MorY/C(y1, y2) −→ MorX/C(x1, x2)

on C/U , see Lemma 2.3. Let {Ui → U} be a covering and letϕi be a section of the presheaf
on the left over Ui such that ϕi and ϕj restrict to the same section over Ui ×U Uj . We
have to find a morphism ϕ : x1 → x2 restricting to ϕi. Note that q(ϕi) = ψ|Ui for some
morphism ψ : x1 → x2 overU because the second presheaf is a sheaf (by assumption). Let
y12 → y2 be the stronlyX -cartesian morphism ofY lying overψ. Thenϕi corresponds to
a morphism ϕ′

i : y1|Ui → y12|Ui over x1|Ui . In other words, ϕ′
i now define local sections

of the presheaf
MorY/X (y1, y12)

over the members of the covering {x1|Ui → x1}. By assumption these glue to a unique
morphism y1 → y12 which composed with the given morphism y12 → y2 produces the
desired morphism y1 → y2.

Finally, we show that descent data are effective. Let {fi : Ui → U} be a covering of
C and let (yi, ϕij) be a descent datum relative to this covering (Definition 3.1). Setting
xi = q(yi) and ψij = q(ϕij) we obtain a descent datum (xi, ψij) for the covering in X .
By assumption on X we may assume xi = x|Ui and the ψij equal to the canonical descent
datum (Definition 3.5). In this case {x|Ui → x} is a covering and we can view (yi, ϕij) as
a descent datum relative to this covering. By our assumption that Y is a stack over C we
see that it is effective which finishes the proof of condition (3).

The final assertion follows because Y is a stack over C and is fibred in groupoids by Cate-
gories, Lemma 35.14. �
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11. Gerbes

Gerbes are a special kind of stacks in groupoids.

Definition 11.1. A gerbe over a site C is a category p : S → C over C such that
(1) p : S → C is a stack in groupoids over C (see Definition 5.1),
(2) forU ∈ Ob(C) there exists a covering {Ui → U} in C such thatSUi is nonempty,

and
(3) for U ∈ Ob(C) and x, y ∈ Ob(SU ) there exists a covering {Ui → U} in C such

that x|Ui ∼= y|Ui in SUi .
In other words, a gerbe is a stack in groupoids such that any two objects are locally iso-
morphic and such that objects exist locally.

Lemma 11.2. Let C be a site. Let S1, S2 be categories over C. Suppose that S1 and S2
are equivalent as categories over C. Then S1 is a gerbe over C if and only if S2 is a gerbe
over C.

Proof. Assume S1 is a gerbe over C. By Lemma 5.4 we see S2 is a stack in groupoids
over C. Let F : S1 → S2, G : S2 → S1 be equivalences of categories over C. Given
U ∈ Ob(C) we see that there exists a covering {Ui → U} such that (S1)Ui is nonempty.
Applying F we see that (S2)Ui is nonempty. Given U ∈ Ob(C) and x, y ∈ Ob((S2)U )
there exists a covering {Ui → U} in C such that G(x)|Ui ∼= G(y)|Ui in (S1)Ui . By
Categories, Lemma 35.9 this implies x|Ui ∼= y|Ui in (S2)Ui . �

We want to generalize the definition of gerbes a bit. Namely, let F : X → Y be a 1-
morphism of stacks in groupoids over a site C. We want to say what it means for X to be
a gerbe over Y . By Section 10 the category Y inherits the structure of a site from C. A
naive guess is: Just require that X → Y is a gerbe in the sense above. Except the notion
so obtained is not invariant under replacing X by an equivalent stack in groupoids over
C; this is even the case for the property of being fibred in groupoids over Y . However, it
turns out that we can replaceX by an equivalent stack in groupoids over C which is fibred
in groupoids over Y , and then the property of being a gerbe over Y is independent of this
choice. Here is the precise formulation.

Lemma 11.3. Let C be a site. Let p : X → C and q : Y → C be stacks in groupoids.
Let F : X → Y be a 1-morphism of categories over C. The following are equivalent

(1) For some (equivalently any) factorization F = F ′ ◦ a where a : X → X ′

is an equivalence of categories over C and F ′ is fibred in groupoids, the map
F ′ : X ′ → Y is a gerbe (with the topology on Y inherited from C).

(2) The following two conditions are satisfied
(a) for y ∈ Ob(Y) lying over U ∈ Ob(C) there exists a covering {Ui → U} in
C and objects xi of X over Ui such that F (xi) ∼= y|Ui in YUi , and

(b) for U ∈ Ob(C), x, x′ ∈ Ob(XU ), and b : F (x)→ F (x′) in YU there exists
a covering {Ui → U} in C and morphisms ai : x|Ui → x′|Ui in XUi with
F (ai) = b|Ui .

Proof. By Categories, Lemma 35.16 there exists a factorization F = F ′ ◦ a where
a : X → X ′ is an equivalence of categories over C and F ′ is fibred in groupoids. By
Categories, Lemma 35.17 given any two such factorizations F = F ′ ◦ a = F ′′ ◦ b we have
that X ′ is equivalent to X ′′ as categories over Y . Hence Lemma 11.2 guarantees that the
condition (1) is independent of the choice of the factorization. Moreover, this means that
we may assume X ′ = X ×F,Y,id Y as in the proof of Categories, Lemma 35.16
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Let us prove that (a) and (b) imply that X ′ → Y is a gerbe. First of all, by Lemma 10.5
we see that X ′ → Y is a stack in groupoids. Next, let y be an object of Y lying over
U ∈ Ob(C). By (a) we can find a covering {Ui → U} in C and objects xi ofX overUi and
isomorphisms fi : F (xi) → y|Ui in YUi . Then (Ui, xi, y|Ui , fi) are objects of X ′

Ui
, i.e.,

the second condition of Definition 11.1 holds. Finally, let (U, x, y, f) and (U, x′, y, f ′) be
objects of X ′ lying over the same object y ∈ Ob(Y). Set b = (f ′)−1 ◦ f . By condition
(b) we can find a covering {Ui → U} and isomorphisms ai : x|Ui → x′|Ui in XUi with
F (ai) = b|Ui . Then

(ai, id) : (U, x, y, f)|Ui → (U, x′, y, f ′)|Ui
is a morphism in X ′

Ui
as desired. This proves that (2) implies (1).

To prove that (1) implies (2) one reads the arguments in the preceding paragraph back-
wards. Details omitted. �

Definition 11.4. Let C be a site. Let X and Y be stacks in groupoids over C. Let
F : X → Y be a 1-morphism of categories over C. We say X is a gerbe over Y if the
equivalent conditions of Lemma 11.3 are satisfied.

This definition does not conflict with Definition 11.1 when Y = C because in this case
we may take X ′ = X in part (1) of Lemma 11.3. Note that conditions (2)(a) and (2)(b) of
Lemma 11.3 are quite close in spirit to conditions (2) and (3) of Definition 11.1. Namely,
(2)(a) says that the map of presheaves of isomorphism classes of objects becomes a surjection
after sheafification. Moreover, (2)(b) says that

IsomX (x, x′) −→ IsomY(F (x), F (x′))

is a surjection of sheaves on C/U for any U and x, x′ ∈ Ob(XU ).

Lemma 11.5. Let C be a site. Let

X ′
G′
//

F ′

��

X

F

��
Y ′ G // Y

be a 2-fibre product of stacks in groupoids over C. IfX is a gerbe overY , thenX ′ is a gerbe
over Y ′.

Proof. By the uniqueness property of a 2-fibre product may assume thatX ′ = Y ′×Y
X as in Categories, Lemma 32.3. Let us prove properties (2)(a) and (2)(b) of Lemma 11.3
for Y ′ ×Y X → Y ′.

Let y′ be an object ofY ′ lying over the objectU of C. By assumption there exists a covering
{Ui → U} of U and objects xi ∈ XUi with isomorphisms αi : G(y′)|Ui → F (xi). Then
(Ui, y′|Ui , xi, αi) is an object of Y ′ ×Y X over Ui whose image in Y ′ is y′|Ui . Thus (2)(a)
holds.

Let U ∈ Ob(C), let x′
1, x

′
2 be objects of Y ′ ×Y X over U , and let b′ : F ′(x′

1)→ F ′(x′
2) be

a morphism in Y ′
U . Write x′

i = (U, y′
i, xi, αi). Note that F ′(x′

i) = xi and G′(x′
i) = y′

i.
By assumption there exists a covering {Ui → U} in C and morphisms ai : x1|Ui → x2|Ui
in XUi with F (ai) = G(b′)|Ui . Then (b′|Ui , ai) is a morphism x′

1|Ui → x′
2|Ui as required

in (2)(b). �
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Lemma 11.6. Let C be a site. Let F : X → Y and G : Y → Z be 1-morphisms of
stacks in groupoids over C. If X is a gerbe over Y and Y is a gerbe over Z , then X is a
gerbe over Z .

Proof. Let us prove properties (2)(a) and (2)(b) of Lemma 11.3 for X → Z .

Let z be an object of Z lying over the object U of C. By assumption on G there exists a
covering {Ui → U} of U and objects yi ∈ YUi such that G(yi) ∼= z|Ui . By assumption
on F there exist coverings {Uij → Ui} and objects xij ∈ XUij such that F (xij) ∼= yi|Uij .
Then {Uij → U} is a covering of C and (G ◦ F )(xij) ∼= z|Uij . Thus (2)(a) holds.

Let U ∈ Ob(C), let x1, x2 be objects of X over U , and let c : (G ◦ F )(x1)→ (G ◦ F )(x2)
be a morphism in ZU . By assumption on G there exists a covering {Ui → U} of U and
morphisms bi : F (x1)|Ui → F (x2)|Ui in YUi such that G(bi) = c|Ui . By assumption on
F there exist coverings {Uij → Ui} and morphisms aij : x1|Uij → x2|Uij in XUij such
that F (aij) = bi|Uij . Then {Uij → U} is a covering of C and (G ◦ F )(aij) = c|Uij as
required in (2)(b). �

Lemma 11.7. Let C be a site. Let

X ′
G′
//

F ′

��

X

F

��
Y ′ G // Y

be a 2-cartesian diagram of stacks in groupoids over C. If for every U ∈ Ob(C) and
x ∈ Ob(YU ) there exists a covering {Ui → U} such that x|Ui is in the essential image of
G : Y ′

Ui
→ YUi and X ′ is a gerbe over Y ′, then X is a gerbe over Y .

Proof. By the uniqueness property of a 2-fibre product may assume thatX ′ = Y ′×Y
X as in Categories, Lemma 32.3. Let us prove properties (2)(a) and (2)(b) of Lemma 11.3
for X → Y .

Let y be an object of Y lying over the object U of C. By assumption there exists a covering
{Ui → U} of U and objects y′

i ∈ Y ′
Ui

with G(y′
i) ∼= y|Ui . By (2)(a) for X ′ → Y ′ there

exist coverings {Uij → Ui} and objects x′
ij ofX ′ overUij with F ′(x′

ij) isomorphic to the
restriction of y′

i to Uij . Then {Uij → U} is a covering of C and G′(x′
ij) are objects of X

over Uij whose images in Y are isomorphic to the restrictions y|Uij . This proves (2)(a) for
X → Y .

Let U ∈ Ob(C), let x1, x2 be objects of X over U , and let b : F (x1) → F (x2) be a
morphism in YU . By assumption we may choose a covering {Ui → U} and objects y′

i

of Y ′ over Ui such that there exist isomorphisms αi : G(y′
i) → F (x1)|Ui . Then we get

objects
x′

1i = (Ui, y′
i, x1|Ui , αi) and x′

2i = (Ui, y′
i, x2|Ui , b|Ui ◦ αi)

of X ′ over Ui. The identity morphism on y′
i is a morphism F ′(x′

1i)→ F ′(x′
2i). By (2)(b)

for X ′ → Y ′ there exist coverings {Uij → Ui} and morphisms a′
ij : x′

1i|Uij → x′
2i|Uij

such that F ′(a′
ij) = idy′

i
|Uij . Unwinding the definition of morphisms in Y ′ ×Y X we see

that G′(a′
ij) : x1|Uij → x2|Uij are the morphisms we’re looking for, i.e., (2)(b) holds for

X → Y . �

Gerbes all of whose automorphism sheaves are abelian play an important role in algebraic
geometry.
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Lemma 11.8. Let p : S → C be a gerbe over a site C. Assume that for all U ∈ Ob(C)
and x ∈ Ob(SU ) the sheaf of groups Aut(x) = Isom(x, x) on C/U is abelian. Then there
exist

(1) a sheaf G of abelian groups on C ,
(2) for every U ∈ Ob(C) and every x ∈ Ob(SU ) an isomorphism G|U → Aut(x)

such that for every U and every morphism ϕ : x→ y in SU the diagram

G|U

��

G|U

��
Aut(x) α7→ϕ◦α◦ϕ−1

// Aut(y)

is commutative.

Proof. Let x, y be two objects of S with U = p(x) = p(y).

If there is a morphism ϕ : x → y over U , then it is an isomorphism and then we indeed
get an isomorphism Aut(x)→ Aut(y) sending α to ϕ ◦ α ◦ ϕ−1. Moreover, since we are
assuming Aut(x) is commutative, this isomorphism is independent of the choice of ϕ by
a simple computation: namely, if ψ is a second such map, then

ϕ ◦ α ◦ ϕ−1 = ψ ◦ ψ−1 ◦ ϕ ◦ α ◦ ϕ−1 = ψ ◦ α ◦ ψ−1 ◦ ϕ ◦ ϕ−1 = ψ ◦ α ◦ ψ−1

The upshot is a canonical isomorphism of sheaves Aut(x) → Aut(y). Furthermore, if
there is a third object z and a morphism y → z (and hence also a morphism x→ z), then
the canonical isomorphisms Aut(x)→ Aut(y), Aut(y)→ Aut(z), and Aut(x)→ Aut(z)
are compatible in the sense that

Aut(x)

$$

// Aut(z)

Aut(y)

::

commutes.

If there is no morphism from x to y over U , then we can choose a covering {Ui → U}
such that there exist morphisms x|Ui → y|Ui . This gives canonical isomorphisms

Aut(x)|Ui −→ Aut(y)|Ui
which agree over Ui×U Uj (by canonicity). By glueing of sheaves (Sites, Lemma 26.1) we
get a unique isomorphism Aut(x)→ Aut(y) whose restriction to any Ui is the canonical
isomorphism of the previous paragraph. Similarly to the above these canonical isomor-
phisms satisfy a compatibility if we have a third object over U .

What if the fibre category of S over U is empty? Well, in this case we can find a covering
{Ui → U} and objects xi of S over Ui. Then we set Gi = Aut(xi). By the above we
obtain canonical isomorphisms

ϕij : Gi|Ui×UUj −→ Gj |Ui×UUj
whose restrictions to Ui ×U Uj ×U Uk satisfy the cocycle condition explained in Sites,
Section 26. By Sites, Lemma 26.4 we obtain a sheaf G over U whose restriction to Ui gives
Gi in a manner compatible with the glueing maps ϕij .
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If C has a final object U , then this finishes the proof as we can take G equal to the sheaf we
just constructed. In the general case we need to verify that the sheaves G constructed over
varying U are compatible in a canonical manner. This is omitted. �

12. Functoriality for stacks

In this section we study what happens if we want to change the base site of a stack. This
section can be skipped on a first reading.

Let u : C → D be a functor between categories. Let p : S → D be a category over D. In
this situation we denote upS the category over C defined as follows

(1) An object of upS is a pair (U, y) consisting of an object U of C and an object y of
Su(U).

(2) A morphism (a, β) : (U, y)→ (U ′, y′) is given by a morphism a : U → U ′ of C
and a morphism β : y → y′ of S such that p(β) = u(a).

Note that with these definitions the fibre category of upS over U is equal to the fibre
category of S over u(U).

Lemma 12.1. In the situation above, if S is a fibred category over D then upS is a
fibred category over C.

Proof. Please take a look at the discussion surrounding Categories, Definitions 33.1
and 33.5 before reading this proof. Let (a, β) : (U, y) → (U ′, y′) be a morphism of upS .
We claim that (a, β) is strongly cartesian if and only ifβ is strongly cartesian. First, assume
β is strongly cartesian. Consider any second morphism (a1, β1) : (U1, y1) → (U ′, y′) of
upS . Then

MorupS((U1, y1), (U, y))
= MorC(U1, U)×MorD(u(U1),u(U)) MorS(y1, y)
= MorC(U1, U)×MorD(u(U1),u(U)) MorS(y1, y

′)×MorD(u(U1),u(U ′)) MorD(u(U1), u(U))
= MorS(y1, y

′)×MorD(u(U1),u(U ′)) MorC(U1, U)
= MorupS((U1, y1), (U ′, y′))×MorC(U1,U ′) MorC(U1, U)

the second equality as β is strongly cartesian. Hence we see that indeed (a, β) is strongly
cartesian. Conversely, suppose that (a, β) is strongly cartesian. Choose a strongly carte-
sian morphism β′ : y′′ → y′ in S with p(β′) = u(a). Then bot (a, β) : (U, y) → (U, y′)
and (a, β′) : (U, y′′)→ (U, y) are strongly cartesian and lift a. Hence, by the uniqueness
of strongly cartesian morphisms (see discussion in Categories, Section 33) there exists an
isomorphism ι : y → y′′ in Su(U) such that β = β′ ◦ ι, which implies that β is strongly
cartesian in S by Categories, Lemma 33.2.

Finally, we have to show that given (U ′, y′) and U → U ′ we can find a strongly cartesian
morphism (U, y) → (U ′, y′) in upS lifting the morphism U → U ′. This follows from
the above as by assumption we can find a strongly cartesian morphism y → y′ lifting the
morphism u(U)→ u(U ′). �

Lemma 12.2. Let u : C → D be a continuous functor of sites. Let p : S → D be a
stack over D. Then upS is a stack over C.

Proof. We have seen in Lemma 12.1 that upS is a fibred category over C. Moreover,
in the proof of that lemma we have seen that a morphism (a, β) ofupS is strongly cartesian
if and only β is strongly cartesian in S . Hence, given a morphism a : U → U ′ of C , not
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only do we have the equalities (upS)U = SU and (upS)U ′ = SU ′ , but via these equalities
the pullback functors agree; in a formula a∗(U ′, y′) = (U, u(a)∗y′).

Having said this, let U = {Ui → U} be a covering of C. As u is continuous we see that
V = {u(Ui)→ u(U)} is a covering ofD, and that u(Ui×U Uj) = u(Ui)×u(U)u(Uj) and
similarly for the triple fibre products Ui ×U Uj ×U Uk. As we have the identifications of
fibre categories and pullbacks we see that descend data relative toU are identical to descend
data relative to V . Since by assumption we have effective descent in S we conclude the
same holds for upS . �

Lemma 12.3. Let u : C → D be a continuous functor of sites. Let p : S → D be a
stack in groupoids over D. Then upS is a stack in groupoids over C.

Proof. This follows immediately from Lemma 12.2 and the fact that all fibre cate-
gories are groupoids. �

Definition 12.4. Let f : D → C be a morphism of sites given by the continuous
functor u : C → D. Let S be a fibred category over D. In this setting we write f∗S for
the fibred category upS defined above. We say that f∗S is the pushforward of S along f .

By the results above we know that f∗S is a stack (in groupoids) ifS is a stack (in groupoids).
It is harder to define the pullback of a stack (and we’ll need additional assumptions for our
particular construction – feel free to write up and submit a more general construction).
We do this in several steps.

Let u : C → D be a functor between categories. Let p : S → C be a category over C. In
this setting we define a category uppS as follows:

(1) An object of uppS is a triple (U, φ : V → u(U), x) where U ∈ Ob(C), the map
φ : V → u(U) is a morphism in D, and x ∈ Ob(SU ).

(2) A morphism

(U1, φ1 : V1 → u(U1), x1) −→ (U2, φ2 : V2 → u(U2), x2)

of uppS is given by a (a, b, α) where a : U1 → U2 is a morphism of C , b : V1 →
V2 is a morphism of D, and α : x1 → x2 is morphism of S , such that p(α) = a
and the diagram

V1

φ1

��

b
// V2

φ2

��
u(U1)

u(a) // u(U2)

commutes in D.
We think of uppS as a category over D via

ppp : uppS −→ D, (U, φ : V → u(U), x) 7−→ V.

The fibre category of uppS over an object V of D does not have a simple description.

Lemma 12.5. In the situation above assume
(1) p : S → C is a fibred category,
(2) C has nonempty finite limits, and
(3) u : C → D commutes with nonempty finite limits.
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Consider the set R ⊂ Arrows(uppS) of morphisms of the form

(a, idV , α) : (U ′, φ′ : V → u(U ′), x′) −→ (U, φ : V → u(U), x)

with α strongly cartesian. Then R is a right multiplicative system.

Proof. According to Categories, Definition 27.1 we have to check RMS1, RMS2,
RMS3. Condition RMS1 holds as a composition of strongly cartesian morphisms is strongly
cartesian, see Categories, Lemma 33.2.

To check RMS2 suppose we have a morphism

(a, b, α) : (U1, φ1 : V1 → u(U1), x1) −→ (U, φ : V → u(U), x)

of uppS and a morphism

(c, idV , γ) : (U ′, φ′ : V → u(U ′), x′) −→ (U, φ : V → u(U), x)

with γ strongly cartesian from R. In this situation set U ′
1 = U1 ×U U ′, and denote a′ :

U ′
1 → U ′ and c′ : U ′

1 → U1 the projections. As u(U ′
1) = u(U1) ×u(U) u(U ′) we see that

φ′
1 = (φ1, φ

′) : V1 → u(U ′
1) is a morphism inD. Let γ1 : x′

1 → x1 be a strongly cartesian
morphism of S with p(γ1) = φ′

1 (which exists because S is a fibred category over C). Then
as γ : x′ → x is strongly cartesian there exists a unique morphism α′ : x′

1 → x′ with
p(α′) = a′. At this point we see that

(a′, b, α′) : (U1, φ1 : V1 → u(U ′
1), x′

1) −→ (U, φ : V → u(U ′), x′)

is a morphism and that

(c′, idV1 , γ1) : (U ′
1, φ

′
1 : V1 → u(U ′

1), x′
1) −→ (U1, φ : V1 → u(U1), x1)

is an element of R which form a solution of the existence problem posed by RMS2.

Finally, suppose that

(a, b, α), (a′, b′, α′) : (U1, φ1 : V1 → u(U1), x1) −→ (U, φ : V → u(U), x)

are two morphisms of uppS and suppose that

(c, idV , γ) : (U, φ : V → u(U), x) −→ (U ′, φ : V → u(U ′), x′)

is an element of R which equalizes the morphisms (a, b, α) and (a′, b′, α′). This implies
in particular that b = b′. Let d : U2 → U1 be the equalizer of a, a′ which exists (see
Categories, Lemma 18.3). Moreover, u(d) : u(U2)→ u(U1) is the equalizer of u(a), u(a′)
hence (as b = b′) there is a morphism φ2 : V1 → u(U2) such that φ1 = u(d) ◦ φ1. Let
δ : x2 → x1 be a strongly cartesian morphism of S with p(δ) = u(d). Now we claim that
α ◦ δ = α′ ◦ δ. This is true because γ is strongly cartesian, γ ◦ α ◦ δ = γ ◦ α′ ◦ δ, and
p(α ◦ δ) = p(α′ ◦ δ). Hence the arrow

(d, idV1 , δ) : (U2, φ2 : V1 → u(U2), x2) −→ (U1, φ1 : V1 → u(U1), x1)

is an element of R and equalizes (a, b, α) and (a′, b′, α′). Hence R satisfies RMS3 as well.
�

Lemma 12.6. With notation and assumptions as in Lemma 12.5. SetupS = R−1uppS ,
see Categories, Section 27. Then upS is a fibred category over D.
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Proof. We use the description of upS given just above Categories, Lemma 27.11.
Note that the functor ppp : uppS → D transforms every element ofR to an identity mor-
phism. Hence by Categories, Lemma 27.16 we obtain a canonical functor pp : upS → D
extending the given functor. This is how we think of upS as a category over D.

First we want to characterize the D-strongly cartesian morphisms in upS . A morphism
f : X → Y of upS is the equivalence class of a pair (f ′ : X ′ → Y, r : X ′ → X)
with r ∈ R. In fact, in upS we have f = (f ′, 1) ◦ (r, 1)−1 with obvious notation. Note
that an isomorphism is always strongly cartesian, as are compositions of strongly cartesian
morphisms, see Categories, Lemma 33.2. Hence f is strongly cartesian if and only if (f ′, 1)
is so. Thus the following claim completely characterizes strongly cartesian morphisms.
Claim: A morphism

(a, b, α) : X1 = (U1, φ1 : V1 → u(U1), x1) −→ (U2, φ2 : V2 → u(U2), x2) = X2

of uppS has image f = ((a, b, α), 1) strongly cartesian in upS if and only if α is a strongly
cartesian morphism of S .

Assume α strongly cartesian. Let X = (U, φ : V → u(U), x) be another object, and let
f2 : X → X2 be a morphism of upS such that pp(f2) = b ◦ b1 for some b1 : U → U1.
To show that f is strongly cartesian we have to show that there exists a unique morphism
f1 : X → X1 in upS such that pp(f1) = b1 and f2 = f ◦ f1 in upS . Write f2 = (f ′

2 :
X ′ → X2, r : X ′ → X). Again we can write f2 = (f ′

2, 1) ◦ (r, 1)−1 in upS . Since
(r, 1) is an isomorphism whose image in D is an identity we see that finding a morphism
f1 : X → X1 with the required properties is the same thing as finding a morphism
f ′

1 : X ′ → X1 in upS with p(f ′
1) = b1 and f ′

2 = f ◦ f ′
1. Hence we may assume that f2 is

of the form f2 = ((a2, b2, α2), 1) with b2 = b ◦ b1. Here is a picture

(U1, V1 → u(U1), x1)

(a,b,α)
��

(U, V → u(U), x)
(a2,b2,α2) // (U2, V2 → u(U2), x2)

Now it is clear how to construct the morphism f1. Namely, set U ′ = U ×U2 U1 with
projections c : U ′ → U and a1 : U ′ → U1. Pick a strongly cartesian morphism γ : x′ → x
lifting the morphism c. Since b2 = b ◦ b1, and since u(U ′) = u(U) ×u(U2) u(U1) we see
that φ′ = (φ, φ1 ◦ b1) : V → u(U ′). Since α is strongly cartesian, and a ◦ a1 = a2 ◦ c =
p(α2 ◦ γ) there exists a morphism α1 : x′ → x1 lifting a1 such that α ◦ α1 = α2 ◦ γ. Set
X ′ = (U ′, φ′ : V → u(U ′), x′). Thus we see that

f1 = ((a1, b1, α1) : X ′ → X1, (c, idV , γ) : X ′ → X) : X −→ X1

works, in fact the diagram

(U ′, φ′ : V → u(U ′), x′)

(c,idV ,γ)
��

(a1,b1,α1)
// (U1, V1 → u(U1), x1)

(a,b,α)
��

(U, V → u(U), x)
(a2,b2,α2) // (U2, V2 → u(U2), x2)

is commutative by construction. This proves existence.

Next we prove uniqueness, still in the special case f = ((a, b, α), 1) and f2 = ((a2, b2, α2), 1).
We strongly advise the reader to skip this part. Suppose that g1, g

′
1 : X → X1 are two

morphisms of upS such that pp(g1) = pp(g′
1) = b1 and f2 = f ◦ g1 = f ◦ g′

1. Our goal
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is to show that g1 = g′
1. By Categories, Lemma 27.13 we may represent g1 and g′

1 as the
equivalence classes of (f1 : X ′ → X1, r : X ′ → X) and (f ′

1 : X ′ → X1, r : X ′ → X)
for some r ∈ R. By Categories, Lemma 27.14 we see that f2 = f ◦ g1 = f ◦ g′

1 means that
there exists a morphism r′ : X ′′ → X ′ in uppS such that r′ ◦ r ∈ R and

(a, b, α) ◦ f1 ◦ r′ = (a, b, α) ◦ f ′
1 ◦ r′ = (a2, b2, α2) ◦ r′

in uppS . Note that now g1 is represented by (f1 ◦ r′, r ◦ r′) and similarly for g′
1. Hence

we may assume that
(a, b, α) ◦ f1 = (a, b, α) ◦ f ′

1 = (a2, b2, α2).
Write r = (c, idV , γ) : (U ′, φ′ : V → u(U ′), x′), f1 = (a1, b1, α1), and f ′

1 = (a′
1, b1, α

′
1).

Here we have used the condition that pp(g1) = pp(g′
1). The equalities above are now

equivalent to a ◦ a1 = a ◦ a′
1 = a2 ◦ c and α ◦ α1 = α ◦ α′

1 = α2 ◦ γ. It need not
be the case that a1 = a′

1 in this situation. Thus we have to precompose by one more
morphism from R. Namely, let U ′′ = Eq(a1, a

′
1) be the equalizer of a1 and a′

1 which
is a subobject of U ′. Denote c′ : U ′′ → U ′ the canonical monomorphism. Because of
the relations among the morphisms above we see that V → u(U ′) maps into u(U ′′) =
u(Eq(a1, a

′
1)) = Eq(u(a1), u(a′

1)). Hence we get a new object (U ′′, φ′′ : V → u(U ′′), x′′),
where γ′ : x′′ → x′ is a strongly cartesian morphism lifting γ. Then we see that we may
precompose f1 and f ′

1 with the element (c′, idV , γ′) of R. After doing this, i.e., replacing
(U ′, φ′ : V → u(U ′), x′) with (U ′′, φ′′ : V → u(U ′′), x′′), we get back to the previous
situation where in addition we now have that a1 = a′

1. In this case it follows formally
from the fact that α is strongly cartesian (!) that α1 = α′

1. This shows that g1 = g′
1 as

desired.
We omit the proof of the fact that for any strongly cartesian morphism of upS of the form
((a, b, α), 1) the morphism α is strongly cartesian in S . (We do not need the characteri-
zation of strongly cartesian morphisms in the rest of the proof, although we do use it later
in this section.)
Let (U, φ : V → u(U), x) be an object of upS . Let b : V ′ → V be a morphism ofD. Then
the morphism

(idU , b, idx) : (U, φ ◦ b : V ′ → u(U), x) −→ (U, φ : V → u(U), x)
is strongly cartesian by the result of the preceding paragraphs and we win. �

Lemma 12.7. With notation and assumptions as in Lemma 12.6. If S is fibred in
groupoids, then upS is fibred in groupoids.

Proof. By Lemma 12.6 we know that upS is a fibred category. Let f : X → Y be a
morphism of upS with pp(f) = idV . We are done if we can show that f is invertible, see
Categories, Lemma 35.2. Write f as the equivalence class of a pair ((a, b, α), r) with r ∈ R.
Then pp(r) = idV , hence ppp((a, b, α)) = idV . Hence b = idV . But any morphism of S is
strongly cartesian, see Categories, Lemma 35.2 hence we see that (a, b, α) ∈ R is invertible
in upS as desired. �

Lemma 12.8. Let u : C → D be a functor. Let p : S → C and q : T → D be categories
over C and D. Assume that

(1) p : S → C is a fibred category,
(2) q : T → D is a fibred category,
(3) C has nonempty finite limits, and
(4) u : C → D commutes with nonempty finite limits.
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Then we have a canonical equivalence of categories
MorFib/C(S, upT ) = MorFib/D(upS, T )

of morphism categories.

Proof. In this proof we use the notation x/U to denote an object x of S which lies
over U in C. Similarly y/V denotes an object y of T which lies over V in D. In the same
vein α/a : x/U → x′/U ′ denotes the morphism α : x→ x′ with image a : U → U ′ in C.
Let G : upS → T be a 1-morphism of fibred categories over D. Denote G′ : uppS →
T the composition of G with the canonical (localization) functor uppS → upS . Then
consider the functor H : S → upT given by

H(x/U) = (U,G′(U, idu(U) : u(U)→ u(U), x))
on objects and by

H((α, a) : x/U → x′/U ′) = G′(a, u(a), α)
on morphisms. Since G transforms strongly cartesian morphisms into strongly cartesian
morphisms, we see that ifα is strongly cartesian, thenH(α) is strongly cartesian. Namely,
we’ve seen in the proof of Lemma 12.6 that in this case the map (a, u(a), α) becomes
strongly cartesian in upS . Clearly this construction is functorial in G and we obtain a
functor

A : MorFib/D(upS, T ) −→ MorFib/C(S, upT )

Conversely, let H : S → upT be a 1-morphism of fibred categories. Recall that an object
of upT is a pair (U, y) with y ∈ Ob(Tu(U)). We denote pr : upT → T the functor
(U, y) 7→ y. In this case we define a functor G′ : uppS → T by the rules

G′(U, φ : V → u(U), x) = φ∗pr(H(x))
on objects and we let

G′((a, b, α) : (U, φ : V → u(U), x)→ (U ′, φ′ : V ′ → u(U ′), x′)) = β

be the unique morphism β : φ∗pr(H(x)) → (φ′)∗pr(H(x′)) such that q(β) = b and the
diagram

φ∗pr(H(x))

��

β
// (φ′)∗pr(H(x′))

��
pr(H(x))

pr(H(a,α)) // pr(H(x′))
Such a morphism exists and is unique because T is a fibred category.
We check that G′(r) is an isomorphism if r ∈ R. Namely, if

(a, idV , α) : (U ′, φ′ : V → u(U ′), x′) −→ (U, φ : V → u(U), x)
withα strongly cartesian is an element of the right multiplicative systemR of Lemma 12.5
then H(α) is strongly cartesian, and pr(H(α)) is strongly cartesian, see proof of Lemma
12.1. Hence in this case the morphism β has q(β) = idV and is strongly cartesian. Hence
β is an isomorphism by Categories, Lemma 33.2. Thus by Categories, Lemma 27.16 we
obtain a canonical extension G : upS → T .
Next, let us prove thatG transforms strongly cartesian morphisms into strongly cartesian
morphisms. Suppose that f : X → Y is a strongly cartesian. By the characterization of
strongly cartesian morphisms in upS we can write f as ((a, b, α) : X ′ → Y, r : X ′ → Y )
where r ∈ R and α strongly cartesian in S . By the above it suffices to show thatG′(a, bα)
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is strongly cartesian. As before the condition that α is strongly cartesian implies that
pr(H(a, α)) : pr(H(x)) → pr(H(x′)) is strongly cartesian in T . Since in the commu-
tative square above now all arrows except possibly β is strongly cartesian it follows that
also β is strongly cartesian as desired. Clearly the constructionH 7→ G is functorial inH
and we obtain a functor

B : MorFib/C(S, upT ) −→ MorFib/D(upS, T )

To finish the proof of the lemma we have to show that the functorsA andB are mutually
quasi-inverse. We omit the verifications. �

Definition 12.9. Let f : D → C be a morphism of sites given by a continuous
functor u : C → D satisfying the hypotheses and conclusions of Sites, Proposition 14.7.
Let S be a stack over C. In this setting we write f−1S for the stackification of the fibred
category upS over D constructed above. We say that f−1S is the pullback of S along f .

Of course, if S is a stack in groupoids, then f−1S is a stack in groupoids by Lemmas 9.1
and 12.7.

Lemma 12.10. Let f : D → C be a morphism of sites given by a continuous functor
u : C → D satisfying the hypotheses and conclusions of Sites, Proposition 14.7. Let
p : S → C and q : T → D be stacks. Then we have a canonical equivalence of categories

MorStacks/C(S, f∗T ) = MorStacks/D(f−1S, T )

of morphism categories.

Proof. For i = 1, 2 an i-morphism of stacks is the same thing as a i-morphism of
fibred categories, see Definition 4.5. By Lemma 12.8 we have already

MorFib/C(S, upT ) = MorFib/D(upS, T )

Hence the result follows from Lemma 8.3 as upT = f∗T and f−1S is the stackification of
upS . �

Lemma 12.11. Let f : D → C be a morphism of sites given by a continuous functor
u : C → D satisfying the hypotheses and conclusions of Sites, Proposition 14.7. Let
S → C be a fibred category, and let S → S ′ be the stackification of S . Then f−1S ′ is the
stackification of upS .

Proof. Omitted. Hint: This is the analogue of Sites, Lemma 13.4. �

The following lemma tells us that the 2-category of stacks over Schfppf is a “full 2-sub cat-
egory” of the 2-category of stacks over Sch′

fppf provided that Sch′
fppf contains Schfppf

(see Topologies, Section 12).

Lemma 12.12. Let C and D be sites. Let u : C → D be a functor satisfying the
assumptions of Sites, Lemma 21.8. Let f : D → C be the corresponding morphism of sites.
Then

(1) for every stack p : S → C the canonical functor S → f∗f
−1S is an equivalence

of stacks,
(2) given stacks S,S ′ over C the construction f−1 induces an equivalence

MorStacks/C(S,S ′) −→ MorStacks/D(f−1S, f−1S ′)

of morphism categories.
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Proof. Note that by Lemma 12.10 we have an equivalence of categories

MorStacks/D(f−1S, f−1S ′) = MorStacks/C(S, f∗f
−1S ′)

Hence (2) follows from (1).

To prove (1) we are going to use Lemma 4.8. This lemma tells us that we have to show
that can : S → f∗f

−1S is fully faithful and that all objects of f∗f
−1S are locally in the

essential image.

We quickly describe the functor can, see proof of Lemma 12.8. To do this we introduce
the functor c′′ : S → uppS defined by c′′(x/U) = (U, id : u(U) → u(U), x), and
c′′(α/a) = (a, u(a), α). We set c′ : S → upS equal to the composition of c′′ and the
canonical functor uppS → upS . We set c : S → f−1S equal to the composition of c′ and
the canonical functor upS → f−1S . Then can : S → f∗f

−1S is the functor which to
x/U associates the pair (U, c(x)) and to α/a the morphism (a, c(α)).

Fully faithfulness. To prove this we are going to use Lemma 4.7. Let U ∈ Ob(C). Let
x, y ∈ SU . First off, as u is fully faithful, we have

Mor(f∗f−1S)U (can(x), can(y)) = Mor(f−1S)u(U)(c(x), c(y))

directly from the definition of f∗. Similar holds after pulling back to any U ′/U . Because
f−1S is the stackification of upS , and since u is continuous and cocontinuous the presheaf

U ′/U 7−→ Mor(f−1S)u(U′)
(c(x|U ′), c(y|U ′))

is the sheafification of the presheaf

U ′/U 7−→ Mor(upS)u(U′)
(c′(x|U ′), c′(y|U ′))

Hence to finish the proof of fully faithfulness it suffices to show that for any U and x, y
the map

MorSU (x, y) −→ Mor(upS)U (c′(x), c′(y))
is bijective. A morphism f : x → y in upS over u(U) is given by an equivalence class of
diagrams

(U ′, φ : u(U)→ u(U ′), x′)

(c,idu(U),γ)
��

(a,b,α)
// (U, id : u(U)→ u(U), y)

(U, id : u(U)→ u(U), x)

with γ strongly cartesian and b = idu(U). But since u is fully faithful we can write φ =
u(c′) for some morphism c′ : U → U ′ and then we see that a ◦ c′ = idU and c ◦ c′ = idU ′ .
Because γ is strongly cartesian we can find a morphism γ′ : x → x′ lifting c′ such that
γ◦γ′ = idx. By definition of the equivalence classes defining morphisms in upS it follows
that the morphism

(U, id : u(U)→ u(U), x)
(id,id,α◦γ′)

// (U, id : u(U)→ u(U), y)

of uppS induces the morphism f in upS . This proves that the map is surjective. We omit
the proof that it is injective.

Finally, we have to show that any object of f∗f
−1S locally comes from an object of S .

This is clear from the constructions (details omitted). �
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13. Stacks and localization

Let C be a site. Let U be an object of C. We want to understand stacks over C/U as stacks
over C together with a morphism towards U . The following lemma is the reason why this
is easier to do when the presheaf hU is a sheaf.

Lemma 13.1. Let C be a site. Let U ∈ Ob(C). Then jU : C/U → C is a stack over C
if and only if hU is a sheaf.

Proof. Combine Lemma 6.3 with Categories, Example 38.7. �

Assume that C is a site, and U is an object of C whose associated representable presheaf is
a sheaf. We denote j : C/U → C the localization functor.
Construction A. Let p : S → C/U be a stack over the site C/U . We define a stack j!p :
j!S → C as follows:

(1) As a category j!S = S , and
(2) the functor j!p : j!S → C is just the composition j ◦ p.

We omit the verification that this is a stack (hint: Use that hU is a sheaf to glue morphisms
to U ). There is a canonical functor

j!S −→ C/U
namely the functor p which is a 1-morphism of stacks over C.
Construction B. Let q : T → C be a stack over C which is endowed with a morphism of
stacks p : T → C/U over C. In this case it is automatically the case that p : T → C/U is
a stack over C/U .

Lemma 13.2. Assume that C is a site, and U is an object of C whose associated rep-
resentable presheaf is a sheaf. Constructions A and B above define mutually inverse (!)
functors of 2-categories{

2-category of
stacks over C/U

}
↔

2-category of pairs (T , p) consisting
of a stack T over C and a morphism
p : T → C/U of stacks over C


Proof. This is clear. �
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CHAPTER 9

Fields

1. Introduction

In this chapter, we shall discuss the theory of fields. Recall that a field is a ring in which
all nonzero elements are invertible. Equivalently, the only two ideals of a field are (0) and
(1) since any nonzero element is a unit. Consequently fields will be the simplest cases of
much of the theory developed later.
The theory of field extensions has a different feel from standard commutative algebra
since, for instance, any morphism of fields is injective. Nonetheless, it turns out that ques-
tions involving rings can often be reduced to questions about fields. For instance, any
domain can be embedded in a field (its quotient field), and any local ring (that is, a ring
with a unique maximal ideal; we have not defined this term yet) has associated to it its
residue field (that is, its quotient by the maximal ideal). A knowledge of field extensions
will thus be useful.

2. Basic definitions

Because we have placed this chapter before the chapter discussing commutative algebra
we need to introduce some of the basic definitions here before we discuss these in greater
detail in the algebra chapters.

Definition 2.1. A field is a nonzero ring where every nonzero element is invertible.
Given a field a subfield is a subring that is itself a field.
For a field k, we write k∗ for the subset k \ {0}. This generalizes the usual notation R∗

that refers to the group of invertible elements in a ring R.
Definition 2.2. A domain or an integral domain is a nonzero ring where 0 is the

only zerodivisor.

3. Examples of fields

To get started, let us begin by providing several examples of fields. The reader should
recall that if R is a ring and I ⊂ R an ideal, then R/I is a field precisely when I is a
maximal ideal.

Example 3.1 (Rational numbers). The rational numbers form a field. It is called the
field of rational numbers and denoted Q.

Example 3.2 (Prime fields). If p is a prime number, then Z/(p) is a field, denoted Fp.
Indeed, (p) is a maximal ideal in Z. Thus, fields may be finite: Fp contains p elements.

Example 3.3. In a principal ideal domain, an ideal generated by an irreducible ele-
ment is maximal. Now, if k is a field, then the polynomial ring k[x] is a principal ideal do-
main. It follows that if P ∈ k[x] is an irreducible polynomial (that is, a nonconstant poly-
nomial that does not admit a factorization into terms of smaller degrees), then k[x]/(P ) is

457
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a field. It contains a copy of k in a natural way. This is a very general way of constructing
fields. For instance, the complex numbers C can be constructed as R[x]/(x2 + 1).

Example 3.4 (Quotient fields). Recall that, given a domain A, there is an imbedding
A→ F into a fieldF constructed fromA in exactly the same manner that Q is constructed
from Z. Formally the elements of F are (equivalence classes of) fractions a/b, a, b ∈ A,
b 6= 0. As usual a/b = a′/b′ if and only if ab′ = ba′. The fieldF is called the quotient field,
or field of fractions, or fraction field of A. The quotient field has the following universal
property: given an injective ring map ϕ : A → K to a field K , there is a unique map
ψ : F → K making

F
ψ
// K

A

OO

ϕ

>>

commute. Indeed, it is clear how to define such a map: we set ψ(a/b) = ϕ(a)ϕ(b)−1

where injectivity of ϕ assures that ϕ(b) 6= 0 if b 6= 0.

Example 3.5 (Field of rational functions). If k is a field, then we can consider the field
k(x) of rational functions over k. This is the quotient field of the polynomial ring k[x].
In other words, it is the set of quotients F/G for F,G ∈ k[x], G 6= 0 with the obvious
equivalence relation.

Example 3.6. LetX be a Riemann surface. Let C(X) denote the set of meromorphic
functions on X . Then C(X) is a ring under multiplication and addition of functions. It
turns out that in fact C(X) is a field. Namely, if a nonzero function f(z) is meromorphic,
so is 1/f(z). For example, let S2 be the Riemann sphere; then we know from complex
analysis that the ring of meromorphic functions C(S2) is the field of rational functions
C(z).

4. Vector spaces

One reason fields are so nice is that the theory of modules over fields (i.e. vector spaces),
is very simple.

Lemma 4.1. If k is a field, then every k-module is free.

Proof. Indeed, by linear algebra we know that a k-module (i.e. vector space) V has
a basis B ⊂ V , which defines an isomorphism from the free vector space on B to V . �

Lemma 4.2. Every exact sequence of modules over a field splits.

Proof. This follows from Lemma 4.1 as every vector space is a projective module. �

This is another reason why much of the theory in future chapters will not say very much
about fields, since modules behave in such a simple manner. Note that Lemma 4.2 is a
statement about the category of k-modules (for k a field), because the notion of exactness
is inherently arrow-theoretic, i.e., makes use of purely categorical notions, and can in fact
be phrased within a so-called abelian category.

Henceforth, since the study of modules over a field is linear algebra, and since the ideal
theory of fields is not very interesting, we shall study what this chapter is really about:
extensions of fields.
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5. The characteristic of a field

In the category of rings, there is an initial object Z: any ringR has a map from Z into it in
precisely one way. For fields, there is no such initial object. Nonetheless, there is a family
of objects such that every field can be mapped into in exactly one way by exactly one of
them, and in no way by the others.

Let F be a field. Think of F as a ring to get a ring map f : Z→ F . The image of this ring
map is a domain (as a subring of a field) hence the kernel of f is a prime ideal in Z. Hence
the kernel of f is either (0) or (p) for some prime number p.

In the first case we see that f is injective, and in this case we think of Z as a subring of F .
Moreover, since every nonzero element of F is invertible we see that it makes sense to talk
about p/q ∈ F for p, q ∈ Z with q 6= 0. Hence in this case we may and we do think of Q
as a subring of F . One can easily see that this is the smallest subfield of F in this case.

In the second case, i.e., when Ker(f) = (p) we see that Z/(p) = Fp is a subring of F .
Clearly it is the smallest subfield of F .

Arguing in this way we see that every field contains a smallest subfield which is either Q
or finite equal to Fp for some prime number p.

Definition 5.1. The characteristic of a field F is 0 if Z ⊂ F , or is a prime p if p = 0
in F . The prime subfield of F is the smallest subfield of F which is either Q ⊂ F if the
characteristic is zero, or Fp ⊂ F if the characteristic is p > 0.

It is easy to see that if E ⊂ F is a subfield, then the characteristic of E is the same as the
characteristic of F .

Example 5.2. The characteristic of Fp is p, and that of Q is 0.

6. Field extensions

In general, though, we are interested not so much in fields by themselves but in field ex-
tensions. This is perhaps analogous to studying not rings but algebras over a fixed ring.
The nice thing for fields is that the notion of a “field over another field” just recovers the
notion of a field extension, by the next result.

Lemma 6.1. If F is a field and R is a nonzero ring, then any ring homomorphism
ϕ : F → R is injective.

Proof. Indeed, let a ∈ Ker(ϕ) be a nonzero element. Then we haveϕ(1) = ϕ(a−1a) =
ϕ(a−1)ϕ(a) = 0. Thus 1 = ϕ(1) = 0 and R is the zero ring. �

Definition 6.2. If F is a field contained in a field E , then E is said to be a field
extension of F . We shall write E/F to indicate that E is an extension of F .

So if F, F ′ are fields, and F → F ′ is any ring-homomorphism, we see by Lemma 6.1 that
it is injective, and F ′ can be regarded as an extension of F , by a slight abuse of language.
Alternatively, a field extension of F is just an F -algebra that happens to be a field. This
is completely different than the situation for general rings, since a ring homomorphism is
not necessarily injective.

Let k be a field. There is a category of field extensions of k. An object of this category is
an extension E/k, that is a (necessarily injective) morphism of fields

k → E,
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while a morphism between extensions E/k and E′/k is a k-algebra morphism E → E′;
alternatively, it is a commutative diagram

E // E′

k

??__

The set of morphisms from E → E′ in the category of extensions of k will be denoted by
Mork(E,E′).

Definition 6.3. A tower of fields En/En−1/ . . . /E0 consists of a sequence of ex-
tensions of fields En/En−1, En−1/En−2, . . ., E1/E0.

Let us give a few examples of field extensions.

Example 6.4. Let k be a field, and P ∈ k[x] an irreducible polynomial. We have seen
that k[x]/(P ) is a field (Example 3.3). Since it is also a k-algebra in the obvious way, it is
an extension of k.

Example 6.5. If X is a Riemann surface, then the field of meromorphic functions
C(X) (Example 3.6) is an extension field of C, because any element of C induces a mero-
morphic — indeed, holomorphic — constant function on X .

Let F/k be a field extension. Let S ⊂ F be any subset. Then there is a smallest subexten-
sion of F (that is, a subfield of F containing k) that contains S. To see this, consider the
family of subfields of F containing S and k, and take their intersection; one checks that
this is a field. By a standard argument one shows, in fact, that this is the set of elements of
F that can be obtained via a finite number of elementary algebraic operations (addition,
multiplication, subtraction, and division) involving elements of k and S.

Definition 6.6. Let k be a field. If F/k is an extension of fields and S ⊂ F , we write
k(S) for the smallest subfield of F containing k and S. We will say that S generates the
field extension k(S)/k. If S = {α} is a singleton, then we write k(α) instead of k({α}).
We say F/k is a finitely generated field extension if there exists a finite subset S ⊂ F with
F = k(S).

For instance, C is generated by i over R.

Exercise 6.7. Show that C does not have a countable set of generators over Q.

Let us now classify extensions generated by one element.

Lemma 6.8 (Classification of simple extensions). If a field extensionF/k is generated
by one element, then it is k-isomorphic either to the rational function field k(t)/k or to
one of the extensions k[t]/(P ) for P ∈ k[t] irreducible.

We will see that many of the most important cases of field extensions are generated by one
element, so this is actually useful.

Proof. Let α ∈ F be such that F = k(α); by assumption, such an α exists. There is
a morphism of rings

k[t]→ F

sending the indeterminate t to α. The image is a domain, so the kernel is a prime ideal.
Thus, it is either (0) or (P ) for P ∈ k[t] irreducible.
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If the kernel is (P ) for P ∈ k[t] irreducible, then the map factors through k[t]/(P ), and
induces a morphism of fields k[t]/(P )→ F . Since the image contains α, we see easily that
the map is surjective, hence an isomorphism. In this case, k[t]/(P ) ' F .

If the kernel is trivial, then we have an injection k[t] → F . One may thus define a mor-
phism of the quotient field k(t) intoF ; given a quotientR(t)/Q(t) withR(t), Q(t) ∈ k[t],
we map this to R(α)/Q(α). The hypothesis that k[t] → F is injective implies that
Q(α) 6= 0 unless Q is the zero polynomial. The quotient field of k[t] is the rational
function field k(t), so we get a morphism k(t) → F whose image contains α. It is thus
surjective, hence an isomorphism. �

7. Finite extensions

If F/E is a field extension, then evidently F is also a vector space overE (the scalar action
is just multiplication in F ).

Definition 7.1. Let F/E be an extension of fields. The dimension of F considered
as an E-vector space is called the degree of the extension and is denoted [F : E]. If
[F : E] <∞ then F is said to be a finite extension of E.

Example 7.2. The field C is a two dimensional vector space over R with basis 1, i.
Thus C is a finite extension of R of degree 2.

Lemma 7.3. Let K/E/F be a tower of algebraic field extensions. If K is finite over
F , then K is finite over E.

Proof. Direct from the definition. �

Let us now consider the degree in the most important special example, that given by
Lemma 6.8, in the next two examples.

Example 7.4 (Degree of a rational function field). If k is any field, then the rational
function field k(t) is not a finite extension. For example the elements {tn, n ∈ Z} are
linearly independent over k.

In fact, if k is uncountable, then k(t) is uncountably dimensional as a k-vector space. To
show this, we claim that the family of elements {1/(t − α), α ∈ k} ⊂ k(t) is linearly
independent over k. A nontrivial relation between them would lead to a contradiction:
for instance, if one works over C, then this follows because 1

t−α , when considered as a
meromorphic function on C, has a pole at α and nowhere else. Consequently any sum∑
ci

1
t−αi for the ci ∈ k∗, and αi ∈ k distinct, would have poles at each of the αi. In

particular, it could not be zero.

Amusingly, this leads to a quick proof of the Hilbert Nullstellensatz over the complex
numbers. For a slightly more general result, see Algebra, Theorem 35.11.

Lemma 7.5. A finite extension of fields is a finitely generated field extension. The
converse is not true.

Proof. Let F/E be a finite extension of fields. Let α1, . . . , αn be a basis of F as a
vector space over E. Then F = E(α1, . . . , αn) hence F/E is a finitely generated field
extension. The converse is not true as follows from Example 7.4. �

Example 7.6 (Degree of a simple algebraic extension). Consider a monogenic field
extension E/k of the form discussed in Example 6.4. In other words, E = k[t]/(P ) for
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P ∈ k[t] an irreducible polynomial. Then the degree [E : k] is just the degree d = deg(P )
of the polynomial P . Indeed, say

(7.6.1) P = adt
d + ad−1t

d−1 + . . .+ a0.

with ad 6= 0. Then the images of 1, t, . . . , td−1 in k[t]/(P ) are linearly independent over
k, because any relation involving them would have degree strictly smaller than that of P ,
and P is the element of smallest degree in the ideal (P ).

Conversely, the set S = {1, t, . . . , td−1} (or more properly their images) spans k[t]/(P )
as a vector space. Indeed, we have by (7.6.1) that adtd lies in the span of S. Since ad is
invertible, we see that td is in the span of S. Similarly, the relation tP (t) = 0 shows that
the image of td+1 lies in the span of {1, t, . . . , td}— by what was just shown, thus in the
span of S. Working upward inductively, we find that the image of tn for n ≥ d lies in the
span of S.

This confirms the observation that [C : R] = 2, for instance. More generally, if k is a
field, and α ∈ k is not a square, then the irreducible polynomial x2 − α ∈ k[x] allows
one to construct an extension k[x]/(x2−α) of degree two. We shall write this as k(

√
α).

Such extensions will be called quadratic, for obvious reasons.

The basic fact about the degree is that it is multiplicative in towers.

Lemma 7.7 (Multiplicativity). Suppose given a tower of fields F/E/k. Then

[F : k] = [F : E][E : k]

Proof. Let α1, . . . , αn ∈ F be anE-basis for F . Let β1, . . . , βm ∈ E be a k-basis for
E. Then the claim is that the set of products {αiβj , 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a k-basis
for F . Indeed, let us check first that they span F over k.

By assumption, the {αi} span F over E. So if f ∈ F , there are ai ∈ E with

f =
∑

i
aiαi,

and, for each i, we can write ai =
∑
bijβj for some bij ∈ k. Putting these together, we

find
f =

∑
i,j
bijαiβj ,

proving that the {αiβj} span F over k.

Suppose now that there existed a nontrivial relation∑
i,j
cijαiβj = 0

for the cij ∈ k. In that case, we would have∑
i
αi

(∑
j
cijβj

)
= 0,

and the inner terms lie in E as the βj do. Now E-linear independence of the {αi} shows
that the inner sums are all zero. Then k-linear independence of the {βj} shows that the
cij all vanish. �

We sidetrack to a slightly tangential definition.

Definition 7.8. A field K is said to be a number field if it has characteristic 0 and
the extension K/Q is finite.
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Number fields are the basic objects in algebraic number theory. We shall see later that, for
the analog of the integers Z in a number field, something kind of like unique factorization
still holds (though strict unique factorization generally does not!).

8. Algebraic extensions

An important class of extensions are those where every element generates a finite exten-
sion.

Definition 8.1. Consider a field extension F/E. An element α ∈ F is said to be
algebraic over E if α is the root of some nonzero polynomial with coefficients in E. If all
elements of F are algebraic then F is said to be an algebraic extension of E.

By Lemma 6.8, the subextension E(α) is isomorphic either to the rational function field
E(t) or to a quotient ring E[t]/(P ) for P ∈ E[t] an irreducible polynomial. In the latter
case, α is algebraic over E (in fact, the proof of Lemma 6.8 shows that we can pick P such
that α is a root of P ); in the former case, it is not.

Example 8.2. The field C is algebraic over R. Namely, if α = a + ib in C, then
α2 − 2aα+ a2 + b2 = 0 is a polynomial equation for α over R.

Example 8.3. Let X be a compact Riemann surface, and let f ∈ C(X) − C any
nonconstant meromorphic function onX (see Example 3.6). Then it is known that C(X)
is algebraic over the subextension C(f) generated by f . We shall not prove this.

Lemma 8.4. Let K/E/F be a tower of field extensions.
(1) If α ∈ K is algebraic over F , then α is algebraic over E.
(2) If K is algebraic over F , then K is algebraic over E.

Proof. This is immediate from the definitions. �

We now show that there is a deep connection between finiteness and being algebraic.

Lemma 8.5. A finite extension is algebraic. In fact, an extension E/k is algebraic if
and only if every subextension k(α)/k generated by some α ∈ E is finite.

In general, it is very false that an algebraic extension is finite.

Proof. Let E/k be finite, say of degree n. Choose α ∈ E. Then the elements
{1, α, . . . , αn} are linearly dependent over E , or we would necessarily have [E : k] > n.
A relation of linear dependence now gives the desired polynomial that α must satisfy.
For the last assertion, note that a monogenic extension k(α)/k is finite if and only if α
is algebraic over k, by Examples 7.4 and 7.6. So if E/k is algebraic, then each k(α)/k,
α ∈ E , is a finite extension, and conversely. �

We can extract a lemma of the last proof (really of Examples 7.4 and 7.6): a monogenic
extension is finite if and only if it is algebraic. We shall use this observation in the next
result.

Lemma 8.6. Let k be a field, and let α1, α2, . . . , αn be elements of some extension
field such that each αi is algebraic over k. Then the extension k(α1, . . . , αn)/k is finite.
That is, a finitely generated algebraic extension is finite.

Proof. Indeed, each extension k(α1, . . . , αi+1)/k(α1, . . . , αi) is generated by one
element and algebraic, hence finite. By multiplicativity of degree (Lemma 7.7) we obtain
the result. �
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The set of complex numbers that are algebraic over Q are simply called the algebraic num-
bers. For instance,

√
2 is algebraic, i is algebraic, but π is not. It is a basic fact that the

algebraic numbers form a field, although it is not obvious how to prove this from the defi-
nition that a number is algebraic precisely when it satisfies a nonzero polynomial equation
with rational coefficients (e.g. by polynomial equations).

Lemma 8.7. Let E/k be a field extension. Then the elements of E algebraic over k
form a subextension of E/k.

Proof. Let α, β ∈ E be algebraic over k. Then k(α, β)/k is a finite extension by
Lemma 8.6. It follows that k(α + β) ⊂ k(α, β) is a finite extension, which implies that
α + β is algebraic by Lemma 8.5. Similarly for the difference, product and quotient of α
and β. �

Many nice properties of field extensions, like those of rings, will have the property that
they will be preserved by towers and composita.

Lemma 8.8. Let E/k and F/E be algebraic extensions of fields. Then F/k is an
algebraic extension of fields.

Proof. Choose α ∈ F . Then α is algebraic over E. The key observation is that
α is algebraic over a finitely generated subextension of k. That is, there is a finite set
S ⊂ E such that α is algebraic over k(S): this is clear because being algebraic means that
a certain polynomial in E[x] that α satisfies exists, and as S we can take the coefficients
of this polynomial. It follows that α is algebraic over k(S). In particular, the extension
k(S, α)/k(S) is finite. Since S is a finite set, and k(S)/k is algebraic, Lemma 8.6 shows
that k(S)/k is finite. Using multiplicativity (Lemma 7.7) we find that k(S, α)/k is finite,
so α is algebraic over k. �

The method of proof in the previous argument — that being algebraic overE was a prop-
erty that descended to a finitely generated subextension of E — is an idea that recurs
throughout algebra. It often allows one to reduce general commutative algebra questions
to the Noetherian case for example.

Lemma 8.9. LetE/F be an algebraic extension of fields. Then the cardinality |E| of
E is at most max(ℵ0, |F |).

Proof. Let S be the set of nonconstant polynomials with coefficients in F . For every
P ∈ S the set of roots r(P,E) = {α ∈ E | P (α) = 0} is finite (details omitted).
Moreover, the fact that E is algebraic over F implies that E =

⋃
P∈S r(P,E). It is clear

that S has cardinality bounded by max(ℵ0, |F |) because the cardinality of a countable
product of copies of F has cardinality at most max(ℵ0, |F |). Thus so does E. �

Lemma 8.10. Let E/F be a finite or more generally an algebraic extension of fields.
Any subring F ⊂ R ⊂ E is a field.

Proof. Let α ∈ R be nonzero. Then 1, α, α2, . . . are contained in R. By Lemma 8.5
we find a nontrivial relation a0 + a1α+ . . .+ adα

d = 0. We may assume a0 6= 0 because
if not we can divide the relation by α to decrease d. Then we see that

a0 = α(−a1 − . . .− adαd−1)
which proves that the inverse of α is the element a−1

0 (−a1 − . . .− adαd−1) of R. �

Lemma 8.11. Let E/F an algebraic extension of fields. Any F -algebra map f : E →
E is an automorphism.
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Proof. If E/F is finite, then f : E → E is an F -linear injective map (Lemma 6.1)
of finite dimensional vector spaces, and hence bijective. In general we still see that f is
injective. Let α ∈ E and let P ∈ F [x] be a polynomial such that P (α) = 0. Let E′ ⊂ E
be the subfield of E generated by the roots α = α1, . . . , αn of P in E. Then E′ is finite
over F by Lemma 8.6. Since f preserves the set of roots, we find that f |E′ : E′ → E′.
Hence f |E′ is an isomorphism by the first part of the proof and we conclude that α is in
the image of f . �

9. Minimal polynomials

Let E/k be a field extension, and let α ∈ E be algebraic over k. Then α satisfies a (non-
trivial) polynomial equation in k[x]. Consider the set of polynomials P ∈ k[x] such that
P (α) = 0; by hypothesis, this set does not just contain the zero polynomial. It is easy to
see that this set is an ideal. Indeed, it is the kernel of the map

k[x]→ E, x 7→ α

Since k[x] is a PID, there is a generator P ∈ k[x] of this ideal. If we assume P monic,
without loss of generality, then P is uniquely determined.

Definition 9.1. The polynomialP above is called the minimal polynomial ofα over
k.

The minimal polynomial has the following characterization: it is the monic polynomial,
of smallest degree, that annihilates α. Any nonconstant multiple of P will have larger
degree, and only multiples of P can annihilate α. This explains the name minimal.
Clearly the minimal polynomial is irreducible. This is equivalent to the assertion that the
ideal in k[x] consisting of polynomials annihilating α is prime. This follows from the fact
that the map k[x] → E, x 7→ α is a map into a domain (even a field), so the kernel is a
prime ideal.

Lemma 9.2. The degree of the minimal polynomial is [k(α) : k].

Proof. This is just a restatement of the argument in Lemma 6.8: the observation is
that if P is the minimal polynomial of α, then the map

k[x]/(P )→ k(α), x 7→ α

is an isomorphism as in the aforementioned proof, and we have counted the degree of such
an extension (see Example 7.6). �

So the observation of the above proof is that if α ∈ E is algebraic, then k(α) ⊂ E is
isomorphic to k[x]/(P ).

10. Algebraic closure

The “fundamental theorem of algebra” states that C is algebraically closed. A beautiful
proof of this result uses Liouville’s theorem in complex analysis, we shall give another
proof (see Lemma 23.1).

Definition 10.1. A field F is said to be algebraically closed if every algebraic exten-
sion E/F is trivial, i.e., E = F .

This may not be the definition in every text. Here is the lemma comparing it with the
other one.

Lemma 10.2. Let F be a field. The following are equivalent
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(1) F is algebraically closed,
(2) every irreducible polynomial over F is linear,
(3) every nonconstant polynomial over F has a root,
(4) every nonconstant polynomial over F is a product of linear factors.

Proof. IfF is algebraically closed, then every irreducible polynomial is linear. Namely,
if there exists an irreducible polynomial of degree > 1, then this generates a nontrivial
finite (hence algebraic) field extension, see Example 7.6. Thus (1) implies (2). If every irre-
ducible polynomial is linear, then every irreducible polynomial has a root, whence every
nonconstant polynomial has a root. Thus (2) implies (3).
Assume every nonconstant polynomial has a root. Let P ∈ F [x] be nonconstant. If
P (α) = 0 with α ∈ F , then we see that P = (x − α)Q for some Q ∈ F [x] (by division
with remainder). Thus we can argue by induction on the degree that any nonconstant
polynomial can be written as a product c

∏
(x− αi).

Finally, suppose that every nonconstant polynomial over F is a product of linear factors.
Let E/F be an algebraic extension. Then all the simple subextensions F (α)/F of E are
necessarily trivial (because the only irreducible polynomials are linear by assumption).
Thus E = F . We see that (4) implies (1) and we are done. �

Now we want to define a “universal” algebraic extension of a field. Actually, we should be
careful: the algebraic closure is not a universal object. That is, the algebraic closure is not
unique up to unique isomorphism: it is only unique up to isomorphism. But still, it will
be very handy, if not functorial.

Definition 10.3. Let F be a field. An algebraic closure of F is a field F containing
F such that:

(1) F is algebraic over F .
(2) F is algebraically closed.

If F is algebraically closed, then F is its own algebraic closure. We now prove the basic
existence result.

Theorem 10.4. Every field has an algebraic closure.

The proof will mostly be a red herring to the rest of the chapter. However, we will want
to know that it is possible to embed a field inside an algebraically closed field, and we will
often assume it done.

Proof. Let F be a field. By Lemma 8.9 the cardinality of an algebraic extension of
F is bounded by max(ℵ0, |F |). Choose a set S containing F with |S| > max(ℵ0, |F |).
Let’s consider triples (E, σE , µE) where

(1) E is a set with F ⊂ E ⊂ S , and
(2) σE : E ×E → E and µE : E ×E → E are maps of sets such that (E, σE , µE)

defines the structure of a field extension of F (in particular σE(a, b) = a +F b
for a, b ∈ F and similarly for µE), and

(3) E/F is an algebraic field extension.
The collection of all triples (E, σE , µE) forms a set I . For i ∈ I we will denote Ei =
(Ei, σi, µi) the corresponding field extension to F . We define a partial ordering on I by
declaring i ≤ i′ if and only if Ei ⊂ Ei′ (this makes sense as Ei and Ei′ are subsets of the
same set S) and we have σi = σi′ |Ei×Ei and µi = µi′ |Ei×Ei , in other words, Ei′ is a field
extension of Ei.
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Let T ⊂ I be a totally ordered subset. Then it is clear that ET =
⋃
i∈T Ei with induced

maps σT =
⋃
σi and µT =

⋃
µi is another element of I . In other words every totally

order subset of I has a upper bound in I . By Zorn’s lemma there exists a maximal element
(E, σE , µE) in I . We claim that E is an algebraic closure. Since by definition of I the
extension E/F is algebraic, it suffices to show that E is algebraically closed.
To see this we argue by contradiction. Namely, suppose thatE is not algebraically closed.
Then there exists an irreducible polynomial P over E of degree > 1, see Lemma 10.2. By
Lemma 8.5 we obtain a nontrivial finite extension E′ = E[x]/(P ). Observe that E′/F is
algebraic by Lemma 8.8. Thus the cardinality ofE′ is≤ max(ℵ0, |F |). By elementary set
theory we can extend the given injection E ⊂ S to an injection E′ → S. In other words,
we may think of E′ as an element of our set I contradicting the maximality of E. This
contradiction completes the proof. �

Lemma 10.5. Let F be a field. Let F be an algebraic closure of F . Let M/F be an
algebraic extension. Then there is a morphism of F -extensions M → F .

Proof. Consider the set I of pairs (E,ϕ) where F ⊂ E ⊂ M is a subextension and
ϕ : E → F is a morphism of F -extensions. We partially order the set I by declaring
(E,ϕ) ≤ (E′, ϕ′) if and only ifE ⊂ E′ and ϕ′|E = ϕ. If T = {(Et, ϕt)} ⊂ I is a totally
ordered subset, then

⋃
ϕt :

⋃
Et → F is an element of I . Thus every totally ordered

subset of I has an upper bound. By Zorn’s lemma there exists a maximal element (E,ϕ)
in I . We claim thatE = M , which will finish the proof. If not, then pick α ∈M , α 6∈ E.
The α is algebraic over E , see Lemma 8.4. Let P be the minimal polynomial of α over E.
Let Pϕ be the image of P by ϕ in F [x]. Since F is algebraically closed there is a root β of
Pϕ in F . Then we can extend ϕ to ϕ′ : E(α) = E[x]/(P )→ F by mapping x to β. This
contradicts the maximality of (E,ϕ) as desired. �

Lemma 10.6. Any two algebraic closures of a field are isomorphic.

Proof. Let F be a field. If M and F are algebraic closures of F , then there exists
a morphism of F -extensions ϕ : M → F by Lemma 10.5. Now the image ϕ(M) is
algebraically closed. On the other hand, the extension ϕ(M) ⊂ F is algebraic by Lemma
8.4. Thus ϕ(M) = F . �

11. Relatively prime polynomials

LetK be an algebraically closed field. Then the ringK[x] has a very simple ideal structure
as we saw in Lemma 10.2. In particular, every polynomial P ∈ K[x] can be written as

P = c(x− α1) . . . (x− αn),
where c is the constant term and the α1, . . . , αn ∈ k are the roots of P (counted with
multiplicity). Clearly, the only irreducible polynomials in K[x] are the linear polynomi-
als c(x− α), c, α ∈ K (and c 6= 0).

Definition 11.1. If k is any field, we say that two polynomials in k[x] are relatively
prime if they generate the unit ideal in k[x].

Continuing the discussion above, if K is an algebraically closed field, two polynomials in
K[x] are relatively prime if and only if they have no common roots. This follows because
the maximal ideals of K[x] are of the form (x − α), α ∈ K. So if F,G ∈ K[x] have no
common root, then (F,G) cannot be contained in any (x − α) (as then they would have
a common root at α).
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If k is not algebraically closed, then this still gives information about when two polyno-
mials in k[x] generate the unit ideal.

Lemma 11.2. Two polynomials in k[x] are relatively prime precisely when they have
no common roots in an algebraic closure k of k.

Proof. The claim is that any two polynomials P,Q generate (1) in k[x] if and only
if they generate (1) in k[x]. This is a piece of linear algebra: a system of linear equations
with coefficients in k has a solution if and only if it has a solution in any extension of k.
Consequently, we can reduce to the case of an algebraically closed field, in which case the
result is clear from what we have already proved. �

12. Separable extensions

In characteristic p something funny happens with irreducible polynomials over fields. We
explain this in the following lemma.

Lemma 12.1. Let F be a field. Let P ∈ F [x] be an irreducible polynomial over F .
Let P ′ = dP/dx be the derivative of P with respect to x. Then one of the following two
cases happens

(1) P and P ′ are relatively prime, or
(2) P ′ is the zero polynomial.

The second case can only happen if F has characteristic p > 0. In this case P (x) = Q(xq)
where q = pf is a power of p and Q ∈ F [x] is an irreducible polynomial such that Q and
Q′ are relatively prime.

Proof. Note that P ′ has degree < deg(P ). Hence if P and P ′ are not relatively
prime, then (P, P ′) = (R) where R is a polynomial of degree < deg(P ) contradicting
the irreducibility of P . This proves we have the dichotomy between (1) and (2).

Assume we are in case (2) and P = adx
d + . . . + a0. Then P ′ = dadx

d−1 + . . . +
a1. In characteristic 0 we see that this forces ad, . . . , a1 = 0 which would mean P is
constant a contradiction. Thus we conclude that the characteristic p is positive. In this
case the condition P ′ = 0 forces ai = 0 whenever p does not divide i. In other words,
P (x) = P1(xp) for some nonconstant polynomial P1. Clearly, P1 is irreducible as well.
By induction on the degree we see that P1(x) = Q(xq) as in the statement of the lemma,
hence P (x) = Q(xpq) and the lemma is proved. �

Definition 12.2. Let F be a field. Let K/F be an extension of fields.
(1) We say an irreducible polynomial P over F is separable if it is relatively prime

to its derivative.
(2) Given α ∈ K algebraic over F we say α is separable over F if its minimal poly-

nomial is separable over F .
(3) IfK is an algebraic extension ofF , we sayK is separable1 overF if every element

of K is separable over F .

By Lemma 12.1 in characteristic 0 every irreducible polynomial is separable, every alge-
braic element in an extension is separable, and every algebraic extension is separable.

Lemma 12.3. Let K/E/F be a tower of algebraic field extensions.

1For nonalgebraic extensions this definition does not make sense and is not the correct one. We refer the
reader to Algebra, Sections 42 and 44.
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(1) If α ∈ K is separable over F , then α is separable over E.
(2) if K is separable over F , then K is separable over E.

Proof. We will use Lemma 12.1 without further mention. Let P be the minimal
polynomial of α over F . Let Q be the minimal polynomial of α over E. Then Q divides
P in the polynomial ring E[x], say P = QR. Then P ′ = Q′R + QR′. Thus if Q′ = 0,
then Q divides P and P ′ hence P ′ = 0 by the lemma. This proves (1). Part (2) follows
immediately from (1) and the definitions. �

Lemma 12.4. Let F be a field. An irreducible polynomial P over F is separable if and
only if P has pairwise distinct roots in an algebraic closure of F .

Proof. Suppose that α ∈ F is a root of both P and P ′. Then P = (x − α)Q for
some polynomial Q. Taking derivatives we obtain P ′ = Q+ (x− α)Q′. Thus α is a root
of Q. Hence we see that if P and P ′ have a common root, then P does not have pairwise
distinct roots. Conversely, if P has a repeated root, i.e., (x − α)2 divides P , then α is a
root of both P and P ′. Combined with Lemma 11.2 this proves the lemma. �

Lemma 12.5. Let F be a field and let F be an algebraic closure of F . Let p > 0 be the
characteristic of F . Let P be a polynomial over F . Then the set of roots of P and P (xp)
in F have the same cardinality (not counting multiplicity).

Proof. Clearly, α is a root of P (xp) if and only if αp is a root of P . In other words,
the roots of P (xp) are the roots of xp− β, where β is a root of P . Thus it suffices to show
that the map F → F , α 7→ αp is bijective. It is surjective, as F is algebraically closed
which means that every element has a pth root. It is injective because αp = βp implies
(α − β)p = 0 because the characteristic is p. And of course in a field xp = 0 implies
x = 0. �

Let F be a field and let P be an irreducible polynomial over F . Then we know that P =
Q(xq) for some separable irreducible polynomial Q (Lemma 12.1) where q is a power of
the characteristic p (and if the characteristic is zero, then q = 12 and Q = P ). By Lemma
12.5 the number of roots of P and Q in any algebraic closure of F is the same. By Lemma
12.4 this number is equal to the degree of Q.

Definition 12.6. Let F be a field. Let P be an irreducible polynomial over F . The
separable degree of P is the cardinality of the set of roots of P in any algebraic closure of
F (see discussion above). Notation degs(P ).

The separable degree of P always divides the degree and the quotient is a power of the
characteristic. If the characteristic is zero, then degs(P ) = deg(P ).

Situation 12.7. HereF be a field andK/F is a finite extension generated by elements
α1, . . . , αn ∈ K. We set K0 = F and

Ki = F (α1, . . . , αi)
to obtain a tower of finite extensions K = Kn/Kn−1/ . . . /K0 = F . Denote Pi the
minimal polynomial of αi over Ki−1. Finally, we fix an algebraic closure F of F .

Let F , K , αi, and F be as in Situation 12.7. Suppose that ϕ : K → F is a morphism of
extensions of F . Then we obtain maps ϕi : Ki → F . In particular, we can take the image
of Pi ∈ Ki−1[x] by ϕi−1 to get a polynomial Pϕi ∈ F [x].

2A good convention for this chapter is to set 00 = 1.
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Lemma 12.8. In Situation 12.7 the correspondence

MorF (K,F ) −→ {(β1, . . . , βn) as below}, ϕ 7−→ (ϕ(α1), . . . , ϕ(αn))
is a bijection. Here the right hand side is the set of n-tuples (β1, . . . , βn) of elements of F
such that βi is a root of Pϕi .

Proof. Let (β1, . . . , βn) be an element of the right hand side. We construct a map
of fields corresponding to it by induction. Namely, we set ϕ0 : K0 → F equal to the
given map K0 = F ⊂ F . Having constructed ϕi−1 : Ki−1 → F we observe that
Ki = Ki−1[x]/(Pi). Hence we can set ϕi equal to the unique map Ki → F inducing
ϕi−1 onKi−1 and mapping x to βi. This works precisely as βi is a root of Pϕi . Uniqueness
implies that the two constructions are mutually inverse. �

Lemma 12.9. In Situation 12.7 we have |MorF (K,F )| =
∏n
i=1 degs(Pi).

Proof. This follows immediately from Lemma 12.8. Observe that a key ingredient
we are tacitly using here is the well-definedness of the separable degree of an irreducible
polynomial which was observed just prior to Definition 12.6. �

We now use the result above to characterize separable field extensions.
Lemma 12.10. Assumptions and notation as in Situation 12.7. If each Pi is separable,

i.e., each αi is separable over Ki−1, then

|MorF (K,F )| = [K : F ]
and the field extensionK/F is separable. If one of the αi is not separable overKi−1, then
|MorF (K,F )| < [K : F ].

Proof. If αi is separable over Ki−1 then degs(Pi) = deg(Pi) = [Ki : Ki−1] (last
equality by Lemma 9.2). By multiplicativity (Lemma 7.7) we have

[K : F ] =
∏

[Ki : Ki−1] =
∏

deg(Pi) =
∏

degs(Pi) = |MorF (K,F )|

where the last equality is Lemma 12.9. By the exact same argument we get the strict in-
equality |MorF (K,F )| < [K : F ] if one of the αi is not separable over Ki−1.
Finally, assume again that eachαi is separable overKi−1. We will showK/F is separable.
Let γ = γ1 ∈ K be arbitrary. Then we can find additional elements γ2, . . . , γm such that
K = F (γ1, . . . , γm) (for example we could take γ2 = α1, . . . , γn+1 = αn). Then we see
by the last part of the lemma (already proven above) that if γ is not separable over F we
would have the strict inequality |MorF (K,F )| < [K : F ] contradicting the very first
part of the lemma (already prove above as well). �

Lemma 12.11. Let K/F be a finite extension of fields. Let F be an algebraic closure
of F . Then we have

|MorF (K,F )| ≤ [K : F ]
with equality if and only if K is separable over F .

Proof. This is a corollary of Lemma 12.10. Namely, since K/F is finite we can find
finitely many elements α1, . . . , αn ∈ K generatingK over F (for example we can choose
the αi to be a basis of K over F ). If K/F is separable, then each αi is separable over
F (α1, . . . , αi−1) by Lemma 12.3 and we get equality by Lemma 12.10. On the other hand,
if we have equality, then no matter how we choose α1, . . . , αn we get that α1 is separable
over F by Lemma 12.10. Since we can start the sequence with an arbitrary element of K
it follows that K is separable over F . �
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Lemma 12.12. Let E/k and F/E be separable algebraic extensions of fields. Then
F/k is a separable extension of fields.

Proof. Choose α ∈ F . Then α is separable algebraic over E. Let P = xd +∑
i<d aix

i be the minimal polynomial of α over E. Each ai is separable algebraic over
k. Consider the tower of fields

k ⊂ k(a0) ⊂ k(a0, a1) ⊂ . . . ⊂ k(a0, . . . , ad−1) ⊂ k(a0, . . . , ad−1, α)
Because ai is separable algebraic over k it is separable algebraic over k(a0, . . . , ai−1) by
Lemma 12.3. Finally, α is separable algebraic over k(a0, . . . , ad−1) because it is a root of P
which is irreducible (as it is irreducible over the possibly bigger field E) and separable (as
it is separable over E). Thus k(a0, . . . , ad−1, α) is separable over k by Lemma 12.10 and
we conclude that α is separable over k as desired. �

Lemma 12.13. LetE/k be a field extension. Then the elements ofE separable over k
form a subextension of E/k.

Proof. Let α, β ∈ E be separable over k. Then β is separable over k(α) by Lemma
12.3. Thus we can apply Lemma 12.12 to k(α, β) to see that k(α, β) is separable over k. �

13. Linear independence of characters

Here is the statement.

Lemma 13.1. LetL be a field. LetG be a monoid, for example a group. Letχ1, . . . , χn :
G→ L be pairwise distinct homomorphisms of monoids where L is regarded as a monoid
by multiplication. Then χ1, . . . , χn areL-linearly independent: if λ1, . . . , λn ∈ L not all
zero, then

∑
λiχi(g) 6= 0 for some g ∈ G.

Proof. If n = 1 this is true because χ1(e) = 1 if e ∈ G is the neutral (identity)
element. We prove the result by induction for n > 1. Suppose that λ1, . . . , λn ∈ L not
all zero. If λi = 0 for some, then we win by induction on n. Since we want to show that∑
λiχi(g) 6= 0 for some g ∈ G we may after dividing by −λn assume that λn = −1.

Then the only way we get in trouble is if

χn(g) =
∑

i=1,...,n−1
λiχi(g)

for all g ∈ G. Fix h ∈ G. Then we would also get

χn(h)χn(g) = χn(hg)

=
∑

i=1,...,n−1
λiχi(hg)

=
∑

i=1,...,n−1
λiχi(h)χi(g)

Multiplying the previous relation by χn(h) and substracting we obtain

0 =
∑

i=1,...,n−1
λi(χn(h)− χi(h))χi(g)

for all g ∈ G. Since λi 6= 0 we conclude that χn(h) = χi(h) for all i by induction.
The choice of h above was arbitrary, so we conclude that χi = χn for i ≤ n − 1 which
contradicts the assumption that our characters χi are pairwise distinct. �

Lemma 13.2. Let L be a field. Let n ≥ 1 and α1, . . . , αn ∈ L pairwise distinct
elements of L. Then there exists an e ≥ 0 such that

∑
i=1,...,n α

e
i 6= 0.
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Proof. Apply linear independence of characters (Lemma 13.1) to the monoid homo-
morphisms Z≥0 → L, e 7→ αei . �

Lemma 13.3. LetK/F andL/F be field extensions. Let σ1, . . . , σn : K → L be pair-
wise distinct morphisms of F -extensions. Then σ1, . . . , σn are L-linearly independent: if
λ1, . . . , λn ∈ L not all zero, then

∑
λiσi(α) 6= 0 for some α ∈ K.

Proof. Apply Lemma 13.1 to the restrictions of σi to the groups of units. �

Lemma 13.4. Let K/F and L/F be field extensions with K/F finite separable and
L algebraically closed. Then the map

K ⊗F L −→
∏

σ∈HomF (K,L)
L, α⊗ β 7→ (σ(α)β)σ

is an isomorphism of L-algebras.

Proof. Choose a basis α1, . . . , αn of K as a vector space over F . By Lemma 12.11
(and a tiny omitted argument) the set HomF (K,L) has n elements, say σ1, . . . , σn. In
particular, the two sides have the same dimension n as vector spaces over L. Thus if the
map is not an isomorphism, then it has a kernel. In other words, there would exist µj ∈ L,
j = 1, . . . , n not all zero, with

∑
αj ⊗µj in the kernel. In other words,

∑
σi(αj)µj = 0

for all i. This would mean the n × n matrix with entries σi(αj) is not invertible. Thus
we can find λ1, . . . , λn ∈ L not all zero, such that

∑
λiσi(αj) = 0 for all j. Now any

element α ∈ K can be written as α =
∑
βjαj with βj ∈ F and we would get∑

λiσi(α) =
∑

λiσi(
∑

βjαj) =
∑

βj
∑

λiσi(αj) = 0

which contradicts Lemma 13.3. �

14. Purely inseparable extensions

Purely inseparable extensions are the opposite of the separable extensions defined in the
previous section. These extensions only show up in positive characteristic.

Definition 14.1. Let F be a field of characteristic p > 0. Let K/F be an extension.
(1) An element α ∈ K is purely inseparable over F if there exists a power q of p

such that αq ∈ F .
(2) The extension K/F is said to be purely inseparable if and only if every element

of K is purely inseparable over F .

Observe that a purely inseparable extension is necessarily algebraic. Let F be a field of
characteristic p > 0. An example of a purely inseparable extension is gotten by adjoining
the pth root of an element t ∈ F which does not yet have one. Namely, the lemma below
shows that P = xp − t is irreducible, and hence

K = F [x]/(P ) = F [t1/p]

is a field. And K is purely inseparable over F because every element

a0 + a1t
1/p + . . .+ ap−1t

(p−1)/p, ai ∈ F

of K has pth power equal to

(a0 + a1t
1/p + . . .+ ap−1t

(p−1)/p)p = ap0 + ap1t+ . . .+ app−1t
p−1 ∈ F

This situation occurs for the field Fp(t) of rational functions over Fp.
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Lemma 14.2. Let p be a prime number. LetF be a field of characteristic p. Let t ∈ F be
an element which does not have a pth root in F . Then the polynomial xp−t is irreducible
over F .

Proof. To see this, suppose that we have a factorization xp− t = fg. Taking deriva-
tives we get f ′g + fg′ = 0. Note that neither f ′ = 0 nor g′ = 0 as the degrees of f and
g are smaller than p. Moreover, deg(f ′) < deg(f) and deg(g′) < deg(g). We conclude
that f and g have a factor in common. Thus if xp − t is reducible, then it is of the form
xp − t = cfn for some irreducible f , c ∈ F ∗, and n > 1. Since p is a prime number this
implies n = p and f linear, which would imply xp− t has a root in F . Contradiction. �

We will see that taking pth roots is a very important operation in characteristic p.

Lemma 14.3. LetE/k and F/E be purely inseparable extensions of fields. Then F/k
is a purely inseparable extension of fields.

Proof. Say the characteristic of k is p. Choose α ∈ F . Then αq ∈ E for some
p-power q. Whereupon (αq)q′ ∈ k for some p-power q′. Hence αqq

′ ∈ k. �

Lemma 14.4. LetE/k be a field extension. Then the elements ofE purely-inseparable
over k form a subextension of E/k.

Proof. Let p be the characteristic of k. Letα, β ∈ E be purely inseparable over k. Say
αq ∈ k andβq

′ ∈ k for some p-powers q, q′. If q′′ is a p-power, then (α+β)q′′ = αq
′′ +βq′′

.
Hence if q′′ ≥ q, q′, then we conclude that α + β is purely inseparable over k. Similarly
for the difference, product and quotient of α and β. �

Lemma 14.5. Let E/F be a finite purely inseparable field extension of characteristic
p > 0. Then there exists a sequence of elements α1, . . . , αn ∈ E such that we obtain a
tower of fields

E = F (α1, . . . , αn) ⊃ F (α1, . . . , αn−1) ⊃ . . . ⊃ F (α1) ⊃ F
such that each intermediate extension is of degree p and comes from adjoining a pth
root. Namely, αpi ∈ F (α1, . . . , αi−1) is an element which does not have a pth root in
F (α1, . . . , αi−1) for i = 1, . . . , n.

Proof. By induction on the degree of E/F . If the degree of the extension is 1 then
the result is clear (with n = 0). If not, then choose α ∈ E , α 6∈ F . Say αp

r ∈ F for
some r > 0. Pick r minimal and replace α by αp

r−1
. Then α 6∈ F , but αp ∈ F . Then

t = αp is not a pth power in F (because that would imply α ∈ F , see Lemma 12.5 or its
proof). Thus F ⊂ F (α) is a subextension of degree p (Lemma 14.2). By induction we
find α1, . . . , αn ∈ E generating E/F (α) satisfying the conclusions of the lemma. The
sequence α, α1, . . . , αn does the job for the extension E/F . �

Lemma 14.6. Let E/F be an algebraic field extension. There exists a unique subex-
tension E/Esep/F such that Esep/F is separable and E/Esep is purely inseparable.

Proof. If the characteristic is zero we setEsep = E. Assume the characteristic is p >
0. Let Esep be the set of elements of E which are separable over F . This is a subextension
by Lemma 12.13 and of course Esep is separable over F . Given an α in E there exists a
p-power q such that αq is separable over F . Namely, q is that power of p such that the
minimal polynomial of α is of the form P (xq) with P separable algebraic, see Lemma 12.1.
Hence E/Esep is purely inseparable. Uniqueness is clear. �
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Definition 14.7. LetE/F be an algebraic field extension. LetEsep be the subexten-
sion found in Lemma 14.6.

(1) The integer [Esep : F ] is called the separable degree of the extension. Notation
[E : F ]s.

(2) The integer [E : Esep] is called the inseparable degree, or the degree of insepa-
rability of the extension. Notation [E : F ]i.

Of course in characteristic 0 we have [E : F ] = [E : F ]s and [E : F ]i = 1. By multi-
plicativity (Lemma 7.7) we have

[E : F ] = [E : F ]s[E : F ]i
even in case some of these degrees are infinite. In fact, the separable degree and the insep-
arable degree are multiplicative too (see Lemma 14.9).

Lemma 14.8. LetK/F be a finite extension. Let F be an algebraic closure of F . Then
[K : F ]s = |MorF (K,F )|.

Proof. We first prove this when K/F is purely inseparable. Namely, we claim that
in this case there is a unique map K → F . This can be seen by choosing a sequence
of elements α1, . . . , αn ∈ K as in Lemma 14.5. The irreducible polynomial of αi over
F (α1, . . . , αi−1) is xp − αpi . Applying Lemma 12.9 we see that |MorF (K,F )| = 1. On
the other hand, [K : F ]s = 1 in this case hence the equality holds.
Let’s return to a general finite extension K/F . In this case choose F ⊂ Ks ⊂ K as in
Lemma 14.6. By Lemma 12.11 we have |MorF (Ks, F )| = [Ks : F ] = [K : F ]s. On the
other hand, every field map σ′ : Ks → F extends to a unique field map σ : K → F by
the result of the previous paragraph. In other words |MorF (K,F )| = |MorF (Ks, F )|
and the proof is done. �

Lemma 14.9 (Multiplicativity). Suppose given a tower of algebraic field extensions
K/E/F . Then

[K : F ]s = [K : E]s[E : F ]s and [K : F ]i = [K : E]i[E : F ]i
Proof. We first prove this in case K is finite over F . Since we have multiplicativity

for the usual degree (by Lemma 7.7) it suffices to prove one of the two formulas. By Lemma
14.8 we have [K : F ]s = |MorF (K,F )|. By the same lemma, given any σ ∈ MorF (E,F )
the number of extensions of σ to a map τ : K → F is [K : E]s. Namely, viaE ∼= σ(E) ⊂
F we can view F as an algebraic closure of E. Combined with the fact that there are
[E : F ]s = |MorF (E,F )| choices for σ we obtain the result.
We omit the proof if the extensions are infinite. �

15. Normal extensions

LetP ∈ F [x] be a nonconstant polynomial over a fieldF . We sayP splits completely into
linear factors overF or splits completely overF if there exist c ∈ F ∗, n ≥ 1,α1, . . . , αn ∈
F such that

P = c(x− α1) . . . (x− αn)
in F [x]. Normal extensions are defined as follows.

Definition 15.1. Let E/F be an algebraic field extension. We say E is normal over
F if for all α ∈ E the minimal polynomial P of α over F splits completely into linear
factors over E.
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As in the case of separable extensions, it takes a bit of work to establish the basic properties
of this notion.

Lemma 15.2. Let K/E/F be a tower of algebraic field extensions. If K is normal
over F , then K is normal over E.

Proof. Let α ∈ K. Let P be the minimal polynomial of α over F . Let Q be the
minimal polynomial of α over E. Then Q divides P in the polynomial ring E[x], say
P = QR. Hence, if P splits completely over K , then so does Q. �

Lemma 15.3. Let F be a field. Let M/F be an algebraic extension. Let M/Ei/F ,
i ∈ I be subextensions with Ei/F normal. Then

⋂
Ei is normal over F .

Proof. Direct from the definitions. �

Lemma 15.4. Let E/F be a normal algebraic field extension. Then the subextension
E/Esep/F of Lemma 14.6 is normal.

Proof. If the characteristic is zero, then Esep = E , and the result is clear. If the
characteristic is p > 0, then Esep is the set of elements of E which are separable over F .
Then if α ∈ Esep has minimal polynomial P write P = c(x − α)(x − α2) . . . (x − αd)
with α2, . . . , αd ∈ E. Since P is a separable polynomial and since αi is a root of P , we
conclude αi ∈ Esep as desired. �

Lemma 15.5. Let E/F be an algebraic extension of fields. Let F be an algebraic clo-
sure of F . The following are equivalent

(1) E is normal over F , and
(2) for every pair σ, σ′ ∈ MorF (E,F ) we have σ(E) = σ′(E).

Proof. Let P be the set of all minimal polynomials over F of all elements of E. Set

T = {β ∈ F | P (β) = 0 for some P ∈ P}

It is clear that if E is normal over F , then σ(E) = T for all σ ∈ MorF (E,F ). Thus we
see that (1) implies (2).

Conversely, assume (2). Pick β ∈ T . We can find a corresponding α ∈ E whose minimal
polynomial P ∈ P annihilates β. Because F (α) = F [x]/(P ) we can find an element σ0 ∈
MorF (F (α), F ) mappingα to β. By Lemma 10.5 we can extend σ0 to a σ ∈ MorF (E,F ).
Whence we see that β is in the common image of all embeddings σ : E → F . It follows
that σ(E) = T for any σ. Fix a σ. Now let P ∈ P . Then we can write

P = (x− β1) . . . (x− βn)

for some n and βi ∈ F by Lemma 10.2. Observe that βi ∈ T . Thus βi = σ(αi) for some
αi ∈ E. Thus P = (x − α1) . . . (x − αn) splits completely over E. This finishes the
proof. �

Lemma 15.6. LetE/F be an algebraic extension of fields. IfE is generated byαi ∈ E ,
i ∈ I over F and if for each i the minimal polynomial of αi over F splits completely in
E , then E/F is normal.

Proof. LetPi be the minimal polynomial ofαi overF . Letαi = αi,1, αi,2, . . . , αi,di
be the roots of Pi over E. Given two embeddings σ, σ′ : E → F over F we see that

{σ(αi,1), . . . , σ(αi,di)} = {σ′(αi,1), . . . , σ′(αi,di)}
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because both sides are equal to the set of roots of Pi in F . The elements αi,j generate E
over F and we find that σ(E) = σ′(E). Hence E/F is normal by Lemma 15.5. �

Lemma 15.7. Let L/M/K be a tower of algebraic extensions.
(1) IfM/K is normal, then any automorphism τ of L/K induces an automorphism

τ |M : M →M .
(2) If L/K is normal, then any K-algebra map σ : M → L extends to an automor-

phism of L.

Proof. Choose an algebraic closure L of L (Theorem 10.4).

Let τ be as in (1). Then τ(M) = M as subfields of L by Lemma 15.5 and hence τ |M :
M →M is an automorphism.

Let σ : M → L be as in (2). By Lemma 10.5 we can extend σ to a map τ : L → L, i.e.,
such that

L
τ
// L

M

OO

σ

>>

Koo

OO

is commutative. By Lemma 15.5 we see that τ(L) = L. Hence τ : L → L is an automor-
phism which extends σ. �

Definition 15.8. Let E/F be an extension of fields. Then Aut(E/F ) or AutF (E)
denotes the automorphism group of E as an object of the category of F -extensions. Ele-
ments of Aut(E/F ) are called automorphisms of E over F or automorphisms of E/F .

Here is a characterization of normal extensions in terms of automorphisms.

Lemma 15.9. Let E/F be a finite extension. We have

|Aut(E/F )| ≤ [E : F ]s
with equality if and only if E is normal over F .

Proof. Choose an algebraic closure F of F . Recall that [E : F ]s = |MorF (E,F )|.
Pick an element σ0 ∈ MorF (E,F ). Then the map

Aut(E/F ) −→ MorF (E,F ), τ 7−→ σ0 ◦ τ

is injective. Thus the inequality. If equality holds, then every σ ∈ MorF (E,F ) is gotten
by precomposing σ0 by an automorphism. Hence σ(E) = σ0(E). Thus E is normal over
F by Lemma 15.5.

Conversely, assume thatE/F is normal. Then by Lemma 15.5 we have σ(E) = σ0(E) for
all σ ∈ MorF (E,F ). Thus we get an automorphism of E over F by setting τ = σ−1

0 ◦ σ.
Whence the map displayed above is surjective. �

Lemma 15.10. Let L/K be an algebraic normal extension of fields. Let E/K be an
extension of fields. Then either there is no K-embedding from L to E or there is one
τ : L→ E and every other one is of the form τ ◦ σ where σ ∈ Aut(L/K).

Proof. Given τ replace L by τ(L) ⊂ E and apply Lemma 15.7. �
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16. Splitting fields

The following lemma is a useful tool for constructing normal field extensions.

Lemma 16.1. Let F be a field. Let P ∈ F [x] be a nonconstant polynomial. There
exists a smallest field extensionE/F such that P splits completely overE. Moreover, the
field extension E/F is normal and unique up to (nonunique) isomorphism.

Proof. Choose an algebraic closureF . Then we can writeP = c(x−β1) . . . (x−βn)
in F [x], see Lemma 10.2. Note that c ∈ F ∗. Set E = F (β1, . . . , βn). Then it is clear that
E is minimal with the requirement that P splits completely over E.
Next, let E′ be another minimal field extension of F such that P splits completely over
E′. Write P = c(x − α1) . . . (x − αn) with c ∈ F and αi ∈ E′. Again it follows from
minimality that E′ = F (α1, . . . , αn). Moreover, if we pick any σ : E′ → F (Lemma
10.5) then we immediately see that σ(αi) = βτ(i) for some permutation τ : {1, . . . , n} →
{1, . . . , n}. Thus σ(E′) = E. This implies that E′ is a normal extension of F by Lemma
15.5 and that E ∼= E′ as extensions of F thereby finishing the proof. �

Definition 16.2. Let F be a field. Let P ∈ F [x] be a nonconstant polynomial. The
field extension E/F constructed in Lemma 16.1 is called the splitting field of P over F .

Lemma 16.3. Let E/F be a finite extension of fields. There exists a unique smallest
finite extension K/E such that K is normal over F .

Proof. Choose generators α1, . . . , αn of E over F . Let P1, . . . , Pn be the minimal
polynomials of α1, . . . , αn over F . Set P = P1 . . . Pn. Observe that (x−α1) . . . (x−αn)
divides P , since each (x− αi) divides Pi. Say P = (x− α1) . . . (x− αn)Q. Let K/E be
the splitting field of P over E. We claim that K is the splitting field of P over F as well
(which implies that K is normal over F ). This is clear because K/E is generated by the
roots of Q over E and E is generated by the roots of (x− α1) . . . (x− αn) over F , hence
K is generated by the roots of P over F .
Uniqueness. Suppose thatK ′/E is a second smallest extension such thatK ′/F is normal.
Choose an algebraic closure F and an embedding σ0 : E → F . By Lemma 10.5 we can
extend σ0 to σ : K → F and σ′ : K ′ → F . By Lemma 15.3 we see that σ(K) ∩ σ′(K ′)
is normal over F . By minimality we conclude that σ(K) = σ(K ′). Thus σ ◦ (σ′)−1 :
K ′ → K gives an isomorphism of extensions of E. �

Definition 16.4. Let E/F be a finite extension of fields. The field extension K/E
constructed in Lemma 16.3 is called the normal closure E over F .

One can construct the normal closure inside any given normal extension.

Lemma 16.5. Let L/K be an algebraic normal extension.
(1) IfL/M/K is a subextension withM/K finite, then there exists a towerL/M ′/M/K

with M ′/K finite and normal.
(2) IfL/M ′/M/K is a tower withM/K normal andM ′/M finite, then there exists

a tower L/M ′′/M ′/M/K with M ′′/M finite and M ′′/K normal.

Proof. Proof of (1). Let M ′ be the smallest subextension of L/K containing M
which is normal over K. By Lemma 16.3 this is the normal closure of M/K and is finite
over K.
Proof of (2). Let α1, . . . , αn ∈ M ′ generate M ′ over M . Let P1, . . . , Pn be the minimal
polynomials of α1, . . . , αn over K. Let αi,j be the roots of Pi in L. Let M ′′ = M(αi,j).
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It follows from Lemma 15.6 (applied with the set of generators M ∪ {αi,j}) that M ′′ is
normal over K. �

The following lemma can sometimes be used to prove properties of the normal closure.

Lemma 16.6. Let L/K be a finite extension. Let M/L be the normal closure of L
over K. Then there is a surjective map

L⊗K L⊗K . . .⊗K L −→M

of K-algebras where the number of tensors can be taken [L : K]s ≤ [L : K].

Proof. Choose an algebraic closure K of K. Set n = [L : K]s = |MorK(L,K)|
with equality by Lemma 14.8. Say MorK(L,K) = {σ1, . . . , σn}. Let M ′ ⊂ K be the
K-subalgebra generated by σi(L), i = 1, . . . , n. It follows from Lemma 15.5 that M ′ is
normal overK and that it is the smallest normal subextension ofK containing σ1(L). By
uniqueness of normal closure we have M ∼= M ′. Finally, there is a surjective map

L⊗K L⊗K . . .⊗K L −→M ′, λ1 ⊗ . . .⊗ λn 7−→ σ1(λ1) . . . σn(λn)

and note that n ≤ [L : K] by definition. �

17. Roots of unity

Let F be a field. For an integer n ≥ 1 we set

µn(F ) = {ζ ∈ F | ζn = 1}

This is called the group of nth roots of unity or nth roots of 1. It is an abelian group
under multiplication with neutral element given by 1. Observe that in a field the number
of roots of a polynomial of degree d is always at most d. Hence we see that |µn(F )| ≤ n
as it is defined by a polynomial equation of degree n. Of course every element of µn(F )
has order dividing n. Moreover, the subgroups

µd(F ) ⊂ µn(F ), d|n

each have at most d elements. This implies that µn(F ) is cyclic.

Lemma 17.1. Let A be an abelian group of exponent dividing n such that {x ∈ A |
dx = 0} has cardinality at most d for all d|n. Then A is cyclic of order dividing n.

Proof. The conditions imply that |A| ≤ n, in particular A is finite. The structure
of finite abelian groups shows that A = Z/e1Z ⊕ . . . ⊕ Z/erZ for some integers 1 <
e1|e2| . . . |er. This would imply that {x ∈ A | e1x = 0} has cardinality er1. Hence
r = 1. �

Applying this to the field Fp we obtain the celebrated result that the group (Z/pZ)∗ is a
cyclic group. More about this in the section on finite fields.

One more observation is often useful: If F has characteristic p > 0, then µpn(F ) = {1}.
This is true because raising to the pth power is an injective map on fields of characteristic p
as we have seen in the proof of Lemma 12.5. (Of course, it also follows from the statement
of that lemma itself.)
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18. Finite fields

Let F be a finite field. It is clear that F has positive characteristic as we cannot have an
injection Q→ F . Say the characteristic of F is p. The extension Fp ⊂ F is finite. Hence
we see that F has q = pf elements for some f ≥ 1.
Let us think about the group of units F ∗. This is a finite abelian group, so it has some
exponent e. Then F ∗ = µe(F ) and we see from the discussion in Section 17 that F ∗ is a
cyclic group of order q − 1. (A posteriori it follows that e = q − 1 as well.) In particular,
if α ∈ F ∗ is a generator then it clearly is true that

F = Fp(α)
In other words, the extension F/Fp is generated by a single element. Of course, the same
thing is true for any extension of finite fields E/F (because E is already generated by a
single element over the prime field).

19. Primitive elements

Let E/F be a finite extension of fields. An element α ∈ E is called a primitive element of
E over F if E = F (α).

Lemma 19.1 (Primitive element). Let E/F be a finite extension of fields. The fol-
lowing are equivalent

(1) there exists a primitive element for E over F , and
(2) there are finitely many subextensions E/K/F .

Moreover, (1) and (2) hold if E/F is separable.
Proof. Letα ∈ E be a primitive element. LetP be the minimal polynomial ofα over

F . LetE ⊂M be a splitting field forP overE , so thatP (x) = (x−α)(x−α2) . . . (x−αn)
over M . For ease of notation we set α1 = α. Next, let E/K/F be a subextension. Let
Q be the minimal polynomial of α over K. Observe that deg(Q) = [E : K]. Writing
Q = xd +

∑
i<d aix

i we claim that K is equal to L = F (a0, . . . , ad−1). Indeed α has
degree d over L and L ⊂ K. Hence [E : L] = [E : K] and it follows that [K : L] = 1,
i.e., K = L. Thus it suffices to show there are at most finitely many possibilities for the
polynomialQ. This is clear because we have a factorizationP = QR inK[x] in particular
inE[x]. Since we have unique factorization inE[x] there are at most finitely many monic
factors of P in E[x].
If F is a finite field (equivalently E is a finite field), then E/F has a primitive element by
the discussion in Section 18. Next, assume F is infinite and there are at most finitely many
proper subfields E/K/F . List them, say K1, . . . ,KN . Then each Ki ⊂ E is a proper
sub F -vector space. As F is infinite we can find a vector α ∈ E with α 6∈ Ki for all
i (a vector space can never be equal to a finite union of proper subvector spaces; details
omitted). Then α is a primitive element for E over F .
Having established the equivalence of (1) and (2) we now turn to the final statement of
the lemma. Choose an algebraic closure F of F . Enumerate the elements σ1, . . . , σn ∈
MorF (E,F ). Since E/F is separable we have n = [E : F ] by Lemma 12.11. Note that if
i 6= j , then

Vij = Ker(σi − σj : E −→ F )
is not equal to E. Hence arguing as in the preceding paragraph we can find α ∈ E with
α 6∈ Vij for all i 6= j. It follows that |MorF (F (α), F )| ≥ n. On the other hand [F (α) :
F ] ≤ [E : F ]. Hence equality by Lemma 12.11 and we conclude that E = F (α). �
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20. Trace and norm

Let L/K be a finite extension of fields. By Lemma 4.1 we can choose an isomorphism
L ∼= K⊕n of K-modules. Of course n = [L : K] is the degree of the field extension.
Using this isomorphism we get for a K-algebra map

L −→Mat(n× n,K), α 7−→ matrix of multiplication by α

Thus given α ∈ L we can take the trace and the determinant of the corresponding ma-
trix. Of course these quantities are independent of the choice of the basis chosen above.
More canonically, simply thinking of L as a finite dimensional K-vector space we have
TraceK(α : L→ L) and the determinant detK(α : L→ L).

Definition 20.1. Let L/K be a finite extension of fields. For α ∈ L we define the
trace TraceL/K(α) = TraceK(α : L→ L) and the norm NormL/K(α) = detK(α : L→
L).

It is clear from the definition that TraceL/K is K-linear and satisfies TraceL/K(α) = [L :
K]α for α ∈ K. Similarly NormL/K is multiplicative and NormL/K(α) = α[L:K] for
α ∈ K. This is a special case of the more general construction discussed in Exercises,
Exercises 22.6 and 22.7.

Lemma 20.2. Let L/K be a finite extension of fields. Let α ∈ L and let P be the
minimal polynomial of α over K. Then the characteristic polynomial of the K-linear
map α : L→ L is equal to P e with e deg(P ) = [L : K].

Proof. Choose a basis β1, . . . , βe of L over K(α). Then e satisfies e deg(P ) = [L :
K] by Lemmas 9.2 and 7.7. Then we see thatL =

⊕
K(α)βi is a direct sum decomposition

into α-invariant subspaces hence the characteristic polynomial of α : L → L is equal to
the characteristic polynomial of α : K(α)→ K(α) to the power e.

To finish the proof we may assume thatL = K(α). In this case by Cayley-Hamilton we see
that α is a root of the characteristic polynomial. And since the characteristic polynomial
has the same degree as the minimal polynomial, we find that equality holds. �

Lemma 20.3. Let L/K be a finite extension of fields. Let α ∈ L and let P = xd +
a1x

d−1 + . . .+ ad be the minimal polynomial of α over K. Then

NormL/K(α) = (−1)[L:K]aed and TraceL/K(α) = −ea1

where ed = [L : K].

Proof. Follows immediately from Lemma 20.2 and the definitions. �

Lemma 20.4. Let L/K be a finite extension of fields. Let V be a finite dimensional
vector space over L. Let ϕ : V → V be an L-linear map. Then

TraceK(ϕ : V → V ) = TraceL/K(TraceL(ϕ : V → V ))

and
detK(ϕ : V → V ) = NormL/K(detL(ϕ : V → V ))

Proof. Choose an isomorphism V = L⊕n so that ϕ corresponds to an n×nmatrix.
In the case of traces, both sides of the formula are additive in ϕ. Hence we can assume that
ϕ corresponds to the matrix with exactly one nonzero entry in the (i, j) spot. In this case
a direct computation shows both sides are equal.
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In the case of norms both sides are zero if ϕ has a nonzero kernel. Hence we may assume ϕ
corresponds to an element of GLn(L). Both sides of the formula are multiplicative in ϕ.
Since every element of GLn(L) is a product of elementary matrices we may assume that
ϕ either looks like

E12(λ) =

 1 λ . . .
0 1 . . .
. . . . . . . . .

 or E1(a) =

 a 0 . . .
0 1 . . .
. . . . . . . . .


(because we may also permute the basis elements if we like). In both cases the formula is
easy to verify by direct computation. �

Lemma 20.5. Let M/L/K be a tower of finite extensions of fields. Then

TraceM/K = TraceL/K ◦ TraceM/L and NormM/K = NormL/K ◦NormM/L

Proof. Think of M as a vector space over L and apply Lemma 20.4. �

The trace pairing is defined using the trace.

Definition 20.6. Let L/K be a finite extension of fields. The trace pairing for L/K
is the symmetric K-bilinear form

QL/K : L× L −→ K, (α, β) 7−→ TraceL/K(αβ)

It turns out that a finite extension of fields is separable if and only if the trace pairing is
nondegenerate.

Lemma 20.7. Let L/K be a finite extension of fields. The following are equivalent:
(1) L/K is separable,
(2) TraceL/K is not identically zero, and
(3) the trace pairing QL/K is nondegenerate.

Proof. It is clear that (3) implies (2). If (2) holds, then pick γ ∈ Lwith TraceL/K(γ) 6=
0. Then if α ∈ L is nonzero, we see that QL/K(α, γ/α) 6= 0. Hence QL/K is nondegen-
erate. This proves the equivalence of (2) and (3).

Suppose that K has characteristic p and L = K(α) with α 6∈ K and αp ∈ K. Then
TraceL/K(1) = p = 0. For i = 1, . . . , p−1 we see thatxp−αpi is the minimal polynomial
forαi overK and we find TraceL/K(αi) = 0 by Lemma 20.3. Hence for this kind of purely
inseparable degree p extension we see that TraceL/K is identically zero.

Assume that L/K is not separable. Then there exists a subfield L/K ′/K such that L/K ′

is a purely inseparable degree p extension as in the previous paragraph, see Lemmas 14.6
and 14.5. Hence by Lemma 20.5 we see that TraceL/K is identically zero.

Assume on the other hand thatL/K is separable. By induction on the degree we will show
that TraceL/K is not identically zero. Thus by Lemma 20.5 we may assume that L/K is
generated by a single element α (use that if the trace is nonzero then it is surjective). We
have to show that TraceL/K(αe) is nonzero for some e ≥ 0. LetP = xd+a1x

d−1+. . .+ad
be the minimal polynomial of α over K. Then P is also the characteristic polynomial of
the linear maps α : L → L, see Lemma 20.2. Since L/k is separable we see from Lemma
12.4 that P has d pairwise distinct roots α1, . . . , αd in an algebraic closure K of K. Thus
these are the eigenvalues of α : L → L. By linear algebra, the trace of αe is equal to
αe1 + . . .+ αed. Thus we conclude by Lemma 13.2. �
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Let K be a field and let Q : V × V → K be a bilinear form on a finite dimensional
vector space over K. Say dimK(V ) = n. Then Q defines a linear map Q : V → V ∗,
v 7→ Q(v,−) where V ∗ = HomK(V,K) is the dual vector space. Hence a linear map

det(Q) : ∧n(V ) −→ ∧n(V )∗

If we pick a basis element ω ∈ ∧n(V ), then we can write det(Q)(ω) = λω∗, where ω∗ is
the dual basis element in ∧n(V )∗. If we change our choice of ω into cω for some c ∈ K∗,
then ω∗ changes into c−1ω∗ and therefore λ changes into c2λ. Thus the class of λ in
K/(K∗)2 is well defined and is called the discriminant of Q. Unwinding the definitions
we see that

λ = det(Q(vi, vj)1≤i,j≤n)
if {v1, . . . , vn} is a basis for V over K. Observe that the discriminant is nonzero if and
only if Q is nondegenerate.

Definition 20.8. Let L/K be a finite extension of fields. The discriminant of L/K
is the discriminant of the trace pairing QL/K .

By the discussion above and Lemma 20.7 we see that the discriminant is nonzero if and
only if L/K is separable. For a ∈ K we often say “the discriminant is a” when it would
be more correct to say the discriminant is the class of a in K/(K∗)2.

Exercise 20.9. Let L/K be an extension of degree 2. Show that exactly one of the
following happens

(1) the discriminant is 0, the characteristic ofK is 2, and L/K is purely inseparable
obtained by taking a square root of an element of K ,

(2) the discriminant is 1, the characteristic ofK is 2, and L/K is separable of degree
2,

(3) the discriminant is not a square, the characteristic ofK is not 2, andL is obtained
from K by taking the square root of the discriminant.

21. Galois theory

Here is the definition.

Definition 21.1. A field extension E/F is called Galois if it is algebraic, separable,
and normal.

It turns out that a finite extension is Galois if and only if it has the “correct” number of
automorphisms.

Lemma 21.2. Let E/F be a finite extension of fields. Then E is Galois over F if and
only if |Aut(E/F )| = [E : F ].

Proof. Assume |Aut(E/F )| = [E : F ]. By Lemma 15.9 this implies that E/F is
separable and normal, hence Galois. Conversely, if E/F is separable then [E : F ] = [E :
F ]s and if E/F is in addition normal, then Lemma 15.9 implies that |Aut(E/F )| = [E :
F ]. �

Motivated by the lemma above we introduce the Galois group as follows.

Definition 21.3. If E/F is a Galois extension, then the group Aut(E/F ) is called
the Galois group and it is denoted Gal(E/F ).

If L/K is an infinite Galois extension, then one should think of the Galois group as a
topological group. We will return to this in Section 22.
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Lemma 21.4. LetK/E/F be a tower of algebraic field extensions. IfK is Galois over
F , then K is Galois over E.

Proof. Combine Lemmas 15.2 and 12.3. �

Lemma 21.5. Let L/K be a finite separable extension of fields. Let M be the normal
closure of L over K (Definition 16.4). Then M/K is Galois.

Proof. The subextensionM/Msep/K of Lemma 14.6 is normal by Lemma 15.4. Since
L/K is separable we have L ⊂ Msep. By minimality M = Msep and the proof is
done. �

Let G be a group acting on a field K (by field automorphisms). We will often use the
notation

KG = {x ∈ K | σ(x) = x ∀σ ∈ G}
and we will call this the fixed field for the action of G on K.

Lemma 21.6. Let K be a field. Let G be a finite group acting faithfully on K. Then
the extension K/KG is Galois, we have [K : KG] = |G|, and the Galois group of the
extension is G.

Proof. Given α ∈ K consider the orbit G · α ⊂ K of α under the group action.
Consider the polynomial

P =
∏

β∈G·α
(x− β) ∈ K[x]

The key to the whole lemma is that this polynomial is invariant under the action ofG and
hence has coefficients in KG. Namely, for τ ∈ G we have

P τ =
∏

β∈G·α
(x− τ(β)) =

∏
β∈G·α

(x− β) = P

because the map β 7→ τ(β) is a permutation of the orbit G · α. Thus P ∈ KG[x]. Since
also P (α) = 0 as α is an element of its orbit we conclude that the extension K/KG is
algebraic. Moreover, the minimal polynomial Q of α over KG divides the polynomial P
just constructed. HenceQ is separable (by Lemma 12.4 for example) and we conclude that
K/KG is separable. Thus K/KG is Galois. To finish the proof it suffices to show that
[K : KG] = |G| since then G will be the Galois group by Lemma 21.2.

Pick finitely many elements αi ∈ K , i = 1, . . . , n such that σ(αi) = αi for i = 1, . . . , n
implies σ is the neutral element of G. Set

L = KG({σ(αi); 1 ≤ i ≤ n, σ ∈ G}) ⊂ K

and observe that the action of G on K induces an action of G on L. We will show that
L has degree |G| over KG. This will finish the proof, since if L ⊂ K is proper, then we
can add an element α ∈ K , α 6∈ L to our list of elements α1, . . . , αn without increasing
L which is absurd. This reduces us to the case that K/KG is finite which is treated in the
next paragraph.

Assume K/KG is finite. By Lemma 19.1 we can find α ∈ K such that K = KG(α). By
the construction in the first paragraph of this proof we see that α has degree at most |G|
over K. However, the degree cannot be less than |G| as G acts faithfully on KG(α) = L
by construction and the inequality of Lemma 15.9. �
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Theorem 21.7 (Fundamental theorem of Galois theory). Let L/K be a finite Galois
extension with Galois group G. Then we have K = LG and the map

{subgroups of G} −→ {subextensions L/M/K}, H 7−→ LH

is a bijection whose inverse maps M to Gal(L/M). The normal subgroups H of G corre-
spond exactly to those subextensions M with M/K Galois.

Proof. By Lemma 21.4 given a subextension L/M/K the extension L/M is Galois.
Of course L/M is also finite (Lemma 7.3). Thus |Gal(L/M)| = [L : M ] by Lemma 21.2.
Conversely, ifH ⊂ G is a finite subgroup, then [L : LH ] = |H| by Lemma 21.6. It follows
formally from these two observations that we obtain a bijective correspondence as in the
theorem.

If H ⊂ G is normal, then LH is fixed by the action of G and we obtain a canonical
map G/H → Aut(LH/K). This map has to be injective as Gal(L/LH) = H . Hence
|G/H| = [LH : K] and LH is Galois by Lemma 21.2.

Conversely, assume that K ⊂ M ⊂ L with M/K Galois. By Lemma 15.7 we see that
every element τ ∈ Gal(L/K) induces an element τ |M ∈ Gal(M/K). This induces a
homomorphism of Galois groups Gal(L/K) → Gal(M/K) whose kernel is H . Thus H
is a normal subgroup. �

Lemma 21.8. Let L/M/K be a tower of fields. Assume L/K and M/K are finite
Galois. Then we obtain a short exact sequence

1→ Gal(L/M)→ Gal(L/K)→ Gal(M/K)→ 1
of finite groups.

Proof. Namely, by Lemma 15.7 we see that every element τ ∈ Gal(L/K) induces
an element τ |M ∈ Gal(M/K) which gives us the homomorphism on the right. The map
on the left identifies the left group with the kernel of the right arrow. The sequence is
exact because the sizes of the groups work out correctly by multiplicativity of degrees in
towers of finite extensions (Lemma 7.7). One can also use Lemma 15.7 directly to see that
the map on the right is surjective. �

22. Infinite Galois theory

The Galois group comes with a canonical topology.

Lemma 22.1. Let E/F be a Galois extension. Endow Gal(E/F ) with the coarsest
topology such that

Gal(E/F )× E −→ E

is continuous when E is given the discrete topology. Then
(1) for any topological space X and map X → Aut(E/F ) such that the action

X × E → E is continuous the induced map X → Gal(E/F ) is continuous,
(2) this topology turns Gal(E/F ) into a profinite topological group.

Proof. Throughout this proof we think of E as a discrete topological space. Re-
call that the compact open topology on the set of self maps Map(E,E) is the universal
topology such that the action Map(E,E) × E → E is continuous. See Topology, Ex-
ample 30.2 for a precise statement. The topology of the lemma on Gal(E/F ) is the in-
duced topology coming from the injective map Gal(E/F ) → Map(E,E). Hence the
universal property (1) follows from the corresponding universal property of the compact



22. INFINITE GALOIS THEORY 485

open topology. Since the set of invertible self maps Aut(E) endowed with the com-
pact open topology forms a topological group, see Topology, Example 30.2, and since
Gal(E/F ) = Aut(E/F ) → Map(E,E) factors through Aut(E) we obtain a topolog-
ical group. In other words, we are using the injection

Gal(E/F ) ⊂ Aut(E)
to endow Gal(E/F ) with the induced structure of a topological group (see Topology,
Section 30) and by construction this is the coarsest structure of a topological group such
that the action Gal(E/F )× E → E is continuous.
To show that Gal(E/F ) is profinite we argue as follows (our argument is necessarily non-
standard because we have defined the topology before showing that the Galois group is
an inverse limit of finite groups). By Topology, Lemma 30.4 it suffices to show that the
underlying topological space of Gal(E/F ) is profinite. For any subset S ⊂ E consider
the set

G(S) = {f : S → E | f(α) is a root of the minimal polynomial
of α over F for all α ∈ S }

Since a polynomial has only a finite number of roots we see that G(S) is finite for all
S ⊂ E finite. If S ⊂ S′ then restriction gives a map G(S′) → G(S). Also, observe that
if α ∈ S ∩ F and f ∈ G(S), then f(α) = α because the minimal polynomial is linear in
this case. Consider the profinite topological space

G = limS⊂E finite G(S)
Consider the canonical map

c : Gal(E/F ) −→ G, σ 7−→ (σ|S : S → E)S
This is injective and unwinding the definitions the reader sees the topology on Gal(E/F )
as defined above is the induced topology fromG. An element (fS) ∈ G is in the image of c
exactly if (A) fS(α)+fS(β) = fS(α+β) and (M) fS(α)fS(β) = fS(αβ) whenever this
makes sense (i.e., α, β, α+β, αβ ∈ S). Namely, this means lim fS : E → E will be an F -
algebra map and hence an automorphism by Lemma 8.11. The conditions (A) and (M) for
a given triple (S, α, β) define a closed subset ofG and hence Gal(E/F ) is homeomorphic
to a closed subset of a profinite space and therefore profinite itself. �

Lemma 22.2. Let L/M/K be a tower of fields. Assume both L/K and M/K are
Galois. Then there is a canonical surjective continuous homomorphism c : Gal(L/K)→
Gal(M/K).

Proof. By Lemma 15.7 given τ : L→ L in Gal(L/K) the restriction τ |M : M →M
is an element of Gal(M/K). This defines the homomorphism c. Continuity follows from
the universal property of the topology: the action

Gal(L/K)×M −→M, (τ, x) 7−→ τ(x) = c(τ)(x)
is continuous as M ⊂ L and the action Gal(L/K)× L→ L is continuous. Hence conti-
nuity of c by part (1) of Lemma 22.1. Lemma 15.7 also shows that the map is surjective. �

Here is a more standard way to think about the Galois group of an infinite Galois exten-
sion.

Lemma 22.3. Let L/K be a Galois extension with Galois groupG. Let Λ be the set of
finite Galois subextensions, i.e., λ ∈ Λ corresponds to L/Lλ/K with Lλ/K finite Galois
with Galois group Gλ. Define a partial ordering on Λ by the rule λ ≥ λ′ if and only if
Lλ ⊃ Lλ′ . Then
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(1) Λ is a directed partially ordered set,
(2) Lλ is a system of K-extensions over Λ and L = colimLλ,
(3) Gλ is an inverse system of finite groups over Λ, the transition maps are surjective,

and
G = limλ∈Λ Gλ

as a profinite group, and
(4) each of the projections G→ Gλ is continuous and surjective.

Proof. Every subfield of L containing K is separable over K (follows immediately
from the definition). Let S ⊂ L be a finite subset. ThenK(S)/K is finite and there exists
a tower L/E/K(S)/K such that E/K is finite Galois, see Lemma 16.5. Hence E = Lλ
for some λ ∈ Λ. This certainly implies the set Λ is not empty. Also, given λ1, λ2 ∈ Λ we
can write Lλi = K(Si) for finite sets S1, S2 ⊂ L (Lemma 7.5). Then there exists a λ ∈ Λ
such that K(S1 ∪ S2) ⊂ Lλ. Hence λ ≥ λ1, λ2 and Λ is directed (Categories, Definition
21.4). Finally, since every element in L is contained in Lλ for some λ ∈ Λ, it follows from
the description of filtered colimits in Categories, Section 19 that colimLλ = L.

Ifλ ≥ λ′ in Λ, then we obtain a canonical surjective mapGλ → Gλ′ , σ 7→ σ|Lλ′ by Lemma
21.8. Thus we get an inverse system of finite groups with surjective transition maps.

Recall that G = Aut(L/K). By Lemma 22.2 the restriction σ|Lλ of a σ ∈ G to Lλ is an
element of Gλ. Moreover, this procedure gives a continuous surjection G → Gλ. Since
the transition mappings in the inverse system ofGλ are given by restriction also, it is clear
that we obtain a canonical continuous map

G −→ limλ∈Λ Gλ

Continuity by definition of limits in the category of topological groups; recall that these
limits commute with the forgetful functor to the categories of sets and topological spaces
by Topology, Lemma 30.3. On the other hand, since L = colimLλ it is clear that any
element of the inverse limit (viewed as a set) defines an automorphism of L. Thus the
map is bijective. Since the topology on both sides is profinite, and since a bijective con-
tinuous map of profinite spaces is a homeomorphism (Topology, Lemma 17.8), the proof
is complete. �

Theorem 22.4 (Fundamental theorem of infinite Galois theory). LetL/K be a Galois
extension. LetG = Gal(L/K) be the Galois group viewed as a profinite topological group
(Lemma 22.1). Then we have K = LG and the map

{closed subgroups of G} −→ {subextensions L/M/K}, H 7−→ LH

is a bijection whose inverse mapsM to Gal(L/M). The finite subextensionsM correspond
exactly to the open subgroups H ⊂ G. The normal closed subgroups H of G correspond
exactly to subextensions M Galois over K.

Proof. We will use the result of finite Galois theory (Theorem 21.7) without further
mention. Let S ⊂ L be a finite subset. There exists a tower L/E/K such that K(S) ⊂ E
and such that E/K is finite Galois, see Lemma 16.5. In other words, we see that L/K
is the union of its finite Galois subextensions. For such an E , by Lemma 22.2 the map
Gal(L/K)→ Gal(E/K) is surjective and continuous, i.e., the kernel is open because the
topology on Gal(E/K) is discrete. In particular we see that no element of L \K is fixed
by Gal(L/K) as EGal(E/K) = K. This proves that LG = K.
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By Lemma 21.4 given a subextension L/M/K the extension L/M is Galois. It is immedi-
ate from the definition of the topology on G that the subgroup Gal(L/M) is closed. By
the above applied to L/M we see that LGal(L/M) = M .

Conversely, let H ⊂ G be a closed subgroup. We claim that H = Gal(L/LH). The
inclusion H ⊂ Gal(L/LH) is clear. Suppose that g ∈ Gal(L/LH). Let S ⊂ L be a finite
subset. We will show that the open neighbourhood US(g) = {g′ ∈ G | g′(s) = g(s)}
of g meets H . This implies that g ∈ H because H is closed. Let L/E/K be a finite
Galois subextension containing K(S) as in the first paragraph of the proof and consider
the homomorphism c : Gal(L/K) → Gal(E/K). Then LH ∩ E = Ec(H). Since g
fixes LH it fixes Ec(H) and hence c(g) ∈ c(H) by finite Galois theory. Pick h ∈ H with
c(h) = c(g). Then h ∈ US(g) as desired.

At this point we have established the correspondence between closed subgroups and subex-
tensions.

Assume H ⊂ G is open. Arguing as above we find that H containes Gal(L/E) for some
large enough finite Galois subextension E and we find that LH is contained in E whence
finite over K. Conversely, if M is a finite subextension, then M is generated by a finite
subset S and the corresponding subgroup is the open subset US(e) where e ∈ G is the
neutral element.

Assume that K ⊂ M ⊂ L with M/K Galois. By Lemma 22.2 there is a surjective
continuous homomorphism of Galois groups Gal(L/K) → Gal(M/K) whose kernel is
Gal(L/M). Thus Gal(L/M) is a normal closed subgroup.

Finally, assumeN ⊂ G is normal and closed. For any L/E/K as in the first paragraph of
the proof, the image c(N) ⊂ Gal(E/K) is a normal subgroup. Hence LN =

⋃
Ec(N) is

a union of Galois extensions of K (by finite Galois theory) whence Galois over K. �

Lemma 22.5. Let L/M/K be a tower of fields. Assume L/K and M/K are Galois.
Then we obtain a short exact sequence

1→ Gal(L/M)→ Gal(L/K)→ Gal(M/K)→ 1

of profinite topological groups.

Proof. This is a reformulation of Lemma 22.2. �

23. The complex numbers

The fundamental theorem of algebra states that the field of complex numbers is an alge-
braically closed field. In this section we discuss this briefly.

The first remark we’d like to make is that you need to use a little bit of input from calculus
in order to prove this. We will use the intuitively clear fact that every odd degree poly-
nomial over the reals has a real root. Namely, let P (x) = a2k+1x

2k+1 + . . .+ a0 ∈ R[x]
for some k ≥ 0 and a2k+1 6= 0. We may and do assume a2k+1 > 0. Then for x ∈ R
very large (positive) we see that P (x) > 0 as the term a2k+1x

2k+1 dominates all the other
terms. Similarly, if x � 0, then P (x) < 0 by the same reason (and this is where we use
that the degree is odd). Hence by the intermediate value theorem there is an x ∈ R with
P (x) = 0.

A conclusion we can draw from the above is that R has no nontrivial odd degree field
extensions, as elements of such extensions would have odd degree minimal polynomials.
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Next, let K/R be a finite Galois extension with Galois group G. Let P ⊂ G be a 2-sylow
subgroup. Then KP /R is an odd degree extension, hence by the above KP = R, which
in turn implies G = P . (All of these arguments rely on Galois theory of course.) Thus G
is a 2-group. If G is nontrivial, then we see that C ⊂ K as C is (up to isomorphism) the
only degree 2 extension of R. IfG has more than 2 elements we would obtain a quadratic
extension of C. This is absurd as every complex number has a square root.

The conclusion: C is algebraically closed. Namely, if not then we’d get a nontrivial finite
extension K/C which we could assume normal (hence Galois) over R by Lemma 16.3.
But we’ve seen above that then K = C.

Lemma 23.1 (Fundamental theorem of algebra). The field C is algebraically closed.

Proof. See discussion above. �

24. Kummer extensions

Let K be a field. Let n ≥ 2 be an integer such that K contains a primitive nth root of
1. Let a ∈ K. Let L be an extension of K obtained by adjoining a root b of the equation
xn = a. Then L/K is Galois. If G = Gal(L/K) is the Galois group, then the map

G −→ µn(K), σ 7−→ σ(b)/b
is an injective homomorphism of groups. In particular, G is cyclic of order dividing n as
a subgroup of the cyclic group µn(K). Kummer theory gives a converse.

Lemma 24.1 (Kummer extensions). Let L/K be a Galois extension of fields whose
Galois group is Z/nZ. Assume moreover that the characteristic of K is prime to n and
that K contains a primitive nth root of 1. Then L = K[z] with zn ∈ K.

Proof. Let ζ ∈ K be a primitive nth root of 1. Let σ be a generator of Gal(L/K).
Consider σ : L → L as a K-linear operator. Note that σn − 1 = 0 as a linear operator.
Applying linear independence of characters (Lemma 13.1), we see that there cannot be a
polynomial over K of degree < n annihilating σ. Hence the minimal polynomial of σ as
a linear operator is xn−1. Since ζ is a root of xn−1 by linear algebra there is a 0 6= z ∈ L
such that σ(z) = ζz. This z satisfies zn ∈ K because σ(zn) = (ζz)n = zn. Moreover, we
see that z, σ(z), . . . , σn−1(z) = z, ζz, . . . ζn−1z are pairwise distinct which guarantees
that z generates L over K. Hence L = K[z] as required. �

Lemma 24.2. Let K be a field with algebraic closure K. Let p be a prime different
from the characteristic of K. Let ζ ∈ K be a primitive pth root of 1. Then K(ζ)/K is a
Galois extension of degree dividing p− 1.

Proof. The polynomialxp−1 splits completely overK(ζ) as its roots are 1, ζ, ζ2, . . . , ζp−1.
HenceK(ζ)/K is a splitting field and hence normal. The extension is separable as xp−1 is
a separable polynomial. Thus the extension is Galois. Any automorphism ofK(ζ) overK
sends ζ to ζi for some 1 ≤ i ≤ p−1. Thus the Galois group is a subgroup of (Z/pZ)∗. �

Lemma 24.3. LetK be a field. LetL/K be a finite extension of degree ewhich is gen-
erated by an element α with a = αe ∈ K. Then any sub extension L/L′/K is generated
by αd for some d|e.

Proof. Observe that for d|e the subfield K(αd) has [K(αd) : K] = e/d and [L :
K(αd)] = d and that both extensions K(αd)/K and L/K(αd) are extensions as in the
lemma.



25. ARTIN-SCHREIER EXTENSIONS 489

We will use induction on the pair of integers ([L : L′], [L′ : K]) ordered lexicographically.
Let p be a prime number dividing e and set d = e/p. If K(αd) is contained in L′, then
we win by induction, because then it suffices to prove the lemma for L/L′/K(αd). If not,
then [L′(αd) : L′] = p and by induction hypothesis we have L′(αd) = K(αi) for some
i|d. If i 6= 1 we are done by induction. Thus we may assume that [L : L′] = p.

If e is not a power of p, then we can do this trick again with a second prime number and
we win. Thus we may assume e is a power of p.

If the characteristic ofK is p and e is a pth power, then L/K is purely inseparable. Hence
L/L′ is purely inseparable of degree p and hence αp ∈ L′. Thus L′ = K(αp) and this
case is done.

The final case is where e is a power of p, the characteristic of K is not p, L/L′ is a degree
p extension, and L = L′(αe/p). Claim: this can only happen if e = p and L′ = K. The
claim finishes the proof.

First, we prove the claim whenK contains a primitive pth root of unity ζ . In this case the
degree p extension K(αe/p)/K is Galois with Galois group generated by the automor-
phism αe/p 7→ ζαe/p. On the other hand, since L is generated by αe/p and L′ we see that
the map

K(αe/p)⊗K L′ −→ L

is an isomorphism of K-algebras (look at dimensions). Thus L has an automorphism σ of
order p overK sending αe/p to ζαe/p. Then σ(α) = ζ ′α for some eth root of unity ζ ′ (as
αe is in K). Then on the one hand (ζ ′)e/p = ζ and on the other hand ζ ′ has to be a pth
root of 1 as σ has order p. Thus e/p = 1 and the claim has been shown.

Finally, suppose thatK does not contain a primitive pth root of 1. Choose a primitive pth
root ζ in some algebraic closure L of L. Consider the diagram

K(ζ) // L(ζ)

K

OO

// L

OO

By Lemma 24.2 the vertical extensions have degree prime to p. Hence [L(ζ) : K(ζ)] is
divisible by e. On the other hand, L(ζ) is generated by α over K(ζ) and hence [L(ζ) :
K(ζ)] ≤ e. Thus [L(ζ) : K(ζ)] = e. Similarly we have [K(αe/p, ζ) : K(ζ)] = p and
[L(ζ) : L′(ζ)] = p. Thus the fields K(ζ), L′(ζ), L(ζ) and the element α fall into the case
discussed in the previous paragraph we conclude e = p as desired. �

25. Artin-Schreier extensions

Let K be a field of characteristic p > 0. Let a ∈ K. Let L be an extension of K obtained
by adjoining a root b of the equation xp−x = a. Then L/K is Galois. IfG = Gal(L/K)
is the Galois group, then the map

G −→ Z/pZ, σ 7−→ σ(b)− b
is an injective homomorphism of groups. In particular, G is cyclic of order dividing p as a
subgroup of Z/pZ. The theory of Artin-Schreier extensions gives a converse.

Lemma 25.1 (Artin-Schreier extensions). Let L/K be a Galois extension of fields of
characteristic p > 0 with Galois group Z/pZ. Then L = K[z] with zp − z ∈ K.
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Proof. Let σ be a generator of Gal(L/K). Consider σ : L → L as a K-linear op-
erator. Observe that σp − 1 = 0 as a linear operator. Applying linear independence of
characters (Lemma 13.1), there cannot be a polynomial of degree < p annihilating σ. We
conclude that the minimal polynomial of σ is xp − 1 = (x− 1)p. This implies that there
exists w ∈ L such that (σ − 1)p−1(w) = y is nonzero. Then σ(y) = y, i.e., y ∈ K. Thus
z = y−1(σ−1)p−2(w) satisfies σ(z) = z+ 1. Since z 6∈ K we have L = K[z]. Moreover
since σ(zp − z) = (z + 1)p − (z + 1) = zp − z we see that zp − z ∈ K and the proof is
complete. �

26. Transcendence

We recall the standard definitions.

Definition 26.1. Let K/k be a field extension.
(1) A collection of elements {xi}i∈I of K is called algebraically independent over

k if the map
k[Xi; i ∈ I] −→ K

which maps Xi to xi is injective.
(2) The field of fractions of a polynomial ring k[xi; i ∈ I] is denoted k(xi; i ∈ I).
(3) A purely transcendental extension of k is any field extension K/k isomorphic

to the field of fractions of a polynomial ring over k.
(4) A transcendence basis of K/k is a collection of elements {xi}i∈I which are al-

gebraically independent over k and such that the extension K/k(xi; i ∈ I) is
algebraic.

Example 26.2. The field Q(π) is purely transcendental because π isn’t the root of a
nonzero polynomial with rational coefficients. In particular, Q(π) ∼= Q(x).

Lemma 26.3. LetE/F be a field extension. A transcendence basis ofE over F exists.
Any two transcendence bases have the same cardinality.

Proof. Let A be an algebraically independent subset of E. Let G be a subset of E
containing A that generates E/F . We claim we can find a transcendence basis B such
that A ⊂ B ⊂ G. To prove this, consider the collection B of algebraically independent
subsets whose members are subsets of G that contain A. Define a partial ordering on
B using inclusion. Then B contains at least one element A. The union of the elements
of a totally ordered subset T of B is an algebraically independent subset of E over F
since any algebraic dependence relation would have occurred in one of the elements of T
(since polynomials only involve finitely many variables). The union also contains A and
is contained in G. By Zorn’s lemma, there is a maximal element B ∈ B. Now we claim
E is algebraic over F (B). This is because if it wasn’t then there would be an element
f ∈ G transcendental over F (B) since F (G) = E. ThenB ∪ {f} would be algebraically
independent contradicting the maximality of B. Thus B is our transcendence basis.

Let B and B′ be two transcendence bases. Without loss of generality, we can assume that
|B′| ≤ |B|. Now we divide the proof into two cases: the first case is that B is an infinite
set. Then for each α ∈ B′, there is a finite set Bα ⊂ B such that α is algebraic over
F (Bα) since any algebraic dependence relation only uses finitely many indeterminates.
Then we define B∗ =

⋃
α∈B′ Bα. By construction, B∗ ⊂ B, but we claim that in fact

the two sets are equal. To see this, suppose that they are not equal, say there is an element
β ∈ B\B∗. We know β is algebraic overF (B′) which is algebraic overF (B∗). Therefore
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β is algebraic over F (B∗), a contradiction. So |B| ≤ |
⋃
α∈B′ Bα|. Now if B′ is finite,

then so is B so we can assume B′ is infinite; this means

|B| ≤ |
⋃

α∈B′
Bα| = |B′|

because each Bα is finite and B′ is infinite. Therefore in the infinite case, |B| = |B′|.
Now we need to look at the case where B is finite. In this case, B′ is also finite, so suppose
B = {α1, . . . , αn} and B′ = {β1, . . . , βm} with m ≤ n. We perform induction on m:
if m = 0 then E/F is algebraic so B = ∅ so n = 0. If m > 0, there is an irreducible
polynomial f ∈ F [x, y1, . . . , yn] such that f(β1, α1, . . . , αn) = 0 and such that x occurs
in f . Since β1 is not algebraic overF , f must involve some yi so without loss of generality,
assume f uses y1. Let B∗ = {β1, α2, . . . , αn}. We claim that B∗ is a basis for E/F . To
prove this claim, we see that we have a tower of algebraic extensions

E/F (B∗, α1)/F (B∗)
since α1 is algebraic over F (B∗). Now we claim that B∗ (counting multiplicity of el-
ements) is algebraically independent over F because if it weren’t, then there would be
an irreducible g ∈ F [x, y2, . . . , yn] such that g(β1, α2, . . . , αn) = 0 which must in-
volve x making β1 algebraic over F (α2, . . . , αn) which would make α1 algebraic over
F (α2, . . . , αn) which is impossible. So this means that {α2, . . . , αn} and {β2, . . . , βm}
are bases for E over F (β1) which means by induction, m = n. �

Definition 26.4. LetK/k be a field extension. The transcendence degree ofK over
k is the cardinality of a transcendence basis of K over k. It is denoted trdegk(K).

Lemma 26.5. Let L/K/k be field extensions. Then
trdegk(L) = trdegK(L) + trdegk(K).

Proof. Choose a transcendence basis A ⊂ K of K over k. Choose a transcendence
basis B ⊂ L of L over K. Then it is straightforward to see that A ∪B is a transcendence
basis of L over k. �

Example 26.6. Consider the field extension Q(e, π) formed by adjoining the num-
bers e and π. This field extension has transcendence degree at least 1 since both e and π are
transcendental over the rationals. However, this field extension might have transcendence
degree 2 if e and π are algebraically independent. Whether or not this is true is unknown
and whence the problem of determining trdeg(Q(e, π)) is open.

Example 26.7. Let F be a field and E = F (t). Then {t} is a transcendence basis
sinceE = F (t). However, {t2} is also a transcendence basis since F (t)/F (t2) is algebraic.
This illustrates that while we can always decompose an extension E/F into an algebraic
extension E/F ′ and a purely transcendental extension F ′/F , this decomposition is not
unique and depends on choice of transcendence basis.

Example 26.8. Let X be a compact Riemann surface. Then the function field C(X)
(see Example 3.6) has transcendence degree one over C. In fact, any finitely generated
extension of C of transcendence degree one arises from a Riemann surface. There is even
an equivalence of categories between the category of compact Riemann surfaces and (non-
constant) holomorphic maps and the opposite of the category of finitely generated exten-
sions of C of transcendence degree 1 and morphisms of C-algebras. See [?].
There is an algebraic version of the above statement as well. Given an (irreducible) al-
gebraic curve in projective space over an algebraically closed field k (e.g. the complex
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numbers), one can consider its “field of rational functions”: basically, functions that look
like quotients of polynomials, where the denominator does not identically vanish on the
curve. There is a similar anti-equivalence of categories (Algebraic Curves, Theorem 2.6)
between smooth projective curves and non-constant morphisms of curves and finitely gen-
erated extensions of k of transcendence degree one. See [?].

Definition 26.9. Let K/k be a field extension.
(1) The algebraic closure of k in K is the subfield k′ of K consisting of elements of

K which are algebraic over k.
(2) We say k is algebraically closed in K if every element of K which is algebraic

over k is contained in k.

Lemma 26.10. Let k′/k be a finite extension of fields. Let k′(x1, . . . , xr)/k(x1, . . . , xr)
be the induced extension of purely transcendental extensions. Then [k′(x1, . . . , xr) :
k(x1, . . . , xr)] = [k′ : k] <∞.

Proof. By multiplicativity of degrees of extensions (Lemma 7.7) it suffices to prove
this when k′ is generated by a single element α ∈ k′ over k. Let f ∈ k[T ] be the minimal
polynomial of α over k. Then k′(x1, . . . , xr) is generated by α, x1, . . . , xr over k and
hence k′(x1, . . . , xr) is generated by α over k(x1, . . . , xr). Thus it suffices to show that
f is still irreducible as an element of k(x1, . . . , xr)[T ]. We only sketch the proof. It is
clear that f is irreducible as an element of k[x1, . . . , xr, T ] for example because f is monic
as a polynomial in T and any putative factorization in k[x1, . . . , xr, T ] would lead to a
factorization in k[T ] by setting xi equal to 0. By Gauss’ lemma we conclude. �

Lemma 26.11. Let K/k be a finitely generated field extension. The algebraic closure
of k in K is finite over k.

Proof. Let x1, . . . , xr ∈ K be a transcendence basis for K over k. Then n =
[K : k(x1, . . . , xr)] < ∞. Suppose that k ⊂ k′ ⊂ K with k′/k finite. In this case
[k′(x1, . . . , xr) : k(x1, . . . , xr)] = [k′ : k] <∞, see Lemma 26.10. Hence

[k′ : k] = [k′(x1, . . . , xr) : k(x1, . . . , xr)] ≤ [K : k(x1, . . . , xr)] = n.

In other words, the degrees of finite subextensions are bounded and the lemma follows. �

27. Linearly disjoint extensions

Let k be a field, K and L field extensions of k. Suppose also that K and L are embedded
in some larger field Ω.

Definition 27.1. Consider a diagram

(27.1.1)

L // Ω

k //

OO

K

OO

of field extensions. The compositum of K and L in Ω written KL is the smallest subfield
of Ω containing both L and K.

It is clear that KL is generated by the set K ∪ L over k, generated by the set K over L,
and generated by the set L over K.
Warning: The (isomorphism class of the) composition depends on the choice of the em-
beddings of K and L into Ω. For example consider the number fields K = Q(21/8) ⊂ R
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andL = Q(21/12) ⊂ R. The compositum inside R is the field Q(21/24) of degree 24 over
Q. However, if we embed K = Q[x]/(x8 − 2) into C by mapping x to 21/8e2πi/8, then
the compositum Q(21/12, 21/8e2πi/8) contains i = e2πi/4 and has degree 48 over Q (we
omit showing the degree is 48, but the existence of i certainly proves the two composita
are not isomorphic).

Definition 27.2. Consider a diagram of fields as in (27.1.1). We say that K and L
are linearly disjoint over k in Ω if the map

K ⊗k L −→ KL,
∑

xi ⊗ yi 7−→
∑

xiyi

is injective.

The following lemma does not seem to fit anywhere else.

Lemma 27.3. Let E/F be a normal algebraic field extension. There exist subexten-
sions E/Esep/F and E/Einsep/F such that

(1) F ⊂ Esep is Galois and Esep ⊂ E is purely inseparable,
(2) F ⊂ Einsep is purely inseparable and Einsep ⊂ E is Galois,
(3) E = Esep ⊗F Einsep.

Proof. We found the subfield Esep in Lemma 14.6. We set Einsep = EAut(E/F ).
Details omitted. �

28. Review

In this section we give a quick review of what has transpired above.

Let K/k be a field extension. Let α ∈ K. Then we have the following possibilities:
(1) The element α is transcendental over k.
(2) The elementα is algebraic over k. DenoteP (T ) ∈ k[T ] its minimal polynomial.

This is a monic polynomial P (T ) = T d + a1T
d−1 + . . .+ ad with coefficients

in k. It is irreducible and P (α) = 0. These properties uniquely determine P ,
and the integer d is called the degree of α over k. There are two subcases:
(a) The polynomial dP/dT is not identically zero. This is equivalent to the

condition that P (T ) =
∏
i=1,...,d(T − αi) for pairwise distinct elements

α1, . . . , αd in the algebraic closure of k. In this case we say that α is sepa-
rable over k.

(b) The dP/dT is identically zero. In this case the characteristic p of k is > 0,
and P is actually a polynomial in T p. Clearly there exists a largest power
q = pe such that P is a polynomial in T q . Then the element αq is separable
over k.

Definition 28.1. Algebraic field extensions.
(1) A field extension K/k is called algebraic if every element of K is algebraic over

k.
(2) An algebraic extension k′/k is called separable if every α ∈ k′ is separable over

k.
(3) An algebraic extension k′/k is called purely inseparable if the characteristic of

k is p > 0 and for every element α ∈ k′ there exists a power q of p such that
αq ∈ k.
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(4) An algebraic extension k′/k is called normal if for every α ∈ k′ the minimal
polynomial P (T ) ∈ k[T ] of α over k splits completely into linear factors over
k′.

(5) An algebraic extension k′/k is called Galois if it is separable and normal.

The following lemma does not seem to fit anywhere else.

Lemma 28.2. LetK be a field of characteristic p > 0. LetL/K be a separable algebraic
extension. Let α ∈ L.

(1) If the coefficients of the minimal polynomial of α over K are pth powers in K
then α is a pth power in L.

(2) More generally, if P ∈ K[T ] is a polynomial such that (a) α is a root of P , (b)
P has pairwise distinct roots in an algebraic closure, and (c) all coefficients of P
are pth powers, then α is a pth power in L.

Proof. It follows from the definitions that (2) implies (1). Assume P is as in (2).
Write P (T ) =

∑d
i=0 aiT

d−i and ai = bpi . The polynomial Q(T ) =
∑d
i=0 biT

d−i has
distinct roots in an algebraic closure as well, because the roots of Q are the pth roots of
the roots of P . If α is not a pth power, then T p − α is an irreducible polynomial over L
(Lemma 14.2). Moreover Q and T p − α have a root in common in an algebraic closure
L. Thus Q and T p − α are not relatively prime, which implies T p − α|Q in L[T ]. This
contradicts the fact that the roots of Q are pairwise distinct. �

29. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves

(25) Hypercoverings
Schemes

(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules



29. OTHER CHAPTERS 495

(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids

(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index





CHAPTER 10

Commutative Algebra

1. Introduction

Basic commutative algebra will be explained in this document. A reference is [?].

2. Conventions

A ring is commutative with 1. The zero ring is a ring. In fact it is the only ring that does
not have a prime ideal. The Kronecker symbol δij will be used. If R → S is a ring map
and q a prime of S , then we use the notation “p = R ∩ q” to indicate the prime which is
the inverse image of q under R→ S even if R is not a subring of S and even if R→ S is
not injective.

3. Basic notions

The following is a list of basic notions in commutative algebra. Some of these notions
are discussed in more detail in the text that follows and some are defined in the list, but
others are considered basic and will not be defined. If you are not familiar with most of
the italicized concepts, then we suggest looking at an introductory text on algebra before
continuing.

(1) R is a ring,
(2) x ∈ R is nilpotent,
(3) x ∈ R is a zerodivisor,
(4) x ∈ R is a unit,
(5) e ∈ R is an idempotent,
(6) an idempotent e ∈ R is called trivial if e = 1 or e = 0,
(7) ϕ : R1 → R2 is a ring homomorphism,
(8) ϕ : R1 → R2 is of finite presentation, or R2 is a finitely presented R1-algebra,

see Definition 6.1,
(9) ϕ : R1 → R2 is of finite type, or R2 is a finite type R1-algebra, see Definition

6.1,
(10) ϕ : R1 → R2 is finite, or R2 is a finite R1-algebra,
(11) R is a (integral) domain,
(12) R is reduced,
(13) R is Noetherian,
(14) R is a principal ideal domain or a PID,
(15) R is a Euclidean domain,
(16) R is a unique factorization domain or a UFD,
(17) R is a discrete valuation ring or a dvr,
(18) K is a field,
(19) L/K is a field extension,
(20) L/K is an algebraic field extension,

497
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(21) {ti}i∈I is a transcendence basis for L over K ,
(22) the transcendence degree trdeg(L/K) of L over K ,
(23) the field k is algebraically closed,
(24) if L/K is algebraic, and Ω/K an extension with Ω algebraically closed, then

there exists a ring map L→ Ω extending the map on K ,
(25) I ⊂ R is an ideal,
(26) I ⊂ R is radical,
(27) if I is an ideal then we have its radical

√
I ,

(28) I ⊂ R is nilpotent means that In = 0 for some n ∈ N,
(29) I ⊂ R is locally nilpotent means that every element of I is nilpotent,
(30) p ⊂ R is a prime ideal,
(31) if p ⊂ R is prime and if I, J ⊂ R are ideal, and if IJ ⊂ p, then I ⊂ p or J ⊂ p.
(32) m ⊂ R is a maximal ideal,
(33) any nonzero ring has a maximal ideal,
(34) the Jacobson radical of R is rad(R) =

⋂
m⊂Rm the intersection of all the maxi-

mal ideals of R,
(35) the ideal (T ) generated by a subset T ⊂ R,
(36) the quotient ring R/I ,
(37) an ideal I in the ring R is prime if and only if R/I is a domain,
(38) an ideal I in the ring R is maximal if and only if the ring R/I is a field,
(39) if ϕ : R1 → R2 is a ring homomorphism, and if I ⊂ R2 is an ideal, then ϕ−1(I)

is an ideal of R1,
(40) ifϕ : R1 → R2 is a ring homomorphism, and if I ⊂ R1 is an ideal, thenϕ(I)·R2

(sometimes denoted I ·R2, or IR2) is the ideal of R2 generated by ϕ(I),
(41) if ϕ : R1 → R2 is a ring homomorphism, and if p ⊂ R2 is a prime ideal, then

ϕ−1(p) is a prime ideal of R1,
(42) M is an R-module,
(43) for m ∈M the annihilator I = {f ∈ R | fm = 0} of m in R,
(44) N ⊂M is an R-submodule,
(45) M is an Noetherian R-module,
(46) M is a finite R-module,
(47) M is a finitely generated R-module,
(48) M is a finitely presented R-module,
(49) M is a free R-module,
(50) if 0 → K → L → M → 0 is a short exact sequence of R-modules and K , M

are free, then L is free,
(51) if N ⊂M ⊂ L are R-modules, then L/M = (L/N)/(M/N),
(52) S is a multiplicative subset of R,
(53) the localization R→ S−1R of R,
(54) if R is a ring and S is a multiplicative subset of R then S−1R is the zero ring if

and only if S contains 0,
(55) if R is a ring and if the multiplicative subset S consists completely of nonzero-

divisors, then R→ S−1R is injective,
(56) if ϕ : R1 → R2 is a ring homomorphism, and S is a multiplicative subsets of

R1, then ϕ(S) is a multiplicative subset of R2,
(57) if S , S′ are multiplicative subsets of R, and if SS′ denotes the set of products

SS′ = {r ∈ R | ∃s ∈ S,∃s′ ∈ S′, r = ss′} then SS′ is a multiplicative subset
of R,
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(58) if S , S′ are multiplicative subsets of R, and if S denotes the image of S in
(S′)−1R, then (SS′)−1R = S

−1((S′)−1R),
(59) the localization S−1M of the R-module M ,
(60) the functor M 7→ S−1M preserves injective maps, surjective maps, and exact-

ness,
(61) ifS ,S′ are multiplicative subsets ofR, and ifM is anR-module, then (SS′)−1M =

S−1((S′)−1M),
(62) ifR is a ring, I an ideal ofR, and S a multiplicative subset ofR, then S−1I is an

ideal of S−1R, and we have S−1R/S−1I = S
−1(R/I), where S is the image of

S in R/I ,
(63) if R is a ring, and S a multiplicative subset of R, then any ideal I ′ of S−1R is of

the form S−1I , where one can take I to be the inverse image of I ′ in R,
(64) if R is a ring, M an R-module, and S a multiplicative subset of R, then any

submodule N ′ of S−1M is of the form S−1N for some submodule N ⊂ M ,
where one can take N to be the inverse image of N ′ in M ,

(65) if S = {1, f, f2, . . .} then Rf = S−1R and Mf = S−1M ,
(66) if S = R \ p = {x ∈ R | x 6∈ p} for some prime ideal p, then it is customary to

denote Rp = S−1R and Mp = S−1M ,
(67) a local ring is a ring with exactly one maximal ideal,
(68) a semi-local ring is a ring with finitely many maximal ideals,
(69) if p is a prime in R, then Rp is a local ring with maximal ideal pRp,
(70) the residue field, denotedκ(p), of the prime p in the ringR is the field of fractions

of the domain R/p; it is equal to Rp/pRp = (R \ p)−1R/p,
(71) given R and M1, M2 the tensor product M1 ⊗RM2,
(72) given matricesA andB in a ringR of sizesm×n and n×mwe have det(AB) =∑

det(AS) det(SB) in R where the sum is over subsets S ⊂ {1, . . . , n} of size
m and AS is the m ×m submatrix of A with columns corresponding to S and
SB is the m×m submatrix of B with rows corresponding to S ,

(73) etc.

4. Snake lemma

The snake lemma and its variants are discussed in the setting of abelian categories in Ho-
mology, Section 5.

Lemma 4.1. Given a commutative diagram

X //

α

��

Y //

β

��

Z //

γ

��

0

0 // U // V // W

of abelian groups with exact rows, there is a canonical exact sequence
Ker(α)→ Ker(β)→ Ker(γ)→ Coker(α)→ Coker(β)→ Coker(γ)

Moreover: if X → Y is injective, then the first map is injective; if V → W is surjective,
then the last map is surjective.

Proof. The map ∂ : Ker(γ) → Coker(α) is defined as follows. Take z ∈ Ker(γ).
Choose y ∈ Y mapping to z. Then β(y) ∈ V maps to zero inW . Hence β(y) is the image
of some u ∈ U . Set ∂z = u, the class of u in the cokernel of α. Proof of exactness is
omitted. �
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5. Finite modules and finitely presented modules

Just some basic notation and lemmas.

Definition 5.1. Let R be a ring. Let M be an R-module.
(1) We say M is a finite R-module, or a finitely generated R-module if there exist

n ∈ N and x1, . . . , xn ∈ M such that every element of M is an R-linear com-
bination of the xi. Equivalently, this means there exists a surjection R⊕n →M
for some n ∈ N.

(2) We sayM is a finitely presentedR-module or anR-module of finite presentation
if there exist integers n,m ∈ N and an exact sequence

R⊕m −→ R⊕n −→M −→ 0

Informally, M is a finitely presented R-module if and only if it is finitely generated and
the module of relations among these generators is finitely generated as well. A choice of
an exact sequence as in the definition is called a presentation of M .

Lemma 5.2. LetR be a ring. Let α : R⊕n →M and β : N →M be module maps. If
Im(α) ⊂ Im(β), then there exists an R-module map γ : R⊕n → N such that α = β ◦ γ.

Proof. Let ei = (0, . . . , 0, 1, 0, . . . , 0) be the ith basis vector of R⊕n. Let xi ∈ N be
an element with α(ei) = β(xi) which exists by assumption. Set γ(a1, . . . , an) =

∑
aixi.

By construction α = β ◦ γ. �

Lemma 5.3. Let R be a ring. Let

0→M1 →M2 →M3 → 0

be a short exact sequence of R-modules.
(1) If M1 and M3 are finite R-modules, then M2 is a finite R-module.
(2) If M1 and M3 are finitely presented R-modules, then M2 is a finitely presented

R-module.
(3) If M2 is a finite R-module, then M3 is a finite R-module.
(4) If M2 is a finitely presented R-module and M1 is a finite R-module, then M3 is

a finitely presented R-module.
(5) If M3 is a finitely presented R-module and M2 is a finite R-module, then M1 is

a finite R-module.

Proof. Proof of (1). If x1, . . . , xn are generators of M1 and y1, . . . , ym ∈ M2 are
elements whose images in M3 are generators of M3, then x1, . . . , xn, y1, . . . , ym generate
M2.

Part (3) is immediate from the definition.

Proof of (5). Assume M3 is finitely presented and M2 finite. Choose a presentation

R⊕m → R⊕n →M3 → 0

By Lemma 5.2 there exists a map R⊕n →M2 such that the solid diagram

R⊕m //

��

R⊕n //

��

M3 //

id
��

0

0 // M1 // M2 // M3 // 0
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commutes. This produces the dotted arrow. By the snake lemma (Lemma 4.1) we see that
we get an isomorphism

Coker(R⊕m →M1) ∼= Coker(R⊕n →M2)

In particular we conclude that Coker(R⊕m →M1) is a finiteR-module. Since Im(R⊕m →
M1) is finite by (3), we see that M1 is finite by part (1).

Proof of (4). Assume M2 is finitely presented and M1 is finite. Choose a presentation
R⊕m → R⊕n → M2 → 0. Choose a surjection R⊕k → M1. By Lemma 5.2 there
exists a factorization R⊕k → R⊕n → M2 of the composition R⊕k → M1 → M2. Then
R⊕k+m → R⊕n →M3 → 0 is a presentation.

Proof of (2). Assume that M1 and M3 are finitely presented. The argument in the proof
of part (1) produces a commutative diagram

0 // R⊕n

��

// R⊕n+m

��

// R⊕m

��

// 0

0 // M1 // M2 // M3 // 0

with surjective vertical arrows. By the snake lemma we obtain a short exact sequence

0→ Ker(R⊕n →M1)→ Ker(R⊕n+m →M2)→ Ker(R⊕m →M3)→ 0

By part (5) we see that the outer two modules are finite. Hence the middle one is finite
too. By (4) we see that M2 is of finite presentation. �

Lemma 5.4. LetR be a ring, and letM be a finiteR-module. There exists a filtration
by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/Ii for some ideal Ii of R.

Proof. By induction on the number of generators of M . Let x1, . . . , xr ∈ M be a
minimal number of generators. Let M ′ = Rx1 ⊂ M . Then M/M ′ has r − 1 generators
and the induction hypothesis applies. And clearlyM ′ ∼= R/I1 with I1 = {f ∈ R | fx1 =
0}. �

Lemma 5.5. Let R → S be a ring map. Let M be an S-module. If M is finite as an
R-module, then M is finite as an S-module.

Proof. In fact, anyR-generating set ofM is also an S-generating set ofM , since the
R-module structure is induced by the image of R in S. �

6. Ring maps of finite type and of finite presentation

Definition 6.1. Let R→ S be a ring map.
(1) We say R→ S is of finite type, or that S is a finite type R-algebra if there exist

an n ∈ N and an surjection of R-algebras R[x1, . . . , xn]→ S.
(2) We say R → S is of finite presentation if there exist integers n,m ∈ N and

polynomials f1, . . . , fm ∈ R[x1, . . . , xn] and an isomorphism of R-algebras
R[x1, . . . , xn]/(f1, . . . , fm) ∼= S.
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Informally, R → S is of finite presentation if and only if S is finitely generated as an
R-algebra and the ideal of relations among the generators is finitely generated. A choice
of a surjection R[x1, . . . , xn] → S as in the definition is sometimes called a presentation
of S.

Lemma 6.2. The notions finite type and finite presentation have the following per-
manence properties.

(1) A composition of ring maps of finite type is of finite type.
(2) A composition of ring maps of finite presentation is of finite presentation.
(3) Given R→ S′ → S with R→ S of finite type, then S′ → S is of finite type.
(4) Given R → S′ → S , with R → S of finite presentation, and R → S′ of finite

type, then S′ → S is of finite presentation.

Proof. We only prove the last assertion. Write S = R[x1, . . . , xn]/(f1, . . . , fm)
and S′ = R[y1, . . . , ya]/I . Say that the class ȳi of yi maps to hi mod (f1, . . . , fm) in S.
Then it is clear that S = S′[x1, . . . , xn]/(f1, . . . , fm, h1 − ȳ1, . . . , ha − ȳa). �

Lemma 6.3. Let R → S be a ring map of finite presentation. For any surjection
α : R[x1, . . . , xn]→ S the kernel of α is a finitely generated ideal in R[x1, . . . , xn].

Proof. Write S = R[y1, . . . , ym]/(f1, . . . , fk). Choose gi ∈ R[y1, . . . , ym] which
are lifts ofα(xi). Then we see thatS = R[xi, yj ]/(fl, xi−gi). Choosehj ∈ R[x1, . . . , xn]
such that α(hj) corresponds to yj mod (f1, . . . , fk). Consider the map ψ : R[xi, yj ] →
R[xi], xi 7→ xi, yj 7→ hj . Then the kernel of α is the image of (fl, xi − gi) under ψ and
we win. �

Lemma 6.4. Let R→ S be a ring map. Let M be an S-module. Assume R→ S is of
finite type and M is finitely presented as an R-module. Then M is finitely presented as
an S-module.

Proof. This is similar to the proof of part (4) of Lemma 6.2. We may assume S =
R[x1, . . . , xn]/J . Choose y1, . . . , ym ∈M which generateM as anR-module and choose
relations

∑
aijyj = 0, i = 1, . . . , t which generate the kernel of R⊕m → M . For any

i = 1, . . . , n and j = 1, . . . ,m write

xiyj =
∑

aijkyk

for some aijk ∈ R. Consider the S-module N generated by y1, . . . , ym subject to the
relations

∑
aijyj = 0, i = 1, . . . , t and xiyj =

∑
aijkyk , i = 1, . . . , n and j = 1, . . . ,m.

Then N has a presentation

S⊕nm+t −→ S⊕m −→ N −→ 0

By construction there is a surjective map ϕ : N → M . To finish the proof we show
ϕ is injective. Suppose z =

∑
bjyj ∈ N for some bj ∈ S. We may think of bj as a

polynomial in x1, . . . , xn with coefficients in R. By applying the relations of the form
xiyj =

∑
aijkyk we can inductively lower the degree of the polynomials. Hence we

see that z =
∑
cjyj for some cj ∈ R. Hence if ϕ(z) = 0 then the vector (c1, . . . , cm)

is an R-linear combination of the vectors (ai1, . . . , aim) and we conclude that z = 0 as
desired. �
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7. Finite ring maps

Here is the definition.

Definition 7.1. Let ϕ : R → S be a ring map. We say ϕ : R → S is finite if S is
finite as an R-module.

Lemma 7.2. Let R → S be a finite ring map. Let M be an S-module. Then M is
finite as an R-module if and only if M is finite as an S-module.

Proof. One of the implications follows from Lemma 5.5. To see the other assume
that M is finite as an S-module. Pick x1, . . . , xn ∈ S which generate S as an R-module.
Pick y1, . . . , ym ∈ M which generate M as an S-module. Then xiyj generate M as an
R-module. �

Lemma 7.3. Suppose that R → S and S → T are finite ring maps. Then R → T is
finite.

Proof. If ti generate T as an S-module and sj generate S as an R-module, then tisj
generate T as an R-module. (Also follows from Lemma 7.2.) �

Lemma 7.4. Let ϕ : R→ S be a ring map.
(1) If ϕ is finite, then ϕ is of finite type.
(2) If S is of finite presentation as an R-module, then ϕ is of finite presentation.

Proof. For (1) if x1, . . . , xn ∈ S generate S as an R-module, then x1, . . . , xn gener-
ate S as anR-algebra. For (2), suppose that

∑
rijxi = 0, j = 1, . . . ,m is a set of generators

of the relations among the xi when viewed as R-module generators of S. Furthermore,
write 1 =

∑
rixi for some ri ∈ R and xixj =

∑
rkijxk for some rkij ∈ R. Then

S = R[t1, . . . , tn]/(
∑

rijti, 1−
∑

riti, titj −
∑

rkijtk)

as an R-algebra which proves (2). �

For more information on finite ring maps, please see Section 36.

8. Colimits

Some of the material in this section overlaps with the general discussion on colimits in
Categories, Sections 14 – 21. The notion of a preordered set is defined in Categories, Defi-
nition 21.1. It is a slightly weaker notion than a partially ordered set.

Definition 8.1. Let (I,≤) be a preordered set. A system (Mi, µij) of R-modules
over I consists of a family ofR-modules {Mi}i∈I indexed by I and a family ofR-module
maps {µij : Mi →Mj}i≤j such that for all i ≤ j ≤ k

µii = idMi
µik = µjk ◦ µij

We say (Mi, µij) is a directed system if I is a directed set.

This is the same as the notion defined in Categories, Definition 21.2 and Section 21. We
refer to Categories, Definition 14.2 for the definition of a colimit of a diagram/system in
any category.
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Lemma 8.2. Let (Mi, µij) be a system of R-modules over the preordered set I . The
colimit of the system (Mi, µij) is the quotient R-module (

⊕
i∈IMi)/Q where Q is the

R-submodule generated by all elements
ιi(xi)− ιj(µij(xi))

where ιi : Mi →
⊕

i∈IMi is the natural inclusion. We denote the colimit M =
colimiMi. We denote π :

⊕
i∈IMi →M the projection map and φi = π◦ιi : Mi →M .

Proof. This lemma is a special case of Categories, Lemma 14.12 but we will also prove
it directly in this case. Namely, note that φi = φj ◦ µij in the above construction. To
show the pair (M,φi) is the colimit we have to show it satisfies the universal property: for
any other such pair (Y, ψi) with ψi : Mi → Y , ψi = ψj ◦µij , there is a uniqueR-module
homomorphism g : M → Y such that the following diagram commutes:

Mi

µij //

φi

  
ψi

��

Mj

φj

}}
ψj

��

M

g

��
Y

And this is clear because we can define g by taking the map ψi on the summandMi in the
direct sum

⊕
Mi. �

Lemma 8.3. Let (Mi, µij) be a system of R-modules over the preordered set I . As-
sume that I is directed. The colimit of the system (Mi, µij) is canonically isomorphic to
the module M defined as follows:

(1) as a set let
M =

(∐
i∈I

Mi

)
/ ∼

where for m ∈Mi and m′ ∈Mi′ we have
m ∼ m′ ⇔ µij(m) = µi′j(m′) for some j ≥ i, i′

(2) as an abelian group for m ∈ Mi and m′ ∈ Mi′ we define the sum of the classes
ofm andm′ inM to be the class of µij(m) +µi′j(m′) where j ∈ I is any index
with i ≤ j and i′ ≤ j , and

(3) as an R-module define for m ∈ Mi and x ∈ R the product of x and the class of
m in M to be the class of xm in M .

The canonical maps φi : Mi →M are induced by the canonical maps Mi →
∐
i∈IMi.

Proof. Omitted. Compare with Categories, Section 19. �

Lemma 8.4. Let (Mi, µij) be a directed system. Let M = colimMi with µi : Mi →
M . Then, µi(xi) = 0 for xi ∈Mi if and only if there exists j ≥ i such that µij(xi) = 0.

Proof. This is clear from the description of the directed colimit in Lemma 8.3. �

Example 8.5. Consider the partially ordered set I = {a, b, c} with a < b and a < c
and no other strict inequalities. A system (Ma,Mb,Mc, µab, µac) over I consists of three
R-modules Ma,Mb,Mc and two R-module homomorphisms µab : Ma → Mb and µac :
Ma →Mc. The colimit of the system is just

M := colimi∈IMi = Coker(Ma →Mb ⊕Mc)
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where the map is µab ⊕ −µac. Thus the kernel of the canonical map Ma → M is
Ker(µab) + Ker(µac). And the kernel of the canonical map Mb → M is the image of
Ker(µac) under the map µab. Hence clearly the result of Lemma 8.4 is false for general
systems.

Definition 8.6. Let (Mi, µij), (Ni, νij) be systems ofR-modules over the same pre-
ordered set I . A homomorphism of systems Φ from (Mi, µij) to (Ni, νij) is by definition
a family ofR-module homomorphisms φi : Mi → Ni such that φj ◦µij = νij ◦φi for all
i ≤ j.

This is the same notion as a transformation of functors between the associated diagrams
M : I →ModR andN : I →ModR, in the language of categories. The following lemma
is a special case of Categories, Lemma 14.8.

Lemma 8.7. Let (Mi, µij), (Ni, νij) be systems of R-modules over the same pre-
ordered set. A morphism of systems Φ = (φi) from (Mi, µij) to (Ni, νij) induces a unique
homomorphism

colimφi : colimMi −→ colimNi

such that
Mi

//

φi

��

colimMi

colimφi

��
Ni // colimNi

commutes for all i ∈ I .

Proof. Write M = colimMi and N = colimNi and φ = colimφi (as yet to be
constructed). We will use the explicit description of M and N in Lemma 8.2 without
further mention. The condition of the lemma is equivalent to the condition that⊕

i∈IMi
//⊕

φi

��

M

φ

��⊕
i∈I Ni

// N

commutes. Hence it is clear that if φ exists, then it is unique. To see that φ exists, it suffices
to show that the kernel of the upper horizontal arrow is mapped by

⊕
φi to the kernel of

the lower horizontal arrow. To see this, let j ≤ k and xj ∈Mj . Then

(
⊕

φi)(xj − µjk(xj)) = φj(xj)− φk(µjk(xj)) = φj(xj)− νjk(φj(xj))

which is in the kernel of the lower horizontal arrow as required. �

Lemma 8.8. Let I be a directed set. Let (Li, λij), (Mi, µij), and (Ni, νij) be systems
ofR-modules over I . Let ϕi : Li →Mi and ψi : Mi → Ni be morphisms of systems over
I . Assume that for all i ∈ I the sequence of R-modules

Li
ϕi // Mi

ψi // Ni

is a complex with homology Hi. Then the R-modules Hi form a system over I , the se-
quence of R-modules

colimi Li
ϕ // colimiMi

ψ // colimiNi
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is a complex as well, and denoting H its homology we have

H = colimiHi.

Proof. It is clear that colimi Li
ϕ // colimiMi

ψ // colimiNi is a complex.
For each i ∈ I , there is a canonical R-module morphism Hi → H (sending each [m] ∈
Hi = Ker(ψi)/ Im(ϕi) to the residue class in H = Ker(ψ)/ Im(ϕ) of the image of m in
colimiMi). These give rise to a morphism colimiHi → H . It remains to show that this
morphism is surjective and injective.

We are going to repeatedly use the description of colimits over I as in Lemma 8.3 without
further mention. Let h ∈ H . Since H = Ker(ψ)/ Im(ϕ) we see that h is the class mod
Im(ϕ) of an element [m] in Ker(ψ) ⊂ colimiMi. Choose an i such that [m] comes from
an element m ∈ Mi. Choose a j ≥ i such that νij(ψi(m)) = 0 which is possible since
[m] ∈ Ker(ψ). After replacing i by j and m by µij(m) we see that we may assume
m ∈ Ker(ψi). This shows that the map colimiHi → H is surjective.

Suppose that hi ∈ Hi has image zero on H . Since Hi = Ker(ψi)/ Im(ϕi) we may repre-
sent hi by an element m ∈ Ker(ψi) ⊂ Mi. The assumption on the vanishing of hi in H
means that the class of m in colimiMi lies in the image of ϕ. Hence there exists a j ≥ i
and an l ∈ Lj such that ϕj(l) = µij(m). Clearly this shows that the image of hi in Hj is
zero. This proves the injectivity of colimiHi → H . �

Example 8.9. Taking colimits is not exact in general. Consider the partially ordered
set I = {a, b, c} with a < b and a < c and no other strict inequalities, as in Example
8.5. Consider the map of systems (0,Z,Z, 0, 0) → (Z,Z,Z, 1, 1). From the description
of the colimit in Example 8.5 we see that the associated map of colimits is not injective,
even though the map of systems is injective on each object. Hence the result of Lemma 8.8
is false for general systems.

Lemma 8.10. Let I be an index category satisfying the assumptions of Categories,
Lemma 19.8. Then taking colimits of diagrams of abelian groups over I is exact (i.e., the
analogue of Lemma 8.8 holds in this situation).

Proof. By Categories, Lemma 19.8 we may write I =
∐
j∈J Ij with each Ij a filtered

category, and J possibly empty. By Categories, Lemma 21.5 taking colimits over the index
categories Ij is the same as taking the colimit over some directed set. Hence Lemma 8.8
applies to these colimits. This reduces the problem to showing that coproducts in the
category of R-modules over the set J are exact. In other words, exact sequences Lj →
Mj → Nj of R modules we have to show that⊕

j∈J
Lj −→

⊕
j∈J

Mj −→
⊕

j∈J
Nj

is exact. This can be verified by hand, and holds even if J is empty. �

9. Localization

Definition 9.1. Let R be a ring, S a subset of R. We say S is a multiplicative subset
of R if 1 ∈ S and S is closed under multiplication, i.e., s, s′ ∈ S ⇒ ss′ ∈ S.

Given a ring A and a multiplicative subset S , we define a relation on A× S as follows:

(x, s) ∼ (y, t)⇔ ∃u ∈ S such that (xt− ys)u = 0
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It is easily checked that this is an equivalence relation. Let x/s (or x
s ) be the equivalence

class of (x, s) and S−1A be the set of all equivalence classes. Define addition and multi-
plication in S−1A as follows:

x/s+ y/t = (xt+ ys)/st, x/s · y/t = xy/st

One can check that S−1A becomes a ring under these operations.

Definition 9.2. This ring is called the localization of A with respect to S.

We have a natural ring map from A to its localization S−1A,

A −→ S−1A, x 7−→ x/1
which is sometimes called the localization map. In general the localization map is not
injective, unless S contains no zerodivisors. For, if x/1 = 0, then there is a u ∈ S such
that xu = 0 in A and hence x = 0 since there are no zerodivisors in S. The localization
of a ring has the following universal property.

Proposition 9.3. Let f : A → B be a ring map that sends every element in S to a
unit ofB. Then there is a unique homomorphism g : S−1A→ B such that the following
diagram commutes.

A
f //

""

B

S−1A

g

<<

Proof. Existence. We define a map g as follows. For x/s ∈ S−1A, let g(x/s) =
f(x)f(s)−1 ∈ B. It is easily checked from the definition that this is a well-defined ring
map. And it is also clear that this makes the diagram commutative.
Uniqueness. We now show that if g′ : S−1A → B satisfies g′(x/1) = f(x), then
g = g′. Hence f(s) = g′(s/1) for s ∈ S by the commutativity of the diagram. But
then g′(1/s)f(s) = 1 in B, which implies that g′(1/s) = f(s)−1 and hence g′(x/s) =
g′(x/1)g′(1/s) = f(x)f(s)−1 = g(x/s). �

Lemma 9.4. The localization S−1A is the zero ring if and only if 0 ∈ S.

Proof. If 0 ∈ S , any pair (a, s) ∼ (0, 1) by definition. If 0 6∈ S , then clearly
1/1 6= 0/1 in S−1A. �

Lemma 9.5. Let R be a ring. Let S ⊂ R be a multiplicative subset. The category
of S−1R-modules is equivalent to the category of R-modules N with the property that
every s ∈ S acts as an automorphism on N .

Proof. The functor which defines the equivalence associates to an S−1R-moduleM
the same module but now viewed as an R-module via the localization map R → S−1R.
Conversely, if N is an R-module, such that every s ∈ S acts via an automorphism sN ,
then we can think ofN as an S−1R-module by letting x/s act via xN ◦ s−1

N . We omit the
verification that these two functors are quasi-inverse to each other. �

The notion of localization of a ring can be generalized to the localization of a module. Let
A be a ring, S a multiplicative subset of A and M an A-module. We define a relation on
M × S as follows

(m, s) ∼ (n, t)⇔ ∃u ∈ S such that (mt− ns)u = 0
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This is clearly an equivalence relation. Denote by m/s (or m
s ) be the equivalence class

of (m, s) and S−1M be the set of all equivalence classes. Define the addition and scalar
multiplication as follows

m/s+ n/t = (mt+ ns)/st, m/s · n/t = mn/st

It is clear that this makes S−1M an S−1A-module.

Definition 9.6. The S−1A-module S−1M is called the localization of M at S.

Note that there is an A-module map M → S−1M , m 7→ m/1 which is sometimes called
the localization map. It satisfies the following universal property.

Lemma 9.7. Let R be a ring. Let S ⊂ R a multiplicative subset. Let M , N be R-
modules. Assume all the elements of S act as automorphisms on N . Then the canonical
map

HomR(S−1M,N) −→ HomR(M,N)
induced by the localization map, is an isomorphism.

Proof. It is clear that the map is well-defined and R-linear. Injectivity: Let α ∈
HomR(S−1M,N) and take an arbitrary elementm/s ∈ S−1M . Then, since s·α(m/s) =
α(m/1), we have α(m/s) = s−1(α(m/1)), so α is completely determined by what it does
on the image of M in S−1M . Surjectivity: Let β : M → N be a given R-linear map. We
need to show that it can be ”extended” to S−1M . Define a map of sets

M × S → N, (m, s) 7→ s−1β(m)
Clearly, this map respects the equivalence relation from above, so it descends to a well-
defined map α : S−1M → N . It remains to show that this map is R-linear, so take
r, r′ ∈ R as well as s, s′ ∈ S and m,m′ ∈M . Then

α(r ·m/s+ r′ ·m′/s′) = α((r · s′ ·m+ r′ · s ·m′)/(ss′))
= (ss′)−1β(r · s′ ·m+ r′ · s ·m′)
= (ss′)−1(r · s′β(m) + r′ · sβ(m′))
= rα(m/s) + r′α(m′/s′)

and we win. �

Example 9.8. Let A be a ring and let M be an A-module. Here are some important
examples of localizations.

(1) Given p a prime ideal of A consider S = A \ p. It is immediately checked that
S is a multiplicative set. In this case we denote Ap and Mp the localization of
A and M with respect to S respectively. These are called the localization of A,
resp. M at p.

(2) Let f ∈ A. Consider S = {1, f, f2, . . .}. This is clearly a multiplicative subset
ofA. In this case we denoteAf (resp. Mf ) the localization S−1A (resp. S−1M ).
This is called the localization ofA, resp.M with respect to f . Note thatAf = 0
if and only if f is nilpotent in A.

(3) Let S = {f ∈ A | f is not a zerodivisor in A}. This is a multiplicative subset of
A. In this case the ringQ(A) = S−1A is called either the total quotient ring, or
the total ring of fractions of A.

(4) If A is a domain, then the total quotient ring Q(A) is the field of fractions of A.
Please see Fields, Example 3.4.
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Lemma 9.9. Let R be a ring. Let S ⊂ R be a multiplicative subset. Let M be an
R-module. Then

S−1M = colimf∈SMf

where the preorder on S is given by f ≥ f ′ ⇔ f = f ′f ′′ for some f ′′ ∈ R in which case
the map Mf ′ →Mf is given by m/(f ′)e 7→ m(f ′′)e/fe.

Proof. Omitted. Hint: Use the universal property of Lemma 9.7. �

In the following paragraph, let A denote a ring, and M,N denote modules over A.
If S and S′ are multiplicative sets of A, then it is clear that

SS′ = {ss′ : s ∈ S, s′ ∈ S′}
is also a multiplicative set of A. Then the following holds.

Proposition 9.10. Let S be the image of S in S′−1A, then (SS′)−1A is isomorphic
to S−1(S′−1A).

Proof. The map sending x ∈ A to x/1 ∈ (SS′)−1A induces a map sending x/s ∈
S′−1A to x/s ∈ (SS′)−1A, by universal property. The image of the elements in S are
invertible in (SS′)−1A. By the universal property we get a map f : S−1(S′−1A) →
(SS′)−1A which maps (x/t′)/(s/s′) to (x/t′) · (s/s′)−1.

On the other hand, the map from A to S−1(S′−1A) sending x ∈ A to (x/1)/(1/1) also
induces a map g : (SS′)−1A → S

−1(S′−1A) which sends x/ss′ to (x/s′)/(s/1), by the
universal property again. It is immediately checked that f and g are inverse to each other,
hence they are both isomorphisms. �

For the module M we have

Proposition 9.11. View S′−1M as an A-module, then S−1(S′−1M) is isomorphic
to (SS′)−1M .

Proof. Note that given a A-module M, we have not proved any universal property
for S−1M . Hence we cannot reason as in the preceding proof; we have to construct the
isomorphism explicitly.
We define the maps as follows

f : S−1(S′−1M) −→ (SS′)−1M,
x/s′

s
7→ x/ss′

g : (SS′)−1M −→ S−1(S′−1M), x/t 7→ x/s′

s
for some s ∈ S, s′ ∈ S′, and t = ss′

We have to check that these homomorphisms are well-defined, that is, independent the
choice of the fraction. This is easily checked and it is also straightforward to show that
they are inverse to each other. �

If u : M → N is an A homomorphism, then the localization indeed induces a well-
defined S−1A homomorphism S−1u : S−1M → S−1N which sends x/s to u(x)/s. It is
immediately checked that this construction is functorial, so that S−1 is actually a functor
from the category ofA-modules to the category of S−1A-modules. Moreover this functor
is exact, as we show in the following proposition.

Proposition 9.12. Let L u−→ M
v−→ N be an exact sequence of R-modules. Then

S−1L→ S−1M → S−1N is also exact.
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Proof. First it is clear thatS−1L→ S−1M → S−1N is a complex since localization
is a functor. Next suppose thatx/smaps to zero inS−1N for somex/s ∈ S−1M . Then by
definition there is a t ∈ S such that v(xt) = v(x)t = 0 in M , which means xt ∈ Ker(v).
By the exactness of L → M → N we have xt = u(y) for some y in L. Then x/s is the
image of y/st. This proves the exactness. �

Lemma 9.13. Localization respects quotients, i.e. if N is a submodule of M , then
S−1(M/N) ' (S−1M)/(S−1N).

Proof. From the exact sequence

0 −→ N −→M −→M/N −→ 0
we have

0 −→ S−1N −→ S−1M −→ S−1(M/N) −→ 0
The corollary then follows. �

If, in the preceding Corollary, we take N = I and M = A for an ideal I of A, we see
that S−1A/S−1I ' S−1(A/I) as A-modules. The next proposition shows that they are
isomorphic as rings.

Proposition 9.14. Let I be an ideal of A, S a multiplicative set of A. Then S−1I is
an ideal of S−1A and S−1(A/I) is isomorphic to S−1A/S−1I , where S is the image of S
in A/I .

Proof. The fact that S−1I is an ideal is clear since I itself is an ideal. Define

f : S−1A −→ S
−1(A/I), x/s 7→ x/s

where x and s are the images of x and s in A/I . We shall keep similar notations in this
proof. This map is well-defined by the universal property of S−1A, and S−1I is contained
in the kernel of it, therefore it induces a map

f : S−1A/S−1I −→ S
−1(A/I), x/s 7→ x/s

On the other hand, the map A → S−1A/S−1I sending x to x/1 induces a map A/I →
S−1A/S−1I sending x to x/1. The image of S is invertible in S−1A/S−1I , thus induces
a map

g : S−1(A/I) −→ S−1A/S−1I,
x

s
7→ x/s

by the universal property. It is then clear that f and g are inverse to each other, hence are
both isomorphisms. �

We now consider how submodules behave in localization.

Lemma 9.15. Any submodule N ′ of S−1M is of the form S−1N for some N ⊂ M .
Indeed one can take N to be the inverse image of N ′ in M .

Proof. Let N be the inverse image of N ′ in M . Then one can see that S−1N ⊃ N ′.
To show they are equal, take x/s in S−1N , where s ∈ S and x ∈ N . This yields that
x/1 ∈ N ′. Since N ′ is an S−1R-submodule we have x/s = x/1 · 1/s ∈ N ′. This finishes
the proof. �

Taking M = A and N = I an ideal of A, we have the following corollary, which can be
viewed as a converse of the first part of Proposition 9.14.
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Lemma 9.16. Each ideal I ′ of S−1A takes the form S−1I , where one can take I to be
the inverse image of I ′ in A.

Proof. Immediate from Lemma 9.15. �

10. Internal Hom

If R is a ring, and M , N are R-modules, then

HomR(M,N) = {ϕ : M → N}
is the set of R-linear maps from M to N . This set comes with the structure of an abelian
group by setting (ϕ+ ψ)(m) = ϕ(m) + ψ(m), as usual. In fact, HomR(M,N) is also an
R-module via the rule (xϕ)(m) = xϕ(m) = ϕ(xm).

Given maps a : M → M ′ and b : N → N ′ of R-modules, we can pre-compose and post-
compose homomorphisms by a and b. This leads to the following commutative diagram

HomR(M ′, N)

−◦a
��

b◦−
// HomR(M ′, N ′)

−◦a
��

HomR(M,N) b◦− // HomR(M,N ′)

In fact, the maps in this diagram are R-module maps. Thus HomR defines an additive
functor

ModoppR ×ModR −→ModR, (M,N) 7−→ HomR(M,N)

Lemma 10.1. Exactness and HomR. Let R be a ring.
(1) Let M1 → M2 → M3 → 0 be a complex of R-modules. Then M1 → M2 →

M3 → 0 is exact if and only if 0 → HomR(M3, N) → HomR(M2, N) →
HomR(M1, N) is exact for all R-modules N .

(2) Let 0 → M1 → M2 → M3 be a complex of R-modules. Then 0 → M1 →
M2 → M3 is exact if and only if 0 → HomR(N,M1) → HomR(N,M2) →
HomR(N,M3) is exact for all R-modules N .

Proof. Omitted. �

Lemma 10.2. Let R be a ring. Let M be a finitely presented R-module. Let N be an
R-module.

(1) For f ∈ R we have HomR(M,N)f = HomRf (Mf , Nf ) = HomR(Mf , Nf ),
(2) for a multiplicative subset S of R we have

S−1 HomR(M,N) = HomS−1R(S−1M,S−1N) = HomR(S−1M,S−1N).

Proof. Part (1) is a special case of part (2). The second equality in (2) follows from
Lemma 9.7. Choose a presentation⊕

j=1,...,m
R −→

⊕
i=1,...,n

R→M → 0.

By Lemma 10.1 this gives an exact sequence

0→ HomR(M,N)→
⊕

i=1,...,n
N −→

⊕
j=1,...,m

N.

Inverting S and using Proposition 9.12 we get an exact sequence

0→ S−1 HomR(M,N)→
⊕

i=1,...,n
S−1N −→

⊕
j=1,...,m

S−1N
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and the result follows since S−1M sits in an exact sequence⊕
j=1,...,m

S−1R −→
⊕

i=1,...,n
S−1R→ S−1M → 0

which induces (by Lemma 10.1) the exact sequence

0→ HomS−1R(S−1M,S−1N)→
⊕

i=1,...,n
S−1N −→

⊕
j=1,...,m

S−1N

which is the same as the one above. �

11. Characterizing finite and finitely presented modules

Given a moduleN over a ringR, you can characterize whether or notN is a finite module
or a finitely presented module in terms of the functor HomR(N,−).

Lemma 11.1. Let R be a ring. Let N be an R-module. The following are equivalent
(1) N is a finite R-module,
(2) for any filtered colimitM = colimMi ofR-modules the map colim HomR(N,Mi)→

HomR(N,M) is injective.

Proof. Assume (1) and choose generators x1, . . . , xm forN . IfN →Mi is a module
map and the composition N → Mi → M is zero, then because M = colimi′≥iMi′ for
each j ∈ {1, . . . ,m}we can find a i′ ≥ i such that xj maps to zero inMi′ . Since there are
finitely many xj we can find a single i′ which works for all of them. Then the composition
N →Mi →Mi′ is zero and we conclude the map is injective, i.e., part (2) holds.
Assume (2). For a finite subsetE ⊂ N denoteNE ⊂ N theR-submodule generated by the
elements ofE. Then 0 = colimN/NE is a filtered colimit. Hence we see that id : N → N
maps into NE for some E , i.e., N is finitely generated. �

For purposes of reference, we define what it means to have a relation between elements of
a module.

Definition 11.2. LetR be a ring. LetM be anR-module. Let n ≥ 0 and xi ∈M for
i = 1, . . . , n. A relation between x1, . . . , xn in M is a sequence of elements f1, . . . , fn ∈
R such that

∑
i=1,...,n fixi = 0.

Lemma 11.3. Let R be a ring and let M be an R-module. Then M is the colimit of a
directed system (Mi, µij) of R-modules with all Mi finitely presented R-modules.

Proof. Consider any finite subset S ⊂ M and any finite collection of relations E
among the elements of S. So each s ∈ S corresponds to xs ∈ M and each e ∈ E consists
of a vector of elements fe,s ∈ R such that

∑
fe,sxs = 0. Let MS,E be the cokernel of the

map
R#E −→ R#S , (ge)e∈E 7−→ (

∑
gefe,s)s∈S .

There are canonical mapsMS,E →M . If S ⊂ S′ and if the elements ofE correspond, via
this map, to relations in E′, then there is an obvious map MS,E → MS′,E′ commuting
with the maps to M . Let I be the set of pairs (S,E) with ordering by inclusion as above.
It is clear that the colimit of this directed system is M . �

Lemma 11.4. Let R be a ring. Let N be an R-module. The following are equivalent
(1) N is a finitely presented R-module,
(2) for any filtered colimitM = colimMi ofR-modules the map colim HomR(N,Mi)→

HomR(N,M) is bijective.
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Proof. Assume (1) and choose an exact sequence F−1 → F0 → N → 0 with Fi
finite free. Then we have an exact sequence

0→ HomR(N,M)→ HomR(F0,M)→ HomR(F−1,M)
functorial in the R-module M . The functors HomR(Fi,M) commute with filtered col-
imits as HomR(R⊕n,M) = M⊕n. Since filtered colimits are exact (Lemma 8.8) we see
that (2) holds.
Assume (2). By Lemma 11.3 we can write N = colimNi as a filtered colimit such that Ni
is of finite presentation for all i. Thus idN factors throughNi for some i. This means that
N is a direct summand of a finitely presented R-module (namely Ni) and hence finitely
presented. �

12. Tensor products

Definition 12.1. Let R be a ring, M,N,P be three R-modules. A mapping f :
M × N → P (where M × N is viewed only as Cartesian product of two R-modules) is
said to be R-bilinear if for each x ∈M the mapping y 7→ f(x, y) of N into P is R-linear,
and for each y ∈ N the mapping x 7→ f(x, y) is also R-linear.

Lemma 12.2. Let M,N be R-modules. Then there exists a pair (T, g) where T is an
R-module, and g : M × N → T an R-bilinear mapping, with the following universal
property: For any R-module P and any R-bilinear mapping f : M × N → P , there
exists a unique R-linear mapping f̃ : T → P such that f = f̃ ◦ g. In other words, the
following diagram commutes:

M ×N
f //

g
##

P

T
f̃

??

Moreover, if (T, g) and (T ′, g′) are two pairs with this property, then there exists a unique
isomorphism j : T → T ′ such that j ◦ g = g′.

The R-module T which satisfies the above universal property is called the tensor product
of R-modules M and N , denoted as M ⊗R N .

Proof. We first prove the existence of such R-module T . Let M,N be R-modules.
Let T be the quotient module P/Q, where P is the free R-module R(M×N) and Q is the
R-module generated by all elements of the following types: (x ∈M,y ∈ N )

(x+ x′, y)− (x, y)− (x′, y),
(x, y + y′)− (x, y)− (x, y′),

(ax, y)− a(x, y),
(x, ay)− a(x, y)

Let π : M × N → T denote the natural map. This map is R-bilinear, as implied by the
above relations when we check the bilinearity conditions. Denote the image π(x, y) =
x ⊗ y, then these elements generate T . Now let f : M × N → P be an R-bilinear map,
then we can define f ′ : T → P by extending the mapping f ′(x ⊗ y) = f(x, y). Clearly
f = f ′ ◦ π. Moreover, f ′ is uniquely determined by the value on the generating sets
{x ⊗ y : x ∈ M,y ∈ N}. Suppose there is another pair (T ′, g′) satisfying the same
properties. Then there is a unique j : T → T ′ and also j′ : T ′ → T such that g′ = j ◦ g,



514 10. COMMUTATIVE ALGEBRA

g = j′ ◦ g′. But then both the maps (j ◦ j′) ◦ g and g satisfies the universal properties, so
by uniqueness they are equal, and hence j′ ◦ j is identity on T . Similarly (j′ ◦ j) ◦ g′ = g′

and j ◦ j′ is identity on T ′. So j is an isomorphism. �

Lemma 12.3. Let M,N,P be R-modules, then the bilinear maps

(x, y) 7→ y ⊗ x
(x+ y, z) 7→ x⊗ z + y ⊗ z

(r, x) 7→ rx

induce unique isomorphisms

M ⊗R N → N ⊗RM,

(M ⊕N)⊗R P → (M ⊗R P )⊕ (N ⊗R P ),
R⊗RM →M

Proof. Omitted. �

We may generalize the tensor product of twoR-modules to finitely manyR-modules, and
set up a correspondence between the multi-tensor product with multilinear mappings.
Using almost the same construction one can prove that:

Lemma 12.4. Let M1, . . . ,Mr be R-modules. Then there exists a pair (T, g) consist-
ing of an R-module T and an R-multilinear mapping g : M1 × . . . ×Mr → T with the
universal property: For anyR-multilinear mapping f : M1× . . .×Mr → P there exists
a unique R-module homomorphism f ′ : T → P such that f ′ ◦ g = f . Such a module T
is unique up to unique isomorphism. We denote it M1 ⊗R . . .⊗RMr and we denote the
universal multilinear map (m1, . . . ,mr) 7→ m1 ⊗ . . .⊗mr.

Proof. Omitted. �

Lemma 12.5. The homomorphisms

(M ⊗R N)⊗R P →M ⊗R N ⊗R P →M ⊗R (N ⊗R P )

such that f((x⊗y)⊗z) = x⊗y⊗z and g(x⊗y⊗z) = x⊗(y⊗z), x ∈M,y ∈ N, z ∈ P
are well-defined and are isomorphisms.

Proof. We shall prove f is well-defined and is an isomorphism, and this proof carries
analogously to g. Fix any z ∈ P , then the mapping (x, y) 7→ x ⊗ y ⊗ z, x ∈ M,y ∈ N ,
is R-bilinear in x and y, and hence induces homomorphism fz : M ⊗N →M ⊗N ⊗ P
which sends fz(x⊗ y) = x⊗ y⊗ z. Then consider (M ⊗N)× P →M ⊗N ⊗ P given
by (w, z) 7→ fz(w). The map is R-bilinear and thus induces f : (M ⊗R N) ⊗R P →
M⊗RN⊗RP and f((x⊗y)⊗z) = x⊗y⊗z. To construct the inverse, we note that the
map π : M ×N × P → (M ⊗N) ⊗ P is R-trilinear. Therefore, it induces an R-linear
map h : M ⊗N ⊗ P → (M ⊗N) ⊗ P which agrees with the universal property. Here
we see that h(x ⊗ y ⊗ z) = (x ⊗ y) ⊗ z. From the explicit expression of f and h, f ◦ h
and h ◦ f are identity maps ofM ⊗N ⊗P and (M ⊗N)⊗P respectively, hence f is our
desired isomorphism. �

Doing induction we see that this extends to multi-tensor products. Combined with Lemma
12.3 we see that the tensor product operation on the category of R-modules is associative,
commutative and distributive.
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Definition 12.6. An abelian group N is called an (A,B)-bimodule if it is both an
A-module and a B-module, and the actions A → End(M) and B → End(M) are com-
patible in the sense that (ax)b = a(xb) for all a ∈ A, b ∈ B, x ∈ N . Usually we denote it
as ANB .

Lemma 12.7. For A-module M , B-module P and (A,B)-bimodule N , the modules
(M ⊗A N) ⊗B P and M ⊗A (N ⊗B P ) can both be given (A,B)-bimodule structure,
and moreover

(M ⊗A N)⊗B P ∼= M ⊗A (N ⊗B P ).

Proof. A priori M ⊗A N is an A-module, but we can give it a B-module structure
by letting

(x⊗ y)b = x⊗ yb, x ∈M,y ∈ N, b ∈ B
ThusM ⊗AN becomes an (A,B)-bimodule. Similarly forN ⊗B P , and thus for (M ⊗A
N) ⊗B P and M ⊗A (N ⊗B P ). By Lemma 12.5, these two modules are isomorphic as
both as A-module and B-module via the same mapping. �

Lemma 12.8. For any three R-modules M,N,P ,

HomR(M ⊗R N,P ) ∼= HomR(M,HomR(N,P ))

Proof. AnR-linear map f̂ ∈ HomR(M⊗RN,P ) corresponds to anR-bilinear map
f : M ×N → P . For each x ∈M the mapping y 7→ f(x, y) is R-linear by the universal
property. Thus f corresponds to a map φf : M → HomR(N,P ). This map is R-linear
since

φf (ax+ y)(z) = f(ax+ y, z) = af(x, z) + f(y, z) = (aφf (x) + φf (y))(z),
for all a ∈ R, x ∈M , y ∈M and z ∈ N . Conversely, any f ∈ HomR(M,HomR(N,P ))
defines anR-bilinear mapM×N → P , namely (x, y) 7→ f(x)(y). So this is a natural one-
to-one correspondence between the two modules HomR(M⊗RN,P ) and HomR(M,HomR(N,P )).

�

Lemma 12.9 (Tensor products commute with colimits). Let (Mi, µij) be a system
over the preordered set I . Let N be an R-module. Then

colim(Mi ⊗N) ∼= (colimMi)⊗N.
Moreover, the isomorphism is induced by the homomorphismsµi⊗1 : Mi⊗N →M⊗N
where M = colimiMi with natural maps µi : Mi →M .

Proof. First proof. The functor M ′ 7→ M ′ ⊗R N is left adjoint to the functor
N ′ 7→ HomR(N,N ′) by Lemma 12.8. ThusM ′ 7→M ′⊗RN commutes with all colimits,
see Categories, Lemma 24.5.

Second direct proof. Let P = colim(Mi ⊗ N) with coprojections λi : Mi ⊗ N → P .
Let M = colimMi with coprojections µi : Mi → M . Then for all i ≤ j , the following
diagram commutes:

Mi ⊗N
µi⊗1

//

µij⊗1
��

M ⊗N

id
��

Mj ⊗N
µj⊗1 // M ⊗N

By Lemma 8.7 these maps induce a unique homomorphism ψ : P → M ⊗ N such that
µi ⊗ 1 = ψ ◦ λi.
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To construct the inverse map, for each i ∈ I , there is the canonical R-bilinear mapping
gi : Mi × N → Mi ⊗ N . This induces a unique mapping φ̂ : M × N → P such that
φ̂◦(µi×1) = λi ◦gi. It isR-bilinear. Thus it induces anR-linear mapping φ : M⊗N →
P . From the commutative diagram below:

Mi ×N
gi //

µi×id
��

Mi ⊗N id
//

λi
��

Mi ⊗N

µi⊗id
��

λi

##
M ×N

φ̂ // P
ψ // M ⊗N

φ // P

we see that ψ ◦ φ̂ = g, the canonical R-bilinear mapping g : M ×N →M ⊗N . So ψ ◦ φ
is identity on M ⊗N . From the right-hand square and triangle, φ ◦ ψ is also identity on
P . �

Lemma 12.10. Let

M1
f−→M2

g−→M3 → 0

be an exact sequence of R-modules and homomorphisms, and let N be any R-module.
Then the sequence

(12.10.1) M1 ⊗N
f⊗1−−−→M2 ⊗N

g⊗1−−→M3 ⊗N → 0

is exact. In other words, the functor − ⊗R N is right exact, in the sense that tensoring
each term in the original right exact sequence preserves the exactness.

Proof. We apply the functor Hom(−,Hom(N,P )) to the first exact sequence. We
obtain

0→ Hom(M3,Hom(N,P ))→ Hom(M2,Hom(N,P ))→ Hom(M1,Hom(N,P ))

By Lemma 12.8, we have

0→ Hom(M3 ⊗N,P )→ Hom(M2 ⊗N,P )→ Hom(M1 ⊗N,P )

Using the pullback property again, we arrive at the desired exact sequence. �

Remark 12.11. However, tensor product does NOT preserve exact sequences in gen-
eral. In other words, if M1 → M2 → M3 is exact, then it is not necessarily true that
M1 ⊗N →M2 ⊗N →M3 ⊗N is exact for arbitrary R-module N .

Example 12.12. Consider the injective map 2 : Z→ Z viewed as a map of Z-modules.
Let N = Z/2. Then the induced map Z ⊗ Z/2 → Z ⊗ Z/2 is NOT injective. This is
because for x⊗ y ∈ Z⊗ Z/2,

(2⊗ 1)(x⊗ y) = 2x⊗ y = x⊗ 2y = x⊗ 0 = 0

Therefore the induced map is the zero map while Z⊗N 6= 0.

Remark 12.13. ForR-modulesN , if the functor−⊗RN is exact, i.e. tensoring with
N preserves all exact sequences, then N is said to be flat R-module. We will discuss this
later in Section 39.

Lemma 12.14. Let R be a ring. Let M and N be R-modules.
(1) If N and M are finite, then so is M ⊗R N .
(2) If N and M are finitely presented, then so is M ⊗R N .
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Proof. SupposeM is finite. Then choose a presentation 0→ K → R⊕n →M → 0.
This gives an exact sequence K ⊗R N → N⊕n → M ⊗R N → 0 by Lemma 12.10. We
conclude that ifN is finite too thenM ⊗RN is a quotient of a finite module, hence finite,
see Lemma 5.3. Similarly, if both N and M are finitely presented, then we see that K is
finite and that M ⊗R N is a quotient of the finitely presented module N⊕n by a finite
module, namely K ⊗R N , and hence finitely presented, see Lemma 5.3. �

Lemma 12.15. LetM be anR-module. Then theS−1R-modulesS−1M andS−1R⊗R
M are canonically isomorphic, and the canonical isomorphism f : S−1R⊗RM → S−1M
is given by

f((a/s)⊗m) = am/s,∀a ∈ R,m ∈M, s ∈ S

Proof. Obviously, the map f ′ : S−1R × M → S−1M given by f ′(a/s,m) =
am/s is bilinear, and thus by the universal property, this map induces a unique S−1R-
module homomorphism f : S−1R ⊗R M → S−1M as in the statement of the lemma.
Actually every element in S−1M is of the formm/s,m ∈M, s ∈ S and every element in
S−1R⊗RM is of the form 1/s⊗m. To see the latter fact, write an element inS−1R⊗RM
as ∑

k

ak
sk
⊗mk =

∑
k

aktk
s
⊗mk = 1

s
⊗
∑
k

aktkmk = 1
s
⊗m

Where m =
∑
k aktkmk. Then it is obvious that f is surjective, and if f( 1

s ⊗ m) =
m/s = 0 then there exists t′ ∈ S with tm = 0 in M . Then we have

1
s
⊗m = 1

st
⊗ tm = 1

st
⊗ 0 = 0

Therefore f is injective. �

Lemma 12.16. Let M,N be R-modules, then there is a canonical S−1R-module iso-
morphism f : S−1M ⊗S−1R S

−1N → S−1(M ⊗R N), given by

f((m/s)⊗ (n/t)) = (m⊗ n)/st

Proof. We may use Lemma 12.7 and Lemma 12.15 repeatedly to see that these two
S−1R-modules are isomorphic, noting that S−1R is an (R,S−1R)-bimodule:

S−1(M ⊗R N) ∼= S−1R⊗R (M ⊗R N)
∼= S−1M ⊗R N
∼= (S−1M ⊗S−1R S

−1R)⊗R N
∼= S−1M ⊗S−1R (S−1R⊗R N)
∼= S−1M ⊗S−1R S

−1N

This isomorphism is easily seen to be the one stated in the lemma. �

13. Tensor algebra

Let R be a ring. Let M be an R-module. We define the tensor algebra of M over R to be
the noncommutative R-algebra

T(M) = TR(M) =
⊕

n≥0
Tn(M)
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with T0(M) = R, T1(M) = M , T2(M) = M ⊗RM , T3(M) = M ⊗RM ⊗RM , and
so on. Multiplication is defined by the rule that on pure tensors we have
(x1 ⊗ x2 ⊗ . . .⊗ xn) · (y1 ⊗ y2 ⊗ . . .⊗ ym) = x1 ⊗ x2 ⊗ . . .⊗ xn ⊗ y1 ⊗ y2 ⊗ . . .⊗ ym
and we extend this by linearity.
We define the exterior algebra ∧(M) of M over R to be the quotient of T(M) by the
two sided ideal generated by the elements x ⊗ x ∈ T2(M). The image of a pure tensor
x1⊗. . .⊗xn in∧n(M) is denoted x1∧. . .∧xn. These elements generate∧n(M), they are
R-linear in each xi and they are zero when two of the xi are equal (i.e., they are alternating
as functions of x1, x2, . . . , xn). The multiplication on ∧(M) is graded commutative, i.e.,
every x ∈M and y ∈M satisfy x ∧ y = −y ∧ x.
An example of this is when M = Rx1 ⊕ . . . ⊕ Rxn is a finite free module. In this case
∧(M) is free over R with basis the elements

xi1 ∧ . . . ∧ xir
with 0 ≤ r ≤ n and 1 ≤ i1 < i2 < . . . < ir ≤ n.
We define the symmetric algebra Sym(M) of M over R to be the quotient of T(M) by
the two sided ideal generated by the elements x ⊗ y − y ⊗ x ∈ T2(M). The image
of a pure tensor x1 ⊗ . . . ⊗ xn in Symn(M) is denoted just x1 . . . xn. These elements
generate Symn(M), these areR-linear in each xi and x1 . . . xn = x′

1 . . . x
′
n if the sequence

of elements x1, . . . , xn is a permutation of the sequence x′
1, . . . , x

′
n. Thus we see that

Sym(M) is commutative.
An example of this is when M = Rx1 ⊕ . . . ⊕ Rxn is a finite free module. In this case
Sym(M) = R[x1, . . . , xn] is a polynomial algebra.

Lemma 13.1. Let R be a ring. Let M be an R-module. If M is a free R-module, so is
each symmetric and exterior power.

Proof. Omitted, but see above for the finite free case. �

Lemma 13.2. Let R be a ring. Let M2 → M1 → M → 0 be an exact sequence of
R-modules. There are exact sequences

M2 ⊗R Symn−1(M1)→ Symn(M1)→ Symn(M)→ 0
and similarly

M2 ⊗R ∧n−1(M1)→ ∧n(M1)→ ∧n(M)→ 0

Proof. Omitted. �

Lemma 13.3. Let R be a ring. Let M be an R-module. Let xi, i ∈ I be a given system
of generators of M as an R-module. Let n ≥ 2. There exists a canonical exact sequence⊕

1≤j1<j2≤n

⊕
i1,i2∈I

Tn−2(M)⊕
⊕

1≤j1<j2≤n

⊕
i∈I

Tn−2(M)→ Tn(M)→ ∧n(M)→ 0

where the pure tensor m1 ⊗ . . .⊗mn−2 in the first summand maps to
m1 ⊗ . . .⊗ xi1 ⊗ . . .⊗ xi2 ⊗ . . .⊗mn−2︸ ︷︷ ︸

with xi1 and xi2 occupying slots j1 and j2 in the tensor

+m1 ⊗ . . .⊗ xi2 ⊗ . . .⊗ xi1 ⊗ . . .⊗mn−2︸ ︷︷ ︸
with xi2 and xi1 occupying slots j1 and j2 in the tensor



14. BASE CHANGE 519

and m1 ⊗ . . .⊗mn−2 in the second summand maps to
m1 ⊗ . . .⊗ xi ⊗ . . .⊗ xi ⊗ . . .⊗mn−2︸ ︷︷ ︸

with xi and xi occupying slots j1 and j2 in the tensor

There is also a canonical exact sequence⊕
1≤j1<j2≤n

⊕
i1,i2∈I

Tn−2(M)→ Tn(M)→ Symn(M)→ 0

where the pure tensor m1 ⊗ . . .⊗mn−2 maps to
m1 ⊗ . . .⊗ xi1 ⊗ . . .⊗ xi2 ⊗ . . .⊗mn−2︸ ︷︷ ︸

with xi1 and xi2 occupying slots j1 and j2 in the tensor

−m1 ⊗ . . .⊗ xi2 ⊗ . . .⊗ xi1 ⊗ . . .⊗mn−2︸ ︷︷ ︸
with xi2 and xi1 occupying slots j1 and j2 in the tensor

Proof. Omitted. �

Lemma 13.4. Let A → B be a ring map. Let M be a B-module. Let n > 1. The
kernel of the A-linear map M ⊗A . . .⊗AM → ∧nB(M) is generated as an A-module by
the elementsm1⊗ . . .⊗mn withmi = mj for i 6= j ,m1, . . . ,mn ∈M and the elements
m1 ⊗ . . .⊗ bmi ⊗ . . .⊗mn −m1 ⊗ . . .⊗ bmj ⊗ . . .⊗mn for i 6= j , m1, . . . ,mn ∈M ,
and b ∈ B.

Proof. Omitted. �

Lemma 13.5. Let R be a ring. Let Mi be a directed system of R-modules. Then
colimi T(Mi) = T(colimiMi) and similarly for the symmetric and exterior algebras.

Proof. Omitted. Hint: Apply Lemma 12.9. �

Lemma 13.6. LetR be a ring and letS ⊂ R be a multiplicative subset. ThenS−1TR(M) =
TS−1R(S−1M) for any R-module M . Similar for symmetric and exterior algebras.

Proof. Omitted. Hint: Apply Lemma 12.16. �

14. Base change

We formally introduce base change in algebra as follows.

Definition 14.1. Let ϕ : R→ S be a ring map. LetM be an S-module. LetR→ R′

be any ring map. The base change of ϕ by R → R′ is the ring map R′ → S ⊗R R′. In
this situation we often write S′ = S ⊗R R′. The base change of the S-module M is the
S′-module M ⊗R R′.

If S = R[xi]/(fj) for some collection of variables xi, i ∈ I and some collection of poly-
nomials fj ∈ R[xi], j ∈ J , then S ⊗R R′ = R′[xi]/(f ′

j), where f ′
j ∈ R′[xi] is the image

of fj under the map R[xi] → R′[xi] induced by R → R′. This simple remark is the key
to understanding base change.

Lemma 14.2. Let R → S be a ring map. Let M be an S-module. Let R → R′ be a
ring map and let S′ = S ⊗R R′ and M ′ = M ⊗R R′ be the base changes.

(1) If M is a finite S-module, then the base change M ′ is a finite S′-module.
(2) If M is an S-module of finite presentation, then the base change M ′ is an S′-

module of finite presentation.
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(3) If R→ S is of finite type, then the base change R′ → S′ is of finite type.
(4) If R → S is of finite presentation, then the base change R′ → S′ is of finite

presentation.

Proof. Proof of (1). Take a surjective, S-linear map S⊕n →M → 0. By Lemma 12.3
and 12.10 the result after tensoring with R′ is a surjection S′⊕n → M ′ → 0, so M ′ is a
finitely generated S′-module. Proof of (2). Take a presentation S⊕m → S⊕n →M → 0.
By Lemma 12.3 and 12.10 the result after tensoring with R′ gives a finite presentation
S′⊕m → S′⊕n → M ′ → 0, of the S′-module M ′. Proof of (3). This follows by the
remark preceding the lemma as we can take I to be finite by assumption. Proof of (4).
This follows by the remark preceding the lemma as we can take I and J to be finite by
assumption. �

Let ϕ : R → S be a ring map. Given an S-module N we obtain an R-module NR by the
rule r · n = ϕ(r)n. This is sometimes called the restriction of N to R.

Lemma 14.3. Let R → S be a ring map. The functors ModS → ModR, N 7→ NR
(restriction) and ModR →ModS , M 7→M ⊗R S (base change) are adjoint functors. In a
formula

HomR(M,NR) = HomS(M ⊗R S,N)

Proof. If α : M → NR is an R-module map, then we define α′ : M ⊗R S → N
by the rule α′(m ⊗ s) = sα(m). If β : M ⊗R S → N is an S-module map, we define
β′ : M → NR by the rule β′(m) = β(m ⊗ 1). We omit the verification that these
constructions are mutually inverse. �

The lemma above tells us that restriction has a left adjoint, namely base change. It also has
a right adjoint.

Lemma 14.4. Let R → S be a ring map. The functors ModS → ModR, N 7→ NR
(restriction) and ModR →ModS , M 7→ HomR(S,M) are adjoint functors. In a formula

HomR(NR,M) = HomS(N,HomR(S,M))

Proof. Ifα : NR →M is anR-module map, then we defineα′ : N → HomR(S,M)
by the rule α′(n) = (s 7→ α(sn)). If β : N → HomR(S,M) is an S-module map, we
define β′ : NR → M by the rule β′(n) = β(n)(1). We omit the verification that these
constructions are mutually inverse. �

Lemma 14.5. Let R → S be a ring map. Given S-modules M,N and an R-module
P we have

HomR(M ⊗S N,P ) = HomS(M,HomR(N,P ))

Proof. This can be proved directly, but it is also a consequence of Lemmas 14.4 and
12.8. Namely, we have

HomR(M ⊗S N,P ) = HomS(M ⊗S N,HomR(S, P ))
= HomS(M,HomS(N,HomR(S, P )))
= HomS(M,HomR(N,P ))

as desired. �
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15. Miscellany

The proofs in this section should not refer to any results except those from the section on
basic notions, Section 3.

Lemma 15.1. Let R be a ring, I and J two ideals and p a prime ideal containing the
product IJ . Then p contains I or J .

Proof. Assume the contrary and take x ∈ I \ p and y ∈ J \ p. Their product is an
element of IJ ⊂ p, which contradicts the assumption that p was prime. �

Lemma 15.2 (Prime avoidance). LetR be a ring. Let Ii ⊂ R, i = 1, . . . , r, and J ⊂ R
be ideals. Assume

(1) J 6⊂ Ii for i = 1, . . . , r, and
(2) all but two of Ii are prime ideals.

Then there exists an x ∈ J , x 6∈ Ii for all i.

Proof. The result is true for r = 1. If r = 2, then let x, y ∈ J with x 6∈ I1 and
y 6∈ I2. We are done unless x ∈ I2 and y ∈ I1. Then the element x + y cannot be in I1
(since that would mean x+ y − y ∈ I1) and it also cannot be in I2.

For r ≥ 3, assume the result holds for r − 1. After renumbering we may assume that Ir
is prime. We may also assume there are no inclusions among the Ii. Pick x ∈ J , x 6∈ Ii
for all i = 1, . . . , r − 1. If x 6∈ Ir we are done. So assume x ∈ Ir. If JI1 . . . Ir−1 ⊂ Ir
then J ⊂ Ir (by Lemma 15.1) a contradiction. Pick y ∈ JI1 . . . Ir−1, y 6∈ Ir. Then x+ y
works. �

Lemma 15.3. Let R be a ring. Let x ∈ R, I ⊂ R an ideal, and pi, i = 1, . . . , r be
prime ideals. Suppose that x + I 6⊂ pi for i = 1, . . . , r. Then there exists a y ∈ I such
that x+ y 6∈ pi for all i.

Proof. We may assume there are no inclusions among the pi. After reordering we
may assume x 6∈ pi for i < s and x ∈ pi for i ≥ s. If s = r + 1 then we are done. If not,
then we can find y ∈ I with y 6∈ ps. Choose f ∈

⋂
i<s pi with f 6∈ ps. Then x + fy is

not contained in p1, . . . , ps. Thus we win by induction on s. �

Lemma 15.4 (Chinese remainder). Let R be a ring.
(1) If I1, . . . , Ir are ideals such that Ia + Ib = R when a 6= b, then I1 ∩ . . . ∩ Ir =

I1I2 . . . Ir and R/(I1I2 . . . Ir) ∼= R/I1 × . . .×R/Ir.
(2) If m1, . . . ,mr are pairwise distinct maximal ideals then ma +mb = R for a 6= b

and the above applies.

Proof. Let us first prove I1∩ . . .∩Ir = I1 . . . Ir as this will also imply the injectivity
of the induced ring homomorphism R/(I1 . . . Ir) → R/I1 × . . . × R/Ir. The inclusion
I1∩ . . .∩Ir ⊃ I1 . . . Ir is always fulfilled since ideals are closed under multiplication with
arbitrary ring elements. To prove the other inclusion, we claim that the ideals

I1 . . . Îi . . . Ir, i = 1, . . . , r
generate the ring R. We prove this by induction on r. It holds when r = 2. If r > 2,
then we see that R is the sum of the ideals I1 . . . Îi . . . Ir−1, i = 1, . . . , r − 1. Hence Ir is
the sum of the ideals I1 . . . Îi . . . Ir , i = 1, . . . , r − 1. Applying the same argument with
the reverse ordering on the ideals we see that I1 is the sum of the ideals I1 . . . Îi . . . Ir ,
i = 2, . . . , r. Since R = I1 + Ir by assumption we see that R is the sum of the ideals
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displayed above. Therefore we can find elements ai ∈ I1 . . . Îi . . . Ir such that their sum
is one. Multiplying this equation by an element of I1∩. . .∩Ir gives the other inclusion. It
remains to show that the canonical mapR/(I1 . . . Ir)→ R/I1× . . .×R/Ir is surjective.
For this, consider its action on the equation 1 =

∑r
i=1 ai we derived above. On the one

hand, a ring morphism sends 1 to 1 and on the other hand, the image of any ai is zero in
R/Ij for j 6= i. Therefore, the image of ai in R/Ii is the identity. So given any element
(b̄1, . . . , b̄r) ∈ R/I1 × . . .×R/Ir , the element

∑r
i=1 ai · bi is an inverse image in R.

To see (2), by the very definition of being distinct maximal ideals, we have ma + mb = R
for a 6= b and so the above applies. �

Lemma 15.5. LetR be a ring. Let n ≥ m. LetA be an n×mmatrix with coefficients
in R. Let J ⊂ R be the ideal generated by the m×m minors of A.

(1) For any f ∈ J there exists a m× n matrix B such that BA = f1m×m.
(2) If f ∈ R and BA = f1m×m for some m× n matrix B, then fm ∈ J .

Proof. For I ⊂ {1, . . . , n} with |I| = m, we denote by EI the m× n matrix of the
projection

R⊕n =
⊕

i∈{1,...,n}
R −→

⊕
i∈I

R

and set AI = EIA, i.e., AI is the m × m matrix whose rows are the rows of A with
indices in I . Let BI be the adjugate (transpose of cofactor) matrix to AI , i.e., such that
AIBI = BIAI = det(AI)1m×m. The m ×m minors of A are the determinants detAI
for all the I ⊂ {1, . . . , n} with |I| = m. If f ∈ J then we can write f =

∑
cI det(AI)

for some cI ∈ R. Set B =
∑
cIBIEI to see that (1) holds.

If f1m×m = BA then by the Cauchy-Binet formula (72) we have fm =
∑
bI det(AI)

where bI is the determinant of the m ×m matrix whose columns are the columns of B
with indices in I . �

Lemma 15.6. Let R be a ring. Let n ≥ m. Let A = (aij) be an n ×m matrix with
coefficients in R, written in block form as

A =
(
A1
A2

)
where A1 has size m × m. Let B be the adjugate (transpose of cofactor) matrix to A1.
Then

AB =
(
f1m×m
C

)
where f = det(A1) and cij is (up to sign) the determinant of the m × m minor of A
corresponding to the rows 1, . . . , ĵ, . . . ,m, i.

Proof. Since the adjugate has the property A1B = BA1 = f the first block of the
expression for AB is correct. Note that

cij =
∑

k
aikbkj =

∑
(−1)j+kaik det(Ajk1 )

where Aij1 means A1 with the jth row and kth column removed. This last expression is
the row expansion of the determinant of the matrix in the statement of the lemma. �

Lemma 15.7. Let R be a nonzero ring. Let n ≥ 1. Let M be an R-module generated
by < n elements. Then any R-module map f : R⊕n →M has a nonzero kernel.
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Proof. Choose a surjection R⊕n−1 → M . We may lift the map f to a map f ′ :
R⊕n → R⊕n−1 (Lemma 5.2). It suffices to prove f ′ has a nonzero kernel. The map
f ′ : R⊕n → R⊕n−1 is given by a matrix A = (aij). If one of the aij is not nilpotent, say
a = aij is not, then we can replace R by the localization Ra and we may assume aij is a
unit. Since if we find a nonzero kernel after localization then there was a nonzero kernel
to start with as localization is exact, see Proposition 9.12. In this case we can do a base
change on both R⊕n and R⊕n−1 and reduce to the case where

A =


1 0 0 . . .
0 a22 a23 . . .
0 a32 . . .
. . . . . .


Hence in this case we win by induction on n. If not then each aij is nilpotent. Set I =
(aij) ⊂ R. Note that Im+1 = 0 for some m ≥ 0. Let m be the largest integer such that
Im 6= 0. Then we see that (Im)⊕n is contained in the kernel of the map and we win. �

Lemma 15.8. LetR be a nonzero ring. Let n,m ≥ 0 be integers. IfR⊕n is isomorphic
to R⊕m as R-modules, then n = m.

Proof. Immediate from Lemma 15.7. �

16. Cayley-Hamilton

Lemma 16.1. Let R be a ring. Let A = (aij) be an n × n matrix with coefficients in
R. Let P (x) ∈ R[x] be the characteristic polynomial of A (defined as det(xidn×n −A)).
Then P (A) = 0 in Mat(n× n,R).

Proof. We reduce the question to the well-known Cayley-Hamilton theorem from
linear algebra in several steps:

(1) If φ : S → R is a ring morphism and bij are inverse images of the aij under
this map, then it suffices to show the statement for S and (bij) since φ is a ring
morphism.

(2) If ψ : R ↪→ S is an injective ring morphism, it clearly suffices to show the result
for S and the aij considered as elements of S.

(3) Thus we may first reduce to the caseR = Z[Xij ], aij = Xij of a polynomial ring
and then further to the case R = Q(Xij) where we may finally apply Cayley-
Hamilton.

�

Lemma 16.2. Let R be a ring. Let M be a finite R-module. Let ϕ : M → M be an
endomorphism. Then there exists a monic polynomial P ∈ R[T ] such that P (ϕ) = 0 as
an endomorphism of M .

Proof. Choose a surjective R-module map R⊕n → M , given by (a1, . . . , an) 7→∑
aixi for some generators xi ∈ M . Choose (ai1, . . . , ain) ∈ R⊕n such that ϕ(xi) =∑
aijxj . In other words the diagram

R⊕n

A
��

// M

ϕ

��
R⊕n // M
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is commutative whereA = (aij). By Lemma 16.1 there exists a monic polynomial P such
that P (A) = 0. Then it follows that P (ϕ) = 0. �

Lemma 16.3. Let R be a ring. Let I ⊂ R be an ideal. Let M be a finite R-module.
Let ϕ : M →M be an endomorphism such that ϕ(M) ⊂ IM . Then there exists a monic
polynomial P = tn + a1t

n−1 + . . . + an ∈ R[T ] such that aj ∈ Ij and P (ϕ) = 0 as an
endomorphism of M .

Proof. Choose a surjective R-module map R⊕n → M , given by (a1, . . . , an) 7→∑
aixi for some generators xi ∈ M . Choose (ai1, . . . , ain) ∈ I⊕n such that ϕ(xi) =∑
aijxj . In other words the diagram

R⊕n

A
��

// M

ϕ

��
I⊕n // M

is commutative whereA = (aij). By Lemma 16.1 the polynomialP (t) = det(tidn×n−A)
has all the desired properties. �

As a fun example application we prove the following surprising lemma.

Lemma 16.4. Let R be a ring. Let M be a finite R-module. Let ϕ : M → M be a
surjective R-module map. Then ϕ is an isomorphism.

First proof. Write R′ = R[x] and think of M as a finite R′-module with x acting
viaϕ. Set I = (x) ⊂ R′. By our assumption that ϕ is surjective we have IM = M . Hence
we may apply Lemma 16.3 toM as anR′-module, the ideal I and the endomorphism idM .
We conclude that (1 + a1 + . . . + an)idM = 0 with aj ∈ I . Write aj = bj(x)x for
some bj(x) ∈ R[x]. Translating back into ϕ we see that idM = −(

∑
j=1,...,n bj(ϕ))ϕ,

and hence ϕ is invertible. �

Second proof. We perform induction on the number of generators ofM overR. If
M is generated by one element, then M ∼= R/I for some ideal I ⊂ R. In this case we
may replace R by R/I so that M = R. In this case ϕ : R→ R is given by multiplication
on M by an element r ∈ R. The surjectivity of ϕ forces r invertible, since ϕ must hit 1,
which implies that ϕ is invertible.
Now assume that we have proven the lemma in the case of modules generated by n − 1
elements, and are examining a module M generated by n elements. Let A mean the ring
R[t], and regard the moduleM as anA-module by letting t act viaϕ; sinceM is finite over
R, it is finite over R[t] as well, and since we’re trying to prove ϕ injective, a set-theoretic
property, we might as well prove the endomorphism t : M → M over A injective. We
have reduced our problem to the case our endomorphism is multiplication by an element
of the ground ring. LetM ′ ⊂M denote the sub-A-module generated by the first n− 1 of
the generators of M , and consider the diagram

0 // M ′ //

ϕ|M′

��

M

ϕ

��

// M/M ′

ϕ mod M ′

��

// 0

0 // M ′ // M // M/M ′ // 0,

where the restriction of ϕ to M ′ and the map induced by ϕ on the quotient M/M ′ are
well-defined since ϕ is multiplication by an element in the base, and M ′ and M/M ′ are
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A-modules in their own right. By the case n = 1 the map M/M ′ →M/M ′ is an isomor-
phism. A diagram chase implies that ϕ|M ′ is surjective hence by induction ϕ|M ′ is an iso-
morphism. This forces the middle column to be an isomorphism by the snake lemma. �

17. The spectrum of a ring

We arbitrarily decide that the spectrum of a ring as a topological space is part of the algebra
chapter, whereas an affine scheme is part of the chapter on schemes.

Definition 17.1. Let R be a ring.
(1) The spectrum ofR is the set of prime ideals ofR. It is usually denoted Spec(R).
(2) Given a subset T ⊂ R we let V (T ) ⊂ Spec(R) be the set of primes containing

T , i.e., V (T ) = {p ∈ Spec(R) | ∀f ∈ T, f ∈ p}.
(3) Given an element f ∈ R we let D(f) ⊂ Spec(R) be the set of primes not

containing f .

Lemma 17.2. Let R be a ring.
(1) The spectrum of a ring R is empty if and only if R is the zero ring.
(2) Every nonzero ring has a maximal ideal.
(3) Every nonzero ring has a minimal prime ideal.
(4) Given an ideal I ⊂ R and a prime ideal I ⊂ p there exists a prime I ⊂ q ⊂ p

such that q is minimal over I .
(5) If T ⊂ R, and if (T ) is the ideal generated by T in R, then V ((T )) = V (T ).
(6) If I is an ideal and

√
I is its radical, see basic notion (27), then V (I) = V (

√
I).

(7) Given an ideal I of R we have
√
I =

⋂
I⊂p p.

(8) If I is an ideal then V (I) = ∅ if and only if I is the unit ideal.
(9) If I , J are ideals of R then V (I) ∪ V (J) = V (I ∩ J).

(10) If (Ia)a∈A is a set of ideals of R then
⋂
a∈A V (Ia) = V (

⋃
a∈A Ia).

(11) If f ∈ R, then D(f)q V (f) = Spec(R).
(12) If f ∈ R then D(f) = ∅ if and only if f is nilpotent.
(13) If f = uf ′ for some unit u ∈ R, then D(f) = D(f ′).
(14) If I ⊂ R is an ideal, and p is a prime of R with p 6∈ V (I), then there exists an

f ∈ R such that p ∈ D(f), and D(f) ∩ V (I) = ∅.
(15) If f, g ∈ R, then D(fg) = D(f) ∩D(g).
(16) If fi ∈ R for i ∈ I , then

⋃
i∈I D(fi) is the complement of V ({fi}i∈I) in

Spec(R).
(17) If f ∈ R and D(f) = Spec(R), then f is a unit.

Proof. We address each part in the corresponding item below.
(1) This is a direct consequence of (2) or (3).
(2) Let A be the set of all proper ideals of R. This set is ordered by inclusion and is

non-empty, since (0) ∈ A is a proper ideal. Let A be a totally ordered subset of
A. Then

⋃
I∈A I is in fact an ideal. Since 1 /∈ I for all I ∈ A, the union does not

contain 1 and thus is proper. Hence
⋃
I∈A I is in A and is an upper bound for the

setA. Thus by Zorn’s lemma A has a maximal element, which is the sought-after
maximal ideal.

(3) Since R is nonzero, it contains a maximal ideal which is a prime ideal. Thus the
set A of all prime ideals ofR is nonempty. A is ordered by reverse-inclusion. Let
A be a totally ordered subset of A. It’s pretty clear that J =

⋂
I∈A I is in fact

an ideal. Not so clear, however, is that it is prime. Let xy ∈ J . Then xy ∈ I for
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all I ∈ A. Now let B = {I ∈ A|y ∈ I}. Let K =
⋂
I∈B I . Since A is totally

ordered, either K = J (and we’re done, since then y ∈ J) or K ⊃ J and for all
I ∈ A such that I is properly contained in K , we have y /∈ I . But that means
that for all those I, x ∈ I , since they are prime. Hence x ∈ J . In either case, J
is prime as desired. Hence by Zorn’s lemma we get a maximal element which in
this case is a minimal prime ideal.

(4) This is the same exact argument as (3) except you only consider prime ideals
contained in p and containing I .

(5) (T ) is the smallest ideal containing T . Hence if T ⊂ I , some ideal, then (T ) ⊂ I
as well. Hence if I ∈ V (T ), then I ∈ V ((T )) as well. The other inclusion is
obvious.

(6) Since I ⊂
√
I, V (

√
I) ⊂ V (I). Now let p ∈ V (I). Let x ∈

√
I . Then xn ∈ I

for some n. Hence xn ∈ p. But since p is prime, a boring induction argument
gets you that x ∈ p. Hence

√
I ⊂ p and p ∈ V (

√
I).

(7) Let f ∈ R \
√
I . Then fn /∈ I for all n. Hence S = {1, f, f2, . . .} is a mul-

tiplicative subset, not containing 0. Take a prime ideal p̄ ⊂ S−1R containing
S−1I . Then the pull-back p inR of p̄ is a prime ideal containing I that does not
intersect S. This shows that

⋂
I⊂p p ⊂

√
I . Now if a ∈

√
I , then an ∈ I for

some n. Hence if I ⊂ p, then an ∈ p. But since p is prime, we have a ∈ p. Thus
the equality is shown.

(8) I is not the unit ideal if and only if I is contained in some maximal ideal (to see
this, apply (2) to the ring R/I) which is therefore prime.

(9) If p ∈ V (I) ∪ V (J), then I ⊂ p or J ⊂ p which means that I ∩ J ⊂ p. Now if
I ∩ J ⊂ p, then IJ ⊂ p and hence either I of J is in p, since p is prime.

(10) p ∈
⋂
a∈A V (Ia)⇔ Ia ⊂ p,∀a ∈ A⇔ p ∈ V (

⋃
a∈A Ia)

(11) If p is a prime ideal and f ∈ R, then either f ∈ p or f /∈ p (strictly) which is
what the disjoint union says.

(12) If a ∈ R is nilpotent, then an = 0 for some n. Hence an ∈ p for any prime ideal.
Thus a ∈ p as can be shown by induction and D(a) = ∅. Now, as shown in (7),
if a ∈ R is not nilpotent, then there is a prime ideal that does not contain it.

(13) f ∈ p⇔ uf ∈ p, since u is invertible.
(14) If p /∈ V (I), then ∃f ∈ I \ p. Then f /∈ p so p ∈ D(f). Also if q ∈ D(f), then

f /∈ q and thus I is not contained in q. Thus D(f) ∩ V (I) = ∅.
(15) If fg ∈ p, then f ∈ p or g ∈ p. Hence if f /∈ p and g /∈ p, then fg /∈ p. Since p

is an ideal, if fg /∈ p, then f /∈ p and g /∈ p.
(16) p ∈

⋃
i∈I D(fi)⇔ ∃i ∈ I, fi /∈ p⇔ p ∈ Spec(R) \ V ({fi}i∈I)

(17) If D(f) = Spec(R), then V (f) = ∅ and hence fR = R, so f is a unit.
�

The lemma implies that the subsets V (T ) from Definition 17.1 form the closed subsets of
a topology on Spec(R). And it also shows that the sets D(f) are open and form a basis
for this topology.

Definition 17.3. Let R be a ring. The topology on Spec(R) whose closed sets are
the sets V (T ) is called the Zariski topology. The open subsetsD(f) are called the standard
opens of Spec(R).

It should be clear from context whether we consider Spec(R) just as a set or as a topological
space.
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Lemma 17.4. Suppose that ϕ : R→ R′ is a ring homomorphism. The induced map

Spec(ϕ) : Spec(R′) −→ Spec(R), p′ 7−→ ϕ−1(p′)

is continuous for the Zariski topologies. In fact, for any element f ∈ Rwe have Spec(ϕ)−1(D(f)) =
D(ϕ(f)).

Proof. It is basic notion (41) that p := ϕ−1(p′) is indeed a prime ideal ofR. The last
assertion of the lemma follows directly from the definitions, and implies the first. �

If ϕ′ : R′ → R′′ is a second ring homomorphism then the composition

Spec(R′′) −→ Spec(R′) −→ Spec(R)

equals Spec(ϕ′ ◦ϕ). In other words, Spec is a contravariant functor from the category of
rings to the category of topological spaces.

Lemma 17.5. Let R be a ring. Let S ⊂ R be a multiplicative subset. The map R →
S−1R induces via the functoriality of Spec a homeomorphism

Spec(S−1R) −→ {p ∈ Spec(R) | S ∩ p = ∅}

where the topology on the right hand side is that induced from the Zariski topology on
Spec(R). The inverse map is given by p 7→ S−1p.

Proof. Denote the right hand side of the arrow of the lemma by D. Choose a prime
p′ ⊂ S−1R and let p the inverse image of p′ in R. Since p′ does not contain 1 we see that
p does not contain any element of S. Hence p ∈ D and we see that the image is contained
in D. Let p ∈ D. By assumption the image S does not contain 0. By basic notion (54)
S

−1(R/p) is not the zero ring. By basic notion (62) we see S−1R/S−1p = S
−1(R/p) is

a domain, and hence S−1p is a prime. The equality of rings also shows that the inverse
image of S−1p in R is equal to p, because R/p → S

−1(R/p) is injective by basic notion
(55). This proves that the map Spec(S−1R)→ Spec(R) is bijective onto D with inverse
as given. It is continuous by Lemma 17.4. Finally, let D(g) ⊂ Spec(S−1R) be a standard
open. Write g = h/s for some h ∈ R and s ∈ S. Since g and h/1 differ by a unit we
have D(g) = D(h/1) in Spec(S−1R). Hence by Lemma 17.4 and the bijectivity above
the image of D(g) = D(h/1) is D ∩D(h). This proves the map is open as well. �

Lemma 17.6. Let R be a ring. Let f ∈ R. The map R → Rf induces via the functo-
riality of Spec a homeomorphism

Spec(Rf ) −→ D(f) ⊂ Spec(R).

The inverse is given by p 7→ p ·Rf .

Proof. This is a special case of Lemma 17.5. �

It is not the case that every “affine open” of a spectrum is a standard open. See Example
27.4.

Lemma 17.7. Let R be a ring. Let I ⊂ R be an ideal. The map R→ R/I induces via
the functoriality of Spec a homeomorphism

Spec(R/I) −→ V (I) ⊂ Spec(R).

The inverse is given by p 7→ p/I .
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Proof. It is immediate that the image is contained in V (I). On the other hand, if
p ∈ V (I) then p ⊃ I and we may consider the ideal p/I ⊂ R/I . Using basic notion (51)
we see that (R/I)/(p/I) = R/p is a domain and hence p/I is a prime ideal. From this it
is immediately clear that the image of D(f + I) is D(f) ∩ V (I), and hence the map is a
homeomorphism. �

Remark 17.8. A fundamental commutative diagram associated to a ring map ϕ :
R→ S , a prime q ⊂ S and the corresponding prime p = ϕ−1(q) of R is the following

κ(q) = Sq/qSq Sq
oo S //oo S/q // κ(q)

κ(p)⊗R S = Sp/pSp

OO

Sp

OO

oo S

OO

//oo S/pS

OO

// (R \ p)−1S/pS

OO

κ(p) = Rp/pRp

OO

Rp

OO

oo R

OO

//oo R/p

OO

// κ(p)

OO

In this diagram the arrows in the outer left and outer right columns are identical. The
horizontal maps induce on the associated spectra always a homeomorphism onto the im-
age. The lower two rows of the diagram make sense without assuming q exists. The lower
squares induce fibre squares of topological spaces. This diagram shows that p is in the
image of the map on Spec if and only if S ⊗R κ(p) is not the zero ring.

Lemma 17.9. Let ϕ : R→ S be a ring map. Let p be a prime ofR. The following are
equivalent

(1) p is in the image of Spec(S)→ Spec(R),
(2) S ⊗R κ(p) 6= 0,
(3) Sp/pSp 6= 0,
(4) (S/pS)p 6= 0, and
(5) p = ϕ−1(pS).

Proof. We have already seen the equivalence of the first two in Remark 17.8. The
others are just reformulations of this. �

Lemma 17.10. Let R be a ring. The space Spec(R) is quasi-compact.

Proof. It suffices to prove that any covering of Spec(R) by standard opens can be
refined by a finite covering. Thus suppose that Spec(R) = ∪D(fi) for a set of elements
{fi}i∈I of R. This means that ∩V (fi) = ∅. According to Lemma 17.2 this means that
V ({fi}) = ∅. According to the same lemma this means that the ideal generated by the fi
is the unit ideal of R. This means that we can write 1 as a finite sum: 1 =

∑
i∈J rifi with

J ⊂ I finite. And then it follows that Spec(R) = ∪i∈JD(fi). �

Lemma 17.11. Let R be a ring. The topology on X = Spec(R) has the following
properties:

(1) X is quasi-compact,
(2) X has a basis for the topology consisting of quasi-compact opens, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Proof. The spectrum of a ring is quasi-compact, see Lemma 17.10. It has a basis for
the topology consisting of the standard opens D(f) = Spec(Rf ) (Lemma 17.6) which
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are quasi-compact by the first remark. The intersection of two standard opens is quasi-
compact as D(f) ∩ D(g) = D(fg). Given any two quasi-compact opens U, V ⊂ X we
may write U = D(f1) ∪ . . . ∪ D(fn) and V = D(g1) ∪ . . . ∪ D(gm). Then U ∩ V =⋃
D(figj) which is quasi-compact. �

18. Local rings

Local rings are the bread and butter of algebraic geometry.

Definition 18.1. A local ring is a ring with exactly one maximal ideal. The maximal
ideal is often denoted mR in this case. We often say “let (R,m, κ) be a local ring” to
indicate that R is local, m is its unique maximal ideal and κ = R/m is its residue field.
A local homomorphism of local rings is a ring map ϕ : R → S such that R and S are
local rings and such that ϕ(mR) ⊂ mS . If it is given thatR and S are local rings, then the
phrase “local ring map ϕ : R→ S” means that ϕ is a local homomorphism of local rings.

A field is a local ring. Any ring map between fields is a local homomorphism of local rings.

Lemma 18.2. Let R be a ring. The following are equivalent:
(1) R is a local ring,
(2) Spec(R) has exactly one closed point,
(3) R has a maximal ideal m and every element of R \m is a unit, and
(4) R is not the zero ring and for every x ∈ R either x or 1−x is invertible or both.

Proof. Let R be a ring, and m a maximal ideal. If x ∈ R \ m, and x is not a unit
then there is a maximal ideal m′ containing x. Hence R has at least two maximal ideals.
Conversely, if m′ is another maximal ideal, then choose x ∈ m′, x 6∈ m. Clearly x is not a
unit. This proves the equivalence of (1) and (3). The equivalence (1) and (2) is tautological.
If R is local then (4) holds since x is either in m or not. If (4) holds, and m, m′ are distinct
maximal ideals then we may choose x ∈ R such that x mod m′ = 0 and x mod m = 1
by the Chinese remainder theorem (Lemma 15.4). This element x is not invertible and
neither is 1− x which is a contradiction. Thus (4) and (1) are equivalent. �

The localizationRp of a ringR at a prime p is a local ring with maximal ideal pRp. Namely,
the quotient Rp/pRp is the fraction field of the domain R/p and every element of Rp

which is not contained in pRp is invertible.

Lemma 18.3. Let ϕ : R → S be a ring map. Assume R and S are local rings. The
following are equivalent:

(1) ϕ is a local ring map,
(2) ϕ(mR) ⊂ mS , and
(3) ϕ−1(mS) = mR.
(4) For any x ∈ R, if ϕ(x) is invertible in S , then x is invertible in R.

Proof. Conditions (1) and (2) are equivalent by definition. If (3) holds then (2) holds.
Conversely, if (2) holds, then ϕ−1(mS) is a prime ideal containing the maximal ideal mR,
hence ϕ−1(mS) = mR. Finally, (4) is the contrapositive of (2) by Lemma 18.2. �

Let ϕ : R→ S be a ring map. Let q ⊂ S be a prime and set p = ϕ−1(q). Then the induced
ring map Rp → Sq is a local ring map.
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19. The Jacobson radical of a ring

We recall that the Jacobson radical rad(R) of a ring R is the intersection of all maximal
ideals of R. If R is local then rad(R) is the maximal ideal of R.

Lemma 19.1. Let R be a ring with Jacobson radical rad(R). Let I ⊂ R be an ideal.
The following are equivalent

(1) I ⊂ rad(R), and
(2) every element of 1 + I is a unit in R.

In this case every element of R which maps to a unit of R/I is a unit.

Proof. If f ∈ rad(R), then f ∈ m for all maximal ideals m of R. Hence 1 + f 6∈ m
for all maximal ideals m ofR. Thus the closed subset V (1 + f) of Spec(R) is empty. This
implies that 1 + f is a unit, see Lemma 17.2.

Conversely, assume that 1 + f is a unit for all f ∈ I . If m is a maximal ideal and I 6⊂ m,
then I + m = R. Hence 1 = f + g for some g ∈ m and f ∈ I . Then g = 1 + (−f) is not
a unit, contradiction.

For the final statement let f ∈ R map to a unit inR/I . Then we can find g ∈ R mapping
to the multiplicative inverse of f mod I . Then fg = 1 mod I . Hence fg is a unit of R
by (2) which implies that f is a unit. �

Lemma 19.2. Let ϕ : R → S be a ring map such that the induced map Spec(S) →
Spec(R) is surjective. Then an element x ∈ R is a unit if and only if ϕ(x) ∈ S is a unit.

Proof. If x is a unit, then so is ϕ(x). Conversely, if ϕ(x) is a unit, then ϕ(x) 6∈ q for
all q ∈ Spec(S). Hence x 6∈ ϕ−1(q) = Spec(ϕ)(q) for all q ∈ Spec(S). Since Spec(ϕ) is
surjective we conclude that x is a unit by part (17) of Lemma 17.2. �

20. Nakayama’s lemma

We quote from [?]: “This simple but important lemma is due to T. Nakayama, G. Azu-
maya and W. Krull. Priority is obscure, and although it is usually called the Lemma of
Nakayama, late Prof. Nakayama did not like the name.”

Lemma 20.1 (Nakayama’s lemma). Let R be a ring with Jacobson radical rad(R). Let
M be an R-module. Let I ⊂ R be an ideal.

(1) If IM = M and M is finite, then there exists an f ∈ 1 + I such that fM = 0.
(2) If IM = M , M is finite, and I ⊂ rad(R), then M = 0.
(3) If N,N ′ ⊂ M , M = N + IN ′, and N ′ is finite, then there exists an f ∈ 1 + I

such that fM ⊂ N and Mf = Nf .
(4) If N,N ′ ⊂M , M = N + IN ′, N ′ is finite, and I ⊂ rad(R), then M = N .
(5) If N → M is a module map, N/IN → M/IM is surjective, and M is finite,

then there exists an f ∈ 1 + I such that Nf →Mf is surjective.
(6) If N → M is a module map, N/IN → M/IM is surjective, M is finite, and

I ⊂ rad(R), then N →M is surjective.
(7) Ifx1, . . . , xn ∈M generateM/IM andM is finite, then there exists an f ∈ 1+I

such that x1, . . . , xn generate Mf over Rf .
(8) If x1, . . . , xn ∈ M generate M/IM , M is finite, and I ⊂ rad(R), then M is

generated by x1, . . . , xn.
(9) If IM = M , I is nilpotent, then M = 0.

(10) If N,N ′ ⊂M , M = N + IN ′, and I is nilpotent then M = N .
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(11) If N → M is a module map, I is nilpotent, and N/IN → M/IM is surjective,
then N →M is surjective.

(12) If {xα}α∈A is a set of elements of M which generate M/IM and I is nilpotent,
then M is generated by the xα.

Proof. Proof of (1). Choose generators y1, . . . , ym of M over R. For each i we can
write yi =

∑
zijyj with zij ∈ I (since M = IM ). In other words

∑
j(δij − zij)yj = 0.

Let f be the determinant of the m × m matrix A = (δij − zij). Note that f ∈ 1 + I
(since the matrix A is entrywise congruent to the m×m identity matrix modulo I). By
Lemma 15.5 (1), there exists an m ×m matrix B such that BA = f1m×m. Writing out
we see that

∑
i bhiaij = fδhj for all h and j; hence,

∑
i,j bhiaijyj =

∑
j fδhjyj = fyh

for every h. In other words, 0 = fyh for every h (since each i satisfies
∑
j aijyj = 0).

This implies that f annihilates M .

By Lemma 19.1 an element of 1 + rad(R) is invertible element ofR. Hence we see that (1)
implies (2). We obtain (3) by applying (1) toM/N which is finite asN ′ is finite. We obtain
(4) by applying (2) toM/N which is finite asN ′ is finite. We obtain (5) by applying (3) to
M and the submodules Im(N →M) andM . We obtain (6) by applying (4) toM and the
submodules Im(N → M) and M . We obtain (7) by applying (5) to the map R⊕n → M ,
(a1, . . . , an) 7→ a1x1 + . . .+anxn. We obtain (8) by applying (6) to the mapR⊕n →M ,
(a1, . . . , an) 7→ a1x1 + . . .+ anxn.

Part (9) holds because if M = IM then M = InM for all n ≥ 0 and I being nilpotent
means In = 0 for some n� 0. Parts (10), (11), and (12) follow from (9) by the arguments
used above. �

Lemma 20.2. Let R be a ring, let S ⊂ R be a multiplicative subset, let I ⊂ R be an
ideal, and let M be a finite R-module. If x1, . . . , xr ∈ M generate S−1(M/IM) as an
S−1(R/I)-module, then there exists an f ∈ S + I such that x1, . . . , xr generate Mf as
an Rf -module.1

Proof. Special case I = 0. Let y1, . . . , ys be generators for M over R. Since S−1M
is generated by x1, . . . , xr , for each i we can write yi =

∑
(aij/sij)xj for some aij ∈ R

and sij ∈ S. Let s ∈ S be the product of all of the sij . Then we see that yi is contained in
the Rs-submodule of Ms generated by x1, . . . , xr. Hence x1, . . . , xr generates Ms.

General case. By the special case, we can find an s ∈ S such that x1, . . . , xr generate
(M/IM)s over (R/I)s. By Lemma 20.1 we can find a g ∈ 1 + Is ⊂ Rs such that
x1, . . . , xr generate (Ms)g over (Rs)g . Write g = 1 + i/s′. Then f = ss′ + is works;
details omitted. �

Lemma 20.3. Let A→ B be a local homomorphism of local rings. Assume
(1) B is finite as an A-module,
(2) mB is a finitely generated ideal,
(3) A→ B induces an isomorphism on residue fields, and
(4) mA/m

2
A → mB/m

2
B is surjective.

Then A→ B is surjective.

1Special cases: (I) I = 0. The lemma says if x1, . . . , xr generate S−1M , then x1, . . . , xr generate Mf

for some f ∈ S. (II) I = p is a prime ideal and S = R \ p. The lemma says if x1, . . . , xr generateM ⊗R κ(p)
then x1, . . . , xr generate Mf for some f ∈ R, f 6∈ p.
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Proof. To show thatA→ B is surjective, we view it as a map ofA-modules and apply
Lemma 20.1 (6). We conclude it suffices to show that A/mA → B/mAB is surjective. As
A/mA = B/mB it suffices to show that mAB → mB is surjective. View mAB → mB
as a map of B-modules and apply Lemma 20.1 (6). We conclude it suffices to see that
mAB/mAmB → mB/m

2
B is surjective. This follows from assumption (4). �

21. Open and closed subsets of spectra

It turns out that open and closed subsets of a spectrum correspond to idempotents of the
ring.

Lemma 21.1. Let R be a ring. Let e ∈ R be an idempotent. In this case

Spec(R) = D(e)qD(1− e).

Proof. Note that an idempotent e of a domain is either 1 or 0. Hence we see that

D(e) = {p ∈ Spec(R) | e 6∈ p}
= {p ∈ Spec(R) | e 6= 0 in κ(p)}
= {p ∈ Spec(R) | e = 1 in κ(p)}

Similarly we have

D(1− e) = {p ∈ Spec(R) | 1− e 6∈ p}
= {p ∈ Spec(R) | e 6= 1 in κ(p)}
= {p ∈ Spec(R) | e = 0 in κ(p)}

Since the image of e in any residue field is either 1 or 0 we deduce thatD(e) andD(1− e)
cover all of Spec(R). �

Lemma 21.2. Let R1 and R2 be rings. Let R = R1 × R2. The maps R → R1,
(x, y) 7→ x and R→ R2, (x, y) 7→ y induce continuous maps Spec(R1)→ Spec(R) and
Spec(R2)→ Spec(R). The induced map

Spec(R1)q Spec(R2) −→ Spec(R)
is a homeomorphism. In other words, the spectrum of R = R1 ×R2 is the disjoint union
of the spectrum of R1 and the spectrum of R2.

Proof. Write 1 = e1 + e2 with e1 = (1, 0) and e2 = (0, 1). Note that e1 and
e2 = 1 − e1 are idempotents. We leave it to the reader to show that R1 = Re1 is the
localization of R at e1. Similarly for e2. Thus the statement of the lemma follows from
Lemma 21.1 combined with Lemma 17.6. �

We reprove the following lemma later after introducing a glueing lemma for functions.
See Section 24.

Lemma 21.3. LetR be a ring. For each U ⊂ Spec(R) which is open and closed there
exists a unique idempotent e ∈ R such that U = D(e). This induces a 1-1 correspondence
between open and closed subsets U ⊂ Spec(R) and idempotents e ∈ R.

Proof. Let U ⊂ Spec(R) be open and closed. Since U is closed it is quasi-compact
by Lemma 17.10, and similarly for its complement. Write U =

⋃n
i=1 D(fi) as a finite

union of standard opens. Similarly, write Spec(R) \ U =
⋃m
j=1 D(gj) as a finite union

of standard opens. Since ∅ = D(fi) ∩D(gj) = D(figj) we see that figj is nilpotent by
Lemma 17.2. Let I = (f1, . . . , fn) ⊂ R and let J = (g1, . . . , gm) ⊂ R. Note that V (J)
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equals U , that V (I) equals the complement of U , so Spec(R) = V (I) q V (J). By the
remark on nilpotency above, we see that (IJ)N = (0) for some sufficiently large integer
N . Since

⋃
D(fi) ∪

⋃
D(gj) = Spec(R) we see that I + J = R, see Lemma 17.2. By

raising this equation to the 2N th power we conclude that IN +JN = R. Write 1 = x+y
with x ∈ IN and y ∈ JN . Then 0 = xy = x(1 − x) as INJN = (0). Thus x = x2 is
idempotent and contained in IN ⊂ I . The idempotent y = 1−x is contained in JN ⊂ J .
This shows that the idempotent x maps to 1 in every residue field κ(p) for p ∈ V (J) and
that x maps to 0 in κ(p) for every p ∈ V (I).

To see uniqueness suppose that e1, e2 are distinct idempotents in R. We have to show
there exists a prime p such that e1 ∈ p and e2 6∈ p, or conversely. Write e′

i = 1 − ei. If
e1 6= e2, then 0 6= e1 − e2 = e1(e2 + e′

2)− (e1 + e′
1)e2 = e1e

′
2 − e′

1e2. Hence either the
idempotent e1e

′
2 6= 0 or e′

1e2 6= 0. An idempotent is not nilpotent, and hence we find a
prime p such that either e1e

′
2 6∈ p or e′

1e2 6∈ p, by Lemma 17.2. It is easy to see this gives
the desired prime. �

Lemma 21.4. Let R be a nonzero ring. Then Spec(R) is connected if and only if R
has no nontrivial idempotents.

Proof. Obvious from Lemma 21.3 and the definition of a connected topological space.
�

Lemma 21.5. Let I ⊂ R be a finitely generated ideal of a ring R such that I = I2.
Then

(1) there exists an idempotent e ∈ R such that I = (e),
(2) R/I ∼= Re′ for the idempotent e′ = 1− e ∈ R, and
(3) V (I) is open and closed in Spec(R).

Proof. By Nakayama’s Lemma 20.1 there exists an element f = 1 + i, i ∈ I such
that fI = 0. Then f2 = f + fi = f is an idempotent. Consider the idempotent
e = 1− f = −i ∈ I . For j ∈ I we have ej = j − fj = j hence I = (e). This proves (1).

Parts (2) and (3) follow from (1). Namely, we have V (I) = V (e) = Spec(R)\D(e) which
is open and closed by either Lemma 21.1 or Lemma 21.3. This proves (3). For (2) observe
that the map R→ Re′ is surjective since x/(e′)n = x/e′ = xe′/(e′)2 = xe′/e′ = x/1 in
Re′ . The kernel of the map R→ Re′ is the set of elements of R annihilated by a positive
power of e′. Since e′ is idempotent this is the ideal of elements annihilated by e′ which is
the ideal I = (e) as e+ e′ = 1 is a pair of orthognal idempotents. This proves (2). �

22. Connected components of spectra

Connected components of spectra are not as easy to understand as one may think at first.
This is because we are used to the topology of locally connected spaces, but the spectrum
of a ring is in general not locally connected.

Lemma 22.1. Let R be a ring. Let T ⊂ Spec(R) be a subset of the spectrum. The
following are equivalent

(1) T is closed and is a union of connected components of Spec(R),
(2) T is an intersection of open and closed subsets of Spec(R), and
(3) T = V (I) where I ⊂ R is an ideal generated by idempotents.

Moreover, the ideal in (3) if it exists is unique.
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Proof. By Lemma 17.11 and Topology, Lemma 12.12 we see that (1) and (2) are equiv-
alent. Assume (2) and write T =

⋂
Uα with Uα ⊂ Spec(R) open and closed. Then

Uα = D(eα) for some idempotent eα ∈ R by Lemma 21.3. Then setting I = (1− eα) we
see that T = V (I), i.e., (3) holds. Finally, assume (3). Write T = V (I) and I = (eα) for
some collection of idempotents eα. Then it is clear that T =

⋂
V (eα) =

⋂
D(1− eα).

Suppose that I is an ideal generated by idempotents. Let e ∈ R be an idempotent such
that V (I) ⊂ V (e). Then by Lemma 17.2 we see that en ∈ I for some n ≥ 1. As e is
an idempotent this means that e ∈ I . Hence we see that I is generated by exactly those
idempotents e such that T ⊂ V (e). In other words, the ideal I is completely determined
by the closed subset T which proves uniqueness. �

Lemma 22.2. LetR be a ring. A connected component of Spec(R) is of the formV (I),
where I is an ideal generated by idempotents such that every idempotent ofR either maps
to 0 or 1 in R/I .

Proof. Let p be a prime of R. By Lemma 17.11 we have see that the hypotheses
of Topology, Lemma 12.10 are satisfied for the topological space Spec(R). Hence the
connected component of p in Spec(R) is the intersection of open and closed subsets of
Spec(R) containing p. Hence it equals V (I) where I is generated by the idempotents
e ∈ R such that e maps to 0 in κ(p), see Lemma 21.3. Any idempotent e which is not in
this collection clearly maps to 1 in R/I . �

23. Glueing properties

In this section we put a number of standard results of the form: if something is true for
all members of a standard open covering then it is true. In fact, it often suffices to check
things on the level of local rings as in the following lemma.

Lemma 23.1. Let R be a ring.
(1) For an element x of an R-module M the following are equivalent

(a) x = 0,
(b) x maps to zero in Mp for all p ∈ Spec(R),
(c) x maps to zero in Mm for all maximal ideals m of R.

In other words, the map M →
∏

mMm is injective.
(2) Given an R-module M the following are equivalent

(a) M is zero,
(b) Mp is zero for all p ∈ Spec(R),
(c) Mm is zero for all maximal ideals m of R.

(3) Given a complex M1 →M2 →M3 of R-modules the following are equivalent
(a) M1 →M2 →M3 is exact,
(b) for every prime p of R the localization M1,p →M2,p →M3,p is exact,
(c) for every maximal ideal m of R the localization M1,m →M2,m →M3,m is

exact.
(4) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is injective,
(b) fp : Mp →M ′

p is injective for all primes p of R,
(c) fm : Mm →M ′

m is injective for all maximal ideals m of R.
(5) Given a map f : M →M ′ of R-modules the following are equivalent

(a) f is surjective,
(b) fp : Mp →M ′

p is surjective for all primes p of R,
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(c) fm : Mm →M ′
m is surjective for all maximal ideals m of R.

(6) Given a map f : M →M ′ of R-modules the following are equivalent
(a) f is bijective,
(b) fp : Mp →M ′

p is bijective for all primes p of R,
(c) fm : Mm →M ′

m is bijective for all maximal ideals m of R.

Proof. Let x ∈ M as in (1). Let I = {f ∈ R | fx = 0}. It is easy to see that I
is an ideal (it is the annihilator of x). Condition (1)(c) means that for all maximal ideals
m there exists an f ∈ R \ m such that fx = 0. In other words, V (I) does not contain a
closed point. By Lemma 17.2 we see I is the unit ideal. Hence x is zero, i.e., (1)(a) holds.
This proves (1).
Part (2) follows by applying (1) to all elements of M simultaneously.
Proof of (3). LetH be the homology of the sequence, i.e.,H = Ker(M2 →M3)/ Im(M1 →
M2). By Proposition 9.12 we have that Hp is the homology of the sequence M1,p →
M2,p →M3,p. Hence (3) is a consequence of (2).
Parts (4) and (5) are special cases of (3). Part (6) follows formally on combining (4) and
(5). �

Lemma 23.2. LetR be a ring. LetM be anR-module. Let S be anR-algebra. Suppose
that f1, . . . , fn is a finite list of elements of R such that

⋃
D(fi) = Spec(R), in other

words (f1, . . . , fn) = R.
(1) If each Mfi = 0 then M = 0.
(2) If each Mfi is a finite Rfi -module, then M is a finite R-module.
(3) If each Mfi is a finitely presented Rfi -module, then M is a finitely presented

R-module.
(4) Let M → N be a map of R-modules. If Mfi → Nfi is an isomorphism for each

i then M → N is an isomorphism.
(5) Let 0 → M ′′ → M → M ′ → 0 be a complex of R-modules. If 0 → M ′′

fi
→

Mfi →M ′
fi
→ 0 is exact for each i, then 0→M ′′ →M →M ′ → 0 is exact.

(6) If each Rfi is Noetherian, then R is Noetherian.
(7) If each Sfi is a finite type R-algebra, so is S.
(8) If each Sfi is of finite presentation over R, so is S.

Proof. We prove each of the parts in turn.
(1) By Proposition 9.10 this implies Mp = 0 for all p ∈ Spec(R), so we conclude

by Lemma 23.1.
(2) For each i take a finite generating set Xi of Mfi . Without loss of generality,

we may assume that the elements of Xi are in the image of the localization map
M → Mfi , so we take a finite set Yi of preimages of the elements of Xi in M .
Let Y be the union of these sets. This is still a finite set. Consider the obviousR-
linear mapRY →M sending the basis element ey to y. By assumption this map
is surjective after localizing at an arbitrary prime ideal p of R, so it is surjective
by Lemma 23.1 and M is finitely generated.

(3) By (2) we have a short exact sequence
0→ K → Rn →M → 0

Since localization is an exact functor and Mfi is finitely presented we see that
Kfi is finitely generated for all 1 ≤ i ≤ n by Lemma 5.3. By (2) this implies
that K is a finite R-module and therefore M is finitely presented.
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(4) By Proposition 9.10 the assumption implies that the induced morphism on lo-
calizations at all prime ideals is an isomorphism, so we conclude by Lemma 23.1.

(5) By Proposition 9.10 the assumption implies that the induced sequence of local-
izations at all prime ideals is short exact, so we conclude by Lemma 23.1.

(6) We will show that every ideal ofR has a finite generating set: For this, let I ⊂ R
be an arbitrary ideal. By Proposition 9.12 each Ifi ⊂ Rfi is an ideal. These are
all finitely generated by assumption, so we conclude by (2).

(7) For each i take a finite generating set Xi of Sfi . Without loss of generality, we
may assume that the elements ofXi are in the image of the localization mapS →
Sfi , so we take a finite set Yi of preimages of the elements ofXi inS. Let Y be the
union of these sets. This is still a finite set. Consider the algebra homomorphism
R[Xy]y∈Y → S induced by Y . Since it is an algebra homomorphism, the image
T is anR-submodule of theR-module S , so we can consider the quotient module
S/T . By assumption, this is zero if we localize at the fi, so it is zero by (1) and
therefore S is an R-algebra of finite type.

(8) By the previous item, there exists a surjectiveR-algebra homomorphismR[X1, . . . , Xn]→
S. Let K be the kernel of this map. This is an ideal in R[X1, . . . , Xn], finitely
generated in each localization at fi. Since the fi generate the unit ideal inR, they
also generate the unit ideal inR[X1, . . . , Xn], so an application of (2) finishes the
proof.

�

Lemma 23.3. Let R → S be a ring map. Suppose that g1, . . . , gn is a finite list of
elements of S such that

⋃
D(gi) = Spec(S) in other words (g1, . . . , gn) = S.

(1) If each Sgi is of finite type over R, then S is of finite type over R.
(2) If each Sgi is of finite presentation over R, then S is of finite presentation over

R.

Proof. Choose h1, . . . , hn ∈ S such that
∑
higi = 1.

Proof of (1). For each i choose a finite list of elements xi,j ∈ Sgi , j = 1, . . . ,mi which
generateSgi as anR-algebra. Write xi,j = yi,j/g

ni,j
i for some yi,j ∈ S and some ni,j ≥ 0.

Consider the R-subalgebra S′ ⊂ S generated by g1, . . . , gn, h1, . . . , hn and yi,j , i =
1, . . . , n, j = 1, . . . ,mi. Since localization is exact (Proposition 9.12), we see that S′

gi →
Sgi is injective. On the other hand, it is surjective by our choice of yi,j . The elements
g1, . . . , gn generate the unit ideal in S′ as h1, . . . , hn ∈ S′. Thus S′ → S viewed as an
S′-module map is an isomorphism by Lemma 23.2.

Proof of (2). We already know that S is of finite type. Write S = R[x1, . . . , xm]/J
for some ideal J . For each i choose a lift g′

i ∈ R[x1, . . . , xm] of gi and we choose a lift
h′
i ∈ R[x1, . . . , xm] of hi. Then we see that

Sgi = R[x1, . . . , xm, yi]/(Ji + (1− yig′
i))

where Ji is the ideal ofR[x1, . . . , xm, yi] generated by J . Small detail omitted. By Lemma
6.3 we may choose a finite list of elements fi,j ∈ J , j = 1, . . . ,mi such that the images of
fi,j in Ji and 1− yig′

i generate the ideal Ji + (1− yig′
i). Set

S′ = R[x1, . . . , xm]/
(∑

h′
ig

′
i − 1, fi,j ; i = 1, . . . , n, j = 1, . . . ,mi

)
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There is a surjective R-algebra map S′ → S. The classes of the elements g′
1, . . . , g

′
n in S′

generate the unit ideal and by construction the maps S′
g′
i
→ Sgi are injective. Thus we

conclude as in part (1). �

24. Glueing functions

In this section we show that given an open covering

Spec(R) =
⋃n

i=1
D(fi)

by standard opens, and given an element hi ∈ Rfi for each i such that hi = hj as elements
ofRfifj then there exists a unique h ∈ R such that the image of h inRfi is hi. This result
can be interpreted in two ways:

(1) The rule D(f) 7→ Rf is a sheaf of rings on the standard opens, see Sheaves,
Section 30.

(2) If we think of elements of Rf as the “algebraic” or “regular” functions on D(f),
then these glue as would continuous, resp. differentiable functions on a topolog-
ical, resp. differentiable manifold.

Lemma 24.1. Let R be a ring. Let f1, . . . , fn be elements of R generating the unit
ideal. Let M be an R-module. The sequence

0→M
α−→
⊕n

i=1
Mfi

β−→
⊕n

i,j=1
Mfifj

is exact, where α(m) = (m/1, . . . ,m/1) and β(m1/f
e1
1 , . . . ,mn/f

en
n ) = (mi/f

ei
i −

mj/f
ej
j )(i,j).

Proof. It suffices to show that the localization of the sequence at any maximal ideal
m is exact, see Lemma 23.1. Since f1, . . . , fn generate the unit ideal, there is an i such
that fi 6∈ m. After renumbering we may assume i = 1. Note that (Mfi)m = (Mm)fi
and (Mfifj )m = (Mm)fifj , see Proposition 9.11. In particular (Mf1)m = Mm and
(Mf1fi)m = (Mm)fi , because f1 is a unit. Note that the maps in the sequence are the
canonical ones coming from Lemma 9.7 and the identity map on M . Having said all of
this, after replacing R by Rm, M by Mm, and fi by their image in Rm, and f1 by 1 ∈ Rm,
we reduce to the case where f1 = 1.

Assume f1 = 1. Injectivity of α is now trivial. Let m = (mi) ∈
⊕n

i=1 Mfi be in the
kernel of β. Thenm1 ∈Mf1 = M . Moreover, β(m) = 0 implies thatm1 andmi map to
the same element of Mf1fi = Mfi . Thus α(m1) = m and the proof is complete. �

Lemma 24.2. Let R be a ring, and let f1, f2, . . . fn ∈ R generate the unit ideal in R.
Then the following sequence is exact:

0 −→ R −→
⊕

i
Rfi −→

⊕
i,j
Rfifj

where the maps α : R −→
⊕

iRfi and β :
⊕

iRfi −→
⊕

i,j Rfifj are defined as

α(x) =
(x

1 , . . . ,
x

1

)
and β

(
x1

fr1
1
, . . . ,

xn
frnn

)
=
(
xi
frii
− xj

f
rj
j

in Rfifj

)
.

Proof. Special case of Lemma 24.1. �

The following we have already seen above, but we state it explicitly here for convenience.



538 10. COMMUTATIVE ALGEBRA

Lemma 24.3. Let R be a ring. If Spec(R) = U q V with both U and V open then
R ∼= R1 × R2 with U ∼= Spec(R1) and V ∼= Spec(R2) via the maps in Lemma 21.2.
Moreover, both R1 and R2 are localizations as well as quotients of the ring R.

Proof. By Lemma 21.3 we have U = D(e) and V = D(1− e) for some idempotent
e. By Lemma 24.2 we see that R ∼= Re × R1−e (since clearly Re(1−e) = 0 so the glueing
condition is trivial; of course it is trivial to prove the product decomposition directly in
this case). The lemma follows. �

Lemma 24.4. Let R be a ring. Let f1, . . . , fn ∈ R. Let M be an R-module. Then
M →

⊕
Mfi is injective if and only if

M −→
⊕

i=1,...,n
M, m 7−→ (f1m, . . . , fnm)

is injective.

Proof. The mapM →
⊕
Mfi is injective if and only if for allm ∈M and e1, . . . , en ≥

1 such that feii m = 0, i = 1, . . . , n we have m = 0. This clearly implies the displayed
map is injective. Conversely, suppose the displayed map is injective and m ∈ M and
e1, . . . , en ≥ 1 are such that feii m = 0, i = 1, . . . , n. If ei = 1 for all i, then we immedi-
ately conclude that m = 0 from the injectivity of the displayed map. Next, we prove this
holds for any such data by induction on e =

∑
ei. The base case is e = n, and we have

just dealt with this. If some ei > 1, then set m′ = fim. By induction we see that m′ = 0.
Hence we see that fim = 0, i.e., we may take ei = 1 which decreases e and we win. �

The following lemma is better stated and proved in the more general context of flat de-
scent. However, it makes sense to state it here since it fits well with the above.

Lemma 24.5. LetR be a ring. Let f1, . . . , fn ∈ R. Suppose we are given the following
data:

(1) For each i an Rfi -module Mi.
(2) For each pair i, j an Rfifj -module isomorphism ψij : (Mi)fj → (Mj)fi .

which satisfy the “cocycle condition” that all the diagrams

(Mi)fjfk

ψij %%

ψik // (Mk)fifj

(Mj)fifk

ψjk

99

commute (for all triples i, j, k). Given this data define

M = Ker
(⊕

1≤i≤n
Mi −→

⊕
1≤i,j≤n

(Mi)fj
)

where (m1, . . . ,mn) maps to the element whose (i, j)th entry ismi/1−ψji(mj/1). Then
the natural map M → Mi induces an isomorphism Mfi → Mi. Moreover ψij(m/1) =
m/1 for all m ∈M (with obvious notation).

Proof. To show thatMf1 →M1 is an isomorphism, it suffices to show that its local-
ization at every prime p′ of Rf1 is an isomorphism, see Lemma 23.1. Write p′ = pRf1 for
some prime p ⊂ R, f1 6∈ p, see Lemma 17.6. Since localization is exact (Proposition 9.12),
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we see that

(Mf1)p′ = Mp

= Ker
(⊕

1≤i≤n
Mi,p −→

⊕
1≤i,j≤n

((Mi)fj )p
)

= Ker
(⊕

1≤i≤n
Mi,p −→

⊕
1≤i,j≤n

(Mi,p)fj
)

Here we also used Proposition 9.11. Since f1 is a unit in Rp, this reduces us to the case
where f1 = 1 by replacing R by Rp, fi by the image of fi in Rp, M by Mp, and f1 by 1.

Assume f1 = 1. Then ψ1j : (M1)fj → Mj is an isomorphism for j = 2, . . . , n. If we
use these isomorphisms to identify Mj = (M1)fj , then we see that ψij : (M1)fifj →
(M1)fifj is the canonical identification. Thus the complex

0→M1 →
⊕

1≤i≤n
(M1)fi −→

⊕
1≤i,j≤n

(M1)fifj

is exact by Lemma 24.1. Thus the first map identifies M1 with M in this case and every-
thing is clear. �

25. Zerodivisors and total rings of fractions

The local ring at a minimal prime has the following properties.

Lemma 25.1. Let p be a minimal prime of a ring R. Every element of the maximal
ideal of Rp is nilpotent. If R is reduced then Rp is a field.

Proof. If some element x of pRp is not nilpotent, then D(x) 6= ∅, see Lemma 17.2.
This contradicts the minimality of p. If R is reduced, then pRp = 0 and hence it is a
field. �

Lemma 25.2. Let R be a reduced ring. Then
(1) R is a subring of a product of fields,
(2) R→

∏
p minimal Rp is an embedding into a product of fields,

(3)
⋃

p minimal p is the set of zerodivisors of R.

Proof. By Lemma 25.1 each of the rings Rp is a field. In particular, the kernel of
the ring map R → Rp is p. By Lemma 17.2 we have

⋂
p p = (0). Hence (2) and (1) are

true. If xy = 0 and y 6= 0, then y 6∈ p for some minimal prime p. Hence x ∈ p. Thus
every zerodivisor of R is contained in

⋃
p minimal p. Conversely, suppose that x ∈ p for

some minimal prime p. Then x maps to zero in Rp, hence there exists y ∈ R, y 6∈ p such
that xy = 0. In other words, x is a zerodivisor. This finishes the proof of (3) and the
lemma. �

The total ring of fractions Q(R) of a ring R was introduced in Example 9.8.

Lemma 25.3. Let R be a ring. Let S ⊂ R be a multiplicative subset consisting of
nonzerodivisors. Then Q(R) ∼= Q(S−1R). In particular Q(R) ∼= Q(Q(R)).

Proof. If x ∈ S−1R is a nonzerodivisor, and x = r/f for some r ∈ R, f ∈ S , then
r is a nonzerodivisor in R. Whence the lemma. �

We can apply glueing results to prove something about total rings of fractionsQ(R) which
we introduced in Example 9.8.
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Lemma 25.4. Let R be a ring. Assume that R has finitely many minimal primes
q1, . . . , qt, and that q1 ∪ . . . ∪ qt is the set of zerodivisors of R. Then the total ring of
fractions Q(R) is equal to Rq1 × . . .×Rqt .

Proof. There are natural maps Q(R) → Rqi since any nonzerodivisor is contained
in R \ qi. Hence a natural map Q(R) → Rq1 × . . . × Rqt . For any nonminimal prime
p ⊂ R we see that p 6⊂ q1 ∪ . . . ∪ qt by Lemma 15.2. Hence Spec(Q(R)) = {q1, . . . , qt}
(as subsets of Spec(R), see Lemma 17.5). Therefore Spec(Q(R)) is a finite discrete set and
it follows that Q(R) = A1 × . . .×At with Spec(Ai) = {qi}, see Lemma 24.3. Moreover
Ai is a local ring, which is a localization of R. Hence Ai ∼= Rqi . �

26. Irreducible components of spectra

We show that irreducible components of the spectrum of a ring correspond to the minimal
primes in the ring.

Lemma 26.1. Let R be a ring.
(1) For a prime p ⊂ R the closure of {p} in the Zariski topology is V (p). In a

formula {p} = V (p).
(2) The irreducible closed subsets of Spec(R) are exactly the subsets V (p), with p ⊂

R a prime.
(3) The irreducible components (see Topology, Definition 8.1) of Spec(R) are ex-

actly the subsets V (p), with p ⊂ R a minimal prime.

Proof. Note that if p ∈ V (I), then I ⊂ p. Hence, clearly {p} = V (p). In particular
V (p) is the closure of a singleton and hence irreducible. The second assertion implies the
third. To show the second, let V (I) ⊂ Spec(R) with I a radical ideal. If I is not prime,
then choose a, b ∈ R, a, b 6∈ I with ab ∈ I . In this case V (I, a) ∪ V (I, b) = V (I),
but neither V (I, b) = V (I) nor V (I, a) = V (I), by Lemma 17.2. Hence V (I) is not
irreducible. �

In other words, this lemma shows that every irreducible closed subset of Spec(R) is of the
form V (p) for some prime p. Since V (p) = {p} we see that each irreducible closed subset
has a unique generic point, see Topology, Definition 8.6. In particular, Spec(R) is a sober
topological space. We record this fact in the following lemma.

Lemma 26.2. The spectrum of a ring is a spectral space, see Topology, Definition 23.1.

Proof. Formally this follows from Lemma 26.1 and Lemma 17.11. See also discussion
above. �

Lemma 26.3. Let R be a ring. Let p ⊂ R be a prime.
(1) the set of irreducible closed subsets of Spec(R) passing through p is in one-to-

one correspondence with primes q ⊂ Rp.
(2) The set of irreducible components of Spec(R) passing through p is in one-to-one

correspondence with minimal primes q ⊂ Rp.

Proof. Follows from Lemma 26.1 and the description of Spec(Rp) in Lemma 17.5
which shows that Spec(Rp) corresponds to primes q in R with q ⊂ p. �

Lemma 26.4. Let R be a ring. Let p be a minimal prime of R. Let W ⊂ Spec(R) be
a quasi-compact open not containing the point p. Then there exists an f ∈ R, f 6∈ p such
that D(f) ∩W = ∅.
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Proof. SinceW is quasi-compact we may write it as a finite union of standard affine
opensD(gi), i = 1, . . . , n. Since p 6∈W we have gi ∈ p for all i. By Lemma 25.1 each gi is
nilpotent in Rp. Hence we can find an f ∈ R, f 6∈ p such that for all i we have fgnii = 0
for some ni > 0. Then D(f) works. �

Lemma 26.5. LetR be a ring. LetX = Spec(R) as a topological space. The following
are equivalent

(1) X is profinite,
(2) X is Hausdorff,
(3) X is totally disconnected.
(4) every quasi-compact open of X is closed,
(5) there are no nontrivial inclusions between its prime ideals,
(6) every prime ideal is a maximal ideal,
(7) every prime ideal is minimal,
(8) every standard open D(f) ⊂ X is closed, and
(9) add more here.

Proof. First proof. It is clear that (5), (6), and (7) are equivalent. It is clear that (4)
and (8) are equivalent as every quasi-compact open is a finite union of standard opens. The
implication (7)⇒ (4) follows from Lemma 26.4. Assume (4) holds. Let p, p′ be distinct
primes of R. Choose an f ∈ p′, f 6∈ p (if needed switch p with p′). Then p′ 6∈ D(f)
and p ∈ D(f). By (4) the open D(f) is also closed. Hence p and p′ are in disjoint open
neighbourhoods whose union is X . Thus X is Hausdorff and totally disconnected. Thus
(4) ⇒ (2) and (3). If (3) holds then there cannot be any specializations between points
of Spec(R) and we see that (5) holds. If X is Hausdorff then every point is closed, so (2)
implies (6). Thus (2), (3), (4), (5), (6), (7) and (8) are equivalent. Any profinite space is
Hausdorff, so (1) implies (2). If X satisfies (2) and (3), then X (being quasi-compact by
Lemma 17.10) is profinite by Topology, Lemma 22.2.

Second proof. Besides the equivalence of (4) and (8) this follows from Lemma 26.2 and
purely topological facts, see Topology, Lemma 23.8. �

27. Examples of spectra of rings

In this section we put some examples of spectra.

Example 27.1. In this example we describe X = Spec(Z[x]/(x2 − 4)). Let p be an
arbitrary prime in X . Let φ : Z→ Z[x]/(x2 − 4) be the natural ring map. Then, φ−1(p)
is a prime in Z. If φ−1(p) = (2), then since p contains 2, it corresponds to a prime ideal
in Z[x]/(x2 − 4, 2) ∼= (Z/2Z)[x]/(x2) via the map Z[x]/(x2 − 4) → Z[x]/(x2 − 4, 2).
Any prime in (Z/2Z)[x]/(x2) corresponds to a prime in (Z/2Z)[x] containing (x2). Such
primes will then contain x. Since (Z/2Z) ∼= (Z/2Z)[x]/(x) is a field, (x) is a maximal
ideal. Since any prime contains (x) and (x) is maximal, the ring contains only one prime
(x). Thus, in this case, p = (2, x). Now, if φ−1(p) = (q) for q > 2, then since p contains
q, it corresponds to a prime ideal in Z[x]/(x2 − 4, q) ∼= (Z/qZ)[x]/(x2 − 4) via the
map Z[x]/(x2 − 4)→ Z[x]/(x2 − 4, q). Any prime in (Z/qZ)[x]/(x2 − 4) corresponds
to a prime in (Z/qZ)[x] containing (x2 − 4) = (x − 2)(x + 2). Hence, these primes
must contain either x − 2 or x + 2. Since (Z/qZ)[x] is a PID, all nonzero primes are
maximal, and so there are precisely 2 primes in (Z/qZ)[x] containing (x − 2)(x + 2),
namely (x−2) and (x+2). In conclusion, there exist two primes (q, x−2) and (q, x+2)
since 2 6= −2 ∈ Z/(q). Finally, we treat the case where φ−1(p) = (0). Notice that p
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corresponds to a prime ideal in Z[x] that contains (x2 − 4) = (x − 2)(x + 2). Hence, p
contains either (x − 2) or (x + 2). Hence, p corresponds to a prime in Z[x]/(x − 2) or
one in Z[x]/(x + 2) that intersects Z only at 0, by assumption. Since Z[x]/(x − 2) ∼= Z
and Z[x]/(x+ 2) ∼= Z, this means that p must correspond to 0 in one of these rings. Thus,
p = (x− 2) or p = (x+ 2) in the original ring.

Example 27.2. In this example we describe X = Spec(Z[x]). Fix p ∈ X . Let
φ : Z → Z[x] and notice that φ−1(p) ∈ Spec(Z). If φ−1(p) = (q) for q a prime
number q > 0, then p corresponds to a prime in (Z/(q))[x], which must be generated
by a polynomial that is irreducible in (Z/(q))[x]. If we choose a representative of this
polynomial with minimal degree, then it will also be irreducible in Z[x]. Hence, in this
case p = (q, fq) where fq is an irreducible polynomial in Z[x] that is irreducible when
viewed in (Z/(q)[x]). Now, assume that φ−1(p) = (0). In this case, p must be generated
by nonconstant polynomials which, since p is prime, may be assumed to be irreducible
in Z[x]. By Gauss’ lemma, these polynomials are also irreducible in Q[x]. Since Q[x] is
a Euclidean domain, if there are at least two distinct irreducibles f, g generating p, then
1 = af + bg for a, b ∈ Q[x]. Multiplying through by a common denominator, we see
that m = āf + b̄g for ā, b̄ ∈ Z[x] and nonzero m ∈ Z. This is a contradiction. Hence, p
is generated by one irreducible polynomial in Z[x].

Example 27.3. In this example we describeX = Spec(k[x, y]) when k is an arbitrary
field. Clearly (0) is prime, and any principal ideal generated by an irreducible polynomial
will also be a prime since k[x, y] is a unique factorization domain. Now assume p is an
element ofX that is not principal. Since k[x, y] is a Noetherian UFD, the prime ideal p can
be generated by a finite number of irreducible polynomials (f1, . . . , fn). Now, I claim that
if f, g are irreducible polynomials in k[x, y] that are not associates, then (f, g)∩k[x] 6= 0.
To do this, it is enough to show that f and g are relatively prime when viewed in k(x)[y].
In this case, k(x)[y] is a Euclidean domain, so by applying the Euclidean algorithm and
clearing denominators, we obtain p = af + bg for p, a, b ∈ k[x]. Thus, assume this is not
the case, that is, that some nonunit h ∈ k(x)[y] divides both f and g. Then, by Gauss’s
lemma, for some a, b ∈ k(x) we have ah|f and bh|g for ah, bh ∈ k[x]. By irreducibility,
ah = f and bh = g (since h /∈ k(x)). So, back in k(x)[y], f, g are associates, as a

b g = f .
Since k(x) is the fraction field of k[x], we can write g = r

sf for elements r, s ∈ k[x]
sharing no common factors. This implies that sg = rf in k[x, y] and so s must divide
f since k[x, y] is a UFD. Hence, s = 1 or s = f . If s = f , then r = g, implying
f, g ∈ k[x] and thus must be units in k(x) and relatively prime in k(x)[y], contradicting
our hypothesis. If s = 1, then g = rf , another contradiction. Thus, we must have f, g
relatively prime in k(x)[y], a Euclidean domain. Thus, we have reduced to the case p
contains some irreducible polynomial p ∈ k[x] ⊂ k[x, y]. By the above, p corresponds
to a prime in the ring k[x, y]/(p) = k(α)[y], where α is an element algebraic over k
with minimum polynomial p. This is a PID, and so any prime ideal corresponds to (0)
or an irreducible polynomial in k(α)[y]. Thus, p is of the form (p) or (p, f) where f is a
polynomial in k[x, y] that is irreducible in the quotient k[x, y]/(p).

Example 27.4. Consider the ring

R = {f ∈ Q[z] with f(0) = f(1)}.

Consider the map
ϕ : Q[A,B]→ R
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defined byϕ(A) = z2−z andϕ(B) = z3−z2. It is easily checked that (A3−B2+AB) ⊂
Ker(ϕ) and that A3 −B2 + AB is irreducible. Assume that ϕ is surjective; then since R
is an integral domain (it is a subring of an integral domain), Ker(ϕ) must be a prime ideal
of Q[A,B]. The prime ideals which contain (A3−B2 +AB) are (A3−B2 +AB) itself
and any maximal ideal (f, g) with f, g ∈ Q[A,B] such that f is irreducible mod g. But
R is not a field, so the kernel must be (A3 − B2 + AB); hence ϕ gives an isomorphism
R→ Q[A,B]/(A3 −B2 +AB).

To see that ϕ is surjective, we must express any f ∈ R as a Q-coefficient polynomial in
A(z) = z2 − z and B(z) = z3 − z2. Note the relation zA(z) = B(z). Let a = f(0) =
f(1). Then z(z − 1) must divide f(z) − a, so we can write f(z) = z(z − 1)g(z) + a =
A(z)g(z) + a. If deg(g) < 2, then h(z) = c1z + c0 and f(z) = A(z)(c1z + c0) + a =
c1B(z) + c0A(z) + a, so we are done. If deg(g) ≥ 2, then by the polynomial division
algorithm, we can write g(z) = A(z)h(z) + b1z + b0 (deg(h) ≤ deg(g) − 2), so f(z) =
A(z)2h(z) + b1B(z) + b0A(z). Applying division to h(z) and iterating, we obtain an
expression for f(z) as a polynomial in A(z) and B(z); hence ϕ is surjective.

Now let a ∈ Q, a 6= 0, 1
2 , 1 and consider

Ra = {f ∈ Q[z, 1
z − a

] with f(0) = f(1)}.

This is a finitely generated Q-algebra as well: it is easy to check that the functions z2− z,
z3 − z, and a2−a

z−a + z generate Ra as an Q-algebra. We have the following inclusions:

R ⊂ Ra ⊂ Q[z, 1
z − a

], R ⊂ Q[z] ⊂ Q[z, 1
z − a

].

Recall (Lemma 17.5) that for a ring T and a multiplicative subsetS ⊂ T , the ring mapT →
S−1T induces a map on spectra Spec(S−1T ) → Spec(T ) which is a homeomorphism
onto the subset

{p ∈ Spec(T ) | S ∩ p = ∅} ⊂ Spec(T ).
When S = {1, f, f2, . . .} for some f ∈ T , this is the open set D(f) ⊂ T . We now
verify a corresponding property for the ring map R → Ra: we will show that the map
θ : Spec(Ra) → Spec(R) induced by inclusion R ⊂ Ra is a homeomorphism onto an
open subset of Spec(R) by verifying that θ is an injective local homeomorphism. We do so
with respect to an open cover of Spec(Ra) by two distinguished opens, as we now describe.
For any r ∈ Q, let evr : R → Q be the homomorphism given by evaluation at r. Note
that for r = 0 and r = 1 − a, this can be extended to a homomorphism ev′

r : Ra → Q
(the latter because 1

z−a is well-defined at z = 1− a, since a 6= 1
2 ). However, eva does not

extend to Ra. Write mr = Ker(evr). We have

m0 = (z2 − z, z3 − z),

ma = ((z − 1 + a)(z − a), (z2 − 1 + a)(z − a)), and
m1−a = ((z − 1 + a)(z − a), (z − 1 + a)(z2 − a)).

To verify this, note that the right-hand sides are clearly contained in the left-hand sides.
Then check that the right-hand sides are maximal ideals by writing the generators in terms
ofA andB, and viewingR as Q[A,B]/(A3−B2 +AB). Note that ma is not in the image
of θ: we have

(z2 − z)2(z − a)
(
a2 − a
z − a

+ z

)
= (z2 − z)2(a2 − a) + (z2 − z)2(z − a)z
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The left hand side is inmaRa because (z2−z)(z−a) is inma and because (z2−z)(a
2−a
z−a +z)

is inRa. Similarly the element (z2−z)2(z−a)z is in maRa because (z2−z) is inRa and
(z2 − z)(z − a) is in ma. As a 6∈ {0, 1} we conclude that (z2 − z)2 ∈ maRa. Hence no
ideal I ofRa can satisfy I ∩R = ma, as such an I would have to contain (z2− z)2, which
is in R but not in ma. The distinguished open set D((z − 1 + a)(z − a)) ⊂ Spec(R) is
equal to the complement of the closed set {ma,m1−a}. Then check thatR(z−1+a)(z−a) =
(Ra)(z−1+a)(z−a); calling this localized ringR′, then, it follows that the mapR→ R′ fac-
tors as R → Ra → R′. By Lemma 17.5, then, these maps express Spec(R′) ⊂ Spec(Ra)
and Spec(R′) ⊂ Spec(R) as open subsets; hence θ : Spec(Ra) → Spec(R), when re-
stricted to D((z − 1 + a)(z − a)), is a homeomorphism onto an open subset. Similarly, θ
restricted toD((z2 +z+2a−2)(z−a)) ⊂ Spec(Ra) is a homeomorphism onto the open
subset D((z2 + z+ 2a− 2)(z− a)) ⊂ Spec(R). Depending on whether z2 + z+ 2a− 2
is irreducible or not over Q, this former distinguished open set has complement equal to
one or two closed points along with the closed point ma. Furthermore, the ideal in Ra
generated by the elements (z2 + z + 2a− a)(z − a) and (z − 1 + a)(z − a) is all of Ra,
so these two distinguished open sets cover Spec(Ra). Hence in order to show that θ is a
homeomorphism onto Spec(R) − {ma}, it suffices to show that these one or two points
can never equal m1−a. And this is indeed the case, since 1− a is a root of z2 + z + 2a− 2
if and only if a = 0 or a = 1, both of which do not occur.

Despite this homeomorphism which mimics the behavior of a localization at an element
ofR, while Q[z, 1

z−a ] is the localization of Q[z] at the maximal ideal (z− a), the ringRa
is not a localization of R: Any localization S−1R results in more units than the original
ring R. The units of R are Q×, the units of Q. In fact, it is easy to see that the units of
Ra are Q∗. Namely, the units of Q[z, 1

z−a ] are c(z − a)n for c ∈ Q∗ and n ∈ Z and it
is clear that these are in Ra only if n = 0. Hence Ra has no more units than R does, and
thus cannot be a localization of R.

We used the fact that a 6= 0, 1 to ensure that 1
z−a makes sense at z = 0, 1. We used the

fact that a 6= 1/2 in a few places: (1) In order to be able to talk about the kernel of ev1−a
on Ra, which ensures that m1−a is a point of Ra (i.e., that Ra is missing just one point of
R). (2) At the end in order to conclude that (z − a)k+` can only be in R for k = ` = 0;
indeed, if a = 1/2, then this is in R as long as k + ` is even. Hence there would indeed be
more units in Ra than in R, and Ra could possibly be a localization of R.

28. A meta-observation about prime ideals

This section is taken from the CRing project. Let R be a ring and let S ⊂ R be a mul-
tiplicative subset. A consequence of Lemma 17.5 is that an ideal I ⊂ R maximal with
respect to the property of not intersecting S is prime. The reason is that I = R ∩ m for
some maximal ideal m of the ring S−1R. It turns out that for many properties of ideals,
the maximal ones are prime. A general method of seeing this was developed in [?]. In this
section, we digress to explain this phenomenon.

Let R be a ring. If I is an ideal of R and a ∈ R, we define

(I : a) = {x ∈ R | xa ∈ I} .

More generally, if J ⊂ R is an ideal, we define

(I : J) = {x ∈ R | xJ ⊂ I} .
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Lemma 28.1. Let R be a ring. For a principal ideal J ⊂ R, and for any ideal I ⊂ J
we have I = J(I : J).

Proof. Say J = (a). Then (I : J) = (I : a). Since I ⊂ J we see that any y ∈ I is
of the form y = xa for some x ∈ (I : a). Hence I ⊂ J(I : J). Conversely, if x ∈ (I : a),
then xJ = (xa) ⊂ I , which proves the other inclusion. �

Let F be a collection of ideals of R. We are interested in conditions that will guarantee
that the maximal elements in the complement of F are prime.

Definition 28.2. Let R be a ring. Let F be a set of ideals of R. We say F is an Oka
family if R ∈ F and whenever I ⊂ R is an ideal and (I : a), (I, a) ∈ F for some a ∈ R,
then I ∈ F .

Let us give some examples of Oka families. The first example is the basic example discussed
in the introduction to this section.

Example 28.3. Let R be a ring and let S be a multiplicative subset of R. We claim
thatF = {I ⊂ R | I ∩S 6= ∅} is an Oka family. Namely, suppose that (I : a), (I, a) ∈ F
for some a ∈ R. Then pick s ∈ (I, a) ∩ S and s′ ∈ (I : a) ∩ S. Then ss′ ∈ I ∩ S and
hence I ∈ F . Thus F is an Oka family.

Example 28.4. Let R be a ring, I ⊂ R an ideal, and a ∈ R. If (I : a) is generated by
a1, . . . , an and (I, a) is generated by a, b1, . . . , bm with b1, . . . , bm ∈ I , then I is generated
by aa1, . . . , aan, b1, . . . , bm. To see this, note that if x ∈ I , then x ∈ (I, a) is a linear
combination of a, b1, . . . , bm, but the coefficient of a must lie in (I : a). As a result, we
deduce that the family of finitely generated ideals is an Oka family.

Example 28.5. Let us show that the family of principal ideals of a ring R is an Oka
family. Indeed, suppose I ⊂ R is an ideal, a ∈ R, and (I, a) and (I : a) are principal.
Note that (I : a) = (I : (I, a)). Setting J = (I, a), we find that J is principal and (I : J)
is too. By Lemma 28.1 we have I = J(I : J). Thus we find in our situation that since
J = (I, a) and (I : J) are principal, I is principal.

Example 28.6. Let R be a ring. Let κ be an infinite cardinal. The family of ideals
which can be generated by at most κ elements is an Oka family. The argument is analogous
to the argument in Example 28.4 and is omitted.

Example 28.7. LetA be a ring, I ⊂ A an ideal, and a ∈ A an element. There is a short
exact sequence 0→ A/(I : a)→ A/I → A/(I, a)→ 0 where the first arrow is given by
multiplication by a. Thus if P is a property of A-modules that is stable under extensions
and holds for 0, then the family of ideals I such that A/I has P is an Oka family.

Proposition 28.8. If F is an Oka family of ideals, then any maximal element of the
complement of F is prime.

Proof. Suppose I 6∈ F is maximal with respect to not being in F but I is not prime.
Note that I 6= R because R ∈ F . Since I is not prime we can find a, b ∈ R − I with
ab ∈ I . It follows that (I, a) 6= I and (I : a) contains b 6∈ I so also (I : a) 6= I . Thus
(I : a), (I, a) both strictly contain I , so they must belong toF . By the Oka condition, we
have I ∈ F , a contradiction. �

At this point we are able to turn most of the examples above into a lemma about prime
ideals in a ring.
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Lemma 28.9. Let R be a ring. Let S be a multiplicative subset of R. An ideal I ⊂ R
which is maximal with respect to the property that I ∩ S = ∅ is prime.

Proof. This is the example discussed in the introduction to this section. For an al-
ternative proof, combine Example 28.3 with Proposition 28.8. �

Lemma 28.10. Let R be a ring.
(1) An ideal I ⊂ R maximal with respect to not being finitely generated is prime.
(2) If every prime ideal of R is finitely generated, then every ideal of R is finitely

generated2.

Proof. The first assertion is an immediate consequence of Example 28.4 and Propo-
sition 28.8. For the second, suppose that there exists an ideal I ⊂ R which is not finitely
generated. The union of a totally ordered chain {Iα} of ideals that are not finitely gener-
ated is not finitely generated; indeed, if I =

⋃
Iα were generated by a1, . . . , an, then all

the generators would belong to some Iα and would consequently generate it. By Zorn’s
lemma, there is an ideal maximal with respect to being not finitely generated. By the first
part this ideal is prime. �

Lemma 28.11. Let R be a ring.
(1) An ideal I ⊂ R maximal with respect to not being principal is prime.
(2) If every prime ideal of R is principal, then every ideal of R is principal.

Proof. The first part follows from Example 28.5 and Proposition 28.8. For the sec-
ond, suppose that there exists an ideal I ⊂ Rwhich is not principal. The union of a totally
ordered chain {Iα} of ideals that not principal is not principal; indeed, if I =

⋃
Iα were

generated by a, then awould belong to some Iα and awould generate it. By Zorn’s lemma,
there is an ideal maximal with respect to not being principal. This ideal is necessarily prime
by the first part. �

Lemma 28.12. Let R be a ring.
(1) An ideal maximal among the ideals which do not contain a nonzerodivisor is

prime.
(2) If R is nonzero and every nonzero prime ideal in R contains a nonzerodivisor,

then R is a domain.

Proof. Consider the set S of nonzerodivisors. It is a multiplicative subset of R.
Hence any ideal maximal with respect to not intersecting S is prime, see Lemma 28.9.
Thus, if every nonzero prime ideal contains a nonzerodivisor, then (0) is prime, i.e., R is a
domain. �

Remark 28.13. Let R be a ring. Let κ be an infinite cardinal. By applying Example
28.6 and Proposition 28.8 we see that any ideal maximal with respect to the property of
not being generated by κ elements is prime. This result is not so useful because there exists
a ring for which every prime ideal of R can be generated by ℵ0 elements, but some ideal
cannot. Namely, let k be a field, let T be a set whose cardinality is greater than ℵ0 and let

R = k[{xn}n≥1, {zt,n}t∈T,n≥0]/(x2
n, z

2
t,n, xnzt,n − zt,n−1)

This is a local ring with unique prime ideal m = (xn). But the ideal (zt,n) cannot be
generated by countably many elements.

2Later we will say that R is Noetherian.
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Example 28.14. Let R be a ring and X = Spec(R). Since closed subsets of X corre-
spond to radical ideas of R (Lemma 17.2) we see that X is a Noetherian topological space
if and only if we have ACC for radical ideals. This holds if and only if every radical ideal
is the radical of a finitely generated ideal (details omitted). Let

F = {I ⊂ R |
√
I =

√
(f1, . . . , fn) for some n and f1, . . . , fn ∈ R}.

The reader can show that F is an Oka family by using the identity
√
I =

√
(I, a)(I : a)

which holds for any ideal I ⊂ R and any element a ∈ R. On the other hand, if we have
a totally ordered chain of ideals {Iα} none of which are in F , then the union I =

⋃
Iα

cannot be in F either. Otherwise
√
I =

√
(f1, . . . , fn), then fei ∈ I for some e, then

fei ∈ Iα for some α independent of i, then
√
Iα =

√
(f1, . . . , fn), contradiction. Thus

if the set of ideals not in F is nonempty, then it has maximal elements and exactly as in
Lemma 28.10 we conclude that X is a Noetherian topological space if and only if every
prime ideal of R is equal to

√
(f1, . . . , fn) for some f1, . . . , fn ∈ R. If we ever need this

result we will carefully state and prove this result here.

29. Images of ring maps of finite presentation

In this section we prove some results on the topology of maps Spec(S) → Spec(R) in-
duced by ring maps R→ S , mainly Chevalley’s Theorem. In order to do this we will use
the notions of constructible sets, quasi-compact sets, retrocompact sets, and so on which
are defined in Topology, Section 15.

Lemma 29.1. Let U ⊂ Spec(R) be open. The following are equivalent:
(1) U is retrocompact in Spec(R),
(2) U is quasi-compact,
(3) U is a finite union of standard opens, and
(4) there exists a finitely generated ideal I ⊂ R such that X \ V (I) = U .

Proof. We have (1)⇒ (2) because Spec(R) is quasi-compact, see Lemma 17.10. We
have (2) ⇒ (3) because standard opens form a basis for the topology. Proof of (3) ⇒
(1). Let U =

⋃
i=1...nD(fi). To show that U is retrocompact in Spec(R) it suffices

to show that U ∩ V is quasi-compact for any quasi-compact open V of Spec(R). Write
V =

⋃
j=1...mD(gj) which is possible by (2)⇒ (3). Each standard open is homeomorphic

to the spectrum of a ring and hence quasi-compact, see Lemmas 17.6 and 17.10. Thus
U ∩ V = (

⋃
i=1...nD(fi)) ∩ (

⋃
j=1...mD(gj)) =

⋃
i,j D(figj) is a finite union of quasi-

compact opens hence quasi-compact. To finish the proof note that (4) is equivalent to (3)
by Lemma 17.2. �

Lemma 29.2. Let ϕ : R → S be a ring map. The induced continuous map f :
Spec(S) → Spec(R) is quasi-compact. For any constructible set E ⊂ Spec(R) the in-
verse image f−1(E) is constructible in Spec(S).

Proof. We first show that the inverse image of any quasi-compact openU ⊂ Spec(R)
is quasi-compact. By Lemma 29.1 we may write U as a finite open of standard opens. Thus
by Lemma 17.4 we see that f−1(U) is a finite union of standard opens. Hence f−1(U) is
quasi-compact by Lemma 29.1 again. The second assertion now follows from Topology,
Lemma 15.3. �
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Lemma 29.3. LetR be a ring. A subset of Spec(R) is constructible if and only if it can
be written as a finite union of subsets of the formD(f)∩V (g1, . . . , gm) for f, g1, . . . , gm ∈
R.

Proof. By Lemma 29.1 the subset D(f) and the complement of V (g1, . . . , gm) are
retro-compact open. Hence D(f) ∩ V (g1, . . . , gm) is a constructible subset and so is any
finite union of such. Conversely, let T ⊂ Spec(R) be constructible. By Topology, Def-
inition 15.1, we may assume that T = U ∩ V c, where U, V ⊂ Spec(R) are retrocompact
open. By Lemma 29.1 we may write U =

⋃
i=1,...,nD(fi) and V =

⋃
j=1,...,mD(gj).

Then T =
⋃
i=1,...,n

(
D(fi) ∩ V (g1, . . . , gm)

)
. �

Lemma 29.4. Let R be a ring and let T ⊂ Spec(R) be constructible. Then there
exists a ring map R → S of finite presentation such that T is the image of Spec(S) in
Spec(R).

Proof. The spectrum of a finite product of rings is the disjoint union of the spectra,
see Lemma 21.2. Hence if T = T1 ∪ T2 and the result holds for T1 and T2, then the result
holds for T . By Lemma 29.3 we may assume that T = D(f)∩V (g1, . . . , gm). In this case
T is the image of the map Spec((R/(g1, . . . , gm))f ) → Spec(R), see Lemmas 17.6 and
17.7. �

Lemma 29.5. LetR be a ring. Let f be an element ofR. Let S = Rf . Then the image
of a constructible subset of Spec(S) is constructible in Spec(R).

Proof. We repeatedly use Lemma 29.1 without mention. Let U, V be quasi-compact
open in Spec(S). We will show that the image of U ∩ V c is constructible. Under the
identification Spec(S) = D(f) of Lemma 17.6 the sets U, V correspond to quasi-compact
opens U ′, V ′ of Spec(R). Hence it suffices to show that U ′ ∩ (V ′)c is constructible in
Spec(R) which is clear. �

Lemma 29.6. Let R be a ring. Let I be a finitely generated ideal of R. Let S = R/I .
Then the image of a constructible subset of Spec(S) is constructible in Spec(R).

Proof. If I = (f1, . . . , fm), then we see that V (I) is the complement of
⋃
D(fi),

see Lemma 17.2. Hence it is constructible, by Lemma 29.1. Denote the map R → S by
f 7→ f . We have to show that if U, V are retrocompact opens of Spec(S), then the image
of U ∩ V c in Spec(R) is constructible. By Lemma 29.1 we may write U =

⋃
D(gi).

Setting U =
⋃
D(gi) we see U has image U ∩ V (I) which is constructible in Spec(R).

Similarly the image of V equals V ∩ V (I) for some retrocompact open V of Spec(R).
Hence the image of U ∩ V c equals U ∩ V (I) ∩ V c as desired. �

Lemma 29.7. Let R be a ring. The map Spec(R[x]) → Spec(R) is open, and the
image of any standard open is a quasi-compact open.

Proof. It suffices to show that the image of a standard openD(f), f ∈ R[x] is quasi-
compact open. The image of D(f) is the image of Spec(R[x]f ) → Spec(R). Let p ⊂
R be a prime ideal. Let f be the image of f in κ(p)[x]. Recall, see Lemma 17.9, that p
is in the image if and only if R[x]f ⊗R κ(p) = κ(p)[x]f is not the zero ring. This is
exactly the condition that f does not map to zero in κ(p)[x], in other words, that some
coefficient of f is not in p. Hence we see: if f = adx

d + . . .+ a0, then the image of D(f)
is D(ad) ∪ . . . ∪D(a0). �

We prove a property of characteristic polynomials which will be used below.
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Lemma 29.8. Let R → A be a ring homomorphism. Assume A ∼= R⊕n as an R-
module. Let f ∈ A. The multiplication map mf : A → A is R-linear and hence has a
characteristic polynomial P (T ) = Tn + rn−1T

n−1 + . . . + r0 ∈ R[T ]. For any prime
p ∈ Spec(R), f acts nilpotently on A⊗R κ(p) if and only if p ∈ V (r0, . . . , rn−1).

Proof. This follows quite easily once we prove that the characteristic polynomial
P̄ (T ) ∈ κ(p)[T ] of the multiplication mapmf̄ : A⊗Rκ(p)→ A⊗Rκ(p) which multiplies
elements of A ⊗R κ(p) by f̄ , the image of f viewed in κ(p), is just the image of P (T ) in
κ(p)[T ]. Let (aij) be the matrix of the map mf with entries in R, using a basis e1, . . . , en
of A as an R-module. Then, A ⊗R κ(p) ∼= (R ⊗R κ(p))⊕n = κ(p)n, which is an n-
dimensional vector space over κ(p) with basis e1 ⊗ 1, . . . , en ⊗ 1. The image f̄ = f ⊗ 1,
and so the multiplication mapmf̄ has matrix (aij⊗1). Thus, the characteristic polynomial
is precisely the image of P (T ).
From linear algebra, we know that a linear transformation acts nilpotently on ann-dimensional
vector space if and only if the characteristic polynomial is Tn (since the characteristic
polynomial divides some power of the minimal polynomial). Hence, f acts nilpotently on
A⊗Rκ(p) if and only if P̄ (T ) = Tn. This occurs if and only if ri ∈ p for all 0 ≤ i ≤ n−1,
that is when p ∈ V (r0, . . . , rn−1). �

Lemma 29.9. Let R be a ring. Let f, g ∈ R[x] be polynomials. Assume the leading
coefficient of g is a unit of R. There exists elements ri ∈ R, i = 1 . . . , n such that the
image of D(f) ∩ V (g) in Spec(R) is

⋃
i=1,...,nD(ri).

Proof. Write g = uxd + ad−1x
d−1 + . . .+ a0, where d is the degree of g, and hence

u ∈ R∗. Consider the ring A = R[x]/(g). It is, as an R-module, finite free with basis the
images of 1, x, . . . , xd−1. Consider multiplication by (the image of) f on A. This is an
R-module map. Hence we can let P (T ) ∈ R[T ] be the characteristic polynomial of this
map. Write P (T ) = T d + rd−1T

d−1 + . . . + r0. We claim that r0, . . . , rd−1 have the
desired property. We will use below the property of characteristic polynomials that

p ∈ V (r0, . . . , rd−1)⇔ multiplication by f is nilpotent on A⊗R κ(p).
This was proved in Lemma 29.8.
Suppose q ∈ D(f)∩ V (g), and let p = q∩R. Then there is a nonzero mapA⊗R κ(p)→
κ(q) which is compatible with multiplication by f . And f acts as a unit on κ(q). Thus we
conclude p 6∈ V (r0, . . . , rd−1).
On the other hand, suppose that ri 6∈ p for some prime p of R and some 0 ≤ i ≤ d − 1.
Then multiplication by f is not nilpotent on the algebra A⊗R κ(p). Hence there exists a
prime ideal q ⊂ A⊗R κ(p) not containing the image of f . The inverse image of q inR[x]
is an element of D(f) ∩ V (g) mapping to p. �

Theorem 29.10 (Chevalley’s Theorem). Suppose that R → S is of finite presenta-
tion. The image of a constructible subset of Spec(S) in Spec(R) is constructible.

Proof. Write S = R[x1, . . . , xn]/(f1, . . . , fm). We may factor R → S as R →
R[x1] → R[x1, x2] → . . . → R[x1, . . . , xn−1] → S. Hence we may assume that
S = R[x]/(f1, . . . , fm). In this case we factor the map as R → R[x] → S , and by
Lemma 29.6 we reduce to the case S = R[x]. By Lemma 29.1 suffices to show that if
T = (

⋃
i=1...nD(fi)) ∩ V (g1, . . . , gm) for fi, gj ∈ R[x] then the image in Spec(R) is

constructible. Since finite unions of constructible sets are constructible, it suffices to deal
with the case n = 1, i.e., when T = D(f) ∩ V (g1, . . . , gm).
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Note that if c ∈ R, then we have

Spec(R) = V (c)qD(c) = Spec(R/(c))q Spec(Rc),

and correspondingly Spec(R[x]) = V (c)qD(c) = Spec(R/(c)[x])q Spec(Rc[x]). The
intersection of T = D(f) ∩ V (g1, . . . , gm) with each part still has the same shape, with
f , gi replaced by their images inR/(c)[x], respectivelyRc[x]. Note that the image of T in
Spec(R) is the union of the image of T ∩V (c) and T ∩D(c). Using Lemmas 29.5 and 29.6
it suffices to prove the images of both parts are constructible in Spec(R/(c)), respectively
Spec(Rc).

Let us assume we have T = D(f) ∩ V (g1, . . . , gm) as above, with deg(g1) ≤ deg(g2) ≤
. . . ≤ deg(gm). We are going to use induction onm, and on the degrees of the gi. Let d =
deg(g1), i.e., g1 = cxd1 + l.o.t with c ∈ R not zero. Cutting R up into the pieces R/(c)
andRc we either lower the degree of g1 (and this is covered by induction) or we reduce to
the case where c is invertible. If c is invertible, and m > 1, then write g2 = c′xd2 + l.o.t.
In this case consider g′

2 = g2 − (c′/c)xd2−d1g1. Since the ideals (g1, g2, . . . , gm) and
(g1, g

′
2, g3, . . . , gm) are equal we see that T = D(f) ∩ V (g1, g

′
2, g3 . . . , gm). But here the

degree of g′
2 is strictly less than the degree of g2 and hence this case is covered by induction.

The bases case for the induction above are the cases (a)T = D(f)∩V (g) where the leading
coefficient of g is invertible, and (b) T = D(f). These two cases are dealt with in Lemmas
29.9 and 29.7. �

30. More on images

In this section we collect a few additional lemmas concerning the image on Spec for ring
maps. See also Section 41 for example.

Lemma 30.1. Let R ⊂ S be an inclusion of domains. Assume that R→ S is of finite
type. There exists a nonzero f ∈ R, and a nonzero g ∈ S such that Rf → Sfg is of finite
presentation.

Proof. By induction on the number of generators of S overR. During the proof we
may replace R by Rf and S by Sf for some nonzero f ∈ R.

Suppose that S is generated by a single element overR. Then S = R[x]/q for some prime
ideal q ⊂ R[x]. If q = (0) there is nothing to prove. If q 6= (0), then let h ∈ q be a nonzero
element with minimal degree in x. Write h = fxd + ad−1x

d−1 + . . . + a0 with ai ∈ R
and f 6= 0. After inverting f in R and S we may assume that h is monic. We obtain a
surjectiveR-algebra mapR[x]/(h)→ S. We haveR[x]/(h) = R⊕Rx⊕ . . .⊕Rxd−1 as
an R-module and by minimality of d we see that R[x]/(h) maps injectively into S. Thus
R[x]/(h) ∼= S is finitely presented over R.

Suppose that S is generated by n > 1 elements over R. Say x1, . . . , xn ∈ S generate S.
Denote S′ ⊂ S the subring generated by x1, . . . , xn−1. By induction hypothesis we see
that there exist f ∈ R and g ∈ S′ nonzero such that Rf → S′

fg is of finite presentation.
Next we apply the induction hypothesis to S′

fg → Sfg to see that there exist f ′ ∈ S′
fg

and g′ ∈ Sfg such that S′
fgf ′ → Sfgf ′g′ is of finite presentation. We leave it to the reader

to conclude. �

Lemma 30.2. Let R → S be a finite type ring map. Denote X = Spec(R) and
Y = Spec(S). Write f : Y → X the induced map of spectra. Let E ⊂ Y = Spec(S) be
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a constructible set. If a point ξ ∈ X is in f(E), then {ξ} ∩ f(E) contains an open dense
subset of {ξ}.

Proof. Let ξ ∈ X be a point of f(E). Choose a point η ∈ E mapping to ξ. Let
p ⊂ R be the prime corresponding to ξ and let q ⊂ S be the prime corresponding to η.
Consider the diagram

η //
_

��

E ∩ Y ′ //

��

Y ′ = Spec(S/q) //

��

Y

��
ξ // f(E) ∩X ′ // X ′ = Spec(R/p) // X

By Lemma 29.2 the set E ∩ Y ′ is constructible in Y ′. It follows that we may replace X
by X ′ and Y by Y ′. Hence we may assume that R ⊂ S is an inclusion of domains, ξ is
the generic point of X , and η is the generic point of Y . By Lemma 30.1 combined with
Chevalley’s theorem (Theorem 29.10) we see that there exist dense opens U ⊂ X , V ⊂ Y
such that f(V ) ⊂ U and such that f : V → U maps constructible sets to constructible
sets. Note that E ∩ V is constructible in V , see Topology, Lemma 15.4. Hence f(E ∩ V )
is constructible in U and contains ξ. By Topology, Lemma 15.15 we see that f(E ∩ V )
contains a dense open U ′ ⊂ U . �

At the end of this section we present a few more results on images of maps on Spectra that
have nothing to do with constructible sets.

Lemma 30.3. Let ϕ : R→ S be a ring map. The following are equivalent:
(1) The map Spec(S)→ Spec(R) is surjective.
(2) For any ideal I ⊂ R the inverse image of

√
IS in R is equal to

√
I .

(3) For any radical ideal I ⊂ R the inverse image of IS in R is equal to I .
(4) For every prime p of R the inverse image of pS in R is p.

In this case the same is true after any base change: Given a ring mapR→ R′ the ring map
R′ → R′ ⊗R S has the equivalent properties (1), (2), (3) as well.

Proof. If J ⊂ S is an ideal, then
√
ϕ−1(J) = ϕ−1(

√
J). This shows that (2) and

(3) are equivalent. The implication (3)⇒ (4) is immediate. If I ⊂ R is a radical ideal,
then Lemma 17.2 guarantees that I =

⋂
I⊂p p. Hence (4)⇒ (2). By Lemma 17.9 we have

p = ϕ−1(pS) if and only if p is in the image. Hence (1)⇔ (4). Thus (1), (2), (3), and (4)
are equivalent.

Assume (1) holds. Let R→ R′ be a ring map. Let p′ ⊂ R′ be a prime ideal lying over the
prime p of R. To see that p′ is in the image of Spec(R′ ⊗R S) → Spec(R′) we have to
show that (R′ ⊗R S)⊗R′ κ(p′) is not zero, see Lemma 17.9. But we have

(R′ ⊗R S)⊗R′ κ(p′) = S ⊗R κ(p)⊗κ(p) κ(p′)

which is not zero as S⊗Rκ(p) is not zero by assumption and κ(p)→ κ(p′) is an extension
of fields. �

Lemma 30.4. Let R be a domain. Let ϕ : R → S be a ring map. The following are
equivalent:

(1) The ring map R→ S is injective.
(2) The image Spec(S)→ Spec(R) contains a dense set of points.
(3) There exists a prime ideal q ⊂ S whose inverse image in R is (0).
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Proof. Let K be the field of fractions of the domain R. Assume that R → S is
injective. Since localization is exact we see that K → S ⊗R K is injective. Hence there is
a prime mapping to (0) by Lemma 17.9.
Note that (0) is dense in Spec(R), so that the last condition implies the second.
Suppose the second condition holds. Let f ∈ R, f 6= 0. As R is a domain we see that
V (f) is a proper closed subset of R. By assumption there exists a prime q of S such that
ϕ(f) 6∈ q. Hence ϕ(f) 6= 0. Hence R→ S is injective. �

Lemma 30.5. Let R ⊂ S be an injective ring map. Then Spec(S) → Spec(R) hits
all the minimal primes.

Proof. Let p ⊂ R be a minimal prime. In this caseRp has a unique prime ideal. Hence
it suffices to show that Sp is not zero. And this follows from the fact that localization is
exact, see Proposition 9.12. �

Lemma 30.6. Let R→ S be a ring map. The following are equivalent:
(1) The kernel of R→ S consists of nilpotent elements.
(2) The minimal primes of R are in the image of Spec(S)→ Spec(R).
(3) The image of Spec(S)→ Spec(R) is dense in Spec(R).

Proof. Let I = Ker(R → S). Note that
√

(0) =
⋂

q⊂S q, see Lemma 17.2. Hence√
I =

⋂
q⊂S R ∩ q. Thus V (I) = V (

√
I) is the closure of the image of Spec(S) →

Spec(R). This shows that (1) is equivalent to (3). It is clear that (2) implies (3). Finally,
assume (1). We may replace R by R/I and S by S/IS without affecting the topology of
the spectra and the map. Hence the implication (1)⇒ (2) follows from Lemma 30.5. �

Lemma 30.7. Let R→ S be a ring map. If a minimal prime p ⊂ R is in the image of
Spec(S)→ Spec(R), then it is the image of a minimal prime.

Proof. Say p = q ∩ R. Then choose a minimal prime r ⊂ S with r ⊂ q, see Lemma
17.2. By minimality of p we see that p = r ∩R. �

31. Noetherian rings

A ring R is Noetherian if any ideal of R is finitely generated. This is clearly equivalent
to the ascending chain condition for ideals of R. By Lemma 28.10 it suffices to check that
every prime ideal of R is finitely generated.

Lemma 31.1. Any finitely generated ring over a Noetherian ring is Noetherian. Any
localization of a Noetherian ring is Noetherian.

Proof. The statement on localizations follows from the fact that any ideal J ⊂
S−1R is of the form I · S−1R. Any quotient R/I of a Noetherian ring R is Noether-
ian because any ideal J ⊂ R/I is of the form J/I for some ideal I ⊂ J ⊂ R. Thus it
suffices to show that if R is Noetherian so is R[X]. Suppose J1 ⊂ J2 ⊂ . . . is an ascend-
ing chain of ideals in R[X]. Consider the ideals Ii,d defined as the ideal of elements of
R which occur as leading coefficients of degree d polynomials in Ji. Clearly Ii,d ⊂ Ii′,d′

whenever i ≤ i′ and d ≤ d′. By the ascending chain condition in R there are at most
finitely many distinct ideals among all of the Ii,d. (Hint: Any infinite set of elements of
N×N contains an increasing infinite sequence.) Take i0 so large that Ii,d = Ii0,d for all
i ≥ i0 and all d. Suppose f ∈ Ji for some i ≥ i0. By induction on the degree d = deg(f)
we show that f ∈ Ji0 . Namely, there exists a g ∈ Ji0 whose degree is d and which has the
same leading coefficient as f . By induction f − g ∈ Ji0 and we win. �
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Lemma 31.2. IfR is a Noetherian ring, then so is the formal power series ringR[[x1, . . . , xn]].

Proof. Since R[[x1, . . . , xn+1]] ∼= R[[x1, . . . , xn]][[xn+1]] it suffices to prove the
statement that R[[x]] is Noetherian if R is Noetherian. Let I ⊂ R[[x]] be a ideal. We
have to show that I is a finitely generated ideal. For each integer d denote Id = {a ∈
R | axd + h.o.t. ∈ I}. Then we see that I0 ⊂ I1 ⊂ . . . stabilizes as R is Noetherian.
Choose d0 such that Id0 = Id0+1 = . . .. For each d ≤ d0 choose elements fd,j ∈ I ∩ (xd),
j = 1, . . . , nd such that if we write fd,j = ad,jx

d + h.o.t then Id = (ad,j). Denote
I ′ = ({fd,j}d=0,...,d0,j=1,...,nd). Then it is clear that I ′ ⊂ I . Pick f ∈ I . First we may
choose cd,i ∈ R such that

f −
∑

cd,ifd,i ∈ (xd0+1) ∩ I.

Next, we can choose ci,1 ∈ R, i = 1, . . . , nd0 such that

f −
∑

cd,ifd,i −
∑

ci,1xfd0,i ∈ (xd0+2) ∩ I.

Next, we can choose ci,2 ∈ R, i = 1, . . . , nd0 such that

f −
∑

cd,ifd,i −
∑

ci,1xfd0,i −
∑

ci,2x
2fd0,i ∈ (xd0+3) ∩ I.

And so on. In the end we see that
f =

∑
cd,ifd,i +

∑
i
(
∑

e
ci,ex

e)fd0,i

is contained in I ′ as desired. �

The following lemma, although easy, is useful because finite type Z-algebras come up quite
often in a technique called “absolute Noetherian reduction”.

Lemma 31.3. Any finite type algebra over a field is Noetherian. Any finite type alge-
bra over Z is Noetherian.

Proof. This is immediate from Lemma 31.1 and the fact that fields are Noetherian
rings and that Z is Noetherian ring (because it is a principal ideal domain). �

Lemma 31.4. Let R be a Noetherian ring.
(1) Any finite R-module is of finite presentation.
(2) Any submodule of a finite R-module is finite.
(3) Any finite type R-algebra is of finite presentation over R.

Proof. Let M be a finite R-module. By Lemma 5.4 we can find a finite filtration of
M whose successive quotients are of the form R/I . Since any ideal is finitely generated,
each of the quotients R/I is finitely presented. Hence M is finitely presented by Lemma
5.3. This proves (1).
Let N ⊂M be a submodule. As M is finite, the quotient M/N is finite. Thus M/N is of
finite presentation by part (1). Thus we see that N is finite by Lemma 5.3 part (5). This
proves part (2).
To see (3) note that any ideal of R[x1, . . . , xn] is finitely generated by Lemma 31.1. �

Lemma 31.5. If R is a Noetherian ring then Spec(R) is a Noetherian topological
space, see Topology, Definition 9.1.

Proof. This is because any closed subset of Spec(R) is uniquely of the form V (I)
with I a radical ideal, see Lemma 17.2. And this correspondence is inclusion reversing.
Thus the result follows from the definitions. �
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Lemma 31.6. If R is a Noetherian ring then Spec(R) has finitely many irreducible
components. In other words R has finitely many minimal primes.

Proof. By Lemma 31.5 and Topology, Lemma 9.2 we see there are finitely many ir-
reducible components. By Lemma 26.1 these correspond to minimal primes of R. �

Lemma 31.7. Let R → S be a ring map. Let R → R′ be of finite type. If S is
Noetherian, then the base change S′ = R′ ⊗R S is Noetherian.

Proof. By Lemma 14.2 finite type is stable under base change. Thus S → S′ is of
finite type. Since S is Noetherian we can apply Lemma 31.1. �

Lemma 31.8. Let k be a field and letR be a Noetherian k-algebra. IfK/k is a finitely
generated field extension then K ⊗k R is Noetherian.

Proof. SinceK/k is a finitely generated field extension, there exists a finitely gener-
ated k-algebra B ⊂ K such that K is the fraction field of B. In other words, K = S−1B
with S = B \{0}. ThenK⊗kR = S−1(B⊗kR). ThenB⊗kR is Noetherian by Lemma
31.7. Finally, K ⊗k R = S−1(B ⊗k R) is Noetherian by Lemma 31.1. �

Here are some fun lemmas that are sometimes useful.

Lemma 31.9. Let R be a ring and p ⊂ R be a prime. There exists an f ∈ R, f 6∈ p
such that Rf → Rp is injective in each of the following cases

(1) R is a domain,
(2) R is Noetherian, or
(3) R is reduced and has finitely many minimal primes.

Proof. If R is a domain, then R ⊂ Rp, hence f = 1 works. If R is Noetherian, then
the kernel I of R → Rp is a finitely generated ideal and we can find f ∈ R, f 6∈ p such
that IRf = 0. For this f the map Rf → Rp is injective and f works. If R is reduced
with finitely many minimal primes p1, . . . , pn, then we can choose f ∈

⋂
pi 6⊂p pi, f 6∈ p.

Indeed, if pi 6⊂ p then there exist fi ∈ pi, fi 6∈ p and f =
∏
fi works. For this f we have

Rf ⊂ Rp because the minimal primes of Rf correspond to minimal primes of Rp and we
can apply Lemma 25.2 (some details omitted). �

Lemma 31.10. Any surjective endomorphism of a Noetherian ring is an isomorphism.

Proof. If f : R→ R were such an endomorphism but not injective, then

Ker(f) ⊂ Ker(f ◦ f) ⊂ Ker(f ◦ f ◦ f) ⊂ . . .
would be a strictly increasing chain of ideals. �

32. Locally nilpotent ideals

Here is the definition.

Definition 32.1. LetR be a ring. Let I ⊂ R be an ideal. We say I is locally nilpotent
if for every x ∈ I there exists an n ∈ N such that xn = 0. We say I is nilpotent if there
exists an n ∈ N such that In = 0.

Example 32.2. Let R = k[xn|n ∈ N] be the polynomial ring in infinitely many
variables over a field k. Let I be the ideal generated by the elements xnn for n ∈ N and
S = R/I . Then the ideal J ⊂ S generated by the images of xn, n ∈ N is locally nilpotent,
but not nilpotent. Indeed, sinceS-linear combinations of nilpotents are nilpotent, to prove
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thatJ is locally nilpotent it is enough to observe that all its generators are nilpotent (which
they obviously are). On the other hand, for each n ∈ N it holds that xnn+1 6∈ I , so that
Jn 6= 0. It follows that J is not nilpotent.

Lemma 32.3. Let R → R′ be a ring map and let I ⊂ R be a locally nilpotent ideal.
Then IR′ is a locally nilpotent ideal of R′.

Proof. This follows from the fact that if x, y ∈ R′ are nilpotent, then x + y is
nilpotent too. Namely, if xn = 0 and ym = 0, then (x+ y)n+m−1 = 0. �

Lemma 32.4. Let R be a ring and let I ⊂ R be a locally nilpotent ideal. An element
x of R is a unit if and only if the image of x in R/I is a unit.

Proof. If x is a unit in R, then its image is clearly a unit in R/I . It remains to prove
the converse. Assume the image of y ∈ R in R/I is the inverse of the image of x. Then
xy = 1 − z for some z ∈ I . This means that 1 ≡ z modulo xR. Since z lies in the
locally nilpotent ideal I , we have zN = 0 for some sufficiently large N . It follows that
1 = 1N ≡ zN = 0 modulo xR. In other words, x divides 1 and is hence a unit. �

Lemma 32.5. Let R be a Noetherian ring. Let I, J be ideals of R. Suppose J ⊂
√
I .

Then Jn ⊂ I for some n. In particular, in a Noetherian ring the notions of “locally
nilpotent ideal” and “nilpotent ideal” coincide.

Proof. Say J = (f1, . . . , fs). By assumption fdii ∈ I . Take n = d1 + d2 + . . . +
ds + 1. �

Lemma 32.6. LetR be a ring. Let I ⊂ R be a locally nilpotent ideal. ThenR→ R/I
induces a bijection on idempotents.

First proof of Lemma 32.6. As I is locally nilpotent it is contained in every prime
ideal. Hence Spec(R/I) = V (I) = Spec(R). Hence the lemma follows from Lemma
21.3. �

Second proof of Lemma 32.6. Suppose e ∈ R/I is an idempotent. We have to lift
e to an idempotent of R.
First, choose any lift f ∈ R of e, and set x = f2 − f . Then, x ∈ I , so x is nilpotent (since
I is locally nilpotent). Let now J be the ideal of R generated by x. Then, J is nilpotent
(not just locally nilpotent), since it is generated by the nilpotent x.
Now, assume that we have found a lift e ∈ R of e such that e2 − e ∈ Jk for some k ≥ 1.
Let e′ = e−(2e−1)(e2−e) = 3e2−2e3, which is another lift of e (since the idempotency
of e yields e2 − e ∈ I). Then

(e′)2 − e′ = (4e2 − 4e− 3)(e2 − e)2 ∈ J2k

by a simple computation.
We thus have started with a lift e of e such that e2 − e ∈ Jk , and obtained a lift e′ of
e such that (e′)2 − e′ ∈ J2k. This way we can successively improve the approximation
(starting with e = f , which fits the bill for k = 1). Eventually, we reach a stage where
Jk = 0, and at that stage we have a lift e of e such that e2 − e ∈ Jk = 0, that is, this e is
idempotent.
We thus have seen that if e ∈ R/I is any idempotent, then there exists a lift of e which is
an idempotent of R. It remains to prove that this lift is unique. Indeed, let e1 and e2 be
two such lifts. We need to show that e1 = e2.
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By definition of e1 and e2, we have e1 ≡ e2 mod I , and both e1 and e2 are idempotent.
From e1 ≡ e2 mod I , we see that e1−e2 ∈ I , so that e1−e2 is nilpotent (since I is locally
nilpotent). A straightforward computation (using the idempotency of e1 and e2) reveals
that (e1 − e2)3 = e1 − e2. Using this and induction, we obtain (e1 − e2)k = e1 − e2 for
any positive odd integer k. Since all high enough k satisfy (e1 − e2)k = 0 (since e1 − e2
is nilpotent), this shows e1 − e2 = 0, so that e1 = e2, which completes our proof. �

Lemma 32.7. Let A be a possibly noncommutative algebra. Let e ∈ A be an element
such that x = e2 − e is nilpotent. Then there exists an idempotent of the form e′ =
e+ x(

∑
ai,je

ixj) ∈ A with ai,j ∈ Z.

Proof. Consider the ring Rn = Z[e]/((e2 − e)n). It is clear that if we can prove
the result for each Rn then the lemma follows. In Rn consider the ideal I = (e2 − e) and
apply Lemma 32.6. �

Lemma 32.8. Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let n ≥ 1 be an
integer which is invertible in R/I . Then

(1) the nth power map 1 + I → 1 + I , 1 + x 7→ (1 + x)n is a bijection,
(2) a unit of R is a nth power if and only if its image in R/I is an nth power.

Proof. Let a ∈ R be a unit whose image in R/I is the same as the image of bn with
b ∈ R. Then b is a unit (Lemma 32.4) and ab−n = 1+x for some x ∈ I . Hence ab−n = cn

by part (1). Thus (2) follows from (1).
Proof of (1). This is true because there is an inverse to the map 1+x 7→ (1+x)n. Namely,
we can consider the map which sends 1 + x to

(1 + x)1/n = 1 +
(

1/n
1

)
x+

(
1/n
2

)
x2 +

(
1/n
3

)
x3 + . . .

= 1 + 1
n
x+ 1− n

2n2 x2 + (1− n)(1− 2n)
6n3 x3 + . . .

as in elementary calculus. This makes sense because the series is finite as xk = 0 for all
k � 0 and each coefficient

(1/n
k

)
∈ Z[1/n] (details omitted; observe that n is invertible

in R by Lemma 32.4). �

33. Curiosity

Lemma 24.3 explains what happens if V (I) is open for some ideal I ⊂ R. But what if
Spec(S−1R) is closed in Spec(R)? The next two lemmas give a partial answer. For more
information see Section 108.

Lemma 33.1. Let R be a ring. Let S ⊂ R be a multiplicative subset. Assume the
image of the map Spec(S−1R) → Spec(R) is closed. Then S−1R ∼= R/I for some ideal
I ⊂ R.

Proof. Let I = Ker(R → S−1R) so that V (I) contains the image. Say the image
is the closed subset V (I ′) ⊂ Spec(R) for some ideal I ′ ⊂ R. So V (I ′) ⊂ V (I). For
f ∈ I ′ we see that f/1 ∈ S−1R is contained in every prime ideal. Hence fn maps to zero
in S−1R for some n ≥ 1 (Lemma 17.2). Hence V (I ′) = V (I). Then this implies every
g ∈ S is invertible mod I . Hence we get ring mapsR/I → S−1R and S−1R→ R/I . The
first map is injective by choice of I . The second is the map S−1R → S−1(R/I) = R/I
which has kernel S−1I because localization is exact. Since S−1I = 0 we see also the
second map is injective. Hence S−1R ∼= R/I . �
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Lemma 33.2. Let R be a ring. Let S ⊂ R be a multiplicative subset. Assume the
image of the map Spec(S−1R)→ Spec(R) is closed. If R is Noetherian, or Spec(R) is a
Noetherian topological space, or S is finitely generated as a monoid, thenR ∼= S−1R×R′

for some ring R′.

Proof. By Lemma 33.1 we have S−1R ∼= R/I for some ideal I ⊂ R. By Lemma 24.3
it suffices to show that V (I) is open. If R is Noetherian then Spec(R) is a Noetherian
topological space, see Lemma 31.5. If Spec(R) is a Noetherian topological space, then the
complement Spec(R) \ V (I) is quasi-compact, see Topology, Lemma 12.13. Hence there
exist finitely many f1, . . . , fn ∈ I such that V (I) = V (f1, . . . , fn). Since each fi maps to
zero in S−1R there exists a g ∈ S such that gfi = 0 for i = 1, . . . , n. HenceD(g) = V (I)
as desired. In case S is finitely generated as a monoid, say S is generated by g1, . . . , gm,
then S−1R ∼= Rg1...gm and we conclude that V (I) = D(g1 . . . gm). �

34. Hilbert Nullstellensatz

Theorem 34.1 (Hilbert Nullstellensatz). Let k be a field.
(1) For any maximal ideal m ⊂ k[x1, . . . , xn] the field extension κ(m)/k is finite.
(2) Any radical ideal I ⊂ k[x1, . . . , xn] is the intersection of maximal ideals con-

taining it.
The same is true in any finite type k-algebra.

Proof. It is enough to prove part (1) of the theorem for the case of a polynomial al-
gebra k[x1, . . . , xn], because any finitely generated k-algebra is a quotient of such a poly-
nomial algebra. We prove this by induction on n. The case n = 0 is clear. Suppose that
m is a maximal ideal in k[x1, . . . , xn]. Let p ⊂ k[xn] be the intersection of m with k[xn].
If p 6= (0), then p is maximal and generated by an irreducible monic polynomialP (because
of the Euclidean algorithm in k[xn]). Then k′ = k[xn]/p is a finite field extension of k
and contained in κ(m). In this case we get a surjection

k′[x1, . . . , xn−1]→ k′[x1, . . . , xn] = k′ ⊗k k[x1, . . . , xn] −→ κ(m)
and hence we see that κ(m) is a finite extension of k′ by induction hypothesis. Thus κ(m)
is finite over k as well.

If p = (0) we consider the ring extension k[xn] ⊂ k[x1, . . . , xn]/m. This is a finitely
generated ring extension, hence of finite presentation by Lemmas 31.3 and 31.4. Thus the
image of Spec(k[x1, . . . , xn]/m) in Spec(k[xn]) is constructible by Theorem 29.10. Since
the image contains (0) we conclude that it contains a standard open D(f) for some f ∈
k[xn] nonzero. Since clearly D(f) is infinite we get a contradiction with the assumption
that k[x1, . . . , xn]/m is a field (and hence has a spectrum consisting of one point).

Proof of (2). Let I ⊂ R be a radical ideal, with R of finite type over k. Let f ∈ R, f 6∈ I .
We have to find a maximal ideal m ⊂ R with I ⊂ m and f 6∈ m. The ring (R/I)f is
nonzero, since 1 = 0 in this ring would mean fn ∈ I and since I is radical this would
mean f ∈ I contrary to our assumption on f . Thus we may choose a maximal ideal m′ in
(R/I)f , see Lemma 17.2. Let m ⊂ R be the inverse image of m′ in R. We see that I ⊂ m
and f 6∈ m. If we show that m is a maximal ideal of R, then we are done. We clearly have

k ⊂ R/m ⊂ κ(m′).
By part (1) the field extension κ(m′)/k is finite. Hence R/m is a field by Fields, Lemma
8.10. Thus m is maximal and the proof is complete. �
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Lemma 34.2. LetR be a ring. LetK be a field. IfR ⊂ K andK is of finite type over
R, then there exists an f ∈ R such that Rf is a field, and K/Rf is a finite field extension.

Proof. By Lemma 30.2 there exist a nonempty open U ⊂ Spec(R) contained in the
image {(0)} of Spec(K) → Spec(R). Choose f ∈ R, f 6= 0 such that D(f) ⊂ U , i.e.,
D(f) = {(0)}. Then Rf is a domain whose spectrum has exactly one point and Rf is
a field. Then K is a finitely generated algebra over the field Rf and hence a finite field
extension of Rf by the Hilbert Nullstellensatz (Theorem 34.1). �

35. Jacobson rings

Let R be a ring. The closed points of Spec(R) are the maximal ideals of R. Often rings
which occur naturally in algebraic geometry have lots of maximal ideals. For example
finite type algebras over a field or over Z. We will show that these are examples of Jacobson
rings.

Definition 35.1. Let R be a ring. We say that R is a Jacobson ring if every radical
ideal I is the intersection of the maximal ideals containing it.

Lemma 35.2. Any algebra of finite type over a field is Jacobson.

Proof. This follows from Theorem 34.1 and Definition 35.1. �

Lemma 35.3. Let R be a ring. If every prime ideal of R is the intersection of the
maximal ideals containing it, then R is Jacobson.

Proof. This is immediately clear from the fact that every radical ideal I ⊂ R is the
intersection of the primes containing it. See Lemma 17.2. �

Lemma 35.4. A ring R is Jacobson if and only if Spec(R) is Jacobson, see Topology,
Definition 18.1.

Proof. Suppose R is Jacobson. Let Z ⊂ Spec(R) be a closed subset. We have to
show that the set of closed points in Z is dense in Z. Let U ⊂ Spec(R) be an open such
that U ∩ Z is nonempty. We have to show Z ∩ U contains a closed point of Spec(R).
We may assume U = D(f) as standard opens form a basis for the topology on Spec(R).
According to Lemma 17.2 we may assume that Z = V (I), where I is a radical ideal. We
see also that f 6∈ I . By assumption, there exists a maximal ideal m ⊂ R such that I ⊂ m
but f 6∈ m. Hence m ∈ D(f) ∩ V (I) = U ∩ Z as desired.

Conversely, suppose that Spec(R) is Jacobson. Let I ⊂ R be a radical ideal. Let J =
∩I⊂mm be the intersection of the maximal ideals containing I . Clearly J is a radical ideal,
V (J) ⊂ V (I), and V (J) is the smallest closed subset of V (I) containing all the closed
points of V (I). By assumption we see that V (J) = V (I). But Lemma 17.2 shows there is
a bijection between Zariski closed sets and radical ideals, hence I = J as desired. �

Lemma 35.5. Let R be a ring. If R is not Jacobson there exist a prime p ⊂ R, an
element f ∈ R such that the following hold

(1) p is not a maximal ideal,
(2) f 6∈ p,
(3) V (p) ∩D(f) = {p}, and
(4) (R/p)f is a field.

On the other hand, if R is Jacobson, then for any pair (p, f) such that (1) and (2) hold the
set V (p) ∩D(f) is infinite.
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Proof. Assume R is not Jacobson. By Lemma 35.4 this means there exists an closed
subset T ⊂ Spec(R) whose set T0 ⊂ T of closed points is not dense in T . Choose an
f ∈ R such that T0 ⊂ V (f) but T 6⊂ V (f). Note that T ∩ D(f) is homeomorphic to
Spec((R/I)f ) if T = V (I), see Lemmas 17.7 and 17.6. As any ring has a maximal ideal
(Lemma 17.2) we can choose a closed point t of space T ∩ D(f). Then t corresponds to
a prime ideal p ⊂ R which is not maximal (as t 6∈ T0). Thus (1) holds. By construction
f 6∈ p, hence (2). As t is a closed point of T ∩D(f) we see that V (p)∩D(f) = {p}, i.e., (3)
holds. Hence we conclude that (R/p)f is a domain whose spectrum has one point, hence
(4) holds (for example combine Lemmas 18.2 and 25.1).

Conversely, suppose that R is Jacobson and (p, f) satisfy (1) and (2). If V (p) ∩ D(f) =
{p, q1, . . . , qt} then p 6= qi implies there exists an element g ∈ R such that g 6∈ p but
g ∈ qi for all i. Hence V (p) ∩D(fg) = {p} which is impossible since each locally closed
subset of Spec(R) contains at least one closed point as Spec(R) is a Jacobson topological
space. �

Lemma 35.6. The ring Z is a Jacobson ring. More generally, letR be a ring such that
(1) R is a domain,
(2) R is Noetherian,
(3) any nonzero prime ideal is a maximal ideal, and
(4) R has infinitely many maximal ideals.

Then R is a Jacobson ring.

Proof. Let R satisfy (1), (2), (3) and (4). The statement means that (0) =
⋂

m⊂Rm.
Since R has infinitely many maximal ideals it suffices to show that any nonzero x ∈ R
is contained in at most finitely many maximal ideals, in other words that V (x) is finite.
By Lemma 17.7 we see that V (x) is homeomorphic to Spec(R/xR). By assumption (3)
every prime of R/xR is minimal and hence corresponds to an irreducible component of
Spec(R/xR) (Lemma 26.1). As R/xR is Noetherian, the topological space Spec(R/xR)
is Noetherian (Lemma 31.5) and has finitely many irreducible components (Topology,
Lemma 9.2). Thus V (x) is finite as desired. �

Example 35.7. Let A be an infinite set. For each α ∈ A, let kα be a field. We claim
that R =

∏
α∈A kα is Jacobson. First, note that any element f ∈ R has the form f = ue,

with u ∈ R a unit and e ∈ R an idempotent (left to the reader). Hence D(f) = D(e),
and Rf = Re = R/(1 − e) is a quotient of R. Actually, any ring with this property
is Jacobson. Namely, say p ⊂ R is a prime ideal and f ∈ R, f 6∈ p. We have to find a
maximal ideal m of R such that p ⊂ m and f 6∈ m. Because Rf is a quotient of R we
see that any maximal ideal of Rf corresponds to a maximal ideal of R not containing f .
Hence the result follows by choosing a maximal ideal of Rf containing pRf .

Example 35.8. A domain R with finitely many maximal ideals mi, i = 1, . . . , n is
not a Jacobson ring, except when it is a field. Namely, in this case (0) is not the intersection
of the maximal ideals (0) 6= m1 ∩ m2 ∩ . . . ∩ mn ⊃ m1 · m2 · . . . · mn 6= 0. In particular
a discrete valuation ring, or any local ring with at least two prime ideals is not a Jacobson
ring.

Lemma 35.9. Let R → S be a ring map. Let m ⊂ R be a maximal ideal. Let q ⊂ S
be a prime ideal lying over m such that κ(q)/κ(m) is an algebraic field extension. Then q
is a maximal ideal of S.



560 10. COMMUTATIVE ALGEBRA

Proof. Consider the diagram

S // S/q // κ(q)

R //

OO

R/m

OO

We see that κ(m) ⊂ S/q ⊂ κ(q). Because the field extension κ(m) ⊂ κ(q) is algebraic,
any ring between κ(m) and κ(q) is a field (Fields, Lemma 8.10). Thus S/q is a field, and a
posteriori equal to κ(q). �

Lemma 35.10. Suppose that k is a field and suppose that V is a nonzero vector space
over k. Assume the dimension of V (which is a cardinal number) is smaller than the
cardinality of k. Then for any linear operator T : V → V there exists some monic
polynomial P (t) ∈ k[t] such that P (T ) is not invertible.

Proof. If not then V inherits the structure of a vector space over the field k(t). But
the dimension of k(t) over k is at least the cardinality of k for example due to the fact that
the elements 1

t−λ are k-linearly independent. �

Here is another version of Hilbert’s Nullstellensatz.

Theorem 35.11. Let k be a field. LetS be a k-algebra generated over k by the elements
{xi}i∈I . Assume the cardinality of I is smaller than the cardinality of k. Then

(1) for all maximal ideals m ⊂ S the field extension κ(m)/k is algebraic, and
(2) S is a Jacobson ring.

Proof. If I is finite then the result follows from the Hilbert Nullstellensatz, Theorem
34.1. In the rest of the proof we assume I is infinite. It suffices to prove the result for
m ⊂ k[{xi}i∈I ] maximal in the polynomial ring on variables xi, since S is a quotient of
this. As I is infinite the set of monomials xe1

i1
. . . xerir , i1, . . . , ir ∈ I and e1, . . . , er ≥ 0

has cardinality at most equal to the cardinality of I . Because the cardinality of I× . . .× I
is the cardinality of I , and also the cardinality of

⋃
n≥0 I

n has the same cardinality. (If I
is finite, then this is not true and in that case this proof only works if k is uncountable.)

To arrive at a contradiction pick T ∈ κ(m) transcendental over k. Note that the k-linear
map T : κ(m) → κ(m) given by multiplication by T has the property that P (T ) is
invertible for all monic polynomials P (t) ∈ k[t]. Also, κ(m) has dimension at most the
cardinality of I over k since it is a quotient of the vector space k[{xi}i∈I ] over k (whose
dimension is #I as we saw above). This is impossible by Lemma 35.10.

To show that S is Jacobson we argue as follows. If not then there exists a prime q ⊂ S
and an element f ∈ S , f 6∈ q such that q is not maximal and (S/q)f is a field, see Lemma
35.5. But note that (S/q)f is generated by at most #I + 1 elements. Hence the field
extension (S/q)f/k is algebraic (by the first part of the proof). This implies that κ(q) is
an algebraic extension of k hence q is maximal by Lemma 35.9. This contradiction finishes
the proof. �

Lemma 35.12. Let k be a field. Let S be a k-algebra. For any field extension K/k
whose cardinality is larger than the cardinality of S we have

(1) for every maximal ideal m of SK the field κ(m) is algebraic over K , and
(2) SK is a Jacobson ring.
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Proof. Choose k ⊂ K such that the cardinality of K is greater than the cardinality
ofS. Since the elements ofS generate theK-algebraSK we see that Theorem 35.11 applies.

�

Example 35.13. The trick in the proof of Theorem 35.11 really does not work if k
is a countable field and I is countable too. Let k be a countable field. Let x be a variable,
and let k(x) be the field of rational functions in x. Consider the polynomial algebra R =
k[x, {xf}f∈k[x]−{0}]. Let I = ({fxf − 1}f∈k[x]−{0}). Note that I is a proper ideal in R.
Choose a maximal ideal I ⊂ m. Then k ⊂ R/m is isomorphic to k(x), and is not algebraic
over k.

Lemma 35.14. Let R be a Jacobson ring. Let f ∈ R. The ring Rf is Jacobson and
maximal ideals of Rf correspond to maximal ideals of R not containing f .

Proof. By Topology, Lemma 18.5 we see that D(f) = Spec(Rf ) is Jacobson and
that closed points ofD(f) correspond to closed points in Spec(R) which happen to lie in
D(f). Thus Rf is Jacobson by Lemma 35.4. �

Example 35.15. Here is a simple example that shows Lemma 35.14 to be false if R is
not Jacobson. Consider the ringR = Z(2), i.e., the localization of Z at the prime (2). The
localization of R at the element 2 is isomorphic to Q, in a formula: R2 ∼= Q. Clearly the
map R→ R2 maps the closed point of Spec(Q) to the generic point of Spec(R).

Example 35.16. Here is a simple example that shows Lemma 35.14 is false if R is
Jacobson but we localize at infinitely many elements. Namely, letR = Z and consider the
localization (R \ {0})−1R ∼= Q of R at the set of all nonzero elements. Clearly the map
Z→ Q maps the closed point of Spec(Q) to the generic point of Spec(Z).

Lemma 35.17. Let R be a Jacobson ring. Let I ⊂ R be an ideal. The ring R/I is
Jacobson and maximal ideals of R/I correspond to maximal ideals of R containing I .

Proof. The proof is the same as the proof of Lemma 35.14. �

Lemma 35.18. Let R be a Jacobson ring. Let K be a field. Let R ⊂ K and K is of
finite type over R. Then R is a field and K/R is a finite field extension.

Proof. First note that R is a domain. By Lemma 34.2 we see that Rf is a field and
K/Rf is a finite field extension for some nonzero f ∈ R. Hence (0) is a maximal ideal of
Rf and by Lemma 35.14 we conclude (0) is a maximal ideal of R. �

Proposition 35.19. LetR be a Jacobson ring. LetR→ S be a ring map of finite type.
Then

(1) The ring S is Jacobson.
(2) The map Spec(S)→ Spec(R) transforms closed points to closed points.
(3) For m′ ⊂ S maximal lying over m ⊂ R the field extension κ(m′)/κ(m) is finite.

Proof. Let m′ ⊂ S be a maximal ideal andR∩m′ = m. ThenR/m→ S/m′ satisfies
the conditions of Lemma 35.18 by Lemma 35.17. Hence R/m is a field and m a maximal
ideal and the induced residue field extension is finite. This proves (2) and (3).
If S is not Jacobson, then by Lemma 35.5 there exists a non-maximal prime ideal q of S
and an g ∈ S , g 6∈ q such that (S/q)g is a field. To arrive at a contradiction we show that q
is a maximal ideal. Let p = q∩R. Then R/p→ (S/q)g satisfies the conditions of Lemma
35.18 by Lemma 35.17. HenceR/p is a field and the field extension κ(p)→ (S/q)g = κ(q)
is finite, thus algebraic. Then q is a maximal ideal ofS by Lemma 35.9. Contradiction. �
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Lemma 35.20. Any finite type algebra over Z is Jacobson.

Proof. Combine Lemma 35.6 and Proposition 35.19. �

Lemma 35.21. Let R → S be a finite type ring map of Jacobson rings. Denote X =
Spec(R) and Y = Spec(S). Write f : Y → X the induced map of spectra. Let E ⊂
Y = Spec(S) be a constructible set. Denote with a subscript 0 the set of closed points of
a topological space.

(1) We have f(E)0 = f(E0) = X0 ∩ f(E).
(2) A point ξ ∈ X is in f(E) if and only if {ξ} ∩ f(E0) is dense in {ξ}.

Proof. We have a commutative diagram of continuous maps

E //

��

Y

��
f(E) // X

Suppose x ∈ f(E) is closed in f(E). Then f−1({x}) ∩ E is nonempty and closed in E.
Applying Topology, Lemma 18.5 to both inclusions

f−1({x}) ∩ E ⊂ E ⊂ Y

we find there exists a point y ∈ f−1({x}) ∩ E which is closed in Y . In other words,
there exists y ∈ Y0 and y ∈ E0 mapping to x. Hence x ∈ f(E0). This proves that
f(E)0 ⊂ f(E0). Proposition 35.19 implies that f(E0) ⊂ X0 ∩ f(E). The inclusion
X0 ∩ f(E) ⊂ f(E)0 is trivial. This proves the first assertion.

Suppose that ξ ∈ f(E). According to Lemma 30.2 the set f(E) ∩ {ξ} contains a dense
open subset of {ξ}. Since X is Jacobson we conclude that f(E)∩ {ξ} contains a dense set
of closed points, see Topology, Lemma 18.5. We conclude by part (1) of the lemma.

On the other hand, suppose that {ξ}∩f(E0) is dense in {ξ}. By Lemma 29.4 there exists a
ring map S → S′ of finite presentation such thatE is the image of Y ′ := Spec(S′)→ Y .
ThenE0 is the image of Y ′

0 by the first part of the lemma applied to the ring map S → S′.
Thus we may assume that E = Y by replacing S by S′. Suppose ξ corresponds to p ⊂ R.
Consider the diagram

S // S/pS

R //

OO

R/p

OO

This diagram and the density of f(Y0) ∩ V (p) in V (p) shows that the morphism R/p→
S/pS satisfies condition (2) of Lemma 30.4. Hence we conclude there exists a prime q ⊂
S/pSmapping to (0). In other words the inverse image q of q inSmaps to p as desired. �

The conclusion of the lemma above is that we can read off the image of f from the set of
closed points of the image. This is a little nicer in case the map is of finite presentation
because then we know that images of a constructible is constructible. Before we state it
we introduce some notation. Denote Constr(X) the set of constructible sets. Let R → S
be a ring map. Denote X = Spec(R) and Y = Spec(S). Write f : Y → X the induced
map of spectra. Denote with a subscript 0 the set of closed points of a topological space.
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Lemma 35.22. With notation as above. Assume thatR is a Noetherian Jacobson ring.
Further assume R→ S is of finite type. There is a commutative diagram

Constr(Y ) E 7→E0 //

E 7→f(E)
��

Constr(Y0)

E 7→f(E)
��

Constr(X) E 7→E0// Constr(X0)

where the horizontal arrows are the bijections from Topology, Lemma 18.8.

Proof. Since R → S is of finite type, it is of finite presentation, see Lemma 31.4.
Thus the image of a constructible set in X is constructible in Y by Chevalley’s theorem
(Theorem 29.10). Combined with Lemma 35.21 the lemma follows. �

To illustrate the use of Jacobson rings, we give the following two examples.

Example 35.23. Let k be a field. The space Spec(k[x, y]/(xy)) has two irreducible
components: namely the x-axis and the y-axis. As a generalization, let

R = k[x11, x12, x21, x22, y11, y12, y21, y22]/a,
where a is the ideal in k[x11, x12, x21, x22, y11, y12, y21, y22] generated by the entries of
the 2× 2 product matrix (

x11 x12
x21 x22

)(
y11 y12
y21 y22

)
.

In this example we will describe Spec(R).
To prove the statement about Spec(k[x, y]/(xy)) we argue as follows. If p ⊂ k[x, y] is
any ideal containing xy, then either x or y would be contained in p. Hence the minimal
such prime ideals are just (x) and (y). In case k is algebraically closed, the max-Spec of
these components can then be visualized as the point sets of y- and x-axis.
For the generalization, note that we may identify the closed points of the spectrum of
k[x11, x12, x21, x22, y11, y12, y21, y22]) with the space of matrices{

(X,Y ) ∈Mat(2, k)×Mat(2, k) | X =
(
x11 x12
x21 x22

)
, Y =

(
y11 y12
y21 y22

)}
at least if k is algebraically closed. Now define a group action of GL(2, k) × GL(2, k) ×
GL(2, k) on the space of matrices {(X,Y )} by

(g1, g2, g3)× (X,Y ) 7→ ((g1Xg
−1
2 , g2Y g

−1
3 )).

Here, also observe that the algebraic set
GL(2, k)×GL(2, k)×GL(2, k) ⊂Mat(2, k)×Mat(2, k)×Mat(2, k)

is irreducible since it is the max spectrum of the domain
k[x11, x12, . . . , z21, z22, (x11x22−x12x21)−1, (y11y22−y12y21)−1, (z11z22−z12z21)−1].
Since the image of irreducible an algebraic set is still irreducible, it suffices to classify the
orbits of the set {(X,Y ) ∈Mat(2, k)×Mat(2, k)|XY = 0} and take their closures. From
standard linear algebra, we are reduced to the following three cases:

(1) ∃(g1, g2) such that g1Xg
−1
2 = I2×2. Then Y is necessarily 0, which as an al-

gebraic set is invariant under the group action. It follows that this orbit is con-
tained in the irreducible algebraic set defined by the prime ideal (y11, y12, y21, y22).
Taking the closure, we see that (y11, y12, y21, y22) is actually a component.
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(2) ∃(g1, g2) such that

g1Xg
−1
2 =

(
1 0
0 0

)
.

This case occurs if and only if X is a rank 1 matrix, and furthermore, Y is killed
by such an X if and only if

x11y11 + x12y21 = 0; x11y12 + x12y22 = 0;

x21y11 + x22y21 = 0; x21y12 + x22y22 = 0.
Fix a rank 1 X , such non zero Y ’s satisfying the above equations form an irre-
ducible algebraic set for the following reason(Y = 0 is contained the previous
case): 0 = g1Xg

−1
2 g2Y implies that

g2Y =
(

0 0
y′

21 y′
22

)
.

With a further GL(2, k)-action on the right by g3, g2Y can be brought into

g2Y g
−1
3 =

(
0 0
0 1

)
,

and thus such Y ’s form an irreducible algebraic set isomorphic to the image of
GL(2, k) under this action. Finally, notice that the “rank 1” condition for X ’s
forms an open dense subset of the irreducible algebraic set detX = x11x22 −
x12x21 = 0. It now follows that all the five equations define an irreducible com-
ponent (x11y11+x12y21, x11y12+x12y22, x21y11+x22y21, x21y12+x22y22, x11x22−
x12x21) in the open subset of the space of pairs of nonzero matrices. It can be
shown that the pair of equations detX = 0, detY = 0 cuts Spec(R) in an
irreducible component with the above locus an open dense subset.

(3) ∃(g1, g2) such that g1Xg
−1
2 = 0, or equivalently, X = 0. Then Y can be arbi-

trary and this component is thus defined by (x11, x12, x21, x22).

Example 35.24. For another example, consider R = k[{tij}ni,j=1]/a, where a is
the ideal generated by the entries of the product matrix T 2 − T , T = (tij). From lin-
ear algebra, we know that under the GL(n, k)-action defined by g, T 7→ gTg−1, T is
classified by the its rank and each T is conjugate to some diag(1, . . . , 1, 0, . . . , 0), which
has r 1’s and n − r 0’s. Thus each orbit of such a diag(1, . . . , 1, 0, . . . , 0) under the
group action forms an irreducible component and every idempotent matrix is contained
in one such orbit. Next we will show that any two different orbits are necessarily dis-
joint. For this purpose we only need to cook up polynomial functions that take different
values on different orbits. In characteristic 0 cases, such a function can be taken to be
f(tij) = trace(T ) =

∑n
i=1 tii. In positive characteristic cases, things are slightly more

tricky since we might have trace(T ) = 0 even if T 6= 0. For instance, char = 3

trace

1
1

1

 = 3 = 0

Anyway, these components can be separated using other functions. For instance, in the
characteristic 3 case, tr(∧3T ) takes value 1 on the components corresponding to diag(1, 1, 1)
and 0 on other components.



36. FINITE AND INTEGRAL RING EXTENSIONS 565

36. Finite and integral ring extensions

Trivial lemmas concerning finite and integral ring maps. We recall the definition.

Definition 36.1. Let ϕ : R→ S be a ring map.
(1) An element s ∈ S is integral over R if there exists a monic polynomial P (x) ∈

R[x] such that Pϕ(s) = 0, where Pϕ(x) ∈ S[x] is the image of P under ϕ :
R[x]→ S[x].

(2) The ring map ϕ is integral if every s ∈ S is integral over R.

Lemma 36.2. Let ϕ : R → S be a ring map. Let y ∈ S. If there exists a finite
R-submodule M of S such that 1 ∈M and yM ⊂M , then y is integral over R.

Proof. Consider the map ϕ : M → M , x 7→ y · x. By Lemma 16.2 there exists a
monic polynomial P ∈ R[T ] with P (ϕ) = 0. In the ring S we get P (y) = P (y) · 1 =
P (ϕ)(1) = 0. �

Lemma 36.3. A finite ring extension is integral.

Proof. Let R → S be finite. Let y ∈ S. Apply Lemma 36.2 to M = S to see that y
is integral over R. �

Lemma 36.4. Let ϕ : R→ S be a ring map. Let s1, . . . , sn be a finite set of elements
of S. In this case si is integral over R for all i = 1, . . . , n if and only if there exists an
R-subalgebra S′ ⊂ S finite over R containing all of the si.

Proof. If each si is integral, then the subalgebra generated byϕ(R) and the si is finite
overR. Namely, if si satisfies a monic equation of degree di overR, then this subalgebra is
generated as an R-module by the elements se1

1 . . . senn with 0 ≤ ei ≤ di − 1. Conversely,
suppose given a finiteR-subalgebra S′ containing all the si. Then all of the si are integral
by Lemma 36.3. �

Lemma 36.5. Let R→ S be a ring map. The following are equivalent
(1) R→ S is finite,
(2) R→ S is integral and of finite type, and
(3) there exist x1, . . . , xn ∈ S which generate S as an algebra overR such that each

xi is integral over R.

Proof. Clear from Lemma 36.4. �

Lemma 36.6. Suppose thatR→ S and S → T are integral ring maps. ThenR→ T
is integral.

Proof. Let t ∈ T . Let P (x) ∈ S[x] be a monic polynomial such that P (t) = 0.
Apply Lemma 36.4 to the finite set of coefficients of P . Hence t is integral over some
subalgebra S′ ⊂ S finite over R. Apply Lemma 36.4 again to find a subalgebra T ′ ⊂ T
finite over S′ and containing t. Lemma 7.3 applied to R → S′ → T ′ shows that T ′ is
finite over R. The integrality of t over R now follows from Lemma 36.3. �

Lemma 36.7. Let R→ S be a ring homomorphism. The set

S′ = {s ∈ S | s is integral over R}
is an R-subalgebra of S.

Proof. This is clear from Lemmas 36.4 and 36.3. �
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Lemma 36.8. LetRi → Si be ring maps i = 1, . . . , n. LetR andS denote the product
of the Ri and Si respectively. Then an element s = (s1, . . . , sn) ∈ S is integral over R if
and only if each si is integral over Ri.

Proof. Omitted. �

Definition 36.9. Let R → S be a ring map. The ring S′ ⊂ S of elements integral
over R, see Lemma 36.7, is called the integral closure of R in S. If R ⊂ S we say that R is
integrally closed in S if R = S′.

In particular, we see that R→ S is integral if and only if the integral closure of R in S is
all of S.

Lemma 36.10. Let Ri → Si be ring maps i = 1, . . . , n. Denote the integral closure
of Ri in Si by S′

i. Further let R and S denote the product of the Ri and Si respectively.
Then the integral closure of R in S is the product of the S′

i. In particular R → S is
integrally closed if and only if each Ri → Si is integrally closed.

Proof. This follows immediately from Lemma 36.8. �

Lemma 36.11. Integral closure commutes with localization: If A→ B is a ring map,
andS ⊂ A is a multiplicative subset, then the integral closure ofS−1A inS−1B isS−1B′,
where B′ ⊂ B is the integral closure of A in B.

Proof. Since localization is exact we see that S−1B′ ⊂ S−1B. Suppose x ∈ B′ and
f ∈ S. Then xd +

∑
i=1,...,d aix

d−i = 0 in B for some ai ∈ A. Hence also

(x/f)d +
∑

i=1,...,d
ai/f

i(x/f)d−i = 0

in S−1B. In this way we see that S−1B′ is contained in the integral closure of S−1A in
S−1B. Conversely, suppose that x/f ∈ S−1B is integral over S−1A. Then we have

(x/f)d +
∑

i=1,...,d
(ai/fi)(x/f)d−i = 0

in S−1B for some ai ∈ A and fi ∈ S. This means that

(f ′f1 . . . fdx)d +
∑

i=1,...,d
f i(f ′)if i1 . . . f i−1

i . . . f idai(f ′f1 . . . fdx)d−i = 0

for a suitable f ′ ∈ S. Hence f ′f1 . . . fdx ∈ B′ and thus x/f ∈ S−1B′ as desired. �

Lemma 36.12. Letϕ : R→ S be a ring map. Letx ∈ S. The following are equivalent:
(1) x is integral over R, and
(2) for every prime ideal p ⊂ R the element x ∈ Sp is integral over Rp.

Proof. It is clear that (1) implies (2). Assume (2). Consider the R-algebra S′ ⊂
S generated by ϕ(R) and x. Let p be a prime ideal of R. Then we know that xd +∑
i=1,...,d ϕ(ai)xd−i = 0 in Sp for some ai ∈ Rp. Hence we see, by looking at which de-

nominators occur, that for some f ∈ R, f 6∈ pwe haveai ∈ Rf andxd+
∑
i=1,...,d ϕ(ai)xd−i =

0 in Sf . This implies that S′
f is finite overRf . Since p was arbitrary and Spec(R) is quasi-

compact (Lemma 17.10) we can find finitely many elements f1, . . . , fn ∈ Rwhich generate
the unit ideal of R such that S′

fi
is finite over Rfi . Hence we conclude from Lemma 23.2

that S′ is finite over R. Hence x is integral over R by Lemma 36.4. �

Lemma 36.13. Let R→ S and R→ R′ be ring maps. Set S′ = R′ ⊗R S.
(1) If R→ S is integral so is R′ → S′.
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(2) If R→ S is finite so is R′ → S′.

Proof. We prove (1). Let si ∈ S be generators for S over R. Each of these satisfies a
monic polynomial equation Pi over R. Hence the elements 1 ⊗ si ∈ S′ generate S′ over
R′ and satisfy the corresponding polynomial P ′

i overR′. Since these elements generate S′

over R′ we see that S′ is integral over R′. Proof of (2) omitted. �

Lemma 36.14. Let R→ S be a ring map. Let f1, . . . , fn ∈ R generate the unit ideal.
(1) If each Rfi → Sfi is integral, so is R→ S.
(2) If each Rfi → Sfi is finite, so is R→ S.

Proof. Proof of (1). Let s ∈ S. Consider the ideal I ⊂ R[x] of polynomials P such
that P (s) = 0. Let J ⊂ R denote the ideal (!) of leading coefficients of elements of I . By
assumption and clearing denominators we see that fnii ∈ J for all i and certain ni ≥ 0.
Hence J contains 1 and we see s is integral over R. Proof of (2) omitted. �

Lemma 36.15. Let A→ B → C be ring maps.
(1) If A→ C is integral so is B → C.
(2) If A→ C is finite so is B → C.

Proof. Omitted. �

Lemma 36.16. Let A→ B → C be ring maps. Let B′ be the integral closure of A in
B, let C ′ be the integral closure of B′ in C. Then C ′ is the integral closure of A in C.

Proof. Omitted. �

Lemma 36.17. Suppose that R→ S is an integral ring extension with R ⊂ S. Then
ϕ : Spec(S)→ Spec(R) is surjective.

Proof. Let p ⊂ R be a prime ideal. We have to show pSp 6= Sp, see Lemma 17.9. The
localizationRp → Sp is injective (as localization is exact) and integral by Lemma 36.11 or
36.13. Hence we may replace R, S by Rp, Sp and we may assume R is local with maximal
ideal m and it suffices to show that mS 6= S. Suppose 1 =

∑
fisi with fi ∈ m and si ∈ S

in order to get a contradiction. LetR ⊂ S′ ⊂ S be such thatR→ S′ is finite and si ∈ S′,
see Lemma 36.4. The equation 1 =

∑
fisi implies that the finite R-module S′ satisfies

S′ = mS′. Hence by Nakayama’s Lemma 20.1 we see S′ = 0. Contradiction. �

Lemma 36.18. Let R be a ring. Let K be a field. If R ⊂ K and K is integral over R,
then R is a field and K is an algebraic extension. If R ⊂ K and K is finite over R, then
R is a field and K is a finite algebraic extension.

Proof. Assume that R ⊂ K is integral. By Lemma 36.17 we see that Spec(R) has 1
point. Since clearlyR is a domain we see thatR = R(0) is a field (Lemma 25.1). The other
assertions are immediate from this. �

Lemma 36.19. Let k be a field. Let S be a k-algebra over k.
(1) If S is a domain and finite dimensional over k, then S is a field.
(2) If S is integral over k and a domain, then S is a field.
(3) If S is integral over k then every prime of S is a maximal ideal (see Lemma 26.5

for more consequences).
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Proof. The statement on primes follows from the statement “integral + domain⇒
field”. Let S integral over k and assume S is a domain, Take s ∈ S. By Lemma 36.4 we
may find a finite dimensional k-subalgebra k ⊂ S′ ⊂ S containing s. Hence S is a field if
we can prove the first statement. Assume S finite dimensional over k and a domain. Pick
s ∈ S. Since S is a domain the multiplication map s : S → S is surjective by dimension
reasons. Hence there exists an element s1 ∈ S such that ss1 = 1. So S is a field. �

Lemma 36.20. Suppose R → S is integral. Let q, q′ ∈ Spec(S) be distinct primes
having the same image in Spec(R). Then neither q ⊂ q′ nor q′ ⊂ q.

Proof. Let p ⊂ R be the image. By Remark 17.8 the primes q, q′ correspond to ideals
in S ⊗R κ(p). Thus the lemma follows from Lemma 36.19. �

Lemma 36.21. Suppose R→ S is finite. Then the fibres of Spec(S)→ Spec(R) are
finite.

Proof. By the discussion in Remark 17.8 the fibres are the spectra of the rings S ⊗R
κ(p). AsR→ S is finite, these fibre rings are finite over κ(p) hence Noetherian by Lemma
31.1. By Lemma 36.20 every prime of S ⊗R κ(p) is a minimal prime. Hence by Lemma
31.6 there are at most finitely many. �

Lemma 36.22. LetR→ S be a ring map such that S is integral overR. Let p ⊂ p′ ⊂
R be primes. Let q be a prime of S mapping to p. Then there exists a prime q′ with q ⊂ q′

mapping to p′.

Proof. We may replace R by R/p and S by S/q. This reduces us to the situation of
having an integral extension of domains R ⊂ S and a prime p′ ⊂ R. By Lemma 36.17 we
win. �

The property expressed in the lemma above is called the “going up property” for the ring
map R→ S , see Definition 41.1.

Lemma 36.23. Let R → S be a finite and finitely presented ring map. Let M be
an S-module. Then M is finitely presented as an R-module if and only if M is finitely
presented as an S-module.

Proof. One of the implications follows from Lemma 6.4. To see the other assume
that M is finitely presented as an S-module. Pick a presentation

S⊕m −→ S⊕n −→M −→ 0

As S is finite as an R-module, the kernel of S⊕n → M is a finite R-module. Thus from
Lemma 5.3 we see that it suffices to prove that S is finitely presented as an R-module.

Pick y1, . . . , yn ∈ S such that y1, . . . , yn generate S as anR-module. By Lemma 36.2 each
yi is integral overR. Choose monic polynomialsPi(x) ∈ R[x] withPi(yi) = 0. Consider
the ring

S′ = R[x1, . . . , xn]/(P1(x1), . . . , Pn(xn))
Then we see that S is of finite presentation as an S′-algebra by Lemma 6.2. Since S′ → S
is surjective, the kernel J = Ker(S′ → S) is finitely generated as an ideal by Lemma 6.3.
HenceJ is a finiteS′-module (immediate from the definitions). ThusS = Coker(J → S′)
is of finite presentation as an S′-module by Lemma 5.3. Hence, arguing as in the first
paragraph, it suffices to show that S′ is of finite presentation as an R-module. Actually,
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S′ is free as an R-module with basis the monomials xe1
1 . . . xenn for 0 ≤ ei < deg(Pi).

Namely, write R→ S′ as the composition

R→ R[x1]/(P1(x1))→ R[x1, x2]/(P1(x1), P2(x2))→ . . .→ S′

This shows that the ith ring in this sequence is free as a module over the (i−1)st one with
basis 1, xi, . . . , xdeg(Pi)−1

i . The result follows easily from this by induction. Some details
omitted. �

Lemma 36.24. Let R be a ring. Let x, y ∈ R be nonzerodivisors. Let R[x/y] ⊂
Rxy be the R-subalgebra generated by x/y, and similarly for the subalgebras R[y/x] and
R[x/y, y/x]. If R is integrally closed in Rx or Ry , then the sequence

0→ R
(−1,1)−−−−→ R[x/y]⊕R[y/x] (1,1)−−−→ R[x/y, y/x]→ 0

is a short exact sequence of R-modules.

Proof. Since x/y ·y/x = 1 it is clear that the mapR[x/y]⊕R[y/x]→ R[x/y, y/x]
is surjective. Let α ∈ R[x/y]∩R[y/x]. To show exactness in the middle we have to prove
that α ∈ R. By assumption we may write

α = a0 + a1x/y + . . .+ an(x/y)n = b0 + b1y/x+ . . .+ bm(y/x)m

for some n,m ≥ 0 and ai, bj ∈ R. Pick some N > max(n,m). Consider the finite
R-submodule M of Rxy generated by the elements

(x/y)N , (x/y)N−1, . . . , x/y, 1, y/x, . . . , (y/x)N−1, (y/x)N

We claim that αM ⊂M . Namely, it is clear that (x/y)i(b0 +b1y/x+ . . .+bm(y/x)m) ∈
M for 0 ≤ i ≤ N and that (y/x)i(a0 + a1x/y + . . . + an(x/y)n) ∈ M for 0 ≤ i ≤ N .
Hence α is integral over R by Lemma 36.2. Note that α ∈ Rx, so if R is integrally closed
in Rx then α ∈ R as desired. �

37. Normal rings

We first introduce the notion of a normal domain, and then we introduce the (very general)
notion of a normal ring.

Definition 37.1. A domain R is called normal if it is integrally closed in its field of
fractions.

Lemma 37.2. Let R → S be a ring map. If S is a normal domain, then the integral
closure of R in S is a normal domain.

Proof. Omitted. �

The following notion is occasionally useful when studying normality.

Definition 37.3. Let R be a domain.
(1) An element g of the fraction field of R is called almost integral over R if there

exists an element r ∈ R, r 6= 0 such that rgn ∈ R for all n ≥ 0.
(2) The domain R is called completely normal if every almost integral element of

the fraction field of R is contained in R.

The following lemma shows that a Noetherian domain is normal if and only if it is com-
pletely normal.
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Lemma 37.4. LetR be a domain with fraction fieldK. If u, v ∈ K are almost integral
over R, then so are u+ v and uv. Any element g ∈ K which is integral over R is almost
integral over R. If R is Noetherian then the converse holds as well.

Proof. If run ∈ R for all n ≥ 0 and vnr′ ∈ R for all n ≥ 0, then (uv)nrr′ and
(u + v)nrr′ are in R for all n ≥ 0. Hence the first assertion. Suppose g ∈ K is integral
overR. In this case there exists an d > 0 such that the ringR[g] is generated by 1, g, . . . , gd
as an R-module. Let r ∈ R be a common denominator of the elements 1, g, . . . , gd ∈ K.
It is follows that rR[g] ⊂ R, and hence g is almost integral over R.

Suppose R is Noetherian and g ∈ K is almost integral over R. Let r ∈ R, r 6= 0 be as in
the definition. Then R[g] ⊂ 1

rR as an R-module. Since R is Noetherian this implies that
R[g] is finite over R. Hence g is integral over R, see Lemma 36.3. �

Lemma 37.5. Any localization of a normal domain is normal.

Proof. LetR be a normal domain, and let S ⊂ R be a multiplicative subset. Suppose
g is an element of the fraction field of R which is integral over S−1R. Let P = xd +∑
j<d ajx

j be a polynomial with ai ∈ S−1R such that P (g) = 0. Choose s ∈ S such
that sai ∈ R for all i. Then sg satisfies the monic polynomial xd+

∑
j<d s

d−jajx
j which

has coefficients sd−jaj in R. Hence sg ∈ R because R is normal. Hence g ∈ S−1R. �

Lemma 37.6. A principal ideal domain is normal.

Proof. Let R be a principal ideal domain. Let g = a/b be an element of the fraction
field of R integral over R. Because R is a principal ideal domain we may divide out a
common factor of a and b and assume (a, b) = R. In this case, any equation (a/b)n +
rn−1(a/b)n−1 + . . . + r0 = 0 with ri ∈ R would imply an ∈ (b). This contradicts
(a, b) = R unless b is a unit in R. �

Lemma 37.7. Let R be a domain with fraction field K. Suppose f =
∑
αix

i is an
element of K[x].

(1) If f is integral over R[x] then all αi are integral over R, and
(2) If f is almost integral over R[x] then all αi are almost integral over R.

Proof. We first prove the second statement. Write f = α0 +α1x+ . . .+αrx
r with

αr 6= 0. By assumption there exists h = b0 + b1x+ . . .+ bsx
s ∈ R[x], bs 6= 0 such that

fnh ∈ R[x] for all n ≥ 0. This implies that bsαnr ∈ R for all n ≥ 0. Hence αr is almost
integral overR. Since the set of almost integral elements form a subring (Lemma 37.4) we
deduce that f − αrxr = α0 + α1x + . . . + αr−1x

r−1 is almost integral over R[x]. By
induction on r we win.

In order to prove the first statement we will use absolute Noetherian reduction. Namely,
write αi = ai/bi and let P (t) = td +

∑
j<d fjt

j be a polynomial with coefficients fj ∈
R[x] such that P (f) = 0. Let fj =

∑
fjix

i. Consider the subring R0 ⊂ R generated
by the finite list of elements ai, bi, fji of R. It is a domain; let K0 be its field of fractions.
Since R0 is a finite type Z-algebra it is Noetherian, see Lemma 31.3. It is still the case
that f ∈ K0[x] is integral over R0[x], because all the identities in R among the elements
ai, bi, fji also hold in R0. By Lemma 37.4 the element f is almost integral over R0[x].
By the second statement of the lemma, the elements αi are almost integral over R0. And
since R0 is Noetherian, they are integral over R0, see Lemma 37.4. Of course, then they
are integral over R. �
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Lemma 37.8. Let R be a normal domain. Then R[x] is a normal domain.

Proof. The result is true if R is a field K because K[x] is a euclidean domain and
hence a principal ideal domain and hence normal by Lemma 37.6. Let g be an element
of the fraction field of R[x] which is integral over R[x]. Because g is integral over K[x]
where K is the fraction field of R we may write g = αdx

d + αd−1x
d−1 + . . .+ α0 with

αi ∈ K. By Lemma 37.7 the elements αi are integral over R and hence are in R. �

Lemma 37.9. Let R be a Noetherian normal domain. Then R[[x]] is a Noetherian
normal domain.

Proof. The power series ring is Noetherian by Lemma 31.2. Let f, g ∈ R[[x]] be
nonzero elements such that w = f/g is integral over R[[x]]. Let K be the fraction field
of R. Since the ring of Laurent series K((x)) = K[[x]][1/x] is a field, we can write w =
anx

n + an+1x
n+1 + . . .) for some n ∈ Z, ai ∈ K , and an 6= 0. By Lemma 37.4 we

see there exists a nonzero element h = bmx
m + bm+1x

m+1 + . . . in R[[x]] with bm 6= 0
such that weh ∈ R[[x]] for all e ≥ 1. We conclude that n ≥ 0 and that bmaen ∈ R for
all e ≥ 1. Since R is Noetherian this implies that an ∈ R by the same lemma. Now,
if an, an+1, . . . , aN−1 ∈ R, then we can apply the same argument to w − anxn − . . . −
aN−1x

N−1 = aNx
N+. . .. In this way we see that all ai ∈ R and the lemma is proved. �

Lemma 37.10. Let R be a domain. The following are equivalent:
(1) The domain R is a normal domain,
(2) for every prime p ⊂ R the local ring Rp is a normal domain, and
(3) for every maximal ideal m the ring Rm is a normal domain.

Proof. This follows easily from the fact that for any domain R we have

R =
⋂

m
Rm

inside the fraction field of R. Namely, if g is an element of the right hand side then the
ideal I = {x ∈ R | xg ∈ R} is not contained in any maximal ideal m, whence I = R. �

Lemma 37.10 shows that the following definition is compatible with Definition 37.1. (It
is the definition from EGA – see [?, IV, 5.13.5 and 0, 4.1.4].)

Definition 37.11. A ringR is called normal if for every prime p ⊂ R the localization
Rp is a normal domain (see Definition 37.1).

Note that a normal ring is a reduced ring, asR is a subring of the product of its localizations
at all primes (see for example Lemma 23.1).

Lemma 37.12. A normal ring is integrally closed in its total ring of fractions.

Proof. Let R be a normal ring. Let x ∈ Q(R) be an element of the total ring of
fractions of R integral over R. Set I = {f ∈ R, fx ∈ R}. Let p ⊂ R be a prime. As
R → Rp is flat we see that Rp ⊂ Q(R) ⊗R Rp. As Rp is a normal domain we see that
x⊗ 1 is an element of Rp. Hence we can find a, f ∈ R, f 6∈ p such that x⊗ 1 = a⊗ 1/f .
This means that fx − a maps to zero in Q(R) ⊗R Rp = Q(R)p, which in turn means
that there exists an f ′ ∈ R, f ′ 6∈ p such that f ′fx = f ′a in R. In other words, ff ′ ∈ I .
Thus I is an ideal which isn’t contained in any of the prime ideals of R, i.e., I = R and
x ∈ R. �

Lemma 37.13. A localization of a normal ring is a normal ring.

Proof. Omitted. �
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Lemma 37.14. Let R be a normal ring. Then R[x] is a normal ring.

Proof. Let q be a prime of R[x]. Set p = R ∩ q. Then we see that Rp[x] is a normal
domain by Lemma 37.8. Hence (R[x])q is a normal domain by Lemma 37.5. �

Lemma 37.15. A finite product of normal rings is normal.

Proof. It suffices to show that the product of two normal rings, say R and S , is nor-
mal. By Lemma 21.3 the prime ideals of R× S are of the form p× S and R× q, where p
and q are primes of R and S respectively. Localization yields (R× S)p×S = Rp which is
a normal domain by assumption. Similarly for S. �

Lemma 37.16. Let R be a ring. Assume R is reduced and has finitely many minimal
primes. Then the following are equivalent:

(1) R is a normal ring,
(2) R is integrally closed in its total ring of fractions, and
(3) R is a finite product of normal domains.

Proof. The implications (1)⇒ (2) and (3)⇒ (1) hold in general, see Lemmas 37.12
and 37.15.
Let p1, . . . , pn be the minimal primes of R. By Lemmas 25.2 and 25.4 we have Q(R) =
Rp1×. . .×Rpn , and by Lemma 25.1 each factor is a field. Denote ei = (0, . . . , 0, 1, 0, . . . , 0)
the ith idempotent of Q(R).
IfR is integrally closed inQ(R), then it contains in particular the idempotents ei, and we
see that R is a product of n domains (see Sections 22 and 24). Each factor is of the form
R/pi with field of fractions Rpi . By Lemma 36.10 each map R/pi → Rpi is integrally
closed. Hence R is a finite product of normal domains. �

Lemma 37.17. Let (Ri, ϕii′) be a directed system (Categories, Definition 8.1) of rings.
If each Ri is a normal ring so is R = colimiRi.

Proof. Let p ⊂ R be a prime ideal. Set pi = Ri ∩ p (usual abuse of notation).
Then we see that Rp = colimi(Ri)pi . Since each (Ri)pi is a normal domain we reduce to
proving the statement of the lemma for normal domains. If a, b ∈ R and a/b satisfies a
monic polynomial P (T ) ∈ R[T ], then we can find a (sufficiently large) i ∈ I such that
a, b come from objects ai, bi over Ri, P comes from a monic polynomial Pi ∈ Ri[T ] and
Pi(ai/bi) = 0. Since Ri is normal we see ai/bi ∈ Ri and hence also a/b ∈ R. �

38. Going down for integral over normal

We first play around a little bit with the notion of elements integral over an ideal, and
then we prove the theorem referred to in the section title.

Definition 38.1. Let ϕ : R → S be a ring map. Let I ⊂ R be an ideal. We say an
element g ∈ S is integral over I if there exists a monic polynomial P = xd +

∑
j<d ajx

j

with coefficients aj ∈ Id−j such that Pϕ(g) = 0 in S.

This is mostly used when ϕ = idR : R → R. In this case the set I ′ of elements integral
over I is called the integral closure of I . We will see that I ′ is an ideal ofR (and of course
I ⊂ I ′).

Lemma 38.2. Let ϕ : R → S be a ring map. Let I ⊂ R be an ideal. Let A =∑
Intn ⊂ R[t] be the subring of the polynomial ring generated by R ⊕ It ⊂ R[t]. An

element s ∈ S is integral over I if and only if the element st ∈ S[t] is integral over A.
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Proof. Suppose st is integral over A. Let P = xd +
∑
j<d ajx

j be a monic poly-
nomial with coefficients in A such that Pϕ(st) = 0. Let a′

j ∈ A be the degree d − j

part of ai, in other words a′
j = a′′

j t
d−j with a′′

j ∈ Id−j . For degree reasons we still have
(st)d +

∑
j<d ϕ(a′′

j )td−j(st)j = 0. Hence we see that s is integral over I .

Suppose that s is integral over I . Say P = xd +
∑
j<d ajx

j with aj ∈ Id−j . Then we
immediately find a polynomial Q = xd +

∑
j<d(ajtd−j)xj with coefficients in A which

proves that st is integral over A. �

Lemma 38.3. Let ϕ : R → S be a ring map. Let I ⊂ R be an ideal. The set of
elements of S which are integral over I form a R-submodule of S. Furthermore, if s ∈ S
is integral over R, and s′ is integral over I , then ss′ is integral over I .

Proof. Closure under addition is clear from the characterization of Lemma 38.2. Any
element s ∈ S which is integral over R corresponds to the degree 0 element s of S[x]
which is integral over A (because R ⊂ A). Hence we see that multiplication by s on S[x]
preserves the property of being integral over A, by Lemma 36.7. �

Lemma 38.4. Suppose ϕ : R→ S is integral. Suppose I ⊂ R is an ideal. Then every
element of IS is integral over I .

Proof. Immediate from Lemma 38.3. �

Lemma 38.5. LetK be a field. Let n,m ∈ N and a0, . . . , an−1, b0, . . . , bm−1 ∈ K. If
the polynomialxn+an−1x

n−1+. . .+a0 divides the polynomialxm+bm−1x
m−1+. . .+b0

in K[x] then
(1) a0, . . . , an−1 are integral over any subring R0 of K containing the elements

b0, . . . , bm−1, and
(2) each ai lies in

√
(b0, . . . , bm−1)R for any subring R ⊂ K containing the ele-

ments a0, . . . , an−1, b0, . . . , bm−1.

Proof. LetL/K be a field extension such that we can write xm+bm−1x
m−1 + . . .+

b0 =
∏m
i=1(x− βi) with βi ∈ L. See Fields, Section 16. Each βi is integral overR0. Since

each ai is a homogeneous polynomial in β1, . . . , βm we deduce the same for the ai (use
Lemma 36.7).

Choose c0, . . . , cm−n−1 ∈ K such that

xm + bm−1x
m−1 + . . .+ b0 =

(xn + an−1x
n−1 + . . .+ a0)(xm−n + cm−n−1x

m−n−1 + . . .+ c0).

By part (1) the elements ci are integral over R. Consider the integral extension

R ⊂ R′ = R[c0, . . . , cm−n−1] ⊂ K

By Lemmas 36.17 and 30.3 we see that R ∩
√

(b0, . . . , bm−1)R′ =
√

(b0, . . . , bm−1)R.
Thus we may replaceR byR′ and assume ci ∈ R. Dividing out the radical

√
(b0, . . . , bm−1)

we get a reduced ring R. We have to show that the images ai ∈ R are zero. And in R[x]
we have the relation

xm = xm + bm−1x
m−1 + . . .+ b0 =

(xn + an−1x
n−1 + . . .+ a0)(xm−n + cm−n−1x

m−n−1 + . . .+ c0).
It is easy to see that this implies ai = 0 for all i. Indeed by Lemma 25.1 the localization of
R at a minimal prime p is a field and Rp[x] a UFD. Thus f = xn +

∑
aix

i is associated
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to xn and since f is monic f = xn in Rp[x]. Then there exists an s ∈ R, s 6∈ p such that
s(f − xn) = 0. Therefore all ai lie in p and we conclude by Lemma 25.2. �

Lemma 38.6. LetR ⊂ S be an inclusion of domains. Assume R is normal. Let g ∈ S
be integral over R. Then the minimal polynomial of g has coefficients in R.

Proof. Let P = xm + bm−1x
m−1 + . . .+ b0 be a polynomial with coefficients in R

such that P (g) = 0. Let Q = xn + an−1x
n−1 + . . .+ a0 be the minimal polynomial for

g over the fraction fieldK ofR. ThenQ divides P inK[x]. By Lemma 38.5 we see the ai
are integral over R. Since R is normal this means they are in R. �

Proposition 38.7. Let R ⊂ S be an inclusion of domains. Assume R is normal and
S integral over R. Let p ⊂ p′ ⊂ R be primes. Let q′ be a prime of S with p′ = R ∩ q′.
Then there exists a prime q with q ⊂ q′ such that p = R ∩ q. In other words: the going
down property holds for R→ S , see Definition 41.1.

Proof. Let p, p′ and q′ be as in the statement. We have to show there is a prime q,
with q ⊂ q′ and R ∩ q = p. This is the same as finding a prime of Sq′ mapping to p.
According to Lemma 17.9 we have to show that pSq′ ∩ R = p. Pick z ∈ pSq′ ∩ R. We
may write z = y/g with y ∈ pS and g ∈ S , g 6∈ q′. Written differently we have zg = y.
By Lemma 38.4 there exists a monic polynomial P = xm + bm−1x

m−1 + . . . + b0 with
bi ∈ p such that P (y) = 0.
By Lemma 38.6 the minimal polynomial of g over K has coefficients in R. Write it as
Q = xn + an−1x

n−1 + . . .+ a0. Note that not all ai, i = n− 1, . . . , 0 are in p since that
would imply gn =

∑
j<n ajg

j ∈ pS ⊂ p′S ⊂ q′ which is a contradiction.

Since y = zg we see immediately from the above thatQ′ = xn+zan−1x
n−1 + . . .+zna0

is the minimal polynomial for y. Hence Q′ divides P and by Lemma 38.5 we see that
zjan−j ∈

√
(b0, . . . , bm−1) ⊂ p, j = 1, . . . , n. Because not all ai, i = n− 1, . . . , 0 are in

p we conclude z ∈ p as desired. �

39. Flat modules and flat ring maps

One often used result is that ifM = colimi∈I Mi is a colimit ofR-modules and ifN is an
R-module then

M ⊗N = colimi∈I Mi ⊗R N,
see Lemma 12.9. This property is usually expressed by saying that ⊗ commutes with col-
imits. Another often used result is that if 0→ N1 → N2 → N3 → 0 is an exact sequence
and if M is any R-module, then

M ⊗R N1 →M ⊗R N2 →M ⊗R N3 → 0
is still exact, see Lemma 12.10. Both of these properties tell us that the functor N 7→
M⊗RN is right exact. See Categories, Section 23 and Homology, Section 7. AnR-module
M is flat ifN 7→ N⊗RM is also left exact, i.e., if it is exact. Here is the precise definition.

Definition 39.1. Let R be a ring.
(1) AnR-moduleM is called flat if wheneverN1 → N2 → N3 is an exact sequence

of R-modules the sequence M ⊗R N1 → M ⊗R N2 → M ⊗R N3 is exact as
well.

(2) An R-module M is called faithfully flat if the complex of R-modules N1 →
N2 → N3 is exact if and only if the sequence M ⊗R N1 → M ⊗R N2 →
M ⊗R N3 is exact.
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(3) A ring map R→ S is called flat if S is flat as an R-module.
(4) A ring map R→ S is called faithfully flat if S is faithfully flat as an R-module.

Here is an example of how you can use the flatness condition.
Lemma 39.2. Let R be a ring. Let I, J ⊂ R be ideals. Let M be a flat R-module.

Then IM ∩ JM = (I ∩ J)M .
Proof. Consider the exact sequence 0 → I ∩ J → R → R/I ⊕ R/J . Tensoring

with the flat module M we obtain an exact sequence
0→ (I ∩ J)⊗RM →M →M/IM ⊕M/JM

Since the kernel of M →M/IM ⊕M/JM is equal to IM ∩ JM we conclude. �

Lemma 39.3. Let R be a ring. Let {Mi, ϕii′} be a directed system of flat R-modules.
Then colimiMi is a flat R-module.

Proof. This follows as ⊗ commutes with colimits and because directed colimits are
exact, see Lemma 8.8. �

Lemma 39.4. A composition of (faithfully) flat ring maps is (faithfully) flat. IfR→
R′ is (faithfully) flat, andM ′ is a (faithfully) flatR′-module, thenM ′ is a (faithfully) flat
R-module.

Proof. The first statement of the lemma is a particular case of the second, so it is
clearly enough to prove the latter. Let R → R′ be a flat ring map, and M ′ a flat R′-
module. We need to prove that M ′ is a flat R-module. Let N1 → N2 → N3 be an
exact complex of R-modules. Then, the complex R′ ⊗R N1 → R′ ⊗R N2 → R′ ⊗R N3
is exact (since R′ is flat as an R-module), and so the complex M ′ ⊗R′ (R′ ⊗R N1) →
M ′⊗R′ (R′ ⊗R N2)→M ′⊗R′ (R′ ⊗R N3) is exact (sinceM ′ is a flatR′-module). Since
M ′⊗R′ (R′ ⊗R N) ∼= (M ′ ⊗R′ R′)⊗RN ∼= M ′⊗RN for anyR-moduleN functorially
(by Lemmas 12.7 and 12.3), this complex is isomorphic to the complex M ′ ⊗R N1 →
M ′ ⊗R N2 → M ′ ⊗R N3, which is therefore also exact. This shows that M ′ is a flat R-
module. Tracing this argument backwards, we can show that if R→ R′ is faithfully flat,
and ifM ′ is faithfully flat as anR′-module, thenM ′ is faithfully flat as anR-module. �

Lemma 39.5. Let M be an R-module. The following are equivalent:
(1) M is flat over R.
(2) for every injection of R-modules N ⊂ N ′ the map N ⊗R M → N ′ ⊗R M is

injective.
(3) for every ideal I ⊂ R the map I ⊗RM → R⊗RM = M is injective.
(4) for every finitely generated ideal I ⊂ R the map I ⊗RM → R ⊗RM = M is

injective.
Proof. The implications (1) implies (2) implies (3) implies (4) are all trivial. Thus we

prove (4) implies (1). Suppose that N1 → N2 → N3 is exact. Let K = Ker(N2 → N3)
and Q = Im(N2 → N3). Then we get maps

N1 ⊗RM → K ⊗RM → N2 ⊗RM → Q⊗RM → N3 ⊗RM
Observe that the first and third arrows are surjective. Thus if we show that the second
and fourth arrows are injective, then we are done3. Hence it suffices to show that−⊗RM
transforms injective R-module maps into injective R-module maps.

3Here is the argument in more detail: Assume that we know that the second and fourth arrows are injective.
Lemma 12.10 (applied to the exact sequenceK → N2 → Q → 0) yields that the sequenceK⊗RM → N2 ⊗R
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Assume K → N is an injective R-module map and let x ∈ Ker(K ⊗RM → N ⊗RM).
We have to show that x is zero. The R-module K is the union of its finite R-submodules;
hence, K ⊗R M is the colimit of R-modules of the form Ki ⊗R M where Ki runs over
all finite R-submodules of K (because tensor product commutes with colimits). Thus, for
some i our x comes from an element xi ∈ Ki ⊗R M . Thus we may assume that K is a
finite R-module. Assume this. We regard the injection K → N as an inclusion, so that
K ⊂ N .

TheR-moduleN is the union of its finiteR-submodules that containK. Hence,N⊗RM is
the colimit ofR-modules of the formNi⊗RM whereNi runs over all finiteR-submodules
ofN that containK (again since tensor product commutes with colimits). Notice that this
is a colimit over a directed system (since the sum of two finite submodules of N is again
finite). Hence, (by Lemma 8.4) the element x ∈ K ⊗R M maps to zero in at least one of
theseR-modulesNi⊗RM (since xmaps to zero inN ⊗RM ). Thus we may assumeN is
a finite R-module.

Assume N is a finite R-module. Write N = R⊕n/L and K = L′/L for some L ⊂
L′ ⊂ R⊕n. For any R-submodule G ⊂ R⊕n, we have a canonical map G ⊗R M →
M⊕n obtained by composing G ⊗R M → Rn ⊗R M = M⊕n. It suffices to prove that
L ⊗R M → M⊕n and L′ ⊗R M → M⊕n are injective. Namely, if so, then we see that
K ⊗RM = L′ ⊗RM/L⊗RM →M⊕n/L⊗RM is injective too4.

Thus it suffices to show that L ⊗R M → M⊕n is injective when L ⊂ R⊕n is an R-
submodule. We do this by induction on n. The base case n = 1 we handle below. For
the induction step assume n > 1 and set L′ = L ∩ R ⊕ 0⊕n−1. Then L′′ = L/L′ is a
submodule of R⊕n−1. We obtain a diagram

L′ ⊗RM //

��

L⊗RM //

��

L′′ ⊗RM //

��

0

0 // M // M⊕n // M⊕n−1 // 0
By induction hypothesis and the base case the left and right vertical arrows are injective.
The rows are exact. It follows that the middle vertical arrow is injective too.

The base case of the induction above is when L ⊂ R is an ideal. In other words, we have
to show that I ⊗RM → M is injective for any ideal I of R. We know this is true when
I is finitely generated. However, I =

⋃
Iα is the union of the finitely generated ideals Iα

contained in it. In other words, I = colim Iα. Since ⊗ commutes with colimits we see
that I⊗RM = colim Iα⊗RM and since all the morphisms Iα⊗RM →M are injective
by assumption, the same is true for I ⊗RM →M . �

Lemma 39.6. Let {Ri, ϕii′} be a system of rings over the directed set I . Let R =
colimiRi.

M → Q⊗RM → 0 is exact. Hence, Ker (N2 ⊗RM → Q⊗RM) = Im (K ⊗RM → N2 ⊗RM). Since
Im (K ⊗RM → N2 ⊗RM) = Im (N1 ⊗RM → N2 ⊗RM) (due to the surjectivity of N1 ⊗R M →
K ⊗R M ) and Ker (N2 ⊗RM → Q⊗RM) = Ker (N2 ⊗RM → N3 ⊗RM) (due to the injectivity of
Q ⊗R M → N3 ⊗R M ), this becomes Ker (N2 ⊗RM → N3 ⊗RM) = Im (N1 ⊗RM → N2 ⊗RM),
which shows that the functor − ⊗RM is exact, whence M is flat.

4This becomes obvious if we identifyL′⊗RM andL⊗RM with submodules ofM⊕n (which is legitimate
since the maps L ⊗R M → M⊕n and L′ ⊗R M → M⊕n are injective and commute with the obvious map
L′ ⊗RM → L⊗RM ).
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(1) If M is an R-module such that M is flat as an Ri-module for all i, then M is flat
as an R-module.

(2) For i ∈ I let Mi be a flat Ri-module and for i′ ≥ i let fii′ : Mi → Mi′ be a
ϕii′ -linear map such that fi′i′′ ◦ fii′ = fii′′ . Then M = colimi∈IMi is a flat
R-module.

Proof. Part (1) is a special case of part (2) with Mi = M for all i and fii′ = idM .
Proof of (2). Let a ⊂ R be a finitely generated ideal. By Lemma 39.5 it suffices to show
that a⊗RM →M is injective. We can find an i ∈ I and a finitely generated ideal a′ ⊂ Ri
such that a = a′R. Then a = colimi′≥i a

′Ri′ . Since ⊗ commutes with colimits the map
a⊗RM →M is the colimit of the maps

a′Ri′ ⊗Ri′ Mi′ −→Mi′

These maps are all injective by assumption. Since colimits over I are exact by Lemma 8.8
we win. �

Lemma 39.7. Suppose that M is (faithfully) flat over R, and that R → R′ is a ring
map. Then M ⊗R R′ is (faithfully) flat over R′.

Proof. For anyR′-moduleN we have a canonical isomorphismN⊗R′ (R′⊗RM) =
N ⊗RM . Hence the desired exactness properties of the functor−⊗R′ (R′⊗RM) follow
from the corresponding exactness properties of the functor −⊗RM . �

Lemma 39.8. Let R → R′ be a faithfully flat ring map. Let M be a module over R,
and set M ′ = R′ ⊗RM . Then M is flat over R if and only if M ′ is flat over R′.

Proof. By Lemma 39.7 we see that if M is flat then M ′ is flat. For the converse,
suppose that M ′ is flat. Let N1 → N2 → N3 be an exact sequence of R-modules. We
want to show that N1 ⊗R M → N2 ⊗R M → N3 ⊗R M is exact. We know that
N1 ⊗R R′ → N2 ⊗R R′ → N3 ⊗R R′ is exact, because R → R′ is flat. Flatness of M ′

implies that N1 ⊗R R′ ⊗R′ M ′ → N2 ⊗R R′ ⊗R′ M ′ → N3 ⊗R R′ ⊗R′ M ′ is exact. We
may write this as N1 ⊗R M ⊗R R′ → N2 ⊗R M ⊗R R′ → N3 ⊗R M ⊗R R′. Finally,
faithful flatness implies that N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. �

Lemma 39.9. Let R be a ring. Let S → S′ be a flat map of R-algebras. Let M be a
module over S , and set M ′ = S′ ⊗S M .

(1) If M is flat over R, then M ′ is flat over R.
(2) If S → S′ is faithfully flat, thenM is flat overR if and only ifM ′ is flat overR.

Proof. Let N → N ′ be an injection of R-modules. By the flatness of S → S′ we
have

Ker(N ⊗RM → N ′ ⊗RM)⊗S S′ = Ker(N ⊗RM ′ → N ′ ⊗RM ′)

IfM is flat overR, then the left hand side is zero and we find thatM ′ is flat overR by the
second characterization of flatness in Lemma 39.5. If M ′ is flat over R then we have the
vanishing of the right hand side and if in addition S → S′ is faithfully flat, this implies
that Ker(N ⊗RM → N ′ ⊗RM) is zero which in turn shows that M is flat over R. �

Lemma 39.10. Let R → S be a ring map. Let M be an S-module. If M is flat as an
R-module and faithfully flat as an S-module, then R→ S is flat.
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Proof. Let N1 → N2 → N3 be an exact sequence of R-modules. By assumption
N1 ⊗RM → N2 ⊗RM → N3 ⊗RM is exact. We may write this as

N1 ⊗R S ⊗S M → N2 ⊗R S ⊗S M → N3 ⊗R S ⊗S M.

By faithful flatness of M over S we conclude that N1 ⊗R S → N2 ⊗R S → N3 ⊗R S is
exact. Hence R→ S is flat. �

Let R be a ring. Let M be an R-module. Let
∑
fixi = 0 be a relation in M . We say the

relation
∑
fixi is trivial if there exist an integer m ≥ 0, elements yj ∈M , j = 1, . . . ,m,

and elements aij ∈ R, i = 1, . . . , n, j = 1, . . . ,m such that

xi =
∑

j
aijyj ,∀i, and 0 =

∑
i
fiaij ,∀j.

Lemma 39.11 (Equational criterion of flatness). A moduleM overR is flat if and only
if every relation in M is trivial.

Proof. AssumeM is flat and let
∑
fixi = 0 be a relation inM . Let I = (f1, . . . , fn),

and letK = Ker(Rn → I, (a1, . . . , an) 7→
∑
i aifi). So we have the short exact sequence

0 → K → Rn → I → 0. Then
∑
fi ⊗ xi is an element of I ⊗RM which maps to zero

in R⊗RM = M . By flatness
∑
fi ⊗ xi is zero in I ⊗RM . Thus there exists an element

of K ⊗RM mapping to
∑
ei ⊗ xi ∈ Rn ⊗RM where ei is the ith basis element of Rn.

Write this element as
∑
kj ⊗ yj and then write the image of kj in Rn as

∑
aijei to get

the result.
Assume every relation is trivial, let I be a finitely generated ideal, and let x =

∑
fi ⊗ xi

be an element of I ⊗R M mapping to zero in R ⊗R M = M . This just means exactly
that

∑
fixi is a relation in M . And the fact that it is trivial implies easily that x is zero,

because

x =
∑

fi ⊗ xi =
∑

fi ⊗
(∑

aijyj

)
=
∑(∑

fiaij

)
⊗ yj = 0

�

Lemma 39.12. Suppose that R is a ring, 0 → M ′′ → M ′ → M → 0 a short exact
sequence, and N an R-module. If M is flat then N ⊗RM ′′ → N ⊗RM ′ is injective, i.e.,
the sequence

0→ N ⊗RM ′′ → N ⊗RM ′ → N ⊗RM → 0
is a short exact sequence.

Proof. LetR(I) → N be a surjection from a free module ontoN with kernelK. The
result follows from the snake lemma applied to the following diagram

0 0 0
↑ ↑ ↑

M ′′ ⊗R N → M ′ ⊗R N → M ⊗R N → 0
↑ ↑ ↑

0 → (M ′′)(I) → (M ′)(I) → M (I) → 0
↑ ↑ ↑

M ′′ ⊗R K → M ′ ⊗R K → M ⊗R K → 0
↑
0

with exact rows and columns. The middle row is exact because tensoring with the free
module R(I) is exact. �
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Lemma 39.13. Suppose that 0→M ′ →M →M ′′ → 0 is a short exact sequence of
R-modules. If M ′ and M ′′ are flat so is M . If M and M ′′ are flat so is M ′.

Proof. We will use the criterion that a module N is flat if for every ideal I ⊂ R the
map N ⊗R I → N is injective, see Lemma 39.5. Consider an ideal I ⊂ R. Consider the
diagram

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

M ′ ⊗R I → M ⊗R I → M ′′ ⊗R I → 0
with exact rows. This immediately proves the first assertion. The second follows because
if M ′′ is flat then the lower left horizontal arrow is injective by Lemma 39.12. �

Lemma 39.14. LetR be a ring. LetM be anR-module. The following are equivalent
(1) M is faithfully flat, and
(2) M is flat and for all R-module homomorphisms α : N → N ′ we have α = 0 if

and only if α⊗ idM = 0.

Proof. If M is faithfully flat, then 0 → Ker(α) → N → N ′ is exact if and only if
the same holds after tensoring with M . This proves (1) implies (2). For the other, assume
(2). LetN1 → N2 → N3 be a complex, and assume the complexN1⊗RM → N2⊗RM →
N3⊗RM is exact. Takex ∈ Ker(N2 → N3), and consider the mapα : R→ N2/ Im(N1),
r 7→ rx+ Im(N1). By the exactness of the complex−⊗RM we see that α⊗ idM is zero.
By assumption we get that α is zero. Hence x is in the image of N1 → N2. �

Lemma 39.15. Let M be a flat R-module. The following are equivalent:
(1) M is faithfully flat,
(2) for every nonzero R-module N , then tensor product M ⊗R N is nonzero,
(3) for all p ∈ Spec(R) the tensor product M ⊗R κ(p) is nonzero, and
(4) for all maximal ideals m of R the tensor product M ⊗R κ(m) = M/mM is

nonzero.

Proof. Assume M faithfully flat and N 6= 0. By Lemma 39.14 the nonzero map
1 : N → N induces a nonzero map M ⊗R N → M ⊗R N , so M ⊗R N 6= 0. Thus (1)
implies (2). The implications (2)⇒ (3)⇒ (4) are immediate.
Assume (4). Suppose that N1 → N2 → N3 is a complex and suppose that N1 ⊗R M →
N2 ⊗R M → N3 ⊗R M is exact. Let H be the cohomology of the complex, so H =
Ker(N2 → N3)/ Im(N1 → N2). To finish the proof we will show H = 0. By flatness
we see that H ⊗RM = 0. Take x ∈ H and let I = {f ∈ R | fx = 0} be its annihilator.
Since R/I ⊂ H we get M/IM ⊂ H ⊗R M = 0 by flatness of M . If I 6= R we may
choose a maximal ideal I ⊂ m ⊂ R. This immediately gives a contradiction. �

Lemma 39.16. Let R→ S be a flat ring map. The following are equivalent:
(1) R→ S is faithfully flat,
(2) the induced map on Spec is surjective, and
(3) any closed point x ∈ Spec(R) is in the image of the map Spec(S)→ Spec(R).

Proof. This follows quickly from Lemma 39.15, because we saw in Remark 17.8 that
p is in the image if and only if the ring S ⊗R κ(p) is nonzero. �

Lemma 39.17. A flat local ring homomorphism of local rings is faithfully flat.

Proof. Immediate from Lemma 39.16. �
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Flatness meshes well with localization.

Lemma 39.18. Let R be a ring. Let S ⊂ R be a multiplicative subset.
(1) The localization S−1R is a flat R-algebra.
(2) If M is an S−1R-module, then M is a flat R-module if and only if M is a flat

S−1R-module.
(3) Suppose M is an R-module. Then M is a flat R-module if and only if Mp is a

flat Rp-module for all primes p of R.
(4) Suppose M is an R-module. Then M is a flat R-module if and only if Mm is a

flat Rm-module for all maximal ideals m of R.
(5) Suppose R → A is a ring map, M is an A-module, and g1, . . . , gm ∈ A are

elements generating the unit ideal of A. Then M is flat over R if and only if
each localization Mgi is flat over R.

(6) Suppose R → A is a ring map, and M is an A-module. Then M is a flat R-
module if and only if the localization Mq is a flat Rp-module (with p the prime
of R lying under q) for all primes q of A.

(7) Suppose R → A is a ring map, and M is an A-module. Then M is a flat R-
module if and only if the localizationMm is a flatRp-module (with p = R∩m)
for all maximal ideals m of A.

Proof. Let us prove the last statement of the lemma. In the proof we will use re-
peatedly that localization is exact and commutes with tensor product, see Sections 9 and
12.
SupposeR→ A is a ring map, andM is anA-module. Assume thatMm is a flatRp-module
for all maximal idealsm ofA (with p = R∩m). Let I ⊂ R be an ideal. We have to show the
map I⊗RM →M is injective. We can think of this as a map ofA-modules. By assumption
the localization (I⊗RM)m →Mm is injective because (I⊗RM)m = Ip⊗Rp

Mm. Hence
the kernel of I ⊗RM →M is zero by Lemma 23.1. Hence M is flat over R.
Conversely, assume M is flat over R. Pick a prime q of A lying over the prime p of R.
Suppose that I ⊂ Rp is an ideal. We have to show that I ⊗Rp

Mq → Mq is injective.
We can write I = Jp for some ideal J ⊂ R. Then the map I ⊗Rp

Mq → Mq is just the
localization (at q) of the map J ⊗RM →M which is injective. Since localization is exact
we see that Mq is a flat Rp-module.
This proves (7) and (6). The other statements follow in a straightforward way from the
last statement (proofs omitted). �

Lemma 39.19. Let R → S be flat. Let p ⊂ p′ be primes of R. Let q′ ⊂ S be a prime
of S mapping to p′. Then there exists a prime q ⊂ q′ mapping to p.

Proof. By Lemma 39.18 the local ring map Rp′ → Sq′ is flat. By Lemma 39.17 this
local ring map is faithfully flat. By Lemma 39.16 there is a prime mapping to pRp′ . The
inverse image of this prime in S does the job. �

The property of R → S described in the lemma is called the “going down property”. See
Definition 41.1.

Lemma 39.20. Let R be a ring. Let {Si, ϕii′} be a directed system of faithfully flat
R-algebras. Then S = colimi Si is a faithfully flat R-algebra.

Proof. By Lemma 39.3 we see that S is flat. Let m ⊂ R be a maximal ideal. By
Lemma 39.16 none of the rings Si/mSi is zero. Hence S/mS = colimSi/mSi is nonzero
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as well because 1 is not equal to zero. Thus the image of Spec(S)→ Spec(R) contains m
and we see that R→ S is faithfully flat by Lemma 39.16. �

40. Supports and annihilators

Some very basic definitions and lemmas.

Definition 40.1. Let R be a ring and let M be an R-module. The support of M is
the set

Supp(M) = {p ∈ Spec(R) |Mp 6= 0}

Lemma 40.2. Let R be a ring. Let M be an R-module. Then

M = (0)⇔ Supp(M) = ∅.

Proof. Actually, Lemma 23.1 even shows that Supp(M) always contains a maximal
ideal if M is not zero. �

Definition 40.3. Let R be a ring. Let M be an R-module.
(1) Given an element m ∈M the annihilator of m is the ideal

AnnR(m) = Ann(m) = {f ∈ R | fm = 0}.

(2) The annihilator of M is the ideal

AnnR(M) = Ann(M) = {f ∈ R | fm = 0 ∀m ∈M}.

Lemma 40.4. Let R → S be a flat ring map. Let M be an R-module and m ∈
M . Then AnnR(m)S = AnnS(m ⊗ 1). If M is a finite R-module, then AnnR(M)S =
AnnS(M ⊗R S).

Proof. Set I = AnnR(m). By definition there is an exact sequence 0 → I → R →
M where the map R → M sends f to fm. Using flatness we obtain an exact sequence
0 → I ⊗R S → S → M ⊗R S which proves the first assertion. If m1, . . . ,mn is a
set of generators of M then AnnR(M) =

⋂
AnnR(mi). Similarly AnnS(M ⊗R S) =⋂

AnnS(mi ⊗ 1). Set Ii = AnnR(mi). Then it suffices to show that
⋂
i=1,...,n(IiS) =

(
⋂
i=1,...,n Ii)S. This is Lemma 39.2. �

Lemma 40.5. LetR be a ring and letM be anR-module. IfM is finite, then Supp(M)
is closed. More precisely, if I = Ann(M) is the annihilator ofM , then V (I) = Supp(M).

Proof. We will show that V (I) = Supp(M).

Suppose p ∈ Supp(M). Then Mp 6= 0. Choose an element m ∈M whose image in Mp is
nonzero. Then the annihilator of m is contained in p by construction of the localization
Mp. Hence a fortiori I = Ann(M) must be contained in p.

Conversely, suppose that p 6∈ Supp(M). Then Mp = 0. Let x1, . . . , xr ∈ M be gener-
ators. By Lemma 9.9 there exists an f ∈ R, f 6∈ p such that xi/1 = 0 in Mf . Hence
fnixi = 0 for some ni ≥ 1. Hence fnM = 0 for n = max{ni} as desired. �

Lemma 40.6. Let R → R′ be a ring map and let M be a finite R-module. Then
Supp(M ⊗R R′) is the inverse image of Supp(M).
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Proof. Let p ∈ Supp(M). By Nakayama’s lemma (Lemma 20.1) we see that

M ⊗R κ(p) = Mp/pMp

is a nonzero κ(p) vector space. Hence for every prime p′ ⊂ R′ lying over p we see that

(M ⊗R R′)p′/p′(M ⊗R R′)p′ = (M ⊗R R′)⊗R′ κ(p′) = M ⊗R κ(p)⊗κ(p) κ(p′)
is nonzero. This implies p′ ∈ Supp(M ⊗R R′). For the converse, if p′ ⊂ R′ is a prime
lying over an arbitrary prime p ⊂ R, then

(M ⊗R R′)p′ = Mp ⊗Rp
R′

p′ .

Hence if p′ ∈ Supp(M ⊗R R′) lies over the prime p ⊂ R, then p ∈ Supp(M). �

Lemma 40.7. Let R be a ring, let M be an R-module, and let m ∈ M . Then p ∈
V (Ann(m)) if and only if m does not map to zero in Mp.

Proof. We may replace M by Rm ⊂ M . Then (1) Ann(m) = Ann(M) and (2) m
does not map to zero in Mp if and only if p ∈ Supp(M). The result now follows from
Lemma 40.5. �

Lemma 40.8. Let R be a ring and let M be an R-module. If M is a finitely pre-
sentedR-module, then Supp(M) is a closed subset of Spec(R) whose complement is quasi-
compact.

Proof. Choose a presentation

R⊕m −→ R⊕n −→M → 0
Let A ∈ Mat(n ×m,R) be the matrix of the first map. By Nakayama’s Lemma 20.1 we
see that

Mp 6= 0⇔M ⊗ κ(p) 6= 0⇔ rank(A mod p) < n.

Hence, if I is the ideal of R generated by the n× n minors of A, then Supp(M) = V (I).
Since I is finitely generated, say I = (f1, . . . , ft), we see that Spec(R) \ V (I) is a finite
union of the standard opens D(fi), hence quasi-compact. �

Lemma 40.9. Let R be a ring and let M be an R-module.
(1) If M is finite then the support of M/IM is Supp(M) ∩ V (I).
(2) If N ⊂M , then Supp(N) ⊂ Supp(M).
(3) If Q is a quotient module of M then Supp(Q) ⊂ Supp(M).
(4) If 0 → N → M → Q → 0 is a short exact sequence then Supp(M) =

Supp(Q) ∪ Supp(N).

Proof. The functors M 7→ Mp are exact. This immediately implies all but the
first assertion. For the first assertion we need to show that Mp 6= 0 and I ⊂ p implies
(M/IM)p = Mp/IMp 6= 0. This follows from Nakayama’s Lemma 20.1. �

41. Going up and going down

Suppose p, p′ are primes of the ring R. Let X = Spec(R) with the Zariski topology.
Denote x ∈ X the point corresponding to p and x′ ∈ X the point corresponding to p′.
Then we have:

x′  x⇔ p′ ⊂ p.

In words: x is a specialization of x′ if and only if p′ ⊂ p. See Topology, Section 19 for
terminology and notation.



41. GOING UP AND GOING DOWN 583

Definition 41.1. Let ϕ : R→ S be a ring map.
(1) We say a ϕ : R→ S satisfies going up if given primes p ⊂ p′ inR and a prime q

in S lying over p there exists a prime q′ of S such that (a) q ⊂ q′, and (b) q′ lies
over p′.

(2) We say a ϕ : R → S satisfies going down if given primes p ⊂ p′ in R and a
prime q′ in S lying over p′ there exists a prime q of S such that (a) q ⊂ q′, and
(b) q lies over p.

So far we have see the following cases of this:
(1) An integral ring map satisfies going up, see Lemma 36.22.
(2) As a special case finite ring maps satisfy going up.
(3) As a special case quotient maps R→ R/I satisfy going up.
(4) A flat ring map satisfies going down, see Lemma 39.19
(5) As a special case any localization satisfies going down.
(6) An extension R ⊂ S of domains, with R normal and S integral over R satisfies

going down, see Proposition 38.7.
Here is another case where going down holds.

Lemma 41.2. LetR→ S be a ring map. If the induced map ϕ : Spec(S)→ Spec(R)
is open, then R→ S satisfies going down.

Proof. Suppose that p ⊂ p′ ⊂ R and q′ ⊂ S lies over p′. As ϕ is open, for every
g ∈ S , g 6∈ q′ we see that p is in the image ofD(g) ⊂ Spec(S). In other words Sg⊗Rκ(p)
is not zero. Since Sq′ is the directed colimit of these Sg this implies that Sq′ ⊗R κ(p) is
not zero, see Lemmas 9.9 and 12.9. Hence p is in the image of Spec(Sq′) → Spec(R) as
desired. �

Lemma 41.3. Let R→ S be a ring map.
(1) R → S satisfies going down if and only if generalizations lift along the map

Spec(S)→ Spec(R), see Topology, Definition 19.4.
(2) R→ S satisfies going up if and only if specializations lift along the map Spec(S)→

Spec(R), see Topology, Definition 19.4.

Proof. Omitted. �

Lemma 41.4. Suppose R → S and S → T are ring maps satisfying going down.
Then so does R→ T . Similarly for going up.

Proof. According to Lemma 41.3 this follows from Topology, Lemma 19.5 �

Lemma 41.5. Let R→ S be a ring map. Let T ⊂ Spec(R) be the image of Spec(S).
If T is stable under specialization, then T is closed.

Proof. We give two proofs.

First proof. Let p ⊂ R be a prime ideal such that the corresponding point of Spec(R) is
in the closure of T . This means that for every f ∈ R, f 6∈ p we have D(f)∩ T 6= ∅. Note
that D(f) ∩ T is the image of Spec(Sf ) in Spec(R). Hence we conclude that Sf 6= 0.
In other words, 1 6= 0 in the ring Sf . Since Sp is the directed colimit of the rings Sf
we conclude that 1 6= 0 in Sp. In other words, Sp 6= 0 and considering the image of
Spec(Sp) → Spec(S) → Spec(R) we see there exists a p′ ∈ T with p′ ⊂ p. As we
assumed T closed under specialization we conclude p is a point of T as desired.
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Second proof. Let I = Ker(R → S). We may replace R by R/I . In this case the ring
map R→ S is injective. By Lemma 30.5 all the minimal primes of R are contained in the
image T . Hence if T is stable under specialization then it contains all primes. �

Lemma 41.6. Let R→ S be a ring map. The following are equivalent:
(1) Going up holds for R→ S , and
(2) the map Spec(S)→ Spec(R) is closed.

Proof. It is a general fact that specializations lift along a closed map of topological
spaces, see Topology, Lemma 19.7. Hence the second condition implies the first.
Assume that going up holds for R → S. Let V (I) ⊂ Spec(S) be a closed set. We want
to show that the image of V (I) in Spec(R) is closed. The ring map S → S/I obviously
satisfies going up. Hence R → S → S/I satisfies going up, by Lemma 41.4. Replacing
S by S/I it suffices to show the image T of Spec(S) in Spec(R) is closed. By Topology,
Lemmas 19.2 and 19.6 this image is stable under specialization. Thus the result follows
from Lemma 41.5. �

Lemma 41.7. Let R be a ring. Let E ⊂ Spec(R) be a constructible subset.
(1) If E is stable under specialization, then E is closed.
(2) If E is stable under generalization, then E is open.

Proof. First proof. The first assertion follows from Lemma 41.5 combined with
Lemma 29.4. The second follows because the complement of a constructible set is con-
structible (see Topology, Lemma 15.2), the first part of the lemma and Topology, Lemma
19.2.
Second proof. Since Spec(R) is a spectral space by Lemma 26.2 this is a special case of
Topology, Lemma 23.6. �

Proposition 41.8. Let R → S be flat and of finite presentation. Then Spec(S) →
Spec(R) is open. More generally this holds for any ring mapR→ S of finite presentation
which satisfies going down.

Proof. If R→ S is flat, then R→ S satisfies going down by Lemma 39.19. Thus to
prove the lemma we may assume that R → S has finite presentation and satisfies going
down.
Since the standard opens D(g) ⊂ Spec(S), g ∈ S form a basis for the topology, it suffices
to prove that the image of D(g) is open. Recall that Spec(Sg) → Spec(S) is a homeo-
morphism of Spec(Sg) onto D(g) (Lemma 17.6). Since S → Sg satisfies going down (see
above), we see that R → Sg satisfies going down by Lemma 41.4. Thus after replacing
S by Sg we see it suffices to prove the image is open. By Chevalley’s theorem (Theorem
29.10) the image is a constructible set E. And E is stable under generalization because
R → S satisfies going down, see Topology, Lemmas 19.2 and 19.6. Hence E is open by
Lemma 41.7. �

Lemma 41.9. Let k be a field, and letR, S be k-algebras. LetS′ ⊂ S be a sub k-algebra,
and let f ∈ S′ ⊗k R. In the commutative diagram

Spec((S ⊗k R)f )

''

// Spec((S′ ⊗k R)f )

ww
Spec(R)
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the images of the diagonal arrows are the same.

Proof. Let p ⊂ R be in the image of the south-west arrow. This means (Lemma 17.9)
that

(S′ ⊗k R)f ⊗R κ(p) = (S′ ⊗k κ(p))f
is not the zero ring, i.e., S′ ⊗k κ(p) is not the zero ring and the image of f in it is not
nilpotent. The ring map S′ ⊗k κ(p) → S ⊗k κ(p) is injective. Hence also S ⊗k κ(p) is
not the zero ring and the image of f in it is not nilpotent. Hence (S ⊗k R)f ⊗R κ(p) is
not the zero ring. Thus (Lemma 17.9) we see that p is in the image of the south-east arrow
as desired. �

Lemma 41.10. Let k be a field. LetR and S be k-algebras. The map Spec(S⊗kR)→
Spec(R) is open.

Proof. Let f ∈ S ⊗k R. It suffices to prove that the image of the standard open
D(f) is open. Let S′ ⊂ S be a finite type k-subalgebra such that f ∈ S′ ⊗k R. The map
R→ S′⊗kR is flat and of finite presentation, hence the imageU of Spec((S′⊗kR)f )→
Spec(R) is open by Proposition 41.8. By Lemma 41.9 this is also the image of D(f) and
we win. �

Here is a tricky lemma that is sometimes useful.

Lemma 41.11. Let R→ S be a ring map. Let p ⊂ R be a prime. Assume that
(1) there exists a unique prime q ⊂ S lying over p, and
(2) either

(a) going up holds for R→ S , or
(b) going down holds for R → S and there is at most one prime of S above

every prime of R.
Then Sp = Sq.

Proof. Consider any prime q′ ⊂ S which corresponds to a point of Spec(Sp). This
means that p′ = R ∩ q′ is contained in p. Here is a picture

q′ ? S

p′ p R

Assume (1) and (2)(a). By going up there exists a prime q′′ ⊂ S with q′ ⊂ q′′ and q′′ lying
over p. By the uniqueness of q we conclude that q′′ = q. In other words q′ defines a point
of Spec(Sq).
Assume (1) and (2)(b). By going down there exists a prime q′′ ⊂ q lying over p′. By the
uniqueness of primes lying over p′ we see that q′ = q′′. In other words q′ defines a point
of Spec(Sq).
In both cases we conclude that the map Spec(Sq) → Spec(Sp) is bijective. Clearly this
means all the elements of S − q are all invertible in Sp, in other words Sp = Sq. �

The following lemma is a generalization of going down for flat ring maps.

Lemma 41.12. Let R → S be a ring map. Let N be a finite S-module flat over R.
Endow Supp(N) ⊂ Spec(S) with the induced topology. Then generalizations lift along
Supp(N)→ Spec(R).
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Proof. The meaning of the statement is as follows. Let p ⊂ p′ ⊂ R be primes. Let
q′ ⊂ S be a prime q′ ∈ Supp(N) Then there exists a prime q ⊂ q′, q ∈ Supp(N) lying
over p. As N is flat over R we see that Nq′ is flat over Rp′ , see Lemma 39.18. As Nq′ is
finite over Sq′ and not zero since q′ ∈ Supp(N) we see that Nq′ ⊗Sq′ κ(q′) is nonzero by
Nakayama’s Lemma 20.1. ThusNq′ ⊗Rp′ κ(p′) is also not zero. We conclude from Lemma
39.15 thatNq′⊗Rp′ κ(p) is nonzero. Let J ⊂ Sq′⊗Rp′ κ(p) be the annihilator of the finite
nonzero module Nq′ ⊗Rp′ κ(p). Since J is a proper ideal we can choose a prime q ⊂ S

which corresponds to a prime of Sq′ ⊗Rp′ κ(p)/J . This prime is in the support of N , lies
over p, and is contained in q′ as desired. �

42. Separable extensions

In this section we talk about separability for nonalgebraic field extensions. This is closely
related to the concept of geometrically reduced algebras, see Definition 43.1.

Definition 42.1. Let K/k be a field extension.
(1) We say K is separably generated over k if there exists a transcendence basis
{xi; i ∈ I} of K/k such that the extension K/k(xi; i ∈ I) is a separable al-
gebraic extension.

(2) We say K is separable over k if for every subextension k ⊂ K ′ ⊂ K with K ′

finitely generated over k, the extension K ′/k is separably generated.

With this awkward definition it is not clear that a separably generated field extension is
itself separable. It will turn out that this is the case, see Lemma 44.2.

Lemma 42.2. Let K/k be a separable field extension. For any subextension K/K ′/k
the field extension K ′/k is separable.

Proof. This is direct from the definition. �

Lemma 42.3. LetK/k be a separably generated, and finitely generated field extension.
Set r = trdegk(K). Then there exist elements x1, . . . , xr+1 of K such that

(1) x1, . . . , xr is a transcendence basis of K over k,
(2) K = k(x1, . . . , xr+1), and
(3) xr+1 is separable over k(x1, . . . , xr).

Proof. Combine the definition with Fields, Lemma 19.1. �

Lemma 42.4. LetK/k be a finitely generated field extension. There exists a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is a sep-
arably generated field extension.

Proof. This lemma is only interesting when the characteristic of k is p > 0. Choose
x1, . . . , xr a transcendence basis of K over k. As K is finitely generated over k the ex-
tension k(x1, . . . , xr) ⊂ K is finite. Let K/Ksep/k(x1, . . . , xr) be the subextension
found in Fields, Lemma 14.6. If K = Ksep then we are done. We will use induction
on d = [K : Ksep].
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Assume that d > 1. Choose a β ∈ K with α = βp ∈ Ksep and β 6∈ Ksep. Let P =
Tn + a1T

n−1 + . . . + an be the minimal polynomial of α over k(x1, . . . , xr). Let k′/k
be a finite purely inseparable extension obtained by adjoining pth roots such that each ai
is a pth power in k′(x1/p

1 , . . . , x
1/p
r ). Such an extension exists; details omitted. Let L be a

field fitting into the diagram

K // L

k(x1, . . . , xr)

OO

// k′(x1/p
1 , . . . , x

1/p
r )

OO

We may and do assumeL is the compositum ofK and k′(x1/p
1 , . . . , x

1/p
r ). LetL/Lsep/k′(x1/p

1 , . . . , x
1/p
r )

be the subextension found in Fields, Lemma 14.6. Then Lsep is the compositum of Ksep

and k′(x1/p
1 , . . . , x

1/p
r ). The element α ∈ Lsep is a zero of the polynomial P all of whose

coefficients are pth powers in k′(x1/p
1 , . . . , x

1/p
r ) and whose roots are pairwise distinct. By

Fields, Lemma 28.2 we see that α = (α′)p for some α′ ∈ Lsep. Clearly, this means that β
maps to α′ ∈ Lsep. In other words, we get the tower of fields

K // L

Ksep(β) //

OO

Lsep

OO

Ksep
//

OO

Lsep

k(x1, . . . , xr)

OO

// k′(x1/p
1 , . . . , x

1/p
r )

OO

k //

OO

k′

OO

Thus this construction leads to a new situation with [L : Lsep] < [K : Ksep]. By induc-
tion we can find k′ ⊂ k′′ and L ⊂ L′ as in the lemma for the extension L/k′. Then the
extensions k′′/k and L′/K work for the extension K/k. This proves the lemma. �

43. Geometrically reduced algebras

The main result on geometrically reduced algebras is Lemma 44.3. We suggest the reader
skip to the lemma after reading the definition.

Definition 43.1. Let k be a field. Let S be a k-algebra. We say S is geometrically
reduced over k if for every field extension K/k the K-algebra K ⊗k S is reduced.

Let k be a field and let S be a reduced k-algebra. To check that S is geometrically reduced
it will suffice to check that k⊗k S is reduced (where k denotes the algebraic closure of k).
In fact it is enough to check this for finite purely inseparable field extensions k′/k. See
Lemma 44.3.

Lemma 43.2. Elementary properties of geometrically reduced algebras. Let k be a
field. Let S be a k-algebra.
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(1) If S is geometrically reduced over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically reduced, then S is

geometrically reduced.
(3) A directed colimit of geometrically reduced k-algebras is geometrically reduced.
(4) If S is geometrically reduced over k, then any localization of S is geometrically

reduced over k.

Proof. Omitted. The second and third property follow from the fact that tensor
product commutes with colimits. �

Lemma 43.3. Let k be a field. If R is geometrically reduced over k, and S ⊂ R is a
multiplicative subset, then the localization S−1R is geometrically reduced over k. If R is
geometrically reduced over k, then R[x] is geometrically reduced over k.

Proof. Omitted. Hints: A localization of a reduced ring is reduced, and localization
commutes with tensor products. �

In the proofs of the following lemmas we will repeatedly use the following observation:
Suppose that R′ ⊂ R and S′ ⊂ S are inclusions of k-algebras. Then the map R′ ⊗k S′ →
R⊗k S is injective.

Lemma 43.4. Let k be a field. Let R, S be k-algebras.
(1) IfR⊗k S is nonreduced, then there exist finitely generated subalgebrasR′ ⊂ R,

S′ ⊂ S such that R′ ⊗k S′ is not reduced.
(2) If R ⊗k S contains a nonzero zerodivisor, then there exist finitely generated

subalgebras R′ ⊂ R, S′ ⊂ S such that R′ ⊗k S′ contains a nonzero zerodivisor.
(3) If R ⊗k S contains a nontrivial idempotent, then there exist finitely generated

subalgebrasR′ ⊂ R,S′ ⊂ S such thatR′⊗kS′ contains a nontrivial idempotent.

Proof. Suppose z ∈ R⊗kS is nilpotent. We may write z =
∑
i=1,...,n xi⊗yi. Thus

we may take R′ the k-subalgebra generated by the xi and S′ the k-subalgebra generated
by the yi. The second and third statements are proved in the same way. �

Lemma 43.5. Let k be a field. Let S be a geometrically reduced k-algebra. Let R be
any reduced k-algebra. Then R⊗k S is reduced.

Proof. By Lemma 43.4 we may assume that R is of finite type over k. Then R, as
a reduced Noetherian ring, embeds into a finite product of fields (see Lemmas 25.4, 31.6,
and 25.1). Hence we may assumeR is a finite product of fields. In this case it follows from
Definition 43.1 that R⊗k S is reduced. �

Lemma 43.6. Let k be a field. Let S be a reduced k-algebra. Let K/k be either a
separable field extension, or a separably generated field extension. ThenK⊗kS is reduced.

Proof. Assume k ⊂ K is separable. By Lemma 43.4 we may assume that S is of
finite type over k and K is finitely generated over k. Then S embeds into a finite prod-
uct of fields, namely its total ring of fractions (see Lemmas 25.1 and 25.4). Hence we may
actually assume that S is a domain. We choose x1, . . . , xr+1 ∈ K as in Lemma 42.3.
Let P ∈ k(x1, . . . , xr)[T ] be the minimal polynomial of xr+1. It is a separable polyno-
mial. It is easy to see that k[x1, . . . , xr] ⊗k S = S[x1, . . . , xr] is a domain. This implies
k(x1, . . . , xr)⊗k S is a domain as it is a localization of S[x1, . . . , xr]. The ring extension
k(x1, . . . , xr) ⊗k S ⊂ K ⊗k S is generated by a single element xr+1 with a single equa-
tion, namely P . Hence K ⊗k S embeds into F [T ]/(P ) where F is the fraction field of
k(x1, . . . , xr)⊗k S. Since P is separable this is a finite product of fields and we win.
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At this point we do not yet know that a separably generated field extension is separable, so
we have to prove the lemma in this case also. To do this suppose that {xi}i∈I is a separating
transcendence basis forK over k. For any finite set of elements λj ∈ K there exists a finite
subset T ⊂ I such that k({xi}i∈T ) ⊂ k({xi}i∈T ∪{λj}) is finite separable. Hence we see
that K is a directed colimit of finitely generated and separably generated extensions of k.
Thus the argument of the preceding paragraph applies to this case as well. �

Lemma 43.7. Let k be a field and let S be a k-algebra. Assume that S is reduced and
that Sp is geometrically reduced for every minimal prime p of S. Then S is geometrically
reduced.

Proof. Since S is reduced the map S →
∏

p minimal Sp is injective, see Lemma 25.2. If
K/k is a field extension, then the maps

S ⊗k K → (
∏

Sp)⊗k K →
∏

Sp ⊗k K

are injective: the first as k → K is flat and the second by inspection because K is a free
k-module. As Sp is geometrically reduced the ring on the right is reduced. Thus we see
that S ⊗k K is reduced as a subring of a reduced ring. �

Lemma 43.8. Let k′/k be a separable algebraic extension. Then there exists a multi-
plicative subset S ⊂ k′⊗k k′ such that the multiplication map k′⊗k k′ → k′ is identified
with k′ ⊗k k′ → S−1(k′ ⊗k k′).

Proof. First assume k′/k is finite separable. Then k′ = k(α), see Fields, Lemma 19.1.
Let P ∈ k[x] be the minimal polynomial of α over k. Then P is an irreducible, separable,
monic polynomial, see Fields, Section 12. Then k′[x]/(P )→ k′⊗k k′,

∑
αix

i 7→ αi⊗αi
is an isomorphism. We can factor P = (x− α)Q in k′[x] and since P is separable we see
thatQ(α) 6= 0. Then it is clear that the multiplicative set S′ generated byQ in k′[x]/(P )
works, i.e., that k′ = (S′)−1(k′[x]/(P )). By transport of structure the image S of S′ in
k′ ⊗k k′ works.

In the general case we write k′ =
⋃
ki as the union of its finite subfield extensions over

k. For each i there is a multiplicative subset Si ⊂ ki ⊗k ki such that ki = S−1
i (ki ⊗k ki).

Then S =
⋃
Si ⊂ k′ ⊗k k′ works. �

Lemma 43.9. Let k′/k be a separable algebraic field extension. Let A be an algebra
over k′. Then A is geometrically reduced over k if and only if it is geometrically reduced
over k′.

Proof. Assume A is geometrically reduced over k′. Let K/k be a field extension.
Then K ⊗k k′ is a reduced ring by Lemma 43.6. Hence by Lemma 43.5 we find that
K ⊗k A = (K ⊗k k′)⊗k′ A is reduced.

Assume A is geometrically reduced over k. Let K/k′ be a field extension. Then

K ⊗k′ A = (K ⊗k A)⊗(k′⊗kk′) k
′

Since k′ ⊗k k′ → k′ is a localization by Lemma 43.8, we see that K ⊗k′ A is a localization
of a reduced algebra, hence reduced. �
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44. Separable extensions, continued

In this section we continue the discussion started in Section 42. Let p be a prime number
and let k be a field of characteristic p. In this case we write k1/p for the extension of k
gotten by adjoining pth roots of all the elements of k to k. (In other words it is the subfield
of an algebraic closure of k generated by the pth roots of elements of k.)

Lemma 44.1. Let k be a field of characteristic p > 0. Let K/k be a field extension.
The following are equivalent:

(1) K is separable over k,
(2) the ring K ⊗k k1/p is reduced, and
(3) K is geometrically reduced over k.

Proof. The implication (1)⇒ (3) follows from Lemma 43.6. The implication (3)⇒
(2) is immediate.

Assume (2). Let K/L/k be a subextension such that L is a finitely generated field exten-
sion of k. We have to show that we can find a separating transcendence basis of L. The
assumption implies that L ⊗k k1/p is reduced. Let x1, . . . , xr be a transcendence basis of
L over k such that the degree of inseparability of the finite extension k(x1, . . . , xr) ⊂ L
is minimal. If L is separable over k(x1, . . . , xr) then we win. Assume this is not the
case to get a contradiction. Then there exists an element α ∈ L which is not separable
over k(x1, . . . , xr). Let P (T ) ∈ k(x1, . . . , xr)[T ] be the minimal polynomial of α over
k(x1, . . . , xr). After replacing α by fα for some nonzero f ∈ k[x1, . . . , xr] we may and
do assume that P lies in k[x1, . . . , xr, T ]. Because α is not separable P is a polynomial in
T p, see Fields, Lemma 12.1. Let dp be the degree of P as a polynomial in T . Since P is the
minimal polynomial of α the monomials

xe1
1 . . . xerr α

e

for e < dp are linearly independent over k in L. We claim that the element ∂P/∂xi ∈
k[x1, . . . , xr, T ] is not zero for at least one i. Namely, if this was not the case, then P is ac-
tually a polynomial inxp1, . . . , xpr , T p. In that case we can considerP 1/p ∈ k1/p[x1, . . . , xr, T ].
This would map to P 1/p(x1, . . . , xr, α) which is a nilpotent element of k1/p ⊗k L and
hence zero. On the other hand, P 1/p(x1, . . . , xr, α) is a k1/p-linear combination the
monomials listed above, hence nonzero in k1/p⊗kL. This is a contradiction which proves
our claim.

Thus, after renumbering, we may assume that ∂P/∂x1 is not zero. As P is an irreducible
polynomial in T over k(x1, . . . , xr) it is irreducible as a polynomial in x1, . . . , xr, T ,
hence by Gauss’s lemma it is irreducible as a polynomial in x1 over k(x2, . . . , xr, T ). Since
the transcendence degree of L is r we see that x2, . . . , xr, α are algebraically independent.
Hence P (X,x2, . . . , xr, α) ∈ k(x2, . . . , xr, α)[X] is irreducible. It follows that x1 is sep-
arably algebraic over k(x2, . . . , xr, α). This means that the degree of inseparability of the
finite extension k(x2, . . . , xr, α) ⊂ L is less than the degree of inseparability of the finite
extension k(x1, . . . , xr) ⊂ L, which is a contradiction. �

Lemma 44.2. A separably generated field extension is separable.

Proof. Combine Lemma 43.6 with Lemma 44.1. �

In the following lemma we will use the notion of the perfect closure which is defined in
Definition 45.5.
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Lemma 44.3. Let k be a field. Let S be a k-algebra. The following are equivalent:
(1) k′ ⊗k S is reduced for every finite purely inseparable extension k′ of k,
(2) k1/p ⊗k S is reduced,
(3) kperf ⊗k S is reduced, where kperf is the perfect closure of k,
(4) k ⊗k S is reduced, where k is the algebraic closure of k, and
(5) S is geometrically reduced over k.

Proof. Note that any finite purely inseparable extension k′/k embeds in kperf . More-
over, k1/p embeds into kperf which embeds into k. Thus it is clear that (5)⇒ (4)⇒ (3)
⇒ (2) and that (3)⇒ (1).

We prove that (1)⇒ (5). Assume k′ ⊗k S is reduced for every finite purely inseparable
extension k′ of k. Let K/k be an extension of fields. We have to show that K ⊗k S is
reduced. By Lemma 43.4 we reduce to the case where K/k is a finitely generated field
extension. Choose a diagram

K // K ′

k

OO

// k′

OO

as in Lemma 42.4. By assumption k′ ⊗k S is reduced. By Lemma 43.6 it follows that
K ′ ⊗k S is reduced. Hence we conclude that K ⊗k S is reduced as desired.

Finally we prove that (2)⇒ (5). Assume k1/p ⊗k S is reduced. Then S is reduced. More-
over, for each localization Sp at a minimal prime p, the ring k1/p ⊗k Sp is a localization
of k1/p ⊗k S hence is reduced. But Sp is a field by Lemma 25.1, hence Sp is geometrically
reduced by Lemma 44.1. It follows from Lemma 43.7 that S is geometrically reduced. �

45. Perfect fields

Here is the definition.

Definition 45.1. Let k be a field. We say k is perfect if every field extension of k is
separable over k.

Lemma 45.2. A field k is perfect if and only if it is a field of characteristic 0 or a field
of characteristic p > 0 such that every element has a pth root.

Proof. The characteristic zero case is clear. Assume the characteristic of k is p > 0.
If k is perfect, then all the field extensions where we adjoin a pth root of an element of k
have to be trivial, hence every element of k has a pth root. Conversely if every element has
a pth root, then k = k1/p and every field extension of k is separable by Lemma 44.1. �

Lemma 45.3. LetK/k be a finitely generated field extension. There exists a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is a sep-
arable field extension. In this situation we can assume that K ′ = k′K is the compositum,
and also that K ′ = (k′ ⊗k K)red.
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Proof. By Lemma 42.4 we can find such a diagram with K ′/k′ separably generated.
By Lemma 44.2 this implies thatK ′ is separable over k′. The compositum k′K is a subex-
tension ofK ′/k′ and hence k′ ⊂ k′K is separable by Lemma 42.2. The ring (k′⊗kK)red
is a domain as for some n � 0 the map x 7→ xp

n

maps it into K. Hence it is a field by
Lemma 36.19. Thus (k′ ⊗k K)red → K ′ maps it isomorphically onto k′K. �

Lemma 45.4. For every field k there exists a purely inseparable extension k′/k such
that k′ is perfect. The field extension k′/k is unique up to unique isomorphism.

Proof. If the characteristic of k is zero, then k′ = k is the unique choice. Assume
the characteristic of k is p > 0. For every n > 0 there exists a unique algebraic extension
k ⊂ k1/pn such that (a) every element λ ∈ k has a pnth root in k1/pn and (b) for every
element µ ∈ k1/pn we have µp

n ∈ k. Namely, consider the ring map k → k1/pn = k,
x 7→ xp

n

. This is injective and satisfies (a) and (b). It is clear that k1/pn ⊂ k1/pn+1
as

extensions of k via the map y 7→ yp. Then we can take k′ =
⋃
k1/pn . Some details

omitted. �

Definition 45.5. Let k be a field. The field extension k′/k of Lemma 45.4 is called
the perfect closure of k. Notation kperf/k.

Note that if k′/k is any algebraic purely inseparable extension, then k′ is a subextension
of kperf , i.e., kperf/k′/k. Namely, (k′)perf is isomorphic to kperf by the uniqueness of
Lemma 45.4.

Lemma 45.6. Let k be a perfect field. Any reduced k algebra is geometrically reduced
over k. Let R, S be k-algebras. Assume both R and S are reduced. Then the k-algebra
R⊗k S is reduced.

Proof. The first statement follows from Lemma 44.3. For the second statement use
the first statement and Lemma 43.5. �

46. Universal homeomorphisms

Let k′/k be an algebraic purely inseparable field extension. Then for any k-algebra R the
ring map R → k′ ⊗k R induces a homeomorphism of spectra. The reason for this is the
slightly more general Lemma 46.7 below.

Lemma 46.1. Let ϕ : R→ S be a surjective map with locally nilpotent kernel. Then
ϕ induces a homeomorphism of spectra and isomorphisms on residue fields. For any ring
map R→ R′ the ring map R′ → R′ ⊗R S is surjective with locally nilpotent kernel.

Proof. By Lemma 17.7 the map Spec(S)→ Spec(R) is a homeomorphism onto the
closed subset V (Ker(ϕ)). Of course V (Ker(ϕ)) = Spec(R) because every prime ideal of
R contains every nilpotent element ofR. This also implies the statement on residue fields.
By right exactness of tensor product we see that Ker(ϕ)R′ is the kernel of the surjective
map R′ → R′ ⊗R S. Hence the final statement by Lemma 32.3. �

Lemma 46.2. Let k′/k be a field extension. The following are equivalent
(1) for each x ∈ k′ there exists an n > 0 such that xn ∈ k, and
(2) k′ = k or k and k′ have characteristic p > 0 and either k′/k is a purely insepa-

rable extension or k and k′ are algebraic extensions of Fp.
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Proof. Observe that each of the possibilities listed in (2) satisfies (1). Thus we assume
k′/k satisfies (1) and we prove that we are in one of the cases of (2). Discarding the case
k = k′ we may assume k′ 6= k. It is clear that k′/k is algebraic. Hence we may assume that
k′/k is a nontrivial finite extension. Let k′/k′

sep/k be the separable subextension found
in Fields, Lemma 14.6. We have to show that k = k′

sep or that k is an algebraic over Fp.
Thus we may assume that k′/k is a nontrivial finite separable extension and we have to
show k is algebraic over Fp.

Pick x ∈ k′, x 6∈ k. Pick n,m > 0 such that xn ∈ k and (x + 1)m ∈ k. Let k be an
algebraic closure of k. We can choose embeddings σ, τ : k′ → k with σ(x) 6= τ(x). This
follows from the discussion in Fields, Section 12 (more precisely, after replacing k′ by the
k-extension generated by x it follows from Fields, Lemma 12.8). Then we see that σ(x) =
ζτ(x) for some nth root of unity ζ in k. Similarly, we see that σ(x+ 1) = ζ ′τ(x+ 1) for
some mth root of unity ζ ′ ∈ k. Since σ(x+ 1) 6= τ(x+ 1) we see ζ ′ 6= 1. Then

ζ ′(τ(x) + 1) = ζ ′τ(x+ 1) = σ(x+ 1) = σ(x) + 1 = ζτ(x) + 1
implies that

τ(x)(ζ ′ − ζ) = 1− ζ ′

hence ζ ′ 6= ζ and
τ(x) = (1− ζ ′)/(ζ ′ − ζ)

Hence every element of k′ which is not in k is algebraic over the prime subfield. Since k′

is generated over the prime subfield by the elements of k′ which are not in k, we conclude
that k′ (and hence k) is algebraic over the prime subfield.
Finally, if the characteristic of k is 0, the above leads to a contradiction as follows (we
encourage the reader to find their own proof). For every rational number y we similarly
get a root of unity ζy such that σ(x+ y) = ζyτ(x+ y). Then we find

ζτ(x) + y = ζy(τ(x) + y)
and by our formula for τ(x) above we conclude ζy ∈ Q(ζ, ζ ′). Since the number field
Q(ζ, ζ ′) contains only a finite number of roots of unity we find two distinct rational num-
bers y, y′ with ζy = ζy′ . Then we conclude that

y − y′ = σ(x+ y)− σ(x+ y′) = ζy(τ(x+ y))− ζy′τ(x+ y′) = ζy(y − y′)
which implies ζy = 1 a contradiction. �

Lemma 46.3. Let ϕ : R→ S be a ring map. If
(1) for any x ∈ S there exists n > 0 such that xn is in the image of ϕ, and
(2) Ker(ϕ) is locally nilpotent,

then ϕ induces a homeomorphism on spectra and induces residue field extensions satisfy-
ing the equivalent conditions of Lemma 46.2.

Proof. Assume (1) and (2). Let q, q′ be primes of S lying over the same prime ideal
p of R. Suppose x ∈ S with x ∈ q, x 6∈ q′. Then xn ∈ q and xn 6∈ q′ for all n > 0. If
xn = ϕ(y) with y ∈ R for some n > 0 then

xn ∈ q⇒ y ∈ p⇒ xn ∈ q′

which is a contradiction. Hence there does not exist an x as above and we conclude that
q = q′, i.e., the map on spectra is injective. By assumption (2) the kernel I = Ker(ϕ)
is contained in every prime, hence Spec(R) = Spec(R/I) as topological spaces. As the
induced mapR/I → S is integral by assumption (1) Lemma 36.17 shows that Spec(S)→



594 10. COMMUTATIVE ALGEBRA

Spec(R/I) is surjective. Combining the above we see that Spec(S) → Spec(R) is bijec-
tive. If x ∈ S is arbitrary, and we pick y ∈ R such that ϕ(y) = xn for some n > 0, then
we see that the open D(x) ⊂ Spec(S) corresponds to the open D(y) ⊂ Spec(R) via the
bijection above. Hence we see that the map Spec(S)→ Spec(R) is a homeomorphism.

To see the statement on residue fields, let q ⊂ S be a prime lying over a prime ideal p ⊂ R.
Let x ∈ κ(q). If we think of κ(q) as the residue field of the local ring Sq, then we see that
x is the image of some y/z ∈ Sq with y ∈ S , z ∈ S , z 6∈ q. Choose n,m > 0 such that
yn, zm are in the image of ϕ. Then xnm is the residue of (y/z)nm = (yn)m/(zm)n which
is in the image of Rp → Sq. Hence xnm is in the image of κ(p)→ κ(q). �

Lemma 46.4. Let ϕ : R→ S be a ring map. Assume
(a) S is generated as an R-algebra by elements x such that x2, x3 ∈ ϕ(R), and
(b) Ker(ϕ) is locally nilpotent,

Then ϕ induces isomorphisms on residue fields and a homeomorphism of spectra. For any
ring map R→ R′ the ring map R′ → R′ ⊗R S also satisfies (a) and (b).

Proof. Assume (a) and (b). The map on spectra is closed as S is integral over R, see
Lemmas 41.6 and 36.22. The image is dense by Lemma 30.6. Thus Spec(S) → Spec(R)
is surjective. If q ⊂ S is a prime lying over p ⊂ R then the field extension κ(q)/κ(p) is
generated by elements α ∈ κ(q) whose square and cube are in κ(p). Thus clearly α ∈ κ(p)
and we find that κ(q) = κ(p). If q, q′ were two distinct primes lying over p, then at least
one of the generators x of S as in (a) would have distinct images in κ(q) = κ(p) and
κ(q′) = κ(p). This would contradict the fact that both x2 and x3 do have the same image.
This proves that Spec(S)→ Spec(R) is injective hence a homeomorphism (by what was
already shown).

Sinceϕ induces a homeomorphism on spectra, it is in particular surjective on spectra which
is a property preserved under any base change, see Lemma 30.3. Therefore for anyR→ R′

the kernel of the ring mapR′ → R′⊗R S consists of nilpotent elements, see Lemma 30.6,
in other words (b) holds for R′ → R′ ⊗R S. It is clear that (a) is preserved under base
change. �

Lemma 46.5. Let p be a prime number. Let n,m > 0 be two integers. There exists
an integer a such that (x+ y)pa , pa(x+ y) ∈ Z[xpn , pnx, ypm , pmy].

Proof. This is clear for pa(x+y) as soon as a ≥ n,m. In fact, pick a� n,m. Write

(x+ y)p
a

=
∑

i,j≥0,i+j=pa

(
pa

i, j

)
xiyj

For every i, j ≥ 0 with i+ j = pa write i = qpn + r with r ∈ {0, . . . , pn − 1} and j =
q′pm + r′ with r′ ∈ {0, . . . , pm − 1}. The condition (x+ y)pa ∈ Z[xpn , pnx, ypm , pmy]
holds if

pnr+mr′
divides

(
pa

i, j

)
If r = r′ = 0 then the divisibility holds. If r 6= 0, then we write(

pa

i, j

)
= pa

i

(
pa − 1
i− 1, j

)
Since r 6= 0 the rational number pa/i has p-adic valuation at least a − (n − 1) (because
i is not divisible by pn). Thus

(
pa

i,j

)
is divisible by pa−n+1 in this case. Similarly, we see
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that if r′ 6= 0, then
(
pa

i,j

)
is divisible by pa−m+1. Picking a = npn + mpm + n + m will

work. �

Lemma 46.6. Let k′/k be a field extension. Let p be a prime number. The following
are equivalent

(1) k′ is generated as a field extension of k by elements x such that there exists an
n > 0 with xp

n ∈ k and pnx ∈ k, and
(2) k = k′ or the characteristic of k and k′ is p and k′/k is purely inseparable.

Proof. Let x ∈ k′. If there exists an n > 0 with xp
n ∈ k and pnx ∈ k and if the

characteristic is not p, then x ∈ k. If the characteristic is p, then we find xp
n ∈ k and

hence x is purely inseparable over k. �

Lemma 46.7. Let ϕ : R→ S be a ring map. Let p be a prime number. Assume
(a) S is generated as anR-algebra by elements x such that there exists an n > 0 with

xp
n ∈ ϕ(R) and pnx ∈ ϕ(R), and

(b) Ker(ϕ) is locally nilpotent,
Then ϕ induces a homeomorphism of spectra and induces residue field extensions satisfy-
ing the equivalent conditions of Lemma 46.6. For any ring map R → R′ the ring map
R′ → R′ ⊗R S also satisfies (a) and (b).

Proof. Assume (a) and (b). Note that (b) is equivalent to condition (2) of Lemma
46.3. Let T ⊂ S be the set of elements x ∈ S such that there exists an integer n > 0
such that xp

n

, pnx ∈ ϕ(R). We claim that T = S. This will prove that condition (1) of
Lemma 46.3 holds and hence ϕ induces a homeomorphism on spectra. By assumption (a)
it suffices to show that T ⊂ S is anR-sub algebra. If x ∈ T and y ∈ R, then it is clear that
yx ∈ T . Suppose x, y ∈ T and n,m > 0 such that xp

n

, yp
m

, pnx, pmy ∈ ϕ(R). Then
(xy)pn+m

, pn+mxy ∈ ϕ(R) hence xy ∈ T . We have x + y ∈ T by Lemma 46.5 and the
claim is proved.
Sinceϕ induces a homeomorphism on spectra, it is in particular surjective on spectra which
is a property preserved under any base change, see Lemma 30.3. Therefore for anyR→ R′

the kernel of the ring mapR′ → R′⊗R S consists of nilpotent elements, see Lemma 30.6,
in other words (b) holds for R′ → R′ ⊗R S. It is clear that (a) is preserved under base
change. Finally, the condition on residue fields follows from (a) as generators for S as an
R-algebra map to generators for the residue field extensions. �

Lemma 46.8. Let ϕ : R→ S be a ring map. Assume
(1) ϕ induces an injective map of spectra,
(2) ϕ induces purely inseparable residue field extensions.

Then for any ring map R→ R′ properties (1) and (2) are true for R′ → R′ ⊗R S.

Proof. Set S′ = R′ ⊗R S so that we have a commutative diagram of continuous
maps of spectra of rings

Spec(S′) //

��

Spec(S)

��
Spec(R′) // Spec(R)

Let p′ ⊂ R′ be a prime ideal lying over p ⊂ R. If there is no prime ideal of S lying over
p, then there is no prime ideal of S′ lying over p′. Otherwise, by Remark 17.8 there is a
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unique prime ideal r ofF = S⊗Rκ(p) whose residue field is purely inseparable over κ(p).
Consider the ring maps

κ(p)→ F → κ(r)
By Lemma 25.1 the ideal r ⊂ F is locally nilpotent, hence we may apply Lemma 46.1 to
the ring map F → κ(r). We may apply Lemma 46.7 to the ring map κ(p)→ κ(r). Hence
the composition and the second arrow in the maps

κ(p′)→ κ(p′)⊗κ(p) F → κ(p′)⊗κ(p) κ(r)

induces bijections on spectra and purely inseparable residue field extensions. This implies
the same thing for the first map. Since

κ(p′)⊗κ(p) F = κ(p′)⊗κ(p) κ(p)⊗R S = κ(p′)⊗R S = κ(p′)⊗R′ R′ ⊗R S

we conclude by the discussion in Remark 17.8. �

Lemma 46.9. Let ϕ : R→ S be a ring map. Assume
(1) ϕ is integral,
(2) ϕ induces an injective map of spectra,
(3) ϕ induces purely inseparable residue field extensions.

Then ϕ induces a homeomorphism from Spec(S) onto a closed subset of Spec(R) and for
any ring map R→ R′ properties (1), (2), (3) are true for R′ → R′ ⊗R S.

Proof. The map on spectra is closed by Lemmas 41.6 and 36.22. The properties are
preserved under base change by Lemmas 46.8 and 36.13. �

Lemma 46.10. Let ϕ : R→ S be a ring map. Assume
(1) ϕ is integral,
(2) ϕ induces an bijective map of spectra,
(3) ϕ induces purely inseparable residue field extensions.

Then ϕ induces a homeomorphism on spectra and for any ring map R → R′ properties
(1), (2), (3) are true for R′ → R′ ⊗R S.

Proof. Follows from Lemmas 46.9 and 30.3. �

Lemma 46.11. Let ϕ : R→ S be a ring map such that
(1) the kernel of ϕ is locally nilpotent, and
(2) S is generated as an R-algebra by elements x such that there exist n > 0 and a

polynomial P (T ) ∈ R[T ] whose image in S[T ] is (T − x)n.
Then Spec(S) → Spec(R) is a homeomorphism and R → S induces purely inseparable
extensions of residue fields. Moreover, conditions (1) and (2) remain true on arbitrary base
change.

Proof. We may replace R by R/Ker(ϕ), see Lemma 46.1. Assumption (2) implies
S is generated over R by elements which are integral over R. Hence R ⊂ S is integral
(Lemma 36.7). In particular Spec(S)→ Spec(R) is surjective and closed (Lemmas 36.17,
41.6, and 36.22).

Let x ∈ S be one of the generators in (2), i.e., there exists an n > 0 be such that (T −x)n ∈
R[T ]. Let p ⊂ R be a prime. The κ(p)⊗RS ring is nonzero by the above and Lemma 17.9.
If the characteristic of κ(p) is zero then we see that nx ∈ R implies 1⊗ x is in the image
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of κ(p)→ κ(p)⊗R S. Hence κ(p)→ κ(p)⊗R S is an isomorphism. If the characteristic
of κ(p) is p > 0, then write n = pkm with m prime to p. In κ(p)⊗R S[T ] we have

(T − 1⊗ x)n = ((T − 1⊗ x)p
k

)m = (T p
k

− 1⊗ xp
k

)m

and we see thatmxp
k ∈ R. This implies that 1⊗xpk is in the image of κ(p)→ κ(p)⊗RS.

Hence Lemma 46.7 applies to κ(p)→ κ(p)⊗RS. In both cases we conclude that κ(p)⊗RS
has a unique prime ideal with residue field purely inseparable over κ(p). By Remark 17.8
we conclude that ϕ is bijective on spectra.
The statement on base change is immediate. �

47. Geometrically irreducible algebras

An algebra S over a field k is geometrically irreducible if the algebra S⊗k k′ has a unique
minimal prime for every field extension k′/k. In this section we develop a bit of theory
relevant to this notion.

Lemma 47.1. Let R→ S be a ring map. Assume
(a) Spec(R) is irreducible,
(b) R→ S is flat,
(c) R→ S is of finite presentation,
(d) the fibre ringsS⊗Rκ(p) have irreducible spectra for a dense collection of primes

p of R.
Then Spec(S) is irreducible. This is true more generally with (b) + (c) replaced by “the
map Spec(S)→ Spec(R) is open”.

Proof. The assumptions (b) and (c) imply that the map on spectra is open, see Propo-
sition 41.8. Hence the lemma follows from Topology, Lemma 8.14. �

Lemma 47.2. Let k be a separably closed field. Let R, S be k-algebras. If R, S have a
unique minimal prime, so does R⊗k S.

Proof. Let k ⊂ k be a perfect closure, see Definition 45.5. By assumption k is al-
gebraically closed. The ring maps R → R ⊗k k and S → S ⊗k k and R ⊗k S →
(R ⊗k S) ⊗k k = (R ⊗k k) ⊗k (S ⊗k k) satisfy the assumptions of Lemma 46.7. Hence
we may assume k is algebraically closed.
We may replace R and S by their reductions. Hence we may assume that R and S are
domains. By Lemma 45.6 we see thatR⊗k S is reduced. Hence its spectrum is reducible if
and only if it contains a nonzero zerodivisor. By Lemma 43.4 we reduce to the case where
R and S are domains of finite type over k algebraically closed.
Note that the ring map R → R ⊗k S is of finite presentation and flat. Moreover, for
every maximal ideal m of R we have (R ⊗k S) ⊗R R/m ∼= S because k ∼= R/m by the
Hilbert Nullstellensatz Theorem 34.1. Moreover, the set of maximal ideals is dense in the
spectrum of R since Spec(R) is Jacobson, see Lemma 35.2. Hence we see that Lemma 47.1
applies to the ring map R → R ⊗k S and we conclude that the spectrum of R ⊗k S is
irreducible as desired. �

Lemma 47.3. Let k be a field. Let R be a k-algebra. The following are equivalent
(1) for every field extension k′/k the spectrum of R⊗k k′ is irreducible,
(2) for every finite separable field extension k′/k the spectrum of R ⊗k k′ is irre-

ducible,
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(3) the spectrum of R ⊗k k is irreducible where k is the separable algebraic closure
of k, and

(4) the spectrum of R⊗k k is irreducible where k is the algebraic closure of k.

Proof. It is clear that (1) implies (2).

Assume (2) and let k is the separable algebraic closure of k. Suppose qi ⊂ R⊗k k, i = 1, 2
are two minimal prime ideals. For every finite subextension k/k′/k the extension k′/k is
separable and the ring map R ⊗k k′ → R ⊗k k is flat. Hence pi = (R ⊗k k′) ∩ qi are
minimal prime ideals (as we have going down for flat ring maps by Lemma 39.19). Thus
we see that p1 = p2 by assumption (2). Since k =

⋃
k′ we conclude q1 = q2. Hence

Spec(R⊗k k) is irreducible.

Assume (3) and let k be the algebraic closure of k. Let k/k′
/k be the corresponding sepa-

rable algebraic closure of k. Then k/k′ is purely inseparable (in positive characteristic) or
trivial. Hence R ⊗k k

′ → R ⊗k k induces a homeomorphism on spectra, for example by
Lemma 46.7. Thus we have (4).

Assume (4). Let k′/k be an arbitrary field extension and let k be the algebraic closure of k.
We may choose a field F such that both k′ and k are isomorphic to subfields of F . Then

R⊗k F = (R⊗k k)⊗k F

and hence we see from Lemma 47.2 that R ⊗k F has a unique minimal prime. Finally,
the ring map R ⊗k k′ → R ⊗k F is flat and injective and hence any minimal prime of
R⊗k k′ is the image of a minimal prime ofR⊗k F (by Lemma 30.5 and going down). We
conclude that there is only one such minimal prime and the proof is complete. �

Definition 47.4. Let k be a field. Let S be a k-algebra. We say S is geometrically
irreducible over k if for every field extension k′/k the spectrum of S⊗k k′ is irreducible5.

By Lemma 47.3 it suffices to check this for finite separable field extensions k′/k or for k′

equal to the separable algebraic closure of k.

Lemma 47.5. Let k be a field. Let R be a k-algebra. If k is separably algebraically
closed then R is geometrically irreducible over k if and only if the spectrum of R is irre-
ducible.

Proof. Immediate from the remark following Definition 47.4. �

Lemma 47.6. Let k be a field. Let S be a k-algebra.
(1) If S is geometrically irreducible over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically irreducible, then S

is geometrically irreducible.
(3) A directed colimit of geometrically irreducible k-algebras is geometrically irre-

ducible.

Proof. Let S′ ⊂ S be a subalgebra. Then for any extension k′/k the ring map S′⊗k
k′ → S ⊗k k′ is injective also. Hence (1) follows from Lemma 30.5 (and the fact that
the image of an irreducible space under a continuous map is irreducible). The second and
third property follow from the fact that tensor product commutes with colimits. �

5An irreducible space is nonempty.
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Lemma 47.7. Let k be a field. Let S be a geometrically irreducible k-algebra. Let R
be any k-algebra. The map

Spec(R⊗k S) −→ Spec(R)

induces a bijection on irreducible components.

Proof. Recall that irreducible components correspond to minimal primes (Lemma
26.1). As R → R ⊗k S is flat we see by going down (Lemma 39.19) that any minimal
prime of R ⊗k S lies over a minimal prime of R. Conversely, if p ⊂ R is a (minimal)
prime then

R⊗k S/p(R⊗k S) = (R/p)⊗k S ⊂ κ(p)⊗k S
by flatness ofR→ R⊗kS. The ring κ(p)⊗kS has irreducible spectrum by assumption. It
follows thatR⊗k S/p(R⊗k S) has a single minimal prime (Lemma 30.5). In other words,
the inverse image of the irreducible set V (p) is irreducible. Hence the lemma follows. �

Let us make some remarks on the notion of geometrically irreducible field extensions.

Lemma 47.8. Let K/k be a field extension. If k is algebraically closed in K , then K
is geometrically irreducible over k.

Proof. Assume k is algebraically closed in K. By Definition 47.4 and Lemma 47.3
it suffices to show that the spectrum of K ⊗k k′ is irreducible for every finite separable
extension k′/k. Say k′ is generated byα ∈ k′ over k, see Fields, Lemma 19.1. LetP = T d+
a1T

d−1 + . . .+ ad ∈ k[T ] be the minimal polynomial of α. Then K ⊗k k′ ∼= K[T ]/(P ).
The only way the spectrum of K[T ]/(P ) can be reducible is if P is reducible in K[T ].
Assume P = P1P2 is a nontrivial factorization inK[T ] to get a contradiction. By Lemma
38.5 we see that the coefficients of P1 and P2 are algebraic over k. Our assumption implies
the coefficients of P1 and P2 are in k which contradicts the fact that P is irreducible over
k. �

Lemma 47.9. Let K/k be a geometrically irreducible field extension. Let S be a geo-
metrically irreducible K-algebra. Then S is geometrically irreducible over k.

Proof. By Definition 47.4 and Lemma 47.3 it suffices to show that the spectrum of
S ⊗k k′ is irreducible for every finite separable extension k′/k. Since K is geometrically
irreducible over k we see that K ′ = K ⊗k k′ is a finite, separable field extension of K.
Hence the spectrum of S ⊗k k′ = S ⊗K K ′ is irreducible as S is assumed geometrically
irreducible over K. �

Lemma 47.10. Let K/k be a field extension. The following are equivalent
(1) K is geometrically irreducible over k, and
(2) the induced extensionK(t)/k(t) of purely transcendental extensions is geomet-

rically irreducible.

Proof. Assume (1). Denote Ω an algebraic closure of k(t). By Definition 47.4 we
find that the spectrum of

K ⊗k Ω = K ⊗k k(t)⊗k(t) Ω

is irreducible. SinceK(t) is a localization ofK⊗k k(T ) we conclude that the spectrum of
K(t)⊗k(t) Ω is irreducible. Thus by Lemma 47.3 we find thatK(t)/k(t) is geometrically
irreducible.
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Assume (2). Let k′/k be a field extension. We have to show that K ⊗k k′ has a unique
minimal prime. We know that the spectrum of

K(t)⊗k(t) k
′(t)

is irreducible, i.e., has a unique minimal prime. Since there is an injective mapK⊗k k′ →
K(t)⊗k(t) k

′(t) (details omitted) we conclude by Lemmas 30.5 and 30.7. �

Lemma 47.11. LetK/L/M be a tower of fields with L/M geometrically irreducible.
Let x ∈ K be transcendental over L. Then L(x)/M(x) is geometrically irreducible.

Proof. This follows from Lemma 47.10 because the fields L(x) andM(x) are purely
transcendental extensions of L and M . �

Lemma 47.12. Let K/k be a field extension. The following are equivalent
(1) K/k is geometrically irreducible, and
(2) every element α ∈ K separably algebraic over k is in k.

Proof. Assume (1) and let α ∈ K be separably algebraic over k. Then k′ = k(α)
is a finite separable extension of k contained in K. By Lemma 47.6 the extension k′/k is
geometrically irreducible. In particular, we see that the spectrum of k′ ⊗k k is irreducible
(and hence if it is a product of fields, then there is exactly one factor). By Fields, Lemma
13.4 it follows that Homk(k′, k) has one element which in turn implies that k′ = k by
Fields, Lemma 12.11. Thus (2) holds.
Assume (2). Let k′ ⊂ K be the subfield consisting of elements algebraic over k. By Lemma
47.8 the extension K/k′ is geometrically irreducible. By assumption k′/k is a purely
inseparable extension. By Lemma 46.7 the extension k′/k is geometrically irreducible.
Hence by Lemma 47.9 we see that K/k is geometrically irreducible. �

Lemma 47.13. LetK/k be a field extension. Consider the subextensionK/k′/k con-
sisting of elements separably algebraic over k. Then K is geometrically irreducible over
k′. If K/k is a finitely generated field extension, then [k′ : k] <∞.

Proof. The first statement is immediate from Lemma 47.12 and the fact that elements
separably algebraic over k′ are in k′ by the transitivity of separable algebraic extensions,
see Fields, Lemma 12.12. If K/k is finitely generated, then k′ is finite over k by Fields,
Lemma 26.11. �

Lemma 47.14. Let K/k be an extension of fields. Let k/k be a separable algebraic
closure. Then Gal(k/k) acts transitively on the primes of k ⊗k K.

Proof. Let K/k′/k be the subextension found in Lemma 47.13. Note that as k ⊂ k
is integral all the prime ideals of k ⊗k K and k ⊗k k′ are maximal, see Lemma 36.20. By
Lemma 47.7 the map

Spec(k ⊗k K)→ Spec(k ⊗k k′)
is bijective because (1) all primes are minimal primes, (2) k ⊗k K = (k ⊗k k′)⊗k′ K , and
(3) K is geometrically irreducible over k′. Hence it suffices to prove the lemma for the
action of Gal(k/k) on the primes of k ⊗k k′.

As every prime of k ⊗k k′ is maximal, the residue fields are isomorphic to k. Hence the
prime ideals of k ⊗k k′ correspond one to one to elements of Homk(k′, k) with σ ∈
Homk(k′, k) corresponding to the kernel pσ of 1 ⊗ σ : k ⊗k k′ → k. In particular
Gal(k/k) acts transitively on this set as desired. �
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48. Geometrically connected algebras

Lemma 48.1. Let k be a separably algebraically closed field. Let R, S be k-algebras.
If Spec(R), and Spec(S) are connected, then so is Spec(R⊗k S).

Proof. Recall that Spec(R) is connected if and only if R has no nontrivial idempo-
tents, see Lemma 21.4. Hence, by Lemma 43.4 we may assume R and S are of finite type
over k. In this case R and S are Noetherian, and have finitely many minimal primes, see
Lemma 31.6. Thus we may argue by induction on n+mwhere n, resp.m is the number of
irreducible components of Spec(R), resp. Spec(S). Of course the case where eithern orm
is zero is trivial. If n = m = 1, i.e., Spec(R) and Spec(S) both have one irreducible com-
ponent, then the result holds by Lemma 47.2. Suppose that n > 1. Let p ⊂ R be a minimal
prime corresponding to the irreducible closed subset T ⊂ Spec(R). Let T ′ ⊂ Spec(R)
be the union of the other n − 1 irreducible components. Choose an ideal I ⊂ R such
that T ′ = V (I) = Spec(R/I) (Lemma 17.7). By choosing our minimal prime carefully
we may in addition arrange it so that T ′ is connected, see Topology, Lemma 8.17. Then
T ∪ T ′ = Spec(R) and T ∩ T ′ = V (p + I) = Spec(R/(p + I)) is not empty as Spec(R)
is assumed connected. The inverse image of T in Spec(R ⊗k S) is Spec(R/p⊗k S), and
the inverse of T ′ in Spec(R ⊗k S) is Spec(R/I ⊗k S). By induction these are both con-
nected. The inverse image of T ∩T ′ is Spec(R/(p+ I)⊗k S) which is nonempty. Hence
Spec(R⊗k S) is connected. �

Lemma 48.2. Let k be a field. Let R be a k-algebra. The following are equivalent
(1) for every field extension k′/k the spectrum of R⊗k k′ is connected, and
(2) for every finite separable field extension k′/k the spectrum of R ⊗k k′ is con-

nected.

Proof. For any extension of fields k′/k the connectivity of the spectrum ofR⊗kk′ is
equivalent toR⊗k k′ having no nontrivial idempotents, see Lemma 21.4. Assume (2). Let
k ⊂ k be a separable algebraic closure of k. Using Lemma 43.4 we see that (2) is equivalent
to R ⊗k k having no nontrivial idempotents. For any field extension k′/k, there exists a
field extension k′

/k with k′ ⊂ k
′. By Lemma 48.1 we see that R ⊗k k

′ has no nontrivial
idempotents. IfR⊗k k′ has a nontrivial idempotent, then alsoR⊗k k

′, contradiction. �

Definition 48.3. Let k be a field. Let S be a k-algebra. We say S is geometrically
connected over k if for every field extension k′/k the spectrum of S ⊗k k′ is connected.

By Lemma 48.2 it suffices to check this for finite separable field extensions k′/k.

Lemma 48.4. Let k be a field. Let R be a k-algebra. If k is separably algebraically
closed then R is geometrically connected over k if and only if the spectrum of R is con-
nected.

Proof. Immediate from the remark following Definition 48.3. �

Lemma 48.5. Let k be a field. Let S be a k-algebra.
(1) If S is geometrically connected over k so is every k-subalgebra.
(2) If all finitely generated k-subalgebras of S are geometrically connected, then S

is geometrically connected.
(3) A directed colimit of geometrically connected k-algebras is geometrically con-

nected.
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Proof. This follows from the characterization of connectedness in terms of the nonex-
istence of nontrivial idempotents. The second and third property follow from the fact that
tensor product commutes with colimits. �

The following lemma will be superseded by the more general Varieties, Lemma 7.4.

Lemma 48.6. Let k be a field. Let S be a geometrically connected k-algebra. LetR be
any k-algebra. The map

R −→ R⊗k S
induces a bijection on idempotents, and the map

Spec(R⊗k S) −→ Spec(R)
induces a bijection on connected components.

Proof. The second assertion follows from the first combined with Lemma 22.2. By
Lemmas 48.5 and 43.4 we may assume thatR and S are of finite type over k. Then we see
that alsoR⊗k S is of finite type over k. Note that in this case all the rings are Noetherian
and hence their spectra have finitely many connected components (since they have finitely
many irreducible components, see Lemma 31.6). In particular, all connected components
in question are open! Hence via Lemma 24.3 we see that the first statement of the lemma
in this case is equivalent to the second. Let’s prove this. As the algebra S is geometrically
connected and nonzero we see that all fibres of X = Spec(R ⊗k S) → Spec(R) = Y
are connected and nonempty. Also, as R → R ⊗k S is flat of finite presentation the map
X → Y is open (Proposition 41.8). Topology, Lemma 7.6 shows that X → Y induces
bijection on connected components. �

49. Geometrically integral algebras

Here is the definition.

Definition 49.1. Let k be a field. Let S be a k-algebra. We say S is geometrically
integral over k if for every field extension k′/k the ring of S ⊗k k′ is a domain.

Any question about geometrically integral algebras can be translated in a question about
geometrically reduced and irreducible algebras.

Lemma 49.2. Let k be a field. Let S be a k-algebra. In this case S is geometrically
integral over k if and only ifS is geometrically irreducible as well as geometrically reduced
over k.

Proof. Omitted. �

Lemma 49.3. Let k be a field. Let S be a k-algebra. The following are equivalent
(1) S is geometrically integral over k,
(2) for every finite extension k′/k of fields the ring S ⊗k k′ is a domain,
(3) S ⊗k k is a domain where k is the algebraic closure of k.

Proof. Follows from Lemmas 49.2, 44.3, and 47.3. �

Lemma 49.4. Let k be a field. Let S be a geometrically integral k-algebra. Let R be a
k-algebra and an integral domain. Then R⊗k S is an integral domain.

Proof. By Lemma 43.5 the ringR⊗kS is reduced and by Lemma 47.7 the ringR⊗kS
is irreducible (the spectrum has just one irreducible component), so R⊗k S is an integral
domain. �
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50. Valuation rings

Here are some definitions.

Definition 50.1. Valuation rings.
(1) LetK be a field. LetA,B be local rings contained inK. We say thatB dominates

A if A ⊂ B and mA = A ∩mB .
(2) Let A be a ring. We say A is a valuation ring if A is a local domain and if A

is maximal for the relation of domination among local rings contained in the
fraction field of A.

(3) LetA be a valuation ring with fraction fieldK. IfR ⊂ K is a subring ofK , then
we say A is centered on R if R ⊂ A.

With this definition a field is a valuation ring.

Lemma 50.2. Let K be a field. Let A ⊂ K be a local subring. Then there exists a
valuation ring with fraction field K dominating A.

Proof. We consider the collection of local subrings of K as a partially ordered set
using the relation of domination. Suppose that {Ai}i∈I is a totally ordered collection of
local subrings of K. Then B =

⋃
Ai is a local subring which dominates all of the Ai.

Hence by Zorn’s Lemma, it suffices to show that if A ⊂ K is a local ring whose fraction
field is not K , then there exists a local ring B ⊂ K , B 6= A dominating A.
Pick t ∈ K which is not in the fraction field of A. If t is transcendental over A, then
A[t] ⊂ K and henceA[t](t,m) ⊂ K is a local ring distinct fromA dominatingA. Suppose
t is algebraic over A. Then for some nonzero a ∈ A the element at is integral over A. In
this case the subring A′ ⊂ K generated by A and ta is finite over A. By Lemma 36.17
there exists a prime ideal m′ ⊂ A′ lying over m. Then A′

m′ dominates A. If A = A′
m′ ,

then t is in the fraction field of A which we assumed not to be the case. Thus A 6= A′
m′ as

desired. �

Lemma 50.3. Let A be a valuation ring. Then A is a normal domain.

Proof. Suppose x is in the field of fractions of A and integral over A. Let A′ denote
the subring of K generated by A and x. Since A ⊂ A′ is an integral extension, we see by
Lemma 36.17 that there is a prime ideal m′ ⊂ A′ lying over m. Then A′

m′ dominates A.
Since A is a valuation ring we conclude that A = A′

m′ and therefore that x ∈ A. �

Lemma 50.4. Let A be a valuation ring with maximal ideal m and fraction field K.
Let x ∈ K. Then either x ∈ A or x−1 ∈ A or both.

Proof. Assume that x is not in A. Let A′ denote the subring of K generated by A
and x. Since A is a valuation ring we see that there is no prime of A′ lying over m. Since
m is maximal we see that V (mA′) = ∅. Then mA′ = A′ by Lemma 17.2. Hence we can
write 1 =

∑d
i=0 tix

i with ti ∈ m. This implies that (1− t0)(x−1)d−
∑
ti(x−1)d−i = 0.

In particular we see that x−1 is integral over A, and hence x−1 ∈ A by Lemma 50.3. �

Lemma 50.5. Let A ⊂ K be a subring of a field K such that for all x ∈ K either
x ∈ A or x−1 ∈ A or both. Then A is a valuation ring with fraction field K.

Proof. IfA is notK , thenA is not a field and there is a nonzero maximal ideal m. If
m′ is a second maximal ideal, then choose x, y ∈ Awith x ∈ m, y 6∈ m, x 6∈ m′, and y ∈ m′

(see Lemma 15.2). Then neither x/y ∈ A nor y/x ∈ A contradicting the assumption of
the lemma. Thus we see that A is a local ring. Suppose that A′ is a local ring contained in
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K which dominates A. Let x ∈ A′. We have to show that x ∈ A. If not, then x−1 ∈ A,
and of course x−1 ∈ mA. But then x−1 ∈ mA′ which contradicts x ∈ A′. �

Lemma 50.6. Let I be a directed set. Let (Ai, ϕij) be a system of valuation rings over
I . Then A = colimAi is a valuation ring.

Proof. It is clear that A is a domain. Let a, b ∈ A. Lemma 50.5 tells us we have to
show that either a|b or b|a in A. Choose i so large that there exist ai, bi ∈ Ai mapping to
a, b. Then Lemma 50.4 applied to ai, bi in Ai implies the result for a, b in A. �

Lemma 50.7. Let L/K be an extension of fields. If B ⊂ L is a valuation ring, then
A = K ∩B is a valuation ring.

Proof. We can replace L by the fraction field F of B and K by K ∩ F . Then the
lemma follows from a combination of Lemmas 50.4 and 50.5. �

Lemma 50.8. Let L/K be an algebraic extension of fields. If B ⊂ L is a valuation
ring with fraction field L and not a field, then A = K ∩ B is a valuation ring and not a
field.

Proof. By Lemma 50.7 the ring A is a valuation ring. If A is a field, then A = K.
Then A = K ⊂ B is an integral extension, hence there are no proper inclusions among
the primes of B (Lemma 36.20). This contradicts the assumption that B is a local domain
and not a field. �

Lemma 50.9. LetA be a valuation ring. For any prime ideal p ⊂ A the quotientA/p
is a valuation ring. The same is true for the localization Ap and in fact any localization of
A.

Proof. Use the characterization of valuation rings given in Lemma 50.5. �

Lemma 50.10. Let A′ be a valuation ring with residue field K. Let A be a valuation
ring with fraction field K. Then C = {λ ∈ A′ | λ mod mA′ ∈ A} is a valuation ring.

Proof. Note that mA′ ⊂ C and C/mA′ = A. In particular, the fraction field of
C is equal to the fraction field of A′. We will use the criterion of Lemma 50.5 to prove
the lemma. Let x be an element of the fraction field of C. By the lemma we may assume
x ∈ A′. If x ∈ mA′ , then we see x ∈ C. If not, then x is a unit of A′ and we also have
x−1 ∈ A′. Hence either x or x−1 maps to an element of A by the lemma again. �

Lemma 50.11. Let A be a normal domain with fraction field K.
(1) For every x ∈ K , x 6∈ A there exists a valuation ringA ⊂ V ⊂ K with fraction

field K such that x 6∈ V .
(2) If A is local, we can moreover choose V which dominates A.

In other words, A is the intersection of all valuation rings in K containing A and if A is
local, then A is the intersection of all valuation rings in K dominating A.

Proof. Suppose x ∈ K , x 6∈ A. Consider B = A[x−1]. Then x 6∈ B. Namely,
if x = a0 + a1x

−1 + . . . + adx
−d then xd+1 − a0x

d − . . . − ad = 0 and x is integral
overA in contradiction with the fact thatA is normal. Thus x−1 is not a unit inB. Thus
V (x−1) ⊂ Spec(B) is not empty (Lemma 17.2), and we can choose a prime p ⊂ B with
x−1 ∈ p. Choose a valuation ring V ⊂ K dominating Bp (Lemma 50.2). Then x 6∈ V as
x−1 ∈ mV .
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IfA is local, then we claim that x−1B+mAB 6= B. Namely, if 1 = (a0 + a1x
−1 + . . .+

adx
−d)x−1 + a′

0 + . . .+ a′
dx

−d with ai ∈ A and a′
i ∈ mA, then we’d get

(1− a′
0)xd+1 − (a0 + a′

1)xd − . . .− ad = 0

Since a′
0 ∈ mA we see that 1− a′

0 is a unit in A and we conclude that x would be integral
over A, a contradiction as before. Then choose the prime p ⊃ x−1B + mAB we find V
dominating A. �

An totally ordered abelian group is a pair (Γ,≥) consisting of an abelian group Γ endowed
with a total ordering ≥ such that γ ≥ γ′ ⇒ γ + γ′′ ≥ γ′ + γ′′ for all γ, γ′, γ′′ ∈ Γ.

Lemma 50.12. Let A be a valuation ring with field of fractions K. Set Γ = K∗/A∗

(with group law written additively). For γ, γ′ ∈ Γ define γ ≥ γ′ if and only if γ − γ′ is
in the image of A− {0} → Γ. Then (Γ,≥) is a totally ordered abelian group.

Proof. Omitted, but follows easily from Lemma 50.4. Note that in case A = K we
obtain the zero group Γ = {0} endowed with its unique total ordering. �

Definition 50.13. Let A be a valuation ring.
(1) The totally ordered abelian group (Γ,≥) of Lemma 50.12 is called the value

group of the valuation ring A.
(2) The map v : A−{0} → Γ and also v : K∗ → Γ is called the valuation associated

to A.
(3) The valuation ring A is called a discrete valuation ring if Γ ∼= Z.

Note that if Γ ∼= Z then there is a unique such isomorphism such that 1 ≥ 0. If the
isomorphism is chosen in this way, then the ordering becomes the usual ordering of the
integers.

Lemma 50.14. Let A be a valuation ring. The valuation v : A− {0} → Γ≥0 has the
following properties:

(1) v(a) = 0⇔ a ∈ A∗,
(2) v(ab) = v(a) + v(b),
(3) v(a+ b) ≥ min(v(a), v(b)).

Proof. Omitted. �

Lemma 50.15. Let A be a ring. The following are equivalent
(1) A is a valuation ring,
(2) A is a local domain and every finitely generated ideal of A is principal.

Proof. Assume A is a valuation ring and let f1, . . . , fn ∈ A. Choose i such that
v(fi) is minimal among v(fj). Then (fi) = (f1, . . . , fn). Conversely, assume A is a
local domain and every finitely generated ideal of A is principal. Pick f, g ∈ A and write
(f, g) = (h). Then f = ah and g = bh and h = cf + dg for some a, b, c, d ∈ A. Thus
ac+ bd = 1 and we see that either a or b is a unit, i.e., either g/f or f/g is an element of
A. This shows A is a valuation ring by Lemma 50.5. �

Lemma 50.16. Let (Γ,≥) be a totally ordered abelian group. Let K be a field. Let
v : K∗ → Γ be a homomorphism of abelian groups such that v(a+ b) ≥ min(v(a), v(b))
for a, b ∈ K with a, b, a+ b not zero. Then

A = {x ∈ K | x = 0 or v(x) ≥ 0}
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is a valuation ring with value group Im(v) ⊂ Γ, with maximal ideal
m = {x ∈ K | x = 0 or v(x) > 0}

and with group of units
A∗ = {x ∈ K∗ | v(x) = 0}.

Proof. Omitted. �

Let (Γ,≥) be a totally ordered abelian group. An ideal of Γ is a subset I ⊂ Γ such that all
elements of I are≥ 0 and γ ∈ I , γ′ ≥ γ implies γ′ ∈ I . We say that such an ideal is prime
if γ + γ′ ∈ I, γ, γ′ ≥ 0⇒ γ ∈ I or γ′ ∈ I .

Lemma 50.17. Let A be a valuation ring. Ideals in A correspond 1− 1 with ideals of
Γ. This bijection is inclusion preserving, and maps prime ideals to prime ideals.

Proof. Omitted. �

Lemma 50.18. A valuation ring is Noetherian if and only if it is a discrete valuation
ring or a field.

Proof. Suppose A is a discrete valuation ring with valuation v : A \ {0} → Z
normalized so that Im(v) = Z≥0. By Lemma 50.17 the ideals of A are the subsets In =
{0} ∪ v−1(Z≥n). It is clear that any element x ∈ A with v(x) = n generates In. Hence
A is a PID so certainly Noetherian.
SupposeA is a Noetherian valuation ring with value group Γ. By Lemma 50.17 we see the
ascending chain condition holds for ideals in Γ. We may assumeA is not a field, i.e., there
is a γ ∈ Γ with γ > 0. Applying the ascending chain condition to the subsets γ + Γ≥0
with γ > 0 we see there exists a smallest element γ0 which is bigger than 0. Let γ ∈ Γ
be an element γ > 0. Consider the sequence of elements γ, γ − γ0, γ − 2γ0, etc. By the
ascending chain condition these cannot all be > 0. Let γ − nγ0 be the last one ≥ 0. By
minimality of γ0 we see that 0 = γ − nγ0. Hence Γ is a cyclic group as desired. �

51. More Noetherian rings

Lemma 51.1. Let R be a Noetherian ring. Any finite R-module is of finite presenta-
tion. Any submodule of a finite R-module is finite. The ascending chain condition holds
for R-submodules of a finite R-module.

Proof. We first show that any submodule N of a finite R-module M is finite. We
do this by induction on the number of generators of M . If this number is 1, then N =
J/I ⊂ M = R/I for some ideals I ⊂ J ⊂ R. Thus the definition of Noetherian implies
the result. If the number of generators of M is greater than 1, then we can find a short
exact sequence 0 → M ′ → M → M ′′ → 0 where M ′ and M ′′ have fewer generators.
Note that setting N ′ = M ′ ∩ N and N ′′ = Im(N → M ′′) gives a similar short exact
sequence forN . Hence the result follows from the induction hypothesis since the number
of generators ofN is at most the number of generators ofN ′ plus the number of generators
of N ′′.
To show that M is finitely presented just apply the previous result to the kernel of a pre-
sentation Rn →M .
It is well known and easy to prove that the ascending chain condition for R-submodules
of M is equivalent to the condition that every submodule of M is a finite R-module. We
omit the proof. �
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Lemma 51.2 (Artin-Rees). Suppose thatR is Noetherian, I ⊂ R an ideal. LetN ⊂M
be finiteR-modules. There exists a constant c > 0 such that InM ∩N = In−c(IcM ∩N)
for all n ≥ c.

Proof. Consider the ring S = R ⊕ I ⊕ I2 ⊕ . . . =
⊕

n≥0 I
n. Convention: I0 =

R. Multiplication maps In × Im into In+m by multiplication in R. Note that if I =
(f1, . . . , ft) then S is a quotient of the Noetherian ring R[X1, . . . , Xt]. The map just
sends the monomialXe1

1 . . . Xet
t to fe1

1 . . . fett . Thus S is Noetherian. Similarly, consider
the moduleM ⊕ IM ⊕ I2M ⊕ . . . =

⊕
n≥0 I

nM . This is a finitely generated S-module.
Namely, if x1, . . . , xr generate M over R, then they also generate

⊕
n≥0 I

nM over S.
Next, consider the submodule

⊕
n≥0 I

nM ∩N . This is an S-submodule, as is easily veri-
fied. By Lemma 51.1 it is finitely generated as an S-module, say by ξj ∈

⊕
n≥0 I

nM ∩N ,
j = 1, . . . , s. We may assume by decomposing each ξj into its homogeneous pieces that
each ξj ∈ IdjM ∩N for some dj . Set c = max{dj}. Then for all n ≥ c every element in
InM ∩N is of the form

∑
hjξj with hj ∈ In−dj . The lemma now follows from this and

the trivial observation that In−dj (IdjM ∩N) ⊂ In−c(IcM ∩N). �

Lemma 51.3. Suppose that 0 → K → M
f−→ N is an exact sequence of finitely

generated modules over a Noetherian ring R. Let I ⊂ R be an ideal. Then there exists a c
such that

f−1(InN) = K + In−cf−1(IcN) and f(M) ∩ InN ⊂ f(In−cM)
for all n ≥ c.

Proof. Apply Lemma 51.2 to Im(f) ⊂ N and note that f : In−cM → In−cf(M)
is surjective. �

Lemma 51.4 (Krull’s intersection theorem). Let R be a Noetherian local ring. Let
I ⊂ R be a proper ideal. Let M be a finite R-module. Then

⋂
n≥0 I

nM = 0.

Proof. LetN =
⋂
n≥0 I

nM . ThenN = InM ∩N for all n ≥ 0. By the Artin-Rees
Lemma 51.2 we see that N = InM ∩N ⊂ IN for some suitably large n. By Nakayama’s
Lemma 20.1 we see that N = 0. �

Lemma 51.5. Let R be a Noetherian ring. Let I ⊂ R be an ideal. Let M be a finite
R-module. Let N =

⋂
n I

nM .
(1) For every prime p, I ⊂ p there exists a f ∈ R, f 6∈ p such that Nf = 0.
(2) If I is contained in the Jacobson radical of R, then N = 0.

Proof. Proof of (1). Let x1, . . . , xn be generators for the module N , see Lemma 51.1.
For every prime p, I ⊂ p we see that the image of N in the localization Mp is zero, by
Lemma 51.4. Hence we can find gi ∈ R, gi 6∈ p such that xi maps to zero in Ngi . Thus
Ng1g2...gn = 0.

Part (2) follows from (1) and Lemma 23.1. �

Remark 51.6. Lemma 51.4 in particular implies that
⋂
n I

n = (0) when I ⊂ R is a
non-unit ideal in a Noetherian local ring R. More generally, let R be a Noetherian ring
and I ⊂ R an ideal. Suppose that f ∈

⋂
n∈N In. Then Lemma 51.5 says that for every

prime ideal I ⊂ p there exists a g ∈ R, g 6∈ p such that f maps to zero in Rg . In algebraic
geometry we express this by saying that “f is zero in an open neighbourhood of the closed
set V (I) of Spec(R)”.
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Lemma 51.7 (Artin-Tate). Let R be a Noetherian ring. Let S be a finitely generated
R-algebra. If T ⊂ S is an R-subalgebra such that S is finitely generated as a T -module,
then T is of finite type over R.

Proof. Choose elements x1, . . . , xn ∈ S which generate S as an R-algebra. Choose
y1, . . . , ym in S which generate S as a T -module. Thus there exist aij ∈ T such that
xi =

∑
aijyj . There also exist bijk ∈ T such that yiyj =

∑
bijkyk. Let T ′ ⊂ T be

the sub R-algebra generated by aij and bijk. This is a finitely generated R-algebra, hence
Noetherian. Consider the algebra

S′ = T ′[Y1, . . . , Ym]/(YiYj −
∑

bijkYk).

Note that S′ is finite over T ′, namely as a T ′-module it is generated by the classes of
1, Y1, . . . , Ym. Consider the T ′-algebra homomorphism S′ → S which maps Yi to yi.
Because aij ∈ T ′ we see that xj is in the image of this map. Thus S′ → S is surjective.
Therefore S is finite over T ′ as well. Since T ′ is Noetherian and we conclude that T ⊂ S
is finite over T ′ and we win. �

52. Length

Definition 52.1. Let R be a ring. For any R-module M we define the length of M
over R by the formula

lengthR(M) = sup{n | ∃ 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M, Mi 6= Mi+1}.

In other words it is the supremum of the lengths of chains of submodules. There is an
obvious notion of when a chain of submodules is a refinement of another. This gives a
partial ordering on the collection of all chains of submodules, with the smallest chain
having the shape 0 = M0 ⊂ M1 = M if M is not zero. We note the obvious fact that if
the length ofM is finite, then every chain can be refined to a maximal chain. But it is not
as obvious that all maximal chains have the same length (as we will see later).

Lemma 52.2. Let R be a ring. Let M be an R-module. If lengthR(M) <∞ then M
is a finite R-module.

Proof. Omitted. �

Lemma 52.3. If 0 → M ′ → M → M ′′ → 0 is a short exact sequence of modules
over R then the length of M is the sum of the lengths of M ′ and M ′′.

Proof. Given filtrations of M ′ and M ′′ of lengths n′, n′′ it is easy to make a corre-
sponding filtration ofM of length n′ +n′′. Thus we see that lengthRM ≥ lengthRM

′ +
lengthRM

′′. Conversely, given a filtration M0 ⊂ M1 ⊂ . . . ⊂ Mn of M consider the
induced filtrations M ′

i = Mi ∩M ′ and M ′′
i = Im(Mi → M ′′). Let n′ (resp. n′′) be the

number of steps in the filtration {M ′
i} (resp. {M ′′

i }). If M ′
i = M ′

i+1 and M ′′
i = M ′′

i+1
thenMi = Mi+1. Hence we conclude that n′ +n′′ ≥ n. Combined with the earlier result
we win. �

Lemma 52.4. Let R be a local ring with maximal ideal m. If M is an R-module and
mnM 6= 0 for all n ≥ 0, then lengthR(M) = ∞. In other words, if M has finite length
then mnM = 0 for some n.

Proof. Assume mnM 6= 0 for all n ≥ 0. Choose x ∈ M and f1, . . . , fn ∈ m such
that f1f2 . . . fnx 6= 0. The first n steps in the filtration

0 ⊂ Rf1 . . . fnx ⊂ Rf1 . . . fn−1x ⊂ . . . ⊂ Rx ⊂M
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are distinct. For example, if Rf1x = Rf1f2x , then f1x = gf1f2x for some g, hence
(1 − gf2)f1x = 0 hence f1x = 0 as 1 − gf2 is a unit which is a contradiction with the
choice of x and f1, . . . , fn. Hence the length is infinite. �

Lemma 52.5. Let R → S be a ring map. Let M be an S-module. We always have
lengthR(M) ≥ lengthS(M). If R→ S is surjective then equality holds.

Proof. A filtration ofM byS-submodules gives rise a filtration ofM byR-submodules.
This proves the inequality. And if R → S is surjective, then any R-submodule of M is
automatically an S-submodule. Hence equality in this case. �

Lemma 52.6. LetR be a ring with maximal ideal m. Suppose thatM is anR-module
with mM = 0. Then the length of M as an R-module agrees with the dimension of M as
a R/m vector space. The length is finite if and only if M is a finite R-module.

Proof. The first part is a special case of Lemma 52.5. Thus the length is finite if
and only if M has a finite basis as a R/m-vector space if and only if M has a finite set of
generators as an R-module. �

Lemma 52.7. Let R be a ring. Let M be an R-module. Let S ⊂ R be a multiplicative
subset. Then lengthR(M) ≥ lengthS−1R(S−1M).

Proof. Any submodule N ′ ⊂ S−1M is of the form S−1N for some R-submodule
N ⊂M , by Lemma 9.15. The lemma follows. �

Lemma 52.8. Let R be a ring with finitely generated maximal ideal m. (For example
R Noetherian.) Suppose that M is a finite R-module with mnM = 0 for some n. Then
lengthR(M) <∞.

Proof. Consider the filtration 0 = mnM ⊂ mn−1M ⊂ . . . ⊂ mM ⊂M . All of the
subquotients are finitely generatedR-modules to which Lemma 52.6 applies. We conclude
by additivity, see Lemma 52.3. �

Definition 52.9. Let R be a ring. Let M be an R-module. We say M is simple if
M 6= 0 and every submodule of M is either equal to M or to 0.

Lemma 52.10. LetR be a ring. LetM be anR-module. The following are equivalent:
(1) M is simple,
(2) lengthR(M) = 1, and
(3) M ∼= R/m for some maximal ideal m ⊂ R.

Proof. Let m be a maximal ideal of R. By Lemma 52.6 the module R/m has length
1. The equivalence of the first two assertions is tautological. Suppose that M is simple.
Choose x ∈M , x 6= 0. As M is simple we have M = R · x. Let I ⊂ R be the annihilator
of x, i.e., I = {f ∈ R | fx = 0}. The mapR/I →M , f mod I 7→ fx is an isomorphism,
hence R/I is a simple R-module. Since R/I 6= 0 we see I 6= R. Let I ⊂ m be a maximal
ideal containing I . If I 6= m, then m/I ⊂ R/I is a nontrivial submodule contradicting
the simplicity of R/I . Hence we see I = m as desired. �

Lemma 52.11. Let R be a ring. Let M be a finite length R-module. Choose any
maximal chain of submodules

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mn = M

with Mi 6= Mi−1, i = 1, . . . , n. Then
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(1) n = lengthR(M),
(2) each Mi/Mi−1 is simple,
(3) each Mi/Mi−1 is of the form R/mi for some maximal ideal mi,
(4) given a maximal ideal m ⊂ R we have

#{i | mi = m} = lengthRm
(Mm).

Proof. If Mi/Mi−1 is not simple then we can refine the filtration and the filtra-
tion is not maximal. Thus we see that Mi/Mi−1 is simple. By Lemma 52.10 the modules
Mi/Mi−1 have length 1 and are of the form R/mi for some maximal ideals mi. By addi-
tivity of length, Lemma 52.3, we see n = lengthR(M). Since localization is exact, we see
that

0 = (M0)m ⊂ (M1)m ⊂ (M2)m ⊂ . . . ⊂ (Mn)m = Mm

is a filtration of Mm with successive quotients (Mi/Mi−1)m. Thus the last statement
follows directly from the fact that given maximal ideals m, m′ of R we have

(R/m′)m ∼=
{

0 if m 6= m′,
Rm/mRm if m = m′

This we leave to the reader. �

Lemma 52.12. Let A be a local ring with maximal ideal m. Let B be a semi-local ring
with maximal ideals mi, i = 1, . . . , n. Suppose thatA→ B is a homomorphism such that
each mi lies over m and such that

[κ(mi) : κ(m)] <∞.

Let M be a B-module of finite length. Then

lengthA(M) =
∑

i=1,...,n
[κ(mi) : κ(m)]lengthBmi

(Mmi),

in particular lengthA(M) <∞.

Proof. Choose a maximal chain

0 = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mm = M

by B-submodules as in Lemma 52.11. Then each quotient Mj/Mj−1 is isomorphic to
κ(mi(j)) for some i(j) ∈ {1, . . . , n}. Moreover lengthA(κ(mi)) = [κ(mi) : κ(m)] by
Lemma 52.6. The lemma follows by additivity of lengths (Lemma 52.3). �

Lemma 52.13. LetA→ B be a flat local homomorphism of local rings. Then for any
A-module M we have

lengthA(M)lengthB(B/mAB) = lengthB(M ⊗A B).

In particular, if lengthB(B/mAB) <∞ then M has finite length if and only if M ⊗A B
has finite length.

Proof. The ring map A→ B is faithfully flat by Lemma 39.17. Hence if 0 = M0 ⊂
M1 ⊂ . . . ⊂ Mn = M is a chain of length n in M , then the corresponding chain 0 =
M0 ⊗A B ⊂ M1 ⊗A B ⊂ . . . ⊂ Mn ⊗A B = M ⊗A B has length n also. This proves
lengthA(M) = ∞ ⇒ lengthB(M ⊗A B) = ∞. Next, assume lengthA(M) < ∞. In
this case we see that M has a filtration of length ` = lengthA(M) whose quotients are
A/mA. Arguing as above we see thatM ⊗AB has a filtration of length `whose quotients
are isomorphic to B ⊗A A/mA = B/mAB. Thus the lemma follows. �
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Lemma 52.14. Let A→ B → C be flat local homomorphisms of local rings. Then
lengthB(B/mAB)lengthC(C/mBC) = lengthC(C/mAC)

Proof. Follows from Lemma 52.13 applied to the ring map B → C and the B-
module M = B/mAB �

53. Artinian rings

Artinian rings, and especially local Artinian rings, play an important role in algebraic
geometry, for example in deformation theory.

Definition 53.1. A ring R is Artinian if it satisfies the descending chain condition
for ideals.

Lemma 53.2. Suppose R is a finite dimensional algebra over a field. Then R is Ar-
tinian.

Proof. The descending chain condition for ideals obviously holds. �

Lemma 53.3. If R is Artinian then R has only finitely many maximal ideals.

Proof. Suppose that mi, i = 1, 2, 3, . . . are pairwise distinct maximal ideals. Then
m1 ⊃ m1 ∩m2 ⊃ m1 ∩m2 ∩m3 ⊃ . . . is an infinite descending sequence (because by the
Chinese remainder theorem all the maps R→ ⊕ni=1R/mi are surjective). �

Lemma 53.4. Let R be Artinian. The Jacobson radical of R is a nilpotent ideal.

Proof. Let I ⊂ R be the Jacobson radical. Note that I ⊃ I2 ⊃ I3 ⊃ . . . is a
descending sequence. Thus In = In+1 for some n. Set J = {x ∈ R | xIn = 0}. We
have to show J = R. If not, choose an ideal J ′ 6= J , J ⊂ J ′ minimal (possible by the
Artinian property). Then J ′ = J + Rx for some x ∈ R. By NAK, Lemma 20.1, we have
IJ ′ ⊂ J . Hence xIn+1 ⊂ xI · In ⊂ J · In = 0. Since In+1 = In we conclude x ∈ J .
Contradiction. �

Lemma 53.5. Any ring with finitely many maximal ideals and locally nilpotent Ja-
cobson radical is the product of its localizations at its maximal ideals. Also, all primes are
maximal.

Proof. Let R be a ring with finitely many maximal ideals m1, . . . ,mn. Let I =⋂n
i=1 mi be the Jacobson radical ofR. Assume I is locally nilpotent. Let p be a prime ideal

ofR. Since every prime contains every nilpotent element ofR we see p ⊃ m1 ∩ . . .∩mn.
Since m1 ∩ . . . ∩ mn ⊃ m1 . . .mn we conclude p ⊃ m1 . . .mn. Hence p ⊃ mi for some i,
and so p = mi. By the Chinese remainder theorem (Lemma 15.4) we haveR/I ∼=

⊕
R/mi

which is a product of fields. Hence by Lemma 32.6 there are idempotents ei, i = 1, . . . , n
with ei mod mj = δij . Hence R =

∏
Rei, and each Rei is a ring with exactly one

maximal ideal. �

Lemma 53.6. A ring R is Artinian if and only if it has finite length as a module over
itself. Any such ringR is both Artinian and Noetherian, any prime ideal ofR is a maximal
ideal, and R is equal to the (finite) product of its localizations at its maximal ideals.

Proof. If R has finite length over itself then it satisfies both the ascending chain
condition and the descending chain condition for ideals. Hence it is both Noetherian and
Artinian. Any Artinian ring is equal to product of its localizations at maximal ideals by
Lemmas 53.3, 53.4, and 53.5.



612 10. COMMUTATIVE ALGEBRA

Suppose that R is Artinian. We will show R has finite length over itself. It suffices to
exhibit a chain of submodules whose successive quotients have finite length. By what we
said above we may assume that R is local, with maximal ideal m. By Lemma 53.4 we have
mn = 0 for some n. Consider the sequence 0 = mn ⊂ mn−1 ⊂ . . . ⊂ m ⊂ R. By Lemma
52.6 the length of each subquotientmj/mj+1 is the dimension of this as a vector space over
κ(m). This has to be finite since otherwise we would have an infinite descending chain
of sub vector spaces which would correspond to an infinite descending chain of ideals in
R. �

54. Homomorphisms essentially of finite type

Some simple remarks on localizations of finite type ring maps.

Definition 54.1. Let R→ S be a ring map.
(1) We say that R → S is essentially of finite type if S is the localization of an

R-algebra of finite type.
(2) We say thatR→ S is essentially of finite presentation if S is the localization of

an R-algebra of finite presentation.

Lemma 54.2. The class of ring maps which are essentially of finite type is preserved
under composition. Similarly for essentially of finite presentation.

Proof. Omitted. �

Lemma 54.3. The class of ring maps which are essentially of finite type is preserved
by base change. Similarly for essentially of finite presentation.

Proof. Omitted. �

Lemma 54.4. Let R → S be a ring map. Assume S is an Artinian local ring with
maximal ideal m. Then

(1) R→ S is finite if and only if R→ S/m is finite,
(2) R→ S is of finite type if and only if R→ S/m is of finite type.
(3) R → S is essentially of finite type if and only if the composition R → S/m is

essentially of finite type.

Proof. If R → S is finite, then R → S/m is finite by Lemma 7.3. Conversely,
assume R→ S/m is finite. As S has finite length over itself (Lemma 53.6) we can choose
a filtration

0 ⊂ I1 ⊂ . . . ⊂ In = S

by ideals such that Ii/Ii−1 ∼= S/m asS-modules. ThusS has a filtration byR-submodules
Ii such that each successive quotient is a finite R-module. Thus S is a finite R-module by
Lemma 5.3.
If R → S is of finite type, then R → S/m is of finite type by Lemma 6.2. Conversely,
assume that R → S/m is of finite type. Choose f1, . . . , fn ∈ S which map to generators
of S/m. Then A = R[x1, . . . , xn] → S , xi 7→ fi is a ring map such that A → S/m is
surjective (in particular finite). Hence A→ S is finite by part (1) and we see that R→ S
is of finite type by Lemma 6.2.
If R → S is essentially of finite type, then R → S/m is essentially of finite type by
Lemma 54.2. Conversely, assume that R → S/m is essentially of finite type. Suppose
S/m is the localization of R[x1, . . . , xn]/I . Choose f1, . . . , fn ∈ S whose congruence
classes modulo m correspond to the congruence classes of x1, . . . , xn modulo I . Consider
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the map R[x1, . . . , xn] → S , xi 7→ fi with kernel J . Set A = R[x1, . . . , xn]/J ⊂ S
and p = A ∩m. Note that A/p ⊂ S/m is equal to the image of R[x1, . . . , xn]/I in S/m.
Hence κ(p) = S/m. Thus Ap → S is finite by part (1). We conclude that S is essentially
of finite type by Lemma 54.2. �

The following lemma can be proven using properness of projective space instead of the
algebraic argument we give here.

Lemma 54.5. Let ϕ : R→ S be essentially of finite type withR and S local (but not
necessarily ϕ local). Then there exists an n and a maximal ideal m ⊂ R[x1, . . . , xn] lying
over mR such that S is a localization of a quotient of R[x1, . . . , xn]m.

Proof. We can write S as a localization of a quotient of R[x1, . . . , xn]. Hence it
suffices to prove the lemma in caseS = R[x1, . . . , xn]q for some prime q ⊂ R[x1, . . . , xn].
If q + mRR[x1, . . . , xn] 6= R[x1, . . . , xn] then we can find a maximal ideal m as in the
statement of the lemma with q ⊂ m and the result is clear.

Choose a valuation ringA ⊂ κ(q) which dominates the image ofR→ κ(q) (Lemma 50.2).
If the image λi ∈ κ(q) of xi is contained in A, then q is contained in the inverse image of
mA via R[x1, . . . , xn] → A which means we are back in the preceding case. Hence there
exists an i such that λ−1

i ∈ A and such that λj/λi ∈ A for all j = 1, . . . , n (because the
value group of A is totally ordered, see Lemma 50.12). Then we consider the map

R[y0, y1, . . . , ŷi, . . . , yn]→ R[x1, . . . , xn]q, y0 7→ 1/xi, yj 7→ xj/xi

Let q′ ⊂ R[y0, . . . , ŷi, . . . , yn] be the inverse image of q. Since y0 6∈ q′ it is easy to see
that the displayed arrow defines an isomorphism on localizations. On the other hand, the
result of the first paragraph applies toR[y0, . . . , ŷi, . . . , yn] because yj maps to an element
of A. This finishes the proof. �

55. K-groups

Let R be a ring. We will introduce two abelian groups associated to R. The first of the
two is denoted K ′

0(R) and has the following properties6:
(1) For every finite R-module M there is given an element [M ] in K ′

0(R),
(2) for every short exact sequence 0→ M ′ → M → M ′′ → 0 of finite R-modules

we have the relation [M ] = [M ′] + [M ′′],
(3) the group K ′

0(R) is generated by the elements [M ], and
(4) all relations in K ′

0(R) among the generators [M ] are Z-linear combinations of
the relations coming from exact sequences as above.

The actual construction is a bit more annoying since one has to take care that the collec-
tion of all finitely generated R-modules is a proper class. However, this problem can be
overcome by taking as set of generators of the group K ′

0(R) the elements [Rn/K] where
n ranges over all integers and K ranges over all submodules K ⊂ Rn. The generators
for the subgroup of relations imposed on these elements will be the relations coming from
short exact sequences whose terms are of the form Rn/K. The element [M ] is defined by
choosing n and K such that M ∼= Rn/K and putting [M ] = [Rn/K]. Details left to the
reader.

Lemma 55.1. IfR is an Artinian local ring then the length function defines a natural
abelian group homomorphism lengthR : K ′

0(R)→ Z.

6The definition makes sense for any ring but is rarely used unless R is Noetherian.
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Proof. The length of any finite R-module is finite, because it is the quotient of Rn
which has finite length by Lemma 53.6. And the length function is additive, see Lemma
52.3. �

The second of the two is denoted K0(R) and has the following properties:
(1) For every finite projectiveR-moduleM there is given an element [M ] inK0(R),
(2) for every short exact sequence 0 → M ′ → M → M ′′ → 0 of finite projective

R-modules we have the relation [M ] = [M ′] + [M ′′],
(3) the group K0(R) is generated by the elements [M ], and
(4) all relations in K0(R) are Z-linear combinations of the relations coming from

exact sequences as above.
The construction of this group is done as above.
We note that there is an obvious map K0(R) → K ′

0(R) which is not an isomorphism in
general.

Example 55.2. Note that ifR = k is a field then we clearly haveK0(k) = K ′
0(k) ∼= Z

with the isomorphism given by the dimension function (which is also the length function).

Example 55.3. Let R be a PID. We claim K0(R) = K ′
0(R) = Z. Namely, any finite

projective R-module is finite free. A finite free module has a well defined rank by Lemma
15.8. Given a short exact sequence of finite free modules

0→M ′ →M →M ′′ → 0
we have rank(M) = rank(M ′) + rank(M ′′) because we have M ∼= M ′ ⊕M ′ in this case
(for example we have a splitting by Lemma 5.2). We conclude K0(R) = Z.
The structure theorem for modules of a PID says that any finitely generated R-module is
of the form M = R⊕r ⊕R/(d1)⊕ . . .⊕R/(dk). Consider the short exact sequence

0→ (di)→ R→ R/(di)→ 0
Since the ideal (di) is isomorphic toR as a module (it is free with generator di), inK ′

0(R)
we have [(di)] = [R]. Then [R/(di)] = [(di)]−[R] = 0. From this it follows that a torsion
module has zero class in K ′

0(R). Using the rank of the free part gives an identification
K ′

0(R) = Z and the canonical homomorphism fromK0(R)→ K ′
0(R) is an isomorphism.

Example 55.4. Let k be a field. Then K0(k[x]) = K ′
0(k[x]) = Z. This follows from

Example 55.3 as R = k[x] is a PID.

Example 55.5. Let k be a field. LetR = {f ∈ k[x] | f(0) = f(1)}, compare Example
27.4. In this case K0(R) ∼= k∗ ⊕ Z, but K ′

0(R) = Z.

Lemma 55.6. Let R = R1 × R2. Then K0(R) = K0(R1) ×K0(R2) and K ′
0(R) =

K ′
0(R1)×K ′

0(R2)

Proof. Omitted. �

Lemma 55.7. Let R be an Artinian local ring. The map lengthR : K ′
0(R) → Z of

Lemma 55.1 is an isomorphism.

Proof. Omitted. �

Lemma 55.8. Let (R,m) be a local ring. Every finite projective R-module is finite
free. The map rankR : K0(R) → Z defined by [M ] → rankR(M) is well defined and an
isomorphism.
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Proof. Let P be a finite projective R-module. Choose elements x1, . . . , xn ∈ P
which map to a basis of P/mP . By Nakayama’s Lemma 20.1 these elements generate P .
The corresponding surjection u : R⊕n → P has a splitting as P is projective. Hence
R⊕n = P ⊕ Q with Q = Ker(u). It follows that Q/mQ = 0, hence Q is zero by
Nakayama’s lemma. In this way we see that every finite projectiveR-module is finite free.
A finite free module has a well defined rank by Lemma 15.8. Given a short exact sequence
of finite free R-modules

0→M ′ →M →M ′′ → 0
we have rank(M) = rank(M ′) + rank(M ′′) because we have M ∼= M ′ ⊕M ′ in this case
(for example we have a splitting by Lemma 5.2). We conclude K0(R) = Z. �

Lemma 55.9. Let R be a local Artinian ring. There is a commutative diagram

K0(R) //

rankR
��

K ′
0(R)

lengthR
��

Z
lengthR(R) // Z

where the vertical maps are isomorphisms by Lemmas 55.7 and 55.8.

Proof. Let P be a finite projective R-module. We have to show that lengthR(P ) =
rankR(P )lengthR(R). By Lemma 55.8 the module P is finite free. So P ∼= R⊕n for some
n ≥ 0. Then rankR(P ) = n and lengthR(R⊕n) = nlengthR(R) by additivity of lenghts
(Lemma 52.3). Thus the result holds. �

56. Graded rings

A graded ring will be for us a ring S endowed with a direct sum decomposition S =⊕
d≥0 Sd of the underlying abelian group such that Sd · Se ⊂ Sd+e. Note that we do

not allow nonzero elements in negative degrees. The irrelevant ideal is the ideal S+ =⊕
d>0 Sd. A graded module will be an S-module M endowed with a direct sum decom-

position M =
⊕

n∈Z Mn of the underlying abelian group such that Sd ·Me ⊂ Md+e.
Note that for modules we do allow nonzero elements in negative degrees. We think of
S as a graded S-module by setting S−k = (0) for k > 0. An element x (resp. f ) of M
(resp. S) is called homogeneous if x ∈ Md (resp. f ∈ Sd) for some d. A map of graded
S-modules is a map of S-modules ϕ : M →M ′ such that ϕ(Md) ⊂M ′

d. We do not allow
maps to shift degrees. Let us denote GrHom0(M,N) the S0-module of homomorphisms
of graded modules from M to N .

At this point there are the notions of graded ideal, graded quotient ring, graded submodule,
graded quotient module, graded tensor product, etc. We leave it to the reader to find the
relevant definitions, and lemmas. For example: A short exact sequence of graded modules
is short exact in every degree.

Given a graded ring S , a graded S-module M and n ∈ Z we denote M(n) the graded
S-module with M(n)d = Mn+d. This is called the twist of M by n. In particular we get
modulesS(n), n ∈ Z which will play an important role in the study of projective schemes.
There are some obvious functorial isomorphisms such as (M ⊕N)(n) = M(n)⊕N(n),
(M⊗SN)(n) = M⊗SN(n) = M(n)⊗SN . In addition we can define a gradedS-module
structure on the S0-module

GrHom(M,N) =
⊕

n∈Z
GrHomn(M,N), GrHomn(M,N) = GrHom0(M,N(n)).
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We omit the definition of the multiplication.

Lemma 56.1. Let S be a graded ring. Let M be a graded S-module.

(1) If S+M = M and M is finite, then M = 0.
(2) If N,N ′ ⊂ M are graded submodules, M = N + S+N

′, and N ′ is finite, then
M = N .

(3) If N → M is a map of graded modules, N/S+N → M/S+M is surjective, and
M is finite, then N →M is surjective.

(4) If x1, . . . , xn ∈ M are homogeneous and generate M/S+M and M is finite,
then x1, . . . , xn generate M .

Proof. Proof of (1). Choose generators y1, . . . , yr ofM over S. We may assume that
yi is homogeneous of degree di. After renumbering we may assume dr = min(di). Then
the condition that S+M = M implies yr = 0. Hence M = 0 by induction on r. Part
(2) follows by applying (1) to M/N . Part (3) follows by applying (2) to the submodules
Im(N → M) and M . Part (4) follows by applying (3) to the module map

⊕
S(−di) →

M , (s1, . . . , sn) 7→
∑
sixi. �

Let S be a graded ring. Let d ≥ 1 be an integer. We set S(d) =
⊕

n≥0 Snd. We think of
S(d) as a graded ring with degree n summand (S(d))n = Snd. Given a graded S-module
M we can similarly consider M (d) =

⊕
n∈Z Mnd which is a graded S(d)-module.

Lemma 56.2. Let S be a graded ring, which is finitely generated over S0. Then for
all sufficiently divisible d the algebra S(d) is generated in degree 1 over S0.

Proof. Say S is generated by f1, . . . , fr ∈ S over S0. After replacing fi by their
homogeneous parts, we may assume fi is homogeneous of degree di > 0. Then any ele-
ment of Sn is a linear combination with coefficients in S0 of monomials fe1

1 . . . ferr with∑
eidi = n. Let m be a multiple of lcm(di). For any N ≥ r if∑

eidi = Nm

then for some i we have ei ≥ m/di by an elementary argument. Hence every monomial
of degree Nm is a product of a monomial of degree m, namely fm/dii , and a monomial of
degree (N − 1)m. It follows that any monomial of degree nrm with n ≥ 2 is a product
of monomials of degree rm. Thus S(rm) is generated in degree 1 over S0. �

Lemma 56.3. Let R → S be a homomorphism of graded rings. Let S′ ⊂ S be the
integral closure of R in S. Then

S′ =
⊕

d≥0
S′ ∩ Sd,

i.e., S′ is a graded R-subalgebra of S.

Proof. We have to show the following: If s = sn + sn+1 + . . . + sm ∈ S′, then
each homogeneous part sj ∈ S′. We will prove this by induction on m − n over all
homomorphismsR→ S of graded rings. First note that it is immediate that s0 is integral
overR0 (hence overR) as there is a ring map S → S0 compatible with the ring mapR→
R0. Thus, after replacing s by s − s0, we may assume n > 0. Consider the extension of
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graded rings R[t, t−1]→ S[t, t−1] where t has degree 0. There is a commutative diagram

S[t, t−1]
s7→tdeg(s)s

// S[t, t−1]

R[t, t−1]

OO

r 7→tdeg(r)r // R[t, t−1]

OO

where the horizontal maps are ring automorphisms. Hence the integral closure C of
S[t, t−1] over R[t, t−1] maps into itself. Thus we see that

tm(sn + sn+1 + . . .+ sm)− (tnsn + tn+1sn+1 + . . .+ tmsm) ∈ C
which implies by induction hypothesis that each (tm − ti)si ∈ C for i = n, . . . ,m − 1.
Note that for any ring A and m > i ≥ n > 0 we have A[t, t−1]/(tm − ti − 1) ∼=
A[t]/(tm − ti − 1) ⊃ A because t(tm−1 − ti−1) = 1 in A[t]/(tm − ti − 1). Since
tm − ti maps to 1 we see the image of si in the ring S[t]/(tm − ti − 1) is integral over
R[t]/(tm − ti − 1) for i = n, . . . ,m − 1. Since R → R[t]/(tm − ti − 1) is finite we see
that si is integral over R by transitivity, see Lemma 36.6. Finally, we also conclude that
sm = s−

∑
i=n,...,m−1 si is integral over R. �

57. Proj of a graded ring

Let S be a graded ring. A homogeneous ideal is simply an ideal I ⊂ S which is also a
graded submodule of S. Equivalently, it is an ideal generated by homogeneous elements.
Equivalently, if f ∈ I and

f = f0 + f1 + . . .+ fn

is the decomposition of f into homogeneous parts in S then fi ∈ I for each i. To check
that a homogeneous ideal p is prime it suffices to check that if ab ∈ p with a, b homoge-
neous then either a ∈ p or b ∈ p.

Definition 57.1. Let S be a graded ring. We define Proj(S) to be the set of homo-
geneous prime ideals p of S such that S+ 6⊂ p. The set Proj(S) is a subset of Spec(S)
and we endow it with the induced topology. The topological space Proj(S) is called the
homogeneous spectrum of the graded ring S.

Note that by construction there is a continuous map
Proj(S) −→ Spec(S0).

Let S = ⊕d≥0Sd be a graded ring. Let f ∈ Sd and assume that d ≥ 1. We define S(f)
to be the subring of Sf consisting of elements of the form r/fn with r homogeneous and
deg(r) = nd. IfM is a graded S-module, then we define the S(f)-moduleM(f) as the sub
module ofMf consisting of elements of the form x/fn with x homogeneous of degree nd.

Lemma 57.2. Let S be a Z-graded ring containing a homogeneous invertible element
of positive degree. Then the set G ⊂ Spec(S) of Z-graded primes of S (with induced
topology) maps homeomorphically to Spec(S0).

Proof. First we show that the map is a bijection by constructing an inverse. Let f ∈
Sd, d > 0 be invertible in S. If p0 is a prime of S0, then p0S is a Z-graded ideal of S such
that p0S ∩S0 = p0. And if ab ∈ p0S with a, b homogeneous, then adbd/fdeg(a)+deg(b) ∈
p0. Thus either ad/fdeg(a) ∈ p0 or bd/fdeg(b) ∈ p0, in other words either ad ∈ p0S or
bd ∈ p0S. It follows that

√
p0S is a Z-graded prime ideal of S whose intersection with S0

is p0.
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To show that the map is a homeomorphism we show that the image of G ∩D(g) is open.
If g =

∑
gi with gi ∈ Si, then by the above G ∩ D(g) maps onto the set

⋃
D(gdi /f i)

which is open. �

For f ∈ S homogeneous of degree > 0 we define
D+(f) = {p ∈ Proj(S) | f 6∈ p}.

Finally, for a homogeneous ideal I ⊂ S we define
V+(I) = {p ∈ Proj(S) | I ⊂ p}.

We will use more generally the notation V+(E) for any set E of homogeneous elements
E ⊂ S.

Lemma 57.3 (Topology on Proj). Let S = ⊕d≥0Sd be a graded ring.
(1) The sets D+(f) are open in Proj(S).
(2) We have D+(ff ′) = D+(f) ∩D+(f ′).
(3) Let g = g0 + . . .+ gm be an element of S with gi ∈ Si. Then

D(g) ∩ Proj(S) = (D(g0) ∩ Proj(S)) ∪
⋃

i≥1
D+(gi).

(4) Let g0 ∈ S0 be a homogeneous element of degree 0. Then

D(g0) ∩ Proj(S) =
⋃

f∈Sd, d≥1
D+(g0f).

(5) The open sets D+(f) form a basis for the topology of Proj(S).
(6) Let f ∈ S be homogeneous of positive degree. The ring Sf has a natural Z-

grading. The ring maps S → Sf ← S(f) induce homeomorphisms

D+(f)← {Z-graded primes of Sf} → Spec(S(f)).
(7) There exists an S such that Proj(S) is not quasi-compact.
(8) The sets V+(I) are closed.
(9) Any closed subset T ⊂ Proj(S) is of the form V+(I) for some homogeneous ideal

I ⊂ S.
(10) For any graded ideal I ⊂ S we have V+(I) = ∅ if and only if S+ ⊂

√
I .

Proof. Since D+(f) = Proj(S) ∩ D(f), these sets are open. This proves (1). Also
(2) follows as D(ff ′) = D(f) ∩D(f ′). Similarly the sets V+(I) = Proj(S) ∩ V (I) are
closed. This proves (8).
Suppose that T ⊂ Proj(S) is closed. Then we can write T = Proj(S) ∩ V (J) for some
ideal J ⊂ S. By definition of a homogeneous ideal if g ∈ J , g = g0 + . . . + gm with
gd ∈ Sd then gd ∈ p for all p ∈ T . Thus, letting I ⊂ S be the ideal generated by the
homogeneous parts of the elements of J we have T = V+(I). This proves (9).
The formula for Proj(S) ∩ D(g), with g ∈ S is direct from the definitions. This proves
(3). Consider the formula for Proj(S) ∩ D(g0). The inclusion of the right hand side in
the left hand side is obvious. For the other inclusion, suppose g0 6∈ p with p ∈ Proj(S). If
all g0f ∈ p for all homogeneous f of positive degree, then we see that S+ ⊂ p which is a
contradiction. This gives the other inclusion. This proves (4).
The collection of opens D(g) ∩ Proj(S) forms a basis for the topology since the standard
opens D(g) ⊂ Spec(S) form a basis for the topology on Spec(S). By the formulas above
we can express D(g) ∩ Proj(S) as a union of opens D+(f). Hence the collection of opens
D+(f) forms a basis for the topology also. This proves (5).
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Proof of (6). First we note thatD+(f) may be identified with a subset (with induced topol-
ogy) of D(f) = Spec(Sf ) via Lemma 17.6. Note that the ring Sf has a Z-grading. The
homogeneous elements are of the form r/fn with r ∈ S homogeneous and have degree
deg(r/fn) = deg(r) − n deg(f). The subset D+(f) corresponds exactly to those prime
ideals p ⊂ Sf which are Z-graded ideals (i.e., generated by homogeneous elements). Hence
we have to show that the set of Z-graded prime ideals of Sf maps homeomorphically to
Spec(S(f)). This follows from Lemma 57.2.
Let S = Z[X1, X2, X3, . . .] with grading such that each Xi has degree 1. Then it is easy
to see that

Proj(S) =
⋃∞

i=1
D+(Xi)

does not have a finite refinement. This proves (7).

Let I ⊂ S be a graded ideal. If
√
I ⊃ S+ then V+(I) = ∅ since every prime p ∈ Proj(S)

does not contain S+ by definition. Conversely, suppose that S+ 6⊂
√
I . Then we can find

an element f ∈ S+ such that f is not nilpotent modulo I . Clearly this means that one of
the homogeneous parts of f is not nilpotent modulo I , in other words we may (and do)
assume that f is homogeneous. This implies that ISf 6= Sf , in other words that (S/I)f
is not zero. Hence (S/I)(f) 6= 0 since it is a ring which maps into (S/I)f . Pick a prime
q ⊂ (S/I)(f). This corresponds to a graded prime of S/I , not containing the irrelevant
ideal (S/I)+. And this in turn corresponds to a graded prime ideal p of S , containing I
but not containing S+ as desired. This proves (10) and finishes the proof. �

Example 57.4. Let R be a ring. If S = R[X] with deg(X) = 1, then the natural
map Proj(S) → Spec(R) is a bijection and in fact a homeomorphism. Namely, suppose
p ∈ Proj(S). Since S+ 6⊂ p we see that X 6∈ p. Thus if aXn ∈ p with a ∈ R and n > 0,
then a ∈ p. It follows that p = p0S with p0 = p ∩R.

If p ∈ Proj(S), then we define S(p) to be the ring whose elements are fractions r/f where
r, f ∈ S are homogeneous elements of the same degree such that f 6∈ p. As usual we say
r/f = r′/f ′ if and only if there exists some f ′′ ∈ S homogeneous, f ′′ 6∈ p such that
f ′′(rf ′ − r′f) = 0. Given a graded S-module M we let M(p) be the S(p)-module whose
elements are fractions x/f with x ∈M and f ∈ S homogeneous of the same degree such
that f 6∈ p. We say x/f = x′/f ′ if and only if there exists some f ′′ ∈ S homogeneous,
f ′′ 6∈ p such that f ′′(xf ′ − x′f) = 0.

Lemma 57.5. LetS be a graded ring. LetM be a gradedS-module. Let p be an element
of Proj(S). Let f ∈ S be a homogeneous element of positive degree such that f 6∈ p, i.e.,
p ∈ D+(f). Let p′ ⊂ S(f) be the element of Spec(S(f)) corresponding to p as in Lemma
57.3. Then S(p) = (S(f))p′ and compatibly M(p) = (M(f))p′ .

Proof. We define a map ψ : M(p) → (M(f))p′ . Let x/g ∈M(p). We set

ψ(x/g) = (xgdeg(f)−1/fdeg(x))/(gdeg(f)/fdeg(g)).
This makes sense since deg(x) = deg(g) and since gdeg(f)/fdeg(g) 6∈ p′. We omit the
verification that ψ is well defined, a module map and an isomorphism. Hint: the inverse
sends (x/fn)/(g/fm) to (xfm)/(gfn). �

Here is a graded variant of Lemma 15.2.

Lemma 57.6. Suppose S is a graded ring, pi, i = 1, . . . , r homogeneous prime ideals
and I ⊂ S+ a graded ideal. Assume I 6⊂ pi for all i. Then there exists a homogeneous
element x ∈ I of positive degree such that x 6∈ pi for all i.
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Proof. We may assume there are no inclusions among the pi. The result is true for
r = 1. Suppose the result holds for r − 1. Pick x ∈ I homogeneous of positive degree
such that x 6∈ pi for all i = 1, . . . , r − 1. If x 6∈ pr we are done. So assume x ∈ pr. If
Ip1 . . . pr−1 ⊂ pr then I ⊂ pr a contradiction. Pick y ∈ Ip1 . . . pr−1 homogeneous and
y 6∈ pr. Then xdeg(y) + ydeg(x) works. �

Lemma 57.7. Let S be a graded ring. Let p ⊂ S be a prime. Let q be the homogeneous
ideal of S generated by the homogeneous elements of p. Then q is a prime ideal of S.

Proof. Suppose f, g ∈ S are such that fg ∈ q. Let fd (resp. ge) be the homogeneous
part of f (resp. g) of degree d (resp. e). Assume d, e are maxima such that fd 6= 0 and
ge 6= 0. By assumption we can write fg =

∑
aifi with fi ∈ p homogeneous. Say

deg(fi) = di. Then fdge =
∑
a′
ifi with a′

i to homogeneous par of degree d + e − di of
ai (or 0 if d + e − di < 0). Hence fd ∈ p or ge ∈ p. Hence fd ∈ q or ge ∈ q. In the
first case replace f by f − fd, in the second case replace g by g − ge. Then still fg ∈ q
but the discrete invariant d+ e has been decreased. Thus we may continue in this fashion
until either f or g is zero. This clearly shows that fg ∈ q implies either f ∈ q or g ∈ q as
desired. �

Lemma 57.8. Let S be a graded ring.
(1) Any minimal prime of S is a homogeneous ideal of S.
(2) Given a homogeneous ideal I ⊂ S any minimal prime over I is homogeneous.

Proof. The first assertion holds because the prime q constructed in Lemma 57.7 sat-
isfies q ⊂ p. The second because we may consider S/I and apply the first part. �

Lemma 57.9. Let R be a ring. Let S be a graded R-algebra. Let f ∈ S+ be homoge-
neous. Assume that S is of finite type over R. Then

(1) the ring S(f) is of finite type over R, and
(2) for any finite graded S-module M the module M(f) is a finite S(f)-module.

Proof. Choose f1, . . . , fn ∈ S which generate S as an R-algebra. We may assume
that each fi is homogeneous (by decomposing each fi into its homogeneous components).
An element of S(f) is a sum of the form∑

e deg(f)=
∑

ei deg(fi)
λe1...enf

e1
1 . . . fenn /fe

with λe1...en ∈ R. Thus S(f) is generated as an R-algebra by the fe1
1 . . . fenn /fe with the

property that e deg(f) =
∑
ei deg(fi). If ei ≥ deg(f) then we can write this as

fe1
1 . . . fenn /fe = f

deg(f)
i /fdeg(fi) · fe1

1 . . . f
ei−deg(f)
i . . . fenn /fe−deg(fi)

Thus we only need the elements fdeg(f)
i /fdeg(fi) as well as the elements fe1

1 . . . fenn /fe

with e deg(f) =
∑
ei deg(fi) and ei < deg(f). This is a finite list and we see that (1) is

true.
To see (2) suppose that M is generated by homogeneous elements x1, . . . , xm. Then ar-
guing as above we find that M(f) is generated as an S(f)-module by the finite list of
elements of the form fe1

1 . . . fenn xj/f
e with e deg(f) =

∑
ei deg(fi) + deg(xj) and

ei < deg(f). �

Lemma 57.10. LetR be a ring. LetR′ be a finite typeR-algebra, and letM be a finite
R′-module. There exists a graded R-algebra S , a graded S-module N and an element
f ∈ S homogeneous of degree 1 such that
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(1) R′ ∼= S(f) and M ∼= N(f) (as modules),
(2) S0 = R and S is generated by finitely many elements of degree 1 over R, and
(3) N is a finite S-module.

Proof. We may write R′ = R[x1, . . . , xn]/I for some ideal I . For an element g ∈
R[x1, . . . , xn] denote g̃ ∈ R[X0, . . . , Xn] the element homogeneous of minimal degree
such that g = g̃(1, x1, . . . , xn). Let Ĩ ⊂ R[X0, . . . , Xn] generated by all elements g̃,
g ∈ I . Set S = R[X0, . . . , Xn]/Ĩ and denote f the image ofX0 in S. By construction we
have an isomorphism

S(f) −→ R′, Xi/X0 7−→ xi.

To do the same thing with the module M we choose a presentation

M = (R′)⊕r/
∑

j∈J
R′kj

with kj = (k1j , . . . , krj). Let dij = deg(k̃ij). Set dj = max{dij}. SetKij = X
dj−dij
0 k̃ij

which is homogeneous of degree dj . With this notation we set

N = Coker
(⊕

j∈J
S(−dj)

(Kij)−−−→ S⊕r
)

which works. Some details omitted. �

58. Noetherian graded rings

A bit of theory on Noetherian graded rings including some material on Hilbert polyno-
mials.

Lemma 58.1. Let S be a graded ring. A set of homogeneous elements fi ∈ S+ gener-
ates S as an algebra over S0 if and only if they generate S+ as an ideal of S.

Proof. If the fi generate S as an algebra over S0 then every element in S+ is a poly-
nomial without constant term in the fi and hence S+ is generated by the fi as an ideal.
Conversely, suppose that S+ =

∑
Sfi. We will prove that any element f of S can be

written as a polynomial in the fi with coefficients in S0. It suffices to do this for homoge-
neous elements. Say f has degree d. Then we may perform induction on d. The case d = 0
is immediate. If d > 0 then f ∈ S+ hence we can write f =

∑
gifi for some gi ∈ S. As

S is graded we can replace gi by its homogeneous component of degree d − deg(fi). By
induction we see that each gi is a polynomial in the fi and we win. �

Lemma 58.2. A graded ring S is Noetherian if and only if S0 is Noetherian and S+
is finitely generated as an ideal of S.

Proof. It is clear that if S is Noetherian then S0 = S/S+ is Noetherian and S+
is finitely generated. Conversely, assume S0 is Noetherian and S+ finitely generated
as an ideal of S. Pick generators S+ = (f1, . . . , fn). By decomposing the fi into ho-
mogeneous pieces we may assume each fi is homogeneous. By Lemma 58.1 we see that
S0[X1, . . . Xn] → S sending Xi to fi is surjective. Thus S is Noetherian by Lemma
31.1. �

Definition 58.3. LetA be an abelian group. We say that a function f : n 7→ f(n) ∈
A defined for all sufficient large integers n is a numerical polynomial if there exists r ≥ 0,
elements a0, . . . , ar ∈ A such that

f(n) =
∑r

i=0

(
n

i

)
ai
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for all n� 0.

The reason for using the binomial coefficients is the elementary fact that any polynomial
P ∈ Q[T ] all of whose values at integer points are integers, is equal to a sum P (T ) =∑
ai
(
T
i

)
with ai ∈ Z. Note that in particular the expressions

(
T+1
i+1
)

are of this form.

Lemma 58.4. IfA→ A′ is a homomorphism of abelian groups and if f : n 7→ f(n) ∈
A is a numerical polynomial, then so is the composition.

Proof. This is immediate from the definitions. �

Lemma 58.5. Suppose that f : n 7→ f(n) ∈ A is defined for all n sufficiently large
and suppose that n 7→ f(n)− f(n− 1) is a numerical polynomial. Then f is a numerical
polynomial.

Proof. Let f(n) − f(n − 1) =
∑r
i=0
(
n
i

)
ai for all n � 0. Set g(n) = f(n) −∑r

i=0
(
n+1
i+1
)
ai. Then g(n)− g(n− 1) = 0 for all n� 0. Hence g is eventually constant,

say equal to a−1. We leave it to the reader to show that a−1 +
∑r
i=0
(
n+1
i+1
)
ai has the

required shape (see remark above the lemma). �

Lemma 58.6. If M is a finitely generated graded S-module, and if S is finitely gen-
erated over S0, then each Mn is a finite S0-module.

Proof. Suppose the generators ofM aremi and the generators of S are fi. By taking
homogeneous components we may assume that the mi and the fi are homogeneous and
we may assume fi ∈ S+. In this case it is clear that each Mn is generated over S0 by the
“monomials”

∏
feii mj whose degree is n. �

Proposition 58.7. Suppose that S is a Noetherian graded ring andM a finite graded
S-module. Consider the function

Z −→ K ′
0(S0), n 7−→ [Mn]

see Lemma 58.6. If S+ is generated by elements of degree 1, then this function is a numer-
ical polynomial.

Proof. We prove this by induction on the minimal number of generators of S1. If
this number is 0, then Mn = 0 for all n� 0 and the result holds. To prove the induction
step, let x ∈ S1 be one of a minimal set of generators, such that the induction hypothesis
applies to the graded ring S/(x).

First we show the result holds if x is nilpotent on M . This we do by induction on the
minimal integer r such that xrM = 0. If r = 1, then M is a module over S/xS and the
result holds (by the other induction hypothesis). If r > 1, then we can find a short exact
sequence 0→M ′ →M →M ′′ → 0 such that the integers r′, r′′ are strictly smaller than
r. Thus we know the result forM ′′ andM ′. Hence we get the result forM because of the
relation [Md] = [M ′

d] + [M ′′
d ] in K ′

0(S0).

If x is not nilpotent onM , letM ′ ⊂M be the largest submodule on which x is nilpotent.
Consider the exact sequence 0 → M ′ → M → M/M ′ → 0 we see again it suffices to
prove the result for M/M ′. In other words we may assume that multiplication by x is
injective.

Let M = M/xM . Note that the map x : M → M is not a map of graded S-modules,
since it does not map Md into Md. Namely, for each d we have the following short exact



59. NOETHERIAN LOCAL RINGS 623

sequence
0→Md

x−→Md+1 →Md+1 → 0
This proves that [Md+1]− [Md] = [Md+1]. Hence we win by Lemma 58.5. �

Remark 58.8. If S is still Noetherian but S is not generated in degree 1, then the
function associated to a graded S-module is a periodic polynomial (i.e., it is a numerical
polynomial on the congruence classes of integers modulo n for some n).

Example 58.9. Suppose that S = k[X1, . . . , Xd]. By Example 55.2 we may identify
K0(k) = K ′

0(k) = Z. Hence any finitely generated graded k[X1, . . . , Xd]-module gives
rise to a numerical polynomial n 7→ dimk(Mn).

Lemma 58.10. Let k be a field. Suppose that I ⊂ k[X1, . . . , Xd] is a nonzero graded
ideal. Let M = k[X1, . . . , Xd]/I . Then the numerical polynomial n 7→ dimk(Mn) (see
Example 58.9) has degree < d− 1 (or is zero if d = 1).

Proof. The numerical polynomial associated to the graded module k[X1, . . . , Xd]
is n 7→

(
n−1+d
d−1

)
. For any nonzero homogeneous f ∈ I of degree e and any degree

n >> e we have In ⊃ f · k[X1, . . . , Xd]n−e and hence dimk(In) ≥
(
n−e−1+d
d−1

)
. Hence

dimk(Mn) ≤
(
n−1+d
d−1

)
−
(
n−e−1+d
d−1

)
. We win because the last expression has degree

< d− 1 (or is zero if d = 1). �

59. Noetherian local rings

In all of this section (R,m, κ) is a Noetherian local ring. We develop some theory on
Hilbert functions of modules in this section. Let M be a finite R-module. We define the
Hilbert function of M to be the function

ϕM : n 7−→ lengthR(mnM/mn+1M)
defined for all integers n ≥ 0. Another important invariant is the function

χM : n 7−→ lengthR(M/mn+1M)
defined for all integers n ≥ 0. Note that we have by Lemma 52.3 that

χM (n) =
∑n

i=0
ϕM (i).

There is a variant of this construction which uses an ideal of definition.

Definition 59.1. Let (R,m) be a local Noetherian ring. An ideal I ⊂ R such that√
I = m is called an ideal of definition of R.

Let I ⊂ R be an ideal of definition. Because R is Noetherian this means that mr ⊂ I
for some r, see Lemma 32.5. Hence any finite R-module annihilated by a power of I has a
finite length, see Lemma 52.8. Thus it makes sense to define

ϕI,M (n) = lengthR(InM/In+1M) and χI,M (n) = lengthR(M/In+1M)
for all n ≥ 0. Again we have that

χI,M (n) =
∑n

i=0
ϕI,M (i).

Lemma 59.2. Suppose thatM ′ ⊂M are finiteR-modules with finite length quotient.
Then there exists a constants c1, c2 such that for all n ≥ c2 we have

c1 + χI,M ′(n− c2) ≤ χI,M (n) ≤ c1 + χI,M ′(n)
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Proof. Since M/M ′ has finite length there is a c2 ≥ 0 such that Ic2M ⊂ M ′. Let
c1 = lengthR(M/M ′). For n ≥ c2 we have

χI,M (n) = lengthR(M/In+1M)
= c1 + lengthR(M ′/In+1M)
≤ c1 + lengthR(M ′/In+1M ′)
= c1 + χI,M ′(n)

On the other hand, since Ic2M ⊂ M ′, we have InM ⊂ In−c2M ′ for n ≥ c2. Thus for
n ≥ c2 we get

χI,M (n) = lengthR(M/In+1M)
= c1 + lengthR(M ′/In+1M)
≥ c1 + lengthR(M ′/In+1−c2M ′)
= c1 + χI,M ′(n− c2)

which finishes the proof. �

Lemma 59.3. Suppose that 0 → M ′ → M → M ′′ → 0 is a short exact sequence
of finite R-modules. Then there exists a submodule N ⊂ M ′ with finite colength l and
c ≥ 0 such that

χI,M (n) = χI,M ′′(n) + χI,N (n− c) + l

and
ϕI,M (n) = ϕI,M ′′(n) + ϕI,N (n− c)

for all n ≥ c.

Proof. Note that M/InM →M ′′/InM ′′ is surjective with kernel M ′/M ′ ∩ InM .
By the Artin-Rees Lemma 51.2 there exists a constant c such thatM ′∩InM = In−c(M ′∩
IcM). Denote N = M ′ ∩ IcM . Note that IcM ′ ⊂ N ⊂M ′. Hence lengthR(M ′/M ′ ∩
InM) = lengthR(M ′/N) + lengthR(N/In−cN) for n ≥ c. From the short exact se-
quence

0→M ′/M ′ ∩ InM →M/InM →M ′′/InM ′′ → 0
and additivity of lengths (Lemma 52.3) we obtain the equality

χI,M (n− 1) = χI,M ′′(n− 1) + χI,N (n− c− 1) + lengthR(M ′/N)

for n ≥ c. We have ϕI,M (n) = χI,M (n) − χI,M (n − 1) and similarly for the modules
M ′′ and N . Hence we get ϕI,M (n) = ϕI,M ′′(n) + ϕI,N (n− c) for n ≥ c. �

Lemma 59.4. Suppose that I , I ′ are two ideals of definition for the Noetherian local
ring R. Let M be a finite R-module. There exists a constant a such that χI,M (n) ≤
χI′,M (an) for n ≥ 1.

Proof. There exists an integer c ≥ 1 such that (I ′)c ⊂ I . Hence we get a surjection
M/(I ′)c(n+1)M →M/In+1M . Whence the result with a = 2c− 1. �

Proposition 59.5. LetR be a Noetherian local ring. LetM be a finiteR-module. Let
I ⊂ R be an ideal of definition. The Hilbert function ϕI,M and the function χI,M are
numerical polynomials.
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Proof. Consider the graded ring S = R/I ⊕ I/I2⊕ I2/I3⊕ . . . =
⊕

d≥0 I
d/Id+1.

Consider the graded S-module N = M/IM ⊕ IM/I2M ⊕ . . . =
⊕

d≥0 I
dM/Id+1M .

This pair (S,N) satisfies the hypotheses of Proposition 58.7. Hence the result for ϕI,M
follows from that proposition and Lemma 55.1. The result for χI,M follows from this and
Lemma 58.5. �

Definition 59.6. LetR be a Noetherian local ring. LetM be a finiteR-module. The
Hilbert polynomial ofM overR is the element P (t) ∈ Q[t] such that P (n) = ϕM (n) for
n� 0.

By Proposition 59.5 we see that the Hilbert polynomial exists.

Lemma 59.7. Let R be a Noetherian local ring. Let M be a finite R-module.
(1) The degree of the numerical polynomial ϕI,M is independent of the ideal of

definition I .
(2) The degree of the numerical polynomial χI,M is independent of the ideal of

definition I .

Proof. Part (2) follows immediately from Lemma 59.4. Part (1) follows from (2)
because ϕI,M (n) = χI,M (n)− χI,M (n− 1) for n ≥ 1. �

Definition 59.8. Let R be a local Noetherian ring and M a finite R-module. We
denote d(M) the element of {−∞, 0, 1, 2, . . .} defined as follows:

(1) If M = 0 we set d(M) = −∞,
(2) if M 6= 0 then d(M) is the degree of the numerical polynomial χM .

If mnM 6= 0 for all n, then we see that d(M) is the degree +1 of the Hilbert polynomial
of M .

Lemma 59.9. Let R be a Noetherian local ring. Let I ⊂ R be an ideal of definition.
LetM be a finiteR-module which does not have finite length. IfM ′ ⊂M is a submodule
with finite colength, then χI,M − χI,M ′ is a polynomial of degree < degree of either
polynomial.

Proof. Follows from Lemma 59.2 by elementary calculus. �

Lemma 59.10. Let R be a Noetherian local ring. Let I ⊂ R be an ideal of definition.
Let 0→M ′ →M →M ′′ → 0 be a short exact sequence of finite R-modules. Then

(1) if M ′ does not have finite length, then χI,M − χI,M ′′ − χI,M ′ is a numerical
polynomial of degree < the degree of χI,M ′ ,

(2) max{deg(χI,M ′),deg(χI,M ′′)} = deg(χI,M ), and
(3) max{d(M ′), d(M ′′)} = d(M),

Proof. We first prove (1). Let N ⊂ M ′ be as in Lemma 59.3. By Lemma 59.9 the
numerical polynomial χI,M ′ −χI,N has degree< the common degree of χI,M ′ and χI,N .
By Lemma 59.3 the difference

χI,M (n)− χI,M ′′(n)− χI,N (n− c)
is constant for n� 0. By elementary calculus the difference χI,N (n)− χI,N (n− c) has
degree < the degree of χI,N which is bigger than zero (see above). Putting everything
together we obtain (1).
Note that the leading coefficients of χI,M ′ and χI,M ′′ are nonnegative. Thus the degree
of χI,M ′ +χI,M ′′ is equal to the maximum of the degrees. Thus ifM ′ does not have finite
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length, then (2) follows from (1). IfM ′ does have finite length, then InM → InM ′′ is an
isomorphism for all n� 0 by Artin-Rees (Lemma 51.2). Thus M/InM →M ′′/InM ′′ is
a surjection with kernelM ′ forn� 0 and we see thatχI,M (n)−χI,M ′′(n) = length(M ′)
for all n� 0. Thus (2) holds in this case also.
Proof of (3). This follows from (2) except if one of M , M ′, or M ′′ is zero. We omit the
proof in these special cases. �

60. Dimension

Please compare with Topology, Section 10.

Definition 60.1. Let R be a ring. A chain of prime ideals is a sequence p0 ⊂ p1 ⊂
. . . ⊂ pn of prime ideals ofR such that pi 6= pi+1 for i = 0, . . . , n− 1. The length of this
chain of prime ideals is n.

Recall that we have an inclusion reversing bijection between prime ideals of a ring R and
irreducible closed subsets of Spec(R), see Lemma 26.1.

Definition 60.2. The Krull dimension of the ring R is the Krull dimension of the
topological space Spec(R), see Topology, Definition 10.1. In other words it is the supre-
mum of the integers n ≥ 0 such that R has a chain of prime ideals

p0 ⊂ p1 ⊂ . . . ⊂ pn, pi 6= pi+1.

of length n.

Definition 60.3. The height of a prime ideal p of a ring R is the dimension of the
local ring Rp.

Lemma 60.4. The Krull dimension of R is the supremum of the heights of its (max-
imal) primes.

Proof. This is so because we can always add a maximal ideal at the end of a chain of
prime ideals. �

Lemma 60.5. A Noetherian ring of dimension 0 is Artinian. Conversely, any Ar-
tinian ring is Noetherian of dimension zero.

Proof. Assume R is a Noetherian ring of dimension 0. By Lemma 31.5 the space
Spec(R) is Noetherian. By Topology, Lemma 9.2 we see that Spec(R) has finitely many
irreducible components, say Spec(R) = Z1 ∪ . . . ∪ Zr. According to Lemma 26.1 each
Zi = V (pi) with pi a minimal ideal. Since the dimension is 0 these pi are also maximal.
Thus Spec(R) is the discrete topological space with elements pi. All elements f of the
Jacobson radical

⋂
pi are nilpotent since otherwise Rf would not be the zero ring and

we would have another prime. By Lemma 53.5 R is equal to
∏
Rpi . Since Rpi is also

Noetherian and dimension 0, the previous arguments show that its radical piRpi is locally
nilpotent. Lemma 32.5 gives pni Rpi = 0 for some n ≥ 1. By Lemma 52.8 we conclude that
Rpi has finite length over R. Hence we conclude that R is Artinian by Lemma 53.6.
IfR is an Artinian ring then by Lemma 53.6 it is Noetherian. All of its primes are maximal
by a combination of Lemmas 53.3, 53.4 and 53.5. �

In the following we will use the invariant d(−) defined in Definition 59.8. Here is a warm
up lemma.

Lemma 60.6. Let R be a Noetherian local ring. Then dim(R) = 0⇔ d(R) = 0.
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Proof. This is because d(R) = 0 if and only if R has finite length as an R-module.
See Lemma 53.6. �

Proposition 60.7. Let R be a ring. The following are equivalent:
(1) R is Artinian,
(2) R is Noetherian and dim(R) = 0,
(3) R has finite length as a module over itself,
(4) R is a finite product of Artinian local rings,
(5) R is Noetherian and Spec(R) is a finite discrete topological space,
(6) R is a finite product of Noetherian local rings of dimension 0,
(7) R is a finite product of Noetherian local rings Ri with d(Ri) = 0,
(8) R is a finite product of Noetherian local ringsRi whose maximal ideals are nilpo-

tent,
(9) R is Noetherian, has finitely many maximal ideals and its Jacobson radical ideal

is nilpotent, and
(10) R is Noetherian and there are no strict inclusions among its primes.

Proof. This is a combination of Lemmas 53.5, 53.6, 60.5, and 60.6. �

Lemma 60.8. Let R be a local Noetherian ring. The following are equivalent:
(1) dim(R) = 1,
(2) d(R) = 1,
(3) there exists an x ∈ m, x not nilpotent such that V (x) = {m},
(4) there exists an x ∈ m, x not nilpotent such that m =

√
(x), and

(5) there exists an ideal of definition generated by 1 element, and no ideal of defini-
tion is generated by 0 elements.

Proof. First, assume that dim(R) = 1. Let pi be the minimal primes of R. Because
the dimension is 1 the only other prime of R is m. According to Lemma 31.6 there are
finitely many. Hence we can find x ∈ m, x 6∈ pi, see Lemma 15.2. Thus the only prime
containing x is m and hence (3).

If (3) then m =
√

(x) by Lemma 17.2, and hence (4). The converse is clear as well. The
equivalence of (4) and (5) follows from directly the definitions.

Assume (5). Let I = (x) be an ideal of definition. Note that In/In+1 is a quotient ofR/I
via multiplication by xn and hence lengthR(In/In+1) is bounded. Thus d(R) = 0 or
d(R) = 1, but d(R) = 0 is excluded by the assumption that 0 is not an ideal of definition.

Assume (2). To get a contradiction, assume there exist primes p ⊂ q ⊂ m, with both
inclusions strict. Pick some ideal of definition I ⊂ R. We will repeatedly use Lemma
59.10. First of all it implies, via the exact sequence 0 → p → R → R/p → 0, that
d(R/p) ≤ 1. But it clearly cannot be zero. Pick x ∈ q, x 6∈ p. Consider the short exact
sequence

0→ R/p→ R/p→ R/(xR+ p)→ 0.
This implies that χI,R/p − χI,R/p − χI,R/(xR+p) = −χI,R/(xR+p) has degree < 1. In
other words, d(R/(xR+ p)) = 0, and hence dim(R/(xR+ p)) = 0, by Lemma 60.6. But
R/(xR+ p) has the distinct primes q/(xR+ p) and m/(xR+ p) which gives the desired
contradiction. �

Proposition 60.9. Let R be a local Noetherian ring. Let d ≥ 0 be an integer. The
following are equivalent:



628 10. COMMUTATIVE ALGEBRA

(1) dim(R) = d,
(2) d(R) = d,
(3) there exists an ideal of definition generated by d elements, and no ideal of defi-

nition is generated by fewer than d elements.

Proof. This proof is really just the same as the proof of Lemma 60.8. We will prove
the proposition by induction on d. By Lemmas 60.6 and 60.8 we may assume that d > 1.
Denote the minimal number of generators for an ideal of definition of R by d′(R). We
will prove the inequalities dim(R) ≥ d′(R) ≥ d(R) ≥ dim(R), and hence they are all
equal.

First, assume that dim(R) = d. Let pi be the minimal primes of R. According to Lemma
31.6 there are finitely many. Hence we can find x ∈ m, x 6∈ pi, see Lemma 15.2. Note
that every maximal chain of primes starts with some pi, hence the dimension of R/xR is
at most d− 1. By induction there are x2, . . . , xd which generate an ideal of definition in
R/xR. Hence R has an ideal of definition generated by (at most) d elements.

Assume d′(R) = d. Let I = (x1, . . . , xd) be an ideal of definition. Note that In/In+1

is a quotient of a direct sum of
(
d+n−1
d−1

)
copies R/I via multiplication by all degree n

monomials in x1, . . . , xd. Hence lengthR(In/In+1) is bounded by a polynomial of degree
d− 1. Thus d(R) ≤ d.

Assume d(R) = d. Consider a chain of primes p ⊂ q ⊂ q2 ⊂ . . . ⊂ qe = m, with all
inclusions strict, and e ≥ 2. Pick some ideal of definition I ⊂ R. We will repeatedly use
Lemma 59.10. First of all it implies, via the exact sequence 0→ p→ R→ R/p→ 0, that
d(R/p) ≤ d. But it clearly cannot be zero. Pick x ∈ q, x 6∈ p. Consider the short exact
sequence

0→ R/p→ R/p→ R/(xR+ p)→ 0.
This implies thatχI,R/p−χI,R/p−χI,R/(xR+p) = −χI,R/(xR+p) has degree< d. In other
words, d(R/(xR+p)) ≤ d−1, and hence dim(R/(xR+p)) ≤ d−1, by induction. Now
R/(xR+p) has the chain of prime ideals q/(xR+p) ⊂ q2/(xR+p) ⊂ . . . ⊂ qe/(xR+p)
which gives e− 1 ≤ d− 1. Since we started with an arbitrary chain of primes this proves
that dim(R) ≤ d(R).

Reading back the reader will see we proved the circular inequalities as desired. �

Let (R,m) be a Noetherian local ring. From the above it is clear that m cannot be gener-
ated by fewer than dim(R) variables. By Nakayama’s Lemma 20.1 the minimal number
of generators of m equals dimκ(m) m/m

2. Hence we have the following fundamental in-
equality

dim(R) ≤ dimκ(m) m/m
2.

It turns out that the rings where equality holds have a lot of good properties. They are
called regular local rings.

Definition 60.10. Let (R,m) be a Noetherian local ring of dimension d.
(1) A system of parameters of R is a sequence of elements x1, . . . , xd ∈ m which

generates an ideal of definition of R,
(2) if there existx1, . . . , xd ∈ m such thatm = (x1, . . . , xd) then we callR a regular

local ring and x1, . . . , xd a regular system of parameters.

The following lemmas are clear from the proofs of the lemmas and proposition above, but
we spell them out so we have convenient references.
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Lemma 60.11. Let R be a Noetherian ring. Let x ∈ R.
(1) If p is minimal over (x) then the height of p is 0 or 1.
(2) If p, q ∈ Spec(R) and q is minimal over (p, x), then there is no prime strictly

between p and q.

Proof. Proof of (1). If p is minimal overx, then the only prime ideal ofRp containing
x is the maximal ideal pRp. This is true because the primes of Rp correspond 1-to-1 with
the primes of R contained in p, see Lemma 17.5. Hence Lemma 60.8 shows dim(Rp) = 1
if x is not nilpotent in Rp. Of course, if x is nilpotent in Rp the argument gives that pRp

is the only prime ideal and we see that the height is 0.

Proof of (2). By part (1) we see that q/p is a prime of height 1 or 0 inR/p. This immediately
implies there cannot be a prime strictly between p and q. �

Lemma 60.12. Let R be a Noetherian ring. Let f1, . . . , fr ∈ R.
(1) If p is minimal over (f1, . . . , fr) then the height of p is ≤ r.
(2) If p, q ∈ Spec(R) and q is minimal over (p, f1, . . . , fr), then every chain of

primes between p and q has length at most r.

Proof. Proof of (1). If p is minimal over f1, . . . , fr , then the only prime ideal of
Rp containing f1, . . . , fr is the maximal ideal pRp. This is true because the primes of Rp

correspond 1-to-1 with the primes ofR contained in p, see Lemma 17.5. Hence Proposition
60.9 shows dim(Rp) ≤ r.

Proof of (2). By part (1) we see that q/p is a prime of height≤ r. This immediately implies
the statement about chains of primes between p and q. �

Lemma 60.13. Suppose thatR is a Noetherian local ring and x ∈ m an element of its
maximal ideal. Then dimR ≤ dimR/xR+1. If x is not contained in any of the minimal
primes of R then equality holds. (For example if x is a nonzerodivisor.)

Proof. If x1, . . . , xdimR/xR ∈ R map to elements of R/xR which generate an ideal
of definition for R/xR, then x, x1, . . . , xdimR/xR generate an ideal of definition for R.
Hence the inequality by Proposition 60.9. On the other hand, if x is not contained in any
minimal prime ofR, then the chains of primes inR/xR all give rise to chains inR which
are at least one step away from being maximal. �

Lemma 60.14. Let (R,m) be a Noetherian local ring. Suppose x1, . . . , xd ∈ m gen-
erate an ideal of definition and d = dim(R). Then dim(R/(x1, . . . , xi)) = d − i for all
i = 1, . . . , d.

Proof. Follows either from the proof of Proposition 60.9, or by using induction on
d and Lemma 60.13. �

61. Applications of dimension theory

We can use the results on dimension to prove certain rings have infinite spectra and to
produce more Jacobson rings.

Lemma 61.1. Let R be a Noetherian local domain of dimension ≥ 2. A nonempty
open subset U ⊂ Spec(R) is infinite.
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Proof. To get a contradiction, assume that U ⊂ Spec(R) is finite. In this case (0) ∈
U and {(0)} is an open subset of U (because the complement of {(0)} is the union of
the closures of the other points). Thus we may assume U = {(0)}. Let m ⊂ R be the
maximal ideal. We can find an x ∈ m, x 6= 0 such that V (x) ∪ U = Spec(R). In other
words we see that D(x) = {(0)}. In particular we see that dim(R/xR) = dim(R) −
1 ≥ 1, see Lemma 60.13. Let y2, . . . , ydim(R) ∈ R/xR generate an ideal of definition of
R/xR, see Proposition 60.9. Choose lifts y2, . . . , ydim(R) ∈ R, so that x, y2, . . . , ydim(R)
generate an ideal of definition in R. This implies that dim(R/(y2)) = dim(R) − 1 and
dim(R/(y2, x)) = dim(R)−2, see Lemma 60.14. Hence there exists a prime p containing
y2 but not x. This contradicts the fact that D(x) = {(0)}. �

The rings k[[t]] where k is a field, or the ring of p-adic numbers are Noetherian rings of
dimension 1 with finitely many primes. This is the maximum dimension for which this
can happen.

Lemma 61.2. A Noetherian ring with finitely many primes has dimension ≤ 1.

Proof. LetR be a Noetherian ring with finitely many primes. IfR is a local domain,
then the lemma follows from Lemma 61.1. If R is a domain, then Rm has dimension ≤ 1
for all maximal ideals m by the local case. Hence dim(R) ≤ 1 by Lemma 60.4. If R is
general, then dim(R/q) ≤ 1 for every minimal prime q of R. Since every prime contains
a minimal prime (Lemma 17.2), this implies dim(R) ≤ 1. �

Lemma 61.3. Let S be a nonzero finite type algebra over a field k. Then dim(S) = 0
if and only if S has finitely many primes.

Proof. Recall that Spec(S) is sober, Noetherian, and Jacobson, see Lemmas 26.2, 31.5,
35.2, and 35.4. If it has dimension 0, then every point defines an irreducible component
and there are only a finite number of irreducible components (Topology, Lemma 9.2).
Conversely, if Spec(S) is finite, then it is discrete by Topology, Lemma 18.6 and hence the
dimension is 0. �

Lemma 61.4. Noetherian Jacobson rings.
(1) Any Noetherian domainR of dimension 1 with infinitely many primes is Jacob-

son.
(2) Any Noetherian ring such that every prime p is either maximal or contained in

infinitely many prime ideals is Jacobson.

Proof. Part (1) is a reformulation of Lemma 35.6.
LetR be a Noetherian ring such that every non-maximal prime p is contained in infinitely
many prime ideals. Assume Spec(R) is not Jacobson to get a contradiction. By Lemmas
26.1 and 31.5 we see that Spec(R) is a sober, Noetherian topological space. By Topology,
Lemma 18.3 we see that there exists a non-maximal ideal p ⊂ R such that {p} is a locally
closed subset of Spec(R). In other words, p is not maximal and {p} is an open subset of
V (p). Consider a prime q ⊂ R with p ⊂ q. Recall that the topology on the spectrum of
(R/p)q = Rq/pRq is induced from that of Spec(R), see Lemmas 17.5 and 17.7. Hence we
see that {(0)} is a locally closed subset of Spec((R/p)q). By Lemma 61.1 we conclude that
dim((R/p)q) = 1. Since this holds for every q ⊃ p we conclude that dim(R/p) = 1. At
this point we use the assumption that p is contained in infinitely many primes to see that
Spec(R/p) is infinite. Hence by part (1) of the lemma we see that V (p) ∼= Spec(R/p)
is the closure of its closed points. This is the desired contradiction since it means that
{p} ⊂ V (p) cannot be open. �
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62. Support and dimension of modules

Some basic results on the support and dimension of modules.

Lemma 62.1. Let R be a Noetherian ring, and let M be a finite R-module. There
exists a filtration by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of R.

First proof. By Lemma 5.4 it suffices to do the case M = R/I for some ideal I .
Consider the set S of ideals J such that the lemma does not hold for the moduleR/J , and
order it by inclusion. To arrive at a contradiction, assume that S is not empty. Because
R is Noetherian, S has a maximal element J . By definition of S , the ideal J cannot be
prime. Pick a, b ∈ R such that ab ∈ J , but neither a ∈ J nor b ∈ J . Consider the
filtration 0 ⊂ aR/(J ∩ aR) ⊂ R/J . Note that both the submodule aR/(J ∩ aR) and
the quotient module (R/J)/(aR/(J ∩ aR)) are cyclic modules; write them as R/J ′ and
R/J ′′ so we have a short exact sequence 0→ R/J ′ → R/J → R/J ′′ → 0. The inclusion
J ⊂ J ′ is strict as b ∈ J ′ and the inclusion J ⊂ J ′′ is strict as a ∈ J ′′. Hence by
maximality of J , both R/J ′ and R/J ′′ have a filtration as above and hence so does R/J .
Contradiction. �

Second proof. For an R-module M we say P (M) holds if there exists a filtration
as in the statement of the lemma. Observe that P is stable under extensions and holds for
0. By Lemma 5.4 it suffices to prove P (R/I) holds for every ideal I . If not then because
R is Noetherian, there is a maximal counter example J . By Example 28.7 and Proposition
28.8 the ideal J is prime which is a contradiction. �

Lemma 62.2. Let R, M , Mi, pi as in Lemma 62.1. Then Supp(M) =
⋃
V (pi) and in

particular pi ∈ Supp(M).

Proof. This follows from Lemmas 40.5 and 40.9. �

Lemma 62.3. Suppose thatR is a Noetherian local ring with maximal ideal m. LetM
be a nonzero finite R-module. Then Supp(M) = {m} if and only if M has finite length
over R.

Proof. Assume that Supp(M) = {m}. It suffices to show that all the primes pi in
the filtration of Lemma 62.1 are the maximal ideal. This is clear by Lemma 62.2.

Suppose that M has finite length over R. Then mnM = 0 by Lemma 52.4. Since some
element of m maps to a unit in Rp for any prime p 6= m in R we see Mp = 0. �

Lemma 62.4. Let R be a Noetherian ring. Let I ⊂ R be an ideal. Let M be a finite
R-module. Then InM = 0 for some n ≥ 0 if and only if Supp(M) ⊂ V (I).

Proof. Indeed, InM = 0 is equivalent to In ⊂ Ann(M). SinceR is Noetherian, this
is equivalent to I ⊂

√
Ann(M), see Lemma 32.5. This in turn is equivalent to V (I) ⊃

V (Ann(M)), see Lemma 17.2. By Lemma 40.5 this is equivalent to V (I) ⊃ Supp(M). �

Lemma 62.5. LetR,M ,Mi, pi as in Lemma 62.1. The minimal elements of the set {pi}
are the minimal elements of Supp(M). The number of times a minimal prime p occurs is

#{i | pi = p} = lengthRp
Mp.
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Proof. The first statement follows because Supp(M) =
⋃
V (pi), see Lemma 62.2.

Let p ∈ Supp(M) be minimal. The support of Mp is the set consisting of the maximal
ideal pRp. Hence by Lemma 62.3 the length of Mp is finite and > 0. Next we note that
Mp has a filtration with subquotients (R/pi)p = Rp/piRp. These are zero if pi 6⊂ p and
equal to κ(p) if pi ⊂ p because by minimality of p we have pi = p in this case. The result
follows since κ(p) has length 1. �

Lemma 62.6. Let R be a Noetherian local ring. Let M be a finite R-module. Then
d(M) = dim(Supp(M)) where d(M) is as in Definition 59.8.

Proof. Let Mi, pi be as in Lemma 62.1. By Lemma 59.10 we obtain the equality
d(M) = max{d(R/pi)}. By Proposition 60.9 we have d(R/pi) = dim(R/pi). Triv-
ially dim(R/pi) = dimV (pi). Since all minimal primes of Supp(M) occur among the pi
(Lemma 62.5) we win. �

Lemma 62.7. Let R be a Noetherian ring. Let 0→M ′ →M →M ′′ → 0 be a short
exact sequence of finite R-modules. Then max{dim(Supp(M ′)), dim(Supp(M ′′))} =
dim(Supp(M)).

Proof. If R is local, this follows immediately from Lemmas 62.6 and 59.10. A more
elementary argument, which works also ifR is not local, is to use that Supp(M ′), Supp(M ′′),
and Supp(M) are closed (Lemma 40.5) and that Supp(M) = Supp(M ′) ∪ Supp(M ′′)
(Lemma 40.9). �

63. Associated primes

Here is the standard definition. For non-Noetherian rings and non-finite modules it may
be more appropriate to use the definition in Section 66.

Definition 63.1. LetR be a ring. LetM be anR-module. A prime p ofR is associated
to M if there exists an element m ∈M whose annihilator is p. The set of all such primes
is denoted AssR(M) or Ass(M).

Lemma 63.2. Let R be a ring. Let M be an R-module. Then Ass(M) ⊂ Supp(M).

Proof. Ifm ∈M has annihilator p, then in particular no element ofR\p annihilates
m. Hence m is a nonzero element of Mp, i.e., p ∈ Supp(M). �

Lemma 63.3. Let R be a ring. Let 0 → M ′ → M → M ′′ → 0 be a short exact
sequence of R-modules. Then Ass(M ′) ⊂ Ass(M) and Ass(M) ⊂ Ass(M ′) ∪ Ass(M ′′).
Also Ass(M ′ ⊕M ′′) = Ass(M ′) ∪ Ass(M ′′).

Proof. If m′ ∈ M ′, then the annihilator of m′ viewed as an element of M ′ is the
same as the annihilator ofm′ viewed as an element ofM . Hence the inclusion Ass(M ′) ⊂
Ass(M). Let m ∈ M be an element whose annihilator is a prime ideal p. If there exists a
g ∈ R, g 6∈ p such that m′ = gm ∈ M ′ then the annihilator of m′ is p. If there does not
exist a g ∈ R, g 6∈ p such that gm ∈M ′, then the annilator of the image m′′ ∈M ′′ of m
is p. This proves the inclusion Ass(M) ⊂ Ass(M ′) ∪Ass(M ′′). We omit the proof of the
final statement. �

Lemma 63.4. Let R be a ring, and M an R-module. Suppose there exists a filtration
by R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of R.
Then Ass(M) ⊂ {p1, . . . , pn}.
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Proof. By induction on the length n of the filtration {Mi}. Pick m ∈ M whose
annihilator is a prime p. If m ∈ Mn−1 we are done by induction. If not, then m maps
to a nonzero element of M/Mn−1 ∼= R/pn. Hence we have p ⊂ pn. If equality does not
hold, then we can find f ∈ pn, f 6∈ p. In this case the annihilator of fm is still p and
fm ∈Mn−1. Thus we win by induction. �

Lemma 63.5. LetR be a Noetherian ring. LetM be a finiteR-module. Then Ass(M)
is finite.

Proof. Immediate from Lemma 63.4 and Lemma 62.1. �

Proposition 63.6. Let R be a Noetherian ring. Let M be a finite R-module. The
following sets of primes are the same:

(1) The minimal primes in the support of M .
(2) The minimal primes in Ass(M).
(3) For any filtration 0 = M0 ⊂M1 ⊂ . . . ⊂Mn−1 ⊂Mn = M withMi/Mi−1 ∼=

R/pi the minimal primes of the set {pi}.

Proof. Choose a filtration as in (3). In Lemma 62.5 we have seen that the sets in (1)
and (3) are equal.

Let p be a minimal element of the set {pi}. Let i be minimal such that p = pi. Pickm ∈Mi,
m 6∈Mi−1. The annihilator of m is contained in pi = p and contains p1p2 . . . pi. By our
choice of i and p we have pj 6⊂ p for j < i and hence we have p1p2 . . . pi−1 6⊂ pi. Pick
f ∈ p1p2 . . . pi−1, f 6∈ p. Then fm has annihilator p. In this way we see that p is an
associated prime of M . By Lemma 63.2 we have Ass(M) ⊂ Supp(M) and hence p is
minimal in Ass(M). Thus the set of primes in (1) is contained in the set of primes of (2).

Let p be a minimal element of Ass(M). Since Ass(M) ⊂ Supp(M) there is a minimal
element q of Supp(M) with q ⊂ p. We have just shown that q ∈ Ass(M). Hence q = p
by minimality of p. Thus the set of primes in (2) is contained in the set of primes of (1). �

Lemma 63.7. Let R be a Noetherian ring. Let M be an R-module. Then

M = (0)⇔ Ass(M) = ∅.

Proof. If M = (0), then Ass(M) = ∅ by definition. If M 6= 0, pick any nonzero
finitely generated submodule M ′ ⊂ M , for example a submodule generated by a single
nonzero element. By Lemma 40.2 we see that Supp(M ′) is nonempty. By Proposition 63.6
this implies that Ass(M ′) is nonempty. By Lemma 63.3 this implies Ass(M) 6= ∅. �

Lemma 63.8. LetR be a Noetherian ring. LetM be anR-module. Any p ∈ Supp(M)
which is minimal among the elements of Supp(M) is an element of Ass(M).

Proof. If M is a finite R-module, then this is a consequence of Proposition 63.6. In
general write M =

⋃
Mλ as the union of its finite submodules, and use that Supp(M) =⋃

Supp(Mλ) and Ass(M) =
⋃

Ass(Mλ). �

Lemma 63.9. LetR be a Noetherian ring. LetM be anR-module. The union
⋃

q∈Ass(M) q

is the set of elements of R which are zerodivisors on M .

Proof. Any element in any associated prime clearly is a zerodivisor on M . Con-
versely, suppose x ∈ R is a zerodivisor on M . Consider the submodule N = {m ∈ M |
xm = 0}. Since N is not zero it has an associated prime q by Lemma 63.7. Then x ∈ q
and q is an associated prime of M by Lemma 63.3. �
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Lemma 63.10. Let R is a Noetherian local ring, M a finite R-module, and f ∈ m an
element of the maximal ideal of R. Then

dim(Supp(M/fM)) ≤ dim(Supp(M)) ≤ dim(Supp(M/fM)) + 1
If f is not in any of the minimal primes of the support of M (for example if f is a nonze-
rodivisor on M ), then equality holds for the right inequality.

Proof. (The parenthetical statement follows from Lemma 63.9.) The first inequality
follows from Supp(M/fM) ⊂ Supp(M), see Lemma 40.9. For the second inequality,
note that Supp(M/fM) = Supp(M)∩V (f), see Lemma 40.9. It follows, for example by
Lemma 62.2 and elementary properties of dimension, that it suffices to show dimV (p) ≤
dim(V (p)∩ V (f)) + 1 for primes p of R. This is a consequence of Lemma 60.13. Finally,
if f is not contained in any minimal prime of the support ofM , then the chains of primes
in Supp(M/fM) all give rise to chains in Supp(M) which are at least one step away from
being maximal. �

Lemma 63.11. Let ϕ : R → S be a ring map. Let M be an S-module. Then
Spec(ϕ)(AssS(M)) ⊂ AssR(M).

Proof. If q ∈ AssS(M), then there exists an m in M such that the annihilator of m
in S is q. Then the annihilator of m in R is q ∩R. �

Remark 63.12. Let ϕ : R → S be a ring map. Let M be an S-module. Then it is
not always the case that Spec(ϕ)(AssS(M)) ⊃ AssR(M). For example, consider the ring
mapR = k → S = k[x1, x2, x3, . . .]/(x2

i ) andM = S. Then AssR(M) is not empty, but
AssS(S) is empty.

Lemma 63.13. Let ϕ : R → S be a ring map. Let M be an S-module. If S is Noe-
therian, then Spec(ϕ)(AssS(M)) = AssR(M).

Proof. We have already seen in Lemma 63.11 that Spec(ϕ)(AssS(M)) ⊂ AssR(M).
For the converse, choose a prime p ∈ AssR(M). Let m ∈ M be an element such that the
annihilator ofm inR is p. Let I = {g ∈ S | gm = 0} be the annihilator ofm in S. Then
R/p ⊂ S/I is injective. Combining Lemmas 30.5 and 30.7 we see that there is a prime
q ⊂ S minimal over I mapping to p. By Proposition 63.6 we see that q is an associated
prime of S/I , hence q is an associated prime of M by Lemma 63.3 and we win. �

Lemma 63.14. Let R be a ring. Let I be an ideal. Let M be an R/I-module. Via the
canonical injection Spec(R/I)→ Spec(R) we have AssR/I(M) = AssR(M).

Proof. Omitted. �

Lemma 63.15. Let R be a ring. Let M be an R-module. Let p ⊂ R be a prime.
(1) If p ∈ Ass(M) then pRp ∈ Ass(Mp).
(2) If p is finitely generated then the converse holds as well.

Proof. If p ∈ Ass(M) there exists an element m ∈ M whose annihilator is p. As
localization is exact (Proposition 9.12) we see that the annihilator of m/1 in Mp is pRp

hence (1) holds. Assume pRp ∈ Ass(Mp) and p = (f1, . . . , fn). Let m/g be an element
of Mp whose annihilator is pRp. This implies that the annihilator of m is contained in
p. As fim/g = 0 in Mp we see there exists a gi ∈ R, gi 6∈ p such that gifim = 0 in M .
Combined we see the annihilator of g1 . . . gnm is p. Hence p ∈ Ass(M). �

Lemma 63.16. LetR be a ring. LetM be anR-module. Let S ⊂ R be a multiplicative
subset. Via the canonical injection Spec(S−1R)→ Spec(R) we have
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(1) AssR(S−1M) = AssS−1R(S−1M),
(2) AssR(M) ∩ Spec(S−1R) ⊂ AssR(S−1M), and
(3) if R is Noetherian this inclusion is an equality.

Proof. The first equality follows, since if m ∈ S−1M , then the annihilator of m in
R is the intersection of the annihilator of m in S−1R with R. The displayed inclusion
and equality in the Noetherian case follows from Lemma 63.15 since for p ∈ R, S ∩ p = ∅
we have Mp = (S−1M)S−1p. �

Lemma 63.17. LetR be a ring. LetM be anR-module. Let S ⊂ R be a multiplicative
subset. Assume that every s ∈ S is a nonzerodivisor on M . Then

AssR(M) = AssR(S−1M).

Proof. As M ⊂ S−1M by assumption we get the inclusion Ass(M) ⊂ Ass(S−1M)
from Lemma 63.3. Conversely, suppose thatn/s ∈ S−1M is an element whose annihilator
is a prime ideal p. Then the annihilator of n ∈M is also p. �

Lemma 63.18. Let R be a Noetherian local ring with maximal ideal m. Let I ⊂ m be
an ideal. Let M be a finite R-module. The following are equivalent:

(1) There exists an x ∈ I which is not a zerodivisor on M .
(2) We have I 6⊂ q for all q ∈ Ass(M).

Proof. If there exists a nonzerodivisor x in I , then x clearly cannot be in any asso-
ciated prime of M . Conversely, suppose I 6⊂ q for all q ∈ Ass(M). In this case we can
choose x ∈ I , x 6∈ q for all q ∈ Ass(M) by Lemmas 63.5 and 15.2. By Lemma 63.9 the
element x is not a zerodivisor on M . �

Lemma 63.19. Let R be a ring. Let M be an R-module. If R is Noetherian the map

M −→
∏

p∈Ass(M)
Mp

is injective.

Proof. Let x ∈M be an element of the kernel of the map. Then if p is an associated
prime of Rx ⊂ M we see on the one hand that p ∈ Ass(M) (Lemma 63.3) and on the
other hand that (Rx)p ⊂ Mp is not zero. This contradiction shows that Ass(Rx) = ∅.
Hence Rx = 0 by Lemma 63.7. �

This lemma should probably be put somewhere else.

Lemma 63.20. Let k be a field. Let S be a finite type k algebra. If dim(S) > 0, then
there exists an element f ∈ S which is a nonzerodivisor and a nonunit.

Proof. By Lemma 63.5 the ring S has finitely many associated prime ideals. By
Lemma 61.3 the ring S has infinitely many maximal ideals. Hence we can choose a maxi-
mal ideal m ⊂ S which is not an associated prime of S. By prime avoidance (Lemma 15.2),
we can choose a nonzero f ∈ m which is not contained in any of the associated primes of
S. By Lemma 63.9 the element f is a nonzerodivisor and as f ∈ m we see that f is not a
unit. �
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64. Symbolic powers

Here is the definition.

Definition 64.1. LetR be a ring. Let p be a prime ideal. For n ≥ 0 the nth symbolic
power of p is the ideal p(n) = Ker(R→ Rp/p

nRp).

Note that pn ⊂ p(n) but equality does not always hold.

Lemma 64.2. Let R be a Noetherian ring. Let p be a prime ideal. Let n > 0. Then
Ass(R/p(n)) = {p}.

Proof. If q is an associated prime of R/p(n) then clearly p ⊂ q. On the other hand,
any element x ∈ R, x 6∈ p is a nonzerodivisor on R/p(n). Namely, if y ∈ R and xy ∈
p(n) = R ∩ pnRp then y ∈ pnRp, hence y ∈ p(n). Hence the lemma follows. �

Lemma 64.3. Let R→ S be flat ring map. Let p ⊂ R be a prime such that q = pS is
a prime of S. Then p(n)S = q(n).

Proof. Since p(n) = Ker(R → Rp/p
nRp) we see using flatness that p(n)S is the

kernel of the map S → Sp/p
nSp. On the other hand q(n) is the kernel of the map S →

Sq/q
nSq = Sq/p

nSq. Hence it suffices to show that

Sp/p
nSp −→ Sq/p

nSq

is injective. Observe that the right hand module is the localization of the left hand module
by elements f ∈ S , f 6∈ q. Thus it suffices to show these elements are nonzerodivisors on
Sp/p

nSp. By flatness, the module Sp/p
nSp has a finite filtration whose subquotients are

piSp/p
i+1Sp

∼= piRp/p
i+1Rp ⊗Rp

Sp
∼= V ⊗κ(p) (S/q)p

where V is a κ(p) vector space. Thus f acts invertibly as desired. �

65. Relative assassin

Discussion of relative assassins. Let R→ S be a ring map. Let N be an S-module. In this
situation we can introduce the following sets of primes q of S:

(1) A: with p = R ∩ q we have that q ∈ AssS(N ⊗R κ(p)),
(2) A′: with p = R ∩ q we have that q is in the image of AssS⊗κ(p)(N ⊗R κ(p))

under the canonical map Spec(S ⊗R κ(p))→ Spec(S),
(3) Afin: with p = R ∩ q we have that q ∈ AssS(N/pN),
(4) A′

fin: for some prime p′ ⊂ R we have q ∈ AssS(N/p′N),
(5) B: for some R-module M we have q ∈ AssS(N ⊗RM), and
(6) Bfin: for some finite R-module M we have q ∈ AssS(N ⊗RM).

Let us determine some of the relations between theses sets.

Lemma 65.1. Let R → S be a ring map. Let N be an S-module. Let A, A′, Afin, B,
and Bfin be the subsets of Spec(S) introduced above.

(1) We always have A = A′.
(2) We always have Afin ⊂ A, Bfin ⊂ B, Afin ⊂ A′

fin ⊂ Bfin and A ⊂ B.
(3) If S is Noetherian, then A = Afin and B = Bfin.
(4) If N is flat over R, then A = Afin = A′

fin and B = Bfin.
(5) If R is Noetherian and N is flat over R, then all of the sets are equal, i.e., A =

A′ = Afin = A′
fin = B = Bfin.
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Proof. Some of the arguments in the proof will be repeated in the proofs of later
lemmas which are more precise than this one (because they deal with a given module M
or a given prime p and not with the collection of all of them).

Proof of (1). Let p be a prime of R. Then we have

AssS(N ⊗R κ(p)) = AssS/pS(N ⊗R κ(p)) = AssS⊗Rκ(p)(N ⊗R κ(p))

the first equality by Lemma 63.14 and the second by Lemma 63.16 part (1). This prove that
A = A′. The inclusion Afin ⊂ A′

fin is clear.

Proof of (2). Each of the inclusions is immediate from the definitions except perhaps
Afin ⊂ A which follows from Lemma 63.16 and the fact that we require p = R ∩ q
in the formulation of Afin.

Proof of (3). The equalityA = Afin follows from Lemma 63.16 part (3) ifS is Noetherian.
Let q = (g1, . . . , gm) be a finitely generated prime ideal of S. Say z ∈ N ⊗R M is an
element whose annihilator is q. We may pick a finite submodule M ′ ⊂ M such that
z is the image of z′ ∈ N ⊗R M ′. Then AnnS(z′) ⊂ q = AnnS(z). Since N ⊗R −
commutes with colimits and since M is the directed colimit of finite R-modules we can
find M ′ ⊂ M ′′ ⊂ M such that the image z′′ ∈ N ⊗R M ′′ is annihilated by g1, . . . , gm.
Hence AnnS(z′′) = q. This proves that B = Bfin if S is Noetherian.

Proof of (4). If N is flat, then the functor N ⊗R − is exact. In particular, if M ′ ⊂ M ,
then N ⊗R M ′ ⊂ N ⊗R M . Hence if z ∈ N ⊗R M is an element whose annihilator
q = AnnS(z) is a prime, then we can pick any finite R-submodule M ′ ⊂ M such that
z ∈ N ⊗R M ′ and we see that the annihilator of z as an element of N ⊗R M ′ is equal
to q. Hence B = Bfin. Let p′ be a prime of R and let q be a prime of S which is an
associated prime of N/p′N . This implies that p′S ⊂ q. As N is flat over R we see that
N/p′N is flat over the integral domain R/p′. Hence every nonzero element of R/p′ is a
nonzerodivisor on N/p′. Hence none of these elements can map to an element of q and
we conclude that p′ = R ∩ q. Hence Afin = A′

fin. Finally, by Lemma 63.17 we see that
AssS(N/p′N) = AssS(N ⊗R κ(p′)), i.e., A′

fin = A.

Proof of (5). We only need to proveA′
fin = Bfin as the other equalities have been proved

in (4). To see this let M be a finite R-module. By Lemma 62.1 there exists a filtration by
R-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of R.
Since N is flat we obtain a filtration by S-submodules

0 = N ⊗RM0 ⊂ N ⊗RM1 ⊂ . . . ⊂ N ⊗RMn = N ⊗RM

such that each subquotient is isomorphic to N/piN . By Lemma 63.3 we conclude that
AssS(N ⊗R M) ⊂

⋃
AssS(N/piN). Hence we see that Bfin ⊂ A′

fin. Since the other
inclusion is part of (2) we win. �

We define the relative assassin ofN over S/R to be the setA = A′ above. As a motivation
we point out that it depends only on the fibre modules N ⊗R κ(p) over the fibre rings.
As in the case of the assassin of a module we warn the reader that this notion makes most
sense when the fibre rings S ⊗R κ(p) are Noetherian, for example if R → S is of finite
type.
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Definition 65.2. Let R → S be a ring map. Let N be an S-module. The relative
assassin of N over S/R is the set

AssS/R(N) = {q ⊂ S | q ∈ AssS(N ⊗R κ(p)) with p = R ∩ q}.

This is the set named A in Lemma 65.1.

The spirit of the next few results is that they are about the relative assassin, even though
this may not be apparent.

Lemma 65.3. Let R → S be a ring map. Let M be an R-module, and let N be an
S-module. If N is flat as R-module, then

AssS(M ⊗R N) ⊃
⋃

p∈AssR(M)
AssS(N/pN)

and if R is Noetherian then we have equality.

Proof. If p ∈ AssR(M) then there exists an injection R/p → M . As N is flat
over R we obtain an injection R/p ⊗R N → M ⊗R N . Since R/p ⊗R N = N/pN we
conclude that AssS(N/pN) ⊂ AssS(M ⊗R N), see Lemma 63.3. Hence the right hand
side is contained in the left hand side.

Write M =
⋃
Mλ as the union of its finitely generated R-submodules. Then also N ⊗R

M =
⋃
N ⊗R Mλ (as N is R-flat). By definition of associated primes we see that

AssS(N ⊗R M) =
⋃

AssS(N ⊗R Mλ) and AssR(M) =
⋃

Ass(Mλ). Hence we may
assume M is finitely generated.

Let q ∈ AssS(M⊗RN), and assumeR is Noetherian andM is a finiteR-module. To finish
the proof we have to show that q is an element of the right hand side. First we observe
that qSq ∈ AssSq

((M ⊗RN)q), see Lemma 63.15. Let p be the corresponding prime ofR.
Note that

(M ⊗R N)q = M ⊗R Nq = Mp ⊗Rp
Nq

If pRp 6∈ AssRp
(Mp) then there exists an element x ∈ pRp which is a nonzerodivisor

in Mp (see Lemma 63.18). Since Nq is flat over Rp we see that the image of x in qSq

is a nonzerodivisor on (M ⊗R N)q. This is a contradiction with the assumption that
qSq ∈ AssS((M ⊗R N)q). Hence we conclude that p is one of the associated primes of
M .

Continuing the argument we choose a filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mi/Mi−1 is isomorphic to R/pi for some prime ideal pi of R, see
Lemma 62.1. (By Lemma 63.4 we have pi = p for at least one i.) This gives a filtration

0 = M0 ⊗R N ⊂M1 ⊗R N ⊂ . . . ⊂Mn ⊗R N = M ⊗R N

with subquotients isomorphic to N/piN . If pi 6= p then q cannot be associated to the
module N/piN by the result of the preceding paragraph (as AssR(R/pi) = {pi}). Hence
we conclude that q is associated to N/pN as desired. �

Lemma 65.4. Let R → S be a ring map. Let N be an S-module. Assume N is flat as
an R-module and R is a domain with fraction field K. Then

AssS(N) = AssS(N ⊗R K) = AssS⊗RK(N ⊗R K)

via the canonical inclusion Spec(S ⊗R K) ⊂ Spec(S).
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Proof. Note that S⊗RK = (R \ {0})−1S andN ⊗RK = (R \ {0})−1N . For any
nonzero x ∈ Rmultiplication by x onN is injective asN is flat overR. Hence the lemma
follows from Lemma 63.17 combined with Lemma 63.16 part (1). �

Lemma 65.5. Let R → S be a ring map. Let M be an R-module, and let N be an
S-module. Assume N is flat as R-module. Then

AssS(M ⊗R N) ⊃
⋃

p∈AssR(M)
AssS⊗Rκ(p)(N ⊗R κ(p))

where we use Remark 17.8 to think of the spectra of fibre rings as subsets of Spec(S). If
R is Noetherian then this inclusion is an equality.

Proof. This is equivalent to Lemma 65.3 by Lemmas 63.14, 39.7, and 65.4. �

Remark 65.6. Let R→ S be a ring map. Let N be an S-module. Let p be a prime of
R. Then

AssS(N ⊗R κ(p)) = AssS/pS(N ⊗R κ(p)) = AssS⊗Rκ(p)(N ⊗R κ(p)).

The first equality by Lemma 63.14 and the second by Lemma 63.16 part (1).

66. Weakly associated primes

This is a variant on the notion of an associated prime that is useful for non-Noetherian
ring and non-finite modules.

Definition 66.1. Let R be a ring. Let M be an R-module. A prime p of R is weakly
associated toM if there exists an elementm ∈M such that p is minimal among the prime
ideals containing the annihilator Ann(m) = {f ∈ R | fm = 0}. The set of all such
primes is denoted WeakAssR(M) or WeakAss(M).

Thus an associated prime is a weakly associated prime. Here is a characterization in terms
of the localization at the prime.

Lemma 66.2. Let R be a ring. Let M be an R-module. Let p be a prime of R. The
following are equivalent:

(1) p is weakly associated to M ,
(2) pRp is weakly associated to Mp, and
(3) Mp contains an element whose annihilator has radical equal to pRp.

Proof. Assume (1). Then there exists an element m ∈ M such that p is minimal
among the primes containing the annihilator I = {x ∈ R | xm = 0} of m. As local-
ization is exact, the annihilator of m in Mp is Ip. Hence pRp is a minimal prime of Rp

containing the annihilator Ip ofm inMp. This implies (2) holds, and also (3) as it implies
that

√
Ip = pRp.

Applying the implication (1)⇒ (3) to Mp over Rp we see that (2)⇒ (3).

Finally, assume (3). This means there exists an elementm/f ∈Mp whose annihilator has
radical equal to pRp. Then the annihilator I = {x ∈ R | xm = 0} of m in M is such
that

√
Ip = pRp. Clearly this means that p contains I and is minimal among the primes

containing I , i.e., (1) holds. �

Lemma 66.3. For a reduced ring the weakly associated primes of the ring are the
minimal primes.
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Proof. Let (R,m) be a reduced local ring. Suppose x ∈ R is an element whose
annihilator has radical m. If m 6= 0, then x cannot be a unit, so x ∈ m. Then in particular
x1+n = 0 for some n ≥ 0. Hence x = 0. Which contradicts the assumption that the
annihilator of x is contained in m. Thus we see that m = 0, i.e., R is a field. By Lemma
66.2 this implies the statement of the lemma. �

Lemma 66.4. Let R be a ring. Let 0 → M ′ → M → M ′′ → 0 be a short ex-
act sequence of R-modules. Then WeakAss(M ′) ⊂ WeakAss(M) and WeakAss(M) ⊂
WeakAss(M ′) ∪WeakAss(M ′′).

Proof. We will use the characterization of weakly associated primes of Lemma 66.2.
Let p be a prime of R. As localization is exact we obtain the short exact sequence 0 →
M ′

p →Mp →M ′′
p → 0. Suppose that m ∈Mp is an element whose annihilator has radi-

cal pRp. Then either the imagem ofm inM ′′
p is zero andm ∈M ′

p, or the radical of the an-
nihilator ofm is pRp. This proves that WeakAss(M) ⊂WeakAss(M ′)∪WeakAss(M ′′).
The inclusion WeakAss(M ′) ⊂WeakAss(M) is immediate from the definitions. �

Lemma 66.5. Let R be a ring. Let M be an R-module. Then

M = (0)⇔WeakAss(M) = ∅

Proof. If M = (0) then WeakAss(M) = ∅ by definition. Conversely, suppose that
M 6= 0. Pick a nonzero element m ∈ M . Write I = {x ∈ R | xm = 0} the annihilator
of m. Then R/I ⊂ M . Hence WeakAss(R/I) ⊂ WeakAss(M) by Lemma 66.4. But as
I 6= R we have V (I) = Spec(R/I) contains a minimal prime, see Lemmas 17.2 and 17.7,
and we win. �

Lemma 66.6. Let R be a ring. Let M be an R-module. Then

Ass(M) ⊂WeakAss(M) ⊂ Supp(M).

Proof. The first inclusion is immediate from the definitions. If p ∈ WeakAss(M),
then by Lemma 66.2 we have Mp 6= 0, hence p ∈ Supp(M). �

Lemma 66.7. Let R be a ring. Let M be an R-module. The union
⋃

q∈WeakAss(M) q is
the set of elements of R which are zerodivisors on M .

Proof. Suppose f ∈ q ∈ WeakAss(M). Then there exists an element m ∈ M such
that q is minimal over I = {x ∈ R | xm = 0}. Hence there exists a g ∈ R, g 6∈ q and
n > 0 such that fngm = 0. Note that gm 6= 0 as g 6∈ I . If we take n minimal as above,
then f(fn−1gm) = 0 and fn−1gm 6= 0, so f is a zerodivisor on M . Conversely, suppose
f ∈ R is a zerodivisor on M . Consider the submodule N = {m ∈ M | fm = 0}. Since
N is not zero it has a weakly associated prime q by Lemma 66.5. Clearly f ∈ q and by
Lemma 66.4 q is a weakly associated prime of M . �

Lemma 66.8. Let R be a ring. Let M be an R-module. Any p ∈ Supp(M) which is
minimal among the elements of Supp(M) is an element of WeakAss(M).

Proof. Note that Supp(Mp) = {pRp} in Spec(Rp). In particular Mp is nonzero,
and hence WeakAss(Mp) 6= ∅ by Lemma 66.5. Since WeakAss(Mp) ⊂ Supp(Mp) by
Lemma 66.6 we conclude that WeakAss(Mp) = {pRp}, whence p ∈ WeakAss(M) by
Lemma 66.2. �
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Lemma 66.9. Let R be a ring. Let M be an R-module. Let p be a prime ideal of R
which is finitely generated. Then

p ∈ Ass(M)⇔ p ∈WeakAss(M).
In particular, if R is Noetherian, then Ass(M) = WeakAss(M).

Proof. Write p = (g1, . . . , gn) for some gi ∈ R. It is enough the prove the im-
plication “⇐” as the other implication holds in general, see Lemma 66.6. Assume p ∈
WeakAss(M). By Lemma 66.2 there exists an element m ∈ Mp such that I = {x ∈
Rp | xm = 0} has radical pRp. Hence for each i there exists a smallest ei > 0 such that
geii m = 0 inMp. If ei > 1 for some i, then we can replacem by gei−1

i m 6= 0 and decrease∑
ei. Hence we may assume that the annihilator of m ∈ Mp is (g1, . . . , gn)Rp = pRp.

By Lemma 63.15 we see that p ∈ Ass(M). �

Remark 66.10. Let ϕ : R→ S be a ring map. Let M be an S-module. Then it is not
always the case that Spec(ϕ)(WeakAssS(M)) ⊂ WeakAssR(M) contrary to the case of
associated primes (see Lemma 63.11). An example is to consider the ring map
R = k[x1, x2, x3, . . .]→ S = k[x1, x2, x3, . . . , y1, y2, y3, . . .]/(x1y1, x2y2, x3y3, . . .)

and M = S. In this case q =
∑
xiS is a minimal prime of S , hence a weakly associated

prime of M = S (see Lemma 66.8). But on the other hand, for any nonzero element
of S the annihilator in R is finitely generated, and hence does not have radical equal to
R ∩ q = (x1, x2, x3, . . .) (details omitted).

Lemma 66.11. Let ϕ : R → S be a ring map. Let M be an S-module. Then we have
Spec(ϕ)(WeakAssS(M)) ⊃WeakAssR(M).

Proof. Let p be an element of WeakAssR(M). Then there exists an m ∈ Mp whose
annihilator I = {x ∈ Rp | xm = 0} has radical pRp. Consider the annihilator J = {x ∈
Sp | xm = 0} of m in Sp. As ISp ⊂ J we see that any minimal prime q ⊂ Sp over J lies
over p. Moreover such a q corresponds to a weakly associated prime of M for example by
Lemma 66.2. �

Remark 66.12. Let ϕ : R → S be a ring map. Let M be an S-module. Denote
f : Spec(S)→ Spec(R) the associated map on spectra. Then we have

f(AssS(M)) ⊂ AssR(M) ⊂WeakAssR(M) ⊂ f(WeakAssS(M))
see Lemmas 63.11, 66.11, and 66.6. In general all of the inclusions may be strict, see Remarks
63.12 and 66.10. If S is Noetherian, then all the inclusions are equalities as the outer two
are equal by Lemma 66.9.

Lemma 66.13. Let ϕ : R → S be a ring map. Let M be an S-module. Denote
f : Spec(S)→ Spec(R) the associated map on spectra. If ϕ is a finite ring map, then

WeakAssR(M) = f(WeakAssS(M)).

Proof. One of the inclusions has already been proved, see Remark 66.12. To prove
the other assume q ∈WeakAssS(M) and let p be the corresponding prime of R. Let m ∈
M be an element such that q is a minimal prime over J = {g ∈ S | gm = 0}. Thus the
radical of JSq is qSq. AsR→ S is finite there are finitely many primes q = q1, q2, . . . , ql
over p, see Lemma 36.21. Pick x ∈ q with x 6∈ qi for i > 1, see Lemma 15.2. By the above
there exists an element y ∈ S , y 6∈ q and an integer t > 0 such that yxtm = 0. Thus the
element ym ∈M is annihilated by xt, hence ym maps to zero in Mqi , i = 2, . . . , l. To be
sure, ym does not map to zero in Sq.
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The ring Sp is semi-local with maximal ideals qiSp by going up for finite ring maps, see
Lemma 36.22. If f ∈ pRp then some power of f ends up in JSq hence for some n > 0 we
see that f tym maps to zero in Mq. As ym vanishes at the other maximal ideals of Sp we
conclude that f tym is zero in Mp, see Lemma 23.1. In this way we see that p is a minimal
prime over the annihilator of ym in R and we win. �

Lemma 66.14. Let R be a ring. Let I be an ideal. Let M be an R/I-module. Via the
canonical injection Spec(R/I)→ Spec(R) we have WeakAssR/I(M) = WeakAssR(M).

Proof. Special case of Lemma 66.13. �

Lemma 66.15. LetR be a ring. LetM be anR-module. Let S ⊂ R be a multiplicative
subset. Via the canonical injection Spec(S−1R)→ Spec(R) we have WeakAssR(S−1M) =
WeakAssS−1R(S−1M) and

WeakAss(M) ∩ Spec(S−1R) = WeakAss(S−1M).

Proof. Suppose that m ∈ S−1M . Let I = {x ∈ R | xm = 0} and I ′ = {x′ ∈
S−1R | x′m = 0}. Then I ′ = S−1I and I ∩ S = ∅ unless I = R (verifications omitted).
Thus primes in S−1Rminimal over I ′ correspond bijectively to primes inRminimal over
I and avoidingS. This proves the equality WeakAssR(S−1M) = WeakAssS−1R(S−1M).
The second equality follows from Lemma 66.2 since for p ∈ R, S ∩ p = ∅ we have
Mp = (S−1M)S−1p. �

Lemma 66.16. LetR be a ring. LetM be anR-module. Let S ⊂ R be a multiplicative
subset. Assume that every s ∈ S is a nonzerodivisor on M . Then

WeakAss(M) = WeakAss(S−1M).

Proof. AsM ⊂ S−1M by assumption we obtain WeakAss(M) ⊂WeakAss(S−1M)
from Lemma 66.4. Conversely, suppose that n/s ∈ S−1M is an element with annihilator
I and p a prime which is minimal over I . Then the annihilator of n ∈ M is I and p is a
prime minimal over I . �

Lemma 66.17. Let R be a ring. Let M be an R-module. The map

M −→
∏

p∈WeakAss(M)
Mp

is injective.

Proof. Let x ∈ M be an element of the kernel of the map. Set N = Rx ⊂ M . If p
is a weakly associated prime of N we see on the one hand that p ∈WeakAss(M) (Lemma
66.4) and on the other hand that Np ⊂ Mp is not zero. This contradiction shows that
WeakAss(N) = ∅. Hence N = 0, i.e., x = 0 by Lemma 66.5. �

Lemma 66.18. Let R→ S be a ring map. Let N be an S-module. Assume N is flat as
an R-module and R is a domain with fraction field K. Then

WeakAssS(N) = WeakAssS⊗RK(N ⊗R K)

via the canonical inclusion Spec(S ⊗R K) ⊂ Spec(S).

Proof. Note that S⊗RK = (R \ {0})−1S andN ⊗RK = (R \ {0})−1N . For any
nonzero x ∈ Rmultiplication by x onN is injective asN is flat overR. Hence the lemma
follows from Lemma 66.16. �
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Lemma 66.19. Let K/k be a field extension. Let R be a k-algebra. Let M be an R-
module. Let q ⊂ R⊗kK be a prime lying over p ⊂ R. If q is weakly associated toM⊗kK ,
then p is weakly associated to M .

Proof. Let z ∈ M ⊗k K be an element such that q is minimal over the annihilator
J ⊂ R⊗kK of z. Choose a finitely generated subextensionK/L/k such that z ∈M⊗kL.
Since R ⊗k L → R ⊗k K is flat we see that J = I(R ⊗k K) where I ⊂ R ⊗k L is the
annihilator of z in the smaller ring (Lemma 40.4). Thus q ∩ (R ⊗k L) is minimal over
I by going down (Lemma 39.19). In this way we reduce to the case described in the next
paragraph.

AssumeK/k is a finitely generated field extension. Let x1, . . . , xr ∈ K be a transcendence
basis of K over k, see Fields, Section 26. Set L = k(x1, . . . , xr). Say [K : L] = n. Then
R⊗k L→ R⊗k K is a finite ring map. Hence q∩ (R⊗k L) is a weakly associated prime
ofM ⊗kK viewed as aR⊗k L-module by Lemma 66.13. SinceM ⊗kK ∼= (M ⊗k L)⊕n

as aR⊗k L-module, we see that q∩ (R⊗k L) is a weakly associated prime ofM ⊗k L (for
example by using Lemma 66.4 and induction). In this way we reduce to the case discussed
in the next paragraph.

Assume K = k(x1, . . . , xr) is a purely transcendental field extension. We may replace R
by Rp, M by Mp and q by q(Rp ⊗k K). See Lemma 66.15. In this way we reduce to the
case discussed in the next paragraph.

Assume K = k(x1, . . . , xr) is a purely transcendental field extension and R is local with
maximal ideal p. We claim that any f ∈ R⊗k K , f 6∈ p(R⊗k K) is a nonzerodivisor on
M⊗kK. Namely, let z ∈M⊗kK be an element. There is a finiteR-submoduleM ′ ⊂M
such that z ∈ M ′ ⊗k K and such that M ′ is minimal with this property: choose a basis
{tα} of K as a k-vector space, write z =

∑
mα ⊗ tα and let M ′ be the R-submodule

generated by the mα. If z ∈ p(M ′ ⊗k K) = pM ′ ⊗k K , then pM ′ = M ′ and M ′ = 0 by
Lemma 20.1 a contradiction. Thus z has nonzero image z inM ′/pM ′⊗kK ButR/p⊗kK
is a domain as a localization of κ(p)[x1, . . . , xn] andM ′/pM ′⊗kK is a free module, hence
fz 6= 0. This proves the claim.

Finally, pick z ∈ M ⊗k K such that q is minimal over the annihilator J ⊂ R ⊗k K of
z. For f ∈ p there exists an n ≥ 1 and a g ∈ R ⊗k K , g 6∈ q such that gfnz ∈ J , i.e.,
gfnz = 0. (This holds because q lies over p and q is minimal over J .) Above we have seen
that g is a nonzerodivisor hence fnz = 0. This means that p is a weakly associated prime
of M ⊗k K viewed as an R-module. Since M ⊗k K is a direct sum of copies of M we
conclude that p is a weakly associated prime of M as before. �

67. Embedded primes

Here is the definition.

Definition 67.1. Let R be a ring. Let M be an R-module.
(1) The associated primes ofM which are not minimal among the associated primes

of M are called the embedded associated primes of M .
(2) The embedded primes of R are the embedded associated primes of R as an R-

module.

Here is a way to get rid of these.
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Lemma 67.2. Let R be a Noetherian ring. Let M be a finite R-module. Consider the
set of R-submodules

{K ⊂M | Supp(K) nowhere dense in Supp(M)}.

This set has a maximal element K and the quotient M ′ = M/K has the following prop-
erties

(1) Supp(M) = Supp(M ′),
(2) M ′ has no embedded associated primes,
(3) for any f ∈ R which is contained in all embedded associated primes of M we

have Mf
∼= M ′

f .

Proof. We will use Lemma 63.5 and Proposition 63.6 without further mention. Let
q1, . . . , qt denote the minimal primes in the support of M . Let p1, . . . , ps denote the em-
bedded associated primes of M . Then Ass(M) = {qj , pi}. Let

K = {m ∈M | Supp(Rm) ⊂
⋃
V (pi)}

It is immediately seen to be a submodule. Since M is finite over a Noetherian ring, we
know K is finite too. Hence Supp(K) is nowhere dense in Supp(M). Let K ′ ⊂ M be
another submodule with support nowhere dense in Supp(M). This means that Kqj = 0.
Hence if m ∈ K ′, then m maps to zero in Mqj which in turn implies (Rm)qj = 0. On
the other hand we have Ass(Rm) ⊂ Ass(M). Hence the support of Rm is contained in⋃
V (pi). Therefore m ∈ K and thus K ′ ⊂ K as m was arbitrary in K ′.

Let M ′ = M/K. Since Kqj = 0 we know M ′
qj = Mqj for all j. Hence M and M ′ have

the same support.

Suppose q = Ann(m) ∈ Ass(M ′) where m ∈ M ′ is the image of m ∈ M . Then m 6∈ K
and hence the support of Rm must contain one of the qj . Since Mqj = M ′

qj , we know m

does not map to zero inM ′
qj . Hence q ⊂ qj (actually we have equality), which means that

all the associated primes of M ′ are not embedded.

Let f be an element contained in all pi. Then D(f) ∩ supp(K) = 0. Hence Mf = M ′
f

because Kf = 0. �

Lemma 67.3. LetR be a Noetherian ring. LetM be a finiteR-module. For any f ∈ R
we have (M ′)f = (Mf )′ whereM →M ′ andMf → (Mf )′ are the quotients constructed
in Lemma 67.2.

Proof. Omitted. �

Lemma 67.4. Let R be a Noetherian ring. Let M be a finite R-module without em-
bedded associated primes. Let I = {x ∈ R | xM = 0}. Then the ring R/I has no
embedded primes.

Proof. We may replace R by R/I . Hence we may assume every nonzero element of
R acts nontrivially onM . By Lemma 40.5 this implies that Spec(R) equals the support of
M . Suppose that p is an embedded prime ofR. Let x ∈ R be an element whose annihilator
is p. Consider the nonzero module N = xM ⊂ M . It is annihilated by p. Hence any
associated prime q of N contains p and is also an associated prime of M . Then q would be
an embedded associated prime of M which contradicts the assumption of the lemma. �
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68. Regular sequences

In this section we develop some basic properties of regular sequences.

Definition 68.1. Let R be a ring. Let M be an R-module. A sequence of elements
f1, . . . , fr of R is called an M -regular sequence if the following conditions hold:

(1) fi is a nonzerodivisor on M/(f1, . . . , fi−1)M for each i = 1, . . . , r, and
(2) the module M/(f1, . . . , fr)M is not zero.

If I is an ideal of R and f1, . . . , fr ∈ I then we call f1, . . . , fr an M -regular sequence in
I . If M = R, we call f1, . . . , fr simply a regular sequence (in I).

Please pay attention to the fact that the definition depends on the order of the elements
f1, . . . , fr (see examples below). Some papers/books drop the requirement that the module
M/(f1, . . . , fr)M is nonzero. This has the advantage that being a regular sequence is
preserved under localization. However, we will use this definition mainly to define the
depth of a module in case R is local; in that case the fi are required to be in the maximal
ideal – a condition which is not preserved under going from R to a localization Rp.

Example 68.2. Let k be a field. In the ring k[x, y, z] the sequence x, y(1−x), z(1−x)
is regular but the sequence y(1− x), z(1− x), x is not.

Example 68.3. Let k be a field. Consider the ring k[x, y, w0, w1, w2, . . .]/I where I
is generated by ywi, i = 0, 1, 2, . . . and wi − xwi+1, i = 0, 1, 2, . . .. The sequence x, y is
regular, but y is a zerodivisor. Moreover you can localize at the maximal ideal (x, y, wi)
and still get an example.

Lemma 68.4. Let R be a local Noetherian ring. Let M be a finite R-module. Let
x1, . . . , xc be anM -regular sequence. Then any permutation of thexi is a regular sequence
as well.

Proof. First we do the case c = 2. Consider K ⊂ M the kernel of x2 : M → M .
For any z ∈ K we know that z = x1z

′ for some z′ ∈ M because x2 is a nonzerodivisor
on M/x1M . Because x1 is a nonzerodivisor on M we see that x2z

′ = 0 as well. Hence
x1 : K → K is surjective. Thus K = 0 by Nakayama’s Lemma 20.1. Next, consider
multiplication by x1 on M/x2M . If z ∈ M maps to an element z ∈ M/x2M in the
kernel of this map, then x1z = x2y for some y ∈ M . But then since x1, x2 is a regular
sequence we see that y = x1y

′ for some y′ ∈ M . Hence x1(z − x2y
′) = 0 and hence

z = x2y
′ and hence z = 0 as desired.

For the general case, observe that any permutation is a composition of transpositions of
adjacent indices. Hence it suffices to prove that

x1, . . . , xi−2, xi, xi−1, xi+1, . . . , xc

is an M -regular sequence. This follows from the case we just did applied to the module
M/(x1, . . . , xi−2) and the length 2 regular sequence xi−1, xi. �

Lemma 68.5. Let R,S be local rings. Let R→ S be a flat local ring homomorphism.
Let x1, . . . , xr be a sequence in R. Let M be an R-module. The following are equivalent

(1) x1, . . . , xr is an M -regular sequence in R, and
(2) the images of x1, . . . , xr in S form a M ⊗R S-regular sequence.

Proof. This is so because R→ S is faithfully flat by Lemma 39.17. �
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Lemma 68.6. Let R be a Noetherian ring. Let M be a finite R-module. Let p be a
prime. Letx1, . . . , xr be a sequence inRwhose image inRp forms anMp-regular sequence.
Then there exists a g ∈ R, g 6∈ p such that the image of x1, . . . , xr in Rg forms an Mg-
regular sequence.

Proof. Set
Ki = Ker (xi : M/(x1, . . . , xi−1)M →M/(x1, . . . , xi−1)M) .

This is a finiteR-module whose localization at p is zero by assumption. Hence there exists
a g ∈ R, g 6∈ p such that (Ki)g = 0 for all i = 1, . . . , r. This g works. �

Lemma 68.7. Let A be a ring. Let I be an ideal generated by a regular sequence
f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm form a reg-
ular sequence in A/I . Then f1, . . . , fn, g1, . . . , gm is a regular sequence in A.

Proof. This follows immediately from the definitions. �

Lemma 68.8. Let R be a ring. Let 0 → M1 → M2 → M3 → 0 be a short exact
sequence of R-modules. Let f1, . . . , fr ∈ R. If f1, . . . , fr is M1-regular and M3-regular,
then f1, . . . , fr is M2-regular.

Proof. By Lemma 4.1, if f1 : M1 →M1 and f1 : M3 →M3 are injective, then so is
f1 : M2 →M2 and we obtain a short exact sequence

0→M1/f1M1 →M2/f1M2 →M3/f1M3 → 0
The lemma follows from this and induction on r. Some details omitted. �

Lemma 68.9. Let R be a ring. Let M be an R-module. Let f1, . . . , fr ∈ R and
e1, . . . , er > 0 integers. Then f1, . . . , fr is anM -regular sequence if and only if fe1

1 , . . . , ferr
is an M -regular sequence.

Proof. We will prove this by induction on r. If r = 1 this follows from the following
two easy facts: (a) a power of a nonzerodivisor on M is a nonzerodivisor on M and (b) a
divisor of a nonzerodivisor on M is a nonzerodivisor on M . If r > 1, then by induction
applied to M/f1M we have that f1, f2, . . . , fr is an M -regular sequence if and only if
f1, f

e2
2 , . . . , ferr is an M -regular sequence. Thus it suffices to show, given e > 0, that

fe1 , f2, . . . , fr is anM -regular sequence if and only if f1, . . . , fr is anM -regular sequence.
We will prove this by induction on e. The case e = 1 is trivial. Since f1 is a nonzerodivisor
under both assumptions (by the case r = 1) we have a short exact sequence

0→M/f1M
fe−1

1−−−→M/fe1M →M/fe−1
1 M → 0

Suppose that f1, f2, . . . , fr is an M -regular sequence. Then by induction the elements
f2, . . . , fr are M/f1M and M/fe−1

1 M -regular sequences. By Lemma 68.8 f2, . . . , fr is
M/fe1M -regular. Hence fe1 , f2, . . . , fr isM -regular. Conversely, suppose that fe1 , f2, . . . , fr
is an M -regular sequence. Then f2 : M/fe1M → M/fe1M is injective, hence f2 :
M/f1M →M/f1M is injective, hence by induction(!) f2 : M/fe−1

1 M →M/fe−1
1 M is

injective, hence

0→M/(f1, f2)M
fe−1

1−−−→M/(fe1 , f2)M →M/(fe−1
1 , f2)M → 0

is a short exact sequence by Lemma 4.1. This proves the converse for r = 2. If r > 2, then
we have f3 : M/(fe1 , f2)M → M/(fe1 , f2)M is injective, hence f3 : M/(f1, f2)M →
M/(f1, f2)M is injective, and so on. Some details omitted. �
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Lemma 68.10. Let R be a ring. Let f1, . . . , fr ∈ R which do not generate the unit
ideal. The following are equivalent:

(1) any permutation of f1, . . . , fr is a regular sequence,
(2) any subsequence of f1, . . . , fr (in the given order) is a regular sequence, and
(3) f1x1, . . . , frxr is a regular sequence in the polynomial ring R[x1, . . . , xr].

Proof. It is clear that (1) implies (2). We prove (2) implies (1) by induction on
r. The case r = 1 is trivial. The case r = 2 says that if a, b ∈ R are a regular se-
quence and b is a nonzerodivisor, then b, a is a regular sequence. This is clear because
the kernel of a : R/(b) → R/(b) is isomorphic to the kernel of b : R/(a) → R/(a)
if both a and b are nonzerodivisors. The case r > 2. Assume (2) holds and say we
want to prove fσ(1), . . . , fσ(r) is a regular sequence for some permutation σ. We al-
ready know that fσ(1), . . . , fσ(r−1) is a regular sequence by induction. Hence it suffices
to show that fs where s = σ(r) is a nonzerodivisor modulo f1, . . . , f̂s, . . . , fr. If s = r
we are done. If s < r, then note that fs and fr are both nonzerodivisors in the ring
R/(f1, . . . , f̂s, . . . , fr−1) (by induction hypothesis again). Since we know fs, fr is a reg-
ular sequence in that ring we conclude by the case of sequence of length 2 that fr, fs is
too.
Note that R[x1, . . . , xr]/(f1x1, . . . , fixi) as an R-module is a direct sum of the modules

R/IE · xe1
1 . . . xerr

indexed by multi-indices E = (e1, . . . , er) where IE is the ideal generated by fj for
1 ≤ j ≤ i with ej > 0. Hence fi+1xi is a nonzerodivisor on this if and only if fi+1 is a
nonzerodivisor onR/IE for allE. TakingE with all positive entries, we see that fi+1 is a
nonzerodivisor onR/(f1, . . . , fi). Thus (3) implies (2). Conversely, if (2) holds, then any
subsequence of f1, . . . , fi, fi+1 is a regular sequence in particular fi+1 is a nonzerodivisor
on all R/IE . In this way we see that (2) implies (3). �

69. Quasi-regular sequences

We introduce the notion of quasi-regular sequence which is slightly weaker than that of
a regular sequence and easier to use. Let R be a ring and let f1, . . . , fc ∈ R. Set J =
(f1, . . . , fc). Let M be an R-module. Then there is a canonical map

(69.0.1) M/JM ⊗R/J R/J [X1, . . . , Xc] −→
⊕

n≥0
JnM/Jn+1M

of graded R/J [X1, . . . , Xc]-modules defined by the rule
m⊗Xe1

1 . . . Xec
c 7−→ fe1

1 . . . fecc m mod Je1+...+ec+1M.

Note that (69.0.1) is always surjective.

Definition 69.1. Let R be a ring. Let M be an R-module. A sequence of elements
f1, . . . , fc ofR is calledM -quasi-regular if (69.0.1) is an isomorphism. IfM = R, we call
f1, . . . , fc simply a quasi-regular sequence.

So if f1, . . . , fc is a quasi-regular sequence, then

R/J [X1, . . . , Xc] =
⊕

n≥0
Jn/Jn+1

where J = (f1, . . . , fc). It is clear that being a quasi-regular sequence is independent of
the order of f1, . . . , fc.

Lemma 69.2. Let R be a ring.
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(1) A regular sequence f1, . . . , fc of R is a quasi-regular sequence.
(2) Suppose that M is an R-module and that f1, . . . , fc is an M -regular sequence.

Then f1, . . . , fc is an M -quasi-regular sequence.

Proof. Set J = (f1, . . . , fc). We prove the first assertion by induction on c. We
have to show that given any relation

∑
|I|=n aIf

I ∈ Jn+1 with aI ∈ R we actually have
aI ∈ J for all multi-indices I . Since any element of Jn+1 is of the form

∑
|I|=n bIf

I with
bI ∈ J we may assume, after replacing aI by aI − bI , the relation reads

∑
|I|=n aIf

I = 0.
We can rewrite this as ∑n

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

Here and below the “primed” multi-indices I ′ are required to be of the form I ′ = (i1, . . . , ic−1, 0).
We will show by descending induction on l ∈ {0, . . . , n} that if we have a relation∑l

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

thenaI′,e ∈ J for all I ′, e. Namely, setJ ′ = (f1, . . . , fc−1). Observe that
∑

|I′|=n−l aI′,lf
I′

is mapped into (J ′)n−l+1 by f lc. By induction hypothesis (for the induction on c) we see
that f lcaI′,l ∈ J ′. Because fc is not a zerodivisor on R/J ′ (as f1, . . . , fc is a regular se-
quence) we conclude thataI′,l ∈ J ′. This allows us to rewrite the term (

∑
|I′|=n−l aI′,lf

I′)f lc
in the form (

∑
|I′|=n−l+1 fcbI′,l−1f

I′)f l−1
c . This gives a new relation of the form(∑

|I′|=n−l+1
(aI′,l−1 + fcbI′,l−1)f I

′
)
f l−1
c +

∑l−2

e=0

(∑
|I′|=n−e

aI′,ef
I′
)
fec = 0

Now by the induction hypothesis (on l this time) we see that all aI′,l−1 + fcbI′,l−1 ∈ J
and all aI′,e ∈ J for e ≤ l − 2. This, combined with aI′,l ∈ J ′ ⊂ J seen above, finishes
the proof of the induction step.

The second assertion means that given any formal expression F =
∑

|I|=nmIX
I , mI ∈

M with
∑
mIf

I ∈ Jn+1M , then all the coefficientsmI are in J . This is proved in exactly
the same way as we prove the corresponding result for the first assertion above. �

Lemma 69.3. Let R → R′ be a flat ring map. Let M be an R-module. Suppose that
f1, . . . , fr ∈ R form an M -quasi-regular sequence. Then the images of f1, . . . , fr in R′

form a M ⊗R R′-quasi-regular sequence.

Proof. Set J = (f1, . . . , fr), J ′ = JR′ and M ′ = M ⊗R R′. We have to show the
canonical map µ : R′/J ′[X1, . . . Xr]⊗R′/J′ M ′/J ′M ′ →

⊕
(J ′)nM ′/(J ′)n+1M ′ is an

isomorphism. BecauseR→ R′ is flat the sequences 0→ JnM →M and 0→ Jn+1M →
JnM → JnM/Jn+1M → 0 remain exact on tensoring with R′. This first implies that
JnM ⊗R R′ = (J ′)nM ′ and then that (J ′)nM ′/(J ′)n+1M ′ = JnM/Jn+1M ⊗R R′.
Thus µ is the tensor product of (69.0.1), which is an isomorphism by assumption, with
idR′ and we conclude. �

Lemma 69.4. Let R be a Noetherian ring. Let M be a finite R-module. Let p be a
prime. Let x1, . . . , xc be a sequence in R whose image in Rp forms an Mp-quasi-regular
sequence. Then there exists a g ∈ R, g 6∈ p such that the image of x1, . . . , xc in Rg forms
an Mg-quasi-regular sequence.
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Proof. Consider the kernelK of the map (69.0.1). AsM/JM⊗R/JR/J [X1, . . . , Xc]
is a finiteR/J [X1, . . . , Xc]-module and asR/J [X1, . . . , Xc] is Noetherian, we see thatK
is also a finite R/J [X1, . . . , Xc]-module. Pick homogeneous generators k1, . . . , kt ∈ K.
By assumption for each i = 1, . . . , t there exists a gi ∈ R, gi 6∈ p such that giki = 0.
Hence g = g1 . . . gt works. �

Lemma 69.5. Let R be a ring. Let M be an R-module. Let f1, . . . , fc ∈ R be an
M -quasi-regular sequence. For any i the sequence f i+1, . . . , f c of R = R/(f1, . . . , fi) is
an M = M/(f1, . . . , fi)M -quasi-regular sequence.

Proof. It suffices to prove this for i = 1. Set J = (f2, . . . , f c) ⊂ R. Then

J
n
M/J

n+1
M = (JnM + f1M)/(Jn+1M + f1M)

= JnM/(Jn+1M + JnM ∩ f1M).

Thus, in order to prove the lemma it suffices to show that Jn+1M + JnM ∩ f1M =
Jn+1M + f1J

n−1M because that will show that
⊕

n≥0 J
n
M/J

n+1
M is the quotient of⊕

n≥0 J
nM/Jn+1 ∼= M/JM [X1, . . . , Xc] by X1. Actually, we have JnM ∩ f1M =

f1J
n−1M . Namely, if m 6∈ Jn−1M , then f1m 6∈ JnM because

⊕
JnM/Jn+1M is the

polynomial algebra M/J [X1, . . . , Xc] by assumption. �

Lemma 69.6. Let (R,m) be a local Noetherian ring. Let M be a nonzero finite R-
module. Let f1, . . . , fc ∈ m be an M -quasi-regular sequence. Then f1, . . . , fc is an M -
regular sequence.

Proof. Set J = (f1, . . . , fc). Let us show that f1 is a nonzerodivisor onM . Suppose
x ∈ M is not zero. By Krull’s intersection theorem there exists an integer r such that
x ∈ JrM but x 6∈ Jr+1M , see Lemma 51.4. Then f1x ∈ Jr+1M is an element whose class
in Jr+1M/Jr+2M is nonzero by the assumed structure of

⊕
JnM/Jn+1M . Whence

f1x 6= 0.

Now we can finish the proof by induction on c using Lemma 69.5. �

Remark 69.7 (Other types of regular sequences). In the paper [?] the author discusses
two more regularity conditions for sequences x1, . . . , xr of elements of a ringR. Namely,
we say the sequence is Koszul-regular if Hi(K•(R, x•)) = 0 for i ≥ 1 where K•(R, x•)
is the Koszul complex. The sequence is calledH1-regular ifH1(K•(R, x•)) = 0. One has
the implications regular⇒ Koszul-regular⇒ H1-regular⇒ quasi-regular. By examples
the author shows that these implications cannot be reversed in general even ifR is a (non-
Noetherian) local ring and the sequence generates the maximal ideal of R. We introduce
these notions in more detail in More on Algebra, Section 30.

Remark 69.8. Let k be a field. Consider the ring

A = k[x, y, w, z0, z1, z2, . . .]/(y2z0 − wx, z0 − yz1, z1 − yz2, . . .)

In this ring x is a nonzerodivisor and the image of y in A/xA gives a quasi-regular se-
quence. But it is not true that x, y is a quasi-regular sequence in A because (x, y)/(x, y)2

isn’t free of rank two over A/(x, y) due to the fact that wx = 0 in (x, y)/(x, y)2 but w
isn’t zero in A/(x, y). Hence the analogue of Lemma 68.7 does not hold for quasi-regular
sequences.
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Lemma 69.9. Let R be a ring. Let J = (f1, . . . , fr) be an ideal of R. Let M be an
R-module. SetR = R/

⋂
n≥0 J

n,M = M/
⋂
n≥0 J

nM , and denote f i the image of fi in
R. Then f1, . . . , fr is M -quasi-regular if and only if f1, . . . , fr is M -quasi-regular.

Proof. This is true because JnM/Jn+1M ∼= J
n
M/J

n+1
M . �

70. Blow up algebras

In this section we make some elementary observations about blowing up.

Definition 70.1. Let R be a ring. Let I ⊂ R be an ideal.
(1) The blowup algebra, or the Rees algebra, associated to the pair (R, I) is the graded

R-algebra

BlI(R) =
⊕

n≥0
In = R⊕ I ⊕ I2 ⊕ . . .

where the summand In is placed in degree n.
(2) Let a ∈ I be an element. Denote a(1) the element a seen as an element of de-

gree 1 in the Rees algebra. Then the affine blowup algebra R[ Ia ] is the algebra
(BlI(R))(a(1)) constructed in Section 57.

In other words, an element ofR[ Ia ] is represented by an expression of the form x/an with
x ∈ In. Two representatives x/an and y/am define the same element if and only if
ak(amx− any) = 0 for some k ≥ 0.

Lemma 70.2. Let R be a ring, I ⊂ R an ideal, and a ∈ I . Let R′ = R[ Ia ] be the affine
blowup algebra. Then

(1) the image of a in R′ is a nonzerodivisor,
(2) IR′ = aR′, and
(3) (R′)a = Ra.

Proof. Immediate from the description of R[ Ia ] above. �

Lemma 70.3. LetR→ S be a ring map. Let I ⊂ R be an ideal and a ∈ I . Set J = IS
and let b ∈ J be the image of a. Then S[Jb ] is the quotient of S ⊗R R[ Ia ] by the ideal of
elements annihilated by some power of b.

Proof. Let S′ be the quotient of S ⊗R R[ Ia ] by its b-power torsion elements. The
ring map

S ⊗R R[ Ia ] −→ S[Jb ]
is surjective and annihilates a-power torsion as b is a nonzerodivisor in S[Jb ]. Hence we
obtain a surjective mapS′ → S[Jb ]. To see that the kernel is trivial, we construct an inverse
map. Namely, let z = y/bn be an element of S[Jb ], i.e., y ∈ Jn. Write y =

∑
xisi with

xi ∈ In and si ∈ S. We map z to the class of
∑
si ⊗ xi/an in S′. This is well defined

because an element of the kernel of the map S ⊗R In → Jn is annihilated by an, hence
maps to zero in S′. �

Example 70.4. Let R be a ring. Let P = R[t1, . . . , tn] be the polynomial algebra.
Let I = (t1, . . . , tn) ⊂ P . With notation as in Definition 70.1 there is an isomorphism

P [T1, . . . , Tn]/(tiTj − tjTi) −→ BlI(P )
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sending Ti to t(1)
i . We leave it to the reader to show that this map is well defined. Since

I is generated by t1, . . . , tn we see that our map is surjective. To see that our map is in-
jective one has to show: for each e ≥ 1 the P -module Ie is generated by the monomials
tE = te1

1 . . . xenn for multiindices E = (e1, . . . , en) of degree |E| = e subject only to the
relations titE = tjt

E′
when |E| = |E′| = e and ea + δai = e′

a + δaj , a = 1, . . . , n
(Kronecker delta). We omit the details.

Example 70.5. Let R be a ring. Let P = R[t1, . . . , tn] be the polynomial algebra.
Let I = (t1, . . . , tn) ⊂ P . Let a = t1. With notation as in Definition 70.1 there is an
isomorphism

P [x2, . . . , xn]/(t1x2 − t2, . . . , t1xn − tn) −→ P [ Ia ] = P [ It1 ]

sending xi to ti/t1. We leave it to the reader to show that this map is well defined. Since I
is generated by t1, . . . , tn we see that our map is surjective. To see that our map is injective,
the reader can argue that the source and target of our map are t1-torsion free and that the
map is an isomorphism after inverting t1, see Lemma 70.2. Alternatively, the reader can
use the description of the Rees algebra in Example 70.4. We omit the details.

Lemma 70.6. Let R be a ring. Let I = (a1, . . . , an) be an ideal of R. Let a = a1.
Then there is a surjection

R[x2, . . . , xn]/(ax2 − a2, . . . , axn − an) −→ R[ Ia ]

whose kernel is the a-power torsion in the source.

Proof. Consider the ring map P = Z[t1, . . . , tn] → R sending ti to ai. Set J =
(t1, . . . , tn). By Example 70.5 we haveP [ Jt1 ] = P [x2, . . . , xn]/(t1x2−t2, . . . , t1xn−tn).
Apply Lemma 70.3 to the map P → A to conclude. �

Lemma 70.7. Let R be a ring, I ⊂ R an ideal, and a ∈ I . Set R′ = R[ Ia ]. If f ∈ R is
such that V (f) = V (I), then f maps to a nonzerodivisor in R′ and R′

f = R′
a = Ra.

Proof. We will use the results of Lemma 70.2 without further mention. The assump-
tion V (f) = V (I) implies V (fR′) = V (IR′) = V (aR′). Hence an = fb and fm = ac
for some b, c ∈ R′. The lemma follows. �

Lemma 70.8. Let R be a ring, I ⊂ R an ideal, a ∈ I , and f ∈ R. Set R′ = R[ Ia ] and
R′′ = R[ fIfa ]. Then there is a surjective R-algebra map R′ → R′′ whose kernel is the set
of f -power torsion elements of R′.

Proof. The map is given by sending x/an for x ∈ In to fnx/(fa)n. It is straight-
forward to check this map is well defined and surjective. Since af is a nonzero divisor
in R′′ (Lemma 70.2) we see that the set of f -power torsion elements are mapped to zero.
Conversely, if x ∈ R′ and fnx 6= 0 for all n > 0, then (af)nx 6= 0 for all n as a is a
nonzero divisor in R′. It follows that the image of x in R′′ is not zero by the description
of R′′ following Definition 70.1. �

Lemma 70.9. If R is reduced then every (affine) blowup algebra of R is reduced.

Proof. Let I ⊂ R be an ideal and a ∈ I . Suppose x/an with x ∈ In is a nilpotent
element of R[ Ia ]. Then (x/an)m = 0. Hence aNxm = 0 in R for some N ≥ 0. After
increasingN if necessary we may assumeN = me for some e ≥ 0. Then (aex)m = 0 and
since R is reduced we find aex = 0. This means that x/an = 0 in R[ Ia ]. �
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Lemma 70.10. Let R be a domain, I ⊂ R an ideal, and a ∈ I a nonzero element.
Then the affine blowup algebra R[ Ia ] is a domain.

Proof. Suppose x/an, y/am with x ∈ In, y ∈ Im are elements of R[ Ia ] whose
product is zero. Then aNxy = 0 inR. SinceR is a domain we conclude that either x = 0
or y = 0. �

Lemma 70.11. LetR be a ring. Let I ⊂ R be an ideal. Let a ∈ I . If a is not contained
in any minimal prime of R, then Spec(R[ Ia ])→ Spec(R) has dense image.

Proof. If akx = 0 for x ∈ R, then x is contained in all the minimal primes of R
and hence nilpotent, see Lemma 17.2. Thus the kernel of R → R[ Ia ] consists of nilpotent
elements. Hence the result follows from Lemma 30.6. �

Lemma 70.12. Let (R,m) be a local domain with fraction field K. Let R ⊂ A ⊂ K
be a valuation ring which dominates R. Then

A = colimR[ Ia ]

is a directed colimit of affine blowups R→ R[ Ia ] with the following properties
(1) a ∈ I ⊂ m,
(2) I is finitely generated, and
(3) the fibre ring of R→ R[ Ia ] at m is not zero.

Proof. Any blowup algebra R[ Ia ] is a domain contained in K see Lemma 70.10. The
lemma simply says that A is the directed union of the ones where a ∈ I have properties
(1), (2), (3). If R[ Ia ] ⊂ A and R[Jb ] ⊂ A, then we have

R[ Ia ] ∪R[Jb ] ⊂ R[ IJab ] ⊂ A

The first inclusion because x/an = bnx/(ab)n and the second one because if z ∈ (IJ)n,
then z =

∑
xiyi with xi ∈ In and yi ∈ Jn and hence z/(ab)n =

∑
(xi/an)(yi/bn) is

contained in A.

Consider a finite subset E ⊂ A. Say E = {e1, . . . , en}. Choose a nonzero a ∈ R such
that we can write ei = fi/a for all i = 1, . . . , n. Set I = (f1, . . . , fn, a). We claim that
R[ Ia ] ⊂ A. This is clear as an element of R[ Ia ] can be represented as a polynomial in the
elements ei. The lemma follows immediately from this observation. �

71. Ext groups

In this section we do a tiny bit of homological algebra, in order to establish some funda-
mental properties of depth over Noetherian local rings.

Lemma 71.1. Let R be a ring. Let M be an R-module.
(1) There exists an exact complex

. . .→ F2 → F1 → F0 →M → 0.

with Fi free R-modules.
(2) If R is Noetherian and M finite over R, then we can choose the complex such

that Fi is finite free. In other words, we can find an exact complex

. . .→ R⊕n2 → R⊕n1 → R⊕n0 →M → 0.
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Proof. Let us explain only the Noetherian case. As a first step choose a surjection
Rn0 → M . Then having constructed an exact complex of length e we simply choose a
surjection Rne+1 → Ker(Rne → Rne−1) which is possible because R is Noetherian. �

Definition 71.2. Let R be a ring. Let M be an R-module.
(1) A (left) resolution F• →M of M is an exact complex

. . .→ F2 → F1 → F0 →M → 0

of R-modules.
(2) A resolution of M by free R-modules is a resolution F• → M where each Fi is

a free R-module.
(3) A resolution of M by finite free R-modules is a resolution F• →M where each

Fi is a finite free R-module.

We often use the notation F• to denote a complex of R-modules

. . .→ Fi → Fi−1 → . . .

In this case we often use di or dF,i to denote the map Fi → Fi−1. In this section we are
always going to assume thatF0 is the last nonzero term in the complex. The ith homology
group of the complex F• is the group Hi = Ker(dF,i)/ Im(dF,i+1). A map of complexes
α : F• → G• is given by maps αi : Fi → Gi such that αi−1 ◦ dF,i = dG,i−1 ◦ αi. Such
a map induces a map on homology Hi(α) : Hi(F•) → Hi(G•). If α, β : F• → G• are
maps of complexes, then a homotopy between α and β is given by a collection of maps
hi : Fi → Gi+1 such that αi−βi = dG,i+1 ◦hi+hi−1 ◦dF,i. Two maps α, β : F• → G•
are said to be homotopic if a homotopy between α and β exists.

We will use a very similar notation regarding complexes of the form F • which look like

. . .→ F i
di−→ F i+1 → . . .

There are maps of complexes, homotopies, etc. In this case we setHi(F •) = Ker(di)/ Im(di−1)
and we call it the ith cohomology group.

Lemma 71.3. Any two homotopic maps of complexes induce the same maps on (co)ho-
mology groups.

Proof. Omitted. �

Lemma 71.4. Let R be a ring. Let M → N be a map of R-modules. Let N• → N be
an arbitrary resolution. Let

. . .→ F2 → F1 → F0 →M

be a complex of R-modules where each Fi is a free R-module. Then
(1) there exists a map of complexes F• → N• such that

F0 //

��

M

��
N0 // N

is commutative, and
(2) any two maps α, β : F• → N• as in (1) are homotopic.
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Proof. Proof of (1). Because F0 is free we can find a map F0 → N0 lifting the map
F0 → M → N . We obtain an induced map F1 → F0 → N0 which ends up in the image
of N1 → N0. Since F1 is free we may lift this to a map F1 → N1. This in turn induces
a map F2 → F1 → N1 which maps to zero into N0. Since N• is exact we see that the
image of this map is contained in the image of N2 → N1. Hence we may lift to get a map
F2 → N2. Repeat.

Proof of (2). To show that α, β are homotopic it suffices to show the difference γ = α−β
is homotopic to zero. Note that the image of γ0 : F0 → N0 is contained in the image
of N1 → N0. Hence we may lift γ0 to a map h0 : F0 → N1. Consider the map γ′

1 =
γ1 − h0 ◦ dF,1. By our choice of h0 we see that the image of γ′

1 is contained in the kernel
of N1 → N0. Since N• is exact we may lift γ′

1 to a map h1 : F1 → N2. At this point we
have γ1 = h0 ◦ dF,1 + dN,2 ◦ h1. Repeat. �

At this point we are ready to define the groups ExtiR(M,N). Namely, choose a resolution
F• of M by free R-modules, see Lemma 71.1. Consider the (cohomological) complex

HomR(F•, N) : HomR(F0, N)→ HomR(F1, N)→ HomR(F2, N)→ . . .

We define ExtiR(M,N) for i ≥ 0 to be the ith cohomology group of this complex7. For
i < 0 we set ExtiR(M,N) = 0. Before we continue we point out that

Ext0
R(M,N) = Ker(HomR(F0, N)→ HomR(F1, N)) = HomR(M,N)

because we can apply part (1) of Lemma 10.1 to the exact sequence F1 → F0 → M → 0.
The following lemma explains in what sense this is well defined.

Lemma 71.5. Let R be a ring. Let M1,M2, N be R-modules. Suppose that F• is
a free resolution of the module M1, and G• is a free resolution of the module M2. Let
ϕ : M1 → M2 be a module map. Let α : F• → G• be a map of complexes inducing ϕ on
M1 = Coker(dF,1)→M2 = Coker(dG,1), see Lemma 71.4. Then the induced maps

Hi(α) : Hi(HomR(F•, N)) −→ Hi(HomR(G•, N))

are independent of the choice of α. If ϕ is an isomorphism, so are all the maps Hi(α). If
M1 = M2, F• = G•, and ϕ is the identity, so are all the maps Hi(α).

Proof. Another map β : F• → G• inducing ϕ is homotopic to α by Lemma 71.4.
Hence the maps HomR(F•, N) → HomR(G•, N) are homotopic. Hence the indepen-
dence result follows from Lemma 71.3.

Suppose that ϕ is an isomorphism. Let ψ : M2 →M1 be an inverse. Choose β : G• → F•
be a map inducing ψ : M2 = Coker(dG,1) → M1 = Coker(dF,1), see Lemma 71.4. OK,
and now consider the mapHi(α) ◦Hi(β) = Hi(α ◦β). By the above the mapHi(α ◦β)
is the same as the map Hi(idG•) = id. Similarly for the composition Hi(β) ◦ Hi(α).
Hence Hi(α) and Hi(β) are inverses of each other. �

Lemma 71.6. LetR be a ring. LetM be anR-module. Let 0→ N ′ → N → N ′′ → 0
be a short exact sequence. Then we get a long exact sequence

0→ HomR(M,N ′)→ HomR(M,N)→ HomR(M,N ′′)
→ Ext1

R(M,N ′)→ Ext1
R(M,N)→ Ext1

R(M,N ′′)→ . . .

7At this point it would perhaps be more appropriate to say “an” in stead of “the” Ext-group.
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Proof. Pick a free resolution F• → M . Since each of the Fi are free we see that we
get a short exact sequence of complexes

0→ HomR(F•, N
′)→ HomR(F•, N)→ HomR(F•, N

′′)→ 0

Thus we get the long exact sequence from the snake lemma applied to this. �

Lemma 71.7. LetR be a ring. LetN be anR-module. Let 0→M ′ →M →M ′′ → 0
be a short exact sequence. Then we get a long exact sequence

0→ HomR(M ′′, N)→ HomR(M,N)→ HomR(M ′, N)
→ Ext1

R(M ′′, N)→ Ext1
R(M,N)→ Ext1

R(M ′, N)→ . . .

Proof. Pick sets of generators {m′
i′}i′∈I′ and {m′′

i′′}i′′∈I′′ of M ′ and M ′′. For each
i′′ ∈ I ′′ choose a lift m̃′′

i′′ ∈ M of the element m′′
i′′ ∈ M ′′. Set F ′ =

⊕
i′∈I′ R, F ′′ =⊕

i′′∈I′′ R and F = F ′ ⊕ F ′′. Mapping the generators of these free modules to the
corresponding chosen generators gives surjective R-module maps F ′ → M ′, F ′′ → M ′′,
and F →M . We obtain a map of short exact sequences

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

0 → F ′ → F → F ′′ → 0

By the snake lemma we see that the sequence of kernels 0 → K ′ → K → K ′′ → 0 is
short exact sequence of R-modules. Hence we can continue this process indefinitely. In
other words we obtain a short exact sequence of resolutions fitting into the diagram

0 → M ′ → M → M ′′ → 0
↑ ↑ ↑

0 → F ′
• → F• → F ′′

• → 0

Because each of the sequences 0 → F ′
n → Fn → F ′′

n → 0 is split exact (by construction)
we obtain a short exact sequence of complexes

0→ HomR(F ′′
• , N)→ HomR(F•, N)→ HomR(F ′

•, N)→ 0

by applying the HomR(−, N) functor. Thus we get the long exact sequence from the
snake lemma applied to this. �

Lemma 71.8. Let R be a ring. Let M , N be R-modules. Any x ∈ R such that either
xN = 0, or xM = 0 annihilates each of the modules ExtiR(M,N).

Proof. Pick a free resolution F• of M . Since ExtiR(M,N) is defined as the coho-
mology of the complex HomR(F•, N) the lemma is clear when xN = 0. If xM = 0, then
we see that multiplication by x on F• lifts the zero map on M . Hence by Lemma 71.5 we
see that it induces the same map on Ext groups as the zero map. �

Lemma 71.9. Let R be a Noetherian ring. Let M , N be finite R-modules. Then
ExtiR(M,N) is a finite R-module for all i.

Proof. This holds because ExtiR(M,N) is computed as the cohomology groups of a
complex HomR(F•, N) with each Fn a finite free R-module, see Lemma 71.1. �
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72. Depth

Here is our definition.

Definition 72.1. Let R be a ring, and I ⊂ R an ideal. Let M be a finite R-module.
The I-depth of M , denoted depthI(M), is defined as follows:

(1) if IM 6= M , then depthI(M) is the supremum in {0, 1, 2, . . . ,∞} of the lengths
of M -regular sequences in I ,

(2) if IM = M we set depthI(M) =∞.
If (R,m) is local we call depthm(M) simply the depth of M .

Explanation. By Definition 68.1 the empty sequence is not a regular sequence on the zero
module, but for practical purposes it turns out to be convenient to set the depth of the 0
module equal to +∞. Note that if I = R, then depthI(M) =∞ for all finite R-modules
M . If I is contained in the Jacobson radical of R (e.g., if R is local and I ⊂ mR), then
M 6= 0⇒ IM 6= M by Nakayama’s lemma. A moduleM has I-depth 0 if and only ifM
is nonzero and I does not contain a nonzerodivisor on M .
Example 68.2 shows depth does not behave well even if the ring is Noetherian, and Ex-
ample 68.3 shows that it does not behave well if the ring is local but non-Noetherian. We
will see depth behaves well if the ring is local Noetherian.

Lemma 72.2. Let R be a ring, I ⊂ R an ideal, and M a finite R-module. Then
depthI(M) is equal to the supremum of the lengths of sequences f1, . . . , fr ∈ I such that
fi is a nonzerodivisor on M/(f1, . . . , fi−1)M .

Proof. Suppose that IM = M . Then Lemma 20.1 shows there exists an f ∈ I
such that f : M → M is idM . Hence f, 0, 0, 0, . . . is an infinite sequence of successive
nonzerodivisors and we see agreement holds in this case. If IM 6= M , then we see that a
sequence as in the lemma is anM -regular sequence and we conclude that agreement holds
as well. �

Lemma 72.3. Let (R,m) be a Noetherian local ring. Let M be a nonzero finite R-
module. Then dim(Supp(M)) ≥ depth(M).

Proof. The proof is by induction on dim(Supp(M)). If dim(Supp(M)) = 0, then
Supp(M) = {m}, whence Ass(M) = {m} (by Lemmas 63.2 and 63.7), and hence the
depth of M is zero for example by Lemma 63.18. For the induction step we assume
dim(Supp(M)) > 0. Let f1, . . . , fd be a sequence of elements of m such that fi is a
nonzerodivisor on M/(f1, . . . , fi−1)M . According to Lemma 72.2 it suffices to prove
dim(Supp(M)) ≥ d. We may assume d > 0 otherwise the lemma holds. By Lemma
63.10 we have dim(Supp(M/f1M)) = dim(Supp(M)) − 1. By induction we conclude
dim(Supp(M/f1M)) ≥ d− 1 as desired. �

Lemma 72.4. Let R be a Noetherian ring, I ⊂ R an ideal, and M a finite nonzero
R-module such that IM 6= M . Then depthI(M) <∞.

Proof. Since M/IM is nonzero we can choose p ∈ Supp(M/IM) by Lemma 40.2.
Then (M/IM)p 6= 0 which implies I ⊂ p and moreover implies Mp 6= IMp as localiza-
tion is exact. Let f1, . . . , fr ∈ I be an M -regular sequence. Then Mp/(f1, . . . , fr)Mp is
nonzero as (f1, . . . , fr) ⊂ I . As localization is flat we see that the images of f1, . . . , fr
form aMp-regular sequence in Ip. Since this works for everyM -regular sequence in I we
conclude that depthI(M) ≤ depthIp(Mp). The latter is ≤ depth(Mp) which is < ∞ by
Lemma 72.3. �
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Lemma 72.5. Let R be a Noetherian local ring with maximal ideal m. Let M be
a nonzero finite R-module. Then depth(M) is equal to the smallest integer i such that
ExtiR(R/m,M) is nonzero.

Proof. Let δ(M) denote the depth of M and let i(M) denote the smallest integer
i such that ExtiR(R/m,M) is nonzero. We will see in a moment that i(M) < ∞. By
Lemma 63.18 we have δ(M) = 0 if and only if i(M) = 0, because m ∈ Ass(M) exactly
means that i(M) = 0. Hence if δ(M) or i(M) is > 0, then we may choose x ∈ m such
that (a) x is a nonzerodivisor on M , and (b) depth(M/xM) = δ(M) − 1. Consider the
long exact sequence of Ext-groups associated to the short exact sequence 0→M →M →
M/xM → 0 by Lemma 71.6:

0→ HomR(κ,M)→ HomR(κ,M)→ HomR(κ,M/xM)
→ Ext1

R(κ,M)→ Ext1
R(κ,M)→ Ext1

R(κ,M/xM)→ . . .

Since x ∈ m all the maps ExtiR(κ,M) → ExtiR(κ,M) are zero, see Lemma 71.8. Thus it
is clear that i(M/xM) = i(M)− 1. Induction on δ(M) finishes the proof. �

Lemma 72.6. Let R be a local Noetherian ring. Let 0 → N ′ → N → N ′′ → 0 be a
short exact sequence of nonzero finite R-modules.

(1) depth(N) ≥ min{depth(N ′), depth(N ′′)}
(2) depth(N ′′) ≥ min{depth(N), depth(N ′)− 1}
(3) depth(N ′) ≥ min{depth(N), depth(N ′′) + 1}

Proof. Use the characterization of depth using the Ext groups Exti(κ,N), see Lemma
72.5, and use the long exact cohomology sequence

0→ HomR(κ,N ′)→ HomR(κ,N)→ HomR(κ,N ′′)
→ Ext1

R(κ,N ′)→ Ext1
R(κ,N)→ Ext1

R(κ,N ′′)→ . . .

from Lemma 71.6. �

Lemma 72.7. Let R be a local Noetherian ring and M a nonzero finite R-module.
(1) If x ∈ m is a nonzerodivisor on M , then depth(M/xM) = depth(M)− 1.
(2) Any M -regular sequence x1, . . . , xr can be extended to an M -regular sequence

of length depth(M).

Proof. Part (2) is a formal consequence of part (1). Let x ∈ R be as in (1). By the
short exact sequence 0 → M → M → M/xM → 0 and Lemma 72.6 we see that the
depth drops by at most 1. On the other hand, if x1, . . . , xr ∈ m is a regular sequence for
M/xM , then x, x1, . . . , xr is a regular sequence forM . Hence we see that the depth drops
by at least 1. �

Lemma 72.8. Let (R,m) be a local Noetherian ring and M a finite R-module. Let
x ∈ m, p ∈ Ass(M), and q minimal over p + (x). Then q ∈ Ass(M/xnM) for some
n ≥ 1.

Proof. Pick a submoduleN ⊂M withN ∼= R/p. By the Artin-Rees lemma (Lemma
51.2) we can pick n > 0 such that N ∩ xnM ⊂ xN . Let N ⊂ M/xnM be the image of
N →M →M/xnM . By Lemma 63.3 it suffices to show q ∈ Ass(N). By our choice of n
there is a surjection N → N/xN = R/p + (x) and hence q is in the support of N . Since
N is annihilated by xn and p we see that q is minimal among the primes in the support of
N . Thus q is an associated prime of N by Lemma 63.8. �
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Lemma 72.9. Let (R,m) be a local Noetherian ring and M a finite R-module. For
p ∈ Ass(M) we have dim(R/p) ≥ depth(M).

Proof. If m ∈ Ass(M) then there is a nonzero element x ∈M which is annihilated
by all elements of m. Thus depth(M) = 0. In particular the lemma holds in this case.

If depth(M) = 1, then by the first paragraph we find thatm 6∈ Ass(M). Hence dim(R/p) ≥
1 for all p ∈ Ass(M) and the lemma is true in this case as well.

We will prove the lemma in general by induction on depth(M) which we may and do
assume to be > 1. Pick x ∈ m which is a nonzerodivisor on M . Note x 6∈ p (Lemma
63.9). By Lemma 60.13 we have dim(R/p + (x)) = dim(R/p) − 1. Thus there ex-
ists a prime q minimal over p + (x) with dim(R/q) = dim(R/p) − 1 (small argu-
ment omitted; hint: the dimension of a Noetherian local ring A is the maximum of the
dimensions of A/r taken over the minimal primes r of A). Pick n as in Lemma 72.8
so that q is an associated prime of M/xnM . We may apply induction hypothesis to
M/xnM and q because depth(M/xnM) = depth(M) − 1 by Lemma 72.7. We find
dim(R/q) ≥ depth(M/xnM) and we win. �

Lemma 72.10. LetR be a local Noetherian ring andM a finiteR-module. For a prime
ideal p ⊂ R we have depth(Mp) + dim(R/p) ≥ depth(M).

Proof. If Mp = 0, then depth(Mp) = ∞ and the lemma holds. If depth(M) ≤
dim(R/p), then the lemma is true. If depth(M) > dim(R/p), then p is not contained in
any associated prime q of M by Lemma 72.9. Hence we can find an x ∈ p not contained
in any associated prime ofM by Lemma 15.2 and Lemma 63.5. Then x is a nonzerodivisor
on M , see Lemma 63.9. Hence depth(M/xM) = depth(M)− 1 and depth(Mp/xMp) =
depth(Mp)− 1 providedMp is nonzero, see Lemma 72.7. Thus we conclude by induction
on depth(M). �

Lemma 72.11. Let (R,m) be a Noetherian local ring. LetR→ S be a finite ring map.
Let m1, . . . ,mn be the maximal ideals of S. Let N be a finite S-module. Then

mini=1,...,n depth(Nmi) = depthm(N)

Proof. By Lemmas 36.20, 36.22, and Lemma 36.21 the maximal ideals ofS are exactly
the primes of S lying over m and there are finitely many of them. Hence the statement of
the lemma makes sense. We will prove the lemma by induction on k = mini=1,...,n depth(Nmi).
If k = 0, then depth(Nmi) = 0 for some i. By Lemma 72.5 this means miSmi is an asso-
ciated prime of Nmi and hence mi is an associated prime of N (Lemma 63.16). By Lemma
63.13 we see that m is an associated prime ofN as anR-module. Whence depthm(N) = 0.
This proves the base case. If k > 0, then we see that mi 6∈ AssS(N). Hence m 6∈ AssR(N),
again by Lemma 63.13. Thus we can find f ∈ m which is not a zerodivisor on N , see
Lemma 63.18. By Lemma 72.7 all the depths drop exactly by 1 when passing from N to
N/fN and the induction hypothesis does the rest. �

73. Functorialities for Ext

In this section we briefly discuss the functoriality of Ext with respect to change of ring,
etc. Here is a list of items to work out.

(1) GivenR→ R′, anR-moduleM and anR′-moduleN ′ theR-module ExtiR(M,N ′)
has a naturalR′-module structure. Moreover, there is a canonicalR′-linear map
ExtiR′(M ⊗R R′, N ′)→ ExtiR(M,N ′).
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(2) GivenR→ R′ andR-modulesM ,N there is a naturalR-module map ExtiR(M,N)→
ExtiR(M,N ⊗R R′).

Lemma 73.1. Given a flat ring map R→ R′, an R-module M , and an R′-module N ′

the natural map
ExtiR′(M ⊗R R′, N ′)→ ExtiR(M,N ′)

is an isomorphism for i ≥ 0.

Proof. Choose a free resolution F• ofM . SinceR→ R′ is flat we see that F•⊗RR′

is a free resolution of M ⊗R R′ over R′. The statement is that the map
HomR′(F• ⊗R R′, N ′)→ HomR(F•, N

′)
induces an isomorphism on homology groups, which is true because it is an isomorphism
of complexes by Lemma 14.3. �

74. An application of Ext groups

Here it is.

Lemma 74.1. Let R be a Noetherian ring. Let I ⊂ R be an ideal contained in the
Jacobson radical of R. Let N → M be a homomorphism of finite R-modules. Suppose
that there exists arbitrarily large n such that N/InN → M/InM is a split injection.
Then N →M is a split injection.

Proof. Assume ϕ : N → M satisfies the assumptions of the lemma. Note that this
implies that Ker(ϕ) ⊂ InN for arbitrarily large n. Hence by Lemma 51.5 we see that ϕ is
injection. Let Q = M/N so that we have a short exact sequence

0→ N →M → Q→ 0.
Let

F2
d2−→ F1

d1−→ F0 → Q→ 0
be a finite free resolution ofQ. We can choose a mapα : F0 →M lifting the mapF0 → Q.
This induces a map β : F1 → N such that β ◦ d2 = 0. The extension above is split if and
only if there exists a map γ : F0 → N such that β = γ ◦ d1. In other words, the class of
β in Ext1

R(Q,N) is the obstruction to splitting the short exact sequence above.
Suppose n is a large integer such thatN/InN →M/InM is a split injection. This implies

0→ N/InN →M/InM → Q/InQ→ 0.
is still short exact. Also, the sequence

F1/I
nF1

d1−→ F0/I
nF0 → Q/InQ→ 0

is still exact. Arguing as above we see that the map β : F1/I
nF1 → N/InN induced by

β is equal to γn ◦ d1 for some map γn : F0/I
nF0 → N/InN . Since F0 is free we can lift

γn to a map γn : F0 → N and then we see that β − γn ◦ d1 is a map from F1 into InN .
In other words we conclude that

β ∈ Im
(

HomR(F0, N)→ HomR(F1, N)
)

+ In HomR(F1, N).

for this n.
Since we have this property for arbitrarily large n by assumption we conclude that the
image of β in the cokernel of HomR(F0, N) → HomR(F1, N) is zero by Lemma 51.5.
Hence β is in the image of the map HomR(F0, N)→ HomR(F1, N) as desired. �
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75. Tor groups and flatness

In this section we use some of the homological algebra developed in the previous section
to explain what Tor groups are. Namely, suppose that R is a ring and that M , N are two
R-modules. Choose a resolution F• of M by free R-modules. See Lemma 71.1. Consider
the homological complex

F• ⊗R N : . . .→ F2 ⊗R N → F1 ⊗R N → F0 ⊗R N

We define TorRi (M,N) to be the ith homology group of this complex. The following
lemma explains in what sense this is well defined.

Lemma 75.1. Let R be a ring. Let M1,M2, N be R-modules. Suppose that F• is a
free resolution of the module M1 and that G• is a free resolution of the module M2. Let
ϕ : M1 → M2 be a module map. Let α : F• → G• be a map of complexes inducing ϕ on
M1 = Coker(dF,1)→M2 = Coker(dG,1), see Lemma 71.4. Then the induced maps

Hi(α) : Hi(F• ⊗R N) −→ Hi(G• ⊗R N)

are independent of the choice of α. If ϕ is an isomorphism, so are all the maps Hi(α). If
M1 = M2, F• = G•, and ϕ is the identity, so are all the maps Hi(α).

Proof. The proof of this lemma is identical to the proof of Lemma 71.5. �

Not only does this lemma imply that the Tor modules are well defined, but it also provides
for the functoriality of the constructions (M,N) 7→ TorRi (M,N) in the first variable. Of
course the functoriality in the second variable is evident. We leave it to the reader to see
that each of the TorRi is in fact a functor

ModR ×ModR →ModR.

Here ModR denotes the category ofR-modules, and for the definition of the product cate-
gory see Categories, Definition 2.20. Namely, given morphisms of R-modules M1 →M2
and N1 → N2 we get a commutative diagram

TorRi (M1, N1) //

��

TorRi (M1, N2)

��
TorRi (M2, N1) // TorRi (M2, N2)

Lemma 75.2. Let R be a ring and let M be an R-module. Suppose that 0 → N ′ →
N → N ′′ → 0 is a short exact sequence of R-modules. There exists a long exact sequence

TorR1 (M,N ′)→ TorR1 (M,N)→ TorR1 (M,N ′′)→M⊗RN ′ →M⊗RN →M⊗RN ′′ → 0

Proof. The proof of this is the same as the proof of Lemma 71.6. �
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Consider a homological double complex of R-modules

. . .
d // A2,0

d // A1,0
d // A0,0

. . .
d // A2,1

d //

δ

OO

A1,1
d //

δ

OO

A0,1

δ

OO

. . .
d // A2,2

d //

δ

OO

A1,2
d //

δ

OO

A0,2

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

This means that di,j : Ai,j → Ai−1,j and δi,j : Ai,j → Ai,j−1 have the following
properties

(1) Any composition of two di,j is zero. In other words the rows of the double
complex are complexes.

(2) Any composition of two δi,j is zero. In other words the columns of the double
complex are complexes.

(3) For any pair (i, j) we have δi−1,j ◦ di,j = di,j−1 ◦ δi,j . In other words, all the
squares commute.

The correct thing to do is to associate a spectral sequence to any such double complex.
However, for the moment we can get away with doing something slightly easier.

Namely, for the purposes of this section only, given a double complex (A•,•, d, δ) set
R(A)j = Coker(A1,j → A0,j) and U(A)i = Coker(Ai,1 → Ai,0). (The letters R and
U are meant to suggest Right and Up.) We endowR(A)• with the structure of a complex
using the maps δ. Similarly we endow U(A)• with the structure of a complex using the
maps d. In other words we obtain the following huge commutative diagram

. . .
d // U(A)2

d // U(A)1
d // U(A)0

. . .
d // A2,0

d //

OO

A1,0
d //

OO

A0,0 //

OO

R(A)0

. . .
d // A2,1

d //

δ

OO

A1,1
d //

δ

OO

A0,1 //

δ

OO

R(A)1

δ

OO

. . .
d // A2,2

d //

δ

OO

A1,2
d //

δ

OO

A0,2 //

δ

OO

R(A)2

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

. . .

δ

OO

(This is no longer a double complex of course.) It is clear what a morphism Φ : (A•,•, d, δ)→
(B•,•, d, δ) of double complexes is, and it is clear that this induces morphisms of complexes
R(Φ) : R(A)• → R(B)• and U(Φ) : U(A)• → U(B)•.

Lemma 75.3. Let (A•,•, d, δ) be a double complex such that
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(1) Each row A•,j is a resolution of R(A)j .
(2) Each column Ai,• is a resolution of U(A)i.

Then there are canonical isomorphisms

Hi(R(A)•) ∼= Hi(U(A)•).
The isomorphisms are functorial with respect to morphisms of double complexes with the
properties above.

Proof. We will show that Hi(R(A)•)) and Hi(U(A)•) are canonically isomorphic
to a third group. Namely

Hi(A) := {(ai,0, ai−1,1, . . . , a0,i) | d(ai,0) = δ(ai−1,1), . . . , d(a1,i−1) = δ(a0,i)}
{d(ai+1,0) + δ(ai,1), d(ai,1) + δ(ai−1,2), . . . , d(a1,i) + δ(a0,i+1)}

Here we use the notational convention that ai,j denotes an element ofAi,j . In other words,
an element of Hi is represented by a zig-zag, represented as follows for i = 2

a2,0
� // d(a2,0) = δ(a1,1)

a1,1
_

OO

� // d(a1,1) = δ(a0,2)

a0,2
_

OO

Naturally, we divide out by “trivial” zig-zags, namely the submodule generated by el-
ements of the form (0, . . . , 0,−δ(at+1,t−i), d(at+1,t−i), 0, . . . , 0). Note that there are
canonical homomorphisms

Hi(A)→ Hi(R(A)•), (ai,0, ai−1,1, . . . , a0,i) 7→ class of image of a0,i

and

Hi(A)→ Hi(U(A)•), (ai,0, ai−1,1, . . . , a0,i) 7→ class of image of ai,0

First we show that these maps are surjective. Suppose that r ∈ Hi(R(A)•). Let r ∈ R(A)i
be a cocycle representing the class of r. Let a0,i ∈ A0,i be an element which maps to r.
Because δ(r) = 0, we see that δ(a0,i) is in the image of d. Hence there exists an element
a1,i−1 ∈ A1,i−1 such that d(a1,i−1) = δ(a0,i). This in turn implies that δ(a1,i−1) is in
the kernel of d (because d(δ(a1,i−1)) = δ(d(a1,i−1)) = δ(δ(a0,i)) = 0. By exactness of
the rows we find an element a2,i−2 such that d(a2,i−2) = δ(a1,i−1). And so on until a
full zig-zag is found. Of course surjectivity of Hi → Hi(U(A)) is shown similarly.

To prove injectivity we argue in exactly the same way. Namely, suppose we are given a
zig-zag (ai,0, ai−1,1, . . . , a0,i) which maps to zero in Hi(R(A)•). This means that a0,i
maps to an element of Coker(Ai,1 → Ai,0) which is in the image of δ : Coker(Ai+1,1 →
Ai+1,0) → Coker(Ai,1 → Ai,0). In other words, a0,i is in the image of δ ⊕ d : A0,i+1 ⊕
A1,i → A0,i. From the definition of trivial zig-zags we see that we may modify our zig-zag
by a trivial one and assume that a0,i = 0. This immediately implies that d(a1,i−1) = 0.
As the rows are exact this implies that a1,i−1 is in the image of d : A2,i−1 → A1,i−1.
Thus we may modify our zig-zag once again by a trivial zig-zag and assume that our zig-
zag looks like (ai,0, ai−1,1, . . . , a2,i−2, 0, 0). Continuing like this we obtain the desired
injectivity.
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If Φ : (A•,•, d, δ)→ (B•,•, d, δ) is a morphism of double complexes both of which satisfy
the conditions of the lemma, then we clearly obtain a commutative diagram

Hi(U(A)•)

��

Hi(A) //oo

��

Hi(R(A)•)

��
Hi(U(B)•) Hi(B) //oo Hi(R(B)•)

This proves the functoriality. �

Remark 75.4. The isomorphism constructed above is the “correct” one only up to
signs. A good part of homological algebra is concerned with choosing signs for various
maps and showing commutativity of diagrams with intervention of suitable signs. For the
moment we will simply use the isomorphism as given in the proof above, and worry about
signs later.

Lemma 75.5. Let R be a ring. For any i ≥ 0 the functors ModR ×ModR →ModR,
(M,N) 7→ TorRi (M,N) and (M,N) 7→ TorRi (N,M) are canonically isomorphic.

Proof. Let F• be a free resolution of the module M and let G• be a free resolution
of the module N . Consider the double complex (Ai,j , d, δ) defined as follows:

(1) set Ai,j = Fi ⊗R Gj ,
(2) set di,j : Fi ⊗R Gj → Fi−1 ⊗Gj equal to dF,i ⊗ id, and
(3) set δi,j : Fi ⊗R Gj → Fi ⊗Gj−1 equal to id⊗ dG,j .

This double complex is usually simply denoted F• ⊗R G•.

Since each Gj is free, and hence flat we see that each row of the double complex is exact
except in homological degree 0. Since eachFi is free and hence flat we see that each column
of the double complex is exact except in homological degree 0. Hence the double complex
satisfies the conditions of Lemma 75.3.

To see what the lemma says we compute R(A)• and U(A)•. Namely,

R(A)i = Coker(A1,i → A0,i)
= Coker(F1 ⊗R Gi → F0 ⊗R Gi)
= Coker(F1 → F0)⊗R Gi
= M ⊗R Gi

In fact these isomorphisms are compatible with the differentials δ and we see thatR(A)• =
M ⊗R G• as homological complexes. In exactly the same way we see that U(A)• =
F• ⊗R N . We get

TorRi (M,N) = Hi(F• ⊗R N)
= Hi(U(A)•)
= Hi(R(A)•)
= Hi(M ⊗R G•)
= Hi(G• ⊗RM)
= TorRi (N,M)

Here the third equality is Lemma 75.3, and the fifth equality uses the isomorphism V ⊗
W = W ⊗ V of the tensor product.
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Functoriality. Suppose that we haveR-modulesMν ,Nν , ν = 1, 2. Let ϕ : M1 →M2 and
ψ : N1 → N2 be morphisms ofR-modules. Suppose that we have free resolutions Fν,• for
Mν and free resolutions Gν,• for Nν . By Lemma 71.4 we may choose maps of complexes
α : F1,• → F2,• and β : G1,• → G2,• compatible with ϕ and ψ. We claim that the pair
(α, β) induces a morphism of double complexes

α⊗ β : F1,• ⊗R G1,• −→ F2,• ⊗R G2,•

This is really a very straightforward check using the rule thatF1,i⊗RG1,j → F2,i⊗RG2,j
is given by αi ⊗ βj where αi, resp. βj is the degree i, resp. j component of α, resp. β. The
reader also readily verifies that the induced mapsR(F1,•⊗RG1,•)• → R(F2,•⊗RG2,•)•
agrees with the map M1 ⊗R G1,• → M2 ⊗R G2,• induced by ϕ ⊗ β. Similarly for the
map induced on the U(−)• complexes. Thus the statement on functoriality follows from
the statement on functoriality in Lemma 75.3. �

Remark 75.6. An interesting case occurs when M = N in the above. In this case
we get a canonical map TorRi (M,M) → TorRi (M,M). Note that this map is not the
identity, because even when i = 0 this map is not the identity! For example, if V is a
vector space of dimension n over a field, then the switch map V ⊗k V → V ⊗k V has
(n2 + n)/2 eigenvalues +1 and (n2 − n)/2 eigenvalues −1. In characteristic 2 it is not
even diagonalizable. Note that even changing the sign of the map will not get rid of this.

Lemma 75.7. Let R be a Noetherian ring. Let M , N be finite R-modules. Then
TorRp (M,N) is a finite R-module for all p.

Proof. This holds because TorRp (M,N) is computed as the cohomology groups of a
complex F• ⊗R N with each Fn a finite free R-module, see Lemma 71.1. �

Lemma 75.8. Let R be a ring. Let M be an R-module. The following are equivalent:
(1) The module M is flat over R.
(2) For all i > 0 the functor TorRi (M,−) is zero.
(3) The functor TorR1 (M,−) is zero.
(4) For all ideals I ⊂ R we have TorR1 (M,R/I) = 0.
(5) For all finitely generated ideals I ⊂ R we have TorR1 (M,R/I) = 0.

Proof. Suppose M is flat. Let N be an R-module. Let F• be a free resolution of N .
Then F•⊗RM is a resolution ofN ⊗RM , by flatness ofM . Hence all higher Tor groups
vanish.

It now suffices to show that the last condition implies that M is flat. Let I ⊂ R be an
ideal. Consider the short exact sequence 0 → I → R → R/I → 0. Apply Lemma 75.2.
We get an exact sequence

TorR1 (M,R/I)→M ⊗R I →M ⊗R R→M ⊗R R/I → 0

Since obviously M ⊗R R = M we conclude that the last hypothesis implies that M ⊗R
I →M is injective for every finitely generated ideal I . ThusM is flat by Lemma 39.5. �

Remark 75.9. The proof of Lemma 75.8 actually shows that

TorR1 (M,R/I) = Ker(I ⊗RM →M).
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76. Functorialities for Tor

In this section we briefly discuss the functoriality of Tor with respect to change of ring,
etc. Here is a list of items to work out.

(1) Given a ring mapR→ R′, anR-moduleM and anR′-moduleN ′ theR-modules
TorRi (M,N ′) have a natural R′-module structure.

(2) Given a ring map R → R′ and R-modules M , N there is a natural R-module
map TorRi (M,N)→ TorR

′

i (M ⊗R R′, N ⊗R R′).
(3) Given a ring map R→ R′ an R-module M and an R′-module N ′ there exists a

natural R′-module map TorRi (M,N ′)→ TorR
′

i (M ⊗R R′, N ′).

Lemma 76.1. Given a flat ring map R → R′ and R-modules M , N the natural R-
module map TorRi (M,N) ⊗R R′ → TorR

′

i (M ⊗R R′, N ⊗R R′) is an isomorphism for
all i.

Proof. Omitted. This is true because a free resolution F• of M over R stays exact
when tensoring with R′ over R and hence (F• ⊗R N) ⊗R R′ computes the Tor groups
over R′. �

The following lemma does not seem to fit anywhere else.

Lemma 76.2. Let R be a ring. Let M = colimMi be a filtered colimit of R-modules.
Let N be an R-module. Then TorRn (M,N) = colim TorRn (Mi, N) for all n.

Proof. Choose a free resolution F• of N . Then F• ⊗R M = colimF• ⊗R Mi as
complexes by Lemma 12.9. Thus the result by Lemma 8.8. �

77. Projective modules

Some lemmas on projective modules.

Definition 77.1. Let R be a ring. An R-module P is projective if and only if the
functor HomR(P,−) : ModR →ModR is an exact functor.

The functor HomR(M,−) is left exact for any R-module M , see Lemma 10.1. Hence
the condition for P to be projective really signifies that given a surjection of R-modules
N → N ′ the map HomR(P,N)→ HomR(P,N ′) is surjective.

Lemma 77.2. Let R be a ring. Let P be an R-module. The following are equivalent
(1) P is projective,
(2) P is a direct summand of a free R-module, and
(3) Ext1

R(P,M) = 0 for every R-module M .

Proof. Assume P is projective. Choose a surjection π : F → P where F is a free
R-module. As P is projective there exists a i ∈ HomR(P, F ) such that π ◦ i = idP . In
other words F ∼= Ker(π)⊕ i(P ) and we see that P is a direct summand of F .
Conversely, assume that P ⊕ Q = F is a free R-module. Note that the free module
F =

⊕
i∈I R is projective as HomR(F,M) =

∏
i∈IM and the functor M 7→

∏
i∈IM is

exact. Then HomR(F,−) = HomR(P,−)×HomR(Q,−) as functors, hence both P and
Q are projective.
Assume P ⊕Q = F is a free R-module. Then we have a free resolution F• of the form

. . . F
a−→ F

b−→ F → P → 0
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where the maps a, b alternate and are equal to the projector onto P and Q. Hence the
complex HomR(F•,M) is split exact in degrees ≥ 1, whence we see the vanishing in (3).

Assume Ext1
R(P,M) = 0 for every R-module M . Pick a free resolution F• → P . Set

M = Im(F1 → F0) = Ker(F0 → P ). Consider the element ξ ∈ Ext1
R(P,M) given by

the class of the quotient map π : F1 →M . Since ξ is zero there exists a map s : F0 →M
such that π = s ◦ (F1 → F0). Clearly, this means that

F0 = Ker(s)⊕Ker(F0 → P ) = P ⊕Ker(F0 → P )
and we win. �

Lemma 77.3. LetR be a Noetherian ring. LetP be a finiteR-module. If Ext1
R(P,M) =

0 for every finite R-module M , then P is projective.

This lemma can be strengthened: There is a version for finitely presented R-modules if R
is not assumed Noetherian. There is a version with M running through all finite length
modules in the Noetherian case.

Proof. Choose a surjection R⊕n → P with kernel M . Since Ext1
R(P,M) = 0 this

surjection is split and we conclude by Lemma 77.2. �

Lemma 77.4. A direct sum of projective modules is projective.

Proof. This is true by the characterization of projectives as direct summands of free
modules in Lemma 77.2. �

Lemma 77.5. Let R be a ring. Let I ⊂ R be a nilpotent ideal. Let P be a projective
R/I-module. Then there exists a projective R-module P such that P/IP ∼= P .

Proof. By Lemma 77.2 we can choose a setA and a direct sum decomposition
⊕

α∈AR/I =
P⊕K for someR/I-moduleK. WriteF =

⊕
α∈AR for the freeR-module onA. Choose

a lift p : F → F of the projector p associated to the direct summand P of
⊕

α∈AR/I .
Note that p2 − p ∈ EndR(F ) is a nilpotent endomorphism of F (as I is nilpotent and
the matrix entries of p2 − p are in I ; more precisely, if In = 0, then (p2 − p)n = 0).
Hence by Lemma 32.7 we can modify our choice of p and assume that p is a projector. Set
P = Im(p). �

Lemma 77.6. Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let P be a
finite projective R/I-module. Then there exists a finite projective R-module P such that
P/IP ∼= P .

Proof. Recall thatP is a direct summand of a freeR/I-module
⊕

α∈AR/I by Lemma
77.2. As P is finite, it follows that P is contained in

⊕
α∈A′ R/I for some A′ ⊂ A finite.

Hence we may assume we have a direct sum decomposition (R/I)⊕n = P ⊕K for some
n and someR/I-moduleK. Choose a lift p ∈Mat(n×n,R) of the projector p associated
to the direct summand P of (R/I)⊕n. Note that p2 − p ∈Mat(n× n,R) is nilpotent: as
I is locally nilpotent and the matrix entries cij of p2−p are in I we have ctij = 0 for some
t > 0 and then (p2 − p)tn2 = 0 (by looking at the matrix coefficients). Hence by Lemma
32.7 we can modify our choice of p and assume that p is a projector. Set P = Im(p). �

Lemma 77.7. LetR be a ring. Let I ⊂ R be an ideal. LetM be anR-module. Assume
(1) I is nilpotent,
(2) M/IM is a projective R/I-module,
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(3) M is a flat R-module.
Then M is a projective R-module.

Proof. By Lemma 77.5 we can find a projective R-module P and an isomorphism
P/IP →M/IM . We are going to show thatM is isomorphic to P which will finish the
proof. Because P is projective we can lift the map P → P/IP →M/IM to anR-module
map P → M which is an isomorphism modulo I . Since In = 0 for some n, we can use
the filtrations

0 = InM ⊂ In−1M ⊂ . . . ⊂ IM ⊂M
0 = InP ⊂ In−1P ⊂ . . . ⊂ IP ⊂ P

to see that it suffices to show that the induced maps IaP/Ia+1P → IaM/Ia+1M are
bijective. Since both P and M are flat R-modules we can identify this with the map

Ia/Ia+1 ⊗R/I P/IP −→ Ia/Ia+1 ⊗R/I M/IM

induced byP →M . Since we choseP →M such that the induced mapP/IP →M/IM
is an isomorphism, we win. �

78. Finite projective modules

Definition 78.1. Let R be a ring and M an R-module.
(1) We say that M is locally free if we can cover Spec(R) by standard opens D(fi),

i ∈ I such that Mfi is a free Rfi -module for all i ∈ I .
(2) We say that M is finite locally free if we can choose the covering such that each

Mfi is finite free.
(3) We say that M is finite locally free of rank r if we can choose the covering such

that each Mfi is isomorphic to R⊕r
fi

.

Note that a finite locally freeR-module is automatically finitely presented by Lemma 23.2.
Moreover, if M is a finite locally free module of rank r over a ring R and if R is nonzero,
then r is uniquely determined by Lemma 15.8 (because at least one of the localizationsRfi
is a nonzero ring).

Lemma 78.2. LetR be a ring and letM be anR-module. The following are equivalent
(1) M is finitely presented and R-flat,
(2) M is finite projective,
(3) M is a direct summand of a finite free R-module,
(4) M is finitely presented and for all p ∈ Spec(R) the localization Mp is free,
(5) M is finitely presented and for all maximal ideals m ⊂ R the localizationMm is

free,
(6) M is finite and locally free,
(7) M is finite locally free, and
(8) M is finite, for every prime p the module Mp is free, and the function

ρM : Spec(R)→ Z, p 7−→ dimκ(p) M ⊗R κ(p)
is locally constant in the Zariski topology.

Proof. First supposeM is finite projective, i.e., (2) holds. Take a surjectionRn →M
and let K be the kernel. Since M is projective, 0 → K → Rn → M → 0 splits. Hence
(2) ⇒ (3). The implication (3) ⇒ (2) follows from the fact that a direct summand of a
projective is projective, see Lemma 77.2.
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Assume (3), so we can write K ⊕M ∼= R⊕n. So K is a direct summand of Rn and thus
finitely generated. This shows M = R⊕n/K is finitely presented. In other words, (3)⇒
(1).
Assume M is finitely presented and flat, i.e., (1) holds. We will prove that (7) holds. Pick
any prime p and x1, . . . , xr ∈ M which map to a basis of M ⊗R κ(p). By Nakayama’s
lemma (in the form of Lemma 20.2) these elements generate Mg for some g ∈ R, g 6∈
p. The corresponding surjection ϕ : R⊕r

g → Mg has the following two properties: (a)
Ker(ϕ) is a finite Rg-module (see Lemma 5.3) and (b) Ker(ϕ) ⊗ κ(p) = 0 by flatness of
Mg overRg (see Lemma 39.12). Hence by Nakayama’s lemma again there exists a g′ ∈ Rg
such that Ker(ϕ)g′ = 0. In other words, Mgg′ is free.
A finite locally free module is a finite module, see Lemma 23.2, hence (7)⇒ (6). It is clear
that (6)⇒ (7) and that (7)⇒ (8).
A finite locally free module is a finitely presented module, see Lemma 23.2, hence (7)⇒
(4). Of course (4) implies (5). Since we may check flatness locally (see Lemma 39.18) we
conclude that (5) implies (1). At this point we have

(2) ks +3 (3) +3 (1) +3 (7) ks +3

�$��

(6)

(5)

KS

(4)ks (8)

Suppose that M satisfies (1), (4), (5), (6), and (7). We will prove that (3) holds. It suffices
to show that M is projective. We have to show that HomR(M,−) is exact. Let 0 →
N ′′ → N → N ′ → 0 be a short exact sequence of R-module. We have to show that
0 → HomR(M,N ′′) → HomR(M,N) → HomR(M,N ′) → 0 is exact. As M is finite
locally free there exist a covering Spec(R) =

⋃
D(fi) such that Mfi is finite free. By

Lemma 10.2 we see that
0→ HomR(M,N ′′)fi → HomR(M,N)fi → HomR(M,N ′)fi → 0

is equal to 0 → HomRfi
(Mfi , N

′′
fi

) → HomRfi
(Mfi , Nfi) → HomRfi

(Mfi , N
′
fi

) → 0
which is exact as Mfi is free and as the localization 0→ N ′′

fi
→ Nfi → N ′

fi
→ 0 is exact

(as localization is exact). Whence we see that 0 → HomR(M,N ′′) → HomR(M,N) →
HomR(M,N ′)→ 0 is exact by Lemma 23.2.
Finally, assume that (8) holds. Pick a maximal ideal m ⊂ R. Pick x1, . . . , xr ∈M which
map to a κ(m)-basis ofM⊗Rκ(m) = M/mM . In particular ρM (m) = r. By Nakayama’s
Lemma 20.1 there exists an f ∈ R, f 6∈ m such that x1, . . . , xr generate Mf over Rf . By
the assumption that ρM is locally constant there exists a g ∈ R, g 6∈ m such that ρM is
constant equal to r on D(g). We claim that

Ψ : R⊕r
fg −→Mfg, (a1, . . . , ar) 7−→

∑
aixi

is an isomorphism. This claim will show that M is finite locally free, i.e., that (7) holds.
To see the claim it suffices to show that the induced map on localizations Ψp : R⊕r

p →
Mp is an isomorphism for all p ∈ D(fg), see Lemma 23.1. By our choice of f the map
Ψp is surjective. By assumption (8) we have Mp

∼= R
⊕ρM (p)
p and by our choice of g we

have ρM (p) = r. Hence Ψp determines a surjection R⊕r
p → Mp

∼= R⊕r
p whence is

an isomorphism by Lemma 16.4. (Of course this last fact follows from a simple matrix
argument also.) �
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Lemma 78.3. LetR be a reduced ring and letM be anR-module. Then the equivalent
conditions of Lemma 78.2 are also equivalent to

(9) M is finite and the function ρM : Spec(R) → Z, p 7→ dimκ(p) M ⊗R κ(p) is
locally constant in the Zariski topology.

Proof. Pick a maximal ideal m ⊂ R. Pick x1, . . . , xr ∈ M which map to a κ(m)-
basis of M ⊗R κ(m) = M/mM . In particular ρM (m) = r. By Nakayama’s Lemma
20.1 there exists an f ∈ R, f 6∈ m such that x1, . . . , xr generate Mf over Rf . By the
assumption that ρM is locally constant there exists a g ∈ R, g 6∈ m such that ρM is
constant equal to r on D(g). We claim that

Ψ : R⊕r
fg −→Mfg, (a1, . . . , ar) 7−→

∑
aixi

is an isomorphism. This claim will show that M is finite locally free, i.e., that (7) holds.
Since Ψ is surjective, it suffices to show that Ψ is injective. SinceRfg is reduced, it suffices
to show that Ψ is injective after localization at all minimal primes p of Rfg , see Lemma
25.2. However, we know that Rp = κ(p) by Lemma 25.1 and ρM (p) = r hence Ψp :
R⊕r

p → M ⊗R κ(p) is an isomorphism as a surjective map of finite dimensional vector
spaces of the same dimension. �

Remark 78.4. It is not true that a finite R-module which is R-flat is automatically
projective. A counter example is whereR = C∞(R) is the ring of infinitely differentiable
functions on R, and M = Rm = R/I where m = {f ∈ R | f(0) = 0} and I = {f ∈ R |
∃ε, ε > 0 : f(x) = 0 ∀x, |x| < ε}.

Lemma 78.5. (Warning: see Remark 78.4.) SupposeR is a local ring, andM is a finite
flat R-module. Then M is finite free.

Proof. Follows from the equational criterion of flatness, see Lemma 39.11. Namely,
suppose that x1, . . . , xr ∈M map to a basis ofM/mM . By Nakayama’s Lemma 20.1 these
elements generateM . We want to show there is no relation among the xi. Instead, we will
show by induction on n that if x1, . . . , xn ∈ M are linearly independent in the vector
space M/mM then they are independent over R.

The base case of the induction is where we have x ∈ M , x 6∈ mM and a relation fx = 0.
By the equational criterion there exist yj ∈ M and aj ∈ R such that x =

∑
ajyj and

faj = 0 for all j. Since x 6∈ mM we see that at least one aj is a unit and hence f = 0.

Suppose that
∑
fixi is a relation among x1, . . . , xn. By our choice of xi we have fi ∈ m.

According to the equational criterion of flatness there exist aij ∈ R and yj ∈M such that
xi =

∑
aijyj and

∑
fiaij = 0. Since xn 6∈ mM we see that anj 6∈ m for at least one j.

Since
∑
fiaij = 0 we get fn =

∑n−1
i=1 (−aij/anj)fi. The relation

∑
fixi = 0 now can be

rewritten as
∑n−1
i=1 fi(xi+(−aij/anj)xn) = 0. Note that the elementsxi+(−aij/anj)xn

map to n− 1 linearly independent elements of M/mM . By induction assumption we get
that all the fi, i ≤ n− 1 have to be zero, and also fn =

∑n−1
i=1 (−aij/anj)fi. This proves

the induction step. �

Lemma 78.6. Let R → S be a flat local homomorphism of local rings. Let M be
a finite R-module. Then M is finite projective over R if and only if M ⊗R S is finite
projective over S.

Proof. By Lemma 78.2 being finite projective over a local ring is the same thing as
being finite free. Suppose that M ⊗R S is a finite free S-module. Pick x1, . . . , xr ∈ M
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whose images in M/mRM form a basis over κ(m). Then we see that x1 ⊗ 1, . . . , xr ⊗ 1
are a basis for M ⊗R S. This implies that the map R⊕r → M, (ai) 7→

∑
aixi becomes

an isomorphism after tensoring with S. By faithful flatness of R → S , see Lemma 39.17
we see that it is an isomorphism. �

Lemma 78.7. Let R be a semi-local ring. Let M be a finite locally free module. If M
has constant rank, then M is free. In particular, if R has connected spectrum, then M is
free.

Proof. Omitted. Hints: First show that M/miM has the same dimension d for all
maximal ideal m1, . . . ,mn of R using the rank is constant. Next, show that there exist
elements x1, . . . , xd ∈M which form a basis for eachM/miM by the Chinese remainder
theorem. Finally show that x1, . . . , xd is a basis for M . �

Here is a technical lemma that is used in the chapter on groupoids.

Lemma 78.8. Let R be a local ring with maximal ideal m and infinite residue field.
Let R → S be a ring map. Let M be an S-module and let N ⊂ M be an R-submodule.
Assume

(1) S is semi-local and mS is contained in the Jacobson radical of S ,
(2) M is a finite free S-module, and
(3) N generates M as an S-module.

Then N contains an S-basis of M .

Proof. AssumeM is free of rankn. Let I ⊂ S be the Jacobson radical. By Nakayama’s
Lemma 20.1 a sequence of elementsm1, . . . ,mn is a basis forM if and only ifmi ∈M/IM
generate M/IM . Hence we may replace M by M/IM , N by N/(N ∩ IM), R by R/m,
and S by S/IS. In this case we see that S is a finite product of fields S = k1 × . . . × kr
and M = k⊕n

1 × . . . × k⊕n
r . The fact that N ⊂ M generates M as an S-module means

that there exist xj ∈ N such that a linear combination
∑
ajxj with aj ∈ S has a nonzero

component in each factor k⊕n
i . Because R = k is an infinite field, this means that also

some linear combination y =
∑
cjxj with cj ∈ k has a nonzero component in each fac-

tor. Hence y ∈ N generates a free direct summand Sy ⊂ M . By induction on n the
result holds for M/Sy and the submodule N = N/(N ∩ Sy). In other words there exist
y2, . . . , yn in N which (freely) generate M/Sy. Then y, y2, . . . , yn (freely) generate M
and we win. �

Lemma 78.9. Let R be ring. Let L, M , N be R-modules. The canonical map

HomR(M,N)⊗R L→ HomR(M,N ⊗R L)

is an isomorphism if M is finite projective.

Proof. By Lemma 78.2 we see thatM is finitely presented as well as finite locally free.
By Lemmas 10.2 and 12.16 formation of the left and right hand side of the arrow commutes
with localization. We may check that our map is an isomorphism after localization, see
Lemma 23.2. Thus we may assumeM is finite free. In this case the lemma is immediate. �

79. Open loci defined by module maps

The set of primes where a given module map is surjective, or an isomorphism is sometimes
open. In the case of finite projective modules we can look at the rank of the map.
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Lemma 79.1. LetR be a ring. Let ϕ : M → N be a map ofR-modules withN a finite
R-module. Then we have the equality

U = {p ⊂ R | ϕp : Mp → Np is surjective}
= {p ⊂ R | ϕ⊗ κ(p) : M ⊗ κ(p)→ N ⊗ κ(p) is surjective}

and U is an open subset of Spec(R). Moreover, for any f ∈ R such that D(f) ⊂ U the
map Mf → Nf is surjective.

Proof. The equality in the displayed formula follows from Nakayama’s lemma. Nakayama’s
lemma also implies that U is open. See Lemma 20.1 especially part (3). If D(f) ⊂ U , then
Mf → Nf is surjective on all localizations at primes of Rf , and hence it is surjective by
Lemma 23.1. �

Lemma 79.2. Let R be a ring. Let ϕ : M → N be a map of R-modules with M finite
and N finitely presented. Then

U = {p ⊂ R | ϕp : Mp → Np is an isomorphism}
is an open subset of Spec(R).

Proof. Let p ∈ U . Pick a presentation N = R⊕n/
∑
j=1,...,mRkj . Denote ei the

image in N of the ith basis vector of R⊕n. For each i ∈ {1, . . . , n} choose an element
mi ∈ Mp such that ϕ(mi) = fiei for some fi ∈ R, fi 6∈ p. This is possible as ϕp is an
isomorphism. Set f = f1 . . . fn and let ψ : R⊕n

f → Mf be the map which maps the ith
basis vector tomi/fi. Note thatϕf ◦ψ is the localization at f of the given mapR⊕n → N .
As ϕp is an isomorphism we see that ψ(kj) is an element ofM which maps to zero inMp.
Hence we see that there exist gj ∈ R, gj 6∈ p such that gjψ(kj) = 0. Setting g = g1 . . . gm,
we see that ψg factors through Nfg to give a map χ : Nfg → Mfg . By construction χ is
a right inverse to ϕfg . It follows that χp is an isomorphism. By Lemma 79.1 there is an
h ∈ R, h 6∈ p such that χh : Nfgh →Mfgh is surjective. Henceϕfgh and χh are mutually
inverse maps, which implies that D(fgh) ⊂ U as desired. �

Lemma 79.3. Let R be a ring. Let p ⊂ R be a prime. Let M be a finitely presented
R-module. If Mp is free, then there is an f ∈ R, f 6∈ p such that Mf is a free Rf -module.

Proof. Choose a basis x1, . . . , xn ∈ Mp. We can choose an f ∈ R, f 6∈ p such that
xi is the image of some yi ∈ Mf . After replacing yi by fmyi for m � 0 we may assume
yi ∈ M . Namely, this replaces x1, . . . , xn by fmx1, . . . , f

mxn which is still a basis as f
maps to a unit in Rp. Hence we obtain a homomorphism ϕ = (y1, . . . , yn) : R⊕n → M
of R-modules whose localization at p is an isomorphism. By Lemma 79.2 we can find an
f ∈ R, f 6∈ p such that ϕq is an isomorphism for all primes q ⊂ R with f 6∈ q. Then it
follows from Lemma 23.1 that ϕf is an isomorphism and the proof is complete. �

Lemma 79.4. LetR be a ring. Let ϕ : P1 → P2 be a map of finite projective modules.
Then

(1) The set U of primes p ∈ Spec(R) such that ϕ⊗ κ(p) is injective is open and for
any f ∈ R such that D(f) ⊂ U we have
(a) P1,f → P2,f is injective, and
(b) the module Coker(ϕ)f is finite projective over Rf .

(2) The set W of primes p ∈ Spec(R) such that ϕ ⊗ κ(p) is surjective is open and
for any f ∈ R such that D(f) ⊂W we have
(a) P1,f → P2,f is surjective, and
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(b) the module Ker(ϕ)f is finite projective over Rf .
(3) The set V of primes p ∈ Spec(R) such that ϕ ⊗ κ(p) is an isomorphism is

open and for any f ∈ R such that D(f) ⊂ V the map ϕ : P1,f → P2,f is an
isomorphism of modules over Rf .

Proof. To prove the set U is open we may work locally on Spec(R). Thus we may
replace R by a suitable localization and assume that P1 = Rn1 and P2 = Rn2 , see Lemma
78.2. In this case injectivity of ϕ⊗κ(p) is equivalent to n1 ≤ n2 and some n1×n1 minor
f of the matrix of ϕ being invertible in κ(p). ThusD(f) ⊂ U . This argument also shows
that P1,p → P2,p is injective for p ∈ U .

Now supposeD(f) ⊂ U . By the remark in the previous paragraph and Lemma 23.1 we see
that P1,f → P2,f is injective, i.e., (1)(a) holds. By Lemma 78.2 to prove (1)(b) it suffices to
prove that Coker(ϕ) is finite projective locally on D(f). Thus, as we saw above, we may
assume that P1 = Rn1 and P2 = Rn2 and that some minor of the matrix of ϕ is invertible
in R. If the minor in question corresponds to the first n1 basis vectors of Rn2 , then using
the last n2 − n1 basis vectors we get a map Rn2−n1 → Rn2 → Coker(ϕ) which is easily
seen to be an isomorphism.

Openness ofW and (2)(a) forD(f) ⊂W follow from Lemma 79.1. SinceP2,f is projective
overRf we see that ϕf : P1,f → P2,f has a section and it follows that Ker(ϕ)f is a direct
summand of P2,f . Therefore Ker(ϕ)f is finite projective. Thus (2)(b) holds as well.

It is clear that V = U ∩W is open and the other statement in (3) follows from (1)(a) and
(2)(a). �

80. Faithfully flat descent for projectivity of modules

In the next few sections we prove, following Raynaud and Gruson [?], that the projec-
tivity of modules descends along faithfully flat ring maps. The idea of the proof is to use
dévissage à la Kaplansky [?] to reduce to the case of countably generated modules. Given a
well-behaved filtration of a moduleM , dévissage allows us to expressM as a direct sum of
successive quotients of the filtering submodules (see Section 84). Using this technique, we
prove that a projective module is a direct sum of countably generated modules (Theorem
84.5). To prove descent of projectivity for countably generated modules, we introduce a
“Mittag-Leffler” condition on modules, prove that a countably generated module is pro-
jective if and only if it is flat and Mittag-Leffler (Theorem 93.3), and then show that the
property of being a Mittag-Leffler module descends (Lemma 95.1). Finally, given an arbi-
trary moduleM whose base change by a faithfully flat ring map is projective, we filterM
by submodules whose successive quotients are countably generated projective modules,
and then by dévissage conclude M is a direct sum of projectives, hence projective itself
(Theorem 95.6).

We note that there is an error in the proof of faithfully flat descent of projectivity in [?].
There, descent of projectivity along faithfully flat ring maps is deduced from descent of
projectivity along a more general type of ring map ([?, Example 3.1.4(1) of Part II]). How-
ever, the proof of descent along this more general type of map is incorrect. In [?], Gruson
explains what went wrong, although he does not provide a fix for the case of interest.
Patching this hole in the proof of faithfully flat descent of projectivity comes down to
proving that the property of being a Mittag-Leffler module descends along faithfully flat
ring maps. We do this in Lemma 95.1.
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81. Characterizing flatness

In this section we discuss criteria for flatness. The main result in this section is Lazard’s
theorem (Theorem 81.4 below), which says that a flat module is the colimit of a directed
system of free finite modules. We remind the reader of the “equational criterion for flat-
ness”, see Lemma 39.11. It turns out that this can be massaged into a seemingly much
stronger property.

Lemma 81.1. Let M be an R-module. The following are equivalent:
(1) M is flat.
(2) If f : Rn → M is a module map and x ∈ Ker(f), then there are module maps

h : Rn → Rm and g : Rm →M such that f = g ◦ h and x ∈ Ker(h).
(3) Suppose f : Rn → M is a module map, N ⊂ Ker(f) any submodule, and

h : Rn → Rm a map such thatN ⊂ Ker(h) and f factors throughh. Then given
any x ∈ Ker(f) we can find a map h′ : Rn → Rm

′
such thatN+Rx ⊂ Ker(h′)

and f factors through h′.
(4) If f : Rn → M is a module map and N ⊂ Ker(f) is a finitely generated

submodule, then there are module maps h : Rn → Rm and g : Rm → M such
that f = g ◦ h and N ⊂ Ker(h).

Proof. That (1) is equivalent to (2) is just a reformulation of the equational criterion
for flatness8. To show (2) implies (3), let g : Rm → M be the map such that f factors as
f = g ◦ h. By (2) find h′′ : Rm → Rm

′
such that h′′ kills h(x) and g : Rm →M factors

through h′′. Then taking h′ = h′′ ◦ h works. (3) implies (4) by induction on the number
of generators of N ⊂ Ker(f) in (4). Clearly (4) implies (2). �

Lemma 81.2. Let M be an R-module. Then M is flat if and only if the following
condition holds: if P is a finitely presented R-module and f : P → M a module map,
then there is a free finite R-module F and module maps h : P → F and g : F →M such
that f = g ◦ h.

Proof. This is just a reformulation of condition (4) from Lemma 81.1. �

Lemma 81.3. Let M be an R-module. Then M is flat if and only if the following
condition holds: for every finitely presented R-module P , if N → M is a surjective R-
module map, then the induced map HomR(P,N)→ HomR(P,M) is surjective.

Proof. First suppose M is flat. We must show that if P is finitely presented, then
given a map f : P →M , it factors through the map N →M . By Lemma 81.2 the map f
factors through a map F →M where F is free and finite. Since F is free, this map factors
through N →M . Thus f factors through N →M .

Conversely, suppose the condition of the lemma holds. Let f : P → M be a map from a
finitely presented module P . Choose a free moduleN with a surjectionN →M ontoM .
Then f factors throughN →M , and sinceP is finitely generated, f factors through a free
finite submodule of N . Thus M satisfies the condition of Lemma 81.2, hence is flat. �

8In fact, a module map f : Rn → M corresponds to a choice of elements x1, x2, . . . , xn of M (namely,
the images of the standard basis elements e1, e2, . . . , en); furthermore, an element x ∈ Ker(f) corresponds to
a relation between these x1, x2, . . . , xn (namely, the relation

∑
i
fixi = 0, where the fi are the coordinates

of x). The module map h (represented as anm×n-matrix) corresponds to the matrix (aij) from Lemma 39.11,
and the yj of Lemma 39.11 are the images of the standard basis vectors of Rm under g.
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Theorem 81.4 (Lazard’s theorem). Let M be an R-module. Then M is flat if and
only if it is the colimit of a directed system of free finite R-modules.

Proof. A colimit of a directed system of flat modules is flat, as taking directed col-
imits is exact and commutes with tensor product. Hence if M is the colimit of a directed
system of free finite modules then M is flat.

For the converse, first recall that any moduleM can be written as the colimit of a directed
system of finitely presented modules, in the following way. Choose a surjection f : RI →
M for some set I , and letK be the kernel. LetE be the set of ordered pairs (J,N) where J
is a finite subset of I andN is a finitely generated submodule ofRJ ∩K. Then E is made
into a directed partially ordered set by defining (J,N) ≤ (J ′, N ′) if and only if J ⊂ J ′

and N ⊂ N ′. Define Me = RJ/N for e = (J,N), and define fee′ : Me → Me′ to be
the natural map for e ≤ e′. Then (Me, fee′) is a directed system and the natural maps
fe : Me →M induce an isomorphism colime∈EMe

∼=−→M .

Now suppose M is flat. Let I = M ×Z, write (xi) for the canonical basis of RI , and take
in the above discussion f : RI →M to be the map sending xi to the projection of i onto
M . To prove the theorem it suffices to show that the e ∈ E such that Me is free form a
cofinal subset of E. So let e = (J,N) ∈ E be arbitrary. By Lemma 81.2 there is a free
finite module F and maps h : RJ/N → F and g : F → M such that the natural map
fe : RJ/N → M factors as RJ/N h−→ F

g−→ M . We are going to realize F as Me′ for
some e′ ≥ e.

Let {b1, . . . , bn} be a finite basis of F . Choose n distinct elements i1, . . . , in ∈ I such that
i` /∈ J for all `, and such that the image of xi` under f : RI → M equals the image of
b` under g : F → M . This is possible since every element of M can be written as f(xi)
for infinitely many distinct i ∈ I (by our choice of I). Now let J ′ = J ∪ {i1, . . . , in},
and define RJ

′ → F by xi 7→ h(xi) for i ∈ J and xi` 7→ b` for ` = 1, . . . , n. Let
N ′ = Ker(RJ′ → F ). Observe:

(1) The square

RJ
′ //� _

��

F

g

��
RI

f
// M

is commutative, hence N ′ ⊂ K = Ker(f);
(2) RJ

′ → F is a surjection onto a free finite module, hence it splits and so N ′ is
finitely generated;

(3) J ⊂ J ′ and N ⊂ N ′.
By (1) and (2) e′ = (J ′, N ′) is inE , by (3) e′ ≥ e, and by constructionMe′ = RJ

′
/N ′ ∼= F

is free. �

82. Universally injective module maps

Next we discuss universally injective module maps, which are in a sense complementary
to flat modules (see Lemma 82.5). We follow Lazard’s thesis [?]; also see [?].

Definition 82.1. Let f : M → N be a map of R-modules. Then f is called uni-
versally injective if for every R-module Q, the map f ⊗R idQ : M ⊗R Q → N ⊗R Q
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is injective. A sequence 0 → M1 → M2 → M3 → 0 of R-modules is called universally
exact if it is exact and M1 →M2 is universally injective.

Example 82.2. Examples of universally exact sequences.
(1) A split short exact sequence is universally exact since tensoring commutes with

taking direct sums.
(2) The colimit of a directed system of universally exact sequences is universally ex-

act. This follows from the fact that taking directed colimits is exact and that
tensoring commutes with taking colimits. In particular the colimit of a directed
system of split exact sequences is universally exact. We will see below that, con-
versely, any universally exact sequence arises in this way.

Next we give a list of criteria for a short exact sequence to be universally exact. They are
analogues of criteria for flatness given above. Parts (3)-(6) below correspond, respectively,
to the criteria for flatness given in Lemmas 39.11, 81.1, 81.3, and Theorem 81.4.

Theorem 82.3. Let

0→M1
f1−→M2

f2−→M3 → 0

be an exact sequence of R-modules. The following are equivalent:
(1) The sequence 0→M1 →M2 →M3 → 0 is universally exact.
(2) For every finitely presented R-module Q, the sequence

0→M1 ⊗R Q→M2 ⊗R Q→M3 ⊗R Q→ 0

is exact.
(3) Given elements xi ∈ M1 (i = 1, . . . , n), yj ∈ M2 (j = 1, . . . ,m), and aij ∈ R

(i = 1, . . . , n, j = 1, . . . ,m) such that for all i

f1(xi) =
∑

j
aijyj ,

there exists zj ∈M1 (j = 1, . . . ,m) such that for all i,

xi =
∑

j
aijzj .

(4) Given a commutative diagram of R-module maps

Rn //

��

Rm

��
M1

f1 // M2

wherem and n are integers, there exists a mapRm →M1 making the top trian-
gle commute.

(5) For every finitely presentedR-module P , theR-module map HomR(P,M2)→
HomR(P,M3) is surjective.

(6) The sequence 0→M1 →M2 →M3 → 0 is the colimit of a directed system of
split exact sequences of the form

0→M1 →M2,i →M3,i → 0

where the M3,i are finitely presented.
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Proof. Obviously (1) implies (2).

Next we show (2) implies (3). Let f1(xi) =
∑
j aijyj be relations as in (3). Let (dj) be a

basis for Rm, (ei) a basis for Rn, and Rm → Rn the map given by dj 7→
∑
i aijei. Let

Q be the cokernel of Rm → Rn. Then tensoring Rm → Rn → Q → 0 by the map
f1 : M1 →M2, we get a commutative diagram

M⊕m
1

//

��

M⊕n
1

//

��

M1 ⊗R Q //

��

0

M⊕m
2

// M⊕n
2

// M2 ⊗R Q // 0

where M⊕m
1 →M⊕n

1 is given by

(z1, . . . , zm) 7→ (
∑

j
a1jzj , . . . ,

∑
j
anjzj),

and M⊕m
2 → M⊕n

2 is given similarly. We want to show x = (x1, . . . , xn) ∈ M⊕n
1

is in the image of M⊕m
1 → M⊕n

1 . By (2) the map M1 ⊗ Q → M2 ⊗ Q is injective,
hence by exactness of the top row it is enough to show x maps to 0 in M2 ⊗Q, and so by
exactness of the bottom row it is enough to show the image of x in M⊕n

2 is in the image
of M⊕m

2 →M⊕n
2 . This is true by assumption.

Condition (4) is just a translation of (3) into diagram form.

Next we show (4) implies (5). Let ϕ : P → M3 be a map from a finitely presented R-
module P . We must show that ϕ lifts to a map P →M2. Choose a presentation of P ,

Rn
g1−→ Rm

g2−→ P → 0.
Using freeness of Rn and Rm, we can construct h2 : Rm →M2 and then h1 : Rn →M1
such that the following diagram commutes

Rn
g1 //

h1
��

Rm
g2 //

h2
��

P //

ϕ

��

0

0 // M1
f1 // M2

f2 // M3 // 0.

By (4) there is a map k1 : Rm →M1 such that k1 ◦ g1 = h1. Now define h′
2 : Rm →M2

by h′
2 = h2 − f1 ◦ k1. Then

h′
2 ◦ g1 = h2 ◦ g1 − f1 ◦ k1 ◦ g1 = h2 ◦ g1 − f1 ◦ h1 = 0.

Hence by passing to the quotient h′
2 defines a map ϕ′ : P → M2 such that ϕ′ ◦ g2 = h′

2.
In a diagram, we have

Rm
g2 //

h′
2
��

P

ϕ

��

ϕ′

||
M2

f2 // M3.

where the top triangle commutes. We claim that ϕ′ is the desired lift, i.e. that f2 ◦ϕ′ = ϕ.
From the definitions we have

f2 ◦ ϕ′ ◦ g2 = f2 ◦ h′
2 = f2 ◦ h2 − f2 ◦ f1 ◦ k1 = f2 ◦ h2 = ϕ ◦ g2.

Since g2 is surjective, this finishes the proof.
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Now we show (5) implies (6). Write M3 as the colimit of a directed system of finitely
presented modules M3,i, see Lemma 11.3. Let M2,i be the fiber product of M3,i and M2
overM3—by definition this is the submodule ofM2×M3,i consisting of elements whose
two projections ontoM3 are equal. LetM1,i be the kernel of the projectionM2,i →M3,i.
Then we have a directed system of exact sequences

0→M1,i →M2,i →M3,i → 0,
and for each i a map of exact sequences

0 // M1,i

��

// M2,i //

��

M3,i

��

// 0

0 // M1 // M2 // M3 // 0
compatible with the directed system. From the definition of the fiber product M2,i, it
follows that the map M1,i → M1 is an isomorphism. By (5) there is a map M3,i → M2
lifting M3,i → M3, and by the universal property of the fiber product this gives rise to a
section of M2,i →M3,i. Hence the sequences

0→M1,i →M2,i →M3,i → 0
split. Passing to the colimit, we have a commutative diagram

0 // colimM1,i

∼=
��

// colimM2,i //

��

colimM3,i

∼=
��

// 0

0 // M1 // M2 // M3 // 0
with exact rows and outer vertical maps isomorphisms. Hence colimM2,i → M2 is also
an isomorphism and (6) holds.
Condition (6) implies (1) by Example 82.2 (2). �

The previous theorem shows that a universally exact sequence is always a colimit of split
short exact sequences. If the cokernel of a universally injective map is finitely presented,
then in fact the map itself splits:

Lemma 82.4. Let
0→M1 →M2 →M3 → 0

be an exact sequence of R-modules. Suppose M3 is of finite presentation. Then
0→M1 →M2 →M3 → 0

is universally exact if and only if it is split.

Proof. A split short exact sequence is always universally exact, see Example 82.2.
Conversely, if the sequence is universally exact, then by Theorem 82.3 (5) applied to P =
M3, the map M2 →M3 admits a section. �

The following lemma shows how universally injective maps are complementary to flat
modules.

Lemma 82.5. LetM be anR-module. ThenM is flat if and only if any exact sequence
of R-modules

0→M1 →M2 →M → 0
is universally exact.
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Proof. This follows from Lemma 81.3 and Theorem 82.3 (5). �

Example 82.6. Non-split and non-flat universally exact sequences.
(1) In spite of Lemma 82.4, it is possible to have a short exact sequence ofR-modules

0→M1 →M2 →M3 → 0
that is universally exact but non-split. For instance, take R = Z, let M1 =⊕∞

n=1 Z, let M2 =
∏∞
n=1 Z, and let M3 be the cokernel of the inclusion M1 →

M2. Then M1,M2,M3 are all flat since they are torsion-free (More on Algebra,
Lemma 22.11), so by Lemma 82.5,

0→M1 →M2 →M3 → 0
is universally exact. However there can be no section s : M3 →M2. In fact, if x
is the image of (2, 22, 23, . . .) ∈M2 inM3, then any module map s : M3 →M2
must kill x. This is because x ∈ 2nM3 for any n ≥ 1, hence s(x) is divisible by
2n for all n ≥ 1 and so must be 0.

(2) In spite of Lemma 82.5, it is possible to have a short exact sequence ofR-modules

0→M1 →M2 →M3 → 0
that is universally exact but with M1,M2,M3 all non-flat. In fact if M is any
non-flat module, just take the split exact sequence

0→M →M ⊕M →M → 0.
For instance over R = Z, take M to be any torsion module.

(3) Taking the direct sum of an exact sequence as in (1) with one as in (2), we get a
short exact sequence of R-modules

0→M1 →M2 →M3 → 0
that is universally exact, non-split, and such that M1,M2,M3 are all non-flat.

Lemma 82.7. Let 0 → M1 → M2 → M3 → 0 be a universally exact sequence of
R-modules, and suppose M2 is flat. Then M1 and M3 are flat.

Proof. Let 0 → N → N ′ → N ′′ → 0 be a short exact sequence of R-modules.
Consider the commutative diagram

M1 ⊗R N //

��

M2 ⊗R N //

��

M3 ⊗R N

��
M1 ⊗R N ′ //

��

M2 ⊗R N ′ //

��

M3 ⊗R N ′

��
M1 ⊗R N ′′ // M2 ⊗R N ′′ // M3 ⊗R N ′′

(we have dropped the 0’s on the boundary). By assumption the rows give short exact
sequences and the arrow M2 ⊗ N → M2 ⊗ N ′ is injective. Clearly this implies that
M1 ⊗ N → M1 ⊗ N ′ is injective and we see that M1 is flat. In particular the left and
middle columns give rise to short exact sequences. It follows from a diagram chase that
the arrow M3 ⊗N →M3 ⊗N ′ is injective. Hence M3 is flat. �

Lemma 82.8. LetR be a ring. LetM →M ′ be a universally injectiveR-module map.
Then for any R-module N the map M ⊗R N →M ′ ⊗R N is universally injective.



82. UNIVERSALLY INJECTIVE MODULE MAPS 679

Proof. Omitted. �

Lemma 82.9. LetR be a ring. A composition of universally injectiveR-module maps
is universally injective.

Proof. Omitted. �

Lemma 82.10. Let R be a ring. Let M → M ′ and M ′ → M ′′ be R-module maps.
If their composition M → M ′′ is universally injective, then M → M ′ is universally
injective.

Proof. Omitted. �

Lemma 82.11. Let R → S be a faithfully flat ring map. Then R → S is universally
injective as a map of R-modules. In particular R ∩ IS = I for any ideal I ⊂ R.

Proof. Let N be an R-module. We have to show that N → N ⊗R S is injective. As
S is faithfully flat as an R-module, it suffices to prove this after tensoring with S. Hence
it suffices to show that N ⊗R S → N ⊗R S ⊗R S , n⊗ s 7→ n⊗ 1⊗ s is injective. This is
true because there is a retraction, namely, n⊗ s⊗ s′ 7→ n⊗ ss′. �

Lemma 82.12. Let R→ S be a ring map. Let M →M ′ be a map of S-modules. The
following are equivalent

(1) M →M ′ is universally injective as a map of R-modules,
(2) for each prime q of S the map Mq → M ′

q is universally injective as a map of
R-modules,

(3) for each maximal ideal m of S the map Mm → M ′
m is universally injective as a

map of R-modules,
(4) for each prime q of S the map Mq → M ′

q is universally injective as a map of
Rp-modules, where p is the inverse image of q in R, and

(5) for each maximal ideal m of S the map Mm → M ′
m is universally injective as a

map of Rp-modules, where p is the inverse image of m in R.

Proof. Let N be an R-module. Let q be a prime of S lying over the prime p of R.
Then we have

(M ⊗R N)q = Mq ⊗R N = Mq ⊗Rp
Np.

Moreover, the same thing holds for M ′ and localization is exact. Also, if N is an Rp-
module, then Np = N . Using this the equivalences can be proved in a straightforward
manner.
For example, suppose that (5) holds. LetK = Ker(M⊗RN →M ′⊗RN). By the remarks
above we see that Km = 0 for each maximal ideal m of S. Hence K = 0 by Lemma 23.1.
Thus (1) holds. Conversely, suppose that (1) holds. Take any q ⊂ S lying over p ⊂ R.
Take any module N over Rp. Then by assumption Ker(M ⊗R N → M ′ ⊗R N) = 0.
Hence by the formulae above and the fact that N = Np we see that Ker(Mq ⊗Rp

N →
M ′

q ⊗Rp
N) = 0. In other words (4) holds. Of course (4)⇒ (5) is immediate. Hence (1),

(4) and (5) are all equivalent. We omit the proof of the other equivalences. �

Lemma 82.13. Letϕ : A→ B be a ring map. LetS ⊂ A andS′ ⊂ B be multiplicative
subsets such that ϕ(S) ⊂ S′. Let M →M ′ be a map of B-modules.

(1) If M → M ′ is universally injective as a map of A-modules, then (S′)−1M →
(S′)−1M ′ is universally injective as a map ofA-modules and as a map of S−1A-
modules.
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(2) If M and M ′ are (S′)−1B-modules, then M → M ′ is universally injective as
a map of A-modules if and only if it is universally injective as a map of S−1A-
modules.

Proof. You can prove this using Lemma 82.12 but you can also prove it directly as
follows. AssumeM →M ′ isA-universally injective. LetQ be anA-module. ThenQ⊗A
M → Q ⊗AM ′ is injective. Since localization is exact we see that (S′)−1(Q ⊗AM) →
(S′)−1(Q⊗AM ′) is injective. As (S′)−1(Q⊗AM) = Q⊗A(S′)−1M and similarly forM ′

we see thatQ⊗A (S′)−1M → Q⊗A (S′)−1M ′ is injective, hence (S′)−1M → (S′)−1M ′

is universally injective as a map of A-modules. This proves the first part of (1). To see (2)
we can use the following two facts: (a) ifQ is anS−1A-module, thenQ⊗AS−1A = Q, i.e.,
tensoring withQ overA is the same thing as tensoring withQ over S−1A, (b) ifM is any
A-module on which the elements of S are invertible, then M ⊗A Q = M ⊗S−1A S

−1Q.
Part (2) follows from this immediately. �

Lemma 82.14. LetR be a ring and letM →M ′ be a map ofR-modules. IfM ′ is flat,
then M → M ′ is universally injective if and only if M/IM → M ′/IM ′ is injective for
every finitely generated ideal I of R.

Proof. It suffices to show that M ⊗R Q → M ′ ⊗R Q is injective for every finite
R-module Q, see Theorem 82.3. Then Q has a finite filtration 0 = Q0 ⊂ Q1 ⊂ . . . ⊂
Qn = Q by submodules whose subquotients are isomorphic to cyclic modules R/Ii, see
Lemma 5.4. Since M ′ is flat, we obtain a filtration

M ⊗Q1 //

��

M ⊗Q2 //

��

. . . // M ⊗Q

��
M ′ ⊗Q1

� � // M ′ ⊗Q2
� � // . . . �

� // M ′ ⊗Q

of M ′ ⊗R Q by submodules M ′ ⊗R Qi whose successive quotients are M ′ ⊗R R/Ii =
M ′/IiM

′. A simple induction argument shows that it suffices to checkM/IiM →M ′/IiM
′

is injective. Note that the collection of finitely generated ideals I ′
i ⊂ Ii is a directed

set. Thus M/IiM = colimM/I ′
iM is a filtered colimit, similarly for M ′, the maps

M/I ′
iM → M ′/I ′

iM
′ are injective by assumption, and since filtered colimits are exact

(Lemma 8.8) we conclude. �

83. Descent for finite projective modules

In this section we give an elementary proof of the fact that the property of being a finite
projective module descends along faithfully flat ring maps. The proof does not apply when
we drop the finiteness condition. However, the method is indicative of the one we shall use
to prove descent for the property of being a countably generated projective module—see
the comments at the end of this section.

Lemma 83.1. Let M be an R-module. Then M is finite projective if and only if M is
finitely presented and flat.

Proof. This is part of Lemma 78.2. However, at this point we can give a more elegant
proof of the implication (1)⇒ (2) of that lemma as follows. IfM is finitely presented and
flat, then take a surjectionRn →M . By Lemma 81.3 applied toP = M , the mapRn →M
admits a section. So M is a direct summand of a free module and hence projective. �

Here are some properties of modules that descend.
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Lemma 83.2. Let R→ S be a faithfully flat ring map. Let M be an R-module. Then
(1) if the S-module M ⊗R S is of finite type, then M is of finite type,
(2) if theS-moduleM⊗RS is of finite presentation, thenM is of finite presentation,
(3) if the S-module M ⊗R S is flat, then M is flat, and
(4) add more here as needed.

Proof. Assume M ⊗R S is of finite type. Let y1, . . . , ym be generators of M ⊗R S
over S. Write yj =

∑
xi ⊗ fi for some x1, . . . , xn ∈ M . Then we see that the map

ϕ : R⊕n → M has the property that ϕ ⊗ idS : S⊕n → M ⊗R S is surjective. Since
R→ S is faithfully flat we see that ϕ is surjective, and M is finitely generated.

Assume M ⊗R S is of finite presentation. By (1) we see that M is of finite type. Choose a
surjection R⊕n → M and denote K the kernel. As R → S is flat we see that K ⊗R S is
the kernel of the base change S⊕n → M ⊗R S. As M ⊗R S is of finite presentation we
conclude that K ⊗R S is of finite type. Hence by (1) we see that K is of finite type and
hence M is of finite presentation.

Part (3) is Lemma 39.8. �

Proposition 83.3. Let R→ S be a faithfully flat ring map. Let M be an R-module.
If the S-module M ⊗R S is finite projective, then M is finite projective.

Proof. Follows from Lemmas 83.1 and 83.2. �

The next few sections are about removing the finiteness assumption by using dévissage to
reduce to the countably generated case. In the countably generated case, the strategy is
to find a characterization of countably generated projective modules analogous to Lemma
83.1, and then to prove directly that this characterization descends. We do this by intro-
ducing the notion of a Mittag-Leffler module and proving that if a moduleM is countably
generated, then it is projective if and only if it is flat and Mittag-Leffler (Theorem 93.3).
When M is finitely generated, this statement reduces to Lemma 83.1 (since, according to
Example 91.1 (1), a finitely generated module is Mittag-Leffler if and only if it is finitely
presented).

84. Transfinite dévissage of modules

In this section we introduce a dévissage technique for decomposing a module into a direct
sum. The main result is that a projective module is a direct sum of countably generated
modules (Theorem 84.5 below). We follow [?].

Definition 84.1. LetM be anR-module. A direct sum dévissage ofM is a family of
submodules (Mα)α∈S , indexed by an ordinal S and increasing (with respect to inclusion),
such that:

(0) M0 = 0;
(1) M =

⋃
αMα;

(2) if α ∈ S is a limit ordinal, then Mα =
⋃
β<αMβ ;

(3) if α+ 1 ∈ S , then Mα is a direct summand of Mα+1.
If moreover

(4) Mα+1/Mα is countably generated for α+ 1 ∈ S ,
then (Mα)α∈S is called a Kaplansky dévissage of M .

The terminology is justified by the following lemma.
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Lemma 84.2. Let M be an R-module. If (Mα)α∈S is a direct sum dévissage of M ,
then M ∼=

⊕
α+1∈SMα+1/Mα.

Proof. By property (3) of a direct sum dévissage, there is an inclusionMα+1/Mα →
M for each α ∈ S. Consider the map

f :
⊕

α+1∈S
Mα+1/Mα →M

given by the sum of these inclusions. Further consider the restrictions

fβ :
⊕

α+1≤β
Mα+1/Mα −→M

for β ∈ S. Transfinite induction on S shows that the image of fβ is Mβ . For β = 0 this
is true by (0). If β+ 1 is a successor ordinal and it is true for β, then it is true for β+ 1 by
(3). And if β is a limit ordinal and it is true for α < β, then it is true for β by (2). Hence
f is surjective by (1).

Transfinite induction on S also shows that the restrictions fβ are injective. For β = 0 it
is true. If β + 1 is a successor ordinal and fβ is injective, then let x be in the kernel and
write x = (xα+1)α+1≤β+1 in terms of its components xα+1 ∈ Mα+1/Mα. By property
(3) and the fact that the image of fβ is Mβ both (xα+1)α+1≤β and xβ+1 map to 0. Hence
xβ+1 = 0 and, by the assumption that the restriction fβ is injective also xα+1 = 0 for
every α+1 ≤ β. So x = 0 and fβ+1 is injective. If β is a limit ordinal consider an element
x of the kernel. Then x is already contained in the domain of fα for some α < β. Thus
x = 0 which finishes the induction. We conclude that f is injective since fβ is for each
β ∈ S. �

Lemma 84.3. LetM be anR-module. ThenM is a direct sum of countably generated
R-modules if and only if it admits a Kaplansky dévissage.

Proof. The lemma takes care of the “if” direction. Conversely, supposeM =
⊕

i∈I Ni
where each Ni is a countably generated R-module. Well-order I so that we can think of
it as an ordinal. Then setting Mi =

⊕
j<iNj gives a Kaplansky dévissage (Mi)i∈I of

M . �

Theorem 84.4. Suppose M is a direct sum of countably generated R-modules. If P
is a direct summand of M , then P is also a direct sum of countably generated R-modules.

Proof. Write M = P ⊕ Q. We are going to construct a Kaplansky dévissage
(Mα)α∈S of M which, in addition to the defining properties (0)-(4), satisfies:

(5) Each Mα is a direct summand of M ;
(6) Mα = Pα ⊕Qα, where Pα = P ∩Mα and Q = Q ∩Mα.

(Note: if properties (0)-(2) hold, then in fact property (3) is equivalent to property (5).)

To see how this implies the theorem, it is enough to show that (Pα)α∈S forms a Kaplansky
dévissage of P . Properties (0), (1), and (2) are clear. By (5) and (6) for (Mα), each Pα is a
direct summand of M . Since Pα ⊂ Pα+1, this implies Pα is a direct summand of Pα+1;
hence (3) holds for (Pα). For (4), note that

Mα+1/Mα
∼= Pα+1/Pα ⊕Qα+1/Qα,

so Pα+1/Pα is countably generated because this is true of Mα+1/Mα.

It remains to construct the Mα. Write M =
⊕

i∈I Ni where each Ni is a countably
generated R-module. Choose a well-ordering of I . By transfinite recursion we are going
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to define an increasing family of submodules Mα of M , one for each ordinal α, such that
Mα is a direct sum of some subset of the Ni.
For α = 0 let M0 = 0. If α is a limit ordinal and Mβ has been defined for all β < α,
then define Mα =

⋃
β<αMβ . Since each Mβ for β < α is a direct sum of a subset of

the Ni, the same will be true of Mα. If α + 1 is a successor ordinal and Mα has been
defined, then define Mα+1 as follows. If Mα = M , then let Mα+1 = M . If not, choose
the smallest j ∈ I such that Nj is not contained in Mα. We will construct an infinite
matrix (xmn),m, n = 1, 2, 3, . . . such that:

(1) Nj is contained in the submodule of M generated by the entries xmn;
(2) if we write any entry xk` in terms of its P - andQ-components, xk` = yk` + zk`,

then the matrix (xmn) contains a set of generators for each Ni for which yk` or
zk` has nonzero component.

Then we define Mα+1 to be the submodule of M generated by Mα and all xmn; by prop-
erty (2) of the matrix (xmn), Mα+1 will be a direct sum of some subset of theNi. To con-
struct the matrix (xmn), let x11, x12, x13, . . . be a countable set of generators forNj . Then
if x11 = y11 + z11 is the decomposition into P - and Q-components, let x21, x22, x23, . . .
be a countable set of generators for the sum of the Ni for which y11 or z11 have nonzero
component. Repeat this process on x12 to get elements x31, x32, . . ., the third row of our
matrix. Repeat on x21 to get the fourth row, on x13 to get the fifth, and so on, going down
along successive anti-diagonals as indicated below:

x11 x12
zz

x13
zz

x14
zz

. . .

x21 x22
zz

x23
zz

. . .

x31 x32
zz

. . .

x41 . . .

. . .


.

Transfinite induction on I (using the fact that we constructed Mα+1 to contain Nj for
the smallest j such that Nj is not contained in Mα) shows that for each i ∈ I , Ni is
contained in some Mα. Thus, there is some large enough ordinal S satisfying: for each
i ∈ I there is α ∈ S such that Ni is contained in Mα. This means (Mα)α∈S satisfies
property (1) of a Kaplansky dévissage of M . The family (Mα)α∈S moreover satisfies the
other defining properties, and also (5) and (6) above: properties (0), (2), (4), and (6) are
clear by construction; property (5) is true because eachMα is by construction a direct sum
of some Ni; and (3) is implied by (5) and the fact that Mα ⊂Mα+1. �

As a corollary we get the result for projective modules stated at the beginning of the sec-
tion.

Theorem 84.5. If P is a projective R-module, then P is a direct sum of countably
generated projective R-modules.

Proof. A module is projective if and only if it is a direct summand of a free module,
so this follows from Theorem 84.4. �

85. Projective modules over a local ring

In this section we prove a very cute result: a projective module M over a local ring is free
(Theorem 85.4 below). Note that with the additional assumption that M is finite, this
result is Lemma 78.5. In general we have:



684 10. COMMUTATIVE ALGEBRA

Lemma 85.1. Let R be a ring. Then every projective R-module is free if and only if
every countably generated projective R-module is free.

Proof. Follows immediately from Theorem 84.5. �

Here is a criterion for a countably generated module to be free.

Lemma 85.2. LetM be a countably generatedR-module with the following property:
if M = N ⊕N ′ with N ′ a finite free R-module, then any element of N is contained in a
free direct summand of N . Then M is free.

Proof. Let x1, x2, . . . be a countable set of generators for M . We inductively con-
struct finite free direct summands F1, F2, . . . of M such that for all n we have that F1 ⊕
. . .⊕Fn is a direct summand ofM which contains x1, . . . , xn. Namely, given F1, . . . , Fn
with the desired properties, write

M = F1 ⊕ . . .⊕ Fn ⊕N

and let x ∈ N be the image of xn+1. Then we can find a free direct summand Fn+1 ⊂ N
containing x by the assumption in the statement of the lemma. Of course we can replace
Fn+1 by a finite free direct summand of Fn+1 and the induction step is complete. Then
M =

⊕∞
i=1 Fi is free. �

Lemma 85.3. Let P be a projective module over a local ring R. Then any element of
P is contained in a free direct summand of P .

Proof. Since P is projective it is a direct summand of some free R-module F , say
F = P ⊕Q. Let x ∈ P be the element that we wish to show is contained in a free direct
summand of P . LetB be a basis of F such that the number of basis elements needed in the
expression of x is minimal, say x =

∑n
i=1 aiei for some ei ∈ B and ai ∈ R. Then no aj

can be expressed as a linear combination of the other ai; for if aj =
∑
i 6=j aibi for some

bi ∈ R, then replacing ei by ei+ biej for i 6= j and leaving unchanged the other elements
of B, we get a new basis for F in terms of which x has a shorter expression.

Let ei = yi+zi, yi ∈ P, zi ∈ Q be the decomposition of ei into its P - andQ-components.
Write yi =

∑n
j=1 bijej + ti, where ti is a linear combination of elements inB other than

e1, . . . , en. To finish the proof it suffices to show that the matrix (bij) is invertible. For
then the map F → F sending ei 7→ yi for i = 1, . . . , n and fixing B \ {e1, . . . , en} is an
isomorphism, so that y1, . . . , yn together with B \ {e1, . . . , en} form a basis for F . Then
the submodule N spanned by y1, . . . , yn is a free submodule of P ; N is a direct summand
of P since N ⊂ P and both N and P are direct summands of F ; and x ∈ N since x ∈ P
implies x =

∑n
i=1 aiei =

∑n
i=1 aiyi.

Now we prove that (bij) is invertible. Plugging yi =
∑n
j=1 bijej + ti into

∑n
i=1 aiei =∑n

i=1 aiyi and equating the coefficients of ej gives aj =
∑n
i=1 aibij . But as noted above,

our choice of B guarantees that no aj can be written as a linear combination of the other
ai. Thus bij is a non-unit for i 6= j , and 1 − bii is a non-unit—so in particular bii is a
unit—for all i. But a matrix over a local ring having units along the diagonal and non-
units elsewhere is invertible, as its determinant is a unit. �

Theorem 85.4. If P is a projective module over a local ring R, then P is free.

Proof. Follows from Lemmas 85.1, 85.2, and 85.3. �
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86. Mittag-Leffler systems

The purpose of this section is to define Mittag-Leffler systems and why this is a useful
notion.
In the following, I will be a directed set, see Categories, Definition 21.1. Let (Ai, ϕji :
Aj → Ai) be an inverse system of sets or of modules indexed by I , see Categories, Defini-
tion 21.4. This is a directed inverse system as we assumed I directed (Categories, Defini-
tion 21.4). For each i ∈ I , the images ϕji(Aj) ⊂ Ai for j ≥ i form a decreasing directed
family of subsets (or submodules) of Ai. Let A′

i =
⋂
j≥i ϕji(Aj). Then ϕji(A′

j) ⊂ A′
i

for j ≥ i, hence by restricting we get a directed inverse system (A′
i, ϕji|A′

j
). From the

construction of the limit of an inverse system in the category of sets or modules, we have
limAi = limA′

i. The Mittag-Leffler condition on (Ai, ϕji) is that A′
i equals ϕji(Aj) for

some j ≥ i (and hence equals ϕki(Ak) for all k ≥ j):

Definition 86.1. Let (Ai, ϕji) be a directed inverse system of sets over I . Then we
say (Ai, ϕji) is Mittag-Leffler if for each i ∈ I , the family ϕji(Aj) ⊂ Ai for j ≥ i
stabilizes. Explicitly, this means that for each i ∈ I , there exists j ≥ i such that for
k ≥ j we have ϕki(Ak) = ϕji(Aj). If (Ai, ϕji) is a directed inverse system of modules
over a ring R, we say that it is Mittag-Leffler if the underlying inverse system of sets is
Mittag-Leffler.

Example 86.2. If (Ai, ϕji) is a directed inverse system of sets or of modules and the
maps ϕji are surjective, then clearly the system is Mittag-Leffler. Conversely, suppose
(Ai, ϕji) is Mittag-Leffler. Let A′

i ⊂ Ai be the stable image of ϕji(Aj) for j ≥ i. Then
ϕji|A′

j
: A′

j → A′
i is surjective for j ≥ i and limAi = limA′

i. Hence the limit of the
Mittag-Leffler system (Ai, ϕji) can also be written as the limit of a directed inverse system
over I with surjective maps.

Lemma 86.3. Let (Ai, ϕji) be a directed inverse system over I . Suppose I is countable.
If (Ai, ϕji) is Mittag-Leffler and the Ai are nonempty, then limAi is nonempty.

Proof. Let i1, i2, i3, . . . be an enumeration of the elements of I . Define inductively
a sequence of elements jn ∈ I for n = 1, 2, 3, . . . by the conditions: j1 = i1, and jn ≥ in
and jn ≥ jm for m < n. Then the sequence jn is increasing and forms a cofinal subset of
I . Hence we may assume I = {1, 2, 3, . . .}. So by Example 86.2 we are reduced to showing
that the limit of an inverse system of nonempty sets with surjective maps indexed by the
positive integers is nonempty. This is obvious. �

The Mittag-Leffler condition will be important for us because of the following exactness
property.

Lemma 86.4. Let
0→ Ai

fi−→ Bi
gi−→ Ci → 0

be an exact sequence of directed inverse systems of abelian groups over I . Suppose I is
countable. If (Ai) is Mittag-Leffler, then

0→ limAi → limBi → limCi → 0
is exact.

Proof. Taking limits of directed inverse systems is left exact, hence we only need
to prove surjectivity of limBi → limCi. So let (ci) ∈ limCi. For each i ∈ I , let
Ei = g−1

i (ci), which is nonempty since gi : Bi → Ci is surjective. The system of maps
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ϕji : Bj → Bi for (Bi) restrict to mapsEj → Ei which make (Ei) into an inverse system
of nonempty sets. It is enough to show that (Ei) is Mittag-Leffler. For then Lemma 86.3
would show limEi is nonempty, and taking any element of limEi would give an element
of limBi mapping to (ci).

By the injection fi : Ai → Bi we will regard Ai as a subset of Bi. Since (Ai) is Mittag-
Leffler, if i ∈ I then there exists j ≥ i such that ϕki(Ak) = ϕji(Aj) for k ≥ j. We claim
that also ϕki(Ek) = ϕji(Ej) for k ≥ j. Always ϕki(Ek) ⊂ ϕji(Ej) for k ≥ j. For the
reverse inclusion let ej ∈ Ej , and we need to find xk ∈ Ek such that ϕki(xk) = ϕji(ej).
Let e′

k ∈ Ek be any element, and set e′
j = ϕkj(e′

k). Then gj(ej − e′
j) = cj − cj = 0,

hence ej − e′
j = aj ∈ Aj . Since ϕki(Ak) = ϕji(Aj), there exists ak ∈ Ak such that

ϕki(ak) = ϕji(aj). Hence

ϕki(e′
k + ak) = ϕji(e′

j) + ϕji(aj) = ϕji(ej),

so we can take xk = e′
k + ak. �

87. Inverse systems

In many papers (and in this section) the term inverse system is used to indicate an inverse
system over the partially ordered set (N,≥). We briefly discuss such systems in this sec-
tion. This material will be discussed more broadly in Homology, Section 31. Suppose we
are given a ring R and a sequence of R-modules

M1
ϕ2←−M2

ϕ3←−M3 ← . . .

with maps as indicated. By composing successive maps we obtain maps ϕii′ : Mi → Mi′

whenever i ≥ i′ such that moreoverϕii′′ = ϕi′i′′ ◦ϕii′ whenever i ≥ i′ ≥ i′′. Conversely,
given the system of maps ϕii′ we can set ϕi = ϕi(i−1) and recover the maps displayed
above. In this case

limMi = {(xi) ∈
∏

Mi | ϕi(xi) = xi−1, i = 2, 3, . . .}

compare with Categories, Section 15. As explained in Homology, Section 31 this is actually
a limit in the category of R-modules, as defined in Categories, Section 14.

Lemma 87.1. LetR be a ring. Let 0→ Ki → Li →Mi → 0 be short exact sequences
of R-modules, i ≥ 1 which fit into maps of short exact sequences

0 // Ki
// Li // Mi

// 0

0 // Ki+1 //

OO

Li+1 //

OO

Mi+1 //

OO

0

If for every i there exists a c = c(i) ≥ i such that Im(Kc → Ki) = Im(Kj → Ki) for all
j ≥ c, then the sequence

0→ limKi → limLi → limMi → 0

is exact.

Proof. This is a special case of the more general Lemma 86.4. �
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88. Mittag-Leffler modules

A Mittag-Leffler module is (very roughly) a module which can be written as a directed
limit whose dual is a Mittag-Leffler system. To be able to give a precise definition we need
to do a bit of work.

Definition 88.1. Let (Mi, fij) be a directed system of R-modules. We say that
(Mi, fij) is a Mittag-Leffler directed system of modules if eachMi is anR-module of finite
presentation and if for every R-module N , the inverse system

(HomR(Mi, N),HomR(fij , N))
is Mittag-Leffler.

We are going to characterize those R-modules that are colimits of Mittag-Leffler directed
systems of modules.

Definition 88.2. Let f : M → N and g : M → M ′ be maps of R-modules. Then
we say g dominates f if for any R-module Q, we have Ker(f ⊗R idQ) ⊂ Ker(g⊗R idQ).

It is enough to check this condition for finitely presented modules.

Lemma 88.3. Let f : M → N and g : M → M ′ be maps of R-modules. Then
g dominates f if and only if for any finitely presented R-module Q, we have Ker(f ⊗R
idQ) ⊂ Ker(g ⊗R idQ).

Proof. Suppose Ker(f ⊗R idQ) ⊂ Ker(g⊗R idQ) for all finitely presented modules
Q. If Q is an arbitrary module, write Q = colimi∈I Qi as a colimit of a directed system
of finitely presented modules Qi. Then Ker(f ⊗R idQi) ⊂ Ker(g ⊗R idQi) for all i.
Since taking directed colimits is exact and commutes with tensor product, it follows that
Ker(f ⊗R idQ) ⊂ Ker(g ⊗R idQ). �

Lemma 88.4. Let f : M → N and g : M → M ′ be maps of R-modules. Consider
the pushout of f and g,

M
f
//

g

��

N

g′

��
M ′ f ′

// N ′

Then g dominates f if and only if f ′ is universally injective.

Proof. Recall that N ′ is M ′ ⊕ N modulo the submodule consisting of elements
(g(x),−f(x)) for x ∈M . From the construction of N ′ we have a short exact sequence

0→ Ker(f) ∩Ker(g)→ Ker(f)→ Ker(f ′)→ 0.
Since tensoring commutes with taking pushouts, we have such a short exact sequence

0→ Ker(f ⊗ idQ) ∩Ker(g ⊗ idQ)→ Ker(f ⊗ idQ)→ Ker(f ′ ⊗ idQ)→ 0
for everyR-moduleQ. So f ′ is universally injective if and only if Ker(f⊗idQ) ⊂ Ker(g⊗
idQ) for every Q, if and only if g dominates f . �

The above definition of domination is sometimes related to the usual notion of domination
of maps as the following lemma shows.

Lemma 88.5. Let f : M → N and g : M → M ′ be maps of R-modules. Suppose
Coker(f) is of finite presentation. Then g dominates f if and only if g factors through f ,
i.e. there exists a module map h : N →M ′ such that g = h ◦ f .
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Proof. Consider the pushout of f and g as in the statement of Lemma 88.4. From
the construction of the pushout it follows that Coker(f ′) = Coker(f), so Coker(f ′) is of
finite presentation. Then by Lemma 82.4, f ′ is universally injective if and only if

0→M ′ f ′

−→ N ′ → Coker(f ′)→ 0

splits. This is the case if and only if there is a map h′ : N ′ →M ′ such that h′ ◦f ′ = idM ′ .
From the universal property of the pushout, the existence of such an h′ is equivalent to g
factoring through f . �

Proposition 88.6. Let M be an R-module. Let (Mi, fij) be a directed system of
finitely presented R-modules, indexed by I , such that M = colimMi. Let fi : Mi → M
be the canonical map. The following are equivalent:

(1) For every finitely presented R-module P and module map f : P → M , there
exists a finitely presented R-module Q and a module map g : P → Q such that
g and f dominate each other, i.e., Ker(f ⊗R idN ) = Ker(g ⊗R idN ) for every
R-module N .

(2) For each i ∈ I , there exists j ≥ i such that fij : Mi →Mj dominates fi : Mi →
M .

(3) For each i ∈ I , there exists j ≥ i such that fij : Mi → Mj factors through
fik : Mi →Mk for all k ≥ i.

(4) For every R-module N , the inverse system (HomR(Mi, N),HomR(fij , N)) is
Mittag-Leffler.

(5) ForN =
∏
s∈IMs, the inverse system (HomR(Mi, N),HomR(fij , N)) is Mittag-

Leffler.

Proof. First we prove the equivalence of (1) and (2). Suppose (1) holds and let i ∈ I .
Corresponding to the map fi : Mi → M , we can choose g : Mi → Q as in (1). Since
Mi and Q are of finite presentation, so is Coker(g). Then by Lemma 88.5, fi : Mi → M
factors through g : Mi → Q, say fi = h ◦ g for some h : Q → M . Then since Q is
finitely presented, h factors through Mj → M for some j ≥ i, say h = fj ◦ h′ for some
h′ : Q→Mj . In total we have a commutative diagram

M

Mi

g
  

fi

>>

fij // Mj

fj

aa

Q

h′

>>

Thus fij dominates g. But g dominates fi, so fij dominates fi.

Conversely, suppose (2) holds. Let P be of finite presentation and f : P → M a module
map. Then f factors through fi : Mi → M for some i ∈ I , say f = fi ◦ g′ for some
g′ : P → Mi. Choose by (2) a j ≥ i such that fij dominates fi. We have a commutative
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diagram

P

g′

��

f // M

Mi

fi

==

fij

// Mj

fj

OO

From the diagram and the fact that fij dominates fi, we find that f and fij ◦ g′ dominate
each other. Hence taking g = fij ◦ g′ : P →Mj works.

Next we prove (2) is equivalent to (3). Let i ∈ I . It is always true that fi dominates fik for
k ≥ i, since fi factors through fik. If (2) holds, choose j ≥ i such that fij dominates fi.
Then since domination is a transitive relation, fij dominates fik for k ≥ i. All Mi are of
finite presentation, so Coker(fik) is of finite presentation for k ≥ i. By Lemma 88.5, fij
factors through fik for all k ≥ i. Thus (2) implies (3). On the other hand, if (3) holds then
for any R-module N , fij ⊗R idN factors through fik ⊗R idN for k ≥ i. So Ker(fik ⊗R
idN ) ⊂ Ker(fij ⊗R idN ) for k ≥ i. But Ker(fi ⊗R idN : Mi ⊗R N →M ⊗R N) is the
union of Ker(fik ⊗R idN ) for k ≥ i. Thus Ker(fi ⊗R idN ) ⊂ Ker(fij ⊗R idN ) for any
R-module N , which by definition means fij dominates fi.

It is trivial that (3) implies (4) implies (5). We show (5) implies (3). Let N =
∏
s∈IMs.

If (5) holds, then given i ∈ I choose j ≥ i such that

Im(Hom(Mj , N)→ Hom(Mi, N)) = Im(Hom(Mk, N)→ Hom(Mi, N))
for all k ≥ j. Passing the product over s ∈ I outside of the Hom’s and looking at the
maps on each component of the product, this says

Im(Hom(Mj ,Ms)→ Hom(Mi,Ms)) = Im(Hom(Mk,Ms)→ Hom(Mi,Ms))
for all k ≥ j and s ∈ I . Taking s = j we have

Im(Hom(Mj ,Mj)→ Hom(Mi,Mj)) = Im(Hom(Mk,Mj)→ Hom(Mi,Mj))
for all k ≥ j. Since fij is the image of id ∈ Hom(Mj ,Mj) under Hom(Mj ,Mj) →
Hom(Mi,Mj), this shows that for any k ≥ j there is h ∈ Hom(Mk,Mj) such that
fij = h ◦ fik. If j ≥ k then we can take h = fkj . Hence (3) holds. �

Definition 88.7. Let M be an R-module. We say that M is Mittag-Leffler if the
equivalent conditions of Proposition 88.6 hold.

In particular a finitely presented module is Mittag-Leffler.

Remark 88.8. Let M be a flat R-module. By Lazard’s theorem (Theorem 81.4) we
can write M = colimMi as the colimit of a directed system (Mi, fij) where the Mi are
free finite R-modules. For M to be Mittag-Leffler, it is enough for the inverse system of
duals (HomR(Mi, R),HomR(fij , R)) to be Mittag-Leffler. This follows from criterion
(4) of Proposition 88.6 and the fact that for a free finite R-module F , there is a functorial
isomorphism HomR(F,R)⊗R N ∼= HomR(F,N) for any R-module N .

Lemma 88.9. IfR is a ring andM ,N are Mittag-Leffler modules overR, thenM⊗RN
is a Mittag-Leffler module.

Proof. Write M = colimi∈IMi and N = colimj∈J Nj as directed colimits of
finitely presented R-modules. Denote fii′ : Mi → Mi′ and gjj′ : Nj → Nj′ the tran-
sition maps. Then Mi ⊗R Nj is a finitely presented R-module (see Lemma 12.14), and
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M ⊗RN = colim(i,j)∈I×JMi⊗RMj . Pick (i, j) ∈ I×J . By the definition of a Mittag-
Leffler module we have Proposition 88.6 (3) for both systems. In other words there exist
i′ ≥ i and j′ ≥ j such that for every choice of i′′ ≥ i and j′′ ≥ j there exist maps
a : Mi′′ →Mi′ and b : Mj′′ →Mj′ such that fii′ = a ◦ fii′′ and gjj′ = b ◦ gjj′′ . Then it
is clear that a ⊗ b : Mi′′ ⊗R Nj′′ → Mi′ ⊗R Nj′ serves the same purpose for the system
(Mi ⊗R Nj , fii′ ⊗ gjj′). Thus by the characterization Proposition 88.6 (3) we conclude
that M ⊗R N is Mittag-Leffler. �

Lemma 88.10. Let R be a ring and M an R-module. Then M is Mittag-Leffler if and
only if for every finite free R-module F and module map f : F → M , there exists a
finitely presentedR-moduleQ and a module map g : F → Q such that g and f dominate
each other, i.e., Ker(f ⊗R idN ) = Ker(g ⊗R idN ) for every R-module N .

Proof. Since the condition is clear weaker than condition (1) of Proposition 88.6
we see that a Mittag-Leffler module satisfies the condition. Conversely, suppose that M
satisfies the condition and that f : P →M is an R-module map from a finitely presented
R-module P into M . Choose a surjection F → P where F is a finite free R-module. By
assumption we can find a map F → Q where Q is a finitely presented R-module such
that F → Q and F → M dominate each other. In particular, the kernel of F → Q
contains the kernel of F → P , hence we obtain an R-module map g : P → Q such that
F → Q is equal to the composition F → P → Q. Let N be any R-module and consider
the commutative diagram

F ⊗R N

��

// Q⊗R N

P ⊗R N

88

// M ⊗R N
By assumption the kernels of F ⊗R N → Q⊗R N and F ⊗R N → M ⊗R N are equal.
Hence, as F ⊗R N → P ⊗R N is surjective, also the kernels of P ⊗R N → Q⊗R N and
P ⊗R N →M ⊗R N are equal. �

Lemma 88.11. Let R → S be a finite and finitely presented ring map. Let M be an
S-module. IfM is a Mittag-Leffler module over S thenM is a Mittag-Leffler module over
R.

Proof. Assume M is a Mittag-Leffler module over S. Write M = colimMi as a
directed colimit of finitely presented S-modules Mi. As M is Mittag-Leffler over S there
exists for each i an index j ≥ i such that for all k ≥ j there is a factorization fij = h◦fik
(where h depends on i, the choice of j and k). Note that by Lemma 36.23 the modules
Mi are also finitely presented as R-modules. Moreover, all the maps fij , fik, h are maps
of R-modules. Thus we see that the system (Mi, fij) satisfies the same condition when
viewed as a system of R-modules. Thus M is Mittag-Leffler as an R-module. �

Lemma 88.12. Let R be a ring. Let S = R/I for some finitely generated ideal I .
Let M be an S-module. Then M is a Mittag-Leffler module over R if and only if M is a
Mittag-Leffler module over S.

Proof. One implication follows from Lemma 88.11. To prove the other, assume M
is Mittag-Leffler as an R-module. Write M = colimMi as a directed colimit of finitely
presented S-modules. As I is finitely generated, the ring S is finite and finitely presented
as an R-algebra, hence the modules Mi are finitely presented as R-modules, see Lemma
36.23. Next, let N be any S-module. Note that for each i we have HomR(Mi, N) =
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HomS(Mi, N) as R → S is surjective. Hence the condition that the inverse system
(HomR(Mi, N))i satisfies Mittag-Leffler, implies that the system (HomS(Mi, N))i sat-
isfies Mittag-Leffler. Thus M is Mittag-Leffler over S by definition. �

Remark 88.13. LetR→ S be a finite and finitely presented ring map. LetM be anS-
module which is Mittag-Leffler as an R-module. Then it is in general not the case that M
is Mittag-Leffler as an S-module. For example suppose that S is the ring of dual numbers
over R, i.e., S = R ⊕ Rε with ε2 = 0. Then an S-module consists of an R-module M
endowed with a square zero R-linear endomorphism ε : M →M . Now suppose that M0
is an R-module which is not Mittag-Leffler. Choose a presentation F1

u−→ F0 →M0 → 0
with F1 and F0 free R-modules. Set M = F1 ⊕ F0 with

ε =
(

0 0
u 0

)
: M −→M.

Then M/εM ∼= F1 ⊕M0 is not Mittag-Leffler over R = S/εS , hence not Mittag-Leffler
over S (see Lemma 88.12). On the other hand, M/εM = M ⊗S S/εS which would be
Mittag-Leffler over S if M was, see Lemma 88.9.

89. Interchanging direct products with tensor

LetM be anR-module and let (Qα)α∈A be a family ofR-modules. Then there is a canon-
ical map M ⊗R

(∏
α∈AQα

)
→
∏
α∈A(M ⊗R Qα) given on pure tensors by x⊗ (qα) 7→

(x ⊗ qα). This map is not necessarily injective or surjective, as the following example
shows.

Example 89.1. Take R = Z, M = Q, and consider the family Qn = Z/n for
n ≥ 1. Then

∏
n(M ⊗ Qn) = 0. However there is an injection Q → M ⊗ (

∏
nQn)

obtained by tensoring the injection Z→
∏
nQn byM , soM⊗(

∏
nQn) is nonzero. Thus

M ⊗ (
∏
nQn)→

∏
n(M ⊗Qn) is not injective.

On the other hand, take again R = Z, M = Q, and let Qn = Z for n ≥ 1. The image
of M ⊗ (

∏
nQn)→

∏
n(M ⊗Qn) =

∏
nM consists precisely of sequences of the form

(an/m)n≥1 with an ∈ Z and m some nonzero integer. Hence the map is not surjective.

We determine below the precise conditions needed onM for the mapM ⊗R (
∏
αQα)→∏

α(M ⊗R Qα) to be surjective, bijective, or injective for all choices of (Qα)α∈A. This is
relevant because the modules for which it is injective turn out to be exactly Mittag-Leffler
modules (Proposition 89.5). In what follows, if M is an R-module and A a set, we write
MA for the product

∏
α∈AM .

Proposition 89.2. Let M be an R-module. The following are equivalent:

(1) M is finitely generated.
(2) For every family (Qα)α∈A ofR-modules, the canonical mapM⊗R (

∏
αQα)→∏

α(M ⊗R Qα) is surjective.
(3) For everyR-moduleQ and every setA, the canonical mapM⊗RQA → (M⊗R

Q)A is surjective.
(4) For every set A, the canonical map M ⊗R RA →MA is surjective.
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Proof. First we prove (1) implies (2). Choose a surjection Rn → M and consider
the commutative diagram

Rn ⊗R (
∏
αQα)

∼= //

��

∏
α(Rn ⊗R Qα)

��
M ⊗R (

∏
αQα) // ∏

α(M ⊗R Qα).

The top arrow is an isomorphism and the vertical arrows are surjections. We conclude
that the bottom arrow is a surjection.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). In fact for
(1) to hold it suffices that the element d = (x)x∈M of MM is in the image of the map
f : M⊗RRM →MM . In this case d =

∑n
i=1 f(xi⊗ai) for some xi ∈M and ai ∈ RM .

If for x ∈M we write px : MM →M for the projection onto the x-th factor, then

x = px(d) =
∑n

i=1
px(f(xi ⊗ ai)) =

∑n

i=1
px(ai)xi.

Thus x1, . . . , xn generate M . �

Proposition 89.3. Let M be an R-module. The following are equivalent:
(1) M is finitely presented.
(2) For every family (Qα)α∈A ofR-modules, the canonical mapM⊗R (

∏
αQα)→∏

α(M ⊗R Qα) is bijective.
(3) For everyR-moduleQ and every setA, the canonical mapM⊗RQA → (M⊗R

Q)A is bijective.
(4) For every set A, the canonical map M ⊗R RA →MA is bijective.

Proof. First we prove (1) implies (2). Choose a presentation Rm → Rn → M and
consider the commutative diagram

Rm ⊗R (
∏
αQα) //

∼=
��

Rn ⊗R (
∏
αQα) //

∼=
��

M ⊗R (
∏
αQα) //

��

0

∏
α(Rm ⊗R Qα) // ∏

α(Rn ⊗R Qα) // ∏
α(M ⊗R Qα) // 0.

The first two vertical arrows are isomorphisms and the rows are exact. This implies that
the map M ⊗R (

∏
αQα) →

∏
α(M ⊗R Qα) is surjective and, by a diagram chase, also

injective. Hence (2) holds.

Obviously (2) implies (3) implies (4), so it remains to prove (4) implies (1). From Propo-
sition 89.2, if (4) holds we already know that M is finitely generated. So we can choose a
surjection F → M where F is free and finite. Let K be the kernel. We must show K is
finitely generated. For any set A, we have a commutative diagram

K ⊗R RA //

f3
��

F ⊗R RA //

f2 ∼=
��

M ⊗R RA //

f1 ∼=
��

0

0 // KA // FA // MA // 0.
The map f1 is an isomorphism by assumption, the map f2 is a isomorphism since F is free
and finite, and the rows are exact. A diagram chase shows that f3 is surjective, hence by
Proposition 89.2 we get that K is finitely generated. �
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We need the following lemma for the next proposition.

Lemma 89.4. LetM be anR-module, P a finitely presentedR-module, and f : P →
M a map. Let Q be an R-module and suppose x ∈ Ker(P ⊗ Q → M ⊗ Q). Then
there exists a finitely presented R-module P ′ and a map f ′ : P → P ′ such that f factors
through f ′ and x ∈ Ker(P ⊗Q→ P ′ ⊗Q).

Proof. Write M as a colimit M = colimi∈IMi of a directed system of finitely pre-
sented modules Mi. Since P is finitely presented, the map f : P → M factors through
Mj →M for some j ∈ I . Upon tensoring by Q we have a commutative diagram

Mj ⊗Q

%%
P ⊗Q

99

// M ⊗Q.

The image y of x in Mj ⊗ Q is in the kernel of Mj ⊗ Q → M ⊗ Q. Since M ⊗ Q =
colimi∈I(Mi⊗Q), this means y maps to 0 inMj′ ⊗Q for some j′ ≥ j. Thus we may take
P ′ = Mj′ and f ′ to be the composite P →Mj →Mj′ . �

Proposition 89.5. Let M be an R-module. The following are equivalent:
(1) M is Mittag-Leffler.
(2) For every family (Qα)α∈A ofR-modules, the canonical mapM⊗R (

∏
αQα)→∏

α(M ⊗R Qα) is injective.

Proof. First we prove (1) implies (2). SupposeM is Mittag-Leffler and let x be in the
kernel ofM⊗R (

∏
αQα)→

∏
α(M⊗RQα). WriteM as a colimitM = colimi∈IMi of

a directed system of finitely presented modules Mi. Then M ⊗R (
∏
αQα) is the colimit

of Mi ⊗R (
∏
αQα). So x is the image of an element xi ∈ Mi ⊗R (

∏
αQα). We must

show that xi maps to 0 in Mj ⊗R (
∏
αQα) for some j ≥ i. Since M is Mittag-Leffler, we

may choose j ≥ i such thatMi →Mj andMi →M dominate each other. Then consider
the commutative diagram

M ⊗R (
∏
αQα) // ∏

α(M ⊗R Qα)

Mi ⊗R (
∏
αQα)

∼= //

��

OO

∏
α(Mi ⊗R Qα)

��

OO

Mj ⊗R (
∏
αQα)

∼= // ∏
α(Mj ⊗R Qα)

whose bottom two horizontal maps are isomorphisms, according to Proposition 89.3. Since
xi maps to 0 in

∏
α(M ⊗R Qα), its image in

∏
α(Mi ⊗R Qα) is in the kernel of the map∏

α(Mi ⊗R Qα) →
∏
α(M ⊗R Qα). But this kernel equals the kernel of

∏
α(Mi ⊗R

Qα)→
∏
α(Mj⊗RQα) according to the choice of j. Thusxi maps to 0 in

∏
α(Mj⊗RQα)

and hence to 0 in Mj ⊗R (
∏
αQα).

Now suppose (2) holds. We prove M satisfies formulation (1) of being Mittag-Leffler
from Proposition 88.6. Let f : P → M be a map from a finitely presented module P
to M . Choose a set B of representatives of the isomorphism classes of finitely presented
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R-modules. LetA be the set of pairs (Q, x) whereQ ∈ B and x ∈ Ker(P ⊗Q→M⊗Q).
For α = (Q, x) ∈ A, we writeQα forQ and xα for x. Consider the commutative diagram

M ⊗R (
∏
αQα) // ∏

α(M ⊗R Qα)

P ⊗R (
∏
αQα)

∼= //

OO

∏
α(P ⊗R Qα)

OO

The top arrow is an injection by assumption, and the bottom arrow is an isomorphism
by Proposition 89.3. Let x ∈ P ⊗R (

∏
αQα) be the element corresponding to (xα) ∈∏

α(P ⊗R Qα) under this isomorphism. Then x ∈ Ker(P ⊗R (
∏
αQα) → M ⊗R

(
∏
αQα)) since the top arrow in the diagram is injective. By Lemma 89.4, we get a finitely

presented module P ′ and a map f ′ : P → P ′ such that f : P → M factors through f ′

and x ∈ Ker(P ⊗R (
∏
αQα)→ P ′ ⊗R (

∏
αQα)). We have a commutative diagram

P ′ ⊗R (
∏
αQα)

∼= // ∏
α(P ′ ⊗R Qα)

P ⊗R (
∏
αQα)

∼= //

OO

∏
α(P ⊗R Qα)

OO

where both the top and bottom arrows are isomorphisms by Proposition 89.3. Thus since
x is in the kernel of the left vertical map, (xα) is in the kernel of the right vertical map.
This means xα ∈ Ker(P ⊗R Qα → P ′ ⊗R Qα) for every α ∈ A. By the definition of
A this means Ker(P ⊗R Q → P ′ ⊗R Q) ⊃ Ker(P ⊗R Q → M ⊗R Q) for all finitely
presented Q and, since f : P →M factors through f ′ : P → P ′, actually equality holds.
By Lemma 88.3, f and f ′ dominate each other. �

Lemma 89.6. LetM be a flat Mittag-Leffler module overR. LetF be anR-module and
let x ∈ F ⊗RM . Then there exists a smallest submodule F ′ ⊂ F such that x ∈ F ′⊗RM .
Also, F ′ is a finite R-module.

Proof. Since M is flat we have F ′ ⊗R M ⊂ F ⊗R M if F ′ ⊂ F is a submodule,
hence the statement makes sense. Let I = {F ′ ⊂ F | x ∈ F ′⊗RM} and for i ∈ I denote
Fi ⊂ F the corresponding submodule. Then x maps to zero under the map

F ⊗RM −→
∏

(F/Fi ⊗RM)

whence by Proposition 89.5 x maps to zero under the map

F ⊗RM −→
(∏

F/Fi

)
⊗RM

Since M is flat the kernel of this arrow is (
⋂
Fi) ⊗R M which proves that F ′ =

⋂
Fi.

To see that F ′ is a finite module, suppose that x =
∑
j=1,...,m fj ⊗mj with fj ∈ F ′ and

mj ∈M . Then x ∈ F ′′⊗RM where F ′′ ⊂ F ′ is the submodule generated by f1, . . . , fm.
Of course then F ′′ = F ′ and we conclude the final statement holds. �

Lemma 89.7. Let 0 → M1 → M2 → M3 → 0 be a universally exact sequence of
R-modules. Then:

(1) If M2 is Mittag-Leffler, then M1 is Mittag-Leffler.
(2) If M1 and M3 are Mittag-Leffler, then M2 is Mittag-Leffler.
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Proof. For any family (Qα)α∈A of R-modules we have a commutative diagram

0 // M1 ⊗R (
∏
αQα) //

��

M2 ⊗R (
∏
αQα) //

��

M3 ⊗R (
∏
αQα) //

��

0

0 // ∏
α(M1 ⊗Qα) // ∏

α(M2 ⊗Qα) // ∏
α(M3 ⊗Qα) // 0

with exact rows. Thus (1) and (2) follow from Proposition 89.5. �

Lemma 89.8. Let M1 → M2 → M3 → 0 be an exact sequence of R-modules. If M1
is finitely generated and M2 is Mittag-Leffler, then M3 is Mittag-Leffler.

Proof. For any family (Qα)α∈A of R-modules, since tensor product is right exact,
we have a commutative diagram

M1 ⊗R (
∏
αQα) //

��

M2 ⊗R (
∏
αQα) //

��

M3 ⊗R (
∏
αQα) //

��

0

∏
α(M1 ⊗Qα) // ∏

α(M2 ⊗Qα) // ∏
α(M3 ⊗Qα) // 0

with exact rows. By Proposition 89.2 the left vertical arrow is surjective. By Proposition
89.5 the middle vertical arrow is injective. A diagram chase shows the right vertical arrow
is injective. Hence M3 is Mittag-Leffler by Proposition 89.5. �

Lemma 89.9. If M = colimMi is the colimit of a directed system of Mittag-Leffler
R-modules Mi with universally injective transition maps, then M is Mittag-Leffler.

Proof. Let (Qα)α∈A be a family ofR-modules. We have to show thatM⊗R(
∏
Qα)→∏

M ⊗R Qα is injective and we know that Mi ⊗R (
∏
Qα)→

∏
Mi ⊗R Qα is injective

for each i, see Proposition 89.5. Since ⊗ commutes with filtered colimits, it suffices to
show that

∏
Mi ⊗R Qα →

∏
M ⊗R Qα is injective. This is clear as each of the maps

Mi ⊗R Qα → M ⊗R Qα is injective by our assumption that the transition maps are
universally injective. �

Lemma 89.10. If M =
⊕

i∈IMi is a direct sum of R-modules, then M is Mittag-
Leffler if and only if each Mi is Mittag-Leffler.

Proof. The “only if” direction follows from Lemma 89.7 (1) and the fact that a split
short exact sequence is universally exact. The converse follows from Lemma 89.9 but we
can also argue it directly as follows. First note that if I is finite then this follows from
Lemma 89.7 (2). For general I , if all Mi are Mittag-Leffler then we prove the same of M
by verifying condition (1) of Proposition 88.6. Let f : P → M be a map from a finitely

presented module P . Then f factors as P f ′

−→
⊕

i′∈I′ Mi′ ↪→
⊕

i∈IMi for some finite
subset I ′ of I . By the finite case

⊕
i′∈I′ Mi′ is Mittag-Leffler and hence there exists a

finitely presented module Q and a map g : P → Q such that g and f ′ dominate each
other. Then also g and f dominate each other. �

Lemma 89.11. LetR→ S be a ring map. LetM be anS-module. IfS is Mittag-Leffler
as anR-module, andM is flat and Mittag-Leffler as an S-module, thenM is Mittag-Leffler
as an R-module.
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Proof. We deduce this from the characterization of Proposition 89.5. Namely, sup-
pose that Qα is a family of R-modules. Consider the composition

M ⊗R
∏
αQα = M ⊗S S ⊗R

∏
αQα

��
M ⊗S

∏
α(S ⊗R Qα)

��∏
α(M ⊗S S ⊗R Qα) =

∏
α(M ⊗R Qα)

The first arrow is injective asM is flat overS andS is Mittag-Leffler overR and the second
arrow is injective as M is Mittag-Leffler over S. Hence M is Mittag-Leffler over R. �

90. Coherent rings

We use the discussion on interchanging
∏

and ⊗ to determine for which rings products
of flat modules are flat. It turns out that these are the so-called coherent rings. You may
be more familiar with the notion of a coherentOX -module on a ringed space, see Modules,
Section 12.

Definition 90.1. Let R be a ring. Let M be an R-module.
(1) We say M is a coherent module if it is finitely generated and every finitely gen-

erated submodule of M is finitely presented over R.
(2) We say R is a coherent ring if it is coherent as a module over itself.

Thus a ring is coherent if and only if every finitely generated ideal is finitely presented as
a module.

Example 90.2. A valuation ring is a coherent ring. Namely, every nonzero finitely
generated ideal is principal (Lemma 50.15), hence free as a valuation ring is a domain, hence
finitely presented.

The category of coherent modules is abelian.

Lemma 90.3. Let R be a ring.
(1) A finite submodule of a coherent module is coherent.
(2) Letϕ : N →M be a homomorphism from a finite module to a coherent module.

Then Ker(ϕ) is finite, Im(ϕ) is coherent, and Coker(ϕ) is coherent.
(3) Let ϕ : N → M be a homomorphism of coherent modules. Then Ker(ϕ) and

Coker(ϕ) are coherent modules.
(4) Given a short exact sequence of R-modules 0 → M1 → M2 → M3 → 0 if two

out of three are coherent so is the third.

Proof. The first statement is immediate from the definition.

Let ϕ : N → M satisfy the assumptions of (2). First, Im(ϕ) is finite, hence coherent by
(1). In particular Im(ϕ) is finitely presented, so applying Lemma 5.3 to the exact sequence
0 → Ker(ϕ) → N → Im(ϕ) → 0 we see that Ker(ϕ) is finite. To prove that Coker(ϕ)
is coherent, let E ⊂ Coker(ϕ) be a finite subomdule, and let E′ be its inverse image in
M . From the exact sequence 0 → Ker(ϕ) → E′ → E → 0 and since Ker(ϕ) is finite
we conclude by Lemma 5.3 that E′ ⊂ M is finite, hence finitely presented because M is
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coherent. The same exact sequence then shows that E is finitely presented, whence our
claim.
Part (3) follows immediately from (1) and (2).

Let 0 → M1
i−→ M2

p−→ M3 → 0 be a short exact sequence of R-modules as in (4). It
remains to prove that if M1 and M3 are coherent so is M2. By Lemma 5.3 we see that
M2 is finite. Let N2 ⊂ M2 be a finite submodule. Put N3 = p(N2) ⊂ M3 and N1 =
i−1(N2) ⊂ M1. We have an exact sequence 0 → N1 → N2 → N3 → 0. Clearly N3
is finite (as a quotient of N2), hence finitely presented (as a finite submodule of M3). It
follows by Lemma 5.3 (5) that N1 is finite, hence finitely presented (as a finite submodule
of M1). We conclude by Lemma 5.3 (2) that M2 is finitely presented. �

Lemma 90.4. LetR be a ring. IfR is coherent, then a module is coherent if and only
if it is finitely presented.

Proof. It is clear that a coherent module is finitely presented (over any ring). Con-
versely, if R is coherent, then R⊕n is coherent and so is the cokernel of any map R⊕m →
R⊕n, see Lemma 90.3. �

Lemma 90.5. A Noetherian ring is a coherent ring.

Proof. By Lemma 31.4 any finite R-module is finitely presented. In particular any
ideal of R is finitely presented. �

Proposition 90.6. Let R be a ring. The following are equivalent
(1) R is coherent,
(2) any product of flat R-modules is flat, and
(3) for every set A the module RA is flat.

Proof. Assume R coherent, and let Qα, α ∈ A be a set of flat R-modules. We have
to show that I ⊗R

∏
αQα →

∏
Qα is injective for every finitely generated ideal I of

R, see Lemma 39.5. Since R is coherent I is an R-module of finite presentation. Hence
I ⊗R

∏
αQα =

∏
I ⊗R Qα by Proposition 89.3. The desired injectivity follows as

I ⊗R Qα → Qα is injective by flatness of Qα.
The implication (2)⇒ (3) is trivial.
Assume that the R-module RA is flat for every set A. Let I be a finitely generated ideal
in R. Then I ⊗R RA → RA is injective by assumption. By Proposition 89.2 and the
finiteness of I the image is equal to IA. Hence I ⊗R RA = IA for every set A and we
conclude that I is finitely presented by Proposition 89.3. �

91. Examples and non-examples of Mittag-Leffler modules

We end this section with some examples and non-examples of Mittag-Leffler modules.

Example 91.1. Mittag-Leffler modules.
(1) Any finitely presented module is Mittag-Leffler. This follows, for instance, from

Proposition 88.6 (1). In general, it is true that a finitely generated module is
Mittag-Leffler if and only it is finitely presented. This follows from Propositions
89.2, 89.3, and 89.5.

(2) A free module is Mittag-Leffler since it satisfies condition (1) of Proposition 88.6.
(3) By the previous example together with Lemma 89.10, projective modules are

Mittag-Leffler.
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We also want to add to our list of examples power series rings over a Noetherian ring R.
This will be a consequence the following lemma.

Lemma 91.2. Let M be a flat R-module. The following are equivalent
(1) M is Mittag-Leffler, and
(2) if F is a finite free R-module and x ∈ F ⊗R M , then there exists a smallest

submodule F ′ of F such that x ∈ F ′ ⊗RM .

Proof. The implication (1)⇒ (2) is a special case of Lemma 89.6. Assume (2). By
Theorem 81.4 we can write M as the colimit M = colimi∈IMi of a directed system
(Mi, fij) of finite free R-modules. By Remark 88.8, it suffices to show that the inverse
system (HomR(Mi, R),HomR(fij , R)) is Mittag-Leffler. In other words, fix i ∈ I and
for j ≥ i letQj be the image of HomR(Mj , R)→ HomR(Mi, R); we must show that the
Qj stabilize.
SinceMi is free and finite, we can make the identification HomR(Mi,Mj) = HomR(Mi, R)⊗R
Mj for all j. Using the fact that the Mj are free, it follows that for j ≥ i, Qj is the
smallest submodule of HomR(Mi, R) such that fij ∈ Qj ⊗R Mj . Under the identifica-
tion HomR(Mi,M) = HomR(Mi, R) ⊗R M , the canonical map fi : Mi → M is in
HomR(Mi, R) ⊗R M . By the assumption on M , there exists a smallest submodule Q of
HomR(Mi, R) such that fi ∈ Q⊗RM . We are going to show that the Qj stabilize to Q.
For j ≥ i we have a commutative diagram

Qj ⊗RMj
//

��

HomR(Mi, R)⊗RMj

��
Qj ⊗RM // HomR(Mi, R)⊗RM.

Since fij ∈ Qj⊗RMj maps to fi ∈ HomR(Mi, R)⊗RM , it follows that fi ∈ Qj⊗RM .
Hence, by the choice of Q, we have Q ⊂ Qj for all j ≥ i.
Since the Qj are decreasing and Q ⊂ Qj for all j ≥ i, to show that the Qj stabilize to Q
it suffices to find a j ≥ i such that Qj ⊂ Q. As an element of

HomR(Mi, R)⊗RM = colimj∈J(HomR(Mi, R)⊗RMj),
fi is the colimit of fij for j ≥ i, and fi also lies in the submodule

colimj∈J(Q⊗RMj) ⊂ colimj∈J(HomR(Mi, R)⊗RMj).
It follows that for some j ≥ i, fij lies in Q⊗RMj . Since Qj is the smallest submodule of
HomR(Mi, R) with fij ∈ Qj ⊗RMj , we conclude Qj ⊂ Q. �

Lemma 91.3. Let R be a Noetherian ring and A a set. Then M = RA is a flat and
Mittag-Leffler R-module.

Proof. Combining Lemma 90.5 and Proposition 90.6 we see that M is flat over R.
We show that M satisfies the condition of Lemma 91.2. Let F be a free finite R-module.
If F ′ is any submodule of F then it is finitely presented since R is Noetherian. So by
Proposition 89.3 we have a commutative diagram

F ′ ⊗RM //

∼=
��

F ⊗RM

∼=
��

(F ′)A // FA
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by which we can identify the map F ′ ⊗R M → F ⊗R M with (F ′)A → FA. Hence if
x ∈ F ⊗RM corresponds to (xα) ∈ FA, then the submodule of F ′ of F generated by the
xα is the smallest submodule of F such that x ∈ F ′ ⊗RM . �

Lemma 91.4. LetR be a Noetherian ring andn a positive integer. Then theR-module
M = R[[t1, . . . , tn]] is flat and Mittag-Leffler.

Proof. As anR-module, we haveM = RA for a (countable) setA. Hence this lemma
is a special case of Lemma 91.3. �

Example 91.5. Non Mittag-Leffler modules.
(1) By Example 89.1 and Proposition 89.5, Q is not a Mittag-Leffler Z-module.
(2) We prove below (Theorem 93.3) that for a flat and countably generated module,

projectivity is equivalent to being Mittag-Leffler. Thus any flat, countably gen-
erated, non-projective module M is an example of a non-Mittag-Leffler module.
For such an example, see Remark 78.4.

(3) Let k be a field. Let R = k[[x]]. The R-module M =
∏
n∈N R/(xn) is not

Mittag-Leffler. Namely, consider the element ξ = (ξ1, ξ2, ξ3, . . .) defined by
ξ2m = x2m−1

and ξn = 0 else, so

ξ = (0, x, 0, x2, 0, 0, 0, x4, 0, 0, 0, 0, 0, 0, 0, x8, . . .)

Then the annihilator of ξ inM/x2mM is generated x2m−1
form� 0. But ifM

was Mittag-Leffler, then there would exist a finite R-module Q and an element
ξ′ ∈ Q such that the annihilator of ξ′ in Q/xlQ agrees with the annihilator of
ξ in M/xlM for all l ≥ 1, see Proposition 88.6 (1). Now you can prove there
exists an integer a ≥ 0 such that the annihilator of ξ′ in Q/xlQ is generated by
either xa or xl−a for all l� 0 (depending on whether ξ′ ∈ Q is torsion or not).
The combination of the above would give for all l = 2m >> 0 the equality
a = l/2 or l − a = l/2 which is nonsensical.

(4) The same argument shows that (x)-adic completion of
⊕

n∈N R/(xn) is not
Mittag-Leffler overR = k[[x]] (hint: ξ is actually an element of this completion).

(5) Let R = k[a, b]/(a2, ab, b2). Let S be the finitely presented R-algebra with pre-
sentation S = R[t]/(at−b). Then as anR-module S is countably generated and
indecomposable (details omitted). On the other hand, R is Artinian local, hence
complete local, hence a henselian local ring, see Lemma 153.9. If S was Mittag-
Leffler as an R-module, then it would be a direct sum of finite R-modules by
Lemma 153.13. Thus we conclude that S is not Mittag-Leffler as an R-module.

92. Countably generated Mittag-Leffler modules

It turns out that countably generated Mittag-Leffler modules have a particularly simple
structure.

Lemma 92.1. Let M be an R-module. Write M = colimi∈IMi where (Mi, fij) is
a directed system of finitely presented R-modules. If M is Mittag-Leffler and countably
generated, then there is a directed countable subset I ′ ⊂ I such that M ∼= colimi∈I′ Mi.

Proof. Let x1, x2, . . . be a countable set of generators for M . For each xn choose
i ∈ I such that xn is in the image of the canonical map fi : Mi →M ; let I ′

0 ⊂ I be the set
of all these i. Now sinceM is Mittag-Leffler, for each i ∈ I ′

0 we can choose j ∈ I such that
j ≥ i and fij : Mi → Mj factors through fik : Mi → Mk for all k ≥ i (condition (3) of
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Proposition 88.6); let I ′
1 be the union of I ′

0 with all of these j. Since I ′
1 is a countable, we

can enlarge it to a countable directed set I ′
2 ⊂ I . Now we can apply the same procedure

to I ′
2 as we did to I ′

0 to get a new countable set I ′
3 ⊂ I . Then we enlarge I ′

3 to a countable
directed set I ′

4. Continuing in this way—adding in a j as in Proposition 88.6 (3) for each
i ∈ I ′

` if ` is odd and enlarging I ′
` to a directed set if ` is even—we get a sequence of subsets

I ′
` ⊂ I for ` ≥ 0. The union I ′ =

⋃
I ′
` satisfies:

(1) I ′ is countable and directed;
(2) each xn is in the image of fi : Mi →M for some i ∈ I ′;
(3) if i ∈ I ′, then there is j ∈ I ′ such that j ≥ i and fij : Mi →Mj factors through

fik : Mi →Mk for all k ∈ I with k ≥ i. In particular Ker(fik) ⊂ Ker(fij) for
k ≥ i.

We claim that the canonical map colimi∈I′ Mi → colimi∈IMi = M is an isomorphism.
By (2) it is surjective. For injectivity, suppose x ∈ colimi∈I′ Mi maps to 0 in colimi∈IMi.
Representing x by an element x̃ ∈ Mi for some i ∈ I ′, this means that fik(x̃) = 0 for
some k ∈ I, k ≥ i. But then by (3) there is j ∈ I ′, j ≥ i, such that fij(x̃) = 0. Hence
x = 0 in colimi∈I′ Mi. �

Lemma 92.1 implies that a countably generated Mittag-Leffler module M over R is the
colimit of a system

M1 →M2 →M3 →M4 → . . .

with each Mn a finitely presented R-module. To see this argue as in the proof of Lemma
86.3 to see that a countable directed set has a cofinal subset isomorphic to (N,≥). Suppose
R = k[x1, x2, x3, . . .] and M = R/(xi). Then M is finitely generated but not finitely
presented, hence not Mittag-Leffler (see Example 91.1 part (1)). But of course you can
write M = colimnMn by taking Mn = R/(x1, . . . , xn), hence the condition that you
can write M as such a limit does not imply that M is Mittag-Leffler.

Lemma 92.2. Let R be a ring. Let M be an R-module. Assume M is Mittag-Leffler
and countably generated. For any R-module map f : P → M with P finitely generated
there exists an endomorphism α : M →M such that

(1) α : M →M factors through a finitely presented R-module, and
(2) α ◦ f = f .

Proof. WriteM = colimi∈IMi as a directed colimit of finitely presentedR-modules
with I countable, see Lemma 92.1. The transition maps are denoted fij and we use fi :
Mi →M to denote the canonical maps into M . Set N =

∏
s∈IMs. Denote

M∗
i = HomR(Mi, N) =

∏
s∈I

HomR(Mi,Ms)

so that (M∗
i ) is an inverse system of R-modules over I . Note that HomR(M,N) =

limM∗
i . As M is Mittag-Leffler, we find for every i ∈ I an index k(i) ≥ i such that

Ei :=
⋂

i′≥i
Im(M∗

i′ →M∗
i ) = Im(M∗

k(i) →M∗
i )

Choose and fix j ∈ I such that Im(P → M) ⊂ Im(Mj → M). This is possible as P
is finitely generated. Set k = k(j). Let x = (0, . . . , 0, idMk

, 0, . . . , 0) ∈ M∗
k and note

that this maps to y = (0, . . . , 0, fjk, 0, . . . , 0) ∈ M∗
j . By our choice of k we see that

y ∈ Ej . By Example 86.2 the transition maps Ei → Ej are surjective for each i ≥ j
and limEi = limM∗

i = HomR(M,N). Hence Lemma 86.3 guarantees there exists an
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element z ∈ HomR(M,N) which maps to y in Ej ⊂ M∗
j . Let zk be the kth component

of z. Then zk : M →Mk is a homomorphism such that

M
zk
// Mk

Mj

fjk

==

fj

OO

commutes. Let α : M →M be the composition fk ◦zk : M →Mk →M . Then α factors
through a finitely presented module by construction and α ◦ fj = fj . Since the image of
f is contained in the image of fj this also implies that α ◦ f = f . �

We will see later (see Lemma 153.13) that Lemma 92.2 means that a countably generated
Mittag-Leffler module over a henselian local ring is a direct sum of finitely presented mod-
ules.

93. Characterizing projective modules

The goal of this section is to prove that a module is projective if and only if it is flat,
Mittag-Leffler, and a direct sum of countably generated modules (Theorem 93.3 below).

Lemma 93.1. Let M be an R-module. If M is flat, Mittag-Leffler, and countably
generated, then M is projective.

Proof. By Lazard’s theorem (Theorem 81.4), we can write M = colimi∈IMi for a
directed system of finite free R-modules (Mi, fij) indexed by a set I . By Lemma 92.1, we
may assume I is countable. Now let

0→ N1 → N2 → N3 → 0
be an exact sequence ofR-modules. We must show that applying HomR(M,−) preserves
exactness. Since Mi is finite free,

0→ HomR(Mi, N1)→ HomR(Mi, N2)→ HomR(Mi, N3)→ 0
is exact for each i. Since M is Mittag-Leffler, (HomR(Mi, N1)) is a Mittag-Leffler inverse
system. So by Lemma 86.4,

0→ limi∈I HomR(Mi, N1)→ limi∈I HomR(Mi, N2)→ limi∈I HomR(Mi, N3)→ 0
is exact. But for any R-module N there is a functorial isomorphism HomR(M,N) ∼=
limi∈I HomR(Mi, N), so

0→ HomR(M,N1)→ HomR(M,N2)→ HomR(M,N3)→ 0
is exact. �

Remark 93.2. Lemma 93.1 does not hold without the countable generation assump-
tion. For example, the Z-moduleM = Z[[x]] is flat and Mittag-Leffler but not projective.
It is Mittag-Leffler by Lemma 91.4. Subgroups of free abelian groups are free, hence a pro-
jective Z-module is in fact free and so are its submodules. Thus to showM is not projective
it suffices to produce a non-free submodule. Fix a prime p and consider the submodule N
consisting of power series f(x) =

∑
aix

i such that for every integer m ≥ 1, pm divides
ai for all but finitely many i. Then

∑
aip

ixi is in N for all ai ∈ Z, so N is uncountable.
Thus if N were free it would have uncountable rank and the dimension of N/pN over
Z/p would be uncountable. This is not true as the elements xi ∈ N/pN for i ≥ 0 span
N/pN .
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Theorem 93.3. LetM be anR-module. ThenM is projective if and only it satisfies:
(1) M is flat,
(2) M is Mittag-Leffler,
(3) M is a direct sum of countably generated R-modules.

Proof. First suppose M is projective. Then M is a direct summand of a free mod-
ule, so M is flat and Mittag-Leffler since these properties pass to direct summands. By
Kaplansky’s theorem (Theorem 84.5), M satisfies (3).

Conversely, suppose M satisfies (1)-(3). Since being flat and Mittag-Leffler passes to di-
rect summands, M is a direct sum of flat, Mittag-Leffler, countably generated R-modules.
Lemma 93.1 implies M is a direct sum of projective modules. Hence M is projective. �

Lemma 93.4. Let f : M → N be universally injective map of R-modules. Suppose
M is a direct sum of countably generated R-modules, and suppose N is flat and Mittag-
Leffler. Then M is projective.

Proof. By Lemmas 82.7 and 89.7, M is flat and Mittag-Leffler, so the conclusion fol-
lows from Theorem 93.3. �

Lemma 93.5. Let R be a Noetherian ring and let M be a R-module. Suppose M is a
direct sum of countably generatedR-modules, and suppose there is a universally injective
map M → R[[t1, . . . , tn]] for some n. Then M is projective.

Proof. Follows from Lemmas 93.4 and 91.4. �

94. Ascending properties of modules

All of the properties of a module in Theorem 93.3 ascend along arbitrary ring maps:

Lemma 94.1. Let R→ S be a ring map. Let M be an R-module. Then:
(1) If M is flat, then the S-module M ⊗R S is flat.
(2) If M is Mittag-Leffler, then the S-module M ⊗R S is Mittag-Leffler.
(3) IfM is a direct sum of countably generatedR-modules, then theS-moduleM⊗R

S is a direct sum of countably generated S-modules.
(4) If M is projective, then the S-module M ⊗R S is projective.

Proof. All are obvious except (2). For this, use formulation (3) of being Mittag-
Leffler from Proposition 88.6 and the fact that tensoring commutes with taking colimits.

�

95. Descending properties of modules

We address the faithfully flat descent of the properties from Theorem 93.3 that character-
ize projectivity. In the presence of flatness, the property of being a Mittag-Leffler module
descends:

Lemma 95.1. LetR→ S be a faithfully flat ring map. LetM be anR-module. If the
S-module M ⊗R S is Mittag-Leffler, then M is Mittag-Leffler.

Proof. WriteM = colimi∈IMi as a directed colimit of finitely presentedR-modules
Mi. Using Proposition 88.6, we see that we have to prove that for each i ∈ I there exists
i ≤ j , j ∈ I such that Mi →Mj dominates Mi →M .
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Take N the pushout
Mi

//

��

Mj

��
M // N

Then the lemma is equivalent to the existence of j such that Mj → N is universally
injective, see Lemma 88.4. Observe that the tensorization by S

Mi ⊗R S //

��

Mj ⊗R S

��
M ⊗R S // N ⊗R S

Is a pushout diagram. So because M ⊗R S = colimi∈IMi ⊗R S expresses M ⊗R S as
a colimit of S-modules of finite presentation, and M ⊗R S is Mittag-Leffler, there exists
j ≥ i such that Mj ⊗R S → N ⊗R S is universally injective. So using that R → S is
faithfully flat we conclude that Mj → N is universally injective too. �

Lemma 95.2. LetR→ S be a faithfully flat ring map. LetM be anR-module. If the
S-module M ⊗R S is countably generated, then M is countably generated.

Proof. Say M ⊗R S is generated by the elements yi, i = 1, 2, 3, . . .. Write yi =∑
j=1,...,ni xij ⊗ sij for some ni ≥ 0, xij ∈ M and sij ∈ S. Denote M ′ ⊂ M the

submodule generated by the countable collection of elements xij . Then M ′ ⊗R S →
M ⊗R S is surjective as the image contains the generators yi. Since S is faithfully flat
over R we conclude that M ′ = M as desired. �

At this point the faithfully flat descent of countably generated projective modules follows
easily.

Lemma 95.3. LetR→ S be a faithfully flat ring map. LetM be anR-module. If the
S-module M ⊗R S is countably generated and projective, then M is countably generated
and projective.

Proof. Follows from Lemmas 83.2, 95.1, and 95.2 and Theorem 93.3. �

All that remains is to use dévissage to reduce descent of projectivity in the general case to
the countably generated case. First, two simple lemmas.

Lemma 95.4. Let R → S be a ring map, let M be an R-module, and let Q be a
countably generated S-submodule of M ⊗R S. Then there exists a countably generated
R-submodule P of M such that Im(P ⊗R S →M ⊗R S) contains Q.

Proof. Let y1, y2, . . . be generators for Q and write yj =
∑
k xjk ⊗ sjk for some

xjk ∈M and sjk ∈ S. Then take P be the submodule of M generated by the xjk. �

Lemma 95.5. Let R→ S be a ring map, and let M be an R-module. Suppose M ⊗R
S =

⊕
i∈I Qi is a direct sum of countably generated S-modules Qi. If N is a countably

generated submodule of M , then there is a countably generated submodule N ′ of M such
that N ′ ⊃ N and Im(N ′ ⊗R S →M ⊗R S) =

⊕
i∈I′ Qi for some subset I ′ ⊂ I .

Proof. LetN ′
0 = N . We construct by induction an increasing sequence of countably

generated submodules N ′
` ⊂ M for ` = 0, 1, 2, . . . such that: if I ′

` is the set of i ∈ I such
that the projection of Im(N ′

`⊗RS →M⊗RS) ontoQi is nonzero, then Im(N ′
`+1⊗RS →
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M ⊗R S) contains Qi for all i ∈ I ′
`. To construct N ′

`+1 from N ′
`, let Q be the sum of (the

countably many)Qi for i ∈ I ′
`, choose P as in Lemma 95.4, and then letN ′

`+1 = N ′
` +P .

Having constructed the N ′
`, just take N ′ =

⋃
`N

′
` and I ′ =

⋃
` I

′
`. �

Theorem 95.6. Let R → S be a faithfully flat ring map. Let M be an R-module. If
the S-module M ⊗R S is projective, then M is projective.

Proof. We are going to construct a Kaplansky dévissage of M to show that it is a
direct sum of projective modules and hence projective. By Theorem 84.5 we can write
M ⊗R S =

⊕
i∈I Qi as a direct sum of countably generated S-modules Qi. Choose

a well-ordering on M . Using transfinite recursion we are going to define an increasing
family of submodules Mα of M , one for each ordinal α, such that Mα ⊗R S is a direct
sum of some subset of the Qi.

For α = 0 let M0 = 0. If α is a limit ordinal and Mβ has been defined for all β < α,
then define Mβ =

⋃
β<αMβ . Since each Mβ ⊗R S for β < α is a direct sum of a subset

of the Qi, the same will be true of Mα ⊗R S. If α + 1 is a successor ordinal and Mα has
been defined, then define Mα+1 as follows. If Mα = M , then let Mα+1 = M . Otherwise
choose the smallest x ∈ M (with respect to the fixed well-ordering) such that x /∈ Mα.
SinceS is flat overR, (M/Mα)⊗RS = M⊗RS/Mα⊗RS , so sinceMα⊗RS is a direct sum
of some Qi, the same is true of (M/Mα) ⊗R S. By Lemma 95.5, we can find a countably
generated R-submodule P of M/Mα containing the image of x in M/Mα and such that
P⊗RS (which equals Im(P⊗RS →M⊗RS) sinceS is flat overR) is a direct sum of some
Qi. Since M ⊗R S =

⊕
i∈I Qi is projective and projectivity passes to direct summands,

P⊗RS is also projective. Thus by Lemma 95.3, P is projective. Finally we defineMα+1 to
be the preimage of P inM , so thatMα+1/Mα = P is countably generated and projective.
In particular Mα is a direct summand of Mα+1 since projectivity of Mα+1/Mα implies
the sequence 0→Mα →Mα+1 →Mα+1/Mα → 0 splits.

Transfinite induction onM (using the fact that we constructedMα+1 to contain the small-
est x ∈M not contained in Mα) shows that each x ∈M is contained in some Mα. Thus,
there is some large enough ordinal S satisfying: for each x ∈M there is α ∈ S such that
x ∈Mα. This means (Mα)α∈S satisfies property (1) of a Kaplansky dévissage of M . The
other properties are clear by construction. We concludeM =

⊕
α+1∈SMα+1/Mα. Since

each Mα+1/Mα is projective by construction, M is projective. �

96. Completion

Suppose that R is a ring and I is an ideal. We define the completion of R with respect to
I to be the limit

R∧ = limnR/I
n.

An element ofR∧ is given by a sequence of elements fn ∈ R/In such that fn ≡ fn+1 mod
In for all n. We will view R∧ as an R-algebra. Similarly, if M is an R-module then we
define the completion of M with respect to I to be the limit

M∧ = limnM/InM.

An element of M∧ is given by a sequence of elements mn ∈ M/InM such that mn ≡
mn+1 mod InM for all n. We will view M∧ as an R∧-module. From this description it
is clear that there are always canonical maps

M −→M∧ and M ⊗R R∧ −→M∧.
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Moreover, given a map ϕ : M → N of modules we get an induced map ϕ∧ : M∧ → N∧

on completions making the diagram

M //

��

N

��
M∧ // N∧

commute. In general completion is not an exact functor, see Examples, Section 9. Here are
some initial positive results.

Lemma 96.1. Let R be a ring. Let I ⊂ R be an ideal. Let ϕ : M → N be a map of
R-modules.

(1) If M/IM → N/IN is surjective, then M∧ → N∧ is surjective.
(2) If M → N is surjective, then M∧ → N∧ is surjective.
(3) If 0→ K →M → N → 0 is a short exact sequence ofR-modules andN is flat,

then 0→ K∧ →M∧ → N∧ → 0 is a short exact sequence.
(4) The map M ⊗R R∧ →M∧ is surjective for any finite R-module M .

Proof. Assume M/IM → N/IN is surjective. Then the map M/InM → N/InN
is surjective for each n ≥ 1 by Nakayama’s lemma. More precisely, apply Lemma 20.1 part
(11) to the map M/InM → N/InN over the ring R/In and the nilpotent ideal I/In to
see this. Set Kn = {x ∈M | ϕ(x) ∈ InN}. Thus we get short exact sequences

0→ Kn/I
nM →M/InM → N/InN → 0

We claim that the canonical map Kn+1/I
n+1M → Kn/I

nM is surjective. Namely, if
x ∈ Kn write ϕ(x) =

∑
zjnj with zj ∈ In, nj ∈ N . By assumption we can write

nj = ϕ(mj) +
∑
zjknjk with mj ∈M , zjk ∈ I and njk ∈ N . Hence

ϕ(x−
∑

zjmj) =
∑

zjzjknjk.

This means that x′ = x−
∑
zjmj ∈ Kn+1 maps to x mod InM which proves the claim.

Now we may apply Lemma 87.1 to the inverse system of short exact sequences above to
see (1). Part (2) is a special case of (1). If the assumptions of (3) hold, then for each n the
sequence

0→ K/InK →M/InM → N/InN → 0
is short exact by Lemma 39.12. Hence we can directly apply Lemma 87.1 to conclude (3)
is true. To see (4) choose generators xi ∈ M , i = 1, . . . , n. Then the map R⊕n → M ,
(a1, . . . , an) 7→

∑
aixi is surjective. Hence by (2) we see (R∧)⊕n →M∧, (a1, . . . , an) 7→∑

aixi is surjective. Assertion (4) follows from this. �

Definition 96.2. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
We say M is I-adically complete if the map

M −→M∧ = limnM/InM

is an isomorphism9. We say R is I-adically complete if R is I-adically complete as an
R-module.

It is not true that the completion of an R-module M with respect to I is I-adically com-
plete. For an example see Examples, Section 7. If the ideal is finitely generated, then the
completion is complete.

9This includes the condition that
⋂
InM = 0.
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Lemma 96.3. Let R be a ring. Let I be a finitely generated ideal of R. Let M be an
R-module. Then

(1) the completion M∧ is I-adically complete, and
(2) InM∧ = Ker(M∧ →M/InM) = (InM)∧ for all n ≥ 1.

In particular R∧ is I-adically complete, InR∧ = (In)∧, and R∧/InR∧ = R/In.

Proof. Since I is finitely generated, In is finitely generated, say by f1, . . . , fr. Ap-
plying Lemma 96.1 part (2) to the surjection (f1, . . . , fr) : M⊕r → InM yields a surjec-
tion

(M∧)⊕r (f1,...,fr)−−−−−−→ (InM)∧ = limm≥n I
nM/ImM = Ker(M∧ →M/InM).

On the other hand, the image of (f1, . . . , fr) : (M∧)⊕r →M∧ is InM∧. ThusM∧/InM∧ '
M/InM . Taking inverse limits yields (M∧)∧ ' M∧; that is, M∧ is I-adically com-
plete. �

Lemma 96.4. Let R be a ring. Let I ⊂ R be an ideal. Let 0 → M → N → Q → 0
be an exact sequence of R-modules such that Q is annihilated by a power of I . Then
completion produces an exact sequence 0→M∧ → N∧ → Q→ 0.

Proof. Say IcQ = 0. Then Q/InQ = Q for n ≥ c. On the other hand, it is clear
that InM ⊂ M ∩ InN ⊂ In−cM for n ≥ c. Thus M∧ = limM/(M ∩ InN). Apply
Lemma 87.1 to the system of exact sequences

0→M/(M ∩ InN)→ N/InN → Q→ 0

for n ≥ c to conclude. �

Lemma 96.5. LetR be a ring. Let I ⊂ R be an ideal. LetM be anR-module. Denote
Kn = Ker(M∧ →M/InM). Then M∧ is I-adically complete if and only if Kn is equal
to InM∧ for all n ≥ 1.

Proof. The module InM∧ is contained inKn. Thus for each n ≥ 1 there is a canon-
ical exact sequence

0→ Kn/I
nM∧ →M∧/InM∧ →M/InM → 0.

As InM∧ maps onto InM/In+1M we see that Kn+1 + InM∧ = Kn. Thus the inverse
system {Kn/I

nM∧}n≥1 has surjective transition maps. By Lemma 87.1 we see that there
is a short exact sequence

0→ limnKn/I
nM∧ → (M∧)∧ →M∧ → 0

Hence M∧ is complete if and only if Kn/I
nM∧ = 0 for all n ≥ 1. �

Lemma 96.6. Let R be a ring, let I ⊂ R be an ideal, and let R∧ = limR/In.
(1) any element of R∧ which maps to a unit of R/I is a unit,
(2) any element of 1 + I maps to an invertible element of R∧,
(3) any element of 1 + IR∧ is invertible in R∧, and
(4) the ideals IR∧ and Ker(R∧ → R/I) are contained in the Jacobson radical of

R∧.

Proof. Let x ∈ R∧ map to a unit x1 in R/I . Then x maps to a unit xn in R/In for
every n by Lemma 32.4. Hence y = (x−1

n ) ∈ limR/In = R∧ is an inverse to x. Parts (2)
and (3) follow immediately from (1). Part (4) follows from (1) and Lemma 19.1. �
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Lemma 96.7. Let A be a ring. Let I = (f1, . . . , fr) be a finitely generated ideal. If
M → limM/fni M is surjective for each i, then M → limM/InM is surjective.

Proof. Note that limM/InM = limM/(fn1 , . . . , fnr )M as In ⊃ (fn1 , . . . , fnr ) ⊃
Irn. An element ξ of limM/(fn1 , . . . , fnr )M can be symbolically written as

ξ =
∑

n≥0

∑
i
fni xn,i

with xn,i ∈ M . If M → limM/fni M is surjective, then there is an xi ∈ M mapping to∑
xn,if

n
i in limM/fni M . Then x =

∑
xi maps to ξ in limM/InM . �

Lemma 96.8. Let A be a ring. Let I ⊂ J ⊂ A be ideals. If M is J -adically complete
and I is finitely generated, then M is I-adically complete.

Proof. AssumeM isJ -adically complete and I is finitely generated. We have
⋂
InM =

0 because
⋂
JnM = 0. By Lemma 96.7 it suffices to prove the surjectivity of M →

limM/InM in case I is generated by a single element. Say I = (f). Let xn ∈ M with
xn+1 − xn ∈ fnM . We have to show there exists an x ∈ M such that xn − x ∈ fnM
for all n. As xn+1 − xn ∈ JnM and as M is J -adically complete, there exists an ele-
ment x ∈ M such that xn − x ∈ JnM . Replacing xn by xn − x we may assume that
xn ∈ JnM . To finish the proof we will show that this implies xn ∈ InM . Namely, write
xn − xn+1 = fnzn. Then

xn = fn(zn + fzn+1 + f2zn+2 + . . .)

The sum zn + fzn+1 + f2zn+2 + . . . converges in M as f c ∈ Jc. The sum fn(zn +
fzn+1 + f2zn+2 + . . .) converges in M to xn because the partial sums equal xn − xn+c
and xn+c ∈ Jn+cM . �

Lemma 96.9. Let R be a ring. Let I , J be ideals of R. Assume there exist integers
c, d > 0 such that Ic ⊂ J and Jd ⊂ I . Then completion with respect to I agrees with
completion with respect toJ for anyR-module. In particular anR-moduleM is I-adically
complete if and only if it is J -adically complete.

Proof. Consider the system of maps M/InM → M/Jbn/dcM and the system of
maps M/JmM → M/Ibm/ccM to get mutually inverse maps between the completions.

�

Lemma 96.10. LetR be a ring. Let I be an ideal ofR. LetM be an I-adically complete
R-module, and let K ⊂M be an R-submodule. The following are equivalent

(1) K =
⋂

(K + InM) and
(2) M/K is I-adically complete.

Proof. Set N = M/K. By Lemma 96.1 the map M = M∧ → N∧ is surjective.
Hence N → N∧ is surjective. It is easy to see that the kernel of N → N∧ is the module⋂

(K + InM)/K. �

Lemma 96.11. Let R be a ring. Let I be an ideal of R. Let M be an R-module. If (a)
R is I-adically complete, (b) M is a finite R-module, and (c)

⋂
InM = (0), then M is

I-adically complete.

Proof. By Lemma 96.1 the map M = M ⊗R R = M ⊗R R∧ → M∧ is surjective.
The kernel of this map is

⋂
InM hence zero by assumption. Hence M ∼= M∧ and M is

complete. �
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Lemma 96.12. LetR be a ring. Let I ⊂ R be an ideal. LetM be anR-module. Assume
(1) R is I-adically complete,
(2)

⋂
n≥1 I

nM = (0), and
(3) M/IM is a finite R/I-module.

Then M is a finite R-module.

Proof. Let x1, . . . , xn ∈M be elements whose images inM/IM generateM/IM as
a R/I-module. Denote M ′ ⊂ M the R-submodule generated by x1, . . . , xn. By Lemma
96.1 the map (M ′)∧ → M∧ is surjective. Since

⋂
InM = 0 we see in particular that⋂

InM ′ = (0). Hence by Lemma 96.11 we see that M ′ is complete, and we conclude
that M ′ → M∧ is surjective. Finally, the kernel of M → M∧ is zero since it is equal to⋂
InM = (0). Hence we conclude that M ∼= M ′ ∼= M∧ is finitely generated. �

97. Completion for Noetherian rings

In this section we discuss completion with respect to ideals in Noetherian rings.

Lemma 97.1. Let I be an ideal of a Noetherian ring R. Denote ∧ completion with
respect to I .

(1) IfK → N is an injective map of finiteR-modules, then the map on completions
K∧ → N∧ is injective.

(2) If 0 → K → N → M → 0 is a short exact sequence of finite R-modules, then
0→ K∧ → N∧ →M∧ → 0 is a short exact sequence.

(3) If M is a finite R-module, then M∧ = M ⊗R R∧.

Proof. SettingM = N/K we find that part (1) follows from part (2). Let 0→ K →
N →M → 0 be as in (2). For each n we get the short exact sequence

0→ K/(InN ∩K)→ N/InN →M/InM → 0.

By Lemma 87.1 we obtain the exact sequence

0→ limK/(InN ∩K)→ N∧ →M∧ → 0.

By the Artin-Rees Lemma 51.2 we may choose c such that InK ⊂ InN ∩K ⊂ In−cK for
n ≥ c. Hence K∧ = limK/InK = limK/(InN ∩K) and we conclude that (2) is true.

Let M be as in (3) and let 0 → K → R⊕t → M → 0 be a presentation of M . We get a
commutative diagram

K ⊗R R∧ //

��

R⊕t ⊗R R∧ //

��

M ⊗R R∧ //

��

0

0 // K∧ // (R⊕t)∧ // M∧ // 0

The top row is exact, see Section 39. The bottom row is exact by part (2). By Lemma
96.1 the vertical arrows are surjective. The middle vertical arrow is an isomorphism. We
conclude (3) holds by the Snake Lemma 4.1. �

Lemma 97.2. Let I be a ideal of a Noetherian ring R. Denote ∧ completion with
respect to I .

(1) The ring map R→ R∧ is flat.
(2) The functorM 7→M∧ is exact on the category of finitely generatedR-modules.
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Proof. Consider J ⊗R R∧ → R ⊗R R∧ = R∧ where J is an arbitrary ideal of R.
According to Lemma 97.1 this is identified with J∧ → R∧ and J∧ → R∧ is injective.
Part (1) follows from Lemma 39.5. Part (2) is a reformulation of Lemma 97.1 part (2). �

Lemma 97.3. Let (R,m) be a Noetherian local ring. Let I ⊂ m be an ideal. Denote
R∧ the completion of R with respect to I . The ring map R → R∧ is faithfully flat. In
particular the completion with respect to m, namely limnR/m

n is faithfully flat.

Proof. By Lemma 97.2 it is flat. The composition R → R∧ → R/m where the last
map is the projection mapR∧ → R/I combined withR/I → R/m shows that m is in the
image of Spec(R∧)→ Spec(R). Hence the map is faithfully flat by Lemma 39.15. �

Lemma 97.4. Let R be a Noetherian ring. Let I be an ideal of R. Let M be an R-
module. Then the completionM∧ ofM with respect to I is I-adically complete, InM∧ =
(InM)∧, and M∧/InM∧ = M/InM .

Proof. This is a special case of Lemma 96.3 because I is a finitely generated ideal. �

Lemma 97.5. Let I be an ideal of a ring R. Assume
(1) R/I is a Noetherian ring,
(2) I is finitely generated.

Then the completionR∧ ofRwith respect to I is a Noetherian ring complete with respect
to IR∧.

Proof. By Lemma 96.3 we see that R∧ is I-adically complete. Hence it is also IR∧-
adically complete. Since R∧/IR∧ = R/I is Noetherian we see that after replacing R by
R∧ we may in addition to assumptions (1) and (2) assume that alsoR is I-adically complete.

Let f1, . . . , ft be generators of I . Then there is a surjection of rings R/I[T1, . . . , Tt] →⊕
In/In+1 mapping Ti to the element f i ∈ I/I2. Hence

⊕
In/In+1 is a Noetherian

ring. Let J ⊂ R be an ideal. Consider the ideal⊕
J ∩ In/J ∩ In+1 ⊂

⊕
In/In+1.

Let g1, . . . , gm be generators of this ideal. We may choose gj to be a homogeneous element
of degree dj and we may pick gj ∈ J ∩ Idj mapping to gj ∈ J ∩ Idj/J ∩ Idj+1. We claim
that g1, . . . , gm generate J .

Let x ∈ J ∩ In. There exist aj ∈ Imax(0,n−dj) such that x −
∑
ajgj ∈ J ∩ In+1. The

reason is that J∩In/J∩In+1 is equal to
∑
gjI

n−dj/In−dj+1 by our choice of g1, . . . , gm.
Hence starting with x ∈ J we can find a sequence of vectors (a1,n, . . . , am,n)n≥0 with
aj,n ∈ Imax(0,n−dj) such that

x =
∑

n=0,...,N

∑
j=1,...,m

aj,ngj mod IN+1

Setting Aj =
∑
n≥0 aj,n we see that x =

∑
Ajgj as R is complete. Hence J is finitely

generated and we win. �

Lemma 97.6. LetR be a Noetherian ring. Let I be an ideal ofR. The completionR∧

of R with respect to I is Noetherian.

Proof. This is a consequence of Lemma 97.5. It can also be seen directly as follows.
Choose generators f1, . . . , fn of I . Consider the map

R[[x1, . . . , xn]] −→ R∧, xi 7−→ fi.
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This is a well defined and surjective ring map (details omitted). Since R[[x1, . . . , xn]] is
Noetherian (see Lemma 31.2) we win. �

Suppose R → S is a local homomorphism of local rings (R,m) and (S, n). Let S∧ be the
completion of S with respect to n. In general S∧ is not the m-adic completion of S. If
nt ⊂ mS for some t ≥ 1 then we do have S∧ = limS/mnS by Lemma 96.9. In some
cases this even implies that S∧ is finite over R∧.

Lemma 97.7. Let R→ S be a local homomorphism of local rings (R,m) and (S, n).
Let R∧, resp. S∧ be the completion of R, resp. S with respect to m, resp. n. If m and n are
finitely generated and dimκ(m) S/mS <∞, then

(1) S∧ is equal to the m-adic completion of S , and
(2) S∧ is a finite R∧-module.

Proof. We have mS ⊂ n because R → S is a local ring map. The assumption
dimκ(m) S/mS < ∞ implies that S/mS is an Artinian ring, see Lemma 53.2. Hence has
dimension 0, see Lemma 60.5, hence n =

√
mS. This and the fact that n is finitely gener-

ated implies that nt ⊂ mS for some t ≥ 1. By Lemma 96.9 we see thatS∧ can be identified
with the m-adic completion of S. As m is finitely generated we see from Lemma 96.3 that
S∧ and R∧ are m-adically complete. At this point we may apply Lemma 96.12 to S∧ as
an R∧-module to conclude. �

Lemma 97.8. LetR be a Noetherian ring. LetR→ S be a finite ring map. Let p ⊂ R
be a prime and let q1, . . . , qm be the primes of S lying over p (Lemma 36.21). Then

R∧
p ⊗R S = (Sp)∧ = S∧

q1
× . . .× S∧

qm

where the (Sp)∧ is the completion with respect to p and the local rings Rp and Sqi are
completed with respect to their maximal ideals.

Proof. The first equality follows from Lemma 97.1. We may replace R by the local-
ization Rp and S by Sp = S ⊗R Rp. Hence we may assume that R is a local Noetherian
ring and that p = m is its maximal ideal. The qiSqi -adic completion S∧

qi is equal to the
m-adic completion by Lemma 97.7. For every n ≥ 1 prime ideals of S/mnS are in 1-to-1
correspondence with the maximal ideals q1, . . . , qm of S (by going up for S over R, see
Lemma 36.22). Hence S/mnS =

∏
Sqi/m

nSqi by Lemma 53.6 (using for example Propo-
sition 60.7 to see that S/mnS is Artinian). Hence the m-adic completion S∧ of S is equal
to
∏
S∧
qi . Finally, we have R∧ ⊗R S = S∧ by Lemma 97.1. �

Lemma 97.9. Let R be a ring. Let I ⊂ R be an ideal. Let 0 → K → P → M → 0
be a short exact sequence of R-modules. If M is flat over R and M/IM is a projective
R/I-module, then the sequence of I-adic completions

0→ K∧ → P∧ →M∧ → 0
is a split exact sequence.

Proof. As M is flat, each of the sequences
0→ K/InK → P/InP →M/InM → 0

is short exact, see Lemma 39.12 and the sequence 0 → K∧ → P∧ → M∧ → 0 is
a short exact sequence, see Lemma 96.1. It suffices to show that we can find splittings
sn : M/InM → P/InP such that sn+1 mod In = sn. We will construct these sn by
induction on n. Pick any splitting s1, which exists asM/IM is a projectiveR/I-module.
Assume given sn for some n > 0. Set Pn+1 = {x ∈ P | x mod InP ∈ Im(sn)}. The
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map π : Pn+1/I
n+1Pn+1 →M/In+1M is surjective (details omitted). As M/In+1M is

projective as aR/In+1-module by Lemma 77.7 we may choose a section t : M/In+1M →
Pn+1/I

n+1Pn+1 of π. Setting sn+1 equal to the composition of twith the canonical map
Pn+1/I

n+1Pn+1 → P/In+1P works. �

Lemma 97.10. Let A be a Noetherian ring. Let I, J ⊂ A be ideals. If A is I-adically
complete and A/I is J -adically complete, then A is J -adically complete.

Proof. Let B be the (I + J)-adic completion of A. By Lemma 97.2 B/IB is the
J -adic completion of A/I hence isomorphic to A/I by assumption. Moreover B is I-
adically complete by Lemma 96.8. Hence B is a finite A-module by Lemma 96.12. By
Nakayama’s lemma (Lemma 20.1 using I is in the Jacobson radical of A by Lemma 96.6)
we find that A → B is surjective. The map A → B is flat by Lemma 97.2. The image
of Spec(B) → Spec(A) contains V (I) and as I is contained in the Jacobson radical of
A we find A → B is faithfully flat (Lemma 39.16). Thus A → B is injective. Thus A is
complete with respect to I + J , hence a fortiori complete with respect to J . �

98. Taking limits of modules

In this section we discuss what happens when we take a limit of modules.

Lemma 98.1. Let I ⊂ A be a finitely generated ideal of a ring. Let (Mn) be an inverse
system of A-modules with InMn = 0. Then M = limMn is I-adically complete.

Proof. We have M → M/InM → Mn. Taking the limit we get M → M∧ → M .
Hence M is a direct summand of M∧. Since M∧ is I-adically complete by Lemma 96.3,
so is M . �

Lemma 98.2. Let I ⊂ A be a finitely generated ideal of a ring. Let (Mn) be an inverse
system of A-modules with Mn = Mn+1/I

nMn+1. Then M/InM = Mn and M is I-
adically complete.

Proof. By Lemma 98.1 we see that M is I-adically complete. Since the transition
maps are surjective, the maps M → Mn are surjective. Consider the inverse system of
short exact sequences

0→ Nn →M →Mn → 0
defining Nn. Since Mn = Mn+1/I

nMn+1 the map Nn+1 + InM → Nn is surjective.
Hence Nn+1/(Nn+1 ∩ In+1M) → Nn/(Nn ∩ InM) is surjective. Taking the inverse
limit of the short exact sequences

0→ Nn/(Nn ∩ InM)→M/InM →Mn → 0

we obtain an exact sequence

0→ limNn/(Nn ∩ InM)→M∧ →M

Since M is I-adically complete we conclude that limNn/(Nn ∩ InM) = 0 and hence
by the surjectivity of the transition maps we get Nn/(Nn ∩ InM) = 0 for all n. Thus
Mn = M/InM as desired. �

Lemma 98.3. LetA be a Noetherian graded ring. Let I ⊂ A+ be a homogeneous ideal.
Let (Nn) be an inverse system of finite graded A-modules with Nn = Nn+1/I

nNn+1.
Then there is a finite graded A-module N such that Nn = N/InN as graded modules for
all n.
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Proof. Pick r and homogeneous elements x1,1, . . . , x1,r ∈ N1 of degrees d1, . . . , dr
generating N1. Since the transition maps are surjective, we can pick a compatible sys-
tem of homogeneous elements xn,i ∈ Nn lifting x1,i. By the graded Nakayama lemma
(Lemma 56.1) we see thatNn is generated by the elements xn,1, . . . , xn,r sitting in degrees
d1, . . . , dr. Thus for m ≤ n we see that Nn → Nn/I

mNn is an isomorphism in degrees
< min(di) + m (as ImNn is zero in those degrees). Thus the inverse system of degree d
parts

. . . = N2+d−min(di),d = N1+d−min(di),d = Nd−min(di),d → N−1+d−min(di),d → . . .

stabilizes as indicated. Let N be the graded A-module whose dth graded part is this sta-
bilization. In particular, we have the elements xi = lim xn,i in N . We claim the xi
generate N : any x ∈ Nd is a linear combination of x1, . . . , xr because we can check this
in Nd−min(di),d where it holds as xd−min(di),i generate Nd−min(di). Finally, the reader
checks that the surjective map N/InN → Nn is an isomorphism by checking to see what
happens in each degree as before. Details omitted. �

Lemma 98.4. Let A be a graded ring. Let I ⊂ A+ be a homogeneous ideal. Denote
A′ = limA/In. Let (Gn) be an inverse system of gradedA-modules withGn annihilated
by In. Let M be a graded A-module and let ϕn : M → Gn be a compatible system of
graded A-module maps. If the induced map

ϕ : M ⊗A A′ −→ limGn

is an isomorphism, then Md → limGn,d is an isomorphism for all d ∈ Z.

Proof. By convention graded rings are in degrees≥ 0 and graded modules may have
nonzero parts of any degree, see Section 56. The map ϕ exists because limGn is a module
over A′ as Gn is annihilated by In. Another useful thing to keep in mind is that we have⊕

d∈Z
limGn,d ⊂ limGn ⊂

∏
d∈Z

limGn,d

where a subscript d indicates the dth graded part.

Injective. Let x ∈ Md. If x 7→ 0 in limGn,d then x ⊗ 1 = 0 in M ⊗A A′. Then we
can find a finitely generated submodule M ′ ⊂M with x ∈M ′ such that x⊗ 1 is zero in
M ′⊗AA′. SayM ′ is generated by homogeneous elements sitting in degrees d1, . . . , dr. Let
n = d−min(di)+1. SinceA′ has a map toA/In and sinceA→ A/In is an isomorphism
in degrees ≤ n − 1 we see that M ′ → M ′ ⊗A A′ is injective in degrees ≤ n − 1. Thus
x = 0 as desired.

Surjective. Let y ∈ limGn,d. Choose a finite sum
∑
xi ⊗ f ′

i in M ⊗A A′ mapping to y.
We may assume xi is homogeneous, say of degree di. Observe that although A′ is not a
graded ring, it is a limit of the graded ringsA/InA and moreover, in any given degree the
transition maps eventually become isomorphisms (see above). This gives

A =
⊕

d≥0
Ad ⊂ A′ ⊂

∏
d≥0

Ad

Thus we can write
f ′
i =

∑
j=0,...,d−di−1

fi,j + fi + g′
i

with fi,j ∈ Aj , fi ∈ Ad−di , and g′
i ∈ A′ mapping to zero in

∏
j≤d−di Aj . Now if we

compute ϕn(
∑
i,j fi,jxi) ∈ Gn, then we get a sum of homogeneous elements of degree

< d. Hence ϕ(
∑
xi ⊗ fi,j) maps to zero in limGn,d. Similarly, a computation shows the
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element ϕ(
∑
xi⊗g′

i) maps to zero in
∏
d′≤d limGn,d′ . Since we know that ϕ(

∑
xi⊗f ′

i)
is y, we conclude that

∑
fixi ∈Md maps to y as desired. �

99. Criteria for flatness

In this section we prove some important technical lemmas in the Noetherian case. We will
(partially) generalize these to the non-Noetherian case in Section 128.

Lemma 99.1. Suppose that R → S is a local homomorphism of Noetherian local
rings. Denote m the maximal ideal of R. Let M be a flat R-module and N a finite S-
module. Let u : N → M be a map of R-modules. If u : N/mN → M/mM is injective
then u is injective. In this case M/u(N) is flat over R.

Proof. First we claim that un : N/mnN →M/mnM is injective for all n ≥ 1. We
proceed by induction, the base case is that u = u1 is injective. By our assumption that M
is flat over R we have a short exact sequence 0 → M ⊗R mn/mn+1 → M/mn+1M →
M/mnM → 0. Also, M ⊗R mn/mn+1 = M/mM ⊗R/m mn/mn+1. We have a similar
exact sequence N ⊗R mn/mn+1 → N/mn+1N → N/mnN → 0 for N except we do not
have the zero on the left. We also haveN⊗Rmn/mn+1 = N/mN⊗R/mmn/mn+1. Thus
the map un+1 is injective as both un and the map u⊗ idmn/mn+1 are.

By Krull’s intersection theorem (Lemma 51.4) applied to N over the ring S and the ideal
mS we have

⋂
mnN = 0. Thus the injectivity of un for all n implies u is injective.

To show that M/u(N) is flat over R, it suffices to show that TorR1 (M/u(N), R/I) = 0
for every ideal I ⊂ R, see Lemma 75.8. From the short exact sequence

0→ N
u−→M →M/u(N)→ 0

and the flatness of M we obtain an exact sequence of Tors

0→ TorR1 (M/u(N), R/I)→ N/IN →M/IM

See Lemma 75.2. Thus it suffices to show that N/IN injects into M/IM . Note that
R/I → S/IS is a local homomorphism of Noetherian local rings, N/IN → M/IM
is a map of R/I-modules, N/IN is finite over S/IS , and M/IM is flat over R/I and
u mod I : N/IN → M/IM is injective modulo m. Thus we may apply the first part of
the proof to u mod I and we conclude. �

Lemma 99.2. Suppose that R → S is a flat and local ring homomorphism of Noe-
therian local rings. Denote m the maximal ideal of R. Suppose f ∈ S is a nonzerodivisor
in S/mS. Then S/fS is flat over R, and f is a nonzerodivisor in S.

Proof. Follows directly from Lemma 99.1. �

Lemma 99.3. Suppose that R → S is a flat and local ring homomorphism of Noe-
therian local rings. Denote m the maximal ideal of R. Suppose f1, . . . , fc is a sequence
of elements of S such that the images f1, . . . , f c form a regular sequence in S/mS. Then
f1, . . . , fc is a regular sequence in S and each of the quotients S/(f1, . . . , fi) is flat over
R.

Proof. Induction and Lemma 99.2. �

Lemma 99.4. LetR→ S be a local homomorphism of Noetherian local rings. Let m
be the maximal ideal of R. Let M be a finite S-module. Suppose that (a) M/mM is a free
S/mS-module, and (b) M is flat over R. Then M is free and S is flat over R.
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Proof. Let x1, . . . , xn be a basis for the free module M/mM . Choose x1, . . . , xn ∈
M with xi mapping to xi. Letu : S⊕n →M be the map which maps the ith standard basis
vector to xi. By Lemma 99.1 we see that u is injective. On the other hand, by Nakayama’s
Lemma 20.1 the map is surjective. The lemma follows. �

Lemma 99.5. Let R → S be a local homomorphism of local Noetherian rings. Let
m be the maximal ideal of R. Let 0 → Fe → Fe−1 → . . . → F0 be a finite complex of
finite S-modules. Assume that each Fi is R-flat, and that the complex 0 → Fe/mFe →
Fe−1/mFe−1 → . . . → F0/mF0 is exact. Then 0 → Fe → Fe−1 → . . . → F0 is exact,
and moreover the module Coker(F1 → F0) is R-flat.

Proof. By induction on e. If e = 1, then this is exactly Lemma 99.1. If e > 1, we
see by Lemma 99.1 that Fe → Fe−1 is injective and that C = Coker(Fe → Fe−1) is a
finite S-module flat overR. Hence we can apply the induction hypothesis to the complex
0 → C → Fe−2 → . . . → F0. We deduce that C → Fe−2 is injective and the exactness
of the complex follows, as well as the flatness of the cokernel of F1 → F0. �

In the rest of this section we prove two versions of what is called the “local criterion of
flatness”. Note also the interesting Lemma 128.1 below.

Lemma 99.6. LetR be a local ring with maximal ideal m and residue field κ = R/m.
Let M be an R-module. If TorR1 (κ,M) = 0, then for every finite length R-module N we
have TorR1 (N,M) = 0.

Proof. By descending induction on the length of N . If the length of N is 1, then
N ∼= κ and we are done. If the length of N is more than 1, then we can fit N into a
short exact sequence 0 → N ′ → N → N ′′ → 0 where N ′, N ′′ are finite length R-
modules of smaller length. The vanishing of TorR1 (N,M) follows from the vanishing of
TorR1 (N ′,M) and TorR1 (N ′′,M) (induction hypothesis) and the long exact sequence of
Tor groups, see Lemma 75.2. �

Lemma 99.7 (Local criterion for flatness). Let R → S be a local homomorphism of
local Noetherian rings. Let m be the maximal ideal of R, and let κ = R/m. Let M be a
finite S-module. If TorR1 (κ,M) = 0, then M is flat over R.

Proof. Let I ⊂ R be an ideal. By Lemma 39.5 it suffices to show that I ⊗RM →M

is injective. By Remark 75.9 we see that this kernel is equal to TorR1 (M,R/I). By Lemma
99.6 we see that J ⊗RM →M is injective for all ideals of finite colength.

Choose n >> 0 and consider the following short exact sequence

0→ I ∩mn → I ⊕mn → I + mn → 0
This is a sub sequence of the short exact sequence 0→ R→ R⊕2 → R→ 0. Thus we get
the diagram

(I ∩mn)⊗RM //

��

I ⊗RM ⊕mn ⊗RM //

��

(I + mn)⊗RM

��
M // M ⊕M // M

Note that I + mn and mn are ideals of finite colength. Thus a diagram chase shows that
Ker((I ∩ mn) ⊗R M → M) → Ker(I ⊗R M → M) is surjective. We conclude in
particular that K = Ker(I ⊗R M → M) is contained in the image of (I ∩ mn) ⊗R M
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in I ⊗R M . By Artin-Rees, Lemma 51.2 we see that K is contained in mn−c(I ⊗R M)
for some c > 0 and all n >> 0. Since I ⊗R M is a finite S-module (!) and since S is
Noetherian, we see that this implies K = 0. Namely, the above implies K maps to zero
in the mS-adic completion of I ⊗RM . But the map from S to its mS-adic completion is
faithfully flat by Lemma 97.3. Hence K = 0, as desired. �

In the following we often encounter the conditions “M/IM is flat overR/I and TorR1 (R/I,M) =
0”. The following lemma gives some consequences of these conditions (it is a generaliza-
tion of Lemma 99.6).

Lemma 99.8. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module. If
M/IM is flat over R/I and TorR1 (R/I,M) = 0 then

(1) M/InM is flat over R/In for all n ≥ 1, and
(2) for any moduleN which is annihilated by Im for somem ≥ 0 we have TorR1 (N,M) =

0.
In particular, if I is nilpotent, then M is flat over R.

Proof. Assume M/IM is flat over R/I and TorR1 (R/I,M) = 0. Let N be an R/I-
module. Choose a short exact sequence

0→ K →
⊕

i∈I
R/I → N → 0

By the long exact sequence of Tor and the vanishing of TorR1 (R/I,M) we get

0→ TorR1 (N,M)→ K ⊗RM → (
⊕

i∈I
R/I)⊗RM → N ⊗RM → 0

But since K ,
⊕

i∈I R/I , and N are all annihilated by I we see that

K ⊗RM = K ⊗R/I M/IM,

(
⊕

i∈I
R/I)⊗RM = (

⊕
i∈I

R/I)⊗R/I M/IM,

N ⊗RM = N ⊗R/I M/IM.

As M/IM is flat over R/I we conclude that

0→ K ⊗R/I M/IM → (
⊕

i∈I
R/I)⊗R/I M/IM → N ⊗R/M/IM → 0

is exact. Combining this with the above we conclude that TorR1 (N,M) = 0 for any R-
module N annihilated by I .

In particular, if we apply this to the module I/I2, then we conclude that the sequence

0→ I2 ⊗RM → I ⊗RM → I/I2 ⊗RM → 0
is short exact. This implies that I2⊗RM →M is injective and it implies that I/I2⊗R/I
M/IM = IM/I2M .

Let us prove that M/I2M is flat over R/I2. Let I2 ⊂ J be an ideal. We have to show
that J/I2⊗R/I2 M/I2M →M/I2M is injective, see Lemma 39.5. AsM/IM is flat over
R/I we know that the map (I+J)/I⊗R/IM/IM →M/IM is injective. The sequence

(I ∩ J)/I2 ⊗R/I2 M/I2M → J/I2 ⊗R/I2 M/I2M → (I + J)/I ⊗R/I M/IM → 0
is exact, as you get it by tensoring the exact sequence 0→ (I ∩J)→ J → (I+J)/I → 0
byM/I2M . Hence suffices to prove the injectivity of the map (I∩J)/I2⊗R/IM/IM →
IM/I2M . However, the map (I ∩ J)/I2 → I/I2 is injective and as M/IM is flat over
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R/I the map (I ∩ J)/I2 ⊗R/I M/IM → I/I2 ⊗R/I M/IM is injective. Since we have
previously seen that I/I2 ⊗R/I M/IM = IM/I2M we obtain the desired injectivity.

Hence we have proven that the assumptions imply: (a) TorR1 (N,M) = 0 for all N anni-
hilated by I , (b) I2 ⊗RM → M is injective, and (c) M/I2M is flat over R/I2. Thus we
can continue by induction to get the same results for In for all n ≥ 1. �

Lemma 99.9. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
(1) If M/IM is flat over R/I and M ⊗R I/I2 → IM/I2M is injective, then

M/I2M is flat over R/I2.
(2) IfM/IM is flat overR/I andM ⊗R In/In+1 → InM/In+1M is injective for

n = 1, . . . , k, then M/Ik+1M is flat over R/Ik+1.

Proof. The first statement is a consequence of Lemma 99.8 applied with R replaced
by R/I2 and M replaced by M/I2M using that

TorR/I
2

1 (M/I2M,R/I) = Ker(M ⊗R I/I2 → IM/I2M),
see Remark 75.9. The second statement follows in the same manner using induction on n
to show that M/In+1M is flat over R/In+1 for n = 1, . . . , k. Here we use that

TorR/I
n+1

1 (M/In+1M,R/I) = Ker(M ⊗R In/In+1 → InM/In+1M)
for every n. �

Lemma 99.10 (Variant of the local criterion). Let R→ S be a local homomorphism
of Noetherian local rings. Let I 6= R be an ideal in R. Let M be a finite S-module. If
TorR1 (M,R/I) = 0 and M/IM is flat over R/I , then M is flat over R.

Proof. First proof: By Lemma 99.8 we see that TorR1 (κ,M) is zero where κ is the
residue field of R. Hence we see that M is flat over R by Lemma 99.7.

Second proof: Let m be the maximal ideal ofR. We will show that m⊗RM →M is injec-
tive, and then apply Lemma 99.7. Suppose that

∑
fi⊗xi ∈ m⊗RM and that

∑
fixi = 0

in M . By the equational criterion for flatness Lemma 39.11 applied to M/IM over R/I
we see there exist aij ∈ R/I and yj ∈ M/IM such that xi mod IM =

∑
j aijyj and

0 =
∑
i(fi mod I)aij . Let aij ∈ R be a lift of aij and similarly let yj ∈M be a lift of yj .

Then we see that∑
fi ⊗ xi =

∑
fi ⊗ xi +

∑
fiaij ⊗ yj −

∑
fi ⊗ aijyj

=
∑

fi ⊗ (xi −
∑

aijyj) +
∑

(
∑

fiaij)⊗ yj

Since xi−
∑
aijyj ∈ IM and

∑
fiaij ∈ I we see that there exists an element in I⊗RM

which maps to our given element
∑
fi ⊗ xi in m⊗RM . But I ⊗RM →M is injective

by assumption (see Remark 75.9) and we win. �

In particular, in the situation of Lemma 99.10, suppose that I = (x) is generated by a
single element x which is a nonzerodivisor in R. Then TorR1 (M,R/(x)) = (0) if and
only if x is a nonzerodivisor on M .

Lemma 99.11. Let R → S be a ring map. Let I ⊂ R be an ideal. Let M be an
S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
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(3) M is a finite S-module, and
(4) for each n ≥ 1 the module M/InM is flat over R/In.

Then for every q ∈ V (IS) the localization Mq is flat over R. In particular, if S is local
and IS is contained in its maximal ideal, then M is flat over R.

Proof. We are going to use Lemma 99.10. By assumption M/IM is flat over R/I .
Hence it suffices to check that TorR1 (M,R/I) is zero on localization at q. By Remark 75.9
this Tor group is equal to K = Ker(I ⊗R M → M). We know for each n ≥ 1 that
the kernel Ker(I/In ⊗R/In M/InM → M/InM) is zero. Since there is a module map
I/In⊗R/InM/InM → (I⊗RM)/In−1(I⊗RM) we conclude thatK ⊂ In−1(I⊗RM)
for each n. By the Artin-Rees lemma, and more precisely Lemma 51.5 we conclude that
Kq = 0, as desired. �

Lemma 99.12. Let R → R′ → R′′ be ring maps. Let M be an R-module. Suppose
thatM⊗RR′ is flat overR′. Then the natural map TorR1 (M,R′)⊗R′R′′ → TorR1 (M,R′′)
is onto.

Proof. Let F• be a free resolution of M over R. The complex F2 ⊗R R′ → F1 ⊗R
R′ → F0 ⊗R R′ computes TorR1 (M,R′). The complex F2 ⊗R R′′ → F1 ⊗R R′′ →
F0 ⊗R R′′ computes TorR1 (M,R′′). Note that Fi ⊗R R′ ⊗R′ R′′ = Fi ⊗R R′′. Let
K ′ = Ker(F1 ⊗R R′ → F0 ⊗R R′) and similarly K ′′ = Ker(F1 ⊗R R′′ → F0 ⊗R R′′).
Thus we have an exact sequence

0→ K ′ → F1 ⊗R R′ → F0 ⊗R R′ →M ⊗R R′ → 0.
By the assumption that M ⊗R R′ is flat over R′, the sequence

K ′ ⊗R′ R′′ → F1 ⊗R R′′ → F0 ⊗R R′′ →M ⊗R R′′ → 0
is still exact. This means that K ′ ⊗R′ R′′ → K ′′ is surjective. Since TorR1 (M,R′) is a
quotient of K ′ and TorR1 (M,R′′) is a quotient of K ′′ we win. �

Lemma 99.13. Let R → R′ be a ring map. Let I ⊂ R be an ideal and I ′ = IR′.
Let M be an R-module and set M ′ = M ⊗R R′. The natural map TorR1 (R′/I ′,M) →
TorR

′

1 (R′/I ′,M ′) is surjective.

Proof. Let F2 → F1 → F0 → M → 0 be a free resolution of M over R. Set
F ′
i = Fi ⊗R R′. The sequence F ′

2 → F ′
1 → F ′

0 →M ′ → 0 may no longer be exact at F ′
1.

A free resolution of M ′ over R′ therefore looks like

F ′
2 ⊕ F ′′

2 → F ′
1 → F ′

0 →M ′ → 0
for a suitable free moduleF ′′

2 overR′. Next, note thatFi⊗RR′/I ′ = F ′
i/IF

′
i = F ′

i/I
′F ′
i .

So the complex F ′
2/I

′F ′
2 → F ′

1/I
′F ′

1 → F ′
0/I

′F ′
0 computes TorR1 (M,R′/I ′). On the

other hand F ′
i ⊗R′ R′/I ′ = F ′

i/I
′F ′
i and similarly for F ′′

2 . Thus the complex F ′
2/I

′F ′
2 ⊕

F ′′
2 /I

′F ′′
2 → F ′

1/I
′F ′

1 → F ′
0/I

′F ′
0 computes TorR

′

1 (M ′, R′/I ′). Since the vertical map
on complexes

F ′
2/I

′F ′
2

//

��

F ′
1/I

′F ′
1

//

��

F ′
0/I

′F ′
0

��
F ′

2/I
′F ′

2 ⊕ F ′′
2 /I

′F ′′
2

// F ′
1/I

′F ′
1

// F ′
0/I

′F ′
0

clearly induces a surjection on cohomology we win. �
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Lemma 99.14. Let
S // S′

R //

OO

R′

OO

be a commutative diagram of local homomorphisms of local Noetherian rings. Let I ⊂ R
be a proper ideal. Let M be a finite S-module. Denote I ′ = IR′ and M ′ = M ⊗S S′.
Assume that

(1) S′ is a localization of the tensor product S ⊗R R′,
(2) M/IM is flat over R/I ,
(3) TorR1 (M,R/I)→ TorR

′

1 (M ′, R′/I ′) is zero.
Then M ′ is flat over R′.

Proof. Since S′ is a localization of S⊗RR′ we see thatM ′ is a localization ofM ⊗R
R′. Note that by Lemma 39.7 the moduleM/IM ⊗R/I R′/I ′ = M ⊗RR′/I ′(M ⊗RR′)
is flat over R′/I ′. Hence also M ′/I ′M ′ is flat over R′/I ′ as the localization of a flat
module is flat. By Lemma 99.10 it suffices to show that TorR

′

1 (M ′, R′/I ′) is zero. Since
M ′ is a localization of M ⊗R R′, the last assumption implies that it suffices to show that
TorR1 (M,R/I)⊗R R′ → TorR

′

1 (M ⊗R R′, R′/I ′) is surjective.

By Lemma 99.13 we see that TorR1 (M,R′/I ′) → TorR
′

1 (M ⊗R R′, R′/I ′) is surjective.
So now it suffices to show that TorR1 (M,R/I) ⊗R R′ → TorR1 (M,R′/I ′) is surjective.
This follows from Lemma 99.12 by looking at the ring maps R → R/I → R′/I ′ and the
module M . �

Please compare the lemma below to Lemma 101.8 (the case of a nilpotent ideal) and Lemma
128.8 (the case of finitely presented algebras).

Lemma 99.15 (Critère de platitude par fibres; Noetherian case). Let R, S , S′ be Noe-
therian local rings and let R→ S → S′ be local ring homomorphisms. Let m ⊂ R be the
maximal ideal. Let M be an S′-module. Assume

(1) The module M is finite over S′.
(2) The module M is not zero.
(3) The module M/mM is a flat S/mS-module.
(4) The module M is a flat R-module.

Then S is flat over R and M is a flat S-module.

Proof. Set I = mS ⊂ S. Then we see that M/IM is a flat S/I-module because
of (3). Since m ⊗R S′ → I ⊗S S′ is surjective we see that also m ⊗R M → I ⊗S M is
surjective. Consider

m⊗RM → I ⊗S M →M.

AsM is flat overR the composition is injective and so both arrows are injective. In partic-
ular TorS1 (S/I,M) = 0 see Remark 75.9. By Lemma 99.10 we conclude thatM is flat over
S. Note that since M/mS′M is not zero by Nakayama’s Lemma 20.1 we see that actually
M is faithfully flat over S by Lemma 39.15 (since it forces M/mSM 6= 0).

Consider the exact sequence 0 → m → R → κ → 0. This gives an exact sequence
0→ TorR1 (κ, S)→ m⊗RS → I → 0. SinceM is flat over S this gives an exact sequence
0 → TorR1 (κ, S) ⊗S M → m ⊗R M → I ⊗S M → 0. By the above this implies that
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TorR1 (κ, S)⊗SM = 0. SinceM is faithfully flat over S this implies that TorR1 (κ, S) = 0
and we conclude that S is flat over R by Lemma 99.7. �

100. Base change and flatness

Some lemmas which deal with what happens with flatness when doing a base change.

Lemma 100.1. Let
S // S′

R //

OO

R′

OO

be a commutative diagram of local homomorphisms of local rings. Assume that S′ is a
localization of the tensor product S⊗RR′. LetM be an S-module and setM ′ = S′⊗SM .

(1) If M is flat over R then M ′ is flat over R′.
(2) If M ′ is flat over R′ and R→ R′ is flat then M is flat over R.

In particular we have
(3) If S is flat over R then S′ is flat over R′.
(4) If R′ → S′ and R→ R′ are flat then S is flat over R.

Proof. Proof of (1). If M is flat over R, then M ⊗R R′ is flat over R′ by Lemma
39.7. If W ⊂ S ⊗R R′ is the multiplicative subset such that W−1(S ⊗R R′) = S′ then
M ′ = W−1(M ⊗R R′). Hence M ′ is flat over R′ as the localization of a flat module, see
Lemma 39.18 part (5). This proves (1) and in particular, we see that (3) holds.

Proof of (2). Suppose that M ′ is flat over R′ and R → R′ is flat. By (3) applied to the
diagram reflected in the northwest diagonal we see that S → S′ is flat. Thus S → S′

is faithfully flat by Lemma 39.17. We are going to use the criterion of Lemma 39.5 (3)
to show that M is flat. Let I ⊂ R be an ideal. If I ⊗R M → M has a kernel, so does
(I ⊗R M) ⊗S S′ → M ⊗S S′ = M ′. Note that I ⊗R R′ = IR′ as R → R′ is flat, and
that

(I ⊗RM)⊗S S′ = (I ⊗R R′)⊗R′ (M ⊗S S′) = IR′ ⊗R′ M ′.

From flatness of M ′ over R′ we conclude that this maps injectively into M ′. This con-
cludes the proof of (2), and hence (4) is true as well. �

Here is yet another application of the local criterion of flatness.

Lemma 100.2. Consider a commutative diagram of local rings and local homomor-
phisms

S // S′

R //

OO

R′

OO

Let M be a finite S-module. Assume that
(1) the horizontal arrows are flat ring maps
(2) M is flat over R,
(3) mRR

′ = mR′ ,
(4) R′ and S′ are Noetherian.

Then M ′ = M ⊗S S′ is flat over R′.
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Proof. Since mR ⊂ R and R → R′ is flat, we get mR ⊗R R′ = mRR
′ = mR′ by

assumption (3). Observe thatM ′ is a finite S′-module which is flat overR by Lemma 39.9.
Thus mR ⊗RM ′ →M ′ is injective. Then we get

mR ⊗RM ′ = mR ⊗R R′ ⊗R′ M ′ = mR′ ⊗R′ M ′

Thus mR′ ⊗R′ M ′ → M ′ is injective. This shows that TorR
′

1 (κR′ ,M ′) = 0 (Remark
75.9). Thus M ′ is flat over R′ by Lemma 99.7. �

101. Flatness criteria over Artinian rings

We discuss some flatness criteria for modules over Artinian rings. Note that an Artinian
local ring has a nilpotent maximal ideal so that the following two lemmas apply to Ar-
tinian local rings.

Lemma 101.1. Let (R,m) be a local ring with nilpotent maximal ideal m. LetM be a
flat R-module. If A is a set and xα ∈M , α ∈ A is a collection of elements of M , then the
following are equivalent:

(1) {xα}α∈A forms a basis for the vector space M/mM over R/m, and
(2) {xα}α∈A forms a basis for M over R.

Proof. The implication (2)⇒ (1) is immediate. Assume (1). By Nakayama’s Lemma
20.1 the elements xα generate M . Then one gets a short exact sequence

0→ K →
⊕

α∈A
R→M → 0

Tensoring with R/m and using Lemma 39.12 we obtain K/mK = 0. By Nakayama’s
Lemma 20.1 we conclude K = 0. �

Lemma 101.2. Let R be a local ring with nilpotent maximal ideal. Let M be an R-
module. The following are equivalent

(1) M is flat over R,
(2) M is a free R-module, and
(3) M is a projective R-module.

Proof. Since any projective module is flat (as a direct summand of a free module)
and every free module is projective, it suffices to prove that a flat module is free. LetM be
a flat module. Let A be a set and let xα ∈M , α ∈ A be elements such that xα ∈M/mM
forms a basis over the residue field of R. By Lemma 101.1 the xα are a basis for M over R
and we win. �

Lemma 101.3. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module. Let A
be a set and let xα ∈M , α ∈ A be a collection of elements of M . Assume

(1) I is nilpotent,
(2) {xα}α∈A forms a basis for M/IM over R/I , and
(3) TorR1 (R/I,M) = 0.

Then M is free on {xα}α∈A over R.

Proof. LetR, I ,M , {xα}α∈A be as in the lemma and satisfy assumptions (1), (2), and
(3). By Nakayama’s Lemma 20.1 the elements xα generate M over R. The assumption
TorR1 (R/I,M) = 0 implies that we have a short exact sequence

0→ I ⊗RM →M →M/IM → 0.
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Let
∑
fαxα = 0 be a relation in M . By choice of xα we see that fα ∈ I . Hence we

conclude that
∑
fα ⊗ xα = 0 in I ⊗RM . The map I ⊗RM → I/I2 ⊗R/I M/IM and

the fact that {xα}α∈A forms a basis for M/IM implies that fα ∈ I2! Hence we conclude
that there are no relations among the images of the xα in M/I2M . In other words, we
see that M/I2M is free with basis the images of the xα. Using the map I ⊗R M →
I/I3 ⊗R/I2 M/I2M we then conclude that fα ∈ I3! And so on. Since In = 0 for some
n by assumption (1) we win. �

Lemma 101.4. Let ϕ : R → R′ be a ring map. Let I ⊂ R be an ideal. Let M be an
R-module. Assume

(1) M/IM is flat over R/I , and
(2) R′ ⊗RM is flat over R′.

Set I2 = ϕ−1(ϕ(I2)R′). Then M/I2M is flat over R/I2.

Proof. We may replace R, M , and R′ by R/I2, M/I2M , and R′/ϕ(I)2R′. Then
I2 = 0 and ϕ is injective. By Lemma 99.8 and the fact that I2 = 0 it suffices to prove that
TorR1 (R/I,M) = K = Ker(I ⊗RM → M) is zero. Set M ′ = M ⊗R R′ and I ′ = IR′.
By assumption the map I ′ ⊗R′ M ′ →M ′ is injective. Hence K maps to zero in

I ′ ⊗R′ M ′ = I ′ ⊗RM = I ′ ⊗R/I M/IM.

Then I → I ′ is an injective map of R/I-modules. Since M/IM is flat over R/I the map

I ⊗R/I M/IM −→ I ′ ⊗R/I M/IM

is injective. This implies that K is zero in I ⊗RM = I ⊗R/I M/IM as desired. �

Lemma 101.5. Let ϕ : R → R′ be a ring map. Let I ⊂ R be an ideal. Let M be an
R-module. Assume

(1) I is nilpotent,
(2) R→ R′ is injective,
(3) M/IM is flat over R/I , and
(4) R′ ⊗RM is flat over R′.

Then M is flat over R.

Proof. Define inductively I1 = I and In+1 = ϕ−1(ϕ(In)2R′) for n ≥ 1. Note
that by Lemma 101.4 we find that M/InM is flat over R/In for each n ≥ 1. It is clear
that ϕ(In) ⊂ ϕ(I)2nR′. Since I is nilpotent we see that ϕ(In) = 0 for some n. As ϕ is
injective we conclude that In = 0 for some n and we win. �

Here is the local Artinian version of the local criterion for flatness.

Lemma 101.6. Let R be an Artinian local ring. Let M be an R-module. Let I ⊂ R be
a proper ideal. The following are equivalent

(1) M is flat over R, and
(2) M/IM is flat over R/I and TorR1 (R/I,M) = 0.

Proof. The implication (1) ⇒ (2) follows immediately from the definitions. As-
sume M/IM is flat over R/I and TorR1 (R/I,M) = 0. By Lemma 101.2 this implies
that M/IM is free over R/I . Pick a set A and elements xα ∈ M such that the images
in M/IM form a basis. By Lemma 101.3 we conclude that M is free and in particular
flat. �
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It turns out that flatness descends along injective homomorphism whose source is an Ar-
tinian ring.

Lemma 101.7. Let R→ S be a ring map. Let M be an R-module. Assume
(1) R is Artinian
(2) R→ S is injective, and
(3) M ⊗R S is a flat S-module.

Then M is a flat R-module.

Proof. First proof: Let I ⊂ R be the Jacobson radical of R. Then I is nilpotent and
M/IM is flat overR/I asR/I is a product of fields, see Section 53. HenceM is flat by an
application of Lemma 101.5.

Second proof: By Lemma 53.6 we may writeR =
∏
Ri as a finite product of local Artinian

rings. This induces similar product decompositions for both R and S. Hence we reduce
to the case where R is local Artinian (details omitted).

Assume that R → S , M are as in the lemma satisfying (1), (2), and (3) and in addition
that R is local with maximal ideal m. Let A be a set and xα ∈ A be elements such that xα
forms a basis forM/mM overR/m. By Nakayama’s Lemma 20.1 we see that the elements
xα generate M as an R-module. Set N = S ⊗R M and I = mS. Then {1 ⊗ xα}α∈A is
a family of elements of N which form a basis for N/IN . Moreover, since N is flat over
S we have TorS1 (S/I,N) = 0. Thus we conclude from Lemma 101.3 that N is free on
{1⊗xα}α∈A. The injectivity ofR→ S then guarantees that there cannot be a nontrivial
relation among the xα with coefficients in R. �

Please compare the lemma below to Lemma 99.15 (the case of Noetherian local rings),
Lemma 128.8 (the case of finitely presented algebras), and Lemma 128.10 (the case of locally
nilpotent ideals).

Lemma 101.8 (Critère de platitude par fibres: Nilpotent case). Let

S // S′

R

__ >>

be a commutative diagram in the category of rings. Let I ⊂ R be a nilpotent ideal and M
an S′-module. Assume

(1) The module M/IM is a flat S/IS-module.
(2) The module M is a flat R-module.

Then M is a flat S-module and Sq is flat over R for every q ⊂ S such that M ⊗S κ(q) is
nonzero.

Proof. As M is flat over R tensoring with the short exact sequence 0→ I → R →
R/I → 0 gives a short exact sequence

0→ I ⊗RM →M →M/IM → 0.

Note that I ⊗RM → IS ⊗S M is surjective. Combined with the above this means both
maps in

I ⊗RM → IS ⊗S M →M
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are injective. Hence TorS1 (IS,M) = 0 (see Remark 75.9) and we conclude thatM is a flat
S-module by Lemma 99.8. To finish we need to show that Sq is flat over R for any prime
q ⊂ S such that M ⊗S κ(q) is nonzero. This follows from Lemma 39.15 and 39.10. �

102. What makes a complex exact?

Some of this material can be found in the paper [?] by Buchsbaum and Eisenbud.

Situation 102.1. Here R is a ring, and we have a complex

0→ Rne
ϕe−→ Rne−1

ϕe−1−−−→ . . .
ϕi+1−−−→ Rni

ϕi−→ Rni−1
ϕi−1−−−→ . . .

ϕ1−→ Rn0

In other words we require ϕi ◦ ϕi+1 = 0 for i = 1, . . . , e− 1.

Lemma 102.2. Suppose R is a ring. Let

. . .
ϕi+1−−−→ Rni

ϕi−→ Rni−1
ϕi−1−−−→ . . .

be a complex of finite free R-modules. Suppose that for some i some matrix coefficient of
the map ϕi is invertible. Then the displayed complex is isomorphic to the direct sum of a
complex

. . .→ Rni+2
ϕi+2−−−→ Rni+1 → Rni−1 → Rni−1−1 → Rni−2

ϕi−2−−−→ Rni−3 → . . .

and the complex . . . → 0 → R → R → 0 → . . . where the map R → R is the identity
map.

Proof. The assumption means, after a change of basis ofRni andRni−1 that the first
basis vector of Rni is mapped via ϕi to the first basis vector of Rni−1 . Let ej denote the
jth basis vector ofRni and fk the kth basis vector ofRni−1 . Write ϕi(ej) =

∑
ajkfk. So

a1k = 0 unless k = 1 and a11 = 1. Change basis on Rni again by setting e′
j = ej − aj1e1

for j > 1. After this change of coordinates we have aj1 = 0 for j > 1. Note the image
of Rni+1 → Rni is contained in the subspace spanned by ej , j > 1. Note also that
Rni−1 → Rni−2 has to annihilate f1 since it is in the image. These conditions and the
shape of the matrix (ajk) for ϕi imply the lemma. �

In Situation 102.1 we say a complex of the form

0→ . . .→ 0→ R
1−→ R→ 0→ . . .→ 0

or of the form
0→ . . .→ 0→ R

is trivial. More precisely, we say 0 → Rne → Rne−1 → . . . → Rn0 is trivial if either
there exists an e ≥ i ≥ 1 with ni = ni−1 = 1, ϕi = idR, and nj = 0 for j 6∈ {i, i − 1}
or n0 = 1 and ni = 0 for i > 0. The lemma above clearly says that any finite complex of
finite free modules over a local ring is up to direct sums with trivial complexes the same
as a complex all of whose maps have all matrix coefficients in the maximal ideal.

Lemma 102.3. In Situation 102.1. SupposeR is a local Noetherian ring with maximal
ideal m. Assume m ∈ Ass(R), in other words R has depth 0. Suppose that 0 → Rne →
Rne−1 → . . .→ Rn0 is exact atRne , . . . , Rn1 . Then the complex is isomorphic to a direct
sum of trivial complexes.
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Proof. Pick x ∈ R, x 6= 0, with mx = 0. Let i be the biggest index such that
ni > 0. If i = 0, then the statement is true. If i > 0 denote f1 the first basis vector ofRni .
Since xf1 is not mapped to zero by exactness of the complex we deduce that some matrix
coefficient of the map Rni → Rni−1 is not in m. Lemma 102.2 then allows us to decrease
ne + . . .+ n1. Induction finishes the proof. �

Lemma 102.4. In Situation 102.1. Let R be a Artinian local ring. Suppose that 0 →
Rne → Rne−1 → . . . → Rn0 is exact at Rne , . . . , Rn1 . Then the complex is isomorphic
to a direct sum of trivial complexes.

Proof. This is a special case of Lemma 102.3 because an Artinian local ring has depth
0. �

Below we define the rank of a map of finite free modules. This is just one possible definition
of rank. It is just the definition that works in this section; there are others that may be
more convenient in other settings.

Definition 102.5. Let R be a ring. Suppose that ϕ : Rm → Rn is a map of finite
free modules.

(1) The rank of ϕ is the maximal r such that ∧rϕ : ∧rRm → ∧rRn is nonzero.
(2) We let I(ϕ) ⊂ R be the ideal generated by the r × r minors of the matrix of ϕ,

where r is the rank as defined above.

The rank of ϕ : Rm → Rn is 0 if and only if ϕ = 0 and in this case I(ϕ) = R.

Lemma 102.6. In Situation 102.1, suppose the complex is isomorphic to a direct sum
of trivial complexes. Then we have

(1) the maps ϕi have rank ri = ni − ni+1 + . . .+ (−1)e−i−1ne−1 + (−1)e−ine,
(2) for all i, 1 ≤ i ≤ e− 1 we have rank(ϕi+1) + rank(ϕi) = ni,
(3) each I(ϕi) = R.

Proof. We may assume the complex is the direct sum of trivial complexes. Then
for each i we can split the standard basis elements of Rni into those that map to a basis
element of Rni−1 and those that are mapped to zero (and these are mapped onto by basis
elements of Rni+1 if i > 0). Using descending induction starting with i = e it is easy to
prove that there are ri+1-basis elements of Rni which are mapped to zero and ri which
are mapped to basis elements of Rni−1 . From this the result follows. �

Lemma 102.7. In Situation 102.1. Suppose R is a local ring with maximal ideal m.
Suppose that 0 → Rne → Rne−1 → . . . → Rn0 is exact at Rne , . . . , Rn1 . Let x ∈ m
be a nonzerodivisor. The complex 0 → (R/xR)ne → . . . → (R/xR)n1 is exact at
(R/xR)ne , . . . , (R/xR)n2 .

Proof. Denote F• the complex with terms Fi = Rni and differential given by ϕi.
Then we have a short exact sequence of complexes

0→ F•
x−→ F• → F•/xF• → 0

Applying the snake lemma we get a long exact sequence

Hi(F•) x−→ Hi(F•)→ Hi(F•/xF•)→ Hi−1(F•) x−→ Hi−1(F•)

The lemma follows. �
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Lemma 102.8 (Acyclicity lemma). Let R be a local Noetherian ring. Let 0→Me →
Me−1 → . . . → M0 be a complex of finite R-modules. Assume depth(Mi) ≥ i. Let i
be the largest index such that the complex is not exact at Mi. If i > 0 then Ker(Mi →
Mi−1)/ Im(Mi+1 →Mi) has depth ≥ 1.

Proof. Let H = Ker(Mi →Mi−1)/ Im(Mi+1 →Mi) be the cohomology group in
question. We may break the complex into short exact sequences 0 → Me → Me−1 →
Ke−2 → 0, 0→ Kj →Mj → Kj−1 → 0, for i+ 2 ≤ j ≤ e− 2, 0→ Ki+1 →Mi+1 →
Bi → 0, 0→ Ki →Mi →Mi−1, and 0→ Bi → Ki → H → 0. We proceed up through
these complexes to prove the statements about depths, repeatedly using Lemma 72.6. First
of all, since depth(Me) ≥ e, and depth(Me−1) ≥ e − 1 we deduce that depth(Ke−2) ≥
e − 1. At this point the sequences 0 → Kj → Mj → Kj−1 → 0 for i + 2 ≤ j ≤
e − 2 imply similarly that depth(Kj−1) ≥ j for i + 2 ≤ j ≤ e − 2. The sequence
0 → Ki+1 → Mi+1 → Bi → 0 then shows that depth(Bi) ≥ i + 1. The sequence
0 → Ki → Mi → Mi−1 shows that depth(Ki) ≥ 1 since Mi has depth ≥ i ≥ 1 by
assumption. The sequence 0→ Bi → Ki → H → 0 then implies the result. �

Proposition 102.9. In Situation 102.1, suppose R is a local Noetherian ring. The
following are equivalent

(1) 0→ Rne → Rne−1 → . . .→ Rn0 is exact at Rne , . . . , Rn1 , and
(2) for all i, 1 ≤ i ≤ e the following two conditions are satisfied:

(a) rank(ϕi) = ri where ri = ni−ni+1 + . . .+ (−1)e−i−1ne−1 + (−1)e−ine,
(b) I(ϕi) = R, or I(ϕi) contains a regular sequence of length i.

Proof. If for some i some matrix coefficient of ϕi is not in m, then we apply Lemma
102.2. It is easy to see that the proposition for a complex and for the same complex with
a trivial complex added to it are equivalent. Thus we may assume that all matrix entries
of each ϕi are elements of the maximal ideal. We may also assume that e ≥ 1.

Assume the complex is exact at Rne , . . . , Rn1 . Let q ∈ Ass(R). Note that the ring Rq has
depth 0 and that the complex remains exact after localization at q. We apply Lemmas 102.3
and 102.6 to the localized complex over Rq. We conclude that ϕi,q has rank ri for all i.
SinceR→

⊕
q∈Ass(R) Rq is injective (Lemma 63.19), we conclude that ϕi has rank ri over

R by the definition of rank as given in Definition 102.5. Therefore we see that I(ϕi)q =
I(ϕi,q) as the ranks do not change. Since all of the ideals I(ϕi)q, e ≥ i ≥ 1 are equal to
Rq (by the lemmas referenced above) we conclude none of the ideals I(ϕi) is contained
in q. This implies that I(ϕe)I(ϕe−1) . . . I(ϕ1) is not contained in any of the associated
primes of R. By Lemma 15.2 we may choose x ∈ I(ϕe)I(ϕe−1) . . . I(ϕ1), x 6∈ q for all
q ∈ Ass(R). Observe that x is a nonzerodivisor (Lemma 63.9). According to Lemma 102.7
the complex 0 → (R/xR)ne → . . . → (R/xR)n1 is exact at (R/xR)ne , . . . , (R/xR)n2 .
By induction on e all the ideals I(ϕi)/xR have a regular sequence of length i − 1. This
proves that I(ϕi) contains a regular sequence of length i.

Assume (2)(a) and (2)(b) hold. We claim that for any prime p ⊂ R conditions (2)(a) and
(2)(b) hold for the complex 0 → Rnep → R

ne−1
p → . . . → Rn0

p with maps ϕi,p over Rp.
Namely, since I(ϕi) contains a nonzero divisor, the image of I(ϕi) inRp is nonzero. This
implies that the rank of ϕi,p is the same as the rank of ϕi: the rank as defined above of a
matrix ϕ over a ring R can only drop when passing to an R-algebra R′ and this happens
if and only if I(ϕ) maps to zero in R′. Thus (2)(a) holds. Having said this we know
that I(ϕi,p) = I(ϕi)p and we see that (2)(b) is preserved under localization as well. By
induction on the dimension of R we may assume the complex is exact when localized at
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any nonmaximal prime p of R. Thus Ker(ϕi)/ Im(ϕi+1) has support contained in {m}
and hence if nonzero has depth 0. As I(ϕi) ⊂ m for all i because of what was said in the
first paragraph of the proof, we see that (2)(b) implies depth(R) ≥ e. By Lemma 102.8 we
see that the complex is exact at Rne , . . . , Rn1 concluding the proof. �

Remark 102.10. If in Proposition 102.9 the equivalent conditions (1) and (2) are sat-
isfied, then there exists a j such that I(ϕi) = R if and only if i ≥ j. As in the proof of the
proposition, it suffices to see this when all the matrices have coefficients in the maximal
ideal m of R. In this case we see that I(ϕj) = R if and only if ϕj = 0. But if ϕj = 0,
then we get arbitrarily long exact complexes 0 → Rne → Rne−1 → . . . → Rnj → 0 →
0→ . . .→ 0 and hence by the proposition we see that I(ϕi) for i > j has to be R (since
otherwise it is a proper ideal of a Noetherian local ring containing arbitrary long regular
sequences which is impossible).

103. Cohen-Macaulay modules

Here we show that Cohen-Macaulay modules have good properties. We postpone using
Ext groups to establish the connection with duality and so on.

Definition 103.1. LetR be a Noetherian local ring. LetM be a finiteR-module. We
say M is Cohen-Macaulay if dim(Supp(M)) = depth(M).

A first goal will be to establish Proposition 103.4. We do this by a (perhaps nonstandard)
sequence of elementary lemmas involving almost none of the earlier results on depth. Let
us introduce some notation.

Let R be a local Noetherian ring. Let M be a Cohen-Macaulay module, and let f1, . . . , fd
be an M -regular sequence with d = dim(Supp(M)). We say that g ∈ m is good with re-
spect to (M,f1, . . . , fd) if for all i = 0, 1, . . . , d−1 we have dim(Supp(M)∩V (g, f1, . . . , fi)) =
d−i−1. This is equivalent to the condition that dim(Supp(M/(f1, . . . , fi)M)∩V (g)) =
d− i− 1 for i = 0, 1, . . . , d− 1.

Lemma 103.2. Notation and assumptions as above. If g is good with respect to (M,f1, . . . , fd),
then (a) g is a nonzerodivisor on M , and (b) M/gM is Cohen-Macaulay with maximal
regular sequence f1, . . . , fd−1.

Proof. We prove the lemma by induction on d. If d = 0, then M is finite and there
is no case to which the lemma applies. If d = 1, then we have to show that g : M →M is
injective. The kernel K has support {m} because by assumption dim Supp(M)∩ V (g) =
0. Hence K has finite length. Hence f1 : K → K injective implies the length of the
image is the length ofK , and hence f1K = K , which by Nakayama’s Lemma 20.1 implies
K = 0. Also, dim Supp(M/gM) = 0 and so M/gM is Cohen-Macaulay of depth 0.

Assume d > 1. Observe that g is good for (M/f1M,f2, . . . , fd), as is easily seen from
the definition. By induction, we have that (a) g is a nonzerodivisor on M/f1M and (b)
M/(g, f1)M is Cohen-Macaulay with maximal regular sequence f2, . . . , fd−1. By Lemma
68.4 we see that g, f1 is an M -regular sequence. Hence g is a nonzerodivisor on M and
f1, . . . , fd−1 is an M/gM -regular sequence. �

Lemma 103.3. LetR be a Noetherian local ring. LetM be a Cohen-Macaulay module
over R. Suppose g ∈ m is such that dim(Supp(M)∩ V (g)) = dim(Supp(M))− 1. Then
(a) g is a nonzerodivisor on M , and (b) M/gM is Cohen-Macaulay of depth one less.
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Proof. Choose a M -regular sequence f1, . . . , fd with d = dim(Supp(M)). If g is
good with respect to (M,f1, . . . , fd) we win by Lemma 103.2. In particular the lemma
holds if d = 1. (The case d = 0 does not occur.) Assume d > 1. Choose an element h ∈ R
such that (i) h is good with respect to (M,f1, . . . , fd), and (ii) dim(Supp(M)∩V (h, g)) =
d − 2. To see h exists, let {qj} be the (finite) set of minimal primes of the closed sets
Supp(M), Supp(M) ∩ V (f1, . . . , fi), i = 1, . . . , d − 1, and Supp(M) ∩ V (g). None of
these qj is equal tom and hence we may findh ∈ m, h 6∈ qj by Lemma 15.2. It is clear thath
satisfies (i) and (ii). From Lemma 103.2 we conclude that M/hM is Cohen-Macaulay. By
(ii) we see that the pair (M/hM, g) satisfies the induction hypothesis. HenceM/(h, g)M
is Cohen-Macaulay and g : M/hM → M/hM is injective. By Lemma 68.4 we see that
g : M → M and h : M/gM → M/gM are injective. Combined with the fact that
M/(g, h)M is Cohen-Macaulay this finishes the proof. �

Proposition 103.4. Let R be a Noetherian local ring, with maximal ideal m. Let
M be a Cohen-Macaulay module over R whose support has dimension d. Suppose that
g1, . . . , gc are elements of m such that dim(Supp(M/(g1, . . . , gc)M)) = d − c. Then
g1, . . . , gc is an M -regular sequence, and can be extended to a maximal M -regular se-
quence.

Proof. Let Z = Supp(M) ⊂ Spec(R). By Lemma 60.13 in the chain Z ⊃ Z ∩
V (g1) ⊃ . . . ⊃ Z ∩ V (g1, . . . , gc) each step decreases the dimension at most by 1. Hence
by assumption each step decreases the dimension by exactly 1 each time. Thus we may
successively apply Lemma 103.3 to the modules M/(g1, . . . , gi) and the element gi+1.

To extend g1, . . . , gc by one element if c < d we simply choose an element gc+1 ∈ m
which is not in any of the finitely many minimal primes of Z ∩ V (g1, . . . , gc), using
Lemma 15.2. �

Having proved Proposition 103.4 we continue the development of standard theory.

Lemma 103.5. Let R be a Noetherian local ring with maximal ideal m. Let M be a
finite R-module. Let x ∈ m be a nonzerodivisor on M . Then M is Cohen-Macaulay if
and only if M/xM is Cohen-Macaulay.

Proof. By Lemma 72.7 we have depth(M/xM) = depth(M)− 1. By Lemma 63.10
we have dim(Supp(M/xM)) = dim(Supp(M))− 1. �

Lemma 103.6. Let R → S be a surjective homomorphism of Noetherian local rings.
Let N be a finite S-module. Then N is Cohen-Macaulay as an S-module if and only if N
is Cohen-Macaulay as an R-module.

Proof. Omitted. �

Lemma 103.7. Let R be a Noetherian local ring. Let M be a finite Cohen-Macaulay
R-module. If p ∈ Ass(M), then dim(R/p) = dim(Supp(M)) and p is a minimal prime
in the support of M . In particular, M has no embedded associated primes.

Proof. By Lemma 72.9 we have depth(M) ≤ dim(R/p). Of course dim(R/p) ≤
dim(Supp(M)) as p ∈ Supp(M) (Lemma 63.2). Thus we have equality in both inequalities
asM is Cohen-Macaulay. Then p must be minimal in Supp(M) otherwise we would have
dim(R/p) < dim(Supp(M)). Finally, minimal primes in the support of M are equal to
the minimal elements of Ass(M) (Proposition 63.6) henceM has no embedded associated
primes (Definition 67.1). �
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Definition 103.8. Let R be a Noetherian local ring. A finite module M over R is
called a maximal Cohen-Macaulay module if depth(M) = dim(R).

In other words, a maximal Cohen-Macaulay module over a Noetherian local ring is a finite
module with the largest possible depth over that ring. Equivalently, a maximal Cohen-
Macaulay module over a Noetherian local ring R is a Cohen-Macaulay module of dimen-
sion equal to the dimension of the ring. In particular, ifM is a Cohen-MacaulayR-module
with Spec(R) = Supp(M), thenM is maximal Cohen-Macaulay. Thus the following two
lemmas are on maximal Cohen-Macaulay modules.

Lemma 103.9. LetR be a Noetherian local ring. Assume there exists a Cohen-Macaulay
module M with Spec(R) = Supp(M). Then any maximal chain of prime ideals p0 ⊂
p1 ⊂ . . . ⊂ pn has length n = dim(R).

Proof. We will prove this by induction on dim(R). If dim(R) = 0, then the state-
ment is clear. Assume dim(R) > 0. Then n > 0. Choose an element x ∈ p1, with
x not in any of the minimal primes of R, and in particular x 6∈ p0. (See Lemma 15.2.)
Then dim(R/xR) = dim(R) − 1 by Lemma 60.13. The module M/xM is Cohen-
Macaulay over R/xR by Proposition 103.4 and Lemma 103.6. The support of M/xM
is Spec(R/xR) by Lemma 40.9. After replacing x by xn for some n, we may assume that
p1 is an associated prime of M/xM , see Lemma 72.8. By Lemma 103.7 we conclude that
p1/(x) is a minimal prime of R/xR. It follows that the chain p1/(x) ⊂ . . . ⊂ pn/(x)
is a maximal chain of primes in R/xR. By induction we find that this chain has length
dim(R/xR) = dim(R)− 1 as desired. �

Lemma 103.10. Suppose R is a Noetherian local ring. Assume there exists a Cohen-
Macaulay module M with Spec(R) = Supp(M). Then for a prime p ⊂ R we have

dim(R) = dim(Rp) + dim(R/p).

Proof. Follows immediately from Lemma 103.9. �

Lemma 103.11. Suppose R is a Noetherian local ring. Let M be a Cohen-Macaulay
module over R. For any prime p ⊂ R the module Mp is Cohen-Macaulay over Rp.

Proof. We may and do assume p 6= m and M not zero. Choose a maximal chain of
primes p = pc ⊂ pc−1 ⊂ . . . ⊂ p1 ⊂ m. If we prove the result forMp1 overRp1 , then the
lemma will follow by induction on c. Thus we may assume that there is no prime strictly
between p and m. Note that dim(Supp(Mp)) ≤ dim(Supp(M))− 1 because any chain of
primes in the support ofMp can be extended by one more prime (namelym) in the support
ofM . On the other hand, we have depth(Mp) ≥ depth(M)−dim(R/p) = depth(M)−1
by Lemma 72.10 and our choice of p. Thus depth(Mp) ≥ dim(Supp(Mp)) as desired (the
other inequality is Lemma 72.3). �

Definition 103.12. LetR be a Noetherian ring. LetM be a finiteR-module. We say
M is Cohen-Macaulay if Mp is a Cohen-Macaulay module over Rp for all primes p of R.

By Lemma 103.11 it suffices to check this in the maximal ideals of R.

Lemma 103.13. Let R be a Noetherian ring. Let M be a Cohen-Macaulay module
over R. Then M ⊗R R[x1, . . . , xn] is a Cohen-Macaulay module over R[x1, . . . , xn].

Proof. By induction on the number of variables it suffices to prove this for M [x] =
M⊗RR[x] overR[x]. Let m ⊂ R[x] be a maximal ideal, and let p = R∩m. Let f1, . . . , fd
be aMp-regular sequence in the maximal ideal ofRp of length d = dim(Supp(Mp)). Note
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that sinceR[x] is flat overR the localizationR[x]m is flat overRp. Hence, by Lemma 68.5,
the sequence f1, . . . , fd is a M [x]m-regular sequence of length d in R[x]m. The quotient

Q = M [x]m/(f1, . . . , fd)M [x]m = Mp/(f1, . . . , fd)Mp ⊗Rp
R[x]m

has support equal to the primes lying over p because Rp → R[x]m is flat and the support
of Mp/(f1, . . . , fd)Mp is equal to {p} (details omitted; hint: follows from Lemmas 40.4
and 40.5). Hence the dimension is 1. To finish the proof it suffices to find an f ∈ m which
is a nonzerodivisor on Q. Since m is a maximal ideal, the field extension κ(m)/κ(p) is
finite (Theorem 34.1). Hence we can find f ∈ m which viewed as a polynomial in x has
leading coefficient not in p. Such an f acts as a nonzerodivisor on

Mp/(f1, . . . , fd)Mp ⊗R R[x] =
⊕

n≥0
Mp/(f1, . . . , fd)Mp · xn

and hence acts as a nonzerodivisor on Q. �

104. Cohen-Macaulay rings

Most of the results of this section are special cases of the results in Section 103.

Definition 104.1. A Noetherian local ringR is called Cohen-Macaulay if it is Cohen-
Macaulay as a module over itself.

Note that this is equivalent to requiring the existence of a R-regular sequence x1, . . . , xd
of the maximal ideal such that R/(x1, . . . , xd) has dimension 0. We will usually just say
“regular sequence” and not “R-regular sequence”.

Lemma 104.2. LetR be a Noetherian local Cohen-Macaulay ring with maximal ideal
m. Let x1, . . . , xc ∈ m be elements. Then

x1, . . . , xc is a regular sequence ⇔ dim(R/(x1, . . . , xc)) = dim(R)− c
If so x1, . . . , xc can be extended to a regular sequence of length dim(R) and each quotient
R/(x1, . . . , xi) is a Cohen-Macaulay ring of dimension dim(R)− i.

Proof. Special case of Proposition 103.4. �

Lemma 104.3. Let R be Noetherian local. Suppose R is Cohen-Macaulay of dimen-
sion d. Any maximal chain of ideals p0 ⊂ p1 ⊂ . . . ⊂ pn has length n = d.

Proof. Special case of Lemma 103.9. �

Lemma 104.4. Suppose R is a Noetherian local Cohen-Macaulay ring of dimension
d. For any prime p ⊂ R we have

dim(R) = dim(Rp) + dim(R/p).

Proof. Follows immediately from Lemma 104.3. (Also, this is a special case of Lemma
103.10.) �

Lemma 104.5. Suppose R is a Cohen-Macaulay local ring. For any prime p ⊂ R the
ring Rp is Cohen-Macaulay as well.

Proof. Special case of Lemma 103.11. �

Definition 104.6. A Noetherian ring R is called Cohen-Macaulay if all its local
rings are Cohen-Macaulay.

Lemma 104.7. Suppose R is a Noetherian Cohen-Macaulay ring. Any polynomial
algebra over R is Cohen-Macaulay.
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Proof. Special case of Lemma 103.13. �

Lemma 104.8. LetR be a Noetherian local Cohen-Macaulay ring of dimension d. Let
0 → K → R⊕n → M → 0 be an exact sequence of R-modules. Then either M = 0, or
depth(K) > depth(M), or depth(K) = depth(M) = d.

Proof. This is a special case of Lemma 72.6. �

Lemma 104.9. LetR be a local Noetherian Cohen-Macaulay ring of dimension d. Let
M be a finite R-module of depth e. There exists an exact complex

0→ K → Fd−e−1 → . . .→ F0 →M → 0
with each Fi finite free and K maximal Cohen-Macaulay.

Proof. Immediate from the definition and Lemma 104.8. �

Lemma 104.10. Let ϕ : A → B be a map of local rings. Assume that B is Noether-
ian and Cohen-Macaulay and that mB =

√
ϕ(mA)B. Then there exists a sequence of

elements f1, . . . , fdim(B) inA such that ϕ(f1), . . . , ϕ(fdim(B)) is a regular sequence inB.
Proof. By induction on dim(B) it suffices to prove: If dim(B) ≥ 1, then we can find

an element f of A which maps to a nonzerodivisor in B. By Lemma 104.2 it suffices to
find f ∈ Awhose image inB is not contained in any of the finitely many minimal primes
q1, . . . , qr of B. By the assumption that mB =

√
ϕ(mA)B we see that mA 6⊂ ϕ−1(qi).

Hence we can find f by Lemma 15.2. �

105. Catenary rings

Compare with Topology, Section 11.
Definition 105.1. A ring R is said to be catenary if for any pair of prime ideals

p ⊂ q, there exists an integer bounding the lengths of all finite chains of prime ideals
p = p0 ⊂ p1 ⊂ . . . ⊂ pe = q and all maximal such chains have the same length.

Lemma 105.2. A ring R is catenary if and only if the topological space Spec(R) is
catenary (see Topology, Definition 11.4).

Proof. Immediate from the definition and the characterization of irreducible closed
subsets in Lemma 26.1. �

In general it is not the case that a finitely generatedR-algebra is catenary ifR is. Thus we
make the following definition.

Definition 105.3. A Noetherian ringR is said to be universally catenary if everyR
algebra of finite type is catenary.
We restrict to Noetherian rings as it is not clear this definition is the right one for non-
Noetherian rings. By Lemma 105.7 to check a Noetherian ring R is universally catenary,
it suffices to check each polynomial algebra R[x1, . . . , xn] is catenary.

Lemma 105.4. Any localization of a catenary ring is catenary. Any localization of a
Noetherian universally catenary ring is universally catenary.

Proof. Let A be a ring and let S ⊂ A be a multiplicative subset. The description of
Spec(S−1A) in Lemma 17.5 shows that if A is catenary, then so is S−1A. If S−1A → C
is of finite type, then C = S−1B for some finite type ring map A → B. Hence if A is
Noetherian and universally catenary, thenB is catenary and we see thatC is catenary too.
This proves the lemma. �
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Lemma 105.5. Let A be a Noetherian universally catenary ring. Any A-algebra es-
sentially of finite type over A is universally catenary.

Proof. IfB is a finite typeA-algebra, thenB is Noetherian by Lemma 31.1. Any finite
type B-algebra is a finite type A-algebra and hence catenary by our assumption that A is
universally catenary. ThusB is universally catenary. Any localization ofB is universally
catenary by Lemma 105.4 and this finishes the proof. �

Lemma 105.6. Let R be a ring. The following are equivalent
(1) R is catenary,
(2) Rp is catenary for all prime ideals p,
(3) Rm is catenary for all maximal ideals m.

Assume R is Noetherian. The following are equivalent
(1) R is universally catenary,
(2) Rp is universally catenary for all prime ideals p,
(3) Rm is universally catenary for all maximal ideals m.

Proof. The implication (1)⇒ (2) follows from Lemma 105.4 in both cases. The im-
plication (2) ⇒ (3) is immediate in both cases. Assume Rm is catenary for all maximal
ideals m of R. If p ⊂ q are primes in R, then choose a maximal ideal q ⊂ m. Chains
of primes ideals between p and q are in 1-to-1 correspondence with chains of prime ideals
between pRm and qRm hence we see R is catenary. Assume R is Noetherian and Rm is
universally catenary for all maximal ideals m of R. Let R → S be a finite type ring map.
Let q be a prime ideal of S lying over the prime p ⊂ R. Choose a maximal ideal p ⊂ m in
R. Then Rp is a localization of Rm hence universally catenary by Lemma 105.4. Then Sp

is catenary as a finite type ring over Rp. Hence Sq is catenary as a localization. Thus S is
catenary by the first case treated above. �

Lemma 105.7. Any quotient of a catenary ring is catenary. Any quotient of a Noe-
therian universally catenary ring is universally catenary.

Proof. Let A be a ring and let I ⊂ A be an ideal. The description of Spec(A/I) in
Lemma 17.7 shows that if A is catenary, then so is A/I . The second statement is a special
case of Lemma 105.5. �

Lemma 105.8. Let R be a Noetherian ring.
(1) R is catenary if and only if R/p is catenary for every minimal prime p.
(2) R is universally catenary if and only if R/p is universally catenary for every

minimal prime p.

Proof. If a ⊂ b is an inclusion of primes of R, then we can find a minimal prime
p ⊂ a and the first assertion is clear. We omit the proof of the second. �

Lemma 105.9. A Noetherian Cohen-Macaulay ring is universally catenary. More
generally, ifR is a Noetherian ring andM is a Cohen-MacaulayR-module with Supp(M) =
Spec(R), then R is universally catenary.

Proof. Since a polynomial algebra over R is Cohen-Macaulay, by Lemma 104.7, it
suffices to show that a Cohen-Macaulay ring is catenary. Let R be Cohen-Macaulay and
p ⊂ q primes of R. By definition Rq and Rp are Cohen-Macaulay. Take a maximal chain
of primes p = p0 ⊂ p1 ⊂ . . . ⊂ pn = q. Next choose a maximal chain of primes
q0 ⊂ q1 ⊂ . . . ⊂ qm = p. By Lemma 104.3 we have n + m = dim(Rq). And we have
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m = dim(Rp) by the same lemma. Hence n = dim(Rq) − dim(Rp) is independent of
choices.

To prove the more general statement, argue exactly as above but using Lemmas 103.13 and
103.9. �

Lemma 105.10. Let (A,m) be a Noetherian local ring. The following are equivalent
(1) A is catenary, and
(2) p 7→ dim(A/p) is a dimension function on Spec(A).

Proof. If A is catenary, then Spec(A) has a dimension function δ by Topology,
Lemma 20.4 (and Lemma 105.2). We may assume δ(m) = 0. Then we see that

δ(p) = codim(V (m), V (p)) = dim(A/p)
by Topology, Lemma 20.2. In this way we see that (1) implies (2). The reverse implication
follows from Topology, Lemma 20.2 as well. �

106. Regular local rings

It is not that easy to show that all prime localizations of a regular local ring are regular.
In fact, quite a bit of the material developed so far is geared towards a proof of this fact.
See Proposition 110.5, and trace back the references.

Lemma 106.1. Let (R,m, κ) be a regular local ring of dimension d. The graded ring⊕
mn/mn+1 is isomorphic to the graded polynomial algebra κ[X1, . . . , Xd].

Proof. Let x1, . . . , xd be a minimal set of generators for the maximal ideal m, see
Definition 60.10. There is a surjection κ[X1, . . . , Xd]→

⊕
mn/mn+1, which mapsXi to

the class of xi in m/m2. Since d(R) = d by Proposition 60.9 we know that the numerical
polynomial n 7→ dimκm

n/mn+1 has degree d−1. By Lemma 58.10 we conclude that the
surjection κ[X1, . . . , Xd]→

⊕
mn/mn+1 is an isomorphism. �

Lemma 106.2. Any regular local ring is a domain.

Proof. We will use that
⋂
mn = 0 by Lemma 51.4. Let f, g ∈ R such that fg = 0.

Suppose that f ∈ ma and g ∈ mb, with a, b maximal. Since fg = 0 ∈ ma+b+1 we see
from the result of Lemma 106.1 that either f ∈ ma+1 or g ∈ mb+1. Contradiction. �

Lemma 106.3. Let R be a regular local ring and let x1, . . . , xd be a minimal set of
generators for the maximal ideal m. Then x1, . . . , xd is a regular sequence, and each
R/(x1, . . . , xc) is a regular local ring of dimension d − c. In particular R is Cohen-
Macaulay.

Proof. Note thatR/x1R is a Noetherian local ring of dimension≥ d− 1 by Lemma
60.13 with x2, . . . , xd generating the maximal ideal. Hence it is a regular local ring by
definition. Since R is a domain by Lemma 106.2 x1 is a nonzerodivisor. �

Lemma 106.4. LetR be a regular local ring. Let I ⊂ R be an ideal such that R/I is a
regular local ring as well. Then there exists a minimal set of generators x1, . . . , xd for the
maximal ideal m of R such that I = (x1, . . . , xc) for some 0 ≤ c ≤ d.

Proof. Say dim(R) = d and dim(R/I) = d − c. Denote m = m/I the maximal
ideal of R/I . Let κ = R/m. We have

dimκ((I + m2)/m2) = dimκ(m/m2)− dim(m/m2) = d− (d− c) = c
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by the definition of a regular local ring. Hence we can choose x1, . . . , xc ∈ I whose
images in m/m2 are linearly independent and supplement with xc+1, . . . , xd to get a min-
imal system of generators of m. The induced map R/(x1, . . . , xc) → R/I is a surjection
between regular local rings of the same dimension (Lemma 106.3). It follows that the
kernel is zero, i.e., I = (x1, . . . , xc). Namely, if not then we would have dim(R/I) <
dim(R/(x1, . . . , xc)) by Lemmas 106.2 and 60.13. �

Lemma 106.5. Let R be a Noetherian local ring. Let x ∈ m. Let M be a finite R-
module such that x is a nonzerodivisor on M and M/xM is free over R/xR. Then M is
free over R.

Proof. Let m1, . . . ,mr be elements of M which map to a R/xR-basis of M/xM .
By Nakayama’s Lemma 20.1 m1, . . . ,mr generate M . If

∑
aimi = 0 is a relation, then

ai ∈ xR for all i. Hence ai = bix for some bi ∈ R. Hence the kernel K of Rr → M
satisfies xK = K and hence is zero by Nakayama’s lemma. �

Lemma 106.6. Let R be a regular local ring. Any maximal Cohen-Macaulay module
over R is free.

Proof. Let M be a maximal Cohen-Macaulay module over R. Let x ∈ m be part of
a regular sequence generating m. Then x is a nonzerodivisor on M by Proposition 103.4,
andM/xM is a maximal Cohen-Macaulay module overR/xR. By induction on dim(R)
we see that M/xM is free. We win by Lemma 106.5. �

Lemma 106.7. Suppose R is a Noetherian local ring. Let x ∈ m be a nonzerodivisor
such that R/xR is a regular local ring. Then R is a regular local ring. More generally, if
x1, . . . , xr is a regular sequence inR such thatR/(x1, . . . , xr) is a regular local ring, then
R is a regular local ring.

Proof. This is true becausex together with the lifts of a system of minimal generators
of the maximal ideal of R/xR will give dim(R) generators of m. Use Lemma 60.13. The
last statement follows from the first and induction. �

Lemma 106.8. Let (Ri, ϕii′) be a directed system of local rings whose transition maps
are local ring maps. If eachRi is a regular local ring andR = colimRi is Noetherian, then
R is a regular local ring.

Proof. Let m ⊂ R be the maximal ideal; it is the colimit of the maximal ideal mi ⊂
Ri. We prove the lemma by induction on d = dimm/m2. If d = 0, then R = R/m is a
field andR is a regular local ring. If d > 0 pick an x ∈ m, x 6∈ m2. For some i we can find
an xi ∈ mi mapping to x. Note that R/xR = colimi′≥iRi′/xiRi′ is a Noetherian local
ring. By Lemma 106.3 we see that Ri′/xiRi′ is a regular local ring. Hence by induction
we see that R/xR is a regular local ring. Since each Ri is a domain (Lemma 106.1) we see
that R is a domain. Hence x is a nonzerodivisor and we conclude that R is a regular local
ring by Lemma 106.7. �

107. Epimorphisms of rings

In any category there is a notion of an epimorphism. Some of this material is taken from
[?] and [?].

Lemma 107.1. Let R→ S be a ring map. The following are equivalent
(1) R→ S is an epimorphism,
(2) the two ring maps S → S ⊗R S are equal,
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(3) either of the ring maps S → S ⊗R S is an isomorphism, and
(4) the ring map S ⊗R S → S is an isomorphism.

Proof. Omitted. �

Lemma 107.2. The composition of two epimorphisms of rings is an epimorphism.

Proof. Omitted. Hint: This is true in any category. �

Lemma 107.3. If R → S is an epimorphism of rings and R → R′ is any ring map,
then R′ → R′ ⊗R S is an epimorphism.

Proof. Omitted. Hint: True in any category with pushouts. �

Lemma 107.4. If A → B → C are ring maps and A → C is an epimorphism, so is
B → C.

Proof. Omitted. Hint: This is true in any category. �

This means in particular, that if R→ S is an epimorphism with image R ⊂ S , then R→
S is an epimorphism. Hence while proving results for epimorphisms we may often assume
the map is injective. The following lemma means in particular that every localization is
an epimorphism.

Lemma 107.5. Let R→ S be a ring map. The following are equivalent:
(1) R→ S is an epimorphism, and
(2) Rp → Sp is an epimorphism for each prime p of R.

Proof. Since Sp = Rp ⊗R S (see Lemma 12.15) we see that (1) implies (2) by Lemma
107.3. Conversely, assume that (2) holds. Let a, b : S → A be two ring maps from S to
a ring A equalizing the map R → S. By assumption we see that for every prime p of R
the induced maps ap, bp : Sp → Ap are the same. Hence a = b as A ⊂

∏
pAp, see Lemma

23.1. �

Lemma 107.6. Let R→ S be a ring map. The following are equivalent
(1) R→ S is an epimorphism and finite, and
(2) R→ S is surjective.

Proof. (This lemma seems to have been reproved many times in the literature, and
has many different proofs.) It is clear that a surjective ring map is an epimorphism. Sup-
pose that R → S is a finite ring map such that S ⊗R S → S is an isomorphism. Our
goal is to show that R → S is surjective. Assume S/R is not zero. The exact sequence
R→ S → S/R→ 0 leads to an exact sequence

R⊗R S → S ⊗R S → S/R⊗R S → 0.
Our assumption implies that the first arrow is an isomorphism, hence we conclude that
S/R ⊗R S = 0. Hence also S/R ⊗R S/R = 0. By Lemma 5.4 there exists a surjection
of R-modules S/R → R/I for some proper ideal I ⊂ R. Hence there exists a surjection
S/R⊗R S/R→ R/I ⊗R R/I = R/I 6= 0, contradiction. �

Lemma 107.7. A faithfully flat epimorphism is an isomorphism.

Proof. This is clear from Lemma 107.1 part (3) as the map S → S ⊗R S is the map
R→ S tensored with S. �

Lemma 107.8. If k → S is an epimorphism and k is a field, then S = k or S = 0.
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Proof. This is clear from the result of Lemma 107.7 (as any nonzero algebra over k
is faithfully flat), or by arguing directly that R → R ⊗k R cannot be surjective unless
dimk(R) ≤ 1. �

Lemma 107.9. Let R→ S be an epimorphism of rings. Then
(1) Spec(S)→ Spec(R) is injective, and
(2) for q ⊂ S lying over p ⊂ R we have κ(p) = κ(q).

Proof. Let p be a prime of R. The fibre of the map is the spectrum of the fibre ring
S ⊗R κ(p). By Lemma 107.3 the map κ(p) → S ⊗R κ(p) is an epimorphism, and hence
by Lemma 107.8 we have either S ⊗R κ(p) = 0 or S ⊗R κ(p) = κ(p) which proves (1)
and (2). �

Lemma 107.10. Let R be a ring. Let M , N be R-modules. Let {xi}i∈I be a set of
generators of M . Let {yj}j∈J be a set of generators of N . Let {mj}j∈J be a family of
elements of M with mj = 0 for all but finitely many j. Then∑

j∈J
mj ⊗ yj = 0 in M ⊗R N

is equivalent to the following: There exist ai,j ∈ Rwith ai,j = 0 for all but finitely many
pairs (i, j) such that

mj =
∑

i∈I
ai,jxi for all j ∈ J,

0 =
∑

j∈J
ai,jyj for all i ∈ I.

Proof. The sufficiency is immediate. Suppose that
∑
j∈J mj ⊗ yj = 0. Consider

the short exact sequence

0→ K →
⊕

j∈J
R→ N → 0

where the jth basis vector of
⊕

j∈J R maps to yj . Tensor this with M to get the exact
sequence

K ⊗RM →
⊕

j∈J
M → N ⊗RM → 0.

The assumption implies that there exist elements ki ∈ K such that
∑
ki⊗xi maps to the

element (mj)j∈J of the middle. Writing ki = (ai,j)j∈J and we obtain what we want. �

Lemma 107.11. Let ϕ : R → S be a ring map. Let g ∈ S. The following are
equivalent:

(1) g ⊗ 1 = 1⊗ g in S ⊗R S , and
(2) there exist n ≥ 0 and elements yi, zj ∈ S and xi,j ∈ R for 1 ≤ i, j ≤ n such

that
(a) g =

∑
i,j≤n xi,jyizj ,

(b) for each j we have
∑
xi,jyi ∈ ϕ(R), and

(c) for each i we have
∑
xi,jzj ∈ ϕ(R).

Proof. It is clear that (2) implies (1). Conversely, suppose that g⊗1 = 1⊗g. Choose
generators {si}i∈I of S as an R-module with 0, 1 ∈ I and s0 = 1 and s1 = g. Apply
Lemma 107.10 to the relation g ⊗ s0 + (−1) ⊗ s1 = 0. We see that there exist ai,j ∈ R
such that g =

∑
i ai,0si, −1 =

∑
i ai,1si, and for j 6= 0, 1 we have 0 =

∑
i ai,jsi, and

moreover for all i we have
∑
j ai,jsj = 0. Then we have∑

i,j 6=0
ai,jsisj = −g + a0,0
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and for each j 6= 0 we have
∑
i 6=0 ai,jsi ∈ R. This proves that −g + a0,0 can be written

as in (2). It follows that g can be written as in (2). Details omitted. Hint: Show that the
set of elements of S which have an expression as in (2) form an R-subalgebra of S. �

Remark 107.12. LetR→ S be a ring map. Sometimes the set of elements g ∈ S such
that g ⊗ 1 = 1⊗ g is called the epicenter of S. It is an R-algebra. By the construction of
Lemma 107.11 we get for each g in the epicenter a matrix factorization

(g) = Y XZ

with X ∈ Mat(n × n,R), Y ∈ Mat(1 × n, S), and Z ∈ Mat(n × 1, S). Namely, let
xi,j , yi, zj be as in part (2) of the lemma. Set X = (xi,j), let y be the row vector whose
entries are the yi and let z be the column vector whose entries are the zj . With this
notation conditions (b) and (c) of Lemma 107.11 mean exactly that Y X ∈Mat(1×n,R),
XZ ∈Mat(n×1, R). It turns out to be very convenient to consider the triple of matrices
(X,Y X,XZ). Given n ∈ N and a triple (P,U, V ) we say that (P,U, V ) is a n-triple
associated to g if there exists a matrix factorization as above such that P = X , U = Y X
and V = XZ.

Lemma 107.13. Let R→ S be an epimorphism of rings. Then the cardinality of S is
at most the cardinality of R. In a formula: |S| ≤ |R|.

Proof. The condition thatR→ S is an epimorphism means that each g ∈ S satisfies
g ⊗ 1 = 1⊗ g, see Lemma 107.1. We are going to use the notation introduced in Remark
107.12. Suppose that g, g′ ∈ S and suppose that (P,U, V ) is an n-triple which is associated
to both g and g′. Then we claim that g = g′. Namely, write (P,U, V ) = (X,Y X,XZ)
for a matrix factorization (g) = Y XZ of g and write (P,U, V ) = (X ′, Y ′X ′, X ′Z ′) for
a matrix factorization (g′) = Y ′X ′Z ′ of g′. Then we see that

(g) = Y XZ = UZ = Y ′X ′Z = Y ′PZ = Y ′XZ = Y ′V = Y ′X ′Z ′ = (g′)
and hence g = g′. This implies that the cardinality of S is bounded by the number of
possible triples, which has cardinality at most supn∈N |R|n. If R is infinite then this is at
most |R|, see [?, Ch. I, 10.13].
If R is a finite ring then the argument above only proves that S is at worst countable. In
fact in this case R is Artinian and the map R→ S is surjective. We omit the proof of this
case. �

Lemma 107.14. Let R → S be an epimorphism of rings. Let N1, N2 be S-modules.
Then HomS(N1, N2) = HomR(N1, N2). In other words, the restriction functor ModS →
ModR is fully faithful.

Proof. Let ϕ : N1 → N2 be an R-linear map. For any x ∈ N1 consider the map
S ⊗R S → N2 defined by the rule g ⊗ g′ 7→ gϕ(g′x). Since both maps S → S ⊗R S are
isomorphisms (Lemma 107.1), we conclude that gϕ(g′x) = gg′ϕ(x) = ϕ(gg′x). Thus ϕ
is S-linear. �

108. Pure ideals

The material in this section is discussed in many papers, see for example [?], [?], and [?].

Definition 108.1. Let R be a ring. We say that I ⊂ R is pure if the quotient ring
R/I is flat over R.

Lemma 108.2. Let R be a ring. Let I ⊂ R be an ideal. The following are equivalent:
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(1) I is pure,
(2) for every ideal J ⊂ R we have J ∩ I = IJ ,
(3) for every finitely generated ideal J ⊂ R we have J ∩ I = JI ,
(4) for every x ∈ R we have (x) ∩ I = xI ,
(5) for every x ∈ I we have x = yx for some y ∈ I ,
(6) for every x1, . . . , xn ∈ I there exists a y ∈ I such that xi = yxi for all i =

1, . . . , n,
(7) for every prime p of R we have IRp = 0 or IRp = Rp,
(8) Supp(I) = Spec(R) \ V (I),
(9) I is the kernel of the map R→ (1 + I)−1R,

(10) R/I ∼= S−1R as R-algebras for some multiplicative subset S of R, and
(11) R/I ∼= (1 + I)−1R as R-algebras.

Proof. For any ideal J of R we have the short exact sequence 0 → J → R →
R/J → 0. Tensoring withR/I we get an exact sequenceJ⊗RR/I → R/I → R/I+J →
0 and J ⊗R R/I = J/JI . Thus the equivalence of (1), (2), and (3) follows from Lemma
39.5. Moreover, these imply (4).

The implication (4)⇒ (5) is trivial. Assume (5) and let x1, . . . , xn ∈ I . Choose yi ∈ I
such that xi = yixi. Let y ∈ I be the element such that 1− y =

∏
i=1,...,n(1− yi). Then

xi = yxi for all i = 1, . . . , n. Hence (6) holds, and it follows that (5)⇔ (6).

Assume (5). Let x ∈ I . Then x = yx for some y ∈ I . Hence x(1 − y) = 0, which shows
that x maps to zero in (1 + I)−1R. Of course the kernel of the map R → (1 + I)−1R is
always contained in I . Hence we see that (5) implies (9). Assume (9). Then for any x ∈ I
we see that x(1 − y) = 0 for some y ∈ I . In other words, x = yx. We conclude that (5)
is equivalent to (9).

Assume (5). Let p be a prime of R. If p 6∈ V (I), then IRp = Rp. If p ∈ V (I), in other
words, if I ⊂ p, then x ∈ I implies x(1 − y) = 0 for some y ∈ I , implies x maps to zero
in Rp, i.e., IRp = 0. Thus we see that (7) holds.

Assume (7). Then (R/I)p is either 0 or Rp for any prime p of R. Hence by Lemma 39.18
we see that (1) holds. At this point we see that all of (1) – (7) and (9) are equivalent.

As IRp = Ip we see that (7) implies (8). Finally, if (8) holds, then this means exactly that
Ip is the zero module if and only if p ∈ V (I), which is clearly saying that (7) holds. Now
(1) – (9) are equivalent.

Assume (1) – (9) hold. Then R/I ⊂ (1 + I)−1R by (9) and the map R/I → (1 + I)−1R
is also surjective by the description of localizations at primes afforded by (7). Hence (11)
holds.

The implication (11)⇒ (10) is trivial. And (10) implies that (1) holds because a localization
of R is flat over R, see Lemma 39.18. �

Lemma 108.3. LetR be a ring. If I, J ⊂ R are pure ideals, then V (I) = V (J) implies
I = J .

Proof. For example, by property (7) of Lemma 108.2 we see that I = Ker(R →∏
p∈V (I) Rp) can be recovered from the closed subset associated to it. �

Lemma 108.4. Let R be a ring. The rule I 7→ V (I) determines a bijection

{I ⊂ R pure} ↔ {Z ⊂ Spec(R) closed and closed under generalizations}
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Proof. Let I be a pure ideal. Then since R → R/I is flat, by going down general-
izations lift along the map Spec(R/I) → Spec(R). Hence V (I) is closed under general-
izations. This shows that the map is well defined. By Lemma 108.3 the map is injective.
Suppose that Z ⊂ Spec(R) is closed and closed under generalizations. Let J ⊂ R be the
radical ideal such that Z = V (J). Let I = {x ∈ R : x ∈ xJ}. Note that I is an ideal: if
x, y ∈ I then there exist f, g ∈ J such that x = xf and y = yg. Then

x+ y = (x+ y)(f + g − fg)
Verification left to the reader. We claim that I is pure and that V (I) = V (J). If the claim
is true then the map of the lemma is surjective and the lemma holds.
Note that I ⊂ J , so that V (J) ⊂ V (I). Let I ⊂ p be a prime. Consider the multiplicative
subset S = (R \ p)(1 + J). By definition of I and I ⊂ p we see that 0 6∈ S. Hence we can
find a prime q of R which is disjoint from S , see Lemmas 9.4 and 17.5. Hence q ⊂ p and
q ∩ (1 + J) = ∅. This implies that q + J is a proper ideal of R. Let m be a maximal ideal
containing q + J . Then we get m ∈ V (J) and hence q ∈ V (J) = Z as Z was assumed to
be closed under generalization. This in turn implies p ∈ V (J) as q ⊂ p. Thus we see that
V (I) = V (J).

Finally, since V (I) = V (J) (and J radical) we see that J =
√
I . Pick x ∈ I , so that

x = xy for some y ∈ J by definition. Then x = xy = xy2 = . . . = xyn. Since yn ∈ I
for some n > 0 we conclude that property (5) of Lemma 108.2 holds and we see that I is
indeed pure. �

Lemma 108.5. Let R be a ring. Let I ⊂ R be an ideal. The following are equivalent
(1) I is pure and finitely generated,
(2) I is generated by an idempotent,
(3) I is pure and V (I) is open, and
(4) R/I is a projective R-module.

Proof. If (1) holds, then I = I ∩I = I2 by Lemma 108.2. Hence I is generated by an
idempotent by Lemma 21.5. Thus (1)⇒ (2). If (2) holds, then I = (e) andR = (1−e)⊕(e)
as an R-module hence R/I is flat and I is pure and V (I) = D(1 − e) is open. Thus (2)
⇒ (1) + (3). Finally, assume (3). Then V (I) is open and closed, hence V (I) = D(1 − e)
for some idempotent e of R, see Lemma 21.3. The ideal J = (e) is a pure ideal such that
V (J) = V (I) hence I = J by Lemma 108.3. In this way we see that (3)⇒ (2). By Lemma
78.2 we see that (4) is equivalent to the assertion that I is pure andR/I finitely presented.
Moreover, R/I is finitely presented if and only if I is finitely generated, see Lemma 5.3.
Hence (4) is equivalent to (1). �

We can use the above to characterize those rings for which every finite flat module is
finitely presented.

Lemma 108.6. Let R be a ring. The following are equivalent:
(1) every Z ⊂ Spec(R) which is closed and closed under generalizations is also

open, and
(2) any finite flat R-module is finite locally free.

Proof. If any finite flatR-module is finite locally free then the support ofR/I where
I is a pure ideal is open. Hence the implication (2)⇒ (1) follows from Lemma 108.3.
For the converse assume that R satisfies (1). Let M be a finite flat R-module. The support
Z = Supp(M) of M is closed, see Lemma 40.5. On the other hand, if p ⊂ p′, then by
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Lemma 78.5 the module Mp′ is free, and Mp = Mp′ ⊗Rp′ Rp Hence p′ ∈ Supp(M) ⇒
p ∈ Supp(M), in other words, the support is closed under generalization. As R satisfies
(1) we see that the support of M is open and closed. Suppose that M is generated by r
elements m1, . . . ,mr. The modules ∧i(M), i = 1, . . . , r are finite flat R-modules also,
because ∧i(M)p = ∧i(Mp) is free over Rp. Note that Supp(∧i+1(M)) ⊂ Supp(∧i(M)).
Thus we see that there exists a decomposition

Spec(R) = U0 q U1 q . . .q Ur

by open and closed subsets such that the support of ∧i(M) is Ur ∪ . . . ∪ Ui for all i =
0, . . . , r. Let p be a prime of R, and say p ∈ Ui. Note that ∧i(M) ⊗R κ(p) = ∧i(M ⊗R
κ(p)). Hence, after possibly renumbering m1, . . . ,mr we may assume that m1, . . . ,mi

generate M ⊗R κ(p). By Nakayama’s Lemma 20.1 we get a surjection

R⊕i
f −→Mf , (a1, . . . , ai) 7−→

∑
aimi

for some f ∈ R, f 6∈ p. We may also assume that D(f) ⊂ Ui. This means that ∧i(Mf ) =
∧i(M)f is a flatRf module whose support is all of Spec(Rf ). By the above it is generated
by a single element, namely m1 ∧ . . . ∧mi. Hence ∧i(M)f ∼= Rf/J for some pure ideal
J ⊂ Rf with V (J) = Spec(Rf ). Clearly this means that J = (0), see Lemma 108.3.
Thusm1∧ . . .∧mi is a basis for ∧i(Mf ) and it follows that the displayed map is injective
as well as surjective. This proves that M is finite locally free as desired. �

109. Rings of finite global dimension

The following lemma is often used to compare different projective resolutions of a given
module.

Lemma 109.1 (Schanuel’s lemma). Let R be a ring. Let M be an R-module. Suppose
that

0→ K
c1−→ P1

p1−→M → 0 and 0→ L
c2−→ P2

p2−→M → 0

are two short exact sequences, withPi projective. ThenK⊕P2 ∼= L⊕P1. More precisely,
there exist a commutative diagram

0 // K ⊕ P2 (c1,id)
//

��

P1 ⊕ P2(p1,0)
//

��

M // 0

0 // P1 ⊕ L
(id,c2) // P1 ⊕ P2

(0,p2) // M // 0

whose vertical arrows are isomorphisms.

Proof. Consider the moduleN defined by the short exact sequence 0→ N → P1⊕
P2 → M → 0, where the last map is the sum of the two maps Pi → M . It is easy to see
that the projection N → P1 is surjective with kernel L, and that N → P2 is surjective
with kernel K. Since Pi are projective we have N ∼= K ⊕ P2 ∼= L⊕ P1. This proves the
first statement.

To prove the second statement (and to reprove the first), choose a : P1 → P2 and b :
P2 → P1 such that p1 = p2 ◦ a and p2 = p1 ◦ b. This is possible because P1 and P2 are
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projective. Then we get a commutative diagram

0 // K ⊕ P2 (c1,id)
// P1 ⊕ P2(p1,0)

// M // 0

0 // N //

��

OO

P1 ⊕ P2(p1,p2)
//

S

��

T

OO

M // 0

0 // P1 ⊕ L
(id,c2) // P1 ⊕ P2

(0,p2) // M // 0

with T and S given by the matrices

S =
(

id 0
a id

)
and T =

(
id b
0 id

)
Then S , T and the mapsN → P1⊕L andN → K⊕P2 are isomorphisms as desired. �

Definition 109.2. Let R be a ring. Let M be an R-module. We say M has finite
projective dimension if it has a finite length resolution by projective R-modules. The
minimal length of such a resolution is called the projective dimension of M .

It is clear that the projective dimension of M is 0 if and only if M is a projective module.
The following lemma explains to what extent the projective dimension is independent of
the choice of a projective resolution.

Lemma 109.3. Let R be a ring. Suppose that M is an R-module of projective dimen-
sion d. Suppose that Fe → Fe−1 → . . . → F0 → M → 0 is exact with Fi projective
and e ≥ d− 1. Then the kernel of Fe → Fe−1 is projective (or the kernel of F0 → M is
projective in case e = 0).

Proof. We prove this by induction on d. If d = 0, then M is projective. In this case
there is a splitting F0 = Ker(F0 → M) ⊕M , and hence Ker(F0 → M) is projective.
This finishes the proof if e = 0, and if e > 0, then replacing M by Ker(F0 → M) we
decrease e.

Next assume d > 0. Let 0 → Pd → Pd−1 → . . . → P0 → M → 0 be a minimal
length finite resolution with Pi projective. According to Schanuel’s Lemma 109.1 we have
P0 ⊕Ker(F0 → M) ∼= F0 ⊕Ker(P0 → M). This proves the case d = 1, e = 0, because
then the right hand side is F0⊕P1 which is projective. Hence now we may assume e > 0.
The module F0 ⊕Ker(P0 →M) has the finite projective resolution

0→ Pd → Pd−1 → . . .→ P2 → P1 ⊕ F0 → Ker(P0 →M)⊕ F0 → 0

of length d− 1. By induction applied to the exact sequence

Fe → Fe−1 → . . .→ F2 → P0 ⊕ F1 → P0 ⊕Ker(F0 →M)→ 0

of length e − 1 we conclude Ker(Fe → Fe−1) is projective (if e ≥ 2) or that Ker(F1 ⊕
P0 → F0 ⊕ P0) is projective. This implies the lemma. �

Lemma 109.4. LetR be a ring. LetM be anR-module. Let d ≥ 0. The following are
equivalent

(1) M has projective dimension ≤ d,
(2) there exists a resolution 0 → Pd → Pd−1 → . . . → P0 → M → 0 with Pi

projective,
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(3) for some resolution . . . → P2 → P1 → P0 → M → 0 with Pi projective we
have Ker(Pd−1 → Pd−2) is projective if d ≥ 2, or Ker(P0 → M) is projective
if d = 1, or M is projective if d = 0,

(4) for any resolution . . . → P2 → P1 → P0 → M → 0 with Pi projective we
have Ker(Pd−1 → Pd−2) is projective if d ≥ 2, or Ker(P0 → M) is projective
if d = 1, or M is projective if d = 0.

Proof. The equivalence of (1) and (2) is the definition of projective dimension, see
Definition 109.2. We have (2)⇒ (4) by Lemma 109.3. The implications (4)⇒ (3) and (3)
⇒ (2) are immediate. �

Lemma 109.5. Let R be a local ring. Let M be an R-module. Let d ≥ 0. The equiva-
lent conditions (1) – (4) of Lemma 109.4 are also equivalent to

(5) there exists a resolution 0→ Pd → Pd−1 → . . .→ P0 →M → 0 with Pi free.

Proof. Follows from Lemma 109.4 and Theorem 85.4. �

Lemma 109.6. Let R be a Noetherian ring. Let M be a finite R-module. Let d ≥ 0.
The equivalent conditions (1) – (4) of Lemma 109.4 are also equivalent to

(6) there exists a resolution 0 → Pd → Pd−1 → . . . → P0 → M → 0 with Pi
finite projective.

Proof. Choose a resolution . . . → F2 → F1 → F0 → M → 0 with Fi finite free
(Lemma 71.1). By Lemma 109.4 we see that Pd = Ker(Fd−1 → Fd−2) is projective at
least if d ≥ 2. Then Pd is a finite R-module as R is Noetherian and Pd ⊂ Fd−1 which
is finite free. Whence 0 → Pd → Fd−1 → . . . → F1 → F0 → M → 0 is the desired
resolution. �

Lemma 109.7. Let R be a local Noetherian ring. Let M be a finite R-module. Let
d ≥ 0. The equivalent conditions (1) – (4) of Lemma 109.4, condition (5) of Lemma 109.5,
and condition (6) of Lemma 109.6 are also equivalent to

(7) there exists a resolution 0 → Fd → Fd−1 → . . . → F0 → M → 0 with Fi
finite free.

Proof. This follows from Lemmas 109.4, 109.5, and 109.6 and because a finite pro-
jective module over a local ring is finite free, see Lemma 78.2. �

Lemma 109.8. LetR be a ring. LetM be anR-module. Let n ≥ 0. The following are
equivalent

(1) M has projective dimension ≤ n,
(2) ExtiR(M,N) = 0 for all R-modules N and all i ≥ n+ 1, and
(3) Extn+1

R (M,N) = 0 for all R-modules N .

Proof. Assume (1). Choose a free resolution F• → M of M . Denote de : Fe →
Fe−1. By Lemma 109.3 we see that Pe = Ker(de) is projective for e ≥ n−1. This implies
that Fe ∼= Pe ⊕ Pe−1 for e ≥ n where de maps the summand Pe−1 isomorphically to
Pe−1 in Fe−1. Hence, for any R-module N the complex HomR(F•, N) is split exact in
degrees ≥ n+ 1. Whence (2) holds. The implication (2)⇒ (3) is trivial.
Assume (3) holds. Ifn = 0 thenM is projective by Lemma 77.2 and we see that (1) holds. If
n > 0 choose a freeR-module F and a surjection F →M with kernelK. By Lemma 71.7
and the vanishing of ExtiR(F,N) for all i > 0 by part (1) we see that ExtnR(K,N) = 0 for
all R-modules N . Hence by induction we see that K has projective dimension ≤ n − 1.
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Then M has projective dimension ≤ n as any finite projective resolution of K gives a
projective resolution of length one more for M by adding F to the front. �

Lemma 109.9. Let R be a ring. Let 0 → M ′ → M → M ′′ → 0 be a short exact
sequence of R-modules.

(1) If M has projective dimension ≤ n and M ′′ has projective dimension ≤ n + 1,
then M ′ has projective dimension ≤ n.

(2) If M ′ and M ′′ have projective dimension≤ n then M has projective dimension
≤ n.

(3) If M ′ has projective dimension ≤ n and M has projective dimension ≤ n + 1
then M ′′ has projective dimension ≤ n+ 1.

Proof. Combine the characterization of projective dimension in Lemma 109.8 with
the long exact sequence of ext groups in Lemma 71.7. �

Definition 109.10. LetR be a ring. The ringR is said to have finite global dimension
if there exists an integer n such that every R-module has a resolution by projective R-
modules of length at most n. The minimal such n is then called the global dimension of
R.

The argument in the proof of the following lemma can be found in the paper [?] by Aus-
lander.

Lemma 109.11. Let R be a ring. Suppose we have a module M =
⋃
e∈EMe where

the Me are submodules well-ordered by inclusion. Assume the quotients Me/
⋃
e′<eMe′

have projective dimension ≤ n. Then M has projective dimension ≤ n.

Proof. We will prove this by induction on n.
Base case: n = 0. Then Pe = Me/

⋃
e′<eMe′ is projective. Thus we may choose a

section Pe → Me of the projection Me → Pe. We claim that the induced map ψ :⊕
e∈E Pe →M is an isomorphism. Namely, if x =

∑
xe ∈

⊕
Pe is nonzero, then we let

emax be maximal such that xemax is nonzero and we conclude that y = ψ(x) = ψ(
∑
xe)

is nonzero because y ∈Memax has nonzero image xemax in Pemax . On the other hand, let
y ∈ M . Then y ∈ Me for some e. We show that y ∈ Im(ψ) by transfinite induction on
e. Let xe ∈ Pe be the image of y. Then y−ψ(xe) ∈

⋃
e′<eMe′ . By induction hypothesis

we conclude that y−ψ(xe) ∈ Im(ψ) hence y ∈ Im(ψ). Thus the claim is true and ψ is an
isomorphism. We conclude that M is projective as a direct sum of projectives, see Lemma
77.4.
If n > 0, then for e ∈ E we denote Fe the free R-module on the set of elements of Me.
Then we have a system of short exact sequences

0→ Ke → Fe →Me → 0
over the well-ordered set E. Note that the transition maps Fe′ → Fe and Ke′ → Ke are
injective too. Set F =

⋃
Fe and K =

⋃
Ke. Then

0→ Ke/
⋃

e′<e
Ke′ → Fe/

⋃
e′<e

Fe′ →Me/
⋃

e′<e
Me′ → 0

is a short exact sequence of R-modules too and Fe/
⋃
e′<e Fe′ is the free R-module on

the set of elements in Me which are not contained in
⋃
e′<eMe′ . Hence by Lemma 109.9

we see that the projective dimension of Ke/
⋃
e′<eKe′ is at most n − 1. By induction

we conclude that K has projective dimension at most n − 1. Whence M has projective
dimension at most n and we win. �
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Lemma 109.12. Let R be a ring. The following are equivalent
(1) R has finite global dimension ≤ n,
(2) every finite R-module has projective dimension ≤ n, and
(3) every cyclic R-module R/I has projective dimension ≤ n.

Proof. It is clear that (1)⇒ (2) and (2)⇒ (3). Assume (3). Choose a set E ⊂ M of
generators of M . Choose a well ordering on E. For e ∈ E denote Me the submodule of
M generated by the elements e′ ∈ E with e′ ≤ e. Then M =

⋃
e∈EMe. Note that for

each e ∈ E the quotient
Me/

⋃
e′<e

Me′

is either zero or generated by one element, hence has projective dimension≤ n by (3). By
Lemma 109.11 this means that M has projective dimension ≤ n. �

Lemma 109.13. LetR be a ring. LetM be anR-module. LetS ⊂ R be a multiplicative
subset.

(1) If M has projective dimension ≤ n, then S−1M has projective dimension ≤ n
over S−1R.

(2) If R has finite global dimension ≤ n, then S−1R has finite global dimension
≤ n.

Proof. Let 0 → Pn → Pn−1 → . . . → P0 → M → 0 be a projective resolution.
As localization is exact, see Proposition 9.12, and as each S−1Pi is a projective S−1R-
module, see Lemma 94.1, we see that 0 → S−1Pn → . . . → S−1P0 → S−1M → 0 is a
projective resolution of S−1M . This proves (1). Let M ′ be an S−1R-module. Note that
M ′ = S−1M ′. Hence we see that (2) follows from (1). �

110. Regular rings and global dimension

We can use the material on rings of finite global dimension to give another characteriza-
tion of regular local rings.

Proposition 110.1. Let R be a regular local ring of dimension d. Every finite R-
module M of depth e has a finite free resolution

0→ Fd−e → . . .→ F0 →M → 0.
In particular a regular local ring has global dimension ≤ d.

Proof. The first part holds in view of Lemma 106.6 and Lemma 104.9. The last part
follows from this and Lemma 109.12. �

Lemma 110.2. LetR be a Noetherian ring. ThenR has finite global dimension if and
only if there exists an integer n such that for all maximal ideals m of R the ring Rm has
global dimension ≤ n.

Proof. We saw, Lemma 109.13 that if R has finite global dimension n, then all the
localizations Rm have finite global dimension at most n. Conversely, suppose that all the
Rm have global dimension ≤ n. Let M be a finite R-module. Let 0 → Kn → Fn−1 →
. . . → F0 → M → 0 be a resolution with Fi finite free. Then Kn is a finite R-module.
According to Lemma 109.3 and the assumption all the modulesKn⊗RRm are projective.
Hence by Lemma 78.2 the module Kn is finite projective. �

Lemma 110.3. Suppose that R is a Noetherian local ring with maximal ideal m and
residue field κ. In this case the projective dimension of κ is ≥ dimκm/m

2.
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Proof. Letx1, . . . , xn be elements ofmwhose images inm/m2 form a basis. Consider
the Koszul complex on x1, . . . , xn. This is the complex

0→ ∧nRn → ∧n−1Rn → ∧n−2Rn → . . .→ ∧iRn → . . .→ Rn → R

with maps given by

ej1 ∧ . . . ∧ eji 7−→
i∑

a=1
(−1)a+1xjaej1 ∧ . . . ∧ êja ∧ . . . ∧ eji

It is easy to see that this is a complex K•(R, x•). Note that the cokernel of the last map
of K•(R, x•) is κ by Lemma 20.1 part (8).

If κ has finite projective dimension d, then we can find a resolution F• → κ by finite free
R-modules of length d (Lemma 109.7). By Lemma 102.2 we may assume all the maps in
the complex F• have the property that Im(Fi → Fi−1) ⊂ mFi−1, because removing a
trivial summand from the resolution can at worst shorten the resolution. By Lemma 71.4
we can find a map of complexes α : K•(R, x•)→ F• inducing the identity on κ. We will
prove by induction that the maps αi : ∧iRn = Ki(R, x•) → Fi have the property that
αi⊗κ : ∧iκn → Fi⊗κ are injective. This shows that Fn 6= 0 and hence d ≥ n as desired.

The result is clear for i = 0 because the compositionR α0−→ F0 → κ is nonzero. Note that
F0 must have rank 1 since otherwise the map F1 → F0 whose cokernel is a single copy of
κ cannot have image contained in mF0.

Next we check the case i = 1 as we feel that it is instructive; the reader can skip this as the
induction step will deduce the i = 1 case from the case i = 0. We saw above that F0 = R
and F1 → F0 = R has image m. We have a commutative diagram

Rn = K1(R, x•) → K0(R, x•) = R
↓ ↓ ↓
F1 → F0 = R

where the rightmost vertical arrow is given by multiplication by a unit. Hence we see
that the image of the composition Rn → F1 → F0 = R is also equal to m. Thus the map
Rn ⊗ κ→ F1 ⊗ κ has to be injective since dimκ(m/m2) = n.

Let i ≥ 1 and assume injectivity of αj ⊗κ has been proved for all j ≤ i− 1. Consider the
commutative diagram

∧iRn = Ki(R, x•) → Ki−1(R, x•) = ∧i−1Rn

↓ ↓
Fi → Fi−1

We know that ∧i−1κn → Fi−1 ⊗ κ is injective. This proves that ∧i−1κn ⊗κ m/m2 →
Fi−1 ⊗ m/m2 is injective. Also, by our choice of the complex, Fi maps into mFi−1, and
similarly for the Koszul complex. Hence we get a commutative diagram

∧iκn → ∧i−1κn ⊗m/m2

↓ ↓
Fi ⊗ κ → Fi−1 ⊗m/m2

At this point it suffices to verify the map ∧iκn → ∧i−1κn⊗m/m2 is injective, which can
be done by hand. �

Lemma 110.4. Let R be a Noetherian local ring. Suppose that the residue field κ has
finite projective dimension n over R. In this case dim(R) ≥ n.
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Proof. Let F• be a finite resolution of κ by finite free R-modules (Lemma 109.7).
By Lemma 102.2 we may assume all the maps in the complex F• have to property that
Im(Fi → Fi−1) ⊂ mFi−1, because removing a trivial summand from the resolution can
at worst shorten the resolution. Say Fn 6= 0 and Fi = 0 for i > n, so that the projective
dimension of κ is n. By Proposition 102.9 we see that depthI(ϕn)(R) ≥ n since I(ϕn)
cannot equalR by our choice of the complex. Thus by Lemma 72.3 also dim(R) ≥ n. �

Proposition 110.5. Let (R,m, κ) be a Noetherian local ring. The following are
equivalent

(1) κ has finite projective dimension as an R-module,
(2) R has finite global dimension,
(3) R is a regular local ring.

Moreover, in this case the global dimension of R equals dim(R) = dimκ(m/m2).

Proof. We have (3)⇒ (2) by Proposition 110.1. The implication (2)⇒ (1) is trivial.
Assume (1). By Lemmas 110.3 and 110.4 we see that dim(R) ≥ dimκ(m/m2). Thus R is
regular, see Definition 60.10 and the discussion preceding it. Assume the equivalent con-
ditions (1) – (3) hold. By Proposition 110.1 the global dimension of R is at most dim(R)
and by Lemma 110.3 it is at least dimκ(m/m2). Thus the stated equality holds. �

Lemma 110.6. A Noetherian local ring R is a regular local ring if and only if it has
finite global dimension. In this case Rp is a regular local ring for all primes p.

Proof. By Propositions 110.5 and 110.1 we see that a Noetherian local ring is a regular
local ring if and only if it has finite global dimension. Furthermore, any localization Rp

has finite global dimension, see Lemma 109.13, and hence is a regular local ring. �

By Lemma 110.6 it makes sense to make the following definition, because it does not con-
flict with the earlier definition of a regular local ring.

Definition 110.7. A Noetherian ring R is said to be regular if all the localizations
Rp at primes are regular local rings.

It is enough to require the local rings at maximal ideals to be regular. Note that this is
not the same as asking R to have finite global dimension, even assuming R is Noetherian.
This is because there is an example of a regular Noetherian ring which does not have finite
global dimension, namely because it does not have finite dimension.

Lemma 110.8. Let R be a Noetherian ring. The following are equivalent:
(1) R has finite global dimension n,
(2) R is a regular ring of dimension n,
(3) there exists an integer n such that all the localizations Rm at maximal ideals are

regular of dimension ≤ n with equality for at least one m, and
(4) there exists an integer n such that all the localizations Rp at prime ideals are

regular of dimension ≤ n with equality for at least one p.

Proof. This follows from the discussion above. More precisely, it follows by com-
bining Definition 110.7 with Lemma 110.2 and Proposition 110.5. �

Lemma 110.9. Let R → S be a local homomorphism of local Noetherian rings. As-
sume that R→ S is flat and that S is regular. Then R is regular.
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Proof. Let m ⊂ R be the maximal ideal and let κ = R/m be the residue field. Let
d = dimS. Choose any resolution F• → κ with each Fi a finite free R-module. Set
Kd = Ker(Fd−1 → Fd−2). By flatness of R → S the complex 0 → Kd ⊗R S →
Fd−1⊗RS → . . .→ F0⊗RS → κ⊗RS → 0 is still exact. Because the global dimension
of S is d, see Proposition 110.1, we see that Kd ⊗R S is a finite free S-module (see also
Lemma 109.3). By Lemma 78.6 we see that Kd is a finite free R-module. Hence κ has
finite projective dimension and R is regular by Proposition 110.5. �

111. Auslander-Buchsbaum

The following result can be found in [?].

Proposition 111.1. Let R be a Noetherian local ring. Let M be a nonzero finite R-
module which has finite projective dimension pdR(M). Then we have

depth(R) = pdR(M) + depth(M)

Proof. We prove this by induction on depth(M). The most interesting case is the
case depth(M) = 0. In this case, let

0→ Rne → Rne−1 → . . .→ Rn0 →M → 0

be a minimal finite free resolution, so e = pdR(M). By Lemma 102.2 we may assume all
matrix coefficients of the maps in the complex are contained in the maximal ideal of R.
Then on the one hand, by Proposition 102.9 we see that depth(R) ≥ e. On the other
hand, breaking the long exact sequence into short exact sequences

0→ Rne → Rne−1 → Ke−2 → 0,
0→ Ke−2 → Rne−2 → Ke−3 → 0,

. . . ,

0→ K0 → Rn0 →M → 0

we see, using Lemma 72.6, that

depth(Ke−2) ≥ depth(R)− 1,
depth(Ke−3) ≥ depth(R)− 2,

. . . ,

depth(K0) ≥ depth(R)− (e− 1),
depth(M) ≥ depth(R)− e

and since depth(M) = 0 we conclude depth(R) ≤ e. This finishes the proof of the case
depth(M) = 0.

Induction step. If depth(M) > 0, then we pick x ∈ m which is a nonzerodivisor on
both M and R. This is possible, because either pdR(M) > 0 and depth(R) > 0 by the
aforementioned Proposition 102.9 or pdR(M) = 0 in which case M is finite free hence
also depth(R) = depth(M) > 0. Thus depth(R⊕M) > 0 by Lemma 72.6 (for example)
and we can find an x ∈ m which is a nonzerodivisor on both R and M . Let

0→ Rne → Rne−1 → . . .→ Rn0 →M → 0

be a minimal resolution as above. An application of the snake lemma shows that

0→ (R/xR)ne → (R/xR)ne−1 → . . .→ (R/xR)n0 →M/xM → 0
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is a minimal resolution too. Thus pdR(M) = pdR/xR(M/xM). By Lemma 72.7 we have
depth(R/xR) = depth(R) − 1 and depth(M/xM) = depth(M) − 1. Till now depths
have all been depths asRmodules, but we observe that depthR(M/xM) = depthR/xR(M/xM)
and similarly for R/xR. By induction hypothesis we see that the Auslander-Buchsbaum
formula holds for M/xM over R/xR. Since the depths of both R/xR and M/xM have
decreased by one and the projective dimension has not changed we conclude. �

112. Homomorphisms and dimension

This section contains a collection of easy results relating dimensions of rings when there
are maps between them.

Lemma 112.1. SupposeR→ S is a ring map satisfying either going up, see Definition
41.1, or going down see Definition 41.1. Assume in addition that Spec(S) → Spec(R) is
surjective. Then dim(R) ≤ dim(S).

Proof. Assume going up. Take any chain p0 ⊂ p1 ⊂ . . . ⊂ pe of prime ideals in R.
By surjectivity we may choose a prime q0 mapping to p0. By going up we may extend this
to a chain of length e of primes qi lying over pi. Thus dim(S) ≥ dim(R). The case of
going down is exactly the same. See also Topology, Lemma 19.9 for a purely topological
version. �

Lemma 112.2. Suppose that R → S is a ring map with the going up property, see
Definition 41.1. If q ⊂ S is a maximal ideal. Then the inverse image of q inR is a maximal
ideal too.

Proof. Trivial. �

Lemma 112.3. Suppose thatR→ S is a ring map such that S is integral overR. Then
dim(R) ≥ dim(S), and every closed point of Spec(S) maps to a closed point of Spec(R).

Proof. Immediate from Lemmas 36.20 and 112.2 and the definitions. �

Lemma 112.4. Suppose R ⊂ S and S integral over R. Then dim(R) = dim(S).

Proof. This is a combination of Lemmas 36.22, 36.17, 112.1, and 112.3. �

Definition 112.5. Suppose that R → S is a ring map. Let q ⊂ S be a prime lying
over the prime p of R. The local ring of the fibre at q is the local ring

Sq/pSq = (S/pS)q = (S ⊗R κ(p))q
Lemma 112.6. Let R → S be a homomorphism of Noetherian rings. Let q ⊂ S be a

prime lying over the prime p. Then
dim(Sq) ≤ dim(Rp) + dim(Sq/pSq).

Proof. We use the characterization of dimension of Proposition 60.9. Let x1, . . . , xd
be elements of p generating an ideal of definition ofRp with d = dim(Rp). Let y1, . . . , ye
be elements of q generating an ideal of definition of Sq/pSq with e = dim(Sq/pSq). It is
clear thatSq/(x1, . . . , xd, y1, . . . , ye) has a nilpotent maximal ideal. Hencex1, . . . , xd, y1, . . . , ye
generate an ideal of definition of Sq. �

Lemma 112.7. Let R → S be a homomorphism of Noetherian rings. Let q ⊂ S be
a prime lying over the prime p. Assume the going down property holds for R → S (for
example if R→ S is flat, see Lemma 39.19). Then

dim(Sq) = dim(Rp) + dim(Sq/pSq).
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Proof. By Lemma 112.6 we have an inequality dim(Sq) ≤ dim(Rp)+dim(Sq/pSq).
To get equality, choose a chain of primes pS ⊂ q0 ⊂ q1 ⊂ . . . ⊂ qd = q with d =
dim(Sq/pSq). On the other hand, choose a chain of primes p0 ⊂ p1 ⊂ . . . ⊂ pe = p with
e = dim(Rp). By the going down theorem we may choose q−1 ⊂ q0 lying over pe−1.
And then we may choose q−2 ⊂ qe−1 lying over pe−2. Inductively we keep going until
we get a chain q−e ⊂ . . . ⊂ qd of length e+ d. �

Lemma 112.8. Let R → S be a local homomorphism of local Noetherian rings. As-
sume

(1) R is regular,
(2) S/mRS is regular, and
(3) R→ S is flat.

Then S is regular.

Proof. By Lemma 112.7 we have dim(S) = dim(R) + dim(S/mRS). Pick genera-
tors x1, . . . , xd ∈ mR with d = dim(R), and pick y1, . . . , ye ∈ mS which generate the
maximal ideal ofS/mRS with e = dim(S/mRS). Then we see that x1, . . . , xd, y1, . . . , ye
are elements which generate the maximal ideal of S and e+ d = dim(S). �

The lemma below will later be used to show that rings of finite type over a field are Cohen-
Macaulay if and only if they are quasi-finite flat over a polynomial ring. It is a partial
converse to Lemma 128.1.

Lemma 112.9. Let R → S be a local homomorphism of Noetherian local rings. As-
sume R Cohen-Macaulay. If S is finite flat over R, or if S is flat over R and dim(S) ≤
dim(R), then S is Cohen-Macaulay and dim(R) = dim(S).

Proof. Let x1, . . . , xd ∈ mR be a regular sequence of length d = dim(R). By Lemma
68.5 this maps to a regular sequence in S. Hence S is Cohen-Macaulay if dim(S) ≤ d.
This is true if S is finite flat over R by Lemma 112.4. And in the second case we assumed
it. �

113. The dimension formula

Recall the definitions of catenary (Definition 105.1) and universally catenary (Definition
105.3).

Lemma 113.1. Let R → S be a ring map. Let q be a prime of S lying over the prime
p of R. Assume that

(1) R is Noetherian,
(2) R→ S is of finite type,
(3) R, S are domains, and
(4) R ⊂ S.

Then we have
height(q) ≤ height(p) + trdegR(S)− trdegκ(p)κ(q)

with equality if R is universally catenary.

Proof. Suppose that R ⊂ S′ ⊂ S is a finitely generated R-subalgebra of S. In this
case set q′ = S′∩q. The lemma for the ring mapsR→ S′ and S′ → S implies the lemma
forR→ S by additivity of transcendence degree in towers of fields (Fields, Lemma 26.5).
Hence we can use induction on the number of generators of S over R and reduce to the
case where S is generated by one element over R.
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Case I: S = R[x] is a polynomial algebra over R. In this case we have trdegR(S) = 1.
Also R→ S is flat and hence

dim(Sq) = dim(Rp) + dim(Sq/pSq)

see Lemma 112.7. Let r = pS. Then trdegκ(p)κ(q) = 1 is equivalent to q = r, and implies
that dim(Sq/pSq) = 0. In the same vein trdegκ(p)κ(q) = 0 is equivalent to having a
strict inclusion r ⊂ q, which implies that dim(Sq/pSq) = 1. Thus we are done with case
I with equality in every instance.

Case II: S = R[x]/n with n 6= 0. In this case we have trdegR(S) = 0. Denote q′ ⊂ R[x]
the prime corresponding to q. Thus we have

Sq = (R[x])q′/n(R[x])q′

By the previous case we have dim((R[x])q′) = dim(Rp)+1− trdegκ(p)κ(q). Since n 6= 0
we see that the dimension of Sq decreases by at least one, see Lemma 60.13, which proves
the inequality of the lemma. To see the equality in case R is universally catenary note
that n ⊂ R[x] is a height one prime as it corresponds to a nonzero prime in F [x] where
F is the fraction field of R. Hence any maximal chain of primes in Sq = R[x]q′/nR[x]q′

corresponds to a maximal chain of primes with length 1 greater between q′ and (0) inR[x].
If R is universally catenary these all have the same length equal to the height of q′. This
proves that dim(Sq) = dim(R[x]q′)− 1 and this implies equality holds as desired. �

The following lemma says that generically finite maps tend to be quasi-finite in codimen-
sion 1.

Lemma 113.2. Let A→ B be a ring map. Assume
(1) A ⊂ B is an extension of domains,
(2) the induced extension of fraction fields is finite,
(3) A is Noetherian, and
(4) A→ B is of finite type.

Let p ⊂ A be a prime of height 1. Then there are at most finitely many primes of B lying
over p and they all have height 1.

Proof. By the dimension formula (Lemma 113.1) for any prime q lying over p we
have

dim(Bq) ≤ dim(Ap)− trdegκ(p)κ(q).

As the domain Bq has at least 2 prime ideals we see that dim(Bq) ≥ 1. We conclude that
dim(Bq) = 1 and that the extension κ(p) ⊂ κ(q) is algebraic. Hence q defines a closed
point of its fibre Spec(B⊗A κ(p)), see Lemma 35.9. SinceB⊗A κ(p) is a Noetherian ring
the fibre Spec(B⊗Aκ(p)) is a Noetherian topological space, see Lemma 31.5. A Noetherian
topological space consisting of closed points is finite, see for example Topology, Lemma
9.2. �

114. Dimension of finite type algebras over fields

In this section we compute the dimension of a polynomial ring over a field. We also prove
that the dimension of a finite type domain over a field is the dimension of its local rings
at maximal ideals. We will establish the connection with the transcendence degree over
the ground field in Section 116.
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Lemma 114.1. Let m be a maximal ideal in k[x1, . . . , xn]. The ideal m is generated
by n elements. The dimension of k[x1, . . . , xn]m is n. Hence k[x1, . . . , xn]m is a regular
local ring of dimension n.

Proof. By the Hilbert Nullstellensatz (Theorem 34.1) we know the residue field κ =
κ(m) is a finite extension of k. Denoteαi ∈ κ the image ofxi. Denoteκi = k(α1, . . . , αi) ⊂
κ, i = 1, . . . , n and κ0 = k. Note that κi = k[α1, . . . , αi] by field theory. Define induc-
tively elements fi ∈ m ∩ k[x1, . . . , xi] as follows: Let Pi(T ) ∈ κi−1[T ] be the monic
minimal polynomial of αi over κi−1. Let Qi(T ) ∈ k[x1, . . . , xi−1][T ] be a monic lift of
Pi(T ) (of the same degree). Set fi = Qi(xi). Note that if di = degT (Pi) = degT (Qi) =
degxi(fi) then d1d2 . . . di = [κi : k] by Fields, Lemmas 7.7 and 9.2.

We claim that for all i = 0, 1, . . . , n there is an isomorphism

ψi : k[x1, . . . , xi]/(f1, . . . , fi) ∼= κi.

By construction the composition k[x1, . . . , xi] → k[x1, . . . , xn] → κ is surjective onto
κi and f1, . . . , fi are in the kernel. This gives a surjective homomorphism. We prove ψi
is injective by induction. It is clear for i = 0. Given the statement for i we prove it for
i + 1. The ring extension k[x1, . . . , xi]/(f1, . . . , fi) → k[x1, . . . , xi+1]/(f1, . . . , fi+1)
is generated by 1 element over a field and one irreducible equation. By elementary field
theory k[x1, . . . , xi+1]/(f1, . . . , fi+1) is a field, and hence ψi is injective.

This implies that m = (f1, . . . , fn). Moreover, we also conclude that

k[x1, . . . , xn]/(f1, . . . , fi) ∼= κi[xi+1, . . . , xn].
Hence (f1, . . . , fi) is a prime ideal. Thus

(0) ⊂ (f1) ⊂ (f1, f2) ⊂ . . . ⊂ (f1, . . . , fn) = m

is a chain of primes of length n. The lemma follows. �

Proposition 114.2. A polynomial algebra in n variables over a field is a regular ring.
It has global dimension n. All localizations at maximal ideals are regular local rings of
dimension n.

Proof. By Lemma 114.1 all localizations k[x1, . . . , xn]m at maximal ideals are regular
local rings of dimension n. Hence we conclude by Lemma 110.8. �

Lemma 114.3. Let k be a field. Let p ⊂ q ⊂ k[x1, . . . , xn] be a pair of primes. Any
maximal chain of primes between p and q has length height(q)− height(p).

Proof. By Proposition 114.2 any local ring of k[x1, . . . , xn] is regular. Hence all local
rings are Cohen-Macaulay, see Lemma 106.3. The local rings at maximal ideals have di-
mension n hence every maximal chain of primes in k[x1, . . . , xn] has length n, see Lemma
104.3. Hence every maximal chain of primes between (0) and p has length height(p), see
Lemma 104.4 for example. Putting these together leads to the assertion of the lemma. �

Lemma 114.4. Let k be a field. Let S be a finite type k-algebra which is an integral do-
main. Then dim(S) = dim(Sm) for any maximal ideal m of S. In words: every maximal
chain of primes has length equal to the dimension of S.

Proof. Write S = k[x1, . . . , xn]/p. By Proposition 114.2 and Lemma 114.3 all the
maximal chains of primes in S (which necessarily end with a maximal ideal) have length
n− height(p). Thus this number is the dimension of S and of Sm for any maximal ideal
m of S. �
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Recall that we defined the dimension dimx(X) of a topological space X at a point x in
Topology, Definition 10.1.

Lemma 114.5. Let k be a field. Let S be a finite type k-algebra. LetX = Spec(S). Let
p ⊂ S be a prime ideal and let x ∈ X be the corresponding point. The following numbers
are equal

(1) dimx(X),
(2) max dim(Z) where the maximum is over those irreducible components Z of X

passing through x, and
(3) min dim(Sm) where the minimum is over maximal ideals m with p ⊂ m.

Proof. LetX =
⋃
i∈I Zi be the decomposition ofX into its irreducible components.

There are finitely many of them (see Lemmas 31.3 and 31.5). Let I ′ = {i | x ∈ Zi}, and
let T =

⋃
i 6∈I′ Zi. Then U = X \ T is an open subset of X containing the point x.

The number (2) is maxi∈I′ dim(Zi). For any open W ⊂ U with x ∈ W the irreducible
components of W are the irreducible sets Wi = Zi ∩W for i ∈ I ′ and x is contained in
each of these. Note that each Wi, i ∈ I ′ contains a closed point because X is Jacobson, see
Section 35. Since Wi ⊂ Zi we have dim(Wi) ≤ dim(Zi). The existence of a closed point
implies, via Lemma 114.4, that there is a chain of irreducible closed subsets of length equal
to dim(Zi) in the open Wi. Thus dim(Wi) = dim(Zi) for any i ∈ I ′. Hence dim(W ) is
equal to the number (2). This proves that (1) = (2).

Let m ⊃ p be any maximal ideal containing p. Let x0 ∈ X be the corresponding point.
First of all, x0 is contained in all the irreducible components Zi, i ∈ I ′. Let qi denote
the minimal primes of S corresponding to the irreducible components Zi. For each i such
that x0 ∈ Zi (which is equivalent to m ⊃ qi) we have a surjection

Sm −→ Sm/qiSm = (S/qi)m
Moreover, the primes qiSm so obtained exhaust the minimal primes of the Noetherian
local ring Sm, see Lemma 26.3. We conclude, using Lemma 114.4, that the dimension of
Sm is the maximum of the dimensions of theZi passing through x0. To finish the proof of
the lemma it suffices to show that we can choose x0 such that x0 ∈ Zi ⇒ i ∈ I ′. Because
S is Jacobson (as we saw above) it is enough to show that V (p) \ T (with T as above) is
nonempty. And this is clear since it contains the point x (i.e. p). �

Lemma 114.6. Let k be a field. Let S be a finite type k-algebra. LetX = Spec(S). Let
m ⊂ S be a maximal ideal and let x ∈ X be the associated closed point. Then dimx(X) =
dim(Sm).

Proof. This is a special case of Lemma 114.5. �

Lemma 114.7. Let k be a field. Let S be a finite type k algebra. Assume that S is
Cohen-Macaulay. Then Spec(S) =

∐
Td is a finite disjoint union of open and closed

subsetsTd withTd equidimensional (see Topology, Definition 10.5) of dimension d. Equiv-
alently, S is a product of rings Sd, d = 0, . . . , dim(S) such that every maximal ideal m of
Sd has height d.

Proof. The equivalence of the two statements follows from Lemma 24.3. Let m ⊂ S
be a maximal ideal. Every maximal chain of primes in Sm has the same length equal to
dim(Sm), see Lemma 104.3. Hence, the dimension of the irreducible components passing
through the point corresponding to m all have dimension equal to dim(Sm), see Lemma
114.4. Since Spec(S) is a Jacobson topological space the intersection of any two irreducible
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components of it contains a closed point if nonempty, see Lemmas 35.2 and 35.4. Thus we
have shown that any two irreducible components that meet have the same dimension. The
lemma follows easily from this, and the fact that Spec(S) has a finite number of irreducible
components (see Lemmas 31.3 and 31.5). �

115. Noether normalization

In this section we prove variants of the Noether normalization lemma. The key ingredient
we will use is contained in the following two lemmas.

Lemma 115.1. Let n ∈ N. Let N be a finite nonempty set of multi-indices ν =
(ν1, . . . , νn). Given e = (e1, . . . , en) we set e · ν =

∑
eiνi. Then for e1 � e2 � . . .�

en−1 � en we have: If ν, ν′ ∈ N then
(e · ν = e · ν′)⇔ (ν = ν′)

Proof. Say N = {νj} with νj = (νj1, . . . , νjn). Let Ai = maxj νji −minj νji. If
for each i we have ei−1 > Aiei + Ai+1ei+1 + . . . + Anen then the lemma holds. For
suppose that e · (ν − ν′) = 0. Then for n ≥ 2,

e1(ν1 − ν′
1) =

∑n

i=2
ei(ν′

i − νi).

We may assume that (ν1 − ν′
1) ≥ 0. If (ν1 − ν′

1) > 0, then

e1(ν1 − ν′
1) ≥ e1 > A2e2 + . . .+Anen ≥

∑n

i=2
ei|ν′

i − νi| ≥
∑n

i=2
ei(ν′

i − νi).

This contradiction implies that ν′
1 = ν1. By induction, ν′

i = νi for 2 ≤ i ≤ n. �

Lemma 115.2. Let R be a ring. Let g ∈ R[x1, . . . , xn] be an element which is non-
constant, i.e., g 6∈ R. For e1 � e2 � . . .� en−1 � en = 1 the polynomial

g(x1 + xe1
n , x2 + xe2

n , . . . , xn−1 + xen−1
n , xn) = axdn + lower order terms in xn

where d > 0 and a ∈ R is one of the nonzero coefficients of g.

Proof. Write g =
∑
ν∈N aνx

ν with aν ∈ R not zero. Here N is a finite set of
multi-indices as in Lemma 115.1 and xν = xν1

1 . . . xνnn . Note that the leading term in
(x1 + xe1

n )ν1 . . . (xn−1 + xen−1
n )νn−1xνnn is xe1ν1+...+en−1νn−1+νn

n .

Hence the lemma follows from Lemma 115.1 which guarantees that there is exactly one
nonzero termaνx

ν of gwhich gives rise to the leading term of g(x1+xe1
n , x2+xe2

n , . . . , xn−1+
x
en−1
n , xn), i.e., a = aν for the unique ν ∈ N such that e · ν is maximal. �

Lemma 115.3. Let k be a field. Let S = k[x1, . . . , xn]/I for some proper ideal
I . If I 6= 0, then there exist y1, . . . , yn−1 ∈ k[x1, . . . , xn] such that S is finite over
k[y1, . . . , yn−1]. Moreover we may choose yi to be in the Z-subalgebra of k[x1, . . . , xn]
generated by x1, . . . , xn.

Proof. Pick f ∈ I , f 6= 0. It suffices to show the lemma for k[x1, . . . , xn]/(f) since
S is a quotient of that ring. We will take yi = xi − xein , i = 1, . . . , n − 1 for suitable
integers ei. When does this work? It suffices to show that xn ∈ k[x1, . . . , xn]/(f) is
integral over the ring k[y1, . . . , yn−1]. The equation for xn over this ring is

f(y1 + xe1
n , . . . , yn−1 + xen−1

n , xn) = 0.
Hence we are done if we can show there exists integers ei such that the leading coefficient
with respect to xn of the equation above is a nonzero element of k. This can be achieved
for example by choosing e1 � e2 � . . .� en−1, see Lemma 115.2. �
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Lemma 115.4. Let k be a field. Let S = k[x1, . . . , xn]/I for some ideal I . If I 6= (1),
there exist r ≥ 0, and y1, . . . , yr ∈ k[x1, . . . , xn] such that (a) the map k[y1, . . . , yr]→ S
is injective, and (b) the map k[y1, . . . , yr] → S is finite. In this case the integer r is the
dimension of S. Moreover we may choose yi to be in the Z-subalgebra of k[x1, . . . , xn]
generated by x1, . . . , xn.

Proof. By induction on n, with n = 0 being trivial. If I = 0, then take r = n
and yi = xi. If I 6= 0, then choose y1, . . . , yn−1 as in Lemma 115.3. Let S′ ⊂ S be the
subring generated by the images of the yi. By induction we can choose r and z1, . . . , zr ∈
k[y1, . . . , yn−1] such that (a), (b) hold for k[z1, . . . , zr] → S′. Since S′ → S is injective
and finite we see (a), (b) hold for k[z1, . . . , zr] → S. The last assertion follows from
Lemma 112.4. �

Lemma 115.5. Let k be a field. Let S be a finite type k algebra and denote X =
Spec(S). Let q be a prime of S , and let x ∈ X be the corresponding point. There exists
a g ∈ S , g 6∈ q such that dim(Sg) = dimx(X) =: d and such that there exists a finite
injective map k[y1, . . . , yd]→ Sg .

Proof. Note that by definition dimx(X) is the minimum of the dimensions of Sg
for g ∈ S , g 6∈ q, i.e., the minimum is attained. Thus the lemma follows from Lemma
115.4. �

Lemma 115.6. Let k be a field. Let q ⊂ k[x1, . . . , xn] be a prime ideal. Set r =
trdegk κ(q). Then there exists a finite ring map ϕ : k[y1, . . . , yn] → k[x1, . . . , xn] such
that ϕ−1(q) = (yr+1, . . . , yn).

Proof. By induction on n. The case n = 0 is clear. Assume n > 0. If r = n, then
q = (0) and the result is clear. Choose a nonzero f ∈ q. Of course f is nonconstant. After
applying an automorphism of the form

k[x1, . . . , xn] −→ k[x1, . . . , xn], xn 7→ xn, xi 7→ xi + xein (i < n)

we may assume that f is monic in xn over k[x1, . . . , xn], see Lemma 115.2. Hence the ring
map

k[y1, . . . , yn] −→ k[x1, . . . , xn], yn 7→ f, yi 7→ xi (i < n)
is finite. Moreover yn ∈ q ∩ k[y1, . . . , yn] by construction. Thus q ∩ k[y1, . . . , yn] =
pk[y1, . . . , yn] + (yn) where p ⊂ k[y1, . . . , yn−1] is a prime ideal. Note that κ(p) ⊂
κ(q) is finite, and hence r = trdegk κ(p). Apply the induction hypothesis to the pair
(k[y1, . . . , yn−1], p) and we obtain a finite ring map k[z1, . . . , zn−1] → k[y1, . . . , yn−1]
such that p∩k[z1, . . . , zn−1] = (zr+1, . . . , zn−1). We extend the ring map k[z1, . . . , zn−1]→
k[y1, . . . , yn−1] to a ring map k[z1, . . . , zn] → k[y1, . . . , yn] by mapping zn to yn. The
composition of the ring maps

k[z1, . . . , zn]→ k[y1, . . . , yn]→ k[x1, . . . , xn]

solves the problem. �

Lemma 115.7. LetR→ S be an injective finite type ring map. AssumeR is a domain.
Then there exists an integer d and a factorization

R→ R[y1, . . . , yd]→ S′ → S

by injective maps such that S′ is finite overR[y1, . . . , yd] and such that S′
f
∼= Sf for some

nonzero f ∈ R.
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Proof. Pick x1, . . . , xn ∈ S which generate S over R. Let K be the fraction field
of R and SK = S ⊗R K. By Lemma 115.4 we can find y1, . . . , yd ∈ S such that
K[y1, . . . , yd] → SK is a finite injective map. Note that yi ∈ S because we may pick the
yj in the Z-algebra generated by x1, . . . , xn. As a finite ring map is integral (see Lemma
36.3) we can find monic Pi ∈ K[y1, . . . , yd][T ] such that Pi(xi) = 0 in SK . Let f ∈ R
be a nonzero element such that fPi ∈ R[y1, . . . , yd][T ] for all i. Then fPi(xi) maps
to zero in SK . Hence after replacing f by another nonzero element of R we may also
assume fPi(xi) is zero in S. Set x′

i = fxi and let S′ ⊂ S be the R-subalgebra gener-
ated by y1, . . . , yd and x′

1, . . . , x
′
n. Note that x′

i is integral over R[y1, . . . , yd] as we have
Qi(x′

i) = 0 where Qi = fdegT (Pi)Pi(T/f) which is a monic polynomial in T with coef-
ficients in R[y1, . . . , yd] by our choice of f . Hence R[y1, . . . , yd] ⊂ S′ is finite by Lemma
36.5. Since S′ ⊂ S we have S′

f ⊂ Sf (localization is exact). On the other hand, the
elements xi = x′

i/f in S′
f generate Sf overRf and hence S′

f → Sf is surjective. Whence
S′
f
∼= Sf and we win. �

116. Dimension of finite type algebras over fields, reprise

This section is a continuation of Section 114. In this section we establish the connection
between dimension and transcendence degree over the ground field for finite type domains
over a field.

Lemma 116.1. Let k be a field. Let S be a finite type k algebra which is an integral
domain. Let K be the field of fractions of S. Let r = trdeg(K/k) be the transcendence
degree of K over k. Then dim(S) = r. Moreover, the local ring of S at every maximal
ideal has dimension r.

Proof. We may write S = k[x1, . . . , xn]/p. By Lemma 114.3 all local rings of S at
maximal ideals have the same dimension. Apply Lemma 115.4. We get a finite injective
ring map

k[y1, . . . , yd]→ S

with d = dim(S). Clearly, k(y1, . . . , yd) ⊂ K is a finite extension and we win. �

Lemma 116.2. Let k be a field. Let S be a finite type k-algebra. Let q ⊂ q′ ⊂ S be
distinct prime ideals. Then trdegk κ(q′) < trdegk κ(q).

Proof. By Lemma 116.1 we have dimV (q) = trdegk κ(q) and similarly for q′. Hence
the result follows as the strict inclusion V (q′) ⊂ V (q) implies a strict inequality of di-
mensions. �

The following lemma generalizes Lemma 114.6.

Lemma 116.3. Let k be a field. Let S be a finite type k algebra. LetX = Spec(S). Let
p ⊂ S be a prime ideal, and let x ∈ X be the corresponding point. Then we have

dimx(X) = dim(Sp) + trdegk κ(p).

Proof. By Lemma 116.1 we know that r = trdegk κ(p) is equal to the dimension
of V (p). Pick any maximal chain of primes p ⊂ p1 ⊂ . . . ⊂ pr starting with p in S.
This has length r by Lemma 114.4. Let qj , j ∈ J be the minimal primes of S which are
contained in p. These correspond 1− 1 to minimal primes in Sp via the rule qj 7→ qjSp.
By Lemma 114.5 we know that dimx(X) is equal to the maximum of the dimensions of
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the rings S/qj . For each j pick a maximal chain of primes qj ⊂ p′
1 ⊂ . . . ⊂ p′

s(j) = p.
Then dim(Sp) = maxj∈J s(j). Now, each chain

qi ⊂ p′
1 ⊂ . . . ⊂ p′

s(j) = p ⊂ p1 ⊂ . . . ⊂ pr

is a maximal chain in S/qj , and by what was said before we have dimx(X) = maxj∈J r+
s(j). The lemma follows. �

The following lemma says that the codimension of one finite type Spec in another is the
difference of heights.

Lemma 116.4. Let k be a field. LetS′ → S be a surjection of finite type k algebras. Let
p ⊂ S be a prime ideal, and let p′ be the corresponding prime ideal ofS′. LetX = Spec(S),
resp. X ′ = Spec(S′), and let x ∈ X , resp. x′ ∈ X ′ be the point corresponding to p, resp.
p′. Then

dimx′ X ′ − dimxX = height(p′)− height(p).

Proof. Immediate from Lemma 116.3. �

Lemma 116.5. Let k be a field. Let S be a finite type k-algebra. Let K/k be a field
extension. Then dim(S) = dim(K ⊗k S).

Proof. By Lemma 115.4 there exists a finite injective map k[y1, . . . , yd] → S with
d = dim(S). Since K is flat over k we also get a finite injective map K[y1, . . . , yd] →
K ⊗k S. The result follows from Lemma 112.4. �

Lemma 116.6. Let k be a field. Let S be a finite type k-algebra. Set X = Spec(S).
Let K/k be a field extension. Set SK = K ⊗k S , and XK = Spec(SK). Let q ⊂ S be a
prime corresponding to x ∈ X and let qK ⊂ SK be a prime corresponding to xK ∈ XK

lying over q. Then dimxX = dimxK XK .

Proof. Choose a presentation S = k[x1, . . . , xn]/I . This gives a presentationK ⊗k
S = K[x1, . . . , xn]/(K ⊗k I). Let q′

K ⊂ K[x1, . . . , xn], resp. q′ ⊂ k[x1, . . . , xn] be the
corresponding primes. Consider the following commutative diagram of Noetherian local
rings

K[x1, . . . , xn]q′
K

// (K ⊗k S)qK

k[x1, . . . , xn]q′ //

OO

Sq

OO

Both vertical arrows are flat because they are localizations of the flat ring maps S → SK
and k[x1, . . . , xn] → K[x1, . . . , xn]. Moreover, the vertical arrows have the same fi-
bre rings. Hence, we see from Lemma 112.7 that height(q′) − height(q) = height(q′

K) −
height(qK). Denotex′ ∈ X ′ = Spec(k[x1, . . . , xn]) andx′

K ∈ X ′
K = Spec(K[x1, . . . , xn])

the points corresponding to q′ and q′
K . By Lemma 116.4 and what we showed above we

have
n− dimxX = dimx′ X ′ − dimxX

= height(q′)− height(q)
= height(q′

K)− height(qK)
= dimx′

K
X ′
K − dimxK XK

= n− dimxK XK

and the lemma follows. �
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Lemma 116.7. Let k be a field. Let S be a finite type k-algebra. Let K/k be a field
extension. Set SK = K ⊗k S. Let q ⊂ S be a prime and let qK ⊂ SK be a prime lying
over q. Then

dim(SK ⊗S κ(q))qK = dim(SK)qK − dimSq = trdegkκ(q)− trdegKκ(qK)

Moreover, given q we can always choose qK such that the number above is zero.

Proof. Observe thatSq → (SK)qK is a flat local homomorphism of local Noetherian
rings with special fibre (SK ⊗S κ(q))qK . Hence the first equality by Lemma 112.7. The
second equality follows from the fact that we have dimxX = dimxK XK with notation
as in Lemma 116.6 and we have dimxX = dimSq + trdegkκ(q) by Lemma 116.3 and
similarly for dimxK XK . If we choose qK minimal over qSK , then the dimension of the
fibre ring will be zero. �

117. Dimension of graded algebras over a field

Here is a basic result.

Lemma 117.1. Let k be a field. LetS be a graded k-algebra generated over k by finitely
many elements of degree 1. Assume S0 = k. Let P (T ) ∈ Q[T ] be the polynomial such
that dim(Sd) = P (d) for all d� 0. See Proposition 58.7. Then

(1) The irrelevant ideal S+ is a maximal ideal m.
(2) Any minimal prime of S is a homogeneous ideal and is contained in S+ = m.
(3) We have dim(S) = deg(P ) + 1 = dimx Spec(S) (with the convention that

deg(0) = −1) where x is the point corresponding to the maximal ideal S+ = m.
(4) The Hilbert function of the local ring R = Sm is equal to the Hilbert function

of S.

Proof. The first statement is obvious. The second follows from Lemma 57.8. By (2)
every irreducible component passes through x. Thus we have dim(S) = dimx Spec(S) =
dim(Sm) by Lemma 114.5. Since md/md+1 ∼= mdSm/m

d+1Sm we see that the Hilbert
function of the local ring Sm is equal to the Hilbert function of S , which is (4). We
conclude the last equality of (3) by Proposition 60.9. �

118. Generic flatness

Basically this says that a finite type algebra over a domain becomes flat after inverting a
single element of the domain. There are several versions of this result (in increasing order
of strength).

Lemma 118.1. Let R→ S be a ring map. Let M be an S-module. Assume
(1) R is Noetherian,
(2) R is a domain,
(3) R→ S is of finite type, and
(4) M is a finite type S-module.

Then there exists a nonzero f ∈ R such that Mf is a free Rf -module.

Proof. Let K be the fraction field of R. Set SK = K ⊗R S. This is an algebra of
finite type over K. We will argue by induction on d = dim(SK) (which is finite for
example by Noether normalization, see Section 115). Fix d ≥ 0. Assume we know that
the lemma holds in all cases where dim(SK) < d.
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Suppose given R → S and M as in the lemma with dim(SK) = d. By Lemma 62.1 there
exists a filtration 0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mn = M so that Mi/Mi−1 is isomorphic
to S/q for some prime q of S. Note that dim((S/q)K) ≤ dim(SK). Also, note that an
extension of free modules is free (see basic notion 50). Thus we may assume M = S and
that S is a domain of finite type over R.

If R → S has a nontrivial kernel, then take a nonzero f ∈ R in this kernel. In this
case Sf = 0 and the lemma holds. (This is really the case d = −1 and the start of the
induction.) Hence we may assume that R → S is a finite type extension of Noetherian
domains.

Apply Lemma 115.7 and replace R by Rf (with f as in the lemma) to get a factorization

R ⊂ R[y1, . . . , yd] ⊂ S

where the second extension is finite. Choose z1, . . . , zr ∈ S which form a basis for the
fraction field ofS over the fraction field ofR[y1, . . . , yd]. This gives a short exact sequence

0→ R[y1, . . . , yd]⊕r
(z1,...,zr)−−−−−−→ S → N → 0

By construction N is a finite R[y1, . . . , yd]-module whose support does not contain the
generic point (0) of Spec(R[y1, . . . , yd]). By Lemma 40.5 there exists a nonzero g ∈
R[y1, . . . , yd] such that g annihilates N , so we may view N as a finite module over S′ =
R[y1, . . . , yd]/(g). Since dim(S′

K) < d by induction there exists a nonzero f ∈ R such
that Nf is a free Rf -module. Since (R[y1, . . . , yd])f ∼= Rf [y1, . . . , yd] is free also we
conclude by the already mentioned fact that an extension of free modules is free. �

Lemma 118.2. Let R→ S be a ring map. Let M be an S-module. Assume
(1) R is a domain,
(2) R→ S is of finite presentation, and
(3) M is an S-module of finite presentation.

Then there exists a nonzero f ∈ R such that Mf is a free Rf -module.

Proof. Write S = R[x1, . . . , xn]/(g1, . . . , gm). For g ∈ R[x1, . . . , xn] denote g
its image in S. We may write M = S⊕t/

∑
Sni for some ni ∈ S⊕t. Write ni =

(gi1, . . . , git) for some gij ∈ R[x1, . . . , xn]. Let R0 ⊂ R be the subring generated by all
the coefficients of all the elements gi, gij ∈ R[x1, . . . , xn]. DefineS0 = R0[x1, . . . , xn]/(g1, . . . , gm).
Define M0 = S⊕t

0 /
∑
S0ni. Then R0 is a domain of finite type over Z and hence Noe-

therian (see Lemma 31.1). Moreover via the injectionR0 → Rwe have S ∼= R⊗R0 S0 and
M ∼= R⊗R0 M0. Applying Lemma 118.1 we obtain a nonzero f ∈ R0 such that (M0)f is
a free (R0)f -module. Hence Mf = Rf ⊗(R0)f (M0)f is a free Rf -module. �

Lemma 118.3. Let R→ S be a ring map. Let M be an S-module. Assume
(1) R is a domain,
(2) R→ S is of finite type, and
(3) M is a finite type S-module.

Then there exists a nonzero f ∈ R such that
(a) Mf and Sf are free as Rf -modules, and
(b) Sf is a finitely presented Rf -algebra and Mf is a finitely presented Sf -module.

Proof. We first prove the lemma for S = R[x1, . . . , xn], and then we deduce the
result in general.
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Assume S = R[x1, . . . , xn]. Choose elements m1, . . . ,mt which generate M . This gives
a short exact sequence

0→ N → S⊕t (m1,...,mt)−−−−−−−→M → 0.

Denote K the fraction field of R. Denote SK = K ⊗R S = K[x1, . . . , xn], and similarly
NK = K ⊗R N , MK = K ⊗R M . As R → K is flat the sequence remains exact after
tensoring with K. As SK = K[x1, . . . , xn] is a Noetherian ring (see Lemma 31.1) we can
find finitely many elements n′

1, . . . , n
′
s ∈ NK which generate it. Choose n1, . . . , nr ∈ N

such that n′
i =

∑
aijnj for some aij ∈ K. Set

M ′ = S⊕t/
∑

i=1,...,r
Sni

By construction M ′ is a finitely presented S-module, and there is a surjection M ′ → M
which induces an isomorphism M ′

K
∼= MK . We may apply Lemma 118.2 to R → S

and M ′ and we find an f ∈ R such that M ′
f is a free Rf -module. Thus M ′

f → Mf is a
surjection of modules over the domain Rf where the source is a free module and which
becomes an isomorphism upon tensoring with K. Thus it is injective as M ′

f ⊂ M ′
K as it

is free over the domainRf . HenceM ′
f →Mf is an isomorphism and the result is proved.

For the general case, choose a surjection R[x1, . . . , xn] → S. Think of both S and M
as finite modules over R[x1, . . . , xn]. By the special case proved above there exists a
nonzero f ∈ R such that both Sf and Mf are free as Rf -modules and finitely presented
asRf [x1, . . . , xn]-modules. Clearly this implies that Sf is a finitely presentedRf -algebra
and that Mf is a finitely presented Sf -module. �

Let R → S be a ring map. Let M be an S-module. Consider the following condition on
an element f ∈ R:

(118.3.1)

 Sf is of finite presentation over Rf
Mf is of finite presentation as Sf -module

Sf ,Mf are free as Rf -modules

We define

(118.3.2) U(R→ S,M) =
⋃

f∈R with (118.3.1)
D(f)

which is an open subset of Spec(R).

Lemma 118.4. Let R→ S be a ring map. Let 0→M1 →M2 →M3 → 0 be a short
exact sequence of S-modules. Then

U(R→ S,M1) ∩ U(R→ S,M3) ⊂ U(R→ S,M2).

Proof. Let u ∈ U(R → S,M1) ∩ U(R → S,M3). Choose f1, f3 ∈ R such that
u ∈ D(f1), u ∈ D(f3) and such that (118.3.1) holds for f1 and M1 and for f3 and M3.
Then set f = f1f3. Then u ∈ D(f) and (118.3.1) holds for f and both M1 and M3.
An extension of free modules is free, and an extension of finitely presented modules is
finitely presented (Lemma 5.3). Hence we see that (118.3.1) holds for f and M2. Thus
u ∈ U(R→ S,M2) and we win. �

Lemma 118.5. Let R → S be a ring map. Let M be an S-module. Let f ∈ R. Using
the identification Spec(Rf ) = D(f) we have U(Rf → Sf ,Mf ) = D(f) ∩ U(R →
S,M).



118. GENERIC FLATNESS 759

Proof. Suppose that u ∈ U(Rf → Sf ,Mf ). Then there exists an element g ∈ Rf
such that u ∈ D(g) and such that (118.3.1) holds for the pair ((Rf )g → (Sf )g, (Mf )g).
Write g = a/fn for some a ∈ R. Set h = af . Then Rh = (Rf )g , Sh = (Sf )g ,
and Mh = (Mf )g . Moreover u ∈ D(h). Hence u ∈ U(R → S,M). Conversely,
suppose that u ∈ D(f) ∩ U(R → S,M). Then there exists an element g ∈ R such that
u ∈ D(g) and such that (118.3.1) holds for the pair (Rg → Sg,Mg). Then it is clear that
(118.3.1) also holds for the pair (Rfg → Sfg,Mfg) = ((Rf )g → (Sf )g, (Mf )g). Hence
u ∈ U(Rf → Sf ,Mf ) and we win. �

Lemma 118.6. Let R → S be a ring map. Let M be an S-module. Let U ⊂ Spec(R)
be a dense open. Assume there is a coveringU =

⋃
i∈I D(fi) of opens such thatU(Rfi →

Sfi ,Mfi) is dense in D(fi) for each i ∈ I . Then U(R→ S,M) is dense in Spec(R).

Proof. In view of Lemma 118.5 this is a purely topological statement. Namely, by
that lemma we see that U(R → S,M) ∩ D(fi) is dense in D(fi) for each i ∈ I . By
Topology, Lemma 21.4 we see that U(R → S,M) ∩ U is dense in U . Since U is dense in
Spec(R) we conclude that U(R→ S,M) is dense in Spec(R). �

Lemma 118.7. Let R→ S be a ring map. Let M be an S-module. Assume
(1) R→ S is of finite type,
(2) M is a finite S-module, and
(3) R is reduced.

Then there exists a subset U ⊂ Spec(R) such that
(1) U is open and dense in Spec(R),
(2) for every u ∈ U there exists an f ∈ R such that u ∈ D(f) ⊂ U and such that

we have
(a) Mf and Sf are free over Rf ,
(b) Sf is a finitely presented Rf -algebra, and
(c) Mf is a finitely presented Sf -module.

Proof. Note that the lemma is equivalent to the statement that the open U(R →
S,M), see Equation (118.3.2), is dense in Spec(R). We first prove the lemma for S =
R[x1, . . . , xn], and then we deduce the result in general.
Proof of the case S = R[x1, . . . , xn] and M any finite module over S. Note that in
this case Sf = Rf [x1, . . . , xn] is free and of finite presentation over Rf , so we do not
have to worry about the conditions regarding S , only those that concern M . We will use
induction on n.
There exists a finite filtration

0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mt = M

such that Mi/Mi−1 ∼= S/Ji for some ideal Ji ⊂ S , see Lemma 5.4. Since a finite inter-
section of dense opens is dense open, we see from Lemma 118.4 that it suffices to prove the
lemma for each of the modulesR/Ji. Hence we may assume thatM = S/J for some ideal
J of S = R[x1, . . . , xn].
Let I ⊂ R be the ideal generated by the coefficients of elements of J . Let U1 = Spec(R) \
V (I) and let

U2 = Spec(R) \ U1.

Then it is clear that U = U1 ∪U2 is dense in Spec(R). Let f ∈ R be an element such that
either (a) D(f) ⊂ U1 or (b) D(f) ⊂ U2. If for any such f the lemma holds for the pair
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(Rf → Rf [x1, . . . , xn],Mf ) then by Lemma 118.6 we see that U(R→ S,M) is dense in
Spec(R). Hence we may assume either (a) I = R, or (b) V (I) = Spec(R).

In case (b) we actually have I = 0 as R is reduced! Hence J = 0 and M = S and the
lemma holds in this case.

In case (a) we have to do a little bit more work. Note that every element of I is actually
the coefficient of a monomial of an element of J , because the set of coefficients of elements
of J forms an ideal (details omitted). Hence we find an element

g =
∑

K∈E
aKx

K ∈ J

where E is a finite set of multi-indices K = (k1, . . . , kn) with at least one coefficient aK0

a unit in R. Actually we can find one which has a coefficient equal to 1 as 1 ∈ I in case
(a). Let m = #{K ∈ E | aK is not a unit}. Note that 0 ≤ m ≤ #E − 1. We will argue
by induction on m.

The case m = 0. In this case all the coefficients aK , K ∈ E of g are units and E 6= ∅. If
E = {K0} is a singleton and K0 = (0, . . . , 0), then g is a unit and J = S so the result
holds for sure. (This happens in particular when n = 0 and it provides the base case of the
induction on n.) If not E = {(0, . . . , 0)}, then at least one K is not equal to (0, . . . , 0),
i.e., g 6∈ R. At this point we employ the usual trick of Noether normalization. Namely,
we consider

G(y1, . . . , yn) = g(y1 + ye1
n , y2 + ye2

n , . . . , yn−1 + yen−1
n , yn)

with 0� en−1 � en−2 � . . .� e1. By Lemma 115.2 it follows that G(y1, . . . , yn) as a
polynomial in yn looks like

aKy
kn+
∑

i=1,...,n−1
eiki

n + lower order terms in yn
As aK is a unit we conclude that M = R[x1, . . . , xn]/J is finite over R[y1, . . . , yn−1].
Hence U(R→ R[x1, . . . , xn],M) = U(R→ R[y1, . . . , yn−1],M) and we win by induc-
tion on n.

The case m > 0. Pick a multi-index K ∈ E such that aK is not a unit. As before set
U1 = Spec(RaK ) = Spec(R) \ V (aK) and set

U2 = Spec(R) \ U1.

Then it is clear that U = U1 ∪U2 is dense in Spec(R). Let f ∈ R be an element such that
either (a) D(f) ⊂ U1 or (b) D(f) ⊂ U2. If for any such f the lemma holds for the pair
(Rf → Rf [x1, . . . , xn],Mf ) then by Lemma 118.6 we see that U(R→ S,M) is dense in
Spec(R). Hence we may assume either (a) aKR = R, or (b) V (aK) = Spec(R). In case
(a) the number m drops, as aK has turned into a unit. In case (b), since R is reduced, we
conclude that aK = 0. Hence the set E decreases so the number m drops as well. In both
cases we win by induction on m.

At this point we have proven the lemma in case S = R[x1, . . . , xn]. Assume that (R →
S,M) is an arbitrary pair satisfying the conditions of the lemma. Choose a surjection
R[x1, . . . , xn]→ S. Observe that, with the notation introduced in (118.3.2), we have

U(R→ S,M) = U(R→ R[x1, . . . , xn], S) ∩ U(R→ R[x1, . . . , xn],M)

Hence as we’ve just finished proving the right two opens are dense also the open on the
left is dense. �
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119. Around Krull-Akizuki

One application of Krull-Akizuki is to show that there are plenty of discrete valuation
rings. More generally in this section we show how to construct discrete valuation rings
dominating Noetherian local rings.
First we show how to dominate a Noetherian local domain by a 1-dimensional Noetherian
local domain by blowing up the maximal ideal.

Lemma 119.1. Let R be a local Noetherian domain with fraction field K. Assume R
is not a field. Then there exist R ⊂ R′ ⊂ K with

(1) R′ local Noetherian of dimension 1,
(2) R→ R′ a local ring map, i.e., R′ dominates R, and
(3) R→ R′ essentially of finite type.

Proof. Choose any valuation ring A ⊂ K dominating R (which exist by Lemma
50.2). Denote v the corresponding valuation. Let x1, . . . , xr be a minimal set of generators
of the maximal idealm ofR. We may and do assume that v(xr) = min{v(x1), . . . , v(xr)}.
Consider the ring

S = R[x1/xr, x2/xr, . . . , xr−1/xr] ⊂ K.
Note that mS = xrS is a principal ideal. Note that S ⊂ A and that v(xr) > 0, hence we
see that xrS 6= S. Choose a minimal prime q over xrS. Then height(q) = 1 by Lemma
60.11 and q lies over m. Hence we see that R′ = Sq is a solution. �

Lemma 119.2 (Kollár). Let (R,m) be a local Noetherian ring. Then exactly one of
the following holds:

(1) (R,m) is Artinian,
(2) (R,m) is regular of dimension 1,
(3) depth(R) ≥ 2, or
(4) there exists a finite ring mapR→ R′ which is not an isomorphism whose kernel

and cokernel are annihilated by a power of m such that m is not an associated
prime of R′ and R′ 6= 0.

Proof. Observe that (R,m) is not Artinian if and only ifV (m) ⊂ Spec(R) is nowhere
dense. See Proposition 60.7. We assume this from now on.
Let J ⊂ R be the largest ideal killed by a power of m. If J 6= 0 then R → R/J shows
that (R,m) is as in (4).
Otherwise J = 0. In particular m is not an associated prime of R and we see that there is
a nonzerodivisor x ∈ m by Lemma 63.18. If m is not an associated prime of R/xR then
depth(R) ≥ 2 by the same lemma. Thus we are left with the case when there is a y ∈ R,
y 6∈ xR such that ym ⊂ xR.
If ym ⊂ xm then we can consider the map ϕ : m → m, f 7→ yf/x (well defined as
x is a nonzerodivisor). By the determinantal trick of Lemma 16.2 there exists a monic
polynomial P with coefficients in R such that P (ϕ) = 0. We conclude that P (y/x) = 0
in Rx. Let R′ ⊂ Rx be the ring generated by R and y/x. Then R ⊂ R′ and R′/R is a
finite R-module annihilated by a power of m. Thus R is as in (4).
Otherwise there is a t ∈ m such that yt = ux for some unit u of R. After replacing t by
u−1t we get yt = x. In particular y is a nonzerodivisor. For any t′ ∈ m we have yt′ = xs
for some s ∈ R. Thus y(t′ − st) = xs− xs = 0. Since y is not a zero-divisor this implies
that t′ = ts and so m = (t). Thus (R,m) is regular of dimension 1. �
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Lemma 119.3. Let R be a local ring with maximal ideal m. Assume R is Noetherian,
has dimension 1, and that dim(m/m2) > 1. Then there exists a ring map R → R′ such
that

(1) R→ R′ is finite,
(2) R→ R′ is not an isomorphism,
(3) the kernel and cokernel of R→ R′ are annihilated by a power of m, and
(4) m is not an associated prime of R′.

Proof. This follows from Lemma 119.2 and the fact that R is not Artinian, not reg-
ular, and does not have depth ≥ 2 (the last part because the depth does not exceed the
dimension by Lemma 72.3). �

Example 119.4. Consider the Noetherian local ring

R = k[[x, y]]/(y2)
It has dimension 1 and it is Cohen-Macaulay. An example of an extension as in Lemma
119.3 is the extension

k[[x, y]]/(y2) ⊂ k[[x, z]]/(z2), y 7→ xz

in other words it is gotten by adjoining y/x toR. The effect of repeating the construction
n > 1 times is to adjoin the element y/xn.

Example 119.5. Let k be a field of characteristic p > 0 such that k has infinite degree
over its subfield kp of pth powers. For example k = Fp(t1, t2, t3, . . .). Consider the ring

A =
{∑

aix
i ∈ k[[x]] such that [kp(a0, a1, a2, . . .) : kp] <∞

}
Then A is a discrete valuation ring and its completion is A∧ = k[[x]]. Note that the
induced extension of fraction fields of A ⊂ k[[x]] is infinite purely inseparable. Choose
any f ∈ k[[x]], f 6∈ A. Let R = A[f ] ⊂ k[[x]]. Then R is a Noetherian local domain of
dimension 1 whose completion R∧ is nonreduced (think!).

Remark 119.6. Suppose that R is a 1-dimensional semi-local Noetherian domain. If
there is a maximal ideal m ⊂ R such that Rm is not regular, then we may apply Lemma
119.3 to (R,m) to get a finite ring extension R ⊂ R1. (For example one can do this so
that Spec(R1) → Spec(R) is the blowup of Spec(R) in the ideal m.) Of course R1 is a
1-dimensional semi-local Noetherian domain with the same fraction field as R. If R1 is
not a regular semi-local ring, then we may repeat the construction to get R1 ⊂ R2. Thus
we get a sequence

R ⊂ R1 ⊂ R2 ⊂ R3 ⊂ . . .
of finite ring extensions which may stop if Rn is regular for some n. Resolution of singu-
larities would be the claim that eventually Rn is indeed regular. In reality this is not the
case. Namely, there exists a characteristic 0 Noetherian local domain A of dimension 1
whose completion is nonreduced, see [?, Proposition 3.1] or our Examples, Section 16. For
an example in characteristic p > 0 see Example 119.5. Since the construction of blowing
up commutes with completion it is easy to see the sequence never stabilizes. See [?] for
a discussion (mostly in positive characteristic). On the other hand, if the completion of
R in all of its maximal ideals is reduced, then the procedure stops (insert future reference
here).

Lemma 119.7. Let A be a ring. The following are equivalent.
(1) The ring A is a discrete valuation ring.
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(2) The ring A is a valuation ring and Noetherian but not a field.
(3) The ring A is a regular local ring of dimension 1.
(4) The ring A is a Noetherian local domain with maximal ideal m generated by a

single nonzero element.
(5) The ring A is a Noetherian local normal domain of dimension 1.

In this case if π is a generator of the maximal ideal of A, then every element of A can be
uniquely written as uπn, where u ∈ A is a unit.

Proof. The equivalence of (1) and (2) is Lemma 50.18. Moreover, in the proof of
Lemma 50.18 we saw that ifA is a discrete valuation ring, thenA is a PID, hence (3). Note
that a regular local ring is a domain (see Lemma 106.2). Using this the equivalence of (3)
and (4) follows from dimension theory, see Section 60.

Assume (3) and let π be a generator of the maximal ideal m. For all n ≥ 0 we have
dimA/m mn/mn+1 = 1 because it is generated by πn (and it cannot be zero). In partic-
ular mn = (πn) and the graded ring

⊕
mn/mn+1 is isomorphic to the polynomial ring

A/m[T ]. For x ∈ A \ {0} define v(x) = max{n | x ∈ mn}. In other words x = uπv(x)

with u ∈ A∗. By the remarks above we have v(xy) = v(x) + v(y) for all x, y ∈ A \ {0}.
We extend this to the field of fractions K of A by setting v(a/b) = v(a) − v(b) (well
defined by multiplicativity shown above). Then it is clear that A is the set of elements of
K which have valuation ≥ 0. Hence we see that A is a valuation ring by Lemma 50.16.

A valuation ring is a normal domain by Lemma 50.3. Hence we see that the equivalent con-
ditions (1) – (3) imply (5). Assume (5). Suppose that m cannot be generated by 1 element
to get a contradiction. Then Lemma 119.3 implies there is a finite ring mapA→ A′ which
is an isomorphism after inverting any nonzero element of m but not an isomorphism. In
particular we may identify A′ with a subset of the fraction field of A. Since A → A′ is
finite it is integral (see Lemma 36.3). SinceA is normal we getA = A′ a contradiction. �

Definition 119.8. Let A be a discrete valuation ring. A uniformizer is an element
π ∈ A which generates the maximal ideal of A.

By Lemma 119.7 any two uniformizers of a discrete valuation ring are associates.

Lemma 119.9. Let R be a domain with fraction field K. Let M be an R-submodule
of K⊕r. Assume R is local Noetherian of dimension 1. For any nonzero x ∈ R we have
lengthR(R/xR) <∞ and

lengthR(M/xM) ≤ r · lengthR(R/xR).

Proof. If x is a unit then the result is true. Hence we may assume x ∈ m the maximal
ideal of R. Since x is not zero and R is a domain we have dim(R/xR) = 0, and hence
R/xR has finite length. Consider M ⊂ K⊕r as in the lemma. We may assume that
the elements of M generate K⊕r as a K-vector space after replacing K⊕r by a smaller
subspace if necessary.

Suppose first that M is a finite R-module. In that case we can clear denominators and
assume M ⊂ R⊕r. Since M generates K⊕r as a vectors space we see that R⊕r/M has
finite length. In particular there exists an integer c ≥ 0 such that xcR⊕r ⊂ M . Note
that M ⊃ xM ⊃ x2M ⊃ . . . is a sequence of modules with successive quotients each
isomorphic to M/xM . Hence we see that

nlengthR(M/xM) = lengthR(M/xnM).
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The same argument for M = R⊕r shows that

nlengthR(R⊕r/xR⊕r) = lengthR(R⊕r/xnR⊕r).

By our choice of c above we see that xnM is sandwiched between xnR⊕r and xn+cR⊕r.
This easily gives that

r(n+ c)lengthR(R/xR) ≥ nlengthR(M/xM) ≥ r(n− c)lengthR(R/xR)

Hence in the finite case we actually get the result of the lemma with equality.

Suppose now that M is not finite. Suppose that the length of M/xM is ≥ k for some
natural number k. Then we can find

0 ⊂ N0 ⊂ N1 ⊂ N2 ⊂ . . . Nk ⊂M/xM

withNi 6= Ni+1 for i = 0, . . . k− 1. Choose an elementmi ∈M whose congruence class
mod xM falls into Ni but not into Ni−1 for i = 1, . . . , k. Consider the finite R-module
M ′ = Rm1 + . . .+Rmk ⊂M . LetN ′

i ⊂M ′/xM ′ be the inverse image ofNi. It is clear
that N ′

i 6= N ′
i+1 by our choice of mi. Hence we see that lengthR(M ′/xM ′) ≥ k. By the

finite case we conclude k ≤ rlengthR(R/xR) as desired. �

Here is a first application.

Lemma 119.10. LetR→ S be a homomorphism of domains inducing an injection of
fraction fields K ⊂ L. If R is Noetherian local of dimension 1 and [L : K] <∞ then

(1) each prime ideal ni of S lying over the maximal ideal m of R is maximal,
(2) there are finitely many of these, and
(3) [κ(ni) : κ(m)] <∞ for each i.

Proof. Pick x ∈ m nonzero. Apply Lemma 119.9 to the submodule S ⊂ L ∼= K⊕n

where n = [L : K]. Thus the ring S/xS has finite length over R. It follows that S/mS
has finite length over κ(m). In other words, dimκ(m) S/mS is finite (Lemma 52.6). Thus
S/mS is Artinian (Lemma 53.2). The structural results on Artinian rings implies parts
(1) and (2), see for example Lemma 53.6. Part (3) is implied by the finiteness established
above. �

Lemma 119.11. Let R be a domain with fraction field K. Let M be an R-submodule
of K⊕r. Assume R is Noetherian of dimension 1. For any nonzero x ∈ R we have
lengthR(M/xM) <∞.

Proof. Since R has dimension 1 we see that x is contained in finitely many primes
mi, i = 1, . . . , n, each maximal. Since R is Noetherian we see that R/xR is Artinian
and R/xR =

∏
i=1,...,n(R/xR)mi by Proposition 60.7 and Lemma 53.6. Hence M/xM

similarly decomposes as the product M/xM =
∏

(M/xM)mi of its localizations at the
mi. By Lemma 119.9 applied to Mmi over Rmi we see each Mmi/xMmi = (M/xM)mi
has finite length over Rmi . Thus M/xM has finite length over R as the above implies
M/xM has a finite filtration byR-submodules whose successive quotients are isomorphic
to the residue fields κ(mi). �

Lemma 119.12 (Krull-Akizuki). Let R be a domain with fraction field K. Let L/K
be a finite extension of fields. Assume R is Noetherian and dim(R) = 1. In this case any
ring A with R ⊂ A ⊂ L is Noetherian.
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Proof. To begin we may assume that L is the fraction field of A by replacing L by
the fraction field of A if necessary. Let I ⊂ A be a nonzero ideal. Clearly I generates L
as a K-vector space. Hence we see that I ∩ R 6= (0). Pick any nonzero x ∈ I ∩ R. Then
we get I/xA ⊂ A/xA. By Lemma 119.11 the R-module A/xA has finite length as an
R-module. Hence I/xA has finite length as anR-module. Hence I is finitely generated as
an ideal in A. �

Lemma 119.13. Let R be a Noetherian local domain with fraction field K. Assume
that R is not a field. Let L/K be a finitely generated field extension. Then there exists
discrete valuation ring A with fraction field L which dominates R.

Proof. If L is not finite over K choose a transcendence basis x1, . . . , xr of L over
K and replace R by R[x1, . . . , xr] localized at the maximal ideal generated by mR and
x1, . . . , xr. Thus we may assume K ⊂ L finite.
By Lemma 119.1 we may assume dim(R) = 1.
Let A ⊂ L be the integral closure of R in L. By Lemma 119.12 this is Noetherian. By
Lemma 36.17 there is a prime ideal q ⊂ A lying over the maximal ideal of R. By Lemma
119.7 the ring Aq is a discrete valuation ring dominating R as desired. �

120. Factorization

Here are some notions and relations between them that are typically taught in a first year
course on algebra at the undergraduate level.

Definition 120.1. Let R be a domain.
(1) Elements x, y ∈ R are called associates if there exists a unit u ∈ R∗ such that

x = uy.
(2) An element x ∈ R is called irreducible if it is nonzero, not a unit and whenever

x = yz, y, z ∈ R, then y is either a unit or an associate of x.
(3) An element x ∈ R is called prime if the ideal generated by x is a prime ideal.

Lemma 120.2. Let R be a domain. Let x, y ∈ R. Then x, y are associates if and only
if (x) = (y).

Proof. If x = uy for some unit u ∈ R, then (x) ⊂ (y) and y = u−1x so also
(y) ⊂ (x). Conversely, suppose that (x) = (y). Then x = fy and y = gx for some
f, g ∈ A. Then x = fgx and sinceR is a domain fg = 1. Thus x and y are associates. �

Lemma 120.3. Let R be a domain. Consider the following conditions:
(1) The ring R satisfies the ascending chain condition for principal ideals.
(2) Every nonzero, nonunit element a ∈ R has a factorization a = b1 . . . bk with

each bi an irreducible element of R.
Then (1) implies (2).

Proof. Let x be a nonzero element, not a unit, which does not have a factorization
into irreducibles. Set x1 = x. We can write x = yz where neither y nor z is irreducible or
a unit. Then either y does not have a factorization into irreducibles, in which case we set
x2 = y, or z does not have a factorization into irreducibles, in which case we set x2 = z.
Continuing in this fashion we find a sequence

x1|x2|x3| . . .
of elements of R with xn/xn+1 not a unit. This gives a strictly increasing sequence of
principal ideals (x1) ⊂ (x2) ⊂ (x3) ⊂ . . . thereby finishing the proof. �
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Definition 120.4. A unique factorization domain, abbreviated UFD, is a domain R
such that if x ∈ R is a nonzero, nonunit, then x has a factorization into irreducibles, and
if

x = a1 . . . am = b1 . . . bn

are factorizations into irreducibles thenn = m and there exists a permutationσ : {1, . . . , n} →
{1, . . . , n} such that ai and bσ(i) are associates.

Lemma 120.5. Let R be a domain. Assume every nonzero, nonunit factors into irre-
ducibles. Then R is a UFD if and only if every irreducible element is prime.

Proof. Assume R is a UFD and let x ∈ R be an irreducible element. Say ab ∈ (x),
i.e., ab = cx. Choose factorizations a = a1 . . . an, b = b1 . . . bm, and c = c1 . . . cr. By
uniqueness of the factorization

a1 . . . anb1 . . . bm = c1 . . . crx

we find that x is an associate of one of the elements a1, . . . , bm. In other words, either
a ∈ (x) or b ∈ (x) and we conclude that x is prime.

Assume every irreducible element is prime. We have to prove that factorization into ir-
reducibles is unique up to permutation and taking associates. Say a1 . . . am = b1 . . . bn
with ai and bj irreducible. Since a1 is prime, we see that bj ∈ (a1) for some j. After
renumbering we may assume b1 ∈ (a1). Then b1 = a1u and since b1 is irreducible we see
that u is a unit. Hence a1 and b1 are associates and a2 . . . an = ub2 . . . bm. By induction
on n+m we see that n = m and ai associate to bσ(i) for i = 2, . . . , n as desired. �

Lemma 120.6. Let R be a Noetherian domain. Then R is a UFD if and only if every
height 1 prime ideal is principal.

Proof. Assume R is a UFD and let p be a height 1 prime ideal. Take x ∈ p nonzero
and let x = a1 . . . an be a factorization into irreducibles. Since p is prime we see that
ai ∈ p for some i. By Lemma 120.5 the ideal (ai) is prime. Since p has height 1 we
conclude that (ai) = p.

Assume every height 1 prime is principal. Since R is Noetherian every nonzero nonunit
element x has a factorization into irreducibles, see Lemma 120.3. It suffices to prove that
an irreducible element x is prime, see Lemma 120.5. Let (x) ⊂ p be a prime minimal over
(x). Then p has height 1 by Lemma 60.11. By assumption p = (y). Hence x = yz and z
is a unit as x is irreducible. Thus (x) = (y) and we see that x is prime. �

Lemma 120.7 (Nagata’s criterion for factoriality). Let A be a domain. Let S ⊂ A be
a multiplicative subset generated by prime elements. Let x ∈ A be irreducible. Then

(1) the image of x in S−1A is irreducible or a unit, and
(2) x is prime if and only if the image of x in S−1A is a unit or a prime element in

S−1A.
Moreover, then A is a UFD if and only if every element of A has a factorization into
irreducibles and S−1A is a UFD.

Proof. Say x = αβ for α, β ∈ S−1A. Then α = a/s and β = b/s′ for a, b ∈ A,
s, s′ ∈ S. Thus we get ss′x = ab. By assumption we can write ss′ = p1 . . . pr for some
prime elements pi. For each i the element pi divides either a or b. Dividing we find a
factorization x = a′b′ and a = s′′a′, b = s′′′b′ for some s′′, s′′′ ∈ S. As x is irreducible,
either a′ or b′ is a unit. Tracing back we find that either α or β is a unit. This proves (1).
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Suppose x is prime. Then A/(x) is a domain. Hence S−1A/xS−1A = S−1(A/(x)) is a
domain or zero. Thus x maps to a prime element or a unit.
Suppose that the image of x in S−1A is a unit. Then yx = s for some s ∈ S and y ∈ A.
By assumption s = p1 . . . pr with pi a prime element. For each i either pi divides y or pi
divides x. In the second case pi and x are associates (as x is irreducible) and we are done.
But if the first case happens for all i = 1, . . . , r, then x is a unit which is a contradiction.
Suppose that the image of x in S−1A is a prime element. Assume a, b ∈ A and ab ∈ (x).
Then sa = xy or sb = xy for some s ∈ S and y ∈ A. Say the first case happens. By
assumption s = p1 . . . pr with pi a prime element. For each i either pi divides y or pi
divides x. In the second case pi and x are associates (as x is irreducible) and we are done.
If the first case happens for all i = 1, . . . , r, then a ∈ (x) as desired. This completes the
proof of (2).
The final statement of the lemma follows from (1) and (2) and Lemma 120.5. �

Lemma 120.8. A UFD satisfies the ascending chain condition for principal ideals.

Proof. Consider an ascending chain (a1) ⊂ (a2) ⊂ (a3) ⊂ . . . of principal ideals in
R. Write a1 = pe1

1 . . . perr with pi prime. Then we see that an is an associate of pc1
1 . . . pcrr

for some 0 ≤ ci ≤ ei. Since there are only finitely many possibilities we conclude. �

Lemma 120.9. Let R be a domain. Assume R has the ascending chain condition for
principal ideals. Then the same property holds for a polynomial ring over R.

Proof. Consider an ascending chain (f1) ⊂ (f2) ⊂ (f3) ⊂ . . . of principal ideals in
R[x]. Since fn+1 divides fn we see that the degrees decrease in the sequence. Thus fn has
fixed degree d ≥ 0 for all n � 0. Let an be the leading coefficient of fn. The condition
fn ∈ (fn+1) implies that an+1 divides an for all n. By our assumption on R we see that
an+1 and an are associates for all n large enough (Lemma 120.2). Thus for large n we
see that fn = ufn+1 where u ∈ R (for reasons of degree) is a unit (as an and an+1 are
associates). �

Lemma 120.10. A polynomial ring over a UFD is a UFD. In particular, if k is a field,
then k[x1, . . . , xn] is a UFD.

Proof. Let R be a UFD. Then R satisfies the ascending chain condition for princi-
pal ideals (Lemma 120.8), hence R[x] satisfies the ascending chain condition for principal
ideals (Lemma 120.9), and hence every element ofR[x] has a factorization into irreducibles
(Lemma 120.3). LetS ⊂ R be the multiplicative subset generated by prime elements. Since
every nonunit of R is a product of prime elements we see that K = S−1R is the fraction
field of R. Observe that every prime element of R maps to a prime element of R[x] and
that S−1(R[x]) = S−1R[x] = K[x] is a UFD (and even a PID). Thus we may apply
Lemma 120.7 to conclude. �

Lemma 120.11. A unique factorization domain is normal.

Proof. LetR be a UFD. Letx be an element of the fraction field ofRwhich is integral
overR. Say xd−a1x

d−1− . . .−ad = 0 with ai ∈ R. We can write x = upe1
1 . . . perr with

u a unit, ei ∈ Z, and p1, . . . , pr irreducible elements which are not associates. To prove
the lemma we have to show ei ≥ 0. If not, say e1 < 0, then for N � 0 we get

udpde2+N
2 . . . pder+N

r = p−de1
1 pN2 . . . pNr (

∑
i=1,...,d

aix
d−i) ∈ (p1)

which contradicts uniqueness of factorization in R. �
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Definition 120.12. A principal ideal domain, abbreviated PID, is a domain R such
that every ideal is a principal ideal.

Lemma 120.13. A principal ideal domain is a unique factorization domain.

Proof. As a PID is Noetherian this follows from Lemma 120.6. �

Definition 120.14. A Dedekind domain is a domainR such that every nonzero ideal
I ⊂ R can be written as a product

I = p1 . . . pr

of nonzero prime ideals uniquely up to permutation of the pi.

Lemma 120.15. A PID is a Dedekind domain.

Proof. Let R be a PID. Since every nonzero ideal of R is principal, and R is a UFD
(Lemma 120.13), this follows from the fact that every irreducible element in R is prime
(Lemma 120.5) so that factorizations of elements turn into factorizations into primes. �

Lemma 120.16. LetA be a ring. Let I and J be nonzero ideals ofA such that IJ = (f)
for some nonzerodivisor f ∈ A. Then I and J are finitely generated ideals and finitely
locally free of rank 1 as A-modules.

Proof. It suffices to show that I and J are finite locally free A-modules of rank 1,
see Lemma 78.2. To do this, write f =

∑
i=1,...,n xiyi with xi ∈ I and yi ∈ J . We can

also write xiyi = aif for some ai ∈ A. Since f is a nonzerodivisor we see that
∑
ai = 1.

Thus it suffices to show that each Iai and Jai is free of rank 1 overAai . After replacingA
by Aai we conclude that f = xy for some x ∈ I and y ∈ J . Note that both x and y are
nonzerodivisors. We claim that I = (x) and J = (y) which finishes the proof. Namely,
if x′ ∈ I , then x′y = af = axy for some a ∈ A. Hence x′ = ax and we win. �

Lemma 120.17. Let R be a ring. The following are equivalent
(1) R is a Dedekind domain,
(2) R is a Noetherian domain, and for every maximal ideal m the local ring Rm is a

discrete valuation ring, and
(3) R is a Noetherian, normal domain, and dim(R) ≤ 1.

Proof. Assume (1). The argument is nontrivial because we did not assume that R
was Noetherian in our definition of a Dedekind domain. Let p ⊂ R be a prime ideal.
Observe that p 6= p2 by uniqueness of the factorizations in the definition. Pick x ∈ p
with x 6∈ p2. Let y ∈ p be a second element (for example y = 0). Write (x, y) = p1 . . . pr.
Since (x, y) ⊂ p at least one of the primes pi is contained in p. But as x 6∈ p2 there is
at most one. Thus exactly one of p1, . . . , pr is contained in p, say p1 ⊂ p. We conclude
that (x, y)Rp = p1Rp is prime for every choice of y. We claim that (x)Rp = pRp.
Namely, pick y ∈ p. By the above applied with y2 we see that (x, y2)Rp is prime. Hence
y ∈ (x, y2)Rp, i.e., y = ax + by2 in Rp. Thus (1 − by)y = ax ∈ (x)Rp, i.e., y ∈ (x)Rp

as desired.
Writing (x) = p1 . . . pr anew with p1 ⊂ p we conclude that p1Rp = pRp, i.e., p1 = p.
Moreover, p1 = p is a finitely generated ideal ofR by Lemma 120.16. We conclude thatR
is Noetherian by Lemma 28.10. Moreover, it follows that Rm is a discrete valuation ring
for every prime ideal p, see Lemma 119.7.
The equivalence of (2) and (3) follows from Lemmas 37.10 and 119.7. Assume (2) and
(3) are satisfied. Let I ⊂ R be an ideal. We will construct a factorization of I . If I is
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prime, then there is nothing to prove. If not, pick I ⊂ p with p ⊂ R maximal. Let
J = {x ∈ R | xp ⊂ I}. We claim Jp = I . It suffices to check this after localization
at the maximal ideals m of R (the formation of J commutes with localization and we use
Lemma 23.1). Then either pRm = Rm and the result is clear, or pRm = mRm. In the last
case pRm = (π) and the case where p is principal is immediate. By Noetherian induction
the ideal J has a factorization and we obtain the desired factorization of I . We omit the
proof of uniqueness of the factorization. �

The following is a variant of the Krull-Akizuki lemma.

Lemma 120.18. Let A be a Noetherian domain of dimension 1 with fraction field
K. Let L/K be a finite extension. Let B be the integral closure of A in L. Then B is
a Dedekind domain and Spec(B) → Spec(A) is surjective, has finite fibres, and induces
finite residue field extensions.

Proof. By Krull-Akizuki (Lemma 119.12) the ringB is Noetherian. By Lemma 112.4
dim(B) = 1. ThusB is a Dedekind domain by Lemma 120.17. Surjectivity of the map on
spectra follows from Lemma 36.17. The last two statements follow from Lemma 119.10.

�

121. Orders of vanishing

Lemma 121.1. Let R be a semi-local Noetherian ring of dimension 1. If a, b ∈ R are
nonzerodivisors then

lengthR(R/(ab)) = lengthR(R/(a)) + lengthR(R/(b))
and these lengths are finite.

Proof. We saw the finiteness in Lemma 119.11. Additivity holds since there is a short
exact sequence 0 → R/(a) → R/(ab) → R/(b) → 0 where the first map is given by
multiplication by b. (Use length is additive, see Lemma 52.3.) �

Definition 121.2. Suppose that K is a field, and R ⊂ K is a local10 Noetherian
subring of dimension 1 with fraction fieldK. In this case we define the order of vanishing
along R

ordR : K∗ −→ Z
by the rule

ordR(x) = lengthR(R/(x))
if x ∈ R and we set ordR(x/y) = ordR(x)− ordR(y) for x, y ∈ R both nonzero.

We can use the order of vanishing to compare lattices in a vector space. Here is the defi-
nition.

Definition 121.3. Let R be a Noetherian local domain of dimension 1 with frac-
tion field K. Let V be a finite dimensional K-vector space. A lattice in V is a finite
R-submodule M ⊂ V such that V = K ⊗RM .

The condition V = K ⊗RM signifies thatM contains a basis for the vector space V . We
remark that in many places in the literature the notion of a lattice may be defined only
in case the ring R is a discrete valuation ring. If R is a discrete valuation ring then any
lattice is a free R-module, and this may not be the case in general.

10We could also define this when R is only semi-local but this is probably never really what you want!
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Lemma 121.4. LetR be a Noetherian local domain of dimension 1 with fraction field
K. Let V be a finite dimensional K-vector space.

(1) If M is a lattice in V and M ⊂M ′ ⊂ V is an R-submodule of V containing M
then the following are equivalent
(a) M ′ is a lattice,
(b) lengthR(M ′/M) is finite, and
(c) M ′ is finitely generated.

(2) If M is a lattice in V and M ′ ⊂M is an R-submodule of M then M ′ is a lattice
if and only if lengthR(M/M ′) is finite.

(3) If M , M ′ are lattices in V , then so are M ∩M ′ and M +M ′.
(4) If M ⊂M ′ ⊂M ′′ ⊂ V are lattices in V then

lengthR(M ′′/M) = lengthR(M ′/M) + lengthR(M ′′/M ′).
(5) If M , M ′, N , N ′ are lattices in V and N ⊂ M ∩M ′, M + M ′ ⊂ N ′, then we

have

lengthR(M/M ∩M ′)− lengthR(M ′/M ∩M ′)
= lengthR(M/N)− lengthR(M ′/N)
= lengthR(M +M ′/M ′)− lengthR(M +M ′/M)
= lengthR(N ′/M ′)− lengthR(N ′/M)

Proof. Proof of (1). Assume (1)(a). Say y1, . . . , ym generate M ′. Then each yi =
xi/fi for some xi ∈ M and nonzero fi ∈ R. Hence we see that f1 . . . fmM

′ ⊂ M .
Since R is Noetherian local of dimension 1 we see that mn ⊂ (f1 . . . fm) for some n (for
example combine Lemmas 60.13 and Proposition 60.7 or combine Lemmas 119.9 and 52.4).
In other words mnM ′ ⊂ M for some n Hence length(M ′/M) < ∞ by Lemma 52.8, in
other words (1)(b) holds. Assume (1)(b). Then M ′/M is a finite R-module (see Lemma
52.2). Hence M ′ is a finite R-module as an extension of finite R-modules. Hence (1)(c).
The implication (1)(c)⇒ (1)(a) follows from the remark following Definition 121.3.

Proof of (2). Suppose M is a lattice in V and M ′ ⊂ M is an R-submodule. We have
seen in (1) that if M ′ is a lattice, then lengthR(M/M ′) < ∞. Conversely, assume that
lengthR(M/M ′) <∞. Then M ′ is finitely generated as R is Noetherian and for some n
we have mnM ⊂M ′ (Lemma 52.4). Hence it follows that M ′ contains a basis for V , and
M ′ is a lattice.

Proof of (3). Assume M , M ′ are lattices in V . Since R is Noetherian the submodule
M ∩ M ′ of M is finite. As M is a lattice we can find x1, . . . , xn ∈ M which form a
K-basis for V . Because M ′ is a lattice we can write xi = yi/fi with yi ∈M ′ and fi ∈ R.
Hence fixi ∈M ∩M ′. Hence M ∩M ′ is a lattice also. The fact that M +M ′ is a lattice
follows from part (1).

Part (4) follows from additivity of lengths (Lemma 52.3) and the exact sequence

0→M ′/M →M ′′/M →M ′′/M ′ → 0
Part (5) follows from repeatedly applying part (4). �

Definition 121.5. Let R be a Noetherian local domain of dimension 1 with fraction
field K. Let V be a finite dimensional K-vector space. Let M , M ′ be two lattices in V .
The distance between M and M ′ is the integer

d(M,M ′) = lengthR(M/M ∩M ′)− lengthR(M ′/M ∩M ′)
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of Lemma 121.4 part (5).

In particular, if M ′ ⊂M , then d(M,M ′) = lengthR(M/M ′).

Lemma 121.6. LetR be a Noetherian local domain of dimension 1 with fraction field
K. Let V be a finite dimensional K-vector space. This distance function has the property
that

d(M,M ′′) = d(M,M ′) + d(M ′,M ′′)
whenever given three lattices M , M ′, M ′′ of V . In particular we have d(M,M ′) =
−d(M ′,M).

Proof. Omitted. �

Lemma 121.7. LetR be a Noetherian local domain of dimension 1 with fraction field
K. Let V be a finite dimensional K-vector space. Let ϕ : V → V be a K-linear isomor-
phism. For any lattice M ⊂ V we have

d(M,ϕ(M)) = ordR(det(ϕ))

Proof. We can see that the integer d(M,ϕ(M)) does not depend on the lattice M
as follows. Suppose that M ′ is a second such lattice. Then we see that

d(M,ϕ(M)) = d(M,M ′) + d(M ′, ϕ(M))
= d(M,M ′) + d(ϕ(M ′), ϕ(M)) + d(M ′, ϕ(M ′))

Since ϕ is an isomorphism we see that d(ϕ(M ′), ϕ(M)) = d(M ′,M) = −d(M,M ′),
and hence d(M,ϕ(M)) = d(M ′, ϕ(M ′)). Moreover, both sides of the equation (of the
lemma) are additive in ϕ, i.e.,

ordR(det(ϕ ◦ ψ)) = ordR(det(ϕ)) + ordR(det(ψ))
and also

d(M,ϕ(ψ((M))) = d(M,ψ(M)) + d(ψ(M), ϕ(ψ(M)))
= d(M,ψ(M)) + d(M,ϕ(M))

by the independence shown above. Hence it suffices to prove the lemma for generators
of GL(V ). Choose an isomorphism K⊕n ∼= V . Then GL(V ) = GLn(K) is generated
by elementary matrices E. The result is clear for E equal to the identity matrix. If E =
Eij(λ) with i 6= j , λ ∈ K , λ 6= 0, for example

E12(λ) =

 1 λ . . .
0 1 . . .
. . . . . . . . .


then with respect to a different basis we getE12(1). The result is clear forE = E12(1) by
taking as lattice R⊕n ⊂ K⊕n. Finally, if E = Ei(a), with a ∈ K∗ for example

E1(a) =

 a 0 . . .
0 1 . . .
. . . . . . . . .


then E1(a)(R⊕b) = aR ⊕ R⊕n−1 and it is clear that d(R⊕n, aR ⊕ R⊕n−1) = ordR(a)
as desired. �

Lemma 121.8. Let A→ B be a ring map. Assume
(1) A is a Noetherian local domain of dimension 1,
(2) A ⊂ B is a finite extension of domains.
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Let L/K be the corresponding finite extension of fraction fields. Let y ∈ L∗ and x =
NmL/K(y). In this situation B is semi-local. Let mi, i = 1, . . . , n be the maximal ideals
of B. Then

ordA(x) =
∑

i
[κ(mi) : κ(mA)]ordBmi

(y)

where ord is defined as in Definition 121.2.

Proof. The ringB is semi-local by Lemma 113.2. Write y = b/b′ for some b, b′ ∈ B.
By the additivity of ord and multiplicativity of Nm it suffices to prove the lemma for
y = b or y = b′. In other words we may assume y ∈ B. In this case the right hand side of
the formula is ∑

[κ(mi) : κ(mA)]lengthBmi
((B/yB)mi)

By Lemma 52.12 this is equal to lengthA(B/yB). By Lemma 121.7 we have

lengthA(B/yB) = d(B, yB) = ordA(detK(L y−→ L)).

Since x = NmL/K(y) = detK(L y−→ L) by definition the lemma is proved. �

122. Quasi-finite maps

Consider a ring map R → S of finite type. A map Spec(S) → Spec(R) is quasi-finite at
a point if that point is isolated in its fibre. This means that the fibre is zero dimensional
at that point. In this section we study the basic properties of this important but technical
notion. More advanced material can be found in the next section.

Lemma 122.1. Let k be a field. Let S be a finite type k-algebra. Let q be a prime of S.
The following are equivalent:

(1) q is an isolated point of Spec(S),
(2) Sq is finite over k,
(3) there exists a g ∈ S , g 6∈ q such that D(g) = {q},
(4) dimq Spec(S) = 0,
(5) q is a closed point of Spec(S) and dim(Sq) = 0, and
(6) the field extension κ(q)/k is finite and dim(Sq) = 0.

In this case S = Sq × S′ for some finite type k-algebra S′. Also, the element g as in (3)
has the property Sq = Sg .

Proof. Suppose q is an isolated point of Spec(S), i.e., {q} is open in Spec(S). Because
Spec(S) is a Jacobson space (see Lemmas 35.2 and 35.4) we see that q is a closed point.
Hence {q} is open and closed in Spec(S). By Lemmas 21.3 and 24.3 we may write S =
S1 × S2 with q corresponding to the only point Spec(S1). Hence S1 = Sq is a zero
dimensional ring of finite type over k. Hence it is finite over k for example by Lemma
115.4. We have proved (1) implies (2).

Suppose Sq is finite over k. Then Sq is Artinian local, see Lemma 53.2. So Spec(Sq) =
{qSq} by Lemma 53.6. Consider the exact sequence 0 → K → S → Sq → Q → 0.
It is clear that Kq = Qq = 0. Also, K is a finite S-module as S is Noetherian and Q
is a finite S-module since Sq is finite over k. Hence there exists g ∈ S , g 6∈ q such that
Kg = Qg = 0. Thus Sq = Sg and D(g) = {q}. We have proved that (2) implies (3).

SupposeD(g) = {q}. SinceD(g) is open by construction of the topology on Spec(S) we
see that q is an isolated point of Spec(S). We have proved that (3) implies (1). In other
words (1), (2) and (3) are equivalent.
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Assume dimq Spec(S) = 0. This means that there is some open neighbourhood of q in
Spec(S) which has dimension zero. Then there is an open neighbourhood of the form
D(g) which has dimension zero. Since Sg is Noetherian we conclude that Sg is Artinian
and D(g) = Spec(Sg) is a finite discrete set, see Proposition 60.7. Thus q is an isolated
point of D(g) and, by the equivalence of (1) and (2) above applied to qSg ⊂ Sg , we see
that Sq = (Sg)qSg is finite over k. Hence (4) implies (2). It is clear that (1) implies (4).
Thus (1) – (4) are all equivalent.

Lemma 114.6 gives the implication (5) ⇒ (4). The implication (4) ⇒ (6) follows from
Lemma 116.3. The implication (6) ⇒ (5) follows from Lemma 35.9. At this point we
know (1) – (6) are equivalent.

The two statements at the end of the lemma we saw during the course of the proof of the
equivalence of (1), (2) and (3) above. �

Lemma 122.2. Let R → S be a ring map of finite type. Let q ⊂ S be a prime lying
over p ⊂ R. Let F = Spec(S ⊗R κ(p)) be the fibre of Spec(S) → Spec(R), see Remark
17.8. Denote q ∈ F the point corresponding to q. The following are equivalent

(1) q is an isolated point of F ,
(2) Sq/pSq is finite over κ(p),
(3) there exists a g ∈ S , g 6∈ q such that the only prime of D(g) mapping to p is q,
(4) dimq(F ) = 0,
(5) q is a closed point of F and dim(Sq/pSq) = 0, and
(6) the field extension κ(q)/κ(p) is finite and dim(Sq/pSq) = 0.

Proof. Note that Sq/pSq = (S ⊗R κ(p))q. Moreover S ⊗R κ(p) is of finite type
over κ(p). The conditions correspond exactly to the conditions of Lemma 122.1 for the
κ(p)-algebra S ⊗R κ(p) and the prime q, hence they are equivalent. �

Definition 122.3. Let R→ S be a finite type ring map. Let q ⊂ S be a prime.
(1) If the equivalent conditions of Lemma 122.2 are satisfied then we say R → S is

quasi-finite at q.
(2) We say a ring map A→ B is quasi-finite if it is of finite type and quasi-finite at

all primes of B.

Lemma 122.4. Let R → S be a finite type ring map. Then R → S is quasi-finite if
and only if for all primes p ⊂ R the fibre S ⊗R κ(p) is finite over κ(p).

Proof. If the fibres are finite then the map is clearly quasi-finite. For the converse,
note that S ⊗R κ(p) is a κ(p)-algebra of finite type and of dimension 0. Hence it is finite
over κ(p) for example by Lemma 115.4. �

Lemma 122.5. Let R→ S be a finite type ring map. Let q ⊂ S be a prime lying over
p ⊂ R. Let f ∈ R, f 6∈ p and g ∈ S , g 6∈ q. Then R→ S is quasi-finite at q if and only if
Rf → Sfg is quasi-finite at qSfg .

Proof. The fibre of Spec(Sfg) → Spec(Rf ) is homeomorphic to an open subset of
the fibre of Spec(S)→ Spec(R). Hence the lemma follows from part (1) of the equivalent
conditions of Lemma 122.2. �
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Lemma 122.6. Let

S // S′ q q′

R

OO

// R′

OO

p p′

be a commutative diagram of rings with primes as indicated. AssumeR→ S of finite type,
and S ⊗R R′ → S′ surjective. If R → S is quasi-finite at q, then R′ → S′ is quasi-finite
at q′.

Proof. Write S ⊗R κ(p) = S1 × S2 with S1 finite over κ(p) and such that q
corresponds to a point of S1 as in Lemma 122.1. This product decomposition induces a
corresponding product decomposition for any S ⊗R κ(p)-algebra. In particular, we ob-
tain S′ ⊗R′ κ(p′) = S′

1 × S′
2. Because S ⊗R R′ → S′ is surjective the canonical map

(S ⊗R κ(p)) ⊗κ(p) κ(p′) → S′ ⊗R′ κ(p′) is surjective and hence Si ⊗κ(p) κ(p′) → S′
i is

surjective. It follows that S′
1 is finite over κ(p′). The map S′ ⊗R′ κ(p′) → κ(q′) factors

through S′
1 (i.e. it annihilates the factor S′

2) because the map S ⊗R κ(p) → κ(q) factors
throughS1 (i.e. it annihilates the factorS2). Thus q′ corresponds to a point of Spec(S′

1) in
the disjoint union decomposition of the fibre: Spec(S′⊗R′κ(p′)) = Spec(S′

1)qSpec(S′
2),

see Lemma 21.2. Since S′
1 is finite over a field, it is Artinian ring, and hence Spec(S′

1) is
a finite discrete set. (See Proposition 60.7.) We conclude q′ is isolated in its fibre as de-
sired. �

Lemma 122.7. A composition of quasi-finite ring maps is quasi-finite.

Proof. Suppose A → B and B → C are quasi-finite ring maps. By Lemma 6.2 we
see that A→ C is of finite type. Let r ⊂ C be a prime of C lying over q ⊂ B and p ⊂ A.
Since A → B and B → C are quasi-finite at q and r respectively, then there exist b ∈ B
and c ∈ C such that q is the only prime of D(b) which maps to p and similarly r is the
only prime of D(c) which maps to q. If c′ ∈ C is the image of b ∈ B, then r is the only
prime of D(cc′) which maps to p. Therefore A→ C is quasi-finite at r. �

Lemma 122.8. Let R→ S be a ring map of finite type. LetR→ R′ be any ring map.
Set S′ = R′ ⊗R S.

(1) The set {q′ | R′ → S′ quasi-finite at q′} is the inverse image of the correspond-
ing set of Spec(S) under the canonical map Spec(S′)→ Spec(S).

(2) If Spec(R′) → Spec(R) is surjective, then R → S is quasi-finite if and only if
R′ → S′ is quasi-finite.

(3) Any base change of a quasi-finite ring map is quasi-finite.

Proof. Let p′ ⊂ R′ be a prime lying over p ⊂ R. Then the fibre ring S′ ⊗R′ κ(p′) is
the base change of the fibre ring S ⊗R κ(p) by the field extension κ(p) → κ(p′). Hence
the first assertion follows from the invariance of dimension under field extension (Lemma
116.6) and Lemma 122.1. The stability of quasi-finite maps under base change follows from
this and the stability of finite type property under base change. The second assertion
follows since the assumption implies that given a prime q ⊂ S we can find a prime q′ ⊂ S′

lying over it. �

Lemma 122.9. Let A→ B and B → C be ring homomorphisms such that A→ C is
of finite type. Let r be a prime of C lying over q ⊂ B and p ⊂ A. IfA→ C is quasi-finite
at r, then B → C is quasi-finite at r.
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Proof. Observe thatB → C is of finite type (Lemma 6.2) so that the statement makes
sense. Let us use characterization (3) of Lemma 122.2. If A → C is quasi-finite at r, then
there exists some c ∈ C such that

{r′ ⊂ C lying over p} ∩D(c) = {r}.

Since the primes r′ ⊂ C lying over q form a subset of the primes r′ ⊂ C lying over p we
conclude B → C is quasi-finite at r. �

The following lemma is not quite about quasi-finite ring maps, but it does not seem to fit
anywhere else so well.

Lemma 122.10. Let R → S be a ring map of finite type. Let p ⊂ R be a minimal
prime. Assume that there are at most finitely many primes of S lying over p. Then there
exists a g ∈ R, g 6∈ p such that the ring map Rg → Sg is finite.

Proof. Let x1, . . . , xn be generators of S overR. Since p is a minimal prime we have
that pRp is a locally nilpotent ideal, see Lemma 25.1. Hence pSp is a locally nilpotent
ideal, see Lemma 32.3. By assumption the finite type κ(p)-algebra Sp/pSp has finitely
many primes. Hence (for example by Lemmas 61.3 and 115.4) κ(p) → Sp/pSp is a finite
ring map. Thus we may find monic polynomials Pi ∈ Rp[X] such that Pi(xi) maps to
zero in Sp/pSp. By what we said above there exist ei ≥ 1 such that P (xi)ei = 0 in Sp.
Let g1 ∈ R, g1 6∈ p be an element such that Pi has coefficients in R[1/g1] for all i. Next,
let g2 ∈ R, g2 6∈ p be an element such that P (xi)ei = 0 in Sg1g2 . Setting g = g1g2 we
win. �

123. Zariski’s Main Theorem

In this section our aim is to prove the algebraic version of Zariski’s Main theorem. This
theorem will be the basis of many further developments in the theory of schemes and
morphisms of schemes later in the Stacks project.

Let R→ S be a ring map of finite type. Our goal in this section is to show that the set of
points of Spec(S) where the map is quasi-finite is open (Theorem 123.12). In fact, it will
turn out that there exists a finite ring mapR→ S′ such that in some sense the quasi-finite
locus of S/R is open in Spec(S′) (but we will not prove this in the algebra chapter since
we do not develop the language of schemes here – for the case whereR→ S is quasi-finite
see Lemma 123.14). These statements are somewhat tricky to prove and we do it by a long
list of lemmas concerning integral and finite extensions of rings. This material may be
found in [?], and [?]. We also found notes by Thierry Coquand helpful.

Lemma 123.1. Let ϕ : R → S be a ring map. Suppose t ∈ S satisfies the relation
ϕ(a0) + ϕ(a1)t+ . . .+ ϕ(an)tn = 0. Then ϕ(an)t is integral over R.

Proof. Namely, multiply the equation ϕ(a0) + ϕ(a1)t + . . . + ϕ(an)tn = 0 with
ϕ(an)n−1 and write it as ϕ(a0a

n−1
n ) + ϕ(a1a

n−2
n )(ϕ(an)t) + . . .+ (ϕ(an)t)n = 0. �

The following lemma is in some sense the key lemma in this section.

Lemma 123.2. Let R be a ring. Let ϕ : R[x] → S be a ring map. Let t ∈ S. Assume
that (a) t is integral over R[x], and (b) there exists a monic p ∈ R[x] such that tϕ(p) ∈
Im(ϕ). Then there exists a q ∈ R[x] such that t− ϕ(q) is integral over R.
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Proof. Write tϕ(p) = ϕ(r) for some r ∈ R[x]. Using euclidean division, write
r = qp + r′ with q, r′ ∈ R[x] and deg(r′) < deg(p). We may replace t by t − ϕ(q)
which is still integral over R[x], so that we obtain tϕ(p) = ϕ(r′). In the ring St we
may write this as ϕ(p) − (1/t)ϕ(r′) = 0. This implies that ϕ(x) gives an element of the
localization St which is integral over ϕ(R)[1/t] ⊂ St. On the other hand, t is integral
over the subring ϕ(R)[ϕ(x)] ⊂ S. Combined we conclude that t is integral over the
subring ϕ(R)[1/t] ⊂ St, see Lemma 36.6. In other words there exists an equation of the
form

td +
∑

i<d

(∑
j=0,...,ni

ϕ(ri,j)/tj
)
ti = 0

in St with ri,j ∈ R. This means that td+N +
∑
i<d

∑
j=0,...,ni ϕ(ri,j)ti+N−j = 0 in S

for some N large enough. In other words t is integral over R. �

Lemma 123.3. Let R be a ring. Let ϕ : R[x]→ S be a ring map. Let t ∈ S. Assume t
is integral over R[x]. Let p ∈ R[x], p = a0 + a1x+ . . .+ akx

k such that tϕ(p) ∈ Im(ϕ).
Then there exists a q ∈ R[x] and n ≥ 0 such that ϕ(ak)nt− ϕ(q) is integral over R.

Proof. Let R′ and S′ be the localization of R and S at the element ak. Let ϕ′ :
R′[x]→ S′ be the localization of ϕ. Let t′ ∈ S′ be the image of t. Set p′ = p/ak ∈ R′[x].
Then t′ϕ′(p′) ∈ Im(ϕ′) since tϕ(p) ∈ Im(ϕ). As p′ is monic, by Lemma 123.2 there exists
a q′ ∈ R′[x] such that t′ − ϕ′(q′) is integral over R′. We may choose an n ≥ 0 and an
element q ∈ R[x] such that ankq′ is the image of q. Then ϕ(ak)nt− ϕ(q) is an element of
S whose image in S′ is integral over R′. By Lemma 36.11 there exists an m ≥ 0 such that
ϕ(ak)m(ϕ(ak)nt− ϕ(q)) is integral over R. Thus ϕ(ak)m+nt− ϕ(amk q) is integral over
R as desired. �

Situation 123.4. Let R be a ring. Let ϕ : R[x]→ S be finite. Let
J = {g ∈ S | gS ⊂ Im(ϕ)}

be the “conductor ideal” of ϕ. Assume ϕ(R) ⊂ S integrally closed in S.

Lemma 123.5. In Situation 123.4. Suppose u ∈ S , a0, . . . , ak ∈ R, uϕ(a0 + a1x +
. . .+ akx

k) ∈ J . Then there exists an m ≥ 0 such that uϕ(ak)m ∈ J .

Proof. Assume that S is generated by t1, . . . , tn as an R[x]-module. In this case
J = {g ∈ S | gti ∈ Im(ϕ) for all i}. Note that each element uti is integral over R[x],
see Lemma 36.3. We have ϕ(a0 + a1x + . . . + akx

k)uti ∈ Im(ϕ). By Lemma 123.3, for
each i there exists an integer ni and an element qi ∈ R[x] such that ϕ(anik )uti − ϕ(qi) is
integral over R. By assumption this element is in ϕ(R) and hence ϕ(anik )uti ∈ Im(ϕ). It
follows that m = max{n1, . . . , nn} works. �

Lemma 123.6. In Situation 123.4. Suppose u ∈ S , a0, . . . , ak ∈ R, uϕ(a0 + a1x +
. . .+ akx

k) ∈
√
J . Then uϕ(ai) ∈

√
J for all i.

Proof. Under the assumptions of the lemma we have unϕ(a0 +a1x+. . .+akxk)n ∈
J for some n ≥ 1. By Lemma 123.5 we deduce unϕ(anmk ) ∈ J for some m ≥ 1. Thus
uϕ(ak) ∈

√
J , and so uϕ(a0 + a1x+ . . .+ akx

k)− uϕ(akxk) = uϕ(a0 + a1x+ . . .+
ak−1x

k−1) ∈
√
J . We win by induction on k. �

This lemma suggests the following definition.

Definition 123.7. Given an inclusion of rings R ⊂ S and an element x ∈ S we say
that x is strongly transcendental over R if whenever u(a0 + a1x+ . . .+ akx

k) = 0 with
u ∈ S and ai ∈ R, then we have uai = 0 for all i.
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Note that ifS is a domain then this is the same as saying that x as an element of the fraction
field of S is transcendental over the fraction field of R.

Lemma 123.8. Suppose R ⊂ S is an inclusion of reduced rings and suppose that
x ∈ S is strongly transcendental overR. Let q ⊂ S be a minimal prime and let p = R∩q.
Then the image of x in S/q is strongly transcendental over the subring R/p.

Proof. Suppose u(a0 + a1x+ . . .+ akx
k) ∈ q. By Lemma 25.1 the local ring Sq is a

field, and henceu(a0+a1x+. . .+akxk) is zero inSq. Thusuu′(a0+a1x+. . .+akxk) = 0
for some u′ ∈ S , u′ 6∈ q. Since x is strongly transcendental over R we get uu′ai = 0 for
all i. This in turn implies that uai ∈ q. �

Lemma 123.9. Suppose R ⊂ S is an inclusion of domains and let x ∈ S. Assume
x is (strongly) transcendental over R and that S is finite over R[x]. Then R → S is not
quasi-finite at any prime of S.

Proof. As a first case, assume thatR is normal, see Definition 37.11. By Lemma 37.14
we see that R[x] is normal. Take a prime q ⊂ S , and set p = R ∩ q. Assume that the
extension κ(p) ⊂ κ(q) is finite. This would be the case if R → S is quasi-finite at q. Let
r = R[x] ∩ q. Then since κ(p) ⊂ κ(r) ⊂ κ(q) we see that the extension κ(p) ⊂ κ(r)
is finite too. Thus the inclusion r ⊃ pR[x] is strict. By going down for R[x] ⊂ S , see
Proposition 38.7, we find a prime q′ ⊂ q, lying over the prime pR[x]. Hence the fibre
Spec(S⊗R κ(p)) contains a point not equal to q, namely q′, whose closure contains q and
hence q is not isolated in its fibre.

If R is not normal, let R ⊂ R′ ⊂ K be the integral closure R′ of R in its field of fractions
K. Let S ⊂ S′ ⊂ L be the subring S′ of the field of fractions L of S generated by R′

and S. Note that by construction the map S ⊗R R′ → S′ is surjective. This implies that
R′[x] ⊂ S′ is finite. Also, the map S ⊂ S′ induces a surjection on Spec, see Lemma 36.17.
We conclude by Lemma 122.6 and the normal case we just discussed. �

Lemma 123.10. Suppose R ⊂ S is an inclusion of reduced rings. Assume x ∈ S be
strongly transcendental overR, and S finite overR[x]. ThenR→ S is not quasi-finite at
any prime of S.

Proof. Let q ⊂ S be any prime. Choose a minimal prime q′ ⊂ q. According to
Lemmas 123.8 and 123.9 the extension R/(R ∩ q′) ⊂ S/q′ is not quasi-finite at the prime
corresponding to q. By Lemma 122.6 the extension R→ S is not quasi-finite at q. �

Lemma 123.11. Let R be a ring. Let S = R[x]/I . Let q ⊂ S be a prime. Assume
R→ S is quasi-finite at q. Let S′ ⊂ S be the integral closure of R in S. Then there exists
an element g ∈ S′, g 6∈ q such that S′

g
∼= Sg .

Proof. Let p be the image of q in Spec(R). There exists an f ∈ I , f = anx
n+. . .+a0

such that ai 6∈ p for some i. Namely, otherwise the fibre ring S⊗R κ(p) would be κ(p)[x]
and the map would not be quasi-finite at any prime lying over p. We conclude there exists
a relation bmxm + . . . + b0 = 0 with bj ∈ S′, j = 0, . . . ,m and bj 6∈ q ∩ S′ for some j.
We prove the lemma by induction on m. The base case is m = 0 is vacuous (because the
statements b0 = 0 and b0 6∈ q are contradictory).

The case bm 6∈ q. In this case x is integral over S′
bm

, in fact bmx ∈ S′ by Lemma 123.1.
Hence the injective map S′

bm
→ Sbm is also surjective, i.e., an isomorphism as desired.
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The case bm ∈ q. In this case we have bmx ∈ S′ by Lemma 123.1. Set b′
m−1 = bmx+bm−1.

Then
b′
m−1x

m−1 + bm−2x
m−2 + . . .+ b0 = 0

Since b′
m−1 is congruent to bm−1 modulo S′ ∩ q we see that it is still the case that one of

b′
m−1, bm−2, . . . , b0 is not in S′ ∩ q. Thus we win by induction on m. �

Theorem 123.12 (Zariski’s Main Theorem). Let R be a ring. Let R → S be a finite
type R-algebra. Let S′ ⊂ S be the integral closure of R in S. Let q ⊂ S be a prime of S.
If R→ S is quasi-finite at q then there exists a g ∈ S′, g 6∈ q such that S′

g
∼= Sg .

Proof. There exist finitely many elements x1, . . . , xn ∈ S such that S is finite over
the R-sub algebra generated by x1, . . . , xn. (For example generators of S over R.) We
prove the proposition by induction on the minimal such number n.

The case n = 0 is trivial, because in this case S′ = S , see Lemma 36.3.

The case n = 1. We may replace R by its integral closure in S (Lemma 122.9 guarantees
that R → S is still quasi-finite at q). Thus we may assume R ⊂ S is integrally closed in
S , in other words R = S′. Consider the map ϕ : R[x] → S , x 7→ x1. (We will see that
ϕ is not injective below.) By assumption ϕ is finite. Hence we are in Situation 123.4. Let
J ⊂ S be the “conductor ideal” defined in Situation 123.4. Consider the diagram

R[x] // S // S/
√
J R/(R ∩

√
J)[x]oo

R

``

//

OO

R/(R ∩
√
J)

OO 66

According to Lemma 123.6 the image of x in the quotientS/
√
J is strongly transcendental

over R/(R ∩
√
J). Hence by Lemma 123.10 the ring map R/(R ∩

√
J) → S/

√
J is not

quasi-finite at any prime of S/
√
J . By Lemma 122.6 we deduce that q does not lie in

V (J) ⊂ Spec(S). Thus there exists an element s ∈ J , s 6∈ q. By definition of J we may
write s = ϕ(f) for some polynomial f ∈ R[x]. Let I = Ker(ϕ : R[x] → S). Since
ϕ(f) ∈ J we get (R[x]/I)f ∼= Sϕ(f). Also s 6∈ q means that f 6∈ ϕ−1(q). Thus ϕ−1(q) is
a prime of R[x]/I at which R → R[x]/I is quasi-finite, see Lemma 122.5. Note that R is
integrally closed inR[x]/I sinceR is integrally closed in S. By Lemma 123.11 there exists
an element h ∈ R, h 6∈ R ∩ q such that Rh ∼= (R[x]/I)h. Thus (R[x]/I)fh = Sϕ(fh) is
isomorphic to a principal localization Rh′ of R for some h′ ∈ R, h′ 6∈ q.

The casen > 1. Consider the subringR′ ⊂ Swhich is the integral closure ofR[x1, . . . , xn−1]
in S. By Lemma 122.9 the extension S/R′ is quasi-finite at q. Also, note that S is finite
overR′[xn]. By the case n = 1 above, there exists a g′ ∈ R′, g′ 6∈ q such that (R′)g′ ∼= Sg′ .
At this point we cannot apply induction toR→ R′ sinceR′ may not be finite type overR.
SinceS is finitely generated overRwe deduce in particular that (R′)g′ is finitely generated
over R. Say the elements g′, and y1/(g′)n1 , . . . , yN/(g′)nN with yi ∈ R′ generate (R′)g′

overR. LetR′′ be theR-sub algebra ofR′ generated by x1, . . . , xn−1, y1, . . . , yN , g
′. This

has the property (R′′)g′ ∼= Sg′ . Surjectivity because of how we chose yi, injectivity be-
cause R′′ ⊂ R′, and localization is exact. Note that R′′ is finite over R[x1, . . . , xn−1]
because of our choice of R′, see Lemma 36.4. Let q′′ = R′′ ∩ q. Since (R′′)q′′ = Sq we see
that R → R′′ is quasi-finite at q′′, see Lemma 122.2. We apply our induction hypothesis
to R → R′′, q′′ and x1, . . . , xn−1 ∈ R′′ and we find a subring R′′′ ⊂ R′′ which is inte-
gral over R and an element g′′ ∈ R′′′, g′′ 6∈ q′′ such that (R′′′)g′′ ∼= (R′′)g′′ . Write the
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image of g′ in (R′′)g′′ as g′′′/(g′′)n for some g′′′ ∈ R′′′. Set g = g′′g′′′ ∈ R′′′. Then it is
clear that g 6∈ q and (R′′′)g ∼= Sg . Since by construction we have R′′′ ⊂ S′ we also have
S′
g
∼= Sg as desired. �

Lemma 123.13. Let R→ S be a finite type ring map. The set of points q of Spec(S)
at which S/R is quasi-finite is open in Spec(S).

Proof. Let q ⊂ S be a point at which the ring map is quasi-finite. By Theorem 123.12
there exists an integral ring extension R → S′, S′ ⊂ S and an element g ∈ S′, g 6∈ q
such that S′

g
∼= Sg . Since S and hence Sg are of finite type over R we may find finitely

many elements y1, . . . , yN of S′ such that S′′
g
∼= Sg where S′′ ⊂ S′ is the sub R-algebra

generated by g, y1, . . . , yN . Since S′′ is finite over R (see Lemma 36.4) we see that S′′ is
quasi-finite over R (see Lemma 122.4). It is easy to see that this implies that S′′

g is quasi-
finite over R, for example because the property of being quasi-finite at a prime depends
only on the local ring at the prime. Thus we see that Sg is quasi-finite overR. By the same
token this implies that R→ S is quasi-finite at every prime of S which lies in D(g). �

Lemma 123.14. Let R → S be a finite type ring map. Suppose that S is quasi-finite
over R. Let S′ ⊂ S be the integral closure of R in S. Then

(1) Spec(S)→ Spec(S′) is a homeomorphism onto an open subset,
(2) if g ∈ S′ and D(g) is contained in the image of the map, then S′

g
∼= Sg , and

(3) there exists a finite R-algebra S′′ ⊂ S′ such that (1) and (2) hold for the ring
map S′′ → S.

Proof. Because S/R is quasi-finite we may apply Theorem 123.12 to each point q
of Spec(S). Since Spec(S) is quasi-compact, see Lemma 17.10, we may choose a finite
number of gi ∈ S′, i = 1, . . . , n such that S′

gi = Sgi , and such that g1, . . . , gn generate
the unit ideal in S (in other words the standard opens of Spec(S) associated to g1, . . . , gn
cover all of Spec(S)).
Suppose that D(g) ⊂ Spec(S′) is contained in the image. Then D(g) ⊂

⋃
D(gi). In

other words, g1, . . . , gn generate the unit ideal of S′
g . Note that S′

ggi
∼= Sggi by our

choice of gi. Hence S′
g
∼= Sg by Lemma 23.2.

We construct a finite algebra S′′ ⊂ S′ as in (3). To do this note that each S′
gi
∼= Sgi

is a finite type R-algebra. For each i pick some elements yij ∈ S′ such that each S′
gi is

generated as R-algebra by 1/gi and the elements yij . Then set S′′ equal to the sub R-
algebra of S′ generated by all gi and all the yij . Details omitted. �

124. Applications of Zariski’s Main Theorem

Here is an immediate application characterizing the finite maps of 1-dimensional semi-
local rings among the quasi-finite ones as those where equality always holds in the formula
of Lemma 121.8.

Lemma 124.1. Let A ⊂ B be an extension of domains. Assume
(1) A is a local Noetherian ring of dimension 1,
(2) A→ B is of finite type, and
(3) the induced extension L/K of fraction fields is finite.

Then B is semi-local. Let x ∈ mA, x 6= 0. Let mi, i = 1, . . . , n be the maximal ideals of
B. Then

[L : K]ordA(x) ≥
∑

i
[κ(mi) : κ(mA)]ordBmi

(x)
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where ord is defined as in Definition 121.2. We have equality if and only if A → B is
finite.

Proof. The ring B is semi-local by Lemma 113.2. Let B′ be the integral closure of A
in B. By Lemma 123.14 we can find a finite A-subalgebra C ⊂ B′ such that on setting
ni = C ∩ mi we have Cni

∼= Bmi and the primes n1, . . . , nn are pairwise distinct. The
ring C is semi-local by Lemma 113.2. Let pj , j = 1, . . . ,m be the other maximal ideals of
C (the “missing points”). By Lemma 121.8 we have

ordA(x[L:K]) =
∑

i
[κ(ni) : κ(mA)]ordCni

(x) +
∑

j
[κ(pj) : κ(mA)]ordCpj

(x)

hence the inequality follows. In case of equality we conclude that m = 0 (no “missing
points”). HenceC ⊂ B is an inclusion of semi-local rings inducing a bijection on maximal
ideals and an isomorphism on all localizations at maximal ideals. So if b ∈ B, then I =
{x ∈ C | xb ∈ C} is an ideal of C which is not contained in any of the maximal ideals of
C , and hence I = C , hence b ∈ C. Thus B = C and B is finite over A. �

Here is a more standard application of Zariski’s main theorem to the structure of local
homomorphisms of local rings.

Lemma 124.2. Let (R,mR)→ (S,mS) be a local homomorphism of local rings. As-
sume

(1) R→ S is essentially of finite type,
(2) κ(mR) ⊂ κ(mS) is finite, and
(3) dim(S/mRS) = 0.

Then S is the localization of a finite R-algebra.

Proof. Let S′ be a finite type R-algebra such that S = S′
q′ for some prime q′ of S′.

By Definition 122.3 we see that R → S′ is quasi-finite at q′. After replacing S′ by S′
g′

for some g′ ∈ S′, g′ 6∈ q′ we may assume that R → S′ is quasi-finite, see Lemma 123.13.
Then by Lemma 123.14 there exists a finite R-algebra S′′ and elements g′ ∈ S′, g′ 6∈ q′

and g′′ ∈ S′′ such that S′
g′
∼= S′′

g′′ as R-algebras. This proves the lemma. �

Lemma 124.3. Let R→ S be a ring map, q a prime of S lying over p in R. If
(1) R is Noetherian,
(2) R→ S is of finite type, and
(3) R→ S is quasi-finite at q,

then R∧
p ⊗R S = S∧

q ×B for some R∧
p -algebra B.

Proof. There exists a finiteR-algebra S′ ⊂ S and an element g ∈ S′, g 6∈ q′ = S′∩q
such that S′

g = Sg and in particular S′
q′ = Sq, see Lemma 123.14. We have

R∧
p ⊗R S′ = (S′

q′)∧ ×B′

by Lemma 97.8. Observe that under this product decomposition g maps to a pair (u, b′)
with u ∈ (S′

q′)∧ a unit because g 6∈ q′. The product decomposition forR∧
p ⊗R S′ induces

a product decomposition
R∧

p ⊗R S = A×B
Since S′

g = Sg we also have (R∧
p ⊗RS′)g = (R∧

p ⊗RS)g and since g 7→ (u, b′) where u is a
unit we see that (S′

q′)∧ = A. Since the isomorphismS′
q′ = Sq determines an isomorphism

on completions this also tells us that A = S∧
q . This finishes the proof, except that we

should perform the sanity check that the induced map φ : R∧
p ⊗R S → A = S∧

q is the



125. DIMENSION OF FIBRES 781

natural one. For elements of the form x⊗ 1 with x ∈ R∧
p this is clear as the natural map

R∧
p → S∧

q factors through (S′
q′)∧. For elements of the form 1 ⊗ y with y ∈ S we can

argue that for some n ≥ 1 the element gny is the image of some y′ ∈ S′. Thus φ(1⊗ gny)
is the image of y′ by the composition S′ → (S′

q′)∧ → S∧
q which is equal to the image of

gny by the map S → S∧
q . Since g maps to a unit this also implies that φ(1 ⊗ y) has the

correct value, i.e., the image of y by S → S∧
q . �

125. Dimension of fibres

We study the behaviour of dimensions of fibres, using Zariski’s main theorem. Recall that
we defined the dimension dimx(X) of a topological space X at a point x in Topology,
Definition 10.1.

Definition 125.1. Suppose thatR→ S is of finite type, and let q ⊂ S be a prime ly-
ing over a prime p ofR. We define the relative dimension ofS/R at q, denoted dimq(S/R),
to be the dimension of Spec(S⊗Rκ(p)) at the point corresponding to q. We let dim(S/R)
be the supremum of dimq(S/R) over all q. This is called the relative dimension of S/R.

In particular, R → S is quasi-finite at q if and only if dimq(S/R) = 0. The following
lemma is more or less a reformulation of Zariski’s Main Theorem.

Lemma 125.2. Let R → S be a finite type ring map. Let q ⊂ S be a prime. Suppose
that dimq(S/R) = n. There exists a g ∈ S , g 6∈ q such that Sg is quasi-finite over a
polynomial algebra R[t1, . . . , tn].

Proof. The ring S = S ⊗R κ(p) is of finite type over κ(p). Let q be the prime of
S corresponding to q. By definition of the dimension of a topological space at a point
there exists an open U ⊂ Spec(S) with q ∈ U and dim(U) = n. Since the topology on
Spec(S) is induced from the topology on Spec(S) (see Remark 17.8), we can find a g ∈ S ,
g 6∈ q with image g ∈ S such that D(g) ⊂ U . Thus after replacing S by Sg we see that
dim(S) = n.

Next, choose generators x1, . . . , xN for S as an R-algebra. By Lemma 115.4 there exist
elements y1, . . . , yn in the Z-subalgebra of S generated by x1, . . . , xN such that the map
R[t1, . . . , tn] → S , ti 7→ yi has the property that κ(p)[t1 . . . , tn] → S is finite. In
particular,S is quasi-finite overR[t1, . . . , tn] at q. Hence, by Lemma 123.13 we may replace
S by Sg for some g ∈ S , g 6∈ q such that R[t1, . . . , tn]→ S is quasi-finite. �

Lemma 125.3. Let R→ S be a ring map. Let q ⊂ S be a prime lying over the prime
p of R. Assume

(1) R→ S is of finite type,
(2) dimq(S/R) = n, and
(3) trdegκ(p)κ(q) = r.

Then there exist f ∈ R, f 6∈ p, g ∈ S , g 6∈ q and a quasi-finite ring map

ϕ : Rf [x1, . . . , xn] −→ Sg

such that ϕ−1(qSg) = (p, xr+1, . . . , xn)Rf [xr+1, . . . , xn]

Proof. After replacing S by a principal localization we may assume there exists a
quasi-finite ring map ϕ : R[t1, . . . , tn] → S , see Lemma 125.2. Set q′ = ϕ−1(q). Let
q′ ⊂ κ(p)[t1, . . . , tn] be the prime corresponding to q′. By Lemma 115.6 there exists a
finite ring map κ(p)[x1, . . . , xn] → κ(p)[t1, . . . , tn] such that the inverse image of q′ is
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(xr+1, . . . , xn). Let hi ∈ κ(p)[t1, . . . , tn] be the image of xi. We can find an element
f ∈ R, f 6∈ p and hi ∈ Rf [t1, . . . , tn] which map to hi in κ(p)[t1, . . . , tn]. Then the ring
map

Rf [x1, . . . , xn] −→ Rf [t1, . . . , tn]
becomes finite after tensoring with κ(p). In particular, Rf [t1, . . . , tn] is quasi-finite over
Rf [x1, . . . , xn] at the prime q′Rf [t1, . . . , tn]. Hence, by Lemma 123.13 there exists a g ∈
Rf [t1, . . . , tn], g 6∈ q′Rf [t1, . . . , tn] such that Rf [x1, . . . , xn] → Rf [t1, . . . , tn, 1/g] is
quasi-finite. Thus we see that the composition

Rf [x1, . . . , xn] −→ Rf [t1, . . . , tn, 1/g] −→ Sϕ(g)

is quasi-finite and we win. �

Lemma 125.4. Let R→ S be a finite type ring map. Let q ⊂ S be a prime lying over
p ⊂ R. If R→ S is quasi-finite at q, then dim(Sq) ≤ dim(Rp).

Proof. If Rp is Noetherian (and hence Sq Noetherian since it is essentially of finite
type overRp) then this follows immediately from Lemma 112.6 and the definitions. In the
general case, let S′ be the integral closure of Rp in Sp. By Zariski’s Main Theorem 123.12
we have Sq = S′

q′ for some q′ ⊂ S′ lying over q. By Lemma 112.3 we have dim(S′) ≤
dim(Rp) and hence a fortiori dim(Sq) = dim(S′

q′) ≤ dim(Rp). �

Lemma 125.5. Let k be a field. Let S be a finite type k-algebra. Suppose there is a
quasi-finite k-algebra map k[t1, . . . , tn] ⊂ S. Then dim(S) ≤ n.

Proof. By Lemma 114.1 the dimension of any local ring of k[t1, . . . , tn] is at most n.
Thus the result follows from Lemma 125.4. �

Lemma 125.6. Let R → S be a finite type ring map. Let q ⊂ S be a prime. Suppose
that dimq(S/R) = n. There exists an open neighbourhood V of q in Spec(S) such that
dimq′(S/R) ≤ n for all q′ ∈ V .

Proof. By Lemma 125.2 we see that we may assume that S is quasi-finite over a poly-
nomial algebra R[t1, . . . , tn]. Considering the fibres, we reduce to Lemma 125.5. �

In other words, the lemma says that the set of points where the fibre has dimension≤ n is
open in Spec(S). The next lemma says that formation of this open commutes with base
change. If the ring map is of finite presentation then this set is quasi-compact open (see
below).

Lemma 125.7. Let R → S be a finite type ring map. Let R → R′ be any ring map.
Set S′ = R′ ⊗R S and denote f : Spec(S′) → Spec(S) the associated map on spectra.
Let n ≥ 0. The inverse image f−1({q ∈ Spec(S) | dimq(S/R) ≤ n}) is equal to
{q′ ∈ Spec(S′) | dimq′(S′/R′) ≤ n}.

Proof. The condition is formulated in terms of dimensions of fibre rings which are
of finite type over a field. Combined with Lemma 116.6 this yields the lemma. �

Lemma 125.8. LetR→ S be a ring homomorphism of finite presentation. Let n ≥ 0.
The set

Vn = {q ∈ Spec(S) | dimq(S/R) ≤ n}
is a quasi-compact open subset of Spec(S).
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Proof. It is open by Lemma 125.6. Let S = R[x1, . . . , xn]/(f1, . . . , fm) be a pre-
sentation of S. Let R0 be the Z-subalgebra of R generated by the coefficients of the poly-
nomials fi. Let S0 = R0[x1, . . . , xn]/(f1, . . . , fm). Then S = R ⊗R0 S0. By Lemma
125.7 Vn is the inverse image of an open V0,n under the quasi-compact continuous map
Spec(S)→ Spec(S0). Since S0 is Noetherian we see that V0,n is quasi-compact. �

Lemma 125.9. LetR be a valuation ring with residue field k and field of fractionsK.
Let S be a domain containing R such that S is of finite type over R. If S ⊗R k is not the
zero ring then

dim(S ⊗R k) = dim(S ⊗R K)
In fact, Spec(S ⊗R k) is equidimensional.

Proof. It suffices to show that dimq(S/k) is equal to dim(S ⊗RK) for every prime
q of S containing mRS. Pick such a prime. By Lemma 125.6 the inequality dimq(S/k) ≥
dim(S ⊗R K) holds. Set n = dimq(S/k). By Lemma 125.2 after replacing S by Sg for
some g ∈ S , g 6∈ q there exists a quasi-finite ring map R[t1, . . . , tn] → S. If dim(S ⊗R
K) < n, then K[t1, . . . , tn] → S ⊗R K has a nonzero kernel. Say f =

∑
aIt

i1
1 . . . tinn .

After dividing f by a nonzero coefficient of f with minimal valuation, we may assume f ∈
R[t1, . . . , tn] and some aI does not map to zero in k. Hence the ring map k[t1, . . . , tn]→
S ⊗R k has a nonzero kernel which implies that dim(S ⊗R k) < n. Contradiction. �

126. Algebras and modules of finite presentation

In this section we discuss some standard results where the key feature is that the assump-
tion involves a finite type or finite presentation assumption.

Lemma 126.1. Let R → S be a ring map. Let R → R′ be a faithfully flat ring map.
Set S′ = R′ ⊗R S. Then R→ S is of finite type if and only if R′ → S′ is of finite type.

Proof. It is clear that if R → S is of finite type then R′ → S′ is of finite type.
Assume that R′ → S′ is of finite type. Say y1, . . . , ym generate S′ over R′. Write yj =∑
i aij ⊗ xji for some aij ∈ R′ and xji ∈ S. Let A ⊂ S be the R-subalgebra generated

by the xij . By flatness we haveA′ := R′⊗RA ⊂ S′, and by construction yj ∈ A′. Hence
A′ = S′. By faithful flatness A = S. �

Lemma 126.2. Let R → S be a ring map. Let R → R′ be a faithfully flat ring map.
Set S′ = R′⊗R S. ThenR→ S is of finite presentation if and only ifR′ → S′ is of finite
presentation.

Proof. It is clear that ifR→ S is of finite presentation thenR′ → S′ is of finite pre-
sentation. Assume thatR′ → S′ is of finite presentation. By Lemma 126.1 we see thatR→
S is of finite type. Write S = R[x1, . . . , xn]/I . By flatness S′ = R′[x1, . . . , xn]/R′ ⊗ I .
Say g1, . . . , gm generate R′ ⊗ I over R′[x1, . . . , xn]. Write gj =

∑
i aij ⊗ fji for some

aij ∈ R′ and fji ∈ I . Let J ⊂ I be the ideal generated by the fij . By flatness we have
R′⊗RJ ⊂ R′⊗RI , and both are ideals overR′[x1, . . . , xn]. By construction gj ∈ R′⊗RJ .
Hence R′ ⊗R J = R′ ⊗R I . By faithful flatness J = I . �

Lemma 126.3. Let R be a ring. Let I ⊂ R be an ideal. Let S ⊂ R be a multiplicative
subset. Set R′ = S−1(R/I) = S−1R/S−1I .

(1) For any finiteR′-moduleM ′ there exists a finiteR-moduleM such thatS−1(M/IM) ∼=
M ′.

(2) For any finitely presented R′-module M ′ there exists a finitely presented R-
module M such that S−1(M/IM) ∼= M ′.
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Proof. Proof of (1). Choose a short exact sequence 0→ K ′ → (R′)⊕n →M ′ → 0.
Let K ⊂ R⊕n be the inverse image of K ′ under the map R⊕n → (R′)⊕n. Then M =
R⊕n/K works.

Proof of (2). Choose a presentation (R′)⊕m → (R′)⊕n →M ′ → 0. Suppose that the first
map is given by the matrix A′ = (a′

ij) and the second map is determined by generators
x′
i ∈ M ′, i = 1, . . . , n. As R′ = S−1(R/I) we can choose s ∈ S and a matrix A = (aij)

with coefficients in R such that a′
ij = aij/s mod S−1I . Let M be the finitely presented

R-module with presentationR⊕m → R⊕n →M → 0 where the first map is given by the
matrix A and the second map is determined by generators xi ∈ M , i = 1, . . . , n. Then
the map M →M ′, xi 7→ x′

i induces an isomorphism S−1(M/IM) ∼= M ′. �

Lemma 126.4. Let R be a ring. Let S ⊂ R be a multiplicative subset. Let M be an
R-module.

(1) If S−1M is a finite S−1R-module then there exists a finite R-module M ′ and a
map M ′ →M which induces an isomorphism S−1M ′ → S−1M .

(2) If S−1M is a finitely presented S−1R-module then there exists an R-module
M ′ of finite presentation and a map M ′ → M which induces an isomorphism
S−1M ′ → S−1M .

Proof. Proof of (1). Let x1, . . . , xn ∈ M be elements which generate S−1M as an
S−1R-module. Let M ′ be the R-submodule of M generated by x1, . . . , xn.

Proof of (2). Let x1, . . . , xn ∈M be elements which generate S−1M as an S−1R-module.
Let K = Ker(R⊕n → M) where the map is given by the rule (a1, . . . , an) 7→

∑
aixi.

By Lemma 5.3 we see that S−1K is a finite S−1R-module. By (1) we can find a finite
submodule K ′ ⊂ K with S−1K ′ = S−1K. Take M ′ = Coker(K ′ → R⊕n). �

Lemma 126.5. Let R be a ring. Let p ⊂ R be a prime ideal. Let M be an R-module.
(1) If Mp is a finite Rp-module then there exists a finite R-module M ′ and a map

M ′ →M which induces an isomorphism M ′
p →Mp.

(2) If Mp is a finitely presented Rp-module then there exists an R-module M ′ of
finite presentation and a map M ′ → M which induces an isomorphism M ′

p →
Mp.

Proof. This is a special case of Lemma 126.4 �

Lemma 126.6. Let ϕ : R→ S be a ring map. Let q ⊂ S be a prime lying over p ⊂ R.
Assume

(1) S is of finite presentation over R,
(2) ϕ induces an isomorphism Rp

∼= Sq.
Then there exist f ∈ R, f 6∈ p and anRf -algebraC such thatSf ∼= Rf×C asRf -algebras.

Proof. Write S = R[x1, . . . , xn]/(g1, . . . , gm). Let ai ∈ Rp be an element mapping
to the image of xi in Sq. Write ai = bi/f for some f ∈ R, f 6∈ p. After replacing R by
Rf and xi by xi − ai we may assume that S = R[x1, . . . , xn]/(g1, . . . , gm) such that xi
maps to zero in Sq. Then if cj denotes the constant term of gj we conclude that cj maps to
zero in Rp. After another replacement of R we may assume that the constant coefficients
cj of the gj are zero. Thus we obtain an R-algebra map S → R, xi 7→ 0 whose kernel is
the ideal (x1, . . . , xn).
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Note that q = pS + (x1, . . . , xn). Write gj =
∑
ajixi + h.o.t.. Since Sq = Rp we

have p ⊗ κ(p) = q ⊗ κ(q). It follows that m × n matrix A = (aji) defines a sur-
jective map κ(p)⊕m → κ(p)⊕n. Thus after inverting some element of R not in p we
may assume there are bij ∈ R such that

∑
bijgj = xi + h.o.t.. We conclude that

(x1, . . . , xn) = (x1, . . . , xn)2 in S. It follows from Lemma 21.5 that (x1, . . . , xn) is gen-
erated by an idempotent e. Setting C = eS finishes the proof. �

Lemma 126.7. Let R be a ring. Let S , S′ be of finite presentation over R. Let q ⊂ S
and q′ ⊂ S′ be primes. If Sq

∼= S′
q′ as R-algebras, then there exist g ∈ S , g 6∈ q and

g′ ∈ S′, g′ 6∈ q′ such that Sg ∼= S′
g′ as R-algebras.

Proof. Let ψ : Sq → S′
q′ be the isomorphism of the hypothesis of the lemma. Write

S = R[x1, . . . , xn]/(f1, . . . , fr) and S′ = R[y1, . . . , ym]/J . For each i = 1, . . . , n
choose a fraction hi/gi with hi, gi ∈ R[y1, . . . , ym] and gi mod J not in q′ which rep-
resents the image of xi under ψ. After replacing S′ by S′

g1...gn and R[y1, . . . , ym, ym+1]
(mapping ym+1 to 1/(g1 . . . gn)) we may assume that ψ(xi) is the image of some hi ∈
R[y1, . . . , ym]. Consider the elements fj(h1, . . . , hn) ∈ R[y1, . . . , ym]. Since ψ kills each
fj we see that there exists a g ∈ R[y1, . . . , ym], g mod J 6∈ q′ such that gfj(h1, . . . , hn) ∈
J for each j = 1, . . . , r. After replacing S′ by S′

g and R[y1, . . . , ym, ym+1] as before we
may assume that fj(h1, . . . , hn) ∈ J . Thus we obtain a ring map S → S′, xi 7→ hi which
induces ψ on local rings. By Lemma 6.2 the map S → S′ is of finite presentation. By
Lemma 126.6 we may assume that S′ = S × C. Thus localizing S′ at the idempotent
corresponding to the factor C we obtain the result. �

Lemma 126.8. Let R be a ring. Let I ⊂ R be a nilpotent ideal. Let S be an R-algebra
such that R/I → S/IS is of finite type. Then R→ S is of finite type.

Proof. Choose s1, . . . , sn ∈ S whose images in S/IS generate S/IS as an algebra
over R/I . By Lemma 20.1 part (11) we see that the R-algebra map R[x1, . . . , xn → S ,
xi 7→ si is surjective and we conclude. �

Lemma 126.9. Let R be a ring. Let I ⊂ R be a locally nilpotent ideal. Let S → S′

be an R-algebra map such that S → S′/IS′ is surjective and such that S′ is of finite type
over R. Then S → S′ is surjective.

Proof. Write S′ = R[x1, . . . , xm]/K for some ideal K. By assumption there exist
gj = xj +

∑
δj,Jx

J ∈ R[x1, . . . , xn] with δj,J ∈ I and with gj mod K ∈ Im(S → S′).
Hence it suffices to show that g1, . . . , gm generateR[x1, . . . , xn]. LetR0 ⊂ R be a finitely
generated Z-subalgebra of R containing at least the δj,J . Then R0 ∩ I is a nilpotent ideal
(by Lemma 32.5). It follows thatR0[x1, . . . , xn] is generated by g1, . . . , gm (because xj 7→
gj defines an automorphism of R0[x1, . . . , xm]; details omitted). Since R is the union of
the subrings R0 we win. �

Lemma 126.10. Let R be a ring. Let I ⊂ R be an ideal. Let S → S′ be an R-algebra
map. Let IS ⊂ q ⊂ S be a prime ideal. Assume that

(1) S → S′ is surjective,
(2) Sq/ISq → S′

q/IS
′
q is an isomorphism,

(3) S is of finite type over R,
(4) S′ of finite presentation over R, and
(5) S′

q is flat over R.
Then Sg → S′

g is an isomorphism for some g ∈ S , g 6∈ q.
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Proof. Let J = Ker(S → S′). By Lemma 6.2 J is a finitely generated ideal. SinceS′
q

is flat over R we see that Jq/IJq ⊂ Sq/ISq (apply Lemma 39.12 to 0→ J → S → S′ →
0). By assumption (2) we see that Jq/IJq is zero. By Nakayama’s lemma (Lemma 20.1) we
see that there exists a g ∈ S , g 6∈ q such that Jg = 0. Hence Sg ∼= S′

g as desired. �

Lemma 126.11. Let R be a ring. Let I ⊂ R be an ideal. Let S → S′ be an R-algebra
map. Assume that

(1) I is locally nilpotent,
(2) S/IS → S′/IS′ is an isomorphism,
(3) S is of finite type over R,
(4) S′ of finite presentation over R, and
(5) S′ is flat over R.

Then S → S′ is an isomorphism.

Proof. By Lemma 126.9 the map S → S′ is surjective. As I is locally nilpotent, so
are the ideals IS and IS′ (Lemma 32.3). Hence every prime ideal q of S contains IS and
(trivially) Sq/ISq

∼= S′
q/IS

′
q. Thus Lemma 126.10 applies and we see that Sq → S′

q is an
isomorphism for every prime q ⊂ S. It follows that S → S′ is injective for example by
Lemma 23.1. �

127. Colimits and maps of finite presentation

In this section we prove some preliminary lemmas which will eventually help us prove
result using absolute Noetherian reduction. In Categories, Section 19 we discuss filtered
colimits in general. Here is an example of this very general notion.

Lemma 127.1. Let R → A be a ring map. Consider the category I of all diagrams
of R-algebra maps A′ → A with A′ finitely presented over R. Then I is filtered, and the
colimit of the A′ over I is isomorphic to A.

Proof. The category11 I is nonempty as R → R is an object of it. Consider a pair
of objects A′ → A, A′′ → A of I . Then A′ ⊗R A′′ → A is in I (use Lemmas 6.2 and
14.2). The ring maps A′ → A′ ⊗R A′′ and A′′ → A′ ⊗R A′′ define arrows in I thereby
proving the second defining property of a filtered category, see Categories, Definition 19.1.
Finally, suppose that we have two morphisms σ, τ : A′ → A′′ in I . If x1, . . . , xr ∈ A′ are
generators of A′ as an R-algebra, then we can consider A′′′ = A′′/(σ(xi) − τ(xi)). This
is a finitely presented R-algebra and the given R-algebra map A′′ → A factors through
the surjection ν : A′′ → A′′′. Thus ν is a morphism in I equalizing σ and τ as desired.
The fact that our index category is cofiltered means that we may compute the value ofB =
colimA′→AA

′ in the category of sets (some details omitted; compare with the discussion
in Categories, Section 19). To see that B → A is surjective, for every a ∈ A we can use
R[x] → A, x 7→ a to see that a is in the image of B → A. Conversely, if b ∈ B is
mapped to zero in A, then we can find A′ → A in I and a′ ∈ A′ which maps to b. Then
A′/(a′) → A is in I as well and the map A′ → B factors as A′ → A′/(a′) → B which
shows that b = 0 as desired. �

Often it is easier to think about colimits over preordered sets. Let (Λ,≥) a preordered set.
A system of rings over Λ is given by a ringRλ for every λ ∈ Λ, and a morphismRλ → Rµ
whenever λ ≤ µ. These morphisms have to satisfy the rule that Rλ → Rµ → Rν is equal

11To avoid set theoretical difficulties we consider only A′ → A such that A′ is a quotient of
R[x1, x2, x3, . . .].
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to the map Rλ → Rν for all λ ≤ µ ≤ ν. See Categories, Section 21. We will often assume
that (I,≤) is directed, which means that Λ is nonempty and given λ, µ ∈ Λ there exists
a ν ∈ Λ with λ ≤ ν and µ ≤ ν. Recall that the colimit colimλRλ is sometimes called a
“direct limit” in this case (but we will not use this terminology).

Note that Categories, Lemma 21.5 tells us that colimits over filtered index categories are
the same thing as colimits over directed sets.

Lemma 127.2. Let R → A be a ring map. There exists a directed system Aλ of R-
algebras of finite presentation such that A = colimλAλ. If A is of finite type over R we
may arrange it so that all the transition maps in the system of Aλ are surjective.

Proof. The first proof is that this follows from Lemma 127.1 and Categories, Lemma
21.5.

Second proof. Compare with the proof of Lemma 11.3. Consider any finite subset S ⊂ A,
and any finite collection of polynomial relations E among the elements of S. So each
s ∈ S corresponds to xs ∈ A and each e ∈ E consists of a polynomial fe ∈ R[Xs; s ∈ S]
such that fe(xs) = 0. LetAS,E = R[Xs; s ∈ S]/(fe; e ∈ E) which is a finitely presented
R-algebra. There are canonical maps AS,E → A. If S ⊂ S′ and if the elements of E
correspond, via the mapR[Xs; s ∈ S]→ R[Xs; s ∈ S′], to a subset ofE′, then there is an
obvious map AS,E → AS′,E′ commuting with the maps to A. Thus, setting Λ equal the
set of pairs (S,E) with ordering by inclusion as above, we get a directed partially ordered
set. It is clear that the colimit of this directed system is A.

For the last statement, suppose A = R[x1, . . . , xn]/I . In this case, consider the subset
Λ′ ⊂ Λ consisting of those systems (S,E) above with S = {x1, . . . , xn}. It is easy to see
that still A = colimλ′∈Λ′ Aλ′ . Moreover, the transition maps are clearly surjective. �

It turns out that we can characterize ring maps of finite presentation as follows. This in
some sense says that the algebras of finite presentation are the “compact” objects in the
category of R-algebras.

Lemma 127.3. Let ϕ : R→ S be a ring map. The following are equivalent
(1) ϕ is of finite presentation,
(2) for every directed system Aλ of R-algebras the map

colimλ HomR(S,Aλ) −→ HomR(S, colimλAλ)
is bijective, and

(3) for every directed system Aλ of R-algebras the map

colimλ HomR(S,Aλ) −→ HomR(S, colimλAλ)
is surjective.

Proof. Assume (1) and write S = R[x1, . . . , xn]/(f1, . . . , fm). Let A = colimAλ.
Observe that an R-algebra homomorphism S → A or S → Aλ is determined by the
images of x1, . . . , xn. Hence it is clear that colimλ HomR(S,Aλ) → HomR(S,A) is
injective. To see that it is surjective, let χ : S → A be an R-algebra homomorphism.
Then each xi maps to some element in the image of some Aλi . We may pick µ ≥ λi,
i = 1, . . . , n and assume χ(xi) is the image of yi ∈ Aµ for i = 1, . . . , n. Consider
zj = fj(y1, . . . , yn) ∈ Aµ. Sinceχ is a homomorphism the image of zj inA = colimλAλ
is zero. Hence there exists a µj ≥ µ such that zj maps to zero in Aµj . Pick ν ≥ µj ,
j = 1, . . . ,m. Then the images of z1, . . . , zm are zero in Aν . This exactly means that
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the yi map to elements y′
i ∈ Aν which satisfy the relations fj(y′

1, . . . , y
′
n) = 0. Thus we

obtain a ring map S → Aν . This shows that (1) implies (2).
It is clear that (2) implies (3). Assume (3). By Lemma 127.2 we may write S = colimλ Sλ
with Sλ of finite presentation over R. Then the identity map factors as

S → Sλ → S

for some λ. This implies that S is finitely presented over Sλ by Lemma 6.2 part (4) applied
to S → Sλ → S. Applying part (2) of the same lemma toR→ Sλ → S we conclude that
S is of finite presentation over R. �

Using the basic material above we can give a criterion of when an algebra A is a filtered
colimit of given type of algebra as follows.

Lemma 127.4. Let R → Λ be a ring map. Let E be a set of R-algebras such that each
A ∈ E is of finite presentation over R. Then the following two statements are equivalent

(1) Λ is a filtered colimit of elements of E , and
(2) for any R algebra map A→ Λ with A of finite presentation over R we can find

a factorization A→ B → Λ with B ∈ E .

Proof. Suppose that I → E , i 7→ Ai is a filtered diagram such that Λ = colimiAi.
Let A → Λ be an R-algebra map with A of finite presentation over R. Then we get a
factorization A→ Ai → Λ by applying Lemma 127.3. Thus (1) implies (2).
Consider the category I of Lemma 127.1. By Categories, Lemma 19.3 the full subcategory
J consisting of those A → Λ with A ∈ E is cofinal in I and is a filtered category. Then
Λ is also the colimit over J by Categories, Lemma 17.2. �

But more is true. Namely, given R = colimλRλ we see that the category of finitely
presented R-modules is equivalent to the limit of the category of finitely presented Rλ-
modules. Similarly for the categories of finitely presented R-algebras.

Lemma 127.5. Let A be a ring and let M,N be A-modules. Suppose that R =
colimi∈I Ri is a directed colimit of A-algebras.

(1) If M is a finite A-module, and u, u′ : M → N are A-module maps such that
u⊗ 1 = u′⊗ 1 : M ⊗A R→ N ⊗A R then for some i we have u⊗ 1 = u′⊗ 1 :
M ⊗A Ri → N ⊗A Ri.

(2) IfN is a finiteA-module and u : M → N is anA-module map such that u⊗ 1 :
M ⊗A R→ N ⊗A R is surjective, then for some i the map u⊗ 1 : M ⊗A Ri →
N ⊗A Ri is surjective.

(3) IfN is a finitely presentedA-module, and v : N⊗AR→M⊗AR is anR-module
map, then there exists an i and an Ri-module map vi : N ⊗A Ri → M ⊗A Ri
such that v = vi ⊗ 1.

(4) If M is a finite A-module, N is a finitely presented A-module, and u : M → N
is an A-module map such that u⊗ 1 : M ⊗A R→ N ⊗A R is an isomorphism,
then for some i the map u⊗ 1 : M ⊗A Ri → N ⊗A Ri is an isomorphism.

Proof. To prove (1) assume u is as in (1) and let x1, . . . , xm ∈M be generators. Since
N ⊗A R = colimiN ⊗A Ri we may pick an i ∈ I such that u(xj) ⊗ 1 = u′(xj) ⊗ 1 in
M ⊗A Ri, j = 1, . . . ,m. For such an i we have u⊗ 1 = u′ ⊗ 1 : M ⊗A Ri → N ⊗A Ri.
To prove (2) assumeu⊗1 surjective and let y1, . . . , ym ∈ N be generators. SinceN⊗AR =
colimiN ⊗ARi we may pick an i ∈ I and zj ∈M ⊗ARi, j = 1, . . . ,m whose images in
N ⊗A R equal yj ⊗ 1. For such an i the map u⊗ 1 : M ⊗A Ri → N ⊗A Ri is surjective.
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To prove (3) let y1, . . . , ym ∈ N be generators. Let K = Ker(A⊕m → N) where the
map is given by the rule (a1, . . . , am) 7→

∑
ajxj . Let k1, . . . , kt be generators for K.

Say ks = (ks1, . . . , ksm). Since M ⊗A R = colimiM ⊗A Ri we may pick an i ∈ I and
zj ∈M⊗ARi, j = 1, . . . ,mwhose images inM⊗AR equal v(yj⊗1). We want to use the
zj to define the map vi : N⊗ARi →M⊗ARi. SinceK⊗ARi → R⊕m

i → N⊗ARi → 0
is a presentation, it suffices to check that ξs =

∑
j ksjzj is zero in M ⊗A Ri for each

s = 1, . . . , t. This may not be the case, but since the image of ξs inM ⊗AR is zero we see
that it will be the case after increasing i a bit.
To prove (4) assume u ⊗ 1 is an isomorphism, that M is finite, and that N is finitely
presented. Let v : N ⊗A R → M ⊗A R be an inverse to u ⊗ 1. Apply part (3) to get a
map vi : N ⊗A Ri → M ⊗A Ri for some i. Apply part (1) to see that, after increasing i
we have vi ◦ (u⊗ 1) = idM⊗RRi and (u⊗ 1) ◦ vi = idN⊗RRi . �

Lemma 127.6. Suppose that R = colimλ∈Λ Rλ is a directed colimit of rings. Then
the category of finitely presented R-modules is the colimit of the categories of finitely
presented Rλ-modules. More precisely

(1) Given a finitely presented R-module M there exists a λ ∈ Λ and a finitely pre-
sented Rλ-module Mλ such that M ∼= Mλ ⊗Rλ R.

(2) Given a λ ∈ Λ, finitely presented Rλ-modules Mλ, Nλ, and an R-module map
ϕ : Mλ⊗Rλ R→ Nλ⊗Rλ R, then there exists a µ ≥ λ and an Rµ-module map
ϕµ : Mλ ⊗Rλ Rµ → Nλ ⊗Rλ Rµ such that ϕ = ϕµ ⊗ 1R.

(3) Given a λ ∈ Λ, finitely presented Rλ-modules Mλ, Nλ, and R-module maps
ϕλ, ψλ : Mλ → Nλ such that ϕ⊗ 1R = ψ ⊗ 1R, then ϕ⊗ 1Rµ = ψ ⊗ 1Rµ for
some µ ≥ λ.

Proof. To prove (1) choose a presentation R⊕m → R⊕n → M → 0. Suppose that
the first map is given by the matrix A = (aij). We can choose a λ ∈ Λ and a matrix
Aλ = (aλ,ij) with coefficients in Rλ which maps to A in R. Then we simply let Mλ be
the Rλ-module with presentation R⊕m

λ → R⊕n
λ → Mλ → 0 where the first arrow is

given by Aλ.
Parts (2) and (3) follow from Lemma 127.5. �

Lemma 127.7. LetA be a ring and letB,C beA-algebras. Suppose thatR = colimi∈I Ri
is a directed colimit of A-algebras.

(1) If B is a finite type A-algebra, and u, u′ : B → C are A-algebra maps such that
u⊗ 1 = u′ ⊗ 1 : B ⊗A R→ C ⊗A R then for some i we have u⊗ 1 = u′ ⊗ 1 :
B ⊗A Ri → C ⊗A Ri.

(2) If C is a finite type A-algebra and u : B → C is an A-algebra map such that
u ⊗ 1 : B ⊗A R → C ⊗A R is surjective, then for some i the map u ⊗ 1 :
B ⊗A Ri → C ⊗A Ri is surjective.

(3) If C is of finite presentation over A and v : C ⊗A R→ B ⊗A R is an R-algebra
map, then there exists an i and an Ri-algebra map vi : C ⊗A Ri → B ⊗A Ri
such that v = vi ⊗ 1.

(4) If B is a finite type A-algebra, C is a finitely presented A-algebra, and u ⊗ 1 :
B⊗AR→ C⊗AR is an isomorphism, then for some i the mapu⊗1 : B⊗ARi →
C ⊗A Ri is an isomorphism.

Proof. To prove (1) assume u is as in (1) and let x1, . . . , xm ∈ B be generators. Since
B ⊗A R = colimiB ⊗A Ri we may pick an i ∈ I such that u(xj) ⊗ 1 = u′(xj) ⊗ 1 in
B ⊗A Ri, j = 1, . . . ,m. For such an i we have u⊗ 1 = u′ ⊗ 1 : B ⊗A Ri → C ⊗A Ri.
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To prove (2) assume u⊗1 surjective and let y1, . . . , ym ∈ C be generators. SinceB⊗AR =
colimiB ⊗A Ri we may pick an i ∈ I and zj ∈ B ⊗A Ri, j = 1, . . . ,m whose images in
C ⊗A R equal yj ⊗ 1. For such an i the map u⊗ 1 : B ⊗A Ri → C ⊗A Ri is surjective.

To prove (3) let c1, . . . , cm ∈ C be generators. LetK = Ker(A[x1, . . . , xm]→ N) where
the map is given by the rule xj 7→

∑
cj . Let f1, . . . , ft be generators for K as an ideal

in A[x1, . . . , xm]. We think of fj = fj(x1, . . . , xm) as a polynomial. Since B ⊗A R =
colimiB ⊗A Ri we may pick an i ∈ I and zj ∈ B ⊗A Ri, j = 1, . . . ,m whose images in
B⊗AR equal v(cj⊗1). We want to use the zj to define a map vi : C⊗ARi → B⊗ARi.
Since K ⊗A Ri → Ri[x1, . . . , xm]→ C ⊗A Ri → 0 is a presentation, it suffices to check
that ξs = fj(z1, . . . , zm) is zero in B ⊗A Ri for each s = 1, . . . , t. This may not be
the case, but since the image of ξs in B ⊗A R is zero we see that it will be the case after
increasing i a bit.

To prove (4) assume u⊗ 1 is an isomorphism, thatB is a finite typeA-algebra, and that C
is a finitely presented A-algebra. Let v : B ⊗A R → C ⊗A R be an inverse to u⊗ 1. Let
vi : C ⊗A Ri → B ⊗A Ri be as in part (3). Apply part (1) to see that, after increasing i
we have vi ◦ (u⊗ 1) = idB⊗RRi and (u⊗ 1) ◦ vi = idC⊗RRi . �

Lemma 127.8. Suppose that R = colimλ∈Λ Rλ is a directed colimit of rings. Then
the category of finitely presented R-algebras is the colimit of the categories of finitely
presented Rλ-algebras. More precisely

(1) Given a finitely presented R-algebra A there exists a λ ∈ Λ and a finitely pre-
sented Rλ-algebra Aλ such that A ∼= Aλ ⊗Rλ R.

(2) Given a λ ∈ Λ, finitely presented Rλ-algebras Aλ, Bλ, and an R-algebra map
ϕ : Aλ ⊗Rλ R→ Bλ ⊗Rλ R, then there exists a µ ≥ λ and an Rµ-algebra map
ϕµ : Aλ ⊗Rλ Rµ → Bλ ⊗Rλ Rµ such that ϕ = ϕµ ⊗ 1R.

(3) Given a λ ∈ Λ, finitely presented Rλ-algebras Aλ, Bλ, and Rλ-algebra maps
ϕλ, ψλ : Aλ → Bλ such that ϕ ⊗ 1R = ψ ⊗ 1R, then ϕ ⊗ 1Rµ = ψ ⊗ 1Rµ for
some µ ≥ λ.

Proof. To prove (1) choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm). We
can choose a λ ∈ Λ and elements fλ,j ∈ Rλ[x1, . . . , xn] mapping to fj ∈ R[x1, . . . , xn].
Then we simply let Aλ = Rλ[x1, . . . , xn]/(fλ,1, . . . , fλ,m).

Parts (2) and (3) follow from Lemma 127.7. �

Lemma 127.9. Suppose R→ S is a local homomorphism of local rings. There exists
a directed set (Λ,≤), and a system of local homomorphisms Rλ → Sλ of local rings such
that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.

Proof. Denote ϕ : R → S the ring map. Let m ⊂ R be the maximal ideal of R and
let n ⊂ S be the maximal ideal of S. Let

Λ = {(A,B) | A ⊂ R,B ⊂ S,#A <∞,#B <∞, ϕ(A) ⊂ B}.

As partial ordering we take the inclusion relation. For each λ = (A,B) ∈ Λ we let R′
λ

be the sub Z-algebra generated by a ∈ A, and we let S′
λ be the sub Z-algebra generated
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by b, b ∈ B. Let Rλ be the localization of R′
λ at the prime ideal R′

λ ∩m and let Sλ be the
localization of S′

λ at the prime ideal S′
λ ∩ n. In a picture

B // S′
λ

// Sλ // S

A //

OO

R′
λ

//

OO

Rλ //

OO

R

OO .

The transition maps are clear. We leave the proofs of the other assertions to the reader. �

Lemma 127.10. SupposeR→ S is a local homomorphism of local rings. Assume that
S is essentially of finite type over R. Then there exists a directed set (Λ,≤), and a system
of local homomorphisms Rλ → Sλ of local rings such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as the localization of a

quotient of Sλ ⊗Rλ Rµ.

Proof. Denote ϕ : R → S the ring map. Let m ⊂ R be the maximal ideal of R
and let n ⊂ S be the maximal ideal of S. Let x1, . . . , xn ∈ S be elements such that S is
a localization of the sub R-algebra of S generated by x1, . . . , xn. In other words, S is a
quotient of a localization of the polynomial ring R[x1, . . . , xn].

Let Λ = {A ⊂ R | #A < ∞} be the set of finite subsets of R. As partial ordering we
take the inclusion relation. For each λ = A ∈ Λ we letR′

λ be the sub Z-algebra generated
by a ∈ A, and we let S′

λ be the sub Z-algebra generated by ϕ(a), a ∈ A and the elements
x1, . . . , xn. Let Rλ be the localization of R′

λ at the prime ideal R′
λ ∩ m and let Sλ be the

localization of S′
λ at the prime ideal S′

λ ∩ n. In a picture

ϕ(A)q {xi} // S′
λ

// Sλ // S

A //

OO

R′
λ

//

OO

Rλ //

OO

R

OO

It is clear that if A ⊂ B corresponds to λ ≤ µ in Λ, then there are canonical maps Rλ →
Rµ, and Sλ → Sµ and we obtain a system over the directed set Λ.

The assertion that R = colimRλ is clear because all the maps Rλ → R are injective and
any element ofR eventually is in the image. The same argument works for S = colimSλ.
Assertions (2), (3) are true by construction. The final assertion holds because clearly the
maps S′

λ ⊗R′
λ
R′
µ → S′

µ are surjective. �

Lemma 127.11. SupposeR→ S is a local homomorphism of local rings. Assume that
S is essentially of finite presentation over R. Then there exists a directed set (Λ,≤), and
a system of local homomorphism Rλ → Sλ of local rings such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as the localization of

Sλ ⊗Rλ Rµ at a prime ideal.
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Proof. By assumption we may choose an isomorphism Φ : (R[x1, . . . , xn]/I)q →
S where I ⊂ R[x1, . . . , xn] is a finitely generated ideal, and q ⊂ R[x1, . . . , xn]/I is a
prime. (Note that R ∩ q is equal to the maximal ideal m of R.) We also choose generators
f1, . . . , fm ∈ I for the ideal I . Write R in any way as a colimit R = colimRλ over a
directed set (Λ,≤), with each Rλ local and essentially of finite type over Z. There exists
some λ0 ∈ Λ such that fj is the image of some fj,λ0 ∈ Rλ0 [x1, . . . , xn]. For all λ ≥ λ0
denote fj,λ ∈ Rλ[x1, . . . , xn] the image of fj,λ0 . Thus we obtain a system of ring maps

Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ)→ R[x1, . . . , xn]/(f1, . . . , fm)→ S

Set qλ the inverse image of q. Set Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ))qλ . We leave it
to the reader to see that this works. �

Remark 127.12. Suppose thatR→ S is a local homomorphism of local rings, which
is essentially of finite presentation. Take any system (Λ,≤),Rλ → Sλ with the properties
listed in Lemma 127.10. What may happen is that this is the “wrong” system, namely, it
may happen that property (4) of Lemma 127.11 is not satisfied. Here is an example. Let k
be a field. Consider the ring

R = k[[z, y1, y2, . . .]]/(y2
i − zyi+1).

Set S = R/zR. As system take Λ = N andRn = k[[z, y1, . . . , yn]]/({y2
i −zyi+1}i≤n−1)

and Sn = Rn/(z, y2
n). All the maps Sn ⊗Rn Rn+1 → Sn+1 are not localizations (i.e.,

isomorphisms in this case) since 1⊗ y2
n+1 maps to zero. If we take instead S′

n = Rn/zRn
then the maps S′

n⊗Rn Rn+1 → S′
n+1 are isomorphisms. The moral of this remark is that

we do have to be a little careful in choosing the systems.

Lemma 127.13. Suppose R → S is a local homomorphism of local rings. Assume
that S is essentially of finite presentation overR. LetM be a finitely presented S-module.
Then there exists a directed set (Λ,≤), and a system of local homomorphisms Rλ → Sλ
of local rings together with Sλ-modules Mλ, such that

(1) The colimit of the system Rλ → Sλ is equal to R → S. The colimit of the
system Mλ is M .

(2) Each Rλ is essentially of finite type over Z.
(3) Each Sλ is essentially of finite type over Rλ.
(4) Each Mλ is finite over Sλ.
(5) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as the localization of

Sλ ⊗Rλ Rµ at a prime ideal.
(6) For each λ ≤ µ the map Mλ ⊗Sλ Sµ →Mµ is an isomorphism.

Proof. As in the proof of Lemma 127.11 we may first write R = colimRλ as a di-
rected colimit of local Z-algebras which are essentially of finite type. Next, we may assume
that for some λ1 ∈ Λ there exist fj,λ1 ∈ Rλ1 [x1, . . . , xn] such that

S = colimλ≥λ1 Sλ, with Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fm,λ))qλ
Choose a presentation

S⊕s → S⊕t →M → 0
of M over S. Let A ∈Mat(t× s, S) be the matrix of the presentation. For some λ2 ∈ Λ,
λ2 ≥ λ1 we can find a matrix Aλ2 ∈ Mat(t × s, Sλ2) which maps to A. For all λ ≥ λ2

we let Mλ = Coker(S⊕s
λ

Aλ−−→ S⊕t
λ ). We leave it to the reader to see that this works. �

Lemma 127.14. SupposeR→ S is a ring map. Then there exists a directed set (Λ,≤),
and a system of ring maps Rλ → Sλ such that
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(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.

Proof. This is the non-local version of Lemma 127.9. Proof is similar and left to the
reader. �

Lemma 127.15. Suppose R → S is a ring map. Assume that S is integral over R.
Then there exists a directed set (Λ,≤), and a system of ring maps Rλ → Sλ such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is finite over Rλ.

Proof. Consider the set Λ of pairs (E,F ) where E ⊂ R is a finite subset, F ⊂ S
is a finite subset, and every element f ∈ F is the root of a monic P (X) ∈ R[X] whose
coefficients are inE. Say (E,F ) ≤ (E′, F ′) ifE ⊂ E′ and F ⊂ F ′. Given λ = (E,F ) ∈
Λ set Rλ ⊂ R equal to the Z-subalgebra of R generated by E and Sλ ⊂ S equal to the
Z-subalgebra generated by F and the image of E in S. It is clear that R = colimRλ. We
have S = colimSλ as every element of S is integral over S. The ring maps Rλ → Sλ
are finite by Lemma 36.5 and the fact that Sλ is generated over Rλ by the elements of F
which are integral overRλ by our condition on the pairs (E,F ). The lemma follows. �

Lemma 127.16. Suppose R → S is a ring map. Assume that S is of finite type over
R. Then there exists a directed set (Λ,≤), and a system of ring maps Rλ → Sλ such that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ presents Sµ as a quotient of Sλ ⊗Rλ

Rµ.

Proof. This is the non-local version of Lemma 127.10. Proof is similar and left to the
reader. �

Lemma 127.17. SupposeR→ S is a ring map. Assume that S is of finite presentation
over R. Then there exists a directed set (Λ,≤), and a system of ring maps Rλ → Sλ such
that

(1) The colimit of the system Rλ → Sλ is equal to R→ S.
(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ is an isomorphism.

Proof. This is the non-local version of Lemma 127.11. Proof is similar and left to the
reader. �

Lemma 127.18. SupposeR→ S is a ring map. Assume that S is of finite presentation
over R. Let M be a finitely presented S-module. Then there exists a directed set (Λ,≤),
and a system of ring maps Rλ → Sλ together with Sλ-modules Mλ, such that

(1) The colimit of the system Rλ → Sλ is equal to R → S. The colimit of the
system Mλ is M .

(2) Each Rλ is of finite type over Z.
(3) Each Sλ is of finite type over Rλ.
(4) Each Mλ is finite over Sλ.
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(5) For each λ ≤ µ the map Sλ ⊗Rλ Rµ → Sµ is an isomorphism.
(6) For each λ ≤ µ the map Mλ ⊗Sλ Sµ →Mµ is an isomorphism.

In particular, for every λ ∈ Λ we have

M = Mλ ⊗Sλ S = Mλ ⊗Rλ R.

Proof. This is the non-local version of Lemma 127.13. Proof is similar and left to the
reader. �

128. More flatness criteria

The following lemma is often used in algebraic geometry to show that a finite morphism
from a normal surface to a smooth surface is flat. It is a partial converse to Lemma 112.9
because an injective finite local ring map certainly satisfies condition (3).

Lemma 128.1. Let R → S be a local homomorphism of Noetherian local rings. As-
sume

(1) R is regular,
(2) S Cohen-Macaulay,
(3) dim(S) = dim(R) + dim(S/mRS).

Then R→ S is flat.

Proof. By induction on dim(R). The case dim(R) = 0 is trivial, because then R is
a field. Assume dim(R) > 0. By (3) this implies that dim(S) > 0. Let q1, . . . , qr be the
minimal primes of S. Note that qi 6⊃ mRS since

dim(S/qi) = dim(S) > dim(S/mRS)
the first equality by Lemma 104.3 and the inequality by (3). Thus pi = R∩ qi is not equal
to mR. Pick x ∈ mR, x 6∈ m2

R, and x 6∈ pi, see Lemma 15.2. Hence we see that x is not
contained in any of the minimal primes of S. Hence x is a nonzerodivisor on S by (2), see
Lemma 104.2 and S/xS is Cohen-Macaulay with dim(S/xS) = dim(S)− 1. By (1) and
Lemma 106.3 the ring R/xR is regular with dim(R/xR) = dim(R) − 1. By induction
we see that R/xR → S/xS is flat. Hence we conclude by Lemma 99.10 and the remark
following it. �

Lemma 128.2. Let R → S be a homomorphism of Noetherian local rings. Assume
that R is a regular local ring and that a regular system of parameters maps to a regular
sequence in S. Then R→ S is flat.

Proof. Suppose that x1, . . . , xd are a system of parameters ofR which map to a reg-
ular sequence in S. Note that S/(x1, . . . , xd)S is flat overR/(x1, . . . , xd) as the latter is a
field. Then xd is a nonzerodivisor in S/(x1, . . . , xd−1)S hence S/(x1, . . . , xd−1)S is flat
overR/(x1, . . . , xd−1) by the local criterion of flatness (see Lemma 99.10 and remarks fol-
lowing). Then xd−1 is a nonzerodivisor in S/(x1, . . . , xd−2)S hence S/(x1, . . . , xd−2)S
is flat over R/(x1, . . . , xd−2) by the local criterion of flatness (see Lemma 99.10 and re-
marks following). Continue till one reaches the conclusion that S is flat over R. �

The following lemma is the key to proving that results for finitely presented modules over
finitely presented rings over a base ring follow from the corresponding results for finite
modules in the Noetherian case.

Lemma 128.3. Let R→ S , M , Λ, Rλ → Sλ, Mλ be as in Lemma 127.13. Assume that
M is flat over R. Then for some λ ∈ Λ the module Mλ is flat over Rλ.
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Proof. Pick some λ ∈ Λ and consider

TorRλ1 (Mλ, Rλ/mλ) = Ker(mλ ⊗Rλ Mλ →Mλ).

See Remark 75.9. The right hand side shows that this is a finitely generated Sλ-module
(because Sλ is Noetherian and the modules in question are finite). Let ξ1, . . . , ξn be gen-
erators. Because M is flat over R we have that 0 = Ker(mλR ⊗R M → M). Since ⊗
commutes with colimits we see there exists a λ′ ≥ λ such that each ξi maps to zero in
mλRλ′ ⊗Rλ′ Mλ′ . Hence we see that

TorRλ1 (Mλ, Rλ/mλ) −→ TorRλ′
1 (Mλ′ , Rλ′/mλRλ′)

is zero. Note that Mλ ⊗Rλ Rλ/mλ is flat over Rλ/mλ because this last ring is a field.
Hence we may apply Lemma 99.14 to get that Mλ′ is flat over Rλ′ . �

Using the lemma above we can start to reprove the results of Section 99 in the non-
Noetherian case.

Lemma 128.4. Suppose that R→ S is a local homomorphism of local rings. Denote
m the maximal ideal of R. Let u : M → N be a map of S-modules. Assume

(1) S is essentially of finite presentation over R,
(2) M , N are finitely presented over S ,
(3) N is flat over R, and
(4) u : M/mM → N/mN is injective.

Then u is injective, and N/u(M) is flat over R.

Proof. By Lemma 127.13 and its proof we can find a system Rλ → Sλ of local ring
maps together with maps of Sλ-modules uλ : Mλ → Nλ satisfying the conclusions (1) –
(6) for both N and M of that lemma and such that the colimit of the maps uλ is u. By
Lemma 128.3 we may assume that Nλ is flat over Rλ for all sufficiently large λ. Denote
mλ ⊂ Rλ the maximal ideal and κλ = Rλ/mλ, resp. κ = R/m the residue fields.

Consider the map
Ψλ : Mλ/mλMλ ⊗κλ κ −→M/mM.

Since Sλ/mλSλ is essentially of finite type over the field κλ we see that the tensor product
Sλ/mλSλ ⊗κλ κ is essentially of finite type over κ. Hence it is a Noetherian ring and we
conclude the kernel of Ψλ is finitely generated. SinceM/mM is the colimit of the system
Mλ/mλMλ and κ is the colimit of the fields κλ there exists a λ′ > λ such that the kernel
of Ψλ is generated by the kernel of

Ψλ,λ′ : Mλ/mλMλ ⊗κλ κλ′ −→Mλ′/mλ′Mλ′ .

By construction there exists a multiplicative subset W ⊂ Sλ ⊗Rλ Rλ′ such that Sλ′ =
W−1(Sλ ⊗Rλ Rλ′) and

W−1(Mλ/mλMλ ⊗κλ κλ′) = Mλ′/mλ′Mλ′ .

Now suppose that x is an element of the kernel of

Ψλ′ : Mλ′/mλ′Mλ′ ⊗κλ′ κ −→M/mM.

Then for somew ∈W we havewx ∈Mλ/mλMλ⊗κ. Hencewx ∈ Ker(Ψλ). Hencewx is
a linear combination of elements in the kernel of Ψλ,λ′ . Hencewx = 0 inMλ′/mλ′Mλ′⊗κλ′

κ, hence x = 0 because w is invertible in Sλ′ . We conclude that the kernel of Ψλ′ is zero
for all sufficiently large λ′!
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By the result of the preceding paragraph we may assume that the kernel of Ψλ is zero for
all λ sufficiently large, which implies that the map Mλ/mλMλ → M/mM is injective.
Combined with u being injective this formally implies that also uλ : Mλ/mλMλ →
Nλ/mλNλ is injective. By Lemma 99.1 we conclude that (for all sufficiently large λ) the
map uλ is injective and that Nλ/uλ(Mλ) is flat over Rλ. The lemma follows. �

Lemma 128.5. Suppose that R → S is a local ring homomorphism of local rings.
Denote m the maximal ideal of R. Suppose

(1) S is essentially of finite presentation over R,
(2) S is flat over R, and
(3) f ∈ S is a nonzerodivisor in S/mS.

Then S/fS is flat over R, and f is a nonzerodivisor in S.

Proof. Follows directly from Lemma 128.4. �

Lemma 128.6. Suppose that R → S is a local ring homomorphism of local rings.
Denote m the maximal ideal of R. Suppose

(1) R→ S is essentially of finite presentation,
(2) R→ S is flat, and
(3) f1, . . . , fc is a sequence of elements of S such that the images f1, . . . , f c form a

regular sequence in S/mS.
Then f1, . . . , fc is a regular sequence in S and each of the quotients S/(f1, . . . , fi) is flat
over R.

Proof. Induction and Lemma 128.5. �

Here is the version of the local criterion of flatness for the case of local ring maps which
are locally of finite presentation.

Lemma 128.7. Let R → S be a local homomorphism of local rings. Let I 6= R be an
ideal in R. Let M be an S-module. Assume

(1) S is essentially of finite presentation over R,
(2) M is of finite presentation over S ,
(3) TorR1 (M,R/I) = 0, and
(4) M/IM is flat over R/I .

Then M is flat over R.

Proof. Let Λ, Rλ → Sλ, Mλ be as in Lemma 127.13. Denote Iλ ⊂ Rλ the inverse
image of I . In this case the systemR/I → S/IS ,M/IM ,Rλ → Sλ/IλSλ, andMλ/IλMλ

satisfies the conclusions of Lemma 127.13 as well. Hence by Lemma 128.3 we may assume
(after shrinking the index set Λ) thatMλ/IλMλ is flat for all λ. Pick some λ and consider

TorRλ1 (Mλ, Rλ/Iλ) = Ker(Iλ ⊗Rλ Mλ →Mλ).

See Remark 75.9. The right hand side shows that this is a finitely generated Sλ-module
(because Sλ is Noetherian and the modules in question are finite). Let ξ1, . . . , ξn be gen-
erators. Because TorR1 (M,R/I) = 0 and since ⊗ commutes with colimits we see there
exists a λ′ ≥ λ such that each ξi maps to zero in TorRλ′

1 (Mλ′ , Rλ′/Iλ′). The composition
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of the maps
Rλ′ ⊗Rλ TorRλ1 (Mλ, Rλ/Iλ)

surjective by Lemma 99.12
��

TorRλ1 (Mλ, Rλ′/IλRλ′)

surjective up to localization by Lemma 99.13
��

TorRλ′
1 (Mλ′ , Rλ′/IλRλ′)

surjective by Lemma 99.12
��

TorRλ′
1 (Mλ′ , Rλ′/Iλ′).

is surjective up to a localization by the reasons indicated. The localization is necessary
since Mλ′ is not equal to Mλ ⊗Rλ Rλ′ . Namely, it is equal to Mλ ⊗Sλ Sλ′ and Sλ′ is the
localization of Sλ ⊗Rλ Rλ′ whence the statement up to a localization (or tensoring with
Sλ′ ). Note that Lemma 99.12 applies to the first and third arrows becauseMλ/IλMλ is flat
over Rλ/Iλ and because Mλ′/IλMλ′ is flat over Rλ′/IλRλ′ as it is a base change of the
flat module Mλ/IλMλ. The composition maps the generators ξi to zero as we explained
above. We finally conclude that TorRλ′

1 (Mλ′ , Rλ′/Iλ′) is zero. This implies that Mλ′ is
flat over Rλ′ by Lemma 99.10. �

Please compare the lemma below to Lemma 99.15 (the case of Noetherian local rings) and
Lemma 101.8 (the case of a nilpotent ideal in the base).

Lemma 128.8 (Critère de platitude par fibres). Let R, S , S′ be local rings and let
R → S → S′ be local ring homomorphisms. Let M be an S′-module. Let m ⊂ R be the
maximal ideal. Assume

(1) The ring maps R→ S and R→ S′ are essentially of finite presentation.
(2) The module M is of finite presentation over S′.
(3) The module M is not zero.
(4) The module M/mM is a flat S/mS-module.
(5) The module M is a flat R-module.

Then S is flat over R and M is a flat S-module.

Proof. As in the proof of Lemma 127.11 we may first write R = colimRλ as a
directed colimit of local Z-algebras which are essentially of finite type. Denote pλ the
maximal ideal of Rλ. Next, we may assume that for some λ1 ∈ Λ there exist fj,λ1 ∈
Rλ1 [x1, . . . , xn] such that

S = colimλ≥λ1 Sλ, with Sλ = (Rλ[x1, . . . , xn]/(f1,λ, . . . , fu,λ))qλ
For some λ2 ∈ Λ, λ2 ≥ λ1 there exist gj,λ2 ∈ Rλ2 [x1, . . . , xn, y1, . . . , ym] with images
gj,λ2 ∈ Sλ2 [y1, . . . , ym] such that

S′ = colimλ≥λ2 S
′
λ, with S′

λ = (Sλ[y1, . . . , ym]/(g1,λ, . . . , gv,λ))q′
λ

Note that this also implies that
S′
λ = (Rλ[x1, . . . , xn, y1, . . . , ym]/(g1,λ, . . . , gv,λ))q′

λ

Choose a presentation
(S′)⊕s → (S′)⊕t →M → 0



798 10. COMMUTATIVE ALGEBRA

ofM over S′. LetA ∈Mat(t×s, S′) be the matrix of the presentation. For some λ3 ∈ Λ,
λ3 ≥ λ2 we can find a matrix Aλ3 ∈ Mat(t × s, Sλ3) which maps to A. For all λ ≥ λ3

we let Mλ = Coker((S′
λ)⊕s Aλ−−→ (S′

λ)⊕t).
With these choices, we have for each λ3 ≤ λ ≤ µ that Sλ⊗Rλ Rµ → Sµ is a localization,
S′
λ⊗SλSµ → S′

µ is a localization, and the mapMλ⊗S′
λ
S′
µ →Mµ is an isomorphism. This

also implies that S′
λ ⊗Rλ Rµ → S′

µ is a localization. Thus, since M is flat over R we see
by Lemma 128.3 that for all λ big enough the module Mλ is flat over Rλ. Moreover, note
that m = colim pλ, S/mS = colimSλ/pλSλ, S′/mS′ = colimS′

λ/pλS
′
λ, and M/mM =

colimMλ/pλMλ. Also, for each λ3 ≤ λ ≤ µ we see (from the properties listed above)
that

S′
λ/pλS

′
λ ⊗Sλ/pλSλ Sµ/pµSµ −→ S′

µ/pµS
′
µ

is a localization, and the map
Mλ/pλMλ ⊗S′

λ
/pλS′

λ
S′
µ/pµS

′
µ −→Mµ/pµMµ

is an isomorphism. Hence the system (Sλ/pλSλ → S′
λ/pλS

′
λ,Mλ/pλMλ) is a system as

in Lemma 127.13 as well. We may apply Lemma 128.3 again because M/mM is assumed
flat over S/mS and we see thatMλ/pλMλ is flat over Sλ/pλSλ for all λ big enough. Thus
for λ big enough the data Rλ → Sλ → S′

λ,Mλ satisfies the hypotheses of Lemma 99.15.
Pick such a λ. Then S = Sλ ⊗Rλ R is flat over R, and M = Mλ ⊗Sλ S is flat over S
(since the base change of a flat module is flat). �

The following is an easy consequence of the “critère de platitude par fibres” Lemma 128.8.
For more results of this kind see More on Flatness, Section 1.

Lemma 128.9. Let R, S , S′ be local rings and let R → S → S′ be local ring homo-
morphisms. Let M be an S′-module. Let m ⊂ R be the maximal ideal. Assume

(1) R→ S′ is essentially of finite presentation,
(2) R→ S is essentially of finite type,
(3) M is of finite presentation over S′,
(4) M is not zero,
(5) M/mM is a flat S/mS-module, and
(6) M is a flat R-module.

Then S is essentially of finite presentation and flat over R and M is a flat S-module.

Proof. AsS is essentially of finite presentation overRwe can writeS = Cq for some
finite type R-algebra C. Write C = R[x1, . . . , xn]/I . Denote q ⊂ R[x1, . . . , xn] be the
prime ideal corresponding to q. Then we see that S = B/J where B = R[x1, . . . , xn]q
is essentially of finite presentation over R and J = IB. We can find f1, . . . , fk ∈ J such
that the images f i ∈ B/mB generate the image J of J in the Noetherian ring B/mB.
Hence there exist finitely generated ideals J ′ ⊂ J such that B/J ′ → B/J induces an
isomorphism

(B/J ′)⊗R R/m −→ B/J ⊗R R/m = S/mS.

For any J ′ as above we see that Lemma 128.8 applies to the ring maps
R −→ B/J ′ −→ S′

and the module M . Hence we conclude that B/J ′ is flat over R for any choice J ′ as
above. Now, if J ′ ⊂ J ′ ⊂ J are two finitely generated ideals as above, then we conclude
that B/J ′ → B/J ′′ is a surjective map between flat R-algebras which are essentially
of finite presentation which is an isomorphism modulo m. Hence Lemma 128.4 implies
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that B/J ′ = B/J ′′, i.e., J ′ = J ′′. Clearly this means that J is finitely generated, i.e., S is
essentially of finite presentation overR. Thus we may apply Lemma 128.8 toR→ S → S′

and we win. �

Lemma 128.10 (Critère de platitude par fibres: locally nilpotent case). Let

S // S′

R

__ >>

be a commutative diagram in the category of rings. Let I ⊂ R be a locally nilpotent ideal
and M an S′-module. Assume

(1) R→ S is of finite type,
(2) R→ S′ is of finite presentation,
(3) M is a finitely presented S′-module,
(4) M/IM is flat as a S/IS-module, and
(5) M is flat as an R-module.

Then M is a flat S-module and Sq is flat and essentially of finite presentation over R for
every q ⊂ S such that M ⊗S κ(q) is nonzero.

Proof. If M ⊗S κ(q) is nonzero, then S′ ⊗S κ(q) is nonzero and hence there exists
a prime q′ ⊂ S′ lying over q (Lemma 17.9). Let p ⊂ R be the image of q in Spec(R).
Then I ⊂ p as I is locally nilpotent henceM/pM is flat over S/pS. Hence we may apply
Lemma 128.9 to Rp → Sq → S′

q′ and Mq′ . We conclude that Mq′ is flat over S and Sq is
flat and essentially of finite presentation over R. Since q′ was an arbitrary prime of S′ we
also see that M is flat over S (Lemma 39.18). �

129. Openness of the flat locus

We use Lemma 128.3 to reduce to the Noetherian case. The Noetherian case is handled
using the characterization of exact complexes given in Section 102.

Lemma 129.1. Let k be a field. Let S be a finite type k-algebra. Let f1, . . . , fi be
elements of S. Assume that S is Cohen-Macaulay and equidimensional of dimension d,
and that dimV (f1, . . . , fi) ≤ d − i. Then equality holds and f1, . . . , fi forms a regular
sequence in Sq for every prime q of V (f1, . . . , fi).

Proof. If S is Cohen-Macaulay and equidimensional of dimension d, then we have
dim(Sm) = d for all maximal ideals m of S , see Lemma 114.7. By Proposition 103.4 we see
that for all maximal ideals m ∈ V (f1, . . . , fi) the sequence is a regular sequence in Sm and
the local ring Sm/(f1, . . . , fi) is Cohen-Macaulay of dimension d−i. This actually means
that S/(f1, . . . , fi) is Cohen-Macaulay and equidimensional of dimension d− i. �

Lemma 129.2. Let R→ S be a finite type ring map. Let d be an integer such that all
fibres S⊗Rκ(p) are Cohen-Macaulay and equidimensional of dimension d. Let f1, . . . , fi
be elements of S. The set

{q ∈ V (f1, . . . , fi) | f1, . . . , fi are a regular sequence in Sq/pSq where p = R ∩ q}

is open in V (f1, . . . , fi).
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Proof. Write S = S/(f1, . . . , fi). Suppose q is an element of the set defined in the
lemma, and p is the corresponding prime of R. We will use relative dimension as defined
in Definition 125.1. First, note that d = dimq(S/R) = dim(Sq/pSq) + trdegκ(p) κ(q)
by Lemma 116.3. Since f1, . . . , fi form a regular sequence in the Noetherian local ring
Sq/pSq Lemma 60.13 tells us that dim(Sq/pSq) = dim(Sq/pSq)− i. We conclude that
dimq(S/R) = dim(Sq/pSq) + trdegκ(p) κ(q) = d− i by Lemma 116.3. By Lemma 125.6
we have dimq′(S/R) ≤ d−i for all q′ ∈ V (f1, . . . , fi) = Spec(S) in a neighbourhood of
q. Thus after replacing S by Sg for some g ∈ S , g 6∈ q we may assume that the inequality
holds for all q′. The result follows from Lemma 129.1. �

Lemma 129.3. Let R → S be a ring map. Consider a finite homological complex of
finite free S-modules:

F• : 0→ Sne
ϕe−→ Sne−1

ϕe−1−−−→ . . .
ϕi+1−−−→ Sni

ϕi−→ Sni−1
ϕi−1−−−→ . . .

ϕ1−→ Sn0

For every prime q of S consider the complex F •,q = F•,q ⊗R κ(p) where p is inverse
image of q in R. Assume R is Noetherian and there exists an integer d such that R → S
is finite type, flat with fibres S ⊗R κ(p) Cohen-Macaulay of dimension d. The set

{q ∈ Spec(S) | F •,q is exact}
is open in Spec(S).

Proof. Let q be an element of the set defined in the lemma. We are going to use
Proposition 102.9 to show there exists a g ∈ S , g 6∈ q such that D(g) is contained in the
set defined in the lemma. In other words, we are going to show that after replacing S by
Sg , the set of the lemma is all of Spec(S). Thus during the proof we will, finitely often,
replace S by such a localization. Recall that Proposition 102.9 characterizes exactness of
complexes in terms of ranks of the maps ϕi and the ideals I(ϕi), in case the ring is local.
We first address the rank condition. Set ri = ni − ni+1 + . . . + (−1)e−ine. Note that
ri + ri+1 = ni and note that ri is the expected rank of ϕi (in the exact case).

By Lemma 99.5 we see that ifF •,q is exact, then the localizationF•,q is exact. In particular
the complex F• becomes exact after localizing by an element g ∈ S , g 6∈ q. In this case
Proposition 102.9 applied to all localizations of S at prime ideals implies that all (ri+1)×
(ri + 1)-minors of ϕi are zero. Thus we see that the rank of ϕi is at most ri.
Let Ii ⊂ S denote the ideal generated by the ri × ri-minors of the matrix of ϕi. By
Proposition 102.9 the complex F •,q is exact if and only if for every 1 ≤ i ≤ e we have
either (Ii)q = Sq or (Ii)q contains a Sq/pSq-regular sequence of length i. Namely, by
our choice of ri above and by the bound on the ranks of the ϕi this is the only way the
conditions of Proposition 102.9 can be satisfied.
If (Ii)q = Sq, then after localizing S at some element g 6∈ q we may assume that Ii = S.
Clearly, this is an open condition.
If (Ii)q 6= Sq, then we have a sequence f1, . . . , fi ∈ (Ii)q which form a regular sequence in
Sq/pSq. Note that for any prime q′ ⊂ S such that (f1, . . . , fi) 6⊂ q′ we have (Ii)q′ = Sq′ .
Thus the result follows from Lemma 129.2. �

Theorem 129.4. Let R be a ring. Let R → S be a ring map of finite presentation.
Let M be a finitely presented S-module. The set

{q ∈ Spec(S) |Mq is flat over R}
is open in Spec(S).
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Proof. Let q ∈ Spec(S) be a prime. Let p ⊂ R be the inverse image of q in R. Note
that Mq is flat over R if and only if it is flat over Rp. Let us assume that Mq is flat over
R. We claim that there exists a g ∈ S , g 6∈ q such that Mg is flat over R.

We first reduce to the case where R and S are of finite type over Z. Choose a directed set
Λ and a system (Rλ → Sλ,Mλ) as in Lemma 127.18. Set pλ equal to the inverse image of
p in Rλ. Set qλ equal to the inverse image of q in Sλ. Then the system

((Rλ)pλ , (Sλ)qλ , (Mλ)qλ)
is a system as in Lemma 127.13. Hence by Lemma 128.3 we see that for some λ the module
Mλ is flat overRλ at the prime qλ. Suppose we can prove our claim for the system (Rλ →
Sλ,Mλ, qλ). In other words, suppose that we can find a g ∈ Sλ, g 6∈ qλ such that (Mλ)g is
flat overRλ. By Lemma 127.18 we haveM = Mλ⊗RλR and hence alsoMg = (Mλ)g⊗Rλ
R. Thus by Lemma 39.7 we deduce the claim for the system (R→ S,M, q).

At this point we may assume that R and S are of finite type over Z. We may write
S as a quotient of a polynomial ring R[x1, . . . , xn]. Of course, we may replace S by
R[x1, . . . , xn] and assume that S is a polynomial ring over R. In particular we see that
R→ S is flat and all fibres rings S ⊗R κ(p) have global dimension n.

Choose a resolution F• of M over S with each Fi finite free, see Lemma 71.1. Let Kn =
Ker(Fn−1 → Fn−2). Note that (Kn)q is flat over R, since each Fi is flat over R and by
assumption on M , see Lemma 39.13. In addition, the sequence

0→ Kn/pKn → Fn−1/pFn−1 → . . .→ F0/pF0 →M/pM → 0

is exact upon localizing at q, because of vanishing of TorRp

i (κ(p),Mq). Since the global
dimension of Sq/pSq is n we conclude that Kn/pKn localized at q is a finite free module
over Sq/pSq. By Lemma 99.4 (Kn)q is free over Sq. In particular, there exists a g ∈ S ,
g 6∈ q such that (Kn)g is finite free over Sg .

By Lemma 129.3 there exists a further localization Sg such that the complex

0→ Kn → Fn−1 → . . .→ F0

is exact on all fibres ofR→ S. By Lemma 99.5 this implies that the cokernel of F1 → F0
is flat. This proves the theorem in the Noetherian case. �

130. Openness of Cohen-Macaulay loci

In this section we characterize the Cohen-Macaulay property of finite type algebras in
terms of flatness. We then use this to prove the set of points where such an algebra is
Cohen-Macaulay is open.

Lemma 130.1. Let S be a finite type algebra over a field k. Let ϕ : k[y1, . . . , yd]→ S
be a quasi-finite ring map. As subsets of Spec(S) we have

{q | Sq flat over k[y1, . . . , yd]} = {q | Sq CM and dimq(S/k) = d}
For notation see Definition 125.1.

Proof. Let q ⊂ S be a prime. Denote p = k[y1, . . . , yd] ∩ q. Note that always
dim(Sq) ≤ dim(k[y1, . . . , yd]p) by Lemma 125.4 for example. Moreover, the field exten-
sion κ(q)/κ(p) is finite and hence trdegk(κ(p)) = trdegk(κ(q)).

Let q be an element of the left hand side. Then Lemma 112.9 applies and we conclude that
Sq is Cohen-Macaulay and dim(Sq) = dim(k[y1, . . . , yd]p). Combined with the equality
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of transcendence degrees above and Lemma 116.3 this implies that dimq(S/k) = d. Hence
q is an element of the right hand side.
Let q be an element of the right hand side. By the equality of transcendence degrees above,
the assumption that dimq(S/k) = d and Lemma 116.3 we conclude that dim(Sq) =
dim(k[y1, . . . , yd]p). Hence Lemma 128.1 applies and we see that q is an element of the
left hand side. �

Lemma 130.2. Let S be a finite type algebra over a field k. The set of primes q such
that Sq is Cohen-Macaulay is open in S.

This lemma is a special case of Lemma 130.4 below, so you can skip straight to the proof
of that lemma if you like.

Proof. Let q ⊂ S be a prime such that Sq is Cohen-Macaulay. We have to show
there exists a g ∈ S , g 6∈ q such that the ring Sg is Cohen-Macaulay. For any g ∈ S ,
g 6∈ q we may replace S by Sg and q by qSg . Combining this with Lemmas 115.5 and
116.3 we may assume that there exists a finite injective ring map k[y1, . . . , yd] → S with
d = dim(Sq) + trdegk(κ(q)). Set p = k[y1, . . . , yd] ∩ q. By construction we see that q
is an element of the right hand side of the displayed equality of Lemma 130.1. Hence it is
also an element of the left hand side.
By Theorem 129.4 we see that for some g ∈ S , g 6∈ q the ring Sg is flat over k[y1, . . . , yd].
Hence by the equality of Lemma 130.1 again we conclude that all local rings of Sg are
Cohen-Macaulay as desired. �

Lemma 130.3. Let k be a field. Let S be a finite type k algebra. The set of Cohen-
Macaulay primes forms a dense open U ⊂ Spec(S).

Proof. The set is open by Lemma 130.2. It contains all minimal primes q ⊂ S since
the local ring at a minimal prime Sq has dimension zero and hence is Cohen-Macaulay.

�

Lemma 130.4. LetR be a ring. LetR→ S be of finite presentation and flat. For any
d ≥ 0 the set {

q ∈ Spec(S) such that setting p = R ∩ q the fibre ring
Sq/pSq is Cohen-Macaulay and dimq(S/R) = d

}
is open in Spec(S).

Proof. Let q be an element of the set indicated, with p the corresponding prime of
R. We have to find a g ∈ S , g 6∈ q such that all fibre rings of R → Sg are Cohen-
Macaulay. During the course of the proof we may (finitely many times) replace S by Sg
for a g ∈ S , g 6∈ q. Thus by Lemma 125.2 we may assume there is a quasi-finite ring map
R[t1, . . . , td]→ S with d = dimq(S/R). Let q′ = R[t1, . . . , td] ∩ q. By Lemma 130.1 we
see that the ring map

R[t1, . . . , td]q′/pR[t1, . . . , td]q′ −→ Sq/pSq

is flat. Hence by the critère de platitude par fibres Lemma 128.8 we see thatR[t1, . . . , td]q′ →
Sq is flat. Hence by Theorem 129.4 we see that for some g ∈ S , g 6∈ q the ring map
R[t1, . . . , td] → Sg is flat. Replacing S by Sg we see that for every prime r ⊂ S , setting
r′ = R[t1, . . . , td]∩r and p′ = R∩r the local ring mapR[t1, . . . , td]r′ → Sr is flat. Hence
also the base change

R[t1, . . . , td]r′/p′R[t1, . . . , td]r′ −→ Sr/p
′Sr
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is flat. Hence by Lemma 130.1 applied with k = κ(p′) we see r is in the set of the lemma
as desired. �

Lemma 130.5. Let R be a ring. Let R → S be flat of finite presentation. The set of
primes q such that the fibre ring Sq ⊗R κ(p), with p = R ∩ q is Cohen-Macaulay is open
and dense in every fibre of Spec(S)→ Spec(R).

Proof. The set, call it W , is open by Lemma 130.4. It is dense in the fibres because
the intersection of W with a fibre is the corresponding set of the fibre to which Lemma
130.3 applies. �

Lemma 130.6. Let k be a field. Let S be a finite type k-algebra. Let K/k be a field
extension, and set SK = K ⊗k S. Let q ⊂ S be a prime of S. Let qK ⊂ SK be a prime of
SK lying over q. Then Sq is Cohen-Macaulay if and only if (SK)qK is Cohen-Macaulay.

Proof. During the course of the proof we may (finitely many times) replace S by
Sg for any g ∈ S , g 6∈ q. Hence using Lemma 115.5 we may assume that dim(S) =
dimq(S/k) =: d and find a finite injective map k[x1, . . . , xd] → S. Note that this also
induces a finite injective map K[x1, . . . , xd] → SK by base change. By Lemma 116.6 we
have dimqK (SK/K) = d. Set p = k[x1, . . . , xd] ∩ q and pK = K[x1, . . . , xd] ∩ qK .
Consider the following commutative diagram of Noetherian local rings

Sq
// (SK)qK

k[x1, . . . , xd]p //

OO

K[x1, . . . , xd]pK

OO

By Lemma 130.1 we have to show that the left vertical arrow is flat if and only if the right
vertical arrow is flat. Because the bottom arrow is flat this equivalence holds by Lemma
100.1. �

Lemma 130.7. Let R be a ring. Let R → S be of finite type. Let R → R′ be any
ring map. Set S′ = R′ ⊗R S. Denote f : Spec(S′) → Spec(S) the map associated
to the ring map S → S′. Set W equal to the set of primes q such that the fibre ring
Sq ⊗R κ(p), p = R ∩ q is Cohen-Macaulay, and let W ′ denote the analogue for S′/R′.
Then W ′ = f−1(W ).

Proof. Trivial from Lemma 130.6 and the definitions. �

Lemma 130.8. Let R be a ring. Let R → S be a ring map which is (a) flat, (b) of
finite presentation, (c) has Cohen-Macaulay fibres. Then we can write S = S0 × . . . ×
Sn as a product of R-algebras Sd such that each Sd satisfies (a), (b), (c) and has all fibres
equidimensional of dimension d.

Proof. For each integer d denote Wd ⊂ Spec(S) the set defined in Lemma 130.4.
Clearly we have Spec(S) =

∐
Wd, and each Wd is open by the lemma we just quoted.

Hence the result follows from Lemma 24.3. �

131. Differentials

In this section we define the module of differentials of a ring map.
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Definition 131.1. Let ϕ : R → S be a ring map and let M be an S-module. A
derivation, or more precisely an R-derivation into M is a map D : S → M which is
additive, annihilates elements of ϕ(R), and satisfies the Leibniz rule: D(ab) = aD(b) +
bD(a).

Note that D(ra) = rD(a) if r ∈ R and a ∈ S. An equivalent definition is that an R-
derivation is an R-linear map D : S → M which satisfies the Leibniz rule. The set of all
R-derivations forms anS-module: Given twoR-derivationsD,D′ the sumD+D′ : S →
M , a 7→ D(a) + D′(a) is an R-derivation, and given an R-derivation D and an element
c ∈ S the scalar multiple cD : S → M , a 7→ cD(a) is an R-derivation. We denote this
S-module

DerR(S,M).
Also, if α : M → N is an S-module map, then the composition α ◦D is an R-derivation
into N . In this way the assignment M 7→ DerR(S,M) is a covariant functor.

Consider the following map of free S-modules⊕
(a,b)∈S2

S[(a, b)]⊕
⊕

(f,g)∈S2
S[(f, g)]⊕

⊕
r∈R

S[r] −→
⊕

a∈S
S[a]

defined by the rules

[(a, b)] 7−→ [a+ b]− [a]− [b], [(f, g)] 7−→ [fg]− f [g]− g[f ], [r] 7−→ [ϕ(r)]
with obvious notation. Let ΩS/R be the cokernel of this map. There is a map d : S →
ΩS/R which maps a to the class da of [a] in the cokernel. This is an R-derivation by the
relations imposed on ΩS/R, in other words

d(a+ b) = da+ db, d(fg) = fdg + gdf, dϕ(r) = 0
where a, b, f, g ∈ S and r ∈ R.

Definition 131.2. The pair (ΩS/R, d) is called the module of Kähler differentials or
the module of differentials of S over R.

Lemma 131.3. The module of differentials of S over R has the following universal
property. The map

HomS(ΩS/R,M) −→ DerR(S,M), α 7−→ α ◦ d

is an isomorphism of functors.

Proof. By definition an R-derivation is a rule which associates to each a ∈ S an
element D(a) ∈ M . Thus D gives rise to a map [D] :

⊕
S[a] → M . However, the

conditions of being an R-derivation exactly mean that [D] annihilates the image of the
map in the displayed presentation of ΩS/R above. �

Lemma 131.4. Suppose that R→ S is surjective. Then ΩS/R = 0.

Proof. You can see this either because all R-derivations clearly have to be zero, or
because the map in the presentation of ΩS/R is surjective. �

Suppose that

(131.4.1)

S
ϕ
// S′

R
ψ //

α

OO

R′

β

OO
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is a commutative diagram of rings. In this case there is a natural map of modules of differ-
entials fitting into the commutative diagram

ΩS/R // ΩS′/R′

S

d

OO

ϕ // S′

d

OO

To construct the map just use the obvious map between the presentations for ΩS/R and
ΩS′/R′ . Namely,

(131.4.2)

⊕
S′[(a′, b′)]⊕

⊕
S′[(f ′, g′)]⊕

⊕
S′[r′] //⊕S′[a′]

⊕
S[(a, b)]⊕

⊕
S[(f, g)]⊕

⊕
S[r] //

[(a, b)] 7→ [(ϕ(a), ϕ(b))]
[(f, g)] 7→ [(ϕ(f), ϕ(g))]

[r] 7→ [ψ(r)]

OO

⊕
S[a]

[a]7→[ϕ(a)]

OO

The result is simply that fdg ∈ ΩS/R is mapped to ϕ(f)dϕ(g).

Lemma 131.5. Let I be a directed set. Let (Ri → Si, ϕii′) be a system of ring maps
over I , see Categories, Section 21. Then we have

ΩS/R = colimi ΩSi/Ri .

where R→ S = colim(Ri → Si).

Proof. This is clear from the defining presentation of ΩS/R and the functoriality of
this described above. �

Lemma 131.6. In diagram (131.4.1), suppose that S → S′ is surjective with kernel
I ⊂ S. Then ΩS/R → ΩS′/R′ is surjective with kernel generated as an S-module by the
elements da, where a ∈ S is such that ϕ(a) ∈ β(R′). (This includes in particular the
elements d(i), i ∈ I .)

First proof. Consider the map of presentations (131.4.2). Clearly the right vertical
map of free modules is surjective. Thus the map is surjective. Suppose that some element
η of ΩS/R maps to zero in ΩS′/R′ . Write η as the image of

∑
si[ai] for some si, ai ∈ S.

Then we see that
∑
ϕ(si)[ϕ(ai)] is the image of an element

θ =
∑

s′
j [a′

j , b
′
j ] +

∑
s′
k[f ′

k, g
′
k] +

∑
s′
l[r′
l]

in the upper left corner of the diagram. Since ϕ is surjective, the terms s′
j [a′

j , b
′
j ] and

s′
k[f ′

k, g
′
k] are in the image of elements in the lower right corner. Thus, modifying η and

θ by substracting the images of these elements, we may assume θ =
∑
s′
l[r′
l]. In other

words, we see
∑
ϕ(si)[ϕ(ai)] is of the form

∑
s′
l[β(r′

l)]. Pick a′ ∈ S′. Next, we may
assume that we have some a′ ∈ S′ such that a′ = ϕ(ai) for all i and a′ = β(r′

l) for all l.
This is clear from the direct sum decomposition of the upper right corner of the diagram.
Choose a ∈ S with ϕ(a) = a′. Then we can write ai = a+ xi for some xi ∈ I . Thus we
may assume that all ai are equal to a by using the relations that are allowed. But then we
may assume our element is of the form s[a]. We still know thatϕ(s)[a′] =

∑
ϕ(s′

l)[β(r′
l)].

Hence either ϕ(s) = 0 and we’re done, or a′ = ϕ(a) is in the image of β and we’re done
as well. �
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Second proof. We will use the universal property of modules of differentials given
in Lemma 131.3 without further mention.

In (131.4.1) let R′′ = S ×S′ R′. Then we have following diagram:

S // S // S′

R //

OO

R′′ //

OO

R′

OO

Let M be an S-module. It follows immediately from the definitions that an R-derivation
D : S →M is an R′′-derivation if and only if it annihilates the elements in the image of
R′′ → S. The universal property translates this into the statement that the natural map
ΩS/R → ΩS/R′′ is surjective with kernel generated as an S-module by the image of R′′.

From the previous paragraph we see that it suffices to show that ΩS/R → ΩS′/R′ is an
isomorphism when S → S′ is surjective and R = S ×S′ R′. Let M ′ be an S′-module.
Observe that any R′-derivation D′ : S′ → M ′ gives an R-derivation by precomposing
with S → S′. Conversely, supposeM is an S-module andD : S →M is anR-derivation.
If i ∈ I , then there exist an a ∈ R with α(a) = i (as R = S ×S′ R′). It follows that
D(i) = 0 and hence 0 = D(is) = iD(s) for all s ∈ S. Thus the image of D is contained
in the submodule M ′ ⊂ M of elements annihilated by I and moreover the induced map
S →M ′ factors through an R′-derivation S′ →M ′. It is an exercise to use the universal
property to see that this means ΩS/R → ΩS′/R′ is an isomorphism; details omitted. �

Lemma 131.7. Let A → B → C be ring maps. Then there is a canonical exact
sequence

C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of C-modules.

Proof. We get a diagram (131.4.1) by putting R = A, S = C , R′ = B, and S′ = C.
By Lemma 131.6 the map ΩC/A → ΩC/B is surjective, and the kernel is generated by the
elements d(c), where c ∈ C is in the image of B → C. The lemma follows. �

Lemma 131.8. Let ϕ : A→ B be a ring map.
(1) If S ⊂ A is a multiplicative subset mapping to invertible elements of B, then

ΩB/A = ΩB/S−1A.
(2) If S ⊂ B is a multiplicative subset then S−1ΩB/A = ΩS−1B/A.

Proof. To show the equality of (1) it is enough to show that any A-derivation D :
B →M annihilates the elementsϕ(s)−1. This is clear from the Leibniz rule applied to 1 =
ϕ(s)ϕ(s)−1. To show (2) note that there is an obvious map S−1ΩB/A → ΩS−1B/A. To
show it is an isomorphism it is enough to show that there is aA-derivation d′ ofS−1B into
S−1ΩB/A. To define it we simply set d′(b/s) = (1/s)db−(1/s2)bds. Details omitted. �

Lemma 131.9. In diagram (131.4.1), suppose that S → S′ is surjective with kernel
I ⊂ S , and assume that R′ = R. Then there is a canonical exact sequence of S′-modules

I/I2 −→ ΩS/R ⊗S S′ −→ ΩS′/R −→ 0

The leftmost map is characterized by the rule that f ∈ I maps to df ⊗ 1.
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Proof. The middle term is ΩS/R⊗SS/I . For f ∈ I denote f the image of f in I/I2.
To show that the map f 7→ df⊗1 is well defined we just have to check that df1f2⊗1 = 0
if f1, f2 ∈ I . And this is clear from the Leibniz rule df1f2 ⊗ 1 = (f1df2 + f2df1)⊗ 1 =
df2 ⊗ f1 + df1 ⊗ f2 = 0. A similar computation show this map is S′ = S/I-linear.

The map ΩS/R ⊗S S′ → ΩS′/R is the canonical S′-linear map associated to the S-linear
map ΩS/R → ΩS′/R. It is surjective because ΩS/R → ΩS′/R is surjective by Lemma 131.6.

The composite of the two maps is zero because df maps to zero in ΩS′/R for f ∈ I . Note
that exactness just says that the kernel of ΩS/R → ΩS′/R is generated as an S-submodule
by the submodule IΩS/R together with the elements df , with f ∈ I . We know by Lemma
131.6 that this kernel is generated by the elements d(a) where ϕ(a) = β(r) for some
r ∈ R. But then a = α(r) + a − α(r), so d(a) = d(a − α(r)). And a − α(r) ∈ I since
ϕ(a− α(r)) = ϕ(a)− ϕ(α(r)) = β(r)− β(r) = 0. We conclude the elements df with
f ∈ I already generate the kernel as an S-module, as desired. �

Lemma 131.10. In diagram (131.4.1), suppose that S → S′ is surjective with kernel
I ⊂ S , and assume that R′ = R. Moreover, assume that there exists an R-algebra map
S′ → S which is a right inverse to S → S′. Then the exact sequence of S′-modules of
Lemma 131.9 turns into a short exact sequence

0 −→ I/I2 −→ ΩS/R ⊗S S′ −→ ΩS′/R −→ 0

which is even a split short exact sequence.

Proof. Let β : S′ → S be the right inverse to the surjection α : S → S′, so S =
I ⊕ β(S′). Clearly we can use β : ΩS′/R → ΩS/R, to get a right inverse to the map
ΩS/R ⊗S S′ → ΩS′/R. On the other hand, consider the map

D : S −→ I/I2, x 7−→ x− β(α(x))

It is easy to show thatD is anR-derivation (omitted). Moreover xD(s) = 0 if x ∈ I, s ∈
S. Hence, by the universal property D induces a map τ : ΩS/R ⊗S S′ → I/I2. We omit
the verification that it is a left inverse to d : I/I2 → ΩS/R ⊗S S′. Hence we win. �

Lemma 131.11. Let R → S be a ring map. Let I ⊂ S be an ideal. Let n ≥ 1 be an
integer. Set S′ = S/In+1. The map ΩS/R → ΩS′/R induces an isomorphism

ΩS/R ⊗S S/In −→ ΩS′/R ⊗S′ S/In.

Proof. This follows from Lemma 131.9 and the fact that d(In+1) ⊂ InΩS/R by the
Leibniz rule for d. �

Lemma 131.12. Suppose that we have ring maps R → R′ and R → S. Set S′ =
S ⊗R R′, so that we obtain a diagram (131.4.1). Then the canonical map defined above
induces an isomorphism ΩS/R ⊗R R′ = ΩS′/R′ .

Proof. Let d′ : S′ = S ⊗R R′ → ΩS/R ⊗R R′ denote the map d′(
∑
ai ⊗ xi) =∑

d(ai) ⊗ xi. It exists because the map S × R′ → ΩS/R ⊗R R′, (a, x) 7→ da ⊗R x is
R-bilinear. This is an R′-derivation, as can be verified by a simple computation. We will
show that (ΩS/R ⊗R R′, d′) satisfies the universal property. Let D : S′ → M ′ be an R′

derivation into an S′-module. The composition S → S′ →M ′ is an R-derivation, hence
we get an S-linear map ϕD : ΩS/R → M ′. We may tensor this with R′ and get the map
ϕ′
D : ΩS/R ⊗R R′ →M ′, ϕ′

D(η ⊗ x) = xϕD(η). It is clear that D = ϕ′
D ◦ d′. �
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The multiplication map S ⊗R S → S is the R-algebra map which maps a⊗ b to ab in S.
It is also an S-algebra map, if we think of S ⊗R S as an S-algebra via either of the maps
S → S ⊗R S.

Lemma 131.13. LetR→ S be a ring map. Let J = Ker(S⊗RS → S) be the kernel of
the multiplication map. There is a canonical isomorphism of S-modules ΩS/R → J/J2,
adb 7→ a⊗ b− ab⊗ 1.

First proof. Apply Lemma 131.10 to the commutative diagram

S ⊗R S // S

S //

OO

S

OO

where the left vertical arrow is a 7→ a ⊗ 1. We get the exact sequence 0 → J/J2 →
ΩS⊗RS/S ⊗S⊗RS S → ΩS/S → 0. By Lemma 131.4 the term ΩS/S is 0, and we obtain an
isomorphism between the other two terms. We have ΩS⊗RS/S = ΩS/R ⊗S (S ⊗R S) by
Lemma 131.12 as S → S ⊗R S is the base change of R→ S and hence

ΩS⊗RS/S ⊗S⊗RS S = ΩS/R ⊗S (S ⊗R S)⊗S⊗RS S = ΩS/R
We omit the verification that the map is given by the rule of the lemma. �

Second proof. First we show that the rule adb 7→ a ⊗ b − ab ⊗ 1 is well defined.
In order to do this we have to show that dr and adb+ bda− d(ab) map to zero. The first
because r ⊗ 1− 1⊗ r = 0 by definition of the tensor product. The second because
(a⊗ b− ab⊗ 1) + (b⊗ a− ba⊗ 1)− (1⊗ ab− ab⊗ 1) = (a⊗ 1− 1⊗ a)(1⊗ b− b⊗ 1)
is in J2.
We construct a map in the other direction. We may think of S → S ⊗R S , a 7→ a⊗ 1 as
the base change of R → S. Hence we have ΩS⊗RS/S = ΩS/R ⊗S (S ⊗R S), by Lemma
131.12. At this point the sequence of Lemma 131.9 gives a map

J/J2 → ΩS⊗RS/S ⊗S⊗RS S = (ΩS/R ⊗S (S ⊗R S))⊗S⊗RS S = ΩS/R.
We leave it to the reader to see it is the inverse of the map above. �

Lemma 131.14. If S = R[x1, . . . , xn], then ΩS/R is a finite free S-module with basis
dx1, . . . , dxn.

Proof. We first show that dx1, . . . , dxn generate ΩS/R as an S-module. To prove
this we show that dg can be expressed as a sum

∑
gidxi for any g ∈ R[x1, . . . , xn]. We

do this by induction on the (total) degree of g. It is clear if the degree of g is 0, because
then dg = 0. If the degree of g is > 0, then we may write g as c+

∑
gixi with c ∈ R and

deg(gi) < deg(g). By the Leibniz rule we have dg =
∑
gidxi +

∑
xidgi, and hence we

win by induction.
Consider the R-derivation ∂/∂xi : R[x1, . . . , xn] → R[x1, . . . , xn]. (We leave it to the
reader to define this; the defining property being that ∂/∂xi(xj) = δij .) By the universal
property this corresponds to an S-module map li : ΩS/R → R[x1, . . . , xn] which maps
dxi to 1 and dxj to 0 for j 6= i. Thus it is clear that there are no S-linear relations among
the elements dx1, . . . , dxn. �

Lemma 131.15. Suppose R → S is of finite presentation. Then ΩS/R is a finitely
presented S-module.
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Proof. Write S = R[x1, . . . , xn]/(f1, . . . , fm). Write I = (f1, . . . , fm). Accord-
ing to Lemma 131.9 there is an exact sequence of S-modules

I/I2 → ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S → ΩS/R → 0

The result follows from the fact that I/I2 is a finite S-module (generated by the images
of the fi), and that the middle term is finite free by Lemma 131.14. �

Lemma 131.16. Suppose R → S is of finite type. Then ΩS/R is finitely generated
S-module.

Proof. This is very similar to, but easier than the proof of Lemma 131.15. �

132. The de Rham complex

Let A → B be a ring map. Denote d : B → ΩB/A the module of differentials with its
universal A-derivation constructed in Section 131. Let ΩiB/A = ∧iB(ΩB/A) for i ≥ 0 be
the ith exterior power as in Section 13. The de Rham complex ofB overA is the complex

Ω0
B/A → Ω1

B/A → Ω2
B/A → . . .

with A-linear differentials constructed and described below.

The map d : Ω0
B/A → Ω1

B/A is the universal derivation d : B → ΩB/A. Observe that this
is indeed A-linear.

For p ≥ 1 we claim there is a unique A-linear map d : ΩpB/A → Ωp+1
B/A such that

(132.0.1) d (b0db1 ∧ . . . ∧ dbp) = db0 ∧ db1 ∧ . . . ∧ dbp
Recall that ΩB/A is generated as a B-module by the elements db. Thus ΩpB/A is generated
as anA-module by the element b0db1 ∧ . . .∧ dbp and it follows that the map d : ΩpB/A →
Ωp+1
B/A if it exists is unique.

Construction of d : Ω1
B/A → Ω2

B/A. By Definition 131.2 the elements db freely generate
ΩB/A as aB-module subject to the relations da = 0 for a ∈ A and d(b′ + b′′) = db′ + db′′

and d(b′b′′) = b′db′′ + b′′db′ for b′, b′′ ∈ B. Hence to show that the rule∑
b′
idbi 7−→

∑
db′
i ∧ dbi

is well defined we have to show that the elements

bda, and bd(b′ + b′′)− bdb′ − bdb′′ and bd(b′b′′)− bb′db′′ − bb′′db′

for a ∈ A and b, b′, b′′ ∈ B are mapped to zero. This is clear by direct computation using
the Leibniz rule for d.

Observe that the composition Ω0
B/A → Ω1

B/A → Ω2
B/A is zero as d(d(b)) = d(1db) =

d(1)∧ d(b) = 0∧ db = 0. Here d(1) = 0 as 1 ∈ B is in the image of A→ B. We will use
this below.

Construction of d : ΩpB/A → Ωp+1
B/A for p ≥ 2. We will show the A-linear map

γ : Ω1
B/A ⊗A . . .⊗A Ω1

B/A −→ Ωp+1
B/A

defined by the formula

ω1 ⊗ . . .⊗ ωp 7−→
∑

(−1)i+1ω1 ∧ . . . ∧ d(ωi) ∧ . . . ∧ ωp
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factors over the natural surjection Ω1
B/A⊗A . . .⊗AΩ1

B/A → ΩpB/A to give the desired map
d : ΩpB/A → Ωp+1

B/A. According to Lemma 13.4 the kernel of Ω1
B/A ⊗A . . . ⊗A Ω1

B/A →
ΩpB/A is generated as an A-module by the elements ω1 ⊗ . . .⊗ ωp with ωi = ωj for some
i 6= j and ω1 ⊗ . . . ⊗ fωi ⊗ . . . ⊗ ωp − ω1 ⊗ . . . ⊗ fωj ⊗ . . . ⊗ ωp for some f ∈ B. A
direct computation shows the first type of element is mapped to 0 by γ, in other words, γ
is alternating. To finish we have to show that

γ(ω1 ⊗ . . .⊗ fωi ⊗ . . .⊗ ωp) = γ(ω1 ⊗ . . .⊗ fωj ⊗ . . .⊗ ωp)

for f ∈ B. By A-linearity and the alternating property, it is enough to show this for
p = 2, i = 1, j = 2, ω1 = bdb′ and ω2 = cdc′ for b, b′, c, c′ ∈ B. Thus we need to show
that

d(fb) ∧ db′ ∧ cdc′ − fbdb′ ∧ dc ∧ dc′

= db ∧ db′ ∧ fcdc′ − bdb′ ∧ d(fc) ∧ dc′

in other words that

(cd(fb) + fbdc− fcdb− bd(fc)) ∧ db′ ∧ dc′ = 0.

This follows from the Leibniz rule. Observe that the value of γ on the element b0db1 ⊗
db2 ⊗ . . . ⊗ dbp is db0 ∧ db1 ∧ . . . ∧ dbp and hence (132.0.1) will be satisfied for the map
d : ΩpB/A → Ωp+1

B/A so obtained.

Finally, since ΩpB/A is additively generated by the elements b0db1 ∧ . . . ∧ dbp and since
d(b0db1 ∧ . . . ∧ dbp) = db0 ∧ . . . ∧ dbp we see in exactly the same manner that the
composition ΩpB/A → Ωp+1

B/A → Ωp+2
B/A is zero for p ≥ 1. Thus the de Rham complex is

indeed a complex.

Given just a ring R we set ΩR = ΩR/Z. This is sometimes called the absolute module of
differentials of R; this makes sense: if ΩR is the module of differentials where we only
assume the Leibniz rule and not the vanishing of d1, then the Leibniz rule gives d1 =
d(1 · 1) = 1d1 + 1d1 = 2d1 and hence d1 = 0 in ΩR. In this case the absolute de Rham
complex of R is the corresponding complex

Ω0
R → Ω1

R → Ω2
R → . . .

where we set ΩiR = ΩiR/Z and so on.

Suppose we have a commutative diagram of rings

B // B′

A //

OO

A′

OO

There is a natural map of de Rham complexes

Ω•
B/A −→ Ω•

B′/A′

Namely, in degree 0 this is the map B → B′, in degree 1 this is the map ΩB/A → ΩB′/A′

constructed in Section 131, and for p ≥ 2 it is the induced map ΩpB/A = ∧pB(ΩB/A) →
∧pB′(ΩB′/A′) = ΩpB′/A′ . The compatibility with differentials follows from the character-
ization of the differentials by the formula (132.0.1).
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Lemma 132.1. Let A → B be a ring map. Let π : ΩB/A → Ω be a surjective B-
module map. Denote d : B → Ω the composition of π with the universal derivation
dB/A : B → ΩB/A. Set Ωi = ∧iB(Ω). Assume that the kernel of π is generated, as a
B-module, by elements ω ∈ ΩB/A such that dB/A(ω) ∈ Ω2

B/A maps to zero in Ω2. Then
there is a de Rham complex

Ω0 → Ω1 → Ω2 → . . .

whose differential is defined by the rule
d : Ωp → Ωp+1, d (f0df1 ∧ . . . ∧ dfp) = df0 ∧ df1 ∧ . . . ∧ dfp

Proof. We will show that there exists a commutative diagram

Ω0
B/A

��

dB/A
// Ω1
B/A

π

��

dB/A
// Ω2
B/A

∧2π
��

dB/A
// . . .

Ω0 d // Ω1 d // Ω2 d // . . .

the description of the map d will follow from the construction of the differentials dB/A :
ΩpB/A → Ωp+1

B/A of the de Rham complex of B over A given above. Since the left most
vertical arrow is an isomorphism we have the first square. Because π is surjective, to get the
second square it suffices to show that dB/A maps the kernel of π into the kernel of ∧2π.
We are given that any element of the kernel of π is of the form

∑
biωi with π(ωi) =

0 and ∧2π(dB/A(ωi)) = 0. By the Leibniz rule for dB/A we have dB/A(
∑
biωi) =∑

bidB/A(ωi) +
∑

dB/A(bi) ∧ ωi. Hence this maps to zero under ∧2π.

For i > 1 we note that∧iπ is surjective with kernel the image of Ker(π)∧Ωi−1
B/A → ΩiB/A.

For ω1 ∈ Ker(π) and ω2 ∈ Ωi−1
B/A we have

dB/A(ω1 ∧ ω2) = dB/A(ω1) ∧ ω2 − ω1 ∧ dB/A(ω2)
which is in the kernel of ∧i+1π by what we just proved above. Hence we get the (i+ 1)st
square in the diagram above. This concludes the proof. �

133. Finite order differential operators

In this section we introduce differential operators of finite order.

Definition 133.1. Let R → S be a ring map. Let M , N be S-modules. Let k ≥ 0
be an integer. We inductively define a differential operator D : M → N of order k to be
an R-linear map such that for all g ∈ S the map m 7→ D(gm)− gD(m) is a differential
operator of order k − 1. For the base case k = 0 we define a differential operator of order
0 to be an S-linear map.

If D : M → N is a differential operator of order k, then for all g ∈ S the map gD
is a differential operator of order k. The sum of two differential operators of order k is
another. Hence the set of all these

Diffk(M,N) = DiffkS/R(M,N)
is an S-module. We have

Diff0(M,N) ⊂ Diff1(M,N) ⊂ Diff2(M,N) ⊂ . . .
Lemma 133.2. Let R→ S be a ring map. Let L,M,N be S-modules. If D : L→M

andD′ : M → N are differential operators of order k and k′, thenD′ ◦D is a differential
operator of order k + k′.
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Proof. Let g ∈ S. Then the map which sends x ∈ L to

D′(D(gx))− gD′(D(x)) = D′(D(gx))−D′(gD(x)) +D′(gD(x))− gD′(D(x))
is a sum of two compositions of differential operators of lower order. Hence the lemma
follows by induction on k + k′. �

Lemma 133.3. Let R → S be a ring map. Let M be an S-module. Let k ≥ 0. There
exists an S-module P kS/R(M) and a canonical isomorphism

DiffkS/R(M,N) = HomS(P kS/R(M), N)

functorial in the S-module N .

Proof. The existence of P kS/R(M) follows from general category theoretic argu-
ments (insert future reference here), but we will also give a construction. SetF =

⊕
m∈M S[m]

where [m] is a symbol indicating the basis element in the summand corresponding to m.
Given any differential operator D : M → N we obtain an S-linear map LD : F → N
sending [m] to D(m). If D has order 0, then LD annihilates the elements

[m+m′]− [m]− [m′], g0[m]− [g0m]
where g0 ∈ S and m,m′ ∈M . If D has order 1, then LD annihilates the elements

[m+m′]− [m]− [m′], f [m]− [fm], g0g1[m]− g0[g1m]− g1[g0m] + [g1g0m]
where f ∈ R, g0, g1 ∈ S , andm ∈M . IfD has order k, then LD annihilates the elements
[m+m′]− [m]− [m′], f [m]− [fm], and the elements

g0g1 . . . gk[m]−
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

Conversely, if L : F → N is an S-linear map annihilating all the elements listed in the
previous sentence, then m 7→ L([m]) is a differential operator of order k. Thus we see
that P kS/R(M) is the quotient of F by the submodule generated by these elements. �

Definition 133.4. Let R → S be a ring map. Let M be an S-module. The module
P kS/R(M) constructed in Lemma 133.3 is called the module of principal parts of order k
of M .

Note that the inclusions

Diff0(M,N) ⊂ Diff1(M,N) ⊂ Diff2(M,N) ⊂ . . .
correspond via Yoneda’s lemma (Categories, Lemma 3.5) to surjections

. . .→ P 2
S/R(M)→ P 1

S/R(M)→ P 0
S/R(M) = M

Example 133.5. Let R → S be a ring map and let N be an S-module. Observe that
Diff1(S,N) = DerR(S,N) ⊕ N . Namely, if D : S → N is a differential operator of
order 1 then σD : S → N defined by σD(g) := D(g) − gD(1) is an R-derivation and
D = σD + λD(1) where λx : S → N is the linear map sending g to gx. It follows that
P 1
S/R = ΩS/R ⊕ S by the universal property of ΩS/R.

Lemma 133.6. LetR→ S be a ring map. LetM be an S-module. There is a canonical
short exact sequence

0→ ΩS/R ⊗S M → P 1
S/R(M)→M → 0

functorial in M called the sequence of principal parts.
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Proof. The map P 1
S/R(M) → M is given above. Let N be an S-module and let

D : M → N be a differential operator of order 1. For m ∈M the map

g 7−→ D(gm)− gD(m)

is an R-derivation S → N by the axioms for differential operators of order 1. Thus it
corresponds to a linear map Dm : ΩS/R → N determined by the rule adb 7→ aD(bm)−
abD(m) (see Lemma 131.3). The map

ΩS/R ×M −→ N, (η,m) 7−→ Dm(η)

is S-bilinear (details omitted) and hence determines an S-linear map

σD : ΩS/R ⊗S M → N

In this way we obtain a map Diff1(M,N)→ HomS(ΩS/R⊗SM,N),D 7→ σD functorial
in N . By the Yoneda lemma this corresponds a map ΩS/R ⊗S M → P 1

S/R(M). It is
immediate from the construction that this map is functorial in M . The sequence

ΩS/R ⊗S M → P 1
S/R(M)→M → 0

is exact because for every module N the sequence

0→ HomS(M,N)→ Diff1(M,N)→ HomS(ΩS/R ⊗S M,N)

is exact by inspection.

To see that ΩS/R ⊗S M → P 1
S/R(M) is injective we argue as follows. Choose an exact

sequence
0→M ′ → F →M → 0

with F a free S-module. This induces an exact sequence

0→ Diff1(M,N)→ Diff1(F,N)→ Diff1(M ′, N)

for all N . This proves that in the commutative diagram

0 // ΩS/R ⊗S M ′ //

��

P 1
S/R(M ′) //

��

M ′ //

��

0

0 // ΩS/R ⊗S F //

��

P 1
S/R(F ) //

��

F //

��

0

0 // ΩS/R ⊗S M //

��

P 1
S/R(M) //

��

M //

��

0

0 0 0

the middle column is exact. The left column is exact by right exactness of ΩS/R ⊗S −.
By the snake lemma (see Section 4) it suffices to prove exactness on the left for the free
module F . Using that P 1

S/R(−) commutes with direct sums we reduce to the caseM = S.
This case is a consequence of the discussion in Example 133.5. �
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Remark 133.7. Suppose given a commutative diagram of rings

B // B′

A

OO

// A′

OO

aB-moduleM , aB′-moduleM ′, and aB-linear mapM →M ′. Then we get a compatible
system of module maps

. . . // P 2
B′/A′(M ′) // P 1

B′/A′(M ′) // P 0
B′/A′(M ′)

. . . // P 2
B/A(M) //

OO

P 1
B/A(M) //

OO

P 0
B/A(M)

OO

These maps are compatible with further composition of maps of this type. The easiest way
to see this is to use the description of the modules P kB/A(M) in terms of generators and
relations in the proof of Lemma 133.3 but it can also be seen directly from the universal
property of these modules. Moreover, these maps are compatible with the short exact
sequences of Lemma 133.6.

Lemma 133.8. Let A → B be a ring map. The differentials d : ΩiB/A → Ωi+1
B/A are

differential operators of order 1.

Proof. Given b ∈ B we have to show that d ◦ b− b ◦ d is a linear operator. Thus we
have to show that

d ◦ b ◦ b′ − b ◦ d ◦ b′ − b′ ◦ d ◦ b+ b′ ◦ b ◦ d = 0

To see this it suffices to check this on additive generators for ΩiB/A. Thus it suffices to
show that

d(bb′b0db1∧. . .∧dbi)−bd(b′b0db1∧. . .∧dbi)−b′d(bb0db1∧. . .∧dbi)+bb′d(b0db1∧. . .∧dbi)

is zero. This is a pleasant calculation using the Leibniz rule which is left to the reader. �

Lemma 133.9. Let A→ B be a ring map. Let gi ∈ B, i ∈ I be a set of generators for
B as anA-algebra. LetM,N beB-modules. LetD : M → N be anA-linear map. In order
to show that D is a differential operator of order k it suffices to show that D ◦ gi− gi ◦D
is a differential operator of order k − 1 for i ∈ I .

Proof. Namely, we claim that the set of elements g ∈ B such that D ◦ g − g ◦ D
is a differential operator of order k − 1 is an A-subalgebra of B. This follows from the
relations

D ◦ (g + g′)− (g + g′) ◦D = (D ◦ g − g ◦D) + (D ◦ g′ − g′ ◦D)

and
D ◦ gg′ − gg′ ◦D = (D ◦ g − g ◦D) ◦ g′ + g ◦ (D ◦ g′ − g′ ◦D)

Strictly speaking, to conclude for products we also use Lemma 133.2. �

Lemma 133.10. Let A→ B be a ring map. Let M,N be B-modules. Let S ⊂ B be a
multiplicative subset. Any differential operatorD : M → N of order k extends uniquely
to a differential operator E : S−1M → S−1N of order k.
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Proof. By induction on k. If k = 0, then D is B-linear and hence we get the
extension by the functoriality of localization. Given b ∈ B the operator Lb : m 7→
D(bm)− bD(m) has order k − 1. Hence it has a unique extension to a differential oper-
ator Eb : S−1M → S−1N of order k − 1 by induction. Moreover, a computation shows
that Lb′b = Lb′ ◦ b + b′ ◦ Lb hence by uniqueness we obtain Eb′b = Eb′ ◦ b + b′ ◦ Eb.
Similarly, we obtain Eb′ ◦ b− b ◦Eb′ = Eb ◦ b′ − b′ ◦Eb. Now for m ∈M and g ∈ S we
set

E(m/g) = (1/g)(D(m)− Eg(m/g))
To show that this is well defined it suffices to show that for g′ ∈ S if we use the represen-
tative g′m/g′g we get the same result. We compute

(1/g′g)(D(g′m)− Eg′g(g′m/gg′)) = (1/gg′)(g′D(m) + Eg′(m)− Eg′g(g′m/gg′))
= (1/g′g)(g′D(m)− g′Eg(m/g))

which is the same as before. It is clear thatE isR-linear asD andEg areR-linear. Taking
g = 1 and using that E1 = 0 we see that E extends D. By Lemma 133.9 it now suffices
to show that E ◦ b− b ◦ E for b ∈ B and E ◦ 1/g′ − 1/g′ ◦ E for g′ ∈ S are differential
operators of order k − 1 in order to show that E is a differential operator of order k. For
the first, choose an element m/g in S−1M and observe that

E(bm/g)− bE(m/g) = (1/g)(D(bm)− bD(m)− Eg(bm/g) + bEg(m/g))
= (1/g)(Lb(m)− Eb(m) + gEb(m/g))
= Eb(m/g)

which is a differential operator of order k − 1. Finally, we have

E(m/g′g)− (1/g′)E(m/g) = (1/g′g)(D(m)− Eg′g(m/g′g))− (1/g′g)(D(m)− Eg(m/g))
= −(1/g′)Eg′(m/g′g)

which also is a differential operator of order k − 1 as the composition of linear maps
(multiplication by 1/g′ and signs) and Eg′ . We omit the proof of uniqueness. �

Lemma 133.11. Let R→ A and R→ B be ring maps. Let M and M ′ be A-modules.
Let D : M → M ′ be a differential operator of order k with respect to R → A. Let N be
any B-module. Then the map

D ⊗ idN : M ⊗R N →M ′ ⊗R N

is a differential operator of order k with respect to B → A⊗R B.

Proof. It is clear thatD′ = D⊗ idN isB-linear. By Lemma 133.9 it suffices to show
that

D′ ◦ a⊗ 1− a⊗ 1 ◦D′ = (D ◦ a− a ◦D)⊗ idN
is a differential operator of order k − 1 which follows by induction on k. �

134. The naive cotangent complex

Let R → S be a ring map. Denote R[S] the polynomial ring whose variables are the
elements s ∈ S. Let’s denote [s] ∈ R[S] the variable corresponding to s ∈ S. Thus
R[S] is a freeR-module on the basis elements [s1] . . . [sn] where s1, . . . , sn ranges over all
unordered sequences of elements of S. There is a canonical surjection

(134.0.1) R[S] −→ S, [s] 7−→ s



816 10. COMMUTATIVE ALGEBRA

whose kernel we denote I ⊂ R[S]. It is a simple observation that I is generated by the
elements [s+ s′]− [s]− [s′], [s][s′]− [ss′] and [r]− r. According to Lemma 131.9 there
is a canonical map

(134.0.2) I/I2 −→ ΩR[S]/R ⊗R[S] S

whose cokernel is canonically isomorphic to ΩS/R. Observe that theS-module ΩR[S]/R⊗R[S]
S is free on the generators d[s].

Definition 134.1. Let R → S be a ring map. The naive cotangent complex NLS/R
is the chain complex (134.0.2)

NLS/R =
(
I/I2 −→ ΩR[S]/R ⊗R[S] S

)
with I/I2 placed in (homological) degree 1 and ΩR[S]/R ⊗R[S] S placed in degree 0. We
will denote H1(LS/R) = H1(NLS/R)12 the homology in degree 1.

Before we continue let us say a few words about the actual cotangent complex (Cotan-
gent, Section 3). Given a ring map R → S there exists a canonical simplicial R-algebra
P• whose terms are polynomial algebras and which comes equipped with a canonical ho-
motopy equivalence

P• −→ S

The cotangent complex LS/R of S over R is defined as the chain complex associated to
the cosimplicial module

ΩP•/R ⊗P• S

The naive cotangent complex as defined above is canonically isomorphic to the truncation
τ≤1LS/R (see Homology, Section 15 and Cotangent, Section 11). In particular, it is indeed
the case thatH1(NLS/R) = H1(LS/R) so our definition is compatible with the one using
the cotangent complex. Moreover, H0(LS/R) = H0(NLS/R) = ΩS/R as we’ve seen
above.

Let R → S be a ring map. A presentation of S over R is a surjection α : P → S of R-
algebras where P is a polynomial algebra (on a set of variables). Often, when S is of finite
type over R we will indicate this by saying: “Let R[x1, . . . , xn]→ S be a presentation of
S/R”, or “Let 0 → I → R[x1, . . . , xn] → S → 0 be a presentation of S/R” if we want
to indicate that I is the kernel of the presentation. Note that the map R[S] → S used to
define the naive cotangent complex is an example of a presentation.

Note that for every presentation α we obtain a two term chain complex of S-modules

NL(α) : I/I2 −→ ΩP/R ⊗P S.

Here the term I/I2 is placed in degree 1 and the term ΩP/R⊗S is placed in degree 0. The
class of f ∈ I in I/I2 is mapped to df ⊗ 1 in ΩP/R ⊗ S. The cokernel of this complex
is canonically ΩS/R, see Lemma 131.9. We call the complex NL(α) the naive cotangent
complex associated to the presentation α : P → S of S/R. Note that if P = R[S] with
its canonical surjection onto S , then we recover NLS/R. If P = R[x1, . . . , xn] then will
sometimes use the notation I/I2 →

⊕
i=1,...,n Sdxi to denote this complex.

12This module is sometimes denoted ΓS/R in the literature.
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Suppose we are given a commutative diagram

(134.1.1)

S
φ
// S′

R //

OO

R′

OO

of rings. Let α : P → S be a presentation of S over R and let α′ : P ′ → S′ be a
presentation ofS′ overR′. A morphism of presentations fromα : P → S toα′ : P ′ → S′

is defined to be an R-algebra map
ϕ : P → P ′

such that φ ◦ α = α′ ◦ ϕ. Note that in this case ϕ(I) ⊂ I ′, where I = Ker(α) and
I ′ = Ker(α′). Thus ϕ induces a map of S-modules I/I2 → I ′/(I ′)2 and by functoriality
of differentials also an S-module map ΩP/R⊗S → ΩP ′/R′ ⊗S′. These maps are compat-
ible with the differentials of NL(α) and NL(α′) and we obtain a map of naive cotangent
complexes

NL(α) −→ NL(α′).
It is often convenient to consider the induced map NL(α)⊗S S′ → NL(α′).

In the special case thatP = R[S] andP ′ = R′[S′] the mapφ : S → S′ induces a canonical
ring map ϕ : P → P ′ by the rule [s] 7→ [φ(s)]. Hence the construction above determines
canonical(!) maps of chain complexes

NLS/R −→ NLS′/R′ , and NLS/R⊗SS′ −→ NLS′/R′

associated to the diagram (134.1.1). Note that this construction is compatible with com-
position: given a commutative diagram

S
φ
// S′

φ′
// S′′

R //

OO

R′

OO

// R′′

OO

we see that the composition of

NLS/R −→ NLS′/R′ −→ NLS′′/R′′

is the map NLS/R → NLS′′/R′′ given by the outer square.

It turns out thatNL(α) is homotopy equivalent toNLS/R and that the maps constructed
above are well defined up to homotopy (homotopies of maps of complexes are discussed
in Homology, Section 13 but we also spell out the exact meaning of the statements in the
lemma below in its proof).

Lemma 134.2. Suppose given a diagram (134.1.1). Let α : P → S and α′ : P ′ → S′

be presentations.
(1) There exists a morphism of presentations from α to α′.
(2) Any two morphisms of presentations induce homotopic morphisms of complexes

NL(α)→ NL(α′).
(3) The construction is compatible with compositions of morphisms of presenta-

tions (see proof for exact statement).
(4) If R → R′ and S → S′ are isomorphisms, then for any map ϕ of presentations

from α to α′ the induced mapNL(α)→ NL(α′) is a homotopy equivalence and
a quasi-isomorphism.
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In particular, comparing α to the canonical presentation (134.0.1) we conclude there is a
quasi-isomorphism NL(α)→ NLS/R well defined up to homotopy and compatible with
all functorialities (up to homotopy).

Proof. Since P is a polynomial algebra over R we can write P = R[xa, a ∈ A] for
some set A. As α′ is surjective, we can choose for every a ∈ A an element fa ∈ P ′ such
that α′(fa) = φ(α(xa)). Let ϕ : P = R[xa, a ∈ A] → P ′ be the unique R-algebra map
such that ϕ(xa) = fa. This gives the morphism in (1).
Let ϕ and ϕ′ morphisms of presentations from α to α′. Let I = Ker(α) and I ′ = Ker(α′).
We have to construct the diagonal map h in the diagram

I/I2 d //

ϕ′
1
��

ϕ1

��

ΩP/R ⊗P S

ϕ′
0

��
ϕ0

��

h

xx
I ′/(I ′)2 d // ΩP ′/R′ ⊗P ′ S′

where the vertical maps are induced by ϕ, ϕ′ such that
ϕ1 − ϕ′

1 = h ◦ d and ϕ0 − ϕ′
0 = d ◦ h

Consider the map ϕ − ϕ′ : P → P ′. Since both ϕ and ϕ′ are compatible with α and α′

we obtain ϕ− ϕ′ : P → I ′. This implies that ϕ,ϕ′ : P → P ′ induce the same P -module
structure on I ′/(I ′)2, since ϕ(p)i′ − ϕ′(p)i′ = (ϕ − ϕ′)(p)i′ ∈ (I ′)2. Also ϕ − ϕ′ is
R-linear and

(ϕ− ϕ′)(fg) = ϕ(f)(ϕ− ϕ′)(g) + (ϕ− ϕ′)(f)ϕ′(g)
Hence the induced map D : P → I ′/(I ′)2 is a R-derivation. Thus we obtain a canonical
map h : ΩP/R ⊗P S → I ′/(I ′)2 such that D = h ◦ d. A calculation (omitted) shows that
h is the desired homotopy.
Suppose that we have a commutative diagram

S
φ
// S′

φ′
// S′′

R //

OO

R′

OO

// R′′

OO

and that
(1) α : P → S ,
(2) α′ : P ′ → S′, and
(3) α′′ : P ′′ → S′′

are presentations. Suppose that
(1) ϕ : P → P ′ is a morphism of presentations from α to α′ and
(2) ϕ′ : P ′ → P ′′ is a morphism of presentations from α′ to α′′.

Then it is immediate that ϕ′ ◦ ϕ : P → P ′′ is a morphism of presentations from α to
α′′ and that the induced map NL(α) → NL(α′′) of naive cotangent complexes is the
composition of the maps NL(α) → NL(α′) and NL(α′) → NL(α′′) induced by ϕ and
ϕ′.
In the simple case of complexes with 2 terms a quasi-isomorphism is just a map that in-
duces an isomorphism on both the cokernel and the kernel of the maps between the terms.
Note that homotopic maps of 2 term complexes (as explained above) define the same
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maps on kernel and cokernel. Hence if ϕ is a map from a presentation α of S over R
to itself, then the induced map NL(α) → NL(α) is a quasi-isomorphism being homo-
topic to the identity by part (2). To prove (4) in full generality, consider a morphism
ϕ′ from α′ to α which exists by (1). The compositions NL(α) → NL(α′) → NL(α)
and NL(α′) → NL(α) → NL(α′) are homotopic to the identity maps by (3), hence
these maps are homotopy equivalences by definition. It follows formally that both maps
NL(α) → NL(α′) and NL(α′) → NL(α) are quasi-isomorphisms. Some details omit-
ted. �

Lemma 134.3. Let A → B be a polynomial algebra. Then NLB/A is homotopy
equivalent to the chain complex (0→ ΩB/A) with ΩB/A in degree 0.

Proof. Follows from Lemma 134.2 and the fact that idB : B → B is a presentation
of B over A with zero kernel. �

The following lemma is part of the motivation for introducing the naive cotangent com-
plex. The cotangent complex extends this to a genuine long exact cohomology sequence.
If B → C is a local complete intersection, then one can extend the sequence with a zero
on the left, see More on Algebra, Lemma 33.6.

Lemma 134.4 (Jacobi-Zariski sequence). Let A → B → C be ring maps. Choose a
presentation α : A[xs, s ∈ S] → B with kernel I . Choose a presentation β : B[yt, t ∈
T ] → C with kernel J . Let γ : A[xs, yt] → C be the induced presentation of C with
kernel K. Then we get a canonical commutative diagram

0 // ΩA[xs]/A ⊗ C // ΩA[xs,yt]/A ⊗ C // ΩB[yt]/B ⊗ C // 0

I/I2 ⊗ C //

OO

K/K2 //

OO

J/J2 //

OO

0

with exact rows. We get the following exact sequence of homology groups
H1(NLB/A⊗BC)→ H1(LC/A)→ H1(LC/B)→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0

of C-modules extending the sequence of Lemma 131.7. If TorB1 (ΩB/A, C) = 0, then
H1(NLB/A⊗BC) = H1(LB/A)⊗B C.

Proof. The precise definition of the maps is omitted. The exactness of the top row
follows as the dxs, dyt form a basis for the middle module. The map γ factors

A[xs, yt]→ B[yt]→ C

with surjective first arrow and second arrow equal to β. Thus we see that K → J is sur-
jective. Moreover, the kernel of the first displayed arrow is IA[xs, yt]. Hence I/I2 ⊗ C
surjects onto the kernel of K/K2 → J/J2. Finally, we can use Lemma 134.2 to iden-
tify the terms as homology groups of the naive cotangent complexes. The final assertion
follows as the degree 0 term of the complex NLB/A is a free B-module. �

Remark 134.5. Let A → B and φ : B → C be ring maps. Then the composition
NLB/A → NLC/A → NLC/B is homotopy equivalent to zero. Namely, this composition
is the functoriality of the naive cotangent complex for the square

B
φ
// C

A //

OO

B

OO
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Write J = Ker(B[C]→ C). An explicit homotopy is given by the map ΩA[B]/A⊗AB →
J/J2 which maps the basis element d[b] to the class of [φ(b)]− b in J/J2.

Lemma 134.6. Let A → B be a surjective ring map with kernel I . Then NLB/A
is homotopy equivalent to the chain complex (I/I2 → 0) with I/I2 in degree 1. In
particular H1(LB/A) = I/I2.

Proof. Follows from Lemma 134.2 and the fact that A → B is a presentation of B
over A. �

Lemma 134.7. Let A → B → C be ring maps. Assume A → C is surjective (so also
B → C is). Denote I = Ker(A→ C) and J = Ker(B → C). Then the sequence

I/I2 → J/J2 → ΩB/A ⊗B B/J → 0

is exact.

Proof. Follows from Lemma 134.4 and the description of the naive cotangent com-
plexes NLC/B and NLC/A in Lemma 134.6. �

Lemma 134.8 (Flat base change). Let R → S be a ring map. Let α : P → S be a
presentation. Let R → R′ be a flat ring map. Let α′ : P ⊗R R′ → S′ = S ⊗R R′ be the
induced presentation. Then NL(α)⊗R R′ = NL(α)⊗S S′ = NL(α′). In particular, the
canonical map

NLS/R⊗SS′ −→ NLS⊗RR′/R′

is a homotopy equivalence if R→ R′ is flat.

Proof. This is true because Ker(α′) = R′ ⊗R Ker(α) since R→ R′ is flat. �

Lemma 134.9. Let Ri → Si be a system of ring maps over the directed set I . Set
R = colimRi and S = colimSi. Then NLS/R = colimNLSi/Ri .

Proof. Recall that NLS/R is the complex I/I2 →
⊕

s∈S Sd[s] where I ⊂ R[S]
is the kernel of the canonical presentation R[S] → S. Now it is clear that R[S] =
colimRi[Si] and similarly that I = colim Ii where Ii = Ker(Ri[Si] → Si). Hence
the lemma is clear. �

Lemma 134.10. IfS ⊂ A is a multiplicative subset ofA, thenNLS−1A/A is homotopy
equivalent to the zero complex.

Proof. Since A→ S−1A is flat we see that NLS−1A/A⊗AS−1A→ NLS−1A/S−1A

is a homotopy equivalence by flat base change (Lemma 134.8). Since the source of the
arrow is isomorphic to NLS−1A/A and the target of the arrow is zero (by Lemma 134.6)
we win. �

Lemma 134.11. Let S ⊂ A is a multiplicative subset of A. Let S−1A → B be a ring
map. Then NLB/A → NLB/S−1A is a homotopy equivalence.

Proof. Choose a presentation α : P → B of B over A. Then β : S−1P → B is a
presentation ofB overS−1A. A direct computation shows that we haveNL(α) = NL(β)
which proves the lemma as the naive cotangent complex is well defined up to homotopy
by Lemma 134.2. �
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Lemma 134.12. Let A → B be a ring map. Let g ∈ B. Suppose α : P → B is a
presentation with kernel I . Then a presentation of Bg over A is the map

β : P [x] −→ Bg

extending α and sending x to 1/g. The kernel J of β is generated by I and the element
fx− 1 where f ∈ P is an element mapped to g ∈ B by α. In this situation we have

(1) J/J2 = (I/I2)g ⊕Bg(fx− 1),
(2) ΩP [x]/A ⊗P [x] Bg = ΩP/A ⊗P Bg ⊕Bgdx,
(3) NL(β) ∼= NL(α)⊗B Bg ⊕ (Bg

g−→ Bg)
Hence the canonical map NLB/A⊗BBg → NLBg/A is a homotopy equivalence.

Proof. Since P [x]/(I, fx − 1) = B[x]/(gx − 1) = Bg we get the statement about
I and fx− 1 generating J . Consider the commutative diagram

0 // ΩP/A ⊗Bg // ΩP [x]/A ⊗Bg // ΩB[x]/B ⊗Bg // 0

(I/I2)g //

OO

J/J2 //

OO

(gx− 1)/(gx− 1)2 //

OO

0

with exact rows of Lemma 134.4. The Bg-module ΩB[x]/B ⊗ Bg is free of rank 1 on dx.
The element dx in theBg-module ΩP [x]/A⊗Bg provides a splitting for the top row. The
element gx − 1 ∈ (gx − 1)/(gx − 1)2 is mapped to gdx in ΩB[x]/B ⊗ Bg and hence
(gx−1)/(gx−1)2 is free of rank 1 overBg . (This can also be seen by arguing that gx−1
is a nonzerodivisor in B[x] because it is a polynomial with invertible constant term and
any nonzerodivisor gives a quasi-regular sequence of length 1 by Lemma 69.2.)

Let us prove (I/I2)g → J/J2 injective. Consider the P -algebra map

π : P [x]→ (P/I2)f = Pf/I
2
f

sending x to 1/f . Since J is generated by I and fx − 1 we see that π(J) ⊂ (I/I2)f =
(I/I2)g . Since this is an ideal of square zero we see that π(J2) = 0. If a ∈ I maps to
an element of J2 in J , then π(a) = 0, which implies that a maps to zero in If/I2

f . This
proves the desired injectivity.

Thus we have a short exact sequence of two term complexes

0→ NL(α)⊗B Bg → NL(β)→ (Bg
g−→ Bg)→ 0

Such a short exact sequence can always be split in the category of complexes. In our par-
ticular case we can take as splittings

J/J2 = (I/I2)g ⊕Bg(fx− 1) and ΩP [x]/A ⊗Bg = ΩP/A ⊗Bg ⊕Bg(g−2df + dx)

This works because d(fx− 1) = xdf + fdx = g(g−2df + dx) in ΩP [x]/A ⊗Bg . �

Lemma 134.13. LetA→ B be a ring map. Let S ⊂ B be a multiplicative subset. The
canonical map NLB/A⊗BS−1B → NLS−1B/A is a quasi-isomorphism.

Proof. We have S−1B = colimg∈S Bg where we think of S as a directed set (order-
ing by divisibility), see Lemma 9.9. By Lemma 134.12 each of the maps NLB/A⊗BBg →
NLBg/A are quasi-isomorphisms. The lemma follows from Lemma 134.9. �
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Lemma 134.14. LetR be a ring. LetA1 → A0, andB1 → B0 be two term complexes.
Suppose that there exist morphisms of complexes ϕ : A• → B• and ψ : B• → A• such
that ϕ ◦ ψ and ψ ◦ ϕ are homotopic to the identity maps. Then A1 ⊕ B0 ∼= B1 ⊕ A0 as
R-modules.

Proof. Choose a map h : A0 → A1 such that

idA1 − ψ1 ◦ ϕ1 = h ◦ dA and idA0 − ψ0 ◦ ϕ0 = dA ◦ h.

Similarly, choose a map h′ : B0 → B1 such that

idB1 − ϕ1 ◦ ψ1 = h′ ◦ dB and idB0 − ϕ0 ◦ ψ0 = dB ◦ h′.

A trivial computation shows that(
idA1 −h′ ◦ ψ1 + h ◦ ψ0

0 idB0

)
=
(
ψ1 h
−dB ϕ0

)(
ϕ1 −h′

dA ψ0

)
This shows that both matrices on the right hand side are invertible and proves the lemma.

�

Lemma 134.15. Let R → S be a ring map of finite type. For any presentations α :
R[x1, . . . , xn]→ S , and β : R[y1, . . . , ym]→ S we have

I/I2 ⊕ S⊕m ∼= J/J2 ⊕ S⊕n

as S-modules where I = Ker(α) and J = Ker(β).

Proof. See Lemmas 134.2 and 134.14. �

Lemma 134.16. Let R → S be a ring map of finite type. Let g ∈ S. For any presen-
tations α : R[x1, . . . , xn]→ S , and β : R[y1, . . . , ym]→ Sg we have

(I/I2)g ⊕ S⊕m
g
∼= J/J2 ⊕ S⊕n

g

as Sg-modules where I = Ker(α) and J = Ker(β).

Proof. Let β′ : R[x1, . . . , xn, x] → Sg be the presentation of Lemma 134.12 con-
structed starting with α. Then we know that NL(α) ⊗S Sg is homotopy equivalent to
NL(β′). We know that NL(β) and NL(β′) are homotopy equivalent by Lemma 134.2.
We conclude that NL(α) ⊗S Sg is homotopy equivalent to NL(β). Finally, we apply
Lemma 134.15. �

135. Local complete intersections

The property of being a local complete intersection is an intrinsic property of a Noetherian
local ring. This will be discussed in Divided Power Algebra, Section 8. However, for the
moment we just define this property for finite type algebras over a field.

Definition 135.1. Let k be a field. Let S be a finite type k-algebra.
(1) We say that S is a global complete intersection over k if there exists a presenta-

tion S = k[x1, . . . , xn]/(f1, . . . , fc) such that dim(S) = n− c.
(2) We say that S is a local complete intersection over k if there exists a covering

Spec(S) =
⋃
D(gi) such that each of the rings Sgi is a global complete inter-

section over k.
We will also use the convention that the zero ring is a global complete intersection over
k.
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Suppose S is a global complete intersection S = k[x1, . . . , xn]/(f1, . . . , fc) as in Defini-
tion 135.1. For a maximal ideal m ⊂ k[x1, . . . , xn] we have dim(k[x1, . . . , xn]m) = n
(Lemma 114.1). If (f1, . . . , fc) ⊂ m, then we conclude that dim(Sm) ≥ n − c by Lemma
60.13. Since dim(S) = n− c by Definition 135.1 we conclude that dim(Sm) = n− c for
all maximal ideals of S and that Spec(S) is equidimensional (Topology, Definition 10.5)
of dimension n− c, see Lemma 114.5. We will often use this without further mention.

Lemma 135.2. Let k be a field. Let S be a finite type k-algebra. Let g ∈ S.
(1) If S is a global complete intersection so is Sg .
(2) If S is a local complete intersection so is Sg .

Proof. The second statement follows immediately from the first. Proof of the first
statement. If Sg is the zero ring, then it is true. Assume Sg is nonzero. Write S =
k[x1, . . . , xn]/(f1, . . . , fc) with n − c = dim(S) as in Definition 135.1. By the remarks
following the definition dim(Sg) = n − c. Let g′ ∈ k[x1, . . . , xn] be an element whose
residue class corresponds to g. Then Sg = k[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1g

′ − 1)
as desired. �

Lemma 135.3. Let k be a field. Let S be a finite type k-algebra. If S is a local complete
intersection, then S is a Cohen-Macaulay ring.

Proof. Choose a maximal primem ofS. We have to show thatSm is Cohen-Macaulay.
By assumption we may assume S = k[x1, . . . , xn]/(f1, . . . , fc) with dim(S) = n − c.
Let m′ ⊂ k[x1, . . . , xn] be the maximal ideal corresponding to m. According to Propo-
sition 114.2 the local ring k[x1, . . . , xn]m′ is regular local of dimension n. In partic-
ular it is Cohen-Macaulay by Lemma 106.3. By Lemma 60.13 applied c times the lo-
cal ring Sm = k[x1, . . . , xn]m′/(f1, . . . , fc) has dimension ≥ n − c. By assumption
dim(Sm) ≤ n − c. Thus we get equality. This implies that f1, . . . , fc is a regular se-
quence in k[x1, . . . , xn]m′ and that Sm is Cohen-Macaulay, see Proposition 103.4. �

The following is the technical key to the rest of the material in this section. An important
feature of this lemma is that we may choose any presentation for the ring S , but that
condition (1) does not depend on this choice.

Lemma 135.4. Let k be a field. Let S be a finite type k-algebra. Let q be a prime of
S. Choose any presentation S = k[x1, . . . , xn]/I . Let q′ be the prime of k[x1, . . . , xn]
corresponding to q. Set c = height(q′)− height(q), in other words dimq(S) = n− c (see
Lemma 116.4). The following are equivalent

(1) There exists a g ∈ S , g 6∈ q such that Sg is a global complete intersection over k.
(2) The ideal Iq′ ⊂ k[x1, . . . , xn]q′ can be generated by c elements.
(3) The conormal module (I/I2)q can be generated by c elements over Sq.
(4) The conormal module (I/I2)q is a free Sq-module of rank c.
(5) The ideal Iq′ can be generated by a regular sequence in the regular local ring

k[x1, . . . , xn]q′ .
In this case any c elements of Iq′ which generate Iq′/q′Iq′ form a regular sequence in the
local ring k[x1, . . . , xn]q′ .

Proof. Set R = k[x1, . . . , xn]q′ . This is a Cohen-Macaulay local ring of dimension
height(q′), see for example Lemma 135.3. Moreover, R = R/IR = R/Iq′ = Sq is a quo-
tient of dimension height(q). Let f1, . . . , fc ∈ Iq′ be elements which generate (I/I2)q.
By Lemma 20.1 we see that f1, . . . , fc generate Iq′ . Since the dimensions work out, we
conclude by Proposition 103.4 that f1, . . . , fc is a regular sequence in R. By Lemma 69.2
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we see that (I/I2)q is free. These arguments show that (2), (3), (4) are equivalent and that
they imply the last statement of the lemma, and therefore they imply (5).

If (5) holds, say Iq′ is generated by a regular sequence of length e, then height(q) =
dim(Sq) = dim(k[x1, . . . , xn]q′) − e = height(q′) − e by dimension theory, see Sec-
tion 60. We conclude that e = c. Thus (5) implies (2).

We continue with the notation introduced in the first paragraph. For each fi we may
find di ∈ k[x1, . . . , xn], di 6∈ q′ such that f ′

i = difi ∈ k[x1, . . . , xn]. Then it is still
true that Iq′ = (f ′

1, . . . , f
′
c)R. Hence there exists a g′ ∈ k[x1, . . . , xn], g′ 6∈ q′ such that

Ig′ = (f ′
1, . . . , f

′
c). Moreover, pick g′′ ∈ k[x1, . . . , xn], g′′ 6∈ q′ such that dim(Sg′′) =

dimq Spec(S). By Lemma 116.4 this dimension is equal to n − c. Finally, set g equal to
the image of g′g′′ in S. Then we see that

Sg ∼= k[x1, . . . , xn, xn+1]/(f ′
1, . . . , f

′
c, xn+1g

′g′′ − 1)

and by our choice of g′′ this ring has dimension n − c. Therefore it is a global complete
intersection. Thus each of (2), (3), and (4) implies (1).

Assume (1). Let Sg ∼= k[y1, . . . , ym]/(f1, . . . , ft) be a presentation of Sg as a global com-
plete intersection. Write J = (f1, . . . , ft). Let q′′ ⊂ k[y1, . . . , ym] be the prime corre-
sponding to qSg . Note that t = m−dim(Sg) = height(q′′)−height(q), see Lemma 116.4
for the last equality. As seen in the proof of Lemma 135.3 (and also above) the elements
f1, . . . , ft form a regular sequence in the local ring k[y1, . . . , ym]q′′ . By Lemma 69.2 we
see that (J/J2)q is free of rank t. By Lemma 134.16 we have

J/J2 ⊕ Sng ∼= (I/I2)g ⊕ Smg
Thus (I/I2)q is free of rank t + n − m = m − dim(Sg) + n − m = n − dim(Sg) =
height(q′)− height(q) = c. Thus we obtain (4). �

The result of Lemma 135.4 suggests the following definition.

Definition 135.5. Let k be a field. Let S be a local k-algebra essentially of finite type
over k. We say S is a complete intersection (over k) if there exists a local k-algebra R and
elements f1, . . . , fc ∈ mR such that

(1) R is essentially of finite type over k,
(2) R is a regular local ring,
(3) f1, . . . , fc form a regular sequence in R, and
(4) S ∼= R/(f1, . . . , fc) as k-algebras.

By the Cohen structure theorem (see Theorem 160.8) any complete Noetherian local ring
may be written as the quotient of some regular complete local ring. Hence we may use
the definition above to define the notion of a complete intersection ring for any complete
Noetherian local ring. We will discuss this in Divided Power Algebra, Section 8. In the
meantime the following lemma shows that such a definition makes sense.

Lemma 135.6. LetA→ B → C be surjective local ring homomorphisms. Assume A
and B are regular local rings. The following are equivalent

(1) Ker(A→ C) is generated by a regular sequence,
(2) Ker(A→ C) is generated by dim(A)− dim(C) elements,
(3) Ker(B → C) is generated by a regular sequence, and
(4) Ker(B → C) is generated by dim(B)− dim(C) elements.
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Proof. A regular local ring is Cohen-Macaulay, see Lemma 106.3. Hence the equiva-
lences (1)⇔ (2) and (3)⇔ (4), see Proposition 103.4. By Lemma 106.4 the ideal Ker(A→
B) can be generated by dim(A)− dim(B) elements. Hence we see that (4) implies (2).

It remains to show that (1) implies (4). We do this by induction on dim(A)−dim(B). The
case dim(A)− dim(B) = 0 is trivial. Assume dim(A) > dim(B). Write I = Ker(A→
C) and J = Ker(A→ B). Note that J ⊂ I . Our assumption is that the minimal number
of generators of I is dim(A) − dim(C). Let m ⊂ A be the maximal ideal. Consider the
maps

J/mJ → I/mI → m/m2

By Lemma 106.4 and its proof the composition is injective. Take any element x ∈ J which
is not zero in J/mJ . By the above and Nakayama’s lemma x is an element of a minimal
set of generators of I . Hence we may replace A by A/xA and I by I/xA which decreases
both dim(A) and the minimal number of generators of I by 1. Thus we win. �

Lemma 135.7. Let k be a field. Let S be a local k-algebra essentially of finite type over
k. The following are equivalent:

(1) S is a complete intersection over k,
(2) for any surjection R → S with R a regular local ring essentially of finite pre-

sentation over k the ideal Ker(R→ S) can be generated by a regular sequence,
(3) for some surjection R → S with R a regular local ring essentially of finite pre-

sentation over k the ideal Ker(R → S) can be generated by dim(R)− dim(S)
elements,

(4) there exists a global complete intersectionA over k and a prime a ofA such that
S ∼= Aa, and

(5) there exists a local complete intersection A over k and a prime a of A such that
S ∼= Aa.

Proof. It is clear that (2) implies (1) and (1) implies (3). It is also clear that (4)
implies (5). Let us show that (3) implies (4). Thus we assume there exists a surjection
R → S with R a regular local ring essentially of finite presentation over k such that
the ideal Ker(R → S) can be generated by dim(R) − dim(S) elements. We may write
R = (k[x1, . . . , xn]/J)q for some J ⊂ k[x1, . . . , xn] and some prime q ⊂ k[x1, . . . , xn]
with J ⊂ q. Let I ⊂ k[x1, . . . , xn] be the kernel of the map k[x1, . . . , xn] → S so that
S ∼= (k[x1, . . . , xn]/I)q. By assumption (I/J)q is generated by dim(R) − dim(S) ele-
ments. We conclude that Iq can be generated by dim(k[x1, . . . , xn]q)− dim(S) elements
by Lemma 135.6. From Lemma 135.4 we see that for some g ∈ k[x1, . . . , xn], g 6∈ q the
algebra (k[x1, . . . , xn]/I)g is a global complete intersection and S is isomorphic to a local
ring of it.

To finish the proof of the lemma we have to show that (5) implies (2). Assume (5) and let
π : R → S be a surjection with R a regular local k-algebra essentially of finite type over
k. By assumption we have S = Aa for some local complete intersectionA over k. Choose
a presentation R = (k[y1, . . . , ym]/J)q with J ⊂ q ⊂ k[y1, . . . , ym]. We may and do
assume that J is the kernel of the map k[y1, . . . , ym] → R. Let I ⊂ k[y1, . . . , ym] be the
kernel of the map k[y1, . . . , ym]→ S = Aa. Then J ⊂ I and (I/J)q is the kernel of the
surjection π : R→ S. So S = (k[y1, . . . , ym]/I)q.

By Lemma 126.7 we see that there exist g ∈ A, g 6∈ a and g′ ∈ k[y1, . . . , ym], g′ 6∈
q such that Ag ∼= (k[y1, . . . , ym]/I)g′ . After replacing A by Ag and k[y1, . . . , ym] by
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k[y1, . . . , ym+1] we may assume that A ∼= k[y1, . . . , ym]/I . Consider the surjective maps
of local rings

k[y1, . . . , ym]q → R→ S.

We have to show that the kernel ofR→ S is generated by a regular sequence. By Lemma
135.4 we know that k[y1, . . . , ym]q → Aa = S has this property (as A is a local complete
intersection over k). We win by Lemma 135.6. �

Lemma 135.8. Let k be a field. Let S be a finite type k-algebra. Let q be a prime of S.
The following are equivalent:

(1) The local ring Sq is a complete intersection ring (Definition 135.5).
(2) There exists a g ∈ S , g 6∈ q such that Sg is a local complete intersection over k.
(3) There exists a g ∈ S , g 6∈ q such that Sg is a global complete intersection over k.
(4) For any presentation S = k[x1, . . . , xn]/I with q′ ⊂ k[x1, . . . , xn] correspond-

ing to q any of the equivalent conditions (1) – (5) of Lemma 135.4 hold.

Proof. This is a combination of Lemmas 135.4 and 135.7 and the definitions. �

Lemma 135.9. Let k be a field. Let S be a finite type k-algebra. The following are
equivalent:

(1) The ring S is a local complete intersection over k.
(2) All local rings of S are complete intersection rings over k.
(3) All localizations of S at maximal ideals are complete intersection rings over k.

Proof. This follows from Lemma 135.8, the fact that Spec(S) is quasi-compact and
the definitions. �

The following lemma says that being a complete intersection is preserved under change
of base field (in a strong sense).

Lemma 135.10. Let K/k be a field extension. Let S be a finite type algebra over k.
Let qK be a prime of SK = K ⊗k S and let q be the corresponding prime of S. Then Sq

is a complete intersection over k (Definition 135.5) if and only if (SK)qK is a complete
intersection over K.

Proof. Choose a presentation S = k[x1, . . . , xn]/I . This gives a presentation SK =
K[x1, . . . , xn]/IK where IK = K⊗kI . Let q′

K ⊂ K[x1, . . . , xn], resp. q′ ⊂ k[x1, . . . , xn]
be the corresponding prime. We will show that the equivalent conditions of Lemma 135.4
hold for the pair (S = k[x1, . . . , xn]/I, q) if and only if they hold for the pair (SK =
K[x1, . . . , xn]/IK , qK). The lemma will follow from this (see Lemma 135.8).
By Lemma 116.6 we have dimq S = dimqK SK . Hence the integer c occurring in Lemma
135.4 is the same for the pair (S = k[x1, . . . , xn]/I, q) as for the pair (SK = K[x1, . . . , xn]/IK , qK).
On the other hand we have
I ⊗k[x1,...,xn] κ(q′)⊗κ(q′) κ(q′

K) = I ⊗k[x1,...,xn] κ(q′
K)

= I ⊗k[x1,...,xn] K[x1, . . . , xn]⊗K[x1,...,xn] κ(q′
K)

= (K ⊗k I)⊗K[x1,...,xn] κ(q′
K)

= IK ⊗K[x1,...,xn] κ(q′
K).

Therefore, dimκ(q′) I ⊗k[x1,...,xn] κ(q′) = dimκ(q′
K

) IK ⊗K[x1,...,xn] κ(q′
K). Thus it fol-

lows from Nakayama’s Lemma 20.1 that the minimal number of generators of Iq′ is the
same as the minimal number of generators of (IK)q′

K
. Thus the lemma follows from char-

acterization (2) of Lemma 135.4. �
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Lemma 135.11. Let k → K be a field extension. Let S be a finite type k-algebra.
Then S is a local complete intersection over k if and only if S ⊗k K is a local complete
intersection over K.

Proof. This follows from a combination of Lemmas 135.9 and 135.10. But we also
give a different proof here (based on the same principles).

Set S′ = S ⊗k K. Let α : k[x1, . . . , xn] → S be a presentation with kernel I . Let
α′ : K[x1, . . . , xn]→ S′ be the induced presentation with kernel I ′.

Suppose that S is a local complete intersection. Pick a prime q ⊂ S′. Denote q′ the
corresponding prime of K[x1, . . . , xn], p the corresponding prime of S , and p′ the cor-
responding prime of k[x1, . . . , xn]. Consider the following diagram of Noetherian local
rings

S′
q K[x1, . . . , xn]q′oo

Sp

OO

k[x1, . . . , xn]p′

OO

oo

By Lemma 135.4 we know thatSp is cut out by some regular sequence f1, . . . , fc in k[x1, . . . , xn]p′ .
Since the right vertical arrow is flat we see that the images of f1, . . . , fc form a regular se-
quence in K[x1, . . . , xn]q′ . Because tensoring with K over k is an exact functor we have
S′
q = K[x1, . . . , xn]q′/(f1, . . . , fc). Hence by Lemma 135.4 again we see that S′ is a local

complete intersection in a neighbourhood of q. Since q was arbitrary we see that S′ is a
local complete intersection over K.

Suppose that S′ is a local complete intersection. Pick a maximal ideal m of S. Let m′

denote the corresponding maximal ideal of k[x1, . . . , xn]. Denote κ = κ(m) the residue
field. By Remark 17.8 the primes of S′ lying over m correspond to primes in K ⊗k κ. By
the Hilbert-Nullstellensatz Theorem 34.1 we have [κ : k] < ∞. Hence K ⊗k κ is finite
nonzero overK. HenceK ⊗k κ has a finite number> 0 of primes which are all maximal,
each of which has a residue field finite over K (see Section 53). Hence there are finitely
many > 0 prime ideals n ⊂ S′ lying over m, each of which is maximal and has a residue
field which is finite over K. Pick one, say n ⊂ S′, and let n′ ⊂ K[x1, . . . , xn] denote the
corresponding prime ideal ofK[x1, . . . , xn]. Note that since V (mS′) is finite, we see that
n is an isolated closed point of it, and we deduce that mS′

n is an ideal of definition of S′
n.

This implies that dim(Sm) = dim(S′
n) for example by Lemma 112.7. (This can also be

seen using Lemma 116.6.) Consider the corresponding diagram of Noetherian local rings

S′
n K[x1, . . . , xn]n′oo

Sm

OO

k[x1, . . . , xn]m′

OO

oo

According to Lemma 134.8 we have NL(α) ⊗S S′ = NL(α′), in particular I ′/(I ′)2 =
I/I2 ⊗S S′. Thus (I/I2)m ⊗Sm

κ and (I ′/(I ′)2)n ⊗S′
n
κ(n) have the same dimension.

Since (I ′/(I ′)2)n is free of rank n− dimS′
n we deduce that (I/I2)m can be generated by

n − dimS′
n = n − dimSm elements. By Lemma 135.4 we see that S is a local complete

intersection in a neighbourhood of m. Since m was any maximal ideal we conclude that S
is a local complete intersection. �
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We end with a lemma which we will later use to prove that given ring maps T → A→ B
where B is syntomic over T , and B is syntomic over A, then A is syntomic over T .

Lemma 135.12. Let
B Soo

A

OO

Roo

OO

be a commutative square of local rings. Assume
(1) R and S = S/mRS are regular local rings,
(2) A = R/I and B = S/J for some ideals I , J ,
(3) J ⊂ S and J = J/mR ∩ J ⊂ S are generated by regular sequences, and
(4) A→ B and R→ S are flat.

Then I is generated by a regular sequence.

Proof. Set B = B/mRB = B/mAB so that B = S/J . Let f1, . . . , fc ∈ J be
elements such that f1, . . . , f c ∈ J form a regular sequence generating J . Note that c =
dim(S)−dim(B), see Lemma 135.6. By Lemma 99.3 the ringS/(f1, . . . , fc) is flat overR.
Hence S/(f1, . . . , fc) + IS is flat overA. The map S/(f1, . . . , fc) + IS → B is therefore
a surjection of finite S/IS-modules flat overAwhich is an isomorphism modulo mA, and
hence an isomorphism by Lemma 99.1. In other words, J = (f1, . . . , fc) + IS.

By Lemma 135.6 again the ideal J is generated by a regular sequence of c = dim(S) −
dim(B) elements. Hence J/mSJ is a vector space of dimension c. By the description of J
above there exist g1, . . . , gc−c ∈ I such that J is generated by f1, . . . , fc, g1, . . . , gc−c (use
Nakayama’s Lemma 20.1). Consider the ring A′ = R/(g1, . . . , gc−c) and the surjection
A′ → A. We see from the above that B = S/(f1, . . . , fc, g1, . . . , gc−c) is flat over A′

(as S/(f1, . . . , fc) is flat over R). Hence A′ → B is injective (as it is faithfully flat, see
Lemma 39.17). Since this map factors through A we get A′ = A. Note that dim(B) =
dim(A) + dim(B), and dim(S) = dim(R) + dim(S), see Lemma 112.7. Hence c − c =
dim(R) − dim(A) by elementary algebra. Thus I = (g1, . . . , gc−c) is generated by a
regular sequence according to Lemma 135.6. �

136. Syntomic morphisms

Syntomic ring maps are flat finitely presented ring maps all of whose fibers are local com-
plete intersections. We discuss general local complete intersection ring maps in More on
Algebra, Section 33.

Definition 136.1. A ring map R → S is called syntomic, or we say S is a flat local
complete intersection over R if it is flat, of finite presentation, and if all of its fibre rings
S ⊗R κ(p) are local complete intersections, see Definition 135.1.

Clearly, an algebra over a field is syntomic over the field if and only if it is a local complete
intersection. Here is a pleasing feature of this definition.

Lemma 136.2. Let R → S be a ring map. Let R → R′ be a faithfully flat ring map.
Set S′ = R′ ⊗R S. Then R→ S is syntomic if and only if R′ → S′ is syntomic.

Proof. By Lemma 126.2 and Lemma 39.8 this holds for the property of being flat
and for the property of being of finite presentation. The map Spec(R′) → Spec(R) is
surjective, see Lemma 39.16. Thus it suffices to show given primes p′ ⊂ R′ lying over
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p ⊂ R that S⊗R κ(p) is a local complete intersection if and only if S′⊗R′ κ(p′) is a local
complete intersection. Note that S′ ⊗R′ κ(p′) = S ⊗R κ(p) ⊗κ(p) κ(p′). Thus Lemma
135.11 applies. �

Lemma 136.3. Any base change of a syntomic map is syntomic.

Proof. This is true for being flat, for being of finite presentation, and for having local
complete intersections as fibres by Lemmas 39.7, 6.2 and 135.11. �

Lemma 136.4. Let R → S be a ring map. Suppose we have g1, . . . gm ∈ S which
generate the unit ideal such that each R→ Sgi is syntomic. Then R→ S is syntomic.

Proof. This is true for being flat and for being of finite presentation by Lemmas 39.18
and 23.3. The property of having fibre rings which are local complete intersections is local
on S by its very definition, see Definition 135.1. �

Definition 136.5. LetR→ S be a ring map. We say thatR→ S is a relative global
complete intersection if there exists a presentation S = R[x1, . . . , xn]/(f1, . . . , fc) and
every nonempty fibre of Spec(S) → Spec(R) has dimension n − c. We will say “let
S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative global complete intersection” to indicate
this situation.

The following lemma is occasionally useful to find global presentations.

Lemma 136.6. Let S be a finitely presented R-algebra which has a presentation S =
R[x1, . . . , xn]/I such that I/I2 is free overS. ThenS has a presentationS = R[y1, . . . , ym]/(f1, . . . , fc)
such that (f1, . . . , fc)/(f1, . . . , fc)2 is free with basis given by the classes of f1, . . . , fc.

Proof. Note that I is a finitely generated ideal by Lemma 6.3. Let f1, . . . , fc ∈ I be
elements which map to a basis of I/I2. By Nakayama’s lemma (Lemma 20.1) there exists
a g ∈ 1 + I such that

g · I ⊂ (f1, . . . , fc)
and Ig ∼= (f1, . . . , fc)g . Hence we see that

S ∼= R[x1, . . . , xn]/(f1, . . . , fc)[1/g] ∼= R[x1, . . . , xn, xn+1]/(f1, . . . , fc, gxn+1 − 1)
as desired. It follows that f1, . . . , fc, gxn+1 − 1 form a basis for (f1, . . . , fc, gxn+1 −
1)/(f1, . . . , fc, gxn+1 − 1)2 for example by applying Lemma 134.12. �

Example 136.7. Let n,m ≥ 1 be integers. Consider the ring map

R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]
a1 7−→ b1 + c1

a2 7−→ b2 + b1c1 + c2

. . . . . . . . .

an+m 7−→ bncm

In other words, this is the unique ring map of polynomial rings as indicated such that the
polynomial factorization

xn+m+a1x
n+m−1 + . . .+an+m = (xn+ b1x

n−1 + . . .+ bn)(xm+ c1x
m−1 + . . .+ cm)

holds. Note that S is generated by n+m elements over R (namely, bi, cj) and that there
are n+m equations (namely ak = ak(bi, cj)). In order to show that S is a relative global
complete intersection over R it suffices to prove that all fibres have dimension 0.
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To prove this, letR→ k be a ring map into a field k. Say ai maps to αi ∈ k. Consider the
fibre ring Sk = k ⊗R S. Let k → K be a field extension. A k-algebra map of Sk → K is
the same thing as finding β1, . . . , βn, γ1, . . . , γm ∈ K such that

xn+m+α1x
n+m−1 + . . .+αn+m = (xn+β1x

n−1 + . . .+βn)(xm+γ1x
m−1 + . . .+γm).

Hence we see there are at most finitely many choices of such n + m-tuples in K. This
proves that all fibres have finitely many closed points (use Hilbert’s Nullstellensatz to see
they all correspond to solutions in k for example) and hence that R → S is a relative
global complete intersection.
Another way to argue this is to show Z[a1, . . . , an+m] → Z[b1, . . . , bn, c1, . . . , cm] is
actually also a finite ring map. Namely, by Lemma 38.5 each of bi, cj is integral over R,
and hence R→ S is finite by Lemma 36.4.

Example 136.8. Consider the ring map
R = Z[a1, . . . , an] −→ S = Z[α1, . . . , αn]

a1 7−→ α1 + . . .+ αn

. . . . . . . . .

an 7−→ α1 . . . αn

In other words this is the unique ring map of polynomial rings as indicated such that

xn + a1x
n−1 + . . .+ an =

∏n

i=1
(x+ αi)

holds in Z[αi, x]. Another way to say this is that ai maps to the ith elementary symmetric
function in α1, . . . , αn. Note that S is generated by n elements over R subject to n equa-
tions. Hence to show that S is a relative global complete intersection over R we have to
show that the fibre rings S ⊗R κ(p) have dimension 0. This follows as in Example 136.7
because the ring map Z[a1, . . . , an] → Z[α1, . . . , αn] is actually finite since each αi ∈ S
satisfies the monic equation xn − a1x

n−1 + . . .+ (−1)nan over R.

Lemma 136.9. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative global complete in-
tersection (Definition 136.5)

(1) For any R → R′ the base change R′ ⊗R S = R′[x1, . . . , xn]/(f1, . . . , fc) is a
relative global complete intersection.

(2) For any g ∈ Swhich is the image ofh ∈ R[x1, . . . , xn] the ringSg = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, hxn+1−
1) is a relative global complete intersection.

(3) If R → S factors as R → Rf → S for some f ∈ R. Then the ring S =
Rf [x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection over Rf .

Proof. By Lemma 116.5 the fibres of a base change have the same dimension as the fi-
bres of the original map. MoreoverR′⊗RR[x1, . . . , xn]/(f1, . . . , fc) = R′[x1, . . . , xn]/(f1, . . . , fc).
Thus (1) follows. The proof of (2) is that the localization at one element can be described
as Sg ∼= S[xn+1]/(gxn+1−1). Assertion (3) follows from (1) since under the assumptions
of (3) we have Rf ⊗R S ∼= S. �

Lemma 136.10. Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc). We will find
h ∈ R[x1, . . . , xn] which maps to g ∈ S such that

Sg = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, hxn+1 − 1)
is a relative global complete intersection with a presentation as in Definition 136.5 in each
of the following cases:
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(1) Let I ⊂ R be an ideal. If the fibres of Spec(S/IS) → Spec(R/I) have dimen-
sion n− c, then we can find (h, g) as above such that g maps to 1 ∈ S/IS.

(2) Let p ⊂ R be a prime. If dim(S ⊗R κ(p)) = n − c, then we can find (h, g) as
above such that g maps to a unit of S ⊗R κ(p).

(3) Let q ⊂ S be a prime lying over p ⊂ R. If dimq(S/R) = n − c, then we can
find (h, g) as above such that g 6∈ q.

Proof. Ad (1). By Lemma 125.6 there exists an open subsetW ⊂ Spec(S) containing
V (IS) such that all fibres ofW → Spec(R) have dimension≤ n−c. SayW = Spec(S)\
V (J). Then V (J) ∩ V (IS) = ∅ hence we can find a g ∈ J which maps to 1 ∈ S/IS. Let
h ∈ R[x1, . . . , xn] be any preimage of g.

Ad (2). By Lemma 125.6 there exists an open subsetW ⊂ Spec(S) containing Spec(S⊗R
κ(p)) such that all fibres ofW → Spec(R) have dimension≤ n− c. SayW = Spec(S) \
V (J). Then V (J · S ⊗R κ(p)) = ∅. Hence we can find a g ∈ J which maps to a unit in
S ⊗R κ(p) (details omitted). Let h ∈ R[x1, . . . , xn] be any preimage of g.

Ad (3). By Lemma 125.6 there exists a g ∈ S , g 6∈ q such that all nonempty fibres of
R → Sg have dimension ≤ n − c. Let h ∈ R[x1, . . . , xn] be any element that maps to
g. �

The following lemma says we can do absolute Noetherian approximation for relative
global complete intersections.

Lemma 136.11. Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative
global complete intersection (Definition 136.5). There exist a finite type Z-subalgebra
R0 ⊂ R such that fi ∈ R0[x1, . . . , xn] and such that

S0 = R0[x1, . . . , xn]/(f1, . . . , fc)

is a relative global complete intersection.

Proof. Let R0 ⊂ R be the Z-algebra of R generated by all the coefficients of the
polynomials f1, . . . , fc. Let S0 = R0[x1, . . . , xn]/(f1, . . . , fc). Clearly, S = R ⊗R0 S0.
Pick a prime q ⊂ S and denote p ⊂ R, q0 ⊂ S0, and p0 ⊂ R0 the primes it lies over.
Because dim(S ⊗R κ(p)) = n− c we also have dim(S0 ⊗R0 κ(p0)) = n− c, see Lemma
116.5. By Lemma 125.6 there exists a g ∈ S0, g 6∈ q0 such that all nonempty fibres of
R0 → (S0)g have dimension ≤ n − c. As q was arbitrary and Spec(S) quasi-compact,
we can find finitely many g1, . . . , gm ∈ S0 such that (a) for j = 1, . . . ,m the nonempty
fibres ofR0 → (S0)gj have dimension≤ n−c and (b) the image of Spec(S)→ Spec(S0)
is contained in D(g1) ∪ . . . ∪ D(gm). In other words, the images of g1, . . . , gm in S =
R ⊗R0 S0 generate the unit ideal. After increasing R0 we may assume that g1, . . . , gm
generate the unit ideal in S0. By (a) the nonempty fibres of R0 → S0 all have dimension
≤ n− c and we conclude. �

Lemma 136.12. Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative
global complete intersection (Definition 136.5). For every prime q of S , let q′ denote the
corresponding prime of R[x1, . . . , xn]. Then

(1) f1, . . . , fc is a regular sequence in the local ring R[x1, . . . , xn]q′ ,
(2) each of the rings R[x1, . . . , xn]q′/(f1, . . . , fi) is flat over R, and
(3) the S-module (f1, . . . , fc)/(f1, . . . , fc)2 is free with basis given by the elements

fi mod (f1, . . . , fc)2.
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Proof. By Lemma 69.2 part (3) follows from part (1).

Assume R is Noetherian. Let p = R ∩ q′. By Lemma 135.4 for example we see that
f1, . . . , fc form a regular sequence in the local ring R[x1, . . . , xn]q′ ⊗R κ(p). Moreover,
the local ring R[x1, . . . , xn]q′ is flat over Rp. Since R, and hence R[x1, . . . , xn]q′ is Noe-
therian we see from Lemma 99.3 that (1) and (2) hold.

LetR be general. WriteR = colimλ∈Λ Rλ as the filtered colimit of finite type Z-subalgebras
(compare with Section 127). We may assume that f1, . . . , fc ∈ Rλ[x1, . . . , xn] for all λ.
Let R0 ⊂ R be as in Lemma 136.11. Then we may assume R0 ⊂ Rλ for all λ. It follows
that Sλ = Rλ[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection (as base
change of S0 via R0 → Rλ, see Lemma 136.9). Denote pλ, qλ, q′

λ the prime of Rλ, Sλ,
Rλ[x1, . . . , xn] induced by p, q, q′. With this notation, we have (1) and (2) for each λ.
Since

R[x1, . . . , xn]q′/(f1, . . . , fi) = colimRλ[x1, . . . , xn]q′
λ
/(f1, . . . , fi)

we deduce flatness in (2) over R from Lemma 39.6. Since we have

R[x1, . . . , xn]q′/(f1, . . . , fi)
fi+1−−−→ R[x1, . . . , xn]q′/(f1, . . . , fi)

= colim
(
Rλ[x1, . . . , xn]q′

λ
/(f1, . . . , fi)

fi+1−−−→ Rλ[x1, . . . , xn]q′
λ
/(f1, . . . , fi)

)
and since filtered colimits are exact (Lemma 8.8) we conclude that we have (1). �

Lemma 136.13. A relative global complete intersection is syntomic, i.e., flat.

Proof. Let R → S be a relative global complete intersection. The fibres are global
complete intersections, and S is of finite presentation over R. Thus the only thing to
prove is that R→ S is flat. This is true by (2) of Lemma 136.12. �

Lemma 136.14. Suppose thatA is a ring, and P (x) = xn+b1x
n−1 + . . .+bn ∈ A[x]

is a monic polynomial over A. Then there exists a syntomic, finite locally free, faithfully
flat ring extension A ⊂ A′ such that P (x) =

∏
i=1,...,n(x− βi) for certain βi ∈ A′.

Proof. Take A′ = A ⊗R S , where R and S are as in Example 136.8, where R → A
maps ai to bi, and let βi = −1 ⊗ αi. Observe that R → S is syntomic (Lemma 136.13),
R → S is finite by construction, and R is Noetherian (so any finite R-module is finitely
presented). Hence S is finite locally free as an R-module by Lemma 78.2. We omit the
verification that Spec(S) → Spec(R) is surjective, which shows that S is faithfully flat
over R (Lemma 39.16). These properties are inherited by the base change A → A′; some
details omitted. �

Lemma 136.15. LetR→ S be a ring map. Let q ⊂ S be a prime lying over the prime
p of R. The following are equivalent:

(1) There exists an element g ∈ S , g 6∈ q such that R→ Sg is syntomic.
(2) There exists an element g ∈ S , g 6∈ q such that Sg is a relative global complete

intersection over R.
(3) There exists an element g ∈ S , g 6∈ q, such thatR→ Sg is of finite presentation,

the local ring map Rp → Sq is flat, and the local ring Sq/pSq is a complete
intersection ring over κ(p) (see Definition 135.5).

Proof. The implication (1) ⇒ (3) is Lemma 135.8. The implication (2) ⇒ (1) is
Lemma 136.13. It remains to show that (3) implies (2).
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Assume (3). After replacing S by Sg for some g ∈ S , g 6∈ q we may assume S is finitely
presented over R. Choose a presentation S = R[x1, . . . , xn]/I . Let q′ ⊂ R[x1, . . . , xn]
be the prime corresponding to q. Write κ(p) = k. Note that S ⊗R k = k[x1, . . . , xn]/I
where I ⊂ k[x1, . . . , xn] is the ideal generated by the image of I . Let q′ ⊂ k[x1, . . . , xn]
be the prime ideal generated by the image of q′. By Lemma 135.8 the equivalent conditions
of Lemma 135.4 hold for I and q′. Say the dimension of Iq′/q′Iq′ over κ(q′) is c. Pick
f1, . . . , fc ∈ I mapping to a basis of this vector space. The images f j ∈ I generate Iq′ (by
Lemma 135.4). Set S′ = R[x1, . . . , xn]/(f1, . . . , fc). Let J be the kernel of the surjection
S′ → S. Since S is of finite presentation J is a finitely generated ideal (Lemma 6.2).
Consider the short exact sequence

0→ J → S′ → S → 0
As Sq is flat overRwe see that Jq′⊗R k → S′

q′⊗R k is injective (Lemma 39.12). However,
by construction S′

q′⊗Rkmaps isomorphically to Sq⊗Rk. Hence we conclude that Jq′⊗R
k = Jq′/pJq′ = 0. By Nakayama’s lemma (Lemma 20.1) we conclude that there exists a
g ∈ R[x1, . . . , xn], g 6∈ q′ such that Jg = 0. In other words S′

g
∼= Sg . After further

localizing we see that S′ (and hence S) becomes a relative global complete intersection by
Lemma 136.10 as desired. �

Lemma 136.16. LetR be a ring. Let S = R[x1, . . . , xn]/I for some finitely generated
ideal I . If g ∈ S is such that Sg is syntomic over R, then (I/I2)g is a finite projective
Sg-module.

Proof. By Lemma 136.15 there exist finitely many elements g1, . . . , gm ∈ S which
generate the unit ideal in Sg such that each Sggj is a relative global complete intersection
over R. Since it suffices to prove that (I/I2)ggj is finite projective, see Lemma 78.2, we
may assume thatSg is a relative global complete intersection. In this case the result follows
from Lemmas 134.16 and 136.12. �

Lemma 136.17. Let R→ S , S → S′ be ring maps.
(1) If R→ S and S → S′ are syntomic, then R→ S′ is syntomic.
(2) If R → S and S → S′ are relative global complete intersections, then R → S′

is a relative global complete intersection.

Proof. Proof of (2). Say R → S and S → S′ are relative global complete intersec-
tions and we have presentationsS = R[x1, . . . , xn]/(f1, . . . , fc) andS′ = S[y1, . . . , ym]/(h1, . . . , hd)
as in Definition 136.5. Then

S′ ∼= R[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fc, h
′
1, . . . , h

′
d)

for some lifts h′
j ∈ R[x1, . . . , xn, y1, . . . , ym] of the hj . Hence it suffices to bound the

dimensions of the fibre rings. Thus we may assume R = k is a field. In this case we
see that we have a ring, namely S , which is of finite type over k and equidimensional of
dimension n − c, and a finite type ring map S → S′ all of whose nonempty fibre rings
are equidimensional of dimension m − d. Then, by Lemma 112.6 for example applied to
localizations at maximal ideals of S′, we see that dim(S′) ≤ n− c+m− d as desired.
We will reduce part (1) to part (2). Assume R→ S and S → S′ are syntomic. Let q′ ⊂ S
be a prime ideal lying over q ⊂ S. By Lemma 136.15 there exists a g′ ∈ S′, g′ 6∈ q′ such
that S → S′

g′ is a relative global complete intersection. Similarly, we find g ∈ S , g 6∈ q
such thatR→ Sg is a relative global complete intersection. By Lemma 136.9 the ring map
Sg → Sgg′ is a relative global complete intersection. By part (2) we see that R → Sgg′
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is a relative global complete intersection and gg′ 6∈ q′. Since q′ was arbitrary combining
Lemmas 136.15 and 136.4 we see thatR→ S′ is syntomic (this also uses that the spectrum
of S′ is quasi-compact, see Lemma 17.10). �

The following lemma will be improved later, see Smoothing Ring Maps, Proposition 3.2.

Lemma 136.18. LetR be a ring and let I ⊂ R be an ideal. LetR/I → S be a syntomic
map. Then there exists elements gi ∈ S which generate the unit ideal of S such that each
Sgi
∼= Si/ISi for some relative global complete intersection Si over R.

Proof. By Lemma 136.15 we find a collection of elements gi ∈ S which gener-
ate the unit ideal of S such that each Sgi is a relative global complete intersection over
R/I . Hence we may assume that S is a relative global complete intersection. Write S =
(R/I)[x1, . . . , xn]/(f1, . . . , f c) as in Definition 136.5. Choose f1, . . . , fc ∈ R[x1, . . . , xn]
lifting f1, . . . , f c. Set S = R[x1, . . . , xn]/(f1, . . . , fc). Note that S/IS ∼= S. By Lemma
136.10 we can find g ∈ S mapping to 1 in S such that Sg is a relative global complete
intersection over R. Since S ∼= Sg/ISg this finishes the proof. �

137. Smooth ring maps

Let us motivate the definition of a smooth ring map by an example. Suppose R is a ring
and S = R[x, y]/(f) for some nonzero f ∈ R[x, y]. In this case there is an exact sequence

S → Sdx⊕ Sdy → ΩS/R → 0

where the first arrow maps 1 to ∂f
∂xdx + ∂f

∂y dy see Section 134. We conclude that ΩS/R
is locally free of rank 1 if the partial derivatives of f generate the unit ideal in S. In this
case S is smooth of relative dimension 1 over R. But it can happen that ΩS/R is locally
free of rank 2 namely if both partial derivatives of f are zero. For example if for a prime
p we have p = 0 in R and f = xp + yp then this happens. Here R → S is a relative
global complete intersection of relative dimension 1 which is not smooth. Hence, in order
to check that a ring map is smooth it is not sufficient to check whether the module of
differentials is free. The correct condition is the following.

Definition 137.1. A ring map R → S is smooth if it is of finite presentation and
the naive cotangent complex NLS/R is quasi-isomorphic to a finite projective S-module
placed in degree 0.

In particular, if R → S is smooth then the module ΩS/R is a finite projective S-module.
Moreover, by Lemma 137.2 the naive cotangent complex of any presentation has the same
structure. Thus, for a surjection α : R[x1, . . . , xn]→ S with kernel I the map

I/I2 −→ ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S

is a split injection. In other words
⊕n

i=1 Sdxi ∼= I/I2⊕ΩS/R as S-modules. This implies
that I/I2 is a finite projective S-module too!

Lemma 137.2. Let R → S be a ring map of finite presentation. If for some presen-
tation α of S over R the naive cotangent complex NL(α) is quasi-isomorphic to a finite
projective S-module placed in degree 0, then this holds for any presentation.

Proof. Immediate from Lemma 134.2. �

Lemma 137.3. LetR→ S be a smooth ring map. Any localization Sg is smooth over
R. If f ∈ R maps to an invertible element of S , then Rf → S is smooth.
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Proof. By Lemma 134.13 the naive cotangent complex for Sg over R is the base
change of the naive cotangent complex of S over R. The assumption is that the naive
cotangent complex of S/R is ΩS/R and that this is a finite projective S-module. Hence so
is its base change. Thus Sg is smooth over R.
The second assertion follows in the same way from Lemma 134.11. �

Lemma 137.4. LetR→ S be a smooth ring map. LetR→ R′ be any ring map. Then
the base change R′ → S′ = R′ ⊗R S is smooth.

Proof. Letα : R[x1, . . . , xn]→ S be a presentation with kernel I . Letα′ : R′[x1, . . . , xn]→
R′⊗RS be the induced presentation. Let I ′ = Ker(α′). Since 0→ I → R[x1, . . . , xn]→
S → 0 is exact, the sequence R′ ⊗R I → R′[x1, . . . , xn]→ R′ ⊗R S → 0 is exact. Thus
R′ ⊗R I → I ′ is surjective. By Definition 137.1 there is a short exact sequence

0→ I/I2 → ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S → ΩS/R → 0
and the S-module ΩS/R is finite projective. In particular I/I2 is a direct summand of
ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S. Consider the commutative diagram

R′ ⊗R (I/I2) //

��

R′ ⊗R (ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S)

��
I ′/(I ′)2 // ΩR′[x1,...,xn]/R′ ⊗R′[x1,...,xn] (R′ ⊗R S)

Since the right vertical map is an isomorphism we see that the left vertical map is injective
and surjective by what was said above. Thus we conclude thatNL(α′) is quasi-isomorphic
to ΩS′/R′ ∼= S′⊗S ΩS/R. And this is finite projective since it is the base change of a finite
projective module. �

Lemma 137.5. Let k be a field. LetS be a smooth k-algebra. ThenS is a local complete
intersection.

Proof. By Lemmas 137.4 and 135.11 it suffices to prove this when k is algebraically
closed. Choose a presentation α : k[x1, . . . , xn] → S with kernel I . Let m be a maxi-
mal ideal of S , and let m′ ⊃ I be the corresponding maximal ideal of k[x1, . . . , xn]. We
will show that condition (5) of Lemma 135.4 holds (with m instead of q). We may write
m′ = (x1−a1, . . . , xn−an) for some ai ∈ k, because k is algebraically closed, see Theorem
34.1. By our assumption that k → S is smooth theS-module map d : I/I2 →

⊕n
i=1 Sdxi

is a split injection. Hence the corresponding map I/m′I →
⊕
κ(m′)dxi is injective. Say

dimκ(m′)(I/m′I) = c and pick f1, . . . , fc ∈ I which map to a κ(m′)-basis of I/m′I . By
Nakayama’s Lemma 20.1 we see that f1, . . . , fc generate Im′ over k[x1, . . . , xn]m′ . Con-
sider the commutative diagram

I //

��

I/I2 //

��

I/m′I

��
Ωk[x1,...,xn]/k //⊕Sdxi

dxi 7→xi−ai // m′/(m′)2

(proof commutativity omitted). The middle vertical map is the one defining the naive
cotangent complex of α. Note that the right lower horizontal arrow induces an isomor-
phism

⊕
κ(m′)dxi → m′/(m′)2. Hence our generators f1, . . . , fc of Im′ map to a col-

lection of elements in k[x1, . . . , xn]m′ whose classes in m′/(m′)2 are linearly independent
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over κ(m′). Therefore they form a regular sequence in the ring k[x1, . . . , xn]m′ by Lemma
106.3. This verifies condition (5) of Lemma 135.4 hence Sg is a global complete intersec-
tion over k for some g ∈ S , g 6∈ m. As this works for any maximal ideal of S we conclude
that S is a local complete intersection over k. �

Definition 137.6. Let R be a ring. Given integers n ≥ c ≥ 0 and f1, . . . , fc ∈
R[x1, . . . , xn] we say

S = R[x1, . . . , xn]/(f1, . . . , fc)
is a standard smooth algebra over R if the polynomial

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


maps to an invertible element in S.

Lemma 137.7. Let S = R[x1, . . . , xn]/(f1, . . . , fc) = R[x1, . . . , xn]/I be a standard
smooth algebra. Then

(1) the ring map R→ S is smooth,
(2) the S-module ΩS/R is free on dxc+1, . . . , dxn,
(3) the S-module I/I2 is free on the classes of f1, . . . , fc,
(4) for any g ∈ S the ring map R→ Sg is standard smooth,
(5) for any ring map R→ R′ the base change R′ → R′ ⊗R S is standard smooth,
(6) if f ∈ R maps to an invertible element in S , then Rf → S is standard smooth,

and
(7) the ring S is a relative global complete intersection over R.

Proof. Consider the naive cotangent complex of the given presentation

(f1, . . . , fc)/(f1, . . . , fc)2 −→
⊕n

i=1
Sdxi

Let us compose this map with the projection onto the first c direct summands of the di-
rect sum. According to the definition of a standard smooth algebra the classes fi mod
(f1, . . . , fc)2 map to a basis of

⊕c
i=1 Sdxi. We conclude that (f1, . . . , fc)/(f1, . . . , fc)2

is free of rank c with a basis given by the elements fi mod (f1, . . . , fc)2, and that the ho-
mology in degree 0, i.e., ΩS/R, of the naive cotangent complex is a free S-module with
basis the images of dxc+j , j = 1, . . . , n− c. In particular, this proves R→ S is smooth.

The proofs of (4) and (6) are omitted. But see the example below and the proof of Lemma
136.9.

Let ϕ : R → R′ be any ring map. Denote S′ = R′[x1, . . . , xn]/(fϕ1 , . . . , fϕc ) where fϕ
is the polynomial obtained from f ∈ R[x1, . . . , xn] by applying ϕ to all the coefficients.
Then S′ ∼= R′ ⊗R S. Moreover, the determinant of Definition 137.6 for S′/R′ is equal
to gϕ. Its image in S′ is therefore the image of g via R[x1, . . . , xn]→ S → S′ and hence
invertible. This proves (5).

To prove (7) it suffices to show that S⊗Rκ(p) has dimension n−c for every prime p ⊂ R.
By (5) it suffices to prove that any standard smooth algebra k[x1, . . . , xn]/(f1, . . . , fc)
over a field k has dimension n − c. We already know that k[x1, . . . , xn]/(f1, . . . , fc) is
a local complete intersection by Lemma 137.5. Hence, since I/I2 is free of rank c we see
that k[x1, . . . , xn]/(f1, . . . , fc) has dimension n− c, by Lemma 135.4 for example. �
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Example 137.8. Let R be a ring. Let f1, . . . , fc ∈ R[x1, . . . , xn]. Let

h = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc

 .

Set S = R[x1, . . . , xn+1]/(f1, . . . , fc, xn+1h − 1). This is an example of a standard
smooth algebra, except that the presentation is wrong and the variables should be in the
following order: x1, . . . , xc, xn+1, xc+1, . . . , xn.

Lemma 137.9. A composition of standard smooth ring maps is standard smooth.

Proof. Suppose that R → S and S → S′ are standard smooth. We choose presen-
tations S = R[x1, . . . , xn]/(f1, . . . , fc) and S′ = S[y1, . . . , ym]/(g1, . . . , gd). Choose
elements g′

j ∈ R[x1, . . . , xn, y1, . . . , ym] mapping to the gj . In this way we see S′ =
R[x1, . . . , xn, y1, . . . , ym]/(f1, . . . , fc, g

′
1, . . . , g

′
d). To show that S′ is standard smooth it

suffices to verify that the determinant

det


∂f1/∂x1 . . . ∂fc/∂x1 ∂g1/∂x1 . . . ∂gd/∂x1
. . . . . . . . . . . . . . . . . .

∂f1/∂xc . . . ∂fc/∂xc ∂g1/∂xc . . . ∂gd/∂xc
0 . . . 0 ∂g1/∂y1 . . . ∂gd/∂y1
. . . . . . . . . . . . . . . . . .
0 . . . 0 ∂g1/∂yd . . . ∂gd/∂yd


is invertible in S′. This is clear since it is the product of the two determinants which were
assumed to be invertible by hypothesis. �

Lemma 137.10. Let R → S be a smooth ring map. There exists an open covering
of Spec(S) by standard opens D(g) such that each Sg is standard smooth over R. In
particular R→ S is syntomic.

Proof. Choose a presentationα : R[x1, . . . , xn]→ S with kernel I = (f1, . . . , fm).
For every subset E ⊂ {1, . . . ,m} consider the open subset UE where the classes fe, e ∈
E freely generate the finite projective S-module I/I2, see Lemma 79.4. We may cover
Spec(S) by standard opens D(g) each completely contained in one of the opens UE . For
such a g we look at the presentation

β : R[x1, . . . , xn, xn+1] −→ Sg

mapping xn+1 to 1/g. Setting J = Ker(β) we use Lemma 134.12 to see that J/J2 ∼=
(I/I2)g ⊕ Sg is free. We may and do replace S by Sg . Then using Lemma 136.6 we may
assume we have a presentation α : R[x1, . . . , xn]→ S with kernel I = (f1, . . . , fc) such
that I/I2 is free on the classes of f1, . . . , fc.

Using the presentation α obtained at the end of the previous paragraph, we more or less
repeat this argument with the basis elements dx1, . . . , dxn of ΩR[x1,...,xn]/R. Namely,
for any subset E ⊂ {1, . . . , n} of cardinality c we may consider the open subset UE of
Spec(S) where the differential of NL(α) composed with the projection

S⊕c ∼= I/I2 −→ ΩR[x1,...,xn]/R ⊗R[x1,...,xn] S −→
⊕

i∈E
Sdxi

is an isomorphism. Again we may find a covering of Spec(S) by (finitely many) standard
opens D(g) such that each D(g) is completely contained in one of the opens UE . By



838 10. COMMUTATIVE ALGEBRA

renumbering, we may assume E = {1, . . . , c}. For a g with D(g) ⊂ UE we look at the
presentation

β : R[x1, . . . , xn, xn+1]→ Sg

mapping xn+1 to 1/g. Setting J = Ker(β) we conclude from Lemma 134.12 that J =
(f1, . . . , fc, fxn+1 − 1) where α(f) = g and that the composition

J/J2 −→ ΩR[x1,...,xn+1]/R ⊗R[x1,...,xn+1] Sg −→
⊕c

i=1
Sgdxi ⊕ Sgdxn+1

is an isomorphism. Reordering the coordinates as x1, . . . , xc, xn+1, xc+1, . . . , xn we con-
clude that Sg is standard smooth over R as desired.

This finishes the proof as standard smooth algebras are syntomic (Lemmas 137.7 and 136.13)
and being syntomic over R is local on S (Lemma 136.4). �

Definition 137.11. Let R→ S be a ring map. Let q be a prime of S. We say R→ S
is smooth at q if there exists a g ∈ S , g 6∈ q such that R→ Sg is smooth.

For ring maps of finite presentation we can characterize this as follows.

Lemma 137.12. Let R → S be of finite presentation. Let q be a prime of S. The
following are equivalent

(1) R→ S is smooth at q,
(2) H1(LS/R)q = 0 and ΩS/R,q is a finite free Sq-module,
(3) H1(LS/R)q = 0 and ΩS/R,q is a projective Sq-module, and
(4) H1(LS/R)q = 0 and ΩS/R,q is a flat Sq-module.

Proof. We will use without further mention that formation of the naive cotangent
complex commutes with localization, see Section 134, especially Lemma 134.13. Note that
ΩS/R is a finitely presented S-module, see Lemma 131.15. Hence (2), (3), and (4) are equiv-
alent by Lemma 78.2. It is clear that (1) implies the equivalent conditions (2), (3), and (4).
Assume (2) holds. Writing Sq as the colimit of principal localizations we see from Lemma
127.6 that we can find a g ∈ S , g 6∈ q such that (ΩS/R)g is finite free. Choose a presenta-
tion α : R[x1, . . . , xn]→ S with kernel I . We may work with NL(α) instead of NLS/R,
see Lemma 134.2. The surjection

ΩR[x1,...,xn]/R ⊗R S → ΩS/R → 0
has a right inverse after inverting g because (ΩS/R)g is projective. Hence the image of d :
(I/I2)g → ΩR[x1,...,xn]/R⊗RSg is a direct summand and this map has a right inverse too.
We conclude thatH1(LS/R)g is a quotient of (I/I2)g . In particularH1(LS/R)g is a finite
Sg-module. Thus the vanishing of H1(LS/R)q implies the vanishing of H1(LS/R)gg′ for
some g′ ∈ S , g′ 6∈ q. Then R→ Sgg′ is smooth by definition. �

Lemma 137.13. Let R → S be a ring map. Then R → S is smooth if and only if
R→ S is smooth at every prime q of S.

Proof. The direct implication is trivial. Suppose that R → S is smooth at every
prime q of S. Since Spec(S) is quasi-compact, see Lemma 17.10, there exists a finite cov-
ering Spec(S) =

⋃
D(gi) such that each Sgi is smooth. By Lemma 23.3 this implies that

S is of finite presentation over R. According to Lemma 134.13 we see that NLS/R⊗SSgi
is quasi-isomorphic to a finite projective Sgi -module. By Lemma 78.2 this implies that
NLS/R is quasi-isomorphic to a finite projective S-module. �

Lemma 137.14. A composition of smooth ring maps is smooth.
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Proof. You can prove this in many different ways. One way is to use the snake
lemma (Lemma 4.1), the Jacobi-Zariski sequence (Lemma 134.4), combined with the char-
acterization of projective modules as being direct summands of free modules (Lemma 77.2).
Another proof can be obtained by combining Lemmas 137.10, 137.9 and 137.13. �

Lemma 137.15. Let R be a ring. Let S = S′ × S′′ be a product of R-algebras. Then
S is smooth over R if and only if both S′ and S′′ are smooth over R.

Proof. Omitted. Hints: By Lemma 137.13 we can check smoothness one prime at a
time. Since Spec(S) is the disjoint union of Spec(S′) and Spec(S′′) by Lemma 21.2 we
find that smoothness of R → S at q corresponds to either smoothness of R → S′ at the
corresponding prime or smoothness of R→ S′′ at the corresponding prime. �

Lemma 137.16. Let R be a ring. Let S = R[x1, . . . , xn]/(f1, . . . , fc) be a relative
global complete intersection. Let q ⊂ S be a prime. Then R → S is smooth at q if and
only if there exists a subset I ⊂ {1, . . . , n} of cardinality c such that the polynomial

gI = det(∂fj/∂xi)j=1,...,c, i∈I .

does not map to an element of q.

Proof. By Lemma 136.12 we see that the naive cotangent complex associated to the
given presentation of S is the complex⊕c

j=1
S · fj −→

⊕n

i=1
S · dxi, fj 7−→

∑ ∂fj
∂xi

dxi.

The maximal minors of the matrix giving the map are exactly the polynomials gI .
Assume gI maps to g ∈ S , with g 6∈ q. Then the algebra Sg is smooth over R. Namely,
its naive cotangent complex is quasi-isomorphic to the complex above localized at g, see
Lemma 134.13. And by construction it is quasi-isomorphic to a free rank n− c module in
degree 0.
Conversely, suppose that all gI end up in q. In this case the complex above tensored with
κ(q) does not have maximal rank, and hence there is no localization by an element g ∈ S ,
g 6∈ q where this map becomes a split injection. By Lemma 134.13 again there is no such
localization which is smooth over R. �

Lemma 137.17. LetR→ S be a ring map. Let q ⊂ S be a prime lying over the prime
p of R. Assume

(1) there exists a g ∈ S , g 6∈ q such that R→ Sg is of finite presentation,
(2) the local ring homomorphism Rp → Sq is flat,
(3) the fibre S ⊗R κ(p) is smooth over κ(p) at the prime corresponding to q.

Then R→ S is smooth at q.

Proof. By Lemmas 136.15 and 137.5 we see that there exists a g ∈ S such that
Sg is a relative global complete intersection. Replacing S by Sg we may assume S =
R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection. For any subset I ⊂
{1, . . . , n} of cardinality c consider the polynomial gI = det(∂fj/∂xi)j=1,...,c,i∈I of
Lemma 137.16. Note that the image gI of gI in the polynomial ring κ(p)[x1, . . . , xn] is the
determinant of the partial derivatives of the images f j of the fj in the ringκ(p)[x1, . . . , xn].
Thus the lemma follows by applying Lemma 137.16 both to R → S and to κ(p) →
S ⊗R κ(p). �

Note that the sets U, V in the following lemma are open by definition.
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Lemma 137.18. LetR→ S be a ring map of finite presentation. LetR→ R′ be a flat
ring map. Denote S′ = R′ ⊗R S the base change. Let U ⊂ Spec(S) be the set of primes
at which R → S is smooth. Let V ⊂ Spec(S′) the set of primes at which R′ → S′ is
smooth. Then V is the inverse image of U under the map f : Spec(S′)→ Spec(S).

Proof. By Lemma 134.8 we see thatNLS/R⊗SS′ is homotopy equivalent toNLS′/R′ .
This already implies that f−1(U) ⊂ V .
Let q′ ⊂ S′ be a prime lying over q ⊂ S. Assume q′ ∈ V . We have to show that q ∈ U .
Since S → S′ is flat, we see that Sq → S′

q′ is faithfully flat (Lemma 39.17). Thus the
vanishing of H1(LS′/R′)q′ implies the vanishing of H1(LS/R)q. By Lemma 78.6 applied
to theSq-module (ΩS/R)q and the mapSq → S′

q′ we see that (ΩS/R)q is projective. Hence
R→ S is smooth at q by Lemma 137.12. �

Lemma 137.19. Let K/k be a field extension. Let S be a finite type algebra over k.
Let qK be a prime of SK = K ⊗k S and let q be the corresponding prime of S. Then S is
smooth over k at q if and only if SK is smooth at qK over K.

Proof. This is a special case of Lemma 137.18. �

Lemma 137.20. Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be a smooth
ring map. Then there exists elements gi ∈ S which generate the unit ideal of S such that
each Sgi ∼= Si/ISi for some (standard) smooth ring Si over R.

Proof. By Lemma 137.10 we find a collection of elements gi ∈ S which generate
the unit ideal of S such that each Sgi is standard smooth over R/I . Hence we may as-
sume that S is standard smooth over R/I . Write S = (R/I)[x1, . . . , xn]/(f1, . . . , f c)
as in Definition 137.6. Choose f1, . . . , fc ∈ R[x1, . . . , xn] lifting f1, . . . , f c. Set S =
R[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1∆− 1) where ∆ = det(∂fj∂xi

)i,j=1,...,c as in Exam-
ple 137.8. This proves the lemma. �

138. Formally smooth maps

In this section we define formally smooth ring maps. It will turn out that a ring map of
finite presentation is formally smooth if and only if it is smooth, see Proposition 138.13.

Definition 138.1. LetR→ S be a ring map. We say S is formally smooth overR if
for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, a dotted arrow exists which makes the diagram
commute.

Lemma 138.2. Let R → S be a formally smooth ring map. Let R → R′ be any ring
map. Then the base change S′ = R′ ⊗R S is formally smooth over R′.

Proof. Let a solid diagram

S //

))

R′ ⊗R S //

$$

A/I

R

OO

// R′ //

OO

A

OO
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as in Definition 138.1 be given. By assumption the longer dotted arrow exists. By the
universal property of tensor product we obtain the shorter dotted arrow. �

Lemma 138.3. A composition of formally smooth ring maps is formally smooth.

Proof. Omitted. (Hint: This is completely formal, and follows from considering a
suitable diagram.) �

Lemma 138.4. A polynomial ring over R is formally smooth over R.

Proof. Suppose we have a diagram as in Definition 138.1 with S = R[xj ; j ∈ J ].
Then there exists a dotted arrow simply by choosing lifts aj ∈ A of the elements in A/I
to which the elements xj map to under the top horizontal arrow. �

Lemma 138.5. Let R → S be a ring map. Let P → S be a surjective R-algebra map
from a polynomial ring P onto S. Denote J ⊂ P the kernel. Then R → S is formally
smooth if and only if there exists anR-algebra map σ : S → P/J2 which is a right inverse
to the surjection P/J2 → S.

Proof. Assume R→ S is formally smooth. Consider the commutative diagram

S //

!!

P/J

R //

OO

P/J2

OO

By assumption the dotted arrow exists. This proves that σ exists.

Conversely, suppose we have a σ as in the lemma. Let a solid diagram

S //

!!

A/I

R //

OO

A

OO

as in Definition 138.1 be given. Because P is formally smooth by Lemma 138.4, there
exists an R-algebra homomorphism ψ : P → A which lifts the map P → S → A/I .
Clearly ψ(J) ⊂ I and since I2 = 0 we conclude that ψ(J2) = 0. Hence ψ factors as
ψ : P/J2 → A. The desired dotted arrow is the composition ψ ◦ σ : S → A. �

Remark 138.6. Lemma 138.5 holds more generally whenever P is formally smooth
over R.

Lemma 138.7. Let R → S be a ring map. Let P → S be a surjective R-algebra map
from a polynomial ring P onto S. Denote J ⊂ P the kernel. Then R → S is formally
smooth if and only if the sequence

0→ J/J2 → ΩP/R ⊗P S → ΩS/R → 0

of Lemma 131.9 is a split exact sequence.

Proof. AssumeS is formally smooth overR. By Lemma 138.5 this means there exists
an R-algebra map S → P/J2 which is a right inverse to the canonical map P/J2 → S.
By Lemma 131.11 we have ΩP/R ⊗P S = Ω(P/J2)/R ⊗P/J2 S. By Lemma 131.10 the
sequence is split.
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Assume the exact sequence of the lemma is split exact. Choose a splitting σ : ΩS/R →
ΩP/R ⊗P S. For each λ ∈ S choose xλ ∈ P which maps to λ. Next, for each λ ∈ S
choose fλ ∈ J such that

dfλ = dxλ − σ(dλ)
in the middle term of the exact sequence. We claim that s : λ 7→ xλ−fλ mod J2 is anR-
algebra homomorphism s : S → P/J2. To prove this we will repeatedly use that if h ∈ J
and dh = 0 in ΩP/R⊗R S , then h ∈ J2. Let λ, µ ∈ S. Then σ(dλ+ dµ− d(λ+µ)) = 0.
This implies

d(xλ + xµ − xλ+µ − fλ − fµ + fλ+µ) = 0
which means that xλ + xµ − xλ+µ − fλ − fµ + fλ+µ ∈ J2, which in turn means that
s(λ) + s(µ) = s(λ+µ). Similarly, we have σ(λdµ+µdλ−dλµ) = 0 which implies that

µ(dxλ − dfλ) + λ(dxµ − dfµ)− dxλµ + dfλµ = 0
in the middle term of the exact sequence. Moreover we have

d(xλxµ) = xλdxµ + xµdxλ = λdxµ + µdxλ
in the middle term again. Combined these equations mean that xλxµ − xλµ − µfλ −
λfµ + fλµ ∈ J2, hence (xλ − fλ)(xµ − fµ) − (xλµ − fλµ) ∈ J2 as fλfµ ∈ J2, which
means that s(λ)s(µ) = s(λµ). If λ ∈ R, then dλ = 0 and we see that dfλ = dxλ, hence
λ−xλ+fλ ∈ J2 and hence s(λ) = λ as desired. At this point we can apply Lemma 138.5
to conclude that S/R is formally smooth. �

Proposition 138.8. LetR→ S be a ring map. Consider a formally smoothR-algebra
P and a surjection P → S with kernel J . The following are equivalent

(1) S is formally smooth over R,
(2) for some P → S as above there exists a section to P/J2 → S ,
(3) for all P → S as above there exists a section to P/J2 → S ,
(4) for some P → S as above the sequence 0→ J/J2 → ΩP/R ⊗ S → ΩS/R → 0

is split exact,
(5) for all P → S as above the sequence 0 → J/J2 → ΩP/R ⊗ S → ΩS/R → 0 is

split exact, and
(6) the naive cotangent complexNLS/R is quasi-isomorphic to a projectiveS-module

placed in degree 0.

Proof. It is clear that (1) implies (3) implies (2), see first part of the proof of Lemma
138.5. It is also true that (3) implies (5) implies (4) and that (2) implies (4), see first part
of the proof of Lemma 138.7. Finally, Lemma 138.7 applied to the canonical surjection
R[S]→ S (134.0.1) shows that (1) implies (6).

Assume (4) and let’s prove (6). Consider the sequence of Lemma 134.4 associated to the
ring mapsR→ P → S. By the implication (1)⇒ (6) proved above we see thatNLP/R⊗RS
is quasi-isomorphic to ΩP/R ⊗P S placed in degree 0. Hence H1(NLP/R⊗PS) = 0.
Since P → S is surjective we see that NLS/P is homotopy equivalent to J/J2 placed in
degree 1 (Lemma 134.6). Thus we obtain the exact sequence 0 → H1(LS/R) → J/J2 →
ΩP/R ⊗P S → ΩS/R → 0. By assumption we see that H1(LS/R) = 0 and that ΩS/R is a
projective S-module. Thus (6) follows.

Finally, let’s prove that (6) implies (1). The assumption means that the complex J/J2 →
ΩP/R ⊗ S where P = R[S] and P → S is the canonical surjection (134.0.1). Hence
Lemma 138.7 shows that S is formally smooth over R. �
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Lemma 138.9. Let A → B → C be ring maps. Assume B → C is formally smooth.
Then the sequence

0→ ΩB/A ⊗B C → ΩC/A → ΩC/B → 0
of Lemma 131.7 is a split short exact sequence.

Proof. Follows from Proposition 138.8 and Lemma 134.4. �

Lemma 138.10. Let A → B → C be ring maps with A → C formally smooth and
B → C surjective with kernel J ⊂ B. Then the exact sequence

0→ J/J2 → ΩB/A ⊗B C → ΩC/A → 0
of Lemma 131.9 is split exact.

Proof. Follows from Proposition 138.8, Lemma 134.4, and Lemma 131.9. �

Lemma 138.11. Let A→ B → C be ring maps. Assume A→ C is surjective (so also
B → C is) and A → B formally smooth. Denote I = Ker(A → C) and J = Ker(B →
C). Then the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0
of Lemma 134.7 is split exact.

Proof. Since A → B is formally smooth there exists a ring map σ : B → A/I2

whose composition with A → B equals the quotient map A → A/I2. Then σ induces a
map J/J2 → I/I2 which is inverse to the map I/I2 → J/J2. �

Lemma 138.12. Let R→ S be a ring map. Let I ⊂ R be an ideal. Assume
(1) I2 = 0,
(2) R→ S is flat, and
(3) R/I → S/IS is formally smooth.

Then R→ S is formally smooth.

Proof. Assume (1), (2) and (3). Let P = R[{xt}t∈T ] → S be a surjection of R-
algebras with kernel J . Thus 0 → J → P → S → 0 is a short exact sequence of flat
R-modules. This implies that I ⊗R S = IS , I ⊗R P = IP and I ⊗R J = IJ as well as
J ∩ IP = IJ . We will use throughout the proof that

Ω(S/IS)/(R/I) = ΩS/R ⊗S (S/IS) = ΩS/R ⊗R R/I = ΩS/R/IΩS/R
and similarly for P (see Lemma 131.12). By Lemma 138.7 the sequence

(138.12.1) 0→ J/(IJ + J2)→ ΩP/R ⊗P S/IS → ΩS/R ⊗S S/IS → 0
is split exact. Of course the middle term is

⊕
t∈T S/ISdxt. Choose a splitting σ :

ΩP/R ⊗P S/IS → J/(IJ + J2). For each t ∈ T choose an element ft ∈ J which
maps to σ(dxt) in J/(IJ + J2). This determines a unique S-module map

σ̃ : ΩP/R ⊗R S =
⊕

Sdxt −→ J/J2

with the property that σ̃(dxt) = ft. As σ is a section to d the difference
∆ = idJ/J2 − σ̃ ◦ d

is a self map J/J2 → J/J2 whose image is contained in (IJ + J2)/J2. In particular
∆((IJ + J2)/J2) = 0 because I2 = 0. This means that ∆ factors as

J/J2 → J/(IJ + J2) ∆−→ (IJ + J2)/J2 → J/J2
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where ∆ is a S/IS-module map. Using again that the sequence (138.12.1) is split, we can
find aS/IS-module map δ : ΩP/R⊗P S/IS → (IJ+J2)/J2 such that δ◦d is equal to ∆.
In the same manner as above the map δ determines an S-module map δ : ΩP/R ⊗P S →
J/J2. After replacing σ̃ by σ̃ + δ a simple computation shows that ∆ = 0. In other
words σ̃ is a section of J/J2 → ΩP/R ⊗P S. By Lemma 138.7 we conclude that R → S
is formally smooth. �

Proposition 138.13. Let R→ S be a ring map. The following are equivalent
(1) R→ S is of finite presentation and formally smooth,
(2) R→ S is smooth.

Proof. Follows from Proposition 138.8 and Definition 137.1. (Note that ΩS/R is a
finitely presented S-module if R→ S is of finite presentation, see Lemma 131.15.) �

Lemma 138.14. Let R→ S be a smooth ring map. Then there exists a subring R0 ⊂
R of finite type over Z and a smooth ring map R0 → S0 such that S ∼= R⊗R0 S0.

Proof. We are going to use that smooth is equivalent to finite presentation and for-
mally smooth, see Proposition 138.13. Write S = R[x1, . . . , xn]/(f1, . . . , fm) and denote
I = (f1, . . . , fm). Choose a right inverse σ : S → R[x1, . . . , xn]/I2 to the projection to
S as in Lemma 138.5. Choose hi ∈ R[x1, . . . , xn] such that σ(xi mod I) = hi mod I2.
The fact that σ is an R-algebra homomorphism R[x1, . . . , xn]/I → R[x1, . . . , xn]/I2 is
equivalent to the condition that

fj(h1, . . . , hn) =
∑

j1j2
aj1j2fj1fj2

for certain akl ∈ R[x1, . . . , xn]. Let R0 ⊂ R be the subring generated over Z by all
the coefficients of the polynomials fj , hi, akl. Set S0 = R0[x1, . . . , xn]/(f1, . . . , fm),
with I0 = (f1, . . . , fm). Let σ0 : S0 → R0[x1, . . . , xn]/I2

0 defined by the rule xi 7→
hi mod I2

0 ; this works since the alk are defined over R0 and satisfy the same relations.
Thus by Lemma 138.5 the ring S0 is formally smooth over R0. �

Lemma 138.15. Let A = colimAi be a filtered colimit of rings. Let A → B be a
smooth ring map. There exists an i and a smooth ring map Ai → Bi such that B =
Bi ⊗Ai A.

Proof. Follows from Lemma 138.14 since R0 → A will factor through Ai for some
i by Lemma 127.3. �

Lemma 138.16. Let R→ S be a ring map. Let R→ R′ be a faithfully flat ring map.
Set S′ = S ⊗R R′. Then R → S is formally smooth if and only if R′ → S′ is formally
smooth.

Proof. If R → S is formally smooth, then R′ → S′ is formally smooth by Lemma
138.2. To prove the converse, assume R′ → S′ is formally smooth. Note that N ⊗R R′ =
N ⊗S S′ for any S-module N . In particular S → S′ is faithfully flat also. Choose a
polynomial ring P = R[{xi}i∈I ] and a surjection of R-algebras P → S with kernel J .
Note that P ′ = P ⊗R R′ is a polynomial algebra overR′. SinceR→ R′ is flat the kernel
J ′ of the surjection P ′ → S′ is J⊗RR′. Hence the split exact sequence (see Lemma 138.7)

0→ J ′/(J ′)2 → ΩP ′/R′ ⊗P ′ S′ → ΩS′/R′ → 0
is the base change via S → S′ of the corresponding sequence

J/J2 → ΩP/R ⊗P S → ΩS/R → 0
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see Lemma 131.9. As S → S′ is faithfully flat we conclude two things: (1) this sequence
(without ′) is exact too, and (2) ΩS/R is a projective S-module. Namely, ΩS′/R′ is projec-
tive as a direct sum of the free module ΩP ′/R′ ⊗P ′ S′ and ΩS/R⊗S S′ = ΩS′/R′ by what
we said above. Thus (2) follows by descent of projectivity through faithfully flat ring
maps, see Theorem 95.6. Hence the sequence 0→ J/J2 → ΩP/R ⊗P S → ΩS/R → 0 is
exact also and we win by applying Lemma 138.7 once more. �

It turns out that smooth ring maps satisfy the following strong lifting property.

Lemma 138.17. Let R → S be a smooth ring map. Given a commutative solid dia-
gram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is a locally nilpotent ideal, a dotted arrow exists which makes the diagram
commute.

Proof. By Lemma 138.14 we can extend the diagram to a commutative diagram

S0 // S //

  

A/I

R0 //

OO

R //

OO

A

OO

withR0 → S0 smooth, R0 of finite type over Z, and S = S0⊗R0 R. Let x1, . . . , xn ∈ S0
be generators of S0 over R0. Let a1, . . . , an be elements of A which map to the same
elements in A/I as the elements x1, . . . , xn. Denote A0 ⊂ A the subring generated by
the image of R0 and the elements a1, . . . , an. Set I0 = A0 ∩ I . Then A0/I0 ⊂ A/I and
S0 → A/I maps into A0/I0. Thus it suffices to find the dotted arrow in the diagram

S0 //

""

A0/I0

R0 //

OO

A0

OO

The ring A0 is of finite type over Z by construction. Hence A0 is Noetherian, whence
I0 is nilpotent, see Lemma 32.5. Say In0 = 0. By Proposition 138.13 we can successively
lift the R0-algebra map S0 → A0/I0 to S0 → A0/I

2
0 , S0 → A0/I

3
0 , . . ., and finally

S0 → A0/I
n
0 = A0. �

139. Smoothness and differentials

Some results on differentials and smooth ring maps.

Lemma 139.1. Given ring maps A → B → C with B → C smooth, then the
sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of Lemma 131.7 is exact.

Proof. This follows from the more general Lemma 138.9 because a smooth ring map
is formally smooth, see Proposition 138.13. But it also follows directly from Lemma 134.4
since H1(LC/B) = 0 is part of the definition of smoothness of B → C. �
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Lemma 139.2. Let A → B → C be ring maps with A → C smooth and B → C
surjective with kernel J ⊂ B. Then the exact sequence

0→ J/J2 → ΩB/A ⊗B C → ΩC/A → 0

of Lemma 131.9 is split exact.

Proof. This follows from the more general Lemma 138.10 because a smooth ring map
is formally smooth, see Proposition 138.13. �

Lemma 139.3. Let A → B → C be ring maps. Assume A → C is surjective (so also
B → C is) and A→ B smooth. Denote I = Ker(A→ C) and J = Ker(B → C). Then
the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0

of Lemma 134.7 is exact.

Proof. This follows from the more general Lemma 138.11 because a smooth ring map
is formally smooth, see Proposition 138.13. �

Lemma 139.4. Let ϕ : R→ S be a smooth ring map. Let σ : S → R be a left inverse
to ϕ. Set I = Ker(σ). Then

(1) I/I2 is a finite locally free R-module, and
(2) if I/I2 is free, then S∧ ∼= R[[t1, . . . , td]] as R-algebras, where S∧ is the I-adic

completion of S.

Proof. By Lemma 131.10 applied to R→ S → R we see that I/I2 = ΩS/R ⊗S,σ R.
Since by definition of a smooth morphism the module ΩS/R is finite locally free over S
we deduce that (1) holds. If I/I2 is free, then choose f1, . . . , fd ∈ I whose images in I/I2

form an R-basis. Consider the R-algebra map defined by

Ψ : R[[x1, . . . , xd]] −→ S∧, xi 7−→ fi.

Denote P = R[[x1, . . . , xd]] and J = (x1, . . . , xd) ⊂ P . We write Ψn : P/Jn → S/In

for the induced map of quotient rings. Note that S/I2 = ϕ(R) ⊕ I/I2. Thus Ψ2 is an
isomorphism. Denote σ2 : S/I2 → P/J2 the inverse of Ψ2. We will prove by induction
on n that for all n > 2 there exists an inverse σn : S/In → P/Jn of Ψn. Namely, as S is
formally smooth over R (by Proposition 138.13) we see that in the solid diagram

S //

σn−1 ""

P/Jn

��
P/Jn−1

of R-algebras we can fill in the dotted arrow by some R-algebra map τ : S → P/Jn

making the diagram commute. This induces an R-algebra map τ : S/In → P/Jn which
is equal to σn−1 modulo Jn. By construction the map Ψn is surjective and now τ ◦Ψn is
an R-algebra endomorphism of P/Jn which maps xi to xi + δi,n with δi,n ∈ Jn−1/Jn.
It follows that Ψn is an isomorphism and hence it has an inverse σn. This proves the
lemma. �
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140. Smooth algebras over fields

Warning: The following two lemmas do not hold over nonperfect fields in general.

Lemma 140.1. Let k be an algebraically closed field. Let S be a finite type k-algebra.
Let m ⊂ S be a maximal ideal. Then

dimκ(m) ΩS/k ⊗S κ(m) = dimκ(m) m/m
2.

Proof. Consider the exact sequence

m/m2 → ΩS/k ⊗S κ(m)→ Ωκ(m)/k → 0
of Lemma 131.9. We would like to show that the first map is an isomorphism. Since k is
algebraically closed the composition k → κ(m) is an isomorphism by Theorem 34.1. So
the surjection S → κ(m) splits as a map of k-algebras, and Lemma 131.10 shows that the
sequence above is exact on the left. Since Ωκ(m)/k = 0, we win. �

Lemma 140.2. Let k be an algebraically closed field. Let S be a finite type k-algebra.
Let m ⊂ S be a maximal ideal. The following are equivalent:

(1) The ring Sm is a regular local ring.
(2) We have dimκ(m) ΩS/k ⊗S κ(m) ≤ dim(Sm).
(3) We have dimκ(m) ΩS/k ⊗S κ(m) = dim(Sm).
(4) There exists a g ∈ S , g 6∈ m such that Sg is smooth over k. In other words S/k

is smooth at m.

Proof. Note that (1), (2) and (3) are equivalent by Lemma 140.1 and Definition 110.7.

Assume that S is smooth at m. By Lemma 137.10 we see that Sg is standard smooth over
k for a suitable g ∈ S , g 6∈ m. Hence by Lemma 137.7 we see that ΩSg/k is free of rank
dim(Sg). Hence by Lemma 140.1 we see that dim(Sm) = dim(m/m2) in other words Sm

is regular.

Conversely, suppose that Sm is regular. Let d = dim(Sm) = dimm/m2. Choose a pre-
sentation S = k[x1, . . . , xn]/I such that xi maps to an element of m for all i. In other
words, m′′ = (x1, . . . , xn) is the corresponding maximal ideal of k[x1, . . . , xn]. Note that
we have a short exact sequence

I/m′′I → m′′/(m′′)2 → m/(m)2 → 0
Pick c = n − d elements f1, . . . , fc ∈ I such that their images in m′′/(m′′)2 span the
kernel of the map to m/m2. This is clearly possible. Denote J = (f1, . . . , fc). So J ⊂ I .
Denote S′ = k[x1, . . . , xn]/J so there is a surjection S′ → S. Denote m′ = m′′S′ the
corresponding maximal ideal of S′. Hence we have

k[x1, . . . , xn] // S′ // S

m′′

OO

// m′ //

OO

m

OO

By our choice of J the exact sequence

J/m′′J → m′′/(m′′)2 → m′/(m′)2 → 0
shows that dim(m′/(m′)2) = d. Since S′

m′ surjects onto Sm we see that dim(Sm′) ≥ d.
Hence by the discussion preceding Definition 60.10 we conclude that S′

m′ is regular of
dimension d as well. Because S′ was cut out by c = n − d equations we conclude that
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there exists a g′ ∈ S′, g′ 6∈ m′ such that S′
g′ is a global complete intersection over k, see

Lemma 135.4. Also the map S′
m′ → Sm is a surjection of Noetherian local domains of

the same dimension and hence an isomorphism. Hence S′ → S is surjective with finitely
generated kernel and becomes an isomorphism after localizing at m′. Thus we can find
g′ ∈ S′, g 6∈ m′ such that S′

g′ → Sg′ is an isomorphism. All in all we conclude that
after replacing S by a principal localization we may assume that S is a global complete
intersection.

At this point we may write S = k[x1, . . . , xn]/(f1, . . . , fc) with dimS = n − c. Recall
that the naive cotangent complex of this algebra is given by⊕

S · fj →
⊕

S · dxi

see Lemma 136.12. By Lemma 137.16 in order to show that S is smooth at m we have to
show that one of the c × c minors gI of the matrix “A” giving the map above does not
vanish at m. By Lemma 140.1 the matrix A mod m has rank c. Thus we win. �

Lemma 140.3. Let k be any field. Let S be a finite type k-algebra. Let X = Spec(S).
Let q ⊂ S be a prime corresponding to x ∈ X . The following are equivalent:

(1) The k-algebra S is smooth at q over k.
(2) We have dimκ(q) ΩS/k ⊗S κ(q) ≤ dimxX .
(3) We have dimκ(q) ΩS/k ⊗S κ(q) = dimxX .

Moreover, in this case the local ring Sq is regular.

Proof. If S is smooth at q over k, then there exists a g ∈ S , g 6∈ q such that Sg
is standard smooth over k, see Lemma 137.10. A standard smooth algebra over k has a
module of differentials which is free of rank equal to the dimension, see Lemma 137.7 (use
that a relative global complete intersection over a field has dimension equal to the number
of variables minus the number of equations). Thus we see that (1) implies (3). To finish
the proof of the lemma it suffices to show that (2) implies (1) and that it implies that Sq is
regular.

Assume (2). By Nakayama’s Lemma 20.1 we see that ΩS/k,q can be generated by≤ dimxX
elements. We may replace S by Sg for some g ∈ S , g 6∈ q such that ΩS/k is generated
by at most dimxX elements. Let K/k be an algebraically closed field extension such that
there exists a k-algebra map ψ : κ(q)→ K. Consider SK = K ⊗k S. Let m ⊂ SK be the
maximal ideal corresponding to the surjection

SK = K ⊗k S // K ⊗k κ(q) idK⊗ψ // K.

Note that m ∩ S = q, in other words m lies over q. By Lemma 116.6 the dimension of
XK = Spec(SK) at the point corresponding to m is dimxX . By Lemma 114.6 this is
equal to dim((SK)m). By Lemma 131.12 the module of differentials of SK over K is the
base change of ΩS/k , hence also generated by at most dimxX = dim((SK)m) elements.
By Lemma 140.2 we see that SK is smooth at m over K. By Lemma 137.18 this implies
that S is smooth at q over k. This proves (1). Moreover, we know by Lemma 140.2 that
the local ring (SK)m is regular. Since Sq → (SK)m is flat we conclude from Lemma 110.9
that Sq is regular. �

The following lemma can be significantly generalized (in several different ways).
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Lemma 140.4. Let k be a field. LetR be a Noetherian local ring containing k. Assume
that the residue field κ = R/m is a finitely generated separable extension of k. Then the
map

d : m/m2 −→ ΩR/k ⊗R κ(m)
is injective.

Proof. We may replace R by R/m2. Hence we may assume that m2 = 0. By as-
sumption we may write κ = k(x1, . . . , xr, y) where x1, . . . , xr is a transcendence basis
of κ over k and y is separable algebraic over k(x1, . . . , xr). Say its minimal equation is
P (y) = 0 with P (T ) = T d +

∑
i<d aiT

i, with ai ∈ k(x1, . . . , xr) and P ′(y) 6= 0.
Choose any lifts xi ∈ R of the elements xi ∈ κ. This gives a commutative diagram

R // κ

k(x1, . . . , xr)
ϕ

ee OO

of k-algebras. We want to extend the left upwards arrow ϕ to a k-algebra map from κ to
R. To do this choose any y ∈ R lifting y. To see that it defines a k-algebra map defined
on κ ∼= k(x1, . . . , xr)[T ]/(P ) all we have to show is that we may choose y such that
Pϕ(y) = 0. If not then we compute for δ ∈ m that

P (y + δ) = P (y) + P ′(y)δ
because m2 = 0. Since P ′(y)δ = P ′(y)δ we see that we can adjust our choice as desired.
This shows that R ∼= κ ⊕ m as k-algebras! From a direct computation of Ωκ⊕m/k the
lemma follows. �

Lemma 140.5. Let k be a field. Let S be a finite type k-algebra. Let q ⊂ S be a prime.
Assume κ(q) is separable over k. The following are equivalent:

(1) The algebra S is smooth at q over k.
(2) The ring Sq is regular.

Proof. Denote R = Sq and denote its maximal by m and its residue field κ. By
Lemma 140.4 and 131.9 we see that there is a short exact sequence

0→ m/m2 → ΩR/k ⊗R κ→ Ωκ/k → 0
Note that ΩR/k = ΩS/k,q, see Lemma 131.8. Moreover, since κ is separable over k we have
dimκ Ωκ/k = trdegk(κ). Hence we get

dimκ ΩR/k ⊗R κ = dimκm/m
2 + trdegk(κ) ≥ dimR+ trdegk(κ) = dimq S

(see Lemma 116.3 for the last equality) with equality if and only if R is regular. Thus we
win by applying Lemma 140.3. �

Lemma 140.6. Let R → S be a Q-algebra map. Let f ∈ S be such that ΩS/R =
Sdf ⊕ C for some S-submodule C. Then

(1) f is not nilpotent, and
(2) if S is a Noetherian local ring, then f is a nonzerodivisor in S.

Proof. For a ∈ S write d(a) = θ(a)df + c(a) for some θ(a) ∈ S and c(a) ∈ C.
Consider the R-derivation S → S , a 7→ θ(a). Note that θ(f) = 1.
If fn = 0 with n > 1 minimal, then 0 = θ(fn) = nfn−1 contradicting the minimality
of n. We conclude that f is not nilpotent.
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Suppose fa = 0. If f is a unit then a = 0 and we win. Assume f is not a unit. Then
0 = θ(fa) = fθ(a) + a by the Leibniz rule and hence a ∈ (f). By induction suppose
we have shown fa = 0 ⇒ a ∈ (fn). Then writing a = fnb we get 0 = θ(fn+1b) =
(n + 1)fnb + fn+1θ(b). Hence a = fnb = −fn+1θ(b)/(n + 1) ∈ (fn+1). Since in the
Noetherian local ring S we have

⋂
(fn) = 0, see Lemma 51.4 we win. �

The following is probably quite useless in applications.

Lemma 140.7. Let k be a field of characteristic 0. Let S be a finite type k-algebra. Let
q ⊂ S be a prime. The following are equivalent:

(1) The algebra S is smooth at q over k.
(2) The Sq-module ΩS/k,q is (finite) free.
(3) The ring Sq is regular.

Proof. In characteristic zero any field extension is separable and hence the equiva-
lence of (1) and (3) follows from Lemma 140.5. Also (1) implies (2) by definition of smooth
algebras. Assume that ΩS/k,q is free over Sq. We are going to use the notation and obser-
vations made in the proof of Lemma 140.5. So R = Sq with maximal ideal m and residue
field κ. Our goal is to prove R is regular.
If m/m2 = 0, then m = 0 and R ∼= κ. Hence R is regular and we win.
If m/m2 6= 0, then choose any f ∈ m whose image in m/m2 is not zero. By Lemma 140.4
we see that df has nonzero image in ΩR/k/mΩR/k. By assumption ΩR/k = ΩS/k,q is finite
free and hence by Nakayama’s Lemma 20.1 we see that df generates a direct summand. We
apply Lemma 140.6 to deduce that f is a nonzerodivisor in R. Furthermore, by Lemma
131.9 we get an exact sequence

(f)/(f2)→ ΩR/k ⊗R R/fR→ Ω(R/fR)/k → 0
This implies that Ω(R/fR)/k is finite free as well. Hence by induction we see that R/fR
is a regular local ring. Since f ∈ m was a nonzerodivisor we conclude that R is regular,
see Lemma 106.7. �

Example 140.8. Lemma 140.7 does not hold in characteristic p > 0. The standard
examples are the ring maps

Fp −→ Fp[x]/(xp)
whose module of differentials is free but is clearly not smooth, and the ring map (p > 2)

Fp(t)→ Fp(t)[x, y]/(xp + y2 + α)
which is not smooth at the prime q = (y, xp + α) but is regular.

Using the material above we can characterize smoothness at the generic point in terms of
field extensions.

Lemma 140.9. LetR→ S be an injective finite type ring map withR and S domains.
Then R → S is smooth at q = (0) if and only if the induced extension L/K of fraction
fields is separable.

Proof. Assume R→ S is smooth at (0). We may replace S by Sg for some nonzero
g ∈ S and assume that R→ S is smooth. Then K → S ⊗R K is smooth (Lemma 137.4).
Moreover, for any field extension K ′/K the ring map K ′ → S ⊗R K ′ is smooth as well.
Hence S ⊗R K ′ is a regular ring by Lemma 140.3, in particular reduced. It follows that
S⊗RK is a geometrically reduced overK. Hence L is geometrically reduced overK , see
Lemma 43.3. Hence L/K is separable by Lemma 44.1.
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Conversely, assume that L/K is separable. We may assume R → S is of finite presenta-
tion, see Lemma 30.1. It suffices to prove that K → S ⊗R K is smooth at (0), see Lemma
137.18. This follows from Lemma 140.5, the fact that a field is a regular ring, and the
assumption that L/K is separable. �

141. Smooth ring maps in the Noetherian case

Definition 141.1. Let ϕ : B′ → B be a ring map. We say ϕ is a small extension ifB′

andB are local Artinian rings,ϕ is surjective and I = Ker(ϕ) has length 1 as aB′-module.

Clearly this means that I2 = 0 and that I = (x) for some x ∈ B′ such that m′x = 0
where m′ ⊂ B′ is the maximal ideal.

Lemma 141.2. LetR→ S be a ring map. Let q be a prime ideal of S lying over p ⊂ R.
Assume R is Noetherian and R→ S of finite type. The following are equivalent:

(1) R→ S is smooth at q,
(2) for every surjection of local R-algebras (B′,m′) → (B,m) with Ker(B′ → B)

having square zero and every solid commutative diagram

S //

  

B

R //

OO

B′

OO

such that q = S ∩m there exists a dotted arrow making the diagram commute,
(3) same as in (2) but with B′ → B ranging over small extensions, and
(4) same as in (2) but with B′ → B ranging over small extensions such that in

addition S → B induces an isomorphism κ(q) ∼= κ(m).

Proof. Assume (1). This means there exists a g ∈ S , g 6∈ q such that R → Sg is
smooth. By Proposition 138.13 we know that R → Sg is formally smooth. Note that
given any diagram as in (2) the map S → B factors automatically through Sq and a
fortiori through Sg . The formal smoothness of Sg over R gives us a morphism Sg → B′

fitting into a similar diagram with Sg at the upper left corner. Composing with S → Sg
gives the desired arrow. In other words, we have shown that (1) implies (2).

Clearly (2) implies (3) and (3) implies (4).

Assume (4). We are going to show that (1) holds, thereby finishing the proof of the lemma.
Choose a presentation S = R[x1, . . . , xn]/(f1, . . . , fm). This is possible as S is of finite
type over R and therefore of finite presentation (see Lemma 31.4). Set I = (f1, . . . , fm).
Consider the naive cotangent complex

d : I/I2 −→
⊕m

j=1
Sdxj

of this presentation (see Section 134). It suffices to show that when we localize this complex
at q then the map becomes a split injection, see Lemma 137.12. DenoteS′ = R[x1, . . . , xn]/I2.
By Lemma 131.11 we have

S ⊗S′ ΩS′/R = S ⊗R[x1,...,xn] ΩR[x1,...,xn]/R =
⊕m

j=1
Sdxj .

Thus the map
d : I/I2 −→ S ⊗S′ ΩS′/R
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is the same as the map in the naive cotangent complex above. In particular the truth of
the assertion we are trying to prove depends only on the three rings R → S′ → S. Let
q′ ⊂ R[x1, . . . , xn] be the prime ideal corresponding to q. Since localization commutes
with taking modules of differentials (Lemma 131.8) we see that it suffices to show that the
map

(141.2.1) d : Iq′/I2
q′ −→ Sq ⊗S′

q′
ΩS′

q′/R

coming from R→ S′
q′ → Sq is a split injection.

Let N ∈ N be an integer. Consider the ring

B′
N = S′

q′/(q′)NS′
q′ = (S′/(q′)NS′)q′

and its quotient BN = B′
N/IB

′
N . Note that BN ∼= Sq/q

NSq. Observe that B′
N is an

Artinian local ring since it is the quotient of a local Noetherian ring by a power of its
maximal ideal. Consider a filtration of the kernel IN of B′

N → BN by B′
N -submodules

0 ⊂ JN,1 ⊂ JN,2 ⊂ . . . ⊂ JN,n(N) = IN

such that each successive quotient JN,i/JN,i−1 has length 1. (As B′
N is Artinian such a

filtration exists.) This gives a sequence of small extensions

B′
N → B′

N/JN,1 → B′
N/JN,2 → . . .→ B′

N/JN,n(N) = B′
N/IN = BN = Sq/q

NSq

Applying condition (4) successively to these small extensions starting with the map S →
BN we see there exists a commutative diagram

S //

  

BN

R //

OO

B′
N

OO

Clearly the ring map S → B′
N factors as S → Sq → B′

N where Sq → B′
N is a local

homomorphism of local rings. Moreover, since the maximal ideal ofB′
N to theN th power

is zero we conclude that Sq → B′
N factors through Sq/(q)NSq = BN . In other words we

have shown that for all N ∈ N the surjection of R-algebras B′
N → BN has a splitting.

Consider the presentation
IN → BN ⊗B′

N
ΩB′

N
/R → ΩBN/R → 0

coming from the surjection B′
N → BN with kernel IN (see Lemma 131.9). By the above

theR-algebra mapB′
N → BN has a right inverse. Hence by Lemma 131.10 we see that the

sequence above is split exact! Thus for every N the map
IN −→ BN ⊗B′

N
ΩB′

N
/R

is a split injection. The rest of the proof is gotten by unwinding what this means exactly.
Note that

IN = Iq′/(I2
q′ + (q′)N ∩ Iq′)

By Artin-Rees (Lemma 51.2) we find a c ≥ 0 such that

Sq/q
N−cSq ⊗Sq

IN = Sq/q
N−cSq ⊗Sq

Iq′/I2
q′

for allN ≥ c (these tensor product are just a fancy way of dividing by qN−c). We may of
course assume c ≥ 1. By Lemma 131.11 we see that

S′
q′/(q′)N−cS′

q′ ⊗S′
q′

ΩB′
N
/R = S′

q′/(q′)N−cS′
q′ ⊗S′

q′
ΩS′

q′/R
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we can further tensor this by BN = Sq/q
N to see that

Sq/q
N−cSq ⊗S′

q′
ΩB′

N
/R = Sq/q

N−cSq ⊗S′
q′

ΩS′
q′/R

.

Since a split injection remains a split injection after tensoring with anything we see that

Sq/q
N−cSq ⊗Sq

(141.2.1) = Sq/q
N−cSq ⊗Sq/qNSq

(IN −→ BN ⊗B′
N

ΩB′
N
/R)

is a split injection for all N ≥ c. By Lemma 74.1 we see that (141.2.1) is a split injection.
This finishes the proof. �

142. Overview of results on smooth ring maps

Here is a list of results on smooth ring maps that we proved in the preceding sections. For
more precise statements and definitions please consult the references given.

(1) A ring mapR→ S is smooth if it is of finite presentation and the naive cotangent
complex of S/R is quasi-isomorphic to a finite projective S-module in degree 0,
see Definition 137.1.

(2) If S is smooth over R, then ΩS/R is a finite projective S-module, see discussion
following Definition 137.1.

(3) The property of being smooth is local on S , see Lemma 137.13.
(4) The property of being smooth is stable under base change, see Lemma 137.4.
(5) The property of being smooth is stable under composition, see Lemma 137.14.
(6) A smooth ring map is syntomic, in particular flat, see Lemma 137.10.
(7) A finitely presented, flat ring map with smooth fibre rings is smooth, see Lemma

137.17.
(8) A finitely presented ring map R → S is smooth if and only if it is formally

smooth, see Proposition 138.13.
(9) IfR→ S is a finite type ring map withRNoetherian then to check thatR→ S

is smooth it suffices to check the lifting property of formal smoothness along
small extensions of Artinian local rings, see Lemma 141.2.

(10) A smooth ring map R → S is the base change of a smooth ring map R0 → S0
with R0 of finite type over Z, see Lemma 138.14.

(11) Formation of the set of points where a ring map is smooth commutes with flat
base change, see Lemma 137.18.

(12) If S is of finite type over an algebraically closed field k, and m ⊂ S a maximal
ideal, then the following are equivalent
(a) S is smooth over k in a neighbourhood of m,
(b) Sm is a regular local ring,
(c) dim(Sm) = dimκ(m) ΩS/k ⊗S κ(m).

see Lemma 140.2.
(13) If S is of finite type over a field k, and q ⊂ S a prime ideal, then the following

are equivalent
(a) S is smooth over k in a neighbourhood of q,
(b) dimq(S/k) = dimκ(q) ΩS/k ⊗S κ(q).

see Lemma 140.3.
(14) If S is smooth over a field, then all its local rings are regular, see Lemma 140.3.
(15) If S is of finite type over a field k, q ⊂ S a prime ideal, the field extension κ(q)/k

is separable and Sq is regular, then S is smooth over k at q, see Lemma 140.5.
(16) If S is of finite type over a field k, if k has characteristic 0, if q ⊂ S a prime ideal,

and if ΩS/k,q is free, then S is smooth over k at q, see Lemma 140.7.
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Some of these results were proved using the notion of a standard smooth ring map, see
Definition 137.6. This is the analogue of what a relative global complete intersection map
is for the case of syntomic morphisms. It is also the easiest way to make examples.

143. Étale ring maps

An étale ring map is a smooth ring map whose relative dimension is equal to zero. This is
the same as the following slightly more direct definition.

Definition 143.1. Let R→ S be a ring map. We say R→ S is étale if it is of finite
presentation and the naive cotangent complex NLS/R is quasi-isomorphic to zero. Given
a prime q of S we say that R → S is étale at q if there exists a g ∈ S , g 6∈ q such that
R→ Sg is étale.

In particular we see that ΩS/R = 0 if S is étale over R. If R→ S is smooth, then R→ S
is étale if and only if ΩS/R = 0. From our results on smooth ring maps we automatically
get a whole host of results for étale maps. We summarize these in Lemma 143.3 below. But
before we do so we prove that any étale ring map is standard smooth.

Lemma 143.2. Any étale ring map is standard smooth. More precisely, if R → S is
étale, then there exists a presentationS = R[x1, . . . , xn]/(f1, . . . , fn) such that the image
of det(∂fj/∂xi) is invertible in S.

Proof. LetR→ S be étale. Choose a presentation S = R[x1, . . . , xn]/I . AsR→ S
is étale we know that

d : I/I2 −→
⊕

i=1,...,n
Sdxi

is an isomorphism, in particular I/I2 is a free S-module. Thus by Lemma 136.6 we may
assume (after possibly changing the presentation), that I = (f1, . . . , fc) such that the
classes fi mod I2 form a basis of I/I2. It follows immediately from the fact that the
displayed map above is an isomorphism that c = n and that det(∂fj/∂xi) is invertible in
S. �

Lemma 143.3. Results on étale ring maps.
(1) The ring map R→ Rf is étale for any ring R and any f ∈ R.
(2) Compositions of étale ring maps are étale.
(3) A base change of an étale ring map is étale.
(4) The property of being étale is local: Given a ring map R → S and elements

g1, . . . , gm ∈ S which generate the unit ideal such that R → Sgj is étale for
j = 1, . . . ,m then R→ S is étale.

(5) Given R → S of finite presentation, and a flat ring map R → R′, set S′ =
R′ ⊗R S. The set of primes where R′ → S′ is étale is the inverse image via
Spec(S′)→ Spec(S) of the set of primes where R→ S is étale.

(6) An étale ring map is syntomic, in particular flat.
(7) If S is finite type over a field k, then S is étale over k if and only if ΩS/k = 0.
(8) Any étale ring map R → S is the base change of an étale ring map R0 → S0

with R0 of finite type over Z.
(9) LetA = colimAi be a filtered colimit of rings. LetA→ B be an étale ring map.

Then there exists an étale ring mapAi → Bi for some i such thatB ∼= A⊗AiBi.
(10) Let A be a ring. Let S be a multiplicative subset of A. Let S−1A→ B′ be étale.

Then there exists an étale ring map A→ B such that B′ ∼= S−1B.
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(11) Let A be a ring. Let B = B′ × B′′ be a product of A-algebras. Then B is étale
over A if and only if both B′ and B′′ are étale over A.

Proof. In each case we use the corresponding result for smooth ring maps with a
small argument added to show that ΩS/R is zero.

Proof of (1). The ring map R→ Rf is smooth and ΩRf/R = 0.

Proof of (2). The composition A → C of smooth maps A → B and B → C is smooth,
see Lemma 137.14. By Lemma 131.7 we see that ΩC/A is zero as both ΩC/B and ΩB/A are
zero.

Proof of (3). Let R → S be étale and R → R′ be arbitrary. Then R′ → S′ = R′ ⊗R S
is smooth, see Lemma 137.4. Since ΩS′/R′ = S′ ⊗S ΩS/R by Lemma 131.12 we conclude
that ΩS′/R′ = 0. Hence R′ → S′ is étale.

Proof of (4). Assume the hypotheses of (4). By Lemma 137.13 we see that R → S is
smooth. We are also given that ΩSgi/R = (ΩS/R)gi = 0 for all i. Then ΩS/R = 0, see
Lemma 23.2.

Proof of (5). The result for smooth maps is Lemma 137.18. In the proof of that lemma we
used that NLS/R⊗SS′ is homotopy equivalent to NLS′/R′ . This reduces us to showing
that if M is a finitely presented S-module the set of primes q′ of S′ such that (M ⊗S
S′)q′ = 0 is the inverse image of the set of primes q of S such that Mq = 0. This follows
from Lemma 40.6.

Proof of (6). Follows directly from the corresponding result for smooth ring maps (Lemma
137.10).

Proof of (7). Follows from Lemma 140.3 and the definitions.

Proof of (8). Lemma 138.14 gives the result for smooth ring maps. The resulting smooth
ring mapR0 → S0 satisfies the hypotheses of Lemma 130.8, and hence we may replace S0
by the factor of relative dimension 0 over R0.

Proof of (9). Follows from (8) sinceR0 → Awill factor throughAi for some i by Lemma
127.3.

Proof of (10). Follows from (9), (1), and (2) since S−1A is a filtered colimit of principal
localizations of A.

Proof of (11). Use Lemma 137.15 to see the result for smoothness and then use that ΩB/A
is zero if and only if both ΩB′/A and ΩB′′/A are zero. �

Next we work out in more detail what it means to be étale over a field.

Lemma 143.4. Let k be a field. A ring map k → S is étale if and only ifS is isomorphic
as a k-algebra to a finite product of finite separable extensions of k.

Proof. We are going to use without further mention: if S = S1 × . . . × Sn is a
finite product of k-algebras, then S is étale over k if and only if each Si is étale over k. See
Lemma 143.3 part (11).

If k′/k is a finite separable field extension then we can write k′ = k(α) ∼= k[x]/(f).
Here f is the minimal polynomial of the element α. Since k′ is separable over k we have
gcd(f, f ′) = 1. This implies that d : k′ · f → k′ · dx is an isomorphism. Hence k → k′ is
étale. Thus if S is a finite product of finite separable extension of k, then S is étale over k.
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Conversely, suppose that k → S is étale. Then S is smooth over k and ΩS/k = 0. By
Lemma 140.3 we see that dimm Spec(S) = 0 for every maximal ideal m of S. Thus
dim(S) = 0. By Proposition 60.7 we find that S is a finite product of Artinian local
rings. By the already used Lemma 140.3 these local rings are fields. Hence we may assume
S = k′ is a field. By the Hilbert Nullstellensatz (Theorem 34.1) we see that the extension
k′/k is finite. The smoothness of k → k′ implies by Lemma 140.9 that k′/k is a separable
extension and the proof is complete. �

Lemma 143.5. Let R → S be a ring map. Let q ⊂ S be a prime lying over p in R. If
S/R is étale at q then

(1) we have pSq = qSq is the maximal ideal of the local ring Sq, and
(2) the field extension κ(q)/κ(p) is finite separable.

Proof. First we may replace S by Sg for some g ∈ S , g 6∈ q and assume that R→ S
is étale. Then the lemma follows from Lemma 143.4 by unwinding the fact that S⊗Rκ(p)
is étale over κ(p). �

Lemma 143.6. An étale ring map is quasi-finite.

Proof. Let R → S be an étale ring map. By definition R → S is of finite type. For
any prime p ⊂ R the fibre ring S⊗R κ(p) is étale over κ(p) and hence a finite products of
fields finite separable over κ(p), in particular finite over κ(p). Thus R→ S is quasi-finite
by Lemma 122.4. �

Lemma 143.7. Let R → S be a ring map. Let q be a prime of S lying over a prime p
of R. If

(1) R→ S is of finite presentation,
(2) Rp → Sq is flat
(3) pSq is the maximal ideal of the local ring Sq, and
(4) the field extension κ(q)/κ(p) is finite separable,

then R→ S is étale at q.

Proof. Apply Lemma 122.2 to find a g ∈ S , g 6∈ q such that q is the only prime of Sg
lying over p. We may and do replace S by Sg . Then S⊗R κ(p) has a unique prime, hence
is a local ring, hence is equal to Sq/pSq

∼= κ(q). By Lemma 137.17 there exists a g ∈ S ,
g 6∈ q such that R → Sg is smooth. Replace S by Sg again we may assume that R → S
is smooth. By Lemma 137.10 we may even assume that R → S is standard smooth, say
S = R[x1, . . . , xn]/(f1, . . . , fc). Since S ⊗R κ(p) = κ(q) has dimension 0 we conclude
that n = c, i.e., R→ S is étale. �

Here is a completely new phenomenon.

Lemma 143.8. Let R→ S and R→ S′ be étale. Then any R-algebra map S′ → S is
étale.

Proof. First of all we note that S′ → S is of finite presentation by Lemma 6.2. Let
q ⊂ S be a prime ideal lying over the primes q′ ⊂ S′ and p ⊂ R. By Lemma 143.5 the
ring map S′

q′/pS′
q′ → Sq/pSq is a map finite separable extensions of κ(p). In particular

it is flat. Hence by Lemma 128.8 we see that S′
q′ → Sq is flat. Thus S′ → S is flat.

Moreover, the above also shows that q′Sq is the maximal ideal of Sq and that the residue
field extension of S′

q′ → Sq is finite separable. Hence from Lemma 143.7 we conclude that
S′ → S is étale at q. Since being étale is local (see Lemma 143.3) we win. �
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Lemma 143.9. Let ϕ : R→ S be a ring map. If R→ S is surjective, flat and finitely
presented then there exist an idempotent e ∈ R such that S = Re.

First proof. Let I be the kernel of ϕ. We have that I is finitely generated by Lemma
6.3 since ϕ is of finite presentation. Moreover, since S is flat over R, tensoring the exact
sequence 0 → I → R → S → 0 over R with S gives I/I2 = 0. Now we conclude by
Lemma 21.5. �

Second proof. Since Spec(S)→ Spec(R) is a homeomorphism onto a closed subset
(see Lemma 17.7) and is open (see Proposition 41.8) we see that the image isD(e) for some
idempotent e ∈ R (see Lemma 21.3). Thus Re → S induces a bijection on spectra. Now
this map induces an isomorphism on all local rings for example by Lemmas 78.5 and 20.1.
Then it follows that Re → S is also injective, for example see Lemma 23.1. �

Lemma 143.10. Let R be a ring and let I ⊂ R be an ideal. Let R/I → S be an
étale ring map. Then there exists an étale ring map R → S such that S ∼= S/IS as
R/I-algebras.

Proof. By Lemma 143.2 we can write S = (R/I)[x1, . . . , xn]/(f1, . . . , fn) as in
Definition 137.6 with ∆ = det( ∂fi∂xj

)i,j=1,...,n invertible in S. Just take some lifts fi and
set S = R[x1, . . . , xn, xn+1]/(f1, . . . , fn, xn+1∆ − 1) where ∆ = det( ∂fi∂xj

)i,j=1,...,n as
in Example 137.8. This proves the lemma. �

Lemma 143.11. Consider a commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0

with exact rows where B′ → B and A′ → A are surjective ring maps whose kernels are
ideals of square zero. If A→ B is étale, and J = I ⊗A B, then A′ → B′ is étale.

Proof. By Lemma 143.10 there exists an étale ring map A′ → C such that C/IC =
B. Then A′ → C is formally smooth (by Proposition 138.13) hence we get an A′-algebra
map ϕ : C → B′. Since A′ → C is flat we have I ⊗A B = I ⊗A C/IC = IC. Hence
the assumption that J = I ⊗A B implies that ϕ induces an isomorphism IC → J and an
isomorphism C/IC → B′/IB′, whence ϕ is an isomorphism. �

Example 143.12. Let n,m ≥ 1 be integers. Consider the ring map

R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]
a1 7−→ b1 + c1

a2 7−→ b2 + b1c1 + c2

. . . . . . . . .

an+m 7−→ bncm

of Example 136.7. Write symbolically

S = R[b1, . . . , cm]/({ak(bi, cj)− ak}k=1,...,n+m)
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where for example a1(bi, cj) = b1 + c1. The matrix of partial derivatives is

1 c1 . . . cm 0 . . . . . . 0
0 1 c1 . . . cm 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . 0 1 c1 c2 . . . cm
1 b1 . . . bn−1 bn 0 . . . 0
0 1 b1 . . . bn−1 bn . . . 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 . . . . . . 0 1 b1 . . . bn


The determinant ∆ of this matrix is better known as the resultant of the polynomials
g = xn + b1x

n−1 + . . . + bn and h = xm + c1x
m−1 + . . . + cm, and the matrix above

is known as the Sylvester matrix associated to g, h. In a formula ∆ = Resx(g, h). The
Sylvester matrix is the transpose of the matrix of the linear map

S[x]<m ⊕ S[x]<n −→ S[x]<n+m

a⊕ b 7−→ ag + bh

Let q ⊂ S be any prime. By the above the following are equivalent:
(1) R→ S is étale at q,
(2) ∆ = Resx(g, h) 6∈ q,
(3) the images g, h ∈ κ(q)[x] of the polynomials g, h are relatively prime in κ(q)[x].

The equivalence of (2) and (3) holds because the image of the Sylvester matrix in Mat(n+
m,κ(q)) has a kernel if and only if the polynomials g, h have a factor in common. We
conclude that the ring map

R −→ S[ 1
∆] = S[ 1

Resx(g, h) ]

is étale.

Lemma 143.13. LetR be a ring. Let f ∈ R[x] be a monic polynomial. Let p be a prime
of R. Let f mod p = gh be a factorization of the image of f in κ(p)[x]. If gcd(g, h) = 1,
then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p, and
(3) a factorization f = gh in R′[x]

such that
(1) κ(p) = κ(p′),
(2) g = g mod p′, h = h mod p′, and
(3) the polynomials g, h generate the unit ideal in R′[x].

Proof. Suppose g = b0x
n+ b1x

n−1 + . . .+ bn, and h = c0x
m+ c1x

m−1 + . . .+ cm
with b0, c0 ∈ κ(p) nonzero. After localizing R at some element of R not contained in
p we may assume b0 is the image of an invertible element b0 ∈ R. Replacing g by g/b0
and h by b0h we reduce to the case where g, h are monic (verification omitted). Say g =
xn+b1x

n−1+. . .+bn, and h = xm+c1x
m−1+. . .+cm. Write f = xn+m+a1x

n+m−1+
. . .+ an+m. Consider the fibre product

R′ = R⊗Z[a1,...,an+m] Z[b1, . . . , bn, c1, . . . , cm]
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where the map Z[ak] → Z[bi, cj ] is as in Examples 136.7 and 143.12. By construction
there is an R-algebra map

R′ = R⊗Z[a1,...,an+m] Z[b1, . . . , bn, c1, . . . , cm] −→ κ(p)

which maps bi to bi and cj to cj . Denote p′ ⊂ R′ the kernel of this map. Since by assump-
tion the polynomials g, h are relatively prime we see that the element ∆ = Resx(g, h) ∈
Z[bi, cj ] (see Example 143.12) does not map to zero in κ(p) under the displayed map. We
conclude that R→ R′ is étale at p′. In fact a solution to the problem posed in the lemma
is the ring map R → R′[1/∆] and the prime p′R′[1/∆]. Because Resx(f, g) is invertible
in this ring the Sylvester matrix is invertible over R′[1/∆] and hence 1 = ag + bh for
some a, b ∈ R′[1/∆][x] see Example 143.12. �

144. Local structure of étale ring maps

Lemma 143.2 tells us that it does not really make sense to define a standard étale morphism
to be a standard smooth morphism of relative dimension 0. As a model for an étale mor-
phism we take the example given by a finite separable extension k′/k of fields. Namely,
we can always find an element α ∈ k′ such that k′ = k(α) and such that the minimal
polynomial f(x) ∈ k[x] of α has derivative f ′ which is relatively prime to f .

Definition 144.1. Let R be a ring. Let g, f ∈ R[x]. Assume that f is monic and
the derivative f ′ is invertible in the localization R[x]g/(f). In this case the ring map
R→ R[x]g/(f) is said to be standard étale.

In Proposition 144.4 we show that every étale ring map is locally standard étale.

Lemma 144.2. Let R→ R[x]g/(f) be standard étale.
(1) The ring map R→ R[x]g/(f) is étale.
(2) For any ring map R → R′ the base change R′ → R′[x]g/(f) of the standard

étale ring map R→ R[x]g/(f) is standard étale.
(3) Any principal localization of R[x]g/(f) is standard étale over R.
(4) A composition of standard étale maps is not standard étale in general.

Proof. Omitted. Here is an example for (4). The ring map F2 → F22 is standard
étale. The ring map F22 → F22 × F22 × F22 × F22 is standard étale. But the ring map
F2 → F22 × F22 × F22 × F22 is not standard étale. �

Standard étale morphisms are a convenient way to produce étale maps. Here is an example.

Lemma 144.3. LetR be a ring. Let p be a prime ofR. Let L/κ(p) be a finite separable
field extension. There exists an étale ring map R → R′ together with a prime p′ lying
over p such that the field extension κ(p′)/κ(p) is isomorphic to κ(p) ⊂ L.

Proof. By the theorem of the primitive element we may write L = κ(p)[α]. Let
f ∈ κ(p)[x] denote the minimal polynomial for α (in particular this is monic). After
replacing α by cα for some c ∈ R, c 6∈ p we may assume all the coefficients of f are in the
image ofR→ κ(p) (verification omitted). Thus we can find a monic polynomial f ∈ R[x]
which maps to f inκ(p)[x]. Sinceκ(p) ⊂ L is separable, we see that gcd(f, f ′) = 1. Hence
there is an element γ ∈ L such that f ′(α)γ = 1. Thus we get a R-algebra map

R[x, 1/f ′]/(f) −→ L

x 7−→ α

1/f ′ 7−→ γ
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The left hand side is a standard étale algebra R′ over R and the kernel of the ring map
gives the desired prime. �

Proposition 144.4. Let R → S be a ring map. Let q ⊂ S be a prime. If R → S is
étale at q, then there exists a g ∈ S , g 6∈ q such that R→ Sg is standard étale.

Proof. The following proof is a little roundabout and there may be ways to shorten
it.

Step 1. By Definition 143.1 there exists a g ∈ S , g 6∈ q such that R → Sg is étale. Thus
we may assume that S is étale over R.

Step 2. By Lemma 143.3 there exists an étale ring map R0 → S0 with R0 of finite type
over Z, and a ring map R0 → R such that R = R ⊗R0 S0. Denote q0 the prime of S0
corresponding to q. If we show the result for (R0 → S0, q0) then the result follows for
(R→ S, q) by base change. Hence we may assume that R is Noetherian.

Step 3. Note that R → S is quasi-finite by Lemma 143.6. By Lemma 123.14 there exists a
finite ring map R → S′, an R-algebra map S′ → S , an element g′ ∈ S′ such that g′ 6∈ q
such that S′ → S induces an isomorphism S′

g′
∼= Sg′ . (Note that of course S′ is not étale

over R in general.) Thus we may assume that (a) R is Noetherian, (b) R→ S is finite and
(c) R→ S is étale at q (but no longer necessarily étale at all primes).

Step 4. Let p ⊂ R be the prime corresponding to q. Consider the fibre ring S ⊗R κ(p).
This is a finite algebra over κ(p). Hence it is Artinian (see Lemma 53.2) and so a finite
product of local rings

S ⊗R κ(p) =
∏n

i=1
Ai

see Proposition 60.7. One of the factors, say A1, is the local ring Sq/pSq which is iso-
morphic to κ(q), see Lemma 143.5. The other factors correspond to the other primes, say
q2, . . . , qn of S lying over p.

Step 5. We may choose a nonzero element α ∈ κ(q) which generates the finite separable
field extension κ(q)/κ(p) (so even if the field extension is trivial we do not allow α = 0).
Note that for any λ ∈ κ(p)∗ the element λα also generates κ(q) over κ(p). Consider the
element

t = (α, 0, . . . , 0) ∈
∏n

i=1
Ai = S ⊗R κ(p).

After possibly replacing α by λα as above we may assume that t is the image of t ∈ S.
Let I ⊂ R[x] be the kernel of the R-algebra map R[x] → S which maps x to t. Set
S′ = R[x]/I , so S′ ⊂ S. Here is a diagram

R[x] // S′ // S

R

OO == 66

By construction the primes qj , j ≥ 2 of S all lie over the prime (p, x) of R[x], whereas
the prime q lies over a different prime of R[x] because α 6= 0.

Step 6. Denote q′ ⊂ S′ the prime of S′ corresponding to q. By the above q is the only
prime of S lying over q′. Thus we see that Sq = Sq′ , see Lemma 41.11 (we have going up
for S′ → S by Lemma 36.22 since S′ → S is finite as R → S is finite). It follows that
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S′
q′ → Sq is finite and injective as the localization of the finite injective ring map S′ → S.

Consider the maps of local rings
Rp → S′

q′ → Sq

The second map is finite and injective. We have Sq/pSq = κ(q), see Lemma 143.5. Hence
a fortiori Sq/q

′Sq = κ(q). Since
κ(p) ⊂ κ(q′) ⊂ κ(q)

and since α is in the image of κ(q′) in κ(q) we conclude that κ(q′) = κ(q). Hence by
Nakayama’s Lemma 20.1 applied to the S′

q′ -module map S′
q′ → Sq, the map S′

q′ → Sq is
surjective. In other words, S′

q′
∼= Sq.

Step 7. By Lemma 126.7 there exist g ∈ S , g 6∈ q and g′ ∈ S′, g′ 6∈ q′ such that S′
g′
∼= Sg .

As R is Noetherian the ring S′ is finite over R because it is an R-submodule of the finite
R-module S. Hence after replacing S by S′ we may assume that (a) R is Noetherian, (b)
S finite over R, (c) S is étale over R at q, and (d) S = R[x]/I .

Step 8. Consider the ring S ⊗R κ(p) = κ(p)[x]/I where I = I · κ(p)[x] is the ideal
generated by I in κ(p)[x]. As κ(p)[x] is a PID we know that I = (h) for some monic
h ∈ κ(p)[x]. After replacing h by λ · h for some λ ∈ κ(p) we may assume that h is the
image of some h ∈ I ⊂ R[x]. (The problem is that we do not know if we may choose h
monic.) Also, as in Step 4 we know that S ⊗R κ(p) = A1 × . . . × An with A1 = κ(q) a
finite separable extension of κ(p) and A2, . . . , An local. This implies that

h = h1h
e2
2 . . . h

en
n

for certain pairwise coprime irreducible monic polynomials hi ∈ κ(p)[x] and certain
e2, . . . , en ≥ 1. Here the numbering is chosen so that Ai = κ(p)[x]/(heii ) as κ(p)[x]-
algebras. Note that h1 is the minimal polynomial of α ∈ κ(q) and hence is a separable
polynomial (its derivative is prime to itself).
Step 9. Let m ∈ I be a monic element; such an element exists because the ring extension
R→ R[x]/I is finite hence integral. Denote m the image in κ(p)[x]. We may factor

m = kh
d1
1 h

d2
2 . . . h

dn
n

for some d1 ≥ 1, dj ≥ ej , j = 2, . . . , n and k ∈ κ(p)[x] prime to all the hi. Set f = ml+h
where l deg(m) > deg(h), and l ≥ 2. Then f is monic as a polynomial over R. Also, the
image f of f in κ(p)[x] factors as

f = h1h
e2
2 . . . h

en
n +klhld1

1 h
ld2
2 . . . h

ldn
n = h1(he2

2 . . . h
en
n +klhld1−1

1 h
ld2
2 . . . h

ldn
n ) = h1w

with w a polynomial relatively prime to h1. Set g = f ′ (the derivative with respect to x).
Step 10. The ring mapR[x]→ S = R[x]/I has the properties: (1) it maps f to zero, and (2)
it maps g to an element ofS\q. The first assertion is clear since f is an element of I . For the
second assertion we just have to show that g does not map to zero in κ(q) = κ(p)[x]/(h1).
The image of g in κ(p)[x] is the derivative of f . Thus (2) is clear because

g = df
dx

= w
dh1

dx
+ h1

dw
dx
,

w is prime to h1 and h1 is separable.
Step 11. We conclude that ϕ : R[x]/(f) → S is a surjective ring map, R[x]g/(f) is étale
over R (because it is standard étale, see Lemma 144.2) and ϕ(g) 6∈ q. Pick an element
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g′ ∈ R[x]/(f) such that also ϕ(g′) 6∈ q and Sϕ(g′) is étale over R (which exists since S is
étale over R at q). Then the ring map R[x]gg′/(f) → Sϕ(gg′) is a surjective map of étale
algebras over R. Hence it is étale by Lemma 143.8. Hence it is a localization by Lemma
143.9. Thus a localization of S at an element not in q is isomorphic to a localization of a
standard étale algebra over R which is what we wanted to show. �

The following two lemmas say that the étale topology is coarser than the topology gen-
erated by Zariski coverings and finite flat morphisms. They should be skipped on a first
reading.

Lemma 144.5. Let R → S be a standard étale morphism. There exists a ring map
R→ S′ with the following properties

(1) R→ S′ is finite, finitely presented, and flat (in other words S′ is finite projective
as an R-module),

(2) Spec(S′)→ Spec(R) is surjective,
(3) for every prime q ⊂ S , lying over p ⊂ R and every prime q′ ⊂ S′ lying over p

there exists a g′ ∈ S′, g′ 6∈ q′ such that the ring map R→ S′
g′ factors through a

map ϕ : S → S′
g′ with ϕ−1(q′S′

g′) = q.

Proof. Let S = R[x]g/(f) be a presentation of S as in Definition 144.1. Write
f = xn + a1x

n−1 + . . .+ an with ai ∈ R. By Lemma 136.14 there exists a finite locally
free and faithfully flat ring map R → S′ such that f =

∏
(x − αi) for certain αi ∈ S′.

Hence R → S′ satisfies conditions (1), (2). Let q ⊂ R[x]/(f) be a prime ideal with g 6∈ q
(i.e., it corresponds to a prime of S). Let p = R ∩ q and let q′ ⊂ S′ be a prime lying over
p. Note that there are n maps of R-algebras

ϕi : R[x]/(f) −→ S′

x 7−→ αi

To finish the proof we have to show that for some iwe have (a) the image ofϕi(g) in κ(q′)
is not zero, and (b) ϕ−1

i (q′) = q. Because then we can just take g′ = ϕi(g), and ϕ = ϕi
for that i.
Let f denote the image of f in κ(p)[x]. Note that as a point of Spec(κ(p)[x]/(f)) the
prime q corresponds to an irreducible factor f1 of f . Moreover, g 6∈ q means that f1 does
not divide the image g of g in κ(p)[x]. Denote α1, . . . , αn the images of α1, . . . , αn in
κ(q′). Note that the polynomial f splits completely in κ(q′)[x], namely

f =
∏

i
(x− αi)

Moreover ϕi(g) reduces to g(αi). It follows we may pick i such that f1(αi) = 0 and
g(αi) 6= 0. For this i properties (a) and (b) hold. Some details omitted. �

Lemma 144.6. Let R→ S be a ring map. Assume that
(1) R→ S is étale, and
(2) Spec(S)→ Spec(R) is surjective.

Then there exists a ring map R→ S′ such that
(1) R→ S′ is finite, finitely presented, and flat (in other words it is finite projective

as an R-module),
(2) Spec(S′)→ Spec(R) is surjective,
(3) for every prime q′ ⊂ S′ there exists a g′ ∈ S′, g′ 6∈ q′ such that the ring map

R→ S′
g′ factors as R→ S → S′

g′ .
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Proof. By Proposition 144.4 and the quasi-compactness of Spec(S) (see Lemma 17.10)
we can find g1, . . . , gn ∈ S generating the unit ideal of S such that each R→ Sgi is stan-
dard étale. If we prove the lemma for the ring map R →

∏
i=1,...,n Sgi then the lemma

follows for the ring map R → S. Hence we may assume that S =
∏
i=1,...,n Si is a finite

product of standard étale morphisms.

For each i choose a ring map R → S′
i as in Lemma 144.5 adapted to the standard étale

morphism R→ Si. Set S′ = S′
1 ⊗R . . .⊗R S′

n; we will use the R-algebra maps S′
i → S′

without further mention below. We claim this works. Properties (1) and (2) are imme-
diate. For property (3) suppose that q′ ⊂ S′ is a prime. Denote p its image in Spec(R).
Choose i ∈ {1, . . . , n} such that p is in the image of Spec(Si)→ Spec(R); this is possible
by assumption. Set q′

i ⊂ S′
i the image of q′ in the spectrum of S′

i. By construction of S′
i

there exists a g′
i ∈ S′

i such that R → (S′
i)g′

i
factors as R → Si → (S′

i)g′
i
. Hence also

R→ S′
g′
i

factors as
R→ Si → (S′

i)g′
i
→ S′

g′
i

as desired. �

145. Étale local structure of quasi-finite ring maps

The following lemmas say roughly that after an étale extension a quasi-finite ring map
becomes finite. To help interpret the results recall that the locus where a finite type ring
map is quasi-finite is open (see Lemma 123.13) and that formation of this locus commutes
with arbitrary base change (see Lemma 122.8).

Lemma 145.1. Let R → S′ → S be ring maps. Let p ⊂ R be a prime. Let g ∈ S′ be
an element. Assume

(1) R→ S′ is integral,
(2) R→ S is finite type,
(3) S′

g
∼= Sg , and

(4) g invertible in S′ ⊗R κ(p).
Then there exists a f ∈ R, f 6∈ p such that Rf → Sf is finite.

Proof. By assumption the imageT ofV (g) ⊂ Spec(S′) under the morphism Spec(S′)→
Spec(R) does not contain p. By Section 41 especially, Lemma 41.6 we see T is closed. Pick
f ∈ R, f 6∈ p such that T ∩ D(f) = ∅. Then we see that g becomes invertible in S′

f .
Hence S′

f
∼= Sf . Thus Sf is both of finite type and integral over Rf , hence finite. �

Lemma 145.2. Let R→ S be a ring map. Let q ⊂ S be a prime lying over the prime
p ⊂ R. Assume R→ S finite type and quasi-finite at q. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A×B

with the following properties
(1) κ(p) = κ(p′),
(2) R′ → A is finite,
(3) A has exactly one prime r lying over p′, and
(4) r lies over q.
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Proof. Let S′ ⊂ S be the integral closure of R in S. Let q′ = S′ ∩ q. By Zariski’s
Main Theorem 123.12 there exists a g ∈ S′, g 6∈ q′ such that S′

g
∼= Sg . Consider the fibre

rings F = S ⊗R κ(p) and F ′ = S′ ⊗R κ(p). Denote q′ the prime of F ′ corresponding to
q′. Since F ′ is integral over κ(p) we see that q′ is a closed point of Spec(F ′), see Lemma
36.19. Note that q defines an isolated closed point q of Spec(F ) (see Definition 122.3).
Since S′

g
∼= Sg we have F ′

g
∼= Fg , so q and q′ have isomorphic open neighbourhoods

in Spec(F ) and Spec(F ′). We conclude the set {q′} ⊂ Spec(F ′) is open. Combined
with q′ being closed (shown above) we conclude that q′ defines an isolated closed point of
Spec(F ′) as well.

An additional small remark is that under the map Spec(F )→ Spec(F ′) the point q is the
only point mapping to q′. This follows from the discussion above.

By Lemma 24.3 we may write F ′ = F ′
1 × F ′

2 with Spec(F ′
1) = {q′}. Since F ′ = S′ ⊗R

κ(p), there exists an s′ ∈ S′ which maps to the element (r, 0) ∈ F ′
1 × F ′

2 = F ′ for some
r ∈ R, r 6∈ p. In fact, what we will use about s′ is that it is an element of S′, not contained
in q′, and contained in any other prime lying over p.

Let f(x) ∈ R[x] be a monic polynomial such that f(s′) = 0. Denote f ∈ κ(p)[x] the
image. We can factor it as f = xeh where h(0) 6= 0. After replacing f by xf if necessary,
we may assume e ≥ 1. By Lemma 143.13 we can find an étale ring extension R → R′,
a prime p′ lying over p, and a factorization f = hi in R′[x] such that κ(p) = κ(p′),
h = h mod p′, xe = i mod p′, and we can write ah+ bi = 1 in R′[x] (for suitable a, b).

Consider the elements h(s′), i(s′) ∈ R′ ⊗R S′. By construction we have h(s′)i(s′) =
f(s′) = 0. On the other hand they generate the unit ideal since a(s′)h(s′) + b(s′)i(s′) =
1. Thus we see that R′ ⊗R S′ is the product of the localizations at these elements:

R′ ⊗R S′ = (R′ ⊗R S′)i(s′) × (R′ ⊗R S′)h(s′) = S′
1 × S′

2

Moreover this product decomposition is compatible with the product decomposition we
found for the fibre ring F ′; this comes from our choices of s′, i, h which guarantee that q′

is the only prime of F ′ which does not contain the image of i(s′) in F ′. Here we use that
the fibre ring ofR′⊗R S′ overR′ at p′ is the same as F ′ due to the fact that κ(p) = κ(p′).
It follows that S′

1 has exactly one prime, say r′, lying over p′ and that this prime lies over
q′. Hence the element g ∈ S′ maps to an element of S′

1 not contained in r′.

The base change R′ ⊗R S inherits a similar product decomposition

R′ ⊗R S = (R′ ⊗R S)i(s′) × (R′ ⊗R S)h(s′) = S1 × S2

It follows from the above that S1 has exactly one prime, say r, lying over p′ (consider the
fibre ring as above), and that this prime lies over q.

Now we may apply Lemma 145.1 to the ring maps R′ → S′
1 → S1, the prime p′ and the

element g to see that after replacing R′ by a principal localization we can assume that S1
is finite over R′ as desired. �

Lemma 145.3. Let R → S be a ring map. Let p ⊂ R be a prime. Assume R → S
finite type. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
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with the following properties
(1) we have κ(p) = κ(p′),
(2) each Ai is finite over R′,
(3) each Ai has exactly one prime ri lying over p′, and
(4) R′ → B not quasi-finite at any prime lying over p′.

Proof. Denote F = S ⊗R κ(p) the fibre ring of S/R at the prime p. As F is of
finite type over κ(p) it is Noetherian and hence Spec(F ) has finitely many isolated closed
points. If there are no isolated closed points, i.e., no primes q of S over p such that S/R is
quasi-finite at q, then the lemma holds. If there exists at least one such prime q, then we
may apply Lemma 145.2. This gives a diagram

S // R′ ⊗R S A1 ×B′

R //

OO

R′

OO 88

as in said lemma. Since the residue fields at p and p′ are the same, the fibre rings of S/R
and (A1 × B′)/R′ are the same. Hence, by induction on the number of isolated closed
points of the fibre we may assume that the lemma holds for R′ → B′ and p′. Thus we get
an étale ring map R′ → R′′, a prime p′′ ⊂ R′′ and a decomposition

R′′ ⊗R′ B′ = A2 × . . .×An ×B
We omit the verification that the ring map R → R′′, the prime p′′ and the resulting
decomposition

R′′ ⊗R S = (R′′ ⊗R′ A1)×A2 × . . .×An ×B
is a solution to the problem posed in the lemma. �

Lemma 145.4. Let R → S be a ring map. Let p ⊂ R be a prime. Assume R → S
finite type. Then there exists

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p,
(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
with the following properties

(1) each Ai is finite over R′,
(2) each Ai has exactly one prime ri lying over p′,
(3) the finite field extensions κ(ri)/κ(p′) are purely inseparable, and
(4) R′ → B not quasi-finite at any prime lying over p′.

Proof. The strategy of the proof is to make two étale ring extensions: first we control
the residue fields, then we apply Lemma 145.3.

Denote F = S ⊗R κ(p) the fibre ring of S/R at the prime p. As in the proof of Lemma
145.3 there are finitely may primes, say q1, . . . , qn of S lying over R at which the ring
map R → S is quasi-finite. Let κ(p) ⊂ Li ⊂ κ(qi) be the subfield such that κ(p) ⊂ Li
is separable, and the field extension κ(qi)/Li is purely inseparable. Let L/κ(p) be a finite
Galois extension into which Li embeds for i = 1, . . . , n. By Lemma 144.3 we can find
an étale ring extension R → R′ together with a prime p′ lying over p such that the field
extension κ(p′)/κ(p) is isomorphic to κ(p) ⊂ L. Thus the fibre ring of R′ ⊗R S at p′ is
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isomorphic to F ⊗κ(p) L. The primes lying over qi correspond to primes of κ(qi)⊗κ(p) L
which is a product of fields purely inseparable over L by our choice of L and elementary
field theory. These are also the only primes over p′ at which R′ → R′ ⊗R S is quasi-
finite, by Lemma 122.8. Hence after replacing R by R′, p by p′, and S by R′⊗R S we may
assume that for all primes q lying over p for which S/R is quasi-finite the field extensions
κ(q)/κ(p) are purely inseparable.

Next apply Lemma 145.3. The result is what we want since the field extensions do not
change under this étale ring extension. �

146. Local homomorphisms

Some lemmas which don’t have a natural section to go into. The first lemma says, loosely
speaking, that an étale map of local rings is an isomorphism modulo all powers of a nonunit
principal ideal.

Lemma 146.1. Let (R,mR)→ (S,mS) be a local homomorphism of local rings. As-
sume S is the localization of an étale ring extension of R and that κ(mR)→ κ(mS) is an
isomorphism. Then there exists an t ∈ mR such that R/tnR→ S/tnS is an isomorphsm
for all n ≥ 1.

Proof. Write S = Tq for some étale R-algebra T and prime ideal q ⊂ T lying over
mR. By Proposition 144.4 we may assumeR→ T is standard étale. WriteT = R[x]g/(f)
as in Definition 144.1. By our assumption on residue fields, we may choose a ∈ R such
that x and a have the same image in κ(q) = κ(mS) = κ(mR). Then after replacing x by
x− a we may assume that q is generated by x and mR in T . In particular t = f(0) ∈ mR.
We will show that t = f(0) works.

Write f = xd +
∑
i=1,...,d−1 aix

i + t. Since R → T is standard étale we find that a1 is
a unit in R: the derivative of f is invertible in T in particular is not contained in q. Let
h = a1 + a2x+ . . .+ ad−1x

d−2 + xd−1 ∈ R[x] so that f = t+ xh in R[x]. We see that
h 6∈ q and hence we may replace T by R[x]hg/(f). After this replacement we see that

T/tT = (R/tR)[x]hg/(f) = (R/tR)[x]hg/(xh) = (R/tR)[x]hg/(x)
is a quotient of R/tR. By Lemma 126.9 we conclude that R/tnR → T/tnT is surjective
for all n ≥ 1. On the other hand, we know that the flat local ring map R/tnR→ S/tnS
factors through R/tnR → T/tnT for all n, hence these maps are also injective (a flat
local homomorphism of local rings is faithfully flat and hence injective, see Lemmas 39.17
and 82.11). As S is the localization of T we see that S/tnS is the localization of T/tnT =
R/tnR at a prime lying over the maximal ideal, but this ring is already local and the proof
is complete. �

Lemma 146.2. Let (R,mR)→ (S,mS) be a local homomorphism of local rings. As-
sumeS is the localization of an étale ring extension ofR. Then there exists a finite, finitely
presented, faithfully flat ring mapR→ S′ such that for every maximal idealm′ ofS′ there
is a factorization

R→ S → S′
m′ .

of the ring map R→ S′
m′ .

Proof. Write S = Tq for some étale R-algebra T . By Proposition 144.4 we may
assume T is standard étale. Apply Lemma 144.5 to the ring map R → T to get R → S′.
Then in particular for every maximal ideal m′ of S′ we get a factorization ϕ : T → S′

g′
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for some g′ 6∈ m′ such that q = ϕ−1(m′S′
g′). Thus ϕ induces the desired local ring map

S → S′
m′ . �

147. Integral closure and smooth base change

Lemma 147.1. Let R be a ring. Let f ∈ R[x] be a monic polynomial. Let R → B be
a ring map. If h ∈ B[x]/(f) is integral over R, then the element f ′h can be written as
f ′h =

∑
i bix

i with bi ∈ B integral over R.

Proof. Say he + r1h
e−1 + . . . + re = 0 in the ring B[x]/(f) with ri ∈ R. There

exists a finite free ring extension B ⊂ B′ such that f = (x − α1) . . . (x − αd) for some
αi ∈ B′, see Lemma 136.14. Note that each αi is integral over R. We may represent
h = h0 + h1x+ . . .+ hd−1x

d−1 with hi ∈ B. Then it is a universal fact that

f ′h =
∑

i=1,...,d
h(αi)(x− α1) . . . ̂(x− αi) . . . (x− αd)

as elements of B′[x]/(f). You prove this by evaluating both sides at the points αi over
the ring Buniv = Z[αi, hj ] (some details omitted). By our assumption that h satisfies
he + r1h

e−1 + . . .+ re = 0 in the ring B[x]/(f) we see that

h(αi)e + r1h(αi)e−1 + . . .+ re = 0
in B′. Hence h(αi) is integral over R. Using the formula above we see that f ′h ≡∑
j=0,...,d−1 b

′
jx
j in B′[x]/(f) with b′

j ∈ B′ integral over R. However, since f ′h ∈
B[x]/(f) and since 1, x, . . . , xd−1 is a B′-basis for B′[x]/(f) we see that b′

j ∈ B as de-
sired. �

Lemma 147.2. Let R → S be an étale ring map. Let R → B be any ring map. Let
A ⊂ B be the integral closure ofR inB. LetA′ ⊂ S⊗R B be the integral closure of S in
S ⊗R B. Then the canonical map S ⊗R A→ A′ is an isomorphism.

Proof. The map S⊗RA→ A′ is injective becauseA ⊂ B andR→ S is flat. We are
going to use repeatedly that taking integral closure commutes with localization, see Lemma
36.11. Hence we may localize on S , by Lemma 23.2 (the criterion for checking whether
an S-module map is an isomorphism). Thus we may assume that S = R[x]g/(f) =
(R[x]/(f))g is standard étale over R, see Proposition 144.4. Applying localization one
more time we see thatA′ is (A′′)g whereA′′ is the integral closure ofR[x]/(f) inB[x]/(f).
Suppose that a ∈ A′′. It suffices to show that a is in S ⊗R A. By Lemma 147.1 we see that
f ′a =

∑
aix

i with ai ∈ A. Since f ′ is invertible in S (by definition of a standard étale
ring map) we conclude that a ∈ S ⊗R A as desired. �

Example 147.3. Let p be a prime number. The ring extension

R = Z[1/p] ⊂ R′ = Z[1/p][x]/(xp−1 + . . .+ x+ 1)
has the following property: For d < p there exist elements α0, . . . , αd−1 ∈ R′ such that∏

0≤i<j<d
(αi − αj)

is a unit in R′. Namely, take αi equal to the class of xi in R′ for i = 0, . . . , p − 1. Then
we have

T p − 1 =
∏

i=0,...,p−1
(T − αi)

in R′[T ]. Namely, the ring Q[x]/(xp−1 + . . . + x + 1) is a field because the cyclotomic
polynomial xp−1 + . . .+x+ 1 is irreducible over Q and the αi are pairwise distinct roots
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of T p− 1, whence the equality. Taking derivatives on both sides and substituting T = αi
we obtain

pαp−1
i = (αi − α1) . . . ̂(αi − αi) . . . (αi − α1)

and we see this is invertible in R′.

Lemma 147.4. Let R → S be a smooth ring map. Let R → B be any ring map. Let
A ⊂ B be the integral closure ofR inB. LetA′ ⊂ S⊗R B be the integral closure of S in
S ⊗R B. Then the canonical map S ⊗R A→ A′ is an isomorphism.

Proof. Arguing as in the proof of Lemma 147.2 we may localize on S. Hence we may
assume that R → S is a standard smooth ring map, see Lemma 137.10. By definition of
a standard smooth ring map we see that S is étale over a polynomial ring R[x1, . . . , xn].
Since we have seen the result in the case of an étale ring extension (Lemma 147.2) this
reduces us to the case where S = R[x]. Thus we have to show

f =
∑

bix
i integral over R[x]⇔ each bi integral over R.

The implication from right to left holds because the set of elements in B[x] integral over
R[x] is a ring (Lemma 36.7) and contains x.
Suppose that f ∈ B[x] is integral over R[x], and assume that f =

∑
i<d bix

i has degree
< d. Since integral closure and localization commute, it suffices to show there exist distinct
primes p, q such that each bi is integral both over R[1/p] and over R[1/q]. Hence, we can
find a finite free ring extensionR ⊂ R′ such thatR′ containsα1, . . . , αd with the property
that

∏
i<j(αi − αj) is a unit in R′, see Example 147.3. In this case we have the universal

equality

f =
∑
i

f(αi)
(x− α1) . . . ̂(x− αi) . . . (x− αd)

(αi − α1) . . . ̂(αi − αi) . . . (αi − αd)
.

OK, and the elements f(αi) are integral over R′ since (R′ ⊗R B)[x] → R′ ⊗R B, h 7→
h(αi) is a ring map. Hence we see that the coefficients of f in (R′ ⊗R B)[x] are integral
overR′. SinceR′ is finite overR (hence integral overR) we see that they are integral over
R also, as desired. �

Lemma 147.5. Let R → S and R → B be ring maps. Let A ⊂ B be the integral
closure of R in B. Let A′ ⊂ S ⊗R B be the integral closure of S in S ⊗R B. If S
is a filtered colimit of smooth R-algebras, then the canonical map S ⊗R A → A′ is an
isomorphism.

Proof. This follows from the straightforward fact that taking tensor products and
taking integral closures commutes with filtered colimits and Lemma 147.4. �

148. Formally unramified maps

It turns out to be logically more efficient to define the notion of a formally unramified
map before introducing the notion of a formally étale one.

Definition 148.1. Let R→ S be a ring map. We say S is formally unramified over
R if for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO
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where I ⊂ A is an ideal of square zero, there exists at most one dotted arrow making the
diagram commute.

Lemma 148.2. Let R→ S be a ring map. The following are equivalent:
(1) R→ S is formally unramified,
(2) the module of differentials ΩS/R is zero.

Proof. Let J = Ker(S ⊗R S → S) be the kernel of the multiplication map. Let
Auniv = S⊗R S/J2. Recall that Iuniv = J/J2 is isomorphic to ΩS/R, see Lemma 131.13.
Moreover, the two R-algebra maps σ1, σ2 : S → Auniv , σ1(s) = s ⊗ 1 mod J2, and
σ2(s) = 1⊗ s mod J2 differ by the universal derivation d : S → ΩS/R = Iuniv .

Assume R → S formally unramified. Then we see that σ1 = σ2. Hence d(s) = 0 for all
s ∈ S. Hence ΩS/R = 0.

Assume that ΩS/R = 0. Let A, I,R → A,S → A/I be a solid diagram as in Definition
148.1. Let τ1, τ2 : S → A be two dotted arrows making the diagram commute. Consider
the R-algebra map Auniv → A defined by the rule s1 ⊗ s2 7→ τ1(s1)τ2(s2). We omit the
verification that this is well defined. Since Auniv ∼= S as Iuniv = ΩS/R = 0 we conclude
that τ1 = τ2. �

Lemma 148.3. Let R→ S be a ring map. The following are equivalent:
(1) R→ S is formally unramified,
(2) R→ Sq is formally unramified for all primes q of S , and
(3) Rp → Sq is formally unramified for all primes q of S with p = R ∩ q.

Proof. We have seen in Lemma 148.2 that (1) is equivalent to ΩS/R = 0. Similarly,
by Lemma 131.8 we see that (2) and (3) are equivalent to (ΩS/R)q = 0 for all q. Hence the
equivalence follows from Lemma 23.1. �

Lemma 148.4. Let A→ B be a formally unramified ring map.
(1) For S ⊂ A a multiplicative subset, S−1A→ S−1B is formally unramified.
(2) For S ⊂ B a multiplicative subset, A→ S−1B is formally unramified.

Proof. Follows from Lemma 148.3. (You can also deduce it from Lemma 148.2 com-
bined with Lemma 131.8.) �

Lemma 148.5. LetR be a ring. Let I be a directed set. Let (Si, ϕii′) be a system ofR-
algebras over I . If each R→ Si is formally unramified, then S = colimi∈I Si is formally
unramified over R

Proof. Consider a diagram as in Definition 148.1. By assumption there exists at most
oneR-algebra mapSi → A lifting the compositionsSi → S → A/I . Since every element
of S is in the image of one of the maps Si → S we see that there is at most one map S → A
fitting into the diagram. �

149. Conormal modules and universal thickenings

It turns out that one can define the first infinitesimal neighbourhood not just for a closed
immersion of schemes, but already for any formally unramified morphism. This is based
on the following algebraic fact.



870 10. COMMUTATIVE ALGEBRA

Lemma 149.1. Let R → S be a formally unramified ring map. There exists a sur-
jection of R-algebras S′ → S whose kernel is an ideal of square zero with the following
universal property: Given any commutative diagram

S
a
// A/I

R
b //

OO

A

OO

where I ⊂ A is an ideal of square zero, there is a unique R-algebra map a′ : S′ → A such
that S′ → A→ A/I is equal to S′ → S → A/I .

Proof. Choose a set of generators zi ∈ S , i ∈ I for S as an R-algebra. Let P =
R[{xi}i∈I ] denote the polynomial ring on generators xi, i ∈ I . Consider the R-algebra
map P → S which maps xi to zi. Let J = Ker(P → S). Consider the map

d : J/J2 −→ ΩP/R ⊗P S

see Lemma 131.9. This is surjective since ΩS/R = 0 by assumption, see Lemma 148.2. Note
that ΩP/R is free on dxi, and hence the module ΩP/R ⊗P S is free over S. Thus we may
choose a splitting of the surjection above and write

J/J2 = K ⊕ ΩP/R ⊗P S

Let J2 ⊂ J ′ ⊂ J be the ideal of P such that J ′/J2 is the second summand in the decom-
position above. Set S′ = P/J ′. We obtain a short exact sequence

0→ J/J ′ → S′ → S → 0

and we see that J/J ′ ∼= K is a square zero ideal in S′. Hence

S
1
// S

R //

OO

S′

OO

is a diagram as above. In fact we claim that this is an initial object in the category of
diagrams. Namely, let (I ⊂ A, a, b) be an arbitrary diagram. We may choose anR-algebra
map β : P → A such that

S
1
// S

a
// A/I

R //

b

33

OO

P

OO

β // A

OO

is commutative. Now it may not be the case that β(J ′) = 0, in other words it may not
be true that β factors through S′ = P/J ′. But what is clear is that β(J ′) ⊂ I and
since β(J) ⊂ I and I2 = 0 we have β(J2) = 0. Thus the “obstruction” to finding a
morphism from (J/J ′ ⊂ S′, 1, R → S′) to (I ⊂ A, a, b) is the corresponding S-linear
map β : J ′/J2 → I . The choice in picking β lies in the choice of β(xi). A different
choice of β, say β′, is gotten by taking β′(xi) = β(xi) + δi with δi ∈ I . In this case, for
g ∈ J ′, we obtain

β′(g) = β(g) +
∑

i
δi
∂g

∂xi
.
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Since the map d|J′/J2 : J ′/J2 → ΩP/R ⊗P S given by g 7→ ∂g
∂xi

dxi is an isomorphism
by construction, we see that there is a unique choice of δi ∈ I such that β′(g) = 0 for all
g ∈ J ′. (Namely, δi is −β(g) where g ∈ J ′/J2 is the unique element with ∂g

∂xj
= 1 if

i = j and 0 else.) The uniqueness of the solution implies the uniqueness required in the
lemma. �

In the situation of Lemma 149.1 the R-algebra map S′ → S is unique up to unique iso-
morphism.

Definition 149.2. Let R→ S be a formally unramified ring map.
(1) The universal first order thickening of S over R is the surjection of R-algebras

S′ → S of Lemma 149.1.
(2) The conormal module of R → S is the kernel I of the universal first order

thickening S′ → S , seen as an S-module.
We often denote the conormal module CS/R in this situation.

Lemma 149.3. Let I ⊂ R be an ideal of a ring. The universal first order thickening
of R/I over R is the surjection R/I2 → R/I . The conormal module of R/I over R is
C(R/I)/R = I/I2.

Proof. Omitted. �

Lemma 149.4. Let A → B be a formally unramified ring map. Let ϕ : B′ → B be
the universal first order thickening of B over A.

(1) LetS ⊂ A be a multiplicative subset. ThenS−1B′ → S−1B is the universal first
order thickening of S−1B over S−1A. In particular S−1CB/A = CS−1B/S−1A.

(2) Let S ⊂ B be a multiplicative subset. Then S′ = ϕ−1(S) is a multiplicative
subset in B′ and (S′)−1B′ → S−1B is the universal first order thickening of
S−1B over A. In particular S−1CB/A = CS−1B/A.

Note that the lemma makes sense by Lemma 148.4.

Proof. With notation and assumptions as in (1). Let (S−1B)′ → S−1B be the uni-
versal first order thickening of S−1B over S−1A. Note that S−1B′ → S−1B is a surjec-
tion of S−1A-algebras whose kernel has square zero. Hence by definition we obtain a map
(S−1B)′ → S−1B′ compatible with the maps towardsS−1B. Consider any commutative
diagram

B // S−1B // D/I

A //

OO

S−1A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order thickening of
B over A we obtain an A-algebra map B′ → D. But it is clear that the image of S in D is
mapped to invertible elements ofD, and hence we obtain a compatible map S−1B′ → D.
Applying this to D = (S−1B)′ we see that we get a map S−1B′ → (S−1B)′. We omit
the verification that this map is inverse to the map described above.

With notation and assumptions as in (2). Let (S−1B)′ → S−1B be the universal first
order thickening of S−1B over A. Note that (S′)−1B′ → S−1B is a surjection of A-
algebras whose kernel has square zero. Hence by definition we obtain a map (S−1B)′ →
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(S′)−1B′ compatible with the maps towards S−1B. Consider any commutative diagram

B // S−1B // D/I

A //

OO

A //

OO

D

OO

where I ⊂ D is an ideal of square zero. Since B′ is the universal first order thickening of
B overAwe obtain anA-algebra mapB′ → D. But it is clear that the image of S′ inD is
mapped to invertible elements of D, and hence we obtain a compatible map (S′)−1B′ →
D. Applying this to D = (S−1B)′ we see that we get a map (S′)−1B′ → (S−1B)′. We
omit the verification that this map is inverse to the map described above. �

Lemma 149.5. LetR→ A→ B be ring maps. AssumeA→ B formally unramified.
Let B′ → B be the universal first order thickening of B over A. Then B′ is formally
unramified overA, and the canonical map ΩA/R⊗AB → ΩB′/R⊗B′B is an isomorphism.

Proof. We are going to use the construction of B′ from the proof of Lemma 149.1
although in principle it should be possible to deduce these results formally from the def-
inition. Namely, we choose a presentation B = P/J , where P = A[xi] is a polynomial
ring over A. Next, we choose elements fi ∈ J such that dfi = dxi ⊗ 1 in ΩP/A ⊗P B.
Having made these choices we have B′ = P/J ′ with J ′ = (fi) + J2, see proof of Lemma
149.1.

Consider the canonical exact sequence

J ′/(J ′)2 → ΩP/A ⊗P B′ → ΩB′/A → 0

see Lemma 131.9. By construction the classes of the fi ∈ J ′ map to elements of the module
ΩP/A⊗P B′ which generate it modulo J ′/J2 by construction. Since J ′/J2 is a nilpotent
ideal, we see that these elements generate the module altogether (by Nakayama’s Lemma
20.1). This proves that ΩB′/A = 0 and hence that B′ is formally unramified over A, see
Lemma 148.2.

Since P is a polynomial ring over A we have ΩP/R = ΩA/R ⊗A P ⊕
⊕
Pdxi. We are

going to use this decomposition. Consider the following exact sequence

J ′/(J ′)2 → ΩP/R ⊗P B′ → ΩB′/R → 0

see Lemma 131.9. We may tensor this with B and obtain the exact sequence

J ′/(J ′)2 ⊗B′ B → ΩP/R ⊗P B → ΩB′/R ⊗B′ B → 0

If we remember that J ′ = (fi) + J2 then we see that the first arrow annihilates the
submodule J2/(J ′)2. In terms of the direct sum decomposition ΩP/R⊗P B = ΩA/R⊗A
B ⊕

⊕
Bdxi given we see that the submodule (fi)/(J ′)2 ⊗B′ B maps isomorphically

onto the summand
⊕
Bdxi. Hence what is left of this exact sequence is an isomorphism

ΩA/R ⊗A B → ΩB′/R ⊗B′ B as desired. �
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150. Formally étale maps

Definition 150.1. Let R → S be a ring map. We say S is formally étale over R if
for every commutative solid diagram

S //

!!

A/I

R //

OO

A

OO

where I ⊂ A is an ideal of square zero, there exists a unique dotted arrow making the
diagram commute.

Clearly a ring map is formally étale if and only if it is both formally smooth and formally
unramified.

Lemma 150.2. Let R → S be a ring map of finite presentation. The following are
equivalent:

(1) R→ S is formally étale,
(2) R→ S is étale.

Proof. Assume thatR→ S is formally étale. ThenR→ S is smooth by Proposition
138.13. By Lemma 148.2 we have ΩS/R = 0. Hence R→ S is étale by definition.

Assume that R→ S is étale. Then R→ S is formally smooth by Proposition 138.13. By
Lemma 148.2 it is formally unramified. Hence R→ S is formally étale. �

Lemma 150.3. Let R be a ring. Let I be a directed set. Let (Si, ϕii′) be a system of
R-algebras over I . If each R → Si is formally étale, then S = colimi∈I Si is formally
étale over R

Proof. Consider a diagram as in Definition 150.1. By assumption we get unique
R-algebra maps Si → A lifting the compositions Si → S → A/I . Hence these are
compatible with the transition maps ϕii′ and define a lift S → A. This proves existence.
The uniqueness is clear by restricting to each Si. �

Lemma 150.4. Let R be a ring. Let S ⊂ R be any multiplicative subset. Then the
ring map R→ S−1R is formally étale.

Proof. Let I ⊂ A be an ideal of square zero. What we are saying here is that given
a ring map ϕ : R → A such that ϕ(f) mod I is invertible for all f ∈ S we have also
that ϕ(f) is invertible in A for all f ∈ S. This is true because A∗ is the inverse image of
(A/I)∗ under the canonical map A→ A/I . �

Lemma 150.5. Let R→ S be a ring map. Let J ⊂ S be an ideal such that R→ S/J
is surjective; let I ⊂ R be the kernel. If R → S is formally étale, then

⊕
In/In+1 →⊕

Jn/Jn+1 is an isomorphism of graded rings.

Proof. Using the lifting property inductively we find dotted arrows

S //

$$

S/J = R/I

R //

OO

R/I2

OO
S //

!!

R/I2

R //

OO

R/I3

OO
S //

!!

R/I3

R //

OO

R/I4

OO
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The corresponding mapsS/Jn → R/In are isomorphisms since the compositionsS/Jn →
R/In → S/Jn are (inductively) the identity by the uniqueness in the lifting property of
formally étale ring maps. �

151. Unramified ring maps

The definition of a G-unramified ring map is the one from EGA. The definition of an
unramified ring map is the one from [?].

Definition 151.1. Let R→ S be a ring map.
(1) We say R→ S is unramified if R→ S is of finite type and ΩS/R = 0.
(2) We sayR→ S is G-unramified ifR→ S is of finite presentation and ΩS/R = 0.
(3) Given a prime q of S we say that S is unramified at q if there exists a g ∈ S ,

g 6∈ q such that R→ Sg is unramified.
(4) Given a prime q of S we say that S is G-unramified at q if there exists a g ∈ S ,

g 6∈ q such that R→ Sg is G-unramified.

Of course a G-unramified map is unramified.

Lemma 151.2. Let R→ S be a ring map. The following are equivalent
(1) R→ S is formally unramified and of finite type, and
(2) R→ S is unramified.

Moreover, also the following are equivalent
(1) R→ S is formally unramified and of finite presentation, and
(2) R→ S is G-unramified.

Proof. Follows from Lemma 148.2 and the definitions. �

Lemma 151.3. Properties of unramified and G-unramified ring maps.
(1) The base change of an unramified ring map is unramified. The base change of a

G-unramified ring map is G-unramified.
(2) The composition of unramified ring maps is unramified. The composition of

G-unramified ring maps is G-unramified.
(3) Any principal localization R→ Rf is G-unramified and unramified.
(4) If I ⊂ R is an ideal, thenR→ R/I is unramified. If I ⊂ R is a finitely generated

ideal, then R→ R/I is G-unramified.
(5) An étale ring map is G-unramified and unramified.
(6) If R → S is of finite type (resp. finite presentation), q ⊂ S is a prime and

(ΩS/R)q = 0, then R→ S is unramified (resp. G-unramified) at q.
(7) If R → S is of finite type (resp. finite presentation), q ⊂ S is a prime and

ΩS/R ⊗S κ(q) = 0, then R→ S is unramified (resp. G-unramified) at q.
(8) If R → S is of finite type (resp. finite presentation), q ⊂ S is a prime lying

over p ⊂ R and (ΩS⊗Rκ(p)/κ(p))q = 0, then R → S is unramified (resp. G-
unramified) at q.

(9) If R → S is of finite type (resp. presentation), q ⊂ S is a prime lying over
p ⊂ R and (ΩS⊗Rκ(p)/κ(p)) ⊗S⊗Rκ(p) κ(q) = 0, then R → S is unramified
(resp. G-unramified) at q.

(10) If R → S is a ring map, g1, . . . , gm ∈ S generate the unit ideal and R → Sgj
is unramified (resp. G-unramified) for j = 1, . . . ,m, then R→ S is unramified
(resp. G-unramified).
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(11) IfR→ S is a ring map which is unramified (resp. G-unramified) at every prime
of S , then R→ S is unramified (resp. G-unramified).

(12) If R→ S is G-unramified, then there exists a finite type Z-algebra R0 and a G-
unramified ring mapR0 → S0 and a ring mapR0 → R such thatS = R⊗R0S0.

(13) If R → S is unramified, then there exists a finite type Z-algebra R0 and an
unramified ring mapR0 → S0 and a ring mapR0 → R such that S is a quotient
of R⊗R0 S0.

Proof. We prove each point, in order.

Ad (1). Follows from Lemmas 131.12 and 14.2.

Ad (2). Follows from Lemmas 131.7 and 14.2.

Ad (3). Follows by direct computation of ΩRf/R which we omit.

Ad (4). We have Ω(R/I)/R = 0, see Lemma 131.4, and the ring map R → R/I is of finite
type. If I is a finitely generated ideal then R→ R/I is of finite presentation.

Ad (5). See discussion following Definition 143.1.

Ad (6). In this case ΩS/R is a finite S-module (see Lemma 131.16) and hence there exists
a g ∈ S , g 6∈ q such that (ΩS/R)g = 0. By Lemma 131.8 this means that ΩSg/R = 0 and
hence R→ Sg is unramified as desired.

Ad (7). Use Nakayama’s lemma (Lemma 20.1) to see that the condition is equivalent to the
condition of (6).

Ad (8) and (9). These are equivalent in the same manner that (6) and (7) are equivalent.
Moreover ΩS⊗Rκ(p)/κ(p) = ΩS/R ⊗S (S ⊗R κ(p)) by Lemma 131.12. Hence we see that
(9) is equivalent to (7) since the κ(q) vector spaces in both are canonically isomorphic.

Ad (10). Follows from Lemmas 23.2 and 131.8.

Ad (11). Follows from (6) and (7) and the fact that the spectrum of S is quasi-compact.

Ad (12). Write S = R[x1, . . . , xn]/(g1, . . . , gm). As ΩS/R = 0 we can write

dxi =
∑

hijdgj +
∑

aijkgjdxk

in ΩR[x1,...,xn]/R for some hij , aijk ∈ R[x1, . . . , xn]. Choose a finitely generated Z-
subalgebra R0 ⊂ R containing all the coefficients of the polynomials gi, hij , aijk. Set
S0 = R0[x1, . . . , xn]/(g1, . . . , gm). This works.

Ad (13). Write S = R[x1, . . . , xn]/I . As ΩS/R = 0 we can write

dxi =
∑

hijdgij +
∑

g′
ikdxk

in ΩR[x1,...,xn]/R for some hij ∈ R[x1, . . . , xn] and gij , g′
ik ∈ I . Choose a finitely gener-

ated Z-subalgebra R0 ⊂ R containing all the coefficients of the polynomials gij , hij , g′
ik.

Set S0 = R0[x1, . . . , xn]/(gij , g′
ik). This works. �

Lemma 151.4. Let R → S be a ring map. If R → S is unramified, then there exists
an idempotent e ∈ S⊗RS such that S⊗RS → S is isomorphic to S⊗RS → (S⊗RS)e.

Proof. Let J = Ker(S ⊗R S → S). By assumption J/J2 = 0, see Lemma 131.13.
SinceS is of finite type overRwe see that J is finitely generated, namely by xi⊗1−1⊗xi,
where xi generate S over R. We win by Lemma 21.5. �
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Lemma 151.5. Let R → S be a ring map. Let q ⊂ S be a prime lying over p in R. If
S/R is unramified at q then

(1) we have pSq = qSq is the maximal ideal of the local ring Sq, and
(2) the field extension κ(q)/κ(p) is finite separable.

Proof. We may first replace S by Sg for some g ∈ S , g 6∈ q and assume that R→ S
is unramified. The base change S ⊗R κ(p) is unramified over κ(p) by Lemma 151.3. By
Lemma 140.3 it is smooth hence étale over κ(p). Hence we see that S ⊗R κ(p) = (R \
p)−1S/pS is a product of finite separable field extensions of κ(p) by Lemma 143.4. This
implies the lemma. �

Lemma 151.6. Let R→ S be a finite type ring map. Let q be a prime of S. If R→ S
is unramified at q then R → S is quasi-finite at q. In particular, an unramified ring map
is quasi-finite.

Proof. An unramified ring map is of finite type. Thus it is clear that the second
statement follows from the first. To see the first statement apply the characterization of
Lemma 122.2 part (2) using Lemma 151.5. �

Lemma 151.7. Let R → S be a ring map. Let q be a prime of S lying over a prime p
of R. If

(1) R→ S is of finite type,
(2) pSq is the maximal ideal of the local ring Sq, and
(3) the field extension κ(q)/κ(p) is finite separable,

then R→ S is unramified at q.

Proof. By Lemma 151.3 (8) it suffices to show that ΩS⊗Rκ(p)/κ(p) is zero when local-
ized at q. Hence we may replace S by S ⊗R κ(p) and R by κ(p). In other words, we may
assume that R = k is a field and S is a finite type k-algebra. In this case the hypotheses
imply that Sq

∼= κ(q). Thus (ΩS/k)q = ΩSq/k = Ωκ(q)/k is zero as desired (the first
equality is Lemma 131.8). �

Lemma 151.8. Let R→ S be a ring map. The following are equivalent
(1) R→ S is étale,
(2) R→ S is flat and G-unramified, and
(3) R→ S is flat, unramified, and of finite presentation.

Proof. Parts (2) and (3) are equivalent by definition. The implication (1)⇒ (3) fol-
lows from the fact that étale ring maps are of finite presentation, Lemma 143.3 (flatness
of étale maps), and Lemma 151.3 (étale maps are unramified). Conversely, the character-
ization of étale ring maps in Lemma 143.7 and the structure of unramified ring maps in
Lemma 151.5 shows that (3) implies (1). (This uses that R → S is étale if R → S is étale
at every prime q ⊂ S , see Lemma 143.3.) �

Lemma 151.9. Let k be a field. Let

ϕ : k[x1, . . . , xn]→ A, xi 7−→ ai

be a finite type ring map. Then ϕ is étale if and only if we have the following two con-
ditions: (a) the local rings of A at maximal ideals have dimension n, and (b) the elements
d(a1), . . . , d(an) generate ΩA/k as an A-module.
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Proof. Assume (a) and (b). Condition (b) implies that ΩA/k[x1,...,xn] = 0 and hence
ϕ is unramified. Thus it suffices to prove that ϕ is flat, see Lemma 151.8. Let m ⊂ A
be a maximal ideal. Set X = Spec(A) and denote x ∈ X the closed point correspond-
ing to m. Then dim(Am) is dimxX , see Lemma 114.6. Thus by Lemma 140.3 we see
that if (a) and (b) hold, then Am is a regular local ring for every maximal ideal m. Then
k[x1, . . . , xn]ϕ−1(m) → Am is flat by Lemma 128.1 (and the fact that a regular local ring
is CM, see Lemma 106.3). Thus ϕ is flat by Lemma 39.18.

Assume ϕ is étale. Then ΩA/k[x1,...,xn] = 0 and hence (b) holds. On the other hand,
étale ring maps are flat (Lemma 143.3) and quasi-finite (Lemma 143.6). Hence for every
maximal ideal m ofAwe my apply Lemma 112.7 to k[x1, . . . , xn]ϕ−1(m) → Am to see that
dim(Am) = n and hence (a) holds. �

152. Local structure of unramified ring maps

An unramified morphism is locally (in a suitable sense) the composition of a closed im-
mersion and an étale morphism. The algebraic underpinnings of this fact are discussed in
this section.

Proposition 152.1. Let R → S be a ring map. Let q ⊂ S be a prime. If R → S is
unramified at q, then there exist

(1) a g ∈ S , g 6∈ q,
(2) a standard étale ring map R→ S′, and
(3) a surjective R-algebra map S′ → Sg .

Proof. This proof is the “same” as the proof of Proposition 144.4. The proof is a
little roundabout and there may be ways to shorten it.

Step 1. By Definition 151.1 there exists a g ∈ S , g 6∈ q such that R → Sg is unramified.
Thus we may assume that S is unramified over R.

Step 2. By Lemma 151.3 there exists an unramified ring map R0 → S0 with R0 of finite
type over Z, and a ring mapR0 → R such that S is a quotient ofR⊗R0 S0. Denote q0 the
prime of S0 corresponding to q. If we show the result for (R0 → S0, q0) then the result
follows for (R→ S, q) by base change. Hence we may assume that R is Noetherian.

Step 3. Note that R → S is quasi-finite by Lemma 151.6. By Lemma 123.14 there exists
a finite ring map R → S′, an R-algebra map S′ → S , an element g′ ∈ S′ such that
g′ 6∈ q such that S′ → S induces an isomorphism S′

g′
∼= Sg′ . (Note that S′ may not be

unramified over R.) Thus we may assume that (a) R is Noetherian, (b) R → S is finite
and (c) R→ S is unramified at q (but no longer necessarily unramified at all primes).

Step 4. Let p ⊂ R be the prime corresponding to q. Consider the fibre ring S ⊗R κ(p).
This is a finite algebra over κ(p). Hence it is Artinian (see Lemma 53.2) and so a finite
product of local rings

S ⊗R κ(p) =
∏n

i=1
Ai

see Proposition 60.7. One of the factors, say A1, is the local ring Sq/pSq which is iso-
morphic to κ(q), see Lemma 151.5. The other factors correspond to the other primes, say
q2, . . . , qn of S lying over p.

Step 5. We may choose a nonzero element α ∈ κ(q) which generates the finite separable
field extension κ(q)/κ(p) (so even if the field extension is trivial we do not allow α = 0).
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Note that for any λ ∈ κ(p)∗ the element λα also generates κ(q) over κ(p). Consider the
element

t = (α, 0, . . . , 0) ∈
∏n

i=1
Ai = S ⊗R κ(p).

After possibly replacing α by λα as above we may assume that t is the image of t ∈ S.
Let I ⊂ R[x] be the kernel of the R-algebra map R[x] → S which maps x to t. Set
S′ = R[x]/I , so S′ ⊂ S. Here is a diagram

R[x] // S′ // S

R

OO == 66

By construction the primes qj , j ≥ 2 of S all lie over the prime (p, x) of R[x], whereas
the prime q lies over a different prime of R[x] because α 6= 0.

Step 6. Denote q′ ⊂ S′ the prime of S′ corresponding to q. By the above q is the only
prime of S lying over q′. Thus we see that Sq = Sq′ , see Lemma 41.11 (we have going up
for S′ → S by Lemma 36.22 since S′ → S is finite as R → S is finite). It follows that
S′
q′ → Sq is finite and injective as the localization of the finite injective ring map S′ → S.

Consider the maps of local rings

Rp → S′
q′ → Sq

The second map is finite and injective. We have Sq/pSq = κ(q), see Lemma 151.5. Hence
a fortiori Sq/q

′Sq = κ(q). Since

κ(p) ⊂ κ(q′) ⊂ κ(q)
and since α is in the image of κ(q′) in κ(q) we conclude that κ(q′) = κ(q). Hence by
Nakayama’s Lemma 20.1 applied to the S′

q′ -module map S′
q′ → Sq, the map S′

q′ → Sq is
surjective. In other words, S′

q′
∼= Sq.

Step 7. By Lemma 126.7 there exist g ∈ S , g 6∈ q and g′ ∈ S′, g′ 6∈ q′ such that S′
g′
∼= Sg .

As R is Noetherian the ring S′ is finite over R because it is an R-submodule of the finite
R-module S. Hence after replacing S by S′ we may assume that (a) R is Noetherian, (b)
S finite over R, (c) S is unramified over R at q, and (d) S = R[x]/I .

Step 8. Consider the ring S ⊗R κ(p) = κ(p)[x]/I where I = I · κ(p)[x] is the ideal
generated by I in κ(p)[x]. As κ(p)[x] is a PID we know that I = (h) for some monic
h ∈ κ(p). After replacing h by λ ·h for some λ ∈ κ(p) we may assume that h is the image
of some h ∈ R[x]. (The problem is that we do not know if we may choose hmonic.) Also,
as in Step 4 we know that S ⊗R κ(p) = A1 × . . .×An with A1 = κ(q) a finite separable
extension of κ(p) and A2, . . . , An local. This implies that

h = h1h
e2
2 . . . h

en
n

for certain pairwise coprime irreducible monic polynomials hi ∈ κ(p)[x] and certain
e2, . . . , en ≥ 1. Here the numbering is chosen so that Ai = κ(p)[x]/(heii ) as κ(p)[x]-
algebras. Note that h1 is the minimal polynomial of α ∈ κ(q) and hence is a separable
polynomial (its derivative is prime to itself).

Step 9. Let m ∈ I be a monic element; such an element exists because the ring extension
R→ R[x]/I is finite hence integral. Denote m the image in κ(p)[x]. We may factor

m = kh
d1
1 h

d2
2 . . . h

dn
n
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for some d1 ≥ 1, dj ≥ ej , j = 2, . . . , n and k ∈ κ(p)[x] prime to all the hi. Set f = ml+h
where l deg(m) > deg(h), and l ≥ 2. Then f is monic as a polynomial over R. Also, the
image f of f in κ(p)[x] factors as

f = h1h
e2
2 . . . h

en
n +klhld1

1 h
ld2
2 . . . h

ldn
n = h1(he2

2 . . . h
en
n +klhld1−1

1 h
ld2
2 . . . h

ldn
n ) = h1w

with w a polynomial relatively prime to h1. Set g = f ′ (the derivative with respect to x).

Step 10. The ring mapR[x]→ S = R[x]/I has the properties: (1) it maps f to zero, and (2)
it maps g to an element ofS\q. The first assertion is clear since f is an element of I . For the
second assertion we just have to show that g does not map to zero in κ(q) = κ(p)[x]/(h1).
The image of g in κ(p)[x] is the derivative of f . Thus (2) is clear because

g = df
dx

= w
dh1

dx
+ h1

dw
dx
,

w is prime to h1 and h1 is separable.

Step 11. We conclude that ϕ : R[x]/(f) → S is a surjective ring map, R[x]g/(f) is
étale over R (because it is standard étale, see Lemma 144.2) and ϕ(g) 6∈ q. Thus the map
(R[x]/(f))g → Sϕ(g) is the desired surjection. �

Lemma 152.2. Let R → S be a ring map. Let q be a prime of S lying over p ⊂ R.
Assume that R→ S is of finite type and unramified at q. Then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p.
(3) a product decomposition

R′ ⊗R S = A×B

with the following properties
(1) R′ → A is surjective, and
(2) p′A is a prime of A lying over p′ and over q.

Proof. We may replace (R→ S, p, q) with any base change (R′ → R′ ⊗R S, p′, q′)
by an étale ring map R → R′ with a prime p′ lying over p, and a choice of q′ lying over
both q and p′. Note also that given R→ R′ and p′ a suitable q′ can always be found.

The assumption thatR→ S is of finite type means that we may apply Lemma 145.4. Thus
we may assume that S = A1 × . . . × An × B, that each R → Ai is finite with exactly
one prime ri lying over p such that κ(p) ⊂ κ(ri) is purely inseparable and that R → B
is not quasi-finite at any prime lying over p. Then clearly q = ri for some i, since an
unramified morphism is quasi-finite (see Lemma 151.6). Say q = r1. By Lemma 151.5 we
see that κ(r1)/κ(p) is separable hence the trivial field extension, and that p(A1)r1 is the
maximal ideal. Also, by Lemma 41.11 (which applies to R→ A1 because a finite ring map
satisfies going up by Lemma 36.22) we have (A1)r1 = (A1)p. It follows from Nakayama’s
Lemma 20.1 that the map of local rings Rp → (A1)p = (A1)r1 is surjective. Since A1 is
finite over R we see that there exists a f ∈ R, f 6∈ p such that Rf → (A1)f is surjective.
After replacing R by Rf we win. �

Lemma 152.3. Let R → S be a ring map. Let p be a prime of R. If R → S is
unramified then there exist

(1) an étale ring map R→ R′,
(2) a prime p′ ⊂ R′ lying over p.
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(3) a product decomposition

R′ ⊗R S = A1 × . . .×An ×B
with the following properties

(1) R′ → Ai is surjective,
(2) p′Ai is a prime of Ai lying over p′, and
(3) there is no prime of B lying over p′.

Proof. We may apply Lemma 145.4. Thus, after an étale base change, we may assume
that S = A1 × . . .×An ×B, that each R→ Ai is finite with exactly one prime ri lying
over p such that κ(p) ⊂ κ(ri) is purely inseparable, and that R → B is not quasi-finite
at any prime lying over p. Since R → S is quasi-finite (see Lemma 151.6) we see there is
no prime of B lying over p. By Lemma 151.5 we see that κ(ri)/κ(p) is separable hence
the trivial field extension, and that p(Ai)ri is the maximal ideal. Also, by Lemma 41.11
(which applies to R → Ai because a finite ring map satisfies going up by Lemma 36.22)
we have (Ai)ri = (Ai)p. It follows from Nakayama’s Lemma 20.1 that the map of local
rings Rp → (Ai)p = (Ai)ri is surjective. Since Ai is finite over R we see that there exists
a f ∈ R, f 6∈ p such that Rf → (Ai)f is surjective. After replacing R by Rf we win. �

153. Henselian local rings

In this section we discuss a bit the notion of a henselian local ring. Let (R,m, κ) be a local
ring. For a ∈ R we denote a the image of a in κ. For a polynomial f ∈ R[T ] we often
denote f the image of f in κ[T ]. Given a polynomial f ∈ R[T ] we denote f ′ the derivative
of f with respect to T . Note that f ′ = f ′.

Definition 153.1. Let (R,m, κ) be a local ring.
(1) We say R is henselian if for every monic f ∈ R[T ] and every root a0 ∈ κ of f

such that f ′(a0) 6= 0 there exists an a ∈ R such that f(a) = 0 and a0 = a.
(2) We say R is strictly henselian if R is henselian and its residue field is separably

algebraically closed.

Note that the condition f ′(a0) 6= 0 is equivalent to the condition that a0 is a simple root
of the polynomial f . In fact, it implies that the lift a ∈ R, if it exists, is unique.

Lemma 153.2. Let (R,m, κ) be a local ring. Let f ∈ R[T ]. Let a, b ∈ R such that
f(a) = f(b) = 0, a = b mod m, and f ′(a) 6∈ m. Then a = b.

Proof. Write f(x + y) − f(x) = f ′(x)y + g(x, y)y2 in R[x, y] (this is possible as
one sees by expanding f(x + y); details omitted). Then we see that 0 = f(b) − f(a) =
f(a+ (b− a))− f(a) = f ′(a)(b− a) + c(b− a)2 for some c ∈ R. By assumption f ′(a)
is a unit in R. Hence (b− a)(1 + f ′(a)−1c(b− a)) = 0. By assumption b− a ∈ m, hence
1 + f ′(a)−1c(b− a) is a unit in R. Hence b− a = 0 in R. �

Here is the characterization of henselian local rings.

Lemma 153.3. Let (R,m, κ) be a local ring. The following are equivalent
(1) R is henselian,
(2) for every f ∈ R[T ] and every root a0 ∈ κ of f such that f ′(a0) 6= 0 there exists

an a ∈ R such that f(a) = 0 and a0 = a,
(3) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1

there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,
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(4) for any monic f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1
there exists a factorization f = gh in R[T ] such that g0 = g and h0 = h and
moreover degT (g) = degT (g0),

(5) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1 there
exists a factorization f = gh in R[T ] such that g0 = g and h0 = h,

(6) for any f ∈ R[T ] and any factorization f = g0h0 with gcd(g0, h0) = 1 there
exists a factorization f = gh inR[T ] such that g0 = g and h0 = h and moreover
degT (g) = degT (g0),

(7) for any étale ring map R → S and prime q of S lying over m with κ = κ(q)
there exists a section τ : S → R of R→ S ,

(8) for any étale ring map R → S and prime q of S lying over m with κ = κ(q)
there exists a section τ : S → R of R→ S with q = τ−1(m),

(9) any finite R-algebra is a product of local rings,
(10) any finite R-algebra is a finite product of local rings,
(11) any finite type R-algebra S can be written as A × B with R → A finite and

R→ B not quasi-finite at any prime lying over m,
(12) any finite type R-algebra S can be written as A × B with R → A finite such

that each irreducible component of Spec(B ⊗R κ) has dimension ≥ 1, and
(13) any quasi-finite R-algebra S can be written as S = A × B with R → A finite

such that B ⊗R κ = 0.

Proof. Here is a list of the easier implications:

(1) 2⇒1 because in (2) we consider all polynomials and in (1) only monic ones,
(2) 5⇒3 because in (5) we consider all polynomials and in (3) only monic ones,
(3) 6⇒4 because in (6) we consider all polynomials and in (4) only monic ones,
(4) 4⇒3 is obvious,
(5) 6⇒5 is obvious,
(6) 8⇒7 is obvious,
(7) 10⇒9 is obvious,
(8) 11⇔12 by definition of being quasi-finite at a prime,
(9) 11⇒13 by definition of being quasi-finite,

Proof of 1⇒8. Assume (1). Let R → S be étale, and let q ⊂ S be a prime ideal such that
κ(q) ∼= κ. By Proposition 144.4 we can find a g ∈ S , g 6∈ q such that R→ Sg is standard
étale. After replacing S by Sg we may assume that S = R[t]g/(f) is standard étale. Since
the prime q has residue field κ it corresponds to a root a0 of f which is not a root of g.
By definition of a standard étale algebra this also means that f ′(a0) 6= 0. Since also f is
monic by definition of a standard étale algebra again we may use that R is henselian to
conclude that there exists an a ∈ R with a0 = a such that f(a) = 0. This implies that
g(a) is a unit of R and we obtain the desired map τ : S = R[t]g/(f) → R by the rule
t 7→ a. By construction τ−1(q) = m. This proves (8) holds.

Proof of 7⇒8. (This is really unimportant and should be skipped.) Assume (7) holds and
assumeR→ S is étale. Let q1, . . . , qr be the other primes of S lying over m. Then we can
find a g ∈ S , g 6∈ q and g ∈ qi for i = 1, . . . , r. Namely, we can argue that

⋂r
i=1 qi 6⊂ q

since otherwise qi ⊂ q for some i, but this cannot happen as the fiber of an étale morphism
is discrete (use Lemma 143.4 for example). Apply (7) to the étale ring mapR→ Sg and the
prime qSg . This gives a section τg : Sg → R such that the composition τ : S → Sg → R
has the property τ−1(m) = q. Minor details omitted.
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Proof of 8⇒11. Assume (8) and letR→ S be a finite type ring map. Apply Lemma 145.3.
We find an étale ring map R → R′ and a prime m′ ⊂ R′ lying over m with κ = κ(m′)
such that R′ ⊗R S = A′ × B′ with A′ finite over R′ and B′ not quasi-finite over R′ at
any prime lying over m′. Apply (8) to get a section τ : R′ → R with m = τ−1(m′). Then
use that

S = (S ⊗R R′)⊗R′,τ R = (A′ ×B′)⊗R′,τ R = (A′ ⊗R′,τ R)× (B′ ⊗R′,τ R)
which gives a decomposition as in (11).

Proof of 8⇒10. Assume (8) and let R→ S be a finite ring map. Apply Lemma 145.3. We
find an étale ring map R → R′ and a prime m′ ⊂ R′ lying over m with κ = κ(m′) such
thatR′⊗R S = A′

1× . . .×A′
n×B′ withA′

i finite overR′ having exactly one prime over
m′ and B′ not quasi-finite over R′ at any prime lying over m′. Apply (8) to get a section
τ : R′ → R with m′ = τ−1(m). Then we obtain

S = (S ⊗R R′)⊗R′,τ R

= (A′
1 × . . .×A′

n ×B′)⊗R′,τ R

= (A′
1 ⊗R′,τ R)× . . .× (A′

1 ⊗R′,τ R)× (B′ ⊗R′,τ R)
= A1 × . . .×An ×B

The factor B is finite over R but R → B is not quasi-finite at any prime lying over m.
Hence B = 0. The factors Ai are finite R-algebras having exactly one prime lying over
m, hence they are local rings. This proves that S is a finite product of local rings.

Proof of 9⇒10. This holds because if S is finite over the local ring R, then it has at most
finitely many maximal ideals. Namely, by going up for R → S the maximal ideals of S
all lie over m, and S/mS is Artinian hence has finitely many primes.

Proof of 10⇒1. Assume (10). Let f ∈ R[T ] be a monic polynomial and a0 ∈ κ a simple
root of f . Then S = R[T ]/(f) is a finiteR-algebra. Applying (10) we get S = A1× . . .×
Ar is a finite product of local R-algebras. In particular we see that S/mS =

∏
Ai/mAi

is the decomposition of κ[T ]/(f) as a product of local rings. This means that one of the
factors, say A1/mA1 is the quotient κ[T ]/(f)→ κ[T ]/(T − a0). Since A1 is a summand
of the finite free R-module S it is a finite free R-module itself. As A1/mA1 is a κ-vector
space of dimension 1 we see thatA1 ∼= R as anR-module. Clearly this means thatR→ A1
is an isomorphism. Let a ∈ R be the image of T under the map R[T ] → S → A1 → R.
Then f(a) = 0 and a = a0 as desired.

Proof of 13⇒1. Assume (13). Let f ∈ R[T ] be a monic polynomial and a0 ∈ κ a simple
root of f . Then S1 = R[T ]/(f) is a finite R-algebra. Let g ∈ R[T ] be any element such
that g = f/(T − a0). Then S = (S1)g is a quasi-finite R-algebra such that S ⊗R κ ∼=
κ[T ]g/(f) ∼= κ[T ]/(T−a0) ∼= κ. Applying (13) toS we getS = A×B withA finite over
R andB⊗R κ = 0. In particular we see that κ ∼= S/mS = A/mA. SinceA is a summand
of the flatR-algebra S we see that it is finite flat, hence free overR. AsA/mA is a κ-vector
space of dimension 1 we see that A ∼= R as an R-module. Clearly this means that R→ A
is an isomorphism. Let a ∈ R be the image of T under the map R[T ] → S → A → R.
Then f(a) = 0 and a = a0 as desired.

Proof of 8⇒2. Assume (8). Let f ∈ R[T ] be any polynomial and let a0 ∈ κ be a simple
root. Then the algebra S = R[T ]f ′/(f) is étale overR. Let q ⊂ S be the prime generated
by m and T − b where b ∈ R is any element such that b = a0. Apply (8) to S and q to get
τ : S → R. Then the image τ(T ) = a ∈ R works in (2).
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At this point we see that (1), (2), (7), (8), (9), (10), (11), (12), (13) are all equivalent. The
weakest assertion of (3), (4), (5) and (6) is (3) and the strongest is (6). Hence we still have
to prove that (3) implies (1) and (1) implies (6).

Proof of 3⇒1. Assume (3). Let f ∈ R[T ] be monic and let a0 ∈ κ be a simple root of
f . This gives a factorization f = (T − a0)h0 with h0(a0) 6= 0, so gcd(T − a0, h0) = 1.
Apply (3) to get a factorization f = gh with g = T − a0 and h = h0. Set S = R[T ]/(f)
which is a finite free R-algebra. We will write g, h also for the images of g and h in
S. Then gS + hS = S by Nakayama’s Lemma 20.1 as the equality holds modulo m.
Since gh = f = 0 in S this also implies that gS ∩ hS = 0. Hence by the Chinese
Remainder theorem we obtain S = S/(g) × S/(h). This implies that A = S/(g) is a
summand of a finite free R-module, hence finite free. Moreover, the rank of A is 1 as
A/mA = κ[T ]/(T − a0). Thus the map R → A is an isomorphism. Setting a ∈ R equal
to the image of T under the maps R[T ] → S → A → R gives an element of R with
f(a) = 0 and a = a0.

Proof of 1⇒6. Assume (1) or equivalently all of (1), (2), (7), (8), (9), (10), (11), (12), (13). Let
f ∈ R[T ] be a polynomial. Suppose that f = g0h0 is a factorization with gcd(g0, h0) = 1.
We may and do assume that g0 is monic. Consider S = R[T ]/(f). Because we have the
factorization we see that the coefficients of f generate the unit ideal in R. This implies
that S has finite fibres over R, hence is quasi-finite over R. It also implies that S is flat
over R by Lemma 128.5. Combining (13) and (10) we may write S = A1 × . . .×An ×B
where each Ai is local and finite over R, and B ⊗R κ = 0. After reordering the factors
A1, . . . , An we may assume that

κ[T ]/(g0) = A1/mA1 × . . .×Ar/mAr, κ[T ]/(h0) = Ar+1/mAr+1 × . . .×An/mAn

as quotients of κ[T ]. The finite flat R-algebra A = A1 × . . .×Ar is free as an R-module,
see Lemma 78.5. Its rank is degT (g0). Let g ∈ R[T ] be the characteristic polynomial of
the R-linear operator T : A → A. Then g is a monic polynomial of degree degT (g) =
degT (g0) and moreover g = g0. By Cayley-Hamilton (Lemma 16.1) we see that g(TA) = 0
where TA indicates the image of T in A. Hence we obtain a well defined surjective map
R[T ]/(g)→ Awhich is an isomorphism by Nakayama’s Lemma 20.1. The mapR[T ]→ A
factors through R[T ]/(f) by construction hence we may write f = gh for some h. This
finishes the proof. �

Lemma 153.4. Let (R,m, κ) be a henselian local ring.
(1) If R → S is a finite ring map then S is a finite product of henselian local rings

each finite over R.
(2) If R→ S is a finite ring map and S is local, then S is a henselian local ring and

R→ S is a (finite) local ring map.
(3) If R → S is a finite type ring map, and q is a prime of S lying over m at which

R→ S is quasi-finite, then Sq is henselian and finite over R.
(4) If R→ S is quasi-finite then Sq is henselian and finite over R for every prime q

lying over m.

Proof. Part (2) implies part (1) since S as in part (1) is a finite product of its local-
izations at the primes lying over m by Lemma 153.3 part (10). Part (2) also follows from
Lemma 153.3 part (10) since any finite S-algebra is also a finite R-algebra (of course any
finite ring map between local rings is local).
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LetR→ S and q be as in (3). WriteS = A×B withA finite overR andB not quasi-finite
overR at any prime lying over m, see Lemma 153.3 part (11). Hence Sq is a localization of
A at a maximal ideal and we deduce (3) from (1). Part (4) follows from part (3). �

Lemma 153.5. Let (R,m, κ) be a henselian local ring. Any finite type R-algebra S
can be written as S = A1 × . . . × An × B with Ai local and finite over R and R → B
not quasi-finite at any prime of B lying over m.

Proof. This is a combination of parts (11) and (10) of Lemma 153.3. �

Lemma 153.6. Let (R,m, κ) be a strictly henselian local ring. Any finite type R-
algebra S can be written as S = A1 × . . .× An × B with Ai local and finite over R and
κ ⊂ κ(mAi) finite purely inseparable andR→ B not quasi-finite at any prime ofB lying
over m.

Proof. First write S = A1 × . . . × An × B as in Lemma 153.5. The field exten-
sion κ(mAi)/κ is finite and κ is separably algebraically closed, hence it is finite purely
inseparable. �

Lemma 153.7. Let (R,m, κ) be a henselian local ring. The category of finite étale
ring extensionsR→ S is equivalent to the category of finite étale algebras κ→ S via the
functor S 7→ S/mS.

Proof. Denote C → D the functor of categories of the statement. Suppose that
R→ S is finite étale. Then we may write

S = A1 × . . .×An
with Ai local and finite étale over S , use either Lemma 153.5 or Lemma 153.3 part (10).
In particular Ai/mAi is a finite separable field extension of κ, see Lemma 143.5. Thus
we see that every object of C andD decomposes canonically into irreducible pieces which
correspond via the given functor. Next, suppose that S1, S2 are finite étale over R such
that κ1 = S1/mS1 and κ2 = S2/mS2 are fields (finite separable over κ). Then S1 ⊗R S2
is finite étale over R and we may write

S1 ⊗R S2 = A1 × . . .×An
as before. Then we see that HomR(S1, S2) is identified with the set of indices i ∈ {1, . . . , n}
such that S2 → Ai is an isomorphism. To see this use that given any R-algebra map
ϕ : S1 → S2 the mapϕ×1 : S1⊗RS2 → S2 is surjective, and hence is equal to projection
onto one of the factorsAi. But in exactly the same way we see that Homκ(κ1, κ2) is iden-
tified with the set of indices i ∈ {1, . . . , n} such that κ2 → Ai/mAi is an isomorphism.
By the discussion above these sets of indices match, and we conclude that our functor is
fully faithful. Finally, let κ′/κ be a finite separable field extension. By Lemma 144.3 there
exists an étale ring map R → S and a prime q of S lying over m such that κ ⊂ κ(q) is
isomorphic to the given extension. By part (1) we may write S = A1 × . . . × An × B.
Since R → S is quasi-finite we see that there exists no prime of B over m. Hence Sq is
equal to Ai for some i. Hence R → Ai is finite étale and produces the given residue field
extension. Thus the functor is essentially surjective and we win. �

Lemma 153.8. Let (R,m, κ) be a strictly henselian local ring. Let R → S be an
unramified ring map. Then

S = A1 × . . .×An ×B
with each R→ Ai surjective and no prime of B lying over m.
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Proof. First write S = A1 × . . . × An × B as in Lemma 153.5. Now we see that
R → Ai is finite unramified and Ai local. Hence the maximal ideal of Ai is mAi and
its residue field Ai/mAi is a finite separable extension of κ, see Lemma 151.5. However,
the condition that R is strictly henselian means that κ is separably algebraically closed,
so κ = Ai/mAi. By Nakayama’s Lemma 20.1 we conclude that R → Ai is surjective as
desired. �

Lemma 153.9. Let (R,m, κ) be a complete local ring, see Definition 160.1. ThenR is
henselian.

Proof. Let f ∈ R[T ] be monic. Denote fn ∈ R/mn+1[T ] the image. Denote f ′
n

the derivative of fn with respect to T . Let a0 ∈ κ be a simple root of f0. We lift this
to a solution of f over R inductively as follows: Suppose given an ∈ R/mn+1 such that
an mod m = a0 and fn(an) = 0. Pick any element b ∈ R/mn+2 such that an = b mod
mn+1. Then fn+1(b) ∈ mn+1/mn+2. Set

an+1 = b− fn+1(b)/f ′
n+1(b)

(Newton’s method). This makes sense as f ′
n+1(b) ∈ R/mn+1 is invertible by the condition

on a0. Then we compute fn+1(an+1) = fn+1(b) − fn+1(b) = 0 in R/mn+2. Since
the system of elements an ∈ R/mn+1 so constructed is compatible we get an element
a ∈ limR/mn = R (here we use that R is complete). Moreover, f(a) = 0 since it maps
to zero in each R/mn. Finally a = a0 and we win. �

Lemma 153.10. Let (R,m) be a local ring of dimension 0. Then R is henselian.

Proof. Let R→ S be a finite ring map. By Lemma 153.3 it suffices to show that S is
a product of local rings. By Lemma 36.21 S has finitely many primes m1, . . . ,mr which
all lie over m. There are no inclusions among these primes, see Lemma 36.20, hence they
are all maximal. Every element of m1 ∩ . . .∩mr is nilpotent by Lemma 17.2. It follows S
is the product of the localizations of S at the primes mi by Lemma 53.5. �

The following lemma will be the key to the uniqueness and functorial properties of henseliza-
tion and strict henselization.

Lemma 153.11. Let R→ S be a ring map with S henselian local. Given
(1) an étale ring map R→ A,
(2) a prime q of A lying over p = R ∩mS ,
(3) a κ(p)-algebra map τ : κ(q)→ S/mS ,

then there exists a unique homomorphism of R-algebras f : A → S such that q =
f−1(mS) and f mod q = τ .

Proof. ConsiderA⊗RS. This is an étale algebra overS , see Lemma 143.3. Moreover,
the kernel

q′ = Ker(A⊗R S → κ(q)⊗κ(p) κ(mS)→ κ(mS))
of the map using the map given in (3) is a prime ideal lying over mS with residue field
equal to the residue field of S. Hence by Lemma 153.3 there exists a unique splitting τ :
A⊗RS → S with τ−1(mS) = q′. Set f equal to the compositionA→ A⊗RS → S. �

Lemma 153.12. Let ϕ : R → S be a local homomorphism of strictly henselian local
rings. LetP1, . . . , Pn ∈ R[x1, . . . , xn] be polynomials such thatR[x1, . . . , xn]/(P1, . . . , Pn)
is étale over R. Then the map

Rn −→ Sn, (h1, . . . , hn) 7−→ (ϕ(h1), . . . , ϕ(hn))
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induces a bijection between
{(r1, . . . , rn) ∈ Rn | Pi(r1, . . . , rn) = 0, i = 1, . . . , n}

and
{(s1, . . . , sn) ∈ Sn | Pϕi (s2, . . . , sn) = 0, i = 1, . . . , n}

where Pϕi ∈ S[x1, . . . , xn] are the images of the Pi under ϕ.

Proof. The first solution set is canonically isomorphic to the set
HomR(R[x1, . . . , xn]/(P1, . . . , Pn), R).

As R is henselian the map R → R/mR induces a bijection between this set and the set of
solutions in the residue field R/mR, see Lemma 153.3. The same is true for S. Now since
R[x1, . . . , xn]/(P1, . . . , Pn) is étale over R and R/mR is separably algebraically closed
we see thatR/mR[x1, . . . , xn]/(P 1, . . . , Pn) is a finite product of copies ofR/mR where
P i is the image of Pi in R/mR[x1, . . . , xn]. Hence the tensor product

R/mR[x1, . . . , xn]/(P 1, . . . , Pn)⊗R/mR S/mS = S/mS [x1, . . . , xn]/(Pϕ1 , . . . , P
ϕ

n)
is also a finite product of copies of S/mS with the same index set. This proves the lemma.

�

Lemma 153.13. Let R be a henselian local ring. Any countably generated Mittag-
Leffler module over R is a direct sum of finitely presented R-modules.

Proof. LetM be a countably generated and Mittag-LefflerR-module. We claim that
for any element x ∈M there exists a direct sum decompositionM = N⊕K with x ∈ N ,
the module N finitely presented, and K Mittag-Leffler.
Suppose the claim is true. Choose generators x1, x2, x3, . . . of M . By the claim we can
inductively find direct sum decompositions

M = N1 ⊕N2 ⊕ . . .⊕Nn ⊕Kn

withNi finitely presented, x1, . . . , xn ∈ N1⊕. . .⊕Nn, andKn Mittag-Leffler. Repeating
ad infinitum we see that M =

⊕
Ni.

We still have to prove the claim. Letx ∈M . By Lemma 92.2 there exists an endomorphism
α : M →M such that α factors through a finitely presented module, and α(x) = x. Say
α factors as

M
π // P

i // M

Set a = π◦α◦i : P → P , so i◦a◦π = α3. By Lemma 16.2 there exists a monic polynomial
P ∈ R[T ] such that P (a) = 0. Note that this implies formally that α2P (α) = 0. Hence
we may think of M as a module over R[T ]/(T 2P ). Assume that x 6= 0. Then α(x) = x
implies that 0 = α2P (α)x = P (1)x henceP (1) = 0 inR/I where I = {r ∈ R | rx = 0}
is the annihilator of x. As x 6= 0 we see I ⊂ mR, hence 1 is a root of P = P mod mR ∈
R/mR[T ]. As R is henselian we can find a factorization

T 2P = (T 2Q1)Q2

for some Q1, Q2 ∈ R[T ] with Q2 = (T − 1)e mod mRR[T ] and Q1(1) 6= 0 mod mR,
see Lemma 153.3. Let N = Im(α2Q1(α) : M → M) and K = Im(Q2(α) : M → M).
As T 2Q1 and Q2 generate the unit ideal of R[T ] we get a direct sum decomposition M =
N ⊕ K. Moreover, Q2 acts as zero on N and T 2Q1 acts as zero on K. Note that N is a
quotient of P hence is finitely generated. Also x ∈ N because α2Q1(α)x = Q1(1)x and
Q1(1) is a unit in R. By Lemma 89.10 the modules N and K are Mittag-Leffler. Finally,
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the finitely generated moduleN is finitely presented as a finitely generated Mittag-Leffler
module is finitely presented, see Example 91.1 part (1). �

154. Filtered colimits of étale ring maps

This section is a precursor to the section on ind-étale ring maps (Pro-étale Cohomology,
Section 7). The material will also be useful to prove uniqueness properties of the henseliza-
tion and strict henselization of a local ring.

Lemma 154.1. Let R → A and R → R′ be ring maps. If A is a filtered colimit of
étale ring maps, then so is R′ → R′ ⊗R A.

Proof. This is true because colimits commute with tensor products and étale ring
maps are preserved under base change (Lemma 143.3). �

Lemma 154.2. Let A→ B → C be ring maps. If A→ B is a filtered colimit of étale
ring maps and B → C is a filtered colimit of étale ring maps, then A → C is a filtered
colimit of étale ring maps.

Proof. We will use the criterion of Lemma 127.4. LetA→ P → C be a factorization
of A → C with P of finite presentation over A. Write B = colimi∈I Bi where I is a
directed set and where Bi is an étale A-algebra. Write C = colimj∈J Cj where J is a
directed set and where Cj is an étale B-algebra. We can factor P → C as P → Cj → C
for some j by Lemma 127.3. By Lemma 143.3 we can find an i ∈ I and an étale ring
map Bi → C ′

j such that Cj = B ⊗Bi C ′
j . Then Cj = colimi′≥iBi′ ⊗Bi C ′

j and again
we see that P → Cj factors as P → Bi′ ⊗Bi C ′

j → C. As A → C ′ = Bi′ ⊗Bi C ′
j

is étale as compositions and tensor products of étale ring maps are étale. Hence we have
factored P → C as P → C ′ → C with C ′ étale over A and the criterion of Lemma 127.4
applies. �

Lemma 154.3. Let R be a ring. Let A = colimAi be a filtered colimit of R-algebras
such that each Ai is a filtered colimit of étale R-algebras. Then A is a filtered colimit of
étale R-algebras.

Proof. Write Ai = colimj∈Ji Aj where Ji is a directed set and Aj is an étale R-
algebra. For each i ≤ i′ and j ∈ Ji there exists an j′ ∈ Ji′ and an R-algebra map
ϕjj′ : Aj → Aj′ making the diagram

Ai // Ai′

Aj

OO

ϕjj′
// Aj′

OO

commute. This is true because R → Aj is of finite presentation so that Lemma 127.3
applies. Let J be the category with objects

∐
i∈I Ji and morphisms triples (j, j′, ϕjj′) as

above (and obvious composition law). Then J is a filtered category and A = colimJ Aj .
Details omitted. �

Lemma 154.4. Let I be a directed set. Let i 7→ (Ri → Ai) be a system of arrows of
rings over I . Set R = colimRi and A = colimAi. If each Ai is a filtered colimit of étale
Ri-algebras, then A is a filtered colimit of étale R-algebras.
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Proof. This is true becauseA = A⊗RR = colimAi⊗Ri R and hence we can apply
Lemma 154.3 because R → Ai ⊗Ri R is a filtered colimit of étale ring maps by Lemma
154.1. �

Lemma 154.5. LetR be a ring. LetA→ B be anR-algebra homomorphism. IfA and
B are filtered colimits of étale R-algebras, then B is a filtered colimit of étale A-algebras.

Proof. Write A = colimAi and B = colimBj as filtered colimits with Ai and Bj
étale over R. For each i we can find a j such that Ai → B factors through Bj , see Lemma
127.3. The factorization Ai → Bj is étale by Lemma 143.8. Since A → A ⊗Ai Bj is
étale (Lemma 143.3) it suffices to prove that B = colimA ⊗Ai Bj where the colimit is
over pairs (i, j) and factorizations Ai → Bj → B of Ai → B (this is a directed system;
details omitted). This is clear because colimits commute with tensor products and hence
colimA⊗Ai Bj = A⊗A B = B. �

Lemma 154.6. Let R→ S be a ring map with S henselian local. Given
(1) an R-algebra A which is a filtered colimit of étale R-algebras,
(2) a prime q of A lying over p = R ∩mS ,
(3) a κ(p)-algebra map τ : κ(q)→ S/mS ,

then there exists a unique homomorphism of R-algebras f : A → S such that q =
f−1(mS) and f mod q = τ .

Proof. WriteA = colimAi as a filtered colimit of étaleR-algebras. Set qi = Ai∩q.
We obtain fi : Ai → S by applying Lemma 153.11. Set f = colim fi. �

Lemma 154.7. Let R be a ring. Given a commutative diagram of ring maps

S // K

R

OO

// S′

OO

where S , S′ are henselian local, S , S′ are filtered colimits of étale R-algebras, K is a field
and the arrows S → K and S′ → K identify K with the residue field of both S and S′.
Then there exists an uniqueR-algebra isomorphism S → S′ compatible with the maps to
K.

Proof. Follows immediately from Lemma 154.6. �

The following lemma is not strictly speaking about colimits of étale ring maps.

Lemma 154.8. A filtered colimit of (strictly) henselian local rings along local homo-
morphisms is (strictly) henselian.

Proof. Categories, Lemma 21.5 says that this is really just a question about a colimit
of (strictly) henselian local rings over a directed set. Let (Ri, ϕii′) be such a system with
each ϕii′ local. Then R = colimiRi is local, and its residue field κ is colim κi (argument
omitted). It is easy to see that colim κi is separably algebraically closed if each κi is so;
thus it suffices to prove R is henselian if each Ri is henselian. Suppose that f ∈ R[T ] is
monic and that a0 ∈ κ is a simple root of f . Then for some large enough i there exists
an fi ∈ Ri[T ] mapping to f and an a0,i ∈ κi mapping to a0. Since fi(a0,i) ∈ κi, resp.
f ′
i(a0,i) ∈ κi maps to 0 = f(a0) ∈ κ, resp. 0 6= f ′(a0) ∈ κ we conclude that a0,i is

a simple root of fi. As Ri is henselian we can find ai ∈ Ri such that fi(ai) = 0 and
a0,i = ai. Then the image a ∈ R of ai is the desired solution. Thus R is henselian. �
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155. Henselization and strict henselization

In this section we construct the henselization. We encourage the reader to keep in mind
the uniqueness already proved in Lemma 154.7 and the functorial behaviour pointed out
in Lemma 154.6 while reading this material.

Lemma 155.1. Let (R,m, κ) be a local ring. There exists a local ring map R → Rh

with the following properties
(1) Rh is henselian,
(2) Rh is a filtered colimit of étale R-algebras,
(3) mRh is the maximal ideal of Rh, and
(4) κ = Rh/mRh.

Proof. Consider the category of pairs (S, q) where R→ S is an étale ring map, and
q is a prime of S lying over m with κ = κ(q). A morphism of pairs (S, q) → (S′, q′) is
given by an R-algebra map ϕ : S → S′ such that ϕ−1(q′) = q. We set

Rh = colim(S,q) S.

Let us show that the category of pairs is filtered, see Categories, Definition 19.1. The cate-
gory contains the pair (R,m) and hence is not empty, which proves part (1) of Categories,
Definition 19.1. For any pair (S, q) the prime ideal q is maximal with residue field κ since
the composition κ→ S/q→ κ(q) is an isomorphism. Suppose that (S, q) and (S′, q′) are
two objects. Set S′′ = S ⊗R S′ and q′′ = qS′′ + q′S′′. Then S′′/q′′ = S/q⊗R S′/q′ = κ
by what we said above. Moreover, R → S′′ is étale by Lemma 143.3. This proves part
(2) of Categories, Definition 19.1. Next, suppose that ϕ,ψ : (S, q) → (S′, q′) are two
morphisms of pairs. Then ϕ, ψ, and S′ ⊗R S′ → S′ are étale ring maps by Lemma 143.8.
Consider

S′′ = (S′ ⊗ϕ,S,ψ S′)⊗S′⊗RS′ S′

with prime ideal

q′′ = (q′ ⊗ S′ + S′ ⊗ q′)⊗ S′ + (S′ ⊗ϕ,S,ψ S′)⊗ q′

Arguing as above (base change of étale maps is étale, composition of étale maps is étale)
we see that S′′ is étale over R. Moreover, the canonical map S′ → S′′ (using the right
most factor for example) equalizes ϕ and ψ. This proves part (3) of Categories, Definition
19.1. Hence we conclude that Rh consists of triples (S, q, f) with f ∈ S , and two such
triples (S, q, f), (S′, q′, f ′) define the same element ofRh if and only if there exists a pair
(S′′, q′′) and morphisms of pairs ϕ : (S, q)→ (S′′, q′′) and ϕ′ : (S′, q′)→ (S′′, q′′) such
that ϕ(f) = ϕ′(f ′).

Suppose that x ∈ Rh. Represent x by a triple (S, q, f). Let q1, . . . , qr be the other primes
of S lying over m. Then q 6⊂ qi as we have seen above that q is maximal. Thus, since q
is a prime ideal, we can find a g ∈ S , g 6∈ q and g ∈ qi for i = 1, . . . , r. Consider the
morphism of pairs (S, q)→ (Sg, qSg). In this way we see that we may always assume that
x is given by a triple (S, q, f) where q is the only prime of S lying over m, i.e.,

√
mS = q.

But since R → S is étale, we have mSq = qSq, see Lemma 143.5. Hence we actually get
that mS = q.

Suppose that x 6∈ mRh. Represent x by a triple (S, q, f) with mS = q. Then f 6∈ mS , i.e.,
f 6∈ q. Hence (S, q)→ (Sf , qSf ) is a morphism of pairs such that the image of f becomes
invertible. Hence x is invertible with inverse represented by the triple (Sf , qSf , 1/f).
We conclude that Rh is a local ring with maximal ideal mRh. The residue field is κ since
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we can defineRh/mRh → κ by mapping a triple (S, q, f) to the residue class of f modulo
q.
We still have to show that Rh is henselian. Namely, suppose that P ∈ Rh[T ] is a monic
polynomial and a0 ∈ κ is a simple root of the reduction P ∈ κ[T ]. Then we can find a
pair (S, q) such that P is the image of a monic polynomial Q ∈ S[T ]. Since S → Rh

induces an isomorphism of residue fields we see that S′ = S[T ]/(Q) has a prime ideal
q′ = (q, T − a0) at which S → S′ is standard étale. Moreover, κ = κ(q′). Pick g ∈ S′,
g 6∈ q′ such that S′′ = S′

g is étale over S. Then (S, q) → (S′′, q′S′′) is a morphism
of pairs. Now that triple (S′′, q′S′′, class of T ) determines an element a ∈ Rh with the
properties P (a) = 0, and a = a0 as desired. �

Lemma 155.2. Let (R,m, κ) be a local ring. Let κ ⊂ κsep be a separable algebraic
closure. There exists a commutative diagram

κ // κ // κsep

R //

OO

Rh //

OO

Rsh

OO

with the following properties
(1) the map Rh → Rsh is local
(2) Rsh is strictly henselian,
(3) Rsh is a filtered colimit of étale R-algebras,
(4) mRsh is the maximal ideal of Rsh, and
(5) κsep = Rsh/mRsh.

Proof. This is proved by exactly the same proof as used for Lemma 155.1. The only
difference is that, instead of pairs, one uses triples (S, q, α) whereR→ S étale, q is a prime
of S lying over m, and α : κ(q)→ κsep is an embedding of extensions of κ. �

Definition 155.3. Let (R,m, κ) be a local ring.
(1) The local ring map R→ Rh constructed in Lemma 155.1 is called the henseliza-

tion of R.
(2) Given a separable algebraic closure κ ⊂ κsep the local ring map R → Rsh

constructed in Lemma 155.2 is called the strict henselization of R with respect
to κ ⊂ κsep.

(3) A local ring mapR→ Rsh is called a strict henselization ofR if it is isomorphic
to one of the local ring maps constructed in Lemma 155.2

The maps R → Rh → Rsh are flat local ring homomorphisms. By Lemma 154.7 the
R-algebrasRh andRsh are well defined up to unique isomorphism by the conditions that
they are henselian local, filtered colimits of étaleR-algebras with residue field κ and κsep.
In the rest of this section we mostly just discuss functoriality of the (strict) henseliza-
tions. We will discuss more intricate results concerning the relationship between R and
its henselization in More on Algebra, Section 45.

Remark 155.4. We can also constructRsh fromRh. Namely, for any finite separable
subextension κsep/κ′/κ there exists a unique (up to unique isomorphism) finite étale local
ring extensionRh ⊂ Rh(κ′) whose residue field extension reproduces the given extension,
see Lemma 153.7. Hence we can set

Rsh =
⋃

κ⊂κ′⊂κsep
Rh(κ′)
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The arrows in this system, compatible with the arrows on the level of residue fields, exist
by Lemma 153.7. This will produce a henselian local ring by Lemma 154.8 since each of
the ringsRh(κ′) is henselian by Lemma 153.4. By construction the residue field extension
induced by Rh → Rsh is the field extension κsep/κ. Hence Rsh so constructed is strictly
henselian. By Lemma 154.2 the R-algebra Rsh is a colimit of étale R-algebras. Hence the
uniqueness of Lemma 154.7 shows that Rsh is the strict henselization.

Lemma 155.5. LetR→ S be a local map of local rings. Let S → Sh be the henseliza-
tion. Let R → A be an étale ring map and let q be a prime of A lying over mR such that
R/mR ∼= κ(q). Then there exists a unique morphism of rings f : A→ Sh fitting into the
commutative diagram

A
f
// Sh

R

OO

// S

OO

such that f−1(mSh) = q.

Proof. This is a special case of Lemma 153.11. �

Lemma 155.6. Let R → S be a local map of local rings. Let R → Rh and S → Sh

be the henselizations. There exists a unique local ring map Rh → Sh fitting into the
commutative diagram

Rh
f
// Sh

R

OO

// S

OO

Proof. Follows immediately from Lemma 154.6. �

Here is a slightly different construction of the henselization.

Lemma 155.7. Let R be a ring. Let p ⊂ R be a prime ideal. Consider the category
of pairs (S, q) where R → S is étale and q is a prime lying over p such that κ(p) = κ(q).
This category is filtered and

(Rp)h = colim(S,q) S = colim(S,q) Sq

canonically.

Proof. A morphism of pairs (S, q) → (S′, q′) is given by an R-algebra map ϕ :
S → S′ such that ϕ−1(q′) = q. Let us show that the category of pairs is filtered, see
Categories, Definition 19.1. The category contains the pair (R, p) and hence is not empty,
which proves part (1) of Categories, Definition 19.1. Suppose that (S, q) and (S′, q′) are
two pairs. Note that q, resp. q′ correspond to primes of the fibre rings S ⊗ κ(p), resp.
S′ ⊗ κ(p) with residue fields κ(p), hence they correspond to maximal ideals of S ⊗ κ(p),
resp. S′ ⊗ κ(p). Set S′′ = S ⊗R S′. By the above there exists a unique prime q′′ ⊂ S′′

lying over q and over q′ whose residue field is κ(p). The ring map R → S′′ is étale
by Lemma 143.3. This proves part (2) of Categories, Definition 19.1. Next, suppose that
ϕ,ψ : (S, q) → (S′, q′) are two morphisms of pairs. Then ϕ, ψ, and S′ ⊗R S′ → S′ are
étale ring maps by Lemma 143.8. Consider

S′′ = (S′ ⊗ϕ,S,ψ S′)⊗S′⊗RS′ S′
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Arguing as above (base change of étale maps is étale, composition of étale maps is étale) we
see that S′′ is étale over R. The fibre ring of S′′ over p is

F ′′ = (F ′ ⊗ϕ,F,ψ F ′)⊗F ′⊗κ(p)F ′ F ′

where F ′, F are the fibre rings of S′ and S. Since ϕ and ψ are morphisms of pairs the map
F ′ → κ(p) corresponding to p′ extends to a map F ′′ → κ(p) and in turn corresponds to a
prime ideal q′′ ⊂ S′′ whose residue field is κ(p). The canonical map S′ → S′′ (using the
right most factor for example) is a morphism of pairs (S′, q′)→ (S′′, q′′) which equalizes
ϕ and ψ. This proves part (3) of Categories, Definition 19.1. Hence we conclude that the
category is filtered.

Recall that in the proof of Lemma 155.1 we constructed (Rp)h as the corresponding colimit
but starting with Rp and its maximal ideal pRp. Now, given any pair (S, q) for (R, p) we
obtain a pair (Sp, qSp) for (Rp, pRp). Moreover, in this situation

Sp = colimf∈R,f 6∈p Sf .

Hence in order to show the equalities of the lemma, it suffices to show that any pair
(Sloc, qloc) for (Rp, pRp) is of the form (Sp, qSp) for some pair (S, q) over (R, p) (some
details omitted). This follows from Lemma 143.3. �

Lemma 155.8. LetR→ S be a ring map. Let q ⊂ S be a prime lying over p ⊂ R. Let
R → Rh and S → Sh be the henselizations of Rp and Sq. The local ring map Rh → Sh

of Lemma 155.6 identifies Sh with the henselization ofRh⊗RS at the unique prime lying
over mh and q.

Proof. By Lemma 155.7 we see thatRh, resp. Sh are filtered colimits of étaleR, resp.
S-algebras. Hence we see thatRh⊗R S is a filtered colimit of étale S-algebrasAi (Lemma
143.3). By Lemma 154.5 we see that Sh is a filtered colimit of étale Rh ⊗R S-algebras.
Since moreover Sh is a henselian local ring with residue field equal to κ(q), the statement
follows from the uniqueness result of Lemma 154.7. �

Lemma 155.9. Let ϕ : R → S be a local map of local rings. Let S/mS ⊂ κsep be a
separable algebraic closure. Let S → Ssh be the strict henselization of S with respect to
S/mS ⊂ κsep. Let R → A be an étale ring map and let q be a prime of A lying over mR.
Given any commutative diagram

κ(q)
φ
// κsep

R/mR
ϕ //

OO

S/mS

OO

there exists a unique morphism of rings f : A → Ssh fitting into the commutative dia-
gram

A
f
// Ssh

R

OO

ϕ // S

OO

such that f−1(mSh) = q and the induced map κ(q)→ κsep is the given one.

Proof. This is a special case of Lemma 153.11. �
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Lemma 155.10. Let R → S be a local map of local rings. Choose separable alge-
braic closures R/mR ⊂ κsep1 and S/mS ⊂ κsep2 . Let R → Rsh and S → Ssh be the
corresponding strict henselizations. Given any commutative diagram

κsep1 φ
// κsep2

R/mR
ϕ //

OO

S/mS

OO

There exists a unique local ring map Rsh → Ssh fitting into the commutative diagram

Rsh
f
// Ssh

R

OO

// S

OO

and inducing φ on the residue fields of Rsh and Ssh.

Proof. Follows immediately from Lemma 154.6. �

Lemma 155.11. Let R be a ring. Let p ⊂ R be a prime ideal. Let κ(p) ⊂ κsep be
a separable algebraic closure. Consider the category of triples (S, q, φ) where R → S is
étale, q is a prime lying over p, and φ : κ(q)→ κsep is a κ(p)-algebra map. This category
is filtered and

(Rp)sh = colim(S,q,φ) S = colim(S,q,φ) Sq

canonically.

Proof. A morphism of triples (S, q, φ) → (S′, q′, φ′) is given by an R-algebra map
ϕ : S → S′ such that ϕ−1(q′) = q and such that φ′ ◦ ϕ = φ. Let us show that the
category of pairs is filtered, see Categories, Definition 19.1. The category contains the
triple (R, p, κ(p) ⊂ κsep) and hence is not empty, which proves part (1) of Categories,
Definition 19.1. Suppose that (S, q, φ) and (S′, q′, φ′) are two triples. Note that q, resp.
q′ correspond to primes of the fibre rings S ⊗ κ(p), resp. S′ ⊗ κ(p) with residue fields
finite separable over κ(p) and φ, resp. φ′ correspond to maps into κsep. Hence this data
corresponds to κ(p)-algebra maps

φ : S ⊗R κ(p) −→ κsep, φ′ : S′ ⊗R κ(p) −→ κsep.

Set S′′ = S ⊗R S′. Combining the maps the above we get a unique κ(p)-algebra map

φ′′ = φ⊗ φ′ : S′′ ⊗R κ(p) −→ κsep

whose kernel corresponds to a prime q′′ ⊂ S′′ lying over q and over q′, and whose residue
field maps via φ′′ to the compositum of φ(κ(q)) and φ′(κ(q′)) in κsep. The ring map
R→ S′′ is étale by Lemma 143.3. Hence (S′′, q′′, φ′′) is a triple dominating both (S, q, φ)
and (S′, q′, φ′). This proves part (2) of Categories, Definition 19.1. Next, suppose that
ϕ,ψ : (S, q, φ)→ (S′, q′, φ′) are two morphisms of pairs. Then ϕ, ψ, and S′⊗R S′ → S′

are étale ring maps by Lemma 143.8. Consider

S′′ = (S′ ⊗ϕ,S,ψ S′)⊗S′⊗RS′ S′

Arguing as above (base change of étale maps is étale, composition of étale maps is étale) we
see that S′′ is étale over R. The fibre ring of S′′ over p is

F ′′ = (F ′ ⊗ϕ,F,ψ F ′)⊗F ′⊗κ(p)F ′ F ′
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where F ′, F are the fibre rings of S′ and S. Since ϕ and ψ are morphisms of triples the
map φ′ : F ′ → κsep extends to a map φ′′ : F ′′ → κsep which in turn corresponds to
a prime ideal q′′ ⊂ S′′. The canonical map S′ → S′′ (using the right most factor for
example) is a morphism of triples (S′, q′, φ′) → (S′′, q′′, φ′′) which equalizes ϕ and ψ.
This proves part (3) of Categories, Definition 19.1. Hence we conclude that the category
is filtered.

We still have to show that the colimitRcolim of the system is equal to the strict henseliza-
tion ofRp with respect to κsep. To see this note that the system of triples (S, q, φ) contains
as a subsystem the pairs (S, q) of Lemma 155.7. Hence Rcolim contains Rhp by the result
of that lemma. Moreover, it is clear that Rhp ⊂ Rcolim is a directed colimit of étale ring
extensions. It follows that Rcolim is henselian by Lemmas 153.4 and 154.8. Finally, by
Lemma 144.3 we see that the residue field of Rcolim is equal to κsep. Hence we conclude
thatRcolim is strictly henselian and hence equals the strict henselization ofRp as desired.
Some details omitted. �

Lemma 155.12. Let R → S be a ring map. Let q ⊂ S be a prime lying over p ⊂ R.
Choose separable algebraic closures κ(p) ⊂ κsep1 and κ(q) ⊂ κsep2 . LetRsh and Ssh be the
corresponding strict henselizations of Rp and Sq. Given any commutative diagram

κsep1 φ
// κsep2

κ(p) ϕ //

OO

κ(q)

OO

The local ring map Rsh → Ssh of Lemma 155.10 identifies Ssh with the strict henseliza-
tion of Rsh ⊗R S at a prime lying over q and the maximal ideal msh ⊂ Rsh.

Proof. The proof is identical to the proof of Lemma 155.8 except that it uses Lemma
155.11 instead of Lemma 155.7. �

Lemma 155.13. Let R → S be a ring map. Let q ⊂ S be a prime lying over p ⊂ R
such that κ(p) → κ(q) is an isomorphism. Choose a separable algebraic closure κsep of
κ(p) = κ(q). Then

(Sq)sh = (Sq)h ⊗(Rp)h (Rp)sh

Proof. This follows from the alternative construction of the strict henselization of
a local ring in Remark 155.4 and the fact that the residue fields are equal. Some details
omitted. �

156. Henselization and quasi-finite ring maps

In this section we prove some results concerning the functorial maps between (strict)
henselizations for quasi-finite ring maps.

Lemma 156.1. Let R → S be a ring map. Let q be a prime of S lying over p in R.
Assume R→ S is quasi-finite at q. The commutative diagram

Rhp // Shq

Rp

OO

// Sq

OO
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of Lemma 155.6 identifies Shq with the localization of Rhp ⊗Rp
Sq at the prime generated

by q. Moreover, the ring map Rhp → Shq is finite.

Proof. Note that Rhp ⊗R S is quasi-finite over Rhp at the prime ideal corresponding
to q, see Lemma 122.6. Hence the localization S′ ofRhp ⊗Rp

Sq is henselian and finite over
Rhp , see Lemma 153.4. As a localization S′ is a filtered colimit of étaleRhp⊗Rp

Sq-algebras.
By Lemma 155.8 we see that Shq is the henselization of Rhp ⊗Rp

Sq. Thus S′ = Shq by the
uniqueness result of Lemma 154.7. �

Lemma 156.2. Let R be a local ring with henselization Rh. Let I ⊂ mR. Then
Rh/IRh is the henselization of R/I .

Proof. This is a special case of Lemma 156.1. �

Lemma 156.3. Let R → S be a ring map. Let q be a prime of S lying over p in R.
Assume R → S is quasi-finite at q. Let κsep2 /κ(q) be a separable algebraic closure and
denote κsep1 ⊂ κsep2 the subfield of elements separable algebraic over κ(q) (Fields, Lemma
14.6). The commutative diagram

Rshp // Sshq

Rp

OO

// Sq

OO

of Lemma 155.10 identifies Sshq with the localization of Rshp ⊗Rp
Sq at the prime ideal

which is the kernel of the map

Rshp ⊗Rp
Sq −→ κsep1 ⊗κ(p) κ(q) −→ κsep2

Moreover, the ring map Rshp → Sshq is a finite local homomorphism of local rings whose
residue field extension is the extension κsep2 /κsep1 which is both finite and purely insepa-
rable.

Proof. Since R → S is quasi-finite at q we see that the extension κ(q)/κ(p) is fi-
nite, see Definition 122.3 and Lemma 122.2. Hence κsep1 is a separable algebraic closure
of κ(p) (small detail omitted). In particular Lemma 155.10 does really apply. Next, the
compositum of κ(p) and κsep1 in κsep2 is separably algebraically closed and hence equal to
κsep2 . We conclude that κsep2 /κsep1 is finite. By construction the extension κsep2 /κsep1 is
purely inseparable. The ring mapRshp → Sshq is indeed local and induces the residue field
extension κsep2 /κsep1 which is indeed finite purely inseparable.
Note that Rshp ⊗R S is quasi-finite over Rshp at the prime ideal q′ given in the statement
of the lemma, see Lemma 122.6. Hence the localization S′ ofRshp ⊗Rp

Sq at q′ is henselian
and finite over Rshp , see Lemma 153.4. Note that the residue field of S′ is κsep2 as the
map κsep1 ⊗κ(p) κ(q) → κsep2 is surjective by the discussion in the previous paragraph.
Furthermore, as a localization S′ is a filtered colimit of étale Rshp ⊗Rp

Sq-algebras. By
Lemma 155.12 we see that Sshq is the strict henselization of Rshp ⊗Rp

Sq at q′. Thus S′ =
Sshq by the uniqueness result of Lemma 154.7. �

Lemma 156.4. LetR be a local ring with strict henselizationRsh. Let I ⊂ mR. Then
Rsh/IRsh is a strict henselization of R/I .

Proof. This is a special case of Lemma 156.3. �
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Lemma 156.5. Let A → B and A → C be local homomorphisms of local rings. If
A→ C is integral and either κ(mC)/κ(mA) or κ(mB)/κ(mA) is purely inseparable, then
D = B ⊗A C is a local ring and B → D and C → D are local.

Proof. Any maximal ideal of D lies over the maximal ideal of B by going up for
the integral ring map B → D (Lemma 36.22). Now D/mBD = κ(mB) ⊗A C =
κ(mB)⊗κ(mA) C/mAC. The spectrum of C/mAC consists of a single point, namely mC .
Thus the spectrum ofD/mBD is the same as the spectrum of κ(mB)⊗κ(mA)κ(mC) which
is a single point by our assumption that either κ(mC)/κ(mA) or κ(mB)/κ(mA) is purely
inseparable. This proves that D is local and that the ring maps B → D and C → D are
local. �

Lemma 156.6. Let A → B and A → C be ring maps. Let κ be a separably alge-
braically closed field and let B ⊗A C → κ be a ring homomorphism. Denote

Bsh // (B ⊗A C)sh

Ash

OO

// Csh

OO

the corresponding maps of strict henselizations (see proof). If
(1) A→ B is quasi-finite at the prime pB = Ker(B → κ), or
(2) B is a filtered colimit of quasi-finite A-algebras, or
(3) BpB is a filtered colimit of quasi-finite algebras over ApA , or
(4) B is integral over A,

then Bsh ⊗Ash Csh → (B ⊗A C)sh is an isomorphism.

Proof. Write D = B ⊗A C. Denote pA = Ker(A → κ) and similarly for pB ,
pC , and pD. Denote κA ⊂ κ the separable algebraic closure of κ(pA) in κ and similarly
for κB , κC , and κD. Denote Ash the strict henselization of ApA constructed using the
separable algebraic closure κA/κ(pA). Similarly for Bsh, Csh, and Dsh. We obtain the
commutative diagram of the lemma from the functoriality of Lemma 155.10.
Consider the map

c : Bsh ⊗Ash Csh → Dsh = (B ⊗A C)sh

we obtain from the commutative diagram. IfA→ B is quasi-finite at pB = Ker(B → κ),
then the ring map C → D is quasi-finite at pD by Lemma 122.6. Hence by Lemma 156.3
(and Lemma 36.13) the ring map c is a homomorphism of finite Csh-algebras and

Bsh = (B ⊗A Ash)q and Dsh = (D ⊗C Csh)r = (B ⊗A Csh)r
for some primes q and r. Since

Bsh ⊗Ash Csh = (B ⊗A Ash)q ⊗Ash Csh = a localization of B ⊗A Csh

we conclude that source and target of c are both localizations of B ⊗A Csh (compatibly
with the map). Hence it suffices to show that Bsh ⊗Ash Csh is local (small detail omit-
ted). This follows from Lemma 156.5 and the fact that Ash → Bsh is finite with purely
inseparable residue field extension by the already used Lemma 156.3. This proves case (1)
of the lemma.
In case (2) write B = colimBi as a filtered colimit of quasi-finite A-algebras. We cor-
respondingly get D = colimDi with Di = Bi ⊗A C. Observe that Bsh = colimBshi .
Namely, the ring colimBshi is a strictly henselian local ring by Lemma 154.8. Also colimBshi
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is a filtered colimit of étale B-algebras by Lemma 154.4. Finally, the residue field of
colimBshi is a separable algebraic closure of κ(pB) (details omitted). Hence we conclude
that Bsh = colimBshi , see discussion following Definition 155.3. Similarly, we have
Dsh = colimDsh

i . Then we conclude by case (1) because

Dsh = colimDsh
i = colimBshi ⊗Ash Csh = Bsh ⊗Ash Csh

since filtered colimit commute with tensor products.

Case (3). We may replaceA,B,C by their localizations at pA, pB , and pC . Thus (3) follows
from (2).

Since an integral ring map is a filtered colimit of finite ring maps, we see that (4) follows
from (2) as well. �

157. Serre’s criterion for normality

We introduce the following properties of Noetherian rings.

Definition 157.1. Let R be a Noetherian ring. Let k ≥ 0 be an integer.
(1) We sayR has property (Rk) if for every prime p of height≤ k the local ringRp

is regular. We also say that R is regular in codimension ≤ k.
(2) We say R has property (Sk) if for every prime p the local ring Rp has depth at

least min{k, dim(Rp)}.
(3) Let M be a finite R-module. We say M has property (Sk) if for every prime p

the module Mp has depth at least min{k, dim(Supp(Mp))}.

Any Noetherian ring has property (S0) and so does any finite module over it. Our con-
vention that the depth of the zero module is∞ (see Section 72) and the dimension of the
empty set is−∞ (see Topology, Section 10) guarantees that the zero module has property
(Sk) for all k.

Lemma 157.2. LetR be a Noetherian ring. LetM be a finiteR-module. The following
are equivalent:

(1) M has no embedded associated prime, and
(2) M has property (S1).

Proof. Let p be an embedded associated prime ofM . Then there exists another asso-
ciated prime q of M such that p ⊃ q. In particular this implies that dim(Supp(Mp)) ≥ 1
(since q is in the support as well). On the other hand pRp is associated toMp (Lemma 63.15)
and hence depth(Mp) = 0 (see Lemma 63.18). In other words (S1) does not hold. Con-
versely, if (S1) does not hold then there exists a prime p such that dim(Supp(Mp)) ≥ 1
and depth(Mp) = 0. Since depth(Mp) = 0, we see that p ∈ Ass(M) by the two Lemmas
63.15 and 63.18. Since dim(Supp(Mp)) ≥ 1, there is a prime q ∈ Supp(M) with q ⊂ p,
q 6= p. We can take such a q that is minimal in Supp(M). Then by Proposition 63.6 we
have q ∈ Ass(M) and hence p is an embedded associated prime. �

Lemma 157.3. Let R be a Noetherian ring. The following are equivalent:
(1) R is reduced, and
(2) R has properties (R0) and (S1).

Proof. Suppose that R is reduced. Then Rp is a field for every minimal prime p
of R, according to Lemma 25.1. Hence we have (R0). Let p be a prime of height ≥ 1.
Then A = Rp is a reduced local ring of dimension ≥ 1. Hence its maximal ideal m is not
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an associated prime since this would mean there exists an x ∈ m with annihilator m so
x2 = 0. Hence the depth of A = Rp is at least one, by Lemma 63.9. This shows that (S1)
holds.

Conversely, assume that R satisfies (R0) and (S1). If p is a minimal prime of R, then Rp

is a field by (R0), and hence is reduced. If p is not minimal, then we see thatRp has depth
≥ 1 by (S1) and we conclude there exists an element t ∈ pRp such that Rp → Rp[1/t]
is injective. Now Rp[1/t] is contained in the product of its localizations at prime ideals,
see Lemma 23.1. This implies that Rp is a subring of a product of localizations of R at
q ⊃ p with t 6∈ q. Since theses primes have smaller height by induction on the height we
conclude that R is reduced. �

Lemma 157.4 (Serre’s criterion for normality). Let R be a Noetherian ring. The fol-
lowing are equivalent:

(1) R is a normal ring, and
(2) R has properties (R1) and (S2).

Proof. Proof of (1)⇒ (2). AssumeR is normal, i.e., all localizationsRp at primes are
normal domains. In particular we see that R has (R0) and (S1) by Lemma 157.3. Hence
it suffices to show that a local Noetherian normal domain R of dimension d has depth
≥ min(2, d) and is regular if d = 1. The assertion if d = 1 follows from Lemma 119.7.

Let R be a local Noetherian normal domain with maximal ideal m and dimension d ≥ 2.
Apply Lemma 119.2 to R. It is clear that R does not fall into cases (1) or (2) of the lemma.
Let R → R′ as in (4) of the lemma. Since R is a domain we have R ⊂ R′. Since m is not
an associated prime of R′ there exists an x ∈ m which is a nonzerodivisor on R′. Then
Rx = R′

x so R and R′ are domains with the same fraction field. But finiteness of R ⊂ R′

implies every element ofR′ is integral overR (Lemma 36.3) and we conclude thatR = R′

as R is normal. This means (4) does not happen. Thus we get the remaining possibility
(3), i.e., depth(R) ≥ 2 as desired.

Proof of (2)⇒ (1). Assume R satisfies (R1) and (S2). By Lemma 157.3 we conclude that
R is reduced. Hence it suffices to show that if R is a reduced local Noetherian ring of
dimension d satisfying (S2) and (R1) then R is a normal domain. If d = 0, the result is
clear. If d = 1, then the result follows from Lemma 119.7.

Let R be a reduced local Noetherian ring with maximal ideal m and dimension d ≥ 2
which satisfies (R1) and (S2). By Lemma 37.16 it suffices to show that R is integrally
closed in its total ring of fractions Q(R). Pick x ∈ Q(R) which is integral over R. Then
R′ = R[x] is a finite ring extension of R (Lemma 36.5). Because dim(Rp) < d for every
nonmaximal prime p ⊂ R we have Rp = R′

p by induction. Hence the support of R′/R is
{m}. It follows that R′/R is annihilated by a power of m (Lemma 62.4). By Lemma 119.2
this contradicts the assumption that the depth of R is ≥ 2 = min(2, d) and the proof is
complete. �

Lemma 157.5. A regular ring is normal.

Proof. Let R be a regular ring. By Lemma 157.4 it suffices to prove that R is (R1)
and (S2). As a regular local ring is Cohen-Macaulay, see Lemma 106.3, it is clear thatR is
(S2). Property (R1) is immediate. �

Lemma 157.6. Let R be a Noetherian normal domain with fraction field K. Then
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(1) for any nonzero a ∈ R the quotient R/aR has no embedded primes, and all its
associated primes have height 1

(2)
R =

⋂
height(p)=1

Rp

(3) For any nonzero x ∈ K the quotientR/(R∩xR) has no embedded primes, and
all its associates primes have height 1.

Proof. By Lemma 157.4 we see that R has (S2). Hence for any nonzero element
a ∈ R we see that R/aR has (S1) (use Lemma 72.6 for example) Hence R/aR has no
embedded primes (Lemma 157.2). We conclude the associated primes ofR/aR are exactly
the minimal primes p over (a), which have height 1 as a is not zero (Lemma 60.11). This
proves (1).

Thus, given b ∈ R we have b ∈ aR if and only if b ∈ aRp for every minimal prime p over
(a) (see Lemma 63.19). These primes all have height 1 as seen above so b/a ∈ R if and
only if b/a ∈ Rp for all height 1 primes. Hence (2) holds.

For (3) write x = a/b. Let p1, . . . , pr be the minimal primes over (ab). These all have
height 1 by the above. Then we see that R ∩ xR =

⋂
i=1,...,r(R ∩ xRpi) by part (2) of

the lemma. Hence R/(R ∩ xR) is a submodule of
⊕
R/(R ∩ xRpi). As Rpi is a discrete

valuation ring (by property (R1) for the Noetherian normal domainR, see Lemma 157.4)
we have xRpi = peii Rpi for some ei ∈ Z. Hence the direct sum is equal to

⊕
ei>0 R/p

(ei)
i ,

see Definition 64.1. By Lemma 64.2 the only associated prime of the module R/p(n) is p.
Hence the set of associate primes of R/(R ∩ xR) is a subset of {pi} and there are no
inclusion relations among them. This proves (3). �

158. Formal smoothness of fields

In this section we show that field extensions are formally smooth if and only if they are
separable. However, we first prove finitely generated field extensions are separable alge-
braic if and only if they are formally unramified.

Lemma 158.1. Let K/k be a finitely generated field extension. The following are
equivalent

(1) K is a finite separable field extension of k,
(2) ΩK/k = 0,
(3) K is formally unramified over k,
(4) K is unramified over k,
(5) K is formally étale over k,
(6) K is étale over k.

Proof. The equivalence of (2) and (3) is Lemma 148.2. By Lemma 143.4 we see that
(1) is equivalent to (6). Property (6) implies (5) and (4) which both in turn imply (3)
(Lemmas 150.2, 151.3, and 151.2). Thus it suffices to show that (2) implies (1). Choose a
finitely generated k-subalgebra A ⊂ K such that K is the fraction field of the domain A.
Set S = A \ {0}. Since 0 = ΩK/k = S−1ΩA/k (Lemma 131.8) and since ΩA/k is finitely
generated (Lemma 131.16), we can replaceA by a localizationAf to reduce to the case that
ΩA/k = 0 (details omitted). Then A is unramified over k, hence K/k is finite separable
for example by Lemma 151.5 applied with q = (0). �
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Lemma 158.2. Let k be a perfect field of characteristic p > 0. LetK/k be an extension.
Let a ∈ K. Then da = 0 in ΩK/k if and only if a is a pth power.

Proof. By Lemma 131.5 we see that there exists a subfield k ⊂ L ⊂ K such that
L/k is a finitely generated field extension and such that da is zero in ΩL/k. Hence we may
assume that K is a finitely generated field extension of k.
Choose a transcendence basisx1, . . . , xr ∈ K such thatK is finite separable over k(x1, . . . , xr).
This is possible by the definitions, see Definitions 45.1 and 42.1. We remark that the result
holds for the purely transcendental subfield k(x1, . . . , xr) ⊂ K. Namely,

Ωk(x1,...,xr)/k =
⊕r

i=1
k(x1, . . . , xr)dxi

and any rational function all of whose partial derivatives are zero is a pth power. More-
over, we also have

ΩK/k =
⊕r

i=1
Kdxi

since k(x1, . . . , xr) ⊂ K is finite separable (computation omitted). Suppose a ∈ K is an
element such that da = 0 in the module of differentials. By our choice of xi we see that
the minimal polynomial P (T ) ∈ k(x1, . . . , xr)[T ] of a is separable. Write

P (T ) = T d +
∑d

i=1
aiT

d−i

and hence
0 = dP (a) =

∑d

i=1
ad−idai

in ΩK/k. By the description of ΩK/k above and the fact that P was the minimal polyno-
mial of a, we see that this implies dai = 0. Hence ai = bpi for each i. Therefore by Fields,
Lemma 28.2 we see that a is a pth power. �

Lemma 158.3. Let k be a field of characteristic p > 0. Let a1, . . . , an ∈ k be ele-
ments such that da1, . . . , dan are linearly independent in Ωk/Fp . Then the field extension
k(a1/p

1 , . . . , a
1/p
n ) has degree pn over k.

Proof. By induction on n. If n = 1 the result is Lemma 158.2. For the induction
step, suppose that k(a1/p

1 , . . . , a
1/p
n−1) has degree pn−1 over k. We have to show that an

does not map to a pth power in k(a1/p
1 , . . . , a

1/p
n−1). If it does then we can write

an =
(∑

I=(i1,...,in−1), 0≤ij≤p−1
λIa

i1/p
1 . . . a

in−1/p
n−1

)p
=
∑

I=(i1,...,in−1), 0≤ij≤p−1
λpIa

i1
1 . . . a

in−1
n−1

Applying d we see that dan is linearly dependent on dai, i < n. This is a contradiction.
�

Lemma 158.4. Let k be a field of characteristic p > 0. The following are equivalent:
(1) the field extension K/k is separable (see Definition 42.1), and
(2) the map K ⊗k Ωk/Fp → ΩK/Fp is injective.

Proof. Write K as a directed colimit K = colimiKi of finitely generated field ex-
tensions Ki/k. By definition K is separable if and only if each Ki is separable over k,
and by Lemma 131.5 we see that K ⊗k Ωk/Fp → ΩK/Fp is injective if and only if each
Ki ⊗k Ωk/Fp → ΩKi/Fp is injective. Hence we may assume that K/k is a finitely gener-
ated field extension.
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AssumeK/k is a finitely generated field extension which is separable. Choosex1, . . . , xr+1 ∈
K as in Lemma 42.3. In this case there exists an irreducible polynomialG(X1, . . . , Xr+1) ∈
k[X1, . . . , Xr+1] such that G(x1, . . . , xr+1) = 0 and such that ∂G/∂Xr+1 is not identi-
cally zero. MoreoverK is the field of fractions of the domain. S = K[X1, . . . , Xr+1]/(G).
Write

G =
∑

aIX
I , XI = Xi1

1 . . . X
ir+1
r+1 .

Using the presentation of S above we see that

ΩS/Fp =
S ⊗k Ωk ⊕

⊕
i=1,...,r+1 SdXi

〈
∑
XIdaI +

∑
∂G/∂XidXi〉

Since ΩK/Fp is the localization of the S-module ΩS/Fp (see Lemma 131.8) we conclude
that

ΩK/Fp =
K ⊗k Ωk ⊕

⊕
i=1,...,r+1 KdXi

〈
∑
XIdaI +

∑
∂G/∂XidXi〉

Now, since the polynomial ∂G/∂Xr+1 is not identically zero we conclude that the map
K ⊗k Ωk/Fp → ΩS/Fp is injective as desired.
Assume K/k is a finitely generated field extension and that K ⊗k Ωk/Fp → ΩK/Fp is
injective. (This part of the proof is the same as the argument proving Lemma 44.1.) Let
x1, . . . , xr be a transcendence basis of K over k such that the degree of inseparability of
the finite extension k(x1, . . . , xr) ⊂ K is minimal. If K is separable over k(x1, . . . , xr)
then we win. Assume this is not the case to get a contradiction. Then there exists an
element α ∈ K which is not separable over k(x1, . . . , xr). Let P (T ) ∈ k(x1, . . . , xr)[T ]
be its minimal polynomial. Because α is not separable actually P is a polynomial in T p.
Clear denominators to get an irreducible polynomial

G(X1, . . . , Xr, T ) =
∑

aI,iX
IT i ∈ k[X1, . . . , Xr, T ]

such that G(x1, . . . , xr, α) = 0 in L. Note that this means k[X1, . . . , Xr, T ]/(G) ⊂
L. We may assume that for some pair (I0, i0) the coefficient aI0,i0 = 1. We claim that
dG/dXi is not identically zero for at least one i. Namely, if this is not the case, then G is
actually a polynomial in Xp

1 , . . . , X
p
r , T

p. Then this means that∑
(I,i)6=(I0,i0)

xIαidaI,i

is zero in ΩK/Fp . Note that there is no k-linear relation among the elements

{xIαi | aI,i 6= 0 and (I, i) 6= (I0, i0)}
of K. Hence the assumption that K ⊗k Ωk/Fp → ΩK/Fp is injective this implies that
daI,i = 0 in Ωk/Fp for all (I, i). By Lemma 158.2 we see that each aI,i is a pth power,
which implies that G is a pth power contradicting the irreducibility of G. Thus, after
renumbering, we may assume that dG/dX1 is not zero. Then we see that x1 is separably
algebraic over k(x2, . . . , xr, α), and that x2, . . . , xr, α is a transcendence basis ofL over k.
This means that the degree of inseparability of the finite extension k(x2, . . . , xr, α) ⊂ L
is less than the degree of inseparability of the finite extension k(x1, . . . , xr) ⊂ L, which
is a contradiction. �

Lemma 158.5. Let K/k be an extension of fields. If K is formally smooth over k,
then K is a separable extension of k.

Proof. Assume K is formally smooth over k. By Lemma 138.9 we see that K ⊗k
Ωk/Z → ΩK/Z is injective. Hence K is separable over k by Lemma 158.4. �
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Lemma 158.6. Let K/k be an extension of fields. Then K is formally smooth over k
if and only if H1(LK/k) = 0.

Proof. This follows from Proposition 138.8 and the fact that a vector spaces is free
(hence projective). �

Lemma 158.7. Let K/k be an extension of fields.
(1) If K is purely transcendental over k, then K is formally smooth over k.
(2) If K is separable algebraic over k, then K is formally smooth over k.
(3) If K is separable over k, then K is formally smooth over k.

Proof. For (1) write K = k(xj ; j ∈ J). Suppose that A is a k-algebra, and I ⊂ A is
an ideal of square zero. Let ϕ : K → A/I be a k-algebra map. Let aj ∈ A be an element
such that aj mod I = ϕ(xj). Then it is easy to see that there is a unique k-algebra map
K → A which maps xj to aj and which reduces to ϕ mod I . Hence k ⊂ K is formally
smooth.
In case (2) we see that k ⊂ K is a colimit of étale ring extensions. An étale ring map is
formally étale (Lemma 150.2). Hence this case follows from Lemma 150.3 and the trivial
observation that a formally étale ring map is formally smooth.
In case (3), write K = colimKi as the filtered colimit of its finitely generated sub k-
extensions. By Definition 42.1 eachKi is separable algebraic over a purely transcendental
extension of k. Hence Ki/k is formally smooth by cases (1) and (2) and Lemma 138.3.
Thus H1(LKi/k) = 0 by Lemma 158.6. Hence H1(LK/k) = 0 by Lemma 134.9. Hence
K/k is formally smooth by Lemma 158.6 again. �

Lemma 158.8. Let k be a field.
(1) If the characteristic of k is zero, then any extension field of k is formally smooth

over k.
(2) If the characteristic of k is p > 0, then K/k is formally smooth if and only if it

is a separable field extension.

Proof. Combine Lemmas 158.5 and 158.7. �

Here we put together all the different characterizations of separable field extensions.

Proposition 158.9. Let K/k be a field extension. If the characteristic of k is zero
then

(1) K is separable over k,
(2) K is geometrically reduced over k,
(3) K is formally smooth over k,
(4) H1(LK/k) = 0, and
(5) the map K ⊗k Ωk/Z → ΩK/Z is injective.

If the characteristic of k is p > 0, then the following are equivalent:
(1) K is separable over k,
(2) the ring K ⊗k k1/p is reduced,
(3) K is geometrically reduced over k,
(4) the map K ⊗k Ωk/Fp → ΩK/Fp is injective,
(5) H1(LK/k) = 0, and
(6) K is formally smooth over k.

Proof. This is a combination of Lemmas 44.1, 158.8 158.5, and 158.4. �
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Here is yet another characterization of finitely generated separable field extensions.

Lemma 158.10. Let K/k be a finitely generated field extension. Then K is separable
over k if and only if K is the localization of a smooth k-algebra.

Proof. Choose a finite type k-algebra R which is a domain whose fraction field is
K. Lemma 140.9 says that k → R is smooth at (0) if and only if K/k is separable. This
proves the lemma. �

Lemma 158.11. Let K/k be a field extension. Then K is a filtered colimit of global
complete intersection algebras over k. If K/k is separable, then K is a filtered colimit of
smooth algebras over k.

Proof. Suppose that E ⊂ K is a finite subset. It suffices to show that there exists a
k subalgebra A ⊂ K which contains E and which is a global complete intersection (resp.
smooth) over k. The separable/smooth case follows from Lemma 158.10. In general let
L ⊂ K be the subfield generated by E. Pick a transcendence basis x1, . . . , xd ∈ L over
k. The extension L/k(x1, . . . , xd) is finite. Say L = k(x1, . . . , xd)[y1, . . . , yr]. Pick in-
ductively polynomials Pi ∈ k(x1, . . . , xd)[Y1, . . . , Yr] such that Pi = Pi(Y1, . . . , Yi) is
monic in Yi over k(x1, . . . , xd)[Y1, . . . , Yi−1] and maps to the minimum polynomial of yi
in k(x1, . . . , xd)[y1, . . . , yi−1][Yi]. Then it is clear that P1, . . . , Pr is a regular sequence
in k(x1, . . . , xr)[Y1, . . . , Yr] and that L = k(x1, . . . , xr)[Y1, . . . , Yr]/(P1, . . . , Pr). If
h ∈ k[x1, . . . , xd] is a polynomial such that Pi ∈ k[x1, . . . , xd, 1/h, Y1, . . . , Yr], then
we see that P1, . . . , Pr is a regular sequence in k[x1, . . . , xd, 1/h, Y1, . . . , Yr] and A =
k[x1, . . . , xd, 1/h, Y1, . . . , Yr]/(P1, . . . , Pr) is a global complete intersection. After ad-
justing our choice of h we may assume E ⊂ A and we win. �

159. Constructing flat ring maps

The following lemma is occasionally useful.

Lemma 159.1. Let (R,m, k) be a local ring. LetK/k be a field extension. There exists
a local ring (R′,m′, k′), a flat local ring map R → R′ such that m′ = mR′ and such that
k′ is isomorphic to K as an extension of k.

Proof. Suppose that k′ = k(α) is a monogenic extension of k. Then k′ is the residue
field of a flat local extension R ⊂ R′ as in the lemma. Namely, if α is transcendental over
k, then we let R′ be the localization of R[x] at the prime mR[x]. If α is algebraic with
minimal polynomial T d +

∑
λiT

d−i, then we let R′ = R[T ]/(T d +
∑
λiT

d−i).
Consider the collection of triples (k′, R → R′, φ), where k ⊂ k′ ⊂ K is a subfield,
R → R′ is a local ring map as in the lemma, and φ : R′ → k′ induces an isomor-
phism R′/mR′ ∼= k′ of k-extensions. These form a “big” category C with morphisms
(k1, R1, φ1)→ (k2, R2, φ2) given by ring maps ψ : R1 → R2 such that

R1

ψ

��

φ1

// k1 // K

R2
φ2 // k2 // K

commutes. This implies that k1 ⊂ k2.
Suppose that I is a directed set, and ((Ri, ki, φi), ψii′) is a system over I , see Categories,
Section 21. In this case we can consider

R′ = colimi∈I Ri
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This is a local ring with maximal ideal mR′, and residue field k′ =
⋃
i∈I ki. Moreover,

the ring map R → R′ is flat as it is a colimit of flat maps (and tensor products commute
with directed colimits). Hence we see that (R′, k′, φ′) is an “upper bound” for the system.
An almost trivial application of Zorn’s Lemma would finish the proof if C was a set, but it
isn’t. (Actually, you can make this work by finding a reasonable bound on the cardinals
of the local rings occurring.) To get around this problem we choose a well ordering on
K. For x ∈ K we let K(x) be the subfield of K generated by all elements of K which
are ≤ x. By transfinite recursion on x ∈ K we will produce ring maps R ⊂ R(x) as in
the lemma with residue field extension K(x)/k. Moreover, by construction we will have
thatR(x) will containR(y) for all y ≤ x. Namely, if x has a predecessor x′, thenK(x) =
K(x′)[x] and hence we can let R(x′) ⊂ R(x) be the local ring extension constructed
in the first paragraph of the proof. If x does not have a predecessor, then we first set
R′(x) = colimx′<xR(x′) as in the third paragraph of the proof. The residue field of
R′(x) is K ′(x) =

⋃
x′<xK(x′). Since K(x) = K ′(x)[x] we see that we can use the

construction of the first paragraph of the proof to produce R′(x) ⊂ R(x). This finishes
the proof of the lemma. �

Lemma 159.2. Let (R,m, k) be a local ring. If k ⊂ K is a separable algebraic exten-
sion, then there exists a directed set I and a system of finite étale extensionsR ⊂ Ri, i ∈ I
of local rings such that R′ = colimRi has residue field K (as extension of k).

Proof. Let R ⊂ R′ be the extension constructed in the proof of Lemma 159.1. By
construction R′ = colimα∈ARα where A is a well-ordered set and the transition maps
Rα → Rα+1 are finite étale andRα = colimβ<αRβ if α is not a successor. We will prove
the result by transfinite induction.
Suppose the result holds for Rα, i.e., Rα = colimRi with Ri finite étale over R. Since
Rα → Rα+1 is finite étale there exists an i and a finite étale extension Ri → Ri,1 such
thatRα+1 = Rα⊗Ri Ri,1. ThusRα+1 = colimi′≥iRi′ ⊗Ri Ri,1 and the result holds for
α+ 1. Suppose α is not a successor and the result holds for Rβ for all β < α. Since every
finite subset E ⊂ Rα is contained in Rβ for some β < α and we see that E is contained
in a finite étale subextension by assumption. Thus the result holds for Rα. �

Lemma 159.3. Let R be a ring. Let p ⊂ R be a prime and let L/κ(p) be a finite
extension of fields. Then there exists a finite free ring map R → S such that q = pS is
prime and κ(q)/κ(p) is isomorphic to the given extension L/κ(p).

Proof. By induction of the degree of κ(p) ⊂ L. If the degree is 1, then we take
R = S. In general, if there exists a sub extension κ(p) ⊂ L′ ⊂ L then we win by
induction on the degree (by first constructing R ⊂ S′ corresponding to L′/κ(p) and
then construction S′ ⊂ S corresponding to L/L′). Thus we may assume that L ⊃ κ(p) is
generated by a single elementα ∈ L. LetXd+

∑
i<d aiX

i be the minimal polynomial ofα
overκ(p), so ai ∈ κ(p). We may write ai as the image of fi/g for some fi, g ∈ R and g 6∈ p.
After replacingα by gα (and correspondingly replacing ai by gd−iai) we may assume that
ai is the image of some fi ∈ R. Then we simply take S = R[x]/(xd +

∑
fix

i). �

Lemma 159.4. Let A be a ring. Let κ = max(|A|,ℵ0). Then every flat A-algebra B
is the filtered colimit of its flat A-subalgebras B′ ⊂ B of cardinality |B′| ≤ κ. (Observe
that B′ is faithfully flat over A if B is faithfully flat over A.)

Proof. If B has cardinality ≤ κ then this is true. Let E ⊂ B be an A-subalgebra
with |E| ≤ κ. We will show that E is contained in a flat A-subalgebra B′ with |B′| ≤ κ.
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The lemma follows because (a) every finite subset of B is contained in an A-subalgebra of
cardinality at most κ and (b) every pair of A-subalgebras of B of cardinality at most κ is
contained in an A-subalgebra of cardinality at most κ. Details omitted.

We will inductively construct a sequence of A-subalgebras

E = E0 ⊂ E1 ⊂ E2 ⊂ . . .

each having cardinality≤ κ and we will show that B′ =
⋃
Ek is flat over A to finish the

proof.

The construction is as follows. Set E0 = E. Given Ek for k ≥ 0 we consider the set Sk
of relations between elements of Ek with coefficients in A. Thus an element s ∈ Sk
is given by an integer n ≥ 1 and a1, . . . , an ∈ A, and e1, . . . , en ∈ Ek such that∑
aiei = 0 in Ek. The flatness of A → B implies by Lemma 39.11 that for every

s = (n, a1, . . . , an, e1, . . . , en) ∈ Sk we may choose

(ms, bs,1, . . . , bs,ms , as,11, . . . , as,nms)

where ms ≥ 0 is an integer, bs,j ∈ B, as,ij ∈ A, and

ei =
∑

j
as,ijbs,j ,∀i, and 0 =

∑
i
aias,ij ,∀j.

Given these choicse, we let Ek+1 ⊂ B be the A-subalgebra generated by
(1) Ek and
(2) the elements bs,1, . . . , bs,ms for every s ∈ Sk.

Some set theory (omitted) shows that Ek+1 has at most cardinality κ (this uses that we
inductively know |Ek| ≤ κ and consequently the cardinality of Sk is also at most κ).

To show that B′ =
⋃
Ek is flat over A we consider a relation

∑
i=1,...,n aib

′
i = 0 in B′

with coefficients in A. Choose k large enough so that b′
i ∈ Ek for i = 1, . . . , n. Then

(n, a1, . . . , an, b
′
1, . . . , b

′
n) ∈ Sk and hence we see that the relation is trivial in Ek+1 and

a fortiori in B′. Thus A→ B′ is flat by Lemma 39.11. �

160. The Cohen structure theorem

Here is a fundamental notion in commutative algebra.

Definition 160.1. Let (R,m) be a local ring. We sayR is a complete local ring if the
canonical map

R −→ limnR/m
n

to the completion of R with respect to m is an isomorphism13.

Note that an Artinian local ringR is a complete local ring becausemnR = 0 for somen > 0.
In this section we mostly focus on Noetherian complete local rings.

Lemma 160.2. Let R be a Noetherian complete local ring. Any quotient of R is also
a Noetherian complete local ring. Given a finite ring map R → S , then S is a product of
Noetherian complete local rings.

13This includes the condition that
⋂

mn = (0); in some texts this may be indicated by saying that R is
complete and separated. Warning: It can happen that the completion limnR/mn of a local ring is non-complete,
see Examples, Lemma 7.1. This does not happen when m is finitely generated, see Lemma 96.3 in which case the
completion is Noetherian, see Lemma 97.5.



906 10. COMMUTATIVE ALGEBRA

Proof. The ring S is Noetherian by Lemma 31.1. As an R-module S is complete by
Lemma 97.1. Hence S is the product of the completions at its maximal ideals by Lemma
97.8. �

Lemma 160.3. Let (R,m) be a complete local ring. If m is a finitely generated ideal
then R is Noetherian.

Proof. See Lemma 97.5. �

Definition 160.4. Let (R,m) be a complete local ring. A subring Λ ⊂ R is called a
coefficient ring if the following conditions hold:

(1) Λ is a complete local ring with maximal ideal Λ ∩m,
(2) the residue field of Λ maps isomorphically to the residue field of R, and
(3) Λ ∩m = pΛ, where p is the characteristic of the residue field of R.

Let us make some remarks on this definition. We split the discussion into the following
cases:

(1) The local ring R contains a field. This happens if either Q ⊂ R, or pR = 0
where p is the characteristic of R/m. In this case a coefficient ring Λ is a field
contained in R which maps isomorphically to R/m.

(2) The characteristic of R/m is p > 0 but no power of p is zero in R. In this case Λ
is a complete discrete valuation ring with uniformizer p and residue field R/m.

(3) The characteristic of R/m is p > 0, and for some n > 1 we have pn−1 6= 0,
pn = 0 in R. In this case Λ is an Artinian local ring whose maximal ideal is
generated by p and which has residue field R/m.

The complete discrete valuation rings with uniformizer p above play a special role and we
baptize them as follows.

Definition 160.5. A Cohen ring is a complete discrete valuation ring with uni-
formizer p a prime number.

Lemma 160.6. Let p be a prime number. Let k be a field of characteristic p. There
exists a Cohen ring Λ with Λ/pΛ ∼= k.

Proof. First note that the p-adic integers Zp form a Cohen ring for Fp. Let k be an
arbitrary field of characteristic p. Let Zp → R be a flat local ring map such that mR = pR
and R/pR = k, see Lemma 159.1. By Lemma 97.5 the completion Λ = R∧ is Noether-
ian. It is a complete Noetherian local ring with maximal ideal (p) as Λ/pΛ = R/pR is
a field (use Lemma 96.3). Since Zp → R → Λ is flat (by Lemma 97.2) we see that p is a
nonzerodivisor in Λ. Hence Λ has dimension ≥ 1 (Lemma 60.13) and we conclude that Λ
is regular of dimension 1, i.e., a discrete valuation ring by Lemma 119.7. We conclude Λ is
a Cohen ring for k. �

Lemma 160.7. Let p > 0 be a prime. Let Λ be a Cohen ring with residue field of
characteristic p. For every n ≥ 1 the ring map

Z/pnZ→ Λ/pnΛ

is formally smooth.

Proof. If n = 1, this follows from Proposition 158.9. For general n we argue by in-
duction on n. Namely, if Z/pnZ→ Λ/pnΛ is formally smooth, then we can apply Lemma
138.12 to the ring map Z/pn+1Z→ Λ/pn+1Λ and the ideal I = (pn) ⊂ Z/pn+1Z. �
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Theorem 160.8 (Cohen structure theorem). Let (R,m) be a complete local ring.
(1) R has a coefficient ring (see Definition 160.4),
(2) if m is a finitely generated ideal, then R is isomorphic to a quotient

Λ[[x1, . . . , xn]]/I
where Λ is either a field or a Cohen ring.

Proof. Let us prove a coefficient ring exists. First we prove this in case the charac-
teristic of the residue field κ is zero. Namely, in this case we will prove by induction on
n > 0 that there exists a section

ϕn : κ −→ R/mn

to the canonical map R/mn → κ = R/m. This is trivial for n = 1. If n > 1, let ϕn−1 be
given. The field extension κ/Q is formally smooth by Proposition 158.9. Hence we can
find the dotted arrow in the following diagram

R/mn−1 R/mnoo

κ

ϕn−1

OO 99

Qoo

OO

This proves the induction step. Putting these maps together

limn ϕn : κ −→ R = limn R/mn

gives a map whose image is the desired coefficient ring.

Next, we prove the existence of a coefficient ring in the case where the characteristic of
the residue field κ is p > 0. Namely, choose a Cohen ring Λ with κ = Λ/pΛ, see Lemma
160.6. In this case we will prove by induction on n > 0 that there exists a map

ϕn : Λ/pnΛ −→ R/mn

whose composition with the reduction map R/mn → κ produces the given isomorphism
Λ/pΛ = κ. This is trivial for n = 1. If n > 1, let ϕn−1 be given. The ring map
Z/pnZ → Λ/pnΛ is formally smooth by Lemma 160.7. Hence we can find the dotted
arrow in the following diagram

R/mn−1 R/mnoo

Λ/pnΛ

ϕn−1

OO 99

Z/pnZoo

OO

This proves the induction step. Putting these maps together

limn ϕn : Λ = limn Λ/pnΛ −→ R = limn R/mn

gives a map whose image is the desired coefficient ring.

The final statement of the theorem follows readily. Namely, if y1, . . . , yn are generators
of the ideal m, then we can use the map Λ→ R just constructed to get a map

Λ[[x1, . . . , xn]] −→ R, xi 7−→ yi.

Since both sides are (x1, . . . , xn)-adically complete this map is surjective by Lemma 96.1
as it is surjective modulo (x1, . . . , xn) by construction. �
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Remark 160.9. If k is a field then the power series ring k[[X1, . . . , Xd]] is a Noether-
ian complete local regular ring of dimension d. If Λ is a Cohen ring then Λ[[X1, . . . , Xd]]
is a complete local Noetherian regular ring of dimension d+1. Hence the Cohen structure
theorem implies that any Noetherian complete local ring is a quotient of a regular local
ring. In particular we see that a Noetherian complete local ring is universally catenary,
see Lemma 105.9 and Lemma 106.3.

Lemma 160.10. Let (R,m) be a Noetherian complete local ring. AssumeR is regular.
(1) If R contains either Fp or Q, then R is isomorphic to a power series ring over

its residue field.
(2) If k is a field and k → R is a ring map inducing an isomorphism k → R/m, then

R is isomorphic as a k-algebra to a power series ring over k.

Proof. In case (1), by the Cohen structure theorem (Theorem 160.8) there exists a
coefficient ring which must be a field mapping isomorphically to the residue field. Thus it
suffices to prove (2). In case (2) we pick f1, . . . , fd ∈ m which map to a basis of m/m2 and
we consider the continuous k-algebra map k[[x1, . . . , xd]]→ R sending xi to fi. As both
source and target are (x1, . . . , xd)-adically complete, this map is surjective by Lemma 96.1.
On the other hand, it has to be injective because otherwise the dimension of R would be
< d by Lemma 60.13. �

Lemma 160.11. Let (R,m) be a Noetherian complete local domain. Then there exists
a R0 ⊂ R with the following properties

(1) R0 is a regular complete local ring,
(2) R0 ⊂ R is finite and induces an isomorphism on residue fields,
(3) R0 is either isomorphic to k[[X1, . . . , Xd]] where k is a field or Λ[[X1, . . . , Xd]]

where Λ is a Cohen ring.

Proof. Let Λ be a coefficient ring of R. Since R is a domain we see that either Λ is a
field or Λ is a Cohen ring.

Case I: Λ = k is a field. Let d = dim(R). Choose x1, . . . , xd ∈ m which generate an ideal
of definition I ⊂ R. (See Section 60.) By Lemma 96.9 we see thatR is I-adically complete
as well. Consider the map R0 = k[[X1, . . . , Xd]] → R which maps Xi to xi. Note that
R0 is complete with respect to the ideal I0 = (X1, . . . , Xd), and that R/I0R ∼= R/IR is
finite over k = R0/I0 (because dim(R/I) = 0, see Section 60.) Hence we conclude that
R0 → R is finite by Lemma 96.12. Since dim(R) = dim(R0) this implies that R0 → R
is injective (see Lemma 112.3), and the lemma is proved.

Case II: Λ is a Cohen ring. Let d + 1 = dim(R). Let p > 0 be the characteristic of
the residue field k. As R is a domain we see that p is a nonzerodivisor in R. Hence
dim(R/pR) = d, see Lemma 60.13. Choose x1, . . . , xd ∈ R which generate an ideal
of definition inR/pR. Then I = (p, x1, . . . , xd) is an ideal of definition ofR. By Lemma
96.9 we see thatR is I-adically complete as well. Consider the mapR0 = Λ[[X1, . . . , Xd]]→
Rwhich mapsXi toxi. Note thatR0 is complete with respect to the ideal I0 = (p,X1, . . . , Xd),
and that R/I0R ∼= R/IR is finite over k = R0/I0 (because dim(R/I) = 0, see Section
60.) Hence we conclude thatR0 → R is finite by Lemma 96.12. Since dim(R) = dim(R0)
this implies that R0 → R is injective (see Lemma 112.3), and the lemma is proved. �

161. Japanese rings

In this section we begin to discuss finiteness of integral closure.
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Definition 161.1. Let R be a domain with field of fractions K.
(1) We say R is N-1 if the integral closure of R in K is a finite R-module.
(2) We sayR is N-2 or Japanese if for any finite extensionL/K of fields the integral

closure of R in L is finite over R.

The main interest in these notions is for Noetherian rings, but here is a non-Noetherian
example.

Example 161.2. Let k be a field. The domain R = k[x1, x2, x3, . . .] is N-2, but not
Noetherian. The reason is the following. Suppose that R ⊂ L and the field L is a finite
extension of the fraction field ofR. Then there exists an integern such thatL comes from a
finite extensionL0/k(x1, . . . , xn) by adjoining the (transcendental) elements xn+1, xn+2,
etc. Let S0 be the integral closure of k[x1, . . . , xn] in L0. By Proposition 162.16 below it
is true that S0 is finite over k[x1, . . . , xn]. Moreover, the integral closure of R in L is
S = S0[xn+1, xn+2, . . .] (use Lemma 37.8) and hence finite over R. The same argument
works for R = Z[x1, x2, x3, . . .].

Lemma 161.3. Let R be a domain. If R is N-1 then so is any localization of R. Same
for N-2.

Proof. These statements hold because taking integral closure commutes with local-
ization, see Lemma 36.11. �

Lemma 161.4. LetR be a domain. Let f1, . . . , fn ∈ R generate the unit ideal. If each
domain Rfi is N-1 then so is R. Same for N-2.

Proof. Assume Rfi is N-2 (or N-1). Let L be a finite extension of the fraction field
of R (equal to the fraction field in the N-1 case). Let S be the integral closure of R in L.
By Lemma 36.11 we see that Sfi is the integral closure ofRfi inL. Hence Sfi is finite over
Rfi by assumption. Thus S is finite over R by Lemma 23.2. �

Lemma 161.5. Let R be a domain. Let R ⊂ S be a quasi-finite extension of domains
(for example finite). Assume R is N-2 and Noetherian. Then S is N-2.

Proof. Let L/K be the induced extension of fraction fields. Note that this is a finite
field extension (for example by Lemma 122.2 (2) applied to the fibre S ⊗R K , and the
definition of a quasi-finite ring map). Let S′ be the integral closure of R in S. Then S′

is contained in the integral closure of R in L which is finite over R by assumption. As
R is Noetherian this implies S′ is finite over R. By Lemma 123.14 there exist elements
g1, . . . , gn ∈ S′ such that S′

gi
∼= Sgi and such that g1, . . . , gn generate the unit ideal in S.

Hence it suffices to show that S′ is N-2 by Lemmas 161.3 and 161.4. Thus we have reduced
to the case where S is finite over R.
Assume R ⊂ S with hypotheses as in the lemma and moreover that S is finite over R.
Let M be a finite field extension of the fraction field of S. Then M is also a finite field
extension ofK and we conclude that the integral closure T ofR inM is finite overR. By
Lemma 36.16 we see that T is also the integral closure of S in M and we win by Lemma
36.15. �

Lemma 161.6. Let R be a Noetherian domain. If R[z, z−1] is N-1, then so is R.

Proof. Let R′ be the integral closure of R in its field of fractions K. Let S′ be the
integral closure of R[z, z−1] in its field of fractions. Clearly R′ ⊂ S′. Since K[z, z−1] is
a normal domain we see that S′ ⊂ K[z, z−1]. Suppose that f1, . . . , fn ∈ S′ generate S′
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as R[z, z−1]-module. Say fi =
∑
aijz

j (finite sum), with aij ∈ K. For any x ∈ R′ we
can write

x =
∑

hifi

withhi ∈ R[z, z−1]. Thus we see thatR′ is contained in the finiteR-submodule
∑
Raij ⊂

K. Since R is Noetherian we conclude that R′ is a finite R-module. �

Lemma 161.7. Let R be a Noetherian domain, and let R ⊂ S be a finite extension of
domains. If S is N-1, then so is R. If S is N-2, then so is R.

Proof. Omitted. (Hint: Integral closures of R in extension fields are contained in
integral closures of S in extension fields.) �

Lemma 161.8. LetR be a Noetherian normal domain with fraction fieldK. Let L/K
be a finite separable field extension. Then the integral closure of R in L is finite over R.

Proof. Consider the trace pairing (Fields, Definition 20.6)
L× L −→ K, (x, y) 7−→ 〈x, y〉 := TraceL/K(xy).

Since L/K is separable this is nondegenerate (Fields, Lemma 20.7). Moreover, if x ∈ L is
integral over R, then TraceL/K(x) is in R. This is true because the minimal polynomial
of x over K has coefficients in R (Lemma 38.6) and because TraceL/K(x) is an integer
multiple of one of these coefficients (Fields, Lemma 20.3). Pick x1, . . . , xn ∈ L which
are integral over R and which form a K-basis of L. Then the integral closure S ⊂ L is
contained in the R-module

M = {y ∈ L | 〈xi, y〉 ∈ R, i = 1, . . . , n}
By linear algebra we see that M ∼= R⊕n as an R-module. Hence S ⊂ R⊕n is a finitely
generated R-module as R is Noetherian. �

Example 161.9. Lemma 161.8 does not work if the ring is not Noetherian. For ex-
ample consider the action of G = {+1,−1} on A = C[x1, x2, x3, . . .] where −1 acts by
mapping xi to −xi. The invariant ring R = AG is the C-algebra generated by all xixj .
Hence R ⊂ A is not finite. But R is a normal domain with fraction field K = LG the
G-invariants in the fraction field L of A. And clearly A is the integral closure of R in L.

The following lemma can sometimes be used as a substitute for Lemma 161.8 in case of
purely inseparable extensions.

Lemma 161.10. Let R be a Noetherian normal domain with fraction field K of char-
acteristic p > 0. Let a ∈ K be an element such that there exists a derivation D : R → R
with D(a) 6= 0. Then the integral closure of R in L = K[x]/(xp − a) is finite over R.

Proof. After replacing x by fx and a by fpa for some f ∈ Rwe may assume a ∈ R.
Hence also D(a) ∈ R. We will show by induction on i ≤ p− 1 that if

y = a0 + a1x+ . . .+ aix
i, aj ∈ K

is integral over R, then D(a)iaj ∈ R. Thus the integral closure is contained in the finite
R-module with basis D(a)−p+1xj , j = 0, . . . , p − 1. Since R is Noetherian this proves
the lemma.
If i = 0, then y = a0 is integral over R if and only if a0 ∈ R and the statement is true.
Suppose the statement holds for some i < p− 1 and suppose that

y = a0 + a1x+ . . .+ ai+1x
i+1, aj ∈ K
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is integral over R. Then

yp = ap0 + ap1a+ . . .+ api+1a
i+1

is an element of R (as it is in K and integral over R). Applying D we obtain

(ap1 + 2ap2a+ . . .+ (i+ 1)api+1a
i)D(a)

is in R. Hence it follows that

D(a)a1 + 2D(a)a2x+ . . .+ (i+ 1)D(a)ai+1x
i

is integral over R. By induction we find D(a)i+1aj ∈ R for j = 1, . . . , i + 1. (Here
we use that 1, . . . , i + 1 are invertible.) Hence D(a)i+1a0 is also in R because it is the
difference of y and

∑
j>0 D(a)i+1ajx

j which are integral overR (since x is integral over
R as a ∈ R). �

Lemma 161.11. A Noetherian domain whose fraction field has characteristic zero is
N-1 if and only if it is N-2 (i.e., Japanese).

Proof. This is clear from Lemma 161.8 since every field extension in characteristic
zero is separable. �

Lemma 161.12. LetR be a Noetherian domain with fraction fieldK of characteristic
p > 0. ThenR is N-2 if and only if for every finite purely inseparable extension L/K the
integral closure of R in L is finite over R.

Proof. Assume the integral closure of R in every finite purely inseparable field ex-
tension of K is finite. Let L/K be any finite extension. We have to show the integral
closure ofR inL is finite overR. Choose a finite normal field extensionM/K containing
L. As R is Noetherian it suffices to show that the integral closure of R in M is finite over
R. By Fields, Lemma 27.3 there exists a subextension M/Minsep/K such that Minsep/K
is purely inseparable, and M/Minsep is separable. By assumption the integral closure R′

of R in Minsep is finite over R. By Lemma 161.8 the integral closure R′′ of R′ in M is
finite overR′. ThenR′′ is finite overR by Lemma 7.3. SinceR′′ is also the integral closure
of R in M (see Lemma 36.16) we win. �

Lemma 161.13. Let R be a Noetherian domain. If R is N-1 then R[x] is N-1. If R is
N-2 then R[x] is N-2.

Proof. Assume R is N-1. Let R′ be the integral closure of R which is finite over R.
Hence alsoR′[x] is finite overR[x]. The ringR′[x] is normal (see Lemma 37.8), hence N-1.
This proves the first assertion.

For the second assertion, by Lemma 161.7 it suffices to show that R′[x] is N-2. In other
words we may and do assume thatR is a normal N-2 domain. In characteristic zero we are
done by Lemma 161.11. In characteristic p > 0 we have to show that the integral closure of
R[x] is finite in any finite purely inseparable extension ofL/K(x) whereK is the fraction
field of R. There exists a finite purely inseparable field extension L′/K and q = pe such
thatL ⊂ L′(x1/q); some details omitted. AsR[x] is Noetherian it suffices to show that the
integral closure of R[x] in L′(x1/q) is finite over R[x]. And this integral closure is equal
to R′[x1/q] with R ⊂ R′ ⊂ L′ the integral closure of R in L′. Since R is N-2 we see that
R′ is finite over R and hence R′[x1/q] is finite over R[x]. �
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Lemma 161.14. LetR be a Noetherian domain. If there exists an f ∈ R such thatRf
is normal then

U = {p ∈ Spec(R) | Rp is normal}
is open in Spec(R).

Proof. It is clear that the standard openD(f) is contained in U . By Serre’s criterion
Lemma 157.4 we see that p 6∈ U implies that for some q ⊂ p we have either

(1) Case I: depth(Rq) < 2 and dim(Rq) ≥ 2, and
(2) Case II: Rq is not regular and dim(Rq) = 1.

This in particular also means thatRq is not normal, and hence f ∈ q. In case I we see that
depth(Rq) = depth(Rq/fRq)+1. Hence such a prime q is the same thing as an embedded
associated prime of R/fR. In case II q is an associated prime of R/fR of height 1. Thus
there is a finite set E of such primes q (see Lemma 63.5) and

Spec(R) \ U =
⋃

q∈E
V (q)

as desired. �

Lemma 161.15. Let R be a Noetherian domain. Then R is N-1 if and only if the
following two conditions hold

(1) there exists a nonzero f ∈ R such that Rf is normal, and
(2) for every maximal ideal m ⊂ R the local ring Rm is N-1.

Proof. First assume R is N-1. Let R′ be the integral closure of R in its field of frac-
tions K. By assumption we can find x1, . . . , xn in R′ which generate R′ as an R-module.
Since R′ ⊂ K we can find fi ∈ R nonzero such that fixi ∈ R. Then Rf ∼= R′

f where
f = f1 . . . fn. Hence Rf is normal and we have (1). Part (2) follows from Lemma 161.3.

Assume (1) and (2). Let K be the fraction field of R. Suppose that R ⊂ R′ ⊂ K is a finite
extension ofR contained inK. Note thatRf = R′

f sinceRf is already normal. Hence by
Lemma 161.14 the set of primes p′ ∈ Spec(R′) withR′

p′ non-normal is closed in Spec(R′).
Since Spec(R′)→ Spec(R) is closed the image of this set is closed in Spec(R). For such
a ring R′ denote ZR′ ⊂ Spec(R) this image.

Pick a maximal ideal m ⊂ R. Let Rm ⊂ R′
m be the integral closure of the local ring in K.

By assumption this is a finite ring extension. By Lemma 36.11 we can find finitely many
elements x1, . . . , xn ∈ K integral over R such that R′

m is generated by x1, . . . , xn over
Rm. Let R′ = R[x1, . . . , xn] ⊂ K. With this choice it is clear that m 6∈ ZR′ .

As Spec(R) is quasi-compact, the above shows that we can find a finite collection R ⊂
R′
i ⊂ K such that

⋂
ZR′

i
= ∅. Let R′ be the subring of K generated by all of these. It is

finite over R. Also ZR′ = ∅. Namely, every prime p′ lies over a prime p′
i such that (R′

i)p′
i

is normal. This implies that R′
p′ = (R′

i)p′
i

is normal too. Hence R′ is normal, in other
words R′ is the integral closure of R in K. �

Lemma 161.16 (Tate). Let R be a ring. Let x ∈ R. Assume
(1) R is a normal Noetherian domain,
(2) R/xR is a domain and N-2,
(3) R ∼= limnR/x

nR is complete with respect to x.
Then R is N-2.
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Proof. We may assume x 6= 0 since otherwise the lemma is trivial. Let K be the
fraction field ofR. If the characteristic ofK is zero the lemma follows from (1), see Lemma
161.11. Hence we may assume that the characteristic of K is p > 0, and we may apply
Lemma 161.12. Thus given L/K a finite purely inseparable field extension we have to
show that the integral closure S of R in L is finite over R.
Let q be a power of p such that Lq ⊂ K. By enlarging L if necessary we may assume there
exists an element y ∈ L such that yq = x. Since R → S induces a homeomorphism of
spectra (see Lemma 46.7) there is a unique prime ideal q ⊂ S lying over the prime ideal
p = xR. It is clear that

q = {f ∈ S | fq ∈ p} = yS

since yq = x. Observe that Rp is a discrete valuation ring by Lemma 119.7. Then Sq is
Noetherian by Krull-Akizuki (Lemma 119.12). Whereupon we conclude Sq is a discrete
valuation ring by Lemma 119.7 once again. By Lemma 119.10 we see that κ(q)/κ(p) is a
finite field extension. Hence the integral closure S′ ⊂ κ(q) of R/xR is finite over R/xR
by assumption (2). Since S/yS ⊂ S′ this implies that S/yS is finite over R. Note that
S/ynS has a finite filtration whose subquotients are the modules yiS/yi+1S ∼= S/yS.
Hence we see that each S/ynS is finite over R. In particular S/xS is finite over R. Also,
it is clear that

⋂
xnS = (0) since an element in the intersection has qth power contained

in
⋂
xnR = (0) (Lemma 51.4). Thus we may apply Lemma 96.12 to conclude that S is

finite over R, and we win. �

Lemma 161.17. Let R be a ring. If R is Noetherian, a domain, and N-2, then so is
R[[x]].

Proof. Observe thatR[[x]] is Noetherian by Lemma 31.2. LetR′ ⊃ R be the integral
closure of R in its fraction field. Because R is N-2 this is finite over R. Hence R′[[x]] is
finite over R[[x]]. By Lemma 37.9 we see that R′[[x]] is a normal domain. Apply Lemma
161.16 to the element x ∈ R′[[x]] to see that R′[[x]] is N-2. Then Lemma 161.7 shows that
R[[x]] is N-2. �

162. Nagata rings

Here is the definition.

Definition 162.1. Let R be a ring.
(1) We say R is universally Japanese if for any finite type ring map R → S with S

a domain we have that S is N-2 (i.e., Japanese).
(2) We say thatR is a Nagata ring ifR is Noetherian and for every prime ideal p the

ring R/p is N-2.

It is clear that a Noetherian universally Japanese ring is a Nagata ring. It is our goal to
show that a Nagata ring is universally Japanese. This is not obvious at all, and requires
some work. But first, here is a useful lemma.

Lemma 162.2. Let R be a Nagata ring. Let R → S be essentially of finite type with
S reduced. Then the integral closure of R in S is finite over R.

Proof. As S is essentially of finite type overR it is Noetherian and has finitely many
minimal primes q1, . . . , qm, see Lemma 31.6. Since S is reduced we have S ⊂

∏
Sqi and

each Sqi = Ki is a field, see Lemmas 25.4 and 25.1. It suffices to show that the integral
closure A′

i of R in each Ki is finite over R. This is true because R is Noetherian and
A ⊂

∏
A′
i. Let pi ⊂ R be the prime of R corresponding to qi. As S is essentially of finite
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type over R we see that Ki = Sqi = κ(qi) is a finitely generated field extension of κ(pi).
Hence the algebraic closure Li of κ(pi) in Ki is finite over κ(pi), see Fields, Lemma 26.11.
It is clear that A′

i is the integral closure of R/pi in Li, and hence we win by definition of
a Nagata ring. �

Lemma 162.3. Let R be a ring. To check that R is universally Japanese it suffices to
show: If R→ S is of finite type, and S a domain then S is N-1.

Proof. Namely, assume the condition of the lemma. Let R → S be a finite type
ring map with S a domain. Let L be a finite extension of the fraction field of S. Then
there exists a finite ring extension S ⊂ S′ ⊂ L such that L is the fraction field of S′. By
assumption S′ is N-1, and hence the integral closure S′′ of S′ in L is finite over S′. Thus
S′′ is finite over S (Lemma 7.3) and S′′ is the integral closure of S in L (Lemma 36.16).
We conclude that R is universally Japanese. �

Lemma 162.4. If R is universally Japanese then any algebra essentially of finite type
over R is universally Japanese.

Proof. The case of an algebra of finite type overR is immediate from the definition.
The general case follows on applying Lemma 161.3. �

Lemma 162.5. Let R be a Nagata ring. If R → S is a quasi-finite ring map (for
example finite) then S is a Nagata ring also.

Proof. First note that S is Noetherian asR is Noetherian and a quasi-finite ring map
is of finite type. Let q ⊂ S be a prime ideal, and set p = R ∩ q. Then R/p ⊂ S/q is
quasi-finite and hence we conclude that S/q is N-2 by Lemma 161.5 as desired. �

Lemma 162.6. A localization of a Nagata ring is a Nagata ring.

Proof. Clear from Lemma 161.3. �

Lemma 162.7. Let R be a ring. Let f1, . . . , fn ∈ R generate the unit ideal.
(1) If each Rfi is universally Japanese then so is R.
(2) If each Rfi is Nagata then so is R.

Proof. Let ϕ : R → S be a finite type ring map so that S is a domain. Then
ϕ(f1), . . . , ϕ(fn) generate the unit ideal in S. Hence if each Sfi = Sϕ(fi) is N-1 then
so is S , see Lemma 161.4. This proves (1).
If each Rfi is Nagata, then each Rfi is Noetherian and hence R is Noetherian, see Lemma
23.2. And if p ⊂ R is a prime, then we see each Rfi/pRfi = (R/p)fi is N-2 and hence we
conclude R/p is N-2 by Lemma 161.4. This proves (2). �

Lemma 162.8. A Noetherian complete local ring is a Nagata ring.

Proof. Let R be a complete local Noetherian ring. Let p ⊂ R be a prime. Then R/p
is also a complete local Noetherian ring, see Lemma 160.2. Hence it suffices to show that a
Noetherian complete local domainR is N-2. By Lemmas 161.5 and 160.11 we reduce to the
case R = k[[X1, . . . , Xd]] where k is a field or R = Λ[[X1, . . . , Xd]] where Λ is a Cohen
ring.
In the case k[[X1, . . . , Xd]] we reduce to the statement that a field is N-2 by Lemma 161.17.
This is clear. In the case Λ[[X1, . . . , Xd]] we reduce to the statement that a Cohen ring Λ
is N-2. Applying Lemma 161.16 once more with x = p ∈ Λ we reduce yet again to the
case of a field. Thus we win. �
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Definition 162.9. Let (R,m) be a Noetherian local ring. We say R is analytically
unramified if its completion R∧ = limnR/m

n is reduced. A prime ideal p ⊂ R is said to
be analytically unramified if R/p is analytically unramified.

At this point we know the following are true for any Noetherian local ring R: The map
R→ R∧ is a faithfully flat local ring homomorphism (Lemma 97.3). The completionR∧

is Noetherian (Lemma 97.5) and complete (Lemma 97.4). Hence the completion R∧ is a
Nagata ring (Lemma 162.8). Moreover, we have seen in Section 160 that R∧ is a quotient
of a regular local ring (Theorem 160.8), and hence universally catenary (Remark 160.9).

Lemma 162.10. Let (R,m) be a Noetherian local ring.
(1) If R is analytically unramified, then R is reduced.
(2) If R is analytically unramified, then each minimal prime of R is analytically

unramified.
(3) If R is reduced with minimal primes q1, . . . , qt, and each qi is analytically un-

ramified, then R is analytically unramified.
(4) If R is analytically unramified, then the integral closure of R in its total ring of

fractions Q(R) is finite over R.
(5) If R is a domain and analytically unramified, then R is N-1.

Proof. In this proof we will use the remarks immediately following Definition 162.9.
As R→ R∧ is a faithfully flat local ring homomorphism it is injective and (1) follows.

Let q be a minimal prime of R, and assume R is analytically unramified. Then q is an
associated prime of R (see Proposition 63.6). Hence there exists an f ∈ R such that
{x ∈ R | fx = 0} = q. Note that (R/q)∧ = R∧/q∧, and that {x ∈ R∧ | fx = 0} = q∧,
because completion is exact (Lemma 97.2). If x ∈ R∧ is such that x2 ∈ q∧, then fx2 = 0
hence (fx)2 = 0 hence fx = 0 hence x ∈ q∧. Thus q is analytically unramified and (2)
holds.

Assume R is reduced with minimal primes q1, . . . , qt, and each qi is analytically unram-
ified. Then R → R/q1 × . . . × R/qt is injective. Since completion is exact (see Lemma
97.2) we see that R∧ ⊂ (R/q1)∧ × . . .× (R/qt)∧. Hence (3) is clear.

Assume R is analytically unramified. Let p1, . . . , ps be the minimal primes of R∧. Then
we see that

Q(R∧) = R∧
p1
× . . .×R∧

ps

with each R∧
pi a field as R∧ is reduced (see Lemma 25.4). Hence the integral closure S of

R∧ in Q(R∧) is equal to S = S1 × . . . × Ss with Si the integral closure of R∧/pi in its
fraction field. In particular S is finite over R∧. Denote R′ the integral closure of R in
Q(R). As R → R∧ is flat we see that R′ ⊗R R∧ ⊂ Q(R) ⊗R R∧ ⊂ Q(R∧). Moreover
R′ ⊗R R∧ is integral over R∧ (Lemma 36.13). Hence R′ ⊗R R∧ ⊂ S is a R∧-submodule.
As R∧ is Noetherian it is a finite R∧-module. Thus we may find f1, . . . , fn ∈ R′ such
that R′ ⊗R R∧ is generated by the elements fi ⊗ 1 as a R∧-module. By faithful flatness
we see that R′ is generated by f1, . . . , fn as an R-module. This proves (4).

Part (5) is a special case of part (4). �

Lemma 162.11. Let R be a Noetherian local ring. Let p ⊂ R be a prime. Assume
(1) Rp is a discrete valuation ring, and
(2) p is analytically unramified.
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Then for any associated prime q of R∧/pR∧ the local ring (R∧)q is a discrete valuation
ring.

Proof. Assumption (2) says that R∧/pR∧ is a reduced ring. Hence an associated
prime q ⊂ R∧ of R∧/pR∧ is the same thing as a minimal prime over pR∧. In particular
we see that the maximal ideal of (R∧)q is p(R∧)q. Choose x ∈ R such that xRp = pRp.
By the above we see that x ∈ (R∧)q generates the maximal ideal. AsR→ R∧ is faithfully
flat we see that x is a nonzerodivisor in (R∧)q. Hence we win. �

Lemma 162.12. Let (R,m) be a Noetherian local domain. Let x ∈ m. Assume
(1) x 6= 0,
(2) R/xR has no embedded primes, and
(3) for each associated prime p ⊂ R of R/xR we have

(a) the local ring Rp is regular, and
(b) p is analytically unramified.

Then R is analytically unramified.

Proof. Let p1, . . . , pt be the associated primes of the R-module R/xR. Since R/xR
has no embedded primes we see that each pi has height 1, and is a minimal prime over
(x). For each i, let qi1, . . . , qisi be the associated primes of the R∧-module R∧/piR

∧. By
Lemma 162.11 we see that (R∧)qij is regular. By Lemma 65.3 we see that

AssR∧(R∧/xR∧) =
⋃

p∈AssR(R/xR)
AssR∧(R∧/pR∧) = {qij}.

Let y ∈ R∧ with y2 = 0. As (R∧)qij is regular, and hence a domain (Lemma 106.2) we see
that y maps to zero in (R∧)qij . Hence y maps to zero inR∧/xR∧ by Lemma 63.19. Hence
y = xy′. Since x is a nonzerodivisor (as R→ R∧ is flat) we see that (y′)2 = 0. Hence we
conclude that y ∈

⋂
xnR∧ = (0) (Lemma 51.4). �

Lemma 162.13. Let (R,m) be a local ring. If R is Noetherian, a domain, and Nagata,
then R is analytically unramified.

Proof. By induction on dim(R). The case dim(R) = 0 is trivial. Hence we assume
dim(R) = d and that the lemma holds for all Noetherian Nagata domains of dimension
< d.
Let R ⊂ S be the integral closure of R in the field of fractions of R. By assumption S
is a finite R-module. By Lemma 162.5 we see that S is Nagata. By Lemma 112.4 we see
dim(R) = dim(S). Let m1, . . . ,mt be the maximal ideals of S. Each of these lies over the
maximal ideal m of R. Moreover

(m1 ∩ . . . ∩mt)n ⊂ mS

for sufficiently large n as S/mS is Artinian. By Lemma 97.2 R∧ → S∧ is an injective
map, and by the Chinese Remainder Lemma 15.4 combined with Lemma 96.9 we have
S∧ =

∏
S∧
i where S∧

i is the completion of S with respect to the maximal ideal mi. Hence
it suffices to show that Smi is analytically unramified. In other words, we have reduced to
the case where R is a Noetherian normal Nagata domain.
Assume R is a Noetherian, normal, local Nagata domain. Pick a nonzero x ∈ m in the
maximal ideal. We are going to apply Lemma 162.12. We have to check properties (1),
(2), (3)(a) and (3)(b). Property (1) is clear. We have that R/xR has no embedded primes
by Lemma 157.6. Thus property (2) holds. The same lemma also tells us each associated
prime p ofR/xR has height 1. HenceRp is a 1-dimensional normal domain hence regular
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(Lemma 119.7). Thus (3)(a) holds. Finally (3)(b) holds by induction hypothesis, since
R/p is Nagata (by Lemma 162.5 or directly from the definition). Thus we conclude R is
analytically unramified. �

Lemma 162.14. Let (R,m) be a Noetherian local ring. The following are equivalent
(1) R is Nagata,
(2) for R → S finite with S a domain and m′ ⊂ S maximal the local ring Sm′ is

analytically unramified,
(3) for (R,m) → (S,m′) finite local homomorphism with S a domain, then S is

analytically unramified.

Proof. AssumeR is Nagata and letR→ S and m′ ⊂ S be as in (2). Then S is Nagata
by Lemma 162.5. Hence the local ring Sm′ is Nagata (Lemma 162.6). Thus it is analytically
unramified by Lemma 162.13. It is clear that (2) implies (3).

Assume (3) holds. Let p ⊂ R be a prime ideal and letL/κ(p) be a finite extension of fields.
To prove (1) we have to show that the integral closure of R/p is finite over R/p. Choose
x1, . . . , xn ∈ L which generate L over κ(p). For each i let Pi(T ) = T di + ai,1T

di−1 +
. . . + ai,di be the minimal polynomial for xi over κ(p). After replacing xi by fixi for a
suitable fi ∈ R, fi 6∈ p we may assume ai,j ∈ R/p. In fact, after further multiplying
by elements of m, we may assume ai,j ∈ m/p ⊂ R/p for all i, j. Having done this let
S = R/p[x1, . . . , xn] ⊂ L. Then S is finite over R, a domain, and S/mS is a quotient of
R/m[T1, . . . , Tn]/(T d1

1 , . . . , T dnn ). Hence S is local. By (3) S is analytically unramified
and by Lemma 162.10 we find that its integral closure S′ in L is finite over S. Since S′ is
also the integral closure of R/p in L we win. �

The following proposition says in particular that an algebra of finite type over a Nagata
ring is a Nagata ring.

Proposition 162.15 (Nagata). Let R be a ring. The following are equivalent:
(1) R is a Nagata ring,
(2) any finite type R-algebra is Nagata, and
(3) R is universally Japanese and Noetherian.

Proof. It is clear that a Noetherian universally Japanese ring is universally Nagata
(i.e., condition (2) holds). LetR be a Nagata ring. We will show that any finitely generated
R-algebra S is Nagata. This will prove the proposition.

Step 1. There exists a sequence of ring maps R = R0 → R1 → R2 → . . . → Rn = S
such that eachRi → Ri+1 is generated by a single element. Hence by induction it suffices
to prove S is Nagata if S ∼= R[x]/I .

Step 2. Let q ⊂ S be a prime of S , and let p ⊂ R be the corresponding prime of R. We
have to show that S/q is N-2. Hence we have reduced to the proving the following: (*)
Given a Nagata domain R and a monogenic extension R ⊂ S of domains then S is N-2.

Step 3. Let R be a Nagata domain and R ⊂ S a monogenic extension of domains. Let
R ⊂ R′ be the integral closure of R in its fraction field. Let S′ be the subring of the
fraction field of S generated by R′ and S. As R′ is finite over R (by the Nagata property)
also S′ is finite over S. Since S is Noetherian it suffices to prove that S′ is N-2 (Lemma
161.7). Hence we have reduced to proving the following: (**) Given a normal Nagata
domain R and a monogenic extension R ⊂ S of domains then S is N-2.
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Step 4: Let R be a normal Nagata domain and let R ⊂ S be a monogenic extension of
domains. Suppose the induced extension of fraction fields of R and S is purely transcen-
dental. In this case S = R[x]. By Lemma 161.13 we see that S is N-2. Hence we have
reduced to proving the following: (**) Given a normal Nagata domainR and a monogenic
extension R ⊂ S of domains inducing a finite extension of fraction fields then S is N-2.

Step 5. Let R be a normal Nagata domain and let R ⊂ S be a monogenic extension of
domains inducing a finite extension of fraction fields L/K. Choose an element x ∈ S
which generates S as an R-algebra. Let M/L be a finite extension of fields. Let R′ be the
integral closure ofR inM . Then the integral closure S′ of S inM is equal to the integral
closure of R′[x] in M . Also the fraction field of R′ is M and R ⊂ R′ is finite (by the
Nagata property ofR). This implies thatR′ is a Nagata ring (Lemma 162.5). To show that
S′ is finite over S is the same as showing that S′ is finite over R′[x]. Replace R by R′ and
S by R′[x] to reduce to the following statement: (***) Given a normal Nagata domain R
with fraction field K , and x ∈ K , the ring S ⊂ K generated by R and x is N-1.

Step 6. Let R be a normal Nagata domain with fraction field K. Let x = b/a ∈ K. We
have to show that the ring S ⊂ K generated by R and x is N-1. Note that Sa ∼= Ra is
normal. Hence by Lemma 161.15 it suffices to show that Sm is N-1 for every maximal ideal
m of S.

With assumptions as in the preceding paragraph, pick such a maximal ideal and set n =
R ∩ m. The residue field extension κ(m)/κ(n) is finite (Theorem 34.1) and generated by
the image of x. Hence there exists a monic polynomial f(X) = Xd +

∑
i=1,...,d aiX

d−i

with f(x) ∈ m. Let K ′′/K be a finite extension of fields such that f(X) splits com-
pletely in K ′′[X]. Let R′ be the integral closure of R in K ′′. Let S′ ⊂ K ′′ be the subring
generated by R′ and x. As R is Nagata we see R′ is finite over R and Nagata (Lemma
162.5). Moreover, S′ is finite over S. If for every maximal ideal m′ of S′ the local ring
S′
m′ is N-1, then S′

m is N-1 by Lemma 161.15, which in turn implies that Sm is N-1 by
Lemma 161.7. After replacing R by R′ and S by S′, and m by any of the maximal ideals
m′ lying over m we reach the situation where the polynomial f above split completely:
f(X) =

∏
i=1,...,d(X − ai) with ai ∈ R. Since f(x) ∈ m we see that x − ai ∈ m for

some i. Finally, after replacing x by x− ai we may assume that x ∈ m.

To recapitulate: R is a normal Nagata domain with fraction field K , x ∈ K and S is the
subring of K generated by x and R, finally m ⊂ S is a maximal ideal with x ∈ m. We
have to show Sm is N-1.

We will show that Lemma 162.12 applies to the local ring Sm and the element x. This
will imply that Sm is analytically unramified, whereupon we see that it is N-1 by Lemma
162.10.

We have to check properties (1), (2), (3)(a) and (3)(b). Property (1) is trivial. Let I =
Ker(R[X]→ S) where X 7→ x. We claim that I is generated by all linear forms aX − b
such that ax = b in K. Clearly all these linear forms are in I . If g = adX

d + . . . a1X +
a0 ∈ I , then we see that adx is integral over R (Lemma 123.1) and hence b := adx ∈ R as
R is normal. Then g− (adX − b)Xd−1 ∈ I and we win by induction on the degree. As a
consequence we see that

S/xS = R[X]/(X, I) = R/J

where
J = {b ∈ R | ax = b for some a ∈ R} = xR ∩R
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By Lemma 157.6 we see that S/xS = R/J has no embedded primes as an R-module,
hence as an R/J -module, hence as an S/xS-module, hence as an S-module. This proves
property (2). Take such an associated prime q ⊂ S with the property q ⊂ m (so that it is
an associated prime of Sm/xSm – it does not matter for the arguments). Then q is minimal
over xS and hence has height 1. By the sequence of equalities above we see that p = R∩q
is an associated prime ofR/J , and so has height 1 (see Lemma 157.6). ThusRp is a discrete
valuation ring and therefore Rp ⊂ Sq is an equality. This shows that Sq is regular. This
proves property (3)(a). Finally, (S/q)m is a localization of S/q, which is a quotient of
S/xS = R/J . Hence (S/q)m is a localization of a quotient of the Nagata ring R, hence
Nagata (Lemmas 162.5 and 162.6) and hence analytically unramified (Lemma 162.13). This
shows (3)(b) holds and we are done. �

Proposition 162.16. The following types of rings are Nagata and in particular uni-
versally Japanese:

(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. The Noetherian complete local ring case is Lemma 162.8. In the other cases
you just check if R/p is N-2 for every prime ideal p of the ring. This is clear whenever
R/p is a field, i.e., p is maximal. Hence for the Dedekind ring case we only need to check it
when p = (0). But since we assume the fraction field has characteristic zero Lemma 161.11
kicks in. �

Example 162.17. A discrete valuation ring is Nagata if and only if it is N-2 (because
the quotient by the maximal ideal is a field and hence N-2). The discrete valuation ringA
of Example 119.5 is not Nagata, i.e., it is not N-2. Namely, the finite extension A ⊂ R =
A[f ] is not N-1. To see this say f =

∑
aix

i. For every n ≥ 1 set gn =
∑
i<n aix

i ∈ A.
Then hn = (f − gn)/xn is an element of the fraction field of R and hpn ∈ kp[[x]] ⊂ A.
Hence the integral closure R′ of R contains h1, h2, h3, . . .. Now, if R′ were finite over R
and henceA, then f = xnhn + gn would be contained in the submoduleA+xnR′ for all
n. By Artin-Rees this would imply f ∈ A (Lemma 51.4), a contradiction.

Lemma 162.18. Let (A,m) be a Noetherian local domain which is Nagata and has
fraction field of characteristic p. If a ∈ A has a pth root inA∧, then a has a pth root inA.

Proof. Consider the ring extension A ⊂ B = A[x]/(xp − a). If a does not have a
pth root in A, then B is a domain whose completion isn’t reduced. This contradicts our
earlier results, asB is a Nagata ring (Proposition 162.15) and hence analytically unramified
by Lemma 162.13. �

163. Ascending properties

In this section we start proving some algebraic facts concerning the “ascent” of properties
of rings. To do this for depth of rings one uses the following result on ascending depth of
modules, see [?, IV, Proposition 6.3.1].

Lemma 163.1. We have

depth(M ⊗R N) = depth(M) + depth(N/mRN)
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whereR→ S is a local homomorphism of local Noetherian rings,M is a finiteR-module,
and N is a finite S-module flat over R.

Proof. In the statement and in the proof below, we take the depth of M as an R-
module, the depth of M ⊗R N as an S-module, and the depth of N/mRN as an S/mRS-
module. Denoten the right hand side. First assume thatn is zero. Then both depth(M) =
0 and depth(N/mRN) = 0. This means there is a z ∈ M whose annihilator is mR and a
y ∈ N/mRN whose annihilator is mS/mRS. Let y ∈ N be a lift of y. SinceN is flat over
R the map z : R/mR →M produces an injective map N/mRN →M ⊗R N . Hence the
annihilator of z ⊗ y is mS . Thus depth(M ⊗R N) = 0 as well.

Assume n > 0. If depth(N/mRN) > 0, then we may choose f ∈ mS mapping to f ∈
S/mRSwhich is a nonzerodivisor onN/mRN . Then depth(N/mRN) = depth(N/(f,mR)N)+
1 by Lemma 72.7. According to Lemma 99.1 the element f ∈ S is a nonzerodivisor on N
and N/fN is flat over R. Hence by induction on n we have

depth(M ⊗R N/fN) = depth(M) + depth(N/(f,mR)N).
Because N/fN is flat over R the sequence

0→M ⊗R N →M ⊗R N →M ⊗R N/fN → 0
is exact where the first map is multiplication by f (Lemma 39.12). Hence by Lemma 72.7
we find that depth(M ⊗RN) = depth(M ⊗RN/fN) + 1 and we conclude that equality
holds in the formula of the lemma.

If n > 0, but depth(N/mRN) = 0, then we can choose f ∈ mR which is a nonzerodivisor
on M . As N is flat over R it is also the case that f is a nonzerodivisor on M ⊗R N . By
induction on n again we have

depth(M/fM ⊗R N) = depth(M/fM) + depth(N/mRN).
In this case depth(M⊗RN) = depth(M/fM⊗RN)+1 and depth(M) = depth(M/fM)+
1 by Lemma 72.7 and we conclude that equality holds in the formula of the lemma. �

Lemma 163.2. Suppose that R → S is a flat and local ring homomorphism of Noe-
therian local rings. Then

depth(S) = depth(R) + depth(S/mRS).

Proof. This is a special case of Lemma 163.1. �

Lemma 163.3. Let R → S be a flat local homomorphism of local Noetherian rings.
Then the following are equivalent

(1) S is Cohen-Macaulay, and
(2) R and S/mRS are Cohen-Macaulay.

Proof. Follows from the definitions and Lemmas 163.2 and 112.7. �

Lemma 163.4. Let ϕ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian,
(3) ϕ is flat,
(4) the fibre rings S ⊗R κ(p) are (Sk), and
(5) R has property (Sk).

Then S has property (Sk).
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Proof. Let q be a prime of S lying over a prime p of R. By Lemma 163.2 we have

depth(Sq) = depth(Sq/pSq) + depth(Rp).
On the other hand, we have

dim(Rp) + dim(Sq/pSq) ≥ dim(Sq)
by Lemma 112.6. (Actually equality holds, by Lemma 112.7 but strictly speaking we do not
need this.) Finally, as the fibre rings of the map are assumed (Sk) we see that depth(Sq/pSq) ≥
min(k, dim(Sq/pSq)). Thus the lemma follows by the following string of inequalities

depth(Sq) = depth(Sq/pSq) + depth(Rp)
≥ min(k, dim(Sq/pSq)) + min(k, dim(Rp))
= min(2k, dim(Sq/pSq) + k, k + dim(Rp),dim(Sq/pSq) + dim(Rp))
≥ min(k, dim(Sq))

as desired. �

Lemma 163.5. Let ϕ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian
(3) ϕ is flat,
(4) the fibre rings S ⊗R κ(p) have property (Rk), and
(5) R has property (Rk).

Then S has property (Rk).

Proof. Let q be a prime of S lying over a prime p of R. Assume that dim(Sq) ≤ k.
Since dim(Sq) = dim(Rp) + dim(Sq/pSq) by Lemma 112.7 we see that dim(Rp) ≤ k
and dim(Sq/pSq) ≤ k. Hence Rp and Sq/pSq are regular by assumption. It follows that
Sq is regular by Lemma 112.8. �

Lemma 163.6. Let ϕ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian
(3) ϕ is flat,
(4) the fibre rings S ⊗R κ(p) are reduced,
(5) R is reduced.

Then S is reduced.

Proof. For Noetherian rings reduced is the same as having properties (S1) and (R0),
see Lemma 157.3. Thus we know R and the fibre rings have these properties. Hence we
may apply Lemmas 163.4 and 163.5 and we see that S is (S1) and (R0), in other words
reduced by Lemma 157.3 again. �

Lemma 163.7. Let ϕ : R→ S be a ring map. Assume
(1) ϕ is smooth,
(2) R is reduced.

Then S is reduced.

Proof. Observe that R → S is flat with regular fibres (see the list of results on
smooth ring maps in Section 142). In particular, the fibres are reduced. Thus if R is Noe-
therian, then S is Noetherian and we get the result from Lemma 163.6.
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In the general case we may find a finitely generated Z-subalgebra R0 ⊂ R and a smooth
ring map R0 → S0 such that S ∼= R ⊗R0 S0, see remark (10) in Section 142. Now, if
x ∈ S is an element with x2 = 0, then we can enlarge R0 and assume that x comes
from an element x0 ∈ S0. After enlarging R0 once more we may assume that x2

0 = 0 in
S0. However, since R0 ⊂ R is reduced we see that S0 is reduced and hence x0 = 0 as
desired. �

Lemma 163.8. Let ϕ : R→ S be a ring map. Assume
(1) R is Noetherian,
(2) S is Noetherian,
(3) ϕ is flat,
(4) the fibre rings S ⊗R κ(p) are normal, and
(5) R is normal.

Then S is normal.

Proof. For a Noetherian ring being normal is the same as having properties (S2) and
(R1), see Lemma 157.4. Thus we know R and the fibre rings have these properties. Hence
we may apply Lemmas 163.4 and 163.5 and we see that S is (S2) and (R1), in other words
normal by Lemma 157.4 again. �

Lemma 163.9. Let ϕ : R→ S be a ring map. Assume
(1) ϕ is smooth,
(2) R is normal.

Then S is normal.

Proof. Observe that R → S is flat with regular fibres (see the list of results on
smooth ring maps in Section 142). In particular, the fibres are normal. Thus if R is Noe-
therian, then S is Noetherian and we get the result from Lemma 163.8.

The general case. First note that R is reduced and hence S is reduced by Lemma 163.7.
Let q be a prime of S and let p be the corresponding prime of R. Note that Rp is a normal
domain. We have to show that Sq is a normal domain. To do this we may replace R by
Rp and S by Sp. Hence we may assume that R is a normal domain.

Assume R → S smooth, and R a normal domain. We may find a finitely generated Z-
subalgebra R0 ⊂ R and a smooth ring map R0 → S0 such that S ∼= R ⊗R0 S0, see
remark (10) in Section 142. As R0 is a Nagata domain (see Proposition 162.16) we see that
its integral closure R′

0 is finite over R0. Moreover, as R is a normal domain it is clear that
R′

0 ⊂ R. Hence we may replace R0 by R′
0 and S0 by R′

0 ⊗R0 S0 and assume that R0 is a
normal Noetherian domain. By the first paragraph of the proof we conclude that S0 is a
normal ring (it need not be a domain of course). In this way we see that R =

⋃
Rλ is the

union of normal Noetherian domains and correspondingly S = colimRλ ⊗R0 S0 is the
colimit of normal rings. This implies that S is a normal ring. Some details omitted. �

Lemma 163.10. Let ϕ : R→ S be a ring map. Assume
(1) ϕ is smooth,
(2) R is a regular ring.

Then S is regular.

Proof. This follows from Lemma 163.5 applied for all (Rk) using Lemma 140.3 to
see that the hypotheses are satisfied. �
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164. Descending properties

In this section we start proving some algebraic facts concerning the “descent” of properties
of rings. It turns out that it is often “easier” to descend properties than it is to ascend
them. In other words, the assumption on the ring map R → S are often weaker than the
assumptions in the corresponding lemma of the preceding section. However, we warn the
reader that the results on descent are often useless unless the corresponding ascent can also
be shown! Here is a typical result which illustrates this phenomenon.

Lemma 164.1. Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is Noetherian.

Then R is Noetherian.

Proof. Let I0 ⊂ I1 ⊂ I2 ⊂ . . . be a growing sequence of ideals of R. By assumption
we have InS = In+1S = In+2S = . . . for some n. Since R → S is flat we have IkS =
Ik ⊗R S. Hence, as R → S is faithfully flat we see that InS = In+1S = In+2S = . . .
implies that In = In+1 = In+2 = . . . as desired. �

Lemma 164.2. Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is reduced.

Then R is reduced.

Proof. This is clear as R→ S is injective. �

Lemma 164.3. Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is a normal ring.

Then R is a normal ring.

Proof. SinceS is reduced it follows thatR is reduced. Let p be a prime ofR. We have
to show that Rp is a normal domain. Since Sp is faithfully over Rp too we may assume
that R is local with maximal ideal m. Let q be a prime of S lying over m. Then we see
that R→ Sq is faithfully flat (Lemma 39.17). Hence we may assume S is local as well. In
particular S is a normal domain. Since R→ S is faithfully flat and S is a normal domain
we see that R is a domain. Next, suppose that a/b is integral over R with a, b ∈ R. Then
a/b ∈ S as S is normal. Hence a ∈ bS. This means that a : R→ R/bR becomes the zero
map after base change to S. By faithful flatness we see that a ∈ bR, so a/b ∈ R. Hence R
is normal. �

Lemma 164.4. Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is a regular ring.

Then R is a regular ring.

Proof. We see that R is Noetherian by Lemma 164.1. Let p ⊂ R be a prime. Choose
a prime q ⊂ S lying over p. Then Lemma 110.9 applies toRp → Sq and we conclude that
Rp is regular. Since p was arbitrary we see R is regular. �

Lemma 164.5. Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
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(2) S is Noetherian and has property (Sk).
Then R is Noetherian and has property (Sk).

Proof. We have already seen that (1) and (2) imply thatR is Noetherian, see Lemma
164.1. Let p ⊂ R be a prime ideal. Choose a prime q ⊂ S lying over p which corresponds
to a minimal prime of the fibre ring S ⊗R κ(p). Then A = Rp → Sq = B is a flat
local ring homomorphism of Noetherian local rings with mAB an ideal of definition of
B. Hence dim(A) = dim(B) (Lemma 112.7) and depth(A) = depth(B) (Lemma 163.2).
Hence since B has (Sk) we see that A has (Sk). �

Lemma 164.6. Let R→ S be a ring map. Assume that
(1) R→ S is faithfully flat, and
(2) S is Noetherian and has property (Rk).

Then R is Noetherian and has property (Rk).

Proof. We have already seen that (1) and (2) imply thatR is Noetherian, see Lemma
164.1. Let p ⊂ R be a prime ideal and assume dim(Rp) ≤ k. Choose a prime q ⊂ S
lying over p which corresponds to a minimal prime of the fibre ring S ⊗R κ(p). Then
A = Rp → Sq = B is a flat local ring homomorphism of Noetherian local rings with
mAB an ideal of definition of B. Hence dim(A) = dim(B) (Lemma 112.7). As S has
(Rk) we conclude that B is a regular local ring. By Lemma 110.9 we conclude that A is
regular. �

Lemma 164.7. Let R→ S be a ring map. Assume that
(1) R→ S is smooth and surjective on spectra, and
(2) S is a Nagata ring.

Then R is a Nagata ring.

Proof. Recall that a Nagata ring is the same thing as a Noetherian universally Japan-
ese ring (Proposition 162.15). We have already seen thatR is Noetherian in Lemma 164.1.
Let R→ A be a finite type ring map into a domain. According to Lemma 162.3 it suffices
to check that A is N-1. It is clear that B = A ⊗R S is a finite type S-algebra and hence
Nagata (Proposition 162.15). Since A → B is smooth (Lemma 137.4) we see that B is re-
duced (Lemma 163.7). SinceB is Noetherian it has only a finite number of minimal primes
q1, . . . , qt (see Lemma 31.6). As A → B is flat each of these lies over (0) ⊂ A (by going
down, see Lemma 39.19) The total ring of fractionsQ(B) is the product of the Li = κ(qi)
(Lemmas 25.4 and 25.1). Moreover, the integral closureB′ ofB inQ(B) is the product of
the integral closures B′

i of the B/qi in the factors Li (compare with Lemma 37.16). Since
B is universally Japanese the ring extensions B/qi ⊂ B′

i are finite and we conclude that
B′ =

∏
B′
i is finite over B. Since A → B is flat we see that any nonzerodivisor on A

maps to a nonzerodivisor on B. The corresponding map

Q(A)⊗A B = (A \ {0})−1A⊗A B = (A \ {0})−1B → Q(B)
is injective (we used Lemma 12.15). Via this map A′ maps into B′. This induces a map

A′ ⊗A B −→ B′

which is injective (by the above and the flatness ofA→ B). SinceB′ is a finiteB-module
and B is Noetherian we see that A′ ⊗A B is a finite B-module. Hence there exist finitely
many elements xi ∈ A′ such that the elements xi ⊗ 1 generate A′ ⊗A B as a B-module.
Finally, by faithful flatness of A → B we conclude that the xi also generated A′ as an
A-module, and we win. �
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Remark 164.8. The property of being “universally catenary” does not descend; not
even along étale ring maps. In Examples, Section 18 there is a construction of a finite ring
map A → B with A local Noetherian and not universally catenary, B semi-local with
two maximal ideals m, n with Bm and Bn regular of dimension 2 and 1 respectively, and
the same residue fields as that of A. Moreover, mA generates the maximal ideal in both
Bm and Bn (so A → B is unramified as well as finite). By Lemma 152.3 there exists a
local étale ring map A → A′ such that B ⊗A A′ = B1 × B2 decomposes with A′ → Bi
surjective. This shows that A′ has two minimal primes qi with A′/qi ∼= Bi. Since Bi is
regular local (since it is étale over either Bm or Bn) we conclude that A′ is universally
catenary.

165. Geometrically normal algebras

In this section we put some applications of ascent and descent of properties of rings.

Lemma 165.1. Let k be a field. Let A be a k-algebra. The following properties of A
are equivalent:

(1) k′ ⊗k A is a normal ring for every field extension k′/k,
(2) k′ ⊗k A is a normal ring for every finitely generated field extension k′/k,
(3) k′ ⊗k A is a normal ring for every finite purely inseparable extension k′/k,
(4) kperf ⊗k A is a normal ring.

Here normal ring is defined in Definition 37.11.

Proof. It is clear that (1)⇒ (2)⇒ (3) and (1)⇒ (4).

If k′/k is a finite purely inseparable extension, then there is an embedding k′ → kperf of
k-extensions. The ring map k′ ⊗k A → kperf ⊗k A is faithfully flat, hence k′ ⊗k A is
normal if kperf ⊗k A is normal by Lemma 164.3. In this way we see that (4)⇒ (3).

Assume (2) and let k′/k be any field extension. Then we can write k′ = colimi ki as
a directed colimit of finitely generated field extensions. Hence we see that k′ ⊗k A =
colimi ki⊗k A is a directed colimit of normal rings. Thus we see that k′⊗k A is a normal
ring by Lemma 37.17. Hence (1) holds.

Assume (3) and let K/k be a finitely generated field extension. By Lemma 45.3 we can
find a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is sepa-
rable. By Lemma 158.10 there exists a smooth k′-algebra B such that K ′ is the fraction
field of B. Now we can argue as follows: Step 1: k′ ⊗k A is a normal ring because we
assumed (3). Step 2: B ⊗k′ k′ ⊗k A is a normal ring as k′ ⊗k A → B ⊗k′ k′ ⊗k A is
smooth (Lemma 137.4) and ascent of normality along smooth maps (Lemma 163.9). Step
3. K ′ ⊗k′ k′ ⊗k A = K ′ ⊗k A is a normal ring as it is a localization of a normal ring
(Lemma 37.13). Step 4. FinallyK⊗kA is a normal ring by descent of normality along the
faithfully flat ring map K ⊗k A→ K ′⊗k A (Lemma 164.3). This proves the lemma. �

Definition 165.2. Let k be a field. A k-algebraR is called geometrically normal over
k if the equivalent conditions of Lemma 165.1 hold.
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Lemma 165.3. Let k be a field. A localization of a geometrically normal k-algebra is
geometrically normal.

Proof. This is clear as being a normal ring is checked at the localizations at prime
ideals. �

Lemma 165.4. Let k be a field. Let K/k be a separable field extension. Then K is
geometrically normal over k.

Proof. This is true because kperf ⊗k K is a field. Namely, it is reduced by Lemma
43.6. By Lemma 45.4 (or by Definition 45.5) the field extension kperf/k is purely insep-
arable. Hence by Lemma 46.10 the ring kperf ⊗k K has a unique prime ideal. A reduced
ring with a unique prime ideal is a field. �

Lemma 165.5. Let k be a field. Let A,B be k-algebras. Assume A is geometrically
normal over k and B is a normal ring. Then A⊗k B is a normal ring.

Proof. Let r be a prime ideal of A⊗k B. Denote p, resp. q the corresponding prime
ofA, resp.B. Then (A⊗kB)r is a localization ofAp⊗kBq. Hence it suffices to prove the
result for the ring Ap ⊗k Bq, see Lemma 37.13 and Lemma 165.3. Thus we may assume A
and B are domains.

Assume thatA andB are domains with fractions fieldsK andL. Note thatB is the filtered
colimit of its finite type normal k-sub algebras (as k is a Nagata ring, see Proposition 162.16,
and hence the integral closure of a finite type k-sub algebra is still a finite type k-sub
algebra by Proposition 162.15). By Lemma 37.17 we reduce to the case that B is of finite
type over k.

Assume thatA andB are domains with fractions fieldsK and L andB of finite type over
k. In this case the ring K ⊗k B is of finite type over K , hence Noetherian (Lemma 31.1).
In particularK⊗kB has finitely many minimal primes (Lemma 31.6). SinceA→ A⊗kB
is flat, this implies thatA⊗k B has finitely many minimal primes (by going down for flat
ring maps – Lemma 39.19 – these primes all lie over (0) ⊂ A). Thus it suffices to prove
that A⊗k B is integrally closed in its total ring of fractions (Lemma 37.16).

We claim thatK⊗kB andA⊗k L are both normal rings. If this is true then any element
x of Q(A ⊗k B) which is integral over A ⊗k B is (by Lemma 37.12) contained in K ⊗k
B ∩A⊗k L = A⊗k B and we’re done. Since A⊗K L is a normal ring by assumption, it
suffices to prove that K ⊗k B is normal.

As A is geometrically normal over k we see K is geometrically normal over k (Lemma
165.3) henceK is geometrically reduced over k. HenceK =

⋃
Ki is the union of finitely

generated field extensions of k which are geometrically reduced (Lemma 43.2). EachKi is
the localization of a smooth k-algebra (Lemma 158.10). So Ki ⊗k B is the localization of
a smoothB-algebra hence normal (Lemma 163.9). ThusK ⊗k B is a normal ring (Lemma
37.17) and we win. �

Lemma 165.6. Let k′/k be a separable algebraic field extension. Let A be an algebra
over k′. Then A is geometrically normal over k if and only if it is geometrically normal
over k′.

Proof. Let L/k be a finite purely inseparable field extension. Then L′ = k′⊗kL is a
field (see material in Fields, Section 28) andA⊗kL = A⊗k′L′. Hence ifA is geometrically
normal over k′, then A is geometrically normal over k.
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Assume A is geometrically normal over k. Let K/k′ be a field extension. Then

K ⊗k′ A = (K ⊗k A)⊗(k′⊗kk′) k
′

Since k′ ⊗k k′ → k′ is a localization by Lemma 43.8, we see that K ⊗k′ A is a localization
of a normal ring, hence normal. �

166. Geometrically regular algebras

Let k be a field. Let A be a Noetherian k-algebra. Let K/k be a finitely generated field
extension. Then the ringK⊗kA is Noetherian as well, see Lemma 31.8. Thus the following
lemma makes sense.

Lemma 166.1. Let k be a field. Let A be a k-algebra. Assume A is Noetherian. The
following properties of A are equivalent:

(1) k′ ⊗k A is regular for every finitely generated field extension k′/k, and
(2) k′ ⊗k A is regular for every finite purely inseparable extension k′/k.

Here regular ring is as in Definition 110.7.

Proof. The lemma makes sense by the remarks preceding the lemma. It is clear that
(1)⇒ (2).

Assume (2) and let K/k be a finitely generated field extension. By Lemma 45.3 we can
find a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is sepa-
rable. By Lemma 158.10 there exists a smooth k′-algebra B such that K ′ is the fraction
field of B. Now we can argue as follows: Step 1: k′ ⊗k A is a regular ring because we
assumed (2). Step 2: B ⊗k′ k′ ⊗k A is a regular ring as k′ ⊗k A → B ⊗k′ k′ ⊗k A is
smooth (Lemma 137.4) and ascent of regularity along smooth maps (Lemma 163.10). Step
3. K ′ ⊗k′ k′ ⊗k A = K ′ ⊗k A is a regular ring as it is a localization of a regular ring
(immediate from the definition). Step 4. Finally K ⊗k A is a regular ring by descent of
regularity along the faithfully flat ring map K ⊗k A → K ′ ⊗k A (Lemma 164.4). This
proves the lemma. �

Definition 166.2. Let k be a field. Let R be a Noetherian k-algebra. The k-algebra
R is called geometrically regular over k if the equivalent conditions of Lemma 166.1 hold.

It is clear from the definition thatK⊗kR is a geometrically regular algebra overK for any
finitely generated field extensionK of k. We will see later (More on Algebra, Proposition
35.1) that it suffices to check R⊗k k′ is regular whenever k ⊂ k′ ⊂ k1/p (finite).

Lemma 166.3. Let k be a field. Let A→ B be a faithfully flat k-algebra map. If B is
geometrically regular over k, so is A.

Proof. Assume B is geometrically regular over k. Let k′/k be a finite, purely insep-
arable extension. Then A ⊗k k′ → B ⊗k k′ is faithfully flat as a base change of A → B
(by Lemmas 30.3 and 39.7) and B ⊗k k′ is regular by our assumption on B over k. Then
A⊗k k′ is regular by Lemma 164.4. �
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Lemma 166.4. Let k be a field. Let A→ B be a smooth ring map of k-algebras. If A
is geometrically regular over k, then B is geometrically regular over k.

Proof. Let k′/k be a finitely generated field extension. Then A ⊗k k′ → B ⊗k k′

is a smooth ring map (Lemma 137.4) and A⊗k k′ is regular. Hence B ⊗k k′ is regular by
Lemma 163.10. �

Lemma 166.5. Let k be a field. Let A be an algebra over k. Let k = colim ki be a
directed colimit of subfields. If A is geometrically regular over each ki, then A is geomet-
rically regular over k.

Proof. Let k′/k be a finite purely inseparable field extension. We can get k′ by ad-
joining finitely many variables to k and imposing finitely many polynomial relations.
Hence we see that there exists an i and a finite purely inseparable field extension k′

i/ki
such that ki = k ⊗ki k′

i. Thus A⊗k k′ = A⊗ki k′
i and the lemma is clear. �

Lemma 166.6. Let k′/k be a separable algebraic field extension. Let A be an algebra
over k′. Then A is geometrically regular over k if and only if it is geometrically regular
over k′.

Proof. Let L/k be a finite purely inseparable field extension. Then L′ = k′⊗kL is a
field (see material in Fields, Section 28) andA⊗kL = A⊗k′L′. Hence ifA is geometrically
regular over k′, then A is geometrically regular over k.

Assume A is geometrically regular over k. Since k′ is the filtered colimit of finite exten-
sions of k we may assume by Lemma 166.5 that k′/k is finite separable. Consider the ring
maps

k′ → A⊗k k′ → A.

Note that A ⊗k k′ is geometrically regular over k′ as a base change of A to k′. Note that
A ⊗k k′ → A is the base change of k′ ⊗k k′ → k′ by the map k′ → A. Since k′/k is
an étale extension of rings, we see that k′ ⊗k k′ → k′ is étale (Lemma 143.3). Hence A is
geometrically regular over k′ by Lemma 166.4. �

167. Geometrically Cohen-Macaulay algebras

This section is a bit of a misnomer, since Cohen-Macaulay algebras are automatically ge-
ometrically Cohen-Macaulay. Namely, see Lemma 130.6 and Lemma 167.2 below.

Lemma 167.1. Let k be a field and let K/k and L/k be two field extensions such
that one of them is a field extension of finite type. Then K ⊗k L is a Noetherian Cohen-
Macaulay ring.

Proof. The ringK⊗kL is Noetherian by Lemma 31.8. SayK is a finite extension of
the purely transcendental extension k(t1, . . . , tr). Then k(t1, . . . , tr)⊗k L→ K ⊗k L is
a finite free ring map. By Lemma 112.9 it suffices to show that k(t1, . . . , tr)⊗kL is Cohen-
Macaulay. This is clear because it is a localization of the polynomial ringL[t1, . . . , tr]. (See
for example Lemma 104.7 for the fact that a polynomial ring is Cohen-Macaulay.) �

Lemma 167.2. Let k be a field. Let S be a Noetherian k-algebra. LetK/k be a finitely
generated field extension, and set SK = K⊗k S. Let q ⊂ S be a prime of S. Let qK ⊂ SK
be a prime of SK lying over q. Then Sq is Cohen-Macaulay if and only if (SK)qK is
Cohen-Macaulay.
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Proof. By Lemma 31.8 the ring SK is Noetherian. Hence Sq → (SK)qK is a flat
local homomorphism of Noetherian local rings. Note that the fibre

(SK)qK/q(SK)qK ∼= (κ(q)⊗k K)q′

is the localization of the Cohen-Macaulay (Lemma 167.1) ring κ(q) ⊗k K at a suitable
prime ideal q′. Hence the lemma follows from Lemma 163.3. �

168. Colimits and maps of finite presentation, II

This section is a continuation of Section 127.

We start with an application of the openness of flatness. It says that we can approximate
flat modules by flat modules which is useful.

Lemma 168.1. Let R→ S be a ring map. Let M be an S-module. Assume that
(1) R→ S is of finite presentation,
(2) M is a finitely presented S-module, and
(3) M is flat over R.

In this case we have the following:
(1) There exists a finite type Z-algebra R0 and a finite type ring map R0 → S0 and

a finite S0-module M0 such that M0 is flat over R0, together with a ring maps
R0 → R and S0 → S and an S0-module mapM0 →M such that S ∼= R⊗R0S0
and M = S ⊗S0 M0.

(2) If R = colimλ∈Λ Rλ is written as a directed colimit, then there exists a λ and
a ring map Rλ → Sλ of finite presentation, and an Sλ-module Mλ of finite
presentation such that Mλ is flat over Rλ and such that S = R ⊗Rλ Sλ and
M = S ⊗Sλ Mλ.

(3) If
(R→ S,M) = colimλ∈Λ(Rλ → Sλ,Mλ)

is written as a directed colimit such that
(a) Rµ ⊗Rλ Sλ → Sµ and Sµ ⊗Sλ Mλ →Mµ are isomorphisms for µ ≥ λ,
(b) Rλ → Sλ is of finite presentation,
(c) Mλ is a finitely presented Sλ-module,

then for all sufficiently large λ the module Mλ is flat over Rλ.

Proof. We first write (R → S,M) as the directed colimit of a system (Rλ →
Sλ,Mλ) as in as in Lemma 127.18. Let q ⊂ S be a prime. Let p ⊂ R, qλ ⊂ Sλ, and
pλ ⊂ Rλ the corresponding primes. As seen in the proof of Theorem 129.4

((Rλ)pλ , (Sλ)qλ , (Mλ)qλ)

is a system as in Lemma 127.13, and hence by Lemma 128.3 we see that for some λq ∈ Λ
for all λ ≥ λq the module Mλ is flat over Rλ at the prime qλ.

By Theorem 129.4 we get an open subset Uλ ⊂ Spec(Sλ) such that Mλ flat over Rλ
at all the primes of Uλ. Denote Vλ ⊂ Spec(S) the inverse image of Uλ under the map
Spec(S) → Spec(Sλ). The argument above shows that for every q ∈ Spec(S) there
exists a λq such that q ∈ Vλ for all λ ≥ λq. Since Spec(S) is quasi-compact we see this
implies there exists a single λ0 ∈ Λ such that Vλ0 = Spec(S).

The complement Spec(Sλ0) \ Uλ0 is V (I) for some ideal I ⊂ Sλ0 . As Vλ0 = Spec(S)
we see that IS = S. Choose f1, . . . , fr ∈ I and s1, . . . , sn ∈ S such that

∑
fisi = 1.
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Since colimSλ = S , after increasing λ0 we may assume there exist si,λ0 ∈ Sλ0 such that∑
fisi,λ0 = 1. Hence for this λ0 we have Uλ0 = Spec(Sλ0). This proves (1).

Proof of (2). Let (R0 → S0,M0) be as in (1) and suppose thatR = colimRλ. SinceR0 is a
finite type Z algebra, there exists a λ and a mapR0 → Rλ such thatR0 → Rλ → R is the
given mapR0 → R (see Lemma 127.3). Then, part (2) follows by taking Sλ = Rλ⊗R0 S0
and Mλ = Sλ ⊗S0 M0.
Finally, we come to the proof of (3). Let (Rλ → Sλ,Mλ) be as in (3). Choose (R0 →
S0,M0) and R0 → R as in (1). As in the proof of (2), there exists a λ0 and a ring map
R0 → Rλ0 such that R0 → Rλ0 → R is the given map R0 → R. Since S0 is of finite
presentation over R0 and since S = colimSλ we see that for some λ1 ≥ λ0 we get an
R0-algebra map S0 → Sλ1 such that the composition S0 → Sλ1 → S is the given map
S0 → S (see Lemma 127.3). For all λ ≥ λ1 this gives maps

Ψλ : Rλ ⊗R0 S0 −→ Rλ ⊗Rλ1
Sλ1
∼= Sλ

the last isomorphism by assumption. By construction colimλ Ψλ is an isomorphism. Hence
Ψλ is an isomorphism for all λ large enough by Lemma 127.8. In the same vein, there exists
a λ2 ≥ λ1 and an S0-module map M0 → Mλ2 such that M0 → Mλ2 → M is the given
map M0 →M (see Lemma 127.5). For λ ≥ λ2 there is an induced map

Sλ ⊗S0 M0 −→ Sλ ⊗Sλ2
Mλ2

∼= Mλ

and for λ large enough this map is an isomorphism by Lemma 127.6. This implies (3)
because M0 is flat over R0. �

Lemma 168.2. Let R → A → B be ring maps. Assume A → B faithfully flat of
finite presentation. Then there exists a commutative diagram

R // A0

��

// B0

��
R // A // B

with R → A0 of finite presentation, A0 → B0 faithfully flat of finite presentation and
B = A⊗A0 B0.

Proof. We first prove the lemma with R replaced Z. By Lemma 168.1 there exists a
diagram

A0 // A

B0

OO

// B

OO

where A0 is of finite type over Z, B0 is flat of finite presentation over A0 such that B =
A⊗A0 B0. AsA0 → B0 is flat of finite presentation we see that the image of Spec(B0)→
Spec(A0) is open, see Proposition 41.8. Hence the complement of the image is V (I0)
for some ideal I0 ⊂ A0. As A → B is faithfully flat the map Spec(B) → Spec(A) is
surjective, see Lemma 39.16. Now we use that the base change of the image is the image of
the base change. Hence I0A = A. Pick a relation

∑
firi = 1, with ri ∈ A, fi ∈ I0. Then

after enlarging A0 to contain the elements ri (and correspondingly enlarging B0) we see
that A0 → B0 is surjective on spectra also, i.e., faithfully flat.
Thus the lemma holds in case R = Z. In the general case, take the solution A′

0 → B′
0 just

obtained and set A0 = A′
0 ⊗Z R, B0 = B′

0 ⊗Z R. �
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Lemma 168.3. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is finite,
(2) C0 is of finite type over B0.

Then there exists an i ≥ 0 such that the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is finite.

Proof. Let x1, . . . , xm be generators for C0 over B0. Pick monic polynomials Pj ∈
A⊗A0 B0[T ] such that Pj(1⊗ xj) = 0 in A⊗A0 C0. For some i ≥ 0 we can find Pj,i ∈
Ai ⊗A0 B0[T ] mapping to Pj . Since ⊗ commutes with colimits we see that Pj,i(1 ⊗ xj)
is zero in Ai ⊗A0 C0 after possibly increasing i. Then this i works. �

Lemma 168.4. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is surjective,
(2) C0 is of finite type over B0.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is surjective.

Proof. Let x1, . . . , xm be generators for C0 over B0. Pick bj ∈ A⊗A0 B0 mapping
to 1⊗xj inA⊗A0 C0. For some i ≥ 0 we can find bj,i ∈ Ai⊗A0 B0 mapping to bj . Then
this i works. �

Lemma 168.5. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is unramified,
(2) C0 is of finite type over B0.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is unramified.

Proof. SetBi = Ai⊗A0 B0, Ci = Ai⊗A0 C0, B = A⊗A0 B0, and C = A⊗A0 C0.
Let x1, . . . , xm be generators for C0 over B0. Then dx1, . . . , dxm generate ΩC0/B0 over
C0 and their images generate ΩCi/Bi over Ci (Lemmas 131.14 and 131.9). Observe that
0 = ΩC/B = colim ΩCi/Bi (Lemma 131.5). Thus there is an i such that dx1, . . . , dxm
map to zero and hence ΩCi/Bi = 0 as desired. �

Lemma 168.6. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is an isomorphism,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is an isomorphism.

Proof. By Lemma 168.4 there exists an i such that Ai ⊗A0 B0 → Ai ⊗A0 C0 is
surjective. Since the map is of finite presentation the kernel is a finitely generated ideal.
Let g1, . . . , gr ∈ Ai ⊗A0 B0 generate the kernel. Then we may pick i′ ≥ i such that gj
map to zero in Ai′ ⊗A0 B0. Then Ai′ ⊗A0 B0 → Ai′ ⊗A0 C0 is an isomorphism. �

Lemma 168.7. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is étale,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is étale.
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Proof. Write C0 = B0[x1, . . . , xn]/(f1,0, . . . , fm,0). Write Bi = Ai ⊗A0 B0 and
Ci = Ai ⊗A0 C0. Note that Ci = Bi[x1, . . . , xn]/(f1,i, . . . , fm,i) where fj,i is the image
of fj,0 in the polynomial ring over Bi. Write B = A⊗A0 B0 and C = A⊗A0 C0. Note
that C = B[x1, . . . , xn]/(f1, . . . , fm) where fj is the image of fj,0 in the polynomial
ring over B. The assumption is that the map

d : (f1, . . . , fm)/(f1, . . . , fm)2 −→
⊕

Cdxk

is an isomorphism. Thus for sufficiently large i we can find elements

ξk,i ∈ (f1,i, . . . , fm,i)/(f1,i, . . . , fm,i)2

with dξk,i = dxk in
⊕
Cidxk. Moreover, on increasing i if necessary, we see that

∑
(∂fj,i/∂xk)ξk,i =

fj,i mod (f1,i, . . . , fm,i)2 since this is true in the limit. Then this i works. �

Lemma 168.8. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0 B0 → A⊗A0 C0 is smooth,
(2) B0 → C0 is of finite presentation.

Then for some i ≥ 0 the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is smooth.

Proof. Write C0 = B0[x1, . . . , xn]/(f1,0, . . . , fm,0). Write Bi = Ai ⊗A0 B0 and
Ci = Ai ⊗A0 C0. Note that Ci = Bi[x1, . . . , xn]/(f1,i, . . . , fm,i) where fj,i is the image
of fj,0 in the polynomial ring over Bi. Write B = A⊗A0 B0 and C = A⊗A0 C0. Note
that C = B[x1, . . . , xn]/(f1, . . . , fm) where fj is the image of fj,0 in the polynomial
ring over B. The assumption is that the map

d : (f1, . . . , fm)/(f1, . . . , fm)2 −→
⊕

Cdxk

is a split injection. Let ξk ∈ (f1, . . . , fm)/(f1, . . . , fm)2 be elements such that
∑

(∂fj/∂xk)ξk =
fj mod (f1, . . . , fm)2. Then for sufficiently large i we can find elements

ξk,i ∈ (f1,i, . . . , fm,i)/(f1,i, . . . , fm,i)2

with
∑

(∂fj,i/∂xk)ξk,i = fj,i mod (f1,i, . . . , fm,i)2 since this is true in the limit. Then
this i works. �

Lemma 168.9. Let A = colimi∈I Ai be a directed colimit of rings. Let 0 ∈ I and
ϕ0 : B0 → C0 a map of A0-algebras. Assume

(1) A⊗A0B0 → A⊗A0C0 is syntomic (resp. a relative global complete intersection),
(2) C0 is of finite presentation over B0.

Then there exists an i ≥ 0 such that the map Ai ⊗A0 B0 → Ai ⊗A0 C0 is syntomic (resp.
a relative global complete intersection).

Proof. AssumeA⊗A0 B0 → A⊗A0 C0 is a relative global complete intersection. By
Lemma 136.11 there exists a finite type Z-algebraR, a ring mapR→ A⊗A0 B0, a relative
global complete intersection R→ S , and an isomorphism

(A⊗A0 B0)⊗R S −→ A⊗A0 C0

Because R is of finite type (and hence finite presentation) over Z, there exists an i and a
map R → Ai ⊗A0 B0 lifting the map R → A⊗A0 B0, see Lemma 127.3. Using the same
lemma, there exists an i′ ≥ i such that (Ai ⊗A0 B0) ⊗R S → A ⊗A0 C0 comes from a
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map (Ai⊗A0 B0)⊗R S → Ai′ ⊗A0 C0. Thus we may assume, after replacing i by i′, that
the displayed map comes from an Ai ⊗A0 B0-algebra map

(Ai ⊗A0 B0)⊗R S −→ Ai ⊗A0 C0

By Lemma 168.6 after increasing i this map is an isomorphism. This finishes the proof
in this case because the base change of a relative global complete intersection is a relative
global complete intersection by Lemma 136.9.

Assume A ⊗A0 B0 → A ⊗A0 C0 is syntomic. Then there exist elements g1, . . . , gm in
A⊗A0C0 generating the unit ideal such thatA⊗A0B0 → (A⊗A0C0)gj is a relative global
complete intersection, see Lemma 136.15. We can find an i and elements gi,j ∈ Ai⊗A0 C0
mapping to gj . After increasing i we may assume gi,1, . . . , gi,m generate the unit ideal of
Ai ⊗A0 C0. The result of the previous paragraph implies that, after increasing i, we may
assume the mapsAi⊗A0 B0 → (Ai⊗A0 C0)gi,j are relative global complete intersections.
ThenAi⊗A0 B0 → Ai⊗A0 C0 is syntomic by Lemma 136.4 (and the already used Lemma
136.15). �

The following lemma is an application of the results above which doesn’t seem to fit well
anywhere else.

Lemma 168.10. Let R→ S be a faithfully flat ring map of finite presentation. Then
there exists a commutative diagram

S // S′

R

__ >>

where R→ S′ is quasi-finite, faithfully flat and of finite presentation.

Proof. As a first step we reduce this lemma to the case where R is of finite type over
Z. By Lemma 168.2 there exists a diagram

S0 // S

R0

OO

// R

OO

where R0 is of finite type over Z, and S0 is faithfully flat of finite presentation over R0
such that S = R ⊗R0 S0. If we prove the lemma for the ring map R0 → S0, then the
lemma follows for R→ S by base change, as the base change of a quasi-finite ring map is
quasi-finite, see Lemma 122.8. (Of course we also use that base changes of flat maps are flat
and base changes of maps of finite presentation are of finite presentation.)

AssumeR→ S is a faithfully flat ring map of finite presentation and thatR is Noetherian
(which we may assume by the preceding paragraph). Let W ⊂ Spec(S) be the open set
of Lemma 130.4. As R → S is faithfully flat the map Spec(S) → Spec(R) is surjective,
see Lemma 39.16. By Lemma 130.5 the map W → Spec(R) is also surjective. Hence by
replacing S with a product Sg1 × . . . × Sgm we may assume W = Spec(S); here we use
that Spec(R) is quasi-compact (Lemma 17.10), and that the map Spec(S) → Spec(R) is
open (Proposition 41.8). Suppose that p ⊂ R is a prime. Choose a prime q ⊂ S lying over
p which corresponds to a maximal ideal of the fibre ring S⊗R κ(p). The Noetherian local
ring Sq = Sq/pSq is Cohen-Macaulay, say of dimension d. We may choose f1, . . . , fd
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in the maximal ideal of Sq which map to a regular sequence in Sq. Choose a common
denominator g ∈ S , g 6∈ q of f1, . . . , fd, and consider the R-algebra

S′ = Sg/(f1, . . . , fd).
By construction there is a prime ideal q′ ⊂ S′ lying over p and corresponding to q (via
Sg → S′

g). Also by construction the ring map R→ S′ is quasi-finite at q as the local ring

S′
q′/pS′

q′ = Sq/(f1, . . . , fd) + pSq = Sq/(f1, . . . , fd)
has dimension zero, see Lemma 122.2. Also by construction R → S′ is of finite presenta-
tion. Finally, by Lemma 99.3 the local ring mapRp → S′

q′ is flat (this is where we use that
R is Noetherian). Hence, by openness of flatness (Theorem 129.4), and openness of quasi-
finiteness (Lemma 123.13) we may after replacing g by gg′ for a suitable g′ ∈ S , g′ 6∈ q
assume that R→ S′ is flat and quasi-finite. The image Spec(S′)→ Spec(R) is open and
contains p. In other words we have shown a ring S′ as in the statement of the lemma exists
(except possibly the faithfulness part) whose image contains any given prime. Using one
more time the quasi-compactness of Spec(R) we see that a finite product of such rings
does the job. �
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CHAPTER 11

Brauer groups

1. Introduction

A reference is the lectures by Serre in the Seminaire Cartan, see [?]. Serre in turn refers to
[?] and [?]. We changed some of the proofs, in particular we used a fun argument of Rieffel
to prove Wedderburn’s theorem. Very likely this change is not an improvement and we
strongly encourage the reader to read the original exposition by Serre.

2. Noncommutative algebras

Let k be a field. In this chapter an algebra A over k is a possibly noncommutative ring A
together with a ring map k → A such that k maps into the center of A and such that 1
maps to an identity element ofA. AnA-module is a rightA-module such that the identity
of A acts as the identity.

Definition 2.1. Let A be a k-algebra. We say A is finite if dimk(A) < ∞. In this
case we write [A : k] = dimk(A).

Definition 2.2. A skew field is a possibly noncommutative ring with an identity
element 1, with 1 6= 0, in which every nonzero element has a multiplicative inverse.

A skew field is a k-algebra for some k (e.g., for the prime field contained in it). We will use
below that any module over a skew field is free because a maximal linearly independent
set of vectors forms a basis and exists by Zorn’s lemma.

Definition 2.3. LetA be a k-algebra. We say anA-moduleM is simple if it is nonzero
and the only A-submodules are 0 and M . We say A is simple if the only two-sided ideals
of A are 0 and A.

Definition 2.4. A k-algebra A is central if the center of A is the image of k → A.

Definition 2.5. Given a k-algebraAwe denoteAop the k-algebra we get by reversing
the order of multiplication in A. This is called the opposite algebra.

3. Wedderburn’s theorem

The following cute argument can be found in a paper of Rieffel, see [?]. The proof could
not be simpler (quote from Carl Faith’s review).

Lemma 3.1. LetA be a possibly noncommutative ring with 1 which contains no non-
trivial two-sided ideal. Let M be a nonzero right ideal in A, and view M as a right A-
module. Then A coincides with the bicommutant of M .

937
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Proof. Let A′ = EndA(M), so M is a left A′-module. Set A′′ = EndA′(M) (the
bicommutant of M ). We view M as a right A′′-module1. Let R : A→ A′′ be the natural
homomorphism such that mR(a) = ma. Then R is injective, since R(1) = idM and
A contains no nontrivial two-sided ideal. We claim that R(M) is a right ideal in A′′.
Namely, R(m)a′′ = R(ma′′) for a′′ ∈ A′′ and m in M , because left multiplication of
M by any element n of M represents an element of A′, and so (nm)a′′ = n(ma′′) for
all n in M . Finally, the product ideal AM is a two-sided ideal, and so A = AM . Thus
R(A) = R(A)R(M), so that R(A) is a right ideal in A′′. But R(A) contains the identity
element of A′′, and so R(A) = A′′. �

Lemma 3.2. Let A be a k-algebra. If A is finite, then
(1) A has a simple module,
(2) any nonzero module contains a simple submodule,
(3) a simple module over A has finite dimension over k, and
(4) if M is a simple A-module, then EndA(M) is a skew field.

Proof. Of course (1) follows from (2) since A is a nonzero A-module. For (2), any
submodule of minimal (finite) dimension as a k-vector space will be simple. There exists
a finite dimensional one because a cyclic submodule is one. IfM is simple, thenmA ⊂M
is a sub-module, hence we see (3). Any nonzero element of EndA(M) is an isomorphism,
hence (4) holds. �

Theorem 3.3. Let A be a simple finite k-algebra. Then A is a matrix algebra over a
finite k-algebra K which is a skew field.

Proof. We may choose a simple submodule M ⊂ A and then the k-algebra K =
EndA(M) is a skew field, see Lemma 3.2. By Lemma 3.1 we see thatA = EndK(M). Since
K is a skew field andM is finitely generated (since dimk(M) <∞) we see thatM is finite
free as a left K-module. It follows immediately that A ∼= Mat(n× n,Kop). �

4. Lemmas on algebras

LetA be a k-algebra. LetB ⊂ A be a subalgebra. The centralizer ofB inA is the subalgebra

C = {y ∈ A | xy = yx for all x ∈ B}.
It is a k-algebra.

Lemma 4.1. Let A, A′ be k-algebras. Let B ⊂ A, B′ ⊂ A′ be subalgebras with
centralizers C , C ′. Then the centralizer of B ⊗k B′ in A⊗k A′ is C ⊗k C ′.

Proof. DenoteC ′′ ⊂ A⊗kA′ the centralizer ofB⊗kB′. It is clear thatC⊗k C ′ ⊂
C ′′. Conversely, every element ofC ′′ commutes withB⊗1 hence is contained inC⊗kA′.
Similarly C ′′ ⊂ A⊗k C ′. Thus C ′′ ⊂ C ⊗k A′ ∩A⊗k C ′ = C ⊗k C ′. �

Lemma 4.2. LetA be a finite simple k-algebra. Then the center k′ ofA is a finite field
extension of k.

Proof. Write A = Mat(n× n,K) for some skew field K finite over k, see Theorem
3.3. By Lemma 4.1 the center of A is k ⊗k k′ where k′ ⊂ K is the center of K. Since the
center of a skew field is a field, we win. �

1This means that given a′′ ∈ A′′ and m ∈ M we have a product ma′′ ∈ M . In particular, the multi-
plication in A′′ is the opposite of what you’d get if you wrote elements of A′′ as endomorphisms acting on the
left.



4. LEMMAS ON ALGEBRAS 939

Lemma 4.3. Let V be a k vector space. Let K be a central k-algebra which is a skew
field. Let W ⊂ V ⊗k K be a two-sided K-sub vector space. Then W is generated as a left
K-vector space by W ∩ (V ⊗ 1).

Proof. Let V ′ ⊂ V be the k-sub vector space generated by v ∈ V such that v ⊗ 1 ∈
W . Then V ′ ⊗k K ⊂W and we have

W/(V ′ ⊗k K) ⊂ (V/V ′)⊗k K.
If v ∈ V/V ′ is a nonzero vector such that v⊗1 is contained inW/(V ′⊗kK), then we see
that v ⊗ 1 ∈ W where v ∈ V lifts v. This contradicts our construction of V ′. Hence we
may replace V by V/V ′ andW byW/(V ′⊗kK) and it suffices to prove thatW ∩ (V ⊗1)
is nonzero if W is nonzero.
To see this letw ∈W be a nonzero element which can be written asw =

∑
i=1,...,n vi⊗ki

with nminimal. We may right multiply with k−1
1 and assume that k1 = 1. If n = 1, then

we win because v1 ⊗ 1 ∈W . If n > 1, then we see that for any c ∈ K

cw − wc =
∑

i=2,...,n
vi ⊗ (cki − kic) ∈W

and hence cki − kic = 0 by minimality of n. This implies that ki is in the center of K
which is k by assumption. Hence w = (v1 +

∑
kivi)⊗ 1 contradicting the minimality of

n. �

Lemma 4.4. Let A be a k-algebra. Let K be a central k-algebra which is a skew field.
Then any two-sided ideal I ⊂ A ⊗k K is of the form J ⊗k K for some two-sided ideal
J ⊂ A. In particular, if A is simple, then so is A⊗k K.

Proof. Set J = {a ∈ A | a⊗1 ∈ I}. This is a two-sided ideal ofA. And I = J⊗kK
by Lemma 4.3. �

Lemma 4.5. Let R be a possibly noncommutative ring. Let n ≥ 1 be an integer. Let
Rn = Mat(n× n,R).

(1) The functors M 7→ M⊕n and N 7→ Ne11 define quasi-inverse equivalences of
categories ModR ↔ModRn .

(2) A two-sided ideal of Rn is of the form IRn for some two-sided ideal I of R.
(3) The center of Rn is equal to the center of R.

Proof. Part (1) proves itself. If J ⊂ Rn is a two-sided ideal, then J =
⊕
eiiJejj

and all of the summands eiiJejj are equal to each other and are a two-sided ideal I of R.
This proves (2). Part (3) is clear. �

Lemma 4.6. Let A be a finite simple k-algebra.
(1) There exists exactly one simple A-module M up to isomorphism.
(2) Any finite A-module is a direct sum of copies of a simple module.
(3) Two finite A-modules are isomorphic if and only if they have the same dimen-

sion over k.
(4) IfA = Mat(n×n,K) withK a finite skew field extension of k, thenM = K⊕n

is a simple A-module and EndA(M) = Kop.
(5) If M is a simple A-module, then L = EndA(M) is a skew field finite over k

acting on the left on M , we have A = EndL(M), and the centers of A and L
agree. Also [A : k][L : k] = dimk(M)2.

(6) For a finite A-module N the algebra B = EndA(N) is a matrix algebra over the
skew field L of (5). Moreover EndB(N) = A.
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Proof. By Theorem 3.3 we can write A = Mat(n× n,K) for some finite skew field
extension K of k. By Lemma 4.5 the category of modules over A is equivalent to the
category of modules over K. Thus (1), (2), and (3) hold because every module over K is
free. Part (4) holds because the equivalence transforms the K-module K to M = K⊕n.
UsingM = K⊕n in (5) we see thatL = Kop. The statement about the center ofL = Kop

follows from Lemma 4.5. The statement about EndL(M) follows from the explicit form
of M . The formula of dimensions is clear. Part (6) follows as N is isomorphic to a direct
sum of copies of a simple module. �

Lemma 4.7. LetA,A′ be two simple k-algebras one of which is finite and central over
k. Then A⊗k A′ is simple.

Proof. Suppose that A′ is finite and central over k. Write A′ = Mat(n × n,K ′),
see Theorem 3.3. Then the center of K ′ is k and we conclude that A ⊗k K ′ is simple by
Lemma 4.4. Hence A⊗k A′ = Mat(n× n,A⊗k K ′) is simple by Lemma 4.5. �

Lemma 4.8. The tensor product of finite central simple algebras over k is finite, cen-
tral, and simple.

Proof. Combine Lemmas 4.1 and 4.7. �

Lemma 4.9. Let A be a finite central simple algebra over k. Let k′/k be a field exten-
sion. Then A′ = A⊗k k′ is a finite central simple algebra over k′.

Proof. Combine Lemmas 4.1 and 4.7. �

Lemma 4.10. Let A be a finite central simple algebra over k. Then A ⊗k Aop ∼=
Mat(n× n, k) where n = [A : k].

Proof. By Lemma 4.8 the algebra A⊗k Aop is simple. Hence the map

A⊗k Aop −→ Endk(A), a⊗ a′ 7−→ (x 7→ axa′)
is injective. Since both sides of the arrow have the same dimension we win. �

5. The Brauer group of a field

Let k be a field. Consider two finite central simple algebras A and B over k. We say A
and B are similar if there exist n,m > 0 such that Mat(n× n,A) ∼= Mat(m×m,B) as
k-algebras.

Lemma 5.1. Similarity.
(1) Similarity defines an equivalence relation on the set of isomorphism classes of

finite central simple algebras over k.
(2) Every similarity class contains a unique (up to isomorphism) finite central skew

field extension of k.
(3) If A = Mat(n× n,K) and B = Mat(m×m,K ′) for some finite central skew

fieldsK ,K ′ over k thenA andB are similar if and only ifK ∼= K ′ as k-algebras.

Proof. Note that by Wedderburn’s theorem (Theorem 3.3) we can always write a
finite central simple algebra as a matrix algebra over a finite central skew field. Hence it
suffices to prove the third assertion. To see this it suffices to show that if A = Mat(n ×
n,K) ∼= Mat(m×m,K ′) = B then K ∼= K ′. To see this note that for a simple module
M of A we have EndA(M) = Kop, see Lemma 4.6. Hence A ∼= B implies Kop ∼= (K ′)op
and we win. �
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Given two finite central simple k-algebrasA,B the tensor productA⊗k B is another, see
Lemma 4.8. Moreover ifA is similar toA′, thenA⊗kB is similar toA′⊗kB because tensor
products and taking matrix algebras commute. Hence tensor product defines an operation
on equivalence classes of finite central simple algebras which is clearly associative and
commutative. Finally, Lemma 4.10 shows thatA⊗kAop is isomorphic to a matrix algebra,
i.e., that A⊗k Aop is in the similarity class of k. Thus we obtain an abelian group.

Definition 5.2. Let k be a field. The Brauer group of k is the abelian group of simi-
larity classes of finite central simple k-algebras defined above. Notation Br(k).

For any map of fields k → k′ we obtain a group homomorphism

Br(k) −→ Br(k′), A 7−→ A⊗k k′

see Lemma 4.9. In other words, Br(−) is a functor from the category of fields to the cate-
gory of abelian groups. Observe that the Brauer group of a field is zero if and only if every
finite central skew field extension k ⊂ K is trivial.

Lemma 5.3. The Brauer group of an algebraically closed field is zero.

Proof. Let k ⊂ K be a finite central skew field extension. For any element x ∈ K
the subring k[x] ⊂ K is a commutative finite integral k-sub algebra, hence a field, see
Algebra, Lemma 36.19. Since k is algebraically closed we conclude that k[x] = k. Since x
was arbitrary we conclude k = K. �

Lemma 5.4. Let A be a finite central simple algebra over a field k. Then [A : k] is a
square.

Proof. This is true because A⊗k k is a matrix algebra over k by Lemma 5.3. �

6. Skolem-Noether

Theorem 6.1. LetA be a finite central simple k-algebra. LetB be a simple k-algebra.
Let f, g : B → A be two k-algebra homomorphisms. Then there exists an invertible
element x ∈ A such that f(b) = xg(b)x−1 for all b ∈ B.

Proof. Choose a simple A-module M . Set L = EndA(M). Then L is a skew field
with center k which acts on the left on M , see Lemmas 3.2 and 4.6. Then M has two
B⊗k Lop-module structures defined bym ·1 (b⊗ l) = lmf(b) andm ·2 (b⊗ l) = lmg(b).
The k-algebra B ⊗k Lop is simple by Lemma 4.7. Since B is simple, the existence of a
k-algebra homomorphismB → A implies thatB is finite. ThusB⊗k Lop is finite simple
and we conclude the two B ⊗k Lop-module structures on M are isomorphic by Lemma
4.6. Hence we find ϕ : M → M intertwining these operations. In particular ϕ is in the
commutant of L which implies that ϕ is multiplication by some x ∈ A, see Lemma 4.6.
Working out the definitions we see that x is a solution to our problem. �

Lemma 6.2. Let A be a finite central simple k-algebra. Any automorphism of A is
inner. In particular, any automorphism of Mat(n× n, k) is inner.

Proof. Note that A is a finite central simple algebra over the center of A which is a
finite field extension of k, see Lemma 4.2. Hence the Skolem-Noether theorem (Theorem
6.1) applies. �
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7. The centralizer theorem

Theorem 7.1. Let A be a finite central simple algebra over k, and let B be a simple
subalgebra of A. Then

(1) the centralizer C of B in A is simple,
(2) [A : k] = [B : k][C : k], and
(3) the centralizer of C in A is B.

Proof. Throughout this proof we use the results of Lemma 4.6 freely. Choose a
simple A-module M . Set L = EndA(M). Then L is a skew field with center k which
acts on the left on M and A = EndL(M). Then M is a right B ⊗k Lop-module and
C = EndB⊗kLop(M). Since the algebra B ⊗k Lop is simple by Lemma 4.7 we see that C
is simple (by Lemma 4.6 again).
Write B ⊗k Lop = Mat(m × m,K) for some skew field K finite over k. Then C =
Mat(n× n,Kop) if M is isomorphic to a direct sum of n copies of the simple B ⊗k Lop-
module K⊕m (the lemma again). Thus we have dimk(M) = nm[K : k], [B : k][L : k] =
m2[K : k], [C : k] = n2[K : k], and [A : k][L : k] = dimk(M)2 (by the lemma again).
We conclude that (2) holds.
Part (3) follows because of (2) applied to C ⊂ A shows that [B : k] = [C ′ : k] where C ′

is the centralizer of C in A (and the obvious fact that B ⊂ C ′). �

Lemma 7.2. Let A be a finite central simple algebra over k, and let B be a simple
subalgebra of A. If B is a central k-algebra, then A = B ⊗k C where C is the (central
simple) centralizer of B in A.

Proof. We have dimk(A) = dimk(B ⊗k C) by Theorem 7.1. By Lemma 4.7 the
tensor product is simple. Hence the natural map B ⊗k C → A is injective hence an
isomorphism. �

Lemma 7.3. Let A be a finite central simple algebra over k. If K ⊂ A is a subfield,
then the following are equivalent

(1) [A : k] = [K : k]2,
(2) K is its own centralizer, and
(3) K is a maximal commutative subring.

Proof. Theorem 7.1 shows that (1) and (2) are equivalent. It is clear that (3) and (2)
are equivalent. �

Lemma 7.4. Let A be a finite central skew field over k. Then every maximal subfield
K ⊂ A satisfies [A : k] = [K : k]2.

Proof. Special case of Lemma 7.3. �

8. Splitting fields

Definition 8.1. Let A be a finite central simple k-algebra. We say a field extension
k′/k splits A, or k′ is a splitting field for A if A⊗k k′ is a matrix algebra over k′.

Another way to say this is that the class ofAmaps to zero under the map Br(k)→ Br(k′).

Theorem 8.2. Let A be a finite central simple k-algebra. Let k′/k be a finite field
extension. The following are equivalent

(1) k′ splits A, and
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(2) there exists a finite central simple algebra B similar to A such that k′ ⊂ B and
[B : k] = [k′ : k]2.

Proof. Assume (2). It suffices to show that B ⊗k k′ is a matrix algebra. We know
that B ⊗k Bop ∼= Endk(B). Since k′ is the centralizer of k′ in Bop by Lemma 7.3 we see
thatB⊗kk′ is the centralizer of k⊗k′ inB⊗kBop = Endk(B). Of course this centralizer
is just Endk′(B) where we view B as a k′ vector space via the embedding k′ → B. Thus
the result.

Assume (1). This means that we have an isomorphism A ⊗k k′ ∼= Endk′(V ) for some
k′-vector space V . Let B be the commutant of A in Endk(V ). Note that k′ sits in B. By
Lemma 7.2 the classes of A and B add up to zero in Br(k). From the dimension formula
in Theorem 7.1 we see that

[B : k][A : k] = dimk(V )2 = [k′ : k]2 dimk′(V )2 = [k′ : k]2[A : k].

Hence [B : k] = [k′ : k]2. Thus we have proved the result for the opposite to the Brauer
class of A. However, k′ splits the Brauer class of A if and only if it splits the Brauer class
of the opposite algebra, so we win anyway. �

Lemma 8.3. A maximal subfield of a finite central skew field K over k is a splitting
field for K.

Proof. Combine Lemma 7.4 with Theorem 8.2. �

Lemma 8.4. Consider a finite central skew fieldK over k. Let d2 = [K : k]. For any
finite splitting field k′ for K the degree [k′ : k] is divisible by d.

Proof. By Theorem 8.2 there exists a finite central simple algebra B in the Brauer
class of K such that [B : k] = [k′ : k]2. By Lemma 5.1 we see that B = Mat(n × n,K)
for some n. Then [k′ : k]2 = n2d2 whence the result. �

Proposition 8.5. Consider a finite central skew field K over k. There exists a max-
imal subfield k ⊂ k′ ⊂ K which is separable over k. In particular, every Brauer class has
a finite separable spitting field.

Proof. Since every Brauer class is represented by a finite central skew field over k,
we see that the second statement follows from the first by Lemma 8.3.

To prove the first statement, suppose that we are given a separable subfield k′ ⊂ K. Then
the centralizer K ′ of k′ in K has center k′, and the problem reduces to finding a maximal
subfield of K ′ separable over k′. Thus it suffices to prove, if k 6= K , that we can find an
element x ∈ K , x 6∈ k which is separable over k. This statement is clear in characteristic
zero. Hence we may assume that k has characteristic p > 0. If the ground field k is finite
then, the result is clear as well (because extensions of finite fields are always separable).
Thus we may assume that k is an infinite field of positive characteristic.

To get a contradiction assume no element of K is separable over k. By the discussion in
Fields, Section 28 this means the minimal polynomial of any x ∈ K is of the form T q − a
where q is a power of p and a ∈ k. Since it is clear that every element of K has a minimal
polynomial of degree ≤ dimk(K) we conclude that there exists a fixed p-power q such
that xq ∈ k for all x ∈ K.

Consider the map
(−)q : K −→ K
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and write it out in terms of a k-basis {a1, . . . , an} of K with a1 = 1. So

(
∑

xiai)q =
∑

fi(x1, . . . , xn)ai.

Since multiplication on K is k-bilinear we see that each fi is a polynomial in x1, . . . , xn
(details omitted). The choice of q above and the fact that k is infinite shows that fi is
identically zero for i ≥ 2. Hence we see that it remains zero on extending k to its algebraic
closure k. But the algebraK⊗k k is a matrix algebra (for example by Lemmas 4.9 and 5.3),
which implies there are some elements whose qth power is not central (e.g., e11). This is
the desired contradiction. �

The results above allow us to characterize finite central simple algebras as follows.

Lemma 8.6. Let k be a field. For a k-algebra A the following are equivalent
(1) A is finite central simple k-algebra,
(2) A is a finite dimensional k-vector space, k is the center of A, and A has no non-

trivial two-sided ideal,
(3) there exists d ≥ 1 such that A⊗k k̄ ∼= Mat(d× d, k̄),
(4) there exists d ≥ 1 such that A⊗k ksep ∼= Mat(d× d, ksep),
(5) there exist d ≥ 1 and a finite Galois extension k′/k such thatA⊗kk′ ∼= Mat(d×

d, k′),
(6) there exist n ≥ 1 and a finite central skew fieldK over k such thatA ∼= Mat(n×

n,K).
The integer d is called the degree of A.

Proof. The equivalence of (1) and (2) is a consequence of the definitions, see Section
2. Assume (1). By Proposition 8.5 there exists a separable splitting field k ⊂ k′ for A. Of
course, then a Galois closure of k′/k is a splitting field also. Thus we see that (1) implies
(5). It is clear that (5)⇒ (4)⇒ (3). Assume (3). Then A ⊗k k is a finite central simple
k-algebra for example by Lemma 4.5. This trivially implies thatA is a finite central simple
k-algebra. Finally, the equivalence of (1) and (6) is Wedderburn’s theorem, see Theorem
3.3. �
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CHAPTER 12

Homological Algebra

1. Introduction

Basic homological algebra will be explained in this document. We add as needed in the
other parts, since there is clearly an infinite amount of this stuff around. A reference is [?].

2. Basic notions

The following notions are considered basic and will not be defined, and or proved. This
does not mean they are all necessarily easy or well known.

(1) Nothing yet.

3. Preadditive and additive categories

Here is the definition of a preadditive category.

Definition 3.1. A categoryA is called preadditive if each morphism set MorA(x, y)
is endowed with the structure of an abelian group such that the compositions

Mor(x, y)×Mor(y, z) −→ Mor(x, z)
are bilinear. A functor F : A → B of preadditive categories is called additive if and
only if F : Mor(x, y) → Mor(F (x), F (y)) is a homomorphism of abelian groups for all
x, y ∈ Ob(A).

In particular for every x, y there exists at least one morphism x → y, namely the zero
map.

Lemma 3.2. Let A be a preadditive category. Let x be an object of A. The following
are equivalent

(1) x is an initial object,
(2) x is a final object, and
(3) idx = 0 in MorA(x, x).

Furthermore, if such an object 0 exists, then a morphism α : x → y factors through 0 if
and only if α = 0.

Proof. First assume that x is either (1) initial or (2) final. In both cases, it follows
that Mor(x, x) is a trivial abelian group containing idx, thus idx = 0 in Mor(x, x), which
shows that each of (1) and (2) implies (3).

Now assume that idx = 0 in Mor(x, x). Let y be an arbitrary object of A and let f ∈
Mor(x, y). Denote C : Mor(x, x)×Mor(x, y)→ Mor(x, y) the composition map. Then
f = C(0, f) and since C is bilinear we have C(0, f) = 0. Thus f = 0. Hence x is initial
inA. A similar argument for f ∈ Mor(y, x) can be used to show that x is also final. Thus
(3) implies both (1) and (2). �

947
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Definition 3.3. In a preadditive category A we call zero object, and we denote it 0
any final and initial object as in Lemma 3.2 above.

Lemma 3.4. LetA be a preadditive category. Let x, y ∈ Ob(A). If the product x× y
exists, then so does the coproduct x q y. If the coproduct x q y exists, then so does the
product x× y. In this case also xq y ∼= x× y.

Proof. Suppose that z = x × y with projections p : z → x and q : z → y. Denote
i : x → z the morphism corresponding to (1, 0). Denote j : y → z the morphism
corresponding to (0, 1). Thus we have the commutative diagram

x
1 //

i

  

x

z

p
??

q

��
y

1 //

j
??

y

where the diagonal compositions are zero. It follows that i◦p+j◦q : z → z is the identity
since it is a morphism which upon composing with p gives p and upon composing with q
gives q. Suppose given morphisms a : x→ w and b : y → w. Then we can form the map
a◦p+ b◦ q : z → w. In this way we get a bijection Mor(z, w) = Mor(x,w)×Mor(y, w)
which show that z = xq y.
We leave it to the reader to construct the morphisms p, q given a coproduct xq y instead
of a product. �

Definition 3.5. Given a pair of objects x, y in a preadditive category A, the direct
sum x⊕ y of x and y is the direct product x× y endowed with the morphisms i, j, p, q as
in Lemma 3.4 above.

Remark 3.6. Note that the proof of Lemma 3.4 shows that given p and q the mor-
phisms i, j are uniquely determined by the rules p◦i = idx, q◦j = idy , p◦j = 0, q◦i = 0.
Moreover, we automatically have i◦p+j ◦q = idx⊕y . Similarly, given i, j the morphisms
p and q are uniquely determined. Finally, given objects x, y, z and morphisms i : x → z,
j : y → z, p : z → x and q : z → y such that p ◦ i = idx, q ◦ j = idy , p ◦ j = 0, q ◦ i = 0
and i ◦ p+ j ◦ q = idz , then z is the direct sum of x and y with the four morphisms equal
to i, j, p, q.

Lemma 3.7. Let A, B be preadditive categories. Let F : A → B be an additive
functor. Then F transforms direct sums to direct sums and zero to zero.

Proof. Suppose F is additive. A direct sum z of x and y is characterized by having
morphisms i : x → z, j : y → z, p : z → x and q : z → y such that p ◦ i = idx,
q ◦ j = idy , p ◦ j = 0, q ◦ i = 0 and i ◦ p + j ◦ q = idz , according to Remark 3.6.
Clearly F (x), F (y), F (z) and the morphisms F (i), F (j), F (p), F (q) satisfy exactly the
same relations (by additivity) and we see that F (z) is a direct sum of F (x) and F (y).
Hence, F transforms direct sums to direct sums.
To see that F transforms zero to zero, use the characterization (3) of the zero object in
Lemma 3.2. �

Definition 3.8. A categoryA is called additive if it is preadditive and finite products
exist, in other words it has a zero object and direct sums.
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Namely the empty product is a finite product and if it exists, then it is a final object.

Definition 3.9. LetA be a preadditive category. Let f : x→ y be a morphism.
(1) A kernel of f is a morphism i : z → x such that (a) f ◦ i = 0 and (b) for any

i′ : z′ → x such that f ◦ i′ = 0 there exists a unique morphism g : z′ → z such
that i′ = i ◦ g.

(2) If the kernel of f exists, then we denote this Ker(f)→ x.
(3) A cokernel of f is a morphism p : y → z such that (a) p ◦ f = 0 and (b) for any

p′ : y → z′ such that p′ ◦ f = 0 there exists a unique morphism g : z → z′ such
that p′ = g ◦ p.

(4) If a cokernel of f exists we denote this y → Coker(f).
(5) If a kernel of f exists, then a coimage of f is a cokernel for the morphism Ker(f)→

x.
(6) If a kernel and coimage exist then we denote this x→ Coim(f).
(7) If a cokernel of f exists, then the image of f is a kernel of the morphism y →

Coker(f).
(8) If a cokernel and image of f exist then we denote this Im(f)→ y.

In the above definition, we have spoken of “the kernel” and “the cokernel”, tacitly using
their uniqueness up to unique isomorphism. This follows from the Yoneda lemma (Cate-
gories, Section 3) because the kernel of f : x→ y represents the functor sending an object
z to the set Ker(MorA(z, x)→ MorA(z, y)). The case of cokernels is dual.

We first relate the direct sum to kernels as follows.

Lemma 3.10. Let C be a preadditive category. Let x ⊕ y with morphisms i, j, p, q as
in Lemma 3.4 be a direct sum in C. Then i : x → x ⊕ y is a kernel of q : x ⊕ y → y.
Dually, p is a cokernel for j.

Proof. Let f : z′ → x⊕ y be a morphism such that q ◦ f = 0. We have to show that
there exists a unique morphism g : z′ → x such that f = i ◦ g. Since i ◦ p + j ◦ q is the
identity on x⊕ y we see that

f = (i ◦ p+ j ◦ q) ◦ f = i ◦ p ◦ f
and hence g = p ◦ f works. Uniqueness holds because p ◦ i is the identity on x. The proof
of the second statement is dual. �

Lemma 3.11. Let C be a preadditive category. Let f : x→ y be a morphism in C.
(1) If a kernel of f exists, then this kernel is a monomorphism.
(2) If a cokernel of f exists, then this cokernel is an epimorphism.
(3) If a kernel and coimage of f exist, then the coimage is an epimorphism.
(4) If a cokernel and image of f exist, then the image is a monomorphism.

Proof. Part (1) follows easily from the uniqueness required in the definition of a
kernel. The proof of (2) is dual. Part (3) follows from (2), since the coimage is a cokernel.
Similarly, (4) follows from (1). �

Lemma 3.12. Let f : x → y be a morphism in a preadditive category such that
the kernel, cokernel, image and coimage all exist. Then f can be factored uniquely as
x→ Coim(f)→ Im(f)→ y.

Proof. There is a canonical morphism Coim(f) → y because Ker(f) → x → y
is zero. The composition Coim(f) → y → Coker(f) is zero, because it is the unique
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morphism which gives rise to the morphism x → y → Coker(f) which is zero (the
uniqueness follows from Lemma 3.11 (3)). Hence Coim(f)→ y factors uniquely through
Im(f)→ y, which gives us the desired map. �

Example 3.13. Let k be a field. Consider the category of filtered vector spaces over
k. (See Definition 19.1.) Consider the filtered vector spaces (V, F ) and (W,F ) with V =
W = k and

F iV =
{
V if i < 0
0 if i ≥ 0 and F iW =

{
W if i ≤ 0
0 if i > 0

The map f : V → W corresponding to idk on the underlying vector spaces has trivial
kernel and cokernel but is not an isomorphism. Note also that Coim(f) = V and Im(f) =
W . This means that the category of filtered vector spaces over k is not abelian.

4. Karoubian categories

Skip this section on a first reading.

Definition 4.1. Let C be a preadditive category. We say C is Karoubian if every
idempotent endomorphism of an object of C has a kernel.

The dual notion would be that every idempotent endomorphism of an object has a coker-
nel. However, in view of the (dual of the) following lemma that would be an equivalent
notion.

Lemma 4.2. Let C be a preadditive category. The following are equivalent
(1) C is Karoubian,
(2) every idempotent endomorphism of an object of C has a cokernel, and
(3) given an idempotent endomorphism p : z → z of C there exists a direct sum

decomposition z = x⊕ y such that p corresponds to the projection onto y.

Proof. Assume (1) and let p : z → z be as in (3). Let x = Ker(p) and y = Ker(1−p).
There are maps x → z and y → z. Since (1 − p)p = 0 we see that p : z → z factors
through y, hence we obtain a morphism z → y. Similarly we obtain a morphism z → x.
We omit the verification that these four morphisms induce an isomorphism x = y ⊕ z as
in Remark 3.6. Thus (1)⇒ (3). The implication (2)⇒ (3) is dual. Finally, condition (3)
implies (1) and (2) by Lemma 3.10. �

Lemma 4.3. Let D be a preadditive category.
(1) IfD has countable products and kernels of maps which have a right inverse, then
D is Karoubian.

(2) If D has countable coproducts and cokernels of maps which have a left inverse,
then D is Karoubian.

Proof. Let X be an object of D and let e : X → X be an idempotent. The functor

W 7−→ Ker(MorD(W,X) e−→ MorD(W,X))
if representable if and only if e has a kernel. Note that for any abelian groupA and idem-
potent endomorphism e : A→ A we have

Ker(e : A→ A) = Ker(Φ :
∏

n∈N
A→

∏
n∈N

A)

where
Φ(a1, a2, a3, . . .) = (ea1 + (1− e)a2, ea2 + (1− e)a3, . . .)
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Moreover, Φ has the right inverse

Ψ(a1, a2, a3, . . .) = (a1, (1− e)a1 + ea2, (1− e)a2 + ea3, . . .).

Hence (1) holds. The proof of (2) is dual (using the dual definition of a Karoubian category,
namely condition (2) of Lemma 4.2). �

5. Abelian categories

An abelian category is a category satisfying just enough axioms so the snake lemma holds.
An axiom (that is sometimes forgotten) is that the canonical map Coim(f) → Im(f) of
Lemma 3.12 is always an isomorphism. Example 3.13 shows that it is necessary.

Definition 5.1. A category A is abelian if it is additive, if all kernels and cokernels
exist, and if the natural map Coim(f) → Im(f) is an isomorphism for all morphisms f
ofA.

Lemma 5.2. Let A be a preadditive category. The additions on sets of morphisms
make Aopp into a preadditive category. Furthermore, A is additive if and only if Aopp is
additive, andA is abelian if and only ifAopp is abelian.

Proof. The first statement is straightforward. To see thatA is additive if and only if
Aopp is additive, recall that additivity can be characterized by the existence of a zero object
and direct sums, which are both preserved when passing to the opposite category. Finally,
to see that A is abelian if and only if Aopp is abelian, observes that kernels, cokernels,
images and coimages inAopp correspond to cokernels, kernels, coimages and images inA,
respectively. �

Definition 5.3. Let f : x→ y be a morphism in an abelian category.
(1) We say f is injective if Ker(f) = 0.
(2) We say f is surjective if Coker(f) = 0.

If x→ y is injective, then we say that x is a subobject of y and we use the notation x ⊂ y.
If x→ y is surjective, then we say that y is a quotient of x.

Lemma 5.4. Let f : x→ y be a morphism in an abelian categoryA. Then
(1) f is injective if and only if f is a monomorphism, and
(2) f is surjective if and only if f is an epimorphism.

Proof. Proof of (1). Recall that Ker(f) is an object representing the functor sending
z to Ker(MorA(z, x)→ MorA(z, y)), see Definition 3.9. Thus Ker(f) is 0 if and only if
MorA(z, x)→ MorA(z, y) is injective for all z if and only if f is a monomorphism. The
proof of (2) is similar. �

In an abelian category, if x ⊂ y is a subobject, then we denote

y/x = Coker(x→ y).

Lemma 5.5. LetA be an abelian category. All finite limits and finite colimits exist in
A.

Proof. To show that finite limits exist it suffices to show that finite products and
equalizers exist, see Categories, Lemma 18.4. Finite products exist by definition and the
equalizer of a, b : x→ y is the kernel of a− b. The argument for finite colimits is similar
but dual to this. �
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Example 5.6. Let A be an abelian category. Pushouts and fibre products in A have
the following simple descriptions:

(1) If a : x → y, b : z → y are morphisms in A, then we have the fibre product:
x×y z = Ker((a,−b) : x⊕ z → y).

(2) If a : y → x, b : y → z are morphisms in A, then we have the pushout:
xqy z = Coker((a,−b) : y → x⊕ z).

Definition 5.7. LetA be an additive category. Consider a sequence of morphisms

. . .→ x→ y → z → . . . or x1 → x2 → . . .→ xn

in A. We say such a sequence is a complex if the composition of any two consecutive
(drawn) arrows is zero. If A is abelian then we say a complex of the first type above is
exact at y if Im(x→ y) = Ker(y → z) and we say a complex of the second kind is exact
at xi where 1 < i < n if Im(xi−1 → xi) = Ker(xi → xi+1). We a sequence as above is
exact or is an exact sequence or is an exact complex if it is a complex and exact at every
object (in the first case) or exact at xi for all 1 < i < n (in the second case). There are
variants of these notions for sequences of the form

. . .→ x−3 → x−2 → x−1 and x1 → x2 → x3 → . . .

A short exact sequence is an exact complex of the form

0→ A→ B → C → 0.

In the following lemma we assume the reader knows what it means for a sequence of abelian
groups to be exact.

Lemma 5.8. Let A be an abelian category. Let 0 → M1 → M2 → M3 → 0 be a
complex ofA.

(1) M1 →M2 →M3 → 0 is exact if and only if

0→ HomA(M3, N)→ HomA(M2, N)→ HomA(M1, N)

is an exact sequence of abelian groups for all objects N ofA, and
(2) 0→M1 →M2 →M3 is exact if and only if

0→ HomA(N,M1)→ HomA(N,M2)→ HomA(N,M3)

is an exact sequence of abelian groups for all objects N ofA.

Proof. Omitted. Hint: See Algebra, Lemma 10.1. �

Definition 5.9. Let A be an abelian category. Let i : A → B and q : B → C be
morphisms of A such that 0 → A → B → C → 0 is a short exact sequence. We say the
short exact sequence is split if there exist morphisms j : C → B and p : B → A such that
(B, i, j, p, q) is the direct sum of A and C.

Lemma 5.10. Let A be an abelian category. Let 0 → A → B → C → 0 be a short
exact sequence.

(1) Given a morphism s : C → B left inverse to B → C , there exists a unique
π : B → A such that (s, π) splits the short exact sequence as in Definition 5.9.

(2) Given a morphism π : B → A right inverse to A → B, there exists a unique
s : C → B such that (s, π) splits the short exact sequence as in Definition 5.9.

Proof. Omitted. �
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Lemma 5.11. LetA be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.
(1) The diagram is cartesian if and only if

0→ w
(g,f)−−−→ x⊕ y (k,−h)−−−−→ z

is exact.
(2) The diagram is cocartesian if and only if

w
(g,−f)−−−−→ x⊕ y (k,h)−−−→ z → 0

is exact.

Proof. Let u = (g, f) : w → x⊕ y and v = (k,−h) : x⊕ y → z. Let p : x⊕ y →
x and q : x ⊕ y → y be the canonical projections. Let i : Ker(v) → x ⊕ y be the
canonical injection. By Example 5.6, the diagram is cartesian if and only if there exists
an isomorphism r : Ker(v) → w with f ◦ r = q ◦ i and g ◦ r = p ◦ i. The sequence
0→ w

u→ x⊕ y v→ z is exact if and only if there exists an isomorphism r : Ker(v)→ w
with u ◦ r = i. But given r : Ker(v)→ w, we have f ◦ r = q ◦ i and g ◦ r = p ◦ i if and
only if q ◦u ◦ r = f ◦ r = q ◦ i and p ◦u ◦ r = g ◦ r = p ◦ i, hence if and only if u ◦ r = i.
This proves (1), and then (2) follows by duality. �

Lemma 5.12. LetA be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.
(1) If the diagram is cartesian, then the morphism Ker(f) → Ker(k) induced by g

is an isomorphism.
(2) If the diagram is cocartesian, then the morphism Coker(f)→ Coker(k) induced

by h is an isomorphism.

Proof. Suppose the diagram is cartesian. Let e : Ker(f) → Ker(k) be induced by
g. Let i : Ker(f) → w and j : Ker(k) → x be the canonical injections. There exists
t : Ker(k) → w with f ◦ t = 0 and g ◦ t = j. Hence, there exists u : Ker(k) → Ker(f)
with i◦u = t. It follows g ◦ i◦u◦ e = g ◦ t◦ e = j ◦ e = g ◦ i and f ◦ i◦u◦ e = 0 = f ◦ i,
hence i◦u◦e = i. Since i is a monomorphism this implies u◦e = idKer(f). Furthermore,
we have j ◦ e ◦ u = g ◦ i ◦ u = g ◦ t = j. Since j is a monomorphism this implies
e ◦ u = idKer(k). This proves (1). Now, (2) follows by duality. �
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Lemma 5.13. LetA be an abelian category. Let

w
f //

g

��

y

h

��
x

k // z

be a commutative diagram.
(1) If the diagram is cartesian and k is an epimorphism, then the diagram is cocarte-

sian and f is an epimorphism.
(2) If the diagram is cocartesian and g is a monomorphism, then the diagram is carte-

sian and h is a monomorphism.

Proof. Suppose the diagram is cartesian and k is an epimorphism. Let u = (g, f) :
w → x⊕y and let v = (k,−h) : x⊕y → z. As k is an epimorphism, v is an epimorphism,
too. Therefore and by Lemma 5.11, the sequence 0→ w

u→ x⊕y v→ z → 0 is exact. Thus,
the diagram is cocartesian by Lemma 5.11. Finally, f is an epimorphism by Lemma 5.12
and Lemma 5.4. This proves (1), and (2) follows by duality. �

Lemma 5.14. LetA be an abelian category.
(1) If x → y is surjective, then for every z → y the projection x ×y z → z is

surjective.
(2) If x→ y is injective, then for every x→ z the morphism z → zqxy is injective.

Proof. Immediately from Lemma 5.4 and Lemma 5.13. �

Lemma 5.15. Let A be an abelian category. Let f : x → y and g : y → z be
morphisms with g ◦ f = 0. Then, the following statements are equivalent:

(1) The sequence x f→ y
g→ z is exact.

(2) For every h : w → y with g ◦ h = 0 there exist an object v, an epimorphism
k : v → w and a morphism l : v → x with h ◦ k = f ◦ l.

Proof. Let i : Ker(g) → y be the canonical injection. Let p : x → Coim(f) be the
canonical projection. Let j : Im(f)→ Ker(g) be the canonical injection.

Suppose (1) holds. Let h : w → y with g ◦ h = 0. There exists c : w → Ker(g) with
i ◦ c = h. Let v = x ×Ker(g) w with canonical projections k : v → w and l : v → x, so
that c◦k = j ◦p◦ l. Then, h◦k = i◦c◦k = i◦j ◦p◦ l = f ◦ l. As j ◦p is an epimorphism
by hypothesis, k is an epimorphism by Lemma 5.13. This implies (2).

Suppose (2) holds. Then, g ◦ i = 0. So, there are an object w, an epimorphism k : w →
Ker(g) and a morphism l : w → xwith f ◦ l = i ◦k. It follows i ◦ j ◦ p ◦ l = f ◦ l = i ◦k.
Since i is a monomorphism we see that j ◦ p ◦ l = k is an epimorphism. So, j is an
epimorphisms and thus an isomorphism. This implies (1). �

Lemma 5.16. LetA be an abelian category. Let

x
f //

α

��

y
g //

β

��

z

γ

��
u

k // v
l // w

be a commutative diagram.
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(1) If the first row is exact and k is a monomorphism, then the induced sequence
Ker(α)→ Ker(β)→ Ker(γ) is exact.

(2) If the second row is exact and g is an epimorphism, then the induced sequence
Coker(α)→ Coker(β)→ Coker(γ) is exact.

Proof. Suppose the first row is exact and k is a monomorphism. Let a : Ker(α) →
Ker(β) and b : Ker(β) → Ker(γ) be the induced morphisms. Let h : Ker(α) → x,
i : Ker(β)→ y and j : Ker(γ)→ z be the canonical injections. As j is a monomorphism
we have b ◦ a = 0. Let c : s → Ker(β) with b ◦ c = 0. Then, g ◦ i ◦ c = j ◦ b ◦ c = 0.
By Lemma 5.15 there are an object t, an epimorphism d : t→ s and a morphism e : t→ x
with i ◦ c ◦ d = f ◦ e. Then, k ◦ α ◦ e = β ◦ f ◦ e = β ◦ i ◦ c ◦ d = 0. As k is a
monomorphism we get α ◦ e = 0. So, there exists m : t → Ker(α) with h ◦ m = e.
It follows i ◦ a ◦ m = f ◦ h ◦ m = f ◦ e = i ◦ c ◦ d. As i is a monomorphism we get
a ◦m = c ◦ d. Thus, Lemma 5.15 implies (1), and then (2) follows by duality. �

Lemma 5.17. LetA be an abelian category. Let

x
f //

α

��

y
g //

β

��

z //

γ

��

0

0 // u
k // v

l // w

be a commutative diagram with exact rows.

(1) There exists a unique morphism δ : Ker(γ)→ Coker(α) such that the diagram

y

β

��

y ×z Ker(γ)π′
oo π // Ker(γ)

δ

��
v

ι′// Coker(α)qu v Coker(α)ιoo

commutes, where π and π′ are the canonical projections and ι and ι′ are the
canonical coprojections.

(2) The induced sequence

Ker(α) f ′

−→ Ker(β) g′

−→ Ker(γ) δ−→ Coker(α) k′

−→ Coker(β) l′−→ Coker(γ)

is exact. If f is injective then so is f ′, and if l is surjective then so is l′.

Proof. As π is an epimorphism and ι is a monomorphism by Lemma 5.13, uniqueness
of δ is clear. Let p = y ×z Ker(γ) and q = Coker(α) qu v. Let h : Ker(β) → y,
i : Ker(γ) → z and j : Ker(π) → p be the canonical injections. Let π′′ : u → Coker(α)
be the canonical projection. Keeping in mind Lemma 5.13 we get a commutative diagram
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with exact rows

0 // Ker(π) j // p
π //

π′

��

Ker(γ)

i

��

// 0

x
f //

α

��

y
g //

β

��

z

γ

��

// 0

0 // u
k //

π′′

��

v
l //

ι′

��

w

0 // Coker(α) ι // q

As l ◦ β ◦ π′ = γ ◦ i ◦ π = 0 and as the third row of the diagram above is exact, there is
an a : p → u with k ◦ a = β ◦ π′. As the upper right quadrangle of the diagram above
is cartesian, Lemma 5.12 yields an epimorphism b : x → Ker(π) with π′ ◦ j ◦ b = f . It
follows k ◦ a ◦ j ◦ b = β ◦ π′ ◦ j ◦ b = β ◦ f = k ◦ α. As k is a monomorphism this
implies a ◦ j ◦ b = α. It follows π′′ ◦ a ◦ j ◦ b = π′′ ◦ α = 0. As b is an epimorphism
this implies π′′ ◦ a ◦ j = 0. Therefore, as the top row of the diagram above is exact, there
exists δ : Ker(γ) → Coker(α) with δ ◦ π = π′′ ◦ a. It follows ι ◦ δ ◦ π = ι ◦ π′′ ◦ a =
ι′ ◦ k ◦ a = ι′ ◦ β ◦ π′ as desired.

As the upper right quadrangle in the diagram above is cartesian there is a c : Ker(β)→ p
with π′◦c = h and π◦c = g′. It follows ι◦δ◦g′ = ι◦δ◦π◦c = ι′◦β◦π′◦c = ι′◦β◦h = 0.
As ι is a monomorphism this implies δ ◦ g′ = 0.

Next, let d : r → Ker(γ) with δ ◦ d = 0. Applying Lemma 5.15 to the exact sequence
p

π−→ Ker(γ) → 0 and d yields an object s, an epimorphism m : s → r and a morphism
n : s→ p with π ◦n = d ◦m. As π′′ ◦ a ◦n = δ ◦ d ◦m = 0, applying Lemma 5.15 to the
exact sequence x α−→ u

p−→ Coker(α) and a◦n yields an object t, an epimorphism ε : t→ s
and a morphism ζ : t→ xwith a◦n◦ε = α◦ζ . It holds β◦π′◦n◦ε = k◦α◦ζ = β◦f ◦ζ .
Let η = π′◦n◦ε−f ◦ζ : t→ y. Then, β◦η = 0. It follows that there is a ϑ : t→ Ker(β)
with η = h◦ϑ. It holds i◦g′◦ϑ = g◦h◦ϑ = g◦π′◦n◦ε−g◦f◦ζ = i◦π◦n◦ε = i◦d◦m◦ε.
As i is a monomorphism we get g′◦ϑ = d◦m◦ε. Thus, asm◦ε is an epimorphism, Lemma

5.15 implies that Ker(β) g′

−→ Ker(γ) δ−→ Coker(α) is exact. Then, the claim follows by
Lemma 5.16 and duality. �

Lemma 5.18. LetA be an abelian category. Let

x

��

//

α

��

y

��

//

β

��

z

��

//

γ

��

0

x′ //

α′

��

y′ //

β′

��

z′ //

γ′

��

0

0 // u

��

// v

��

// w

~~
0 // u′ // v′ // w′
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be a commutative diagram with exact rows. Then, the induced diagram

Ker(α) //

��

Ker(β) //

��

Ker(γ) δ //

��

Coker(α) //

��

Coker(β) //

��

Coker(γ)

��
Ker(α′) // Ker(β′) // Ker(γ′) δ′

// Coker(α′) // Coker(β′) // Coker(γ′)

commutes.

Proof. Omitted. �

Lemma 5.19. LetA be an abelian category. Let

w //

α

��

x //

β

��

y //

γ

��

z

δ
��

w′ // x′ // y′ // z′

be a commutative diagram with exact rows.
(1) If α, γ are surjective and δ is injective, then β is surjective.
(2) If β, δ are injective and α is surjective, then γ is injective.

Proof. Assume α, γ are surjective and δ is injective. We may replacew′ by Im(w′ →
x′), i.e., we may assume that w′ → x′ is injective. We may replace z by Im(y → z), i.e.,
we may assume that y → z is surjective. Then we may apply Lemma 5.17 to

Ker(y → z) //

��

y //

��

z //

��

0

0 // Ker(y′ → z′) // y′ // z′

to conclude that Ker(y → z) → Ker(y′ → z′) is surjective. Finally, we apply Lemma
5.17 to

w //

��

x //

��

Ker(y → z) //

��

0

0 // w′ // x′ // Ker(y′ → z′)

to conclude that x→ x′ is surjective. This proves (1). The proof of (2) is dual to this. �

Lemma 5.20. LetA be an abelian category. Let

v //

α

��

w //

β

��

x //

γ

��

y //

δ
��

z

ε

��
v′ // w′ // x′ // y′ // z′

be a commutative diagram with exact rows. If β, δ are isomorphisms, ε is injective, and α
is surjective then γ is an isomorphism.

Proof. Immediate consequence of Lemma 5.19. �
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6. Extensions

Definition 6.1. Let A be an abelian category. Let A,B ∈ Ob(A). An extension E
of B by A is a short exact sequence

0→ A→ E → B → 0.
A morphism of extensions between two extensions 0 → A → E → B → 0 and 0 →
A→ F → B → 0 means a morphism f : E → F inA making the diagram

0 // A //

id
��

E //

f

��

B //

id
��

0

0 // A // F // B // 0
commutative. Thus, the extensions of B by A form a category.

By abuse of language we often omit mention of the morphisms A → E and E → B,
although they are definitively part of the structure of an extension.

Definition 6.2. Let A be an abelian category. Let A,B ∈ Ob(A). The set of iso-
morphism classes of extensions of B by A is denoted

ExtA(B,A).
This is called the Ext-group.

This definition works, because by our conventions Ob(A) is a set, and hence ExtA(B,A)
is a set. In any of the cases of “big” abelian categories listed in Categories, Remark 2.2 one
can check by hand that ExtA(B,A) is a set as well. Also, we will see later that this is
always the case when A has either enough projectives or enough injectives. Insert future
reference here.

Actually we can turn ExtA(−,−) into a functor

A×Aopp −→ Sets, (A,B) 7−→ ExtA(B,A)
as follows:

(1) Given a morphism B′ → B and an extension E of B by A we define E′ =
E ×B B′ so that we have the following commutative diagram of short exact
sequences

0 // A //

��

E′ //

��

B′ //

��

0

0 // A // E // B // 0
The extension E′ is called the pullback of E via B′ → B.

(2) Given a morphism A → A′ and an extension E of B by A we define E′ =
A′ qA E so that we have the following commutative diagram of short exact
sequences

0 // A //

��

E //

��

B //

��

0

0 // A′ // E′ // B // 0
The extension E′ is called the pushout of E via A→ A′.
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To see that this defines a functor as indicated above there are several things to verify. First
of all functoriality in the variableB requires that (E×B B′)×B′ B′′ = E×B B′′ which
is a general property of fibre products. Dually one deals with functoriality in the variable
A. Finally, given A→ A′ and B′ → B we have to show that

A′ qA (E ×B B′) ∼= (A′ qA E)×B B′

as extensions of B′ by A′. Recall that A′ qA E is a quotient of A′ ⊕ E. Thus the right
hand side is a quotient of A′⊕E ×B B′, and it is straightforward to see that the kernel is
exactly what you need in order to get the left hand side.

Note that if E1 and E2 are extensions of B by A, then E1 ⊕E2 is an extension of B ⊕B
by A ⊕ A. We push out by the sum map A ⊕ A → A and we pull back by the diagonal
map B → B ⊕B to get an extension E1 + E2 of B by A.

0 // A⊕A //

Σ
��

E1 ⊕ E2 //

��

B ⊕B //

��

0

0 // A // E′ // B ⊕B // 0

0 // A //

OO

E1 + E2 //

OO

B //

∆

OO

0

The extension E1 + E2 is called the Baer sum of the given extensions.

Lemma 6.3. The construction (E1, E2) 7→ E1 + E2 above defines a commutative
group law on ExtA(B,A) which is functorial in both variables.

Proof. Omitted. �

Lemma 6.4. LetA be an abelian category. Let 0→M1 →M2 →M3 → 0 be a short
exact sequence inA.

(1) There is a canonical six term exact sequence of abelian groups

0 // HomA(M3, N) // HomA(M2, N) // HomA(M1, N)

rr
ExtA(M3, N) // ExtA(M2, N) // ExtA(M1, N)

for all objects N ofA, and
(2) there is a canonical six term exact sequence of abelian groups

0 // HomA(N,M1) // HomA(N,M2) // HomA(N,M3)

rr
ExtA(N,M1) // ExtA(N,M2) // ExtA(N,M3)

for all objects N ofA.

Proof. Omitted. Hint: The boundary maps are defined using either the pushout or
pullback of the given short exact sequence. �
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7. Additive functors

First a completely silly lemma characterizing additive functors between additive cate-
gories.

Lemma 7.1. Let A and B be additive categories. Let F : A → B be a functor. The
following are equivalent

(1) F is additive,
(2) F (A)⊕ F (B)→ F (A⊕B) is an isomorphism for all A,B ∈ A, and
(3) F (A⊕B)→ F (A)⊕ F (B) is an isomorphism for all A,B ∈ A.

Proof. Additive functors commute with direct sums by Lemma 3.7 hence (1) implies
(2) and (3). On the other hand (2) and (3) are equivalent because the composition F (A)⊕
F (B) → F (A ⊕ B) → F (A) ⊕ F (B) is the identity map. Assume (2) and (3) hold. Let
f, g : A→ B be maps. Then f + g is equal to the composition

A→ A⊕A diag(f,g)−−−−−→ B ⊕B → B

Apply the functor F and consider the following diagram

F (A) //

&&

F (A⊕A)
F (diag(f,g))

// F (B ⊕B) //

��

F (B)

F (A)⊕ F (A)

OO

diag(F (f),F (g))// F (B)⊕ F (B)

88

We claim this is commutative. For the middle square we can verify it separately for each of
the four induced maps F (A) → F (B) where it follows from the fact that F is a functor
(in other words this square commutes even if F does not satisfy any properties beyond
being a functor). For the triangle on the left, we use that F (A ⊕ A) → F (A) ⊕ F (A)
is an isomorphism to see that it suffice to check after composition with this map and this
check is trivial. Dually for the other triangle. Thus going around the bottom is equal to
F (f + g) and we conclude. �

Recall that we defined, in Categories, Definition 23.1 the notion of a “right exact”, “left
exact” and “exact” functor in the setting of a functor between categories that have finite
(co)limits. Thus this applies in particular to functors between abelian categories.

Lemma 7.2. LetA and B be abelian categories. Let F : A → B be a functor.
(1) If F is either left or right exact, then it is additive.
(2) F is left exact if and only if for every short exact sequence 0→ A→ B → C →

0 the sequence 0→ F (A)→ F (B)→ F (C) is exact.
(3) F is right exact if and only if for every short exact sequence 0 → A → B →

C → 0 the sequence F (A)→ F (B)→ F (C)→ 0 is exact.
(4) F is exact if and only if for every short exact sequence 0→ A→ B → C → 0

the sequence 0→ F (A)→ F (B)→ F (C)→ 0 is exact.

Proof. If F is left exact, i.e., F commutes with finite limits, then F sends products to
products, hence F preserved direct sums, hence F is additive by Lemma 7.1. On the other
hand, suppose that for every short exact sequence 0 → A → B → C → 0 the sequence
0 → F (A) → F (B) → F (C) is exact. Let A,B be two objects. Then we have a short
exact sequence

0→ A→ A⊕B → B → 0
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see for example Lemma 3.10. By assumption, the lower row in the commutative diagram

0 // F (A)

��

// F (A)⊕ F (B) //

��

F (B)

��

// 0

0 // F (A) // F (A⊕B) // F (B)

is exact. Hence by the snake lemma (Lemma 5.17) we conclude that F (A) ⊕ F (B) →
F (A ⊕ B) is an isomorphism. Hence F is additive in this case as well. Thus for the rest
of the proof we may assume F is additive.

Denote f : B → C a map from B to C. Exactness of 0 → A → B → C just means
that A = Ker(f). Clearly the kernel of f is the equalizer of the two maps f and 0 from
B to C. Hence if F commutes with limits, then F (Ker(f)) = Ker(F (f)) which exactly
means that 0→ F (A)→ F (B)→ F (C) is exact.

Conversely, suppose that F is additive and transforms any short exact sequence 0→ A→
B → C → 0 into an exact sequence 0→ F (A)→ F (B)→ F (C). Because it is additive
it commutes with direct sums and hence finite products in A. To show it commutes with
finite limits it therefore suffices to show that it commutes with equalizers. But equalizers
in an abelian category are the same as the kernel of the difference map, hence it suffices
to show that F commutes with taking kernels. Let f : A → B be a morphism. Factor
f as A → I → B with f ′ : A → I surjective and i : I → B injective. (This is
possible by the definition of an abelian category.) Then it is clear that Ker(f) = Ker(f ′).
Also 0 → Ker(f ′) → A → I → 0 and 0 → I → B → B/I → 0 are short exact.
By the condition imposed on F we see that 0 → F (Ker(f ′)) → F (A) → F (I) and
0→ F (I)→ F (B)→ F (B/I) are exact. Hence it is also the case that F (Ker(f ′)) is the
kernel of the map F (A)→ F (B), and we win.

The proof of (3) is similar to the proof of (2). Statement (4) is a combination of (2) and
(3). �

Lemma 7.3. Let A and B be abelian categories. Let F : A → B be an exact functor.
For every pair of objectsA,B ofA the functorF induces an abelian group homomorphism

ExtA(B,A) −→ ExtB(F (B), F (A))
which maps the extension E to F (E).

Proof. Omitted. �

The following lemma is used in the proof that the category of abelian sheaves on a site is
abelian, where the functor b is sheafification.

Lemma 7.4. Let a : A → B and b : B → A be functors. Assume that
(1) A, B are additive categories, a, b are additive functors, and a is right adjoint to b,
(2) B is abelian and b is left exact, and
(3) ba ∼= idA.

ThenA is abelian.

Proof. As B is abelian we see that all finite limits and colimits exist in B by Lemma
5.5. Since b is a left adjoint we see that b is also right exact and hence exact, see Categories,
Lemma 24.6. Let ϕ : B1 → B2 be a morphism of B. In particular, ifK = Ker(B1 → B2),
then K is the equalizer of 0 and ϕ and hence bK is the equalizer of 0 and bϕ, hence bK is
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the kernel of bϕ. Similarly, if Q = Coker(B1 → B2), then Q is the coequalizer of 0 and
ϕ and hence bQ is the coequalizer of 0 and bϕ, hence bQ is the cokernel of bϕ. Thus we
see that every morphism of the form bϕ inA has a kernel and a cokernel. However, since
ba ∼= id we see that every morphism of A is of this form, and we conclude that kernels
and cokernels exist inA. In fact, the argument shows that if ψ : A1 → A2 is a morphism
then

Ker(ψ) = bKer(aψ), and Coker(ψ) = bCoker(aψ).
Now we still have to show that Coim(ψ) = Im(ψ). We do this as follows. First note that
since A has kernels and cokernels it has all finite limits and colimits (see proof of Lemma
5.5). Hence we see by Categories, Lemma 24.6 that a is left exact and hence transforms
kernels (=equalizers) into kernels.

Coim(ψ) = Coker(Ker(ψ)→ A1) by definition
= bCoker(a(Ker(ψ)→ A1)) by formula above
= bCoker(Ker(aψ)→ aA1)) a preserves kernels
= bCoim(aψ) by definition
= b Im(aψ) B is abelian
= bKer(aA2 → Coker(aψ)) by definition
= Ker(baA2 → bCoker(aψ)) b preserves kernels
= Ker(A2 → bCoker(aψ)) ba = idA

= Ker(A2 → Coker(ψ)) by formula above
= Im(ψ) by definition

Thus the lemma holds. �

8. Localization

In this section we note how Gabriel-Zisman localization interacts with the additive struc-
ture on a category.

Lemma 8.1. Let C be a preadditive category. Let S be a left or right multiplicative
system. There exists a canonical preadditive structure on S−1C such that the localization
functor Q : C → S−1C is additive.

Proof. We will prove this in the case S is a left multiplicative system. The case
where S is a right multiplicative system is dual. Suppose that X,Y are objects of C and
thatα, β : X → Y are morphisms in S−1C. According to Categories, Lemma 27.5 we may
represent these by pairs s−1f, s−1g with common denominator s. In this case we define
α+ β to be the equivalence class of s−1(f + g). In the rest of the proof we show that this
is well defined and that composition is bilinear. Once this is done it is clear that Q is an
additive functor.

Let us show construction above is well defined. An abstract way of saying this is that
filtered colimits of abelian groups agree with filtered colimits of sets and to use Categories,
Equation (27.7.1). We can work this out in a bit more detail as follows. Say s : Y → Y1 and
f, g : X → Y1. Suppose we have a second representation ofα, β as (s′)−1f ′, (s′)−1g′ with
s′ : Y → Y2 and f ′, g′ : X → Y2. By Categories, Remark 27.7 we can find a morphism
s3 : Y → Y3 and morphisms a1 : Y1 → Y3, a2 : Y2 → Y3 such that a1 ◦ s = s3 = a2 ◦ s′
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and also a1 ◦ f = a2 ◦ f ′ and a1 ◦ g = a2 ◦ g′. Hence we see that s−1(f + g) is equivalent
to

s−1
3 (a1 ◦ (f + g)) = s−1

3 (a1 ◦ f + a1 ◦ g)
= s−1

3 (a2 ◦ f ′ + a2 ◦ g′)
= s−1

3 (a2 ◦ (f ′ + g′))

which is equivalent to (s′)−1(f ′ + g′).

Fix s : Y → Y ′ and f, g : X → Y ′ with α = s−1f and β = s−1g as morphisms X → Y
in S−1C. To show that composition is bilinear first consider the case of a morphism γ :
Y → Z in S−1C. Say γ = t−1h for some h : Y → Z ′ and t : Z → Z ′ in S. Using LMS2
we choose morphisms a : Y ′ → Z ′′ and t′ : Z ′ → Z ′′ in S such that a◦s = t′ ◦h. Picture

Z

t
��

Y
h //

s

��

Z ′

t′

��
X

f,g // Y ′ a // Z ′′

Then γ ◦α = (t′ ◦ t)−1(a ◦ f) and γ ◦β = (t′ ◦ t)−1(a ◦ g). Hence we see that γ ◦ (α+β)
is represented by (t′ ◦ t)−1(a ◦ (f + g)) = (t′ ◦ t)−1(a ◦ f + a ◦ g) which represents
γ ◦ α+ γ ◦ β.

Finally, assume that δ : W → X is another morphism of S−1C. Say δ = r−1i for some
i : W → X ′ and r : X → X ′ in S. We claim that we can find a morphism s′ : Y ′ → Y ′′

in S and morphisms a′′, b′′ : X ′ → Y ′′ such that the following diagram commutes

Y

s

��
X

f,g,f+g //

r

��

Y ′

s′

��
W

i // X ′ a′′,b′′,a′′+b′′
// Y ′′

Namely, using LMS2 we can first choose s1 : Y ′ → Y1, s2 : Y ′ → Y2 in S and a : X ′ →
Y1, b : X ′ → Y2 such that a ◦ r = s1 ◦ f and b ◦ r = s2 ◦ f . Then using that the category
Y ′/S is filtered (see Categories, Remark 27.7), we can find a s′ : Y ′ → Y ′′ and morphisms
a′ : Y1 → Y ′′, b′ : Y2 → Y ′′ such that s′ = a′ ◦ s1 and s′ = b′ ◦ s2. Setting a′′ = a′ ◦ a
and b′′ = b′ ◦ b works. At this point we see that the compositions α ◦ δ and β ◦ δ are
represented by (s′ ◦ s)−1(a′′ ◦ i) and (s′ ◦ s)−1(b′′ ◦ i). Hence α ◦ δ+ β ◦ δ is represented
by (s′ ◦ s)−1(a′′ ◦ i+ b′′ ◦ i) = (s′ ◦ s)−1((a′′ + b′′) ◦ i) which by the diagram again is a
representative of (α+ β) ◦ δ. �

Lemma 8.2. Let C be an additive category. Let S be a left or right multiplicative
system. Then S−1C is an additive category and the localization functor Q : C → S−1C is
additive.
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Proof. By Lemma 8.1 we see that S−1C is preadditive and that Q is additive. Recall
that the functorQ commutes with finite colimits (resp. finite limits), see Categories, Lem-
mas 27.9 and 27.17. We conclude that S−1C has a zero object and direct sums, see Lemmas
3.2 and 3.4. �

The following lemma describes the “kernel” of the localization functor in case we invert a
multiplicative system.

Lemma 8.3. Let C be an additive category. Let S be a multiplicative system. Let X
be an object of C. The following are equivalent

(1) Q(X) = 0 in S−1C ,
(2) there exists Y ∈ Ob(C) such that 0 : X → Y is an element of S , and
(3) there exists Z ∈ Ob(C) such that 0 : Z → X is an element of S.

Proof. If (2) holds we see that 0 = Q(0) : Q(X)→ Q(Y ) is an isomorphism. In the
additive category S−1C this implies that Q(X) = 0. Hence (2)⇒ (1). Similarly, (3)⇒
(1). Suppose that Q(X) = 0. This implies that the morphism f : 0 → X is transformed
into an isomorphism in S−1C. Hence by Categories, Lemma 27.21 there exists a morphism
g : Z → 0 such that fg ∈ S. This proves (1)⇒ (3). Similarly, (1)⇒ (2). �

Lemma 8.4. LetA be an abelian category.
(1) If S is a left multiplicative system, then the category S−1A has cokernels and

the functor Q : A → S−1A commutes with them.
(2) If S is a right multiplicative system, then the category S−1A has kernels and the

functor Q : A → S−1A commutes with them.
(3) IfS is a multiplicative system, then the categoryS−1A is abelian and the functor

Q : A → S−1A is exact.

Proof. Assume S is a left multiplicative system. Let a : X → Y be a morphism
of S−1A. Then a = s−1f for some s : Y → Y ′ in S and f : X → Y ′. Since Q(s)
is an isomorphism we see that the existence of Coker(a : X → Y ) is equivalent to the
existence of Coker(Q(f) : X → Y ′). Since Coker(Q(f)) is the coequalizer of 0 andQ(f)
we see that Coker(Q(f)) is represented byQ(Coker(f)) by Categories, Lemma 27.9. This
proves (1).
Part (2) is dual to part (1).
If S is a multiplicative system, then S is both a left and a right multiplicative system. Thus
we see that S−1A has kernels and cokernels and Q commutes with kernels and cokernels.
To finish the proof of (3) we have to show that Coim = Im in S−1A. Again using that
any arrow in S−1A is isomorphic to an arrow Q(f) we see that the result follows from
the result forA. �

9. Jordan-Hölder

The Jordan-Hölder lemma is Lemma 9.7. First we state some definitions.

Definition 9.1. Let A be an abelian category. An object A of A is said to be simple
if it is nonzero and the only subobjects of A are 0 and A.

Definition 9.2. LetA be an abelian category.
(1) We say an objectA ofA is Artinian if and only if it satisfies the descending chain

condition for subobjects.
(2) We sayA is Artinian if every object ofA is Artinian.
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Definition 9.3. LetA be an abelian category.

(1) We say an object A of A is Noetherian if and only if it satisfies the ascending
chain condition for subobjects.

(2) We sayA is Noetherian if every object ofA is Noetherian.

Lemma 9.4. Let A be an abelian category. Let 0→ A1 → A2 → A3 → 0 be a short
exact sequence ofA. Then A2 is Artinian if and only if A1 and A3 are Artinian.

Proof. Omitted. �

Lemma 9.5. Let A be an abelian category. Let 0→ A1 → A2 → A3 → 0 be a short
exact sequence ofA. Then A2 is Noetherian if and only if A1 and A3 are Noetherian.

Proof. Omitted. �

Lemma 9.6. LetA be an abelian category. LetA be an object ofA. The following are
equivalent

(1) A is Artinian and Noetherian, and
(2) there exists a filtration 0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An = A by subobjects such that

Ai/Ai−1 is simple for i = 1, . . . , n.

Proof. Assume (1). If A is zero, then (2) holds. If A is not zero, then there exists
a smallest nonzero object A1 ⊂ A by the Artinian property. Of course A1 is simple. If
A1 = A, then we are done. If not, then we can findA1 ⊂ A2 ⊂ Aminimal withA2 6= A1.
ThenA2/A1 is simple. Continuing in this way, we can find a sequence 0 ⊂ A1 ⊂ A2 ⊂ . . .
of subobjects of A such that Ai/Ai−1 is simple. Since A is Noetherian, we conclude that
the process stops. Hence (2) follows.

Assume (2). We will prove (1) by induction on n. If n = 1, then A is simple and clearly
Noetherian and Artinian. If the result holds for n−1, then we use the short exact sequence
0→ An−1 → An → An/An−1 → 0 and Lemmas 9.4 and 9.5 to conclude for n. �

Lemma 9.7 (Jordan-Hölder). Let A be an abelian category. Let A be an object of A
satisfying the equivalent conditions of Lemma 9.6. Given two filtrations

0 ⊂ A1 ⊂ A2 ⊂ . . . ⊂ An = A and 0 ⊂ B1 ⊂ B2 ⊂ . . . ⊂ Bm = A

with Si = Ai/Ai−1 and Tj = Bj/Bj−1 simple objects we have n = m and there exists a
permutation σ of {1, . . . , n} such that Si ∼= Tσ(i) for all i ∈ {1, . . . , n}.

Proof. Let j be the smallest index such that A1 ⊂ Bj . Then the map S1 = A1 →
Bj/Bj−1 = Tj is an isomorphism. Moreover, the object A/A1 = An/A1 = Bm/A1 has
the two filtrations

0 ⊂ A2/A1 ⊂ A3/A1 ⊂ . . . ⊂ An/A1

and

0 ⊂ (B1 +A1)/A1 ⊂ . . . ⊂ (Bj−1 +A1)/A1 = Bj/A1 ⊂ Bj+1/A1 ⊂ . . . ⊂ Bm/A1

We conclude by induction. �
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10. Serre subcategories

In [?, Chapter I, Section 1] a notion of a “class” of abelian groups is defined. This notion
has been extended to abelian categories by many authors (in slightly different ways). We
will use the following variant which is virtually identical to Serre’s original definition.

Definition 10.1. LetA be an abelian category.
(1) A Serre subcategory ofA is a nonempty full subcategory C ofA such that given

an exact sequence1

A→ B → C

with A,C ∈ Ob(C), then also B ∈ Ob(C).
(2) A weak Serre subcategory ofA is a nonempty full subcategory C ofA such that

given an exact sequence

A0 → A1 → A2 → A3 → A4

with A0, A1, A3, A4 in C , then also A2 in C.

In some references the second notion is called a “thick” subcategory and in other references
the first notion is called a “thick” subcategory. However, it seems that the notion of a Serre
subcategory is universally accepted to be the one defined above. Note that in both cases
the category C is abelian and that the inclusion functor C → A is a fully faithful exact
functor. Let’s characterize these types of subcategories in more detail.

Lemma 10.2. Let A be an abelian category. Let C be a subcategory of A. Then C is a
Serre subcategory if and only if the following conditions are satisfied:

(1) 0 ∈ Ob(C),
(2) C is a strictly full subcategory ofA,
(3) any subobject or quotient of an object of C is an object of C ,
(4) if A ∈ Ob(A) is an extension of objects of C then also A ∈ Ob(C).

Moreover, a Serre subcategory is an abelian category and the inclusion functor is exact.

Proof. Omitted. �

Lemma 10.3. Let A be an abelian category. Let C be a subcategory of A. Then C is a
weak Serre subcategory if and only if the following conditions are satisfied:

(1) 0 ∈ Ob(C),
(2) C is a strictly full subcategory ofA,
(3) kernels and cokernels inA of morphisms between objects of C are in C ,
(4) if A ∈ Ob(A) is an extension of objects of C then also A ∈ Ob(C).

Moreover, a weak Serre subcategory is an abelian category and the inclusion functor is
exact.

Proof. Omitted. �

Lemma 10.4. Let A, B be abelian categories. Let F : A → B be an exact functor.
Then the full subcategory of objectsC ofA such thatF (C) = 0 forms a Serre subcategory
ofA.

Proof. Omitted. �

1By Definition 5.7 this means Im(A → B) = Ker(B → C).
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Definition 10.5. LetA, B be abelian categories. Let F : A → B be an exact functor.
Then the full subcategory of objectsC ofA such that F (C) = 0 is called the kernel of the
functor F , and is sometimes denoted Ker(F ).

Any Serre subcategory of an abelian category is the kernel of an exact functor. In Exam-
ples, Section 76 we discuss this for Serre’s original example of torsion groups.

Lemma 10.6. LetA be an abelian category. Let C ⊂ A be a Serre subcategory. There
exists an abelian categoryA/C and an exact functor

F : A −→ A/C
which is essentially surjective and whose kernel is C. The categoryA/C and the functor F
are characterized by the following universal property: For any exact functor G : A → B
such that C ⊂ Ker(G) there exists a factorization G = H ◦ F for a unique exact functor
H : A/C → B.

Proof. Consider the set of arrows ofA defined by the following formula
S = {f ∈ Arrows(A) | Ker(f),Coker(f) ∈ Ob(C)}.

We claim that S is a multiplicative system. To prove this we have to check MS1, MS2,
MS3, see Categories, Definition 27.1.
It is clear that identities are elements of S. Suppose that f : A → B and g : B → C are
elements of S. There are exact sequences

0→ Ker(f)→ Ker(gf)→ Ker(g)
Coker(f)→ Coker(gf)→ Coker(g)→ 0

Hence it follows that gf ∈ S. This proves MS1. (In fact, a similar argument will show
that S is a saturated multiplicative system, see Categories, Definition 27.20.)
Consider a solid diagram

A

t

��

g
// B

s

��
C

f // C qA B
with t ∈ S. Set W = C qA B = Coker((t,−g) : A→ C ⊕B). Then Ker(t)→ Ker(s)
is surjective and Coker(t) → Coker(s) is an isomorphism. Hence s is an element of S.
This proves LMS2 and the proof of RMS2 is dual.
Finally, consider morphisms f, g : B → C and a morphism s : A → B in S such that
f ◦s = g ◦s. This means that (f−g)◦s = 0. In turn this means that I = Im(f−g) ⊂ C
is a quotient of Coker(s) hence an object of C. Thus t : C → C ′ = C/I is an element of
S such that t ◦ (f − g) = 0, i.e., such that t ◦ f = t ◦ g. This proves LMS3 and the proof
of RMS3 is dual.
Having proved that S is a multiplicative system we setA/C = S−1A, and we set F equal
to the localization functorQ. By Lemma 8.4 the categoryA/C is abelian and F is exact. If
X is in the kernel of F = Q, then by Lemma 8.3 we see that 0 : X → Z is an element of S
and hence X is an object of C , i.e., the kernel of F is C. Finally, if G is as in the statement
of the lemma, thenG turns every element of S into an isomorphism. Hence we obtain the
functorH : A/C → B from the universal property of localization, see Categories, Lemma
27.8. We still have to show the functor H is exact. To do this it suffices to show that H
commutes with taking kernels and cokernels, see Lemma 7.2. Let A → B be a morphism
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in A/C. We may represent A → B as fs−1 where s : A′ → A is in S and f : A′ → B
an arbitrary morphism of A. Since F = Q maps s to an isomorphism in the quotient
category A/C , it suffices to show that H commutes with taking kernels and cokernels of
morphisms f : A→ B ofA. But here we haveH(f) = G(f) and the result follows from
the fact that G is exact. �

Lemma 10.7. LetA, B be abelian categories. Let F : A → B be an exact functor. Let
C ⊂ A be a Serre subcategory contained in the kernel of F . Then C = Ker(F ) if and only
if the induced functor F : A/C → B (Lemma 10.6) is faithful.

Proof. We will use the results of Lemma 10.6 without further mention. The “only if”
direction is true because the kernel of F is zero by construction. Namely, if f : X → Y
is a morphism in A/C such that F (f) = 0, then F (Im(f)) = Im(F (f)) = 0, hence
Im(f) = 0 by the assumption on the kernel of F . Thus f = 0.

For the “if” direction, let X be an object of A such that F (X) = 0. Then F (idX) =
idF (X) = 0, thus idX = 0 in A/C by faithfulness of F . Hence X = 0 in A/C , that is
X ∈ Ob(C). �

11. K-groups

A tiny bit about K0 of an abelian category.

Definition 11.1. Let A be an abelian category. We denote K0(A) the zeroth K-
group ofA. It is the abelian group constructed as follows. Take the free abelian group on
the objects on A and for every short exact sequence 0 → A → B → C → 0 impose the
relation [B]− [A]− [C] = 0.

Another way to say this is that there is a presentation⊕
A→B→C ses

Z[A→ B → C] −→
⊕

A∈Ob(A)

Z[A] −→ K0(A) −→ 0

with [A → B → C] 7→ [B] − [A] − [C] of K0(A). The short exact sequence 0 → 0 →
0 → 0 → 0 leads to the relation [0] = 0 in K0(A). There are no set-theoretical issues as
all of our categories are “small” if not mentioned otherwise. Some examples of K-groups
for categories of modules over rings where computed in Algebra, Section 55.

Lemma 11.2. Let F : A → B be an exact functor between abelian categories. Then
F induces a homomorphism of K-groups K0(F ) : K0(A) → K0(B) by simply setting
K0(F )([A]) = [F (A)].

Proof. Proves itself. �

Suppose we are given an object M of an abelian categoryA and a complex of the form

(11.2.1) . . . // M
ϕ // M

ψ // M
ϕ // M // . . .

In this situation we define

H0(M,ϕ,ψ) = Ker(ψ)/ Im(ϕ), and H1(M,ϕ,ψ) = Ker(ϕ)/ Im(ψ).

Lemma 11.3. LetA be an abelian category. Let C ⊂ A be a Serre subcategory and set
B = A/C.
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(1) The exact functors C → A andA → B induce an exact sequence

K0(C)→ K0(A)→ K0(B)→ 0

of K-groups, and
(2) the kernel ofK0(C)→ K0(A) is equal to the collection of elements of the form

[H0(M,ϕ,ψ)]− [H1(M,ϕ,ψ)]

where (M,ϕ,ψ) is a complex as in (11.2.1) with the property that it becomes
exact in B; in other words that H0(M,ϕ,ψ) and H1(M,ϕ,ψ) are objects of C.

Proof. Proof of (1). It is clear that K0(A)→ K0(B) is surjective and that the com-
position K0(C) → K0(A) → K0(B) is zero. Let x ∈ K0(A) be an element mapping to
zero inK0(B). We can write x = [A]− [A′] withA,A′ inA (fun exercise). DenoteB,B′

the corresponding objects of B. The fact that x maps to zero in K0(B) means that there
exists a finite set I = I+ q I−, for each i ∈ I a short exact sequence

0→ Bi → B′
i → B′′

i → 0

in B such that we have

[B]− [B′] =
∑

i∈I+
([B′

i]− [Bi]− [B′′
i ])−

∑
i∈I−

([B′
i]− [Bi]− [B′′

i ])

in the free abelian group on isomorphism classes of objects of B. We can rewrite this as

[B]+
∑

i∈I+
([Bi]+ [B′′

i ])+
∑

i∈I−
[B′
i] = [B′]+

∑
i∈I−

([Bi]+ [B′′
i ])+

∑
i∈I+

[B′
i].

Since the right and left hand side should contain the same isomorphism classes of objects
of B counted with multiplicity, this means there should be a bijection

τ : {B}q{Bi, B′′
i ; i ∈ I+}q{B′

i; i ∈ I−} −→ {B′}q{Bi, B′′
i ; i ∈ I−}q{B′

i; i ∈ I+}

such that N and τ(N) are isomorphic in B. The proof of Lemmas 10.6 and 8.4 show that
we choose for i ∈ I a short exact sequence

0→ Ai → A′
i → A′′

i → 0

in A such that Bi, B′
i, B

′′
i are isomorphic to the images of Ai, A′

i, A
′′
i in B. This implies

that the corresponding bijection

τ : {A}q{Ai, A′′
i ; i ∈ I+}q{A′

i; i ∈ I−} −→ {A′}q{Ai, A′′
i ; i ∈ I−}q{A′

i; i ∈ I+}

satisfies the property that M and τ(M) are objects of A which become isomorphic in B.
This means [M ]−[τ(M)] is in the image ofK0(C)→ K0(A). Namely, the isomorphism in
B is given by a diagramM ←M ′ → τ(M) inA where bothM ′ →M andM ′ → τ(M)
have kernel and cokernel in C. Working backwards we conclude that x = [A]− [A′] is in
the image of K0(C)→ K0(A) and the proof of part (1) is complete.

Proof of (2). The proof is similar to the proof of (1) but slightly more bookkeeping is
involved. First we remark that any class of the type [H0(M,ϕ,ψ)] − [H1(M,ϕ,ψ)] is
zero in K0(A) by the following calculation

0 = [M ]− [M ]
= [Ker(ϕ)] + [Im(ϕ)]− [Ker(ψ)]− [Im(ψ)]
= [Ker(ϕ)/ Im(ψ)]− [Ker(ψ)/ Im(ϕ)]
= [H1(M,ϕ,ψ)]− [H0(M,ϕ,ψ)]



970 12. HOMOLOGICAL ALGEBRA

as desired. Hence it suffices to show that any element in the kernel of K0(C)→ K0(A) is
of this form.

Any element x inK0(C) can be represented as the difference x = [P ]− [Q] of two objects
of C (fun exercise). Suppose that this element maps to zero in K0(A). This means that
there exist

(1) a finite set I = I+ q I−,
(2) for i ∈ I a short exact sequence 0→ Ai → Bi → Ci → 0 inA

such that

[P ]− [Q] =
∑

i∈I+
([Bi]− [Ai]− [Ci])−

∑
i∈I−

([Bi]− [Ai]− [Ci])

in the free abelian group on the objects ofA. We can rewrite this as

[P ] +
∑

i∈I+
([Ai] + [Ci]) +

∑
i∈I−

[Bi] = [Q] +
∑

i∈I−
([Ai] + [Ci]) +

∑
i∈I+

[Bi].

Since the right and left hand side should contain the same objects ofA counted with mul-
tiplicity, this means there should be a bijection τ between the terms which occur above.
Set

T+ = {p} q {a, c} × I+ q {b} × I−

and
T− = {q} q {a, c} × I− q {b} × I+.

Set T = T+ q T− = {p, q} q {a, b, c} × I . For t ∈ T define

O(t) =


P if t = p
Q if t = q
Ai if t = (a, i)
Bi if t = (b, i)
Ci if t = (c, i)

Hence we can view τ : T+ → T− as a bijection such that O(t) = O(τ(t)) for all t ∈ T+.
Let t−0 = τ(p) and let t+0 ∈ T+ be the unique element such that τ(t+0 ) = q. Consider the
object

M+ =
⊕

t∈T+
O(t)

By using τ we see that it is equal to the object

M− =
⊕

t∈T−
O(t)

Consider the map
ϕ : M+ −→M−

which on the summand O(t) = Ai corresponding to t = (a, i), i ∈ I+ uses the map
Ai → Bi into the summand O((b, i)) = Bi of M− and on the summand O(t) = Bi
corresponding to (b, i), i ∈ I− uses the map Bi → Ci into the summand O((c, i)) = Ci
ofM−. The map is zero on the summands corresponding to p and (c, i), i ∈ I+. Similarly,
consider the map

ψ : M− −→M+

which on the summand O(t) = Ai corresponding to t = (a, i), i ∈ I− uses the map
Ai → Bi into the summand O((b, i)) = Bi of M+ and on the summand O(t) = Bi
corresponding to (b, i), i ∈ I+ uses the map Bi → Ci into the summand O((c, i)) = Ci
of M+. The map is zero on the summands corresponding to q and (c, i), i ∈ I−.
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Note that the kernel of ϕ is equal to the direct sum of the summand P and the summands
O((c, i)) = Ci, i ∈ I+ and the subobjectsAi inside the summandsO((b, i)) = Bi, i ∈ I−.
The image of ψ is equal to the direct sum of the summandsO((c, i)) = Ci, i ∈ I+ and the
subobjects Ai inside the summands O((b, i)) = Bi, i ∈ I−. In other words we see that

P ∼= Ker(ϕ)/ Im(ψ).

In exactly the same way we see that

Q ∼= Ker(ψ)/ Im(ϕ).

Since as we remarked above the existence of the bijection τ shows thatM+ = M− we see
that the lemma follows. �

12. Cohomological delta-functors

Definition 12.1. Let A,B be abelian categories. A cohomological δ-functor or sim-
ply a δ-functor fromA to B is given by the following data:

(1) a collection Fn : A → B, n ≥ 0 of additive functors, and
(2) for every short exact sequence 0 → A → B → C → 0 of A a collection

δA→B→C : Fn(C)→ Fn+1(A), n ≥ 0 of morphisms of B.
These data are assumed to satisfy the following axioms

(1) for every short exact sequence as above the sequence

0 // F 0(A) // F 0(B) // F 0(C)

δA→B→C
uu

F 1(A) // F 1(B) // F 1(C)

δA→B→C
uu

F 2(A) // F 2(B) // . . .

is exact, and
(2) for every morphism (A → B → C) → (A′ → B′ → C ′) of short exact

sequences ofA the diagrams

Fn(C)

��

δA→B→C

// Fn+1(A)

��
Fn(C ′)

δA′→B′→C′ // Fn+1(A′)

are commutative.

Note that this in particular implies that F 0 is left exact.

Definition 12.2. Let A,B be abelian categories. Let (Fn, δF ) and (Gn, δG) be δ-
functors from A to B. A morphism of δ-functors from F to G is a collection of trans-
formation of functors tn : Fn → Gn, n ≥ 0 such that for every short exact sequence
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0→ A→ B → C → 0 ofA the diagrams

Fn(C)

tn

��

δF,A→B→C

// Fn+1(A)

tn+1

��
Gn(C)

δG,A→B→C // Gn+1(A)

are commutative.

Definition 12.3. Let A,B be abelian categories. Let F = (Fn, δF ) be a δ-functor
from A to B. We say F is a universal δ-functor if and only if for every δ-functor G =
(Gn, δG) and any morphism of functors t : F 0 → G0 there exists a unique morphism of
δ-functors {tn}n≥0 : F → G such that t = t0.

Lemma 12.4. Let A,B be abelian categories. Let F = (Fn, δF ) be a δ-functor from
A to B. Suppose that for every n > 0 and any A ∈ Ob(A) there exists an injective
morphism u : A → B (depending on A and n) such that Fn(u) : Fn(A) → Fn(B) is
zero. Then F is a universal δ-functor.

Proof. Let G = (Gn, δG) be a δ-functor from A to B and let t : F 0 → G0 be a
morphism of functors. We have to show there exists a unique morphism of δ-functors
{tn}n≥0 : F → G such that t = t0. We construct tn by induction on n. For n = 0 we
set t0 = t. Suppose we have already constructed a unique sequence of transformation of
functors ti for i ≤ n compatible with the maps δ in degrees ≤ n.

Let A ∈ Ob(A). By assumption we may choose a embedding u : A → B such that
Fn+1(u) = 0. Let C = B/u(A). The long exact cohomology sequence for the short
exact sequence 0 → A → B → C → 0 and the δ-functor F gives that Fn+1(A) =
Coker(Fn(B) → Fn(C)) by our choice of u. Since we have already defined tn we can
set

tn+1
A : Fn+1(A)→ Gn+1(A)

equal to the unique map such that

Coker(Fn(B)→ Fn(C))
tn
//

δF,A→B→C

��

Coker(Gn(B)→ Gn(C))

δG,A→B→C

��
Fn+1(A)

tn+1
A // Gn+1(A)

commutes. This is clearly uniquely determined by the requirements imposed. We omit
the verification that this defines a transformation of functors. �

Lemma 12.5. Let A,B be abelian categories. Let F : A → B be a functor. If there
exists a universal δ-functor (Fn, δF ) fromA to B with F 0 = F , then it is determined up
to unique isomorphism of δ-functors.

Proof. Immediate from the definitions. �

13. Complexes

Of course the notions of a chain complex and a cochain complex are dual and you only
have to read one of the two parts of this section. So pick the one you like. (Actually, this
doesn’t quite work right since the conventions on numbering things are not adapted to an
easy transition between chain and cochain complexes.)
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A chain complex A• in an additive categoryA is a complex

. . .→ An+1
dn+1−−−→ An

dn−→ An−1 → . . .

of A. In other words, we are given an object Ai of A for all i ∈ Z and for all i ∈ Z
a morphism di : Ai → Ai−1 such that di−1 ◦ di = 0 for all i. A morphism of chain
complexes f : A• → B• is given by a family of morphisms fi : Ai → Bi such that all the
diagrams

Ai
di

//

fi

��

Ai−1

fi−1

��
Bi

di // Bi−1

commute. The category of chain complexes ofA is denoted Ch(A). The full subcategory
consisting of objects of the form

. . .→ A2 → A1 → A0 → 0→ 0→ . . .

is denoted Ch≥0(A). In other words, a chain complexA• belongs to Ch≥0(A) if and only
if Ai = 0 for all i < 0.
Given an additive categoryAwe identifyAwith the full subcategory of Ch(A) consisting
of chain complexes zero except in degree 0 by the functor

A −→ Ch(A), A 7−→ (. . .→ 0→ A→ 0→ . . .)
By abuse of notation we often denote the object on the right hand side simply A. If we
want to stress that we are viewingA as a chain complex we may sometimes use the notation
A[0], see Section 14.
A homotopy h between a pair of morphisms of chain complexes f, g : A• → B• is a
collection of morphisms hi : Ai → Bi+1 such that we have

fi − gi = di+1 ◦ hi + hi−1 ◦ di
for all i. Two morphisms f, g : A• → B• are said to be homotopic if a homotopy between
f and g exists. Clearly, the notions of chain complex, morphism of chain complexes,
and homotopies between morphisms of chain complexes make sense even in a preadditive
category.

Lemma 13.1. Let A be an additive category. Let f, g : B• → C• be morphisms
of chain complexes. Suppose given morphisms of chain complexes a : A• → B•, and c :
C• → D•. If {hi : Bi → Ci+1} defines a homotopy between f and g, then {ci+1◦hi◦ai}
defines a homotopy between c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Omitted. �

In particular this means that it makes sense to define the category of chain complexes with
maps up to homotopy. We’ll return to this later.

Definition 13.2. LetA be an additive category. We say a morphism a : A• → B• is
a homotopy equivalence if there exists a morphism b : B• → A• such that there exists a
homotopy between a◦b and idA and there exists a homotopy between b◦a and idB . If there
exists such a morphism between A• and B•, then we say that A• and B• are homotopy
equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic in the
category of complexes up to homotopy.
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Lemma 13.3. LetA be an abelian category.

(1) The category of chain complexes inA is abelian.
(2) A morphism of complexes f : A• → B• is injective if and only if each fn :

An → Bn is injective.
(3) A morphism of complexes f : A• → B• is surjective if and only if each fn :

An → Bn is surjective.
(4) A sequence of chain complexes

A•
f−→ B•

g−→ C•

is exact at B• if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Omitted. �

For any i ∈ Z the ith homology group of a chain complex A• in an abelian category is
defined by the following formula

Hi(A•) = Ker(di)/ Im(di+1).

If f : A• → B• is a morphism of chain complexes ofA then we get an induced morphism
Hi(f) : Hi(A•) → Hi(B•) because clearly fi(Ker(di : Ai → Ai−1)) ⊂ Ker(di : Bi →
Bi−1), and similarly for Im(di+1). Thus we obtain a functor

Hi : Ch(A) −→ A.

Definition 13.4. LetA be an abelian category.

(1) A morphism of chain complexes f : A• → B• is called a quasi-isomorphism if
the induced map Hi(f) : Hi(A•)→ Hi(B•) is an isomorphism for all i ∈ Z.

(2) A chain complex A• is called acyclic if all of its homology objects Hi(A•) are
zero.

Lemma 13.5. LetA be an abelian category.

(1) If the maps f, g : A• → B• are homotopic, then the induced maps Hi(f) and
Hi(g) are equal.

(2) If the map f : A• → B• is a homotopy equivalence, then f is a quasi-isomorphism.

Proof. Omitted. �

Lemma 13.6. LetA be an abelian category. Suppose that

0→ A• → B• → C• → 0
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is a short exact sequence of chain complexes of A. Then there is a canonical long exact
homology sequence

. . . . . . . . .

ss
Hi(A•) // Hi(B•) // Hi(C•)

ss
Hi−1(A•) // Hi−1(B•) // Hi−1(C•)

ss. . . . . . . . .

Proof. Omitted. The maps come from the Snake Lemma 5.17 applied to the diagrams

Ai/ Im(dA,i+1) //

dA,i

��

Bi/ Im(dB,i+1) //

dB,i

��

Ci/ Im(dC,i+1) //

dC,i

��

0

0 // Ker(dA,i−1) // Ker(dB,i−1) // Ker(dC,i−1)

�

A cochain complex A• in an additive categoryA is a complex

. . .→ An−1 dn−1

−−−→ An
dn−→ An+1 → . . .

of A. In other words, we are given an object Ai of A for all i ∈ Z and for all i ∈ Z a
morphism di : Ai → Ai+1 such that di+1 ◦ di = 0 for all i. A morphism of cochain
complexes f : A• → B• is given by a family of morphisms f i : Ai → Bi such that all
the diagrams

Ai
di
//

fi

��

Ai+1

fi+1

��
Bi

di // Bi+1

commute. The category of cochain complexes ofA is denoted CoCh(A). The full subcat-
egory consisting of objects of the form

. . .→ 0→ 0→ A0 → A1 → A2 → . . .

is denoted CoCh≥0(A). In other words, a cochain complexA• belongs to the subcategory
CoCh≥0(A) if and only if Ai = 0 for all i < 0.

Given an additive category A we identify A with the full subcategory of CoCh(A) con-
sisting of cochain complexes zero except in degree 0 by the functor

A −→ CoCh(A), A 7−→ (. . .→ 0→ A→ 0→ . . .)

By abuse of notation we often denote the object on the right hand side simply A. If we
want to stress that we are viewing A as a cochain complex we may sometimes use the
notation A[0], see Section 14.
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A homotopy h between a pair of morphisms of cochain complexes f, g : A• → B• is a
collection of morphisms hi : Ai → Bi−1 such that we have

f i − gi = di−1 ◦ hi + hi+1 ◦ di

for all i. Two morphisms f, g : A• → B• are said to be homotopic if a homotopy between
f and g exists. Clearly, the notions of cochain complex, morphism of cochain complexes,
and homotopies between morphisms of cochain complexes make sense even in a preaddi-
tive category.

Lemma 13.7. Let A be an additive category. Let f, g : B• → C• be morphisms
of cochain complexes. Suppose given morphisms of cochain complexes a : A• → B•,
and c : C• → D•. If {hi : Bi → Ci−1} defines a homotopy between f and g, then
{ci−1 ◦ hi ◦ ai} defines a homotopy between c ◦ f ◦ a and c ◦ g ◦ a.

Proof. Omitted. �

In particular this means that it makes sense to define the category of cochain complexes
with maps up to homotopy. We’ll return to this later.

Definition 13.8. Let A be an additive category. We say a morphism a : A• → B•

is a homotopy equivalence if there exists a morphism b : B• → A• such that there exists
a homotopy between a ◦ b and idA and there exists a homotopy between b ◦ a and idB .
If there exists such a morphism between A• and B•, then we say that A• and B• are
homotopy equivalent.

In other words, two complexes are homotopy equivalent if they become isomorphic in the
category of complexes up to homotopy.

Lemma 13.9. LetA be an abelian category.
(1) The category of cochain complexes inA is abelian.
(2) A morphism of cochain complexes f : A• → B• is injective if and only if each

fn : An → Bn is injective.
(3) A morphism of cochain complexes f : A• → B• is surjective if and only if each

fn : An → Bn is surjective.
(4) A sequence of cochain complexes

A• f−→ B• g−→ C•

is exact at B• if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Omitted. �

For any i ∈ Z the ith cohomology group of a cochain complex A• is defined by the
following formula

Hi(A•) = Ker(di)/ Im(di−1).
If f : A• → B• is a morphism of cochain complexes of A then we get an induced mor-
phism Hi(f) : Hi(A•)→ Hi(B•) because clearly f i(Ker(di : Ai → Ai+1)) ⊂ Ker(di :
Bi → Bi+1), and similarly for Im(di−1). Thus we obtain a functor

Hi : CoCh(A) −→ A.

Definition 13.10. LetA be an abelian category.
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(1) A morphism of cochain complexes f : A• → B• ofA is called a quasi-isomorphism
if the induced mapsHi(f) : Hi(A•)→ Hi(B•) is an isomorphism for all i ∈ Z.

(2) A cochain complex A• is called acyclic if all of its cohomology objects Hi(A•)
are zero.

Lemma 13.11. LetA be an abelian category.
(1) If the maps f, g : A• → B• are homotopic, then the induced maps Hi(f) and

Hi(g) are equal.
(2) If f : A• → B• is a homotopy equivalence, then f is a quasi-isomorphism.

Proof. Omitted. �

Lemma 13.12. LetA be an abelian category. Suppose that

0→ A• → B• → C• → 0

is a short exact sequence of cochain complexes ofA. Then there is a long exact cohomology
sequence

. . . . . . . . .

ss
Hi(A•) // Hi(B•) // Hi(C•)

ss
Hi+1(A•) // Hi+1(B•) // Hi+1(C•)

ss. . . . . . . . .

The construction produces long exact cohomology sequences which are functorial in the
short exact sequence and compatible with shifts.

Proof. For the horizontal mapsHi(A•)→ Hi(B•) andHi(B•)→ Hi(C•) we use
the fact that Hi is a functor, see above. For the “boundary map” Hi(C•) → Hi+1(A•)
we use the map δ of the Snake Lemma 5.17 applied to the diagram

Ai/ Im(di−1
A ) //

diA
��

Bi/ Im(di−1
B ) //

diB
��

Ci/ Im(di−1
C ) //

diC
��

0

0 // Ker(di+1
A ) // Ker(di+1

B ) // Ker(di+1
C )

This works as the kernel of the right vertical map is equal to Hi(C•) and the cokernel
of the left vertical map is Hi+1(A•). We omit the verification that we obtain a long
exact sequence and we omit the verification of the properties mentioned at the end of the
statement of the lemma. �

14. Homotopy and the shift functor

It is an annoying feature that signs and indices have to be part of any discussion of homo-
logical algebra2.

2Please let us know if you notice sign errors or if you have improvements to our conventions.
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Definition 14.1. Let A be an additive category. Let A• be a chain complex with
boundary maps dA,n : An → An−1. For any k ∈ Z we define the k-shifted chain complex
A[k]• as follows:

(1) we set A[k]n = An+k , and
(2) we set dA[k],n : A[k]n → A[k]n−1 equal to dA[k],n = (−1)kdA,n+k.

If f : A• → B• is a morphism of chain complexes, then we let f [k] : A[k]• → B[k]• be
the morphism of chain complexes with f [k]n = fk+n.

Of course this means we have functors [k] : Ch(A) → Ch(A) which mutually commute
(on the nose, without any intervening isomorphisms of functors), such that A[k][l]• =
A[k + l]• and with [0] = idCh(A).

Recall that we view A as a full subcategory of Ch(A), see Section 13. Thus for any object
A of A the notation A[k] refers to the unique chain complex zero in all degrees except
having A in degree −k.

Definition 14.2. Let A be an abelian category. Let A• be a chain complex with
boundary maps dA,n : An → An−1. For any k ∈ Z we identify Hi+k(A•)→ Hi(A[k]•)
via the identification Ai+k = A[k]i.

This identification is functorial in A•. Note that since no signs are involved in this defi-
nition we actually get a compatible system of identifications of all the homology objects
Hi−k(A[k]•), which are further compatible with the identifications A[k][l]• = A[k + l]•
and with [0] = idCh(A).

Let A be an additive category. Suppose that A• and B• are chain complexes, a, b : A• →
B• are morphisms of chain complexes, and {hi : Ai → Bi+1} is a homotopy between a
and b. Recall that this means that ai − bi = di+1 ◦ hi + hi−1 ◦ di. What if a = b? Then
we obtain the formula 0 = di+1 ◦ hi + hi−1 ◦ di, in other words,−di+1 ◦ hi = hi−1 ◦ di.
By definition above this means the collection {hi} above defines a morphism of chain
complexes

A• −→ B[1]•.
Such a thing is the same as a morphism A[−1]• → B• by our remarks above. This proves
the following lemma.

Lemma 14.3. LetA be an additive category. Suppose that A• and B• are chain com-
plexes. Given any morphism of chain complexes a : A• → B• there is a bijection between
the set of homotopies from a to a and MorCh(A)(A•, B[1]•). More generally, the set of
homotopies between a and b is either empty or a principal homogeneous space under the
group MorCh(A)(A•, B[1]•).

Proof. See above. �

Lemma 14.4. LetA be an abelian category. Let

0→ A• → B• → C• → 0

be a short exact sequence of complexes. Suppose that {sn : Cn → Bn} is a family of
morphisms which split the short exact sequences 0 → An → Bn → Cn → 0. Let πn :
Bn → An be the associated projections, see Lemma 5.10. Then the family of morphisms

πn−1 ◦ dB,n ◦ sn : Cn → An−1

define a morphism of complexes δ(s) : C• → A[−1]•.
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Proof. Denote i : A• → B• and q : B• → C• the maps of complexes in the short
exact sequence. Then in−1 ◦ πn−1 ◦ dB,n ◦ sn = dB,n ◦ sn − sn−1 ◦ dC,n. Hence in−2 ◦
dA,n−1 ◦πn−1 ◦dB,n ◦sn = dB,n−1 ◦ (dB,n ◦sn−sn−1 ◦dC,n) = −dB,n−1 ◦sn−1 ◦dC,n
as desired. �

Lemma 14.5. Notation and assumptions as in Lemma 14.4 above. The morphism of
complexes δ(s) : C• → A[−1]• induces the maps

Hi(δ(s)) : Hi(C•) −→ Hi(A[−1]•) = Hi−1(A•)
which occur in the long exact homology sequence associated to the short exact sequence
of chain complexes by Lemma 13.6.

Proof. Omitted. �

Lemma 14.6. Notation and assumptions as in Lemma 14.4 above. Suppose {s′
n :

Cn → Bn} is a second choice of splittings. Write s′
n = sn + in ◦ hn for some unique

morphisms hn : Cn → An. The family of maps {hn : Cn → A[−1]n+1} is a homotopy
between the associated morphisms δ(s), δ(s′) : C• → A[−1]•.

Proof. Omitted. �

Definition 14.7. Let A be an additive category. Let A• be a cochain complex with
boundary maps dnA : An → An+1. For any k ∈ Z we define the k-shifted cochain complex
A[k]• as follows:

(1) we set A[k]n = An+k , and
(2) we set dnA[k] : A[k]n → A[k]n+1 equal to dnA[k] = (−1)kdn+k

A .
If f : A• → B• is a morphism of cochain complexes, then we let f [k] : A[k]• → B[k]•
be the morphism of cochain complexes with f [k]n = fk+n.

Of course this means we have functors [k] : CoCh(A) → CoCh(A) which mutually
commute (on the nose, without any intervening isomorphisms of functors) and such that
A[k][l]• = A[k + l]• and with [0] = idCoCh(A).

Recall that we view A as a full subcategory of CoCh(A), see Section 13. Thus for any
object A of A the notation A[k] refers to the unique cochain complex zero in all degrees
except having A in degree −k.

Definition 14.8. Let A be an abelian category. Let A• be a cochain complex with
boundary maps dnA : An → An+1. For any k ∈ Z we identify Hi+k(A•) −→ Hi(A[k]•)
via the identification Ai+k = A[k]i.

This identification is functorial in A•. Note that since no signs are involved in this defi-
nition we actually get a compatible system of identifications of all the homology objects
Hi−k(A[k]•), which are further compatible with the identifications A[k][l]• = A[k+ l]•
and with [0] = idCoCh(A).

LetA be an additive category. Suppose thatA• andB• are cochain complexes, a, b : A• →
B• are morphisms of cochain complexes, and {hi : Ai → Bi−1} is a homotopy between
a and b. Recall that this means that ai− bi = di−1 ◦hi +hi+1 ◦ di. What if a = b? Then
we obtain the formula 0 = di−1 ◦ hi + hi+1 ◦ di, in other words,−di−1 ◦ hi = hi+1 ◦ di.
By definition above this means the collection {hi} above defines a morphism of cochain
complexes

A• −→ B[−1]•.
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Such a thing is the same as a morphism A[1]• → B• by our remarks above. This proves
the following lemma.

Lemma 14.9. Let A be an additive category. Suppose that A• and B• are cochain
complexes. Given any morphism of cochain complexes a : A• → B• there is a bijection
between the set of homotopies from a to a and MorCoCh(A)(A•, B[−1]•). More generally,
the set of homotopies between a and b is either empty or a principal homogeneous space
under the group MorCoCh(A)(A•, B[−1]•).

Proof. See above. �

Lemma 14.10. LetA be an additive category. Let

0→ A• → B• → C• → 0

be a complex (!) of complexes. Suppose that we are given splittings Bn = An ⊕ Cn

compatible with the maps in the displayed sequence. Let sn : Cn → Bn and πn : Bn →
An be the corresponding maps. Then the family of morphisms

πn+1 ◦ dnB ◦ sn : Cn → An+1

define a morphism of complexes δ : C• → A[1]•.

Proof. Denote i : A• → B• and q : B• → C• the maps of complexes in the
short exact sequence. Then in+1 ◦ πn+1 ◦ dnB ◦ sn = dnB ◦ sn − sn+1 ◦ dnC . Hence
in+2 ◦ dn+1

A ◦ πn+1 ◦ dnB ◦ sn = dn+1
B ◦ (dnB ◦ sn − sn+1 ◦ dnC) = −dn+1

B ◦ sn+1 ◦ dnC as
desired. �

Lemma 14.11. Notation and assumptions as in Lemma 14.10 above. Assume in addi-
tion thatA is abelian. The morphism of complexes δ : C• → A[1]• induces the maps

Hi(δ) : Hi(C•) −→ Hi(A[1]•) = Hi+1(A•)

which occur in the long exact homology sequence associated to the short exact sequence
of cochain complexes by Lemma 13.12.

Proof. Omitted. �

Lemma 14.12. Notation and assumptions as in Lemma 14.10. Let α : A• → B•,
β : B• → C• be the given morphisms of complexes. Suppose (s′)n : Cn → Bn and
(π′)n : Bn → An is a second choice of splittings. Write (s′)n = sn + αn ◦ hn and
(π′)n = πn + gn ◦ βn for some unique morphisms hn : Cn → An and gn : Cn → An.
Then

(1) gn = −hn, and
(2) the family of maps {gn : Cn → A[1]n−1} is a homotopy between δ, δ′ : C• →

A[1]•, more precisely (δ′)n = δn + gn+1 ◦ dnC + dn−1
A[1] ◦ g

n.

Proof. As (s′)n and (π′)n are splittings we have (π′)n ◦ (s′)n = 0. Hence

0 = (πn + gn ◦ βn) ◦ (sn + αn ◦ hn) = gn ◦ βn ◦ sn + πn ◦ αn ◦ hn = gn + hn

which proves (1). We compute (δ′)n as follows

(πn+1 + gn+1 ◦ βn+1) ◦ dnB ◦ (sn + αn ◦ hn) = δn + gn+1 ◦ dnC + dnA ◦ hn

Since hn = −gn and since dn−1
A[1] = −dnA we conclude that (2) holds. �
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15. Truncation of complexes

LetA be an abelian category. LetA• be a chain complex. There are several ways to truncate
the complex A•.

(1) The “stupid” truncationσ≤n is the subcomplexσ≤nA• defined by the rule (σ≤nA•)i =
0 if i > n and (σ≤nA•)i = Ai if i ≤ n. In a picture

σ≤nA•

��

. . . // 0 //

��

An //

��

An−1 //

��

. . .

A• . . . // An+1 // An // An−1 // . . .

Note the property σ≤nA•/σ≤n−1A• = An[−n].
(2) The “stupid” truncation σ≥n is the quotient complex σ≥nA• defined by the rule

(σ≥nA•)i = Ai if i ≥ n and (σ≥nA•)i = 0 if i < n. In a picture

A•

��

. . . // An+1 //

��

An //

��

An−1 //

��

. . .

σ≥nA• . . . // An+1 // An // 0 // . . .

The map of complexes σ≥nA• → σ≥n+1A• is surjective with kernel An[−n].
(3) The canonical truncation τ≥nA• is defined by the picture

τ≥nA•

��

. . . // An+1 //

��

Ker(dn) //

��

0 //

��

. . .

A• . . . // An+1 // An // An−1 // . . .

Note that these complexes have the property that

Hi(τ≥nA•) =
{
Hi(A•) if i ≥ n

0 if i < n

(4) The canonical truncation τ≤nA• is defined by the picture

A•

��

. . . // An+1 //

��

An //

��

An−1 //

��

. . .

τ≤nA• . . . // 0 // Coker(dn+1) // An−1 // . . .

Note that these complexes have the property that

Hi(τ≤nA•) =
{
Hi(A•) if i ≤ n

0 if i > n

LetA be an abelian category. LetA• be a cochain complex. There are four ways to truncate
the complex A•.
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(1) The “stupid” truncationσ≥n is the subcomplexσ≥nA
• defined by the rule (σ≥nA

•)i =
0 if i < n and (σ≥nA

•)i = Ai if i ≥ n. In a picture

σ≥nA
•

��

. . . // 0 //

��

An //

��

An+1 //

��

. . .

A• . . . // An−1 // An // An+1 // . . .

Note the property σ≥nA
•/σ≥n+1A

• = An[−n].
(2) The “stupid” truncation σ≤n is the quotient complex σ≤nA

• defined by the rule
(σ≤nA

•)i = 0 if i > n and (σ≤nA
•)i = Ai if i ≤ n. In a picture

A•

��

. . . // An−1 //

��

An //

��

An+1 //

��

. . .

σ≤nA
• . . . // An−1 // An // 0 // . . .

The map of complexes σ≤nA
• → σ≤n−1A

• is surjective with kernel An[−n].
(3) The canonical truncation τ≤nA

• is defined by the picture

τ≤nA
•

��

. . . // An−1 //

��

Ker(dn) //

��

0 //

��

. . .

A• . . . // An−1 // An // An+1 // . . .

Note that these complexes have the property that

Hi(τ≤nA
•) =

{
Hi(A•) if i ≤ n

0 if i > n

(4) The canonical truncation τ≥nA
• is defined by the picture

A•

��

. . . // An−1 //

��

An //

��

An+1 //

��

. . .

τ≥nA
• . . . // 0 // Coker(dn−1) // An+1 // . . .

Note that these complexes have the property that

Hi(τ≥nA
•) =

{
0 if i < n

Hi(A•) if i ≥ n

16. Graded objects

We make the following definition.

Definition 16.1. Let A be an additive category. The category of graded objects of
A, denoted Gr(A), is the category with

(1) objects A = (Ai) are families of objects Ai, i ∈ Z of objects ofA, and
(2) morphisms f : A = (Ai)→ B = (Bi) are families of morphisms f i : Ai → Bi

ofA.
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IfA has countable direct sums, then we can associate to an object A = (Ai) of Gr(A) the
object

A =
⊕

i∈Z
Ai

and set kiA = Ai. In this case Gr(A) is equivalent to the category of pairs (A, k) consist-
ing of an object A ofA and a direct sum decomposition

A =
⊕

i∈Z
kiA

by direct summands indexed by Z and a morphism (A, k) → (B, k) of such objects is
given by a morphism ϕ : A→ B of A such that ϕ(kiA) ⊂ kiB for all i ∈ Z. Whenever
our additive category A has countable direct sums we will use this equivalence without
further mention.
However, with our definitions an additive or abelian category does not necessarily have
all (countable) direct sums. In this case our definition still makes sense. For example, if
A = Vectk is the category of finite dimensional vector spaces over a field k, then Gr(Vectk)
is the category of vector spaces with a given gradation all of whose graded pieces are fi-
nite dimensional, and not the category of finite dimensional vector spaces with a given
graduation.

Lemma 16.2. Let A be an abelian category. The category of graded objects Gr(A) is
abelian.

Proof. Let f : A = (Ai) → B = (Bi) be a morphism of graded objects of A given
by morphisms f i : Ai → Bi of A. Then we have Ker(f) = (Ker(f i)) and Coker(f) =
(Coker(f i)) in the category Gr(A). Since we have Im = Coim in A we see the same
thing holds in Gr(A). �

Remark 16.3 (Warning). There are abelian categories A having countable direct
sums but where countable direct sums are not exact. An example is the opposite of the
category of abelian sheaves on R. Namely, the category of abelian sheaves on R has
countable products, but countable products are not exact. For such a category the functor
Gr(A) → A, (Ai) 7→

⊕
Ai described above is not exact. It is still true that Gr(A) is

equivalent to the category of graded objects (A, k) ofA, but the kernel in the category of
graded objects of a map ϕ : (A, k)→ (B, k) is not equal to Ker(ϕ) endowed with a direct
sum decomposition, but rather it is the direct sum of the kernels of the maps kiA→ kiB.

Definition 16.4. LetA be an additive category. IfA = (Ai) is a graded object, then
the kth shift A[k] is the graded object with A[k]i = Ak+i.

If A and B are graded objects ofA, then we have
(16.4.1) HomGr(A)(A,B[k]) = HomGr(A)(A[−k], B)
and an element of this group is sometimes called a map of graded objects homogeneous of
degree k.
Given any set G we can define G-graded objects of A as the category whose objects are
A = (Ag)g∈G families of objects parametrized by elements of G. Morphisms f : A→ B
are defined as families of maps fg : Ag → Bg where g runs over the elements of G.
If G is an abelian group, then we can (unambiguously) define shift functors [g] on the
category of G-graded objects by the rule (A[g])g0 = Ag+g0 . A particular case of this type
of construction is when G = Z × Z. In this case the objects of the category are called
bigraded objects of A. The (p, q) component of a bigraded object A is usually denoted
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Ap,q . For (a, b) ∈ Z× Z we write A[a, b] in stead of A[(a, b)]. A morphism A→ A[a, b]
is sometimes called a map of bidegree (a, b).

17. Additive monoidal categories

Some material about the interaction between a monoidal structure and an additive struc-
ture on a category.

Definition 17.1. An additive monoidal category is an additive categoryA endowed
with a monoidal structure ⊗, φ (Categories, Definition 43.1) such that ⊗ is an additive
functor in each variable.

Lemma 17.2. LetA be an additive monoidal category. If Yi, i = 1, 2 are left duals of
Xi, i = 1, 2, then Y1 ⊕ Y2 is a left dual of X1 ⊕X2.

Proof. Follows from uniqueness of adjoints and Categories, Remark 43.7. �

Lemma 17.3. In a Karoubian additive monoidal category every summand of an object
which has a left dual has a left dual.

Proof. We will use Categories, Lemma 43.6 without further mention. Let X be an
object which has a left dual Y . We have

Hom(X,X) = Hom(1, X ⊗ Y ) = Hom(Y, Y )
If a : X → X corresponds to b : Y → Y then b is the unique endomorphism of Y such
that precomposing by a on

Hom(Z ′ ⊗X,Z) = Hom(Z ′, Z ⊗ Y )
is the same as postcomposing by 1 ⊗ b. Hence the bijection Hom(X,X) → Hom(Y, Y ),
a 7→ b is an isomorphism of the opposite of the algebra Hom(X,X) with the algebra
Hom(Y, Y ). In particular, if X = X1 ⊕X2, then the corresponding projectors e1, e2 are
mapped to idempotents in Hom(Y, Y ). If Y = Y1 ⊕ Y2 is the corresponding direct sum
decomposition of Y (Section 4) then we see that under the bijection Hom(Z ′ ⊗X,Z) =
Hom(Z ′, Z⊗Y ) we have Hom(Z ′⊗Xi, Z) = Hom(Z ′, Z⊗Yi) functorially as subgroups
for i = 1, 2. It follows that Yi is the left dual ofXi by the discussion in Categories, Remark
43.7. �

Example 17.4. Let F be a field. Let C be the category of graded F -vector spaces.
Given graded vector spaces V and W we let V ⊗ W denote the graded F -vector space
whose degree n part is

(V ⊗W )n =
⊕

n=p+q
V p ⊗F W q

Given a third graded vector space U as associativity constraint φ : U ⊗ (V ⊗ W ) →
(U ⊗ V )⊗W we use the “usual” isomorphisms

Up ⊗F (V q ⊗F W r)→ (Up ⊗F V q)⊗F W r

of vectors spaces. As unit we use the graded F -vector space 1 which has F in degree 0 and
is zero in other degrees. There are two commutativity constraints on C which turn C into
a symmetric monoidal category: one involves the intervention of signs and the other does
not. We will usually use the one that does. To be explicit, if V andW are graded F -vector
spaces we will use the isomorphism ψ : V ⊗W →W ⊗ V which in degree n uses

V p ⊗F W q →W q ⊗F V p, v ⊗ w 7→ (−1)pqw ⊗ v
We omit the verification that this works.
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Lemma 17.5. Let F be a field. Let C be the category of graded F -vector spaces viewed
as a monoidal category as in Example 17.4. IfV in C has a left dualW , then

∑
n dimF V

n <
∞ and the map ε defines nondegenerate pairings W−n × V n → F .

Proof. As unit we take By Categories, Definition 43.5 we have maps

η : 1→ V ⊗W ε : W ⊗ V → 1
Since 1 = F placed in degree 0, we may think of ε as a sequence of pairingsW−n×V n →
F as in the statement of the lemma. Choose bases {en,i}i∈In for V n for all n. Write

η(1) =
∑

en,i ⊗ w−n,i

for some elements w−n,i ∈ W−n almost all of which are zero! The condition that (ε ⊗
1) ◦ (1⊗ η) is the identity on W means that∑

n,i
ε(w, en,i)w−n,i = w

Thus we see that W is generated as a graded vector space by the finitely many nonzero
vectors w−n,i. The condition that (1⊗ ε) ◦ (η ⊗ 1) is the identity of V means that∑

n,i
en,i ε(w−n,i, v) = v

In particular, setting v = en,i we conclude that ε(w−n,i, en,i′) = δii′ . Thus we find that
the statement of the lemma holds and that {w−n,i}i∈In is the dual basis for W−n to the
chosen basis for V n. �

18. Double complexes and associated total complexes

We discuss double complexes and associated total complexes.

Definition 18.1. LetA be an additive category. A double complex in A is given by
a system ({Ap,q, dp,q1 , dp,q2 }p,q∈Z), where each Ap,q is an object of A and dp,q1 : Ap,q →
Ap+1,q and dp,q2 : Ap,q → Ap,q+1 are morphisms ofA such that the following rules hold:

(1) dp+1,q
1 ◦ dp,q1 = 0

(2) dp,q+1
2 ◦ dp,q2 = 0

(3) dp,q+1
1 ◦ dp,q2 = dp+1,q

2 ◦ dp,q1
for all p, q ∈ Z.

This is just the cochain version of the definition. It says that eachAp,• is a cochain complex
and that each dp,•1 is a morphism of complexesAp,• → Ap+1,• such that dp+1,•

1 ◦dp,•1 = 0
as morphisms of complexes. In other words a double complex can be seen as a complex of
complexes. So in the diagram

. . . . . . . . . . . .

. . . // Ap,q+1 dp,q+1
1 //

OO

Ap+1,q+1 //

OO

. . .

. . . // Ap,q
dp,q1 //

dp,q2

OO

Ap+1,q //

dp+1,q
2

OO

. . .

. . . . . .

OO

. . .

OO

. . .
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any square commutes. Warning: In the literature one encounters a different definition
where a “bicomplex” or a “double complex” has the property that the squares in the dia-
gram anti-commute.

Example 18.2. LetA, B, C be additive categories. Suppose that
⊗ : A× B −→ C, (X,Y ) 7−→ X ⊗ Y

is a functor which is bilinear on morphisms, see Categories, Definition 2.20 for the defini-
tion ofA× B. Given complexes X• ofA and Y • of B we obtain a double complex

K•,• = X• ⊗ Y •

in C. Here the first differentialKp,q → Kp+1,q is the morphismXp⊗Y q → Xp+1⊗Y q
induced by the morphism Xp → Xp+1 and the identity on Y q . Similarly for the second
differential.

Definition 18.3. Let A be an additive category. Let A•,• be a double complex. The
associated simple complex, denoted sA•, also often called the associated total complex,
denoted Tot(A•,•), is given by

sAn = Totn(A•,•) =
⊕

n=p+q
Ap,q

(if it exists) with differential

dnsA• = dnTot(A•,•) =
∑

n=p+q
(dp,q1 + (−1)pdp,q2 )

If countable direct sums exist in A or if for each n at most finitely many Ap,n−p are
nonzero, then Tot(A•,•) exists. Note that the definition is not symmetric in the indices
(p, q).

Remark 18.4. Let A be an additive category. Let A•,•,• be a triple complex. The
associated total complex is the complex with terms

Totn(A•,•,•) =
⊕

p+q+r=n
Ap,q,r

and differential
dnTot(A•,•,•) =

∑
p+q+r=n

dp,q,r1 + (−1)pdp,q,r2 + (−1)p+qdp,q,r3

With this definition a simple calculation shows that the associated total complex is equal
to

Tot(A•,•,•) = Tot(Tot12(A•,•,•)) = Tot(Tot23(A•,•,•))
In other words, we can either first combine the first two of the variables and then combine
sum of those with the last, or we can first combine the last two variables and then combine
the first with the sum of the last two.

Remark 18.5. Let A be an additive category. Let A•,• be a double complex with
differentials dp,q1 and dp,q2 . Denote A•,•[a, b] the double complex with

(A•,•[a, b])p,q = Ap+a,q+b

and differentials
dp,qA•,•[a,b],1 = (−1)adp+a,q+b

1 and dp,qA•,•[a,b],2 = (−1)bdp+a,q+b
2

In this situation there is a well defined isomorphism
γ : Tot(A•,•)[a+ b] −→ Tot(A•,•[a, b])
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which in degree n is given by the map

(Tot(A•,•)[a+ b])n =
⊕

p+q=n+a+bA
p,q

ε(p,q,a,b)idAp,q
��

Tot(A•,•[a, b])n =
⊕

p′+q′=nA
p′+a,q′+b

for some sign ε(p, q, a, b). Of course the summand Ap,q maps to the summand Ap
′+a,q′+b

when p = p′ + a and q = q′ + b. To figure out the conditions on these signs observe that
on the source we have

d|Ap,q = (−1)a+b (dp,q1 + (−1)pdp,q2 )
whereas on the target we have

d|Ap′+a,q′+b = (−1)adp
′+a,q′+b

1 + (−1)p
′
(−1)bdp

′+a,q′+b
2

Thus our constraints are that
(−1)aε(p, q, a, b) = ε(p+ 1, q, a, b)(−1)a+b ⇔ ε(p+ 1, q, a, b) = (−1)bε(p, q, a, b)

and
(−1)p

′+bε(p, q, a, b) = ε(p, q + 1, a, b)(−1)a+b+p ⇔ ε(p, q, a, b) = ε(p, q + 1, a, b)
Thus we choose ε(p, q, a, b) = (−1)pb.

Remark 18.6. LetA be an additive category with countable direct sums. Let DoubleComp(A)
denote the category of double complexes. We can consider an objectA•,• of DoubleComp(A)
as a complex of complexes as follows

. . .→ A•,−1 → A•,0 → A•,1 → . . .

For the variant where we switch the role of the indices, see Remark 18.7. In this remark
we show that taking the associated total complex is compatible with all the structures on
complexes we have studied in the chapter so far.
First, observe that the shift functor on double complexes viewed as complexes of com-
plexes in the manner given above is the functor [0, 1] defined in Remark 18.5. By Remark
18.5 the functor

Tot : DoubleComp(A)→ Comp(A)
is compatible with shift functors, in the sense that we have a functorial isomorphism γ :
Tot(A•,•)[1]→ Tot(A•,•[0, 1]).
Second, if

f, g : A•,• → B•,•

are homotopic when f and g are viewed as morphisms of complexes of complexes in the
manner given above, then

Tot(f),Tot(g) : Tot(A•,•)→ Tot(B•,•)
are homotopic maps of complexes. Indeed, let h = (hq) be a homotopy between f and g.
If we denote hp,q : Ap,q → Bp,q−1 the component in degree p of hq , then this means that

fp,q − gp,q = dp,q−1
2 ◦ hp,q + hp,q+1 ◦ dp,q2

The fact that hq : A•,q → B•,q−1 is a map of complexes means that

dp,q−1
1 ◦ hp,q = hp+1,q ◦ dp,q1
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Let us define h′ = ((h′)n) the homotopy given by the maps (h′)n : Totn(A•,•) →
Totn−1(B•,•) using (−1)php,q on the summand Ap,q for p+ q = n. Then we see that

dTot(B•,•) ◦ h′ + h′ ◦ dTot(A•,•)

restricted to the summand Ap,q is equal to

dp,q−1
1 ◦(−1)php,q+(−1)pdp,q−1

2 ◦(−1)php,q+(−1)p+1hp+1,q◦dp,q1 +(−1)php,q+1◦(−1)pdp,q2

which evaluates to fp,q − gp,q by the equations given above. This proves the second com-
patibility.
Third, suppose that in the paragraph above we have f = g. Then the assignment h h′

above is compatible with the identification of Lemma 14.9. More precisely, if we view h
as a morphism of complexes of complexes A•,• → B•,•[0,−1] via this lemma then

Tot(A•,•) Tot(h)−−−−→ Tot(B•,•[0,−1]) γ−1

−−→ Tot(B•,•)[−1]
is equal toh′ viewed as a morphism of complexes via the lemma. Here γ is the identification
of Remark 18.5. The verification of this third point is immediate.
Fourth, let

0→ A•,• → B•,• → C•,• → 0
be a complex of double complexes and suppose we are given splittings sq : C•,q → B•,q

and πq : B•,q → A•,q of this as in Lemma 14.10 when we view double complexes as
complexes of complexes in the manner given above. This on the one hand produces a map

δ : C•,• −→ A•,•[0, 1]
by the procedure in Lemma 14.10. On the other hand taking Tot we obtain a complex

0→ Tot(A•,•)→ Tot(B•,•)→ Tot(C•,•)→ 0
which is termwise split (see below) and hence comes with a morphism

δ′ : Tot(C•,•) −→ Tot(A•,•)[1]
well defined up to homotopy by Lemmas 14.10 and 14.12. Claim: these maps agree in the
sense that

Tot(C•,•) Tot(δ)−−−→ Tot(A•,•[0, 1]) γ−1

−−→ Tot(A•,•)[1]
is equal to δ′ where γ is as in Remark 18.5. To see this denote sp,q : Cp,q → B•,q and
πp,q : Bp,q → Ap,q the components of sq and πq . As splittings (s′)n : Totn(C•,•) →
Totn(B•,•) and (π′)n : Totn(B•,•) → Totn(A•,•) we use the maps whose components
are sp,q and πp,q for p+ q = n. We recall that

(δ′)n = (π′)n+1 ◦ dnTot(B•,•) ◦ (s′)n : Totn(C•,•)→ Totn+1(A•,•)
The restriction of this to the summand Cp,q is equal to

πp+1,q ◦ dp,q1 ◦ sp,q + πp,q+1 ◦ (−1)pdp,q2 ◦ sp,q = πp,q+1 ◦ (−1)pdp,q2 ◦ sp,q

The equality holds because sq is a morphism of complexes (with d1 as differential) and
because πp+1,q ◦ sp+1,q = 0 as s and π correspond to a direct sum decomposition of B in
every bidegree. On the other hand, for δ we have

δq = πq ◦ d2 ◦ sq : C•,q → A•,q+1

whose restriction to the summand Cp,q is equal to πp,q+1 ◦ dp,q2 ◦ sp,q . The difference in
signs is exactly canceled out by the sign of (−1)p in the isomorphism γ and the fourth
claim is proven.
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Remark 18.7. LetA be an additive category with countable direct sums. Let DoubleComp(A)
denote the category of double complexes. We can consider an objectA•,• of DoubleComp(A)
as a complex of complexes as follows

. . .→ A−1,• → A0,• → A1,• → . . .

For the variant where we switch the role of the indices, see Remark 18.6. In this remark
we show that taking the associated total complex is compatible with all the structures on
complexes we have studied in the chapter so far.

First, observe that the shift functor on double complexes viewed as complexes of com-
plexes in the manner given above is the functor [1, 0] defined in Remark 18.5. By Remark
18.5 the functor

Tot : DoubleComp(A)→ Comp(A)
is compatible with shift functors, in the sense that we have a functorial isomorphism γ :
Tot(A•,•)[1]→ Tot(A•,•[1, 0]).

Second, if
f, g : A•,• → B•,•

are homotopic when f and g are viewed as morphisms of complexes of complexes in the
manner given above, then

Tot(f),Tot(g) : Tot(A•,•)→ Tot(B•,•)

are homotopic maps of complexes. Indeed, let h = (hp) be a homotopy between f and g.
If we denote hp,q : Ap,q → Bp−1,q the component in degree p of hq , then this means that

fp,q − gp,q = dp−1,q
1 ◦ hp,q + hp+1,q ◦ dp,q1

The fact that hp : Ap,• → Bp−1,• is a map of complexes means that

dp−1,q
2 ◦ hp,q = hp,q+1 ◦ dp,q2

Let us define h′ = ((h′)n) the homotopy given by the maps (h′)n : Totn(A•,•) →
Totn−1(B•,•) using hp,q on the summand Ap,q for p+ q = n. Then we see that

dTot(B•,•) ◦ h′ + h′ ◦ dTot(A•,•)

restricted to the summand Ap,q is equal to

dp−1,q
1 ◦ hp,q + (−1)p−1dp−1,q

2 ◦ hp,q + hp+1,q ◦ dp,q1 + hp,q+1 ◦ (−1)pdp,q2

which evaluates to fp,q − gp,q by the equations given above. This proves the second com-
patibility.

Third, suppose that in the paragraph above we have f = g. Then the assignment h h′

above is compatible with the identification of Lemma 14.9. More precisely, if we view h
as a morphism of complexes of complexes A•,• → B•,•[−1, 0] via this lemma then

Tot(A•,•) Tot(h)−−−−→ Tot(B•,•[−1, 0]) γ−1

−−→ Tot(B•,•)[−1]

is equal toh′ viewed as a morphism of complexes via the lemma. Here γ is the identification
of Remark 18.5. The verification of this third point is immediate.

Fourth, let
0→ A•,• → B•,• → C•,• → 0
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be a complex of double complexes and suppose we are given splittings sp : Cp,• → Bp,•

and πp : Bp,• → Ap,• of this as in Lemma 14.10 when we view double complexes as
complexes of complexes in the manner given above. This on the one hand produces a map

δ : C•,• −→ A•,•[0, 1]
by the procedure in Lemma 14.10. On the other hand taking Tot we obtain a complex

0→ Tot(A•,•)→ Tot(B•,•)→ Tot(C•,•)→ 0
which is termwise split (see below) and hence comes with a morphism

δ′ : Tot(C•,•) −→ Tot(A•,•)[1]
well defined up to homotopy by Lemmas 14.10 and 14.12. Claim: these maps agree in the
sense that

Tot(C•,•) Tot(δ)−−−→ Tot(A•,•[1, 0]) γ−1

−−→ Tot(A•,•)[1]
is equal to δ′ where γ is as in Remark 18.5. To see this denote sp,q : Cp,q → B•,q and
πp,q : Bp,q → Ap,q the components of sq and πq . As splittings (s′)n : Totn(C•,•) →
Totn(B•,•) and (π′)n : Totn(B•,•) → Totn(A•,•) we use the maps whose components
are sp,q and πp,q for p+ q = n. We recall that

(δ′)n = (π′)n+1 ◦ dnTot(B•,•) ◦ (s′)n : Totn(C•,•)→ Totn+1(A•,•)
The restriction of this to the summand Cp,q is equal to

πp+1,q ◦ dp,q1 ◦ sp,q + πp,q+1 ◦ (−1)pdp,q2 ◦ sp,q = πp+1,q ◦ dp,q1 ◦ sp,q

The equality holds because sp is a morphism of complexes (with d2 as differential) and
because πp,q+1 ◦ sp,q+1 = 0 as s and π correspond to a direct sum decomposition of B in
every bidegree. On the other hand, for δ we have

δp = πp ◦ d1 ◦ sp : Cp,• → Ap+1,•

whose restriction to the summand Cp,q is equal to πp+1,q ◦ dp,q1 ◦ sp,q . Thus we get the
same as before which matches with the fact that the isomorphism γ : Tot(A•,•)[1] →
Tot(A•,•[1, 0]) is defined without the intervention of signs.

19. Filtrations

A nice reference for this material is [?, Section 1]. (Note that our conventions regarding
abelian categories are different.)

Definition 19.1. LetA be an abelian category.
(1) A decreasing filtration F on an object A is a family (FnA)n∈Z of subobjects of

A such that
A ⊃ . . . ⊃ FnA ⊃ Fn+1A ⊃ . . . ⊃ 0

(2) A filtered object ofA is pair (A,F ) consisting of an objectA ofA and a decreas-
ing filtration F on A.

(3) A morphism (A,F ) → (B,F ) of filtered objects is given by a morphism ϕ :
A→ B ofA such that ϕ(F iA) ⊂ F iB for all i ∈ Z.

(4) The category of filtered objects is denoted Fil(A).
(5) Given a filtered object (A,F ) and a subobject X ⊂ A the induced filtration on

X is the filtration with FnX = X ∩ FnA.
(6) Given a filtered object (A,F ) and a surjection π : A→ Y the quotient filtration

is the filtration with FnY = π(FnA).



19. FILTRATIONS 991

(7) A filtration F on an object A is said to be finite if there exist n,m such that
FnA = A and FmA = 0.

(8) Given a filtered object (A,F ) we say
⋂
F iA exists if there exists a biggest sub-

object of A contained in all F iA. We say
⋃
F iA exists if there exists a smallest

subobject of A containing all F iA.
(9) The filtration on a filtered object (A,F ) is said to be separated if

⋂
F iA = 0 and

exhaustive if
⋃
F iA = A.

By abuse of notation we say that a morphism f : (A,F ) → (B,F ) of filtered objects
is injective if f : A → B is injective in the abelian category A. Similarly we say f is
surjective if f : A→ B is surjective in the categoryA. Being injective (resp. surjective) is
equivalent to being a monomorphism (resp. epimorphism) in Fil(A). By Lemma 19.2 this
is also equivalent to having zero kernel (resp. cokernel).

Lemma 19.2. Let A be an abelian category. The category of filtered objects Fil(A)
has the following properties:

(1) It is an additive category.
(2) It has a zero object.
(3) It has kernels and cokernels, images and coimages.
(4) In general it is not an abelian category.

Proof. It is clear that Fil(A) is additive with direct sum given by (A,F )⊕(B,F ) =
(A⊕B,F ) where F p(A⊕B) = F pA⊕ F pB. The kernel of a morphism f : (A,F )→
(B,F ) of filtered objects is the injection Ker(f) ⊂ A where Ker(f) is endowed with
the induced filtration. The cokernel of a morphism f : A → B of filtered objects is the
surjectionB → Coker(f) where Coker(f) is endowed with the quotient filtration. Since
all kernels and cokernels exist, so do all coimages and images. See Example 3.13 for the
last statement. �

Definition 19.3. Let A be an abelian category. A morphism f : A → B of filtered
objects ofA is said to be strict if f(F iA) = f(A) ∩ F iB for all i ∈ Z.

This also equivalent to requiring that f−1(F iB) = F iA + Ker(f) for all i ∈ Z. We
characterize strict morphisms as follows.

Lemma 19.4. LetA be an abelian category. Let f : A→ B be a morphism of filtered
objects ofA. The following are equivalent

(1) f is strict,
(2) the morphism Coim(f)→ Im(f) of Lemma 3.12 is an isomorphism.

Proof. Note that Coim(f)→ Im(f) is an isomorphism of objects ofA, and that part
(2) signifies that it is an isomorphism of filtered objects. By the description of kernels and
cokernels in the proof of Lemma 19.2 we see that the filtration on Coim(f) is the quotient
filtration coming from A → Coim(f). Similarly, the filtration on Im(f) is the induced
filtration coming from the injection Im(f) → B. The definition of strict is exactly that
the quotient filtration is the induced filtration. �

Lemma 19.5. LetA be an abelian category. Let f : A→ B be a strict monomorphism
of filtered objects. Let g : A → C be a morphism of filtered objects. Then f ⊕ g : A →
B ⊕ C is a strict monomorphism.

Proof. Clear from the definitions. �
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Lemma 19.6. LetA be an abelian category. Let f : B → A be a strict epimorphism of
filtered objects. Let g : C → A be a morphism of filtered objects. Then f⊕g : B⊕C → A
is a strict epimorphism.

Proof. Clear from the definitions. �

Lemma 19.7. LetA be an abelian category. Let (A,F ), (B,F ) be filtered objects. Let
u : A→ B be a morphism of filtered objects. If u is injective then u is strict if and only if
the filtration on A is the induced filtration. If u is surjective then u is strict if and only if
the filtration on B is the quotient filtration.

Proof. This is immediate from the definition. �

Lemma 19.8. Let A be an abelian category. Let f : A → B, g : B → C be strict
morphisms of filtered objects.

(1) In general the composition g ◦ f is not strict.
(2) If g is injective, then g ◦ f is strict.
(3) If f is surjective, then g ◦ f is strict.

Proof. LetB a vector space over a field kwith basis e1, e2, with the filtrationFnB =
B for n < 0, with F 0B = ke1, and FnB = 0 for n > 0. Now take A = k(e1 + e2) and
C = B/ke2 with filtrations induced by B, i.e., such that A → B and B → C are strict
(Lemma 19.7). Then Fn(A) = A for n < 0 and Fn(A) = 0 for n ≥ 0. Also Fn(C) = C
for n ≤ 0 and Fn(C) = 0 for n > 0. So the (nonzero) composition A→ C is not strict.
Assume g is injective. Then

g(f(F pA)) = g(f(A) ∩ F pB)
= g(f(A)) ∩ g(F p(B))
= (g ◦ f)(A) ∩ (g(B) ∩ F pC)
= (g ◦ f)(A) ∩ F pC.

The first equality as f is strict, the second because g is injective, the third because g is strict,
and the fourth because (g ◦ f)(A) ⊂ g(B).
Assume f is surjective. Then

(g ◦ f)−1(F iC) = f−1(F iB + Ker(g))
= f−1(F iB) + f−1(Ker(g))
= F iA+ Ker(f) + Ker(g ◦ f)
= F iA+ Ker(g ◦ f)

The first equality because g is strict, the second because f is surjective, the third because f
is strict, and the last because Ker(f) ⊂ Ker(g ◦ f). �

The following lemma says that subobjects of a filtered object have a well defined filtration
independent of a choice of writing the object as a cokernel.

Lemma 19.9. Let A be an abelian category. Let (A,F ) be a filtered object of A. Let
X ⊂ Y ⊂ A be subobjects of A. On the object

Y/X = Ker(A/X → A/Y )
the quotient filtration coming from the induced filtration on Y and the induced filtration
coming from the quotient filtration on A/X agree. Any of the morphisms X → Y ,
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X → A, Y → A, Y → A/X , Y → Y/X , Y/X → A/X are strict (with induced/quotient
filtrations).

Proof. The quotient filtration Y/X is given by F p(Y/X) = F pY/(X ∩ F pY ) =
F pY/F pX because F pY = Y ∩F pA and F pX = X ∩F pA. The induced filtration from
the injection Y/X → A/X is given by

F p(Y/X) = Y/X ∩ F p(A/X)
= Y/X ∩ (F pA+X)/X
= (Y ∩ F pA)/(X ∩ F pA)
= F pY/F pX.

Hence the first statement of the lemma. The proof of the other cases is similar. �

Lemma 19.10. Let A be an abelian category. Let A,B,C ∈ Fil(A). Let f : A → B
and g : A→ C be morphisms. Then there exists a pushout

A
f

//

g

��

B

g′

��
C

f ′
// C qA B

in Fil(A). If f is strict, so is f ′.

Proof. Set C qA B equal to Coker((1,−1) : A→ C ⊕B) in Fil(A). This cokernel
exists, by Lemma 19.2. It is a pushout, see Example 5.6. Note that F p(C qA B) is the
image of F pC ⊕ F pB. Hence

(f ′)−1(F p(C qA B)) = g(f−1(F pB))) + F pC

Whence the last statement. �

Lemma 19.11. Let A be an abelian category. Let A,B,C ∈ Fil(A). Let f : B → A
and g : C → A be morphisms. Then there exists a fibre product

B ×A C
g′

//

f ′

��

B

f

��
C

g // A

in Fil(A). If f is strict, so is f ′.

Proof. This lemma is dual to Lemma 19.10. �

Let A be an abelian category. Let (A,F ) be a filtered object of A. We denote grpF (A) =
grp(A) the object F pA/F p+1A ofA. This defines an additive functor

grp : Fil(A) −→ A, (A,F ) 7−→ grp(A).
Recall that we have defined the category Gr(A) of graded objects of A in Section 16. For
(A,F ) in Fil(A) we may set

gr(A) = the graded object ofA whose pth graded piece is grp(A)
and ifA has countable direct sums, then we simply have

gr(A) =
⊕

grp(A)
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This defines an additive functor
gr : Fil(A) −→ Gr(A), (A,F ) 7−→ gr(A).

Lemma 19.12. LetA be an abelian category.
(1) Let A be a filtered object and X ⊂ A. Then for each p the sequence

0→ grp(X)→ grp(A)→ grp(A/X)→ 0
is exact (with induced filtration on X and quotient filtration on A/X).

(2) Let f : A → B be a morphism of filtered objects of A. Then for each p the
sequences

0→ grp(Ker(f))→ grp(A)→ grp(Coim(f))→ 0
and

0→ grp(Im(f))→ grp(B)→ grp(Coker(f))→ 0
are exact.

Proof. We have F p+1X = X ∩ F p+1A, hence map grp(X) → grp(A) is injective.
Dually the map grp(A)→ grp(A/X) is surjective. The kernel ofF pA/F p+1A→ A/X+
F p+1A is clearly F p+1A + X ∩ F pA/F p+1A = F pX/F p+1X hence exactness in the
middle. The two short exact sequence of (2) are special cases of the short exact sequence
of (1). �

Lemma 19.13. Let A be an abelian category. Let f : A→ B be a morphism of finite
filtered objects ofA. The following are equivalent

(1) f is strict,
(2) the morphism Coim(f)→ Im(f) is an isomorphism,
(3) gr(Coim(f))→ gr(Im(f)) is an isomorphism,
(4) the sequence gr(Ker(f))→ gr(A)→ gr(B) is exact,
(5) the sequence gr(A)→ gr(B)→ gr(Coker(f)) is exact, and
(6) the sequence

0→ gr(Ker(f))→ gr(A)→ gr(B)→ gr(Coker(f))→ 0
is exact.

Proof. The equivalence of (1) and (2) is Lemma 19.4. By Lemma 19.12 we see that
(4), (5), (6) imply (3) and that (3) implies (4), (5), (6). Hence it suffices to show that (3)
implies (2). Thus we have to show that if f : A → B is an injective and surjective map
of finite filtered objects which induces and isomorphism gr(A) → gr(B), then f induces
an isomorphism of filtered objects. In other words, we have to show that f(F pA) = F pB
for all p. As the filtrations are finite we may prove this by descending induction on p.
Suppose that f(F p+1A) = F p+1B. Then commutative diagram

0 // F p+1A //

f

��

F pA //

f

��

grp(A) //

grp(f)
��

0

0 // F p+1B // F pB // grp(B) // 0

and the five lemma imply that f(F pA) = F pB. �

Lemma 19.14. Let A be an abelian category. Let A → B → C be a complex of
filtered objects of A. Assume α : A→ B and β : B → C are strict morphisms of filtered
objects. Then gr(Ker(β)/ Im(α)) = Ker(gr(β))/ Im(gr(α))).
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Proof. This follows formally from Lemma 19.12 and the fact that Coim(α) ∼= Im(α)
and Coim(β) ∼= Im(β) by Lemma 19.4. �

Lemma 19.15. LetA be an abelian category. LetA→ B → C be a complex of filtered
objects of A. Assume A,B,C have finite filtrations and that gr(A)→ gr(B)→ gr(C) is
exact. Then

(1) for each p ∈ Z the sequence grp(A)→ grp(B)→ grp(C) is exact,
(2) for each p ∈ Z the sequence F p(A)→ F p(B)→ F p(C) is exact,
(3) for each p ∈ Z the sequence A/F p(A)→ B/F p(B)→ C/F p(C) is exact,
(4) the maps A→ B and B → C are strict, and
(5) A→ B → C is exact (as a sequence inA).

Proof. Part (1) is immediate from the definitions. We will prove (3) by induction
on the length of the filtrations. If each of A, B, C has only one nonzero graded part,
then (3) holds as gr(A) = A, etc. Let n be the largest integer such that at least one of
FnA,FnB,FnC is nonzero. Set A′ = A/FnA, B′ = B/FnB, C ′ = C/FnC with in-
duced filtrations. Note that gr(A) = FnA⊕gr(A′) and similarly forB andC. The induc-
tion hypothesis applies toA′ → B′ → C ′, which implies thatA/F p(A)→ B/F p(B)→
C/F p(C) is exact for p ≥ n. To conclude the same for p = n + 1, i.e., to prove that
A→ B → C is exact we use the commutative diagram

0 // FnA //

��

A //

��

A′ //

��

0

0 // FnB //

��

B //

��

B′ //

��

0

0 // FnC // C // C ′ // 0

whose rows are short exact sequences of objects of A. The proof of (2) is dual. Of course
(5) follows from (2).

To prove (4) denote f : A → B and g : B → C the given morphisms. We know
that f(F p(A)) = Ker(F p(B) → F p(C)) by (2) and f(A) = Ker(g) by (5). Hence
f(F p(A)) = Ker(F p(B)→ F p(C)) = Ker(g)∩F p(B) = f(A)∩F p(B) which proves
that f is strict. The proof that g is strict is dual to this. �

20. Spectral sequences

A nice discussion of spectral sequences may be found in [?]. See also [?], [?], etc.

Definition 20.1. LetA be an abelian category.
(1) A spectral sequence in A is given by a system (Er, dr)r≥1 where each Er is an

object of A, each dr : Er → Er is a morphism such that dr ◦ dr = 0 and
Er+1 = Ker(dr)/ Im(dr) for r ≥ 1.

(2) A morphism of spectral sequences f : (Er, dr)r≥1 → (E′
r, d

′
r)r≥1 is given by a

family of morphisms fr : Er → E′
r such that fr◦dr = d′

r◦fr and such that fr+1
is the morphism induced by fr via the identifications Er+1 = Ker(dr)/ Im(dr)
and E′

r+1 = Ker(d′
r)/ Im(d′

r).

We will sometimes loosen this definition somewhat and allow Er+1 to be an object with
a given isomorphism Er+1 → Ker(dr)/ Im(dr). In addition we sometimes have a system
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(Er, dr)r≥r0 for some r0 ∈ Z satisfying the properties of the definition above for indices
≥ r0. We will also call this a spectral sequence since by a simple renumbering it falls
under the definition anyway. In fact, the cases r0 = 0 and r0 = −1 can be found in the
literature.

Given a spectral sequence (Er, dr)r≥1 we define

0 = B1 ⊂ B2 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z2 ⊂ Z1 = E1

by the following simple procedure. Set B2 = Im(d1) and Z2 = Ker(d1). Then it is
clear that d2 : Z2/B2 → Z2/B2. Hence we can define B3 as the unique subobject of
E1 containing B2 such that B3/B2 is the image of d2. Similarly we can define Z3 as the
unique subobject ofE1 containingB2 such that Z3/B2 is the kernel of d2. And so on and
so forth. In particular we have

Er = Zr/Br

for all r ≥ 1. In case the spectral sequence starts at r = r0 then we can similarly construct
Bi, Zi as subobjects in Er0 . In fact, in the literature one sometimes finds the notation

0 = Br(Er) ⊂ Br+1(Er) ⊂ Br+2(Er) ⊂ . . . ⊂ Zr+2(Er) ⊂ Zr+1(Er) ⊂ Zr(Er) = Er

to denote the filtration described above but starting with Er.

Definition 20.2. Let A be an abelian category. Let (Er, dr)r≥1 be a spectral se-
quence.

(1) If the subobjects Z∞ =
⋂
Zr and B∞ =

⋃
Br of E1 exist then we define the

limit3 of the spectral sequence to be the object E∞ = Z∞/B∞.
(2) We say that the spectral sequence degenerates atEr if the differentials dr, dr+1, . . .

are all zero.

Note that if the spectral sequence degenerates at Er , then we have Er = Er+1 = . . . =
E∞ (and the limit exists of course). Also, almost any abelian category we will encounter
has countable sums and intersections.

Remark 20.3 (Variant). It is often the case that the terms of a spectral sequence have
additional structure, for example a grading or a bigrading. To accomodate this (and to get
around certain technical issues) we introduce the following notion. Let A be an abelian
category. Let (Tr)r≥1 be a sequence of translation or shift functors, i.e., Tr : A → A
is an isomorphism of categories. In this setting a spectral sequence is given by a system
(Er, dr)r≥1 where each Er is an object of A, each dr : Er → TrEr is a morphism such
that Trdr ◦ dr = 0 so that

. . . // T−1
r Er

T−1
r dr // Er

dr // TrEr
Trdr // T 2

rEr // . . .

is a complex and Er+1 = Ker(dr)/ Im(T−1
r dr) for r ≥ 1. It is clear what a morphism of

spectral sequences means in this setting. In this setting we can still define

0 = B1 ⊂ B2 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z2 ⊂ Z1 = E1

and Z∞ and B∞ (if they exist) as above.

3This notation is not universally accepted. In some references an additional pair of subobjectsZ∞ andB∞
ofE1 such that 0 = B1 ⊂ B2 ⊂ . . . ⊂ B∞ ⊂ Z∞ ⊂ . . . ⊂ Z2 ⊂ Z1 = E1 is part of the data comprising a
spectral sequence!
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21. Spectral sequences: exact couples

Definition 21.1. LetA be an abelian category.
(1) An exact couple is a datum (A,E, α, f, g) where A, E are objects ofA and α, f ,

g are morphisms as in the following diagram

A
α

// A

g
��

E

f

__

with the property that the kernel of each arrow is the image of its predecessor.
So Ker(α) = Im(f), Ker(f) = Im(g), and Ker(g) = Im(α).

(2) A morphism of exact couples t : (A,E, α, f, g) → (A′, E′, α′, f ′, g′) is given
by morphisms tA : A → A′ and tE : E → E′ such that α′ ◦ tA = tA ◦ α,
f ′ ◦ tE = tA ◦ f , and g′ ◦ tA = tE ◦ g.

Lemma 21.2. Let (A,E, α, f, g) be an exact couple in an abelian categoryA. Set
(1) d = g ◦ f : E → E so that d ◦ d = 0,
(2) E′ = Ker(d)/ Im(d),
(3) A′ = Im(α),
(4) α′ : A′ → A′ induced by α,
(5) f ′ : E′ → A′ induced by f ,
(6) g′ : A′ → E′ induced by “g ◦ α−1”.

Then we have
(1) Ker(d) = f−1(Ker(g)) = f−1(Im(α)),
(2) Im(d) = g(Im(f)) = g(Ker(α)),
(3) (A′, E′, α′, f ′, g′) is an exact couple.

Proof. Omitted. �

Hence it is clear that given an exact couple (A,E, α, f, g) we get a spectral sequence by
setting E1 = E , d1 = d, E2 = E′, d2 = d′ = g′ ◦ f ′, E3 = E′′, d3 = d′′ = g′′ ◦ f ′′, and
so on.

Definition 21.3. LetA be an abelian category. Let (A,E, α, f, g) be an exact couple.
The spectral sequence associated to the exact couple is the spectral sequence (Er, dr)r≥1
with E1 = E , d1 = d, E2 = E′, d2 = d′ = g′ ◦ f ′, E3 = E′′, d3 = d′′ = g′′ ◦ f ′′, and so
on.

Lemma 21.4. LetA be an abelian category. Let (A,E, α, f, g) be an exact couple. Let
(Er, dr)r≥1 be the spectral sequence associated to the exact couple. In this case we have

0 = B1 ⊂ . . . ⊂ Br+1 = g(Ker(αr)) ⊂ . . . ⊂ Zr+1 = f−1(Im(αr)) ⊂ . . . ⊂ Z1 = E

and the map dr+1 : Er+1 → Er+1 is described by the following rule: For any (test) object
T ofA and any elements x : T → Zr+1 and y : T → A such that f ◦ x = αr ◦ y we have

dr+1 ◦ x = g ◦ y

where x : T → Er+1 is the induced morphism.

Proof. Omitted. �
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Note that in the situation of the lemma we obviously have

B∞ = g
(⋃

r
Ker(αr)

)
⊂ Z∞ = f−1

(⋂
r

Im(αr)
)

provided
⋃

Ker(αr) and
⋂

Im(αr) exist. This produces as limit E∞ = Z∞/B∞, see
Definition 20.2.

Remark 21.5 (Variant). Let A be an abelian category. Let S, T : A → A be shift
functors, i.e., isomorphisms of categories. We will indicate the n-fold compositions by
SnA and TnA for A ∈ Ob(A) and n ∈ Z. In this situation an exact couple is a datum
(A,E, α, f, g) where A, E are objects ofA and α : A→ T−1A, f : E → A, g : A→ SE
are morphisms such that

TE
Tf // TA

Tα // A
g // SE

Sf // SA

is an exact complex. Let’s visualize this as follows

TA
Tα

// A

g
~~

α
// T−1A

T−1gyy
TE

Tf

aa

SE E

f

__

T−1SE

We set d = g◦f : E → SE. Then d◦S−1d = g◦f ◦S−1g◦S−1f = 0 because f ◦S−1g =
0. Set E′ = Ker(d)/ Im(S−1d). Set A′ = Im(Tα). Let α′ : A′ → T−1A′ induced by α.
Let f ′ : E′ → A′ be induced by f which works because f(Ker(d)) ⊂ Ker(g) = Im(Tα).
Finally, let g′ : A′ → TSE′ induced by “Tg ◦ (Tα)−1”4.

In exactly the same way as above we find
(1) Ker(d) = f−1(Ker(g)) = f−1(Im(Tα)),
(2) Im(d) = g(Im(f)) = g(Ker(α)),
(3) (A′, E′, α′, f ′, g′) is an exact couple for the shift functors TS and T .

We obtain a spectral sequence (as in Remark 20.3) with E1 = E , E2 = E′, etc, with
dr : Er → T r−1SEr for all r ≥ 1. Lemma 21.4 tells us that

SBr+1 = g(Ker(T−r+1α ◦ . . . ◦ T−1α ◦ α))
and

Zr+1 = f−1(Im(Tα ◦ T 2α ◦ . . . ◦ T rα))
in this situation. The description of the map dr+1 is similar to that given in the lemma.
(It may be easier to use these explicit descriptions to prove one gets a spectral sequence
from such an exact couple.)

22. Spectral sequences: differential objects

Definition 22.1. Let A be an abelian category. A differential object of A is a pair
(A, d) consisting of an object A of A endowed with a selfmap d such that d ◦ d = 0. A
morphism of differential objects (A, d)→ (B, d) is given by a morphism α : A→ B such
that d ◦ α = α ◦ d.

Lemma 22.2. Let A be an abelian category. The category of differential objects of A
is abelian.

4This works because TSE′ = Ker(TSd)/ Im(Td) and Tg(Ker(Tα)) = Tg(Im(Tf)) = Im(T (d))
and TS(d)(Im(Tg)) = Im(TSg ◦ TSf ◦ Tg) = 0.
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Proof. Omitted. �

Definition 22.3. For a differential object (A, d) we denote

H(A, d) = Ker(d)/ Im(d)

its homology.

Lemma 22.4. LetA be an abelian category. Let 0→ (A, d)→ (B, d)→ (C, d)→ 0
be a short exact sequence of differential objects. Then we get an exact homology sequence

. . .→ H(C, d)→ H(A, d)→ H(B, d)→ H(C, d)→ . . .

Proof. Apply Lemma 13.12 to the short exact sequence of complexes

0 → A → B → C → 0
↓ ↓ ↓

0 → A → B → C → 0
↓ ↓ ↓

0 → A → B → C → 0

where the vertical arrows are d. �

We come to an important example of a spectral sequence. Let A be an abelian category.
Let (A, d) be a differential object of A. Let α : (A, d) → (A, d) be an endomorphism of
this differential object. If we assume α injective, then we get a short exact sequence

0→ (A, d)→ (A, d)→ (A/αA, d)→ 0

of differential objects. By the Lemma 22.4 we get an exact couple

H(A, d)
α

// H(A, d)

g
xx

H(A/αA, d)
f

ff

where g is the canonical map and f is the map defined in the snake lemma. Thus we get
an associated spectral sequence! Since in this case we have E1 = H(A/αA, d) we see that
it makes sense to define E0 = A/αA and d0 = d. In other words, we start the spectral
sequence with r = 0. According to our conventions in Section 20 we define a sequence of
subobjects

0 = B0 ⊂ . . . ⊂ Br ⊂ . . . ⊂ Zr ⊂ . . . ⊂ Z0 = E0

with the property that Er = Zr/Br. Namely we have for r ≥ 1 that
(1) Br is the image of (αr−1)−1(dA) under the natural map A→ A/αA,
(2) Zr is the image of d−1(αrA) under the natural map A→ A/αA, and
(3) dr : Er → Er is given as follows: given an element z ∈ Zr choose an element

y ∈ A such that d(z) = αr(y). Then dr(z +Br + αA) = y +Br + αA.
Warning: It is not necessarily the case that αA ⊂ (αr−1)−1(dA), nor αA ⊂ d−1(αrA).
It is true that (αr−1)−1(dA) ⊂ d−1(αrA). We have

Er = d−1(αrA) + αA

(αr−1)−1(dA) + αA
.

It is not hard to verify directly that (1) – (3) give a spectral sequence.
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Definition 22.5. Let A be an abelian category. Let (A, d) be a differential object of
A. Let α : A → A be an injective selfmap of A which commutes with d. The spectral
sequence associated to (A, d, α) is the spectral sequence (Er, dr)r≥0 described above.

Remark 22.6 (Variant). Let A be an abelian category and let S, T : A → A be
shift functors, i.e., isomorphisms of categories. Assume that TS = ST as functors. Con-
sider pairs (A, d) consisting of an object A of A and a morphism d : A → SA such
that d ◦ S−1d = 0. The category of these objects is abelian. We define H(A, d) =
Ker(d)/ Im(S−1d) and we observe that H(SA, Sd) = SH(A, d) (canonical isomor-
phism). Given a short exact sequence

0→ (A, d)→ (B, d)→ (C, d)→ 0
we obtain a long exact homology sequence

. . .→ S−1H(C, d)→ H(A, d)→ H(B, d)→ H(C, d)→ SH(A, d)→ . . .

(note the shifts in the boundary maps). Since ST = TS the functor T defines a shift
functor on pairs by setting T (A, d) = (TA, Td). Next, let α : (A, d) → T−1(A, d) be
injective with cokernel (Q, d). Then we get an exact couple as in Remark 21.5 with shift
functors TS and T given by

(H(A, d), S−1H(Q, d), α, f, g)
whereα : H(A, d)→ T−1H(A, d) is induced byα, the map f : S−1H(Q, d)→ H(A, d)
is the boundary map and g : H(A, d)→ TH(Q, d) = TS(S−1H(Q, d)) is induced by the
quotient mapA→ TQ. Thus we get a spectral sequence as above withE1 = S−1H(Q, d)
and differentials dr : Er → T rSEr. As above we set E0 = S−1Q and d0 : E0 → SE0
given by S−1d : S−1Q→ Q. If according to our conventions we define Br ⊂ Zr ⊂ E0,
then we have for r ≥ 1 that

(1) SBr is the image of

(T−r+1α ◦ . . . ◦ T−1α)−1 Im(T−rS−1d)
under the natural map T−1A→ Q,

(2) Zr is the image of

(S−1T−1d)−1 Im(α ◦ . . . ◦ T r−1α)
under the natural map S−1T−1A→ S−1Q.

The differentials can be described as follows: ifx ∈ Zr , then pickx′ ∈ S−1T−1Amapping
to x. Then S−1T−1d(x′) is (α ◦ . . . ◦ T r−1α)(y) for some y ∈ T r−1A. Then dr(x) ∈
T rSEr is represented by the class of the image of y in T rSE0 = T rQ modulo T rSBr.

23. Spectral sequences: filtered differential objects

We can build a spectral sequence starting with a filtered differential object.

Definition 23.1. LetA be an abelian category. A filtered differential object (K,F, d)
is a filtered object (K,F ) of A endowed with an endomorphism d : (K,F ) → (K,F )
whose square is zero: d ◦ d = 0.

To describe the spectral sequence associated to such an object we assume, for the moment,
that A is an abelian category which has countable direct sums and countable direct sums
are exact (this is not automatic, see Remark 16.3). Let (K,F, d) be a filtered differential
object of A. Note that each FnK is a differential object by itself. Consider the object
A =

⊕
FnK and endow it with a differential d by using d on each summand. Then
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(A, d) is a differential object of A which comes equipped with a grading. Consider the
map

α : A→ A

which is given by the inclusions FnK → Fn−1K. This is clearly an injective morphism
of differential objects α : (A, d) → (A, d). Hence, by Definition 22.5 we get a spectral
sequence. We will call this the spectral sequence associated to the filtered differential object
(K,F, d).
Let us figure out the terms of this spectral sequence. First, note that A/αA = gr(K)
endowed with its differential d = gr(d). Hence we see that

E0 = gr(K), d0 = gr(d).
Hence the homology of the graded differential object gr(K) is the next term:

E1 = H(gr(K), gr(d)).
In addition we see that E0 is a graded object of A and that d0 is compatible with the
grading. Hence clearly E1 is a graded object as well. But it turns out that the differential
d1 does not preserve this grading; instead it shifts the degree by 1.
To work this out precisely, we define

Zpr = F pK ∩ d−1(F p+rK) + F p+1K

F p+1K

and
Bpr = F pK ∩ d(F p−r+1K) + F p+1K

F p+1K
.

This notation, although quite natural, seems to be different from the notation in most
places in the literature. Perhaps it does not matter, since the literature does not seem to
have a consistent choice of notation either. With these choices we see thatBr ⊂ E0, resp.
Zr ⊂ E0 (as defined in Section 22) is equal to

⊕
pB

p
r , resp.

⊕
p Z

p
r . Hence if we define

Epr = Zpr /B
p
r

for r ≥ 0 and p ∈ Z, then we have Er =
⊕

pE
p
r . We can define a differential dpr : Epr →

Ep+r
r by the rule

z + F p+1K 7−→ dz + F p+r+1K

where z ∈ F pK ∩ d−1(F p+rK).

Lemma 23.2. Let A be an abelian category. Let (K,F, d) be a filtered differential
object ofA. There is a spectral sequence (Er, dr)r≥0 in Gr(A) associated to (K,F, d) such
that dr : Er → Er[r] for all r and such that the graded pieces Epr and maps dpr : Epr →
Ep+r
r are as given above. Furthermore, Ep0 = grpK , dp0 = grp(d), and Ep1 = H(grpK, d).

Proof. If A has countable direct sums and if countable direct sums are exact, then
this follows from the discussion above. In general, we proceed as follows; we strongly
suggest the reader skip this proof. Consider the object A = (F p+1K) of Gr(A), i.e.,
we put F p+1K in degree p (the funny shift in numbering to get numbering correct later
on). We endow it with a differential d by using d on each component. Then (A, d) is a
differential object of Gr(A). Consider the map

α : A→ A[−1]
which is given in degree p by the inclusions F p+1A → F pA. This is clearly an injective
morphism of differential objects α : (A, d) → (A, d)[−1]. Hence, we can apply Remark
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22.6 with S = id and T = [1]. The corresponding spectral sequence (Er, dr)r≥0 in Gr(A)
is the spectral sequence we are looking for. Let us unwind the definitions a bit. First of all
we haveEr = (Epr ) is an object of Gr(A). Then, sinceT rS = [r] we have dr : Er → Er[r]
which means that dpr : Epr → Ep+r

r .
To see that the description of the graded pieces hold, we argue as above. Namely, first
we have E0 = Coker(α : A → A[−1]) and by our choice of numbering above this
gives Ep0 = grpK. The first differential is given by dp0 = grpd : Ep0 → Ep0 . Next, the
description of the boundaries Br and the cocycles Zr in Remark 22.6 translates into a
straightforward manner into the formulae for Zpr and Bpr given above. �

Lemma 23.3. Let A be an abelian category. Let (K,F, d) be a filtered differential
object ofA. The spectral sequence (Er, dr)r≥0 associated to (K,F, d) has

dp1 : Ep1 = H(grpK) −→ H(grp+1K) = Ep+1
1

equal to the boundary map in homology associated to the short exact sequence of differ-
ential objects

0→ grp+1K → F pK/F p+2K → grpK → 0.

Proof. This is clear from the formula for the differential dp1 given just above Lemma
23.2. �

Definition 23.4. LetA be an abelian category. Let (K,F, d) be a filtered differential
object ofA. The induced filtration on H(K, d) is the filtration defined by F pH(K, d) =
Im(H(F pK, d)→ H(K, d)).

Writing out what this means we see that

F pH(K, d) = Ker(d) ∩ F pK + Im(d)
Im(d)

and hence we see that

grpH(K) = Ker(d) ∩ F pK + Im(d)
Ker(d) ∩ F p+1K + Im(d) = Ker(d) ∩ F pK

Ker(d) ∩ F p+1K + Im(d) ∩ F pK
Lemma 23.5. Let A be an abelian category. Let (K,F, d) be a filtered differential

object ofA. If Zp∞ and Bp∞ exist (see proof), then
(1) the limit E∞ exists and is graded having Ep∞ = Zp∞/B

p
∞ in degree p, and

(2) the associated graded gr(H(K)) of the cohomology ofK is a graded subquotient
of the graded limit object E∞.

Proof. The objects Z∞, B∞, and the limit E∞ = Z∞/B∞ of Definition 20.2 are
objects of Gr(A) by our construction of the spectral sequence in the proof of Lemma 23.2.
Since Zr =

⊕
Zpr and Br =

⊕
Bpr , if we assume that

Zp∞ =
⋂

r
Zpr =

⋂
r(F pK ∩ d−1(F p+rK) + F p+1K)

F p+1K
and

Bp∞ =
⋃

r
Bpr =

⋃
r(F pK ∩ d(F p−r+1K) + F p+1K)

F p+1K
.

exist, thenZ∞ andB∞ exist with degree p partsZp∞ andBp∞ (follows from an elementary
argument about unions and intersections of graded subobjects). Thus

Ep∞ =
⋂
r(F pK ∩ d−1(F p+rK) + F p+1K)⋃
r(F pK ∩ d(F p−r+1K) + F p+1K) .
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where the top and bottom exist. We have

(23.5.1) Ker(d) ∩ F pK + F p+1K ⊂
⋂

r

(
F pK ∩ d−1(F p+rK) + F p+1K

)
and
(23.5.2)

⋃
r

(
F pK ∩ d(F p−r+1K) + F p+1K

)
⊂ Im(d) ∩ F pK + F p+1K.

Thus a subquotient of Ep∞ is
Ker(d) ∩ F pK + F p+1K

Im(d) ∩ F pK + F p+1K
= Ker(d) ∩ F pK

Im(d) ∩ F pK + Ker(d) ∩ F p+1K

Comparing with the formula given for grpH(K) in the discussion following Definition
23.4 we conclude. �

Definition 23.6. LetA be an abelian category. Let (K,F, d) be a filtered differential
object ofA. We say the spectral sequence associated to (K,F, d)

(1) weakly converges to H(K) if grH(K) = E∞ via Lemma 23.5,
(2) abuts to H(K) if it weakly converges to H(K) and we have

⋂
F pH(K) = 0

and
⋃
F pH(K) = H(K),

Unfortunately, it seems hard to find a consistent terminology for these notions in the
literature.

Lemma 23.7. Let A be an abelian category. Let (K,F, d) be a filtered differential
object ofA. The associated spectral sequence

(1) weakly converges to H(K) if and only if for every p ∈ Z we have equality in
equations (23.5.2) and (23.5.1),

(2) abuts to H(K) if and only if it weakly converges to H(K) and
⋂
p(Ker(d) ∩

F pK + Im(d)) = Im(d) and
⋃
p(Ker(d) ∩ F pK + Im(d)) = Ker(d).

Proof. Immediate from the discussions above. �

24. Spectral sequences: filtered complexes

Definition 24.1. Let A be an abelian category. A filtered complex K• of A is a
complex of Fil(A) (see Definition 19.1).
We will denote the filtration on the objects by F . Thus F pKn denotes the pth step in the
filtration of the nth term of the complex. Note that each F pK• is a complex ofA. Hence
we could also have defined a filtered complex as a filtered object in the (abelian) category
of complexes of A. In particular grK• is a graded object of the category of complexes of
A.
To describe the spectral sequence associated to such an object we assume, for the moment,
that A is an abelian category which has countable direct sums and countable direct sums
are exact (this is not automatic, see Remark 16.3). Let us denote d the differential of K.
Forgetting the grading we can think of

⊕
Kn as a filtered differential object ofA. Hence

according to Section 23 we obtain a spectral sequence (Er, dr)r≥0. In this section we work
out the terms of this spectral sequence, and we endow the terms of this spectral sequence
with additional structure coming from the grading of K.
First we point out thatEp0 = grpK• is a complex and hence is graded. ThusE0 is bigraded
in a natural way. It is customary to use the bigrading

E0 =
⊕

p,q
Ep,q0 , Ep,q0 = grpKp+q
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The idea is that p+ q should be thought of as the total degree of the (co)homology classes.
Also, p is called the filtration degree, and q is called the complementary degree. The dif-
ferential d0 is compatible with this bigrading in the following way

d0 =
⊕

dp,q0 , dp,q0 : Ep,q0 → Ep,q+1
0 .

Namely, dp0 is just the differential on the complex grpK• (which occurs as grpE0 just
shifted a bit).

To go further we identify the objectsBpr andZpr introduced in Section 23 as graded objects
and we work out the corresponding decompositions of the differentials. We do this in a
completely straightforward manner, but again we warn the reader that our notation is not
the same as notation found elsewhere. We define

Zp,qr = F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q

F p+1Kp+q

and

Bp,qr = F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q

F p+1Kp+q

and of course Ep,qr = Zp,qr /Bp,qr . With these definitions it is completely clear that Zpr =⊕
q Z

p,q
r , Bpr =

⊕
q B

p,q
r , and Epr =

⊕
q E

p,q
r . Moreover, we have

0 ⊂ . . . ⊂ Bp,qr ⊂ . . . ⊂ Zp,qr ⊂ . . . ⊂ Ep,q0

Also, the map dpr decomposes as the direct sum of the maps

dp,qr : Ep,qr −→ Ep+r,q−r+1
r , z + F p+1Kp+q 7→ dz + F p+r+1Kp+q+1

where z ∈ F pKp+q ∩ d−1(F p+rKp+q+1).

Lemma 24.2. Let A be an abelian category. Let (K•, F ) be a filtered complex of A.
There is a spectral sequence (Er, dr)r≥0 in the category of bigraded objects ofA associated
to (K•, F ) such that dr has bidegree (r,−r + 1) and such that Er has bigraded pieces
Ep,qr and maps dp,qr : Ep,qr → Ep+r,q−r+1

r as given above. Furthermore, we have Ep,q0 =
grp(Kp+q), dp,q0 = grp(dp+q), and Ep,q1 = Hp+q(grp(K•)).

Proof. IfAhas countable direct sums and if countable direct sums are exact, then this
follows from the discussion above. In general, we proceed as follows; we strongly suggest
the reader skip this proof. Consider the bigraded objectA = (F p+1Kp+1+q) ofA, i.e., we
put F p+1Kp+1+q in degree (p, q) (the funny shift in numbering to get numbering correct
later on). We endow it with a differential d : A→ A[0, 1] by using d on each component.
Then (A, d) is a differential bigraded object. Consider the map

α : A→ A[−1, 1]
which is given in degree (p, q) by the inclusion F p+1Kp+1+q → F pKp+1+q . This is
an injective morphism of differential objects α : (A, d) → (A, d)[−1, 1]. Hence, we can
apply Remark 22.6 with S = [0, 1] and T = [1,−1]. The corresponding spectral sequence
(Er, dr)r≥0 of bigraded objects is the spectral sequence we are looking for. Let us unwind
the definitions a bit. First of all we have Er = (Ep,qr ). Then, since T rS = [r,−r + 1] we
have dr : Er → Er[r,−r + 1] which means that dp,qr : Ep,qr → Ep+r,q−r+1

r .

To see that the description of the graded pieces hold, we argue as above. Namely, first we
have

E0 = Coker(α : A→ A[−1, 1])[0,−1] = Coker(α[0,−1] : A[0,−1]→ A[−1, 0])
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and by our choice of numbering above this gives

Ep,q0 = Coker(F p+1Kp+q → F pKp+q) = grpKp+q

The first differential is given by dp,q0 = grpdp+q : Ep,q0 → Ep,q+1
0 . Next, the description

of the boundariesBr and the cocycles Zr in Remark 22.6 translates into a straightforward
manner into the formulae for Zp,qr and Bp,qr given above. �

Lemma 24.3. Let A be an abelian category. Let (K•, F ) be a filtered complex of A.
Assume A has countable direct sums. Let (Er, dr)r≥0 be the spectral sequence associated
to (K•, F ).

(1) The map

dp,q1 : Ep,q1 = Hp+q(grp(K•)) −→ Ep+1,q
1 = Hp+q+1(grp+1(K•))

is equal to the boundary map in cohomology associated to the short exact se-
quence of complexes

0→ grp+1(K•)→ F pK•/F p+2K• → grp(K•)→ 0.
(2) Assume that d(F pK) ⊂ F p+1K for all p ∈ Z. Then d induces the zero differ-

ential on grp(K•) and hence Ep,q1 = grp(K•)p+q . Furthermore, in this case

dp,q1 : Ep,q1 = grp(K•)p+q −→ Ep+1,q
1 = grp+1(K•)p+q+1

is the morphism induced by d.

Proof. This is clear from the formula given for the differential dp,q1 just above Lemma
24.2. �

Lemma 24.4. Let A be an abelian category. Let α : (K•, F ) → (L•, F ) be a mor-
phism of filtered complexes ofA. Let (Er(K), dr)r≥0, resp. (Er(L), dr)r≥0 be the spectral
sequence associated to (K•, F ), resp. (L•, F ). The morphism α induces a canonical mor-
phism of spectral sequences {αr : Er(K)→ Er(L)}r≥0 compatible with the bigradings.

Proof. Obvious from the explicit representation of the terms of the spectral sequences.
�

Definition 24.5. LetA be an abelian category. Let (K•, F ) be a filtered complex of
A. The induced filtration onHn(K•) is the filtration defined byF pHn(K•) = Im(Hn(F pK•)→
Hn(K•)).

Writing out what this means we see that

(24.5.1) F pHn(K•, d) = Ker(d) ∩ F pKn + Im(d) ∩Kn

Im(d) ∩Kn

and hence we see that

(24.5.2) grpHn(K•) = Ker(d) ∩ F pKn

Ker(d) ∩ F p+1Kn + Im(d) ∩ F pKn

(one intermediate step omitted).

Lemma 24.6. Let A be an abelian category. Let (K•, F ) be a filtered complex of A.
If Zp,q∞ and Bp,q∞ exist (see proof), then

(1) the limitE∞ exists and is a bigraded object havingEp,q∞ = Zp,q∞ /Bp,q∞ in bidegree
(p, q),
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(2) the pth graded part grpHn(K•) of the nth cohomology object of K• is a sub-
quotient of Ep,n−p

∞ .

Proof. The objects Z∞, B∞, and the limit E∞ = Z∞/B∞ of Definition 20.2 are
bigraded objects of A by our construction of the spectral sequence in Lemma 24.2. Since
Zr =

⊕
Zp,qr and Br =

⊕
Bp,qr , if we assume that

Zp,q∞ =
⋂

r
Zp,qr =

⋂
r

F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q

F p+1Kp+q

and

Bp,q∞ =
⋃

r
Bp,qr =

⋃
r

F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q

F p+1Kp+q

exist, then Z∞ and B∞ exist with bidegree (p, q) parts Zp,q∞ and Bp,q∞ (follows from an
elementary argument about unions and intersections of bigraded objects). Thus

Ep,q∞ =
⋂
r(F pKp+q ∩ d−1(F p+rKp+q+1) + F p+1Kp+q)⋃
r(F pKp+q ∩ d(F p−r+1Kp+q−1) + F p+1Kp+q) .

where the top and the bottom exist. With n = p+ q we have

(24.6.1) Ker(d) ∩ F pKn + F p+1Kn ⊂
⋂

r

(
F pKn ∩ d−1(F p+rKn+1) + F p+1Kn

)
and

(24.6.2)
⋃

r

(
F pKn ∩ d(F p−r+1Kn−1) + F p+1Kn

)
⊂ Im(d) ∩ F pKn + F p+1Kn.

Thus a subquotient of Ep,q∞ is

Ker(d) ∩ F pKn + F p+1Kn

Im(d) ∩ F pKn + F p+1Kn
= Ker(d) ∩ F pKn

Im(d) ∩ F pKn + Ker(d) ∩ F p+1Kn

Comparing with (24.5.2) we conclude. �

Definition 24.7. Let A be an abelian category. Let (Er, dr)r≥r0 be a spectral se-
quence of bigraded objects of A with dr of bidegree (r,−r + 1). We say such a spectral
sequence is

(1) regular if for all p, q ∈ Z there is a b = b(p, q) such that the maps dp,qr : Ep,qr →
Ep+r,q−r+1
r are zero for r ≥ b,

(2) coregular if for all p, q ∈ Z there is a b = b(p, q) such that the maps dp−r,q+r−1
r :

Ep−r,q+r−1
r → Ep,qr are zero for r ≥ b,

(3) bounded if for all n there are only a finite number of nonzero Ep,n−p
r0

,
(4) bounded below if for all n there is a b = b(n) such that Ep,n−p

r0
= 0 for p ≥ b.

(5) bounded above if for all n there is a b = b(n) such that Ep,n−p
r0

= 0 for p ≤ b.

Bounded below means that if we look at Ep,qr on the line p + q = n (whose slope is −1)
we obtain zeros as (p, q) moves down and to the right. As mentioned above there is no
consistent terminology regarding these notions in the literature.

Lemma 24.8. In the situation of Definition 24.7. LetZp,qr , Bp,qr ⊂ Ep,qr0
be the (p, q)-

graded parts of Zr, Br defined as in Section 20.
(1) The spectral sequence is regular if and only if for all p, q there exists an r =

r(p, q) such that Zp,qr = Zp,qr+1 = . . .

(2) The spectral sequence is coregular if and only if for all p, q there exists an r =
r(p, q) such that Bp,qr = Bp,qr+1 = . . .
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(3) The spectral sequence is bounded if and only if it is both bounded below and
bounded above.

(4) If the spectral sequence is bounded below, then it is regular.
(5) If the spectral sequence is bounded above, then it is coregular.

Proof. Omitted. Hint: If Ep,qr = 0, then we have Ep,qr′ = 0 for all r′ ≥ r. �

Definition 24.9. LetA be an abelian category. Let (K•, F ) be a filtered complex of
A. We say the spectral sequence associated to (K•, F )

(1) weakly converges to H∗(K•) if grpHn(K•) = Ep,n−p
∞ via Lemma 24.6 for all

p, n ∈ Z,
(2) abuts to H∗(K•) if it weakly converges to H∗(K•) and

⋂
p F

pHn(K•) = 0
and

⋃
p F

pHn(K•) = Hn(K•) for all n,
(3) converges toH∗(K•) if it is regular, abuts toH∗(K•), andHn(K•) = limpH

n(K•)/F pHn(K•).

Weak convergence, abutment, or convergence is symbolized by the notation Ep,qr ⇒
Hp+q(K•). As mentioned above there is no consistent terminology regarding these no-
tions in the literature.

Lemma 24.10. LetA be an abelian category. Let (K•, F ) be a filtered complex ofA.
The associated spectral sequence

(1) weakly converges to H∗(K•) if and only if for every p, q ∈ Z we have equality
in equations (24.6.2) and (24.6.1),

(2) abuts to H∗(K) if and only if it weakly converges to H∗(K•) and we have⋂
p(Ker(d)∩F pKn + Im(d)∩Kn) = Im(d)∩Kn and

⋃
p(Ker(d)∩F pKn +

Im(d) ∩Kn) = Ker(d) ∩Kn.

Proof. Immediate from the discussions above. �

Lemma 24.11. LetA be an abelian category. Let (K•, F ) be a filtered complex ofA.
Assume that the filtration on each Kn is finite (see Definition 19.1). Then

(1) the spectral sequence associated to (K•, F ) is bounded,
(2) the filtration on each Hn(K•) is finite,
(3) the spectral sequence associated to (K•, F ) converges to H∗(K•),
(4) if C ⊂ A is a weak Serre subcategory and for some r we have Ep,qr ∈ C for all

p, q ∈ Z, then Hn(K•) is in C.

Proof. Part (1) follows asEp,n−p
0 = grpKn. Part (2) is clear from Equation (24.5.1).

We will use Lemma 24.10 to prove that the spectral sequence weakly converges. Fix
p, n ∈ Z. The right hand side of (24.6.1) is equal to F pKn ∩ Ker(d) + F p+1Kn be-
cause F p+rKn = 0 for r � 0. Thus (24.6.1) is an equality. The left hand side of (24.6.2)
is equal to F pKn ∩ Im(d) + F p+1Kn because F p−r+1Kn−1 = Kn−1 for r � 0. Thus
(24.6.2) is an equality. Since the filtration on Hn(K•) is finite by (2) we see that we have
abutment. To prove we have convergence we have to show the spectral sequence is reg-
ular which follows as it is bounded (Lemma 24.8) and we have to show that Hn(K•) =
limpH

n(K•)/F pHn(K•) which follows from the fact that the filtration on H∗(K•) is
finite proved in part (2).
Proof of (4). Assume that for some r ≥ 0 we have Ep,qr ∈ C for some weak Serre subcat-
egory C of A. Then Ep,qr+1 is in C as well, see Lemma 10.3. By boundedness proved above
(which implies that the spectral sequence is both regular and coregular, see Lemma 24.8)
we can find an r′ ≥ r such that Ep,q∞ = Ep,qr′ for all p, q with p+ q = n. Thus Hn(K•) is
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an object ofA which has a finite filtration whose graded pieces are in C. This implies that
Hn(K•) is in C by Lemma 10.3. �

Lemma 24.12. LetA be an abelian category. Let (K•, F ) be a filtered complex ofA.
Assume that the filtration on each Kn is finite (see Definition 19.1) and that for some r
we have only a finite number of nonzero Ep,qr . Then only a finite number of Hn(K•) are
nonzero and we have ∑

(−1)n[Hn(K•)] =
∑

(−1)p+q[Ep,qr ]

in K0(A′) where A′ is the smallest weak Serre subcategory of A containing the objects
Ep,qr .

Proof. Denote Eevenr and Eoddr the even and odd part of Er defined as the direct
sum of the (p, q) components with p + q even and odd. The differential dr defines maps
ϕ : Eevenr → Eoddr and ψ : Eoddr → Eevenr whose compositions either way give zero.
Then we see that

[Eevenr ]− [Eoddr ] = [Ker(ϕ)] + [Im(ϕ)]− [Ker(ψ)]− [Im(ψ)]
= [Ker(ϕ)/ Im(ψ)]− [Ker(ψ)/ Im(ϕ)]
= [Eevenr+1 ]− [Eoddr+1]

Note that all the intervening objects are in the smallest Serre subcategory containing the
objects Ep,qr . Continuing in this manner we see that we can increase r at will. Since there
are only a finite number of pairs (p, q) for which Ep,qr is nonzero, a property which is
inherited by Er+1, Er+2, . . ., we see that we may assume that dr = 0. At this stage we
see that Hn(K•) has a finite filtration (Lemma 24.11) whose graded pieces are exactly the
Ep,n−p
r and the result is clear. �

The following lemma is more a kind of sanity check for our definitions. Surely, if we have
a filtered complex such that for every n we have

Hn(F pK•) = 0 for p� 0 and Hn(F pK•) = Hn(K•) for p� 0,

then the corresponding spectral sequence should converge?

Lemma 24.13. LetA be an abelian category. Let (K•, F ) be a filtered complex ofA.
Assume

(1) for every n there exist p0(n) such that Hn(F pK•) = 0 for p ≥ p0(n),
(2) for every n there exist p1(n) such that Hn(F pK•) → Hn(K•) is an isomor-

phism for p ≤ p1(n).
Then

(1) the spectral sequence associated to (K•, F ) is bounded,
(2) the filtration on each Hn(K•) is finite,
(3) the spectral sequence associated to (K•, F ) converges to H∗(K•).

Proof. Fix n. Using the long exact cohomology sequence associated to the short
exact sequence of complexes

0→ F p+1K• → F pK• → grpK• → 0

we find thatEp,n−p
1 = 0 for p ≥ max(p0(n), p0(n+ 1)) and p < min(p1(n), p1(n+ 1)).

Hence the spectral sequence is bounded (Definition 24.7). This proves (1).
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It is clear from the assumptions and Definition 24.5 that the filtration onHn(K•) is finite.
This proves (2).
Next we prove that the spectral sequence weakly converges to H∗(K•) using Lemma
24.10. Let us show that we have equality in (24.6.1). Namely, for p + r > p0(n + 1)
the map

d : F pKn ∩ d−1(F p+rKn+1)→ F p+rKn+1

ends up in the image of d : F p+rKn → F p+rKn+1 because the complexF p+rK• is exact
in degree n+ 1. We conclude that F pKn ∩ d−1(F p+rKn+1) = d(F p+rKn) + Ker(d)∩
F pKn. Hence for such r we have

Ker(d) ∩ F pKn + F p+1Kn = F pKn ∩ d−1(F p+rKn+1) + F p+1Kn

which proves the desired equality. To show that we have equality in (24.6.2) we use that
for p− r + 1 < p1(n− 1) we have

d(F p−r+1Kn−1) = Im(d) ∩ F p−r+1Kn

because the map F p−r+1K• → K• induces an isomorphism on cohomology in degree
n− 1. This shows that we have

F pKn ∩ d(F p−r+1Kn−1) + F p+1Kn = Im(d) ∩ F pKn + F p+1Kn

for such r which proves the desired equality.
To see that the spectral sequence abuts to H∗(K•) using Lemma 24.10 we have to show
that

⋂
p(Ker(d)∩F pKn+Im(d)∩Kn) = Im(d)∩Kn and

⋃
p(Ker(d)∩F pKn+Im(d)∩

Kn) = Ker(d)∩Kn. For p ≥ p0(n) we have Ker(d)∩F pKn+Im(d)∩Kn = Im(d)∩Kn

and for p ≤ p1(n) we have Ker(d) ∩ F pKn + Im(d) ∩Kn = Ker(d) ∩Kn. Combining
weak convergence, abutment, and boundedness we see that (2) and (3) are true. �

25. Spectral sequences: double complexes

Let K•,• be a double complex, see Section 18. It is customary to denote Hp
I (K•,•) the

complex with terms Ker(dp,q1 )/ Im(dp−1,q
1 ) (varying q) and differential induced by d2.

Then Hq
II(H

p
I (K•,•)) denotes its cohomology in degree q. It is also customary to denote

Hq
II(K•,•) the complex with terms Ker(dp,q2 )/ Im(dp,q−1

2 ) (varying p) and differential
induced by d1. Then Hp

I (Hq
II(K•,•)) denotes its cohomology in degree p. It will turn

out that these cohomology groups show up as the terms in the spectral sequence for a
filtration on the associated total complex or simple complex, see Definition 18.3.
There are two natural filtrations on the total complex Tot(K•,•) associated to the double
complex K•,•. Namely, we define

F pI (Totn(K•,•)) =
⊕

i+j=n, i≥p
Ki,j and F pII(Totn(K•,•)) =

⊕
i+j=n, j≥p

Ki,j .

It is immediately verified that (Tot(K•,•), FI) and (Tot(K•,•), FII) are filtered com-
plexes. By Section 24 we obtain two spectral sequences. It is customary to denote (′Er,

′dr)r≥0
the spectral sequence associated to the filtration FI and to denote (′′Er,

′′dr)r≥0 the spec-
tral sequence associated to the filtration FII . Here is a description of these spectral se-
quences.

Lemma 25.1. LetA be an abelian category. Let K•,• be a double complex. The spec-
tral sequences associated to K•,• have the following terms:

(1) ′Ep,q0 = Kp,q with ′dp,q0 = (−1)pdp,q2 : Kp,q → Kp,q+1,
(2) ′′Ep,q0 = Kq,p with ′′dp,q0 = dq,p1 : Kq,p → Kq+1,p,
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(3) ′Ep,q1 = Hq(Kp,•) with ′dp,q1 = Hq(dp,•1 ),
(4) ′′Ep,q1 = Hq(K•,p) with ′′dp,q1 = (−1)qHq(d•,p

2 ),
(5) ′Ep,q2 = Hp

I (Hq
II(K•,•)),

(6) ′′Ep,q2 = Hp
II(H

q
I (K•,•)).

Proof. Omitted. �

These spectral sequences define two filtrations on Hn(Tot(K•,•)). We will denote these
FI and FII .

Definition 25.2. Let A be an abelian category. Let K•,• be a double complex.
We say the spectral sequence (′Er,

′dr)r≥0 weakly converges to Hn(Tot(K•,•)), abuts
to Hn(Tot(K•,•)), or converges to Hn(Tot(K•,•)) if Definition 24.9 applies. Similarly
we say the spectral sequence (′′Er,

′′dr)r≥0 weakly converges toHn(Tot(K•,•)), abuts to
Hn(Tot(K•,•)), or converges to Hn(Tot(K•,•)) if Definition 24.9 applies.

As mentioned above there is no consistent terminology regarding these notions in the
literature. In the situation of the definition, we have weak convergence of the first spectral
sequence if for all n

grFI (H
n(Tot(K•,•))) = ⊕p+q=n

′Ep,q∞

via the canonical comparison of Lemma 24.6. Similarly the second spectral sequence
(′′Er,

′′dr)r≥0 weakly converges if for all n

grFII (H
n(Tot(K•,•))) = ⊕p+q=n

′′Ep,q∞

via the canonical comparison of Lemma 24.6.

Lemma 25.3. Let A be an abelian category. Let K•,• be a double complex. Assume
that for every n ∈ Z there are only finitely many nonzero Kp,q with p+ q = n. Then

(1) the two spectral sequences associated to K•,• are bounded,
(2) the filtrations FI , FII on each Hn(Tot(K•,•)) are finite,
(3) the spectral sequences (′Er,

′dr)r≥0 and (′′Er,
′′dr)r≥0 converge toH∗(Tot(K•,•)),

(4) if C ⊂ A is a weak Serre subcategory and for some r we have ′Ep,qr ∈ C for all
p, q ∈ Z, then Hn(Tot(K•,•)) is in C. Similarly for (′′Er,

′′dr)r≥0.

Proof. Follows immediately from Lemma 24.11. �

Here is our first application of spectral sequences.

Lemma 25.4. LetA be an abelian category. LetK• be a complex. LetA•,• be a double
complex. Let αp : Kp → Ap,0 be morphisms. Assume that

(1) For every n ∈ Z there are only finitely many nonzero Ap,q with p+ q = n.
(2) We have Ap,q = 0 if q < 0.
(3) The morphisms αp give rise to a morphism of complexes α : K• → A•,0.
(4) The complex Ap,• is exact in all degrees q 6= 0 and the morphism Kp → Ap,0

induces an isomorphism Kp → Ker(dp,02 ).
Then α induces a quasi-isomorphism

K• −→ Tot(A•,•)

of complexes. Moreover, there is a variant of this lemma involving the second variable q
instead of p.
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Proof. The map is simply the map given by the morphismsKn → An,0 → Totn(A•,•),
which are easily seen to define a morphism of complexes. Consider the spectral sequence
(′Er,

′dr)r≥0 associated to the double complexA•,•. By Lemma 25.3 this spectral sequence
converges and the induced filtration on Hn(Tot(A•,•)) is finite for each n. By Lemma
25.1 and assumption (4) we have ′Ep,q1 = 0 unless q = 0 and ′Ep,01 = Kp with dif-
ferential ′dp,01 identified with dpK . Hence ′Ep,02 = Hp(K•) and zero otherwise. This
clearly implies dp,q2 = dp,q3 = . . . = 0 for degree reasons. Hence we conclude that
Hn(Tot(A•,•)) = Hn(K•). We omit the verification that this identification is given
by the morphism of complexes K• → Tot(A•,•) introduced above. �

Lemma 25.5. LetA be an abelian category. Let M• be a complex ofA. Let

a : M•[0] −→
(
A0,• → A1,• → A2,• → . . .

)
be a homotopy equivalence in the category of complexes of complexes of A. Then the
map α : M• → Tot(A•,•) induced by M• → A0,• is a homotopy equivalence.

Proof. The statement makes sense as a complex of complexes is the same thing as a
double complex. The assumption means there is a map

b :
(
A0,• → A1,• → A2,• → . . .

)
−→M•[0]

such that a ◦ b and b ◦ a are homotopic to the identity in the category of complexes of
complexes. This means that b ◦ a is the identity of M•[0] (because there is only one term
in degree 0). Also, observe that b is given by a map b0 : A0,• → M• and zero in all other
degrees. Thus b induces a map β : Tot(A•,•) → M• and β ◦ α is the identity on M•.
Finally, we have to show that the map α ◦ β is homotopic to the identity. For this we
choose maps of complexes hn : An,• → An−1,• such that a ◦ b − id = d1 ◦ h + h ◦ d1
which exist by assumption. Here d1 : An,• → An+1,• are the differentials of the complex
of complexes. We will also denote d2 the differentials of the complexesAn,• for all n. Let
hn,m : An,m → An−1,m be the components of hn. Then we can consider

h′ : Tot(A•,•)k =
⊕

n+m=k
An,m →

⊕
n+m=k−1

An,m = Tot(A•,•)k−1

given by hn,m on the summand An,m. Then we compute that the map

dTot(A•,•) ◦ h′ + h′ ◦ dTot(A•,•)

restricted to the summand An,m is equal to

dn−1,m
1 ◦ hn,m + (−1)n−1dn−1,m

2 ◦ hn,m + hn+1,m ◦ dn,m1 + hn,m+1 ◦ (−1)ndn,m2

Since hn is a map of complexes, the terms (−1)n−1dn−1,m
2 ◦hn,m and hn,m+1◦(−1)ndn,m2

cancel. The other two terms give (α◦β)|An,m− idAn,m because a◦b− id = d1◦h+h◦d1.
This finishes the proof. �

26. Double complexes of abelian groups

In this section we put some results on double complexes of abelian groups for which do
not (yet) have the analogues results for general abelian categories. Please be careful not to
use these lemmas except when the underlying abelian category is the category of abelian
groups or some such (e.g., the category of modules over a ring). Some of the arguments will
be difficult to follow without drawing “zig-zags” on a napkin – compare with the proof of
Algebra, Lemma 75.3.
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Lemma 26.1. Let M• be a complex of abelian groups. Let

0→M• → A•
0 → A•

1 → A•
2 → . . .

be an exact complex of complexes of abelian groups. Set Ap,q = Aqp to obtain a double
complex. Then the map M• → Tot(A•,•) induced by M• → A•

0 is a quasi-isomorphism.

Proof. If there exists a t ∈ Z such that Aq0 = 0 for q < t, then this follows imme-
diately from Lemma 25.4 (with p and q swapped as in the final statement of that lemma).
OK, but for every t ∈ Z we have a complex

0→ σ≥tM
• → σ≥tA

•
0 → σ≥tA

•
1 → σ≥tA

•
2 → . . .

of stupid truncations. Denote A(t)•,• the corresponding double complex. Every element
ξ of Hn(Tot(A•,•)) is the image of an element of Hn(Tot(A(t)•,•)) for some t (look at
explicit representatives of cohomology classes). Hence ξ is in the image of Hn(σ≥tM

•).
Thus the mapHn(M•)→ Hn(Tot(A•,•)) is surjective. It is injective because for all t the
map Hn(σ≥tM

•)→ Hn(Tot(A(t)•,•)) is injective and similar arguments. �

Lemma 26.2. Let M• be a complex of abelian groups. Let

. . .→ A•
2 → A•

1 → A•
0 →M• → 0

be an exact complex of complexes of abelian groups such that for all p ∈ Z the complexes

. . .→ Ker(dpA•
2
)→ Ker(dpA•

1
)→ Ker(dpA•

0
)→ Ker(dpM•)→ 0

are exact as well. Set Ap,q = Aq−p to obtain a double complex. Then Tot(A•,•) → M•

induced by A•
0 →M• is a quasi-isomorphism.

Proof. Using the short exact sequences 0→ Ker(dpA•
n
)→ Apn → Im(dpA•

n
)→ 0 and

the assumptions we see that

. . .→ Im(dpA•
2
)→ Im(dpA•

1
)→ Im(dpA•

0
)→ Im(dpM•)→ 0

is exact for all p ∈ Z. Repeating with the exact sequences 0→ Im(dp−1
A•
n

)→ Ker(dpA•
n
)→

Hp(A•
n)→ 0 we find that

. . .→ Hp(A•
2)→ Hp(A•

1)→ Hp(A•
0)→ Hp(M•)→ 0

is exact for all p ∈ Z.

Write T • = Tot(A•,•). We will show that H0(T •) → H0(M•) is an isomorphism.
The same argument works for other degrees. Let x ∈ Ker(d0

T•) represent an element
ξ ∈ H0(T •). Write x =

∑
i=n,...,0 xi with xi ∈ Aii. Assume n > 0. Then xn is in

the kernel of dnA•
n

and maps to zero in Hn(A•
n−1) because it maps to an element which

is the boundary of xn−1 up to sign. By the first paragraph of the proof, we find that
xn mod Im(dn−1

A•
n

) is in the image of Hn(A•
n+1) → Hn(A•

n). Thus we can modify x by
a boundary and reach the situation where xn is a boundary. Modifying x once more we
see that we may assume xn = 0. By induction we see that every cohomology class ξ is
represented by a cocycle x = x0. Finally, the condition on exactness of kernels tells us
two such cocycles x0 and x′

0 are cohomologous if and only if their image in H0(M•) are
the same. �

Lemma 26.3. Let M• be a complex of abelian groups. Let

0→M• → A•
0 → A•

1 → A•
2 → . . .
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be an exact complex of complexes of abelian groups such that for all p ∈ Z the complexes

0→ Coker(dpM•)→ Coker(dpA•
0
)→ Coker(dpA•

1
)→ Coker(dpA•

2
)→ . . .

are exact as well. Set Ap,q = Aqp to obtain a double complex. Let Totπ(A•,•) be the
product total complex associated to the double complex (see proof). Then the mapM• →
Totπ(A•,•) induced by M• → A•

0 is a quasi-isomorphism.

Proof. Abbreviating T • = Totπ(A•,•) we define

Tn =
∏

p+q=n
Ap,q =

∏
p+q=n

Aqp with dnT• =
∏

n=p+q
(fqp + (−1)pdqA•

p
)

where f•
p : A•

p → A•
p+1 are the maps of complexes in the lemma.

We will show thatH0(M•)→ H0(T •) is an isomorphism. The same argument works for
other degrees. Let x ∈ Ker(d0

T•) represent ξ ∈ H0(T •). Write x = (xi) with xi ∈ A−i
i .

Note that x0 maps to zero in Coker(A−1
1 → A0

1). Hence we see that x0 = m0 +d−1
A•

0
(y) for

some m0 ∈ M0 and y ∈ A−1
0 . Then dM•(m0) = 0 because dA•

0
(x0) = 0 as dT•(x) = 0.

Thus, replacing ξ by something in the image ofH0(M•)→ H0(T •) we may assume that
x0 is in Im(d−1

A•
0
).

Assume x0 ∈ Im(d−1
A•

0
). We claim that in this case ξ = 0. To prove this we find, by

induction on n elements y0, y1, . . . , yn with yi ∈ A−i−1
i such that x0 = d−1

A0
(y0) and

xj = f−j
j−1(yj−1) + (−1)jd−j−1

A•
−j

(yj) for j = 1, . . . , n. This is clear for n = 0. Proof of
induction step: suppose we have found y0, . . . , yn−1. Then wn = xn − f−n

n−1(yn−1) is in
the kernel of d−n

A•
n

and maps to zero in Hn(A•
n+1) (because it maps to an element which is

a boundary the boundary of xn+1 up to sign). Exactly as in the proof of Lemma 26.2 the
assumptions of the lemma imply that

0→ Hp(M•)→ Hp(A•
0)→ Hp(A•

1)→ Hp(A•
2)→ . . .

is exact for all p ∈ Z. Thus after changing yn−1 by an element in Ker(dn−1
A•
n−1

) we may
assume thatwn maps to zero inH−n(A•

n). This means we can find yn as desired. Observe
that this procedure does not change y0, . . . , yn−2. Hence continuing ad infinitum we find
an element y = (yi) in Tn−1 with dT•(y) = ξ. This shows that H0(M•) → H0(T •) is
surjective.

Suppose that m0 ∈ Ker(d0
M•) maps to zero in H0(T •). Say it maps to the differential

applied to y = (yi) ∈ T−1 . Then y0 ∈ A−1
0 maps to zero in Coker(d−2

A•
1
). By assumption

this means that y0 mod Im(d−2
A•

0
) is the image of some z ∈ M−1. It follows that m0 =

d−1
M•(z). This proves injectivity and the proof is complete. �

Lemma 26.4. Let M• be a complex of abelian groups. Let

. . .→ A•
2 → A•

1 → A•
0 →M• → 0

be an exact complex of complexes of abelian groups. Set Ap,q = Aq−p to obtain a dou-
ble complex. Let Totπ(A•,•) be the product total complex associated to the double com-
plex (see proof). Then the map Totπ(A•,•) → M• induced by A•

0 → M• is a quasi-
isomorphism.
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Proof. Abbreviating T • = Totπ(A•,•) we define

Tn =
∏

p+q=n
Ap,q =

∏
p+q=n

Aq−p with dnT• =
∏

n=p+q
(fq−p + (−1)pdqA•

−p
)

where f•
p : A•

p → A•
p−1 are the maps of complexes in the lemma. We will show that

T • is acyclic when M• is the zero complex. This will suffice by the following trick. Set
B•
n = A•

n+1 and B•
0 = M•. Then we have an exact sequence

. . .→ B•
2 → B•

1 → B•
0 → 0→ 0

as in the lemma. Let S• = Totπ(B•,•). Then there is an obvious short exact sequence of
complexes

0→M• → S• → T •[1]→ 0
and we conclude by the long exact cohomology sequence. Some details omitted.

Assume M• = 0. We will show H0(T •) = 0. The same argument works for other
degrees. Let x = (xn) ∈ Ker(dT•) map to ξ ∈ H0(T •) with xn ∈ A−n,n = Ann. Since
M0 = 0 we find that x0 = f0

1 (y0) for some y0 ∈ A0
1. Then x1 − d0

A•
1
(y0) = f1

2 (y1)
because it is mapped to zero by f1

1 as x is a cocycle. for some y1 ∈ A1
2. Continuing, using

induction, we find y = (yi) ∈ T−1 with dT•(y) = x as desired. �

27. Injectives

Definition 27.1. LetA be an abelian category. An object J ∈ Ob(A) is called injec-
tive if for every injection A ↪→ B and every morphism A → J there exists a morphism
B → J making the following diagram commute

A //

��

B

��
J

Here is the obligatory characterization of injective objects.

Lemma 27.2. Let A be an abelian category. Let I be an object of A. The following
are equivalent:

(1) The object I is injective.
(2) The functor B 7→ HomA(B, I) is exact.
(3) Any short exact sequence

0→ I → A→ B → 0

inA is split.
(4) We have ExtA(B, I) = 0 for all B ∈ Ob(A).

Proof. Omitted. �

Lemma 27.3. Let A be an abelian category. Suppose Iω , ω ∈ Ω is a set of injective
objects ofA. If

∏
ω∈Ω Iω exists then it is injective.

Proof. Omitted. �

Definition 27.4. Let A be an abelian category. We say A has enough injectives if
every object A has an injective morphism A→ J into an injective object J .
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Definition 27.5. LetA be an abelian category. We say thatA has functorial injective
embeddings if there exists a functor

J : A −→ Arrows(A)

such that
(1) s ◦ J = idA,
(2) for any object A ∈ Ob(A) the morphism J(A) is injective, and
(3) for any object A ∈ Ob(A) the object t(J(A)) is an injective object ofA.

We will denote such a functor by A 7→ (A→ J(A)).

28. Projectives

Definition 28.1. Let A be an abelian category. An object P ∈ Ob(A) is called
projective if for every surjection A → B and every morphism P → B there exists a
morphism P → A making the following diagram commute

A // B

P

OO ??

Here is the obligatory characterization of projective objects.

Lemma 28.2. Let A be an abelian category. Let P be an object of A. The following
are equivalent:

(1) The object P is projective.
(2) The functor B 7→ HomA(P,B) is exact.
(3) Any short exact sequence

0→ A→ B → P → 0

inA is split.
(4) We have ExtA(P,A) = 0 for all A ∈ Ob(A).

Proof. Omitted. �

Lemma 28.3. Let A be an abelian category. Suppose Pω , ω ∈ Ω is a set of projective
objects ofA. If

∐
ω∈Ω Pω exists then it is projective.

Proof. Omitted. �

Definition 28.4. Let A be an abelian category. We say A has enough projectives if
every object A has an surjective morphism P → A from an projective object P onto it.

Definition 28.5. LetA be an abelian category. We say thatA has functorial projec-
tive surjections if there exists a functor

P : A −→ Arrows(A)

such that
(1) t ◦ J = idA,
(2) for any object A ∈ Ob(A) the morphism P (A) is surjective, and
(3) for any object A ∈ Ob(A) the object s(P (A)) is an projective object ofA.

We will denote such a functor by A 7→ (P (A)→ A).
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29. Injectives and adjoint functors

Here are some lemmas on adjoint functors and their relationship with injectives. See also
Lemma 7.4.

Lemma 29.1. Let A and B be abelian categories. Let u : A → B and v : B → A be
additive functors. Assume

(1) u is right adjoint to v, and
(2) v transforms injective maps into injective maps.

Then u transforms injectives into injectives.

Proof. Let I be an injective object of A. Let ϕ : N → M be an injective map in B
and let α : N → uI be a morphism. By adjointness we get a morphism α : vN → I
and by assumption vϕ : vN → vM is injective. Hence as I is an injective object we get a
morphism β : vM → I extendingα. By adjointness again this corresponds to a morphism
β : M → uI as desired. �

Remark 29.2. Let A, B, u : A → B and v : B → A be as in Lemma 29.1. In
the presence of assumption (1) assumption (2) is equivalent to requiring that v is exact.
Moreover, condition (2) is necessary. Here is an example. Let A → B be a ring map. Let
u : ModB → ModA be u(N) = NA and let v : ModA → ModB be v(M) = M ⊗A B.
Then u is right adjoint to v, and u is exact and v is right exact, but v does not transform
injective maps into injective maps in general (i.e., v is not left exact). Moreover, it is not
the case that u transforms injective B-modules into injective A-modules. For example, if
A = Z and B = Z/pZ, then the injective B-module Z/pZ is not an injective Z-module.
In fact, the lemma applies to this example if and only if the ring map A→ B is flat.

Lemma 29.3. Let A and B be abelian categories. Let u : A → B and v : B → A be
additive functors. Assume

(1) u is right adjoint to v,
(2) v transforms injective maps into injective maps,
(3) A has enough injectives, and
(4) vB = 0 implies B = 0 for any B ∈ Ob(B).

Then B has enough injectives.

Proof. Pick B ∈ Ob(B). Pick an injection vB → I for I an injective object of A.
According to Lemma 29.1 and the assumptions the corresponding map B → uI is the
injection of B into an injective object. �

Remark 29.4. Let A, B, u : A → B and v : B → A be as In Lemma 29.3. In the
presence of conditions (1) and (2) condition (4) is equivalent to v being faithful. Moreover,
condition (4) is needed. An example is to consider the case where the functors u and v are
both the zero functor.

Lemma 29.5. Let A and B be abelian categories. Let u : A → B and v : B → A be
additive functors. Assume

(1) u is right adjoint to v,
(2) v transforms injective maps into injective maps,
(3) A has enough injectives,
(4) vB = 0 implies B = 0 for any B ∈ Ob(B), and
(5) A has functorial injective hulls.

Then B has functorial injective hulls.
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Proof. Let A 7→ (A→ J(A)) be a functorial injective hull onA. Then B 7→ (B →
uJ(vB)) is a functorial injective hull on B. Compare with the proof of Lemma 29.3. �

Lemma 29.6. LetA and B be abelian categories. Let u : A → B be a functor. If there
exists a subset P ⊂ Ob(B) such that

(1) every object of B is a quotient of an element of P , and
(2) for every P ∈ P there exists an object Q of A such that HomA(Q,A) =

HomB(P, u(A)) functorially in A,
then there exists a left adjoint v of u.

Proof. By the Yoneda lemma (Categories, Lemma 3.5) the object Q of A corre-
sponding to P is defined up to unique isomorphism by the formula HomA(Q,A) =
HomB(P, u(A)). Let us write Q = v(P ). Denote iP : P → u(v(P )) the map corre-
sponding to idv(P ) in HomA(v(P ), v(P )). Functoriality in (2) implies that the bijection
is given by

HomA(v(P ), A)→ HomB(P, u(A)), ϕ 7→ u(ϕ) ◦ iP
For any pair of elements P1, P2 ∈ P there is a canonical map

HomB(P2, P1)→ HomA(v(P2), v(P1)), ϕ 7→ v(ϕ)
which is characterized by the rule u(v(ϕ)) ◦ iP2 = iP1 ◦ϕ in HomB(P2, u(v(P1))). Note
that ϕ 7→ v(ϕ) is compatible with composition; this can be seen directly from the charac-
terization. Hence P 7→ v(P ) is a functor from the full subcategory of B whose objects are
the elements of P .
Given an arbitrary object B of B choose an exact sequence

P2 → P1 → B → 0
which is possible by assumption (1). Define v(B) to be the object of A fitting into the
exact sequence

v(P2)→ v(P1)→ v(B)→ 0
Then

HomA(v(B), A) = Ker(HomA(v(P1), A)→ HomA(v(P2), A))
= Ker(HomB(P1, u(A))→ HomB(P2, u(A)))
= HomB(B, u(A))

Hence we see that we may take P = Ob(B), i.e., we see that v is everywhere defined. �

30. Essentially constant systems

In this section we discuss essentially constant systems with values in additive categories.

Lemma 30.1. Let I be a category, letA be a pre-additive Karoubian category, and let
M : I → A be a diagram.

(1) Assume I is filtered. The following are equivalent
(a) M is essentially constant,
(b) X = colimM exists and there exists a cofinal filtered subcategory I ′ ⊂ I

and for i′ ∈ Ob(I ′) a direct sum decompositionMi′ = Xi′ ⊕Zi′ such that
Xi′ maps isomorphically to X and Zi′ to zero in Mi′′ for some i′ → i′′ in
I ′.

(2) Assume I is cofiltered. The following are equivalent
(a) M is essentially constant,
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(b) X = limM exists and there exists an initial cofiltered subcategory I ′ ⊂ I
and for i′ ∈ Ob(I ′) a direct sum decompositionMi′ = Xi′ ⊕Zi′ such that
X maps isomorphically to Xi′ and Mi′′ → Zi′ is zero for some i′′ → i′ in
I ′.

Proof. Assume (1)(a), i.e., I is filtered and M is essentially constant. Let X =
colimMi. Choose i and X → Mi as in Categories, Definition 22.1. Let I ′ be the full
subcategory consisting of objects which are the target of a morphism with source i. Sup-
pose i′ ∈ Ob(I ′) and choose a morphism i → i′. Then X → Mi → Mi′ composed with
Mi′ → X is the identity on X . As A is Karoubian, we find a direct summand decompo-
sition Mi′ = Xi′ ⊕ Zi′ , where Zi′ = Ker(Mi′ → X) and Xi′ maps isomorphically to
X . Pick i → k and i′ → k such that Mi′ → X → Mi → Mk equals Mi′ → Mk as
in Categories, Definition 22.1. Then we see that Mi′ → Mk annihilates Zi′ . Thus (1)(b)
holds.

Assume (1)(b), i.e., I is filtered and we have I ′ ⊂ I and for i′ ∈ Ob(I ′) a direct sum
decomposition Mi′ = Xi′ ⊕ Zi′ as stated in the lemma. To see that M is essentially
constant we can replace I by I ′, see Categories, Lemma 22.11. Pick any i ∈ Ob(I) and
denote X →Mi the inverse of the isomorphism Xi → X followed by the inclusion map
Xi → Mi. If j is a second object, then choose j → k such that Zj → Mk is zero. Since
I is filtered we may also assume there is a morphism i → k (after possibly increasing
k). Then Mj → X → Mi → Mk and Mj → Mk both annihilate Zj . Thus after
postcomposing by a morphism Mk → Ml which annihilates the summand Zk , we find
that Mj → X →Mi →Ml and Mj →Ml are equal, i.e., M is essentially constant.

The proof of (2) is dual. �

Lemma 30.2. Let I be a category. Let A be an additive, Karoubian category. Let
F : I → A and G : I → A be functors. The following are equivalent

(1) colimI F ⊕G exists, and
(2) colimI F and colimI G exist.

In this case colimI F ⊕G = colimI F ⊕ colimI G.

Proof. Assume (1) holds. Set W = colimI F ⊕ G. Note that the projection onto
F defines natural transformation F ⊕ G → F ⊕ G which is idempotent. Hence we
obtain an idempotent endomorphism W → W by Categories, Lemma 14.8. Since A is
Karoubian we get a corresponding direct sum decomposition W = X ⊕ Y , see Lemma
4.2. A straightforward argument (omitted) shows thatX = colimI F and Y = colimI G.
Thus (2) holds. We omit the proof that (2) implies (1). �

Lemma 30.3. Let I be a filtered category. LetA be an additive, Karoubian category.
Let F : I → A and G : I → A be functors. The following are equivalent

(1) F ⊕G : I → A is essentially constant, and
(2) F and G are essentially constant.

Proof. Assume (1) holds. In particular W = colimI F ⊕ G exists and hence by
Lemma 30.2 we have W = X ⊕ Y with X = colimI F and Y = colimI G. A straight-
forward argument (omitted) using for example the characterization of Categories, Lemma
22.9 shows that F is essentially constant with value X and G is essentially constant with
value Y . Thus (2) holds. The proof that (2) implies (1) is omitted. �
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31. Inverse systems

Let C be a category. In Categories, Section 21 we defined the notion of an inverse sys-
tem over a preordered set (with values in the category C). If the preordered set is N =
{1, 2, 3, . . .} with the usual ordering such an inverse system over N is often simply called
an inverse system. It consists quite simply of a pair (Mi, fii′) where each Mi, i ∈ N is an
object of C , and for each i > i′, i, i′ ∈ N a morphism fii′ : Mi →Mi′ such that moreover
fi′i′′ ◦ fii′ = fii′′ whenever this makes sense. It is clear that in fact it suffices to give
the morphisms M2 → M1, M3 → M2, and so on. Hence an inverse system is frequently
pictured as follows

M1
ϕ2←−M2

ϕ3←−M3 ← . . .

Moreover, we often omit the transition maps ϕi from the notation and we simply say “let
(Mi) be an inverse system”.

The collection of all inverse systems with values in C forms a category with the obvious
notion of morphism.

Lemma 31.1. Let C be a category.
(1) If C is an additive category, then the category of inverse systems with values in
C is an additive category.

(2) If C is an abelian category, then the category of inverse systems with values in C
is an abelian category. A sequence (Ki) → (Li) → (Mi) of inverse systems is
exact if and only if each Ki → Li → Ni is exact.

Proof. Omitted. �

The limit (see Categories, Section 21) of such an inverse system is denoted limMi, or
limiMi. If C is the category of abelian groups (or sets), then the limit always exists and in
fact can be described as follows

limiMi = {(xi) ∈
∏

Mi | ϕi(xi) = xi−1, i = 2, 3, . . .}

see Categories, Section 15. However, given a short exact sequence

0→ (Ai)→ (Bi)→ (Ci)→ 0

of inverse systems of abelian groups it is not always the case that the associated system of
limits is exact. In order to discuss this further we introduce the following notion.

Definition 31.2. Let C be an abelian category. We say the inverse system (Ai) satis-
fies the Mittag-Leffler condition, or for short is ML, if for every i there exists a c = c(i) ≥ i
such that

Im(Ak → Ai) = Im(Ac → Ai)
for all k ≥ c.

It turns out that the Mittag-Leffler condition is good enough to ensure that the lim-functor
is exact, provided one works within the abelian category of abelian groups, modules over
a ring, etc. It is shown in a paper by A. Neeman (see [?]) that this condition is not strong
enough in an abelian category having AB4* (having exact products).

Lemma 31.3. Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be a short exact sequence of inverse systems of abelian groups.
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(1) In any case the sequence

0→ limiAi → limiBi → limi Ci

is exact.
(2) If (Bi) is ML, then also (Ci) is ML.
(3) If (Ai) is ML, then

0→ limiAi → limiBi → limi Ci → 0

is exact.

Proof. Nice exercise. See Algebra, Lemma 87.1 for part (3). �

Lemma 31.4. Let
(Ai)→ (Bi)→ (Ci)→ (Di)

be an exact sequence of inverse systems of abelian groups. If the system (Ai) is ML, then
the sequence

limiBi → limi Ci → limiDi

is exact.

Proof. LetZi = Ker(Ci → Di) and Ii = Im(Ai → Bi). Then limZi = Ker(limCi →
limDi) and we get a short exact sequence of systems

0→ (Ii)→ (Bi)→ (Zi)→ 0

Moreover, by Lemma 31.3 we see that (Ii) has (ML), thus another application of Lemma
31.3 shows that limBi → limZi is surjective which proves the lemma. �

The following characterization of essentially constant inverse systems shows in particular
that they have ML.

Lemma 31.5. Let A be an abelian category. Let (Ai) be an inverse system in A with
limit A = limAi. Then (Ai) is essentially constant (see Categories, Definition 22.1) if
and only if there exists an i and for all j ≥ i a direct sum decomposition Aj = A ⊕ Zj
such that (a) the maps Aj′ → Aj are compatible with the direct sum decompositions, (b)
for all j there exists some j′ ≥ j such that Zj′ → Zj is zero.

Proof. Assume (Ai) is essentially constant. Then there exists an i and a morphism
Ai → A such that A → Ai → A is the identity and for all j ≥ i there exists a j′ ≥ j
such that Aj′ → Aj factors as Aj′ → Ai → A → Aj (the last map comes from A =
limAi). Hence setting Zj = Ker(Aj → A) for all j ≥ i works. Proof of the converse is
omitted. �

We will improve on the following lemma in More on Algebra, Lemma 86.13.

Lemma 31.6. Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be an exact sequence of inverse systems of abelian groups. If (Ci) is essentially constant,
then (Ai) has ML if and only if (Bi) has ML.

Proof. After renumbering we may assume that Ci = C ⊕ Zi compatible with tran-
sition maps and that for all i there exists an i′ ≥ i such that Zi′ → Zi is zero, see Lemma
31.5.
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First, assume C = 0, i.e., we have Ci = Zi. In this case choose 1 = n1 < n2 < n3 < . . .
such that Zni+1 → Zni is zero. Then Bni+1 → Bni factors through Ani ⊂ Bni . It
follows that for j ≥ i+ 1 we have

Im(Anj → Ani) ⊂ Im(Bnj → Bni) ⊂ Im(Anj−1 → Ani)

as subsets of Ani . Thus the images Im(Anj → Ani) stabilize for j ≥ i + 1 if and only if
the same is true for the images Im(Bnj → Bni). The equivalence follows from this (small
detail omitted).

If C 6= 0, denote B′
i ⊂ Bi the inverse image of C by the map Bi → C ⊕ Zi. Then by

the previous paragraph we see that (B′
i) has ML if and only if (Bi) has ML. Thus we may

replace (Bi) by (B′
i). In this case we have exact sequences 0 → Ai → Bi → C → 0 for

all i. It follows that 0→ Im(Aj → Ai)→ Im(Bj → Bi)→ C → 0 is short exact for all
j ≥ i. Hence the images Im(Aj → Ai) stabilize for j ≥ i if and only if the same is true
for Im(Bj → Bi) as desired. �

The “correct” version of the following lemma is More on Algebra, Lemma 86.3.

Lemma 31.7. Let
(A−2

i → A−1
i → A0

i → A1
i )

be an inverse system of complexes of abelian groups and denoteA−2 → A−1 → A0 → A1

its limit. Denote (H−1
i ), (H0

i ) the inverse systems of cohomologies, and denote H−1, H0

the cohomologies of A−2 → A−1 → A0 → A1. If (A−2
i ) and (A−1

i ) are ML and (H−1
i )

is essentially constant, then H0 = limH0
i .

Proof. LetZji = Ker(Aji → Aj+1
i ) and Iji = Im(Aj−1

i → Aji ). Note that limZ0
i =

Ker(limA0
i → limA1

i ) as taking kernels commutes with limits. The systems (I−1
i ) and

(I0
i ) have ML as quotients of the systems (A−2

i ) and (A−1
i ), see Lemma 31.3. Thus an

exact sequence
0→ (I−1

i )→ (Z−1
i )→ (H−1

i )→ 0

of inverse systems where (I−1
i ) has ML and where (H−1

i ) is essentially constant by as-
sumption. Hence (Z−1

i ) has ML by Lemma 31.6. The exact sequence

0→ (Z−1
i )→ (A−1

i )→ (I0
i )→ 0

and an application of Lemma 31.3 shows that limA−1
i → lim I0

i is surjective. Finally, the
exact sequence

0→ (I0
i )→ (Z0

i )→ (H0
i )→ 0

and Lemma 31.3 show that lim I0
i → limZ0

i → limH0
i → 0 is exact. Putting everything

together we win. �

Sometimes we need a version of the lemma above where we take limits over big ordinals.

Lemma 31.8. Let α be an ordinal. Let K•
β , β < α be an inverse system of complexes

of abelian groups over α. If for all β < α the complex K•
β is acyclic and the map

Kn
β −→ limγ<βK

n
γ

is surjective, then the complex limβ<αK
•
β is acyclic.
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Proof. By transfinite induction we prove this holds for every ordinal α and every
system as in the lemma. In particular, whilst proving the result for α we may assume the
complexes limγ<βK

n
γ are acyclic.

Let x ∈ limβ<αK
0
α with d(x) = 0. We will find a y ∈ K−1

α with d(y) = x. Write
x = (xβ) where xβ ∈ K0

β is the image of x for β < α. We will construct y = (yβ) by
transfinite recursion.
For β = 0 let y0 ∈ K−1

0 be any element with d(y0) = x0.
For β = γ + 1 a successor, we have to find an element yβ which maps both to yγ by the
transition map f : K•

β → K•
γ and to xβ under the differential. As a first approximation

we choose y′
β with d(y′

β) = xβ . Then the difference yγ − f(y′
β) is in the kernel of the

differential, hence equal to d(zγ) for some zγ ∈ K−2
γ . By assumption, the map f−2 :

K−2
β → K−2

γ is surjective. Hence we write zγ = f(zβ) and change y′
β into yβ = y′

β +
d(zβ) which works.
If β is a limit ordinal, then we have the element (yγ)γ<β in limγ<βK

−1
γ whose differ-

ential is the image of xβ . Thus we can argue in exactly the same manner as above using
the termwise surjective map of complexes f : K•

β → limγ<βK
•
γ and the fact (see first

paragraph of proof) that we may assume limγ<βK
•
γ is acyclic by induction. �

32. Exactness of products

Lemma 32.1. Let I be a set. For i ∈ I let Li → Mi → Ni be a complex of abelian
groups. Let Hi = Ker(Mi → Ni)/ Im(Li →Mi) be the cohomology. Then∏

Li →
∏

Mi →
∏

Ni

is a complex of abelian groups with homology
∏
Hi.

Proof. Omitted. �
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CHAPTER 13

Derived Categories

1. Introduction

We first discuss triangulated categories and localization in triangulated categories. Next,
we prove that the homotopy category of complexes in an additive category is a triangu-
lated category. Once this is done we define the derived category of an abelian category
as the localization of the homotopy category with respect to quasi-isomorphisms. A good
reference is Verdier’s thesis [?].

2. Triangulated categories

Triangulated categories are a convenient tool to describe the type of structure inherent in
the derived category of an abelian category. Some references are [?], [?], and [?].

3. The definition of a triangulated category

In this section we collect most of the definitions concerning triangulated and pre-triangulated
categories.

Definition 3.1. Let D be an additive category. Let [1] : D → D, E 7→ E[1] be an
additive functor which is an auto-equivalence of D.

(1) A triangle is a sextuple (X,Y, Z, f, g, h) where X,Y, Z ∈ Ob(D) and f : X →
Y , g : Y → Z and h : Z → X[1] are morphisms of D.

(2) A morphism of triangles (X,Y, Z, f, g, h) → (X ′, Y ′, Z ′, f ′, g′, h′) is given by
morphisms a : X → X ′, b : Y → Y ′ and c : Z → Z ′ ofD such that b◦f = f ′◦a,
c ◦ g = g′ ◦ b and a[1] ◦ h = h′ ◦ c.

A morphism of triangles is visualized by the following commutative diagram

X //

a

��

Y //

b

��

Z //

c

��

X[1]

a[1]
��

X ′ // Y ′ // Z ′ // X ′[1]

In the setting of Definition 3.1, we write [0] = id, for n > 0 we denote [n] the n-fold
composition of [1], we choose a quasi-inverse [−1] of [1], and we set [−n] equal to the n-
fold composition of [−1]. Then {[n]}n∈Z is a collection of additive auto-equivalences of
D indexed by n ∈ Z such that we are given isomorphisms of functors [n]◦ [m] ∼= [n+m].
Here is the definition of a triangulated category as given in Verdier’s thesis.

Definition 3.2. A triangulated category consists of a triple (D, {[n]}n∈Z, T ) where
(1) D is an additive category,
(2) [1] : D → D, E 7→ E[1] is an additive auto-equivalence and [n] for n ∈ Z is as

discussed above, and
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(3) T is a set of triangles (Definition 3.1) called the distinguished triangles
subject to the following conditions

TR1 Any triangle isomorphic to a distinguished triangle is a distinguished triangle.
Any triangle of the form (X,X, 0, id, 0, 0) is distinguished. For any morphism
f : X → Y ofD there exists a distinguished triangle of the form (X,Y, Z, f, g, h).

TR2 The triangle (X,Y, Z, f, g, h) is distinguished if and only if the triangle (Y, Z,X[1], g, h,−f [1])
is.

TR3 Given a solid diagram

X
f //

a

��

Y
g //

b

��

Z
h //

��

X[1]

a[1]
��

X ′ f ′
// Y ′ g′

// Z ′ h′
// X ′[1]

whose rows are distinguished triangles and which satisfies b ◦ f = f ′ ◦ a, there
exists a morphism c : Z → Z ′ such that (a, b, c) is a morphism of triangles.

TR4 Given objects X , Y , Z of D, and morphisms f : X → Y , g : Y → Z ,
and distinguished triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g ◦ f, p2, d2), and
(Y, Z,Q3, g, p3, d3), there exist morphisms a : Q1 → Q2 and b : Q2 → Q3 such
that
(a) (Q1, Q2, Q3, a, b, p1[1] ◦ d3) is a distinguished triangle,
(b) the triple (idX , g, a) is a morphism of triangles (X,Y,Q1, f, p1, d1) →

(X,Z,Q2, g ◦ f, p2, d2), and
(c) the triple (f, idZ , b) is a morphism of triangles (X,Z,Q2, g ◦ f, p2, d2)→

(Y, Z,Q3, g, p3, d3).
We will call (D, [ ], T ) a pre-triangulated category if TR1, TR2 and TR3 hold.1

The explanation of TR4 is that if you think of Q1 as Y/X , Q2 as Z/X and Q3 as Z/Y ,
then TR4(a) expresses the isomorphism (Z/X)/(Y/X) ∼= Z/Y and TR4(b) and TR4(c)
express that we can compare the triangles X → Y → Q1 → X[1] etc with morphisms of
triangles. For a more precise reformulation of this idea see the proof of Lemma 10.2.

The sign in TR2 means that if (X,Y, Z, f, g, h) is a distinguished triangle then in the long
sequence

(3.2.1) . . .→ Z[−1] −h[−1]−−−−→ X
f−→ Y

g−→ Z
h−→ X[1] −f [1]−−−→ Y [1] −g[1]−−−→ Z[1]→ . . .

each four term sequence gives a distinguished triangle.

As usual we abuse notation and we simply speak of a (pre-)triangulated categoryDwithout
explicitly introducing notation for the additional data. The notion of a pre-triangulated
category is useful in finding statements equivalent to TR4.

We have the following definition of a triangulated functor.

Definition 3.3. Let D, D′ be pre-triangulated categories. An exact functor, or a
triangulated functor from D to D′ is a functor F : D → D′ together with given functo-
rial isomorphisms ξX : F (X[1]) → F (X)[1] such that for every distinguished triangle
(X,Y, Z, f, g, h) of D the triangle (F (X), F (Y ), F (Z), F (f), F (g), ξX ◦ F (h)) is a dis-
tinguished triangle of D′.

1We use [ ] as an abbreviation for the family {[n]}n∈Z.
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An exact functor is additive, see Lemma 4.17. When we say two triangulated categories are
equivalent we mean that they are equivalent in the 2-category of triangulated categories.
A 2-morphism a : (F, ξ) → (F ′, ξ′) in this 2-category is simply a transformation of
functors a : F → F ′ which is compatible with ξ and ξ′, i.e.,

F ◦ [1]
ξ
//

a?1
��

[1] ◦ F

1?a
��

F ′ ◦ [1] ξ′
// [1] ◦ F ′

commutes.

Definition 3.4. Let (D, [ ], T ) be a pre-triangulated category. A pre-triangulated
subcategory2 is a pair (D′, T ′) such that

(1) D′ is an additive subcategory of D which is preserved under [1] and such that
[1] : D′ → D′ is an auto-equivalence,

(2) T ′ ⊂ T is a subset such that for every (X,Y, Z, f, g, h) ∈ T ′ we haveX,Y, Z ∈
Ob(D′) and f, g, h ∈ Arrows(D′), and

(3) (D′, [ ], T ′) is a pre-triangulated category.
IfD is a triangulated category, then we say (D′, T ′) is a triangulated subcategory if it is a
pre-triangulated subcategory and (D′, [ ], T ′) is a triangulated category.

In this situation the inclusion functorD′ → D is an exact functor with ξX : X[1]→ X[1]
given by the identity on X[1].

We will see in Lemma 4.1 that for a distinguished triangle (X,Y, Z, f, g, h) in a pre-
triangulated category the composition g◦f : X → Z is zero. Thus the sequence (3.2.1) is a
complex. A homological functor is one that turns this complex into a long exact sequence.

Definition 3.5. Let D be a pre-triangulated category. LetA be an abelian category.
An additive functor H : D → A is called homological if for every distinguished triangle
(X,Y, Z, f, g, h) the sequence

H(X)→ H(Y )→ H(Z)

is exact in the abelian category A. An additive functor H : Dopp → A is called cohomo-
logical if the corresponding functor D → Aopp is homological.

If H : D → A is a homological functor we often write Hn(X) = H(X[n]) so that
H(X) = H0(X). Our discussion of TR2 above implies that a distinguished triangle
(X,Y, Z, f, g, h) determines a long exact sequence
(3.5.1)

H−1(Z)
H(h[−1]) // H0(X)

H(f) // H0(Y )
H(g) // H0(Z)

H(h) // H1(X)

This will be called the long exact sequence associated to the distinguished triangle and the
homological functor. As indicated we will not use any signs for the morphisms in the long
exact sequence. This has the side effect that maps in the long exact sequence associated to
the rotation (TR2) of a distinguished triangle differ from the maps in the sequence above
by some signs.

2This definition may be nonstandard. If D′ is a full subcategory then T ′ is the intersection of the set of
triangles in D′ with T , see Lemma 4.16. In this case we drop T ′ from the notation.
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Definition 3.6. Let A be an abelian category. Let D be a triangulated category. A
δ-functor fromA toD is given by a functorG : A → D and a rule which assigns to every
short exact sequence

0→ A
a−→ B

b−→ C → 0
a morphism δ = δA→B→C : G(C)→ G(A)[1] such that

(1) the triangle (G(A), G(B), G(C), G(a), G(b), δA→B→C) is a distinguished tri-
angle of D for any short exact sequence as above, and

(2) for every morphism (A → B → C) → (A′ → B′ → C ′) of short exact
sequences the diagram

G(C)

��

δA→B→C

// G(A)[1]

��
G(C ′)

δA′→B′→C′ // G(A′)[1]

is commutative.
In this situation we call (G(A), G(B), G(C), G(a), G(b), δA→B→C) the image of the short
exact sequence under the given δ-functor.

Note how a δ-functor comes equipped with additional structure. Strictly speaking it does
not make sense to say that a given functor A → D is a δ-functor, but we will often do so
anyway.

4. Elementary results on triangulated categories

Most of the results in this section are proved for pre-triangulated categories and a fortiori
hold in any triangulated category.

Lemma 4.1. Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) be a distin-
guished triangle. Then g ◦ f = 0, h ◦ g = 0 and f [1] ◦ h = 0.

Proof. By TR1 we know (X,X, 0, 1, 0, 0) is a distinguished triangle. Apply TR3 to

X //

1
��

X //

f

��

0 //

��

X[1]

1[1]
��

X
f // Y

g // Z
h // X[1]

Of course the dotted arrow is the zero map. Hence the commutativity of the diagram
implies that g ◦ f = 0. For the other cases rotate the triangle, i.e., apply TR2. �

Lemma 4.2. LetD be a pre-triangulated category. For any objectW ofD the functor
HomD(W,−) is homological, and the functor HomD(−,W ) is cohomological.

Proof. Consider a distinguished triangle (X,Y, Z, f, g, h). We have already seen
that g ◦ f = 0, see Lemma 4.1. Suppose a : W → Y is a morphism such that g ◦ a = 0.
Then we get a commutative diagram

W
1
//

b

��

W //

a

��

0 //

0
��

W [1]

b[1]
��

X // Y // Z // X[1]
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Both rows are distinguished triangles (use TR1 for the top row). Hence we can fill the
dotted arrow b (first rotate using TR2, then apply TR3, and then rotate back). This proves
the lemma. �

Lemma 4.3. Let D be a pre-triangulated category. Let

(a, b, c) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

be a morphism of distinguished triangles. If two among a, b, c are isomorphisms so is the
third.

Proof. Assume thata and c are isomorphisms. For any objectW ofDwriteHW (−) =
HomD(W,−). Then we get a commutative diagram of abelian groups

HW (Z[−1]) //

��

HW (X) //

��

HW (Y ) //

��

HW (Z) //

��

HW (X[1])

��
HW (Z ′[−1]) // HW (X ′) // HW (Y ′) // HW (Z ′) // HW (X ′[1])

By assumption the right two and left two vertical arrows are bijective. AsHW is homolog-
ical by Lemma 4.2 and the five lemma (Homology, Lemma 5.20) it follows that the middle
vertical arrow is an isomorphism. Hence by Yoneda’s lemma, see Categories, Lemma 3.5
we see that b is an isomorphism. This implies the other cases by rotating (using TR2). �

Remark 4.4. Let D be an additive category with translation functors [n] as in Def-
inition 3.1. Let us call a triangle (X,Y, Z, f, g, h) special3 if for every object W of D the
long sequence of abelian groups

. . .→ HomD(W,X)→ HomD(W,Y )→ HomD(W,Z)→ HomD(W,X[1])→ . . .

is exact. The proof of Lemma 4.3 shows that if

(a, b, c) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

is a morphism of special triangles and if two among a, b, c are isomorphisms so is the third.
There is a dual statement for co-special triangles, i.e., triangles which turn into long exact
sequences on applying the functor HomD(−,W ). Thus distinguished triangles are special
and co-special, but in general there are many more (co-)special triangles, than there are
distinguished triangles.

Lemma 4.5. Let D be a pre-triangulated category. Let

(0, b, 0), (0, b′, 0) : (X,Y, Z, f, g, h)→ (X,Y, Z, f, g, h)

be endomorphisms of a distinguished triangle. Then bb′ = 0.

Proof. Picture
X //

0
��

Y //

b,b′

��
α

��

Z //

0
��β��

X[1]

0
��

X // Y // Z // X[1]

Applying Lemma 4.2 we find dotted arrows α and β such that b′ = f ◦ α and b = β ◦ g.
Then bb′ = β ◦ g ◦ f ◦ α = 0 as g ◦ f = 0 by Lemma 4.1. �

3This is nonstandard notation.



1030 13. DERIVED CATEGORIES

Lemma 4.6. Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) be a distin-
guished triangle. If

Z
h
//

c

��

X[1]

a[1]
��

Z
h // X[1]

is commutative and a2 = a, c2 = c, then there exists a morphism b : Y → Y with b2 = b
such that (a, b, c) is an endomorphism of the triangle (X,Y, Z, f, g, h).

Proof. By TR3 there exists a morphism b′ such that (a, b′, c) is an endomorphism of
(X,Y, Z, f, g, h). Then (0, (b′)2 − b′, 0) is also an endomorphism. By Lemma 4.5 we see
that (b′)2 − b′ has square zero. Set b = b′ − (2b′ − 1)((b′)2 − b′) = 3(b′)2 − 2(b′)3. A
computation shows that (a, b, c) is an endomorphism and that b2 − b = (4(b′)2 − 4b′ −
3)((b′)2 − b′)2 = 0. �

Lemma 4.7. Let D be a pre-triangulated category. Let f : X → Y be a mor-
phism of D. There exists a distinguished triangle (X,Y, Z, f, g, h) which is unique up to
(nonunique) isomorphism of triangles. More precisely, given a second such distinguished
triangle (X,Y, Z ′, f, g′, h′) there exists an isomorphism

(1, 1, c) : (X,Y, Z, f, g, h) −→ (X,Y, Z ′, f, g′, h′)

Proof. Existence by TR1. Uniqueness up to isomorphism by TR3 and Lemma 4.3.
�

Lemma 4.8. Let D be a pre-triangulated category. Let

(a, b, c) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′)

be a morphism of distinguished triangles. If one of the following conditions holds
(1) Hom(Y,X ′) = 0,
(2) Hom(Z, Y ′) = 0,
(3) Hom(X,X ′) = Hom(Z,X ′) = 0,
(4) Hom(Z,X ′) = Hom(Z,Z ′) = 0, or
(5) Hom(X[1], Z ′) = Hom(Z,X ′) = 0

then b is the unique morphism from Y → Y ′ such that (a, b, c) is a morphism of triangles.

Proof. If we have a second morphism of triangles (a, b′, c) then (0, b − b′, 0) is a
morphism of triangles. Hence we have to show: the only morphism b : Y → Y ′ such that
X → Y → Y ′ and Y → Y ′ → Z ′ are zero is 0. We will use Lemma 4.2 without further
mention. In particular, condition (3) implies (1). Given condition (1) if the composition
g′ ◦ b : Y → Y ′ → Z ′ is zero, then b lifts to a morphism Y → X ′ which has to be zero.
This proves (1).

The proof of (2) and (4) are dual to this argument.

Assume (5). Consider the diagram

X
f
//

0
��

Y
g
//

b

��

Z
h
//

0
��

ε
��

X[1]

0
��

X ′ f ′
// Y ′ g′

// Z ′ h′
// X ′[1]
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We may choose ε such that b = ε ◦ g. Then g′ ◦ ε ◦ g = 0 which implies that g′ ◦ ε = δ ◦h
for some δ ∈ Hom(X[1], Z ′). Since Hom(X[1], Z ′) = 0 we conclude that g′ ◦ ε = 0.
Hence ε = f ′ ◦ γ for some γ ∈ Hom(Z,X ′). Since Hom(Z,X ′) = 0 we conclude that
ε = 0 and hence b = 0 as desired. �

Lemma 4.9. Let D be a pre-triangulated category. Let f : X → Y be a morphism of
D. The following are equivalent

(1) f is an isomorphism,
(2) (X,Y, 0, f, 0, 0) is a distinguished triangle, and
(3) for any distinguished triangle (X,Y, Z, f, g, h) we have Z = 0.

Proof. By TR1 the triangle (X,X, 0, 1, 0, 0) is distinguished. Let (X,Y, Z, f, g, h)
be a distinguished triangle. By TR3 there is a map of distinguished triangles (1, f, 0) :
(X,X, 0)→ (X,Y, Z). If f is an isomorphism, then (1, f, 0) is an isomorphism of trian-
gles by Lemma 4.3 and Z = 0. Conversely, if Z = 0, then (1, f, 0) is an isomorphism of
triangles as well, hence f is an isomorphism. �

Lemma 4.10. LetD be a pre-triangulated category. Let (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′)
be triangles. The following are equivalent

(1) (X ⊕X ′, Y ⊕ Y ′, Z ⊕ Z ′, f ⊕ f ′, g ⊕ g′, h⊕ h′) is a distinguished triangle,
(2) both (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) are distinguished triangles.

Proof. Assume (2). By TR1 we may choose a distinguished triangle (X ⊕X ′, Y ⊕
Y ′, Q, f⊕f ′, g′′, h′′). By TR3 we can find morphisms of distinguished triangles (X,Y, Z, f, g, h)→
(X⊕X ′, Y ⊕Y ′, Q, f⊕f ′, g′′, h′′) and (X ′, Y ′, Z ′, f ′, g′, h′)→ (X⊕X ′, Y ⊕Y ′, Q, f⊕
f ′, g′′, h′′). Taking the direct sum of these morphisms we obtain a morphism of triangles

(X ⊕X ′, Y ⊕ Y ′, Z ⊕ Z ′, f ⊕ f ′, g ⊕ g′, h⊕ h′)

(1,1,c)
��

(X ⊕X ′, Y ⊕ Y ′, Q, f ⊕ f ′, g′′, h′′).

In the terminology of Remark 4.4 this is a map of special triangles (because a direct sum
of special triangles is special) and we conclude that c is an isomorphism. Thus (1) holds.
Assume (1). We will show that (X,Y, Z, f, g, h) is a distinguished triangle. First observe
that (X,Y, Z, f, g, h) is a special triangle (terminology from Remark 4.4) as a direct sum-
mand of the distinguished hence special triangle (X⊕X ′, Y ⊕Y ′, Z⊕Z ′, f⊕f ′, g⊕g′, h⊕
h′). Using TR1 let (X,Y,Q, f, g′′, h′′) be a distinguished triangle. By TR3 there exists a
morphism of distinguished triangles (X ⊕X ′, Y ⊕ Y ′, Z ⊕Z ′, f ⊕ f ′, g⊕ g′, h⊕ h′)→
(X,Y,Q, f, g′′, h′′). Composing this with the inclusion map we get a morphism of trian-
gles

(1, 1, c) : (X,Y, Z, f, g, h) −→ (X,Y,Q, f, g′′, h′′)
By Remark 4.4 we find that c is an isomorphism and we conclude that (2) holds. �

Lemma 4.11. Let D be a pre-triangulated category. Let (X,Y, Z, f, g, h) be a distin-
guished triangle.

(1) If h = 0, then there exists a right inverse s : Z → Y to g.
(2) For any right inverse s : Z → Y of g the map f ⊕ s : X ⊕ Z → Y is an

isomorphism.
(3) For any objects X ′, Z ′ of D the triangle (X ′, X ′ ⊕ Z ′, Z ′, (1, 0), (0, 1), 0) is

distinguished.
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Proof. To see (1) use that HomD(Z, Y ) → HomD(Z,Z) → HomD(Z,X[1]) is
exact by Lemma 4.2. By the same token, if s is as in (2), then h = 0 and the sequence

0→ HomD(W,X)→ HomD(W,Y )→ HomD(W,Z)→ 0
is split exact (split by s : Z → Y ). Hence by Yoneda’s lemma we see that X ⊕ Z → Y is
an isomorphism. The last assertion follows from TR1 and Lemma 4.10. �

Lemma 4.12. Let D be a pre-triangulated category. Let f : X → Y be a morphism
of D. The following are equivalent

(1) f has a kernel,
(2) f has a cokernel,
(3) f is the isomorphic to a composition K ⊕Z → Z → Z ⊕Q of a projection and

coprojection for some objects K,Z,Q of D.

Proof. Any morphism isomorphic to a map of the form X ′ ⊕ Z → Z ⊕ Y ′ has
both a kernel and a cokernel. Hence (3) ⇒ (1), (2). Next we prove (1) ⇒ (3). Suppose
first that f : X → Y is a monomorphism, i.e., its kernel is zero. By TR1 there exists a
distinguished triangle (X,Y, Z, f, g, h). By Lemma 4.1 the composition f ◦h[−1] = 0. As
f is a monomorphism we see that h[−1] = 0 and hence h = 0. Then Lemma 4.11 implies
that Y = X ⊕ Z , i.e., we see that (3) holds. Next, assume f has a kernel K. As K → X
is a monomorphism we conclude X = K ⊕X ′ and f |X′ : X ′ → Y is a monomorphism.
Hence Y = X ′ ⊕ Y ′ and we win. The implication (2)⇒ (3) is dual to this. �

Lemma 4.13. Let D be a pre-triangulated category. Let I be a set.
(1) Let Xi, i ∈ I be a family of objects of D.

(a) If
∏
Xi exists, then (

∏
Xi)[1] =

∏
Xi[1].

(b) If
⊕
Xi exists, then (

⊕
Xi)[1] =

⊕
Xi[1].

(2) Let Xi → Yi → Zi → Xi[1] be a family of distinguished triangles of D.
(a) If

∏
Xi,

∏
Yi,
∏
Zi exist, then

∏
Xi →

∏
Yi →

∏
Zi →

∏
Xi[1] is a

distinguished triangle.
(b) If

⊕
Xi,

⊕
Yi,
⊕
Zi exist, then

⊕
Xi →

⊕
Yi →

⊕
Zi →

⊕
Xi[1] is a

distinguished triangle.

Proof. Part (1) is true because [1] is an autoequivalence ofD and because direct sums
and products are defined in terms of the category structure. Let us prove (2)(a). Choose
a distinguished triangle

∏
Xi →

∏
Yi → Z →

∏
Xi[1]. For each j we can use TR3 to

choose a morphism pj : Z → Zj fitting into a morphism of distinguished triangles with
the projection maps

∏
Xi → Xj and

∏
Yi → Yj . Using the definition of products we

obtain a map
∏
pi : Z →

∏
Zi fitting into a morphism of triangles from the distinguished

triangle to the triangle made out of the products. Observe that the “product” triangle∏
Xi →

∏
Yi →

∏
Zi →

∏
Xi[1] is special in the terminology of Remark 4.4 because

products of exact sequences of abelian groups are exact. Hence Remark 4.4 shows that the
morphism of triangles is an isomorphism and we conclude by TR1. The proof of (2)(b) is
dual. �

Lemma 4.14. LetD be a pre-triangulated category. IfD has countable products, then
D is Karoubian. If D has countable coproducts, then D is Karoubian.

Proof. Assume D has countable products. By Homology, Lemma 4.3 it suffices to
check that morphisms which have a right inverse have kernels. Any morphism which
has a right inverse is an epimorphism, hence has a kernel by Lemma 4.12. The second
statement is dual to the first. �
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The following lemma makes it slightly easier to prove that a pre-triangulated category is
triangulated.

Lemma 4.15. Let D be a pre-triangulated category. In order to prove TR4 it suffices
to show that given any pair of composable morphisms f : X → Y and g : Y → Z there
exist

(1) isomorphisms i : X ′ → X , j : Y ′ → Y and k : Z ′ → Z , and then setting
f ′ = j−1fi : X ′ → Y ′ and g′ = k−1gj : Y ′ → Z ′ there exist

(2) distinguished triangles (X ′, Y ′, Q1, f
′, p1, d1), (X ′, Z ′, Q2, g

′ ◦ f ′, p2, d2) and
(Y ′, Z ′, Q3, g

′, p3, d3), such that the assertion of TR4 holds.

Proof. The replacement ofX,Y, Z byX ′, Y ′, Z ′ is harmless by our definition of dis-
tinguished triangles and their isomorphisms. The lemma follows from the fact that the dis-
tinguished triangles (X ′, Y ′, Q1, f

′, p1, d1), (X ′, Z ′, Q2, g
′◦f ′, p2, d2) and (Y ′, Z ′, Q3, g

′, p3, d3)
are unique up to isomorphism by Lemma 4.7. �

Lemma 4.16. LetD be a pre-triangulated category. Assume thatD′ is an additive full
subcategory of D. The following are equivalent

(1) there exists a set of triangles T ′ such that (D′, T ′) is a pre-triangulated subcate-
gory of D,

(2) D′ is preserved under [1] and [1] : D′ → D′ is an auto-equivalence and given any
morphism f : X → Y inD′ there exists a distinguished triangle (X,Y, Z, f, g, h)
in D such that Z is isomorphic to an object of D′.

In this case T ′ as in (1) is the set of distinguished triangles (X,Y, Z, f, g, h) of D such
that X,Y, Z ∈ Ob(D′). Finally, if D is a triangulated category, then (1) and (2) are also
equivalent to

(3) D′ is a triangulated subcategory.

Proof. Omitted. �

Lemma 4.17. An exact functor of pre-triangulated categories is additive.

Proof. Let F : D → D′ be an exact functor of pre-triangulated categories. Since
(0, 0, 0, 10, 10, 0) is a distinguished triangle of D the triangle

(F (0), F (0), F (0), 1F (0), 1F (0), F (0))
is distinguished inD′. This implies that 1F (0)◦1F (0) is zero, see Lemma 4.1. HenceF (0) is
the zero object ofD′. This also implies that F applied to any zero morphism is zero (since
a morphism in an additive category is zero if and only if it factors through the zero object).
Next, using that (X,X ⊕ Y, Y, (1, 0), (0, 1), 0) is a distinguished triangle by Lemma 4.11
part (3), we see that (F (X), F (X⊕Y ), F (Y ), F (1, 0), F (0, 1), 0) is one too. This implies
that the map F (X)⊕F (Y )→ F (X ⊕ Y ) is an isomorphism by Lemma 4.11 part (2). To
finish we apply Homology, Lemma 7.1. �

Lemma 4.18. LetF : D → D′ be a fully faithful exact functor of pre-triangulated cat-
egories. Then a triangle (X,Y, Z, f, g, h) ofD is distinguished if and only if (F (X), F (Y ), F (Z), F (f), F (g), F (h))
is distinguished in D′.

Proof. The “only if” part is clear. Assume (F (X), F (Y ), F (Z)) is distinguished in
D′. Pick a distinguished triangle (X,Y, Z ′, f, g′, h′) in D. By Lemma 4.7 there exists an
isomorphism of triangles

(1, 1, c′) : (F (X), F (Y ), F (Z)) −→ (F (X), F (Y ), F (Z ′)).
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Since F is fully faithful, there exists a morphism c : Z → Z ′ such that F (c) = c′.
Then (1, 1, c) is an isomorphism between (X,Y, Z) and (X,Y, Z ′). Hence (X,Y, Z) is
distinguished by TR1. �

Lemma 4.19. Let D,D′,D′′ be pre-triangulated categories. Let F : D → D′ and
F ′ : D′ → D′′ be exact functors. Then F ′ ◦ F is an exact functor.

Proof. Omitted. �

Lemma 4.20. LetD be a pre-triangulated category. LetA be an abelian category. Let
H : D → A be a homological functor.

(1) Let D′ be a pre-triangulated category. Let F : D′ → D be an exact functor.
Then the composition H ◦ F is a homological functor as well.

(2) LetA′ be an abelian category. LetG : A → A′ be an exact functor. ThenG ◦H
is a homological functor as well.

Proof. Omitted. �

Lemma 4.21. Let D be a triangulated category. Let A be an abelian category. Let
G : A → D be a δ-functor.

(1) Let D′ be a triangulated category. Let F : D → D′ be an exact functor. Then
the composition F ◦G is a δ-functor as well.

(2) LetA′ be an abelian category. LetH : A′ → A be an exact functor. ThenG◦H
is a δ-functor as well.

Proof. Omitted. �

Lemma 4.22. Let D be a triangulated category. Let A and B be abelian categories.
Let G : A → D be a δ-functor. Let H : D → B be a homological functor. Assume that
H−1(G(A)) = 0 for all A inA. Then the collection

{Hn ◦G,Hn(δA→B→C)}n≥0

is a δ-functor fromA → B, see Homology, Definition 12.1.

Proof. The notation signifies the following. If 0 → A
a−→ B

b−→ C → 0 is a short
exact sequence inA, then

δ = δA→B→C : G(C)→ G(A)[1]
is a morphism in D such that (G(A), G(B), G(C), a, b, δ) is a distinguished triangle, see
Definition 3.6. Then Hn(δ) : Hn(G(C)) → Hn(G(A)[1]) = Hn+1(G(A)) is clearly
functorial in the short exact sequence. Finally, the long exact cohomology sequence (3.5.1)
combined with the vanishing of H−1(G(C)) gives a long exact sequence

0→ H0(G(A))→ H0(G(B))→ H0(G(C)) H0(δ)−−−−→ H1(G(A))→ . . .

in B as desired. �

The proof of the following result uses TR4.

Proposition 4.23. Let D be a triangulated category. Any commutative diagram

X //

��

Y

��
X ′ // Y ′
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can be extended to a diagram

X //

��

Y //

��

Z //

��

X[1]

��
X ′ //

��

Y ′ //

��

Z ′ //

��

X ′[1]

��
X ′′ //

��

Y ′′ //

��

Z ′′ //

��

X ′′[1]

��
X[1] // Y [1] // Z[1] // X[2]

where all the squares are commutative, except for the lower right square which is anticom-
mutative. Moreover, each of the rows and columns are distinguished triangles. Finally,
the morphisms on the bottom row (resp. right column) are obtained from the morphisms
of the top row (resp. left column) by applying [1].

Proof. During this proof we avoid writing the arrows in order to make the proof
legible. Choose distinguished triangles (X,Y, Z), (X ′, Y ′, Z ′), (X,X ′, X ′′), (Y, Y ′, Y ′′),
and (X,Y ′, A). Note that the morphism X → Y ′ is both equal to the composition X →
Y → Y ′ and equal to the composition X → X ′ → Y ′. Hence, we can find morphisms

(1) a : Z → A and b : A→ Y ′′, and
(2) a′ : X ′′ → A and b′ : A→ Z ′

as in TR4. Denote c : Y ′′ → Z[1] the composition Y ′′ → Y [1] → Z[1] and denote c′ :
Z ′ → X ′′[1] the composition Z ′ → X ′[1] → X ′′[1]. The conclusion of our application
TR4 are that

(1) (Z,A, Y ′′, a, b, c), (X ′′, A, Z ′, a′, b′, c′) are distinguished triangles,
(2) (X,Y, Z)→ (X,Y ′, A), (X,Y ′, A)→ (Y, Y ′, Y ′′), (X,X ′, X ′′)→ (X,Y ′, A),

(X,Y ′, A)→ (X ′, Y ′, Z ′) are morphisms of triangles.
First using that (X,X ′, X ′′) → (X,Y ′, A) and (X,Y ′, A) → (Y, Y ′, Y ′′). are mor-
phisms of triangles we see the first of the diagrams

X ′ //

��

Y ′

��
X ′′ b◦a′

//

��

Y ′′

��
X[1] // Y [1]

and

Y //

��

Z

b′◦a
��

// X[1]

��
Y ′ // Z ′ // X ′[1]

is commutative. The second is commutative too using that (X,Y, Z) → (X,Y ′, A) and
(X,Y ′, A) → (X ′, Y ′, Z ′) are morphisms of triangles. At this point we choose a distin-
guished triangle (X ′′, Y ′′, Z ′′) starting with the map b ◦ a′ : X ′′ → Y ′′.

Next we apply TR4 one more time to the morphisms X ′′ → A → Y ′′ and the triangles
(X ′′, A, Z ′, a′, b′, c′), (X ′′, Y ′′, Z ′′), and (A, Y ′′, Z[1], b, c,−a[1]) to get morphisms a′′ :
Z ′ → Z ′′ and b′′ : Z ′′ → Z[1]. Then (Z ′, Z ′′, Z[1], a′′, b′′,−b′[1]◦a[1]) is a distinguished
triangle, hence also (Z,Z ′, Z ′′,−b′ ◦a, a′′,−b′′) and hence also (Z,Z ′, Z ′′, b′ ◦a, a′′, b′′).
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Moreover, (X ′′, A, Z ′) → (X ′′, Y ′′, Z ′′) and (X ′′, Y ′′, Z ′′) → (A, Y ′′, Z[1], b, c,−a[1])
are morphisms of triangles. At this point we have defined all the distinguished triangles
and all the morphisms, and all that’s left is to verify some commutativity relations.

To see that the middle square in the diagram commutes, note that the arrow Y ′ → Z ′

factors as Y ′ → A → Z ′ because (X,Y ′, A) → (X ′, Y ′, Z ′) is a morphism of triangles.
Similarly, the morphism Y ′ → Y ′′ factors as Y ′ → A → Y ′′ because (X,Y ′, A) →
(Y, Y ′, Y ′′) is a morphism of triangles. Hence the middle square commutes because the
square with sides (A,Z ′, Z ′′, Y ′′) commutes as (X ′′, A, Z ′) → (X ′′, Y ′′, Z ′′) is a mor-
phism of triangles (by TR4). The square with sides (Y ′′, Z ′′, Y [1], Z[1]) commutes be-
cause (X ′′, Y ′′, Z ′′)→ (A, Y ′′, Z[1], b, c,−a[1]) is a morphism of triangles and c : Y ′′ →
Z[1] is the composition Y ′′ → Y [1]→ Z[1]. The square with sides (Z ′, X ′[1], X ′′[1], Z ′′)
is commutative because (X ′′, A, Z ′) → (X ′′, Y ′′, Z ′′) is a morphism of triangles and
c′ : Z ′ → X ′′[1] is the composition Z ′ → X ′[1] → X ′′[1]. Finally, we have to
show that the square with sides (Z ′′, X ′′[1], Z[1], X[2]) anticommutes. This holds because
(X ′′, Y ′′, Z ′′)→ (A, Y ′′, Z[1], b, c,−a[1]) is a morphism of triangles and we’re done. �

5. Localization of triangulated categories

In order to construct the derived category starting from the homotopy category of com-
plexes, we will use a localization process.

Definition 5.1. LetD be a pre-triangulated category. We say a multiplicative system
S is compatible with the triangulated structure if the following two conditions hold:

MS5 For a morphism f of D we have f ∈ S ⇔ f [1] ∈ S4.
MS6 Given a solid commutative square

X //

s

��

Y //

s′

��

Z //

��

X[1]

s[1]
��

X ′ // Y ′ // Z ′ // X ′[1]

whose rows are distinguished triangles with s, s′ ∈ S there exists a morphism
s′′ : Z → Z ′ in S such that (s, s′, s′′) is a morphism of triangles.

It turns out that these axioms are not independent of the axioms defining multiplicative
systems.

Lemma 5.2. Let D be a pre-triangulated category. Let S ⊂ Arrows(D).
(1) If S contains all identities and MS6 holds (Definition 5.1), then every isomor-

phism of D is in S.
(2) If MS1, MS5 (Categories, Definition 27.1) and MS6 hold, then MS2 holds.

Proof. Assume S contains all identities and MS6 holds. Let f : X → Y be an
isomorphism of D. Consider the diagram

0 //

1
��

X
1
//

1
��

X //

��

0[1]

1[1]
��

0 // X
f // Y // 0[1]

4See Remark 5.3.
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The rows are distinguished triangles by Lemma 4.9. By MS6 we see that the dotted arrow
exists and is in S , so f is in S.

Assume MS1, MS5, MS6. Suppose that f : X → Y is a morphism of D and t : X →
X ′ an element of S. Choose a distinguished triangle (X,Y, Z, f, g, h). Next, choose a
distinguished triangle (X ′, Y ′, Z, f ′, g′, t[1] ◦ h) (here we use TR1 and TR2). By MS5,
MS6 (and TR2 to rotate) we can find the dotted arrow in the commutative diagram

X //

t

��

Y //

s′

��

Z //

1
��

X[1]

t[1]
��

X ′ // Y ′ // Z // X ′[1]

with moreover s′ ∈ S. This proves LMS2. The proof of RMS2 is dual. �

Remark 5.3. In the presence of MS1 and MS6, condition MS5 is equivalent to asking
s[n] ∈ S for all s ∈ S and n ∈ Z. For example, suppose MS5 holds, we have s ∈ S , and
we want to show s[−1] ∈ S. This isn’t immediate because s[−1][1] is not equal to s, only
isomorphic to s as an arrow of D. Still, this does imply that s[−1][1] = f ◦ s ◦ g for
isomorphisms f , g. By Lemma 5.2 (1) we find f, g ∈ S , hence s[−1][1] ∈ S by MS1, hence
s[−1] ∈ S by MS5. We leave a complete proof to the reader as an exercise.

Lemma 5.4. Let F : D → D′ be an exact functor of pre-triangulated categories. Let

S = {f ∈ Arrows(D) | F (f) is an isomorphism}

Then S is a saturated (see Categories, Definition 27.20) multiplicative system compatible
with the triangulated structure on D.

Proof. We have to prove axioms MS1 – MS6, see Categories, Definitions 27.1 and
27.20 and Definition 5.1. MS1, MS4, and MS5 are direct from the definitions. MS6 follows
from TR3 and Lemma 4.3. By Lemma 5.2 we conclude that MS2 holds. To finish the proof
we have to show that MS3 holds. To do this let f, g : X → Y be morphisms ofD, and let
t : Z → X be an element of S such that f ◦ t = g ◦ t. As D is additive this simply means
that a ◦ t = 0 with a = f − g. Choose a distinguished triangle (Z,X,Q, t, d, h) using
TR1. Since a ◦ t = 0 we see by Lemma 4.2 there exists a morphism i : Q → Y such that
i ◦ d = a. Finally, using TR1 again we can choose a triangle (Q,Y,W, i, j, k). Here is a
picture

Z
t
// X

d
//

1
��

Q //

i

��

Z[1]

X
a
// Y

j

��
W

OK, and now we apply the functor F to this diagram. Since t ∈ S we see that F (Q) = 0,
see Lemma 4.9. Hence F (j) is an isomorphism by the same lemma, i.e., j ∈ S. Finally,
j ◦ a = j ◦ i ◦ d = 0 as j ◦ i = 0. Thus j ◦ f = j ◦ g and we see that LMS3 holds. The
proof of RMS3 is dual. �
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Lemma 5.5. Let H : D → A be a homological functor between a pre-triangulated
category and an abelian category. Let

S = {f ∈ Arrows(D) | Hi(f) is an isomorphism for all i ∈ Z}

Then S is a saturated (see Categories, Definition 27.20) multiplicative system compatible
with the triangulated structure on D.

Proof. We have to prove axioms MS1 – MS6, see Categories, Definitions 27.1 and
27.20 and Definition 5.1. MS1, MS4, and MS5 are direct from the definitions. MS6 follows
from TR3 and the long exact cohomology sequence (3.5.1). By Lemma 5.2 we conclude
that MS2 holds. To finish the proof we have to show that MS3 holds. To do this let
f, g : X → Y be morphisms of D, and let t : Z → X be an element of S such that
f ◦ t = g ◦ t. As D is additive this simply means that a ◦ t = 0 with a = f − g. Choose
a distinguished triangle (Z,X,Q, t, g, h) using TR1 and TR2. Since a ◦ t = 0 we see by
Lemma 4.2 there exists a morphism i : Q → Y such that i ◦ g = a. Finally, using TR1
again we can choose a triangle (Q,Y,W, i, j, k). Here is a picture

Z
t
// X

g
//

1
��

Q //

i

��

Z[1]

X
a
// Y

j

��
W

OK, and now we apply the functorsHi to this diagram. Since t ∈ S we see thatHi(Q) = 0
by the long exact cohomology sequence (3.5.1). Hence Hi(j) is an isomorphism for all i
by the same argument, i.e., j ∈ S. Finally, j ◦ a = j ◦ i ◦ g = 0 as j ◦ i = 0. Thus
j ◦ f = j ◦ g and we see that LMS3 holds. The proof of RMS3 is dual. �

Proposition 5.6. Let D be a pre-triangulated category. Let S be a multiplicative
system compatible with the triangulated structure. Then there exists a unique structure
of a pre-triangulated category on S−1D such that [1] ◦ Q = Q ◦ [1] and the localization
functor Q : D → S−1D is exact. Moreover, if D is a triangulated category, so is S−1D.

Proof. We have seen that S−1D is an additive category and that the localization
functorQ is additive in Homology, Lemma 8.2. It follows from MS5 that there is a unique
additive auto-equivalence [1] : S−1D → S−1D such that Q ◦ [1] = [1] ◦ Q (equality of
functors); we omit the details. We say a triangle of S−1D is distinguished if it is isomor-
phic to the image of a distinguished triangle under the localization functor Q.

Proof of TR1. The only thing to prove here is that if a : Q(X) → Q(Y ) is a morphism
of S−1D, then a fits into a distinguished triangle. Write a = Q(s)−1 ◦ Q(f) for some
s : Y → Y ′ in S and f : X → Y ′. Choose a distinguished triangle (X,Y ′, Z, f, g, h) in
D. Then we see that (Q(X), Q(Y ), Q(Z), a,Q(g)◦Q(s), Q(h)) is a distinguished triangle
of S−1D.

Proof of TR2. This is immediate from the definitions.

Proof of TR3. Note that the existence of the dotted arrow which is required to exist
may be proven after replacing the two triangles by isomorphic triangles. Hence we may
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assume given distinguished triangles (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) ofD and
a commutative diagram

Q(X)
Q(f)

//

a

��

Q(Y )

b

��
Q(X ′)

Q(f ′) // Q(Y ′)

in S−1D. Now we apply Categories, Lemma 27.10 to find a morphism f ′′ : X ′′ → Y ′′ in
D and a commutative diagram

X

f

��

k
// X ′′

f ′′

��

X ′

f ′

��

s
oo

Y
l // Y ′′ Y ′too

inD with s, t ∈ S and a = s−1k, b = t−1l. At this point we can use TR3 forD and MS6
to find a commutative diagram

X //

k

��

Y //

l

��

Z //

m

��

X[1]

g[1]
��

X ′′ // Y ′′ // Z ′′ // X ′′[1]

X ′ //

s

OO

Y ′ //

t

OO

Z ′ //

r

OO

X ′[1]

s[1]

OO

with r ∈ S. It follows that setting c = Q(r)−1Q(m) we obtain the desired morphism of
triangles

(Q(X), Q(Y ), Q(Z), Q(f), Q(g), Q(h))

(a,b,c)
��

(Q(X ′), Q(Y ′), Q(Z ′), Q(f ′), Q(g′), Q(h′))

This proves the first statement of the lemma. IfD is also a triangulated category, then we
still have to prove TR4 in order to show that S−1D is triangulated as well. To do this
we reduce by Lemma 4.15 to the following statement: Given composable morphisms a :
Q(X) → Q(Y ) and b : Q(Y ) → Q(Z) we have to produce an octahedron after possibly
replacingQ(X), Q(Y ), Q(Z) by isomorphic objects. To do this we may first replace Y by
an object such that a = Q(f) for some morphism f : X → Y inD. (More precisely, write
a = s−1f with s : Y → Y ′ in S and f : X → Y ′. Then replace Y by Y ′.) After this
we similarly replace Z by an object such that b = Q(g) for some morphism g : Y → Z.
Now we can find distinguished triangles (X,Y,Q1, f, p1, d1), (X,Z,Q2, g◦f, p2, d2), and
(Y, Z,Q3, g, p3, d3) in D (by TR1), and morphisms a : Q1 → Q2 and b : Q2 → Q3 as in
TR4. Then it is immediately verified that applying the functor Q to all these data gives a
corresponding structure in S−1D �

The universal property of the localization of a triangulated category is as follows (we
formulate this for pre-triangulated categories, hence it holds a fortiori for triangulated
categories).
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Lemma 5.7. Let D be a pre-triangulated category. Let S be a multiplicative system
compatible with the triangulated structure. Let Q : D → S−1D be the localization func-
tor, see Proposition 5.6.

(1) If H : D → A is a homological functor into an abelian category A such that
H(s) is an isomorphism for all s ∈ S , then the unique factorizationH ′ : S−1D →
A such that H = H ′ ◦Q (see Categories, Lemma 27.8) is a homological functor
too.

(2) If F : D → D′ is an exact functor into a pre-triangulated category D′ such
that F (s) is an isomorphism for all s ∈ S , then the unique factorization F ′ :
S−1D → D′ such that F = F ′ ◦ Q (see Categories, Lemma 27.8) is an exact
functor too.

Proof. This lemma proves itself. Details omitted. �

Lemma 5.8. Let D be a pre-triangulated category and let D′ ⊂ D be a full, pre-
triangulated subcategory. Let S be a saturated multiplicative system ofD compatible with
the triangulated structure. Assume that for each X in D there exists an s : X ′ → X in S
such that X ′ is an object of D′. Then S′ = S ∩ Arrows(D′) is a saturated multiplicative
system compatible with the triangulated structure and the functor

(S′)−1D′ −→ S−1D
is an equivalence of pre-triangulated categories.

Proof. Consider the quotient functor Q : D → S−1D of Proposition 5.6. Since S
is saturated we have that a morphism f : X → Y is in S if and only if Q(f) is invertible,
see Categories, Lemma 27.21. Thus S′ is the collection of arrows which are turned into
isomorphisms by the composition D′ → D → S−1D. Hence S′ is is a saturated mul-
tiplicative system compatible with the triangulated structure by Lemma 5.4. By Lemma
5.7 we obtain the exact functor (S′)−1D′ → S−1D of pre-triangulated categories. By as-
sumption this functor is essentially surjective. Let X ′, Y ′ be objects of D′. By Categories,
Remark 27.15 we have

MorS−1D(X ′, Y ′) = colims:X→X′ in S MorD(X,Y ′)
Our assumption implies that for any s : X → X ′ in S we can find a morphism s′ : X ′′ →
X in S with X ′′ in D′. Then s ◦ s′ : X ′′ → X ′ is in S′. Hence the colimit above is equal
to

colims′′:X′′→X′ in S′ MorD′(X ′′, Y ′) = Mor(S′)−1D′(X ′, Y ′)
This proves our functor is also fully faithful and the proof is complete. �

The following lemma describes the kernel (see Definition 6.5) of the localization functor.

Lemma 5.9. Let D be a pre-triangulated category. Let S be a multiplicative system
compatible with the triangulated structure. Let Z be an object of D. The following are
equivalent

(1) Q(Z) = 0 in S−1D,
(2) there exists Z ′ ∈ Ob(D) such that 0 : Z → Z ′ is an element of S ,
(3) there exists Z ′ ∈ Ob(D) such that 0 : Z ′ → Z is an element of S , and
(4) there exists an objectZ ′ and a distinguished triangle (X,Y, Z⊕Z ′, f, g, h) such

that f ∈ S.
If S is saturated, then these are also equivalent to

(5) the morphism 0→ Z is an element of S ,
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(6) the morphism Z → 0 is an element of S ,
(7) there exists a distinguished triangle (X,Y, Z, f, g, h) such that f ∈ S.

Proof. The equivalence of (1), (2), and (3) is Homology, Lemma 8.3. If (2) holds, then
(Z ′[−1], Z ′[−1]⊕Z,Z, (1, 0), (0, 1), 0) is a distinguished triangle (see Lemma 4.11) with
“0 ∈ S”. By rotating we conclude that (4) holds. If (X,Y, Z⊕Z ′, f, g, h) is a distinguished
triangle with f ∈ S thenQ(f) is an isomorphism henceQ(Z⊕Z ′) = 0 henceQ(Z) = 0.
Thus (1) – (4) are all equivalent.

Next, assume thatS is saturated. Note that each of (5), (6), (7) implies one of the equivalent
conditions (1) – (4). Suppose that Q(Z) = 0. Then 0 → Z is a morphism of D which
becomes an isomorphism in S−1D. According to Categories, Lemma 27.21 the fact that
S is saturated implies that 0 → Z is in S. Hence (1)⇒ (5). Dually (1)⇒ (6). Finally, if
0→ Z is in S , then the triangle (0, Z, Z, 0, idZ , 0) is distinguished by TR1 and TR2 and
is a triangle as in (4). �

Lemma 5.10. Let D be a triangulated category. Let S be a saturated multiplicative
system in D that is compatible with the triangulated structure. Let (X,Y, Z, f, g, h) be a
distinguished triangle in D. Consider the category of morphisms of triangles

I = {(s, s′, s′′) : (X,Y, Z, f, g, h)→ (X ′, Y ′, Z ′, f ′, g′, h′) | s, s′, s′′ ∈ S}
Then I is a filtered category and the functors I → X/S , I → Y/S , and I → Z/S are
cofinal.

Proof. We strongly suggest the reader skip the proof of this lemma and instead work
it out on a napkin.

The first remark is that using rotation of distinguished triangles (TR2) gives an equiva-
lence of categories between I and the corresponding category for the distinguished trian-
gle (Y, Z,X[1], g, h,−f [1]). Using this we see for example that if we prove the functor
I → X/S is cofinal, then the same thing is true for the functors I → Y/S and I → Z/S.

Note that if s : X → X ′ is a morphism of S , then using MS2 we can find s′ : Y → Y ′

and f ′ : X ′ → Y ′ such that f ′ ◦ s = s′ ◦ f , whereupon we can use MS6 to complete this
into an object of I . Hence the functor I → X/S is surjective on objects. Using rotation
as above this implies the same thing is true for the functors I → Y/S and I → Z/S.

Suppose given objects s1 : X → X1 and s2 : X → X2 in X/S and a morphism
a : X1 → X2 in X/S. Since S is saturated, we see that a ∈ S , see Categories, Lemma
27.21. By the argument of the previous paragraph we can complete s1 : X → X1 to an
object (s1, s

′
1, s

′′
1) : (X,Y, Z, f, g, h)→ (X1, Y1, Z1, f1, g1, h1) in I . Then we can repeat

and find (a, b, c) : (X1, Y1, Z1, f1, g1, h1) → (X2, Y2, Z2, f2, g2, h2) with a, b, c ∈ S
completing the given a : X1 → X2. But then (a, b, c) is a morphism in I . In this way we
conclude that the functor I → X/S is also surjective on arrows. Using rotation as above,
this implies the same thing is true for the functors I → Y/S and I → Z/S.

The category I is nonempty as the identity provides an object. This proves the condition
(1) of the definition of a filtered category, see Categories, Definition 19.1.

We check condition (2) of Categories, Definition 19.1 for the category I . Suppose given
objects (s1, s

′
1, s

′′
1) : (X,Y, Z, f, g, h)→ (X1, Y1, Z1, f1, g1, h1) and (s2, s

′
2, s

′′
2) : (X,Y, Z, f, g, h)→

(X2, Y2, Z2, f2, g2, h2) in I . We want to find an object of I which is the target of an
arrow from both (X1, Y1, Z1, f1, g1, h1) and (X2, Y2, Z2, f2, g2, h2). By Categories, Re-
mark 27.7 the categories X/S , Y/S , Z/S are filtered. Thus we can find X → X3 in
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X/S and morphisms s : X2 → X3 and a : X1 → X3. By the above we can find a
morphism (s, s′, s′′) : (X2, Y2, Z2, f2, g2, h2)→ (X3, Y3, Z3, f3, g3, h3) with s′, s′′ ∈ S.
After replacing (X2, Y2, Z2) by (X3, Y3, Z3) we may assume that there exists a morphism
a : X1 → X2 inX/S. Repeating the argument for Y andZ (by rotating as above) we may
assume there is a morphism a : X1 → X2 in X/S , b : Y1 → Y2 in Y/S , and c : Z1 → Z2
in Z/S. However, these morphisms do not necessarily give rise to a morphism of dis-
tinguished triangles. On the other hand, the necessary diagrams do commute in S−1D.
Hence we see (for example) that there exists a morphism s′

2 : Y2 → Y3 in S such that
s′

2 ◦ f2 ◦ a = s′
2 ◦ b ◦ f1. Another replacement of (X2, Y2, Z2) as above then gets us to the

situation where f2 ◦a = b◦f1. Rotating and applying the same argument two more times
we see that we may assume (a, b, c) is a morphism of triangles. This proves condition (2).

Next we check condition (3) of Categories, Definition 19.1. Suppose (s1, s
′
1, s

′′
1) : (X,Y, Z)→

(X1, Y1, Z1) and (s2, s
′
2, s

′′
2) : (X,Y, Z) → (X2, Y2, Z2) are objects of I , and suppose

(a, b, c), (a′, b′, c′) are two morphisms between them. Since a ◦ s1 = a′ ◦ s1 there exists a
morphism s3 : X2 → X3 such that s3 ◦ a = s3 ◦ a′. Using the surjectivity statement we
can complete this to a morphism of triangles (s3, s

′
3, s

′′
3) : (X2, Y2, Z2) → (X3, Y3, Z3)

with s3, s
′
3, s

′′
3 ∈ S. Thus (s3 ◦ s2, s

′
3 ◦ s′

2, s
′′
3 ◦ s′′

2) : (X,Y, Z)→ (X3, Y3, Z3) is also an
object of I and after composing the maps (a, b, c), (a′, b′, c′) with (s3, s

′
3, s

′′
3) we obtain

a = a′. By rotating we may do the same to get b = b′ and c = c′.

Finally, we check that I → X/S is cofinal, see Categories, Definition 17.1. The first
condition is true as the functor is surjective. Suppose that we have an object s : X →
X ′ in X/S and two objects (s1, s

′
1, s

′′
1) : (X,Y, Z, f, g, h) → (X1, Y1, Z1, f1, g1, h1)

and (s2, s
′
2, s

′′
2) : (X,Y, Z, f, g, h) → (X2, Y2, Z2, f2, g2, h2) in I as well as morphisms

t1 : X ′ → X1 and t2 : X ′ → X2 in X/S. By property (2) of I proved above we
can find morphisms (s3, s

′
3, s

′′
3) : (X1, Y1, Z1, f1, g1, h1) → (X3, Y3, Z3, f3, g3, h3) and

(s4, s
′
4, s

′′
4) : (X2, Y2, Z2, f2, g2, h2) → (X3, Y3, Z3, f3, g3, h3) in I . We would be done

if the compositions X ′ → X1 → X3 and X ′ → X2 → X3 where equal (see displayed
equation in Categories, Definition 17.1). If not, then, becauseX/S is filtered, we can choose
a morphism X3 → X4 in S such that the compositions X ′ → X1 → X3 → X4 and
X ′ → X2 → X3 → X4 are equal. Then we finally complete X3 → X4 to a morphism
(X3, Y3, Z3)→ (X4, Y4, Z4) in I and compose with that morphism to see that the result
is true. �

6. Quotients of triangulated categories

Given a triangulated category and a triangulated subcategory we can construct another
triangulated category by taking the “quotient”. The construction uses a localization. This
is similar to the quotient of an abelian category by a Serre subcategory, see Homology, Sec-
tion 10. Before we do the actual construction we briefly discuss kernels of exact functors.

Definition 6.1. LetD be a pre-triangulated category. We say a full pre-triangulated
subcategoryD′ ofD is saturated if wheneverX ⊕Y is isomorphic to an object ofD′ then
both X and Y are isomorphic to objects of D′.

A saturated triangulated subcategory is sometimes called a thick triangulated subcategory.
In some references, this is only used for strictly full triangulated subcategories (and some-
times the definition is written such that it implies strictness). There is another notion,
that of an épaisse triangulated subcategory. The definition is that given a commutative
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diagram
S

��
X

??

// Y // T // X[1]

where the second line is a distinguished triangle and S and T are isomorphic to objects of
D′, then also X and Y are isomorphic to objects of D′. It turns out that this is equivalent
to being saturated (this is elementary and can be found in [?]) and the notion of a saturated
category is easier to work with.

Lemma 6.2. Let F : D → D′ be an exact functor of pre-triangulated categories. Let
D′′ be the full subcategory of D with objects

Ob(D′′) = {X ∈ Ob(D) | F (X) = 0}

Then D′′ is a strictly full saturated pre-triangulated subcategory of D. If D is a triangu-
lated category, then D′′ is a triangulated subcategory.

Proof. It is clear thatD′′ is preserved under [1] and [−1]. If (X,Y, Z, f, g, h) is a dis-
tinguished triangle ofD andF (X) = F (Y ) = 0, then alsoF (Z) = 0 as (F (X), F (Y ), F (Z), F (f), F (g), F (h))
is distinguished. Hence we may apply Lemma 4.16 to see thatD′′ is a pre-triangulated sub-
category (respectively a triangulated subcategory ifD is a triangulated category). The final
assertion of being saturated follows from F (X)⊕F (Y ) = 0⇒ F (X) = F (Y ) = 0. �

Lemma 6.3. LetH : D → A be a homological functor of a pre-triangulated category
into an abelian category. Let D′ be the full subcategory of D with objects

Ob(D′) = {X ∈ Ob(D) | H(X[n]) = 0 for all n ∈ Z}

ThenD′ is a strictly full saturated pre-triangulated subcategory ofD. IfD is a triangulated
category, then D′ is a triangulated subcategory.

Proof. It is clear that D′ is preserved under [1] and [−1]. If (X,Y, Z, f, g, h) is a
distinguished triangle of D and H(X[n]) = H(Y [n]) = 0 for all n, then also H(Z[n]) =
0 for all n by the long exact sequence (3.5.1). Hence we may apply Lemma 4.16 to see
that D′ is a pre-triangulated subcategory (respectively a triangulated subcategory if D is
a triangulated category). The assertion of being saturated follows from

H((X ⊕ Y )[n]) = 0⇒ H(X[n]⊕ Y [n]) = 0
⇒ H(X[n])⊕H(Y [n]) = 0
⇒ H(X[n]) = H(Y [n]) = 0

for all n ∈ Z. �

Lemma 6.4. LetH : D → A be a homological functor of a pre-triangulated category
into an abelian category. Let D+

H ,D
−
H ,DbH be the full subcategory of D with objects

Ob(D+
H) = {X ∈ Ob(D) | H(X[n]) = 0 for all n� 0}

Ob(D−
H) = {X ∈ Ob(D) | H(X[n]) = 0 for all n� 0}

Ob(DbH) = {X ∈ Ob(D) | H(X[n]) = 0 for all |n| � 0}

Each of these is a strictly full saturated pre-triangulated subcategory of D. If D is a trian-
gulated category, then each is a triangulated subcategory.
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Proof. Let us prove this for D+
H . It is clear that it is preserved under [1] and [−1].

If (X,Y, Z, f, g, h) is a distinguished triangle of D and H(X[n]) = H(Y [n]) = 0 for all
n � 0, then also H(Z[n]) = 0 for all n � 0 by the long exact sequence (3.5.1). Hence
we may apply Lemma 4.16 to see thatD+

H is a pre-triangulated subcategory (respectively a
triangulated subcategory ifD is a triangulated category). The assertion of being saturated
follows from

H((X ⊕ Y )[n]) = 0⇒ H(X[n]⊕ Y [n]) = 0
⇒ H(X[n])⊕H(Y [n]) = 0
⇒ H(X[n]) = H(Y [n]) = 0

for all n ∈ Z. �

Definition 6.5. Let D be a (pre-)triangulated category.

(1) LetF : D → D′ be an exact functor. The kernel ofF is the strictly full saturated
(pre-)triangulated subcategory described in Lemma 6.2.

(2) Let H : D → A be a homological functor. The kernel of H is the strictly full
saturated (pre-)triangulated subcategory described in Lemma 6.3.

These are sometimes denoted Ker(F ) or Ker(H).

The proof of the following lemma uses TR4.

Lemma 6.6. Let D be a triangulated category. Let D′ ⊂ D be a full triangulated
subcategory. Set

(6.6.1) S =
{
f ∈ Arrows(D) such that there exists a distinguished triangle
(X,Y, Z, f, g, h) of D with Z isomorphic to an object of D′

}
Then S is a multiplicative system compatible with the triangulated structure onD. In this
situation the following are equivalent

(1) S is a saturated multiplicative system,
(2) D′ is a saturated triangulated subcategory.

Proof. To prove the first assertion we have to prove that MS1, MS2, MS3 and MS5,
MS6 hold.

Proof of MS1. It is clear that identities are in S because (X,X, 0, 1, 0, 0) is distinguished
for every objectX ofD and because 0 is an object ofD′. Let f : X → Y and g : Y → Z be
composable morphisms contained inS. Choose distinguished triangles (X,Y,Q1, f, p1, d1),
(X,Z,Q2, g ◦ f, p2, d2), and (Y, Z,Q3, g, p3, d3). By assumption we know that Q1 and
Q3 are isomorphic to objects of D′. By TR4 we know there exists a distinguished trian-
gle (Q1, Q2, Q3, a, b, c). Since D′ is a triangulated subcategory we conclude that Q2 is
isomorphic to an object of D′. Hence g ◦ f ∈ S.

Proof of MS3. Let a : X → Y be a morphism and let t : Z → X be an element of S such
that a ◦ t = 0. To prove LMS3 it suffices to find an s ∈ S such that s ◦ a = 0, compare
with the proof of Lemma 5.4. Choose a distinguished triangle (Z,X,Q, t, g, h) using TR1
and TR2. Since a ◦ t = 0 we see by Lemma 4.2 there exists a morphism i : Q → Y such
that i ◦ g = a. Finally, using TR1 again we can choose a triangle (Q,Y,W, i, s, k). Here
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is a picture
Z

t
// X

g
//

1
��

Q //

i

��

Z[1]

X
a
// Y

s

��
W

Since t ∈ S we see that Q is isomorphic to an object of D′. Hence s ∈ S. Finally,
s ◦ a = s ◦ i ◦ g = 0 as s ◦ i = 0 by Lemma 4.1. We conclude that LMS3 holds. The proof
of RMS3 is dual.
Proof of MS5. Follows as distinguished triangles and D′ are stable under translations
Proof of MS6. Suppose given a commutative diagram

X //

s

��

Y

s′

��
X ′ // Y ′

with s, s′ ∈ S. By Proposition 4.23 we can extend this to a nine square diagram. As s, s′

are elements of S we see that X ′′, Y ′′ are isomorphic to objects of D′. Since D′ is a full
triangulated subcategory we see thatZ ′′ is also isomorphic to an object ofD′. Whence the
morphism Z → Z ′ is an element of S. This proves MS6.
MS2 is a formal consequence of MS1, MS5, and MS6, see Lemma 5.2. This finishes the
proof of the first assertion of the lemma.
Let’s assume that S is saturated. (In the following we will use rotation of distinguished
triangles without further mention.) Let X ⊕ Y be an object isomorphic to an object of
D′. Consider the morphism f : 0 → X . The composition 0 → X → X ⊕ Y is an
element of S as (0, X ⊕ Y,X ⊕ Y, 0, 1, 0) is a distinguished triangle. The composition
Y [−1] → 0 → X is an element of S as (X,X ⊕ Y, Y, (1, 0), (0, 1), 0) is a distinguished
triangle, see Lemma 4.11. Hence 0 → X is an element of S (as S is saturated). Thus X is
isomorphic to an object of D′ as desired.
Finally, assume D′ is a saturated triangulated subcategory. Let

W
h−→ X

g−→ Y
f−→ Z

be composable morphisms ofD such that fg, gh ∈ S. We will build up a picture of objects
as in the diagram below.

Q12

!!

Q23

!!
Q1

+1

~~

==

Q2
+1

}}

+1oo

==

Q3
+1

}}

+1oo

W // X

aa

// Y

aa

// Z

``

First choose distinguished triangles (W,X,Q1), (X,Y,Q2), (Y, Z,Q3) (W,Y,Q12), and
(X,Z,Q23). Denote s : Q2 → Q1[1] the composition Q2 → X[1] → Q1[1]. Denote
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t : Q3 → Q2[1] the composition Q3 → Y [1] → Q2[1]. By TR4 applied to the composi-
tion W → X → Y and the composition X → Y → Z there exist distinguished triangles
(Q1, Q12, Q2) and (Q2, Q23, Q3) which use the morphisms s and t. The objects Q12 and
Q23 are isomorphic to objects ofD′ as W → Y and X → Z are assumed in S. Hence also
s[1]t is an element of S as S is closed under compositions and shifts. Note that s[1]t = 0
as Y [1] → Q2[1] → X[2] is zero, see Lemma 4.1. Hence Q3[1] ⊕ Q1[2] is isomorphic to
an object of D′, see Lemma 4.11. By assumption on D′ we conclude that Q3 and Q1 are
isomorphic to objects of D′. Looking at the distinguished triangle (Q1, Q12, Q2) we con-
clude that Q2 is also isomorphic to an object of D′. Looking at the distinguished triangle
(X,Y,Q2) we finally conclude that g ∈ S. (It is also follows that h, f ∈ S , but we don’t
need this.) �

Definition 6.7. Let D be a triangulated category. Let B be a full triangulated sub-
category. We define the quotient category D/B by the formula D/B = S−1D, where S
is the multiplicative system of D associated to B via Lemma 6.6. The localization functor
Q : D → D/B is called the quotient functor in this case.

Note that the quotient functor Q : D → D/B is an exact functor of triangulated cate-
gories, see Proposition 5.6. The universal property of this construction is the following.

Lemma 6.8. LetD be a triangulated category. LetB be a full triangulated subcategory
of D. Let Q : D → D/B be the quotient functor.

(1) If H : D → A is a homological functor into an abelian category A such that
B ⊂ Ker(H) then there exists a unique factorization H ′ : D/B → A such that
H = H ′ ◦Q and H ′ is a homological functor too.

(2) If F : D → D′ is an exact functor into a pre-triangulated category D′ such that
B ⊂ Ker(F ) then there exists a unique factorization F ′ : D/B → D′ such that
F = F ′ ◦Q and F ′ is an exact functor too.

Proof. This lemma follows from Lemma 5.7. Namely, if f : X → Y is a morphism
ofD such that for some distinguished triangle (X,Y, Z, f, g, h) the objectZ is isomorphic
to an object of B, then H(f), resp. F (f) is an isomorphism under the assumptions of (1),
resp. (2). Details omitted. �

The kernel of the quotient functor can be described as follows.

Lemma 6.9. Let D be a triangulated category. Let B be a full triangulated subcate-
gory. The kernel of the quotient functor Q : D → D/B is the strictly full subcategory of
D whose objects are

Ob(Ker(Q)) =
{
Z ∈ Ob(D) such that there exists a Z ′ ∈ Ob(D)
such that Z ⊕ Z ′ is isomorphic to an object of B

}
In other words it is the smallest strictly full saturated triangulated subcategory of D con-
taining B.

Proof. First note that the kernel is automatically a strictly full triangulated subcat-
egory containing summands of any of its objects, see Lemma 6.2. The description of its
objects follows from the definitions and Lemma 5.9 part (4). �

LetD be a triangulated category. At this point we have constructions which induce order
preserving maps between

(1) the partially ordered set of multiplicative systems S in D compatible with the
triangulated structure, and
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(2) the partially ordered set of full triangulated subcategories B ⊂ D.
Namely, the constructions are given by S 7→ B(S) = Ker(Q : D → S−1D) and B 7→
S(B) where S(B) is the multiplicative set of (6.6.1), i.e.,

S(B) =
{
f ∈ Arrows(D) such that there exists a distinguished triangle

(X,Y, Z, f, g, h) of D with Z isomorphic to an object of B

}
Note that it is not the case that these operations are mutually inverse.

Lemma 6.10. LetD be a triangulated category. The operations described above have
the following properties

(1) S(B(S)) is the “saturation” of S , i.e., it is the smallest saturated multiplicative
system in D containing S , and

(2) B(S(B)) is the “saturation” of B, i.e., it is the smallest strictly full saturated tri-
angulated subcategory of D containing B.

In particular, the constructions define mutually inverse maps between the (partially or-
dered) set of saturated multiplicative systems inD compatible with the triangulated struc-
ture on D and the (partially ordered) set of strictly full saturated triangulated subcate-
gories of D.

Proof. First, let’s start with a full triangulated subcategory B. Then B(S(B)) =
Ker(Q : D → D/B) and hence (2) is the content of Lemma 6.9.

Next, suppose thatS is multiplicative system inD compatible with the triangulation onD.
Then B(S) = Ker(Q : D → S−1D). Hence (using Lemma 4.9 in the localized category)

S(B(S)) =
{
f ∈ Arrows(D) such that there exists a distinguished

triangle (X,Y, Z, f, g, h) of D with Q(Z) = 0

}
= {f ∈ Arrows(D) | Q(f) is an isomorphism}

= Ŝ = S′

in the notation of Categories, Lemma 27.21. The final statement of that lemma finishes the
proof. �

Lemma 6.11. LetH : D → A be a homological functor from a triangulated category
D to an abelian categoryA, see Definition 3.5. The subcategory Ker(H) ofD is a strictly
full saturated triangulated subcategory ofDwhose corresponding saturated multiplicative
system (see Lemma 6.10) is the set

S = {f ∈ Arrows(D) | Hi(f) is an isomorphism for all i ∈ Z}.

The functor H factors through the quotient functor Q : D → D/Ker(H).

Proof. The category Ker(H) is a strictly full saturated triangulated subcategory of
D by Lemma 6.3. The set S is a saturated multiplicative system compatible with the tri-
angulated structure by Lemma 5.5. Recall that the multiplicative system corresponding to
Ker(H) is the set{

f ∈ Arrows(D) such that there exists a distinguished triangle
(X,Y, Z, f, g, h) with Hi(Z) = 0 for all i

}
By the long exact cohomology sequence, see (3.5.1), it is clear that f is an element of this
set if and only if f is an element of S. Finally, the factorization of H through Q is a
consequence of Lemma 6.8. �
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7. Adjoints for exact functors

Results on adjoint functors between triangulated categories.

Lemma 7.1. Let F : D → D′ be an exact functor between triangulated categories. If
F admits a right adjoint G : D′ → D, then G is also an exact functor.

Proof. LetX be an object ofD andA an object ofD′. Since F is an exact functor we
see that

MorD(X,G(A[1]) = MorD′(F (X), A[1])
= MorD′(F (X)[−1], A)
= MorD′(F (X[−1]), A)
= MorD(X[−1], G(A))
= MorD(X,G(A)[1])

By Yoneda’s lemma (Categories, Lemma 3.5) we obtain a canonical isomorphismG(A)[1] =
G(A[1]). Let A → B → C → A[1] be a distinguished triangle in D′. Choose a distin-
guished triangle

G(A)→ G(B)→ X → G(A)[1]
in D. Then F (G(A)) → F (G(B)) → F (X) → F (G(A))[1] is a distinguished triangle
in D′. By TR3 we can choose a morphism of distinguished triangles

F (G(A)) //

��

F (G(B)) //

��

F (X) //

��

F (G(A))[1]

��
A // B // C // A[1]

Since G is the adjoint the new morphism determines a morphism X → G(C) such that
the diagram

G(A) //

��

G(B) //

��

X //

��

G(A)[1]

��
G(A) // G(B) // G(C) // G(A)[1]

commutes. Applying the homological functor HomD′(W,−) for an object W of D′ we
deduce from the 5 lemma that

HomD′(W,X)→ HomD′(W,G(C))

is a bijection and using the Yoneda lemma once more we conclude that X → G(C) is
an isomorphism. Hence we conclude that G(A) → G(B) → G(C) → G(A)[1] is a
distinguished triangle which is what we wanted to show. �

Lemma 7.2. Let D, D′ be triangulated categories. Let F : D → D′ and G : D′ → D
be functors. Assume that

(1) F and G are exact functors,
(2) F is fully faithful,
(3) G is a right adjoint to F , and
(4) the kernel of G is zero.

Then F is an equivalence of categories.
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Proof. Since F is fully faithful the adjunction map id → G ◦ F is an isomorphism
(Categories, Lemma 24.4). Let X be an object of D′. Choose a distinguished triangle

F (G(X))→ X → Y → F (G(X))[1]

inD′. ApplyingG and using thatG(F (G(X))) = G(X) we find a distinguished triangle

G(X)→ G(X)→ G(Y )→ G(X)[1]

Hence G(Y ) = 0. Thus Y = 0. Thus F (G(X))→ X is an isomorphism. �

8. The homotopy category

Let A be an additive category. The homotopy category K(A) of A is the category of
complexes ofAwith morphisms given by morphisms of complexes up to homotopy. Here
is the formal definition.

Definition 8.1. LetA be an additive category.
(1) We set Comp(A) = CoCh(A) be the category of (cochain) complexes.
(2) A complex K• is said to be bounded below if Kn = 0 for all n� 0.
(3) A complex K• is said to be bounded above if Kn = 0 for all n� 0.
(4) A complex K• is said to be bounded if Kn = 0 for all |n| � 0.
(5) We let Comp+(A), Comp−(A), resp. Compb(A) be the full subcategory of Comp(A)

whose objects are the complexes which are bounded below, bounded above, resp.
bounded.

(6) We let K(A) be the category with the same objects as Comp(A) but as mor-
phisms homotopy classes of maps of complexes (see Homology, Lemma 13.7).

(7) We let K+(A), K−(A), resp. Kb(A) be the full subcategory of K(A) whose
objects are bounded below, bounded above, resp. bounded complexes ofA.

It will turn out that the categories K(A), K+(A), K−(A), and Kb(A) are triangulated
categories. To prove this we first develop some machinery related to cones and split exact
sequences.

9. Cones and termwise split sequences

Let A be an additive category, and let K(A) denote the category of complexes of A with
morphisms given by morphisms of complexes up to homotopy. Note that the shift func-
tors [n] on complexes, see Homology, Definition 14.7, give rise to functors [n] : K(A)→
K(A) such that [n] ◦ [m] = [n+m] and [0] = id.

Definition 9.1. Let A be an additive category. Let f : K• → L• be a morphism of
complexes ofA. The cone of f is the complex C(f)• given by C(f)n = Ln ⊕Kn+1 and
differential

dnC(f) =
(
dnL fn+1

0 −dn+1
K

)
It comes equipped with canonical morphisms of complexes i : L• → C(f)• and p :
C(f)• → K•[1] induced by the obvious maps Ln → C(f)n → Kn+1.

In other words (K,L,C(f), f, i, p) forms a triangle:

K• → L• → C(f)• → K•[1]

The formation of this triangle is functorial in the following sense.
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Lemma 9.2. Suppose that
K•

1 f1

//

a

��

L•
1

b

��
K•

2
f2 // L•

2

is a diagram of morphisms of complexes which is commutative up to homotopy. Then
there exists a morphism c : C(f1)• → C(f2)• which gives rise to a morphism of triangles
(a, b, c) : (K•

1 , L
•
1, C(f1)•, f1, i1, p1)→ (K•

2 , L
•
2, C(f2)•, f2, i2, p2) of K(A).

Proof. Let hn : Kn
1 → Ln−1

2 be a family of morphisms such that b ◦ f1 − f2 ◦ a =
d ◦ h+ h ◦ d. Define cn by the matrix

cn =
(
bn hn+1

0 an+1

)
: Ln1 ⊕Kn+1

1 → Ln2 ⊕Kn+1
2

A matrix computation show that c is a morphism of complexes. It is trivial that c ◦ i1 =
i2 ◦ b, and it is trivial also to check that p2 ◦ c = a ◦ p1. �

Note that the morphism c : C(f1)• → C(f2)• constructed in the proof of Lemma 9.2 in
general depends on the chosen homotopy h between f2 ◦ a and b ◦ f1.

Lemma 9.3. Suppose that f : K• → L• and g : L• → M• are morphisms of
complexes such that g ◦ f is homotopic to zero. Then

(1) g factors through a morphism C(f)• →M•, and
(2) f factors through a morphism K• → C(g)•[−1].

Proof. The assumptions say that the diagram

K•
f
//

��

L•

g

��
0 // M•

commutes up to homotopy. Since the cone on 0→M• is M• the map C(f)• → C(0→
M•) = M• of Lemma 9.2 is the map in (1). The cone on K• → 0 is K•[1] and applying
Lemma 9.2 gives a map K•[1]→ C(g)•. Applying [−1] we obtain the map in (2). �

Note that the morphisms C(f)• → M• and K• → C(g)•[−1] constructed in the proof
of Lemma 9.3 in general depend on the chosen homotopy.

Definition 9.4. LetA be an additive category. A termwise split injection α : A• →
B• is a morphism of complexes such that eachAn → Bn is isomorphic to the inclusion of
a direct summand. A termwise split surjection β : B• → C• is a morphism of complexes
such that each Bn → Cn is isomorphic to the projection onto a direct summand.

Lemma 9.5. LetA be an additive category. Let

A•
f
//

a

��

B•

b
��

C• g // D•

be a diagram of morphisms of complexes commuting up to homotopy. If f is a termwise
split injection, then b is homotopic to a morphism which makes the diagram commute.
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If g is a termwise split surjection, then a is homotopic to a morphism which makes the
diagram commute.

Proof. Let hn : An → Dn−1 be a collection of morphisms such that bf − ga =
dh + hd. Suppose that πn : Bn → An are morphisms splitting the morphisms fn. Take
b′ = b − dhπ − hπd. Suppose sn : Dn → Cn are morphisms splitting the morphisms
gn : Cn → Dn. Take a′ = a+ dsh+ shd. Computations omitted. �

The following lemma can be used to replace a morphism of complexes by a morphism
where in each degree the map is the injection of a direct summand.

Lemma 9.6. Let A be an additive category. Let α : K• → L• be a morphism of
complexes ofA. There exists a factorization

K• α̃ //

α

66L̃• π // L•

such that
(1) α̃ is a termwise split injection (see Definition 9.4),
(2) there is a map of complexes s : L• → L̃• such that π ◦ s = idL• and such that

s ◦ π is homotopic to idL̃• .
Moreover, if both K• and L• are in K+(A), K−(A), or Kb(A), then so is L̃•.

Proof. We set
L̃n = Ln ⊕Kn ⊕Kn+1

and we define

dn
L̃

=

dnL 0 0
0 dnK idKn+1

0 0 −dn+1
K


In other words, L̃• = L• ⊕ C(1K•). Moreover, we set

α̃ =

 α
idKn

0


which is clearly a split injection. It is also clear that it defines a morphism of complexes.
We define

π =
(
idLn 0 0

)
so that clearly π ◦ α̃ = α. We set

s =

idLn
0
0


so that π ◦ s = idL• . Finally, let hn : L̃n → L̃n−1 be the map which maps the summand
Kn of L̃n via the identity morphism to the summand Kn of L̃n−1. Then it is a trivial
matter (see computations in remark below) to prove that

idL̃• − s ◦ π = d ◦ h+ h ◦ d

which finishes the proof of the lemma. �
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Remark 9.7. To see the last displayed equality in the proof above we can argue with
elements as follows. We have sπ(l, k, k+) = (l, 0, 0). Hence the morphism of the left
hand side maps (l, k, k+) to (0, k, k+). On the other hand h(l, k, k+) = (0, 0, k) and
d(l, k, k+) = (dl, dk + k+,−dk+). Hence (dh+ hd)(l, k, k+) = d(0, 0, k) + h(dl, dk +
k+,−dk+) = (0, k,−dk) + (0, 0, dk + k+) = (0, k, k+) as desired.

Lemma 9.8. Let A be an additive category. Let α : K• → L• be a morphism of
complexes ofA. There exists a factorization

K• i //

α

66K̃• α̃ // L•

such that
(1) α̃ is a termwise split surjection (see Definition 9.4),
(2) there is a map of complexes s : K̃• → K• such that s ◦ i = idK• and such that

i ◦ s is homotopic to idK̃• .
Moreover, if both K• and L• are in K+(A), K−(A), or Kb(A), then so is K̃•.

Proof. Dual to Lemma 9.6. Take
K̃n = Kn ⊕ Ln−1 ⊕ Ln

and we define

dn
K̃

=

dnK 0 0
0 −dn−1

L idLn
0 0 dnL


in other words K̃• = K• ⊕ C(1L•[−1]). Moreover, we set

α̃ =
(
α 0 idLn

)
which is clearly a split surjection. It is also clear that it defines a morphism of complexes.
We define

i =

idKn

0
0


so that clearly α̃ ◦ i = α. We set

s =
(
idKn 0 0

)
so that s ◦ i = idK• . Finally, let hn : K̃n → K̃n−1 be the map which maps the summand
Ln−1 of K̃n via the identity morphism to the summandLn−1 of K̃n−1. Then it is a trivial
matter to prove that

idK̃• − i ◦ s = d ◦ h+ h ◦ d
which finishes the proof of the lemma. �

Definition 9.9. Let A be an additive category. A termwise split exact sequence of
complexes ofA is a complex of complexes

0→ A• α−→ B• β−→ C• → 0
together with given direct sum decompositions Bn = An ⊕ Cn compatible with αn and
βn. We often write sn : Cn → Bn and πn : Bn → An for the maps induced by the
direct sum decompositions. According to Homology, Lemma 14.10 we get an associated
morphism of complexes

δ : C• −→ A•[1]
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which in degree n is the map πn+1 ◦ dnB ◦ sn. In other words (A•, B•, C•, α, β, δ) forms
a triangle

A• → B• → C• → A•[1]
This will be the triangle associated to the termwise split sequence of complexes.

Lemma 9.10. Let A be an additive category. Let 0 → A• → B• → C• → 0 be
termwise split exact sequences as in Definition 9.9. Let (π′)n, (s′)n be a second collection
of splittings. Denote δ′ : C• −→ A•[1] the morphism associated to this second set of
splittings. Then

(1, 1, 1) : (A•, B•, C•, α, β, δ) −→ (A•, B•, C•, α, β, δ′)

is an isomorphism of triangles in K(A).

Proof. The statement simply means that δ and δ′ are homotopic maps of complexes.
This is Homology, Lemma 14.12. �

Remark 9.11. Let A be an additive category. Let 0 → A•
i → B•

i → C•
i → 0,

i = 1, 2 be termwise split exact sequences. Suppose that a : A•
1 → A•

2 , b : B•
1 → B•

2 , and
c : C•

1 → C•
2 are morphisms of complexes such that

A•
1

a

��

// B•
1

//

b

��

C•
1

c

��
A•

2
// B•

2
// C•

2

commutes in K(A). In general, there does not exist a morphism b′ : B•
1 → B•

2 which
is homotopic to b such that the diagram above commutes in the category of complexes.
Namely, consider Examples, Equation (63.0.1). If we could replace the middle map there
by a homotopic one such that the diagram commutes, then we would have additivity of
traces which we do not.

Lemma 9.12. Let A be an additive category. Let 0 → A•
i → B•

i → C•
i → 0, i =

1, 2, 3 be termwise split exact sequences of complexes. Let b : B•
1 → B•

2 and b′ : B•
2 → B•

3
be morphisms of complexes such that

A•
1

0
��

// B•
1

//

b

��

C•
1

0
��

A•
2

// B•
2

// C•
2

and

A•
2

0
��

// B•
2

//

b′

��

C•
2

0
��

A•
3

// B•
3

// C•
3

commute in K(A). Then b′ ◦ b = 0 in K(A).

Proof. By Lemma 9.5 we can replace b and b′ by homotopic maps such that the right
square of the left diagram commutes and the left square of the right diagram commutes.
In other words, we have Im(bn) ⊂ Im(An2 → Bn2 ) and Ker((b′)n) ⊃ Im(An2 → Bn2 ).
Then b′ ◦ b = 0 as a map of complexes. �

Lemma 9.13. Let A be an additive category. Let f1 : K•
1 → L•

1 and f2 : K•
2 → L•

2
be morphisms of complexes. Let

(a, b, c) : (K•
1 , L

•
1, C(f1)•, f1, i1, p1) −→ (K•

2 , L
•
2, C(f2)•, f2, i2, p2)

be any morphism of triangles ofK(A). If a and b are homotopy equivalences then so is c.
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Proof. Let a−1 : K•
2 → K•

1 be a morphism of complexes which is inverse to a in
K(A). Let b−1 : L•

2 → L•
1 be a morphism of complexes which is inverse to b inK(A). Let

c′ : C(f2)• → C(f1)• be the morphism from Lemma 9.2 applied to f1◦a−1 = b−1◦f2. If
we can show that c◦ c′ and c′ ◦ c are isomorphisms inK(A) then we win. Hence it suffices
to prove the following: Given a morphism of triangles (1, 1, c) : (K•, L•, C(f)•, f, i, p)
in K(A) the morphism c is an isomorphism in K(A). By assumption the two squares in
the diagram

L• //

1
��

C(f)• //

c

��

K•[1]

1
��

L• // C(f)• // K•[1]

commute up to homotopy. By construction of C(f)• the rows form termwise split se-
quences of complexes. Thus we see that (c− 1)2 = 0 in K(A) by Lemma 9.12. Hence c is
an isomorphism in K(A) with inverse 2− c. �

Hence if a and b are homotopy equivalences then the resulting morphism of triangles is an
isomorphism of triangles in K(A). It turns out that the collection of triangles of K(A)
given by cones and the collection of triangles of K(A) given by termwise split sequences
of complexes are the same up to isomorphisms, at least up to sign!

Lemma 9.14. LetA be an additive category.
(1) Given a termwise split sequence of complexes (α : A• → B•, β : B• →

C•, sn, πn) there exists a homotopy equivalence C(α)• → C• such that the
diagram

A• //

��

B•

��

// C(α)•
−p
//

��

A•[1]

��
A• // B• // C• δ // A•[1]

defines an isomorphism of triangles in K(A).
(2) Given a morphism of complexes f : K• → L• there exists an isomorphism of

triangles

K• //

��

L̃•

��

// M•
δ
//

��

K•[1]

��
K• // L• // C(f)• −p // K•[1]

where the upper triangle is the triangle associated to a termwise split exact se-
quence K• → L̃• →M•.

Proof. Proof of (1). We have C(α)n = Bn⊕An+1 and we simply define C(α)n →
Cn via the projection onto Bn followed by βn. This defines a morphism of complexes
because the compositions An+1 → Bn+1 → Cn+1 are zero. To get a homotopy inverse
we take C• → C(α)• given by (sn,−δn) in degree n. This is a morphism of complexes
because the morphism δn can be characterized as the unique morphism Cn → An+1 such
that d ◦ sn − sn+1 ◦ d = α ◦ δn, see proof of Homology, Lemma 14.10. The composition
C• → C(α)• → C• is the identity. The composition C(α)• → C• → C(α)• is equal to



9. CONES AND TERMWISE SPLIT SEQUENCES 1055

the morphism (
sn ◦ βn 0
−δn ◦ βn 0

)
To see that this is homotopic to the identity map use the homotopy hn : C(α)n →
C(α)n−1 given by the matrix(

0 0
πn 0

)
: C(α)n = Bn ⊕An+1 → Bn−1 ⊕An = C(α)n−1

It is trivial to verify that(
1 0
0 1

)
−
(
sn

−δn
)(

βn 0
)

=
(
d αn

0 −d

)(
0 0
πn 0

)
+
(

0 0
πn+1 0

)(
d αn+1

0 −d

)
To finish the proof of (1) we have to show that the morphisms −p : C(α)• → A•[1] (see
Definition 9.1) and C(α)• → C• → A•[1] agree up to homotopy. This is clear from
the above. Namely, we can use the homotopy inverse (s,−δ) : C• → C(α)• and check
instead that the two maps C• → A•[1] agree. And note that p ◦ (s,−δ) = −δ as desired.

Proof of (2). We let f̃ : K• → L̃•, s : L• → L̃• and π : L̃• → L• be as in Lemma 9.6.
By Lemmas 9.2 and 9.13 the triangles (K•, L•, C(f), i, p) and (K•, L̃•, C(f̃), ĩ, p̃) are
isomorphic. Note that we can compose isomorphisms of triangles. Thus we may replace
L• by L̃• and f by f̃ . In other words we may assume that f is a termwise split injection.
In this case the result follows from part (1). �

Lemma 9.15. LetA be an additive category. LetA•
1 → A•

2 → . . .→ A•
n be a sequence

of composable morphisms of complexes. There exists a commutative diagram

A•
1

// A•
2

// . . . // A•
n

B•
1

//

OO

B•
2

//

OO

. . . // B•
n

OO

such that each morphismB•
i → B•

i+1 is a split injection and eachB•
i → A•

i is a homotopy
equivalence. Moreover, if all A•

i are in K+(A), K−(A), or Kb(A), then so are the B•
i .

Proof. The case n = 1 is without content. Lemma 9.6 is the case n = 2. Suppose
we have constructed the diagram except for B•

n. Apply Lemma 9.6 to the composition
B•
n−1 → A•

n−1 → A•
n. The result is a factorization B•

n−1 → B•
n → A•

n as desired. �

Lemma 9.16. Let A be an additive category. Let (α : A• → B•, β : B• →
C•, sn, πn) be a termwise split sequence of complexes. Let (A•, B•, C•, α, β, δ) be the
associated triangle. Then the triangle (C•[−1], A•, B•, δ[−1], α, β) is isomorphic to the
triangle (C•[−1], A•, C(δ[−1])•, δ[−1], i, p).

Proof. We writeBn = An⊕Cn and we identify αn and βn with the natural inclu-
sion and projection maps. By construction of δ we have

dnB =
(
dnA δn

0 dnC

)
On the other hand the cone of δ[−1] : C•[−1]→ A• is given as C(δ[−1])n = An ⊕ Cn
with differential identical with the matrix above! Whence the lemma. �
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Lemma 9.17. Let A be an additive category. Let f : K• → L• be a morphism
of complexes. The triangle (L•, C(f)•,K•[1], i, p, f [1]) is the triangle associated to the
termwise split sequence

0→ L• → C(f)• → K•[1]→ 0
coming from the definition of the cone of f .

Proof. Immediate from the definitions. �

10. Distinguished triangles in the homotopy category

Since we want our boundary maps in long exact sequences of cohomology to be given
by the maps in the snake lemma without signs we define distinguished triangles in the
homotopy category as follows.

Definition 10.1. LetA be an additive category. A triangle (X,Y, Z, f, g, h) ofK(A)
is called a distinguished triangle of K(A) if it is isomorphic to the triangle associated
to a termwise split exact sequence of complexes, see Definition 9.9. Same definition for
K+(A), K−(A), and Kb(A).

Note that according to Lemma 9.14 a triangle of the form (K•, L•, C(f)•, f, i,−p) is a
distinguished triangle. This does indeed lead to a triangulated category, see Proposition
10.3. Before we can prove the proposition we need one more lemma in order to be able to
prove TR4.

Lemma 10.2. Let A be an additive category. Suppose that α : A• → B• and
β : B• → C• are split injections of complexes. Then there exist distinguished triangles
(A•, B•, Q•

1, α, p1, d1), (A•, C•, Q•
2, β ◦ α, p2, d2) and (B•, C•, Q•

3, β, p3, d3) for which
TR4 holds.

Proof. Say πn1 : Bn → An, and πn3 : Cn → Bn are the splittings. Then also
A• → C• is a split injection with splittings πn2 = πn1 ◦ πn3 . Let us write Q•

1 , Q•
2 and

Q•
3 for the “quotient” complexes. In other words, Qn1 = Ker(πn1 ), Qn3 = Ker(πn3 ) and

Qn2 = Ker(πn2 ). Note that the kernels exist. Then Bn = An ⊕Qn1 and Cn = Bn ⊕Qn3 ,
where we think ofAn as a subobject ofBn and so on. This implies Cn = An⊕Qn1 ⊕Qn3 .
Note that πn2 = πn1 ◦ πn3 is zero on both Qn1 and Qn3 . Hence Qn2 = Qn1 ⊕ Qn3 . Consider
the commutative diagram

0 → A• → B• → Q•
1 → 0

↓ ↓ ↓
0 → A• → C• → Q•

2 → 0
↓ ↓ ↓

0 → B• → C• → Q•
3 → 0

The rows of this diagram are termwise split exact sequences, and hence determine distin-
guished triangles by definition. Moreover downward arrows in the diagram above are
compatible with the chosen splittings and hence define morphisms of triangles

(A• → B• → Q•
1 → A•[1]) −→ (A• → C• → Q•

2 → A•[1])
and

(A• → C• → Q•
2 → A•[1]) −→ (B• → C• → Q•

3 → B•[1]).
Note that the splittings Qn3 → Cn of the bottom split sequence in the diagram provides a
splitting for the split sequence 0 → Q•

1 → Q•
2 → Q•

3 → 0 upon composing with Cn →
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Qn2 . It follows easily from this that the morphism δ : Q•
3 → Q•

1[1] in the corresponding
distinguished triangle

(Q•
1 → Q•

2 → Q•
3 → Q•

1[1])
is equal to the composition Q•

3 → B•[1] → Q•
1[1]. Hence we get a structure as in the

conclusion of axiom TR4. �

Proposition 10.3. LetA be an additive category. The category K(A) of complexes
up to homotopy with its natural translation functors and distinguished triangles as defined
above is a triangulated category.

Proof. Proof of TR1. By definition every triangle isomorphic to a distinguished one
is distinguished. Also, any triangle (A•, A•, 0, 1, 0, 0) is distinguished since 0 → A• →
A• → 0 → 0 is a termwise split sequence of complexes. Finally, given any morphism of
complexes f : K• → L• the triangle (K,L,C(f), f, i,−p) is distinguished by Lemma
9.14.
Proof of TR2. Let (X,Y, Z, f, g, h) be a triangle. Assume (Y, Z,X[1], g, h,−f [1]) is dis-
tinguished. Then there exists a termwise split sequence of complexes A• → B• → C•

such that the associated triangle (A•, B•, C•, α, β, δ) is isomorphic to (Y, Z,X[1], g, h,−f [1]).
Rotating back we see that (X,Y, Z, f, g, h) is isomorphic to (C•[−1], A•, B•,−δ[−1], α, β).
It follows from Lemma 9.16 that the triangle (C•[−1], A•, B•, δ[−1], α, β) is isomorphic
to (C•[−1], A•, C(δ[−1])•, δ[−1], i, p). Precomposing the previous isomorphism of tri-
angles with−1 onY it follows that (X,Y, Z, f, g, h) is isomorphic to (C•[−1], A•, C(δ[−1])•, δ[−1], i,−p).
Hence it is distinguished by Lemma 9.14. On the other hand, suppose that (X,Y, Z, f, g, h)
is distinguished. By Lemma 9.14 this means that it is isomorphic to a triangle of the
form (K•, L•, C(f), f, i,−p) for some morphism of complexes f . Then the rotated tri-
angle (Y, Z,X[1], g, h,−f [1]) is isomorphic to (L•, C(f),K•[1], i,−p,−f [1]) which is
isomorphic to the triangle (L•, C(f),K•[1], i, p, f [1]). By Lemma 9.17 this triangle is
distinguished. Hence (Y, Z,X[1], g, h,−f [1]) is distinguished as desired.
Proof of TR3. Let (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) be distinguished triangles
of K(A) and let a : X → X ′ and b : Y → Y ′ be morphisms such that f ′ ◦ a =
b ◦ f . By Lemma 9.14 we may assume that (X,Y, Z, f, g, h) = (X,Y,C(f), f, i,−p)
and (X ′, Y ′, Z ′, f ′, g′, h′) = (X ′, Y ′, C(f ′), f ′, i′,−p′). At this point we simply apply
Lemma 9.2 to the commutative diagram given by f, f ′, a, b.
Proof of TR4. At this point we know thatK(A) is a pre-triangulated category. Hence we
can use Lemma 4.15. LetA• → B• andB• → C• be composable morphisms ofK(A). By
Lemma 9.15 we may assume that A• → B• and B• → C• are split injective morphisms.
In this case the result follows from Lemma 10.2. �

Remark 10.4. LetA be an additive category. Exactly the same proof as the proof of
Proposition 10.3 shows that the categories K+(A), K−(A), and Kb(A) are triangulated
categories. Namely, the cone of a morphism between bounded (above, below) is bounded
(above, below). But we prove below that these are triangulated subcategories of K(A)
which gives another proof.

Lemma 10.5. Let A be an additive category. The categories K+(A), K−(A), and
Kb(A) are full triangulated subcategories of K(A).

Proof. Each of the categories mentioned is a full additive subcategory. We use the
criterion of Lemma 4.16 to show that they are triangulated subcategories. It is clear that
each of the categories K+(A), K−(A), and Kb(A) is preserved under the shift functors
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[1], [−1]. Finally, suppose that f : A• → B• is a morphism inK+(A),K−(A), orKb(A).
Then (A•, B•, C(f)•, f, i,−p) is a distinguished triangle ofK(A) withC(f)• ∈ K+(A),
K−(A), orKb(A) as is clear from the construction of the cone. Thus the lemma is proved.
(Alternatively, K• → L• is isomorphic to an termwise split injection of complexes in
K+(A), K−(A), or Kb(A), see Lemma 9.6 and then one can directly take the associated
distinguished triangle.) �

Lemma 10.6. LetA, B be additive categories. Let F : A → B be an additive functor.
The induced functors

F : K(A) −→ K(B)
F : K+(A) −→ K+(B)
F : K−(A) −→ K−(B)
F : Kb(A) −→ Kb(B)

are exact functors of triangulated categories.

Proof. SupposeA• → B• → C• is a termwise split sequence of complexes ofAwith
splittings (sn, πn) and associated morphism δ : C• → A•[1], see Definition 9.9. Then
F (A•) → F (B•) → F (C•) is a termwise split sequence of complexes with splittings
(F (sn), F (πn)) and associated morphismF (δ) : F (C•)→ F (A•)[1]. ThusF transforms
distinguished triangles into distinguished triangles. �

Lemma 10.7. Let A be an additive category. Let (A•, B•, C•, a, b, c) be a distin-
guished triangle inK(A). Then there exists an isomorphic distinguished triangle (A•, (B′)•, C•, a′, b′, c)
such that 0→ An → (B′)n → Cn → 0 is a split short exact sequence for all n.

Proof. We will use that K(A) is a triangulated category by Proposition 10.3. Let
W • be the cone on c : C• → A•[1] with its maps i : A•[1] → W • and p : W • → C•[1].
Then (C•, A•[1],W •, c, i,−p) is a distinguished triangle by Lemma 9.14. Rotating back-
wards twice we see that (A•,W •[−1], C•,−i[−1], p[−1], c) is a distinguished triangle.
By TR3 there is a morphism of distinguished triangles (id, β, id) : (A•, B•, C•, a, b, c)→
(A•,W •[−1], C•,−i[−1], p[−1], c) which must be an isomorphism by Lemma 4.3. This
finishes the proof because 0→ A• → W •[−1]→ C• → 0 is a termwise split short exact
sequence of complexes by the very construction of cones in Section 9. �

Remark 10.8. LetA be an additive category with countable direct sums. Let DoubleComp(A)
denote the category of double complexes inA, see Homology, Section 18. We can use this
category to construct two triangulated categories.

(1) We can consider an object A•,• of DoubleComp(A) as a complex of complexes
as follows

. . .→ A•,−1 → A•,0 → A•,1 → . . .

and take the homotopy categoryKfirst(DoubleComp(A)) with the correspond-
ing triangulated structure given by Proposition 10.3. By Homology, Remark
18.6 the functor

Tot : Kfirst(DoubleComp(A)) −→ K(A)

is an exact functor of triangulated categories.
(2) We can consider an object A•,• of DoubleComp(A) as a complex of complexes

as follows
. . .→ A−1,• → A0,• → A1,• → . . .



11. DERIVED CATEGORIES 1059

and take the homotopy categoryKsecond(DoubleComp(A)) with the correspond-
ing triangulated structure given by Proposition 10.3. By Homology, Remark
18.7 the functor

Tot : Ksecond(DoubleComp(A)) −→ K(A)
is an exact functor of triangulated categories.

Remark 10.9. Let A, B, C be additive categories and assume C has countable direct
sums. Suppose that

⊗ : A× B −→ C, (X,Y ) 7−→ X ⊗ Y
is a functor which is bilinear on morphisms. This determines a functor

Comp(A)× Comp(B) −→ DoubleComp(C), (X•, Y •) 7−→ X• ⊗ Y •

See Homology, Example 18.2.
(1) For a fixed object X• of Comp(A) the functor

K(B) −→ K(C), Y • 7−→ Tot(X• ⊗ Y •)
is an exact functor of triangulated categories.

(2) For a fixed object Y • of Comp(B) the functor
K(A) −→ K(C), X• 7−→ Tot(X• ⊗ Y •)

is an exact functor of triangulated categories.
This follows from Remark 10.8 since the functors Comp(A) → DoubleComp(C), Y • 7→
X•⊗Y • and Comp(B)→ DoubleComp(C),X• 7→ X•⊗Y • are immediately seen to be
compatible with homotopies and termwise split short exact sequences and hence induce
exact functors of triangulated categories

K(B)→ Kfirst(DoubleComp(C)) and K(A)→ Ksecond(DoubleComp(C))
Observe that for the first of the two the isomorphism

Tot(X• ⊗ Y •[1]) ∼= Tot(X• ⊗ Y •)[1]
involves signs (this goes back to the signs chosen in Homology, Remark 18.5).

11. Derived categories

In this section we construct the derived category of an abelian categoryA by inverting the
quasi-isomorphisms inK(A). Before we do this recall that the functorsHi : Comp(A)→
A factor throughK(A), see Homology, Lemma 13.11. Moreover, in Homology, Definition
14.8 we have defined identifications Hi(K•[n]) = Hi+n(K•). At this point it makes
sense to redefine

Hi(K•) = H0(K•[i])
in order to avoid confusion and possible sign errors.

Lemma 11.1. LetA be an abelian category. The functor
H0 : K(A) −→ A

is homological.

Proof. Because H0 is a functor, and by our definition of distinguished triangles it
suffices to prove that given a termwise split short exact sequence of complexes 0→ A• →
B• → C• → 0 the sequence H0(A•)→ H0(B•)→ H0(C•) is exact. This follows from
Homology, Lemma 13.12. �
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In particular, this lemma implies that a distinguished triangle (X,Y, Z, f, g, h) in K(A)
gives rise to a long exact cohomology sequence

(11.1.1) . . . // Hi(X)
Hi(f) // Hi(Y )

Hi(g) // Hi(Z)
Hi(h)// Hi+1(X) // . . .

see (3.5.1). Moreover, there is a compatibility with the long exact sequence of cohomology
associated to a short exact sequence of complexes (insert future reference here). For ex-
ample, if (A•, B•, C•, α, β, δ) is the distinguished triangle associated to a termwise split
exact sequence of complexes (see Definition 9.9), then the cohomology sequence above
agrees with the one defined using the snake lemma, see Homology, Lemma 13.12 and for
agreement of sequences, see Homology, Lemma 14.11.

Recall that a complex K• is acyclic if Hi(K•) = 0 for all i ∈ Z. Moreover, recall that a
morphism of complexes f : K• → L• is a quasi-isomorphism if and only if Hi(f) is an
isomorphism for all i. See Homology, Definition 13.10.

Lemma 11.2. Let A be an abelian category. The full subcategory Ac(A) of K(A)
consisting of acyclic complexes is a strictly full saturated triangulated subcategory of
K(A). The corresponding saturated multiplicative system (see Lemma 6.10) of K(A) is
the set Qis(A) of quasi-isomorphisms. In particular, the kernel of the localization functor
Q : K(A)→ Qis(A)−1K(A) is Ac(A) and the functor H0 factors through Q.

Proof. We know thatH0 is a homological functor by Lemma 11.1. Thus this lemma
is a special case of Lemma 6.11. �

Definition 11.3. LetA be an abelian category. Let Ac(A) and Qis(A) be as in Lemma
11.2. The derived category ofA is the triangulated category

D(A) = K(A)/Ac(A) = Qis(A)−1K(A).

We denote H0 : D(A) → A the unique functor whose composition with the quotient
functor gives back the functor H0 defined above. Using Lemma 6.4 we introduce the
strictly full saturated triangulated subcategories D+(A), D−(A), Db(A) whose sets of
objects are

Ob(D+(A)) = {X ∈ Ob(D(A)) | Hn(X) = 0 for all n� 0}
Ob(D−(A)) = {X ∈ Ob(D(A)) | Hn(X) = 0 for all n� 0}
Ob(Db(A)) = {X ∈ Ob(D(A)) | Hn(X) = 0 for all |n| � 0}

The category Db(A) is called the bounded derived category ofA.

If K• and L• are complexes of A then we sometimes say “K• is quasi-isomorphic to L•”
to indicate that K• and L• are isomorphic objects of D(A).

Remark 11.4. In this chapter, we consistently work with “small” abelian categories
(as is the convention in the Stacks project). For a “big” abelian category A, it isn’t clear
that the derived categoryD(A) exists, because it isn’t clear that morphisms in the derived
category are sets. In fact, in general they aren’t, see Examples, Lemma 61.1. However,
if A is a Grothendieck abelian category, and given K•, L• in K(A), then by Injectives,
Theorem 12.6 there exists a quasi-isomorphism L• → I• to a K-injective complex I• and
Lemma 31.2 shows that

HomD(A)(K•, L•) = HomK(A)(K•, I•)
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which is a set. Some examples of Grothendieck abelian categories are the category of
modules over a ring, or more generally the category of sheaves of modules on a ringed
site.

Each of the variants D+(A), D−(A), Db(A) can be constructed as a localization of the
corresponding homotopy category. This relies on the following simple lemma.

Lemma 11.5. LetA be an abelian category. Let K• be a complex.
(1) If Hn(K•) = 0 for all n� 0, then there exists a quasi-isomorphism K• → L•

with L• bounded below.
(2) IfHn(K•) = 0 for all n� 0, then there exists a quasi-isomorphismM• → K•

with M• bounded above.
(3) If Hn(K•) = 0 for all |n| � 0, then there exists a commutative diagram of

morphisms of complexes

K• // L•

M•

OO

// N•

OO

where all the arrows are quasi-isomorphisms, L• bounded below, M• bounded
above, and N• a bounded complex.

Proof. Pick a � 0 � b and set M• = τ≤bK
•, L• = τ≥aK

•, and N• = τ≤bL
• =

τ≥aM
•. See Homology, Section 15 for the truncation functors. �

To state the following lemma denote Ac+(A), Ac−(A), resp. Acb(A) the intersection of
K+(A),K−(A), resp.Kb(A) with Ac(A). Denote Qis+(A), Qis−(A), resp. Qisb(A) the
intersection of K+(A), K−(A), resp. Kb(A) with Qis(A).

Lemma 11.6. Let A be an abelian category. The subcategories Ac+(A), Ac−(A),
resp. Acb(A) are strictly full saturated triangulated subcategories ofK+(A),K−(A), resp.
Kb(A). The corresponding saturated multiplicative systems (see Lemma 6.10) are the sets
Qis+(A), Qis−(A), resp. Qisb(A).

(1) The kernel of the functor K+(A) → D+(A) is Ac+(A) and this induces an
equivalence of triangulated categories

K+(A)/Ac+(A) = Qis+(A)−1K+(A) −→ D+(A)

(2) The kernel of the functor K−(A) → D−(A) is Ac−(A) and this induces an
equivalence of triangulated categories

K−(A)/Ac−(A) = Qis−(A)−1K−(A) −→ D−(A)

(3) The kernel of the functorKb(A)→ Db(A) is Acb(A) and this induces an equiv-
alence of triangulated categories

Kb(A)/Acb(A) = Qisb(A)−1Kb(A) −→ Db(A)

Proof. The initial statements follow from Lemma 6.11 by considering the restriction
of the homological functor H0. The statement on kernels in (1), (2), (3) is a consequence
of the definitions in each case. Each of the functors is essentially surjective by Lemma 11.5.
To finish the proof we have to show the functors are fully faithful. We first do this for
the bounded below version.
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Suppose that K•, L• are bounded above complexes. A morphism between these in D(A)
is of the form s−1f for a pair f : K• → (L′)•, s : L• → (L′)• where s is a quasi-
isomorphism. This implies that (L′)• has cohomology bounded below. Hence by Lemma
11.5 we can choose a quasi-isomorphism s′ : (L′)• → (L′′)• with (L′′)• bounded below.
Then the pair (s′ ◦f, s′ ◦ s) defines a morphism in Qis+(A)−1K+(A). Hence the functor
is “full”. Finally, suppose that the pair f : K• → (L′)•, s : L• → (L′)• defines a
morphism in Qis+(A)−1K+(A) which is zero in D(A). This means that there exists a
quasi-isomorphism s′ : (L′)• → (L′′)• such that s′ ◦ f = 0. Using Lemma 11.5 once more
we obtain a quasi-isomorphism s′′ : (L′′)• → (L′′′)• with (L′′′)• bounded below. Thus
we see that s′′ ◦ s′ ◦ f = 0 which implies that s−1f is zero in Qis+(A)−1K+(A). This
finishes the proof that the functor in (1) is an equivalence.

The proof of (2) is dual to the proof of (1). To prove (3) we may use the result of (2).
Hence it suffices to prove that the functor Qisb(A)−1Kb(A) → Qis−(A)−1K−(A) is
fully faithful. The argument given in the previous paragraph applies directly to show
this where we consistently work with complexes which are already bounded above. �

12. The canonical delta-functor

The derived category should be the receptacle for the universal cohomology functor. In
order to state the result we use the notion of a δ-functor from an abelian category into a
triangulated category, see Definition 3.6.

Consider the functor Comp(A)→ K(A). This functor is not a δ-functor in general. The
easiest way to see this is to consider a nonsplit short exact sequence 0→ A→ B → C → 0
of objects of A. Since HomK(A)(C[0], A[1]) = 0 we see that any distinguished triangle
arising from this short exact sequence would look like (A[0], B[0], C[0], a, b, 0). But the
existence of such a distinguished triangle in K(A) implies that the extension is split. A
contradiction.

It turns out that the functor Comp(A) → D(A) is a δ-functor. In order to see this we
have to define the morphisms δ associated to a short exact sequence

0→ A• a−→ B• b−→ C• → 0

of complexes in the abelian categoryA. Consider the cone C(a)• of the morphism a. We
have C(a)n = Bn ⊕ An+1 and we define qn : C(a)n → Cn via the projection to Bn
followed by bn. Hence a morphism of complexes

q : C(a)• −→ C•.

It is clear that q ◦ i = b where i is as in Definition 9.1. Note that, as a• is injective in each
degree, the kernel of q is identified with the cone of idA• which is acyclic. Hence we see
that q is a quasi-isomorphism. According to Lemma 9.14 the triangle

(A,B,C(a), a, i,−p)

is a distinguished triangle in K(A). As the localization functor K(A) → D(A) is exact
we see that (A,B,C(a), a, i,−p) is a distinguished triangle in D(A). Since q is a quasi-
isomorphism we see that q is an isomorphism in D(A). Hence we deduce that

(A,B,C, a, b,−p ◦ q−1)

is a distinguished triangle of D(A). This suggests the following lemma.
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Lemma 12.1. LetA be an abelian category. The functor Comp(A)→ D(A) defined
has the natural structure of a δ-functor, with

δA•→B•→C• = −p ◦ q−1

with p and q as explained above. The same construction turns the functors Comp+(A)→
D+(A), Comp−(A)→ D−(A), and Compb(A)→ Db(A) into δ-functors.

Proof. We have already seen that this choice leads to a distinguished triangle when-
ever given a short exact sequence of complexes. We have to show that given a commutative
diagram

0 // A•
a
//

f

��

B•
b
//

g

��

C• //

h

��

0

0 // (A′)• a′
// (B′)• b′

// (C ′)• // 0
we get the desired commutative diagram of Definition 3.6 (2). By Lemma 9.2 the pair
(f, g) induces a canonical morphism c : C(a)• → C(a′)•. It is a simple computation to
show that q′ ◦ c = h ◦ q and f [1] ◦ p = p′ ◦ c. From this the result follows directly. �

Lemma 12.2. LetA be an abelian category. Let

0 // A• //

��

B• //

��

C• //

��

0

0 // D• // E• // F • // 0
be a commutative diagram of morphisms of complexes such that the rows are short exact
sequences of complexes, and the vertical arrows are quasi-isomorphisms. The δ-functor
of Lemma 12.1 above maps the short exact sequences 0 → A• → B• → C• → 0 and
0→ D• → E• → F • → 0 to isomorphic distinguished triangles.

Proof. Trivial from the fact that K(A) → D(A) transforms quasi-isomorphisms
into isomorphisms and that the associated distinguished triangles are functorial. �

Lemma 12.3. LetA be an abelian category. Let

0 // A• // B• // C• // 0
be a short exact sequences of complexes. Assume this short exact sequence is termwise
split. Let (A•, B•, C•, α, β, δ) be the distinguished triangle of K(A) associated to the
sequence. The δ-functor of Lemma 12.1 above maps the short exact sequences 0→ A• →
B• → C• → 0 to a triangle isomorphic to the distinguished triangle

(A•, B•, C•, α, β, δ).

Proof. Follows from Lemma 9.14. �

Remark 12.4. Let A be an abelian category. Let K• be a complex of A. Let a ∈ Z.
We claim there is a canonical distinguished triangle

τ≤aK
• → K• → τ≥a+1K

• → (τ≤aK
•)[1]

inD(A). Here we have used the canonical truncation functors τ from Homology, Section
15. Namely, we first take the distinguished triangle associated by our δ-functor (Lemma
12.1) to the short exact sequence of complexes

0→ τ≤aK
• → K• → K•/τ≤aK

• → 0
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Next, we use that the mapK• → τ≥a+1K
• factors through a quasi-isomorphismK•/τ≤aK

• →
τ≥a+1K

• by the description of cohomology groups in Homology, Section 15. In a similar
way we obtain canonical distinguished triangles

τ≤aK
• → τ≤a+1K

• → Ha+1(K•)[−a− 1]→ (τ≤aK
•)[1]

and
Ha(K•)[−a]→ τ≥aK

• → τ≥a+1K
• → Ha(K•)[−a+ 1]

Lemma 12.5. LetA be an abelian category. Let

K•
0 → K•

1 → . . .→ K•
n

be maps of complexes such that
(1) Hi(K•

0 ) = 0 for i > 0,
(2) H−j(K•

j )→ H−j(K•
j+1) is zero.

Then the composition K•
0 → K•

n factors through τ≤−nK
•
n → K•

n in D(A). Dually,
given maps of complexes

K•
n → K•

n−1 → . . .→ K•
0

such that
(1) Hi(K•

0 ) = 0 for i < 0,
(2) Hj(K•

j+1)→ Hj(K•
j ) is zero,

then the composition K•
n → K•

0 factors through K•
n → τ≥nK

•
n in D(A).

Proof. The case n = 1. Since τ≤0K
•
0 = K•

0 in D(A) we can replace K•
0 by τ≤0K

•
0

and K•
1 by τ≤0K

•
1 . Consider the distinguished triangle

τ≤−1K
•
1 → K•

1 → H0(K•
1 )[0]→ (τ≤−1K

•
1 )[1]

(Remark 12.4). The composition K•
0 → K•

1 → H0(K•
1 )[0] is zero as it is equal to K•

0 →
H0(K•

0 )[0]→ H0(K•
1 )[0] which is zero by assumption. The fact that HomD(A)(K•

0 ,−)
is a homological functor (Lemma 4.2), allows us to find the desired factorization. Forn = 2
we get a factorization K•

0 → τ≤−1K
•
1 by the case n = 1 and we can apply the case n = 1

to the map of complexes τ≤−1K
•
1 → τ≤−1K

•
2 to get a factorization τ≤−1K

•
1 → τ≤−2K

•
2 .

The general case is proved in exactly the same manner. �

13. Filtered derived categories

A reference for this section is [?, I, Chapter V]. Let A be an abelian category. In this sec-
tion we will define the filtered derived category DF (A) of A. In short, we will define it
as the derived category of the exact category of objects of A endowed with a finite filtra-
tion. (Thus our construction is a special case of a more general construction of the derived
category of an exact category, see for example [?], [?].) Illusie’s filtered derived category
is the full subcategory of ours consisting of those objects whose filtration is finite. (In our
category the filtration is still finite in each degree, but may not be uniformly bounded.)
The rationale for our choice is that it is not harder and it allows us to apply the discussion
to the spectral sequences of Lemma 21.3, see also Remark 21.4.

We will use the notation regarding filtered objects introduced in Homology, Section 19.
The category of filtered objects of A is denoted Fil(A). All filtrations will be decreasing
by fiat.
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Definition 13.1. LetA be an abelian category. The category of finite filtered objects
ofA is the category of filtered objects (A,F ) ofA whose filtration F is finite. We denote
it Filf (A).

Thus Filf (A) is a full subcategory of Fil(A). For each p ∈ Z there is a functor grp :
Filf (A)→ A. There is a functor

gr =
⊕

p∈Z
grp : Filf (A)→ Gr(A)

where Gr(A) is the category of graded objects of A, see Homology, Definition 16.1. Fi-
nally, there is a functor

(forget F ) : Filf (A) −→ A
which associates to the filtered object (A,F ) the underlying object of A. The category
Filf (A) is an additive category, but not abelian in general, see Homology, Example 3.13.
Because the functors grp, gr, (forget F ) are additive they induce exact functors of trian-
gulated categories

grp, (forget F ) : K(Filf (A))→ K(A) and gr : K(Filf (A))→ K(Gr(A))
by Lemma 10.6. By analogy with the case of the homotopy category of an abelian category
we make the following definitions.

Definition 13.2. LetA be an abelian category.
(1) Let α : K• → L• be a morphism of K(Filf (A)). We say that α is a filtered

quasi-isomorphism if the morphism gr(α) is a quasi-isomorphism.
(2) Let K• be an object of K(Filf (A)). We say that K• is filtered acyclic if the

complex gr(K•) is acyclic.

Note that α : K• → L• is a filtered quasi-isomorphism if and only if each grp(α) is a
quasi-isomorphism. Similarly a complexK• is filtered acyclic if and only if each grp(K•)
is acyclic.

Lemma 13.3. LetA be an abelian category.
(1) The functor K(Filf (A)) −→ Gr(A), K• 7−→ H0(gr(K•)) is homological.
(2) The functor K(Filf (A))→ A, K• 7−→ H0(grp(K•)) is homological.
(3) The functor K(Filf (A)) −→ A, K• 7−→ H0((forget F )K•) is homological.

Proof. This follows from the fact that H0 : K(A)→ A is homological, see Lemma
11.1 and the fact that the functors gr, grp, (forget F ) are exact functors of triangulated
categories. See Lemma 4.20. �

Lemma 13.4. LetA be an abelian category. The full subcategory FAc(A) ofK(Filf (A))
consisting of filtered acyclic complexes is a strictly full saturated triangulated subcategory
of K(Filf (A)). The corresponding saturated multiplicative system (see Lemma 6.10) of
K(Filf (A)) is the set FQis(A) of filtered quasi-isomorphisms. In particular, the kernel of
the localization functor

Q : K(Filf (A)) −→ FQis(A)−1K(Filf (A))
is FAc(A) and the functor H0 ◦ gr factors through Q.

Proof. We know that H0 ◦ gr is a homological functor by Lemma 13.3. Thus this
lemma is a special case of Lemma 6.11. �
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Definition 13.5. Let A be an abelian category. Let FAc(A) and FQis(A) be as in
Lemma 13.4. The filtered derived category ofA is the triangulated category

DF (A) = K(Filf (A))/FAc(A) = FQis(A)−1K(Filf (A)).

Lemma 13.6. The functors grp, gr, (forget F ) induce canonical exact functors

grp, gr, (forget F ) : DF (A) −→ D(A)

which commute with the localization functors.

Proof. This follows from the universal property of localization, see Lemma 5.7, pro-
vided we can show that a filtered quasi-isomorphism is turned into a quasi-isomorphism
by each of the functors grp, gr, (forget F ). This is true by definition for the first two. For
the last one the statement we have to do a little bit of work. Let f : K• → L• be a filtered
quasi-isomorphism inK(Filf (A)). Choose a distinguished triangle (K•, L•,M•, f, g, h)
which contains f . Then M• is filtered acyclic, see Lemma 13.4. Hence by the correspond-
ing lemma forK(A) it suffices to show that a filtered acyclic complex is an acyclic complex
if we forget the filtration. This follows from Homology, Lemma 19.15. �

Definition 13.7. Let A be an abelian category. The bounded filtered derived cate-
gory DF b(A) is the full subcategory of DF (A) with objects those X such that gr(X) ∈
Db(A). Similarly for the bounded below filtered derived category DF+(A) and the
bounded above filtered derived category DF−(A).

Lemma 13.8. LetA be an abelian category. Let K• ∈ K(Filf (A)).
(1) If Hn(gr(K•)) = 0 for all n < a, then there exists a filtered quasi-isomorphism

K• → L• with Ln = 0 for all n < a.
(2) If Hn(gr(K•)) = 0 for all n > b, then there exists a filtered quasi-isomorphism

M• → K• with Mn = 0 for all n > b.
(3) If Hn(gr(K•)) = 0 for all |n| � 0, then there exists a commutative diagram of

morphisms of complexes

K• // L•

M•

OO

// N•

OO

where all the arrows are filtered quasi-isomorphisms, L• bounded below, M•

bounded above, and N• a bounded complex.

Proof. Suppose that Hn(gr(K•)) = 0 for all n < a. By Homology, Lemma 19.15
the sequence

Ka−1 da−2

−−−→ Ka−1 da−1

−−−→ Ka

is an exact sequence of objects of A and the morphisms da−2 and da−1 are strict. Hence
Coim(da−1) = Im(da−1) in Filf (A) and the map gr(Im(da−1)) → gr(Ka) is injective
with image equal to the image of gr(Ka−1)→ gr(Ka), see Homology, Lemma 19.13. This
means that the map K• → τ≥aK

• into the truncation

τ≥aK
• = (. . .→ 0→ Ka/ Im(da−1)→ Ka+1 → . . .)

is a filtered quasi-isomorphism. This proves (1). The proof of (2) is dual to the proof of
(1). Part (3) follows formally from (1) and (2). �
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To state the following lemma denote FAc+(A), FAc−(A), resp. FAcb(A) the intersection
ofK+(FilfA),K−(FilfA), resp.Kb(FilfA) with FAc(A). Denote FQis+(A), FQis−(A),
resp. FQisb(A) the intersection ofK+(FilfA),K−(FilfA), resp.Kb(FilfA) with FQis(A).

Lemma 13.9. Let A be an abelian category. The subcategories FAc+(A), FAc−(A),
resp. FAcb(A) are strictly full saturated triangulated subcategories ofK+(FilfA),K−(FilfA),
resp. Kb(FilfA). The corresponding saturated multiplicative systems (see Lemma 6.10)
are the sets FQis+(A), FQis−(A), resp. FQisb(A).

(1) The kernel of the functorK+(FilfA)→ DF+(A) is FAc+(A) and this induces
an equivalence of triangulated categories

K+(FilfA)/FAc+(A) = FQis+(A)−1K+(FilfA) −→ DF+(A)

(2) The kernel of the functorK−(FilfA)→ DF−(A) is FAc−(A) and this induces
an equivalence of triangulated categories

K−(FilfA)/FAc−(A) = FQis−(A)−1K−(FilfA) −→ DF−(A)

(3) The kernel of the functor Kb(FilfA) → DF b(A) is FAcb(A) and this induces
an equivalence of triangulated categories

Kb(FilfA)/FAcb(A) = FQisb(A)−1Kb(FilfA) −→ DF b(A)

Proof. This follows from the results above, in particular Lemma 13.8, by exactly the
same arguments as used in the proof of Lemma 11.6. �

14. Derived functors in general

A reference for this section is Deligne’s exposé XVII in [?]. A very general notion of
right and left derived functors exists where we have an exact functor between triangulated
categories, a multiplicative system in the source category and we want to find the “correct”
extension of the exact functor to the localized category.

Situation 14.1. Here F : D → D′ is an exact functor of triangulated categories and
S is a saturated multiplicative system in D compatible with the structure of triangulated
category on D.

LetX ∈ Ob(D). Recall from Categories, Remark 27.7 the filtered categoryX/S of arrows
s : X → X ′ in S with source X . Dually, in Categories, Remark 27.15 we defined the
cofiltered category S/X of arrows s : X ′ → X in S with target X .

Definition 14.2. Assumptions and notation as in Situation 14.1. Let X ∈ Ob(D).
(1) we say the right derived functor RF is defined at X if the ind-object

(X/S) −→ D′, (s : X → X ′) 7−→ F (X ′)
is essentially constant5; in this case the value Y in D′ is called the value of RF
at X .

(2) we say the left derived functor LF is defined at X if the pro-object
(S/X) −→ D′, (s : X ′ → X) 7−→ F (X ′)

is essentially constant; in this case the value Y inD′ is called the value of LF at
X .

5For a discussion of when an ind-object or pro-object of a category is essentially constant we refer to Cate-
gories, Section 22.
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By abuse of notation we often denote the values simply RF (X) or LF (X).

It will turn out that the full subcategory of D consisting of objects where RF is defined
is a triangulated subcategory, and RF will define a functor on this subcategory which
transforms morphisms of S into isomorphisms.

Lemma 14.3. Assumptions and notation as in Situation 14.1. Let f : X → Y be a
morphism of D.

(1) If RF is defined at X and Y then there exists a unique morphism RF (f) :
RF (X)→ RF (Y ) between the values such that for any commutative diagram

X

f

��

s
// X ′

f ′

��
Y

s′
// Y ′

with s, s′ ∈ S the diagram

F (X)

��

// F (X ′)

��

// RF (X)

��
F (Y ) // F (Y ′) // RF (Y )

commutes.
(2) If LF is defined at X and Y then there exists a unique morphism LF (f) :

LF (X)→ LF (Y ) between the values such that for any commutative diagram

X ′

f ′

��

s
// X

f

��
Y ′ s′

// Y

with s, s′ in S the diagram

LF (X)

��

// F (X ′)

��

// F (X)

��
LF (Y ) // F (Y ′) // F (Y )

commutes.

Proof. Part (1) holds if we only assume that the colimits

RF (X) = colims:X→X′ F (X ′) and RF (Y ) = colims′:Y→Y ′ F (Y ′)

exist. Namely, to give a morphism RF (X) → RF (Y ) between the colimits is the same
thing as giving for each s : X → X ′ in Ob(X/S) a morphism F (X ′)→ RF (Y ) compat-
ible with morphisms in the categoryX/S. To get the morphism we choose a commutative
diagram

X

f

��

s
// X ′

f ′

��
Y

s′
// Y ′
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with s, s′ inS as is possible by MS2 and we setF (X ′)→ RF (Y ) equal to the composition
F (X ′)→ F (Y ′)→ RF (Y ). To see that this is independent of the choice of the diagram
above use MS3. Details omitted. The proof of (2) is dual. �

Lemma 14.4. Assumptions and notation as in Situation 14.1. Let s : X → Y be an
element of S.

(1) RF is defined atX if and only if it is defined at Y . In this case the mapRF (s) :
RF (X)→ RF (Y ) between values is an isomorphism.

(2) LF is defined at X if and only if it is defined at Y . In this case the map LF (s) :
LF (X)→ LF (Y ) between values is an isomorphism.

Proof. Omitted. �

Lemma 14.5. Assumptions and notation as in Situation 14.1. LetX be an object ofD
and n ∈ Z.

(1) RF is defined at X if and only if it is defined at X[n]. In this case there is a
canonical isomorphism RF (X)[n] = RF (X[n]) between values.

(2) LF is defined at X if and only if it is defined at X[n]. In this case there is a
canonical isomorphism LF (X)[n]→ LF (X[n]) between values.

Proof. Omitted. �

Lemma 14.6. Assumptions and notation as in Situation 14.1. Let (X,Y, Z, f, g, h) be
a distinguished triangle of D. If RF is defined at two out of three of X,Y, Z , then it is
defined at the third. Moreover, in this case

(RF (X), RF (Y ), RF (Z), RF (f), RF (g), RF (h))

is a distinguished triangle in D′. Similarly for LF .

Proof. Say RF is defined at X,Y with values A,B. Let RF (f) : A→ B be the in-
duced morphism, see Lemma 14.3. We may choose a distinguished triangle (A,B,C,RF (f), b, c)
in D′. We claim that C is a value of RF at Z.

To see this pick s : X → X ′ in S such that there exists a morphism α : A→ F (X ′) as in
Categories, Definition 22.1. We may choose a commutative diagram

X

f

��

s
// X ′

f ′

��
Y

s′
// Y ′

with s′ ∈ S by MS2. Using that Y/S is filtered we can (after replacing s′ by some s′′ :
Y → Y ′′ in S) assume that there exists a morphism β : B → F (Y ′) as in Categories,
Definition 22.1. Picture

A

RF (f)
��

α
// F (X ′) //

F (f ′)
��

A

RF (f)
��

B
β // F (Y ′) // B

It may not be true that the left square commutes, but the outer and right squares commute.
The assumption that the ind-object {F (Y ′)}s′:Y ′→Y is essentially constant means that
there exists a s′′ : Y → Y ′′ in S and a morphism h : Y ′ → Y ′′ such that s′′ = h ◦ s′ and
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such that F (h) equal to F (Y ′) → B → F (Y ′) → F (Y ′′). Hence after replacing Y ′ by
Y ′′ and β by F (h) ◦ β the diagram will commute (by direct computation with arrows).

Using MS6 choose a morphism of triangles

(s, s′, s′′) : (X,Y, Z, f, g, h) −→ (X ′, Y ′, Z ′, f ′, g′, h′)
with s′′ ∈ S. By TR3 choose a morphism of triangles

(α, β, γ) : (A,B,C,RF (f), b, c) −→ (F (X ′), F (Y ′), F (Z ′), F (f ′), F (g′), F (h′))

By Lemma 14.4 it suffices to prove that RF (Z ′) is defined and has value C. Consider the
category I of Lemma 5.10 of triangles

I = {(t, t′, t′′) : (X ′, Y ′, Z ′, f ′, g′, h′)→ (X ′′, Y ′′, Z ′′, f ′′, g′′, h′′) | (t, t′, t′′) ∈ S}
To show that the system F (Z ′′) is essentially constant over the category Z ′/S is equiva-
lent to showing that the system ofF (Z ′′) is essentially constant over I because I → Z ′/S
is cofinal, see Categories, Lemma 22.11 (cofinality is proven in Lemma 5.10). For any object
W in D′ we consider the diagram

colimI MorD′(W,F (X ′′)) MorD′(W,A)oo

colimI MorD′(W,F (Y ′′))

OO

MorD′(W,B)

OO

oo

colimI MorD′(W,F (Z ′′))

OO

MorD′(W,C)

OO

oo

colimI MorD′(W,F (X ′′[1]))

OO

MorD′(W,A[1])

OO

oo

colimI MorD′(W,F (Y ′′[1]))

OO

MorD′(W,B[1])

OO

oo

where the horizontal arrows are given by composing with (α, β, γ). Since filtered colimits
are exact (Algebra, Lemma 8.8) the left column is an exact sequence. Thus the 5 lemma
(Homology, Lemma 5.20) tells us the

colimI MorD′(W,F (Z ′′)) −→ MorD′(W,C)
is bijective. Choose an object (t, t′, t′′) : (X ′, Y ′, Z ′) → (X ′′, Y ′′, Z ′′) of I . Applying
what we just showed to W = F (Z ′′) and the element idF (X′′) of the colimit we find
a unique morphism c(X′′,Y ′′,Z′′) : F (Z ′′) → C such that for some (X ′′, Y ′′, Z ′′) →
(X ′′′, Y ′′′, Z ′′) in I

F (Z ′′)
c(X′′,Y ′′,Z′′)−−−−−−−−→ C

γ−→ F (Z ′)→ F (Z ′′)→ F (Z ′′′) equals F (Z ′′)→ F (Z ′′′)
The family of morphisms c(X′′,Y ′′,Z′′) form an element c of limI MorD′(F (Z ′′), C) by
uniqueness (computation omitted). Finally, we show that colimI F (Z ′′) = C via the
morphisms c(X′′,Y ′′,Z′′) which will finish the proof by Categories, Lemma 22.9. Namely,
let W be an object of D′ and let d(X′′,Y ′′,Z′′) : F (Z ′′) → W be a family of maps cor-
responding to an element of limI MorD′(F (Z ′′),W ). If d(X′,Y ′,Z′) ◦ γ = 0, then for
every object (X ′′, Y ′′, Z ′′) of I the morphism d(X′′,Y ′′,Z′′) is zero by the existence of
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c(X′′,Y ′′,Z′′) and the morphism (X ′′, Y ′′, Z ′′) → (X ′′′, Y ′′′, Z ′′) in I satisfying the dis-
played equality above. Hence the map

limI MorD′(F (Z ′′),W ) −→ MorD′(C,W )
(coming from precomposing by γ) is injective. However, it is also surjective because the
element c gives a left inverse. We conclude that C is the colimit by Categories, Remark
14.4. �

Lemma 14.7. Assumptions and notation as in Situation 14.1. Let X,Y be objects of
D.

(1) If RF is defined at X and Y , then RF is defined at X ⊕ Y .
(2) If D′ is Karoubian and RF is defined at X ⊕ Y , then RF is defined at both X

and Y .
In either case we have RF (X ⊕ Y ) = RF (X)⊕RF (Y ). Similarly for LF .

Proof. IfRF is defined atX and Y , then the distinguished triangleX → X⊕Y →
Y → X[1] (Lemma 4.11) and Lemma 14.6 shows that RF is defined at X ⊕ Y and that
we have a distinguished triangle RF (X) → RF (X ⊕ Y ) → RF (Y ) → RF (X)[1].
Applying Lemma 4.11 to this once more we find that RF (X ⊕ Y ) = RF (X)⊕RF (Y ).
This proves (1) and the final assertion.

Conversely, assume that RF is defined at X ⊕ Y and that D′ is Karoubian. Since S
is a saturated system S is the set of arrows which become invertible under the additive
localization functor Q : D → S−1D, see Categories, Lemma 27.21. Thus for any s : X →
X ′ and s′ : Y → Y ′ in S the morphism s ⊕ s′ : X ⊕ Y → X ′ ⊕ Y ′ is an element of S.
In this way we obtain a functor

X/S × Y/S −→ (X ⊕ Y )/S
Recall that the categories X/S, Y/S, (X ⊕ Y )/S are filtered (Categories, Remark 27.7).
By Categories, Lemma 22.12X/S×Y/S is filtered and F |X/S : X/S → D′ (resp.G|Y/S :
Y/S → D′) is essentially constant if and only if F |X/S ◦ pr1 : X/S × Y/S → D′ (resp.
G|Y/S ◦ pr2 : X/S × Y/S → D′) is essentially constant. Below we will show that the
displayed functor is cofinal, hence by Categories, Lemma 22.11. we see that F |(X⊕Y )/S is
essentially constant implies thatF |X/S◦pr1⊕F |Y/S◦pr2 : X/S×Y/S → D′ is essentially
constant. By Homology, Lemma 30.3 (and this is where we use that D′ is Karoubian) we
see that F |X/S ◦ pr1 ⊕ F |Y/S ◦ pr2 being essentially constant implies F |X/S ◦ pr1 and
F |Y/S ◦ pr2 are essentially constant proving that RF is defined at X and Y .

Proof that the displayed functor is cofinal. To do this pick any t : X ⊕ Y → Z in S.
Using MS2 we can find morphisms Z → X ′, Z → Y ′ and s : X → X ′, s′ : Y → Y ′ in S
such that

X

s

��

X ⊕ Y

��

oo // Y

s′

��
X ′ Zoo // Y ′

commutes. This proves there is a map Z → X ′⊕ Y ′ in (X ⊕ Y )/S , i.e., we get part (1) of
Categories, Definition 17.1. To prove part (2) it suffices to prove that given t : X⊕Y → Z
and morphisms si ⊕ s′

i : Z → X ′
i ⊕ Y ′

i , i = 1, 2 in (X ⊕ Y )/S we can find morphisms
a : X ′

1 → X ′, b : X ′
2 → X ′, c : Y ′

1 → Y ′, d : Y ′
2 → Y ′ in S such that a ◦ s1 = b ◦ s2

and c ◦ s′
1 = d ◦ s′

2. To do this we first choose any X ′ and Y ′ and maps a, b, c, d in S;
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this is possible as X/S and Y/S are filtered. Then the two maps a ◦ s1, b ◦ s2 : Z → X ′

become equal in S−1D. Hence we can find a morphism X ′ → X ′′ in S equalizing them.
Similarly we find Y ′ → Y ′′ in S equalizing c ◦ s′

1 and d ◦ s′
2. ReplacingX ′ byX ′′ and Y ′

by Y ′′ we get a ◦ s1 = b ◦ s2 and c ◦ s′
1 = d ◦ s′

2.
The proof of the corresponding statements for LF are dual. �

Proposition 14.8. Assumptions and notation as in Situation 14.1.
(1) The full subcategory E of D consisting of objects at which RF is defined is a

strictly full triangulated subcategory of D.
(2) We obtain an exact functor RF : E −→ D′ of triangulated categories.
(3) Elements of S with either source or target in E are morphisms of E .
(4) The functor S−1

E E → S−1D is a fully faithful exact functor of triangulated
categories.

(5) Any element of SE = Arrows(E) ∩ S is mapped to an isomorphism by RF .
(6) We obtain an exact functor

RF : S−1
E E −→ D

′.

(7) If D′ is Karoubian, then E is a saturated triangulated subcategory of D.
A similar result holds for LF .

Proof. Since S is saturated it contains all isomorphisms (see remark following Cate-
gories, Definition 27.20). Hence (1) follows from Lemmas 14.4, 14.6, and 14.5. We get (2)
from Lemmas 14.3, 14.5, and 14.6. We get (3) from Lemma 14.4. The fully faithfulness in
(4) follows from (3) and the definitions. The fact that S−1

E E → S−1D is exact follows
from the fact that a triangle in S−1

E E is distinguished if and only if it is isomorphic to the
image of a distinguished triangle in E , see proof of Proposition 5.6. Part (5) follows from
Lemma 14.4. The factorization of RF : E → D′ through an exact functor S−1

E E → D′

follows from Lemma 5.7. Part (7) follows from Lemma 14.7. �

Proposition 14.8 tells us thatRF lives on a maximal strictly full triangulated subcategory
of S−1D and is an exact functor on this triangulated category. Picture:

D

Q

��

F
// D′

S−1D S−1
E E

fully faithful

exact
oo

RF

<<

Definition 14.9. In Situation 14.1. We say F is right derivable, or that RF every-
where defined ifRF is defined at every object ofD. We say F is left derivable, or that LF
everywhere defined if LF is defined at every object of D.

In this case we obtain a right (resp. left) derived functor

(14.9.1) RF : S−1D −→ D′, (resp. LF : S−1D −→ D′),
see Proposition 14.8. In most interesting situations it is not the case that RF ◦Q is equal
to F . In fact, it might happen that the canonical map F (X) → RF (X) is never an
isomorphism. In practice this does not happen, because in practice we only know how
to prove F is right derivable by showing that RF can be computed by evaluating F at
judiciously chosen objects of the triangulated category D. This warrants a definition.

Definition 14.10. In Situation 14.1.



14. DERIVED FUNCTORS IN GENERAL 1073

(1) An object X of D computes RF if RF is defined at X and the canonical map
F (X)→ RF (X) is an isomorphism.

(2) An object X of D computes LF if LF is defined at X and the canonical map
LF (X)→ F (X) is an isomorphism.

Lemma 14.11. Assumptions and notation as in Situation 14.1. Let X be an object of
D and n ∈ Z.

(1) X computes RF if and only if X[n] computes RF .
(2) X computes LF if and only if X[n] computes LF .

Proof. Omitted. �

Lemma 14.12. Assumptions and notation as in Situation 14.1. Let (X,Y, Z, f, g, h)
be a distinguished triangle of D. If X,Y compute RF then so does Z. Similar for LF .

Proof. By Lemma 14.6 we know that RF is defined at Z and that RF applied to
the triangle produces a distinguished triangle. Consider the morphism of distinguished
triangles

(F (X), F (Y ), F (Z), F (f), F (g), F (h))

��
(RF (X), RF (Y ), RF (Z), RF (f), RF (g), RF (h))

Two out of three maps are isomorphisms, hence so is the third. �

Lemma 14.13. Assumptions and notation as in Situation 14.1. Let X,Y be objects of
D. If X ⊕ Y computes RF , then X and Y compute RF . Similarly for LF .

Proof. IfX⊕Y computesRF , thenRF (X⊕Y ) = F (X)⊕F (Y ). In the proof of
Lemma 14.7 we have seen that the functor X/S × Y/S → (X ⊕ Y )/S , (s, s′) 7→ s ⊕ s′

is cofinal. We will use this without further mention. Let s : X → X ′ be an element of S.
Then F (X)→ F (X ′) has a section, namely,

F (X ′)→ F (X ′ ⊕ Y )→ RF (X ′ ⊕ Y ) = RF (X ⊕ Y ) = F (X)⊕ F (Y )→ F (X).

where we have used Lemma 14.4. HenceF (X ′) = F (X)⊕E for some objectE ofD′ such
thatE → F (X ′⊕Y )→ RF (X ′⊕Y ) = RF (X⊕Y ) is zero (Lemma 4.12). BecauseRF
is defined at X ′ ⊕ Y with value F (X)⊕ F (Y ) we can find a morphism t : X ′ ⊕ Y → Z
of S such that F (t) annihilates E. We may assume Z = X ′′ ⊕ Y ′′ and t = t′ ⊕ t′′ with
t′, t′′ ∈ S. Then F (t′) annihilates E. It follows that F is essentially constant on X/S
with value F (X) as desired. �

Lemma 14.14. Assumptions and notation as in Situation 14.1.
(1) If for every objectX ∈ Ob(D) there exists an arrow s : X → X ′ in S such that

X ′ computes RF , then RF is everywhere defined.
(2) If for every objectX ∈ Ob(D) there exists an arrow s : X ′ → X in S such that

X ′ computes LF , then LF is everywhere defined.

Proof. This is clear from the definitions. �

Lemma 14.15. Assumptions and notation as in Situation 14.1. If there exists a subset
I ⊂ Ob(D) such that

(1) for all X ∈ Ob(D) there exists s : X → X ′ in S with X ′ ∈ I , and
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(2) for every arrow s : X → X ′ in S with X,X ′ ∈ I the map F (s) : F (X) →
F (X ′) is an isomorphism,

then RF is everywhere defined and every X ∈ I computes RF . Dually, if there exists a
subset P ⊂ Ob(D) such that

(1) for all X ∈ Ob(D) there exists s : X ′ → X in S with X ′ ∈ P , and
(2) for every arrow s : X → X ′ in S with X,X ′ ∈ P the map F (s) : F (X) →

F (X ′) is an isomorphism,
then LF is everywhere defined and every X ∈ P computes LF .

Proof. Let X be an object of D. Assumption (1) implies that the arrows s : X →
X ′ in S with X ′ ∈ I are cofinal in the category X/S. Assumption (2) implies that F
is constant on this cofinal subcategory. Clearly this implies that F : (X/S) → D′ is
essentially constant with value F (X ′) for any s : X → X ′ in S with X ′ ∈ I . �

Lemma 14.16. Let A,B, C be triangulated categories. Let S , resp. S′ be a saturated
multiplicative system in A, resp. B compatible with the triangulated structure. Let F :
A → B and G : B → C be exact functors. Denote F ′ : A → (S′)−1B the composition of
F with the localization functor.

(1) If RF ′, RG, R(G ◦ F ) are everywhere defined, then there is a canonical trans-
formation of functors t : R(G ◦ F ) −→ RG ◦RF ′.

(2) If LF ′, LG, L(G◦F ) are everywhere defined, then there is a canonical transfor-
mation of functors t : LG ◦ LF ′ → L(G ◦ F ).

Proof. In this proof we try to be careful. Hence let us think of the derived functors
as the functors

RF ′ : S−1A → (S′)−1B, R(G ◦ F ) : S−1A → C, RG : (S′)−1B → C.

Let us denote QA : A → S−1A and QB : B → (S′)−1B the localization functors. Then
F ′ = QB ◦ F . Note that for every object Y of B there is a canonical map

G(Y ) −→ RG(QB(Y ))

in other words, there is a transformation of functors t′ : G → RG ◦ QB . Let X be an
object ofA. We have

R(G ◦ F )(QA(X)) = colims:X→X′∈S G(F (X ′))
t′−→ colims:X→X′∈S RG(QB(F (X ′)))
= colims:X→X′∈S RG(F ′(X ′))
= RG(colims:X→X′∈S F

′(X ′))
= RG(RF ′(X)).

The systemF ′(X ′) is essentially constant in the category (S′)−1B. Hence we may pull the
colimit inside the functor RG in the third equality of the diagram above, see Categories,
Lemma 22.8 and its proof. We omit the proof this defines a transformation of functors.
The case of left derived functors is similar. �

15. Derived functors on derived categories

In practice derived functors come about most often when given an additive functor be-
tween abelian categories.
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Situation 15.1. Here F : A → B is an additive functor between abelian categories.
This induces exact functors

F : K(A)→ K(B), K+(A)→ K+(B), K−(A)→ K−(B).

See Lemma 10.6. We also denote F the composition K(A)→ D(B), K+(A)→ D+(B),
and K−(A) → D−(B) of F with the localization functor K(B) → D(B), etc. This
situation leads to four derived functors we will consider in the following.

(1) The right derived functor of F : K(A) → D(B) relative to the multiplicative
system Qis(A).

(2) The right derived functor of F : K+(A) → D+(B) relative to the multiplica-
tive system Qis+(A).

(3) The left derived functor of F : K(A) → D(B) relative to the multiplicative
system Qis(A).

(4) The left derived functor of F : K−(A)→ D−(B) relative to the multiplicative
system Qis−(A).

Each of these cases is an example of Situation 14.1.

Some of the ambiguity that may arise is alleviated by the following.

Lemma 15.2. In Situation 15.1.
(1) Let X be an object of K+(A). The right derived functor of K(A) → D(B) is

defined at X if and only if the right derived functor of K+(A) → D+(B) is
defined at X . Moreover, the values are canonically isomorphic.

(2) Let X be an object of K+(A). Then X computes the right derived functor
of K(A) → D(B) if and only if X computes the right derived functor of
K+(A)→ D+(B).

(3) Let X be an object of K−(A). The left derived functor of K(A) → D(B) is
defined at X if and only if the left derived functor of K−(A) → D−(B) is
defined at X . Moreover, the values are canonically isomorphic.

(4) Let X be an object of K−(A). Then X computes the left derived functor of
K(A)→ D(B) if and only ifX computes the left derived functor ofK−(A)→
D−(B).

Proof. Let X be an object of K+(A). Consider a quasi-isomorphism s : X → X ′

in K(A). By Lemma 11.5 there exists quasi-isomorphism X ′ → X ′′ with X ′′ bounded
below. Hence we see that X/Qis+(A) is cofinal in X/Qis(A). Thus it is clear that (1)
holds. Part (2) follows directly from part (1). Parts (3) and (4) are dual to parts (1) and
(2). �

Given an object A of an abelian categoryA we get a complex

A[0] = (. . .→ 0→ A→ 0→ . . .)

where A is placed in degree zero. Hence a functor A → K(A), A 7→ A[0]. Let us tem-
porarily say that a partial functor is one that is defined on a subcategory.

Definition 15.3. In Situation 15.1.
(1) The right derived functors of F are the partial functors RF associated to cases

(1) and (2) of Situation 15.1.
(2) The left derived functors of F are the partial functors LF associated to cases (3)

and (4) of Situation 15.1.
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(3) An object A of A is said to be right acyclic for F , or acyclic for RF if A[0]
computes RF .

(4) An objectA ofA is said to be left acyclic forF , or acyclic forLF ifA[0] computes
LF .

The following few lemmas give some criteria for the existence of enough acyclics.

Lemma 15.4. LetA be an abelian category. Let P ⊂ Ob(A) be a subset containing 0
such that every object ofA is a quotient of an element of P . Let a ∈ Z.

(1) Given K• with Kn = 0 for n > a there exists a quasi-isomorphism P • → K•

with Pn ∈ P and Pn → Kn surjective for all n and Pn = 0 for n > a.
(2) GivenK• withHn(K•) = 0 for n > a there exists a quasi-isomorphism P • →

K• with Pn ∈ P for all n and Pn = 0 for n > a.

Proof. Proof of part (1). Consider the following induction hypothesis IHn: There
are P j ∈ P , j ≥ n, with P j = 0 for j > a, maps dj : P j → P j+1 for j ≥ n, and
surjective maps αj : P j → Kj for j ≥ n such that the diagram

Pn

α

��

// Pn+1

α

��

// Pn+2

α

��

// . . .

. . . // Kn−1 // Kn // Kn+1 // Kn+2 // . . .

is commutative, such that dj+1 ◦ dj = 0 for j ≥ n, such that α induces isomorphisms
Hj(K•) → Ker(dj)/ Im(dj−1) for j > n, and such that α : Ker(dn) → Ker(dnK) is
surjective. Then we choose a surjection

Pn−1 −→ Kn−1 ×Kn Ker(dn) = Kn−1 ×Ker(dn
K

) Ker(dn)

with Pn−1 in P . This allows us to extend the diagram above to

Pn−1

α

��

// Pn

α

��

// Pn+1

α

��

// Pn+2

α

��

// . . .

. . . // Kn−1 // Kn // Kn+1 // Kn+2 // . . .

The reader easily checks that IHn−1 holds with this choice.
We finish the proof of (1) as follows. First we note that IHn is true for n = a + 1 since
we can just take P j = 0 for j > a. Hence we see that proceeding by descending induction
we produce a complex P • with Pn = 0 for n > a consisting of objects from P , and a
termwise surjective quasi-isomorphism α : P • → K• as desired.
Proof of part (2). The assumption implies that the morphism τ≤aK

• → K• (Homology,
Section 15) is a quasi-isomorphism. Apply part (1) to findP • → τ≤aK

•. The composition
P • → K• is the desired quasi-isomorphism. �

Lemma 15.5. Let A be an abelian category. Let I ⊂ Ob(A) be a subset containing 0
such that every object ofA is a subobject of an element of I . Let a ∈ Z.

(1) Given K• with Kn = 0 for n < a there exists a quasi-isomorphism K• → I•

with Kn → In injective and In ∈ I for all n and In = 0 for n < a,
(2) GivenK• withHn(K•) = 0 for n < a there exists a quasi-isomorphismK• →

I• with In ∈ I and In = 0 for n < a.

Proof. This lemma is dual to Lemma 15.4. �
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Lemma 15.6. In Situation 15.1. Let I ⊂ Ob(A) be a subset with the following prop-
erties:

(1) every object ofA is a subobject of an element of I ,
(2) for any short exact sequence 0 → P → Q → R → 0 of A with P,Q ∈ I , then

R ∈ I , and 0→ F (P )→ F (Q)→ F (R)→ 0 is exact.
Then every object of I is acyclic for RF .

Proof. We may add 0 to I if necessary. Pick A ∈ I . Let A[0] → K• be a quasi-
isomorphism with K• bounded below. Then we can find a quasi-isomorphism K• →
I• with I• bounded below and each In ∈ I , see Lemma 15.5. Hence we see that these
resolutions are cofinal in the category A[0]/Qis+(A). To finish the proof it therefore
suffices to show that for any quasi-isomorphism A[0] → I• with I• bounded below and
In ∈ I we have F (A)[0] → F (I•) is a quasi-isomorphism. To see this suppose that
In = 0 for n < n0. Of course we may assume that n0 < 0. Starting with n = n0
we prove inductively that Im(dn−1) = Ker(dn) and Im(d−1) are elements of I using
property (2) and the exact sequences

0→ Ker(dn)→ In → Im(dn)→ 0.
Moreover, property (2) also guarantees that the complex

0→ F (In0)→ F (In0+1)→ . . .→ F (I−1)→ F (Im(d−1))→ 0
is exact. The exact sequence 0 → Im(d−1) → I0 → I0/ Im(d−1) → 0 implies that
I0/ Im(d−1) is an element of I . The exact sequence 0→ A→ I0/ Im(d−1)→ Im(d0)→
0 then implies that Im(d0) = Ker(d1) is an elements of I and from then on one continues
as before to show that Im(dn−1) = Ker(dn) is an element of I for all n > 0. Applying
F to each of the short exact sequences mentioned above and using (2) we observe that
F (A)[0]→ F (I•) is an isomorphism as desired. �

Lemma 15.7. In Situation 15.1. Let P ⊂ Ob(A) be a subset with the following prop-
erties:

(1) every object ofA is a quotient of an element of P ,
(2) for any short exact sequence 0→ P → Q→ R→ 0 ofA with Q,R ∈ P , then

P ∈ P , and 0→ F (P )→ F (Q)→ F (R)→ 0 is exact.
Then every object of P is acyclic for LF .

Proof. Dual to the proof of Lemma 15.6. �

16. Higher derived functors

The following simple lemma shows that right derived functors “move to the right”.

Lemma 16.1. Let F : A → B be an additive functor between abelian categories. Let
K• be a complex ofA and a ∈ Z.

(1) If Hi(K•) = 0 for all i < a and RF is defined at K•, then Hi(RF (K•)) = 0
for all i < a.

(2) IfRF is defined atK• and τ≤aK
•, thenHi(RF (τ≤aK

•)) = Hi(RF (K•)) for
all i ≤ a.

Proof. Assume K• satisfies the assumptions of (1). Let K• → L• be any quasi-
isomorphism. Then it is also true that K• → τ≥aL

• is a quasi-isomorphism by our as-
sumption on K•. Hence in the category K•/Qis+(A) the quasi-isomorphisms s : K• →
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L• with Ln = 0 for n < a are cofinal. Thus RF is the value of the essentially constant
ind-object F (L•) for these s it follows that Hi(RF (K•)) = 0 for i < a.

To prove (2) we use the distinguished triangle

τ≤aK
• → K• → τ≥a+1K

• → (τ≤aK
•)[1]

of Remark 12.4 to conclude via Lemma 14.6 that RF is defined at τ≥a+1K
• as well and

that we have a distinguished triangle

RF (τ≤aK
•)→ RF (K•)→ RF (τ≥a+1K

•)→ RF (τ≤aK
•)[1]

in D(B). By part (1) we see that RF (τ≥a+1K
•) has vanishing cohomology in degrees

< a + 1. The long exact cohomology sequence of this distinguished triangle then shows
what we want. �

Definition 16.2. Let F : A → B be an additive functor between abelian categories.
Assume RF : D+(A)→ D+(B) is everywhere defined. Let i ∈ Z. The ith right derived
functor RiF of F is the functor

RiF = Hi ◦RF : A −→ B

The following lemma shows that it really does not make a lot of sense to take the right
derived functor unless the functor is left exact.

Lemma 16.3. Let F : A → B be an additive functor between abelian categories and
assume RF : D+(A)→ D+(B) is everywhere defined.

(1) We have RiF = 0 for i < 0,
(2) R0F is left exact,
(3) the map F → R0F is an isomorphism if and only if F is left exact.

Proof. LetA be an object ofA. LetA[0]→ K• be any quasi-isomorphism. Then it is
also true thatA[0]→ τ≥0K

• is a quasi-isomorphism. Hence in the categoryA[0]/Qis+(A)
the quasi-isomorphisms s : A[0] → K• with Kn = 0 for n < 0 are cofinal. Thus it is
clear that Hi(RF (A[0])) = 0 for i < 0. Moreover, for such an s the sequence

0→ A→ K0 → K1

is exact. Hence if F is left exact, then 0 → F (A) → F (K0) → F (K1) is exact as well,
and we see that F (A) → H0(F (K•)) is an isomorphism for every s : A[0] → K• as
above which implies that H0(RF (A[0])) = F (A).

Let 0 → A → B → C → 0 be a short exact sequence of A. By Lemma 12.1 we
obtain a distinguished triangle (A[0], B[0], C[0], a, b, c) in D+(A). From the long ex-
act cohomology sequence (and the vanishing for i < 0 proved above) we deduce that
0 → R0F (A) → R0F (B) → R0F (C) is exact. Hence R0F is left exact. Of course this
also proves that if F → R0F is an isomorphism, then F is left exact. �

Lemma 16.4. Let F : A → B be an additive functor between abelian categories and
assume RF : D+(A)→ D+(B) is everywhere defined. Let A be an object ofA.

(1) A is right acyclic for F if and only if F (A) → R0F (A) is an isomorphism and
RiF (A) = 0 for all i > 0,

(2) if F is left exact, then A is right acyclic for F if and only if RiF (A) = 0 for all
i > 0.
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Proof. If A is right acyclic for F , then RF (A[0]) = F (A)[0] and in particular
F (A)→ R0F (A) is an isomorphism andRiF (A) = 0 for i 6= 0. Conversely, if F (A)→
R0F (A) is an isomorphism and RiF (A) = 0 for all i > 0 then F (A[0]) → RF (A[0]) is
a quasi-isomorphism by Lemma 16.3 part (1) and henceA is acyclic. If F is left exact then
F = R0F , see Lemma 16.3. �

Lemma 16.5. Let F : A → B be a left exact functor between abelian categories and
assume RF : D+(A) → D+(B) is everywhere defined. Let 0 → A → B → C → 0 be a
short exact sequence ofA.

(1) If A and C are right acyclic for F then so is B.
(2) If A and B are right acyclic for F then so is C.
(3) If B and C are right acyclic for F and F (B) → F (C) is surjective then A is

right acyclic for F .
In each of the three cases

0→ F (A)→ F (B)→ F (C)→ 0
is a short exact sequence of B.

Proof. By Lemma 12.1 we obtain a distinguished triangle (A[0], B[0], C[0], a, b, c) in
K+(A). As RF is an exact functor and since RiF = 0 for i < 0 and R0F = F (Lemma
16.3) we obtain an exact cohomology sequence

0→ F (A)→ F (B)→ F (C)→ R1F (A)→ . . .

in the abelian category B. Thus the lemma follows from the characterization of acyclic
objects in Lemma 16.4. �

Lemma 16.6. Let F : A → B be an additive functor between abelian categories and
assume RF : D+(A)→ D+(B) is everywhere defined.

(1) The functorsRiF , i ≥ 0 come equipped with a canonical structure of a δ-functor
fromA → B, see Homology, Definition 12.1.

(2) If every object ofA is a subobject of a right acyclic object forF , then {RiF, δ}i≥0
is a universal δ-functor, see Homology, Definition 12.3.

Proof. The functorA → Comp+(A),A 7→ A[0] is exact. The functor Comp+(A)→
D+(A) is a δ-functor, see Lemma 12.1. The functor RF : D+(A)→ D+(B) is exact. Fi-
nally, the functor H0 : D+(B)→ B is a homological functor, see Definition 11.3. Hence
we get the structure of a δ-functor from Lemma 4.22 and Lemma 4.21. Part (2) follows
from Homology, Lemma 12.4 and the description of acyclics in Lemma 16.4. �

Lemma 16.7 (Leray’s acyclicity lemma). Let F : A → B be an additive functor
between abelian categories. LetA• be a bounded below complex of right F -acyclic objects
such that RF is defined at A•6. The canonical map

F (A•) −→ RF (A•)
is an isomorphism in D+(B), i.e., A• computes RF .

Proof. LetA• be a bounded complex of right F -acyclic objects. We claim thatRF is
defined atA• and that F (A•)→ RF (A•) is an isomorphism inD+(B). Namely, it holds
for complexes with at most one nonzero right F -acyclic object for example by Lemma

6For example this holds if RF : D+(A) → D+(B) is everywhere defined.
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16.4. Next, suppose that An = 0 for n 6∈ [a, b]. Using the “stupid” truncations we obtain
a termwise split short exact sequence of complexes

0→ σ≥a+1A
• → A• → σ≤aA

• → 0

see Homology, Section 15. Thus a distinguished triangle (σ≥a+1A
•, A•, σ≤aA

•). By in-
duction hypothesis RF is defined for the two outer complexes and these complexes com-
pute RF . Then the same is true for the middle one by Lemma 14.12.

Suppose that A• is a bounded below complex of acyclic objects such that RF is defined at
A•. To show that F (A•)→ RF (A•) is an isomorphism inD+(B) it suffices to show that
Hi(F (A•)) → Hi(RF (A•)) is an isomorphism for all i. Pick i. Consider the termwise
split short exact sequence of complexes

0→ σ≥i+2A
• → A• → σ≤i+1A

• → 0.

Note that this induces a termwise split short exact sequence

0→ σ≥i+2F (A•)→ F (A•)→ σ≤i+1F (A•)→ 0.

Hence we get distinguished triangles

(σ≥i+2A
•, A•, σ≤i+1A

•) and (σ≥i+2F (A•), F (A•), σ≤i+1F (A•))

SinceRF is defined atA• (by assumption) and at σ≤i+1A
• (by the first paragraph) we see

that RF is defined at σ≥i+1A
• and we get a distinghuished triangle

(RF (σ≥i+2A
•), RF (A•), RF (σ≤i+1A

•))

See Lemma 14.6. Using these distinguished triangles we obtain a map of exact sequences

Hi(σ≥i+2F (A•)) //

��

Hi(F (A•)) //

α

��

Hi(σ≤i+1F (A•)) //

β

��

Hi+1(σ≥i+2F (A•))

��
Hi(RF (σ≥i+2A

•)) // Hi(RF (A•)) // Hi(RF (σ≤i+1A
•)) // Hi+1(RF (σ≥i+2A

•))

By the results of the first paragraph the mapβ is an isomorphism. By inspection the objects
on the upper left and the upper right are zero. Hence to finish the proof it suffices to show
that Hi(RF (σ≥i+2A

•)) = 0 and Hi+1(RF (σ≥i+2A
•)) = 0. This follows immediately

from Lemma 16.1. �

Proposition 16.8. Let F : A → B be an additive functor of abelian categories.
(1) If every object ofA injects into an object acyclic for RF , then RF is defined on

all of K+(A) and we obtain an exact functor

RF : D+(A) −→ D+(B)

see (14.9.1). Moreover, any bounded below complex A• whose terms are acyclic
for RF computes RF .

(2) If every object of A is quotient of an object acyclic for LF , then LF is defined
on all of K−(A) and we obtain an exact functor

LF : D−(A) −→ D−(B)

see (14.9.1). Moreover, any bounded above complex A• whose terms are acyclic
for LF computes LF .
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Proof. Assume every object ofA injects into an object acyclic forRF . Let I be the set
of objects acyclic forRF . LetK• be a bounded below complex inA. By Lemma 15.5 there
exists a quasi-isomorphism α : K• → I• with I• bounded below and In ∈ I . Hence in
order to prove (1) it suffices to show that F (I•)→ F ((I ′)•) is a quasi-isomorphism when
s : I• → (I ′)• is a quasi-isomorphism of bounded below complexes of objects from I , see
Lemma 14.15. Note that the coneC(s)• is an acyclic bounded below complex all of whose
terms are in I . Hence it suffices to show: given an acyclic bounded below complex I• all
of whose terms are in I the complex F (I•) is acyclic.

Say In = 0 for n < n0. Setting Jn = Im(dn) we break I• into short exact sequences 0→
Jn → In+1 → Jn+1 → 0 for n ≥ n0. These sequences induce distinguished triangles
(Jn, In+1, Jn+1) inD+(A) by Lemma 12.1. For each k ∈ Z denoteHk the assertion: For
all n ≤ k the right derived functor RF is defined at Jn and RiF (Jn) = 0 for i 6= 0.
ThenHk holds trivially for k ≤ n0. IfHn holds, then, using Proposition 14.8, we see that
RF is defined at Jn+1 and (RF (Jn), RF (In+1), RF (Jn+1)) is a distinguished triangle
of D+(B). Thus the long exact cohomology sequence (11.1.1) associated to this triangle
gives an exact sequence

0→ R−1F (Jn+1)→ R0F (Jn)→ F (In+1)→ R0F (Jn+1)→ 0

and gives thatRiF (Jn+1) = 0 for i 6∈ {−1, 0}. By Lemma 16.1 we see thatR−1F (Jn+1) =
0. This proves that Hn+1 is true hence Hk holds for all k. We also conclude that

0→ R0F (Jn)→ F (In+1)→ R0F (Jn+1)→ 0

is short exact for all n. This in turn proves that F (I•) is exact.

The proof in the case of LF is dual. �

Lemma 16.9. Let F : A → B be an exact functor of abelian categories. Then
(1) every object ofA is right acyclic for F ,
(2) RF : D+(A)→ D+(B) is everywhere defined,
(3) RF : D(A)→ D(B) is everywhere defined,
(4) every complex computes RF , in other words, the canonical map F (K•) →

RF (K•) is an isomorphism for all complexes, and
(5) RiF = 0 for i 6= 0.

Proof. This is true because F transforms acyclic complexes into acyclic complexes
and quasi-isomorphisms into quasi-isomorphisms. Details omitted. �

17. Triangulated subcategories of the derived category

Let A be an abelian category. In this section we look at certain strictly full saturated
triangulated subcategories D′ ⊂ D(A).

Let B ⊂ A be a weak Serre subcategory, see Homology, Definition 10.1 and Lemma 10.3.
We let DB(A) the full subcategory of D(A) whose objects are

Ob(DB(A)) = {X ∈ Ob(D(A)) | Hn(X) is an object of B for all n}

We also defineD+
B (A) = D+(A)∩DB(A) and similarly for the other bounded versions.

Lemma 17.1. Let A be an abelian category. Let B ⊂ A be a weak Serre subcategory.
The category DB(A) is a strictly full saturated triangulated subcategory of D(A). Simi-
larly for the bounded versions.
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Proof. It is clear that DB(A) is an additive subcategory preserved under the trans-
lation functors. IfX ⊕Y is inDB(A), then bothHn(X) andHn(Y ) are kernels of maps
between maps of objects of B as Hn(X ⊕ Y ) = Hn(X) ⊕ Hn(Y ). Hence both X and
Y are in DB(A). By Lemma 4.16 it therefore suffices to show that given a distinguished
triangle (X,Y, Z, f, g, h) such thatX and Y are inDB(A) then Z is an object ofDB(A).
The long exact cohomology sequence (11.1.1) and the definition of a weak Serre subcate-
gory (see Homology, Definition 10.1) show that Hn(Z) is an object of B for all n. Thus
Z is an object of DB(A). �

We continue to assume that B is a weak Serre subcategory of the abelian categoryA. Then
B is an abelian category and the inclusion functor B → A is exact. Hence we obtain a
derived functor D(B) → D(A), see Lemma 16.9. Clearly the functor D(B) → D(A)
factors through a canonical exact functor

(17.1.1) D(B) −→ DB(A)
After all a complex made from objects of B certainly gives rise to an object of DB(A)
and as distinguished triangles in DB(A) are exactly the distinguished triangles of D(A)
whose vertices are in DB(A) we see that the functor is exact since D(B) → D(A) is
exact. Similarly we obtain functorsD+(B)→ D+

B (A),D−(B)→ D−
B (A), andDb(B)→

Db
B(A) for the bounded versions. A key question in many cases is whether the displayed

functor is an equivalence.

Now, suppose that B is a Serre subcategory ofA. In this case we have the quotient functor
A → A/B, see Homology, Lemma 10.6. In this case DB(A) is the kernel of the functor
D(A)→ D(A/B). Thus we obtain a canonical functor

D(A)/DB(A) −→ D(A/B)
by Lemma 6.8. Similarly for the bounded versions.

Lemma 17.2. Let A be an abelian category. Let B ⊂ A be a Serre subcategory. Then
D(A)→ D(A/B) is essentially surjective.

Proof. We will use the description of the category A/B in the proof of Homology,
Lemma 10.6. Let (X•, d•) be a complex ofA/B. This means thatXi is an object ofA and
di : Xi → Xi+1 is a morphism inA/B such that di ◦ di−1 = 0 inA/B.

For i ≥ 0 we may write di = (si, f i) where si : Y i → Xi is a morphism of A whose
kernel and cokernel are in B (equivalently si becomes an isomorphism in the quotient
category) and f i : Y i → Xi+1 is a morphism of A. By induction we will construct a
commutative diagram

(X ′)1 // (X ′)2 // . . .

X0

<<

X1

OO

X2

OO

. . .

Y 0

s0

OO

f0

<<

Y 1

s1

OO

f1

::

Y 2

s2

OO

f2

<<

. . .

where the vertical arrows Xi → (X ′)i become isomorphisms in the quotient category.
Namely, we first let (X ′)1 = Coker(Y 0 → X0 ⊕ X1) (or rather the pushout of the
diagram with arrows s0 and f0) which gives the first commutative diagram. Next, we
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take (X ′)2 = Coker(Y 1 → (X ′)1 ⊕X2). And so on. Setting additionally (X ′)n = Xn

for n ≤ 0 we see that the map (X•, d•)→ ((X ′)•, (d′)•) is an isomorphism of complexes
in A/B. Hence we may assume dn : Xn → Xn+1 is given by a map Xn → Xn+1 in A
for n ≥ 0.

Dually, for i < 0 we may write di = (gi, ti+1) where ti+1 : Xi+1 → Zi+1 is an isomor-
phism in the quotient category and gi : Xi → Zi+1 is a morphism. By induction we will
construct a commutative diagram

. . . Z−2 Z−1 Z0

. . . X−2

t−2

OO

g−2

99

X−1

t−1

OO

g−1

;;

X0

t0

OO

. . . (X ′)−2

OO

// (X ′)−1

OO ;;

where the vertical arrows (X ′)i → Xi become isomorphisms in the quotient category.
Namely, we take (X ′)−1 = X−1 ×Z0 X0. Then we take (X ′)−2 = X−2 ×Z−1 (X ′)−1.
And so on. Setting additionally (X ′)n = Xn forn ≥ 0 we see that the map ((X ′)•, (d′)•)→
(X•, d•) is an isomorphism of complexes in A/B. Hence we may assume dn : Xn →
Xn+1 is given by a map dn : Xn → Xn+1 inA for all n ∈ Z.

In this case we know the compositions dn ◦ dn−1 are zero inA/B. If for n > 0 we replace
Xn by

(X ′)n = Xn/
∑

0<k≤n
Im(Im(Xk−2 → Xk)→ Xn)

then the compositions dn ◦ dn−1 are zero for n ≥ 0. (Similarly to the second paragraph
above we obtain an isomorphism of complexes (X•, d•) → ((X ′)•, (d′)•).) Finally, for
n < 0 we replace Xn by

(X ′)n =
⋂

n≤k<0
(Xn → Xk)−1 Ker(Xk → Xk+2)

and we argue in the same manner to get a complex inAwhose image inA/B is isomorphic
to the given one. �

Lemma 17.3. Let A be an abelian category. Let B ⊂ A be a Serre subcategory. Sup-
pose that the functor v : A → A/B has a left adjoint u : A/B → A such that vu ∼= id.
Then

D(A)/DB(A) = D(A/B)
and similarly for the bounded versions.

Proof. The functor D(v) : D(A) → D(A/B) is essentially surjective by Lemma
17.2. For an object X of D(A) the adjunction mapping cX : uvX → X maps to an
isomorphism in D(A/B) because vuv ∼= v by the assumption that vu ∼= id. Thus in
a distinguished triangle (uvX,X,Z, cX , g, h) the object Z is an object of DB(A) as we
see by looking at the long exact cohomology sequence. Hence cX is an element of the
multiplicative system used to define the quotient category D(A)/DB(A). Thus uvX ∼=
X in D(A)/DB(A). For X,Y ∈ Ob(A)) the map

HomD(A)/DB(A)(X,Y ) −→ HomD(A/B)(vX, vY )

is bijective because u gives an inverse (by the remarks above). �
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For certain Serre subcategories B ⊂ A we can prove that the functor D(B) → DB(A) is
fully faithful.

Lemma 17.4. LetA be an abelian category. LetB ⊂ A be a Serre subcategory. Assume
that for every surjectionX → Y withX ∈ Ob(A) and Y ∈ Ob(B) there existsX ′ ⊂ X ,
X ′ ∈ Ob(B) which surjects onto Y . Then the functor D−(B)→ D−

B (A) of (17.1.1) is an
equivalence.

Proof. LetX• be a bounded above complex ofA such thatHi(X•) ∈ Ob(B) for all
i ∈ Z. Moreover, suppose we are givenBi ⊂ Xi,Bi ∈ Ob(B) for all i ∈ Z. Claim: there
exists a subcomplex Y • ⊂ X• such that

(1) Y • → X• is a quasi-isomorphism,
(2) Y i ∈ Ob(B) for all i ∈ Z, and
(3) Bi ⊂ Y i for all i ∈ Z.

To prove the claim, using the assumption of the lemma we first choose Ci ⊂ Ker(di :
Xi → Xi+1),Ci ∈ Ob(B) surjecting ontoHi(X•). SettingDi = Ci+di−1(Bi−1)+Bi

we find a subcomplexD• satisfying (2) and (3) such thatHi(D•)→ Hi(X•) is surjective
for all i ∈ Z. For any choice of Ei ⊂ Xi with Ei ∈ Ob(B) and di(Ei) ⊂ Di+1 + Ei+1

we see that setting Y i = Di + Ei gives a subcomplex whose terms are in B and whose
cohomology surjects onto the cohomology of X•. Clearly, if di(Ei) = (Di+1 +Ei+1)∩
Im(di) then we see that the map on cohomology is also injective. For n � 0 we can
take En equal to 0. By descending induction we can choose Ei for all i with the desired
property. Namely, givenEi+1, Ei+2, . . .we chooseEi ⊂ Xi such that di(Ei) = (Di+1+
Ei+1)∩ Im(di). This is possible by our assumption in the lemma combined with the fact
that (Di+1 + Ei+1) ∩ Im(di) is in B as B is a Serre subcategory ofA.
The claim above implies the lemma. Essential surjectivity is immediate from the claim. Let
us prove faithfulness. Namely, suppose we have a morphism f : U• → V • of bounded
above complexes ofBwhose image inD(A) is zero. Then there exists a quasi-isomorphism
s : V • → X• into a bounded above complex of A such that s ◦ f is homotopic to zero.
Choose a homotopy hi : U i → Xi−1 between 0 and s ◦ f . Apply the claim with Bi =
hi+1(U i+1) + si(V i). The resulting map s′ : V • → Y • is a quasi-isomorphism as well
and s′ ◦ f is homotopic to zero as is clear from the fact that hi factors through Y i−1. This
proves faithfulness. Fully faithfulness is proved in the exact same manner. �

18. Injective resolutions

In this section we prove some lemmas regarding the existence of injective resolutions in
abelian categories having enough injectives.

Definition 18.1. Let A be an abelian category. Let A ∈ Ob(A). An injective reso-
lution of A is a complex I• together with a map A→ I0 such that:

(1) We have In = 0 for n < 0.
(2) Each In is an injective object ofA.
(3) The map A→ I0 is an isomorphism onto Ker(d0).
(4) We have Hi(I•) = 0 for i > 0.

Hence A[0]→ I• is a quasi-isomorphism. In other words the complex

. . .→ 0→ A→ I0 → I1 → . . .

is acyclic. Let K• be a complex in A. An injective resolution of K• is a complex I•

together with a map α : K• → I• of complexes such that
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(1) We have In = 0 for n� 0, i.e., I• is bounded below.
(2) Each In is an injective object ofA.
(3) The map α : K• → I• is a quasi-isomorphism.

In other words an injective resolution K• → I• gives rise to a diagram

. . . // Kn−1

��

// Kn

��

// Kn+1

��

// . . .

. . . // In−1 // In // In+1 // . . .

which induces an isomorphism on cohomology objects in each degree. An injective resolu-
tion of an objectA ofA is almost the same thing as an injective resolution of the complex
A[0].

Lemma 18.2. LetA be an abelian category. Let K• be a complex ofA.
(1) If K• has an injective resolution then Hn(K•) = 0 for n� 0.
(2) If Hn(K•) = 0 for all n � 0 then there exists a quasi-isomorphism K• → L•

with L• bounded below.

Proof. Omitted. For the second statement use L• = τ≥nK
• for some n � 0. See

Homology, Section 15 for the definition of the truncation τ≥n. �

Lemma 18.3. LetA be an abelian category. AssumeA has enough injectives.
(1) Any object ofA has an injective resolution.
(2) If Hn(K•) = 0 for all n� 0 then K• has an injective resolution.
(3) If K• is a complex with Kn = 0 for n < a, then there exists an injective reso-

lution α : K• → I• with In = 0 for n < a such that each αn : Kn → In is
injective.

Proof. Proof of (1). First choose an injection A → I0 of A into an injective object
of A. Next, choose an injection I0/A → I1 into an injective object of A. Denote d0 the
induced map I0 → I1. Next, choose an injection I1/ Im(d0)→ I2 into an injective object
of A. Denote d1 the induced map I1 → I2. And so on. By Lemma 18.2 part (2) follows
from part (3). Part (3) is a special case of Lemma 15.5. �

Lemma 18.4. Let A be an abelian category. Let K• be an acyclic complex. Let I• be
bounded below and consisting of injective objects. Any morphismK• → I• is homotopic
to zero.

Proof. Let α : K• → I• be a morphism of complexes. Assume that αj = 0 for
j < n. We will show that there exists a morphism h : Kn+1 → In such that αn = h ◦ d.
Thus α will be homotopic to the morphism of complexes β defined by

βj =

 0 if j ≤ n
αn+1 − d ◦ h if j = n+ 1

αj if j > n+ 1

This will clearly prove the lemma (by induction). To prove the existence of h note that
αn|dn−1(Kn−1) = 0 since αn−1 = 0. Since K• is acyclic we have dn−1(Kn−1) =
Ker(Kn → Kn+1). Hence we can think of αn as a map into In defined on the sub-
object Im(Kn → Kn+1) of Kn+1. By injectivity of the object In we can extend this to a
map h : Kn+1 → In as desired. �
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Remark 18.5. Let A be an abelian category. Using the fact that K(A) is a triangu-
lated category we may use Lemma 18.4 to obtain proofs of some of the lemmas below which
are usually proved by chasing through diagrams. Namely, suppose that α : K• → L• is a
quasi-isomorphism of complexes. Then

(K•, L•, C(α)•, α, i,−p)

is a distinguished triangle inK(A) (Lemma 9.14) andC(α)• is an acyclic complex (Lemma
11.2). Next, let I• be a bounded below complex of injective objects. Then

HomK(A)(C(α)•, I•) // HomK(A)(L•, I•) // HomK(A)(K•, I•)

rr
HomK(A)(C(α)•[−1], I•)

is an exact sequence of abelian groups, see Lemma 4.2. At this point Lemma 18.4 guarantees
that the outer two groups are zero and hence HomK(A)(L•, I•) = HomK(A)(K•, I•).

Lemma 18.6. LetA be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

β}}
I•

where I• is bounded below and consists of injective objects, and α is a quasi-isomorphism.
(1) There exists a map of complexes β making the diagram commute up to homo-

topy.
(2) If α is injective in every degree then we can find a β which makes the diagram

commute.

Proof. The “correct” proof of part (1) is explained in Remark 18.5. We also give a
direct proof here.

We first show that (2) implies (1). Namely, let α̃ : K → L̃•, π, s be as in Lemma 9.6.
Since α̃ is injective by (2) there exists a morphism β̃ : L̃• → I• such that γ = β̃ ◦ α̃. Set
β = β̃ ◦ s. Then we have

β ◦ α = β̃ ◦ s ◦ π ◦ α̃ ∼ β̃ ◦ α̃ = γ

as desired.

Assume that α : K• → L• is injective. Suppose we have already defined β in all degrees
≤ n − 1 compatible with differentials and such that γj = βj ◦ αj for all j ≤ n − 1.
Consider the commutative solid diagram

Kn−1 //

γ

��

α

��

Kn

γ

��

α

��
Ln−1 //

β
��

Ln

��
In−1 // In
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Thus we see that the dotted arrow is prescribed on the subobjectsα(Kn) and dn−1(Ln−1).
Moreover, these two arrows agree on α(dn−1(Kn−1)). Hence if

(18.6.1) α(dn−1(Kn−1)) = α(Kn) ∩ dn−1(Ln−1)
then these morphisms glue to a morphism α(Kn) + dn−1(Ln−1) → In and, using the
injectivity of In, we can extend this to a morphism from all of Ln into In. After this by
induction we get the morphism β for all n simultaneously (note that we can set βn = 0
for all n� 0 since I• is bounded below – in this way starting the induction).

It remains to prove the equality (18.6.1). The reader is encouraged to argue this for them-
selves with a suitable diagram chase. Nonetheless here is our argument. Note that the in-
clusion α(dn−1(Kn−1)) ⊂ α(Kn)∩dn−1(Ln−1) is obvious. Take an object T ofA and a
morphism x : T → Ln whose image is contained in the subobject α(Kn) ∩ dn−1(Ln−1).
Since α is injective we see that x = α ◦ x′ for some x′ : T → Kn. Moreover, since x
lies in dn−1(Ln−1) we see that dn ◦ x = 0. Hence using injectivity of α again we see
that dn ◦ x′ = 0. Thus x′ gives a morphism [x′] : T → Hn(K•). On the other hand
the corresponding map [x] : T → Hn(L•) induced by x is zero by assumption. Since α
is a quasi-isomorphism we conclude that [x′] = 0. This of course means exactly that the
image of x′ is contained in dn−1(Kn−1) and we win. �

Lemma 18.7. LetA be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

βi}}
I•

where I• is bounded below and consists of injective objects, and α is a quasi-isomorphism.
Any two morphisms β1, β2 making the diagram commute up to homotopy are homotopic.

Proof. This follows from Remark 18.5. We also give a direct argument here.

Let α̃ : K → L̃•, π, s be as in Lemma 9.6. If we can show that β1 ◦ π is homotopic to
β2 ◦ π, then we deduce that β1 ∼ β2 because π ◦ s is the identity. Hence we may assume
αn : Kn → Ln is the inclusion of a direct summand for all n. Thus we get a short exact
sequence of complexes

0→ K• → L• →M• → 0
which is termwise split and such thatM• is acyclic. We choose splittingsLn = Kn⊕Mn,
so we have βni : Kn ⊕Mn → In and γn : Kn → In. In this case the condition on βi is
that there are morphisms hni : Kn → In−1 such that

γn − βni |Kn = d ◦ hni + hn+1
i ◦ d

Thus we see that

βn1 |Kn − βn2 |Kn = d ◦ (hn1 − hn2 ) + (hn+1
1 − hn+1

2 ) ◦ d
Consider the map hn : Kn ⊕Mn → In−1 which equals hn1 − hn2 on the first summand
and zero on the second. Then we see that

βn1 − βn2 − (d ◦ hn + hn+1) ◦ d
is a morphism of complexes L• → I• which is identically zero on the subcomplex K•.
Hence it factors as L• → M• → I•. Thus the result of the lemma follows from Lemma
18.4. �
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Lemma 18.8. Let A be an abelian category. Let I• be bounded below complex con-
sisting of injective objects. Let L• ∈ K(A). Then

MorK(A)(L•, I•) = MorD(A)(L•, I•).

Proof. Let a be an element of the right hand side. We may represent a = γα−1

where α : K• → L• is a quasi-isomorphism and γ : K• → I• is a map of complexes. By
Lemma 18.6 we can find a morphism β : L• → I• such that β ◦α is homotopic to γ. This
proves that the map is surjective. Let b be an element of the left hand side which maps to
zero in the right hand side. Then b is the homotopy class of a morphism β : L• → I•

such that there exists a quasi-isomorphism α : K• → L• with β ◦ α homotopic to zero.
Then Lemma 18.7 shows that β is homotopic to zero also, i.e., b = 0. �

Lemma 18.9. LetA be an abelian category. AssumeA has enough injectives. For any
short exact sequence 0→ A• → B• → C• → 0 of Comp+(A) there exists a commutative
diagram in Comp+(A)

0 // A• //

��

B• //

��

C• //

��

0

0 // I•
1

// I•
2

// I•
3

// 0

where the vertical arrows are injective resolutions and the rows are short exact sequences
of complexes. In fact, given any injective resolution A• → I• we may assume I•

1 = I•.

Proof. Step 1. Choose an injective resolution A• → I• (see Lemma 18.3) or use
the given one. Recall that Comp+(A) is an abelian category, see Homology, Lemma 13.9.
Hence we may form the pushout along the map A• → I• to get

0 // A• //

��

B• //

��

C• //

��

0

0 // I• // E• // C• // 0

Because of the 5-lemma and the last assertion of Homology, Lemma 13.12 the map B• →
A• is a quasi-isomorphism. Note that the lower short exact sequence is termwise split, see
Homology, Lemma 27.2. Hence it suffices to prove the lemma when 0 → A• → B• →
C• → 0 is termwise split.

Step 2. Choose splittings. In other words, write Bn = An ⊕Cn. Denote δ : C• → A•[1]
the morphism as in Homology, Lemma 14.10. Choose injective resolutions f1 : A• → I•

1
and f3 : C• → I•

3 . (If A• is a complex of injectives, then use I•
1 = A•.) We may assume

f3 is injective in every degree. By Lemma 18.6 we may find a morphism δ′ : I•
3 → I•

1 [1]
such that δ′ ◦ f3 = f1[1] ◦ δ (equality of morphisms of complexes). Set In2 = In1 ⊕ In3 .
Define

dnI2
=
(
dnI1

(δ′)n
0 dnI3

)
and define the mapsBn → In2 to be given as the sum of the mapsAn → In1 andCn → In3 .
Everything is clear. �
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19. Projective resolutions

This section is dual to Section 18. We give definitions and state results, but we do not
reprove the lemmas.

Definition 19.1. Let A be an abelian category. Let A ∈ Ob(A). An projective
resolution of A is a complex P • together with a map P 0 → A such that:

(1) We have Pn = 0 for n > 0.
(2) Each Pn is an projective object ofA.
(3) The map P 0 → A induces an isomorphism Coker(d−1)→ A.
(4) We have Hi(P •) = 0 for i < 0.

Hence P • → A[0] is a quasi-isomorphism. In other words the complex

. . .→ P−1 → P 0 → A→ 0→ . . .

is acyclic. Let K• be a complex in A. An projective resolution of K• is a complex P •

together with a map α : P • → K• of complexes such that
(1) We have Pn = 0 for n� 0, i.e., P • is bounded above.
(2) Each Pn is an projective object ofA.
(3) The map α : P • → K• is a quasi-isomorphism.

Lemma 19.2. LetA be an abelian category. Let K• be a complex ofA.
(1) If K• has a projective resolution then Hn(K•) = 0 for n� 0.
(2) If Hn(K•) = 0 for n � 0 then there exists a quasi-isomorphism L• → K•

with L• bounded above.

Proof. Dual to Lemma 18.2. �

Lemma 19.3. LetA be an abelian category. AssumeA has enough projectives.
(1) Any object ofA has a projective resolution.
(2) If Hn(K•) = 0 for all n� 0 then K• has a projective resolution.
(3) If K• is a complex with Kn = 0 for n > a, then there exists a projective reso-

lution α : P • → K• with Pn = 0 for n > a such that each αn : Pn → Kn is
surjective.

Proof. Dual to Lemma 18.3. �

Lemma 19.4. LetA be an abelian category. Let K• be an acyclic complex. Let P • be
bounded above and consisting of projective objects. Any morphism P • → K• is homo-
topic to zero.

Proof. Dual to Lemma 18.4. �

Remark 19.5. Let A be an abelian category. Suppose that α : K• → L• is a quasi-
isomorphism of complexes. Let P • be a bounded above complex of projectives. Then

HomK(A)(P •,K•) −→ HomK(A)(P •, L•)
is an isomorphism. This is dual to Remark 18.5.

Lemma 19.6. LetA be an abelian category. Consider a solid diagram

K• L•
α
oo

P •

OO

β

==
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whereP • is bounded above and consists of projective objects, andα is a quasi-isomorphism.
(1) There exists a map of complexes β making the diagram commute up to homo-

topy.
(2) If α is surjective in every degree then we can find a β which makes the diagram

commute.

Proof. Dual to Lemma 18.6. �

Lemma 19.7. LetA be an abelian category. Consider a solid diagram

K• L•
α
oo

P •

OO

βi

==

whereP • is bounded above and consists of projective objects, andα is a quasi-isomorphism.
Any two morphisms β1, β2 making the diagram commute up to homotopy are homotopic.

Proof. Dual to Lemma 18.7. �

Lemma 19.8. Let A be an abelian category. Let P • be bounded above complex con-
sisting of projective objects. Let L• ∈ K(A). Then

MorK(A)(P •, L•) = MorD(A)(P •, L•).

Proof. Dual to Lemma 18.8. �

Lemma 19.9. Let A be an abelian category. Assume A has enough projectives. For
any short exact sequence 0 → A• → B• → C• → 0 of Comp+(A) there exists a
commutative diagram in Comp+(A)

0 // P •
1

//

��

P •
2

//

��

P •
3

//

��

0

0 // A• // B• // C• // 0
where the vertical arrows are projective resolutions and the rows are short exact sequences
of complexes. In fact, given any projective resolutionP • → C• we may assumeP •

3 = P •.

Proof. Dual to Lemma 18.9. �

Lemma 19.10. Let A be an abelian category. Let P •, K• be complexes. Let n ∈ Z.
Assume that

(1) P • is a bounded complex consisting of projective objects,
(2) P i = 0 for i < n, and
(3) Hi(K•) = 0 for i ≥ n.

Then HomK(A)(P •,K•) = HomD(A)(P •,K•) = 0.

Proof. The first equality follows from Lemma 19.8. Note that there is a distinguished
triangle

(τ≤n−1K
•,K•, τ≥nK

•, f, g, h)
by Remark 12.4. Hence, by Lemma 4.2 it suffices to prove HomK(A)(P •, τ≤n−1K

•) = 0
and HomK(A)(P •, τ≥nK

•) = 0. The first vanishing is trivial and the second is Lemma
19.4. �
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Lemma 19.11. Let A be an abelian category. Let β : P • → L• and α : E• → L• be
maps of complexes. Let n ∈ Z. Assume

(1) P • is a bounded complex of projectives and P i = 0 for i < n,
(2) Hi(α) is an isomorphism for i > n and surjective for i = n.

Then there exists a map of complexes γ : P • → E• such that α ◦ γ and β are homotopic.

Proof. Consider the cone C• = C(α)• with map i : L• → C•. Note that i ◦ β is
zero by Lemma 19.10. Hence we can lift β to E• by Lemma 4.2. �

20. Right derived functors and injective resolutions

At this point we can use the material above to define the right derived functors of an ad-
ditive functor between an abelian category having enough injectives and a general abelian
category.

Lemma 20.1. LetA be an abelian category. Let I ∈ Ob(A) be an injective object. Let
I• be a bounded below complex of injectives inA.

(1) I• computes RF relative to Qis+(A) for any exact functor F : K+(A) → D
into any triangulated category D.

(2) I is right acyclic for any additive functor F : A → B into any abelian category
B.

Proof. Part (2) is a direct consequences of part (1) and Definition 15.3. To prove (1)
let α : I• → K• be a quasi-isomorphism into a complex. By Lemma 18.6 we see that
α has a left inverse. Hence the category I•/Qis+(A) is essentially constant with value
id : I• → I•. Thus also the ind-object

I•/Qis+(A) −→ D, (I• → K•) 7−→ F (K•)
is essentially constant with value F (I•). This proves (1), see Definitions 14.2 and 14.10.

�

Lemma 20.2. LetA be an abelian category with enough injectives.
(1) For any exact functor F : K+(A)→ D into a triangulated categoryD the right

derived functor
RF : D+(A) −→ D

is everywhere defined.
(2) For any additive functorF : A → B into an abelian categoryB the right derived

functor
RF : D+(A) −→ D+(B)

is everywhere defined.

Proof. Combine Lemma 20.1 and Proposition 16.8 for the second assertion. To see
the first assertion combine Lemma 18.3, Lemma 20.1, Lemma 14.14, and Equation (14.9.1).

�

Lemma 20.3. Let A be an abelian category with enough injectives. Let F : A → B
be an additive functor.

(1) The functor RF is an exact functor D+(A)→ D+(B).
(2) The functor RF induces an exact functor K+(A)→ D+(B).
(3) The functor RF induces a δ-functor Comp+(A)→ D+(B).
(4) The functor RF induces a δ-functorA → D+(B).
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Proof. This lemma simply reviews some of the results obtained so far. Note that by
Lemma 20.2 RF is everywhere defined. Here are some references:

(1) The derived functor is exact: This boils down to Lemma 14.6.
(2) This is true because K+(A)→ D+(A) is exact and compositions of exact func-

tors are exact.
(3) This is true because Comp+(A)→ D+(A) is a δ-functor, see Lemma 12.1.
(4) This is true becauseA → Comp+(A) is exact and precomposing a δ-functor by

an exact functor gives a δ-functor.
�

Lemma 20.4. Let A be an abelian category with enough injectives. Let F : A → B
be a left exact functor.

(1) For any short exact sequence 0 → A• → B• → C• → 0 of complexes in
Comp+(A) there is an associated long exact sequence

. . .→ Hi(RF (A•))→ Hi(RF (B•))→ Hi(RF (C•))→ Hi+1(RF (A•))→ . . .

(2) The functors RiF : A → B are zero for i < 0. Also R0F = F : A → B.
(3) We have RiF (I) = 0 for i > 0 and I injective.
(4) The sequence (RiF, δ) forms a universal δ-functor (see Homology, Definition

12.3) fromA to B.

Proof. This lemma simply reviews some of the results obtained so far. Note that by
Lemma 20.2 RF is everywhere defined. Here are some references:

(1) This follows from Lemma 20.3 part (3) combined with the long exact cohomol-
ogy sequence (11.1.1) for D+(B).

(2) This is Lemma 16.3.
(3) This is the fact that injective objects are acyclic.
(4) This is Lemma 16.6.

�

21. Cartan-Eilenberg resolutions

This section can be expanded. The material can be generalized and applied in more cases.
Resolutions need not use injectives and the method also works in the unbounded case in
some situations.

Definition 21.1. LetA be an abelian category. LetK• be a bounded below complex.
A Cartan-Eilenberg resolution of K• is given by a double complex I•,• and a morphism
of complexes ε : K• → I•,0 with the following properties:

(1) There exists a i� 0 such that Ip,q = 0 for all p < i and all q.
(2) We have Ip,q = 0 if q < 0.
(3) The complex Ip,• is an injective resolution of Kp.
(4) The complex Ker(dp,•1 ) is an injective resolution of Ker(dpK).
(5) The complex Im(dp,•1 ) is an injective resolution of Im(dpK).
(6) The complex Hp

I (I•,•) is an injective resolution of Hp(K•).

Lemma 21.2. Let A be an abelian category with enough injectives. Let K• be a
bounded below complex. There exists a Cartan-Eilenberg resolution of K•.
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Proof. Suppose that Kp = 0 for p < n. Decompose K• into short exact sequences
as follows: Set Zp = Ker(dp), Bp = Im(dp−1), Hp = Zp/Bp, and consider

0→ Zn → Kn → Bn+1 → 0
0→ Bn+1 → Zn+1 → Hn+1 → 0
0→ Zn+1 → Kn+1 → Bn+2 → 0
0→ Bn+2 → Zn+2 → Hn+2 → 0

. . .

Set Ip,q = 0 for p < n. Inductively we choose injective resolutions as follows:
(1) Choose an injective resolution Zn → Jn,•Z .
(2) Using Lemma 18.9 choose injective resolutions Kn → In,•, Bn+1 → Jn+1,•

B ,
and an exact sequence of complexes 0→ Jn,•Z → In,• → Jn+1,•

B → 0 compati-
ble with the short exact sequence 0→ Zn → Kn → Bn+1 → 0.

(3) Using Lemma 18.9 choose injective resolutionsZn+1 → Jn+1,•
Z ,Hn+1 → Jn+1,•

H ,
and an exact sequence of complexes 0 → Jn+1,•

B → Jn+1,•
Z → Jn+1,•

H → 0
compatible with the short exact sequence 0→ Bn+1 → Zn+1 → Hn+1 → 0.

(4) Etc.
Taking as maps d•

1 : Ip,• → Ip+1,• the compositions Ip,• → Jp+1,•
B → Jp+1,•

Z → Ip+1,•

everything is clear. �

Lemma 21.3. Let F : A → B be a left exact functor of abelian categories. Let K•

be a bounded below complex of A. Let I•,• be a Cartan-Eilenberg resolution for K•.
The spectral sequences (′Er,

′dr)r≥0 and (′′Er,
′′dr)r≥0 associated to the double complex

F (I•,•) satisfy the relations
′Ep,q1 = RqF (Kp) and ′′Ep,q2 = RpF (Hq(K•))

Moreover, these spectral sequences are bounded, converge to H∗(RF (K•)), and the asso-
ciated induced filtrations on Hn(RF (K•)) are finite.

Proof. We will use the following remarks without further mention:
(1) As Ip,• is an injective resolution of Kp we see that RF is defined at Kp[0] with

value F (Ip,•).
(2) As Hp

I (I•,•) is an injective resolution of Hp(K•) the derived functor RF is
defined at Hp(K•)[0] with value F (Hp

I (I•,•)).
(3) By Homology, Lemma 25.4 the total complex Tot(I•,•) is an injective resolution

of K•. Hence RF is defined at K• with value F (Tot(I•,•)).
Consider the two spectral sequences associated to the double complex L•,• = F (I•,•),
see Homology, Lemma 25.1. These are both bounded, converge to H∗(Tot(L•,•)), and
induce finite filtrations onHn(Tot(L•,•)), see Homology, Lemma 25.3. Since Tot(L•,•) =
Tot(F (I•,•)) = F (Tot(I•,•)) computes Hn(RF (K•)) we find the final assertion of the
lemma holds true.

Computation of the first spectral sequence. We have ′Ep,q1 = Hq(Lp,•) in other words
′Ep,q1 = Hq(F (Ip,•)) = RqF (Kp)

as desired. Observe for later use that the maps ′dp,q1 : ′Ep,q1 → ′Ep+1,q
1 are the maps

RqF (Kp)→ RqF (Kp+1) induced by Kp → Kp+1 and the fact that RqF is a functor.
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Computation of the second spectral sequence. We have ′′Ep,q1 = Hq(L•,p) = Hq(F (I•,p)).
Note that the complex I•,p is bounded below, consists of injectives, and moreover each ker-
nel, image, and cohomology group of the differentials is an injective object of A. Hence
we can split the differentials, i.e., each differential is a split surjection onto a direct sum-
mand. It follows that the same is true after applying F . Hence ′′Ep,q1 = F (Hq(I•,p)) =
F (Hq

I (I•,p)). The differentials on this are (−1)q times F applied to the differential of the
complex Hp

I (I•,•) which is an injective resolution of Hp(K•). Hence the description of
the E2 terms. �

Remark 21.4. The spectral sequences of Lemma 21.3 are functorial in the complex
K•. This follows from functoriality properties of Cartan-Eilenberg resolutions. On the
other hand, they are both examples of a more general spectral sequence which may be
associated to a filtered complex ofA. The functoriality will follow from its construction.
We will return to this in the section on the filtered derived category, see Remark 26.15.

22. Composition of right derived functors

Sometimes we can compute the right derived functor of a composition. Suppose that
A,B, C be abelian categories. Let F : A → B and G : B → C be left exact functors. As-
sume that the right derived functors RF : D+(A) → D+(B), RG : D+(B) → D+(C),
and R(G ◦ F ) : D+(A)→ D+(C) are everywhere defined. Then there exists a canonical
transformation

t : R(G ◦ F ) −→ RG ◦RF
of functors fromD+(A) toD+(C), see Lemma 14.16. This transformation need not always
be an isomorphism.

Lemma 22.1. Let A,B, C be abelian categories. Let F : A → B and G : B → C be
left exact functors. AssumeA, B have enough injectives. The following are equivalent

(1) F (I) is right acyclic for G for each injective object I ofA, and
(2) the canonical map

t : R(G ◦ F ) −→ RG ◦RF.

is isomorphism of functors from D+(A) to D+(C).

Proof. If (2) holds, then (1) follows by evaluating the isomorphism t on RF (I) =
F (I). Conversely, assume (1) holds. LetA• be a bounded below complex ofA. Choose an
injective resolution A• → I•. The map t is given (see proof of Lemma 14.16) by the maps

R(G ◦ F )(A•) = (G ◦ F )(I•) = G(F (I•)))→ RG(F (I•)) = RG(RF (A•))

where the arrow is an isomorphism by Lemma 16.7. �

Lemma 22.2 (Grothendieck spectral sequence). With assumptions as in Lemma 22.1
and assuming the equivalent conditions (1) and (2) hold. Let X be an object of D+(A).
There exists a spectral sequence (Er, dr)r≥0 consisting of bigraded objects Er of C with
dr of bidegree (r,−r + 1) and with

Ep,q2 = RpG(Hq(RF (X)))

Moreover, this spectral sequence is bounded, converges toH∗(R(G◦F )(X)), and induces
a finite filtration on each Hn(R(G ◦ F )(X)).

For an object A ofA we get Ep,q2 = RpG(RqF (A)) converging to Rp+q(G ◦ F )(A).



23. RESOLUTION FUNCTORS 1095

Proof. We may represent X by a bounded below complex A•. Choose an injective
resolution A• → I•. Choose a Cartan-Eilenberg resolution F (I•) → I•,• using Lemma
21.2. Apply the second spectral sequence of Lemma 21.3. �

23. Resolution functors

Let A be an abelian category with enough injectives. Denote I the full additive subcate-
gory ofAwhose objects are the injective objects ofA. It turns out thatK+(I) andD+(A)
are equivalent in this case (see Proposition 23.1). For many purposes it therefore makes
sense to think of D+(A) as the (easier to grok) category K+(I) in this case.

Proposition 23.1. Let A be an abelian category. Assume A has enough injectives.
Denote I ⊂ A the strictly full additive subcategory whose objects are the injective objects
ofA. The functor

K+(I) −→ D+(A)
is exact, fully faithful and essentially surjective, i.e., an equivalence of triangulated cate-
gories.

Proof. It is clear that the functor is exact. It is essentially surjective by Lemma 18.3.
Fully faithfulness is a consequence of Lemma 18.8. �

Proposition 23.1 implies that we can find resolution functors. It turns out that we can
prove resolution functors exist even in some cases where the abelian categoryA is a “big”
category, i.e., has a class of objects.

Definition 23.2. LetA be an abelian category with enough injectives. A resolution
functor7 forA is given by the following data:

(1) for all K• ∈ Ob(K+(A)) a bounded below complex of injectives j(K•), and
(2) for all K• ∈ Ob(K+(A)) a quasi-isomorphism iK• : K• → j(K•).

Lemma 23.3. LetA be an abelian category with enough injectives. Given a resolution
functor (j, i) there is a unique way to turn j into a functor and i into a 2-isomorphism
producing a 2-commutative diagram

K+(A)

$$

j
// K+(I)

zz
D+(A)

where I is the full additive subcategory ofA consisting of injective objects.
Proof. For every morphism α : K• → L• of K+(A) there is a unique morphism

j(α) : j(K•)→ j(L•) in K+(I) such that

K•
α

//

iK•

��

L•

iL•

��
j(K•)

j(α) // j(L•)

is commutative in K+(A). To see this either use Lemmas 18.6 and 18.7 or the equivalent
Lemma 18.8. The uniqueness implies that j is a functor, and the commutativity of the
diagram implies that i gives a 2-morphism which witnesses the 2-commutativity of the
diagram of categories in the statement of the lemma. �

7This is likely nonstandard terminology.
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Lemma 23.4. LetA be an abelian category. AssumeA has enough injectives. Then a
resolution functor j exists and is unique up to unique isomorphism of functors.

Proof. Consider the set of all objectsK• ofK+(A). (Recall that by our conventions
any category has a set of objects unless mentioned otherwise.) By Lemma 18.3 every object
has an injective resolution. By the axiom of choice we can choose for eachK• an injective
resolution iK• : K• → j(K•). �

Lemma 23.5. Let A be an abelian category with enough injectives. Any resolution
functor j : K+(A)→ K+(I) is exact.

Proof. Denote iK• : K• → j(K•) the canonical maps of Definition 23.2. First we
discuss the existence of the functorial isomorphism j(K•[1]) → j(K•)[1]. Consider the
diagram

K•[1]

iK•[1]

��

K•[1]

iK• [1]
��

j(K•[1])
ξK• // j(K•)[1]

By Lemmas 18.6 and 18.7 there exists a unique dotted arrow ξK• in K+(I) making the
diagram commute inK+(A). We omit the verification that this gives a functorial isomor-
phism. (Hint: use Lemma 18.7 again.)

Let (K•, L•,M•, f, g, h) be a distinguished triangle of K+(A). We have to show that
(j(K•), j(L•), j(M•), j(f), j(g), ξK• ◦ j(h)) is a distinguished triangle ofK+(I). Note
that we have a commutative diagram

K•
f

//

��

L•
g
//

��

M•
h

//

��

K•[1]

��
j(K•)

j(f) // j(L•)
j(g) // j(M•)

ξK• ◦j(h) // j(K•)[1]

in K+(A) whose vertical arrows are the quasi-isomorphisms iK , iL, iM . Hence we see
that the image of (j(K•), j(L•), j(M•), j(f), j(g), ξK• ◦ j(h)) in D+(A) is isomorphic
to a distinguished triangle and hence a distinguished triangle by TR1. Thus we see from
Lemma 4.18 that (j(K•), j(L•), j(M•), j(f), j(g), ξK• ◦ j(h)) is a distinguished triangle
in K+(I). �

Lemma 23.6. Let A be an abelian category which has enough injectives. Let j be a
resolution functor. WriteQ : K+(A)→ D+(A) for the natural functor. Then j = j′◦Q
for a unique functor j′ : D+(A)→ K+(I) which is quasi-inverse to the canonical functor
K+(I)→ D+(A).

Proof. By Lemma 11.6 Q is a localization functor. To prove the existence of j′ it
suffices to show that any element of Qis+(A) is mapped to an isomorphism under the
functor j , see Lemma 5.7. This is true by the remarks following Definition 23.2. �

Remark 23.7. Suppose thatA is a “big” abelian category with enough injectives such
as the category of abelian groups. In this case we have to be slightly more careful in con-
structing our resolution functor since we cannot use the axiom of choice with a quantifier
ranging over a class. But note that the proof of the lemma does show that any two localiza-
tion functors are canonically isomorphic. Namely, given quasi-isomorphisms i : K• → I•
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and i′ : K• → J• of a bounded below complex K• into bounded below complexes of in-
jectives there exists a unique(!) morphism a : I• → J• in K+(I) such that i′ = i ◦ a as
morphisms in K+(I). Hence the only issue is existence, and we will see how to deal with
this in the next section.

24. Functorial injective embeddings and resolution functors

In this section we redo the construction of a resolution functorK+(A)→ K+(I) in case
the category A has functorial injective embeddings. There are two reasons for this: (1)
the proof is easier and (2) the construction also works ifA is a “big” abelian category. See
Remark 24.3 below.
Let A be an abelian category. As before denote I the additive full subcategory of A con-
sisting of injective objects. Consider the category InjRes(A) of arrows α : K• → I•

where K• is a bounded below complex ofA, I• is a bounded below complex of injectives
of A and α is a quasi-isomorphism. In other words, α is an injective resolution and K• is
bounded below. There is an obvious functor

s : InjRes(A) −→ Comp+(A)
defined by (α : K• → I•) 7→ K•. There is also a functor

t : InjRes(A) −→ K+(I)
defined by (α : K• → I•) 7→ I•.

Lemma 24.1. Let A be an abelian category. Assume A has functorial injective em-
beddings, see Homology, Definition 27.5.

(1) There exists a functor inj : Comp+(A)→ InjRes(A) such that s ◦ inj = id.
(2) For any functor inj : Comp+(A)→ InjRes(A) such that s◦inj = id we obtain

a resolution functor, see Definition 23.2.

Proof. Let A 7→ (A → J(A)) be a functorial injective embedding, see Homology,
Definition 27.5. We first note that we may assume J(0) = 0. Namely, if not then for
any object A we have 0 → A → 0 which gives a direct sum decomposition J(A) =
J(0)⊕Ker(J(A)→ J(0)). Note that the functorial morphismA→ J(A) has to map into
the second summand. Hence we can replace our functor by J ′(A) = Ker(J(A)→ J(0))
if needed.
LetK• be a bounded below complex ofA. SayKp = 0 if p < B. We are going to construct
a double complex I•,• of injectives, together with a map α : K• → I•,0 such that α
induces a quasi-isomorphism ofK• with the associated total complex of I•,•. First we set
Ip,q = 0 whenever q < 0. Next, we set Ip,0 = J(Kp) and αp : Kp → Ip,0 the functorial
embedding. Since J is a functor we see that I•,0 is a complex and that α is a morphism of
complexes. Each αp is injective. And Ip,0 = 0 for p < B because J(0) = 0. Next, we set
Ip,1 = J(Coker(Kp → Ip,0)). Again by functoriality we see that I•,1 is a complex. And
again we get that Ip,1 = 0 for p < B. It is also clear that Kp maps isomorphically onto
Ker(Ip,0 → Ip,1). As our third step we take Ip,2 = J(Coker(Ip,0 → Ip,1)). And so on
and so forth.
At this point we can apply Homology, Lemma 25.4 to get that the map

α : K• −→ Tot(I•,•)
is a quasi-isomorphism. To prove we get a functor inj it rests to show that the construction
above is functorial. This verification is omitted.
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Suppose we have a functor inj such that s ◦ inj = id. For every objectK• of Comp+(A)
we can write

inj(K•) = (iK• : K• → j(K•))
This provides us with a resolution functor as in Definition 23.2. �

Remark 24.2. Suppose inj is a functor such that s◦ inj = id as in part (2) of Lemma
24.1. Write inj(K•) = (iK• : K• → j(K•)) as in the proof of that lemma. Suppose
α : K• → L• is a map of bounded below complexes. Consider the map inj(α) in the
category InjRes(A). It induces a commutative diagram

K• α //

iK
��

L•

iL
��

j(K)• inj(α) // j(L)•

of morphisms of complexes. Hence, looking at the proof of Lemma 23.3 we see that the
functor j : K+(A)→ K+(I) is given by the rule

j(α up to homotopy) = inj(α) up to homotopy ∈ HomK+(I)(j(K•), j(L•))

Hence we see that j matches t ◦ inj in this case, i.e., the diagram

Comp+(A)
t◦inj

//

&&

K+(I)

K+(A)
j

::

is commutative.

Remark 24.3. Let Mod(OX) be the category ofOX -modules on a ringed space (X,OX)
(or more generally on a ringed site). We will see later that Mod(OX) has enough injec-
tives and in fact functorial injective embeddings, see Injectives, Theorem 8.4. Note that
the proof of Lemma 23.4 does not apply to Mod(OX). But the proof of Lemma 24.1 does
apply to Mod(OX). Thus we obtain

j : K+(Mod(OX)) −→ K+(I)

which is a resolution functor where I is the additive category of injective OX -modules.
This argument also works in the following cases:

(1) The category ModR of R-modules over a ring R.
(2) The category PMod(O) of presheaves of O-modules on a site endowed with a

presheaf of rings.
(3) The category Mod(O) of sheaves ofO-modules on a ringed site.
(4) Add more here as needed.

25. Right derived functors via resolution functors

The content of the following lemma is that we can simply define RF (K•) = F (j(K•))
if we are given a resolution functor j.

Lemma 25.1. Let A be an abelian category with enough injectives Let F : A → B
be an additive functor into an abelian category. Let (i, j) be a resolution functor, see
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Definition 23.2. The right derived functorRF ofF fits into the following 2-commutative
diagram

D+(A)

RF $$

j′
// K+(I)

Fzz
D+(B)

where j′ is the functor from Lemma 23.6.

Proof. By Lemma 20.1 we have RF (K•) = F (j(K•)). �

Remark 25.2. In the situation of Lemma 25.1 we see that we have actually lifted the
right derived functor to an exact functor F ◦ j′ : D+(A) → K+(B). It is occasionally
useful to use such a factorization.

26. Filtered derived category and injective resolutions

LetA be an abelian category. In this section we will show that ifA has enough injectives,
then so does the category Filf (A) in some sense. One can use this observation to compute
in the filtered derived category ofA.

The category Filf (A) is an example of an exact category, see Injectives, Remark 9.6. A spe-
cial role is played by the strict morphisms, see Homology, Definition 19.3, i.e., the mor-
phisms f such that Coim(f) = Im(f). We will say that a complex A → B → C in
Filf (A) is exact if the sequence gr(A)→ gr(B)→ gr(C) is exact inA. This implies that
A→ B and B → C are strict morphisms, see Homology, Lemma 19.15.

Definition 26.1. Let A be an abelian category. We say an object I of Filf (A) is
filtered injective if each grp(I) is an injective object ofA.

Lemma 26.2. LetA be an abelian category. An object I of Filf (A) is filtered injective
if and only if there exist a ≤ b, injective objects In, a ≤ n ≤ b of A and an isomorphism
I ∼=

⊕
a≤n≤b In such that F pI =

⊕
n≥p In.

Proof. Follows from the fact that any injection J → M of A is split if J is an
injective object. Details omitted. �

Lemma 26.3. LetA be an abelian category. Any strict monomorphism u : I → A of
Filf (A) where I is a filtered injective object is a split injection.

Proof. Let p be the largest integer such that F pI 6= 0. In particular grp(I) = F pI .
Let I ′ be the object of Filf (A) whose underlying object of A is F pI and with filtration
given by FnI ′ = 0 for n > p and FnI ′ = I ′ = F pI for n ≤ p. Note that I ′ → I is a
strict monomorphism too. The fact that u is a strict monomorphism implies that F pI →
A/F p+1(A) is injective, see Homology, Lemma 19.13. Choose a splitting s : A/F p+1A→
F pI in A. The induced morphism s′ : A → I ′ is a strict morphism of filtered objects
splitting the composition I ′ → I → A. Hence we can write A = I ′ ⊕ Ker(s′) and
I = I ′ ⊕ Ker(s′|I). Note that Ker(s′|I) → Ker(s′) is a strict monomorphism and that
Ker(s′|I) is a filtered injective object. By induction on the length of the filtration on I
the map Ker(s′|I)→ Ker(s′) is a split injection. Thus we win. �
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Lemma 26.4. LetA be an abelian category. Let u : A→ B be a strict monomorphism
of Filf (A) and f : A → I a morphism from A into a filtered injective object in Filf (A).
Then there exists a morphism g : B → I such that f = g ◦ u.

Proof. The pushout f ′ : I → I qA B of f by u is a strict monomorphism, see
Homology, Lemma 19.10. Hence the result follows formally from Lemma 26.3. �

Lemma 26.5. LetA be an abelian category with enough injectives. For any object A
of Filf (A) there exists a strict monomorphismA→ I where I is a filtered injective object.

Proof. Pick a ≤ b such that grp(A) = 0 unless p ∈ {a, a + 1, . . . , b}. For each
n ∈ {a, a + 1, . . . , b} choose an injection un : A/Fn+1A → In with In an injective
object. Set I =

⊕
a≤n≤b In with filtration F pI =

⊕
n≥p In and set u : A → I equal to

the direct sum of the maps un. �

Lemma 26.6. LetA be an abelian category with enough injectives. For any object A
of Filf (A) there exists a filtered quasi-isomorphism A[0] → I• where I• is a complex of
filtered injective objects with In = 0 for n < 0.

Proof. First choose a strict monomorphism u0 : A→ I0 ofA into a filtered injective
object, see Lemma 26.5. Next, choose a strict monomorphism u1 : Coker(u0)→ I1 into a
filtered injective object of A. Denote d0 the induced map I0 → I1. Next, choose a strict
monomorphism u2 : Coker(u1)→ I2 into a filtered injective object of A. Denote d1 the
induced map I1 → I2. And so on. This works because each of the sequences

0→ Coker(un)→ In+1 → Coker(un+1)→ 0
is short exact, i.e., induces a short exact sequence on applying gr. To see this use Homology,
Lemma 19.13. �

Lemma 26.7. Let A be an abelian category with enough injectives. Let f : A → B

be a morphism of Filf (A). Given filtered quasi-isomorphisms A[0]→ I• and B[0]→ J•

where I•, J• are complexes of filtered injective objects with In = Jn = 0 for n < 0, then
there exists a commutative diagram

A[0] //

��

B[0]

��
I• // J•

Proof. As A[0] → I• and C[0] → J• are filtered quasi-isomorphisms we conclude
that a : A → I0, b : B → J0 and all the morphisms dnI , dnJ are strict, see Homology,
Lemma 19.15. We will inductively construct the maps fn in the following commutative
diagram

A
a
//

f

��

I0 //

f0

��

I1 //

f1

��

I2 //

f2

��

. . .

B
b // J0 // J1 // J2 // . . .

BecauseA→ I0 is a strict monomorphism and because J0 is filtered injective, we can find
a morphism f0 : I0 → J0 such that f0 ◦ a = b ◦ f , see Lemma 26.4. The composition
d0
J ◦ b ◦ f is zero, hence d0

J ◦ f0 ◦a = 0, hence d0
J ◦ f0 factors through a unique morphism

Coker(a) = Coim(d0
I) = Im(d0

I) −→ J1.
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As Im(d0
I) → I1 is a strict monomorphism we can extend the displayed arrow to a mor-

phism f1 : I1 → J1 by Lemma 26.4 again. And so on. �

Lemma 26.8. Let A be an abelian category with enough injectives. Let 0 → A →
B → C → 0 be a short exact sequence in Filf (A). Given filtered quasi-isomorphisms
A[0] → I• and C[0] → J• where I•, J• are complexes of filtered injective objects with
In = Jn = 0 for n < 0, then there exists a commutative diagram

0 // A[0] //

��

B[0] //

��

C[0] //

��

0

0 // I• // M• // J• // 0
where the lower row is a termwise split sequence of complexes.

Proof. As A[0] → I• and C[0] → J• are filtered quasi-isomorphisms we conclude
that a : A → I0, c : C → J0 and all the morphisms dnI , dnJ are strict, see Homology,
Lemma 13.4. We are going to step by step construct the south-east and the south arrows
in the following commutative diagram

B
β
//

b

��

C
c
//

b

  

J0

δ0

��

// J1

δ1

��

// . . .

A

α

OO

a // I0 // I1 // I2 // . . .

As A → B is a strict monomorphism, we can find a morphism b : B → I0 such that
b ◦ α = a, see Lemma 26.4. As A is the kernel of the strict morphism I0 → I1 and
β = Coker(α) we obtain a unique morphism b : C → I1 fitting into the diagram. As c is
a strict monomorphism and I1 is filtered injective we can find δ0 : J0 → I1, see Lemma
26.4. BecauseB → C is a strict epimorphism and becauseB → I0 → I1 → I2 is zero, we
see that C → I1 → I2 is zero. Hence d1

I ◦ δ0 is zero on C ∼= Im(c). Hence d1
I ◦ δ0 factors

through a unique morphism

Coker(c) = Coim(d0
J) = Im(d0

J) −→ I2.

As I2 is filtered injective and Im(d0
J) → J1 is a strict monomorphism we can extend the

displayed morphism to a morphism δ1 : J1 → I2, see Lemma 26.4. And so on. We set
M• = I• ⊕ J• with differential

dnM =
(
dnI (−1)n+1δn

0 dnJ

)
Finally, the map B[0]→M• is given by b⊕ c ◦ β : M → I0 ⊕ J0. �

Lemma 26.9. Let A be an abelian category with enough injectives. For every K• ∈
K+(Filf (A)) there exists a filtered quasi-isomorphismK• → I• with I• bounded below,
each In a filtered injective object, and each Kn → In a strict monomorphism.

Proof. After replacingK• by a shift (which is harmless for the proof) we may assume
that Kn = 0 for n < 0. Consider the short exact sequences

0→ Ker(d0
K)→ K0 → Coim(d0

K)→ 0
0→ Ker(d1

K)→ K1 → Coim(d1
K)→ 0

0→ Ker(d2
K)→ K2 → Coim(d2

K)→ 0
. . .
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of the exact category Filf (A) and the maps ui : Coim(diK)→ Ker(di+1
K ). For each i ≥ 0

we may choose filtered quasi-isomorphisms

Ker(diK)[0]→ I•
ker,i

Coim(diK)[0]→ I•
coim,i

with Inker,i, Incoim,i filtered injective and zero for n < 0, see Lemma 26.6. By Lemma 26.7
we may lift ui to a morphism of complexes u•

i : I•
coim,i → I•

ker,i+1. Finally, for each
i ≥ 0 we may complete the diagrams

0 // Ker(diK)[0] //

��

Ki[0] //

��

Coim(diK)[0] //

��

0

0 // I•
ker,i

αi // I•
i

βi // I•
coim,i

// 0

with the lower sequence a termwise split exact sequence, see Lemma 26.8. For i ≥ 0 set
di : I•

i → I•
i+1 equal to di = αi+1 ◦ u•

i ◦ βi. Note that di ◦ di−1 = 0 because βi ◦ αi = 0.
Hence we have constructed a commutative diagram

I•
0

// I•
1

// I•
2

// . . .

K0[0] //

OO

K1[0] //

OO

K2[0] //

OO

. . .

Here the vertical arrows are filtered quasi-isomorphisms. The upper row is a complex of
complexes and each complex consists of filtered injective objects with no nonzero objects
in degree < 0. Thus we obtain a double complex by setting Ia,b = Iba and using

da,b1 : Ia,b = Iba → Iba+1 = Ia+1,b

the map dba and using for

da,b2 : Ia,b = Iba → Ib+1
a = Ia,b+1

the map dbIa . Denote Tot(I•,•) the total complex associated to this double complex, see
Homology, Definition 18.3. Observe that the maps Kn[0] → I•

n come from maps Kn →
In,0 which give rise to a map of complexes

K• −→ Tot(I•,•)
We claim this is a filtered quasi-isomorphism. As gr(−) is an additive functor, we see that
gr(Tot(I•,•)) = Tot(gr(I•,•)). Thus we can use Homology, Lemma 25.4 to conclude that
gr(K•)→ gr(Tot(I•,•)) is a quasi-isomorphism as desired. �

Lemma 26.10. Let A be an abelian category. Let K•, I• ∈ K(Filf (A)). Assume K•

is filtered acyclic and I• bounded below and consisting of filtered injective objects. Any
morphism K• → I• is homotopic to zero: HomK(Filf (A))(K•, I•) = 0.

Proof. Let α : K• → I• be a morphism of complexes. Assume that αj = 0 for
j < n. We will show that there exists a morphism h : Kn+1 → In such that αn = h ◦ d.
Thus α will be homotopic to the morphism of complexes β defined by

βj =

 0 if j ≤ n
αn+1 − d ◦ h if j = n+ 1

αj if j > n+ 1



26. FILTERED DERIVED CATEGORY AND INJECTIVE RESOLUTIONS 1103

This will clearly prove the lemma (by induction). To prove the existence of h note that
αn ◦ dn−1

K = 0 since αn−1 = 0. Since K• is filtered acyclic we see that dn−1
K and dnK are

strict and that

0→ Im(dn−1
K )→ Kn → Im(dnK)→ 0

is an exact sequence of the exact category Filf (A), see Homology, Lemma 19.15. Hence
we can think of αn as a map into In defined on Im(dnK). Using that Im(dnK) → Kn+1

is a strict monomorphism and that In is filtered injective we may lift this map to a map
h : Kn+1 → In as desired, see Lemma 26.4. �

Lemma 26.11. Let A be an abelian category. Let I• ∈ K(Filf (A)) be a bounded
below complex consisting of filtered injective objects.

(1) Let α : K• → L• inK(Filf (A)) be a filtered quasi-isomorphism. Then the map

HomK(Filf (A))(L•, I•)→ HomK(Filf (A))(K•, I•)

is bijective.
(2) Let L• ∈ K(Filf (A)). Then

HomK(Filf (A))(L•, I•) = HomDF (A)(L•, I•).

Proof. Proof of (1). Note that

(K•, L•, C(α)•, α, i,−p)

is a distinguished triangle in K(Filf (A)) (Lemma 9.14) and C(α)• is a filtered acyclic
complex (Lemma 13.4). Then

HomK(Filf (A))(C(α)•, I•) // HomK(Filf (A))(L•, I•) // HomK(Filf (A))(K•, I•)

rr
HomK(Filf (A))(C(α)•[−1], I•)

is an exact sequence of abelian groups, see Lemma 4.2. At this point Lemma 26.10 guaran-
tees that the outer two groups are zero and hence HomK(A)(L•, I•) = HomK(A)(K•, I•).

Proof of (2). Let a be an element of the right hand side. We may represent a = γα−1 where
α : K• → L• is a filtered quasi-isomorphism and γ : K• → I• is a map of complexes.
By part (1) we can find a morphism β : L• → I• such that β ◦ α is homotopic to γ. This
proves that the map is surjective. Let b be an element of the left hand side which maps to
zero in the right hand side. Then b is the homotopy class of a morphism β : L• → I•

such that there exists a filtered quasi-isomorphism α : K• → L• with β ◦ α homotopic
to zero. Then part (1) shows that β is homotopic to zero also, i.e., b = 0. �

Lemma 26.12. LetA be an abelian category with enough injectives. Let If ⊂ Filf (A)
denote the strictly full additive subcategory whose objects are the filtered injective objects.
The canonical functor

K+(If ) −→ DF+(A)
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is exact, fully faithful and essentially surjective, i.e., an equivalence of triangulated cate-
gories. Furthermore the diagrams

K+(If )

grp

��

// DF+(A)

grp

��
K+(I) // D+(A)

K+(If )

forget F
��

// DF+(A)

forget F
��

K+(I) // D+(A)

are commutative, where I ⊂ A is the strictly full additive subcategory whose objects are
the injective objects.

Proof. The functor K+(If ) → DF+(A) is essentially surjective by Lemma 26.9.
It is fully faithful by Lemma 26.11. It is an exact functor by our definitions regarding
distinguished triangles. The commutativity of the squares is immediate. �

Remark 26.13. We can invert the arrow of the lemma only if A is a category in our
sense, namely if it has a set of objects. However, suppose given a big abelian category A
with enough injectives, such as Mod(OX) for example. Then for any given set of objects
{Ai}i∈I there is an abelian subcategoryA′ ⊂ A containing all of them and having enough
injectives, see Sets, Lemma 12.1. Thus we may use the lemma above forA′. This essentially
means that if we use a set worth of diagrams, etc then we will never run into trouble using
the lemma.

LetA,B be abelian categories. Let T : A → B be a left exact functor. (We cannot use the
letter F for the functor since this would conflict too much with our use of the letter F to
indicate filtrations.) Note that T induces an additive functor

T : Filf (A)→ Filf (B)
by the rule T (A,F ) = (T (A), F ) where F pT (A) = T (F pA) which makes sense as T is
left exact. (Warning: It may not be the case that gr(T (A)) = T (gr(A)).) This induces
functors of triangulated categories

(26.13.1) T : K+(Filf (A)) −→ K+(Filf (B))
The filtered right derived functor of T is the right derived functor of Definition 14.2 for
this exact functor composed with the exact functor K+(Filf (B)) → DF+(B) and the
multiplicative set FQis+(A). Assume A has enough injectives. At this point we can redo
the discussion of Section 20 to define the filtered right derived functors

(26.13.2) RT : DF+(A) −→ DF+(B)
of our functor T .

However, instead we will proceed as in Section 25, and it will turn out that we can define
RT even if T is just additive. Namely, we first choose a quasi-inverse j′ : DF+(A) →
K+(If ) of the equivalence of Lemma 26.12. By Lemma 4.18 we see that j′ is an exact
functor of triangulated categories. Next, we note that for a filtered injective object I we
have a (noncanonical) decomposition

(26.13.3) I ∼=
⊕

p∈Z
Ip, with F pI =

⊕
q≥p

Iq

by Lemma 26.2. Hence if T is any additive functor T : A → B then we get an additive
functor

(26.13.4) Text : If → Filf (B)
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by setting Text(I) =
⊕
T (Ip) with F pText(I) =

⊕
q≥p T (Iq). Note that we have the

property gr(Text(I)) = T (gr(I)) by construction. Hence we obtain a functor

(26.13.5) Text : K+(If )→ K+(Filf (B))
which commutes with gr. Then we define (26.13.2) by the composition

(26.13.6) RT = Text ◦ j′.

Since RT : D+(A) → D+(B) is computed by injective resolutions as well, see Lemmas
20.1, the commutation of T with gr, and the commutative diagrams of Lemma 26.12 imply
that

(26.13.7) grp ◦RT ∼= RT ◦ grp

and

(26.13.8) (forget F ) ◦RT ∼= RT ◦ (forget F )
as functors DF+(A)→ D+(B).

The filtered derived functor RT (26.13.2) induces functors

RT : Filf (A)→ DF+(B),
RT : Comp+(Filf (A))→ DF+(B),

RT : KF+(A)→ DF+(B).

Note that since Filf (A), and Comp+(Filf (A)) are no longer abelian it does not make
sense to say that RT restricts to a δ-functor on them. (This can be repaired by thinking
of these categories as exact categories and formulating the notion of a δ-functor from an
exact category into a triangulated category.) But it does make sense, and it is true by
construction, that RT is an exact functor on the triangulated category KF+(A).

Lemma 26.14. LetA,B be abelian categories. Let T : A → B be a left exact functor.
Assume A has enough injectives. Let (K•, F ) be an object of Comp+(Filf (A)). There
exists a spectral sequence (Er, dr)r≥0 consisting of bigraded objects Er of B and dr of
bidegree (r,−r + 1) and with

Ep,q1 = Rp+qT (grp(K•))
Moreover, this spectral sequence is bounded, converges to R∗T (K•), and induces a finite
filtration on each RnT (K•). The construction of this spectral sequence is functorial in
the objectK• of Comp+(Filf (A)) and the terms (Er, dr) for r ≥ 1 do not depend on any
choices.

Proof. Choose a filtered quasi-isomorphism K• → I• with I• a bounded below
complex of filtered injective objects, see Lemma 26.9. Consider the complex RT (K•) =
Text(I•), see (26.13.6). Thus we can consider the spectral sequence (Er, dr)r≥0 associated
to this as a filtered complex inB, see Homology, Section 24. By Homology, Lemma 24.2 we
haveEp,q1 = Hp+q(grp(T (I•))). By Equation (26.13.3) we haveEp,q1 = Hp+q(T (grp(I•))),
and by definition of a filtered injective resolution the map grp(K•) → grp(I•) is an in-
jective resolution. Hence Ep,q1 = Rp+qT (grp(K•)).

On the other hand, each In has a finite filtration and hence each T (In) has a finite filtra-
tion. Thus we may apply Homology, Lemma 24.11 to conclude that the spectral sequence
is bounded, converges toHn(T (I•)) = RnT (K•) moreover inducing finite filtrations on
each of the terms.
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Suppose that K• → L• is a morphism of Comp+(Filf (A)). Choose a filtered quasi-
isomorphism L• → J• with J• a bounded below complex of filtered injective objects, see
Lemma 26.9. By our results above, for example Lemma 26.11, there exists a diagram

K• //

��

L•

��
I• // J•

which commutes up to homotopy. Hence we get a morphism of filtered complexesT (I•)→
T (J•) which gives rise to the morphism of spectral sequences, see Homology, Lemma 24.4.
The last statement follows from this. �

Remark 26.15. As promised in Remark 21.4 we discuss the connection of the lemma
above with the constructions using Cartan-Eilenberg resolutions. Namely, let T : A → B
be a left exact functor of abelian categories, assume A has enough injectives, and let K•

be a bounded below complex of A. We give an alternative construction of the spectral
sequences ′E and ′′E of Lemma 21.3.

First spectral sequence. Consider the “stupid” filtration onK• obtained by settingF p(K•) =
σ≥p(K•), see Homology, Section 15. Note that this stupid in the sense that d(F p(K•)) ⊂
F p+1(K•), compare Homology, Lemma 24.3. Note that grp(K•) = Kp[−p] with this
filtration. According to Lemma 26.14 there is a spectral sequence with E1 term

Ep,q1 = Rp+qT (Kp[−p]) = RqT (Kp)

as in the spectral sequence ′Er. Observe moreover that the differentials Ep,q1 → Ep+1,q
1

agree with the differentials in ′E1, see Homology, Lemma 24.3 part (2) and the description
of ′d1 in the proof of Lemma 21.3.

Second spectral sequence. Consider the filtration on the complex K• obtained by setting
F p(K•) = τ≤−p(K•), see Homology, Section 15. The minus sign is necessary to get a
decreasing filtration. Note that grp(K•) is quasi-isomorphic to H−p(K•)[p] with this
filtration. According to Lemma 26.14 there is a spectral sequence with E1 term

Ep,q1 = Rp+qT (H−p(K•)[p]) = R2p+qT (H−p(K•)) = ′′Ei,j2

with i = 2p + q and j = −p. (This looks unnatural, but note that we could just have
well developed the whole theory of filtered complexes using increasing filtrations, with
the end result that this then looks natural, but the other one doesn’t.) We leave it to the
reader to see that the differentials match up.

Actually, given a Cartan-Eilenberg resolution K• → I•,• the induced morphism K• →
Tot(I•,•) into the associated total complex will be a filtered injective resolution for either
filtration using suitable filtrations on Tot(I•,•). This can be used to match up the spectral
sequences exactly.

27. Ext groups

In this section we start describing the Ext groups of objects of an abelian category. First
we have the following very general definition.

Definition 27.1. Let A be an abelian category. Let i ∈ Z. Let X,Y be objects of
D(A). The ith extension group of X by Y is the group

ExtiA(X,Y ) = HomD(A)(X,Y [i]) = HomD(A)(X[−i], Y ).
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If A,B ∈ Ob(A) we set ExtiA(A,B) = ExtiA(A[0], B[0]).

Since HomD(A)(X,−), resp. HomD(A)(−, Y ) is a homological, resp. cohomological func-
tor, see Lemma 4.2, we see that a distinguished triangle (Y, Y ′, Y ′′), resp. (X,X ′, X ′′) leads
to a long exact sequence

. . .→ ExtiA(X,Y )→ ExtiA(X,Y ′)→ ExtiA(X,Y ′′)→ Exti+1
A (X,Y )→ . . .

respectively

. . .→ ExtiA(X ′′, Y )→ ExtiA(X ′, Y )→ ExtiA(X,Y )→ Exti+1
A (X ′′, Y )→ . . .

Note that since D+(A), D−(A), Db(A) are full subcategories we may compute the Ext
groups by Hom groups in these categories provided X , Y are contained in them.

In case the categoryA has enough injectives or enough projectives we can compute the Ext
groups using injective or projective resolutions. To avoid confusion, recall that having an
injective (resp. projective) resolution implies vanishing of homology in all low (resp. high)
degrees, see Lemmas 18.2 and 19.2.

Lemma 27.2. LetA be an abelian category. Let X•, Y • ∈ Ob(K(A)).
(1) Let Y • → I• be an injective resolution (Definition 18.1). Then

ExtiA(X•, Y •) = HomK(A)(X•, I•[i]).

(2) Let P • → X• be a projective resolution (Definition 19.1). Then

ExtiA(X•, Y •) = HomK(A)(P •[−i], Y •).

Proof. Follows immediately from Lemma 18.8 and Lemma 19.8. �

In the rest of this section we discuss extensions of objects of the abelian category itself.
First we observe the following.

Lemma 27.3. LetA be an abelian category.
(1) Let X , Y be objects of D(A). Given a, b ∈ Z such that Hi(X) = 0 for i > a

and Hj(Y ) = 0 for j < b, we have ExtnA(X,Y ) = 0 for n < b− a and

Extb−aA (X,Y ) = HomA(Ha(X),Hb(Y ))

(2) LetA,B ∈ Ob(A). For i < 0 we have ExtiA(B,A) = 0. We have Ext0
A(B,A) =

HomA(B,A).

Proof. Choose complexes X• and Y • representing X and Y . Since Y • → τ≥bY
•

is a quasi-isomorphism, we may assume that Y j = 0 for j < b. Let L• → X• be any
quasi-isomorphism. Then τ≤aL

• → X• is a quasi-isomorphism. Hence a morphismX →
Y [n] in D(A) can be represented as fs−1 where s : L• → X• is a quasi-isomorphism,
f : L• → Y •[n] a morphism, and Li = 0 for i < a. Note that f maps Li to Y i+n.
Thus f = 0 if n < b − a because always either Li or Y i+n is zero. If n = b − a, then f
corresponds exactly to a morphismHa(X)→ Hb(Y ). Part (2) is a special case of (1). �

Let A be an abelian category. Suppose that 0 → A → A′ → A′′ → 0 is a short exact
sequence of objects of A. Then 0→ A[0]→ A′[0]→ A′′[0]→ 0 leads to a distinguished
triangle in D(A) (see Lemma 12.1) hence a long exact sequence of Ext groups

0→ Ext0
A(B,A)→ Ext0

A(B,A′)→ Ext0
A(B,A′′)→ Ext1

A(B,A)→ . . .
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Similarly, given a short exact sequence 0 → B → B′ → B′′ → 0 we obtain a long exact
sequence of Ext groups

0→ Ext0
A(B′′, A)→ Ext0

A(B′, A)→ Ext0
A(B,A)→ Ext1

A(B′′, A)→ . . .

We may view these Ext groups as an application of the construction of the derived cat-
egory. It shows one can define Ext groups and construct the long exact sequence of Ext
groups without needing the existence of enough injectives or projectives. There is an alter-
native construction of the Ext groups due to Yoneda which avoids the use of the derived
category, see [?].

Definition 27.4. Let A be an abelian category. Let A,B ∈ Ob(A). A degree i
Yoneda extension of B by A is an exact sequence

E : 0→ A→ Zi−1 → Zi−2 → . . .→ Z0 → B → 0

inA. We say two Yoneda extensions E and E′ of the same degree are equivalent if there
exists a commutative diagram

0 // A // Zi−1 // . . . // Z0 // B // 0

0 // A //

id

OO

id
��

Z ′′
i−1

//

OO

��

. . . // Z ′′
0

//

OO

��

B //

id

OO

id
��

0

0 // A // Z ′
i−1

// . . . // Z ′
0

// B // 0

where the middle row is a Yoneda extension as well.

It is not immediately clear that the equivalence of the definition is an equivalence relation.
Although it is instructive to prove this directly this will also follow from Lemma 27.5
below.

Let A be an abelian category with objects A, B. Given a Yoneda extension E : 0 →
A → Zi−1 → Zi−2 → . . . → Z0 → B → 0 we define an associated element δ(E) ∈
Exti(B,A) as the morphism δ(E) = fs−1 : B[0]→ A[i] where s is the quasi-isomorphism

(. . .→ 0→ A→ Zi−1 → . . .→ Z0 → 0→ . . .) −→ B[0]

and f is the morphism of complexes

(. . .→ 0→ A→ Zi−1 → . . .→ Z0 → 0→ . . .) −→ A[i]

We call δ(E) = fs−1 the class of the Yoneda extension. It turns out that this class char-
acterizes the equivalence class of the Yoneda extension.

Lemma 27.5. LetA be an abelian category with objectsA,B. Any element in ExtiA(B,A)
is δ(E) for some degree i Yoneda extension of B by A. Given two Yoneda extensions E ,
E′ of the same degree then E is equivalent to E′ if and only if δ(E) = δ(E′).

Proof. Let ξ : B[0]→ A[i] be an element of ExtiA(B,A). We may write ξ = fs−1

for some quasi-isomorphism s : L• → B[0] and map f : L• → A[i]. After replacing L•
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by τ≤0L
• we may assume that Lj = 0 for j > 0. Picture

L−i−1 // L−i //

��

. . . // L0 // B // 0

A

Then setting Zi−1 = (L−i+1 ⊕ A)/L−i and Zj = L−j for j = i − 2, . . . , 0 we see that
we obtain a degree i extension E of B by A whose class δ(E) equals ξ.

It is immediate from the definitions that equivalent Yoneda extensions have the same
class. Suppose that E : 0 → A → Zi−1 → Zi−2 → . . . → Z0 → B → 0 and
E′ : 0 → A → Z ′

i−1 → Z ′
i−2 → . . . → Z ′

0 → B → 0 are Yoneda extensions with
the same class. By construction of D(A) as the localization of K(A) at the set of quasi-
isomorphisms, this means there exists a complex L• and quasi-isomorphisms

t : L• → (. . .→ 0→ A→ Zi−1 → . . .→ Z0 → 0→ . . .)

and
t′ : L• → (. . .→ 0→ A→ Z ′

i−1 → . . .→ Z ′
0 → 0→ . . .)

such that s ◦ t = s′ ◦ t′ and f ◦ t = f ′ ◦ t′, see Categories, Section 27. Let E′′ be the
degree i extension of B by A constructed from the pair L• → B[0] and L• → A[i] in the
first paragraph of the proof. Then the reader sees readily that there exists “morphisms”
of degree i Yoneda extensions E′′ → E and E′′ → E′ as in the definition of equivalent
Yoneda extensions (details omitted). This finishes the proof. �

Lemma 27.6. LetA be an abelian category. LetA,B be objects ofA. Then Ext1
A(B,A)

is the group ExtA(B,A) constructed in Homology, Definition 6.2.

Proof. This is the case i = 1 of Lemma 27.5. �

Lemma 27.7. Let A be an abelian category. Let 0 → A → Z → B → 0 and
0 → B → Z ′ → C → 0 be short exact sequences in A. Denote [Z] ∈ Ext1(B,A) and
[Z ′] ∈ Ext1(C,B) their classes. Then [Z] ◦ [Z ′] ∈ Ext2

A(C,A) is 0 if and only if there
exists a commutative diagram

0

��

0

��
0 // A //

1
��

Z //

��

B //

��

0

0 // A // W //

��

Z ′ //

��

0

C
1 //

��

C

��
0 0

with exact rows and columns inA.
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Proof. Omitted. Hints: You can argue this using the result of Lemma 27.5 and
working out what it means for a 2-extension class to be zero. Or you can use that if
[Z] ◦ [Z ′] ∈ Ext2

A(C,A) is zero, then by the long exact cohomology sequence of Ext
the element [Z] ∈ Ext1(B,A) is the image of some element in Ext1(W ′, A). �

Lemma 27.8. LetA be an abelian category and let p ≥ 0. If ExtpA(B,A) = 0 for any
pair of objects A, B ofA, then ExtiA(B,A) = 0 for i ≥ p and any pair of objects A, B of
A.

Proof. For i > p write any class ξ as δ(E) where E is a Yoneda extension

E : 0→ A→ Zi−1 → Zi−2 → . . .→ Z0 → B → 0
This is possible by Lemma 27.5. Set C = Ker(Zp−1 → Zp) = Im(Zp → Zp−1). Then
δ(E) is the composition of δ(E′) and δ(E′′) where

E′ : 0→ C → Zp−1 → . . .→ Z0 → B → 0
and

E′′ : 0→ A→ Zi−1 → Zi−2 → . . .→ Zp → C → 0
Since δ(E′) ∈ ExtpA(B,C) = 0 we conclude. �

Lemma 27.9. Let A be an abelian category. Let K be an object of Db(A) such that
ExtpA(Hi(K),Hj(K)) = 0 for all p ≥ 2 and i > j. Then K is isomorphic to the direct
sum of its cohomologies: K ∼=

⊕
Hi(K)[−i].

Proof. Choose a, b such that Hi(K) = 0 for i 6∈ [a, b]. We will prove the lemma by
induction on b− a. If b− a ≤ 0, then the result is clear. If b− a > 0, then we look at the
distinguished triangle of truncations

τ≤b−1K → K → Hb(K)[−b]→ (τ≤b−1K)[1]
see Remark 12.4. By Lemma 4.11 if the last arrow is zero, thenK ∼= τ≤b−1K⊕Hb(K)[−b]
and we win by induction. Again using induction we see that

HomD(A)(Hb(K)[−b], (τ≤b−1K)[1]) =
⊕

i<b
Extb−i+1

A (Hb(K),Hi(K))

By assumption the direct sum is zero and the proof is complete. �

Lemma 27.10. Let A be an abelian category. Assume Ext2
A(B,A) = 0 for any pair

of objects A, B of A. Then any object K of Db(A) is isomorphic to the direct sum of its
cohomologies: K ∼=

⊕
Hi(K)[−i].

Proof. The assumption implies that ExtiA(B,A) = 0 for i ≥ 2 and any pair of
objects A,B ofA by Lemma 27.8. Hence this lemma is a special case of Lemma 27.9. �

28. K-groups

A tiny bit about K0 of a triangulated category.

Definition 28.1. Let D be a triangulated category. We denote K0(D) the zeroth
K-group ofD. It is the abelian group constructed as follows. Take the free abelian group
on the objects onD and for every distinguished triangleX → Y → Z impose the relation
[Y ]− [X]− [Z] = 0.

Observe that this implies that [X[n]] = (−1)n[X] because we have the distinguished
triangle (X, 0, X[1], 0, 0,−id[1]).
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Lemma 28.2. Let A be an abelian category. Then there is a canonical identification
K0(Db(A)) = K0(A) of zeroth K-groups.

Proof. Given an object A ofA denoteA[0] the object A viewed as a complex sitting
in degree 0. If 0 → A → A′ → A′′ → 0 is a short exact sequence, then we get a
distinguished triangle A[0] → A′[0] → A′′[0] → A[1], see Section 12. This shows that
we obtain a map K0(A) → K0(Db(A)) by sending [A] to [A[0]] with apologies for the
horrendous notation.

On the other hand, given an object X of Db(A) we can consider the element

c(X) =
∑

(−1)i[Hi(X)] ∈ K0(A)

Given a distinguished triangle X → Y → Z the long exact sequence of cohomology
(11.1.1) and the relations inK0(A) show that c(Y ) = c(X)+c(Z). Thus c factors through
a map c : K0(Db(A))→ K0(A).

We want to show that the two maps above are mutually inverse. It is clear that the com-
position K0(A)→ K0(Db(A))→ K0(A) is the identity. Suppose that X• is a bounded
complex of A. The existence of the distinguished triangles of “stupid truncations” (see
Homology, Section 15)

σ≥nX
• → σ≥n−1X

• → Xn−1[−n+ 1]→ (σ≥nX
•)[1]

and induction show that
[X•] =

∑
(−1)i[Xi[0]]

in K0(Db(A)) (with again apologies for the notation). It follows that the composition
K0(A)→ K0(Db(A)) is surjective which finishes the proof. �

Lemma 28.3. Let F : D → D′ be an exact functor of triangulated categories. Then
F induces a group homomorphism K0(D)→ K0(D′).

Proof. Omitted. �

Lemma 28.4. LetH : D → A be a homological functor from a triangulated category
to an abelian category. Assume that for any X in D only a finite number of the objects
H(X[i]) are nonzero in A. Then H induces a group homomorphism K0(D) → K0(A)
sending [X] to

∑
(−1)i[H(X[i])].

Proof. Omitted. �

Lemma 28.5. Let B be a weak Serre subcategory of the abelian category A. There is
a canonical isomorphism

K0(B) −→ K0(Db
B(A)), [B] 7−→ [B[0]]

The inverse sends the class [X] of X to the element
∑

(−1)i[Hi(X)].

Proof. We omit the verification that the rule for the inverse gives a well defined map
K0(Db

B(A)) → K0(B). It is immediate that the composition K0(B) → K0(Db
B(A)) →

K0(B) is the identity. On the other hand, using the distinguished triangles of Remark 12.4
and an induction argument the reader may show that the displayed arrow in the statement
of the lemma is surjective (details omitted). The lemma follows. �
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Lemma 28.6. Let D, D′, D′′ be triangulated categories. Let

⊗ : D ×D′ −→ D′′

be a functor such that for fixed X inD the functor X ⊗− : D′ → D′′ is an exact functor
and for fixedX ′ inD′ the functor−⊗X ′ : D → D′′ is an exact functor. Then⊗ induces
a bilinear map K0(D)×K0(D′)→ K0(D′′) which sends ([X], [X ′]) to [X ⊗X ′].

Proof. Omitted. �

29. Unbounded complexes

A reference for the material in this section is [?]. The following lemma is useful to find
“good” left resolutions of unbounded complexes.

Lemma 29.1. Let A be an abelian category. Let P ⊂ Ob(A) be a subset. Assume P
contains 0, is closed under (finite) direct sums, and every object of A is a quotient of an
element of P . Let K• be a complex. There exists a commutative diagram

P •
1

��

// P •
2

��

// . . .

τ≤1K
• // τ≤2K

• // . . .

in the category of complexes such that
(1) the vertical arrows are quasi-isomorphisms and termwise surjective,
(2) P •

n is a bounded above complex with terms in P ,
(3) the arrowsP •

n → P •
n+1 are termwise split injections and each cokernelP in+1/P

i
n

is an element of P .

Proof. We are going to use that the homotopy category K(A) is a triangulated cat-
egory, see Proposition 10.3. By Lemma 15.4 we can find a termwise surjective map of
complexes P •

1 → τ≤1K
• which is a quasi-isomorphism such that the terms of P •

1 are in
P . By induction it suffices, givenP •

1 , . . . , P
•
n to constructP •

n+1 and the mapsP •
n → P •

n+1
and P •

n+1 → τ≤n+1K
•.

Choose a distinguished triangle P •
n → τ≤n+1K

• → C• → P •
n [1] in K(A). Applying

Lemma 15.4 we choose a map of complexes Q• → C• which is a quasi-isomorphism such
that the terms of Q• are in P . By the axioms of triangulated categories we may fit the
composition Q• → C• → P •

n [1] into a distinguished triangle P •
n → P •

n+1 → Q• →
P •
n [1] in K(A). By Lemma 10.7 we may and do assume 0 → P •

n → P •
n+1 → Q• → 0 is

a termwise split short exact sequence. This implies that the terms of P •
n+1 are in P and

that P •
n → P •

n+1 is a termwise split injection whose cokernels are in P . By the axioms of
triangulated categories we obtain a map of distinguished triangles

P •
n

//

��

P •
n+1

//

��

Q• //

��

P •
n [1]

��
P •
n

// τ≤n+1K
• // C• // P •

n [1]

in the triangulated categoryK(A). Choose an actual morphism of complexes f : P •
n+1 →

τ≤n+1K
•. The left square of the diagram above commutes up to homotopy, but as P •

n →
P •
n+1 is a termwise split injection we can lift the homotopy and modify our choice of
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f to make it commute. Finally, f is a quasi-isomorphism, because both P •
n → P •

n and
Q• → C• are.

At this point we have all the properties we want, except we don’t know that the map
f : P •

n+1 → τ≤n+1K
• is termwise surjective. Since we have the commutative diagram

P •
n

��

// P •
n+1

��
τ≤nK

• // τ≤n+1K
•

of complexes, by induction hypothesis we see that f is surjective on terms in all degrees
except possibly n and n + 1. Choose an object P ∈ P and a surjection q : P → Kn.
Consider the map

g : P • = (. . .→ 0→ P
1−→ P → 0→ . . .) −→ τ≤n+1K

•

with first copy ofP in degree n and maps given by q in degree n and dK ◦q in degree n+1.
This is a surjection in degree n and the cokernel in degree n + 1 is Hn+1(τ≤n+1K

•); to
see this recall that τ≤n+1K

• has Ker(dn+1
K ) in degree n+ 1. However, since f is a quasi-

isomorphism we know that Hn+1(f) is surjective. Hence after replacing f : P •
n+1 →

τ≤n+1K
• by f ⊕ g : P •

n+1 ⊕ P • → τ≤n+1K
• we win. �

In some cases we can use the lemma above to show that a left derived functor is everywhere
defined.

Proposition 29.2. Let F : A → B be a right exact functor of abelian categories. Let
P ⊂ Ob(A) be a subset. Assume

(1) P contains 0, is closed under (finite) direct sums, and every object ofA is a quo-
tient of an element of P ,

(2) for any bounded above acyclic complex P • of A with Pn ∈ P for all n the
complex F (P •) is exact,

(3) A and B have colimits of systems over N,
(4) colimits over N are exact in bothA and B, and
(5) F commutes with colimits over N.

Then LF is defined on all of D(A).

Proof. By (1) and Lemma 15.4 for any bounded above complex K• there exists a
quasi-isomorphism P • → K• with P • bounded above and Pn ∈ P for all n. Suppose
that s : P • → (P ′)• is a quasi-isomorphism of bounded above complexes consisting
of objects of P . Then F (P •) → F ((P ′)•) is a quasi-isomorphism because F (C(s)•) is
acyclic by assumption (2). This already shows that LF is defined on D−(A) and that a
bounded above complex consisting of objects of P computes LF , see Lemma 14.15.

Next, let K• be an arbitrary complex ofA. Choose a diagram

P •
1

��

// P •
2

��

// . . .

τ≤1K
• // τ≤2K

• // . . .
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as in Lemma 29.1. Note that the map colimP •
n → K• is a quasi-isomorphism because

colimits over N inA are exact and Hi(P •
n) = Hi(K•) for n > i. We claim that

F (colimP •
n) = colimF (P •

n)

(termwise colimits) is LF (K•), i.e., that colimP •
n computes LF . To see this, by Lemma

14.15, it suffices to prove the following claim. Suppose that

colimQ•
n = Q• α−−→ P • = colimP •

n

is a quasi-isomorphism of complexes, such that each P •
n , Q•

n is a bounded above com-
plex whose terms are in P and the maps P •

n → τ≤nP
• and Q•

n → τ≤nQ
• are quasi-

isomorphisms. Claim: F (α) is a quasi-isomorphism.

The problem is that we do not assume that α is given as a colimit of maps between the
complexes P •

n andQ•
n. However, for each nwe know that the solid arrows in the diagram

R•

��
P •
n

��

L•oo // Q•
n

��
τ≤nP

• τ≤nα // τ≤nQ
•

are quasi-isomorphisms. Because quasi-isomorphisms form a multiplicative system inK(A)
(see Lemma 11.2) we can find a quasi-isomorphism L• → P •

n and map of complexes
L• → Q•

n such that the diagram above commutes up to homotopy. Then τ≤nL
• → L•

is a quasi-isomorphism. Hence (by the first part of the proof) we can find a bounded
above complex R• whose terms are in P and a quasi-isomorphism R• → L• (as indi-
cated in the diagram). Using the result of the first paragraph of the proof we see that
F (R•) → F (P •

n) and F (R•) → F (Q•
n) are quasi-isomorphisms. Thus we obtain a iso-

morphisms Hi(F (P •
n))→ Hi(F (Q•

n)) fitting into the commutative diagram

Hi(F (P •
n)) //

��

Hi(F (Q•
n))

��
Hi(F (P •)) // Hi(F (Q•))

The exact same argument shows that these maps are also compatible as n varies. Since by
(4) and (5) we have

Hi(F (P •)) = Hi(F (colimP •
n)) = Hi(colimF (P •

n)) = colimHi(F (P •
n))

and similarly for Q• we conclude that Hi(α) : Hi(F (P •) → Hi(F (Q•) is an isomor-
phism and the claim follows. �

Lemma 29.3. Let A be an abelian category. Let I ⊂ Ob(A) be a subset. Assume
I contains 0, is closed under (finite) products, and every object of A is a subobject of an
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element of I . Let K• be a complex. There exists a commutative diagram

. . . // τ≥−2K
• //

��

τ≥−1K
•

��
. . . // I•

2
// I•

1

in the category of complexes such that
(1) the vertical arrows are quasi-isomorphisms and termwise injective,
(2) I•

n is a bounded below complex with terms in I ,
(3) the arrows I•

n+1 → I•
n are termwise split surjections and Ker(Iin+1 → Iin) is an

element of I .

Proof. This lemma is dual to Lemma 29.1. �

30. Deriving adjoints

Let F : D → D′ and G : D′ → D be exact functors of triangulated categories. Let
S , resp. S′ be a multiplicative system for D, resp. D′ compatible with the triangulated
structure. Denote Q : D → S−1D and Q′ : D′ → (S′)−1D′ the localization functors.
In this situation, by abuse of notation, one often denotes RF the partially defined right
derived functor corresponding to Q′ ◦ F : D → (S′)−1D′ and the multiplicative system
S. Similarly one denotes LG the partially defined left derived functor corresponding to
Q ◦G : D′ → S−1D and the multiplicative system S′. Picture

D
F

//

Q

��

D′

Q′

��
S−1D RF // (S′)−1D′

and

D′
G

//

Q′

��

D

Q

��
(S′)−1D′ LG // S−1D

Lemma 30.1. In the situation above assume F is right adjoint to G. Let K ∈ Ob(D)
andM ∈ Ob(D′). IfRF is defined atK andLG is defined atM , then there is a canonical
isomorphism

Hom(S′)−1D′(M,RF (K)) = HomS−1D(LG(M),K)
This isomorphism is functorial in both variables on the triangulated subcategories ofS−1D
and (S′)−1D′ where RF and LG are defined.

Proof. Since RF is defined at K , we see that the rule which assigns to an s : K →
I in S the object F (I) is essentially constant as an ind-object of (S′)−1D′ with value
RF (K). Similarly, the rule which assigns to a t : P → M in S′ the object G(P ) is
essentially constant as a pro-object of S−1D with value LG(M). Thus we have

Hom(S′)−1D′(M,RF (K)) = colims:K→I Hom(S′)−1D′(M,F (I))
= colims:K→I colimt:P→M HomD′(P, F (I))
= colimt:P→M colims:K→I HomD′(P, F (I))
= colimt:P→M colims:K→I HomD(G(P ), I)
= colimt:P→M HomS−1D(G(P ),K)
= HomS−1D(LG(M),K)

The first equality holds by Categories, Lemma 22.9. The second equality holds by the
definition of morphisms in D(B), see Categories, Remark 27.15. The third equality holds
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by Categories, Lemma 14.10. The fourth equality holds because F and G are adjoint. The
fifth equality holds by definition of morphism inD(A), see Categories, Remark 27.7. The
sixth equality holds by Categories, Lemma 22.10. We omit the proof of functoriality. �

Lemma 30.2. Let F : A → B and G : B → A be functors of abelian categories such
that F is a right adjoint to G. Let K• be a complex ofA and let M• be a complex of B. If
RF is defined at K• and LG is defined at M•, then there is a canonical isomorphism

HomD(B)(M•, RF (K•)) = HomD(A)(LG(M•),K•)
This isomorphism is functorial in both variables on the triangulated subcategories ofD(A)
and D(B) where RF and LG are defined.

Proof. This is a special case of the very general Lemma 30.1. �

The following lemma is an example of why it is easier to work with unbounded derived
categories. Namely, without having the unbounded derived functors, the lemma could
not even be stated.

Lemma 30.3. Let F : A → B and G : B → A be functors of abelian categories
such that F is a right adjoint to G. If the derived functors RF : D(A) → D(B) and
LG : D(B)→ D(A) exist, then RF is a right adjoint to LG.

Proof. Immediate from Lemma 30.2. �

31. K-injective complexes

The following types of complexes can be used to compute right derived functors on the
unbounded derived category.

Definition 31.1. Let A be an abelian category. A complex I• is K-injective if for
every acyclic complex M• we have HomK(A)(M•, I•) = 0.

In the situation of the definition we have in fact HomK(A)(M•[i], I•) = 0 for all i as the
translate of an acyclic complex is acyclic.

Lemma 31.2. Let A be an abelian category. Let I• be a complex. The following are
equivalent

(1) I• is K-injective,
(2) for every quasi-isomorphism M• → N• the map

HomK(A)(N•, I•)→ HomK(A)(M•, I•)
is bijective, and

(3) for every complex N• the map
HomK(A)(N•, I•)→ HomD(A)(N•, I•)

is an isomorphism.

Proof. Assume (1). Then (2) holds because the functor HomK(A)(−, I•) is cohomo-
logical and the cone on a quasi-isomorphism is acyclic.
Assume (2). A morphism N• → I• in D(A) is of the form fs−1 : N• → I• where
s : M• → N• is a quasi-isomorphism and f : M• → I• is a map. By (2) this corresponds
to a unique morphism N• → I• in K(A), i.e., (3) holds.
Assume (3). If M• is acyclic then M• is isomorphic to the zero complex in D(A) hence
HomD(A)(M•, I•) = 0, whence HomK(A)(M•, I•) = 0 by (3), i.e., (1) holds. �
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Lemma 31.3. Let A be an abelian category. Let (K,L,M, f, g, h) be a distinguished
triangle of K(A). If two out of K , L, M are K-injective complexes, then the third is too.

Proof. Follows from the definition, Lemma 4.2, and the fact thatK(A) is a triangu-
lated category (Proposition 10.3). �

Lemma 31.4. Let A be an abelian category. A bounded below complex of injectives
is K-injective.

Proof. Follows from Lemmas 31.2 and 18.8. �

Lemma 31.5. Let A be an abelian category. Let T be a set and for each t ∈ T let I•
t

be a K-injective complex. If In =
∏
t I
n
t exists for all n, then I• is a K-injective complex.

Moreover, I• represents the product of the objects I•
t in D(A).

Proof. Let K• be an complex. Observe that the complex

C :
∏

b
Hom(K−b, Ib−1)→

∏
b

Hom(K−b, Ib)→
∏

b
Hom(K−b, Ib+1)

has cohomology HomK(A)(K•, I•) in the middle. Similarly, the complex

Ct :
∏

b
Hom(K−b, Ib−1

t )→
∏

b
Hom(K−b, Ibt )→

∏
b

Hom(K−b, Ib+1
t )

computes HomK(A)(K•, I•
t ). Next, observe that we have

C =
∏

t∈T
Ct

as complexes of abelian groups by our choice of I . Taking products is an exact functor on
the category of abelian groups. Hence ifK• is acyclic, then HomK(A)(K•, I•

t ) = 0, hence
Ct is acyclic, hence C is acyclic, hence we get HomK(A)(K•, I•) = 0. Thus we find that
I• is K-injective. Having said this, we can use Lemma 31.2 to conclude that

HomD(A)(K•, I•) =
∏

t∈T
HomD(A)(K•, I•

t )

and indeed I• represents the product in the derived category. �

Lemma 31.6. LetA be an abelian category. Let F : K(A)→ D′ be an exact functor
of triangulated categories. Then RF is defined at every complex in K(A) which is quasi-
isomorphic to a K-injective complex. In fact, every K-injective complex computes RF .

Proof. By Lemma 14.4 it suffices to show thatRF is defined at a K-injective complex,
i.e., it suffices to show a K-injective complex I• computes RF . Any quasi-isomorphism
I• → N• is a homotopy equivalence as it has an inverse by Lemma 31.2. Thus I• → I• is
a final object of I•/Qis(A) and we win. �

Lemma 31.7. Let A be an abelian category. Assume every complex has a quasi-
isomorphism towards a K-injective complex. Then any exact functor F : K(A)→ D′ of
triangulated categories has a right derived functor

RF : D(A) −→ D′

and RF (I•) = F (I•) for K-injective complexes I•.

Proof. To see this we apply Lemma 14.15 with I the collection of K-injective com-
plexes. Since (1) holds by assumption, it suffices to prove that if I• → J• is a quasi-
isomorphism of K-injective complexes, then F (I•) → F (J•) is an isomorphism. This
is clear because I• → J• is a homotopy equivalence, i.e., an isomorphism in K(A), by
Lemma 31.2. �
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The following lemma can be generalized to limits over bigger ordinals.

Lemma 31.8. LetA be an abelian category. Let
. . .→ I•

3 → I•
2 → I•

1

be an inverse system of complexes. Assume
(1) each I•

n is K-injective,
(2) each map Imn+1 → Imn is a split surjection,
(3) the limits Im = lim Imn exist.

Then the complex I• is K-injective.

Proof. We urge the reader to skip the proof of this lemma. LetM• be an acyclic com-
plex. Let us abbreviateHn(a, b) = HomA(Ma, Ibn). With this notation HomK(A)(M•, I•)
is the cohomology of the complex∏
m

lim
n
Hn(m,m−2)→

∏
m

lim
n
Hn(m,m−1)→

∏
m

lim
n
Hn(m,m)→

∏
m

lim
n
Hn(m,m+1)

in the third spot from the left. We may exchange the order of
∏

and lim and each of the
complexes∏

m

Hn(m,m− 2)→
∏
m

Hn(m,m− 1)→
∏
m

Hn(m,m)→
∏
m

Hn(m,m+ 1)

is exact by assumption (1). By assumption (2) the maps in the systems

. . .→
∏
m

H3(m,m− 2)→
∏
m

H2(m,m− 2)→
∏
m

H1(m,m− 2)

are surjective. Thus the lemma follows from Homology, Lemma 31.4. �

It appears that a combination of Lemmas 29.3, 31.4, and 31.8 produces “enough K-injectives”
for any abelian category with enough injectives and countable products. Actually, this
may not work! See Lemma 34.4 for an explanation.

Lemma 31.9. Let A and B be abelian categories. Let u : A → B and v : B → A be
additive functors. Assume

(1) u is right adjoint to v, and
(2) v is exact.

Then u transforms K-injective complexes into K-injective complexes.

Proof. Let I• be a K-injective complex of A. Let M• be a acyclic complex of B. As
v is exact we see that v(M•) is an acyclic complex. By adjointness we get

0 = HomK(A)(v(M•), I•) = HomK(B)(M•, u(I•))
hence the lemma follows. �

32. Bounded cohomological dimension

There is another case where the unbounded derived functor exists. Namely, when the
functor has bounded cohomological dimension.

Lemma 32.1. Let A be an abelian category. Let d : Ob(A) → {0, 1, 2, . . . ,∞} be a
function. Assume that

(1) every object ofA is a subobject of an object A with d(A) = 0,
(2) d(A⊕B) ≤ max{d(A), d(B)} for A,B ∈ A, and
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(3) if 0→ A→ B → C → 0 is short exact, then d(C) ≤ max{d(A)− 1, d(B)}.
Let K• be a complex such that n+ d(Kn) tends to −∞ as n→ −∞. Then there exists a
quasi-isomorphism K• → L• with d(Ln) = 0 for all n ∈ Z.

Proof. By Lemma 15.5 we can find a quasi-isomorphism σ≥0K
• →M• withMn =

0 for n < 0 and d(Mn) = 0 for n ≥ 0. Then K• is quasi-isomorphic to the complex

. . .→ K−2 → K−1 →M0 →M1 → . . .

Hence we may assume that d(Kn) = 0 for n� 0. Note that the condition n+ d(Kn)→
−∞ as n→ −∞ is not violated by this replacement.

We are going to improveK• by an (infinite) sequence of elementary replacements. An el-
ementary replacement is the following. Choose an index n such that d(Kn) > 0. Choose
an injectionKn →M where d(M) = 0. SetM ′ = Coker(Kn →M ⊕Kn+1). Consider
the map of complexes

K• :

��

Kn−1

��

// Kn

��

// Kn+1

��

// Kn+2

��
(K ′)• : Kn−1 // M // M ′ // Kn+2

It is clear thatK• → (K ′)• is a quasi-isomorphism. Moreover, it is clear that d((K ′)n) =
0 and

d((K ′)n+1) ≤ max{d(Kn)− 1, d(M ⊕Kn+1)} ≤ max{d(Kn)− 1, d(Kn+1)}
and the other values are unchanged.

To finish the proof we carefuly choose the order in which to do the elementary replace-
ments so that for every integer m the complex σ≥mK

• is changed only a finite number
of times. To do this set

ξ(K•) = max{n+ d(Kn) | d(Kn) > 0}
and

I = {n ∈ Z | ξ(K•) = n+ d(Kn) and d(Kn) > 0}
Our assumption thatn+d(Kn) tends to−∞ asn→ −∞ and the fact that d(Kn) = 0 for
n >> 0 implies ξ(K•) < +∞ and that I is a finite set. It is clear that ξ((K ′)•) ≤ ξ(K•)
for an elementary transformation as above. An elementary transformation changes the
complex in degrees ≤ ξ(K•) + 1. Hence if we can find finite sequence of elementary
transformations which decrease ξ(K•), then we win. However, note that if we do an ele-
mentary transformation starting with the smallest element n ∈ I , then we either decrease
the size of I , or we increase min I . Since every element of I is ≤ ξ(K•) we see that we
win after a finite number of steps. �

Lemma 32.2. Let F : A → B be a left exact functor of abelian categories. Assume
(1) every object ofA is a subobject of an object which is right acyclic for F ,
(2) there exists an integer n ≥ 0 such that RnF = 0,

Then
(1) RF : D(A)→ D(B) exists,
(2) any complex consisting of right acyclic objects for F computes RF ,
(3) any complex is the source of a quasi-isomorphism into a complex consisting of

right acyclic objects for F ,
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(4) for E ∈ D(A)
(a) Hi(RF (τ≤aE)→ Hi(RF (E)) is an isomorphism for i ≤ a,
(b) Hi(RF (E))→ Hi(RF (τ≥b−n+1E)) is an isomorphism for i ≥ b,
(c) ifHi(E) = 0 for i 6∈ [a, b] for some−∞ ≤ a ≤ b ≤ ∞, thenHi(RF (E)) =

0 for i 6∈ [a, b+ n− 1].

Proof. Note that the first assumption implies that RF : D+(A) → D+(B) exists,
see Proposition 16.8. LetA be an object ofA. Choose an injectionA→ A′ withA′ acyclic.
Then we see thatRn+1F (A) = RnF (A′/A) = 0 by the long exact cohomology sequence.
Hence we conclude that Rn+1F = 0. Continuing like this using induction we find that
RmF = 0 for all m ≥ n.
We are going to use Lemma 32.1 with the function d : Ob(A) → {0, 1, 2, . . .} given
by d(A) = max{0} ∪ {i | RiF (A) 6= 0}. The first assumption of Lemma 32.1 is our
assumption (1). The second assumption of Lemma 32.1 follows from the fact thatRF (A⊕
B) = RF (A)⊕RF (B). The third assumption of Lemma 32.1 follows from the long exact
cohomology sequence. Hence for every complex K• there exists a quasi-isomorphism
K• → L• into a complex of objects right acyclic for F . This proves statement (3).
We claim that if L• → M• is a quasi-isomorphism of complexes of right acyclic objects
for F , then F (L•)→ F (M•) is a quasi-isomorphism. If we prove this claim then we get
statements (1) and (2) of the lemma by Lemma 14.15. To prove the claim pick an integer
i ∈ Z. Consider the distinguished triangle

σ≥i−n−1L
• → σ≥i−n−1M

• → Q•,

i.e., let Q• be the cone of the first map. Note that Q• is bounded below and that Hj(Q•)
is zero except possibly for j = i−n−1 or j = i−n−2. We may applyRF toQ•. Using
the second spectral sequence of Lemma 21.3 and the assumed vanishing of cohomology (2)
we conclude that Hj(RF (Q•)) is zero except possibly for j ∈ {i − n − 2, . . . , i − 1}.
Hence we see that RF (σ≥i−n−1L

•) → RF (σ≥i−n−1M
•) induces an isomorphism of

cohomology objects in degrees≥ i. By Proposition 16.8 we know thatRF (σ≥i−n−1L
•) =

σ≥i−n−1F (L•) and RF (σ≥i−n−1M
•) = σ≥i−n−1F (M•). We conclude that F (L•)→

F (M•) is an isomorphism in degree i as desired.
Part (4)(a) follows from Lemma 16.1.
For part (4)(b) let E be represented by the complex L• of objects right acyclic for F . By
part (2) RF (E) is represented by the complex F (L•) and RF (σ≥cL

•) is represented by
σ≥cF (L•). Consider the distinguished triangle

Hb−n(L•)[n− b]→ τ≥b−nL
• → τ≥b−n+1L

•

of Remark 12.4. The vanishing established above gives that Hi(RF (τ≥b−nL
•)) agrees

with Hi(RF (τ≥b−n+1L
•)) for i ≥ b. Consider the short exact sequence of complexes

0→ Im(Lb−n−1 → Lb−n)[n− b]→ σ≥b−nL
• → τ≥b−nL

• → 0
Using the distinguished triangle associated to this (see Section 12) and the vanishing as
before we conclude that Hi(RF (τ≥b−nL

•)) agrees with Hi(RF (σ≥b−nL
•)) for i ≥ b.

Since the map RF (σ≥b−nL
•) → RF (L•) is represented by σ≥b−nF (L•) → F (L•) we

conclude that this in turn agrees with Hi(RF (L•)) for i ≥ b as desired.
Proof of (4)(c). Under the assumption onE we have τ≤a−1E = 0 and we get the vanishing
of Hi(RF (E)) for i ≤ a− 1 from part (4)(a). Similarly, we have τ≥b+1E = 0 and hence
we get the vanishing of Hi(RF (E)) for i ≥ b+ n from part (4)(b). �
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Lemma 32.3. Let F : A → B be a right exact functor of abelian categories. If
(1) every object ofA is a quotient of an object which is left acyclic for F ,
(2) there exists an integer n ≥ 0 such that LnF = 0,

Then
(1) LF : D(A)→ D(B) exists,
(2) any complex consisting of left acyclic objects for F computes LF ,
(3) any complex is the target of a quasi-isomorphism from a complex consisting of

left acyclic objects for F ,
(4) for E ∈ D(A)

(a) Hi(LF (τ≤a+n−1E)→ Hi(LF (E)) is an isomorphism for i ≤ a,
(b) Hi(LF (E))→ Hi(LF (τ≥bE)) is an isomorphism for i ≥ b,
(c) ifHi(E) = 0 for i 6∈ [a, b] for some−∞ ≤ a ≤ b ≤ ∞, thenHi(LF (E)) =

0 for i 6∈ [a− n+ 1, b].

Proof. This is dual to Lemma 32.2. �

33. Derived colimits

In a triangulated category there is a notion of derived colimit.

Definition 33.1. LetD be a triangulated category. Let (Kn, fn) be a system of objects
of D. We say an object K is a derived colimit, or a homotopy colimit of the system (Kn)
if the direct sum

⊕
Kn exists and there is a distinguished triangle⊕

Kn →
⊕

Kn → K →
⊕

Kn[1]

where the map
⊕
Kn →

⊕
Kn is given by 1− fn in degree n. If this is the case, then we

sometimes indicate this by the notation K = hocolimKn.

By TR3 a derived colimit, if it exists, is unique up to (non-unique) isomorphism. More-
over, by TR1 a derived colimit ofKn exists as soon as

⊕
Kn exists. The derived category

D(Ab) of the category of abelian groups is an example of a triangulated category where
all homotopy colimits exist.

The nonuniqueness makes it hard to pin down the derived colimit. In More on Algebra,
Lemma 86.5 the reader finds an exact sequence

0→ R1 lim Hom(Kn, L[−1])→ Hom(hocolimKn, L)→ lim Hom(Kn, L)→ 0

describing the Homs out of a homotopy colimit in terms of the usual Homs.

Remark 33.2. Let D be a triangulated category. Let (Kn, fn) be a system of objects
of D. We may think of a derived colimit as an object K of D endowed with morphisms
in : Kn → K such that in+1 ◦ fn = in and such that there exists a morphism c : K →⊕
Kn with the property that⊕

Kn
1−fn−−−→

⊕
Kn

in−→ K
c−→
⊕

Kn[1]

is a distinguished triangle. If (K ′, i′n, c
′) is a second derived colimit, then there exists an

isomorphism ϕ : K → K ′ such that ϕ ◦ in = i′n and c′ ◦ ϕ = c. The existence of ϕ is
TR3 and the fact that ϕ is an isomorphism is Lemma 4.3.
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Remark 33.3. LetD be a triangulated category. Let (an) : (Kn, fn)→ (Ln, gn) be a
morphism of systems of objects ofD. Let (K, in, c) be a derived colimit of the first system
and let (L, jn, d) be a derived colimit of the second system with notation as in Remark 33.2.
Then there exists a morphism a : K → L such that a ◦ in = jn and d ◦ a = (an[1]) ◦ c.
This follows from TR3 applied to the defining distinguished triangles.

Lemma 33.4. LetD be a triangulated category. Let (Kn, fn) be a system of objects of
D. Let n1 < n2 < n3 < . . . be a sequence of integers. Assume

⊕
Kn and

⊕
Kni exist.

Then there exists an isomorphism hocolimKni → hocolimKn such that

Kni
//

id
��

hocolimKni

��
Kni

// hocolimKn

commutes for all i.

Proof. Let gi : Kni → Kni+1 be the composition fni+1−1 ◦ . . . ◦ fni . We construct
commutative diagrams⊕

iKni 1−gi
//

b

��

⊕
iKni

a

��⊕
nKn

1−fn //⊕
nKn

and

⊕
nKn 1−fn

//

d

��

⊕
nKn

c

��⊕
iKni

1−gi //⊕
iKni

as follows. Let ai = a|Kni be the inclusion of Kni into the direct sum. In other words, a
is the natural inclusion. Let bi = b|Kni be the map

Kni

1, fni , fni+1◦fni , ..., fni+1−2◦...◦fni−−−−−−−−−−−−−−−−−−−−−−−−→ Kni ⊕Kni+1 ⊕ . . .⊕Kni+1−1

If ni−1 < j ≤ ni, then we let cj = c|Kj be the map

Kj

fni−1◦...◦fj−−−−−−−−→ Kni

We let dj = d|Kj be zero if j 6= ni for any i and we let dni be the natural inclusion ofKni

into the direct sum. In other words, d is the natural projection. By TR3 these diagrams
define morphisms

ϕ : hocolimKni → hocolimKn and ψ : hocolimKn → hocolimKni

Since c ◦ a and d ◦ b are the identity maps we see that ϕ ◦ ψ is an isomorphism by Lemma
4.3. The other way around we get the morphisms a ◦ c and b ◦ d. Consider the morphism
h = (hj) :

⊕
Kn →

⊕
Kn given by the rule: for ni−1 < j < ni we set

hj : Kj

1, fj , fj+1◦fj , ..., fni−1◦...◦fj−−−−−−−−−−−−−−−−−−−−→ Kj ⊕ . . .⊕Kni

Then the reader verifies that (1−f)◦h = id−a◦c and h◦(1−f) = id−b◦d. This means
that id− ψ ◦ ϕ has square zero by Lemma 4.5 (small argument omitted). In other words,
ψ ◦ ϕ differs from the identity by a nilpotent endomorphism, hence is an isomorphism.
Thus ϕ and ψ are isomorphisms as desired. �

Lemma 33.5. LetA be an abelian category. IfA has exact countable direct sums, then
D(A) has countable direct sums. In fact given a collection of complexes K•

i indexed by a
countable index set I the termwise direct sum

⊕
K•
i is the direct sum of K•

i in D(A).
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Proof. Let L• be a complex. Suppose given maps αi : K•
i → L• in D(A). This

means there exist quasi-isomorphisms si : M•
i → K•

i of complexes and maps of complexes
fi : M•

i → L• such that αi = fis
−1
i . By assumption the map of complexes

s :
⊕

M•
i −→

⊕
K•
i

is a quasi-isomorphism. Hence setting f =
⊕
fi we see that α = fs−1 is a map in D(A)

whose composition with the coprojection K•
i →

⊕
K•
i is αi. We omit the verification

that α is unique. �

Lemma 33.6. Let A be an abelian category. Assume colimits over N exist and are
exact. Then countable direct sums exists and are exact. Moreover, if (An, fn) is a system
over N, then there is a short exact sequence

0→
⊕

An →
⊕

An → colimAn → 0

where the first map in degree n is given by 1− fn.

Proof. The first statement follows from
⊕
An = colim(A1 ⊕ . . . ⊕ An). For the

second, note that for each n we have the short exact sequence

0→ A1 ⊕ . . .⊕An−1 → A1 ⊕ . . .⊕An → An → 0

where the first map is given by the maps 1 − fi and the second map is the sum of the
transition maps. Take the colimit to get the sequence of the lemma. �

Lemma 33.7. LetA be an abelian category. LetL•
n be a system of complexes ofA. As-

sume colimits over N exist and are exact inA. Then the termwise colimit L• = colimL•
n

is a homotopy colimit of the system in D(A).

Proof. We have an exact sequence of complexes

0→
⊕

L•
n →

⊕
L•
n → L• → 0

by Lemma 33.6. The direct sums are direct sums in D(A) by Lemma 33.5. Thus the result
follows from the definition of derived colimits in Definition 33.1 and the fact that a short
exact sequence of complexes gives a distinguished triangle (Lemma 12.1). �

Lemma 33.8. Let D be a triangulated category having countable direct sums. Let A
be an abelian category with exact colimits over N. Let H : D → A be a homological
functor commuting with countable direct sums. Then H(hocolimKn) = colimH(Kn)
for any system of objects of D.

Proof. Write K = hocolimKn. Apply H to the defining distinguished triangle to
get ⊕

H(Kn)→
⊕

H(Kn)→ H(K)→
⊕

H(Kn[1])→
⊕

H(Kn[1])

where the first map is given by 1 − H(fn) and the last map is given by 1 − H(fn[1]).
Apply Lemma 33.6 to see that this proves the lemma. �

The following lemma tells us that taking maps out of a compact object (to be defined later)
commutes with derived colimits.
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Lemma 33.9. LetD be a triangulated category with countable direct sums. LetK ∈ D
be an object such that for every countable set of objects En ∈ D the canonical map⊕

HomD(K,En) −→ HomD(K,
⊕

En)

is a bijection. Then, given any system Ln of D over N whose derived colimit L =
hocolimLn exists we have that

colim HomD(K,Ln) −→ HomD(K,L)

is a bijection.

Proof. Consider the defining distinguished triangle⊕
Ln →

⊕
Ln → L→

⊕
Ln[1]

Apply the cohomological functor HomD(K,−) (see Lemma 4.2). By elementary consid-
erations concerning colimits of abelian groups we get the result. �

34. Derived limits

In a triangulated category there is a notion of derived limit.

Definition 34.1. LetD be a triangulated category. Let (Kn, fn) be an inverse system
of objects of D. We say an object K is a derived limit, or a homotopy limit of the system
(Kn) if the product

∏
Kn exists and there is a distinguished triangle

K →
∏

Kn →
∏

Kn → K[1]

where the map
∏
Kn →

∏
Kn is given by (kn) 7→ (kn− fn+1(kn+1)). If this is the case,

then we sometimes indicate this by the notation K = R limKn.

By TR3 a derived limit, if it exists, is unique up to (non-unique) isomorphism. Moreover,
by TR1 a derived limit R limKn exists as soon as

∏
Kn exists. The derived category

D(Ab) of the category of abelian groups is an example of a triangulated category where
all derived limits exist.

The nonuniqueness makes it hard to pin down the derived limit. In More on Algebra,
Lemma 86.4 the reader finds an exact sequence

0→ R1 lim Hom(L,Kn[−1])→ Hom(L,R limKn)→ lim Hom(L,Kn)→ 0

describing the Homs into a derived limit in terms of the usual Homs.

Lemma 34.2. LetA be an abelian category with exact countable products. Then
(1) D(A) has countable products,
(2) countable products

∏
Ki in D(A) are obtained by taking termwise products of

any complexes representing the Ki, and
(3) Hp(

∏
Ki) =

∏
Hp(Ki).

Proof. LetK•
i be a complex representingKi inD(A). LetL• be a complex. Suppose

given maps αi : L• → K•
i in D(A). This means there exist quasi-isomorphisms si :

K•
i → M•

i of complexes and maps of complexes fi : L• → M•
i such that αi = s−1

i fi.
By assumption the map of complexes

s :
∏

K•
i −→

∏
M•
i
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is a quasi-isomorphism. Hence setting f =
∏
fi we see that α = s−1f is a map in D(A)

whose composition with the projection
∏
K•
i → K•

i is αi. We omit the verification that
α is unique. �

The duals of Lemmas 33.6, 33.7, and 33.9 should be stated here and proved. However, we
do not know any applications of these lemmas for now.

Lemma 34.3. Let A be an abelian category with countable products and enough in-
jectives. Let (Kn) be an inverse system of D+(A). Then R limKn exists.

Proof. It suffices to show that
∏
Kn exists in D(A). For every n we can represent

Kn by a bounded below complex I•
n of injectives (Lemma 18.3). Then

∏
Kn is represented

by
∏
I•
n, see Lemma 31.5. �

Lemma 34.4. Let A be an abelian category with countable products and enough in-
jectives. Let K• be a complex. Let I•

n be the inverse system of bounded below complexes
of injectives produced by Lemma 29.3. Then I• = lim I•

n exists, is K-injective, and the
following are equivalent

(1) the map K• → I• is a quasi-isomorphism,
(2) the canonical map K• → R lim τ≥−nK

• is an isomorphism in D(A).

Proof. The statement of the lemma makes sense as R lim τ≥−nK
• exists by Lemma

34.3. Each complex I•
n is K-injective by Lemma 31.4. Choose direct sum decompositions

Ipn+1 = Cpn+1 ⊕ Ipn for all n ≥ 1. Set Cp1 = Ip1 . The complex I• = lim I•
n exists because

we can take Ip =
∏
n≥1 C

p
n. Fix p ∈ Z. We claim there is a split short exact sequence

0→ Ip →
∏

Ipn →
∏

Ipn → 0

of objects ofA. Here the first map is given by the projection maps Ip → Ipn and the second
map by (xn) 7→ (xn − fpn+1(xn+1)) where fpn : Ipn → Ipn−1 are the transition maps. The
splitting comes from the map

∏
Ipn →

∏
Cpn = Ip. We obtain a termwise split short exact

sequence of complexes
0→ I• →

∏
I•
n →

∏
I•
n → 0

Hence a corresponding distinguished triangle in K(A) and D(A). By Lemma 31.5 the
products are K-injective and represent the corresponding products in D(A). It follows
that I• represents R lim I•

n (Definition 34.1). Moreover, it follows that I• is K-injective
by Lemma 31.3. By the commutative diagram of Lemma 29.3 we obtain a corresponding
commutative diagram

K• //

��

R lim τ≥−nK
•

��
I• // R lim I•

n

in D(A). Since the right vertical arrow is an isomorphism (as derived limits are defined
on the level of the derived category and since τ≥−nK

• → I•
n is a quasi-isomorphism), the

lemma follows. �

Lemma 34.5. LetA be an abelian category having enough injectives and exact count-
able products. Then for every complex there is a quasi-isomorphism to a K-injective com-
plex.
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Proof. By Lemma 34.4 it suffices to show thatK → R lim τ≥−nK is an isomorphism
for all K in D(A). Consider the defining distinguished triangle

R lim τ≥−nK →
∏

τ≥−nK →
∏

τ≥−nK → (R lim τ≥−nK)[1]

By Lemma 34.2 we have

Hp(
∏

τ≥−nK) =
∏

p≥−n
Hp(K)

It follows in a straightforward manner from the long exact cohomology sequence of the
displayed distinguished triangle that Hp(R lim τ≥−nK) = Hp(K). �

35. Operations on full subcategories

Let T be a triangulated category. We will identify full subcategories of T with subsets of
Ob(T ). Given full subcategoriesA,B, . . . we let

(1) A[a, b] for −∞ ≤ a ≤ b ≤ ∞ be the full subcategory of T consisting of all
objects A[−i] with i ∈ [a, b] ∩ Z with A ∈ Ob(A) (note the minus sign!),

(2) smd(A) be the full subcategory of T consisting of all objects which are isomor-
phic to direct summands of objects ofA,

(3) add(A) be the full subcategory of T consisting of all objects which are isomor-
phic to finite direct sums of objects ofA,

(4) A?B be the full subcategory of T consisting of all objectsX of T which fit into
a distinguished triangle A→ X → B with A ∈ Ob(A) and B ∈ Ob(B),

(5) A?n = A ? . . . ?A with n ≥ 1 factors (we will see ? is associative below),
(6) smd(add(A)?n) = smd(add(A) ? . . . ? add(A)) with n ≥ 1 factors.

If E is an object of T , then we think of E sometimes also as the full subcategory of T
whose single object is E. Then we can consider things like add(E[−1, 2]) and so on and
so forth. We warn the reader that this notation is not universally accepted.

Lemma 35.1. Let T be a triangulated category. Given full subcategories A, B, C we
have (A ? B) ? C = A ? (B ? C).

Proof. If we have distinguished triangles A → X → B and X → Y → C then by
Axiom TR4 we have distinguished triangles A→ Y → Z and B → Z → C. �

Lemma 35.2. Let T be a triangulated category. Given full subcategoriesA,Bwe have
smd(A) ? smd(B) ⊂ smd(A ? B) and smd(smd(A) ? smd(B)) = smd(A ? B).

Proof. Suppose we have a distinguished triangle A1 → X → B1 where A1 ⊕A2 ∈
Ob(A) and B1 ⊕ B2 ∈ Ob(B). Then we obtain a distinguished triangle A1 ⊕ A2 →
A2 ⊕ X ⊕ B2 → B1 ⊕ B2 which proves that X is in smd(A ? B). This proves the
inclusion. The equality follows trivially from this. �

Lemma 35.3. Let T be a triangulated category. Given full subcategoriesA, B the full
subcategories add(A) ? add(B) and smd(add(A)) are closed under direct sums.

Proof. Namely, ifA→ X → B andA′ → X ′ → B′ are distinguished triangles and
A,A′ ∈ add(A) andB,B′ ∈ add(B) thenA⊕A′ → X⊕X ′ → B⊕B′ is a distinguished
triangle with A ⊕ A′ ∈ add(A) and B ⊕ B′ ∈ add(B). The result for smd(add(A)) is
trivial. �
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Lemma 35.4. Let T be a triangulated category. Given a full subcategoryA for n ≥ 1
the subcategory

Cn = smd(add(A)?n) = smd(add(A) ? . . . ? add(A))

defined above is a strictly full subcategory of T closed under direct sums and direct sum-
mands and Cn+m = smd(Cn ? Cm) for all n,m ≥ 1.

Proof. Immediate from Lemmas 35.1, 35.2, and 35.3. �

Remark 35.5. Let F : T → T ′ be an exact functor of triangulated categories. Given
a full subcategoryA of T we denoteF (A) the full subcategory of T ′ whose objects consists
of all objects F (A) with A ∈ Ob(A). We have

F (A[a, b]) = F (A)[a, b]

F (smd(A)) ⊂ smd(F (A)),

F (add(A)) ⊂ add(F (A)),

F (A ? B) ⊂ F (A) ? F (B),

F (A?n) ⊂ F (A)?n.
We omit the trivial verifications.

Remark 35.6. Let T be a triangulated category. Given full subcategoriesA1 ⊂ A2 ⊂
A3 ⊂ . . . and B of T we have (⋃

Ai
)

[a, b] =
⋃
Ai[a, b]

smd
(⋃
Ai
)

=
⋃
smd(Ai),

add
(⋃
Ai
)

=
⋃
add(Ai),(⋃

Ai
)
? B =

⋃
Ai ? B,

B ?
(⋃
Ai
)

=
⋃
B ?Ai,(⋃

Ai
)?n

=
⋃
A?ni .

We omit the trivial verifications.

Lemma 35.7. Let A be an abelian category. Let D = D(A). Let E ⊂ Ob(A) be a
subset which we view as a subset of Ob(D) also. Let K be an object of D.

(1) Let b ≥ a and assume Hi(K) is zero for i 6∈ [a, b] and Hi(K) ∈ E if i ∈ [a, b].
Then K is in smd(add(E [a, b])?(b−a+1)).

(2) Let b ≥ a and assume Hi(K) is zero for i 6∈ [a, b] and Hi(K) ∈ smd(add(E))
if i ∈ [a, b]. Then K is in smd(add(E [a, b])?(b−a+1)).

(3) Let b ≥ a and assume K can be represented by a complex K• with Ki = 0 for
i 6∈ [a, b] and Ki ∈ E for i ∈ [a, b]. Then K is in smd(add(E [a, b])?(b−a+1)).

(4) Let b ≥ a and assumeK can be represented by a complexK• withKi = 0 for i 6∈
[a, b] andKi ∈ smd(add(E)) for i ∈ [a, b]. ThenK is in smd(add(E [a, b])?(b−a+1)).
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Proof. We will use Lemma 35.4 without further mention. We will prove (2) which
trivially implies (1). We use induction on b − a. If b − a = 0, then K is isomorphic
to Hi(K)[−a] in D and the result is immediate. If b − a > 0, then we consider the
distinguished triangle

τ≤b−1K
• → K• → Kb[−b]

and we conclude by induction on b− a. We omit the proof of (3) and (4). �

Lemma 35.8. Let T be a triangulated category. Let H : T → A be a homological
functor to an abelian categoryA. Let a ≤ b and E ⊂ Ob(T ) be a subset such thatHi(E) =
0 for E ∈ E and i 6∈ [a, b]. Then for X ∈ smd(add(E [−m,m])?n) we have Hi(X) = 0
for i 6∈ [−m+ na,m+ nb].

Proof. Omitted. Pleasant exercise in the definitions. �

36. Generators of triangulated categories

In this section we briefly introduce a few of the different notions of a generator for a
triangulated category. Our terminology is taken from [?] (except that we use “saturated”
for what they call “épaisse”, see Definition 6.1, and our definition of add(A) is different).

Let D be a triangulated category. Let E be an object of D. Denote 〈E〉1 the strictly full
subcategory ofD consisting of objects inD isomorphic to direct summands of finite direct
sums ⊕

i=1,...,r
E[ni]

of shifts of E. It is clear that in the notation of Section 35 we have

〈E〉1 = smd(add(E[−∞,∞]))

For n > 1 let 〈E〉n denote the full subcategory ofD consisting of objects ofD isomorphic
to direct summands of objects X which fit into a distinguished triangle

A→ X → B → A[1]

where A is an object of 〈E〉1 and B an object of 〈E〉n−1. In the notation of Section 35 we
have

〈E〉n = smd(〈E〉1 ? 〈E〉n−1)
Each of the categories 〈E〉n is a strictly full additive (by Lemma 35.3) subcategory of D
preserved under shifts and under taking summands. But, 〈E〉n is not necessarily closed
under “taking cones” or “extensions”, hence not necessarily a triangulated subcategory.
This will be true for the subcategory

〈E〉 =
⋃

n
〈E〉n

as will be shown in the lemmas below.

Lemma 36.1. Let T be a triangulated category. Let E be an object of T . For n ≥ 1
we have

〈E〉n = smd(〈E〉1 ? . . . ? 〈E〉1) = smd(〈E〉1?n) =
⋃

m≥1
smd(add(E[−m,m])?n)

For n, n′ ≥ 1 we have 〈E〉n+n′ = smd(〈E〉n ? 〈E〉n′).
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Proof. The left equality in the displayed formula follows from Lemmas 35.1 and 35.2
and induction. The middle equality is a matter of notation. Since 〈E〉1 = smd(add(E[−∞,∞])])
and since E[−∞,∞] =

⋃
m≥1 E[−m,m] we see from Remark 35.6 and Lemma 35.2 that

we get the equality on the right. Then the final statement follows from the remark and
the corresponding statement of Lemma 35.4. �

Lemma 36.2. Let D be a triangulated category. Let E be an object of D. The subcat-
egory

〈E〉 =
⋃

n
〈E〉n =

⋃
n,m≥1

smd(add(E[−m,m])?n)

is a strictly full, saturated, triangulated subcategory of D and it is the smallest such sub-
category of D containing the object E.

Proof. The equality on the right follows from Lemma 36.1. It is clear that 〈E〉 =⋃
〈E〉n contains E , is preserved under shifts, direct sums, direct summands. If A ∈ 〈E〉a

and B ∈ 〈E〉b and if A→ X → B → A[1] is a distinguished triangle, then X ∈ 〈E〉a+b
by Lemma 36.1. Hence

⋃
〈E〉n is also preserved under extensions and it follows that it is

a triangulated subcategory.

Finally, let D′ ⊂ D be a strictly full, saturated, triangulated subcategory of D containing
E. Then D′[−∞,∞] ⊂ D′, add(D) ⊂ D′, smd(D′) ⊂ D′, and D′ ? D′ ⊂ D′. In other
words, all the operations we used to construct 〈E〉 out ofE preserveD′. Hence 〈E〉 ⊂ D′

and this finishes the proof. �

Definition 36.3. Let D be a triangulated category. Let E be an object of D.
(1) We sayE is a classical generator ofD if the smallest strictly full, saturated, trian-

gulated subcategory ofD containingE is equal toD, in other words, if 〈E〉 = D.
(2) We say E is a strong generator of D if 〈E〉n = D for some n ≥ 1.
(3) We say E is a weak generator or a generator ofD if for any nonzero object K of
D there exists an integer n and a nonzero map E → K[n].

This definition can be generalized to the case of a family of objects.

Lemma 36.4. Let D be a triangulated category. Let E,K be objects of D. The fol-
lowing are equivalent

(1) Hom(E,K[i]) = 0 for all i ∈ Z,
(2) Hom(E′,K) = 0 for all E′ ∈ 〈E〉.

Proof. The implication (2)⇒ (1) is immediate. Conversely, assume (1). Then Hom(X,K) =
0 for allX in 〈E〉1. Arguing by induction onn and using Lemma 4.2 we see that Hom(X,K) =
0 for all X in 〈E〉n. �

Lemma 36.5. Let D be a triangulated category. Let E be an object of D. If E is a
classical generator of D, then E is a generator.

Proof. AssumeE is a classical generator. LetK be an object ofD such that Hom(E,K[i]) =
0 for all i ∈ Z. By Lemma 36.4 Hom(E′,K) = 0 for all E′ in 〈E〉. However, since
D = 〈E〉 we conclude that idK = 0, i.e., K = 0. �

Lemma 36.6. Let D be a triangulated category which has a strong generator. Let E
be an object of D. If E is a classical generator of D, then E is a strong generator.
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Proof. Let E′ be an object of D such that D = 〈E′〉n. Since D = 〈E〉 we see that
E′ ∈ 〈E〉m for some m ≥ 1 by Lemma 36.2. Then 〈E′〉1 ⊂ 〈E〉m hence

D = 〈E′〉n = smd(〈E′〉1 ? . . . ? 〈E′〉1) ⊂ smd(〈E〉m ? . . . ? 〈E〉m) = 〈E〉nm
as desired. Here we used Lemma 36.1. �

Remark 36.7. Let D be a triangulated category. Let E be an object of D. Let T be a
property of objects of D. Suppose that

(1) if Ki ∈ D(A), i = 1, . . . , r with T (Ki) for i = 1, . . . , r, then T (
⊕
Ki),

(2) if K → L → M → K[1] is a distinguished triangle and T holds for two, then
T holds for the third object,

(3) if T (K ⊕ L) then T (K) and T (L), and
(4) T (E[n]) holds for all n.

Then T holds for all objects of 〈E〉.

37. Compact objects

Here is the definition.

Definition 37.1. Let D be an additive category with arbitrary direct sums. A com-
pact object of D is an object K such that the map⊕

i∈I
HomD(K,Ei) −→ HomD(K,

⊕
i∈I

Ei)

is bijective for any set I and objects Ei ∈ Ob(D) parametrized by i ∈ I .

This notion turns out to be very useful in algebraic geometry. It is an intrinsic condition
on objects that forces the objects to be, well, compact.

Lemma 37.2. LetD be a (pre-)triangulated category with direct sums. Then the com-
pact objects ofD form the objects of a Karoubian, saturated, strictly full, (pre-)triangulated
subcategory Dc of D.

Proof. Let (X,Y, Z, f, g, h) be a distinguished triangle ofD withX and Y compact.
Then it follows from Lemma 4.2 and the five lemma (Homology, Lemma 5.20) that Z is a
compact object too. It is clear that if X ⊕ Y is compact, then X , Y are compact objects
too. Hence Dc is a saturated triangulated subcategory. Since D is Karoubian by Lemma
4.14 we conclude that the same is true for Dc. �

Lemma 37.3. Let D be a triangulated category with direct sums. Let Ei, i ∈ I be a
family of compact objects of D such that

⊕
Ei generates D. Then every object X of D

can be written as
X = hocolimXn

where X1 is a direct sum of shifts of the Ei and each transition morphism fits into a dis-
tinguished triangle Yn → Xn → Xn+1 → Yn[1] where Yn is a direct sum of shifts of the
Ei.

Proof. Set X1 =
⊕

(i,m,ϕ) Ei[m] where the direct sum is over all triples (i,m, ϕ)
such that i ∈ I , m ∈ Z and ϕ : Ei[m] → X . Then X1 comes equipped with a canonical
morphismX1 → X . GivenXn → X we setYn =

⊕
(i,m,ϕ) Ei[m] where the direct sum is

over all triples (i,m, ϕ) such that i ∈ I ,m ∈ Z, and ϕ : Ei[m]→ Xn is a morphism such
that Ei[m] → Xn → X is zero. Choose a distinguished triangle Yn → Xn → Xn+1 →
Yn[1] and letXn+1 → X be any morphism such thatXn → Xn+1 → X is the given one;
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such a morphism exists by our choice of Yn. We obtain a morphism hocolimXn → X by
the construction of our maps Xn → X . Choose a distinguished triangle

C → hocolimXn → X → C[1]

Let Ei[m] → C be a morphism. Since Ei is compact, the composition Ei[m] → C →
hocolimXn factors through Xn for some n, say by Ei[m] → Xn. Then the construction
of Yn shows that the composition Ei[m] → Xn → Xn+1 is zero. In other words, the
compositionEi[m]→ C → hocolimXn is zero. This means that our morphismEi[m]→
C comes from a morphismEi[m]→ X[−1]. The construction ofX1 then shows that such
morphism lifts to hocolimXn and we conclude that our morphism Ei[m] → C is zero.
The assumption that

⊕
Ei generates D implies that C is zero and the proof is done. �

Lemma 37.4. With assumptions and notation as in Lemma 37.3. If C is a compact
object and C → Xn is a morphism, then there is a factorization C → E → Xn where E
is an object of 〈Ei1 ⊕ . . .⊕ Eit〉 for some i1, . . . , it ∈ I .

Proof. We prove this by induction on n. The base case n = 1 is clear. If n >
1 consider the composition C → Xn → Yn−1[1]. This can be factored through some
E′[1]→ Yn−1[1] whereE′ is a finite direct sum of shifts of theEi. Let I ′ ⊂ I be the finite
set of indices that occur in this direct sum. Thus we obtain

E′ //

��

C ′ //

��

C //

��

E′[1]

��
Yn−1 // Xn−1 // Xn

// Yn−1[1]

By induction the morphism C ′ → Xn−1 factors through E′′ → Xn−1 with E′′ an object
of 〈
⊕

i∈I′′ Ei〉 for some finite subset I ′′ ⊂ I . Choose a distinguished triangle

E′ → E′′ → E → E′[1]

then E is an object of 〈
⊕

i∈I′∪I′′ Ei〉. By construction and the axioms of a triangulated
category we can choose morphisms C → E and a morphism E → Xn fitting into mor-
phisms of triangles (E′, C ′, C) → (E′, E′′, E) and (E′, E′′, E) → (Yn−1, Xn−1, Xn).
The composition C → E → Xn may not equal the given morphism C → Xn, but the
compositions into Yn−1 are equal. LetC → Xn−1 be a morphism that lifts the difference.
By induction assumption we can factor this through a morphism E′′′ → Xn−1 with E′′

an object of 〈
⊕

i∈I′′′ Ei〉 for some finite subset I ′ ⊂ I . Thus we see that we get a solution
on considering E ⊕ E′′′ → Xn because E ⊕ E′′′ is an object of 〈

⊕
i∈I′∪I′′∪I′′′ Ei〉. �

Definition 37.5. Let D be a triangulated category with arbitrary direct sums. We
say D is compactly generated if there exists a set Ei, i ∈ I of compact objects such that⊕
Ei generates D.

The following proposition clarifies the relationship between classical generators and weak
generators.

Proposition 37.6. Let D be a triangulated category with direct sums. Let E be a
compact object of D. The following are equivalent

(1) E is a classical generator for Dc and D is compactly generated, and
(2) E is a generator for D.
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Proof. If E is a classical generator for Dc, then Dc = 〈E〉. It follows formally from
the assumption that D is compactly generated and Lemma 36.4 that E is a generator for
D.
The converse is more interesting. Assume thatE is a generator forD. LetX be a compact
object of D. Apply Lemma 37.3 with I = {1} and E1 = E to write

X = hocolimXn

as in the lemma. Since X is compact we find that X → hocolimXn factors through Xn

for some n (Lemma 33.9). ThusX is a direct summand ofXn. By Lemma 37.4 we see that
X is an object of 〈E〉 and the lemma is proven. �

38. Brown representability

A reference for the material in this section is [?].

Lemma 38.1. Let D be a triangulated category with direct sums which is compactly
generated. Let H : D → Ab be a contravariant cohomological functor which transforms
direct sums into products. Then H is representable.

Proof. Let Ei, i ∈ I be a set of compact objects such that
⊕

i∈I Ei generates D. We
may and do assume that the set of objects {Ei} is preserved under shifts. Consider pairs
(i, a) where i ∈ I and a ∈ H(Ei) and set

X1 =
⊕

(i,a)
Ei

Since H(X1) =
∏

(i,a) H(Ei) we see that (a)(i,a) defines an element a1 ∈ H(X1). Set
H1 = HomD(−, X1). By Yoneda’s lemma (Categories, Lemma 3.5) the element a1 defines
a natural transformation H1 → H .
We are going to inductively construct Xn and transformations an : Hn → H where
Hn = HomD(−, Xn). Namely, we apply the procedure above to the functor Ker(Hn →
H) to get an object

Kn+1 =
⊕

(i,k), k∈Ker(Hn(Ei)→H(Ei))
Ei

and a transformation HomD(−,Kn+1) → Ker(Hn → H). By Yoneda’s lemma the
composition HomD(−,Kn+1) → Hn gives a morphism Kn+1 → Xn. We choose a
distinguished triangle

Kn+1 → Xn → Xn+1 → Kn+1[1]
in D. The element an ∈ H(Xn) maps to zero in H(Kn+1) by construction. Since H is
cohomological we can lift it to an element an+1 ∈ H(Xn+1).
We claim that X = hocolimXn represents H . Applying H to the defining distinguished
triangle ⊕

Xn →
⊕

Xn → X →
⊕

Xn[1]
we obtain an exact sequence∏

H(Xn)←
∏

H(Xn)← H(X)

Thus there exists an element a ∈ H(X) mapping to (an) in
∏
H(Xn). Hence a natural

transformation HomD(−, X)→ H such that
HomD(−, X1)→ HomD(−, X2)→ HomD(−, X3)→ . . .→ HomD(−, X)→ H
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commutes. For each i the map HomD(Ei, X) → H(Ei) is surjective, by construction of
X1. On the other hand, by construction ofXn → Xn+1 the kernel of HomD(Ei, Xn)→
H(Ei) is killed by the map HomD(Ei, Xn)→ HomD(Ei, Xn+1). Since

HomD(Ei, X) = colim HomD(Ei, Xn)

by Lemma 33.9 we see that HomD(Ei, X)→ H(Ei) is injective.

To finish the proof, consider the subcategory

D′ = {Y ∈ Ob(D) | HomD(Y [n], X)→ H(Y [n]) is an isomorphism for all n}

As HomD(−, X) → H is a transformation between cohomological functors, the subcat-
egory D′ is a strictly full, saturated, triangulated subcategory of D (details omitted; see
proof of Lemma 6.3). Moreover, as both H and HomD(−, X) transform direct sums into
products, we see that direct sums of objects of D′ are in D′. Thus derived colimits of ob-
jects ofD′ are inD′. Since {Ei} is preserved under shifts, we see thatEi is an object ofD′

for all i. It follows from Lemma 37.3 that D′ = D and the proof is complete. �

Proposition 38.2. Let D be a triangulated category with direct sums which is com-
pactly generated. Let F : D → D′ be an exact functor of triangulated categories which
transforms direct sums into direct sums. Then F has an exact right adjoint.

Proof. For an object Y of D′ consider the contravariant functor

D → Ab, W 7→ HomD′(F (W ), Y )

This is a cohomological functor as F is exact and transforms direct sums into products as
F transforms direct sums into direct sums. Thus by Lemma 38.1 we find an objectX ofD
such that HomD(W,X) = HomD′(F (W ), Y ). The existence of the adjoint follows from
Categories, Lemma 24.2. Exactness follows from Lemma 7.1. �

39. Brown representability, bis

In this section we explain a version of Brown representability for triangulated categories
which have a suitable set of generators; for other versions, please see [?], [?], and [?].

Lemma 39.1. Let D be a triangulated category with direct sums. Suppose given a set
E of objects of D such that

(1) if X is a nonzero object of D, then there exists an E ∈ E and a nonzero map
E → X , and

(2) given objects Xn, n ∈ N of D, E ∈ E , and α : E →
⊕
Xn, there exist En ∈ E

and βn : En → Xn and a morphism γ : E →
⊕
En such that α = (

⊕
βn) ◦ γ.

Let H : D → Ab be a contravariant cohomological functor which transforms direct sums
into products. Then H is representable.

Proof. This proof is very similar to the proof of Lemma 38.1. We may replace E by⋃
i∈Z E [i] and assume that E is preserved by shifts. Consider pairs (E, a) where E ∈ E

and a ∈ H(E) and set
X1 =

⊕
(E,a)

E

Since H(X1) =
∏

(E,a) H(E) we see that (a)(E,a) defines an element a1 ∈ H(X1). Set
H1 = HomD(−, X1). By Yoneda’s lemma (Categories, Lemma 3.5) the element a1 defines
a natural transformation H1 → H .
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We are going to inductively construct Xn and transformations an : Hn → H where
Hn = HomD(−, Xn). Namely, we apply the procedure above to the functor Ker(Hn →
H) to get an object

Kn+1 =
⊕

(E,k), k∈Ker(Hn(E)→H(E))
E

and a transformation HomD(−,Kn+1) → Ker(Hn → H). By Yoneda’s lemma the
composition HomD(−,Kn+1) → Hn gives a morphism Kn+1 → Xn. We choose a
distinguished triangle

Kn+1 → Xn → Xn+1 → Kn+1[1]
in D. The element an ∈ H(Xn) maps to zero in H(Kn+1) by construction. Since H is
cohomological we can lift it to an element an+1 ∈ H(Xn+1).
Set X = hocolimXn. Applying H to the defining distinguished triangle⊕

Xn →
⊕

Xn → X →
⊕

Xn[1]

we obtain an exact sequence∏
H(Xn)←

∏
H(Xn)← H(X)

Thus there exists an element a ∈ H(X) mapping to (an) in
∏
H(Xn). Hence a natural

transformation HomD(−, X)→ H such that
HomD(−, X1)→ HomD(−, X2)→ HomD(−, X3)→ . . .→ HomD(−, X)→ H

commutes. We claim that HomD(−, X)→ H(−) is an isomorphism.
Let E ∈ E . Let us show that

HomD(E,
⊕

Xn)→ HomD(E,
⊕

Xn)

is injective. Namely, letα : E →
⊕
Xn. Then by assumption (2) we obtain a factorization

α = (
⊕
βn) ◦ γ. Since En → Xn → Xn+1 is zero by construction, we see that the

composition
⊕
En →

⊕
Xn →

⊕
Xn is equal to

⊕
βn. Hence also the composition

E →
⊕
Xn →

⊕
Xn is equal to α. This proves the stated injectivity and hence also

HomD(E,
⊕

Xn[1])→ HomD(E,
⊕

Xn[1])

is injective. It follows that we have an exact sequence

HomD(E,
⊕

Xn)→ HomD(E,
⊕

Xn)→ HomD(E,X)→ 0

for all E ∈ E .
Let E ∈ E and let f : E → X be a morphism. By the previous paragraph, we may
choose α : E →

⊕
Xn lifting f . Then by assumption (2) we obtain a factorization

α = (
⊕
βn) ◦ γ. For each n there is a morphism δn : En → X1 such that δn and βn map

to the same element of H(En). Then the compositions
En → Xn → Xn+1 and En → X1 → Xn+1

are equal by construction of Xn → Xn+1. It follows that⊕
En →

⊕
Xn → X and

⊕
En →

⊕
X1 → X

are the same too. Observing that
⊕
X1 → X factors as

⊕
X1 → X1 → X , we conclude

that
HomD(E,X1)→ HomD(E,X)
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is surjective. Since by construction the map HomD(E,X1)→ H(E) is surjective and by
construction the kernel of this map is annihilated by HomD(E,X1)→ HomD(E,X) we
conclude that HomD(E,X)→ H(E) is a bijection for all E ∈ E .

To finish the proof, consider the subcategory

D′ = {Y ∈ Ob(D) | HomD(Y [n], X)→ H(Y [n]) is an isomorphism for all n}

As HomD(−, X) → H is a transformation between cohomological functors, the subcat-
egory D′ is a strictly full, saturated, triangulated subcategory of D (details omitted; see
proof of Lemma 6.3). Moreover, as both H and HomD(−, X) transform direct sums into
products, we see that direct sums of objects of D′ are in D′. Thus derived colimits of ob-
jects of D′ are in D′. Since E is preserved by shifts, we conclude that E ⊂ Ob(D′) by the
result of the previous paragraph. To finish the proof we have to show that D′ = D.

Let Y be an object of D and set H(−) = HomD(−, Y ). Then H is a cohomological
functor which transforms direct sums into products. By the construction in the first part
of the proof we obtain a morphism colimXn = X → Y such that HomD(E,X) →
HomD(E, Y ) is bijective for all E ∈ E . Then assumption (1) tells us that X → Y is an
isomorphism! On the other hand, by constructionX1, X2, . . . are inD′ and so isX . Thus
Y ∈ D′ and the proof is complete. �

Proposition 39.2. Let D be a triangulated category with direct sums. Assume there
exists a set E of objects ofD satisfying conditions (1) and (2) of Lemma 39.1. Let F : D →
D′ be an exact functor of triangulated categories which transforms direct sums into direct
sums. Then F has an exact right adjoint.

Proof. For an object Y of D′ consider the contravariant functor

D → Ab, W 7→ HomD′(F (W ), Y )

This is a cohomological functor as F is exact and transforms direct sums into products as
F transforms direct sums into direct sums. Thus by Lemma 39.1 we find an objectX ofD
such that HomD(W,X) = HomD′(F (W ), Y ). The existence of the adjoint follows from
Categories, Lemma 24.2. Exactness follows from Lemma 7.1. �

40. Admissible subcategories

A reference for this section is [?, Section 1].

Definition 40.1. Let D be an additive category. Let A ⊂ D be a full subcategory.
The right orthogonal A⊥ of A is the full subcategory consisting of the objects X of D
such that Hom(A,X) = 0 for all A ∈ Ob(A). The left orthogonal ⊥A of A is the
full subcategory consisting of the objects X of D such that Hom(X,A) = 0 for all A ∈
Ob(A).

Lemma 40.2. Let D be a triangulated category. Let A ⊂ D be a full subcategory
invariant under all shifts. Consider a distinguished triangle

X → Y → Z → X[1]

of D. The following are equivalent
(1) Z is inA⊥, and
(2) Hom(A,X) = Hom(A, Y ) for all A ∈ Ob(A).
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Proof. By Lemma 4.2 the functor Hom(A,−) is homological and hence we get a
long exact sequence as in (3.5.1). Assume (1) and let A ∈ Ob(A). Then we consider the
exact sequence

Hom(A[1], Z)→ Hom(A,X)→ Hom(A, Y )→ Hom(A,Z)
SinceA[1] ∈ Ob(A) we see that the first and last groups are zero. Thus we get (2). Assume
(2) and let A ∈ Ob(A). Then we consider the exact sequence

Hom(A,X)→ Hom(A, Y )→ Hom(A,Z)→ Hom(A[−1], X)→ Hom(A[−1], Y )
and we conclude that Hom(A,Z) = 0 as desired. �

Lemma 40.3. Let D be a triangulated category. Let B ⊂ D be a full subcategory
invariant under all shifts. Consider a distinguished triangle

X → Y → Z → X[1]
of D. The following are equivalent

(1) X is in ⊥B, and
(2) Hom(Y,B) = Hom(Z,B) for all B ∈ Ob(B).

Proof. Dual to Lemma 40.2. �

Lemma 40.4. Let D be a triangulated category. Let A ⊂ D be a full subcategory
invariant under all shifts. Then both the right orthogonal A⊥ and the left orthogonal
⊥A ofA are strictly full, saturated8, triangulated subcagories of D.

Proof. It is immediate from the definitions that the orthogonals are preserved under
taking shifts, direct sums, and direct summands. Consider a distinguished triangle

X → Y → Z → X[1]
ofD. By Lemma 4.16 it suffices to show that ifX and Y are inA⊥, then Z is inA⊥. This
is immediate from Lemma 40.2. �

Lemma 40.5. Let D be a triangulated category. Let A be a full triangulated subcate-
gory ofD. For an objectX ofD consider the property P (X): there exists a distinguished
triangle A→ X → B → A[1] in D with A inA and B inA⊥.

(1) IfX1 → X2 → X3 → X1[1] is a distinguished triangle and P holds for two out
of three, then it holds for the third.

(2) If P holds for X1 and X2, then it holds for X1 ⊕X2.

Proof. Let X1 → X2 → X3 → X1[1] be a distinguished triangle and assume P
holds for X1 and X2. Choose distinguished triangles

A1 → X1 → B1 → A1[1] and A2 → X2 → B2 → A2[1]
as in condition P . Since Hom(A1, A2) = Hom(A1, X2) by Lemma 40.2 there is a unique
morphism A1 → A2 such that the diagram

A1

��

// X1

��
A2 // X2

8Definition 6.1.
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commutes. Choose an extension of this to a diagram

A1 //

��

X1 //

��

Q1 //

��

A1[1]

��
A2 //

��

X2 //

��

Q2 //

��

A2[1]

��
A3 //

��

X3 //

��

Q3 //

��

A3[1]

��
A1[1] // X1[1] // Q1[1] // A1[2]

as in Proposition 4.23. By TR3 we see that Q1 ∼= B1 and Q2 ∼= B2 and hence Q1, Q2 ∈
Ob(A⊥). As Q1 → Q2 → Q3 → Q1[1] is a distinguished triangle we see that Q3 ∈
Ob(A⊥) by Lemma 40.4. Since A is a full triangulated subcategory, we see that A3 is
isomorphic to an object ofA. Thus X3 satisfies P . The other cases of (1) follow from this
case by translation. Part (2) is a special case of (1) via Lemma 4.11. �

Lemma 40.6. Let D be a triangulated category. Let B be a full triangulated subcate-
gory ofD. For an objectX ofD consider the property P (X): there exists a distinguished
triangle A→ X → B → A[1] in D with B in B and A in ⊥B.

(1) IfX1 → X2 → X3 → X1[1] is a distinguished triangle and P holds for two out
of three, then it holds for the third.

(2) If P holds for X1 and X2, then it holds for X1 ⊕X2.

Proof. Dual to Lemma 40.5. �

Lemma 40.7. Let D be a triangulated category. Let A ⊂ D be a full triangulated
subcategory. The following are equivalent

(1) the inclusion functorA → D has a right adjoint, and
(2) for every X in D there exists a distinguished triangle

A→ X → B → A[1]

in D with A ∈ Ob(A) and B ∈ Ob(A⊥).
If this holds, then A is saturated (Definition 6.1) and if A is strictly full in D, then A =
⊥(A⊥).

Proof. Assume (1) and denote v : D → A the right adjoint. Let X ∈ Ob(D). Set
A = v(X). We may extend the adjunction mapping A → X to a distinguished triangle
A→ X → B → A[1]. Since

HomA(A′, A) = HomA(A′, v(X)) = HomD(A′, X)

for A′ ∈ Ob(A), we conclude that B ∈ Ob(A⊥) by Lemma 40.2.

Assume (2). We will contruct the adjoint v explictly. Let X ∈ Ob(D). Choose A →
X → B → A[1] as in (2). Set v(X) = A. Let f : X → Y be a morphism in D. Choose
A′ → Y → B′ → A′[1] as in (2). Since Hom(A,A′) = Hom(A, Y ) by Lemma 40.2 there
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is a unique morphism f ′ : A→ A′ such that the diagram

A

f ′

��

// X

f

��
A′ // Y

commutes. Hence we can set v(f) = f ′ to get a functor. To see that v is adjoint to the
inclusion morphism use Lemma 40.2 again.

Proof of the final statement. In order to prove that A is saturated we may replace A
by the strictly full subcategory having the same isomorphism classes asA; details omitted.
AssumeA is strictly full. If we show thatA = ⊥(A⊥), thenAwill be saturated by Lemma
40.4. Since the incusion A ⊂ ⊥(A⊥) is clear it suffices to prove the other inclusion. Let
X be an object of ⊥(A⊥). Choose a distinguished triangleA→ X → B → A[1] as in (2).
As Hom(X,B) = 0 by assumption we see that A ∼= X ⊕ B[−1] by Lemma 4.11. Since
Hom(A,B[−1]) = 0 as B ∈ A⊥ this implies B[−1] = 0 and A ∼= X as desired. �

Lemma 40.8. Let D be a triangulated category. Let B ⊂ D be a full triangulated
subcategory. The following are equivalent

(1) the inclusion functor B → D has a left adjoint, and
(2) for every X in D there exists a distinguished triangle

A→ X → B → A[1]

in D with B ∈ Ob(B) and A ∈ Ob(⊥B).
If this holds, then B is saturated (Definition 6.1) and if B is strictly full in D, then B =
(⊥B)⊥.

Proof. Dual to Lemma 40.7. �

Definition 40.9. LetD be a triangulated category. A right admissible subcategory of
D is a strictly full triangulated subcategory satisfying the equivalent conditions of Lemma
40.7. A left admissible subcategory ofD is a strictly full triangulated subcategory satisfy-
ing the equivalent conditions of Lemma 40.8. A two-sided admissible subcategory is one
which is both right and left admissible.

Let A be a right admissible subcategory of the triangulated category D. Then we observe
that for X ∈ D the distinguished triangle

A→ X → B → A[1]

with A ∈ A and B ∈ A⊥ is canonical in the following sense: for any other distinguished
triangle A′ → X → B′ → A′[1] with A′ ∈ A and B′ ∈ A⊥ there is an isomorphism
(α, idX , β) : (A,X,B) → (A′, X,B′) of triangles. The following proposition summa-
rizes what was said above.

Proposition 40.10. Let D be a triangulated category. Let A ⊂ D and B ⊂ D be
subcategories. The following are equivalent

(1) A is right admissible and B = A⊥,
(2) B is left admissible andA = ⊥B,
(3) Hom(A,B) = 0 for all A ∈ A and B ∈ B and for every X in D there exists a

distinguished triangle A→ X → B → A[1] in D with A ∈ A and B ∈ B.
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If this is true, then A → D/B and B → D/A are equivalences of triangulated categories,
the right adjoint to the inclusion functorA → D is D → D/B → A, and the left adjoint
to the inclusion functor B → D is D → D/A → B.

Proof. The equivalence between (1), (2), and (3) follows in a straighforward manner
from Lemmas 40.7 and 40.8 (small detail omitted). Denote v : D → A the right adjoint of
the inclusion functor i : A → D. It is immediate that Ker(v) = A⊥ = B. Thus v factors
over a functor v : D/B → A by the universal property of the quotient. Since v ◦ i = idA
by Categories, Lemma 24.4 we see that v is a left quasi-inverse to i : A → D/B. We claim
also the composition i ◦ v is isomorphic to idD/B. Namely, suppose we have X fitting
into a distinguished triangle A → X → B → A[1] as in (3). Then v(X) = A as was
seen in the proof of Lemma 40.7. Viewing X as an object of D/B we have i(v(X)) = A
and there is a functorial isomorphism i(v(X)) = A → X in D/B. Thus we find that
indeed v : D/B → A is an equivalence. To show that B → D/A is an equivalence and
the left adjoint to the inclusion functor B → D isD → D/A → B is dual to what we just
said. �

41. Postnikov systems

A reference for this section is [?]. Let D be a triangulated category. Let
Xn → Xn−1 → . . .→ X0

be a complex inD. In this section we consider the problem of constructing a “totalization”
of this complex.

Definition 41.1. Let D be a triangulated category. Let
Xn → Xn−1 → . . .→ X0

be a complex in D. A Postnikov system is defined inductively as follows.
(1) If n = 0, then it is an isomorphism Y0 → X0.
(2) If n = 1, then it is a choice of an isomorphism Y0 → X0 and a choice of a

distinguished triangle
Y1 → X1 → Y0 → Y1[1]

where X1 → Y0 composed with Y0 → X0 is the given morphism X1 → X0.
(3) If n > 1, then it is a choice of a Postnikov system for Xn−1 → . . .→ X0 and a

choice of a distinguished triangle
Yn → Xn → Yn−1 → Yn[1]

where the morphism Xn → Yn−1 composed with Yn−1 → Xn−1 is the given
morphism Xn → Xn−1.

Given a morphism

(41.1.1)

Xn
//

��

Xn−1 //

��

. . . // X0

��
X ′
n

// X ′
n−1

// . . . // X ′
0

between complexes of the same length in D there is an obvious notion of a morphism of
Postnikov systems.

Here is a key example.
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Example 41.2. Let A be an abelian category. Let . . . → A2 → A1 → A0 be a chain
complex inA. Then we can consider the objects

Xn = An and Yn = (An → An−1 → . . .→ A0)[−n]

of D(A). With the evident canonical maps Yn → Xn and Y0 → Y1[1] → Y2[2] → . . .
the distinguished triangles Yn → Xn → Yn−1 → Yn[1] define a Postnikov system as in
Definition 41.1 for . . . → X2 → X1 → X0. Here we are using the obvious extension of
Postnikov systems for an infinite complex of D(A). Finally, if colimits over N exist and
are exact inA then

hocolimYn[n] = (. . .→ A2 → A1 → A0 → 0→ . . .)

in D(A). This follows immediately from Lemma 33.7.

Given a complex Xn → Xn−1 → . . .→ X0 and a Postnikov system as in Definition 41.1
we can consider the maps

Y0 → Y1[1]→ . . .→ Yn[n]
These maps fit together in certain distinguished triangles and fit with the given maps be-
tween the Xi. Here is a picture for n = 3:

Y0 // Y1[1]

{{

// Y2[2]

{{

// Y3[3]

{{
X1[1]

+1
aa

X2[2]+1oo

+1
cc

X3[3]+1oo

+1
cc

We encourage the reader to think of Yn[n] as obtained from X0, X1[1], . . . , Xn[n]; for
example if the maps Xi → Xi−1 are zero, then we can take Yn[n] =

⊕
i=0,...,nXi[i].

Postnikov systems do not always exist. Here is a simple lemma for low n.

Lemma 41.3. LetD be a triangulated category. Consider Postnikov systems for com-
plexes of length n.

(1) For n = 0 Postnikov systems always exist and any morphism (41.1.1) of com-
plexes extends to a unique morphism of Postnikov systems.

(2) For n = 1 Postnikov systems always exist and any morphism (41.1.1) of com-
plexes extends to a (nonunique) morphism of Postnikov systems.

(3) For n = 2 Postnikov systems always exist but morphisms (41.1.1) of complexes
in general do not extend to morphisms of Postnikov systems.

(4) For n > 2 Postnikov systems do not always exist.

Proof. The case n = 0 is immediate as isomorphisms are invertible. The case n = 1
follows immediately from TR1 (existence of triangles) and TR3 (extending morphisms to
triangles). For the case n = 2 we argue as follows. Set Y0 = X0. By the case n = 1 we
can choose a Postnikov system

Y1 → X1 → Y0 → Y1[1]

Since the composition X2 → X1 → X0 is zero, we can factor X2 → X1 (nonuniquely)
as X2 → Y1 → X1 by Lemma 4.2. Then we simply fit the morphism X2 → Y1 into a
distinguished triangle

Y2 → X2 → Y1 → Y2[1]
to get the Postnikov system for n = 2. For n > 2 we cannot argue similarly, as we do not
know whether the composition Xn → Xn−1 → Yn−1 is zero in D. �
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Lemma 41.4. Let D be a triangulated category. Given a map (41.1.1) consider the
condition

(41.4.1) Hom(Xi[i− j − 1], X ′
j) = 0 for i > j + 1

Then
(1) If we have a Postnikov system for X ′

n → X ′
n−1 → . . . → X ′

0 then property
(41.4.1) implies that

Hom(Xi[i− j − 1], Y ′
j ) = 0 for i > j + 1

(2) If we are given Postnikov systems for both complexes and we have (41.4.1), then
the map extends to a (nonunique) map of Postnikov systems.

Proof. We first prove (1) by induction on j. For the base case j = 0 there is nothing
to prove as Y ′

0 → X ′
0 is an isomorphism. Say the result holds for j − 1. We consider the

distinguished triangle
Y ′
j → X ′

j → Y ′
j−1 → Y ′

j [1]
The long exact sequence of Lemma 4.2 gives an exact sequence

Hom(Xi[i− j − 1], Y ′
j−1[−1])→ Hom(Xi[i− j − 1], Y ′

j )→ Hom(Xi[i− j − 1], X ′
j)

From the induction hypothesis and (41.4.1) we conclude the outer groups are zero and we
win.

Proof of (2). For n = 1 the existence of morphisms has been established in Lemma 41.3.
For n > 1 by induction, we may assume given the map of Postnikov systems of length
n− 1. The problem is that we do not know whether the diagram

Xn
//

��

Yn−1

��
X ′
n

// Y ′
n−1

is commutative. Denote α : Xn → Y ′
n−1 the difference. Then we do know that the

composition of α with Y ′
n−1 → X ′

n−1 is zero (because of what it means to be a map of
Postnikov systems of length n − 1). By the distinguished triangle Y ′

n−1 → X ′
n−1 →

Y ′
n−2 → Y ′

n−1[1], this means that α is the composition of Y ′
n−2[−1]→ Y ′

n−1 with a map
α′ : Xn → Y ′

n−2[−1]. Then (41.4.1) guarantees α′ is zero by part (1) of the lemma. Thus
α is zero. To finish the proof of existence, the commutativity guarantees we can choose
the dotted arrow fitting into the diagram

Yn−1[−1]

��

// Yn //

��

Xn
//

��

Yn−1

��
Y ′
n−1[−1] // Y ′

n
// X ′

n
// Y ′
n−1

by TR3. �

Lemma 41.5. Let D be a triangulated category. Given a map (41.1.1) assume we are
given Postnikov systems for both complexes. If

(1) Hom(Xi[i], Y ′
n[n]) = 0 for i = 1, . . . , n, or

(2) Hom(Yn[n], X ′
n−i[n− i]) = 0 for i = 1, . . . , n, or

(3) Hom(Xj−i[−i+ 1], X ′
j) = 0 and Hom(Xj , X

′
j−i[−i]) = 0 for j ≥ i > 0,
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then there exists at most one morphism between these Postnikov systems.

Proof. Proof of (1). Look at the following diagram

Y0 //

��

Y1[1] //

{{

Y2[2] //

uu

. . . // Yn[n]

rr
Y ′
n[n]

The arrows are the composition of the morphism Yn[n] → Y ′
n[n] and the morphism

Yi[i]→ Yn[n]. The arrow Y0 → Y ′
n[n] is determined as it is the composition Y0 = X0 →

X ′
0 = Y ′

0 → Y ′
n[n]. Since we have the distinguished triangle Y0 → Y1[1]→ X1[1] we see

that Hom(X1[1], Y ′
n[n]) = 0 guarantees that the second vertical arrow is unique. Since we

have the distinguished triangle Y1[1]→ Y2[2]→ X2[2] we see that Hom(X2[2], Y ′
n[n]) =

0 guarantees that the third vertical arrow is unique. And so on.
Proof of (2). The composition Yn[n] → Y ′

n[n] → Xn[n] is the same as the composition
Yn[n] → Xn[n] → X ′

n[n] and hence is unique. Then using the distinguished triangle
Y ′
n−1[n−1]→ Y ′

n[n]→ X ′
n[n] we see that it suffices to show Hom(Yn[n], Y ′

n−1[n−1]) =
0. Using the distinguished triangles

Y ′
n−i−1[n− i− 1]→ Y ′

n−i[n− i]→ X ′
n−i[n− i]

we get this vanishing from our assumption. Small details omitted.
Proof of (3). Looking at the proof of Lemma 41.4 and arguing by induction on n it suffices
to show that the dotted arrow in the morphism of triangles

Yn−1[−1]

��

// Yn //

��

Xn
//

��

Yn−1

��
Y ′
n−1[−1] // Y ′

n
// X ′

n
// Y ′
n−1

is unique. By Lemma 4.8 part (5) it suffices to show that Hom(Yn−1, X
′
n) = 0 and

Hom(Xn, Y
′
n−1[−1]) = 0. To prove the first vanishing we use the distinguished triangles

Yn−i−1[−i]→ Yn−i[−(i−1)]→ Xn−i[−(i−1)] for i > 0 and induction on i to see that
the assumed vanishing of Hom(Xn−i[−i+1], X ′

n) is enough. For the second we similarly
use the distinguished triangles Y ′

n−i−1[−i − 1] → Y ′
n−i[−i] → X ′

n−i[−i] to see that the
assumed vanishing of Hom(Xn, X

′
n−i[−i]) is enough as well. �

Lemma 41.6. Let D be a triangulated category. Let Xn → Xn−1 → . . . → X0 be a
complex in D. If

Hom(Xi[i− j − 2], Xj) = 0 for i > j + 2
then there exists a Postnikov system. If we have

Hom(Xi[i− j − 1], Xj) = 0 for i > j + 1
then any two Postnikov systems are isomorphic.

Proof. We argue by induction on n. The cases n = 0, 1, 2 follow from Lemma 41.3.
Assume n > 2. Suppose given a Postnikov system for the complex Xn−1 → Xn−2 →
. . .→ X0. The only obstruction to extending this to a Postnikov system of lengthn is that
we have to find a morphismXn → Yn−1 such that the compositionXn → Yn−1 → Xn−1
is equal to the given map Xn → Xn−1. Considering the distinguished triangle

Yn−1 → Xn−1 → Yn−2 → Yn−1[1]
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and the associated long exact sequence coming from this and the functor Hom(Xn,−) (see
Lemma 4.2) we find that it suffices to show that the composition Xn → Xn−1 → Yn−2 is
zero. Since we know that Xn → Xn−1 → Xn−2 is zero we can apply the distinguished
triangle

Yn−2 → Xn−2 → Yn−3 → Yn−2[1]
to see that it suffices if Hom(Xn, Yn−3[−1]) = 0. Arguing exactly as in the proof of
Lemma 41.4 part (1) the reader easily sees this follows from the condition stated in the
lemma.

The statement on isomorphisms follows from the existence of a map between the Post-
nikov systems extending the identity on the complex proven in Lemma 41.4 part (2) and
Lemma 4.3 to show all the maps are isomorphisms. �

42. Essentially constant systems

Some preliminary lemmas on essentially constant systems in triangulated categories.

Lemma 42.1. Let D be a triangulated category. Let (Ai) be an inverse system in D.
Then (Ai) is essentially constant (see Categories, Definition 22.1) if and only if there exists
an i and for all j ≥ i a direct sum decomposition Aj = A ⊕ Zj such that (a) the maps
Aj′ → Aj are compatible with the direct sum decompositions and identity on A, (b) for
all j ≥ i there exists some j′ ≥ j such that Zj′ → Zj is zero.

Proof. Assume (Ai) is essentially constant with value A. Then A = limAi and
there exists an i and a morphism Ai → A such that (1) the composition A → Ai → A is
the identity on A and (2) for all j ≥ i there exists a j′ ≥ j such that Aj′ → Aj factors
as Aj′ → Ai → A → Aj . From (1) we conclude that for j ≥ i the maps A → Aj and
Aj → Ai → A compose to the identity onA. It follows thatAj → A has a kernel Zj and
that the map A ⊕ Zj → Aj is an isomorphism, see Lemmas 4.12 and 4.11. These direct
sum decompositions clearly satisfy (a). From (2) we conclude that for all j there is a j′ ≥ j
such that Zj′ → Zj is zero, so (b) holds. Proof of the converse is omitted. �

Lemma 42.2. Let D be a triangulated category. Let

An → Bn → Cn → An[1]

be an inverse system of distinguished triangles in D. If (An) and (Cn) are essentially
constant, then (Bn) is essentially constant and their values fit into a distinguished triangle
A→ B → C → A[1] such that for some n ≥ 1 there is a map

An

��

// Bn

��

// Cn

��

// An[1]

��
A // B // C // A[1]

of distinguished triangles which induces an isomorphism limn′≥nAn′ → A and similarly
for B and C.

Proof. After renumbering we may assume thatAn = A⊕A′
n andCn = C⊕C ′

n for
inverse systems (A′

n) and (C ′
n) which are essentially zero, see Lemma 42.1. In particular,

the morphism
C ⊕ C ′

n → (A⊕A′
n)[1]
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maps the summand C into the summand A[1] for all n by a map δ : C → A[1] which is
independent of n. Choose a distinguished triangle

A→ B → C
δ−→ A[1]

Next, choose a morphism of distingished triangles

(A1 → B1 → C1 → A1[1])→ (A→ B → C → A[1])

which is possible by TR3. For any object D of D this induces a commutative diagram

. . . // HomD(C,D) //

��

HomD(B,D) //

��

HomD(A,D) //

��

. . .

. . . // colim HomD(Cn, D) // colim HomD(Bn, D) // colim HomD(An, D) // . . .

The left and right vertical arrows are isomorphisms and so are the ones to the left and right
of those. Thus by the 5-lemma we conclude that the middle arrow is an isomorphism.
It follows that (Bn) is isomorphic to the constant inverse system with value B by the
discussion in Categories, Remark 22.7. Since this is equivalent to (Bn) being essentially
constant with value B by Categories, Remark 22.5 the proof is complete. �

Lemma 42.3. LetA be an abelian category. Let An be an inverse system of objects of
D(A). Assume

(1) there exist integers a ≤ b such that Hi(An) = 0 for i 6∈ [a, b], and
(2) the inverse systems Hi(An) ofA are essentially constant for all i ∈ Z.

Then An is an essentially constant system of D(A) whose value A satisfies that Hi(A) is
the value of the constant system Hi(An) for each i ∈ Z.

Proof. By Remark 12.4 we obtain an inverse system of distinguished triangles

τ≤aAn → An → τ≥a+1An → (τ≤aAn)[1]

Of course we have τ≤aAn = Ha(An)[−a] in D(A). Thus by assumption these form
an essentially constant system. By induction on b − a we find that the inverse system
τ≥a+1An is essentially constant, say with value A′. By Lemma 42.2 we find that An is an
essentially constant system. We omit the proof of the statement on cohomologies (hint:
use the final part of Lemma 42.2). �

Lemma 42.4. Let D be a triangulated category. Let

An → Bn → Cn → An[1]

be an inverse system of distinguished triangles. If the system Cn is pro-zero (essentially
constant with value 0), then the maps An → Bn determine a pro-isomorphism between
the pro-object (An) and the pro-object (Bn).

Proof. For any object X of D consider the exact sequence

colim Hom(Cn, X)→ colim Hom(Bn, X)→ colim Hom(An, X)→ colim Hom(Cn[−1], X)→

Exactness follows from Lemma 4.2 combined with Algebra, Lemma 8.8. By assumption the
first and last term are zero. Hence the map colim Hom(Bn, X)→ colim Hom(An, X) is
an isomorphism for allX . The lemma follows from this and Categories, Remark 22.7. �
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Lemma 42.5. LetA be an abelian category.
An → Bn

be an inverse system of maps of D(A). Assume
(1) there exist integers a ≤ b such that Hi(An) = 0 and Hi(Bn) = 0 for i 6∈ [a, b],

and
(2) the inverse system of maps Hi(An) → Hi(Bn) of A define an isomorphism of

pro-objects ofA for all i ∈ Z.
Then the mapsAn → Bn determine a pro-isomorphism between the pro-object (An) and
the pro-object (Bn).

Proof. We can inductively extend the maps An → Bn to an inverse system of dis-
tinguished trianglesAn → Bn → Cn → An[1] by axiom TR3. By Lemma 42.4 it suffices
to prove that Cn is pro-zero. By Lemma 42.3 it suffices to show that Hp(Cn) is pro-zero
for each p. This follows from assumption (2) and the long exact sequences

Hp(An) αn−−→ Hp(Bn) βn−−→ Hp(Cn) δn−→ Hp+1(An) εn−→ Hp+1(Bn)
Namely, for every nwe can find anm > n such that Im(βm) maps to zero inHp(Cn) be-
cause we may choose m such that Hp(Bm)→ Hp(Bn) factors through αn : Hp(An)→
Hp(Bn). For a similar reason we may then choose k > m such that Im(δk) maps to zero
in Hp+1(Am). Then Hp(Ck)→ Hp(Cn) is zero because Hp(Ck)→ Hp(Cm) maps into
Ker(δm) and Hp(Cm)→ Hp(Cn) annihilates Ker(δm) = Im(βm). �
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CHAPTER 14

Simplicial Methods

1. Introduction

This is a minimal introduction to simplicial methods. We just add here whenever some-
thing is needed later on. A general reference to this material is perhaps [?]. An example
of the things you can do is the paper by Quillen on Homotopical Algebra, see [?] or the
paper on Étale Homotopy by Artin and Mazur, see [?].

2. The category of finite ordered sets

The category ∆ is the category with

(1) objects [0], [1], [2], . . . with [n] = {0, 1, 2, . . . , n} and
(2) a morphism [n]→ [m] is a nondecreasing map {0, 1, 2, . . . , n} → {0, 1, 2, . . . ,m}

between the corresponding sets.

Here nondecreasing for a map ϕ : [n] → [m] means by definition that ϕ(i) ≥ ϕ(j) if
i ≥ j. In other words, ∆ is a category equivalent to the “big” category of nonempty finite
totally ordered sets and nondecreasing maps. There are exactly n+1 morphisms [0]→ [n]
and there is exactly 1 morphism [n]→ [0]. There are exactly (n+1)(n+2)/2 morphisms
[1]→ [n] and there are exactly n+ 2 morphisms [n]→ [1]. And so on and so forth.

Definition 2.1. For any integer n ≥ 1, and any 0 ≤ j ≤ nwe let δnj : [n− 1]→ [n]
denote the injective order preserving map skipping j. For any integer n ≥ 0, and any
0 ≤ j ≤ n we denote σnj : [n + 1] → [n] the surjective order preserving map with
(σnj )−1({j}) = {j, j + 1}.

Lemma 2.2. Any morphism in ∆ can be written as a composition of the morphisms
δnj and σnj .

Proof. Let ϕ : [n] → [m] be a morphism of ∆. If j 6∈ Im(ϕ), then we can write
ϕ as δmj ◦ ψ for some morphism ψ : [n] → [m − 1]. If ϕ(j) = ϕ(j + 1) then we can
write ϕ as ψ ◦ σn−1

j for some morphism ψ : [n − 1] → [m]. The result follows because
each replacement as above lowers n + m and hence at some point ϕ is both injective and
surjective, hence an identity morphism. �

Lemma 2.3. The morphisms δnj and σnj satisfy the following relations.

1147
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(1) If 0 ≤ i < j ≤ n+1, then δn+1
j ◦δni = δn+1

i ◦δnj−1. In other words the diagram

[n]
δn+1
j

""
[n− 1]

δni

<<

δnj−1 ""

[n+ 1]

[n]
δn+1
i

<<

commutes.
(2) If 0 ≤ i < j ≤ n − 1, then σn−1

j ◦ δni = δn−1
i ◦ σn−2

j−1 . In other words the
diagram

[n]
σn−1
j

$$
[n− 1]

δni

::

σn−2
j−1 $$

[n− 1]

[n− 2]
δn−1
i

::

commutes.
(3) If 0 ≤ j ≤ n− 1, then σn−1

j ◦ δnj = id[n−1] and σn−1
j ◦ δnj+1 = id[n−1]. In other

words the diagram

[n]
σn−1
j

""
[n− 1]

δnj

<<

δnj+1 ""

id[n−1] // [n− 1]

[n]
σn−1
j

<<

commutes.
(4) If 0 < j + 1 < i ≤ n, then σn−1

j ◦ δni = δn−1
i−1 ◦ σ

n−2
j . In other words the

diagram

[n]
σn−1
j

$$
[n− 1]

δni

::

σn−2
j $$

[n− 1]

[n− 2]
δn−1
i−1

::

commutes.
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(5) If 0 ≤ i ≤ j ≤ n − 1, then σn−1
j ◦ σni = σn−1

i ◦ σnj+1. In other words the
diagram

[n]
σn−1
j

""
[n+ 1]

σni

<<

σnj+1 ""

[n− 1]

[n]
σn−1
i

<<

commutes.

Proof. Omitted. �

Lemma 2.4. The category ∆ is the universal category with objects [n], n ≥ 0 and
morphisms δnj and σnj such that (a) every morphism is a composition of these morphisms,
(b) the relations listed in Lemma 2.3 are satisfied, and (c) any relation among the morphisms
is a consequence of those relations.

Proof. Omitted. �

3. Simplicial objects

Definition 3.1. Let C be a category.
(1) A simplicial objectU of C is a contravariant functorU from ∆ to C , in a formula:

U : ∆opp −→ C

(2) If C is the category of sets, then we call U a simplicial set.
(3) If C is the category of abelian groups, then we call U a simplicial abelian group.
(4) A morphism of simplicial objects U → U ′ is a transformation of functors.
(5) The category of simplicial objects of C is denoted Simp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for ϕ any nondecreasing map
ϕ : [m]→ [n] a morphismU(ϕ) : U([n])→ U([m]), satisfyingU(ϕ◦ψ) = U(ψ)◦U(ϕ).

In particular there is a unique morphism U([0]) → U([n]) and there are exactly n + 1
morphisms U([n]) → U([0]) corresponding to the n + 1 maps [0] → [n]. Obviously we
need some more notation to be able to talk intelligently about these simplicial objects. We
do this by considering the morphisms we singled out in Section 2 above.

Lemma 3.2. Let C be a category.
(1) Given a simplicial object U in C we obtain a sequence of objects Un = U([n])

endowed with the morphisms dnj = U(δnj ) : Un → Un−1 and snj = U(σnj ) :
Un → Un+1. These morphisms satisfy the opposites of the relations displayed
in Lemma 2.3, namely
(a) If 0 ≤ i < j ≤ n+ 1, then dni ◦ d

n+1
j = dnj−1 ◦ d

n+1
i .

(b) If 0 ≤ i < j ≤ n− 1, then dni ◦ s
n−1
j = sn−2

j−1 ◦ d
n−1
i .

(c) If 0 ≤ j ≤ n− 1, then id = dnj ◦ s
n−1
j = dnj+1 ◦ s

n−1
j .

(d) If 0 < j + 1 < i ≤ n, then dni ◦ s
n−1
j = sn−2

j ◦ dn−1
i−1 .

(e) If 0 ≤ i ≤ j ≤ n− 1, then sni ◦ s
n−1
j = snj+1 ◦ s

n−1
i .
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(2) Conversely, given a sequence of objectsUn and morphisms dnj , snj satisfying (1)(a)
– (e) there exists a unique simplicial object U in C such that Un = U([n]), dnj =
U(δnj ), and snj = U(σnj ).

(3) A morphism between simplicial objects U and U ′ is given by a family of mor-
phisms Un → U ′

n commuting with the morphisms dnj and snj .

Proof. This follows from Lemma 2.4. �

Remark 3.3. By abuse of notation we sometimes write di : Un → Un−1 instead of
dni , and similarly for si : Un → Un+1. The relations among the morphisms dni and sni
may be expressed as follows:

(1) If i < j , then di ◦ dj = dj−1 ◦ di.
(2) If i < j , then di ◦ sj = sj−1 ◦ di.
(3) We have id = dj ◦ sj = dj+1 ◦ sj .
(4) If i > j + 1, then di ◦ sj = sj ◦ di−1.
(5) If i ≤ j , then si ◦ sj = sj+1 ◦ si.

This means that whenever the compositions on both the left and the right are defined then
the corresponding equality should hold.

We get a unique morphism s0
0 = U(σ0

0) : U0 → U1 and two morphisms d1
0 = U(δ1

0),
and d1

1 = U(δ1
1) which are morphisms U1 → U0. There are two morphisms s1

0 = U(σ1
0),

s1
1 = U(σ1

1) which are morphisms U1 → U2. Three morphisms d2
0 = U(δ2

0), d2
1 = U(δ2

1),
d2

2 = U(δ2
2) which are morphisms U3 → U2. And so on.

Pictorially we think of U as follows:

U2

//
//
//
U1

//
//oo

oo
U0oo

Here the d-morphisms are the arrows pointing right and the s-morphisms are the arrows
pointing left.

Example 3.4. The simplest example is the constant simplicial object with valueX ∈
Ob(C). In other words, Un = X and all maps are idX .

Example 3.5. Suppose that Y → X is a morphism of C such that all the fibred
productsY ×XY ×X . . .×XY exist. Then we setUn equal to the (n+1)-fold fibre product,
and we let ϕ : [n] → [m] correspond to the map (on “coordinates”) (y0, . . . , ym) 7→
(yϕ(0), . . . , yϕ(n)). In other words, the map U0 = Y → U1 = Y ×X Y is the diagonal
map. The two maps U1 = Y ×X Y → U0 = Y are the projection maps.

Geometrically Example 3.5 above is an important example. It tells us that it is a good idea
to think of the maps dnj : Un → Un−1 as projection maps (forgetting the jth component),
and to think of the maps snj : Un → Un+1 as diagonal maps (repeating the jth coordinate).
We will return to this in the sections below.

Lemma 3.6. Let C be a category. Let U be a simplicial object of C. Each of the mor-
phisms sni : Un → Un+1 has a left inverse. In particular sni is a monomorphism.

Proof. This is true because dn+1
i ◦ sni = idUn . �
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4. Simplicial objects as presheaves

Another observation is that we may think of a simplicial object of C as a presheaf with
values in C over ∆. See Sites, Definition 2.2. And in fact, if U , U ′ are simplicial objects of
C , then we have
(4.0.1) Mor(U,U ′) = MorPSh(∆)(U,U ′).
Some of the material below could be replaced by the more general constructions in the
chapter on sites. However, it seems a clearer picture arises from the arguments specific to
simplicial objects.

5. Cosimplicial objects

A cosimplicial object of a category C could be defined simply as a simplicial object of the
opposite category Copp. This is not really how the human brain works, so we introduce
them separately here and point out some simple properties.

Definition 5.1. Let C be a category.
(1) A cosimplicial object U of C is a covariant functor U from ∆ to C , in a formula:

U : ∆ −→ C
(2) If C is the category of sets, then we call U a cosimplicial set.
(3) If C is the category of abelian groups, then we callU a cosimplicial abelian group.
(4) A morphism of cosimplicial objects U → U ′ is a transformation of functors.
(5) The category of cosimplicial objects of C is denoted CoSimp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for ϕ any nondecreasing map
ϕ : [m]→ [n] a morphismU(ϕ) : U([m])→ U([n]), satisfyingU(ϕ◦ψ) = U(ϕ)◦U(ψ).
In particular there is a unique morphism U([n]) → U([0]) and there are exactly n + 1
morphisms U([0]) → U([n]) corresponding to the n + 1 maps [0] → [n]. Obviously we
need some more notation to be able to talk intelligently about these simplicial objects. We
do this by considering the morphisms we singled out in Section 2 above.

Lemma 5.2. Let C be a category.
(1) Given a cosimplicial object U in C we obtain a sequence of objects Un = U([n])

endowed with the morphisms δnj = U(δnj ) : Un−1 → Un and σnj = U(σnj ) :
Un+1 → Un. These morphisms satisfy the relations displayed in Lemma 2.3.

(2) Conversely, given a sequence of objectsUn and morphisms δnj , σnj satisfying these
relations there exists a unique cosimplicial object U in C such that Un = U([n]),
δnj = U(δnj ), and σnj = U(σnj ).

(3) A morphism between cosimplicial objects U and U ′ is given by a family of mor-
phisms Un → U ′

n commuting with the morphisms δnj and σnj .

Proof. This follows from Lemma 2.4. �

Remark 5.3. By abuse of notation we sometimes write δi : Un−1 → Un instead of
δni , and similarly for σi : Un+1 → Un. The relations among the morphisms δni and σni
may be expressed as follows:

(1) If i < j , then δj ◦ δi = δi ◦ δj−1.
(2) If i < j , then σj ◦ δi = δi ◦ σj−1.
(3) We have id = σj ◦ δj = σj ◦ δj+1.
(4) If i > j + 1, then σj ◦ δi = δi−1 ◦ σj .
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(5) If i ≤ j , then σj ◦ σi = σi ◦ σj+1.
This means that whenever the compositions on both the left and the right are defined then
the corresponding equality should hold.
We get a unique morphism σ0

0 = U(σ0
0) : U1 → U0 and two morphisms δ1

0 = U(δ1
0),

and δ1
1 = U(δ1

1) which are morphisms U0 → U1. There are two morphisms σ1
0 = U(σ1

0),
σ1

1 = U(σ1
1) which are morphisms U2 → U1. Three morphisms δ2

0 = U(δ2
0), δ2

1 = U(δ2
1),

δ2
2 = U(δ2

2) which are morphisms U2 → U3. And so on.
Pictorially we think of U as follows:

U0
//
// U1oo

//
//
//
U2oo

oo

Here the δ-morphisms are the arrows pointing right and the σ-morphisms are the arrows
pointing left.

Example 5.4. The simplest example is the constant cosimplicial object with value
X ∈ Ob(C). In other words, Un = X and all maps are idX .

Example 5.5. Suppose that X → Y is a morphism of C such that all the pushouts
Y qX Y qX . . . qX Y exist. Then we set Un equal to the (n + 1)-fold pushout, and we
let ϕ : [n]→ [m] correspond to the map

(y in ith component) 7→ (y in ϕ(i)th component)
on “coordinates”. In other words, the map U1 = Y qX Y → U0 = Y is the identity on
each component. The two maps U0 = Y → U1 = Y qX Y are the two coprojections.

Example 5.6. For every n ≥ 0 we denote C[n] the cosimplicial set
∆ −→ Sets, [k] 7−→ Mor∆([n], [k])

This example is dual to Example 11.2.
Lemma 5.7. Let C be a category. Let U be a cosimplicial object of C. Each of the

morphisms δni : Un−1 → Un has a left inverse. In particular δni is a monomorphism.

Proof. This is true because σn−1
i ◦ δni = idUn for j < n. �

6. Products of simplicial objects

Of course we should define the product of simplicial objects as the product in the cate-
gory of simplicial objects. This may lead to the potentially confusing situation where the
product exists but is not described as below. To avoid this we define the product directly
as follows.

Definition 6.1. Let C be a category. Let U and V be simplicial objects of C. Assume
the products Un × Vn exist in C. The product of U and V is the simplicial object U × V
defined as follows:

(1) (U × V )n = Un × Vn,
(2) dni = (dni , dni ), and
(3) sni = (sni , sni ).

In other words, U × V is the product of the presheaves U and V on ∆.
Lemma 6.2. If U and V are simplicial objects in the category C , and if U × V exists,

then we have
Mor(W,U × V ) = Mor(W,U)×Mor(W,V )

for any third simplicial object W of C.
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Proof. Omitted. �

7. Fibre products of simplicial objects

Of course we should define the fibre product of simplicial objects as the fibre product in
the category of simplicial objects. This may lead to the potentially confusing situation
where the fibre product exists but is not described as below. To avoid this we define the
fibre product directly as follows.

Definition 7.1. Let C be a category. Let U, V,W be simplicial objects of C. Let
a : V → U , b : W → U be morphisms. Assume the fibre products Vn ×Un Wn exist in C.
The fibre product of V andW over U is the simplicial object V ×U W defined as follows:

(1) (V ×U W )n = Vn ×Un Wn,
(2) dni = (dni , dni ), and
(3) sni = (sni , sni ).

In other words, V ×UW is the fibre product of the presheaves V andW over the presheaf
U on ∆.

Lemma 7.2. If U, V,W are simplicial objects in the category C , and if a : V → U ,
b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V )×Mor(T,U) Mor(T,W )

for any fourth simplicial object T of C.

Proof. Omitted. �

8. Pushouts of simplicial objects

Of course we should define the pushout of simplicial objects as the pushout in the cate-
gory of simplicial objects. This may lead to the potentially confusing situation where the
pushouts exist but are not as described below. To avoid this we define the pushout directly
as follows.

Definition 8.1. Let C be a category. Let U, V,W be simplicial objects of C. Let
a : U → V , b : U →W be morphisms. Assume the pushouts Vn qUn Wn exist in C. The
pushout of V and W over U is the simplicial object V qU W defined as follows:

(1) (V qU W )n = Vn qUn Wn,
(2) dni = (dni , dni ), and
(3) sni = (sni , sni ).

In other words, V qU W is the pushout of the presheaves V and W over the presheaf U
on ∆.

Lemma 8.2. If U, V,W are simplicial objects in the category C , and if a : U → V ,
b : U →W are morphisms and if V qU W exists, then we have

Mor(V qU W,T ) = Mor(V, T )×Mor(U,T ) Mor(W,T )

for any fourth simplicial object T of C.

Proof. Omitted. �
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9. Products of cosimplicial objects

Of course we should define the product of cosimplicial objects as the product in the cat-
egory of cosimplicial objects. This may lead to the potentially confusing situation where
the product exists but is not described as below. To avoid this we define the product di-
rectly as follows.

Definition 9.1. Let C be a category. LetU andV be cosimplicial objects of C. Assume
the products Un×Vn exist in C. The product of U and V is the cosimplicial object U ×V
defined as follows:

(1) (U × V )n = Un × Vn,
(2) for any ϕ : [n] → [m] the map (U × V )(ϕ) : Un × Vn → Um × Vm is the

product U(ϕ)× V (ϕ).

Lemma 9.2. IfU and V are cosimplicial objects in the category C , and ifU×V exists,
then we have

Mor(W,U × V ) = Mor(W,U)×Mor(W,V )
for any third cosimplicial object W of C.

Proof. Omitted. �

10. Fibre products of cosimplicial objects

Of course we should define the fibre product of cosimplicial objects as the fibre product in
the category of cosimplicial objects. This may lead to the potentially confusing situation
where the product exists but is not described as below. To avoid this we define the fibre
product directly as follows.

Definition 10.1. Let C be a category. Let U, V,W be cosimplicial objects of C. Let
a : V → U and b : W → U be morphisms. Assume the fibre products Vn ×Un Wn exist
in C. The fibre product of V and W over U is the cosimplicial object V ×U W defined as
follows:

(1) (V ×U W )n = Vn ×Un Wn,
(2) for any ϕ : [n]→ [m] the map (V ×U W )(ϕ) : Vn ×Un Wn → Vm ×Um Wm is

the product V (ϕ)×U(ϕ) W (ϕ).

Lemma 10.2. If U, V,W are cosimplicial objects in the category C , and if a : V → U ,
b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V )×Mor(T,U) Mor(T,W )
for any fourth cosimplicial object T of C.

Proof. Omitted. �

11. Simplicial sets

Let U be a simplicial set. It is a good idea to think of U0 as the 0-simplices, the set U1 as
the 1-simplices, the set U2 as the 2-simplices, and so on.
We think of the maps snj : Un → Un+1 as the map that associates to an n-simplex A the
degenerate (n+ 1)-simplex B whose (j, j + 1)-edge is collapsed to the vertex j of A. We
think of the map dnj : Un → Un−1 as the map that associates to an n-simplexA one of the
faces, namely the face that omits the vertex j. In this way it become possible to visualize
the relations among the maps snj and dnj geometrically.
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Definition 11.1. Let U be a simplicial set. We say x is an n-simplex of U to signify
that x is an element of Un. We say that y is the jthe face of x to signify that dnj x = y. We
say that z is the jth degeneracy of x if z = snj x. A simplex is called degenerate if it is the
degeneracy of another simplex.

Here are a few fundamental examples.

Example 11.2. For every n ≥ 0 we denote ∆[n] the simplicial set
∆opp −→ Sets, [k] 7−→ Mor∆([k], [n])

We leave it to the reader to verify the following statements. Every m-simplex of ∆[n]
with m > n is degenerate. There is a unique nondegenerate n-simplex of ∆[n], namely
id[n].

Lemma 11.3. Let U be a simplicial set. Let n ≥ 0 be an integer. There is a canonical
bijection

Mor(∆[n], U) −→ Un

which maps a morphism ϕ to the value of ϕ on the unique nondegenerate n-simplex of
∆[n].

Proof. Omitted. �

Example 11.4. Consider the category ∆/[n] of objects over [n] in ∆, see Categories,
Example 2.13. There is a functor p : ∆/[n] → ∆. The fibre category of p over [k], see
Categories, Section 35, has as objects the set ∆[n]k of k-simplices in ∆[n], and as morphisms
only identities. For every morphism ϕ : [k] → [l] of ∆, and every object ψ : [l] → [n] in
the fibre category over [l] there is a unique object over [k] with a morphism covering ϕ,
namely ψ ◦ ϕ : [k] → [n]. Thus ∆/[n] is fibred in sets over ∆. In other words, we may
think of ∆/[n] as a presheaf of sets over ∆. See also, Categories, Example 38.7. And this
presheaf of sets agrees with the simplicial set ∆[n]. In particular, from Equation (4.0.1)
and Lemma 11.3 above we get the formula

MorPSh(∆)(∆/[n], U) = Un

for any simplicial set U .

Lemma 11.5. Let U , V be simplicial sets. Let a, b ≥ 0 be integers. Assume every n-
simplex of U is degenerate if n > a. Assume every n-simplex of V is degenerate if n > b.
Then every n-simplex of U × V is degenerate if n > a+ b.

Proof. Suppose n > a + b. Let (u, v) ∈ (U × V )n = Un × Vn. By assumption,
there exists a α : [n] → [a] and a u′ ∈ Ua and a β : [n] → [b] and a v′ ∈ Vb such that
u = U(α)(u′) and v = V (β)(v′). Because n > a+ b, there exists an 0 ≤ i ≤ a+ b such
that α(i) = α(i + 1) and β(i) = β(i + 1). It follows immediately that (u, v) is in the
image of sn−1

i . �

12. Truncated simplicial objects and skeleton functors

Let ∆≤n denote the full subcategory of ∆ with objects [0], [1], [2], . . . , [n]. Let C be a
category.

Definition 12.1. An n-truncated simplicial object of C is a contravariant functor
from ∆≤n to C. A morphism of n-truncated simplicial objects is a transformation of
functors. We denote the category of n-truncated simplicial objects of C by the symbol
Simpn(C).
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Given a simplicial object U of C the truncation sknU is the restriction of U to the subcat-
egory ∆≤n. This defines a skeleton functor

skn : Simp(C) −→ Simpn(C)

from the category of simplicial objects of C to the category ofn-truncated simplicial objects
of C. See Remark 21.6 to avoid possible confusion with other functors in the literature.

13. Products with simplicial sets

Let C be a category. Let U be a simplicial set. Let V be a simplicial object of C. We can
consider the covariant functor which associates to a simplicial object W of C the set

(13.0.1)
{

(fn,u : Vn →Wn)n≥0,u∈Un such that ∀ϕ : [m]→ [n]
fm,U(ϕ)(u) ◦ V (ϕ) = W (ϕ) ◦ fn,u

}
If this functor is of the form MorSimp(C)(Q,−) then we can think of Q as the product of
U with V . Instead of formalizing this in this way we just directly define the product as
follows.

Definition 13.1. Let C be a category such that the coproduct of any two objects of C
exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume that each Un is
finite nonempty. In this case we define the product U ×V of U and V to be the simplicial
object of C whose nth term is the object

(U × V )n =
∐

u∈Un
Vn

with maps for ϕ : [m]→ [n] given by the morphism∐
u∈Un

Vn −→
∐

u′∈Um
Vm

which maps the component Vn corresponding to u to the component Vm corresponding
to u′ = U(ϕ)(u) via the morphism V (ϕ). More loosely, if all of the coproducts displayed
above exist (without assuming anything about C) we will say that the product U × V
exists.

Lemma 13.2. Let C be a category such that the coproduct of any two objects of C
exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume that each Un is
finite nonempty. The functor W 7→ MorSimp(C)(U × V,W ) is canonically isomorphic to
the functor which maps W to the set in Equation (13.0.1).

Proof. Omitted. �

Lemma 13.3. Let C be a category such that the coproduct of any two objects of C exists.
Let us temporarily denote FSSets the category of simplicial sets all of whose components
are finite nonempty.

(1) The rule (U, V ) 7→ U × V defines a functor FSSets× Simp(C)→ Simp(C).
(2) For every U , V as above there is a canonical map of simplicial objects

U × V −→ V

defined by taking the identity on each component of (U × V )n =
∐
u Vn.

Proof. Omitted. �
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We briefly study a special case of the construction above. Let C be a category. LetX be an
object of C. Let k ≥ 0 be an integer. If all coproducts X q . . . qX exist then according
to the definition above the product

X ×∆[k]

exists, where we think of X as the corresponding constant simplicial object.

Lemma 13.4. With X and k as above. For any simplicial object V of C we have the
following canonical bijection

MorSimp(C)(X ×∆[k], V ) −→ MorC(X,Vk).

which maps γ to the restriction of the morphism γk to the component corresponding to
id[k]. Similarly, for any n ≥ k, ifW is an n-truncated simplicial object of C , then we have

MorSimpn(C)(skn(X ×∆[k]),W ) = MorC(X,Wk).

Proof. A morphism γ : X×∆[k]→ V is given by a family of morphisms γα : X →
Vn where α : [n]→ [k]. The morphisms have to satisfy the rules that for allϕ : [m]→ [n]
the diagrams

X
γα //

idX
��

Vn

V (ϕ)
��

X
γα◦ϕ // Vm

commute. Taking α = id[k], we see that for anyϕ : [m]→ [k] we have γϕ = V (ϕ)◦γid[k] .
Thus the morphism γ is determined by the value of γ on the component corresponding
to id[k]. Conversely, given such a morphism f : X → Vk we easily construct a morphism
γ by putting γα = V (α) ◦ f .

The truncated case is similar, and left to the reader. �

A particular example of this is the case k = 0. In this case the formula of the lemma just
says that

MorC(X,V0) = MorSimp(C)(X,V )
where on the right hand sideX indicates the constant simplicial object with valueX . We
will use this formula without further mention in the following.

14. Hom from simplicial sets into cosimplicial objects

Let C be a category. Let U be a simplicial object of C , and let V be a cosimplicial object of
C. Then we get a cosimplicial set HomC(U, V ) as follows:

(1) we set HomC(U, V )n = MorC(Un, Vn), and
(2) for ϕ : [m] → [n] we take the map HomC(U, V )m → HomC(U, V )n given by

f 7→ V (ϕ) ◦ f ◦ U(ϕ).
This is our motivation for the following definition.

Definition 14.1. Let C be a category with finite products. Let V be a cosimplicial
object of C. Let U be a simplicial set such that each Un is finite nonempty. We define
Hom(U, V ) to be the cosimplicial object of C defined as follows:
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(1) we set Hom(U, V )n =
∏
u∈Un Vn, in other words the unique object of C such

that its X-valued points satisfy

MorC(X,Hom(U, V )n) = Map(Un,MorC(X,Vn))

and
(2) for ϕ : [m] → [n] we take the map Hom(U, V )m → Hom(U, V )n given by

f 7→ V (ϕ) ◦ f ◦ U(ϕ) on X-valued points as above.

We leave it to the reader to spell out the definition in terms of maps between products.
We also point out that the construction is functorial in both U (contravariantly) and V
(covariantly), exactly as in Lemma 13.3 in the case of products of simplicial sets with sim-
plicial objects.

15. Hom from cosimplicial sets into simplicial objects

Let C be a category. Let U be a cosimplicial object of C , and let V be a simplicial object of
C. Then we get a simplicial set HomC(U, V ) as follows:

(1) we set HomC(U, V )n = MorC(Un, Vn), and
(2) for ϕ : [m] → [n] we take the map HomC(U, V )n → HomC(U, V )m given by

f 7→ V (ϕ) ◦ f ◦ U(ϕ).
This is our motivation for the following definition.

Definition 15.1. Let C be a category with finite products. Let V be a simplicial
object of C. Let U be a cosimplicial set such that each Un is finite nonempty. We define
Hom(U, V ) to be the simplicial object of C defined as follows:

(1) we set Hom(U, V )n =
∏
u∈Un Vn, in other words the unique object of C such

that its X-valued points satisfy

MorC(X,Hom(U, V )n) = Map(Un,MorC(X,Vn))

and
(2) for ϕ : [m] → [n] we take the map Hom(U, V )n → Hom(U, V )m given by

f 7→ V (ϕ) ◦ f ◦ U(ϕ) on X-valued points as above.

We leave it to the reader to spell out the definition in terms of maps between products.
We also point out that the construction is functorial in both U (contravariantly) and V
(covariantly), exactly as in Lemma 13.3 in the case of products of simplicial sets with sim-
plicial objects.

We spell out the construction above in a special case. Let X be an object of a category C.
Assume that self products X × . . .×X exist. Let k be an integer. Consider the simplicial
object U with terms

Un =
∏

α∈Mor([k],[n])
X

and maps given ϕ : [m]→ [n]

U(ϕ) :
∏

α∈Mor([k],[n])
X −→

∏
α′∈Mor([k],[m])

X, (fα)α 7−→ (fϕ◦α′)α′

In terms of “coordinates”, the element (xα)α is mapped to the element (xϕ◦α′)α′ . We
claim this object is equal to Hom(C[k], X) where we think ofX as the constant simplicial
object X and where C[k] is the cosimplicial set from Example 5.6.

Lemma 15.2. With X , k and U as above.
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(1) For any simplicial object V of C we have the following canonical bijection
MorSimp(C)(V,U) −→ MorC(Vk, X).

wich maps γ to the morphism γk composed with the projection onto the factor
corresponding to id[k].

(2) Similarly, if W is an k-truncated simplicial object of C , then we have
MorSimpk(C)(W, skkU) = MorC(Wk, X).

(3) The object U constructed above is an incarnation of Hom(C[k], X) where C[k]
is the cosimplicial set from Example 5.6.

Proof. We first prove (1). Suppose that γ : V → U is a morphism. This is given by
a family of morphisms γα : Vn → X for α : [k] → [n]. The morphisms have to satisfy
the rules that for all ϕ : [m]→ [n] the diagrams

X

idX
��

Vn

V (ϕ)
��

γϕ◦α′
oo

X Vm
γα′oo

commute for all α′ : [k] → [m]. Taking α′ = id[k], we see that for any ϕ : [k] → [n]
we have γϕ = γid[k] ◦ V (ϕ). Thus the morphism γ is determined by the component of
γk corresponding to id[k]. Conversely, given such a morphism f : Vk → X we easily
construct a morphism γ by putting γα = f ◦ V (α).
The truncated case is similar, and left to the reader.
Part (3) is immediate from the construction of U and the fact that C[k]n = Mor([k], [n])
which are the index sets used in the construction of Un. �

16. Internal Hom

Let C be a category with finite nonempty products. Let U , V be simplicial objects C. In
some cases the functor

Simp(C)opp −→ Sets, W 7−→ MorSimp(C)(W × V,U)
is representable. In this case we denoteHom(V,U) the resulting simplicial object of C , and
we say that the internal hom of V into U exists. Moreover, in this case, given X in C , we
would have

MorC(X,Hom(V,U)n) = MorSimp(C)(X ×∆[n],Hom(V,U))
= MorSimp(C)(X ×∆[n]× V,U)
= MorSimp(C)(X,Hom(∆[n]× V,U))
= MorC(X,Hom(∆[n]× V,U)0)

provided that Hom(∆[n] × V,U) exists also. The first and last equalities follow from
Lemma 13.4.
The lesson we learn from this is that, given U and V , if we want to construct the internal
hom then we should try to construct the objects

Hom(∆[n]× V,U)0

because these should be the nth term of Hom(V,U). In the next section we study a con-
struction of simplicial objects “Hom(∆[n], U)”.
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17. Hom from simplicial sets into simplicial objects

Motivated by the discussion on internal hom we define what should be the simplicial object
classifying morphisms from a simplicial set into a given simplicial object of the category
C.

Definition 17.1. Let C be a category such that the coproduct of any two objects exists.
LetU be a simplicial set, withUn finite nonempty for alln ≥ 0. LetV be a simplicial object
of C. We denote Hom(U, V ) any simplicial object of C such that

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )
functorially in the simplicial object W of C.

Of course Hom(U, V ) need not exist. Also, by the discussion in Section 16 we expect that if
it does exist, then Hom(U, V )n = Hom(U ×∆[n], V )0. We do not use the italic notation
for these Hom objects since Hom(U, V ) is not an internal hom.

Lemma 17.2. Assume the category C has coproducts of any two objects and countable
limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Let V be a
simplicial object of C. Then the functor

Copp −→ Sets
X 7−→ MorSimp(C)(X × U, V )

is representable.

Proof. A morphism from X × U into V is given by a collection of morphisms fu :
X → Vn with n ≥ 0 and u ∈ Un. And such a collection actually defines a morphism if
and only if for all ϕ : [m]→ [n] all the diagrams

X
fu //

idX
��

Vn

V (ϕ)
��

X
fU(ϕ)(u)// Vm

commute. Thus it is natural to introduce a category U and a functor V : Uopp → C as
follows:

(1) The set of objects of U is
∐
n≥0 Un,

(2) a morphism from u′ ∈ Um to u ∈ Un is a ϕ : [m]→ [n] such thatU(ϕ)(u) = u′

(3) for u ∈ Un we set V(u) = Vn, and
(4) for ϕ : [m]→ [n] such that U(ϕ)(u) = u′ we set V(ϕ) = V (ϕ) : Vn → Vm.

At this point it is clear that our functor is nothing but the functor defining
limUopp V

Thus if C has countable limits then this limit and hence an object representing the functor
of the lemma exist. �

Lemma 17.3. Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Assume that all
n-simplices of U are degenerate for all n� 0. Let V be a simplicial object of C. Then the
functor

Copp −→ Sets
X 7−→ MorSimp(C)(X × U, V )
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is representable.

Proof. We have to show that the categoryU described in the proof of Lemma 17.2 has
a finite subcategory U ′ such that the limit of V over U ′ is the same as the limit of V over U .
We will use Categories, Lemma 17.4. Form > 0 let U≤m denote the full subcategory with
objects

∐
0≤n≤m Um. Letm0 be an integer such that every n-simplex of the simplicial set

U is degenerate if n > m0. For any m ≥ m0 large enough, the subcategory U≤m satisfies
property (1) of Categories, Definition 17.3.

Suppose that u ∈ Un and u′ ∈ Un′ with n, n′ ≤ m0 and suppose that ϕ : [k] → [n],
ϕ′ : [k] → [n′] are morphisms such that U(ϕ)(u) = U(ϕ′)(u′). A simple combinatorial
argument shows that if k > 2m0, then there exists an index 0 ≤ i ≤ 2m0 such that
ϕ(i) = ϕ(i + 1) and ϕ′(i) = ϕ′(i + 1). (The pigeon hole principle would tell you this
works if k > m2

0 which is good enough for the argument below anyways.) Hence, if
k > 2m0, we may write ϕ = ψ ◦ σk−1

i and ϕ′ = ψ′ ◦ σk−1
i for some ψ : [k − 1] → [n]

and some ψ′ : [k − 1] → [n′]. Since sk−1
i : Uk−1 → Uk is injective, see Lemma 3.6, we

conclude that U(ψ)(u) = U(ψ′)(u′) also. Continuing in this fashion we conclude that
given morphisms u→ z and u′ → z of U with u, u′ ∈ U≤m0 , there exists a commutative
diagram

u

  ''
a // z

u′

?? 77

with a ∈ U≤2m0 .

It is easy to deduce from this that the finite subcategory U≤2m0 works. Namely, suppose
given x′ ∈ Un and x′′ ∈ Un′ with n, n′ ≤ 2m0 as well as morphisms x′ → x and x′′ → x
of U with the same target. By our choice of m0 we can find objects u, u′ of U≤m0 and
morphisms u → x′, u′ → x′′. By the above we can find a ∈ U≤2m0 and morphisms
u→ a, u′ → a such that

u

!! ((

// x′

  
a // x

u′

== 66

// x′′

>>

is commutative. Turning this diagram 90 degrees clockwise we get the desired diagram as
in (2) of Categories, Definition 17.3. �

Lemma 17.4. Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Assume that all
n-simplices of U are degenerate for all n � 0. Let V be a simplicial object of C. Then
Hom(U, V ) exists, moreover we have the expected equalities

Hom(U, V )n = Hom(U ×∆[n], V )0.
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Proof. We construct this simplicial object as follows. For n ≥ 0 let Hom(U, V )n
denote the object of C representing the functor

X 7−→ MorSimp(C)(X × U ×∆[n], V )
This exists by Lemma 17.3 because U ×∆[n] is a simplicial set with finite sets of simplices
and no nondegenerate simplices in high enough degree, see Lemma 11.5. For ϕ : [m] →
[n] we obtain an induced map of simplicial sets ϕ : ∆[m] → ∆[n]. Hence we obtain a
morphismX ×U ×∆[m]→ X ×U ×∆[n] functorial inX , and hence a transformation
of functors, which in turn gives

Hom(U, V )(ϕ) : Hom(U, V )n −→ Hom(U, V )m.
Clearly this defines a contravariant functor Hom(U, V ) from ∆ into the category C. In
other words, we have a simplicial object of C.

We have to show that Hom(U, V ) satisfies the desired universal property

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )
To see this, let f : W → Hom(U, V ) be given. We want to construct the element f ′ :
W × U → V of the right hand side. By construction, each fn : Wn → Hom(U, V )n
corresponds to a morphism fn : Wn × U × ∆[n] → V . Further, for every morphism
ϕ : [m]→ [n] the diagram

Wn × U ×∆[m]
W (ϕ)×id×id

//

id×id×ϕ
��

Wm × U ×∆[m]

fm

��
Wn × U ×∆[n] fn // V

is commutative. For ψ : [n] → [k] in (∆[n])k we denote (fn)k,ψ : Wn × Uk → Vk the
component of (fn)k corresponding to the element ψ. We define f ′

n : Wn × Un → Vn as
f ′
n = (fn)n,id, in other words, as the restriction of (fn)n : Wn × Un × (∆[n])n → Vn to
Wn×Un×id[n]. To see that the collection (f ′

n) defines a morphism of simplicial objects, we
have to show for anyϕ : [m]→ [n] thatV (ϕ)◦f ′

n = f ′
m◦W (ϕ)×U(ϕ). The commutative

diagram above says that (fn)m,ϕ : Wn × Um → Vm is equal to (fm)m,id ◦ W (ϕ) :
Wn × Um → Vm. But then the fact that fn is a morphism of simplicial objects implies
that the diagram

Wn × Un × (∆[n])n (fn)n
//

id×U(ϕ)×ϕ
��

Vn

V (ϕ)
��

Wn × Um × (∆[n])m
(fn)m // Vm

is commutative. And this implies that (fn)m,ϕ ◦ U(ϕ) is equal to V (ϕ) ◦ (fn)n,id. Al-
together we obtain V (ϕ) ◦ (fn)n,id = (fn)m,ϕ ◦ U(ϕ) = (fm)m,id ◦W (ϕ) ◦ U(ϕ) =
(fm)m,id ◦W (ϕ)× U(ϕ) as desired.

On the other hand, given a morphism f ′ : W × U → V we define a morphism f : W →
Hom(U, V ) as follows. By Lemma 13.4 the morphisms id : Wn → Wn corresponds to a
unique morphism cn : Wn ×∆[n]→W . Hence we can consider the composition

Wn ×∆[n]× U cn−→W × U f ′

−→ V.

By construction this corresponds to a unique morphism fn : Wn → Hom(U, V )n. We
leave it to the reader to see that these define a morphism of simplicial sets as desired.
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We also leave it to the reader to see that f 7→ f ′ and f ′ 7→ f are mutually inverse opera-
tions. �

Lemma 17.5. Assume the category C has coproducts of any two objects and finite
limits. Let a : U → V , b : U → W be morphisms of simplicial sets. Assume Un, Vn,Wn

finite nonempty for all n ≥ 0. Assume that all n-simplices of U, V,W are degenerate for
all n� 0. Let T be a simplicial object of C. Then

Hom(V, T )×Hom(U,T ) Hom(W,T ) = Hom(V qU W,T )
In other words, the fibre product on the left hand side is represented by the Hom object
on the right hand side.

Proof. By Lemma 17.4 all the required Hom objects exist and satisfy the correct func-
torial properties. Now we can identify the nth term on the left hand side as the object
representing the functor that associates to X the first set of the following sequence of
functorial equalities

Mor(X ×∆[n],Hom(V, T )×Hom(U,T ) Hom(W,T ))
= Mor(X ×∆[n],Hom(V, T ))×Mor(X×∆[n],Hom(U,T )) Mor(X ×∆[n],Hom(W,T ))
= Mor(X ×∆[n]× V, T )×Mor(X×∆[n]×U,T ) Mor(X ×∆[n]×W,T )
= Mor(X ×∆[n]× (V qU W ), T ))

Here we have used the fact that

(X ×∆[n]× V )×X×∆[n]×U (X ×∆[n]×W ) = X ×∆[n]× (V qU W )
which is easy to verify term by term. The result of the lemma follows as the last term in
the displayed sequence of equalities corresponds to Hom(V qU W,T )n. �

18. Splitting simplicial objects

A subobject N of an object X of the category C is an object N of C together with a
monomorphism N → X . Of course we say (by abuse of notation) that the subobjects
N , N ′ are equal if there exists an isomorphism N → N ′ compatible with the morphisms
to X . The collection of subobjects forms a partially ordered set. (Because of our conven-
tions on categories; not true for category of spaces up to homotopy for example.)

Definition 18.1. Let C be a category which admits finite nonempty coproducts. We
say a simplicial object U of C is split if there exist subobjects N(Um) of Um, m ≥ 0 with
the property that

(18.1.1)
∐

ϕ:[n]→[m] surjective
N(Um) −→ Un

is an isomorphism for all n ≥ 0. IfU is an r-truncated simplicial object of C then we sayU
is split if there exist subobjects N(Um) of Um, r ≥ m ≥ 0 with the property that (18.1.1)
is an isomorphism for r ≥ n ≥ 0.

If this is the case, then N(U0) = U0. Next, we have U1 = U0 qN(U1). Second we have

U2 = U0 qN(U1)qN(U1)qN(U2).
It turns out that in many categories C every simplicial object is split.

Lemma 18.2. Let U be a simplicial set. Then U has a unique splitting with N(Um)
equal to the set of nondegenerate m-simplices.
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Proof. From the definition it follows immediately, that if there is a splitting then
N(Um) has to be the set of nondegenerate simplices. Let x ∈ Un. Suppose that there are
surjections ϕ : [n] → [k] and ψ : [n] → [l] and nondegenerate simplices y ∈ Uk , z ∈ Ul
such that x = U(ϕ)(y) and x = U(ψ)(z). Choose a right inverse ξ : [l] → [n] of ψ,
i.e., ψ ◦ ξ = id[l]. Then z = U(ξ)(x). Hence z = U(ξ)(x) = U(ϕ ◦ ξ)(y). Since z is
nondegenerate we conclude that ϕ ◦ ξ : [l]→ [k] is surjective, and hence l ≥ k. Similarly
k ≥ l. Hence we see that ϕ ◦ ξ : [l] → [k] has to be the identity map for any choice of
right inverse ξ of ψ. This easily implies that ψ = ϕ. �

Of course it can happen that a map of simplicial sets maps a nondegenerate n-simplex to
a degenerate n-simplex. Thus the splitting of Lemma 18.2 is not functorial. Here is a case
where it is functorial.

Lemma 18.3. Let f : U → V be a morphism of simplicial sets. Suppose that (a)
the image of every nondegenerate simplex of U is a nondegenerate simplex of V and (b)
the restriction of f to a map from the set of nondegenerate simplices of U to the set of
nondegenerate simplices of V is injective. Then fn is injective for all n. Same holds with
“injective” replaced by “surjective” or “bijective”.

Proof. Under hypothesis (a) we see that the map f preserves the disjoint union de-
compositions of the splitting of Lemma 18.2, in other words that we get commutative
diagrams ∐

ϕ:[n]→[m] surjective N(Um) //

��

Un

��∐
ϕ:[n]→[m] surjective N(Vm) // Vn.

And then (b) clearly shows that the left vertical arrow is injective (resp. surjective, resp.
bijective). �

Lemma 18.4. Let U be a simplicial set. Let n ≥ 0 be an integer. The rule

U ′
m =

⋃
ϕ:[m]→[i], i≤n

Im(U(ϕ))

defines a sub simplicial set U ′ ⊂ U with U ′
i = Ui for i ≤ n. Moreover, all m-simplices of

U ′ are degenerate for all m > n.

Proof. If x ∈ Um and x = U(ϕ)(y) for some y ∈ Ui, i ≤ n and some ϕ : [m]→ [i]
then any image U(ψ)(x) for any ψ : [m′] → [m] is equal to U(ϕ ◦ ψ)(y) and ϕ ◦ ψ :
[m′]→ [i]. Hence U ′ is a simplicial set. By construction all simplices in dimension n+ 1
and higher are degenerate. �

Lemma 18.5. Let U be a simplicial abelian group. Then U has a splitting obtained by
taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial abelian groups.

Proof. By induction on n we will show that the choice of N(Um) in the lemma
guarantees that (18.1.1) is an isomorphism for m ≤ n. This is clear for n = 0. In the rest
of this proof we are going to drop the superscripts from the maps di and si in order to
improve readability. We will also repeatedly use the relations from Remark 3.3.
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First we make a general remark. For 0 ≤ i ≤ m and z ∈ Um we have di(si(z)) = z. Hence
we can write any x ∈ Um+1 uniquely as x = x′ + x′′ with di(x′) = 0 and x′′ ∈ Im(si)
by taking x′ = (x− si(di(x))) and x′′ = si(di(x)). Moreover, the element z ∈ Um such
that x′′ = si(z) is unique because si is injective.
Here is a procedure for decomposing any x ∈ Un+1. First, write x = x0 + s0(z0) with
d0(x0) = 0. Next, write x0 = x1 + s1(z1) with dn(x1) = 0. Continue like this to get

x = x0 + s0(z0),
x0 = x1 + s1(z1),
x1 = x2 + s2(z2),
. . . . . . . . .

xn−1 = xn + sn(zn)
where di(xi) = 0 for all i = n, . . . , 0. By our general remark above all of the xi and zi
are determined uniquely by x. We claim that xi ∈ Ker(d0) ∩ Ker(d1) ∩ . . . ∩ Ker(di)
and zi ∈ Ker(d0)∩ . . .∩Ker(di−1) for i = n, . . . , 0. Here and in the following an empty
intersection of kernels indicates the whole space; i.e., the notation z0 ∈ Ker(d0) ∩ . . . ∩
Ker(di−1) when i = 0 means z0 ∈ Un with no restriction.
We prove this by ascending induction on i. It is clear for i = 0 by construction of x0
and z0. Let us prove it for 0 < i ≤ n assuming the result for i − 1. First of all we have
di(xi) = 0 by construction. So pick a j with 0 ≤ j < i. We have dj(xi−1) = 0 by
induction. Hence

0 = dj(xi−1) = dj(xi) + dj(si(zi)) = dj(xi) + si−1(dj(zi)).
The last equality by the relations of Remark 3.3. These relations also imply that di−1(dj(xi)) =
dj(di(xi)) = 0 because di(xi) = 0 by construction. Then the uniqueness in the general
remark above shows the equality 0 = x′ + x′′ = dj(xi) + si−1(dj(zi)) can only hold
if both terms are zero. We conclude that dj(xi) = 0 and by injectivity of si−1 we also
conclude that dj(zi) = 0. This proves the claim.
The claim implies we can uniquely write

x = s0(z0) + s1(z1) + . . .+ sn(zn) + x0

with x0 ∈ N(Un+1) and zi ∈ Ker(d0) ∩ . . . ∩ Ker(di−1). We can reformulate this as
saying that we have found a direct sum decomposition

Un+1 = N(Un+1)⊕
⊕i=n

i=0
si

(
Ker(d0) ∩ . . . ∩Ker(di−1)

)
with the property that

Ker(d0) ∩ . . . ∩Ker(dj) = N(Un+1)⊕
⊕i=n

i=j+1
si

(
Ker(dn) ∩ . . . ∩Ker(di−1)

)
for j = 0, . . . , n. The result follows from this statement as follows. Each of the zi in the
expression for x can be written uniquely as

zi = si(z′
i,i) + . . .+ sn−1(z′

i,n−1) + zi,0

with zi,0 ∈ N(Un) and z′
i,j ∈ Ker(d0) ∩ . . . ∩ Ker(dj−1). The first few steps in the

decomposition of zi are zero because zi already is in the kernel of d0, . . . , di. This in turn
uniquely gives

x = x0 + s0(z0,0) + s1(z1,0) + . . .+ sn(zn,0) +
∑

0≤i≤j≤n−1
si(sj(z′

i,j)).
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Continuing in this fashion we see that we in the end obtain a decomposition of x as a sum
of terms of the form

si1si2 . . . sik(z)
with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n − k + 1 and z ∈ N(Un+1−k). This is exactly the
required decomposition, because any surjective map [n+1]→ [n+1−k] can be uniquely
expressed in the form

σn−k
ik

. . . σn−1
i2

σni1
with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n− k + 1. �

Lemma 18.6. Let A be an abelian category. Let U be a simplicial object in A. Then
U has a splitting obtained by taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial objects ofA.

Proof. For any object A of A we obtain a simplicial abelian group MorA(A,U).
Each of these are canonically split by Lemma 18.5. Moreover,

N(MorA(A,Um)) =
⋂m−1

i=0
Ker(dmi ) = MorA(A,N(Um)).

Hence we see that the morphism (18.1.1) becomes an isomorphism after applying the func-
tor MorA(A,−) for any object of A. Hence it is an isomorphism by the Yoneda lemma.

�

Lemma 18.7. Let A be an abelian category. Let f : U → V be a morphism of sim-
plicial objects ofA. If the induced morphisms N(f)i : N(U)i → N(V )i are injective for
all i, then fi is injective for all i. Same holds with “injective” replaced with “surjective”, or
“isomorphism”.

Proof. This is clear from Lemma 18.6 and the definition of a splitting. �

Lemma 18.8. Let A be an abelian category. Let U be a simplicial object in A. Let
N(Um) as in Lemma 18.6 above. Then dmm(N(Um)) ⊂ N(Um−1).

Proof. For j = 0, . . . ,m − 2 we have dm−1
j dmm = dm−1

m−1d
m
j by the relations in

Remark 3.3. The result follows. �

Lemma 18.9. Let A be an abelian category. Let U be a simplicial object of A. Let
n ≥ 0 be an integer. The rule

U ′
m =

∑
ϕ:[m]→[i], i≤n

Im(U(ϕ))

defines a sub simplicial object U ′ ⊂ U with U ′
i = Ui for i ≤ n. Moreover, N(U ′

m) = 0
for all m > n.

Proof. Pick m, i ≤ n and some ϕ : [m]→ [i]. The image under U(ψ) of Im(U(ϕ))
for any ψ : [m′] → [m] is equal to the image of U(ϕ ◦ ψ) and ϕ ◦ ψ : [m′] → [i]. Hence
U ′ is a simplicial object. Pick m > n. We have to show N(U ′

m) = 0. By definition of
N(Um) and N(U ′

m) we have N(U ′
m) = U ′

m ∩N(Um) (intersection of subobjects). Since
U is split by Lemma 18.6, it suffices to show that U ′

m is contained in the sum∑
ϕ:[m]→[m′] surjective, m′<m

Im(U(ϕ)|N(Um′ )).
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By the splitting each Um′ is the sum of images of N(Um′′) via U(ψ) for surjective maps
ψ : [m′]→ [m′′]. Hence the displayed sum above is the same as∑

ϕ:[m]→[m′] surjective, m′<m
Im(U(ϕ)).

Clearly U ′
m is contained in this by the simple fact that any ϕ : [m]→ [i], i ≤ n occurring

in the definition of U ′
m may be factored as [m] → [m′] → [i] with [m] → [m′] surjective

and m′ < m as in the last displayed sum above. �

19. Coskeleton functors

Let C be a category. The coskeleton functor (if it exists) is a functor

coskn : Simpn(C) −→ Simp(C)

which is right adjoint to the skeleton functor. In a formula

(19.0.1) MorSimp(C)(U, cosknV ) = MorSimpn(C)(sknU, V )

Given an-truncated simplicial objectV we say that cosknV exists if there exists a cosknV ∈
Ob(Simp(C)) and a morphism skncosknV → V such that the displayed formula holds,
in other words if the functor U 7→ MorSimpn(C)(sknU, V ) is representable. If it exists it is
unique up to unique isomorphism by the Yoneda lemma. See Categories, Section 3.

Example 19.1. Suppose the category C has finite nonempty self products. A 0-truncated
simplicial object of C is the same as an object X of C. In this case we claim that cosk0(X)
is the simplicial object U with Un = Xn+1 the (n+ 1)-fold self product of X , and struc-
ture of simplicial object as in Example 3.5. Namely, a morphism V → U where V is a
simplicial object is given by morphisms Vn → Xn+1, such that all the diagrams

Vn //

V ([0]→[n],0 7→i)
��

Xn+1

pri
��

V0 // X

commute. Clearly this means that the map determines and is determined by a unique
morphism V0 → X . This proves that formula (19.0.1) holds.

Recall the category ∆/[n], see Example 11.4. We let (∆/[n])≤m denote the full subcate-
gory of ∆/[n] consisting of objects [k] → [n] of ∆/[n] with k ≤ m. In other words we
have the following commutative diagram of categories and functors

(∆/[n])≤m //

��

∆/[n]

��
∆≤m // ∆

Given a m-truncated simplicial object U of C we define a functor

U(n) : (∆/[n])opp≤m −→ C

by the rules

([k]→ [n]) 7−→ Uk

ψ : ([k′]→ [n])→ ([k]→ [n]) 7−→ U(ψ) : Uk → Uk′
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For a given morphism ϕ : [n]→ [n′] of ∆ we have an associated functor
ϕ : (∆/[n])≤m −→ (∆/[n′])≤m

which maps α : [k]→ [n] to ϕ ◦α : [k]→ [n′]. The composition U(n′) ◦ϕ is equal to the
functor U(n).

Lemma 19.2. If the category C has finite limits, then coskm functors exist for all
m. Moreover, for any m-truncated simplicial object U the simplicial object coskmU is
described by the formula

(coskmU)n = lim(∆/[n])opp≤m
U(n)

and for ϕ : [n] → [n′] the map coskmU(ϕ) comes from the identification U(n′) ◦ ϕ =
U(n) above via Categories, Lemma 14.9.

Proof. During the proof of this lemma we denote coskmU the simplicial object with
(coskmU)n equal to lim(∆/[n])opp≤m

U(n). We will conclude at the end of the proof that it
does satisfy the required mapping property.
Suppose that V is a simplicial object. A morphism γ : V → coskmU is given by a sequence
of morphisms γn : Vn → (coskmU)n. By definition of a limit, this is given by a collection
of morphisms γ(α) : Vn → Uk where α ranges over all α : [k]→ [n] with k ≤ m. These
morphisms then also satisfy the rules that

Vn
γ(α)

// Uk

Vn′
γ(α′) //

V (ϕ)

OO

Uk′

U(ψ)

OO

are commutative, given any 0 ≤ k, k′ ≤ m, 0 ≤ n, n′ and any ψ : [k] → [k′], ϕ : [n] →
[n′], α : [k]→ [n] and α′ : [k′]→ [n′] in ∆ such that ϕ ◦α = α′ ◦ψ. Taking n = k = k′,
ϕ = α′, and α = ψ = id[k] we deduce that γ(α′) = γ(id[k]) ◦ V (α′). In other words,
the morphisms γ(id[k]), k ≤ m determine the morphism γ. And it is easy to see that these
morphisms form a morphism skmV → U .
Conversely, given a morphism γ : skmV → U , we obtain a family of morphisms γ(α)
where α ranges over all α : [k] → [n] with k ≤ m by setting γ(α) = γ(id[k]) ◦ V (α).
These morphisms satisfy all the displayed commutativity restraints pictured above, and
hence give rise to a morphism V → coskmU . �

Lemma 19.3. Let C be a category. LetU be anm-truncated simplicial object of C. For
n ≤ m the limit lim(∆/[n])opp≤m

U(n) exists and is canonically isomorphic to Un.

Proof. This is true because the category (∆/[n])≤m has an final object in this case,
namely the identity map [n]→ [n]. �

Lemma 19.4. Let C be a category with finite limits. LetU be ann-truncated simplicial
object of C. The morphism skncosknU → U is an isomorphism.

Proof. Combine Lemmas 19.2 and 19.3. �

Let us describe a particular instance of the coskeleton functor in more detail. By abuse of
notation we will denote skn also the restriction functor Simpn′(C) → Simpn(C) for any
n′ ≥ n. We are going to describe a right adjoint of the functor skn : Simpn+1(C) →
Simpn(C). For n ≥ 1, 0 ≤ i < j ≤ n + 1 define δn+1

i,j : [n − 1] → [n + 1] to be the
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increasing map omitting i and j. Note that δn+1
i,j = δn+1

j ◦ δni = δn+1
i ◦ δnj−1, see Lemma

2.3. This motivates the following lemma.

Lemma 19.5. Let n be an integer ≥ 1. Let U be a n-truncated simplicial object of C.
Consider the contravariant functor from C to Sets which associates to an object T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}

If this functor is representable by some object Un+1 of C , then

Un+1 = lim(∆/[n+1])opp≤n
U(n)

Proof. The limit, if it exists, represents the functor that associates to an object T the
set

{(fα)α:[k]→[n+1],k≤n | fα◦ψ = U(ψ) ◦ fα ∀ ψ : [k′]→ [k], α : [k]→ [n+ 1]}.

In fact we will show this functor is isomorphic to the one displayed in the lemma. The
map in one direction is given by the rule

(fα)α 7−→ (fδn+1
0

, . . . , fδn+1
n+1

).

This satisfies the conditions of the lemma because

dnj−1 ◦ fδn+1
i

= fδn+1
i

◦δn
j−1

= fδn+1
j

◦δn
i

= dni ◦ fδn+1
j

by the relations we recalled above the lemma. To construct a map in the other direction
we have to associate to a system (f0, . . . , fn+1) as in the displayed formula of the lemma a
system of maps fα. Let α : [k]→ [n+1] be given. Since k ≤ n the map α is not surjective.
Hence we can write α = δn+1

i ◦ ψ for some 0 ≤ i ≤ n + 1 and some ψ : [k] → [n]. We
have no choice but to define

fα = U(ψ) ◦ fi.
Of course we have to check that this is independent of the choice of the pair (i, ψ). First,
observe that given i there is a uniqueψwhich works. Second, suppose that (j, φ) is another
pair. Then i 6= j and we may assume i < j. Since both i, j are not in the image of α we
may actually write α = δn+1

i,j ◦ ξ and then we see that ψ = δnj−1 ◦ ξ and φ = δni ◦ ξ. Thus

U(ψ) ◦ fi = U(δnj−1 ◦ ξ) ◦ fi
= U(ξ) ◦ dnj−1 ◦ fi
= U(ξ) ◦ dni ◦ fj
= U(δni ◦ ξ) ◦ fj
= U(φ) ◦ fj

as desired. We still have to verify that the maps fα so defined satisfy the rules of a system
of maps (fα)α. To see this suppose that ψ : [k′] → [k], α : [k] → [n+ 1] with k, k′ ≤ n.
Set α′ = α ◦ ψ. Choose i not in the image of α. Then clearly i is not in the image of α′

also. Write α = δn+1
i ◦ φ (we cannot use the letter ψ here because we’ve already used it).

Then obviously α′ = δn+1
i ◦ φ ◦ ψ. By construction above we then have

U(ψ) ◦ fα = U(ψ) ◦ U(φ) ◦ fi = U(φ ◦ ψ) ◦ fi = fα◦ψ = fα′

as desired. We leave to the reader the pleasant task of verifying that our constructions are
mutually inverse bijections, and are functorial in T . �
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Lemma 19.6. Let n be an integer ≥ 1. Let U be a n-truncated simplicial object of C.
Consider the contravariant functor from C to Sets which associates to an object T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}
If this functor is representable by some object Un+1 of C , then there exists an (n + 1)-
truncated simplicial object Ũ , with sknŨ = U and Ũn+1 = Un+1 such that the following
adjointness holds

MorSimpn+1(C)(V, Ũ) = MorSimpn(C)(sknV,U)

Proof. By Lemma 19.3 there are identifications
Ui = lim(∆/[i])opp≤n

U(i)

for 0 ≤ i ≤ n. By Lemma 19.5 we have
Un+1 = lim(∆/[n+1])opp≤n

U(n).

Thus we may define for any ϕ : [i] → [j] with i, j ≤ n + 1 the corresponding map
Ũ(ϕ) : Ũj → Ũi exactly as in Lemma 19.2. This defines an (n + 1)-truncated simplicial
object Ũ with sknŨ = U .
To see the adjointness we argue as follows. Given any element γ : sknV → U of the right
hand side of the formula consider the morphisms fi = γn ◦ dn+1

i : Vn+1 → Vn → Un.
These clearly satisfy the relations dnj−1 ◦fi = dni ◦fj and hence define a unique morphism
Vn+1 → Un+1 by our choice of Un+1. Conversely, given a morphism γ′ : V → Ũ of the
left hand side we can simply restrict to ∆≤n to get an element of the right hand side. We
leave it to the reader to show these are mutually inverse constructions. �

Remark 19.7. LetU , andUn+1 be as in Lemma 19.6. OnT -valued points we can easily
describe the face and degeneracy maps of Ũ . Explicitly, the maps dn+1

i : Un+1 → Un are
given by

(f0, . . . , fn+1) 7−→ fi.

And the maps snj : Un → Un+1 are given by

f 7−→ (sn−1
j−1 ◦ d

n−1
0 ◦ f,

sn−1
j−1 ◦ d

n−1
1 ◦ f,

. . .

sn−1
j−1 ◦ d

n−1
j−1 ◦ f,

f,

f,

sn−1
j ◦ dn−1

j+1 ◦ f,
sn−1
j ◦ dn−1

j+2 ◦ f,
. . .

sn−1
j ◦ dn−1

n ◦ f)
where we leave it to the reader to verify that the RHS is an element of the displayed
set of Lemma 19.6. For n = 0 there is one map, namely f 7→ (f, f). For n = 1
there are two maps, namely f 7→ (f, f, s0d1f) and f 7→ (s0d0f, f, f). For n = 2
there are three maps, namely f 7→ (f, f, s0d1f, s0d2f), f 7→ (s0d0f, f, f, s1d2f), and
f 7→ (s1d0f, s1d1f, f, f). And so on and so forth.
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Remark 19.8. The construction of Lemma 19.6 above in the case of simplicial sets
is the following. Given an n-truncated simplicial set U , we make a canonical (n + 1)-
truncated simplicial set Ũ as follows. We add a set of (n+1)-simplicesUn+1 by the formula
of the lemma. Namely, an element of Un+1 is a numbered collection of (f0, . . . , fn+1) of
n-simplices, with the property that they glue as they would in a (n+ 1)-simplex. In other
words, the ith face of fj is the (j−1)st face of fi for i < j. Geometrically it is obvious how
to define the face and degeneracy maps for Ũ . If V is an (n+ 1)-truncated simplicial set,
then its (n+1)-simplices give rise to compatible collections of n-simplices (f0, . . . , fn+1)
with fi ∈ Vn. Hence there is a natural map Mor(sknV,U)→ Mor(V, Ũ) which is inverse
to the canonical restriction mapping the other way.
Also, it is enough to do the combinatorics of the construction in the case of truncated sim-
plicial sets. Namely, for any object T of the category C , and any n-truncated simplicial
object U of C we can consider the n-truncated simplicial set Mor(T,U). We may apply
the construction to this, and take its set of (n+ 1)-simplices, and require this to be repre-
sentable. This is a good way to think about the result of Lemma 19.6.

Remark 19.9. Inductive construction of coskeleta. Suppose that C is a category with
finite limits. Suppose that U is anm-truncated simplicial object in C. Then we can induc-
tively construct n-truncated objects Un as follows:

(1) To start, set Um = U .
(2) Given Un for n ≥ m set Un+1 = Ũn, where Ũn is constructed from Un as in

Lemma 19.6.
Since the construction of Lemma 19.6 has the property that it leaves the n-skeleton of
Un unchanged, we can then define coskmU to be the simplicial object with (coskmU)n =
Unn = Un+1

n = . . .. And it follows formally from Lemma 19.6 thatUn satisfies the formula
MorSimpn(C)(V,Un) = MorSimpm(C)(skmV,U)

for all n ≥ m. It also then follows formally from this that
MorSimp(C)(V, coskmU) = MorSimpm(C)(skmV,U)

with coskmU chosen as above.

Lemma 19.10. Let C be a category which has finite limits.
(1) For every n the functor skn : Simp(C)→ Simpn(C) has a right adjoint coskn.
(2) For every n′ ≥ n the functor skn : Simpn′(C) → Simpn(C) has a right adjoint,

namely skn′ coskn.
(3) For every m ≥ n ≥ 0 and every n-truncated simplicial object U of C we have

coskmskmcosknU = cosknU .
(4) If U is a simplicial object of C such that the canonical map U → cosknsknU is

an isomorphism for some n ≥ 0, then the canonical map U → coskmskmU is an
isomorphism for all m ≥ n.

Proof. The existence in (1) follows from Lemma 19.2 above. Parts (2) and (3) follow
from the discussion in Remark 19.9. After this (4) is obvious. �

Remark 19.11. We do not need all finite limits in order to be able to define the
coskeleton functors. Here are some remarks

(1) We have seen in Example 19.1 that if C has products of pairs of objects then cosk0
exists.

(2) For k > 0 the functor coskk exists if C has finite connected limits.
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This is clear from the inductive procedure of constructing coskeleta (Remarks 19.8 and
19.9) but it also follows from the fact that the categories (∆/[n])≤k for k ≥ 1 and n ≥
k + 1 used in Lemma 19.2 are connected. Observe that we do not need the categories for
n ≤ k by Lemma 19.3 or Lemma 19.4. (As k gets higher the categories (∆/[n])≤k for
k ≥ 1 and n ≥ k + 1 are more and more connected in a topological sense.)

Lemma 19.12. Let U , V be n-truncated simplicial objects of a category C. Then

coskn(U × V ) = cosknU × cosknV

whenever the left and right hand sides exist.

Proof. Let W be a simplicial object. We have

Mor(W, coskn(U × V )) = Mor(sknW,U × V )
= Mor(sknW,U)×Mor(sknW,V )
= Mor(W, cosknU)×Mor(W, cosknV )
= Mor(W, cosknU × cosknV )

The lemma follows. �

Lemma 19.13. Assume C has fibre products. Let U → V and W → V be morphisms
of n-truncated simplicial objects of the category C. Then

coskn(U ×V W ) = cosknU ×cosknV cosknW

whenever the left and right hand side exist.

Proof. Omitted, but very similar to the proof of Lemma 19.12 above. �

Lemma 19.14. Let C be a category with finite limits. Let X ∈ Ob(C). The functor
C/X → C commutes with the coskeleton functors coskk for k ≥ 1.

Proof. The statement means that if U is a simplicial object of C/X which we can
think of as a simplicial object of C with a morphism towards the constant simplicial object
X , then coskkU computed in C/X is the same as computed in C. This follows for example
from Categories, Lemma 16.2 because the categories (∆/[n])≤k for k ≥ 1 and n ≥ k + 1
used in Lemma 19.2 are connected. Observe that we do not need the categories for n ≤ k
by Lemma 19.3 or Lemma 19.4. �

Lemma 19.15. The canonical map ∆[n]→ cosk1sk1∆[n] is an isomorphism.

Proof. Consider a simplicial set U and a morphism f : U → ∆[n]. This is a rule
that associates to each u ∈ Ui a map fu : [i]→ [n] in ∆. Furthermore, these maps should
have the property that fu ◦ ϕ = fU(ϕ)(u) for any ϕ : [j]→ [i]. Denote εij : [0]→ [i] the
map which maps 0 to j. Denote F : U0 → [n] the map u 7→ fu(0). Then we see that

fu(j) = F (εij(u))

for all 0 ≤ j ≤ i and u ∈ Ui. In particular, if we know the function F then we know the
maps fu for all u ∈ Ui all i. Conversely, given a map F : U0 → [n], we can set for any i,
and any u ∈ Ui and any 0 ≤ j ≤ i

fu(j) = F (εij(u))

This does not in general define a morphism f of simplicial sets as above. Namely, the con-
dition is that all the maps fu are nondecreasing. This clearly is equivalent to the condition
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that F (εij(u)) ≤ F (εij′(u)) whenever 0 ≤ j ≤ j′ ≤ i and u ∈ Ui. But in this case the
morphisms

εij , ε
i
j′ : [0]→ [i]

both factor through the map εij,j′ : [1]→ [i] defined by the rules 0 7→ j , 1 7→ j′. In other
words, it is enough to check the inequalities for i = 1 and u ∈ X1. In other words, we
have

Mor(U,∆[n]) = Mor(sk1U, sk1∆[n])

as desired. �

20. Augmentations

Definition 20.1. Let C be a category. Let U be a simplicial object of C. An augmen-
tation ε : U → X of U towards an object X of C is a morphism from U into the constant
simplicial object X .

Lemma 20.2. Let C be a category. Let X ∈ Ob(C). Let U be a simplicial object of C.
To give an augmentation of U towards X is the same as giving a morphism ε0 : U0 → X
such that ε0 ◦ d1

0 = ε0 ◦ d1
1.

Proof. Given a morphism ε : U → X we certainly obtain an ε0 as in the lemma.
Conversely, given ε0 as in the lemma, define εn : Un → X by choosing any morphism
α : [0]→ [n] and taking εn = ε0 ◦ U(α). Namely, if β : [0]→ [n] is another choice, then
there exists a morphism γ : [1] → [n] such that α and β both factor as [0] → [1] → [n].
Hence the condition on ε0 shows that εn is well defined. Then it is easy to show that
(εn) : U → X is a morphism of simplicial objects. �

Lemma 20.3. Let C be a category with fibred products. Let f : Y → X be a morphism
of C. Let U be the simplicial object of C whose nth term is the (n+ 1)fold fibred product
Y ×X Y ×X . . .×X Y . See Example 3.5. For any simplicial object V of C we have

MorSimp(C)(V,U) = MorSimp1(C)(sk1V, sk1U)
= {g0 : V0 → Y | f ◦ g0 ◦ d1

0 = f ◦ g0 ◦ d1
1}

In particular we have U = cosk1sk1U .

Proof. Suppose that g : sk1V → sk1U is a morphism of 1-truncated simplicial
objects. Then the diagram

V1

d1
0 //

d1
1

//

g1

��

V0

g0

��
Y ×X Y

pr1 //

pr0
// Y // X

is commutative, which proves that the relation shown in the lemma holds. We have to
show that, conversely, given a morphism g0 satisfying the relation f ◦g0 ◦d1

0 = f ◦g0 ◦d1
1

we get a unique morphism of simplicial objects g : V → U . This is done as follows. For
any n ≥ 1 let gn,i = g0 ◦V ([0]→ [n], 0 7→ i) : Vn → Y . The equality above implies that



1174 14. SIMPLICIAL METHODS

f ◦ gn,i = f ◦ gn,i+1 because of the commutative diagram

[0]

0 7→0 ��

0 7→i

++[1] 0 7→i,1 7→i+1 // [n]

[0]

0 7→1
??

0 7→i+1

33

Hence we get (gn,0, . . . , gn,n) : Vn → Y ×X . . . ×X Y = Un. We leave it to the reader
to see that this is a morphism of simplicial objects. The last assertion of the lemma is
equivalent to the first equality in the displayed formula of the lemma. �

Remark 20.4. Let C be a category with fibre products. Let V be a simplicial object.
Let ε : V → X be an augmentation. Let U be the simplicial object whose nth term is the
(n+ 1)st fibred product of V0 over X . By a simple combination of Lemmas 20.2 and 20.3
we obtain a canonical morphism V → U .

21. Left adjoints to the skeleton functors

In this section we construct a left adjoint im! of the skeleton functor skm in certain cases.
The adjointness formula is

MorSimpm(C)(U, skmV ) = MorSimp(C)(im!U, V ).

It turns out that this left adjoint exists when the category C has finite colimits.

We use a similar construction as in Section 12. Recall the category [n]/∆ of objects un-
der [n], see Categories, Example 2.14. Its objects are morphisms α : [n] → [k] and its
morphisms are commutative triangles. We let ([n]/∆)≤m denote the full subcategory of
[n]/∆ consisting of objects [n]→ [k] with k ≤ m. Given a m-truncated simplicial object
U of C we define a functor

U(n) : ([n]/∆)opp≤m −→ C
by the rules

([n]→ [k]) 7−→ Uk

ψ : ([n]→ [k′])→ ([n]→ [k]) 7−→ U(ψ) : Uk → Uk′

For a given morphism ϕ : [n]→ [n′] of ∆ we have an associated functor

ϕ : ([n′]/∆)≤m −→ ([n]/∆)≤m

which maps α : [n′]→ [k] to ϕ ◦ α : [n]→ [k]. The composition U(n) ◦ϕ is equal to the
functor U(n′).

Lemma 21.1. Let C be a category which has finite colimits. The functors im! exist
for all m. Let U be an m-truncated simplicial object of C. The simplicial object im!U is
described by the formula

(im!U)n = colim([n]/∆)opp≤m
U(n)

and for ϕ : [n]→ [n′] the map im!U(ϕ) comes from the identification U(n) ◦ϕ = U(n′)
above via Categories, Lemma 14.8.
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Proof. In this proof we denote im!U the simplicial object whose nth term is given
by the displayed formula of the lemma. We will show it satisfies the adjointness property.

Let V be a simplicial object of C. Let γ : U → skmV be given. A morphism

colim([n]/∆)opp≤m
U(n)→ T

is given by a compatible system of morphisms fα : Uk → T where α : [n] → [k] with
k ≤ m. Certainly, we have such a system of morphisms by taking the compositions

Uk
γk−→ Vk

V (α)−−−→ Vn.

Hence we get an induced morphism (im!U)n → Vn. We leave it to the reader to see that
these form a morphism of simplicial objects γ′ : im!U → V .

Conversely, given a morphism γ′ : im!U → V we obtain a morphism γ : U → skmV by
setting γi : Ui → Vi equal to the composition

Ui
id[i]−−→ colim([i]/∆)opp≤m

U(i) γ′
i−→ Vi

for 0 ≤ i ≤ n. We leave it to the reader to see that this is the inverse of the construction
above. �

Lemma 21.2. Let C be a category. Let U be anm-truncated simplicial object of C. For
any n ≤ m the colimit

colim([n]/∆)opp≤m
U(n)

exists and is equal to Un.

Proof. This is so because the category ([n]/∆)≤m has an initial object, namely id :
[n]→ [n]. �

Lemma 21.3. Let C be a category which has finite colimits. Let U be an m-truncated
simplicial object of C. The map U → skmim!U is an isomorphism.

Proof. Combine Lemmas 21.1 and 21.2. �

Lemma 21.4. If U is anm-truncated simplicial set and n > m then all n-simplices of
im!U are degenerate.

Proof. This can be seen from the construction of im!U in Lemma 21.1, but we can
also argue directly as follows. Write V = im!U . Let V ′ ⊂ V be the simplicial subset with
V ′
i = Vi for i ≤ m and all i simplices degenerate for i > m, see Lemma 18.4. By the

adjunction formula, since skmV ′ = U , there is an inverse to the injection V ′ → V . Hence
V ′ = V . �

Lemma 21.5. Let U be a simplicial set. Let n ≥ 0 be an integer. The morphism
in!sknU → U identifies in!sknU with the simplicial set U ′ ⊂ U defined in Lemma 18.4.

Proof. By Lemma 21.4 the only nondegenerate simplices of in!sknU are in degrees
≤ n. The map in!sknU → U is an isomorphism in degrees ≤ n. Combined we conclude
that the map in!sknU → U maps nondegenerate simplices to nondegenerate simplices and
no two nondegenerate simplices have the same image. Hence Lemma 18.3 applies. Thus
in!sknU → U is injective. The result follows easily from this. �
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Remark 21.6. In some texts the composite functor

Simp(C) skm−−→ Simpm(C) im!−−→ Simp(C)

is denoted skm. This makes sense for simplicial sets, because then Lemma 21.5 says that
im!skmV is just the sub simplicial set of V consisting of all i-simplices of V , i ≤ m and
their degeneracies. In those texts it is also customary to denote the composition

Simp(C) skm−−→ Simpm(C) coskm−−−→ Simp(C)

by coskm.

Lemma 21.7. Let U ⊂ V be simplicial sets. Suppose n ≥ 0 and x ∈ Vn, x 6∈ Un are
such that

(1) Vi = Ui for i < n,
(2) Vn = Un ∪ {x},
(3) any z ∈ Vj , z 6∈ Uj for j > n is degenerate.

Let ∆[n]→ V be the unique morphism mapping the nondegenerate n-simplex of ∆[n] to
x. In this case the diagram

∆[n] // V

i(n−1)!skn−1∆[n] //

OO

U

OO

is a pushout diagram.

Proof. Let us denote ∂∆[n] = i(n−1)!skn−1∆[n] for convenience. There is a natural
map U q∂∆[n] ∆[n] → V . We have to show that it is bijective in degree j for all j. This
is clear for j ≤ n. Let j > n. The third condition means that any z ∈ Vj , z 6∈ Uj is
a degenerate simplex, say z = sj−1

i (z′). Of course z′ 6∈ Uj−1. By induction it follows
that z′ is a degeneracy of x. Thus we conclude that all j-simplices of V are either in U or
degeneracies of x. This implies that the map U q∂∆[n] ∆[n]→ V is surjective. Note that
a nondegenerate simplex of U q∂∆[n] ∆[n] is either the image of a nondegenerate simplex
of U , or the image of the (unique) nondegenerate n-simplex of ∆[n]. Since clearly x is
nondegenerate we deduce that U q∂∆[n] ∆[n] → V maps nondegenerate simplices to
nondegenerate simplices and is injective on nondegenerate simplices. Hence it is injective,
by Lemma 18.3. �

Lemma 21.8. Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty for all n.
Assume that U and V have finitely many nondegenerate simplices. Then there exists a
sequence of sub simplicial sets

U = W 0 ⊂W 1 ⊂W 2 ⊂ . . .W r = V

such that Lemma 21.7 applies to each of the inclusions W i ⊂W i+1.

Proof. Let n be the smallest integer such that V has a nondegenerate simplex that
does not belong to U . Let x ∈ Vn, x 6∈ Un be such a nondegenerate simplex. Let W ⊂ V
be the set of elements which are either in U , or are a (repeated) degeneracy of x (in other
words, are of the form V (ϕ)(x) with ϕ : [m]→ [n] surjective). It is easy to see thatW is a
simplicial set. The inclusionU ⊂W satisfies the conditions of Lemma 21.7. Moreover the
number of nondegenerate simplices of V which are not contained inW is exactly one less
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than the number of nondegenerate simplices of V which are not contained in U . Hence
we win by induction on this number. �

Lemma 21.9. LetA be an abelian category Let U be an m-truncated simplicial object
ofA. For n > m we have N(im!U)n = 0.

Proof. Write V = im!U . Let V ′ ⊂ V be the simplicial subobject of V with V ′
i = Vi

for i ≤ m and N(V ′
i ) = 0 for i > m, see Lemma 18.9. By the adjunction formula, since

skmV ′ = U , there is an inverse to the injection V ′ → V . Hence V ′ = V . �

Lemma 21.10. Let A be an abelian category. Let U be a simplicial object of A. Let
n ≥ 0 be an integer. The morphism in!sknU → U identifies in!sknU with the simplicial
subobject U ′ ⊂ U defined in Lemma 18.9.

Proof. By Lemma 21.9 we haveN(in!sknU)i = 0 for i > n. The map in!sknU → U
is an isomorphism in degrees ≤ n, see Lemma 21.3. Combined we conclude that the map
in!sknU → U induces injective mapsN(in!sknU)i → N(U)i for all i. Hence Lemma 18.7
applies. Thus in!sknU → U is injective. The result follows easily from this. �

Here is another way to think about the coskeleton functor using the material above.

Lemma 21.11. Let C be a category with finite coproducts and finite limits. Let V be a
simplicial object of C. In this case

(cosknsknV )n+1 = Hom(in!skn∆[n+ 1], V )0.

Proof. By Lemma 13.4 the object on the left represents the functor which assigns to
X the first set of the following equalities

Mor(X ×∆[n+ 1], cosknsknV ) = Mor(X × skn∆[n+ 1], sknV )
= Mor(X × in!skn∆[n+ 1], V ).

The object on the right in the formula of the lemma is represented by the functor which
assigns to X the last set in the sequence of equalities. This proves the result.

In the sequence of equalities we have used that skn(X ×∆[n + 1]) = X × skn∆[n + 1]
and that in!(X × skn∆[n+ 1]) = X × in!skn∆[n+ 1]. The first equality is obvious. For
any (possibly truncated) simplicial objectW of C and any objectX of C denote temporar-
ily MorC(X,W ) the (possibly truncated) simplicial set [n] 7→ MorC(X,Wn). From the
definitions it follows that Mor(U × X,W ) = Mor(U,MorC(X,W )) for any (possibly
truncated) simplicial set U . Hence

Mor(X × in!skn∆[n+ 1],W ) = Mor(in!skn∆[n+ 1],MorC(X,W ))
= Mor(skn∆[n+ 1], skn MorC(X,W ))
= Mor(X × skn∆[n+ 1], sknW )
= Mor(in!(X × skn∆[n+ 1]),W ).

This proves the second equality used, and ends the proof of the lemma. �

22. Simplicial objects in abelian categories

Recall that an abelian category is defined in Homology, Section 5.

Lemma 22.1. LetA be an abelian category.
(1) The categories Simp(A) and CoSimp(A) are abelian.



1178 14. SIMPLICIAL METHODS

(2) A morphism of (co)simplicial objects f : A → B is injective if and only if each
fn : An → Bn is injective.

(3) A morphism of (co)simplicial objects f : A→ B is surjective if and only if each
fn : An → Bn is surjective.

(4) A sequence of (co)simplicial objects

A
f−→ B

g−→ C

is exact at B if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Pre-additivity is easy. A final object is given by Un = 0 in all degrees. Exis-
tence of direct products we saw in Lemmas 6.2 and 9.2. Kernels and cokernels are obtained
by taking termwise kernels and cokernels. �

For an object A ofA and an integer k consider the k-truncated simplicial object U with
(1) Ui = 0 for i < k,
(2) Uk = A,
(3) all morphisms U(ϕ) equal to zero, except U(id[k]) = idA.

Since A has both finite limits and finite colimits we see that both coskkU and ik!U exist.
We will describe both of these and the canonical map ik!U → coskkU .

Lemma 22.2. With A, k and U as above, so Ui = 0, i < k and Uk = A.
(1) Given a k-truncated simplicial object V we have

Mor(U, V ) = {f : A→ Vk | dki ◦ f = 0, i = 0, . . . , k}
and

Mor(V,U) = {f : Vk → A | f ◦ sk−1
i = 0, i = 0, . . . , k − 1}.

(2) The object ik!U has nth term equal to
⊕

αA where α runs over all surjective
morphisms α : [n]→ [k].

(3) For any ϕ : [m] → [n] the map ik!U(ϕ) is described as the mapping
⊕

αA →⊕
α′ Awhich maps to component corresponding to α : [n]→ [k] to zero ifα◦ϕ

is not surjective and by the identity to the component corresponding to α ◦ϕ if
it is surjective.

(4) The object coskkU has nth term equal to
⊕

β A, where β runs over all injective
morphisms β : [k]→ [n].

(5) For anyϕ : [m]→ [n] the map coskkU(ϕ) is described as the mapping
⊕

β A→⊕
β′ A which maps to component corresponding to β : [k] → [n] to zero if β

does not factor through ϕ and by the identity to each of the components corre-
sponding to β′ such that β = ϕ ◦ β′ if it does.

(6) The canonical map c : ik!U → coskkU in degree n has (α, β) coefficientA→ A
equal to zero if α ◦ β is not the identity and equal to idA if it is.

(7) The canonical map c : ik!U → coskkU is injective.

Proof. The proof of (1) is left to the reader.

Let us take the rules of (2) and (3) as the definition of a simplicial object, call it Ũ . We will
show that it is an incarnation of ik!U . This will prove (2), (3) at the same time. We have to
show that given a morphism f : U → skkV there exists a unique morphism f̃ : Ũ → V
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which recovers f upon taking the k-skeleton. From (1) we see that f corresponds with
a morphism fk : A → Vk which maps into the kernel of dki for all i. For any surjective
α : [n]→ [k] we set f̃α : A→ Vn equal to the composition f̃α = V (α)◦fk : A→ Vn. We
define f̃n : Ũn → Vn as the sum of the f̃α over α : [n]→ [k] surjective. Such a collection
of f̃α defines a morphism of simplicial objects if and only if for any ϕ : [m] → [n] the
diagram ⊕

α:[n]→[k] surjective A
f̃n

//

(3)
��

Vn

V (ϕ)

��⊕
α′:[m]→[k] surjective A

f̃m // Vm

is commutative. Choosing ϕ = α shows our choice of f̃α is uniquely determined by fk.
The commutativity in general may be checked for each summand of the left upper corner
separately. It is clear for the summands corresponding to α where α ◦ ϕ is surjective,
because those get mapped by idA to the summand with α′ = α ◦ ϕ, and we have f̃α′ =
V (α′) ◦ fk = V (α ◦ ϕ) ◦ fk = V (ϕ) ◦ f̃α. For those where α ◦ ϕ is not surjective, we
have to show that V (ϕ) ◦ f̃α = 0. By definition this is equal to V (ϕ) ◦ V (α) ◦ fk =
V (α ◦ ϕ) ◦ fk. Since α ◦ ϕ is not surjective we can write it as δki ◦ ψ, and we deduce that
V (ϕ) ◦ V (α) ◦ fk = V (ψ) ◦ dki ◦ fk = 0 see above.

Let us take the rules of (4) and (5) as the definition of a simplicial object, call it Ũ . We will
show that it is an incarnation of coskkU . This will prove (4), (5) at the same time. The
argument is completely dual to the proof of (2), (3) above, but we give it anyway. We have
to show that given a morphism f : skkV → U there exists a unique morphism f̃ : V → Ũ
which recovers f upon taking the k-skeleton. From (1) we see that f corresponds with a
morphism fk : Vk → A which is zero on the image of sk−1

i for all i. For any injective
β : [k]→ [n] we set f̃β : Vn → A equal to the composition f̃β = fk◦V (β) : Vn → A. We
define f̃n : Vn → Ũn as the sum of the f̃β over β : [k] → [n] injective. Such a collection
of f̃β defines a morphism of simplicial objects if and only if for any ϕ : [m] → [n] the
diagram

Vn

V (ϕ)

��

f̃n

//⊕
β:[k]→[n] injective A

(5)
��

Vm
f̃m //⊕

β′:[k]→[m] injective A

is commutative. Choosing ϕ = β shows our choice of f̃β is uniquely determined by
fk. The commutativity in general may be checked for each summand of the right lower
corner separately. It is clear for the summands corresponding toβ′ whereϕ◦β′ is injective,
because these summands get mapped into by exactly the summand with β = ϕ ◦ β′ and
we have in that case f̃β′ ◦V (ϕ) = fk ◦V (β′) ◦V (ϕ) = fk ◦V (β) = f̃β . For those where
ϕ ◦ β′ is not injective, we have to show that f̃β′ ◦ V (ϕ) = 0. By definition this is equal
to fk ◦ V (β′) ◦ V (ϕ) = fk ◦ V (ϕ ◦ β′). Since ϕ ◦ β′ is not injective we can write it as
ψ ◦ σk−1

i , and we deduce that fk ◦ V (β′) ◦ V (ϕ) = fk ◦ sk−1
i ◦ V (ψ) = 0 see above.

The composition ik!U → coskkU is the unique map of simplicial objects which is the
identity onA = Uk = (ik!U)k = (coskkU)k. Hence it suffices to check that the proposed
rule defines a morphism of simplicial objects. To see this we have to show that for any
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ϕ : [m]→ [n] the diagram⊕
α:[n]→[k] surjective A

(3)
��

(6)
//⊕

β:[k]→[n] injective A

(5)
��⊕

α′:[m]→[k] surjective A
(6) //⊕

β′:[k]→[m] injective A

is commutative. Now we can think of this in terms of matrices filled with only 0’s and
1’s as follows: The matrix of (3) has a nonzero (α′, α) entry if and only if α′ = α ◦ ϕ.
Likewise the matrix of (5) has a nonzero (β′, β) entry if and only if β = ϕ◦β′. The upper
matrix of (6) has a nonzero (α, β) entry if and only if α ◦ β = id[k]. Similarly for the
lower matrix of (6). The commutativity of the diagram then comes down to computing
the (α, β′) entry for both compositions and seeing they are equal. This comes down to the
following equality

#
{
β | β = ϕ ◦ β′ and α ◦ β = id[k]

}
= #

{
α′ | α′ = α ◦ ϕ and α′ ◦ β′ = id[k]

}
whose proof may safely be left to the reader.

Finally, we prove (7). This follows directly from Lemmas 18.7, 19.4, 21.3 and 21.9. �

Definition 22.3. LetA be an abelian category. LetA be an object ofA and let k be an
integer≥ 0. The Eilenberg-Maclane objectK(A, k) is given by the objectK(A, k) = ik!U
which is described in Lemma 22.2 above.

Lemma 22.4. Let A be an abelian category. Let A be an object of A and let k be an
integer ≥ 0. Consider the simplicial object E defined by the following rules

(1) En =
⊕

αA, where the sum is over α : [n]→ [k + 1] whose image is either [k]
or [k + 1].

(2) Given ϕ : [m] → [n] the map En → Em maps the summand corresponding to
α via idA to the summand corresponding to α ◦ ϕ, provided Im(α ◦ ϕ) is equal
to [k] or [k + 1].

Then there exists a short exact sequence

0→ K(A, k)→ E → K(A, k + 1)→ 0

which is term by term split exact.

Proof. The mapsK(A, k)n → En resp.En → K(A, k+1)n are given by the inclu-
sion of direct sums, resp. projection of direct sums which is obvious from the inclusions of
index sets. It is clear that these are maps of simplicial objects. �

Lemma 22.5. LetA be an abelian category. For any simplicial object V ofAwe have

V = colimn in!sknV

where all the transition maps are injections.

Proof. This is true simply because each Vm is equal to (in!sknV )m as soon as n ≥ m.
See also Lemma 21.10 for the transition maps. �
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23. Simplicial objects and chain complexes

Let A be an abelian category. See Homology, Section 13 for conventions and notation re-
garding chain complexes. Let U be a simplicial object ofA. The associated chain complex
s(U) of U , sometimes called the Moore complex, is the chain complex

. . .→ U2 → U1 → U0 → 0→ 0→ . . .

with boundary maps dn : Un → Un−1 given by the formula

dn =
∑n

i=0
(−1)idni .

This is a complex because, by the relations listed in Remark 3.3, we have

dn ◦ dn+1 = (
∑n

i=0
(−1)idni ) ◦ (

∑n+1

j=0
(−1)jdn+1

j )

=
∑

0≤i<j≤n+1
(−1)i+jdnj−1 ◦ dn+1

i +
∑

n≥i≥j≥0
(−1)i+jdni ◦ dn+1

j

= 0.
The signs cancel! We denote the associated chain complex s(U). Clearly, the construction
is functorial and hence defines a functor

s : Simp(A) −→ Ch≥0(A).
Thus we have the confusing but correct formula s(U)n = Un.

Lemma 23.1. The functor s is exact.

Proof. Clear from Lemma 22.1. �

Lemma 23.2. Let A be an abelian category. Let A be an object of A and let k be an
integer. Let E be the object described in Lemma 22.4. Then the complex s(E) is acyclic.

Proof. For a morphism α : [n] → [k + 1] we define α′ : [n + 1] → [k + 1] to be
the map such that α′|[n] = α and α′(n + 1) = k + 1. Note that if the image of α is [k]
or [k + 1], then the image of α′ is [k + 1]. Consider the family of maps hn : En → En+1
which maps the summand corresponding to α to the summand corresponding to α′ via
the identity onA. Let us compute dn+1 ◦hn−hn−1 ◦ dn. We will first do this in case the
category A is the category of abelian groups. Let us use the notation xα to indicate the
element x ∈ A in the summand ofEn corresponding to the map α occurring in the index
set. Let us also adopt the convention that xα designates the zero element of En whenever
Im(α) is not [k] or [k + 1]. With these conventions we see that

dn+1(hn(xα)) =
∑n+1

i=0
(−1)ixα′◦δn+1

i

and
hn−1(dn(xα)) =

∑n

i=0
(−1)ix(α◦δn

i
)′

It is easy to see that α′ ◦ δn+1
i = (α ◦ δni )′ for i = 0, . . . , n. It is also easy to see that

α′ ◦ δn+1
n+1 = α. Thus we see that

(dn+1 ◦ hn − hn−1 ◦ dn)(xα) = (−1)n+1xα

These identities continue to hold if A is any abelian category because they hold in the
simplicial abelian group [n] 7→ Hom(A,En); details left to the reader. We conclude that
the identity map on E is homotopic to zero, with homotopy given by the system of maps
h′
n = (−1)n+1hn : En → En+1. Hence we see that E is acyclic, for example by Homol-

ogy, Lemma 13.5. �
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Lemma 23.3. Let A be an abelian category. Let A be an object of A and let k be an
integer. We have Hi(s(K(A, k))) = A if i = k and 0 else.

Proof. First, let us prove this if k = 0. In this case we have K(A, 0)n = A for all n.
Furthermore, all the maps in this simplicial abelian group are idA, in other wordsK(A, 0)
is the constant simplicial object with valueA. The boundary maps dn =

∑n
i=0(−1)iidA =

0 if n odd and = idA if n is even. Thus s(K(A, 0)) looks like this

. . .→ A
0−→ A

1−→ A
0−→ A→ 0

and the result is clear.

Next, we prove the result for all k by induction. Given the result for k consider the short
exact sequence

0→ K(A, k)→ E → K(A, k + 1)→ 0
from Lemma 22.4. By Lemma 22.1 the associated sequence of chain complexes is exact. By
Lemma 23.2 we see that s(E) is acyclic. Hence the result for k + 1 follows from the long
exact sequence of homology, see Homology, Lemma 13.6. �

There is a second chain complex we can associate to a simplicial object of A. Recall
that by Lemma 18.6 any simplicial object U of A is canonically split with N(Um) =⋂m−1
i=0 Ker(dmi ). We define the normalized chain complex N(U) to be the chain com-

plex
. . .→ N(U2)→ N(U1)→ N(U0)→ 0→ 0→ . . .

with boundary map dn : N(Un) → N(Un−1) given by the restriction of (−1)ndnn to
the direct summand N(Un) of Un. Note that Lemma 18.8 implies that dnn(N(Un)) ⊂
N(Un−1). It is a complex because dnn ◦ dn+1

n+1 = dnn ◦ dn+1
n and dn+1

n is zero on N(Un+1)
by definition. Thus we obtain a second functor

N : Simp(A) −→ Ch≥0(A).

Here is the reason for the sign in the differential.

Lemma 23.4. Let A be an abelian category. Let U be a simplicial object of A. The
canonical map N(Un)→ Un gives rise to a morphism of complexes N(U)→ s(U).

Proof. This is clear because the differential on s(U)n = Un is
∑

(−1)idni and the
maps dni , i < n are zero on N(Un), whereas the restriction of (−1)ndnn is the boundary
map of N(U) by definition. �

Lemma 23.5. Let A be an abelian category. Let A be an object of A and let k be an
integer. We have N(K(A, k))i = A if i = k and 0 else.

Proof. It is clear that N(K(A, k))i = 0 when i < k because K(A, k)i = 0 in
that case. It is clear that N(K(A, k))k = A since K(A, k)k−1 = 0 and K(A, k)k = A.
For i > k we have N(K(A, k))i = 0 by Lemma 21.9 and the definition of K(A, k), see
Definition 22.3. �

Lemma 23.6. Let A be an abelian category. Let U be a simplicial object of A. The
canonical morphism of chain complexes N(U)→ s(U) is split. In fact,

s(U) = N(U)⊕D(U)

for some complex D(U). The construction U 7→ D(U) is functorial.
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Proof. Define D(U)n to be the image of⊕
ϕ:[n]→[m] surjective, m<n

N(Um)
⊕

U(ϕ)
−−−−−→ Un

which is a subobject of Un complementary to N(Un) according to Lemma 18.6 and Def-
inition 18.1. We show that D(U) is a subcomplex. Pick a surjective map ϕ : [n] → [m]
with m < n and consider the composition

N(Um) U(ϕ)−−−→ Un
dn−→ Un−1.

This composition is the sum of the maps

N(Um) U(ϕ◦δni )−−−−−→ Un−1

with sign (−1)i, i = 0, . . . , n.

First we will prove by ascending induction on m, 0 ≤ m < n − 1 that all the maps
U(ϕ◦ δni ) mapN(Um) intoD(U)n−1. (The casem = n−1 is treated below.) Whenever
the map ϕ ◦ δni : [n − 1] → [m] is surjective then the image of N(Um) under U(ϕ ◦ δni )
is contained in D(U)n−1 by definition. If ϕ ◦ δni : [n − 1] → [m] is not surjective, set
j = ϕ(i) and observe that i is the unique index whose image under ϕ is j. We may write
ϕ ◦ δni = δmj ◦ψ ◦ δni for some ψ : [n− 1]→ [m− 1]. Hence U(ϕ ◦ δni ) = U(ψ ◦ δni ) ◦dmj
which is zero on N(Um) unless j = m. If j = m, then dmm(N(Um)) ⊂ N(Um−1) and
hence U(ϕ ◦ δni )(N(Um)) ⊂ U(ψ ◦ δni )(N(Um−1)) and we win by induction hypothesis.

To finish proving that D(U) is a subcomplex we still have to deal with the composition

N(Um) U(ϕ)−−−→ Un
dn−→ Un−1.

in case m = n − 1. In this case ϕ = σn−1
j for some 0 ≤ j ≤ n − 1 and U(ϕ) = sn−1

j .
Thus the composition is given by the sum∑

(−1)idni ◦ sn−1
j

Recall from Remark 3.3 that dnj ◦ s
n−1
j = dnj+1 ◦ s

n−1
j = id and these drop out be-

cause the corresponding terms have opposite signs. The map dnn ◦ sn−1
j , if j < n − 1, is

equal to sn−2
j ◦ dn−1

n−1. Since dn−1
n−1 maps N(Un−1) into N(Un−2), we see that the image

dnn(sn−1
j (N(Un−1)) is contained in sn−2

j (N(Un−2)) which is contained in D(Un−1) by
definition. For all other combinations of (i, j) we have either dni ◦ s

n−1
j = sn−2

j−1 ◦ d
n−1
i

(if i < j), or dni ◦ s
n−1
j = sn−2

j ◦ dn−1
i−1 (if n > i > j + 1) and in these cases the map is

zero because of the definition of N(Un−1). �

Remark 23.7. In the situation of Lemma 23.6 the subcomplexD(U) ⊂ s(U) can also
be defined as the subcomplex with terms

D(U)n = Im
(⊕

ϕ:[n]→[m] surjective, m<n
Um

⊕
U(ϕ)

−−−−−→ Un

)
Namely, since Um is the direct sum of the subobject N(Um) and the images of N(Uk) for
surjections [m] → [k] with k < m this is clearly the same as the definition of D(U)n
given in the proof of Lemma 23.6. Thus we see that if U is a simplicial abelian group, then
elements of D(U)n are exactly the sums of degenerate n-simplices.

Lemma 23.8. The functor N is exact.
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Proof. By Lemma 23.1 and the functorial decomposition of Lemma 23.6. �

Lemma 23.9. Let A be an abelian category. Let V be a simplicial object of A. The
canonical morphism of chain complexes N(V )→ s(V ) is a quasi-isomorphism. In other
words, the complex D(V ) of Lemma 23.6 is acyclic.

Proof. Note that the result holds for K(A, k) for any object A and any k ≥ 0, by
Lemmas 23.3 and 23.5. Consider the hypothesis IHn,m: for all V such that Vj = 0 for
j ≤ m and all i ≤ n the map N(V ) → s(V ) induces an isomorphism Hi(N(V )) →
Hi(s(V )).

To start of the induction, note that IHn,n is trivially true, because in that caseN(V )n = 0
and s(V )n = 0.

Assume IHn,m, with m ≤ n. Pick a simplicial object V such that Vj = 0 for j < m.
By Lemma 22.2 and Definition 22.3 we haveK(Vm,m) = im!skmV . By Lemma 21.10 the
natural morphism

K(Vm,m) = im!skmV → V

is injective. Thus we get a short exact sequence

0→ K(Vm,m)→ V →W → 0

for someW withWi = 0 for i = 0, . . . ,m. This short exact sequence induces a morphism
of short exact sequence of associated complexes

0 // N(K(Vm,m)) //

��

N(V ) //

��

N(W ) //

��

0

0 // s(K(Vm,m)) // s(V ) // s(W ) // 0

see Lemmas 23.1 and 23.8. Hence we deduce the result for V from the result on the ends.
�

24. Dold-Kan

In this section we prove the Dold-Kan theorem relating simplicial objects in an abelian
category with chain complexes.

Lemma 24.1. Let A be an abelian category. The functor N is faithful, and reflects
isomorphisms, injections and surjections.

Proof. The faithfulness is immediate from the canonical splitting of Lemma 18.6.
The statement on reflecting injections, surjections, and isomorphisms follows from Lemma
18.7. �

Lemma 24.2. Let A and B be abelian categories. Let N : A → B, and S : B → A be
functors. Suppose that

(1) the functors S and N are exact,
(2) there is an isomorphism g : N ◦ S → idB to the identity functor of B,
(3) N is faithful, and
(4) S is essentially surjective.

Then S and N are quasi-inverse equivalences of categories.
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Proof. It suffices to construct a functorial isomorphism S(N(A)) ∼= A. To do this
choose B and an isomorphism f : A→ S(B). Consider the map

f−1 ◦ gS(B) ◦ S(N(f)) : S(N(A))→ S(N(S(B)))→ S(B)→ A.

It is easy to show this does not depend on the choice of f,B and gives the desired isomor-
phism S ◦N → idA. �

Theorem 24.3. LetA be an abelian category. The functorN induces an equivalence
of categories

N : Simp(A) −→ Ch≥0(A)

Proof. We will describe a functor in the reverse direction inspired by the construc-
tion of Lemma 22.4 (except that we throw in a sign to get the boundaries right). Let A•
be a chain complex with boundary maps dA,n : An → An−1. For each n ≥ 0 denote

In =
{
α : [n]→ {0, 1, 2, . . .} | Im(α) = [k] for some k

}
.

For α ∈ In we denote k(α) the unique integer such that Im(α) = [k]. We define a
simplicial object S(A•) as follows:

(1) S(A•)n =
⊕

α∈In Ak(α), which we will write as
⊕

α∈In Ak(α) · α to suggest
thinking of “α” as a basis vector for the summand corresponding to it,

(2) givenϕ : [m]→ [n] we defineS(A•)(ϕ) by its restriction to the direct summand
Ak(α) · α of S(A•)n as follows
(a) α ◦ ϕ 6∈ Im then we set it equal to zero,
(b) α ◦ ϕ ∈ Im but k(α ◦ ϕ) not equal to either k(α) or k(α) − 1 then we set

it equal to zero as well,
(c) if α ◦ ϕ ∈ Im and k(α ◦ ϕ) = k(α) then we use the identity map to the

summand Ak(α◦ϕ) · (α ◦ ϕ) of S(A•)m, and
(d) if α ◦ϕ ∈ Im and k(α ◦ϕ) = k(α)− 1 then we use (−1)k(α)dA,k(α) to the

summand Ak(α◦ϕ) · (α ◦ ϕ) of S(A•)m.
Let us show that S(A•) is a simplicial object of A. To do this, assume we have maps ϕ :
[m]→ [n] and ψ : [n]→ [p]. We will show that S(A•)(ϕ) ◦ S(A•)(ψ) = S(A•)(ψ ◦ ϕ).
Choose β ∈ Ip and set α = β ◦ ψ and γ = α ◦ ϕ viewed as maps α : [n] → {0, 1, 2, . . .}
and γ : [m]→ {0, 1, 2, . . .}. Picture

[m]
ϕ

//

γ

��

[n]
ψ

//

α

��

[p]

β

��
Im(γ) // Im(α) // [k(β)]

We will show that the restriction of the maps S(A•)(ϕ) ◦ S(A•)(ψ) and S(A•)(ψ ◦ ϕ).
to the summand Ak(β) · β agree. There are several cases to consider

(1) Say α 6∈ In so the restriction of S(A•)(ψ) to Ak(β) · β is zero. Then either
γ 6∈ Im or we have [k(γ)] = Im(γ) ⊂ Im(α) ⊂ [k(β)] and the subset Im(α) of
[k(β)] has a gap so k(γ) < k(β)− 1. In both cases we see that the restriction of
S(A•)(ψ ◦ ϕ) to Ak(β) · β is zero as well.

(2) Say α ∈ In and k(α) < k(β)− 1 so the restriction of S(A•)(ψ) to Ak(β) · β is
zero. Then either γ 6∈ Im or we have [k(γ)] ⊂ [k(α)] ⊂ [k(β)] and it follows
that k(γ) < k(β)− 1. In both cases we see that the restriction of S(A•)(ψ ◦ ϕ)
to Ak(β) · β is zero as well.
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(3) Say α ∈ In and k(α) = k(β) so the restriction of S(A•)(ψ) to Ak(β) · β is
the identity map from Ak(β) · β to Ak(α) · α. In this case because Im(α) =
[k(β)] the rule describing the restriction ofS(A•)(ψ◦ϕ) to the summandAk(β) ·
β is exactly the same as the rule describing the restriction of S(A•)(ϕ) to the
summand Ak(α) · α and hence agreement holds.

(4) Say α ∈ In and k(α) = k(β)− 1 so the restriction of S(A•)(ψ) to Ak(β) · β is
given by (−1)k(β)dA,k(β) to Ak(α) · α. Subcases
(a) If γ 6∈ Im, then both the restriction ofS(A•)(ψ◦ϕ) to the summandAk(β) ·

β and the restriction of S(A•)(ϕ) to the summand Ak(α) · α are zero and
we get agreement.

(b) If γ ∈ Im but k(γ) < k(α) − 1, then again both restrictions are zero and
we get agreement.

(c) If γ ∈ Im and k(γ) = k(α) then Im(γ) = Im(α). In this case the restric-
tion of S(A•)(ψ ◦ϕ) to the summandAk(β) ·β is given by (−1)k(β)dA,k(β)
to Ak(γ) · γ and the restriction of S(A•)(ϕ) to the summand Ak(α) · α is
the identity map Ak(α) · α→ Ak(γ) · γ. Hence agreement holds.

(d) Finally, if γ ∈ Im and k(γ) = k(α)−1 then the restriction of S(A•)(ϕ) to
the summand Ak(α) · α is given by (−1)k(α)dA,k(α) as a map Ak(α) · α →
Ak(β) · β. Since A• is a complex we see that the composition Ak(β) · β →
Ak(α)·α→ Ak(γ)·γ is zero which matches what we get for the restriction of
S(A•)(ψ◦ϕ) to the summandAk(β)·β because k(γ) = k(β)−2 < k(β)−1.

Thus S(A•) is a simplicial object ofA.

Let us construct an isomorphism A• → N(S(A•)) functorial in A•. Recall that

S(A•) = N(S(A•))⊕D(S(A•))

as chain complexes by Lemma 23.6. On the other hand it follows from Remark 23.7 and
the construction of S(A•) that

D(S(A•))n =
⊕

α∈In, k(α)<n
Ak(α) · α ⊂

⊕
α∈In

Ak(α) · α

However, if α ∈ In then we have k(α) ≥ n ⇔ α = id[n] : [n] → [n]. Thus the
summand An · id[n] of S(A•)n is a complement to the summand D(S(A•))n. All the
maps dni : S(A•)n → S(A•)n restrict to zero on the summand An · id[n] except for dnn
which produces (−1)ndA,n from An · id[n] to An−1 · id[n−1]. We conclude that An · id[n]
must be equal to the summandN(S(A•))n and moreover the restriction of the differential
dn =

∑
(−1)idni : S(A•)n → S(A•)n−1 to the summand An · id[n] gives what we want!

Finally, we have to show that S ◦ N is isomorphic to the identity functor. Let U be a
simplicial object ofA. Then we can define an obvious map

S(N(U))n =
⊕

α∈In
N(U)k(α) · α −→ Un

by using U(α) : N(U)k(α) → Un on the summand corresponding to α. By Definition
18.1 this is an isomorphism. To finish the proof we have to show that this is compatible
with the maps in the simplicial objects. Thus let ϕ : [m] → [n] and let α ∈ In. Set
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β = α ◦ ϕ. Picture
[m]

ϕ
//

β

��

[n]

α

��
Im(β) // [k(α)]

There are several cases to consider
(1) Say β 6∈ Im. Then there exists an index 0 ≤ j < k(α) with j 6∈ Im(α ◦ ϕ)

and hence we can choose a factorization α ◦ ϕ = δ
k(α)
j ◦ ψ for some ψ : [m]→

[k(α)−1]. It follows thatU(ϕ) is zero on the image of the summandN(U)k(α)·α
because U(ϕ) ◦ U(α) = U(α ◦ ϕ) = U(ψ) ◦ dk(α)

j is zero on N(U)k(α) by
construction of N . This matches our rule for S(N(U)) given above.

(2) Say β ∈ Im and k(β) < k(α) − 1. Here we argue exactly as in case (1) with
j = k(α)− 1.

(3) Say β ∈ Im and k(β) = k(α). Here the summand N(U)k(α) · α is mapped by
the identity to the summandN(U)k(β) ·β. This is the same as the effect ofU(ϕ)
since in this case U(ϕ) ◦ U(α) = U(β).

(4) Sayβ ∈ Im and k(β) = k(α)−1. Here we use the differential (−1)k(α)dN(U),k(α)
to map the summandN(U)k(α) ·α to the summandN(U)k(β) ·β. On the other
hand, since Im(β) = [k(β)] in this case we getα◦ϕ = δ

k(α)
k(α)◦β. Thus we see that

U(ϕ) composed with the restriction of U(α) to N(U)k(α) is equal to U(β) pre-
composed with dk(α)

k(α) restricted toN(U)k(α). Since dN(U),k(α) =
∑

(−1)idk(α)
i

and since dk(α)
i restricts to zero on N(U)k(α) for i < k(α) we see that equality

holds.
This finishes the proof of the theorem. �

25. Dold-Kan for cosimplicial objects

LetA be an abelian category. According to Homology, Lemma 5.2 alsoAopp is abelian. It
follows formally from the definitions that

CoSimp(A) = Simp(Aopp)opp.
Thus Dold-Kan (Theorem 24.3) implies that CoSimp(A) is equivalent to the category
Ch≥0(Aopp)opp. And it follows formally from the definitions that

CoCh≥0(A) = Ch≥0(Aopp)opp.
Putting these arrows together we obtain an equivalence

Q : CoSimp(A) −→ CoCh≥0(A).
In this section we describe Q.

First we define the cochain complex s(U) associated to a cosimplicial object U . It is the
cochain complex with terms zero in negative degrees, and s(U)n = Un for n ≥ 0. As
differentials we use the maps dn : s(U)n → s(U)n+1 defined by dn =

∑n+1
i=0 (−1)iδn+1

i .
In other words the complex s(U) looks like

0 // U0
δ1

0−δ1
1 // U1

δ2
0−δ2

1+δ2
2 // U2 // . . .

This is sometimes also called the Moore complex associated to U .
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On the other hand, given a cosimplicial object U ofA set Q(U)0 = U0 and

Q(U)n = Coker(
⊕n−1

i=0 Un−1
δni // Un ).

The differential dn : Q(U)n → Q(U)n+1 is induced by (−1)n+1δn+1
n+1 , i.e., by fitting the

morphism (−1)n+1δn+1
n+1 into a commutative diagram

Un
(−1)n+1δn+1

n+1

//

��

Un+1

��
Q(U)n dn // Q(U)n+1.

We leave it to the reader to show that this diagram makes sense, i.e., that the image of δni
maps into the kernel of the right vertical arrow for i = 0, . . . , n − 1. (This is dual to
Lemma 18.8.) Thus our cochain complex Q(U) looks like this

0→ Q(U)0 → Q(U)1 → Q(U)2 → . . .

This is called the normalized cochain complex associated to U . The dual to the Dold-Kan
Theorem 24.3 is the following.

Lemma 25.1. LetA be an abelian category.
(1) The functor s : CoSimp(A)→ CoCh≥0(A) is exact.
(2) The maps s(U)n → Q(U)n define a morphism of cochain complexes.
(3) There exists a functorial direct sum decomposition s(U) = D(U) ⊕ Q(U) in

CoCh≥0(A).
(4) The functor Q is exact.
(5) The morphism of complexes s(U)→ Q(U) is a quasi-isomorphism.
(6) The functor U 7→ Q(U)• defines an equivalence of categories CoSimp(A) →

CoCh≥0(A).

Proof. Omitted. But the results are the exact dual statements to Lemmas 23.1, 23.4,
23.6, 23.8, 23.9, and Theorem 24.3. �

26. Homotopies

Consider the simplicial sets ∆[0] and ∆[1]. Recall that there are two morphisms
e0, e1 : ∆[0] −→ ∆[1],

coming from the morphisms [0] → [1] mapping 0 to an element of [1] = {0, 1}. Recall
also that each set ∆[1]k is finite. Hence, if the category C has finite coproducts, then we
can form the product

U ×∆[1]
for any simplicial object U of C , see Definition 13.1. Note that ∆[0] has the property that
∆[0]k = {∗} is a singleton for all k ≥ 0. Hence U ×∆[0] = U . Thus e0, e1 above gives
rise to morphisms

e0, e1 : U → U ×∆[1].

Definition 26.1. Let C be a category having finite coproducts. Suppose that U and
V are two simplicial objects of C. Let a, b : U → V be two morphisms.

(1) We say a morphism
h : U ×∆[1] −→ V

is a homotopy from a to b if a = h ◦ e0 and b = h ◦ e1.
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(2) We say the morphisms a and b are homotopic or are in the same homotopy class
if there exists a sequence of morphisms a = a0, a1, . . . , an = b from U to V
such that for each i = 1, . . . , n there either exists a homotopy from ai−1 to ai
or there exists a homotopy from ai to ai−1.

The relation “there is a homotopy from a to b” is in general not transitive or symmetric;
we will see it is reflexive in Example 26.3. Of course, “being homotopic” is an equivalence
relation on the set Mor(U, V ) and it is the equivalence relation generated by the relation
“there is a homotopy from a to b” . It turns out we can define homotopies between pairs of
maps of simplicial objects in any category. We will do this in Remark 26.4 after we work
out in some detail what it means to have a morphism h : U ×∆[1]→ V .
Let C be a category with finite coproducts. Let U , V be simplicial objects of C. Let a, b :
U → V be morphisms. Further, suppose that h : U ×∆[1]→ V is a homotopy from a to
b. For every n ≥ 0 let us write

∆[1]n = {αn0 , . . . , αnn+1}
where αni : [n]→ [1] is the map such that

αni (j) =
{

0 if j < i
1 if j ≥ i

Thus
hn : (U ×∆[1])n =

∐
Un · αni −→ Vn

has a component hn,i : Un → Vn which is the restriction to the summand corresponding
to αni for all i = 0, . . . , n+ 1.

Lemma 26.2. In the situation above, we have the following relations:
(1) We have hn,0 = bn and hn,n+1 = an.
(2) We have dnj ◦ hn,i = hn−1,i−1 ◦ dnj for i > j.
(3) We have dnj ◦ hn,i = hn−1,i ◦ dnj for i ≤ j.
(4) We have snj ◦ hn,i = hn+1,i+1 ◦ snj for i > j.
(5) We have snj ◦ hn,i = hn+1,i ◦ snj for i ≤ j.

Conversely, given a system of maps hn,i satisfying the properties listed above, then these
define a morphism h which is a homotopy from a to b.

Proof. Omitted. You can prove the last statement using the fact, see Lemma 2.4 that
to give a morphism of simplicial objects is the same as giving a sequence of morphisms hn
commuting with all dnj and snj . �

Example 26.3. Suppose in the situation above a = b. Then there is a trivial homo-
topy from a to b, namely the one with hn,i = an = bn.

Remark 26.4. Let C be any category (no assumptions whatsoever). Let U and V
be simplicial objects of C. Let a, b : U → V be morphisms of simplicial objects of C. A
homotopy from a to b is given by morphisms1 hn,i : Un → Vn, for n ≥ 0, i = 0, . . . , n+1
satisfying the relations of Lemma 26.2. As in Definition 26.1 we say the morphisms a and
b are homotopic if there exists a sequence of morphisms a = a0, a1, . . . , an = b from U
to V such that for each i = 1, . . . , n there either exists a homotopy from ai−1 to ai or
there exists a homotopy from ai to ai−1. Clearly, if F : C → C′ is any functor and {hn,i}

1In the literature, often the maps hn+1,i ◦ si : Un → Vn+1 are used instead of the maps hn,i. Of course
the relations these maps satisfy are different from the ones in Lemma 26.2.
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is a homotopy from a to b, then {F (hn,i)} is a homotopy from F (a) to F (b). Similarly,
if a and b are homotopic, then F (a) and F (b) are homotopic. Since the lemma says that
the newer notion is the same as the old one in case finite coproduct exist, we deduce in
particular that functors preserve the original notion whenever both categories have finite
coproducts.

Remark 26.5. Let C be any category. Suppose two morphisms a, a′ : U → V of
simplicial objects are homotopic. Then for any morphism b : V → W the two maps
b ◦ a, b ◦ a′ : U → W are homotopic. Similarly, for any morphism c : X → U the two
maps a◦c, a′ ◦c : X → V are homotopic. In fact the maps b◦a◦c, b◦a′ ◦c : X →W are
homotopic. Namely, if the maps hn,i : Un → Vn define a homotopy from a to a′ then the
maps b ◦ hn,i ◦ c define a homotopy from b ◦ a ◦ c to b ◦ a′ ◦ c. In this way we see that we
obtain a new category hSimp(C) with the same objects as Simp(C) but whose morphisms
are homotopy classes of of morphisms of Simp(C). Thus there is a canonical functor

Simp(C) −→ hSimp(C)

which is essentially surjective and surjective on sets of morphisms.

Definition 26.6. Let U and V be two simplicial objects of a category C. We say a
morphism a : U → V is a homotopy equivalence if there exists a morphism b : V → U
such that a ◦ b is homotopic to idV and b ◦ a is homotopic to idU . We say U and V are
homotopy equivalent if there exists a homotopy equivalence a : U → V .

Example 26.7. The simplicial set ∆[m] is homotopy equivalent to ∆[0]. Namely,
consider the unique morphism f : ∆[m] → ∆[0] and the morphism g : ∆[0] → ∆[m]
given by the inclusion of the last 0-simplex of ∆[m]. We have f ◦ g = id. We will give a
homotopy h : ∆[m]×∆[1]→ ∆[m] from id∆[m] to g ◦f . Namely h is given by the maps

Mor∆([n], [m])×Mor∆([n], [1])→ Mor∆([n], [m])

which send (ϕ, α) to

k 7→
{
ϕ(k) if α(k) = 0
m if α(k) = 1

Note that this only works because we took g to be the inclusion of the last 0-simplex. If
we took g to be the inclusion of the first 0-simplex we could find a homotopy from g ◦ f
to id∆[m]. This is an illustration of the asymmetry inherent in homotopies in the category
of simplicial sets.

The following lemma says that U ×∆[1] is homotopy equivalent to U .

Lemma 26.8. Let C be a category with finite coproducts. Let U be a simplicial object
of C. Consider the maps e1, e0 : U → U ×∆[1], and π : U ×∆[1]→ U , see Lemma 13.3.

(1) We have π ◦ e1 = π ◦ e0 = idU , and
(2) The morphisms idU×∆[1], and e0 ◦ π are homotopic.
(3) The morphisms idU×∆[1], and e1 ◦ π are homotopic.

Proof. The first assertion is trivial. For the second, consider the map of simplicial
sets ∆[1]×∆[1] −→ ∆[1] which in degree n assigns to a pair (β1, β2), βi : [n]→ [1] the
morphism β : [n]→ [1] defined by the rule

β(i) = max{β1(i), β2(i)}.
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It is a morphism of simplicial sets, because the action ∆[1](ϕ) : ∆[1]n → ∆[1]m of ϕ :
[m] → [n] is by precomposing. Clearly, using notation from Section 26, we have β = β1
if β2 = αn0 and β = αnn+1 if β2 = αnn+1. This implies easily that the induced morphism

U ×∆[1]×∆[1] −→ U ×∆[1]

of Lemma 13.3 is a homotopy from idU×∆[1] to e0 ◦ π. Similarly for e1 ◦ π (use minimum
instead of maximum). �

Lemma 26.9. Let f : Y → X be a morphism of a category C with fibre products.
Assume f has a section s. Consider the simplicial object U constructed in Example 3.5
starting with f . The morphism U → U which in each degree is the self map (s ◦ f)n+1

of Y ×X . . . ×X Y given by s ◦ f on each factor is homotopic to the identity on U . In
particular, U is homotopy equivalent to the constant simplicial object X .

Proof. Set g0 = idY and g1 = s ◦ f . We use the morphisms

Y ×X . . .×X Y ×Mor([n], [1]) → Y ×X . . .×X Y

(y0, . . . , yn)× α 7→ (gα(0)(y0), . . . , gα(n)(yn))

where we use the functor of points point of view to define the maps. Another way to say
this is to say that hn,0 = id, hn,n+1 = (s ◦ f)n+1 and hn,i = idi+1

Y × (s ◦ f)n+1−i. We
leave it to the reader to show that these satisfy the relations of Lemma 26.2. Hence they
define the desired homotopy. See also Remark 26.4 which shows that we do not need to
assume anything else on the category C. �

Lemma 26.10. Let C be a category. Let T be a set. For t ∈ T let Xt, Yt be simplicial
objects of C. Assume X =

∏
t∈T Xt and Y =

∏
t∈T Yt exist.

(1) If Xt and Yt are homotopy equivalent for all t ∈ T and T is finite, then X and
Y are homotopy equivalent.

For t ∈ T let at, bt : Xt → Yt be morphisms. Set a =
∏
at : X → Y and b =

∏
bt :

X → Y .
(2) If there exists a homotopy from at to bt for all t ∈ T , then there exists a homo-

topy from a to b.
(3) If T is finite and at, bt : Xt → Yt for t ∈ T are homotopic, then a and b are

homotopic.

Proof. If ht = (ht,n,i) is a homotopy from at to bt (see Remark 26.4), then h =
(
∏
t ht,n,i) is a homotopy from

∏
at to

∏
bt. This proves (2).

Proof of (3). Choose t ∈ T . There exists an integern ≥ 0 and a chainat = at,0, at,1, . . . , at,n =
bt such that for every 1 ≤ i ≤ n either there is a homotopy from at,i−1 to at,i or there is
a homotopy from at,i to at,i−1. If n = 0, then we pick another t. (We’re done if at = bt
for all t ∈ T .) So assume n > 0. By Example 26.3 there are is a homotopy from bt′ to bt′
for all t′ ∈ T \ {t}. Thus by (2) there is a homotopy from at,n−1 ×

∏
t′ bt′ to b or there is

a homotopy from b to at,n−1 ×
∏
t′ bt′ . In this way we can decrease n by 1. This proves

(3).

Part (1) follows from part (3) and the definitions. �
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27. Homotopies in abelian categories

Let A be an additive category. Let U , V be simplicial objects of A. Let a, b : U → V be
morphisms. Further, suppose that h : U ×∆[1] → V is a homotopy from a to b. Let us
prove the two morphisms of chain complexes s(a), s(b) : s(U) −→ s(V ) are homotopic
in the sense of Homology, Section 13. Using the notation introduced in Section 26 we
define

s(h)n : Un −→ Vn+1

by the formula

(27.0.1) s(h)n =
∑n

i=0
(−1)i+1hn+1,i+1 ◦ sni .

Let us compute dn+1 ◦ s(h)n + s(h)n−1 ◦ dn. We first compute

dn+1 ◦ s(h)n =
∑n+1

j=0

∑n

i=0
(−1)j+i+1dn+1

j ◦ hn+1,i+1 ◦ sni

=
∑

1≤i+1≤j≤n+1
(−1)j+i+1hn,i+1 ◦ dn+1

j ◦ sni

+
∑

n≥i≥j≥0
(−1)i+j+1hn,i ◦ dn+1

j ◦ sni

=
∑

1≤i+1<j≤n+1
(−1)j+i+1hn,i+1 ◦ sn−1

i ◦ dnj−1

+
∑

1≤i+1=j≤n+1
(−1)j+i+1hn,i+1

+
∑

n≥i=j≥0
(−1)i+j+1hn,i

+
∑

n≥i>j≥0
(−1)i+j+1hn,i ◦ sn−1

i−1 ◦ d
n
j

We leave it to the reader to see that the first and the last of the four sums cancel exactly
against all the terms of

s(h)n−1 ◦ dn =
n−1∑
i=0

n∑
j=0

(−1)i+1+jhn,i+1 ◦ sn−1
i ◦ dnj .

Hence we obtain

dn+1 ◦ s(h)n + s(h)n−1 ◦ dn =
n+1∑
j=1

(−1)2jhn,j +
n∑
i=0

(−1)2i+1hn,i

= hn,n+1 − hn,0
= an − bn

as desired.

Lemma 27.1. Let A be an additive category. Let a, b : U → V be morphisms of sim-
plicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U) → s(V ) are homotopic
maps of chain complexes. If A is abelian, then also N(a), N(b) : N(U) → N(V ) are
homotopic maps of chain complexes.

Proof. We may choose a sequence a = a0, a1, . . . , an = b of morphisms from U to
V such that for each i = 1, . . . , n either there is a homotopy from ai to ai−1 or there is
a homotopy from ai−1 to ai. The calculation above shows that in this case either s(ai)
is homotopic to s(ai−1) as a map of chain complexes or s(ai−1) is homotopic to s(ai)
as a map of chain complexes. Of course, these things are equivalent and moreover being
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homotopic is an equivalence relation on the set of maps of chain complexes, see Homology,
Section 13. This proves that s(a) and s(b) are homotopic as maps of chain complexes.

Next, we turn to N(a) and N(b). It follows from Lemma 23.6 that N(a), N(b) are com-
positions

N(U)→ s(U)→ s(V )→ N(V )

where we use s(a), s(b) in the middle. Hence the assertion follows from Homology, Lemma
13.1. �

Lemma 27.2. Let A be an additive category. Let a : U → V be a morphism of
simplicial objects of A. If a is a homotopy equivalence, then s(a) : s(U) → s(V ) is a
homotopy equivalence of chain complexes. If in addition A is abelian, then also N(a) :
N(U)→ N(V ) is a homotopy equivalence of chain complexes.

Proof. Omitted. See Lemma 27.1 above. �

28. Homotopies and cosimplicial objects

Let C be a category with finite products. Let V be a cosimplicial object and consider
Hom(∆[1], V ), see Section 14. The morphisms e0, e1 : ∆[0] → ∆[1] produce two mor-
phisms e0, e1 : Hom(∆[1], V )→ V .

Definition 28.1. Let C be a category having finite products. Let U and V be two
cosimplicial objects of C. Let a, b : U → V be two morphisms of cosimplicial objects of C.

(1) We say a morphism

h : U −→ Hom(∆[1], V )

such that a = e0 ◦ h and b = e1 ◦ h is a homotopy from a to b.
(2) We say a and b are homotopic or are in the same homotopy class if there exists a

sequence a = a0, a1, . . . , an = b of morphisms from U to V such that for each
i = 1, . . . , n there either exists a homotopy from ai to ai−1 or there exists a
homotopy from ai−1 to ai.

This is dual to the notion we introduced for simplicial objects in Section 26. To explain
this, consider a homotopy h : U → Hom(∆[1], V ) from a to b as in the definition. Recall
that ∆[1]n is a finite set. The degree n component of h is a morphism

hn = (hn,α) : U −→ Hom(∆[1], V )n =
∏

α∈∆[1]n
Vn

The morphisms hn,α : Un → Vn of C have the property that for every morphism f :
[n]→ [m] of ∆ we have

(28.1.1) hm,α ◦ U(f) = V (f) ◦ hn,α◦f

Moreover, the condition that a = e0 ◦hmeans that an = hn,0:[n]→[1] where 0 : [n]→ [1]
is the constant map with value 0. Similarly, the condition that b = e1 ◦ h means that
bn = hn,1:[n]→[1] where 1 : [n]→ [1] is the constant map with value 1. Conversly, given
a family of morphisms {hn,α} such that (28.1.1) holds for all morphisms f of ∆ and such
that an = hn,0:[n]→[1] and bn = hn,1:[n]→[1] for all n ≥ 0, then we obtain a homotopy h
from a to b by setting h =

∏
α∈∆[1]n hn,α.
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Remark 28.2. Let C be any category (no assumptions whatsoever). Let U and V
be cosimplicial objects of C. Let a, b : U → V be morphisms of cosimplicial objects
of C. A homotopy from a to b is given by morphisms hn,α : Un → Vn, for n ≥ 0,
α ∈ ∆[1]n satisfying (28.1.1) for all morphisms f of ∆ and such that an = hn,0:[n]→[1]
and bn = hn,1:[n]→[1] for all n ≥ 0. As in Definition 28.1 we say the morphisms a and b
are homotopic if there exists a sequence of morphisms a = a0, a1, . . . , an = b from U to
V such that for each i = 1, . . . , n there either exists a homotopy from ai−1 to ai or there
exists a homotopy from ai to ai−1. Clearly, if F : C → C′ is any functor and {hn,i} is a
homotopy from a to b, then {F (hn,i)} is a homotopy from F (a) to F (b). Similarly, if a
and b are homotopic, then F (a) and F (b) are homotopic. This new notion is the same as
the old one in case finite products exist. We deduce in particular that functors preserve
the original notion whenever both categories have finite products.

Lemma 28.3. Let C be a category. Suppose thatU andV are two cosimplicial objects of
C. Let a, b : U → V be morphisms of cosimplicial objects. Recall that U , V correspond to
simplicial objectsU ′, V ′ of Copp. Moreover a, b correspond to morphisms a′, b′ : V ′ → U ′.
The following are equivalent

(1) There exists a homotopy h = {hn,α} from a to b as in Remark 28.2.
(2) There exists a homotopy h = {hn,i} from a′ to b′ as in Remark 26.4.

Thus a is homotopic to b as in Remark 28.2 if and only if a′ is homotopic to b′ as in Remark
26.4.

Proof. In case C has finite products, then Copp has finite coproducts and we may
use Definitions 28.1 and 26.1 instead of Remarks 28.2 and 26.4. In this case h : U →
Hom(∆[1], V ) is the same as a morphism h′ : Hom(∆[1], V )′ → U ′. Since products
and coproducts get switched too, it is immediate that (Hom(∆[1], V ))′ = V ′ × ∆[1].
Moreover, the “primed” version of the morphisms e0, e1 : Hom(∆[1], V ) → V are the
morphisms e0, e1 : V ′ → ∆[1] × V . Thus e0 ◦ h = a translates into h′ ◦ e0 = a′ and
similarly e1 ◦ h = b translates into h′ ◦ e1 = b′. This proves the lemma in this case.

In the general case, one needs to translate the relations given by (28.1.1) into the relations
given in Lemma 26.2. We omit the details.

The final assertion is formal from the equivalence of (1) and (2). �

Lemma 28.4. Let C, C′,D,D′ be categories. With terminology as in Remarks 28.2
and 26.4.

(1) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → D′ be
a covariant functor. If a and b are homotopic, then F (a), F (b) are homotopic
morphisms F (U)→ F (V ) of simplicial objects.

(2) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → C′ be
a covariant functor. If a and b are homotopic, then F (a), F (b) are homotopic
morphisms F (U)→ F (V ) of cosimplicial objects.

(3) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → C be a
contravariant functor. If a and b are homotopic, then F (a), F (b) are homotopic
morphisms F (V )→ F (U) of cosimplicial objects.

(4) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → D be a
contravariant functor. If a and b are homotopic, then F (a), F (b) are homotopic
morphisms F (V )→ F (U) of simplicial objects.
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Proof. By Lemma 28.3 above, we can turn F into a covariant functor between a pair
of categories, and we have to show that the functor preserves homotopic pairs of maps.
This is explained in Remark 26.4. �

Lemma 28.5. Let f : X → Y be a morphism of a category C with pushouts. Assume
there is a morphism s : Y → X with s ◦ f = idX . Consider the cosimplicial object U
constructed in Example 5.5 starting with f . The morphism U → U which in each degree
is the self map of Y qX . . .qX Y given by f ◦s on each factor is homotopic to the identity
on U . In particular, U is homotopy equivalent to the constant cosimplicial object X .

Proof. This lemma is dual to Lemma 26.9. Hence this lemma follows on applying
Lemma 28.3. �

Lemma 28.6. LetA be an additive category. Let a, b : U → V be morphisms of cosim-
plicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U) → s(V ) are homotopic
maps of cochain complexes. If in additionA is abelian, thenQ(a), Q(b) : Q(U)→ Q(V )
are homotopic maps of cochain complexes.

Proof. Let (−)′ : A → Aopp be the contravariant functor A 7→ A. By Lemma
28.5 the maps a′ and b′ are homotopic. By Lemma 27.1 we see that s(a′) and s(b′) are
homotopic maps of chain complexes. Since s(a′) = (s(a))′ and s(b′) = (s(b))′ we con-
clude that also s(a) and s(b) are homotopic by applying the additive contravariant functor
(−)′′ : Aopp → A. The result for theQ-complexes follows in the same manner using that
Q(U)′ = N(U ′). �

Lemma 28.7. Let A be an additive category. Let a : U → V be a morphism of
cosimplicial objects of A. If a is a homotopy equivalence, then s(a) : s(U) → s(V ) is a
homotopy equivalence of chain complexes. If in addition A is abelian, then also Q(a) :
Q(U)→ Q(V ) is a homotopy equivalence of chain complexes.

Proof. Omitted. See Lemma 28.6 above. �

29. More homotopies in abelian categories

LetA be an abelian category. In this section we show that a homotopy between morphisms
in Ch≥0(A) always comes from a morphism U ×∆[1]→ V in the category of simplicial
objects. In some sense this will provide a converse to Lemma 27.1. We first develop some
material on homotopies between morphisms of chain complexes.

Lemma 29.1. Let A be an abelian category. Let A be a chain complex. Consider the
covariant functor

B 7−→ {(a, b, h) | a, b : A→ B and h a homotopy between a, b}

There exists a chain complex �A such that MorCh(A)(�A,−) is isomorphic to the dis-
played functor. The construction A 7→ �A is functorial.

Proof. We set �An = An ⊕An ⊕An−1, and we define d�A,n by the matrix

d�A,n =

dA,n 0 idAn−1

0 dA,n −idAn−1

0 0 −dA,n−1

 : An ⊕An ⊕An−1 → An−1 ⊕An−1 ⊕An−2

IfA is the category of abelian groups, and (x, y, z) ∈ An⊕An⊕An−1 then d�A,n(x, y, z) =
(dn(x) + z, dn(y)− z,−dn−1(z)). It is easy to verify that d2 = 0. Clearly, there are two



1196 14. SIMPLICIAL METHODS

maps �a, �b : A → �A (first summand and second summand), and a map �A → A[−1]
which give a short exact sequence

0→ A⊕A→ �A→ A[−1]→ 0

which is termwise split. Moreover, there is a sequence of maps �hn : An → �An+1,
namely the identity from An to the summand An of �An+1, such that �h is a homotopy
between �a and �b.

We conclude that any morphism f : �A → B gives rise to a triple (a, b, h) by setting
a = f ◦ �a, b = f ◦ �b and hn = fn+1 ◦ �hn. Conversely, given a triple (a, b, h) we get a
morphism f : �A→ B by taking

fn = (an, bn, hn−1).

To see that this is a morphism of chain complexes you have to do a calculation. We only do
this in caseA is the category of abelian groups: Say (x, y, z) ∈ �An = An ⊕An ⊕An−1.
Then

fn−1(dn(x, y, z)) = fn−1(dn(x) + z, dn(y)− z,−dn−1(z))
= an(dn(x)) + an(z) + bn(dn(y))− bn(z)− hn−2(dn−1(z))

and

dn(fn(x, y, z) = dn(an(x) + bn(y) + hn−1(z))
= dn(an(x)) + dn(bn(y)) + dn(hn−1(z))

which are the same by definition of a homotopy. �

Note that the extension

0→ A⊕A→ �A→ A[−1]→ 0

comes with sections of the morphisms �An → A[−1]n with the property that the as-
sociated morphism δ : A[−1] → (A ⊕ A)[−1], see Homology, Lemma 14.4 equals the
morphism (1,−1) : A[−1]→ A[−1]⊕A[−1].

Lemma 29.2. LetA be an abelian category. Let

0→ A⊕A→ B → C → 0

be a short exact sequence of chain complexes ofA. Suppose given in addition morphisms
sn : Cn → Bn splitting the associated short exact sequence in degree n. Let δ(s) : C →
(A⊕A)[−1] = A[−1]⊕A[−1] be the associated morphism of complexes, see Homology,
Lemma 14.4. If δ(s) factors through the morphism (1,−1) : A[−1] → A[−1] ⊕ A[−1],
then there is a unique morphism B → �A fitting into a commutative diagram

0 // A⊕A

��

// B //

��

C

��

// 0

0 // A⊕A // �A // A[−1] // 0

where the vertical maps are compatible with the splittings sn and the splittings of �An →
A[−1]n as well.
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Proof. Denote (pn, qn) : Bn → An ⊕ An the morphism πn of Homology, Lemma
14.4. Also write (a, b) : A ⊕ A → B, and r : B → C for the maps in the short exact
sequence. Write the factorization of δ(s) as δ(s) = (1,−1) ◦ f . This means that pn−1 ◦
dB,n ◦ sn = fn, and qn−1 ◦ dB,n ◦ sn = −fn, and Set Bn → �An = An ⊕ An ⊕ An−1
equal to (pn, qn, fn ◦ rn).

Now we have to check that this actually defines a morphism of complexes. We will only do
this in the case of abelian groups. Pick x ∈ Bn. Then x = an(x1) + bn(x2) + sn(x3) and
it suffices to show that our definition commutes with differential for each term separately.
For the term an(x1) we have (pn, qn, fn ◦ rn)(an(x1)) = (x1, 0, 0) and the result is
obvious. Similarly for the term bn(x2). For the term sn(x3) we have

(pn, qn, fn ◦ rn)(dn(sn(x3))) = (pn, qn, fn ◦ rn)(
an(fn(x3))− bn(fn(x3)) + sn(dn(x3)))

= (fn(x3),−fn(x3), fn(dn(x3)))
by definition of fn. And

dn(pn, qn, fn ◦ rn)(sn(x3)) = dn(0, 0, fn(x3))
= (fn(x3),−fn(x3), dA[−1],n(fn(x3)))

The result follows as f is a morphism of complexes. �

Lemma 29.3. Let A be an abelian category. Let U , V be simplicial objects of A. Let
a, b : U → V be a pair of morphisms. Assume the corresponding maps of chain com-
plexes N(a), N(b) : N(U) → N(V ) are homotopic by a homotopy {Nn : N(U)n →
N(V )n+1}. Then there exists a homotopy from a to b as in Definition 26.1. Moreover,
one can choose the homotopy h : U ×∆[1]→ V such that Nn = N(h)n where N(h) is
the homotopy coming from h as in Section 27.

Proof. Let (�N(U), �a, �b, �h) be as in Lemma 29.1 and its proof. By that lemma
there exists a morphism �N(U) → N(V ) representing the triple (N(a), N(b), {Nn}).
We will show there exists a morphism ψ : N(U × ∆[1]) → �N(U) such that �a =
ψ ◦ N(e0), and �b = ψ ◦ N(e1). Moreover, we will show that the homotopy between
N(e0), N(e1) : N(U) → N(U ×∆[1]) coming from (27.0.1) and Lemma 27.1 with h =
idU×∆[1] is mapped via ψ to the canonical homotopy �h between the two maps �a, �b :
N(U)→ �N(U). Certainly this will imply the lemma.

Note that N : Simp(A) → Ch≥0(A) as a functor is a direct summand of the functor
s : Simp(A) → Ch≥0(A). Also, the functor � is compatible with direct sums. Thus it
suffices instead to construct a morphism Ψ : s(U×∆[1])→ �s(U) with the corresponding
properties. This is what we do below.

By Definition 26.1 the morphisms e0 : U → U × ∆[1] and e1 : U → U × ∆[1]
are homotopic with homotopy idU×∆[1]. By Lemma 27.1 we get an explicit homotopy
{hn : s(U)n → s(U × ∆[1])n+1} between the morphisms of chain complexes s(e0) :
s(U) → s(U ×∆[1]) and s(e1) : s(U) → s(U ×∆[1]). By Lemma 29.2 above we get a
corresponding morphism

Φ : �s(U)→ s(U ×∆[1])
According to the construction, Φn restricted to the summand s(U)[−1]n = s(U)n−1 of
�s(U)n is equal to hn−1. And

hn−1 =
∑n−1

i=0
(−1)i+1sni · αni+1 : Un−1 →

⊕
j
Un · αnj .
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with obvious notation.

On the other hand, the morphisms ei : U → U × ∆[1] induce a morphism (e0, e1) :
U ⊕ U → U × ∆[1]. Denote W the cokernel. Note that, if we write (U × ∆[1])n =⊕

α:[n]→[1] Un · α, then we may identify Wn =
⊕n

i=1 Un · αni with αni as in Section 26.
We have a commutative diagram

0 // U ⊕ U

(1,1)
%%

// U ×∆[1]

π

��

// W // 0

U

This implies we have a similar commutative diagram after applying the functor s. Next,
we choose the splittings σn : s(W )n → s(U×∆[1])n by mapping the summandUn ·αni ⊂
Wn via (−1, 1) to the summandsUn·αn0⊕Un·αni ⊂ (U×∆[1])n. Note that s(π)n◦σn = 0.
It follows that (1, 1) ◦ δ(σ)n = 0. Hence δ(σ) factors as in Lemma 29.2. By that lemma
we obtain a canonical morphism Ψ : s(U ×∆[1])→ �s(U).

To compute Ψ we first compute the morphism δ(σ) : s(W ) → s(U)[−1] ⊕ s(U)[−1].
According to Homology, Lemma 14.4 and its proof, to do this we have compute

ds(U×δ[1]),n ◦ σn − σn−1 ◦ ds(W ),n

and write it as a morphism into Un−1 ·αn−1
0 ⊕Un−1 ·αn−1

n . We only do this in caseA is
the category of abelian groups. We use the short hand notation xα for x ∈ Un to denote
the element x in the summand Un · α of (U ×∆[1])n. Recall that

ds(U×δ[1]),n =
∑n

i=0
(−1)idni

where dni maps the summand Un · α to the summand Un−1 · (α ◦ δni ) via the morphism
dni of the simplicial object U . In terms of the notation above this means

ds(U×δ[1]),n(xα) =
∑n

i=0
(−1)i(dni (x))α◦δn

i

Starting with xα ∈ Wn, in other words α = αnj for some j ∈ {1, . . . , n}, we see that
σn(xα) = xα − xαn0 and hence

(ds(U×δ[1]),n ◦ σn)(xα) =
∑n

i=0
(−1)i(dni (x))α◦δn

i
−
∑n

i=0
(−1)i(dni (x))αn0 ◦δn

i

To compute ds(W ),n(xα), we have to omit all terms where α ◦ δni = αn−1
0 , αn−1

n . Hence
we get

(σn−1 ◦ ds(W ),n)(xα) =∑
i=0,...,n and α◦δn

i
6=αn−1

0 or αn−1
n

(
(−1)i(dni (x))α◦δn

i
− (−1)i(dni (x))αn−1

0

)
Clearly the difference of the two terms is the sum∑

i=0,...,n and α◦δn
i

=αn−1
0 or αn−1

n

(
(−1)i(dni (x))α◦δn

i
− (−1)i(dni (x))αn−1

0

)
Of course, if α ◦ δni = αn−1

0 then the term drops out. Recall that α = αnj for some
j ∈ {1, . . . , n}. The only way αnj ◦ δni = αn−1

n is if j = n and i = n. Thus we actually
get 0 unless j = n and in that case we get (−1)n(dnn(x))αn−1

n
− (−1)n(dnn(x))αn−1

0
. In

other words, we conclude the morphism

δ(σ)n : Wn → (s(U)[−1]⊕ s(U)[−1])n = Un−1 ⊕ Un−1
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is zero on all summands exceptUn·αnn and on that summand it is equal to ((−1)ndnn,−(−1)ndnn).
(Namely, the first summand of the two corresponds to the factor with αn−1

n because that
is the map [n− 1]→ [1] which maps everybody to 0, and hence corresponds to e0.)
We obtain a canonical diagram

0 // s(U)⊕ s(U) //

��

�s(U) //

Φ
��

s(U)[−1] //

��

0

0 // s(U)⊕ s(U) //

��

s(U ×∆[1]) //

Ψ
��

s(W ) //

��

0

0 // s(U)⊕ s(U) // �s(U) // s(U)[−1] // 0

We claim that Φ ◦ Ψ is the identity. To see this it is enough to prove that the composi-
tion of Φ and δ(σ) as a map s(U)[−1] → s(W ) → s(U)[−1] ⊕ s(U)[−1] is the iden-
tity in the first factor and minus identity in the second. By the computations above it is
((−1)ndn0 ,−(−1)ndn0 ) ◦ (−1)nsnn = (1,−1) as desired. �

30. Trivial Kan fibrations

Recall that for n ≥ 0 the simplicial set ∆[n] is given by the rule [k] 7→ Mor∆([k], [n]), see
Example 11.2. Recall that ∆[n] has a unique nondegenerate n-simplex and all nondegen-
erate simplices are faces of this n-simplex. In fact, the nondegenerate simplices of ∆[n]
correspond exactly to injective morphisms [k]→ [n], which we may identify with subsets
of [n]. Moreover, recall that Mor(∆[n], X) = Xn for any simplicial set X (Lemma 11.3).
We set

∂∆[n] = i(n−1)!skn−1∆[n]
and we call it the boundary of ∆[n]. From Lemma 21.5 we see that ∂∆[n] ⊂ ∆[n] is the
simplicial subset having the same nondegenerate simplices in degrees ≤ n − 1 but not
containing the nondegenerate n-simplex.

Definition 30.1. A map X → Y of simplicial sets is called a trivial Kan fibration if
X0 → Y0 is surjective and for all n ≥ 1 and any commutative solid diagram

∂∆[n] //

��

X

��
∆[n] //

<<

Y

a dotted arrow exists making the diagram commute.

A trivial Kan fibration satisfies a very general lifting property.

Lemma 30.2. Let f : X → Y be a trivial Kan fibration of simplicial sets. For any
solid commutative diagram

Z
b
//

��

X

��
W

a //

>>

Y

of simplicial sets with Z → W (termwise) injective a dotted arrow exists making the
diagram commute.



1200 14. SIMPLICIAL METHODS

Proof. Suppose that Z 6= W . Let n be the smallest integer such that Zn 6= Wn.
Let x ∈ Wn, x 6∈ Zn. Denote Z ′ ⊂ W the simplicial subset containing Z , x, and all
degeneracies of x. Let ϕ : ∆[n]→ Z ′ be the morphism corresponding to x (Lemma 11.3).
Then ϕ|∂∆[n] maps into Z as all the nondegenerate simplices of ∂∆[n] end up in Z. By
assumption we can extend b ◦ ϕ|∂∆[n] to β : ∆[n] → X . By Lemma 21.7 the simplicial
set Z ′ is the pushout of ∆[n] and Z along ∂∆[n]. Hence b and β define a morphism
b′ : Z ′ → X . In other words, we have extended the morphism b to a bigger simplicial
subset of Z.

The proof is finished by an application of Zorn’s lemma (omitted). �

Lemma 30.3. Let f : X → Y be a trivial Kan fibration of simplicial sets. Let Y ′ → Y
be a morphism of simplicial sets. Then X ×Y Y ′ → Y ′ is a trivial Kan fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 7.2) and the definitions. �

Lemma 30.4. The composition of two trivial Kan fibrations is a trivial Kan fibration.

Proof. Omitted. �

Lemma 30.5. Let . . .→ U2 → U1 → U0 be a sequence of trivial Kan fibrations. Let
U = limU t defined by taking Un = limU tn. Then U → U0 is a trivial Kan fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. �

Lemma 30.6. Let Xi → Yi be a set of trivial Kan fibrations. Then
∏
Xi →

∏
Yi is

a trivial Kan fibration.

Proof. Omitted. �

Lemma 30.7. A filtered colimit of trivial Kan fibrations is a trivial Kan fibration.

Proof. Omitted. Hint: See description of filtered colimits of sets in Categories, Sec-
tion 19. �

Lemma 30.8. Let f : X → Y be a trivial Kan fibration of simplicial sets. Then f is
a homotopy equivalence.

Proof. By Lemma 30.2 we can choose an right inverse g : Y → X to f . Consider
the diagram

∂∆[1]×X

��

// X

��
∆[1]×X //

::

Y

Here the top horizontal arrow is given by idX and g◦f where we use that (∂∆[1]×X)n =
Xn qXn for all n ≥ 0. The bottom horizontal arrow is given by the map ∆[1] → ∆[0]
and f : X → Y . The diagram commutes as f ◦ g ◦ f = f . By Lemma 30.2 we can fill in
the dotted arrow and we win. �
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31. Kan fibrations

Let n, k be integers with 0 ≤ k ≤ n and 1 ≤ n. Let σ0, . . . , σn be the n + 1 faces of the
unique nondegenerate n-simplex σ of ∆[n], i.e., σi = diσ. We let

Λk[n] ⊂ ∆[n]

be the kth horn of the n-simplex ∆[n]. It is the simplicial subset of ∆[n] generated by
σ0, . . . , σ̂k, . . . , σn. In other words, the image of the displayed inclusion contains all the
nondegenerate simplices of ∆[n] except for σ and σk.

Definition 31.1. A map X → Y of simplicial sets is called a Kan fibration if for all
k, n with 1 ≤ n, 0 ≤ k ≤ n and any commutative solid diagram

Λk[n] //

��

X

��
∆[n] //

==

Y

a dotted arrow exists making the diagram commute. A Kan complex is a simplicial set X
such that X → ∗ is a Kan fibration, where ∗ is the constant simplicial set on a singleton.

Note that Λk[n] is always nonempty. Thus a morphism from the empty simplicial set to
any simplicial set is always a Kan fibration. It follows from Lemma 30.2 that a trivial Kan
fibration is a Kan fibration.

Lemma 31.2. Let f : X → Y be a Kan fibration of simplicial sets. Let Y ′ → Y be a
morphism of simplicial sets. Then X ×Y Y ′ → Y ′ is a Kan fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 7.2) and the definitions. �

Lemma 31.3. The composition of two Kan fibrations is a Kan fibration.

Proof. Omitted. �

Lemma 31.4. Let . . . → U2 → U1 → U0 be a sequence of Kan fibrations. Let
U = limU t defined by taking Un = limU tn. Then U → U0 is a Kan fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. �

Lemma 31.5. Let Xi → Yi be a set of Kan fibrations. Then
∏
Xi →

∏
Yi is a Kan

fibration.

Proof. Omitted. �

The following lemma is due to J.C. Moore, see [?].

Lemma 31.6. Let X be a simplicial group. Then X is a Kan complex.

Proof. The following proof is basically just a translation into English of the proof in
the reference mentioned above. Using the terminology as explained in the introduction to
this section, suppose f : Λk[n]→ X is a morphism from a horn. Set xi = f(σi) ∈ Xn−1
for i = 0, . . . , k̂, . . . , n. This means that for i < j we have dixj = dj−1xi whenever
i, j 6= k. We have to find an x ∈ Xn such that xi = dix for i = 0, . . . , k̂, . . . , n.
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We first prove there exists a u ∈ Xn such that diu = xi for i < k. This is trivial for
k = 0. If k > 0, one defines by induction an element ur ∈ Xn such that diur = xi for
0 ≤ i ≤ r. Start with u0 = s0x0. If r < k − 1, we set

yr = sr+1((dr+1u
r)−1xr+1), ur+1 = uryr.

An easy calculation shows that diyr = 1 (unit element of the group Xn−1) for i ≤ r and
dr+1y

r = (dr+1u
r)−1xr+1. It follows that diur+1 = xi for i ≤ r + 1. Finally, take

u = uk−1 to get u as promised.

Next we prove, by induction on the integer r, 0 ≤ r ≤ n− k, there exists a xr ∈ Xn such
that

dix
r = xi for i < k and i > n− r.

Start with x0 = u for r = 0. Having defined xr for r ≤ n− k − 1 we set

zr = sn−r−1((dn−rx
r)−1xn−r), xr+1 = xrzr

A simple calculation, using the given relations, shows that dizr = 1 for i < k and i > n−r
and that dn−r(zr) = (dn−rx

r)−1xn−r. It follows that dixr+1 = xi for i < k and
i > n− r − 1. Finally, we take x = xn−k which finishes the proof. �

Lemma 31.7. Let f : X → Y be a homomorphism of simplicial abelian groups which
is termwise surjective. Then f is a Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

Λk[n]
a
//

��

X

��
∆[n] b //

==

Y

as in Definition 31.1. The map a corresponds to x0, . . . , x̂k, . . . , xn ∈ Xn−1 satisfying
dixj = dj−1xi for i < j , i, j 6= k. The map b corresponds to an element y ∈ Yn such that
diy = f(xi) for i 6= k. Our task is to produce an x ∈ Xn such that dix = xi for i 6= k
and f(x) = y.

Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by 0 =
y − f(x) and xi by xi − dix for i 6= k. Then we see that we may assume y = 0. In
particular f(xi) = 0. In other words, we can replace X by Ker(f) ⊂ X and Y by 0. In
this case the statement become Lemma 31.6. �

Lemma 31.8. Let f : X → Y be a homomorphism of simplicial abelian groups which
is termwise surjective and induces a quasi-isomorphism on associated chain complexes.
Then f is a trivial Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

∂∆[n]
a
//

��

X

��
∆[n] b //

<<

Y

as in Definition 30.1. The map a corresponds to x0, . . . , xn ∈ Xn−1 satisfying dixj =
dj−1xi for i < j. The map b corresponds to an element y ∈ Yn such that diy = f(xi).
Our task is to produce an x ∈ Xn such that dix = xi and f(x) = y.
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Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by 0 = y −
f(x) and xi by xi−dix. Then we see that we may assume y = 0. In particular f(xi) = 0.
In other words, we can replace X by Ker(f) ⊂ X and Y by 0. This works, because by
Homology, Lemma 13.6 the homology of the chain complex associated to Ker(f) is zero
and hence Ker(f)→ 0 induces a quasi-isomorphism on associated chain complexes.

Since X is a Kan complex (Lemma 31.6) we can find x ∈ Xn with dix = xi for i =
0, . . . , n − 1. After replacing xi by xi − dix for i = 0, . . . , n we may assume that x0 =
x1 = . . . = xn−1 = 0. In this case we see that dixn = 0 for i = 0, . . . , n− 1. Thus xn ∈
N(X)n−1 and lies in the kernel of the differential N(X)n−1 → N(X)n−2. Here N(X)
is the normalized chain complex associated to X , see Section 23. Since N(X) is quasi-
isomorphic to s(X) (Lemma 23.9) and thus acyclic we find x ∈ N(Xn) whose differential
is xn. This x answers the question posed by the lemma and we are done. �

Lemma 31.9. Let f : X → Y be a map of simplicial abelian groups. If f is a ho-
motopy equivalence of simplicial sets, then f induces a quasi-isomorphism of associated
chain complexes.

Proof. In this proof we will write Hn(Z) = Hn(s(Z)) = Hn(N(Z)) when Z is a
simplicial abelian group, with s and N as in Section 23. Let Z[X] denote the free abelian
group on X viewed as a simplicial set and similarly for Z[Y ]. Consider the commutative
diagram

Z[X]
g
//

��

Z[Y ]

��
X

f // Y

of simplicial abelian groups. Since taking the free abelian group on a set is a functor, we
see that the horizontal arrow is a homotopy equivalence of simplicial abelian groups, see
Lemma 28.4. By Lemma 27.2 we see that Hn(g) : Hn(Z[X])→ Hn(Z[Y ]) is bijective for
all n ≥ 0.

Let ξ ∈ Hn(Y ). By definition of N(Y ) we can represent ξ by an element y ∈ N(Yn)
whose boundary is zero. This means y ∈ Yn with dn0 (y) = . . . = dnn−1(y) = 0 because
y ∈ N(Yn) and dnn(y) = 0 because the boundary of y is zero. Denote 0n ∈ Yn the zero
element. Then we see that

ỹ = [y]− [0n] ∈ (Z[Y ])n
is an element with dn0 (ỹ) = . . . = dnn−1(ỹ) = 0 and dnn(ỹ) = 0. Thus ỹ is inN(Z[Y ])n has
boundary 0, i.e., ỹ determines a class ξ̃ ∈ Hn(Z[Y ]) mapping to ξ. Because Hn(Z[X])→
Hn(Z[Y ]) is bijective we can lift ξ̃ to a class in Hn(Z[X]). Looking at the commutative
diagram above we see that ξ is in the image of Hn(X)→ Hn(Y ).

Let ξ ∈ Hn(X) be an element mapping to zero in Hn(Y ). Exactly as in the previous
parapgraph we can represent ξ by an element x ∈ N(Xn) whose boundary is zero, i.e.,
dn0 (x) = . . . = dnn−1(x) = dnn(x) = 0. In particular, we see that [x] − [0n] is an element
of N(Z[X])n whose boundary is zero, whence defines a lift ξ̃ ∈ Hn(Z[x]) of ξ. The fact
that ξ maps to zero inHn(Y ) means there exists a y ∈ N(Yn+1) whose boundary is fn(x).
This means dn+1

0 (y) = . . . = dn+1
n (y) = 0 and dn+1

n+1(y) = f(x). However, this means
exactly that z = [y]− [0n+1] is in N(Z[y])n+1 and

g([x]− [0n]) = [f(x)]− [0n] = boundary of z
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This proves that ξ̃ maps to zero in Hn(Z[y]). As Hn(Z[X]) → Hn(Z[Y ]) is bijective we
conclude ξ̃ = 0 and hence ξ = 0. �

32. A homotopy equivalence

Suppose that A, B are sets, and that f : A→ B is a map. Consider the associated map of
simplicial sets

cosk0(A)
(
. . . A×A×A

��

//
//
//
A×A

��

//
//oo

oo
A
)
��

oo

cosk0(B)
(
. . . B ×B ×B

//
//
//
B ×B //

//oo
oo

B
)

oo

See Example 19.1. The case n = 0 of the following lemma says that this map of simplicial
sets is a trivial Kan fibration if f is surjective.

Lemma 32.1. Let f : V → U be a morphism of simplicial sets. Let n ≥ 0 be an
integer. Assume

(1) The map fi : Vi → Ui is a bijection for i < n.
(2) The map fn : Vn → Un is a surjection.
(3) The canonical morphism U → cosknsknU is an isomorphism.
(4) The canonical morphism V → cosknsknV is an isomorphism.

Then f is a trivial Kan fibration.

Proof. Consider a solid diagram

∂∆[k] //

��

V

��
∆[k] //

==

U

as in Definition 30.1. Let x ∈ Uk be the k-simplex corresponding to the lower horizontal
arrow. If k ≤ n then the dotted arrow is the one corresponding to a lift y ∈ Vk of x;
the diagram will commute as the other nondegenerate simplices of ∆[k] are in degrees
< k where f is an isomorphism. If k > n, then by conditions (3) and (4) we have (using
adjointness of skeleton and coskeleton functors)

Mor(∆[k], U) = Mor(skn∆[k], sknU) = Mor(skn∂∆[k], sknU) = Mor(∂∆[k], U)
and similarly for V because skn∆[k] = skn∂∆[k] for k > n. Thus we obtain a unique
dotted arrow fitting into the diagram in this case also. �

Let A,B be sets. Let f0, f1 : A→ B be maps of sets. Consider the induced maps f0, f1 :
cosk0(A)→ cosk0(B) abusively denoted by the same symbols. The following lemma for
n = 0 says that f0 is homotopic to f1. In fact, there is a homotopy h : cosk0(A)×∆[1]→
cosk0(A) from f0 to f1 with components

hm : A× . . .×A×Mor∆([m], [1]) −→ B × . . .×B,
(a0, . . . , am, α) 7−→ (fα(0)(a0), . . . , fα(m)(am))

To check that this works, note that for a map ϕ : [k] → [m] the induced maps are
(a0, . . . , am) 7→ (aϕ(0), . . . , aϕ(k)) and α 7→ α ◦ ϕ. Thus h = (hm)m≥0 is clearly a
map of simplicial sets as desired.
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Lemma 32.2. Let f0, f1 : V → U be maps of simplicial sets. Let n ≥ 0 be an integer.
Assume

(1) The maps f ji : Vi → Ui, j = 0, 1 are equal for i < n.
(2) The canonical morphism U → cosknsknU is an isomorphism.
(3) The canonical morphism V → cosknsknV is an isomorphism.

Then f0 is homotopic to f1.

First proof. Let W be the n-truncated simplicial set with Wi = Ui for i < n and
Wn = Un/ ∼where∼ is the equivalence relation generated by f0(y) ∼ f1(y) for y ∈ Vn.
This makes sense as the morphisms U(ϕ) : Un → Ui corresponding to ϕ : [i] → [n] for
i < n factor through the quotient map Un → Wn because f0 and f1 are morphisms of
simplicial sets and equal in degrees< n. Next, we upgradeW to a simplicial set by taking
cosknW . By Lemma 32.1 the morphism g : U → W is a trivial Kan fibration. Observe
that g ◦ f0 = g ◦ f1 by construction and denote this morphism f : V → W . Consider
the diagram

∂∆[1]× V
f0,f1

//

��

U

��
∆[1]× V f //

66

W

By Lemma 30.2 the dotted arrow exists and the proof is done. �

Second proof. We have to construct a morphism of simplicial sets h : V ×∆[1]→
U which recovers f i on composing with ei. The case n = 0 was dealt with above the
lemma. Thus we may assume that n ≥ 1. The map ∆[1] → cosk1sk1∆[1] is an isomor-
phism, see Lemma 19.15. Thus we see that ∆[1] → cosknskn∆[1] is an isomorphism as
n ≥ 1, see Lemma 19.10. And hence V ×∆[1]→ cosknskn(V ×∆[1]) is an isomorphism
too, see Lemma 19.12. In other words, in order to construct the homotopy it suffices to con-
struct a suitable morphism of n-truncated simplicial sets h : sknV × skn∆[1]→ sknU .

For k = 0, . . . , n − 1 we define hk by the formula hk(v, α) = f0(v) = f1(v). The map
hn : Vn ×Mor∆([k], [1])→ Un is defined as follows. Pick v ∈ Vn and α : [n]→ [1]:

(1) If Im(α) = {0}, then we set hn(v, α) = f0(v).
(2) If Im(α) = {0, 1}, then we set hn(v, α) = f0(v).
(3) If Im(α) = {1}, then we set hn(v, α) = f1(v).

Let ϕ : [k]→ [l] be a morphism of ∆≤n. We will show that the diagram

Vl ×Mor([l], [1]) //

��

Ul

��
Vk ×Mor([k], [1]) // Uk

commutes. Pick v ∈ Vl and α : [l]→ [1]. The commutativity means that

hk(V (ϕ)(v), α ◦ ϕ) = U(ϕ)(hl(v, α)).
In almost every case this holds becausehk(V (ϕ)(v), α◦ϕ) = f0(V (ϕ)(v)) andU(ϕ)(hl(v, α)) =
U(ϕ)(f0(v)), combined with the fact that f0 is a morphism of simplicial sets. The only
cases where this does not hold is when either (A) Im(α) = {1} and l = n or (B) Im(α ◦
ϕ) = {1} and k = n. Observe moreover that necessarily f0(v) = f1(v) for any degen-
erate n-simplex of V . Thus we can narrow the cases above down even further to the cases
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(A) Im(α) = {1}, l = n and v nondegenerate, and (B) Im(α ◦ ϕ) = {1}, k = n and
V (ϕ)(v) nondegenerate.

In case (A), we see that also Im(α◦ϕ) = {1}. Hence we see that not only hl(v, α) = f1(v)
but also hk(V (ϕ)(v), α ◦ϕ) = f1(V (ϕ)(v)). Thus we see that the relation holds because
f1 is a morphism of simplicial sets.

In case (B) we conclude that l = k = n and ϕ is bijective, since otherwise V (ϕ)(v) is
degenerate. Thus ϕ = id[n], which is a trivial case. �

Lemma 32.3. Let A, B be sets, and that f : A→ B is a map. Consider the simplicial
set U with n-simplices

A×B A×B . . .×B A (n+ 1 factors).

see Example 3.5. If f is surjective, the morphism U → B where B indicates the constant
simplicial set with value B is a trivial Kan fibration.

Proof. Observe that U fits into a cartesian square

U

��

// cosk0(A)

��
B // cosk0(B)

Since the right vertical arrow is a trivial Kan fibration by Lemma 32.1, so is the left by
Lemma 30.3. �

33. Preparation for standard resolutions

The material in this section can be found in [?, Appendix 1]

Example 33.1. Let Y : C → C be a functor from a category to itself and suppose
given transformations of functors

d : Y −→ idC and s : Y −→ Y ◦ Y

Using these transformations we can construct something that looks like a simplicial object.
Namely, for n ≥ 0 we define

Xn = Y ◦ . . . ◦ Y (n+ 1 compositions)

Observe that Xn+m+1 = Xn ◦ Xm for n,m ≥ 0. Next, for n ≥ 0 and 0 ≤ j ≤ n we
define using notation as in Categories, Section 28

dnj = 1Xj−1 ?d?1Xn−j−1 : Xn → Xn−1 and snj = 1Xj−1 ?s?1Xn−j−1 : Xn → Xn+1

So dnj , resp. snj is the natural transformation using d, resp. s on the jth Y (counted from
the left) in the composition defining Xn.

Lemma 33.2. In Example 33.1 if

1Y = (d ? 1Y ) ◦ s = (1Y ? d) ◦ s and (s ? 1) ◦ s = (1 ? s) ◦ s

then X = (Xn, d
n
j , s

n
j ) is a simplicial object in the category of endofunctors of C and

d : X0 = Y → idC defines an augmentation.



33. PREPARATION FOR STANDARD RESOLUTIONS 1207

Proof. To see that we obtain a simplicial object we have to check that the relations
(1)(a) – (e) of Lemma 3.2 are satisfied. We will use the short hand notation

1a = 1Xa−1 = 1Y ? . . . ? 1Y (a factors)

for a ≥ 0. With this notation we have

dnj = 1j ? d ? 1n−j and snj = 1j ? s ? 1n−j

We are repeatedly going to use the rule that for transformations of funtors a, a′, b, b′ we
have (a′ ◦ a) ? (b′ ◦ b) = (a′ ? b′) ◦ (a ? b) provided that the ? and ◦ compositions in this
formula make sense, see Categories, Lemma 28.2.

Condition (1)(a) always holds (no conditions needed on d and s). Namely, let 0 ≤ i <
j ≤ n+ 1. We have to show that dni ◦ d

n+1
j = dnj−1 ◦ d

n+1
i , i.e.,

(1i ? d ? 1n−i) ◦ (1j ? d ? 1n+1−j) = (1j−1 ? d ? 1n+1−j) ◦ (1i ? d ? 1n+1−i)

We can rewrite the left hand side as

(1i ? d ? 1j−i−1 ? 1n+1−j) ◦ (1i ? 11 ? 1j−i−1 ? d ? 1n+1−j)
= 1i ? ((d ? 1j−i−1) ◦ (11 ? 1j−i−1 ? d)) ? 1n+1−j

= 1i ? d ? 1j−i−1 ? d ? 1n+1−j

The second equality is true because d ◦ 11 = d and 1j−i ◦ (1j−i−1 ? d) = 1j−i−1 ? d. A
similar computation gives the same result for the right hand side.

We check condition (1)(b). Let 0 ≤ i < j ≤ n − 1. We have to show that dni ◦ s
n−1
j =

sn−2
j−1 ◦ d

n−1
i , i.e.,

(1i ? d ? 1n−i) ◦ (1j ? s ? 1n−1−j) = (1j−1 ? s ? 1n−1−j) ◦ (1i ? d ? 1n−1−i)

By the same kind of calculus as in case (1)(a) both sides simplify to 1i?d?1j−i−1?s?1n−j−1.

We check condition (1)(c). Let 0 ≤ j ≤ n − 1. We have to show id = dnj ◦ s
n−1
j =

dnj+1 ◦ s
n−1
j , i.e.,

1n = (1j ? d ? 1n−j) ◦ (1j ? s ? 1n−1−j) = (1j+1 ? d ? 1n−j−1) ◦ (1j ? s ? 1n−1−j)

This is easily seen to be implied by the first assumption of the lemma.

We check condition (1)(d). Let 0 < j + 1 < i ≤ n. We have to show dni ◦ s
n−1
j =

sn−2
j ◦ dn−1

i−1 , i.e.,

(1i ? d ? 1n−i) ◦ (1j ? s ? 1n−1−j) = (1j ? s ? 1n−2−j) ◦ (1i−1 ? d ? 1n−i)

By the same kind of calculus as in case (1)(a) both sides simplify to 1j ?s?1i−j−2?d?1n−i.

We check condition (1)(e). Let 0 ≤ i ≤ j ≤ n − 1. We have to show that sni ◦ s
n−1
j =

snj+1 ◦ s
n−1
i , i.e.,

(1i ? s ? 1n−i) ◦ (1j ? s ? 1n−1−j) = (1j+1 ? s ? 1n−1−j) ◦ (1i ? s ? 1n−1−i)

By the same kind of calculus as in case (1)(a) this reduces to

(s ? 1j−i+1) ◦ (1j−i ? s) = (1j−i+1 ? s) ◦ (s ? 1j−i)

If j = i this is exactly one of the two assumptions of the lemma. For j > i left and right
hand side both reduce to the equality s?1j−i−1 ?s by calculations similar to those we did
in case (1)(a).
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Finally, in order to show that d defines an augmentation we have to show that d◦(11?d) =
d ◦ (d ? 11) which is true because both sides are equal to d ? d. �

Example 33.3. Let C , Y , d, s be as in Example 33.1 satisfying the equations of Lemma
33.2. Given functors F : A → C and G : C → B we obtain a simplicial object G ◦X ◦ F
in the category of functors fromA to B which comes with an augmentation to G ◦ F .

Lemma 33.4. LetA, B, C , Y , d, s, F ,G be as in Example 33.3. Given a transformation
of functors h0 : G ◦ F → G ◦ Y ◦ F such that

1G◦F = (1G ? d ? 1F ) ◦ h0

Then there is a morphism h : G◦F → G◦X ◦F of simplicial objects such that ε◦h = id
where ε : G ◦X ◦ F → G ◦ F is the augmentation.

Proof. Denote un : Y = X0 → Xn the map of the simplicial object X correspond-
ing to the unique morphism [n] → [0] in ∆. Set hn : G ◦ F → G ◦ Xn ◦ F equal to
(1G ? un ? 1F ) ◦ h0.

For any simplicial object X = (Xn) in any category u = (un) : X0 → X is a morphism
from the constant simplicial object on X0 to X . Hence h is a morphism of simplicial
objects because it is the composition of 1G ? u ? 1F and h0.

Let us check that ε ◦ h = id. We compute

εn ◦ (1G ? un ? 1F ) ◦ h0 = ε0 ◦ h0 = id

The first equality because ε is a morphism of simplicial objects and the second equality
because ε0 = (1G ? d ? 1F ) and we can apply the assumption in the statement of the
lemma. �

Lemma 33.5. Let A, B, C , Y , d, s, F , G be as in Example 33.3. Let F ′ : A → C and
G′ : C → B be two functors. Let (an) : G ◦ X → G′ ◦ X be a morphism of simplicial
objects compatible via augmentations with a : G→ G′. Let (bn) : X ◦ F → X ◦ F ′ be a
morphism of simplicial objects compatible via augmentations with b : F → F ′. Then the
two maps

a ? (bn), (an) ? b : G ◦X ◦ F → G′ ◦X ◦ F ′

are homotopic.

Proof. To show the morphisms are homotopic we construct morphisms

hn,i : G ◦Xn ◦ F → G′ ◦Xn ◦ F ′

for n ≥ 0 and 0 ≤ i ≤ n + 1 satisfying the relations described in Lemma 26.2. See also
Remark 26.4. To satisfy condition (1) of Lemma 26.2 we are forced to set hn,0 = a ? bn
and hn,n+1 = an ? b. Thus a logical choice is

hn,i = ai−1 ? bn−i

for 1 ≤ i ≤ n. Setting a = a−1 and b = b−1 we see the displayed formular holds for
0 ≤ i ≤ n+ 1.

Recall that
dnj = 1G ? 1j ? d ? 1n−j ? 1F
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onG ◦X ◦F where we use the notation 1a = 1Y ◦...◦Y introduced in the proof of Lemma
33.2. We are going to use below that we can rewrite this as

dnj = djj ? 1n−j = dj+1
j ? 1n−j = . . . = dn−1

j ? 11

= 1j ? dn−j
0 = 1j−1 ? d

n−j+1
1 = . . . = 11 ? d

n−1
j−1

Of course we have the analogous formulae for dnj on G′ ◦X ◦ F ′.

We check condition (2) of Lemma 26.2. Let i > j. We have to show

dnj ◦ (ai−1 ? bn−i) = (ai−2 ? bn−i) ◦ dnj
Since i− 1 ≥ j we can use one of the possible descriptions of dnj to rewrite the left hand
side as

(di−1
j ? 1n−i+1) ◦ (ai−1 ? bn−i) = (di−1

j ◦ ai−1) ? bn−i = (ai−2 ◦ di−1
j ) ? bn−i

Similarly the right hand side becomes

(ai−2 ? bn−i) ◦ (di−1
j ? 1n−i+1) = (ai−2 ◦ di−1

j ) ? bn−i

Thus we obtain the same result and (2) is checked.

We check condition (3) of Lemma 26.2. Let i ≤ j. We have to show

dnj ◦ (ai−1 ? bn−i) = (ai−1 ? bn−1−i) ◦ dnj
Since j ≥ i we may rewrite the left hand side as

(1i ? dn−i
j−i ) ◦ (ai−1 ? bn−i) = ai−1 ? (bn−1−i ◦ dn−i

j−i )

A similar manipulation shows this agrees with the right hand side.

Recall that
snj = 1G ? 1j ? s ? 1n−j ? 1F

on G ◦X ◦ F . We are going to use below that we can rewrite this as

snj = sjj ? 1n−j = sj+1
j ? 1n−j−1 = . . . = sn−1

j ? 11

= 1j ? sn−j
0 = 1j−1 ? s

n−j+1
1 = . . . = 11 ? s

n−1
j−1

Of course we have the analogous formulae for snj on G′ ◦X ◦ F ′.

We check condition (4) of Lemma 26.2. Let i > j. We have to show

snj ◦ (ai−1 ? bn−i) = (ai ? bn−i) ◦ snj
Since i− 1 ≥ j we can rewrite the left hand side as

(si−1
j ? 1n−i+1) ◦ (ai−1 ? bn−i) = (si−1

j ◦ ai−1) ? bn−i = (ai ◦ si−1
j ) ? bn−i

Similarly the right hand side becomes

(ai ? bn−i) ◦ (si−1
j ? 1n−i+1) = (ai ◦ si−1

j ) ? bn−i

as desired.

We check condition (5) of Lemma 26.2. Let i ≤ j. We have to show

snj ◦ (ai−1 ? bn−i) = (ai−1 ? bn+1−i) ◦ snj
This equality holds because both sides evaluate to ai−1 ? (sn−i

j−i ◦ bn−i) = ai−1 ? (bn+1−i ◦
sn−i
j−i ) by exactly the same arguments as above. �
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Lemma 33.6. Let C , Y , d, s be as in Example 33.1 satisfying the equations of Lemma
33.2. Let f : idC → idC be an endomorphism of the identity functor. Then f ?1X , 1X ?f :
X → X are maps of simplicial objects compatible with f via the augmentation ε : X →
idC . Moreover, f ? 1X and 1X ? f are homotopic.

Proof. The map f ? 1X is the map with components

Xn = idC ◦Xn
f?1Xn−−−−→ idC ◦Xn = Xn

For a transformation a : F → G of endofunctors of C we have a ◦ (f ? 1F ) = f ? a =
(f ? 1G) ◦a. Thus f ? 1X is indeed a morphism of simplicial objects. Similarly for 1X ? f .
To show the morphisms are homotopic we construct morphisms hn,i : Xn → Xn for
n ≥ 0 and 0 ≤ i ≤ n + 1 satisfying the relations described in Lemma 26.2. See also
Remark 26.4. It turns out we can take

hn,i = 1i ? f ? 1n+1−i

where 1i is the identity transformation on Y ◦ . . . ◦ Y as in the proof of Lemma 33.2. We
have hn,0 = f ? 1Xn and hn,n+1 = 1Xn ? f which checks the first condition. In checking
the other conditions we use the comments made in the proof of Lemma 33.5 about the
maps dnj and snj .

We check condition (2) of Lemma 26.2. Let i > j. We have to show
dnj ◦ (1i ? f ? 1n+1−i) = (1i−1 ? f ? 1n+1−i) ◦ dnj

Since i− 1 ≥ j we can use one of the possible descriptions of dnj to rewrite the left hand
side as

(di−1
j ? 1n−i+1) ◦ (1i ? f ? 1n+1−i) = di−1

j ? f ? 1n+1−i

Similarly the right hand side becomes

(1i−1 ? f ? 1n+1−i) ◦ (di−1
j ? 1n−i+1) = di−1

j ? f ? 1n+1−i

Thus we obtain the same result and (2) is checked.
The conditions (3), (4), and (5) of Lemma 26.2 are checked in exactly the same manner
using the strategy of the proof of Lemma 33.5. We omit the details2. �

34. Standard resolutions

Some of the material in this section can be found in [?, Appendix 1] and [?, I 1.5].

Situation 34.1. Let A, S be categories and let V : A → S be a functor with a left
adjoint U : S → A.

In this very general situation we will construct a simplicial object X in the category of
functors fromA toA. We suggest looking at the examples presented later on before read-
ing the text of this section.
For the construction we will use the horizontal composition as defined in Categories, Sec-
tion 28. The definition of the adjunction morphisms3

d : U ◦ V → idA (counit) and η : idS → V ◦ U (unit)

2When f is invertible it suffices to prove that (an) = 1X and (bn) = f−1 ? 1X ? f are homotopic. But
this follows from Lemma 33.5 because in this case a = b = 1idC .

3We can’t use ε for the counit of the adjunction because we want to use ε for the augmentation of our
simplicial obejct.
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in Categories, Section 24 shows that the compositions

(34.1.1) V
η?1V−−−→ V ◦ U ◦ V 1V ?d−−−→ V and U

1U?η−−−→ U ◦ V ◦ U d?1U−−−→ U

are the identity morphisms. Here to define the morphism η ? 1V we silently identify V
with idS ◦V and 1V stands for idV : V → V . We will use this notation and these relations
repeatedly in what follows. For n ≥ 0 we set

Xn = (U ◦ V )◦(n+1) = U ◦ V ◦ U ◦ . . . ◦ U ◦ V

In other words, Xn is the (n + 1)-fold composition of U ◦ V with itself. We also set
X−1 = idA. We have Xn+m+1 = Xn ◦ Xm for all n,m ≥ −1. We will endow this
sequence of functors with the structure of a simplicial object of Fun(A,A) by constructing
the morphisms of functors

dnj : Xn → Xn−1, snj : Xn → Xn+1

satisfying the relations displayed in Lemma 2.3. Namely, we set

dnj = 1Xj−1 ? d ? 1Xn−j−1 and snj = 1Xj−1◦U ? η ? 1V ◦Xn−j−1

Finally, write ε0 = d : X0 → X−1.

Lemma 34.2. In Situation 34.1 the system X = (Xn, d
n
j , s

n
j ) is a simplicial object

of Fun(A,A) and ε0 defines an augmentation ε from X to the constant simplicial object
with value X−1 = idA.

Proof. Consider Y = U ◦ V : A → A. We already have the transformation d :
Y = U ◦ V → idA. Let us denote

s = 1U ? η ? 1V : Y = U ◦ idS ◦ V −→ U ◦ V ◦ U ◦ V = Y ◦ Y

This places us in the sitation of Example 33.1. It is immediate from the formulas that the
X, dni , s

n
i constructed above and the X, sni , sni constructed from Y, d, s in Example 33.1

agree. Thus, according to Lemma 33.2 it suffices to prove that

1Y = (d ? 1Y ) ◦ s = (1Y ? d) ◦ s and (s ? 1) ◦ s = (1 ? s) ◦ s

The first equal sign translates into the equality

1U ? 1V = (d ? 1U ? 1V ) ◦ (1U ? η ? 1V )

which holds if we have 1U = (d?1U )◦ (1U ?η) which in turn holds by (34.1.1). Similarly
for the second equal sign. For the last equation we need to prove

(1U ? η ? 1V ? 1U ? 1V ) ◦ (1U ? η ? 1V ) = (1U ? 1V ? 1U ? η ? 1V ) ◦ (1U ? η ? 1V )

For this it suffices to prove (η ? 1V ? 1U ) ◦ η = (1V ? 1U ? η) ◦ η which is true because
both sides are the same as η ? η. �

Before reading the proof of the following lemma, we advise the reader to look at the ex-
ample discussed in Example 34.8 in order to understand the purpose of the lemma.

Lemma 34.3. In Situation 34.1 the maps

1V ? ε : V ◦X → V, and ε ? 1U : X ◦ U → U

are homotopy equivalences.
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Proof. As in the proof of Lemma 34.2 we set Y = U ◦V so that we are in the sitation
of Example 33.1.

Proof of the first homotopy equivalence. By Lemma 33.4 to construct a map h : V →
V ◦X right inverse to 1V ? ε it suffices to construct a map h0 : V → V ◦ Y = V ◦U ◦ V
such that 1V = (1V ? d) ◦ h0. Of course we take h0 = η ? 1V and the equality holds by
(34.1.1). To finish the proof we need to show the two maps

(1V ? ε) ◦ h, 1V ? idX : V ◦X −→ V ◦X
are homotopic. This follows immediately from Lemma 33.5 (with G = G′ = V and
F = F ′ = idS ).

The proof of the second homotopy equivalence. By Lemma 33.4 to construct a map h :
U → X◦U right inverse to ε?1U it suffices to construct a maph0 : U → Y ◦U = U◦V ◦U
such that 1U = (d ? 1U ) ◦ h0. Of course we take h0 = 1U ? η and the equality holds by
(34.1.1). To finish the proof we need to show the two maps

(ε ? 1U ) ◦ h, idX ? 1U : X ◦ U −→ X ◦ U
are homotopic. This follows immediately from Lemma 33.5 (with G = G′ = idA and
F = F ′ = U ). �

Example 34.4. LetR be a ring. As an example of the above we can take i : ModR →
Sets to be the forgetful functor and F : Sets → ModR to be the functor that associates
to a set E the free R-module R[E] on E. For an R-module M the simplicial R-module
X(M) will have the following shape

X(M) =
(
. . . R[R[R[M ]]]

//
//
//
R[R[M ]] //

//oo
oo

R[M ]oo
)

which comes with an augmentation towards M . We will also show this augmentation
is a homotopy equivalence of sets. By Lemmas 30.8, 31.9, and 31.8 this is equivalent to
asking M to be the only nonzero cohomology group of the chain complex associated to
the simplicial module X(M).

Example 34.5. LetA be a ring. Let AlgA be the category of commutativeA-algebras.
As an example of the above we can take i : AlgA → Sets to be the forgetful functor and
F : Sets→ AlgA to be the functor that associates to a set E the polynomial algebra A[E]
onE overA. (We apologize for the overlap in notation between this example and Example
34.4.) For an A-algebra B the simplicial A-algebra X(B) will have the following shape

X(B) =
(
. . . A[A[A[B]]]

//
//
//
A[A[B]] //

//oo
oo

A[B]oo
)

which comes with an augmentation towards B. We will also show this augmentation is a
homotopy equivalence of sets. By Lemmas 30.8, 31.9, and 31.8 this is equivalent to asking
B to be the only nonzero cohomology group of the chain complex ofA-modules associated
to X(B) viewed as a simplicial A-module.

Example 34.6. In Example 34.4 we have Xn(M) = R[R[. . . [M ] . . .]] with n + 1
brackets. We describe the maps constructed above using a typical element

ξ =
∑

i
ri

[∑
j
rij [mij ]

]
of X1(M). The maps d0, d1 : R[R[M ]]→ R[M ] are given by

d0(ξ) =
∑

i,j
ririj [mij ] and d1(ξ) =

∑
i
ri

[∑
j
rijmij

]
.
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The maps s0, s1 : R[R[M ]]→ R[R[R[M ]]] are given by

s0(ξ) =
∑

i
ri

[[∑
j
rij [mij ]

]]
and s1(ξ) =

∑
i
ri

[∑
j
rij [[mij ]]

]
.

Example 34.7. In Example 34.5 we have Xn(B) = A[A[. . . [B] . . .]] with n + 1
brackets. We describe the maps constructed above using a typical element

ξ =
∑

i
ai[xi,1] . . . [xi,mi ] ∈ A[A[B]] = X1(B)

where for each i, j we can write

xi,j =
∑

ai,j,k[bi,j,k,1] . . . [bi,j,k,ni,j,k ] ∈ A[B]

Obviously this is horrendous! To ease the notation, to see what theA-algebra maps d0, d1 :
A[A[B]]→ A[B] are doing it suffices to see what happens to the variables [x] where

x =
∑

ak[bk,1] . . . [bk,nk ] ∈ A[B]

is a general element. For these we get

d0([x]) = x =
∑

ak[bk,1] . . . [bk,nk ] and d1([x]) =
[∑

akbk,1 . . . bk,nk

]
The maps s0, s1 : A[A[B]]→ A[A[A[B]]] are given by

s0([x]) =
[[∑

ak[bk,1] . . . [bk,nk ]
]]

and s1([x]) =
[∑

ak[[bk,1]] . . . [[bk,nk ]]
]

Example 34.8. Going back to the example discussed in Example 34.5 our Lemma
34.3 signifies that for any ring map A→ B the map of simplicial rings

A[A[A[B]]]

��

//
//
//
A[A[B]]

��

//
//oo

oo
A[B]

��

oo

B
//
//
//
B

//
//oo

oo
Boo

is a homotopy equivalence on underlying simplicial sets. Moreover, the inverse map con-
structed in Lemma 34.3 is in degree n given by

b 7−→ [. . . [b] . . .]
with obvious notation. In the other direction the lemma tells us that for every setE there
is a homotopy equivalence

A[A[A[A[E]]]]

��

//
//
//
A[A[A[E]]]

��

//
//oo

oo
A[A[E]]

��

oo

A[E]
//
//
//
A[E] //

//oo
oo

A[E]oo

of rings. The inverse map constructed in the lemma is in degree n given by the ring map∑
ae1,...,ep [e1][e2] . . . [ep] 7−→

∑
ae1,...,ep [. . . [e1] . . .][. . . [e2] . . .] . . . [. . . [ep] . . .]

(with obvious notation).
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CHAPTER 15

More on Algebra

1. Introduction

In this chapter we prove some results in commutative algebra which are less elementary
than those in the first chapter on commutative algebra, see Algebra, Section 1. A reference
is [?].

2. Advice for the reader

More than in the chapter on commutative algebra, each of the sections in this chapter
stands on its own. Starting with Section 56 we freely use the (unbounded) derived category
of modules over rings and all the machinery that comes with it.

3. Stably free modules

Here is what seems to be the generally accepted definition.

Definition 3.1. Let R be a ring.
(1) Two modulesM ,N overR are said to be stably isomorphic if there exist n,m ≥

0 such that M ⊕R⊕m ∼= N ⊕R⊕n as R-modules.
(2) A module M is stably free if it is stably isomorphic to a free module.

Observe that a stably free module is projective.

Lemma 3.2. Let R be a ring. Let 0→ P ′ → P → P ′′ → 0 be a short exact sequence
of finite projective R-modules. If 2 out of 3 of these modules are stably free, then so is the
third.

Proof. Since the modules are projective, the sequence is split. Thus we can choose
an isomorphism P = P ′ ⊕ P ′′. If P ′ ⊕ R⊕n and P ′′ ⊕ R⊕m are free, then we see that
P ⊕ R⊕n+m is free. Suppose that P ′ and P are stably free, say P ⊕ R⊕n is free and
P ′ ⊕R⊕m is free. Then

P ′′ ⊕ (P ′ ⊕R⊕m)⊕R⊕n = (P ′′ ⊕ P ′)⊕R⊕m ⊕R⊕n = (P ⊕R⊕n)⊕R⊕m

is free. Thus P ′′ is stably free. By symmetry we get the last of the three cases. �

Lemma 3.3. Let R be a ring. Let I ⊂ R be an ideal. Assume that every element of
1 + I is a unit (in other words I is contained in the Jacobson radical of R). For every
finite stably free R/I-module E there exists a finite stably free R-module M such that
M/IM ∼= E.

Proof. Choose a n and m and an isomorphism E ⊕ (R/I)⊕n ∼= (R/I)⊕m. Choose
R-linear mapsϕ : R⊕m → R⊕n andψ : R⊕n → R⊕m lifting the projection (R/I)⊕m →
(R/I)⊕n and injection (R/I)⊕n → (R/I)⊕m. Then ϕ ◦ ψ : R⊕n → R⊕n reduces to the
identity modulo I . Thus the determinant of this map is invertible by our assumption on
I . Hence P = Ker(ϕ) is stably free and lifts E. �

1217
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Lemma 3.4. Let R be a ring. Let I ⊂ R be an ideal. Assume that every element of
1+I is a unit (in other words I is contained in the Jacobson radical ofR). LetM be a finite
flatR-module such thatM/IM is a projectiveR/I-module. ThenM is a finite projective
R-module.

Proof. By Algebra, Lemma 78.5 we see that Mp is finite free for all prime ideals p ⊂
R. By Algebra, Lemma 78.2 it suffices to show that the function ρM : p 7→ dimκ(p) M ⊗R
κ(p) is locally constant on Spec(R). Because M/IM is finite projective, this is true on
V (I) ⊂ Spec(R). Since every closed point of Spec(R) is in V (I) and since ρM (p) =
ρM (q) whenever p ⊂ q ⊂ R are prime ideals, we conclude by an elementary argument on
topological spaces which we omit. �

The lift of Lemma 3.3 is unique up to isomorphism by the following lemma.

Lemma 3.5. Let R be a ring. Let I ⊂ R be an ideal. Assume that every element of
1 + I is a unit (in other words I is contained in the Jacobson radical ofR). If P and P ′ are
finite projective R-modules, then

(1) if ϕ : P → P ′ is an R-module map inducing an isomorphism ϕ : P/IP →
P ′/IP ′, then ϕ is an isomorphism,

(2) if P/IP ∼= P ′/IP ′, then P ∼= P ′.

Proof. Proof of (1). As P ′ is projective as an R-module we may choose a lift ψ :
P ′ → P of the map P ′ → P ′/IP ′ ϕ−1

−−→ P/IP . By Nakayama’s lemma (Algebra, Lemma
20.1) ψ ◦ϕ and ϕ ◦ψ are surjective. Hence these maps are isomorphisms (Algebra, Lemma
16.4). Thus ϕ is an isomorphism.

Proof of (2). Choose an isomorphism P/IP ∼= P ′/IP ′. Since P is projective we can
choose a lift ϕ : P → P ′ of the map P → P/IP → P ′/IP ′. Then ϕ is an isomorphism
by (1). �

4. A comment on the Artin-Rees property

Some of this material is taken from [?]. A general discussion with additional references
can be found in [?, Section 1].

LetA be a Noetherian ring and let I ⊂ A be an ideal. Given a homomorphism f : M → N
of finite A-modules there exists a c ≥ 0 such that

f(M) ∩ InN ⊂ f(In−cM)

for all n ≥ c, see Algebra, Lemma 51.3. In this situation we will say c works for f in the
Artin-Rees lemma.

Lemma 4.1. Let A be a Noetherian ring. Let I ⊂ A be an ideal contained in the
Jacobson radical of A. Let

S : L f−→M
g−→ N and S′ : L f ′

−→M
g′

−→ N

be two complexes of finite A-modules as shown. Assume that
(1) c works in the Artin-Rees lemma for f and g,
(2) the complex S is exact, and
(3) f ′ = f mod Ic+1M and g′ = g mod Ic+1N .

Then c works in the Artin-Rees lemma for g′ and the complex S′ is exact.
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Proof. We first show that g′(M) ∩ InN ⊂ g′(In−cM) for n ≥ c. Let a be an
element of M such that g′(a) ∈ InN . We want to adjust a by an element of f ′(L), i.e,
without changing g′(a), so that a ∈ In−cM . Assume that a ∈ IrM , where r < n − c.
Then

g(a) = g′(a) + (g − g′)(a) ∈ InN + Ir+c+1N = Ir+c+1N.

By Artin-Rees for g we have g(a) ∈ g(Ir+1M). Say g(a) = g(a1) with a1 ∈ Ir+1M .
Since the sequence S is exact, a − a1 ∈ f(L). Accordingly, we write a = f(b) + a1
for some b ∈ L. Then f(b) = a − a1 ∈ IrM . Artin-Rees for f shows that if r ≥ c,
we may replace b by an element of Ir−cL. Then in all cases, a = f ′(b) + a2, where
a2 = (f − f ′)(b) + a1 ∈ Ir+1M . (Namely, either c ≥ r and (f − f ′)(b) ∈ Ir+1M by
assumption, or c < r and b ∈ Ir−c, whence again (f − f ′)(b) ∈ Ic+1Ir−cM = Ir+1M .)
So we can adjust a by the element f ′(b) ∈ f ′(L) to increase r by 1.

In fact, the argument above shows that (g′)−1(InN) ⊂ f ′(L) + In−cM for all n ≥ c.
Hence S′ is exact because

(g′)−1(0) = (g′)−1(
⋂
InN) ⊂

⋂
f ′(L) + In−cM = f ′(L)

as I is contained in the Jacobson radical of A, see Algebra, Lemma 51.5. �

Given an ideal I ⊂ A of a ring A and an A-module M we set

GrI(M) =
⊕

InM/In+1M.

We think of this as a graded GrI(A)-module.

Lemma 4.2. Assumptions as in Lemma 4.1. Let Q = Coker(g) and Q′ = Coker(g′).
Then GrI(Q) ∼= GrI(Q′) as graded GrI(A)-modules.

Proof. In degree nwe have GrI(Q)n = InN/(In+1N+g(M)∩InN) and similarly
for Q′. We claim that

g(M) ∩ InN ⊂ In+1N + g′(M) ∩ InN.
By symmetry (the proof of the claim will only use that c works for g which also holds for
g′ by the lemma) this will imply that

In+1N + g(M) ∩ InN = In+1N + g′(M) ∩ InN
whence GrI(Q)n and GrI(Q′)n agree as subquotients ofN , implying the lemma. Observe
that the claim is clear for n ≤ c as f = f ′ mod Ic+1N . If n > c, then suppose b ∈
g(M) ∩ InN . Write b = g(a) for a ∈ In−cM . Set b′ = g′(a). We have b − b′ =
(g − g′)(a) ∈ In+1N as desired. �

Lemma 4.3. Let A → B be a flat map of Noetherian rings. Let I ⊂ A be an ideal.
Let f : M → N be a homomorphism of finite A-modules. Assume that c works for f in
the Artin-Rees lemma. Then c works for f ⊗ 1 : M ⊗A B → N ⊗A B in the Artin-Rees
lemma for the ideal IB.

Proof. Note that

(f ⊗ 1)(M) ∩ InN ⊗A B = (f ⊗ 1)
(
(f ⊗ 1)−1(InN ⊗A B)

)
On the other hand,

(f ⊗ 1)−1(InN ⊗A B) = Ker(M ⊗A B → N ⊗A B/(InN ⊗A B))
= Ker(M ⊗A B → (N/InN)⊗A B)
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As A→ B is flat taking kernels and cokernels commutes with tensoring with B, whence
this is equal to f−1(InN) ⊗A B. By assumption f−1(InN) is contained in Ker(f) +
In−cM . Thus the lemma holds. �

5. Fibre products of rings, I

Fibre products of rings have to do with pushouts of schemes. Some cases of pushouts of
schemes are discussed in More on Morphisms, Section 14.

Lemma 5.1. Let R be a ring. Let A→ B and C → B be R-algebra maps. Assume
(1) R is Noetherian,
(2) A, B, C are of finite type over R,
(3) A→ B is surjective, and
(4) B is finite over C.

Then A×B C is of finite type over R.

Proof. Set D = A×B C. There is a commutative diagram

0 Boo Aoo Ioo 0oo

0 Coo

OO

Doo

OO

Ioo

OO

0oo

with exact rows. Choose y1, . . . , yn ∈ B which are generators for B as a C-module.
Choose xi ∈ A mapping to yi. Then 1, x1, . . . , xn are generators for A as a D-module.
The map D → A × C is injective, and the ring A × C is finite as a D-module (because
it is the direct sum of the finite D-modules A and C). Hence the lemma follows from the
Artin-Tate lemma (Algebra, Lemma 51.7). �

Lemma 5.2. LetR be a Noetherian ring. Let I be a finite set. Suppose given a cartesian
diagram ∏

Bi
∏
Ai∏

ϕi

oo

Q

∏
ψi

OO

P

OO

oo

with ψi and ϕi surjective, and Q, Ai, Bi of finite type over R. Then P is of finite type
over R.

Proof. Follows from Lemma 5.1 and induction on the size of I . Namely, let I =
I ′ q {i0}. Let P ′ be the ring defined by the diagram of the lemma using I ′. Then P ′ is of
finite type by induction hypothesis. Finally, P sits in a fibre product diagram

Bi0 Ai0oo

P ′

OO

P

OO

oo

to which the lemma applies. �
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Lemma 5.3. Suppose given a cartesian diagram of rings

R R′
t

oo

B

s

OO

B′

OO

oo

i.e., B′ = B ×R R′. If h ∈ B′ corresponds to g ∈ B and f ∈ R′ such that s(g) = t(f),
then the diagram

Rs(g) = Rt(f) (R′)ft
oo

Bg

s

OO

(B′)h

OO

oo

is cartesian too.

Proof. The equality B′ = B ×R R′ tells us that

0→ B′ → B ⊕R′ s,−t−−−→ R

is an exact sequence of B′-modules. We have Bg = Bh, R′
f = R′

h, and Rs(g) = Rt(f) =
Rh as B′-modules. By exactness of localization (Algebra, Proposition 9.12) we find that

0→ B′
h → Bg ⊕R′

f
s,−t−−−→ Rs(g) = Rt(f)

is an exact sequence. This proves the lemma. �

Consider a commutative diagram of rings

R R′oo

B

OO

B′

OO

oo

Consider the functor (where the fibre product of categories is as constructed in Categories,
Example 31.3)

(5.3.1) ModB′ −→ModB ×ModR ModR′ , L′ 7−→ (L′ ⊗B′ B,L′ ⊗B′ R′, can)

where can is the canonical identification L′ ⊗B′ B ⊗B R = L′ ⊗B′ R′ ⊗R′ R. In the
following we will write (N,M ′, ϕ) for an object of the right hand side, i.e., N is a B-
module, M ′ is an R′-module and ϕ : N ⊗B R→M ′ ⊗R′ R is an isomorphism.

Lemma 5.4. Given a commutative diagram of rings

R R′oo

B

OO

B′

OO

oo

the functor (5.3.1) has a right adjoint, namely the functor

F : (N,M ′, ϕ) 7−→ N ×ϕM ′

(see proof for elucidation).



1222 15. MORE ON ALGEBRA

Proof. Given an object (N,M ′, ϕ) of the category ModB ×ModR ModR′ we set

N ×ϕM ′ = {(n,m′) ∈ N ×M ′ | ϕ(n⊗ 1) = m′ ⊗ 1 in M ′ ⊗R′ R}
viewed as a B′-module. The adjointness statement is that for a B′-module L′ and a triple
(N,M ′, ϕ) we have

HomB′(L′, N×ϕM ′) = HomB(L′⊗B′B,N)×HomR(L′⊗B′R,M ′⊗R′R)HomR′(L′⊗B′R′,M ′)
By Algebra, Lemma 14.3 the right hand side is equal to

HomB′(L′, N)×HomB′ (L′,M ′⊗R′R) HomB′(L′,M ′)
Thus it is clear that for a pair (g, f ′) of elements of this fibre product we get an B′-linear
map L′ → N ×ϕ M ′, l′ 7→ (g(l′), f ′(l′)). Conversely, given a B′ linear map g′ : L′ →
N ×ϕM ′ we can set g equal to the composition L′ → N ×ϕM ′ → N and f ′ equal to the
composition L′ → N ×ϕ M ′ → M ′. These constructions are mutually inverse to each
other and define the desired isomorphism. �

6. Fibre products of rings, II

In this section we discuss fibre products in the following situation.

Situation 6.1. In the following we will consider ring maps

B // A A′oo

where we assumeA′ → A is surjective with kernel I . In this situation we setB′ = B×AA′

to obtain a cartesian square
A A′oo

B

OO

B′oo

OO

Lemma 6.2. In Situation 6.1 we have

Spec(B′) = Spec(B)qSpec(A) Spec(A′)
as topological spaces.

Proof. Since B′ = B ×A A′ we obtain a commutative square of spectra, which
induces a continuous map

can : Spec(B)qSpec(A) Spec(A′) −→ Spec(B′)

as the source is a pushout in the category of topological spaces (which exists by Topology,
Section 29).

To show the map can is surjective, let q′ ⊂ B′ be a prime ideal. If I ⊂ q′ (here and below
we take the liberty of considering I as an ideal of B′ as well as an ideal of A′), then q′

corresponds to a prime ideal of B and is in the image. If not, then pick h ∈ I , h 6∈ q′. In
this case Bh = Ah = 0 and the ring map B′

h → A′
h is an isomorphism, see Lemma 5.3.

Thus we see that q′ corresponds to a unique prime ideal p′ ⊂ A′ which does not contain
I .

Since B′ → B is surjective, we see that can is injective on the summand Spec(B). We
have seen above that Spec(A′) → Spec(B′) is injective on the complement of V (I) ⊂
Spec(A′). Since V (I) ⊂ Spec(A′) is exactly the image of Spec(A)→ Spec(A′) a trivial
set theoretic argument shows that can is injective.
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To finish the proof we have to show that can is open. To do this, observe that an open
of the pushout is of the form V q U ′ where V ⊂ Spec(B) and U ′ ⊂ Spec(A′) are
opens whose inverse images in Spec(A) agree. Let v ∈ V . We can find a g ∈ B such
that v ∈ D(g) ⊂ V . Let f ∈ A be the image. Pick f ′ ∈ A′ mapping to f . Then
D(f ′)∩U ′ ∩V (I) = D(f ′)∩V (I). Hence V (I)∩D(f ′) andD(f ′)∩ (U ′)c are disjoint
closed subsets of D(f ′) = Spec(A′

f ′). Write (U ′)c = V (J) for some ideal J ⊂ A′. Since
A′
f ′ → A′

f ′/IA′
f ′ × A′

f ′/JA′
f ′ is surjective by the disjointness just shown, we can find

an a′′ ∈ A′
f ′ mapping to 1 in A′

f ′/IA′
f ′ and mapping to zero in A′

f ′/JA′
f ′ . Clearing

denominators, we find an element a′ ∈ J mapping to fn in A. Then D(a′f ′) ⊂ U ′. Let
h′ = (gn+1, a′f ′) ∈ B′. Since B′

h′ = Bgn+1 ×Afn+1 A
′
a′f ′ by a previously cited lemma,

we see thatD(h′) pulls back to an open neighbourhood of v in the pushout, i.e., the image
of V q U ′ contains an open neighbourhood of the image of v. We omit the (easier) proof
that the same thing is true for u′ ∈ U ′ with u′ 6∈ V (I). �

Lemma 6.3. In Situation 6.1 if B → A is integral, then B′ → A′ is integral.

Proof. Let a′ ∈ A′ with image a ∈ A. Let xd + b1x
d−1 + . . . + bd be a monical

polynomial with coefficients in B satisfied by a. Choose b′
i ∈ B′ mapping to bi ∈ B

(possible). Then (a′)d+ b′
1(a′)d−1 + . . .+ b′

d is in the kernel ofA′ → A. Since Ker(B′ →
B) = Ker(A′ → A) we can modify our choice of b′

d to get (a′)d+b′
1(a′)d−1 +. . .+b′

d = 0
as desired. �

In Situation 6.1 we’d like to understand B′-modules in terms of modules over A′, A, and
B. In order to do this we consider the functor (where the fibre product of categories as
constructed in Categories, Example 31.3)

(6.3.1) ModB′ −→ModB ×ModA ModA′ , L′ 7−→ (L′ ⊗B′ B,L′ ⊗B′ A′, can)
where can is the canonical identification L′ ⊗B′ B ⊗B A = L′ ⊗B′ A′ ⊗A′ A. In the
following we will write (N,M ′, ϕ) for an object of the right hand side, i.e., N is a B-
module,M ′ is anA′-module and ϕ : N ⊗B A→M ′⊗A′ A is an isomorphism. However,
it is often more convenient think ofϕ as aB-linear mapϕ : N →M ′/IM ′ which induces
an isomorphism N ⊗B A→M ′ ⊗A′ A = M ′/IM ′.

Lemma 6.4. In Situation 6.1 the functor (6.3.1) has a right adjoint, namely the functor

F : (N,M ′, ϕ) 7−→ N ×ϕ,M M ′

whereM = M ′/IM ′. Moreover, the composition ofF with (6.3.1) is the identity functor
on ModB×ModAModA′ . In other words, settingN ′ = N×ϕ,MM ′ we haveN ′⊗B′B = N
and N ′ ⊗B′ A′ = M ′.

Proof. The adjointness statement follows from the more general Lemma 5.4. To
prove the final assertion, recall that B′ = B ×A A′ and N ′ = N ×ϕ,M M ′ and extend
these equalities to

A A′oo Ioo

B

OO

B′oo

OO

Joo

OO

and

M M ′oo Koo

N

ϕ

OO

N ′oo

OO

Loo

OO

where I, J,K,L are the kernels of the horizontal maps of the original diagrams. We
present the proof as a sequence of observations:

(1) K = IM ′ (see statement lemma),
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(2) B′ → B is surjective with kernel J and J → I is bijective,
(3) N ′ → N is surjective with kernel L and L→ K is bijective,
(4) JN ′ ⊂ L,
(5) Im(N →M) generates M as an A-module (because N ⊗B A = M ),
(6) Im(N ′ → M ′) generates M ′ as an A′-module (because it holds modulo K and

L maps isomorphically to K),
(7) JN ′ = L (because L ∼= K = IM ′ is generated by images of elements xn′ with

x ∈ I and n′ ∈ N ′ by the previous statement),
(8) N ′ ⊗B′ B = N (because N = N ′/L, B = B′/J , and the previous statement),
(9) there is a map γ : N ′ ⊗B′ A′ →M ′,

(10) γ is surjective (see above),
(11) the kernel of the composition N ′ ⊗B′ A′ →M ′ →M is generated by elements

l ⊗ 1 and n′ ⊗ x with l ∈ K , n′ ∈ N ′, x ∈ I (because M = N ⊗B A by
assumption and becauseN ′ → N andA′ → A are surjective with kernels L and
I),

(12) any element ofN ′⊗B′ A′ in the submodule generated by the elements l⊗ 1 and
n′⊗xwith l ∈ L, n′ ∈ N ′, x ∈ I can be written as l⊗1 for some l ∈ L (because
J maps isomorphically to I we see that n′⊗x = n′x⊗1 inN ′⊗B′ A′; similarly
xn′ ⊗ a′ = n′ ⊗ xa′ = n′(xa′) ⊗ 1 in N ′ ⊗B′ A′ when n′ ∈ N ′, x ∈ J and
a′ ∈ A′; since we have seen that JN ′ = L this proves the assertion),

(13) the kernel of γ is zero (because by (10) and (11) any element of the kernel is of
the form l ⊗ 1 with l ∈ L which is mapped to l ∈ K ⊂M ′ by γ).

This finishes the proof. �

Lemma 6.5. In the situation of Lemma 6.4 for a B′-module L′ the adjunction map

L′ −→ (L′ ⊗B′ B)×(L′⊗B′A) (L′ ⊗B′ A′)
is surjective but in general not injective.

Proof. As in the proof of Lemma 6.4 let J ⊂ B′ be the kernel of the map B′ → B.
Then L′⊗B′ B = L′/JL′. Hence to prove surjectivity it suffices to show that elements of
the form (0, z) of the fibre product are in the image of the map of the lemma. The kernel
of the map L′ ⊗B′ A′ → L′ ⊗B′ A is the image of L′ ⊗B′ I → L′ ⊗B′ A′. Since the map
J → I induced by B′ → A′ is an isomorphism the composition

L′ ⊗B′ J → L′ → (L′ ⊗B′ B)×(L′⊗B′A) (L′ ⊗B′ A′)
induces a surjection of L′ ⊗B′ J onto the set of elements of the form (0, z). To see the
map is not injective in general we present a simple example. Namely, take a field k, set
B′ = k[x, y]/(xy), A′ = B′/(x), B = B′/(y), A = B′/(x, y) and L′ = B′/(x − y).
In that case the class of x in L′ is nonzero but is mapped to zero under the displayed
arrow. �

Lemma 6.6. In Situation 6.1 let (N1,M
′
1, ϕ1) → (N2,M

′
2, ϕ2) be a morphism of

ModB ×ModA ModA′ with N1 → N2 and M ′
1 →M ′

2 surjective. Then

N1 ×ϕ1,M1 M
′
1 → N2 ×ϕ2,M2 M

′
2

where M1 = M ′
1/IM

′
1 and M2 = M ′

2/IM
′
2 is surjective.

Proof. Pick (x2, y2) ∈ N2 ×ϕ2,M2 M
′
2. Choose x1 ∈ N1 mapping to x2. Since

M ′
1 → M1 is surjective we can find y1 ∈ M ′

1 mapping to ϕ1(x1). Then (x1, y1) maps to
(x2, y

′
2) in N2 ×ϕ2,M2 M

′
2. Thus it suffices to show that elements of the form (0, y2) are
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in the image of the map. Here we see that y2 ∈ IM ′
2. Write y2 =

∑
tiy2,i with ti ∈ I .

Choose y1,i ∈ M ′
1 mapping to y2,i. Then y1 =

∑
tiy1,i ∈ IM ′

1 and the element (0, y1)
does the job. �

Lemma 6.7. Let A,A′, B,B′, I,M,M ′, N, ϕ be as in Lemma 6.4. If N finite over B
and M ′ finite over A′, then N ′ = N ×ϕ,M M ′ is finite over B′.

Proof. We will use the results of Lemma 6.4 without further mention. Choose gen-
erators y1, . . . , yr of N over B and generators x1, . . . , xs of M ′ over A′. Using that
N = N ′ ⊗B′ B and B′ → B is surjective we can find u1, . . . , ur ∈ N ′ mapping to
y1, . . . , yr in N . Using that M ′ = N ′ ⊗B′ A′ we can find v1, . . . , vt ∈ N ′ such that
xi =

∑
vj ⊗ a′

ij for some a′
ij ∈ A′. In particular we see that the images vj ∈ M ′

of the vj generate M ′ over A′. We claim that u1, . . . , ur, v1, . . . , vt generate N ′ as a
B′-module. Namely, pick ξ ∈ N ′. We first choose b′

1, . . . , b
′
r ∈ B′ such that ξ and∑

b′
iui map to the same element of N . This is possible because B′ → B is surjective and

y1, . . . , yr generate N over B. The difference ξ −
∑
b′
iui is of the form (0, θ) for some θ

in IM ′. Say θ is
∑
tjvj with tj ∈ I . As J = Ker(B′ → B) maps isomorphically to I

we can choose sj ∈ J ⊂ B′ mapping to tj . Because N ′ = N ×ϕ,M M ′ it follows that
ξ =

∑
b′
iui +

∑
sjvj as desired. �

Lemma 6.8. With A,A′, B,B′, I as in Situation 6.1.
(1) Let (N,M ′, ϕ) be an object of ModB ×ModA ModA′ . IfM ′ is flat overA′ andN

is flat over B, then N ′ = N ×ϕ,M M ′ is flat over B′.
(2) If L′ is a flat B′-module, then L′ = (L⊗B′ B)×(L⊗B′A) (L⊗B′ A′).
(3) The category of flatB′-modules is equivalent to the full subcategory of ModB×ModA

ModA′ consisting of triples (N,M ′, ϕ) with N flat over B and M ′ flat over A′.

Proof. In the proof we will use Lemma 6.4 without further mention.

Proof of (1). Set J = Ker(B′ → B). This is an ideal of B′ mapping isomorphically to
I = Ker(A′ → A). Let b′ ⊂ B′ be an ideal. We have to show that b′ ⊗B′ N ′ → N ′ is
injective, see Algebra, Lemma 39.5. We know that

b′/(b′ ∩ J)⊗B′ N ′ = b′/(b′ ∩ J)⊗B N → N

is injective as N is flat over B. As b′ ∩ J → b′ → b′/(b′ ∩ J) → 0 is exact, we conclude
that it suffices to show that (b′ ∩ J)⊗B′ N ′ → N ′ is injective. Thus we may assume that
b′ ⊂ J . Next, since J → I is an isomorphism we have

J ⊗B′ N ′ = I ⊗A′ A′ ⊗B′ N ′ = I ⊗A′ M ′

which maps injectively into M ′ as M ′ is a flat A′-module. Hence J ⊗B′ N ′ → N ′ is
injective and we conclude that TorB

′

1 (B′/J,N ′) = 0, see Algebra, Remark 75.9. Thus we
may apply Algebra, Lemma 99.8 to N ′ over B′ and the ideal J . Going back to our ideal
b′ ⊂ J , let b′ ⊂ b′′ ⊂ J be the smallest ideal whose image in I is an A′-submodule of I .
In other words, we have b′′ = A′b′ if we view J = I as A′-module. Then b′′/b′ is killed
by J and we get a short exact sequence

0→ b′ ⊗B′ N ′ → b′′ ⊗B′ N ′ → b′′/b′ ⊗B′ N ′ → 0

by the vanishing of TorB
′

1 (b′′/b′, N ′) we get from the application of the lemma. Thus we
may replace b′ by b′′. In particular we may assume b′ is anA′-module and maps to an ideal
of A′. Then

b′ ⊗B′ N ′ = b′ ⊗A′ A′ ⊗B′ N ′ = b′ ⊗A′ M ′
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This tensor product maps injectively into M ′ by our assumption that M ′ is flat over A′.
We conclude that b′ ⊗B′ N ′ → N ′ →M ′ is injective and hence the first map is injective
as desired.

Proof of (2). This follows by tensoring the short exact sequence 0 → B′ → B ⊕ A′ →
A→ 0 with L′ over B′.

Proof of (3). Immediate consequence of (1) and (2). �

Lemma 6.9. LetA,A′, B,B′, I be as in Situation 6.1. The category of finite projective
B′-modules is equivalent to the full subcategory of ModB ×ModA ModA′ consisting of
triples (N,M ′, ϕ) with N finite projective over B and M ′ finite projective over A′.

Proof. Recall that a module is finite projective if and only if it is finitely presented
and flat, see Algebra, Lemma 78.2. Using Lemmas 6.8 and 6.7 we reduce to showing that
N ′ = N ×ϕ,M M ′ is a B′-module of finite presentation if N finite projective over B and
M ′ finite projective over A′.

By Lemma 6.7 the module N ′ is finite over B′. Choose a surjection (B′)⊕n → N ′ with
kernel K ′. By base change we obtain maps B⊕n → N , (A′)⊕n → M ′, and A⊕n → M
with kernels KB , KA′ , and KA. There is a canonical map

K ′ −→ KB ×KA KA′

On the other hand, since N ′ = N ×ϕ,M M ′ and B′ = B ×A A′ there is also a canonical
map KB ×KA KA′ → K ′ inverse to the displayed arrow. Hence the displayed map is an
isomorphism. By Algebra, Lemma 5.3 the modules KB and KA′ are finite. We conclude
from Lemma 6.7 that K ′ is a finite B′-module provided that KB → KA and KA′ → KA

induce isomorphisms KB ⊗B A = KA = KA′ ⊗A′ A. This is true because the flatness
assumptions implies the sequences

0→ KB → B⊕n → N → 0 and 0→ KA′ → (A′)⊕n →M ′ → 0

stay exact upon tensoring, see Algebra, Lemma 39.12. �

7. Fibre products of rings, III

In this section we discuss fibre products in the following situation.

Situation 7.1. LetA,A′, B,B′, I be as in Situation 6.1. LetB′ → D′ be a ring map.
SetD = D′⊗B′ B, C ′ = D′⊗B′ A′, andC = D′⊗B′ A. This leads to a big commutative
diagram

C C ′oo

A

__

A′oo

>>

B

OO

��

B′oo

OO

  
D

OO

D′oo

OO
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of rings. Observe that we do not assume that the mapD′ → D×C C ′ is an isomorphism1.
In this situation we have the functor

(7.1.1) ModD′ −→ModD ×ModC ModC′ , L′ 7−→ (L′ ⊗D′ D,L′ ⊗D′ C ′, can)

analogous to (6.3.1). Note that L′ ⊗D′ D = L⊗D′ (D′ ⊗B′ B) = L⊗B′ B and similarly
L′ ⊗D′ C ′ = L⊗D′ (D′ ⊗B′ A′) = L⊗B′ A′ hence the diagram

ModD′ //

��

ModD ×ModC ModC′

��
ModB′ // ModB ×ModA ModA′

is commutative. In the following we will write (N,M ′, ϕ) for an object of ModD ×ModC
ModC′ , i.e., N is a D-module, M ′ is an C ′-module and ϕ : N ⊗B A → M ′ ⊗A′ A is
an isomorphism of C-modules. However, it is often more convenient think of ϕ as a D-
linear map ϕ : N → M ′/IM ′ which induces an isomorphism N ⊗B A → M ′ ⊗A′ A =
M ′/IM ′.

Lemma 7.2. In Situation 7.1 the functor (7.1.1) has a right adjoint, namely the functor

F : (N,M ′, ϕ) 7−→ N ×ϕ,M M ′

whereM = M ′/IM ′. Moreover, the composition ofF with (7.1.1) is the identity functor
on ModD×ModCModC′ . In other words, settingN ′ = N×ϕ,MM ′ we haveN ′⊗D′D = N
and N ′ ⊗D′ C ′ = M ′.

Proof. The adjointness statement follows from the more general Lemma 5.4. The
final assertion follows from the corresponding assertion of Lemma 6.4 becauseN ′⊗D′D =
N ′ ⊗D′ D′ ⊗B′ B = N ′ ⊗B′ B and N ′ ⊗D′ C ′ = N ′ ⊗D′ D′ ⊗B′ A′ = N ′ ⊗B′ A′. �

Lemma 7.3. In Situation 7.1 the map JD′ → IC ′ is surjective where J = Ker(B′ →
B).

Proof. Since C ′ = D′ ⊗B′ A′ we have that IC ′ is the image of D′ ⊗B′ I = C ′ ⊗A′

I → C ′. As the ring mapB′ → A′ induces an isomorphismJ → I the lemma follows. �

Lemma 7.4. Let A,A′, B,B′, C, C ′, D,D′, I,M ′,M,N,ϕ be as in Lemma 7.2. If N
finite over D and M ′ finite over C ′, then N ′ = N ×ϕ,M M ′ is finite over D′.

Proof. Recall that D′ → D ×C C ′ is surjective by Lemma 6.5. Observe that N ′ =
N×ϕ,MM ′ is a module overD×CC ′. We can apply Lemma 6.7 to the dataC,C ′, D,D′, IC ′,M ′,M,N,ϕ
to see that N ′ = N ×ϕ,M M ′ is finite over D ×C C ′. Thus it is finite over D′. �

Lemma 7.5. With A,A′, B,B′, C, C ′, D,D′, I as in Situation 7.1.
(1) Let (N,M ′, ϕ) be an object of ModD ×ModC ModC′ . IfM ′ is flat overA′ andN

is flat over B, then N ′ = N ×ϕ,M M ′ is flat over B′.
(2) If L′ is a D′-module flat over B′, then L′ = (L⊗D′ D)×(L⊗D′C) (L⊗D′ C ′).
(3) The category ofD′-modules flat overB′ is equivalent to the categories of objects

(N,M ′, ϕ) of ModD ×ModC ModC′ with N flat over B and M ′ flat over A′.

1But D′ → D ×C C′ is surjective by Lemma 6.5.
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Proof. Part (1) follows from part (1) of Lemma 6.8.

Part (2) follows from part (2) of Lemma 6.8 using thatL′⊗D′ D = L′⊗B′ B, L′⊗D′ C ′ =
L′ ⊗B′ A′, and L′ ⊗D′ C = L′ ⊗B′ A, see discussion in Situation 7.1.

Part (3) is an immediate consequence of (1) and (2). �

The following lemma is a good deal more interesting than its counter part in the absolute
case (Lemma 6.9), although the proof is essentially the same.

Lemma 7.6. Let A,A′, B,B′, C, C ′, D,D′, I,M ′,M,N,ϕ be as in Lemma 7.2. If
(1) N is finitely presented over D and flat over B,
(2) M ′ finitely presented over C ′ and flat over A′, and
(3) the ring map B′ → D′ factors as B′ → D′′ → D′ with B′ → D′′ flat and

D′′ → D′ of finite presentation,
then N ′ = N ×M M ′ is finitely presented over D′.

Proof. Choose a surjection D′′′ = D′′[x1, . . . , xn] → D′ with finitely generated
kernel J . By Algebra, Lemma 36.23 it suffices to show thatN ′ is finitely presented as aD′′′-
module. Moreover,D′′′⊗B′ B → D′⊗B′ B = D andD′′′⊗B′ A′ → D′⊗B′ A′ = C ′ are
surjections whose kernels are generated by the image of J , hence N is a finitely presented
D′′′⊗B′ B-module andM ′ is a finitely presentedD′′′⊗B′ A′-module by Algebra, Lemma
36.23 again. Thus we may replace D′ by D′′′ and D by D′′′ ⊗B′ B, etc. Since D′′′ is flat
over B′, it follows that we may assume that B′ → D′ is flat.

Assume B′ → D′ is flat. By Lemma 7.4 the module N ′ is finite over D′. Choose a sur-
jection (D′)⊕n → N ′ with kernel K ′. By base change we obtain maps D⊕n → N ,
(C ′)⊕n →M ′, and C⊕n →M with kernelsKD ,KC′ , andKC . There is a canonical map

K ′ −→ KD ×KC KC′

On the other hand, since N ′ = N ×M M ′ and D′ = D ×C C ′ (by Lemma 6.8; applied
to the flat B′-module D′) there is also a canonical map KD ×KC KC′ → K ′ inverse to
the displayed arrow. Hence the displayed map is an isomorphism. By Algebra, Lemma
5.3 the modules KD and KC′ are finite. We conclude from Lemma 7.4 that K ′ is a finite
D′-module provided thatKD → KC andKC′ → KC induce isomorphismsKD⊗B A =
KC = KC′ ⊗A′ A. This is true because the flatness assumptions implies the sequences

0→ KD → D⊕n → N → 0 and 0→ KC′ → (C ′)⊕n →M ′ → 0
stay exact upon tensoring, see Algebra, Lemma 39.12. �

Lemma 7.7. Let A,A′, B,B′, I be as in Situation 6.1. Let (D,C ′, ϕ) be a system
consisting of anB-algebraD, aA′-algebraC ′ and an isomorphismD⊗B A→ C ′/IC ′ =
C. Set D′ = D ×C C ′ (as in Lemma 6.4). Then

(1) B′ → D′ is finite type if and only if B → D and A′ → C ′ are finite type,
(2) B′ → D′ is flat if and only if B → D and A′ → C ′ are flat,
(3) B′ → D′ is flat and of finite presentation if and only if B → D and A′ → C ′

are flat and of finite presentation,
(4) B′ → D′ is smooth if and only if B → D and A′ → C ′ are smooth,
(5) B′ → D′ is étale if and only if B → D and A′ → C ′ are étale.

Moreover, if D′ is a flat B′-algebra, then D′ → (D′ ⊗B′ B)×(D′⊗B′A) (D′ ⊗B′ A′) is an
isomorphism. In this way the category of flat B′-algebras is equivalent to the categories
of systems (D,C ′, ϕ) as above with D flat over B and C ′ flat over A′.
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Proof. The implication “⇒” follows from Algebra, Lemmas 14.2, 39.7, 137.4, and
143.3 because we haveD′⊗B′ B = D andD′⊗B′ A′ = C ′ by Lemma 6.4. Thus it suffices
to prove the implications in the other direction.

Ad (1). AssumeD of finite type overB andC ′ of finite type overA′. We will use the results
of Lemma 6.4 without further mention. Choose generators x1, . . . , xr of D over B and
generators y1, . . . , ys of C ′ over A′. Using that D = D′ ⊗B′ B and B′ → B is surjective
we can find u1, . . . , ur ∈ D′ mapping to x1, . . . , xr inD. Using that C ′ = D′⊗B′ A′ we
can find v1, . . . , vt ∈ D′ such that yi =

∑
vj ⊗ a′

ij for some a′
ij ∈ A′. In particular, the

images of vj in C ′ generate C ′ as an A′-algebra. Set N = r + t and consider the cube of
rings

A[x1, . . . , xN ] A′[x1, . . . , xN ]oo

A

ee

A′oo

ff

B[x1, . . . , xN ]

OO

B′[x1, . . . , xN ]

OO

oo

B

OO

ee

B′oo

OO

ff

Observe that the back square is cartesian as well. Consider the ring map

B′[x1, . . . , xN ]→ D′, xi 7→ ui and xr+j 7→ vj .

Then we see that the induced maps B[x1, . . . , xN ] → D and A′[x1, . . . , xN ] → C ′ are
surjective, in particular finite. We conclude from Lemma 7.4 that B′[x1, . . . , xN ] → D′

is finite, which implies that D′ is of finite type over B′ for example by Algebra, Lemma
6.2.

Ad (2). The implication “⇐” follows from Lemma 7.5. Moreover, the final statement
follows from the final statement of Lemma 7.5.

Ad (3). Assume B → D and A′ → C ′ are flat and of finite presentation. The flatness of
B′ → D′ we’ve seen in (2). We know B′ → D′ is of finite type by (1). Choose a surjec-
tion B′[x1, . . . , xN ] → D′. By Algebra, Lemma 6.3 the ring D is of finite presentation
as a B[x1, . . . , xN ]-module and the ring C ′ is of finite presentation as a A′[x1, . . . , xN ]-
module. By Lemma 7.6 we see thatD′ is of finite presentation as aB′[x1, . . . , xN ]-module,
i.e., B′ → D′ is of finite presentation.

Ad (4). Assume B → D and A′ → C ′ smooth. By (3) we see that B′ → D′ is flat and of
finite presentation. By Algebra, Lemma 137.17 it suffices to check thatD′⊗B′ k is smooth
for any field k over B′. If the composition J → B′ → k is zero, then B′ → k factors as
B′ → B → k and we see that

D′ ⊗B′ k = D′ ⊗B′ B ⊗B k = D ⊗B k

is smooth as B → D is smooth. If the composition J → B′ → k is nonzero, then there
exists an h ∈ J which does not map to zero in k. Then B′ → k factors as B′ → B′

h → k.
Observe that h maps to zero in B, hence Bh = 0. Thus by Lemma 5.3 we have B′

h = A′
h

and we get
D′ ⊗B′ k = D′ ⊗B′ B′

h ⊗B′
h
k = C ′

h ⊗A′
h
k
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is smooth as A′ → C ′ is smooth.

Ad (5). AssumeB → D andA′ → C ′ are étale. By (4) we see thatB′ → D′ is smooth. As
we can read off whether or not a smooth map is étale from the dimension of fibres we see
that (5) holds (argue as in the proof of (4) to identify fibres – some details omitted). �

Remark 7.8. In Situation 7.1. AssumeB′ → D′ is of finite presentation and suppose
we are given a D′-module L′. We claim there is a bijective correspondence between

(1) surjections of D′-modules L′ → Q′ with Q′ of finite presentation over D′ and
flat over B′, and

(2) pairs of surjections of modules (L′ ⊗D′ D → Q1, L
′ ⊗D′ C ′ → Q2) with

(a) Q1 of finite presentation over D and flat over B,
(b) Q2 of finite presentation over C ′ and flat over A′,
(c) Q1 ⊗D C = Q2 ⊗C′ C as quotients of L′ ⊗D′ C.

The correspondence between these is given by Q 7→ (Q1, Q2) with Q1 = Q ⊗D′ D and
Q2 = Q⊗D′ C ′. And for the converse we use Q = Q1 ×Q12 Q2 where Q12 the common
quotient Q1 ⊗D C = Q2 ⊗C′ C of L′ ⊗D′ C. As quotient map we use

L′ −→ (L′ ⊗D′ D)×(L′⊗D′C) (L′ ⊗D′ C ′) −→ Q1 ×Q12 Q2 = Q

where the first arrow is surjective by Lemma 6.5 and the second by Lemma 6.6. The claim
follows by Lemmas 7.5 and 7.6.

8. Fitting ideals

The Fitting ideals of a finite module are the ideals determined by the construction of
Lemma 8.2.

Lemma 8.1. Let R be a ring. Let A be an n ×m matrix with coefficients in R. Let
Ir(A) be the ideal generated by the r×r-minors ofAwith the convention that I0(A) = R
and Ir(A) = 0 if r > min(n,m). Then

(1) I0(A) ⊃ I1(A) ⊃ I2(A) ⊃ . . .,
(2) if B is an (n+ n′)×m matrix, and A is the first n rows of B, then Ir+n′(B) ⊂

Ir(A),
(3) if C is an n× n matrix then Ir(CA) ⊂ Ir(A).
(4) If A is a block matrix (

A1 0
0 A2

)
then Ir(A) =

∑
r1+r2=r Ir1(A1)Ir2(A2).

(5) Add more here.

Proof. Omitted. (Hint: Use that a determinant can be computed by expanding along
a column or a row.) �

Lemma 8.2. Let R be a ring. Let M be a finite R-module. Choose a presentation⊕
j∈J

R −→ R⊕n −→M −→ 0.

of M . Let A = (aij)i=1,...,n,j∈J be the matrix of the map
⊕

j∈J R → R⊕n. The ideal
Fitk(M) generated by the (n− k)× (n− k) minors of A is independent of the choice of
the presentation.
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Proof. LetK ⊂ R⊕n be the kernel of the surjectionR⊕n →M . Pick z1, . . . , zn−k ∈
K and write zj = (z1j , . . . , znj). Another description of the ideal Fitk(M) is that it is
the ideal generated by the (n− k)× (n− k) minors of all the matrices (zij) we obtain in
this way.

Suppose we change the surjection into the surjectionR⊕n+n′ →M with kernelK ′ where
we use the original map on the first n standard basis elements ofR⊕n+n′

and 0 on the last
n′ basis vectors. Then the corresponding ideals are the same. Namely, if z1, . . . , zn−k ∈
K as above, let z′

j = (z1j , . . . , znj , 0, . . . , 0) ∈ K ′ for j = 1, . . . , n − k and z′
n+j′ =

(0, . . . , 0, 1, 0, . . . , 0) ∈ K ′. Then we see that the ideal of (n − k) × (n − k) minors of
(zij) agrees with the ideal of (n + n′ − k) × (n + n′ − k) minors of (z′

ij). This gives
one of the inclusions. Conversely, given z′

1, . . . , z
′
n+n′−k in K ′ we can project these to

R⊕n to get z1, . . . , zn+n′−k in K. By Lemma 8.1 we see that the ideal generated by the
(n + n′ − k) × (n + n′ − k) minors of (z′

ij) is contained in the ideal generated by the
(n− k)× (n− k) minors of (zij). This gives the other inclusion.

Let R⊕m → M be another surjection with kernel L. By Schanuel’s lemma (Algebra,
Lemma 109.1) and the results of the previous paragraph, we may assume m = n and that
there is an isomorphism R⊕n → R⊕m commuting with the surjections to M . Let C =
(cli) be the (invertible) matrix of this map (it is a square matrix as n = m). Then given
z′

1, . . . , z
′
n−k ∈ L as above we can find z1, . . . , zn−k ∈ K with z′

1 = Cz1, . . . , z
′
n−k =

Czn−k. By Lemma 8.1 we get one of the inclusions. By symmetry we get the other. �

Definition 8.3. Let R be a ring. Let M be a finite R-module. Let k ≥ 0. The kth
Fitting ideal of M is the ideal Fitk(M) constructed in Lemma 8.2. Set Fit−1(M) = 0.

Since the Fitting ideals are the ideals of minors of a big matrix (numbered in reverse or-
dering from the ordering in Lemma 8.1) we see that

0 = Fit−1(M) ⊂ Fit0(M) ⊂ Fit1(M) ⊂ . . . ⊂ Fitt(M) = R

for some t� 0. Here are some basic properties of Fitting ideals.

Lemma 8.4. Let R be a ring. Let M be a finite R-module.
(1) If M can be generated by n elements, then Fitn(M) = R.
(2) Given a second finite R-module M ′ we have

Fitl(M ⊕M ′) =
∑

k+k′=l
Fitk(M)Fitk′(M ′)

(3) IfR→ R′ is a ring map, then Fitk(M ⊗RR′) is the ideal ofR′ generated by the
image of Fitk(M).

(4) If M is of finite presentation, then Fitk(M) is a finitely generated ideal.
(5) If M →M ′ is a surjection, then Fitk(M) ⊂ Fitk(M ′).
(6) We have Fit0(M) ⊂ AnnR(M).
(7) We have V (Fit0(M)) = Supp(M).
(8) Add more here.

Proof. Part (1) follows from the fact that I0(A) = R in Lemma 8.1.

Part (2) follows form the corresponding statement in Lemma 8.1.

Part (3) follows from the fact that⊗RR′ is right exact, so the base change of a presentation
of M is a presentation of M ⊗R R′.
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Proof of (4). Let R⊕m A−→ R⊕n → M → 0 be a presentation. Then Fitk(M) is the ideal
generated by the n− k × n− k minors of the matrix A.

Part (5) is immediate from the definition.

Proof of (6). Choose a presentation ofM with matrixA as in Lemma 8.2. Let J ′ ⊂ J be a
subset of cardinality n. It suffices to show that f = det(aij)i=1,...,n,j∈J′ annihilates M .
This is clear because the cokernel of

R⊕n A′=(aij)i=1,...,n,j∈J′
−−−−−−−−−−−−−−→ R⊕n →M → 0

is killed by f as there is a matrix B with A′B = f1n×n.

Proof of (7). Choose a presentation ofM with matrixA as in Lemma 8.2. By Nakayama’s
lemma (Algebra, Lemma 20.1) we have

Mp 6= 0⇔M ⊗R κ(p) 6= 0⇔ rank(image A in κ(p)) < n

Clearly Fit0(M) exactly cuts out the set of primes with this property. �

Example 8.5. LetR be a ring. The Fitting ideals of the finite free moduleM = R⊕n

are Fitk(M) = 0 for k < n and Fitk(M) = R for k ≥ n.

Lemma 8.6. Let R be a ring. Let M be a finite R-module. Let k ≥ 0. Let p ⊂ R be a
prime ideal. The following are equivalent

(1) Fitk(M) 6⊂ p,
(2) dimκ(p) M ⊗R κ(p) ≤ k,
(3) Mp can be generated by k elements over Rp, and
(4) Mf can be generated by k elements over Rf for some f ∈ R, f 6∈ p.

Proof. By Nakayama’s lemma (Algebra, Lemma 20.1) we see that Mf can be gener-
ated by k elements over Rf for some f ∈ R, f 6∈ p if M ⊗R κ(p) can be generated by k
elements. Hence (2), (3), and (4) are equivalent. Using Lemma 8.4 part (3) this reduces the
problem to the case where R is a field and p = (0). In this case the result follows from
Example 8.5. �

Lemma 8.7. Let R be a ring. Let M be a finite R-module. Let r ≥ 0. The following
are equivalent

(1) M is finite locally free of rank r (Algebra, Definition 78.1),
(2) Fitr−1(M) = 0 and Fitr(M) = R, and
(3) Fitk(M) = 0 for k < r and Fitk(M) = R for k ≥ r.

Proof. It is immediate that (2) is equivalent to (3) because the Fitting ideals form
an increasing sequence of ideals. Since the formation of Fitk(M) commutes with base
change (Lemma 8.4) we see that (1) implies (2) by Example 8.5 and glueing results (Algebra,
Section 23). Conversely, assume (2). By Lemma 8.6 we may assume thatM is generated by
r elements. Thus a presentation

⊕
j∈J R → R⊕r → M → 0. But now the assumption

that Fitr−1(M) = 0 implies that all entries of the matrix of the map
⊕

j∈J R→ R⊕r are
zero. Thus M is free. �

Lemma 8.8. Let R be a local ring. Let M be a finite R-module. Let k ≥ 0. Assume
that Fitk(M) = (f) for some f ∈ R. LetM ′ be the quotient ofM by {x ∈M | fx = 0}.
Then M ′ can be generated by k elements.
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Proof. Choose generators x1, . . . , xn ∈M corresponding to the surjection R⊕n →
M . Since R is local if a set of elements E ⊂ (f) generates (f), then some e ∈ E generates
(f), see Algebra, Lemma 20.1. Hence we may pick z1, . . . , zn−k in the kernel ofR⊕n →M
such that some (n−k)×(n−k) minor of the n×(n−k) matrixA = (zij) generates (f).
After renumbering the xi we may assume the first minor det(zij)1≤i,j≤n−k generates (f),
i.e., det(zij)1≤i,j≤n−k = uf for some unit u ∈ R. Every other minor is a multiple of f .
By Algebra, Lemma 15.6 there exists a n− k × n− k matrix B such that

AB = f

(
u1n−k×n−k

C

)
for some matrixC with coefficients inR. This implies that for every i ≤ n−k the element
yi = uxi +

∑
j cjixj is annihilated by f . Since M/

∑
Ryi is generated by the images of

xn−k+1, . . . , xn we win. �

Lemma 8.9. Let R be a ring. Let M be a finitely presented R-module. Let k ≥ 0.
Assume that Fitk(M) = (f) for some nonzerodivisor f ∈ R and Fitk−1(M) = 0. Then

(1) M has projective dimension ≤ 1,
(2) M ′ = Ker(f : M →M) is the f -power torsion submodule of M ,
(3) M ′ has projective dimension ≤ 1,
(4) M/M ′ is finite locally free of rank k, and
(5) M ∼= M/M ′ ⊕M ′.

Proof. Choose a presentation

R⊕m A−→ R⊕n →M → 0
for some matrix A with coefficients in R.

We first prove the lemma when R is local. Set M ′ = {x ∈ M | fx = 0} as in the
statement. By Lemma 8.8 we can choose x1, . . . , xk ∈ M which generate M/M ′. Then
x1, . . . , xk generateMf = (M/M ′)f . Hence, if there is a relation

∑
aixi = 0 inM , then

we see that a1, . . . , ak map to zero in Rf since otherwise Fitk−1(M)Rf = Fitk−1(Mf )
would be nonzero. Since f is a nonzerodivisor, we conclude a1 = . . . = ak = 0. Thus
M ∼= R⊕k⊕M ′. After a change of basis in our presentation above, we may assume the first
n − k basis vectors of R⊕n map into the summand M ′ of M and the last k-basis vectors
ofR⊕n map to basis elements of the summandR⊕k ofM . Having done so, the last k rows
of the matrix A vanish. In this way we see that, replacing M by M ′, k by 0, n by n − k,
and A by the submatrix where we delete the last k rows, we reduce to the case discussed
in the next paragraph.

Assume R is local, k = 0, and M annihilated by f . Now the 0th Fitting ideal of M is (f)
and is generated by the n × n minors of the matrix A of size n ×m. (This in particular
implies m ≥ n.) Since R is local, some n × n minor of A is uf for a unit u ∈ R. After
renumbering we may assume this minor is the first one. Moreover, we know all othern×n
minors of A are divisible by f . Write A = (A1A2) in block form where A1 is an n × n
matrix andA2 is an n× (m−n) matrix. By Algebra, Lemma 15.6 applied to the transpose
of A (!) we find there exists an n× n matrix B such that

BA = B(A1A2) = f
(
u1n×n C

)
for some n × (m − n) matrix C with coefficients in R. Then we first conclude BA1 =
fu1n×n. Thus

BA2 = fC = u−1fuC = u−1BA1C
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Since the determinant of B is a nonzerodivisor we conclude that A2 = u−1A1C. There-
fore the image of A is equal to the image of A1 which is isomorphic to R⊕n because the
determinant of A1 is a nonzerodivisor. Hence M has projective dimension ≤ 1.

We return to the case of a general ring R. By the local case we see that M/M ′ is a finite
locally free module of rank k, see Algebra, Lemma 78.2. Hence the extension 0 → M ′ →
M → M/M ′ → 0 splits. It follows that M ′ is a finitely presented module. Choose a
short exact sequence 0 → K → R⊕a → M ′ → 0. Then K is a finite R-module, see
Algebra, Lemma 5.3. By the local case we see that Kp

∼= R⊕a
p for all primes. Hence by

Algebra, Lemma 78.2 again we see that K is finite locally free of rank a. It follows that
M ′ has projective dimension ≤ 1 and the lemma is proved. �

9. Lifting

In this section we collection some lemmas concerning lifting statements of the following
kind: If A is a ring and I ⊂ A is an ideal, and ξ is some kind of structure over A/I , then
we can lift ξ to a similar kind of structure ξ overA or over some étale extension ofA. Here
are some types of structure for which we have already proved some results:

(1) idempotents, see Algebra, Lemmas 32.6 and 32.7,
(2) projective modules, see Algebra, Lemmas 77.5 and 77.6,
(3) finite stably free modules, see Lemma 3.3,
(4) basis elements, see Algebra, Lemmas 101.1 and 101.3,
(5) ring maps, i.e., proving certain algebras are formally smooth, see Algebra, Lemma

138.4, Proposition 138.13, and Lemma 138.17,
(6) syntomic ring maps, see Algebra, Lemma 136.18,
(7) smooth ring maps, see Algebra, Lemma 137.20,
(8) étale ring maps, see Algebra, Lemma 143.10,
(9) factoring polynomials, see Algebra, Lemma 143.13, and

(10) Algebra, Section 153 discusses henselian local rings.
The interested reader will find more results of this nature in Smoothing Ring Maps, Section
3 in particular Smoothing Ring Maps, Proposition 3.2.

Let A be a ring and let I ⊂ A be an ideal. Let ξ be some kind of structure over A/I . In
the following lemmas we look for étale ring maps A → A′ which induce isomorphisms
A/I → A′/IA′ and objects ξ′ over A′ lifting ξ. A general remark is that given étale ring
maps A → A′ → A′′ such that A/I ∼= A′/IA′ and A′/IA′ ∼= A′′/IA′′ the composition
A → A′′ is also étale (Algebra, Lemma 143.3) and also satisfies A/I ∼= A′′/IA′′. We will
frequently use this in the following lemmas without further mention. Here is a trivial
example of the type of result we are looking for.

Lemma 9.1. Let A be a ring, let I ⊂ A be an ideal, let u ∈ A/I be an invertible
element. There exists an étale ring map A → A′ which induces an isomorphism A/I →
A′/IA′ and an invertible element u′ ∈ A′ lifting u.

Proof. Choose any lift f ∈ A of u and set A′ = Af and u the image of f in A′. �

Lemma 9.2. Let A be a ring, let I ⊂ A be an ideal, let e ∈ A/I be an idempotent.
There exists an étale ring map A → A′ which induces an isomorphism A/I → A′/IA′

and an idempotent e′ ∈ A′ lifting e.
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Proof. Choose any lift x ∈ A of e. Set

A′ = A[t]/(t2 − t)
[

1
t− 1 + x

]
.

The ring map A→ A′ is étale because (2t− 1)dt = 0 and (2t− 1)(2t− 1) = 1 which is
invertible. We have A′/IA′ = A/I[t]/(t2 − t)[ 1

t−1+e ] ∼= A/I the last map sending t to e
which works as e is a root of t2 − t. This also shows that setting e′ equal to the class of t
in A′ works. �

Lemma 9.3. Let A be a ring, let I ⊂ A be an ideal. Let Spec(A/I) =
∐
j∈J U j be a

finite disjoint open covering. Then there exists an étale ring map A→ A′ which induces
an isomorphismA/I → A′/IA′ and a finite disjoint open covering Spec(A′) =

∐
j∈J U

′
j

lifting the given covering.

Proof. This follows from Lemma 9.2 and the fact that open and closed subsets of
Spectra correspond to idempotents, see Algebra, Lemma 21.3. �

Lemma 9.4. Let A → B be a ring map and J ⊂ B an ideal. If A → B is étale at
every prime of V (J), then there exists a g ∈ B mapping to an invertible element of B/J
such that A′ = Bg is étale over A.

Proof. The set of points of Spec(B) where A → B is not étale is a closed subset of
Spec(B), see Algebra, Definition 143.1. Write this as V (J ′) for some ideal J ′ ⊂ B. Then
V (J ′) ∩ V (J) = ∅ hence J + J ′ = B by Algebra, Lemma 17.2. Write 1 = f + g with
f ∈ J and g ∈ J ′. Then g works. �

Next we have three lemmas saying we can lift factorizations of polynomials.

Lemma 9.5. Let A be a ring, let I ⊂ A be an ideal. Let f ∈ A[x] be a monic poly-
nomial. Let f = gh be a factorization of f in A/I[x] such that g and h are monic and
generate the unit ideal in A/I[x]. Then there exists an étale ring map A → A′ which
induces an isomorphism A/I → A′/IA′ and a factorization f = g′h′ in A′[x] with g′, h′

monic lifting the given factorization over A/I .

Proof. We will deduce this from results on the universal factorization proved ear-
lier; however, we encourage the reader to find their own proof not using this trick. Say
deg(g) = n and deg(h) = m so that deg(f) = n+m. Write f = xn+m +

∑
αix

n+m−i

for some α1, . . . , αn+m ∈ A. Consider the ring map

R = Z[a1, . . . , an+m] −→ S = Z[b1, . . . , bn, c1, . . . , cm]
of Algebra, Example 143.12. Let R→ A be the ring map which sends ai to αi. Set

B = A⊗R S
By construction the image fB of f inB[x] factors, say fB = gBhB with gB = xn+

∑
(1⊗

bi)xn−i and similarly for hB . Write g = xn +
∑
βix

n−i and h = xm +
∑
γix

m−i. The
A-algebra map

B −→ A/I, 1⊗ bi 7→ βi, 1⊗ ci 7→ γi

maps gB and hB to g and h in A/I[x]. The displayed map is surjective; denote J ⊂ B its
kernel. From the discussion in Algebra, Example 143.12 it is clear that A → B is etale at
all points of V (J) ⊂ Spec(B). Choose g ∈ B as in Lemma 9.4 and consider theA-algebra
Bg . Since g maps to a unit in B/J = A/I we obtain also a map Bg/IBg → A/I of A/I-
algebras. Since A/I → Bg/IBg is étale, also Bg/IBg → A/I is étale (Algebra, Lemma
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143.8). Hence there exists an idempotent e ∈ Bg/IBg such that A/I = (Bg/IBg)e
(Algebra, Lemma 143.9). Choose a lift h ∈ Bg of e. Then A → A′ = (Bg)h with
factorization given by the image of the factorization fB = gBhB inA′ is a solution to the
problem posed by the lemma. �

The assumption on the leading coefficient in the following lemma will be removed in
Lemma 9.7.

Lemma 9.6. Let A be a ring, let I ⊂ A be an ideal. Let f ∈ A[x] be a monic polyno-
mial. Let f = gh be a factorization of f in A/I[x] and assume

(1) the leading coefficient of g is an invertible element of A/I , and
(2) g, h generate the unit ideal in A/I[x].

Then there exists an étale ring map A → A′ which induces an isomorphism A/I →
A′/IA′ and a factorization f = g′h′ in A′[x] lifting the given factorization over A/I .

Proof. Applying Lemma 9.1 we may assume that the leading coefficient of g is the
reduction of an invertible element u ∈ A. Then we may replace g by u−1g and h by uh.
Thus we may assume that g is monic. Since f is monic we conclude that h is monic too.
In this case the result follows from Lemma 9.5. �

Lemma 9.7. Let A be a ring, let I ⊂ A be an ideal. Let f ∈ A[x] be a monic polyno-
mial. Let f = gh be a factorization of f in A/I[x] and assume that g, h generate the unit
ideal in A/I[x]. Then there exists an étale ring map A → A′ which induces an isomor-
phismA/I → A′/IA′ and a factorization f = g′h′ inA′[x] lifting the given factorization
over A/I .

Proof. Say f = xd + a1x
d−1 + . . . + ad has degree d. Write g =

∑
bjx

j and
h =

∑
cjx

j . Then we see that 1 =
∑
bjcd−j . It follows that Spec(A/I) is covered

by the standard opens D(bjcd−j). However, each point p of Spec(A/I) is contained in
at most one of these as by looking at the induced factorization of f over the field κ(p)
we see that deg(g mod p) + deg(h mod p) = d. Hence our open covering is a disjoint
open covering. Applying Lemma 9.3 (and replacing A by A′) we see that we may assume
there is a corresponding disjoint open covering of Spec(A). This disjoint open covering
corresponds to a product decomposition of A, see Algebra, Lemma 24.3. It follows that

A = A0 × . . .×Ad, I = I0 × . . .× Id,

where the image of g, resp. h in Aj/Ij has degree j , resp. d − j with invertible leading
coefficient. Clearly, it suffices to prove the result for each factor Aj separatedly. Hence
the lemma follows from Lemma 9.6. �

Lemma 9.8. Let R→ S be a ring map. Let I ⊂ R be an ideal of R and let J ⊂ S be
an ideal of S. If the closure of the image of V (J) in Spec(R) is disjoint from V (I), then
there exists an element f ∈ R which maps to 1 in R/I and to an element of J in S.

Proof. Let I ′ ⊂ R be an ideal such that V (I ′) is the closure of the image of V (J).
Then V (I) ∩ V (I ′) = ∅ by assumption and hence I + I ′ = R by Algebra, Lemma 17.2.
Write 1 = g + f with g ∈ I and f ∈ I ′. We have V (f ′) ⊃ V (J) where f ′ is the image
of f in S. Hence (f ′)n ∈ J for some n, see Algebra, Lemma 17.2. Replacing f by fn we
win. �
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Lemma 9.9. Let I be an ideal of a ring A. Let A → B be an integral ring map. Let
b ∈ B map to an idempotent inB/IB. Then there exists a monic f ∈ A[x] with f(b) = 0
and f mod I = xd(x− 1)d for some d ≥ 1.

Proof. Observe that z = b2 − b is an element of IB. By Algebra, Lemma 38.4
there exist a monic polynomial g(x) = xd +

∑
ajx

j of degree d with aj ∈ I such that
g(z) = 0 in B. Hence f(x) = g(x2 − x) ∈ A[x] is a monic polynomial such that
f(x) ≡ xd(x− 1)d mod I and such that f(b) = 0 in B. �

Lemma 9.10. Let A be a ring, let I ⊂ A be an ideal. Let A → B be an integral ring
map. Let e ∈ B/IB be an idempotent. Then there exists an étale ring mapA→ A′ which
induces an isomorphism A/I → A′/IA′ and an idempotent e′ ∈ B ⊗A A′ lifting e.

Proof. Choose an element y ∈ B lifting e. Choose f ∈ A[x] as in Lemma 9.9
for y. By Lemma 9.6 we can find an étale ring map A → A′ which induces an isomor-
phism A/I → A′/IA′ and such that f = gh in A[x] with g(x) = xd mod IA′ and
h(x) = (x − 1)d mod IA′. After replacing A by A′ we may assume that the factor-
ization is defined over A. In that case we see that b1 = g(y) ∈ B is a lift of ed = e
and b2 = h(y) ∈ B is a lift of (e − 1)d = (−1)d(1 − e)d = (−1)d(1 − e) and more-
over b1b2 = 0. Thus (b1, b2)B/IB = B/IB and V (b1, b2) ⊂ Spec(B) is disjoint from
V (IB). Since Spec(B) → Spec(A) is closed (see Algebra, Lemmas 36.22 and 41.6) we
can find an a ∈ A which maps to an invertible element of A/I whose image in B lies in
(b1, b2), see Lemma 9.8. After replacingA by the localizationAa we get that (b1, b2) = B.
Then Spec(B) = D(b1) q D(b2); disjoint union because b1b2 = 0 and covers Spec(B)
because (b1, b2) = B. Let e ∈ B be the idempotent corresponding to the open and closed
subset D(b1), see Algebra, Lemma 21.3. Since b1 is a lift of e and b2 is a lift of±(1− e) we
conclude that e is a lift of e by the uniqueness statement in Algebra, Lemma 21.3. �

Lemma 9.11. Let A be a ring, let I ⊂ A be an ideal. Let P be a finite projective
A/I-module. Then there exists an étale ring mapA→ A′ which induces an isomorphism
A/I → A′/IA′ and a finite projective A′-module P ′ lifting P .

Proof. We can choose an integer n and a direct sum decomposition (A/I)⊕n =
P ⊕ K for some R/I-module K. Choose a lift ϕ : A⊕n → A⊕n of the projector p
associated to the direct summand P . Let f ∈ A[x] be the characteristic polynomial of
ϕ. Set B = A[x]/(f). By Cayley-Hamilton (Algebra, Lemma 16.1) there is a map B →
EndA(A⊕n) mapping x toϕ. For every prime p ⊃ I the image of f in κ(p) is (x−1)rxn−r

where r is the dimension ofP⊗A/I κ(p). Hence (x−1)nxn maps to zero inB⊗Aκ(p) for
all p ⊃ I . Thus x(1− x) is contained in every prime ideal of B/IB. Hence xN (1− x)N
is contained in IB for some N ≥ 1. It follows that xN + (1− x)N is a unit in B/IB and
that

e = image of
xN

xN + (1− x)N in B/IB

is an idempotent as both assertions hold in Z[x]/(xN (x−1)N ). The image of e in EndA/I((A/I)⊕n)
is

pN

pN + (1− p)N
= p

as p is an idempotent. After replacingA by an étale extensionA′ as in the lemma, we may
assume there exists an idempotent e ∈ B which maps to e inB/IB, see Lemma 9.10. Then
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the image of e under the map

B = A[x]/(f) −→ EndA(A⊕n).
is an idempotent element p which lifts p. Setting P = Im(p) we win. �

Lemma 9.12. Let A be a ring. Let 0 → K → A⊕m → M → 0 be a sequence of A-
modules. Consider theA-algebraC = Sym∗

A(M) with its presentationα : A[y1, . . . , ym]→
C coming from the surjection A⊕m →M . Then

NL(α) = (K ⊗A C →
⊕

j=1,...,m
Cdyj)

(see Algebra, Section 134) in particular ΩC/A = M ⊗A C.

Proof. Let J = Ker(α). The lemma asserts that J/J2 ∼= K ⊗A C. Note that α is
a homomorphism of graded algebras. We will prove that in degree d we have (J/J2)d =
K ⊗A Cd−1. Note that

Jd = Ker(Symd
A(A⊕m)→ Symd

A(M)) = Im(K ⊗A Symd−1
A (A⊕m)→ Symd

A(A⊕m)),
see Algebra, Lemma 13.2. It follows that (J2)d =

∑
a+b=d Ja · Jb is the image of

K ⊗A K ⊗A Symd−2
A (A⊗m)→ Symd

A(A⊕m).

The cokernel of the map K ⊗A Symd−2
A (A⊗m)→ Symd−1

A (A⊕m) is Symd−1
A (M) by the

lemma referenced above. Hence it is clear that (J/J2)d = Jd/(J2)d is equal to

Coker(K ⊗A K ⊗A Symd−2
A (A⊗m)→ K ⊗A Symd−1

A (A⊗m)) = K ⊗A Symd−1
A (M)

= K ⊗A Cd−1

as desired. �

Lemma 9.13. Let A be a ring. Let M be an A-module. Then C = Sym∗
A(M) is

smooth over A if and only if M is a finite projective A-module.

Proof. Let σ : C → A be the projection onto the degree 0 part of C. Then J =
Ker(σ) is the part of degree > 0 and we see that J/J2 = M as an A-module. Hence if
A→ C is smooth then M is a finite projective A-module by Algebra, Lemma 139.4.

Conversely, assume that M is finite projective and choose a surjection A⊕n → M with
kernelK. Of course the sequence 0→ K → A⊕n →M → 0 is split asM is projective. In
particular we see thatK is a finiteA-module and henceC is of finite presentation overA as
C is a quotient ofA[x1, . . . , xn] by the ideal generated byK ⊂

⊕
Axi. The computation

of Lemma 9.12 shows that NLC/A is homotopy equivalent to (K → M) ⊗A C. Hence
NLC/A is quasi-isomorphic to C ⊗AM placed in degree 0 which means that C is smooth
over A by Algebra, Definition 137.1. �

Lemma 9.14. LetA be a ring, let I ⊂ A be an ideal. Consider a commutative diagram

B

!!
A

OO

// A/I

where B is a smooth A-algebra. Then there exists an étale ring map A → A′ which
induces an isomorphism A/I → A′/IA′ and an A-algebra map B → A′ lifting the ring
map B → A/I .
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Proof. Let J ⊂ B be the kernel of B → A/I so that B/J = A/I . By Algebra,
Lemma 139.3 the sequence

0→ I/I2 → J/J2 → ΩB/A ⊗B B/J → 0

is split exact. Thus P = J/(J2 +IB) = ΩB/A⊗BB/J is a finite projectiveA/I-module.
Choose an integer n and a direct sum decomposition A/I⊕n = P ⊕K. By Lemma 9.11
we can find an étale ring map A → A′ which induces an isomorphism A/I → A′/IA′

and a finite projective A-module K which lifts K. We may and do replace A by A′. Set
B′ = B ⊗A Sym∗

A(K). Since A → Sym∗
A(K) is smooth by Lemma 9.13 we see that

B → B′ is smooth which in turn implies that A → B′ is smooth (see Algebra, Lemmas
137.4 and 137.13). Moreover the section Sym∗

A(K) → A determines a section B′ → B
and we let B′ → A/I be the composition B′ → B → A/I . Let J ′ ⊂ B′ be the kernel
of B′ → A/I . We have JB′ ⊂ J ′ and B ⊗A K ⊂ J ′. These maps combine to give an
isomorphism

(A/I)⊕n ∼= J/J2 ⊕K −→ J ′/((J ′)2 + IB′)
Thus, after replacing B by B′ we may assume that J/(J2 + IB) = ΩB/A ⊗B B/J is a
free A/I-module of rank n.

In this case, choose f1, . . . , fn ∈ J which map to a basis of J/(J2 + IB). Consider the
finitely presented A-algebra C = B/(f1, . . . , fn). Note that we have an exact sequence

0→ H1(LC/A)→ (f1, . . . , fn)/(f1, . . . , fn)2 → ΩB/A ⊗B C → ΩC/A → 0

see Algebra, Lemma 134.4 (note that H1(LB/A) = 0 and that ΩB/A is finite projective, in
particular flat so the Tor group vanishes). For any prime q ⊃ J of B the module ΩB/A,q
is free of rank n because ΩB/A is finite projective and because ΩB/A ⊗B B/J is free of
rank n (see Algebra, Lemma 78.2). By our choice of f1, . . . , fn the map(

(f1, . . . , fn)/(f1, . . . , fn)2)
q
→ ΩB/A,q

is surjective modulo J . Hence we see that this map of modules over the local ringCq has to
be an isomorphism (this is because by Nakayama’s Algebra, Lemma 20.1 the map is surjec-
tive and then for example by Algebra, Lemma 16.4 because ((f1, . . . , fn)/(f1, . . . , fn)2)q
is generated by n elements the map is injective). Thus H1(LC/A)q = 0 and ΩC/A,q = 0.
By Algebra, Lemma 137.12 we see thatA→ C is smooth at the prime q ofC corresponding
to q. Since ΩC/A,q = 0 it is actually étale at q. Thus A → C is étale at all primes of C
containing JC. By Lemma 9.4 we can find an f ∈ C mapping to an invertible element of
C/JC such that A→ Cf is étale. By our choice of f it is still true that Cf/JCf = A/I .
The map Cf/ICf → A/I is surjective and étale by Algebra, Lemma 143.8. Hence A/I
is isomorphic to the localization of Cf/ICf at some element g ∈ C , see Algebra, Lemma
143.9. Set A′ = Cfg to conclude the proof. �

10. Zariski pairs

In this section and the next a pair is a pair (A, I) where A is a ring and I ⊂ A is an ideal.
A morphism of pairs (A, I)→ (B, J) is a ring map ϕ : A→ B with ϕ(I) ⊂ J .

Definition 10.1. A Zariski pair is a pair (A, I) such that I is contained in the Jacob-
son radical of A.

Lemma 10.2. Let (A, I) be a Zariski pair. Then the map from idempotents of A to
idempotents of A/I is injective.
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Proof. An idempotent of a local ring is either 0 or 1. Thus an idempotent is deter-
mined by the set of maximal ideals where it vanishes, by Algebra, Lemma 23.1. �

Lemma 10.3. Let (A, I) be a Zariski pair. Let A → B be a flat, integral, finitely
presented ring map such that A/I → B/IB is an isomorphism. Then A → B is an
isomorphism.

Proof. The ring map A → B is finite by Algebra, Lemma 36.5. Hence B is finitely
presented as an A-module by Algebra, Lemma 36.23. Hence B is a finite locally free A-
module by Algebra, Lemma 78.2. Since the module B has rank 1 along V (I) (see rank
function described in Algebra, Lemma 78.2), and as (A, I) is a Zariski pair, we conclude
that the rank is 1 everywhere. It follows that A → B is an isomorphism: it is a pleasant
exercise to show that a ring map R → S such that S is a locally free R-module of rank 1
is an isomorphism (hint: look at local rings). �

Lemma 10.4. Let (A, I) be a Zariski pair. Let A→ B be a finite ring map. Assume
(1) B/IB = B1 ×B2 is a product of A/I-algebras
(2) A/I → B1/IB1 is surjective,
(3) b ∈ B maps to (1, 0) in the product.

Then there exists a monic f ∈ A[x] with f(b) = 0 and f mod I = (x − 1)xd for some
d ≥ 1.

Proof. By Lemma 9.10 we can find an étale ring map A → A′ inducing an isomor-
phism A/I → A′/IA′ such that B′ = B ⊗A A′ contains an idempotent e′ lifting the
image of b in B′/IB′. Consider the corresponding A′-algebra decomposition

B′ = B′
1 ×B′

2

which is compatible with the one given in the lemma upon reduction modulo I . The map
A′ → B′

1 is surjective modulo IA′. By Nakayama’s lemma (Algebra, Lemma 20.1) we can
find i ∈ IA′ such that after replacingA′ byA′

1+i the mapA′ → B′
1 is surjective. Observe

that the image b′
1 ∈ B′

1 of b satisfies b′
1 − 1 ∈ IB′

1. Thus we may pick a′ ∈ IA′ mapping
to b′

1 − 1. On the other hand, the image b′
2 ∈ B′

2 of b is in IB′
2. By Algebra, Lemma 38.4

there exist a monic polynomial g(x) = xd +
∑
a′
jx
j of degree d with a′

j ∈ IA′ such
that g(b′

2) = 0 in B′
2. Thus the image b′ = (b′

1, b
′
2) ∈ B′ of b is a root of the polynomial

(x− 1− a′)g(x). We conclude that

(b′ − 1)(b′)d ∈
∑

j=0,...,d
IA′ · (b′)j

We claim that this implies

(b− 1)bd ∈
∑

j=0,...,d
I · bj

in B. For this it is enough to see that the ring map A → A′ is faithfully flat, because the
condition is that the image of (b− 1)bd is zero in B/

∑
j=0,...,d Ib

j (use Algebra, Lemma
82.11). The mapA→ A′ flat because it is étale (Algebra, Lemma 143.3). On the other hand,
the induced map on spectra is open (see Algebra, Proposition 41.8 and use previous lemma
referenced) and the image contains V (I). Since I is contained in the Jacobson radical of
A we conclude. �

Lemma 10.5. Let (A, I) be a Zariski pair with A Noetherian. Let f ∈ I . Then Af is
a Jacobson ring.
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Proof. We will use the criterion of Algebra, Lemma 61.4. Let p ⊂ A be a prime ideal
such that pf = pAf is prime and not maximal. We have to show that Af/pf = (A/p)f
has infinitely many prime ideals. After replacingA byA/p we may assumeA is a domain,
dimAf > 0, and our goal is to show that Spec(Af ) is infinite. Since dimAf > 0 we
can find a nonzero prime ideal q ⊂ A not containing f . Choose a maximal ideal m ⊂ A
containing q. Since (A, I) is a Zariski pair, we see I ⊂ m. Hence m 6= q and dim(Am) > 1.
Hence Spec((Am)f ) ⊂ Spec(Af ) is infinite by Algebra, Lemma 61.1 and we win. �

11. Henselian pairs

Some of the results of Section 9 may be viewed as results about henselian pairs. In this
section a pair is a pair (A, I) whereA is a ring and I ⊂ A is an ideal. A morphism of pairs
(A, I)→ (B, J) is a ring map ϕ : A→ B with ϕ(I) ⊂ J . As in Section 9 given an object
ξ over A we denote ξ the “base change” of ξ to an object over A/I (provided this makes
sense).

Definition 11.1. A henselian pair is a pair (A, I) satisfying
(1) I is contained in the Jacobson radical of A, and
(2) for any monic polynomial f ∈ A[T ] and factorization f = g0h0 with g0, h0 ∈

A/I[T ] monic generating the unit ideal in A/I[T ], there exists a factorization
f = gh in A[T ] with g, h monic and g0 = g and h0 = h.

Observe that ifA is a local ring and I = m is the maximal ideal, then (A, I) is a henselian
pair if and only ifA is a henselian local ring, see Algebra, Lemma 153.3. In Lemma 11.6 we
give a number of equivalent characterizations of henselian pairs (and we will add more as
time goes on).

Lemma 11.2. Let (A, I) be a pair with I locally nilpotent. Then the functor B 7→
B/IB induces an equivalence between the category of étale algebras over A and the cate-
gory of étale algebras over A/I . Moreover, the pair is henselian.

Proof. Essential surjectivity holds by Algebra, Lemma 143.10. IfB,B′ are étale over
A and B/IB → B′/IB′ is a morphism of A/I-algebras, then we can lift this by Alge-
bra, Lemma 138.17. Finally, suppose that f, g : B → B′ are two A-algebra maps with
f mod I = g mod I . Choose an idempotent e ∈ B ⊗A B generating the kernel of the
multiplication map B ⊗A B → B, see Algebra, Lemmas 151.4 and 151.3 (to see that étale
is unramified). Then (f ⊗ g)(e) ∈ IB′. Since IB′ is locally nilpotent (Algebra, Lemma
32.3) this implies (f ⊗ g)(e) = 0 by Algebra, Lemma 32.6. Thus f = g.
It is clear that I is contained in the Jacobson radical of A. Let f ∈ A[T ] be a monic
polynomial and let f = g0h0 be a factorization of f = f mod I with g0, h0 ∈ A/I[T ]
monic generating the unit ideal in A/I[T ]. By Lemma 9.5 there exists an étale ring map
A → A′ which induces an isomorphism A/I → A′/IA′ such that the factorization lifts
to a factorization into monic polynomials over A′. By the above we have A = A′ and the
factorization is over A. �

Lemma 11.3. Let A = limAn where (An) is an inverse system of rings whose tran-
sition maps are surjective and have locally nilpotent kernels. Then (A, In) is a henselian
pair, where In = Ker(A→ An).

Proof. Fix n. Let a ∈ A be an element which maps to 1 in An. By Algebra, Lemma
32.4 we see that a maps to a unit in Am for all m ≥ n. Hence a is a unit in A. Thus by
Algebra, Lemma 19.1 the ideal In is contained in the Jacobson radical ofA. Let f ∈ A[T ] be
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a monic polynomial and let f = gnhn be a factorization of f = f mod In with gn, hn ∈
An[T ] monic generating the unit ideal in An[T ]. By Lemma 11.2 we can successively lift
this factorization to f mod Im = gmhm with gm, hm monic in Am[T ] for all m ≥ n.
At each step we have to verify that our lifts gm, hm generate the unit ideal in An[T ];
this follows from the corresponding fact for gn, hn and the fact that Spec(An[T ]) =
Spec(Am[T ]) because the kernel of Am → An is locally nilpotent. As A = limAm
this finishes the proof. �

Lemma 11.4. Let (A, I) be a pair. IfA is I-adically complete, then the pair is henselian.

Proof. By Algebra, Lemma 96.6 the ideal I is contained in the Jacobson radical ofA.
Let f ∈ A[T ] be a monic polynomial and let f = g0h0 be a factorization of f = f mod I
with g0, h0 ∈ A/I[T ] monic generating the unit ideal in A/I[T ]. By Lemma 11.2 we can
successively lift this factorization to f mod In = gnhn with gn, hn monic in A/In[T ]
for all n ≥ 1. As A = limA/In this finishes the proof. �

Lemma 11.5. Let (A, I) be a pair. Let A → B be a finite type ring map such that
B/IB = C1 × C2 with A/I → C1 finite. Let B′ be the integral closure of A in B. Then
we can write B′/IB′ = C1 × C ′

2 such that the map B′/IB′ → B/IB preserves product
decompositions and there exists a g ∈ B′ mapping to (1, 0) in C1×C ′

2 withB′
g → Bg an

isomorphism.

Proof. Observe that A → B is quasi-finite at every prime of the closed subset T =
Spec(C1) ⊂ Spec(B) (this follows by looking at fibre rings, see Algebra, Definition 122.3).
Consider the diagram of topological spaces

Spec(B)
φ

//

ψ %%

Spec(B′)

ψ′
yy

Spec(A)

By Algebra, Theorem 123.12 for every p ∈ T there is ahp ∈ B′, hp 6∈ p such thatB′
h → Bh

is an isomorphism. The union U =
⋃
D(hp) gives an open U ⊂ Spec(B′) such that

φ−1(U) → U is a homeomorphism and T ⊂ φ−1(U). Since T is open in ψ−1(V (I)) we
conclude that φ(T ) is open inU ∩(ψ′)−1(V (I)). Thus φ(T ) is open in (ψ′)−1(V (I)). On
the other hand, sinceC1 is finite overA/I it is finite overB′. Hence φ(T ) is a closed subset
of Spec(B′) by Algebra, Lemmas 41.6 and 36.22. We conclude that Spec(B′/IB′) ⊃ φ(T )
is open and closed. By Algebra, Lemma 24.3 we get a corresponding product decomposition
B′/IB′ = C ′

1 × C ′
2. The map B′/IB′ → B/IB maps C ′

1 into C1 and C ′
2 into C2 as one

sees by looking at what happens on spectra (hint: the inverse image of φ(T ) is exactly T ;
some details omitted). Pick a g ∈ B′ mapping to (1, 0) in C ′

1 × C ′
2 such that D(g) ⊂ U ;

this is possible because Spec(C ′
1) and Spec(C ′

2) are disjoint and closed in Spec(B′) and
Spec(C ′

1) is contained in U . Then B′
g → Bg defines a homeomorphism on spectra and

an isomorphism on local rings (by our choice of U above). Hence it is an isomorphism, as
follows for example from Algebra, Lemma 23.1. Finally, it follows that C ′

1 = C1 and the
proof is complete. �

Lemma 11.6. Let (A, I) be a pair. The following are equivalent
(1) (A, I) is a henselian pair,
(2) given an étale ring map A → A′ and an A-algebra map σ : A′ → A/I , there

exists an A-algebra map A′ → A lifting σ,
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(3) for any finite A-algebra B the map B → B/IB induces a bijection on idempo-
tents,

(4) for any integral A-algebra B the map B → B/IB induces a bijection on idem-
potents, and

(5) (Gabber) I is contained in the Jacobson radical ofA and every monic polynomial
f(T ) ∈ A[T ] of the form

f(T ) = Tn(T − 1) + anT
n + . . .+ a1T + a0

with an, . . . , a0 ∈ I and n ≥ 1 has a root α ∈ 1 + I .
Moreover, in part (5) the root is unique.

Proof. Assume (2) holds. Then I is contained in the Jacobson radical of A, since
otherwise there would be a nonunit f ∈ A congruent to 1 modulo I and the mapA→ Af
would contradict (2). Hence IB ⊂ B is contained in the Jacobson radical of B for B
integral overA because Spec(B)→ Spec(A) is closed by Algebra, Lemmas 41.6 and 36.22.
Thus the map from idempotents ofB to idempotents ofB/IB is injective by Lemma 10.2.
On the other hand, since (2) holds, every idempotent of B/IB lifts to an idempotent of
B by Lemma 9.10. In this way we see that (2) implies (4).

The implication (4)⇒ (3) is trivial.

Assume (3). Let m be a maximal ideal and consider the finite map A → B = A/(I ∩ m).
The condition that B → B/IB induces a bijection on idempotents implies that I ⊂ m
(if not, then B = A/I ×A/m and B/IB = A/I). Thus we see that I is contained in the
Jacobson radical ofA. Let f ∈ A[T ] be monic and suppose given a factorization f = g0h0
with g0, h0 ∈ A/I[T ] monic. Set B = A[T ]/(f). Let e be the idempotent of B/IB
corresponding to the decomposition

B/IB = A/I[T ]/(g0)×A[T ]/(h0)

of A-algebras. Let e ∈ B be an idempotent lifting e which exists as we assumed (3). This
gives a product decomposition

B = eB × (1− e)B

Note that B is free of rank deg(f) as an A-module. Hence eB and (1 − e)B are finite
locally freeA-modules. However, since eB and (1− e)B have constant rank deg(g0) and
deg(h0) over A/I we find that the same is true over Spec(A). We conclude that

f = CharPolA(T : B → B)
= CharPolA(T : eB → eB)CharPolA(T : (1− e)B → (1− e)B)

is a factorization into monic polynomials reducing to the given factorization modulo I .
Here CharPolA denotes the characteristic polynomial of an endomorphism of a finite lo-
cally free module overA. If the module is free the CharPolA is defined as the characteristic
polynomial of the corresponding matrix and in general one uses Algebra, Lemma 24.2 to
glue. Details omitted. Thus (3) implies (1).

Assume (1). Let f be as in (5). The factorization of f mod I as Tn times T − 1 lifts to a
factorization f = gh with g and h monic by Definition 11.1. Then h has to have degree 1
and we see that f has a root reducing to 1 modulo 1. Finally, I is contained in the Jacobson
radical by the definition of a henselian pair. Thus (1) implies (5).
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Before we give the proof of the last step, let us show that the root α in (5), if it exists, is
unique. Namely, Due to the explicit shape of f(T ), we have f ′(α) ∈ 1 + I where f ′ is the
derivative of f with respect to T . An elementary argument shows that

f(T ) = f(α+ T − α) = f(α) + f ′(α) · (T − α) mod (T − α)2A[T ]

This shows that any other root α′ ∈ 1 + I of f(T ) satisfies 0 = f(α′) − f(α) = (α′ −
α)(1 + i) for some i ∈ I , so that, since 1 + i is a unit in A, we have α = α′.

Assume (5). We will show that (2) holds, in other words, that for every étale mapA→ A′,
every section σ : A′ → A/I modulo I lifts to a section A′ → A. Since A → A′ is étale,
the section σ determines a decomposition

(11.6.1) A′/IA′ ∼= A/I × C

of A/I-algebras. Namely, the surjective ring map A′/IA′ → A/I is étale by Algebra,
Lemma 143.8 and then we get the desired idempotent by Algebra, Lemma 143.9. We will
show that this decomposition lifts to a decomposition

(11.6.2) A′ ∼= A′
1 ×A′

2

of A-algebras with A′
1 integral over A. Then A → A′

1 is integral and étale and A/I →
A′

1/IA
′
1 is an isomorphism, thusA→ A′

1 is an isomorphism by Lemma 10.3 (here we also
use that an étale ring map is flat and of finite presentation, see Algebra, Lemma 143.3).

Let B′ be the integral closure of A in A′. By Lemma 11.5 we may decompose

(11.6.3) B′/IB′ ∼= A/I × C ′

asA/I-algebras compatibly with (11.6.1) and we may find b ∈ B′ that lifts (1, 0) such that
B′
b → A′

b is an isomorphism. If the decomposition (11.6.3) lifts to a decomposition

(11.6.4) B′ ∼= B′
1 ×B′

2

ofA-algebras, then the induced decompositionA′ = A′
1×A′

2 will give the desired (11.6.2):
indeed, since b is a unit in B′

1 (details omitted), we will have B′
1
∼= A′

1, so that A′
1 will be

integral over A.

Choose a finite A-subalgebra B′′ ⊂ B′ containing b (observe that any finitely generated
A-subalgebra of B′ is finite over A). After enlarging B′′ we may assume b maps to an
idempotent in B′′/IB′′ producing

(11.6.5) B′′/IB′′ ∼= C ′′
1 × C ′′

2

SinceB′
b
∼= A′

b we see thatB′
b is of finite type overA. SayB′

b is generated by b1/b
n, . . . , bt/b

n

overA and enlargeB′′ so that b1, . . . , bt ∈ B′′. ThenB′′
b → B′

b is surjective as well as in-
jective, hence an isomorphism. In particular, we see thatC ′′

1 = A/I ! ThereforeA/I → C ′′
1

is an isomorphism, in particular surjective. By Lemma 10.4 we can find an f(T ) ∈ A[T ]
of the form

f(T ) = Tn(T − 1) + anT
n + . . .+ a1T + a0

with an, . . . , a0 ∈ I and n ≥ 1 such that f(b) = 0. In particular, we find that B′ is a
A[T ]/(f)-algebra. By (5) we deduce there is a root a ∈ 1+I of f . This produces a product
decomposition A[T ]/(f) = A[T ]/(T − a) ×D compatible with the splitting (11.6.3) of
B′/IB′. The induced splitting of B′ is then a desired (11.6.4). �

Lemma 11.7. LetA be a ring. Let I, J ⊂ A be ideals with V (I) = V (J). Then (A, I)
is henselian if and only if (A, J) is henselian.
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Proof. For any integral ring map A → B we see that V (IB) = V (JB). Hence
idempotents of B/IB and B/JB are in bijective correspondence (Algebra, Lemma 21.3).
It follows that B → B/IB induces a bijection on sets of idempotents if and only if B →
B/JB induces a bijection on sets of idempotents. Thus we conclude by Lemma 11.6. �

Lemma 11.8. Let (A, I) be a henselian pair and let A → B be an integral ring map.
Then (B, IB) is a henselian pair.

Proof. Immediate from the fourth characterization of henselian pairs in Lemma 11.6
and the fact that the composition of integral ring maps is integral. �

Lemma 11.9. Let I ⊂ J ⊂ A be ideals of a ring A. The following are equivalent
(1) (A, I) and (A/I, J/I) are henselian pairs, and
(2) (A, J) is an henselian pair.

Proof. Assume (1). Let B be an integral A-algebra. Consider the ring maps

B → B/IB → B/JB

By Lemma 11.6 we find that both arrows induce bijections on idempotents. Hence so does
the composition. Whence (A, J) is a henselian pair by Lemma 11.6.

Conversely, assume (2) holds. Then (A/I, J/I) is a henselian pair by Lemma 11.8. Let B
be an integral A-algebra. Consider the ring maps

B → B/IB → B/JB

By Lemma 11.6 we find that the composition and the second arrow induce bijections on
idempotents. Hence so does the first arrow. It follows that (A, I) is a henselian pair (by
the lemma again). �

Lemma 11.10. Let A be a ring and let (A, I) and (A, I ′) be henselian pairs. Then
(A, I + I ′) is an henselian pair.

Proof. By Lemma 11.8 the pair (A/I, (I ′ + I)/I) is henselian. Thus we get the
conclusion from Lemma 11.9. �

Lemma 11.11. Let J be a set and let {(Aj , Ij)}j∈J be a collection of pairs. Then
(
∏
j∈J Aj ,

∏
j∈J Ij) is Henselian if and only if so is each (Aj , Ij).

Proof. For every j ∈ J , the projection
∏
j∈J Aj → Aj is an integral ring map, so

Lemma 11.8 proves that each (Aj , Ij) is Henselian if (
∏
j∈J Aj ,

∏
j∈J Ij) is Henselian.

Conversely, suppose that each (Aj , Ij) is a Henselian pair. Then every 1 + x with x ∈∏
j∈J Ij is a unit in

∏
j∈J Aj because it is so componentwise by Algebra, Lemma 19.1

and Definition 11.1. Thus, by Algebra, Lemma 19.1 again,
∏
j∈J Ij is contained in the

Jacobson radical of
∏
j∈J Aj . Continuing to work componentwise, it likewise follows

that for every monic f ∈ (
∏
j∈J Aj)[T ] and every factorization f = g0h0 with monic

g0, h0 ∈ (
∏
j∈J Aj/

∏
j∈J Ij)[T ] = (

∏
j∈J Aj/Ij)[T ] that generate the unit ideal in

(
∏
j∈J Aj/

∏
j∈J Ij)[T ], there exists a factorization f = gh in (

∏
j∈J Aj)[T ] with g, h

monic and reducing to g0, h0. In conclusion, according to Definition 11.1 (
∏
j∈J Aj ,

∏
j∈J Ij)

is a Henselian pair. �
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Lemma 11.12. The property of being Henselian is preserved under limits of pairs.
More precisely, let J be a preordered set and let (Aj , Ij) be an inverse system of henselian
pairs over J . Then A = limAj equipped with the ideal I = lim Ij is a henselian pair
(A, I).

Proof. By Categories, Lemma 14.11, we only need to consider products and equal-
izers. For products, the claim follows from Lemma 11.11. Thus, consider an equalizer
diagram

(A, I) // (A′, I ′)
ϕ //

ψ
// (A′′, I ′′)

in which the pairs (A′, I ′) and (A′′, I ′′) are henselian. To check that the pair (A, I) is also
henselian, we will use the Gabber’s criterion in Lemma 11.6. Every element of 1 + I is a
unit in A because, due to the uniqueness of the inverses of units, this may be checked in
(A′, I ′). Thus I is contained in the Jacobson radical of A, see Algebra, Lemma 19.1. Thus,
let

f(T ) = TN−1(T − 1) + aN−1T
N−1 + · · ·+ a1T + a0

be a polynomial in A[T ] with aN−1, . . . , a0 ∈ I and N ≥ 1. The image of f(T ) in A′[T ]
has a unique root α′ ∈ 1 + I ′ and likewise for the further image in A′′[T ]. Thus, due to
the uniqueness, ϕ(α′) = ψ(α′), to the effect that α′ defines a root of f(T ) in 1 + I , as
desired. �

Lemma 11.13. The property of being Henselian is preserved under filtered colimits
of pairs. More precisely, let J be a directed set and let (Aj , Ij) be a system of henselian
pairs over J . ThenA = colimAj equipped with the ideal I = colim Ij is a henselian pair
(A, I).

Proof. Ifu ∈ 1+I then for some j ∈ J we see thatu is the image of someuj ∈ 1+Ij .
Thenuj is invertible inAj by Algebra, Lemma 19.1 and the assumption that Ij is contained
in the Jacobson radical of Aj . Hence u is invertible in A. Thus I is contained in the
Jacobson radical of A (by the lemma).

Let f ∈ A[T ] be a monic polynomial and let f = g0h0 be a factorization with g0, h0 ∈
A/I[T ] monic generating the unit ideal in A/I[T ]. Write 1 = g0g

′
0 + h0h

′
0 for some

g′
0, h

′
0 ∈ A/I[T ]. SinceA = colimAj andA/I = colimAj/Ij are filterd colimits we can

find a j ∈ J and fj ∈ Aj and a factorization f j = gj,0hj,0 with gj,0, hj,0 ∈ Aj/Ij [T ]
monic and 1 = gj,0g

′
j,0+hj,0h′

j,0 for some g′
j,0, h

′
j,0 ∈ Aj/Ij [T ] with fj , gj,0, hj,0, g′

j,0, h
′
j,0

mapping to f, g0, h0, g
′
0, h

′
0. Since (Aj , Ij) is a henselian pair, we can lift f j = gj,0hj,0 to

a factorization overAj and taking the image inAwe obtain a corresponding factorization
in A. Hence (A, I) is henselian. �

Example 11.14 (Moret-Bailly). Lemma 11.13 is wrong if the colimit isn’t filtered. For
example, if we take the coproduct of the henselian pairs (Zp, (p)) and (Zp, (p)), then we
obtain (A, pA) with A = Zp ⊗Z Zp. This isn’t a henselian pair: A/pA = Fp hence if
(A, pA) where henselian, then A would have to be local. However, Spec(A) is discon-
nected; for example for odd primes p we have the nontrivial idempotent

(1/2⊗ 1)
(
1⊗ 1− (1 + p)−1u⊗ u

)
where u ∈ Zp is a square root of 1 + p. Some details omitted.

Lemma 11.15. Let A be a ring. There exists a largest ideal I ⊂ A such that (A, I) is
a henselian pair.
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Proof. Combine Lemmas 11.9, 11.10, and 11.13. �

Lemma 11.16. Let (A, I) be a henselian pair. Let p ⊂ A be a prime ideal. Then
V (p + I) is connected.

Proof. By Lemma 11.8 we see that (A/p, I+p/p) is a henselian pair. Thus it suffices
to prove: If (A, I) is a henselian pair and A is a domain, then Spec(A/I) = V (I) is
connected. If not, then A/I has a nontrivial idempotent by Algebra, Lemma 21.4. By
Lemma 11.6 this would imply A has a nontrivial idempotent. This is a contradiction. �

12. Henselization of pairs

We continue the discussion started in Section 11.

Lemma 12.1. The inclusion functor

category of henselian pairs −→ category of pairs

has a left adjoint (A, I) 7→ (Ah, Ih).

Proof. Let (A, I) be a pair. Consider the category C consisting of étale ring maps
A→ B such that A/I → B/IB is an isomorphism. We will show that the category C is
directed and that Ah = colimB∈C B with ideal Ih = IAh gives the desired adjoint.

We first prove that C is directed (Categories, Definition 19.1). It is nonempty because
id : A → A is an object. If B and B′ are two objects of C , then B′′ = B ⊗A B′ is an
object of C (use Algebra, Lemma 143.3) and there are morphisms B → B′′ and B′ → B′′.
Suppose that f, g : B → B′ are two maps between objects of C. Then a coequalizer is

(B′ ⊗f,B,g B′)⊗(B′⊗AB′) B
′

which is étale overA by Algebra, Lemmas 143.3 and 143.8. Thus the category C is directed.

SinceB/IB = A/I for all objectsB of Cwe see thatAh/Ih = Ah/IAh = colimB/IB =
colimA/I = A/I .

Next, we show that Ah = colimB∈C B with Ih = IAh is a henselian pair. To do this we
will verify condition (2) of Lemma 11.6. Namely, suppose given an étale ring mapAh → A′

and Ah-algebra map σ : A′ → Ah/Ih. Then there exists a B ∈ C and an étale ring map
B → B′ such that A′ = B′ ⊗B Ah. See Algebra, Lemma 143.3. Since Ah/Ih = A/IB,
the map σ induces an A-algebra map s : B′ → A/I . Then B′/IB′ = A/I × C as A/I-
algebra, where C is the kernel of the map B′/IB′ → A/I induced by s. Let g ∈ B′ map
to (1, 0) ∈ A/I × C. Then B → B′

g is étale and A/I → B′
g/IB

′
g is an isomorphism, i.e.,

B′
g is an object of C. Thus we obtain a canonical map B′

g → Ah such that

B′
g

// Ah

B

OO >>

and

B′ //

s

''

B′
g

// Ah

��
A/I

commute. This induces a map A′ = B′ ⊗B Ah → Ah compatible with σ as desired.

Let (A, I)→ (A′, I ′) be a morphism of pairs with (A′, I ′) henselian. We will show there
is a unique factorization A → Ah → A′ which will finish the proof. Namely, for each
A → B in C the ring map A′ → B′ = A′ ⊗A B is étale and induces an isomorphism
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A′/I ′ → B′/I ′B′. Hence there is a section σB : B′ → A′ by Lemma 11.6. Given a
morphism B1 → B2 in C we claim the diagram

B′
1

//

σB1   

B′
2

σB2~~
A′

commutes. This follows once we prove that for every B in C the section σB is the unique
A′-algebra map B′ → A′. We have B′ ⊗A′ B′ = B′ × R for some ring R, see Algebra,
Lemma 151.4. In our case R/I ′R = 0 as B′/I ′B′ = A′/I ′. Thus given two A′-algebra
maps σB , σ′

B : B′ → A′ then e = (σB ⊗ σ′
B)(0, 1) ∈ A′ is an idempotent contained

in I ′. We conclude that e = 0 by Lemma 10.2. Hence σB = σ′
B as desired. Using the

commutativity we obtain

Ah = colimB∈C B → colimB∈C A
′ ⊗A B

colimσB−−−−−→ A′

as desired. The uniqueness of the maps σB also guarantees that this map is unique. Hence
(A, I) 7→ (Ah, Ih) is the desired adjoint. �

Lemma 12.2. Let (A, I) be a pair. Let (Ah, Ih) be as in Lemma 12.1. Then A → Ah

is flat, Ih = IAh and A/In → Ah/InAh is an isomorphism for all n.

Proof. In the proof of Lemma 12.1 we have seen that Ah is a filtered colimit of étale
A-algebrasB such thatA/I → B/IB is an isomorphism and we have seen that Ih = IAh.
As an étale ring map is flat (Algebra, Lemma 143.3) we conclude that A → Ah is flat by
Algebra, Lemma 39.3. Since each A → B is flat we find that the maps A/In → B/InB
are isomorphisms as well (for example by Algebra, Lemma 101.3). Taking the colimit we
find that A/In = Ah/InAh as desired. �

Lemma 12.3. The functor of Lemma 12.1 associates to a local ring (A,m) its henseliza-
tion.

Proof. Let (Ah,mh) be the henselization of the pair (A,m) constructed in Lemma
12.1. Then mh = mAh is a maximal ideal by Lemma 12.2 and since it is contained in the
Jacobson radical, we conclude Ah is local with maximal ideal mh. Having said this there
are two ways to finish the proof.

First proof: observe that the construction in the proof of Algebra, Lemma 155.1 as a colimit
is the same as the colimit used to construct Ah in Lemma 12.1. Second proof: Both the
henselization A→ S and A→ Ah of Lemma 12.1 are local ring homomorphisms, both S
and Ah are filtered colimits of étale A-algebras, both S and Ah are henselian local rings,
and both S and Ah have residue fields equal to κ(m) (by Lemma 12.2 for the second case).
Hence they are canonically isomorphic by Algebra, Lemma 154.7. �

Lemma 12.4. Let (A, I) be a pair with A Noetherian. Let (Ah, Ih) be as in Lemma
12.1. Then the map of I-adic completions

A∧ → (Ah)∧

is an isomorphism. Moreover, Ah is Noetherian, the maps A → Ah → A∧ are flat, and
Ah → A∧ is faithfully flat.
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Proof. The first statement is an immediate consequence of Lemma 12.2 and in fact
holds without assuming A is Noetherian. In the proof of Lemma 12.1 we have seen that
Ah is a filtered colimit of étale A-algebras B such that A/I → B/IB is an isomorphism.
For each suchA→ B the induced mapA∧ → B∧ is an isomorphism (see proof of Lemma
12.2). By Algebra, Lemma 97.2 the ring map B → A∧ = B∧ = (Ah)∧ is flat for each B.
ThusAh → A∧ = (Ah)∧ is flat by Algebra, Lemma 39.6. Since Ih = IAh is contained in
the Jacobson radical of Ah and since Ah → A∧ induces an isomorphism Ah/Ih → A/I
we see thatAh → A∧ is faithfully flat by Algebra, Lemma 39.15. By Algebra, Lemma 97.6
the ring A∧ is Noetherian. Hence we conclude that Ah is Noetherian by Algebra, Lemma
164.1. �

Lemma 12.5. Let (A, I) = colim(Ai, Ii) be a filtered colimit of pairs. The functor of
Lemma 12.1 gives Ah = colimAhi and Ih = colim Ihi .

This lemma is false for non-filtered colimits, see Example 11.14.

Proof. By Categories, Lemma 24.5 we see that (Ah, Ih) is the colimit of the system
(Ahi , Ihi ) in the category of henselian pairs. Thus for a henselian pair (B, J) we have

Mor((Ah, Ih), (B, J)) = lim Mor((Ahi , Ihi ), (B, J)) = Mor(colim(Ahi , Ihi ), (B, J))
Here the colimit is in the category of pairs. Since the colimit is filtered we obtain colim(Ahi , Ihi ) =
(colimAhi , colim Ihi ) in the category of pairs; details omitted. Again using the colimit
is filtered, this is a henselian pair (Lemma 11.13). Hence by the Yoneda lemma we find
(Ah, Ih) = (colimAhi , colim Ihi ). �

Lemma 12.6. Let A be a ring with ideals I and J . If V (I) = V (J) then the functor
of Lemma 12.1 produces the same ring for the pair (A, I) as for the pair (A, J).

Proof. Let (A′, IA′) be the pair produced by Lemma 12.1 starting with the pair
(A, I), see Lemma 12.2. Let (A′′, JA′′) be the pair produced by Lemma 12.1 starting with
the pair (A, J). By Lemma 11.7 we see that (A′, JA′) is a henselian pair and (A′′, IA′′) is a
henselian pair. By the universal property of the construction we obtain uniqueA-algebra
mapsA′′ → A′ andA′ → A′′. The uniqueness shows that these are mutually inverse. �

Lemma 12.7. Let (A, I) → (B, J) be a map of pairs such that V (J) = V (IB). Let
(Ah, Ih) → (Bh, Jh) be the induced map on henselizations (Lemma 12.1). If A → B is
integral, then the induced map Ah ⊗A B → Bh is an isomorphism.

Proof. By Lemma 12.6 we may assume J = IB. By Lemma 11.8 the pair (Ah ⊗A
B, Ih(Ah ⊗A B)) is henselian. By the universal property of (Bh, IBh) we obtain a map
Bh → Ah ⊗A B. We omit the proof that this map is the inverse of the map in the
lemma. �

13. Lifting and henselian pairs

In this section we mostly combine results from Sections 9 and 11.

Lemma 13.1. Let (R, I) be a henselian pair. The map

P −→ P/IP

induces a bijection between the sets of isomorphism classes of finite projective R-modules
and finite projective R/I-modules. In particular, any finite projective R/I-module is iso-
morphic to P/IP for some finite projective R-module P .
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Proof. We first prove the final statement. Let P be a finite projective R/I-module.
We can find a finite projective module P ′ over some R′ étale over R with R/I = R′/IR′

such thatP ′/IP ′ is isomorphic toP , see Lemma 9.11. Then, since (R, I) is a henselian pair,
the étale ring mapR→ R′ has a section τ : R′ → R (Lemma 11.6). SettingP = P ′⊗R′,τR

we conclude that P/IP is isomorphic to P . Of course, this tells us that the map in the
statement of the lemma is surjective.
Injectivity. Suppose that P1 and P2 are finite projective R-modules such that P1/IP1 ∼=
P2/IP2 as R/I-modules. Since P1 is projective, we can find an R-module map u : P1 →
P2 lifting the given isomorphism. Then u is surjective by Nakayama’s lemma (Algebra,
Lemma 20.1). We similarly find a surjection v : P2 → P1. By Algebra, Lemma 16.4 the
map v ◦ u is an isomorphism and we conclude u is an isomorphism. �

Lemma 13.2. Let (A, I) be a henselian pair. The functor B → B/IB determines an
equivalence between finite étale A-algebras and finite étale A/I-algebras.

Proof. Let B,B′ be two A-algebras finite étale over A. Then B′ → B′′ = B ⊗A B′

is finite étale as well (Algebra, Lemmas 143.3 and 36.13). Now we have 1-to-1 correspon-
dences between

(1) A-algebra maps B → B′,
(2) sections of B′ → B′′, and
(3) idempotents e of B′′ such that B′ → B′′ → eB′′ is an isomorphism.

The bijection between (2) and (3) sends σ : B′′ → B′ to e such that (1 − e) is the idem-
potent that generates the kernel of σ which exists by Algebra, Lemmas 143.8 and 143.9.
There is a similar correspondence betweenA/I-algebra mapsB/IB → B′/IB′ and idem-
potents e of B′′/IB′′ such that B′/IB′ → B′′/IB′′ → e(B′′/IB′′) is an isomorphism.
However every idempotent e ofB′′/IB′′ lifts uniquely to an idempotent e ofB′′ (Lemma
11.6). Moreover, if B′/IB′ → e(B′′/IB′′) is an isomorphism, then B′ → eB′′ is an iso-
morphism too by Nakayama’s lemma (Algebra, Lemma 20.1). In this way we see that the
functor is fully faithful.
Essential surjectivity. Let A/I → C be a finite étale map. By Algebra, Lemma 143.10
there exists an étale map A → B such that B/IB ∼= C. Let B′ be the integral closure of
A in B. By Lemma 11.5 we have B′/IB′ = C × C ′ for some ring C ′ and B′

g
∼= Bg for

some g ∈ B′ mapping to (1, 0) ∈ C × C ′. Since idempotents lift (Lemma 11.6) we get
B′ = B′

1×B′
2 with C = B′

1/IB
′
1 and C ′ = B′

2/IB
′
2. The image of g inB′

1 is invertible.
Then Bg = B′

g = B′
1 × (B2)g and this implies that A → B′

1 is étale. We conclude
thatB′

1 is finite étale overA (integral étale implies finite étale by Algebra, Lemma 36.5 for
example) and the proof is done. �

Lemma 13.3. Let A = limAn be a limit of an inverse system (An) of rings. Suppose
given An-modules Mn and An+1-module maps Mn+1 →Mn. Assume

(1) the transition maps An+1 → An are surjective with locally nilpotent kernels,
(2) M1 is a finite projective A1-module,
(3) Mn is a finite flat An-module, and
(4) the maps induce isomorphisms Mn+1 ⊗An+1 An →Mn.

ThenM = limMn is a finite projectiveA-module andM⊗AAn →Mn is an isomorphism
for all n.

Proof. By Lemma 11.3 the pair (A,Ker(A → A1)) is henselian. By Lemma 13.1 we
can choose a finite projective A-module P and an isomorphism P ⊗A A1 → M1. Since
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P is projective, we can successively lift the A-module map P → M1 to A-module maps
P →M2, P →M3, and so on. Thus we obtain a map

P −→M

Since P is finite projective, we can write A⊕m = P ⊕ Q for some m ≥ 0 and A-module
Q. Since A = limAn we conclude that P = limP ⊗A An. Hence, in order to show
that the displayed A-module map is an isomorphism, it suffices to show that the maps
P ⊗AAn →Mn are isomorphisms. From Lemma 3.4 we see thatMn is a finite projective
module. By Lemma 3.5 the maps P ⊗A An →Mn are isomorphisms. �

14. Absolute integral closure

Here is our definition.

Definition 14.1. A ring A is absolutely integrally closed if every monic f ∈ A[T ]
is a product of linear factors.

Be careful: it may be possible to write f as a product of linear factors in many different
ways.

Lemma 14.2. Let A be a ring. The following are equivalent
(1) A is absolutely integrally closed, and
(2) any monic f ∈ A[T ] has a root in A.

Proof. Omitted. �

Lemma 14.3. Let A be absolutely integrally closed.
(1) Any quotient ring A/I of A is absolutely integrally closed.
(2) Any localization S−1A is absolutely integrally closed.

Proof. Omitted. �

Lemma 14.4. Let A be a ring. Let S ⊂ A be a multiplicative subset consisting of
nonzerodivisors. If S−1A is absolutely integrally closed and A ⊂ S−1A is integrally
closed in S−1A, then A is absolutely integrally closed.

Proof. Omitted. �

Lemma 14.5. Let A be a normal domain. Then A is absolutely integrally closed if
and only if its fraction field is algebraically closed.

Proof. Observe that a field is algebraically closed if and only if it is absolutely inte-
grally closed as a ring. Hence the lemma follows from Lemmas 14.3 and 14.4. �

Lemma 14.6. For any ring A there exists an extension A ⊂ B such that
(1) B is a filtered colimit of finite free A-algebras,
(2) B is free as an A-module, and
(3) B is absolutely integrally closed.

Proof. Let I be the set of monic polynomials over A. For i ∈ I denote xi a variable
and Pi the corresponding monic polynomial in the variable xi. Then we set

F (A) = A[xi; i ∈ I]/(Pi; i ∈ I)
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As the notation suggests F is a functor from the category of rings to itself. Note that
A ⊂ F (A), that F (A) is free as an A-module, and that F (A) is a filtered colimit of finite
free A-algebras. Then we take

B = colimFn(A)
where the transition maps are the inclusions Fn(A) ⊂ F (Fn(A)) = Fn+1(A). Any
monic polynomial with coefficients in B actually has coefficients in Fn(A) for some n
and hence has a solution in Fn+1(A) by construction. This implies that B is absolutely
integrally closed by Lemma 14.2. We omit the proof of the other properties. �

Lemma 14.7. Let A be absolutely integrally closed. Let p ⊂ A be a prime. Then the
local ring Ap is strictly henselian.

Proof. By Lemma 14.3 we may assumeA is a local ring and p is its maximal ideal. The
residue field is algebraically closed by Lemma 14.3. Every monic polynomial decomposes
completely into linear factors hence Algebra, Definition 153.1 applies directly. �

Lemma 14.8. Let A be absolutely integrally closed. Let I ⊂ A be an ideal. Then
(A, I) is a henselian pair if (and only if) the following conditions hold

(1) I is contained in the Jacobson radical of A,
(2) A→ A/I induces a bijection on idempotents.

Proof. Let f ∈ A[T ] be a monic polynomial and let f mod I = g0h0 be a factoriza-
tion over A/I with g0, h0 monic such that g0 and h0 generate the unit ideal of A/I[T ].
This means that

A/I[T ]/(f) = A/I[T ]/(g0)×A/I[T ]/(h0)
Denote e ∈ A/I[T ]/(f) the element correspoing to the idempotent (1, 0) in the ring on
the right. Write f = (T−a1) . . . (T−ad) with ai ∈ A. For each i ∈ {1, . . . , d}we obtain
an A-algebra map ϕi : A[T ]/(f)→ A, T 7→ ai which induces a similar A/I-algebra map
ϕi : A/I[T ]/(f) → A/I . Denote ei = ϕi(e) ∈ A/I . These are idempotents. By our
assumption (2) we can lift ei to an idempotent inA. This means we can writeA =

∏
Aj as

a finite product of rings such that inAj/IAj each ei is either 0 or 1. Some details omitted.
Observe that Aj is absolutely integrally closed as a factor ring of A. It suffices to lift the
factorization of f over Aj/IAj to Aj . This reduces us to the situation discussed in the
next paragraph.
Assume ei = 1 for i = 1, . . . , r and ei = 0 for i = r + 1, . . . , d. From (g0, h0) = A/I[T ]
we have that there are k0, l0 ∈ A/I[T ] such that g0k0+h0l0 = 1. We see that e = h0l0 and
ei = h0(ai)l0(ai). We conclude that h0(ai) is a unit for i = 1, . . . , r. Since f(ai) = 0
we find 0 = h0(ai)g0(ai) and we conclude that g0(ai) = 0 for i = 1, . . . , r. Thus
(T − a1) divides g0 in A/I[T ], say g0 = (T − a1)g′

0. Set f ′ = (T − a2) . . . (T − ad)
and h′

0 = h0. By induction on d we can lift the factorization f ′ mod I = g′
0h

′
0 to a

factorization of f ′ = g′h′ over over A which gives the factorization f = (T − a1)g′h′

lifting the factorization f mod I = g0h0 as desired. �

15. Auto-associated rings

Some of this material is in [?].

Definition 15.1. A ring R is said to be auto-associated if R is local and its maximal
ideal m is weakly associated to R.

Lemma 15.2. An auto-associated ringR has the following property: (P) Every proper
finitely generated ideal I ⊂ R has a nonzero annihilator.
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Proof. By assumption there exists a nonzero element x ∈ R such that for every
f ∈ m we have fnx = 0. Say I = (f1, . . . , fr). Then x is in the kernel of R →

⊕
Rfi .

Hence we see that there exists a nonzero y ∈ R such that fiy = 0 for all i, see Algebra,
Lemma 24.4. As y ∈ AnnR(I) we win. �

Lemma 15.3. Let R be a ring having property (P) of Lemma 15.2. Let u : N →M be
a homomorphism of projective R-modules. Then u is universally injective if and only if
u is injective.

Proof. Assume u is injective. Our goal is to show u is universally injective. First we
choose a moduleQ such thatN ⊕Q is free. On considering the mapN ⊕Q→M ⊕Qwe
see that it suffices to prove the lemma in caseN is free. In this case N is a directed colimit
of finite free R-modules. Thus we reduce to the case that N is a finite free R-module, say
N = R⊕n. We prove the lemma by induction on n. The case n = 0 is trivial.

Let u : R⊕n → M be an injective module map with M projective. Choose an R-module
Q such that M ⊕Q is free. After replacing u by the composition R⊕n → M → M ⊕Q
we see that we may assume thatM is free. Then we can find a direct summandR⊕m ⊂M
such that u(R⊕n) ⊂ R⊕m. Hence we may assume that M = R⊕m. In this case u is given
by a matrixA = (aij) so that u(x1, . . . , xn) = (

∑
xiai1, . . . ,

∑
xiaim). As u is injective,

in particular u(x, 0, . . . , 0) = (xa11, xa12, . . . , xa1m) 6= 0 if x 6= 0, and asR has property
(P) we see that a11R+a12R+. . .+a1mR = R. Hence see thatR(a11, . . . , a1m) ⊂ R⊕m is
a direct summand ofR⊕m, in particularR⊕m/R(a11, . . . , a1m) is a projectiveR-module.
We get a commutative diagram

0 // R //

1
��

R⊕n //

u

��

R⊕n−1 //

��

0

0 // R
(a11,...,a1m) // R⊕m // R⊕m/R(a11, . . . , a1m) // 0

with split exact rows. Thus the right vertical arrow is injective and we may apply the
induction hypothesis to conclude that the right vertical arrow is universally injective. It
follows that the middle vertical arrow is universally injective. �

Lemma 15.4. Let R be a ring. The following are equivalent
(1) R has property (P) of Lemma 15.2,
(2) any injective map of projective R-modules is universally injective,
(3) if u : N → M is injective and N , M are finite projective R-modules then

Coker(u) is a finite projective R-module,
(4) if N ⊂ M and N , M are finite projective as R-modules, then N is a direct

summand of M , and
(5) any injective map R→ R⊕n is a split injection.

Proof. The implication (1)⇒ (2) is Lemma 15.3. It is clear that (3) and (4) are equiv-
alent. We have (2) ⇒ (3), (4) by Algebra, Lemma 82.4. Part (5) is a special case of (4).
Assume (5). Let I = (a1, . . . , an) be a proper finitely generated ideal of R. As I 6= R we
see that R → R⊕n, x 7→ (xa1, . . . , xan) is not a split injection. Hence it has a nonzero
kernel and we conclude that AnnR(I) 6= 0. Thus (1) holds. �

Example 15.5. If the equivalent conditions of Lemma 15.4 hold, then it is not always
the case that every injective map of free R-modules is a split injection. For example sup-
pose that R = k[x1, x2, x3, . . .]/(x2

i ). This is an auto-associated ring. Consider the map
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of free R-modules

u :
⊕

i≥1
Rei −→

⊕
i≥1

Rfi, ei 7−→ fi − xifi+1.

For any integern the restriction ofu to
⊕

i=1,...,nRei is injective as the imagesu(e1), . . . , u(en)
are R-linearly independent. Hence u is injective and hence universally injective by the
lemma. Since u ⊗ idk is bijective we see that if u were a split injection then u would be
surjective. But u is not surjective because the inverse image of f1 would be the element∑

i≥0
x1 . . . xiei+1 = e1 + x1e2 + x1x2e3 + . . .

which is not an element of the direct sum. A side remark is that Coker(u) is a flat (because
u is universally injective), countably generated R-module which is not projective (as u is
not split), hence not Mittag-Leffler (see Algebra, Lemma 93.1).

The following lemma is a special case of Algebra, Proposition 102.9 in case the local ring
is Noetherian.

Lemma 15.6. Let (R,m) be a local ring. Suppose thatϕ : Rm → Rn is a map of finite
free modules. The following are equivalent

(1) ϕ is injective,
(2) the rank of ϕ is m and the annihilator of I(ϕ) in R is zero.

If R is Noetherian these are also equivalent to
(3) the rank of ϕ is m and either I(ϕ) = R or it contains a nonzerodivisor.

Here the rank of ϕ and I(ϕ) are defined as in Algebra, Definition 102.5.

Proof. If any matrix coefficient ofϕ is not inm, then we apply Algebra, Lemma 102.2
to write ϕ as the sum of 1 : R → R and a map ϕ′ : Rm−1 → Rn−1. It is easy to see that
the lemma for ϕ′ implies the lemma for ϕ. Thus we may assume from the outset that all
the matrix coefficients of ϕ are in m.

Suppose ϕ is injective. We may assume m > 0. Let q ∈ WeakAss(R) so that Rq is an
auto-associated ring. Then ϕ induces a injective map Rmq → Rnq which is universally
injective by Lemmas 15.2 and 15.3. Thus ϕ : κ(q)m → κ(q)n is injective. Hence the rank
of ϕ mod q is m and I(ϕ ⊗ κ(q)) is not the zero ideal. Since m is the maximum rank ϕ
can have, we conclude that ϕ has rank m as well (ranks of matrices can only drop after
base change). Hence I(ϕ) · κ(q) = I(ϕ⊗ κ(q)) is not zero. Thus I(ϕ) is not contained in
q. Thus none of the weakly associated primes of R are weakly associated primes of the R-
module AnnRI(ϕ). Thus AnnRI(ϕ) has no weakly associated primes, see Algebra, Lemma
66.4. It follows from Algebra, Lemma 66.5 that AnnRI(ϕ) is zero.

Conversely, assume (2). The rank being m implies n ≥ m. Write I(ϕ) = (f1, . . . , fr)
which is possible as I(ϕ) is finitely generated. By Algebra, Lemma 15.5 we can find maps
ψi : Rn → Rm such that ψ ◦ ϕ = fiidRm . Thus ϕ(x) = 0 implies fix = 0 for i =
1, . . . , r. This implies x = 0 and hence ϕ is injective.

For the equivalence of (1) and (3) in the Noetherian local case we refer to Algebra, Propo-
sition 102.9. If the ring R is Noetherian but not local, then the reader can deduce it from
the local case; details omitted. Another option is to redo the argument above using associ-
ated primes, using that there are finitely many of these, using prime avoidance, and using
the characterization of nonzerodivisors as elements of a Noetherian ring not contained in
any associated prime. �
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Lemma 15.7. Let R be a ring. Suppose that ϕ : Rn → Rn be an injective map of
finite free modules of the same rank. Then HomR(Coker(ϕ), R) = 0.

Proof. Let ϕt : Rn → Rn be the transpose of ϕ. The lemma claims that ϕt is
injective. With notation as in Lemma 15.6 we see that the rank of ϕt is n and that I(ϕ) =
I(ϕt). Thus we conclude by the equivalence of (1) and (2) of the lemma. �

16. Flattening stratification

LetR→ S be a ring map and letM be anS-module. For anyR-algebraR′ we can consider
the base changes S′ = S ⊗R R′ and M ′ = M ⊗R R′. We say R → R′ flattens M if the
module M ′ is flat over R′. We would like to understand the structure of the collection
of ring maps R → R′ which flatten M . In particular we would like to know if there
exists a universal flattening R→ Runiv of M , i.e., a ring map R→ Runiv which flattens
M and has the property that any ring map R → R′ which flattens M factors through
R→ Runiv . It turns out that such a universal solution usually does not exist.

We will discuss universal flattenings and flattening stratifications in a scheme theoretic
setting F/X/S in More on Flatness, Section 21. If the universal flattening R → Runiv
exists then the morphism of schemes Spec(Runiv)→ Spec(R) is the universal flattening
of the quasi-coherent module M̃ on Spec(S).

In this and the next few sections we prove some basic algebra facts related to this. The
most basic result is perhaps the following.

Lemma 16.1. Let R be a ring. Let M be an R-module. Let I1, I2 be ideals of R. If
M/I1M is flat over R/I1 and M/I2M is flat over R/I2, then M/(I1 ∩ I2)M is flat over
R/(I1 ∩ I2).

Proof. By replacing R with R/(I1 ∩ I2) and M by M/(I1 ∩ I2)M we may assume
that I1 ∩ I2 = 0. Let J ⊂ R be an ideal. To prove that M is flat over R we have to show
that J ⊗R M → M is injective, see Algebra, Lemma 39.5. By flatness of M/I1M over
R/I1 the map

J/(J ∩ I1)⊗RM = (J + I1)/I1 ⊗R/I1 M/I1M −→M/I1M

is injective. As 0→ (J ∩ I1)→ J → J/(J ∩ I1)→ 0 is exact we obtain a diagram

(J ∩ I1)⊗RM //

��

J ⊗RM //

��

J/(J ∩ I1)⊗RM //

��

0

M M // M/I1M

hence it suffices to show that (J ∩ I1) ⊗R M → M is injective. Since I1 ∩ I2 = 0 the
ideal J ∩ I1 maps isomorphically to an ideal J ′ ⊂ R/I2 and we see that (J ∩ I1)⊗RM =
J ′ ⊗R/I2 M/I2M . By flatness of M/I2M over R/I2 the map J ′ ⊗R/I2 M/I2M →
M/I2M is injective, which clearly implies that (J ∩ I1)⊗RM →M is injective. �

17. Flattening over an Artinian ring

A universal flattening exists when the base ring is an Artinian local ring. It exists for an
arbitrary module. Hence, as we will see later, a flatting stratification exists when the base
scheme is the spectrum of an Artinian local ring.
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Lemma 17.1. Let R be an Artinian ring. Let M be an R-module. Then there exists a
smallest ideal I ⊂ R such that M/IM is flat over R/I .

Proof. This follows directly from Lemma 16.1 and the Artinian property. �

This ideal has the following universal property.

Lemma 17.2. Let R be an Artinian ring. Let M be an R-module. Let I ⊂ R be the
smallest ideal I ⊂ R such thatM/IM is flat overR/I . Then I has the following universal
property: For every ring map ϕ : R→ R′ we have

R′ ⊗RM is flat over R′ ⇔ we have ϕ(I) = 0.

Proof. Note that I exists by Lemma 17.1. The implication⇒ follows from Algebra,
Lemma 39.7. Let ϕ : R → R′ be such that M ⊗R R′ is flat over R′. Let J = Ker(ϕ). By
Algebra, Lemma 101.7 and as R′ ⊗R M = R′ ⊗R/J M/JM is flat over R′ we conclude
that M/JM is flat over R/J . Hence I ⊂ J as desired. �

18. Flattening over a closed subset of the base

LetR→ S be a ring map. Let I ⊂ R be an ideal. LetM be an S-module. In the following
we will consider the following condition
(18.0.1) ∀q ∈ V (IS) ⊂ Spec(S) : Mq is flat over R.
Geometrically, this means thatM is flat overR along the inverse image ofV (I) in Spec(S).
If R and S are Noetherian rings and M is a finite S-module, then (18.0.1) is equivalent to
the condition that M/InM is flat over R/In for all n ≥ 1, see Algebra, Lemma 99.11.

Lemma 18.1. Let R → S be a ring map. Let I ⊂ R be an ideal. Let M be an S-
module. Let R → R′ be a ring map and IR′ ⊂ I ′ ⊂ R′ an ideal. If (18.0.1) holds for
(R→ S, I,M), then (18.0.1) holds for (R′ → S ⊗R R′, I ′,M ⊗R R′).

Proof. Assume (18.0.1) holds for (R → S, I ⊂ R,M). Let I ′(S ⊗R R′) ⊂ q′ be a
prime of S ⊗R R′. Let q ⊂ S be the corresponding prime of S. Then IS ⊂ q. Note that
(M ⊗R R′)q′ is a localization of the base change Mq ⊗R R′. Hence (M ⊗R R′)q′ is flat
over R′ as a localization of a flat module, see Algebra, Lemmas 39.7 and 39.18. �

Lemma 18.2. LetR→ S be a ring map. Let I ⊂ R be an ideal. LetM be anS-module.
Let R→ R′ be a ring map and IR′ ⊂ I ′ ⊂ R′ an ideal such that

(1) the map V (I ′)→ V (I) induced by Spec(R′)→ Spec(R) is surjective, and
(2) R′

p′ is flat over R for all primes p′ ∈ V (I ′).
If (18.0.1) holds for (R′ → S⊗RR′, I ′,M⊗RR′), then (18.0.1) holds for (R→ S, I,M).

Proof. Assume (18.0.1) holds for (R′ → S ⊗R R′, IR′,M ⊗R R′). Pick a prime
IS ⊂ q ⊂ S. Let I ⊂ p ⊂ R be the corresponding prime of R. By assumption there
exists a prime p′ ∈ V (I ′) of R′ lying over p and Rp → R′

p′ is flat. Choose a prime
q′ ⊂ κ(q)⊗κ(p) κ(p′) which corresponds to a prime q′ ⊂ S ⊗R R′ which lies over q and
over p′. Note that (S⊗RR′)q′ is a localization of Sq⊗Rp

R′
p′ . By assumption the module

(M ⊗R R′)q′ is flat over R′
p′ . Hence Algebra, Lemma 100.1 implies that Mq is flat over

Rp which is what we wanted to prove. �

Lemma 18.3. LetR→ S be a ring map of finite presentation. LetM be an S-module
of finite presentation. Let R′ = colimλ∈Λ Rλ be a directed colimit of R-algebras. Let
Iλ ⊂ Rλ be ideals such that IλRµ ⊂ Iµ for all µ ≥ λ and set I ′ = colimλ Iλ. If (18.0.1)
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holds for (R′ → S⊗RR′, I ′,M ⊗RR′), then there exists a λ ∈ Λ such that (18.0.1) holds
for (Rλ → S ⊗R Rλ, Iλ,M ⊗R Rλ).

Proof. We are going to write Sλ = S ⊗R Rλ, S′ = S ⊗R R′, Mλ = M ⊗R Rλ, and
M ′ = M ⊗R R′. The base change S′ is of finite presentation over R′ and M ′ is of finite
presentation over S′ and similarly for the versions with subscript λ, see Algebra, Lemma
14.2. By Algebra, Theorem 129.4 the set

U ′ = {q′ ∈ Spec(S′) |M ′
q′ is flat over R′}

is open in Spec(S′). Note that V (I ′S′) is a quasi-compact space which is contained in
U ′ by assumption. Hence there exist finitely many g′

j ∈ S′, j = 1, . . . ,m such that
D(g′

j) ⊂ U ′ and such that V (I ′S′) ⊂
⋃
D(g′

j). Note that in particular (M ′)g′
j

is a flat
module over R′.

We are going to pick increasingly large elements λ ∈ Λ. First we pick it large enough
so that we can find gj,λ ∈ Sλ mapping to g′

j . The inclusion V (I ′S′) ⊂
⋃
D(g′

j) means
that I ′S′ + (g′

1, . . . , g
′
m) = S′ which can be expressed as 1 =

∑
zshs +

∑
fjg

′
j for

some zs ∈ I ′, hs, fj ∈ S′. After increasing λ we may assume such an equation holds in
Sλ. Hence we may assume that V (IλSλ) ⊂

⋃
D(gj,λ). By Algebra, Lemma 168.1 we see

that for some sufficiently large λ the modules (Mλ)gj,λ are flat over Rλ. In particular the
module Mλ is flat over Rλ at all the primes lying over the ideal Iλ. �

19. Flattening over a closed subsets of source and base

In this section we slightly generalize the discussion in Section 18. We strongly suggest the
reader first read and understand that section.

Situation 19.1. Let R → S be a ring map. Let J ⊂ S be an ideal. Let M be an
S-module.

In this situation, given an R-algebra R′ and an ideal I ′ ⊂ R′ we set S′ = S ⊗R R′ and
M ′ = M ⊗R R′. We will consider the condition

(19.1.1) ∀q′ ∈ V (I ′S′ + JS′) ⊂ Spec(S′) : M ′
q′ is flat over R′.

Geometrically, this means that M ′ is flat over R′ along the intersection of the inverse
image of V (I ′) with the inverse image of V (J). Since (R→ S, J,M) are fixed, condition
(19.1.1) only depends on the pair (R′, I ′) where R′ is viewed as an R-algebra.

Lemma 19.2. In Situation 19.1 let R′ → R′′ be an R-algebra map. Let I ′ ⊂ R′ and
I ′R′′ ⊂ I ′′ ⊂ R′′ be ideals. If (19.1.1) holds for (R′, I ′), then (19.1.1) holds for (R′′, I ′′).

Proof. Assume (19.1.1) holds for (R′, I ′). Let I ′′S′′ + JS′′ ⊂ q′′ be a prime of S′′.
Let q′ ⊂ S′ be the corresponding prime of S′. Then both I ′S′ ⊂ q′ and JS′ ⊂ q′ because
the corresponding conditions hold for q′′. Note that (M ′′)q′′ is a localization of the base
change M ′

q′ ⊗R R′′. Hence (M ′′)q′′ is flat over R′′ as a localization of a flat module, see
Algebra, Lemmas 39.7 and 39.18. �

Lemma 19.3. In Situation 19.1 let R′ → R′′ be an R-algebra map. Let I ′ ⊂ R′ and
I ′R′′ ⊂ I ′′ ⊂ R′′ be ideals. Assume

(1) the map V (I ′′)→ V (I ′) induced by Spec(R′′)→ Spec(R′) is surjective, and
(2) R′′

p′′ is flat over R′ for all primes p′′ ∈ V (I ′′).
If (19.1.1) holds for (R′′, I ′′), then (19.1.1) holds for (R′, I ′).
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Proof. Assume (19.1.1) holds for (R′′, I ′′). Pick a prime I ′S′ + JS′ ⊂ q′ ⊂ S′. Let
I ′ ⊂ p′ ⊂ R′ be the corresponding prime of R′. By assumption there exists a prime p′′ ∈
V (I ′′) ofR′′ lying over p′ andR′

p′ → R′′
p′′ is flat. Choose a prime q′′ ⊂ κ(q′)⊗κ(p′)κ(p′′).

This corresponds to a prime q′′ ⊂ S′′ = S′ ⊗R′ R′′ which lies over q′ and over p′′. In
particular we see that I ′′S′′ ⊂ q′′ and that JS′′ ⊂ q′′. Note that (S′ ⊗R′ R′′)q′′ is a
localization of S′

q′ ⊗R′
p′
R′′

p′′ . By assumption the module (M ′⊗R′ R′′)q′′ is flat overR′′
p′′ .

Hence Algebra, Lemma 100.1 implies that M ′
q′ is flat over R′

p′ which is what we wanted
to prove. �

Lemma 19.4. In Situation 19.1 assumeR→ S is essentially of finite presentation and
M is anS-module of finite presentation. LetR′ = colimλ∈Λ Rλ be a directed colimit ofR-
algebras. Let Iλ ⊂ Rλ be ideals such that IλRµ ⊂ Iµ for all µ ≥ λ and set I ′ = colimλ Iλ.
If (19.1.1) holds for (R′, I ′), then there exists a λ ∈ Λ such that (19.1.1) holds for (Rλ, Iλ).

Proof. We first prove the lemma in caseR→ S is of finite presentation and then we
explain what needs to be changed in the general case. We are going to writeSλ = S⊗RRλ,
S′ = S ⊗R R′, Mλ = M ⊗R Rλ, and M ′ = M ⊗R R′. The base change S′ is of finite
presentation overR′ andM ′ is of finite presentation over S′ and similarly for the versions
with subscript λ, see Algebra, Lemma 14.2. By Algebra, Theorem 129.4 the set

U ′ = {q′ ∈ Spec(S′) |M ′
q′ is flat over R′}

is open in Spec(S′). Note that V (I ′S′ +JS′) is a quasi-compact space which is contained
in U ′ by assumption. Hence there exist finitely many g′

j ∈ S′, j = 1, . . . ,m such that
D(g′

j) ⊂ U ′ and such that V (I ′S′ + JS′) ⊂
⋃
D(g′

j). Note that in particular (M ′)g′
j

is
a flat module over R′.

We are going to pick increasingly large elements λ ∈ Λ. First we pick it large enough
so that we can find gj,λ ∈ Sλ mapping to g′

j . The inclusion V (I ′S′ + JS′) ⊂
⋃
D(g′

j)
means that I ′S′ + JS′ + (g′

1, . . . , g
′
m) = S′ which can be expressed as

1 =
∑

ytkt +
∑

zshs +
∑

fjg
′
j

for some zs ∈ I ′, yt ∈ J , kt, hs, fj ∈ S′. After increasing λ we may assume such an
equation holds in Sλ. Hence we may assume that V (IλSλ + JSλ) ⊂

⋃
D(gj,λ). By

Algebra, Lemma 168.1 we see that for some sufficiently large λ the modules (Mλ)gj,λ are
flat over Rλ. In particular the module Mλ is flat over Rλ at all the primes corresponding
to points of V (IλSλ + JSλ).

In the case that S is essentially of finite presentation, we can write S = Σ−1C where
R → C is of finite presentation and Σ ⊂ C is a multiplicative subset. We can also write
M = Σ−1N for some finitely presented C-module N , see Algebra, Lemma 126.3. At
this point we introduce Cλ, C ′, Nλ, N ′. Then in the discussion above we obtain an open
U ′ ⊂ Spec(C ′) over which N ′ is flat over R′. The assumption that (19.1.1) is true means
that V (I ′S′ + JS′) maps into U ′, because for a prime q′ ⊂ S′, corresponding to a prime
r′ ⊂ C ′ we have M ′

q′ = N ′
r′ . Thus we can find g′

j ∈ C ′ such that
⋃
D(g′

j) contains the
image of V (I ′S′ + JS′). The rest of the proof is exactly the same as before. �

Lemma 19.5. In Situation 19.1. Let I ⊂ R be an ideal. Assume
(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) M is a finite S-module, and
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(4) for each n ≥ 1 and any prime q ∈ V (J + IS) the module (M/InM)q is flat
over R/In.

Then (19.1.1) holds for (R, I), i.e., for every prime q ∈ V (J + IS) the localization Mq is
flat over R.

Proof. Let q ∈ V (J + IS). Then Algebra, Lemma 99.11 applied toR→ Sq andMq

implies that Mq is flat over R. �

20. Flattening over a Noetherian complete local ring

The following three lemmas give a completely algebraic proof of the existence of the “lo-
cal” flattening stratification when the base is a complete local Noetherian ring R and the
given module is finite over a finite type R-algebra S.

Lemma 20.1. Let R→ S be a ring map. Let M be an S-module. Assume
(1) (R,m) is a complete local Noetherian ring,
(2) S is a Noetherian ring, and
(3) M is finite over S.

Then there exists an ideal I ⊂ m such that
(1) (M/IM)q is flat over R/I for all primes q of S/IS lying over m, and
(2) if J ⊂ R is an ideal such that (M/JM)q is flat over R/J for all primes q lying

over m, then I ⊂ J .
In other words, I is the smallest ideal of R such that (18.0.1) holds for (R → S,m,M)
where R = R/I , S = S/IS , m = m/I and M = M/IM .

Proof. Let J ⊂ R be an ideal. Apply Algebra, Lemma 99.11 to the module M/JM
over the ringR/J . Then we see that (M/JM)q is flat overR/J for all primes q of S/JS
if and only if M/(J + mn)M is flat over R/(J + mn) for all n ≥ 1. We will use this
remark below.
For every n ≥ 1 the local ring R/mn is Artinian. Hence, by Lemma 17.1 there exists a
smallest ideal In ⊃ mn such that M/InM is flat over R/In. It is clear that In+1 + mn is
contains In and applying Lemma 16.1 we see that In = In+1+mn. SinceR = limn R/m

n

we see that I = limn In/m
n is an ideal in R such that In = I +mn for all n ≥ 1. By the

initial remarks of the proof we see that I verifies (1) and (2). Some details omitted. �

Lemma 20.2. With notation R → S , M , and I and assumptions as in Lemma 20.1.
Consider a local homomorphism of local rings ϕ : (R,m) → (R′,m′) such that R′ is
Noetherian. Then the following are equivalent

(1) condition (18.0.1) holds for (R′ → S ⊗R R′,m′,M ⊗R R′), and
(2) ϕ(I) = 0.

Proof. The implication (2)⇒ (1) follows from Lemma 18.1. Let ϕ : R → R′ be as
in the lemma satisfying (1). We have to show that ϕ(I) = 0. This is equivalent to the
condition that ϕ(I)R′ = 0. By Artin-Rees in the Noetherian local ring R′ (see Algebra,
Lemma 51.4) this is equivalent to the condition thatϕ(I)R′+(m′)n = (m′)n for alln > 0.
Hence this is equivalent to the condition that the composition ϕn : R→ R′ → R′/(m′)n
annihilates I for each n. Now assumption (1) for ϕ implies assumption (1) for ϕn by
Lemma 18.1. This reduces us to the case where R′ is Artinian local.
Assume R′ Artinian. Let J = Ker(ϕ). We have to show that I ⊂ J . By the construction
of I in Lemma 20.1 it suffices to show that (M/JM)q is flat over R/J for every prime q
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of S/JS lying over m. As R′ is Artinian, condition (1) signifies that M ⊗R R′ is flat over
R′. As R′ is Artinian and R/J → R′ is a local injective ring map, it follows that R/J is
Artinian too. Hence the flatness of M ⊗R R′ = M/JM ⊗R/J R′ over R′ implies that
M/JM is flat over R/J by Algebra, Lemma 101.7. This concludes the proof. �

Lemma 20.3. With notation R → S , M , and I and assumptions as in Lemma 20.1.
In addition assume that R → S is of finite type. Then for any local homomorphism of
local rings ϕ : (R,m)→ (R′,m′) the following are equivalent

(1) condition (18.0.1) holds for (R′ → S ⊗R R′,m′,M ⊗R R′), and
(2) ϕ(I) = 0.

Proof. The implication (2)⇒ (1) follows from Lemma 18.1. Let ϕ : R→ R′ be as in
the lemma satisfying (1). As R is Noetherian we see that R → S is of finite presentation
andM is an S-module of finite presentation. WriteR′ = colimλRλ as a directed colimit
of local R-subalgebras Rλ ⊂ R′, with maximal ideals mλ = Rλ ∩m′ such that each Rλ is
essentially of finite type over R. By Lemma 18.3 we see that condition (18.0.1) holds for
(Rλ → S ⊗R Rλ,mλ,M ⊗R Rλ) for some λ. Hence Lemma 20.2 applies to the ring map
R→ Rλ and we see that I maps to zero in Rλ, a fortiori it maps to zero in R′. �

21. Descent of flatness along integral maps

First a few simple lemmas.

Lemma 21.1. Let R be a ring. Let P (T ) be a monic polynomial with coefficients in
R. Let α ∈ R be such that P (α) = 0. Then P (T ) = (T − α)Q(T ) for some monic
polynomial Q(T ) ∈ R[T ].

Proof. By induction on the degree of P . If deg(P ) = 1, then P (T ) = T − α and
the result is true. If deg(P ) > 1, then we can write P (T ) = (T − α)Q(T ) + r for
some polynomial Q ∈ R[T ] of degree < deg(P ) and some r ∈ R by long division. By
assumption 0 = P (α) = (α−α)Q(α)+r = r and we conclude that r = 0 as desired. �

Lemma 21.2. Let R be a ring. Let P (T ) be a monic polynomial with coefficients in
R. There exists a finite free ring map R → R′ such that P (T ) = (T − α)Q(T ) for some
α ∈ R′ and some monic polynomial Q(T ) ∈ R′[T ].

Proof. Write P (T ) = T d + a1T
d−1 + . . . + a0. Set R′ = R[x]/(xd + a1x

d−1 +
. . . + a0). Set α equal to the congruence class of x. Then it is clear that P (α) = 0. Thus
we win by Lemma 21.1. �

Lemma 21.3. LetR→ S be a finite ring map. There exists a finite free ring extension
R ⊂ R′ such that S ⊗R R′ is a quotient of a ring of the form

R′[T1, . . . , Tn]/(P1(T1), . . . , Pn(Tn))
with Pi(T ) =

∏
j=1,...,di(T − αij) for some αij ∈ R′.

Proof. Let x1, . . . , xn ∈ S be generators of S over R. For each i we can choose a
monic polynomial Pi(T ) ∈ R[T ] such that Pi(xi) = 0 in S , see Algebra, Lemma 36.3. Say
deg(Pi) = di. By Lemma 21.2 (applied

∑
di times) there exists a finite free ring extension

R ⊂ R′ such that each Pi splits completely:

Pi(T ) =
∏

j=1,...,di
(T − αij)

for certain αik ∈ R′. Let R′[T1, . . . , Tn] → S ⊗R R′ be the R′-algebra map which maps
Ti to xi ⊗ 1. As this maps Pi(Ti) to zero, this induces the desired surjection. �
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Lemma 21.4. LetR be a ring. Let S = R[T1, . . . , Tn]/J . Assume J contains elements
of the form Pi(Ti) with Pi(T ) =

∏
j=1,...,di(T − αij) for some αij ∈ R. For k =

(k1, . . . , kn) with 1 ≤ ki ≤ di consider the ring map
Φk : R[T1, . . . , Tn]→ R, Ti 7−→ αiki

Set Jk = Φk(J). Then the image of Spec(S)→ Spec(R) is equal to V (
⋂
Jk).

Proof. This lemma proves itself. Hint: V (
⋂
Jk) =

⋃
V (Jk). �

The following result is due to Ferrand, see [?].

Lemma 21.5. Let R → S be a finite injective homomorphism of Noetherian rings.
Let M be an R-module. If M ⊗R S is a flat S-module, then M is a flat R-module.

Proof. Let M be an R-module such that M ⊗R S is flat over S. By Algebra, Lemma
39.8 in order to prove thatM is flat we may replaceR by any faithfully flat ring extension.
By Lemma 21.3 we can find a finite locally free ring extension R ⊂ R′ such that S′ =
S ⊗R R′ = R′[T1, . . . , Tn]/J for some ideal J ⊂ R′[T1, . . . , Tn] which contains the
elements of the form Pi(Ti) with Pi(T ) =

∏
j=1,...,di(T − αij) for some αij ∈ R′.

Note that R′ is Noetherian and that R′ ⊂ S′ is a finite extension of rings. Hence we
may replace R by R′ and assume that S has a presentation as in Lemma 21.4. Note that
Spec(S)→ Spec(R) is surjective, see Algebra, Lemma 36.17. Thus, using Lemma 21.4 we
conclude that I =

⋂
Jk is an ideal such thatV (I) = Spec(R). This means that I ⊂

√
(0),

and sinceR is Noetherian that I is nilpotent. The maps Φk induce commutative diagrams

S // R/Jk

R

^^ ==

from which we conclude that M/JkM is flat over R/Jk. By Lemma 16.1 we see that
M/IM is flat over R/I . Finally, applying Algebra, Lemma 101.5 we conclude that M is
flat over R. �

Lemma 21.6. Let R → S be an injective integral ring map. Let M be a finitely
presented module over R[x1, . . . , xn]. If M ⊗R S is flat over S , then M is flat over R.

Proof. Choose a presentation
R[x1, . . . , xn]⊕t → R[x1, . . . , xn]⊕r →M → 0.

Let’s say that the first map is given by the r×t-matrixT = (fij) with fij ∈ R[x1, . . . , xn].
Write fij =

∑
fij,Ix

I with fij,I ∈ R (multi-index notation). Consider diagrams

R // S

Rλ

OO

// Sλ

OO

where Rλ is a finitely generated Z-subalgebra of R containing all fij,I and Sλ is a finite
Rλ-subalgebra ofS. LetMλ be the finiteRλ[x1, . . . , xn]-module defined by a presentation
as above, using the same matrix T but now viewed as a matrix over Rλ[x1, . . . , xn]. Note
that S is the directed colimit of the Sλ (details omitted). By Algebra, Lemma 168.1 we see
that for some λ the module Mλ ⊗Rλ Sλ is flat over Sλ. By Lemma 21.5 we conclude that
Mλ is flat over Rλ. Since M = Mλ ⊗Rλ R we win by Algebra, Lemma 39.7. �
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22. Torsion free modules

In this section we discuss torsion free modules and the relationship with flatness (especially
over dimension 1 rings).

Definition 22.1. Let R be a domain. Let M be an R-module.
(1) We say an element x ∈ M is torsion if there exists a nonzero f ∈ R such that

fx = 0.
(2) We say M is torsion free if the only torsion element of M is 0.

Let R be a domain and let S = R \ {0} be the multiplicative set of nonzero elements of
R. Then an R-module M is torsion free if and only if M → S−1M is injective. In other
words, if and only if the mapM →M ⊗RK is injective whereK = S−1R is the fraction
field of R.

Lemma 22.2. LetR be a domain. LetM be anR-module. The set of torsion elements
of M forms a submodule Mtors ⊂M . The quotient module M/Mtors is torsion free.

Proof. Omitted. �

Lemma 22.3. Let R be a domain. Let M be a torsion free R-module. For any multi-
plicative set S ⊂ R the module S−1M is a torsion free S−1R-module.

Proof. Omitted. �

Lemma 22.4. LetR→ R′ be a flat homomorphism of domains. IfM is a torsion free
R-module, then M ⊗R R′ is a torsion free R′-module.

Proof. If M is torsion free, then M ⊂M ⊗R K is injective where K is the fraction
field of R. Since R′ is flat over R we see that M ⊗R R′ → (M ⊗RK)⊗R R′ is injective.
SinceM ⊗RK is isomorphic to a direct sum of copies ofK , it suffices to see thatK⊗RR′

is torsion free. This is true because it is a localization of R′. �

Lemma 22.5. Let R be a domain. Let 0 → M → M ′ → M ′′ → 0 be a short exact
sequence of R-modules. If M and M ′′ are torsion free, then M ′ is torsion free.

Proof. Omitted. �

Lemma 22.6. Let R be a domain. Let M be an R-module. Then M is torsion free if
and only if Mm is a torsion free Rm-module for all maximal ideals m of R.

Proof. Omitted. Hint: Use Lemma 22.3 and Algebra, Lemma 23.1. �

Lemma 22.7. LetR be a domain. LetM be a finiteR-module. ThenM is torsion free
if and only if M is a submodule of a finite free module.

Proof. IfM is a submodule ofR⊕n, thenM is torsion free. For the converse, assume
M is torsion free. LetK be the fraction field ofR. ThenM⊗RK is a finite dimensionalK-
vector space. Choose a basis e1, . . . , er for this vector space. Let x1, . . . , xn be generators
of M . Write xi =

∑
(aij/bij)ej for some aij , bij ∈ R with bij 6= 0. Set b =

∏
i,j bij .

Since M is torsion free the map M →M ⊗RK is injective and the image is contained in
R⊕r = Re1/b⊕ . . .⊕Rer/b. �

Lemma 22.8. Let R be a Noetherian domain. Let M be a nonzero finite R-module.
The following are equivalent

(1) M is torsion free,
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(2) M is a submodule of a finite free module,
(3) (0) is the only associated prime of M ,
(4) (0) is in the support of M and M has property (S1), and
(5) (0) is in the support of M and M has no embedded associated prime.

Proof. We have seen the equivalence of (1) and (2) in Lemma 22.7. We have seen the
equivalence of (4) and (5) in Algebra, Lemma 157.2. The equivalence between (3) and (5)
is immediate from the definition. A localization of a torsion free module is torsion free
(Lemma 22.3), hence it is clear that a M has no associated primes different from (0). Thus
(1) implies (5). Conversely, assume (5). If M has torsion, then there exists an embedding
R/I ⊂M for some nonzero ideal I ofR. HenceM has an associated prime different from
(0) (see Algebra, Lemmas 63.3 and 63.7). This is an embedded associated prime which
contradicts the assumption. �

Lemma 22.9. Let R be a domain. Any flat R-module is torsion free.

Proof. If x ∈ R is nonzero, then x : R→ R is injective, and hence if M is flat over
R, then x : M →M is injective. Thus if M is flat over R, then M is torsion free. �

Lemma 22.10. Let A be a valuation ring. An A-module M is flat over A if and only
if M is torsion free.

Proof. The implication “flat⇒ torsion free” is Lemma 22.9. For the converse, assume
M is torsion free. By the equational criterion of flatness (see Algebra, Lemma 39.11) we
have to show that every relation inM is trivial. To do this assume that

∑
i=1,...,n aixi = 0

with xi ∈ M and ai ∈ A. After renumbering we may assume that v(a1) ≤ v(ai) for all
i. Hence we can write ai = a′

ia1 for some a′
i ∈ A. Note that a′

1 = 1. As M is torsion free
we see that x1 = −

∑
i≥2 a

′
ixi. Thus, if we choose yi = xi, i = 2, . . . , n then

x1 =
∑

j≥2
−a′

jyj , xi = yi, (i ≥ 2) 0 = a1 · (−a′
j) + aj · 1(j ≥ 2)

shows that the relation was trivial (to be explicit the elements aij are defined by setting
a11 = 0, a1j = −a′

j for j > 1, and aij = δij for i, j ≥ 2). �

Lemma 22.11. Let A be a Dedekind domain (for example a discrete valuation ring or
more generally a PID).

(1) An A-module is flat if and only if it is torsion free.
(2) A finite torsion free A-module is finite locally free.
(3) A finite torsion free A-module is finite free if A is a PID.

Proof. (For the parenthetical remark in the statement of the lemma, see Algebra,
Lemma 120.15.) Proof of (1). By Lemma 22.6 and Algebra, Lemma 39.18 it suffices to
check the statement over Am for m ⊂ A maximal. Since Am is a discrete valuation ring
(Algebra, Lemma 120.17) we win by Lemma 22.10.
Proof of (2). Follows from Algebra, Lemma 78.2 and (1).
Proof of (3). Let A be a PID and let M be a finite torsion free module. By Lemma 22.7 we
see thatM ⊂ A⊕n for some n. We argue thatM is free by induction on n. The case n = 1
expresses exactly the fact that A is a PID. If n > 1 let M ′ ⊂ R⊕n−1 be the image of the
projection onto the last n− 1 summands of R⊕n. Then we obtain a short exact sequence
0 → I → M → M ′ → 0 where I is the intersection of M with the first summand R of
R⊕n. By induction we see that M is an extension of finite free R-modules, whence finite
free. �
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Lemma 22.12. Let R be a domain. Let M , N be R-modules. If N is torsion free, so is
HomR(M,N).

Proof. Choose a surjection
⊕

i∈I R→M . Then HomR(M,N) ⊂
∏
i∈I N . �

23. Reflexive modules

Here is our definition.
Definition 23.1. Let R be a domain. We say an R-module M is reflexive if the

natural map
j : M −→ HomR(HomR(M,R), R)

which sends m ∈ M to the map sending ϕ ∈ HomR(M,R) to ϕ(m) ∈ R is an isomor-
phism.
We can make this definition for more general rings, but already the definition above has
drawbacks. It would be wise to restrict to Noetherian domains and finite torsion free
modules and (perhaps) impose some regularity conditions on R (e.g., R is normal).

Lemma 23.2. Let R be a domain and let M be an R-module.
(1) If M is reflexive, then M is torsion free.
(2) IfM is finite, then j : M → HomR(HomR(M,R), R) is injective if and only if

M is torsion free
Proof. Follows immediately from Lemmas 22.12 and 22.7. �

Lemma 23.3. LetR be a discrete valuation ring and letM be a finiteR-module. Then
the map j : M → HomR(HomR(M,R), R) is surjective.

Proof. Let Mtors ⊂ M be the torsion submodule. Then we have HomR(M,R) =
HomR(M/Mtors, R) (holds over any domain). Hence we may assume that M is torsion
free. Then M is free by Lemma 22.11 and the lemma is clear. �

Lemma 23.4. Let R be a Noetherian domain. Let M be a finite R-module. The fol-
lowing are equivalent:

(1) M is reflexive,
(2) Mp is a reflexive Rp-module for all primes p ⊂ R, and
(3) Mm is a reflexive Rm-module for all maximal ideals m of R.

Proof. The localization of j : M → HomR(HomR(M,R), R) at a prime p is the
corresponding map for the moduleMp over the Noetherian local domainRp. See Algebra,
Lemma 10.2. Thus the lemma holds by Algebra, Lemma 23.1. �

Lemma 23.5. Let R be a Noetherian domain. Let 0 → M → M ′ → M ′′ an exact
sequence of finiteR-modules. IfM ′ is reflexive andM ′′ is torsion free, thenM is reflexive.

Proof. We will use without further mention that HomR(N,N ′) is a finiteR-module
for any finite R-modules N and N ′, see Algebra, Lemma 71.9. We take duals to get a
sequence

HomR(M,R)← HomR(M ′, R)← HomR(M ′′, R)
Dualizing again we obtain a commutative diagram

HomR(HomR(M,R), R)
j
// HomR(HomR(M ′, R), R) // HomR(HomR(M ′′, R), R)

M

OO

// M ′

OO

// M ′′

OO
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We do not know the top row is exact. But, by assumption the middle vertical arrow is an
isomorphism and the right vertical arrow is injective (Lemma 23.2). We claim j is injective.
Assuming the claim a diagram chase shows that the left vertical arrow is an isomorphism,
i.e., M is reflexive.
Proof of the claim. Consider the exact sequence HomR(M ′, R) → HomR(M,R) →
Q→ 0 defining Q. One applies Algebra, Lemma 10.2 to obtain

HomK(M ′ ⊗R K,K)→ HomK(M ⊗R K,K)→ Q⊗R K → 0
But M ⊗R K → M ′ ⊗R K is an injective map of vector spaces, hence split injective, so
Q⊗R K = 0, that is, Q is torsion. Then one gets the exact sequence

0→ HomR(Q,R)→ HomR(HomR(M,R), R)→ HomR(HomR(M ′, R), R)
and HomR(Q,R) = 0 because Q is torsion. �

Lemma 23.6. Let R be a Noetherian domain. Let M be a finite R-module. The fol-
lowing are equivalent

(1) M is reflexive,
(2) there exists a short exact sequence 0 → M → F → N → 0 with F finite free

and N torsion free.

Proof. Observe that a finite free module is reflexive. By Lemma 23.5 we see that (2)
implies (1). AssumeM is reflexive. Choose a presentationR⊕m → R⊕n → HomR(M,R)→
0. Dualizing we get an exact sequence

0→ HomR(HomR(M,R), R)→ R⊕n → N → 0
with N = Im(R⊕n → R⊕m) a torsion free module. As M = HomR(HomR(M,R), R)
we get an exact sequence as in (2). �

Lemma 23.7. Let R → R′ be a flat homomorphism of Noetherian domains. If M is
a finite reflexive R-module, then M ⊗R R′ is a finite reflexive R′-module.

Proof. Choose a short exact sequence 0 → M → F → N → 0 with F finite free
andN torsion free, see Lemma 23.6. SinceR→ R′ is flat we obtain a short exact sequence
0 → M ⊗R R′ → F ⊗R R′ → N ⊗R R′ → 0 with F ⊗R R′ finite free and N ⊗R R′

torsion free (Lemma 22.4). Thus M ⊗R R′ is reflexive by Lemma 23.6. �

Lemma 23.8. Let R be a Noetherian domain. Let M be a finite R-module. Let N be
a finite reflexive R-module. Then HomR(M,N) is reflexive.

Proof. Choose a presentation R⊕m → R⊕n →M → 0. Then we obtain
0→ HomR(M,N)→ N⊕n → N ′ → 0

with N ′ = Im(N⊕n → N⊕m) torsion free. We conclude by Lemma 23.5. �

Definition 23.9. Let R be a Noetherian domain. Let M be a finite R-module. The
module M∗∗ = HomR(HomR(M,R), R) is called the reflexive hull of M .

This makes sense because the reflexive hull is reflexive by Lemma 23.8. The assignment
M 7→ M∗∗ is a functor. If ϕ : M → N is an R-module map into a reflexive R-module
N , then ϕ factors M →M∗∗ → N through the reflexive hull of M . Another way to say
this is that taking the reflexive hull is the left adjoint to the inclusion functor

finite reflexive modules ⊂ finite modules
over a Noetherian domain R.
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Lemma 23.10. Let R be a Noetherian local ring. Let M , N be finite R-modules.
(1) If N has depth ≥ 1, then HomR(M,N) has depth ≥ 1.
(2) If N has depth ≥ 2, then HomR(M,N) has depth ≥ 2.

Proof. Choose a presentation R⊕m → R⊕n → M → 0. Dualizing we get an exact
sequence

0→ HomR(M,N)→ N⊕n → N ′ → 0
withN ′ = Im(N⊕n → N⊕m). A submodule of a module with depth≥ 1 has depth≥ 1;
this follows immediately from the definition. Thus part (1) is clear. For (2) note that here
the assumption and the previous remark implies N ′ has depth≥ 1. The module N⊕n has
depth ≥ 2. From Algebra, Lemma 72.6 we conclude HomR(M,N) has depth ≥ 2. �

Lemma 23.11. Let R be a Noetherian ring. Let M , N be finite R-modules.
(1) If N has property (S1), then HomR(M,N) has property (S1).
(2) If N has property (S2), then HomR(M,N) has property (S2).
(3) If R is a domain, N is torsion free and (S2), then HomR(M,N) is torsion free

and has property (S2).

Proof. Since localizing at primes commutes with taking HomR for finiteR-modules
(Algebra, Lemma 71.9) parts (1) and (2) follow immediately from Lemma 23.10. Part (3)
follows from (2) and Lemma 22.12. �

Lemma 23.12. Let R be a Noetherian ring. Let ϕ : M → N be a map of R-modules.
Assume that for every prime p of R at least one of the following happens

(1) Mp → Np is injective, or
(2) p 6∈ Ass(M).

Then ϕ is injective.

Proof. Let p be an associated prime of Ker(ϕ). Then there exists an element x ∈Mp

which is in the kernel of Mp → Np and is annihilated by pRp (Algebra, Lemma 63.15).
This is impossible in both cases. Hence Ass(Ker(ϕ)) = ∅ and we conclude Ker(ϕ) = 0 by
Algebra, Lemma 63.7. �

Lemma 23.13. Let R be a Noetherian ring. Let ϕ : M → N be a map of R-modules.
Assume M is finite and that for every prime p of R one of the following happens

(1) Mp → Np is an isomorphism, or
(2) depth(Mp) ≥ 2 and p 6∈ Ass(N).

Then ϕ is an isomorphism.

Proof. By Lemma 23.12 we see that ϕ is injective. Let N ′ ⊂ N be an finitely gen-
erated R-module containing the image of M . Then Ass(Np) = ∅ implies Ass(N ′

p) = ∅.
Hence the assumptions of the lemma hold for M → N ′. In order to prove that ϕ is an
isomorphism, it suffices to prove the same thing for every such N ′ ⊂ N . Thus we may
assume N is a finite R-module. In this case, p 6∈ Ass(N) ⇒ depth(Np) ≥ 1, see Algebra,
Lemma 63.18. Consider the short exact sequence

0→M → N → Q→ 0

definingQ. Looking at the conditions we see that eitherQp = 0 in case (1) or depth(Qp) ≥
1 in case (2) by Algebra, Lemma 72.6. This implies that Q does not have any associated
primes, hence Q = 0 by Algebra, Lemma 63.7. �
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Lemma 23.14. Let R be a Noetherian domain. Let ϕ : M → N be a map of R-
modules. AssumeM is finite, N is torsion free, and that for every prime p ofR one of the
following happens

(1) Mp → Np is an isomorphism, or
(2) depth(Mp) ≥ 2.

Then ϕ is an isomorphism.

Proof. This is a special case of Lemma 23.13. �

Lemma 23.15. Let R be a Noetherian domain. Let M be a finite R-module. The
following are equivalent

(1) M is reflexive,
(2) for every prime p of R one of the following happens

(a) Mp is a reflexive Rp-module, or
(b) depth(Mp) ≥ 2.

Proof. If (1) is true, thenMp is a reflexive module for all primes of p by Lemma 23.4.
Thus (1)⇒ (2). Assume (2). Set N = HomR(HomR(M,R), R) so that

Np = HomRp
(HomRp

(Mp, Rp), Rp)

for every prime p of R. See Algebra, Lemma 10.2. We apply Lemma 23.14 to the map
j : M → N . This is allowed because M is finite and N is torsion free by Lemma 22.12. In
case (2)(a) the map Mp → Np is an isomorphism and in case (2)(b) we have depth(Mp) ≥
2. �

Lemma 23.16. Let R be a Noetherian domain. Let M be a finite reflexive R-module.
Let p ⊂ R be a prime ideal.

(1) If depth(Rp) ≥ 2, then depth(Mp) ≥ 2.
(2) If R is (S2), then M is (S2).

Proof. Since formation of reflexive hull HomR(HomR(M,R), R) commutes with
localization (Algebra, Lemma 10.2) part (1) follows from Lemma 23.10. Part (2) is imme-
diate from Lemma 23.11. �

Example 23.17. The results above and below suggest reflexivity is related to the (S2)
condition; here is an example to prevent too optimistic conjectures. Let k be a field. Let
R be the k-subalgebra of k[x, y] generated by 1, y, x2, xy, x3. ThenR is not (S2). SoR as
an R-module is an example of a reflexive R-module which is not (S2). Let M = k[x, y]
viewed as an R-module. Then M is a reflexive R-module because

HomR(M,R) = m = (y, x2, xy, x3) and HomR(m, R) = M

and M is (S2) as an R-module (computations omitted). Thus R is a Noetherian domain
possessing a reflexive (S2) module but R is not (S2) itself.

Lemma 23.18. Let R be a Noetherian normal domain with fraction field K. Let M
be a finite R-module. The following are equivalent

(1) M is reflexive,
(2) M is torsion free and has property (S2),
(3) M is torsion free and M =

⋂
height(p)=1 Mp where the intersection happens in

MK = M ⊗R K.
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Proof. By Algebra, Lemma 157.4 we see that R satisfies (R1) and (S2).

Assume (1). Then M is torsion free by Lemma 23.2 and satisfies (S2) by Lemma 23.16.
Thus (2) holds.

Assume (2). By definition M ′ =
⋂

height(p)=1 Mp is the kernel of the map

MK −→
⊕

height(p)=1
MK/Mp ⊂

∏
height(p)=1

MK/Mp

Observe that our map indeed factors through the direct sum as indicated since given a/b ∈
K there are at most finitely many height 1 primes p with b ∈ p. Let p0 be a prime of height
1. Then (MK/Mp)p0 = 0 unless p = p0 in which case we get (MK/Mp)p0 = MK/Mp0 .
Thus by exactness of localization and the fact that localization commutes with direct sums,
we see that M ′

p0
= Mp0 . Since M has depth ≥ 2 at primes of height > 1, we see that

M →M ′ is an isomorphism by Lemma 23.14. Hence (3) holds.

Assume (3). Let p be a prime of height 1. Then Rp is a discrete valuation ring by (R1).
By Lemma 22.11 we see thatMp is finite free, in particular reflexive. Hence the mapM →
M∗∗ induces an isomorphism at all the primes p of height 1. Thus the condition M =⋂

height(p)=1 Mp implies that M = M∗∗ and (1) holds. �

Lemma 23.19. Let R be a Noetherian normal domain. Let M be a finite R-module.
Then the reflexive hull of M is the intersection

M∗∗ =
⋂

height(p)=1
Mp/(Mp)tors =

⋂
height(p)=1

(M/Mtors)p

taken in M ⊗R K.

Proof. Let p be a prime of height 1. The kernel of Mp → M ⊗R K is the tor-
sion submodule (Mp)tors of Mp. Moreover, we have (M/Mtors)p = Mp/(Mp)tors and
this is a finite free module over the discrete valuation ring Rp (Lemma 22.11). Then
Mp/(Mp)tors → (Mp)∗∗ = (M∗∗)p is an isomorphism, hence the lemma is a consequence
of Lemma 23.18. �

Lemma 23.20. Let A be a Noetherian normal domain with fraction field K. Let L
be a finite extension of K. If the integral closure B of A in L is finite over A, then B is
reflexive as an A-module.

Proof. It suffices to show that B =
⋂
Bp where the intersection is over height 1

primes p ⊂ A, see Lemma 23.18. Let b ∈
⋂
Bp. Let xd+a1x

d−1 + . . .+ad be the minimal
polynomial of b over K. We want to show ai ∈ A. By Algebra, Lemma 38.6 we see that
ai ∈ Ap for all i and all height one primes p. Hence we get what we want from Algebra,
Lemma 157.6 (or the lemma already cited as A is a reflexive module over itself). �

24. Content ideals

The definition may not be what you expect.

Definition 24.1. Let A be a ring. Let M be a flat A-module. Let x ∈ M . If the set
of ideals I in A such that x ∈ IM has a smallest element, we call it the content ideal of x.

Note that since M is flat over A, for a pair of ideals I, I ′ of A we have IM ∩ I ′M =
(I∩I ′)M as can be seen by tensoring the exact sequence 0→ I∩I ′ → I⊕I ′ → I+I ′ → 0
by M .
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Lemma 24.2. Let A be a ring. Let M be a flat A-module. Let x ∈ M . The content
ideal of x, if it exists, is finitely generated.

Proof. Say x ∈ IM . Then we can write x =
∑
i=1,...,n fixi with fi ∈ I and

xi ∈M . Hence x ∈ I ′M with I ′ = (f1, . . . , fn). �

Lemma 24.3. Let (A,m) be a local ring. Let u : M → N be a map of flat A-modules
such that u : M/mM → N/mN is injective. If x ∈M has content ideal I , then u(x) has
content ideal I as well.

Proof. It is clear that u(x) ∈ IN . If u(x) ∈ I ′N , then u(x) ∈ (I ′ ∩ I)N , see
discussion following Definition 24.1. Hence it suffices to show: if x ∈ I ′N and I ′ ⊂ I ,
I ′ 6= I , then u(x) 6∈ I ′N . Since I/I ′ is a nonzero finite A-module (Lemma 24.2) there is
a nonzero map χ : I/I ′ → A/m of A-modules by Nakayama’s lemma (Algebra, Lemma
20.1). Since I is the content ideal of x we see that x 6∈ I ′′M where I ′′ = Ker(χ). Hence
x is not in the kernel of the map

IM = I ⊗AM
χ⊗1−−−→ A/m⊗M ∼= M/mM

Applying our hypothesis on uwe conclude that u(x) does not map to zero under the map

IN = I ⊗A N
χ⊗1−−−→ A/m⊗N ∼= N/mN

and we conclude. �

Lemma 24.4. Let A be a ring. Let M be a flat Mittag-Leffler module. Then every
element of M has a content ideal.

Proof. This is a special case of Algebra, Lemma 91.2. �

25. Flatness and finiteness conditions

In this section we discuss some implications of the type “flat + finite type⇒ finite presen-
tation”. We will revisit this result in the chapter on flatness, see More on Flatness, Section
1. A first result of this type was proved in Algebra, Lemma 108.6.

Lemma 25.1. Let R be a ring. Let S = R[x1, . . . , xn] be a polynomial ring over R.
Let M be an S-module. Assume

(1) there exist finitely many primes p1, . . . , pm ofR such that the mapR→
∏
Rpj

is injective,
(2) M is a finite S-module,
(3) M flat over R, and
(4) for every prime p of R the module Mp is of finite presentation over Sp.

Then M is of finite presentation over S.

Proof. Choose a presentation

0→ K → S⊕r →M → 0

ofM as an S-module. Let q be a prime ideal of S lying over a prime p ofR. By assumption
there exist finitely many elements k1, . . . , kt ∈ K such that if we set K ′ =

∑
Skj ⊂ K

then K ′
p = Kp and K ′

pj = Kpj for j = 1, . . . ,m. Setting M ′ = S⊕r/K ′ we deduce that
in particularM ′

q = Mq. By openness of flatness, see Algebra, Theorem 129.4 we conclude
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that there exists a g ∈ S , g 6∈ q such thatM ′
g is flat overR. ThusM ′

g →Mg is a surjective
map of flat R-modules. Consider the commutative diagram

M ′
g

//

��

Mg

��∏
(M ′

g)pj // ∏(Mg)pj

The bottom arrow is an isomorphism by choice of k1, . . . , kt. The left vertical arrow is an
injective map as R →

∏
Rpj is injective and M ′

g is flat over R. Hence the top horizontal
arrow is injective, hence an isomorphism. This proves that Mg is of finite presentation
over Sg . We conclude by applying Algebra, Lemma 23.2. �

Lemma 25.2. Let R→ S be a ring homomorphism. Assume
(1) there exist finitely many primes p1, . . . , pm ofR such that the mapR→

∏
Rpj

is injective,
(2) R→ S is of finite type,
(3) S flat over R, and
(4) for every prime p of R the ring Sp is of finite presentation over Rp.

Then S is of finite presentation over R.

Proof. By assumption S is a quotient of a polynomial ring over R. Thus the result
follows directly from Lemma 25.1. �

Lemma 25.3. LetR be a ring. Let S = R[x1, . . . , xn] be a graded polynomial algebra
over R, i.e., deg(xi) > 0 but not necessarily equal to 1. Let M be a graded S-module.
Assume

(1) R is a local ring,
(2) M is a finite S-module, and
(3) M is flat over R.

Then M is finitely presented as an S-module.

Proof. LetM =
⊕
Md be the grading onM . Pick homogeneous generatorsm1, . . . ,mr ∈

M of M . Say deg(mi) = di ∈ Z. This gives us a presentation

0→ K →
⊕

i=1,...,r
S(−di)→M → 0

which in each degree d leads to the short exact sequence

0→ Kd →
⊕

i=1,...,r
Sd−di →Md → 0.

By assumption each Md is a finite flat R-module. By Algebra, Lemma 78.5 this implies
each Md is a finite free R-module. Hence we see each Kd is a finite R-module. Also each
Kd is flat over R by Algebra, Lemma 39.13. Hence we conclude that each Kd is finite free
by Algebra, Lemma 78.5 again.

Let m be the maximal ideal of R. By the flatness of M over R the short exact sequences
above remain short exact after tensoring with κ = κ(m). As the ringS⊗Rκ is Noetherian
we see that there exist homogeneous elements k1, . . . , kt ∈ K such that the images kj
generate K ⊗R κ over S ⊗R κ. Say deg(kj) = ej . Thus for any d the map⊕

j=1,...,t
Sd−ej −→ Kd
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becomes surjective after tensoring with κ. By Nakayama’s lemma (Algebra, Lemma 20.1)
this implies the map is surjective over R. Hence K is generated by k1, . . . , kt over S and
we win. �

Lemma 25.4. Let R be a ring. Let S =
⊕

n≥0 Sn be a graded R-algebra. Let M =⊕
d∈Z Md be a graded S-module. Assume S is finitely generated as an R-algebra, assume

S0 is a finiteR-algebra, and assume there exist finitely many primes pj , i = 1, . . . ,m such
that R→

∏
Rpj is injective.

(1) If S is flat over R, then S is a finitely presented R-algebra.
(2) If M is flat as an R-module and finite as an S-module, then M is finitely pre-

sented as an S-module.

Proof. As S is finitely generated as an R-algebra, it is finitely generated as an S0
algebra, say by homogeneous elements t1, . . . , tn ∈ S of degrees d1, . . . , dn > 0. Set
P = R[x1, . . . , xn] with deg(xi) = di. The ring map P → S , xi → ti is finite as S0
is a finite R-module. To prove (1) it suffices to prove that S is a finitely presented P -
module. To prove (2) it suffices to prove that M is a finitely presented P -module. Thus
it suffices to prove that if S = P is a graded polynomial ring and M is a finite S-module
flat over R, then M is finitely presented as an S-module. By Lemma 25.3 we see Mp is a
finitely presented Sp-module for every prime p ofR. Thus the result follows from Lemma
25.1. �

Remark 25.5. Let R be a ring. When does R satisfy the condition mentioned in
Lemmas 25.1, 25.2, and 25.4? This holds if

(1) R is local,
(2) R is Noetherian,
(3) R is a domain,
(4) R is a reduced ring with finitely many minimal primes, or
(5) R has finitely many weakly associated primes, see Algebra, Lemma 66.17.

Thus these lemmas hold in all cases listed above.

The following lemma will be improved on in More on Flatness, Proposition 13.10.

Lemma 25.6. Let A be a valuation ring. Let A→ B be a ring map of finite type. Let
M be a finite B-module.

(1) If B is flat over A, then B is a finitely presented A-algebra.
(2) If M is flat as an A-module, then M is finitely presented as a B-module.

Proof. We are going to use that an A-module is flat if and only if it is torsion free,
see Lemma 22.10. By Algebra, Lemma 57.10 we can find a gradedA-algebra S with S0 = A
and generated by finitely many elements in degree 1, an element f ∈ S1 and a finite graded
S-module N such that B ∼= S(f) and M ∼= N(f). If M is torsion free, then we can take
N torsion free by replacing it by N/Ntors, see Lemma 22.2. Similarly, if B is torsion free,
then we can take S torsion free by replacing it by S/Stors. Hence in case (1), we may apply
Lemma 25.4 to see that S is a finitely presentedA-algebra, which implies thatB = S(f) is
a finitely presented A-algebra. To see (2) we may first replace S by a graded polynomial
ring, and then we may apply Lemma 25.3 to conclude. �

Lemma 25.7. LetA be a valuation ring. LetA→ B be a local homomorphism which
is essentially of finite type. Let M be a finite B-module.

(1) If B is flat over A, then B is essentially of finite presentation over A.
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(2) If M is flat as an A-module, then M is finitely presented as a B-module.

Proof. By assumption we can write B as a quotient of the localization of a polyno-
mial algebra P = A[x1, . . . , xn] at a prime ideal q. In case (1) we consider M = B as a
finite module over Pq and in case (2) we consider M as a finite module over Pq. In both
cases, we have to show that this is a finitely presented Pq-module, see Algebra, Lemma 6.4
for case (2).

Choose a presentation 0 → K → P⊕r
q → M → 0 which is possible because M is finite

over Pq. Let L = P⊕r ∩K. Then K = Lq, see Algebra, Lemma 9.15. Then N = P⊕r/L
is a submodule ofM and hence flat by Lemma 22.10. Since alsoN is a finite P -module, we
see that N is finitely presented as a P -module by Lemma 25.6. Since localization is exact
(Algebra, Proposition 9.12) we see that Nq = M and we conclude. �

26. Blowing up and flatness

In this section we begin our discussion of results of the form: “After a blowup the strict
transform becomes flat”. More results of this type may be found in Divisors, Section 35
and More on Flatness, Section 30.

Definition 26.1. Let R be a ring. Let I ⊂ R be an ideal and a ∈ I . Let R[ Ia ] be
the affine blowup algebra, see Algebra, Definition 70.1. LetM be anR-module. The strict
transform of M along R→ R[ Ia ] is the R[ Ia ]-module

M ′ =
(
M ⊗R R[ Ia ]

)
/a-power torsion

The following is a very weak version of flattening by blowing up, but it is already some-
times a useful result.

Lemma 26.2. Let (R,m) be a local domain with fraction field K. Let S be a finite
typeR-algebra. LetM be a finite S-module. For every valuation ringA ⊂ K dominating
R there exists an ideal I ⊂ m and a nonzero element a ∈ I such that

(1) I is finitely generated,
(2) A has center on R[ Ia ],
(3) the fibre ring of R→ R[ Ia ] at m is not zero, and
(4) the strict transform SI,a of S along R → R[ Ia ] is flat and of finite presentation

over R, and the strict transform MI,a of M along R → R[ Ia ] is flat over R and
finitely presented over SI,a.

Proof. WriteS = R[x1, . . . , xn]/J and denoteN = S⊕M viewed as a module over
P = R[x1, . . . , xn]. If we can prove the lemma in case S is a polynomial algebra over R,
then we can find I, a satisfying (1), (2), (3) such that the strict transform NI,a of N along
R→ R[ Ia ] is flat overR and finitely presented as a module over the strict transform PI,a]
of P . Since PI,a = R[ Ia ][x1, . . . , xn] (small detail omitted) we find that the summand
SI,a ⊂ NI,a is flat overR and finitely presented as a module overR[ Ia ][x1, . . . , xn]. Hence
SI,a is finitely presented as anR[ Ia ]-algebra. Moreover, the summandMI,a ⊂ NI,a is flat
over R and finitely presented as a module over PI,a hence also finitely presented as a
module over SI,a, see Algebra, Lemma 6.4. This reduces us to the case discussed in the
next paragraph.

Assume S = R[x1, . . . , xn]. Choose a presentation

0→ K → S⊕r →M → 0.



26. BLOWING UP AND FLATNESS 1273

Let MA be the quotient of M ⊗R A by its torsion submodule, see Lemma 22.2. Then MA

is a finite module over SA = A[x1, . . . , xn]. By Lemma 22.10 we see that MA is flat over
A. By Lemma 25.6 we see that MA is finitely presented. Hence there exist finitely many
elements k1, . . . , kt ∈ S⊕r

A which generate the kernel of the presentation S⊕r
A → MA as

an SA-module. For any choice of a ∈ I ⊂ m satisfying (1), (2), and (3) we denoteMI,a the
strict transform ofM alongR→ R[ Ia ]. It is a finite module overSI,a = R[ Ia ][x1, . . . , xn].
By Algebra, Lemma 70.12 we haveA = colimI,aR[ Ia ]. This implies that SA = colimSI,a
and

colimM ⊗R R[ Ia ] = M ⊗R A
Choose I, a and lifts k1, . . . , kt ∈ S⊕r

I,a. Since MA is the quotient of M ⊗R A by torsion,
we see that the images of k1, . . . , kt in M ⊗R A are annihilated by a nonzero element
α ∈ A. After replacing I, a by a different pair (recall that the colimit is filtered), we may
assume α = x/an for some x ∈ In nonzero. Then we find that xk1, . . . , xkt map to zero
in M ⊗R A. Hence after replacing I, a by a different pair we may assume xk1, . . . , xkt
map to zero inM ⊗RR[ Ia ] for some nonzero x ∈ R. Then finally replacing I, a by xI, xa
we find that we may assume k1, . . . , kt map to a-power torsion elements of M ⊗R R[ Ia ].
For any such pair (I, a) we set

M ′
I,a = S⊕r

I,a/
∑

SI,akj .

Since MA = S⊕r
A /

∑
SAkj we see that MA = colimI,aM

′
I,a. At this point we finally

apply Algebra, Lemma 168.1 (3) to conclude thatM ′
I,a is flat for some pair (I, a) as above.

This lemma does not apply a priori to the system of strict transforms

MI,a = (M ⊗R R[ Ia ])/a-power torsion

as the transition maps may not satisfy the assumptions of the lemma. But now, since flat-
ness implies torsion free (Lemma 22.9) and since MI,a is the quotient of M ′

I,a (because
we arranged it so the elements k1, . . . , kt map to zero in MI,a) by the a-power torsion
submodule we also conclude that M ′

I,a = MI,a for such a pair and we win. �

Lemma 26.3. Let R be a ring. Let M be a finite R-module. Let k ≥ 0 and I =
Fitk(M). For every a ∈ I with R′ = R[ Ia ] the strict transform

M ′ = (M ⊗R R′)/a-power torsion

has Fitk(M ′) = R′.

Proof. First observe that Fitk(M ⊗R R′) = IR′ = aR′. The first equality by
Lemma 8.4 part (3) and the second equality by Algebra, Lemma 70.2. From Lemma 8.8
and exactness of localization we see that M ′

p′ can be generated by ≤ k elements for every
prime p′ of R′. Then Fitk(M ′) = R′ for example by Lemma 8.6. �

Lemma 26.4. Let R be a ring. Let M be a finite R-module. Let k ≥ 0 and I =
Fitk(M). Asssume that Mp is free of rank k for every p 6∈ V (I). Then for every a ∈ I
with R′ = R[ Ia ] the strict transform

M ′ = (M ⊗R R′)/a-power torsion

is locally free of rank k.

Proof. By Lemma 26.3 we have Fitk(M ′) = R′. By Lemma 8.7 it suffices to show
that Fitk−1(M ′) = 0. Recall that R′ ⊂ R′

a = Ra, see Algebra, Lemma 70.2. Hence it
suffices to prove that Fitk−1(M ′) maps to zero in R′

a = Ra. Since clearly (M ′)a = Ma
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this reduces us to showing that Fitk−1(Ma) = 0 because formation of Fitting ideals com-
mutes with base change according to Lemma 8.4 part (3). This is true by our assumption
that Ma is finite locally free of rank k (see Algebra, Lemma 78.2) and the already cited
Lemma 8.7. �

Lemma 26.5. Let R be a ring. Let M be a finite R-module. Let f ∈ R be an element
such that Mf is finite locally free of rank r. Then there exists a finitely generated ideal
I ⊂ R with V (f) = V (I) such that for all a ∈ I with R′ = R[ Ia ] the strict transform

M ′ = (M ⊗R R′)/a-power torsion

is locally free of rank r.

Proof. Choose a surjectionR⊕n →M . Choose a finite submoduleK ⊂ Ker(R⊕n →
M) such that R⊕n/K → M becomes an isomorphism after inverting f . This is possi-
ble because Mf is of finite presentation for example by Algebra, Lemma 78.2. Set M1 =
R⊕n/K and suppose we can prove the lemma for M1. Say I ⊂ R is the corresponding
ideal. Then for a ∈ I the map

M ′
1 = (M1 ⊗R R′)/a-power torsion −→M ′ = (M ⊗R R′)/a-power torsion

is surjective. It is also an isomorphism after inverting a in R′ as R′
a = Rf , see Algebra,

Lemma 70.7. But a is a nonzerodivisor on M ′
1, whence the displayed map is an isomor-

phism. Thus it suffices to prove the lemma in case M is a finitely presented R-module.

Assume M is a finitely presented R-module. Then J = Fitr(M) ⊂ S is a finitely gener-
ated ideal. We claim that I = fJ works.

We first check that V (f) = V (I). The inclusion V (f) ⊂ V (I) is clear. Conversely, if
f 6∈ p, then p is not an element of V (J) by Lemma 8.6. Thus p 6∈ V (fJ) = V (I).

Let a ∈ I and set R′ = R[ Ia ]. We may write a = fb for some b ∈ J . By Algebra, Lemmas
70.2 and 70.8 we see that JR′ = bR′ and b is a nonzerodivisor in R′. Let p′ ⊂ R′ = R[ Ia ]
be a prime ideal. Then JR′

p′ is generated by b. It follows from Lemma 8.8 that M ′
p′ can

be generated by r elements. Since M ′ is finite, there exist m1, . . . ,mr ∈ M ′ and g ∈ R′,
g 6∈ p′ such that the corresponding map (R′)⊕r →M ′ becomes surjective after inverting
g.

Finally, consider the ideal J ′ = Fitk−1(M ′). Note that J ′R′
g is generated by the coeffi-

cients of relations between m1, . . . ,mr (compatibility of Fitting ideal with base change).
Thus it suffices to show that J ′ = 0, see Lemma 8.7. Since R′

a = Rf (Algebra, Lemma
70.7) and M ′

a = Mf is free of rank r we see that J ′
a = 0. Since a is a nonzerodivisor in

R′ we conclude that J ′ = 0 and we win. �

27. Completion and flatness

In this section we discuss when the completion of a “big” flat module is flat.

Lemma 27.1. Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume R is
Noetherian and complete with respect to I . There is a canonical map(⊕

α∈A
R
)∧
−→

∏
α∈A

R

from the I-adic completion of the direct sum into the product which is universally injec-
tive.
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Proof. By definition an element x of the left hand side is x = (xn) where xn =
(xn,α) ∈

⊕
α∈AR/I

n such that xn,α = xn+1,α mod In. AsR = R∧ we see that for any
α there exists a yα ∈ R such that xn,α = yα mod In. Note that for each n there are only
finitely many α such that the elements xn,α are nonzero. Conversely, given (yα) ∈

∏
αR

such that for each n there are only finitely many α such that yα mod In is nonzero, then
this defines an element of the left hand side. Hence we can think of an element of the left
hand side as infinite “convergent sums”

∑
α yα with yα ∈ R such that for each n there

are only finitely many yα which are nonzero modulo In. The displayed map maps this
element to the element to (yα) in the product. In particular the map is injective.
Let Q be a finite R-module. We have to show that the map

Q⊗R
(⊕

α∈A
R
)∧
−→ Q⊗R

(∏
α∈A

R
)

is injective, see Algebra, Theorem 82.3. Choose a presentation R⊕k → R⊕m → Q → 0
and denote q1, . . . , qm ∈ Q the corresponding generators for Q. By Artin-Rees (Alge-
bra, Lemma 51.2) there exists a constant c such that Im(R⊕k → R⊕m) ∩ (IN )⊕m ⊂
Im((IN−c)⊕k → R⊕m). Let us contemplate the diagram⊕k

l=1
(⊕

α∈AR
)∧ //

��

⊕m
j=1

(⊕
α∈AR

)∧ //

��

Q⊗R
(⊕

α∈AR
)∧ //

��

0

⊕k
l=1
(∏

α∈AR
)

//⊕m
j=1

(∏
α∈AR

)
// Q⊗R

(∏
α∈AR

)
// 0

with exact rows. Pick an element
∑
j

∑
α yj,α of

⊕
j=1,...,m

(⊕
α∈AR

)∧. If this element
maps to zero in the moduleQ⊗R

(∏
α∈AR

)
, then we see in particular that

∑
j qj⊗yj,α =

0 in Q for each α. Thus we can find an element (z1,α, . . . , zk,α) ∈
⊕

l=1,...,k R which
maps to (y1,α, . . . , ym,α) ∈

⊕
j=1,...,mR. Moreover, if yj,α ∈ INα for j = 1, . . . ,m,

then we may assume that zl,α ∈ INα−c for l = 1, . . . , k. Hence the sum
∑
l

∑
α zl,α is

“convergent” and defines an element of
⊕

l=1,...,k
(⊕

α∈AR
)∧ which maps to the element∑

j

∑
α yj,α we started out with. Thus the right vertical arrow is injective and we win.

�

The following lemma can also be deduced from Lemma 27.4 below.

Lemma 27.2. Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume R is
Noetherian. The completion (

⊕
α∈AR)∧ is a flat R-module.

Proof. Denote R∧ the completion of R with respect to I . As R → R∧ is flat by
Algebra, Lemma 97.2 it suffices to prove that (

⊕
α∈AR)∧ is a flatR∧-module (use Algebra,

Lemma 39.4). Since
(
⊕

α∈A
R)∧ = (

⊕
α∈A

R∧)∧

we may replace R by R∧ and assume that R is complete with respect to I (see Algebra,
Lemma 97.4). In this case Lemma 27.1 tells us the map (

⊕
α∈AR)∧ →

∏
α∈AR is uni-

versally injective. Thus, by Algebra, Lemma 82.7 it suffices to show that
∏
α∈AR is flat.

By Algebra, Proposition 90.6 (and Algebra, Lemma 90.5) we see that
∏
α∈AR is flat. �

Lemma 27.3. Let A be a Noetherian ring. Let I be an ideal of A. Let M be a fi-
nite A-module. For every p > 0 there exists a c > 0 such that TorAp (M,A/In) →
TorAp (M,A/In−c) is zero for all n ≥ c.
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Proof. Proof for p = 1. Choose a short exact sequence 0→ K → A⊕t → M → 0.
Then TorA1 (M,A/In) = K ∩ (In)⊕t/InK. By Artin-Rees (Algebra, Lemma 51.2) there
is a constant c ≥ 0 such that K ∩ (In)⊕t ⊂ In−cK for n ≥ c. Thus the result for p = 1.
For p > 1 we have TorAp (M,A/In) = TorAp−1(K,A/In). Thus the lemma follows by
induction. �

Lemma 27.4. Let A be a Noetherian ring. Let I be an ideal of A. Let (Mn) be an
inverse system of A-modules such that

(1) Mn is a flat A/In-module,
(2) Mn+1 →Mn is surjective.

Then M = limMn is a flat A-module and Q ⊗A M = limQ ⊗A Mn for every finite
A-module Q.

Proof. We first show that Q ⊗AM = limQ ⊗AMn for every finite A-module Q.
Choose a resolution F2 → F1 → F0 → Q→ 0 by finite free A-modules Fi. Then

F2 ⊗AMn → F1 ⊗AMn → F0 ⊗AMn

is a chain complex whose homology in degree 0 is Q ⊗A Mn and whose homology in
degree 1 is

TorA1 (Q,Mn) = TorA1 (Q,A/In)⊗A/In Mn

asMn is flat overA/In. By Lemma 27.3 we see that this system is essentially constant (with
value 0). It follows from Homology, Lemma 31.7 that limQ⊗AA/In = Coker(limF1⊗A
Mn → limF0⊗AMn). SinceFi is finite free this equals Coker(F1⊗AM → F0⊗AM) =
Q⊗AM .

Next, let Q → Q′ be an injective map of finite A-modules. We have to show that Q ⊗A
M → Q′ ⊗AM is injective (Algebra, Lemma 39.5). By the above we see

Ker(Q⊗AM → Q′ ⊗AM) = Ker(limQ⊗AMn → limQ′ ⊗AMn).

For each n we have an exact sequence

TorA1 (Q′,Mn)→ TorA1 (Q′′,Mn)→ Q⊗AMn → Q′ ⊗AMn

where Q′′ = Coker(Q → Q′). Above we have seen that the inverse systems of Tor’s are
essentially constant with value 0. It follows from Homology, Lemma 31.7 that the inverse
limit of the right most maps is injective. �

Lemma 27.5. LetR be a ring. Let I ⊂ R be an ideal. LetM be anR-module. Assume
(1) I is finitely generated,
(2) R/I is Noetherian,
(3) M/IM is flat over R/I ,
(4) TorR1 (M,R/I) = 0.

Then the I-adic completion R∧ is a Noetherian ring and M∧ is flat over R∧.

Proof. By Algebra, Lemma 99.8 the modules M/InM are flat over R/In for all n.
By Algebra, Lemma 96.3 we have (a)R∧ andM∧ are I-adically complete and (b)R/In =
R∧/InR∧ for all n. By Algebra, Lemma 97.5 the ringR∧ is Noetherian. Applying Lemma
27.4 we conclude that M∧ = limM/InM is flat as an R∧-module. �
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28. The Koszul complex

We define the Koszul complex as follows.

Definition 28.1. Let R be a ring. Let ϕ : E → R be an R-module map. The Koszul
complex K•(ϕ) associated to ϕ is the commutative differential graded algebra defined as
follows:

(1) the underlying graded algebra is the exterior algebra K•(ϕ) = ∧(E),
(2) the differential d : K•(ϕ) → K•(ϕ) is the unique derivation such that d(e) =

ϕ(e) for all e ∈ E = K1(ϕ).

Explicitly, if e1 ∧ . . . ∧ en is one of the generators of degree n in K•(ϕ), then

d(e1 ∧ . . . ∧ en) =
∑

i=1,...,n
(−1)i+1ϕ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en.

It is straightforward to see that this gives a well defined derivation on the tensor algebra,
which annihilates e⊗ e and hence factors through the exterior algebra.
We often assume that E is a finite free module, say E = R⊕n. In this case the map ϕ is
given by a sequence of elements f1, . . . , fn ∈ R.

Definition 28.2. Let R be a ring and let f1, . . . , fr ∈ R. The Koszul complex on
f1, . . . , fr is the Koszul complex associated to the map (f1, . . . , fr) : R⊕r → R. Notation
K•(f•), K•(f1, . . . , fr), K•(R, f1, . . . , fr), or K•(R, f•).

Of course, if E is finite locally free, then K•(ϕ) is locally on Spec(R) isomorphic to a
Koszul complex K•(f1, . . . , fr). This complex has many interesting formal properties.

Lemma 28.3. Let ϕ : E → R and ϕ′ : E′ → R be R-module maps. Let ψ : E → E′

be anR-module map such thatϕ′◦ψ = ϕ. Thenψ induces a homomorphism of differential
graded algebras K•(ϕ)→ K•(ϕ′).

Proof. This is immediate from the definitions. �

Lemma 28.4. Let f1, . . . , fr ∈ R be a sequence. Let (xij) be an invertible r×r-matrix
with coefficients in R. Then the complexes K•(f•) and

K•(
∑

x1jfj ,
∑

x2jfj , . . . ,
∑

xrjfj)

are isomorphic.

Proof. Set gi =
∑
xijfj . The matrix (xji) gives an isomorphism x : R⊕r → R⊕r

such that (g1, . . . , gr) = (f1, . . . , fr)◦x. Hence this follows from the functoriality of the
Koszul complex described in Lemma 28.3. �

Lemma 28.5. Let R be a ring. Let ϕ : E → R be an R-module map. Let e ∈ E with
image f = ϕ(e) in R. Then

f = de+ ed

as endomorphisms of K•(ϕ).

Proof. This is true because d(ea) = d(e)a− ed(a) = fa− ed(a). �

Lemma 28.6. LetR be a ring. Let f1, . . . , fr ∈ R be a sequence. Multiplication by fi
on K•(f•) is homotopic to zero, and in particular the cohomology modules Hi(K•(f•))
are annihilated by the ideal (f1, . . . , fr).

Proof. Special case of Lemma 28.5. �
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In Derived Categories, Section 9 we defined the cone of a morphism of cochain complexes.
The cone C(f)• of a morphism of chain complexes f : A• → B• is the complex C(f)•
given by C(f)n = Bn ⊕An−1 and differential

(28.6.1) dC(f),n =
(
dB,n fn−1

0 −dA,n−1

)
It comes equipped with canonical morphisms of complexes i : B• → C(f)• and p :
C(f)• → A•[−1] induced by the obvious maps Bn → C(f)n → An−1.

Lemma 28.7. Let R be a ring. Let ϕ : E → R be an R-module map. Let f ∈ R. Set
E′ = E ⊕ R and define ϕ′ : E′ → R by ϕ on E and multiplication by f on R. The
complex K•(ϕ′) is isomorphic to the cone of the map of complexes

f : K•(ϕ) −→ K•(ϕ).

Proof. Denote e0 ∈ E′ the element 1 ∈ R ⊂ R ⊕ E. By our definition of the cone
above we see that

C(f)n = Kn(ϕ)⊕Kn−1(ϕ) = ∧n(E)⊕ ∧n−1(E) = ∧n(E′)

where in the last = we map (0, e1 ∧ . . . ∧ en−1) to e0 ∧ e1 ∧ . . . ∧ en−1 in ∧n(E′). A
computation shows that this isomorphism is compatible with differentials. Namely, this
is clear for elements of the first summand as ϕ′|E = ϕ and dC(f) restricted to the first
summand is just dK•(ϕ). On the other hand, if e1 ∧ . . . ∧ en−1 is in the second summand,
then

dC(f)(0, e1 ∧ . . . ∧ en−1) = fe1 ∧ . . . ∧ en−1 − dK•(ϕ)(e1 ∧ . . . ∧ en−1)

and on the other hand

dK•(ϕ′)(0, e0 ∧ e1 ∧ . . . ∧ en−1)

=
∑

i=0,...,n−1
(−1)iϕ′(ei)e0 ∧ . . . ∧ êi ∧ . . . ∧ en−1

= fe1 ∧ . . . ∧ en−1 +
∑

i=1,...,n−1
(−1)iϕ(ei)e0 ∧ . . . ∧ êi ∧ . . . ∧ en−1

= fe1 ∧ . . . ∧ en−1 − e0

(∑
i=1,...,n−1

(−1)i+1ϕ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en−1

)
which is the image of the result of the previous computation. �

Lemma 28.8. Let R be a ring. Let f1, . . . , fr be a sequence of elements of R. The
complex K•(f1, . . . , fr) is isomorphic to the cone of the map of complexes

fr : K•(f1, . . . , fr−1) −→ K•(f1, . . . , fr−1).

Proof. Special case of Lemma 28.7. �

Lemma 28.9. Let R be a ring. Let A• be a complex of R-modules. Let f, g ∈ R. Let
C(f)• be the cone of f : A• → A•. Define similarly C(g)• and C(fg)•. Then C(fg)• is
homotopy equivalent to the cone of a map

C(f)•[1] −→ C(g)•

Proof. We first prove this if A• is the complex consisting of R placed in degree 0.
In this case the complex C(f)• is the complex

. . .→ 0→ R
f−→ R→ 0→ . . .
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with R placed in (homological) degrees 1 and 0. The map of complexes we use is

0 //

��

0 //

��

R
f //

1
��

R //

��

0

��
0 // R

g // R // 0 // 0

The cone of this is the chain complex consisting of R⊕2 placed in degrees 1 and 0 and
differential (28.6.1) (

g 1
0 −f

)
: R⊕2 −→ R⊕2

To see this chain complex is homotopic to C(fg)•, i.e., to R fg−→ R, consider the maps of
complexes

R

(1,−g)
��

fg
// R

(0,1)
��

R⊕2 // R⊕2

R⊕2

(1,0)
��

// R⊕2

(f,1)
��

R
fg // R

with obvious notation. The composition of these two maps in one direction is the iden-
tity on C(fg)•, but in the other direction it isn’t the identity. We omit writing out the
required homotopy.

To see the result holds in general, we use that we have a functor K• 7→ Tot(A• ⊗R K•)
on the category of complexes which is compatible with homotopies and cones. Then we
write C(f)• and C(g)• as the total complex of the double complexes

(R f−→ R)⊗R A• and (R g−→ R)⊗R A•

and in this way we deduce the result from the special case discussed above. Some details
omitted. �

Lemma 28.10. LetR be a ring. Letϕ : E → R be anR-module map. Let f, g ∈ R. Set
E′ = E ⊕ R and define ϕ′

f , ϕ
′
g, ϕ

′
fg : E′ → R by ϕ on E and multiplication by f, g, fg

on R. The complex K•(ϕ′
fg) is homotopy equivalent to the cone of a map of complexes

K•(ϕ′
f )[1] −→ K•(ϕ′

g).

Proof. By Lemma 28.7 the complexK•(ϕ′
f ) is isomorphic to the cone of multiplica-

tion by f on K•(ϕ) and similarly for the other two cases. Hence the lemma follows from
Lemma 28.9. �

Lemma 28.11. Let R be a ring. Let f1, . . . , fr−1 be a sequence of elements of R. Let
f, g ∈ R. The complex K•(f1, . . . , fr−1, fg) is homotopy equivalent to the cone of a
map of complexes

K•(f1, . . . , fr−1, f)[1] −→ K•(f1, . . . , fr−1, g)

Proof. Special case of Lemma 28.10. �

Lemma 28.12. LetR be a ring. Let f1, . . . , fr , g1, . . . , gs be elements ofR. Then there
is an isomorphism of Koszul complexes

K•(R, f1, . . . , fr, g1, . . . , gs) = Tot(K•(R, f1, . . . , fr)⊗R K•(R, g1, . . . , gs)).
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Proof. Omitted. Hint: If K•(R, f1, . . . , fr) is generated as a differential graded al-
gebra by x1, . . . , xr with d(xi) = fi and K•(R, g1, . . . , gs) is generated as a differential
graded algebra by y1, . . . , ys with d(yj) = gj , then we can think ofK•(R, f1, . . . , fr, g1, . . . , gs)
as the differential graded algebra generated by the sequence of elementsx1, . . . , xr, y1, . . . , ys
with d(xi) = fi and d(yj) = gj . �

29. The extended alternating Čech complex

Let R be a ring. Let f1, . . . , fr ∈ R. The extended alternating Čech complex of R is the
cochain complex

R→
⊕

i0
Rfi0 →

⊕
i0<i1

Rfi0fi1 → . . .→ Rf1...fr

where R is in degree 0, the term
⊕

i0
Rfi0 is in degre 1, and so on. The maps are defined

as follows
(1) The map R→

⊕
i0
Rfi0 is given by the canonical maps R→ Rfi0 .

(2) Given 1 ≤ i0 < . . . < ip+1 ≤ r and 0 ≤ j ≤ p + 1 we have the canonical
localization map

Rfi0 ...f̂ij ...fip+1
→ Rfi0 ...fip+1

(3) The differentials use the canonical maps of (2) with sign (−1)j .
If M is any R-module, the extended alternating Čech complex of M is the similarly con-
structed cochain complex

M →
⊕

i0
Mfi0

→
⊕

i0<i1
Mfi0fi1

→ . . .→Mf1...fr

where M is in degree 0 as before.

Lemma 29.1. The extended alternating Čech complexes defined above are complexes
of R-modules.

Proof. Omitted. �

Lemma 29.2. Let R be a ring. Let f1, . . . , fr ∈ R. Let M be an R-module. The
extended alternating Čech complex of M is the tensor product over R of M with the
extended alternating Čech complex of R.

Proof. Omitted. �

Lemma 29.3. LetR be a ring. Let f1, . . . , fr ∈ R. LetM be anR-module. LetR→ S
be a ring map, denote g1, . . . , gr ∈ S the images of f1, . . . , fr , and setN = M ⊗R S. The
extended alternating Čech complex constructed using S , g1, . . . , gr , and N is the tensor
product of the extended alternating Čech complex of M with S over R.

Proof. Omitted. �

Lemma 29.4. Let R be a ring. Let f1, . . . , fr ∈ R. Let M be an R-module. If there
exists an i ∈ {1, . . . , r} such that fi is a unit, then the extended alternating Čech complex
of M is homotopy equivalent to 0.

Proof. We will use the following notation: a cochain x of degree p + 1 in the ex-
tended alternating Čech complex of M is x = (xi0...ip) where xi0...ip is in Mfi0 ...fip

.
With this notation we have

d(x)i0...ip+1 =
∑

j
(−1)jxi0...̂ij ...ip+1
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As homotopy we use the maps
h : cochains of degree p+ 2→ cochains of degree p+ 1

given by the rule

h(x)i0...ip = 0 if i ∈ {i0, . . . , ip} and h(x)i0...ip = (−1)jxi0...ijiij+1...ip if not
Here j is the unique index such that ij < i < ij+1 in the second case; also, since fi is a
unit we have the equality

Mfi0 ...fip
= Mfi0 ...fij fifij+1 ...fip

which we can use to make sense of thinking of (−1)jxi0...ijiij+1...ip as an element of
Mfi0 ...fip

. We will show by a computation that dh+ hd equals the negative of the iden-
tity map which finishes the proof. To do this fix x a cochain of degree p + 1 and let
1 ≤ i0 < . . . < ip ≤ r.
Case I: i ∈ {i0, . . . , ip}. Say i = it. Then we have h(d(x))i0...ip = 0. On the other hand
we have
d(h(x))i0...ip =

∑
(−1)jh(x)i0...̂ij ...ip = (−1)th(x)i0...̂i...ip = (−1)t(−1)t−1xi0...ip

Thus (dh+ hd)(x)i0...ip = −xi0...ip as desired.
Case II: i 6∈ {i0, . . . , ip}. Let j be such that ij < i < ij+1. Then we see that

h(d(x))i0...ip = (−1)jd(x)i0...ijiij+1...ip

=
∑

j′≤j
(−1)j+j

′
xi0...̂ij′ ...ijiij+1...ip

− xi0...ip

+
∑

j′>j
(−1)j+j

′+1xi0...ijiij+1...̂ij′ ...ip

On the other hand we have
d(h(x))i0...ip =

∑
j′

(−1)j
′
h(x)i0...̂ij′ ...ip

=
∑

j′≤j
(−1)j

′+j−1xi0...̂ij′ ...ijiij+1...ip

+
∑

j′>j
(−1)j

′+jxi0...ijiij+1...̂ij′ ...ip

Adding these up we obtain (dh+ hd)(x)i0...ip = −xi0...ip as desired. �

Lemma 29.5. LetR be a ring. Let f1, . . . , fr ∈ R. LetM be anR-module. LetHq be
the qth cohomology module of the extended alternation Čech complex of M . Then

(1) Hq = 0 if q 6∈ [0, r],
(2) for x ∈ Hi there exists an n ≥ 1 such that fni x = 0 for i = 1, . . . , r,
(3) the support of Hq is contained in V (f1, . . . , fr),
(4) if there is an f ∈ (f1, . . . , fr) which acts invertibly on M , then Hq = 0.

Proof. Part (1) follows from the fact that the extended alternating Čech complex
is zero in degrees < 0 and > r. To prove (2) it suffices to show that for each i there
exists an n ≥ 1 such that fni x = 0. To see this it suffices to show that (Hq)fi = 0.
Since localization is exact, (Hq)fi is the qth cohomology module of the localization of the
extended alternating complex ofM at fi. By Lemma 29.3 this localization is the extended
alternating Čech complex ofMfi overRfi with respect to the images of f1, . . . , fr inRfi .
Thus we reduce to showing that Hq is zero if fi is invertible, which follows from Lemma
29.4. Part (3) follows from the observation that (Hq)fi = 0 for all i that we just proved.
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To see part (4) note that in this case f acts invertibly onHq andHq is supported on V (f)
by (3). This forces Hq to be zero (small detail omitted). �

Lemma 29.6. Let R be a ring. Let f1, . . . , fr ∈ R. The extended alternating Čech
complex

R→
⊕

i0
Rfi0 →

⊕
i0<i1

Rfi0fi1 → . . .→ Rf1...fr

is a colimit of the Koszul complexes K(R, fn1 , . . . , fnr ); see proof for a precise statement.

Proof. We urge the reader to prove this for themselves. Denote K(R, fn1 , . . . , fnr )
the Koszul complex of Definition 28.2 viewed as a cochain complex sitting in degrees
0, . . . , r. Thus we have

K(R, fn1 , . . . , fnr ) : 0→ ∧r(R⊕r)→ ∧r−1(R⊕r)→ . . .→ R⊕r → R→ 0

with the term ∧r(R⊕r) sitting in degree 0. Let en1 , . . . , enr be the standard basis of R⊕r.
Then the elements enj1

∧ . . .∧enjr−p
for 1 ≤ j1 < . . . < jr−p ≤ r form a basis for the term

in degree p of the Koszul complex. Further, observe that

d(enj1
∧ . . . ∧ enjr−p

) =
∑

(−1)a+1fnjae
n
j1
∧ . . . ∧ ênja ∧ . . . ∧ e

n
jr−p

by our construction of the Koszul complex in Section 28. The transition maps of our
system

K(R, fn1 , . . . , fnr )→ K(R, fn+1
1 , . . . , fn+1

r )
are given by the rule

enj1
∧ . . . ∧ enjr−p

7−→ fi0 . . . fip−1e
n+1
j1
∧ . . . ∧ en+1

jr−p

where the indices 1 ≤ i0 < . . . < ip−1 ≤ r are such that {1, . . . r} = {i0, . . . , ip−1} q
{j1, . . . , jr−p}. We omit the short computation that shows this is compatible with differ-
entials. Observe that the transition maps are always 1 in degree 0 and equal to f1 . . . fr in
degree r.

Denote Kp(R, fn1 , . . . , fnr ) the term of degree p in the Koszul complex. Observe that for
any f ∈ R we have

Rf = colim(R f−→ R
f−→ R→ . . .)

Hence we see that in degree p we obtain

colimKp(R, fn1 , . . . fnr ) =
⊕

1≤i0<...<ip−1≤r
Rfi0 ...fip−1

Here the element enj1
∧ . . .∧ enjr−p

of the Koszul complex above maps in the colimit to the
element (fi0 . . . fip−1)−n in the summand Rfi0 ...fip−1

where the indices are chosen such
that {1, . . . r} = {i0, . . . , ip−1} q {j1, . . . , jr−p}. Thus the differential on this complex
is given by

d(1 in Rfi0 ...fip−1
) =

∑
i6∈{i0,...,ip−1}

(−1)i−t in Rfi0 ...fitfifit+1 ...fip−1

Thus if we consider the map of complexes given in degree p by the map⊕
1≤i0<...<ip−1≤r

Rfi0 ...fip−1
−→

⊕
1≤i0<...<ip−1≤r

Rfi0 ...fip−1

determined by the rule

1 in Rfi0 ...fip−1
7−→ (−1)i0+...+ip−1+p in Rfi0 ...fip−1
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then we get an isomorphism of complexes from colimK(R, fn1 , . . . , fnr ) to the extended
alternating Čech complex defined in this section. We omit the verification that the signs
work out. �

30. Koszul regular sequences

Please take a look at Algebra, Sections 68, 69, and 72 before looking at this one.

Definition 30.1. Let R be a ring. Let r ≥ 0 and let f1, . . . , fr ∈ R be a sequence of
elements. Let M be an R-module. The sequence f1, . . . , fr is called

(1) M -Koszul-regular if Hi(K•(f1, . . . , fr)⊗RM) = 0 for all i 6= 0,
(2) M -H1-regular if H1(K•(f1, . . . , fr)⊗RM) = 0,
(3) Koszul-regular if Hi(K•(f1, . . . , fr)) = 0 for all i 6= 0, and
(4) H1-regular if H1(K•(f1, . . . , fr)) = 0.

We will see in Lemmas 30.2, 30.3, and 30.6 that for elements f1, . . . , fr of a ring R we
have the following implications

f1, . . . , fr is a regular sequence⇒ f1, . . . , fr is a Koszul-regular sequence
⇒ f1, . . . , fr is an H1-regular sequence
⇒ f1, . . . , fr is a quasi-regular sequence.

In general none of these implications can be reversed, but ifR is a Noetherian local ring and
f1, . . . , fr ∈ mR, then the four conditions are all equivalent (Lemma 30.7). If f = f1 ∈ R
is a length 1 sequence and f is not a unit of R then it is clear that the following are all
equivalent

(1) f is a regular sequence of length one,
(2) f is a Koszul-regular sequence of length one, and
(3) f is a H1-regular sequence of length one.

It is also clear that these imply that f is a quasi-regular sequence of length one. But there
do exist quasi-regular sequences of length 1 which are not regular sequences. Namely, let

R = k[x, y0, y1, . . .]/(xy0, xy1 − y0, xy2 − y1, . . .)

and let f be the image of x in R. Then f is a zerodivisor, but
⊕

n≥0(fn)/(fn+1) ∼= k[x]
is a polynomial ring.

Lemma 30.2. An M -regular sequence is M -Koszul-regular. A regular sequence is
Koszul-regular.

Proof. LetR be a ring and letM be anR-module. It is immediate that anM -regular
sequence of length 1 isM -Koszul-regular. Let f1, . . . , fr be anM -regular sequence. Then
f1 is a nonzerodivisor on M . Hence

0→ K•(f2, . . . , fr)⊗M
f1−→ K•(f2, . . . , fr)⊗M → K•(f2, . . . , fr)⊗M/f1M → 0

is a short exact sequence of complexes where f i is the image of fi in R/(f1). By Lemma
28.8 the complex K•(R, f1, . . . , fr) is isomorphic to the cone of multiplication by f1
on K•(f2, . . . , fr). Thus K•(R, f1, . . . , fr) ⊗M is isomorphic to the cone on the first
map. Hence K•(f2, . . . , fr) ⊗M/f1M is quasi-isomorphic to K•(f1, . . . , fr) ⊗M . As
f2, . . . , fr is anM/f1M -regular sequence inR/(f1) the result follows from the case r = 1
and induction. �
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Lemma 30.3. A M -Koszul-regular sequence is M -H1-regular. A Koszul-regular se-
quence is H1-regular.

Proof. This is immediate from the definition. �

Lemma 30.4. Let f1, . . . , fr−1 ∈ R be a sequence and f, g ∈ R. Let M be an R-
module.

(1) If f1, . . . , fr−1, f and f1, . . . , fr−1, g are M -H1-regular then f1, . . . , fr−1, fg
is M -H1-regular too.

(2) If f1, . . . , fr−1, f and f1, . . . , fr−1, g areM -Koszul-regular then f1, . . . , fr−1, fg
is M -Koszul-regular too.

Proof. By Lemma 28.11 we have exact sequences

Hi(K•(f1, . . . , fr−1, f)⊗M)→ Hi(K•(f1, . . . , fr−1, fg)⊗M)→ Hi(K•(f1, . . . , fr−1, g)⊗M)
for all i. �

Lemma 30.5. Let ϕ : R → S be a flat ring map. Let f1, . . . , fr ∈ R. Let M be an
R-module and set N = M ⊗R S.

(1) If f1, . . . , fr in R is an M -H1-regular sequence, then ϕ(f1), . . . , ϕ(fr) is an
N -H1-regular sequence in S.

(2) If f1, . . . , fr is an M -Koszul-regular sequence in R, then ϕ(f1), . . . , ϕ(fr) is an
N -Koszul-regular sequence in S.

Proof. This is true becauseK•(f1, . . . , fr)⊗RS = K•(ϕ(f1), . . . , ϕ(fr)) and there-
fore (K•(f1, . . . , fr)⊗RM)⊗R S = K•(ϕ(f1), . . . , ϕ(fr))⊗S N . �

Lemma 30.6. An M -H1-regular sequence is M -quasi-regular.

Proof. Let R be a ring and let M be an R-module. Let f1, . . . , fr be an M -H1-
regular sequence. Denote J = (f1, . . . , fr). The assumption means that we have an exact
sequence

∧2(Rr)⊗M → R⊕r ⊗M → JM → 0
where the first arrow is given by ei∧ej⊗m 7→ (fiej−fjei)⊗m. Tensoring the sequence
with R/J we see that

JM/J2M = (R/J)⊕r ⊗RM = (M/JM)⊕r

is a finite free module. To finish the proof we have to prove for every n ≥ 2 the following:
if

ξ =
∑

|I|=n,I=(i1,...,ir)
mIf

i1
1 . . . f irr ∈ Jn+1M

thenmI ∈ JM for all I . In the next paragraph, we provemI ∈ JM for I = (0, . . . , 0, n)
and in the last paragraph we deduce the general case from this special case.

Let I = (0, . . . , 0, n). Let ξ be as above. We can write ξ = m1f1 + . . . + mr−1fr−1 +
mIf

n
r . As we have assumed ξ ∈ Jn+1M , we can also write ξ =

∑
1≤i≤j≤r−1 mijfifj +∑

1≤i≤r−1 m
′
ifif

n
r +m′′fn+1

r . Then we see that

(m1 −m11f1 −m′
1f
n
r )f1+

(m2 −m12f1 −m22f2 −m′
2f
n
r )f2+

. . .+
(mr−1 −m1r−1f1 − . . .−mr−1r−1fr−1 −m′

r−1f
n
r )fr−1+

(mI −m′′fr)fnr = 0
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Since f1, . . . , fr−1, f
n
r is M -H1-regular by Lemma 30.4 we see that mI −m′′fr is in the

submodule f1M + . . .+ fr−1M + fnrM . Thus mI ∈ f1M + . . .+ frM .

Let S = R[x1, x2, . . . , xr, 1/xr]. The ring map R→ S is faithfully flat, hence f1, . . . , fr
is an M -H1-regular sequence in S , see Lemma 30.5. By Lemma 28.4 we see that

g1 = f1 −
x1

xr
fr, . . . , gr−1 = fr−1 −

xr−1

xr
fr, gr = 1

xr
fr

is an M -H1-regular sequence in S. Finally, note that our element ξ can be rewritten

ξ =
∑

|I|=n,I=(i1,...,ir)
mI(g1 + xigr)i1 . . . (gr−1 + xigr)ir−1(xrgr)ir

and the coefficient of gnr in this expression is∑
mIx

i1
1 . . . xirr

By the case discussed in the previous paragraph this sum is in J(M ⊗R S). Since the
monomials xi11 . . . xirr form part of an R-basis of S over R we conclude that mI ∈ J for
all I as desired. �

For nonzero finite modules over Noetherian local rings all of the types of regular sequences
introduced so far are equivalent.

Lemma 30.7. Let (R,m) be a Noetherian local ring. Let M be a nonzero finite R-
module. Let f1, . . . , fr ∈ m. The following are equivalent

(1) f1, . . . , fr is an M -regular sequence,
(2) f1, . . . , fr is a M -Koszul-regular sequence,
(3) f1, . . . , fr is an M -H1-regular sequence,
(4) f1, . . . , fr is an M -quasi-regular sequence.

In particular the sequence f1, . . . , fr is a regular sequence inR if and only if it is a Koszul
regular sequence, if and only if it is aH1-regular sequence, if and only if it is a quasi-regular
sequence.

Proof. The implication (1)⇒ (2) is Lemma 30.2. The implication (2)⇒ (3) is Lemma
30.3. The implication (3) ⇒ (4) is Lemma 30.6. The implication (4) ⇒ (1) is Algebra,
Lemma 69.6. �

Lemma 30.8. Let A be a ring. Let I ⊂ A be an ideal. Let g1, . . . , gm be a sequence in
A whose image in A/I is H1-regular. Then I ∩ (g1, . . . , gm) = I(g1, . . . , gm).

Proof. Consider the exact sequence of complexes

0→ I ⊗A K•(A, g1, . . . , gm)→ K•(A, g1, . . . , gm)→ K•(A/I, g1, . . . , gm)→ 0

Since the complex on the right has H1 = 0 by assumption we see that

Coker(I⊕m → I) −→ Coker(A⊕m → A)

is injective. This is equivalent to the assertion of the lemma. �

Lemma 30.9. Let A be a ring. Let I ⊂ J ⊂ A be ideals. Assume that J/I ⊂ A/I is
generated by an H1-regular sequence. Then I ∩ J2 = IJ .
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Proof. To prove this choose g1, . . . , gm ∈ J whose images inA/I form aH1-regular
sequence which generates J/I . In particular J = I + (g1, . . . , gm). Suppose that x ∈
I ∩ J2. Because x ∈ J2 can write

x =
∑

aijgigj +
∑

ajgj + a

with aij ∈ A, aj ∈ I and a ∈ I2. Then
∑
aijgigj ∈ I ∩ (g1, . . . , gm) hence by Lemma

30.8 we see that
∑
aijgigj ∈ I(g1, . . . , gm). Thus x ∈ IJ as desired. �

Lemma 30.10. LetA be a ring. Let I be an ideal generated by a quasi-regular sequence
f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm form an H1-
regular sequence in A/I . Then f1, . . . , fn, g1, . . . , gm is a quasi-regular sequence in A.

Proof. We claim that g1, . . . , gm forms an H1-regular sequence in A/Id for every
d. By induction assume that this holds in A/Id−1. We have a short exact sequence of
complexes

0→ K•(A, g•)⊗A Id−1/Id → K•(A/Id, g•)→ K•(A/Id−1, g•)→ 0
Since f1, . . . , fn is quasi-regular we see that the first complex is a direct sum of copies of
K•(A/I, g1, . . . , gm) hence acyclic in degree 1. By induction hypothesis the last com-
plex is acyclic in degree 1. Hence also the middle complex is. In particular, the sequence
g1, . . . , gm forms a quasi-regular sequence inA/Id for every d ≥ 1, see Lemma 30.6. Now
we are ready to prove that f1, . . . , fn, g1, . . . , gm is a quasi-regular sequence inA. Namely,
set J = (f1, . . . , fn, g1, . . . , gm) and suppose that (with multinomial notation)∑

|N |+|M |=d
aN,Mf

NgM ∈ Jd+1

for some aN,M ∈ A. We have to show that aN,M ∈ J for allN,M . Let e ∈ {0, 1, . . . , d}.
Then ∑

|N |=d−e, |M |=e
aN,Mf

NgM ∈ (g1, . . . , gm)e+1 + Id−e+1

Because g1, . . . , gm is a quasi-regular sequence in A/Id−e+1 we deduce∑
|N |=d−e

aN,Mf
N ∈ (g1, . . . , gm) + Id−e+1

for eachM with |M | = e. By Lemma 30.8 applied to Id−e/Id−e+1 in the ringA/Id−e+1

this implies
∑

|N |=d−e aN,Mf
N ∈ Id−e(g1, . . . , gm). Since f1, . . . , fn is quasi-regular in

A this implies that aN,M ∈ J for each N,M with |N | = d− e and |M | = e. This proves
the lemma. �

Lemma 30.11. LetA be a ring. Let I be an ideal generated by anH1-regular sequence
f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm form an H1-
regular sequence in A/I . Then f1, . . . , fn, g1, . . . , gm is an H1-regular sequence in A.

Proof. We have to show that H1(A, f1, . . . , fn, g1, . . . , gm) = 0. To do this con-
sider the commutative diagram

∧2(A⊕n+m) //

��

A⊕n+m //

��

A //

��

0

∧2(A/I⊕m) // A/I⊕m // A/I // 0

Consider an element (a1, . . . , an+m) ∈ A⊕n+m which maps to zero inA. Because g1, . . . , gm
form an H1-regular sequence in A/I we see that (an+1, . . . , an+m) is the image of some
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element α of ∧2(A/I⊕m). We can lift α to an element α ∈ ∧2(A⊕n+m) and substract
the image of it in A⊕n+m from our element (a1, . . . , an+m). Thus we may assume that
an+1, . . . , an+m ∈ I . Since I = (f1, . . . , fn) we can modify our element (a1, . . . , an+m)
by linear combinations of the elements

(0, . . . , gj , 0, . . . , 0, fi, 0, . . . , 0)

in the image of the top left horizontal arrow to reduce to the case that an+1, . . . , an+m
are zero. In this case (a1, . . . , an, 0, . . . , 0) defines an element ofH1(A, f1, . . . , fn) which
we assumed to be zero. �

Lemma 30.12. Let A be a ring. Let f1, . . . , fn, g1, . . . , gm ∈ A be an H1-regular
sequence. Then the images g1, . . . , gm in A/(f1, . . . , fn) form an H1-regular sequence.

Proof. Set I = (f1, . . . , fn). We have to show that any relation
∑
j=1,...,m ajgj in

A/I is a linear combination of trivial relations. Because I = (f1, . . . , fn) we can lift this
relation to a relation ∑

j=1,...,m
ajgj +

∑
i=1,...,n

bifi = 0

in A. By assumption this relation in A is a linear combination of trivial relations. Taking
the image in A/I we obtain what we want. �

Lemma 30.13. Let A be a ring. Let I be an ideal generated by a Koszul-regular se-
quence f1, . . . , fn in A. Let g1, . . . , gm ∈ A be elements whose images g1, . . . , gm form a
Koszul-regular sequence inA/I . Then f1, . . . , fn, g1, . . . , gm is a Koszul-regular sequence
in A.

Proof. Our assumptions say thatK•(A, f1, . . . , fn) is a finite free resolution ofA/I
and K•(A/I, g1, . . . , gm) is a finite free resolution of A/(fi, gj) over A/I . Then

K•(A, f1, . . . , fn, g1, . . . , gm) = Tot(K•(A, f1, . . . , fn)⊗A K•(A, g1, . . . , gm))
∼= A/I ⊗A K•(A, g1, . . . , gm)
= K•(A/I, g1, . . . , gm)
∼= A/(fi, gj)

The first equality by Lemma 28.12. The first quasi-isomorphism∼= by (the dual of) Homol-
ogy, Lemma 25.4 as the qth row of the double complexK•(A, f1, . . . , fn)⊗AK•(A, g1, . . . , gm)
is a resolution ofA/I⊗AKq(A, g1, . . . , gm). The second equality is clear. The last quasi-
isomorphism by assumption. Hence we win. �

To conclude in the following lemma it is necessary to assume that both f1, . . . , fn and
f1, . . . , fn, g1, . . . , gm are Koszul-regular. A counter example to dropping the assumption
that f1, . . . , fn is Koszul-regular is Examples, Lemma 14.1.

Lemma 30.14. LetA be a ring. Let f1, . . . , fn, g1, . . . , gm ∈ A. If both f1, . . . , fn and
f1, . . . , fn, g1, . . . , gm are Koszul-regular sequences inA, then g1, . . . , gm inA/(f1, . . . , fn)
form a Koszul-regular sequence.

Proof. Set I = (f1, . . . , fn). Our assumptions say that K•(A, f1, . . . , fn) is a fi-
nite free resolution ofA/I andK•(A, f1, . . . , fn, g1, . . . , gm) is a finite free resolution of



1288 15. MORE ON ALGEBRA

A/(fi, gj) over A. Then

A/(fi, gj) ∼= K•(A, f1, . . . , fn, g1, . . . , gm)
= Tot(K•(A, f1, . . . , fn)⊗A K•(A, g1, . . . , gm))
∼= A/I ⊗A K•(A, g1, . . . , gm)
= K•(A/I, g1, . . . , gm)

The first quasi-isomorphism ∼= by assumption. The first equality by Lemma 28.12. The
second quasi-isomorphism by (the dual of) Homology, Lemma 25.4 as the qth row of
the double complex K•(A, f1, . . . , fn) ⊗A K•(A, g1, . . . , gm) is a resolution of A/I ⊗A
Kq(A, g1, . . . , gm). The second equality is clear. Hence we win. �

Lemma 30.15. Let R be a ring. Let I be an ideal generated by f1, . . . , fr ∈ R.
(1) If I can be generated by a quasi-regular sequence of length r, then f1, . . . , fr is

a quasi-regular sequence.
(2) If I can be generated by an H1-regular sequence of length r, then f1, . . . , fr is

an H1-regular sequence.
(3) If I can be generated by a Koszul-regular sequence of length r, then f1, . . . , fr is

a Koszul-regular sequence.

Proof. If I can be generated by a quasi-regular sequence of length r, then I/I2 is
free of rank r over R/I . Since f1, . . . , fr generate by assumption we see that the images
f i form a basis of I/I2 over R/I . It follows that f1, . . . , fr is a quasi-regular sequence as
all this means, besides the freeness of I/I2, is that the maps Symn

R/I(I/I2) → In/In+1

are isomorphisms.

We continue to assume that I can be generated by a quasi-regular sequence, say g1, . . . , gr.
Write gj =

∑
aijfi. As f1, . . . , fr is quasi-regular according to the previous paragraph,

we see that det(aij) is invertible mod I . The matrix aij gives a mapR⊕r → R⊕r which in-
duces a map of Koszul complexes α : K•(R, f1, . . . , fr)→ K•(R, g1, . . . , gr), see Lemma
28.3. This map becomes an isomorphism on inverting det(aij). Since the cohomology
modules of bothK•(R, f1, . . . , fr) andK•(R, g1, . . . , gr) are annihilated by I , see Lemma
28.6, we see that α is a quasi-isomorphism.

Now assume that g1, . . . , gr is a H1-regular sequence generating I . Then g1, . . . , gr is
a quasi-regular sequence by Lemma 30.6. By the previous paragraph we conclude that
f1, . . . , fr is a H1-regular sequence. Similarly for Koszul-regular sequences. �

Lemma 30.16. Let R be a ring. Let a1, . . . , an ∈ R be elements such that R →
R⊕n, x 7→ (xa1, . . . , xan) is injective. Then the element

∑
aiti of the polynomial ring

R[t1, . . . , tn] is a nonzerodivisor.

Proof. If one of the ai is a unit this is just the statement that any element of the form
t1 + a2t2 + . . .+ antn is a nonzerodivisor in the polynomial ring over R.

Case I: R is Noetherian. Let qj , j = 1, . . . ,m be the associated primes of R. We have to
show that each of the maps∑

aiti : Symd(R⊕n) −→ Symd+1(R⊕n)

is injective. As Symd(R⊕n) is a free R-module its associated primes are qj , j = 1, . . . ,m.
For each j there exists an i = i(j) such that ai 6∈ qj because there exists an x ∈ R with
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qjx = 0 but aix 6= 0 for some i by assumption. Hence ai is a unit in Rqj and the map is
injective after localizing at qj . Thus the map is injective, see Algebra, Lemma 63.19.
Case II:R general. We can writeR as the union of Noetherian ringsRλ with a1, . . . , an ∈
Rλ. For each Rλ the result holds, hence the result holds for R. �

Lemma 30.17. LetR be a ring. Let f1, . . . , fn be a Koszul-regular sequence inR such
that (f1, . . . , fn) 6= R. Consider the faithfully flat, smooth ring map

R −→ S = R[{tij}i≤j , t−1
11 , t

−1
22 , . . . , t

−1
nn ]

For 1 ≤ i ≤ n set
gi =

∑
i≤j

tijfj ∈ S.

Then g1, . . . , gn is a regular sequence in S and (f1, . . . , fn)S = (g1, . . . , gn).

Proof. The equality of ideals is obvious as the matrix
t11 t12 t13 . . .
0 t22 t23 . . .
0 0 t33 . . .
. . . . . . . . . . . .


is invertible in S. Because f1, . . . , fn is a Koszul-regular sequence we see that the kernel
ofR→ R⊕n, x 7→ (xf1, . . . , xfn) is zero (as it computes the nthe Koszul homology ofR
w.r.t. f1, . . . , fn). Hence by Lemma 30.16 we see that g1 = f1t11 + . . .+fnt1n is a nonze-
rodivisor in S′ = R[t11, t12, . . . , t1n, t

−1
11 ]. We see that g1, f2, . . . , fn is a Koszul-sequence

in S′ by Lemma 30.5 and 30.15. We conclude that f2, . . . , fn is a Koszul-regular sequence
in S′/(g1) by Lemma 30.14. Hence by induction on n we see that the images g2, . . . , gn
of g2, . . . , gn in S′/(g1)[{tij}2≤i≤j , t

−1
22 , . . . , t

−1
nn ] form a regular sequence. This in turn

means that g1, . . . , gn forms a regular sequence in S. �

31. More on Koszul regular sequences

We continue the discussion from Section 30.

Lemma 31.1. Let R be a ring. Let f1, . . . , fr ∈ R be an Koszul-regular sequence.
Then the extended alternating Čech complex R →

⊕
i0
Rfi0 →

⊕
i0<i1

Rfi0fi1 →
. . .→ Rf1...fr from Section 29 only has cohomology in degree r.

Proof. By Lemma 30.4 and induction the sequence f1, . . . , fr−1, f
n
r is Koszul regu-

lar for all n ≥ 1. By Lemma 28.4 any permutation of a Koszul regular sequence is a Koszul
regular sequence. Hence we see that we may replace any (or all) fi by its nth power and
still have a Koszul regular sequence. Thus K•(R, fn1 , . . . , fnr ) has nonzero cohomology
only in homological degree 0. This implies what we want by Lemma 29.6. �

Lemma 31.2. Let a, a2, . . . , ar be an H1-regular sequence in a ring R (for example
a Koszul regular sequence or a regular sequence, see Lemmas 30.2 and 30.3). With I =
(a, a2, . . . , ar) the blowup algebraR′ = R[ Ia ] is isomorphic toR′′ = R[y2, . . . , yr]/(ayi−
ai).

Proof. By Algebra, Lemma 70.6 it suffices to show that R′′ is a-torsion free.
We claim a, ay2 − a2, . . . , ayn − ar is a H1-regular sequence in R[y2, . . . , yr]. Namely,
the map

(a, ay2 − a2, . . . , ayn − ar) : R[y2, . . . , yr]⊕r −→ R[y2, . . . , yr]
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used to define the Koszul complex on a, ay2 − a2, . . . , ayn − ar is isomorphic to the map

(a, a2, . . . , ar) : R[y2, . . . , yr]⊕r −→ R[y2, . . . , yr]

used to the define the Koszul complex on a, a2, . . . , ar via the isomorphism

R[y2, . . . , yr]⊕r −→ R[y2, . . . , yr]⊕r

sending (b1, . . . , br) to (b1− b2y2 . . .− bryr,−b2, . . . ,−br). By Lemma 28.3 these Koszul
complexes are isomorphic. By Lemma 30.5 applied to the flat ring mapR→ R[y2, . . . , yr]
we conclude our claim is true. By Lemma 28.8 we see that the Koszul complex K on
a, ay2 − a2, . . . , ayn − ar is the cone on a : L → L where L is the Koszul complex on
ay2 − a2, . . . , ayn − ar. Since H1(K) = 0 by the claim, we conclude that a : H0(L) →
H0(L) is injective, in other words that R′′ = R[y2, . . . , yr]/(ayi − ai) has no nonzero
a-torsion elements as desired. �

Lemma 31.3. Let A→ B be a ring map. Let f1, . . . , fr be a sequence in B such that
B/(f1, . . . , fr) is A-flat. Let A→ A′ be a ring map. Then the canonical map

H1(K•(B, f1, . . . , fr))⊗A A′ −→ H1(K•(B′, f ′
1, . . . , f

′
r))

is surjective. Here B′ = B ⊗A A′ and f ′
i ∈ B′ is the image of fi.

Proof. The sequence

∧2(B⊕r)→ B⊕r → B → B/J → 0

is a complex ofA-modules withB/J flat overA and cohomology groupH1 = H1(K•(B, f1, . . . , fr))
in the spot B⊕r. If we tensor this with A′ we obtain a complex

∧2((B′)⊕r)→ (B′)⊕r → B′ → B′/J ′ → 0

which is exact atB′ andB′/J ′. In order to compute its cohomology groupH ′
1 = H1(K•(B′, f ′

1, . . . , f
′
r))

at (B′)⊕r we split the first sequence above into the exact sequences 0 → J → B →
B/J → 0, 0 → K → B⊕r → J → 0, and ∧2(B⊕r) → K → H1 → 0. Tensoring over
A with A′ we obtain the exact sequences

0→ J ⊗A A′ → B ⊗A A′ → (B/J)⊗A A′ → 0
K ⊗A A′ → B⊕r ⊗A A′ → J ⊗A A′ → 0

∧2(B⊕r)⊗A A′ → K ⊗A A′ → H1 ⊗A A′ → 0

where the first one is exact as B/J is flat over A, see Algebra, Lemma 39.12. We conclude
that J ′ = J ⊗A A′ ⊂ B′ and that K ⊗A A′ → Ker((B′)⊕r → B′) is surjective. Thus

H1 ⊗A A′ = Coker
(
∧2(B⊕r)⊗A A′ → K ⊗A A′)

→ Coker
(
∧2((B′)⊕r)→ Ker((B′)⊕r → B′)

)
= H ′

1

is surjective too. �

Lemma 31.4. Let A → B and A → A′ be ring maps. Set B′ = B ⊗A A′. Let
f1, . . . , fr ∈ B. Assume B/(f1, . . . , fr)B is flat over A

(1) If f1, . . . , fr is a quasi-regular sequence, then the image in B′ is a quasi-regular
sequence.

(2) If f1, . . . , fr is a H1-regular sequence, then the image in B′ is a H1-regular se-
quence.
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Proof. Assume f1, . . . , fr is quasi-regular. Set J = (f1, . . . , fr). By assumption
Jn/Jn+1 is isomorphic to a direct sum of copies of B/J hence flat over A. By induction
and Algebra, Lemma 39.13 we conclude that B/Jn is flat over A. The ideal (J ′)n is equal
to Jn ⊗A A′, see Algebra, Lemma 39.12. Hence (J ′)n/(J ′)n+1 = Jn/Jn+1 ⊗A A′ which
clearly implies that f1, . . . , fr is a quasi-regular sequence in B′.

Assume f1, . . . , fr is H1-regular. By Lemma 31.3 the vanishing of the Koszul homology
group H1(K•(B, f1, . . . , fr)) implies the vanishing of H1(K•(B′, f ′

1, . . . , f
′
r)) and we

win. �

Lemma 31.5. Let A′ → B′ be a ring map. Let I ⊂ A′ be an ideal. Set A = A′/I and
B = B′/IB′. Let f ′

1, . . . , f
′
r ∈ B′. Assume

(1) A′ → B′ is flat and of finite presentation,
(2) I is locally nilpotent,
(3) the images f1, . . . , fr ∈ B form a quasi-regular sequence,
(4) B/(f1, . . . , fr) is flat over A.

Then B′/(f ′
1, . . . , f

′
r) is flat over A′.

Proof. Set C ′ = B′/(f ′
1, . . . , f

′
r). We have to show A′ → C ′ is flat. Let r′ ⊂ C ′ be

a prime ideal lying over p′ ⊂ A′. We let q′ ⊂ B′ be the inverse image of r′. By Algebra,
Lemma 39.18 it suffices to show that A′

p′ → C ′
q′ is flat. Algebra, Lemma 128.6 tells us it

suffices to show that f ′
1, . . . , f

′
r map to a regular sequence in

B′
q′/p′B′

q′ = Bq/pBq = (B ⊗A κ(p))q
with obvious notation. What we know is that f1, . . . , fr is a quasi-regular sequence in B
and thatB/(f1, . . . , fr) is flat overA. By Lemma 31.4 the images f1, . . . , fr of f ′

1, . . . , f
′
r

in B ⊗A κ(p) form a quasi-regular sequence. Since (B ⊗A κ(p))q is a Noetherian local
ring, we conclude by Lemma 30.7. �

Lemma 31.6. Let A′ → B′ be a ring map. Let I ⊂ A′ be an ideal. Set A = A′/I and
B = B′/IB′. Let f ′

1, . . . , f
′
r ∈ B′. Assume

(1) A′ → B′ is flat and of finite presentation (for example smooth),
(2) I is locally nilpotent,
(3) the images f1, . . . , fr ∈ B form a quasi-regular sequence,
(4) B/(f1, . . . , fr) is smooth over A.

Then B′/(f ′
1, . . . , f

′
r) is smooth over A′.

Proof. Set C ′ = B′/(f ′
1, . . . , f

′
r) and C = B/(f1, . . . , fr). Then A′ → C ′ is of

finite presentation. By Lemma 31.5 we see thatA′ → C ′ is flat. The fibre rings ofA′ → C ′

are equal to the fibre rings ofA→ C and hence smooth by assumption (4). It follows that
A′ → C ′ is smooth by Algebra, Lemma 137.17. �

32. Regular ideals

We will discuss the notion of a regular ideal sheaf in great generality in Divisors, Section
20. Here we define the corresponding notion in the affine case, i.e., in the case of an ideal
in a ring.

Definition 32.1. Let R be a ring and let I ⊂ R be an ideal.
(1) We say I is a regular ideal if for every p ∈ V (I) there exists a g ∈ R, g 6∈ p and

a regular sequence f1, . . . , fr ∈ Rg such that Ig is generated by f1, . . . , fr.
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(2) We say I is a Koszul-regular ideal if for every p ∈ V (I) there exists a g ∈ R,
g 6∈ p and a Koszul-regular sequence f1, . . . , fr ∈ Rg such that Ig is generated
by f1, . . . , fr.

(3) We say I is a H1-regular ideal if for every p ∈ V (I) there exists a g ∈ R,
g 6∈ p and an H1-regular sequence f1, . . . , fr ∈ Rg such that Ig is generated by
f1, . . . , fr.

(4) We say I is a quasi-regular ideal if for every p ∈ V (I) there exists a g ∈ R,
g 6∈ p and a quasi-regular sequence f1, . . . , fr ∈ Rg such that Ig is generated by
f1, . . . , fr.

It is clear that given I ⊂ R we have the implications
I is a regular ideal⇒ I is a Koszul-regular ideal

⇒ I is a H1-regular ideal
⇒ I is a quasi-regular ideal

see Lemmas 30.2, 30.3, and 30.6. Such an ideal is always finitely generated.

Lemma 32.2. A quasi-regular ideal is finitely generated.

Proof. Let I ⊂ R be a quasi-regular ideal. Since V (I) is quasi-compact, there exist
g1, . . . , gm ∈ R such that V (I) ⊂ D(g1) ∪ . . . ∪ D(gm) and such that Igj is generated
by a quasi-regular sequence gj1, . . . , gjrj ∈ Rgj . Write gji = g′

ji/g
eij
j for some g′

ij ∈ I .
Write 1 +x =

∑
gjhj for some x ∈ I which is possible as V (I) ⊂ D(g1)∪ . . .∪D(gm).

Note that Spec(R) = D(g1) ∪ . . . ∪D(gm)
⋃
D(x) Then I is generated by the elements

g′
ij and x as these generate on each of the pieces of the cover, see Algebra, Lemma 23.2. �

Lemma 32.3. Let I ⊂ R be a quasi-regular ideal of a ring. Then I/I2 is a finite
projective R/I-module.

Proof. This follows from Algebra, Lemma 78.2 and the definitions. �

We prove flat descent for Koszul-regular, H1-regular, quasi-regular ideals.

Lemma 32.4. Let A→ B be a faithfully flat ring map. Let I ⊂ A be an ideal. If IB
is a Koszul-regular (resp. H1-regular, resp. quasi-regular) ideal in B, then I is a Koszul-
regular (resp. H1-regular, resp. quasi-regular) ideal in A.

Proof. We fix the prime p ⊃ I throughout the proof. Assume IB is quasi-regular.
By Lemma 32.2 IB is a finite module, hence I is a finite A-module by Algebra, Lemma
83.2. As A→ B is flat we see that

I/I2 ⊗A/I B/IB = I/I2 ⊗A B = IB/(IB)2.

As IB is quasi-regular, the B/IB-module IB/(IB)2 is finite locally free. Hence I/I2 is
finite projective, see Algebra, Proposition 83.3. In particular, after replacing A by Af for
some f ∈ A, f 6∈ p we may assume that I/I2 is free of rank r. Pick f1, . . . , fr ∈ I which
give a basis of I/I2. By Nakayama’s lemma (see Algebra, Lemma 20.1) we see that, after
another replacement A Af as above, I is generated by f1, . . . , fr.
Proof of the “quasi-regular” case. Above we have seen that I/I2 is free on the r-generators
f1, . . . , fr. To finish the proof in this case we have to show that the maps Symd(I/I2)→
Id/Id+1 are isomorphisms for each d ≥ 2. This is clear as the faithfully flat base changes
Symd(IB/(IB)2) → (IB)d/(IB)d+1 are isomorphisms locally on B by assumption.
Details omitted.
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Proof of the “H1-regular” and “Koszul-regular” case. Consider the sequence of elements
f1, . . . , fr generating I we constructed above. By Lemma 30.15 we see that f1, . . . , fr map
to aH1-regular or Koszul-regular sequence inBg for any g ∈ B such that IB is generated
by anH1-regular or Koszul-regular sequence. HenceK•(A, f1, . . . , fr)⊗ABg has vanish-
ing H1 or Hi, i > 0. Since the homology of K•(B, f1, . . . , fr) = K•(A, f1, . . . , fr) ⊗A
B is annihilated by IB (see Lemma 28.6) and since V (IB) ⊂

⋃
g as above D(g) we con-

clude that K•(A, f1, . . . , fr) ⊗A B has vanishing homology in degree 1 or all positive
degrees. Using that A → B is faithfully flat we conclude that the same is true for
K•(A, f1, . . . , fr). �

Lemma 32.5. Let A be a ring. Let I ⊂ J ⊂ A be ideals. Assume that J/I ⊂ A/I is a
H1-regular ideal. Then I ∩ J2 = IJ .

Proof. Follows immediately from Lemma 30.9 by localizing. �

33. Local complete intersection maps

We can use the material above to define a local complete intersection map between rings
using presentations by (finite) polynomial algebras.

Lemma 33.1. Let A → B be a finite type ring map. If for some presentation α :
A[x1, . . . , xn] → B the kernel I is a Koszul-regular ideal then for any presentation β :
A[y1, . . . , ym]→ B the kernel J is a Koszul-regular ideal.

Proof. Choose fj ∈ A[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ A[y1, . . . , ym]
with β(gi) = α(xi). Then we get a commutative diagram

A[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// A[x1, . . . , xn]

��
A[y1, . . . , ym] // B

Note that the kernel K of A[xi, yj ]→ B is equal to K = (I, yj − fj) = (J, xi − fi). In
particular, as I is finitely generated by Lemma 32.2 we see that J = K/(xi−fi) is finitely
generated too.
Pick a prime q ⊂ B. Since I/I2 ⊕B⊕m = J/J2 ⊕B⊕n (Algebra, Lemma 134.15) we see
that

dim J/J2 ⊗B κ(q) + n = dim I/I2 ⊗B κ(q) +m.

Pick p1, . . . , pt ∈ I which map to a basis of I/I2⊗κ(q) = I⊗A[xi]κ(q). Pick q1, . . . , qs ∈
J which map to a basis of J/J2⊗κ(q) = J⊗A[yj ]κ(q). So s+n = t+m. By Nakayama’s
lemma there exist h ∈ A[xi] and h′ ∈ A[yj ] both mapping to a nonzero element of κ(q)
such that Ih = (p1, . . . , pt) in A[xi, 1/h] and Jh′ = (q1, . . . , qs) in A[yj , 1/h′]. As I is
Koszul-regular we may also assume that Ih is generated by a Koszul regular sequence. This
sequence must necessarily have length t = dim I/I2⊗B κ(q), hence we see that p1, . . . , pt
is a Koszul-regular sequence by Lemma 30.15. As also y1 − f1, . . . , ym − fm is a regular
sequence we conclude

y1 − f1, . . . , ym − fm, p1, . . . , pt

is a Koszul-regular sequence in A[xi, yj , 1/h] (see Lemma 30.13). This sequence generates
the ideal Kh. Hence the ideal Khh′ is generated by a Koszul-regular sequence of length
m+ t = n+ s. But it is also generated by the sequence

x1 − g1, . . . , xn − gn, q1, . . . , qs
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of the same length which is thus a Koszul-regular sequence by Lemma 30.15. Finally, by
Lemma 30.14 we conclude that the images of q1, . . . , qs in

A[xi, yj , 1/hh′]/(x1 − g1, . . . , xn − gn) ∼= A[yj , 1/h′′]
form a Koszul-regular sequence generating Jh′′ . Since h′′ is the image of hh′ it doesn’t
map to zero in κ(q) and we win. �

This lemma allows us to make the following definition.

Definition 33.2. A ring mapA→ B is called a local complete intersection if it is of
finite type and for some (equivalently any) presentationB = A[x1, . . . , xn]/I the ideal I
is Koszul-regular.

This notion is local.

Lemma 33.3. Let R → S be a ring map. Let g1, . . . , gm ∈ S generate the unit ideal.
If each R→ Sgj is a local complete intersection so is R→ S.

Proof. Let S = R[x1, . . . , xn]/I be a presentation. Pick hj ∈ R[x1, . . . , xn] map-
ping to gj inS. ThenR[x1, . . . , xn, xn+1]/(I, xn+1hj−1) is a presentation ofSgj . Hence
Ij = (I, xn+1hj − 1) is a Koszul-regular ideal in R[x1, . . . , xn, xn+1]. Pick a prime
I ⊂ q ⊂ R[x1, . . . , xn]. Then hj 6∈ q for some j and qj = (q, xn+1hj−1) is a prime ideal
of V (Ij) lying over q. Pick f1, . . . , fr ∈ I which map to a basis of I/I2 ⊗ κ(q). Then
xn+1hj − 1, f1, . . . , fr is a sequence of elements of Ij which map to a basis of Ij ⊗ κ(qj).
By Nakayama’s lemma there exists an h ∈ R[x1, . . . , xn, xn+1] such that (Ij)h is gener-
ated by xn+1hj − 1, f1, . . . , fr. We may also assume that (Ij)h is generated by a Koszul
regular sequence of some length e. Looking at the dimension of Ij ⊗ κ(qj) we see that
e = r + 1. Hence by Lemma 30.15 we see that xn+1hj − 1, f1, . . . , fr is a Koszul-regular
sequence generating (Ij)h for some h ∈ R[x1, . . . , xn, xn+1], h 6∈ qj . By Lemma 30.14 we
see that Ih′ is generated by a Koszul-regular sequence for some h′ ∈ R[x1, . . . , xn], h′ 6∈ q
as desired. �

Lemma 33.4. Let R be a ring. If R[x1, . . . , xn]/(f1, . . . , fc) is a relative global com-
plete intersection, then f1, . . . , fc is a Koszul regular sequence.

Proof. Recall that the homology groups Hi(K•(f•)) are annihilated by the ideal
(f1, . . . , fc). Hence it suffices to show thatHi(K•(f•))q is zero for all primes q ⊂ R[x1, . . . , xn]
containing (f1, . . . , fc). This follows from Algebra, Lemma 136.12 and the fact that a reg-
ular sequence is Koszul regular (Lemma 30.2). �

Lemma 33.5. Let R→ S be a ring map. The following are equivalent
(1) R→ S is syntomic (Algebra, Definition 136.1), and
(2) R→ S is flat and a local complete intersection.

Proof. Assume (1). Then R → S is flat by definition. By Algebra, Lemma 136.15
and Lemma 33.3 we see that it suffices to show a relative global complete intersection is a
local complete intersection homomorphism which is Lemma 33.4.
Assume (2). A local complete intersection is of finite presentation because a Koszul-regular
ideal is finitely generated. Let R → k be a map to a field. It suffices to show that S′ =
S ⊗R k is a local complete intersection over k, see Algebra, Definition 135.1. Choose a
prime q′ ⊂ S′. Write S = R[x1, . . . , xn]/I . Then S′ = k[x1, . . . , xn]/I ′ where I ′ ⊂
k[x1, . . . , xn] is the image of I . Let p′ ⊂ k[x1, . . . , xn], q ⊂ S , and p ⊂ R[x1, . . . , xn]
be the corresponding primes. By Definition 32.1 exists an g ∈ R[x1, . . . , xn], g 6∈ p and
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f1, . . . , fr ∈ R[x1, . . . , xn]g which form a Koszul-regular sequence generating Ig . Since
S and hence Sg is flat over R we see that the images f ′

1, . . . , f
′
r in k[x1, . . . , xn]g form

a H1-regular sequence generating I ′
g , see Lemma 31.4. Thus f ′

1, . . . , f
′
r map to a regular

sequence in k[x1, . . . , xn]p′ generating I ′
p′ by Lemma 30.7. Applying Algebra, Lemma

135.4 we conclude S′
gg′ for some g′ ∈ S , g′ 6∈ q′ is a global complete intersection over k

as desired. �

For a local complete intersection R → S we have Hn(LS/R) = 0 for n ≥ 2. Since we
haven’t (yet) defined the full cotangent complex we can’t state and prove this, but we can
deduce one of the consequences.

Lemma 33.6. Let A → B → C be ring maps. Assume B → C is a local complete
intersection homomorphism. Choose a presentation α : A[xs, s ∈ S] → B with kernel
I . Choose a presentation β : B[y1, . . . , ym] → C with kernel J . Let γ : A[xs, yt] → C
be the induced presentation of C with kernel K. Then we get a canonical commutative
diagram

0 // ΩA[xs]/A ⊗ C // ΩA[xs,yt]/A ⊗ C // ΩB[yt]/B ⊗ C // 0

0 // I/I2 ⊗ C //

OO

K/K2 //

OO

J/J2 //

OO

0

with exact rows. In particular, the six term exact sequence of Algebra, Lemma 134.4 can
be completed with a zero on the left, i.e., the sequence

0→ H1(NLB/A⊗BC)→ H1(LC/A)→ H1(LC/B)→ ΩB/A⊗BC → ΩC/A → ΩC/B → 0
is exact.

Proof. The only thing to prove is the injectivity of the map I/I2⊗C → K/K2. By
assumption the ideal J is Koszul-regular. Hence we have IA[xs, yj ]∩K2 = IK by Lemma
32.5. This means that the kernel ofK/K2 → J/J2 is isomorphic to IA[xs, yj ]/IK. Since
I/I2 ⊗A C = IA[xs, yj ]/IK by right exactness of tensor product, this provides us with
the desired injectivity of I/I2 ⊗A C → K/K2. �

Lemma 33.7. Let A → B → C be ring maps. If B → C is a filtered colimit of local
complete intersection homomorphisms then the conclusion of Lemma 33.6 remains valid.

Proof. Follows from Lemma 33.6 and Algebra, Lemma 134.9. �

Lemma 33.8. Let A → B be a local homomorphism of local rings. Let Ah →
Bh, resp. Ash → Bsh be the induced map on henselizations, resp. strict henselizations
(Algebra, Lemma 155.6, resp. Lemma 155.10). Then NLB/A⊗BBh → NLBh/Ah and
NLB/A⊗BBsh → NLBsh/Ash induce isomorphisms on cohomology groups.

Proof. Since Ah is a filtered colimit of étale algebras over A we see that NLAh/A
is an acyclic complex by Algebra, Lemma 134.9 and Algebra, Definition 143.1. The same
is true for Bh/B. Using the Jacobi-Zariski sequence (Algebra, Lemma 134.4) for A →
Ah → Bh we find that NLBh/A → NLBh/Ah induces isomorphisms on cohomology
groups. Moreover, an étale ring map is a local complete intersection as it is even a global
complete intersection, see Algebra, Lemma 143.2. By Lemma 33.7 we get a six term exact
Jacobi-Zariski sequence associated to A→ B → Bh which proves that NLB/A⊗BBh →
NLBh/A induces isomorphisms on cohomology groups. This finishes the proof in the case
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of the map on henselizations. The case of strict henselization is proved in exactly the same
manner. �

34. Cartier’s equality and geometric regularity

A reference for this section and the next is [?, Section 39]. In order to comfortably read this
section the reader should be familiar with the naive cotangent complex and its properties,
see Algebra, Section 134.

Lemma 34.1 (Cartier equality). LetK/k be a finitely generated field extension. Then
ΩK/k andH1(LK/k) are finite dimensional and trdegk(K) = dimK ΩK/k−dimK H1(LK/k).

Proof. We can find a global complete intersection A = k[x1, . . . , xn]/(f1, . . . , fc)
over k such thatK is isomorphic to the fraction field ofA, see Algebra, Lemma 158.11 and
its proof. In this case we see that NLK/k is homotopy equivalent to the complex⊕

j=1,...,c
K −→

⊕
i=1,...,n

Kdxi

by Algebra, Lemmas 134.2 and 134.13. The transcendence degree ofK over k is the dimen-
sion of A (by Algebra, Lemma 116.1) which is n− c and we win. �

Lemma 34.2. Let M/L/K be field extensions. Then the Jacobi-Zariski sequence

0→ H1(LL/K)⊗LM → H1(LM/K)→ H1(LM/L)→ ΩL/K⊗LM → ΩM/K → ΩM/L → 0

is exact.

Proof. Combine Lemma 33.7 with Algebra, Lemma 158.11. �

Lemma 34.3. Given a commutative diagram of fields

K // K ′

k

OO

// k′

OO

with k′/k and K ′/K finitely generated field extensions the kernel and cokernel of the
maps

α : ΩK/k ⊗K K ′ → ΩK′/k′ and β : H1(LK/k)⊗K K ′ → H1(LK′/k′)

are finite dimensional and

dim Ker(α)−dim Coker(α)−dim Ker(β)+dim Coker(β) = trdegk(k′)− trdegK(K ′)

Proof. The Jacobi-Zariski sequences for k ⊂ k′ ⊂ K ′ and k ⊂ K ⊂ K ′ are

0→ H1(Lk′/k)⊗K ′ → H1(LK′/k)→ H1(LK′/k′)→ Ωk′/k⊗K ′ → ΩK′/k → ΩK′/k′ → 0

and

0→ H1(LK/k)⊗K ′ → H1(LK′/k)→ H1(LK′/K)→ ΩK/k⊗K ′ → ΩK′/k → ΩK′/K → 0

By Lemma 34.1 the vector spaces Ωk′/k , ΩK′/K , H1(LK′/K), and H1(Lk′/k) are finite
dimensional and the alternating sum of their dimensions is trdegk(k′)− trdegK(K ′). The
lemma follows. �
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35. Geometric regularity

Let k be a field. Let (A,m,K) be a Noetherian local k-algebra. The Jacobi-Zariski sequence
(Algebra, Lemma 134.4) is a canonical exact sequence

H1(LK/k)→ m/m2 → ΩA/k ⊗A K → ΩK/k → 0

because H1(LK/A) = m/m2 by Algebra, Lemma 134.6. We will show that exactness on
the left of this sequence characterizes whether or not a regular local ringA is geometrically
regular over k. We will link this to the notion of formal smoothness in Section 40.

Proposition 35.1. Let k be a field of characteristic p > 0. Let (A,m,K) be a Noe-
therian local k-algebra. The following are equivalent

(1) A is geometrically regular over k,
(2) for all k ⊂ k′ ⊂ k1/p finite over k the ring A⊗k k′ is regular,
(3) A is regular and the canonical map H1(LK/k)→ m/m2 is injective, and
(4) A is regular and the map Ωk/Fp ⊗k K → ΩA/Fp ⊗A K is injective.

Proof. Proof of (3)⇒ (1). Assume (3). Let k′/k be a finite purely inseparable exten-
sion. Set A′ = A⊗k k′. This is a local ring with maximal ideal m′. Set K ′ = A′/m′. We
get a commutative diagram

0 // H1(LK/k)⊗K ′ //

β

��

m/m2 ⊗K ′ //

��

ΩA/k ⊗A K ′ //

∼=
��

ΩK/k ⊗K ′ //

α

��

0

H1(LK′/k′) // m′/(m′)2 // ΩA′/k′ ⊗A′ K ′ // ΩK′/k′ // 0

with exact rows. The third vertical arrow is an isomorphism by base change for modules
of differentials (Algebra, Lemma 131.12). Thus α is surjective. By Lemma 34.3 we have

dim Ker(α)− dim Ker(β) + dim Coker(β) = 0
(and these dimensions are all finite). A diagram chase shows that dimm′/(m′)2 ≤ dimm/m2.
However, since A→ A′ is finite flat we see that dim(A) = dim(A′), see Algebra, Lemma
112.6. Hence A′ is regular by definition.

Equivalence of (3) and (4). Consider the Jacobi-Zariski sequences for rows of the commu-
tative diagram

Fp // A // K

Fp //

OO

k //

OO

K

OO

to get a commutative diagram

0 // m/m2 // ΩA/Fp ⊗A K // ΩK/Fp
// 0

0 // H1(LK/k) //

OO

Ωk/Fp ⊗k K //

OO

ΩK/Fp
//

OO

ΩK/k //

OO

0

with exact rows. We have used that H1(LK/A) = m/m2 and that H1(LK/Fp) = 0 as
K/Fp is separable, see Algebra, Proposition 158.9. Thus it is clear that the kernels of
H1(LK/k)→ m/m2 and Ωk/Fp ⊗k K → ΩA/Fp ⊗A K have the same dimension.
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Proof of (2) ⇒ (4) following Faltings, see [?]. Let a1, . . . , an ∈ k be elements such
that da1, . . . , dan are linearly independent in Ωk/Fp . Consider the field extension k′ =
k(a1/p

1 , . . . , a
1/p
n ). By Algebra, Lemma 158.3 we see that k′ = k[x1, . . . , xn]/(xp1−a1, . . . , x

p
n−

an). In particular we see that the naive cotangent complex of k′/k is homotopic to the
complex

⊕
j=1,...,n k

′ →
⊕

i=1,...,n k
′ with the zero differential as d(xpj − aj) = 0 in

Ωk[x1,...,xn]/k. Set A′ = A⊗k k′ and K ′ = A′/m′ as above. By Algebra, Lemma 134.8 we
see that NLA′/A is homotopy equivalent to the complex

⊕
j=1,...,nA

′ →
⊕

i=1,...,nA
′

with the zero differential, i.e.,H1(LA′/A) and ΩA′/A are free of rank n. The Jacobi-Zariski
sequence for Fp → A→ A′ is

H1(LA′/A)→ ΩA/Fp ⊗A A
′ → ΩA′/Fp → ΩA′/A → 0

Using the presentation A[x1, . . . , xn]→ A′ with kernel (xpj − aj) we see, unwinding the
maps in Algebra, Lemma 134.4, that the jth basis vector ofH1(LA′/A) maps to daj ⊗ 1 in
ΩA/Fp ⊗A′. As ΩA′/A is free (hence flat) we get on tensoring with K ′ an exact sequence

K ′⊕n → ΩA/Fp ⊗A K
′ β−→ ΩA′/Fp ⊗A′ K ′ → K ′⊕n → 0

We conclude that the elements daj ⊗ 1 generate Ker(β) and we have to show that are
linearly independent, i.e., we have to show dim(Ker(β)) = n. Consider the following big
diagram

0 // m′/(m′)2 // ΩA′/Fp ⊗K ′ // ΩK′/Fp
// 0

0 // m/m2 ⊗K ′ //

α

OO

ΩA/Fp ⊗K ′ //

β

OO

ΩK/Fp ⊗K ′ //

γ

OO

0

By Lemma 34.1 and the Jacobi-Zariski sequence for Fp → K → K ′ we see that the kernel
and cokernel of γ have the same finite dimension. By assumption A′ is regular (and of
the same dimension as A, see above) hence the kernel and cokernel of α have the same
dimension. It follows that the kernel and cokernel of β have the same dimension which
is what we wanted to show.
The implication (1)⇒ (2) is trivial. This finishes the proof of the proposition. �

Lemma 35.2. Let k be a field of characteristic p > 0. Let (A,m,K) be a Noetherian
local k-algebra. AssumeA is geometrically regular over k. LetK/F/k be a finitely gener-
ated subextension. Let ϕ : k[y1, . . . , ym]→ A be a k-algebra map such that yi maps to an
element of F in K and such that dy1, . . . , dym map to a basis of ΩF/k. Set p = ϕ−1(m).
Then

k[y1, . . . , ym]p → A

is flat and A/pA is regular.
Proof. Set A0 = k[y1, . . . , ym]p with maximal ideal m0 and residue field K0. Note

that ΩA0/k is free of rankm and ΩA0/k⊗K0 → ΩK0/k is an isomorphism. It is clear that
A0 is geometrically regular over k. Hence H1(LK0/k) → m0/m

2
0 is an isomorphism, see

Proposition 35.1. Now consider

H1(LK0/k)⊗K

��

// m0/m
2
0 ⊗K

��
H1(LK/k) // m/m2
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Since the left vertical arrow is injective by Lemma 34.2 and the lower horizontal by Propo-
sition 35.1 we conclude that the right vertical one is too. Hence a regular system of pa-
rameters in A0 maps to part of a regular system of parameters in A. We win by Algebra,
Lemmas 128.2 and 106.3. �

36. Topological rings and modules

Let’s quickly discuss some properties of topological abelian groups. An abelian groupM is
a topological abelian group ifM is endowed with a topology such that additionM×M →
M , (x, y) 7→ x+ y and inverse M → M , x 7→ −x are continuous. A homomorphism of
topological abelian groups is just a homomorphism of abelian groups which is continuous.
The category of commutative topological groups is additive and has kernels and cokernels,
but is not abelian (as the axiom Im = Coim doesn’t hold). If N ⊂M is a subgroup, then
we think of N and M/N as topological groups also, namely using the induced topology
onN and the quotient topology onM/N (i.e., such thatM →M/N is submersive). Note
that if N ⊂M is an open subgroup, then the topology on M/N is discrete.

We say the topology onM is linear if there exists a fundamental system of neighbourhoods
of 0 consisting of subgroups. If so then these subgroups are also open. An example is the
following. Let I be a directed set and let Gi be an inverse system of (discrete) abelian
groups over I . Then

G = limi∈I Gi

with the inverse limit topology is linearly topologized with a fundamental system of
neighbourhoods of 0 given by Ker(G → Gi). Conversely, let M be a linearly topolo-
gized abelian group. Choose any fundamental system of open subgroups Ui ⊂ M , i ∈ I
(i.e., theUi form a fundamental system of open neighbourhoods and eachUi is a subgroup
of M ). Setting i ≥ i′ ⇔ Ui ⊂ Ui′ we see that I is a directed set. We obtain a homomor-
phism of linearly topologized abelian groups

c : M −→ limi∈IM/Ui.

It is clear that M is separated (as a topological space) if and only if c is injective. We say
that M is complete if c is an isomorphism2. We leave it to the reader to check that this
condition is independent of the choice of fundamental system of open subgroups {Ui}i∈I
chosen above. In fact the topological abelian group M∧ = limi∈IM/Ui is independent
of this choice and is sometimes called the completion of M . Any G = limGi as above is
complete, in particular, the completion M∧ is always complete.

Definition 36.1 (Topological rings). Let R be a ring and let M be an R-module.
(1) We say R is a topological ring if R is endowed with a topology such that both

addition and multiplication are continuous as maps R × R → R where R ×
R has the product topology. In this case we say M is a topological module if
M is endowed with a topology such that addition M × M → M and scalar
multiplication R×M →M are continuous.

(2) A homomorphism of topological modules is just a continuousR-module map. A
homomorphism of topological rings is a ring homomorphism which is continu-
ous for the given topologies.

2We include being separated as part of being complete as we’d like to have a unique limits in complete
groups. There is a definition of completeness for any topological group, agreeing, modulo the separation issue,
with this one in our special case.
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(3) We say M is linearly topologized if 0 has a fundamental system of neighbour-
hoods consisting of submodules. We say R is linearly topologized if 0 has a
fundamental system of neighbourhoods consisting of ideals.

(4) If R is linearly topologized, we say that I ⊂ R is an ideal of definition if I is
open and if every neighbourhood of 0 contains In for some n.

(5) If R is linearly topologized, we say that R is pre-admissible if R has an ideal of
definition.

(6) IfR is linearly topologized, we say thatR is admissible if it is pre-admissible and
complete3.

(7) If R is linearly topologized, we say that R is pre-adic if there exists an ideal of
definition I such that {In}n≥0 forms a fundamental system of neighbourhoods
of 0.

(8) If R is linearly topologized, we say that R is adic if R is pre-adic and complete.
Note that a (pre)adic topological ring is the same thing as a (pre)admissible topological
ring which has an ideal of definition I such that In is open for all n ≥ 1.

LetR be a ring and letM be anR-module. Let I ⊂ R be an ideal. Then we can consider the
linear topology on R which has {In}n≥0 as a fundamental system of neighbourhoods of
0. This topology is called the I-adic topology;R is a pre-adic topological ring in the I-adic
topology4. Moreover, the linear topology on M which has {InM}n≥0 as a fundamental
system of open neighbourhoods of 0 turns M into a topological R-module. This is called
the I-adic topology on M . We see that M is I-adically complete (as defined in Algebra,
Definition 96.2) if and only if M is complete in the I-adic topology5. In particular, we
see that R is I-adically complete if and only if R is an adic topological ring in the I-adic
topology.

As a special case, note that the discrete topology is the 0-adic topology and that any ring
in the discrete topology is adic.

Lemma 36.2. Letϕ : R→ S be a ring map. Let I ⊂ R and J ⊂ S be ideals and endow
R with the I-adic topology and S with the J -adic topology. Then ϕ is a homomorphism
of topological rings if and only if ϕ(In) ⊂ J for some n ≥ 1.

Proof. Omitted. �

Lemma 36.3 (Baire category theorem). Let M be a topological abelian group. As-
sume M is linearly topologized, complete, and has a countable fundamental system of
neighbourhoods of 0. If Un ⊂M , n ≥ 1 are open dense subsets, then

⋂
n≥1 Un is dense.

Proof. Let Un be as in the statement of the lemma. After replacing Un by U1 ∩ . . .∩
Un, we may assume that U1 ⊃ U2 ⊃ . . .. Let Mn, n ∈ N be a fundamental system of
neighbourhoods of 0. We may assume that Mn+1 ⊂ Mn. Pick x ∈ M . We will show
that for every k ≥ 1 there exists a y ∈

⋂
n≥1 Un with x− y ∈Mk.

To construct y we argue as follows. First, we pick a y1 ∈ U1 with y1 ∈ x + Mk. This
is possible because U1 is dense and x + Mk is open. Then we pick a k1 > k such that
y1 + Mk1 ⊂ U1. This is possible because U1 is open. Next, we pick a y2 ∈ U2 with

3By our conventions this includes separated.
4Thus the I-adic topology is sometimes called the I-pre-adic topology.
5It may happen that the I-adic completion M∧ is not I-adically complete, even though M∧ is always

complete with respect to the limit topology. If I is finitely generated then the I-adic topology and the limit
topology on M∧ agree, see Algebra, Lemma 96.3 and its proof.
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y2 ∈ y1 +Mk1 . This is possible because U2 is dense and y2 +Mk1 is open. Then we pick
a k2 > k1 such that y2 +Mk2 ⊂ U2. This is possible because U2 is open.

Continuing in this fashion we get a converging sequence yi of elements of M with limit
y. By construction x− y ∈Mk. Since

y − yi = (yi+1 − yi) + (yi+2 − yi+1) + . . .

is in Mki we see that y ∈ yi +Mki ⊂ Ui for all i as desired. �

Lemma 36.4. With same assumptions as Lemma 36.3 if M =
⋃
n≥1 Nn for some

closed subgroups Nn, then Nn is open for some n.

Proof. If not, then Un = M \Nn is dense for all n and we get a contradiction with
Lemma 36.3. �

Lemma 36.5 (Open mapping lemma). Let u : N → M be a continuous map of
linearly topologized abelian groups. Assume that N is complete, M separated, and N
has a countable fundamental system of neighbourhoods of 0. Then exactly one of the
following holds

(1) u is open, or
(2) for some open subgroup N ′ ⊂ N the image u(N ′) is nowhere dense in M .

Proof. Let Nn, n ∈ N be a fundamental system of neighbourhoods of 0. We may
assume that Nn+1 ⊂ Nn. If (2) does not hold, then the closure Mn of u(Nn) is an open
subgroup for n = 1, 2, 3, . . .. Since u is continuous, we see that Mn, n ∈ N must be a
fundamental system of open neighbourhoods of 0 in M . Also, since Mn is the closure of
u(Nn) we see that

u(Nn) +Mn+1 = Mn

for all n ≥ 1. Pick x1 ∈M1. Then we can inductively choose yi ∈ Ni and xi+1 ∈Mi+1
such that

u(yi) + xi+1 = xi

The element y = y1 + y2 + y3 + . . . of N exists because N is complete. Whereupon we
see that x = u(y) because M is separated. Thus M1 = u(N1). In exactly the same way
the reader shows that Mi = u(Ni) for all i ≥ 2 and we see that u is open. �

37. Formally smooth maps of topological rings

There is a version of formal smoothness which applies to homomorphisms of topological
rings.

Definition 37.1. LetR→ S be a homomorphism of topological rings withR and S
linearly topologized. We say S is formally smooth over R if for every commutative solid
diagram

S //

!!

A/J

R //

OO

A

OO

of homomorphisms of topological rings where A is a discrete ring and J ⊂ A is an ideal
of square zero, a dotted arrow exists which makes the diagram commute.
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We will mostly use this notion when given ideals m ⊂ R and n ⊂ S and we endowRwith
the m-adic topology and S with the n-adic topology. Continuity of ϕ : R → S holds if
and only if ϕ(mm) ⊂ n for some m ≥ 1, see Lemma 36.2. It turns out that in this case
only the topology on S is relevant.

Lemma 37.2. Let ϕ : R→ S be a ring map.
(1) IfR→ S is formally smooth in the sense of Algebra, Definition 138.1, thenR→

S is formally smooth for any linear topology on R and any pre-adic topology
on S such that R→ S is continuous.

(2) Let n ⊂ S and m ⊂ R ideals such that ϕ is continuous for the m-adic topology
on R and the n-adic topology on S. Then the following are equivalent
(a) ϕ is formally smooth for the m-adic topology onR and the n-adic topology

on S , and
(b) ϕ is formally smooth for the discrete topology onR and the n-adic topology

on S.

Proof. Assume R→ S is formally smooth in the sense of Algebra, Definition 138.1.
If S has a pre-adic topology, then there exists an ideal n ⊂ S such that S has the n-adic
topology. Suppose given a solid commutative diagram as in Definition 37.1. Continuity
of S → A/J means that nk maps to zero in A/J for some k ≥ 1, see Lemma 36.2. We
obtain a ring map ψ : S → A from the assumed formal smoothness of S over R. Then
ψ(nk) ⊂ J hence ψ(n2k) = 0 as J2 = 0. Hence ψ is continuous by Lemma 36.2. This
proves (1).

The proof of (2)(b)⇒ (2)(a) is the same as the proof of (1). Assume (2)(a). Suppose given a
solid commutative diagram as in Definition 37.1 where we use the discrete topology onR.
Since ϕ is continuous we see that ϕ(mn) ⊂ n for some n ≥ 1. As S → A/J is continuous
we see that nk maps to zero in A/J for some k ≥ 1. Hence mnk maps into J under the
map R → A. Thus m2nk maps to zero in A and we see that R → A is continuous in the
m-adic topology. Thus (2)(a) gives a dotted arrow as desired. �

Definition 37.3. Let R→ S be a ring map. Let n ⊂ S be an ideal. If the equivalent
conditions (2)(a) and (2)(b) of Lemma 37.2 hold, then we say R → S is formally smooth
for the n-adic topology.

This property is inherited by the completions.

Lemma 37.4. Let (R,m) and (S, n) be rings endowed with finitely generated ideals.
Endow R and S with the m-adic and n-adic topologies. Let R → S be a homomorphism
of topological rings. The following are equivalent

(1) R→ S is formally smooth for the n-adic topology,
(2) R→ S∧ is formally smooth for the n∧-adic topology,
(3) R∧ → S∧ is formally smooth for the n∧-adic topology.

Here R∧ and S∧ are the m-adic and n-adic completions of R and S.

Proof. The assumption that m is finitely generated implies thatR∧ is mR∧-adically
complete, that mR∧ = m∧ and that R∧/mnR∧ = R/mn, see Algebra, Lemma 96.3 and
its proof. Similarly for (S, n). Thus it is clear that diagrams as in Definition 37.1 for the
cases (1), (2), and (3) are in 1-to-1 correspondence. �

The advantage of working with adic rings is that one gets a stronger lifting property.
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Lemma 37.5. Let R → S be a ring map. Let n be an ideal of S. Assume that R → S
is formally smooth in the n-adic topology. Consider a solid commutative diagram

S
ψ
//

!!

A/J

R //

OO

A

OO

of homomorphisms of topological rings whereA is adic andA/J is the quotient (as topo-
logical ring) ofA by a closed ideal J ⊂ A such that J t is contained in an ideal of definition
ofA for some t ≥ 1. Then there exists a dotted arrow in the category of topological rings
which makes the diagram commute.

Proof. Let I ⊂ A be an ideal of definition so that I ⊃ J t for some n. Then A =
limA/In and A/J = limA/J + In because J is assumed closed. Consider the following
diagram of discrete R algebras An,m = A/Jn + Im:

A/J3 + I3 //

��

A/J2 + I3 //

��

A/J + I3

��
A/J3 + I2 //

��

A/J2 + I2 //

��

A/J + I2

��
A/J3 + I // A/J2 + I // A/J + I

Note that each of the commutative squares defines a surjection

An+1,m+1 −→ An+1,m ×An,m An,m+1

ofR-algebras whose kernel has square zero. We will inductively constructR-algebra maps
ϕn,m : S → An,m. Namely, we have the maps ϕ1,m = ψ mod J + Im. Note that each
of these maps is continuous as ψ is. We can inductively choose the maps ϕn,1 by starting
with our choice of ϕ1,1 and lifting up, using the formal smoothness of S overR, along the
right column of the diagram above. We construct the remaining maps ϕn,m by induction
on n+m. Namely, we choose ϕn+1,m+1 by lifting the pair (ϕn+1,m, ϕn,m+1) along the
displayed surjection above (again using the formal smoothness of S over R). In this way
all of the maps ϕn,m are compatible with the transition maps of the system. As J t ⊂ I
we see that for example ϕn = ϕnt,n mod In induces a map S → A/In. Taking the limit
ϕ = limϕn we obtain a map S → A = limA/In. The composition into A/J agrees
with ψ as we have seen thatA/J = limA/J + In. Finally we show that ϕ is continuous.
Namely, we know that ψ(nr) ⊂ J + I/J for some r ≥ 1 by our assumption that ψ is a
morphism of topological rings, see Lemma 36.2. Hence ϕ(nr) ⊂ J + I hence ϕ(nrt) ⊂ I
as desired. �

Lemma 37.6. Let R → S be a ring map. Let n ⊂ n′ ⊂ S be ideals. If R → S is
formally smooth for the n-adic topology, then R → S is formally smooth for the n′-adic
topology.

Proof. Omitted. �

Lemma 37.7. A composition of formally smooth continuous homomorphisms of lin-
early topologized rings is formally smooth.
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Proof. Omitted. (Hint: This is completely formal, and follows from considering a
suitable diagram.) �

Lemma 37.8. Let R, S be rings. Let n ⊂ S be an ideal. Let R → S be formally
smooth for the n-adic topology. LetR→ R′ be any ring map. ThenR′ → S′ = S⊗RR′

is formally smooth in the n′ = nS′-adic topology.

Proof. Let a solid diagram

S //

((

S′ //

!!

A/J

R

OO

// R′ //

OO

A

OO

as in Definition 37.1 be given. Then the composition S → S′ → A/J is continuous. By
assumption the longer dotted arrow exists. By the universal property of tensor product
we obtain the shorter dotted arrow. �

We have seen descent for formal smoothness along faithfully flat ring maps in Algebra,
Lemma 138.16. Something similar holds in the current setting of topological rings. How-
ever, here we just prove the following very simple and easy to prove version which is
already quite useful.

Lemma 37.9. Let R, S be rings. Let n ⊂ S be an ideal. Let R → R′ be a ring map.
Set S′ = S ⊗R R′ and n′ = nS. If

(1) the map R→ R′ embeds R as a direct summand of R′ as an R-module, and
(2) R′ → S′ is formally smooth for the n′-adic topology,

then R→ S is formally smooth in the n-adic topology.

Proof. Let a solid diagram

S // A/J

R

OO

// A

OO

as in Definition 37.1 be given. SetA′ = A⊗R R′ and J ′ = Im(J ⊗R R′ → A′). The base
change of the diagram above is the diagram

S′ //

ψ′

""

A′/J ′

R′

OO

// A′

OO

with continuous arrows. By condition (2) we obtain the dotted arrow ψ′ : S′ → A′.
Using condition (1) choose a direct summand decomposition R′ = R ⊕ C as R-modules.
(Warning: C isn’t an ideal in R′.) Then A′ = A⊕A⊗R C. Set

J ′′ = Im(J ⊗R C → A⊗R C) ⊂ J ′ ⊂ A′.

Then J ′ = J ⊕ J ′′ as A-modules. The image of the composition ψ : S → A′ of ψ′ with
S → S′ is contained in A + J ′ = A ⊕ J ′′. However, in the ring A + J ′ = A ⊕ J ′′ the
A-submodule J ′′ is an ideal! (Use that J2 = 0.) Hence the composition S → A + J ′ →
(A+ J ′)/J ′′ = A is the arrow we were looking for. �
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38. Formally smooth maps of local rings

In the case of a local homomorphism of local rings one can limit the diagrams for which
the lifting property has to be checked. Please compare with Algebra, Lemma 141.2.

Lemma 38.1. Let (R,m) → (S, n) be a local homomorphism of local rings. The
following are equivalent

(1) R→ S is formally smooth in the n-adic topology,
(2) for every solid commutative diagram

S //

!!

A/J

R //

OO

A

OO

of local homomorphisms of local rings where J ⊂ A is an ideal of square zero,
mnA = 0 for some n > 0, and S → A/J induces an isomorphism on residue
fields, a dotted arrow exists which makes the diagram commute.

If S is Noetherian these conditions are also equivalent to
(3) same as in (2) but only for diagrams where in addition A → A/J is a small

extension (Algebra, Definition 141.1).

Proof. The implication (1)⇒ (2) follows from the definitions. Consider a diagram

S //

!!

A/J

R //

OO

A

OO

as in Definition 37.1 for the m-adic topology on R and the n-adic topology on S. Pick
m > 0 with nm(A/J) = 0 (possible by continuity of maps in diagram). Consider the
subring A′ of A which is the inverse image of the image of S in A/J . Set J ′ = J viewed
as an ideal inA′. Then J ′ is an ideal of square zero inA′ andA′/J ′ is a quotient of S/nm.
Hence A′ is local and m2m

A′ = 0. Thus we get a diagram

S //

""

A′/J ′

R //

OO

A′

OO

as in (2). If we can construct the dotted arrow in this diagram, then we obtain the dotted
arrow in the original one by composing with A′ → A. In this way we see that (2) implies
(1).

Assume S Noetherian. The implication (1)⇒ (3) is immediate. Assume (3) and suppose a
diagram as in (2) is given. Then mnAJ = 0 for some n > 0. Considering the maps

A→ A/mn−1
A J → . . .→ A/mJ → A/J

we see that it suffices to produce the lifting if mAJ = 0. Assume mAJ = 0 and letA′ ⊂ A
be the ring constructed above. Then A′/J ′ is Artinian as a quotient of the Artinian local
ring S/nm. Thus it suffices to show that given property (3) we can find the dotted arrow
in diagrams as in (2) withA/J Artinian and mAJ = 0. Let κ be the common residue field
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ofA,A/J , and S. By (3), if J0 ⊂ J is an ideal with dimκ(J/J0) = 1, then we can produce
a dotted arrow S → A/J0. Taking the product we obtain

S −→
∏

J0 as above
A/J0

Clearly the image of this arrow is contained in the sub R-algebra A′ of elements which
map into the small diagonal A/J ⊂

∏
J0
A/J . Let J ′ ⊂ A′ be the elements mapping to

zero in A/J . Then J ′ is an ideal of square zero and as κ-vector space equal to

J ′ =
∏

J0 as above
J/J0

Thus the map J → J ′ is injective. By the theory of vector spaces we can choose a splitting
J ′ = J ⊕M . It follows that

A′ = A⊕M
as an R-algebra. Hence the map S → A′ can be composed with the projection A′ → A to
give the desired dotted arrow thereby finishing the proof of the lemma. �

The following lemma will be improved on in Section 40.

Lemma 38.2. Let k be a field and let (A,m,K) be a Noetherian local k-algebra. If
k → A is formally smooth for the m-adic topology, then A is a regular local ring.

Proof. Let k0 ⊂ k be the prime field. Then k0 is perfect, hence k/k0 is separable,
hence formally smooth by Algebra, Lemma 158.7. By Lemmas 37.2 and 37.7 we see that
k0 → A is formally smooth for the m-adic topology on A. Hence we may assume k = Q
or k = Fp.
By Algebra, Lemmas 97.3 and 110.9 it suffices to prove the completion A∧ is regular. By
Lemma 37.4 we may replace A by A∧. Thus we may assume that A is a Noetherian com-
plete local ring. By the Cohen structure theorem (Algebra, Theorem 160.8) there exist a
map K → A. As k is the prime field we see that K → A is a k-algebra map.
Letx1, . . . , xn ∈ m be elements whose images form a basis ofm/m2. SetT = K[[X1, . . . , Xn]].
Note that

A/m2 ∼= K[x1, . . . , xn]/(xixj)
and

T/m2
T
∼= K[X1, . . . , Xn]/(XiXj).

LetA/m2 → T/m2
T be the localK-algebra isomorphism given by mapping the class of xi

to the class ofXi. Denote f1 : A→ T/m2
T the composition of this isomorphism with the

quotient map A→ A/m2. The assumption that k → A is formally smooth in the m-adic
topology means we can lift f1 to a map f2 : A→ T/m3

T , then to a map f3 : A→ T/m4
T ,

and so on, for all n ≥ 1. Warning: the maps fn are continuous k-algebra maps and
may not be K-algebra maps. We get an induced map f : A → T = limT/mnT of local
k-algebras. By our choice of f1, the map f induces an isomorphism m/m2 → mT /m

2
T

hence each fn is surjective and we conclude f is surjective as A is complete. This implies
dim(A) ≥ dim(T ) = n. Hence A is regular by definition. (It also follows that f is an
isomorphism.) �

Lemma 38.3. Let k be a field. Let (A,m, κ) be a complete local k-algebra. If κ/k is
separable, then there exists a k-algebra map κ→ A such that κ→ A→ κ is idκ.

Proof. By Algebra, Proposition 158.9 the extension κ/k is formally smooth. By
Lemma 37.2 k → κ is formally smooth in the sense of Definition 37.1. Then we get
κ→ A from Lemma 37.5. �
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Lemma 38.4. Let k be a field. Let (A,m, κ) be a complete local k-algebra. If κ/k
is separable and A regular, then there exists an isomorphism of A ∼= κ[[t1, . . . , td]] as
k-algebras.

Proof. Choose κ→ A as in Lemma 38.3 and apply Algebra, Lemma 160.10. �

The following result will be improved on in Section 40

Lemma 38.5. Let k be a field. Let (A,m,K) be a regular local k-algebra such that
K/k is separable. Then k → A is formally smooth in the m-adic topology.

Proof. It suffices to prove that the completion of A is formally smooth over k, see
Lemma 37.4. Hence we may assume that A is a complete local regular k-algebra with
residue field K separable over k. By Lemma 38.4 we see that A = K[[x1, . . . , xn]].

The power series ring K[[x1, . . . , xn]] is formally smooth over k. Namely, K is formally
smooth over k and K[x1, . . . , xn] is formally smooth over K as a polynomial algebra.
Hence K[x1, . . . , xn] is formally smooth over k by Algebra, Lemma 138.3. It follows that
k → K[x1, . . . , xn] is formally smooth for the (x1, . . . , xn)-adic topology by Lemma 37.2.
Finally, it follows that k → K[[x1, . . . , xn]] is formally smooth for the (x1, . . . , xn)-adic
topology by Lemma 37.4. �

Lemma 38.6. LetA→ B be a finite type ring map withANoetherian. Let q ⊂ B be
a prime ideal lying over p ⊂ A. The following are equivalent

(1) A→ B is smooth at q, and
(2) Ap → Bq is formally smooth in the q-adic topology.

Proof. The implication (2)⇒ (1) follows from Algebra, Lemma 141.2. Conversely,
if A → B is smooth at q, then A → Bg is smooth for some g ∈ B, g 6∈ q. Then
A→ Bg is formally smooth by Algebra, Proposition 138.13. Hence Ap → Bq is formally
smooth as localization preserves formal smoothness (for example by the criterion of Alge-
bra, Proposition 138.8 and the fact that the cotangent complex behaves well with respect
to localization, see Algebra, Lemmas 134.11 and 134.13). Finally, Lemma 37.2 implies that
Ap → Bq is formally smooth in the q-adic topology. �

39. Some results on power series rings

Questions on formally smooth maps between Noetherian local rings can often be reduced
to questions on maps between power series rings. In this section we prove some helper
lemmas to facilitate this kind of argument.

Lemma 39.1. Let K be a field of characteristic 0 and A = K[[x1, . . . , xn]]. Let L
be a field of characteristic p > 0 and B = L[[x1, . . . , xn]]. Let Λ be a Cohen ring. Let
C = Λ[[x1, . . . , xn]].

(1) Q→ A is formally smooth in the m-adic topology.
(2) Fp → B is formally smooth in the m-adic topology.
(3) Z→ C is formally smooth in the m-adic topology.

Proof. By the universal property of power series rings it suffices to prove:
(1) Q→ K is formally smooth.
(2) Fp → L is formally smooth.
(3) Z→ Λ is formally smooth in the m-adic topology.
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The first two are Algebra, Proposition 158.9. The third follows from Algebra, Lemma
160.7 since for any test diagram as in Definition 37.1 some power of p will be zero inA/J
and hence some power of p will be zero in A. �

Lemma 39.2. Let K be a field and A = K[[x1, . . . , xn]]. Let Λ be a Cohen ring and
let B = Λ[[x1, . . . , xn]].

(1) If y1, . . . , yn ∈ A is a regular system of parameters then K[[y1, . . . , yn]]→ A is
an isomorphism.

(2) If z1, . . . , zr ∈ A form part of a regular system of parameters for A, then r ≤ n
and A/(z1, . . . , zr) ∼= K[[y1, . . . , yn−r]].

(3) If p, y1, . . . , yn ∈ B is a regular system of parameters then Λ[[y1, . . . , yn]]→ B
is an isomorphism.

(4) If p, z1, . . . , zr ∈ B form part of a regular system of parameters for B, then
r ≤ n and B/(z1, . . . , zr) ∼= Λ[[y1, . . . , yn−r]].

Proof. Proof of (1). Set A′ = K[[y1, . . . , yn]]. It is clear that the map A′ → A
induces an isomorphism A′/mnA′ → A/mnA for all n ≥ 1. Since A and A′ are both com-
plete we deduce that A′ → A is an isomorphism. Proof of (2). Extend z1, . . . , zr to
a regular system of parameters z1, . . . , zr, y1, . . . , yn−r of A. Consider the map A′ =
K[[z1, . . . , zr, y1, . . . , yn−r]] → A. This is an isomorphism by (1). Hence (2) follows as
it is clear that A′/(z1, . . . , zr) ∼= K[[y1, . . . , yn−r]]. The proofs of (3) and (4) are exactly
the same as the proofs of (1) and (2). �

Lemma 39.3. Let A → B be a local homomorphism of Noetherian complete local
rings. Then there exists a commutative diagram

S // B

R

OO

// A

OO

with the following properties:
(1) the horizontal arrows are surjective,
(2) if the characteristic of A/mA is zero, then S and R are power series rings over

fields,
(3) if the characteristic of A/mA is p > 0, then S and R are power series rings over

Cohen rings, and
(4) R → S maps a regular system of parameters of R to part of a regular system of

parameters of S.
In particular R → S is flat (see Algebra, Lemma 128.2) with regular fibre S/mRS (see
Algebra, Lemma 106.3).

Proof. Use the Cohen structure theorem (Algebra, Theorem 160.8) to choose a sur-
jection S → B as in the statement of the lemma where we choose S to be a power series
over a Cohen ring if the residue characteristic is p > 0 and a power series over a field else.
Let J ⊂ S be the kernel of S → B. Next, choose a surjection R = Λ[[x1, . . . , xn]] → A
where we choose Λ to be a Cohen ring if the residue characteristic ofA is p > 0 and Λ equal
to the residue field of A otherwise. We lift the composition Λ[[x1, . . . , xn]] → A → B
to a map ϕ : R → S. This is possible because Λ[[x1, . . . , xn]] is formally smooth over
Z in the m-adic topology (see Lemma 39.1) by an application of Lemma 37.5. Finally, we
replace ϕ by the map ϕ′ : R = Λ[[x1, . . . , xn]] → S′ = S[[y1, . . . , yn]] with ϕ′|Λ = ϕ|Λ
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and ϕ′(xi) = ϕ(xi) + yi. We also replace S → B by the map S′ → B which maps yi to
zero. After this replacement it is clear that a regular system of parameters of R maps to
part of a regular sequence in S′ and we win. �

There should be an elementary proof of the following lemma.

Lemma 39.4. Let S → R and S′ → R be surjective maps of complete Noetherian
local rings. Then S ×R S′ is a complete Noetherian local ring.

Proof. Let k be the residue field of R. If the characteristic of k is p > 0, then we
denote Λ a Cohen ring (Algebra, Definition 160.5) with residue field k (Algebra, Lemma
160.6). If the characteristic of k is 0 we set Λ = k. Choose a surjection Λ[[x1, . . . , xn]]→
R (as in the Cohen structure theorem, see Algebra, Theorem 160.8) and lift this to maps
Λ[[x1, . . . , xn]] → S and ϕ : Λ[[x1, . . . , xn]] → S and ϕ′ : Λ[[x1, . . . , xn]] → S′ using
Lemmas 39.1 and 37.5. Next, choose f1, . . . , fm ∈ S generating the kernel of S → R and
f ′

1, . . . , f
′
m′ ∈ S′ generating the kernel of S′ → R. Then the map

Λ[[x1, . . . , xn, y1, . . . , ym, z1, . . . , zm′ ]] −→ S ×R S,
which sends xi to (ϕ(xi), ϕ′(xi)) and yj to (fj , 0) and zj′ to (0, f ′

j) is surjective. Thus
S ×R S′ is a quotient of a complete local ring, whence complete. �

40. Geometric regularity and formal smoothness

In this section we combine the results of the previous sections to prove the following
characterization of geometrically regular local rings over fields. We then recycle some of
our arguments to prove a characterization of formally smooth maps in them-adic topology
between Noetherian local rings.

Theorem 40.1. Let k be a field. Let (A,m,K) be a Noetherian local k-algebra. If the
characteristic of k is zero then the following are equivalent

(1) A is a regular local ring, and
(2) k → A is formally smooth in the m-adic topology.

If the characteristic of k is p > 0 then the following are equivalent
(1) A is geometrically regular over k,
(2) k → A is formally smooth in the m-adic topology.
(3) for all k ⊂ k′ ⊂ k1/p finite over k the ring A⊗k k′ is regular,
(4) A is regular and the canonical map H1(LK/k)→ m/m2 is injective, and
(5) A is regular and the map Ωk/Fp ⊗k K → ΩA/Fp ⊗A K is injective.

Proof. If the characteristic of k is zero, then the equivalence of (1) and (2) follows
from Lemmas 38.2 and 38.5.
If the characteristic of k is p > 0, then it follows from Proposition 35.1 that (1), (3), (4),
and (5) are equivalent. Assume (2) holds. By Lemma 37.8 we see that k′ → A′ = A⊗k k′

is formally smooth for the m′ = mA′-adic topology. Hence if k ⊂ k′ is finite purely
inseparable, then A′ is a regular local ring by Lemma 38.2. Thus we see that (1) holds.
Finally, we will prove that (5) implies (2). Choose a solid diagram

A
ψ̄

//

!!

B/J

k

i

OO

ϕ // B

π

OO
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as in Definition 37.1. As J2 = 0 we see that J has a canonical B/J module structure
and via ψ̄ an A-module structure. As ψ̄ is continuous for the m-adic topology we see that
mnJ = 0 for some n. Hence we can filter J by B/J -submodules 0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂
Jn = J such that each quotient Jt+1/Jt is annihilated by m. Considering the sequence
of ring maps B → B/J1 → B/J2 → . . . → B/J we see that it suffices to prove the
existence of the dotted arrow when J is annihilated by m, i.e., when J is aK-vector space.
Assume given a diagram as above such that J is annihilated by m. By Lemma 38.5 we see
that Fp → A is formally smooth in the m-adic topology. Hence we can find a ring map
ψ : A→ B such that π◦ψ = ψ̄. Then ψ◦ i, ϕ : k → B are two maps whose compositions
with π are equal. Hence D = ψ ◦ i−ϕ : k → J is a derivation. By Algebra, Lemma 131.3
we can write D = ξ ◦ d for some k-linear map ξ : Ωk/Fp → J . Using the K-vector space
structure on J we extend ξ to a K-linear map ξ′ : Ωk/Fp ⊗k K → J . Using (5) we can
find a K-linear map ξ′′ : ΩA/Fp ⊗A K whose restriction to Ωk/Fp ⊗k K is ξ′. Write

D′ : A d−→ ΩA/Fp → ΩA/Fp ⊗A K
ξ′′

−→ J.

Finally, set ψ′ = ψ − D′ : A → B. The reader verifies that ψ′ is a ring map such that
π ◦ ψ′ = ψ̄ and such that ψ′ ◦ i = ϕ as desired. �

Example 40.2. Let k be a field of characteristic p > 0. Suppose that a ∈ k is an
element which is not a pth power. A standard example of a geometrically regular local
k-algebra whose residue field is purely inseparable over k is the ring

A = k[x, y](x,yp−a)/(yp − a− x)
Namely, A is a localization of a smooth algebra over k hence k → A is formally smooth,
hence k → A is formally smooth for the m-adic topology. A closely related example is
the following. Let k = Fp(s) and K = Fp(t)perf . We claim the ring map

k −→ A = K[[x]], s 7−→ t+ x

is formally smooth for the (x)-adic topology onA. Namely, Ωk/Fp is 1-dimensional with
basis ds. It maps to the element dx+ dt = dx in ΩA/Fp . We leave it to the reader to show
that ΩA/Fp is free on dx as an A-module. Hence we see that condition (5) of Theorem
40.1 holds and we conclude that k → A is formally smooth in the (x)-adic topology.

Lemma 40.3. Let A → B be a local homomorphism of Noetherian local rings. As-
sume A→ B is formally smooth in the mB-adic topology. Then A→ B is flat.

Proof. We may assume that A and B a Noetherian complete local rings by Lemma
37.4 and Algebra, Lemma 97.6 (this also uses Algebra, Lemma 39.9 and 97.3 to see that
flatness of the map on completions implies flatness of A → B). Choose a commutative
diagram

S // B

R

OO

// A

OO

as in Lemma 39.3 with R → S flat. Let I ⊂ R be the kernel of R → A. Because B is
formally smooth over A we see that the A-algebra map

S/IS −→ B

has a section, see Lemma 37.5. Hence B is a direct summand of the flat A-module S/IS
(by base change of flatness, see Algebra, Lemma 39.7), whence flat. �
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Lemma 40.4. Let A → B be a local homomorphism of Noetherian local rings. As-
sume A → B is formally smooth in the mB-adic topology. Let K be the residue field of
B. Then the Jacobi-Zariski sequence for A→ B → K gives an exact sequence

0→ H1(NLK/A)→ mB/m
2
B → ΩB/A ⊗B K → ΩK/A → 0

Proof. Observe thatmB/m2
B = H1(NLK/B) by Algebra, Lemma 134.6. By Algebra,

Lemma 134.4 it remains to show injectivity of H1(NLK/A) → mB/m
2
B . With k the

residue field of A, the Jacobi-Zariski sequence for A → k → K gives ΩK/A = ΩK/k and
an exact sequence

mA/m
2
A ⊗k K → H1(NLK/A)→ H1(NLK/k)→ 0

Set B = B ⊗A k. Since B is regular the ideal mB is generated by a regular sequence. Ap-
plying Lemmas 30.9 and 30.7 tomAB ⊂ mB we findmAB/(mAB∩m2

B) = mAB/mAmB
which is equal to mA/m

2
A ⊗k K as A→ B is flat by Lemma 40.3. Thus we obtain a short

exact sequence
0→ mA/m

2
A ⊗k K → mB/m

2
B → mB/m

2
B
→ 0

Functoriality of the Jacobi-Zariski sequences shows that we obtain a commutative diagram

mA/m
2
A ⊗k K

��

// H1(NLK/A)

��

// H1(NLK/k)

��

// 0

0 // mA/m2
A ⊗k K // mB/m2

B
// mB/m

2
B

// 0

The left vertical arrow is injective by Theorem 40.1 as k → B is formally smooth in the
mB-adic topology by Lemma 37.8. This finishes the proof by the snake lemma. �

Proposition 40.5. Let A→ B be a local homomorphism of Noetherian local rings.
Let k be the residue field of A and B = B ⊗A k the special fibre. The following are
equivalent

(1) A→ B is flat and B is geometrically regular over k,
(2) A→ B is flat and k → B is formally smooth in the mB-adic topology, and
(3) A→ B is formally smooth in the mB-adic topology.

Proof. The equivalence of (1) and (2) follows from Theorem 40.1.

Assume (3). By Lemma 40.3 we see thatA→ B is flat. By Lemma 37.8 we see that k → B
is formally smooth in the mB-adic topology. Thus (2) holds.

Assume (2). Lemma 37.4 tells us formal smoothness is preserved under completion. The
same is true for flatness by Algebra, Lemma 97.3. Hence we may replace A and B by their
respective completions and assume that A and B are Noetherian complete local rings. In
this case choose a diagram

S // B

R

OO

// A

OO

as in Lemma 39.3. We will use all of the properties of this diagram without further men-
tion. Fix a regular system of parameters t1, . . . , td of R with t1 = p in case the character-
istic of k is p > 0. Set S = S ⊗R k. Consider the short exact sequence

0→ J → S → B → 0
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As B and S are regular, the kernel of S → B is generated by elements x1, . . . , xr which
form part of a regular system of parameters of S , see Algebra, Lemma 106.4. Lift these
elements to x1, . . . , xr ∈ J . Then t1, . . . , td, x1, . . . , xr is part of a regular system of
parameters for S. Hence S/(x1, . . . , xr) is a power series ring over a field (if the char-
acteristic of k is zero) or a power series ring over a Cohen ring (if the characteristic of k
is p > 0), see Lemma 39.2. Moreover, it is still the case that R → S/(x1, . . . , xr) maps
t1, . . . , td to a part of a regular system of parameters of S/(x1, . . . , xr). In other words,
we may replace S by S/(x1, . . . , xr) and assume we have a diagram

S // B

R

OO

// A

OO

as in Lemma 39.3 with moreover S = B. In this case the map

S ⊗R A −→ B

is an isomorphism as it is surjective, an isomorphism on special fibres, and source and target
are flat overA (for example use Algebra, Lemma 99.1 or use that tensoring the short exact
sequence 0 → I → S ⊗R A → B → 0 over A with k we find I ⊗A k = 0 hence I = 0
by Nakayama). Thus by Lemma 37.8 it suffices to show that R → S is formally smooth
in the mS-adic topology. Of course, since S = B, we have that S is formally smooth over
k = R/mR.

Choose elements y1, . . . , ym ∈ S such that t1, . . . , td, y1, . . . , ym is a regular system of
parameters for S. If the characteristic of k is zero, choose a coefficient field K ⊂ S
and if the characteristic of k is p > 0 choose a Cohen ring Λ ⊂ S with residue field
K. At this point the map K[[t1, . . . , td, y1, . . . , ym]] → S (characteristic zero case) or
Λ[[t2, . . . , td, y1, . . . , ym]]→ S (characteristic p > 0 case) is an isomorphism, see Lemma
39.2. From now on we think of S as the above power series ring.

The rest of the proof is analogous to the argument in the proof of Theorem 40.1. Choose
a solid diagram

S
ψ̄

//

!!

N/J

R

i

OO

ϕ // N

π

OO

as in Definition 37.1. As J2 = 0 we see that J has a canonical N/J module structure
and via ψ̄ a S-module structure. As ψ̄ is continuous for the mS-adic topology we see that
mnSJ = 0 for some n. Hence we can filter J by N/J -submodules 0 ⊂ J1 ⊂ J2 ⊂ . . . ⊂
Jn = J such that each quotient Jt+1/Jt is annihilated by mS . Considering the sequence
of ring maps N → N/J1 → N/J2 → . . . → N/J we see that it suffices to prove the
existence of the dotted arrow when J is annihilated by mS , i.e., when J is a K-vector
space.

Assume given a diagram as above such that J is annihilated by mS . As Q → S (charac-
teristic zero case) or Z→ S (characteristic p > 0 case) is formally smooth in the mS-adic
topology (see Lemma 39.1), we can find a ring map ψ : S → N such that π ◦ ψ = ψ̄.
Since S is a power series ring in t1, . . . , td (characteristic zero) or t2, . . . , td (characteristic
p > 0) over a subring, it follows from the universal property of power series rings that we
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can change our choice of ψ so that ψ(ti) equals ϕ(ti) (automatic for t1 = p in the charac-
teristic p case). Then ψ ◦ i and ϕ : R → N are two maps whose compositions with π are
equal and which agree on t1, . . . , td. HenceD = ψ ◦ i−ϕ : R→ J is a derivation which
annihilates t1, . . . , td. By Algebra, Lemma 131.3 we can writeD = ξ ◦d for someR-linear
map ξ : ΩR/Z → J which annihilates dt1, . . . , dtd (by construction) and mRΩR/Z (as J
is annihilated by mR). Hence ξ factors as a composition

ΩR/Z → Ωk/Z
ξ′

−→ J

where ξ′ is k-linear. Using the K-vector space structure on J we extend ξ′ to a K-linear
map

ξ′′ : Ωk/Z ⊗k K −→ J.

Using that S/k is formally smooth we see that
Ωk/Z ⊗k K → ΩS/Z ⊗S K

is injective by Theorem 40.1 (this is true also in the characteristic zero case as it is even
true that Ωk/Z → ΩK/Z is injective in characteristic zero, see Algebra, Proposition 158.9).
Hence we can find aK-linear map ξ′′′ : ΩS/Z⊗SK → J whose restriction to Ωk/Z⊗kK
is ξ′′. Write

D′ : S d−→ ΩS/Z → ΩS/Z → ΩS/Z ⊗S K
ξ′′′

−−→ J.

Finally, set ψ′ = ψ − D′ : S → N . The reader verifies that ψ′ is a ring map such that
π ◦ ψ′ = ψ̄ and such that ψ′ ◦ i = ϕ as desired. �

As an application of the result above we prove that deformations of formally smooth al-
gebras are unobstructed.

Lemma 40.6. LetA be a Noetherian complete local ring with residue field k. LetB be
a Noetherian complete local k-algebra. Assume k → B is formally smooth in the mB-adic
topology. Then there exists a Noetherian complete local ring C and a local homomor-
phismA→ C which is formally smooth in the mC -adic topology such thatC⊗A k ∼= B.

Proof. Choose a diagram
S // B

R

OO

// A

OO

as in Lemma 39.3. Let t1, . . . , td be a regular system of parameters for R with t1 = p

in case the characteristic of k is p > 0. As B and S = S ⊗R k are regular we see that
Ker(S → B) is generated by elements x1, . . . , xr which form part of a regular system of
parameters of S , see Algebra, Lemma 106.4. Lift these elements to x1, . . . , xr ∈ S. Then
t1, . . . , td, x1, . . . , xr is part of a regular system of parameters forS. HenceS/(x1, . . . , xr)
is a power series ring over a field (if the characteristic of k is zero) or a power series ring
over a Cohen ring (if the characteristic of k is p > 0), see Lemma 39.2. Moreover, it is
still the case that R → S/(x1, . . . , xr) maps t1, . . . , td to a part of a regular system of
parameters of S/(x1, . . . , xr). In other words, we may replace S by S/(x1, . . . , xr) and
assume we have a diagram

S // B

R

OO

// A

OO
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as in Lemma 39.3 with moreover S = B. In this case R → S is formally smooth in the
mS-adic topology by Proposition 40.5. Hence the base change C = S ⊗R A is formally
smooth over A in the mC -adic topology by Lemma 37.8. �

Remark 40.7. The assertion of Lemma 40.6 is quite strong. Namely, suppose that
we have a diagram

B

A // A′

OO

of local homomorphisms of Noetherian complete local rings where A → A′ induces an
isomorphism of residue fields k = A/mA = A′/mA′ and with B ⊗A′ k formally smooth
over k. Then we can extend this to a commutative diagram

C // B

A //

OO

A′

OO

of local homomorphisms of Noetherian complete local rings where A → C is formally
smooth in the mC -adic topology and where C ⊗A k ∼= B ⊗A′ k. Namely, pick A → C
as in Lemma 40.6 lifting B ⊗A′ k over k. By formal smoothness we can find the arrow
C → B, see Lemma 37.5. Denote C ⊗∧

A A
′ the completion of C ⊗A A′ with respect to

the ideal C ⊗A mA′ . Note that C ⊗∧
A A

′ is a Noetherian complete local ring (see Algebra,
Lemma 97.5) which is flat over A′ (see Algebra, Lemma 99.11). We have moreover

(1) C ⊗∧
A A

′ → B is surjective,
(2) if A→ A′ is surjective, then C → B is surjective,
(3) if A→ A′ is finite, then C → B is finite, and
(4) if A′ → B is flat, then C ⊗∧

A A
′ ∼= B.

Namely, by Nakayama’s lemma for nilpotent ideals (see Algebra, Lemma 20.1) we see that
C ⊗A k ∼= B ⊗A′ k implies that C ⊗A A′/mnA′ → B/mnA′B is surjective for all n. This
proves (1). Parts (2) and (3) follow from part (1). Part (4) follows from Algebra, Lemma
99.1.

41. Regular ring maps

Let k be a field. Recall that a Noetherian k-algebra A is said to be geometrically regular
over k if and only if A⊗k k′ is regular for all finite purely inseparable extensions k′ of k,
see Algebra, Definition 166.2. Moreover, if this is the case thenA⊗k k′ is regular for every
finitely generated field extension k′/k, see Algebra, Lemma 166.1. We use this notion in
the following definition.

Definition 41.1. A ring mapR→ Λ is regular if it is flat and for every prime p ⊂ R
the fibre ring

Λ⊗R κ(p) = Λp/pΛp

is Noetherian and geometrically regular over κ(p).

If R→ Λ is a ring map with Λ Noetherian, then the fibre rings are always Noetherian.

Lemma 41.2 (Regular is a local property). LetR→ Λ be a ring map with Λ Noether-
ian. The following are equivalent
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(1) R→ Λ is regular,
(2) Rp → Λq is regular for all q ⊂ Λ lying over p ⊂ R, and
(3) Rm → Λm′ is regular for all maximal ideals m′ ⊂ Λ lying over m in R.

Proof. This is true because a Noetherian ring is regular if and only if all the local
rings are regular local rings, see Algebra, Definition 110.7 and a ring map is flat if and only
if all the induced maps of local rings are flat, see Algebra, Lemma 39.18. �

Lemma 41.3 (Regular maps and base change). Let R→ Λ be a regular ring map. For
any finite type ring map R→ R′ the base change R′ → Λ⊗R R′ is regular too.

Proof. Flatness is preserved under any base change, see Algebra, Lemma 39.7. Con-
sider a prime p′ ⊂ R′ lying over p ⊂ R. The residue field extension κ(p′)/κ(p) is finitely
generated as R′ is of finite type over R. Hence the fibre ring

(Λ⊗R R′)⊗R′ κ(p′) = Λ⊗R κ(p)⊗κ(p) κ(p′)
is Noetherian by Algebra, Lemma 31.8 and the assumption on the fibre rings of R → Λ.
Geometric regularity of the fibres is preserved by Algebra, Lemma 166.1. �

Lemma 41.4 (Composition of regular maps). LetA→ B andB → C be regular ring
maps. If the fibre rings of A→ C are Noetherian, then A→ C is regular.

Proof. Let p ⊂ A be a prime. Let κ(p) ⊂ k be a finite purely inseparable extension.
We have to show that C ⊗A k is regular. By Lemma 41.3 we may assume that A = k
and we reduce to proving that C is regular. The assumption is that B is regular and that
B → C is flat with regular fibres. Then C is regular by Algebra, Lemma 112.8. Some
details omitted. �

Lemma 41.5. LetR be a ring. Let (Ai, ϕii′) be a directed system of smoothR-algebras.
Set Λ = colimAi. If the fibre rings Λ⊗R κ(p) are Noetherian for all p ⊂ R, then R→ Λ
is regular.

Proof. Note that Λ is flat overR by Algebra, Lemmas 39.3 and 137.10. Let κ(p) ⊂ k
be a finite purely inseparable extension. Note that

Λ⊗R κ(p)⊗κ(p) k = Λ⊗R k = colimAi ⊗R k
is a colimit of smooth k-algebras, see Algebra, Lemma 137.4. Since each local ring of a
smooth k-algebra is regular by Algebra, Lemma 140.3 we conclude that all local rings of
Λ⊗R k are regular by Algebra, Lemma 106.8. This proves the lemma. �

Let’s see when a field extension defines a regular ring map.

Lemma 41.6. LetK/k be a field extension. Then k → K is a regular ring map if and
only if K is a separable field extension of k.

Proof. If k → K is regular, then K is geometrically reduced over k, hence K is
separable over k by Algebra, Proposition 158.9. Conversely, if K/k is separable, then K
is a colimit of smooth k-algebras, see Algebra, Lemma 158.11 hence is regular by Lemma
41.5. �

Lemma 41.7. Let A→ B → C be ring maps. If A→ C is regular and B → C is flat
and surjective on spectra, then A→ B is regular.

Proof. By Algebra, Lemma 39.10 we see that A → B is flat. Let p ⊂ A be a prime.
The ring mapB⊗A κ(p)→ C⊗A κ(p) is flat and surjective on spectra. HenceB⊗A κ(p)
is geometrically regular by Algebra, Lemma 166.3. �
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42. Ascending properties along regular ring maps

This section is the analogue of Algebra, Section 163 but where the ring map R → S is
regular.

Lemma 42.1. Let ϕ : R→ S be a ring map. Assume
(1) ϕ is regular,
(2) S is Noetherian, and
(3) R is Noetherian and reduced.

Then S is reduced.

Proof. For Noetherian rings being reduced is the same as having properties (S1)
and (R0), see Algebra, Lemma 157.3. Hence we may apply Algebra, Lemmas 163.4 and
163.5. �

Lemma 42.2. Let ϕ : R→ S be a ring map. Assume
(1) ϕ is regular,
(2) S is Noetherian, and
(3) R is Noetherian and normal.

Then S is normal.

Proof. For Noetherian rings being normal is the same as having properties (S2) and
(R1), see Algebra, Lemma 157.4. Hence we may apply Algebra, Lemmas 163.4 and 163.5.

�

43. Permanence of properties under completion

Given a Noetherian local ring (A,m) we denote A∧ the completion of A with respect to
m. We will use without further mention thatA∧ is a Noetherian complete local ring with
maximal ideal m∧ = mA∧ and that A→ A∧ is faithfully flat. See Algebra, Lemmas 97.6,
97.4, and 97.3.

Lemma 43.1. Let A be a Noetherian local ring. Then dim(A) = dim(A∧).

Proof. By Algebra, Lemma 97.4 the map A → A∧ induces isomorphisms A/mn =
A∧/(m∧)n for n ≥ 1. By Algebra, Lemma 52.12 this implies that

lengthA(A/mn) = lengthA∧(A∧/(m∧)n)
for all n ≥ 1. Thus d(A) = d(A∧) and we conclude by Algebra, Proposition 60.9. An
alternative proof is to use Algebra, Lemma 112.7. �

Lemma 43.2. Let A be a Noetherian local ring. Then depth(A) = depth(A∧).

Proof. See Algebra, Lemma 163.2. �

Lemma 43.3. Let A be a Noetherian local ring. Then A is Cohen-Macaulay if and
only if A∧ is so.

Proof. A local ring A is Cohen-Macaulay if and only if dim(A) = depth(A). As
both of these invariants are preserved under completion (Lemmas 43.1 and 43.2) the claim
follows. �

Lemma 43.4. Let A be a Noetherian local ring. Then A is regular if and only if A∧

is so.
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Proof. If A∧ is regular, then A is regular by Algebra, Lemma 110.9. Assume A is
regular. Let m be the maximal ideal of A. Then dimκ(m) m/m

2 = dim(A) = dim(A∧)
(Lemma 43.1). On the other hand, mA∧ is the maximal ideal of A∧ and hence mA∧ is
generated by at most dim(A∧) elements. Thus A∧ is regular. (You can also use Algebra,
Lemma 112.8.) �

Lemma 43.5. Let A be a Noetherian local ring. Then A is a discrete valuation ring if
and only if A∧ is so.

Proof. This follows from Lemmas 43.1 and 43.4 and Algebra, Lemma 119.7. �

Lemma 43.6. Let A be a Noetherian local ring.
(1) If A∧ is reduced, then so is A.
(2) In general A reduced does not imply A∧ is reduced.
(3) If A is Nagata, then A is reduced if and only if A∧ is reduced.

Proof. AsA→ A∧ is faithfully flat we have (1) by Algebra, Lemma 164.2. For (2) see
Algebra, Example 119.5 (there are also examples in characteristic zero, see Algebra, Remark
119.6). For (3) see Algebra, Lemmas 162.13 and 162.10. �

Lemma 43.7. Let A be a Noetherian local ring. If A∧ is normal, then so is A.

Proof. As A→ A∧ is faithfully flat this follows from Algebra, Lemma 164.3. �

Lemma 43.8. Let A→ B be a local homomorphism of Noetherian local rings. Then
the induced map of completions A∧ → B∧ is flat if and only if A→ B is flat.

Proof. Consider the commutative diagram

A∧ // B∧

A //

OO

B

OO

The vertical arrows are faithfully flat. Assume that A∧ → B∧ is flat. Then A → B∧ is
flat. Hence B is flat over A by Algebra, Lemma 39.9.

Assume that A → B is flat. Then A → B∧ is flat. Hence B∧/mnAB
∧ is flat over A/mnA

for all n ≥ 1. Note that mnAA∧ is the nth power of the maximal ideal m∧
A of A∧ and

A/mnA = A∧/(m∧
A)n. Thus we see that B∧ is flat over A∧ by applying Algebra, Lemma

99.11 (with R = A∧, I = m∧
A, S = B∧, M = S). �

Lemma 43.9. Let A → B be a flat local homomorphism of Noetherian local rings
such that mAB = mB and κ(mA) = κ(mB). Then A → B induces an isomorphism
A∧ → B∧ of completions.

Proof. By Algebra, Lemma 97.7 we see that B∧ is the mA-adic completion of B and
thatA∧ → B∧ is finite. SinceA→ B is flat we have TorA1 (B, κ(mA)) = 0. Hence we see
that B∧ is flat over A∧ by Lemma 27.5. Thus B∧ is a free A∧-module by Algebra, Lemma
78.5. Since A∧ → B∧ induces an isomorphism κ(mA) = A∧/mAA

∧ → B∧/mAB
∧ =

B∧/mBB
∧ = κ(mB) by our assumptions (and Algebra, Lemma 96.3), we see that B∧ is

free of rank 1. Thus A∧ → B∧ is an isomorphism. �
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44. Permanence of properties under étale maps

In this section we consider an étale ring mapϕ : A→ B and we study which properties of
A are inherited by B and which properties of the local ring of B at q are inherited by the
local ring of A at p = ϕ−1(q). Basically, this section reviews and collects earlier results
and does not add any new material.
We will use without further mention that an étale ring map is flat (Algebra, Lemma 143.3)
and that a flat local homomorphism of local rings is faithfully flat (Algebra, Lemma 39.17).

Lemma 44.1. If A→ B is an étale ring map and q is a prime of B lying over p ⊂ A,
then Ap is Noetherian if and only if Bq is Noetherian.

Proof. Since Ap → Bq is faithfully flat we see that Bq Noetherian implies that
Ap is Noetherian, see Algebra, Lemma 164.1. Conversely, if Ap is Noetherian, then Bq is
Noetherian as it is a localization of a finite type Ap-algebra. �

Lemma 44.2. If A→ B is an étale ring map and q is a prime of B lying over p ⊂ A,
then dim(Ap) = dim(Bq).

Proof. Namely, because Ap → Bq is flat we have going down, and hence the in-
equality dim(Ap) ≤ dim(Bq), see Algebra, Lemma 112.1. On the other hand, suppose
that q0 ⊂ q1 ⊂ . . . ⊂ qn is a chain of primes in Bq. Then the corresponding sequence of
primes p0 ⊂ p1 ⊂ . . . ⊂ pn (with pi = qi ∩ Ap) is chain also (i.e., no equalities in the
sequence) as an étale ring map is quasi-finite (see Algebra, Lemma 143.6) and a quasi-finite
ring map induces a map of spectra with discrete fibres (by definition). This means that
dim(Ap) ≥ dim(Bq) as desired. �

Lemma 44.3. If A→ B is an étale ring map and q is a prime of B lying over p ⊂ A,
then Ap is regular if and only if Bq is regular.

Proof. By Lemma 44.1 we may assume both Ap and Bq are Noetherian in order
to prove the equivalence. Let x1, . . . , xt ∈ pAp be a minimal set of generators. As
Ap → Bq is faithfully flat we see that the images y1, . . . , yt in Bq form a minimal system
of generators for pBq = qBq (Algebra, Lemma 143.5). Regularity of Ap by definition
means t = dim(Ap) and similarly for Bq. Hence the lemma follows from the equality
dim(Ap) = dim(Bq) of Lemma 44.2. �

Lemma 44.4. If A → B is an étale ring map and A is a Dedekind domain, then B
is a finite product of Dedekind domains. In particular, the localizations Bq for q ⊂ B
maximal are discrete valuation rings.

Proof. The statement on the local rings follows from Lemmas 44.2 and 44.3 and
Algebra, Lemma 119.7. It follows that B is a Noetherian normal ring of dimension 1.
By Algebra, Lemma 37.16 we conclude that B is a finite product of normal domains of
dimension 1. These are Dedekind domains by Algebra, Lemma 120.17. �

45. Permanence of properties under henselization

Given a local ring R we denote Rh, resp. Rsh the henselization, resp. strict henselization
of R, see Algebra, Definition 155.3. Many of the properties of R are reflected in Rh and
Rsh as we will show in this section.

Lemma 45.1. Let (R,m, κ) be a local ring. Then we have the following
(1) R→ Rh → Rsh are faithfully flat ring maps,
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(2) mRh = mh and mRsh = mhRsh = msh,
(3) R/mn = Rh/mnRh for all n,
(4) there exist elements xi ∈ Rsh such that Rsh/mnRsh is a free R/mn-module on

xi mod mnRsh.

Proof. By constructionRh is a colimit of étaleR-algebras, see Algebra, Lemma 155.1.
Since étale ring maps are flat (Algebra, Lemma 143.3) we see that Rh is flat over R by
Algebra, Lemma 39.3. As a flat local ring homomorphism is faithfully flat (Algebra, Lemma
39.17) we see thatR→ Rh is faithfully flat. The ring mapRh → Rsh is a colimit of finite
étale ring maps, see proof of Algebra, Lemma 155.2. Hence the same arguments as above
show that Rh → Rsh is faithfully flat.
Part (2) follows from Algebra, Lemmas 155.1 and 155.2. Part (3) follows from Algebra,
Lemma 101.1 because R/m → Rh/mRh is an isomorphism and R/mn → Rh/mnRh is
flat as a base change of the flat ring map R→ Rh (Algebra, Lemma 39.7). Let κsep be the
residue field ofRsh (it is a separable algebraic closure of κ). Choose xi ∈ Rsh mapping to
a basis of κsep as a κ-vector space. Then (4) follows from Algebra, Lemma 101.1 in exactly
the same way as above. �

Lemma 45.2. Let (R,m, κ) be a local ring. Then
(1) R→ Rh, Rh → Rsh, and R→ Rsh are formally étale,
(2) R→ Rh, Rh → Rsh, resp. R→ Rsh are formally smooth in the mh, msh, resp.

msh-topology.

Proof. Part (1) follows from the fact that Rh and Rsh are directed colimits of étale
algebras (by construction), that étale algebras are formally étale (Algebra, Lemma 150.2),
and that colimits of formally étale algebras are formally étale (Algebra, Lemma 150.3). Part
(2) follows from the fact that a formally étale ring map is formally smooth and Lemma
37.2. �

Lemma 45.3. Let R be a local ring. The following are equivalent
(1) R is Noetherian,
(2) Rh is Noetherian, and
(3) Rsh is Noetherian.

In this case we have
(a) (Rh)∧ and (Rsh)∧ are Noetherian complete local rings,
(b) R∧ → (Rh)∧ is an isomorphism,
(c) Rh → (Rh)∧ and Rsh → (Rsh)∧ are flat,
(d) R∧ → (Rsh)∧ is formally smooth in the m(Rsh)∧ -adic topology,
(e) (R∧)sh = R∧ ⊗Rh Rsh, and
(f) ((R∧)sh)∧ = (Rsh)∧.

Proof. Since R → Rh → Rsh are faithfully flat (Lemma 45.1), we see that Rh or
Rsh being Noetherian implies that R is Noetherian, see Algebra, Lemma 164.1. In the rest
of the proof we assume R is Noetherian.

As m ⊂ R is finitely generated it follows that mh = mRh and msh = mRsh are finitely
generated, see Lemma 45.1. Hence (Rh)∧ and (Rsh)∧ are Noetherian by Algebra, Lemma
160.3. This proves (a).

Note that (b) is immediate from Lemma 45.1. In particular we see that (Rh)∧ is flat over
R, see Algebra, Lemma 97.3.
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Next, we show that Rh → (Rh)∧ is flat. Write Rh = colimiRi as a directed colimit of
localizations of étale R-algebras. By Algebra, Lemma 39.6 if (Rh)∧ is flat over each Ri,
then Rh → (Rh)∧ is flat. Note that Rh = Rhi (by construction). Hence R∧

i = (Rh)∧ by
part (b) is flat overRi as desired. To finish the proof of (c) we show thatRsh → (Rsh)∧ is
flat. To do this, by a limit argument as above, it suffices to show that (Rsh)∧ is flat overR.
Note that it follows from Lemma 45.1 that (Rsh)∧ is the completion of a free R-module.
By Lemma 27.2 we see this is flat over R as desired. This finishes the proof of (c).
At this point we know (c) is true and that (Rh)∧ and (Rsh)∧ are Noetherian. It follows
from Algebra, Lemma 164.1 that Rh and Rsh are Noetherian.
Part (d) follows from Lemma 45.2 and Lemma 37.4.
Part (e) follows from Algebra, Lemma 155.13 and the fact thatR∧ is henselian by Algebra,
Lemma 153.9.
Proof of (f). Using (e) there is a map Rsh → (R∧)sh which induces a map (Rsh)∧ →
((R∧)sh)∧ upon completion. Using (e) there is a map R∧ → (Rsh)∧. Since (Rsh)∧

is strictly henselian (see above) this map induces a map (R∧)sh → (Rsh)∧ by Algebra,
Lemma 155.10. Completing we obtain a map ((R∧)sh)∧ → (Rsh)∧. We omit the verifi-
cation that these two maps are mutually inverse. �

Lemma 45.4. Let R be a local ring. The following are equivalent: R is reduced, the
henselization Rh of R is reduced, and the strict henselization Rsh of R is reduced.

Proof. The ring maps R → Rh → Rsh are faithfully flat. Hence one direction of
the implications follows from Algebra, Lemma 164.2. Conversely, assume R is reduced.
SinceRh andRsh are filtered colimits of étale, hence smoothR-algebras, the result follows
from Algebra, Lemma 163.7. �

Lemma 45.5. LetR be a local ring. Let nil(R) denote the ideal of nilpotent elements
of R. Then nil(R)Rh = nil(Rh) and nil(R)Rsh = nil(Rsh).

Proof. Note that nil(R) is the biggest ideal consisting of nilpotent elements such
that the quotientR/nil(R) is reduced. Note that nil(R)Rh consists of nilpotent elements
by Algebra, Lemma 32.3. Also, note that Rh/nil(R)Rh is the henselization of R/nil(R)
by Algebra, Lemma 156.2. Hence Rh/nil(R)Rh is reduced by Lemma 45.4. We conclude
that nil(R)Rh = nil(Rh) as desired. Similarly for the strict henselization but using
Algebra, Lemma 156.4. �

Lemma 45.6. Let R be a local ring. The following are equivalent: R is a normal
domain, the henselizationRh ofR is a normal domain, and the strict henselizationRsh of
R is a normal domain.

Proof. A preliminary remark is that a local ring is normal if and only if it is a normal
domain (see Algebra, Definition 37.11). The ring mapsR→ Rh → Rsh are faithfully flat.
Hence one direction of the implications follows from Algebra, Lemma 164.3. Conversely,
assume R is normal. Since Rh and Rsh are filtered colimits of étale hence smooth R-
algebras, the result follows from Algebra, Lemmas 163.9 and 37.17. �

Lemma 45.7. Given any local ring R we have dim(R) = dim(Rh) = dim(Rsh).

Proof. Since R → Rsh is faithfully flat (Lemma 45.1) we see that dim(Rsh) ≥
dim(R) by going down, see Algebra, Lemma 112.1. For the converse, we write Rsh =
colimRi as a directed colimit of local rings Ri each of which is a localization of an étale
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R-algebra. Now if q0 ⊂ q1 ⊂ . . . ⊂ qn is a chain of prime ideals in Rsh, then for some
sufficiently large i the sequence

Ri ∩ q0 ⊂ Ri ∩ q1 ⊂ . . . ⊂ Ri ∩ qn

is a chain of primes in Ri. Thus we see that dim(Rsh) ≤ supi dim(Ri). But by the result
of Lemma 44.2 we have dim(Ri) = dim(R) for each i and we win. �

Lemma 45.8. Given a Noetherian local ring R we have depth(R) = depth(Rh) =
depth(Rsh).

Proof. By Lemma 45.3 we know thatRh andRsh are Noetherian. Hence the lemma
follows from Algebra, Lemma 163.2. �

Lemma 45.9. Let R be a Noetherian local ring. The following are equivalent: R is
Cohen-Macaulay, the henselizationRh ofR is Cohen-Macaulay, and the strict henseliza-
tion Rsh of R is Cohen-Macaulay.

Proof. By Lemma 45.3 we know that Rh and Rsh are Noetherian, hence the lemma
makes sense. Since we have depth(R) = depth(Rh) = depth(Rsh) and dim(R) =
dim(Rh) = dim(Rsh) by Lemmas 45.8 and 45.7 we conclude. �

Lemma 45.10. Let R be a Noetherian local ring. The following are equivalent: R
is a regular local ring, the henselization Rh of R is a regular local ring, and the strict
henselization Rsh of R is a regular local ring.

Proof. By Lemma 45.3 we know that Rh and Rsh are Noetherian, hence the lemma
makes sense. Let m be the maximal ideal of R. Let x1, . . . , xt ∈ m be a minimal system
of generators of m, i.e., such that the images in m/m2 form a basis over κ = R/m. Be-
cause R → Rh and R → Rsh are faithfully flat, it follows that the images xh1 , . . . , xht in
Rh, resp. xsh1 , . . . , xsht in Rsh are a minimal system of generators for mh = mRh, resp.
msh = mRsh. Regularity of R by definition means t = dim(R) and similarly for Rh and
Rsh. Hence the lemma follows from the equality of dimensions dim(R) = dim(Rh) =
dim(Rsh) of Lemma 45.7 �

Lemma 45.11. Let R be a Noetherian local ring. Then R is a discrete valuation ring
if and only ifRh is a discrete valuation ring if and only ifRsh is a discrete valuation ring.

Proof. This follows from Lemmas 45.7 and 45.10 and Algebra, Lemma 119.7. �

Lemma 45.12. LetA be a ring. LetB be a filtered colimit of étaleA-algebras. Let p be
a prime ofA. IfB is Noetherian, then there are finitely many primes q1, . . . , qr lying over
p, we haveB⊗A κ(p) =

∏
κ(qi), and each of the field extensions κ(qi)/κ(p) is separable

algebraic.

Proof. Write B as a filtered colimit B = colimBi with A→ Bi étale. Then on the
one handB⊗Aκ(p) = colimBi⊗Aκ(p) is a filtered colimit of étale κ(p)-algebras, and on
the other hand it is Noetherian. An étale κ(p)-algebra is a finite product of finite separable
field extensions (Algebra, Lemma 143.4). Hence there are no nontrivial specializations
between the primes (which are all maximal and minimal primes) of the algebrasBi⊗Aκ(p)
and hence there are no nontrivial specializations between the primes of B ⊗A κ(p). Thus
B ⊗A κ(p) is reduced and has finitely many primes which all minimal. Thus it is a finite
product of fields (use Algebra, Lemma 25.4 or Algebra, Proposition 60.7). Each of these
fields is a colimit of finite separable extensions and hence the final statement of the lemma
follows. �
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Lemma 45.13. Let R be a Noetherian local ring. Let p ⊂ R be a prime. Then

Rh ⊗R κ(p) =
∏

i=1,...,t
κ(qi) resp. Rsh ⊗R κ(p) =

∏
i=1,...,s

κ(ri)

where q1, . . . , qt, resp. r1, . . . , rs are the prime of Rh, resp. Rsh lying over p. Moreover,
the field extensions κ(qi)/κ(p) resp. κ(ri)/κ(p) are separable algebraic.

Proof. This can be deduced from the more general Lemma 45.12 using that the henseliza-
tion and strict henselization are Noetherian (as we’ve seen above). But we also give a direct
proof as follows.

We will use without further mention the results of Lemmas 45.1 and 45.3. Note that
Rh/pRh, resp. Rsh/pRsh is the henselization, resp. strict henselization of R/p, see Al-
gebra, Lemma 156.2 resp. Algebra, Lemma 156.4. Hence we may replace R by R/p and
assume that R is a Noetherian local domain and that p = (0). Since Rh, resp. Rsh is Noe-
therian, it has finitely many minimal primes q1, . . . , qt, resp. r1, . . . , rs. Since R → Rh,
resp. R → Rsh is flat these are exactly the primes lying over p = (0) (by going down).
Finally, as R is a domain, we see that Rh, resp. Rsh is reduced, see Lemma 45.4. Thus we
see that Rh ⊗R κ(p) resp. Rsh ⊗R κ(p) is a reduced Noetherian ring with finitely many
primes, all of which are minimal (and hence maximal). Thus these rings are Artinian and
are products of their localizations at maximal ideals, each necessarily a field (see Algebra,
Proposition 60.7 and Algebra, Lemma 25.1).

The final statement follows from the fact thatR→ Rh, resp.R→ Rsh is a colimit of étale
ring maps and hence the induced residue field extensions are colimits of finite separable
extensions, see Algebra, Lemma 143.5. �

46. Field extensions, revisited

In this section we study some peculiarities of field extensions in characteristic p > 0.

Definition 46.1. Let p be a prime number. Let k → K be an extension of fields of
characteristic p. Denote kKp the compositum of k and Kp in K.

(1) A subset {xi} ⊂ K is called p-independent over k if the elements xE =
∏
xeii

where 0 ≤ ei < p are linearly independent over kKp.
(2) A subset {xi} ofK is called a p-basis ofK over k if the elements xE form a basis

of K over kKp.

This is related to the notion of a p-basis of a Fp-algebra which we will discuss later (insert
future reference here).

Lemma 46.2. Let K/k be a field extension. Assume k has characteristic p > 0. Let
{xi} be a subset of K. The following are equivalent

(1) the elements {xi} are p-independent over k, and
(2) the elements dxi are K-linearly independent in ΩK/k.

Any p-independent collection can be extended to a p-basis of K over k. In particular, the
field K has a p-basis over k. Moreover, the following are equivalent:

(a) {xi} is a p-basis of K over k, and
(b) dxi is a basis of the K-vector space ΩK/k.

Proof. Assume (2) and suppose that
∑
aEx

E = 0 is a linear relation with aE ∈
kKp. Let θi : K → K be a k-derivation such that θi(xj) = δij (Kronecker delta). Note
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that any k-derivation of K annihilates kKp. Applying θi to the given relation we obtain
new relations ∑

E,ei>0
eiaEx

e1
1 . . . xei−1

i . . . xenn = 0

Hence if we pick
∑
aEx

E as the relation with minimal total degree |E| =
∑
ei for some

aE 6= 0, then we get a contradiction. Hence (1) holds.
If {xi} is a p-basis for K over k, then K ∼= kKp[Xi]/(Xp

i − x
p
i ). Hence we see that dxi

forms a basis for ΩK/k over K. Thus (a) implies (b).
Let {xi} be a p-independent subset of K over k. An application of Zorn’s lemma shows
that we can enlarge this to a maximal p-independent subset of K over k. We claim that
any maximal p-independent subset {xi} of K is a p-basis of K over k. The claim will
imply that (1) implies (2) and establish the existence of p-bases. To prove the claim let L
be the subfield ofK generated by kKp and the xi. We have to show thatL = K. If x ∈ K
but x 6∈ L, then xp ∈ L and L(x) ∼= L[z]/(zp − x). Hence {xi} ∪ {x} is p-independent
over k, a contradiction.
Finally, we have to show that (b) implies (a). By the equivalence of (1) and (2) we see that
{xi} is a maximal p-independent subset of K over k. Hence by the claim above it is a
p-basis. �

Lemma 46.3. Let K/k be a field extension. Let {Kα}α∈A be a collection of subfields
of K with the following properties

(1) k ⊂ Kα for all α ∈ A,
(2) k =

⋂
α∈AKα,

(3) for α, α′ ∈ A there exists an α′′ ∈ A such that Kα′′ ⊂ Kα ∩Kα′ .
Then for n ≥ 1 and V ⊂ K⊕n a K-vector space we have V ∩ k⊕n 6= 0 if and only if
V ∩K⊕n

α 6= 0 for all α ∈ A.

Proof. By induction onn. The casen = 1 follows from the assumptions. Assume the
result proven for subspaces of K⊕n−1. Assume that V ⊂ K⊕n has nonzero intersection
withK⊕n

α for all α ∈ A. If V ∩0⊕k⊕n−1 is nonzero then we win. Hence we may assume
this is not the case. By induction hypothesis we can find an α such that V ∩ 0⊕K⊕n−1

α

is zero. Let v = (x1, . . . , xn) ∈ V ∩ K⊕n
α be a nonzero element. By our choice of α

we see that x1 is not zero. Replace v by x−1
1 v so that v = (1, x2, . . . , xn). Note that if

v′ = (x′
1, . . . , x

′
n) ∈ V ∩Kα, then v′ − x′

1v = 0 by our choice of α. Hence we see that
V ∩K⊕n

α = Kαv. If we choose some α′ such thatKα′ ⊂ Kα, then we see that necessarily
v ∈ V ∩K⊕n

α′ (by the same arguments applied to α′). Hence

x2, . . . , xn ∈
⋂

α′∈A,Kα′ ⊂Kα
Kα′

which equals k by (2) and (3). �

Lemma 46.4. Let K be a field of characteristic p. Let {Kα}α∈A be a collection of
subfields of K with the following properties

(1) Kp ⊂ Kα for all α ∈ A,
(2) Kp =

⋂
α∈AKα,

(3) for α, α′ ∈ A there exists an α′′ ∈ A such that Kα′′ ⊂ Kα ∩Kα′ .
Then

(1) the intersection of the kernels of the maps ΩK/Fp → ΩK/Kα is zero,
(2) for any finite extension L/K we have Lp =

⋂
α∈A L

pKα.
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Proof. Proof of (1). Choose a p-basis {xi} forK over Fp. Suppose that η =
∑
i∈I′ yidxi

maps to zero in ΩK/Kα for every α ∈ A. Here the index set I ′ is finite. By Lemma 46.2
this means that for every α there exists a relation∑

E
aE,αx

E , aE,α ∈ Kα

where E runs over multi-indices E = (ei)i∈I′ with 0 ≤ ei < p. On the other hand,
Lemma 46.2 guarantees there is no such relation

∑
aEx

E = 0 with aE ∈ Kp. This is a
contradiction by Lemma 46.3.

Proof of (2). Suppose that we have a tower L/M/K of finite extensions of fields. Set
Mα = MpKα andLα = LpKα = LpMα. Then we can first prove thatMp =

⋂
α∈AMα,

and after that prove that Lp =
⋂
α∈A Lα. Hence it suffices to prove (2) for primitive field

extensions having no nontrivial subfields. First, assume that L = K(θ) is separable over
K. Then L is generated by θp over K , hence we may assume that θ ∈ Lp. In this case we
see that

Lp = Kp ⊕Kpθ ⊕ . . .Kpθd−1 and LpKα = Kα ⊕Kαθ ⊕ . . .Kαθ
d−1

where d = [L : K]. Thus the conclusion is clear in this case. The other case is where
L = K(θ) with θp = t ∈ K , t 6∈ Kp. In this case we have

Lp = Kp ⊕Kpt⊕ . . .Kptp−1 and LpKα = Kα ⊕Kαt⊕ . . .Kαt
p−1

Again the result is clear. �

Lemma 46.5. Let k be a field of characteristic p > 0. Let n,m ≥ 0. Let K be the
fraction field of k[[x1, . . . , xn]][y1, . . . , ym]. As k′ ranges through all subfields k/k′/kp

with [k : k′] <∞ the subfields

fraction field of k′[[xp1, . . . , xpn]][yp1 , . . . , ypm] ⊂ K
form a family of subfields as in Lemma 46.4. Moreover, each of the ring extensions k′[[xp1, . . . , xpn]][yp1 , . . . , ypm] ⊂
k[[x1, . . . , xn]][y1, . . . , ym] is finite.

Proof. WriteA = k[[x1, . . . , xn]][y1, . . . , ym] andA′ = k′[[xp1, . . . , xpn]][yp1 , . . . , ypm].
We also denoteK ′ the fraction field ofA′. The ring extension k′[[xp1, . . . , x

p
d]] ⊂ k[[x1, . . . , xd]]

is finite by Algebra, Lemma 97.7 which implies that A′ → A is finite. For f ∈ A we see
that fp ∈ A′. Hence Kp ⊂ K ′. Any element of K ′ can be written as a/bp with a ∈ A′

and b ∈ A nonzero. Suppose that f/gp ∈ K , f, g ∈ A, g 6= 0 is contained in K ′ for every
choice of k′. Fix a choice of k′ for the moment. By the above we see f/gp = a/bp for some
a ∈ A′ and some nonzero b ∈ A. Hence bpf ∈ A′. For any A′-derivation D : A → A
we see that 0 = D(bpf) = bpD(f) hence D(f) = 0 as A is a domain. Taking D = ∂xi
and D = ∂yj we conclude that f ∈ k[[xp1, . . . , xpn]][yp1 , . . . , y

p
d]. Applying a k′-derivation

θ : k → k we similarly conclude that all coefficients of f are in k′, i.e., f ∈ A′. Since it is
clear that Ap =

⋂
k′ A′ where k′ ranges over all subfields as in the lemma we win. �

47. The singular locus

LetR be a Noetherian ring. The regular locus Reg(X) ofX = Spec(R) is the set of primes
p such that Rp is a regular local ring. The singular locus Sing(X) of X = Spec(R) is the
complement X \ Reg(X), i.e., the set of primes p such that Rp is not a regular local ring.
By the discussion preceding Algebra, Definition 110.7 we see that Reg(X) is stable under
generalization. In this section we study conditions that guarantee that Reg(X) is open.

Definition 47.1. Let R be a Noetherian ring. Let X = Spec(R).
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(1) We say R is J-0 if Reg(X) contains a nonempty open.
(2) We say R is J-1 if Reg(X) is open.
(3) We say R is J-2 if any finite type R-algebra is J-1.

The ring Q[x]/(x2) does not satisfy J-0, but it does satisfy J-1. On the other hand, J-
1 implies J-0 for Noetherian domains and more generally nonzero reduced Noetherian
rings as such a ring is regular at the minimal primes. Here is a characterization of the J-1
property.

Lemma 47.2. LetR be a Noetherian ring. LetX = Spec(R). The ringR is J-1 if and
only if V (p) ∩ Reg(X) contains a nonempty open subset of V (p) for all p ∈ Reg(X).

Proof. This follows from Topology, Lemma 16.5 and the fact that Reg(X) is stable
under generalization by Algebra, Lemma 110.6. �

Lemma 47.3. Let R be a Noetherian ring. Let X = Spec(R). Assume that for all
primes p ⊂ R the ring R/p is J-0. Then R is J-1.

Proof. We will show that the criterion of Lemma 47.2 applies. Let p ∈ Reg(X) be a
prime of height r. Pick f1, . . . , fr ∈ pwhich map to generators of pRp. Since p ∈ Reg(X)
we see that f1, . . . , fr maps to a regular sequence in Rp, see Algebra, Lemma 106.3. Thus
by Algebra, Lemma 68.6 we see that after replacing R by Rg for some g ∈ R, g 6∈ p
the sequence f1, . . . , fr is a regular sequence inR. After another replacement we may also
assume f1, . . . , fr generate p. Next, let p ⊂ q be a prime ideal such that (R/p)q is a regular
local ring. By the assumption of the lemma there exists a non-empty open subset of V (p)
consisting of such primes, hence it suffices to prove Rq is regular. Note that f1, . . . , fr is
a regular sequence in Rq such that Rq/(f1, . . . , fr)Rq is regular. Hence Rq is regular by
Algebra, Lemma 106.7. �

Lemma 47.4. Let R→ S be a ring map. Assume that
(1) R is a Noetherian domain,
(2) R→ S is injective and of finite type, and
(3) S is a domain and J-0.

Then R is J-0.

Proof. After replacing S by Sg for some nonzero g ∈ S we may assume that S is
a regular ring. By generic flatness we may assume that also R → S is faithfully flat, see
Algebra, Lemma 118.1. Then R is regular by Algebra, Lemma 164.4. �

Lemma 47.5. Let R→ S be a ring map. Assume that
(1) R is a Noetherian domain and J-0,
(2) R→ S is injective and of finite type, and
(3) S is a domain, and
(4) the induced extension of fraction fields is separable.

Then S is J-0.

Proof. We may replace R by a principal localization and assume R is a regular ring.
By Algebra, Lemma 140.9 the ring map R→ S is smooth at (0). Hence after replacing S
by a principal localization we may assume that S is smooth overR. Then S is regular too,
see Algebra, Lemma 163.10. �

Lemma 47.6. Let R be a Noetherian ring. The following are equivalent
(1) R is J-2,
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(2) every finite type R-algebra which is a domain is J-0,
(3) every finite R-algebra is J-1,
(4) for every prime p and every finite purely inseparable extension L/κ(p) there

exists a finite R-algebra R′ which is a domain, which is J-0, and whose field of
fractions is L.

Proof. It is clear that we have the implications (1)⇒ (2) and (2)⇒ (4). Recall that
a domain which is J-1 is J-0. Hence we also have the implications (1)⇒ (3) and (3)⇒ (4).

Let R → S be a finite type ring map and let’s try to show S is J-1. By Lemma 47.3 it
suffices to prove that S/q is J-0 for every prime q of S. In this way we see (2)⇒ (1).

Assume (4). We will show that (2) holds which will finish the proof. Let R → S be a
finite type ring map with S a domain. Let p = Ker(R → S). Let K be the fraction field
of S. There exists a diagram of fields

K // K ′

κ(p)

OO

// L

OO

where the horizontal arrows are finite purely inseparable field extensions and whereK ′/L
is separable, see Algebra, Lemma 42.4. Choose R′ ⊂ L as in (4) and let S′ be the image of
the map S ⊗R R′ → K ′. Then S′ is a domain whose fraction field is K ′, hence S′ is J-0
by Lemma 47.5 and our choice of R′. Then we apply Lemma 47.4 to see that S is J-0 as
desired. �

48. Regularity and derivations

Let R→ S be a ring map. Let D : R→ R be a derivation. We say that D extends to S if
there exists a derivation D′ : S → S such that

S
D′
// S

R

OO

D // R

OO

is commutative.

Lemma 48.1. Let R be a ring. Let D : R→ R be a derivation.
(1) For any ideal I ⊂ R the derivation D extends canonically to a derivation D∧ :

R∧ → R∧ on the I-adic completion.
(2) For any multiplicative subset S ⊂ R the derivation D extends uniquely to the

localization S−1R of R.
If R ⊂ R′ is a finite type extension of rings such that Rg ∼= R′

g for some g ∈ R which is
a nonzerodivisor in R′, then gND extends to R′ for some N ≥ 0.

Proof. Proof of (1). For n ≥ 2 we have D(In) ⊂ In−1 by the Leibniz rule. Hence
D induces maps Dn : R/In → R/In−1. Taking the limit we obtain D∧. We omit the
verification that D∧ is a derivation.

Proof of (2). To extend D to S−1R just set D(r/s) = D(r)/s− rD(s)/s2 and check the
axioms.
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Proof of the final statement. Let x1, . . . , xn ∈ R′ be generators of R′ over R. Choose an
N such that gNxi ∈ R. Consider gN+1D. By (2) this extends to Rg . Moreover, by the
Leibniz rule and our construction of the extension above we have

gN+1D(xi) = gN+1D(g−NgNxi) = −NgNxiD(g) + gD(gNxi)
and both terms are in R. This implies that

gN+1D(xe1
1 . . . xenn ) =

∑
eix

e1
1 . . . xei−1

i . . . xenn g
N+1D(xi)

is an element of R′. Hence every element of R′ (which can be written as a sum of mono-
mials in the xi with coefficients in R) is mapped to an element of R′ by gN+1D and we
win. �

Lemma 48.2. Let R be a regular ring. Let f ∈ R. Assume there exists a derivation
D : R→ R such that D(f) is a unit of R/(f). Then R/(f) is regular.

Proof. It suffices to prove this when R is a local ring with maximal ideal m and
residue field κ. In this case it suffices to prove that f 6∈ m2, see Algebra, Lemma 106.3.
However, if f ∈ m2 then D(f) ∈ m by the Leibniz rule, a contradiction. �

Lemma 48.3. Let (R,m, κ) be a regular local ring. Let m ≥ 1. Let f1, . . . , fm ∈ m.
Assume there exist derivations D1, . . . , Dm : R → R such that det1≤i,j≤m(Di(fj)) is a
unit of R. Then R/(f1, . . . , fm) is regular and f1, . . . , fm is a regular sequence.

Proof. It suffices to prove that f1, . . . , fm are κ-linearly independent in m/m2, see
Algebra, Lemma 106.3. However, if there is a nontrivial linear relation the we get

∑
aifi ∈

m2 for some ai ∈ R but not all ai ∈ m. Observe that Di(m2) ⊂ m and Di(ajfj) ≡
ajDi(fj) mod m by the Leibniz rule for derivations. Hence this would imply∑

ajDi(fj) ∈ m

which would contradict the assumption on the determinant. �

Lemma 48.4. Let R be a regular ring. Let f ∈ R. Assume there exists a derivation
D : R→ R such that D(f) is a unit of R. Then R[z]/(zn − f) is regular for any integer
n ≥ 1. More generally, R[z]/(p(z)− f) is regular for any p ∈ Z[z].

Proof. By Algebra, Lemma 163.10 we see that R[z] is a regular ring. Apply Lemma
48.2 to the extension ofD toR[z] which maps z to zero. This works becauseD annihilates
any polynomial with integer coefficients and sends f to a unit. �

Lemma 48.5. Let p be a prime number. Let B be a domain with p = 0 in B. Let
f ∈ B be an element which is not a pth power in the fraction field of B. If B is of finite
type over a Noetherian complete local ring, then there exists a derivation D : B → B
such that D(f) is not zero.

Proof. Let R be a Noetherian complete local ring such that there exists a finite type
ring map R → B. Of course we may replace R by its image in B, hence we may assume
R is a domain of characteristic p > 0 (as well as Noetherian complete local). By Algebra,
Lemma 160.11 we can write R as a finite extension of k[[x1, . . . , xn]] for some field k and
integer n. Hence we may replaceR by k[[x1, . . . , xn]]. Next, we use Algebra, Lemma 115.7
to factor R→ B as

R ⊂ R[y1, . . . , yd] ⊂ B′ ⊂ B
with B′ finite over R[y1, . . . , yd] and B′

g
∼= Bg for some nonzero g ∈ R. Note that

f ′ = gpNf ∈ B′ for some large integer N . It is clear that f ′ is not a pth power in
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the fraction field of B′. If we can find a derivation D′ : B′ → B′ with D′(f ′) 6= 0,
then Lemma 48.1 guarantees that D = gMD′ extends to B for some M > 0. Then
D(f) = gND′(f) = gMD′(g−pNf ′) = gM−pND′(f ′) is nonzero. Thus it suffices to
prove the lemma in case B is a finite extension of A = k[[x1, . . . , xn]][y1, . . . , ym].
Assume B is a finite extension of A = k[[x1, . . . , xn]][y1, . . . , ym]. Denote L the fraction
field ofB. Note that df is not zero in ΩL/Fp , see Algebra, Lemma 158.2. We apply Lemma
46.5 to find a subfield k′ ⊂ k of finite index such that withA′ = k′[[xp1, . . . , xpn]][yp1 , . . . , ypm]
the element df does not map to zero in ΩL/K′ where K ′ is the fraction field of A′. Thus
we can choose a K ′-derivation D′ : L → L with D′(f) 6= 0. Since A′ ⊂ A and A ⊂ B
are finite by construction we see that A′ ⊂ B is finite. Choose b1, . . . , bt ∈ B which gen-
erate B as an A′-module. Then D′(bi) = fi/gi for some fi, gi ∈ B with gi 6= 0. Setting
D = g1 . . . gtD

′ we win. �

Lemma 48.6. Let A be a Noetherian complete local domain. Then A is J-0.

Proof. By Algebra, Lemma 160.11 we can find a regular subringA0 ⊂ AwithAfinite
over A0. The induced extension K/K0 of fraction fields is finite. If K/K0 is separable,
then we are done by Lemma 47.5. If not, thenA0 andA have characteristic p > 0. For any
subextension K/M/K0 there exists a finite subextension A0 ⊂ B ⊂ A whose fraction
field is M . Hence, arguing by induction on [K : K0] we may assume there exists A0 ⊂
B ⊂ A such thatB is J-0 andK/M has no nontrivial subextensions. In this case, ifK/M
is separable, then we see thatA is J-0 by Lemma 47.5. If not, thenK = M [z]/(zp−b1/b2)
for some b1, b2 ∈ B with b2 6= 0 and b1/b2 not a pth power inM . Choose a ∈ A nonzero
such that az ∈ A. After replacing z by b2a

pz we obtain K = M [z]/(zp − b) with z ∈ A
and b ∈ B not a pth power in M . By Lemma 48.5 we can find a derivation D : B → B
with D(b) 6= 0. Applying Lemma 48.4 we see that Ap is regular for any prime p of A
lying over a regular prime of B and not containing D(b). As B is J-0 we conclude A is
too. �

Proposition 48.7. The following types of rings are J-2:
(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Noetherian local rings of dimension 1,
(5) Nagata rings of dimension 1,
(6) Dedekind domains with fraction field of characteristic zero,
(7) finite type ring extensions of any of the above.

Proof. For cases (1), (3), (5), and (6) this is proved by checking condition (4) of
Lemma 47.6. We will only do this in caseR is a Nagata ring of dimension 1. Let p ⊂ R be
a prime ideal and let L/κ(p) be a finite purely inseparable extension. If p ⊂ R is a maxi-
mal ideal, then R → L is finite and L is a regular ring and we’ve checked the condition.
If p ⊂ R is a minimal prime, then the Nagata condition insures that the integral closure
R′ ⊂ L of R in L is finite over R. Then R′ is a normal domain of dimension 1 (Algebra,
Lemma 112.3) hence regular (Algebra, Lemma 157.4) and we’ve checked the condition in
this case as well.
For case (2), we will use condition (3) of Lemma 47.6. LetR be a Noetherian complete local
ring. Note that ifR→ R′ is finite, thenR′ is a product of Noetherian complete local rings,
see Algebra, Lemma 160.2. Hence it suffices to prove that a Noetherian complete local ring
which is a domain is J-0, which is Lemma 48.6.
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For case (4), we also use condition (3) of Lemma 47.6. Namely, if R is a local Noetherian
ring of dimension 1 and R→ R′ is finite, then Spec(R′) is finite. Since the regular locus
is stable under generalization, we see that R′ is J-1. �

49. Formal smoothness and regularity

The title of this section refers to Proposition 49.2.

Lemma 49.1. Let A → B be a local homomorphism of Noetherian local rings. Let
D : A → A be a derivation. Assume that B is complete and A → B is formally smooth
in the mB-adic topology. Then there exists an extension D′ : B → B of D.

Proof. Denote B[ε] = B[x]/(x2) the ring of dual numbers over B. Consider the
ring map ψ : A→ B[ε], a 7→ a+ εD(a). Consider the commutative diagram

B
1
// B

A

OO

ψ // B[ε]

OO

By Lemma 37.5 and the assumption of formal smoothness ofB/Awe find a map ϕ : B →
B[ε] fitting into the diagram. Write ϕ(b) = b+ εD′(b). Then D′ : B → B is the desired
extension. �

Proposition 49.2. Let A → B be a local homomorphism of Noetherian complete
local rings. Let k be the residue field ofA andB = B⊗Ak the special fibre. The following
are equivalent

(1) A→ B is regular,
(2) A→ B is flat and B is geometrically regular over k,
(3) A→ B is flat and k → B is formally smooth in the mB-adic topology, and
(4) A→ B is formally smooth in the mB-adic topology.

Proof. We have seen the equivalence of (2), (3), and (4) in Proposition 40.5. It is
clear that (1) implies (2). Thus we assume the equivalent conditions (2), (3), and (4) hold
and we prove (1).

Let p be a prime of A. We will show that B ⊗A κ(p) is geometrically regular over κ(p).
By Lemma 37.8 we may replace A by A/p and B by B/pB. Thus we may assume that A
is a domain and that p = (0).

Choose A0 ⊂ A as in Algebra, Lemma 160.11. We will use all the properties stated in that
lemma without further mention. As A0 → A induces an isomorphism on residue fields,
and as B/mAB is geometrically regular over A/mA we can find a diagram

C // B

A0 //

OO

A

OO

with A0 → C formally smooth in the mC -adic topology such that B = C ⊗A0 A, see
Remark 40.7. (Completion in the tensor product is not needed as A0 → A is finite, see
Algebra, Lemma 97.1.) Hence it suffices to show that C ⊗A0 K0 is a geometrically regular
algebra over the fraction field K0 of A0.
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The upshot of the preceding paragraph is that we may assume that A = k[[x1, . . . , xn]]
where k is a field or A = Λ[[x1, . . . , xn]] where Λ is a Cohen ring. In this case B is a
regular ring, see Algebra, Lemma 112.8. Hence B ⊗A K is a regular ring too (where K is
the fraction field of A) and we win if the characteristic of K is zero.

Thus we are left with the case where A = k[[x1, . . . , xn]] and k is a field of characteristic
p > 0. Let L/K be a finite purely inseparable field extension. We will show by induction
on [L : K] that B ⊗A L is regular. The base case is L = K which we’ve seen above. Let
K ⊂M ⊂ L be a subfield such that L is a degree p extension ofM obtained by adjoining
a pth root of an element f ∈ M . Let A′ be a finite A-subalgebra of M with fraction field
M . Clearing denominators, we may and do assume f ∈ A′. Set A′′ = A′[z]/(zp − f) and
note that A′ ⊂ A′′ is finite and that the fraction field of A′′ is L. By induction we know
that B ⊗AM ring is regular. We have

B ⊗A L = B ⊗AM [z]/(zp − f)

By Lemma 48.5 we know there exists a derivation D : A′ → A′ such that D(f) 6= 0.
As A′ → B ⊗A A′ is formally smooth in the m-adic topology by Lemma 37.9 we can
use Lemma 49.1 to extend D to a derivation D′ : B ⊗A A′ → B ⊗A A′. Note that
D′(f) = D(f) is a unit in B ⊗A M as D(f) is not zero in A′ ⊂ M . Hence B ⊗A L is
regular by Lemma 48.4 and we win. �

50. G-rings

Let A be a Noetherian local ring A. In Section 43 we have seen that some but not all
properties ofA are reflected in the completionA∧ ofA. To study this further we introduce
some terminology. For a prime q of A the fibre ring

A∧ ⊗A κ(q) = (A∧)q/q(A∧)q = (A/q)∧ ⊗A/q κ(q)

is called a formal fibre of A. We think of the formal fibre as an algebra over κ(q). Thus
A → A∧ is a regular ring homomorphism if and only if all the formal fibres are geomet-
rically regular algebras.

Definition 50.1. A ring R is called a G-ring if R is Noetherian and for every prime
p of R the ring map Rp → (Rp)∧ is regular.

By the discussion above we see that R is a G-ring if and only if every local ring Rp has
geometrically regular formal fibres. Note that if Q ⊂ R, then it suffices to check the
formal fibres are regular. Another way to express the G-ring condition is described in the
following lemma.

Lemma 50.2. LetR be a Noetherian ring. ThenR is a G-ring if and only if for every
pair of primes q ⊂ p ⊂ R the algebra

(R/q)∧
p ⊗R/q κ(q)

is geometrically regular over κ(q).

Proof. This follows from the fact that

R∧
p ⊗R κ(q) = (R/q)∧

p ⊗R/q κ(q)

as algebras over κ(q). �
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Lemma 50.3. Let R→ R′ be a finite type map of Noetherian rings and let

q′ // p′ // R′

q // p // R

OO

be primes. Assume R→ R′ is quasi-finite at p′.
(1) If the formal fibreR∧

p⊗Rκ(q) is geometrically regular overκ(q), then the formal
fibre R′

p′ ⊗R′ κ(q′) is geometrically regular over κ(q′).
(2) If the formal fibres ofRp are geometrically regular, then the formal fibres ofR′

p′

are geometrically regular.
(3) If R→ R′ is quasi-finite and R is a G-ring, then R′ is a G-ring.

Proof. It is clear that (1)⇒ (2)⇒ (3). Assume R∧
p ⊗R κ(q) is geometrically regular

over κ(q). By Algebra, Lemma 124.3 we see that

R∧
p ⊗R R′ = (R′

p′)∧ ×B
for some R∧

p -algebra B. Hence R′
p′ → (R′

p′)∧ is a factor of a base change of the map
Rp → R∧

p . It follows that (R′
p′)∧ ⊗R′ κ(q′) is a factor of

R∧
p ⊗R R′ ⊗R′ κ(q′) = R∧

p ⊗R κ(q)⊗κ(q) κ(q′).
Thus the result follows as extension of base field preserves geometric regularity, see Alge-
bra, Lemma 166.1. �

Lemma 50.4. LetR be a Noetherian ring. ThenR is a G-ring if and only if for every
finite free ring map R→ S the formal fibres of S are regular rings.

Proof. Assume that for any finite free ring mapR→ S the ringS has regular formal
fibres. Let q ⊂ p ⊂ R be primes and let κ(q) ⊂ L be a finite purely inseparable extension.
To show that R is a G-ring it suffices to show that

R∧
p ⊗R κ(q)⊗κ(q) L

is a regular ring. Choose a finite free extension R → R′ such that q′ = qR′ is a prime
and such that κ(q′) is isomorphic to L over κ(q), see Algebra, Lemma 159.3. By Algebra,
Lemma 97.8 we have

R∧
p ⊗R R′ =

∏
(R′

p′
i
)∧

where p′
i are the primes of R′ lying over p. Thus we have

R∧
p ⊗R κ(q)⊗κ(q) L = R∧

p ⊗R R′ ⊗R′ κ(q′) =
∏

(R′
p′
i
)∧ ⊗R′

p′
i

κ(q′)

Our assumption is that the rings on the right are regular, hence the ring on the left is
regular too. Thus R is a G-ring. The converse follows from Lemma 50.3. �

Lemma 50.5. Let k be a field of characteristic p. Let A = k[[x1, . . . , xn]][y1, . . . , yn]
and denoteK the fraction field ofA. Let p ⊂ A be a prime. ThenA∧

p⊗AK is geometrically
regular over K.

Proof. Let L/K be a finite purely inseparable field extension. We will show by in-
duction on [L : K] that A∧

p ⊗ L is regular. The base case is L = K: as A is regular, A∧
p

is regular (Lemma 43.4), hence the localization A∧
p ⊗K is regular. Let K ⊂ M ⊂ L be a

subfield such that L is a degree p extension of M obtained by adjoining a pth root of an
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element f ∈M . Let B be a finite A-subalgebra of M with fraction field M . Clearing de-
nominators, we may and do assume f ∈ B. Set C = B[z]/(zp − f) and note that B ⊂ C
is finite and that the fraction field of C is L. Since A ⊂ B ⊂ C are finite and L/M/K
are purely inseparable we see that for every element of B or C some power of it lies in A.
Hence there is a unique prime r ⊂ B, resp. q ⊂ C lying over p. Note that

A∧
p ⊗AM = B∧

r ⊗B M

see Algebra, Lemma 97.8. By induction we know that this ring is regular. In the same
manner we have

A∧
p ⊗A L = C∧

r ⊗C L = B∧
r ⊗B M [z]/(zp − f)

the last equality because the completion of C = B[z]/(zp − f) equals B∧
r [z]/(zp − f).

By Lemma 48.5 we know there exists a derivation D : B → B such that D(f) 6= 0. In
other words, g = D(f) is a unit in M ! By Lemma 48.1 D extends to a derivation of Br,
B∧

r and B∧
r ⊗B M (successively extending through a localization, a completion, and a

localization). Since it is an extension we end up with a derivation of B∧
r ⊗B M which

maps f to g and g is a unit of the ring B∧
r ⊗B M . Hence A∧

p ⊗A L is regular by Lemma
48.4 and we win. �

Proposition 50.6. A Noetherian complete local ring is a G-ring.

Proof. LetA be a Noetherian complete local ring. By Lemma 50.2 it suffices to check
that B = A/q has geometrically regular formal fibres over the minimal prime (0) of B.
Thus we may assume that A is a domain and it suffices to check the condition for the
formal fibres over the minimal prime (0) of A. Let K be the fraction field of A.

We can choose a subring A0 ⊂ A which is a regular complete local ring such that A is
finite over A0, see Algebra, Lemma 160.11. Moreover, we may assume that A0 is a power
series ring over a field or a Cohen ring. By Lemma 50.3 we see that it suffices to prove the
result for A0.

Assume that A is a power series ring over a field or a Cohen ring. Since A is regular the
localizations Ap are regular (see Algebra, Definition 110.7 and the discussion preceding
it). Hence the completions A∧

p are regular, see Lemma 43.4. Hence the fibre A∧
p ⊗A K is,

as a localization of A∧
p , also regular. Thus we are done if the characteristic of K is 0. The

positive characteristic case is the caseA = k[[x1, . . . , xd]] which is a special case of Lemma
50.5. �

Lemma 50.7. Let R be a Noetherian ring. Then R is a G-ring if and only if Rm has
geometrically regular formal fibres for every maximal ideal m of R.

Proof. Assume Rm → R∧
m is regular for every maximal ideal m of R. Let p be a

prime of R and choose a maximal ideal p ⊂ m. Since Rm → R∧
m is faithfully flat we can

choose a prime p′ if R∧
m lying over pRm. Consider the commutative diagram

R∧
m

// (R∧
m)p′ // (R∧

m)∧
p′

Rm

OO

// Rp

OO

// R∧
p

OO

By assumption the ring mapRm → R∧
m is regular. By Proposition 50.6 (R∧

m)p′ → (R∧
m)∧

p′

is regular. The localization R∧
m → (R∧

m)p′ is regular. Hence Rm → (R∧
m)∧

p′ is regular by
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Lemma 41.4. Since it factors through the localizationRp, also the ring mapRp → (R∧
m)∧

p′

is regular. Thus we may apply Lemma 41.7 to see that Rp → R∧
p is regular. �

Lemma 50.8. LetR be a Noetherian local ring which is a G-ring. Then the henseliza-
tion Rh and the strict henselization Rsh are G-rings.

Proof. We will use the criterion of Lemma 50.7. Let q ⊂ Rh be a prime and set
p = R ∩ q. Set q1 = q and let q2, . . . , qt be the other primes of Rh lying over p, so that
Rh ⊗R κ(p) =

∏
i=1,...,t κ(qi), see Lemma 45.13. Using that (Rh)∧ = R∧ (Lemma 45.3)

we see ∏
i=1,...,t

(Rh)∧ ⊗Rh κ(qi) = (Rh)∧ ⊗Rh (Rh ⊗R κ(p)) = R∧ ⊗R κ(p)

Hence (Rh)∧ ⊗Rh κ(qi) is geometrically regular over κ(p) by assumption. Since κ(qi) is
separable algebraic over κ(p) it follows from Algebra, Lemma 166.6 that (Rh)∧⊗Rh κ(qi)
is geometrically regular over κ(qi).
Let r ⊂ Rsh be a prime and set p = R∩ r. Set r1 = r and let r2, . . . , rs be the other primes
of Rsh lying over p, so that Rsh ⊗R κ(p) =

∏
i=1,...,s κ(ri), see Lemma 45.13. Then we

see that∏
i=1,...,s

(Rsh)∧ ⊗Rsh κ(ri) = (Rsh)∧ ⊗Rsh (Rsh ⊗R κ(p)) = (Rsh)∧ ⊗R κ(p)

Note that R∧ → (Rsh)∧ is formally smooth in the m(Rsh)∧ -adic topology, see Lemma
45.3. HenceR∧ → (Rsh)∧ is regular by Proposition 49.2. We conclude that (Rsh)∧⊗Rsh
κ(ri) is regular overκ(p) by Lemma 41.4 asR∧⊗Rκ(p) is regular overκ(p) by assumption.
Since κ(ri) is separable algebraic over κ(p) it follows from Algebra, Lemma 166.6 that
(Rsh)∧ ⊗Rsh κ(ri) is geometrically regular over κ(ri). �

Lemma 50.9. Let p be a prime number. LetA be a Noetherian complete local domain
with fraction field K of characteristic p. Let q ⊂ A[x] be a maximal ideal lying over
the maximal ideal of A and let (0) 6= r ⊂ q be a prime lying over (0) ⊂ A. Then
A[x]∧q ⊗A[x] κ(r) is geometrically regular over κ(r).

Proof. Note that K ⊂ κ(r) is finite. Hence, given a finite purely inseparable exten-
sion L/κ(r) there exists a finite extension of Noetherian complete local domains A ⊂ B
such that κ(r)⊗AB surjects ontoL. Namely, you takeB ⊂ L a finiteA-subalgebra whose
field of fractions is L. Denote r′ ⊂ B[x] the kernel of the map B[x] = A[x] ⊗A B →
κ(r)⊗A B → L so that κ(r′) = L. Then

A[x]∧q ⊗A[x] L = A[x]∧q ⊗A[x] B[x]⊗B[x] κ(r′) =
∏

B[x]∧qi ⊗B[x] κ(r′)

where q1, . . . , qt are the primes of B[x] lying over q, see Algebra, Lemma 97.8. Thus we
see that it suffices to prove the rings B[x]∧qi ⊗B[x] κ(r′) are regular. This reduces us to
showing that A[x]∧q ⊗A[x] κ(r) is regular in the special case that K = κ(r).
Assume K = κ(r). In this case we see that rK[x] is generated by x − f for some f ∈ K
and

A[x]∧q ⊗A[x] κ(r) = (A[x]∧q ⊗A K)/(x− f)
The derivation D = d/dx of A[x] extends to K[x] and maps x − f to a unit of K[x].
Moreover D extends to A[x]∧q ⊗A K by Lemma 48.1. As A→ A[x]∧q is formally smooth
(see Lemmas 37.2 and 37.4) the ringA[x]∧q ⊗AK is regular by Proposition 49.2 (the argu-
ments of the proof of that proposition simplify significantly in this particular case). We
conclude by Lemma 48.2. �
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Proposition 50.10. Let R be a G-ring. If R → S is essentially of finite type then S
is a G-ring.

Proof. Since being a G-ring is a property of the local rings it is clear that a local-
ization of a G-ring is a G-ring. Conversely, if every localization at a prime is a G-ring,
then the ring is a G-ring. Thus it suffices to show that Sq is a G-ring for every finite type
R-algebra S and every prime q of S. Writing S as a quotient ofR[x1, . . . , xn] we see from
Lemma 50.3 that it suffices to prove that R[x1, . . . , xn] is a G-ring. By induction on n it
suffices to prove that R[x] is a G-ring. Let q ⊂ R[x] be a maximal ideal. By Lemma 50.7
it suffices to show that

R[x]q −→ R[x]∧q
is regular. If q lies over p ⊂ R, then we may replace R by Rp. Hence we may assume that
R is a Noetherian local G-ring with maximal ideal m and that q ⊂ R[x] lies over m. Note
that there is a unique prime q′ ⊂ R∧[x] lying over q. Consider the diagram

R[x]∧q // (R∧[x]q′)∧

R[x]q //

OO

R∧[x]q′

OO

SinceR is a G-ring the lower horizontal arrow is regular (as a localization of a base change
of the regular ring map R → R∧). Suppose we can prove the right vertical arrow is
regular. Then it follows that the composition R[x]q → (R∧[x]q′)∧ is regular, and hence
the left vertical arrow is regular by Lemma 41.7. Hence we see that we may assume R is a
Noetherian complete local ring and q a prime lying over the maximal ideal of R.
Let R be a Noetherian complete local ring and let q ⊂ R[x] be a maximal ideal lying over
the maximal ideal ofR. Let r ⊂ q be a prime ideal. We want to show thatR[x]∧q ⊗R[x]κ(r)
is a geometrically regular algebra over κ(r). Set p = R∩ r. Then we can replaceR byR/p
and q and r by their images in R/p[x], see Lemma 50.2. Hence we may assume that R is a
domain and that r ∩R = (0).
By Algebra, Lemma 160.11 we can find R0 ⊂ R which is regular and such that R is finite
over R0. Applying Lemma 50.3 we see that it suffices to prove R[x]∧q ⊗R[x] κ(r) is geo-
metrically regular over κ(r) when, in addition to the above, R is a regular complete local
ring.
Now R is a regular complete local ring, we have q ⊂ r ⊂ R[x], we have (0) = R ∩ r and
q is a maximal ideal lying over the maximal ideal of R. Since R is regular the ring R[x]
is regular (Algebra, Lemma 163.10). Hence the localization R[x]q is regular. Hence the
completions R[x]∧q are regular, see Lemma 43.4. Hence the fibre R[x]∧q ⊗R[x] κ(r) is, as a
localization of R[x]∧q , also regular. Thus we are done if the characteristic of the fraction
field of R is 0.
If the characteristic of R is positive, then R = k[[x1, . . . , xn]]. In this case we split the
argument in two subcases:

(1) The case r = (0). The result is a direct consequence of Lemma 50.5.
(2) The case r 6= (0). This is Lemma 50.9.

�

Remark 50.11. Let R be a G-ring and let I ⊂ R be an ideal. In general it is not the
case that the I-adic completion R∧ is a G-ring. An example was given by Nishimura in



50. G-RINGS 1335

[?]. A generalization and, in some sense, clarification of this example can be found in the
last section of [?].

Proposition 50.12. The following types of rings are G-rings:
(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. For fields, Z and Dedekind domains of characteristic zero this follows imme-
diately from the definition and the fact that the completion of a discrete valuation ring
is a discrete valuation ring. A Noetherian complete local ring is a G-ring by Proposition
50.6. The statement on finite type overrings is Proposition 50.10. �

Lemma 50.13. Let (A,m) be a henselian local ring. Then A is a filtered colimit of a
system of henselian local G-rings with local transition maps.

Proof. Write A = colimAi as a filtered colimit of finite type Z-algebras. Let pi
be the prime ideal of Ai lying under m. We may replace Ai by the localization of Ai at
pi. Then Ai is a Noetherian local G-ring (Proposition 50.12). By Lemma 12.5 we see that
A = colimAhi . By Lemma 50.8 the rings Ahi are G-rings. �

Lemma 50.14. LetA be a G-ring. Let I ⊂ A be an ideal and letA∧ be the completion
of A with respect to I . Then A→ A∧ is regular.

Proof. The ring map A→ A∧ is flat by Algebra, Lemma 97.2. The ring A∧ is Noe-
therian by Algebra, Lemma 97.6. Thus it suffices to check the third condition of Lemma
41.2. Let m′ ⊂ A∧ be a maximal ideal lying over m ⊂ A. By Algebra, Lemma 96.6
we have IA∧ ⊂ m′. Since A∧/IA∧ = A/I we see that I ⊂ m, m/I = m′/IA∧, and
A/m = A∧/m′. Since A∧/m′ is a field, we conclude that m is a maximal ideal as well.
ThenAm → A∧

m′ is a flat local ring homomorphism of Noetherian local rings which iden-
tifies residue fields and such that mA∧

m′ = m′A∧
m′ . Thus it induces an isomorphism on

complete local rings, see Lemma 43.9. Let (Am)∧ be the completion ofAm with respect to
its maximal ideal. The ring map

(A∧)m′ → ((A∧)m′)∧ = (Am)∧

is faithfully flat (Algebra, Lemma 97.3). Thus we can apply Lemma 41.7 to the ring maps

Am → (A∧)m′ → (Am)∧

to conclude because Am → (Am)∧ is regular as A is a G-ring. �

Lemma 50.15. LetA be a G-ring. Let I ⊂ A be an ideal. Let (Ah, Ih) be the henseliza-
tion of the pair (A, I), see Lemma 12.1. Then Ah is a G-ring.

Proof. Let mh ⊂ Ah be a maximal ideal. We have to show that the map from Ahmh
to its completion has geometrically regular fibres, see Lemma 50.7. Let m be the inverse
image of mh in A. Note that Ih ⊂ mh and hence I ⊂ m as (Ah, Ih) is a henselian pair.
Recall that Ah is Noetherian, Ih = IAh, and that A → Ah induces an isomorphism on
I-adic completions, see Lemma 12.4. Then the local homomorphism of Noetherian local
rings

Am → Ahmh
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induces an isomorphism on completions at maximal ideals by Lemma 43.9 (details omit-
ted). Let qh be a prime of Ahmh lying over q ⊂ Am. Set q1 = qh and let q2, . . . , qt be the
other primes of Ah lying over q, so that Ah ⊗A κ(q) =

∏
i=1,...,t κ(qi), see Lemma 45.12.

Using that (Ah)∧
mh = (Am)∧ as discussed above we see∏

i=1,...,t
(Ahmh)∧ ⊗Ah

mh
κ(qi) = (Ahmh)∧ ⊗Ah

mh
(Ahmh ⊗Am

κ(q)) = (Am)∧ ⊗Am
κ(q)

Hence, as one of the components, the ring

(Ahmh)∧ ⊗Ah
mh

κ(qh)

is geometrically regular over κ(q) by assumption on A. Since κ(qh) is separable algebraic
over κ(q) it follows from Algebra, Lemma 166.6 that

(Ahmh)∧ ⊗Ah
mh

κ(qh)

is geometrically regular over κ(qh) as desired. �

51. Properties of formal fibres

In this section we redo some of the arguments of Section 50 for to be able to talk intelli-
gently about properties of the formal fibres of Noetherian rings.
Let P be a property of ring maps k → R where k is a field and R is Noetherian. We say
P holds for the fibres of a ring homomorphism A → B with B Noetherian if P holds
for κ(q) → B ⊗A κ(q) for all primes q of A. In the following we will use the following
assertions

(A) P (k → R)⇒ P (k′ → R⊗k k′) for finitely generated field extensions k′/k,
(B) P (k → Rp), ∀p ∈ Spec(R)⇔ P (k → R),
(C) given flat maps A → B → C of Noetherian rings, if the fibres of A → B have

P and B → C is regular, then the fibres of A→ C have P ,
(D) given flat maps A → B → C of Noetherian rings if the fibres of A → C have

P and B → C is faithfully flat, then the fibres of A→ B have P ,
(E) given k → k′ → R withRNoetherian if k′/k is separable algebraic and P (k →

R), then P (k′ → R), and
(F) add more here.

Given a Noetherian local ringA we say “the formal fibres ofA have P ” if P holds for the
fibres of A→ A∧. We say that R is a P -ring if R is Noetherian and for all primes p of R
the formal fibres of Rp have P .

Lemma 51.1. Let R be a Noetherian ring. Let P be a property as above. Then R is a
P -ring if and only if for every pair of primes q ⊂ p ⊂ R the κ(q)-algebra

(R/q)∧
p ⊗R/q κ(q)

has property P .

Proof. This follows from the fact that
R∧

p ⊗R κ(q) = (R/q)∧
p ⊗R/q κ(q)

as algebras over κ(q). �

Lemma 51.2. Let R → Λ be a homomorphism of Noetherian rings. Assume P has
property (B). The following are equivalent

(1) the fibres of R→ Λ have P ,
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(2) the fibres of Rp → Λq have P for all q ⊂ Λ lying over p ⊂ R, and
(3) the fibres of Rm → Λm′ have P for all maximal ideals m′ ⊂ Λ lying over m in

R.

Proof. Let p ⊂ R be a prime. Then the fibre over p is the ring Λ ⊗R κ(p) whose
spectrum maps bijectively onto the subset of Spec(Λ) consisting of primes q lying over
p, see Algebra, Remark 17.8. For such a prime q choose a maximal ideal q ⊂ m′ and set
m = R ∩m′. Then p ⊂ m and we have

(Λ⊗R κ(p))q ∼= (Λm′ ⊗Rm
κ(p))q

as κ(q)-algebras. Thus (1), (2), and (3) are equivalent because by (B) we can check property
P on local rings. �

Lemma 51.3. Let R→ R′ be a finite type map of Noetherian rings and let

q′ // p′ // R′

q // p // R

OO

be primes. Assume R→ R′ is quasi-finite at p′. Assume P satisfies (A) and (B).
(1) If κ(q)→ R∧

p ⊗R κ(q) has P , then κ(q′)→ R′
p′ ⊗R′ κ(q′) has P .

(2) If the formal fibres of Rp have P , then the formal fibres of R′
p′ have P .

(3) If R→ R′ is quasi-finite and R is a P -ring, then R′ is a P -ring.

Proof. It is clear that (1)⇒ (2)⇒ (3). Assume P holds for κ(q)→ R∧
p ⊗R κ(q). By

Algebra, Lemma 124.3 we see that

R∧
p ⊗R R′ = (R′

p′)∧ ×B
for some R∧

p -algebra B. Hence R′
p′ → (R′

p′)∧ is a factor of a base change of the map
Rp → R∧

p . It follows that (R′
p′)∧ ⊗R′ κ(q′) is a factor of

R∧
p ⊗R R′ ⊗R′ κ(q′) = R∧

p ⊗R κ(q)⊗κ(q) κ(q′).
Thus the result follows from the assumptions on P . �

Lemma 51.4. Let R be a Noetherian ring. Assume P satisfies (C) and (D). Then R is
a P -ring if and only if the formal fibres of Rm have P for every maximal ideal m of R.

Proof. Assume the formal fibres of Rm have P for all maximal ideals m of R. Let p
be a prime of R and choose a maximal ideal p ⊂ m. Since Rm → R∧

m is faithfully flat we
can choose a prime p′ if R∧

m lying over pRm. Consider the commutative diagram

R∧
m

// (R∧
m)p′ // (R∧

m)∧
p′

Rm

OO

// Rp

OO

// R∧
p

OO

By assumption the fibres of the ring map Rm → R∧
m have P . By Proposition 50.6

(R∧
m)p′ → (R∧

m)∧
p′ is regular. The localization R∧

m → (R∧
m)p′ is regular. Hence R∧

m →
(R∧

m)∧
p′ is regular by Lemma 41.4. Hence the fibres ofRm → (R∧

m)∧
p′ have P by (C). Since

Rm → (R∧
m)∧

p′ factors through the localization Rp, also the fibres of Rp → (R∧
m)∧

p′ have
P . Thus we may apply (D) to see that the fibres of Rp → R∧

p have P . �
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Proposition 51.5. LetR be aP -ring whereP satisfies (A), (B), (C), and (D). IfR→ S
is essentially of finite type then S is a P -ring.

Proof. Since being a P -ring is a property of the local rings it is clear that a local-
ization of a P -ring is a P -ring. Conversely, if every localization at a prime is a P -ring,
then the ring is a P -ring. Thus it suffices to show that Sq is a P -ring for every finite type
R-algebra S and every prime q of S. Writing S as a quotient ofR[x1, . . . , xn] we see from
Lemma 51.3 that it suffices to prove that R[x1, . . . , xn] is a P -ring. By induction on n it
suffices to prove that R[x] is a P -ring. Let q ⊂ R[x] be a maximal ideal. By Lemma 51.4
it suffices to show that the fibres of

R[x]q −→ R[x]∧q
have P . If q lies over p ⊂ R, then we may replace R by Rp. Hence we may assume that
R is a Noetherian local P -ring with maximal ideal m and that q ⊂ R[x] lies over m. Note
that there is a unique prime q′ ⊂ R∧[x] lying over q. Consider the diagram

R[x]∧q // (R∧[x]q′)∧

R[x]q //

OO

R∧[x]q′

OO

SinceR is aP -ring the fibres ofR[x]→ R∧[x] haveP because they are base changes of the
fibres ofR→ R∧ by a finitely generated field extension so (A) applies. Hence the fibres of
the lower horizontal arrow haveP for example by Lemma 51.2. The right vertical arrow is
regular because R∧ is a G-ring (Propositions 50.6 and 50.10). It follows that the fibres of
the composition R[x]q → (R∧[x]q′)∧ have P by (C). Hence the fibres of the left vertical
arrow have P by (D) and the proof is complete. �

Lemma 51.6. Let A be a P -ring where P satisfies (B) and (D). Let I ⊂ A be an ideal
and let A∧ be the completion of A with respect to I . Then the fibres of A→ A∧ have P .

Proof. The ring map A→ A∧ is flat by Algebra, Lemma 97.2. The ring A∧ is Noe-
therian by Algebra, Lemma 97.6. Thus it suffices to check the third condition of Lemma
51.2. Let m′ ⊂ A∧ be a maximal ideal lying over m ⊂ A. By Algebra, Lemma 96.6
we have IA∧ ⊂ m′. Since A∧/IA∧ = A/I we see that I ⊂ m, m/I = m′/IA∧, and
A/m = A∧/m′. Since A∧/m′ is a field, we conclude that m is a maximal ideal as well.
ThenAm → A∧

m′ is a flat local ring homomorphism of Noetherian local rings which iden-
tifies residue fields and such that mA∧

m′ = m′A∧
m′ . Thus it induces an isomorphism on

complete local rings, see Lemma 43.9. Let (Am)∧ be the completion ofAm with respect to
its maximal ideal. The ring map

(A∧)m′ → ((A∧)m′)∧ = (Am)∧

is faithfully flat (Algebra, Lemma 97.3). Thus we can apply (D) to the ring maps

Am → (A∧)m′ → (Am)∧

to conclude because the fibres of Am → (Am)∧ have P as A is a P -ring. �

Lemma 51.7. Let A be a P -ring where P satisfies (B), (C), (D), and (E). Let I ⊂ A be
an ideal. Let (Ah, Ih) be the henselization of the pair (A, I), see Lemma 12.1. Then Ah is
a P -ring.
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Proof. Let mh ⊂ Ah be a maximal ideal. We have to show that the fibres ofAhmh →
(Ahmh)∧ have P , see Lemma 51.4. Let m be the inverse image of mh in A. Note that
Ih ⊂ mh and hence I ⊂ m as (Ah, Ih) is a henselian pair. Recall that Ah is Noetherian,
Ih = IAh, and that A → Ah induces an isomorphism on I-adic completions, see Lemma
12.4. Then the local homomorphism of Noetherian local rings

Am → Ahmh

induces an isomorphism on completions at maximal ideals by Lemma 43.9 (details omit-
ted). Let qh be a prime of Ahmh lying over q ⊂ Am. Set q1 = qh and let q2, . . . , qt be the
other primes of Ah lying over q, so that Ah ⊗A κ(q) =

∏
i=1,...,t κ(qi), see Lemma 45.12.

Using that (Ah)∧
mh = (Am)∧ as discussed above we see∏

i=1,...,t
(Ahmh)∧ ⊗Ah

mh
κ(qi) = (Ahmh)∧ ⊗Ah

mh
(Ahmh ⊗Am

κ(q)) = (Am)∧ ⊗Am
κ(q)

Hence, looking at local rings and using (B), we see that

κ(q) −→ (Ahmh)∧ ⊗Ah
mh

κ(qh)

hasP as κ(q)→ (Am)∧⊗Am
κ(q) does by assumption onA. Since κ(qh)/κ(q) is separable

algebraic, by (E) we find that κ(qh)→ (Ahmh)∧ ⊗Ah
mh

κ(qh) has P as desired. �

Lemma 51.8. LetR be a Noetherian local ring which is a P -ring where P satisfies (B),
(C), (D), and (E). Then the henselization Rh and the strict henselization Rsh are P -rings.

Proof. We have seen this for the henselization in Lemma 51.7. To prove it for the
strict henselization, it suffices to show that the formal fibres of Rsh have P , see Lemma
51.4. Let r ⊂ Rsh be a prime and set p = R ∩ r. Set r1 = r and let r2, . . . , rs be the other
primes of Rsh lying over p, so that Rsh ⊗R κ(p) =

∏
i=1,...,s κ(ri), see Lemma 45.13.

Then we see that∏
i=1,...,t

(Rsh)∧ ⊗Rsh κ(ri) = (Rsh)∧ ⊗Rsh (Rsh ⊗R κ(p)) = (Rsh)∧ ⊗R κ(p)

Note that R∧ → (Rsh)∧ is formally smooth in the m(Rsh)∧ -adic topology, see Lemma
45.3. Hence R∧ → (Rsh)∧ is regular by Proposition 49.2. We conclude that property
P holds for κ(p) → (Rsh)∧ ⊗R κ(p) by (C) and our assumption on R. Using property
(B), using the decomposition above, and looking at local rings we conclude that property
P holds for κ(p) → (Rsh)∧ ⊗Rsh κ(r). Since κ(r)/κ(p) is separable algebraic, it follows
from (E) that P holds for κ(r)→ (Rsh)∧ ⊗Rsh κ(r). �

Lemma 51.9. Properties (A), (B), (C), (D), and (E) hold for P (k → R) =“R is geo-
metrically reduced over k”.

Proof. Part (A) follows from the definition of geometrically reduced algebras (Alge-
bra, Definition 43.1). Part (B) follows too: a ring is reduced if and only if all local rings are
reduced. Part (C). This follows from Lemma 42.1. Part (D). This follows from Algebra,
Lemma 164.2. Part (E). This follows from Algebra, Lemma 43.9. �

Lemma 51.10. Properties (A), (B), (C), (D), and (E) hold for P (k → R) =“R is
geometrically normal over k”.

Proof. Part (A) follows from the definition of geometrically normal algebras (Alge-
bra, Definition 165.2). Part (B) follows too: a ring is normal if and only if all of its local
rings are normal. Part (C). This follows from Lemma 42.2. Part (D). This follows from
Algebra, Lemma 164.3. Part (E). This follows from Algebra, Lemma 165.6. �



1340 15. MORE ON ALGEBRA

Lemma 51.11. Fix n ≥ 1. Properties (A), (B), (C), (D), and (E) hold for P (k →
R) =“R has (Sn)”.

Proof. Let k → R be a ring map where k is a field andR a Noetherian ring. Let k′/k
be a finitely generated field extension. Then the fibres of the ring map R → R ⊗k k′ are
Cohen-Macaulay by Algebra, Lemma 167.1. Hence we may apply Algebra, Lemma 163.4
to the ring map R → R ⊗k k′ to see that if R has (Sn) so does R ⊗k k′. This proves
(A). Part (B) follows too: a Noetherian rings has (Sn) if and only if all of its local rings
have (Sn). Part (C). This follows from Algebra, Lemma 163.4 as the fibres of a regular
homomorphism are regular and in particular Cohen-Macaulay. Part (D). This follows
from Algebra, Lemma 164.5. Part (E). This is immediate as the condition does not refer to
the ground field. �

Lemma 51.12. Properties (A), (B), (C), (D), and (E) hold for P (k → R) =“R is
Cohen-Macaulay”.

Proof. Follows immediately from Lemma 51.11 and the fact that a Noetherian ring
is Cohen-Macaulay if and only if it satisfies conditions (Sn) for all n. �

Lemma 51.13. Fix n ≥ 0. Properties (A), (B), (C), (D), and (E) hold for P (k →
R) =“R⊗k k′ has (Rn) for all finite extensions k′/k”.

Proof. Let k → R be a ring map where k is a field andR a Noetherian ring. Assume
P (k → R) is true. Let K/k be a finitely generated field extension. By Algebra, Lemma
45.3 we can find a diagram

K // K ′

k

OO

// k′

OO

where k′/k, K ′/K are finite purely inseparable field extensions such that K ′/k′ is sepa-
rable. By Algebra, Lemma 158.10 there exists a smooth k′-algebra B such that K ′ is the
fraction field of B. Now we can argue as follows: Step 1: R ⊗k k′ satisfies (Sn) because
we assumed P for k → R. Step 2: R ⊗k k′ → R ⊗k k′ ⊗k′ B is a smooth ring map
(Algebra, Lemma 137.4) and we concludeR⊗k k′⊗k′ B satisfies (Sn) by Algebra, Lemma
163.5 (and using Algebra, Lemma 140.3 to see that the hypotheses are satisfied). Step 3.
R ⊗k k′ ⊗k′ K ′ = R ⊗k K ′ satisfies (Rn) as it is a localization of a ring having (Rn).
Step 4. Finally R ⊗k K satisfies (Rn) by descent of (Rn) along the faithfully flat ring
map K ⊗k A→ K ′ ⊗k A (Algebra, Lemma 164.6). This proves (A). Part (B) follows too:
a Noetherian ring has (Rn) if and only if all of its local rings have (Rn). Part (C). This
follows from Algebra, Lemma 163.5 as the fibres of a regular homomorphism are regular
(small detail omitted). Part (D). This follows from Algebra, Lemma 164.6 (small detail
omitted).

Part (E). Let l/k be a separable algebraic extension of fields and let l → R be a ring map
with R Noetherian. Assume that k → R has P . We have to show that l → R has P . Let
l′/l be a finite extension. First observe that there exists a finite subextension l/m/k and a
finite extensionm′/m such that l′ = l⊗mm′. ThenR⊗l l′ = R⊗mm′. Hence it suffices
to prove thatm→ R has property P , i.e., we may assume that l/k is finite. If l/k is finite,
then l′/k is finite and we see that

l′ ⊗l R = (l′ ⊗k R)⊗l⊗kl l
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is a localization (by Algebra, Lemma 43.8) of the Noetherian ring l′⊗kR which has prop-
erty (Rn) by assumption P for k → R. This proves that l′ ⊗l R has property (Rn) as
desired. �

52. Excellent rings

In this section we discuss Grothendieck’s notion of excellent rings. For the definitions of
G-rings, J-2 rings, and universally catenary rings we refer to Definition 50.1, Definition
47.1, and Algebra, Definition 105.3.

Definition 52.1. Let R be a ring.
(1) We say R is quasi-excellent if R is Noetherian, a G-ring, and J-2.
(2) We say R is excellent if R is quasi-excellent and universally catenary.

Thus a Noetherian ring is quasi-excellent if it has geometrically regular formal fibres and
if any finite type algebra over it has closed singular set. For such a ring to be excellent we
require in addition that there exists (locally) a good dimension function. We will see later
(Section 109) that to be universally catenary can be formulated as a condition on the maps
Rm → R∧

m for maximal ideals m of R.

Lemma 52.2. Any localization of a finite type ring over a (quasi-)excellent ring is
(quasi-)excellent.

Proof. For finite type algebras this follows from the definitions for the properties
J-2 and universally catenary. For G-rings, see Proposition 50.10. We omit the proof that
localization preserves (quasi-)excellency. �

Proposition 52.3. The following types of rings are excellent:
(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains with fraction field of characteristic zero,
(5) finite type ring extensions of any of the above.

Proof. See Propositions 50.12 and 48.7 to see that these rings are G-rings and have
J-2. Any Cohen-Macaulay ring is universally catenary, see Algebra, Lemma 105.9. In par-
ticular fields, Dedekind rings, and more generally regular rings are universally catenary.
Via the Cohen structure theorem we see that complete local rings are universally catenary,
see Algebra, Remark 160.9. �

The material developed above has some consequences for Nagata rings.

Lemma 52.4. Let (A,m) be a Noetherian local ring. The following are equivalent
(1) A is Nagata, and
(2) the formal fibres of A are geometrically reduced.

Proof. Assume (2). By Algebra, Lemma 162.14 we have to show that if A → B is
finite, B is a domain, and m′ ⊂ B is a maximal ideal, then Bm′ is analytically unramified.
Combining Lemmas 51.9 and 51.4 and Proposition 51.5 we see that the formal fibres of
Bm′ are geometrically reduced. In particularB∧

m′ ⊗B L is reduced where L is the fraction
field of B. It follows that B∧

m′ is reduced, i.e., Bm′ is analytically unramified.
Assume (1). Let q ⊂ A be a prime ideal and let K/κ(q) be a finite extension. We have
to show that A∧ ⊗A K is reduced. Let A/q ⊂ B ⊂ K be a local subring finite over A
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whose fraction field is K. To construct B choose x1, . . . , xn ∈ K which generate K over
κ(q) and which satisfy monic polynomials Pi(T ) = T di + ai,1T

di−1 + . . . + ai,di = 0
with ai,j ∈ m. Then let B be the A-subalgebra of K generated by x1, . . . , xn. (For more
details see the proof of Algebra, Lemma 162.14.) Then

A∧ ⊗A K = (A∧ ⊗A B)q = B∧
q

Since B∧ is reduced by Algebra, Lemma 162.14 the proof is complete. �

Lemma 52.5. A quasi-excellent ring is Nagata.

Proof. Let R be quasi-excellent. Using that a finite type algebra over R is quasi-
excellent (Lemma 52.2) we see that it suffices to show that any quasi-excellent domain is
N-1, see Algebra, Lemma 162.3. Applying Algebra, Lemma 161.15 (and using that a quasi-
excellent ring is J-2) we reduce to showing that a quasi-excellent local domain R is N-1.
As R → R∧ is regular we see that R∧ is reduced by Lemma 42.1. In other words, R is
analytically unramified. Hence R is N-1 by Algebra, Lemma 162.10. �

Lemma 52.6. Let (A,m) be a Noetherian local ring. If A is normal and the formal
fibres ofA are normal (for example ifA is excellent or quasi-excellent), thenA∧ is normal.

Proof. Follows immediately from Algebra, Lemma 163.8. �

53. Abelian categories of modules

Let R be a ring. The category ModR of R-modules is an abelian category. Here are some
examples of subcategories of ModR which are abelian (we use the terminology introduced
in Homology, Definition 10.1 as well as Homology, Lemmas 10.2 and 10.3):

(1) The category of coherentR-modules is a weak Serre subcategory of ModR. This
follows from Algebra, Lemma 90.3.

(2) Let S ⊂ R be a multiplicative subset. The full subcategory consisting of R-
modulesM such that multiplication by s ∈ S is an isomorphism onM is a Serre
subcategory of ModR. This follows from Algebra, Lemma 9.5.

(3) Let I ⊂ R be a finitely generated ideal. The full subcategory of I-power torsion
modules is a Serre subcategory of ModR. See Lemma 88.5.

(4) In some texts a torsion module is defined as a moduleM such that for all x ∈M
there exists a nonzerodivisor f ∈ R such that fx = 0. The full subcategory of
torsion modules is a Serre subcategory of ModR.

(5) IfR is not Noetherian, then the category ModfgR of finitely generatedR-modules
is not abelian. Namely, if I ⊂ R is a non-finitely generated ideal, then the map
R→ R/I does not have a kernel in ModfgR .

(6) If R is Noetherian, then coherent R-modules agree with finitely generated (i.e.,
finite) R-modules, see Algebra, Lemmas 90.5, 90.4, and 31.4. Hence ModfgR is
abelian by (1) above, but in fact,in this case the category ModfgR is a (strong)
Serre subcategory of ModR.

54. Injective abelian groups

In this section we show the category of abelian groups has enough injectives. Recall that
an abelian group M is divisible if and only if for every x ∈ M and every n ∈ N there
exists a y ∈M such that ny = x.
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Lemma 54.1. An abelian group J is an injective object in the category of abelian
groups if and only if J is divisible.

Proof. Suppose that J is not divisible. Then there exists an x ∈ J and n ∈ N such
that there is no y ∈ J with ny = x. Then the morphism Z → J , m 7→ mx does not
extend to 1

nZ ⊃ Z. Hence J is not injective.

Let A ⊂ B be abelian groups. Assume that J is a divisible abelian group. Let ϕ : A → J
be a morphism. Consider the set of homomorphisms ϕ′ : A′ → J with A ⊂ A′ ⊂ B
and ϕ′|A = ϕ. Define (A′, ϕ′) ≥ (A′′, ϕ′′) if and only if A′ ⊃ A′′ and ϕ′|A′′ = ϕ′′. If
(Ai, ϕi)i∈I is a totally ordered collection of such pairs, then we obtain a map

⋃
i∈I Ai → J

defined by a ∈ Ai maps to ϕi(a). Thus Zorn’s lemma applies. To conclude we have to
show that if the pair (A′, ϕ′) is maximal then A′ = B. In other words, it suffices to show,
given any subgroup A ⊂ B, A 6= B and any ϕ : A → J , then we can find ϕ′ : A′ → J
with A ⊂ A′ ⊂ B such that (a) the inclusion A ⊂ A′ is strict, and (b) the morphism ϕ′

extends ϕ.

To prove this, pick x ∈ B, x 6∈ A. If there exists no n ∈ N such that nx ∈ A, then
A⊕Z ∼= A+ Zx. Hence we can extend ϕ toA′ = A+ Zx by using ϕ onA and mapping
x to zero for example. If there does exist an n ∈ N such that nx ∈ A, then let n be the
minimal such integer. Let z ∈ J be an element such that nz = ϕ(nx). Define a morphism
ϕ̃ : A⊕Z→ J by (a,m) 7→ ϕ(a) +mz. By our choice of z the kernel of ϕ̃ contains the
kernel of the map A ⊕ Z → B, (a,m) 7→ a + mx. Hence ϕ̃ factors through the image
A′ = A+ Zx, and this extends the morphism ϕ. �

We can use this lemma to show that every abelian group can be embedded in a injective
abelian group. But this is a special case of the result of the following section.

55. Injective modules

Some lemmas on injective modules.

Definition 55.1. Let R be a ring. An R-module J is injective if and only if the
functor HomR(−, J) : ModR →ModR is an exact functor.

The functor HomR(−,M) is left exact for any R-module M , see Algebra, Lemma 10.1.
Hence the condition for J to be injective really signifies that given an injection of R-
modules M →M ′ the map HomR(M ′, J)→ HomR(M,J) is surjective.

Before we reformulate this in terms of Ext-modules we discuss the relationship between
Ext1

R(M,N) and extensions as in Homology, Section 6.

Lemma 55.2. Let R be a ring. Let A be the abelian category of R-modules. There is
a canonical isomorphism ExtA(M,N) = Ext1

R(M,N) compatible with the long exact
sequences of Algebra, Lemmas 71.6 and 71.7 and the 6-term exact sequences of Homology,
Lemma 6.4.

Proof. Omitted. �

Lemma 55.3. Let R be a ring. Let J be an R-module. The following are equivalent
(1) J is injective,
(2) Ext1

R(M,J) = 0 for every R-module M .
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Proof. Let 0 → M ′′ → M ′ → M → 0 be a short exact sequence of R-modules.
Consider the long exact sequence

0→ HomR(M,J)→ HomR(M ′, J)→ HomR(M ′′, J)
→ Ext1

R(M,J)→ Ext1
R(M ′, J)→ Ext1

R(M ′′, J)→ . . .

of Algebra, Lemma 71.7. Thus we see that (2) implies (1). Conversely, if J is injective then
the Ext-group is zero by Homology, Lemma 27.2 and Lemma 55.2. �

Lemma 55.4. Let R be a ring. Let J be an R-module. The following are equivalent
(1) J is injective,
(2) Ext1

R(R/I, J) = 0 for every ideal I ⊂ R, and
(3) for an ideal I ⊂ R and module map I → J there exists an extension R→ J .

Proof. If I ⊂ R is an ideal, then the short exact sequence 0→ I → R→ R/I → 0
gives an exact sequence

HomR(R, J)→ HomR(I, J)→ Ext1
R(R/I, J)→ 0

by Algebra, Lemma 71.7 and the fact that Ext1
R(R, J) = 0 as R is projective (Algebra,

Lemma 77.2). Thus (2) and (3) are equivalent. In this proof we will show that (1)⇔ (3)
which is known as Baer’s criterion.

Assume (1). Given a module map I → J as in (3) we find the extension R → J because
the map HomR(R, J)→ HomR(I, J) is surjective by definition.

Assume (3). Let M ⊂ N be an inclusion of R-modules. Let ϕ : M → J be a homo-
morphism. We will show that ϕ extends to N which finishes the proof of the lemma.
Consider the set of homomorphisms ϕ′ : M ′ → J with M ⊂ M ′ ⊂ N and ϕ′|M = ϕ.
Define (M ′, ϕ′) ≥ (M ′′, ϕ′′) if and only if M ′ ⊃ M ′′ and ϕ′|M ′′ = ϕ′′. If (Mi, ϕi)i∈I
is a totally ordered collection of such pairs, then we obtain a map

⋃
i∈IMi → J defined

by a ∈Mi maps to ϕi(a). Thus Zorn’s lemma applies. To conclude we have to show that
if the pair (M ′, ϕ′) is maximal then M ′ = N . In other words, it suffices to show, given
any subgroup M ⊂ N , M 6= N and any ϕ : M → J , then we can find ϕ′ : M ′ → J
with M ⊂ M ′ ⊂ N such that (a) the inclusion M ⊂ M ′ is strict, and (b) the morphism
ϕ′ extends ϕ.

To prove this, pick x ∈ N , x 6∈ M . Let I = {f ∈ R | fx ∈ M}. This is an ideal of
R. Define a homomorphism ψ : I → J by f 7→ ϕ(fx). Extend to a map ψ̃ : R → J
which is possible by assumption (3). By our choice of I the kernel of M ⊕ R → J ,
(y, f) 7→ y− ψ̃(f) contains the kernel of the mapM ⊕R→ N , (y, f) 7→ y+ fx. Hence
this homomorphism factors through the imageM ′ = M +Rx and this extends the given
homomorphism as desired. �

In the rest of this section we prove that there are enough injective modules over a ring R.
We start with the fact that Q/Z is an injective abelian group. This follows from Lemma
54.1.

Definition 55.5. Let R be a ring.
(1) For anyR-moduleM overR we denoteM∨ = Hom(M,Q/Z) with its natural

R-module structure. We think ofM 7→M∨ as a contravariant functor from the
category of R-modules to itself.
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(2) For any R-module M we denote

F (M) =
⊕

m∈M
R[m]

the free module with basis given by the elements [m] with m ∈ M . We let
F (M)→M ,

∑
fi[mi] 7→

∑
fimi be the natural surjection of R-modules. We

think of M 7→ (F (M) → M) as a functor from the category of R-modules to
the category of arrows in R-modules.

Lemma 55.6. Let R be a ring. The functor M 7→M∨ is exact.
Proof. This because Q/Z is an injective abelian group by Lemma 54.1. �

There is a canonical map ev : M → (M∨)∨ given by evaluation: given x ∈ M we let
ev(x) ∈ (M∨)∨ = Hom(M∨,Q/Z) be the map ϕ 7→ ϕ(x).

Lemma 55.7. For any R-module M the evaluation map ev : M → (M∨)∨ is injec-
tive.

Proof. You can check this using that Q/Z is an injective abelian group. Namely,
if x ∈ M is not zero, then let M ′ ⊂ M be the cyclic group it generates. There exists a
nonzero map M ′ → Q/Z which necessarily does not annihilate x. This extends to a map
ϕ : M → Q/Z and then ev(x)(ϕ) = ϕ(x) 6= 0. �

The canonical surjection F (M) → M of R-modules turns into a canonical injection, see
above, of R-modules

(M∨)∨ −→ (F (M∨))∨.

Set J(M) = (F (M∨))∨. The composition of ev with this the displayed map gives M →
J(M) functorially in M .

Lemma 55.8. Let R be a ring. For every R-module M the R-module J(M) is injec-
tive.

Proof. Note that J(M) ∼=
∏
ϕ∈M∨ R∨ as an R-module. As the product of injective

modules is injective, it suffices to show that R∨ is injective. For this we use that
HomR(N,R∨) = HomR(N,HomZ(R,Q/Z)) = N∨

and the fact that (−)∨ is an exact functor by Lemma 55.6. �

Lemma 55.9. Let R be a ring. The construction above defines a covariant functor
M 7→ (M → J(M)) from the category of R-modules to the category of arrows of R-
modules such that for every module M the output M → J(M) is an injective map of M
into an injective R-module J(M).

Proof. Follows from the above. �

In particular, for any map ofR-modulesM → N there is an associated morphismJ(M)→
J(N) making the following diagram commute:

M

��

// N

��
J(M) // J(N)

This is the kind of construction we would like to have in general. In Homology, Section 27
we introduced terminology to express this. Namely, we say this means that the category
of R-modules has functorial injective embeddings.
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56. Derived categories of modules

In this section we put some generalities concerning the derived category of modules over
a ring.

Let A be a ring. The category of A-modules is denoted ModA. We will use the symbol
K(A) to denote the homotopy category of complexes of A-modules, i.e., we set K(A) =
K(ModA) as a category, see Derived Categories, Section 8. The bounded versions are
K+(A), K−(A), and Kb(A). We view K(A) as a triangulated category as in Derived
Categories, Section 10. The derived category ofA, denotedD(A), is the category obtained
from K(A) by inverting quasi-isomorphisms, i.e., we set D(A) = D(ModA), see Derived
Categories, Section 116. The bounded versions are D+(A), D−(A), and Db(A).

Let A be a ring. The category of A-modules has products and products are exact. The
category of A-modules has enough injectives by Lemma 55.9. Hence every complex of A-
modules is quasi-isomorphic to a K-injective complex (Derived Categories, Lemma 34.5).
It follows thatD(A) has countable products (Derived Categories, Lemma 34.2) and in fact
arbitrary products (Injectives, Lemma 13.4). This implies that every inverse system of ob-
jects ofD(A) has a derived limit (well defined up to isomorphism), see Derived Categories,
Section 34.

Lemma 56.1. Let R → S be a flat ring map. If I• is a K-injective complex of S-
modules, then I• is K-injective as a complex of R-modules.

Proof. This is true because HomK(R)(M•, I•) = HomK(S)(M• ⊗R S, I•) by Al-
gebra, Lemma 14.3 and the fact that tensoring with S is exact. �

Lemma 56.2. Let R → S be an epimorphism of rings. Let I• be a complex of S-
modules. If I• is K-injective as a complex of R-modules, then I• is a K-injective complex
of S-modules.

Proof. This is true because HomK(R)(N•, I•) = HomK(S)(N•, I•) for any com-
plex of S-modules N•, see Algebra, Lemma 107.14. �

Lemma 56.3. LetA→ B be a ring map. If I• is a K-injective complex ofA-modules,
then HomA(B, I•) is a K-injective complex of B-modules.

Proof. This is true because HomK(B)(N•,HomA(B, I•)) = HomK(A)(N•, I•) by
Algebra, Lemma 14.4. �

57. Computing Tor

Let R be a ring. We denote D(R) the derived category of the abelian category ModR of
R-modules. Note that ModR has enough projectives as every free R-module is projective.
Thus we can define the left derived functors of any additive functor from ModR to any
abelian category.

This applies in particular to the functor − ⊗R M : ModR → ModR whose left derived
functors are the Tor functors TorRi (−,M), see Algebra, Section 75. There is also a total
left derived functor

(57.0.1) −⊗L
RM : D−(R) −→ D−(R)

6See also Injectives, Remark 13.3.
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which is denoted −⊗L
RM . Its satellites are the Tor modules, i.e., we have

H−p(N ⊗L
RM) = TorRp (N,M).

A special situation occurs when we consider the tensor product with an R-algebra A. In
this case we think of − ⊗R A as a functor from ModR to ModA. Hence the total right
derived functor
(57.0.2) −⊗L

R A : D−(R) −→ D−(A)
which is denoted −⊗L

R A. Its satellites are the tor groups, i.e., we have

H−p(N ⊗L
R A) = TorRp (N,A).

In particular these Tor groups naturally have the structure of A-modules.
We will generalize the material in this section to unbounded complexes in the next few
sections.

58. Tensor products of complexes

Let R be a ring. The category Comp(R) of complexes of R-modules has a symmetric
monoidal structure. Namely, suppose that we have two complexes of R-modules L• and
M•. Using Homology, Example 18.2 and Homology, Definition 18.3 we obtain a third
complex of R-modules, namely

Tot(L• ⊗RM•)
Clearly this construction is functorial in both L• and M•. The associativity constraint
will be the canonical isomorphism of complexes

Tot(Tot(K• ⊗R L•)⊗RM•) −→ Tot(K• ⊗R Tot(L• ⊗RM•))
constructed in Homology, Remark 18.4 from the triple complex K• ⊗R L• ⊗RM•. The
commutativity constraint is the canonical isomorphism

Tot(L• ⊗RM•)→ Tot(M• ⊗R L•)
which uses the sign (−1)pq on the summandLp⊗RMq . To see that it is a map of complexes
we compute for x ∈ Lp and y ∈Mq that

d(x⊗ y) = dL(x)⊗ y + (−1)px⊗ dM (y)
Our rule says the right hand side is mapped to

(−1)(p+1)qy ⊗ dL(x) + (−1)p+p(q+1)dM (y)⊗ x
On the other hand, we see that

d((−1)pqy ⊗ x) = (−1)pqdM (y)⊗ x+ (−1)pq+qy ⊗ dL(x)
These two expressions agree by inspection as desired.

Lemma 58.1. Let R be a ring. The category Comp(R) of complexes of R-modules
endowed with the functor (L•,M•) 7→ Tot(L• ⊗RM•) and associativity and commuta-
tivity constraints as above is a symmetric monoidal category.

Proof. Omitted. Hints: as unit 1 we take the complex having R in degree 0 and
zero in other degrees with obvious isomorphisms Tot(1⊗RM•) = M• and Tot(K• ⊗R
1) = K•. to prove the lemma you have to check the commutativity of various diagrams,
see Categories, Definitions 43.1 and 43.9. The verifications are straightforward in each
case. �
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Lemma 58.2. LetR be a ring. LetP • be a complex ofR-modules. Letα, β : L• →M•

be homotopic maps of complexes. Then α and β induce homotopic maps

Tot(α⊗ idP ),Tot(β ⊗ idP ) : Tot(L• ⊗R P •) −→ Tot(M• ⊗R P •).
In particular the construction L• 7→ Tot(L• ⊗R P •) defines an endo-functor of the ho-
motopy category of complexes.

Proof. Say α = β + dh + hd for some homotopy h defined by hn : Ln → Mn−1.
Set

Hn =
⊕

a+b=n
ha ⊗ idP b :

⊕
a+b=n

La ⊗R P b −→
⊕

a+b=n
Ma−1 ⊗R P b

Then a straightforward computation shows that

Tot(α⊗ idP ) = Tot(β ⊗ idP ) + dH +Hd

as maps Tot(L• ⊗R P •)→ Tot(M• ⊗R P •). �

Lemma 58.3. Let R be a ring. The homotopy category K(R) of complexes of R-
modules endowed with the functor (L•,M•) 7→ Tot(L• ⊗R M•) and associativity and
commutativity constraints as above is a symmetric monoidal category.

Proof. This follows from Lemmas 58.1 and 58.2. Details omitted. �

Lemma 58.4. Let R be a ring. Let P • be a complex of R-modules. The functors

K(R) −→ K(R), L• 7−→ Tot(P • ⊗R L•)
and

K(R) −→ K(R), L• 7−→ Tot(L• ⊗R P •)
are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 10.9. �

59. Derived tensor product

We can construct the derived tensor product in greater generality. In fact, it turns out that
the boundedness assumptions are not necessary, provided we choose K-flat resolutions.

Definition 59.1. Let R be a ring. A complex K• is called K-flat if for every acyclic
complex M• the total complex Tot(M• ⊗R K•) is acyclic.

Lemma 59.2. Let R be a ring. Let K• be a K-flat complex. Then the functor

K(R) −→ K(R), L• 7−→ Tot(L• ⊗R K•)
transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 58.4 and the fact that quasi-isomorphisms inK(R) are
characterized by having acyclic cones. �

Lemma 59.3. Let R → R′ be a ring map. If K• is a K-flat complex of R-modules,
then K• ⊗R R′ is a K-flat complex of R′-modules.

Proof. Follows from the definitions and the fact that (K•⊗RR′)⊗R′ L• = K•⊗R
L• for any complex L• of R′-modules. �

Lemma 59.4. Let R be a ring. If K•, L• are K-flat complexes of R-modules, then
Tot(K• ⊗R L•) is a K-flat complex of R-modules.
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Proof. Follows from the isomorphism

Tot(M• ⊗R Tot(K• ⊗R L•)) = Tot(Tot(M• ⊗R K•)⊗R L•)

and the definition. �

Lemma 59.5. LetR be a ring. Let (K•
1 ,K

•
2 ,K

•
3 ) be a distinguished triangle inK(R).

If two out of three of K•
i are K-flat, so is the third.

Proof. Follows from Lemma 58.4 and the fact that in a distinguished triangle in
K(R) if two out of three are acyclic, so is the third. �

Lemma 59.6. Let R be a ring. Let 0 → K•
1 → K•

2 → K•
3 → 0 be a short exact

sequence of complexes. If Kn
3 is flat for all n ∈ Z and two out of three of K•

i are K-flat,
so is the third.

Proof. Let L• be a complex of R-modules. Then

0→ Tot(L• ⊗R K•
1 )→ Tot(L• ⊗R K•

2 )→ Tot(L• ⊗R K•
3 )→ 0

is a short exact sequence of complexes. Namely, for each n,m the sequence of modules
0 → Ln ⊗R Km

1 → Ln ⊗R Km
2 → Ln ⊗R Km

3 → 0 is exact by Algebra, Lemma 39.12
and the sequence of complexes is a direct sum of these. Thus the lemma follows from this
and the fact that in a short exact sequence of complexes if two out of three are acyclic, so
is the third. �

Lemma 59.7. LetR be a ring. Let P • be a bounded above complex of flatR-modules.
Then P • is K-flat.

Proof. Let L• be an acyclic complex of R-modules. Let ξ ∈ Hn(Tot(L• ⊗R P •)).
We have to show that ξ = 0. Since Totn(L•⊗R P •) is a direct sum with terms La⊗R P b
we see that ξ comes from an element in Hn(Tot(τ≤mL

• ⊗R P •)) for some m ∈ Z. Since
τ≤mL

• is also acyclic we may replace L• by τ≤mL
•. Hence we may assume that L• is

bounded above. In this case the spectral sequence of Homology, Lemma 25.3 has
′Ep,q1 = Hp(L• ⊗R P q)

which is zero as P q is flat and L• acyclic. Hence H∗(Tot(L• ⊗R P •)) = 0. �

In the following lemma by a colimit of a system of complexes we mean the termwise col-
imit.

Lemma 59.8. Let R be a ring. Let K•
1 → K•

2 → . . . be a system of K-flat complexes.
Then colimiK

•
i is K-flat. More generally any filtered colimit of K-flat complexes is K-flat.

Proof. Because we are taking termwise colimits we have

colimi Tot(M• ⊗R K•
i ) = Tot(M• ⊗R colimiK

•
i )

by Algebra, Lemma 12.9. Hence the lemma follows from the fact that filtered colimits are
exact, see Algebra, Lemma 8.8. �

Lemma 59.9. Let R be a ring. Let K• be a complex of R-modules. If K• ⊗R M is
acyclic for all finitely presented R-modules M , then K• is K-flat.
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Proof. We will use repeatedly that tensor product commute with colimits (Algebra,
Lemma 12.9). Thus we see that K•⊗RM is acyclic for any R-module M , because any R-
module is a filtered colimit of finitely presented R-modules M , see Algebra, Lemma 11.3.
Let M• be an acyclic complex of R-modules. We have to show that Tot(M• ⊗R K•) is
acyclic. Since M• = colim τ≤nM

• (termwise colimit) we have

Tot(M• ⊗R K•) = colim Tot(τ≤nM
• ⊗R K•)

with truncations as in Homology, Section 15. As filtered colimits are exact (Algebra,
Lemma 8.8) we may replaceM• by τ≤nM

• and assume thatM• is bounded above. In the
bounded above case, we can write M• = colim σ≥−nM

• where the complexes σ≥−nM
•

are bounded but possibly no longer acyclic. Arguing as above we reduce to the case where
M• is a bounded complex. Finally, for a bounded complex Ma → . . . → M b we can
argue by induction on the length b− a of the complex. The case b− a = 1 we have seen
above. For b− a > 1 we consider the split short exact sequence of complexes

0→ σ≥a+1M
• →M• →Ma[−a]→ 0

and we apply Lemma 58.4 to do the induction step. Some details omitted. �

Lemma 59.10. LetR be a ring. For any complexM• there exists a K-flat complexK•

whose terms are flat R-modules and a quasi-isomorphism K• → M• which is termwise
surjective.

Proof. Let P ⊂ Ob(ModR) be the class of flat R-modules. By Derived Categories,
Lemma 29.1 there exists a system K•

1 → K•
2 → . . . and a diagram

K•
1

��

// K•
2

��

// . . .

τ≤1M
• // τ≤2M

• // . . .

with the properties (1), (2), (3) listed in that lemma. These properties imply each complex
K•
i is a bounded above complex of flat modules. Hence K•

i is K-flat by Lemma 59.7.
The induced map colimiK

•
i → M• is a quasi-isomorphism and termwise surjective by

construction. The complex colimiK
•
i is K-flat by Lemma 59.8. The terms colimKn

i are
flat because filtered colimits of flat modules are flat, see Algebra, Lemma 39.3. �

Remark 59.11. In fact, we can do better than Lemma 59.10. Namely, we can find
a quasi-isomorphism P • → M• where P • is a complex of R-modules endowed with a
filtration

0 = F−1P
• ⊂ F0P

• ⊂ F1P
• ⊂ . . . ⊂ P •

by subcomplexes such that
(1) P • =

⋃
FpP

•,
(2) the inclusions FiP • → Fi+1P

• are termwise split injections,
(3) the quotientsFi+1P

•/FiP
• are isomorphic to direct sums of shiftsR[k] (as com-

plexes, so differentials are zero).
This will be shown in Differential Graded Algebra, Lemma 20.4. Moreover, given such a
complex we obtain a distinguished triangle⊕

FiP
• →

⊕
FiP

• →M• →
⊕

FiP
•[1]
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in D(R). Using this we can sometimes reduce statements about general complexes to
statements aboutR[k] (this of course only works if the statement is preserved under taking
direct sums). More precisely, let T be a property of objects of D(R). Suppose that

(1) if Ki ∈ D(R), i ∈ I is a family of objects with T (Ki) for all i ∈ I , then
T (
⊕
Ki),

(2) if K → L → M → K[1] is a distinguished triangle and T holds for two, then
T holds for the third object,

(3) T (R[k]) holds for all k.
Then T holds for all objects of D(R).

Lemma 59.12. Let R be a ring. Let α : P • → Q• be a quasi-isomorphism of K-flat
complexes of R-modules. For every complex L• of R-modules the induced map

Tot(idL ⊗ α) : Tot(L• ⊗R P •) −→ Tot(L• ⊗R Q•)
is a quasi-isomorphism.

Proof. Choose a quasi-isomorphismK• → L• withK• a K-flat complex, see Lemma
59.10. Consider the commutative diagram

Tot(K• ⊗R P •) //

��

Tot(K• ⊗R Q•)

��
Tot(L• ⊗R P •) // Tot(L• ⊗R Q•)

The result follows as by Lemma 59.2 the vertical arrows and the top horizontal arrow are
quasi-isomorphisms. �

Let R be a ring. Let M• be an object of D(R). Choose a K-flat resolution K• → M•,
see Lemma 59.10. By Lemmas 58.2 and 58.4 we obtain an exact functor of triangulated
categories

K(R) −→ K(R), L• 7−→ Tot(L• ⊗R K•)
By Lemma 59.2 this functor induces a functorD(R)→ D(R) simply becauseD(R) is the
localization of K(R) at quasi-isomorphism. By Lemma 59.12 the resulting functor (up to
isomorphism) does not depend on the choice of the K-flat resolution.

Definition 59.13. LetR be a ring. LetM• be an object ofD(R). The derived tensor
product

−⊗L
RM

• : D(R) −→ D(R)
is the exact functor of triangulated categories described above.

This functor extends the functor (57.0.1). It is clear from our explicit constructions that
there is an isomorphism (involving a choice of signs, see below)

M• ⊗L
R L

• ∼= L• ⊗L
RM

•

whenever both L• andM• are inD(R). Hence when we writeM•⊗L
RL

• we will usually
be agnostic about which variable we are using to define the derived tensor product with.

Lemma 59.14. Let R be a ring. Let K•, L• be complexes of R-modules. There is a
canonical isomorphism

K• ⊗L
R L

• −→ L• ⊗L
R K

•

functorial in both complexes which uses a sign of (−1)pq for the map Kp ⊗R Lq →
Lq ⊗R Kp (see proof for explanation).
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Proof. We may and do replace the complexes by K-flat complexes K• and L• and
then we use the commutativity constraint discussed in Section 58. �

Lemma 59.15. Let R be a ring. Let K•, L•,M• be complexes of R-modules. There
is a canonical isomorphism

(K• ⊗L
R L

•)⊗L
RM

• = K• ⊗L
R (L• ⊗L

RM
•)

functorial in all three complexes.

Proof. Replace the complexes by K-flat complexes and use the associativity con-
straint in Section 58. �

Lemma 59.16. LetR be a ring. Let a : K• → L• be a map of complexes ofR-modules.
If K• is K-flat, then there exist a complex N• and maps of complexes b : K• → N• and
c : N• → L• such that

(1) N• is K-flat,
(2) c is a quasi-isomorphism,
(3) a is homotopic to c ◦ b.

If the terms of K• are flat, then we may choose N•, b, and c such that the same is true for
N•.

Proof. We will use that the homotopy category K(R) is a triangulated category,
see Derived Categories, Proposition 10.3. Choose a distinguished triangle K• → L• →
C• → K•[1]. Choose a quasi-isomorphism M• → C• with M• K-flat with flat terms,
see Lemma 59.10. By the axioms of triangulated categories, we may fit the composition
M• → C• → K•[1] into a distinguished triangle K• → N• → M• → K•[1]. By
Lemma 59.5 we see that N• is K-flat. Again using the axioms of triangulated categories,
we can choose a map N• → L• fitting into the following morphism of distinghuised
triangles

K• //

��

N• //

��

M• //

��

K•[1]

��
K• // L• // C• // K•[1]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrow N• →
L• by the long exact sequences of cohomology associated to these distinguished triangles
(or you can look at the image of this diagram inD(R) and use Derived Categories, Lemma
4.3 if you like). This finishes the proof of (1), (2), and (3). To prove the final assertion, we
may choose N• such that Nn ∼= Mn ⊕Kn, see Derived Categories, Lemma 10.7. Hence
we get the desired flatness if the terms of K• are flat. �

60. Derived change of rings

Let R → A be a ring map. Let N• be a complex of A-modules. We can also use K-flat
resolutions to define a functor

−⊗L
R N

• : D(R)→ D(A)

as the left derived functor of the functor K(R) → K(A), M• 7→ Tot(M• ⊗R N•). In
particular, taking N• = A[0] we obtain a derived base change functor

−⊗L
R A : D(R)→ D(A)
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extending the functor (57.0.2). Namely, for every complex of R-modules M• we can
choose a K-flat resolution K• →M• and set

M• ⊗L
R N

• = Tot(K• ⊗R N•).

You can use Lemmas 59.10 and 59.12 to see that this is well defined. However, to cross all
the t’s and dot all the i’s it is perhaps more convenient to use some general theory.

Lemma 60.1. The construction above is independent of choices and defines an exact
functor of triangulated categories − ⊗L

R N• : D(R) → D(A). There is a functorial
isomorphism

E• ⊗L
R N

• = (E• ⊗L
R A)⊗L

A N
•

for E• in D(R).

Proof. To prove the existence of the derived functor − ⊗L
R N

• we use the general
theory developed in Derived Categories, Section 14. Set D = K(R) and D′ = D(A).
Let us write F : D → D′ the exact functor of triangulated categories defined by the rule
F (M•) = Tot(M• ⊗R N•). To prove the stated properties of F use Lemmas 58.2 and
58.4. We let S be the set of quasi-isomorphisms in D = K(R). This gives a situation as
in Derived Categories, Situation 14.1 so that Derived Categories, Definition 14.2 applies.
We claim that LF is everywhere defined. This follows from Derived Categories, Lemma
14.15 with P ⊂ Ob(D) the collection of K-flat complexes: (1) follows from Lemma 59.10
and (2) follows from Lemma 59.12. Thus we obtain a derived functor

LF : D(R) = S−1D −→ D′ = D(A)

see Derived Categories, Equation (14.9.1). Finally, Derived Categories, Lemma 14.15 guar-
antees that LF (K•) = F (K•) = Tot(K• ⊗R N•) when K• is K-flat, i.e., LF is indeed
computed in the way described above. Moreover, by Lemma 59.3 the complex K• ⊗R A
is a K-flat complex of A-modules. Hence

(K• ⊗L
R A)⊗L

A N
• = Tot((K• ⊗R A)⊗A N•) = Tot(K• ⊗A N•) = K• ⊗L

A N
•

which proves the final statement of the lemma. �

Lemma 60.2. Let R→ A be a ring map. Let f : L• → N• be a map of complexes of
A-modules. Then f induces a transformation of functors

1⊗ f : −⊗L
A L

• −→ −⊗L
A N

•

If f is a quasi-isomorphism, then 1⊗ f is an isomorphism of functors.

Proof. Since the functors are computing by evaluating on K-flat complexes K• we
can simply use the functoriality

Tot(K• ⊗R L•)→ Tot(K• ⊗R N•)

to define the transformation. The last statement follows from Lemma 59.2. �

Lemma 60.3. LetR→ A be a ring map. The functorD(R)→ D(A), E 7→ E ⊗L
R A

of Lemma 60.1 is left adjoint to the restriction functor D(A)→ D(R).

Proof. This follows from Derived Categories, Lemma 30.1 and the fact that−⊗RA
and restriction are adjoint by Algebra, Lemma 14.3. �
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Remark 60.4 (Warning). LetR→ A be a ring map, and letN andN ′ beA-modules.
DenoteNR andN ′

R the restriction ofN andN ′ toR-modules, see Algebra, Section 14. In
this situation, the objectsNR⊗L

RN
′ andN⊗L

RN
′
R ofD(A) are in general not isomorphic!

In other words, one has to pay careful attention as to which of the two sides is being used
to provide the A-module structure.

For a specific example, setR = k[x, y],A = R/(xy),N = R/(x) andN ′ = A = R/(xy).
The resolution 0 → R

xy−→ R → N ′
R → 0 shows that N ⊗L

R N
′
R = N [1] ⊕N in D(A).

The resolution 0 → R
x−→ R → NR → 0 shows that NR ⊗L

R N
′ is represented by the

complex A x−→ A. To see these two complexes are not isomorphic, one can show that the
second complex is not isomorphic in D(A) to the direct sum of its cohomology groups,
or one can show that the first complex is not a perfect object of D(A) whereas the second
one is. Some details omitted.

Lemma 60.5. Let A → B → C be ring maps. Let N• be a complex of B-modules
and K• a complex of C-modules. The compositions of the functors

D(A) −⊗L
AN

•

−−−−−→ D(B) −⊗L
BK

•

−−−−−→ D(C)

is the functor −⊗L
A (N• ⊗L

B K
•) : D(A) → D(C). If M , N , K are modules over A, B,

C , then we have

(M ⊗L
A N)⊗L

B K = M ⊗L
A (N ⊗L

B K) = (M ⊗L
A C)⊗L

C (N ⊗L
B K)

in D(C). We also have a canonical isomorphism

(M ⊗L
A N)⊗L

B K −→ (M ⊗L
A K)⊗L

C (N ⊗L
B C)

using signs. Similar results holds for complexes.

Proof. Choose a K-flat complex P • of B-modules and a quasi-isomorphism P • →
N• (Lemma 59.10). Let M• be a K-flat complex of A-modules representing an arbitrary
object of D(A). Then we see that

(M• ⊗L
A P

•)⊗L
B K

• −→ (M• ⊗L
A N

•)⊗L
B K

•

is an isomorphism by Lemma 60.2 applied to the material inside the brackets. By Lemmas
59.3 and 59.4 the complex

Tot(M• ⊗A P •) = Tot((M• ⊗R A)⊗A P •

is K-flat as a complex of B-modules and it represents the derived tensor product in D(B)
by construction. Hence we see that (M• ⊗L

A P
•)⊗L

B K
• is represented by the complex

Tot(Tot(M• ⊗A P •)⊗B K•) = Tot(M• ⊗A Tot(P • ⊗B K•))

of C-modules. Equality by Homology, Remark 18.4. Going back the way we came we see
that this is equal to

M• ⊗L
A (P • ⊗L

B K
•)←−M• ⊗L

A (N• ⊗L
B K

•)

The arrow is an isomorphism by definition of the functor−⊗L
BK

•. All of these construc-
tions are functorial in the complexM• and hence we obtain our isomorphism of functors.

By the above we have the first equality in

(M ⊗L
A N)⊗L

B K = M ⊗L
A (N ⊗L

B K) = (M ⊗L
A C)⊗L

C (N ⊗L
B K)
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The second equality follows from the final statement of Lemma 60.1. The same thing
allows us to write N ⊗L

B K = (N ⊗L
B C)⊗L

C K and substituting we get

(M ⊗L
A N)⊗L

B K = (M ⊗L
A C)⊗L

C ((N ⊗L
B C)⊗L

C K)
= (M ⊗L

A C)⊗L
C (K ⊗L

C (N ⊗L
B C))

= ((M ⊗L
A C)⊗L

C K)⊗L
C (N ⊗L

B C))
= (M ⊗L

C K)⊗L
C (N ⊗L

B C)
by Lemmas 59.14 and 59.15 as well as the previously mentioned lemma. �

61. Tor independence

Consider a commutative diagram

A // A′

R //

OO

R′

OO

of rings. Given an object K of D(A) we can consider its derived base change K ⊗L
A A

′ to
an object ofD(A′). Or we can take the restriction ofK to an object ofD(R) and consider
the derived base change of this to an object ofD(R′), denotedK ⊗L

RR
′ We claim there is

a functorial comparison map

(61.0.1) K ⊗L
R R

′ −→ K ⊗L
A A

′

in D(R′). To construct this comparison map choose a K-flat complex K• of A-modules
representing K. Next, choose a quasi-isomorphism E• → K• where E• is a K-flat com-
plex of R-modules. The map above is the map

K ⊗L
R R

′ = E• ⊗R R′ −→ K• ⊗A A′ = K ⊗L
A A

′

In general there is no chance that this map is an isomorphism.
However, we often encounter the situation where the diagram above is a “base change”
diagram of rings, i.e., A′ = A ⊗R R′. In this situation, for any A-module M we have
M ⊗A A′ = M ⊗R R′. Thus − ⊗R R′ is equal to − ⊗A A′ as a functor ModA →
ModA′ . In general this equality does not extend to derived tensor products. In other
words, the comparison map is not an isomorphism. A simple example is to takeR = k[x],
A = R′ = A′ = k[x]/(x) = k and K• = A[0]. Clearly, a necessary condition is that
TorRp (A,R′) = 0 for all p > 0.

Definition 61.1. Let R be a ring. Let A, B be R-algebras. We say A and B are Tor
independent over R if TorRp (A,B) = 0 for all p > 0.

Lemma 61.2. The comparison map (61.0.1) is an isomorphism if A′ = A⊗R R′ and
A and R′ are Tor independent over R.

Proof. To prove this we choose a free resolution F • → R′ of R′ as an R-module.
Because A and R′ are Tor independent over R we see that F • ⊗R A is a free A-module
resolution of A′ over A. By our general construction of the derived tensor product above
we see that
K•⊗AA′ ∼= Tot(K•⊗A (F •⊗RA)) = Tot(K•⊗RF •) ∼= Tot(E•⊗RF •) ∼= E•⊗RR′

as desired. �
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Lemma 61.3. Consider a commutative diagram of rings

A′ R′ //oo B′

A

OO

Roo

OO

// B

OO

Assume that R′ is flat over R and A′ is flat over A ⊗R R′ and B′ is flat over R′ ⊗R B.
Then

TorRi (A,B)⊗(A⊗RB) (A′ ⊗R′ B′) = TorR
′

i (A′, B′)

Proof. By Algebra, Section 76 there are canonical maps

TorRi (A,B) −→ TorR
′

i (A⊗R R′, B ⊗R R′) −→ TorR
′

i (A′, B′)
These induce a map from left to right in the formula of the lemma.
Take a free resolution F• → A of A as an R-module. Then we see that F• ⊗R R′ is a
resolution of A ⊗R R′. Hence TorR

′

i (A ⊗R R′, B ⊗R R′) is computed by F• ⊗R B ⊗R
R′. By our assumption that R′ is flat over R, this computes TorRi (A,B) ⊗R R′. Thus
TorR

′

i (A⊗R R′, B ⊗R R′) = TorRi (A,B)⊗R R′ (uses only flatness of R′ over R).
By Lazard’s theorem (Algebra, Theorem 81.4) we can writeA′, resp.B′ as a filtered colimit
of finite free A⊗R R′, resp. B ⊗R R′-modules. Say A′ = colimMi and B′ = colimNj .
The result above gives

TorR
′

i (Mi, Nj) = TorRi (A,B)⊗A⊗RB (Mi ⊗R′ Nj)
as one can see by writing everything out in terms of bases. Taking the colimit we get the
result of the lemma. �

Lemma 61.4. Let R → A and R → B be ring maps. Let R → R′ be a ring map and
setA′ = A⊗RR′ andB′ = B⊗RR′. IfA andB are tor independent overR andR→ R′

is flat, then A′ and B′ are tor independent over R′.

Proof. Follows immediately from Lemma 61.3 and Definition 61.1. �

Lemma 61.5. Assumptions as in Lemma 61.3. For M ∈ D(A) there are canonical
isomorphisms

Hi((M ⊗L
A A

′)⊗L
R′ B′) = Hi(M ⊗L

R B)⊗(A⊗RB) (A′ ⊗R′ B′)
of A′ ⊗R′ B′-modules.

Proof. Let us elucidate the two sides of the equation. On the left hand side we have
the composition of the functors D(A) → D(A′) → D(R′) → D(B′) with the functor
Hi : D(B′)→ ModB′ . Since there is a map from A′ to the endomorphisms of the object
(M⊗L

AA
′)⊗L

R′ B′ inD(B′), we see that the left hand side is indeed anA′⊗R′ B′-module.
By the same arguments we see that Hi(M ⊗L

R B) has an A⊗R B-module structure.
We first prove the result in caseB′ = R′⊗RB. In this case we choose a resolutionF • → B
by free R-modules. We also choose a K-flat complex M• of A-modules representing M .
Then the left hand side is represented by

Hi(Tot((M• ⊗A A′)⊗R′ (R′ ⊗R F •))) = Hi(Tot(M• ⊗A A′ ⊗R F •))
= Hi(Tot(M• ⊗R F •)⊗A A′)
= Hi(M ⊗L

R B)⊗A A′
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The final equality because A→ A′ is flat. The final module is the desired module because
A′ ⊗R′ B′ = A′ ⊗R B since we’ve assumed B′ = R′ ⊗R B in this paragraph.

General case. Suppose that B′ → B′′ is a flat ring map. Then it is easy to see that

Hi((M ⊗L
A A

′)⊗L
R′ B′′) = Hi((M ⊗L

A A
′)⊗L

R′ B′)⊗B′ B′′

and

Hi(M ⊗L
R B)⊗(A⊗RB) (A′ ⊗R′ B′′) =

(
Hi(M ⊗L

R B)⊗(A⊗RB) (A′ ⊗R′ B′)
)
⊗B′ B′′

Thus the result forB′ implies the result forB′′. Since we’ve proven the result forR′⊗RB
in the previous paragraph, this implies the result in general. �

Lemma 61.6. Let R be a ring. Let A, B be R-algebras. The following are equivalent
(1) A and B are Tor independent over R,
(2) for every pair of primes p ⊂ A and q ⊂ B lying over the same prime r ⊂ R the

rings Ap and Bq are Tor independent over Rr, and
(3) For every prime s of A⊗R B the module

TorRi (A,B)s = TorRr
i (Ap, Bq)s

(where p = A ∩ s, q = B ∩ s and r = R ∩ s) is zero.

Proof. Let s be a prime of A⊗R B as in (3). The equality

TorRi (A,B)s = TorRr
i (Ap, Bq)s

where p = A ∩ s, q = B ∩ s and r = R ∩ s follows from Lemma 61.3. Hence (2) implies
(3). Since we can test the vanishing of modules by localizing at primes (Algebra, Lemma
23.1) we conclude that (3) implies (1). For (1)⇒ (2) we use that

TorRr
i (Ap, Bq) = TorRi (A,B)⊗(A⊗RB) (Ap ⊗Rr

Bq)

again by Lemma 61.3. �

62. Spectral sequences for Tor

In this section we collect various spectral sequences that come up when considering the
Tor functors.

Example 62.1. LetR be a ring. LetK• be a chain complex ofR-modules withKn = 0
forn� 0. LetM be anR-module. Choose a resolutionP• →M ofM by freeR-modules.
We obtain a double chain complexK•⊗RP•. Applying the material in Homology, Section
25 (especially Homology, Lemma 25.3) translated into the language of chain complexes
we find two spectral sequences converging to H∗(K• ⊗L

RM). Namely, on the one hand a
spectral sequence with E2-page

(E2)i,j = TorRj (Hi(K•),M)⇒ Hi+j(K• ⊗L
RM)

and differential d2 given by maps TorRj (Hi(K•),M)→ TorRj−2(Hi+1(K•),M). Another
spectral sequence with E1-page

(E1)i,j = TorRj (Ki,M)⇒ Hi+j(K• ⊗L
RM)

with differential d1 given by maps TorRj (Ki,M) → TorRj (Ki−1,M) induced by Ki →
Ki−1.
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Example 62.2. Let R → S be a ring map. Let M be an R-module and let N be an
S-module. Then there is a spectral sequence

TorSn(TorRm(M,S), N)⇒ TorRn+m(M,N).
To construct it choose a R-free resolution P• of M . Then we have

M ⊗L
R N = P • ⊗R N = (P • ⊗R S)⊗S N

and then apply the first spectral sequence of Example 62.1.

Example 62.3. Consider a commutative diagram

B // B′ = B ⊗A A′

A //

OO

A′

OO

andB-modulesM,N . SetM ′ = M ⊗AA′ = M ⊗B B′ andN ′ = N ⊗AA′ = N ⊗B B′.
Assume thatA→ B is flat and thatM andN areA-flat. Then there is a spectral sequence

TorAi (TorBj (M,N), A′)⇒ TorB
′

i+j(M ′, N ′)
The reason is as follows. Choose free resolution F• →M as aB-module. AsB andM are
A-flat we see that F• ⊗A A′ is a free B′-resolution of M ′. Hence we see that the groups
TorB

′

n (M ′, N ′) are computed by the complex

(F• ⊗A A′)⊗B′ N ′ = (F• ⊗B N)⊗A A′ = (F• ⊗B N)⊗L
A A

′

the last equality becauseF•⊗BN is a complex of flatA-modules asN is flat overA. Hence
we obtain the spectral sequence by applying the spectral sequence of Example 62.1.

Example 62.4. Let K•, L• be objects of D−(R). Then there are spectral sequences

Ep,q2 = Hp(K• ⊗L
R H

q(L•))⇒ Hp+q(K• ⊗L
R L

•)

with dp,q2 : Ep,q2 → Ep+2,q−1
2 and

Hq(Hp(K•)⊗L
R L

•)⇒ Hp+q(K• ⊗L
R L

•)
After replacing K• and L• by bounded above complexes of projectives, these spectral se-
quences are simply the two spectral sequences for computing the cohomology of Tot(K•⊗
L•) discussed in Homology, Section 25.

63. Products and Tor

The simplest example of the product maps comes from the following situation. Suppose
that K•, L• ∈ D(R). Then there are maps

(63.0.1) Hi(K•)⊗R Hj(L•) −→ Hi+j(K• ⊗L
R L

•)
Namely, to define these maps we may assume that one ofK•, L• is a K-flat complex ofR-
modules (for example a bounded above complex of free or projective R-modules). In that
case K• ⊗L

R L
• is represented by the complex Tot(K• ⊗R L•), see Section 59 (or Section

57). Next, suppose that ξ ∈ Hi(K•) and ζ ∈ Hj(L•). Choose k ∈ Ker(Ki → Ki+1)
and l ∈ Ker(Lj → Lj+1) representing ξ and ζ . Then we set

ξ ∪ ζ = class of k ⊗ l in Hi+j(Tot(K• ⊗R L•)).
This make sense because the formula (see Homology, Definition 18.3) for the differential
d on the total complex shows that k ⊗ l is a cocycle. Moreover, if k′ = dK(k′′) for some
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k′′ ∈ Ki−1, then k′ ⊗ l = d(k′′ ⊗ l) because l is a cocycle. Similarly, altering the choice
of l representing ζ does not change the class of k ⊗ l. It is equally clear that ∪ is bilinear,
and hence to a general element of Hi(K•)⊗R Hj(L•) we assign∑

ξi ⊗ ζi 7−→
∑

ξi ∪ ζi

in Hi+j(Tot(K• ⊗R L•)).

Let R→ A be a ring map. Let K•, L• ∈ D(R). Then we have a canonical identification

(63.0.2) (K• ⊗L
R A)⊗L

A (L• ⊗L
R A) = (K• ⊗L

R L
•)⊗L

R A

in D(A). It is constructed as follows. First, choose K-flat resolutions P • → K• and
Q• → L• over R. Then the left hand side is represented by the complex Tot((P • ⊗R
A)⊗A (Q•⊗RA)) and the right hand side by the complex Tot(P •⊗RQ•)⊗RA. These
complexes are canonically isomorphic. Thus the construction above induces products

TorRn (K•, A)⊗A TorRm(L•, A) −→ TorRn+m(K• ⊗L
R L

•, A)

which are occasionally useful.

Let M , N be R-modules. Using the general construction above, the canonical map M ⊗L
R

N →M ⊗R N and functoriality of Tor we obtain canonical maps

(63.0.3) TorRn (M,A)⊗A TorRm(N,A) −→ TorRn+m(M ⊗R N,A)

Here is a direct construction using projective resolutions. First, choose projective resolu-
tions

P• →M, Q• → N, T• →M ⊗R N
over R. We have H0(Tot(P• ⊗R Q•)) = M ⊗R N by right exactness of ⊗R. Hence
Derived Categories, Lemmas 19.6 and 19.7 guarantee the existence and uniqueness of a
map of complexes µ : Tot(P• ⊗R Q•)→ T• such that H0(µ) = idM⊗RN . This induces a
canonical map

(M ⊗L
R A)⊗L

A (N ⊗L
R A) = Tot((P• ⊗R A)⊗A (Q• ⊗R A))

= Tot(P• ⊗R Q•)⊗R A
→ T• ⊗R A
= (M ⊗R N)⊗L

R A

in D(A). Hence the products (63.0.3) above are constructed using (63.0.1) over A to con-
struct

TorRn (M,A)⊗A TorRm(N,A)→ H−n−m((M ⊗L
R A)⊗L

A (N ⊗L
R A))

and then composing by the displayed map above to end up in TorRn+m(M ⊗R N,A).

An interesting special case of the above occurs when M = N = B where B is an R-
algebra. In this case we obtain maps

TorRn (B,A)⊗A TorRm(B,A) −→ TorRn+m(B ⊗R B,A) −→ TorRn+m(B,A)

the second arrow being induced by the multiplication mapB⊗RB → B via functoriality
for Tor. In other words we obtain an A-algebra structure on TorR? (B,A). This algebra
structure has many intriguing properties (associativity, graded commutative, B-algebra
structure, divided powers in some case, etc) which we will discuss elsewhere (insert future
reference here).
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Lemma 63.1. Let R be a ring. Let A,B,C be R-algebras and let B → C be an R-
algebra map. Then the induced map

TorR? (B,A) −→ TorR? (C,A)
is an A-algebra homomorphism.

Proof. Omitted. Hint: You can prove this by working through the definitions, writ-
ing all the complexes explicitly. �

64. Pseudo-coherent modules, I

Suppose that R is a ring. Recall that an R-module M is of finite type if there exists a
surjection R⊕a → M and of finite presentation if there exists a presentation R⊕a1 →
R⊕a0 → M → 0. Similarly, we can consider those R-modules for which there exists a
length n resolution

(64.0.1) R⊕an → R⊕an−1 → . . .→ R⊕a0 →M → 0
by finite free R-modules. A module is called pseudo-coherent if we can find such a reso-
lution for every n. Here is the formal definition.

Definition 64.1. Let R be a ring. Denote D(R) its derived category. Let m ∈ Z.
(1) An object K• of D(R) is m-pseudo-coherent if there exists a bounded complex

E• of finite free R-modules and a morphism α : E• → K• such that Hi(α) is
an isomorphism for i > m and Hm(α) is surjective.

(2) An object K• of D(R) is pseudo-coherent if it is quasi-isomorphic to a bounded
above complex of finite free R-modules.

(3) An R-module M is called m-pseudo-coherent if M [0] is an m-pseudo-coherent
object of D(R).

(4) An R-module M is called pseudo-coherent7 if M [0] is a pseudo-coherent object
of D(R).

As usual we apply this terminology also to complexes ofR-modules. Since any morphism
E• → K• inD(R) is represented by an actual map of complexes, see Derived Categories,
Lemma 19.8, there is no ambiguity. It turns out that K• is pseudo-coherent if and only if
K• is m-pseudo-coherent for all m ∈ Z, see Lemma 64.5. Also, if the ring is Noetherian
the condition can be understood as a finite generation condition on the cohomology, see
Lemma 64.17. Let us first relate this to the informal discussion above.

Lemma 64.2. LetR be a ring andm ∈ Z. Let (K•, L•,M•, f, g, h) be a distinguished
triangle in D(R).

(1) If K• is (m+ 1)-pseudo-coherent and L• is m-pseudo-coherent then M• is m-
pseudo-coherent.

(2) If K•,M• are m-pseudo-coherent, then L• is m-pseudo-coherent.
(3) If L• is (m + 1)-pseudo-coherent and M• is m-pseudo-coherent, then K• is

(m+ 1)-pseudo-coherent.

Proof. Proof of (1). Choose α : P • → K• with P • a bounded complex of finite free
modules such that Hi(α) is an isomorphism for i > m+ 1 and surjective for i = m+ 1.
We may replace P • by σ≥m+1P

• and hence we may assume that P i = 0 for i < m + 1.
Choose β : E• → L• with E• a bounded complex of finite free modules such that Hi(β)

7This clashes with what is meant by a pseudo-coherent module in [?].
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is an isomorphism for i > m and surjective for i = m. By Derived Categories, Lemma
19.11 we can find a map γ : P • → E• such that the diagram

K• // L•

P •

OO

γ // E•

β

OO

is commutative in D(R). The cone C(γ)• is a bounded complex of finite free R-modules,
and the commutativity of the diagram implies that there exists a morphism of distin-
guished triangles

(P •, E•, C(γ)•) −→ (K•, L•,M•).

It follows from the induced map on long exact cohomology sequences and Homology,
Lemmas 5.19 and 5.20 that C(γ)• → M• induces an isomorphism on cohomology in
degrees > m and a surjection in degree m. Hence M• is m-pseudo-coherent.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. �

Lemma 64.3. Let R be a ring. Let K• be a complex of R-modules. Let m ∈ Z.
(1) If K• is m-pseudo-coherent and Hi(K•) = 0 for i > m, then Hm(K•) is a

finite type R-module.
(2) If K• is m-pseudo-coherent and Hi(K•) = 0 for i > m + 1, then Hm+1(K•)

is a finitely presented R-module.

Proof. Proof of (1). Choose a bounded complex E• of finite projective R-modules
and a map α : E• → K• which induces an isomorphism on cohomology in degrees > m
and a surjection in degree m. It is clear that it suffices to prove the result for E•. Let n
be the largest integer such that En 6= 0. If n = m, then the result is clear. If n > m,
then En−1 → En is surjective as Hn(E•) = 0. As En is finite projective we see that
En−1 = E′⊕En. Hence it suffices to prove the result for the complex (E′)• which is the
same as E• except has E′ in degree n− 1 and 0 in degree n. We win by induction on n.

Proof of (2). Choose a bounded complex E• of finite projective R-modules and a map
α : E• → K• which induces an isomorphism on cohomology in degrees > m and a
surjection in degree m. As in the proof of (1) we can reduce to the case that Ei = 0 for
i > m+ 1. Then we see that Hm+1(K•) ∼= Hm+1(E•) = Coker(Em → Em+1) which
is of finite presentation. �

Lemma 64.4. Let R be a ring. Let M be an R-module. Then
(1) M is 0-pseudo-coherent if and only if M is a finite R-module,
(2) M is (−1)-pseudo-coherent if and only if M is a finitely presented R-module,
(3) M is (−d)-pseudo-coherent if and only if there exists a resolution

R⊕ad → R⊕ad−1 → . . .→ R⊕a0 →M → 0

of length d, and
(4) M is pseudo-coherent if and only if there exists an infinite resolution

. . .→ R⊕a1 → R⊕a0 →M → 0

by finite free R-modules.
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Proof. IfM is of finite type (resp. of finite presentation), thenM is 0-pseudo-coherent
(resp. (−1)-pseudo-coherent) as follows from the discussion preceding Definition 64.1.
Conversely, if M is 0-pseudo-coherent, then M = H0(M [0]) is of finite type by Lemma
64.3. If M is (−1)-pseudo-coherent, then it is 0-pseudo-coherent hence of finite type.
Choose a surjection R⊕a → M and denote K = Ker(R⊕a → M). By Lemma 64.2 we
see that K is 0-pseudo-coherent, hence of finite type, whence M is of finite presentation.

To prove the third and fourth statement use induction and an argument similar to the
above (details omitted). �

Lemma 64.5. LetR be a ring. LetK• be a complex ofR-modules. The following are
equivalent

(1) K• is pseudo-coherent,
(2) K• is m-pseudo-coherent for every m ∈ Z, and
(3) K• is quasi-isomorphic to a bounded above complex of finite projectiveR-modules.

If (1), (2), and (3) hold and Hi(K•) = 0 for i > b, then we can find a quasi-isomorphism
F • → K• with F i finite free R-modules and F i = 0 for i > b.

Proof. We see that (1)⇒ (3) as a finite free module is a finite projective R-module.
Conversely, suppose P • is a bounded above complex of finite projective R-modules. Say
P i = 0 for i > n0. We choose a direct sum decompositions Fn0 = Pn0 ⊕ Cn0 with Fn0

a finite free R-module, and inductively

Fn−1 = Pn−1 ⊕ Cn ⊕ Cn−1

for n ≤ n0 with Fn0 a finite free R-module. As a complex F • has maps Fn−1 → Fn

which agree with Pn−1 → Pn, induce the identity Cn → Cn, and are zero on Cn−1.
The map F • → P • is a quasi-isomorphism (even a homotopy equivalence) and hence (3)
implies (1).

Assume (1). Let E• be a bounded above complex of finite free R-modules and let E• →
K• be a quasi-isomorphism. Then the induced maps σ≥mE

• → K• from the stupid
truncation of E• to K• show that K• is m-pseudo-coherent. Hence (1) implies (2).

Assume (2). SinceK• is 0-pseudo-coherent we see in particular thatK• is bounded above.
Let b be an integer such thatHi(K•) = 0 for i > b. By descending induction on n ∈ Z we
are going to construct finite free R-modules F i for i ≥ n, differentials di : F i → F i+1

for i ≥ n, maps α : F i → Ki compatible with differentials, such that (1) Hi(α) is an
isomorphism for i > n and surjective for i = n, and (2) F i = 0 for i > b. Picture

Fn //

α

��

Fn+1

α

��

// . . .

Kn−1 // Kn // Kn+1 // . . .

The base case is n = b + 1 where we can take F i = 0 for all i. Induction step. Let
C• be the cone on α (Derived Categories, Definition 9.1). The long exact sequence of
cohomology shows thatHi(C•) = 0 for i ≥ n. By Lemma 64.2 we see thatC• is (n−1)-
pseudo-coherent. By Lemma 64.3 we see that Hn−1(C•) is a finite R-module. Choose
a finite free R-module Fn−1 and a map β : Fn−1 → Cn−1 such that the composition
Fn−1 → Cn−1 → Cn is zero and such thatFn−1 surjects ontoHn−1(C•). SinceCn−1 =
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Kn−1⊕Fn we can writeβ = (αn−1,−dn−1). The vanishing of the compositionFn−1 →
Cn−1 → Cn implies these maps fit into a morphism of complexes

Fn−1

αn−1

��

dn−1
// Fn //

α

��

Fn+1

α

��

// . . .

. . . // Kn−1 // Kn // Kn+1 // . . .

Moreover, these maps define a morphism of distinguished triangles

(Fn → . . .) //

��

(Fn−1 → . . .) //

��

Fn−1 //

β

��

(Fn → . . .)[1]

��
(Fn → . . .) // K• // C• // (Fn → . . .)[1]

Hence our choice of β implies that the map of complexes (Fn−1 → . . .) → K• induces
an isomorphism on cohomology in degrees ≥ n and a surjection in degree n − 1. This
finishes the proof of the lemma. �

Lemma 64.6. Let R be a ring. Let (K•, L•,M•, f, g, h) be a distinguished triangle
in D(R). If two out of three of K•, L•,M• are pseudo-coherent then the third is also
pseudo-coherent.

Proof. Combine Lemmas 64.2 and 64.5. �

Lemma 64.7. Let R be a ring. Let K• be a complex of R-modules. Let m ∈ Z.
(1) If Hi(K•) = 0 for all i ≥ m, then K• is m-pseudo-coherent.
(2) If Hi(K•) = 0 for i > m and Hm(K•) is a finite R-module, then K• is m-

pseudo-coherent.
(3) If Hi(K•) = 0 for i > m+ 1, the module Hm+1(K•) is of finite presentation,

and Hm(K•) is of finite type, then K• is m-pseudo-coherent.

Proof. It suffices to prove (3). Set M = Hm+1(K•). Note that τ≥m+1K
• is quasi-

isomorphic toM [−m−1]. By Lemma 64.4 we see thatM [−m−1] ism-pseudo-coherent.
Since we have the distinguished triangle

(τ≤mK
•,K•, τ≥m+1K

•)

(Derived Categories, Remark 12.4) by Lemma 64.2 it suffices to prove that τ≤mK
• is

pseudo-coherent. By assumption Hm(τ≤mK
•) is a finite type R-module. Hence we

can find a finite free R-module E and a map E → Ker(dmK) such that the composition
E → Ker(dmK)→ Hm(τ≤mK

•) is surjective. ThenE[−m]→ τ≤mK
• witnesses the fact

that τ≤mK
• is m-pseudo-coherent. �

Lemma 64.8. Let R be a ring. Let m ∈ Z. If K• ⊕ L• is m-pseudo-coherent (resp.
pseudo-coherent) so are K• and L•.

Proof. In this proof we drop the superscript •. Assume that K ⊕ L is m-pseudo-
coherent. It is clear that K,L ∈ D−(R). Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L, L⊕ L[1])

see Derived Categories, Lemma 4.10. By Lemma 64.2 we see that L ⊕ L[1] is m-pseudo-
coherent. Hence also L[1] ⊕ L[2] is m-pseudo-coherent. By induction L[n] ⊕ L[n + 1]
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is m-pseudo-coherent. By Lemma 64.7 we see that L[n] is m-pseudo-coherent for large n.
Hence working backwards, using the distinguished triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])
we conclude that L[n], L[n − 1], . . . , L are m-pseudo-coherent as desired. The pseudo-
coherent case follows from this and Lemma 64.5. �

Lemma 64.9. Let R be a ring. Let m ∈ Z. Let K• be a bounded above complex
of R-modules such that Ki is (m − i)-pseudo-coherent for all i. Then K• is m-pseudo-
coherent. In particular, ifK• is a bounded above complex of pseudo-coherentR-modules,
then K• is pseudo-coherent.

Proof. We may replace K• by σ≥m−1K
• (for example) and hence assume that K•

is bounded. Then the complex K• is m-pseudo-coherent as each Ki[−i] is m-pseudo-
coherent by induction on the length of the complex: use Lemma 64.2 and the stupid trun-
cations. For the final statement, it suffices to prove that K• is m-pseudo-coherent for all
m ∈ Z, see Lemma 64.5. This follows from the first part. �

Lemma 64.10. Let R be a ring. Let m ∈ Z. Let K• ∈ D−(R) such that Hi(K•) is
(m−i)-pseudo-coherent (resp. pseudo-coherent) for all i. ThenK• ism-pseudo-coherent
(resp. pseudo-coherent).

Proof. AssumeK• is an object ofD−(R) such that eachHi(K•) is (m− i)-pseudo-
coherent. Let n be the largest integer such that Hn(K•) is nonzero. We will prove the
lemma by induction on n. If n < m, then K• is m-pseudo-coherent by Lemma 64.7. If
n ≥ m, then we have the distinguished triangle

(τ≤n−1K
•,K•,Hn(K•)[−n])

(Derived Categories, Remark 12.4) Since Hn(K•)[−n] is m-pseudo-coherent by assump-
tion, we can use Lemma 64.2 to see that it suffices to prove that τ≤n−1K

• is m-pseudo-
coherent. By induction on n we win. (The pseudo-coherent case follows from this and
Lemma 64.5.) �

Lemma 64.11. Let A → B be a ring map. Assume that B is pseudo-coherent as an
A-module. Let K• be a complex of B-modules. The following are equivalent

(1) K• is m-pseudo-coherent as a complex of B-modules, and
(2) K• is m-pseudo-coherent as a complex of A-modules.

The same equivalence holds for pseudo-coherence.

Proof. Assume (1). Choose a bounded complex of finite free B-modules E• and a
map α : E• → K• which is an isomorphism on cohomology in degrees > m and a
surjection in degree m. Consider the distinguished triangle (E•,K•, C(α)•). By Lemma
64.7 C(α)• is m-pseudo-coherent as a complex of A-modules. Hence it suffices to prove
that E• is pseudo-coherent as a complex of A-modules, which follows from Lemma 64.9.
The pseudo-coherent case of (1)⇒ (2) follows from this and Lemma 64.5.
Assume (2). Let n be the largest integer such that Hn(K•) 6= 0. We will prove that K• is
m-pseudo-coherent as a complex of B-modules by induction on n−m. The case n < m
follows from Lemma 64.7. Choose a bounded complex of finite free A-modules E• and
a map α : E• → K• which is an isomorphism on cohomology in degrees > m and a
surjection in degree m. Consider the induced map of complexes

α⊗ 1 : E• ⊗A B → K•.
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Note thatC(α⊗1)• is acyclic in degrees≥ n asHn(E)→ Hn(E•⊗AB)→ Hn(K•) is
surjective by construction and sinceHi(E•⊗AB) = 0 for i > n by the spectral sequence
of Example 62.4. On the other hand, C(α⊗ 1)• ism-pseudo-coherent as a complex ofA-
modules because bothK• andE•⊗AB (see Lemma 64.9) are so, see Lemma 64.2. Hence by
induction we see thatC(α⊗1)• ism-pseudo-coherent as a complex ofB-modules. Finally
another application of Lemma 64.2 shows that K• is m-pseudo-coherent as a complex of
B-modules (as clearly E• ⊗A B is pseudo-coherent as a complex of B-modules). The
pseudo-coherent case of (2)⇒ (1) follows from this and Lemma 64.5. �

Lemma 64.12. Let A → B be a ring map. Let K• be an m-pseudo-coherent (resp.
pseudo-coherent) complex of A-modules. Then K• ⊗L

A B is an m-pseudo-coherent (resp.
pseudo-coherent) complex of B-modules.

Proof. First we note that the statement of the lemma makes sense as K• is bounded
above and hence K• ⊗L

A B is defined by Equation (57.0.2). Having said this, choose a
bounded complex E• of finite free A-modules and α : E• → K• with Hi(α) an isomor-
phism for i > m and surjective for i = m. Then the cone C(α)• is acyclic in degrees
≥ m. Since −⊗L

A B is an exact functor we get a distinguished triangle

(E• ⊗L
A B,K

• ⊗L
A B,C(α)• ⊗L

A B)
of complexes of B-modules. By the dual to Derived Categories, Lemma 16.1 we see that
Hi(C(α)• ⊗L

A B) = 0 for i ≥ m. Since E• is a complex of projective R-modules we see
that E• ⊗L

A B = E• ⊗A B and hence

E• ⊗A B −→ K• ⊗L
A B

is a morphism of complexes of B-modules that witnesses the fact that K• ⊗L
A B is m-

pseudo-coherent. The case of pseudo-coherent complexes follows from the case of m-
pseudo-coherent complexes via Lemma 64.5. �

Lemma 64.13. Let A → B be a flat ring map. Let M be an m-pseudo-coherent
(resp. pseudo-coherent)A-module. ThenM⊗AB is anm-pseudo-coherent (resp. pseudo-
coherent) B-module.

Proof. Immediate consequence of Lemma 64.12 and the fact thatM⊗L
AB = M⊗AB

because B is flat over A. �

The following lemma also follows from the stronger Lemma 64.15.

Lemma 64.14. Let R be a ring. Let f1, . . . , fr ∈ R be elements which generate the
unit ideal. Let m ∈ Z. Let K• be a complex of R-modules. If for each i the complex
K•⊗RRfi ism-pseudo-coherent (resp. pseudo-coherent), thenK• ism-pseudo-coherent
(resp. pseudo-coherent).

Proof. We will use without further mention that −⊗R Rfi is an exact functor and
that therefore

Hi(K•)fi = Hi(K•)⊗R Rfi = Hi(K• ⊗R Rfi).
Assume K• ⊗R Rfi is m-pseudo-coherent for i = 1, . . . , r. Let n ∈ Z be the largest
integer such that Hn(K• ⊗R Rfi) is nonzero for some i. This implies in particular that
Hi(K•) = 0 for i > n (and that Hn(K•) 6= 0) see Algebra, Lemma 23.2. We will
prove the lemma by induction on n − m. If n < m, then the lemma is true by Lemma
64.7. If n ≥ m, then Hn(K•)fi is a finite Rfi -module for each i, see Lemma 64.3. Hence
Hn(K•) is a finite R-module, see Algebra, Lemma 23.2. Choose a finite free R-module E
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and a surjection E → Hn(K•). As E is projective we can lift this to a map of complexes
α : E[−n] → K•. Then the cone C(α)• has vanishing cohomology in degrees ≥ n.
On the other hand, the complexes C(α)• ⊗R Rfi are m-pseudo-coherent for each i, see
Lemma 64.2. Hence by induction we see that C(α)• is m-pseudo-coherent as a complex
of R-modules. Applying Lemma 64.2 once more we conclude. �

Lemma 64.15. Let R be a ring. Let m ∈ Z. Let K• be a complex of R-modules. Let
R → R′ be a faithfully flat ring map. If the complex K• ⊗R R′ is m-pseudo-coherent
(resp. pseudo-coherent), then K• is m-pseudo-coherent (resp. pseudo-coherent).

Proof. We will use without further mention that − ⊗R R′ is an exact functor and
that therefore

Hi(K•)⊗R R′ = Hi(K• ⊗R R′).
Assume K• ⊗R R′ is m-pseudo-coherent. Let n ∈ Z be the largest integer such that
Hn(K•) is nonzero; then n is also the largest integer such thatHn(K•⊗RR′) is nonzero.
We will prove the lemma by induction on n −m. If n < m, then the lemma is true by
Lemma 64.7. If n ≥ m, thenHn(K•)⊗RR′ is a finiteR′-module, see Lemma 64.3. Hence
Hn(K•) is a finite R-module, see Algebra, Lemma 83.2. Choose a finite free R-module E
and a surjection E → Hn(K•). As E is projective we can lift this to a map of complexes
α : E[−n] → K•. Then the cone C(α)• has vanishing cohomology in degrees ≥ n.
On the other hand, the complex C(α)• ⊗R R′ is m-pseudo-coherent, see Lemma 64.2.
Hence by induction we see that C(α)• is m-pseudo-coherent as a complex of R-modules.
Applying Lemma 64.2 once more we conclude. �

Lemma 64.16. Let R be a ring. Let K,L be objects of D(R).
(1) IfK isn-pseudo-coherent andHi(K) = 0 for i > a andL ism-pseudo-coherent

andHj(L) = 0 for j > b, thenK⊗L
RL is t-pseudo-coherent with t = max(m+

a, n+ b).
(2) If K and L are pseudo-coherent, then K ⊗L

R L is pseudo-coherent.

Proof. Proof of (1). We may assume there exist bounded complexes K• and L•

of finite free R-modules and maps α : K• → K and β : L• → L with Hi(α) and
isomorphism for i > n and surjective for i = n and with Hi(β) and isomorphism for
i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗R L•)→ K ⊗L
R L

induces isomorphisms on cohomology in degree i for i > t and a surjection for i = t. This
follows from the spectral sequence of tors (details omitted). Part (2) follows from part (1)
and Lemma 64.5. �

Lemma 64.17. Let R be a Noetherian ring. Then
(1) A complex of R-modules K• is m-pseudo-coherent if and only if K• ∈ D−(R)

and Hi(K•) is a finite R-module for i ≥ m.
(2) A complex of R-modules K• is pseudo-coherent if and only if K• ∈ D−(R)

and Hi(K•) is a finite R-module for all i.
(3) An R-module is pseudo-coherent if and only if it is finite.

Proof. In Algebra, Lemma 71.1 we have seen that any finite R-module is pseudo-
coherent. On the other hand, a pseudo-coherent module is finite, see Lemma 64.4. Hence
(3) holds. Suppose thatK• is anm-pseudo-coherent complex. Then there exists a bounded
complex of finite freeR-modulesE• such thatHi(K•) is isomorphic toHi(E•) for i > m
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and such thatHm(K•) is a quotient ofHm(E•). Thus it is clear that eachHi(K•), i ≥ m
is a finite module. The converse implication in (1) follows from Lemma 64.10 and part (3).
Part (2) follows from (1) and Lemma 64.5. �

Lemma 64.18. LetR be a coherent ring (Algebra, Definition 90.1). LetK ∈ D−(R).
The following are equivalent

(1) K is m-pseudo-coherent,
(2) Hm(K) is a finite R-module and Hi(K) is coherent for i > m, and
(3) Hm(K) is a finite R-module and Hi(K) is finitely presented for i > m.

Thus K is pseudo-coherent if and only if Hi(K) is a coherent module for all i.

Proof. Recall that an R-module M is coherent if and only if it is of finite presenta-
tion (Algebra, Lemma 90.4). This explains the equivalence of (2) and (3). If so and if we
choose an exact sequence 0 → N → R⊕m → M → 0, then N is coherent by Algebra,
Lemma 90.3. Thus in this case, repeating this procedure with N we find a resolution

. . .→ R⊕n → R⊕m →M → 0
by finite free R-modules. In other words, M is pseudo-coherent. The equivalence of (1)
and (2) follows from this and Lemmas 64.10 and 64.4. The final assertion follows from
the equivalence of (1) and (2) combined with Lemma 64.5. �

65. Pseudo-coherent modules, II

We continue the discussion started in Section 64.

Lemma 65.1. Let R be a ring. Let M = colimMi be a filtered colimit of R-modules.
Let K ∈ D(R) be m-pseudo-coherent. Then colim ExtnR(K,Mi) = ExtnR(K,M) for
n < −m and colim Ext−m

R (K,Mi)→ Ext−m
R (K,M) is injective.

Proof. By definition we can find a distinguished triangle
E → K → L→ E[1]

in D(R) such that E is represented by a bounded complex of finite free R-modules and
such that Hi(L) = 0 for i ≥ m. Then ExtnR(L,N) = 0 for any R-module N and
n ≤ −m, see Derived Categories, Lemma 27.3. By the long exact sequence of Ext as-
sociated to the distinguished triangle we see that ExtnR(K,N) → ExtnR(E,N) is an
isomorphism for n < −m and injective for n = −m. Thus it suffices to prove that
M 7→ ExtnR(E,M) commutes with filtered colimits when E can be represented by a
bounded complex of finite free R-modules E•. The modules ExtnR(E,M) are computed
by the complex HomR(E•,M), see Derived Categories, Lemma 19.8. The functor M 7→
HomR(Ep,M) commutes with filtered colimits asEp is finite free. Thus HomR(E•,M) =
colim HomR(E•,Mi) as complexes. Since filtered colimits are exact (Algebra, Lemma 8.8)
we conclude. �

Lemma 65.2. Let R be a ring. Let K ∈ D−(R). Let m ∈ Z. Then K is m-
pseudo-coherent if and only if for any filtered colimit M = colimMi of R-modules we
have colim ExtnR(K,Mi) = ExtnR(K,M) for n < −m and colim Ext−m

R (K,Mi) →
Ext−m

R (K,M) is injective.

Proof. One implication was shown in Lemma 65.1. Assume for any filtered colimit
M = colimMi of R-modules we have colim ExtnR(K,Mi) = ExtnR(K,M) for n < −m
and colim Ext−m

R (K,Mi) → Ext−m
R (K,M) is injective. We will show K is m-pseudo-

coherent.
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Let t be the maximal integer such thatHt(K) is nonzero. We will use induction on t. If t <
m, thenK ism-pseudo-coherent by Lemma 64.7. If t ≥ m, then since HomR(Ht(K),M) =
Ext−t

R (K,M) we conclude that colim HomR(Ht(K),Mi) → HomR(Ht(K),M) is in-
jective for any filtered colimit M = colimMi. This implies that Ht(K) is a finite R-
module by Algebra, Lemma 11.1. Choose a finite free R-module F and a surjection F →
Ht(K). We can lift this to a morphism F [−t]→ K in D(R) and choose a distinguished
triangle

F [−t]→ K → L→ F [−t+ 1]
inD(R). ThenHi(L) = 0 for i ≥ t. Moreover, the long exact sequence of Ext associated
to this distinguished triangle shows that L inherts the assumption we made on K by a
small argument we omit. By induction on t we conclude that L is m-pseudo-coherent.
Hence K is m-pseudo-coherent by Lemma 64.2. �

Lemma 65.3. Let R be a ring. Let L, M , N be R-modules.
(1) IfM is finitely presented andL is flat, then the canonical map HomR(M,N)⊗R

L→ HomR(M,N ⊗R L) is an isomorphism.
(2) IfM is (−m)-pseudo-coherent andL is flat, then the canonical map ExtiR(M,N)⊗R

L→ ExtiR(M,N ⊗R L) is an isomorphism for i < m.

Proof. Choose a resolution F• → M whose terms are free R-modules, see Alge-
bra, Lemma 71.1. The complex HomR(F•, N) computes ExtiR(M,N) and the complex
HomR(F•, N ⊗R L) computes ExtiR(M,N ⊗R L). There always is a map of cochain
complexes

HomR(F•, N)⊗R L −→ HomR(F•, N ⊗R L)
which induces canonical maps ExtiR(M,N) ⊗R L → ExtiR(M,N ⊗R L) for all i ≥ 0
(canonical for example in the sense that these maps do not depend on the choice of the reso-
lutionF•). IfL is flat, then the complex HomR(F•, N)⊗RL computes ExtiR(M,N)⊗RL
since taking cohomology commutes with tensoring by L.

Having said all of the above, if M is (−m)-pseudo-coherent, then we may choose F• such
thatFi is finite free for i = 0, . . . ,m. Then the map of cochain complexes displayed above
is an isomorphism in degrees ≤ m and hence an isomorphism on cohomology groups in
degrees< m. This proves (2). IfM is finitely presented, thenM is (−1)-pseudo-coherent
by Lemma 64.4 and we get the result because Hom = Ext0. �

Lemma 65.4. Let R→ R′ be a flat ring map. Let M , N be R-modules.
(1) IfM is a finitely presentedR-module, then HomR(M,N)⊗RR′ = HomR′(M⊗R

R′, N ⊗R R′).
(2) If M is (−m)-pseudo-coherent, then ExtiR(M,N) ⊗R R′ = ExtiR′(M ⊗R

R′, N ⊗R R′) for i < m.
In particular if R is Noetherian and M is a finite module this holds for all i.

Proof. By Algebra, Lemma 73.1 we have ExtiR′(M⊗RR′, N⊗RR′) = ExtiR(M,N⊗R
R′). Combined with Lemma 65.3 we conclude (1) and (2) holds. The final statement fol-
lows from this and Lemma 64.17. �

Lemma 65.5. Let R be a ring. Let K ∈ D−(R). The following are equivalent:
(1) K is pseudo-coherent,



65. PSEUDO-COHERENT MODULES, II 1369

(2) for every family (Qα)α∈A of R-modules, the canonical map

α : K ⊗L
R

(∏
α
Qα

)
−→

∏
α

(K ⊗L
R Qα)

is an isomorphism in D(R),
(3) for every R-module Q and every set A, the canonical map

β : K ⊗L
R Q

A −→ (K ⊗L
R Q)A

is an isomorphism in D(R), and
(4) for every set A, the canonical map

γ : K ⊗L
R R

A −→ KA

is an isomorphism in D(R).
Given m ∈ Z the following are equivalent

(a) K is m-pseudo-coherent,
(b) for every family (Qα)α∈A of R-modules, with α as above Hi(α) is an isomor-

phism for i > m and surjective for i = m,
(c) for everyR-moduleQ and every setA, with β as aboveHi(β) is an isomorphism

for i > m and surjective for i = m,
(d) for every setA, with γ as aboveHi(γ) is an isomorphism for i > m and surjective

for i = m.

Proof. IfK is pseudo-coherent, thenK can be represented by a bounded above com-
plex of finite freeR-modules. Then the derived tensor products are computed by tensoring
with this complex. Also, products in D(R) are given by taking products of any choices
of representative complexes. Hence (1) implies (2), (3), (4) by the corresponding fact for
modules, see Algebra, Proposition 89.3.
In the same way (using the tensor product is right exact) the reader shows that (a) implies
(b), (c), and (d).
Assume (4) holds. To show that K is pseudo-coherent it suffices to show that K is m-
pseudo-coherent for all m (Lemma 64.5). Hence to finish then proof it suffices to prove
that (d) implies (a).
Assume (d). Let i be the largest integer such that Hi(K) is nonzero. If i < m, then we
are done. If not, then from (d) and the description of products in D(R) given above we
find that Hi(K) ⊗R RA → Hi(K)A is surjective. Hence Hi(K) is a finitely generated
R-module by Algebra, Proposition 89.2. Thus we may choose a complex L consisting of
a single finite free module sitting in degree i and a map of complexes L → K such that
Hi(L) → Hi(K) is surjective. In particular L satisfies (1), (2), (3), and (4). Choose a
distinguished triangle

L→ K →M → L[1]
Then we see that Hj(M) = 0 for j ≥ i. On the other hand, M still has property (d) by a
small argument which we omit. By induction on i we find that M is m-pseudo-coherent.
Hence K is m-pseudo-coherent by Lemma 64.2. �

Lemma 65.6. Let R be a ring. Let K ∈ D(R) be pseudo-coherent. Let i ∈ Z. There
exists a finitely presented R-module M and a map K → M [−i] in D(R) which induces
an injection Hi(K)→M .

Proof. By Definition 64.1 we may represent K by a complex P • of finite free R-
modules. Set M = Coker(P i−1 → P i). �
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Lemma 65.7. Let A be a Noetherian ring. Let K ∈ D(A) be pseudo-coherent,
i.e., K ∈ D−(A) with finite cohomology modules. Let m be a maximal ideal of A. If
Hi(K)/mHi(K) 6= 0, then there exists a finiteA-moduleE annihilated by a power of m
and a map K → E[−i] which is nonzero on Hi(K).

Proof. (The equivalent formulation of pseudo-coherence in the statement of the
lemma is Lemma 64.17.) Choose K → M [−i] as in Lemma 65.6. By Artin-Rees (Al-
gebra, Lemma 51.2) we can find an n such that Hi(K) ∩ mnM ⊂ mHi(K). Take E =
M/mnM . �

66. Tor dimension

Instead of resolving by projective modules we can look at resolutions by flat modules. This
leads to the following concept.

Definition 66.1. Let R be a ring. Denote D(R) its derived category. Let a, b ∈ Z.
(1) An object K• of D(R) has tor-amplitude in [a, b] if Hi(K• ⊗L

RM) = 0 for all
R-modules M and all i 6∈ [a, b].

(2) An object K• of D(R) has finite tor dimension if it has tor-amplitude in [a, b]
for some a, b.

(3) An R-module M has tor dimension ≤ d if M [0] as an object of D(R) has tor-
amplitude in [−d, 0].

(4) AnR-moduleM has finite tor dimension ifM [0] as an object ofD(R) has finite
tor dimension.

We observe that if K• has finite tor dimension, then K• ∈ Db(R).

Lemma 66.2. LetR be a ring. LetK• be a bounded above complex of flatR-modules
with tor-amplitude in [a, b]. Then Coker(da−1

K ) is a flat R-module.

Proof. As K• is a bounded above complex of flat modules we see that K• ⊗RM =
K• ⊗L

RM . Hence for every R-module M the sequence

Ka−2 ⊗RM → Ka−1 ⊗RM → Ka ⊗RM
is exact in the middle. Since Ka−2 → Ka−1 → Ka → Coker(da−1

K ) → 0 is a flat
resolution this implies that TorR1 (Coker(da−1

K ),M) = 0 for allR-modulesM . This means
that Coker(da−1

K ) is flat, see Algebra, Lemma 75.8. �

Lemma 66.3. Let R be a ring. Let K• be an object of D(R). Let a, b ∈ Z. The
following are equivalent

(1) K• has tor-amplitude in [a, b].
(2) K• is quasi-isomorphic to a complex E• of flat R-modules with Ei = 0 for

i 6∈ [a, b].

Proof. If (2) holds, then we may computeK•⊗L
RM = E•⊗RM and it is clear that

(1) holds. Assume that (1) holds. We may replaceK• by a projective resolution withKi =
0 for i > b. See Derived Categories, Lemma 19.3. Set E• = τ≥aK

•. Everything is clear
except that Ea is flat which follows immediately from Lemma 66.2 and the definitions.

�

Lemma 66.4. Let R be a ring. Let a ∈ Z and let K be an object of D(R). The
following are equivalent

(1) K has tor-amplitude in [a,∞], and
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(2) K is quasi-isomorphic to a K-flat complex E• whose terms are flat R-modules
with Ei = 0 for i 6∈ [a,∞].

Proof. The implication (2)⇒ (1) is immediate. Assume (1) holds. First we choose a
K-flat complex K• with flat terms representing K , see Lemma 59.10. For any R-module
M the cohomology of

Kn−1 ⊗RM → Kn ⊗RM → Kn+1 ⊗RM

computesHn(K⊗L
RM). This is always zero for n < a. Hence if we apply Lemma 66.2 to

the complex . . . → Ka−1 → Ka → Ka+1 we conclude that N = Coker(Ka−1 → Ka)
is a flat R-module. We set

E• = τ≥aK
• = (. . .→ 0→ N → Ka+1 → . . .)

The kernel L• of K• → E• is the complex

L• = (. . .→ Ka−1 → I → 0→ . . .)

where I ⊂ Ka is the image of Ka−1 → Ka. Since we have the short exact sequence
0 → I → Ka → N → 0 we see that I is a flat R-module. Thus L• is a bounded above
complex of flat modules, hence K-flat by Lemma 59.7. It follows that E• is K-flat by
Lemma 59.6. �

Lemma 66.5. Let R be a ring. Let (K•, L•,M•, f, g, h) be a distinguished triangle
in D(R). Let a, b ∈ Z.

(1) If K• has tor-amplitude in [a+ 1, b+ 1] and L• has tor-amplitude in [a, b] then
M• has tor-amplitude in [a, b].

(2) If K•,M• have tor-amplitude in [a, b], then L• has tor-amplitude in [a, b].
(3) If L• has tor-amplitude in [a+ 1, b+ 1] andM• has tor-amplitude in [a, b], then

K• has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that − ⊗L

R M preserves distinguished
triangles. The easiest one to prove is (2) and the others follow from it by translation. �

Lemma 66.6. Let R be a ring. Let M be an R-module. Let d ≥ 0. The following are
equivalent

(1) M has tor dimension ≤ d, and
(2) there exists a resolution

0→ Fd → . . .→ F1 → F0 →M → 0

with Fi a flat R-module.
In particular an R-module has tor dimension 0 if and only if it is a flat R-module.

Proof. Assume (2). Then the complexE• withE−i = Fi is quasi-isomorphic toM .
Hence the Tor dimension of M is at most d by Lemma 66.3. Conversely, assume (1). Let
P • → M be a projective resolution of M . By Lemma 66.2 we see that τ≥−dP

• is a flat
resolution of M of length d, i.e., (2) holds. �

Lemma 66.7. Let R be a ring. Let a, b ∈ Z. If K• ⊕ L• has tor amplitude in [a, b] so
do K• and L•.

Proof. Clear from the fact that the Tor functors are additive. �
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Lemma 66.8. Let R be a ring. Let K• be a bounded complex of R-modules such that
Ki has tor amplitude in [a − i, b − i] for all i. Then K• has tor amplitude in [a, b]. In
particular if K• is a finite complex of R-modules of finite tor dimension, then K• has
finite tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma 66.5
and the stupid truncations. �

Lemma 66.9. Let R be a ring. Let a, b ∈ Z. Let K• ∈ Db(R) such that Hi(K•) has
tor amplitude in [a− i, b− i] for all i. ThenK• has tor amplitude in [a, b]. In particular if
K• ∈ Db(R) and all its cohomology groups have finite tor dimension then K• has finite
tor dimension.

Proof. Follows by induction on the length of the finite complex: use Lemma 66.5
and the canonical truncations. �

Lemma 66.10. LetA→ B be a ring map. LetK• andL• be complexes ofB-modules.
Let a, b, c, d ∈ Z. If

(1) K• as a complex of B-modules has tor amplitude in [a, b],
(2) L• as a complex of A-modules has tor amplitude in [c, d],

then K• ⊗L
B L

• as a complex of A-modules has tor amplitude in [a+ c, b+ d].
Proof. We may assume that K• is a complex of flat B-modules with Ki = 0 for

i 6∈ [a, b], see Lemma 66.3. Let M be an A-module. Choose a free resolution F • → M .
Then

(K• ⊗L
B L

•)⊗L
AM = Tot(Tot(K• ⊗B L•)⊗A F •) = Tot(K• ⊗B Tot(L• ⊗A F •))

see Homology, Remark 18.4 for the second equality. By assumption (2) the complex
Tot(L• ⊗A F •) has nonzero cohomology only in degrees [c, d]. Hence the spectral se-
quence of Homology, Lemma 25.1 for the double complex K• ⊗B Tot(L• ⊗A F •) proves
that (K• ⊗L

B L
•)⊗L

AM has nonzero cohomology only in degrees [a+ c, b+ d]. �

Lemma 66.11. Let A→ B be a ring map. Assume that B is flat as an A-module. Let
K• be a complex of B-modules. Let a, b ∈ Z. If K• as a complex of B-modules has tor
amplitude in [a, b], then K• as a complex of A-modules has tor amplitude in [a, b].

Proof. This is a special case of Lemma 66.10, but can also be seen directly as follows.
We have K• ⊗L

A M = K• ⊗L
B (M ⊗A B) since any projective resolution of K• as a

complex of B-modules is a flat resolution of K• as a complex of A-modules and can be
used to compute K• ⊗L

AM . �

Lemma 66.12. Let A → B be a ring map. Assume that B has tor dimension ≤ d as
an A-module. Let K• be a complex of B-modules. Let a, b ∈ Z. If K• as a complex of B-
modules has tor amplitude in [a, b], thenK• as a complex ofA-modules has tor amplitude
in [a− d, b].

Proof. This is a special case of Lemma 66.10, but can also be seen directly as follows.
Let M be an A-module. Choose a free resolution F • →M . Then

K• ⊗L
AM = Tot(K• ⊗A F •) = Tot(K• ⊗B (F • ⊗A B)) = K• ⊗L

B (M ⊗L
A B).

By our assumption on B as an A-module we see that M ⊗L
A B has cohomology only

in degrees −d,−d + 1, . . . , 0. Because K• has tor amplitude in [a, b] we see from the
spectral sequence in Example 62.4 thatK•⊗L

B (M⊗L
AB) has cohomology only in degrees

[−d+ a, b] as desired. �
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Lemma 66.13. Let A → B be a ring map. Let a, b ∈ Z. Let K• be a complex of
A-modules with tor amplitude in [a, b]. Then K• ⊗L

A B as a complex of B-modules has
tor amplitude in [a, b].

Proof. By Lemma 66.3 we can find a quasi-isomorphism E• → K• where E• is a
complex of flatA-modules withEi = 0 for i 6∈ [a, b]. ThenE•⊗AB computesK•⊗L

AB
by construction and each Ei ⊗A B is a flat B-module by Algebra, Lemma 39.7. Hence we
conclude by Lemma 66.3. �

Lemma 66.14. Let A → B be a flat ring map. Let d ≥ 0. Let M be an A-module of
tor dimension ≤ d. Then M ⊗A B is a B-module of tor dimension ≤ d.

Proof. Immediate consequence of Lemma 66.13 and the fact thatM⊗L
AB = M⊗AB

because B is flat over A. �

Lemma 66.15. Let A → B be a ring map. Let K• be a complex of B-modules. Let
a, b ∈ Z. The following are equivalent

(1) K• has tor amplitude in [a, b] as a complex of A-modules,
(2) K•

q has tor amplitude in [a, b] as a complex ofAp-modules for every prime q ⊂ B
with p = A ∩ q,

(3) K•
m has tor amplitude in [a, b] as a complex of Ap-modules for every maximal

ideal m ⊂ B with p = A ∩m.

Proof. Assume (3) and let M be an A-module. Then Hi = Hi(K• ⊗L
A M) is a B-

module and (Hi)m = Hi(K•
m ⊗L

Ap
Mp). Hence Hi = 0 for i 6∈ [a, b] by Algebra, Lemma

23.1. Thus (3)⇒ (1). We omit the proofs of (1)⇒ (2) and (2)⇒ (3). �

Lemma 66.16. Let R be a ring. Let f1, . . . , fr ∈ R be elements which generate the
unit ideal. Let a, b ∈ Z. Let K• be a complex of R-modules. If for each i the complex
K• ⊗R Rfi has tor amplitude in [a, b], then K• has tor amplitude in [a, b].

Proof. This follows immediately from Lemma 66.15 but can also be seen directly as
follows. Note that −⊗R Rfi is an exact functor and that therefore

Hi(K•)fi = Hi(K•)⊗R Rfi = Hi(K• ⊗R Rfi).

and similarly for every R-module M we have

Hi(K• ⊗L
RM)fi = Hi(K• ⊗L

RM)⊗R Rfi = Hi(K• ⊗R Rfi ⊗L
Rfi

Mfi).

Hence the result follows from the fact that an R-module N is zero if and only if Nfi is
zero for each i, see Algebra, Lemma 23.2. �

Lemma 66.17. Let R be a ring. Let a, b ∈ Z. Let K• be a complex of R-modules. Let
R→ R′ be a faithfully flat ring map. If the complexK•⊗RR′ has tor amplitude in [a, b],
then K• has tor amplitude in [a, b].

Proof. Let M be an R-module. Since R→ R′ is flat we see that

(M ⊗L
R K

•)⊗R R′ = ((M ⊗R R′)⊗L
R′ (K• ⊗R R′)

and taking cohomology commutes with tensoring withR′. Hence TorRi (M,K•)⊗RR′ =
TorR

′

i (M⊗RR′,K•⊗RR′). SinceR→ R′ is faithfully flat, the vanishing of TorR
′

i (M⊗R
R′,K• ⊗R R′) for i 6∈ [a, b] implies the same thing for TorRi (M,K•). �
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Lemma 66.18. Given ring maps R → A → B with A → B faithfully flat and
K ∈ D(A) the tor amplitude of K over R is the same as the tor amplitude of K ⊗L

A B
over R.

Proof. This is true because for an R-module M we have Hi(K ⊗L
R M) ⊗A B =

Hi((K ⊗L
AB)⊗L

RM) for all i. Namely, representK by a complexK• ofA-modules and
choose a free resolution F • →M . Then we have the equality

Tot(K• ⊗A B ⊗R F •) = Tot(K• ⊗R F •)⊗A B

The cohomology groups of the left hand side are Hi((K ⊗L
A B)⊗L

RM) and on the right
hand side we obtain Hi(K ⊗L

RM)⊗A B. �

Lemma 66.19. Let R be a ring of finite global dimension d. Then
(1) every module has tor dimension ≤ d,
(2) a complex of R-modules K• with Hi(K•) 6= 0 only if i ∈ [a, b] has tor ampli-

tude in [a− d, b], and
(3) a complex ofR-modulesK• has finite tor dimension if and only ifK• ∈ Db(R).

Proof. The assumption onR means that every module has a finite projective resolu-
tion of length at most d, in particular every module has tor dimension ≤ d. The second
statement follows from Lemma 66.9 and the definitions. The third statement is a rephras-
ing of the second. �

67. Spectral sequences for Ext

In this section we collect various spectral sequences that come up when considering the
Ext functors. For any pair of objects L, K of the derived category D(R) of a ring R we
denote

ExtnR(L,K) = HomD(R)(L,K[n])
according to our general conventions in Derived Categories, Section 27.

For M an R-module and K ∈ D+(R) there is a spectral sequence

(67.0.1) Ei,j2 = ExtiR(M,Hj(K))⇒ Exti+jR (M,K)

and ifK is represented by the bounded below complexK• ofR-modules there is a spectral
sequence

(67.0.2) Ei,j1 = ExtjR(M,Ki)⇒ Exti+jR (M,K)

These spectral sequences come from applying Derived Categories, Lemma 21.3 to the func-
tor HomR(M,−).

68. Projective dimension

We defined the projective dimension of a module in Algebra, Definition 109.2.

Definition 68.1. Let R be a ring. Let K be an object of D(R). We say K has finite
projective dimension ifK can be represented by a bounded complex of projective modules.
We say K has projective-amplitude in [a, b] if K is quasi-isomorphic to a complex

. . .→ 0→ P a → P a+1 → . . .→ P b−1 → P b → 0→ . . .

where P i is a projective R-module for all i ∈ Z.
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Clearly, K has finite projective dimension if and only if K has projective-amplitude in
[a, b] for some a, b ∈ Z. Furthermore, if K has finite projective dimension, then K is
bounded. Here is a lemma to detect such objects of D(R).

Lemma 68.2. LetR be a ring. LetK be an object ofD(R). Let a, b ∈ Z. The following
are equivalent

(1) K has projective-amplitude in [a, b],
(2) ExtiR(K,N) = 0 for all R-modules N and all i 6∈ [−b,−a],
(3) Hn(K) = 0 for n > b and ExtiR(K,N) = 0 for all R-modules N and all

i > −a, and
(4) Hn(K) = 0 for n 6∈ [a− 1, b] and Ext−a+1

R (K,N) = 0 for all R-modules N .

Proof. Assume (1). We may assume K is the complex

. . .→ 0→ P a → P a+1 → . . .→ P b−1 → P b → 0→ . . .

where P i is a projective R-module for all i ∈ Z. In this case we can compute the ext
groups by the complex

. . .→ 0→ HomR(P b, N)→ . . .→ HomR(P a, N)→ 0→ . . .

and we obtain (2).

Assume (2) holds. Choose an injection Hn(K) → I where I is an injective R-module.
Since HomR(−, I) is an exact functor, we see that Ext−n(K, I) = HomR(Hn(K), I).
We conclude in particular that Hn(K) is zero for n > b. Thus (2) implies (3).

By the same argument as in (2) implies (3) gives that (3) implies (4).

Assume (4). The same argument as in (2) implies (3) shows that Ha−1(K) = 0, i.e., we
have Hi(K) = 0 unless i ∈ [a, b]. In particular, K is bounded above and we can choose
a a complex P • representing K with P i projective (for example free) for all i ∈ Z and
P i = 0 for i > b. See Derived Categories, Lemma 15.4. Let Q = Coker(P a−1 → P a).
Then K is quasi-isomorphic to the complex

. . .→ 0→ Q→ P a+1 → . . .→ P b → 0→ . . .

as Hi(K) = 0 for i < a. Denote K ′ = (P a+1 → . . .→ P b) the corresponding object of
D(R). We obtain a distinguished triangle

K ′ → K → Q[−a]→ K ′[1]
in D(R). Thus for every R-module N an exact sequence

Ext−a(K ′, N)→ Ext1(Q,N)→ Ext1−a(K,N)
By assumption the term on the right vanishes. By the implication (1)⇒ (2) the term on
the left vanishes. Thus Q is a projective R-module by Algebra, Lemma 77.2. Hence (1)
holds and the proof is complete. �

Example 68.3. Let k be a field and let R be the ring of dual numbers over k, i.e.,
R = k[x]/(x2). Denote ε ∈ R the class ofx. LetM = R/(ε). ThenM is quasi-isomorphic
to the complex

R
ε−→ R

ε−→ R→ . . .

but M does not have finite projective dimension as defined in Algebra, Definition 109.2.
This explains why we consider bounded (in both directions) complexes of projective mod-
ules in our definition of finite projective dimension of objects of D(R).
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69. Injective dimension

This section is the dual of the section on projective dimension.

Definition 69.1. Let R be a ring. Let K be an object of D(R). We say K has finite
injective dimension if K can be represented by a finite complex of injective R-modules.
We say K has injective-amplitude in [a, b] if K is isomorphic to a complex

. . .→ 0→ Ia → Ia+1 → . . .→ Ib−1 → Ib → 0→ . . .

with Ii an injective R-module for all i ∈ Z.

Clearly, K has bounded injective dimension if and only if K has injective-amplitude in
[a, b] for some a, b ∈ Z. Furthermore, if K has bounded injective dimension, then K is
bounded. Here is the obligatory lemma.

Lemma 69.2. LetR be a ring. LetK be an object ofD(R). Let a, b ∈ Z. The following
are equivalent

(1) K has injective-amplitude in [a, b],
(2) ExtiR(N,K) = 0 for all R-modules N and all i 6∈ [a, b],
(3) Exti(R/I,K) = 0 for all ideals I ⊂ R and all i 6∈ [a, b].

Proof. Assume (1). We may assume K is the complex

. . .→ 0→ Ia → Ia+1 → . . .→ Ib−1 → Ib → 0→ . . .

where Ii is a injective R-module for all i ∈ Z. In this case we can compute the ext groups
by the complex

. . .→ 0→ HomR(N, Ia)→ . . .→ HomR(N, Ib)→ 0→ . . .

and we obtain (2). It is clear that (2) implies (3).

Assume (3) holds. Choose a nonzero map R → Hn(K). Since HomR(R,−) is an exact
functor, we see that ExtnR(R,K) = HomR(R,Hn(K)) = Hn(K). We conclude that
Hn(K) is zero for n 6∈ [a, b]. In particular, K is bounded below and we can choose a
quasi-isomorphism

K → I•

with Ii injective for all i ∈ Z and Ii = 0 for i < a. See Derived Categories, Lemma 15.5.
Let J = Ker(Ib → Ib+1). Then K is quasi-isomorphic to the complex

. . .→ 0→ Ia → . . .→ Ib−1 → J → 0→ . . .

Denote K ′ = (Ia → . . . → Ib−1) the corresponding object of D(R). We obtain a
distinguished triangle

J [−b]→ K → K ′ → J [1− b]
in D(R). Thus for every ideal I ⊂ R an exact sequence

Extb(R/I,K ′)→ Ext1(R/I, J)→ Ext1+b(R/I,K)
By assumption the term on the right vanishes. By the implication (1)⇒ (2) the term on
the left vanishes. Thus J is a injective R-module by Lemma 55.4. �

Example 69.3. Let R be a Dedekind domain. Then every nonzero ideal I is a finite
projective module, see Lemma 22.11. ThusR/I has projective dimension 1. Hence everyR-
moduleM has injective dimension≤ 1 by Lemma 69.2. Thus ExtiR(M,N) = 0 for i ≥ 2
and any pair ofR-modulesM,N . It follows that any objectK inDb(R) is isomorphic to
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the direct sum of its cohomologies: K ∼=
⊕
Hi(K)[−i], see Derived Categories, Lemma

27.10.
Example 69.4. Let k be a field and let R be the ring of dual numbers over k, i.e.,

R = k[x]/(x2). Denote ε ∈ R the class ofx. LetM = R/(ε). ThenM is quasi-isomorphic
to the complex

. . .→ R
ε−→ R

ε−→ R

and R is an injective R-module. However one usually does not consider M to have finite
injective dimension in this situation. This explains why we consider bounded (in both di-
rections) complexes of injective modules in our definition of bounded injective dimension
of objects of D(R).

Lemma 69.5. Let R be a ring. Let K ∈ D(R).
(1) If K is in Db(R) and Hi(K) has finite injective dimension for all i, then K has

finite injective dimension.
(2) IfK• representsK , is a bounded complex ofR-modules, andKi has finite injec-

tive dimension for all i, then K has finite injective dimension.
Proof. Omitted. Hint: Apply the spectral sequences of Derived Categories, Lemma

21.3 to the functor F = HomR(N,−) to get a computation of ExtiA(N,K) and use the
criterion of Lemma 69.2. �

Lemma 69.6. Let R be a Noetherian ring. Let I ⊂ R be an ideal contained in the
Jacobson radical of R. Let K ∈ D+(R) have finite cohomology modules. Then the fol-
lowing are equivalent

(1) K has finite injective dimension, and
(2) there exists a b such that ExtiR(R/J,K) = 0 for i > b and any ideal J ⊃ I .

Proof. The implication (1) ⇒ (2) is immediate. Assume (2). Say Hi(K) = 0 for
i < a. Then Exti(M,K) = 0 for i < a and all R-modules M . Thus it suffices to show
that Exti(M,K) = 0 for i > b any finite R-module M , see Lemma 69.2. By Algebra,
Lemma 62.1 the module M has a finite filtration whose successive quotients are of the
formR/p where p is a prime ideal. If 0→M1 →M →M2 → 0 is a short exact sequence
and Exti(Mj ,K) = 0 for i > b and j = 1, 2, then Exti(M,K) = 0 for i > b. Thus we
may assume M = R/p. If I ⊂ p, then the vanishing follows from the assumption. If not,
then choose f ∈ I , f 6∈ p. Consider the short exact sequence

0→ R/p
f−→ R/p→ R/(p, f)→ 0

TheR-moduleR/(p, f) has a filtration whose successive quotients areR/q with (p, f) ⊂
q. Thus by Noetherian induction and the argument above we may assume the vanishing
holds forR/(p, f). On the other hand, the modulesEi = Exti(R/p,K) are finite by our
assumption onK (bounded below with finite cohomology modules), the spectral sequence
(67.0.1), and Algebra, Lemma 71.9. Thus Ei for i > b is a finite R-module such that
Ei/fEi = 0. We conclude by Nakayama’s lemma (Algebra, Lemma 20.1) that Ei is zero.

�

Lemma 69.7. Let (R,m, κ) be a local Noetherian ring. Let K ∈ D+(R) have finite
cohomology modules. Then the following are equivalent

(1) K has finite injective dimension, and
(2) ExtiR(κ,K) = 0 for i� 0.

Proof. This is a special case of Lemma 69.6. �
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70. Modules which are close to being projective

There seem to be many different of definitions in the literature of “almost projective mod-
ules”. In this section we discuss just one of the many possibilities.

Lemma 70.1. Let R be a ring. Let M , N be R-modules.
(1) Given anR-module mapϕ : M → N the following are equivalent: (a) ϕ factors

through a projective R-module, and (b) ϕ factors through a free R-module.
(2) The set of ϕ : M → N satisfying the equivalent conditions of (1) is an R-

submodule of HomR(M,N).
(3) Given maps ψ : M ′ → M and ξ : N → N ′, if ϕ : M → N satisfies the

equivalent conditions of (1), then ξ ◦ ϕ ◦ ψ : M ′ → N ′ does too.

Proof. The equivalence of (1)(a) and (1)(b) follows from Algebra, Lemma 77.2. If
ϕ : M → N and ϕ′ : M → N factor through the modules P and P ′ then ϕ+ ϕ′ factors
through P ⊕ P ′ and λϕ factors through P for all λ ∈ R. This proves (2). If ϕ : M → N
factors through the module P and ψ and ξ are as in (3), then ξ ◦ ϕ ◦ ψ factors through P .
This proves (3). �

Lemma 70.2. Let R be a ring. Let ϕ : M → N be an R-module map. If ϕ factors
through a projective module and M is a finite R-module, then ϕ factors through a finite
projective module.

Proof. By Lemma 70.1 we can factor ϕ = τ ◦ σ where the target of σ is
⊕

i∈I R
for some set I . Choose generators x1, . . . , xn for M . Write σ(xj) = (aji)i∈I . For each
j only a finite number of aij are nonzero. Hence σ has image contained in a finite free
R-module and we conclude. �

Let R be a ring. Observe that an R-module is projective if and only if the identity on R
factors through a projective module.

Lemma 70.3. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module. The
following conditions are equivalent

(1) for every a ∈ I the map a : M →M factors through a projective R-module,
(2) for every a ∈ I the map a : M →M factors through a free R-module, and
(3) Ext1

R(M,N) is annihilated by I for every R-module N .

Proof. The equivalence of (1) and (2) follows from Lemma 70.1. If (1) holds, then (3)
holds because Ext1

R(P,N) for any N and any projective module P . Conversely, assume
(3) holds. Choose a short exact sequence 0 → N → P → M → 0 with P projective (or
even free). By assumption the corresponding element of Ext1

R(M,N) is annihilated by
I . Hence for every a ∈ I the map a : M → M can be factored through the surjection
P →M and we conclude (1) holds. �

In order to comfortably talk about modules satisfying the equivalent conditions of Lemma
70.3 we give the property a name.

Definition 70.4. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
We say M is I-projective8 if the equivalent conditions of Lemma 70.3 hold.

Modules annihilated by I are I-projective.

8This is nonstandard notation.
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Lemma 70.5. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module. If M is
annihilated by I , then M is I-projective.

Proof. Immediate from the definition and the fact that the zero module is projective.
�

Lemma 70.6. Let R be a ring. Let I ⊂ R be an ideal. Let

0→ K → P →M → 0

be a short exact sequence of R-modules. If M is I-projective and P is projective, then K
is I-projective.

Proof. The element idK ∈ HomR(K,K) maps to the class of the given extension
in Ext1

R(M,K). Since by assumption this class is annihilated by any a ∈ I we see that
a : K → K factors through K → P and we conclude. �

Lemma 70.7. Let R be a ring. Let I ⊂ R be an ideal. If M is a finite, I-projective
R-module, then M∨ = HomR(M,R) is I-projective.

Proof. Assume M is finite and I-projective. Choose a short exact sequence 0 →
K → R⊕r → M → 0. This produces an injection M∨ → R⊕r = (R⊕r)∨. Since the
extension class in Ext1

R(M,K) corresponding to the short exact sequence is annihilated
by I , we see that for any a ∈ I we can find a map M → R⊕r such that the composition
with the given map R⊕r → M is equal to a : M → M . Taking duals we find that
a : M∨ →M∨ factors through the map M∨ → R⊕r given above and we conclude. �

71. Hom complexes

LetR be a ring. Let L• andM• be two complexes of R-modules. We construct a complex
Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomR(L−q,Mp)

It is a good idea to think of Homn as the R-module of all R-linear maps from L• to M•

(viewed as graded modules) which are homogenous of degree n. In this terminology, we
define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn(L•,M•). We omit the verification that d2 = 0. See Section 72 for sign
rules. This construction is a special case of Differential Graded Algebra, Example 26.6. It
follows immediately from the construction that we have

(71.0.1) Hn(Hom•(L•,M•)) = HomK(R)(L•,M•[n])

for all n ∈ Z.

Lemma 71.1. Let R be a ring. Given complexes K•, L•,M• of R-modules there is a
canonical isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗R L•),M•)

of complexes of R-modules.
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Proof. Let α be an element of degree n on the left hand side. Thus

α = (αp,q) ∈
∏

p+q=n
HomR(K−q,Homp(L•,M•))

Each αp,q is an element

αp,q = (αr,s,q) ∈
∏

r+s+q=n
HomR(K−q,HomR(L−s,Mr))

If we make the identifications

(71.1.1) HomR(K−q,HomR(L−s,Mr)) = HomR(K−q ⊗R L−s,Mr)
then by our sign rules we get

d(αr,s,q) = dHom•(L•,M•) ◦ αr,s,q − (−1)nαr,s,q ◦ dK
= dM ◦ αr,s,q − (−1)r+sαr,s,q ◦ dL − (−1)r+s+qαr,s,q ◦ dK

On the other hand, if β is an element of degree n of the right hand side, then

β = (βr,s,q) ∈
∏

r+s+q=n
HomR(K−q ⊗R L−s,Mr)

and by our sign rule (Homology, Definition 18.3) we get

d(βr,s,q) = dM ◦ βr,s,q − (−1)nβr,s,q ◦ dTot(K•⊗L•)

= dM ◦ βr,s,q − (−1)r+s+q (βr,s,q ◦ dK + (−1)−qβr,s,q ◦ dL
)

Thus we see that the map induced by the identifications (71.1.1) indeed is a morphism of
complexes. �

Remark 71.2. Let R be a ring. The category Comp(R) of complexes of R-modules
is a symmetric monoidal category with tensor product given by Tot(−⊗R−), see Lemma
58.1. Given L• and M• in Comp(R) an element f ∈ Hom0(L•,M•) defines a map of
complexes f : L• →M• if and only if d(f) = 0. Hence Lemma 71.1 also tells us that

MorComp(R)(K•,Hom•(L•,M•)) = MorComp(R)(Tot(K• ⊗R L•),M•)

functorially inK•, L•,M• in Comp(R). This means that Hom•(−,−) is an internal hom
for the symmetric monoidal category Comp(R) as discussed in Categories, Remark 43.12.

Lemma 71.3. Let R be a ring. Given complexes K•, L•,M• of R-modules there is a
canonical morphism

Tot (Hom•(L•,M•)⊗R Hom•(K•, L•)) −→ Hom•(K•,M•)
of complexes of R-modules.

Proof. Via the discussion in Remark 71.2 the existence of such a canonical map fol-
lows from Categories, Remark 43.12. We also give a direct construction.

An element α of degree n of the left hand side is

α = (αp,q) ∈
⊕

p+q=n
Homp(L•,M•)⊗R Homq(K•, L•)

The element αp,q is a finite sum αp,q =
∑
βpi ⊗ γ

q
i with

βpi = (βr,si ) ∈
∏

r+s=p
HomR(L−s,Mr)

and
γqi = (γu,vi ) ∈

∏
u+v=q

HomR(K−v, Lu)
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The map is given by sending α to δ = (δr,v) with

δr,v =
∑

i,s
βr,si ◦ γ

−s,v
i ∈ HomR(K−v,Mr)

For given r+ v = n this sum is finite as there are only finitely many nonzero αp,q , hence
only finitely many nonzero βpi and γqi . By our sign rules we have

d(αp,q) = dHom•(L•,M•)(αp,q) + (−1)pdHom•(K•,L•)(αp,q)

=
∑(

dM ◦ βpi ◦ γ
q
i − (−1)pβpi ◦ dL ◦ γqi

)
+ (−1)p

∑(
βpi ◦ dL ◦ γqi − (−1)qβpi ◦ γ

q
i ◦ dK

)
=
∑(

dM ◦ βpi ◦ γ
q
i − (−1)nβpi ◦ γ

q
i ◦ dK

)
It follows that the rules α 7→ δ is compatible with differentials and the lemma is proved.

�

Lemma 71.4. Let R be a ring. Given complexes K•, L•,M• of R-modules there is a
canonical morphism

Tot(K• ⊗R Hom•(M•, L•)) −→ Hom•(M•,Tot(K• ⊗R L•))
of complexes of R-modules functorial in all three complexes.

Proof. Via the discussion in Remark 71.2 the existence of such a canonical map fol-
lows from Categories, Remark 43.12. We also give a direct construction.

Let α be an element of degree n of the right hand side. Thus

α = (αp,q) ∈
∏

p+q=n
HomR(M−q,Totp(K• ⊗R L•))

Each αp,q is an element

αp,q = (αr,s,q) ∈ HomR(M−q,
⊕

r+s+q=n
Kr ⊗R Ls)

where we think of αr,s,q as a family of maps such that for every x ∈ M−q only a finite
number of αr,s,q(x) are nonzero. By our sign rules we get

d(αr,s,q) = dTot(K•⊗RL•) ◦ αr,s,q − (−1)nαr,s,q ◦ dM
= dK ◦ αr,s,q + (−1)rdL ◦ αr,s,q − (−1)nαr,s,q ◦ dM

On the other hand, if β is an element of degree n of the left hand side, then

β = (βp,q) ∈
⊕

p+q=n
Kp ⊗R Homq(M•, L•)

and we can write βp,q =
∑
γpi ⊗ δ

q
i with γpi ∈ Kp and

δqi = (δr,si ) ∈
∏

r+s=q
HomR(M−s, Lr)

By our sign rules we have

d(βp,q) = dK(βp,q) + (−1)pdHom•(M•,L•)(βp,q)

=
∑

dK(γpi )⊗ δqi + (−1)p
∑

γpi ⊗ (dL ◦ δqi − (−1)qδqi ◦ dM )

We send the element β to α with

αr,s,q = cr,s,q(
∑

γri ⊗ δ
s,q
i )
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where cr,s,q : Kr ⊗R HomR(M−q, Ls) → HomR(M−q,Kr ⊗R Ls) is the canonical
map. For a given β and r there are only finitely many nonzero γri hence only finitely many
nonzeroαr,s,q are nonzero (for a given r). Thus this family of maps satisfies the conditions
above and the map is well defined. Comparing signs we see that this is compatible with
differentials. �

Lemma 71.5. LetR be a ring. Given complexesK•, L• ofR-modules there is a canon-
ical morphism

K• −→ Hom•(L•,Tot(K• ⊗R L•))
of complexes of R-modules functorial in both complexes.

Proof. Via the discussion in Remark 71.2 the existence of such a canonical map fol-
lows from Categories, Remark 43.12. We also give a direct construction.

Let α be an element of degree n of the right hand side. Thus

α = (αp,q) ∈
∏

p+q=n
HomR(L−q,Totp(K• ⊗R L•))

Each αp,q is an element

αp,q = (αr,s,q) ∈ HomR(L−q,
⊕

r+s+q=n
Kr ⊗R Ls)

where we think of αr,s,q as a family of maps such that for every x ∈ L−q only a finite
number of αr,s,q(x) are nonzero. By our sign rules we get

d(αr,s,q) = dTot(K•⊗RL•) ◦ αr,s,q − (−1)nαr,s,q ◦ dL
= dK ◦ αr,s,q + (−1)rdL ◦ αr,s,q − (−1)nαr,s,q ◦ dL

Now an element β ∈ Kn we send to α with αn,−q,q = β⊗ idL−q and αr,s,q = 0 if r 6= n.
This is indeed an element as above, as for fixed q there is only one nonzero αr,s,q . The
description of the differential shows this is compatible with differentials. �

Lemma 71.6. Let R be a ring. Given complexes K•, L•,M• of R-modules there is a
canonical morphism

Tot(Hom•(L•,M•)⊗R K•) −→ Hom•(Hom•(K•, L•),M•)
of complexes of R-modules functorial in all three complexes.

Proof. Via the discussion in Remark 71.2 the existence of such a canonical map fol-
lows from Categories, Remark 43.12. We also give a direct construction.

Consider an element β of degree n of the right hand side. Then

β = (βp,s) ∈
∏

p+s=n
HomR(Hom−s(K•, L•),Mp)

Our sign rules tell us that

d(βp,s) = dM ◦ βp,s − (−1)nβp,s ◦ dHom•(K•,L•)

We can describe the last term as follows

(βp,s ◦ dHom•(K•,L•))(f) = βp,s(dL ◦ f − (−1)s+1f ◦ dK)

if f ∈ Hom−s−1(K•, L•). We conclude that in some unspecified sense d(βp,s) is a sum
of three terms with signs as follows

(71.6.1) d(βp,s) = dM (βp,s)− (−1)ndL(βp,s) + (−1)p+1dK(βp,s)
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Next, we consider an element α of degree n of the left hand side. We can write it like so

α = (αt,r) ∈
⊕

t+r=n
Homt(L•,M•)⊗Kr

Each αt,r maps to an element

αt,r 7→ (αp,q,r) ∈
∏

p+q=t
HomR(L−q,Mp)⊗R Kr

Our sign rules tell us that

d(αp,q,r) = dHom•(L•,M•)(αp,q,r) + (−1)p+qdK(αp,q,r)

where if we further write αp,q,r =
∑
gp,qi ⊗ kri then we have

dHom•(L•,M•)(αp,q,r) =
∑

(dM ◦ gp,qi )⊗ kri − (−1)p+q
∑

(gp,qi ◦ dL)⊗ kri

We conclude that in some unspecified sense d(αp,q,r) is a sum of three terms with signs as
follows

(71.6.2) d(αp,q,r) = dM (αp,q,r)− (−1)p+qdL(αp,q,r) + (−1)p+qdK(αp,q,r)

To define our map we will use the canonical maps

cp,q,r : HomR(L−q,Mp)⊗R Kr −→ HomR(HomR(Kr, L−q),Mp)

which sends ϕ ⊗ k to the map ψ 7→ ϕ(ψ(k)). This is functorial in all three variables.
With s = q + r there is an inclusion

HomR(HomR(Kr, L−q),Mp) ⊂ HomR(Hom−s(K•, L•),Mp)

coming from the projection Hom−s(K•, L•)→ HomR(Kr, L−q). Sinceαp,q,r is nonzero
only for a finite number of r we see that for a given s there is only a finite number of q, r
with q + r = s. Thus we can send α to the element β with

βp,s =
∑

q+r=s
εp,q,rcp,q,r(αp,q,r)

where where the sum uses the inclusions given above and where εp,q,r ∈ {±1}. Compar-
ing signs in the equations (71.6.1) and (71.6.2) we see that

(1) εp,q,r = εp+1,q,r
(2) −(−1)nεp,q,r = −(−1)p+qεp,q−1,r or equivalently εp,q,r = (−1)rεp,q−1,r
(3) (−1)p+1εp,q,r = (−1)p+qεp,q,r+1 or equivalently (−1)q+1εp,q,r = εp,q,r+1.

A good solution is to take
εp,r,s = (−1)r+qr

The choice of this sign is explained in the remark following the proof. �

Remark 71.7. Let us explain why the sign used in the direct construction in the
proof of Lemma 71.6 agrees with the sign we get from the construction using the discus-
sion in Remark 71.2 and Categories, Remark 43.12. Denote − ⊗ − = Tot(− ⊗R −) and
hom(−,−) = Hom•(−,−). The construction using monoidal category language tells us
to use the arrow

hom(L•,M•)⊗K• −→ hom(hom(K•, L•),M•)

in Comp(R) corresponding to the arrow

hom(L•,M•)⊗K• ⊗ hom(K•, L•) −→M•
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gotten by swapping the order of the last two tensor products and then using the evaluation
maps hom(K•, L•)⊗K• → L• and hom(L•,K•)⊗L• →M•. Only in swapping does
a sign intervene. Namely, in the isomorphism

K• ⊗ hom(K•, L•)→ hom(K•, L•)⊗K•

there is a sign (−1)r(q+r′) on Kr ⊗R HomR(K−r′
, Lq), see Section 72 item (9). The

reader can convince themselves that, because of the correspondence we are using to de-
scribe maps into an internal hom, this sign only matters if r = r′ and in this case we
obtain (−1)r(q+r) = (−1)r+qr as in the direct proof.

72. Sign rules

In this section we review the sign rules used so far and we discuss some of their ramifi-
cations. It also seems appropriate to discuss these issues in the setting of the category of
complexes of modules over a ring, as most interesting phenomena already occur in this
case. We sincerely hope the reader will not need to use the more esoteric aspects of this
section.

For the rest of this section, we fix a ring R and we denote M• a complex of R-modules
with differentials dnM : Mn →Mn+1.

(1) The kth shifted complex M•[k] has terms (M•[k])n = Mn+k and differentials
dnM [k] = (−1)kdn+k

M , see Homology, Definition 14.7.
(2) Given a map f : M• → N• of complexes, we define f [k] : M•[k] → N•[k]

without the intervention of signs, see Homology, Definition 14.7.
(3) We identifyHn(M•[k]) withHn+k(M•) without the intervention of signs, see

Homology, Definition 14.8.
(4) The boundary map of a short exact sequence of complexes is defined as in the

snake lemma without the intervention of signs, see Homology, Lemma 13.12.
(5) The distinguished triangle associated to a termwise split short exact sequence

0→ K• → L• →M• → 0 of complexes is given by

K• → L• →M• → K•[1]

whereMn → Kn+1 is the map πn+1◦dnL◦sn if s and π are compatible termwise
splittings. In other words, without the intervention of signs. See Derived Cate-
gories, Definitions 10.1 and 9.9.

(6) The total complex Tot(M•⊗RN•) has differential d satisfying the Leibniz rule
d(x ⊗ y) = d(x) ⊗ y + (−1)deg(x)x ⊗ d(y). See Homology, Example 18.2 and
Homology, Definition 18.3.

(7) There is a canonical isomorphism

Tot(M• ⊗R N•)[a+ b]→ Tot(M•[a]⊗R N•[b])

which uses the sign (−1)pb on the summand Mp ⊗R Nq , see Homology, Re-
mark 18.5. It is often more convenient to consider the corresponding shifted
map Tot(M• ⊗R N•)→ Tot(M•[a]⊗R N•[b])[−a− b].

(8) There is a canonical isomorphism of complexes

Tot(Tot(K• ⊗R L•)⊗RM•)→ Tot(K• ⊗R Tot(L• ⊗RM•))

defined without the intervention of signs. See Section 58.
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(9) There is a canonical isomorphism

Tot(L• ⊗RM•)→ Tot(M• ⊗R L•)
which uses the sign (−1)pq on the summand Lp ⊗RMq . See Section 58.

Before we get into a discussion of the sign conventions regarding Hom-complexes, we
construct the dual of a complex with respect to the conventions above.

Lemma 72.1. Let R be a ring. Let M be an R-module. Let N, η, ε be a left dual of M
in the monoidal category of R-modules, see Categories, Definition 43.5. Then

(1) M and N are finite projective R-modules,
(2) the map e : HomR(M,R)→ N , λ 7→ (λ⊗ 1)(η) is an isomorphism,
(3) we have ε(n,m) = e−1(n)(m) for n ∈ N and m ∈M .

Proof. The assumptions mean that

M
η⊗1−−→M ⊗R N ⊗RM

1⊗ε−−→M and N
1⊗η−−→ N ⊗RM ⊗R N

ε⊗1−−→ N

are the identity map. We can choose a finite free module F , an R-module map F → M ,
and a lift η̃ : R→ F ⊗R N of η. We obtain a commutative diagram

M
η⊗1

//

η̃⊗1
))

M ⊗R N ⊗RM 1⊗ε
// M

F ⊗R N ⊗RM

OO

1⊗ε // F

OO

This shows that the identity on M factors through a finite free module and hence M is
finite projective. By symmetry we see that N is finite projective. This proves part (1).
Part (2) follows from Categories, Lemma 43.6 and its proof. Part (3) follows from the first
equality of the proof. �

Lemma 72.2. Let R be a ring. Let M• be a complex of R-modules. Let N•, η, ε be a
left dual of M• in the monoidal category of complexes of R-modules. Then

(1) M• and N• are bounded,
(2) Mn and Nn are finite projective R-modules,
(3) writing ε =

∑
εn with εn : N−n ⊗RMn → R and η =

∑
ηn with ηn : R →

Mn ⊗R N−n then (N−n, ηn, εn) is the left dual of Mn as in Lemma 72.1,
(4) the differential dnN : Nn → Nn+1 is equal to −(−1)n times the map

Nn = HomR(M−n, R)
d−n−1
M−−−−→ HomR(M−n−1, R) = Nn+1

where the equality signs are the identifications from Lemma 72.1 part (2).
Conversely, given a bounded complex M• of finite projective R-modules, setting Nn =
HomR(M−n, R) with differentials as above, setting ε =

∑
εn with εn : N−n⊗RMn →

R given by evaluation, and setting η =
∑
ηn with ηn : R→Mn ⊗R N−n mapping 1 to

idMn
we obtain a left dual of M• in the monoidal category of complexes of R-modules.

Proof. Since (1⊗ ε) ◦ (η ⊗ 1) = idM• and (ε⊗ 1) ◦ (1⊗ η) = idN• by Categories,
Definition 43.5 we see immediately that we have (1⊗εn)◦(ηn⊗1) = idMn and (εn⊗1)◦
(1⊗ηn) = idN−n which proves (3). By Lemma 72.1 we have (2). Since the sum η =

∑
ηn

is finite, we get (1). Since η =
∑
ηn is a map of complexes R→ Tot(M• ⊗R N•) we see

that
(d−n−1
M ⊗ 1) ◦ η−n−1 + (−1)n(1⊗ d−n

N ) ◦ η−n = 0
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by our choice of signs for the differential on Tot(M•⊗RN•). Unwinding definitions, this
proves (4). To see the final statement of the lemma one reads the above backwards. �

We will use the description of the left dual of a complex in Lemma 72.2 as a motivation
for our sign rule on the Hom-complex. Namelly, we choose the signs such that (11) holds.
We continue with the discussion of various sign rules as above

(10) Given complexes K•, M• we let Hom•(M•,K•) be the complex with terms

Homn(M•,K•) =
∏

n=p+q
HomR(M−q,Kp)

and differential given by the rule

d(f) = dK ◦ f − (−1)nf ◦ dM
(11) The choice above is such that if M• has a left dual N• as in Lemma 72.2, then

we have a canonical isomorphism

Tot(K• ⊗R N•) −→ Hom•(M•,K•)
defined without the intervention of signs sending the summand Kp ⊗R Nq to
the summand HomR(M−q,Kp) via Nq = HomR(M−q, R) and the canonical
map Kp ⊗R HomR(M−q, R)→ HomR(M−q,Kp).

(12) There is a composition

Tot(Hom•(L•,K•)⊗R Hom•(M•, L•)) −→ Hom•(M•,K•)
defined without the intervention of signs, see Lemma 71.3.

(13) There is a canonical isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗R L•),M•)
defined without the intervention of signs, see Lemma 71.1.

(14) There is a canonical map

Tot(K• ⊗R Hom•(M•, L•)) −→ Hom•(M•,Tot(K• ⊗R L•))
defined without the intervention of signs, see Lemma 71.4.

(15) There is a canonical map

K• −→ Hom•(L•,Tot(K• ⊗R L•))
defined without the intervention of signs, see Lemma 71.5.

(16) By Lemma 71.6 is a canonical map

Tot(Hom•(L•,M•)⊗R K•) −→ Hom•(Hom•(K•, L•),M•)
which uses a sign (−1)r+qr on the module HomR(L−q,Mp)⊗RKr whose rea-
son is explained in Remark 71.7.

(17) Taking L• = M• and using R → Hom•(M•,M•) the map from the previous
item becomes the evaluation map

ev : K• −→ Hom•(Hom•(K•,M•),M•)
It sends x ∈ Kn to the map which sends f ∈ Homm(K•,M•) to (−1)nmf(x).

(18) There is a canonical identification

Hom•(M•,K•)[a− b]→ Hom•(M•[b],K•[a])
which uses signs. It is defined as the map whose corresponding shifted map

Hom•(M•,K•)→ Hom•(M•[b],K•[a])[b− a]
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uses the sign (−1)nb on the module HomR(M−q,Kp) with p+ q = n. Namely,
if f ∈ Homn(M•,K•) then

d(f) = dK ◦ f − (−1)nf ◦ dM
on the source, whereas on the target f lies in (Hom•(M•[b],K•[a])[b− a])n =
Homn+b−a(M•[b],K•[a]) and hence we get

d(f) = (−1)b−a
(
dK[a] ◦ f − (−1)n+b−af ◦ dM [b]

)
= (−1)b−a

(
(−1)adK ◦ f − (−1)n+b−af ◦ (−1)bdM

)
= (−1)bdK ◦ f − (−1)n+bf ◦ dM

and one sees that the chosen sign of (−1)nb in degree n produces a map of com-
plexes for these differentials.

73. Derived hom

Let R be a ring. The derived hom we will define in this section is a functor

D(R)opp ×D(R) −→ D(R), (K,L) 7−→ RHomR(K,L)
This is an internal hom in the derived category of R-modules in the sense that it is char-
acterized by the formula

(73.0.1) HomD(R)(K,RHomR(L,M)) = HomD(R)(K ⊗L
R L,M)

for objectsK,L,M ofD(R). Note that this formula characterizes the objects up to unique
isomorphism by the Yoneda lemma. A construction can be given as follows. Choose a K-
injective complex I• of R-modules representing M , choose a complex L• representing L,
and set

RHomR(L,M) = Hom•(L•, I•)
with notation as in Section 71. A generalization of this construction is discussed in Dif-
ferential Graded Algebra, Section 31. From (71.0.1) and Derived Categories, Lemma 31.2
that we have

(73.0.2) Hn(RHomR(L,M)) = HomD(R)(L,M [n])
for all n ∈ Z. In particular, the object RHomR(L,M) of D(R) is well defined, i.e.,
independent of the choice of the K-injective complex I•.

Lemma 73.1. Let R be a ring. Let K,L,M be objects of D(R). There is a canonical
isomorphism

RHomR(K,RHomR(L,M)) = RHomR(K ⊗L
R L,M)

in D(R) functorial in K,L,M which recovers (73.0.1) by taking H0.

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
R-modules L• representing L. For any complex of R-modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗R L•), I•)
by Lemma 71.1. The lemma follows by the definition of RHom and because Tot(K• ⊗R
L•) represents the derived tensor product. �

Lemma 73.2. Let R be a ring. Let P • be a bounded above complex of projective R-
modules. Let L• be a complex of R-modules. Then RHomR(P •, L•) is represented by
the complex Hom•(P •, L•).
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Proof. By (71.0.1) and Derived Categories, Lemma 19.8 the cohomology groups of
the complex are “correct”. Hence if we choose a quasi-isomorphism L• → I• with I• a
K-injective complex of R-modules then the induced map

Hom•(P •, L•) −→ Hom•(P •, I•)

is a quasi-isomorphism. As the right hand side is our definition of RHomR(P •, L•) we
win. �

Lemma 73.3. Let R be a ring. Let K,L,M be objects of D(R). There is a canonical
morphism

RHomR(L,M)⊗L
R K −→ RHomR(RHomR(K,L),M)

in D(R) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J•

representing L, and a K-flat complex K• representing K. The map is defined using the
map

Tot(Hom•(J•, I•)⊗R K•) −→ Hom•(Hom•(K•, J•), I•)
of Lemma 71.6. We omit the proof that this is functorial in all three objects of D(R). �

Lemma 73.4. LetR be a ring. GivenK,L,M inD(R) there is a canonical morphism

RHomR(L,M)⊗L
R RHomR(K,L) −→ RHomR(K,M)

in D(R) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J•

representing L, and any complex ofR-modulesK• representingK. By Lemma 71.3 there
is a map of complexes

Tot (Hom•(J•, I•)⊗R Hom•(K•, J•)) −→ Hom•(K•, I•)

The complexes of R-modules Hom•(J•, I•), Hom•(K•, J•), and Hom•(K•, I•) repre-
sent RHomR(L,M), RHomR(K,L), and RHomR(K,M). If we choose a K-flat com-
plex H• and a quasi-isomorphism H• → Hom•(K•, J•), then there is a map

Tot (Hom•(J•, I•)⊗R H•) −→ Tot (Hom•(J•, I•)⊗R Hom•(K•, J•))

whose source represents RHomR(L,M) ⊗L
R RHomR(K,L). Composing the two dis-

played arrows gives the desired map. We omit the proof that the construction is functo-
rial. �

Lemma 73.5. LetR be a ring. Given complexesK,L,M inD(R) there is a canonical
morphism

K ⊗L
R RHomR(M,L) −→ RHomR(M,K ⊗L

R L)
in D(R) functorial in K , L, M .

Proof. Choose a K-flat complex K• representing K , and a K-injective complex I•

representingL, and choose any complexM• representingM . Choose a quasi-isomorphism
Tot(K• ⊗R I•)→ J• where J• is K-injective. Then we use the map

Tot (K• ⊗R Hom•(M•, I•))→ Hom•(M•,Tot(K• ⊗R I•))→ Hom•(M•, J•)

where the first map is the map from Lemma 71.4. �
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Lemma 73.6. Let R be a ring. Given complexes K,L in D(R) there is a canonical
morphism

K −→ RHomR(L,K ⊗L
R L)

in D(R) functorial in both K and L.
Proof. This is a special case of Lemma 73.5 but we will also prove it directly. Choose

a K-flat complexK• representingK and any complexL• representingL. Choose a quasi-
isomorphism Tot(K• ⊗R L•)→ J• where J• is K-injective. Then we use the map

K• → Hom•(L•,Tot(K• ⊗R L•))→ Hom•(L•, J•)
where the first map is the map from Lemma 71.5. �

74. Perfect complexes

A perfect complex is a pseudo-coherent complex of finite tor dimension. We will not use
this as the definition, but define perfect complexes over a ring directly as follows.

Definition 74.1. Let R be a ring. Denote D(R) the derived category of the abelian
category of R-modules.

(1) An object K of D(R) is perfect if it is quasi-isomorphic to a bounded complex
of finite projective R-modules.

(2) An R-module M is perfect if M [0] is a perfect object in D(R).
For example, over a Noetherian ring a finite module is perfect if and only if it has finite
projective dimension, see Lemma 74.3 and Algebra, Definition 109.2.

Lemma 74.2. Let K• be an object of D(R). The following are equivalent
(1) K• is perfect, and
(2) K• is pseudo-coherent and has finite tor dimension.

If (1) and (2) hold and K• has tor-amplitude in [a, b], then K• is quasi-isomorphic to a
complex E• of finite projective R-modules with Ei = 0 for i 6∈ [a, b].

Proof. It is clear that (1) implies (2), see Lemmas 64.5 and 66.3. Assume (2) holds
and that K• has tor-amplitude in [a, b]. In particular, Hi(K•) = 0 for i > b. Choose
a complex F • of finite free R-modules with F i = 0 for i > b and a quasi-isomorphism
F • → K• (Lemma 64.5). SetE• = τ≥aF

•. Note thatEi is finite free exceptEa which is
a finitely presented R-module. By Lemma 66.2 Ea is flat. Hence by Algebra, Lemma 78.2
we see that Ea is finite projective. �

Lemma 74.3. Let M be a module over a ring R. The following are equivalent
(1) M is a perfect module, and
(2) there exists a resolution

0→ Fd → . . .→ F1 → F0 →M → 0
with each Fi a finite projective R-module.

Proof. Assume (2). Then the complex E• with E−i = Fi is quasi-isomorphic to
M [0]. Hence M is perfect. Conversely, assume (1). By Lemmas 74.2 and 64.4 we can
find resolution E• → M with E−i a finite free R-module. By Lemma 66.2 we see that
Fd = Coker(Ed−1 → Ed) is flat for some d sufficiently large. By Algebra, Lemma 78.2
we see that Fd is finite projective. Hence

0→ Fd → E−d+1 → . . .→ E0 →M → 0
is the desired resolution. �
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Lemma 74.4. Let R be a ring. Let (K•, L•,M•, f, g, h) be a distinguished triangle
in D(R). If two out of three of K•, L•,M• are perfect then the third is also perfect.

Proof. Combine Lemmas 74.2, 64.6, and 66.5. �

Lemma 74.5. Let R be a ring. If K• ⊕ L• is perfect, then so are K• and L•.

Proof. Follows from Lemmas 74.2, 64.8, and 66.7. �

Lemma 74.6. Let R be a ring. Let K• be a bounded complex of perfect R-modules.
Then K• is a perfect complex.

Proof. Follows by induction on the length of the finite complex: use Lemma 74.4
and the stupid truncations. �

Lemma 74.7. Let R be a ring. If K• ∈ Db(R) and all its cohomology modules are
perfect, then K• is perfect.

Proof. Follows by induction on the length of the finite complex: use Lemma 74.4
and the canonical truncations. �

Lemma 74.8. Let A → B be a ring map. Assume that B is perfect as an A-module.
LetK• be a perfect complex ofB-modules. ThenK• is perfect as a complex ofA-modules.

Proof. Using Lemma 74.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 66.12 and Lemma 64.11
for those results. �

Lemma 74.9. Let A→ B be a ring map. Let K• be a perfect complex of A-modules.
Then K• ⊗L

A B is a perfect complex of B-modules.

Proof. Using Lemma 74.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 66.13 and Lemma 64.12
for those results. �

Lemma 74.10. Let A → B be a flat ring map. Let M be a perfect A-module. Then
M ⊗A B is a perfect B-module.

Proof. By Lemma 74.3 the assumption implies that M has a finite resolution F• by
finite projective R-modules. As A → B is flat the complex F• ⊗A B is a finite length
resolution ofM⊗AB by finite projective modules overB. HenceM⊗AB is perfect. �

Lemma 74.11. LetR be a ring. IfK and L are perfect objects of D(R), then K ⊗L
R L

is a perfect object too.

Proof. We can prove this using the definition as follows. We may representK , resp.
L by a bounded complex K•, resp. L• of finite projective R-modules. Then K ⊗L

R L is
represented by the bounded complex Tot(K•⊗RL•). The terms of this complex are direct
sums of the modules Ma ⊗R Lb. Since Ma and Lb are direct summands of finite free R-
modules, so is Ma ⊗R Lb. Hence we conclude the terms of the complex Tot(K• ⊗R L•)
are finite projective.

Another proof can be given using the characterization of perfect complexes in Lemma 74.2
and the corresponding lemmas for pseudo-coherent complexes (Lemma 64.16) and for tor
amplitude (Lemma 66.10 used with A = B = R). �
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Lemma 74.12. Let R be a ring. Let f1, . . . , fr ∈ R be elements which generate the
unit ideal. Let K• be a complex of R-modules. If for each i the complex K• ⊗R Rfi is
perfect, then K• is perfect.

Proof. Using Lemma 74.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 66.16 and Lemma 64.14
for those results. �

Lemma 74.13. Let R be a ring. Let K• be a complex of R-modules. Let R→ R′ be a
faithfully flat ring map. If the complex K• ⊗R R′ is perfect, then K• is perfect.

Proof. Using Lemma 74.2 this translates into the corresponding results for pseudo-
coherent modules and modules of finite tor dimension. See Lemma 66.17 and Lemma 64.15
for those results. �

Lemma 74.14. Let R be a regular ring. Then
(1) an R-module is perfect if and only if it is a finite R-module, and
(2) a complex of R-modules K• is perfect if and only if K• ∈ Db(R) and each

Hi(K•) is a finite R-module.

Proof. Any perfect R-module is finite by definition. Conversely, let M be a finite
R-module. Choose a resolution

. . .→ F2
d2−→ F1

d1−→ F0 →M → 0

with Fi finite free R-modules (Algebra, Lemma 71.1). Set Mi = Ker(di). Denote Ui ⊂
Spec(R) the set of primes p such thatMi,p is free; Ui is open by Algebra, Lemma 79.3. We
have a exact sequence 0 → Mi+1 → Fi+1 → Mi → 0. If p ∈ Ui, then 0 → Mi+1,p →
Fi+1,p → Mi,p → 0 splits. Thus Mi+1,p is finite projective, hence free (Algebra, Lemma
78.2). This shows that Ui ⊂ Ui+1. We claim that Spec(R) =

⋃
Ui. Namely, for every

prime ideal p the regular local ringRp has finite global dimension by Algebra, Proposition
110.1. It follows that Mi,p is finite projective (hence free) for i � 0 for example by
Algebra, Lemma 109.3. Since the spectrum of R is Noetherian (Algebra, Lemma 31.5) we
conclude that Un = Spec(R) for some n. Then Mn is a projective R-module by Algebra,
Lemma 78.2. Thus

0→Mn → Fn → . . .→ F1 →M → 0

is a bounded resolution by finite projective modules and hence M is perfect. This proves
part (1).

Let K• be a complex of R-modules. If K• is perfect, then it is in Db(R) and it is quasi-
isomorphic to a finite complex of finite projectiveR-modules so certainly eachHi(K•) is
a finiteR-module (asR is Noetherian). Conversely, suppose thatK• is inDb(R) and each
Hi(K•) is a finite R-module. Then by (1) each Hi(K•) is a perfect R-module, whence
K• is perfect by Lemma 74.7 �

Lemma 74.15. LetA be a ring. LetK ∈ D(A) be perfect. ThenK∨ = RHomA(K,A)
is a perfect complex and K ∼= (K∨)∨. There are functorial isomorphisms

L⊗L
A K

∨ = RHomA(K,L) and H0(L⊗L
A K

∨) = Ext0
A(K,L)

for L ∈ D(A).
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Proof. We can represent K by a complex K• of finite projective A-modules. By
Lemma 73.2 the objectK∨ is represented by the complexE• = Hom•(K•, A). Note that
En = HomA(K−n, A) and the differentials ofE• are the transpose of the differentials of
K• up to sign. Observe thatE• is the left dual ofK• in the symmetric monoidal category
of complexes of R-modules, see Lemma 72.2. There is a canonical map

K• = Tot(Hom•(A,A)⊗A K•) −→ Hom•(Hom•(K•, A), A)

which up to sign uses the evaluation map in each degree, see Lemma 71.6. (For sign rules
see Section 72.) Thus this map defines a canonical isomorphism (K∨)∨ ∼= K as the double
dual of a finite projective module is itself.

The second equality follows from the first by Lemma 73.1 and Derived Categories, Lemma
19.8 as well as the definition of Ext groups, see Derived Categories, Section 27. Let L•

be a complex of A-modules representing L. By Section 72 item (11) there is a canonical
isomorphism

Tot(L• ⊗A E•) −→ Hom•(K•, L•)
of complexes ofA-modules. This proves the first displayed equality and the proof is com-
plete. �

Lemma 74.16. Let A be a ring. Let (Kn)n∈N be a system of perfect objects of D(A).
Let K = hocolimKn be the derived colimit (Derived Categories, Definition 33.1). Then
for any object E of D(A) we have

RHomA(K,E) = R limE ⊗L
A K

∨
n

where (K∨
n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 74.15 we have R limE ⊗L
A K

∨
n = R limRHomA(Kn, E) which

fits into the distinguished triangle

R limRHomA(Kn, E)→
∏

RHomA(Kn, E)→
∏

RHomA(Kn, E)

Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K it suffices

to show that
∏
RHomA(Kn, E) = RHomA(

⊕
Kn, E). This is a formal consequence

of (73.0.1) and the fact that derived tensor product commutes with direct sums. �

Lemma 74.17. Let R = colimi∈I Ri be a filtered colimit of rings.
(1) Given a perfectK inD(R) there exists an i ∈ I and a perfectKi inD(Ri) such

that K ∼= Ki ⊗L
Ri
R in D(R).

(2) Given 0 ∈ I and K0, L0 ∈ D(R0) with K0 perfect, we have

HomD(R)(K0 ⊗L
R0
R,L0 ⊗L

R0
R) = colimi≥0 HomD(Ri)(K0 ⊗L

R0
Ri, L0 ⊗L

R0
Ri)

In other words, the triangulated category of perfect complexes overR is the colimit of the
triangulated categories of perfect complexes over Ri.

Proof. We will use the results of Algebra, Lemmas 127.5 and 127.6 without further
mention. These lemmas in particular say that the category of finitely presentedR-modules
is the colimit of the categories of finitely presented Ri-modules. Since finite projective
modules can be characterized as summands of finite free modules (Algebra, Lemma 78.2)
we see that the same is true for the category of finite projective modules. This proves (1)
by our definition of perfect objects of D(R).
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To prove (2) we may represent K0 by a bounded complex K•
0 of finite projective R0-

modules. We may represent L0 by a K-flat complex L•
0 (Lemma 59.10). Then we have

HomD(R)(K0 ⊗L
R0
R,L0 ⊗L

R0
R) = HomK(R)(K•

0 ⊗R0 R,L
•
0 ⊗R0 R)

by Derived Categories, Lemma 19.8. Similarly for the Hom with R replaced by Ri. Since
in the right hand side only a finite number of terms are involved, since

HomR(Kp
0 ⊗R0 R,L

q
0 ⊗R0 R) = colimi≥0 HomRi(K

p
0 ⊗R0 Ri, L

q
0 ⊗R0 Ri)

by the lemmas cited at the beginning of the proof, and since filtered colimits are exact
(Algebra, Lemma 8.8) we conclude that (2) holds as well. �

75. Lifting complexes

Let R be a ring. Let I ⊂ R be an ideal. The lifting problem we will consider is the
following. Suppose given an object K of D(R) and a complex E• of R/I-modules such
that E• represents K ⊗L

R R/I in D(R). Question: Does there exist a complex of R-
modules P • lifting E• representing K in D(R)? In general the answer to this question is
no, but in good cases something can be done. We first discuss lifting acyclic complexes.

Lemma 75.1. Let R be a ring. Let I ⊂ R be an ideal. Let P be a class of R-modules.
Assume

(1) each P ∈ P is a projective R-module,
(2) if P1 ∈ P and P1 ⊕ P2 ∈ P , then P2 ∈ P , and
(3) if f : P1 → P2, P1, P2 ∈ P is surjective modulo I , then f is surjective.

Then given any bounded above acyclic complex E• whose terms are of the form P/IP
for P ∈ P there exists a bounded above acyclic complex P • whose terms are in P lifting
E•.

Proof. Say Ei = 0 for i > b. Assume given n and a morphism of complexes

Pn //

��

Pn+1 //

��

. . . // P b //

��

0 //

��

. . .

. . . // En−1 // En // En+1 // . . . // Eb // 0 // . . .

withP i ∈ P , withPn → Pn+1 → . . .→ P b acyclic in degrees≥ n+1, and with vertical
maps inducing isomorphisms P i/IP i → Ei. In this situation one can inductively choose
isomorphisms P i = Zi⊕Zi+1 such that the maps P i → P i+1 are given byZi⊕Zi+1 →
Zi+1 → Zi+1 ⊕ Zi+2. By property (2) and arguing inductively we see that Zi ∈ P .
Choose Pn−1 ∈ P and an isomorphism Pn−1/IPn−1 → En−1. Since Pn−1 is projective
and since Zn/IZn = Im(En−1 → En), we can lift the map Pn−1 → En−1 → En to a
map Pn−1 → Zn. By property (3) the map Pn−1 → Zn is surjective. Thus we obtain an
extension of the diagram by adding Pn−1 and the maps just constructed to the left of Pn.
Since a diagram of the desired form exists for n > b we conclude by induction on n. �

Lemma 75.2. Let R be a ring. Let I ⊂ R be an ideal. Let P be a class of R-modules.
LetK ∈ D(R) and letE• be a complex ofR/I-modules representingK⊗L

RR/I . Assume
(1) each P ∈ P is a projective R-module,
(2) P1 ∈ P and P1 ⊕ P2 ∈ P if and only if P1, P2 ∈ P ,
(3) if f : P1 → P2, P1, P2 ∈ P is surjective modulo I , then f is surjective,
(4) E• is bounded above and Ei is of the form P/IP for P ∈ P , and
(5) K can be represented by a bounded above complex whose terms are in P .
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Then there exists a bounded above complex P • whose terms are in P with P •/IP • iso-
morphic to E• and representing K in D(R).

Proof. By assumption (5) we can represent K by a bounded above complex K•

whose terms are inP . ThenK⊗L
RR/I is represented byK•/IK•. SinceE• is a bounded

above complex of projective R/I-modules by (4), we can choose a quasi-isomorphism
δ : E• → K•/IK• (Derived Categories, Lemma 19.8). Let C• be cone on δ (Derived
Categories, Definition 9.1). The module Ci is the direct sum Ki/IKi ⊕Ei+1 hence is of
the form P/IP for some P ∈ P as (2) says in particular that P is preserved under taking
sums. Since C• is acyclic, we can apply Lemma 75.1 and find a acyclic lift A• of C•. The
complex A• is bounded above and has terms in P . In

K• //

��

A•

��
K•/IK• // C• // E•[1]

we can find the dotted arrow making the diagram commute by Derived Categories, Lemma
19.6. We will show below that it follows from (1), (2), (3) that Ki → Ai is the inclusion
of a direct summand for every i. By property (2) we see that P i = Coker(Ki → Ai) is in
P . Thus we can take P • = Coker(K• → A•)[−1] to conclude.
To finish the proof we have to show the following: Let f : P1 → P2, P1, P2 ∈ P and
P1/IP1 → P2/IP2 is split injective with cokernel of the form P3/IP3 for some P3 ∈ P ,
then f is split injective. Write Ei = Pi/IPi. Then E2 = E1 ⊕E3. Since P2 is projective
we can choose a map g : P2 → P3 lifting the map E2 → E3. By condition (3) the map
g is surjective, hence split as P3 is projective. Set P ′

1 = Ker(g) and choose a splitting
P2 = P ′

1 ⊕P3. Then P ′
1 ∈ P by (2). We do not know that g ◦ f = 0, but we can consider

the map
P1

f−→ P2
projection−−−−−−−→ P ′

1
The composition modulo I is an isomorphism. Since P ′

1 is projective we can split P1 =
T ⊕ P ′

1. If T = 0, then we are done, because then P2 → P ′
1 is a splitting of f . We see

that T ∈ P by (2). Calculating modulo I we see that T/IT = 0. Since 0 ∈ P (as the
summand of any P in P) we see the map 0→ T is surjective and we conclude that T = 0
as desired. �

Lemma 75.3. Let R be a ring. Let I ⊂ R be an ideal. Let E• be a complex of R/I-
modules. Let K be an object of D(R). Assume that

(1) E• is a bounded above complex of projective R/I-modules,
(2) K ⊗L

R R/I is represented by E• in D(R/I), and
(3) I is a nilpotent ideal.

Then there exists a bounded above complex P • of projective R-modules representing K
in D(R) such that P • ⊗R R/I is isomorphic to E•.

Proof. We apply Lemma 75.2 using the class P of all projectiveR-modules. Proper-
ties (1) and (2) of the lemma are immediate. Property (3) follows from Nakayama’s lemma
(Algebra, Lemma 20.1). Property (4) follows from the fact that we can lift projectiveR/I-
modules to projectiveR-modules, see Algebra, Lemma 77.5. To see that (5) holds it suffices
to show that K is in D−(R). We are given that K ⊗L

R R/I is in D−(R/I) (because E•

is bounded above). We will show by induction on n that K ⊗L
R R/I

n is in D−(R/In).
This will finish the proof because I being nilpotent exactly means that In = 0 for some
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n. We may represent K by a K-flat complex K• with flat terms (Lemma 59.10). Then
derived tensor products are represented by usual tensor products. Thus we consider the
exact sequence

0→ K• ⊗R In/In+1 → K• ⊗R R/In+1 → K• ⊗R R/In → 0

Thus the cohomology ofK⊗L
RR/I

n+1 sits in a long exact sequence with the cohomology
of K ⊗L

R R/I
n and the cohomology of

K ⊗L
R I

n/In+1 = K ⊗L
R R/I ⊗L

R/I I
n/In+1

The first cohomologies vanish above a certain degree by induction assumption and the
second cohomologies vanish above a certain degree becauseK•⊗L

RR/I is bounded above
and In/In+1 is in degree 0. �

Lemma 75.4. Let R be a ring. Let I ⊂ R be an ideal. Let E• be a complex of R/I-
modules. Let K be an object of D(R). Assume that

(1) E• is a bounded above complex of finite stably free R/I-modules,
(2) K ⊗L

R R/I is represented by E• in D(R/I),
(3) K• is pseudo-coherent, and
(4) every element of 1 + I is invertible.

Then there exists a bounded above complex P • of finite stably free R-modules represent-
ing K in D(R) such that P • ⊗R R/I is isomorphic to E•. Moreover, if Ei is free, then
P i is free.

Proof. We apply Lemma 75.2 using the class P of all finite stably free R-modules.
Property (1) of the lemma is immediate. Property (2) follows from Lemma 3.2. Property
(3) follows from Nakayama’s lemma (Algebra, Lemma 20.1). Property (4) follows from
the fact that we can lift finite stably free R/I-modules to finite stably free R-modules,
see Lemma 3.3. Part (5) holds because a pseudo-coherent complex can be represented by a
bounded above complex of finite freeR-modules. The final assertion of the lemma follows
from Lemma 3.5. �

Lemma 75.5. Let (R,m, κ) be a local ring. Let K ∈ D(R) be pseudo-coherent. Set
di = dimκH

i(K ⊗L
R κ). Then di < ∞ and for some b ∈ Z we have di = 0 for i > b.

Then there exists a complex

. . .→ R⊕db−2 → R⊕db−1 → R⊕db → 0→ . . .

representing K in D(R). Moreover, this complex is unique up to isomorphism(!).

Proof. Observe that K ⊗L
R κ is pseudo-coherent as an object of D(κ), see Lemma

64.12. Hence the cohomology spaces are finite dimensional and vanish above some cutoff.
Every object of D(κ) is isomorphic in D(κ) to a complex E• with zero differentials. In
particular Ei ∼= κ⊕di is finite free. Applying Lemma 75.4 we obtain the existence.

If we have two complexes F • and G• with F i and Gi free of rank di representing K.
Then we may choose a map of complexes β : F • → G• representing the isomorphism
F • ∼= K ∼= G•, see Derived Categories, Lemma 19.8. The induced map of complexes
β⊗ 1 : F •⊗L

R κ→ G•⊗L
R κmust be an isomorphism of complexes as the differentials in

F •⊗L
Rκ andG•⊗L

Rκ are zero. Thus βi : F i → Gi is a map of finite freeR-modules whose
reduction modulo m is an isomorphism. Hence βi is an isomorphism and we win. �
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Lemma 75.6. Let R be a ring. Let p ⊂ R be a prime. Let K ∈ D(R) be perfect. Set
di = dimκ(p) H

i(K⊗L
R κ(p)). Then di <∞ and only a finite number are nonzero. Then

there exists an f ∈ R, f 6∈ p and a complex

. . .→ 0→ R⊕da
f → R

⊕da+1
f → . . .→ R

⊕db−1
f → R⊕db

f → 0→ . . .

representing K ⊗L
R Rf in D(Rf ).

Proof. Observe that K ⊗L
R κ(p) is perfect as an object of D(κ(p)), see Lemma 74.9.

Hence only a finite number of di are nonzero and they are all finite. Applying Lemma
75.5 we get a complex representing K having the desired shape over the local ring Rp.
We haveRp = colimRf for f ∈ R, f 6∈ p (Algebra, Lemma 9.9). We conclude by Lemma
74.17. Some details omitted. �

Lemma 75.7. Let R be a ring. Let p ⊂ R be a prime. Let M• and N• be bounded
complexes of finite projective R-modules representing the same object of D(R). Then
there exists an f ∈ R, f 6∈ p such that there is an isomorphism (!) of complexes

M•
f ⊕ P • ∼= N•

f ⊕Q•

where P • and Q• are finite direct sums of trivial complexes, i.e., complexes of the form
the form . . .→ 0→ Rf

1−→ Rf → 0→ . . . (placed in arbitrary degrees).

Proof. If we have an isomorphism of the type described over the localization Rp,
then using that Rp = colimRf (Algebra, Lemma 9.9) we can descend the isomorphism
to an isomorphism over Rf for some f . Thus we may assume R is local and p is the
maximal ideal. In this case the result follows from the uniqueness of a “minimal” complex
representing a perfect object, see Lemma 75.5, and the fact that any complex is a direct sum
of a trivial complex and a minimal one (Algebra, Lemma 102.2). �

Lemma 75.8. Let R be a ring. Let I ⊂ R be an ideal. Let E• be a complex of R/I-
modules. Let K be an object of D(R). Assume that

(1) E• is a bounded above complex of finite projective R/I-modules,
(2) K ⊗L

R R/I is represented by E• in D(R/I),
(3) K is pseudo-coherent, and
(4) (R, I) is a henselian pair.

Then there exists a bounded above complexP • of finite projectiveR-modules representing
K in D(R) such that P • ⊗R R/I is isomorphic to E•. Moreover, if Ei is free, then P i is
free.

Proof. We apply Lemma 75.2 using the class P of all finite projective R-modules.
Properties (1) and (2) of the lemma are immediate. Property (3) follows from Nakayama’s
lemma (Algebra, Lemma 20.1). Property (4) follows from the fact that we can lift finite
projectiveR/I-modules to finite projectiveR-modules, see Lemma 13.1. Property (5) holds
because a pseudo-coherent complex can be represented by a bounded above complex of
finite free R-modules. Thus Lemma 75.2 applies and we find P • as desired. The final
assertion of the lemma follows from Lemma 3.5. �

76. Splitting complexes

In this section we discuss conditions which imply an object of the derived category of a
ring is a direct sum of its truncations. Our method is to use the following lemma (under
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suitable hypotheses) to split the canonical distinguished triangles

τ≤iK → K → τ≥i+1K → (τ≤iK)[1]
in D(R), see Derived Categories, Remark 12.4.

Lemma 76.1. Let R be a ring. Let K and L be objects of D(R). Assume L has
projective-amplitude in [a, b], for example if L is perfect of tor-amplitude in [a, b].

(1) If Hi(K) = 0 for i ≥ a, then HomD(R)(L,K) = 0.
(2) If Hi(K) = 0 for i ≥ a+ 1, then given any distinguished triangle K →M →

L → K[1] there is an isomorphism M ∼= K ⊕ L in D(R) compatible with the
maps in the distinguished triangle.

(3) If Hi(K) = 0 for i ≥ a, then the isomorphism in (2) exists and is unique.

Proof. The assumption thatL has projective-amplitude in [a, b] means we can repre-
sent L by a complex L• of projective R-modules with Li = 0 for i 6∈ [a, b], see Definition
68.1. If L is perfect of tor-amplitude in [a, b], then we can represent L by a complex L• of
finite projective R-modules with Li = 0 for i 6∈ [a, b], see Lemma 74.2. If Hi(K) = 0 for
i ≥ a, then K is quasi-isomorphic to τ≤a−1K. Hence we can represent K by a complex
K• of R-modules with Ki = 0 for i ≥ a. Then we obtain

HomD(R)(L,K) = HomK(R)(L•,K•) = 0

by Derived Categories, Lemma 19.8. This proves (1). Under the hypotheses of (2) we see
that HomD(R)(L,K[1]) = 0 by (1), hence the distinguished triangle is split by Derived
Categories, Lemma 4.11. The uniqueness of (3) follows from (1). �

Lemma 76.2. LetR be a ring. Let p ⊂ R be a prime ideal. LetK• be a pseudo-coherent
complex of R-modules. Assume that for some i ∈ Z the map

Hi(K•)⊗R κ(p) −→ Hi(K• ⊗L
R κ(p))

is surjective. Then there exists an f ∈ R, f 6∈ p such that τ≥i+1(K• ⊗R Rf ) is a perfect
object of D(Rf ) with tor amplitude in [i+ 1,∞] and a canonical isomorphism

K• ⊗R Rf ∼= τ≤i(K• ⊗R Rf )⊕ τ≥i+1(K• ⊗R Rf )
in D(Rf ).

Proof. In this proof all tensor products are over R and we write κ = κ(p). We may
assume that K• is a bounded above complex of finite free R-modules. Let us inspect what
is happening in degree i:

. . .→ Ki−1 di−1

−−−→ Ki di−→ Ki+1 → . . .

Let 0 ⊂ V ⊂W ⊂ Ki ⊗ κ be defined by the formulas

V = Im
(
Ki−1 ⊗ κ→ Ki ⊗ κ

)
and W = Ker

(
Ki ⊗ κ→ Ki+1 ⊗ κ

)
Set dim(V ) = r, dim(W/V ) = s, and dim(Ki ⊗ κ/W ) = t. We can pick x1, . . . , xr ∈
Ki−1 which map by di−1 to a basis of V . By our assumption we can pick y1, . . . , ys ∈
Ker(di) mapping to a basis of W/V . Finally, choose z1, . . . , zt ∈ Ki mapping to a basis
of Ki ⊗ κ/W . Then we see that the elements di(z1), . . . , di(zt) ∈ Ki+1 are linearly
independent inKi+1⊗R κ. By Algebra, Lemma 79.4 we may after replacingR byRf for
some f ∈ R, f 6∈ p assume that

(1) di(xa), yb, zc is an R-basis of Ki,
(2) di(z1), . . . , di(zt) are R-linearly independent in Ki+1, and
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(3) the quotient Ei+1 = Ki+1/
∑
Rdi(zc) is finite projective.

Since di annihilates di−1(xa) and yb, we deduce from condition (2) thatEi+1 = Coker(di :
Ki → Ki+1). Thus we see that

τ≥i+1K
• = (. . .→ 0→ Ei+1 → Ki+2 → . . .)

is a bounded complex of finite projective modules sitting in degrees [i + 1, b] for some
b. Thus τ≥i+1K

• is perfect of amplitude [i + 1, b]. Since τ≤iK
• has no cohomology in

degrees > i, we may apply Lemma 76.1 to the distinguished triangle

τ≤iK
• → K• → τ≥i+1K

• → (τ≤iK
•)[1]

(Derived Categories, Remark 12.4) to conclude. �

Lemma 76.3. LetR be a ring. Let p ⊂ R be a prime ideal. LetK• be a pseudo-coherent
complex of R-modules. Assume that for some i ∈ Z the maps

Hi(K•)⊗Rκ(p) −→ Hi(K•⊗L
Rκ(p)) and Hi−1(K•)⊗Rκ(p) −→ Hi−1(K•⊗L

Rκ(p))

are surjective. Then there exists an f ∈ R, f 6∈ p such that
(1) τ≥i+1(K•⊗RRf ) is a perfect object ofD(Rf ) with tor amplitude in [i+ 1,∞],
(2) Hi(K•)f is a finite free Rf -module, and
(3) there is a canonical direct sum decomposition

K• ⊗R Rf ∼= τ≤i−1(K• ⊗R Rf )⊕Hi(K•)f [−i]⊕ τ≥i+1(K• ⊗R Rf )

in D(Rf ).

Proof. We get (1) from Lemma 76.2 as well as a splitting K• ⊗R Rf = τ≤iK
• ⊗R

Rf ⊕ τ≥i+1K
• ⊗R Rf in D(Rf ). Applying Lemma 76.2 once more to τ≤iK

• ⊗R Rf
we obtain (after suitably choosing f ) a splitting τ≤iK

• ⊗R Rf = τ≤i−1K
• ⊗R Rf ⊕

Hi(K•)f in D(Rf ) as well as the conclusion that Hi(K)f is a flat perfect module, i.e.,
finite projective. �

Lemma 76.4. Let R be a ring. Let p ⊂ R be a prime ideal. Let i ∈ Z. Let K• be
a pseudo-coherent complex of R-modules such that Hi(K• ⊗L

R κ(p)) = 0. Then there
exists an f ∈ R, f 6∈ p and a canonical direct sum decomposition

K• ⊗R Rf = τ≥i+1(K• ⊗R Rf )⊕ τ≤i−1(K• ⊗R Rf )

in D(Rf ) with τ≥i+1(K• ⊗R Rf ) a perfect complex with tor-amplitude in [i+ 1,∞].

Proof. This is an often used special case of Lemma 76.2. A direct proof is as follows.
We may assume that K• is a bounded above complex of finite free R-modules. Let us
inspect what is happening in degree i:

. . .→ Ki−2 → R⊕l → R⊕m → R⊕n → Ki+2 → . . .

Let A be the m× l matrix corresponding to Ki−1 → Ki and let B be the n×m matrix
corresponding to Ki → Ki+1. The assumption is that A mod p has rank r and that
B mod p has rankm− r. In other words, there is some r× r minor a ofAwhich is not in
p and there is some (m− r)× (m− r)-minor b of B which is not in p. Set f = ab. Then
after inverting f we can find direct sum decompositions Ki−1 = R⊕l−r ⊕ R⊕r , Ki =
R⊕r ⊕ R⊕m−r , Ki+1 = R⊕m−r ⊕ R⊕n−m+r such that the module map Ki−1 → Ki

kills of R⊕l−r and induces an isomorphism of R⊕r onto the corresponding summand of
Ki and such that the module mapKi → Ki+1 kills ofR⊕r and induces an isomorphism of
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R⊕m−r onto the corresponding summand of Ki+1. Thus K• becomes quasi-isomorphic
to

. . .→ Ki−2 → R⊕l−r → 0→ R⊕n−m+r → Ki+2 → . . .

and everything is clear. �

Lemma 76.5. Let R be a ring. Let K ∈ D−(R). Let a ∈ Z. Assume that for any
injectiveR-module mapM →M ′ the map Ext−a

R (K,M)→ Ext−a
R (K,M ′) is injective.

Then there is a unique direct sum decompositionK ∼= τ≤aK⊕ τ≥a+1K and τ≥a+1K has
projective-amplitude in [a+ 1, b] for some b.

Proof. Consider the distinguished triangle
τ≤aK → K → τ≥a+1K → (τ≤aK)[1]

inD(R), see Derived Categories, Remark 12.4. Observe that Ext−a
R (τ≤aK,M) = HomR(Ha(K),M)

and Ext−a−1
R (τ≤aK,M) = 0, see Derived Categories, Lemma 27.3. Thus the long exact

sequence of Ext gives an exact sequence

0→ Ext−a
R (τ≥a+1K,M)→ Ext−a

R (K,M)→ HomR(Ha(K),M)
functorial in theR-moduleM . Now if I is an injectiveR-module, then Ext−a

R (τ≥a+1K, I) =
0 for example by Derived Categories, Lemma 27.2. Since every module injects into an in-
jective module, we conclude that Ext−a

R (τ≥a+1K,M) = 0 for every R-module M . By
Lemma 68.2 we conclude that τ≥a+1K has projective-amplitude in [a+1, b] for some b (this
is where we use that K is bounded above). We obtain the splitting by Lemma 76.1. �

Lemma 76.6. LetR be a ring. LetK ∈ D−(R). Let a ∈ Z. Assume Ext−a
R (K,M) =

0 for anyR-moduleM . Then there is a unique direct sum decompositionK ∼= τ≤a−1K⊕
τ≥a+1K and τ≥a+1K has projective-amplitude in [a+ 1, b] for some b.

Proof. By Lemma 76.5 we have a direct sum decomposition K ∼= τ≤aK ⊕ τ≥a+1K
and τ≥a+1K has projective-amplitude in [a + 1, b] for some b. Clearly, we must have
Ha(K) = 0 and we conclude that τ≤aK = τ≤a−1K in D(R). �

77. Recognizing perfect complexes

Some lemmas that allow us to prove certain complexes are perfect.

Lemma 77.1. Let R be a ring and let p ⊂ R be a prime. Let K be pseudo-coherent
and bounded below. Set di = dimκ(p) H

i(K ⊗L
R κ(p)). If there exists an a ∈ Z such that

di = 0 for i < a, then there exists an f ∈ R, f 6∈ p and a complex

. . .→ 0→ R⊕da
f → R

⊕da+1
f → . . .→ R

⊕db−1
f → R⊕db

f → 0→ . . .

representing K ⊗L
R Rf in D(Rf ). In particular K ⊗L

R Rf is perfect.

Proof. After decreasing a we may assume that also Hi(K•) = 0 for i < a. By
Lemma 76.4 after replacing R by Rf for some f ∈ R, f 6∈ p we can write K• =
τ≤a−1K

• ⊕ τ≥aK
• in D(R) with τ≥aK

• perfect. Since Hi(K•) = 0 for i < a we see
that τ≤a−1K

• = 0 in D(R). Hence K• is perfect. Then we can conclude using Lemma
75.6. �

Lemma 77.2. Let R be a ring. Let a, b ∈ Z. Let K• be a pseudo-coherent complex of
R-modules. The following are equivalent

(1) K• is perfect with tor amplitude in [a, b],
(2) for every prime p we have Hi(K• ⊗L

R κ(p)) = 0 for all i 6∈ [a, b], and
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(3) for every maximal ideal m we have Hi(K• ⊗L
R κ(m)) = 0 for all i 6∈ [a, b].

Proof. We omit the proof of the implications (1)⇒ (2)⇒ (3). Assume (3). Let i ∈ Z
with i 6∈ [a, b]. By Lemma 76.4 we see that the assumption implies thatHi(K•)m = 0 for
all maximal ideals of R. Hence Hi(K•) = 0, see Algebra, Lemma 23.1. Moreover, Lemma
76.4 now also implies that for every maximal ideal m there exists an element f ∈ R,
f 6∈ m such that K• ⊗R Rf is perfect with tor amplitude in [a, b]. Hence we conclude by
appealing to Lemmas 74.12 and 66.16. �

Lemma 77.3. Let R be a ring. Let K• be a pseudo-coherent complex of R-modules.
Consider the following conditions

(1) K• is perfect,
(2) for every prime ideal p the complex K• ⊗R Rp is perfect,
(3) for every maximal ideal m the complex K• ⊗R Rm is perfect,
(4) for every prime p we have Hi(K• ⊗L

R κ(p)) = 0 for all i� 0,
(5) for every maximal ideal m we have Hi(K• ⊗L

R κ(m)) = 0 for all i� 0.
We always have the implications

(1)⇒ (2)⇔ (3)⇔ (3)⇔ (4)⇔ (5)

If K• is bounded below, then all conditions are equivalent.

Proof. By Lemma 74.9 we see that (1) implies (2). It is immediate that (2) ⇒ (3).
Since every prime p is contained in a maximal ideal m, we can apply Lemma 74.9 to the
map Rm → Rp to see that (3) implies (2). Applying Lemma 74.9 to the residue maps
Rp → κ(p) and Rm → κ(m) we see that (2) implies (4) and (3) implies (5).

AssumeR is local with maximal idealm and residue fieldκ. We will show that ifHi(K•⊗L

κ) = 0 for i < a for some a, then K is perfect. This will show that (4) implies (2) and (5)
implies (3) whence the first part of the lemma. First we apply Lemma 76.4 with i = a− 1
to see that K• = τ≤a−1K

• ⊕ τ≥aK
• in D(R) with τ≥aK

• perfect of tor-amplitude
contained in [a,∞]. To finish we need to show that τ≤a−1K is zero, i.e., that its cohomol-
ogy groups are zero. If not let i be the largest index such that M = Hi(τ≤a−1K) is not
zero. Then M is a finite R-module because τ≤a−1K

• is pseudo-coherent (Lemmas 64.3
and 64.8). Thus by Nakayama’s lemma (Algebra, Lemma 20.1) we find that M ⊗R κ is
nonzero. This implies that

Hi((τ≤a−1K
•)⊗L

R κ) = Hi(K• ⊗L
R κ)

is nonzero which is a contradiction.

Assume the equivalent conditions (2) – (5) hold and that K• is bounded below. Say
Hi(K•) = 0 for i < a. Pick a maximal ideal m of R. It suffices to show there exists
an f ∈ R, f 6∈ m such that K• ⊗L

R Rf is perfect (Lemma 74.12 and Algebra, Lemma
17.10). This follows from Lemma 77.1. �

Lemma 77.4. Let R be a ring. Let K be a pseudo-coherent object of D(R). Let a, b ∈
Z. The following are equivalent

(1) K has projective-amplitude in [a, b],
(2) K is perfect of tor-amplitude in [a, b],
(3) ExtiR(K,N) = 0 for all finitely presented R-modules N and all i 6∈ [−b,−a],
(4) Hn(K) = 0 for n > b and ExtiR(K,N) = 0 for all finitely presented R-

modules N and all i > −a, and
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(5) Hn(K) = 0 for n 6∈ [a−1, b] and Ext−a+1
R (K,N) = 0 for all finitely presented

R-modules N .

Proof. From the final statement of Lemma 74.2 we see that (2) implies (1). If (1)
holds, then K can be represented by a complex of projective modules P i with P i = 0 for
i 6∈ [a, b]. Since projective modules are flat (as summands of free modules), we see that K
has tor-amplitude in [a, b], see Lemma 66.3. Thus by Lemma 74.2 we see that (2) holds.

In conditions (3), (4), (5) the assumed vanishing of ext groups ExtiR(K,M) for M of
finite presentation is equivalent to the vanishing for allR-modulesM by Lemma 65.1 and
Algebra, Lemma 11.3. Thus the equivalence of (1), (3), (4), and (5) follows from Lemma
68.2. �

The following lemma useful in order to find perfect complexes over a polynomial ring
B = A[x1, . . . , xd].

Lemma 77.5. LetA→ B be a ring map. Let a, b ∈ Z. Let d ≥ 0. LetK• be a complex
of B-modules. Assume

(1) the ring map A→ B is flat,
(2) for every prime p ⊂ A the ring B ⊗A κ(p) has finite global dimension ≤ d,
(3) K• is pseudo-coherent as a complex of B-modules, and
(4) K• has tor amplitude in [a, b] as a complex of A-modules.

Then K• is perfect as a complex of B-modules with tor amplitude in [a− d, b].

Proof. We may assume thatK• is a bounded above complex of finite freeB-modules.
In particular, K• is flat as a complex of A-modules and K• ⊗AM = K• ⊗L

AM for any
A-module M . For every prime p of A the complex

K• ⊗A κ(p)
is a bounded above complex of finite free modules over B ⊗A κ(p) with vanishing Hi

except for i ∈ [a, b]. AsB⊗A κ(p) has global dimension d we see from Lemma 66.19 that
K• ⊗A κ(p) has tor amplitude in [a − d, b]. Let q be a prime of B lying over p. Since
K• ⊗A κ(p) is a bounded above complex of free B ⊗A κ(p)-modules we see that

K• ⊗L
B κ(q) = K• ⊗B κ(q)

= (K• ⊗A κ(p))⊗B⊗Aκ(p) κ(q)
= (K• ⊗A κ(p))⊗L

B⊗Aκ(p) κ(q)

Hence the arguments above imply that Hi(K• ⊗L
B κ(q)) = 0 for i 6∈ [a − d, b]. We

conclude by Lemma 77.2. �

The following lemma is a local version of Lemma 77.5. It can be used to find perfect
complexes over regular local rings.

Lemma 77.6. Let A → B be a local ring homomorphism. Let a, b ∈ Z. Let d ≥ 0.
Let K• be a complex of B-modules. Assume

(1) the ring map A→ B is flat,
(2) the ring B/mAB is regular of dimension d,
(3) K• is pseudo-coherent as a complex of B-modules, and
(4) K• has tor amplitude in [a, b] as a complex of A-modules, in fact it suffices if

Hi(K• ⊗L
A κ(mA)) is nonzero only for i ∈ [a, b].

Then K• is perfect as a complex of B-modules with tor amplitude in [a− d, b].
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Proof. By (3) we may assume that K• is a bounded above complex of finite free
B-modules. We compute

K• ⊗L
B κ(mB) = K• ⊗B κ(mB)

= (K• ⊗A κ(mA))⊗B/mAB κ(mB)
= (K• ⊗A κ(mA))⊗L

B/mAB
κ(mB)

The first equality because K• is a bounded above complex of flat B-modules. The second
equality follows from basic properties of the tensor product. The third equality holds be-
causeK•⊗A κ(mA) = K•/mAK

• is a bounded above complex of flatB/mAB-modules.
Since K• is a bounded above complex of flat A-modules by (1), the cohomology modules
Hi of the complexK•⊗A κ(mA) are nonzero only for i ∈ [a, b] by assumption (4). Thus
the spectral sequence of Example 62.1 and the fact that B/mAB has finite global dimen-
sion d (by (2) and Algebra, Proposition 110.1) shows that Hj(K• ⊗L

B κ(mB)) is zero for
j 6∈ [a− d, b]. This finishes the proof by Lemma 77.2. �

78. Characterizing perfect complexes

In this section we prove that the perfect complexes are exactly the compact objects of the
derived category of a ring. First we show the following.

Lemma 78.1. LetR be a ring. The full subcategoryDperf (R) ⊂ D(R) of perfect ob-
jects is the smallest strictly full, saturated, triangulated subcategory containingR = R[0].
In other words Dperf (R) = 〈R〉. In particular, R is a classical generator for Dperf (R).

Proof. To see what the statement means, please look at Derived Categories, Defini-
tions 6.1 and 36.3. It was shown in Lemmas 74.4 and 74.5 that Dperf (R) ⊂ D(R) is a
strictly full, saturated, triangulated subcategory of D(R). Of course R ∈ Dperf (R).
Recall that 〈R〉 =

⋃
〈R〉n. To finish the proof we will show that if M ∈ Dperf (R) is

represented by

. . .→ 0→Ma →Ma+1 → . . .→M b → 0→ . . .

with M i finite projective, then M ∈ 〈R〉b−a+1. The proof is by induction on b − a. By
definition 〈R〉1 contains any finite projective R-module placed in any degree; this deals
with the base case b − a = 0 of the induction. In general, we consider the distinguished
triangle

Mb[−b]→M• → σ≤b−1M
• →Mb[−b+ 1]

By induction the truncated complex σ≤b−1M
• is in 〈R〉b−a andMb[−b] is in 〈R〉1. Hence

M• ∈ 〈R〉b−a+1 by definition. �

LetR be a ring. Recall thatD(R) has direct sums which are given simply by taking direct
sums of complexes, see Derived Categories, Lemma 33.5. We will use this in the lemmas
of this section without further mention.

Lemma 78.2. Let R be a ring. Let K ∈ D(R) be an object such that for every count-
able set of objects En ∈ D(R) the canonical map⊕

HomD(R)(K,En) −→ HomD(R)(K,
⊕

En)

is a bijection. Then, given any system L•
n of complexes over N we have that

colim HomD(R)(K,L•
n) −→ HomD(R)(K,L•)

is a bijection, where L• is the termwise colimit, i.e., Lm = colimLmn for all m ∈ Z.
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Proof. Consider the short exact sequence of complexes

0→
⊕

L•
n →

⊕
L•
n → L• → 0

where the first map is given by 1− tn in degree nwhere tn : L•
n → L•

n+1 is the transition
map. By Derived Categories, Lemma 12.1 this is a distinguished triangle in D(R). Apply
the homological functor HomD(R)(K,−), see Derived Categories, Lemma 4.2. Thus a
long exact cohomology sequence

. . . // HomD(R)(K, colimL•
n[−1])

rr
HomD(R)(K,

⊕
L•
n) // HomD(R)(K,

⊕
L•
n) // HomD(R)(K, colimL•

n)

rr
HomD(R)(K,

⊕
L•
n[1]) // . . .

Since we have assumed that HomD(R)(K,
⊕
L•
n) is equal to

⊕
HomD(R)(K,L•

n) we
see that the first map on every row of the diagram is injective (by the explicit descrip-
tion of this map as the sum of the maps induced by 1 − tn). Hence we conclude that
HomD(R)(K, colimL•

n) is the cokernel of the first map of the middle row in the diagram
above which is what we had to show. �

The following proposition, characterizing perfect complexes as the compact objects (De-
rived Categories, Definition 37.1) of the derived category, shows up in various places. See
for example [?, proof of Proposition 6.3] (this treats the bounded case), [?, Theorem 2.4.3]
(the statement doesn’t match exactly), and [?, Proposition 6.4] (watch out for horrendous
notational conventions).

Proposition 78.3. LetR be a ring. For an objectK ofD(R) the following are equiv-
alent

(1) K is perfect, and
(2) K is a compact object of D(R).

Proof. AssumeK is perfect, i.e., K is quasi-isomorphic to a bounded complex P • of
finite projective modules, see Definition 74.1. IfEi is represented by the complexE•

i , then⊕
Ei is represented by the complex whose degree n term is

⊕
Eni . On the other hand,

as Pn is projective for all n we have HomD(R)(P •,K•) = HomK(R)(P •,K•) for every
complex ofR-modulesK•, see Derived Categories, Lemma 19.8. Thus HomD(R)(P •, E•)
is the cohomology of the complex∏

HomR(Pn, En−1)→
∏

HomR(Pn, En)→
∏

HomR(Pn, En+1).

Since P • is bounded we see that we may replace the
∏

signs by
⊕

signs in the complex
above. Since eachPn is a finiteR-module we see that HomR(Pn,

⊕
iE

m
i ) =

⊕
i HomR(Pn, Emi )

for all n,m. Combining these remarks we see that the map of Derived Categories, Defi-
nition 37.1 is a bijection.

Conversely, assume K is compact. Represent K by a complex K• and consider the map

K• −→
⊕

n≥0
τ≥nK

•
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where we have used the canonical truncations, see Homology, Section 15. This makes sense
as in each degree the direct sum on the right is finite. By assumption this map factors
through a finite direct sum. We conclude that K → τ≥nK is zero for at least one n, i.e.,
K is in D−(R).

Since K ∈ D−(R) and since every R-module is a quotient of a free module, we may
represent K by a bounded above complex K• of free R-modules, see Derived Categories,
Lemma 15.4. Note that we have

K• =
⋃

n≤0
σ≥nK

•

where we have used the stupid truncations, see Homology, Section 15. Hence by Lemma
78.2 we see that 1 : K• → K• factors through σ≥nK

• → K• in D(R). Thus we see that
1 : K• → K• factors as

K• ϕ−→ L• ψ−→ K•

inD(R) for some complexL• which is bounded and whose terms are freeR-modules. Say
Li = 0 for i 6∈ [a, b]. Fix a, b from now on. Let c be the largest integer ≤ b+ 1 such that
we can find a factorization of 1K• as above with Li is finite free for i < c. We will show
by induction that c = b + 1. Namely, write Lc =

⊕
λ∈Λ R. Since Lc−1 is finite free we

can find a finite subset Λ′ ⊂ Λ such that Lc−1 → Lc factors through
⊕

λ∈Λ′ R ⊂ Lc.
Consider the map of complexes

π : L• −→ (
⊕

λ∈Λ\Λ′
R)[−c]

given by the projection onto the factors corresponding to Λ \ Λ′ in degree i. By our
assumption on K we see that, after possibly replacing Λ′ by a larger finite subset, we may
assume that π ◦ ϕ = 0 in D(R). Let (L′)• ⊂ L• be the kernel of π. Since π is surjective
we get a short exact sequence of complexes, which gives a distinguished triangle in D(R)
(see Derived Categories, Lemma 12.1). Since HomD(R)(K,−) is homological (see Derived
Categories, Lemma 4.2) and π ◦ϕ = 0, we can find a morphism ϕ′ : K• → (L′)• inD(R)
whose composition with (L′)• → L• gives ϕ. Setting ψ′ equal to the composition of ψ
with (L′)• → L• we obtain a new factorization. Since (L′)• agrees with L• except in
degree c and since (L′)c =

⊕
λ∈Λ′ R the induction step is proved.

The conclusion of the discussion of the preceding paragraph is that 1K : K → K factors
as

K
ϕ−→ L

ψ−→ K

in D(R) where L can be represented by a finite complex of free R-modules. In particular
we see that L is perfect. Note that e = ϕ◦ψ ∈ EndD(R)(L) is an idempotent. By Derived
Categories, Lemma 4.14 we see that L = Ker(e) ⊕ Ker(1 − e). The map ϕ : K → L
induces an isomorphism with Ker(1 − e) in D(R). Hence we finally conclude that K is
perfect by Lemma 74.5. �

Lemma 78.4. Let R be a ring. Let I ⊂ R be an ideal. Let K be an object of D(R).
Assume that

(1) K ⊗L
R R/I is perfect in D(R/I), and

(2) I is a nilpotent ideal.
Then K is perfect in D(R).
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Proof. Choose a finite complex P • of finite projective R/I-modules representing
K ⊗L

R R/I , see Definition 74.1. By Lemma 75.3 there exists a complex P • of projective
R-modules representing K such that P • = P •/IP •. It follows from Nakayama’s lemma
(Algebra, Lemma 20.1) that P • is a finite complex of finite projective R-modules. �

Lemma 78.5. Let R be a ring. Let I, J ⊂ R be ideals. Let K be an object of D(R).
Assume that

(1) K ⊗L
R R/I is perfect in D(R/I), and

(2) K ⊗L
R R/J is perfect in D(R/J).

Then K ⊗L
R R/IJ is perfect in D(R/IJ).

Proof. It is clear that we may assume replace R by R/IJ and K by K ⊗L
R R/IJ .

Then R→ R/(I ∩ J) is a surjection whose kernel has square zero. Hence by Lemma 78.4
it suffices to prove that K ⊗L

R R/(I ∩ J) is perfect. Thus we may assume that I ∩ J = 0.

We prove the lemma in case I ∩ J = 0. First, we may represent K by a K-flat complex
K• with all Kn flat, see Lemma 59.10. Then we see that we have a short exact sequence
of complexes

0→ K• → K•/IK• ⊕K•/JK• → K•/(I + J)K• → 0

Note that K•/IK• represents K ⊗L
R R/I by construction of the derived tensor product.

Similarly forK•/JK• andK•/(I+J)K•. Note thatK•/(I+J)K• is a perfect complex
ofR/(I+J)-modules, see Lemma 74.9. Hence the complexesK•/IK•, andK•/JK• and
K•/(I + J)K• have finitely many nonzero cohomology groups (since a perfect complex
has finite Tor-amplitude, see Lemma 74.2). We conclude that K ∈ Db(R) by the long ex-
act cohomology sequence associated to short exact sequence of complexes displayed above.
In particular we assume K• is a bounded above complex of free R-modules (see Derived
Categories, Lemma 15.4).

We will now show that K is perfect using the criterion of Proposition 78.3. Thus we let
Ej ∈ D(R) be a family of objects parametrized by a set J . We choose complexesE•

j with
flat terms representing Ej , see for example Lemma 59.10. It is clear that

0→ E•
j → E•

j /IE
•
j ⊕ E•

j /JE
•
j → E•

j /(I + J)E•
j → 0

is a short exact sequence of complexes. Taking direct sums we obtain a similar short exact
sequence

0→
⊕

E•
j →

⊕
E•
j /IE

•
j ⊕ E•

j /JE
•
j →

⊕
E•
j /(I + J)E•

j → 0

(Note that−⊗RR/I commutes with direct sums.) This short exact sequence determines a
distinguished triangle inD(R), see Derived Categories, Lemma 12.1. Apply the homolog-
ical functor HomD(R)(K,−) (see Derived Categories, Lemma 4.2) to get a commutative
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diagram⊕
HomD(R)(K•, E•

j /(I + J))[−1] //

��

HomD(R)(K•,
⊕
E•
j /(I + J))[−1]

��⊕
HomD(R)(K•, E•

j /I ⊕ E•
j /J)[−1] //

��

HomD(R)(K•,
⊕
E•
j /I ⊕ E•

j /J)[−1]

��⊕
HomD(R)(K•, E•

j ) //

��

HomD(R)(K•,
⊕
E•
j )

��⊕
HomD(R)(K•, E•

j /I ⊕ E•
j /J) //

��

HomD(R)(K•,
⊕
E•
j /I ⊕ E•

j /J)

��⊕
HomD(R)(K•, E•

j /(I + J)) // HomD(R)(K•,
⊕
E•
j /(I + J))

with exact columns. It is clear that, for any complex E• of R-modules we have

HomD(R)(K•, E•/I) = HomK(R)(K•, E•/I)
= HomK(R/I)(K•/IK•, E•/I)
= HomD(R/I)(K•/IK•, E•/I)

and similarly for when dividing by J or I + J , see Derived Categories, Lemma 19.8. De-
rived Categories. Thus all the horizontal arrows, except for possibly the middle one, are
isomorphisms as the complexesK•/IK•,K•/JK•,K•/(I+J)K• are perfect complexes
ofR/I ,R/J ,R/(I+J)-modules, see Proposition 78.3. It follows from the 5-lemma (Ho-
mology, Lemma 5.20) that the middle map is an isomorphism and the lemma follows by
Proposition 78.3. �

79. Strong generators and regular rings

Let R be a ring. Denote D(R)c the saturated full triangulated subcategory of D(R). We
already know that

〈R〉 = Dperf (R) = D(R)c
See Lemma 78.1 and Proposition 78.3. It turns out that if R is regular, then R is a strong
generator (Derived Categories, Definition 36.3).

Lemma 79.1. Let R be a ring. Let n ≥ 1. Let K ∈ 〈R〉n with notation as in Derived
Categories, Section 36. Consider maps

K
f1−→ K1

f2−→ K2
f3−→ . . .

fn−→ Kn

in D(R). If Hi(fj) = 0 for all i, j , then fn ◦ . . . ◦ f1 = 0.

Proof. If n = 1, then K is a direct summand in D(R) of a bounded complex P •

whose terms are finite free R-modules and whose differentials are zero. Thus it suffices to
show any morphism f : P • → K1 inD(R) withHi(f) = 0 for all i is zero. Since P • is a
finite direct sum P • =

⊕
R[mj ] it suffices to show any morphism g : R[m] → K1 with

H−m(g) = 0 in D(R) is zero. This follows from the fact that HomD(R)(R[−m],K) =
Hm(K).
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For n > 1 we proceed by induction on n. Namely, we know thatK is a summand inD(R)
of an object P which sits in a distinguished triangle

P ′ i−→ P
p−→ P ′′ → P ′[1]

with P ′ ∈ 〈R〉1 and P ′′ ∈ 〈R〉n−1. As above we may replace K by P and assume that we
have

P
f1−→ K1

f2−→ K2
f3−→ . . .

fn−→ Kn

in D(R) with fj zero on cohomology. By the case n = 1 the composition f1 ◦ i is zero.
Hence by Derived Categories, Lemma 4.2 we can find a morphism h : P ′′ → K1 such that
f1 = h ◦ p. Observe that f2 ◦ h is zero on cohomology. Hence by induction we find that
fn ◦ . . . ◦ f2 ◦ h = 0 which implies fn ◦ . . . ◦ f1 = fn ◦ . . . ◦ f2 ◦ h ◦ p = 0 as desired. �

Lemma 79.2. Let R be a Noetherian ring. If R is a strong generator for Dperf (R),
then R is regular of finite dimension.

Proof. Assume Dperf (R) = 〈R〉n for some n ≥ 1. For any finite R-module M we
can choose a complex

P = (P−n−1 d−n−1

−−−−→ P−n d−n

−−→ P−n+1 d1

−→ . . .
d−1

−−→ P 0)
of finite free R-modules with Hi(P ) = 0 for i = −n, . . . ,−1 and M ∼= Coker(d−1).
Note thatP is inDperf (R). For anyR-moduleN we can compute ExtnR(M,N) the finite
free resolution P of M , see Algebra, Section 71 and compare with Derived Categories,
Section 27. In particular, the sequence above defines an element

ξ ∈ ExtnR(Coker(d−1),Coker(d−n−1)) = ExtnR(M,Coker(d−n−1))
and for any element ξ in ExtnR(M,N) there is a R-module map ϕ : Coker(d−n−1)→ N

such that ϕ maps ξ to ξ. For j = 1, . . . , n− 1 consider the complexes

Kj = (Coker(d−n−1)→ P−n+1 → . . .→ P−j)
with Coker(d−n−1) in degree−n andP t in degree t. We also setKn = Coker(d−n−1)[n].
Then we have maps

P → K1 → K2 → . . .→ Kn

which induce vanishing maps on cohomology. By Lemma 79.1 since P ∈ Dperf (R) =
〈R〉n we find that the composition of this maps is zero inD(R). Since HomD(R)(P,Kn) =
HomK(R)(P,Kn) by Derived Categories, Lemma 19.8 we conclude ξ = 0. Hence ExtnR(M,N) =
0 for all R-modules N , see discussion above. It follows that M has projective dimension
≤ n − 1 by Algebra, Lemma 109.8. Since this holds for all finite R-modules M we con-
clude that R has finite global dimension, see Algebra, Lemma 109.12. We finally conclude
by Algebra, Lemma 110.8. �

Lemma 79.3. Let R be a Noetherian regular ring of dimension d < ∞. Let K,L ∈
D−(R). Assume there exists an k such that Hi(K) = 0 for i ≤ k and Hi(L) = 0 for
i ≥ k − d+ 1. Then HomD(R)(K,L) = 0.

Proof. Let K• be a bounded above complex representing K , say Ki = 0 for i ≥
n+ 1. After replacing K• by τ≥k+1K

• we may assume Ki = 0 for i ≤ k. Then we may
use the distinguished triangle

Kn[−n]→ K• → σ≤n−1K
•

to see it suffices to prove the lemma forKn[−n] andσ≤n−1K
•. By induction onn, we con-

clude that it suffices to prove the lemma in case K is represented by the complex M [−m]
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for some R-module M and some m ≥ k + 1. Since R has global dimension d by Algebra,
Lemma 110.8 we see that M has a projective resolution 0→ Pd → . . .→ P0 → M → 0.
Then the complex P • having Pi in degree m− i is a bounded complex of projectives rep-
resenting M [−m]. On the other hand, we can choose a complex L• representing L with
Li = 0 for i ≥ k − d + 1. Hence any map of complexes P • → L• is zero. This implies
the lemma by Derived Categories, Lemma 19.8. �

Lemma 79.4. Let R be a Noetherian regular ring of dimension 1 ≤ d < ∞. Let
K ∈ D(R) be perfect and let k ∈ Z such thatHi(K) = 0 for i = k−d+2, . . . , k (empty
condition if d = 1). Then K = τ≤k−d+1K ⊕ τ≥k+1K.

Proof. The vanishing of cohomology shows that we have a distinguished triangle
τ≤k−d+1K → K → τ≥k+1K → (τ≤k−d+1K)[1]

By Derived Categories, Lemma 4.11 it suffices to show that the third arrow is zero. Thus
it suffices to show that HomD(R)(τ≥k+1K, (τ≤k−d+1K)[1]) = 0 which follows from
Lemma 79.3. �

Lemma 79.5. Let R be a Noetherian regular ring of finite dimension. Then R is a
strong generator for the full subcategory Dperf (R) ⊂ D(R) of perfect objects.

Proof. We will use that an object K of D(R) is perfect if and only if K is bounded
and has finite cohomology modules, see Lemma 74.14. Strong generators of triangulated
categories are defined in Derived Categories, Definition 36.3. Let d = dim(R).
Let K ∈ Dperf (R). We will show K ∈ 〈R〉d+1. By Algebra, Lemma 110.8 every finite
R-module has projective dimension≤ d. We will show by induction on 0 ≤ i ≤ d that if
Hn(K) has projective dimension ≤ i for all n ∈ Z, then K is in 〈R〉i+1.
Base case i = 0. In this caseHn(K) is a finiteR-module of projective dimension 0. In other
words, each cohomology is a projectiveR-module. Thus ExtiR(Hn(K),Hm(K)) = 0 for
all i > 0 andm,n ∈ Z. By Derived Categories, Lemma 27.9 we find thatK is isomorphic
to the direct sum of the shifts of its cohomology modules. Since each cohomology module
is a finite projectiveR-module, it is a direct summand of a direct sum of copies ofR. Hence
by definition we see that K is contained in 〈R〉1.
Induction step. Assume the claim holds for i < d and let K ∈ Dperf (R) have the prop-
erty that Hn(K) has projective dimension ≤ i + 1 for all n ∈ Z. Choose a ≤ b such
that Hn(K) is zero for n 6∈ [a, b]. For each n ∈ [a, b] choose a surjection Fn → Hn(K)
where Fn is a finite free R-module. Since Fn is projective, we can lift Fn → Hn(K)
to a map Fn[−n] → K in D(R) (small detail omitted). Thus we obtain a morphism⊕

a≤n≤b F
n[−n] → K which is surjective on cohomology modules. Choose a distin-

guished triangle
K ′ →

⊕
a≤n≤b

Fn[−n]→ K → K ′[1]

in D(R). Of course, the object K ′ is bounded and has finite cohomology modules. The
long exact sequence of cohomology breaks into short exact sequences

0→ Hn(K ′)→ Fn → Hn(K)→ 0
by the choices we made. By Algebra, Lemma 109.9 we see that the projective dimension
of Hn(K ′) is ≤ max(0, i). Thus K ′ ∈ 〈R〉i+1. By definition this means that K is in
〈R〉i+1+1 as desired. �

Proposition 79.6. Let R be a Noetherian ring. The following are equivalent
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(1) R is regular of finite dimension,
(2) Dperf (R) has a strong generator, and
(3) R is a strong generator for Dperf (R).

Proof. This is a formal consequence of Lemmas 78.1, 79.2, and 79.5 as well as Derived
Categories, Lemma 36.6. �

80. Relatively finitely presented modules

Let R be a ring. Let A → B be a finite map of finite type R-algebras. Let M be a finite
B-module. In this case it is not true that

M of finite presentation over B ⇔M of finite presentation over A
A counter example is R = k[x1, x2, x3, . . .], A = R, B = R/(xi), and M = B. To “fix”
this we introduce a relative notion of finite presentation.

Lemma 80.1. Let R → A be a ring map of finite type. Let M be an A-module. The
following are equivalent

(1) for some presentation α : R[x1, . . . , xn] → A the module M is a finitely pre-
sented R[x1, . . . , xn]-module,

(2) for all presentationsα : R[x1, . . . , xn]→ A the moduleM is a finitely presented
R[x1, . . . , xn]-module, and

(3) for any surjectionA′ → AwhereA′ is a finitely presentedR-algebra, the module
M is finitely presented as A′-module.

In this case M is a finitely presented A-module.

Proof. If α : R[x1, . . . , xn] → A and β : R[y1, . . . , ym] → A are presentations.
Choose fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) =
α(xi). Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

Hence the equivalence of (1) and (2) follows by applying Algebra, Lemmas 6.4 and 36.23.
The equivalence of (2) and (3) follows by choosing a presentationA′ = R[x1, . . . , xn]/(f1, . . . , fm)
and using Algebra, Lemma 36.23 to show that M is finitely presented as A′-module if and
only if M is finitely presented as a R[x1, . . . , xn]-module. �

Definition 80.2. Let R → A be a finite type ring map. Let M be an A-module.
We say M is an A-module finitely presented relative to R if the equivalent conditions of
Lemma 80.1 hold.

Note that if R → A is of finite presentation, then M is an A-module finitely presented
relative to R if and only if M is a finitely presented A-module. It is equally clear that A
as an A-module is finitely presented relative to R if and only if A is of finite presentation
over R. If R is Noetherian the notion is uninteresting. Now we can formulate the result
we were looking for.

Lemma 80.3. Let R be a ring. Let A → B be a finite map of finite type R-algebras.
LetM be aB-module. ThenM is anA-module finitely presented relative toR if and only
if M is a B-module finitely presented relative to R.
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Proof. Choose a surjectionR[x1, . . . , xn]→ A. Choose y1, . . . , ym ∈ B which gen-
erate B over A. As A→ B is finite each yi satisfies a monic equation with coefficients in
A. Hence we can find monic polynomialsPj(T ) ∈ R[x1, . . . , xn][T ] such thatPj(yj) = 0
in B. Then we get a commutative diagram

R[x1, . . . , xn]

��

// R[x1, . . . , xn, y1, . . . , ym]/(Pj(yj))

��
A // B

Since the top arrow is a finite and finitely presented ring map we conclude by Algebra,
Lemma 36.23 and the definition. �

With this result in hand we see that the relative notion makes sense and behaves well with
regards to finite maps of rings of finite type over R. It is also stable under localization,
stable under base change, and ”glues” well.

Lemma 80.4. Let R be a ring, f ∈ R an element, Rf → A is a finite type ring map,
g ∈ A, and M an A-module. If M of finite presentation relative to Rf , then Mg is an
Ag-module of finite presentation relative to R.

Proof. Choose a presentation Rf [x1, . . . , xn]→ A. We write Rf = R[x0]/(fx0 −
1). Consider the presentation R[x0, x1, . . . , xn, xn+1] → Ag which extends the given
map, maps x0 to the image of 1/f , and maps xn+1 to 1/g. Choose g′ ∈ R[x0, x1, . . . , xn]
which maps to g (this is possible). Suppose that

Rf [x1, . . . , xn]⊕s → Rf [x1, . . . , xn]⊕t →M → 0

is a presentation of M given by a matrix (hij). Pick h′
ij ∈ R[x0, x1, . . . , xn] which map

to hij . Then

R[x0, x1, . . . , xn, xn+1]⊕s+2t → R[x0, x1, . . . , xn, xn+1]⊕t →Mg → 0

is a presentation of Mf . Here the t × (s + 2t) matrix defining the map has a first t × s
block consisting of the matrix h′

ij , a second t × t block which is (x0f−)It, and a third
block which is (xn+1g

′ − 1)It. �

Lemma 80.5. Let R → A be a finite type ring map. Let M be an A-module finitely
presented relative to R. For any ring map R→ R′ the A⊗R R′-module

M ⊗A A′ = M ⊗R R′

is finitely presented relative to R′.

Proof. Choose a surjection R[x1, . . . , xn]→ A. Choose a presentation

R[x1, . . . , xn]⊕s → R[x1, . . . , xn]⊕t →M → 0

Then
R′[x1, . . . , xn]⊕s → R′[x1, . . . , xn]⊕t →M ⊗R R′ → 0

is a presentation of the base change and we win. �

Lemma 80.6. Let R → A be a finite type ring map. Let M be an A-module finitely
presented relative to R. Let A→ A′ be a ring map of finite presentation. The A′-module
M ⊗A A′ is finitely presented relative to R.
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Proof. Choose a surjectionR[x1, . . . , xn]→ A. Choose a presentationA′ = A[y1, . . . , ym]/(g1, . . . , gl).
Pick g′

i ∈ R[x1, . . . , xn, y1, . . . , ym] mapping to gi. Say

R[x1, . . . , xn]⊕s → R[x1, . . . , xn]⊕t →M → 0
is a presentation of M given by a matrix (hij). Then

R[x1, . . . , xn, y1, . . . , ym]⊕s+tl → R[x0, x1, . . . , xn, y1, . . . , ym]⊕t →M ⊗A A′ → 0
is a presentation ofM⊗AA′. Here the t×(s+ lt) matrix defining the map has a first t×s
block consisting of the matrix hij , followed by l blocks of size t× t which are g′

iIt. �

Lemma 80.7. LetR→ A→ B be finite type ring maps. LetM be aB-module. IfM
is finitely presented relative toA andA is of finite presentation overR, thenM is finitely
presented relative to R.

Proof. Choose a surjection A[x1, . . . , xn]→ B. Choose a presentation

A[x1, . . . , xn]⊕s → A[x1, . . . , xn]⊕t →M → 0
given by a matrix (hij). Choose a presentation

A = R[y1, . . . , ym]/(g1, . . . , gu).
Choose h′

ij ∈ R[y1, . . . , ym, x1, . . . , xn] mapping to hij . Then we obtain the presentation

R[y1, . . . , ym, x1, . . . , xn]⊕s+tu → R[y1, . . . , ym, x1, . . . , xn]⊕t →M → 0
where the t× (s+ tu)-matrix is given by a first t× s block consisting of h′

ij followed by
u blocks of size t× t given by giIt, i = 1, . . . , u. �

Lemma 80.8. Let R → A be a finite type ring map. Let M be an A-module. Let
f1, . . . , fr ∈ A generate the unit ideal. The following are equivalent

(1) each Mfi is finitely presented relative to R, and
(2) M is finitely presented relative to R.

Proof. The implication (2)⇒ (1) is in Lemma 80.4. Assume (1). Write 1 =
∑
figi

in A. Choose a surjection R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr] → A. such that yi maps
to fi and zi maps to gi. Then we see that there exists a surjection

P = R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]/(
∑

yizi − 1) −→ A.

By Lemma 80.1 we see that Mfi is a finitely presented Afi -module, hence by Algebra,
Lemma 23.2 we see thatM is a finitely presentedA-module. HenceM is a finiteP -module
(with P as above). Choose a surjection P⊕t → M . We have to show that the kernel K
of this map is a finite P -module. Since Pyi surjects onto Afi we see by Lemma 80.1 and
Algebra, Lemma 5.3 that the localization Kyi is a finitely generated Pyi -module. Choose
elements ki,j ∈ K , i = 1, . . . , r, j = 1, . . . , si such that the images of ki,j inKyi generate.
SetK ′ ⊂ K equal to theP -module generated by the elements ki,j . ThenK/K ′ is a module
whose localization at yi is zero for all i. Since (y1, . . . , yr) = P we see that K/K ′ = 0 as
desired. �

Lemma 80.9. Let R→ A be a finite type ring map. Let 0→M ′ →M →M ′′ → 0
be a short exact sequence of A-modules.

(1) If M ′,M ′′ are finitely presented relative to R, then so is M .
(2) If M ′ is a finite type A-module and M is finitely presented relative to R, then

M ′′ is finitely presented relative to R.
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Proof. Follows immediately from Algebra, Lemma 5.3. �

Lemma 80.10. Let R → A be a finite type ring map. Let M,M ′ be A-modules. If
M ⊕M ′ is finitely presented relative to R, then so are M and M ′.

Proof. Omitted. �

81. Relatively pseudo-coherent modules

This section is the analogue of Section 80 for pseudo-coherence.

Lemma 81.1. Let R be a ring. Let K• be a complex of R-modules. Consider the
R-algebra map R[x]→ R which maps x to zero. Then

K• ⊗L
R[x] R

∼= K• ⊕K•[1]

in D(R).

Proof. Choose a K-flat resolution P • → K• overR such that Pn is a flatR-module
for all n, see Lemma 59.10. Then P • ⊗R R[x] is a K-flat complex of R[x]-modules whose
terms are flat R[x]-modules, see Lemma 59.3 and Algebra, Lemma 39.7. In particular x :
Pn ⊗R R[x]→ Pn ⊗R R[x] is injective with cokernel isomorphic to Pn. Thus

P • ⊗R R[x] x−→ P • ⊗R R[x]
is a double complex of R[x]-modules whose associated total complex is quasi-isomorphic
to P • and henceK•. Moreover, this associated total complex is a K-flat complex ofR[x]-
modules for example by Lemma 59.4 or by Lemma 59.5. Hence

K• ⊗L
R[x] R

∼= Tot(P • ⊗R R[x] x−→ P • ⊗R R[x])⊗R[x] R = Tot(P • 0−→ P •)
= P • ⊕ P •[1] ∼= K• ⊕K•[1]

as desired. �

Lemma 81.2. Let R be a ring and K• a complex of R-modules. Let m ∈ Z. Consider
the R-algebra map R[x] → R which maps x to zero. Then K• is m-pseudo-coherent as
a complex of R-modules if and only if K• is m-pseudo-coherent as a complex of R[x]-
modules.

Proof. This is a special case of Lemma 64.11. We also prove it in another way as
follows.
Note that 0→ R[x]→ R[x]→ R → 0 is exact. Hence R is pseudo-coherent as an R[x]-
module. Thus one implication of the lemma follows from Lemma 64.11. To prove the
other implication, assume that K• is m-pseudo-coherent as a complex of R[x]-modules.
By Lemma 64.12 we see thatK•⊗L

R[x]R ism-pseudo-coherent as a complex ofR-modules.
By Lemma 81.1 we see thatK•⊕K•[1] ism-pseudo-coherent as a complex ofR-modules.
Finally, we conclude that K• is m-pseudo-coherent as a complex of R-modules from
Lemma 64.8. �

Lemma 81.3. Let R → A be a ring map of finite type. Let K• be a complex of A-
modules. Let m ∈ Z. The following are equivalent

(1) for some presentation α : R[x1, . . . , xn]→ A the complex K• is an m-pseudo-
coherent complex of R[x1, . . . , xn]-modules,

(2) for all presentations α : R[x1, . . . , xn] → A the complex K• is an m-pseudo-
coherent complex of R[x1, . . . , xn]-modules.
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In particular the same equivalence holds for pseudo-coherence.

Proof. If α : R[x1, . . . , xn] → A and β : R[y1, . . . , ym] → A are presentations.
Choose fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) =
α(xi). Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

After a change of coordinates the ring homomorphismR[x1, . . . , xn, y1, . . . , ym]→ R[x1, . . . , xn]
is isomorphic to the ring homomorphism which maps each yi to zero. Similarly for the
left vertical map in the diagram. Hence, by induction on the number of variables this
lemma follows from Lemma 81.2. The pseudo-coherent case follows from this and Lemma
64.5. �

Definition 81.4. Let R → A be a finite type ring map. Let K• be a complex of
A-modules. Let M be an A-module. Let m ∈ Z.

(1) We say K• is m-pseudo-coherent relative to R if the equivalent conditions of
Lemma 81.3 hold.

(2) We sayK• is pseudo-coherent relative toR ifK• ism-pseudo-coherent relative
to R for all m ∈ Z.

(3) We say M is m-pseudo-coherent relative to R if M [0] is m-pseudo-coherent
relative to R.

(4) We say M is pseudo-coherent relative to R if M [0] is pseudo-coherent relative
to R.

Part (2) means thatK• is pseudo-coherent as a complex ofR[x1, . . . , xn]-modules for any
surjectionR[y1, . . . , ym]→ A, see Lemma 64.5. This definition has the following pleasing
property.

Lemma 81.5. Let R be a ring. Let A → B be a finite map of finite type R-algebras.
Let m ∈ Z. Let K• be a complex of B-modules. Then K• is m-pseudo-coherent (resp.
pseudo-coherent) relative to R if and only if K• seen as a complex of A-modules is m-
pseudo-coherent (pseudo-coherent) relative to R.

Proof. Choose a surjectionR[x1, . . . , xn]→ A. Choose y1, . . . , ym ∈ B which gen-
erate B over A. As A→ B is finite each yi satisfies a monic equation with coefficients in
A. Hence we can find monic polynomialsPj(T ) ∈ R[x1, . . . , xn][T ] such thatPj(yj) = 0
in B. Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

��
R[x1, . . . , xn]

��

// R[x1, . . . , xn, y1, . . . , ym]/(Pj(yj))

��
A // B

The top horizontal arrow and the top right vertical arrow satisfy the assumptions of
Lemma 64.11. Hence K• is m-pseudo-coherent (resp. pseudo-coherent) as a complex of



1414 15. MORE ON ALGEBRA

R[x1, . . . , xn]-modules if and only ifK• ism-pseudo-coherent (resp. pseudo-coherent) as
a complex of R[x1, . . . , xn, y1, . . . , ym]-modules. �

Lemma 81.6. Let R be a ring. Let R → A be a finite type ring map. Let m ∈ Z. Let
(K•, L•,M•, f, g, h) be a distinguished triangle in D(A).

(1) If K• is (m + 1)-pseudo-coherent relative to R and L• is m-pseudo-coherent
relative to R then M• is m-pseudo-coherent relative to R.

(2) If K•,M• are m-pseudo-coherent relative to R, then L• is m-pseudo-coherent
relative to R.

(3) If L• is (m + 1)-pseudo-coherent relative to R and M• is m-pseudo-coherent
relative to R, then K• is (m+ 1)-pseudo-coherent relative to R.

Moreover, if two out of three of K•, L•,M• are pseudo-coherent relative to R, the so is
the third.

Proof. Follows immediately from Lemma 64.2 and the definitions. �

Lemma 81.7. Let R→ A be a finite type ring map. Let M be an A-module. Then
(1) M is 0-pseudo-coherent relative toR if and only ifM is a finite typeA-module,
(2) M is (−1)-pseudo-coherent relative toR if and only ifM is a finitely presented

relative to R,
(3) M is (−d)-pseudo-coherent relative to R if and only if for every surjection

R[x1, . . . , xn]→ A there exists a resolution

R[x1, . . . , xn]⊕ad → R[x1, . . . , xn]⊕ad−1 → . . .→ R[x1, . . . , xn]⊕a0 →M → 0

of length d, and
(4) M is pseudo-coherent relative toR if and only if for every presentationR[x1, . . . , xn]→

A there exists an infinite resolution

. . .→ R[x1, . . . , xn]⊕a1 → R[x1, . . . , xn]⊕a0 →M → 0

by finite free R[x1, . . . , xn]-modules.

Proof. Follows immediately from Lemma 64.4 and the definitions. �

Lemma 81.8. Let R→ A be a finite type ring map. Let m ∈ Z. Let K•, L• ∈ D(A).
If K•⊕L• is m-pseudo-coherent (resp. pseudo-coherent) relative to R so are K• and L•.

Proof. Immediate from Lemma 64.8 and the definitions. �

Lemma 81.9. LetR→ A be a finite type ring map. Letm ∈ Z. LetK• be a bounded
above complex of A-modules such that Ki is (m − i)-pseudo-coherent relative to R for
all i. ThenK• ism-pseudo-coherent relative toR. In particular, ifK• is a bounded above
complex ofA-modules pseudo-coherent relative toR, thenK• is pseudo-coherent relative
to R.

Proof. Immediate from Lemma 64.9 and the definitions. �

Lemma 81.10. Let R → A be a finite type ring map. Let m ∈ Z. Let K• ∈ D−(A)
such thatHi(K•) is (m− i)-pseudo-coherent (resp. pseudo-coherent) relative toR for all
i. Then K• is m-pseudo-coherent (resp. pseudo-coherent) relative to R.

Proof. Immediate from Lemma 64.10 and the definitions. �
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Lemma 81.11. Let R be a ring, f ∈ R an element, Rf → A is a finite type ring
map, g ∈ A, and K• a complex of A-modules. If K• is m-pseudo-coherent (resp. pseudo-
coherent) relative to Rf , then K• ⊗A Ag is m-pseudo-coherent (resp. pseudo-coherent)
relative to R.

Proof. First we show that K• is m-pseudo-coherent relative to R. Namely, suppose
Rf [x1, . . . , xn]→ A is surjective. WriteRf = R[x0]/(fx0−1). ThenR[x0, x1, . . . , xn]→
A is surjective, andRf [x1, . . . , xn] is pseudo-coherent as anR[x0, . . . , xn]-module. Hence
by Lemma 64.11 we see that K• is m-pseudo-coherent as a complex of R[x0, x1, . . . , xn]-
modules.

Choose an element g′ ∈ R[x0, x1, . . . , xn] which maps to g ∈ A. By Lemma 64.12 we see
that

K• ⊗L
R[x0,x1,...,xn] R[x0, x1, . . . , xn,

1
g′ ] = K• ⊗R[x0,x1,...,xn] R[x0, x1, . . . , xn,

1
g′ ]

= K• ⊗A Af
is m-pseudo-coherent as a complex of R[x0, x1, . . . , xn,

1
g′ ]-modules. write

R[x0, x1, . . . , xn,
1
g′ ] = R[x0, . . . , xn, xn+1]/(xn+1g

′ − 1).

AsR[x0, x1, . . . , xn,
1
g′ ] is pseudo-coherent as aR[x0, . . . , xn, xn+1]-module we conclude

(see Lemma 64.11) thatK•⊗AAg ism-pseudo-coherent as a complex ofR[x0, . . . , xn, xn+1]-
modules as desired. �

Lemma 81.12. Let R → A be a finite type ring map. Let m ∈ Z. Let K• be a
complex of A-modules which is m-pseudo-coherent (resp. pseudo-coherent) relative to
R. Let R → R′ be a ring map such that A and R′ are Tor independent over R. Set
A′ = A⊗RR′. ThenK•⊗L

AA
′ ism-pseudo-coherent (resp. pseudo-coherent) relative to

R′.

Proof. Choose a surjection R[x1, . . . , xn]→ A. Note that

K• ⊗L
A A

′ = K• ⊗L
R R

′ = K• ⊗L
R[x1,...,xn] R

′[x1, . . . , xn]

by Lemma 61.2 applied twice. Hence we win by Lemma 64.12. �

Lemma 81.13. Let R → A → B be finite type ring maps. Let m ∈ Z. Let K• be a
complex of A-modules. Assume B as a B-module is pseudo-coherent relative to A. If K•

is m-pseudo-coherent (resp. pseudo-coherent) relative to R, then K• ⊗L
A B is m-pseudo-

coherent (resp. pseudo-coherent) relative to R.

Proof. Choose a surjectionA[y1, . . . , ym]→ B. Choose a surjectionR[x1, . . . , xn]→
A. Combined we get a surjection R[x1, . . . , xn, y1, . . . ym] → B. Choose a resolution
E• → B of B by a complex of finite free A[y1, . . . , yn]-modules (which is possible by
our assumption on the ring map A → B). We may assume that K• is a bounded above
complex of flat A-modules. Then

K• ⊗L
A B = Tot(K• ⊗A B[0])

= Tot(K• ⊗A A[y1, . . . , ym]⊗A[y1,...,ym] B[0])
∼= Tot

(
(K• ⊗A A[y1, . . . , ym])⊗A[y1,...,ym] E

•)
= Tot(K• ⊗A E•)
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in D(A[y1, . . . , ym]). The quasi-isomorphism ∼= comes from an application of Lemma
59.7. Thus we have to show that Tot(K• ⊗A E•) is m-pseudo-coherent as a complex
of R[x1, . . . , xn, y1, . . . ym]-modules. Note that Tot(K• ⊗A E•) has a filtration by sub-
complexes with successive quotients the complexes K• ⊗A Ei[−i]. Note that for i � 0
the complexes K• ⊗A Ei[−i] have zero cohomology in degrees ≤ m and hence are m-
pseudo-coherent (over any ring). Hence, applying Lemma 81.6 and induction, it suffices
to show that K• ⊗A Ei[−i] is pseudo-coherent relative to R for all i. Note that Ei = 0
for i > 0. Since also Ei is finite free this reduces to proving that K• ⊗A A[y1, . . . , ym] is
m-pseudo-coherent relative to R which follows from Lemma 81.12 for instance. �

Lemma 81.14. Let R → A → B be finite type ring maps. Let m ∈ Z. Let M be
an A-module. Assume B is flat over A and B as a B-module is pseudo-coherent relative
to A. If M is m-pseudo-coherent (resp. pseudo-coherent) relative to R, then M ⊗A B is
m-pseudo-coherent (resp. pseudo-coherent) relative to R.

Proof. Immediate from Lemma 81.13. �

Lemma 81.15. Let R be a ring. Let A → B be a map of finite type R-algebras. Let
m ∈ Z. Let K• be a complex of B-modules. Assume A is pseudo-coherent relative to R.
Then the following are equivalent

(1) K• is m-pseudo-coherent (resp. pseudo-coherent) relative to A, and
(2) K• is m-pseudo-coherent (resp. pseudo-coherent) relative to R.

Proof. Choose a surjectionR[x1, . . . , xn]→ A. Choose a surjectionA[y1, . . . , ym]→
B. Then we get a surjection

R[x1, . . . , xn, y1, . . . , ym]→ A[y1, . . . , ym]

which is a flat base change of R[x1, . . . , xn]→ A. By assumption A is a pseudo-coherent
module over R[x1, . . . , xn] hence by Lemma 64.13 we see that A[y1, . . . , ym] is pseudo-
coherent overR[x1, . . . , xn, y1, . . . , ym]. Thus the lemma follows from Lemma 64.11 and
the definitions. �

Lemma 81.16. Let R → A be a finite type ring map. Let K• be a complex of A-
modules. Let m ∈ Z. Let f1, . . . , fr ∈ A generate the unit ideal. The following are
equivalent

(1) each K• ⊗A Afi is m-pseudo-coherent relative to R, and
(2) K• is m-pseudo-coherent relative to R.

The same equivalence holds for pseudo-coherence relative to R.

Proof. The implication (2)⇒ (1) is in Lemma 81.11. Assume (1). Write 1 =
∑
figi

in A. Choose a surjection R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr] → A. such that yi maps
to fi and zi maps to gi. Then we see that there exists a surjection

P = R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]/(
∑

yizi − 1) −→ A.

Note that P is pseudo-coherent as an R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]-module and
that P [1/yi] is pseudo-coherent as an R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr, 1/yi]-module.
Hence by Lemma 64.11 we see that K• ⊗A Afi is an m-pseudo-coherent complex of
P [1/yi]-modules for each i. Thus by Lemma 64.14 we see thatK• is pseudo-coherent as a
complex of P -modules, and Lemma 64.11 shows that K• is pseudo-coherent as a complex
of R[x1, . . . , xn, y1, . . . , yr, z1, . . . , zr]-modules. �
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Lemma 81.17. Let R be a Noetherian ring. Let R → A be a finite type ring map.
Then

(1) A complex of A-modules K• is m-pseudo-coherent relative to R if and only if
K• ∈ D−(A) and Hi(K•) is a finite A-module for i ≥ m.

(2) A complex ofA-modulesK• is pseudo-coherent relative toR if and only ifK• ∈
D−(A) and Hi(K•) is a finite A-module for all i.

(3) An A-module is pseudo-coherent relative to R if and only if it is finite.

Proof. Immediate consequence of Lemma 64.17 and the definitions. �

82. Pseudo-coherent and perfect ring maps

We can define these types of ring maps as follows.

Definition 82.1. Let A→ B be a ring map.
(1) We say A → B is a pseudo-coherent ring map if it is of finite type and B, as a

B-module, is pseudo-coherent relative to A.
(2) We say A → B is a perfect ring map if it is a pseudo-coherent ring map such

that B as an A-module has finite tor dimension.

This terminology may be nonstandard. Using Lemma 81.7 we see that A→ B is pseudo-
coherent if and only if B = A[x1, . . . , xn]/I and B as an A[x1, . . . , xn]-module has a
resolution by finite free A[x1, . . . , xn]-modules. The motivation for the definition of a
perfect ring map is Lemma 74.2. The following lemmas gives a more useful and intuitive
characterization of a perfect ring map.

Lemma 82.2. A ring map A→ B is perfect if and only if B = A[x1, . . . , xn]/I and
B as an A[x1, . . . , xn]-module has a finite resolution by finite projective A[x1, . . . , xn]-
modules.

Proof. If A→ B is perfect, then B = A[x1, . . . , xn]/I and B is pseudo-coherent as
anA[x1, . . . , xn]-module and has finite tor dimension as anA-module. Hence Lemma 77.5
implies that B is perfect as a A[x1, . . . , xn]-module, i.e., it has a finite resolution by finite
projectiveA[x1, . . . , xn]-modules (Lemma 74.3). Conversely, ifB = A[x1, . . . , xn]/I and
B as an A[x1, . . . , xn]-module has a finite resolution by finite projective A[x1, . . . , xn]-
modules thenB is pseudo-coherent as anA[x1, . . . , xn]-module, henceA→ B is pseudo-
coherent. Moreover, the given resolution over A[x1, . . . , xn] is a finite resolution by flat
A-modules and hence B has finite tor dimension as an A-module. �

Lots of the results of the preceding sections can be reformulated in terms of this termi-
nology. We also refer to More on Morphisms, Sections 60 and 61 for the corresponding
discussion concerning morphisms of schemes.

Lemma 82.3. A finite type ring map of Noetherian rings is pseudo-coherent.

Proof. See Lemma 81.17. �

Lemma 82.4. A ring map which is flat and of finite presentation is perfect.

Proof. Let A → B be a ring map which is flat and of finite presentation. It is clear
that B has finite tor dimension. By Algebra, Lemma 168.1 there exists a finite type Z-
algebra A0 ⊂ A and a flat finite type ring map A0 → B0 such that B = B0 ⊗A0 A. By
Lemma 81.17 we see that A0 → B0 is pseudo-coherent. As A0 → B0 is flat we see that
B0 and A are tor independent over A0, hence we may use Lemma 81.12 to conclude that
A→ B is pseudo-coherent. �
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Lemma 82.5. Let A → B be a finite type ring map with A a regular ring of finite
dimension. Then A→ B is perfect.

Proof. By Algebra, Lemma 110.8 the assumption onAmeans thatA has finite global
dimension. Hence every module has finite tor dimension, see Lemma 66.19, in particular
B does. By Lemma 82.3 the map is pseudo-coherent. �

Lemma 82.6. A local complete intersection homomorphism is perfect.

Proof. Let A → B be a local complete intersection homomorphism. By Definition
33.2 this means that B = A[x1, . . . , xn]/I where I is a Koszul ideal in A[x1, . . . , xn]. By
Lemmas 82.2 and 74.3 it suffices to show that I is a perfect module over A[x1, . . . , xn].
By Lemma 74.12 this is a local question. Hence we may assume that I is generated by a
Koszul-regular sequence (by Definition 32.1). Of course this means that I has a finite free
resolution and we win. �

Lemma 82.7. Let R → A be a pseudo-coherent ring map. Let K ∈ D(A). The
following are equivalent

(1) K is m-pseudo-coherent (resp. pseudo-coherent) relative to R, and
(2) K is m-pseudo-coherent (resp. pseudo-coherent) in D(A).

Proof. Reformulation of a special case of Lemma 81.15. �

Lemma 82.8. Let R→ B → A be ring maps with ϕ : B → A surjective and R→ B
and R → A flat and of finite presentation. For K ∈ D(A) denote ϕ∗K ∈ D(B) the
restriction. The following are equivalent

(1) K is pseudo-coherent,
(2) K is pseudo-coherent relative to R,
(3) K is pseudo-coherent relative to A,
(4) ϕ∗K is pseudo-coherent,
(5) ϕ∗K is pseudo-coherent relative to R.

Similar holds for m-pseudo-coherence.

Proof. Observe that R→ A and R→ B are perfect ring maps (Lemma 82.4) hence
a fortiori pseudo-coherent ring maps. Thus (1)⇔ (2) and (4)⇔ (5) by Lemma 82.7.

Using that A is pseudo-coherent relative to R we use Lemma 81.15 to see that (2)⇔ (3).
However, sinceA→ B is surjective, we see directly from Definition 81.4 that (3) is equiv-
alent with (4). �

83. Relatively perfect modules

This section is the analogue of Section 81 for perfect objects of the derived category. we
only define this notion in a limited generality as we are not sure what the correct definition
is in general. See Derived Categories of Schemes, Remark 35.14 for a discussion.

Definition 83.1. Let R → A be a flat ring map of finite presentation. An object K
ofD(A) isR-perfect or perfect relative toR ifK is pseudo-coherent (Definition 64.1) and
has finite tor dimension over R (Definition 66.1).

By Lemma 82.8 it would have been the same thing to askK to be pseudo-coherent relative
to R. Here are some obligatory lemmas.
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Lemma 83.2. Let R → A be a flat ring map of finite presentation. The R-perfect
objects of D(A) form a saturated9 triangulated strictly full subcategory.

Proof. This follows from Lemmas 64.2, 64.8, 66.5, and 66.7. �

Lemma 83.3. LetR→ A be a flat ring map of finite presentation. A perfect object of
D(A) is R-perfect. If K,M ∈ D(A) then K ⊗L

AM is R-perfect if K is perfect and M is
R-perfect.

Proof. The first statement follows from the second by taking M = A. The second
statement follows from Lemmas 74.2, 66.10, and 64.16. �

Lemma 83.4. Let R → A be a flat ring map of finite presentation. Let K ∈ D(A).
The following are equivalent

(1) K is R-perfect, and
(2) K is isomorphic to a finite complex of R-flat, finitely presented A-modules.

Proof. To prove (2) implies (1) it suffices by Lemma 83.2 to show that an R-flat,
finitely presented A-module M defines an R-perfect object of D(A). Since M has finite
tor dimension over R, it suffices to show that M is pseudo-coherent. By Algebra, Lemma
168.1 there exists a finite type Z-algebraR0 ⊂ R and a flat finite type ring mapR0 → A0
and a finiteA0-moduleM0 flat overR0 such thatA = A0⊗R0R andM = M0⊗R0R. By
Lemma 64.17 we see that M0 is pseudo-coherent A0-module. Choose a resolution P •

0 →
M0 by finite free A0-modules Pn0 . Since A0 is flat over R0, this is a flat resolution. Since
M0 is flat over R0 we find that P • = P •

0 ⊗R0 R still resolves M = M0 ⊗R0 R. (You
can use Lemma 61.2 to see this.) Hence P • is a finite free resolution of M over A and we
conclude that M is pseudo-coherent.
Assume (1). We can representK by a bounded above complexP • of finite freeA-modules.
Assume thatK viewed as an object ofD(R) has tor amplitude in [a, b]. By Lemma 66.2 we
see that τ≥aP

• is a complex of R-flat, finitely presented A-modules representing K. �

Lemma 83.5. Let R → A be a flat ring map of finite presentation. Let R → R′ be a
ring map and set A′ = A⊗R R′. If K ∈ D(A) is R-perfect, then K ⊗L

A A
′ is R′-perfect.

Proof. By Lemma 64.12 we see thatK⊗L
AA

′ is pseudo-coherent. By Lemma 61.2 we
see that K ⊗L

A A
′ is equal to K ⊗L

R R
′ in D(R′). Then we can apply Lemma 66.13 to see

that K ⊗L
R R

′ in D(R′) has finite tor dimension. �

Lemma 83.6. Let R → A be a flat ring map. Let K,L ∈ D(A) with K pseudo-
coherent and L finite tor dimension over R. We may choose

(1) a bounded above complex P • of finite free A-modules representing K , and
(2) a bounded complex of R-flat A-modules F • representing L.

Given these choices we have
(a) E• = Hom•(P •, F •) is a bounded below complex of R-flat A-modules repre-

senting RHomA(K,L),
(b) for any ring mapR→ R′ withA′ = A⊗RR′ the complexE•⊗RR′ represents

RHomA′(K ⊗L
A A

′, L⊗L
A A

′).
If in addition R → A is of finite presentation and L is R-perfect, then we may choose
F p to be finitely presented A-modules and consequently En will be finitely presented
A-modules as well.

9Derived Categories, Definition 6.1.
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Proof. The existence of P • is the definition of a pseudo-coherent complex. We first
represent L by a bounded above complex F • of free A-modules (this is possible because
bounded tor dimension in particular implies bounded). Next, say L viewed as an object of
D(R) has tor amplitude in [a, b]. Then, after replacing F • by τ≥aF

•, we get a complex as
in (2). This follows from Lemma 66.2.

Proof of (a). Since F • is bounded an since P • is bounded above, we see that En = 0 for
n� 0 and that En is a finite (!) direct sum

En =
⊕

p+q=n
HomA(P−q, F p)

and since P−q is finite free, this is indeed anR-flatA-module. The fact thatE• represents
RHomA(K,L) follows from Lemma 73.2.

Proof of (b). Let R → R′ be a ring map and A′ = A ⊗R R′. By Lemma 61.2 the object
L⊗L

AA
′ is represented by F •⊗RR′ viewed as a complex ofA′-modules (by flatness of F p

over R). Similarly for P • ⊗R R′. As above RHomA′(K ⊗L
A A

′, L⊗L
A A

′) is represented
by

Hom•(P • ⊗R R′, F • ⊗R R′) = E• ⊗R R′

The equality holds by looking at the terms of the complex individually and using that
HomA′(P−q ⊗R R′, F p ⊗R R′) = HomA(P−q, F p)⊗R R′. �

Lemma 83.7. Let R = colimi∈I Ri be a filtered colimit of rings. Let 0 ∈ I and
R0 → A0 be a flat ring map of finite presentation. For i ≥ 0 set Ai = Ri ⊗R0 A0 and set
A = R⊗R0 A0.

(1) Given an R-perfect K in D(A) there exists an i ∈ I and an Ri-perfect Ki in
D(Ai) such that K ∼= Ki ⊗L

Ai
A in D(A).

(2) Given K0, L0 ∈ D(A0) with K0 pseudo-coherent and L0 finite tor dimension
over R0, then we have

HomD(A)(K0 ⊗L
A0
A,L0 ⊗L

A0
A) = colimi≥0 HomD(Ai)(K0 ⊗L

A0
Ai, L0 ⊗L

A0
Ai)

In particular, the triangulated category of R-perfect complexes over A is the colimit of
the triangulated categories of Ri-perfect complexes over Ai.

Proof. By Algebra, Lemma 127.6 the category of finitely presentedA-modules is the
colimit of the categories of finitely presented Ai-modules. Given this, Algebra, Lemma
168.1 tells us that category of R-flat, finitely presented A-modules is the colimit of the
categories of Ri-flat, finitely presented Ai-modules. Thus the characterization in Lemma
83.4 proves that (1) is true.

To prove (2) we choose P •
0 representing K0 and F •

0 representing L0 as in Lemma 83.6.
Then E•

0 = Hom•(P •
0 , F

•
0 ) satisfies

H0(E•
0 ⊗R0 Ri) = HomD(Ai)(K0 ⊗L

A0
Ai, L0 ⊗L

A0
Ai)

and
H0(E•

0 ⊗R0 R) = HomD(A)(K0 ⊗L
A0
A,L0 ⊗L

A0
A)

by the lemma. Thus the result because tensor product commutes with colimits and filtered
colimits are exact (Algebra, Lemma 8.8). �

Lemma 83.8. Let R′ → A′ be a flat ring map of finite presentation. Let R′ → R be a
surjective ring map whose kernel is a nilpotent ideal. SetA = A′⊗R′ R. LetK ′ ∈ D(A′)
and set K = K ′ ⊗L

A′ A in D(A). If K is R-perfect, then K ′ is R′-perfect.
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Proof. We can representK by a bounded above complex of finite freeA-modulesE•,
see Lemma 64.5. By Lemma 75.3 we conclude thatK ′ is pseudo-coherent because it can be
represented by a bounded above complex P • of finite free A′-modules with P • ⊗A′ A =
E•. Observe that this also means P • ⊗R′ R = E• (since A = A′ ⊗R′ R).

Let I = Ker(R′ → R). Then In = 0 for some n. Choose [a, b] such that K has tor
amplitude in [a, b] as a complex of R-modules. We will show K ′ has tor amplitude in
[a, b]. To do this, let M ′ be an R′-module. If IM ′ = 0, then

K ′ ⊗L
R′ M ′ = P • ⊗R′ M ′ = E• ⊗RM ′ = K ⊗L

RM
′

(because A′ is flat over R′ and A is flat over R) which has nonzero cohomology only for
degrees in [a, b] by choice of a, b. If It+1M ′ = 0, then we consider the short exact sequence

0→ IM ′ →M ′ →M ′/IM ′ → 0

with M = M ′/IM ′. By induction on t we have that both K ′ ⊗L
R′ IM ′ and K ′ ⊗L

R′

M ′/IM ′ have nonzero cohomology only for degrees in [a, b]. Then the distinguished
triangle

K ′ ⊗L
R′ IM ′ → K ′ ⊗L

R′ M ′ → K ′ ⊗L
R′ M ′/IM ′ → (K ′ ⊗L

R′ IM ′)[1]

proves the same is true forK ′⊗L
R′M ′. This proves the desired bound for allM ′ and hence

the desired bound on the tor amplitude of K ′. �

Lemma 83.9. Let R be a ring. Let A = R[x1, . . . , xd]/I be flat and of finite pre-
sentation over R. Let q ⊂ A be a prime ideal lying over p ⊂ R. Let K ∈ D(A) be
pseudo-coherent. Let a, b ∈ Z. If Hi(Kq ⊗L

Rp
κ(p)) is nonzero only for i ∈ [a, b], then

Kq has tor amplitude in [a− d, b] over R.

Proof. By Lemma 82.8K is pseudo-coherent as a complex ofR[x1, . . . , xd]-modules.
Therefore we may assumeA = R[x1, . . . , xd]. Applying Lemma 77.6 toRp → Aq and the
complexKq using our assumption, we find thatKq is perfect inD(Aq) with tor amplitude
in [a− d, b]. Since Rp → Aq is flat, we conclude by Lemma 66.11. �

Lemma 83.10. Let R→ A be a ring map which is flat and of finite presentation. Let
K ∈ D(A) be pseudo-coherent. The following are equivalent

(1) K is R-perfect, and
(2) K is bounded below and for every prime ideal p ⊂ R the object K ⊗L

R κ(p) is
bounded below.

Proof. Observe that (1) implies (2) as anR-perfect complex has bounded tor dimen-
sion as a complex of R-modules by definition. Let us prove the other implication.

Write A = R[x1, . . . , xd]/I . Denote L in D(R[x1, . . . , xd]) the restriction of K. By
Lemma 82.8 we see thatL is pseudo-coherent. SinceL andK have the same image inD(R)
we see that L is R-perfect if and only if K is R-perfect. Also L⊗L

R κ(p) and K ⊗L
R κ(p)

are the same objects of D(κ(p)). This reduces us to the case A = R[x1, . . . , xd].

Say A = R[x1, . . . , xd] and K satisfies (2). Let q ⊂ A be a prime lying over a prime
p ⊂ R. By Lemma 77.6 applied to Rp → Aq and the complex Kq using our assumption,
we find that Kq is perfect in D(Aq). Since K is bounded below, we see that K is perfect
in D(A) by Lemma 77.3. This implies that K is R-perfect by Lemma 83.3 and the proof
is complete. �
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84. Two term complexes

In this section we prove some results on two term complexes of modules which will help
us understand conditions on the naive cotangent complex.

Lemma 84.1. Let R be a ring. Let K ∈ D(R) with Hi(K) = 0 for i 6∈ {−1, 0}. The
following are equivalent

(1) H−1(K) = 0 and H0(K) is a projective module and
(2) Ext1

R(K,M) = 0 for every R-module M .
If R is Noetherian and Hi(K) is a finite R-module for i = −1, 0, then these are also
equivalent to

(3) Ext1
R(K,M) = 0 for every finite R-module M .

Proof. The equivalence of (1) and (2) follows from Lemma 68.2. If R is Noetherian
and Hi(K) is a finite R-module for i = −1, 0, then K is pseudo-coherent, see Lemma
64.17. Thus the equivalence of (1) and (3) follows from Lemma 77.4. �

Remark 84.2. The following two statements follow from Lemma 84.1, Algebra, Def-
inition 137.1, and Algebra, Proposition 138.8.

(1) A ring mapA→ B is smooth if and only ifA→ B is of finite presentation and
Ext1

B(NLB/A, N) = 0 for every B-module N .
(2) A ring mapA→ B is formally smooth if and only if Ext1

B(NLB/A, N) = 0 for
every B-module N .

Lemma 84.3. Let R be a ring. Let K be an object of D(R) with Hi(K) = 0 for
i 6∈ {−1, 0}. Then

(1) K can be represented by a two term complexK−1 → K0 withK0 a free module,
and

(2) ifR is Noetherian and Hi(K) is a finite R-module for i = −1, 0, then K can be
represented by a two term complex K−1 → K0 with K0 a finite free module
and K−1 finite.

Proof. Proof of (1). Suppose K is given by the complex of modules M•. We may
first replaceM• by τ≤0M

•. Thus we may assumeM i = 0 for i > 0, Next, we may choose
a free resolution P • → M• with P i = 0 for i > 0, see Derived Categories, Lemma 15.4.
Finally, we can set K• = τ≥−1P

•.
Proof of (2). Assume R is Noetherian and Hi(K) is a finite R-module for i = −1, 0. By
Lemma 64.5 we can choose a quasi-isomorphism F • →M• with F i = 0 for i > 0 and F i
finite free. Then we can set K• = τ≥−1F

•. �

Maps in the derived category out of the naive cotangent complex NLB/A or NL(α) (see
Algebra, Section 134) are easy to understand by the result of the following lemma.

Lemma 84.4. Let R be a ring. LetM• be a complex of modules over R with M i = 0
for i > 0 and M0 a projective R-module. Let K• be a second complex.

(1) Assume Ki = 0 for i ≤ −2. Then HomD(R)(M•,K•) = HomK(R)(M•,K•).
(2) Assume Ki = 0 for i 6∈ [−1, 0] and K0 a projective R-module. Then for a map

of complexes a• : M• → K•, the following are equivalent
(a) a• induces the zero map Ext1

R(K•, N)→ Ext1
R(M•, N) for allR-modules

N , and
(b) there is a map h0 : M0 → K−1 such that a−1 + h0 ◦ d−1

K = 0.
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(3) Assume Ki = 0 for i ≤ −3. Let α ∈ HomD(R)(M•,K•). If the composition
of α with K• → K−2[2] comes from an R-module map a : M−2 → K−2 with
a ◦ d−3

M = 0, then α can be represented by a map of complexes a• : M• → K•

with a−2 = a.
(4) In (2) for any second map of complexes (a′)• : M• → K• representing α with

a = (a′)−2 there exist hi : M i → Ki−1 for i = 0,−1 such that

h−1 ◦ d−2
M = 0, (a′)−1 = a−1 + d−2

K ◦ h
−1 + h0 ◦ d−1

M , (a′)0 = a0 + d−1
K ◦ h

0

Proof. Set F 0 = M0. Choose a free R-module F−1 and a surjection F−1 →M−1.
Choose a free R-module F−2 and a surjection F−2 → M−2 ×M−1 F−1. Continuing in
this way we obtain a quasi-isomorphism p• : F • →M• which is termwise surjective and
with F i projective for all i.

Proof of (1). By Derived Categories, Lemma 19.8 we have

HomD(R)(M•,K•) = HomK(R)(F •,K•)

If Ki = 0 for i ≤ −2, then any morphism of complexes F • → K• factors through p•.
Similarly, any homotopy {hi : F i → Ki−1} factors through p•. Thus (1) holds.

Proof of (2). If (2)(b) holds, then a• is homotopic to a map of complexes (a′)• : M• → K•

which is zero in degree−1. On the other hand, letN → I• be an injective resolution. We
have

Ext1
R(K•, N) = HomD(R)(K•, I•[1]) = HomK(R)(K•, I•[1])

by Derived Categories, Lemma 18.8. Let b• : K• → I•[1] be a map of complexes. Since
K1 = 0 the map b0 : K0 → I1 maps into the kernel of I1 → I2 which is the image
of I0 → I1. Since K0 is projective we can lift b0 to a map h : K0 → I0. Thus we
see that b• is homotopic to a map of complexes (b′)• with (b′)0 = 0. Since Ki = 0
for i 6∈ [−1, 0] it follows that (b′)• ◦ (a′)• = 0 as a map of complexes. Hence the map
Ext1

R(K•, N) → Ext1
R(M•, N) is zero. In this way we see that (2)(b) implies (2)(a).

Conversely, assume (2)(a). We see that the canonical element in Ext1
R(K•,K−1) maps to

zero in Ext1
R(M•,K−1). Using (1) we see immediately that we get a map h0 as in (2)(b).

Proof of (3). Choose b• : F • → K• representing α. The composition of α with K• →
K−2[2] is represented by b−2 : F−2 → K−2. As this is homotopic to a ◦ p−2 : F−2 →
M−2 → K−2, there is a maph : F−1 → K−2 such that b−2 = a◦p−2+h◦d−2

F . Adjusting
b• by h viewed as a homotopy from F • to K•, we find that b−2 = a ◦ p−2. Hence b−2

factors through p−2. SinceF 0 = M0 the kernel of p−2 surjects onto the kernel of p−1 (for
example because the kernel of p• is an acyclic complex or by a diagram chase). Hence b−1

necessarily factors through p−1 as well and we see that (3) holds for these factorizations
and a0 = b0.

Proof of (4) is omitted. Hint: There is a homotopy between a• ◦ p• and (a′)• ◦ p• and we
argue as before that this homotopy factors through p•. �

Let A → B be a finitely presented ring map. Given an ideal I ⊂ B we can consider the
condition

(*) Ext1
B(NLB/A, N) is annihilated by I for all B-modules N .

This condition is one possible precise mathematical formulation of the notion “the sin-
gular locus of A → B is scheme theoretically contained in V (I)”. Please compare with
Remark 84.2 and the following lemmas.
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Lemma 84.5. Let R be a ring and let I ⊂ R be an ideal. Let K ∈ D(R). Assume
Hi(K) = 0 for i 6∈ {−1, 0}. The following are equivalent

(1) Ext1
R(K,N) is annihilated by I for all R-modules N ,

(2) K can be represented by a complex K−1 → K0 with K0 free such that for any
a ∈ I the map a : K−1 → K−1 factors through d−1

K : K−1 → K0,
(3) whenever K is represented by a two term complex K−1 → K0 with K0 pro-

jective, then for any a ∈ I the map a : K−1 → K−1 factors through d−1
K :

K−1 → K0.
If R is Noetherian and Hi(K) is a finite R-module for i = −1, 0, then these are also
equivalent to

(4) Ext1
R(K,N) is annihilated by I for every finite R-module N ,

(5) K can be represented by a complex K−1 → K0 with K0 finite free and K−1

finite such that for any a ∈ I the map a : K−1 → K−1 factors through d−1
K :

K−1 → K0.

Proof. Assume (1) and let K−1 → K0 be a two term complex representing K with K0

projective. We will use the description of maps in D(R) out of K• given in Lemma 84.4
without further mention. Choosing N = K−1 consider the element ξ of Ext1

R(K,N)
given by idK−1 : K−1 → K−1. Since is annihilated by a ∈ I we see that we get the
dotted arrow fitting into the following commutative diagram

K−1

a

��

d−1
K

// K0

h||
K−1

This proves that (3) holds. Part (3) implies (2) in view of Lemma 84.3 part (1). Assume
K• is as in (2) andN is an arbitraryR-module. Any element ξ of Ext1

R(K,N) is given as
the class of a map ϕ : K−1 → N . Then for a ∈ I by assumption we may choose a map h
as in the diagram above and we see that aϕ = ϕ ◦ a = ϕ ◦ h ◦ d−1

K which proves that aξ
is zero in Ext1

R(K,N). Thus (1), (2), and (3) are equivalent.

Assume R is Noetherian and Hi(K) is a finite R-module for i = −1, 0. Part (3) implies
(5) in view of Lemma 84.3 part (2). It is clear that (5) implies (2). Trivially (1) implies (4).
Thus to finish the proof it suffices to show that (4) implies any of the other conditions. Let
K−1 → K0 be a complex representingK withK0 finite free andK−1 finite as in Lemma
84.3 part (2). The argument given in the proof of (2)⇒ (1) shows that if Ext1

R(K,K−1)
is annihilated by I , then (1) holds. In this way we see that (4) implies (1) and the proof is
complete. �

Lemma 84.6. Let R be a ring. Let K be an object of D(R) with Hi(K) = 0 for
i 6∈ {−1, 0}. Let K−1 → K0 be a two term complex of R-modules representing K such
that K0 is a flat R-module (for example projective or free). Let R → R′ be a ring map.
Then the complex K• ⊗R R′ represents τ≥−1(K ⊗L

R R
′).

Proof. We have a distinguished triangle

K0 → K• → K−1[1]→ K0[1]
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in D(R). This determines a map of distinguished triangles

K0 ⊗L
R R

′

��

// K• ⊗L
R R

′ //

��

K−1 ⊗L
R R

′[1] //

��

K0 ⊗L
R R

′[1]

��
K0 ⊗R R′ // K• ⊗R R′ // K−1 ⊗R R′[1] // K0 ⊗R R′[1]

The left and right vertical arrows are isomorphisms as K0 is flat. Since K−1 ⊗L
R R

′ →
K−1 ⊗R R′ is an isomorphism on cohomology in degree 0 we conclude. �

Lemma 84.7. Let I be an ideal of a ringR. LetK be an object ofD(R) withHi(K) =
0 for i 6∈ {−1, 0}. Let R → R′ be a ring map. If K satisfies the equivalent conditions
(1), (2), and (3) of Lemma 84.5 with respect to (R, I), then τ≥−1(K ⊗L

R R
′) satisfies the

equivalent conditions (1), (2), and (3) of Lemma 84.5 with respect to (R′, IR′)

Proof. We may assume K is represented by a two term complex K−1 → K0 with
K0 free such that for any a ∈ I the map a : K−1 → K−1 is equal to ha ◦ d−1

K for some
map ha : K0 → K−1. By Lemma 84.6 we see that τ≥−1(K ⊗L

R R
′) is represented by

K•⊗RR′. Then of course for every a ∈ I we see that a⊗ 1 : K−1⊗RR′ → K−1⊗RR′

is equal to (ha ⊗ 1) ◦ (d−1
K ⊗ 1). Since the collection of maps K−1 ⊗R R′ → K−1 ⊗R R′

which factor through d−1
K ⊗ 1 forms an R′-module we conclude. �

Lemma 84.8. Let R be a ring. Let α : K → K ′ be a morphism of D(R). Assume
(1) Hi(K) = Hi(K ′) = 0 for i 6∈ {−1, 0}
(2) H0(α) is an isomorphism and H−1(α) is surjective.

For any f ∈ R if f : K → K is 0, then f : K ′ → K ′ is 0.

Proof. Set M = Ker(H−1(α)). Then α fits into a distinguished triangle

M [1]→ K → K ′ →M [2]

Since K → K ′ f−→ K ′ is zero by our assumption, we see that f : K ′ → K ′ factors over
a map M [2] → K ′. However Hom(M [2],K ′) = 0 for example by Derived Categories,
Lemma 27.3. �

Lemma 84.9. Let I be an ideal of a ringR. Let α : K → K ′ be a morphism ofD(R).
Assume

(1) Hi(K) = Hi(K ′) = 0 for i 6∈ {−1, 0}
(2) H0(α) is an isomorphism and H−1(α) is surjective.

If K satisfies the equivalent conditions (1), (2), and (3) of Lemma 84.5, then K ′ does too.

Proof. Set M = Ker(H−1(α)). Then α fits into a distinguished trangle

M [1]→ K → K ′ →M [2]
For any R-module N this determines an exact sequence

Ext0
R(M [1], N)→ Ext1

R(K ′, N)→ Ext1
R(K,N)

Since Ext0
R(M [1], N) = Ext−1

R (M,N) = 0 we see that Ext1
R(K ′, N) is a submodule of

Ext1
R(K,N). Hence if Ext1

R(K,N) is annihilated by I so is Ext1
R(K ′, N). �

Lemma 84.10. LetR be ring and let I ⊂ R be an ideal. LetK ∈ D(R) withHi(K) =
0 for i 6∈ {−1, 0}. The following are equivalent
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(1) there exists a c ≥ 0 such that the equivalent conditions (1), (2), (3) of Lemma
84.5 hold for K and the ideal Ic,

(2) there exists a c ≥ 0 such that (a) Ic annihilates H−1(K) and (b) H0(K) is an
Ic-projective module (see Section 70).

If R is Noetherian and Hi(K) is a finite R-module for i = −1, 0, then these are also
equivalent to

(3) there exists a c ≥ 0 such that the equivalent conditions (4), (5) of Lemma 84.5
hold for K and the ideal Ic,

(4) H−1(K) is I-power torsion and there exist f1, . . . , fs ∈ RwithV (f1, . . . , fs) ⊂
V (I) such that the localizations H0(K)fi are projective Rfi -modules,

(5) H−1(K) is I-power torsion and there exist f1, . . . , fs ∈ I with V (f1, . . . , fs) =
V (I) such that the localizations H0(K)fi are projective Rfi -modules.

Proof. The distinguished triangle H−1(K)[1] → K → H0(K)[0] → H−1(K)[2]
determines an exact sequence

0→ Ext1
R(H0(K), N)→ Ext1

R(K,N)→ HomR(H−1(K), N)→ Ext2
R(H0(K), N)

Thus (2) implies that I2c annihilates Ext1
R(K,N) for every R-module N . Assuming (1)

we immediately see that H0(K) is Ic-projective. On the other hand, we may choose an
injective map H−1(K) → N for some injective R-module N . Then this map is the im-
age of an element of Ext1

R(K,N) by the vanishing of the Ext2 in the sequence and we
conclude H−1(K) is annihilated by Ic.

AssumeR is Noetherian andHi(K) is a finiteR-module for i = −1, 0. By Lemma 84.5 we
see that (3) is equivalent to (1) and (2). Also, if (3) holds then for f ∈ I the multiplication
by f on H0(K) factors through a projective module, which implies that H0(K)f is a
summand of a projective Rf -module and hence itself a projective Rf -module. Choosing
f1, . . . , fs to be generators of I we find the equivalent conditions (1), (2), and (3) imply
(5). Of course (5) trivially implies (4).

Assume (4). Since H−1(K) is a finite R-module and I-power torsion we see that Ic1

annihilates H−1(K) for some c1 ≥ 0. Choose a short exact sequence

0→M → R⊕r → H0(K)→ 0

which determines an element ξ ∈ Ext1
R(H0(K),M). For any f ∈ I we have Ext1

R(H0(K),M)f =
Ext1

Rf
(H0(K)f ,Mf ) by Lemma 65.4. Hence if H0(K)f is projective, then a power of f

annihilates ξ. We conclude that ξ is annihilated by (f1, . . . , fs)c2 for some c2 ≥ 0. Since
V (f1, . . . , fs) ⊂ V (I) we have

√
I ⊂ (f1, . . . , fs) (Algebra, Lemma 17.2). Since R is

Noetherian we find Ic3 ⊂ (f1, . . . , fs) for some c3 ≥ 0 (Algebra, Lemma 32.5). Hence
Ic2c3 annihilates ξ. This in turn says thatH0(K) is Ic2c3 -projective (as multiplication by
a ∈ I which annihilate ξ factor through R⊕r). Hence taking c = max(c1, c2c3) we see
that (2) holds. �

Lemma 84.11. Let R be a ring. Let Kj ∈ D(R), j = 1, 2, 3 with Hi(Kj) = 0 for
i 6∈ {−1, 0}. Let ϕ : K1 → K2 and ψ : K2 → K3 be maps in D(R). If H0(ϕ) = 0 and
H−1(ψ) = 0, then ϕ ◦ ψ = 0.

Proof. Apply Derived Categories, Lemma 12.5 to see that ϕ ◦ ψ factors through
τ≤−2K2 = 0. �
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Lemma 84.12. Let R be a ring. Let K ∈ D(R) be given by a two term complex of
the form R⊕n → R⊕n. Denote A ∈ Mat(n× n,R) the matrix of the differential. Then
det(a) : K → K is zero in D(R).

Proof. Omitted. Good exercise. �

85. The naive cotangent complex

In this section we continue the discussion started in Algebra, Section 134. We begin with
a discussion of base change. The first lemma shows that taking the naive tensor product of
the naive cotangent complex with a ring extension isn’t quite as naive as one might think.

Lemma 85.1. LetR→ S andS → S′ be ring maps. The canonical mapNLS/R⊗L
SS

′ →
NLS/R⊗SS′ induces an isomorphism τ≥−1(NLS/R⊗L

SS
′) → NLS/R⊗SS′ in D(S′).

Similarly, given a presentationα ofS overR the canonical mapNL(α)⊗L
SS

′ → NL(α)⊗S
S′ induces an isomorphism τ≥−1(NL(α)⊗L

S S
′)→ NL(α)⊗S S′ in D(S′).

Proof. Special case of Lemma 84.6. �

Lemma 85.2. LetR→ S andR→ R′ be ring maps. Let α : P → S be a presentation
of S over R. Then α′ : P ⊗R R′ → S ⊗R R′ is a presentation of S′ = S ⊗R R′ over R′.
The canonical map

NL(α)⊗S S′ → NL(α′)
is an isomorphism on H0 and surjective on H−1. In particular, the canonical map

NLS/R⊗SS′ → NLS′/R′

is an isomorphism on H0 and surjective on H−1.

Proof. Denote I = Ker(P → S). Denote P ′ = P ⊗R R′ and I ′ = Ker(P ′ → S′).
Suppose P is a polynomial algebra on xj for j ∈ J . The map displayed in the lemma
becomes ⊕

j∈J S
′dxj //⊕

j∈J S
′dxj

I/I2 ⊗S S′ //

OO

I ′/(I ′)2

OO

where the left column is NL(α) ⊗S S′ and the right column is NL(α′). By right ex-
actness of tensor product we see that I ⊗R R′ → I ′ is surjective. Hence the bottom
arrow is a surjection. This proves the first statement of the lemma. The statement for
NLS/R⊗SS′ → NLS′/R′ follows as these complexes are homotopic toNL(α)⊗S S′ and
NL(α′). �

Lemma 85.3. Consider a cocartesian diagram of rings

B // B′

A //

OO

A′

OO

IfB is flat overA, then the canonical mapNLB/A⊗BB′ → NLB′/A′ is a quasi-isomorphism.
If in addition NLB/A has tor-amplitude in [−1, 0] then NLB/A⊗L

BB
′ → NLB′/A′ is a

quasi-isomorphism too.



1428 15. MORE ON ALGEBRA

Proof. Choose a presentation α : P → B as in Algebra, Section 134. Let I =
Ker(α). Set P ′ = P ⊗A A′ and denote α′ : P ′ → B′ the corresponding presentation of
B′ over A′. As B is flat over A we see that I ′ = Ker(α′) is equal to I ⊗A A′. Hence

I ′/(I ′)2 = Coker(I2 ⊗A A′ → I ⊗A A′) = I/I2 ⊗A A′ = I/I2 ⊗B B′

We have ΩP ′/A′ = ΩP/A ⊗A A′ because both sides have the same basis. It follows that
ΩP ′/A′ ⊗P ′ B′ = ΩP/A ⊗P B ⊗B B′. This proves that NL(α) ⊗B B′ → NL(α′) is an
isomorphism of complexes and hence the first statement holds.

We have
NL(α) = I/I2 −→ ΩP/A ⊗P B

as a complex of B-modules with I/I2 placed in degree −1. Since the term in degree 0 is
free, this complex has tor-amplitude in [−1, 0] if and only if I/I2 is a flat B-module, see
Lemma 66.2. If this holds, then NL(α) ⊗L

B B′ = NL(α) ⊗B B′ and we get the second
statement. �

Lemma 85.4. LetA→ B be a local complete intersection as in Definition 33.2. Then
NLB/A is a perfect object of D(B) with tor amplitude in [−1, 0].

Proof. Write B = A[x1, . . . , xn]/I . Then NLB/A is represented by the complex

I/I2 −→
⊕

Bdxi

ofB-modules with I/I2 placed in degree−1. Since the term in degree 0 is finite free, this
complex has tor-amplitude in [−1, 0] if and only if I/I2 is a flat B-module, see Lemma
66.2. By definition I is a Koszul regular ideal and hence a quasi-regular ideal, see Section
32. Thus I/I2 is a finite projective B-module (Lemma 32.3) and we conclude both that
NLB/A is perfect and that it has tor amplitude in [−1, 0]. �

Lemma 85.5. Consider a cocartesian diagram of rings

B // B′

A //

OO

A′

OO

If A → B and A′ → B′ are local complete intersections as in Definition 33.2, then the
kernel of H−1(NLB/A⊗BB′)→ H−1(NLB′/A′) is a finite projective B′-module.

Proof. By Lemma 85.4 the complexesNLB/A andNLB′/A′ are perfect of tor-amplitude
in [−1, 0]. Combining Lemmas 85.1, 74.9, and 66.13 we haveNLB/A⊗BB′ = NLB/A⊗L

BB
′

and this complex is also perfect of tor-amplitude in [−1, 0]. Choose a distinguished trian-
gle

C → NLB/A⊗BB′ → NLB′/A′ → C[1]

in D(B′). By Lemmas 74.4 and 66.5 we conclude that C is perfect with tor-amplitude
in [−1, 1]. By Lemma 85.2 the complex C has only one nonzero cohomology module,
namely the module of the lemma sitting in degree−1. This module is of finite presentation
(Lemma 64.4) and flat (Lemma 66.6). Hence it is finite projective by Algebra, Lemma
78.2. �
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86. Rlim of abelian groups

We briefly discuss R lim on abelian groups. In this section we will denote Ab(N) the
abelian category of inverse systems of abelian groups. The notation is compatible with
the notation for sheaves of abelian groups on a site, as an inverse system of abelian groups
is the same thing as a sheaf of groups on the category N (with a unique morphism i → j
if i ≤ j), see Remark 86.6. Many of the arguments in this section duplicate the arguments
used to construct the cohomological machinery for sheaves of abelian groups on sites.

Lemma 86.1. The functor lim : Ab(N)→ Ab has a right derived functor

(86.1.1) R lim : D(Ab(N)) −→ D(Ab)

As usual we set Rp lim(K) = Hp(R lim(K)). Moreover, we have
(1) for any (An) in Ab(N) we have Rp limAn = 0 for p > 1,
(2) the object R limAn of D(Ab) is represented by the complex∏

An →
∏

An, (xn) 7→ (xn − fn+1(xn+1))

sitting in degrees 0 and 1,
(3) if (An) is ML, then R1 limAn = 0, i.e., (An) is right acyclic for lim,
(4) every K• ∈ D(Ab(N)) is quasi-isomorphic to a complex whose terms are right

acyclic for lim, and
(5) if eachKp = (Kp

n) is right acyclic for lim, i.e., ofR1 limnK
p
n = 0, thenR limK

is represented by the complex whose term in degree p is limnK
p
n.

Proof. Let (An) be an arbitrary inverse system. Let (Bn) be the inverse system with

Bn = An ⊕An−1 ⊕ . . .⊕A1

and transition maps given by projections. Let An → Bn be given by (1, fn, fn−1 ◦
fn, . . . , f2 ◦ . . . ◦ fn where fi : Ai → Ai−1 are the transition maps. In this way we
see that every inverse system is a subobject of a ML system (Homology, Section 31). It
follows from Derived Categories, Lemma 15.6 using Homology, Lemma 31.3 that every
ML system is right acyclic for lim, i.e., (3) holds. This already implies that RF is defined
onD+(Ab(N)), see Derived Categories, Proposition 16.8. Set Cn = An−1⊕ . . .⊕A1 for
n > 1 andC1 = 0 with transition maps given by projections as well. Then there is a short
exact sequence of inverse systems 0 → (An) → (Bn) → (Cn) → 0 where Bn → Cn is
given by (xi) 7→ (xi − fi+1(xi+1)). Since (Cn) is ML as well, we conclude that (2) holds
(by proposition reference above) which also implies (1). Finally, this implies by Derived
Categories, Lemma 32.2 thatR lim is in fact defined on all ofD(Ab(N)). In fact, the proof
of Derived Categories, Lemma 32.2 proceeds by proving assertions (4) and (5). �

Lemma 86.2. Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be a short exact sequence of inverse systems of abelian groups. Then there is an associated
6 term exact sequence 0 → limAi → limBi → limCi → R1 limAi → R1 limBi →
R1 limCi → 0.

Proof. Follows from the vanishing in Lemma 86.1. �

Here is the “correct” formulation of Homology, Lemma 31.7.
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Lemma 86.3. Let
(A−2

n → A−1
n → A0

n → A1
n)

be an inverse system of complexes of abelian groups and denoteA−2 → A−1 → A0 → A1

its limit. Denote (H−1
n ), (H0

n) the inverse systems of cohomologies, and denote H−1, H0

the cohomologies of A−2 → A−1 → A0 → A1. If
(1) (A−2

n ) and (A−1
n ) have vanishing R1 lim,

(2) (H−1
n ) has vanishing R1 lim,

then H0 = limH0
n.

Proof. Let K ∈ D(Ab(N)) be the object represented by the system of complexes
whose nth constituent is the complex A−2

n → A−1
n → A0

n → A1
n. We will compute

H0(R limK) using both spectral sequences10 of Derived Categories, Lemma 21.3. The
first has E1-page

0 0 R1 limA0
n R1 limA1

n

A−2 A−1 A0 A1

with horizontal differentials and all higher differentials are zero. The second has E2 page

R1 limH−2
n 0 R1 limH0

n R1 limH1
n

limH−2
n limH−1

n limH0
n limH1

n

and degenerates at this point. The result follows. �

Lemma 86.4. Let D be a triangulated category. Let (Kn) be an inverse system of
objects ofD. LetK be a derived limit of the system (Kn). Then for every L inD we have
a short exact sequence

0→ R1 lim HomD(L,Kn[−1])→ HomD(L,K)→ lim HomD(L,Kn)→ 0

Proof. This follows from Derived Categories, Definition 34.1 and Lemma 4.2, and
the description of lim and R1 lim in Lemma 86.1 above. �

Lemma 86.5. LetD be a triangulated category. Let (Kn) be a system of objects ofD.
Let K be a derived colimit of the system (Kn). Then for every L in D we have a short
exact sequence

0→ R1 lim HomD(Kn, L[−1])→ HomD(K,L)→ lim HomD(Kn, L)→ 0

Proof. This follows from Derived Categories, Definition 33.1 and Lemma 4.2, and
the description of lim and R1 lim in Lemma 86.1 above. �

Remark 86.6 (Rlim as cohomology). Consider the category N whose objects are nat-
ural numbers and whose morphisms are unique arrows i → j if j ≥ i. Endow N with
the chaotic topology (Sites, Example 6.6) so that a sheaf F is the same thing as an inverse
system

F1 ← F2 ← F3 ← . . .

of sets over N. Note that Γ(N,F) = limFn. For an inverse system of abelian groups Fn
we have

Rp limFn = Hp(N,F)

10To use these spectral sequences we have to show that Ab(N) has enough injectives. A inverse system
(In) of abelian groups is injective if and only if each In is an injective abelian group and the transition maps are
split surjections. Every system embeds in one of these. Details omitted.
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because both sides are the higher right derived functors of F 7→ limFn = H0(N,F).
Thus the existence of R lim also follows from the general material in Cohomology on
Sites, Sections 2 and 19.

The products in the following lemma can be seen as termwise products of complexes or as
products in the derived category D(Ab), see Derived Categories, Lemma 34.2.

Lemma 86.7. Let K = (K•
n) be an object of D(Ab(N)). There exists a canonical

distinguished triangle

R limK →
∏

n
K•
n →

∏
n
K•
n → R limK[1]

inD(Ab). In other words,R limK is a derived limit of the inverse system (K•
n) ofD(Ab),

see Derived Categories, Definition 34.1.

Proof. Suppose that for each p the inverse system (Kp
n) is right acyclic for lim. By

Lemma 86.1 this gives a short exact sequence

0→ limnK
p
n →

∏
n
Kp
n →

∏
n
Kp
n → 0

for each p. Since the complex consisting of limnK
p
n computes R limK by Lemma 86.1

we see that the lemma holds in this case.

Next, assume K = (K•
n) is general. By Lemma 86.1 there is a quasi-isomorphism K → L

in D(Ab(N)) such that (Lpn) is acyclic for each p. Then
∏
K•
n is quasi-isomorphic to∏

L•
n as products are exact in Ab, whence the result for L (proved above) implies the

result for K. �

Lemma 86.8. With notation as in Lemma 86.7 the long exact cohomology sequence
associated to the distinguished triangle breaks up into short exact sequences

0→ R1 limnH
p−1(K•

n)→ Hp(R limK)→ limnH
p(K•

n)→ 0

Proof. The long exact sequence of the distinguished triangle is

. . .→ Hp(R limK)→
∏

n
Hp(K•

n)→
∏

n
Hp(K•

n)→ Hp+1(R limK)→ . . .

The map in the middle has kernel limnH
p(K•

n) by its explicit description given in the
lemma. The cokernel of this map is R1 limnH

p(K•
n) by Lemma 86.1. �

Warning. An object of D(Ab(N)) is a complex of inverse systems of abelian groups. You
can also think of this as an inverse system (K•

n) of complexes. However, this is not the
same thing as an inverse system of objects of D(Ab); the following lemma and remark
explain the difference.

Lemma 86.9. Let (Kn) be an inverse system of objects of D(Ab). Then there exists
an objectM = (M•

n) ofD(Ab(N)) and isomorphismsM•
n → Kn inD(Ab) such that the

diagrams
M•
n+1

��

// M•
n

��
Kn+1 // Kn

commute in D(Ab).
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Proof. Namely, let M•
1 be a complex of abelian groups representing K1. Suppose

we have constructed M•
e → M•

e−1 → . . . → M•
1 and maps ψi : M•

i → Ki such that
the diagrams in the statement of the lemma commute for all n < e. Then we consider the
diagram

M•
n

ψn

��
Kn+1 // Kn

in D(Ab). By the definition of morphisms in D(Ab) we can find a complex M•
n+1 of

abelian groups, an isomorphismM•
n+1 → Kn+1 inD(Ab), and a morphism of complexes

M•
n+1 →M•

n representing the composition

Kn+1 → Kn
ψ−1
n−−−→M•

n

in D(Ab). Thus the lemma holds by induction. �

Remark 86.10. Let (Kn) be an inverse system of objects ofD(Ab). LetK = R limKn

be a derived limit of this system (see Derived Categories, Section 34). Such a derived
limit exists because D(Ab) has countable products (Derived Categories, Lemma 34.2). By
Lemma 86.9 we can also lift (Kn) to an object M of D(N). Then K ∼= R limM where
R lim is the functor (86.1.1) because R limM is also a derived limit of the system (Kn)
by Lemma 86.7. Thus, although there may be many isomorphism classes of lifts M of the
system (Kn), the isomorphism type of R limM is independent of the choice because it is
isomorphic to the derived limit K = R limKn of the system. Thus we may apply results
on R lim proved in this section to derived limits. For example, for every p ∈ Z there is a
canonical short exact sequence

0→ R1 limHp−1(Kn)→ Hp(K)→ limHp(Kn)→ 0

because we may apply Lemma 86.7 to M . This can also been seen directly, without in-
voking the existence of M , by applying the argument of the proof of Lemma 86.7 to the
(defining) distinguished triangle K →

∏
Kn →

∏
Kn → K[1].

Lemma 86.11. LetE → D be a morphism ofD(Ab(N)). Let (En), resp. (Dn) be the
system of objects of D(Ab) associated to E , resp. D. If (En) → (Dn) is an isomorphism
of pro-objects, then R limE → R limD is an isomorphism in D(Ab).

Proof. The assumption in particular implies that the pro-objectsHp(En) andHp(Dn)
are isomorphic. By the short exact sequences of Lemma 86.8 it suffices to show that given
a map (An)→ (Bn) of inverse systems of abelian groupsc which induces an isomorphism
of pro-objects, then limAn ∼= limBn and R1 limAn ∼= R1 limBn.

The assumption implies there are 1 ≤ m1 < m2 < m3 < . . . and maps ϕn : Bmn → An
such that (ϕn) : (Bmn) → (An) is a map of systems which is inverse to the given map
ψ = (ψn) : (An) → (Bn) as a morphism of pro-objects. What this means is that (after
possibly replacing mn by larger integers) we may assume that the compositions Amn →
Bmn → An and Bmn → An → Bn are equal to the transition maps of the inverse
systems. Now, if (bn) ∈ limBn we can set an = ϕmn(bmn). This defines an inverse
limBn → limAn (computation omitted). Let us use the cokernel of the map∏

Bn −→
∏

Bn
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as an avatar of R1 limBn (Lemma 86.1). Any element in this cokernel can be represented
by an element (bi) with bi = 0 if i 6= mn for some n (computation omitted). We can
define a map R1 limBn → R1 limAn by mapping the class of such a special element
(bn) to the class of (ϕn(bmn)). We omit the verification this map is inverse to the map
R1 limAn → R1 limBn. �

Lemma 86.12 (Emmanouil). Let (An) be an inverse system of abelian groups. The
following are equivalent

(1) (An) is Mittag-Leffler,
(2) R1 limAn = 0 and the same holds for

⊕
i∈N(An).

Proof. Set B =
⊕

i∈N(An) and hence B = (Bn) with Bn =
⊕

i∈N An. If (An) is
ML, then B is ML and hence R1 limAn = 0 and R1 limBn = 0 by Lemma 86.1.

Conversely, assume (An) is not ML. Then we can pick an m and a sequence of integers
m < m1 < m2 < . . . and elements xi ∈ Ami whose image yi ∈ Am is not in the image
of Ami+1 → Am. We will use the elements xi and yi to show that R1 limBn 6= 0 in two
ways. This will finish the proof of the lemma.

First proof. Set C = (Cn) with Cn =
∏
i∈N An. There is a canonical injective map

Bn → Cn with cokernel Qn. Set Q = (Qn). We may and do think of elements qn of Qn
as sequences of elements qn = (qn,1, qn,2, . . .) with qn,i ∈ An modulo sequences whose
tail is zero (in other words, we identify sequences which differ in finitely many places).
We have a short exact sequence of inverse systems

0→ (Bn)→ (Cn)→ (Qn)→ 0

Consider the element qn ∈ Qn given by

qn,i =
{

image of xi if mi ≥ n
0 else

Then it is clear that qn+1 maps to qn. Hence we obtain q = (qn) ∈ limQn. On the
other hand, we claim that q is not in the image of limCn → limQn. Namely, say that
c = (cn) maps to q. Then we can write cn = (cn,i) and since cn′,i 7→ cn,i for n′ ≥
n, we see that cn,i ∈ Im(Cn′ → Cn) for all n, i, n′ ≥ n. In particular, the image of
cm,i in Am is in Im(Ami+1 → Am) whence cannot be equal to yi. Thus cm and qm =
(y1, y2, y3, . . .) differ in infinitely many spots, which is a contradiction. Considering the
long exact cohomology sequence

0→ limBn → limCn → limQn → R1 limBn

we conclude that the last group is nonzero as desired.

Second proof. For n′ ≥ n we denote An,n′ = Im(An′ → An). Then we have yi ∈ Am,
yi 6∈ Am,mi+1. Let ξ = (ξn) ∈

∏
Bn be the element with ξn = 0 unless n = mi and

ξmi = (0, . . . , 0, xi, 0, . . .) with xi placed in the ith summand. We claim that ξ is not
in the image of the map

∏
Bn →

∏
Bn of Lemma 86.1. This shows that R1 limBn is

nonzero and finishes the proof. Namely, suppose that ξ is the image of η = (z1, z2, . . .)
with zn =

∑
zn,i ∈

⊕
iAn. Observe that xi = zmi,i mod Ami,mi+1. Then zmi−1,i is

the image of zmi,i underAmi → Ami−1, and so on, and we conclude that zm,i is the image
of zmi,i under Ami → Am. We conclude that zm,i is congruent to yi modulo Am,mi+1.
In particular zm,i 6= 0. This is impossible as

∑
zm,i ∈

⊕
iAm hence only a finite number

of zm,i can be nonzero. �
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Lemma 86.13. Let
0→ (Ai)→ (Bi)→ (Ci)→ 0

be a short exact sequence of inverse systems of abelian groups. If (Ai) and (Ci) are ML,
then so is (Bi).

Proof. This follows from Lemma 86.12, the fact that taking infinite direct sums is
exact, and the long exact sequence of cohomology associated to R lim. �

Lemma 86.14. Let (An) be an inverse system of abelian groups. The following are
equivalent

(1) (An) is zero as a pro-object,
(2) limAn = 0 and R1 limAn = 0 and the same holds for

⊕
i∈N(An).

Proof. It follows from Lemma 86.11 that (1) implies (2). Assume (2). Then (An) is
ML by Lemma 86.12. For m ≥ n let An,m = Im(Am → An) so that An = An,n ⊃
An,n+1 ⊃ . . .. Note that (An) is zero as a pro-object if and only if for every n there is an
m ≥ n such that An,m = 0. Note that (An) is ML if and only if for every n there is an
mn ≥ n such that An,m = An,m+1 = . . .. In the ML case it is clear that limAn = 0
implies thatAn,mn = 0 because the mapsAn+1,mn+1 → An,m are surjective. This finishes
the proof. �

87. Rlim of modules

We briefly discussR lim on modules. Many of the arguments in this section duplicate the
arguments used to construct the cohomological machinery for modules on ringed sites.

Let (An) be an inverse system of rings. We will denote Mod(N, (An)) the category of
inverse systems (Mn) of abelian groups such that each Mn is given the structure of a An-
module and the transition maps Mn+1 →Mn are An+1-module maps. This is an abelian
category. Set A = limAn. Given an object (Mn) of Mod(N, (An)) the limit limMn is
an A-module.

Lemma 87.1. In the situation above. The functor lim : Mod(N, (An))→ModA has
a right derived functor

R lim : D(Mod(N, (An))) −→ D(A)

As usual we set Rp lim(K) = Hp(R lim(K)). Moreover, we have
(1) for any (Mn) in Mod(N, (An)) we have Rp limMn = 0 for p > 1,
(2) the object R limMn of D(ModA) is represented by the complex∏

Mn →
∏

Mn, (xn) 7→ (xn − fn+1(xn+1))

sitting in degrees 0 and 1,
(3) if (Mn) is ML, then R1 limMn = 0, i.e., (Mn) is right acyclic for lim,
(4) every K• ∈ D(Mod(N, (An))) is quasi-isomorphic to a complex whose terms

are right acyclic for lim, and
(5) if eachKp = (Kp

n) is right acyclic for lim, i.e., ofR1 limnK
p
n = 0, thenR limK

is represented by the complex whose term in degree p is limnK
p
n.

Proof. The proof of this is word for word the same as the proof of Lemma 86.1. �
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Remark 87.2. This remark is a continuation of Remark 86.6. A sheaf of rings on N
is just an inverse system of rings (An). A sheaf of modules over (An) is exactly the same
thing as an object of the category Mod(N, (An)) defined above. The derived functorR lim
of Lemma 87.1 is simply RΓ(N,−) from the derived category of modules to the derived
category of modules over the global sections of the structure sheaf. It is true in general
that cohomology of groups and modules agree, see Cohomology on Sites, Lemma 12.4.

The products in the following lemma can be seen as termwise products of complexes or as
products in the derived category D(A), see Derived Categories, Lemma 34.2.

Lemma 87.3. LetK = (K•
n) be an object ofD(Mod(N, (An))). There exists a canon-

ical distinguished triangle

R limK →
∏

n
K•
n →

∏
n
K•
n → R limK[1]

in D(A). In other words, R limK is a derived limit of the inverse system (K•
n) of D(A),

see Derived Categories, Definition 34.1.

Proof. The proof is exactly the same as the proof of Lemma 86.7 using Lemma 87.1
in stead of Lemma 86.1. �

Lemma 87.4. With notation as in Lemma 87.3 the long exact cohomology sequence
associated to the distinguished triangle breaks up into short exact sequences

0→ R1 limnH
p−1(K•

n)→ Hp(R limK)→ limnH
p(K•

n)→ 0
of A-modules.

Proof. The proof is exactly the same as the proof of Lemma 86.8 using Lemma 87.1
in stead of Lemma 86.1. �

Warning. As in the case of abelian groups an objectM = (M•
n) ofD(Mod(N, (An))) is an

inverse system of complexes of modules, which is not the same thing as an inverse system
of objects in the derived categories. In the following lemma we show how an inverse
system of objects in derived categories always lifts to an object of D(Mod(N, (An))).

Lemma 87.5. Let (An) be an inverse system of rings. Suppose that we are given
(1) for every n an object Kn of D(An), and
(2) for every n a map ϕn : Kn+1 → Kn of D(An+1) where we think of Kn as an

object of D(An+1) by restriction via An+1 → An.
There exists an object M = (M•

n) ∈ D(Mod(N, (An))) and isomorphisms ψn : M•
n →

Kn in D(An) such that the diagrams

M•
n+1

ψn+1

��

// M•
n

ψn

��
Kn+1

ϕn // Kn

commute in D(An+1).

Proof. We write out the proof in detail. For an An-module T we write TAn+1 for
the same module viewd as anAn+1-module. Suppose thatK•

n is a complex ofAn-modules
representing Kn. Then K•

n,An+1
is the same complex, but viewed as a complex of An+1-

modules. By the construction of the derived category, the map ψn can be given as
ψn = τn ◦ σ−1

n
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where σn : L•
n+1 → K•

n+1 is a quasi-isomorphism of complexes of An+1-modules and
τn : L•

n+1 → K•
n,An+1

is a map of complexes of An+1-modules.

Now we construct the complexes M•
n by induction. As base case we let M•

1 = K•
1 . Sup-

pose we have already constructed M•
e → M•

e−1 → . . . → M•
1 and maps of complexes

ψi : M•
i → K•

i such that the diagrams

M•
n+1

ψn+1

��

// M•
n,An+1

ψn,An+1

��
K•
n+1 L•

n+1
σnoo τn // K•

n,An+1

above commute in D(An+1) for all n < e. Then we consider the diagram

M•
e,Ae+1

ψe,Ae+1

��
K•
e+1 L•

e+1
τe //σeoo K•

e,Ae+1

inD(Ae+1). Becauseψe is a quasi-isomorphism, we see thatψe,Ae+1 is a quasi-isomorphism
too. By the definition of morphisms in D(Ae+1) we can find a quasi-isomorphism ψe+1 :
M•
e+1 → K•

e+1 of complexes ofAe+1-modules such that there exists a morphism of com-
plexesM•

e+1 →M•
e,Ae+1

ofAe+1-modules representing the compositionψ−1
e,Ae+1

◦τe◦σ−1
e

in D(Ae+1). Thus the lemma holds by induction. �

Remark 87.6. With assumptions as in Lemma 87.5. A priori there are many isomor-
phism classes of objects M of D(Mod(N, (An))) which give rise to the system (Kn, ϕn)
of the lemma. For each such M we can consider the complex R limM ∈ D(A) where
A = limAn. By Lemma 87.3 we see that R limM is a derived limit of the inverse system
(Kn) of D(A). Hence we see that the isomorphism class of R limM in D(A) is indepen-
dent of the choices made in constructingM . In particular, we may apply results onR lim
proved in this section to derived limits of inverse systems inD(A). For example, for every
p ∈ Z there is a canonical short exact sequence

0→ R1 limHp−1(Kn)→ Hp(R limKn)→ limHp(Kn)→ 0
because we may apply Lemma 87.3 to M . This can also been seen directly, without in-
voking the existence of M , by applying the argument of the proof of Lemma 87.3 to the
(defining) distinguished triangle R limKn →

∏
Kn →

∏
Kn → (R limKn)[1] of the

derived limit.
Lemma 87.7. Let (An) be an inverse system of rings. EveryK ∈ D(Mod(N, (An)))

can be represented by a system of complexes (M•
n) such that all the transition mapsM•

n+1 →
M•
n are surjective.

Proof. Let K be represented by the system (K•
n). Set M•

1 = K•
1 . Suppose we have

constructed surjective maps of complexes M•
n → M•

n−1 → . . . → M•
1 and homotopy

equivalences ψe : K•
e →M•

e such that the diagrams

K•
e+1

��

// K•
e

��
M•
e+1

// M•
e
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commute for all e < n. Then we consider the diagram

K•
n+1

// K•
n

��
M•
n

By Derived Categories, Lemma 9.8 we can factor the compositionK•
n+1 →M•

n asK•
n+1 →

M•
n+1 → M•

n such that the first arrow is a homotopy equivalence and the second a
termwise split surjection. The lemma follows from this and induction. �

Lemma 87.8. Let (An) be an inverse system of rings. EveryK ∈ D(Mod(N, (An)))
can be represented by a system of complexes (K•

n) such that each K•
n is K-flat.

Proof. First use Lemma 87.7 to represent K by a system of complexes (M•
n) such

that all the transition maps M•
n+1 → M•

n are surjective. Next, let K•
1 → M•

1 be a quasi-
isomorphism with K•

1 a K-flat complex of A1-modules (Lemma 59.10). Suppose we have
constructedK•

n → K•
n−1 → . . .→ K•

1 and maps of complexes ψe : K•
e →M•

e such that

K•
e+1

��

// K•
e

��
M•
e+1

// M•
e

commutes for all e < n. Then we consider the diagram

C•

��

// K•
n

ψn

��
M•
n+1

ϕn // M•
n

inD(An+1). As M•
n+1 →M•

n is termwise surjective, the complex C• fitting into the left
upper corner with terms

Cp = Mp
n+1 ×Mp

n
Kp
n

is quasi-isomorphic toM•
n+1 (details omitted). Choose a quasi-isomorphismK•

n+1 → C•

with K•
n+1 K-flat. Thus the lemma holds by induction. �

Lemma 87.9. Let (An) be an inverse system of rings. GivenK,L ∈ D(Mod(N, (An)))
there is a canonical derived tensor product K ⊗L L in D(N, (An)) compatible with the
maps toD(An). The construction is symmetric inK and L and an exact functor of trian-
gulated categories in each variable.

Proof. Choose a representative (K•
n) for K such that each K•

n is a K-flat complex
(Lemma 87.8). Then you can define K ⊗L L as the object represented by the system of
complexes

(Tot(K•
n ⊗An L•

n))
for any choice of representative (L•

n) for L. This is well defined in both variables by
Lemmas 59.2 and 59.12. Compatibility with the map toD(An) is clear. Exactness follows
exactly as in Lemma 58.4. �
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Remark 87.10. Let A be a ring. Let (En) be an inverse system of objects of D(A).
We’ve seen above that a derived limit R limEn exists. Thus for every object K of D(A)
also the derived limit R lim(K ⊗L

A En) exists. It turns out that we can construct these
derived limits functorially in K and obtain an exact functor

R lim(−⊗L
A En) : D(A) −→ D(A)

of triangulated categories. Namely, we first lift (En) to an objectE ofD(N, A), see Lemma
87.5. (The functor will depend on the choice of this lift.) Next, observe that there is a
“diagonal” or “constant” functor

∆ : D(A) −→ D(N, A)
mapping the complex K• to the constant inverse system of complexes with value K•.
Then we simply define

R lim(K ⊗L
A En) = R lim(∆(K)⊗L E)

where on the right hand side we use the functor R lim of Lemma 87.1 and the functor
−⊗L − of Lemma 87.9.

Lemma 87.11. Let A be a ring. Let E → D → F → E[1] be a distinguished triangle
ofD(N, A). Let (En), resp. (Dn), resp. (Fn) be the system of objects ofD(A) associated to
E , resp. D, resp. F . Then for every K ∈ D(A) there is a canonical distinguished triangle

R lim(K ⊗L
A En)→ R lim(K ⊗L

A Dn)→ R lim(K ⊗L
A Fn)→ R lim(K ⊗L

A En)[1]
in D(A) with notation as in Remark 87.10.

Proof. This is clear from the construction in Remark 87.10 and the fact that ∆ :
D(A)→ D(N, A), −⊗L −, and R lim are exact functors of triangulated categories. �

Lemma 87.12. Let A be a ring. Let E → D be a morphism of D(N, A). Let (En),
resp. (Dn) be the system of objects of D(A) associated to E , resp. D. If (En) → (Dn) is
an isomorphism of pro-objects, then for every K ∈ D(A) the corresponding map

R lim(K ⊗L
A En) −→ R lim(K ⊗L

A Dn)
in D(A) is an isomorphism (notation as in Remark 87.10).

Proof. Follows from the definitions and Lemma 86.11. �

88. Torsion modules

In this section “torsion modules” will refer to modules supported on a given closed subset
V (I) of an affine scheme Spec(R). This is different, but analogous to, the notion of a
torsion module over a domain (Definition 22.1).

Definition 88.1. Let R be a ring. Let M be an R-module.
(1) Let I ⊂ R be an ideal. We say M is an I-power torsion module if for every

m ∈M there exists an n > 0 such that Inm = 0.
(2) Let f ∈ R. We say M is an f -power torsion module if for each m ∈ M , there

exists an n > 0 such that fnm = 0.

Thus an f -power torsion module is the same thing as an I-power torsion module for I =
(f). We will use the notation

M [In] = {m ∈M | Inm = 0}
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and
M [I∞] =

⋃
M [In]

for an R-module M . Thus M is I-power torsion if and only if M = M [I∞] if and only
if M =

⋃
M [In].

Lemma 88.2. Let R be a ring. Let I be an ideal of R. Let M be an I-power torsion
module. Then M admits a resolution

. . .→ K2 → K1 → K0 →M → 0
with each Ki a direct sum of copies of R/In for n variable.

Proof. There is a canonical surjection

⊕m∈MR/I
nm →M → 0

where nm is the smallest positive integer such that Inm ·m = 0. The kernel of the pre-
ceding surjection is also an I-power torsion module. Proceeding inductively, we construct
the desired resolution of M . �

Lemma 88.3. Let R be a ring. Let I be an ideal of R. For any R-module M set
M [In] = {m ∈ M | Inm = 0}. If I is finitely generated then the following are equiva-
lent

(1) M [I] = 0,
(2) M [In] = 0 for all n ≥ 1, and
(3) if I = (f1, . . . , ft), then the map M →

⊕
Mfi is injective.

Proof. This follows from Algebra, Lemma 24.4. �

Lemma 88.4. Let R be a ring. Let I be a finitely generated ideal of R.
(1) For any R-module M we have (M/M [I∞])[I] = 0.
(2) An extension of I-power torsion modules is I-power torsion.

Proof. Letm ∈M . Ifmmaps to an element of (M/M [I∞])[I] then Im ⊂M [I∞].
Write I = (f1, . . . , ft). Then we see that fim ∈ M [I∞], i.e., Inifim = 0 for some
ni > 0. Thus we see that INm = 0 with N =

∑
ni + 2. Hence m maps to zero in

(M/M [I∞]) which proves the first statement of the lemma.

For the second, suppose that 0 → M ′ → M → M ′′ → 0 is a short exact sequence of
modules with M ′ and M ′′ both I-power torsion modules. Then M [I∞] ⊃M ′ and hence
M/M [I∞] is a quotient of M ′′ and therefore I-power torsion. Combined with the first
statement and Lemma 88.3 this implies that it is zero �

Lemma 88.5. Let I be a finitely generated ideal of a ring R. The I-power torsion
modules form a Serre subcategory of the abelian category ModR, see Homology, Definition
10.1.

Proof. It is clear that a submodule and a quotient module of an I-power torsion
module is I-power torsion. Moreover, the extension of two I-power torsion modules is
I-power torsion by Lemma 88.4. Hence the statement of the lemma by Homology, Lemma
10.2. �

Lemma 88.6. LetR be a ring and let I ⊂ R be a finitely generated ideal. The subcat-
egory I∞-torsion ⊂ ModR depends only on the closed subset Z = V (I) ⊂ Spec(R). In
fact, an R-module M is I-power torsion if and only if its support is contained in Z.
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Proof. Let M be an R-module. Let x ∈ M . If x ∈ M [I∞], then x maps to zero in
Mf for all f ∈ I . Hence xmaps to zero inMp for all p 6⊃ I . Conversely, if xmaps to zero
in Mp for all p 6⊃ I , then x maps to zero in Mf for all f ∈ I . Hence if I = (f1, . . . , fr),
then fnii x = 0 for some ni ≥ 1. It follows that x ∈ M [I

∑
ni ]. Thus M [I∞] is the

kernel of M →
∏

p6∈ZMp. The second statement of the lemma follows and it implies the
first. �

The next lemma should probably go somewhere else.

Lemma 88.7. LetR be a ring. Let I ⊂ R be an ideal. LetK be an object ofD(R) such
hat K ⊗L

R R/I = 0 in D(R). Then
(1) K ⊗L

R R/I
n = 0 for all n ≥ 1,

(2) K ⊗L
R N = 0 for any I-power torsion R-module N ,

(3) K ⊗L
R M = 0 for any M ∈ Db(R) whose cohomology modules are I-power

torsion.

Proof. Proof of (2). We can writeN =
⋃
N [In]. We haveK⊗L

RN = hocolimnK⊗L
R

N [In] as tensor products commute with colimits (details omitted; hint: represent K by
a K-flat complex and compute directly). Hence we may assume N is annihilated by In.
Consider the R-algebra R′ = R/In ⊕N where N is an ideal of square zero. It suffices to
show that K ′ = K ⊗L

R R
′ is 0 in D(R′). We have a surjection R′ → R/I of R-algebras

whose kernel J is nilpotent (any product of n elements in the kernel is zero). We have

0 = K ⊗L
R R/I = (K ⊗L

R R
′)⊗L

R′ R/I = K ′ ⊗L
R′ R/I

by Lemma 60.5. Hence by Lemma 78.4 we find thatK ′ is a perfect complex ofR′-modules.
In particularK ′ is bounded above and ifHb(K ′) is the right-most nonvanishing cohomol-
ogy module (if it exists), then Hb(K ′) is a finite R′-module (use Lemmas 74.2 and 64.3)
with Hb(K ′) ⊗R′ R′/J = Hb(K ′)/JHb(K ′) = 0 (because K ′ ⊗L

R′ R′/J = 0). By
Nakayama’s lemma (Algebra, Lemma 20.1) we find Hb(K ′) = 0, i.e., K ′ = 0 as desired.

Part (1) follows trivially from part (2). Part (3) follows from part (2), induction on the
number of nonzero cohomology modules ofM , and the distinguished triangles of trunca-
tion from Derived Categories, Remark 12.4. Details omitted. �

89. Formal glueing of module categories

Fix a Noetherian schemeX , and a closed subschemeZ with complementU . Our goal is to
explain how coherent sheaves on X can be constructed (uniquely) from coherent sheaves
on the formal completion of X along Z , and those on U with a suitable compatibility on
the overlap. We first do this using only commutative algebra (this section) and later we
explain this in the setting of algebraic spaces (Pushouts of Spaces, Section 10).

Here are some references treating some of the material in this section: [?, Section 2], [?,
Appendix], [?], [?], and [?, Section 4.6].

Lemma 89.1. Let ϕ : R → S be a ring map. Let I ⊂ R be an ideal. The following
are equivalent

(1) ϕ is flat and R/I → S/IS is faithfully flat,
(2) ϕ is flat, and the map Spec(S/IS)→ Spec(R/I) is surjective.
(3) ϕ is flat, and the base change functor M 7→ M ⊗R S is faithful on modules

annihilated by I , and
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(4) ϕ is flat, and the base change functor M 7→ M ⊗R S is faithful on I-power
torsion modules.

Proof. IfR→ S is flat, thenR/In → S/InS is flat for every n, see Algebra, Lemma
39.7. Hence (1) and (2) are equivalent by Algebra, Lemma 39.16. The equivalence of (1)
with (3) follows by identifying I-torsion R-modules with R/I-modules, using that

M ⊗R S = M ⊗R/I S/IS

for R-modules M annihilated by I , and Algebra, Lemma 39.14. The implication (4) ⇒
(3) is immediate. Assume (3). We have seen above that R/In → S/InS is flat, and by
assumption it induces a surjection on spectra, as Spec(R/In) = Spec(R/I) and similarly
for S. Hence the base change functor is faithful on modules annihilated by In. Since any
I-power torsion module M is the union M =

⋃
Mn where Mn is annihilated by In we

see that the base change functor is faithful on the category of all I-power torsion modules
(as tensor product commutes with colimits). �

Lemma 89.2. Assume (ϕ : R → S, I) satisfies the equivalent conditions of Lemma
89.1. The following are equivalent

(1) for any I-power torsion module M , the natural map M → M ⊗R S is an iso-
morphism, and

(2) R/I → S/IS is an isomorphism.

Proof. The implication (1)⇒ (2) is immediate. Assume (2). First assume that M is
annihilated by I . In this case, M is an R/I-module. Hence, we have an isomorphism

M ⊗R S = M ⊗R/I S/IS = M ⊗R/I R/I = M

proving the claim. Next we prove by induction that M → M ⊗R S is an isomorphism
for any moduleM is annihilated by In. Assume the induction hypothesis holds for n and
assume M is annihilated by In+1. Then we have a short exact sequence

0→ InM →M →M/InM → 0

and as R→ S is flat this gives rise to a short exact sequence

0→ InM ⊗R S →M ⊗R S →M/InM ⊗R S → 0

Using that the canonical map is an isomorphism forM ′ = InM andM ′′ = M/InM (by
induction hypothesis) we conclude the same thing is true forM . Finally, suppose thatM
is a general I-power torsion module. Then M =

⋃
Mn where Mn is annihilated by In

and we conclude using that tensor products commute with colimits. �

Lemma 89.3. Assume ϕ : R→ S is a flat ring map and I ⊂ R is a finitely generated
ideal such that R/I → S/IS is an isomorphism. Then

(1) for anyR-moduleM the mapM →M⊗RS induces an isomorphismM [I∞]→
(M ⊗R S)[(IS)∞] of I-power torsion submodules,

(2) the natural map

HomR(M,N) −→ HomS(M ⊗R S,N ⊗R S)

is an isomorphism if either M or N is I-power torsion, and
(3) the base change functor M 7→ M ⊗R S defines an equivalence of categories

between I-power torsion modules and IS-power torsion modules.
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Proof. Note that the equivalent conditions of both Lemma 89.1 and Lemma 89.2 are
satisfied. We will use these without further mention. We first prove (1). Let M be any
R-module. Set M ′ = M/M [I∞] and consider the exact sequence

0→M [I∞]→M →M ′ → 0

As M [I∞] = M [I∞] ⊗R S we see that it suffices to show that (M ′ ⊗R S)[(IS)∞] = 0.
Write I = (f1, . . . , ft). By Lemma 88.4 we see that M ′[I∞] = 0. Hence for every n > 0
the map

M ′ −→
⊕

i=1,...t
M ′, x 7−→ (fn1 x, . . . , fnt x)

is injective. As S is flat overR also the corresponding mapM ′⊗RS →
⊕

i=1,...tM
′⊗RS

is injective. This means that (M ′ ⊗R S)[In] = 0 as desired.

Next we prove (2). If N is I-power torsion, then N ⊗R S = N and the displayed map of
(2) is an isomorphism by Algebra, Lemma 14.3. IfM is I-power torsion, then the image of
any mapM → N factors throughM [I∞] and the image of any mapM ⊗R S → N ⊗R S
factors through (N ⊗R S)[(IS)∞]. Hence in this case part (1) guarantees that we may
replace N by N [I∞] and the result follows from the case where N is I-power torsion we
just discussed.

Next we prove (3). The functor is fully faithful by (2). For essential surjectivity, we simply
note that for any IS-power torsion S-module N , the natural map N ⊗R S → N is an
isomorphism. �

Lemma 89.4. Assume ϕ : R→ S is a flat ring map and I ⊂ R is a finitely generated
ideal such that R/I → S/IS is an isomorphism. For any f1, . . . , fr ∈ R such that
V (f1, . . . , fr) = V (I)

(1) the map of Koszul complexes K(R, f1, . . . , fr) → K(S, f1, . . . , fr) is a quasi-
isomorphism, and

(2) The map of extended alternating Čech complexes

R→
∏
i0
Rfi0 →

∏
i0<i1

Rfi0fi1 → . . .→ Rf1...fr

��
S →

∏
i0
Sfi0 →

∏
i0<i1

Sfi0fi1 → . . .→ Sf1...fr

is a quasi-isomorphism.

Proof. In both cases we have a complex K• of R modules and we want to show that
K• → K• ⊗R S is a quasi-isomorphism. By Lemma 89.2 and the flatness of R → S this
will hold as soon as all homology groups of K are I-power torsion. This is true for the
Koszul complex by Lemma 28.6 and for the extended alternating Čech complex by Lemma
29.5. �

Lemma 89.5. Let R be a ring. Let I = (f1, . . . , fn) be a finitely generated ideal
of R. Let M be the R-module generated by elements e1, . . . , en subject to the relations
fiej − fjei = 0. There exists a short exact sequence

0→ K →M → I → 0

such that K is annihilated by I .
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Proof. This is just a truncation of the Koszul complex. The map M → I is deter-
mined by the rule ei 7→ fi. If m =

∑
aiei is in the kernel of M → I , i.e.,

∑
aifi = 0,

then fjm =
∑
fjaiei = (

∑
fiai)ej = 0. �

Lemma 89.6. LetR be a ring. Let I = (f1, . . . , fn) be a finitely generated ideal ofR.
For any R-module N set

H1(N, f•) = {(x1, . . . , xn) ∈ N⊕n | fixj = fjxi}
{f1x, . . . , fnx) | x ∈ N}

For any R-module N there exists a canonical short exact sequence

0→ ExtR(R/I,N)→ H1(N, f•)→ HomR(K,N)

where K is as in Lemma 89.5.

Proof. The notation above indicates the Ext-groups in ModR as defined in Homol-
ogy, Section 6. These are denoted ExtR(M,N). Using the long exact sequence of Homol-
ogy, Lemma 6.4 associated to the short exact sequence 0 → I → R → R/I → 0 and the
fact that ExtR(R,N) = 0 we see that

ExtR(R/I,N) = Coker(N −→ Hom(I,N))

Using the short exact sequence of Lemma 89.5 we see that we get a complex

N → Hom(M,N)→ HomR(K,N)

whose homology in the middle is canonically isomorphic to ExtR(R/I,N). The proof of
the lemma is now complete as the cokernel of the first map is canonically isomorphic to
H1(N, f•). �

Lemma 89.7. Let R be a ring. Let I = (f1, . . . , fn) be a finitely generated ideal of
R. For any R-module N the Koszul homology group H1(N, f•) defined in Lemma 89.6
is annihilated by I .

Proof. Let (x1, . . . , xn) ∈ N⊕n with fixj = fjxi. Then we have fi(x1, . . . , xn) =
(fixi, . . . , fixn). In other words fi annihilates H1(N, f•). �

We can improve on the full faithfulness of Lemma 89.3 by showing that Ext-groups whose
source is I-power torsion are insensitive to passing to S as well. See Dualizing Complexes,
Lemma 9.8 for a derived version of the following lemma.

Lemma 89.8. Assume ϕ : R→ S is a flat ring map and I ⊂ R is a finitely generated
ideal such that R/I → S/IS is an isomorphism. Let M , N be R-modules. Assume M is
I-power torsion. Given an short exact sequence

0→ N ⊗R S → Ẽ →M ⊗R S → 0

there exists a commutative diagram

0 // N //

��

E //

��

M //

��

0

0 // N ⊗R S // Ẽ // M ⊗R S // 0

with exact rows.
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Proof. AsM is I-power torsion we see thatM ⊗RS = M , see Lemma 89.2. We will
use this identification without further mention. AsR→ S is flat, the base change functor
is exact and we obtain a functorial map of Ext-groups

ExtR(M,N) −→ ExtS(M ⊗R S,N ⊗R S),
see Homology, Lemma 7.3. The claim of the lemma is that this map is surjective when M
is I-power torsion. In fact we will show that it is an isomorphism. By Lemma 88.2 we can
find a surjectionM ′ →M withM ′ a direct sum of modules of the formR/In. Using the
long exact sequence of Homology, Lemma 6.4 we see that it suffices to prove the lemma
for M ′. Using compatibility of Ext with direct sums (details omitted) we reduce to the
case where M = R/In for some n.

Let f1, . . . , ft be generators for In. By Lemma 89.6 we have a commutative diagram

0 // ExtR(R/In, N) //

��

H1(N, f•) //

��

HomR(K,N)

��
0 // ExtS(S/InS,N ⊗ S) // H1(N ⊗ S, f•) // HomS(K ⊗ S,N ⊗ S)

with exact rows whereK is as in Lemma 89.5. Hence it suffices to prove that the two right
vertical arrows are isomorphisms. SinceK is annihilated by In we see that HomR(K,N) =
HomS(K ⊗R S,N ⊗R S) by Lemma 89.3. As R → S is flat we have H1(N, f•) ⊗R
S = H1(N ⊗R S, f•). As H1(N, f•) is annihilated by In, see Lemma 89.7 we have
H1(N, f•)⊗R S = H1(N, f•) by Lemma 89.2. �

Let R → S be a ring map. Let f1, . . . , ft ∈ R and I = (f1, . . . , ft). Then for any
R-module M we can define a complex

(89.8.1) 0→M
α−→M ⊗R S ×

∏
Mfi

β−→
∏

(M ⊗R S)fi ×
∏

Mfifj

where α(m) = (m⊗ 1,m/1, . . . ,m/1) and

β(m′,m1, . . . ,mt) = ((m′/1−m1⊗1, . . . ,m′/1−mt⊗1), (m1−m2, . . . ,mt−1−mt).
We would like to know when this complex is exact.

Lemma 89.9. Assume ϕ : R → S is a flat ring map and I = (f1, . . . , ft) ⊂ R is
an ideal such that R/I → S/IS is an isomorphism. Let M be an R-module. Then the
complex (89.8.1) is exact.

Proof. First proof. Denote ČR → ČS the quasi-isomorphism of extended alternating
Čech complexes of Lemma 89.4. Since these complexes are bounded with flat terms, we
see thatM⊗R ČR →M⊗R ČS is a quasi-isomorphism too (Lemmas 59.7 and 59.12). Now
the complex (89.8.1) is a truncation of the cone of the map M ⊗R ČR → M ⊗R ČS and
we win.

Second computational proof. Let m ∈ M . If α(m) = 0, then m ∈ M [I∞], see Lemma
88.3. Pick n such that Inm = 0 and consider the map ϕ : R/In → M . If m ⊗ 1 = 0,
then ϕ⊗ 1S = 0, hence ϕ = 0 (see Lemma 89.3) hence m = 0. In this way we see that α
is injective.

Let (m′,m′
1, . . . ,m

′
t) ∈ Ker(β). Write m′

i = mi/f
n
i for some n > 0 and mi ∈

M . We may, after possibly enlarging n assume that fni m′ = mi ⊗ 1 in M ⊗R S and
fnj mi − fni mj = 0 in M . In particular we see that (m1, . . . ,mt) defines an element ξ
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ofH1(M, (fn1 , . . . , fnt )). SinceH1(M, (fn1 , . . . , fnt )) is annihilated by Itn+1 (see Lemma
89.7) and since R→ S is flat we see that
H1(M, (fn1 , . . . , fnt )) = H1(M, (fn1 , . . . , fnt ))⊗R S = H1(M ⊗R S, (fn1 , . . . , fnt ))

by Lemma 89.2 The existence ofm′ implies that ξmaps to zero in the last group, i.e., the ele-
ment ξ is zero. Thus there exists anm ∈M such thatmi = fni m. Then (m′,m′

1, . . . ,m
′
t)−

α(m) = (m′′, 0, . . . , 0) for some m′′ ∈ (M ⊗R S)[(IS)∞]. By Lemma 89.3 we conclude
that m′′ ∈M [I∞] and we win. �

Remark 89.10. In this remark we define a category of glueing data. Let R → S be
a ring map. Let f1, . . . , ft ∈ R and I = (f1, . . . , ft). Consider the category Glue(R →
S, f1, . . . , ft) as the category whose

(1) objects are systems (M ′,Mi, αi, αij), where M ′ is an S-module, Mi is an Rfi -
module,αi : (M ′)fi →Mi⊗RS is an isomorphism, andαij : (Mi)fj → (Mj)fi
are isomorphisms such that
(a) αij ◦ αi = αj as maps (M ′)fifj → (Mj)fi , and
(b) αjk ◦ αij = αik as maps (Mi)fjfk → (Mk)fifj (cocycle condition).

(2) morphisms (M ′,Mi, αi, αij)→ (N ′, Ni, βi, βij) are given by maps ϕ′ : M ′ →
N ′ and ϕi : Mi → Ni compatible with the given maps αi, βi, αij , βij .

There is a canonical functor
Can : ModR −→ Glue(R→ S, f1, . . . , ft), M 7−→ (M ⊗R S,Mfi , cani, canij)

where cani : (M ⊗R S)fi → Mfi ⊗R S and canij : (Mfi)fj → (Mfj )fi are the canon-
ical isomorphisms. For any object M = (M ′,Mi, αi, αij) of the category Glue(R →
S, f1, . . . , ft) we define

H0(M) = {(m′,mi) | αi(m′) = mi ⊗ 1, αij(mi) = mj}
in other words defined by the exact sequence

0→ H0(M)→M ′ ×
∏

Mi →
∏

M ′
fi ×

∏
(Mi)fj

similar to (89.8.1). We think of H0(M) as an R-module. Thus we also get a functor
H0 : Glue(R→ S, f1, . . . , ft) −→ModR

Our next goal is to show that the functors Can and H0 are sometimes quasi-inverse to
each other.

Lemma 89.11. Assume ϕ : R → S is a flat ring map and I = (f1, . . . , ft) ⊂ R
is an ideal such that R/I → S/IS is an isomorphism. Then the functor H0 is a left
quasi-inverse to the functor Can of Remark 89.10.

Proof. This is a reformulation of Lemma 89.9. �

Lemma 89.12. Assume ϕ : R → S is a flat ring map and let I = (f1, . . . , ft) ⊂ R
be an ideal. Then Glue(R→ S, f1, . . . , ft) is an abelian category, and the functor Can is
exact and commutes with arbitrary colimits.

Proof. Given a morphism (ϕ′, ϕi) : (M ′,Mi, αi, αij) → (N ′, Ni, βi, βij) of the
category Glue(R → S, f1, . . . , ft) we see that its kernel exists and is equal to the object
(Ker(ϕ′),Ker(ϕi), αi, αij) and its cokernel exists and is equal to the object (Coker(ϕ′),Coker(ϕi), βi, βij).
This works becauseR→ S is flat, hence taking kernels/cokernels commutes with−⊗RS.
Details omitted. The exactness follows from the R-flatness of Rfi and S , while commut-
ing with colimits follows as tensor products commute with colimits. �
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Lemma 89.13. Let ϕ : R → S be a flat ring map and (f1, . . . , ft) = R. Then Can
and H0 are quasi-inverse equivalences of categories

ModR = Glue(R→ S, f1, . . . , ft)

Proof. Consider an object M = (M ′,Mi, αi, αij) of Glue(R → S, f1, . . . , ft). By
Algebra, Lemma 24.5 there exists a unique moduleM and isomorphismsMfi →Mi which
recover the glueing data αij . Then both M ′ and M ⊗R S are S-modules which recover
the modules Mi ⊗R S upon localizing at fi. Whence there is a canonical isomorphism
M ⊗R S → M ′. This shows that M is in the essential image of Can. Combined with
Lemma 89.11 the lemma follows. �

Lemma 89.14. Let ϕ : R → S be a flat ring map and I = (f1, . . . , ft) and ideal. Let
R→ R′ be a flat ring map, and set S′ = S⊗RR′. Then we obtain a commutative diagram
of categories and functors

ModR Can
//

−⊗RR′

��

Glue(R→ S, f1, . . . , ft)
H0
//

−⊗RR′

��

ModR

−⊗RR′

��
ModR′

Can // Glue(R′ → S′, f1, . . . , ft)
H0
// ModR′

Proof. Omitted. �

Proposition 89.15. Assume ϕ : R→ S is a flat ring map and I = (f1, . . . , ft) ⊂ R
is an ideal such thatR/I → S/IS is an isomorphism. Then Can andH0 are quasi-inverse
equivalences of categories

ModR = Glue(R→ S, f1, . . . , ft)

Proof. We have already seen that H0 ◦ Can is isomorphic to the identity functor,
see Lemma 89.11. Consider an object M = (M ′,Mi, αi, αij) of Glue(R→ S, f1, . . . , ft).
We get a natural morphism

Ψ : (H0(M)⊗R S,H0(M)fi , cani, canij) −→ (M ′,Mi, αi, αij).
Namely, by definitionH0(M) comes equipped with compatibleR-module mapsH0(M)→
M ′ and H0(M)→Mi. We have to show that this map is an isomorphism.

Pick an index i and set R′ = Rfi . Combining Lemmas 89.14 and 89.13 we see that
Ψ ⊗R R′ is an isomorphism. Hence the kernel, resp. cokernel of Ψ is a system of the
form (K, 0, 0, 0), resp. (Q, 0, 0, 0). Note that H0((K, 0, 0, 0)) = K , that H0 is left exact,
and that by construction H0(Ψ) is bijective. Hence we see K = 0, i.e., the kernel of Ψ is
zero.

The conclusion of the above is that we obtain a short exact sequence

0→ H0(M)⊗R S →M ′ → Q→ 0
and thatMi = H0(M)fi . Note that we may think ofQ as anR-module which is I-power
torsion so that Q = Q ⊗R S. By Lemma 89.8 we see that there exists a commutative
diagram

0 // H0(M) //

��

E //

��

Q //

��

0

0 // H0(M)⊗R S // M ′ // Q // 0
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with exact rows. This clearly determines an isomorphism Can(E) → (M ′,Mi, αi, αij)
in the category Glue(R → S, f1, . . . , ft) and we win. (Of course, a posteriori we have
Q = 0.) �

Lemma 89.16. Let ϕ : R→ S be a flat ring map and let I ⊂ R be a finitely generated
ideal such that R/I → S/IS is an isomorphism.

(1) Given an R-module N , an S-module M ′ and an S-module map ϕ : M ′ →
N⊗RS whose kernel and cokernel are I-power torsion, there exists anR-module
map ψ : M → N and an isomorphism M ⊗R S = M ′ compatible with ϕ and
ψ.

(2) Given an R-module M , an S-module N ′ and an S-module map ϕ : M ⊗R S →
N ′ whose kernel and cokernel are I-power torsion, there exists an R-module
map ψ : M → N and an isomorphismN ⊗R S = N ′ compatible with ϕ and ψ.

In both cases we have Ker(ϕ) ∼= Ker(ψ) and Coker(ϕ) ∼= Coker(ψ).

Proof. Proof of (1). Say I = (f1, . . . , ft). It is clear that the localization ϕfi
is an isomorphism. Thus we see that (M ′, Nfi , ϕfi , canij) is an object of Glue(R →
S, f1, . . . , ft), see Remark 89.10. By Proposition 89.15 we conclude that there exists an
R-moduleM such thatM ′ = M⊗RS andNfi = Mfi compatibly with the isomorphisms
ϕfi and canij . There is a morphism

(M ⊗R S,Mfi , cani, canij) = (M ′, Nfi , ϕfi , canij)→ (N ⊗R S,Nfi , cani, canij)

of Glue(R → S, f1, . . . , ft) which uses ϕ in the first component. This corresponds to an
R-module map ψ : M → N (by the equivalence of categories of Proposition 89.15). The
composition of the base change ofM → N with the isomorphismM ′ ∼= M ⊗R S is ϕ, in
other words M → N is compatible with ϕ.

Proof of (2). This is just the dual of the argument above. Namely, the localization ϕfi
is an isomorphism. Thus we see that (N ′,Mfi , ϕ

−1
fi
, canij) is an object of Glue(R →

S, f1, . . . , ft), see Remark 89.10. By Proposition 89.15 we conclude that there exists an
R-moduleN such thatN ′ = N ⊗R S andNfi = Mfi compatibly with the isomorphisms
ϕ−1
fi

and canij . There is a morphism

(M ⊗R S,Mfi , cani, canij)→ (N ′,Mfi , ϕfi , canij) = (N ⊗R S,Nfi , cani, canij)

of Glue(R → S, f1, . . . , ft) which uses ϕ in the first component. This corresponds to an
R-module map ψ : M → N (by the equivalence of categories of Proposition 89.15). The
composition of the base change of M → N with the isomorphism N ′ ∼= N ⊗R S is ϕ, in
other words M → N is compatible with ϕ.

The final statement follows for example from Lemma 89.3. �

Next, we specialize Proposition 89.15 to get something more useable. Namely, if I = (f)
is a principal ideal then the objects of Glue(R → S, f) are simply triples (M ′,M1, α1)
and there is no cocycle condition to check!

Theorem 89.17. Let R be a ring, and let f ∈ R. Let ϕ : R → S be a flat ring map
inducing an isomorphism R/fR→ S/fS. Then the functor

ModR −→ModS ×ModSf ModRf , M 7−→ (M ⊗R S,Mf , can)

is an equivalence.
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Proof. The category appearing on the right side of the arrow is the category of triples
(M ′,M1, α1) where M ′ is an S-module, M1 is a Rf -module, and α1 : M ′

f → M1 ⊗R S
is a Sf -isomorphism, see Categories, Example 31.3. Hence this theorem is a special case of
Proposition 89.15. �

A useful special case of Theorem 89.17 is when R is Noetherian, and S is a completion of
R at an element f . The completion R→ S is flat, and the functor M 7→M ⊗R S can be
identified with the f -adic completion functor when M is finitely generated. To state this
more precisely, let ModfgR denote the category of finitely generated R-modules.

Proposition 89.18. Let R be a Noetherian ring. Let f ∈ R be an element. Let
R∧ be the f -adic completion of R. Then the functor M 7→ (M∧,Mf , can) defines an
equivalence

ModfgR −→ModfgR∧ ×Modfg(R∧)f
ModfgRf

Proof. The ring map R → R∧ is flat by Algebra, Lemma 97.2. It is clear that
R/fR = R∧/fR∧. By Algebra, Lemma 97.1 the completion of a finite R-module M
is equal to M ⊗R R∧. Hence the displayed functor of the proposition is equal to the
functor occurring in Theorem 89.17. In particular it is fully faithful. Let (M1,M2, ψ)
be an object of the right hand side. By Theorem 89.17 there exists an R-module M such
that M1 = M ⊗R R∧ and M2 = Mf . As R → R∧ × Rf is faithfully flat we conclude
from Algebra, Lemma 23.2 that M is finitely generated, i.e., M ∈ModfgR . This proves the
proposition. �

Remark 89.19. The equivalences of Proposition 89.15, Theorem 89.17, and Propo-
sition 89.18 preserve properties of modules. For example if M corresponds to M =
(M ′,Mi, αi, αij) thenM is finite, or finitely presented, or flat, or projective overR if and
only if M ′ and Mi have the corresponding property over S and Rfi . This follows from
the fact that R→ S ×

∏
Rfi is faithfully flat and descend and ascent of these properties

along faithfully flat maps, see Algebra, Lemma 83.2 and Theorem 95.6. These functors also
preserve the⊗-structures on either side. Thus, it defines equivalences of various categories
built out of the pair (ModR,⊗), such as the category of algebras.

Remark 89.20. Given a differential manifold X with a compact closed submanifold
Z having complement U , specifying a sheaf on X is the same as specifying a sheaf on U , a
sheaf on an unspecified tubular neighbourhood T ofZ inX , and an isomorphism between
the two resulting sheaves along T ∩U . Tubular neighbourhoods do not exist in algebraic
geometry as such, but results such as Proposition 89.15, Theorem 89.17, and Proposition
89.18 allow us to work with formal neighbourhoods instead.

90. The Beauville-Laszlo theorem

Let R be a ring and let f be an element of R. Denote R∧ = limR/fnR the f -adic
completion of R. In this section we discuss and slightly generalize a theorem of Beauville
and Laszlo, see [?]. The theorem asserts that under suitable conditions, a module over R
can be constructed by “glueing together” modules overR∧ andRf along an isomorphism
between the base extensions to (R∧)f .

In [?] it is assumed that f is a nonzerodivisor on bothR andM . In fact, one only needs to
assume that

R[f∞] −→ R∧[f∞]
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is bijective and that
M [f∞] −→M ⊗R R∧

is injective. This optimization was partly inspired by an alternate approach to glueing
introduced in [?, §1.3] for use in the theory of nonarchimedean analytic spaces.
In fact, we will establish the Beauville-Laszlo theorem in the more general setting of a ring
map

R −→ R′

which induces isomorphisms R/fnR → R′/fnR′ for every n > 0 and an isomorphism
R[f∞] → R′[f∞]. This is better suited for globalizing and does not formally follow
from the case when R′ is the completion of R because, for instance, the condition that
R[f∞]→ R′[f∞] is a bijection does not imply that R[f∞]→ R∧[f∞] is a bijection.
The theorem of Beauville and Laszlo as proved in this section can be viewed as a non-
flat version of Theorem 89.17 and in the case where R′ = R∧ can be viewed as a non-
Noetherian version of Proposition 89.18. For a comparison with flat descent, please see
Remark 90.6.
One can establish even stronger results (without imposing restrictions onM for example)
but for this one must work at the level of derived categories. See [?, §5] for more details.

Lemma 90.1. Let R be a ring and let f ∈ R. For every positive integer n the map
R/fnR→ R∧/fnR∧ is an isomorphism.

Proof. This is a special case of Algebra, Lemma 96.3. �

We will use the notation introduced in Section 88. Thus for an R-module M , we denote
M [fn] the submodule of M annihilated by fn and we put

M [f∞] =
⋃∞

n=1
M [fn] = Ker(M →Mf ).

If M = M [f∞], we say that M is an f -power torsion module.

Lemma 90.2. Let R be a ring, let f ∈ R be an element, and let R → R′ be a ring
map which induces isomorphisms R/fnR → R′/fnR′ for n > 0. For any f -power
torsion R-module M the map M →M ⊗R R′ is an isomorphism. For example, we have
M ∼= M ⊗R R∧.

Proof. If M is annihilated by fn, then
M ⊗R R′ ∼= M ⊗R/fnR R′/fnR′ ∼= M ⊗R/fnR R/fnR ∼= M.

Since M =
⋃
M [fn] and since tensor products commute with direct limits (Algebra,

Lemma 12.9), we obtain the desired isomorphism. The last statement is a special case of
the first statement by Lemma 90.1. �

Lemma 90.3. LetR be a ring, let f ∈ R, and letR→ R′ be a ring map which induces
isomorphisms R/fnR → R′/fnR′ for n > 0. The R-module R′ ⊕ Rf is faithful: for
every nonzero R-module M , the module M ⊗R (R′ ⊕Rf ) is also nonzero. For example,
if M is nonzero, then M ⊗R (R∧ ⊕Rf ) is nonzero.

However, the map M →M ⊗R (R′ ⊕Rf ) need not be injective; see Example 90.10.

Proof. If M 6= 0 but M ⊗R Rf = 0, then M is f -power torsion. By Lemma 90.2
we find thatM ⊗RR′ ∼= M 6= 0. The last statement is a special case of the first statement
by Lemma 90.1. �
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Lemma 90.4. Let R be a ring, let f ∈ R, and let R → R′ be a ring map which
induces an isomorphism R/fR→ R′/fR′. The map Spec(R′)q Spec(Rf )→ Spec(R)
is surjective. For example, the map Spec(R∧)q Spec(Rf )→ Spec(R) is surjective.

Proof. Recall that Spec(R) = V (f) q D(f) where V (f) = Spec(R/fR) and
D(f) = Spec(Rf ), see Algebra, Section 17 and especially Lemmas 17.7 and 17.6. Thus
the lemma follows as the map R → R/fR factors through R′. The last statement is a
special case of the first statement by Lemma 90.1. �

Lemma 90.5. LetR be a ring, let f ∈ R, and letR→ R′ be a ring map which induces
isomorphisms R/fnR → R′/fnR′ for n > 0. An R-module M is finitely generated if
and only if the (R′ ⊕ Rf )-module M ⊗R (R′ ⊕ Rf ) is finitely generated. For example,
if M ⊗R (R∧ ⊕Rf ) is finitely generated as a module over R∧ ⊕Rf , then M is a finitely
generated R-module.

Proof. The ‘only if’ is clear, so we assume thatM⊗R (R′⊕Rf ) is finitely generated.
In this case, by writing each generator as a sum of simple tensors,M ⊗R (R′⊕Rf ) admits
a finite generating set consisting of elements of M . That is, there exists a morphism from
a finite free R-module to M whose cokernel is killed by tensoring with R′ ⊕Rf ; we may
thus deduce M is finite generated by applying Lemma 90.3 to this cokernel. The last
statement is a special case of the first statement by Lemma 90.1. �

Remark 90.6. While R → Rf is always flat, R → R∧ is typically not flat unless
R is Noetherian (see Algebra, Lemma 97.2 and the discussion in Examples, Section 12).
Consequently, we cannot in general apply faithfully flat descent as discussed in Descent,
Section 3 to the morphism R → R∧ ⊕ Rf . Moreover, even in the Noetherian case, the
usual definition of a descent datum for this morphism refers to the ringR∧⊗RR∧, which
we will avoid considering in this section.

Glueing pairs. LetR→ R′ be a ring map that induces isomorphismsR/fnR→ R′/fnR′

for n > 0. Consider the sequence
(90.6.1) 0→ R→ R′ ⊕Rf → R′

f → 0,
in which the map on the right is the difference between the two canonical homomor-
phisms. If this sequence is exact, then we say that (R → R′, f) is a glueing pair. We will
say that (R, f) is a glueing pair if (R → R∧, f) is a glueing pair; this makes sense by
Lemma 90.1. Thus (R, f) is a glueing pair if and only if the sequence
(90.6.2) 0→ R→ R∧ ⊕Rf → (R∧)f → 0,
is exact.

Lemma 90.7. LetR be a ring, let f ∈ R, and letR→ R′ be a ring map which induces
isomorphisms R/fnR→ R′/fnR′ for n > 0. The sequence (90.6.1) is

(1) exact on the right,
(2) exact on the left if and only if R[f∞]→ R′[f∞] is injective, and
(3) exact in the middle if and only if R[f∞]→ R′[f∞] is surjective.

In particular, (R → R′, f) is a glueing pair if and only if R[f∞] → R′[f∞] is bijective.
For example, (R, f) is a glueing pair if and only if R[f∞]→ R∧[f∞] is bijective.

Proof. Let x ∈ R′
f . Write x = x′/fn with x′ ∈ R′. Write x′ = x′′ + fny with

x′′ ∈ R and y ∈ R′. Then we see that (y,−x′′/fn) maps to x. Thus (1) holds.
Part (2) follows from the fact that Ker(R→ Rf ) = R[f∞].
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If the sequence is exact in the middle, then elements of the form (x, 0) with x ∈ R′[f∞]
are in the image of the first arrow. This implies that R[f∞] → R′[f∞] is surjective.
Conversely, assume that R[f∞] → R′[f∞] is surjective. Let (x, y) be an element in the
middle which maps to zero on the right. Write y = y′/fn for some y′ ∈ R. Then
we see that fnx − y′ is annihilated by some power of f in R′. By assumption we can
write fnx − y′ = z for some z ∈ R[f∞]. Then y = y′′/fn where y′′ = y′ + z is in
the kernel of R → R/fnR. Hence we see that y can be represented as y′′′/1 for some
y′′′ ∈ R. Then x − y′′′ is in R′[f∞]. Thus x − y′′′ = z′ ∈ R[f∞]. Then (x, y′′′/1) =
(y′′′ + z′, (y′′′ + z′)/1) as desired.

The last statement of the lemma is a special case of the penultimate statement by Lemma
90.1. �

Remark 90.8. Suppose that f is a nonzerodivisor. Then Algebra, Lemma 96.4 shows
that f is a nonzerodivisor in R∧. Hence (R, f) is a glueing pair.

Remark 90.9. If R → R∧ is flat, then for each positive integer n tensoring the
sequence 0→ R[fn]→ R→ RwithR∧ gives the sequence 0→ R[fn]⊗RR∧ → R∧ →
R∧. Combined with Lemma 90.2 we conclude that R[fn] → R∧[fn] is an isomorphism.
Thus (R, f) is a glueing pair. This holds in particular if R is Noetherian, see Algebra,
Lemma 97.2.

Example 90.10. Let k be a field and put

R = k[f, T1, T2, . . .]/(fT1, fT2 − T1, fT3 − T2, . . .).

Then (R, f) is not a glueing pair because the map R[f∞] → R∧[f∞] is not injective as
the image of T1 is f -divisible in R∧. For

R = k[f, T1, T2, . . .]/(fT1, f
2T2, . . .),

the map R[f∞]→ R∧[f∞] is not surjective as the element T1 + fT2 + f2T3 + . . . is not
in the image. In particular, by Remark 90.9, these are both examples where R → R∧ is
not flat.

Glueable modules. Let R → R′ be a ring map which induces isomorphisms R/fnR →
R′/fnR′ for n > 0. For any R-module M , we may tensor (90.6.1) with M to obtain a
sequence

(90.10.1) 0→M → (M ⊗R R′)⊕ (M ⊗R Rf )→M ⊗R R′
f → 0

Observe that M ⊗R Rf = Mf and that M ⊗R R′
f = (M ⊗R R′)f . If this sequence is

exact, we say thatM is glueable for (R→ R′, f). IfR is a ring and f ∈ R, then we say an
R-module is glueable if M is glueable for (R → R∧, f). Thus M is glueable if and only
if the sequence

(90.10.2) 0→M → (M ⊗R R∧)⊕ (M ⊗R Rf )→M ⊗R (R∧)f → 0

is exact.

Lemma 90.11. Let R be a ring, let f ∈ R, and let R → R′ be a ring map which
induces isomorphisms R/fnR→ R′/fnR′ for n > 0. The sequence (90.10.1) is

(1) exact on the right,
(2) exact on the left if and only if M [f∞]→ (M ⊗R R′)[f∞] is injective, and
(3) exact in the middle if and only if M [f∞]→ (M ⊗R R′)[f∞] is surjective.



1452 15. MORE ON ALGEBRA

ThusM is glueable for (R→ R′, f) if and only ifM [f∞]→ (M⊗RR′)[f∞] is bijective.
If (R → R′, f) is a glueing pair, then M is glueable for (R → R′, f) if and only if
M [f∞] → (M ⊗R R′)[f∞] is injective. For example, if (R, f) is a glueing pair, then M
is glueable if and only if M [f∞]→ (M ⊗R R∧)[f∞] is injective.

Proof. We will use the results of Lemma 90.7 without further mention. The functor
M ⊗R − is right exact (Algebra, Lemma 12.10) hence we get (1).
The kernel of M →M ⊗R Rf = Mf is M [f∞]. Thus (2) follows.
If the sequence is exact in the middle, then elements of the form (x, 0) with x ∈ (M ⊗R
R′)[f∞] are in the image of the first arrow. This implies thatM [f∞]→ (M ⊗RR′)[f∞]
is surjective. Conversely, assume that M [f∞]→ (M ⊗R R′)[f∞] is surjective. Let (x, y)
be an element in the middle which maps to zero on the right. Write y = y′/fn for some
y′ ∈ M . Then we see that fnx − y′ is annihilated by some power of f in M ⊗R R′. By
assumption we can write fnx − y′ = z for some z ∈ M [f∞]. Then y = y′′/fn where
y′′ = y′ + z is in the kernel of M →M/fnM . Hence we see that y can be represented as
y′′′/1 for some y′′′ ∈M . Then x−y′′′ is in (M⊗RR′)[f∞]. Thus x−y′′′ = z′ ∈M [f∞].
Then (x, y′′′/1) = (y′′′ + z′, (y′′′ + z′)/1) as desired.
If (R→ R′, f) is a glueing pair, then (90.10.1) is exact in the middle for anyM by Algebra,
Lemma 12.10. This gives the penultimate statement of the lemma. The final statement
of the lemma follows from this and the fact that (R, f) is a glueing pair if and only if
(R→ R∧, f) is a glueing pair. �

Remark 90.12. Let (R → R′, f) be a glueing pair and let M be an R-module. Here
are some observations which can be used to determine whether M is glueable for (R →
R′, f).

(1) By Lemma 90.11 we see that M is glueable for (R → R∧, f) if and only if
M [f∞] → M ⊗R R∧ is injective. This holds if M [f ] → M∧ is injective, i.e.,
when M [f ] ∩

⋂∞
n=1 f

nM = 0.
(2) If TorR1 (M,R′

f ) = 0, then M is glueable for (R → R′, f) (use Algebra, Lemma
75.2). This is equivalent to saying that TorR1 (M,R′) is f -power torsion. In par-
ticular, any flat R-module is glueable for (R→ R′, f).

(3) IfR→ R′ is flat, then TorR1 (M,R′) = 0 for everyR-module so everyR-module
is glueable for (R→ R′, f). This holds in particular when R is Noetherian and
R′ = R∧, see Algebra, Lemma 97.2

Example 90.13 (Non glueable module). Let R be the ring of germs at 0 of C∞ func-
tions on R. Let f ∈ R be the function f(x) = x. Then f is a nonzerodivisor in R, so
(R, f) is a glueing pair andR∧ ∼= R[[x]]. Letϕ ∈ R be the functionϕ(x) = exp(−1/x2).
Then ϕ has zero Taylor series, so ϕ ∈ Ker(R → R∧). Since ϕ(x) 6= 0 for x 6= 0, we see
that ϕ is a nonzerodivisor in R. The function ϕ/f also has zero Taylor series, so its im-
age in M = R/ϕR is a nonzero element of M [f ] which maps to zero in M ⊗R R∧ =
R∧/ϕR∧ = R∧. Hence M is not glueable.

We next make some calculations of Tor groups.

Lemma 90.14. Let (R→ R′, f) be a glueing pair. Then TorR1 (R′, fnR) = 0 for each
n > 0.

Proof. From the exact sequence 0→ R[fn]→ R→ fnR→ 0 we see that it suffices
to check that R[fn] ⊗R R′ → R′ is injective. By Lemma 90.2 we have R[fn] ⊗R R′ =
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R[fn] and by Lemma 90.7 we see thatR[fn]→ R′ is injective as (R→ R′, f) is a glueing
pair. �

Lemma 90.15. Let (R→ R′, f) be a glueing pair. Then TorR1 (R′, R/R[f∞]) = 0.

Proof. We have R/R[f∞] = colimR/R[fn] = colim fnR. As formation of Tor
groups commutes with filtered colimits (Algebra, Lemma 76.2) we may apply Lemma 90.14.

�

Lemma 90.16. Let (R → R′, f) be a glueing pair. For every R-module M , we have
TorR1 (R′,Coker(M →Mf )) = 0.

Proof. Set M = M/M [f∞]. Then Coker(M → Mf ) ∼= Coker(M → Mf ) hence
we may and do assume that f is a nonzerodivisor on M . In this case M ⊂ Mf and
Mf/M = colimM/fnM where the transition maps are given by multiplication by f .
Since formation of Tor groups commutes with colimits (Algebra, Lemma 76.2) it suffices
to show that TorR1 (R′,M/fnM) = 0.

We first treat the caseM = R/R[f∞]. By Lemma 90.7 we haveM ⊗RR′ = R′/R′[f∞].
From the short exact sequence 0 → M → M → M/fnM → 0 we obtain the exact
sequence

TorR1 (R′, R/R[f∞]) // TorR1 (R′,M/fnM) // R′/R′[f∞]
fn

rr
R′/R′[f∞] // (R′/R′[f∞])/(fn(R′/R′[f∞])) // 0

by Algebra, Lemma 75.2. Here the diagonal arrow is injective. Since the first group
TorR1 (R′, R/R[f∞]) is zero by Lemma 90.15, we deduce that TorR1 (R′,M/fnM) = 0
as desired.

To treat the general case, choose a surjection F → M with F a free R/R[f∞]-module,
and form an exact sequence

0→ N → F/fnF →M/fnM → 0.
By Lemma 90.2 this sequence remains unchanged, and hence exact, upon tensoring with
R′. Since TorR1 (R′, F/fnF ) = 0 by the previous paragraph, we deduce that TorR1 (R′,M/fnM) =
0 as desired. �

Let (R → R′, f) be a glueing pair. This means that R/fnR → R′/fnR′ is an isomor-
phism for n > 0 and the sequence

0→ R→ R′ ⊕Rf → R′
f → 0

is exact. Consider the category Glue(R → R′, f) introduced in Remark 89.10. We will
call an object (M ′,M1, α1) of Glue(R → R′, f) a glueing datum. It consists of an R′-
module M ′, an Rf -module M1, and an isomorphism α1 : (M ′)f → M1 ⊗R R′. There is
an obvious functor

Can : ModR −→ Glue(R→ R′, f), M 7−→ (M ⊗R R′,Mf , can),
and there is a functor

H0 : Glue(R→ R′, f) −→ModR, (M ′,M1, α1) 7−→ Ker(M ′ ⊕M1 → (M ′)f )
in the reverse direction, see Remark 89.10 for the precise definition.
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Theorem 90.17. Let (R → R′, f) be a glueing pair. The functor Can : ModR −→
Glue(R → R′, f) determines an equivalence of the category of R-modules glueable for
(R→ R′, f) and the category Glue(R→ R′, f) of glueing data.

Proof. The functor is fully faithful due to the exactness of (90.10.1) for glueable
modules, which tells us exactly that H0 ◦ Can = id on the full subcategory of glueable
modules. Hence it suffices to check essential surjectivity. That is, we must show that an
arbitrary glueing datum (M ′,M1, α1) arises from some glueable R-module.

We first check that the map d : M ′ ⊕M1 → (M ′)f used in the definition of the functor
H0 is surjective. Observe that (x, y) ∈M ′ ⊕M1 maps to d(x, y) = x/1−α−1

1 (y⊗ 1) in
(M ′)f . If z ∈ (M ′)f , then we can write α1(z) =

∑
yi ⊗ gi with gi ∈ R′ and yi ∈ M1.

Write α−1
1 (yi ⊗ 1) = y′

i/f
n for some y′

i ∈M ′ and n ≥ 0 (we can pick the same n for all
i). Write gi = ai + fnbi with ai ∈ R and bi ∈ R′. Then with y =

∑
aiyi ∈ M1 and

x =
∑
biy

′
i ∈M ′ we have d(x,−y) = z as desired.

Put M = H0((M ′,M1, α1)) = Ker(d). We obtain an exact sequence of R-modules

(90.17.1) 0→M →M ′ ⊕M1 → (M ′)f → 0.

We will prove that the maps M →M ′ and M →M1 induce isomorphisms M ⊗R R′ →
M ′ and M ⊗R Rf →M1. This will imply that M is glueable for (R→ R′, f) and gives
rise to the original glueing datum.

Since f is a nonzerodivisor on M1, we have M [f∞] ∼= M ′[f∞]. This yields an exact
sequence

(90.17.2) 0→M/M [f∞]→M1 → (M ′)f/M ′ → 0.

Since R → Rf is flat, we may tensor this exact sequence with Rf to deduce that M ⊗R
Rf = (M/M [f∞])⊗R Rf →M1 is an isomorphism.

By Lemma 90.16 we have TorR1 (R′,Coker(M ′ → (M ′)f )) = 0. The sequence (90.17.2)
thus remains exact upon tensoring overRwithR′. Usingα1 and Lemma 90.2 the resulting
exact sequence can be written as

(90.17.3) 0→ (M/M [f∞])⊗R R′ → (M ′)f → (M ′)f/M ′ → 0

This yields an isomorphism (M/M [f∞])⊗RR′ ∼= M ′/M ′[f∞]. This implies that in the
diagram

M [f∞]⊗R R′ //

��

M ⊗R R′ //

��

(M/M [f∞])⊗R R′ //

��

0

0 // M ′[f∞] // M ′ // M ′/M ′[f∞] // 0,

the third vertical arrow is an isomorphism. Since the rows are exact and the first vertical
arrow is an isomorphism by Lemma 90.2 and M [f∞] = M ′[f∞], the five lemma implies
that M ⊗R R′ →M ′ is an isomorphism. This completes the proof. �

Remark 90.18. Let (R → R′, f) be a glueing pair. Let M be an R-module that is
not necessarily glueable for (R → R′, f). Setting M ′ = M ⊗R R′ and M1 = Mf we
obtain the glueing datum Can(M) = (M ′,M1, can). Then M̃ = H0(M ′,M1, can) is
an R-module that is glueable for (R → R′, f) and the canonical map M → M̃ gives
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isomorphisms M ⊗R R′ → M̃ ⊗R R′ and Mf → M̃f , see Theorem 90.17. From the
exactness of the sequences

M → (M ⊗R R′)⊕Mf →M ⊗R (R′)f → 0

and
0→ M̃ → (M̃ ⊗R R′)⊕ M̃f → M̃ ⊗R (R′)f → 0

we conclude that the map M → M̃ is surjective.

Recall that flat R-modules over a glueing pair (R → R′, f) are glueable (Remark 90.12).
Hence the following lemma shows that Theorem 90.17 determines an equivalence between
the category of flat R-modules and the category of glueing data (M ′,M1, α1) where M ′

and M1 are flat over R′ and Rf .

Lemma 90.19. Let (R → R′, f) be a glueing pair. Let M be an R-module which is
not necessarily glueable for (R → R′, f). Then M is flat over R if and only if M ⊗R R′

is flat over R′ and Mf is flat over Rf .

Proof. One direction of the lemma follows from Algebra, Lemma 39.7. For the other
direction, assume M ⊗R R′ is flat over R′ and Mf is flat over Rf . Let M̃ be as in Remark
90.18. If M̃ is flat overR, then applying Algebra, Lemma 39.12 to the short exact sequence
0→ Ker(M → M̃)→M → M̃ → 0 we find that Ker(M → M̃)⊗R (R′ ⊕Rf ) is zero.
Hence M = M̃ by Lemma 90.3 and we conclude. In other words, we may replace M by
M̃ and assume M is glueable for (R→ R′, f). Let N be a second R-module. It suffices to
prove that TorR1 (M,N) = 0, see Algebra, Lemma 75.8.

The long the exact sequence of Tors associated to the short exact sequence 0 → R →
R′ ⊕Rf → (R′)f → 0 and N gives an exact sequence

0→ TorR1 (R′, N)→ TorR1 ((R′)f , N)

and isomorphisms TorRi (R′, N) = TorRi ((R′)f , N) for i ≥ 2. Since TorRi ((R′)f , N) =
TorRi (R′, N)f we conclude that f is a nonzerodivisor on TorR1 (R′, N) and invertible on
TorRi (R′, N) for i ≥ 2. Since M ⊗R R′ is flat over R′ we have

TorRi (M ⊗R R′, N) = (M ⊗R R′)⊗R′ TorRi (R′, N)

by the spectral sequence of Example 62.2. Writing M ⊗R R′ as a filtered colimit of fi-
nite free R′-modules (Algebra, Theorem 81.4) we conclude that f is a nonzerodivisor on
TorR1 (M ⊗R R′, N) and invertible on TorRi (M ⊗R R′, N). Next, we consider the exact
sequence 0→M →M ⊗R R′ ⊕Mf →M ⊗R (R′)f → 0 coming from the fact that M
is glueable and the associated long exact sequence of Tor. The relevant part is

TorR1 (M,N) // TorR1 (M ⊗R R′, N) // TorR1 (M ⊗R (R′)f , N)

TorR2 (M ⊗R R′, N) // TorR2 (M ⊗R (R′)f , N)

ll

We conclude that TorR1 (M,N) = 0 by our remarks above on the action on f on TorRi (M⊗R
R′, N). �

Observe that we have seen the result of the following lemma for “finitely generated” in
Lemma 90.5.
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Lemma 90.20. Let (R → R′, f) be a glueing pair. Let M be an R-module which is
not necessarily glueable for (R → R′, f). Then M is a finite projective R-module if and
only if M ⊗R R′ is finite projective over R′ and Mf is finite projective over Rf .

Proof. Assume that M ⊗R R′ is a finite projective module over R′ and that Mf is
a finite projective module over Rf . Our task is to prove that M is finite projective over
R. We will use Algebra, Lemma 78.2 without further mention. By Lemma 90.19 we see
that M is flat. By Lemma 90.5 we see that M is finite. Choose a short exact sequence
0 → K → R⊕n → M → 0. Since a finite projective module is of finite presentation
and since the sequence remains exact after tensoring with R′ (by Algebra, Lemma 39.12)
and Rf , we conclude that K ⊗R R′ and Kf are finite modules. Using the lemma above
we conclude that K is finitely generated. Hence M is finitely presented and hence finite
projective. �

Remark 90.21. In [?] it is assumed that f is a nonzerodivisor in R and R′ = R∧,
which gives a glueing pair by Lemma 90.7. Even in this setting Theorem 90.17 says some-
thing new: the results of [?] only apply to modules on which f is a nonzerodivisor (and
hence glueable in our sense, see Lemma 90.11). Lemma 90.20 also provides a slight exten-
sion of the results of [?]: not only can we allow M to have nonzero f -power torsion, we
do not even require it to be glueable.

91. Derived Completion

Some references for the material in this section are [?], [?], [?], [?] (especially Chapter
4). Our exposition follows [?]. The analogue (or “dual”) of this section for torsion mod-
ules is Dualizing Complexes, Section 9. The relationship between the derived category
of complexes with torsion cohomology and derived complete complexes can be found in
Dualizing Complexes, Section 12.

Let K ∈ D(A). Let f ∈ A. We denote T (K, f) a derived limit of the system

. . .→ K
f−→ K

f−→ K

in D(A).

Lemma 91.1. Let A be a ring. Let f ∈ A. Let K ∈ D(A). The following are equiva-
lent

(1) ExtnA(Af ,K) = 0 for all n,
(2) HomD(A)(E,K) = 0 for all E in D(Af ),
(3) T (K, f) = 0,
(4) for every p ∈ Z we have T (Hp(K), f) = 0,
(5) for every p ∈ Z we have HomA(Af ,Hp(K)) = 0 and Ext1

A(Af ,Hp(K)) = 0,
(6) RHomA(Af ,K) = 0,
(7) the map

∏
n≥0 K →

∏
n≥0 K , (x0, x1, . . .) 7→ (x0 − fx1, x1 − fx2, . . .) is an

isomorphism in D(A), and
(8) add more here.

Proof. It is clear that (2) implies (1) and that (1) is equivalent to (6). Assume (1). Let
I• be a K-injective complex of A-modules representing K. Condition (1) signifies that
HomA(Af , I•) is acyclic. Let M• be a complex of Af -modules representing E. Then

HomD(A)(E,K) = HomK(A)(M•, I•) = HomK(Af )(M•,HomA(Af , I•))
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by Algebra, Lemma 14.4. As HomA(Af , I•) is a K-injective complex of Af -modules by
Lemma 56.3 the fact that it is acyclic implies that it is homotopy equivalent to zero (De-
rived Categories, Lemma 31.2). Thus we get (2).

A free resolution of the A-module Af is given by

0→
⊕

n∈N
A→

⊕
n∈N

A→ Af → 0

where the first map sends the (a0, a1, a2, . . .) to (a0, a1 − fa0, a2 − fa1, . . .) and the
second map sends (a0, a1, a2, . . .) to a0 + a1/f + a2/f

2 + . . .. Applying HomA(−, I•)
we get

0→ HomA(Af , I•)→
∏

I• →
∏

I• → 0

Since
∏
I• represents

∏
n≥0 K this proves the equivalence of (1) and (7). On the other

hand, by construction of derived limits in Derived Categories, Section 34 the displayed
exact sequence shows the object T (K, f) is a representative ofRHomA(Af ,K) inD(A).
Thus the equivalence of (1) and (3).

There is a spectral sequence

Ep,q2 = ExtpA(Af ,Hq(K))⇒ Extp+q
A (Af ,K)

See Equation (67.0.1). This spectral sequence degenerates at E2 because Af has a length
1 resolution by projective A-modules (see above) hence the E2-page has only 2 nonzero
columns. Thus we obtain short exact sequences

0→ Ext1
A(Af ,Hp−1(K))→ ExtpA(Af ,K)→ HomA(Af ,Hp(K))→ 0

This proves (4) and (5) are equivalent to (1). �

Lemma 91.2. LetA be a ring. LetK ∈ D(A). The set I of f ∈ A such thatT (K, f) =
0 is a radical ideal of A.

Proof. We will use the results of Lemma 91.1 without further mention. If f ∈ I ,
and g ∈ A, then Agf is an Af -module hence ExtnA(Agf ,K) = 0 for all n, hence gf ∈ I .
Suppose f, g ∈ I . Then there is a short exact sequence

0→ Af+g → Af(f+g) ⊕Ag(f+g) → Agf(f+g) → 0

because f, g generate the unit ideal in Af+g . This follows from Algebra, Lemma 24.2 and
the easy fact that the last arrow is surjective. From the long exact sequence of Ext and
the vanishing of ExtnA(Af(f+g),K), ExtnA(Ag(f+g),K), and ExtnA(Agf(f+g),K) for all
nwe deduce the vanishing of ExtnA(Af+g,K) for all n. Finally, if fn ∈ I for some n > 0,
then f ∈ I because T (K, f) = T (K, fn) or because Af ∼= Afn . �

Lemma 91.3. Let A be a ring. Let I ⊂ A be an ideal. Let M be an A-module.
(1) If M is I-adically complete, then T (M,f) = 0 for all f ∈ I .
(2) Conversely, if T (M,f) = 0 for all f ∈ I and I is finitely generated, then M →

limM/InM is surjective.

Proof. Proof of (1). Assume M is I-adically complete. By Lemma 91.1 it suffices
to prove Ext1

A(Af ,M) = 0 and HomA(Af ,M) = 0. Since M = limM/InM and
since HomA(Af ,M/InM) = 0 it follows that HomA(Af ,M) = 0. Suppose we have an
extension

0→M → E → Af → 0
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For n ≥ 0 pick en ∈ E mapping to 1/fn. Set δn = fen+1 − en ∈M for n ≥ 0. Replace
en by

e′
n = en + δn + fδn+1 + f2δn+2 + . . .

The infinite sum exists asM is complete with respect to I and f ∈ I . A simple calculation
shows that fe′

n+1 = e′
n. Thus we get a splitting of the extension by mapping 1/fn to e′

n.

Proof of (2). Assume that I = (f1, . . . , fr) and that T (M,fi) = 0 for i = 1, . . . , r. By
Algebra, Lemma 96.7 we may assume I = (f) and T (M,f) = 0. Let xn ∈ M for n ≥ 0.
Consider the extension

0→M → E → Af → 0
given by

E = M ⊕
⊕

Aen

/
〈xn − fen+1 + en〉

mapping en to 1/fn in Af (see above). By assumption and Lemma 91.1 this extension is
split, hence we obtain an element x+ e0 which generates a copy of Af in E. Then

x+ e0 = x− x0 + fe1 = x− x0 − fx1 + f2e2 = . . .

SinceM/fnM = E/fnE by the snake lemma, we see thatx = x0+fx1+. . .+fn−1xn−1
modulo fnM . In other words, the map M → limM/fnM is surjective as desired. �

Motivated by the results above we make the following definition.

Definition 91.4. Let A be a ring. Let K ∈ D(A). Let I ⊂ A be an ideal. We say
K is derived complete with respect to I if for every f ∈ I we have T (K, f) = 0. If M
is an A-module, then we say M is derived complete with respect to I if M [0] ∈ D(A) is
derived complete with respect to I .

The full subcategory Dcomp(A) = Dcomp(A, I) ⊂ D(A) consisting of derived complete
objects is a strictly full, saturated triangulated subcategory, see Derived Categories, Defini-
tions 3.4 and 6.1. By Lemma 91.2 the subcategoryDcomp(A, I) depends only on the radical√
I of I , in other words it depends only on the closed subset Z = V (I) of Spec(A). The

subcategoryDcomp(A, I) is preserved under products and homotopy limits inD(A). But
it is not preserved under countable direct sums in general. We will often simply say M is
a derived complete module if the choice of the ideal I is clear from the context.

Proposition 91.5. Let I ⊂ A be a finitely generated ideal of a ring A. Let M be an
A-module. The following are equivalent

(1) M is I-adically complete, and
(2) M is derived complete with respect to I and

⋂
InM = 0.

Proof. This is clear from the results of Lemma 91.3. �

The next lemma shows that the category C of derived complete modules is abelian. It turns
out that C is not a Grothendieck abelian category, see Examples, Section 11.

Lemma 91.6. Let I be an ideal of a ring A.
(1) The derived complete A-modules form a weak Serre subcategory C of ModA.
(2) DC(A) ⊂ D(A) is the full subcategory of derived complete objects.

Proof. Part (2) is immediate from Lemma 91.1 and the definitions. For part (1), sup-
pose that M → N is a map of derived complete modules. Denote K = (M → N) the
corresponding object of D(A). Pick f ∈ I . Then ExtnA(Af ,K) is zero for all n because
ExtnA(Af ,M) and ExtnA(Af , N) are zero for all n. Hence K is derived complete. By (2)
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we see that Ker(M → N) and Coker(M → N) are objects of C. Finally, suppose that
0 → M1 → M2 → M3 → 0 is a short exact sequence of A-modules and M1, M3 are de-
rived complete. Then it follows from the long exact sequence of Ext’s that M2 is derived
complete. Thus C is a weak Serre subcategory by Homology, Lemma 10.3. �

We will generalize the following lemma in Lemma 91.19.

Lemma 91.7. Let I be a finitely generated ideal of a ring A. Let M be a derived
complete A-module. If M/IM = 0, then M = 0.

Proof. Assume that M/IM is zero. Let I = (f1, . . . , fr). Let i < r be the largest
integer such that N = M/(f1, . . . , fi)M is nonzero. If i does not exist, then M = 0
which is what we want to show. Then N is derived complete as a cokernel of a map
between derived complete modules, see Lemma 91.6. By our choice of i we have that
fi+1 : N → N is surjective. Hence

lim(. . .→ N
fi+1−−−→ N

fi+1−−−→ N)
is nonzero, contradicting the derived completeness of N . �

If the ring is I-adically complete, then one obtains an ample supply of derived complete
complexes.

Lemma 91.8. Let A be a ring and I ⊂ A an ideal. If A is derived complete (eg.
I-adically complete) then any pseudo-coherent object of D(A) is derived complete.

Proof. (Lemma 91.3 explains the parenthetical statement of the lemma.) Let K be a
pseudo-coherent object of D(A). By definition this means K is represented by a bounded
above complex K• of finite free A-modules. Since A is derived complete it follows that
Hn(K) is derived complete for all n, by part (1) of Lemma 91.6. This in turn implies that
K is derived complete by part (2) of the same lemma. �

Lemma 91.9. LetA be a ring. Let f, g ∈ A. Then forK ∈ D(A) we haveRHomA(Af , RHomA(Ag,K)) =
RHomA(Afg,K).

Proof. This follows from Lemma 73.1. �

Lemma 91.10. Let I be a finitely generated ideal of a ring A. The inclusion functor
Dcomp(A, I) → D(A) has a left adjoint, i.e., given any object K of D(A) there exists a
map K → K∧ of K into a derived complete object of D(A) such that the map

HomD(A)(K∧, E) −→ HomD(A)(K,E)
is bijective whenever E is a derived complete object of D(A). In fact, if I is generated by
f1, . . . , fr ∈ A, then we have

K∧ = RHom
(

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ),K
)

functorially in K.

Proof. Define K∧ by the last displayed formula of the lemma. There is a map of
complexes

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) −→ A

which induces a map K → K∧. It suffices to prove that K∧ is derived complete and that
K → K∧ is an isomorphism if K is derived complete.
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Let f ∈ A. By Lemma 91.9 the object RHomA(Af ,K∧) is equal to

RHom
(

(Af →
∏

i0
Affi0 →

∏
i0<i1

Affi0fi1 → . . .→ Aff1...fr ),K
)

If f ∈ I , then f1, . . . , fr generate the unit ideal in Af , hence the extended alternating
Čech complex

Af →
∏

i0
Affi0 →

∏
i0<i1

Affi0fi1 → . . .→ Aff1...fr

is zero in D(A) by Lemma 29.5. (In fact, if f = fi for some i, then this complex is homo-
topic to zero by Lemma 29.4; this is the only case we need.) HenceRHomA(Af ,K∧) = 0
and we conclude that K∧ is derived complete by Lemma 91.1.

Conversely, ifK is derived complete, thenRHomA(Af ,K) is zero for all f = fi0 . . . fip ,
p ≥ 0. Thus K → K∧ is an isomorphism in D(A). �

Remark 91.11. Let A be a ring and let I ⊂ A be a finitely generated ideal. The left
adjoint to the inclusion functor Dcomp(A, I) → D(A) which exists by Lemma 91.10 is
called the derived completion. To indicate this we will say “let K∧ be the derived com-
pletion of K”. Please keep in mind that the unit of the adjunction is a functorial map
K → K∧.

Lemma 91.12. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let K• be
a complex of A-modules such that f : K• → K• is an isomorphism for some f ∈ I , i.e.,
K• is a complex of Af -modules. Then the derived completion of K• is zero.

Proof. Indeed, in this case theRHomA(K,L) is zero for any derived complete com-
plex L, see Lemma 91.1. Hence K∧ is zero by the universal property in Lemma 91.10. �

Lemma 91.13. LetA be a ring and let I ⊂ A be a finitely generated ideal. LetK,L ∈
D(A). Then

RHomA(K,L)∧ = RHomA(K,L∧) = RHomA(K∧, L∧)

Proof. By Lemma 91.10 we know that derived completion is given byRHomA(C,−)
for some C ∈ D(A). Then

RHomA(C,RHomA(K,L)) = RHomA(C ⊗L
A K,L)

= RHomA(K,RHomA(C,L))

by Lemma 73.1. This proves the first equation. The map K → K∧ induces a map

RHomA(K∧, L∧)→ RHomA(K,L∧)
which is an isomorphism in D(A) by definition of the derived completion as the left ad-
joint to the inclusion functor. �

Lemma 91.14. Let A be a ring and let I ⊂ A be an ideal. Let (Kn) be an inverse
system of objects of D(A) such that for all f ∈ I and n there exists an e = e(n, f) such
that fe is zero on Kn. Then for K ∈ D(A) the object K ′ = R lim(K ⊗L

A Kn) is derived
complete with respect to I .

Proof. Since the category of derived complete objects is preserved under R lim it
suffices to show that eachK⊗L

AKn is derived complete. By assumption for all f ∈ I there
is an e such that fe is zero onK ⊗L

AKn. Of course this implies that T (K ⊗L
AKn, f) = 0

and we win. �
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Situation 91.15. LetA be a ring. Let I = (f1, . . . , fr) ⊂ A. LetK•
n = K•(A, fn1 , . . . , fnr )

be the Koszul complex on fn1 , . . . , fnr viewed as a cochain complex in degrees −r,−r +
1, . . . , 0. Using the functoriality of Lemma 28.3 we obtain an inverse system

. . .→ K•
3 → K•

2 → K•
1

compatible with the inverse system H0(K•
n) = A/(fn1 , . . . , fnr ) and compatible with the

maps A→ K•
n.

A key feature of the discussion below will use that for m > n the map

K−p
m = ∧p(A⊕r)→ ∧p(A⊕r) = K−p

n

is given by multiplication by fm−n
i1

. . . fm−n
ip

on the basis element ei1 ∧ . . . ∧ eip .

Lemma 91.16. In Situation 91.15. ForK ∈ D(A) the objectK ′ = R lim(K ⊗L
AK

•
n)

is derived complete with respect to I .

Proof. This is a special case of Lemma 91.14 because fni acts by an endomorphism of
K•
n which is homotopic to zero by Lemma 28.6. �

Lemma 91.17. In Situation 91.15. Let K ∈ D(A). The following are equivalent
(1) K is derived complete with respect to I , and
(2) the canonical map K → R lim(K ⊗L

A K
•
n) is an isomorphism of D(A).

Proof. If (2) holds, then K is derived complete with respect to I by Lemma 91.16.
Conversely, assume that K is derived complete with respect to I . Consider the filtrations

K•
n ⊃ σ≥−r+1K

•
n ⊃ σ≥−r+2K

•
n ⊃ . . . ⊃ σ≥−1K

•
n ⊃ σ≥0K

•
n = A

by stupid truncations (Homology, Section 15). Because the construction R lim(K ⊗E) is
exact in the second variable (Lemma 87.11) we see that it suffices to show

R lim
(
K ⊗L

A (σ≥pK
•
n/σ≥p+1K

•
n)
)

= 0
for p < 0. The explicit description of the Koszul complexes above shows that

R lim
(
K ⊗L

A (σ≥pK
•
n/σ≥p+1K

•
n)
)

=
⊕

i1,...,i−p
T (K, fi1 . . . fi−p)

which is zero for p < 0 by assumption on K. �

Lemma 91.18. In Situation 91.15. The functor which sendsK ∈ D(A) to the derived
limit K ′ = R lim(K ⊗L

A K
•
n) is the left adjoint to the inclusion functor Dcomp(A) →

D(A) constructed in Lemma 91.10.

First proof. The assignment K  K ′ is a functor and K ′ is derived complete with
respect to I by Lemma 91.16. By a formal argument (omitted) we see that it suffices to
show K → K ′ is an isomorphism if K is derived complete with respect to I . This is
Lemma 91.17. �

Second proof. Denote K 7→ K∧ the adjoint constructed in Lemma 91.10. By that
lemma we have

K∧ = RHom
(

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ),K
)

In Lemma 29.6 we have seen that the extended alternating Čech complex

A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr
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is a colimit of the Koszul complexes Kn = K(A, fn1 , . . . , fnr ) sitting in degrees 0, . . . , r.
Note that Kn is a finite chain complex of finite free A-modules with dual (as in Lemma
74.15)RHomA(Kn, A) = Kn whereKn is the Koszul cochain complex sitting in degrees
−r, . . . , 0 (as usual). Thus it suffices to show that

RHomA(hocolimKn,K) = R lim(K ⊗L
A Kn)

This follows from Lemma 74.16. �

Lemma 91.19. Let I be a finitely generated ideal of a ring A. Let K be a derived
complete object of D(A). If K ⊗L

A A/I = 0, then K = 0.

Proof. Choose generators f1, . . . , fr of I . DenoteKn the Koszul complex on fn1 , . . . , fnr
over A. Recall that Kn is bounded and that the cohomology modules of Kn are annihi-
lated by fn1 , . . . , fnr and hence by Inr. By Lemma 88.7 we see that K ⊗L

A Kn = 0. Since
K is derived complete by Lemma 91.18 we haveK = R limK⊗L

AKn = 0 as desired. �

As an application of the relationship with the Koszul complex we obtain that derived
completion has finite cohomological dimension.

Lemma 91.20. Let A be a ring and let I ⊂ A be an ideal which can be generated by r
elements. Then derived completion has finite cohomological dimension:

(1) Let K → L be a morphism in D(A) such that Hi(K) → Hi(L) is an isomor-
phism for i ≥ 1 and surjective for i = 0. Then Hi(K∧) → Hi(L∧) is an
isomorphism for i ≥ 1 and surjective for i = 0.

(2) Let K → L be a morphism of D(A) such that Hi(K) → Hi(L) is an isomor-
phism for i ≤ −1 and injective for i = 0. Then Hi(K∧) → Hi(L∧) is an
isomorphism for i ≤ −r − 1 and injective for i = −r.

Proof. Say I is generated by f1, . . . , fr. For any K ∈ D(A) by Lemma 91.18 we
have K∧ = R limK ⊗L

A Kn where Kn is the Koszul complex on fn1 , . . . , fnr and hence
we obtain a short exact sequence

0→ R1 limHi−1(K ⊗L
A Kn)→ Hi(K∧)→ limHi(K ⊗L

A Kn)→ 0
by Lemma 87.4.

Proof of (1). Pick a distinguished triangle K → L → C → K[1]. Then Hi(C) = 0 for
i ≥ 0. SinceKn is sitting in degrees≤ 0 we see thatHi(C⊗L

AKn) = 0 for i ≥ 0 and that
H−1(C ⊗L

A Kn) = H−1(C) ⊗A A/(fn1 , . . . , fnr ) is a system with surjective transition
maps. The displayed equation above shows that Hi(C∧) = 0 for i ≥ 0. Applying the
distinguished triangle K∧ → L∧ → C∧ → K∧[1] we get (1).

Proof of (2). Pick a distinguished triangle K → L → C → K[1]. Then Hi(C) = 0
for i < 0. Since Kn is sitting in degrees −r, . . . , 0 we see that Hi(C ⊗L

A Kn) = 0 for
i < −r. The displayed equation above shows that Hi(C∧) = 0 for i < r. Applying the
distinguished triangle K∧ → L∧ → C∧ → K∧[1] we get (2). �

Lemma 91.21. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let K• be
a filtered complex of A-modules. There exists a canonical spectral sequence (Er, dr)r≥1
of bigraded derived complete A-modules with dr of bidegree (r,−r + 1) and with

Ep,q1 = Hp+q((grpK•)∧)
If the filtration on each Kn is finite, then the spectral sequence is bounded and converges
to H∗((K•)∧).
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Proof. By Lemma 91.10 we know that derived completion is given byRHomA(C,−)
for some C ∈ Db(A). By Lemmas 91.20 and 68.2 we see that C has finite projective di-
mension. Thus we may choose a bounded complex of projective modules P • representing
C. Then

M• = Hom•(P •,K•)
is a complex ofA-modules representing (K•)∧. It comes with a filtration given byF pM• =
Hom•(P •, F pK•). We see that F pM• represents (F pK•)∧ and hence grpM• represents
(grK•)∧. Thus we find our spectral sequence by taking the spectral sequence of the filtered
complex M•, see Homology, Section 24. If the filtration on each Kn is finite, then the fil-
tration on each Mn is finite because P • is a bounded complex. Hence the final statement
follows from Homology, Lemma 24.11. �

Example 91.22. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let K•

be a complex of A-modules. We can apply Lemma 91.21 with F pK• = τ≤−pK
•. Then

we get a bounded spectral sequence

Ep,q1 = Hp+q(H−p(K•)∧[p]) = H2p+q(H−p(K•)∧)

converging to Hp+q((K•)∧). After renumbering p = −j and q = i + 2j we find that
for any K ∈ D(A) there is a bounded spectral sequence (E′

r, d
′
r)r≥2 of bigraded derived

complete modules with d′
r of bidegree (r,−r + 1), with

(E′
2)i,j = Hi(Hj(K)∧)

and converging to Hi+j(K∧).

Lemma 91.23. Let A → B be a ring map. Let I ⊂ A be an ideal. The inverse image
of Dcomp(A, I) under the restriction functor D(B)→ D(A) is Dcomp(B, IB).

Proof. Using Lemma 91.2 we see that L ∈ D(B) is in Dcomp(B, IB) if and only if
T (L, f) is zero for every local section f ∈ I . Observe that the cohomology of T (L, f) is
computed in the category of abelian groups, so it doesn’t matter whether we think of f as
an element of A or take the image of f in B. The lemma follows immediately from this
and the definition of derived complete objects. �

Lemma 91.24. Let A→ B be a ring map. Let I ⊂ A be a finitely generated ideal. If
A→ B is flat and A/I ∼= B/IB, then the restriction functor D(B)→ D(A) induces an
equivalence Dcomp(B, IB)→ Dcomp(A, I).

Proof. Choose generators f1, . . . , fr of I . Denote Č•
A → Č•

B the quasi-isomorphism
of extended alternating Čech complexes of Lemma 89.4. LetK ∈ Dcomp(A, I). Let I• be a
K-injective complex ofA-modules representingK. Since ExtnA(Af ,K) and ExtnA(Bf ,K)
are zero for all f ∈ I and n ∈ Z (Lemma 91.1) we conclude that Č•

A → A and Č•
B → B

induce quasi-isomorphisms

I• = HomA(A, I•) −→ Tot(HomA(Č•
A, I

•))

and
HomA(B, I•) −→ Tot(HomA(Č•

B , I
•))

Some details omitted. Since Č•
A → Č•

B is a quasi-isomorphism and I• is K-injective we
conclude that HomA(B, I•)→ I• is a quasi-isomorphism. As the complex HomA(B, I•)
is a complex of B-modules we conclude that K is in the image of the restriction map, i.e.,
the functor is essentially surjective
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In fact, the argument shows thatF : Dcomp(A, I)→ Dcomp(B, IB),K 7→ HomA(B, I•)
is a left inverse to restriction. Finally, suppose that L ∈ Dcomp(B, IB). Represent L by
a K-injective complex J• of B-modules. Then J• is also K-injective as a complex of A-
modules (Lemma 56.1) hence F (restriction of L) = HomA(B, J•). There is a map J• →
HomA(B, J•) of complexes ofB-modules, whose composition with HomA(B, J•)→ J•

is the identity. We conclude that F is also a right inverse to restriction and the proof is
finished. �

92. The category of derived complete modules

Let A be a ring and let I be an ideal. Denote C the category of derived complete mod-
ules, see Definition 91.4. In this section we discuss some properties of this category. In
Examples, Section 11 we show that C isn’t a Grothendieck abelian category in general.

By Lemma 91.6 the category C is abelian and the inclusion functor C →ModA is exact.

Since Dcomp(A) ⊂ D(A) is closed under products (see discussion following Definition
91.4) and since products in D(A) are computed on the level of complexes, we see that C
has products which agree with products in ModA. Thus C in fact has arbitrary limits and
the inclusion functor C →ModA commutes with them, see Categories, Lemma 14.11.

Assume I is finitely generated. Let ∧ : D(A) → D(A) denote the derived completion
functor of Lemma 91.10. Let us show the functor

ModA −→ C, M 7−→ H0(M∧)

is a left adjoint to the inclusion functor C → ModA. Note that Hi(M∧) = 0 for i > 0
for example by Lemma 91.20. Hence, if N is a derived complete A-module, then we have

HomC(H0(M∧), N) = HomDcomp(A)(M∧, N)
= HomD(A)(M,N)
= HomA(M,N)

as desired.

Let T be a preordered set and let t 7→Mt be a system of derived complete A-modules, i.e.,
a system over T in C , see Categories, Section 21. Denote colimt∈T Mt the colimit of the
system in ModA. It follows formally from the above that

H0((colimt∈T Mt)∧)

is the colimit of the system in C. In this way we see that C has all colimits. In general the
inclusion functor C →ModA will not commute with colimits, see Examples, Section 11.

Lemma 92.1. Let A be a ring and let I ⊂ A be an ideal. The category C of derived
complete modules is abelian, has arbitrary limits, and the inclusion functorF : C →ModA
is exact and commutes with limits. If I is finitely generated, then C has arbitrary colimits
and F has a left adjoint

Proof. This summarizes the discussion above. �



93. DERIVED COMPLETION FOR A PRINCIPAL IDEAL 1465

93. Derived completion for a principal ideal

In this section we discuss what happens with derived completion when the ideal is gener-
ated by a single element.

Lemma 93.1. Let A be a ring. Let f ∈ A. If there exists an integer c ≥ 1 such that
A[f c] = A[f c+1] = A[f c+2] = . . . (for example if A is Noetherian), then for all n ≥ 1
there exist maps

(A fn−−→ A) −→ A/(fn), and A/(fn+c) −→ (A fn−−→ A)
in D(A) inducing an isomorphism of the pro-objects {A/(fn)} and {(fn : A → A)} in
D(A).

Proof. The first displayed arrow is obvious. We can define the second arrow of the
lemma by the diagram

A/A[f c]
fn+c

//

fc

��

A

1
��

A
fn // A

Since the top horizontal arrow is injective the complex in the top row is quasi-isomorphic
to A/fn+cA. We omit the calculation of compositions needed to show the statement on
pro objects. �

Lemma 93.2. Let A be a ring and f ∈ A. Set I = (f). In this situation we have the
naive derived completion K 7→ K ′ = R lim(K ⊗L

A A/f
nA) and the derived completion

K 7→ K∧ = R lim(K ⊗L
A (A fn−−→ A))

of Lemma 91.18. The natural transformation of functors K∧ → K ′ is an isomorphism if
and only if the f -power torsion of A is bounded.

Proof. If the f -power torsion is bounded, then the pro-objects {(fn : A→ A)} and
{A/fnA} are isomorphic by Lemma 93.1. Hence the functors are isomorphic by Lemma
86.11. Conversely, we see from Lemma 87.11 that the condition is exactly that

R lim(K ⊗L
A A[fn])

is zero for allK ∈ D(A). Here the maps of the system (A[fn]) are given by multiplication
by f . Taking K = A and K =

⊕
i∈N A we see from Lemma 86.14 this implies (A[fn])

is zero as a pro-object, i.e., fn−1A[fn] = 0 for some n, i.e., A[fn−1] = A[fn], i.e., the
f -power torsion is bounded. �

Example 93.3. Let A be a ring. Let f ∈ A be a nonzerodivisor. An example to keep
in mind is A = Zp and f = p. Let M be an A-module. Claim: M is derived complete
with respect to f if and only if there exists a short exact sequence

0→ K → L→M → 0
where K,L are f -adically complete modules whose f -torsion is zero. Namely, if there is
a such a short exact sequence, then

M ⊗L
A (A fn−−→ A) = (K/fnK → L/fnL)

because f is a nonzerodivisor onK and L and we conclude thatR lim(M ⊗L
A (A fn−−→ A))

is quasi-isomorphic toK → L, i.e., M . This shows thatM is derived complete by Lemma
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91.17. Conversely, suppose that M is derived complete. Choose a surjection F → M
where F is a free A-module. Since f is a nonzerodivisor on F the derived completion of
F is L = limF/fnF . Note that L is f -torsion free: if (xn) with xn ∈ F represents
an element ξ of L and fξ = 0, then xn = xn+1 + fnzn and fxn = fnyn for some
zn, yn ∈ F . Then fnyn = fxn = fxn+1 + fn+1zn = fn+1yn+1 + fn+1zn and since f
is a nonzerodivisor on F we see that yn ∈ fF which implies that xn ∈ fnF , i.e., ξ = 0.
Since L is the derived completion, the universal property gives a map L → M factoring
F → M . Let K = Ker(L → M) be the kernel. Again K is f -torsion free, hence the
derived completion of K is limK/fnK. On the other hand, both M and L are derived
complete, hence K is too by Lemma 91.6. It follows that K = limK/fnK and the claim
is proved.

Example 93.4. Let p be a prime number. Consider the map Zp[x]→ Zp[y] of poly-
nomial algebras sending x to py. Consider the cokernel M = Coker(Zp[x]∧ → Zp[y]∧)
of the induced map on (ordinary) p-adic completions. Then M is a derived complete Zp-
module by Proposition 91.5 and Lemma 91.6; see also discussion in Example 93.3. How-
ever, M is not p-adically complete as 1 + py + p2y2 + . . . maps to a nonzero element of
M which is contained in

⋂
pnM .

Example 93.5. LetA be a ring and let f ∈ A. DenoteK 7→ K∧ the derived comple-
tion with respect to (f). Let M be an A-module. Using that

M∧ = R lim(M fn−−→M)

by Lemma 91.18 and using Lemma 87.4 we obtain

H−1(M∧) = limM [fn] = Tf (M)

the f -adic Tate module of M . Here the maps M [fn] → M [fn−1] are given by multipli-
cation by f . Then there is a short exact sequence

0→ R1 limM [fn]→ H0(M∧)→ limM/fnM → 0

describing H0(M∧). We have H1(M∧) = R1 limM/fnM = 0 as the transition maps
are surjective (Lemma 87.1). All the other cohomologies ofM∧ are zero for trivial reasons.
Finally, for K ∈ D(A) and p ∈ Z there is a short exact sequence

0→ H0(Hp(K)∧)→ Hp(K∧)→ Tf (Hp+1(K))→ 0

This follows from the spectral sequence of Example 91.22 because it degenerates at E2 (as
only i = −1, 0 give nonzero terms); the next lemma gives more information.
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Lemma 93.6. Let A be a ring and let f ∈ A. Let K be an object of D(A). Denote
Kn = K ⊗L

A (A fn−−→ A). For all p ∈ Z there is a commutative diagram

0 0

0 // Ĥp(K) //

OO

limHp(Kn) //

OO

Tf (Hp+1(K)) // 0

0 // H0(Hp(K)∧) //

OO

Hp(K∧) //

OO

Tf (Hp+1(K)) // 0

R1 limHp(K)[fn]

OO

∼= // R1 limHp−1(Kn)

OO

0

OO

0

OO

with exact rows and columns where Ĥp(K) = limHp(K)/fnHp(K) is the usual f -adic
completion. The left vertical short exact sequence and the middle horizontal short exact
sequence are taken from Example 93.5 The middle vertical short exact sequence is the one
from Lemma 87.4.

Proof. To construct the top horizontal short exact sequence, observe that we have
the following inverse system short exact sequences

0→ Hp(K)/fnHp(K)→ Hp(Kn)→ Hp+1(K)[fn]→ 0

coming from the construction of Kn as a shift of the cone on fn : K → K. Taking the
inverse limit of these we obtain the top horizontal short exact sequence, see Homology,
Lemma 31.3.

Let us prove that we have a commutative diagram as in the lemma. We consider the map
L = τ≤pK → K. Setting Ln = L ⊗L

A (A fn−−→ A) we obtain a map (Ln) → (Kn) of
inverse systems which induces a map of short exact sequences

0 0

limHp(Ln) //

OO

limHp(Kn)

OO

Hp(L∧) //

OO

Hp(K∧)

OO

R1 limHp−1(Ln) //

OO

R1 limHp−1(Kn)

OO

0

OO

0

OO
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Since Hi(L) = 0 for i > p and Hp(L) = Hp(K), a computation using the references
in the statement of the lemma shows that Hp(L∧) = H0(Hp(K)∧) and that Hp(Ln) =
Hp(K)/fnHp(K). On the other hand, we have Hp−1(Ln) = Hp−1(Kn) and hence
we see that we get the isomorphism as indicated in the statement of the lemma since we
already know the kernel of H0(Hp(K)∧)→ Ĥp(K) is equal to R1 limHp(K)[fn]. We
omit the verification that the rightmost square in the diagram commutes if we define the
top row by the construction in the first paragraph of the proof. �

Remark 93.7. With notation as in Lemma 93.6 we also see that the inverse system
Hp(Kn) has ML if and only if the inverse system Hp+1(K)[fn] has ML. This follows
from the inverse system of short exact sequences 0→ Hp(K)/fnHp(K)→ Hp(Kn)→
Hp+1(K)[fn] → 0 (see proof of the lemma) combined with Homology, Lemma 31.3 and
Lemma 86.13.

Lemma 93.8 (Bhatt). Let I be a finitely generated ideal in a ringA. LetM be a derived
complete A-module. If M is an I-power torsion module, then InM = 0 for some n.

Proof. Say I = (f1, . . . , fr). It suffices to show that for each i there is anni such that
fnii M = 0. Hence we may assume that I = (f) is a principal ideal. Let B = Z[x] → A
be the ring map sending x to f . By Lemma 91.23 we see that M is derived complete as a
B-module with respect to the ideal (x). After replacing A by B, we may assume that f is
a nonzerodivisor in A.
Assume I = (f) with f ∈ A a nonzerodivisor. According to Example 93.3 there exists a
short exact sequence

0→ K
u−→ L→M → 0

whereK and L are I-adically completeA-modules whose f -torsion is zero11. ConsiderK
and L as topological modules with the I-adic topology. Then u is continuous. Let

Ln = {x ∈ L | fnx ∈ u(K)}
Since M is f -power torsion we see that L =

⋃
Ln. Let Nn be the closure of Ln in L. By

Lemma 36.4 we see that Nn is open in L for some n. Fix such an n. Since fn+m : L→ L
is a continuous open map, and since fn+mLn ⊂ u(fmK) we conclude that the closure of
u(fmK) is open for all m ≥ 1. Thus by Lemma 36.5 we conclude that u is open. Hence
f tL ⊂ Im(u) for some t and we conclude that f t annihilates M as desired. �

Lemma 93.9. Let f ∈ A be an element of a ring. Set J =
⋂
fnA. Let M be an

A-module derived complete with respect to f . Then JM ′ = 0 where M ′ = Ker(M →
limM/fnM). In particular, if A is derived complete then J is an ideal of square zero.

Proof. Take x ∈ M ′ and g ∈ J . For every n ≥ 1 we may write x = fnxn. Since g
is in fnA we see that the element yn = gxn in M ′ is independent of the choice of xn. In
particular, we may take xn = fxn+1 and we find that yn = fyn+1. Thus we obtain a map
Af →M sending 1/fn to yn. This map has to be zero as M is derived complete (Lemma
91.1) and hence yn = 0 for all n. Since gx = gfx1 = fy1 this completes the proof. �

Lemma 93.10. Let A be a ring derived complete with respect to an ideal I . Then
(A, I) is a henselian pair.

11For the proof it is enough to show that there exists a sequence K u−→ L → M → 0 where K and L are
I-adically complete A-modules. This can be shown by choosing a presentation F1 → F0 → M → 0 with Fi
free and then setting K and L equal to the f -adic completions of F1 and F0. Namely, as f is a nonzerodivisor
these completions will be the derived completions and the sequence will remain exact.
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Proof. Let f ∈ I . By Lemma 11.15 it suffices to show that (A, fA) is a henselian
pair. Observe that A is derived complete with respect to fA (follows immediately from
Definition 91.4). By Lemma 91.3 the map from A to the f -adic completion A′ of A is
surjective. By Lemma 11.4 the pair (A′, fA′) is henselian. Thus it suffices to show that
(A,

⋂
fnA) is a henselian pair, see Lemma 11.9. This follows from Lemmas 93.9 and 11.2.

�

Lemma 93.11. Let A be a ring derived complete with respect to an ideal I . Set J =⋂
In. If I can be generated by r elements then JN = 0 where N = 2r.

Proof. When r = 1 this is Lemma 93.9. Say I = (f1, . . . , fr) with r > 1. By
Lemma 91.6 the ring At = A/f trA is derived complete with respect to I and hence a
fortiori derived complete with respect to It = (f1, . . . , fr−1)At. Observe that A → At

sends J into Jt =
⋂
Int . By induction JN/2

t = 0 with N = 2r. The ideal
⋂

Ker(A →
At) =

⋂
f trA has square zero by the case r = 1. This finishes the proof. �

Lemma 93.12. Let A be a reduced ring derived complete with respect to a finitely
generated ideal I . Then A is I-adically complete.

Proof. Follows from Lemma 93.11 and Proposition 91.5. �

94. Derived completion for Noetherian rings

LetA be a ring and let I ⊂ A be an ideal. For anyK ∈ D(A) we can consider the derived
limit

K ′ = R lim(K ⊗L
A A/I

n)
This is a functor in K , see Remark 87.10. The system of maps A → A/In induces a map
K → K ′ andK ′ is derived complete with respect to I (Lemma 91.14). This “naive” derived
completion construction does not agree with the adjoint of Lemma 91.10 in general. For
example, ifA = Zp⊕Qp/Zp with the second summand an ideal of square zero,K = A[0],
and I = (p), then the naive derived completion gives Zp[0], but the construction of Lemma
91.10 gives K∧ ∼= Zp[1]⊕ Zp[0] (computation omitted). Lemma 93.2 characterizes when
the two functors agree in the case I is generated by a single element.
The main goal of this section is the show that the naive derived completion is equal to
derived completion if A is Noetherian.

Lemma 94.1. In Situation 91.15. If A is Noetherian, then the pro-objects {K•
n} and

{A/(fn1 , . . . , fnr )} of D(A) are isomorphic12.

Proof. We have an inverse system of distinguished triangles
τ≤−1K

•
n → K•

n → A/(fm1 , . . . , fmr )→ (τ≤−1K
•
n)[1]

See Derived Categories, Remark 12.4. By Derived Categories, Lemma 42.4 it suffices to
show that the inverse system τ≤−1K

•
n is pro-zero. Recall thatK•

n has nonzero terms only
in degrees iwith−r ≤ i ≤ 0. Thus by Derived Categories, Lemma 42.3 it suffices to show
that Hp(K•

n) is pro-zero for p ≤ −1. In other words, for every n ∈ N we have to show
there exists an m ≥ n such that Hp(K•

m) → Hp(K•
n) is zero. Since A is Noetherian, we

see that
Hp(K•

n) = Ker(Kp
n → Kp+1

n )
Im(Kp−1

n → Kp
n)

12In particular, for every n there exists an m ≥ n such that K•
m → K•

n factors through the map K•
m →

A/(fm1 , . . . , fmr ).
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is a finite A-module. Moreover, the map Kp
m → Kp

n is given by a diagonal matrix whose
entries are in the ideal (fm−n

1 , . . . , fm−n
r ) as p < 0. Note that Hp(K•

n) is annihilated
by J = (fn1 , . . . , fnr ), see Lemma 28.6. Now (fm−n

1 , . . . , fm−n
r ) ⊂ J t for m − n ≥ tn.

Thus by Algebra, Lemma 51.2 (Artin-Rees) applied to the ideal J and the moduleM = Kp
n

with submodule N = Ker(Kp
n → Kp+1

n ) for m large enough the image of Kp
m → Kp

n

intersected with Ker(Kp
n → Kp+1

n ) is contained in J Ker(Kp
n → Kp+1

n ). For such m we
get the zero map. �

Proposition 94.2. Let A be a Noetherian ring. Let I ⊂ A be an ideal. The functor
which sends K ∈ D(A) to the derived limit K ′ = R lim(K ⊗L

A A/I
n) is the left adjoint

to the inclusion functor Dcomp(A)→ D(A) constructed in Lemma 91.10.

Proof. Say (f1, . . . , fr) = I and let K•
n be the Koszul complex with respect to

fn1 , . . . , f
n
r . By Lemma 91.18 it suffices to prove that

R lim(K ⊗L
A K

•
n) = R lim(K ⊗L

A A/(fn1 , . . . , fnr )) = R lim(K ⊗L
A A/I

n).
By Lemma 94.1 the pro-objects {K•

n} and {A/(fn1 , . . . , fnr )} of D(A) are isomorphic. It
is clear that the pro-objects {A/(fn1 , . . . , fnr )} and {A/In} are isomorphic. Thus the map
from left to right is an isomorphism by Lemma 87.12. �

Lemma 94.3. Let I be an ideal of a Noetherian ring A. Let M be an A-module with
derived completion M∧. Then there are short exact sequences

0→ R1 lim TorAi+1(M,A/In)→ H−i(M∧)→ lim TorAi (M,A/In)→ 0
A similar result holds for M ∈ D−(A).

Proof. Immediate consequence of Proposition 94.2 and Lemma 87.4. �

As an application of the proposition above we identify the derived completion in the Noe-
therian case for pseudo-coherent complexes.

Lemma 94.4. Let A be a Noetherian ring and I ⊂ A an ideal. Let K be an object of
D(A) such that Hn(K) a finite A-module for all n ∈ Z. Then the cohomology modules
Hn(K∧) of the derived completion are the I-adic completions of the cohomology modules
Hn(K).

Proof. The complex τ≤mK is pseudo-coherent for all m by Lemma 64.17. Thus
τ≤mK is represented by a bounded above complex P • of finite free A-modules. Then
τ≤mK ⊗L

A A/I
n = P •/InP •. Hence (τ≤mK)∧ = R limP •/InP • (Proposition 94.2)

and since theR lim is just given by termwise lim (Lemma 87.1) and since I-adic completion
is an exact functor on finiteA-modules (Algebra, Lemma 97.2) we conclude the result holds
for τ≤mK. Hence the result holds for K as derived completion has finite cohomological
dimension, see Lemma 91.20. �

Lemma 94.5. Let I be an ideal of a Noetherian ring A. Let M be a derived complete
A-module. If M/IM is a finite A/I-module, then M = limM/InM and M is a finite
A∧-module.

Proof. Assume M/IM is finite. Pick x1, . . . , xt ∈ M which map to generators of
M/IM . We obtain a map A⊕t → M mapping the ith basis vector to xi. By Proposition
94.2 the derived completion of A is A∧ = limA/In. As M is derived complete, we see
that our map factors through a map q : (A∧)⊕t → M . The module Coker(q) is zero by
Lemma 91.7. Thus M is a finite A∧-module. Since A∧ is Noetherian and complete with
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respect to IA∧, it follows thatM is I-adically complete (use Algebra, Lemmas 97.5, 96.11,
and 51.2). �

Lemma 94.6. Let I be an ideal in a Noetherian ring A.
(1) If M is a finite A-module and N is a flat A-module, then the derived I-adic

completion of M ⊗A N is the usual I-adic completion of M ⊗A N .
(2) If M is a finite A-module and f ∈ A, then the derived I-adic completion of Mf

is the usual I-adic completion of Mf .

Proof. For an A-module M denote M∧ the derived completion and limM/InM

the usual completion. Assume M is finite. The system TorAi (M,A/In) is pro-zero for
i > 0, see Lemma 27.3. Since TorAi (M ⊗A N,A/In) = TorAi (M,A/In) ⊗A N as N is
flat, the same is true for the system TorAi (M ⊗A N,A/In). By Lemma 94.3 we conclude
R lim(M⊗AN)⊗L

AA/I
n only has cohomology in degree 0 given by the usual completion

limM ⊗A N/In(M ⊗A N). This proves (1). Part (2) follows from (1) and the fact that
Mf = M ⊗A Af . �

Lemma 94.7. Let I be an ideal in a Noetherian ring A. Let ∧ denote derived comple-
tion with respect to I . Let K ∈ D−(A).

(1) If M is a finite A-module, then (K ⊗L
AM)∧ = K∧ ⊗L

AM .
(2) If L ∈ D(A) is pseudo-coherent, then (K ⊗L

A L)∧ = K∧ ⊗L
A L.

Proof. Let L be as in (2). We may represent K by a bounded above complex P • of
free A-modules. We may represent L by a bounded above complex F • of finite free A-
modules. Since Tot(P •⊗A F •) representsK ⊗L

A Lwe see that (K ⊗L
A L)∧ is represented

by
Tot((P •)∧ ⊗A F •)

where (P •)∧ is the complex whose terms are the usual = derived completions (Pn)∧, see
for example Proposition 94.2 and Lemma 94.6. This proves (2). Part (1) is a special case
of (2). �

95. An operator introduced by Berthelot and Ogus

In this section we discuss a construction introduced in [?, Section 8] and generalized in [?,
Section 6]. We urge the reader to look at the original papers discussing this notion.

Let A be a ring and let f ∈ A be a nonzerodivisor. If M is a A-module then by Lemma
88.3 following are equivalent

(1) f is a nonzerodivisor on M ,
(2) M [f ] = 0,
(3) M [fn] = 0 for all n ≥ 1, and
(4) the map M →Mf is injective.

If these equivalent conditions hold, then (in this section) we will say M is f -torsion free.
If so, then we denote f iM ⊂ Mf the submodule consisting of elements of the form f ix
with x ∈ M . Of course f iM is isomorphic to M as an A-module. Let M• be a complex
of f -torsion free A-modules with differentials di : M i → M i+1. In this case we define
ηfM

• to be the complex with terms

(ηfM)i = {x ∈ f iM i | di(x) ∈ f i+1M i+1}
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and differential induced by di. Observe that ηfM• is another complex of f -torsion free
A-modules. If a• : M• → N• is a map of complexes of f -torsion free A-modules, then
we obtain a map of complexes

ηfa
• : ηfM• −→ ηfN

•

induced by the maps f iM i → f iN i. The reader checks that we obtain an endo-functor
on the category of complexes of f -torsion free A-modules. If a•, b• : M• → N• are
two maps of complexes of f -torsion free A-modules and h = {hi : M i → N i−1} is
a homotopy between a• and b•, then we define ηfh to be the family of maps (ηfh)i :
(ηfM)i → (ηfN)i−1 which sends x to hi(x); this makes sense as x ∈ f iM i implies
hi(x) ∈ f iN i−1 which is certainly contained in (ηfN)i−1. The reader checks that ηfh is
a homotopy between ηfa• and ηfb•. All in all we see that we obtain a functor

ηf : K(f -torsion free A-modules) −→ K(f -torsion free A-modules)
on the homotopy category (Derived Categories, Section 8) of the additive category of f -
torsion free A-modules. There is no sense in which ηf is an exact functor of triangulated
categories, see Example 95.1.

Example 95.1. Let A be a ring. Let f ∈ A be a nonzerodivisor. Consider the
functor ηf : K(f -torsion free A-modules) → K(f -torsion free A-modules). Let M•

be a complex of f -torsion free A-modules. Multiplication by f defines an isomorphism
ηf (M•[1])→ (ηfM•)[1], so in this sense ηf is compatible with shifts. However, consider
the diagram

A
f
// A

1
// A // 0

0 //

OO

0 //

OO

A
−1 //

f

OO

A

OO

Think of each column as a complex of f -torsion free A-modules with the module on top
in degree 1 and the module under it in degree 0. Then this diagram provides us with
a distinguished triangle in K(f -torsion free A-modules) with triangulated structure as
given in Derived Categories, Section 10. Namely the third complex is the cone of the map
between the first two complexes. However, applying ηf to each column we obtain

fA
f
// fA

1
// fA // 0

0 //

OO

0 //

OO

A
−1 //

f

OO

A

OO

However, the third complex is acyclic and even homotopic to zero. Hence if this were
a distinguished triangle, then the first arrow would have to be an isomorphism in the
homotopy category, which is not true unless f is a unit.

Lemma 95.2. LetA be a ring and let f ∈ A be a nonzerodivisor. LetM• be a complex
of f -torsion free A-modules. There is a canonical isomorphism

f i : Hi(M•)/Hi(M•)[f ] −→ Hi(ηfM•)
given by multiplication by f i.

Proof. Observe that Ker(di : (ηfM)i → (ηfM)i+1) is equal to Ker(di : f iM i →
f iM i+1) = f i Ker(di : M i → M i+1). This we get a surjection f i : Hi(M•) →
Hi(ηfM•) by sending the class of z ∈ Ker(di : M i → M i+1) to the class of f iz. If
we obtain the zero class in Hi(ηfM•) then we see that f iz = di−1(f i−1y) for some y ∈
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M i−1. Since f is a nonzerodivisor on all the modules involved, this means fz = di−1(y)
which exactly means that the class of z is f -torsion as desired. �

Lemma 95.3. Let A be a ring and let f ∈ A be a nonzerodivisor. If M• → N•

is a quasi-isomorphism of complexes of f -torsion free A-modules, then the induced map
ηfM

• → ηfN
• is a quasi-isomorphism too.

Proof. This is true because the isomorphisms of Lemma 95.2 are compatible with
maps of complexes. �

Lemma 95.4. LetA be a ring and let f ∈ A be a nonzerodivisor. There is an additive
functor13 Lηf : D(A) → D(A) such that if M ∈ D(A) is represented by a complex M•

of f -torsion free A-modules, then LηfM = ηfM
• and similarly for morphisms.

Proof. Denote T ⊂ ModA the full subcategory of f -torsion free A-modules. We
have a corresponding inclusion

K(T ) ⊂ K(ModA) = K(A)

of K(T ) as a full triangulated subcategory of K(A). Let S ⊂ Arrows(K(T )) be the
quasi-isomorphisms. We will apply Derived Categories, Lemma 5.8 to show that the map

S−1K(T ) −→ D(A)

is an equivalence of triangulated categories. The lemma shows that it suffices to prove:
given a complexM• ofA-modules, there exists a quasi-isomorphismK• →M• withK•

a complex of f -torsion free modules. By Lemma 59.10 we can find a quasi-isomorphism
K• → M• such that the complex K• is K-flat (we won’t use this) and consists of flat
A-modules Ki. In particular, f is a nonzerodivisor on Ki for all i as desired.

With these preliminaries out of the way we can define Lηf . Namely, by the discussion at
the start of this section we have already a well defined functor

K(T ) ηf−→ K(T )→ K(A)→ D(A)

which according to Lemma 95.3 sends quasi-isomorphisms to quasi-isomorphisms. Hence
this functor factors over S−1K(T ) = D(A) by Categories, Lemma 27.8. �

Remark 95.5. LetA be a ring and let f ∈ A be a nonzerodivisor. LetM• be a complex
of f -torsion freeA-modules. For every i setM i = M i/fM i. DenoteBi ⊂ Zi ⊂M i the
boundaries and cocycles for the differentials on the complex M• = M• ⊗A A/fA. We
claim that there exists a commutative diagram

0 // Bi+1 // Bi+1 ⊕Bi //

s,s′

��

Bi //

��

0

0 // Bi+1 s // (ηfM)i/f(ηfM)i t // Zi // 0

with exact rows. Here are the constructions of the maps

(1) If x ∈ (ηfM)i then x = f ix′ with di(x′) = 0 in M i+1. Hence we can define
the map t by sending x to the class of x′.

13Beware that this functor isn’t exact, i.e., does not transform distinguished triangles into distinguished
triangles. See Example 95.1.
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(2) If y ∈M i+1 has class y inBi+1 ⊂M i+1 then we can write y = fy′ + di(x) for
y′ ∈M i+1 and x ∈M i. Hence we can define the map s sending y to the class of
f i+1x in (ηfM)i/f(ηfM)i; we omit the verification that this is well defined.

(3) If x ∈M i has class x inBi ⊂M i then we can write x = fx′ +di−1(z) for x′ ∈
M i and z ∈M i−1. We define the map s′ by sending x to the class of f idi−1(z)
in (ηfM)i/f(ηfM)i. This is well defined because if fx′ + di−1(z) = 0, then
f ix′ is in (ηfM)i and consequently f idi−1(z) is in f(ηfM)i.

We omit the verification that the lower row in the displayed diagram is a short exact
sequence of modules. It is immediately clear from these constructions that we have com-
mutative diagrams

Bi+1 ⊕Bi

s,s′

��

// Bi+2 ⊕Bi+1

s,s′

��
(ηfM)i/f(ηfM)i // (ηfM)i+1/f(ηfM)i+1

where the upper horizontal arrow is given by the identification of the summandsBi+1 in
source and target. In other words, we have found an acyclic subcomplex of ηfM•/f(ηfM•) =
ηfM

• ⊗A A/fA and the quotient by this subcomplex is a complex whose terms Zi/Bi

are the cohomology modules of the complex M• = M• ⊗A A/fA.

To explain the phenomenon observed in Remark 95.5 in a more canonical manner, we are
going to construct the Bockstein operators. Let A be a ring and let f ∈ A be a nonzero-
divisor. Let M• be a complex of f -torsion free A-modules. For every i ∈ Z there is a
commutative diagram (with tensor products over A)

0 // M• ⊗ f i+1A //

��

M• ⊗ f iA //

��

M• ⊗ f iA/f i+1A // 0

0 // M• ⊗ f i+1A/f i+2A // M• ⊗ f iA/f i+2A // M• ⊗ f iA/f i+1A // 0

whose rows are short exact sequences of complexes. Of course these short exact sequences
for different i are all isomorphic to each other by suitably multiplying with powers of f .
The long exact sequence of cohomology of the bottom sequence in particular determines
the Bockstein operator

β = βi : Hi(M• ⊗ f iA/f i+1A)→ Hi+1(M• ⊗ f i+1A/f i+2A)

for all i ∈ Z. For later use we record here that by the commutative diagram above there
is a factorization

(95.5.1)

Hi(M• ⊗ f iA/f i+1A)
δ

//

β **

Hi+1(M• ⊗ f i+1A)

��
Hi+1(M• ⊗ f i+1A/f i+2A)
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of the Bockstein operator where δ is the boundary operator coming from the top row in
the commutative diagram above. Let us show that we obtain a complex

(95.5.2) H•(M•/f) =



. . .
↓

Hi−1(M• ⊗ f i−1A/f iA)
↓ β

Hi(M• ⊗ f iA/f i+1A)
↓ β

Hi+1(M• ⊗ f i+1A/f i+2A)
↓
. . .


i.e., that β ◦ β = 014. Namely, using the factorization (95.5.1) we see that it suffices to
show that

Hi+1(M•⊗ f i+1A)→ Hi+1(M•⊗ f i+1A/f i+2A) βi+1

−−−→ Hi+2(M•⊗ f i+2A/f i+3A)

is zero. This is true because the kernel ofβi+1 consists of the cohomology classes which can
be lifted to Hi+1(M• ⊗ f i+1A/f i+3A) and those in the image of the first map certainly
can!

Lemma 95.6. LetA be a ring and let f ∈ A be a nonzerodivisor. LetM• be a complex
of f -torsion free A-modules. There is a canonical map of complexes

ηfM
• ⊗A A/fA −→ H•(M•/f)

which is a quasi-isomorphism where the right hand side is the complex (95.5.2).

Proof. Let x ∈ (ηfM)i. Then x = f ix′ ∈ f iM and di(x) = f i+1y ∈ f i+1M i+1.
Thus di maps x′ ⊗ f i to zero in M i+1 ⊗ f iA/f i+1A. All tensor products are over A in
this proof. Hence we may map x to the class of x′ ⊗ f i in Hi(M• ⊗ f iA/f i+1A). It is
clear that this rule defines a map

(ηfM)i ⊗A/fA −→ Hi(M• ⊗ f iA/f i+1A)

ofA/fA-modules. Observe that in the situation above, we may view x′⊗f i as an element
of M i ⊗ f iA/f i+2A with differential di(x′ ⊗ f i) = y ⊗ f i+1. By the construction of β
above we find that β(x′ ⊗ f i) = y ⊗ f i+1 and we conclude that our maps are compatible
with differentials, i.e., we have a map of complexes.

To finish the proof, we observe that the construction given in the previous paragraph
agrees with the maps (ηfM)i ⊗ A/fA → Zi/Bi discussed in Remark 95.5. Since we
have seen that the kernel of these maps is an acyclic subcomplex of ηfM• ⊗ A/fA, the
lemma is proved. �

14An alternative is to argue that β occurs as the differential for the spectral sequence for the complex
(M•)f filtered by the subcomplexes f iM•. Yet another argument, which proves something stronger, is to
first consider the case M• = A. Here the short exact sequences 0 → f i+1A/f i+2A → f iA/f i+2A →
f iA/f i+1A → 0 define maps βi : f iA/f i+1A → f i+1A/f i+2A[1] inD(A). Then one computes (arguing
similarly to the text) that the composition f iA/f i+1A → f i+1A/f i+2A[1] → f i+2A/f i+3A[2] is zero in
D(A). Since M• ⊗ f iA/f i+1A = M• ⊗L f iA/f i+1A by our assumption on M• having f -torsion free
terms, we conclude the compostion

(M• ⊗ f iA/f i+1A) → (M• ⊗ f i+1A/f i+2A)[1] → (M• ⊗ f i+2A/f i+3A)[2]

in D(A) is zero as well.
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Lemma 95.7. LetA be a ring and let f ∈ A be a nonzerodivisor. LetM• be a complex
of f -torsion free A-modules. For i ∈ Z the following are equivalent

(1) Ker(di mod f2) surjects onto Ker(di mod f),
(2) β : Hi(M• ⊗A f iA/f i+1A)→ Hi+1(M• ⊗A f i+1A/f i+2A) is zero.

These equivalent conditions are implied by the condition Hi+1(M•)[f ] = 0.

Proof. The equivalence of (1) and (2) follows from the definition of β as the bound-
ary map on cohomology of a short exact sequence of complexes isomorphic to the short
exact sequence of complexes 0 → fM•/f2M• → M•/f2M• → M•/fM• → 0. If
β 6= 0, then Hi+1(M•)[f ] 6= 0 because of the factorization (95.5.1). �

Lemma 95.8. LetA be a ring and let f ∈ A be a nonzerodivisor. LetM• be a complex
of f -torsion free A-modules. If Ker(di mod f2) surjects onto Ker(di mod f), then the
canonical map

(1, di) : (ηfM)i/f(ηfM)i −→ f iM i/f i+1M i ⊕ f i+1M i+1/f i+2M i+1

identifies the left hand side with a direct sum of submodules of the right hand side.

Proof. With notation as in Remark 95.5 we define a map t−1 : Zi → (ηfM)i/f(ηfM)i.
Namely, for x ∈ M i with di(x) = f2y we send the class of x in Zi to the class of f ix
in (ηfM)i/f(ηfM)i. We omit the verification that this is well defined; the assump-
tion of the lemma exactly signifies that the domain of this operation is all of Zi. Then
t ◦ t−1 = idZi . Hence t−1 defines a splitting of the short exact sequence in Remark 95.5
and the resulting direct sum decomposition

(ηfM)i/f(ηfM)i = Zi ⊕Bi+1

is compatible with the map displayed in the lemma. �

Lemma 95.9. Let A be a ring and let f, g ∈ A be nonzerodivisors. Let M• be a
complex of A-modules such that fg is a nonzerodivisor on all M i. Then ηfηgM

• =
ηfgM

•.

Proof. The statement means that in degree i we obtain the same submodule of the
localization M i

fg = (M i
g)f . We omit the details. �

Lemma 95.10. Let A be a ring and let f ∈ A be a nonzerodivisor. Let A → B be
a flat ring map and let g ∈ B the image of f . Let M• be a complex of f -torsion free
A-modules. Then g is a nonzerodivisor, M•⊗AB is a complex of g-torsion free modules,
and ηfM• ⊗A B = ηg(M• ⊗A B).

Proof. Omitted. �

96. Perfect complexes and the eta operator

In this section we do some algebra to prepare for our version of Macpherson’s graph con-
struction, see More on Flatness, Section 44. We will use the ηf operator introduced in
Section 95.

LetA be a ring and let f ∈ A be a nonzerodivisor. LetM• be a bounded complex of finite
free A-modules. For each i let ri be the rank of M i and set

Ii(M•, f) = ideal generated by the ri × ri-minors of (f, di) : M i →M i ⊕M i+1

Observe that fri ∈ Ii(M•, f).



96. PERFECT COMPLEXES AND THE ETA OPERATOR 1477

Lemma 96.1. Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• and N• be
two bounded complexes of finite free A-modules representing the same object of D(A).
Then

fmIi(M•, f) = fnIi(N•, f)
as ideals of A for integers n,m ≥ 0 such that

m+
∑

j≥i
(−1)j−irk(M j) = n+

∑
j≥i

(−1)j−irk(N j)

Proof. It suffices to prove the equality after localization at every prime ideal of A.
Thus by Lemma 75.7 and an induction argument we omit we may assumeN• = M•⊕Q•

for some trivial complex Q•, i.e.,

Q• = . . .→ 0→ A
1−→ A→ 0→ . . .

whereA is placed in degree j and j+ 1. If j 6= i− 1, i, i+ 1 then we clearly have equality
Ii(M•, f) = Ii(N•, f) and m = n and we have the desired equality. If j = i + 1 then
the maps

(f, di) : M i →M i ⊕M i+1 and (f, di, 0) : M i →M i ⊕M i+1 ⊕A

have the same nonzero minors hence in this case we also have Ii(M•, f) = Ii(N•, f) and
m = n. If j = i, then Ii(M•, f) is the ideal generated by the ri × ri-minors of

(f, di) : M i →M i ⊕M i+1

and Ii(N•, f) is the ideal generated by the (ri + 1)× (ri + 1)-minors of

(f ⊕ f, di ⊕ 1) : (M i ⊕A)→ (M i ⊕A)⊕ (M i+1 ⊕A)

With suitable choice of coordinates we see that the matrix of the second map is in block
form

T =
(
T1 0
0 T2

)
, T1 = matrix of first map, T2 =

(
f
1

)
With notation as in Lemma 8.1 we have I0(T2) = A, I1(T2) = A, Ip(T2) = 0 for p ≥ 2
and hence Iri+1(T ) = Iri+1(T1) + Iri(T1) = Iri(T1) which means that Ii(M•, f) =
Ii(N•, f). We also have m = n so this finishes the case j = i. Finally, say j = i − 1.
Then we see that m = n+ 1, thus we have to show that fIi(M•, f) = Ii(N•, f). In this
case Ii(M•, f) is the ideal generated by the ri × ri-minors of

(f, di) : M i →M i ⊕M i+1

and Ii(N•, f) is the ideal generated by the (ri + 1)× (ri + 1)-minors of

(f ⊕ f, di) : (M i ⊕A)→ (M i ⊕A)⊕M i+1

With suitable choice of coordinates we see that the matrix of the second map is in block
form

T =
(
T1 0
0 T2

)
, T1 = matrix of first map, T2 =

(
f
)

Arguing as above we find that indeed fIi(M•, f) = Ii(N•, f). �

Lemma 96.2. Let f ∈ A be a nonzerodivisor of a ring A. Let u ∈ A be a unit. Let
M• be a bounded complex of finite free A-modules. Then Ii(M•, f) = Ii(M•, uf).

Proof. Omitted. �
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Lemma 96.3. Let A → B be a ring map. Let f ∈ A be a nonzerodivisor. Let M• be
a bounded complex of finite free A-modules. Assume f maps to a nonzerodivisor g in B.
Then Ii(M•, f)B = Ii(M• ⊗A B, g).

Proof. The minors of (f, di) : M i →M i⊕M i+1 map to the corresponding minors
of (g, di) : M i ⊗A B →M i ⊗A B ⊕M i+1 ⊗A B. �

Lemma 96.4. Let A be a ring, let p ⊂ A be a prime ideal, and let f ∈ A be a nonze-
rodivisor. Let M• be a bounded complex of finite free A-modules. If Hi(M•)p is free for
all i, then Ii(M•, f)p is a principal ideal and in fact generated by a power of f for all i.

Proof. We may assume A is local with maximal ideal p by Lemma 96.3. We may
also replace M• with a quasi-isomorphic complex by Lemma 96.1. By our assumption on
the freeness of cohomology modules we see that M• is quasi-isomorphic to the complex
whose term in degree i is Hi(M•) with vanishing differentials, see for example Derived
Categories, Lemma 27.9. In other words, we may assume the differentials in the complex
M• are all zero. In this case it is clear that Ii(M•, f) = (fri) is principal. �

Lemma 96.5. LetA be a ring and let f ∈ A be a nonzerodivisor. LetM• be a bounded
complex of finite free A-modules. Assume Ii(M•, f) is a principal ideal. Then (ηfM)i is
locally free of rank ri and the map (1, di) : (ηfM)i → f iM i⊕f i+1M i+1 is the inclusion
of a direct summand.

Proof. Choose a generator g for Ii(M•, f). Since fri ∈ Ii(M•, f) we see that g
divides a power of f . In particular g is a nonzerodivisor in A. The ri × ri-minors of the
map (f, di) : M i →M i⊕M i+1 generate the ideal Ii(M•, f) and the (ri+ 1)× (ri+ 1)-
minors of (f, di) are zero: we may check this after localizing at f where the rank of the
map is equal to ri. Consider the surjection

M i ⊕M i+1 −→ Q = Coker(f, di)/g-torsion

By Lemma 8.9 the module Q is finite locally free of rank ri+1. Hence Q is f -torsion free
and we conclude the cokernel of (f, di) modulo f -power torsion is Q as well.

Consider the complex of finite free A-modules

0→ f i+1M i 1,di−−→ f iM i ⊕ f i+1M i+1 di,−1−−−→ f iM i+1 → 0

which becomes split exact after localizing at f . The map (1, di) : f i+1M i → f iM i ⊕
f i+1M i+1 is isomorphic to the map (f, di) : M i →M i⊕M i+1 we studied above. Hence
the image

Q′ = Im(f iM i ⊕ f i+1M i+1 di,−1−−−→ f iM i+1)
is isomorphic to Q in particular projective. On the other hand, by construction of ηf
in Section 95 the image of the injective map (1, di) : (ηfM)i → f iM i ⊕ f i+1M i+1

is the kernel of (di,−1). We conclude that we obtain an isomorphism (ηfM)i ⊕ Q′ =
f iM i ⊕ f i+1M i+1 and we see that indeed ηfM i is finite locally free of rank ri and that
(1, di) is the inclusion of a direct summand. �

Lemma 96.6. Let A → B be a ring map. Let f ∈ A be a nonzerodivisor. Let M• be
a bounded complex of finite free A-modules. Assume f maps to a nonzerodivisor g in B
and Ii(M•, f) is a principal ideal for all i ∈ Z. Then there is a canonical isomorphism
ηfM

• ⊗A B = ηg(M• ⊗A B).
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Proof. Set N i = M i ⊗A B. Observe that f iM i ⊗A B = giN i as submodules of
(N i)g . The maps

(ηfM)i ⊗A B → giN i ⊗ gi+1N i+1 and (ηgN)i → giN i ⊗ gi+1N i+1

are inclusions of direct summands by Lemma 96.5. Since their images agree after localizing
at g we conclude. �

Lemma 96.7. Let A be a ring. Let M , N1, N2 be finite projective A-modules. Let
s : M → N1 ⊕N2 be a split injection. There exists a finitely generated ideal J ⊂ A with
the following property: a ring map A → B factors through A/J if and only if s ⊗ idB
identifies M ⊗A B with a direct sum of submodules of N1 ⊗A B ⊕N2 ⊗A B.

Proof. Choose a splitting π : N1⊕N2 →M of s. Denote qi : N1⊕N2 → N1⊕N2
the projector onto Ni. Set pi = π ◦ qi ◦ s. Observe that p1 + p2 = idM . We claim M is a
direct sum of submodules of N1 ⊕N2 if and only if p1 and p2 are orthogonal projectors.
Thus J is the smallest ideal of A such that p1 ◦ p1 − p1, p2 ◦ p2 − p2, p1 ◦ p2, and p2 ◦ p1
are contained in J ⊗A EndA(M). Some details omitted. �

LetA be a ring and let f ∈ A be a nonzerodivisor. LetM• be a bounded complex of finite
free A-modules. Assume the ideals Ii(M•, f) are principal for all i ∈ Z. Then the maps

(1, di) : (ηfM)i/f(ηfM)i −→ f iM i/f i+1M i ⊕ f i+1M i+1/f i+2M i+1

are split injections by Lemma 96.5. Denote Ji(M•, f) ⊂ A/fA the finitely generated
ideal of Lemma 96.7 corresponding to the split injection (1, di) displayed above.

Lemma 96.8. Let A be a ring and let f ∈ A be a nonzerodivisor. Let M• and N• be
two bounded complexes of finite free A-modules representing the same object in D(A).
Assume Ii(M•, f) is a principal ideal for all i ∈ Z. Then Ji(M•, f) = Ji(N•, f) as ideals
in A/fA.

Proof. Observe that the fact that Ii(M•, f) is a principal ideal implies that Ii(M•, f)
is a principal ideal by Lemma 96.1 and hence the statement makes sense. As in the proof
of Lemma 96.1 we may assume N• = M• ⊕Q• for some trivial complex Q•, i.e.,

Q• = . . .→ 0→ A
1−→ A→ 0→ . . .

where A is placed in degree j and j + 1. Since ηf is compatible with direct sums, we see
that the map

(1, di) : (ηfN)i/f(ηfN)i −→ f iN i/f i+1N i ⊕ f i+1N i+1/f i+2N i+1

is the direct sum of the corresponding map forM• and forQ•. By the universal property
defining the ideals in question, we conclude that Ji(N•, f) = Ji(M•, f) + Ji(Q•, f).
Hence it suffices to show that Ji(Q•, f) = 0 for all i. This is a computation that we
omit. �

Lemma 96.9. LetA be a ring and let f ∈ A be a nonzerodivisor. LetM• be a bounded
complex of finite free A-modules. Assume Ii(M•, f) is a principal ideal for all i ∈ Z.
Consider the ideal J(M•, f) =

∑
i Ji(M•, f) of A/fA. Consider the set of prime ideals

E = {f ∈ p ⊂ A | Ker(di mod f2)p surjects onto Ker(di mod f)p for all i ∈ Z}
= {f ∈ p ⊂ A | the localizations βp of the Bockstein operators are zero}

Then we have
(1) J(M•, f) is finitely generated,
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(2) A/fA→ C = (A/fA)/J(M•, f) is surjective of finite presentation,
(3) J(M•, f)p = 0 for p ∈ E ,
(4) if f ∈ p and Hi(M•)p is free for all i ∈ Z, then p ∈ E , and
(5) the cohomology modules of ηfM• ⊗A C are finite locally free C-modules.

Proof. The equality in the definition ofE follows from Lemma 95.7 and in addition
the final statement of that lemma implies part (4).

Part (1) is true because the ideals Ji(M•, f) are finitely generated and because M• is
bounded and hence Ji(M•, f) is zero for almost all i. Part (2) is just a reformulation
of part (1).

Proof of (3). By Lemma 96.5 we find that (ηfM)i is finite locally free of rank ri for all i.
Consider the map

(1, di) : (ηfM)i/f(ηfM)i −→ f iM i/f i+1M i ⊕ f i+1M i+1/f i+2M i+1

Pick p ∈ E. By Lemma 95.8 and the local freeness of the modules (ηfM)i we may write(
(ηfM)i/f(ηfM)i

)
p

= (A/fA)⊕mi
p ⊕ (A/fA)⊕ni

p

compatible with the arrow (1, di) above. By the universal property of the ideal Ji(M•, f)
we conclude that Ji(M•, f)p = 0. Hence Ip = fAp for p ∈ E.

Proof of (5). Observe that the differential on ηfM• fits into a commutative diagram

(ηfM)i

��

// f iM i ⊕ f i+1M i+1(
0 1
0 0

)
��

(ηfM)i+1 // f i+1M i ⊕ f i+2M i+2

By construction, after tensoring with C , the modules on the left are direct sums of direct
summands of the summands on the right. Picture

(ηfM)i ⊗A C

��

Ki ⊕ Li //

��

f iM i ⊗A C ⊕ f i+1M i+1 ⊗A C(
0 1
0 0

)
��

(ηfM)i+1 ⊗A C Ki+1 ⊕ Li+1 // f i+1M i ⊗A C ⊕ f i+2M i+2 ⊗A C

where the horizontal arrows are compatible with direct sum decompositions as well as
inclusions of direct summands. It follows that the differential identifies Li with a direct
summand ofKi+1 and we conclude that the cohomology of ηfM•⊗AC in degree i is the
module Ki+1/Li which is finite projective as desired. �

97. Taking limits of complexes

In this section we discuss what happens when we have a “formal deformation” of a complex
and we take its limit. We will consider two cases

(1) we have a limitA = limAn of an inverse system of rings whose transition maps
are surjective with locally nilpotent kernels and objects Kn ∈ D(An) which fit
together in the sense that Kn = Kn+1 ⊗L

An+1
An, or

(2) we have a ring A, an ideal I , and objects Kn ∈ D(A/In) which fit together in
the sense that Kn = Kn+1 ⊗L

A/In+1 A/In.
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Under additional hypotheses we can show that K = R limKn reproduces the system in
the sense that Kn = K ⊗L

A An or Kn = K ⊗L
A A/I

n.

Lemma 97.1. Let A = limAn be a limit of an inverse system (An) of rings. Suppose
given Kn ∈ D(An) and maps Kn+1 → Kn in D(An+1). Assume

(1) the transition maps An+1 → An are surjective with locally nilpotent kernels,
(2) K1 is pseudo-coherent, and
(3) the maps induce isomorphisms Kn+1 ⊗L

An+1
An → Kn.

Then K = R limKn is a pseudo-coherent object of D(A) and K ⊗L
A An → Kn is an

isomorphism for all n.

Proof. By assumption we can find a bounded above complex of finite freeA1-modules
P •

1 representing K1, see Definition 64.1. By Lemma 75.4 we can, by induction on n > 1,
find complexes P •

n of finite free An-modules representing Kn and maps P •
n → P •

n−1
representing the maps Kn → Kn−1 inducing isomorphisms (!) of complexes P •

n ⊗An
An−1 → P •

n−1. Thus K = R limKn is represented by P • = limP •
n , see Lemma 87.1 and

Remark 87.6. Since P in is a finite free An-module for each n and A = limAn we see that
P i is finite free of the same rank as P i1 for each i. This means that K is pseudo-coherent.
It also follows that K ⊗L

A An is represented by P • ⊗A An = P •
n which proves the final

assertion. �

Lemma 97.2. Let A be a ring and I ⊂ A an ideal. Suppose given Kn ∈ D(A/In)
and maps Kn+1 → Kn in D(A/In+1). Assume

(1) A is I-adically complete,
(2) K1 is pseudo-coherent, and
(3) the maps induce isomorphisms Kn+1 ⊗L

A/In+1 A/In → Kn.

Then K = R limKn is a pseudo-coherent, derived complete object of D(A) and K ⊗L
A

A/In → Kn is an isomorphism for all n.

Proof. We already know that K is pseudo-coherent and that K ⊗L
A A/I

n → Kn

is an isomorphism for all n, see Lemma 97.1. Finally, K is derived complete by Lemma
91.14. �

Lemma 97.3. Let A = limAn be a limit of an inverse system (An) of rings. Suppose
given Kn ∈ D(An) and maps Kn+1 → Kn in D(An+1). Assume

(1) the transition maps An+1 → An are surjective with locally nilpotent kernels,
(2) K1 is a perfect object, and
(3) the maps induce isomorphisms Kn+1 ⊗L

An+1
An → Kn.

Then K = R limKn is a perfect object of D(A) and K ⊗L
A An → Kn is an isomorphism

for all n.

Proof. We already know that K is pseudo-coherent and that K ⊗L
A An → Kn is an

isomorphism for all n by Lemma 97.1. Thus it suffices to show that Hi(K ⊗L
A κ) = 0 for

i � 0 and every surjective map A → κ whose kernel is a maximal ideal m, see Lemma
77.3. Any element ofA which maps to a unit inA1 is a unit inA by Algebra, Lemma 32.4
and hence Ker(A → A1) is contained in the Jacobson radical of A by Algebra, Lemma
19.1. Hence A→ κ factors as A→ A1 → κ. Hence

K ⊗L
A κ = K ⊗L

A A1 ⊗L
A1
κ = K1 ⊗L

A1
κ

and we get what we want as K1 has finite tor dimension by Lemma 74.2. �



1482 15. MORE ON ALGEBRA

Lemma 97.4. Let A be a ring and I ⊂ A an ideal. Suppose given Kn ∈ D(A/In)
and maps Kn+1 → Kn in D(A/In+1). Assume

(1) A is I-adically complete,
(2) K1 is a perfect object, and
(3) the maps induce isomorphisms Kn+1 ⊗L

A/In+1 A/In → Kn.

ThenK = R limKn is a perfect, derived complete object ofD(A) andK⊗L
AA/I

n → Kn

is an isomorphism for all n.

Proof. Combine Lemmas 97.3 and 97.2 (to get derived completeness). �

We do not know if the following lemma holds for unbounded complexes.

Lemma 97.5. Let A be a ring and I ⊂ A an ideal. Suppose given Kn ∈ D(A/In)
and maps Kn+1 → Kn in D(A/In+1). If

(1) A is Noetherian,
(2) K1 is bounded above, and
(3) the maps induce isomorphisms Kn+1 ⊗L

A/In+1 A/In → Kn,

then K = R limKn is a derived complete object of D−(A) and K ⊗L
A A/I

n → Kn is an
isomorphism for all n.

Proof. The object K of D(A) is derived complete by Lemma 91.14.
Suppose thatHi(K1) = 0 for i > b. Then we can find a complex of freeA/I-modules P •

1
representing K1 with P i1 = 0 for i > b. By Lemma 75.3 we can, by induction on n > 1,
find complexes P •

n of free A/In-modules representing Kn and maps P •
n → P •

n−1 repre-
senting the maps Kn → Kn−1 inducing isomorphisms (!) of complexes P •

n/I
n−1P •

n →
P •
n−1.

Thus we have arrived at the situation where R limKn is represented by P • = limP •
n ,

see Lemma 87.1 and Remark 87.6. The complexes P •
n are uniformly bounded above com-

plexes of flat A/In-modules and the transition maps are termwise surjective. Then P • is
a bounded above complex of flat A-modules by Lemma 27.4. It follows that K ⊗L

A A/I
t

is represented by P • ⊗A A/It. We have P • ⊗A A/It = limP •
n ⊗A A/It termwise by

Lemma 27.4. The transition maps P •
n+1 ⊗A A/It → P •

n ⊗A A/It are isomorphisms for
n ≥ t by our choice of P •

n , hence we have limP •
n ⊗A A/It = P •

t ⊗A A/It = P •
t . Since

P •
t represents Kt, we see that K ⊗L

A A/I
t → Kt is an isomorphism. �

Here is a different type of result.

Lemma 97.6 (Kollár-Kovács). Let I be an ideal of a Noetherian ring A. Let K ∈
D(A). Set Kn = K ⊗L

A A/I
n. Assume for all i ∈ Z we have

(1) Hi(K) is a finite A-module, and
(2) the system Hi(Kn) satisfies Mittag-Leffler.

Then limHi(K)/InHi(K) is equal to limHi(Kn) for all i ∈ Z.

Proof. Recall that K∧ = R limKn is the derived completion of K , see Proposition
94.2. By Lemma 94.4 we have Hi(K∧) = limHi(K)/InHi(K). By Lemma 87.4 we get
short exact sequences

0→ R1 limHi−1(Kn)→ Hi(K∧)→ limHi(Kn)→ 0
The Mittag-Leffler condition guarantees that the left terms are zero (Lemma 87.1) and we
conclude the lemma is true. �
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98. Some evaluation maps

In this section we prove that certain canonical maps of RHom’s are isomorphisms for
suitable types of complexes.

Lemma 98.1. Let R be a ring. Let K,L,M be objects of D(R). the map

RHomR(L,M)⊗L
R K −→ RHomR(RHomR(K,L),M)

of Lemma 73.3 is an isomorphism in the following two cases
(1) K perfect, or
(2) K is pseudo-coherent, L ∈ D+(R), and M finite injective dimension.

Proof. Choose a K-injective complex I• representing M , a K-injective complex J•

representingL, and a bounded above complex of finite projective modulesK• representing
K. Consider the map of complexes

Tot(Hom•(J•, I•)⊗R K•) −→ Hom•(Hom•(K•, J•), I•)

of Lemma 71.6. Note that(∏
p+r=t

HomR(J−r, Ip)
)
⊗R Ks =

∏
p+r=t

HomR(J−r, Ip)⊗R Ks

because Ks is finite projective. The map is given by the maps

cp,r,s : HomR(J−r, Ip)⊗R Ks −→ HomR(HomR(Ks, J−r), Ip)

which are isomorphisms as Ks is finite projective. For every element α = (αp,r,s) of
degree n of the left hand side, there are only finitely many values of s such that αp,r,s is
nonzero (for some p, r with n = p+ r+ s). Hence our map is an isomorphism if the same
vanishing condition is forced on the elements β = (βp,r,s) of the right hand side. IfK• is
a bounded complex of finite projective modules, this is clear. On the other hand, if we can
choose I• bounded and J• bounded below, then βp,r,s is zero for p outside a fixed range,
for s � 0, and for r � 0. Hence among solutions of n = p + r + s with βp,r,s nonzero
only a finite number of s values occur. �

Lemma 98.2. Let R be a ring. Let K,L,M be objects of D(R). the map

RHomR(L,M)⊗L
R K −→ RHomR(RHomR(K,L),M)

of Lemma 73.3 is an isomorphism if the following three conditions are satisfied
(1) L,M have finite injective dimension,
(2) RHomR(L,M) has finite tor dimension,
(3) for every n ∈ Z the truncation τ≤nK is pseudo-coherent

Proof. Pick an integer n and consider the distinguished triangle

τ≤nK → K → τ≥n+1K → τ≤nK[1]

see Derived Categories, Remark 12.4. By assumption (3) and Lemma 98.1 the map is an
isomorphism for τ≤nK. Hence it suffices to show that both

RHomR(L,M)⊗L
R τ≥n+1K and RHomR(RHomR(τ≥n+1K,L),M)

have vanishing cohomology in degrees≤ n−c for some c. This follows immediately from
assumptions (2) and (1). �
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Lemma 98.3. Let R be a ring. Let K,L,M be objects of D(R). The map

K ⊗L
R RHomR(M,L) −→ RHomR(M,K ⊗L

R L)

of Lemma 73.5 is an isomorphism in the following cases

(1) M perfect, or
(2) K is perfect, or
(3) M is pseudo-coherent, L ∈ D+(R), and K has tor amplitude in [a,∞].

Proof. Proof in case M is perfect. Note that both sides of the arrow transform dis-
tinguished triangles in M into distinguished triangles and commute with direct sums.
Hence it suffices to check it holds when M = R[n], see Derived Categories, Remark 36.7
and Lemma 78.1. In this case the result is obvious.

Proof in case K is perfect. Same argument as in the previous case.

Proof in case (3). We may representK and L by bounded below complexes ofR-modules
K• and L•. We may assume that K• is a K-flat complex consisting of flat R-modules,
see Lemma 66.4. We may represent M by a bounded above complex M• of finite free
R-modules, see Definition 64.1. Then the object on the LHS is represented by

Tot(K• ⊗R Hom•(M•, L•))

and the object on the RHS by

Hom•(M•,Tot(K• ⊗R L•))

This uses Lemma 73.2. Both complexes have in degree n the module⊕
p+q+r=n

Kp ⊗HomR(M−r, Lq) =
⊕

p+q+r=n
HomR(M−r,Kp ⊗R Lq)

becauseM−r is finite free (as well these are finite direct sums). The map defined in Lemma
73.5 comes from the map of complexes defined in Lemma 71.4 which uses the canonical
isomorphisms between these modules. �

Lemma 98.4. Let R be a ring. Let P • be a bounded above complex of projective R-
modules. LetK• be a K-flat complex ofR-modules. If P • is a perfect object ofD(R), then
Hom•(P •,K•) is K-flat and represents RHomR(P •,K•).

Proof. The last statement is Lemma 73.2. Since P • represents a perfect object, there
exists a finite complex of finite projectiveR-modules F • such that P • and F • are isomor-
phic inD(R), see Definition 74.1. Then P • and F • are homotopy equivalent, see Derived
Categories, Lemma 19.8. Then Hom•(P •,K•) and Hom•(F •,K•) are homotopy equiv-
alent. Hence the first is K-flat if and only if the second is (follows from Definition 59.1
and Lemma 58.2). It is clear that

Hom•(F •,K•) = Tot(E• ⊗R K•)

where E• is the dual complex to F • with terms En = HomR(F−n, R), see Lemma 74.15
and its proof. Since E• is a bounded complex of projectives we find that it is K-flat by
Lemma 59.7. Then we conclude by Lemma 59.4. �
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99. Base change for derived hom

We have already seen some material discussing this in Lemma 65.4 and in Algebra, Section
73.

Lemma 99.1. Let R→ R′ be a ring map. For K ∈ D(R) and M ∈ D(R′) there is a
canonical isomorphism

RHomR(K,M) = RHomR′(K ⊗L
R R

′,M)

Proof. Choose a K-injective complex of R′-modules J• representing M . Choose a
quasi-isomorphism J• → I• where I• is a K-injective complex of R-modules. Choose a
K-flat complex K• of R-modules representing K. Consider the map

Hom•(K• ⊗R R′, J•) −→ Hom•(K•, I•)

The map on degree n terms is given by the map∏
n=p+q

HomR′(K−q ⊗R R′, Jp) −→
∏

n=p+q
HomR(K−q, Ip)

coming from precomposing by K−q → K−q ⊗R R′ and postcomposing by Jp → Ip. To
finish the proof it suffices to show that we get isomorphisms on cohomology groups:

HomD(R)(K,M) = HomD(R′)(K ⊗L
R R

′,M)

which is true because base change−⊗L
RR

′ : D(R)→ D(R′) is left adjoint to the restric-
tion functor D(R′)→ D(R) by Lemma 60.3. �

Let R→ R′ be a ring map. There is a base change map

(99.1.1) RHomR(K,M)⊗L
R R

′ −→ RHomR′(K ⊗L
R R

′,M ⊗L
R R

′)

in D(R′) functorial in K,M ∈ D(R). Namely, by adjointness of − ⊗L
R R

′ : D(R) →
D(R′) and the restriction functor D(R′)→ D(R), this is the same thing as a map

RHomR(K,M) −→ RHomR′(K ⊗L
R R

′,M ⊗L
R R

′) = RHomR(K,M ⊗L
R R

′)

(equality by Lemma 99.1) for which we can use the canonical map M → M ⊗L
R R

′ (unit
of the adjunction).

Lemma 99.2. Let R→ R′ be a ring map. Let K,M ∈ D(R). The map (99.1.1)

RHomR(K,M)⊗L
R R

′ −→ RHomR′(K ⊗L
R R

′,M ⊗L
R R

′)

is an isomorphism in D(R′) in the following cases
(1) K is perfect,
(2) R′ is perfect as an R-module,
(3) R→ R′ is flat, K is pseudo-coherent, and M ∈ D+(R), or
(4) R′ has finite tor dimension as an R-module, K is pseudo-coherent, and M ∈

D+(R)

Proof. We may check the map is an isomorphism after applying the restriction func-
tor D(R′)→ D(R). After applying this functor our map becomes the map

RHomR(K,L)⊗L
R R

′ −→ RHomR(K,L⊗L
R R

′)

of Lemma 73.5. See discussion above the lemma to match the left and right hand sides; in
particular, this uses Lemma 99.1. Thus we conclude by Lemma 98.3. �
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100. Systems of modules

Let I be an ideal of a Noetherian ring A. In this section we add to our knowledge of the
relationship between finite modules over A and systems of finite A/In-modules.

Lemma 100.1. Let I be an ideal of a Noetherian ring A. Let K α−→ L
β−→ M be a

complex of finite A-modules. Set H = Ker(β)/ Im(α). For n ≥ 0 let

K/InK
αn−−→ L/InL

βn−−→M/InM

be the induced complex. SetHn = Ker(βn)/ Im(αn). Then there are canonicalA-module
maps giving a commutative diagram

H

vv }} ��
. . . // H3 // H2 // H1

Moreover, there exists a c > 0 and canonicalA-module mapsHn → H/In−cH for n ≥ c
such that the compositions

H/InH → Hn → H/In−cH and Hn → H/In−cH → Hn−c

are the canonical ones. Moreover, we have
(1) (Hn) and (H/InH) are isomorphic as pro-objects of ModA,
(2) limHn = limH/InH ,
(3) the inverse system (Hn) is Mittag-Leffler,
(4) the image of Hn+c → Hn is equal to the image of H → Hn,
(5) the composition IcHn → Hn → H/In−cH → Hn/I

n−cHn is the inclusion
IcHn → Hn followed by the quotient map Hn → Hn/I

n−cHn, and
(6) the kernel and cokernel of H/InH → Hn is annihilated by Ic.

Proof. Observe thatHn = β−1(InM)/ Im(α)+InL. Forn ≥ 2 we haveβ−1(InM) ⊂
β−1(In−1M) and Im(α) + InL ⊂ Im(α) + In−1L. Thus we obtain our canonical map
Hn → Hn−1. Similarly, we have Ker(β) ⊂ β−1(InM) and Im(α) ⊂ Im(α) + InL
which produces the canonical map H → Hn. We omit the verification that the diagram
commutes.

By Artin-Rees we may choose c1, c2 ≥ 0 such that β−1(InM) ⊂ Ker(β) + In−c1L for
n ≥ c1 and Ker(β)∩ InL ⊂ In−c2 Ker(β) for n ≥ c2, see Algebra, Lemmas 51.3 and 51.2.
Set c = c1 + c2.

Let n ≥ c. We define ψn : Hn → H/In−cH as follows. Say x ∈ Hn. Choose y ∈
β−1(InM) representing x. Write y = z + w with z ∈ Ker(β) and w ∈ In−c1L (this is
possible by our choice of c1). We set ψn(x) equal to the class of z in H/In−cH . To see
this is well defined, suppose we have a second set of choices y′, z′, w′ as above for x with
obvious notation. Then y′ − y ∈ Im(α) + InL, say y′ − y = α(v) + u with v ∈ K and
u ∈ InL. Thus

y′ = z′ + w′ = α(v) + u+ z + w ⇒ z′ = z + α(v) + u+ w − w′

Since β(z′ − z − α(v)) = 0 we find that u + w − w′ ∈ Ker(β) ∩ In−c1L which is
contained in In−c1−c2 Ker(β) = In−c Ker(β) by our choice of c2. Thus z′ and z have
the same image in H/In−cH as desired.
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The composition H/InH → Hn → H/In−cH is the canonical map because if z ∈
Ker(β) represents an element x inH/InH = Ker(β)/ Im(α)+In Ker(β) then it is clear
from the above that x maps to the class of z in H/In−cH under the maps constructed
above.

Let us consider the composition Hn → H/In−cH → Hn−c. Given x, y, z, w as in the
construction of ψn above, we see that x is mapped to the cass of z in Hn−c. On the other
hand, the canonical mapHn → Hn−c from the first paragraph of the proof sends x to the
class of y. Thus we have to show that y − z ∈ Im(α) + In−cL which is the case because
y − z = w ∈ In−c1L ⊂ In−cL.

Statements (1) – (4) are formal consequences of what we just proved. Namely, (1) follows
from the existence of the maps and the definition of morphisms of pro-objects in Cate-
gories, Remark 22.5. Part (2) holds because isomorphic pro-objects have isomorphic lim-
its. Part (3) is immediate from part (4). Part (4) follows from the factorization Hn+c →
H/InH → Hn of the canonical map Hn+c → Hn.

Proof of part (5). Let x ∈ IcHn. Write x =
∑
fixi with xi ∈ Hn and fi ∈ Ic. Choose

yi, zi, wi as in the construction of ψn for xi. Then for the computation of ψn of xwe may
choose y =

∑
fiyi, z =

∑
fizi and w =

∑
fiwi and we see that ψn(x) is given by the

class of z. The image of this in Hn/I
n−cHn is equal to the class of y as w =

∑
fiwi is in

InL. This proves (5).

Proof of part (6). Let y ∈ Ker(β) whose class is x in H . If x maps to zero in Hn, then
y ∈ InL + Im(α). Hence y − α(v) ∈ Ker(β) ∩ InL for some v ∈ K. Then y −
α(v) ∈ In−c2 Ker(β) and hence the class of y in H/InH is annihilated by Ic2 . Finally,
let x ∈ Hn be the class of y ∈ β−1(InM). Then we write y = z+w with z ∈ Ker(β) and
w ∈ In−c1L as above. Clearly, if f ∈ Ic1 then fx is the class of fy + fw ≡ fy modulo
Im(α) + InL and hence fx is the image of the class of fy in H as desired. �

Lemma 100.2. Let I be an ideal of a Noetherian ring A. Let K ∈ D(A) be pseudo-
coherent. Set Kn = K ⊗L

A A/I
n. Then for all i ∈ Z the system Hi(Kn) satisfies Mittag-

Leffler and limHi(K)/InHi(K) is equal to limHi(Kn).

Proof. We may representK by a bounded above complexP • of finite freeA-modules.
ThenKn is represented by P •/InP •. Hence the Mittag-Leffler property by Lemma 100.1.
The final statement follows then from Lemma 97.6. �

Lemma 100.3. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M• be a
bounded complex of finite A-modules. The inverse system of maps

M• ⊗L
A A/I

n −→M•/InM•

defines an isomorphism of pro-objects of D(A).

Proof. Say I = (f1, . . . , fr). Let Kn ∈ D(A) be the object represented by the
Koszul complex on fn1 , . . . , fnr . Recall that we have maps Kn → A/In which induce a
pro-isomorphism of inverse systems, see Lemma 94.1. Hence it suffices to show that

M• ⊗L
A Kn −→M•/InM•

defines an isomorphism of pro-objects of D(A). Since Kn is represented by a complex of
finite freeA-modules sitting in degrees−r, . . . , 0 there exist a, b ∈ Z such that the source
and target of the displayed arrow have vanishing cohomology in degrees outside [a, b] for
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all n. Thus we may apply Derived Categories, Lemma 42.5 and we find that it suffices to
show that the maps

Hi(M• ⊗L
A A/I

n)→ Hi(M•/InM•)
define isomorphisms of pro-systems of A-modules for any i ∈ Z. To see this choose a
quasi-isomorphism P • → M• where P • is a bounded above complex of finite free A-
modules. The arrows above are given by the maps

Hi(P •/InP •)→ Hi(M•/InM•)
These define an isomorphism of pro-systems by Lemma 100.1. Namely, the lemma shows
both are isomorphic to the pro-system Hi/InHi with Hi = Hi(M•) = Hi(P •). �

Lemma 100.4. LetA be a Noetherian ring. Let I ⊂ A be an ideal. LetM , N be finite
A-modules. Set Mn = M/InM and Nn = N/InN . Then

(1) the systems (HomA(Mn, Nn)) and (IsomA(Mn, Nn)) are Mittag-Leffler,
(2) there exists a c ≥ 0 such that the kernels and cokernels of

HomA(M,N)/In HomA(M,N)→ HomA(Mn, Nn)
are killed by Ic for all n,

(3) we have lim HomA(Mn, Nn) = HomA(M,N)∧ = HomA∧(M∧, N∧)
(4) lim IsomA(Mn, Nn) = IsomA∧(M∧, N∧).

Here ∧ denotes usual I-adic completion.

Proof. Note that HomA(Mn, Nn) = HomA(M,Nn). Choose a presentation
A⊕t → A⊕s →M → 0

Applying the right exact functor HomA(−, N) we obtain a complex

0 α−→ N⊕s β−→ N⊕t

whose cohomology in the middle is HomA(M,N) and such that for n ≥ 0 the cohomol-
ogy of

0 αn−−→ N⊕s
n

βn−−→ N⊕t
n

is HomA(Mn, Nn). Let c ≥ 0 be as in Lemma 100.1 for this A, I , α, and β. By part (3) of
the lemma we deduce the Mittag-Leffler property for (HomA(Mn, Nn)). The kernel and
cokernel of the maps HomA(M,N)/In HomA(M,N) → HomA(Mn, Nn) are killed by
Ic by [art part (6) of the lemma. We find that lim HomA(Mn, Nn) = HomA(M,N)∧ by
part (2) of the lemma. The equality

HomA∧(M∧, N∧) = lim HomA(Mn, Nn)
follows formally from the fact thatM∧ = limMn andMn = M∧/InM∧ and the corre-
sponding facts for N , see Algebra, Lemma 97.4.
The result for isomorphisms follows from the case of homomorphisms applied to both
(Hom(Mn, Nn)) and (Hom(Nn,Mn)) and the following fact: for n > m > 0, if we have
maps α : Mn → Nn and β : Nn → Mn which induce an isomorphisms Mm → Nm
and Nm → Mm, then α and β are isomorphisms. Namely, then α ◦ β is surjective by
Nakayama’s lemma (Algebra, Lemma 20.1) hence α ◦ β is an isomorphism by Algebra,
Lemma 16.4. �

Lemma 100.5. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M , N be
finite A-modules. Set Mn = M/InM and Nn = N/InN . If Mn

∼= Nn for all n, then
M∧ ∼= N∧ as A∧-modules.
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Proof. By Lemma 100.4 the system (IsomA(Mn, Nn)) is Mittag-Leffler. By assump-
tion each of the sets IsomA(Mn, Nn) is nonempty. Hence lim IsomA(Mn, Nn) is nonempty.
Since lim IsomA(Mn, Nn) = IsomA∧(M∧, N∧) we obtain an isomorphism. �

Remark 100.6. Let I be an ideal of a Noetherian ring A. Set An = A/In for n ≥ 1.
Consider the following category:

(1) An object is a sequence {En}n≥1 where En is a finite An-module.
(2) A morphism {En} → {E′

n} is given by maps

ϕn : IcEn −→ E′
n/E

′
n[Ic] for n ≥ c

where E′
n[Ic] is the torsion submodule (Section 88) up to equivalence: we say

(c, ϕn) is the same as (c + 1, ϕn) where ϕn : Ic+1En −→ E′
n/E

′
n[Ic+1] is the

induced map.
Composition of (c, ϕn) : {En} → {E′

n} and (c′, ϕ′
n) : {E′

n} → {E′′
n} is defined by the

obvious compositions

Ic+c
′
En → Ic

′
E′
n/E

′
n[Ic]→ E′′

n/E
′′
n[Ic+c

′
]

for n ≥ c+ c′. We omit the verification that this is a category.

Lemma 100.7. A morphism (c, ϕn) of the category of Remark 100.6 is an isomor-
phism if and only if there exists a c′ ≥ 0 such that Ker(ϕn) and Coker(ϕn) are Ic

′
-torsion

for all n� 0.

Proof. We may and do assume c′ ≥ c and that the Ker(ϕn) and Coker(ϕn) are
Ic

′
-torsion for all n. For n ≥ c′ and x ∈ Ic

′
E′
n we can choose y ∈ IcEn with x =

ϕn(y) mod E′
n[Ic] as Coker(ϕn) is annihilated by Ic

′
. Set ψn(x) equal to the class of

y in En/En[Ic′ ]. For a different choice y′ ∈ IcEn with x = ϕn(y′) mod E′
n[Ic] the

difference y − y′ maps to zero in E′
n/E

′
n[Ic] and hence is annihilated by Ic

′
in IcEn.

Thus the maps ψn : Ic′
E′
n → En/En[Ic′ ] are well defined. We omit the verification that

(c′, ψn) is the inverse of (c, ϕn) in the category. �

Lemma 100.8. Let I be an ideal of the Noetherian ring A. Let M and N be finite
A-modules. WriteAn = A/In,Mn = M/InM , andNn = N/InN . For every i ≥ 0 the
objects

{ExtiA(M,N)/In ExtiA(M,N)}n≥1 and {ExtiAn(Mn, Nn)}n≥1

are isomorphic in the category C of Remark 100.6.

Proof. Choose a short exact sequence

0→ K → A⊕r →M → 0
and set Kn = K/InK. For n ≥ 1 define K(n) = Ker(A⊕r

n → Mn) so that we have
exact sequences

0→ K(n)→ A⊕r
n →Mn → 0

and surjections Kn → K(n). In fact, by Lemma 100.1 there is a c ≥ 0 and maps K(n)→
Kn/I

n−cKn which are “almost inverse”. Since In−cKn ⊂ Kn[Ic] these maps which
witness the fact that the systems {K(n)}n≥1 and {Kn}n≥1 are isomorphic in C.

We claim the systems

{ExtiAn(K(n), Nn)}n≥1 and {ExtiAn(Kn, Nn)}n≥1
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are isomorphic in the category C. Namely, the surjective maps Kn → K(n) have kernels
annihilated by Ic and therefore determine maps

ExtiAn(K(n), Nn)→ ExtiAn(Kn, Nn)

whose kernel and cokernel are annihilated by Ic. Hence the claim by Lemma 100.7.

For i ≥ 2 we have isomorphisms

Exti−1
A (K,N) = ExtiA(M,N) and Exti−1

An
(K(n), Nn) = ExtiAn(Mn, Nn)

In this way we see that it suffices to prove the lemma for i = 0, 1.

For i = 0, 1 we consider the commutative diagram

0 // Hom(M,N) //

��

N⊕r
ϕ
//

��

Hom(K,N) //

��

Ext1(M,N) // 0

Hom(Kn, Nn)

0 // Hom(Mn, Nn) // N⊕r
n

// Hom(K(n), Nn) //

OO

Ext1(Mn, Nn) // 0

By Lemma 100.4 we see that the kernel and cokernel of Hom(M,N)/In Hom(M,N)→
Hom(Mn, Nn) and Hom(K,N)/In Hom(K,N) → Hom(Kn, Nn) and are Ic-torsion
for some c ≥ 0 independent of n. Above we have seen the cokernel of the injective maps
Hom(K(n), Nn)→ Hom(Kn, Nn) are annihilated by Ic after possibly increasing c. For
such a c we obtain maps δn : Ic Hom(K,N)/In Hom(K,N) → Hom(K(n), Nn) fit-
ting into the diagram (precise formulation omitted). The kernel and cokernel of δn are
annihilated by Ic after possibly increasing c since we know that the same thing is true for
Hom(K,N)/In Hom(K,N)→ Hom(Kn, Nn) and Hom(K(n), Nn)→ Hom(Kn, Nn).
Then we can use commutativity of the solid diagram

ϕ−1(Ic Hom(K,N))
ϕ
//

��

Ic Hom(K,N)/In Hom(K,N) //

δn

��

Ic Ext1(M,N)/In Ext1(M,N) //

��

0

N⊕r
n

// Hom(K(n), Nn) // Ext1(Mn, Nn) // 0

to define the dotted arrow. A straightforward diagram chase (omitted) shows that the
kernel and cokernel of the dotted arrow are annihilated buy Ic after possibly increasing c
one final time. �

Remark 100.9. The awkwardness in the statement of Lemma 100.8 is partly due to
the fact that there are no obvious maps between the modules ExtiAn(Mn, Nn) for varying
n. What we may conclude from the lemma is that there exists a c ≥ 0 such that for
m� n� 0 there are (canonical) maps

Ic ExtiAn(Mm, Nm)/In ExtiAn(Mm, Nm)→ ExtiAn(Mn, Nn)/ExtiAn(Mn, Nn)[Ic]

whose kernel and cokernel are annihilated by Ic. This is the (weak) sense in which we get
a system of modules.
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Example 100.10. Let k be a field. Let A = k[[x, y]]/(xy). By abuse of notation we
denote x and y the images of x and y in A. Let I = (x). Let M = A/(y). There is a free
resolution

. . .→ A
y−→ A

x−→ A
y−→ A→M → 0

We conclude that
Ext2

A(M,N) = N [y]/xN
where N [y] = Ker(y : N → N). We denote An = A/In, Mn = M/InM , and Nn =
N/InN . For each n we have a free resolution

. . .→ A⊕2
n

y,xn−1

−−−−→ An
x−→ An

y−→ An →Mn → 0

We conclude that

Ext2
An(Mn, Nn) = (Nn[y] ∩Nn[xn−1])/xNn

where Nn[y] = Ker(y : Nn → Nn) and N [xn−1] = Ker(xn−1 : Nn → Nn). Take
N = A/(y). Then we see that

Ext2
A(M,N) = N [y]/xN = N/xN ∼= k

but
Ext2

An(Mn, Nn) = (Nn[y] ∩Nn[xn−1])/xNn = Nn[xn−1]/xNn = 0
for all r because Nn = k[x]/(xn) and the sequence

Nn
x−→ Nn

xn−1

−−−→ Nn

is exact. Thus ignoring some kind of I-power torsion is necessary to get a result as in
Lemma 100.8.

Lemma 100.11. Let A→ B be a flat homomorphism of Noetherian rings. Let I ⊂ A
be an ideal. Let M,N be A-modules. Set Bn = B/InB, Mn = M/InM , Nn = N/InN .
If M is flat over A, then we have

lim ExtiB(M,N)/In ExtiB(M,N) = lim ExtiBn(Mn, Nn)

for all i ∈ Z.

Proof. Choose a resolution

. . .→ P2 → P1 → P0 →M → 0

by finite free B-modues Pi. Set Pi,n = Pi/I
nPi. Since M and B are flat over A, the

sequence
. . .→ P2,n → P1,n → P0,n →Mn → 0

is exact. We see that on the one hand the complex

HomB(P0, N)→ HomB(P1, N)→ HomB(P2, N)→ . . .

computes the modules ExtiB(M,N) and on the other hand the complex

HomBn(P0,n, Nn)→ HomBn(P1,n, Nn)→ HomBn(P2,n, Nn)→ . . .

computes the modules ExtiBn(Mn, Nn). Since

HomBn(Pi,n, Nn) = HomB(Pi, N)/In HomB(Pi, N)

we obtain the result from Lemma 100.1 part (2). �
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101. Systems of modules, bis

Let I be an ideal of a Noetherian ring A. In Section 100 we considered what happens
when considering systems of the form M/InM for finite A-modules M . In this section
we consider the systems InM instead.

Lemma 101.1. Let I be an ideal of a Noetherian ring A. Let K α−→ L
β−→ M be a

complex of finite A-modules. Set H = Ker(β)/ Im(α). For n ≥ 0 let

InK
αn−−→ InL

βn−−→ InM

be the induced complex. SetHn = Ker(βn)/ Im(αn). Then there are canonicalA-module
maps

. . .→ H3 → H2 → H1 → H

There exists a c > 0 such that for n ≥ c the image of Hn → H is contained in In−cH
and there is a canonical A-module map InH → Hn−c such that the compositions

InH → Hn−c → In−2cH and Hn → In−cH → Hn−2c

are the canonical ones. In particular, the inverse systems (Hn) and (InH) are isomorphic
as pro-objects of ModA.

Proof. We have Hn = Ker(β) ∩ InL/α(InK). Since Ker(β) ∩ InL ⊂ Ker(β) ∩
In−1L and α(InK) ⊂ α(In−1K) we get the maps Hn → Hn−1. Similarly for the map
H1 → H .

By Artin-Rees we may choose c1, c2 ≥ 0 such that Im(α)∩InL ⊂ α(In−c1K) for n ≥ c1
and Ker(β) ∩ InL ⊂ In−c2 Ker(β) for n ≥ c2, see Algebra, Lemmas 51.3 and 51.2. Set
c = c1 + c2.

It follows immediately from our choice of c ≥ c2 that for n ≥ c the image of Hn → H is
contained in In−cH .

Let n ≥ c. We define ψn : InH → Hn−c as follows. Say x ∈ InH . Choose y ∈
In Ker(β) representing x. We set ψn(x) equal to the class of y in Hn−c. To see this is
well defined, suppose we have a second choice y′ as above for x. Then y′− y ∈ Im(α). By
our choice of c ≥ c1 we conclude that y′ − y ∈ α(In−cK) which implies that y and y′

represent the same element of Hn−c. Thus ψn is well defined.

The statements on the compositions InH → Hn−c → In−2cH and Hn → In−cH →
Hn−2c follow immediately from our definitions. �

Lemma 101.2. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M , N be
A-modules with M finite. For each p > 0 there exists a c ≥ 0 such that for n ≥
c the map ExtpA(M,N) → ExtpA(InM,N) factors through ExtpA(InM, In−cN) →
ExtpA(InM,N).

Proof. For p = 0, ifϕ : M → N is anA-linear map, thenϕ(
∑
fimi) =

∑
fiϕ(mi)

for fi ∈ A and mi ∈ M . Hence ϕ induces a map InM → InN for all n and the result is
true with c = 0.

Choose a short exact sequence 0 → K → A⊕t → M → 0. For each n we pick a short
exact sequence 0→ Ln → A⊕sn → InM → 0. It is clear that we can construct a map of
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short exact sequences

0 // Ln //

��

A⊕sn //

��

InM //

��

0

0 // K // A⊕t // M // 0
such that A⊕sn → A⊕t has image in (In)⊕t. By Artin-Rees (Algebra, Lemma 51.2) there
exists a c ≥ 0 such that Ln → K factors through In−cK if n ≥ c.
For p = 1 our choices above induce a solid commutative diagram

HomA(A⊕sn , N) // HomA(Ln, N) // Ext1
A(InM,N) // 0

HomA((In)⊕t, In−cN) //

OO

HomA(K ∩ (In)⊕t, In−cN) //

OO

Ext1
A(InM, In−cN)

OO

HomA(A⊕t, N) //

OO

HomA(K,N) //

OO

Ext1
A(M,N)

OO

// 0

whose horizontal arrows are exact. The lower middle vertical arrow arises because K ∩
(In)⊕t ⊂ In−cK and hence anyA-linear mapK → N induces anA-linear map (In)⊕t →
In−cN by the argument of the first paragraph. Thus we obtain the dotted arrow as desired.
For p > 1 we obtain a commutative diagram

Extp−1
A (In−cK,N) // Extp−1

A (Ln, N) // ExtpA(InM,N)

Extp−1
A (K,N) //

OO

ExtpA(M,N)

OO

whose bottom horizontal arrow is an isomorphism. By induction on p the left verti-
cal map factors through Extp−1

A (In−cK, In−c−c′
N) for some c′ ≥ 0 and all n ≥ c +

c′. Using the composition Extp−1
A (In−cK, In−c−c′

N) → Extp−1
A (Ln, In−c−c′

N) →
ExtpA(InM, In−c−c′

N) we obtain the desired factorization (for n ≥ c + c′ and with c
replaced by c+ c′). �

Lemma 101.3. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M , N be A-
modules with M finite and N annihilated by a power of I . For each p > 0 there exists an
n such that the map ExtpA(M,N)→ ExtpA(InM,N) is zero.

Proof. Immediate consequence of Lemma 101.2 and the fact that ImN = 0 for some
m > 0. �

Lemma 101.4. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let K ∈ D(A) be
pseudo-coherent and let M be a finite A-module. For each p ∈ Z there exists an c such
that the image of ExtpA(K, InM)→ ExtpA(K,M) is contained in In−c ExtpA(K,M) for
n ≥ c.

Proof. Choose a bounded above complex P • of finite free A-modules representing
K. Then ExtpA(K,M) is the cohomology of

HomA(F−p+1,M) a−→ HomA(F−p,M) b−→ HomA(F−p−1,M)
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and ExtpA(K, InM) is computed by replacing these finite A-modules by In times them-
selves. Thus the result by Lemma 101.1 (and much more is true). �

In Situation 91.15 we define complexes I•
n such that we have distinguished triangles

I•
n → A→ K•

n → I•
n[1]

in the triangulated category K(A) of complexes of A-modules up to homotopy. Namely,
we set I•

n = σ≤−1K
•
n[−1]. We have termwise split short exact sequences of complexes

0→ A→ K•
n → I•

n[1]→ 0

defining distinguished triangles by definition of the triangulated structure onK(A). Their
rotations determine the desired distinguished triangles above. Note that I0

n = A⊕r → A
is given by multiplication by fni on the ith factor. Hence I•

n → A factors as

I•
n → (fn1 , . . . , fnr )→ A

In fact, there is a short exact sequence

0→ H−1(K•
n)→ H0(I•

n)→ (fn1 , . . . , fnr )→ 0

and for every i < 0 we have Hi(I•
n) = Hi−1(K•

n. The maps K•
n+1 → K•

n induce maps
I•
n+1 → I•

n and we obtain a commutative diagram

. . . // I•
3

��

// I•
2

��

// I•
1

��
. . . // (f3

1 , . . . , f
3
r ) // (f2

1 , . . . , f
2
r ) // (f1, . . . , fr)

in K(A).

Lemma 101.5. In Situation 91.15 assume A is Noetherian. With notation as above,
the inverse system (In) is pro-isomorphic in D(A) to the inverse system (I•

n).

Proof. It is elementary to show that the inverse system In is pro-isomorphic to the
inverse system (fn1 , . . . , fnr ) in the category of A-modules. Consider the inverse system
of distinguished triangles

I•
n → (fn1 , . . . , fnr )→ C•

n → I•
n[1]

where C•
n is the cone of the first arrow. By Derived Categories, Lemma 42.4 it suffices to

show that the inverse system C•
n is pro-zero. The complex I•

n has nonzero terms only in
degrees iwith−r+1 ≤ i ≤ 0 henceC•

n is bounded similarly. Thus by Derived Categories,
Lemma 42.3 it suffices to show that Hp(C•

n) is pro-zero. By the discussion above we have
Hp(C•

n) = Hp(K•
n) for p ≤ −1 and Hp(C•

n) = 0 for p ≥ 0. The fact that the inverse
systems Hp(K•

n) are pro-zero was shown in the proof of Lemma 94.1 (and this is where
the assumption that A is Noetherian is used). �

Lemma 101.6. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M• be a
bounded complex of finite A-modules. The inverse system of maps

In ⊗L
AM

• −→ InM•

defines an isomorphism of pro-objects of D(A).
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Proof. Choose generators f1, . . . , fr ∈ I of I . The inverse system In is pro-isomorphic
to the inverse system (fn1 , . . . , fnr ) in the category of A-modules. With notation as in
Lemma 101.5 we find that it suffices to prove the inverse system of maps

I•
n ⊗L

AM
• −→ (fn1 , . . . , fnr )M•

defines an isomorphism of pro-objects of D(A). Say we have a ≤ b such that M i = 0 if
i 6∈ [a, b]. Then source and target of the arrows above have cohomology only in degrees
[−r + a, b]. Thus it suffices to show that for any p ∈ Z the inverse system of maps

Hp(I•
n ⊗L

AM
•) −→ Hp((fn1 , . . . , fnr )M•)

defines an isomorphism of pro-objects ofA-modules, see Derived Categories, Lemma 42.5.
Using the pro-isomorphism between I•

n⊗L
AM

• and In⊗L
AM

• and the pro-isomorphism
between (fn1 , . . . , fnr )M• and InM• this is equivalent to showing that the inverse system
of maps

Hp(In ⊗L
AM

•) −→ Hp(InM•)
defines an isomorphism of pro-objects of A-modules Choose a bounded above complex of
finite free A-modules P • and a quasi-isomorphism P • → M•. Then it suffices to show
that the inverse system of maps

Hp(InP •) −→ Hp(InM•)
is a pro-isomorphism. This follows from Lemma 101.1 as Hp(P •) = Hp(M•). �

Lemma 101.7. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M be a finite
A-module. There exists an integer n > 0 such that InM → M factors through the map
I ⊗L

AM →M in D(A).

Proof. This follows from Lemma 101.6. It can also been seen directly as follows.
Consider the distinguished triangle

I ⊗L
AM →M → A/I ⊗L

AM → I ⊗L
AM [1]

By the axioms of a triangulated category it suffices to prove that InM → A/I⊗L
AM is zero

in D(A) for some n. Choose generators f1, . . . , fr of I and let K = K•(A, f1, . . . , fr)
be the Koszul complex and consider the factorization A → K → A/I of the quotient
map. Then we see that it suffices to show that InM → K⊗AM is zero inD(A) for some
n > 0. Suppose that we have found an n > 0 such that InM → K⊗AM factors through
τ≥t(K⊗AM) inD(A). Then the obstruction to factoring through τ≥t+1(K⊗AM) is an
element in Extt(InM,Ht(K ⊗AM)). The finiteA-moduleHt(K ⊗AM) is annihilated
by I . Then by Lemma 101.3 we can after increasing n assume this obstruction element is
zero. Repeating this a finite number of times we find n such that InM → K⊗AM factors
through 0 = τ≥r+1(K ⊗AM) in D(A) and we win. �

102. Miscellany

Some results which do not fit anywhere else.

Lemma 102.1. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let K ∈ D(A)
be pseudo-coherent. Let a ∈ Z. Assume that for every finite A-module M the modules
ExtiA(K,M) are I-power torsion for i ≥ a. Then for i ≥ a and M finite the system
ExtiA(K,M/InM) is essentially constant with value

ExtiA(K,M) = lim ExtiA(K,M/InM)
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Proof. LetM be a finiteA-module. SinceK is pseudo-coherent we see that ExtiA(K,M)
is a finite A-module. Thus for i ≥ a it is annihilated by It for some t ≥ 0. By Lemma
101.4 we see that the image of ExtiA(K, InM) → ExtiA(K,M) is zero for some n > 0.
The short exact sequence 0→ InM →M →M/InM → 0 gives a long exact sequence

ExtiA(K, InM)→ ExtiA(K,M)→ ExtiA(K,M/InM)→ Exti+1
A (K, InM)

The systems ExtiA(K, InM) and Exti+1
A (K, InM) are essentially constant with value 0

by what we just said (applied to the finite A-modules ImM ). A diagram chase shows
ExtiA(K,M/InM) is essentially constant with value ExtiA(K,M). �

Lemma 102.2. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M be a finite
A-module. Let N be an A-module annihilated by I . There exists an integer n > 0 such
that TorAp (InM,N)→ TorAp (M,N) is zero for all p ≥ 0.

Proof. By Lemma 101.7 we can factor InM → M as InM → M ⊗L
A I → M . We

claim the composition

InM ⊗L
A N → (M ⊗L

A I)⊗L
A N →M ⊗L

A N

is zero. Namely, the diagram

(M ⊗L
A I)⊗L

A N
//

''

M ⊗L
A (I ⊗L

A N)

ww
M ⊗L

A N

commutes (details omitted) and the map I⊗L
AN → N is zero asN is annihilated by I . �

Lemma 102.3. Let R be a ring. Let K ∈ D(R) be pseudo-coherent. Let (Mn) be an
inverse system of R-modules. Then R limK ⊗L

RMn = K ⊗L
R R limMn.

Proof. Consider the defining distinguished triangle

R limMn →
∏

Mn →
∏

Mn → R limMn[1]

and apply Lemma 65.5. �

Lemma 102.4. Let R be a Noetherian local ring. Let I ⊂ R be an ideal and let E
be a nonzero module over R/I . If R/I has finite projective dimension and E has finite
projective dimension over R/I , then E has finite projective dimension over R and

pdR(E) = pdR(R/I) + pdR/I(E)

Proof. We will use that, for a finite module, having finite projective dimension over
R, resp. R/I is the same as being a perfect module, see discussion following Definition
74.1. We see that E has finite projective dimension over R by Lemma 74.7. Thus we can
apply Auslander-Buchsbaum (Algebra, Proposition 111.1) to see that

pdR(E) + depth(E) = depth(R), pdR/I(E) + depth(E) = depth(R/I),

and
pdR(R/I) + depth(R/I) = depth(R)

Note that in the first equation we take the depth ofE as anR-module and in the second as
an R/I-module. However these depths are the same (this is trivial but also follows from
Algebra, Lemma 72.11). This concludes the proof. �
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Lemma 102.5. LetA→ B be a ring map. There exists a cardinalκ = κ(A→ B) with
the following property: Let M•, resp. N• be a complex of A-modules, resp. B-modules.
Let a : M• → N• be a map of complexes of A-modules which induces an isomorphism
M•⊗L

AB → N• inD(B). LetM•
1 ⊂M•, resp.N•

1 ⊂ N• be a subcomplex ofA-modules,
resp. B-modules such that a(M•

1 ) ⊂ N•
1 . Then there exist subcomplexes

M•
1 ⊂M•

2 ⊂M• and N•
1 ⊂ N•

2 ⊂ N•

such that a(M•
2 ) ⊂ N•

2 with the following properties:
(1) Ker(Hi(M•

1 ⊗L
A B)→ Hi(N•

1 )) maps to zero in Hi(M•
2 ⊗L

A B),
(2) Im(Hi(N•

1 )→ Hi(N•
2 )) is contained in Im(Hi(M•

2 ⊗L
A B)→ H2(N•

2 )),
(3) |

⋃
M i

2 ∪
⋃
N i

2| ≤ max(κ, |
⋃
M i

1 ∪
⋃
N i

1|).

Proof. Let κ = max(|A|, |B|,ℵ0). Set |M•| = |
⋃
M i| and similarly for other

complexes. With this notation we have

max(κ, |
⋃
M i

1 ∪
⋃
N i

1|) = max(κ, |M•
1 |, |M•

2 |)

for the quantity used in the statement of the lemma. We are going to use this and other
observations coming from arithmetic of cardinals without further mention.
First, let us show that there are plenty of “small” subcomplexes. For every pair of collec-
tions E = {Ei} and F = {F i} of finite subsets Ei ⊂ M i, i ∈ Z and F i ⊂ N i, i ∈ Z we
can let

M•
1 ⊂M1(E,F )• ⊂M• and N•

1 ⊂ N1(E,F )• ⊂ N•

be the smallest subcomplexes ofA andB-modules such that a(M1(E,F )•) ⊂ N1(E,F )•

and such that Ei ⊂M1(E,F )i and F i ⊂M2(E,F )i. Then it is easy to see that
|M1(E,F )•| ≤ max(κ, |M•

1 |) and |M2(E,F )•| ≤ max(κ, |M•
2 |)

Details omitted. It is clear that we have
M• = colim(E,F ) M1(E,F )• and N• = colim(E,F ) N1(E,F )•

and the colimits are (termwise) filtered colimits.
There exists a resolution . . . → F−1 → F 0 → B by free A-modules Fi with |Fi| ≤ κ
(details omitted). The cohomology modules of M•

1 ⊗L
A B are computed by Tot(M•

1 ⊗A
F •). It follows that |Hi(M•

1 ⊗L
A B)| ≤ max(κ, |M•

1 |).
Let i ∈ Z and let ξ ∈ Hi(M•

1 ⊗L
AB) be an element which maps to zero inHi(N•

1 ). Then ξ
maps to zero inHi(N•) and hence ξ maps to zero inHi(M•⊗L

AB). Since derived tensor
product commutes with filtered colimits, we can find finite collectionsEξ and Fξ as above
such that ξ maps to zero in Hi(M1(Eξ, Fξ)• ⊗L

A B).
Let i ∈ Z and let η ∈ Hi(N•

1 ). Then the image of η in Hi(N•) is in the image of
Hi(M• ⊗L

A B) → Hi(N•). Hence as before, we can find finite collections Eη and Fη as
above such that η maps to an element ofHi(N1(Eη, Fη) which is in the image of the map
Hi(M1(Eη, Fη)• ⊗L

A B)→ Hi(N1(Eη, Fη).
Now we simply define

M•
2 =

∑
ξ
M1(Eξ, Fξ)• +

∑
η
M1(Eη, Fη)•

where the sum is over ξ and η as in the previous two paragraphs and the sum is taken inside
M•. Similiarly we set

N•
2 =

∑
ξ
N1(Eξ, Fξ)• +

∑
η
N1(Eη, Fη)•
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where the sum is taken inside N•. By construction we will have properties (1) and (2)
with these choices. The bound (3) also follows as the set of ξ and η has cardinality at most
max(κ, |M•

1 |, |N•
1 |). �

103. Tricks with double complexes

This section continues the discussion in Homology, Section 26.

Lemma 103.1. Let A•
0 → A•

1 → A•
2 → . . . be a complex of complexes of abelian

groups. Assume H−p(A•
p) = 0 for all p ≥ 0. Set Ap,q = Aqp and view A•,• as a double

complex. Then H0(Totπ(A•,•)) = 0.

Proof. Denote fp : A•
p → A•

p+1 the given maps of complexes. Recall that the
differential on Totπ(A•,•) is given by∏

p+q=n
(fqp + (−1)pdqA•

p
)

on elements in degree n. Let ξ ∈ H0(Totπ(A•,•)) be a cohomology class. We will show ξ
is zero. Represent ξ as the class of an cocycle x = (xp) ∈

∏
Ap,−p. Since d(x) = 0 we find

that dA•
0
(x0) = 0. Since H0(A•

0) = 0 there exists a y−1 ∈ A0,−1 with dA•
0
(y−1) = x0.

Then we see that dA•
1
(x1 +f0(y−1)) = 0. SinceH−1(A•

1) = 0 we can find a y−2 ∈ A1,−2

such that −dA•
1
(y−2) = x1 + f0(y−1). By induction we can find y−p−1 ∈ Ap,−p−1 such

that

(−1)pdA•
p
(y−p−1) = xp + fp−1(y−p)

This implies that d(y) = x where y = (y−p−1). �

Lemma 103.2. Let

(A•
0 → A•

1 → A•
2 → . . .) −→ (B•

0 → B•
1 → B•

2 → . . .)

be a map between two complexes of complexes of abelian groups. Set Ap,q = Aqp, Bp,q =
Bqp to obtain double complexes. Let Totπ(A•,•) and Totπ(B•,•) be the product total com-
plexes associated to the double complexes. If each A•

p → B•
p is a quasi-isomorphism, then

Totπ(A•,•)→ Totπ(B•,•) is a quasi-isomorphism.

Proof. Recall that Totπ(A•,•) in degree n is given by
∏
p+q=nA

p,q =
∏
p+1=nA

q
p.

Let C•
p be the cone on the map A•

p → B•
p , see Derived Categories, Section 9. By the

functoriality of the cone construction we obtain a complex of complexes

C•
0 → C•

1 → C•
2 → . . .

Then we see Totπ(C•,•) in degree n is given by∏
p+q=n

Cp,q =
∏

p+q=n
Cqp =

∏
p+q=n

(Bqp ⊕Aq+1
p ) =

∏
p+q=n

Bqp ⊕
∏

p+q=n
Aq+1
p

We conclude that Totπ(C•,•) is the cone of the map Totπ(A•,•)→ Totπ(B•,•) (We omit
the verification that the differentials agree.) Thus it suffices to show Totπ(A•,•) is acyclic
if each A•

p is acyclic. This follows from Lemma 103.1. �
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104. Weakly étale ring maps

Most of the results in this section are from the paper [?] by Olivier. See also the related
paper [?].

Definition 104.1. A ringA is called absolutely flat if everyA-module is flat overA.
A ring map A → B is weakly étale or absolutely flat if both A → B and B ⊗A B → B
are flat.

Absolutely flat rings are sometimes called von Neumann regular rings (often in the setting
of noncommutative rings). A localization is a weakly étale ring map. An étale ring map is
weakly étale. Here is a simple, yet key property.

Lemma 104.2. Let A→ B be a ring map such that B ⊗A B → B is flat. Let N be a
B-module. If N is flat as an A-module, then N is flat as a B-module.

Proof. Assume N is a flat as an A-module. Then the functor

ModB −→ModB⊗AB , N ′ 7→ N ⊗A N ′

is exact. As B ⊗A B → B is flat we conclude that the functor

ModB −→ModB , N ′ 7→ (N ⊗A N ′)⊗B⊗AB B = N ⊗B N ′

is exact, hence N is flat over B. �

Definition 104.3. Let A be a ring. Let d ≥ 0 be an integer. We say that A has weak
dimension ≤ d if every A-module has tor dimension ≤ d.

Lemma 104.4. Let A → B be a weakly étale ring map. If A has weak dimension at
most d, then so does B.

Proof. Let N be a B-module. If d = 0, then N is flat as an A-module, hence flat as
a B-module by Lemma 104.2. Assume d > 0. Choose a resolution F• → N by free B-
modules. Our assumption implies that K = Im(Fd → Fd−1) is A-flat, see Lemma 66.2.
Hence it is B-flat by Lemma 104.2. Thus 0 → K → Fd−1 → . . . → F0 → N → 0 is a
flat resolution of length d and we see that N has tor dimension at most d. �

Lemma 104.5. Let A be a ring. The following are equivalent
(1) A has weak dimension ≤ 0,
(2) A is absolutely flat, and
(3) A is reduced and every prime is maximal.

In this case every local ring of A is a field.

Proof. The equivalence of (1) and (2) is immediate. Assume A is absolutely flat.
This implies every ideal of A is pure, see Algebra, Definition 108.1. Hence every finitely
generated ideal is generated by an idempotent by Algebra, Lemma 108.5. If f ∈ A, then
(f) = (e) for some idempotent e ∈ A and D(f) = D(e) is open and closed (Algebra,
Lemma 21.1). This already implies every ideal of A is maximal for example by Algebra,
Lemma 26.5. Moreover, if f is nilpotent, then e = 0 hence f = 0. Thus A is reduced.

AssumeA is reduced and every prime ofA is maximal. LetM be anA-module. Our goal is
to show thatM is flat. We may writeM as a filtered colimit of finiteA-modules, hence we
may assumeM is finite (Algebra, Lemma 39.3). There is a finite filtration ofM by modules
of the form A/I (Algebra, Lemma 5.4), hence we may assume that M = A/I (Algebra,
Lemma 39.13). Thus it suffices to show every ideal of A is pure. Since every local ring of
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A is a field (by Algebra, Lemma 25.1 and the fact that every prime ofA is minimal), we see
that every ideal I ⊂ A is radical. Note that every closed subset of Spec(A) is closed under
generalization. Thus every (radical) ideal of A is pure by Algebra, Lemma 108.4. �

Lemma 104.6. A product of fields is an absolutely flat ring.

Proof. Let Ki be a family of fields. If f = (fi) ∈
∏
Ki, then the ideal generated by

f is the same as the ideal generated by the idempotent e = (ei) with ei = 0, 1 according to
whether fi is 0 or not. ThusD(f) = D(e) is open and closed and we conclude by Lemma
104.5 and Algebra, Lemma 26.5. �

Lemma 104.7. LetA→ B andA→ A′ be ring maps. LetB′ = B⊗A A′ be the base
change of B.

(1) If B ⊗A B → B is flat, then B′ ⊗A′ B′ → B′ is flat.
(2) If A→ B is weakly étale, then A′ → B′ is weakly étale.

Proof. Assume B ⊗A B → B is flat. The ring map B′ ⊗A′ B′ → B′ is the base
change ofB⊗AB → B byA→ A′. Hence it is flat by Algebra, Lemma 39.7. This proves
(1). Part (2) follows from (1) and the fact (just used) that the base change of a flat ring map
is flat. �

Lemma 104.8. Let A→ B be a ring map such that B ⊗A B → B is flat.
(1) If A is an absolutely flat ring, then so is B.
(2) If A is reduced and A→ B is weakly étale, then B is reduced.

Proof. Part (1) follows immediately from Lemma 104.2 and the definitions. If A is
reduced, then there exists an injectionA→ A′ =

∏
p⊂A minimal Ap ofA into an absolutely

flat ring (Algebra, Lemma 25.2 and Lemma 104.6). IfA→ B is flat, then the induced map
B → B′ = B ⊗A A′ is injective too. By Lemma 104.7 the ring map A′ → B′ is weakly
étale. By part (1) we see thatB′ is absolutely flat. By Lemma 104.5 the ringB′ is reduced.
Hence B is reduced. �

Lemma 104.9. Let A→ B and B → C be ring maps.
(1) If B ⊗A B → B and C ⊗B C → C are flat, then C ⊗A C → C is flat.
(2) If A→ B and B → C are weakly étale, then A→ C is weakly étale.

Proof. Part (1) follows from the factorization

C ⊗A C −→ C ⊗B C −→ C

of the multiplication map, the fact that

C ⊗B C = (C ⊗A C)⊗B⊗AB B,

the fact that a base change of a flat map is flat, and the fact that the composition of flat
ring maps is flat. See Algebra, Lemmas 39.7 and 39.4. Part (2) follows from (1) and the
fact (just used) that the composition of flat ring maps is flat. �

Lemma 104.10. Let A→ B → C be ring maps.
(1) If B → C is faithfully flat and C ⊗A C → C is flat, then B ⊗A B → B is flat.
(2) If B → C is faithfully flat and A → C is weakly étale, then A → B is weakly

étale.
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Proof. Assume B → C is faithfully flat and C ⊗A C → C is flat. Consider the
commutative diagram

C ⊗A C // C

B ⊗A B //

OO

B

OO

The vertical arrows are flat, the top horizontal arrow is flat. Hence C is flat as a B ⊗A B-
module. The map B → C is faithfully flat and C = B ⊗B C. Hence B is flat as a
B ⊗A B-module by Algebra, Lemma 39.9. This proves (1). Part (2) follows from (1) and
the fact thatA→ B is flat ifA→ C is flat andB → C is faithfully flat (Algebra, Lemma
39.9). �

Lemma 104.11. Let A be a ring. Let B → C be an A-algebra map of weakly étale
A-algebras. Then B → C is weakly étale.

Proof. The ring map B → C is flat by Lemma 104.2. The ring map C ⊗A C →
C ⊗B C is surjective, hence an epimorphism. Thus Lemma 104.2 implies, that since C is
flat over C ⊗A C also C is flat over C ⊗B C. �

Lemma 104.12. Let A → B be a ring map such that B ⊗A B → B is flat. Then
ΩB/A = 0, i.e., B is formally unramified over A.

Proof. Let I ⊂ B ⊗A B be the kernel of the flat surjective map B ⊗A B → B.
Then I is a pure ideal (Algebra, Definition 108.1), so I2 = I (Algebra, Lemma 108.2).
Since ΩB/A = I/I2 (Algebra, Lemma 131.13) we obtain the vanishing. This means B is
formally unramified over A by Algebra, Lemma 148.2. �

Lemma 104.13. Let A→ B be a ring map such that B ⊗A B → B is flat.
(1) If A→ B is of finite type, then A→ B is unramified.
(2) If A→ B is of finite presentation and flat, then A→ B is étale.

In particular a weakly étale ring map of finite presentation is étale.

Proof. Part (1) follows from Lemma 104.12 and Algebra, Definition 151.1. Part (2)
follows from part (1) and Algebra, Lemma 151.8. �

Lemma 104.14. Let A → B be a ring map. Then A → B is weakly étale in each of
the following cases

(1) B = S−1A is a localization of A,
(2) A→ B is étale,
(3) B is a filtered colimit of weakly étale A-algebras.

Proof. An étale ring map is flat and the map B ⊗A B → B is also étale as a map
between étale A-algebras (Algebra, Lemma 143.8). This proves (2).

Let Bi be a directed system of weakly étale A-algebras. Then B = colimBi is flat over
A by Algebra, Lemma 39.3. Note that the transition maps Bi → Bi′ are flat by Lemma
104.11. Hence B is flat over Bi for each i, and we see that B is flat over Bi ⊗A Bi by
Algebra, Lemma 39.4. ThusB is flat overB⊗A B = colimBi⊗A Bi by Algebra, Lemma
39.6.

Part (1) can be proved directly, but also follows by combining (2) and (3). �
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Lemma 104.15. Let L/K be an extension of fields. If L⊗K L → L is flat, then L is
an algebraic separable extension of K.

Proof. By Lemma 104.10 we see that any subfieldK ⊂ L′ ⊂ L the mapL′⊗K L′ →
L′ is flat. Thus we may assumeL is a finitely generated field extension ofK. In this case the
fact thatL/K is formally unramified (Lemma 104.12) implies thatL/K is finite separable,
see Algebra, Lemma 158.1. �

Lemma 104.16. Let B be an algebra over a field K. The following are equivalent
(1) B ⊗K B → B is flat,
(2) K → B is weakly étale, and
(3) B is a filtered colimit of étale K-algebras.

Moreover, every finitely generated K-subalgebra of B is étale over K.

Proof. Parts (1) and (2) are equivalent because every K-algebra is flat over K. Part
(3) implies (1) and (2) by Lemma 104.14

Assume (1) and (2) hold. We will prove (3) and the finite statement of the lemma. A field is
absolutely flat ring, henceB is a absolutely flat ring by Lemma 104.8. HenceB is reduced
and every local ring is a field, see Lemma 104.5.

Let q ⊂ B be a prime. The ring map B → Bq is weakly étale, hence Bq is weakly étale
overK (Lemma 104.9). ThusBq is a separable algebraic extension ofK by Lemma 104.15.

Let K ⊂ A ⊂ B be a finitely generated K-sub algebra. We will show that A is étale over
K which will finish the proof of the lemma. Then every minimal prime p ⊂ A is the
image of a prime q of B, see Algebra, Lemma 30.5. Thus κ(p) as a subfield of Bq = κ(q)
is separable algebraic over K. Hence every generic point of Spec(A) is closed (Algebra,
Lemma 35.9). Thus dim(A) = 0. ThenA is the product of its local rings, e.g., by Algebra,
Proposition 60.7. Moreover, since A is reduced, all local rings are equal to their residue
fields wich are finite separable over K. This means that A is étale over K by Algebra,
Lemma 143.4 and finishes the proof. �

Lemma 104.17. Let A → B be a ring map. If A → B is weakly étale, then A → B
induces separable algebraic residue field extensions.

Proof. Let p be a prime of A. Then κ(p) → B ⊗A κ(p) is weakly étale by Lemma
104.7. HenceB⊗Aκ(p) is a filtered colimit of étaleκ(p)-algebras by Lemma 104.16. Hence
for q ⊂ B lying over p the extension κ(q)/κ(p) is a filtered colimit of finite separable
extensions by Algebra, Lemma 143.4. �

Lemma 104.18. Let A be a ring. The following are equivalent
(1) A has weak dimension ≤ 1,
(2) every ideal of A is flat,
(3) every finitely generated ideal of A is flat,
(4) every submodule of a flat A-module is flat, and
(5) every local ring of A is a valuation ring.

Proof. If A has weak dimension ≤ 1, then the resolution 0 → I → A → A/I → 0
shows that every ideal I is flat by Lemma 66.2. Hence (1)⇒ (2).

Assume (4). Let M be an A-module. Choose a surjection F → M where F is a free A-
module. Then Ker(F → M) is flat by assumption, and we see that M has tor dimension
≤ 1 by Lemma 66.6. Hence (4)⇒ (1).
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Every ideal is the union of the finitely generated ideals contained in it. Hence (3) implies
(2) by Algebra, Lemma 39.3. Thus (3)⇔ (2).

Assume (2). Suppose that N ⊂M with M a flat A-module. We will prove that N is flat.
We can writeM = colimMi with eachMi finite free, see Algebra, Theorem 81.4. Setting
Ni ⊂ Mi the inverse image of N we see that N = colimNi. By Algebra, Lemma 39.3. it
suffices to proveNi is flat and we reduce to the caseM = R⊕n. In this case the moduleN
has a finite filtration by the submodules R⊕j ∩ N whose subquotients are ideals. By (2)
these ideals are flat and hence N is flat by Algebra, Lemma 39.13. Thus (2)⇒ (4).

Assume A satisfies (1) and let p ⊂ A be a prime ideal. By Lemmas 104.14 and 104.4 we
see that Ap satisfies (1). We will show A is a valuation ring if A is a local ring satisfying
(3). Let f ∈ m be a nonzero element. Then (f) is a flat nonzero module generated by
one element. Hence it is a free A-module by Algebra, Lemma 78.5. It follows that f is a
nonzerodivisor andA is a domain. If I ⊂ A is a finitely generated ideal, then we similarly
see that I is a finite free A-module, hence (by considering the rank) free of rank 1 and I is
a principal ideal. Thus A is a valuation ring by Algebra, Lemma 50.15. Thus (1)⇒ (5).

Assume (5). Let I ⊂ A be a finitely generated ideal. Then Ip ⊂ Ap is a finitely generated
ideal in a valuation ring, hence principal (Algebra, Lemma 50.15), hence flat. Thus I is flat
by Algebra, Lemma 39.18. Thus (5)⇒ (3). This finishes the proof of the lemma. �

Lemma 104.19. Let J be a set. For each j ∈ J letAj be a valuation ring with fraction
field Kj . Set A =

∏
Aj and K =

∏
Kj . Then A has weak dimension at most 1 and

A→ K is a localization.

Proof. Let I ⊂ A be a finitely generated ideal. By Lemma 104.18 it suffices to show
that I is a flat A-module. Let Ij ⊂ Aj be the image of I . Observe that Ij = I ⊗A Aj ,
hence I →

∏
Ij is surjective by Algebra, Proposition 89.2. Thus I =

∏
Ij . Since Aj is a

valuation ring, the ideal Ij is generated by a single element (Algebra, Lemma 50.15). Say
Ij = (fj). Then I is generated by the element f = (fj). Let e ∈ A be the idempotent
which has a 0 or 1 in Aj depending on whether fj is 0 or not. Then f = ge for some
nonzerodivisor g ∈ A: take g = (gj) with gj = 1 if fj = 0 and gj = fj else. Thus
I ∼= (e) as a module. We conclude I is flat as (e) is a direct summand of A. The final
statement is true because K = S−1A where S =

∏
(Aj \ {0}). �

Lemma 104.20. Let A be a normal domain with fraction field K. There exists a
cartesian diagram

A

��

// K

��
V // L

of rings whereV has weak dimension at most 1 andV → L is a flat, injective, epimorphism
of rings.

Proof. For every x ∈ K , x 6∈ A pick Vx ⊂ K as in Algebra, Lemma 50.11. Set
V =

∏
x∈K\A Vx and L =

∏
x∈K\AK. The ring V has weak dimension at most 1 by

Lemma 104.19 which also shows that V → L is a localization. A localization is flat and an
epimorphism, see Algebra, Lemmas 39.18 and 107.5. �

Lemma 104.21. Let A be a ring of weak dimension at most 1. If A → B is a flat,
injective, epimorphism of rings, then A is integrally closed in B.
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Proof. Let x ∈ B be integral over A. Let A′ = A[x] ⊂ B. Then A′ is a finite ring
extension of A by Algebra, Lemma 36.5. To show A = A′ it suffices to show A → A′ is
an epimorphism by Algebra, Lemma 107.6. Note that A′ is flat over A by assumption on
A and the fact that B is flat over A (Lemma 104.18). Hence the composition

A′ ⊗A A′ → B ⊗A A′ → B ⊗A B → B

is injective, i.e., A′ ⊗A A′ ∼= A′ and the lemma is proved. �

Lemma 104.22. Let A be a normal domain with fraction field K. Let A → B be
weakly étale. Then B is integrally closed in B ⊗A K.

Proof. Choose a diagram as in Lemma 104.20. As A → B is flat, the base change
gives a cartesian diagram

B

��

// B ⊗A K

��
B ⊗A V // B ⊗A L

of rings. Note that V → B⊗A V is weakly étale (Lemma 104.7), henceB⊗A V has weak
dimension at most 1 by Lemma 104.4. Note that B ⊗A V → B ⊗A L is a flat, injective,
epimorphism of rings as a flat base change of such (Algebra, Lemmas 39.7 and 107.3). By
Lemma 104.21 we see that B ⊗A V is integrally closed in B ⊗A L. It follows from the
cartesian property of the diagram that B is integrally closed in B ⊗A K. �

Lemma 104.23. Let A→ B be a ring homomorphism. Assume
(1) A is a henselian local ring,
(2) A→ B is integral,
(3) B is a domain.

Then B is a henselian local ring and A → B is a local homomorphism. If A is strictly
henselian, then B is a strictly henselian local ring and the extension κ(mB)/κ(mA) of
residue fields is purely inseparable.

Proof. Write B as a filtered colimit B = colimBi of finite A-sub algebras. If we
prove the results for each Bi, then the result follows for B. See Algebra, Lemma 154.8. If
A → B is finite, then B is a product of local henselian rings by Algebra, Lemma 153.4.
SinceB is a domain we see thatB is a local ring. The maximal ideal ofB lies over the max-
imal ideal of A by going up for A→ B (Algebra, Lemma 36.22). IfA is strictly henselian,
then the field extension κ(mB)/κ(mA) being algebraic, has to be purely inseparable. Of
course, then κ(mB) is separably algebraically closed and B is strictly henselian. �

Theorem 104.24 (Olivier). Let A → B be a local homomorphism of local rings. If
A is strictly henselian and A→ B is weakly étale, then A = B.

Proof. We will show that for all p ⊂ A there is a unique prime q ⊂ B lying over
p and κ(p) = κ(q). This implies that B ⊗A B → B is bijective on spectra as well as
surjective and flat. Hence it is an isomorphism for example by the description of pure
ideals in Algebra, Lemma 108.4. Hence A → B is a faithfully flat epimorphism of rings.
We get A = B by Algebra, Lemma 107.7.
Note that the fibre ringB⊗Aκ(p) is a colimit of étale extensions of κ(p) by Lemmas 104.7
and 104.16. Hence, if there exists more than one prime lying over p or if κ(p) 6= κ(q) for
some q, then B ⊗A L has a nontrivial idempotent for some (separable) algebraic field
extension L/κ(p).
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Let L/κ(p) be an algebraic field extension. Let A′ ⊂ L be the integral closure of A/p in
L. By Lemma 104.23 we see that A′ is a strictly henselian local ring whose residue field
is a purely inseparable extension of the residue field of A. Thus B ⊗A A′ is a local ring
by Algebra, Lemma 156.5. On the other hand, B ⊗A A′ is integrally closed in B ⊗A L
by Lemma 104.22. Since B ⊗A A′ is local, it follows that the ring B ⊗A L does not have
nontrivial idempotents which is what we wanted to prove. �

105. Weakly étale algebras over fields

IfK is a field, then an algebraB is weakly étale overK if and only if it is a filtered colimit
of étale K-algebras. This is Lemma 104.16.

Lemma 105.1. Let K be a field. If B is weakly étale over K , then
(1) B is reduced,
(2) B is integral over K ,
(3) any finitely generated K-subalgebra of B is a finite product of finite separable

extensions of K ,
(4) B is a field if and only ifB does not have nontrivial idempotents and in this case

it is a separable algebraic extension of K ,
(5) any sub or quotient K-algebra of B is weakly étale over K ,
(6) if B′ is weakly étale over K , then B ⊗K B′ is weakly étale over K.

Proof. Part (1) follows from Lemma 104.8 but of course it follows from part (3) as
well. Part (3) follows from Lemma 104.16 and the fact that étale K-algebras are finite
products of finite separable extensions of K , see Algebra, Lemma 143.4. Part (3) implies
(2). Part (4) follows from (3) as a product of fields is a field if and only if it has no nontrivial
idempotents.
If S ⊂ B is a subalgebra, then it is the filtered colimit of its finitely generated subalgebras
which are all étale over K by the above and hence S is weakly étale over K by Lemma
104.16. If B → Q is a quotient algebra, then Q is the filtered colimit of K-algebra quo-
tients of finite products

∏
i∈I Li of finite separable extensions Li/K. Such a quotient is

of the form
∏
i∈J Li for some subset J ⊂ I and hence the result holds for quotients by

the same reasoning.
The statement on tensor products follows in a similar manner or by combining Lemmas
104.7 and 104.9. �

Lemma 105.2. LetK be a field. LetA be aK-algebra. There exists a maximal weakly
étale K-subalgebra Bmax ⊂ A.

Proof. Let B1, B2 ⊂ A be weakly étale K-subalgebras. Then B1 ⊗K B2 is weakly
étale over K and so is the image of B1 ⊗K B2 → A (Lemma 105.1). Thus the collection
B of weakly étaleK-subalgebrasB ⊂ A is directed and the colimitBmax = colimB∈B B
is a weakly étale K-algebra by Lemma 104.14. Hence the image of Bmax → A is weakly
étale over K (previous lemma cited). It follows that this image is in B and hence B has a
maximal element (and the image is the same as Bmax). �

Lemma 105.3. Let K be a field. For a K-algebra A denote Bmax(A) the maximal
weakly étale K-subalgebra of A as in Lemma 105.2. Then

(1) any K-algebra map A′ → A induces a K-algebra map Bmax(A′)→ Bmax(A),
(2) if A′ ⊂ A, then Bmax(A′) = Bmax(A) ∩A′,
(3) if A = colimAi is a filtered colimit, then Bmax(A) = colimBmax(Ai),
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(4) the map Bmax(A)→ Bmax(Ared) is an isomorphism,
(5) Bmax(A1 × . . .×An) = Bmax(A1)× . . .×Bmax(An),
(6) if A has no nontrivial idempotents, then Bmax(A) is a field and a separable al-

gebraic extension of K ,
(7) add more here.

Proof. Proof of (1). This is true because the image ofBmax(A′)→ A is weakly étale
over K by Lemma 105.1.

Proof of (2). By (1) we have Bmax(A′) ⊂ Bmax(A). Conversely, Bmax(A) ∩ A′ is a
weakly étale K-algebra by Lemma 105.1 and hence contained in Bmax(A′).

Proof of (3). By (1) there is a map colimBmax(Ai)→ Awhich is injective because the sys-
tem is filtered and Bmax(Ai) ⊂ Ai. The colimit colimBmax(Ai) is weakly étale over K
by Lemma 104.14. Hence we get an injective map colimBmax(Ai)→ Bmax(A). Suppose
that a ∈ Bmax(A). Then a generates a finitely presented K-subalgebra B ⊂ Bmax(A).
By Algebra, Lemma 127.3 there is an i and a K-algebra map f : B → Ai lifting the given
mapB → A. SinceB is weakly étale by Lemma 105.1, we see that f(B) ⊂ Bmax(Ai) and
we conclude that a is in the image of colimBmax(Ai)→ Bmax(A).

Proof of (4). Write Bmax(Ared) = colimBi as a filtered colimit of étale K-algebras
(Lemma 104.16). By Algebra, Lemma 138.17 for each i there is aK-algebra map fi : Bi →
A lifting the given map Bi → Ared. It follows that the canonical map Bmax(Ared) →
Bmax(A) is surjective. The kernel consists of nilpotent elements and hence is zero as
Bmax(Ared) is reduced (Lemma 105.1).

Proof of (5). Omitted.

Proof of (6). Follows from Lemma 105.1 part (4). �

Lemma 105.4. Let L/K be an extension of fields. Let A be a K-algebra. Let B ⊂ A
be the maximal weakly étale K-subalgebra of A as in Lemma 105.2. Then B ⊗K L is the
maximal weakly étale L-subalgebra of A⊗K L.

Proof. For an algebraA overK we writeBmax(A/K) for the maximal weakly étale
K-subalgebra of A. Similarly we write Bmax(A′/L) for the maximal weakly étale L-
subalgebra of A′ if A′ is an L-algebra. Since Bmax(A/K) ⊗K L is weakly étale over L
(Lemma 104.7) and since Bmax(A/K) ⊗K L ⊂ A ⊗K L we obtain a canonical injective
map

Bmax(A/K)⊗K L→ Bmax((A⊗K L)/L)
The lemma states that this map is an isomorphism.

To prove the lemma forL and ourK-algebraA, it suffices to prove the lemma for any field
extension L′ of L. Namely, we have the factorization

Bmax(A/K)⊗K L′ → Bmax((A⊗K L)/L)⊗L L′ → Bmax((A⊗K L′)/L′)

hence the composition cannot be surjective withoutBmax(A/K)⊗K L→ Bmax((A⊗K
L)/L) being surjective. Thus we may assume L is algebraically closed.

Reduction to finite type K-algebra. We may write A is the filtered colimit of its finite
type K-subalgebras. Using Lemma 105.3 we see that it suffices to prove the lemma for
finite type K-algebras.
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Assume A is a finite type K-algebra. Since the kernel of A→ Ared is nilpotent, the same
is true for A⊗K L→ Ared ⊗K L. Then

Bmax((A⊗K L)/L)→ Bmax((Ared ⊗K L)/L)
is injective because the kernel is nilpotent and the weakly étale L-algebra Bmax((A ⊗K
L)/L) is reduced (Lemma 105.1). SinceBmax(A/K) = Bmax(Ared/K) by Lemma 105.3
we conclude that it suffices to prove the lemma for Ared.
Assume A is a reduced finite type K-algebra. Let Q = Q(A) be the total quotient ring of
A. Then A ⊂ Q and A⊗K L ⊂ Q⊗A L and hence

Bmax(A/K) = A ∩Bmax(Q/K)
and

Bmax((A⊗K L)/L) = (A⊗K L) ∩Bmax((Q⊗K L)/L)
by Lemma 105.3. Since−⊗KL is an exact functor, it follows that if we prove the result for
Q, then the result follows forA. SinceQ is a finite product of fields (Algebra, Lemmas 25.4,
25.1, 31.6, and 31.1) and since Bmax commutes with products (Lemma 105.3) it suffices to
prove the lemma when A is a field.
Assume A is a field. We reduce to A being finitely generated over K by the argument in
the third paragraph of the proof. (In fact the way we reduced to the case of a field produces
a finitely generated field extension of K.)
Assume A is a finitely generated field extension of K. Then K ′ = Bmax(A/K) is a field
separable algebraic over K by Lemma 105.3 part (6). Hence K ′ is a finite separable field
extension ofK andA is geometrically irreducible overK ′ by Algebra, Lemma 47.13. Since
L is algebraically closed and K ′/K finite separable we see that

K ′ ⊗K L→
∏

σ∈HomK(K′,L)
L, α⊗ β 7→ (σ(α)β)σ

is an isomorphism (Fields, Lemma 13.4). We conclude

A⊗K L = A⊗K′ (K ′ ⊗K L) =
∏

σ∈HomK(K′,L)
A⊗K′,σ L

Since A is geometrically irreducible over K ′ we see that A⊗K′,σ L has a unique minimal
prime. Since L is algebraically closed it follows that Bmax((A⊗K′,σ L)/L) = L because
this L-algebra is a field algebraic over L by Lemma 105.3 part (6). It follows that the
maximal weakly étaleK ′⊗KL-subalgebra ofA⊗KL isK ′⊗KL because we can decompose
these subalgebras into products as above. Hence the inclusion K ′ ⊗K L ⊂ Bmax((A⊗K
L)/L) is an equality: the ring map K ′ ⊗K L → Bmax((A ⊗K L)/L) is weakly étale by
Lemma 104.11. �

106. Local irreducibility

The following definition seems to be the generally accepted one. To parse it, observe that
if A ⊂ B is an integral extension of local domains, then A→ B is a local ring homomor-
phism by going up (Algebra, Lemma 36.22).

Definition 106.1. LetA be a local ring. We sayA is unibranch if the reductionAred
is a domain and if the integral closureA′ ofAred in its field of fractions is local. We sayA
is geometrically unibranch ifA is unibranch and moreover the residue field ofA′ is purely
inseparable over the residue field of A.

Let A be a local ring. Here is an equivalent formulation
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(1) A is unibranch if A has a unique minimal prime p and the integral closure of
A/p in its fraction field is a local ring, and

(2) A is geometrically unibranch ifA has a unique minimal prime p and the integral
closure of A/p in its fraction field is a local ring whose residue field is purely
inseparable over the residue field of A.

A local ring which is normal is geometrically unibranch (follows from Definition 106.1
and Algebra, Definition 37.11). Lemmas 106.3 and 106.5 suggest that being (geometrically)
unibranch is a reasonable property to look at.

Lemma 106.2. Let A be a local ring. Assume A has finitely many minimal prime
ideals. Let A′ be the integral closure of A in the total ring of fractions of Ared. Let Ah be
the henselization of A. Consider the maps

Spec(A′)← Spec((A′)h)→ Spec(Ah)
where (A′)h = A′ ⊗A Ah. Then

(1) the left arrow is bijective on maximal ideals,
(2) the right arrow is bijective on minimal primes,
(3) every minimal prime of (A′)h is contained in a unique maximal ideal and every

maximal ideal contains exactly one minimal prime.

Proof. Let I ⊂ A be the ideal of nilpotents. We have (A/I)h = Ah/IAh by (Alge-
bra, Lemma 156.2). The spectra ofA,Ah,A′, and (A′)h are the same as the spectra ofA/I ,
Ah/IAh,A′, and (A′)h = A′⊗A/I Ah/IAh. Thus we may replaceA byAred = A/I and
assume A is reduced. Then A ⊂ A′ which we will use below without further mention.

Proof of (1). As A′ is integral over A we see that (A′)h is integral over Ah. By going up
(Algebra, Lemma 36.22) every maximal ideal ofA′, resp. (A′)h lies over the maximal ideal
m, resp. mh of A, resp. Ah. Thus (1) follows from the isomorphism

(A′)h ⊗Ah κh = A′ ⊗A Ah ⊗Ah κh = A′ ⊗A κ
because the residue field extension κh/κ induced byA→ Ah is trivial. We will use below
that the displayed ring is integral over a field hence spectrum of this ring is a profinite
space, see Algebra, Lemmas 36.19 and 26.5.

Proof of (3). The ring A′ is a normal ring and in fact a finite product of normal domains,
see Algebra, Lemma 37.16. Since Ah is a filtered colimit of étale A-algebras, (A′)h is fil-
tered colimit of étale A′-algebras hence (A′)h is a normal ring by Algebra, Lemmas 163.9
and 37.17. Thus every local ring of (A′)h is a normal domain and we see that every max-
imal ideal contains a unique minimal prime. By Lemma 11.8 applied to Ah → (A′)h we
see that ((A′)h,m(A′)h) is a henselian pair. If q ⊂ (A′)h is a minimal prime (or any
prime), then the intersection of V (q) with V (m(A′)h) is connected by Lemma 11.16 Since
V (m(A′)h) = Spec((A′)h ⊗ κh) is a profinite space by we see there is a unique maximal
ideal containing q.

Proof of (2). The minimal primes ofA′ are exactly the primes lying over a minimal prime
of A (by construction). Since A′ → (A′)h is flat by going down (Algebra, Lemma 39.19)
every minimal prime of (A′)h lies over a minimal prime of A′. Conversely, any prime
of (A′)h lying over a minimal prime of A′ is minimal because (A′)h is a filtered colimit
of étale hence quasi-finite algebras over A′ (small detail omitted). We conclude that the
minimal primes of (A′)h are exactly the primes which lie over a minimal prime of A.
Similarly, the minimal primes of Ah are exactly the primes lying over minimal primes of
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A. By construction we have A′ ⊗A Q(A) = Q(A) where Q(A) is the total fraction ring
of our reduced local ring A. Of course Q(A) is the finite product of residue fields of the
minimal primes of A. It follows that

(A′)h ⊗A Q(A) = Ah ⊗A A′ ⊗A Q(A) = Ah ⊗A Q(A)

Our discussion above shows the spectrum of the ring on the left is the set of minimal primes
of (A′)h and the spectrum of the ring on the right is the is the set of minimal primes of
Ah. This finishes the proof. �

Lemma 106.3. LetA be a local ring. LetAh be the henselization ofA. The following
are equivalent

(1) A is unibranch, and
(2) Ah has a unique minimal prime.

Proof. This follows from Lemma 106.2 but we will also give a direct proof. Denote
m the maximal ideal of the ring A. Recall that the residue field κ = A/m is the same as
the residue field of Ah.

Assume (2). Let ph be the unique minimal prime of Ah. The flatness of A → Ah implies
that p = A ∩ ph is the unique minimal prime of A (by going down, see Algebra, Lemma
39.19). Also, since Ah/pAh = (A/p)h (see Algebra, Lemma 156.2) is reduced by Lemma
45.4 we see that ph = pAh. Let A′ be the integral closure of A/p in its fraction field. We
have to show thatA′ is local. SinceA→ A′ is integral, every maximal ideal ofA′ lies over
m (by going up for integral ring maps, see Algebra, Lemma 36.22). If A′ is not local, then
we can find distinct maximal ideals m1, m2. Choose elements f1, f2 ∈ A′ with fi ∈ mi
and fi 6∈ m3−i. We find a finite subalgebra B = A[f1, f2] ⊂ A′ with distinct maximal
ideals B ∩mi, i = 1, 2. Note that the inclusions

A/p ⊂ B ⊂ κ(p)

give, on tensoring with the flat ring map A→ Ah the inclusions

Ah/ph ⊂ B ⊗A Ah ⊂ κ(p)⊗A Ah ⊂ κ(ph)

the last inclusion because κ(p)⊗AAh = κ(p)⊗A/pAh/ph is a localization of the domain
Ah/ph. Note thatB⊗Aκ has at least two maximal ideals becauseB/mB has two maximal
ideals. Hence, as Ah is henselian we see that B ⊗A Ah is a product of ≥ 2 local rings, see
Algebra, Lemma 153.5. But we’ve just seen that B ⊗A Ah is a subring of a domain and we
get a contradiction.

Assume (1). Let p ⊂ A be the unique minimal prime and let A′ be the integral closure of
A/p in its fraction field. LetA→ B be a local map of local rings inducing an isomorphism
of residue fields which is a localization of an étaleA-algebra. In particularmB is the unique
prime containing mB. Then B′ = A′ ⊗A B is integral over B and the assumption that
A → A′ is local implies that B′ is local (Algebra, Lemma 156.5). On the other hand,
A′ → B′ is the localization of an étale ring map, hence B′ is normal, see Algebra, Lemma
163.9. Thus B′ is a (local) normal domain. Finally, we have

B/pB ⊂ B ⊗A κ(p) = B′ ⊗A′ (fraction field of A′) ⊂ fraction field of B′

Hence B/pB is a domain, which implies that B has a unique minimal prime (since by
flatness of A → B these all have to lie over p). Since Ah is a filtered colimit of the local
ringsB it follows thatAh has a unique minimal prime. Namely, if fg = 0 inAh for some
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non-nilpotent elements f, g, then we can find aB as above containing both f and g which
leads to a contradiction. �

Lemma 106.4. Let (A,m, κ) be a local ring. Assume A has finitely many minimal
prime ideals. Let A′ be the integral closure of A in the total ring of fractions of Ared.
Choose an algebraic closure κ of κ and denote κsep ⊂ κ the separable algebraic closure of
κ. Let Ash be the strict henselization of A with respect to κsep. Consider the maps

Spec(A′) c←− Spec((A′)sh) e−→ Spec(Ash)
where (A′)sh = A′ ⊗A Ash. Then

(1) for m′ ⊂ A′ maximal the residue field κ′ is algebraic over κ and the fibre of c
over m′ can be canonically identified with Homκ(κ′, κ),

(2) the right arrow is bijective on minimal primes,
(3) every minimal prime of (A′)sh is contained in a unique maximal ideal and every

maximal ideal contains a unique minimal prime.

Proof. The proof is almost exactly the same as for Lemma 106.2. Let I ⊂ A be the
ideal of nilpotents. We have (A/I)sh = Ash/IAsh by (Algebra, Lemma 156.2). The
spectra of A, Ash, A′, and (A′)h are the same as the spectra of A/I , Ash/IAsh, A′, and
(A′)sh = A′ ⊗A/I Ash/IAsh. Thus we may replace A by Ared = A/I and assume A is
reduced. Then A ⊂ A′ which we will use below without further mention.

Proof of (1). The field extension κ′/κ is algebraic because A′ is integral over A. Since A′

is integral over A, we see that (A′)sh is integral over Ash. By going up (Algebra, Lemma
36.22) every maximal ideal of A′, resp. (A′)sh lies over the maximal ideal m, resp. msh of
A, resp. Ah. We have

(A′)sh ⊗Ash κsep = A′ ⊗A Ah ⊗Ah κsep = (A′ ⊗A κ)⊗κ κsep

because the residue field of Ash is κsep. Thus the fibre of c over m′ is the spectrum of
κ′ ⊗κ κsep. We conclude (1) is true because there is a bijection

Homκ(κ′, κ)→ Spec(κ′ ⊗κ κsep), σ 7→ Ker(σ ⊗ 1 : κ′ ⊗κ κsep → κ)
We will use below that the displayed ring is integral over a field hence spectrum of this
ring is a profinite space, see Algebra, Lemmas 36.19 and 26.5.

Proof of (3). The ring A′ is a normal ring and in fact a finite product of normal domains,
see Algebra, Lemma 37.16. Since Ash is a filtered colimit of étale A-algebras, (A′)sh is
filtered colimit of étale A′-algebras hence (A′)sh is a normal ring by Algebra, Lemmas
163.9 and 37.17. Thus every local ring of (A′)sh is a normal domain and we see that every
maximal ideal contains a unique minimal prime. By Lemma 11.8 applied toAsh → (A′)sh
to see that ((A′)sh,m(A′)sh) is a henselian pair. If q ⊂ (A′)sh is a minimal prime (or any
prime), then the intersection of V (q) with V (m(A′)sh) is connected by Lemma 11.16 Since
V (m(A′)sh) = Spec((A′)sh⊗κsh) is a profinite space by we see there is a unique maximal
ideal containing q.

Proof of (2). The minimal primes ofA′ are exactly the primes lying over a minimal prime
of A (by construction). Since A′ → (A′)sh is flat by going down (Algebra, Lemma 39.19)
every minimal prime of (A′)sh lies over a minimal prime of A′. Conversely, any prime
of (A′)sh lying over a minimal prime of A′ is minimal because (A′)sh is a filtered colimit
of étale hence quasi-finite algebras over A′ (small detail omitted). We conclude that the
minimal primes of (A′)sh are exactly the primes which lie over a minimal prime of A.
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Similarly, the minimal primes ofAsh are exactly the primes lying over minimal primes of
A. By construction we have A′ ⊗A Q(A) = Q(A) where Q(A) is the total fraction ring
of our reduced local ring A. Of course Q(A) is the finite product of residue fields of the
minimal primes of A. It follows that

(A′)sh ⊗A Q(A) = Ash ⊗A A′ ⊗A Q(A) = Ash ⊗A Q(A)

Our discussion above shows the spectrum of the ring on the left is the set of minimal
primes of (A′)sh and the spectrum of the ring on the right is the is the set of minimal
primes of Ash. This finishes the proof. �

Lemma 106.5. Let A be a local ring. Let Ash be a strict henselization of A. The
following are equivalent

(1) A is geometrically unibranch, and
(2) Ash has a unique minimal prime.

Proof. This follows from Lemma 106.4 but we will also give a direct proof; this
direct proof is almost exactly the same as the direct proof of Lemma 106.3. Denote m the
maximal ideal of the ring A. Denote κ, κsh the residue field of A, Ash.

Assume (2). Let psh be the unique minimal prime ofAsh. The flatness ofA→ Ash implies
that p = A ∩ psh is the unique minimal prime of A (by going down, see Algebra, Lemma
39.19). Also, sinceAsh/pAsh = (A/p)sh (see Algebra, Lemma 156.4) is reduced by Lemma
45.4 we see that psh = pAsh. Let A′ be the integral closure of A/p in its fraction field.
We have to show that A′ is local and that its residue field is purely inseparable over κ.
Since A→ A′ is integral, every maximal ideal of A′ lies over m (by going up for integral
ring maps, see Algebra, Lemma 36.22). IfA′ is not local, then we can find distinct maximal
ideals m1, m2. Choosing elements f1, f2 ∈ A′ with fi ∈ mi, fi 6∈ m3−i we find a finite
subalgebra B = A[f1, f2] ⊂ A′ with distinct maximal ideals B ∩ mi, i = 1, 2. If A′ is
local with maximal ideal m′, butA/m ⊂ A′/m′ is not purely inseparable, then we can find
f ∈ A′ whose image inA′/m′ generates a finite, not purely inseparable extension ofA/m
and we find a finite local subalgebra B = A[f ] ⊂ A′ whose residue field is not a purely
inseparable extension of A/m. Note that the inclusions

A/p ⊂ B ⊂ κ(p)

give, on tensoring with the flat ring map A→ Ash the inclusions

Ash/psh ⊂ B ⊗A Ash ⊂ κ(p)⊗A Ash ⊂ κ(psh)

the last inclusion because κ(p) ⊗A Ash = κ(p) ⊗A/p Ash/psh is a localization of the
domain Ash/psh. Note that B ⊗A κsh has at least two maximal ideals because B/mB
either has two maximal ideals or one whose residue field is not purely inseparable over κ,
and because κsh is separably algebraically closed. Hence, as Ash is strictly henselian we
see that B ⊗A Ash is a product of ≥ 2 local rings, see Algebra, Lemma 153.6. But we’ve
just seen that B ⊗A Ash is a subring of a domain and we get a contradiction.

Assume (1). Let p ⊂ A be the unique minimal prime and let A′ be the integral closure
of A/p in its fraction field. Let A → B be a local map of local rings which is a localiza-
tion of an étale A-algebra. In particular mB is the unique prime containing mAB. Then
B′ = A′ ⊗A B is integral over B and the assumption that A → A′ is local with purely
inseparable residue field extension implies that B′ is local (Algebra, Lemma 156.5). On
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the other hand, A′ → B′ is the localization of an étale ring map, hence B′ is normal, see
Algebra, Lemma 163.9. Thus B′ is a (local) normal domain. Finally, we have

B/pB ⊂ B ⊗A κ(p) = B′ ⊗A′ (fraction field of A′) ⊂ fraction field of B′

Hence B/pB is a domain, which implies that B has a unique minimal prime (since by
flatness of A → B these all have to lie over p). Since Ash is a filtered colimit of the local
rings B it follows that Ash has a unique minimal prime. Namely, if fg = 0 in Ash for
some non-nilpotent elements f, g, then we can find a B as above containing both f and g
which leads to a contradiction. �

Definition 106.6. Let A be a local ring with henselization Ah and strict henseliza-
tionAsh. The number of branches ofA is the number of minimal primes ofAh if finite and
∞ otherwise. The number of geometric branches of A is the number of minimal primes
of Ash if finite and∞ otherwise.

We spell out the relationship with Definition 106.1.

Lemma 106.7. Let (A,m, κ) be a local ring.
(1) If A has infinitely many minimal prime ideals, then the number of (geometric)

branches of A is∞.
(2) The number of branches of A is 1 if and only if A is unibranch.
(3) The number of geometric branches of A is 1 if and only if A is geometrically

unibranch.
Assume A has finitely many minimal primes and let A′ be the integral closure of A in the
total ring of fractions of Ared. Then

(4) the number of branches of A is the number of maximal ideals m′ of A′,
(5) to get the number of geometric branches of A we have to count each maximal

ideal m′ of A′ with multiplicity given by the separable degree of κ(m′)/κ.

Proof. This lemma follows immediately from the definitions, Lemma 106.2, Lemma
106.4, and Fields, Lemma 14.8. �

Lemma 106.8. Let A → B be a local homomorphism of local rings which is the
localization of a smooth ring map.

(1) The number of geometric branches of A is equal to the number of geometric
branches of B.

(2) IfA→ B induces a purely inseparable extension of residue fields, then the num-
ber of branches of A is the number of branches of B.

Proof. We will use that smooth ring maps are flat (Algebra, Lemma 137.10), that lo-
calizations are flat (Algebra, Lemma 39.18), that compositions of flat ring maps are flat
(Algebra, Lemma 39.4), that base change of a flat ring map is flat (Algebra, Lemma 39.7),
that flat local homomorphisms are faithfully flat (Algebra, Lemma 39.17), that (strict)
henselization is flat (Lemma 45.1), and Going down for flat ring maps (Algebra, Lemma
39.19).
Proof of (2). Let Ah, Bh be the henselizations of A, B. Then Bh is the henselization of
Ah ⊗A B at the unique maximal ideal lying over mB , see Algebra, Lemma 155.8. Thus
we may and do assume A is henselian. Since A → B → Bh is flat, every minimal prime
of Bh lies over a minimal prime of A and since A→ Bh is faithfully flat, every minimal
prime of A does lie under a minimal prime of Bh; in both cases use going down for flat
ring maps. Therefore it suffices to show that given a minimal prime p ⊂ A, there is at most
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one minimal prime ofBh lying over p. After replacingA byA/p andB byB/pB we may
assume that A is a domain; the A is still henselian by Algebra, Lemma 156.2. By Lemma
106.3 we see that the integral closure A′ of A in its field of fractions is a local domain. Of
courseA′ is a normal domain. By Algebra, Lemma 163.9 we see thatA′⊗ABh is a normal
ring (the lemma just gives it for A′ ⊗A B, to go up to A′ ⊗A Bh use that Bh is a colimit
of étale B-algebras and use Algebra, Lemma 37.17). By Algebra, Lemma 156.5 we see that
A′ ⊗A Bh is local (this is where we use the assumption on the residue fields of A and B).
Hence A′ ⊗A Bh is a local normal ring, hence a local domain. Since Bh ⊂ A′ ⊗A Bh by
flatness of A→ Bh we conclude that Bh is a domain as desired.

Proof of (1). Let Ash, Bsh be strict henselizations of A, B. Then Bsh is a strict henseliza-
tion of Ah ⊗A B at a maximal ideal lying over mB and mAh , see Algebra, Lemma 155.12.
Thus we may and do assume A is strictly henselian. Since A → B → Bsh is flat, every
minimal prime of Bsh lies over a minimal prime of A and since A → Bsh is faithfully
flat, every minimal prime of A does lie under a minimal prime of Bsh; in both cases use
going down for flat ring maps. Therefore it suffices to show that given a minimal prime
p ⊂ A, there is at most one minimal prime ofBsh lying over p. After replacingA byA/p
and B by B/pB we may assume that A is a domain; then A is still strictly henselian by
Algebra, Lemma 156.4. By Lemma 106.5 we see that the integral closureA′ ofA in its field
of fractions is a local domain whose residue field is a purely inseparable extension of the
residue field ofA. Of courseA′ is a normal domain. By Algebra, Lemma 163.9 we see that
A′ ⊗A Bsh is a normal ring (the lemma just gives it for A′ ⊗A B, to go up to A′ ⊗A Bsh
use that Bsh is a colimit of étale B-algebras and use Algebra, Lemma 37.17). By Algebra,
Lemma 156.5 we see that A′ ⊗A Bsh is local (since A ⊂ A′ induces a purely inseparable
residue field extension). Hence A′ ⊗A Bsh is a local normal ring, hence a local domain.
Since Bsh ⊂ A′ ⊗A Bsh by flatness of A → Bsh we conclude that Bsh is a domain as
desired. �

107. Miscellaneous on branches

Some results related to branches of local rings as defined in Section 106.

Lemma 107.1. LetA andB be domains and letA→ B be a ring map. AssumeA→ B
has additionally at least one of the following properties

(1) it is the localization of an étale ring map,
(2) it is flat and the localization of an unramified ring map,
(3) it is flat and the localization of a quasi-finite ring map,
(4) it is flat and the localization of an integral ring map,
(5) it is flat and there are no nontrivial specializations between points of fibres of

Spec(B)→ Spec(A),
(6) Spec(B) → Spec(A) maps the generic point to the generic point and there are

no nontrivial specializations between points of fibres, or
(7) exactly one point of Spec(B) is mapped to the generic point of Spec(A).

Then A ∩ J is nonzero for every nonzero ideal J of B.

Proof. Proof in case (7). LetK , resp.L be the fraction field ofA, resp.B. By Algebra,
Lemma 30.7 we see that the unique point of Spec(B) which maps to the generic point
(0) ∈ Spec(A) is (0) ∈ Spec(B). We conclude that B ⊗A K is a ring with a unique
prime ideal whose residue field is L (in fact it is equal to L but we do not need this).
Choose b ∈ J nonzero. Then b maps to a unit of L. Hence b maps to a unit of B ⊗A K
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(Algebra, Lemma 19.2). SinceB⊗AK = colimf∈A\{0} Bf we see that bmaps to a unit of
Bf for some f ∈ A nonzero. This means that bb′ = fn for some b′ ∈ B and n ≥ 1. Thus
fn ∈ A ∩ J as desired.
In the rest of the proof, we show that each of the other assumptions imply (7). Under
assumptions (1) – (5), the ring map A → B is flat and hence A → B is injective (since
flat local homomorphisms are faithfully flat by Algebra, Lemma 39.17). Hence the generic
point of Spec(B) maps to the generic point of Spec(A). Now, if there are no nontriv-
ial specializations between points of fibres of Spec(B) → Spec(A), then of course this
generic point of Spec(B) has to be the unique point mapping to the generic point of
Spec(A). So (6) implies (7). Finally, to finish we show that in cases (1) – (5) there are no
nontrivial specializations between the points of fibres of Spec(B) → Spec(A). Namely,
see Algebra, Lemma 36.20 for the integral case, Algebra, Definition 122.3 for the quasi-
finite case, and use that unramified and étale ring maps are quasi-finite (Algebra, Lemmas
151.6 and 143.6). �

Lemma 107.2. Let A → B be a ring map. Let q ⊂ B be a prime ideal lying over the
prime p ⊂ A. Assume

(1) A is a domain,
(2) Ap is geometrically unibranch,
(3) A→ B is unramified at q, and
(4) Ap → Bq is injective.

Then there exists a g ∈ B, g 6∈ q such that Bg is étale over A.

Proof. By Algebra, Proposition 152.1 after replacing B by a principal localization,
we can find a standard étale ring map A→ B′ and a surjection B′ → B. Denote q′ ⊂ B′

the inverse image of q. We will show that B′ → B is injective after possibly replacing B′

by a principal localization.
In this paragraph we reduce to the case that B′ is a domain. Since A is a domain, the ring
B′ is reduced, see Algebra, Lemma 42.1. Let K be the fraction field of A. Then B′ ⊗A K
is étale over a field, hence is a finite product of fields, see Algebra, Lemma 143.4. Since
A → B′ is étale (hence flat) the minimal primes of B′ are lie over (0) ⊂ A (by going
down for flat ring maps). We conclude that B′ has finitely many minimal primes, say
r1, . . . , rr ⊂ B′. Since Ap is geometrically unibranch and A → B′ étale, the ring B′

q′

is a domain, see Lemmas 106.8 and 106.7. Hence q′ ⊃ ri for exactly one i = i0. Choose
g′ ∈ B′, g′ 6∈ ri0 but g′ ∈ ri for i 6= i0, see Algebra, Lemma 15.2. After replacing B′ and
B by B′

g′ and Bg′ we obtain that B′ is a domain.

Assume B′ is a domain, in particular B′ ⊂ B′
q′ . If B′ → B is not injective, then J =

Ker(B′
q′ → Bq) is nonzero. By Lemma 107.1 applied to Ap → B′

q′ we find a nonzero
element a ∈ Ap mapping to zero in Bq contradicting assumption (4). This finishes the
proof. �

Lemma 107.3. Let (A,m) be a geometrically unibranch local domain. Let A → B
be an injective local homomorphism of local rings, which is essentially of finite type. If
mB is the maximal ideal ofB and the induced extension of residue fields is separable, then
A→ B is the localization of an étale ring map.

Proof. We may writeB = Cq whereA→ C is a finite type ring map and q ⊂ C is a
prime ideal lying over m. By Algebra, Lemma 151.7 the ring map A→ C is unramified at
q. By Algebra, Proposition 152.1 after replacing C by a principal localization, we can find
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a standard étale ring map A→ C ′ and a surjection C ′ → C. Denote q′ ⊂ C ′ the inverse
image of q and set B′ = C ′

q′ . Then B′ → B is surjective. It suffices to show that B′ → B
is also injective.

Since A is a domain, the rings C ′ and B′ are reduced, see Algebra, Lemma 42.1. Since A
is geometrically unibranch, the ring B′ is a domain, see by Lemmas 106.8 and 106.7. If
B′ → B is not injective, then A ∩ Ker(B′ → B) is nonzero by Lemma 107.1 which
contradicts the assumption that A→ B is injective. �

Lemma 107.4. Let k be an algebraically closed field. Let A, B be strictly henselian
local k-algebras with residue field equal to k. Let C be the strict henselization of A⊗k B
at the maximal ideal mA ⊗k B + A ⊗k mB . Then the minimal primes of C correspond
1-to-1 to pairs of minimal primes of A and B.

Proof. First note that a minimal prime r of C maps to a minimal prime p in A and
to a minimal prime q of B because the ring maps A → C and B → C are flat (by going
down for flat ring map Algebra, Lemma 39.19). Hence it suffices to show that the strict
henselization of (A/p ⊗k B/q)mA⊗kB+A⊗kmB has a unique minimal prime ideal. By
Algebra, Lemma 156.4 the rings A/p, B/q are strictly henselian. Hence we may assume
that A and B are strictly henselian local domains and our goal is to show that C has a
unique minimal prime. By Lemma 106.5 the integral closureA′ ofA in its fraction field is
a normal local domain with residue field k. Similarly for the integral closureB′ ofB into
its fraction field. By Algebra, Lemma 165.5 we see that A′ ⊗k B′ is a normal ring. Hence
its localization

R = (A′ ⊗k B′)mA′ ⊗kB′+A′⊗kmB′

is a normal local domain. Note thatA⊗k B → A′⊗k B′ is integral (hence gong up holds
– Algebra, Lemma 36.22) and that mA′ ⊗k B′ +A′⊗k mB′ is the unique maximal ideal of
A′ ⊗k B′ lying over mA ⊗k B +A⊗k mB . Hence we see that

R = (A′ ⊗k B′)mA⊗kB+A⊗kmB

by Algebra, Lemma 41.11. It follows that

(A⊗k B)mA⊗kB+A⊗kmB −→ R

is integral. We conclude that R is the integral closure of (A ⊗k B)mA⊗kB+A⊗kmB in its
fraction field, and by Lemma 106.5 once again we conclude that C has a unique prime
ideal. �

108. Branches of the completion

Let (A,m) be a Noetherian local ring. Consider the maps A → Ah → A∧. In general
the map Ah → A∧ need not induce a bijection on minimal primes, see Examples, Section
19. In other words, the number of branches of A (as defined in Definition 106.6) may
be different from the number of branches of A∧. However, under some conditions the
number of branches is the same, for example if the dimension of A is 1.

Lemma 108.1. Let (A,m) be a Noetherian local ring.
(1) The map Ah → A∧ defines a surjective map from minimal primes of A∧ to

minimal primes of Ah.
(2) The number of branches of A is at most the number of branches of A∧.
(3) The number of geometric branches of A is at most the number of geometric

branches of A∧.



1516 15. MORE ON ALGEBRA

Proof. By Lemma 45.3 the map Ah → A∧ is flat and injective. Combining going
down (Algebra, Lemma 39.19) and Algebra, Lemma 30.5 we see that part (1) holds. Part
(2) follows from this, Definition 106.6, and the fact that A∧ is henselian (Algebra, Lemma
153.9). By Lemma 45.3 we have (A∧)sh = Ash⊗AhA∧. Thus we can repeat the arguments
above using the flat injective map Ash → (A∧)sh to prove (3). �

Lemma 108.2. Let (A,m) be a Noetherian local ring. The number of branches ofA is
the same as the number of branches ofA∧ if and only if

√
qA∧ is prime for every minimal

prime q ⊂ Ah of the henselization.

Proof. Follows from Lemma 108.1 and the fact that there are only a finite number
of branches for both A and A∧ by Algebra, Lemma 31.6 and the fact that Ah and A∧ are
Noetherian (Lemma 45.3). �

A simple glueing lemma.

Lemma 108.3. Let A be a ring and let I be a finitely generated ideal. Let A→ C be a
ring map such that for all f ∈ I the ring map Af → Cf is localization at an idempotent.
Then there exists a surjection A→ C ′ such that Af → (C × C ′)f is an isomorphism for
all f ∈ I .

Proof. Choose generators f1, . . . , fr of I . Write

Cfi = (Afi)ei
for some idempotent ei ∈ Afi . Write ei = ai/f

n
i for some ai ∈ A and n ≥ 0; we may use

the same n for all i = 1, . . . , r. After replacing ai by fmi ai and n by n+m for a suitable
m � 0, we may assume a2

i = fni ai for all i. Since ei maps to 1 in Cfifj = (Afifj )ej =
Afifjaj we see that

(fifjaj)N (fnj ai − fni aj) = 0
for some N (we can pick the same N for all pairs i, j). Using a2

j = fnj aj this gives

fN+n
i fN+nN

j aj = fNi f
N+n
j aia

N
j

After increasing n to n + N + nN and replacing ai by fN+nN
i ai we see that fni aj is in

the ideal of ai for all pairs i, j. Let C ′ = A/(a1, . . . , ar). Then

C ′
fi = Afi/(ai) = Afi/(ei)

because aj is in the ideal generated by ai after inverting fi. Since for an idempotent e of
a ring B we have B = Be × B/(e) we see that the conclusion of the lemma holds for f
equal to one of f1, . . . , fr. Using glueing of functions, in the form of Algebra, Lemma 23.2,
we conclude that the result holds for all f ∈ I . Namely, for f ∈ I the elements f1, . . . , fr
generate the unit ideal in Af so Af → (C × C ′)f is an isomorphism if and only if this is
the case after localizing at f1, . . . , fr. �

Lemma 108.4 can be used to construct finite type extensions from given finite type ex-
tensions of the formal completion. We will generalize this lemma in Algebraization of
Formal Spaces, Lemma 10.3.

Lemma 108.4. Let A be a Noetherian ring and I an ideal. Let B be a finite type
A-algebra. Let B∧ → C be a surjective ring map with kernel J where B∧ is the I-adic
completion. If J/J2 is annihilated by Ic for some c ≥ 0, then C is isomorphic to the
completion of a finite type A-algebra.
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Proof. Let f ∈ I . Since B∧ is Noetherian (Algebra, Lemma 97.6), we see that J is a
finitely generated ideal. Hence we conclude from Algebra, Lemma 21.5 that

Cf = ((B∧)f )e
for some idempotent e ∈ (B∧)f . By Lemma 108.3 we can find a surjectionB∧ → C ′ such
that B∧ → C × C ′ becomes an isomorphism after inverting any f ∈ I . Observe that
C × C ′ is a finite B∧-algebra.

Choose generators f1, . . . , fr ∈ I . Denote αi : (C × C ′)fi → Bfi ⊗B B∧ the inverse of
the isomorphism of (B∧)fi -algebras we obtained above. Denote αij : (Bfi)fj → (Bfj )fi
the obvious B-algebra isomorphism. Consider the object

(C × C ′, Bfi , αi, αij)
of the category Glue(B → B∧, f1, . . . , fr) introduced in Remark 89.10. We omit the ver-
ification of conditions (1)(a) and (1)(b). SinceB → B∧ is a flat map (Algebra, Lemma 97.2)
inducing an isomorphism B/IB → B∧/IB∧ we may apply Proposition 89.15 and Re-
mark 89.19. We conclude thatC×C ′ is isomorphic toD⊗BB∧ for some finiteB-algebra
D. Then D/ID ∼= C/IC ×C ′/IC ′. Let e ∈ D/ID be the idempotent corresponding to
the factorC/IC. By Lemma 9.10 there exists an étale ring mapB → B′ which induces an
isomorphismB/IB → B′/IB′ such thatD′ = D⊗BB′ contains an idempotent e lifting
e. Since C × C ′ is I-adically complete the pair (C × C ′, IC × IC ′) is henselian (Lemma
11.4). Thus we can factor the map B → C × C ′ through B′. Doing so we may replace B
byB′ andD byD′. Then we find thatD = De×D1−e = D/(1−e)×D/(e) is a product
of finite type A-algebras and the completion of the first part is C and the completion of
the second part is C ′. �

Lemma 108.5. Let (A,m) be a Noetherian local ring with henselization Ah. Let q ⊂
A∧ be a minimal prime with dim(A∧/q) = 1. Then there exists a minimal prime qh of
Ah such that q =

√
qhA∧.

Proof. Since the completion of A and Ah are the same, we may assume that A is
henselian (Lemma 45.3). We will apply Lemma 108.4 toA∧ → A∧/J whereJ = Ker(A∧ →
(A∧)q). Since dim((A∧)q) = 0 we see that qn ⊂ J for some n. Hence J/J2 is annihilated
by qn. On the other hand (J/J2)q = 0 because Jq = 0. Hence m is the only associated
prime of J/J2 and we find that a power of m annihilates J/J2. Thus the lemma applies
and we find that A∧/J = C∧ for some finite type A-algebra C.

ThenC/mC = A/m becauseA∧/J has the same property. HencemC = mC is a maximal
ideal and A → C is unramified at mC (Algebra, Lemma 151.7). After replacing C by a
principal localization we may assume that C is a quotient of an étale A-algebra B, see
Algebra, Proposition 152.1. However, since the residue field extension of A → CmC is
trivial and A is henselian, we conclude that B = A again after a localization. Thus C =
A/I for some ideal I ⊂ A and it follows that J = IA∧ (because completion is exact in
our situation by Algebra, Lemma 97.2) and I = J ∩ A (by flatness of A → A∧). Since
qn ⊂ J ⊂ q we see that p = q ∩ A satisfies pn ⊂ I ⊂ p. Then

√
pA∧ = q and the proof

is complete. �

Lemma 108.6. Let (A,m) be a Noetherian local ring. The punctured spectrum ofA∧

is disconnected if and only if the punctured spectrum of Ah is disconnected.

Proof. Since the completion of A and Ah are the same, we may assume that A is
henselian (Lemma 45.3).
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Since A → A∧ is faithfully flat (see reference just given) the map from the punctured
spectrum of A∧ to the punctured spectrum of A is surjective (see Algebra, Lemma 39.16).
Hence if the punctured spectrum of A is disconnected, then the same is true for A∧.

Assume the punctured spectrum of A∧ is disconnected. This means that

Spec(A∧) \ {m∧} = Z q Z ′

withZ andZ ′ closed. LetZ,Z ′ ⊂ Spec(A∧) be the closures. SayZ = V (J), Z ′ = V (J ′)
for some ideals J, J ′ ⊂ A∧. Then V (J + J ′) = {m∧} and V (JJ ′) = Spec(A∧). The
first equality means that m∧ =

√
J + J ′ which implies (m∧)e ⊂ J + J ′ for some e ≥ 1.

The second equality implies every element of JJ ′ is nilpotent hence (JJ ′)n = 0 for some
n ≥ 1. Combined this means that Jn/J2n is annihilated by Jn and (J ′)n and hence by
(m∧)2en. Thus we may apply Lemma 108.4 to see that there is a finite type A-algebra C
and an isomorphism A∧/Jn = C∧.

The rest of the proof is exactly the same as the second part of the proof of Lemma 108.5;
of course that lemma is a special case of this one! We haveC/mC = A/m becauseA∧/Jn

has the same property. Hence mC = mC is a maximal ideal and A → C is unramified at
mC (Algebra, Lemma 151.7). After replacing C by a principal localization we may assume
that C is a quotient of an étale A-algebra B, see Algebra, Proposition 152.1. However,
since the residue field extension of A → CmC is trivial and A is henselian, we conclude
that B = A again after a localization. Thus C = A/I for some ideal I ⊂ A and it
follows that Jn = IA∧ (because completion is exact in our situation by Algebra, Lemma
97.2) and I = Jn ∩ A (by flatness of A → A∧). By symmetry I ′ = (J ′)n ∩ A satisfies
(J ′)n = I ′A∧. Then me ⊂ I + I ′ and II ′ = 0 and we conclude that V (I) and V (I ′) are
closed subschemes which give the desired disjoint union decomposition of the punctured
spectrum of A. �

Lemma 108.7. Let (A,m) be a Noetherian local ring of dimension 1. Then the number
of (geometric) branches of A and A∧ is the same.

Proof. To see this for the number of branches, combine Lemmas 108.1, 108.2, and
108.5 and use that the dimension of A∧ is one, see Lemma 43.1. To see this is true for the
number of geometric branches we use the result for branches, the fact that the dimension
does not change under strict henselization (Lemma 45.7), and the fact that (Ash)∧ =
((A∧)sh)∧ by Lemma 45.3. �

Lemma 108.8. Let (A,m) be a Noetherian local ring. If the formal fibres of A are
geometrically normal (for example if A is excellent or quasi-excellent), then A is Nagata
and the number of (geometric) branches of A and A∧ is the same.

Proof. Since a normal ring is reduced, we see thatA is Nagata by Lemma 52.4. In the
rest of the proof we will use Lemma 51.10, Proposition 51.5, and Lemma 51.4. This tells us
that A is a P-ring where P (k → R) =“R is geometrically normal over k” and the same is
true for any (essentially of) finite type A-algebra.

Let q ⊂ A be a minimal prime. Then A∧/qA∧ = (A/q)∧ and Ah/qAh = (A/q)h
(Algebra, Lemma 156.2). Hence the number of branches of A is the sum of the number of
branches of the rings A/q and similarly for A∧. In this way we reduce to the case that A
is a domain.

Assume A is a domain. Let A′ be the integral closure of A in the fraction field K of A.
Since A is Nagata, we see that A → A′ is finite. Recall that the number of branches of A
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is the number of maximal ideals m′ of A′ (Lemma 106.2). Also, recall that

(A′)∧ = A′ ⊗A A∧ =
∏

m′⊂A′
(A′

m′)∧

by Algebra, Lemma 97.8. BecauseA′
m′ is a local ring whose formal fibres are geometrically

normal, we see that (A′
m′)∧ is normal (Lemma 52.6). Hence the minimal primes of A′ ⊗A

A∧ are in 1-to-1 correspondence with the factors in the decomposition above. By flatness
of A→ A∧ we have

A∧ ⊂ A′ ⊗A A∧ ⊂ K ⊗A A∧

Since the left and the right ring have the same set of minimal primes, the same is true for
the ring in the middle (small detail omitted) and this finishes the proof.
To see this is true for the number of geometric branches we use the result for branches, the
fact that the formal fibres of Ash are geometrically normal (Lemmas 51.10 and 51.8) and
the fact that (Ash)∧ = ((A∧)sh)∧ by Lemma 45.3. �

109. Formally catenary rings

In this section we prove a theorem of Ratliff [?] that a Noetherian local ring is universally
catenary if and only if it is formally catenary.

Definition 109.1. A Noetherian local ring A is formally catenary if for every min-
imal prime p ⊂ A the spectrum of A∧/pA∧ is equidimensional.

Let A be a Noetherian local ring which is formally catenary. By Ratliff’s result (Propo-
sition 109.5) we see that any quotient of A is also formally catenary (because the class of
universally catenary rings is stable under quotients). We conclude that the spectrum of
A∧/pA∧ is equidimensional for every prime ideal p of A.

Lemma 109.2. Let (A,m) be a Noetherian local ring which is not formally catenary.
Then A is not universally catenary.

Proof. By assumption there exists a minimal prime p ⊂ A such that the spectrum
of A∧/pA∧ is not equidimensional. After replacing A by A/p we may assume that A is
a domain and that the spectrum of A∧ is not equidimensional. Let q be a minimal prime
of A∧ such that d = dim(A∧/q) is minimal and hence 0 < d < dim(A). We prove the
lemma by induction on d.
The case d = 1. In this case dim(A∧

q ) = 0. Hence A∧
q is Artinian local and we see that for

some n > 0 the ideal J = qn maps to zero in A∧
q . It follows that m is the only associated

prime of J/J2, whence mm annihilates J/J2 for some m > 0. Thus we can use Lemma
108.4 to find A → B of finite type such that B∧ ∼= A∧/J . It follows that mB =

√
mB

is a maximal ideal with the same residue field as m and B∧ is the mB-adic completion
(Algebra, Lemma 97.7). Then

dim(BmB ) = dim(B∧) = 1 = d.

Since we have the factorization A → B → A∧/J the inverse image of q/J is a prime
q′ ⊂ mB lying over (0) inA. Thus, ifAwere universally catenary, the dimension formula
(Algebra, Lemma 113.1) would give

dim(BmB ) ≥ dim((B/q′)mB )
= dim(A) + trdegA(B/q′)− trdegκ(m)(κ(mB))
= dim(A) + trdegA(B/q′)
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This contradiction finishes the argument in case d = 1.
Assume d > 1. Let Z ⊂ Spec(A∧) be the union of the irreducible components distinct
from V (q). Let r1, . . . , rm ⊂ A∧ be the prime ideals corresponding to irreducible compo-
nents of V (q) ∩ Z of dimension > 0. Choose f ∈ m, f 6∈ A ∩ rj using prime avoidance
(Algebra, Lemma 15.2). Then dim(A/fA) = dim(A) − 1 and there is some irreducible
component of V (q, f) of dimension d − 1. Thus A/fA is not formally catenary and the
invariant d has decreased. By induction A/fA is not universally catenary, hence A is not
universally catenary. �

Lemma 109.3. LetA→ B be a flat local ring map of local Noetherian rings. Assume
B is catenary and is Spec(B) equidimensional. Then

(1) Spec(B/pB) is equidimensional for all p ⊂ A and
(2) A is catenary and Spec(A) is equidimensional.

Proof. Let p ⊂ A be a prime ideal. Let q ⊂ B be a prime minimal over pB. Then
q ∩ A = p by going down for A → B (Algebra, Lemma 39.19). Hence Ap → Bq is a flat
local ring map with special fibre of dimension 0 and hence

dim(Ap) = dim(Bq) = dim(B)− dim(B/q)
(Algebra, Lemma 112.7). The second equality because Spec(B) is equidimensional and
B is catenary. Thus dim(B/q) is independent of the choice of q and we conclude that
Spec(B/pB) is equidimensional of dimension dim(B)−dim(Ap). On the other hand, we
have dim(B/pB) = dim(A/p)+dim(B/mAB) and dim(B) = dim(A)+dim(B/mAB)
by flatness (see lemma cited above) and we get

dim(Ap) = dim(A)− dim(A/p)
for all p in A. Applying this to all minimal primes in A we see that A is equidimensional.
If p ⊂ p′ is a strict inclusion with no primes in between, then we may apply the above to
the prime p′/p inA/p becauseA/p→ B/pB is flat and Spec(B/pB) is equidimensional,
to get

1 = dim((A/p)p′) = dim(A/p)− dim(A/p′)
Thus p 7→ dim(A/p) is a dimension function and we conclude that A is catenary. �

Lemma 109.4. Let A be a formally catenary Noetherian local ring. Then A is uni-
versally catenary.

Proof. We may replace A by A/p where p is a minimal prime of A, see Algebra,
Lemma 105.8. Thus we may assume that the spectrum ofA∧ is equidimensional. It suffices
to show that every local ring essentially of finite type over A is catenary (see for example
Algebra, Lemma 105.6). Hence it suffices to show that A[x1, . . . , xn]m is catenary where
m ⊂ A[x1, . . . , xn] is a maximal ideal lying over mA, see Algebra, Lemma 54.5 (and Al-
gebra, Lemmas 105.7 and 105.4). Let m′ ⊂ A∧[x1, . . . , xn] be the unique maximal ideal
lying over m. Then

A[x1, . . . , xn]m → A∧[x1, . . . , xn]m′

is local and flat (Algebra, Lemma 97.2). Hence it suffices to show that the ring on the
right hand side catenary with equidimensional spectrum, see Lemma 109.3. It is catenary
because complete local rings are universally catenary (Algebra, Remark 160.9). Pick any
minimal prime q of A∧[x1, . . . , xn]m′ . Then q = pA∧[x1, . . . , xn]m′ for some minimal
prime p of A∧ (small detail omitted). Hence

dim(A∧[x1, . . . , xn]m′/q) = dim(A∧/p) + n = dim(A∧) + n
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the first equality by Algebra, Lemma 112.7 and the second because the spectrum of A∧ is
equidimensional. This finishes the proof. �

Proposition 109.5 (Ratliff). A Noetherian local ring is universally catenary if and
only if it is formally catenary.

Proof. Combine Lemmas 109.2 and 109.4. �

Lemma 109.6. Let (A,m) be a Noetherian local ring with geometrically normal for-
mal fibres. Then

(1) Ah is universally catenary, and
(2) if A is unibranch (for example normal), then A is universally catenary.

Proof. By Lemma 108.8 the number of branches of A and A∧ are the same, hence
Lemma 108.2 applies. Then for any minimal prime q ⊂ Ah we see that A∧/qA∧ has a
unique minimal prime. ThusAh is formally catenary (by definition) and hence universally
catenary by Proposition 109.5. If A is unibranch, then Ah has a unique minimal prime,
hence A∧ has a unique minimal prime, hence A is formally catenary and we conclude in
the same way. �

110. Group actions and integral closure

This section is in some sense a continuation of Algebra, Section 38. More material of a
similar kind can be found in Fundamental Groups, Section 12

Lemma 110.1. Letϕ : A→ B be a surjection of rings. LetG be a finite group of order
n acting on ϕ : A → B. If b ∈ BG, then there exists a monic polynomial P ∈ AG[T ]
which maps to (T − b)n in BG[T ].

Proof. Choose a ∈ A lifting b and set P =
∏
σ∈G(T − σ(a)). �

Lemma 110.2. Let R be a ring. Let G be a finite group acting on R. Let I ⊂ R be an
ideal such that σ(I) ⊂ I for all σ ∈ G. Then RG/IG ⊂ (R/I)G is an integral extension
of rings which induces a homeomorphism on spectra and purely inseparable extensions of
residue fields.

Proof. Since IG = RG ∩ I it is clear that the map is injective. Lemma 110.1 shows
that Algebra, Lemma 46.11 applies. �

Lemma 110.3. Let G be a finite group of order n acting on a ring R. Let J ⊂ RG be
an ideal. For x ∈ JR we have

∏
σ∈G(T −σ(x)) = Tn+a1T

n−1 + . . .+an with ai ∈ J .

Proof. Observe that the polynomial is indeed monic and has coefficients inRG. We
can write x = f1b1 + . . .+fmbm with fj ∈ J and bj ∈ R. Thus, arguing by induction on
m, we may assume that x = y − fb with f ∈ J , b ∈ R, and y ∈ JR such that the result
holds for y. Then we see that∏

σ∈G
(T − σ(x)) =

∏
σ∈G

(T − σ(y) + fσ(b)) =
∏

σ∈G
(T − σ(y)) +

∑
i=1,...,n

f iai

where we have
ai =

∑
S⊂G, |S|=i

∏
σ∈S

σ(b)
∏

σ 6∈S
(T − σ(y))

A computation we omit shows that ai ∈ RG (hint: the given expression is symmetric).
Thus the polynomial of the statement of the lemma for x is congruent modulo J to the
polynomial for y and this proves the induction step. �
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Lemma 110.4. Let R be a ring. Let G be a finite group of order n acting on R. Let
J ⊂ RG be an ideal. Then RG/J → (R/JR)G is ring map such that

(1) for b ∈ (R/JR)G there is a monic polynomial P ∈ RG/J [T ] whose image in
(R/JR)G[T ] is (T − b)n,

(2) for a ∈ Ker(RG/J → (R/JR)G) we have (T − a)n = Tn in RG/J [T ].
In particular, RG/J → (R/JR)G is an integral ring map which induces homeomor-
phisms on spectra and purely inseparable extensions of residue fields.

Proof. Part (1) follow from Lemma 110.1 with I = JR. If a is as in part (2), then a
is the image of x ∈ RG ∩ JR. Hence (T − x)n =

∏
σ∈G(T − σ(x)) is congruent to Tn

modulo J by Lemma 110.3. This proves part (2). To see the final statement we may apply
Algebra, Lemma 46.11. �

Remark 110.5. In Lemma 110.4 we see that the map RG/J → (R/JR)G is an iso-
morphism if n is invertible in R.

Lemma 110.6. Let R be a ring. Let G be a finite group of order n acting on R. Let A
be an RG-algebra.

(1) for b ∈ (A⊗RG R)G there exists a monic polynomial P ∈ A[T ] whose image in
(A⊗RG R)G[T ] is (T − b)n,

(2) for a ∈ Ker(A→ (A⊗RG R)G) we have (T − a)n = Tn in A[T ].

Proof. Choose a surjectionE → AwhereE is a polynomial algebra overRG. Then
(E ⊗RG R)G = E because E is free as an RG-module. Denote J = Ker(E → A). Since
tensor product is right exact we see thatA⊗RG R is the quotient ofE⊗RG R by the ideal
generated by J . In this way we see that our lemma is a special case of Lemma 110.4. �

Lemma 110.7. Let R be a ring. Let G be a finite group acting on R. Let RG → A be
a ring map. The map

A→ (A⊗RG R)G

is an isomorphism if RG → A is flat. In general the map is integral, induces a homeomor-
phism on spectra, and induces purely inseparable residue field extensions.

Proof. To see the first statement consider the exact sequence 0 → RG → R →⊕
σ∈GRwhere the second map sends x to (σ(x)−x)σ∈G. Tensoring withA the sequence

remains exact if RG → A is flat. Thus A is the G-invariants in (A⊗RG R)G.

The second statement follows from Lemma 110.6 and Algebra, Lemma 46.11. �

Lemma 110.8. LetG be a finite group acting on a ringR. For any two primes q, q′ ⊂
R lying over the same prime in RG there exists a σ ∈ G with σ(q) = q′.

Proof. The extensionRG ⊂ R is integral because every x ∈ R is a root of the monic
polynomial

∏
σ∈G(T − σ(x)) in RG[T ]. Thus there are no inclusion relations among

the primes lying over a given prime p (Algebra, Lemma 36.20). If the lemma is wrong,
then we can choose x ∈ q′, x 6∈ σ(q) for all σ ∈ G. See Algebra, Lemma 15.2. Then
y =

∏
σ∈G σ(x) is in RG and in p = RG ∩ q′. On the other hand, x 6∈ σ(q) for all

σ means σ(x) 6∈ q for all σ. Hence y 6∈ q as q is a prime ideal. This is impossible as
y ∈ p ⊂ q. �
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Lemma 110.9. LetG be a finite group acting on a ringR. Let q ⊂ R be a prime lying
over p ⊂ RG. Then κ(q)/κ(p) is an algebraic normal extension and the map

D = {σ ∈ G | σ(q) = q} −→ Aut(κ(q)/κ(p))
is surjective15.

Proof. With A = (RG)p and B = A⊗RG R we see that A = BG as localization is
flat, see Lemma 110.7. Observe that pA and qB are prime ideals, D is the stabilizer of qB,
and κ(p) = κ(pA) and κ(q) = κ(qB). Thus we may replace R by B and assume that p
is a maximal ideal. Since RG ⊂ R is an integral ring extension, we find that the maximal
ideals of R are exactly the primes lying over p (follows from Algebra, Lemmas 36.20 and
36.22). By Lemma 110.8 there are finitely many of them q = q1, q2, . . . , qm and they form
a single orbit for G. By the Chinese remainder theorem (Algebra, Lemma 15.4) the map
R→

∏
j=1,...,mR/qj is surjective.

First we prove that the extension is normal. Pick an element α ∈ κ(q). We have to
show that the minimal polynomial P of α over κ(p) splits completely. By the above we
can choose a ∈ q2 ∩ . . . ∩ qm mapping to α in κ(q). Consider the polynomial Q =∏
σ∈G(T −σ(a)) inRG[T ]. The image ofQ inR[T ] splits completely into linear factors,

hence the same is true for its image in κ(q)[T ]. Since P divides the image of Q in κ(p)[T ]
we conclude that P splits completely into linear factors over κ(q) as desired.
Since κ(q)/κ(p) is normal we may assume κ(q) = κ1⊗κ(p)κ2 with κ1/κ(p) purely insep-
arable and κ2/κ(p) Galois, see Fields, Lemma 27.3. Pick α ∈ κ2 which generates κ2 over
κ(p) if it is finite and a subfield of degree > |G| if it is infinite (to get a contradiction).
This is possible by Fields, Lemma 19.1. Pick a, P , and Q as in the previous paragraph.
If α′ ∈ κ2 is a Galois conjugate of α over κ(p), then the fact that P divides the image
of P in κ(p)[T ] shows there exists a σ ∈ G such that σ(a) maps to α′. By our choice
of a (vanishing at other maximal ideals) this implies σ ∈ D and that the image of σ in
Aut(κ(q)/κ(p)) maps α to α′. Hence the surjectivity or the desired absurdity in case α
has degree > |G| over κ(p). �

Lemma 110.10. Let A be a normal domain with fraction field K. Let L/K be a (pos-
sibly infinite) Galois extension. Let G = Gal(L/K) and let B be the integral closure of
A in L.

(1) For any two primes q, q′ ⊂ B lying over the same prime in A there exists a
σ ∈ G with σ(q) = q′.

(2) Let q ⊂ B be a prime lying over p ⊂ A. Then κ(q)/κ(p) is an algebraic normal
extension and the map

D = {σ ∈ G | σ(q) = q} −→ Aut(κ(q)/κ(p))
is surjective.

Proof. Proof of (1). Consider pairs (M,σ) where K ⊂ M ⊂ L is a subfield such
that M/K is Galois, σ ∈ Gal(M/K) with σ(q ∩ M) = q′ ∩ M . We say (M ′, σ′) ≥
(M,σ) if and only if M ⊂ M ′ and σ′|M = σ. Observe that (K, idK) is such a pair
as A = K ∩ B since A is a normal domain. The collection of these pairs satisfies the
hypotheses of Zorn’s lemma, hence there exists a maximal pair (M,σ). If M 6= L, then
we can find M ⊂ M ′ ⊂ L with M ′/M nontrivial and finite and M ′/K Galois (Fields,
Lemma 16.5). Choose σ′ ∈ Gal(M ′/K) whose restriction toM is σ (Fields, Lemma 22.2).

15Recall that we use the notation Gal only in the case of Galois extensions.
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Then the primes σ′(q ∩ M ′) and q′ ∩ M ′ restrict to the same prime of B ∩ M . Since
B ∩M = (B ∩M ′)Gal(M ′/M) we can use Lemma 110.8 to find τ ∈ Gal(M ′/M) with
τ(σ′(q∩M ′)) = q′ ∩M ′. Hence (M ′, τ ◦ σ′) > (M,σ) contradicting the maximality of
(M,σ).
Part (2) is proved in exactly the same manner as part (1). We write out the details. Pick
σ ∈ Aut(κ(q)/κ(p)). Consider pairs (M,σ) where K ⊂ M ⊂ L is a subfield such that
M/K is Galois, σ ∈ Gal(M/K) with σ(q ∩M) = q ∩M and

κ(q ∩M) //

σ

��

κ(q)

σ

��
κ(q ∩M) // κ(q)

commutes. We say (M ′, σ′) ≥ (M,σ) if and only if M ⊂ M ′ and σ′|M = σ. As above
(K, idK) is such a pair. The collection of these pairs satisfies the hypotheses of Zorn’s
lemma, hence there exists a maximal pair (M,σ). IfM 6= L, then we can findM ⊂M ′ ⊂
L with M ′/M finite and M ′/K Galois (Fields, Lemma 16.5). Choose σ′ ∈ Gal(M ′/K)
whose restriction toM is σ (Fields, Lemma 22.2). Then the primes σ′(q∩M ′) and q∩M ′

restrict to the same prime of B ∩M . Adjusting the choice of σ′ as in the first paragraph,
we may assume that σ′(q∩M ′) = q∩M ′. Then σ′ and σ define maps κ(q∩M ′)→ κ(q)
which agree on κ(q ∩M). Since B ∩M = (B ∩M ′)Gal(M ′/M) we can use Lemma 110.9
to find τ ∈ Gal(M ′/M) with τ(q∩M ′) = q∩M ′ such that τ ◦ σ and σ induce the same
map on κ(q ∩M ′). There is a small detail here in that the lemma first guarantees that
κ(q ∩M ′)/κ(q ∩M) is normal, which then tells us that the difference between the maps
is an automorphism of this extension (Fields, Lemma 15.10), to which we can apply the
lemma to get τ . Hence (M ′, τ ◦σ′) > (M,σ) contradicting the maximality of (M,σ). �

Lemma 110.11. Let A be a normal domain with fraction field K. Let M/L/K be
a tower of (possibly infinite) Galois extensions of K. Let H = Gal(M/K) and G =
Gal(L/K) and let C and B be the integral closure of A in M and L. Let r ⊂ C and
q = B ∩ r. Set Dr = {τ ∈ H | τ(r) = r} and Ir = {τ ∈ Dr | τ mod r = idκ(r)} and
similarly forDq and Iq. Under the mapH → G the induced mapsDr → Dq and Ir → Iq
are surjective.

Proof. Let σ ∈ Dq. Pick τ ∈ H mapping to σ. This is possible by Fields, Lemma
22.2. Then τ(r) and r both lie over q. Hence by Lemma 110.10 there exists aσ′ ∈ Gal(M/L)
with σ′(τ(r)) = r. Hence σ′τ ∈ Dr maps to σ. The case of inertia groups is proved in
exactly the same way using surjectivity onto automorphism groups. �

111. Extensions of discrete valuation rings

In this section and the next few we use the following definitions.

Definition 111.1. We say that A → B or A ⊂ B is an extension of discrete valu-
ation rings if A and B are discrete valuation rings and A → B is injective and local. In
particular, if πA and πB are uniformizers ofA andB, then πA = uπeB for some e ≥ 1 and
unit u of B. The integer e does not depend on the choice of the uniformizers as it is also
the unique integer ≥ 1 such that

mAB = meB
The integer e is called the ramification index of B over A. We say that B is weakly un-
ramified over A if e = 1. If the extension of residue fields κA = A/mA ⊂ κB = B/mB
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is finite, then we set f = [κB : κA] and we call it the residual degree or residue degree of
the extension A ⊂ B.

Note that we do not require the extension of fraction fields to be finite.

Lemma 111.2. Let A ⊂ B be an extension of discrete valuation rings with fraction
fields K ⊂ L. If the extension L/K is finite, then the residue field extension is finite and
we have ef ≤ [L : K].

Proof. Finiteness of the residue field extension is Algebra, Lemma 119.10. The in-
equality follows from Algebra, Lemmas 119.9 and 52.12. �

Lemma 111.3. Let A ⊂ B ⊂ C be extensions of discrete valuation rings. Then the
ramification indices of B/A and C/B multiply to give the ramification index of C/A. In
a formula eC/A = eB/AeC/B . Similarly for the residual degrees in case they are finite.

Proof. This is immediate from the definitions and Fields, Lemma 7.7. �

Lemma 111.4. Let A ⊂ B be an extension of discrete valuation rings inducing the
field extensionK ⊂ L. If the characteristic ofK is p > 0 andL is purely inseparable over
K , then the ramification index e is a power of p.

Proof. Write πA = uπeB for some u ∈ B∗. On the other hand, we have πqB ∈ K
for some p-power q. Write πqB = vπkA for some v ∈ A∗ and k ∈ Z. Then πqA = uqπqeB =
uqveπkeA . Taking valuations in B we conclude that ke = q. �

In the following lemma we discuss what it means for an extension A ⊂ B of discrete
valuation rings to be “unramified”, i.e., have ramification index 1 and separable (possibly
nonalgebraic) extension of residue fields. However, we cannot use the term “unramified”
itself because there already exists a notion of an unramified ring map, see Algebra, Section
151.

Lemma 111.5. Let A ⊂ B be an extension of discrete valuation rings. The following
are equivalent

(1) A→ B is formally smooth in the mB-adic topology, and
(2) A→ B is weakly unramified and κB/κA is a separable field extension.

Proof. This follows from Proposition 40.5 and Algebra, Proposition 158.9. �

Remark 111.6. Let A be a discrete valuation ring with fraction field K. Let L/K be
a finite separable field extension. Let B ⊂ L be the integral closure of A in L. Picture:

B // L

A

OO

// K

OO

By Algebra, Lemma 161.8 the ring extension A ⊂ B is finite, hence B is Noetherian. By
Algebra, Lemma 112.4 the dimension ofB is 1, henceB is a Dedekind domain, see Algebra,
Lemma 120.17. Letm1, . . . ,mn be the maximal ideals ofB (i.e., the primes lying over mA).
We obtain extensions of discrete valuation rings

A ⊂ Bmi

and hence ramification indices ei and residue degrees fi. We have

[L : K] =
∑

i=1,...,n
eifi



1526 15. MORE ON ALGEBRA

by Algebra, Lemma 121.8 applied to a uniformizer in A. We observe that n = 1 if A is
henselian (by Algebra, Lemma 153.4), e.g. if A is complete.

Definition 111.7. LetA be a discrete valuation ring with fraction field K. Let L/K
be a finite separable extension. With B and mi, i = 1, . . . , n as in Remark 111.6 we say
the extension L/K is

(1) unramified with respect to A if ei = 1 and the extension κ(mi)/κA is separable
for all i,

(2) tamely ramified with respect to A if either the characteristic of κA is 0 or the
characteristic of κA is p > 0, the field extensions κ(mi)/κA are separable, and
the ramification indices ei are prime to p, and

(3) totally ramified with respect to A if n = 1 and the residue field extension
κ(m1)/κA is trivial.

If the discrete valuation ring A is clear from context, then we sometimes say L/K is un-
ramified, totally ramified, or tamely ramified for short.

For unramified extensions we have the following basic lemma.

Lemma 111.8. Let A be a discrete valuation ring with fraction field K.
(1) If M/L/K are finite separable extensions and M is unramified with respect to

A, then L is unramified with respect to A.
(2) If L/K is a finite separable extension which is unramified with respect to A,

then there exists a Galois extension M/K containing L which is unramified
with respect to A.

(3) IfL1/K ,L2/K are finite separable extensions which are unramified with respect
to A, then there exists a a finite separable extension L/K which is unramified
with respect to A containing L1 and L2.

Proof. We will use the results of the discussion in Remark 111.6 without further
mention.

Proof of (1). Let C/B/A be the integral closures of A in M/L/K. Since C is a finite ring
extension of B, we see that Spec(C) → Spec(B) is surjective. Hence for ever maximal
ideal m ⊂ B there is a maximal ideal m′ ⊂ C lying over m. By the multiplicativity of
ramification indices (Lemma 111.3) and the assumption, we conclude that the ramification
index ofBm overA is 1. Since κ(m′)/κA is finite separable, the same is true for κ(m)/κA.

Proof of (2). Let M be the normal closure of L over K , see Fields, Definition 16.4. Then
M/K is Galois by Fields, Lemma 21.5. On the other hand, there is a surjection

L⊗K . . .⊗K L −→M

ofK-algebras, see Fields, Lemma 16.6. LetB be the integral closure ofA inL as in Remark
111.6. The condition that L is unramified with respect to A exactly means that A→ B is
an étale ring map, see Algebra, Lemma 143.7. By permanence properties of étale ring maps
we see that

B ⊗A . . .⊗A B
is étale overA, see Algebra, Lemma 143.3. Hence the displayed ring is a product of Dedekind
domains, see Lemma 44.4. We conclude thatM is the fraction field of a Dedekind domain
finite étale over A. This means that M is unramified with respect to A as desired.

Proof of (3). LetBi ⊂ Li be the integral closure ofA. Argue in the same manner as above
to show that B1 ⊗A B2 is finite étale over A. Details omitted. �
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Lemma 111.9. Let A be a discrete valuation ring with fraction field K. Let M/L/K
be finite separable extensions. LetB be the integral closure ofA inL. IfL/K is unramified
with respect to A and M/L is unramified with respect to Bm for every maximal ideal m
of B, then M/K is unramified with respect to A.

Proof. Let C be the integral closure of A in M . Every maximal ideal m′ of C lies
over a maximal ideal m of B. Then the lemma follows from the multiplicativity of ram-
ification indices (Lemma 111.3) and the fact that we have the tower κ(m′)/κ(m)/κA of
finite extensions of fields. �

112. Galois extensions and ramification

In the case of Galois extensions, we can elaborate on the discussion in Section 111.

Lemma 112.1. Let A be a discrete valuation ring with fraction field K. Let L/K be a
finite Galois extension with Galois group G. Then G acts on the ring B of Remark 111.6
and acts transitively on the set of maximal ideals of B.

Proof. Observe that A = BG as A is integrally closed in K and K = LG. Hence
this lemma is a special case of Lemma 110.8. �

Lemma 112.2. Let A be a discrete valuation ring with fraction field K. Let L/K be a
finite Galois extension. Then there are e ≥ 1 and f ≥ 1 such that ei = e and fi = f for
all i (notation as in Remark 111.6). In particular [L : K] = nef .

Proof. Immediate consequence of Lemma 112.1 and the definitions. �

Definition 112.3. LetA be a discrete valuation ring with fraction fieldK. Let L/K
be a finite Galois extension with Galois group G. Let B be the integral closure of A in L.
Let m ⊂ B be a maximal ideal.

(1) The decomposition group of m is the subgroup D = {σ ∈ G | σ(m) = m}.
(2) The inertia group of m is the kernel I of the map D → Aut(κ(m)/κA).

Note that the field κ(m) may be inseparable over κA. In particular the field extension
κ(m)/κA need not be Galois. If κA is perfect, then it is.

Lemma 112.4. Let A be a discrete valuation ring with fraction field K and residue
field κ. Let L/K be a finite Galois extension with Galois group G. Let B be the integral
closure of A in L. Let m be a maximal ideal of B. Then

(1) the field extension κ(m)/κ is normal, and
(2) D → Aut(κ(m)/κ) is surjective.

If for some (equivalently all) maximal ideal(s) m ⊂ B the field extension κ(m)/κ is sepa-
rable, then

(3) κ(m)/κ is Galois, and
(4) D → Gal(κ(m)/κ) is surjective.

Here D ⊂ G is the decomposition group of m.

Proof. Observe that A = BG as A is integrally closed in K and K = LG. Thus
parts (1) and (2) follow from Lemma 110.9. The “equivalently all” part of the lemma
follows from Lemma 112.1. Assume κ(m)/κ is separable. Then parts (3) and (4) follow
immediately from (1) and (2). �
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Lemma 112.5. Let A be a discrete valuation ring with fraction field K. Let L/K be a
finite Galois extension with Galois group G. Let B be the integral closure of A in L. Let
m ⊂ B be a maximal ideal. The inertia group I of m sits in a canonical exact sequence

1→ P → I → It → 1

such that
(1) P = {σ ∈ D | σ|B/m2 = idB/m2} where D is the decomposition group,
(2) P is a normal subgroup of D,
(3) P is a p-group if the characteristic of κA is p > 0 and P = {1} if the character-

istic of κA is zero,
(4) It is cyclic of order the prime to p part of the integer e, and
(5) there is a canonical isomorphism θ : It → µe(κ(m)).

Here e is the integer of Lemma 112.2.

Proof. Recall that |G| = [L : K] = nef , see Lemma 112.2. Since G acts transitively
on the set {m1, . . . ,mn} of maximal ideals ofB (Lemma 112.1) and sinceD is the stabilizer
of an element we see that |D| = ef . By Lemma 112.4 we have

ef = |D| = |I| · |Aut(κ(m)/κ)|

where κ is the residue field of A. As κ(m) is normal over κ the order of Aut(κ(m)/κ)
differs from f by a power of p (see Fields, Lemma 15.9 and discussion following Fields,
Definition 14.7). Hence the prime to p part of |I| is equal to the prime to p part of e.

Set C = Bm. Then I acts on C over A and trivially on the residue field of C. Let πA ∈ A
and πC ∈ C be uniformizers. Write πA = uπeC for some unit u in C. For σ ∈ I write
σ(πC) = θσπC for some unit θσ in C. Then we have

πA = σ(πA) = σ(u)(θσπC)e = σ(u)θeσπeC = σ(u)
u

θeσπA

Since σ(u) ≡ u mod mC as σ ∈ I we see that the image θσ of θσ in κC = κ(m) is an eth
root of unity. We obtain a map

(112.5.1) θ : I −→ µe(κ(m)), σ 7→ θσ

We claim that θ is a homomorphism of groups and independent of the choice of uni-
formizer πC . Namely, if τ is a second element of I , then τ(σ(πC)) = τ(θσπC) =
τ(θσ)θτπC , hence θτσ = τ(θσ)θτ and since τ ∈ I we conclude that θτσ = θσθτ . If
π′
C is a second uniformizer, then we see that π′

C = wπC for some unit w of C and
σ(π′

C) = w−1σ(w)θσπ′
C , hence θ′

σ = w−1σ(w)θσ , hence θ′
σ and θσ map to the same

element of the residue field as before.

Since κ(m) has characteristic p, the group µe(κ(m)) is cyclic of order at most the prime
to p part of e (see Fields, Section 17).

Let P = Ker(θ). The elements of P are exactly the elements of D acting trivially on
C/π2

CC
∼= B/m2. Thus (a) is true. This implies (b) as P is the kernel of the map D →

Aut(B/m2). If we can prove (c), then parts (d) and (e) will follow as It will be isomorphic
to µe(κ(m)) as the arguments above show that |It| ≥ |µe(κ(m))|.

Thus it suffices to prove that the kernel P of θ is a p-group. Let σ be a nontrivial element
of the kernel. Then σ − id sends miC into mi+1

C for all i. Let m be the order of σ. Pick
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c ∈ C such that σ(c) 6= c. Then σ(c)− c ∈ miC , σ(c)− c 6∈ mi+1
C for some i and we have

0 = σm(c)− c
= σm(c)− σm−1(c) + . . .+ σ(c)− c

=
∑

j=0,...,m−1
σj(σ(c)− c)

≡ m(σ(c)− c) mod mi+1
C

It follows that p|m (or m = 0 if p = 1). Thus every element of the kernel of θ has order
divisible by p, i.e., Ker(θ) is a p-group. �

Definition 112.6. With assumptions and notation as in Lemma 112.5.
(1) The wild inertia group of m is the subgroup P .
(2) The tame inertia group of m is the quotient I → It.

We denote θ : I → µe(κ(m)) the surjective map (112.5.1) whose kernel is P and which
induces the isomorphism It → µe(κ(m)).

Lemma 112.7. With assumptions and notation as in Lemma 112.5. The inertia char-
acter θ : I → µe(κ(m)) satisfies the following property

θ(τστ−1) = τ(θ(σ))
for τ ∈ D and σ ∈ I .

Proof. The formula makes sense as I is a normal subgroup of D and as τ acts on
κ(m) via the map D → Aut(κ(m)) discussed in Lemma 112.4 for example. Recall the
construction of θ. Choose a uniformizer π of Bm and for σ ∈ I write σ(π) = θσπ. Then
θ(σ) is the image θσ of θσ in the residue field. For any τ ∈ D we can write τ(π) = θτπ
for some unit θτ . Then θτ−1 = τ−1(θ−1

τ ). We compute

θτστ−1 = τ(σ(τ−1(π)))/π
= τ(σ(τ−1(θ−1

τ )π))/π
= τ(σ(τ−1(θ−1

τ ))θσπ)/π
= τ(σ(τ−1(θ−1

τ )))τ(θσ)θτ
However, since σ acts trivially modulo π we see that the product τ(σ(τ−1(θ−1

τ )))θτ maps
to 1 in the residue field. This proves the lemma. �

We will generalize the following lemma in Fundamental Groups, Lemma 12.5.

Lemma 112.8. Let A be a discrete valuation ring with fraction field K. Let L/K be
a finite Galois extension. Let m ⊂ B be a maximal ideal of the integral closure of A in
L. Let I ⊂ G be the inertia group of m. Then BI is the integral closure of A in LI and
A→ (BI)BI∩m is étale.

Proof. Write B′ = BI . It follows from the definitions that B′ = BI is the integral
closure of A in LI . Write m′ = BI ∩ m = B′ ∩ m ⊂ B′. By Lemma 110.8 the maximal
ideal m is the unique prime ideal of B lying over m′. As I acts trivially on κ(m) we see
from Lemma 110.2 that the extension κ(m)/κ(m′) is purely inseparable (perhaps an easier
alternative is to apply the result of Lemma 110.9). Since D/I acts faithfully on κ(m′), we
conclude that D/I acts faithfully on κ(m). Of course the elements of the residue field κ
ofA are fixed by this action. By Galois theory we see that [κ(m′) : κ] ≥ |D/I|, see Fields,
Lemma 21.6.
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Let π be the uniformizer of A. Since NormL/K(π) = π[L:K] we see from Algebra, Lemma
121.8 that

|G| = [L : K] = [L : K] ordA(π) = |G/D| [κ(m) : κ] ordBm
(π)

as there are n = |G/D|maximal ideals of B which are all conjugate under G, see Remark
111.6 and Lemma 112.1. Applying the same reasoning to the finite extension the finite
extension L/LI of degree |I| we find

|I| ordB′
m′

(π) = [κ(m) : κ(m′)] ordBm
(π)

We conclude that
ordB′

m′
(π) = |D/I|

[κ(m′) : κ]
Since the left hand side is a positive integer and since the right hand side is ≤ 1 by the
above, we conclude that we have equality, ordB′

m′
(π) = 1 and κ(m′)/κ has degree |D/I|.

Thus πB′
m′ = m′B′

m and κ(m′) is Galois over κ with Galois group D/I , in particular
separable, see Fields, Lemma 21.2. By Algebra, Lemma 143.7 we find thatA→ B′

m′ is étale
as desired. �

Remark 112.9. Let A be a discrete valuation ring with fraction field K. Let L/K be
a finite Galois extension. Let m ⊂ B be a maximal ideal of the integral closure of A in L.
Let

P ⊂ I ⊂ D ⊂ G
be the wild inertia, inertia, decomposition group of m. Consider the diagram

m mP mI mD A ∩m

B BPoo BIoo BDoo Aoo

Observe thatBP , BI , BD are the integral closures ofA in the fieldsLP , LI , LD. Thus we
also see thatBP is the integral closure ofBI inLP and so on. Observe thatmP = m∩BP ,
mI = m ∩ BI , and mD = m ∩ BD. Hence the top line of the diagram corresponds to
the images of m ∈ Spec(B) under the induced maps of spectra. Having said all of this we
have the following

(1) the extension LI/LD is Galois with group D/I ,
(2) the extension LP /LI is Galois with group It = I/P ,
(3) the extension LP /LD is Galois with group D/P ,
(4) mI is the unique prime of BI lying over mD ,
(5) mP is the unique prime of BP lying over mI ,
(6) m is the unique prime of B lying over mP ,
(7) mP is the unique prime of BP lying over mD ,
(8) m is the unique prime of B lying over mI ,
(9) m is the unique prime of B lying over mD ,

(10) A→ BDmD is étale and induces a trivial residue field extension,
(11) BDmD → BImI is étale and induces a Galois extension of residue fields with Galois

group D/I ,
(12) A→ BImI is étale,
(13) BImI → BPmP has ramification index |I/P | prime to p and induces a trivial

residue field extension,
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(14) BDmD → BPmP has ramification index |I/P | prime to p and induces a separable
residue field extension,

(15) A → BPmP has ramification index |I/P | prime to p and induces a separable
residue field extension.

Statements (1), (2), and (3) are immediate from Galois theory (Fields, Section 21) and
Lemma 112.5. Statements (4) – (9) are clear from Lemma 112.1. Part (12) is Lemma 112.8.
Since we have the factorization A → BDmD → BImI we obtain the étaleness in (10) and
(11) as a consequence. The residue field extension in (10) must be trivial because it is sep-
arable and D/I maps onto Aut(κ(m)/κA) as shown in Lemma 112.4. The same argument
provides the proof of the statement on residue fields in (11). To see (13), (14), and (15) it
suffices to prove (13). By the above, the extension LP /LI is Galois with a cyclic Galois
group of order prime to p, the prime mP is the unique prime lying over mI and the action
of I/P on the residue field is trivial. Thus we can apply Lemma 112.5 to this extension
and the discrete valuation ring BImI to see that (13) holds.

Lemma 112.10. LetA be a discrete valuation ring with fraction fieldK. LetM/L/K
be a tower with M/K and L/K finite Galois. Let C , B be the integral closure of A in M ,
L. Let m′ ⊂ C be a maximal ideal and set m = m′ ∩B. Let

P ⊂ I ⊂ D ⊂ Gal(L/K) and P ′ ⊂ I ′ ⊂ D′ ⊂ Gal(M/K)
be the wild inertia, inertia, decomposition group of m and m′. Then the canonical sur-
jection Gal(M/K) → Gal(L/K) induces surjections P ′ → P , I ′ → I , and D′ → D.
Moreover these fit into commutative diagrams

D′ //

��

Aut(κ(m′)/κA)

��
D // Aut(κ(m)/κA)

and

I ′
θ′
//

��

µe′(κ(m′))

(−)e
′/e

��
I

θ // µe(κ(m))

where e′ and e are the ramification indices of A→ Cm′ and A→ Bm.

Proof. The fact that under the map Gal(M/K)→ Gal(L/K) the groups P ′, I ′, D′

map into P, I,D is immediate from the definitions of these groups. The commutativity
of the first diagram is clear (observe that since κ(m)/κA is normal every automorphism
of κ(m′) over κA indeed induces an automorphism of κ(m) over κA and hence we obtain
the right vertical arrow in the first diagram, see Lemma 112.4 and Fields, Lemma 15.7).

The maps I ′ → I andD′ → D are surjective by Lemma 110.11. The surjectivity ofP ′ → P
follows as P ′ and P are p-Sylow subgroups of I ′ and I .

To see the commutativity of the second diagram we choose a uniformizer π′ of Cm′ and a
uniformizer π of Bm. Then π = c′(π′)e′/e for some unit c′ of Cm′ . For σ′ ∈ I ′ the image
σ ∈ I is simply the restriction of σ′ to L. Write σ′(π′) = cπ′ for a unit c ∈ Cm′ and
write σ(π) = bπ for a unit b of Bm. Then σ′(π) = bπ and we obtain

bπ = σ′(π) = σ′(c′(π′)e
′/e) = σ′(c′)ce

′/e(π′)e
′/e = σ′(c′)

c′ ce
′/eπ

As σ′ ∈ I ′ we see that b and ce
′/e have the same image in the residue field which proves

what we want. �

Remark 112.11. In order to use the inertia character θ : I → µe(κ(m)) for infinite
Galois extensions, it is convenient to scale it. Let A,K,L,B,m, G, P, I,D, e, θ be as in
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Lemma 112.5 and Definition 112.6. Then e = q|It| with q is a power of the character-
istic p of κ(m) if positive or 1 if zero. Note that µe(κ(m)) = µ|It|(κ(m)) because the
characteristic of κ(m) is p. Consider the map

θcan = qθ : I −→ µ|It|(κ(m))

This map induces an isomorphism θcan : It → µ|It|(κ(m)). We have θcan(τστ−1) =
τ(θcan(σ)) for τ ∈ D and σ ∈ I by Lemma 112.7. Finally, if M/L is an extension such
thatM/K is Galois and m′ is a prime of the integral closure ofA inM lying over m, then
we get the commutative diagram

I ′
θ′
can

//

��

µ|I′
t|(κ(m′))

(−)|I′
t

|/|It|

��
I

θcan // µ|It|(κ(m))

by Lemma 112.10.

113. Krasner’s lemma

Here is Krasner’s lemma in the case of discretely valued fields.

Lemma 113.1 (Krasner’s lemma). Let A be a complete local domain of dimension 1.
Let P (t) ∈ A[t] be a polynomial with coefficients in A. Let α ∈ A be a root of P but not
a root of the derivative P ′ = dP/dt. For every c ≥ 0 there exists an integer n such that
for any Q ∈ A[t] whose coefficients are in mnA the polynomial P + Q has a root β ∈ A
with β − α ∈ mcA.

Proof. Choose a nonzero π ∈ m. Since the dimension of A is 1 we have m =
√

(π).
By assumption we may write P ′(α)−1 = π−ma for some m ≥ 0 and a ∈ A. We may
and do assume that c ≥ m + 1. Pick n such that mnA ⊂ (πc+m). Pick any Q as in the
statement. For later use we observe that we can write

P (x+ y) = P (x) + P ′(x)y +R(x, y)y2

for some R(x, y) ∈ A[x, y]. We will show by induction that we can find a sequence
αm, αm+1, αm+2, . . . such that

(1) αk ≡ α mod πc,
(2) αk+1 − αk ∈ (πk), and
(3) (P +Q)(αk) ∈ (πm+k).

Setting β = limαk will finish the proof.

Base case. Since the coefficients ofQ are in (πc+m) we have (P+Q)(α) ∈ (πc+m). Hence
αm = α works. This choice guarantees that αk ≡ α mod πc for all k ≥ m.

Induction step. Given αk we write αk+1 = αk + δ for some δ ∈ (πk). Then we have

(P +Q)(αk+1) = P (αk + δ) +Q(αk + δ)
Because the coefficients ofQ are in (πc+m) we see thatQ(αk+δ) ≡ Q(αk) mod πc+m+k.
On the other hand we have

P (αk + δ) = P (αk) + P ′(αk)δ +R(αk, δ)δ2

Note that P ′(αk) ≡ P ′(α) mod (πm+1) as αk ≡ α mod πm+1. Hence we obtain

P (αk + δ) ≡ P (αk) + P ′(α)δ mod πk+m+1
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Recombining the two terms we see that

(P +Q)(αk+1) ≡ (P +Q)(αk) + P ′(α)δ mod πk+m+1

Thus a solution is to take δ = −P ′(α)−1(P +Q)(αk) = −π−ma(P +Q)(αk) which is
contained in (πk) by induction assumption. �

Lemma 113.2. Let A be a discrete valuation ring with field of fractions K. Let A∧ be
the completion ofAwith fraction fieldK∧. IfM/K∧ is a finite separable extension, then
there exists a finite separable extension L/K such that M = K∧ ⊗K L.

Proof. Note that A∧ is a discrete valuation ring too (by Lemmas 43.4 and 43.1). In
particularA∧ is a domain. The proof will work more generally for Noetherian local rings
A such that A∧ is a local domain of dimension 1.

Let θ ∈M be an element that generatesM overK∧. (Theorem of the primitive element.)
Let P (t) ∈ K∧[t] be the minimal polynomial of θ over K∧. Let π ∈ mA be a nonzero
element. After replacing θ by πnθ we may assume that the coefficients of P (t) are in A∧.
Let B = A∧[θ] = A∧[t]/(P (t)). Note that B is a complete local domain of dimension 1
because it is finite over A and contained in M . Since M is separable over K the element
θ is not a root of the derivative of P . For any integer n we can find a monic polynomial
P1 ∈ A[t] such that P − P1 has coefficients in πnA∧[t]. By Krasner’s lemma (Lemma
113.1) we see that P1 has a root β in B for n sufficiently large. Moreover, we may assume
(if n is chosen large enough) that θ− β ∈ πB. Consider the map Φ : A∧[t]/(P1)→ B of
A∧-algebras which maps t to β. SinceB = πB+

∑
i<deg(P ) A

∧θi, the map Φ is surjective
by Nakayama’s lemma. As deg(P1) = deg(P ) it follows that Φ is an isomorphism. We
conclude that the ring extension L = K[t]/(P1(t)) satisfiesK∧⊗K L ∼= M . This implies
that L is a field and the proof is complete. �

Definition 113.3. Let A be a discrete valuation ring. We say A has mixed charac-
teristic if the characteristic of the residue field of A is p > 0 and the characteristic of
the fraction field of A is 0. In this case we obtain an extension of discrete valuation rings
Z(p) ⊂ A and the absolute ramification index ofA is the ramification index of this exten-
sion.

114. Abhyankar’s lemma and tame ramification

In this section we prove what we think is the most general version of Abhyankar’s lemma
for discrete valuation rings. After doing so, we apply this to prove some results about
tamely ramified extensions of the fraction field of a discrete valuation ring.

Remark 114.1. Let A→ B be an extension of discrete valuation rings with fraction
fields K ⊂ L. Let K1/K be a finite extension of fields. Let A1 ⊂ K1 be the integral
closure of A in K1. On the other hand, let L1 = (L⊗K K1)red. Then L1 is a nonempty
finite product of finite field extensions ofL. LetB1 be the integral closure ofB inL1. We
obtain compatible commutative diagrams

L // L1

K

OO

// K1

OO

and

B // B1

A

OO

// A1

OO

In this situation we have the following
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(1) By Algebra, Lemma 120.18 the ring A1 is a Dedekind domain and B1 is a finite
product of Dedekind domains.

(2) Note that L⊗KK1 = (B⊗AA1)π where π ∈ A is a uniformizer and that π is a
nonzerodivisor onB⊗AA1. Thus the ring mapB⊗AA1 → B1 is integral with
kernel consisting of nilpotent elements. Hence Spec(B1) → Spec(B ⊗A A1)
is surjective on spectra (Algebra, Lemma 36.17). The map Spec(B ⊗A A1) →
Spec(A1) is surjective as A1/mAA1 → B/mAB ⊗κA A1/mAA1 is an injective
ring map with A1/mAA1 Artinian. We conclude that Spec(B1) → Spec(A1)
is surjective.

(3) Let mi, i = 1, . . . n with n ≥ 1 be the maximal ideals of A1. For each i =
1, . . . , n let mij , j = 1, . . . ,mi with mi ≥ 1 be the maximal ideals of B1 lying
over mi. We obtain diagrams

B // (B1)mij

A

OO

// (A1)mi

OO

of extensions of discrete valuation rings.
(4) IfA is henselian (for example complete), thenA1 is a discrete valuation ring, i.e.,

n = 1. Namely,A1 is a union of finite extensions ofAwhich are domains, hence
local by Algebra, Lemma 153.4.

(5) If B is henselian (for example complete), then B1 is a product of discrete valua-
tion rings, i.e., mi = 1 for i = 1, . . . , n.

(6) If K ⊂ K1 is purely inseparable, then A1 and B1 are both discrete valuation
rings, i.e., n = 1 and m1 = 1. This is true because for every b ∈ B1 a p-power
power of b is in B, hence B1 can only have one maximal ideal.

(7) If K ⊂ K1 is finite separable, then L1 = L ⊗K K1 and is a finite product of
finite separable extensions too. HenceA ⊂ A1 andB ⊂ B1 are finite by Algebra,
Lemma 161.8.

(8) If A is Nagata, then A ⊂ A1 is finite.
(9) If B is Nagata, then B ⊂ B1 is finite.

Lemma 114.2. Let A be a discrete valuation ring with uniformizer π. Let n ≥ 2.
Then K1 = K[π1/n] is a degree n extension of K and the integral closure A1 of A in K1
is the ring A[π1/n] which is a discrete valuation ring with ramification index n over A.

Proof. This lemma proves itself. �

Lemma 114.3. Let A → B be an extension of discrete valuation rings with fraction
fieldsK ⊂ L. Assume thatA→ B is formally smooth in the mB-adic topology. Then for
any finite extension K1/K we have L1 = L⊗K K1, B1 = B ⊗A A1, and each extension
(A1)mi ⊂ (B1)mij (see Remark 114.1) is formally smooth in the mij-adic topology.

Proof. We will use the equivalence of Lemma 111.5 without further mention. Let
π ∈ A and πi ∈ (A1)mi be uniformizers. As κA ⊂ κB is separable, the ring

(B ⊗A (A1)mi)/πi(B ⊗A (A1)mi) = B/πB ⊗A/πA (A1)mi/πi(A1)mi
is a product of fields each separable over κmi . Hence the element πi in B ⊗A (A1)mi
is a nonzerodivisor and the quotient by this element is a product of fields. It follows
that B ⊗A A1 is a Dedekind domain in particular reduced. Thus B ⊗A A1 ⊂ B1 is an
equality. �
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The following lemma is our version of Abhyankar’s lemma for discrete valuation rings.
Observe that κB/κA is not assumed to be an algebraic extension of fields.

Lemma 114.4 (Abhyankar’s lemma). LetA ⊂ B be an extension of discrete valuation
rings. Assume that either the residue characteristic of A is 0 or it is p, the ramification
index e is prime to p, and κB/κA is a separable field extension. Let K1/K be a finite
extension. Using the notation of Remark 114.1 assume e divides the ramification index
of A ⊂ (A1)mi for some i. Then (A1)mi ⊂ (B1)mij is formally smooth in the mij-adic
topology for all j = 1, . . . ,mi.

Proof. Let π ∈ A be a uniformizer. Let π1 be a uniformizer of (A1)mi . Write π =
uπe1

1 with u a unit of (A1)mi and e1 the ramification index of A ⊂ (A1)mi .

Claim: we may assume that u is an eth power in K1. Namely, let K2 be an extension of
K1 obtained by adjoining a root of xe = u; thus K2 is a factor of K1[x]/(xe − u). Then
K2/K1 is a finite separable extension (by our assumption on e) and hence A1 ⊂ A2 is
finite. Since (A1)mi → (A1)mi [x]/(xe − u) is finite étale (as e is prime to the residue
characteristic and u a unit) we conclude that (A2)mi is a factor of a finite étale extension
of (A1)mi hence finite étale over (A1)mi itself. The same reasoning shows that B1 ⊂ B2
induces finite étale extensions (B1)mij ⊂ (B2)mij . Pick a maximal ideal m′

ij ⊂ B2 lying
over mij ⊂ B1 (of course there may be more than one) and consider

(B1)mij // (B2)m′
ij

(A1)mi

OO

// (A2)m′
i

OO

where m′
i ⊂ A2 is the image. Now the horizontal arrows have ramification index 1 and

induce finite separable residue field extensions. Thus, using the equivalence of Lemma
111.5, we see that it suffices to show that the right vertical arrow is formally smooth in the
m′
ij-adic topology. Since u has a eth root in K2 we obtain the claim.

Assume u has an eth root in K1. Since e|e1 and since u has a eth root in K1 we see that
π = θe for some θ ∈ K1. LetK ′

1 = K[θ] ⊂ K1 be the subfield generated by θ. By Lemma
114.2 the integral closure A′

1 of A in K[θ] is the discrete valuation ring A′
1 = A[θ] which

has ramification index e overA. If we can prove the lemma for the extensionK ′
1/K , then

we conclude by Lemma 114.3 applied to the diagram

(B′
1)B′

1∩mij
// (B1)mij

A′
1

OO

// (A1)mi

OO

for all j = 1, . . . ,mi. This reduces us to the case discussed in the next paragraph.

Assume K1 = K[π1/e] and set θ = π1/e. Let πB be a uniformizer for B and write
π = wπeB for some unitw ofB. Then we see thatL1 = L⊗KK1 is obtained by adjoining
πB/θ which is an eth root of the unit w. Thus B ⊂ B1 is finite étale. Thus for any
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maximal ideal m ⊂ B1 consider the commutative diagram

B
1
// (B1)m

A

e

OO

e // A1

em

OO

Here the numbers along the arrows are the ramification indices. By multiplicativity of
ramification indices (Lemma 111.3) we conclude em = 1. Looking at the residue field
extensions we find that κ(m) is a finite separable extension of κB which is separable over
κA. Therefore κ(m) is separable over κA which is equal to the residue field of A1 and we
win by Lemma 111.5. �

Lemma 114.5. Let A be a discrete valuation ring with fraction field K. Let M/L/K
be finite separable extensions. Let B be the integral closure of A in L. If L/K is tamely
ramified with respect to A and M/L is tamely ramified with respect to Bm for every
maximal ideal m of B, then M/K is tamely ramified with respect to A.

Proof. Let C be the integral closure of A in M . Every maximal ideal m′ of C lies
over a maximal ideal m of B. Then the lemma follows from the multiplicativity of ram-
ification indices (Lemma 111.3) and the fact that we have the tower κ(m′)/κ(m)/κA of
finite extensions of fields. �

Lemma 114.6. LetA be a discrete valuation ring with fraction fieldK. IfM/L/K are
finite separable extensions and M is tamely ramified with respect to A, then L is tamely
ramified with respect to A.

Proof. We will use the results of the discussion in Remark 111.6 without further
mention. LetC/B/A be the integral closures ofA inM/L/K. SinceC is a finite ring ex-
tension ofB, we see that Spec(C)→ Spec(B) is surjective. Hence for ever maximal ideal
m ⊂ B there is a maximal ideal m′ ⊂ C lying over m. By the multiplicativity of ramifi-
cation indices (Lemma 111.3) and the assumption, we conclude that the ramification index
ofBm overA is prime to the residue characteristic. Since κ(m′)/κA is finite separable, the
same is true for κ(m)/κA. �

Lemma 114.7. Let A be a discrete valuation ring with fraction field K. Let π ∈ A be
a uniformizer. Let L/K be a finite separable extension. The following are equivalent

(1) L is tamely ramified with respect to A,
(2) there exists an e ≥ 1 invertible in κA and an extension L′/K ′ = K[π1/e] un-

ramified with respect to A′ = A[π1/e] such that L is contained in L′, and
(3) there exists an e0 ≥ 1 invertible in κA such that for every d ≥ 1 invertible in

κA (2) holds with e = de0.

Proof. Observe thatA′ is a discrete valuation ring with fraction fieldK ′, see Lemma
114.2. Of course the ramification index of A′ over A is e. Thus if (2) holds, then L′

is tamely ramified with respect to A by Lemma 114.5. Hence L is tamely ramified with
respect to A by Lemma 114.6.

The implication (3)⇒ (2) is immediate.

Assume that (1) holds. Let B be the integral closure of A in L and let m1, . . . ,mn be its
maximal ideals. Denote ei the ramification index ofA→ Bmi . Let e0 be the least common
multiple of e1, . . . , er. This is invertible in κA by our assumption (1). Let e = de0 as in
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(3). Set A′ = A[π1/e]. Then A → A′ is an extension of discrete valuation rings with
fraction field K ′ = K[π1/e], see Lemma 114.2. Choose a product decomposition

L⊗K K ′ =
∏

L′
j

where L′
j are fields. Let B′

j be the integral closure of A in L′
j . Let mijk be the maximal

ideals of B′
j lying over mi. Observe that (B′

j)mi is the integral closure of Bmi in L′
j . By

Abhyankar’s lemma (Lemma 114.4) applied to A ⊂ Bmi and the extension K ′/K we see
that A′ → (B′

j)mijk is formally smooth in the mijk-adic topology. This implies that the
ramification index is 1 and that the residue field extension is separable (Lemma 111.5). In
this way we see that L′

j is unramified with respect to A′. This finishes the proof: we take
L′ = L′

j for some j. �

Lemma 114.8. Let A be a discrete valuation ring with fraction field K.
(1) IfL/K is a finite separable extension which is tamely ramified with respect toA,

then there exists a Galois extensionM/K containingLwhich is tamely ramified
with respect to A.

(2) If L1/K , L2/K are finite separable extensions which are tamely ramified with
respect toA, then there exists a a finite separable extensionL/K which is tamely
ramified with respect to A containing L1 and L2.

Proof. Proof of (2). Choose a uniformizer π ∈ A. We can choose an integer e in-
vertible in κA and extensions L′

i/K
′ = K[π1/e] unramified with respect toA′ = A[π1/e]

withL′
i/Li as extensions ofK , see Lemma 114.7. By Lemma 111.8 we can find an extension

L′/K ′ which is unramified with respect to A′ such that L′
i/K is isomorphic to a subex-

tension of L′/K ′ for i = 1, 2. This finishes the proof of (3) as L′/K is tamely ramified
(use same lemma as above).

Proof of (1). We may first replaceL by a larger extension and assume thatL is an extension
ofK ′ = K[π1/e] unramified with respect toA′ = A[π1/e] where e is invertible in κA, see
Lemma 114.7. Let M be the normal closure of L over K , see Fields, Definition 16.4. Then
M/K is Galois by Fields, Lemma 21.5. On the other hand, there is a surjection

L⊗K . . .⊗K L −→M

ofK-algebras, see Fields, Lemma 16.6. LetB be the integral closure ofA inL as in Remark
111.6. The condition thatL is unramified with respect toA′ = A[π1/e] exactly means that
A′ → B is an étale ring map, see Algebra, Lemma 143.7. Claim:

K ′ ⊗K . . .⊗K K ′ =
∏

K ′
i

is a product of field extensionsK ′
i/K tamely ramified with respect toA. Then ifA′

i is the
integral closure of A in K ′

i we see that∏
A′
i ⊗(A′⊗A...⊗AA′) (B ⊗A . . .⊗A B)

is finite étale over
∏
A′
i and hence a product of Dedekind domains (Lemma 44.4). We

conclude that M is the fraction field of one of these Dedekind domains which is finite
étale overA′

i for some i. It follows thatM/K ′
i is unramified with respect to every maximal

ideal of A′
i and hence M/K is tamely ramified by Lemma 114.5.

It remains the prove the claim. For this we write A′ = A[x]/(xe − π) and we see that

A′ ⊗A . . .⊗A A′ = A′[x1, . . . , xr]/(xe1 − π, . . . , xer − π)
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The normalization of this ring certainly contains the elements yi = xi/x1 for i = 2, . . . , r
subject to the relations yei − 1 = 0 and we obtain

A[x1, y2, . . . , yr]/(xe1 − π, ye2 − 1, . . . , yr − 1) = A′[y2, . . . , yr]/(ye2 − 1, . . . , yer − 1)
This ring is finite étale over A′ because e is invertible in A′. Hence it is a product of
Dedekind domains each unramified over A′ as desired (see references given above in case
of confusion). �

Lemma 114.9. Let A ⊂ B be an extension of discrete valuation rings. Denote L/K
the corresponding extension of fraction fields. Let K ′/K be a finite separable extension.
Then

K ′ ⊗K L =
∏

L′
i

is a finite product of fields and the following is true
(1) IfK ′ is unramified with respect to A, then each L′

i is unramified with respect to
B.

(2) If K ′ is tamely ramified with respect to A, then each L′
i is tamely ramified with

respect to B.

Proof. The algebra K ′ ⊗K L is a finite product of fields as it is a finite étale algebra
over L. Let A′ be the integral closure of A in K ′.

In case (1) the ring map A → A′ is finite étale. Hence B′ = B ⊗A A′ is finite étale over
B and is a finite product of Dedekind domains (Lemma 44.4). Hence B′ is the integral
closure of B in K ′ ⊗K L. It follows immediately that each L′

i is unramified with respect
to B.

Choose a uniformizer π ∈ A. To prove (2) we may replace K ′ by a larger extension tame
ramified with respect toA (details omitted; hint: use Lemma 114.6). Thus by Lemma 114.7
we may assume there exists some e ≥ 1 invertible in κA such that K ′ contains K[π1/e]
and such that K ′ is unramified with respect to A[π1/e]. Choose a product decomposition

K[π1/e]⊗K L =
∏

Le,j

For every i there exists a ji such that L′
i/Le,ji is a finite separable extension. Let Be,j be

the integral closure of B in Le,j . By (1) applied to K ′/K[π1/e] and A[π1/e] ⊂ (Be,ji)m
we see that L′

i is unramified with respect to (Be,ji)m for every maximal ideal m ⊂ Be,ji .
Hence the proof will be complete if we can show that Le,j is tamely ramified with respect
to B, see Lemma 114.5.

Choose a uniformizer θ in B. Write π = uθt where u is a unit of B and t ≥ 1. Then we
have

A[π1/e]⊗A B = B[x]/(xe − uθt) ⊂ B[y, z]/(ye
′
− θ, ze − u)

where e′ = e/ gcd(e, t). The map sends x to zyt/ gcd(e,t). Since the right hand side is a
product of Dedekind domains each tamely ramified over B the proof is complete (details
omitted). �

115. Eliminating ramification

In this section we discuss a result of Helmut Epp, see [?]. We strongly encourage the reader
to read the original. Our approach is slightly different as we try to handle the mixed and
equicharacteristic cases by the same method. For related results, see also [?], [?], [?], and
[?].
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Let A ⊂ B be an extension of discrete valuation rings with fraction fields K ⊂ L. The
goal in this section is to find a finite extension K1/K such that with

L // L1

K

OO

// K1

OO

and

B // B1 // (B1)mij

A

OO

// A1 //

OO

(A1)mi

OO

as in Remark 114.1 the extensions (A1)mi ⊂ (B1)mij are all weakly unramified or even
formally smooth in the relevant adic topologies. The simplest (but nontrivial) example of
this is Abhyankar’s lemma, see Lemma 114.4.

Definition 115.1. Let A→ B be an extension of discrete valuation rings with frac-
tion fields K ⊂ L.

(1) We say a finite field extension K1/K is a weak solution for A ⊂ B if all the
extensions (A1)mi ⊂ (B1)mij of Remark 114.1 are weakly unramified.

(2) We say a finite field extension K1/K is a solution for A ⊂ B if each extension
(A1)mi ⊂ (B1)mij of Remark 114.1 is formally smooth in themij-adic topology.

We say a solution K1/K is a separable solution if K1/K is separable.

In general (weak) solutions do not exist; there is an example in [?]. Under a mild hy-
pothesis on the residue field extension, we will prove the existence of weak solutions in
Theorem 115.18 following [?]. In the next section, we will deduce the existence of solu-
tions and sometimes separable solutions in geometrically meaningful cases, see Proposition
116.8 and Lemma 116.9. However, the following example shows that in general one needs
inseparable extensions to get even a weak solution.

Example 115.2. Let k be a perfect field of characteristic p > 0. Let A = k[[x]] and
K = k((x)). Let B = A[x1/p]. Any weak solution K1/K for A→ B is inseparable (and
any finite inseparable extension of K is a solution). We omit the proof.

Solutions are stable under further extensions, see Lemma 116.1. This may not be true for
weak solutions. Weak solutions are in some sense stable under totally ramified extensions,
see Lemma 115.3.

Lemma 115.3. Let A → B be an extension of discrete valuation rings with fraction
fields K ⊂ L. Assume that A → B is weakly unramified. Then for any finite separable
extensionK1/K totally ramified with respect toAwe have that L1 = L⊗KK1 is a field,
A1 and B1 = B ⊗A A1 are discrete valuation rings, and the extension A1 ⊂ B1 (see
Remark 114.1) is weakly unramified.

Proof. Let π ∈ A and π1 ∈ A1 be uniformizers. As K1/K is totally ramified with
respect to A we have πe1 = u1π for some unit u1 in A1. Hence A1 is generated by π1 over
A and the minimal polynomial P (t) of π1 over K has the form

P (t) = te + ae−1t
e−1 + . . .+ a0

with ai ∈ (π) and a0 = uπ for some unit u of A. Note that e = [K1 : K] as well.
Since A → B is weakly unramified we see that π is a uniformizer of B and hence B1 =
B[t]/(P (t)) is a discrete valuation ring with uniformizer the class of t. Thus the lemma
is clear. �

Lemma 115.4. Let A → B → C be extensions of discrete valuation rings with frac-
tion fields K ⊂ L ⊂M . Let K1/K be a finite extension.



1540 15. MORE ON ALGEBRA

(1) If K1 is a (weak) solution for A→ C , then K1 is a (weak) solution for A→ B.
(2) If K1 is a (weak) solution for A → B and L1 = (L ⊗K K1)red is a product of

fields which are (weak) solutions for B → C , then K1 is a (weak) solution for
A→ C.

Proof. Let L1 = (L ⊗K K1)red and M1 = (M ⊗K K1)red and let B1 ⊂ L1 and
C1 ⊂ M1 be the integral closure of B and C. Note that M1 = (M ⊗L L1)red and that
L1 is a (nonempty) finite product of finite extensions of L. Hence the ring mapB1 → C1
is a finite product of ring maps of the form discussed in Remark 114.1. In particular, the
map Spec(C1) → Spec(B1) is surjective. Choose a maximal ideal m ⊂ C1 and consider
the extensions of discrete valuation rings

(A1)A1∩m → (B1)B1∩m → (C1)m
If the composition is weakly unramified, so is the map (A1)A1∩m → (B1)B1∩m. If the
residue field extension κA1∩m → κm is separable, so is the subextension κA1∩m → κB1∩m.
Taking into account Lemma 111.5 this proves (1). A similar argument works for (2). �

Lemma 115.5. Let A→ B be an extension of discrete valuation rings. There exists a
commutative diagram

B // B′

A //

OO

A′

OO

of extensions of discrete valuation rings such that
(1) the extensions K ′/K and L′/L of fraction fields are separable algebraic,
(2) the residue fields ofA′ andB′ are separable algebraic closures of the residue fields

of A and B, and
(3) if a solution, weak solution, or separable solution exists for A′ → B′, then a

solution, weak solution, or separable solution exists for A→ B.

Proof. By Algebra, Lemma 159.2 there exists an extensionA ⊂ A′ which is a filtered
colimit of finite étale extensions such that the residue field of A′ is a separable algebraic
closure of the residue field of A. Then A ⊂ A′ is an extension of discrete valuation rings
such that the induced extension K ′/K of fraction fields is separable algebraic.

Let B ⊂ B′ be a strict henselization of B. Then B ⊂ B′ is an extension of discrete
valuation rings whose fraction field extension is separable algebraic. By Algebra, Lemma
155.9 there exists a commutative diagram as in the statement of the lemma. Parts (1) and
(2) of the lemma are clear.

Let K ′
1/K

′ be a (weak) solution for A′ → B′. Since A′ is a colimit, we can find a finite
étale extension A ⊂ A′

1 and a finite extension K1 of the fraction field F of A′
1 such that

K ′
1 = K ′ ⊗F K1. As A ⊂ A′

1 is finite étale and B′ strictly henselian, it follows that
B′ ⊗A A′

1 is a finite product of rings isomorphic to B′. Hence

L′ ⊗K K1 = L′ ⊗K F ⊗F K1

is a finite product of rings isomorphic to L′ ⊗K′ K ′
1. Thus we see that K1/K is a (weak)

solution for A→ B′. Hence it is also a (weak) solution for A→ B by Lemma 115.4. �

Lemma 115.6. Let A → B be an extension of discrete valuation rings with fraction
fields K ⊂ L. Let K1/K be a normal extension. Say G = Aut(K1/K). Then G acts on
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the rings K1, L1, A1 and B1 of Remark 114.1 and acts transitively on the set of maximal
ideals of B1.

Proof. Everything is clear apart from the last assertion. If there are two or more
orbits of the action, then we can find an element b ∈ B1 which vanishes at all the maximal
ideals of one orbit and has residue 1 at all the maximal ideals in another orbit. Then
b′ =

∏
σ∈G σ(b) is a G-invariant element of B1 ⊂ L1 = (L ⊗K K1)red which is in

some maximal ideals of B1 but not in all maximal ideals of B1. Lifting it to an element
of L⊗K K1 and raising to a high power we obtain a G-invariant element b′′ of L⊗K K1
mapping to (b′)N for someN > 0; in fact, we only need to do this in case the characteristic
is p > 0 and in this case raising to a suitably large p-power q defines a canonical map
(L⊗K K1)red → L⊗K K1. Since K = (K1)G we conclude that b′′ ∈ L. Since b′′ maps
to an element of B1 we see that b′′ ∈ B (as B is normal). Then on the one hand it must
be true that b′′ ∈ mB as b′ is in some maximal ideal of B1 and on the other hand it must
be true that b′′ 6∈ mB as b′ is not in all maximal ideals of B1. This contradiction finishes
the proof of the lemma. �

Lemma 115.7. Let A be a discrete valuation ring with uniformizer π. If the residue
characteristic of A is p > 0, then for every n > 1 and p-power q there exists a degree q
separable extension L/K totally ramified with respect to A such that the integral closure
B of A in L has ramification index q and a uniformizer πB such that πqB = π + πnb and
πqB = π + (πB)nqb′ for some b, b′ ∈ B.

Proof. If the characteristic of K is zero, then we can take the extension given by
πqB = π, see Lemma 114.2. If the characteristic of K is p > 0, then we can take the
extension of K given by zq − πnz = π1−q . Namely, then we see that yq − πn+q−1y = π
where y = πz. Taking πB = y we obtain the desired result. �

Lemma 115.8. Let A be a discrete valuation ring. Assume the reside field κA has
characteristic p > 0 and that a ∈ A is an element whose residue class in κA is not a pth
power. Then a is not a pth power inK and the integral closure ofA inK[a1/p] is the ring
A[a1/p] which is a discrete valuation ring weakly unramified over A.

Proof. This lemma proves itself. �

Lemma 115.9. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with frac-
tions fields K ⊂ L ⊂M . Let π ∈ A be a uniformizer. Assume

(1) B is a Nagata ring,
(2) A ⊂ B is weakly unramified,
(3) M is a degree p purely inseparable extension of L.

Then either
(1) A→ C is weakly unramified, or
(2) C = B[π1/p], or
(3) there exists a degree p separable extension K1/K totally ramified with respect

to A such that L1 = L⊗K K1 and M1 = M ⊗K K1 are fields and the maps of
integral closures A1 → B1 → C1 are weakly unramified extensions of discrete
valuation rings.

Proof. Let e be the ramification index of C over B. If e = 1, then we are done. If
not, then e = p by Lemmas 111.2 and 111.4. This in turn implies that the residue fields of
B and C agree. Choose a uniformizer πC of C. Write πpC = uπ for some unit u of C.
Since πpC ∈ L, we see that u ∈ B∗. Also M = L[πC ].
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Suppose there exists an integer m ≥ 0 such that

u =
∑

0≤i<m
bpi π

i + bπm

with bi ∈ B and with b ∈ B an element whose image in κB is not a pth power. Choose
an extension K1/K as in Lemma 115.7 with n = m+ 2 and denote π′ the uniformizer of
the integral closure A1 of A in K1 such that π = (π′)p + (π′)npa for some a ∈ A1. Let
B1 be the integral closure ofB in L⊗KK1. Observe thatA1 → B1 is weakly unramified
by Lemma 115.3. In B1 we have

uπ =
(∑

0≤i<m
bi(π′)i+1

)p
+ b(π′)(m+1)p + (π′)npb1

for some b1 ∈ B1 (computation omitted). We conclude that M1 is obtained from L1 by
adjoining a pth root of

b+ (π′)n−m−1b1

Since the residue field of B1 equals the residue field of B we see from Lemma 115.8 that
M1/L1 has degree p and the integral closureC1 ofB1 is weakly unramified overB1. Thus
we conclude in this case.
If there does not exist an integerm as in the preceding paragraph, then u is a pth power in
the π-adic completion ofB1. SinceB is Nagata, this means that u is a pth power inB1 by
Algebra, Lemma 162.18. Whence the second case of the statement of the lemma holds. �

Lemma 115.10. Let A be a local ring annihilated by a prime p whose maximal ideal
is nilpotent. There exists a ring map σ : κA → A which is a section to the residue map
A → κA. If A → A′ is a local homomorphism of local rings, then we can choose a
similar ring map σ′ : κA′ → A′ compatible with σ provided that the extension κA′/κA
is separable.

Proof. Separable extensions are formally smooth by Algebra, Proposition 158.9. Thus
the existence of σ follows from the fact that Fp → κA is separable. Similarly for the ex-
istence of σ′ compatible with σ. �

Lemma 115.11. Let A be a discrete valuation ring with fraction field K of charac-
teristic p > 0. Let ξ ∈ K. Let L be an extension of K obtained by adjoining a root of
zp − z = ξ. Then L/K is Galois and one of the following happens

(1) L = K ,
(2) L/K is unramified with respect to A of degree p,
(3) L/K is totally ramified with respect to A with ramification index p, and
(4) the integral closure B of A in L is a discrete valuation ring, A ⊂ B is weakly

unramified, and A → B induces a purely inseparable residue field extension of
degree p.

Let π be a uniformizer of A. We have the following implications:
(A) If ξ ∈ A, then we are in case (1) or (2).
(B) If ξ = π−na where n > 0 is not divisible by p and a is a unit in A, then we are

in case (3)
(C) If ξ = π−na where n > 0 is divisible by p and the image of a in κA is not a pth

power, then we are in case (4).

Proof. The extension is Galois of order dividing p by the discussion in Fields, Section
25. It immediately follows from the discussion in Section 112 that we are in one of the cases
(1) – (4) listed in the lemma.
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Case (A). Here we see that A→ A[x]/(xp − x− ξ) is a finite étale ring extension. Hence
we are in cases (1) or (2).
Case (B). Write ξ = π−nawhere p does not divide n. LetB ⊂ L be the integral closure of
A inL. IfC = Bm for some maximal idealm, then it is clear that pordC(z) = −nordC(π).
In particular A ⊂ C has ramification index divisible by p. It follows that it is p and that
B = C.
Case (C). Set k = n/p. Then we can rewrite the equation as

(πkz)p − πn−k(πkz) = a

Since A[y]/(yp − πn−ky − a) is a discrete valuation ring weakly unramified over A, the
lemma follows. �

Lemma 115.12. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with frac-
tions fields K ⊂ L ⊂M . Assume

(1) A ⊂ B weakly unramified,
(2) the characteristic of K is p,
(3) M is a degree p Galois extension of L, and
(4) κA =

⋂
n≥1 κ

pn

B .
Then there exists a finite Galois extensionK1/K totally ramified with respect toAwhich
is a weak solution for A→ C.

Proof. Since the characteristic of L is p we know thatM is an Artin-Schreier exten-
sion ofL (Fields, Lemma 25.1). Thus we may pick z ∈M , z 6∈ L such that ξ = zp−z ∈ L.
Choose n ≥ 0 such that πnξ ∈ B. We pick z such that n is minimal. If n = 0, then M/L
is unramified with respect to B (Lemma 115.11) and we are done. Thus we have n > 0.
Assumption (4) implies that κA is perfect. Thus we may choose compatible ring maps
σ : κA → A/πnA and σ : κB → B/πnB as in Lemma 115.10. We lift the second of these
to a map of sets σ : κB → B16. Then we can write

ξ =
∑

i=n,...,1
σ(λi)π−i + b

for some λi ∈ κB and b ∈ B. Let
I = {i ∈ {n, . . . , 1} | λi ∈ κA}

and
J = {j ∈ {n, . . . , 1} | λi 6∈ κA}

We will argue by induction on the size of the finite set J .
The case J = ∅. Here for all i ∈ {n, . . . , 1} we have σ(λi) = ai + πnbi for some ai ∈ A
and bi ∈ B by our choice of σ. Thus ξ = π−na + b for some a ∈ A and b ∈ B. If p|n,
then we write a = ap0 + πa1 for some a0, a1 ∈ A (as the residue field of A is perfect). We
compute

(z − π−n/pa0)p − (z − π−n/pa0) = π−(n−1)(a1 + πn−1−n/pa0) + b′

for some b′ ∈ B. This would contradict the minimality of n. Thus p does not divide n.
Consider the degree p extension K1 of K given by wp − w = π−na. By Lemma 115.11
this extension is Galois and totally ramified with respect to A. Thus L1 = L ⊗K K1

16If B is complete, then we can choose σ to be a ring map. If A is also complete and σ is a ring map, then
σ maps κA into A.
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is a field and A1 ⊂ B1 is weakly unramified (Lemma 115.3). By Lemma 115.11 the ring
M1 = M⊗KK1 is either a product of p copies ofL1 (in which case we are done) or a field
extension of L1 of degree p. Moreover, in the second case, either C1 is weakly unramified
over B1 (in which case we are done) or M1/L1 is degree p, Galois, and totally ramified
with respect toB1. In this last case the extensionM1/L1 is generated by the element z−w
and

(z − w)p − (z − w) = zp − z − (wp − w) = b

with b ∈ B (see above). Thus by Lemma 115.11 once more the extensionM1/L1 is unram-
ified with respect to B1 and we conclude that K1 is a weak solution for A → C. From
now on we assume J 6= ∅.
Suppose that j′, j ∈ J such that j′ = prj for some r > 0. Then we change our choice of
z into

z′ = z − (σ(λj)π−j + σ(λpj )π
−pj + . . .+ σ(λp

r−1

j )π−pr−1j)
Then ξ changes into ξ′ = (z′)p − (z′) as follows

ξ′ = ξ − σ(λj)π−j + σ(λp
r

j )π−j′
+ something in B

Writing ξ′ =
∑
i=n,...,1 σ(λ′

i)π−i + b′ as before we find that λ′
i = λi for i 6= j, j′ and

λ′
j = 0. Thus the set J has gotten smaller. By induction on the size of J we may assume

no such pair j, j′ exists. (Please observe that in this procedure we may get thrown back
into the case that J = ∅ we treated above.)

For j ∈ J write λj = µp
rj

j for some rj ≥ 0 and µj ∈ κB which is not a pth power. This is
possible by our assumption (4). Let j ∈ J be the unique index such that jp−rj is maximal.
(The index is unique by the result of the preceding paragraph.) Choose r > max(rj + 1)
and such that jpr−rj > n for j ∈ J . Choose a separable extensionK1/K totally ramified
with respect to A of degree pr such that the corresponding discrete valuation ring A1 ⊂
K1 has uniformizer π′ with (π′)pr = π+πn+1a for some a ∈ A1 (Lemma 115.7). Observe
that L1 = L⊗K K1 is a field and that L1/L is totally ramified with respect toB (Lemma
115.3). Computing in the integral closure B1 we get

ξ =
∑

i∈I
σ(λi)(π′)−ipr +

∑
j∈J

σ(µj)p
rj (π′)−jpr + b1

for some b1 ∈ B1. Note that σ(λi) for i ∈ I is a qth power modulo πn, i.e., modulo
(π′)npr . Hence we can rewrite the above as

ξ =
∑

i∈I
xp

r

i (π′)−ipr +
∑

j∈J
σ(µj)p

rj (π′)−jpr + b1

As in the previous paragraph we change our choice of z into
z′ = z

−
∑

i∈I

(
xi(π′)−i + . . .+ xp

r−1

i (π′)−ipr−1
)

−
∑

j∈J

(
σ(µj)(π′)−jpr−rj + . . .+ σ(µj)p

rj−1
(π′)−jpr−1

)
to obtain

(z′)p − z′ =
∑

i∈I
xi(π′)−i +

∑
j∈J

σ(µj)(π′)−jpr−rj + b′
1

for some b′
1 ∈ B1. Since there is a unique j such that jpr−rj is maximal and since jpr−rj

is bigger than i ∈ I and divisible by p, we see that M1/L1 falls into case (C) of Lemma
115.11. This finishes the proof. �
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Lemma 115.13. Let A be a ring which contains a primitive pth root of unity ζ . Set
w = 1− ζ . Then

P (z) = (1 + wz)p − 1
wp

= zp − z +
∑

0<i<p
aiz

i

is an element of A[z] and in fact ai ∈ (w). Moreover, we have

P (z1 + z2 + wz1z2) = P (z1) + P (z2) + wpP (z1)P (z2)

in the polynomial ring A[z1, z2].

Proof. It suffices to prove this when

A = Z[ζ] = Z[x]/(xp−1 + . . .+ x+ 1)

is the ring of integers of the cyclotomic field. The polynomial identity tp − 1 = (t −
1)(t − ζ) . . . (t − ζp−1) (which is proved by looking at the roots on both sides) shows
that tp−1 + . . . + t + 1 = (t − ζ) . . . (t − ζp−1). Substituting t = 1 we obtain p =
(1− ζ)(1− ζ2) . . . (1− ζp−1). The maximal ideal (p, w) = (w) is the unique prime ideal
of A lying over p (as fields of characteristic p do not have nontrivial pth roots of 1). It
follows that p = uwp−1 for some unit u. This implies that

ai = 1
p

(
p

i

)
uwi−1

for p > i > 1 and −1 + a1 = pw/wp = u. Since P (−1) = 0 we see that 0 = (−1)p − u
modulo (w). Hence a1 ∈ (w) and the proof if the first part is done. The second part
follows from a direct computation we omit. �

Lemma 115.14. LetA be a discrete valuation ring of mixed characteristic (0, p) which
contains a primitive pth root of 1. Let P (t) ∈ A[t] be the polynomial of Lemma 115.13.
Let ξ ∈ K. Let L be an extension of K obtained by adjoining a root of P (z) = ξ. Then
L/K is Galois and one of the following happens

(1) L = K ,
(2) L/K is unramified with respect to A of degree p,
(3) L/K is totally ramified with respect to A with ramification index p, and
(4) the integral closure B of A in L is a discrete valuation ring, A ⊂ B is weakly

unramified, and A → B induces a purely inseparable residue field extension of
degree p.

Let π be a uniformizer of A. We have the following implications:
(A) If ξ ∈ A, then we are in case (1) or (2).
(B) If ξ = π−na where n > 0 is not divisible by p and a is a unit in A, then we are

in case (3)
(C) If ξ = π−na where n > 0 is divisible by p and the image of a in κA is not a pth

power, then we are in case (4).

Proof. Adjoining a root of P (z) = ξ is the same thing as adjoining a root of yp =
wp(1 + ξ). Since K contains a primitive pth root of 1 the extension is Galois of order di-
viding p by the discussion in Fields, Section 24. It immediately follows from the discussion
in Section 112 that we are in one of the cases (1) – (4) listed in the lemma.

Case (A). Here we see that A → A[x]/(P (x) − ξ) is a finite étale ring extension. Hence
we are in cases (1) or (2).



1546 15. MORE ON ALGEBRA

Case (B). Write ξ = π−nawhere p does not divide n. LetB ⊂ L be the integral closure of
A inL. IfC = Bm for some maximal idealm, then it is clear that pordC(z) = −nordC(π).
In particular A ⊂ C has ramification index divisible by p. It follows that it is p and that
B = C.

Case (C). Set k = n/p. Then we can rewrite the equation as

(πkz)p − πn−k(πkz) +
∑

aiπ
n−ik(πkz)i = a

SinceA[y]/(yp−πn−ky−
∑
aiπ

n−ikyi−a) is a discrete valuation ring weakly unramified
over A, the lemma follows. �

LetA be a discrete valuation ring of mixed characteristic (0, p) containing a primitive pth
root of 1. Let w ∈ A and P (t) ∈ A[t] be as in Lemma 115.13. Let L be a finite extension
of K. We say L/K is a degree p extension of finite level if L is a degree p extension of K
obtained by adjoining a root of the equation P (z) = ξ where ξ ∈ K is an element with
wpξ ∈ mA.

This definition is relevant to the discussion in this section due to the following straight-
forward lemma.

Lemma 115.15. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with frac-
tions fields K ⊂ L ⊂M . Assume that

(1) A has mixed characteristic (0, p),
(2) A ⊂ B is weakly unramified,
(3) B contains a primitive pth root of 1, and
(4) M/L is Galois of degree p.

Then there exists a finite Galois extensionK1/K totally ramified with respect toAwhich
is either a weak solution forA→ C or is such thatM1/L1 is a degree p extension of finite
level.

Proof. Let π ∈ A be a uniformizer. By Kummer theory (Fields, Lemma 24.1) M is
obtained from L by adjoining the root of yp = b for some b ∈ L.

If ordB(b) is prime to p, then we choose a degree p separable extension K1/K totally
ramified with respect toA (for example using Lemma 115.7). LetA1 be the integral closure
of A in K1. By Lemma 115.3 the integral closure B1 of B in L1 = L⊗K K1 is a discrete
valuation ring weakly unramified over A1. If K1/K is not a weak solution for A → C ,
then the integral closure C1 of C in M1 = M ⊗K K1 is a discrete valuation ring and
B1 → C1 has ramification index p. In this case, the field M1 is obtained from L1 by
adjoining the pth root of b with ordB1(b) divisible by p. Replacing A by A1, etc we may
assume that b = πnu where u ∈ B is a unit and n is divisible by p. Of course, in this case
the extension M is obtained from L by adjoining the pth root of a unit.

Suppose M is obtained from L by adjoining the root of yp = u for some unit u of B. If
the residue class of u in κB is not a pth power, then B ⊂ C is weakly unramified (Lemma
115.8) and we are done. Otherwise, we can replace our choice of y by y/v where vp and u
have the same image in κB . After such a replacement we have

yp = 1 + πb

for some b ∈ B. Then we see that P (z) = πb/wp where z = (y− 1)/w. Thus we see that
the extension is a degree p extension of finite level with ξ = πb/wp. �
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LetA be a discrete valuation ring of mixed characteristic (0, p) containing a primitive pth
root of 1. Letw ∈ A and P (t) ∈ A[t] be as in Lemma 115.13. Let L be a degree p extension
of K of finite level. Choose z ∈ L generating L over K with ξ = P (z) ∈ K. Choose a
uniformizer π forA and write w = uπe1 for some integer e1 = ordA(w) and unit u ∈ A.
Finally, pick n ≥ 0 such that

πnξ ∈ A
The level of L/K is the smallest value of the quantity n/e1 taking over all z generating
L/K with ξ = P (z) ∈ K.
We make a couple of remarks. Since the extension is of finite level we know that we can
choose z such that n < pe1. Thus the level is a rational number contained in [0, p). If the
level is zero then L/K is unramified with respect toA by Lemma 115.14. Our next goal is
to lower the level.

Lemma 115.16. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with frac-
tions fields K ⊂ L ⊂M . Assume

(1) A has mixed characteristic (0, p),
(2) A ⊂ B weakly unramified,
(3) B contains a primitive pth root of 1,
(4) M/L is a degree p extension of finite level l > 0,
(5) κA =

⋂
n≥1 κ

pn

B .
Then there exists a finite separable extension K1 of K totally ramified with respect to A
such that either K1 is a weak solution for A → C , or the extension M1/L1 is a degree p
extension of finite level ≤ max(0, l − 1, 2l − p).

Proof. Let π ∈ A be a uniformizer. Let w ∈ B and P ∈ B[t] be as in Lemma 115.13
(for B). Set e1 = ordB(w), so that w and πe1 are associates in B. Pick z ∈M generating
M over L with ξ = P (z) ∈ K and n such that πnξ ∈ B as in the definition of the level
of M over L, i.e., l = n/e1.
The proof of this lemma is completely similar to the proof of Lemma 115.12. To explain
what is going on, observe that
(115.16.1) P (z) ≡ zp − z mod π−n+e1B

for any z ∈ L such that π−nP (z) ∈ B (use that z has valuation at worst −n/p and the
shape of the polynomial P ). Moreover, we have

(115.16.2) ξ1 + ξ2 + wpξ1ξ2 ≡ ξ1 + ξ2 mod π−2n+pe1B

for ξ1, ξ2 ∈ π−nB. Finally, observe that n− e1 = (l − 1)/e1 and −2n+ pe1 = −(2l −
p)e1. Write m = n− e1 max(0, l − 1, 2l − p). The above shows that doing calculations
in π−nB/π−n+mB the polynomial P behaves exactly as the polynomial zp − z. This
explains why the lemma is true but we also give the details below.
Assumption (4) implies that κA is perfect. Observe that m ≤ e1 and hence A/πm is
annihilated by w and hence p. Thus we may choose compatible ring maps σ : κA →
A/πmA and σ : κB → B/πmB as in Lemma 115.10. We lift the second of these to a map
of sets σ : κB → B. Then we can write

ξ =
∑

i=n,...,n−m+1
σ(λi)π−i + π−n+m)b

for some λi ∈ κB and b ∈ B. Let
I = {i ∈ {n, . . . , n−m+ 1} | λi ∈ κA}
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and
J = {j ∈ {n, . . . , n−m+ 1} | λi 6∈ κA}

We will argue by induction on the size of the finite set J .
The case J = ∅. Here for all i ∈ {n, . . . , n −m + 1} we have σ(λi) = ai + πn−mbi for
some ai ∈ A and bi ∈ B by our choice of σ. Thus ξ = π−na+ π−n+mb for some a ∈ A
and b ∈ B. If p|n, then we write a = ap0 + πa1 for some a0, a1 ∈ A (as the residue field
ofA is perfect). Set z1 = −π−n/pa0. Note that P (z1) ∈ π−nB and that z+ z1 +wzz1 is
an element generating M over L (note that wz1 6= −1 as n < pe1). Moreover, by Lemma
115.13 we have

P (z + z1 + wzz1) = P (z) + P (z1) + wpP (z)P (z1) ∈ K
and by equations (115.16.1) and (115.16.2) we have

P (z) + P (z1) + wpP (z)P (z1) ≡ ξ + zp1 − z1 mod π−n+mB

for some b′ ∈ B. This contradict the minimality of n! Thus p does not divide n. Consider
the degree p extensionK1 ofK given byP (y) = −π−na. By Lemma 115.14 this extension
is separable and totally ramified with respect to A. Thus L1 = L ⊗K K1 is a field and
A1 ⊂ B1 is weakly unramified (Lemma 115.3). By Lemma 115.14 the ringM1 = M⊗KK1
is either a product of p copies ofL1 (in which case we are done) or a field extension ofL1 of
degree p. Moreover, in the second case, either C1 is weakly unramified over B1 (in which
case we are done) orM1/L1 is degree p, Galois, totally ramified with respect toB1. In this
last case the extension M1/L1 is generated by the element z + y + wzy and we see that
P (z + y + wzy) ∈ L1 and

P (z + y + wzy) = P (z) + P (y) + wpP (z)P (y)
≡ ξ − π−na mod π−n+mB1

≡ 0 mod π−n+mB1

in exactly the same manner as above. By our choice of m this means exactly that M1/L1
has level at most max(0, l − 1, 2l − p). From now on we assume that J 6= ∅.
Suppose that j′, j ∈ J such that j′ = prj for some r > 0. Then we set

z1 = −σ(λj)π−j − σ(λpj )π
−pj − . . .− σ(λp

r−1

j )π−pr−1j

and we change z into z′ = z + z1 +wzz1. Observe that z′ ∈M generates M over L and
that we have ξ′ = P (z′) = P (z) + P (z1) + wP (z)P (z1) ∈ L with

ξ′ ≡ ξ − σ(λj)π−j + σ(λp
r

j )π−j′
mod π−n+mB

by using equations (115.16.1) and (115.16.2) as above. Writing

ξ′ =
∑

i=n,...,n−m+1
σ(λ′

i)π−i + π−n+mb′

as before we find that λ′
i = λi for i 6= j, j′ and λ′

j = 0. Thus the set J has gotten smaller.
By induction on the size of J we may assume there is no pair j, j′ of J such that j′/j is a
power of p. (Please observe that in this procedure we may get thrown back into the case
that J = ∅ we treated above.)

For j ∈ J write λj = µp
rj

j for some rj ≥ 0 and µj ∈ κB which is not a pth power. This is
possible by our assumption (4). Let j ∈ J be the unique index such that jp−rj is maximal.
(The index is unique by the result of the preceding paragraph.) Choose r > max(rj + 1)
and such that jpr−rj > n for j ∈ J . Let K1/K be the extension of degree pr , totally
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ramified with respect to A, defined by (π′)pr = π. Observe that π′ is the uniformizer of
the corresponding discrete valuation ring A1 ⊂ K1. Observe that L1 = L ⊗K K1 is a
field and L1/L is totally ramified with respect to B (Lemma 115.3). Computing in the
integral closure B1 we get

ξ =
∑

i∈I
σ(λi)(π′)−ipr +

∑
j∈J

σ(µj)p
rj (π′)−jpr + π−n+mb1

for some b1 ∈ B1. Note that σ(λi) for i ∈ I is a qth power modulo πm, i.e., modulo
(π′)mpr . Hence we can rewrite the above as

ξ =
∑

i∈I
xp

r

i (π′)−ipr +
∑

j∈J
σ(µj)p

rj (π′)−jpr + π−n+mb1

Similar to our choice in the previous paragraph we set

z1 −
∑

i∈I

(
xi(π′)−i + . . .+ xp

r−1

i (π′)−ipr−1
)

−
∑

j∈J

(
σ(µj)(π′)−jpr−rj + . . .+ σ(µj)p

rj−1
(π′)−jpr−1

)
and we change our choice of z into z′ = z + z1 + wzz1. Then z′ generates M1 over L1
and ξ′ = P (z′) = P (z) + P (z1) + wpP (z)P (z1) ∈ L1 and a calculation shows that

ξ′ ≡
∑

i∈I
xi(π′)−i +

∑
j∈J

σ(µj)(π′)−jpr−rj + (π′)(−n+m)prb′
1

for some b′
1 ∈ B1. There is a unique j such that jpr−rj is maximal and jpr−rj is bigger

than i ∈ I . If jpr−rj ≤ (n − m)pr then the level of the extension M1/L1 is less than
max(0, l − 1, 2l − p). If not, then, as p divides jpr−rj , we see that M1/L1 falls into case
(C) of Lemma 115.14. This finishes the proof. �

Lemma 115.17. Let A ⊂ B ⊂ C be extensions of discrete valuation rings with frac-
tion fields K ⊂ L ⊂M . Assume

(1) the residue field k of A is algebraically closed of characteristic p > 0,
(2) A and B are complete,
(3) A→ B is weakly unramified,
(4) M is a finite extension of L,
(5) k =

⋂
n≥1 κ

pn

B

Then there exists a finite extension K1/K which is a weak solution for A→ C.

Proof. LetM ′ be any finite extension of L and consider the integral closureC ′ ofB
in M ′. Then C ′ is finite over B as B is Nagata by Algebra, Lemma 162.8. Moreover, C ′

is a discrete valuation ring, see discussion in Remark 114.1. Moreover C ′ is complete as a
B-module, hence complete as a discrete valuation ring, see Algebra, Section 96. It follows
in particular that C is the integral closure of B in M (by definition of valuation rings as
maximal for the relation of domination).
Let M ⊂ M ′ be a finite extension and let C ′ ⊂ M ′ be the integral closure of B as above.
By Lemma 115.4 it suffices to prove the result for A → B → C ′. Hence we may assume
that M/L is normal, see Fields, Lemma 16.3.
If M/L is normal, we can find a chain of finite extensions

L = L0 ⊂ L1 ⊂ L2 ⊂ . . . ⊂ Lr = M

such that each extension Lj+1/Lj is either:
(a) purely inseparable of degree p,
(b) totally ramified with respect to Bj and Galois of degree p,
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(c) totally ramified with respect to Bj and Galois cyclic of order prime to p,
(d) Galois and unramified with respect to Bj .

Here Bj is the integral closure of B in Lj . Namely, since M/L is normal we can write it
as a compositum of a Galois extension and a purely inseparable extension (Fields, Lemma
27.3). For the purely inseparable extension the existence of the filtration is clear. In the
Galois case, note that G is “the” decomposition group and let I ⊂ G be the inertia group.
Then on the one hand I is solvable by Lemma 112.5 and on the other hand the extension
M I/L is unramified with respect to B by Lemma 112.8. This proves we have a filtration
as stated.
We are going to argue by induction on the integer r. Suppose that we can find a finite
extensionK1/K which is a weak solution forA→ B1 whereB1 is the integral closure of
B inL1. LetK ′

1 be the normal closure ofK1/K (Fields, Lemma 16.3). SinceA is complete
and the residue field ofA is algebraically closed we see thatK ′

1/K1 is separable and totally
ramified with respect to A1 (some details omitted). Hence K ′

1/K is a weak solution for
A → B1 as well by Lemma 115.3. In other words, we may and do assume that K1 is a
normal extension of K. Having done so we consider the sequence

L0
1 = (L0 ⊗K K1)red ⊂ L1

1 = (L1 ⊗K K1)red ⊂ . . . ⊂ Lr1 = (Lr ⊗K K1)red
and the corresponding integral closures Bi1. Note that C1 = Br1 is a product of discrete
valuation rings which are transitively permuted byG = Aut(K1/K) by Lemma 115.6. In
particular all the extensions of discrete valuation ringsA1 → (C1)m are isomorphic and a
weak solution for one will be a weak solution for all of them. We can apply the induction
hypothesis to the sequence

A1 → (B1
1)B1

1 ∩m → (B2
1)B2

1∩m → . . .→ (Br1)Br1 ∩m = (C1)m
to get a weak solutionK2/K1 forA1 → (C1)m. The extensionK2/K will then be a weak
solution for A → C by what we said before. Note that the induction hypothesis applies:
the ring mapA1 → (B1

1)B1
1 ∩m is weakly unramified by our choice ofK1 and the sequence

of fraction field extensions each still have one of the properties (a), (b), (c), or (d) listed
above. Moreover, observe that for any finite extension κB ⊂ κ we still have k =

⋂
κp

n

.
Thus everything boils down to finding a weak solution forA ⊂ C when the field extension
M/L satisfies one of the properties (a), (b), (c), or (d).
Case (d). This case is trivial as here B → C is unramified already.
Case (c). Say M/L is cyclic of order n prime to p. Because M/L is totally ramified with
respect to B we see that the ramification index of B ⊂ C is n and hence the ramification
index of A ⊂ C is n as well. Choose a uniformizer π ∈ A and set K1 = K[π1/n]. Then
K1/K is a solution for A ⊂ C by Abhyankar’s lemma (Lemma 114.4).
Case (b). We divide this case into the mixed characteristic case and the equicharacteristic
case. In the equicharacteristic case this is Lemma 115.12. In the mixed characteristic case,
we first replace K by a finite extension to get to the situation where M/L is a degree p
extension of finite level using Lemma 115.15. Then the level is a rational number l ∈ [0, p),
see discussion preceding Lemma 115.16. If the level is 0, thenB → C is weakly unramified
and we’re done. If not, then we can replacing the field K by a finite extension to obtain
a new situation with level l′ ≤ max(0, l − 1, 2l − p) by Lemma 115.16. If l = p − ε for
ε < 1 then we see that l′ ≤ p− 2ε. Hence after a finite number of replacements we obtain
a case with level ≤ p− 1. Then after at most p− 1 more such replacements we reach the
situation where the level is zero.
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Case (a) is Lemma 115.9. This is the only case where we possibly need a purely inseparable
extension of K , namely, in case (2) of the statement of the lemma we win by adjoining a
pth power of the element π. This finishes the proof of the lemma. �

At this point we have collected all the lemmas we need to prove the main result of this
section.

Theorem 115.18 (Epp). Let A ⊂ B be an extension of discrete valuation rings with
fraction fields K ⊂ L. If the characteristic of κA is p > 0, assume that every element of⋂

n≥1
κp

n

B

is separable algebraic over κA. Then there exists a finite extensionK1/K which is a weak
solution for A→ B as defined in Definition 115.1.

Proof. If the characteristic of κA is zero or if the residue characteristic is p, the ram-
ification index is prime to p, and the residue field extension is separable, then this follows
from Abhyankar’s lemma (Lemma 114.4). Namely, suppose the ramification index is e.
Choose a uniformizer π ∈ A. Let K1/K be the extension obtained by adjoining an eth
root of π. By Lemma 114.2 we see that the integral closure A1 of A in K1 is a discrete
valuation ring with ramification index over A. Thus A1 → (B1)m is formally smooth in
the m-adic topology for all maximal ideals m of B1 by Lemma 114.4 and a fortiori these
are weakly unramified extensions of discrete valuation rings.

From now on we let p be a prime number and we assume that κA has characteristic p. We
first apply Lemma 115.5 to reduce to the case that A and B have separably closed residue
fields. Since κA and κB are replaced by their separable algebraic closures by this procedure
we see that we obtain

κA ⊃
⋂

n≥1
κp

n

B

from the condition of the theorem.

Let π ∈ A be a uniformizer. Let A∧ and B∧ be the completions of A and B. We have a
commutative diagram

B // B∧

A

OO

// A∧

OO

of extensions of discrete valuation rings. Let K∧ be the fraction field of A∧. Suppose
that we can find a finite extension M/K∧ which is (a) a weak solution for A∧ → B∧

and (b) a compositum of a separable extension and an extension obtained by adjoining a
p-power root of π. Then by Lemma 113.2 we can find a finite extension K1/K such that
K∧ ⊗K K1 = M . Let A1, resp. A∧

1 be the integral closure of A, resp. A∧ in K1, resp.
M . SinceA→ A∧ is formally smooth in the m∧-adic topology (Lemma 111.5) we see that
A1 → A∧

1 is formally smooth in the m∧
1 -adic topology (Lemma 114.3 and A1 and A∧

1 are
discrete valuation rings by discussion in Remark 114.1). We conclude from Lemma 115.4
part (2) that K1/K is a weak solution for A → B∧. Applying Lemma 115.4 part (1) we
see that K1/K is a weak solution for A→ B.

Thus we may assumeA andB are complete discrete valuation rings with separably closed
residue fields of characteristic p and withκA ⊃

⋂
n≥1 κ

pn

B . We are also given a uniformizer
π ∈ A and we have to find a weak solution for A → B which is a compositum of a
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separable extension and a field obtained by taking p-power roots ofπ. Note that the second
condition is automatic if A has mixed characteristic.

Set k =
⋂
n≥1 κ

pn

B . Observe that k is an algebraically closed field of characteristic p. If
A has mixed characteristic let Λ be a Cohen ring for k and in the equicharacteristic case
set Λ = k[[t]]. We can choose a ring map Λ → A which maps t to π in the equicharac-
teristic case. In the equicharacteristic case this follows from the Cohen structure theorem
(Algebra, Theorem 160.8) and in the mixed characteristic case this follows as Zp → Λ is
formally smooth in the adic topology (Lemmas 111.5 and 37.5). Applying Lemma 115.4
we see that it suffices to prove the existence of a weak solution for Λ → B which in the
equicharacteristic p case is a compositum of a separable extension and a field obtained by
taking p-power roots of t. However, since Λ = k[[t]] in the equicharacteristic case and any
extension of k((t)) is such a compositum, we can now drop this requirement!

Thus we arrive at the situation where A and B are complete, the residue field k of A
is algebraically closed of characteristic p > 0, we have k =

⋂
κp

n

B , and in the mixed
characteristic case p is a uniformizer of A (i.e., A is a Cohen ring for k). If A has mixed
characteristic choose a Cohen ring Λ for κB and in the equicharacteristic case set Λ =
κB [[t]]. Arguing as above we may choose a ring mapA→ Λ lifting k → κB and mapping
a uniformizer to a uniformizer. Since k ⊂ κB is separable the ring mapA→ Λ is formally
smooth in the adic topology (Lemma 111.5). Hence we can find a ring map Λ → B such
that the composition A → Λ → B is the given ring map A → B (see Lemma 37.5).
Since Λ andB are complete discrete valuation rings with the same residue field,B is finite
over Λ (Algebra, Lemma 96.12). This reduces us to the special case discussed in Lemma
115.17. �

116. Eliminating ramification, II

In this section we use the results of Section 115 to obtain (separable) solutions in some
cases.

Lemma 116.1. Let A → B be an extension of discrete valuation rings with fraction
fields K ⊂ L. If K1/K is a solution for A ⊂ B, then for any finite extension K2/K1 the
extension K2/K is a solution for A ⊂ B.

Proof. This follows from Lemma 114.3. Details omitted. �

Lemma 116.2. Let A ⊂ B be an extension of discrete valuation rings. If B is Nagata
and the extension L/K of fraction fields is separable, then A is Nagata.

Proof. A discrete valuation ring is Nagata if and only if it is N-2. Let K1/K be a
finite purely inseparable field extension. We have to show that the integral closure A1 of
A in K1 is finite over A, see Algebra, Lemma 161.12. Since L/K is separable and K1/K is
purely inseparable, the algebra L ⊗K K1 is a field (by Algebra, Lemmas 43.6 and 46.10).
Let B1 be the integral closure of B in L ⊗K K1. Since B is Nagata, B1 is finite over B.
Since B ⊗A A1 ⊂ B1 and B is Noetherian, we see that B ⊗A A1 is finite over B. As
A→ B is faithfully flat, this implies A1 is finite over A, see Algebra, Lemma 83.2. �

Lemma 116.3. Let A′ ⊂ A be an extension of rings. Let f ∈ A′. Assume that (a)
A is finite over A′, (b) f is a nonzerodivisor on A, and (c) A′

f = Af . Then there exists
an integer n0 > 0 such that for all n ≥ n0 the following is true: given a ring B′, a
nonzerodivisor g ∈ B′, and an isomorphism ϕ′ : A′/fnA′ → B′/gnB′ with ϕ′(f) ≡ g,
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there is a finite extension B′ ⊂ B and an isomorphism ϕ : A/fA → B/gB compatible
with ϕ′.

Proof. Since A is finite over A′ and since A′
f = Af we can Cchoose t > 0 such

that f tA ⊂ A′. Set n0 = 2t. Given n,B′, g, ϕ′ as in the statement of the lemma, denote
N ⊂ B′ the set of elements b ∈ B′ such that b mod gnB′ ∈ ϕ′(f tA). Set B = g−tN . As
f tA′ ⊂ f tA and ϕ′ sends f to g we have gtB′ ⊂ N , hence B′ ⊂ B. Since f tA · f tA ⊂
f t · f tA and ϕ′ sends f to g, we see that N ·N ⊂ gtN . Hence we obtain a multiplication
on B extending the multiplication of B′. We have an isomorphism of A′/fnA′-modules

A/f tA′ ft−→ f tA/fnA′ ϕ′

−→ gtB/gnB′ g−t

−−→ B/gtB′

where the module structures on the right are defined usingϕ′. SinceA/f tA′ is a finiteA′-
module, we conclude that B/gtB′ is a finite B′-module and hence we see that B′ → B is
finite. Finally, we leave it to the reader to see that the displayed isomorphism of modules
sends fA into gB and induces an isomorphism of rings ϕ : A/fA → B/gB compatible
with ϕ′ (it even induces an isomorphism A/f tA→ B/gtB but we don’t need this). �

Remark 116.4. The construction in Lemma 116.3 satisfies the following “functorial-
ity”. Suppose we have a commutative diagram

A′
2

// A2

A′
1

//

OO

A1

OO

with injective horizontal arrows. Suppose given an element f ∈ A′
1 such that (A′

1 ⊂
A1, f) and (A′

2 ⊂ A2, f) satisfy properties (a), (b), (c) of Lemma 116.3. Let n0,1 and n0,2
be the integers found in the lemma for these two situations. Finally, let B′

1 → B′
2 be a

ring map, let g ∈ B′
1 be a nonzerodivisor on B1 and B2, let n ≥ max(n0,1, n0,2), and let

a commutative diagram
A′

2/f
nA′

2
ϕ′

2

// B′
2/g

nB′
2

A′
1/f

nA′
1

ϕ′
1 //

OO

B′
2/g

nB′
2

OO

be given whose horizontal arrows are isomorphisms and where ϕ′
1(f) ≡ g. Then we

obtain commutative diagrams

B′
2

// B2

B′
1

//

OO

B1

OO

and

A2/fA2 ϕ2
// B2/gB2

A1/fA1
ϕ1 //

OO

B2/gB2

OO

where (B′
1 ⊂ B1, ϕ1) and (B′

2 ⊂ B2, ϕ2) are constructed as in the proof of Lemma 116.3.
We omit the detailed verification.

Lemma 116.5. Let p be a prime number. Let A ⊂ B be an extension of discrete
valuation rings with fraction field extension L/K. Let K2/K1/K be a tower of finite
field extensions. Assume

(1) K has characteristic p,
(2) L/K is separable,
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(3) B is Nagata,
(4) K2 is a solution for A ⊂ B,
(5) K2/K1 is purely inseparable of degree p.

Then there exists a separable extension K3/K1 which is a solution for A ⊂ B.

Proof. Let us use notation as in Remark 114.1; we will use all the observations made
there. Since L/K is separable, the algebra L1 = L ⊗K K1 is reduced (Algebra, Lemma
43.6). Since B is Nagata, the ring extension B ⊂ B1 is finite where B1 is the integral
closure of B in L1 and B1 is a Nagata ring. Similarly, the ring A is Nagata by Lemma
116.2 hence A ⊂ A1 is finite and A1 is a Nagata ring too. Moreover, the same assertions
are true forK2, i.e.,L2 = L⊗KK2 is reduced, the ring extensionsA1 ⊂ A2 andB1 ⊂ B2
are finite where A2, resp. B2 is the integral closure of A, resp. B in K2, resp. L2.
Let π ∈ A be a uniformizer. Observe that π is a nonzerodivisor onK1,K2,A1,A2, L1, L2,
B1, and B2 and we have K1 = (A1)π , K2 = (A2)π , L1 = (B1)π , and L2 = (B2)π . We
may write K2 = K1(α) where αp = a1 ∈ K1, see Fields, Lemma 14.5. After multiplying
α by a power of πwe may and do assume a1 ∈ A1. For the rest of the proof it is convenient
to write K2 = K1[x]/(xp − a1) and L2 = L1[x]/(xp − a1). Consider the extensions of
rings

A′
2 = A1[x]/(xp − a1) ⊂ A2 and B′

2 = B1[x]/(xp − a1) ⊂ B2

We may apply Lemma 116.3 toA′
2 ⊂ A2 and f = π2 and toB′

2 ⊂ B2 and f = π2. Choose
an integer n large enough which works for both of these.
Consider the algebras

K3 = K1[x]/(xp − π2nx− a1) and L3 = L1[x]/(xp − π2nx− a1)
Observe that K3/K1 and L3/L1 are finite étale algebra extensions of degree p. Consider
the subrings

A′
3 = A1[x]/(xp − πnx− a1) and B′

3 = B1[x]/(xp − πnx− a1)
of K3 = (A′

2)π and L3 = (B′
3)π . We are going to construct a commutative diagram

B′
2/π

2nB′
2

ψ′
// B′

3/π
2nB′

3

A′
2/π

2nA′
2

ϕ′
//

OO

A′
3/π

2nA′
3

OO

Namely, ϕ′ is the unique A1-algebra isomorphism sending the class of x to the class of x.
Simiarly, ψ′ is the unique B1-algebra isomorphism sending the class of x to the class of x.
By our choice of n we obtain, via Lemma 116.3 and Remark 116.4 finite ring extensions
A′

3 ⊂ A3 and B′
3 ⊂ B3 such that A′

3 → B′
3 extends to a ring map A3 → B3 and a

commutative diagram
B2/π

2B2
ψ
// B3/π

2B3

A2/π
2A2

ϕ //

OO

A3/π
2A3

OO

with all the properties asserted in the references mentioned above (in particular ϕ and ψ
are isomorphisms).
With all of this data in hand, we can finish the proof. Namely, we first observe that A3
and B3 are finite products of Dedekind domains with π contained in all of the maximal
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ideals. Namely, if p ⊂ A3 is a maximal ideal, then π ∈ p as A → A3 is finite. Then
p/π2A3 corresponds via ϕ to a maximal ideal in A2/π

2A2 which is principal as A2 is a
finite product of Dedekind domains. We conclude that p/π2A3 is principal and hence
by Nakayama we see that p(A3)p is principal. The same argument works for B3. We
conclude that A3 is the integral closure of A in K3 and that B3 is the integral closure
of B in L3. Let q ⊂ B3 be a maximal ideal lying over p ⊂ A3. To finish the proof
we have to show that (A3)p → (B3)q is formally smooth in the q-adic topology. By
the criterion of Lemma 111.5 it suffices to show that p(B3)q = q(B3)q and that the field
extension κ(q)/κ(p) is separable. This is true because we may check both assertions by
looking at the ring map A3/π

2A3 → B3/π
2B3 and this is isomorphic to the ring map

A2/π
2A2 → B2/π

2B2 where the corresponding statement holds by our assumption that
K2 is a solution for A ⊂ B. Some details omitted. �

Lemma 116.6. Let A ⊂ B be an extension of discrete valuation rings. Assume
(1) the extension L/K of fraction fields is separable,
(2) B is Nagata, and
(3) there exists a solution for A ⊂ B.

Then there exists a separable solution for A ⊂ B.

Proof. The lemma is trivial if the characteristic of K is zero; thus we may and do
assume that the characteristic of K is p > 0.

Let K2/K be a solution for A → B. We will use induction on the inseparable degree
[K2 : K]i (Fields, Definition 14.7) of K2/K. If [K2 : K]i = 1, then K2 is separable over
K and we are done. If not, then there exists a subfield K2/K1/K such that K2/K1 is
purely inseparable of degree p (Fields, Lemmas 14.6 and 14.5). By Lemma 116.5 there exists
a separable extension K3/K1 which is a solution for A ⊂ B. Then [K3 : K]i = [K1 :
K]i = [K2 : K]i/p (Fields, Lemma 14.9) is smaller and we conclude by induction. �

Lemma 116.7. Let A → B be an extension of discrete valuation rings with fraction
fields K ⊂ L. Assume B is essentially of finite type over A. Let K ′/K be an algebraic
extension of fields such that the integral closure A′ of A in K ′ is Noetherian. Then the
integral closure B′ of B in L′ = (L ⊗K K ′)red is Noetherian as well. Moreover, the
map Spec(B′) → Spec(A′) is surjective and the corresponding residue field extensions
are finitely generated field extensions.

Proof. Let A → C be a finite type ring map such that B is a localization of C at a
prime p. Then C ′ = C ⊗A A′ is a finite type A′-algebra, in particular Noetherian. Since
A→ A′ is integral, so is C → C ′. Thus B = Cp ⊂ C ′

p is integral too. It follows that the
dimension of C ′

p is 1 (Algebra, Lemma 112.4). Of course C ′
p is Noetherian. Let q1, . . . , qn

be the minimal primes ofC ′
p. LetB′

i be the integral closure ofB = Cp, or equivalently by
the above ofC ′

p in the field of fractions ofC ′
p′/qi. It follows from Krull-Akizuki (Algebra,

Lemma 119.12 applied to the finitely many localizations of C ′
p at its maximal ideals) that

each B′
i is Noetherian. Moreover the residue field extensions in C ′

p → B′
i are finite by

Algebra, Lemma 119.10. Finally, we observe that B′ =
∏
B′
i is the integral closure of B

in L′ = (L⊗K K ′)red. �

Proposition 116.8. Let A → B be an extension of discrete valuation rings with
fraction fields K ⊂ L. If B is essentially of finite type over A, then there exists a finite
extension K1/K which is a solution for A→ B as defined in Definition 115.1.
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Proof. Observe that a weak solution is a solution if the residue field of A is perfect,
see Lemma 111.5. Thus the proposition follows immediately from Theorem 115.18 if the
residue characteristic of A is 0 (and in fact we do not need the assumption that A→ B is
essentially of finite type). If the residue characteristic of A is p > 0 we will also deduce it
from Epp’s theorem.

Let xi ∈ A, i ∈ I be a set of elements mapping to a p-base of the residue field κ of A. Set

A′ =
⋃

n≥1
A[ti,n]/(tp

n

i,n − xi)

where the transition maps send ti,n+1 to tpi,n. Observe that A′ is a filtered colimit of
weakly unramified finite extensions of discrete valuation rings over A. Thus A′ is a dis-
crete valuation ring and A → A′ is weakly unramified. By construction the residue field
κ′ = A′/mAA

′ is the perfection of κ.

Let K ′ be the fraction field of A′. We may apply Lemma 116.7 to the extension K ′/K.
ThusB′ is a finite product of Dedekind domains. Let m1, . . . ,mn be the maximal ideals of
B′. Using Epp’s theorem (Theorem 115.18) we find a weak solutionK ′

i/K
′ for each of the

extensions A′ ⊂ B′
mi . Since the residue field of A′ is perfect, these are actually solutions.

Let K ′
1/K

′ be a finite extension which contains each K ′
i. Then K ′

1/K
′ is still a solution

for each A′ ⊂ B′
mi by Lemma 116.1.

Let A′
1 be the integral closure of A in K ′

1. Note that A′
1 is a Dedekind domain by the

discussion in Remark 114.1 applied to K ′ ⊂ K ′
1. Thus Lemma 116.7 applies to K ′

1/K.
Therefore the integral closure B′

1 of B in L′
1 = (L ⊗K K ′

1)red is a Dedekind domain
and because K ′

1/K
′ is a solution for each A′ ⊂ B′

mi we see that (A′
1)A′

1∩m → (B′
1)m is

formally smooth in the m-adic topology for each maximal ideal m ⊂ B′
1.

By construction, the field K ′
1 is a filtered colimit of finite extensions of K. Say K ′

1 =
colimi∈I Ki. For each i let Ai, resp. Bi be the integral closure of A, resp. B in Ki, resp.
Li = (L⊗K Ki)red. Then it is clear that

A′
1 = colimAi and B′

1 = colimBi

Since the ring maps Ai → A′
1 and Bi → B′

1 are injective integral ring maps and since
A′

1 and B′
1 have finite spectra, we see that for all i large enough the ring maps Ai → A′

1
and Bi → B′

1 are bijective on spectra. Once this is true, for all i large enough the maps
Ai → A′

1 andBi → B′
1 will be weakly unramified (once the uniformizer is in the image).

It follows from multiplicativity of ramification indices that Ai → Bi induces weakly
unramified maps on all localizations at maximal ideals of Bi for such i. Increasing i a bit
more we see that

Bi ⊗Ai A′
1 −→ B′

1

induces surjective maps on residue fields (because the residue fields of B′
1 are finitely gen-

erated over those ofA′
1 by Lemma 116.7). Picture of residue fields at maximal ideals lying

under a chosen maximal ideal of B′
1:

κBi // κBi′
// . . . κB′

1

κAi //

OO

κAi′
//

OO

. . . κA′
1

OO
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Thus κBi is a finitely generated extension of κAi such that the compositum of κBi and
κA′

1
in κB′

1
is separable over κA′

1
. Then that happens already at a finite stage: for ex-

ample, say κB′
1

is finite separable over κA′
1
(x1, . . . , xn), then just increase i such that

x1, . . . , xn are in κBi and such that all generators satisfy separable polynomial equations
over κAi(x1, . . . , xn). This means that Ai → (Bi)m is formally smooth in the m-adic
topology for all maximal ideals m of Bi and the proof is complete. �

Lemma 116.9. Let A → B be an extension of discrete valuation rings with fraction
fields K ⊂ L. Assume

(1) B is essentially of finite type over A,
(2) either A or B is a Nagata ring, and
(3) L/K is separable.

Then there exists a separable solution for A→ B (Definition 115.1).

Proof. Observe that ifA is Nagata, then so isB (Algebra, Lemma 162.6 and Proposi-
tion 162.15). Thus the lemma follows on combining Proposition 116.8 and Lemma 116.6.

�

117. Picard groups of rings

We first define invertible modules as follows.

Definition 117.1. Let R be a ring. An R-module M is invertible if the functor

ModR −→ModR, N 7−→M ⊗R N

is an equivalence of categories. An invertible R-module is said to be trivial if it is isomor-
phic to R as an R-module.

Lemma 117.2. Let R be a ring. Let M be an R-module. Equivalent are
(1) M is finite locally free module of rank 1,
(2) M is invertible, and
(3) there exists an R-module N such that M ⊗R N ∼= R.

Moreover, in this case the module N in (3) is isomorphic to HomR(M,R).

Proof. Assume (1). Consider the module N = HomR(M,R) and the evaluation
map M ⊗R N = M ⊗R HomR(M,R) → R. If f ∈ R such that Mf

∼= Rf , then the
evaluation map becomes an isomorphism after localization at f (details omitted). Thus we
see the evaluation map is an isomorphism by Algebra, Lemma 23.2. Thus (1)⇒ (3).

Assume (3). Then the functor K 7→ K ⊗R N is a quasi-inverse to the functor K 7→
K ⊗R M . Thus (3)⇒ (2). Conversely, if (2) holds, then K 7→ K ⊗R M is essentially
surjective and we see that (3) holds.

Assume the equivalent conditions (2) and (3) hold. Denote ψ : M ⊗R N → R the
isomorphism from (3). Choose an element ξ =

∑
i=1,...,n xi ⊗ yi such that ψ(ξ) = 1.

Consider the isomorphisms

M →M ⊗RM ⊗R N →M

where the first arrow sends x to
∑
xi ⊗ x ⊗ yi and the second arrow sends x ⊗ x′ ⊗ y

to ψ(x′ ⊗ y)x. We conclude that x 7→
∑
ψ(x ⊗ yi)xi is an automorphism of M . This

automorphism factors as
M → R⊕n →M
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where the first arrow is given by x 7→ (ψ(x⊗y1), . . . , ψ(x⊗yn)) and the second arrow by
(a1, . . . , an) 7→

∑
aixi. In this way we conclude that M is a direct summand of a finite

free R-module. This means that M is finite locally free (Algebra, Lemma 78.2). Since the
same is true forN by symmetry and sinceM ⊗RN ∼= R, we see thatM andN both have
to have rank 1. �

The set of isomorphism classes of these modules is often called the class group or Picard
group of R. The group structure is determined by assigning to the isomorphism classes
of the invertible modules L and L′ the isomorphism class of L ⊗R L′. The inverse of an
invertible module L is the module

L⊗−1 = HomR(L,R),
because as seen in the proof of Lemma 117.2 the evaluation map L ⊗R L⊗−1 → R is an
isomorphism. Let us denote the Picard group of R by Pic(R).

Lemma 117.3. Let R be a UFD. Then Pic(R) is trivial.

Proof. Let L be an invertible R-module. By Lemma 117.2 we see that L is a finite
locally free R-module. In particular L is torsion free and finite over R. Pick a nonzero
element ϕ ∈ HomR(L,R) of the dual invertible module. Then I = ϕ(L) ⊂ R is an ideal
which is an invertible module. Pick a nonzero f ∈ I and let

f = upe1
1 . . . perr

be the factorization into prime elements with pi pairwise distinct. Since L is finite locally
free there exist ai ∈ R, ai 6∈ (pi) such that Iai = (gi) for some gi ∈ Rai . Then pi is
still a prime element of the UFD Rai and we can write gi = pcii g

′
i for some g′

i ∈ Rai
not divisible by pi. Since f ∈ Iai we see that ei ≥ ci. We claim that I is generated by
h = pc1

1 . . . pcrr which finishes the proof.

To prove the claim it suffices to show that Ia is generated by h for any a ∈ R such that Ia
is a principal ideal (Algebra, Lemma 23.2). Say Ia = (g). Let J ⊂ {1, . . . , r} be the set of
i such that pi is a nonunit (and hence a prime element) in Ra. Because f ∈ Ia = (g) we
find the prime factorization g = v

∏
i∈J p

bj
j with v a unit and bj ≤ ej . For each j ∈ J

we have Iaaj = gRaaj = gjRaaj , in other words g and gj map to associates in Raaj . By
uniqueness of factorization this implies that bj = cj and the proof is complete. �

118. Determinants

LetR be a ring. LetM be a finite projectiveR-module. There exists a product decomposi-
tionR = R0×. . .×Rt such that in the corresponding decompositionM = M0×. . .×Mt

of M we have that Mi is finite locally free of rank i over Ri. This follows from Algebra,
Lemma 78.2 (to see that the rank is locally constant) and Algebra, Lemmas 21.3 and 24.3
(to decompose R into a product). In this situation we define

det(M) = ∧0
R0

(M0)× . . .× ∧tRt(Mt)
as an R-module. This is a finite locally free module of rank 1 as each term is finite locally
free of rank 1. If ϕ : M → N is an isomorphism of finite projective R-modules, then we
obtain a canonical isomorphism

det(ϕ) : det(M) −→ det(N)
of locally free modules of rank 1. More generally, if for all primes p of R the ranks of
the free modules Mp and Np are the same, then any R-module homomorphism ϕ : M →
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N induces an R-module map det(ϕ) : det(M) → det(N). Finally, if M = N then
det(ϕ) : det(M) → det(M) is an endomorphism of an invertible R-module. Since
R = HomR(L,L) for an invertible R-module we may and do view det(ϕ) as an element
of R. In this way we obtain the determinant

det : HomR(M,M) −→ R

which is a multiplicative map.

Remark 118.1. Let R be a ring. Let M be a finite projective R-module. Then we
can consider the graded commutativeR-algebra exterior algebra ∧∗

R(M) onM overR. A
formula for det(M) is that det(M) ⊂ ∧∗

R(M) is the annihilator ofM ⊂ ∧∗
R(M). This is

sometimes useful as it does not refer to the decomposition of R into a product. Of course,
to prove this satisfies the desired properties one has to either decompose R into a product
(as above), or one has to look at the localizations at primes of R.

Next, we consider what happens to the determinant give a short exact sequence of finite
projective modules.

Lemma 118.2. Let R be a ring. Let

0→M ′ →M →M ′′ → 0

be a short exact sequence of finite projectiveR-modules. Then there is a canonical isomor-
phism

γ : det(M ′)⊗ det(M ′′) −→ det(M)

First proof. First proof. Decompose R into a product of rings Rij such that M ′ =∏
M ′
ij and M ′′ =

∏
M ′′
ij where M ′

ij has rank i and M ′′
ij has rank j. Of course then

M =
∏
Mij and Mij has rank i+ j. This reduces us to the case where M ′ and M ′′ have

constant rank say i and j. In this case we have to construct a canonical map

∧i(M ′)⊗ ∧j(M ′′) −→ ∧i+j(M)

To do this choose m′
1, . . . ,m

′
i in M ′ and m′′

1 , . . . ,m
′′
j in M ′′. Denote m1, . . . ,mi ∈

M the images of m′
1, . . . ,m

′
i and denote mi+1, . . . ,mi+j ∈ M elements mapping to

m′′
1 , . . . ,m

′′
j in M ′′. Our rule will be that

m′
1 ∧ . . . ∧m′

i ⊗m′′
1 ∧ . . . ∧m′′

j 7−→ m1 ∧ . . . ∧mi+j

We omit the detailed proof that this is well defined and an isomorphism. �

Second proof. We will use the description of det(M), det(M ′), and det(M ′′) given
in Remark 118.1. Consider the R-algebra maps ∧∗

R(M ′) → ∧∗
R(M) and ∧∗

R(M) →
∧∗
R(M ′′). The first is injective and the second is surjective. Take an elementx′ ∈ det(M ′) ⊂
∧∗
R(M ′) and an element x′′ ∈ det(M ′′) ⊂ ∧∗

R(M ′′). Choose an element y′′ ∈ ∧∗(M)
mapping to x′′ and set

γ(x′ ⊗ x′′) = x′ ∧ y′′ ∈ det(M) ⊂ ∧∗
R(M)

The reader verifies easily by looking at localizations at primes that this well defined and an
isomorphism. Moreover, this construction gives the same map as the construction given
in the first proof. �
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Lemma 118.3. Let R be a ring. Let

0 // M ′ //

u

��

M //

v

��

M ′′ //

w

��

0

0 // K ′ // K // K ′′ // 0
be a commutative diagram of finite projective R-modules whose vertical arrows are iso-
morphisms. Then we get a commutative diagram of isomorphisms

det(M ′)⊗ det(M ′′)
γ
//

det(u)⊗det(w)
��

det(M)

det(v)
��

det(K ′)⊗ det(K ′′) γ // det(K)

where the horizontal arrows are the ones constructed in Lemma 118.2.

Proof. Omitted. Hint: use the second construction of the maps γ in Lemma 118.2.
�

Lemma 118.4. Let R be a ring. Let
K ⊂ L ⊂M

be R-modules such that K , L/K , and M/L are finite projective R-modules. Then the
diagram

det(K)⊗ det(L/K)⊗ det(M/L) //

��

det(L)⊗ det(M/L)

��
det(K)⊗ det(M/K) // det(M)

commutes where the maps are those of Lemma 118.2.

Proof. Omitted. Hint: after localizing at a prime of R we can assume K ⊂ L ⊂ M
is isomorphic to R⊕a ⊂ R⊕a+b ⊂ R⊕a+b+c and in this case the result is an evident
computation. �

Lemma 118.5. Let R be a ring. Let M ′ and M ′′ be two finite projective R-modules.
Then the diagram

det(M ′)⊗ det(M ′′) //

ε·(switch tensors)
��

det(M ′ ⊕M ′′)

det(swith summands)
��

det(M ′′)⊗ det(M ′) // det(M ′′ ⊕M ′)

commutes where ε = det(−idM ′⊗M ′′) ∈ R∗ and the horizontal arrows are those of
Lemma 118.2.

Proof. Omitted. �

Lemma 118.6. LetR be a ring. LetM ,N be finite projectiveR-modules. Let a : M →
N and b : N →M be R-linear maps. Then

det(id + a ◦ b) = det(id + b ◦ a)
as elements of R.
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Proof. It suffices to prove the assertion after replacingR by a localization at a prime
ideal. Thus we may assume R is local and M and N are finite free. In this case we have to
prove the equality

det(In +AB) = det(Im +BA)
of usual determinants of matrices where A has size n × m and B has size m × n. This
reduces to the case of the ring R = Z[aij , bji; 1 ≤ i ≤ n, 1 ≤ j ≤ m] where aij and
bij are variables and the entries of the matrices A and B. Taking the fraction field, this
reduces to the case of a field of characteristic zero. In characteristic zero there is a universal
polynomial expressing the determinant of a matrix of size≤ N in the traces of the powers
of said matrix. Hence it suffices to prove

Trace((In +AB)k) = Trace((Im +BA)k)
for all k ≥ 1. Expanding we see that it suffices to prove Trace((AB)k) = Trace((BA)k)
for all k ≥ 0. For k = 1 this is the well known fact that Trace(AB) = Trace(BA). For
k > 1 it follows from this by writing (AB)k = A(BA)k−1B and (BA)k = (BA)k−1AB.

�

Recall that we have defined in Algebra, Section 55 a group K0(R) as the free group on
isomorphism classes of finite projective R-modules modulo the relations [M ′] + [M ′′] =
[M ′ ⊕M ′′].

Lemma 118.7. Let R be a ring. There is a map

det : K0(R) −→ Pic(R)
which maps [M ] to the class of the invertible module ∧n(M) if M is a finite locally free
module of rank n.

Proof. This follows immediately from the constructions above and in particular
Lemma 118.2 to see that the relations are mapped to 0. �

119. Perfect complexes and K-groups

We quickly show that the zeroth K-group of the derived category of perfect complexes of
a ring R is the same as K0(R) defined in Algebra, Section 55.

Lemma 119.1. Let R be a ring. There is a map

c : perfect complexes over R −→ K0(R)
with the following properties

(1) c(K[n]) = (−1)nc(K) for a perfect complex K ,
(2) if K → L → M → K[1] is a distinguished triangle of perfect complexes, then

c(L) = c(K) + c(M),
(3) if K is represented by a finite complex M• consisting of finite projective mod-

ules, then c(K) =
∑

(−1)i[Mi].

Proof. Let K be a perfect object of D(R). By definition we can represent K by a
finite complex M• of finite projective R-modules. We define c by setting

c(K) =
∑

(−1)n[Mn]

in K0(R). Of course we have to show that this is well defined, but once it is well defined,
then (1) and (3) are immediate. For the moment we view the map c as defined on complexes
of finite projective R-modules.
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Suppose that L• → M• is a surjective map of finite complexes of finite projective R-
modules. Let K• be the kernel. Then we obtain short exact sequences of R-modules

0→ Kn → Ln →Mn → 0

which are split because Mn is projective. Hence K• is also a finite complex of finite pro-
jective R-modules and c(L•) = c(K•) + c(M•) in K0(R).

Suppose given finite complex M• of finite projective R-modules which is acyclic. Say
Mn = 0 for n 6∈ [a, b]. Then we can break M• into short exact sequences

0→Ma →Ma+1 → Na+1 → 0,
0→ Na+1 →Ma+2 → Na+3 → 0,

. . .
0→ N b−3 →M b−2 → N b−2 → 0,

0→ N b−2 →M b−1 →M b → 0

Arguing by descending induction we see that N b−2, . . . , Na+1 are finite projective R-
modules, the sequences are split exact, and

c(M•) =
∑

(−1)[Mn] =
∑

(−1)n([Nn−1] + [Nn]) = 0

Thus our construction gives zero on acyclic complexes.

It follows formally from the results of the preceding two paragraphs that c is well defined
and satisfies (2). Namely, suppose the finite complexes M• and L• of finite projective R-
modules represent the same object of D(R). Then we can represent the isomorphism by a
map f : M• → L• of complexes, see Derived Categories, Lemma 19.8. We obtain a short
exact sequence of complexes

0→ L• → C(f)• → K•[1]→ 0

see Derived Categories, Definition 9.1. Since f is a quasi-isomorphism, the cone C(f)• is
acyclic (this follows for example from the discussion in Derived Categories, Section 12).
Hence

0 = c(C(f)•) = c(L•) + c(K•[1]) = c(L•)− c(K•)
as desired. We omit the proof of (2) which is similar. �

The following lemma shows that K0(R) is equal to K0(Dperf (R)).

Lemma 119.2. Let R be a ring. Let Dperf (R) be the derived category of perfect ob-
jects, see Lemma 78.1. The map c of Lemma 119.1 gives an isomorphism K0(Dperf (R)) =
K0(R).

Proof. It follows from the definition of K0(Dperf (R)) (Derived Categories, Defi-
nition 28.1) that c induces a homomorphism K0(Dperf (R))→ K0(R).

Given a finite projective moduleM overR let us denoteM [0] the perfect complex overR
which has M sitting in degree 0 and zero in other degrees. Given a short exact sequence
0→M →M ′ →M ′′ → 0 of finite projective modules we obtain a distinguished triangle
M [0] → M ′[0] → M ′′[0] → M [1], see Derived Categories, Section 12. This shows that
we obtain a map K0(R) → K0(Dperf (R)) by sending [M ] to [M [0]] with apologies for
the horrendous notation.
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It is clear that K0(R) → K0(Dperf (R)) → K0(R) is the identity. On the other hand,
if M• is a bounded complex of finite projective R-modules, then the the existence of the
distinguished triangles of “stupid truncations” (see Homology, Section 15)

σ≥nM
• → σ≥n−1M

• →Mn−1[−n+ 1]→ (σ≥nM
•)[1]

and induction show that
[M•] =

∑
(−1)i[M i[0]]

in K0(Dperf (R)) (with again apologies for the notation). Hence the map K0(R) →
K0(Dperf (R)) is surjective which finishes the proof. �

120. Determinants of endomorphisms of finite length modules

Let (R,m, κ) be a local ring. Consider the category of pairs (M,ϕ) consisting of a finite
length R-module and an endomorphism ϕ : M →M . This category is abelian and every
object is Artinian as well as Noetherian. See Homology, Section 9 for definitions.

If (M,ϕ) is a simple object of this category, then M is annihilated by m since otherwise
(mM,ϕ|mM ) would be a nontrivial suboject. Also dimκ(M) = lengthR(M) is finite.
Thus we may define the determinant and the trace

detκ(ϕ), Traceκ(ϕ)

as elements of κ using linear algebra. Simlarly for the characteristic polynomial of ϕ in
this case.

By Homology, Lemma 9.6 for an arbitrary object (M,ϕ) of our category we have a finite
filtration

0 ⊂M1 ⊂ . . . ⊂Mn = M

by submodules stable under ϕ such that (Mi/Mi−1, ϕi) is a simple object of the category
where ϕi : Mi/Mi−1 → Mi/Mi−1 is the induced map. We define the determinant of
(M,ϕ) over κ as

detκ(ϕ) =
∏

detκ(ϕi)

with detκ(ϕi) as defined in the previous paragraph. We define the trace of (M,ϕ) over κ
as

Traceκ(ϕ) =
∑

Traceκ(ϕi)

with Traceκ(ϕi) as defined in the previous paragraph. We can similarly define the char-
acteristic polynomial of ϕ over κ as the product of the characteristic polynomials of ϕi as
defined in the previous paragraph. By Jordan-Hölder (Homology, Lemma 9.7) this is well
defined.

Lemma 120.1. Let (R,m, κ) be a local ring. Let 0→ (M,ϕ)→ (M ′, ϕ′)→ (M ′′, ϕ′′)→
0 be a short exact sequence in the category discussed above. Then

detκ(ϕ′) = detκ(ϕ) detκ(ϕ′′), Traceκ(ϕ′) = Traceκ(ϕ) + Traceκ(ϕ′′)

Also, the characteristic polynomial of ϕ′ over κ is the product of the characteristic poly-
nomials of ϕ and ϕ′′.

Proof. Left as an exercise. �
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Lemma 120.2. Let (R,m, κ)→ (R′,m′, κ′) be a local homomorphism of local rings.
Assume that κ′/κ is a finite extension. Let u ∈ R′. Then for any finite length R′-module
M ′ we have

detκ(u : M ′ →M ′) = Normκ′/κ(u mod m′)m

where m = lengthR′(M ′).

Proof. Observe that the statement makes sense as lengthR(M ′) = lengthR′(M ′)[κ′ :
κ]. If M ′ = κ′, then the equality holds by definition of the norm as the determinant of
the linear operator given by multiplication by u. In general one reduces to this case by
chosing a suitable filtration and using the multiplicativity of Lemma 120.1. Some details
omitted. �

Lemma 120.3. Let (R,m, κ) → (R′,m′, κ′) be a flat local homomorphism of local
rings such that m = lengthR′(R′/mR′) < ∞. For any (M,ϕ) as above, the element
detκ(ϕ)m maps to detκ′(ϕ⊗ 1 : M ⊗R R′ →M ⊗R R′) in κ′.

Proof. The flatness of R → R′ assures us that short exact sequences as in Lemma
120.1 base change to short exact sequences over R′. Hence by the multiplicativity of
Lemma 120.1 we may assume that (M,ϕ) is a simple object of our category (see intro-
duction to this section). In the simple case M is annihilated by m. Choose a filtration

0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Im−1 ⊂ R′/mR′

whose successive quotients are isomorphic to κ′ asR′-modules. Then we obtain the filtra-
tion

0 ⊂M ⊗κ I1 ⊂M ⊗κ I2 ⊂ . . . ⊂M ⊗κ Im−1 ⊂M ⊗κ R′/mR′ = M ⊗R R′

whose successive quotients are isomorphic toM ⊗κ κ′. Also, these submodules are invari-
ant under ϕ⊗ 1. By Lemma 120.1 we find
detκ′(ϕ⊗1 : M⊗RR′ →M⊗RR′) = detκ′(ϕ⊗1 : M⊗κκ′ →M⊗κκ′)m = detκ(ϕ)m

The last equality holds by the compatibility of determinants of linear maps with field
extensions. This proves the lemma. �

121. A regular local ring is a UFD

We prove the result mentioned in the section title.

Lemma 121.1. Let R be a regular local ring. Let f ∈ R. Then Pic(Rf ) = 0.

Proof. Let L be an invertible Rf -module. In particular L is a finite Rf -module.
There exists a finite R-module M such that Mf

∼= L, see Algebra, Lemma 126.3. By
Algebra, Proposition 110.1 we see thatM has a finite free resolution F• overR. It follows
that L is quasi-isomorphic to a finite complex of freeRf -modules. Hence by Lemma 119.1
we see that [L] = n[Rf ] inK0(R) for some n ∈ Z. Applying the map of Lemma 118.7 we
see that L is trivial. �

Lemma 121.2. A regular local ring is a UFD.

Proof. Recall that a regular local ring is a domain, see Algebra, Lemma 106.2. We will
prove the unique factorization property by induction on the dimension of the regular local
ring R. If dim(R) = 0, then R is a field and in particular a UFD. Assume dim(R) > 0.
Let x ∈ m, x 6∈ m2. Then R/(x) is regular by Algebra, Lemma 106.3, hence a domain
by Algebra, Lemma 106.2, hence x is a prime element. Let p ⊂ R be a height 1 prime.
We have to show that p is principal, see Algebra, Lemma 120.6. We may assume x 6∈ p,
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since if x ∈ p, then p = (x) and we are done. For every nonmaximal prime q ⊂ R the
local ring Rq is a regular local ring, see Algebra, Lemma 110.6. By induction we see that
pRq is principal. In particular, the Rx-module px = pRx ⊂ Rx is a finitely presented
Rx-module whose localization at any prime is free of rank 1. By Algebra, Lemma 78.2 we
see that px is an invertible Rx-module. By Lemma 121.1 we see that px = (y) for some
y ∈ Rx. We can write y = xef for some f ∈ p and e ∈ Z. Factor f = a1 . . . ar into
irreducible elements of R (Algebra, Lemma 120.3). Since p is prime, we see that ai ∈ p for
some i. Since px = (y) is prime and ai|y inRx, it follows that px is generated by ai inRx,
i.e., the image of ai in Rx is prime. As x is a prime element, we find that ai is prime in R
by Algebra, Lemma 120.7. Since (ai) ⊂ p and p has height 1 we conclude that (ai) = p as
desired. �

Lemma 121.3. LetR be a valuation ring with fraction fieldK and residue field κ. Let
R→ A be a homomorphism of rings such that

(1) A is local and R→ A is local,
(2) A is flat and essentially of finite type over R,
(3) A⊗R κ regular.

Then Pic(A⊗R K) = 0.

Proof. Let L be an invertible A ⊗R K-module. In particular L is a finite module.
There exists a finiteA-moduleM such thatM ⊗RK ∼= L, see Algebra, Lemma 126.3. We
may assume M is torsion free as an R-module. Thus M is flat as an R-module (Lemma
22.10). From Lemma 25.6 we deduce that M is of finite presentation as an A-module and
A is essentially of finite presentation as an R-algebra. By Lemma 83.4 we see that M is
perfect relative toR, in particularM is pseudo-coherent as anA-module. By Lemma 77.6
we see that M is perfect, hence M has a finite free resolution F• over A. It follows that L
is quasi-isomorphic to a finite complex of free A ⊗R K-modules. Hence by Lemma 119.1
we see that [L] = n[A ⊗R K] in K0(A ⊗R K) for some n ∈ Z. Applying the map of
Lemma 118.7 we see that L is trivial. �

122. Determinants of complexes

In Section 119 we have seen how to a perfect complexK over a ringR there is associated an
isomorphism class of invertibleR-modules, i.e., an element of Pic(R). In fact, analogously
to Section 118 it turns out there is a functor

det :
{

category of perfect complexes
morphisms are isomorphisms

}
−→

{
category of invertible modules
morphisms are isomorphisms

}
Moreover, given an object (L,F ) of the filtered derived category DF (R) of R whose fil-
tration is finite and whose graded parts are perfect complexes, there is a canonical isomor-
phism det(grL) → det(L). See [?] for the original exposition. We will add this material
later (insert future reference).

For the moment we will present an ad hoc construction in the case of perfect objects L in
D(R) of tor-amplitude in [−1, 0]. Such an object may be represented by a complex

L• = . . .→ 0→ L−1 → L0 → 0→ . . .

with L−1 and L0 finite projective R-modules, see Lemma 74.2. In this case we set

det(L•) = det(L0)⊗R det(L−1)⊗−1 = HomR(det(L−1), det(L0))
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Let us say a complex of this form has rank 0 if L−1
p and L0

p have the same rank for all
primes of R. If L• has rank 0, then we have seen in Section 118 that there is a canonical
element

δ(L•) ∈ det(L•)

which is simply the determininant of d : L−1 → L0. Note that δ(L•) is a trivialization
of det(L•) if and only if L• is acyclic.

Consider a map of complexes a• : K• → L• such that
(1) a• is a quasi-isomorphism,
(2) an : Kn → Ln is surjective for all n,
(3) Kn, Ln are finite projective R-modules, nonzero only for n ∈ {−1, 0}.

In this situation we will construct an isomorphism

det(a•) : det(K•) −→ det(L•)

Using the exact sequences 0→ Ker(ai)→ Ki → Li → 0 we obtain isomorphisms

γi : det(Ker(ai))⊗ det(Li)→ det(Ki)

for i = −1, 0 by Lemma 118.2. Since a• is a quasi-isomorphism the complex Ker(a•) is
acyclic and has rank 0. Hence the canonical element δ(Ker(a•)) is a trivialization of the
invertible R-module det(Ker(a•)), see above. We define det(a•) : det(K•) → det(L•)
as the unique isomorphism such that the diagram

det(K•)
det(a•)

//

δ(Ker(a•)) ))

det(L•)

det(K•)⊗ det(Ker(a•))
γ0⊗(γ−1)⊗−1

66

commutes.

Lemma 122.1. Let R be a ring. Let a• : K• → L• be a map of complexes of R-
modules satisfying (1), (2), (3) above. If L• has rank 0, then det(a•) maps the canonical
element δ(K•) to δ(L•).

Proof. Write M i = Ker(ai). Thus we have a map of short exact sequences

0 // M−1 //

dM
��

K−1 //

dK
��

L−1 //

dL
��

0

0 // M0 // K0 // L0 // 0

By Lemma 118.3 we know that det(dK) corresponds to det(dM )⊗ det(dL) as maps. Un-
winding the definitions this gives the required equality. �

Lemma 122.2. LetR be a ring. Let a• : K• → L• be a map of complexes ofR-modules
satisfying (1), (2), (3) above. Let h : K0 → L−1 be a map such that b0 = a0 + d ◦ h and
b−1 = a−1 + h ◦ d are surjective. Then det(a•) = det(b•) as maps det(K•)→ det(L•).

Proof. Suppose there exists a map h̃ : K0 → K−1 such that h = a−1 ◦ h̃ and such
that k0 = id + d ◦ h̃ : K0 → K0 and k1 = id + h̃ ◦ d : K−1 → K−1 are isomorphisms.
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Then we obtain a commutative diagram

0 // Ker(b•) //

c•

��

K•
b•
//

k•

��

L• //

id
��

0

0 // Ker(a•) // K• a•
// L• // 0

of complexes, where c• is the induced isomorphism of kernels. Using Lemma 118.3 we see
that

det(Ker(bi))⊗ det(Li) //

det(ci)⊗1
��

det(Ki)

det(ki)
��

det(Ker(ai))⊗ det(Li) // det(Ki)

commutes. Since det(c•) maps the canonical trivialization of det(Ker(a•)) to the canon-
ical trivializatio of Ker(b•) (Lemma 122.1) we see that we conclude if (and only if)

det(k0) = det(k−1)

as elements of R which follows from Lemma 118.6.

Suppose there exists a direct summand U ⊂ K−1 such that both a−1|U : U → L−1 and
b−1|U : U → L−1 are isomorphisms. Define h̃ as the composition of h with the inverse
of a−1|U . We claim that h̃ is a map as in the first paragraph of the proof. Namely, we
have h = a−1 ◦ h̃ by construction. To show that k−1 : K−1 → K−1 is an isomorphism
it suffices to show that it is surjective (Algebra, Lemma 16.4). Let u ∈ U . We may choose
u′ ∈ U such that b−1(u′) = a−1(u). Then u = k−1(u′). Namely, both u and k−1(u′)
are in U and a−1(u) = a−1(k−1(u′)) by a calculation17 Since a−1|U is an isomorphism
we get the equality. Thus U ⊂ Im(k−1). On the other hand, if x ∈ Ker(a−1) then
x = k−1(x) mod U . SinceK−1 = Ker(a−1) +U we conclude k−1 is surjective. Finally,
we show that k0 : K0 → K0 is surjective. First, since a0 ◦ k0 = b0 we see that a0 ◦ k0

is surjective. If x ∈ Ker(a0), then x = d(y) for some y ∈ Ker(a−1). We may write
y = k−1(z) for some z ∈ K−1 by the above. Then x = k0(d(z)) and we conclude.

Final step of the proof. It suffices to find U as in the preceding paragraph, but this may
not always be possible. However, in order to show equality of two maps of R-modules, it
suffices to do so after localization at primes of R. Hence we may assume R is local. Then
we get the following problem: suppose

α, β : R⊕n −→ R⊕m

are two surjective R-linear maps. Find a direct summand U ⊂ R⊕n such that both α|U
and β|U are isomorphisms. If R is a field, this is possible by linear algebra. In general,
one takes a solution over the residue field and lifts this to a solution over the local ringR.
Some details omitted. �

Lemma 122.3. Let R be a ring. Let a• : K• → L• and b• : L• → M• be maps of
complexes of R-modules satisfying (1), (2), (3) above. Then we have det(b•) ◦ det(a•) =
det(b• ◦ a•) as maps det(M•)→ det(K•).

Proof. Omitted. Hints: Straightforward from Lemmas 118.2, 118.3, and 118.4. �

17a−1(k−1(u′)) = a−1(u′) + a−1(h̃(d(u′))) = a−1(u′) + h(d(u′)) = b−1(u′) = a−1(u)
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Lemma 122.4. Let R be a ring. The constructions above determine a functor

det :

category of perfect complexes
with tor amplitude in [−1, 0]
morphisms are isomorphisms

 −→
{

category of invertible modules
morphisms are isomorphisms

}
Moreover, given a rank 0 perfect object L of D(R) with tor-amplitude in [−1, 0] there is
a canonical element δ(L) ∈ det(L) such that for any isomorphism a : L → K in D(R)
we have det(a)(δ(L)) = δ(K).

Proof. By Lemma 74.2 every object of the source category may be represented by a
complex

L• = . . .→ 0→ L−1 → L0 → 0→ . . .

with L−1 and L0 finite projective R-modules. Let us temporarily call a complex of this
type good. By Derived Categories, Lemma 19.8 morphisms between good complexes in
the derived category are homotopy classes of maps of complexes. Thus we may work with
good complexes and we can use the determinant det(L•) = det(L0)⊗ det(L−1)⊗−1 we
investigated above.

Let a• : L• → K• be a morphism of good complexes which is an isomorphism in D(R),
i.e., a quasi-isomorphism. We say that

L•
a•

// K•

M•
b•

aa

c•

<<

is a good diagram if it commutes up to homotopy and b• and c• satisfy conditions (1), (2),
(3) above. Whenever we have such a diagram it makes sense to define

det(a•) = det(c•) ◦ det(b•)−1

where det(c•) and det(b•) are the isomorphisms constructed in the text above. We will
show that good diagrams always exist and that the resulting map det(a•) is independent
of the choice of good diagram.

Existence of good diagrams for a quasi-isomorphism a• : L• → K• of good complexes.
Choose a surjection p : R⊕n → K−1. Then we can consider the new good complex

M• = . . .→ 0→ L−1 ⊕R⊕n d⊕1−−→ L0 ⊕R⊕n → 0→ . . .

with the projection map b• : M• → L• and the map c• : M• → K• using a−1 ⊕ p in
degree−1 and using a0 ⊕ d ◦ p in degree 0. The maps b• : M• → L• and c• : M• → K•

satisfy conditions (1), (2), (3) above and we get a good diagram.

Suppose that we have a good diagram

L•
id•

// L•

M•
b•

aa

c•

==

Then by Lemma 122.2 we see that det(c•) = det(b•). Thus we see that det(id•) = id is
independent of the choice of good diagram.
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Before we prove independence in general, we think about composition. Suppose we have
quasi-isomorphisms L•

1 → L•
2 and L•

2 → L•
3 of good complexes and good diagrams

L•
1

// L•
2

M•
12

aa ==

and

L•
2

// L•
3

M•
23

aa ==

We can extend this to a diagram

L•
1

// L•
2

// L•
3

M•
12

aa <<

M•
23

bb ==

M•
123

bb <<

where M•
123 → M•

12 and M•
123 → M•

23 have properties (1), (2), (3) and the square in the
diagram commutes: we can just take Mn

123 = Mn
12 ×Ln2 M

n
23. Then Lemma 122.3 shows

that
det(L•

2) det(M•
23)oo

det(M•
12)

OO

det(M•
123)oo

OO

commutes. A diagram chase shows that the composition det(L•
1)→ det(L•

2)→ det(L•
3)

of the maps associated to the two good diagrams using M•
12 and M•

23 is equal to the map
associated to the good diagram

L•
1

// L•
3

M•
123

bb <<

Thus if we can show that these maps are independent of choices, then the composition law
is satisfied too and we obtain our functor.

Independence. Let a quasi-isomorphism a• : L• → K• of good complexes be given.
Choose an inverse quasi-isomorphism b• : K• → L•. Setting L•

1 = L, L•
2 = K• and

L•
3 = L• may fix our choice of good diagram for b• and consider varying good diagrams

for a•. Then the result of the previous paragraphs is that no matter what choices, the
composition always equals the identity map on det(L•). This clearly proves indepence of
those choices.

The statement on canonical elements follows immediately from Lemma 122.1 and our con-
struction. �

123. Extensions of valuation rings

This section is the analogue of Section 111 for general valuation rings.
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Definition 123.1. We say thatA→ B orA ⊂ B is an extension of valuation rings if
A and B are valuation rings and A→ B is injective and local. Such an extension induces
a commutative diagram

A \ {0} //

v

��

B \ {0}

v

��
ΓA // ΓB

where ΓA and ΓB are the value groups. We say that B is weakly unramified over A if the
lower horizontal arrow is a bijection. If the extension of residue fields κA = A/mA ⊂
κB = B/mB is finite, then we set f = [κB : κA] and we call it the residual degree or
residue degree of the extension A ⊂ B.

Note that ΓA → ΓB is injective, because the units of A are the inverse of the units of B
under the map A → B. Note also, that we do not require the extension of fraction fields
to be finite.

Lemma 123.2. Let A ⊂ B be an extension of valuation rings with fraction fields
K ⊂ L. If the extension L/K is finite, then the residue field extension is finite, the index
of ΓA in ΓB is finite, and

[ΓB : ΓA][κB : κA] ≤ [L : K].

Proof. Let b1, . . . , bn ∈ B be units whose images in κB are linearly independent
over κA. Let c1, . . . , cm ∈ B be nonzero elements whose images in ΓB/ΓA are pairwise
distinct. We claim that bicj are K-linearly independent in L. Namely, we claim a sum∑

aijbicj

with aij ∈ K not all zero cannot be zero. Choose (i0, j0) with v(ai0j0bi0cj0) minimal.
Replace aij by aij/ai0j0 , so that ai0j0 = 1. Let

P = {(i, j) | v(aijbicj) = v(ai0j0bi0cj0)}

By our choice of c1, . . . , cm we see that (i, j) ∈ P implies j = j0. Hence if (i, j) ∈ P ,
then v(aij) = v(ai0j0) = 0, i.e., aij is a unit. By our choice of b1, . . . , bn we see that∑

(i,j)∈P
aijbi

is a unit in B. Thus the valuation of
∑

(i,j)∈P aijbicj is v(cj0) = v(ai0j0bi0cj0). Since
the terms with (i, j) 6∈ P in the first displayed sum have strictly bigger valuation, we
conclude that this sum cannot be zero, thereby proving the lemma. �

Lemma 123.3. LetA be a valuation ring with fraction fieldK of characteristic p > 0.
Let L/K be a purely inseparable extension. Then the integral closure B of A in L is a
valuation ring with fraction field L and A ⊂ B is an extension of valuation rings.

Proof. Omitted. Hints: use Algebra, Lemmas 50.5 and 36.17 for example. �

Lemma 123.4. LetA→ B be a flat local homomorphism of Noetherian local normal
domains. Let f ∈ A and h ∈ B such that f = whn for some n > 1 and some unit w ofB.
Assume that for every height 1 prime p ⊂ A there is a height 1 prime q ⊂ B lying over
p such that the extension Ap ⊂ Bq is weakly unramified. Then f = ugn for some g ∈ A
and unit u of A.
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Proof. The local rings of A and B at height 1 primes are discrete valuation rings
(Algebra, Lemma 119.7). Thus the assumption makes sense (via Definition 111.1). Let
p1, . . . , pr be the primes of A minimal over f . These have height 1 by Algebra, Lemma
60.11. For each i let qi,j ⊂ B, j = 1, . . . , ri be the height 1 primes of B lying over pi.
Say we number them so that Api → Bqi,1 is weakly unramified. Since f maps to an nth
power times a unit in Bqi,1 we see that the valuation vi of f in Api is divisible by n. Say
vi = nwi for some wi ≥ 0. Consider the exact sequence

0→ I → A→
∏

i=1,...,r
Api/p

wi
i Api

defining the ideal I . Applying the exact functor −⊗A B we obtain an exact sequence

0→ I ⊗A B → B →
∏

i=1,...,r
(Api/p

wi
i Api)⊗A B

Fix i. We claim that the canonical map

(Api/p
wi
i Api)⊗A B →

∏
j=1,...,ri

Bqi,j/q
ei,jwi
i,j Bqi,j

is injective. Here ei,j is the ramification index of Api → Bqi,j . The claim asserts that
pwii Bpi is equal to the set of elements b ofBpi whose valuation at qi,j is≥ ei,jwi. Choose
a generator a ∈ Api of the principal ideal pwii . Then the valuation of a at qi,j is equal
to ei,jwi. Hence, as Bpi is a normal domain whose height one primes are the primes qi,j ,
j = 1, . . . , ri, we see that, for b as above, we have b/a ∈ Bpi by Algebra, Lemma 157.6.
Thus the claim.
The claim combined with the second exact sequence above determines an exact sequence

0→ I ⊗A B → B →
∏

i=1,...,r

∏
j=1,...,ri

Bqi,j/q
ei,jwi
i,j Bqi,j

It follows that I ⊗A B is the set of elements h′ of B which have valuation ≥ ei,jwi at
qi,j . Since f = whn in B we see that h has valuation ei,jwi at qi,j . Thus h′/h ∈ B by
Algebra, Lemma 157.6. It follows that I ⊗A B is a free B-module of rank 1 (generated
by h). Therefore I is a free A-module of rank 1, see Algebra, Lemma 78.6. Let g ∈ I
be a generator. Then we see that g and h differ by a unit in B. Working backwards we
conclude that the valuation of g in Api is wi = vi/n. Hence gn and f differ by a unit in
A (by Algebra, Lemma 157.6) as desired. �

Lemma 123.5. Let A be a valuation ring. Let A → B be an étale ring map and let
m ⊂ B be a prime lying over the maximal ideal of A. Then A ⊂ Bm is an extension of
valuation rings which is weakly unramified.

Proof. The ring A has weak dimension ≤ 1 by Lemma 104.18. Then B has weak
dimension ≤ 1 by Lemmas 104.4 and 104.14. hence the local ring Bm is a valuation ring
by Lemma 104.18. Since the extensionA ⊂ Bm induces a finite extension of fraction fields,
we see that the ΓA has finite index in the value group ofBm. Thus for every h ∈ Bm there
exists an n > 0, an element f ∈ A, and a unit w ∈ Bm such that f = whn in Bm. We
will show that this implies f = ugn for some g ∈ A and unit u ∈ A; this will show that
the value groups of A and Bm agree, as claimed in the lemma.
WriteA = colimAi as the colimit of its local subrings which are essentially of finite type
over Z. SinceA is a normal domain (Algebra, Lemma 50.3), we may assume that eachAi is
normal (here we use that taking normalizations the local rings remain essentially of finite
type over Z by Algebra, Proposition 162.16). For some i we can find an étale extension
Ai → Bi such thatB = A⊗AiBi, see Algebra, Lemma 143.3. Let mi be the intersection of
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Bi with m. Then we may apply Lemma 123.4 to the ring map Ai → (Bi)mi to conclude.
The hypotheses of the lemma are satisfied because:

(1) Ai and (Bi)mi are Noetherian as they are essentially of finite type over Z,
(2) Ai → (Bi)mi is flat as Ai → Bi is étale,
(3) Bi is normal as Ai → Bi is étale, see Algebra, Lemma 163.9,
(4) for every height 1 prime of Ai there exists a height 1 prime of (Bi)mi lying

over it by Algebra, Lemma 113.2 and the fact that Spec((Bi)mi)→ Spec(Ai) is
surjective,

(5) the induced extensions (Ai)p → (Bi)q are unramified for every prime q lying
over a prime p as Ai → Bi is étale.

This concludes the proof of the lemma. �

Lemma 123.6. Let A be a valuation ring. Let Ah, resp. Ash be its henselization, resp.
strict henselization. Then

A ⊂ Ah ⊂ Ash

are extensions of valuation rings which induce bijections on value groups, i.e., which are
weakly unramified.

Proof. Write Ah = colim(Bi)qi where A → Bi is étale and qi ⊂ Bi is a prime
ideal lying over mA, see Algebra, Lemma 155.7. Then Lemma 123.5 tells us that (Bi)qi is a
valuation ring and that the induced map

(A \ {0})/A∗ −→ ((Bi)qi \ {0})/(Bi)∗
qi

is bijective. By Algebra, Lemma 50.6 we conclude that Ah is a valuation ring. It also
follows that (A \ {0})/A∗ → (Ah \ {0})/(Ah)∗ is bijective. This proves the lemma for
the inclusion A ⊂ Ah. To prove it for A ⊂ Ash we can use exactly the same argument
except we replace Algebra, Lemma 155.7 by Algebra, Lemma 155.11. Since Ash = (Ah)sh
we see that this also proves the assertions of the lemma for the inclusion Ah ⊂ Ash. �

124. Structure of modules over a PID

We work a little bit more generally (following the papers [?] and [?] by Warfield) so that
the proofs work over valuation rings.

Lemma 124.1. Let P be a module over a ring R. The following are equivalent
(1) P is a direct summand of a direct sum of modules of the form R/fR, for f ∈ R

varying.
(2) for every short exact sequence 0 → A → B → C → 0 of R-modules such that

fA = A∩fB for all f ∈ R the map HomR(P,B)→ HomR(P,C) is surjective.

Proof. Let 0 → A → B → C → 0 be an exact sequence as in (2). To prove that (1)
implies (2) it suffices to prove that HomR(R/fR,B) → HomR(R/fR,C) is surjective
for every f ∈ R. Let ψ : R/fR → C be a map. Say ψ(1) is the image of b ∈ B. Then
fb ∈ A. Hence there exists an a ∈ A such that fa = fb. Then f(b− a) = 0 hence we get
a morphism ϕ : R/fR→ B mapping 1 to b− a which lifts ψ.

Conversely, assume that (2) holds. Let I be the set of pairs (f, ϕ) where f ∈ R and
ϕ : R/fR→ P . For i ∈ I denote (fi, ϕi) the corresponding pair. Consider the map

B =
⊕

i∈I
R/fiR −→ P
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which sends the element r in the summand R/fiR to ϕi(r) in P . Let A = Ker(B → P ).
Then we see that (1) is true if the sequence

0→ A→ B → P → 0
is an exact sequence as in (2). To see this suppose f ∈ R and a ∈ Amaps to fb inB. Write
b = (ri)i∈I with almost all ri = 0. Then we see that

f
∑

ϕi(ri) = 0

in P . Hence there is an i0 ∈ I such that fi0 = f and ϕi0(1) =
∑
ϕi(ri). Let xi0 ∈

R/fi0R be the class of 1. Then we see that

a′ = (ri)i∈I − (0, . . . , 0, xi0 , 0, . . .)
is an element of A and fa′ = a as desired. �

Lemma 124.2 (Generalized valuation rings). Let R be a nonzero ring. The following
are equivalent

(1) For a, b ∈ R either a divides b or b divides a.
(2) Every finitely generated ideal is principal and R is local.
(3) The set of ideals of R is linearly ordered by inclusion.

This holds in particular if R is a valuation ring.

Proof. Assume (2) and let a, b ∈ R. Then (a, b) = (c). If c = 0, then a = b = 0
and a divides b. Assume c 6= 0. Write c = ua + vb and a = wc and b = zc. Then
c(1− uw− vz) = 0. Since R is local, this implies that 1− uw− vz ∈ m. Hence either w
or z is a unit, so either a divides b or b divides a. Thus (2) implies (1).

Assume (1). If R has two maximal ideals mi we can choose a ∈ m1 with a 6∈ m2 and
b ∈ m2 with b 6∈ m1. Then a does not divide b and b does not divide a. Hence R has a
unique maximal ideal and is local. It follows easily from condition (1) and induction that
every finitely generated ideal is principal. Thus (1) implies (2).

It is straightforward to prove that (1) and (3) are equivalent. The final statement is Algebra,
Lemma 50.4. �

Lemma 124.3. Let R be a ring satisfying the equivalent conditions of Lemma 124.2.
Then every finitely presentedR-module is isomorphic to a finite direct sum of modules of
the form R/fR.

Proof. LetM be a finitely presentedR-module. We will use all the equivalent prop-
erties of R from Lemma 124.2 without further mention. Denote m ⊂ R the maximal
ideal and κ = R/m the residue field. Let I ⊂ R be the annihilator of M . Choose a basis
y1, . . . , yn of the finite dimensional κ-vector space M/mM . We will argue by induction
on n.

By Nakayama’s lemma any collection of elements x1, . . . , xn ∈ M lifting the elements
y1, . . . , yn inM/mM generateM , see Algebra, Lemma 20.1. This immediately proves the
base case n = 0 of the induction.

We claim there exists an index i such that for any choice of xi ∈ M mapping to yi the
annihilator of xi is I . Namely, if not, then we can choose x1, . . . , xn such that Ii =
Ann(xi) 6= I for all i. But as I ⊂ Ii for all i, ideals being totally ordered implies Ii is
strictly bigger than I for i = 1, . . . , n, and by total ordering once more we would see that
Ann(M) = I1 ∩ . . .∩ In is bigger than I which is a contradiction. After renumbering we
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may assume that y1 has the property: for any x1 ∈ M lifting y1 the annihilator of x1 is
I .

We set A = Rx1 ⊂ M . Consider the exact sequence 0 → A → M → M/A → 0. Since
A is finite, we see that M/A is a finitely presented R-module (Algebra, Lemma 5.3) with
fewer generators. HenceM/A ∼=

⊕
j=1,...,mR/fjR by induction. On the other hand, we

claim that A → M satisfies the property: if f ∈ R, then fA = A ∩ fM . The inclusion
fA ⊂ A∩fM is trivial. Conversely, if x ∈ A∩fM , then x = gx1 = fy for some g ∈ R
and y ∈ M . If f divides g, then x ∈ fA as desired. If not, then we can write f = hg for
some h ∈ m. The element x′

1 = x1 − hy has annihilator I by the previous paragraph.
Thus g ∈ I and we see that x = 0 as desired. The claim and Lemma 124.1 imply the
sequence 0 → A → M → M/A → 0 is split and we find M ∼= A ⊕

⊕
j=1,...,mR/fjR.

ThenA = R/I is finitely presented (as a summand ofM ) and hence I is finitely generated,
hence principal. This finishes the proof. �

Lemma 124.4. Let R be a ring such that every local ring of R at a maximal ideal sat-
isfies the equivalent conditions of Lemma 124.2. Then every finitely presented R-module
is a summand of a finite direct sum of modules of the form R/fR for f in R varying.

Proof. LetM be a finitely presentedR-module. We first show thatM is a summand
of a direct sum of modules of the form R/fR and at the end we argue the direct sum can
be taken to be finite. Let

0→ A→ B → C → 0
be a short exact sequence ofR-modules such that fA = A∩ fB for all f ∈ R. By Lemma
124.1 we have to show that HomR(M,B) → HomR(M,C) is surjective. It suffices to
prove this after localization at maximal ideals m, see Algebra, Lemma 23.1. Note that the
localized sequences 0 → Am → Bm → Cm → 0 satisfy the condition that fAm =
Am ∩ fBm for all f ∈ Rm (because we can write f = uf ′ with u ∈ Rm a unit and f ′ ∈ R
and because localization is exact). Since M is finitely presented, we see that

HomR(M,B)m = HomRm
(Mm, Bm) and HomR(M,C)m = HomRm

(Mm, Cm)

by Algebra, Lemma 10.2. The module Mm is a finitely presented Rm-module. By Lemma
124.3 we see thatMm is a direct sum of modules of the formRm/fRm. Thus we conclude
by Lemma 124.1 that the map on localizations is surjective.

At this point we know that M is a summand of
⊕

i∈I R/fiR. Consider the map M →⊕
i∈I R/fiR. Since M is a finite R-module, the image is contained in

⊕
i∈I′ R/fiR for

some finite subset I ′ ⊂ I . This finishes the proof. �

Definition 124.5. Let R be a domain.
(1) We say R is a Bézout domain if every finitely generated ideal of R is principal.
(2) We say R is an elementary divisor domain if for all n,m ≥ 1 and every n ×m

matrix A, there exist invertible matrices U, V of size n× n,m×m such that

UAV =


f1 0 0 . . .
0 f2 0 . . .
0 0 f3 . . .
. . . . . . . . . . . .


with f1, . . . , fmin(n,m) ∈ R and f1|f2| . . ..
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It is apparently still an open question as to whether every Bézout domain R is an elemen-
tary divisor domain (or not). This is equivalent to the question of whether every finitely
presented module over R is a direct sum of cyclic modules. The converse implication is
true.

Lemma 124.6. An elementary divisor domain is Bézout.

Proof. Let a, b ∈ R be nonzero. Consider the 1 × 2 matrix A = (a b). Then we
see that u(a b)V = (f 0) with u ∈ R invertible and V = (gij) an invertible 2 × 2
matrix. Then f = uag11 + ubg21 and (g11, g21) = R. It follows that (a, b) = (f). An
induction argument (omitted) then shows any finitely generated ideal in R is generated
by one element. �

Lemma 124.7. The localization of a Bézout domain is Bézout. Every local ring of a
Bézout domain is a valuation ring. A local domain is Bézout if and only if it is a valuation
ring.

Proof. We omit the proof of the statement on localizations. The final statement is
Algebra, Lemma 50.15. The second statement follows from the other two. �

Lemma 124.8. Let R be a Bézout domain.
(1) Every finite submodule of a free module is finite free.
(2) Every finitely presentedR-moduleM is a direct sum of a finite free module and a

torsion moduleMtors which is a summand of a module of the form
⊕

i=1,...,nR/fiR

with f1, . . . , fn ∈ R nonzero.

Proof. Proof of (1). Let M ⊂ F be a finite submodule of a free module F . Since M
is finite, we may assume F is a finite free module (details omitted). Say F = R⊕n. We
argue by induction on n. If n = 1, thenM is a finitely generated ideal, hence principal by
our assumption that R is Bézout. If n > 1, then we consider the image I of M under the
projection R⊕n → R onto the last summand. If I = (0), then M ⊂ R⊕n−1 and we are
done by induction. If I 6= 0, then I = (f) ∼= R. Hence M ∼= R ⊕ Ker(M → I) and we
are done by induction as well.

Let M be a finitely presented R-module. Since the localizations of R are maximal ideals
are valuation rings (Lemma 124.7) we may apply Lemma 124.4. Thus M is a summand
of a module of the form R⊕r ⊕

⊕
i=1,...,nR/fiR with fi 6= 0. Since taking the torsion

submodule is a functor we see that Mtors is a summand of the module
⊕

i=1,...,nR/fiR

and M/Mtors is a summand of R⊕r. By the first part of the proof we see that M/Mtors

is finite free. Hence M ∼= Mtors ⊕M/Mtors as desired. �

Lemma 124.9. LetR be a PID. Every finiteR-moduleM is of isomorphic to a module
of the form

R⊕r ⊕
⊕

i=1,...,n
R/fiR

for some r, n ≥ 0 and f1, . . . , fn ∈ R nonzero.

Proof. A PID is a Noetherian Bézout ring. By Lemma 124.8 it suffices to prove the
result if M is torsion. Since M is finite, this means that the annihilator of M is nonzero.
Say fM = 0 for some f ∈ R nonzero. Then we can think of M as a module over R/fR.
Since R/fR is Noetherian of dimension 0 (small detail omitted) we see that R/fR =∏
Rj is a finite product of Artinian local rings Ri (Algebra, Proposition 60.7). Each Ri,

being a local ring and a quotient of a PID, is a generalized valuation ring in the sense of
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Lemma 124.2 (small detail omitted). Write M =
∏
Mj with Mj = ejM where ej ∈

R/fR is the idempotent corresponding to the factor Rj . By Lemma 124.3 we see that
Mj =

⊕
i=1,...,nj Rj/f jiRj for some f ji ∈ Rj . Choose lifts fji ∈ R and choose gji ∈ R

with (gji) = (fj , fji). Then we conclude that

M ∼=
⊕

R/gjiR

as an R-module which finishes the proof. �

One can also prove that a PID is a elementary divisor domain (insert future reference
here), by proving lemmas similar to the following.

Lemma 124.10. Let R be a Bézout domain. Let n ≥ 1 and f1, . . . , fn ∈ R generate
the unit ideal. There exists an invertible n× n matrix in R whose first row is f1 . . . fn.

Proof. This follows from Lemma 124.8 but we can also prove it directly as follows.
By induction on n. The result holds for n = 1. Assume n > 1. We may assume f1 6= 0
after renumbering. Choose f ∈ R such that (f) = (f1, . . . , fn−1). Let A be an (n −
1) × (n − 1) matrix whose first row is f1/f, . . . , fn−1/f . Choose a, b ∈ R such that
af − bfn = 1 which is possible because 1 ∈ (f1, . . . , fn) = (f, fn). Then a solution is the
matrix 

f 0 . . . 0 fn
0 1 . . . 0 0

. . .
0 0 . . . 1 0
b 0 . . . 0 a




0
A

0
0 . . . 0 1


Observe that the left matrix is invertible because it has determinant 1. �

125. Principal radical ideals

In this section we prove that a catenary Noetherian normal local domain there exists a
nontrivial principal radical ideal. This result can be found in [?].

Lemma 125.1. Let (R,m) be a Noetherian local ring of dimension one, and let x ∈ m
be an element not contained in any minimal prime of R. Then

(1) the function P : n 7→ lengthR(R/xnR) satisfies P (n) ≤ nP (1) for n ≥ 0,
(2) if x is a nonzerodivisor, then P (n) = nP (1) for n ≥ 0.

Proof. Since dim(R) = 1, we have dim(R/xnR) = 0 and so lengthR(R/xnR) is
finite for each n (Algebra, Lemma 62.3). To show the lemma we will induct on n. Since
x0R = R, we have that P (0) = lengthR(R/x0R) = lengthR0 = 0. The statement also
holds for n = 1. Now let n ≥ 2 and suppose the statement holds for n−1. The following
sequence is exact

R/xn−1R
x−→ R/xnR→ R/xR→ 0

where x denotes the multiplication by x map. Since length is additive (Algebra, Lemma
52.3), we have that P (n) ≤ P (n − 1) + P (1). By induction P (n − 1) ≤ (n − 1)P (1),
whence P (n) ≤ nP (1). This proves the induction step.
If x is a nonzerodivisor, then the displayed exact sequence above is exact on the left also.
Hence we get P (n) = P (n− 1) + P (1) for all n ≥ 1. �

Lemma 125.2. Let (R,m) be a Noetherian local ring of dimension 1. Let x ∈ m be an
element not contained in any minimal prime of R. Let t be the number of minimal prime
ideals of R. Then t ≤ lengthR(R/xR).
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Proof. Let p1, . . . , pt be the minimal prime ideals ofR. SetR′ = R/
√

0 = R/(
⋂t
i=1 pi).

We claim it suffices to prove the lemma for R′. Namely, it is clear that R′ has t minimal
primes too and lengthR′(R′/xR′) = lengthR(R′/xR′) is less than lengthR(R/xR) as
there is a surjection R/xR→ R′/xR′. Thus we may assume R is reduced.

Assume R is reduced with minimal primes p1, . . . , pt. This means there is an exact se-
quence

0→ R→
∏t

i=1
R/pi → Q→ 0

Here Q is the cokernel of the first map. Write M =
∏t
i=1 R/pi. Localizing at pj we see

that
Rpj →Mpj =

(∏t

i=1
R/pi

)
pj

= (R/pj)pj

is surjective. Thus Qpj = 0 for all j. We conclude that Supp(Q) = {m} as m is the only
prime of R different from the pi. It follows that Q has finite length (Algebra, Lemma
62.3). Since Supp(Q) = {m} we can pick an n� 0 such that xn acts as 0 on Q (Algebra,
Lemma 62.4). Now consider the diagram

0 // R //

xn

��

M //

xn

��

Q //

xn

��

0

0 // R // M // Q // 0

where the vertical maps are multiplication by xn. This is injective onR and onM since x
is not contained in any of the pi. By the snake lemma (Algebra, Lemma 4.1), the following
sequence is exact:

0→ Q→ R/xnR→M/xnM → Q→ 0
Hence we find that lengthR(R/xnR) = lengthR(M/xnM) for large enough n. Writing
Ri = R/pi we see that length(M/xnM) =

∑t
i=1 lengthR(Ri/xnRi). Applying Lemma

125.1 and the fact that x is a nonzerodivisor on R and Ri, we conclude that

nlengthR(R/xR) =
∑t

i=1
nlengthRi(Ri/xRi)

Since lengthRi(Ri/xRi) ≥ 1 the lemma is proved. �

Lemma 125.3. Let (R,m) be a Noetherian local ring of dimension d > 1, let f ∈ m
be an element not contained in any minimal prime ideal of R, and let k ∈ N. Then there
exist elements g1, . . . , gd−1 ∈ mk such that f, g1, . . . , gd−1 is a system of parameters.

Proof. We have dim(R/fR) = d− 1 by Algebra, Lemma 60.13. Choose a system of
parameters g1, . . . , gd−1 in R/fR (Algebra, Proposition 60.9) and take lifts g1, . . . , gd−1
inR. It is straightforward to see that f, g1, . . . , gd−1 is a system of parameters inR. Then
f, gk1 , . . . , g

k
d−1 is also a system of parameters and the proof is complete. �

Lemma 125.4. Let (R,m) be a Noetherian local ring of dimension two, and let f ∈ m
be an element not contained in any minimal prime ideal ofR. Then there exist g ∈ m and
N ∈ N such that

(a) f, g form a system of parameters for R.
(b) If h ∈ mN , then f + h, g is a system of parameters and lengthR(R/(f, g)) =

lengthR(R/(f + h, g)).
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Proof. By Lemma 125.3 there exists a g ∈ m such that f, g is a system of parameters
for R. Then m =

√
(f, g). Thus there exists an n such that mn ⊂ (f, g), see Algebra,

Lemma 32.5. We claim that N = n+ 1 works. Namely, let h ∈ mN . By our choice of N
we can write h = af + bg with a, b ∈ m. Thus

(f + h, g) = (f + af + bg, g) = ((1 + a)f, g) = (f, g)
because 1 + a is a unit in R. This proves the equality of lengths and the fact that f + h, g
is a system of parameters. �

Lemma 125.5. LetR be a Noetherian local normal domain of dimension 2. Let p1, . . . , pr
be pairwise distinct primes of height 1. There exists a nonzero element f ∈ p1 ∩ . . . ∩ pr
such that R/fR is reduced.

Proof. Let f ∈ p1 ∩ . . . ∩ pr be a nonzero element. We will modify f slightly to
obtain an element that generates a radical ideal. The localization Rp of R at each height
one prime ideal p is a discrete valuation ring, see Algebra, Lemma 119.7 or Algebra, Lemma
157.4. We denote by ordp(f) the corresponding valuation of f inRp. Let q1, . . . , qs be the
distinct height one prime ideals containing f . Write ordqj (f) = mj ≥ 1 for each j. Then
we define div(f) =

∑s
j=1 mjqj as a formal linear combination of height one primes with

integer coefficients. Note for later use that each of the primes pi occurs among the primes
qj . The ring R/fR is reduced if and only if mj = 1 for j = 1, . . . , s. Namely, if mj is
1 then (R/fR)qj is reduced and R/fR ⊂

∏
(R/fR)qj as q1, . . . , qj are the associated

primes of R/fR, see Algebra, Lemmas 63.19 and 157.6.

Choose and fix g and N as in Lemma 125.4. For a nonzero y ∈ R denote t(y) the number
of primes minimal over y. Since R is a normal domain, these primes are height one and
correspond 1-to-1 to the minimal primes ofR/yR (Algebra, Lemmas 60.11 and 157.6). For
example t(f) = s is the number of primes qj occurring in div(f). Let h ∈ mN . By Lemma
125.2 we have

t(f + h) ≤ lengthR/(f+h)(R/(f + h, g))
= lengthR(R/(f + h, g))
= lengthR(R/(f, g))

see Algebra, Lemma 52.5 for the first equality. Therefore we see that t(f + h) is bounded
independent of h ∈ mN .

By the boundedness proved above we may pick h ∈ mN ∩ p1 ∩ . . .∩ pr such that t(f +h)
is maximal among such h. Set f ′ = f + h. Given h′ ∈ mN ∩ p1 ∩ . . . ∩ pr we see that
the number t(f ′ + h′) ≤ t(f + h). Thus after replacing f by f ′ we may assume that for
every h ∈ mN ∩ p1 ∩ . . . ∩ pr we have t(f + h) ≤ s.

Next, assume that we can find an element h ∈ mN such that for each j we have ordqj (h) ≥
1 and ordqj (h) = 1⇔ mj > 1. Observe that h ∈ mN∩p1∩. . .∩pr. Then ordqj (f+h) =
1 for every j by elementary properties of valuations. Thus

div(f + h) =
∑s

j=1
qj +

∑v

k=1
ekrk

for some pairwise distinct height one prime ideals r1, . . . , rv and ek ≥ 1. However, since
s = t(f) ≥ t(f + h) we see that v = 0 and we have found the desired element.

Now we will pick h that satisfies the above criteria. By prime avoidance (Algebra, Lemma
15.2) for each 1 ≤ j ≤ s we can find an element aj ∈ qj such that aj 6∈ qj′ for j′ 6= j and
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aj 6∈ q
(2)
j . Here q(2)

j = {x ∈ R | ordqj (x) ≥ 2} is the second symbolic power of qj . Then
we take

h =
∏

mj=1
a2
j ×

∏
mj>1

aj

Then h clearly satisfies the conditions on valuations imposed above. If h 6∈ mN , then we
multiply by an element of mN which is not contained in qj for all j. �

Lemma 125.6. Let (A,m, κ) be a Noetherian normal local domain of dimension 2. If
a ∈ m is nonzero, then there exists an element c ∈ A such that A/cA is reduced and such
that a divides cn for some n.

Proof. Let div(a) =
∑
i=1,...,r nipi with notation as in the proof of Lemma 125.5.

Choose c ∈ p1 ∩ . . . ∩ pr with A/cA reduced, see Lemma 125.5. For n ≥ max(ni)
we see that −div(a) + div(cn) is an effective divisor (all coefficients nonnegative). Thus
cn/a ∈ A by Algebra, Lemma 157.6. �

In the rest of this section we prove the result in dimension > 2.

Lemma 125.7. Let (R,m) be a Noetherian local ring of dimension d, let g1, . . . , gd be
a system of parameters, and let I = (g1, . . . , gd). If eI/d! is the leading coefficient of the
numerical polynomial n 7→ lengthR(R/In+1), then eI ≤ lengthR(R/I).

Proof. The function is a numerical polynomial by Algebra, Proposition 59.5. It has
degree d by Algebra, Proposition 60.9. If d = 0, then the result is trivial. If d = 1, then
the result is Lemma 125.1. To prove it in general, observe that there is a surjection⊕

i1,...,id≥0,
∑

ij=n
R/I −→ In/In+1

sending the basis element corresponding to i1, . . . , id to the class of gi11 . . . gidd in In/In+1.
Thus we see that

lengthR(R/In+1)− lengthR(R/In) ≤ lengthR(R/I)
(
n+ d− 1
d− 1

)
Since d ≥ 2 the numerical polynomial on the left has degree d−1 with leading coefficient
eI/(d − 1)!. The polynomial on the right has degree d − 1 and its leading coefficient is
lengthR(R/I)/(d− 1)!. This proves the lemma. �

Lemma 125.8. Let (R,m) be a Noetherian local ring of dimension d, let t be the num-
ber of minimal prime ideals of R of dimension d, and let (g1, . . . , gd) be a system of pa-
rameters. Then t ≤ lengthR(R/(g1, . . . , gn)).

Proof. If d = 0 the lemma is trivial. If d = 1 the lemma is Lemma 125.2. Thus we
may assume d > 1. Let p1, . . . , ps be the minimal prime ideals of R where the first t have
dimension d, and denote I = (g1, . . . , gn). Arguing in exactly the same way as in the
proof of Lemma 125.2 we can assume R is reduced.

Assume R is reduced with minimal primes p1, . . . , pt. This means there is an exact se-
quence

0→ R→
∏t

i=1
R/pi → Q→ 0

Here Q is the cokernel of the first map. Write M =
∏t
i=1 R/pi. Localizing at pj we see

that
Rpj →Mpj =

(∏t

i=1
R/pi

)
pj

= (R/pj)pj
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is surjective. ThusQpj = 0 for all j. Therefore no height 0 prime ofR is in the support of
Q. It follows that the degree of the numerical polynomial n 7→ lengthR(Q/InQ) equals
dim(Supp(Q)) < d, see Algebra, Lemma 62.6. By Algebra, Lemma 59.10 (which applies
as R does not have finite length) the polynomial

n 7−→ lengthR(M/InM)− lengthR(R/In)− lengthR(Q/InQ)
has degree < d. Since M =

∏
R/pi and since n → lengthR(R/pi + In) is a numerical

polynomial of degree exactly(!) d for i = 1, . . . , t (by Algebra, Lemma 62.6) we see that
the leading coefficient of n 7→ lengthR(M/InM) is at least t/d!. Thus we conclude by
Lemma 125.7. �

Lemma 125.9. Let (R,m) be a Noetherian local ring of dimension d, and let f ∈ m
be an element not contained in any minimal prime ideal of R. Then there exist elements
g1, . . . , gd−1 ∈ m and N ∈ N such that

(1) f, g1, . . . , gd−1 form a system of parameters for R
(2) If h ∈ mN , then f + h, g1, . . . , gd−1 is a system of parameters and we have

lengthRR/(f, g1, . . . , gd−1) = lengthRR/(f + h, g1, . . . , gd−1).

Proof. By Lemma 125.3 there exist g1, . . . , gd−1 ∈ m such that f, g1, . . . , gd−1 is a
system of parameters for R. Then m =

√
(f, g1, . . . , gd−1). Thus there exists an n such

that mn ⊂ (f, g), see Algebra, Lemma 32.5. We claim that N = n+ 1 works. Namely, let
h ∈ mN . By our choice of N we can write h = af +

∑
bigi with a, bi ∈ m. Thus

(f + h, g1, . . . , gd−1) = (f + af +
∑

bigi, g1, . . . , gd−1)
= ((1 + a)f, g1, . . . , gd−1)
= (f, g1, . . . , gd−1)

because 1 + a is a unit in R. This proves the equality of lengths and the fact that f +
h, g1, . . . , gd−1 is a system of parameters. �

Proposition 125.10. LetR be a catenary Noetherian local normal domain. LetJ ⊂ R
be a radical ideal. Then there exists a nonzero element f ∈ J such that R/fR is reduced.

Proof. The proof is the same as that of Lemma 125.5, using Lemma 125.8 instead of
Lemma 125.2 and Lemma 125.9 instead of Lemma 125.4. We can use Lemma 125.8 because
R is a catenary domain, so every height one prime ideal of R has dimension d − 1, and
hence the spectrum of R/(f + h) is equidimensional. For the convenience of the reader
we write out the details.

Let f ∈ J be a nonzero element. We will modify f slightly to obtain an element that
generates a radical ideal. The localization Rp of R at each height one prime ideal p is a
discrete valuation ring, see Algebra, Lemma 119.7 or Algebra, Lemma 157.4. We denote
by ordp(f) the corresponding valuation of f in Rp. Let q1, . . . , qs be the distinct height
one prime ideals containing f . Write ordqj (f) = mj ≥ 1 for each j. Then we define
div(f) =

∑s
j=1 mjqj as a formal linear combination of height one primes with integer

coefficients. The ring R/fR is reduced if and only if mj = 1 for j = 1, . . . , s. Namely,
if mj is 1 then (R/fR)qj is reduced and R/fR ⊂

∏
(R/fR)qj as q1, . . . , qj are the

associated primes of R/fR, see Algebra, Lemmas 63.19 and 157.6.

Choose and fix g2, . . . , gd−1 and N as in Lemma 125.9. For a nonzero y ∈ R denote t(y)
the number of primes minimal over y. SinceR is a normal domain, these primes are height
one and correspond 1-to-1 to the minimal primes of R/yR (Algebra, Lemmas 60.11 and
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157.6). For example t(f) = s is the number of primes qj occurring in div(f). Let h ∈ mN .
Because R is catenary, for each height one prime p of R we have dim(R/p) = d. Hence
by Lemma 125.8 we have

t(f + h) ≤ lengthR/(f+h)(R/(f + h, g1, . . . , gd−1))
= lengthR(R/(f + h, g1, . . . , gd−1))
= lengthR(R/(f, g1, . . . , gd−1))

see Algebra, Lemma 52.5 for the first equality. Therefore we see that t(f + h) is bounded
independent of h ∈ mN .

By the boundedness proved above we may pick h ∈ mN ∩J such that t(f +h) is maximal
among such h. Set f ′ = f + h. Given h′ ∈ mN ∩ J we see that the number t(f ′ + h′) ≤
t(f +h). Thus after replacing f by f ′ we may assume that for every h ∈ mN ∩J we have
t(f + h) ≤ s.

Next, assume that we can find an element h ∈ mN ∩ J such that for each j we have
ordqj (h) ≥ 1 and ordqj (h) = 1 ⇔ mj > 1. Then ordqj (f + h) = 1 for every j by
elementary properties of valuations. Thus

div(f + h) =
∑s

j=1
qj +

∑v

k=1
ekrk

for some pairwise distinct height one prime ideals r1, . . . , rv and ek ≥ 1. However, since
s = t(f) ≥ t(f + h) we see that v = 0 and we have found the desired element.

Now we will pick h that satisfies the above criteria. By prime avoidance (Algebra, Lemma
15.2) for each 1 ≤ j ≤ s we can find an element aj ∈ qj ∩ J such that aj 6∈ qj′ for
j′ 6= j. Next, we can pick bj ∈ J ∩ q1 ∩ . . . ∩ qs with bj 6∈ q

(2)
j . Here q(2)

j = {x ∈ R |
ordqj (x) ≥ 2} is the second symbolic power of qj . Prime avoidance applies because the
ideal J ′ = J ∩ q1 ∩ . . . ∩ qs is radical, hence R/J ′ is reduced, hence (R/J ′)qj is reduced,
hence J ′ contains an element x with ordqj (x) = 1, hence J ′ 6⊂ q

(2)
j . Then the element

c =
∑

j=1,...,s
bj ×

∏
j′ 6=j

aj′

is an element of J with ordqj (c) = 1 for all j = 1, . . . , s by elementary properties of
valuations. Finally, we let

h = c×
∏

mj=1
aj × y

where y ∈ mN is an element which is not contained in qj for all j. �

126. Invertible objects in the derived category

We characterize invertible objects in the derived category of a ring.

Lemma 126.1. Let R be a ring. The derived category D(R) of R is a symmetric
monoidal category with tensor product given by derived tensor product and associativ-
ity and commutativity constraints as in Section 72.

Proof. Omitted. Hints: The associativity constraint is the isomorphism of Lemma
59.15 and the commutativity constraint is the isomorphism of Lemma 59.14. Having said
this the commutativity of various diagrams follows from the corresponding result for the
category of complexes of R-modules, see Section 58. �
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Thus we know what it means for an object ofD(R) to have a (left) dual or to be invertible.
Before we can work out what this amounts to we need a simple lemma.

Lemma 126.2. LetR be a ring. LetF • be a bounded above complex of freeR-modules.
Given pairs (ni, fi), i = 1, . . . , N with ni ∈ Z and fi ∈ Fni there exists a subcomplex
G• ⊂ F • containing all fi which is bounded and consists of finite free R-modules.

Proof. By descending induction on a = min(ni; i = 1, . . . , N). If Fn = 0 for n ≥
a, then the result is true withG• equal to the zero complex. In general, after renumbering
we may assume there exists an 1 ≤ r ≤ N such that n1 = . . . = nr = a and ni > a for
i > r. Choose a basis bj , j ∈ J for F a. We can choose a finite subset J ′ ⊂ J such that
fi ∈

⊕
j∈J′ Rbj for i = 1, . . . , r. Choose a basis ck, k ∈ K for F a+1. We can choose a

finite subset K ′ ⊂ K such that daF (bj) ∈
⊕

k∈K′ Rck for j ∈ J ′. Then we can apply the
induction hypothesis to find a subcomplex H• ⊂ F • containing ck ∈ F a+1 for k ∈ K ′

and fi ∈ Fni for i > r. Take G• equal to H• in degrees > a and equal to
⊕

j∈J′ Rbj in
degree a. �

Lemma 126.3. Let R be a ring. Let M be an object of D(R). The following are
equivalent

(1) M has a left dual in D(R) as in Categories, Definition 43.5,
(2) M is a perfect object of D(R).

Moreover, in this case the left dual of M is the object M∨ of Lemma 74.15.

Proof. IfM is perfect, then we can representM by a bounded complexM• of finite
projective R-modules. In this case M• has a left dual in the category of complexes by
Lemma 72.2 which is a fortiori a left dual in D(R).

Assume (1). SayN , η : R→M⊗L
RN , and ε : M⊗L

RN → R is a left dual as in Categories,
Definition 43.5. Choose a complex M• representing M . Choose a K-flat complexes N•

with flat terms representing N , see Lemma 59.10. Then η is given by a map of complexes

η : R −→ Tot(M• ⊗R N•)
We can write the image of 1 as a finite sum

η(1) =
∑

n

∑
i
mn,i ⊗ n−n,i

with mn,i ∈ Mn and n−n,i ∈ N−n. Let K• ⊂ M• be the subcomplex generated by all
the elements mn,i and d(mn,i). By our choice of N• we find that Tot(K• ⊗R N•) ⊂
Tot(M•⊗RN•) and η(1) is in the subcomplex by our choice above. DenoteK the object
of D(R) represented by K•. Then we see that η factors over a map η̃ : R −→ K ⊗L

R N .
Since (1⊗ ε) ◦ (η ⊗ 1) = idM we conclude that the identity on M factors through K by
the commutative diagram

M
η⊗1

//

η̃⊗1 ((

M ⊗L
R N ⊗L

RM 1⊗ε
// M

K ⊗L
R N ⊗L

RM

OO

1⊗ε // K

OO

Since K is bounded above it follows that M ∈ D−(R). Thus we can represent M by
a bounded above complex M• of free R-modules, see for example Derived Categories,
Lemma 15.4. Write η(1) =

∑
n

∑
imn,i⊗n−n,i as before. By Lemma 126.2 we can find a

subcomplexK• ⊂M• containing all the elementsmn,i which is bounded and consists of
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finite free R-modules. As above we find that the identity on M factors through K. Since
K is perfect we conclude M is perfect too, see Lemma 74.5. �

Lemma 126.4. Let R be a ring. Let M be an object of D(R). The following are
equivalent

(1) M is invertible in D(R), see Categories, Definition 43.4, and
(2) for every prime ideal p ⊂ R there exists an f ∈ R, f 6∈ p such that Mf

∼=
Rf [−n] for some n ∈ Z.

Moreover, in this case
(a) M is a perfect object of D(R),
(b) M =

⊕
Hn(M)[−n] in D(R),

(c) each Hn(M) is a finite projective R-module,
(d) we can write R =

∏
a≤n≤bRn such that Hn(M) corresponds to an invertible

Rn-module.

Proof. Assume (2). Consider the object RHomR(M,R) and the composition map

RHom(M,R)⊗L
RM → R

Checking locally we see that this is an isomorphism; we omit the details. BecauseD(R) is
symmetric monoidal we see that M is invertible.

Assume (1). Observe that an invertible object of a monoidal category has a left dual,
namely, its inverse. Thus M is perfect by Lemma 126.3. Consider a prime ideal p ⊂ R
with residue field κ. Then we see that M ⊗L

R κ is an invertible object of D(κ). Clearly
this implies that dimHi(M ⊗L

R κ) is nonzero exactly for one i and equal to 1 in that case.
By Lemma 75.6 this gives (2).

In the proof above we have seen that (a) holds. Let Un ⊂ Spec(R) be the union of the
opens of the form D(f) such that Mf

∼= Rf [−n]. Clearly, Un ∩ Un′ = ∅ if n 6= n′. If
M has tor amplitude in [a, b], then Un = ∅ if n 6∈ [a, b]. Hence we see that we have a
product decompositionR =

∏
a≤n≤bRn as in (d) such thatUn corresponds to Spec(Rn),

see Algebra, Lemma 24.3. SinceD(R) =
∏
a≤n≤bD(Rn) and similary for the category of

modules parts (b), (c), and (d) follow immediately. �

127. Splitting off a free module

The arguments in this section are due to Serre, see [?].

Situation 127.1. Here R is a ring and M is a finitely presented R-module. Denote
Ω ⊂ Spec(R) the set of closed points with the induced topology. For x ∈ Ω denote
M(x) = M/xM the fibre of M at x. This is a finite dimensional vector space over the
residue field κ(x) at x. Given s ∈M we denote s(x) the image of s in M(x).

Lemma 127.2. In Situation 127.1 let x ∈ Ω. There exists a canonical short exact
sequence

0→ B(x)→M(x)→ V (x)→ 0
of κ(x)-vector spaces which the following property: for s1, . . . , sr ∈ M the following
are equivalent

(1) there exists an f ∈ R, f 6∈ x such that the map s1, . . . , sr : R⊕r →M becomes
the inclusion of a direct summand after inverting f , and

(2) s1(x), . . . , sr(x) map to linearly independent elements of V (x).
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Proof. Define B(x) ⊂M(x) as the perpendicular of the image of the map
HomR(M,R)→ Homκ(x)(M(x), κ(x))

and set V (x) = M(x)/B(x). Then any R-linear map ϕ : M → R induces a map ϕ :
V (x) → κ(x) and conversely any κ(x)-linear map λ : V (x) → κ(x) is equal to ϕ for
some ϕ. Let s1, . . . , sr ∈M .
Suppose s1, . . . , sr map to linearly independent elements of V (x). Then we can find
ϕ1, . . . , ϕr ∈ HomR(M,R) such that ϕi(sj) maps to δij 18 in κ(x). Hence the matrix
of the composition

R⊕r s1,...,sr−−−−−→M
ϕ1,...,ϕr−−−−−→ R⊕r

has a determinant f ∈ R which maps to 1 in κ(x) Clearly, this implies that s1, . . . , sr :
R⊕r →M is the inclusion of a direct summand after inverting f .
Conversely, suppose that we have an f ∈ R, f 6∈ x such that s1, . . . , sr : R⊕r → M is
the inclusion of a direct summand after inverting f . Hence we can find Rf -linear maps
ϕi : Mf → Rf such that ϕi(sj) = δij ∈ Rf . Since HomR(M,R)f = HomRf (Mf , Rf )
by Algebra, Lemma 10.2 we conclude that we can find n ≥ 0 and ϕ′

i ∈ HomR(M,R) such
thatϕ′

i(sj) = fnδij ∈ R. It follows that s1, . . . , sr map to linearly independent elements
of V (x) as ϕ′

i(sj) = fnδij . �

In Situation 127.1 given s1, . . . , sr ∈ M we denote Z(s1, . . . , sr) ⊂ Ω the set of x ∈ Ω
such that s1(x), . . . , sr(x) map to linearly dependent elements of V (x). By the lemma
this is a closed subset of Ω.

Lemma 127.3. In Situation 127.1 let x1, . . . , xn ∈ Ω be pairwise distinct. Let vi ∈
V (xi). Then there exists an s ∈M such that s(xi) maps to vi for i = 1, . . . , n.

Proof. Since xi is a maximal ideal of R we may use Algebra, Lemma 15.4 to see that
M(x1)⊕ . . .⊕M(xn) is a quotient of M . �

Proposition 127.4. In Situation 127.1 assume Ω is a Noetherian topological space.
Let s1, . . . , sh ∈ M . Let Z(s1, . . . , sh) ⊂ F ⊂ Ω be closed. Let x1, . . . , xn ∈ F be
pairwise distinct. Let vi ∈ V (xi). Let k ≥ 0 be an integer such that

(∗) h+ k ≤ dimκ(x) V (x) for all x ∈ Ω
Then there exist s ∈M and F ′ ⊂ Ω closed such that

(a) s(xi) maps to vi,
(b) Z(s1, . . . , sh, s) ⊂ F ∪ F ′, and
(c) every irreducible component of F ′ has codimension ≥ k in Ω.

Proof. We note that codimension was defined in Topology, Section 11 and that we
will use some results on Noetherian topological spaces contained in Topology, Section 9.
The proof is by induction on k. If k = 0, then we choose s ∈ M as in Lemma 127.3 and
we choose F ′ = Ω.
Assume k > 0. By our induction hypothesis we may choose u ∈ M and G ⊂ Ω closed
satisfying (a), (b), (c) for s1, . . . , sh, F , x1, . . . , xn, v1, . . . , vn, and k − 1.
Let G = G1 ∪ . . . ∪ Gm be the decomposition of G into its irreducible components. If
Gj ⊂ F , then we can remove it from the list. Thus we may assume Gj is not contained
in F for j = 1, . . . ,m. For j = 1, . . . ,m choose yj ∈ Gj with yj 6∈ F and yj 6∈ Gj′ for

18Kronecker delta.
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j′ 6= j. This is possible as there are no inclusions among the irreducible components ofG.
Choose wj ∈ V (yj) not contained in the span of the images of s1(yj), . . . , sh(yj); this is
possible because h+ k ≤ dimV (yj) and k > 0.

Apply the induction hypothesis to the h + 1 sections s1, . . . , sh, u, the closed set F ∪G,
the points x1, . . . , xn, y1, . . . , ym ∈ F ∪ G, the elements 0 ∈ V (xi) and wj ∈ V (yj),
and the integer k− 1. Note that we have increased h by 1 and decreased k by 1 hence the
assumption (∗) of the proposition remains valid. This produces t ∈M andH ⊂ Ω closed
satisfying (a), (b), (c) for s1, . . . , sh, u,F∪G, x1, . . . , xn, y1, . . . , ym, 0, . . . , 0, w1, . . . , wm,
and k − 1.

Let H1, . . . , Hp ⊂ H be the irreducible components of H which are not contained in
F ∪G. As before pick zl ∈ Hl, zl 6∈ F ∪G and zl 6∈ Hl′ for l′ 6= l. Using Algebra, Lemma
15.4 we may choose f ∈ R such that f(yj) = 1, j = 1, . . . ,m and f(zl) = 0, l = 1, . . . , p.
Claim: the element s = u+ ft works.

First, the value s(xi) agrees with u(xi) because t(xi) = 0 and hence we see that s(xi)
maps to vi. This proves (a). To finish the proof it suffices to show that every irreducible
component Z of Z(s1, . . . , sh, s) not contained in F has codimension≥ k in Ω. Namely,
then we can set F ′ equal to the union of these and we get (b) and (c). We can see that
irreducible components Z of Z(s1, . . . , sh, s) of codimension ≤ k − 1 do not exist as
follows:

(1) Observe that Z(s1, . . . , sh, s) ⊂ Z(s1, . . . , sh, u, t) = F ∪ H as s = u + ft.
Hence Z ⊂ H .

(2) The irreducible components of H have codimension ≥ k − 1. Hence Z is equal
to an irreducible component ofH asZ has codimension≤ k−1. HenceZ = Hl

for some l ∈ {1, . . . , p} or Z = Gj for some j ∈ {1, . . .m}.
(3) But Z = Gj is impossible as s1(yj), . . . , sh(yj) map to linearly independent

elements of V (yj) and s(yj) = u(yj) + f(yj)t(yj) = u(yj) + t(yj) maps to an
element of the form

linear combination images of si(yj) + wj

which is linearly independent of the images of s1(yj), . . . , sh(yj) in V (yj) by
our choice of wj .

(4) Also Z = Zl is impossible. Namely, again s1(zl), . . . , sh(zl) map to linearly
independent elements of V (zl) and s(zl) = u(zl) + f(zl)t(zl) = u(zl) maps to
an element of V (zl) linearly independent of those as zl 6∈ F ∪G.

This finishes the proof. �

Theorem 127.5. Let R be a ring whose max spectrum Ω ⊂ Spec(R) is a Noetherian
topological space of dimension d < ∞. Let M be a finitely presented R-module such
that for all m ∈ Ω the Rm-module Mm has a free direct summand of rank > d. Then
M ∼= R⊕M ′.

Proof. For m ∈ Ω suppose that R⊕r
m is a direct summand of Mm. Then by Algebra,

Lemmas 9.9 and 127.6 we see thatR⊕r
f is a direct summand ofMf for some f ∈ R, f 6∈ m.

Hence the assumption means that dimV (x) > d for all x ∈ Ω where V (x) is as in Lemma
127.2. By Proposition 127.4 applied with F = ∅, h = 0 and no si, n = 0 and no xi, vi,
and k = d + 1 we find an s ∈ M and F ′ ⊂ Ω such that every irreducible component of
F ′ has codimension≥ d+1 and Z(s) ⊂ F ′. Since d = dim(Ω) this forces F ′ = ∅. Hence
s : R → M is the inclusion of a direct summand at all maximal ideals. It follows that
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s is universally injective, see Algebra, Lemma 82.12. Then s is split injective by Algebra,
Lemma 82.4. �

128. Big projective modules are free

In this section we discuss one of the results of [?]; we suggest the reader look at the original
paper. Our argument will use the slightly simplified proof given in the papers [?] and [?].

Lemma 128.1 (Eilenberg’s lemma). If P ⊕Q ∼= F with F a nonfinitely generated free
module, then P ⊕ F ∼= F .

Proof.
F ∼= F ⊕ F ⊕ . . . ∼= P ⊕Q⊕ P ⊕Q⊕ . . . ∼= P ⊕ F ⊕ F ⊕ . . . ∼= P ⊕ F

�

Lemma 128.2. Let R be a ring. Let P be a projective module. There exists a free
module F such that P ⊕ F is free.

Proof. SinceP is projective we see thatF0 = P⊕Q is a free module for some module
Q. Set F =

⊕
n≥1 F0. Then P ⊕ F ∼= F by Lemma 128.1. �

Lemma 128.3. Let R be a ring. Let P be a projective module. Let s ∈ P . There exists
a finite free module F and a finite free direct summand K ⊂ F ⊕ P with (0, s) ∈ K.

Proof. By Lemma 128.2 we can find a (possibly infinite) free module F such that
F⊕P is free. Then of course (0, s) is contained in a finite free direct summandK ⊂ F⊕P .
In turn K is contained in F ′ ⊕ P where F ′ ⊂ F is a finite free direct summand. �

Lemma 128.4. Let R be a ring with Jacobson radical J such that R/J is Noetherian.
Let P be a projective R-module such that Pm has infinite rank for all maximal ideals m of
R. Let s ∈ P and M ⊂ P such that Rs + M = P . Then we can find m ∈ M such that
R(s+m) is a free direct summand of P .

Proof. The statement makes sense as Pm is free by Algebra, Theorem 85.4.
Denote M ′ ⊂ P/JP the image of M and s′ ∈ P/JP the image of s. Observe that
R/Js′ + M ′ = P/JP . Suppose we can find m′ ∈ M ′ such that R/J(s′ + m′) is a
free direct summand of M ′. Choose ϕ′ : P/JP → R/J which gives a splitting, i.e., we
have ϕ′(s′ + m′) = 1 in R/J . Then since P is a projective R-module we can find a lift
ϕ : P → R of ϕ′. Choose m ∈M mapping to m′. Then ϕ(s+m) ∈ R is congruent to 1
modulo J and hence a unit inR (Algebra, Lemma 19.1). WhenceR(s+m) is a free direct
summand of P . This reduces us to the case discussed in the next paragraph.
Assume R is Noetherian. Let m ∈ M be an element and let ϕ1, . . . , ϕn : P → R be
R-linear maps. Denote

Z(s+m,ϕ1, . . . , ϕn) ⊂ Spec(R)
the vanishing locus of ϕ1(s+m), . . . , ϕn(s+m) ∈ R.
Suppose m is a maximal ideal of R and m ∈ Z(s, ϕ1, . . . , ϕn). Set K = M ∩

⋂
Ker(ϕi).

We claim the image of
K/mK → P/mP

has infinite dimension. Namely, the quotient P/K is a finiteR-module as it is isomorphic
to a submodule of P/M ⊕ R⊕n. Thus we see that the kernel of the displayed arrow
is a quotient of TorR1 (P/K, κ(m)) which is finite by Algebra, Lemma 75.7. Combined
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with the fact that P/mP has infinite dimension we obtain our claim. Thus we can find a
t ∈ K which maps to a nonzero element t of the vector space P/mP . By linear algebra,
we find an R-linear map ϕ : P → κ(m) such that ϕ(t) = 1. Since P is projective, we
can find an R-linear map ϕ : P → R lifting ϕ. Then we see that the vanishing locus
Z(s + m + t, ϕ1, . . . , ϕn, ϕ) is contained in Z(s + m,ϕ1, . . . , ϕn) but does not contain
m, i.e., it is strictly smaller than Z(s+m,ϕ1, . . . , ϕn).
Since Spec(R) is a Noetherian topological space, we see from the arguments above that
we may find m ∈ M and ϕ1, . . . , ϕn : P → R such that the closed subset Z(s +
m,ϕ1, . . . , ϕn) does not contain any closed points of Spec(R). HenceZ(s+m,ϕ1, . . . , ϕn) =
∅. Hence we can find r1, . . . , rn ∈ R such that

∑
riϕi(s+m) = 1. Hence

R
s+m−−−→ P

∑
riϕi

−−−−−→ R

is the desired splitting. �

Lemma 128.5. Let R be a ring with Jacobson radical J such that R/J is Noetherian.
Let P be a projective R-module such that Pm has infinite rank for all maximal ideals m of
R. Let s ∈ P . Then we can find a finite stably free direct summand M ⊂ P such that
s ∈M .

Proof. By Lemma 128.3 we can find a finite free module F and a finite free direct
summand K ⊂ F ⊕ P such that (0, s) ∈ K. By induction on the rank of F we reduce to
the case discussed in the next paragraph.
Assume there exists a finite stably free direct summandK ⊂ R⊕P such that (0, s) ∈ K.
Choose a complement K ′ of K , i.e., such that R ⊕ P = K ⊕ K ′. The projection π :
R ⊕ P → K ′ is surjectve, hence by Lemma 128.4 we find a p ∈ P such that π(1, p) ∈ K ′

generates a free direct summand. Accordingly we write K ′ = Rπ(1, p) ⊕ K ′′. We see
that

R⊕ P = K ⊕K ′ = K ⊕Rπ(1, p)⊕K ′′

The projection π′ : P → K ′′ is surjective19 and hence split (as K ′′ is projective). Thus
Ker(π′) ⊂ P is a direct summand containing s. Finally, by construction we have an
isomorphism

R⊕Ker(π′) ∼= K ⊕Rπ(1, p)
and hence since K is finite and stably free, so is Ker(π′). �

Theorem 128.6. LetR be a ring with Jacobson radical J such thatR/J is Noetherian.
Let P be a countably generated projectiveR-module such that Pm has infinite rank for all
maximal ideals m of R. Then P is free.

Proof. We first prove that P is a countable direct sum of finite stably free modules.
Letx1, x2, . . . be a countable set of generators forP . We inductively construct finite stably
free direct summands F1, F2, . . . of P such that for all n we have that F1 ⊕ . . . ⊕ Fn is
a direct summand of P which contains x1, . . . , xn. Namely, given F1, . . . , Fn with the
desired properties, write

P = F1 ⊕ . . .⊕ Fn ⊕ P ′

and let s ∈ P ′ be the image of xn+1. By Lemma 128.5 we can find a finite stably free direct
summand Fn+1 ⊂ P ′ containing s. Then P =

⊕∞
i=1 Fi.

19Namely, if k′′ ∈ K′′ then k′′ viewed as an element of K′ can be written as k′′ = λπ(1, 0) + π(0, q)
for some λ ∈ R and q ∈ P . This means k′′ = λπ(1, p) + π(0, q − λp). This in turn means that q − λp maps
to k′′ by the composition P → R⊕ P

π−→ K′ → K′′ since K′ → K′′ annihilates π(1, p).
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Assume that P is an infinite direct sum P =
⊕∞

i=1 Fi of nonzero finite stably free mod-
ules. The stable freeness of the modules Fi will be used in the following manner: the rank
of each Fi is constant (and positive). Hence we see that Pm is free of countably infinite
rank for each maximal ideal m of R. By Lemma 128.4 applied with s = 0 and M = P ,
we can find a t1 ∈ P such that Rt1 is a free direct summand of P . Then t1 is contained
in F1 ⊕ . . . ⊕ Fn1 for some n1 > n0 = 0. The same reasoning applied to

⊕
n>n1

Fn
produces an n1 < n2 and t2 ∈ Fn1+1⊕ . . .⊕Fn2 which generates a free direct summand.
Continuing in this fashion we obtain a free direct summand⊕

i≥1
ti :
⊕

i≥1
R −→

⊕
i≥1

⊕
ni≥n>ni−1

Fn = P

of infinite rank. Thus we see that P ∼= Q ⊕ F for some free R-module F of countable
rank. Since Q is countably generated it follows that Q ⊕ Q′ ∼= F for some module Q′.
Then the Eilenberg swindle (Lemma 128.1) implies that Q⊕ F ∼= F and P is free. �
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CHAPTER 16

Smoothing Ring Maps

1. Introduction

The main result of this chapter is the following:

A regular map of Noetherian rings is a filtered colimit of smooth ones.

This theorem is due to Popescu, see [?]. A readable exposition of Popescu’s proof was given
by Richard Swan, see [?] who used notes by André and a paper of Ogoma, see [?].
Our exposition follows Swan’s, but we first prove an intermediate result which lets us
work in a slightly simpler situation. Here is an overview. We first solve the following
“lifting problem”: A flat infinitesimal deformation of a filtered colimit of smooth algebras
is a filtered colimit of smooth algebras. This result essentially says that it suffices to prove
the main theorem for maps between reduced Noetherian rings. Next we prove two very
clever lemmas called the “lifting lemma” and the “desingularization lemma”. We show that
these lemmas combined reduce the main theorem to proving a Noetherian, geometrically
regular algebra Λ over a field k is a filtered colimit of smooth k-algebras. Next, we discuss
the necessary local tricks that go into the Popescu-Ogoma-Swan-André proof. Finally, in
the last three sections we give the proof.
We end this introduction with some pointers to references. Let A be a henselian Noe-
therian local ring. We say A has the approximation property if for any f1, . . . , fm ∈
A[x1, . . . , xn] the system of equations f1 = 0, . . . , fm = 0 has a solution in the com-
pletion of A if and only if it has a solution in A. This definition is due to Artin. Artin
first proved the approximation property for analytic systems of equations, see [?]. In [?]
Artin proved the approximation property for local rings essentially of finite type over an
excellent discrete valuation ring. Artin conjectured (page 26 of [?]) that every excellent
henselian local ring should have the approximation property.
At some point in time it became a conjecture that every regular homomorphism of Noe-
therian rings is a filtered colimit of smooth algebras (see for example [?], [?], [?], [?]). We’re
not sure who this conjecture1 is due to. The relationship with the approximation property
is that ifA→ A∧ is a colimit of smooth algebras withA as above, then the approximation
property holds (insert future reference here). Moreover, the main theorem applies to the
map A → A∧ if A is an excellent local ring, as one of the conditions of an excellent lo-
cal ring is that the formal fibres are geometrically regular. Note that excellent local rings
were defined by Grothendieck and their definition appeared in print in 1965.
In [?] it was shown that R → R∧ is a filtered colimit of smooth algebras for any local
ring R essentially of finite type over a field. In [?] it was shown that R→ R∧ is a filtered
colimit of smooth algebras for any local ring R essentially of finite type over an excellent

1The question/conjecture as formulated in [?], [?], and [?] is stronger and was shown to be equivalent to the
original version in [?].

1591
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discrete valuation ring. Finally, the main theorem was shown in [?], [?], [?], [?], and [?] as
discussed above.

Conversely, using some of the results above, in [?] it was shown that any Noetherian local
ring with the approximation property is excellent.

The paper [?] provides an alternative approach to the main theorem, but it seems hard to
read (for example [?, Lemma 5.2] appears to be an incorrectly reformulated version of [?,
Lemma 3]). There is also a Bourbaki lecture about this material, see [?].

2. Singular ideals

Let R→ A be a ring map. The singular ideal of A over R is the radical ideal in A cutting
out the singular locus of the morphism Spec(A)→ Spec(R). Here is a formal definition.

Definition 2.1. Let R→ A be a ring map. The singular ideal of A over R, denoted
HA/R is the unique radical ideal HA/R ⊂ A with

V (HA/R) = {q ∈ Spec(A) | R→ A not smooth at q}

This makes sense because the set of primes where R → A is smooth is open, see Algebra,
Definition 137.11. In order to find an explicit set of generators for the singular ideal we
first prove the following lemma.

Lemma 2.2. Let R be a ring. Let A = R[x1, . . . , xn]/(f1, . . . , fm). Let q ⊂ A be a
prime ideal. Assume R→ A is smooth at q. Then there exists an a ∈ A, a 6∈ q, an integer
c, 0 ≤ c ≤ min(n,m), subsetsU ⊂ {1, . . . , n}, V ⊂ {1, . . . ,m} of cardinality c such that

a = a′ det(∂fj/∂xi)j∈V,i∈U
for some a′ ∈ A and

af` ∈ (fj , j ∈ V ) + (f1, . . . , fm)2

for all ` ∈ {1, . . . ,m}.

Proof. Set I = (f1, . . . , fm) so that the naive cotangent complex of A over R is
homotopy equivalent to I/I2 →

⊕
Adxi, see Algebra, Lemma 134.2. We will use the for-

mation of the naive cotangent complex commutes with localization, see Algebra, Section
134, especially Algebra, Lemma 134.13. By Algebra, Definitions 137.1 and 137.11 we see
that (I/I2)a →

⊕
Aadxi is a split injection for some a ∈ A, a 6∈ q. After renumber-

ing x1, . . . , xn and f1, . . . , fm we may assume that f1, . . . , fc form a basis for the vector
space I/I2 ⊗A κ(q) and that dxc+1, . . . , dxn map to a basis of ΩA/R ⊗A κ(q). Hence
after replacing a by aa′ for some a′ ∈ A, a′ 6∈ q we may assume f1, . . . , fc form a basis for
(I/I2)a and that dxc+1, . . . , dxn map to a basis of (ΩA/R)a. In this situation aN for some
large integer N satisfies the conditions of the lemma (with U = V = {1, . . . , c}). �

We will use the notion of a strictly standard element in A over R. Our notion is slightly
weaker than the one in Swan’s paper [?]. We also define an elementary standard element
to be one of the type we found in the lemma above. We compare the different types of
elements in Lemma 3.7.

Definition 2.3. Let R → A be a ring map of finite presentation. We say an el-
ement a ∈ A is elementary standard in A over R if there exists a presentation A =
R[x1, . . . , xn]/(f1, . . . , fm) and 0 ≤ c ≤ min(n,m) such that

(2.3.1) a = a′ det(∂fj/∂xi)i,j=1,...,c
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for some a′ ∈ A and
(2.3.2) afc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m − c. We say a ∈ A is strictly standard in A over R if there exists a
presentation A = R[x1, . . . , xn]/(f1, . . . , fm) and 0 ≤ c ≤ min(n,m) such that

(2.3.3) a =
∑

I⊂{1,...,n}, |I|=c
aI det(∂fj/∂xi)j=1,...,c, i∈I

for some aI ∈ A and
(2.3.4) afc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m− c.

The following lemma is useful to find implications of (2.3.3).

Lemma 2.4. Let R be a ring. Let A = R[x1, . . . , xn]/(f1, . . . , fm) and write I =
(f1, . . . , fm). Leta ∈ A. Then (2.3.3) implies there exists anA-linear mapψ :

⊕
i=1,...,nAdxi →

A⊕c such that the composition

A⊕c (f1,...,fc)−−−−−−→ I/I2 f 7→df−−−−→
⊕

i=1,...,n
Adxi

ψ−→ A⊕c

is multiplication by a. Conversely, if such a ψ exists, then ac satisfies (2.3.3).

Proof. This is a special case of Algebra, Lemma 15.5. �

Lemma 2.5 (Elkik). Let R → A be a ring map of finite presentation. The singular
ideal HA/R is the radical of the ideal generated by strictly standard elements in A over R
and also the radical of the ideal generated by elementary standard elements in A over R.

Proof. Assume a is strictly standard inA overR. We claim thatAa is smooth overR,
which proves that a ∈ HA/R. Namely, letA = R[x1, . . . , xn]/(f1, . . . , fm), c, and a′ ∈ A
be as in Definition 2.3. Write I = (f1, . . . , fm) so that the naive cotangent complex
of A over R is given by I/I2 →

⊕
Adxi. Assumption (2.3.4) implies that (I/I2)a is

generated by the classes of f1, . . . , fc. Assumption (2.3.3) implies that the differential
(I/I2)a →

⊕
Aadxi has a left inverse, see Lemma 2.4. Hence R → Aa is smooth by

definition and Algebra, Lemma 134.13.
LetHe,Hs ⊂ A be the radical of the ideal generated by elementary, resp. strictly standard
elements ofA overR. By definition and what we just proved we haveHe ⊂ Hs ⊂ HA/R.
The inclusion HA/R ⊂ He follows from Lemma 2.2. �

Example 2.6. The set of points where a finitely presented ring map is smooth needn’t
be a quasi-compact open. For example, letR = k[x, y1, y2, y3, . . .]/(xyi) andA = R/(x).
Then the smooth locus of R→ A is

⋃
D(yi) which is not quasi-compact.

Lemma 2.7. Let R → A be a ring map of finite presentation. Let R → R′ be a ring
map. If a ∈ A is elementary, resp. strictly standard inA overR, then a⊗ 1 is elementary,
resp. strictly standard in A⊗R R′ over R′.

Proof. IfA = R[x1, . . . , xn]/(f1, . . . , fm) is a presentation ofA overR, thenA⊗R
R′ = R′[x1, . . . , xn]/(f ′

1, . . . , f
′
m) is a presentation of A ⊗R R′ over R′. Here f ′

j is the
image of fj in R′[x1, . . . , xn]. Hence the result follows from the definitions. �

Lemma 2.8. Let R → A → Λ be ring maps with A of finite presentation over R.
Assume thatHA/RΛ = Λ. Then there exists a factorizationA→ B → Λ withB smooth
over R.
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Proof. Choose f1, . . . , fr ∈ HA/R and λ1, . . . , λr ∈ Λ such that
∑
fiλi = 1 in Λ.

Set B = A[x1, . . . , xr]/(f1x1 + . . .+ frxr − 1) and define B → Λ by mapping xi to λi.
To check that B is smooth over R use that Afi is smooth over R by definition of HA/R

and that Bfi is smooth over Afi . Details omitted. �

3. Presentations of algebras

Some of the results in this section are due to Elkik. Note that the algebraC in the following
lemma is a symmetric algebra over A. Moreover, if R is Noetherian, then C is of finite
presentation over R.

Lemma 3.1. Let R be a ring and let A be a finitely presented R-algebra. There ex-
ists finite type R-algebra map A → C which has a retraction with the following two
properties

(1) for each a ∈ A such that R → Aa is a local complete intersection (More on
Algebra, Definition 33.2) the ring Ca is smooth over Aa and has a presentation
Ca = R[y1, . . . , ym]/J such that J/J2 is free over Ca, and

(2) for each a ∈ A such that Aa is smooth over R the module ΩCa/R is free over
Ca.

Proof. Choose a presentation A = R[x1, . . . , xn]/I and write I = (f1, . . . , fm).
Define the A-module K by the short exact sequence

0→ K → A⊕m → I/I2 → 0
where the jth basis vector ej in the middle is mapped to the class of fj on the right. Set

C = Sym∗
A(I/I2).

The retraction is just the projection onto the degree 0 part of C. We have a surjection
R[x1, . . . , xn, y1, . . . , ym] → C which maps yj to the class of fj in I/I2. The kernel
J of this map is generated by the elements f1, . . . , fm and by elements

∑
hjyj with

hj ∈ R[x1, . . . , xn] such that
∑
hjej defines an element of K. By Algebra, Lemma 134.4

applied to R → A → C and the presentations above and More on Algebra, Lemma 9.12
there is a short exact sequence

(3.1.1) I/I2 ⊗A C → J/J2 → K ⊗A C → 0
of C-modules. Let h ∈ R[x1, . . . , xn] be an element with image a ∈ A. We will use as
presentations for the localized rings

Aa = R[x0, x1, . . . , xn]/I ′ and Ca = R[x0, x1, . . . , xn, y1, . . . , ym]/J ′

where I ′ = (hx0 − 1, I) and J ′ = (hx0 − 1, J). Hence I ′/(I ′)2 = Aa ⊕ (I/I2)a as
Aa-modules and J ′/(J ′)2 = Ca ⊕ (J/J2)a as Ca-modules. Thus we obtain

(3.1.2) Ca ⊕ I/I2 ⊗A Ca → Ca ⊕ (J/J2)a → K ⊗A Ca → 0
as the sequence of Algebra, Lemma 134.4 corresponding to R → Aa → Ca and the pre-
sentations above.

Next, assume that a ∈ A is such that Aa is a local complete intersection over R. Then
(I/I2)a is finite projective over Aa, see More on Algebra, Lemma 32.3. Hence we see
Ka ⊕ (I/I2)a ∼= A⊕m

a is free. In particular Ka is finite projective too. By More on
Algebra, Lemma 33.6 the sequence (3.1.2) is exact on the left. Hence

J ′/(J ′)2 ∼= Ca ⊕ I/I2 ⊗A Ca ⊕K ⊗A Ca ∼= C⊕m+1
a
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This proves (1). Finally, suppose that in addition Aa is smooth over R. Then the same
presentation shows that ΩCa/R is the cokernel of the map

J ′/(J ′)2 −→
⊕

i
Cadxi ⊕

⊕
j
Cadyj

The summand Ca of J ′/(J ′)2 in the decomposition above corresponds to hx0 − 1 and
hence maps isomorphically to the summandCadx0. The summand I/I2⊗ACa ofJ ′/(J ′)2

maps injectively to
⊕

i=1,...,n Cadxi with quotient ΩAa/R⊗Aa Ca. The summandK⊗A
Ca maps injectively to

⊕
j≥1 Cadyj with quotient isomorphic to I/I2 ⊗A Ca. Thus

the cokernel of the last displayed map is the module I/I2 ⊗A Ca ⊕ ΩAa/R ⊗Aa Ca.
Since (I/I2)a ⊕ ΩAa/R is free (from the definition of smooth ring maps) we see that (2)
holds. �

The following proposition was proved for smooth ring maps over henselian pairs by Elkik
in [?]. For smooth ring maps it can be found in [?], where it is also proven that ring maps
between smooth algebras can be lifted.

Proposition 3.2. Let R→ R0 be a surjective ring map with kernel I .

(1) If R0 → A0 is a syntomic ring map, then there exists a syntomic ring map R→
A such that A/IA ∼= A0.

(2) If R0 → A0 is a smooth ring map, then there exists a smooth ring map R → A
such that A/IA ∼= A0.

Proof. AssumeR0 → A0 syntomic, in particular a local complete intersection (More
on Algebra, Lemma 33.5). Choose a presentation A0 = R0[x1, . . . , xn]/J0. Set C0 =
Sym∗

A0
(J0/J

2
0 ). Note thatJ0/J

2
0 is a finite projectiveA0-module (Algebra, Lemma 136.16).

By Lemma 3.1 the ring map A0 → C0 is smooth and we can find a presentation C0 =
R0[y1, . . . , ym]/K0 with K0/K

2
0 free over C0. By Algebra, Lemma 136.6 we can assume

C0 = R0[y1, . . . , ym]/(f1, . . . , f c) where f1, . . . , f c maps to a basis of K0/K
2
0 over C0.

Choose f1, . . . , fc ∈ R[y1, . . . , yc] lifting f1, . . . , f c and set

C = R[y1, . . . , ym]/(f1, . . . , fc)

By construction C0 = C/IC. By Algebra, Lemma 136.10 we can after replacing C by Cg
assume that C is a relative global complete intersection over R. We conclude that there
exists a finite projectiveA0-moduleP0 such thatC0 = Sym∗

A0
(P0) is isomorphic toC/IC

for some syntomic R-algebra C.

Choose an integer n and a direct sum decomposition A⊕n
0 = P0 ⊕ Q0. By More on

Algebra, Lemma 9.11 we can find an étale ring mapC → C ′ which induces an isomorphism
C/IC → C ′/IC ′ and a finite projective C ′-module Q such that Q/IQ is isomorphic to
Q0⊗A0C/IC. ThenD = Sym∗

C′(Q) is a smoothC ′-algebra (see More on Algebra, Lemma
9.13). Picture

R

��

// C //

��

C ′ //

��

D

��
R/I // A0 // C/IC

∼= // C ′/IC ′ // D/ID
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Observe that our choice of Q gives
D/ID = Sym∗

C/IC(Q0 ⊗A0 C/IC)
= Sym∗

A0
(Q0)⊗A0 C/IC

= Sym∗
A0

(Q0)⊗A0 Sym∗
A0

(P0)
= Sym∗

A0
(Q0 ⊕ P0)

= Sym∗
A0

(A⊕n
0 )

= A0[x1, . . . , xn]
Choose f1, . . . , fn ∈ D which map to x1, . . . , xn in D/ID = A0[x1, . . . , xn]. Set
A = D/(f1, . . . , fn). Note that A0 = A/IA. We claim that R → A is syntomic in
a neighbourhood of V (IA). If the claim is true, then we can find a f ∈ A mapping to
1 ∈ A0 such that Af is syntomic over R and the proof of (1) is finished.
Proof of the claim. Observe that R → D is syntomic as a composition of the syntomic
ring map R → C , the étale ring map C → C ′ and the smooth ring map C ′ → D
(Algebra, Lemmas 136.17 and 137.10). The question is local on Spec(D), hence we may
assume that D is a relative global complete intersection (Algebra, Lemma 136.15). Say
D = R[y1, . . . , ym]/(g1, . . . , gs). Let f ′

1, . . . , f
′
n ∈ R[y1, . . . , ym] be lifts of f1, . . . , fn.

Then we can apply Algebra, Lemma 136.10 to get the claim.
Proof of (2). Since a smooth ring map is syntomic, we can find a syntomic ring mapR→ A
such that A0 = A/IA. By assumption the fibres of R → A are smooth over primes in
V (I) hence R → A is smooth in an open neighbourhood of V (IA) (Algebra, Lemma
137.17). Thus we can replace A by a localization to obtain the result we want. �

We know that any syntomic ring map R → A is locally a relative global complete in-
tersection, see Algebra, Lemma 136.15. The next lemma says that a vector bundle over
Spec(A) is a relative global complete intersection.

Lemma 3.3. Let R → A be a syntomic ring map. Then there exists a smooth R-
algebra mapA→ C with a retraction such thatC is a global relative complete intersection
over R, i.e.,

C ∼= R[x1, . . . , xn]/(f1, . . . , fc)
flat over R and all fibres of dimension n− c.

Proof. Apply Lemma 3.1 to getA→ C. By Algebra, Lemma 136.6 we can writeC =
R[x1, . . . , xn]/(f1, . . . , fc) with fi mapping to a basis of J/J2. The ring map R → C is
syntomic (hence flat) as it is a composition of a syntomic and a smooth ring map. The
dimension of the fibres is n − c by Algebra, Lemma 135.4 (the fibres are local complete
intersections, so the lemma applies). �

Lemma 3.4. LetR→ A be a smooth ring map. Then there exists a smoothR-algebra
map A→ B with a retraction such that B is standard smooth over R, i.e.,

B ∼= R[x1, . . . , xn]/(f1, . . . , fc)
and det(∂fj/∂xi)i,j=1,...,c is invertible in B.

Proof. Apply Lemma 3.3 to get a smooth R-algebra map A → C with a retraction
such that C = R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection over
R. As C is smooth over R we have a short exact sequence

0→
⊕

j=1,...,c
Cfj →

⊕
i=1,...,n

Cdxi → ΩC/R → 0
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Since ΩC/R is a projective C-module this sequence is split. Choose a left inverse t to the
first map. Say t(dxi) =

∑
cijfj so that

∑
i
∂fj
∂xi

ci` = δj` (Kronecker delta). Let

B′ = C[y1, . . . , yc] = R[x1, . . . , xn, y1, . . . , yc]/(f1, . . . , fc)
The R-algebra map C → B′ has a retraction given by mapping yj to zero. We claim that
the map

R[z1, . . . , zn] −→ B′, zi 7−→ xi −
∑

j
cijyj

is étale at every point in the image of Spec(C)→ Spec(B′). In ΩB′/R[z1,...,zn] we have

0 = dfj −
∑

i

∂fj
∂xi

dzi ≡
∑

i,`

∂fj
∂xi

ci`dy` ≡ dyj mod (y1, . . . , yc)ΩB′/R[z1,...,zn]

Since 0 = dzi = dxi modulo
∑
B′dyj + (y1, . . . , yc)ΩB′/R[z1,...,zn] we conclude that

ΩB′/R[z1,...,zn]/(y1, . . . , yc)ΩB′/R[z1,...,zn] = 0.
As ΩB′/R[z1,...,zn] is a finite B′-module by Nakayama’s lemma there exists a g ∈ 1 +
(y1, . . . , yc) that (ΩB′/R[z1,...,zn])g = 0. This proves that R[z1, . . . , zn] → B′

g is un-
ramified, see Algebra, Definition 151.1. For any ring map R → k where k is a field we
obtain an unramified ring map k[z1, . . . , zn] → (B′

g) ⊗R k between smooth k-algebras
of dimension n. It follows that k[z1, . . . , zn] → (B′

g) ⊗R k is flat by Algebra, Lem-
mas 128.1 and 140.2. By the critère de platitude par fibre (Algebra, Lemma 128.8) we
conclude that R[z1, . . . , zn] → B′

g is flat. Finally, Algebra, Lemma 143.7 implies that
R[z1, . . . , zn] → B′

g is étale. Set B = B′
g . Note that C → B is smooth and has a retrac-

tion, so alsoA→ B is smooth and has a retraction. Moreover,R[z1, . . . , zn]→ B is étale.
By Algebra, Lemma 143.2 we can write

B = R[z1, . . . , zn, w1, . . . , wc]/(g1, . . . , gc)
with det(∂gj/∂wi) invertible in B. This proves the lemma. �

Lemma 3.5. LetR→ Λ be a ring map. If Λ is a filtered colimit of smoothR-algebras,
then Λ is a filtered colimit of standard smooth R-algebras.

Proof. Let A → Λ be an R-algebra map with A of finite presentation over R. Ac-
cording to Algebra, Lemma 127.4 we have to factor this map through a standard smooth
algebra, and we know we can factor it as A→ B → Λ with B smooth over R. Choose an
R-algebra map B → C with a retraction C → B such that C is standard smooth over R,
see Lemma 3.4. Then the desired factorization is A→ B → C → B → Λ. �

Lemma 3.6. LetR→ A be a standard smooth ring map. LetE ⊂ A be a finite subset
of order |E| = n. Then there exists a presentation A = R[x1, . . . , xn+m]/(f1, . . . , fc)
with c ≥ n, with det(∂fj/∂xi)i,j=1,...,c invertible in A, and such that E is the set of
congruence classes of x1, . . . , xn.

Proof. Choose a presentation A = R[y1, . . . , ym]/(g1, . . . , gd) such that the image
of det(∂gj/∂yi)i,j=1,...,d is invertible in A. Choose an enumerations E = {a1, . . . , an}
and choose hi ∈ R[y1, . . . , ym] whose image in A is ai. Consider the presentation

A = R[x1, . . . , xn, y1, . . . , ym]/(x1 − h1, . . . , xn − hn, g1, . . . , gd)
and set c = n+ d. �

Lemma 3.7. Let R → A be a ring map of finite presentation. Let a ∈ A. Consider
the following conditions on a:
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(1) Aa is smooth over R,
(2) Aa is smooth over R and ΩAa/R is stably free,
(3) Aa is smooth over R and ΩAa/R is free,
(4) Aa is standard smooth over R,
(5) a is strictly standard in A over R,
(6) a is elementary standard in A over R.

Then we have
(a) (4)⇒ (3)⇒ (2)⇒ (1),
(b) (6)⇒ (5),
(c) (6)⇒ (4),
(d) (5)⇒ (2),
(e) (2)⇒ the elements ae, e ≥ e0 are strictly standard in A over R,
(f) (4)⇒ the elements ae, e ≥ e0 are elementary standard in A over R.

Proof. Part (a) is clear from the definitions and Algebra, Lemma 137.7. Part (b) is
clear from Definition 2.3.

Proof of (c). Choose a presentationA = R[x1, . . . , xn]/(f1, . . . , fm) such that (2.3.1) and
(2.3.2) hold. Choose h ∈ R[x1, . . . , xn] mapping to a. Then

Aa = R[x0, x1, . . . , xn]/(x0h− 1, f1, . . . , fm).

Write J = (x0h−1, f1, . . . , fm). By (2.3.2) we see that theAa-module J/J2 is generated
by x0h − 1, f1, . . . , fc over Aa. Hence, as in the proof of Algebra, Lemma 136.6, we can
choose a g ∈ 1 + J such that

Aa = R[x0, . . . , xn, xn+1]/(x0h− 1, f1, . . . , fm, gxn+1 − 1).

At this point (2.3.1) implies thatR→ Aa is standard smooth (use the coordinatesx0, x1, . . . , xc, xn+1
to take derivatives).

Proof of (d). Choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) such that (2.3.3)
and (2.3.4) hold. Write I = (f1, . . . , fm). We already know that Aa is smooth over R,
see Lemma 2.5. By Lemma 2.4 we see that (I/I2)a is free on f1, . . . , fc and maps isomor-
phically to a direct summand of

⊕
Aadxi. Since ΩAa/R = (ΩA/R)a is the cokernel of

the map (I/I2)a →
⊕
Aadxi we conclude that it is stably free.

Proof of (e). Choose a presentation A = R[x1, . . . , xn]/I with I finitely generated. By
assumption we have a short exact sequence

0→ (I/I2)a →
⊕

i=1,...,n
Aadxi → ΩAa/R → 0

which is split exact. Hence we see that (I/I2)a⊕ΩAa/R is a freeAa-module. Since ΩAa/R
is stably free we see that (I/I2)a is stably free as well. Thus replacing the presentation
chosen above by A = R[x1, . . . , xn, xn+1, . . . , xn+r]/J with J = (I, xn+1, . . . , xn+r)
for some r we get that (J/J2)a is (finite) free. Choose f1, . . . , fc ∈ J which map to a basis
of (J/J2)a. Extend this to a list of generators f1, . . . , fm ∈ J . Consider the presentation
A = R[x1, . . . , xn+r]/(f1, . . . , fm). Then (2.3.4) holds for ae for all sufficiently large e
by construction. Moreover, since (J/J2)a →

⊕
i=1,...,n+r Aadxi is a split injection we

can find anAa-linear left inverse. Writing this left inverse in terms of the basis f1, . . . , fc
and clearing denominators we find a linear map ψ0 : A⊕n+r → A⊕c such that

A⊕c (f1,...,fc)−−−−−−→ J/J2 f 7→df−−−−→
⊕

i=1,...,n+r
Adxi

ψ0−−→ A⊕c
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is multiplication by ae0 for some e0 ≥ 1. By Lemma 2.4 we see (2.3.3) holds for all ace0

and hence for ae for all e with e ≥ ce0.

Proof of (f). Choose a presentationAa = R[x1, . . . , xn]/(f1, . . . , fc) such that det(∂fj/∂xi)i,j=1,...,c
is invertible in Aa. We may assume that for some m < n the classes of the elements
x1, . . . , xm correspond ai/1 where a1, . . . , am ∈ A are generators ofA overR, see Lemma
3.6. After replacing xi by aNxi form < i ≤ nwe may assume the class of xi is ai/1 ∈ Aa
for some ai ∈ A. Consider the ring map

Ψ : R[x1, . . . , xn] −→ A, xi 7−→ ai.

This is a surjective ring map. By replacing fj byaNfj we may assume that fj ∈ R[x1, . . . , xn]
and that Ψ(fj) = 0 (since after all fj(a1/1, . . . , an/1) = 0 in Aa). Let J = Ker(Ψ).
Then A = R[x1, . . . , xn]/J is a presentation and f1, . . . , fc ∈ J are elements such that
(J/J2)a is freely generated by f1, . . . , fc and such that det(∂fj/∂xi)i,j=1,...,c maps to
an invertible element of Aa. It follows that (2.3.1) and (2.3.2) hold for ae and all large
enough e as desired. �

4. Intermezzo: Néron desingularization

We interrupt the attack on the general case of Popescu’s theorem to an easier but already
very interesting case, namely, when R → Λ is a homomorphism of discrete valuation
rings. This is discussed in [?, Section 4].

Situation 4.1. Here R ⊂ Λ is an extension of discrete valuation rings with ramifi-
cation index 1 (More on Algebra, Definition 111.1). We assume given a factorization

R→ A
ϕ−→ Λ

with R→ A flat and of finite type. Let q = Ker(ϕ) and p = ϕ−1(mΛ).

In Situation 4.1 let π ∈ R be a uniformizer. Recall that flatness of A over R signifies
that π is a nonzerodivisor on A (More on Algebra, Lemma 22.10). By our assumption on
R ⊂ Λ we see that π maps to a uniformizer of Λ. Since π ∈ p we can consider Néron’s
affine blowup algebra (see Algebra, Section 70)

ϕ′ : A′ = A[ pπ ] −→ Λ

which comes endowed with an induced map to Λ sending a/πn, a ∈ pn to π−nϕ(a) in
Λ. We will denote q′ ⊂ p′ ⊂ A′ the corresponding prime ideals of A′. Observe that
the isomorphism class of A′ does not depend on our choice of uniformizer. Repeating the
construction we obtain a sequence

A→ A′ → A′′ → . . .→ Λ

Lemma 4.2. In Situation 4.1 Néron’s blowup is functorial in the following sense
(1) if a ∈ A, a 6∈ p, then Néron’s blowup of Aa is A′

a, and
(2) if B → A is a surjection of flat finite type R-algebras with kernel I , then A′ is

the quotient of B′/IB′ by its π-power torsion.

Proof. Both (1) and (2) are special cases of Algebra, Lemma 70.3. In fact, whenever we
have A1 → A2 → Λ such that p1A2 = p2, we have that A′

2 is the quotient of A′
1 ⊗A1 A2

by its π-power torsion. �
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Lemma 4.3. In Situation 4.1 assume that R → A is smooth at p and that R/πR ⊂
Λ/πΛ is a separable field extension. Then R → A′ is smooth at p′ and there is a short
exact sequence

0→ ΩA/R ⊗A A′
p′ → ΩA′/R,p′ → (A′/πA′)⊕c

p′ → 0

where c = dim((A/πA)p).

Proof. By Lemma 4.2 we may replace A by a localization at an element not in p;
we will use this without further mention. Write κ = R/πR. Since smoothness is stable
under base change (Algebra, Lemma 137.4) we see thatA/πA is smooth over κ at p. Hence
(A/πA)p is a regular local ring (Algebra, Lemma 140.3). Choose g1, . . . , gc ∈ p which
map to a regular system of parameters in (A/πA)p. Then we see that p = (π, g1, . . . , gc)
after possibly replacingA by a localization. Note that π, g1, . . . , gc is a regular sequence in
Ap (first π is a nonzerodivisor and then Algebra, Lemma 106.3 for the rest of the sequence).
After replacing A by a localization we may assume that π, g1, . . . , gc is a regular sequence
in A (Algebra, Lemma 68.6). It follows that

A′ = A[y1, . . . , yc]/(πy1 − g1, . . . , πyc − gc) = A[y1, . . . , yc]/I

by More on Algebra, Lemma 31.2. In the following we will use the definition of smoothness
using the naive cotangent complex (Algebra, Definition 137.1) and the criterion of Algebra,
Lemma 137.12 without further mention. The exact sequence of Algebra, Lemma 134.4 for
R→ A[y1, . . . , yc]→ A′ looks like this

0→ H1(NLA′/R)→ I/I2 → ΩA/R ⊗A A′ ⊕
⊕

i=1,...,c
A′dyi → ΩA′/R → 0

where the class of πyi − gi in I/I2 is mapped to −dgi + πdyi in the next term. Here
we have used Algebra, Lemma 134.6 to compute NLA′/A[y1,...,yc] and we have used that
R → A[y1, . . . , yc] is smooth, so H1(NLA[y1,...,yc]/R) = 0 and ΩA[y1,...,yc]/R is a finite
projective (a fortiori flat)A[y1, . . . , yc]-module which is in fact the direct sum of ΩA/R⊗A
A[y1, . . . , yc] and a free module with basis dyi. To finish the proof it suffices to show that
dg1, . . . , dgc forms part of a basis for the finite free module ΩA/R,p. Namely, this will
show (I/I2)p is free on πyi − gi, the localization at p of the middle map in the sequence
is injective, so H1(NLA′/R)p = 0, and that the cokernel ΩA′/R,p is finite free. To do this
it suffices to show that the images of dgi are κ(p)-linearly independent in ΩA/R,p/π =
Ω(A/πA)/κ,p (equality by Algebra, Lemma 131.12). Since κ ⊂ κ(p) ⊂ Λ/πΛ we see that
κ(p) is separable over κ (Algebra, Definition 42.1). The desired linear independence now
follows from Algebra, Lemma 140.4. �

Lemma 4.4. In Situation 4.1 assume that R → A is smooth at q and that we have a
surjection of R-algebras B → A with kernel I . Assume R → B smooth at pB = (B →
A)−1p. If the cokernel of

I/I2 ⊗A Λ→ ΩB/R ⊗B Λ
is a free Λ-module, then R→ A is smooth at p.

Proof. The cokernel of the map I/I2 → ΩB/R ⊗B A is ΩA/R, see Algebra, Lemma
131.9. Let d = dimq(A/R) be the relative dimension ofR→ A at q, i.e., the dimension of
Spec(A[1/π]) at q. See Algebra, Definition 125.1. Then ΩA/R,q is free over Aq of rank d
(Algebra, Lemma 140.3). Thus if the hypothesis of the lemma holds, then ΩA/R⊗AΛ is free
of rank d. It follows that ΩA/R⊗Aκ(p) has dimension d (as it is true upon tensoring with
Λ/πΛ). SinceR→ A is flat and since p is a specialization of q, we see that dimp(A/R) ≥ d
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by Algebra, Lemma 125.6. Then it follows thatR→ A is smooth at p by Algebra, Lemmas
137.17 and 140.3. �

Lemma 4.5. In Situation 4.1 assume that R → A is smooth at q and that R/πR ⊂
Λ/πΛ is a separable extension of fields. Then after a finite number of affine Néron blowups
the algebra A becomes smooth over R at p.

Proof. We choose an R-algebra B and a surjection B → A. Set pB = (B →
A)−1(p) and denote r the relative dimension of R → B at pB . We choose B such that
R → B is smooth at pB . For example we can take B to be a polynomial algebra in r
variables over R. Consider the complex

I/I2 ⊗A Λ −→ ΩB/R ⊗B Λ

of Lemma 4.4. By the structure of finite modules over Λ (More on Algebra, Lemma 124.9)
we see that the cokernel looks like

Λ⊕d ⊕
⊕

i=1,...,n
Λ/πeiΛ

for some d ≥ 0, n ≥ 0, and ei ≥ 1. Observe that d is the relative dimension of A/R
at q (Algebra, Lemma 140.3). If the defect e =

∑
i=1,...,n ei is zero, then we are done by

Lemma 4.4.

Next, we consider what happens when we perform the Néron blowup. Recall that A′ is
the quotient of B′/IB′ by its π-power torsion (Lemma 4.2) and that R → B′ is smooth
at pB′ (Lemma 4.3). Thus after blowup we have exactly the same setup. Picture

0 // I ′ // B′ // A′ // 0

0 // I

OO

// B

OO

// A //

OO

0

Since I ⊂ pB , we see that I → I ′ factors through πI ′. Looking at the induced map of
complexes we get

I ′/(I ′)2 ⊗A′ Λ // ΩB′/R ⊗B′ Λ M ′

I/I2 ⊗A Λ //

OO

ΩB/R ⊗B Λ

OO

M

Then M ⊂ M ′ are finite free Λ-modules with quotient M ′/M annihilated by π, see
Lemma 4.3. Let N ⊂ M and N ′ ⊂ M ′ be the images of the horizontal maps and de-
note Q = M/N and Q′ = M ′/N ′. We obtain a commutative diagram

0 // N ′ // M ′ // Q′ // 0

0 // N //

OO

M //

OO

Q //

OO

0

Then N ⊂ N ′ are free Λ-modules of rank r − d. Since I maps into πI ′ we see that
N ⊂ πN ′.
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Let K = Λπ be the fraction field of Λ. We have a commutative diagram

0 // N ′ // N ′
K ∩M ′ // Q′

tor
// 0

0 // N //

OO

NK ∩M //

OO

Qtor //

OO

0

whose rows are short exact sequences. This shows that the change in defect is given by

e− e′ = length(Qtor)− length(Q′
tor) = length(N ′/N)− length(N ′

K ∩M ′/NK ∩M)

Since M ′/M is annihilated by π, so is N ′
K ∩ M ′/NK ∩ M , and its length is at most

dimK(NK). Since N ⊂ πN ′ we get length(N ′/N) ≥ dimK(NK), with equality if and
only if N = πN ′.

To finish the proof we have to show that N is strictly smaller than πN ′ when A is not
smooth at p; this is the key computation one has to do in Néron’s argument. To do this,
we consider the exact sequence

I/I2 ⊗B κ(pB)→ ΩB/R ⊗B κ(pB)→ ΩA/R ⊗A κ(p)→ 0

(follows from Algebra, Lemma 131.9). Since R → A is not smooth at p we see that the
dimension s of ΩA/R ⊗A κ(p) is bigger than d. On the other hand the first arrow factors
through the injective map

pBp/p
2Bp → ΩB/R ⊗B κ(pB)

of Algebra, Lemma 140.4; note thatκ(p) is separable over k by our assumption onR/πR ⊂
Λ/πΛ. Hence we conclude that we can find generators g1, . . . , gt ∈ I such that gj ∈ p2

for j > r − s. Then the images of gj in A′ are in π2I ′ for j > r − s. Since r − s < r − d
we find that at least one of the minimal generators of N becomes divisible by π2 in N ′.
Thus we see that e decreases by at least 1 and we win. �

If R → Λ is an extension of discrete valuation rings, then R → Λ is regular if and only
if (a) the ramification index is 1, (b) the extension of fraction fields is separable, and (c)
R/mR ⊂ Λ/mΛ is separable. Thus the following result is a special case of general Néron
desingularization in Theorem 12.1.

Lemma 4.6. Let R ⊂ Λ be an extension of discrete valuation rings which has rami-
fication index 1 and induces a separable extension of residue fields and of fraction fields.
Then Λ is a filtered colimit of smooth R-algebras.

Proof. By Algebra, Lemma 127.4 it suffices to show that any R → A → Λ as in
Situation 4.1 can be factored asA→ B → Λ withB a smoothR-algebra. After replacing
A by its image in Λ we may assume thatA is a domain whose fraction fieldK is a subfield
of the fraction field of Λ. In particular, A is separable over the fraction field of R by our
assumptions. Then R → A is smooth at q = (0) by Algebra, Lemma 140.9. After a finite
number of Néron blowups, we may assume R → A is smooth at p, see Lemma 4.5. Then,
after replacing A by a localization at an element a ∈ A, a 6∈ p it becomes smooth over R
and the lemma is proved. �
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5. The lifting problem

The goal in this section is to prove (Proposition 5.3) that the collection of algebras which
are filtered colimits of smooth algebras is closed under infinitesimal flat deformations. The
proof is elementary and only uses the results on presentations of smooth algebras from
Section 3.

Lemma 5.1. Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that
(1) I2 = 0, and
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras.

Let ϕ : A → Λ be an R-algebra map with A of finite presentation over R. Then there
exists a factorization

A→ B/J → Λ
where B is a smooth R-algebra and J ⊂ IB is a finitely generated ideal.

Proof. Choose a factorization

A/IA→ B̄ → Λ/IΛ

with B̄ standard smooth over R/I ; this is possible by assumption and Lemma 3.5. Write

B̄ = A/IA[t1, . . . , tr]/(ḡ1, . . . , ḡs)

and say B̄ → Λ/IΛ maps ti to the class ofλi modulo IΛ. Choose g1, . . . , gs ∈ A[t1, . . . , tr]
lifting ḡ1, . . . , ḡs. Write ϕ(gi)(λ1, . . . , λr) =

∑
εijµij for some εij ∈ I and µij ∈ Λ.

Define
A′ = A[t1, . . . , tr, δi,j ]/(gi −

∑
εijδij)

and consider the map

A′ −→ Λ, a 7−→ ϕ(a), ti 7−→ λi, δij 7−→ µij

We have
A′/IA′ = A/IA[t1, . . . , tr]/(ḡ1, . . . , ḡs)[δij ] ∼= B̄[δij ]

This is a standard smooth algebra over R/I as B̄ is standard smooth. Choose a presen-
tation A′/IA′ = R/I[x1, . . . , xn]/(f̄1, . . . , f̄c) with det(∂f̄j/∂xi)i,j=1,...,c invertible in
A′/IA′. Choose lifts f1, . . . , fc ∈ R[x1, . . . , xn] of f̄1, . . . , f̄c. Then

B = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1 det(∂fj/∂xi)i,j=1,...,c − 1)
is smooth over R. Since smooth ring maps are formally smooth (Algebra, Proposition
138.13) there exists an R-algebra map B → A′ which is an isomorphism modulo I . Then
B → A′ is surjective by Nakayama’s lemma (Algebra, Lemma 20.1). ThusA′ = B/J with
J ⊂ IB finitely generated (see Algebra, Lemma 6.3). �

Lemma 5.2. Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that
(1) I2 = 0,
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras, and
(3) R→ Λ is flat.

Let ϕ : B → Λ be an R-algebra map with B smooth over R. Let J ⊂ IB be a finitely
generated ideal such that ϕ(J) = 0. Then there exists R-algebra maps

B
α−→ B′ β−→ Λ

such that B′ is smooth over R, such that α(J) = 0 and such that β ◦ α = ϕ mod IΛ.
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Proof. If we can prove the lemma in case J = (h), then we can prove the lemma by
induction on the number of generators of J . Namely, suppose that J can be generated by
n elements h1, . . . , hn and the lemma holds for all cases where J is generated by n − 1
elements. Then we apply the case n = 1 to produce B → B′ → Λ where the first map
kills of hn. Then we let J ′ be the ideal of B′ generated by the images of h1, . . . , hn−1
and we apply the case for n − 1 to produce B′ → B′′ → Λ. It is easy to verify that
B → B′′ → Λ does the job.

Assume J = (h) and write h =
∑
εibi for some εi ∈ I and bi ∈ B. Note that 0 = ϕ(h) =∑

εiϕ(bi). As Λ is flat overR, the equational criterion for flatness (Algebra, Lemma 39.11)
implies that we can find λj ∈ Λ, j = 1, . . . ,m and aij ∈ R such that ϕ(bi) =

∑
j aijλj

and
∑
i εiaij = 0. Set

C = B[x1, . . . , xm]/(bi −
∑

aijxj)

with C → Λ given by ϕ and xj 7→ λj . Choose a factorization

C → B′/J ′ → Λ

as in Lemma 5.1. Since B is smooth over R we can lift the map B → C → B′/J ′ to
a map ψ : B → B′. We claim that ψ(h) = 0. Namely, the fact that ψ agrees with
B → C → B′/J ′ mod I implies that

ψ(bi) =
∑

aijξj + θi

for some ξi ∈ B′ and θi ∈ IB′. Hence we see that

ψ(h) = ψ(
∑

εibi) =
∑

εiaijξj +
∑

εiθi = 0

because of the relations above and the fact that I2 = 0. �

Proposition 5.3. Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that
(1) I is nilpotent,
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras, and
(3) R→ Λ is flat.

Then Λ is a filtered colimit of smooth R-algebras.

Proof. Since In = 0 for some n, it follows by induction on n that it suffices to
consider the case where I2 = 0. Let ϕ : A → Λ be an R-algebra map with A of finite
presentation overR. We have to find a factorizationA→ B → Λ withB smooth overR,
see Algebra, Lemma 127.4. By Lemma 5.1 we may assume that A = B/J with B smooth
over R and J ⊂ IB a finitely generated ideal. By Lemma 5.2 we can find a (possibly
noncommutative) diagram

B
α

//

ϕ
��

B′

β~~
Λ

of R-algebras which commutes modulo I and such that α(J) = 0. The map

D : B −→ IΛ, b 7−→ ϕ(b)− β(α(b))

is a derivation over R hence we can write it as D = ξ ◦ dB/R for some B-linear map ξ :
ΩB/R → IΛ. Since ΩB/R is a finite projectiveB-module we can write ξ =

∑
i=1,...,n εiΞi
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for some εi ∈ I and B-linear maps Ξi : ΩB/R → Λ. (Details omitted. Hint: write ΩB/R
as a direct sum of a finite free module to reduce to the finite free case.) We define

B′′ = Sym∗
B′

(⊕
i=1,...,n

ΩB/R ⊗B,α B′
)

and we define β′ : B′′ → Λ by β on B′ and by

β′|ith summand ΩB/R⊗B,αB′ = Ξi ⊗ β

and α′ : B → B′′ by

α′(b) = α(b)⊕
∑

εidB/R(b)⊗ 1⊕ 0⊕ . . .

At this point the diagram
B

α′
//

ϕ
��

B′′

β′
~~

Λ
does commute. Moreover, it is direct from the definitions thatα′(J) = 0 as I2 = 0. Hence
the desired factorization. �

6. The lifting lemma

Here is a fiendishly clever lemma.

Lemma 6.1. LetR be a Noetherian ring. Let Λ be anR-algebra. Let π ∈ R and assume
that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Suppose we haveR-algebra maps
R/π2R → C̄ → Λ/π2Λ with C̄ of finite presentation. Then there exists an R-algebra
homomorphism D → Λ and a commutative diagram

R/π2R //

��

C̄ //

��

Λ/π2Λ

��
R/πR // D/πD // Λ/πΛ

with the following properties
(a) D is of finite presentation,
(b) R→ D is smooth at any prime q with π 6∈ q,
(c) R → D is smooth at any prime q with π ∈ q lying over a prime of C̄ where

R/π2R→ C̄ is smooth, and
(d) C̄/πC̄ → D/πD is smooth at any prime lying over a prime of C̄ whereR/π2R→

C̄ is smooth.

Proof. We choose a presentation

C̄ = R[x1, . . . , xn]/(f1, . . . , fm)

We also denote I = (f1, . . . , fm) and Ī the image of I in R/π2R[x1, . . . , xn]. Since
R is Noetherian, so is C̄. Hence the smooth locus of R/π2R → C̄ is quasi-compact,
see Topology, Lemma 9.2. Applying Lemma 2.2 we may choose a finite list of elements
a1, . . . , ar ∈ R[x1, . . . , xn] such that

(1) the union of the open subspaces Spec(C̄ak) ⊂ Spec(C̄) cover the smooth locus
of R/π2R→ C̄ , and
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(2) for each k = 1, . . . , r there exists a finite subset Ek ⊂ {1, . . . ,m} such that
(Ī/Ī2)ak is freely generated by the classes of fj , j ∈ Ek.

Set Ik = (fj , j ∈ Ek) ⊂ I and denote Īk the image of Ik in R/π2R[x1, . . . , xn]. By (2)
and Nakayama’s lemma we see that (Ī/Īk)ak is annihilated by 1 + b′

k for some b′
k ∈ Īak .

Suppose b′
k is the image of bk/(ak)N for some bk ∈ I and some integerN . After replacing

ak by akbk we get

(3) (Īk)ak = (Ī)ak .
Thus, after possibly replacing ak by a high power, we may write

(4) akf` =
∑
j∈Ek h

j
k,`fj + π2gk,`

for any ` ∈ {1, . . . ,m} and some hji,`, gi,` ∈ R[x1, . . . , xn]. If ` ∈ Ek we choose hjk,` =
akδ`,j (Kronecker delta) and gk,` = 0. Set

D = R[x1, . . . , xn, z1, . . . , zm]/(fj − πzj , pk,`).

Here j ∈ {1, . . . ,m}, k ∈ {1, . . . , r}, ` ∈ {1, . . . ,m}, and

pk,` = akz` −
∑

j∈Ek
hjk,`zj − πgk,`.

Note that for ` ∈ Ek we have pk,` = 0 by our choices above.

The map R → D is the given one. Say C̄ → Λ/π2Λ maps xi to the class of λi modulo
π2. For an element f ∈ R[x1, . . . , xn] we denote f(λ) ∈ Λ the result of substituting λi
for xi. Then we know that fj(λ) = π2µj for some µj ∈ Λ. Define D → Λ by the rules
xi 7→ λi and zj 7→ πµj . This is well defined because

pk,` 7→ ak(λ)πµ` −
∑

j∈Ek
hjk,`(λ)πµj − πgk,`(λ)

= π
(
ak(λ)µ` −

∑
j∈Ek

hjk,`(λ)µj − gk,`(λ)
)

Substituting xi = λi in (4) above we see that the expression inside the brackets is annihi-
lated by π2, hence it is annihilated by π as we have assumed AnnΛ(π) = AnnΛ(π2). The
map C̄ → D/πD is determined by xi 7→ xi (clearly well defined). Thus we are done if
we can prove (b), (c), and (d).

Using (4) we obtain the following key equality

πpk,` = πakz` −
∑

j∈Ek
πhjk,`zj − π

2gk,`

= −ak(f` − πz`) + akf` +
∑

j∈Ek
hjk,`(fj − πzj)−

∑
j∈Ek

hjk,`fj − π
2gk,`

= −ak(f` − πz`) +
∑

j∈Ek
hjk,`(fj − πzj)

The end result is an element of the ideal generated by fj − πzj . In particular, we see that
D[1/π] is isomorphic to R[1/π][x1, . . . , xn, z1, . . . , zm]/(fj − πzj) which is isomorphic
to R[1/π][x1, . . . , xn] hence smooth over R. This proves (b).

For fixed k ∈ {1, . . . , r} consider the ring

Dk = R[x1, . . . , xn, z1, . . . , zm]/(fj − πzj , j ∈ Ek, pk,`)
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The number of equations is m = |Ek| + (m − |Ek|) as pk,` is zero if ` ∈ Ek. Also, note
that

(Dk/πDk)ak = R/πR[x1, . . . , xn, 1/ak, z1, . . . , zm]/(fj , j ∈ Ek, pk,`)

= (C̄/πC̄)ak [z1, . . . , zm]/(akz` −
∑

j∈Ek
hjk,`zj)

∼= (C̄/πC̄)ak [zj , j ∈ Ek]

In particular (Dk/πDk)ak is smooth over (C̄/πC̄)ak . By our choice of ak we have that
(C̄/πC̄)ak is smooth overR/πR of relative dimension n−|Ek|, see (2). Hence for a prime
qk ⊂ Dk containing π and lying over Spec(C̄ak) the fibre ring ofR→ Dk is smooth at qk
of dimension n. ThusR→ Dk is syntomic at qk by our count of the number of equations
above, see Algebra, Lemma 136.10. Hence R → Dk is smooth at qk , see Algebra, Lemma
137.17.

To finish the proof, let q ⊂ D be a prime containing π lying over a prime whereR/π2R→
C̄ is smooth. Then ak 6∈ q for some k by (1). We will show that the surjection Dk → D
induces an isomorphism on local rings at q. Since we know that the ring maps C̄/πC̄ →
Dk/πDk and R→ Dk are smooth at the corresponding prime qk by the preceding para-
graph this will prove (c) and (d) and thus finish the proof.

First, note that for any ` the equation πpk,` = −ak(f` − πz`) +
∑
j∈Ek h

j
k,`(fj − πzj)

proved above shows that f` − πz` maps to zero in (Dk)ak and in particular in (Dk)qk .
The relations (4) imply that akf` =

∑
j∈Ek h

j
k,`fj in I/I2. Since (Īk/Ī2

k)ak is free on fj ,
j ∈ Ek we see that

ak′hjk,` −
∑

j′∈Ek′
hj

′

k′,`h
j
k,j′

is zero in C̄ak for every k, k′, ` and j ∈ Ek. Hence we can find a large integerN such that

aNk

(
ak′hjk,` −

∑
j′∈Ek′

hj
′

k′,`h
j
k,j′

)
is in Ik + π2R[x1, . . . , xn]. Computing modulo π we have

akpk′,` − ak′pk,` +
∑

hj
′

k′,`pk,j′

= −ak
∑

hj
′

k′,`zj′ + ak′

∑
hjk,`zj +

∑
hj

′

k′,`akzj′ −
∑∑

hj
′

k′,`h
j
k,j′zj

=
∑(

ak′hjk,` −
∑

hj
′

k′,`h
j
k,j′

)
zj

with Einstein summation convention. Combining with the above we see aN+1
k pk′,` is

contained in the ideal generated by Ik and π in R[x1, . . . , xn, z1, . . . , zm]. Thus pk′,`

maps into π(Dk)ak . On the other hand, the equation

πpk′,` = −ak′(f` − πz`) +
∑

j′∈Ek′
hj

′

k′,`(fj′ − πzj′)

shows that πpk′,` is zero in (Dk)ak . Since we have assumed that AnnR(π) = AnnR(π2)
and since (Dk)qk is smooth hence flat overRwe see that Ann(Dk)qk (π) = Ann(Dk)qk (π2).
We conclude that pk′,` maps to zero as well, hence Dq = (Dk)qk and we win. �
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7. The desingularization lemma

Here is another fiendishly clever lemma.

Lemma 7.1. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R and
assume that AnnΛ(π) = AnnΛ(π2). Let A → Λ be an R-algebra map with A of finite
presentation. Assume

(1) the image of π is strictly standard in A over R, and
(2) there exists a section ρ : A/π4A → R/π4R which is compatible with the map

to Λ/π4Λ.
Then we can find R-algebra maps A → B → Λ with B of finite presentation such that
aB ⊂ HB/R where a = AnnR(AnnR(π2)/AnnR(π)).

Proof. Choose a presentation

A = R[x1, . . . , xn]/(f1, . . . , fm)

and 0 ≤ c ≤ min(n,m) such that (2.3.3) holds for π and such that

(7.1.1) πfc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m − c. Say ρ maps xi to the class of ri ∈ R. Then we can replace xi by
xi − ri. Hence we may assume ρ(xi) = 0 in R/π4R. This implies that fj(0) ∈ π4R and
that A→ Λ maps xi to π4λi for some λi ∈ Λ. Write

fj = fj(0) +
∑

i=1,...,n
rjixi + h.o.t.

This implies that the constant term of ∂fj/∂xi is rji. Apply ρ to (2.3.3) for π and we see
that

π =
∑

I⊂{1,...,n}, |I|=c
rI det(rji)j=1,...,c, i∈I mod π4R

for some rI ∈ R. Thus we have

uπ =
∑

I⊂{1,...,n}, |I|=c
rI det(rji)j=1,...,c, i∈I

for some u ∈ 1 + π3R. By Algebra, Lemma 15.5 this implies there exists a n × c matrix
(sik) such that

uπδjk =
∑

i=1,...,n
rjisik for all j, k = 1, . . . , c

(Kronecker delta). We introduce auxiliary variables v1, . . . , vc, w1, . . . , wn and we set

hi = xi − π2
∑

j=1,...c
sijvj − π3wi

In the following we will use that

R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn) = R[v1, . . . , vc, w1, . . . , wn]

without further mention. InR[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn) we have

fj = fj(x1 − h1, . . . , xn − hn)

= π2
∑c

k=1

(∑n

i=1
rjisik

)
vk + π3

∑n

i=1
rjiwi mod π4

= π3vj + π3
∑n

i=1
rjiwi mod π4
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for 1 ≤ j ≤ c. Hence we can choose elements gj ∈ R[v1, . . . , vc, w1, . . . , wn] such that
gj = vj+

∑
rjiwi mod π and such that fj = π3gj in theR-algebraR[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn).

We set

B = R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(f1, . . . , fm, h1, . . . , hn, g1, . . . , gc).

The map A → B is clear. We define B → Λ by mapping xi → π4λi, vi 7→ 0, and
wi 7→ πλi. Then it is clear that the elements fj and hi are mapped to zero in Λ. Moreover,
it is clear that gi is mapped to an element t of πΛ such that π3t = 0 (as fi = π3gi modulo
the ideal generated by the h’s). Hence our assumption that AnnΛ(π) = AnnΛ(π2) implies
that t = 0. Thus we are done if we can prove the statement about smoothness.

Note thatBπ ∼= Aπ[v1, . . . , vc] because the equations gi = 0 are implied by fi = 0. Hence
Bπ is smooth overR asAπ is smooth overR by the assumption that π is strictly standard
in A over R, see Lemma 2.5.

Set B′ = R[v1, . . . , vc, w1, . . . , wn]/(g1, . . . , gc). As gi = vi +
∑
rjiwi mod π we see

that B′/πB′ = R/πR[w1, . . . , wn]. Hence R → B′ is smooth of relative dimension n
at every point of V (π) by Algebra, Lemmas 136.10 and 137.17 (the first lemma shows it
is syntomic at those primes, in particular flat, whereupon the second lemma shows it is
smooth).

Let q ⊂ B be a prime with π ∈ q and for some r ∈ a, r 6∈ q. Denote q′ = B′ ∩ q.
We claim the surjection B′ → B induces an isomorphism of local rings (B′)q′ → Bq.
This will conclude the proof of the lemma. Note that Bq is the quotient of (B′)q′ by the
ideal generated by fc+j , j = 1, . . . ,m − c. We observe two things: first the image of
fc+j in (B′)q′ is divisible by π2 and second the image of πfc+j in (B′)q′ can be written
as
∑
bj1j2fc+j1fc+j2 by (7.1.1). Thus we see that the image of each πfc+j is contained

in the ideal generated by the elements π2fc+j′ . Hence πfc+j = 0 in (B′)q′ as this is a
Noetherian local ring, see Algebra, Lemma 51.4. As R→ (B′)q′ is flat we see that(

AnnR(π2)/AnnR(π)
)
⊗R (B′)q′ = Ann(B′)q′ (π2)/Ann(B′)q′ (π)

Because r ∈ a is invertible in (B′)q′ we see that this module is zero. Hence we see that the
image of fc+j is zero in (B′)q′ as desired. �

Lemma 7.2. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R and
assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Let A→ Λ and D → Λ
be R-algebra maps with A and D of finite presentation. Assume

(1) π is strictly standard in A over R, and
(2) there exists an R-algebra map A/π4A → D/π4D compatible with the maps to

Λ/π4Λ.
Then we can find an R-algebra map B → Λ with B of finite presentation and R-algebra
maps A → B and D → B compatible with the maps to Λ such that HD/RB ⊂ HB/D

and HD/RB ⊂ HB/R.

Proof. We apply Lemma 7.1 to

D −→ A⊗R D −→ Λ

and the image of π in D. By Lemma 2.7 we see that π is strictly standard in A⊗R D over
D. As our section ρ : (A ⊗R D)/π4(A ⊗R D) → D/π4D we take the map induced by
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the map in (2). Thus Lemma 7.1 applies and we obtain a factorizationA⊗RD → B → Λ
with B of finite presentation and aB ⊂ HB/D where

a = AnnD(AnnD(π2)/AnnD(π)).
For any prime q ofD such thatDq is flat overR we have AnnDq

(π2)/AnnDq
(π) = 0 be-

cause annihilators of elements commutes with flat base change and we assumed AnnR(π) =
AnnR(π2). BecauseD is Noetherian we see that AnnD(π2)/AnnD(π) is a finiteD-module,
hence formation of its annihilator commutes with localization. Thus we see that a 6⊂ q.
Hence we see that D → B is smooth at any prime of B lying over q. Since any prime of
D where R → D is smooth is one where Dq is flat over R we conclude that HD/RB ⊂
HB/D. The final inclusion HD/RB ⊂ HB/R follows because compositions of smooth
ring maps are smooth (Algebra, Lemma 137.14). �

Lemma 7.3. LetR be a Noetherian ring. Let Λ be anR-algebra. Let π ∈ R and assume
that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). LetA→ Λ be anR-algebra map
with A of finite presentation and assume π is strictly standard in A over R. Let

A/π8A→ C̄ → Λ/π8Λ
be a factorization with C̄ of finite presentation. Then we can find a factorization A →
B → Λ with B of finite presentation such that Rπ → Bπ is smooth and such that

HC̄/(R/π8R) · Λ/π8Λ ⊂
√
HB/RΛ mod π8Λ.

Proof. Apply Lemma 6.1 to get R → D → Λ with a factorization C̄/π4C̄ →
D/π4D → Λ/π4Λ such thatR→ D is smooth at any prime not containing π and at any
prime lying over a prime of C̄/π4C̄ whereR/π8R→ C̄ is smooth. By Lemma 7.2 we can
find a finitely presented R-algebra B and factorizations A → B → Λ and D → B → Λ
such thatHD/RB ⊂ HB/R. We omit the verification that this is a solution to the problem
posed by the lemma. �

8. Warmup: reduction to a base field

In this section we apply the lemmas in the previous sections to prove that it suffices to
prove the main result when the base ring is a field, see Lemma 8.4.

Situation 8.1. Here R→ Λ is a regular ring map of Noetherian rings.

Let R→ Λ be as in Situation 8.1. We say PT holds for R→ Λ if Λ is a filtered colimit of
smooth R-algebras.

Lemma 8.2. Let Ri → Λi, i = 1, 2 be as in Situation 8.1. If PT holds for Ri → Λi,
i = 1, 2, then PT holds for R1 ×R2 → Λ1 × Λ2.

Proof. Omitted. Hint: A product of filtered colimits is a filtered colimit. �

Lemma 8.3. Let R → A → Λ be ring maps with A of finite presentation over R.
Let S ⊂ R be a multiplicative set. Let S−1A → B′ → S−1Λ be a factorization with B′

smooth over S−1R. Then we can find a factorization A→ B → Λ such that some s ∈ S
maps to an elementary standard element (Definition 2.3) in B over R.

Proof. We first apply Lemma 3.4 to S−1R → B′. Thus we may assume B′ is
standard smooth over S−1R. Write A = R[x1, . . . , xn]/(g1, . . . , gt) and say xi 7→ λi
in Λ. We may write B′ = S−1R[x1, . . . , xn+m]/(f1, . . . , fc) for some c ≥ n where
det(∂fj/∂xi)i,j=1,...,c is invertible in B′ and such that A→ B′ is given by xi 7→ xi, see
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Lemma 3.6. After multiplying xi, i > n by an element of S and correspondingly modi-
fying the equations fj we may assume B′ → S−1Λ maps xi to λi/1 for some λi ∈ Λ for
i > n. Choose a relation

1 = a0 det(∂fj/∂xi)i,j=1,...,c +
∑

j=1,...,c
ajfj

for some aj ∈ S−1R[x1, . . . , xn+m]. Since each element of S is invertible in B′ we may
(by clearing denominators) assume that fj , aj ∈ R[x1, . . . , xn+m] and that

s0 = a0 det(∂fj/∂xi)i,j=1,...,c +
∑

j=1,...,c
ajfj

for some s0 ∈ S. Since gj maps to zero in S−1R[x1, . . . , xn+m]/(f1, . . . , xc) we can find
elements sj ∈ S such that sjgj = 0 in R[x1, . . . , xn+m]/(f1, . . . , fc). Since fj maps to
zero in S−1Λ we can find s′

j ∈ S such that s′
jfj(λ1, . . . , λn+m) = 0 in Λ. Consider the

ring
B = R[x1, . . . , xn+m]/(s′

1f1, . . . , s
′
cfc, g1, . . . , gt)

and the factorization A → B → Λ with B → Λ given by xi 7→ λi. We claim that
s = s0s1 . . . sts

′
1 . . . s

′
c is elementary standard in B over R which finishes the proof.

Namely, sjgj ∈ (f1, . . . , fc) and hence sgj ∈ (s′
1f1, . . . , s

′
cfc). Finally, we have

a0 det(∂s′
jfj/∂xi)i,j=1,...,c +

∑
j=1,...,c

(s′
1 . . . ŝ

′
j . . . s

′
c)ajs′

jfj = s0s
′
1 . . . s

′
c

which divides s as desired. �

Lemma 8.4. If for every Situation 8.1 where R is a field PT holds, then PT holds in
general.

Proof. Assume PT holds for any Situation 8.1 whereR is a field. LetR→ Λ be as in
Situation 8.1 arbitrary. Note thatR/I → Λ/IΛ is another regular ring map of Noetherian
rings, see More on Algebra, Lemma 41.3. Consider the set of ideals

I = {I ⊂ R | R/I → Λ/IΛ does not have PT}

We have to show that I is empty. If this set is nonempty, then it contains a maximal
element becauseR is Noetherian. ReplacingR byR/I and Λ by Λ/I we obtain a situation
where PT holds for R/I → Λ/IΛ for any nonzero ideal of R. In particular, we see by
applying Proposition 5.3 that R is a reduced ring.

Let A → Λ be an R-algebra homomorphism with A of finite presentation. We have to
find a factorization A→ B → Λ with B smooth over R, see Algebra, Lemma 127.4.

LetS ⊂ R be the set of nonzerodivisors and consider the total ring of fractionsQ = S−1R
of R. We know that Q = K1 × . . .×Kn is a product of fields, see Algebra, Lemmas 25.4
and 31.6. By Lemma 8.2 and our assumption PT holds for the ring map S−1R → S−1Λ.
Hence we can find a factorization S−1A→ B′ → S−1Λ with B′ smooth over S−1R.

We apply Lemma 8.3 and find a factorization A → B → Λ such that some π ∈ S is ele-
mentary standard in B over R. After replacing A by B we may assume that π is elemen-
tary standard, hence strictly standard inA. We know thatR/π8R→ Λ/π8Λ satisfies PT.
Hence we can find a factorization R/π8R→ A/π8A→ C̄ → Λ/π8Λ with R/π8R→ C̄
smooth. By Lemma 6.1 we can find an R-algebra map D → Λ with D smooth over R
and a factorization R/π4R→ A/π4A→ D/π4D → Λ/π4Λ. By Lemma 7.2 we can find
A→ B → Λ with B smooth over R which finishes the proof. �
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9. Local tricks

Situation 9.1. We are given a Noetherian ringR and anR-algebra mapA→ Λ and
a prime q ⊂ Λ. We assume A is of finite presentation over R. In this situation we denote
hA =

√
HA/RΛ.

Let R → A → Λ ⊃ q be as in Situation 9.1. We say R → A → Λ ⊃ q can be resolved if
there exists a factorization A→ B → Λ with B of finite presentation and hA ⊂ hB 6⊂ q.
In this case we will call the factorization A→ B → Λ a resolution of R→ A→ Λ ⊃ q.

Lemma 9.2. Let R→ A→ Λ ⊃ q be as in Situation 9.1. Let r ≥ 1 and π1, . . . , πr ∈
R map to elements of q. Assume

(1) for i = 1, . . . , r we have

AnnR/(π8
1 ,...,π

8
i−1)R(πi) = AnnR/(π8

1 ,...,π
8
i−1)R(π2

i )

and
AnnΛ/(π8

1 ,...,π
8
i−1)Λ(πi) = AnnΛ/(π8

1 ,...,π
8
i−1)Λ(π2

i )

(2) for i = 1, . . . , r the element πi maps to a strictly standard element in A over R.
Then, if

R/(π8
1 , . . . , π

8
r)R→ A/(π8

1 , . . . , π
8
r)A→ Λ/(π8

1 , . . . , π
8
r)Λ ⊃ q/(π8

1 , . . . , π
8
r)Λ

can be resolved, so can R→ A→ Λ ⊃ q.

Proof. We are going to prove this by induction on r.

The case r = 1. Here the assumption is that there exists a factorization A/π8
1 → C̄ →

Λ/π8
1 which resolves the situation modulo π8

1 . Conditions (1) and (2) are the assumptions
needed to apply Lemma 7.3. Thus we can “lift” the resolution C̄ to a resolution of R →
A→ Λ ⊃ q.

The case r > 1. In this case we apply the induction hypothesis for r − 1 to the situation
R/π8

1 → A/π8
1 → Λ/π8

1 ⊃ q/π8
1Λ. Note that property (2) is preserved by Lemma 2.7. �

Lemma 9.3. LetR→ A→ Λ ⊃ q be as in Situation 9.1. Let p = R∩ q. Assume that
q is minimal over hA and that Rp → Ap → Λq ⊃ qΛq can be resolved. Then there exists
a factorization A→ C → Λ with C of finite presentation such that HC/RΛ 6⊂ q.

Proof. Let Ap → C → Λq be a resolution of Rp → Ap → Λq ⊃ qΛq. By our
assumption that q is minimal over hA this means that HC/Rp

Λq = Λq. By Lemma 2.8
we may assume that C is smooth over Rp. By Lemma 3.4 we may assume that C is stan-
dard smooth over Rp. Write A = R[x1, . . . , xn]/(g1, . . . , gt) and say A→ Λ is given by
xi 7→ λi. Write C = Rp[x1, . . . , xn+m]/(f1, . . . , fc) for some c ≥ n such that A → C
maps xi to xi and such that det(∂fj/∂xi)i,j=1,...,c is invertible in C , see Lemma 3.6. Af-
ter clearing denominators we may assume f1, . . . , fc are elements of R[x1, . . . , xn+m].
Of course det(∂fj/∂xi)i,j=1,...,c is not invertible in R[x1, . . . , xn+m]/(f1, . . . , fc) but
it becomes invertible after inverting some element s0 ∈ R, s0 6∈ p. As gj maps to zero
under R[x1, . . . , xn] → A → C we can find sj ∈ R, sj 6∈ p such that sjgj is zero in
R[x1, . . . , xn+m]/(f1, . . . , fc). Write fj = Fj(x1, . . . , xn+m, 1) for some polynomial
Fj ∈ R[x1, . . . , xn, Xn+1, . . . , Xn+m+1] homogeneous in Xn+1, . . . , Xn+m+1. Pick
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λn+i ∈ Λ, i = 1, . . . ,m+ 1 with λn+m+1 6∈ q such that xn+i maps to λn+i/λn+m+1 in
Λq. Then

Fj(λ1, . . . , λn+m+1) = (λn+m+1)deg(Fj)Fj(λ1, . . . , λn,
λn+1

λn+m+1
, . . . ,

λn+m

λn+m+1
, 1)

= (λn+m+1)deg(Fj)fj(λ1, . . . , λn,
λn+1

λn+m+1
, . . . ,

λn+m

λn+m+1
)

= 0

in Λq. Thus we can find λ0 ∈ Λ, λ0 6∈ q such that λ0Fj(λ1, . . . , λn+m+1) = 0 in Λ. Now
we set B equal to

R[x0, . . . , xn+m+1]/(g1, . . . , gt, x0F1(x1, . . . , xn+m+1), . . . , x0Fc(x1, . . . , xn+m+1))
which we map to Λ by mapping xi to λi. Let b be the image of x0xn+m+1s0s1 . . . st inB.
Then Bb is isomorphic to

Rs0s1...st [x0, x1, . . . , xn+m+1, 1/x0xn+m+1]/(f1, . . . , fc)
which is smooth over R by construction. Since b does not map to an element of q, we
win. �

Lemma 9.4. Let R→ A→ Λ ⊃ q be as in Situation 9.1. Let p = R ∩ q. Assume
(1) q is minimal over hA,
(2) Rp → Ap → Λq ⊃ qΛq can be resolved, and
(3) dim(Λq) = 0.

Then R→ A→ Λ ⊃ q can be resolved.

Proof. By (3) the ring Λq is Artinian local hence qΛq is nilpotent. Thus (hA)NΛq =
0 for some N > 0. Thus there exists a λ ∈ Λ, λ 6∈ q such that λ(hA)N = 0 in
Λ. Say HA/R = (a1, . . . , ar) so that λaNi = 0 in Λ. By Lemma 9.3 we can find a
factorization A → C → Λ with C of finite presentation such that hC 6⊂ q. Write
C = A[x1, . . . , xn]/(f1, . . . , fm). Set

B = A[x1, . . . , xn, y1, . . . , yr, z, tij ]/(fj −
∑

yitij , zyi)

where tij is a set of rm variables. Note that there is a map B → C[yi, z]/(yiz) given by
setting tij equal to zero. The map B → Λ is the composition B → C[yi, z]/(yiz) → Λ
whereC[yi, z]/(yiz)→ Λ is the given mapC → Λ, maps z to λ, and maps yi to the image
of aNi in Λ.

We claim that B is a solution for R → A → Λ ⊃ q. First note that Bz is isomorphic to
C[y1, . . . , yr, z, z

−1] and hence is smooth. On the other hand,By` ∼= A[xi, yi, y−1
` , tij , i 6=

`] which is smooth overA. Thus we see that z and a`y` (compositions of smooth maps are
smooth) are all elements of HB/R. This proves the lemma. �

10. Separable residue fields

In this section we explain how to solve a local problem in the case of a separable residue
field extension.

Lemma 10.1 (Ogoma). Let A be a Noetherian ring and let M be a finite A-module.
Let S ⊂ A be a multiplicative set. If π ∈ A and Ker(π : S−1M → S−1M) = Ker(π2 :
S−1M → S−1M) then there exists an s ∈ S such that for any n > 0 we have Ker(snπ :
M →M) = Ker((snπ)2 : M →M).
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Proof. Let K = Ker(π : M → M) and K ′ = {m ∈ M | π2m = 0 in S−1M}
and Q = K ′/K. Note that S−1Q = 0 by assumption. Since A is Noetherian we see that
Q is a finite A-module. Hence we can find an s ∈ S such that s annihilates Q. Then s
works. �

Lemma 10.2. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Let I ⊂ q be a prime.
Let n, e be positive integers Assume that qnΛq ⊂ IΛq and that Λq is a regular local ring
of dimension d. Then there exists an n > 0 and π1, . . . , πd ∈ Λ such that

(1) (π1, . . . , πd)Λq = qΛq,
(2) πn1 , . . . , πnd ∈ I , and
(3) for i = 1, . . . , d we have

AnnΛ/(πe1 ,...,πei−1)Λ(πi) = AnnΛ/(πe1 ,...,πei−1)Λ(π2
i ).

Proof. Set S = Λ \ q so that Λq = S−1Λ. First pick π1, . . . , πd with (1) which is
possible as Λq is regular. By assumption πni ∈ IΛq. Thus we can find s1, . . . , sd ∈ S such
that siπni ∈ I . Replacing πi by siπi we get (2). Note that (1) and (2) are preserved by
further multiplying by elements of S. Suppose that (3) holds for i = 1, . . . , t for some
t ∈ {0, . . . , d}. Note that π1, . . . , πd is a regular sequence in S−1Λ, see Algebra, Lemma
106.3. In particular πe1, . . . , πet , πt+1 is a regular sequence in S−1Λ = Λq by Algebra,
Lemma 68.9. Hence we see that

AnnS−1Λ/(πe1 ,...,πei−1)(πi) = AnnS−1Λ/(πe1 ,...,πei−1)(π2
i ).

Thus we get (3) for i = t + 1 after replacing πt+1 by sπt+1 for some s ∈ S by Lemma
10.1. By induction on t this produces a sequence satisfying (1), (2), and (3). �

Lemma 10.3. Let k → A→ Λ ⊃ q be as in Situation 9.1 where
(1) k is a field,
(2) Λ is Noetherian,
(3) q is minimal over hA,
(4) Λq is a regular local ring, and
(5) the field extension κ(q)/k is separable.

Then k → A→ Λ ⊃ q can be resolved.

Proof. Set d = dim Λq. Set R = k[x1, . . . , xd]. Choose n > 0 such that qnΛq ⊂
hAΛq which is possible as q is minimal over hA. Choose generators a1, . . . , ar of HA/R.
Set

B = A[x1, . . . , xd, zij ]/(xni −
∑

zijaj)
Each Baj is smooth over R it is a polynomial algebra over Aaj [x1, . . . , xd] and Aaj is
smooth over k. HenceBxi is smooth overR. LetB → C be theR-algebra map constructed
in Lemma 3.1 which comes with a R-algebra retraction C → B. In particular a map
C → Λ fitting into the diagram above. By construction Cxi is a smooth R-algebra with
ΩCxi/R free. Hence we can find c > 0 such that xci is strictly standard inC/R, see Lemma
3.7. Now choose π1, . . . , πd ∈ Λ as in Lemma 10.2 where n = n, e = 8c, q = q and
I = hA. Write πni =

∑
λijaj for some πij ∈ Λ. There is a map B → Λ given by

xi 7→ πi and zij 7→ λij . Set R = k[x1, . . . , xd]. Diagram

R // B

��
k

OO

// A

OO

// Λ



11. INSEPARABLE RESIDUE FIELDS 1615

Now we apply Lemma 9.2 to R → C → Λ ⊃ q and the sequence of elements xc1, . . . , xcd
of R. Assumption (2) is clear. Assumption (1) holds for R by inspection and for Λ by
our choice of π1, . . . , πd. (Note that if AnnΛ(π) = AnnΛ(π2), then we have AnnΛ(π) =
AnnΛ(πc) for all c > 0.) Thus it suffices to resolve

R/(xe1, . . . , xed)→ C/(xe1, . . . , xed)→ Λ/(πe1, . . . , πed) ⊃ q/(πe1, . . . , πed)
for e = 8c. By Lemma 9.4 it suffices to resolve this after localizing at q. But since
x1, . . . , xd map to a regular sequence in Λq we see that Rp → Λq is flat, see Algebra,
Lemma 128.2. Hence

Rp/(xe1, . . . , xed)→ Λq/(πe1, . . . , πed)
is a flat ring map of Artinian local rings. Moreover, this map induces a separable field
extension on residue fields by assumption. Thus this map is a filtered colimit of smooth
algebras by Algebra, Lemma 158.11 and Proposition 5.3. Existence of the desired solution
follows from Algebra, Lemma 127.4. �

11. Inseparable residue fields

In this section we explain how to solve a local problem in the case of an inseparable residue
field extension.

Lemma 11.1. Let k be a field of characteristic p > 0. Let (Λ,m,K) be an Artinian
local k-algebra. Assume that dimH1(LK/k) <∞. Then Λ is a filtered colimit of Artinian
local k-algebras A with each map A → Λ flat, with mAΛ = m, and with A essentially of
finite type over k.

Proof. Note that the flatness of A → Λ implies that A → Λ is injective, so the
lemma really tells us that Λ is a directed union of these types of subrings A ⊂ Λ. Let n be
the minimal integer such that mn = 0. We will prove this lemma by induction on n. The
case n = 1 is clear as a field extension is a union of finitely generated field extensions.
Pick λ1, . . . , λd ∈ m which generate m. As K is formally smooth over Fp (see Algebra,
Lemma 158.7) we can find a ring map σ : K → Λ which is a section of the quotient map
Λ→ K. In general σ is not a k-algebra map. Given σ we define

Ψσ : K[x1, . . . , xd] −→ Λ
using σ on elements of K and mapping xi to λi. Claim: there exists a σ : K → Λ and a
subfield k ⊂ F ⊂ K finitely generated over k such that the image of k in Λ is contained
in Ψσ(F [x1, . . . , xd]).
We will prove the claim by induction on the least integer n such that mn = 0. It is clear
for n = 1. If n > 1 set I = mn−1 and Λ′ = Λ/I . By induction we may assume given
σ′ : K → Λ′ and k ⊂ F ′ ⊂ K finitely generated such that the image of k → Λ →
Λ′ is contained in A′ = Ψσ′(F ′[x1, . . . , xd]). Denote τ ′ : k → A′ the induced map.
Choose a lift σ : K → Λ of σ′ (this is possible by the formal smoothness of K/Fp we
mentioned above). For later reference we note that we can change σ to σ + D for some
derivation D : K → I . Set A = F [x1, . . . , xd]/(x1, . . . , xd)n. Then Ψσ induces a ring
map Ψσ : A → Λ. The composition with the quotient map Λ → Λ′ induces a surjective
map A → A′ with nilpotent kernel. Choose a lift τ : k → A of τ ′ (possible as k/Fp is
formally smooth). Thus we obtain two maps k → Λ, namely Ψσ ◦ τ : k → Λ and the
given map i : k → Λ. These maps agree modulo I , whence the difference is a derivation
θ = i − Ψσ ◦ τ : k → I . Note that if we change σ into σ + D then we change θ into
θ −D|k.
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Choose a set of elements {yj}j∈J of k whose differentials dyj form a basis of Ωk/Fp . The
Jacobi-Zariski sequence for Fp ⊂ k ⊂ K is

0→ H1(LK/k)→ Ωk/Fp ⊗K → ΩK/Fp → ΩK/k → 0

As dimH1(LK/k) < ∞ we can find a finite subset J0 ⊂ J such that the image of the
first map is contained in

⊕
j∈J0

Kdyj . Hence the elements dyj , j ∈ J \ J0 map to K-
linearly independent elements of ΩK/Fp . Therefore we can choose a D : K → I such
that θ −D|k = ξ ◦ d where ξ is a composition

Ωk/Fp =
⊕

j∈J
kdyj −→

⊕
j∈J0

kdyj −→ I

Let fj = ξ(dyj) ∈ I for j ∈ J0. Change σ into σ + D as above. Then we see that
θ(a) =

∑
j∈J0

ajfj for a ∈ k where da =
∑
ajdyj in Ωk/Fp . Note that I is generated

by the monomials λE = λe1
1 . . . λedd of total degree |E| =

∑
ei = n − 1 in λ1, . . . , λd.

Write fj =
∑
E cj,Eλ

E with cj,E ∈ K. Replace F ′ by F = F ′(cj,E). Then the claim
holds.

Choose σ and F as in the claim. The kernel of Ψσ is generated by finitely many poly-
nomials g1, . . . , gt ∈ K[x1, . . . , xd] and we may assume their coefficients are in F after
enlarging F by adjoining finitely many elements. In this case it is clear that the map
A = F [x1, . . . , xd]/(g1, . . . , gt) → K[x1, . . . , xd]/(g1, . . . , gt) = Λ is flat. By the claim
A is a k-subalgebra of Λ. It is clear that Λ is the filtered colimit of these algebras, as K is
the filtered union of the subfields F . Finally, these algebras are essentially of finite type
over k by Algebra, Lemma 54.4. �

Lemma 11.2. Let k be a field of characteristic p > 0. Let Λ be a Noetherian geomet-
rically regular k-algebra. Let q ⊂ Λ be a prime ideal. Let n ≥ 1 be an integer and let
E ⊂ Λq/q

nΛq be a finite subset. Then we can find m ≥ 0 and ϕ : k[y1, . . . , ym] → Λ
with the following properties

(1) setting p = ϕ−1(q) we have qΛq = pΛq and k[y1, . . . , ym]p → Λq is flat,
(2) there is a factorization by homomorphisms of local Artinian rings

k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → D → Λq/q
nΛq

where the first arrow is essentially smooth and the second is flat,
(3) E is contained in D modulo qnΛq.

Proof. Set Λ̄ = Λq/q
nΛq. Note that dimH1(Lκ(q)/k) < ∞ by More on Algebra,

Proposition 35.1. Pick A ⊂ Λ̄ containing E such that A is local Artinian, essentially of
finite type over k, the map A → Λ̄ is flat, and mA generates the maximal ideal of Λ̄, see
Lemma 11.1. Denote F = A/mA the residue field so that k ⊂ F ⊂ K. Pick λ1, . . . , λt ∈
Λ which map to elements of A in Λ̄ such that moreover the images of dλ1, . . . , dλt form
a basis of ΩF/k. Consider the map ϕ′ : k[y1, . . . , yt] → Λ sending yj to λj . Set p′ =
(ϕ′)−1(q). By More on Algebra, Lemma 35.2 the ring map k[y1, . . . , yt]p′ → Λq is flat
and Λq/p

′Λq is regular. Thus we can choose further elements λt+1, . . . , λm ∈ Λ which
map intoA ⊂ Λ̄ and which map to a regular system of parameters of Λq/p

′Λq. We obtain
ϕ : k[y1, . . . , ym]→ Λ having property (1) such that k[y1, . . . , ym]p/pnk[y1, . . . , ym]p →
Λ̄ factors through A. Thus k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → A is flat by Algebra,
Lemma 39.9. By construction the residue field extension F/κ(p) is finitely generated
and ΩF/κ(p) = 0. Hence it is finite separable by More on Algebra, Lemma 34.1. Thus
k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → A is finite by Algebra, Lemma 54.4. Finally, we
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conclude that it is étale by Algebra, Lemma 143.7. Since an étale ring map is certainly
essentially smooth we win. �

Lemma 11.3. Let ϕ : k[y1, . . . , ym]→ Λ, n, q, p and

k[y1, . . . , ym]p/pn → D → Λq/q
nΛq

be as in Lemma 11.2. Then for anyλ ∈ Λ\q there exists an integer q > 0 and a factorization

k[y1, . . . , ym]p/pn → D → D′ → Λq/q
nΛq

such that D → D′ is an essentially smooth map of local Artinian rings, the last arrow is
flat, and λq is in D′.

Proof. Set Λ̄ = Λq/q
nΛq. Let λ̄ be the image of λ in Λ̄. Let α ∈ κ(q) be the image of

λ in the residue field. Let k ⊂ F ⊂ κ(q) be the residue field ofD. If α is in F then we can
find an x ∈ D such that xλ̄ = 1 mod q. Hence (xλ̄)q = 1 mod (q)q if q is divisible by
p. Hence λ̄q is in D. If α is transcendental over F , then we can take D′ = (D[λ̄])m equal
to the subring generated by D and λ̄ localized at m = D[λ̄] ∩ qΛ̄. This works because
D[λ̄] is in fact a polynomial algebra over D in this case. Finally, if λ mod q is algebraic
over F , then we can find a p-power q such that αq is separable algebraic over F , see Fields,
Section 28. Note that D and Λ̄ are henselian local rings, see Algebra, Lemma 153.10. Let
D → D′ be a finite étale extension whose residue field extension is F (αq)/F , see Algebra,
Lemma 153.7. Since Λ̄ is henselian and F (αq) is contained in its residue field we can find
a factorization D′ → Λ̄. By the first part of the argument we see that λ̄qq

′ ∈ D′ for some
q′ > 0. �

Lemma 11.4. Let k → A→ Λ ⊃ q be as in Situation 9.1 where
(1) k is a field of characteristic p > 0,
(2) Λ is Noetherian and geometrically regular over k,
(3) q is minimal over hA.

Then k → A→ Λ ⊃ q can be resolved.

Proof. The lemma is proven by the following steps in the given order. We will
justify each of these steps below.

(1) Pick an integer N > 0 such that qNΛq ⊂ HA/kΛq.
(2) Pick generators a1, . . . , at ∈ A of the ideal HA/R.
(3) Set d = dim(Λq).
(4) Set B = A[x1, . . . , xd, zij ]/(x2N

i −
∑
zijaj).

(5) Consider B as a k[x1, . . . , xd]-algebra and let B → C be as in Lemma 3.1. We
also obtain a section C → B.

(6) Choose c > 0 such that each xci is strictly standard in C over k[x1, . . . , xd].
(7) Set n = N + dc and e = 8c.
(8) Let E ⊂ Λq/q

nΛq be the images of generators of A as a k-algebra.
(9) Choose an integer m and a k-algebra map ϕ : k[y1, . . . , ym] → Λ and a factor-

ization by local Artinian rings

k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → D → Λq/q
nΛq

such that the first arrow is essentially smooth, the second is flat, E is contained
in D, with p = ϕ−1(q) the map k[y1, . . . , ym]p → Λq is flat, and pΛq = qΛq.

(10) Chooseπ1, . . . , πd ∈ pwhich map to a regular system of parameters of k[y1, . . . , ym]p.
(11) Let R = k[y1, . . . , ym, t1, . . . , tm] and γi = πiti.
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(12) If necessary modify the choice of πi such that for i = 1, . . . , d we have

AnnR/(γe1 ,...,γei−1)R(γi) = AnnR/(γe1 ,...,γei−1)R(γ2
i )

(13) There exist δ1, . . . , δd ∈ Λ, δi 6∈ q and a factorization D → D′ → Λq/q
nΛq

with D′ local Artinian, D → D′ essentially smooth, the map D′ → Λq/q
nΛq

flat such that, with π′
i = δiπi, we have for i = 1, . . . , d

(a) (π′
i)2N =

∑
ajλij in Λ where λij mod qnΛq is an element of D′,

(b) AnnΛ/(π′e
1,...,π

′e
i−1)(π′

i) = AnnΛ/(π′e
1,...,π

′e
i−1)(π′2

i ),
(c) δi mod qnΛq is an element of D′.

(14) Define B → Λ by sending xi to π′
i and zij to λij found above. Define C → Λ

by composing the map B → Λ with the retraction C → B.
(15) Map R→ Λ by ϕ on k[y1, . . . , ym] and by sending ti to δi. Further introduce a

map
k[x1, . . . , xd] −→ R = k[y1, . . . , ym, t1, . . . , td]

by sending xi to γi = πiti.
(16) It suffices to resolve

R→ C ⊗k[x1,...,xd] R→ Λ ⊃ q

(17) Set I = (γe1 , . . . , γed) ⊂ R.
(18) It suffices to resolve

R/I → C ⊗k[x1,...,xd] R/I → Λ/IΛ ⊃ q/IΛ
(19) We denote r ⊂ R = k[y1, . . . , ym, t1, . . . , td] the inverse image of q.
(20) It suffices to resolve

(R/I)r → C ⊗k[x1,...,xd] (R/I)r → Λq/IΛq ⊃ qΛq/IΛq

(21) Set J = (πe1, . . . , πed) in k[y1, . . . , ym].
(22) It suffices to resolve

(R/JR)p → C ⊗k[x1,...,xd] (R/JR)p → Λq/JΛq ⊃ qΛq/JΛq

(23) It suffices to resolve
(R/pnR)p → C ⊗k[x1,...,xd] (R/pnR)p → Λq/q

nΛq ⊃ qΛq/q
nΛq

(24) It suffices to resolve
(R/pnR)p → B ⊗k[x1,...,xd] (R/pnR)p → Λq/q

nΛq ⊃ qΛq/q
nΛq

(25) The ring D′[t1, . . . , td] is given the structure of an Rp/p
nRp-algebra by the

given map k[y1, . . . , ym]p/pnk[y1, . . . , ym]p → D′ and by sending ti to ti. It
suffices to find a factorization

B ⊗k[x1,...,xd] (R/pnR)p → D′[t1, . . . , td]→ Λq/q
nΛq

where the second arrow sends ti to δi and induces the given homomorphism
D′ → Λq/q

nΛq.
(26) Such a factorization exists by our choice of D′ above.

We now give the justification for each of the steps, except that we skip justifying the steps
which just introduce notation.

Ad (1). This is possible as q is minimal over hA =
√
HA/kΛ.

Ad (6). Note that Aai is smooth over k. Hence Baj , which is isomorphic to a poly-
nomial algebra over Aaj [x1, . . . , xd], is smooth over k[x1, . . . , xd]. Thus Bxi is smooth
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over k[x1, . . . , xd]. By Lemma 3.1 we see that Cxi is smooth over k[x1, . . . , xd] with fi-
nite free module of differentials. Hence some power of xi is strictly standard in C over
k[x1, . . . , xn] by Lemma 3.7.

Ad (9). This follows by applying Lemma 11.2.

Ad (10). Since k[y1, . . . , ym]p → Λq is flat and pΛq = qΛq by construction we see that
dim(k[y1, . . . , ym]p) = d by Algebra, Lemma 112.7. Thus we can find π1, . . . , πd ∈ Λ
which map to a regular system of parameters in Λq.

Ad (12). By Algebra, Lemma 106.3 any permutation of the sequence π1, . . . , πd is a regular
sequence in k[y1, . . . , ym]p. Hence γ1 = π1t1, . . . , γd = πdtd is a regular sequence in
Rp = k[y1, . . . , ym]p[t1, . . . , td], see Algebra, Lemma 68.10. Let S = k[y1, . . . , ym] \ p
so that Rp = S−1R. Note that π1, . . . , πd and γ1, . . . , γd remain regular sequences if we
multiply our πi by elements of S. Suppose that

AnnR/(γe1 ,...,γei−1)R(γi) = AnnR/(γe1 ,...,γei−1)R(γ2
i )

holds for i = 1, . . . , t for some t ∈ {0, . . . , d}. Note that γe1 , . . . , γet , γt+1 is a regular
sequence in S−1R by Algebra, Lemma 68.9. Hence we see that

AnnS−1R/(γe1 ,...,γei−1)(γi) = AnnS−1R/(γe1 ,...,γei−1)(γ2
i ).

Thus we get
AnnR/(γe1 ,...,γet )R(γt+1) = AnnR/(γe1 ,...,γet )R(γ2

t+1)
after replacing πt+1 by sπt+1 for some s ∈ S by Lemma 10.1. By induction on t this
produces the desired sequence.

Ad (13). Let S = Λ \ q so that Λq = S−1Λ. Set Λ̄ = Λq/q
nΛq. Suppose that we have a

t ∈ {0, . . . , d} and δ1, . . . , δt ∈ S and a factorization D → D′ → Λ̄ as in (13) such that
(a), (b), (c) hold for i = 1, . . . , t. We have πNt+1 ∈ HA/kΛq as qNΛq ⊂ HA/kΛq by (1).
Hence πNt+1 ∈ HA/kΛ̄. Hence πNt+1 ∈ HA/kD

′ as D′ → Λ̄ is faithfully flat, see Algebra,
Lemma 82.11. Recall that HA/k = (a1, . . . , at). Say πNt+1 =

∑
ajdj in D′ and choose

cj ∈ Λq lifting dj ∈ D′. Then πNt+1 =
∑
cjaj + ε with ε ∈ qnΛq ⊂ qn−NHA/kΛq.

Write ε =
∑
ajc

′
j for some c′

j ∈ qn−NΛq. Hence π2N
t+1 =

∑
(πNt+1cj + πNt+1c

′
j)aj . Note

that πNt+1c
′
j maps to zero in Λ̄; this trivial but key observation will ensure later that (a)

holds. Now we choose s ∈ S such that there exist µt+1j ∈ Λ such that on the one hand
πNt+1cj + πNt+1c

′
j = µt+1j/s

2N in S−1Λ and on the other (sπt+1)2N =
∑
µt+1jaj in Λ

(minor detail omitted). We may further replace s by a power and enlarge D′ such that s
maps to an element of D′. With these choices µt+1j maps to s2Ndj which is an element
ofD′. Note that π1, . . . , πd are a regular sequence of parameters in S−1Λ by our choice of
ϕ. Hence π1, . . . , πd forms a regular sequence in Λq by Algebra, Lemma 106.3. It follows
that π′e

1, . . . , π
′e
t , sπt+1 is a regular sequence in S−1Λ by Algebra, Lemma 68.9. Thus we

get
AnnS−1Λ/(π′e

1,...,π
′e
t )(sπt+1) = AnnS−1Λ/(π′e

1,...,π
′e
t )((sπt+1)2).

Hence we may apply Lemma 10.1 to find an s′ ∈ S such that

AnnΛ/(π′e
1,...,π

′e
t )((s′)qsπt+1) = AnnΛ/(π′e

1,...,π
′e
t )(((s′)qsπt+1)2).

for any q > 0. By Lemma 11.3 we can choose q and enlarge D′ such that (s′)q maps
to an element of D′. Setting δt+1 = (s′)qs and we conclude that (a), (b), (c) hold for
i = 1, . . . , t + 1. For (a) note that λt+1j = (s′)2Nqµt+1j works. By induction on t we
win.
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Ad (16). By construction the radical ofH(C⊗k[x1,...,xd]R)/RΛ contains hA. Namely, the el-
ementsaj ∈ HA/k map to elements ofHB/k[x1,...,xn], hence map to elements ofHC/k[x1,...,xn],
hence aj ⊗ 1 map to elements of HC⊗k[x1,...,xd]R/R. Moreover, if we have a solution
C ⊗k[x1,...,xn] R→ T → Λ of

R→ C ⊗k[x1,...,xd] R→ Λ ⊃ q

thenHT/R ⊂ HT/k asR is smooth over k. Hence T will also be a solution for the original
situation k → A→ Λ ⊃ q.

Ad (18). Follows on applying Lemma 9.2 to R → C ⊗k[x1,...,xd] R → Λ ⊃ q and the
sequence of elements γc1, . . . , γcd. We note that since xci are strictly standard in C over
k[x1, . . . , xd] the elements γci are strictly standard in C ⊗k[x1,...,xd] R over R by Lemma
2.7. The other assumption of Lemma 9.2 holds by steps (12) and (13).

Ad (20). Apply Lemma 9.4 to the situation in (18). In the rest of the arguments the target
ring is local Artinian, hence we are looking for a factorization by a smooth algebra T over
the source ring.

Ad (22). Suppose that C ⊗k[x1,...,xd] (R/JR)p → T → Λq/JΛq is a solution to

(R/JR)p → C ⊗k[x1,...,xd] (R/JR)p → Λq/JΛq ⊃ qΛq/JΛq

Then C ⊗k[x1,...,xd] (R/I)r → Tr → Λq/IΛq is a solution to the situation in (20).

Ad (23). Ourn = N+dc is large enough so that pnk[y1, . . . , ym]p ⊂ Jp and qnΛq ⊂ JΛq.
Hence if we have a solution C ⊗k[x1,...,xd] (R/pnR)p → T → Λq/q

nΛq of (22 then we
can take T/JT as the solution for (23).

Ad (24). This is true because we have a section C → B in the category of R-algebras.

Ad (25). This is true becauseD′ is essentially smooth over the local Artinian ring k[y1, . . . , ym]p/pnk[y1, . . . , ym]p
and

Rp/p
nRp = k[y1, . . . , ym]p/pnk[y1, . . . , ym]p[t1, . . . , td].

Hence D′[t1, . . . , td] is a filtered colimit of smooth Rp/p
nRp-algebras and B ⊗k[x1,...,xd]

(Rp/p
nRp) factors through one of these.

Ad (26). The final twist of the proof is that we cannot just use the map B → D′ which
maps xi to the image of π′

i in D′ and zij to the image of λij in D′ because we need the
diagram

B // D′[t1, . . . , td]

k[x1, . . . , xd] //

OO

Rp/p
nRp

OO

to commute and we need the compositionB → D′[t1, . . . , td]→ Λq/q
nΛq to be the map

of (14). This requires us to map xi to the image of πiti in D′[t1, . . . , td]. Hence we map
zij to the image of λijt2Ni /δ2N

i in D′[t1, . . . , td] and everything is clear. �

12. The main theorem

In this section we wrap up the discussion.

Theorem 12.1 (Popescu). Any regular homomorphism of Noetherian rings is a fil-
tered colimit of smooth ring maps.
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Proof. By Lemma 8.4 it suffices to prove this for k → Λ where Λ is Noetherian and
geometrically regular over k. Let k → A → Λ be a factorization with A a finite type
k-algebra. It suffices to construct a factorization A → B → Λ with B of finite type
such that hB = Λ, see Lemma 2.8. Hence we may perform Noetherian induction on the
ideal hA. Pick a prime q ⊃ hA such that q is minimal over hA. It now suffices to resolve
k → A→ Λ ⊃ q (as defined in the text following Situation 9.1). If the characteristic of k
is zero, this follows from Lemma 10.3. If the characteristic of k is p > 0, this follows from
Lemma 11.4. �

13. The approximation property for G-rings

Let R be a Noetherian local ring. In this case R is a G-ring if and only if the ring map
R → R∧ is regular, see More on Algebra, Lemma 50.7. In this case it is true that the
henselization Rh and the strict henselization Rsh of R are G-rings, see More on Algebra,
Lemma 50.8. Moreover, any algebra essentially of finite type over a field, over a complete
local ring, over Z, or over a characteristic zero Dedekind ring is a G-ring, see More on
Algebra, Proposition 50.12. This gives an ample supply of rings to which the result below
applies.

Let R be a ring. Let f1, . . . , fm ∈ R[x1, . . . , xn]. Let S be an R-algebra. In this situation
we say a vector (a1, . . . , an) ∈ Sn is a solution in S if and only if

fj(a1, . . . , an) = 0 in S, for j = 1, . . . ,m
Of course an important question in algebraic geometry is to see when systems of polyno-
mial equations have solutions. The following theorem tells us that having solutions in the
completion of a local Noetherian ring is often enough to show there exist solutions in the
henselization of the ring.

Theorem 13.1. Let R be a Noetherian local ring. Let f1, . . . , fm ∈ R[x1, . . . , xn].
Suppose that (a1, . . . , an) ∈ (R∧)n is a solution inR∧. IfR is a henselian G-ring, then for
every integerN there exists a solution (b1, . . . , bn) ∈ Rn inR such that ai−bi ∈ mNR∧.

Proof. Let ci ∈ R be an element such that ai − ci ∈ mN . Choose generators mN =
(d1, . . . , dM ). Write ai = ci +

∑
ai,ldl. Consider the polynomial ring R[xi,l] and the

elements
gj = fj(c1 +

∑
x1,ldl, . . . , cn +

∑
xn,ldn,l) ∈ R[xi,l]

The system of equations gj = 0 has the solution (ai,l). Suppose that we can show that gj
as a solution (bi,l) in R. Then it follows that bi = ci +

∑
bi,ldl is a solution of fj = 0

which is congruent to ai modulo mN . Thus it suffices to show that solvability over R∧

implies solvability over R.

Let A ⊂ R∧ be the R-subalgebra generated by a1, . . . , an. Since we’ve assumed R is a
G-ring, i.e., that R→ R∧ is regular, we see that there exists a factorization

A→ B → R∧

withB smooth overR, see Theorem 12.1. Denote κ = R/m the residue field. It is also the
residue field of R∧, so we get a commutative diagram

B

  

// R′

��
R //

OO

κ
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Since the vertical arrow is smooth, More on Algebra, Lemma 9.14 implies that there exists
an étale ring map R → R′ which induces an isomorphism R/m → R′/mR′ and an R-
algebra map B → R′ making the diagram above commute. Since R is henselian we see
thatR→ R′ has a section, see Algebra, Lemma 153.3. Let bi ∈ R be the image of ai under
the ring mapsA→ B → R′ → R. Since all of these maps areR-algebra maps, we see that
(b1, . . . , bn) is a solution in R. �

Given a Noetherian local ring (R,m), an étale ring map R → R′, and a maximal ideal
m′ ⊂ R′ lying over m with κ(m) = κ(m′), then we have inclusions

R ⊂ Rm′ ⊂ Rh ⊂ R∧,

by Algebra, Lemma 155.5 and More on Algebra, Lemma 45.3.

Theorem 13.2. Let R be a Noetherian local ring. Let f1, . . . , fm ∈ R[x1, . . . , xn].
Suppose that (a1, . . . , an) ∈ (R∧)n is a solution. If R is a G-ring, then for every integer
N there exist

(1) an étale ring map R→ R′,
(2) a maximal ideal m′ ⊂ R′ lying over m
(3) a solution (b1, . . . , bn) ∈ (R′)n in R′

such that κ(m) = κ(m′) and ai − bi ∈ (m′)NR∧.

Proof. We could deduce this theorem from Theorem 13.1 using that the henseliza-
tionRh is a G-ring by More on Algebra, Lemma 50.8 and writingRh as a directed colimit
of étale extension R′. Instead we prove this by redoing the proof of the previous theorem
in this case.

Let ci ∈ R be an element such that ai−ci ∈ mN . Choose generators mN = (d1, . . . , dM ).
Write ai = ci +

∑
ai,ldl. Consider the polynomial ring R[xi,l] and the elements

gj = fj(c1 +
∑

x1,ldl, . . . , cn +
∑

xn,ldn,l) ∈ R[xi,l]

The system of equations gj = 0 has the solution (ai,l). Suppose that we can show that
gj as a solution (bi,l) in R′ for some étale ring map R → R′ endowed with a maximal
ideal m′ such that κ(m) = κ(m′). Then it follows that bi = ci +

∑
bi,ldl is a solution of

fj = 0 which is congruent to ai modulo (m′)N . Thus it suffices to show that solvability
overR∧ implies solvability over some étale ring extension which induces a trivial residue
field extension at some prime over m.

Let A ⊂ R∧ be the R-subalgebra generated by a1, . . . , an. Since we’ve assumed R is a
G-ring, i.e., that R→ R∧ is regular, we see that there exists a factorization

A→ B → R∧

withB smooth overR, see Theorem 12.1. Denote κ = R/m the residue field. It is also the
residue field of R∧, so we get a commutative diagram

B

  

// R′

��
R //

OO

κ

Since the vertical arrow is smooth, More on Algebra, Lemma 9.14 implies that there exists
an étale ring map R → R′ which induces an isomorphism R/m → R′/mR′ and an R-
algebra map B → R′ making the diagram above commute. Let bi ∈ R′ be the image of
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ai under the ring maps A→ B → R′. Since all of these maps are R-algebra maps, we see
that (b1, . . . , bn) is a solution in R′. �

Example 13.3. Let (R,m) be a Noetherian local ring with henselization Rh. The
map on completions R∧ → (Rh)∧ is an isomorphism, see More on Algebra, Lemma 45.3.
Since also Rh is Noetherian (ibid.) we may think of Rh as a subring of its completion
(because the completion is faithfully flat). In this way we see that we may identify Rh

with a subring of R∧.

Let us try to understand which elements of R∧ are in Rh. For simplicity we assume R is
a domain with fraction fieldK. Clearly, every element f ofRh is algebraic overR, in the
sense that there exists an equation of the form anf

n+ . . .+a1f+a0 = 0 for some ai ∈ R
with n > 0 and an 6= 0.
Conversely, assume that f ∈ R∧, n ∈ N, and a0, . . . , an ∈ R with an 6= 0 such that
anf

n+ . . .+a1f+a0 = 0. IfR is a G-ring, then, for everyN > 0 there exists an element
g ∈ Rh with angn + . . . + a1g + a0 = 0 and f − g ∈ mNR∧, see Theorem 13.2. We’d
like to conclude that f = g when N � 0. If this is not true, then we find infinitely many
roots g of P (T ) inRh. This is impossible because (1)Rh ⊂ Rh⊗RK and (2)Rh⊗RK is
a finite product of field extensions ofK. Namely,R→ K is injective andR→ Rh is flat,
hence Rh → Rh ⊗R K is injective and (2) follows from More on Algebra, Lemma 45.13.
Conclusion: If R is a Noetherian local domain with fraction field K and a G-ring, then
Rh ⊂ R∧ is the set of all elements which are algebraic over K.

Here is another variant of the main theorem of this section.

Lemma 13.4. LetR be a Noetherian ring. Let p ⊂ R be a prime ideal. Let f1, . . . , fm ∈
R[x1, . . . , xn]. Suppose that (a1, . . . , an) ∈ ((Rp)∧)n is a solution. IfRp is a G-ring, then
for every integer N there exist

(1) an étale ring map R→ R′,
(2) a prime ideal p′ ⊂ R′ lying over p
(3) a solution (b1, . . . , bn) ∈ (R′)n in R′

such that κ(p) = κ(p′) and ai − bi ∈ (p′)N (R′
p′)∧.

Proof. By Theorem 13.2 we can find a solution (b′
1, . . . , b

′
n) in some ring R′′ étale

over Rp which comes with a prime ideal p′′ lying over p such that κ(p) = κ(p′′) and
ai − b′

i ∈ (p′′)N (R′′
p′′)∧. We can write R′′ = R′ ⊗R Rp for some étale R-algebra R′ (see

Algebra, Lemma 143.3). After replacingR′ by a principal localization if necessary we may
assume (b′

1, . . . , b
′
n) come from a solution (b1, . . . , bn) in R′. Setting p′ = R′ ∩ p′′ we see

that R′′
p′′ = R′

p′ which finishes the proof. �

14. Approximation for henselian pairs

We can generalize the discussion of Section 13 to the case of henselian pairs. Henselian
pairs where defined in More on Algebra, Section 11.

Lemma 14.1. Let (A, I) be a henselian pair with A Noetherian. Let A∧ be the I-adic
completion of A. Assume at least one of the following conditions holds

(1) A→ A∧ is a regular ring map,
(2) A is a Noetherian G-ring, or
(3) (A, I) is the henselization (More on Algebra, Lemma 12.1) of a pair (B, J) where

B is a Noetherian G-ring.
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Given f1, . . . , fm ∈ A[x1, . . . , xn] and â1, . . . , ân ∈ A∧ such that fj(â1, . . . , ân) = 0
for j = 1, . . . ,m, for everyN ≥ 1 there exist a1, . . . , an ∈ A such that âi− ai ∈ IN and
such that fj(a1, . . . , an) = 0 for j = 1, . . . ,m.

Proof. By More on Algebra, Lemma 50.15 we see that (3) implies (2). By More on
Algebra, Lemma 50.14 we see that (2) implies (1). Thus it suffices to prove the lemma in
case A→ A∧ is a regular ring map.
Let â1, . . . , ân be as in the statement of the lemma. By Theorem 12.1 we can find a factor-
ization A→ B → A∧ with A→ P smooth and b1, . . . , bn ∈ B with fj(b1, . . . , bn) = 0
in B. Denote σ : B → A∧ → A/IN the composition. By More on Algebra, Lemma 9.14
we can find an étale ring mapA→ A′ which induces an isomorphismA/IN → A′/INA′

and an A-algebra map σ̃ : B → A′ lifting σ. Since (A, I) is henselian, there is an A-
algebra map χ : A′ → A, see More on Algebra, Lemma 11.6. Then setting ai = χ(σ̃(bi))
gives a solution. �
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CHAPTER 17

Sheaves of Modules

1. Introduction

In this chapter we work out basic notions of sheaves of modules. This in particular includes
the case of abelian sheaves, since these may be viewed as sheaves of Z-modules. Basic
references are [?], [?] and [?].

We work out what happens for sheaves of modules on ringed topoi in another chapter (see
Modules on Sites, Section 1), although there we will mostly just duplicate the discussion
from this chapter.

2. Pathology

A ringed space is a pair consisting of a topological space X and a sheaf of rings O. We
allow O = 0 in the definition. In this case the category of modules has a single object
(namely 0). It is still an abelian category etc, but it is a little degenerate. Similarly the
sheafO may be zero over open subsets of X , etc.

This doesn’t happen when considering locally ringed spaces (as we will do later).

3. The abelian category of sheaves of modules

Let (X,OX) be a ringed space, see Sheaves, Definition 25.1. Let F , G be sheaves of OX -
modules, see Sheaves, Definition 10.1. Let ϕ,ψ : F → G be morphisms of sheaves of
OX -modules. We define ϕ+ψ : F → G to be the map which on each open U ⊂ X is the
sum of the maps induced by ϕ, ψ. This is clearly again a map of sheaves of OX -modules.
It is also clear that composition of maps of OX -modules is bilinear with respect to this
addition. Thus Mod(OX) is a pre-additive category, see Homology, Definition 3.1.

We will denote 0 the sheaf of OX -modules which has constant value {0} for all open
U ⊂ X . Clearly this is both a final and an initial object of Mod(OX). Given a morphism
of OX -modules ϕ : F → G the following are equivalent: (a) ϕ is zero, (b) ϕ factors
through 0, (c) ϕ is zero on sections over each open U , and (d) ϕx = 0 for all x ∈ X . See
Sheaves, Lemma 16.1.

Moreover, given a pair F , G of sheaves ofOX -modules we may define the direct sum as

F ⊕ G = F × G

with obvious maps (i, j, p, q) as in Homology, Definition 3.5. Thus Mod(OX) is an addi-
tive category, see Homology, Definition 3.8.

Let ϕ : F → G be a morphism ofOX -modules. We may define Ker(ϕ) to be the subsheaf
of F with sections

Ker(ϕ)(U) = {s ∈ F(U) | ϕ(s) = 0 in G(U)}

1627
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for all open U ⊂ X . It is easy to see that this is indeed a kernel in the category of OX -
modules. In other words, a morphism α : H → F factors through Ker(ϕ) if and only if
ϕ ◦ α = 0. Moreover, on the level of stalks we have Ker(ϕ)x = Ker(ϕx).

On the other hand, we define Coker(ϕ) as the sheaf of OX -modules associated to the
presheaf ofOX -modules defined by the rule

U 7−→ Coker(G(U)→ F(U)) = F(U)/ϕ(G(U)).
Since taking stalks commutes with taking sheafification, see Sheaves, Lemma 17.2 we see
that Coker(ϕ)x = Coker(ϕx). Thus the map G → Coker(ϕ) is surjective (as a map of
sheaves of sets), see Sheaves, Section 16. To show that this is a cokernel, note that if β :
G → H is a morphism ofOX -modules such that β ◦ϕ is zero, then you get for every open
U ⊂ X a map induced by β from G(U)/ϕ(F(U)) intoH(U). By the universal property
of sheafification (see Sheaves, Lemma 20.1) we obtain a canonical map Coker(ϕ) → H
such that the original β is equal to the composition G → Coker(ϕ)→ H. The morphism
Coker(ϕ)→ H is unique because of the surjectivity mentioned above.

Lemma 3.1. Let (X,OX) be a ringed space. The category Mod(OX) is an abelian
category. Moreover a complex

F → G → H
is exact at G if and only if for all x ∈ X the complex

Fx → Gx → Hx
is exact at Gx.

Proof. By Homology, Definition 5.1 we have to show that image and coimage agree.
By Sheaves, Lemma 16.1 it is enough to show that image and coimage have the same stalk
at every x ∈ X . By the constructions of kernels and cokernels above these stalks are the
coimage and image in the categories of OX,x-modules. Thus we get the result from the
fact that the category of modules over a ring is abelian. �

Actually the category Mod(OX) has many more properties. Here are two constructions
we can do.

(1) Given any set I and for each i ∈ I aOX -module we can form the product∏
i∈I
Fi

which is the sheaf that associates to each open U the product of the modules
Fi(U). This is also the categorical product, as in Categories, Definition 14.6.

(2) Given any set I and for each i ∈ I aOX -module we can form the direct sum⊕
i∈I
Fi

which is the sheafification of the presheaf that associates to each open U the
direct sum of the modules Fi(U). This is also the categorical coproduct, as in
Categories, Definition 14.7. To see this you use the universal property of sheafi-
fication.

Using these we conclude that all limits and colimits exist in Mod(OX).

Lemma 3.2. Let (X,OX) be a ringed space.
(1) All limits exist in Mod(OX). Limits are the same as the corresponding limits of

presheaves ofOX -modules (i.e., commute with taking sections over opens).
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(2) All colimits exist in Mod(OX). Colimits are the sheafification of the correspond-
ing colimit in the category of presheaves. Taking colimits commutes with taking
stalks.

(3) Filtered colimits are exact.
(4) Finite direct sums are the same as the corresponding finite direct sums of presheaves

ofOX -modules.

Proof. As Mod(OX) is abelian (Lemma 3.1) it has all finite limits and colimits (Ho-
mology, Lemma 5.5). Thus the existence of limits and colimits and their description fol-
lows from the existence of products and coproducts and their description (see discussion
above) and Categories, Lemmas 14.11 and 14.12. Since sheafification commutes with tak-
ing stalks we see that colimits commute with taking stalks. Part (3) signifies that given a
system 0 → Fi → Gi → Hi → 0 of exact sequences of OX -modules over a directed set
I the sequence 0 → colimFi → colimGi → colimHi → 0 is exact as well. Since we
can check exactness on stalks (Lemma 3.1) this follows from the case of modules which is
Algebra, Lemma 8.8. We omit the proof of (4). �

The existence of limits and colimits allows us to consider exactness properties of functors
defined on the category of O-modules in terms of limits and colimits, as in Categories,
Section 23. See Homology, Lemma 7.2 for a description of exactness properties in terms of
short exact sequences.

Lemma 3.3. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.
(1) The functor f∗ : Mod(OX)→Mod(OY ) is left exact. In fact it commutes with

all limits.
(2) The functor f∗ : Mod(OY ) → Mod(OX) is right exact. In fact it commutes

with all colimits.
(3) Pullback f−1 : Ab(Y )→ Ab(X) on abelian sheaves is exact.

Proof. Parts (1) and (2) hold because (f∗, f∗) is an adjoint pair of functors, see Sheaves,
Lemma 26.2 and Categories, Section 24. Part (3) holds because exactness can be checked
on stalks (Lemma 3.1) and the description of stalks of the pullback, see Sheaves, Lemma
22.1. �

Lemma 3.4. Let j : U → X be an open immersion of topological spaces. The functor
j! : Ab(U)→ Ab(X) is exact.

Proof. Follows from the description of stalks given in Sheaves, Lemma 31.6. �

Lemma 3.5. Let (X,OX) be a ringed space. Let I be a set. For i ∈ I , let Fi be a sheaf
ofOX -modules. For U ⊂ X quasi-compact open the map⊕

i∈I
Fi(U) −→

(⊕
i∈I
Fi
)

(U)

is bijective.

Proof. If s is an element of the right hand side, then there exists an open covering
U =

⋃
j∈J Uj such that s|Uj is a finite sum

∑
i∈Ij sji with sji ∈ Fi(Uj). Because U

is quasi-compact we may assume that the covering is finite, i.e., that J is finite. Then
I ′ =

⋃
j∈J Ij is a finite subset of I . Clearly, s is a section of the subsheaf

⊕
i∈I′ Fi. The

result follows from the fact that for a finite direct sum sheafification is not needed, see
Lemma 3.2 above. �
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4. Sections of sheaves of modules

Let (X,OX) be a ringed space. LetF be a sheaf ofOX -modules. Let s ∈ Γ(X,F) = F(X)
be a global section. There is a unique map ofOX -modules

OX −→ F , f 7−→ fs

associated to s. The notation above signifies that a local section f of OX , i.e., a section
f over some open U , is mapped to the multiplication of f with the restriction of s to U .
Conversely, any map ϕ : OX → F gives rise to a section s = ϕ(1) such that ϕ is the
morphism associated to s.

Definition 4.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is generated by global sections if there exist a set I , and global sections
si ∈ Γ(X,F), i ∈ I such that the map⊕

i∈I
OX −→ F

which is the map associated to si on the summand corresponding to i, is surjective. In this
case we say that the sections si generate F .
We often use the abuse of notation introduced in Sheaves, Section 11 where, given a local
section s of F defined in an open neighbourhood of a point x ∈ X , we denote sx, or even
s the image of s in the stalk Fx.

Lemma 4.2. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules. Let I
be a set. Let si ∈ Γ(X,F), i ∈ I be global sections. The sections si generateF if and only
if for all x ∈ X the elements si,x ∈ Fx generate theOX,x-module Fx.

Proof. Omitted. �

Lemma 4.3. Let (X,OX) be a ringed space. Let F , G be sheaves of OX -modules. If
F and G are generated by global sections then so is F ⊗OX

G.
Proof. Omitted. �

Lemma 4.4. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules. Let
I be a set. Let si, i ∈ I be a collection of local sections of F , i.e., si ∈ F(Ui) for some
opens Ui ⊂ X . There exists a unique smallest subsheaf of OX -modules G such that each
si corresponds to a local section of G.

Proof. Consider the subpresheaf ofOX -modules defined by the rule

U 7−→ {sums
∑

i∈J
fi(si|U ) where J is finite, U ⊂ Ui for i ∈ J, and fi ∈ OX(U)}

Let G be the sheafification of this subpresheaf. This is a subsheaf of F by Sheaves, Lemma
16.3. Since all the finite sums clearly have to be in G this is the smallest subsheaf as desired.

�

Definition 4.5. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
Given a set I , and local sections si, i ∈ I of F we say that the subsheaf G of Lemma 4.4
above is the subsheaf generated by the si.

Lemma 4.6. Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules. Given
a set I , and local sections si, i ∈ I of F . Let G be the subsheaf generated by the si and let
x ∈ X . Then Gx is the OX,x-submodule of Fx generated by the elements si,x for those i
such that si is defined at x.

Proof. This is clear from the construction of G in the proof of Lemma 4.4. �
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5. Supports of modules and sections

Definition 5.1. Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules.
(1) The support of F is the set of points x ∈ X such that Fx 6= 0.
(2) We denote Supp(F) the support of F .
(3) Let s ∈ Γ(X,F) be a global section. The support of s is the set of points x ∈ X

such that the image sx ∈ Fx of s is not zero.

Of course the support of a local section is then defined also since a local section is a global
section of the restriction of F .

Lemma 5.2. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules. Let
U ⊂ X open.

(1) The support of s ∈ F(U) is closed in U .
(2) The support of fs is contained in the intersections of the supports of f ∈ OX(U)

and s ∈ F(U).
(3) The support of s+ s′ is contained in the union of the supports of s, s′ ∈ F(U).
(4) The support of F is the union of the supports of all local sections of F .
(5) If ϕ : F → G is a morphism of OX -modules, then the support of ϕ(s) is con-

tained in the support of s ∈ F(U).

Proof. This is true because if sx = 0, then s is zero in an open neighbourhood of x
by definition of stalks. Similarly for f . Details omitted. �

In general the support of a sheaf of modules is not closed. Namely, the sheaf could be
an abelian sheaf on R (with the usual archimedean topology) which is the direct sum of
infinitely many nonzero skyscraper sheaves each supported at a single point pi of R. Then
the support would be the set of points pi which may not be closed.
Another example is to consider the open immersion j : U = (0,∞) → R = X , and the
abelian sheaf j!ZU . By Sheaves, Section 31 the support of this sheaf is exactly U .

Lemma 5.3. Let X be a topological space. The support of a sheaf of rings is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only if
1 = 0, and hence the support of a sheaf of rings is the support of the unit section. �

6. Closed immersions and abelian sheaves

Recall that we think of an abelian sheaf on a topological spaceX as a sheaf of ZX -modules.
Thus we may apply any results, definitions for sheaves of modules to abelian sheaves.

Lemma 6.1. Let X be a topological space. Let Z ⊂ X be a closed subset. Denote
i : Z → X the inclusion map. The functor

i∗ : Ab(Z) −→ Ab(X)
is exact, fully faithful, with essential image exactly those abelian sheaves whose support is
contained in Z. The functor i−1 is a left inverse to i∗.

Proof. Exactness follows from the description of stalks in Sheaves, Lemma 32.1 and
Lemma 3.1. The rest was shown in Sheaves, Lemma 32.3. �

Let F be an abelian sheaf on the topological space X . Given a closed subset Z , there is a
canonical abelian subsheaf of F which consists of exactly those sections whose support is
contained in Z. Here is the exact statement.



1632 17. SHEAVES OF MODULES

Remark 6.2. Let X be a topological space. Let Z ⊂ X be a closed subset. Let F be
an abelian sheaf on X . For U ⊂ X open set

HZ(F)(U) = {s ∈ F(U) | the support of s is contained in Z ∩ U}

Then HZ(F) is an abelian subsheaf of F . It is the largest abelian subsheaf of F whose
support is contained in Z. By Lemma 6.1 we may (and we do) viewHZ(F) as an abelian
sheaf on Z. In this way we obtain a left exact functor

Ab(X) −→ Ab(Z), F 7−→ HZ(F) viewed as abelian sheaf on Z

All of the statements made above follow directly from Lemma 5.2.

This seems like a good opportunity to show that the functor i∗ has a right adjoint on
abelian sheaves.

Lemma 6.3. Let i : Z → X be the inclusion of a closed subset into the topological
space X . The functor Ab(X)→ Ab(Z), F 7→ HZ(F) of Remark 6.2 is a right adjoint to
i∗ : Ab(Z)→ Ab(X). In particular i∗ commutes with arbitrary colimits.

Proof. We have to show that for any abelian sheaf F on X and any abelian sheaf G
on Z we have

HomAb(X)(i∗G,F) = HomAb(Z)(G,HZ(F))
This is clear because after all any section of i∗G has support in Z. Details omitted. �

Remark 6.4. In Sheaves, Remark 32.5 we showed that i∗ as a functor on the categories
of sheaves of sets does not have a right adjoint simply because it is not exact. However, it is
very close to being true, in fact, the functor i∗ is exact on sheaves of pointed sets, sections
with support in Z can be defined for sheaves of pointed sets, andHZ makes sense and is a
right adjoint to i∗.

7. A canonical exact sequence

We give this exact sequence its own section.

Lemma 7.1. Let X be a topological space. Let U ⊂ X be an open subset with com-
plement Z ⊂ X . Denote j : U → X the open immersion and i : Z → X the closed im-
mersion. For any sheaf of abelian groups F on X the adjunction mappings j!j

−1F → F
and F → i∗i

−1F give a short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

of sheaves of abelian groups. For any morphism ϕ : F → G of abelian sheaves on X we
obtain a morphism of short exact sequences

0 // j!j
−1F //

��

F //

��

i∗i
−1F //

��

0

0 // j!j
−1G // G // i∗i−1G // 0

Proof. The functoriality of the short exact sequence is immediate from the natural-
ity of the adjunction mappings. We may check exactness on stalks (Lemma 3.1). For a
description of the stalks in question see Sheaves, Lemmas 31.6 and 32.1. �
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8. Modules locally generated by sections

Let (X,OX) be a ringed space. In this and the following section we will often restrict
sheaves to open subspaces U ⊂ X , see Sheaves, Section 31. In particular, we will often
denote the open subspace by (U,OU ) instead of the more correct notation (U,OX |U ), see
Sheaves, Definition 31.2.

Consider the open immersion j : U = (0,∞)→ R = X , and the abelian sheaf j!ZU . By
Sheaves, Section 31 the stalk of j!ZU at x = 0 is 0. In fact the sections of this sheaf over
any open interval containing 0 are 0. Thus there is no open neighbourhood of the point
0 over which the sheaf can be generated by sections.

Definition 8.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is locally generated by sections if for every x ∈ X there exists an open
neighbourhood U of x such that F|U is globally generated as a sheaf ofOU -modules.

In other words there exists a set I and for each i a section si ∈ F(U) such that the associ-
ated map ⊕

i∈I
OU −→ F|U

is surjective.

Lemma 8.2. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G is locally generated by sections if G is locally generated by sections.

Proof. Given an open subspace V of Y we may consider the commutative diagram
of ringed spaces

(f−1V,Of−1V )
j′

//

f ′

��

(X,OX)

f

��
(V,OV ) j // (Y,OY )

We know that f∗G|f−1V
∼= (f ′)∗(G|V ), see Sheaves, Lemma 26.3. Thus we may assume

that G is globally generated.

We have seen that f∗ commutes with all colimits, and is right exact, see Lemma 3.3. Thus
if we have a surjection ⊕

i∈I
OY → G → 0

then upon applying f∗ we obtain the surjection⊕
i∈I
OX → f∗G → 0.

This implies the lemma. �

9. Modules of finite type

Definition 9.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is of finite type if for every x ∈ X there exists an open neighbourhood U
such that F|U is generated by finitely many sections.

Lemma 9.2. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a finite typeOY -module is a finite typeOX -module.
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Proof. Arguing as in the proof of Lemma 8.2 we may assume G is globally generated
by finitely many sections. We have seen that f∗ commutes with all colimits, and is right
exact, see Lemma 3.3. Thus if we have a surjection⊕

i=1,...,n
OY → G → 0

then upon applying f∗ we obtain the surjection⊕
i=1,...,n

OX → f∗G → 0.

This implies the lemma. �

Lemma 9.3. Let X be a ringed space. The image of a morphism of OX -modules of
finite type is of finite type. Let 0 → F1 → F2 → F3 → 0 be a short exact sequence of
OX -modules. If F1 and F3 are of finite type, so is F2.

Proof. The statement on images is trivial. The statement on short exact sequences
comes from the fact that sections ofF3 locally lift to sections ofF2 and the corresponding
result in the category of modules over a ring (applied to the stalks for example). �

Lemma 9.4. Let X be a ringed space. Let ϕ : G → F be a homomorphism of OX -
modules. Let x ∈ X . Assume F of finite type and the map on stalks ϕx : Gx → Fx
surjective. Then there exists an open neighbourhood x ∈ U ⊂ X such that ϕ|U is surjec-
tive.

Proof. Choose an open neighbourhood U ⊂ X of x such that F is generated by
s1, . . . , sn ∈ F(U) over U . By assumption of surjectivity of ϕx, after shrinking U we
may assume that si = ϕ(ti) for some ti ∈ G(U). Then U works. �

Lemma 9.5. Let X be a ringed space. Let F be an OX -module. Let x ∈ X . Assume
F of finite type and Fx = 0. Then there exists an open neighbourhood x ∈ U ⊂ X such
that F|U is zero.

Proof. This is a special case of Lemma 9.4 applied to the morphism 0→ F . �

Lemma 9.6. Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules. If F is
of finite type then support of F is closed.

Proof. This is a reformulation of Lemma 9.5. �

Lemma 9.7. Let X be a ringed space. Let I be a preordered set and let (Fi, fii′) be
a system over I consisting of sheaves of OX -modules (see Categories, Section 21). Let
F = colimFi be the colimit. Assume (a) I is directed, (b) F is a finite type OX -module,
and (c) X is quasi-compact. Then there exists an i such that Fi → F is surjective. If the
transition maps fii′ are injective then we conclude that F = Fi for some i ∈ I .

Proof. Let x ∈ X . There exists an open neighbourhood U ⊂ X of x and finitely
many sections sj ∈ F(U), j = 1, . . . ,m such that s1, . . . , sm generate F as OU -module.
After possibly shrinking U to a smaller open neighbourhood of x we may assume that
each sj comes from a section of Fi for some i ∈ I . Hence, since X is quasi-compact we
can find a finite open covering X =

⋃
j=1,...,m Uj , and for each j an index ij and finitely

many sections sjl ∈ Fij (Uj) whose images generate the restriction of F to Uj . Clearly,
the lemma holds for any index i ∈ I which is ≥ all ij . �
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Lemma 9.8. Let X be a ringed space. There exists a set of OX -modules {Fi}i∈I of
finite type such that each finite typeOX -module onX is isomorphic to exactly one of the
Fi.

Proof. For each open covering U : X =
⋃
Uj consider the sheaves of OX -modules

F such that each restriction F|Uj is a quotient of O⊕rj
Uj

for some rj ≥ 0. These are
parametrized by subsheaves Kj ⊂ O

⊕rj
Uj

and glueing data

ϕjj′ : O⊕rj
Uj∩Uj′/(Kj |Uj∩Uj′ ) −→ O

⊕rj′

Uj∩Uj′/(Kj′ |Uj∩Uj′ )

see Sheaves, Section 33. Note that the collection of all glueing data forms a set. The col-
lection of all coverings U : X =

⋃
j∈J Ui where J → P(X), j 7→ Uj is injective forms a

set as well. Hence the collection of all sheaves of OX -modules gotten from glueing quo-
tients as above forms a set I . By definition every finite typeOX -module is isomorphic to
an element of I . Choosing an element out of each isomorphism class inside I gives the
desired set of sheaves (uses axiom of choice). �

10. Quasi-coherent modules

In this section we introduce an abstract notion of quasi-coherentOX -module. This notion
is very useful in algebraic geometry, since quasi-coherent modules on a scheme have a good
description on any affine open. However, we warn the reader that in the general setting
of (locally) ringed spaces this notion is not well behaved at all. The category of quasi-
coherent sheaves is not abelian in general, infinite direct sums of quasi-coherent sheaves
aren’t quasi-coherent, etc, etc.

Definition 10.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is a quasi-coherent sheaf of OX -modules if for every point x ∈ X there
exists an open neighbourhood x ∈ U ⊂ X such thatF|U is isomorphic to the cokernel of
a map ⊕

j∈J
OU −→

⊕
i∈I
OU

The category of quasi-coherentOX -modules is denoted QCoh(OX).

The definition means that X is covered by open sets U such that F|U has a presentation
of the form ⊕

j∈J
OU −→

⊕
i∈I
OU −→ F|U −→ 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point x of X there exists an open neighbourhood such that F|U is

generated by global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection is

also generated by global sections.

Lemma 10.2. Let (X,OX) be a ringed space. The direct sum of two quasi-coherent
OX -modules is a quasi-coherentOX -module.

Proof. Omitted. �

Remark 10.3. Warning: It is not true in general that an infinite direct sum of quasi-
coherent OX -modules is quasi-coherent. For more esoteric behaviour of quasi-coherent
modules see Example 10.9.
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Lemma 10.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a quasi-coherentOY -module is quasi-coherent.

Proof. Arguing as in the proof of Lemma 8.2 we may assume G has a global presen-
tation by direct sums of copies of OY . We have seen that f∗ commutes with all colimits,
and is right exact, see Lemma 3.3. Thus if we have an exact sequence⊕

j∈J
OY −→

⊕
i∈I
OY −→ G −→ 0

then upon applying f∗ we obtain the exact sequence⊕
j∈J
OX −→

⊕
i∈I
OX −→ f∗G −→ 0.

This implies the lemma. �

This gives plenty of examples of quasi-coherent sheaves.

Lemma 10.5. Let (X,OX) be ringed space. Let α : R→ Γ(X,OX) be a ring homo-
morphism from a ring R into the ring of global sections on X . Let M be an R-module.
The following three constructions give canonically isomorphic sheaves ofOX -modules:

(1) Let π : (X,OX) −→ ({∗}, R) be the morphism of ringed spaces with π : X →
{∗} the unique map and with π-map π] the given map α : R→ Γ(X,OX). Set
F1 = π∗M .

(2) Choose a presentation
⊕

j∈J R→
⊕

i∈I R→M → 0. Set

F2 = Coker
(⊕

j∈J
OX →

⊕
i∈I
OX
)
.

Here the map on the componentOX corresponding to j ∈ J given by the section∑
i α(rij) where the rij are the matrix coefficients of the map in the presentation

of M .
(3) Set F3 equal to the sheaf associated to the presheaf U 7→ OX(U)⊗RM , where

the mapR→ OX(U) is the composition ofα and the restriction mapOX(X)→
OX(U).

This construction has the following properties:
(1) The resulting sheaf ofOX -modules FM = F1 = F2 = F3 is quasi-coherent.
(2) The construction gives a functor from the category ofR-modules to the category

of quasi-coherent sheaves on X which commutes with arbitrary colimits.
(3) For any x ∈ X we have FM,x = OX,x ⊗RM functorial in M .
(4) Given anyOX -module G we have

MorOX
(FM ,G) = HomR(M,Γ(X,G))

where the R-module structure on Γ(X,G) comes from the Γ(X,OX)-module
structure via α.

Proof. The isomorphism betweenF1 andF3 comes from the fact thatπ∗ is defined as
the sheafification of the presheaf in (3), see Sheaves, Section 26. The isomorphism between
the constructions in (2) and (1) comes from the fact that the functor π∗ is right exact, so
π∗(
⊕

j∈J R) → π∗(
⊕

i∈I R) → π∗M → 0 is exact, π∗ commutes with arbitrary direct
sums, see Lemma 3.3, and finally the fact that π∗(R) = OX .
Assertion (1) is clear from construction (2). Assertion (2) is clear since π∗ has these proper-
ties. Assertion (3) follows from the description of stalks of pullback sheaves, see Sheaves,
Lemma 26.4. Assertion (4) follows from adjointness of π∗ and π∗. �
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Definition 10.6. In the situation of Lemma 10.5 we say FM is the sheaf associated
to the module M and the ring map α. If R = Γ(X,OX) and α = idR we simply say FM
is the sheaf associated to the module M .

Lemma 10.7. Let (X,OX) be a ringed space. Set R = Γ(X,OX). Let M be an
R-module. Let FM be the quasi-coherent sheaf of OX -modules associated to M . If g :
(Y,OY )→ (X,OX) is a morphism of ringed spaces, then g∗FM is the sheaf associated to
the Γ(Y,OY )-module Γ(Y,OY )⊗RM .

Proof. The assertion follows from the first description ofFM in Lemma 10.5 asπ∗M ,
and the following commutative diagram of ringed spaces

(Y,OY )
π
//

g

��

({∗},Γ(Y,OY ))

induced by g]

��
(X,OX) π // ({∗},Γ(X,OX))

(Also use Sheaves, Lemma 26.3.) �

Lemma 10.8. Let (X,OX) be a ringed space. Let x ∈ X be a point. Assume that x
has a fundamental system of quasi-compact neighbourhoods. Consider any quasi-coherent
OX -moduleF . Then there exists an open neighbourhoodU of x such thatF|U is isomor-
phic to the sheaf of modules FM on (U,OU ) associated to some Γ(U,OU )-module M .

Proof. First we may replace X by an open neighbourhood of x and assume that F
is isomorphic to the cokernel of a map

Ψ :
⊕

j∈J
OX −→

⊕
i∈I
OX .

The problem is that this map may not be given by a “matrix”, because the module of global
sections of a direct sum is in general different from the direct sum of the modules of global
sections.
Let x ∈ E ⊂ X be a quasi-compact neighbourhood of x (note: E may not be open). Let
x ∈ U ⊂ E be an open neighbourhood of x contained in E. Next, we proceed as in
the proof of Lemma 3.5. For each j ∈ J denote sj ∈ Γ(X,

⊕
i∈I OX) the image of the

section 1 in the summandOX corresponding to j. There exists a finite collection of opens
Ujk , k ∈ Kj such that E ⊂

⋃
k∈Kj Ujk and such that each restriction sj |Ujk is a finite

sum
∑
i∈Ijk fjki with Ijk ⊂ I , and fjki in the summand OX corresponding to i ∈ I . Set

Ij =
⋃
k∈Kj Ijk. This is a finite set. Since U ⊂ E ⊂

⋃
k∈Kj Ujk the section sj |U is a

section of the finite direct sum
⊕

i∈Ij OX . By Lemma 3.2 we see that actually sj |U is a
sum

∑
i∈Ij fij and fij ∈ OX(U) = Γ(U,OU ).

At this point we can define a module M as the cokernel of the map⊕
j∈J

Γ(U,OU ) −→
⊕

i∈I
Γ(U,OU )

with matrix given by the (fij). By construction (2) of Lemma 10.5 we see that FM has
the same presentation as F|U and therefore FM ∼= F|U . �

Example 10.9. Let X be countably many copies L1, L2, L3, . . . of the real line all
glued together at 0; a fundamental system of neighbourhoods of 0 being the collection
{Un}n∈N, with Un ∩ Li = (−1/n, 1/n). Let OX be the sheaf of continuous real valued
functions. Let f : R → R be a continuous function which is identically zero on (−1, 1)
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and identically 1 on (−∞,−2)∪ (2,∞). Denote fn the continuous function onX which
is equal to x 7→ f(nx) on each Lj = R. Let 1Lj be the characteristic function of Lj . We
consider the map⊕

j∈N
OX −→

⊕
j,i∈N

OX , ej 7−→
∑

i∈N
fj1Lieij

with obvious notation. This makes sense because this sum is locally finite as fj is zero in a
neighbourhood of 0. OverUn the image of ej , for j > 2n is not a finite linear combination∑
gijeij with gij continuous. Thus there is no neighbourhood of 0 ∈ X such that the

displayed map is given by a “matrix” as in the proof of Lemma 10.8 above.

Note that
⊕

j∈NOX is the sheaf associated to the free module with basis ej and similarly
for the other direct sum. Thus we see that a morphism of sheaves associated to modules
in general even locally onX does not come from a morphism of modules. Similarly there
should be an example of a ringed space X and a quasi-coherent OX -module F such that
F is not locally of the form FM . (Please email if you find one.) Moreover, there should
be examples of locally compact spaces X and maps FM → FN which also do not locally
come from maps of modules (the proof of Lemma 10.8 shows this cannot happen if N is
free).

11. Modules of finite presentation

Here is the definition.

Definition 11.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is of finite presentation if for every point x ∈ X there exists an open
neighbourhood x ∈ U ⊂ X , and n,m ∈ N such that F|U is isomorphic to the cokernel
of a map ⊕

j=1,...,m
OU −→

⊕
i=1,...,n

OU

This means thatX is covered by open sets U such thatF|U has a presentation of the form⊕
j=1,...,m

OU −→
⊕

i=1,...,n
OU → F|U → 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point x of X there exists an open neighbourhood such that F|U is

generated by finitely many global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection is

also generated by finitely many global sections.

Lemma 11.2. Let (X,OX) be a ringed space. Any OX -module of finite presentation
is quasi-coherent.

Proof. Immediate from definitions. �

Lemma 11.3. Let (X,OX) be a ringed space. Let F be an OX -module of finite pre-
sentation.

(1) If ψ : O⊕r
X → F is a surjection, then Ker(ψ) is of finite type.

(2) If θ : G → F is surjective with G of finite type, then Ker(θ) is of finite type.

Proof. Proof of (1). Let x ∈ X . Choose an open neighbourhood U ⊂ X of x such
that there exists a presentation

O⊕m
U

χ−→ O⊕n
U

ϕ−→ F|U → 0.
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Let ek be the section generating the kth factor of O⊕r
X . For every k = 1, . . . , r we can,

after shrinking U to a small neighbourhood of x, lift ψ(ek) to a section ẽk of O⊕n
U over

U . This gives a morphism of sheaves α : O⊕r
U → O⊕n

U such that ϕ ◦ α = ψ. Similarly,
after shrinking U , we can find a morphism β : O⊕n

U → O⊕r
U such that ψ ◦ β = ϕ. Then

the map

O⊕m
U ⊕O⊕r

U

β◦χ,1−β◦α−−−−−−−→ O⊕r
U

is a surjection onto the kernel of ψ.

To prove (2) we may locally choose a surjection η : O⊕r
X → G. By part (1) we see Ker(θ◦η)

is of finite type. Since Ker(θ) = η(Ker(θ ◦ η)) we win. �

Lemma 11.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗G of a module of finite presentation is of finite presentation.

Proof. Exactly the same as the proof of Lemma 10.4 but with finite index sets. �

Lemma 11.5. Let (X,OX) be a ringed space. Set R = Γ(X,OX). Let M be an R-
module. The OX -module FM associated to M is a directed colimit of finitely presented
OX -modules.

Proof. This follows immediately from Lemma 10.5 and the fact that any module is
a directed colimit of finitely presented modules, see Algebra, Lemma 11.3. �

Lemma 11.6. Let (X,OX) be a ringed space. Let F be a finitely presented OX -
module. Let x ∈ X such that Fx ∼= O⊕r

X,x. Then there exists an open neighbourhood
U of x such that F|U ∼= O⊕r

U .

Proof. Choose s1, . . . , sr ∈ Fx mapping to a basis of O⊕r
X,x by the isomorphism.

Choose an open neighbourhood U of x such that si lifts to si ∈ F(U). After shrinking U
we see that the induced map ψ : O⊕r

U → F|U is surjective (Lemma 9.4). By Lemma 11.3
we see that Ker(ψ) is of finite type. Then Ker(ψ)x = 0 implies that Ker(ψ) becomes zero
after shrinking U once more (Lemma 9.5). �

12. Coherent modules

A reference for this section is [?].

The category of coherent sheaves on a ringed spaceX is a more reasonable object than the
category of quasi-coherent sheaves, in the sense that it is at least an abelian subcategory of
Mod(OX) no matter what X is. On the other hand, the pullback of a coherent module is
“almost never” coherent in the general setting of ringed spaces.

Definition 12.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules.
We say that F is a coherentOX -module if the following two conditions hold:

(1) F is of finite type, and
(2) for every open U ⊂ X and every finite collection si ∈ F(U), i = 1, . . . , n the

kernel of the associated map
⊕

i=1,...,nOU → F|U is of finite type.
The category of coherentOX -modules is denoted Coh(OX).

Lemma 12.2. Let (X,OX) be a ringed space. Any coherent OX -module is of finite
presentation and hence quasi-coherent.
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Proof. Let F be a coherent sheaf on X . Pick a point x ∈ X . By (1) of the definition
of coherent, we may find an open neighbourhoodU and sections si, i = 1, . . . , n ofF over
U such that Ψ :

⊕
i=1,...,nOU → F is surjective. By (2) of the definition of coherent, we

may find an open neighbourhood V , x ∈ V ⊂ U and sections t1, . . . , tm of
⊕

i=1,...,nOV
which generate the kernel of Ψ|V . Then over V we get the presentation⊕

j=1,...,m
OV −→

⊕
i=1,...,n

OV → F|V → 0

as desired. �

Example 12.3. Suppose that X is a point. In this case the definition above gives a
notion for modules over rings. What does the definition of coherent mean? It is closely re-
lated to the notion of Noetherian, but it is not the same: Namely, the ringR = C[x1, x2, x3, . . .]
is coherent as a module over itself but not Noetherian as a module over itself. See Algebra,
Section 90 for more discussion.

Lemma 12.4. Let (X,OX) be a ringed space.

(1) Any finite type subsheaf of a coherent sheaf is coherent.
(2) Let ϕ : F → G be a morphism from a finite type sheaf F to a coherent sheaf G.

Then Ker(ϕ) is of finite type.
(3) Let ϕ : F → G be a morphism of coherent OX -modules. Then Ker(ϕ) and

Coker(ϕ) are coherent.
(4) Given a short exact sequence of OX -modules 0→ F1 → F2 → F3 → 0 if two

out of three are coherent so is the third.
(5) The category Coh(OX) is a weak Serre subcategory of Mod(OX). In particular,

the category of coherent modules is abelian and the inclusion functor Coh(OX)→
Mod(OX) is exact.

Proof. Condition (2) of Definition 12.1 holds for any subsheaf of a coherent sheaf.
Thus we get (1).

Assume the hypotheses of (2). Let us show that Ker(ϕ) is of finite type. Pick x ∈ X .
Choose an open neighbourhood U of x inX such thatF|U is generated by s1, . . . , sn. By
Definition 12.1 the kernel K of the induced map

⊕n
i=1OU → G , ei 7→ ϕ(si) is of finite

type. Hence Ker(ϕ) which is the image of the composition K →
⊕n

i=1OU → F is of
finite type.

Assume the hypotheses of (3). By (2) the kernel of ϕ is of finite type and hence by (1) it is
coherent.

With the same hypotheses let us show that Coker(ϕ) is coherent. Since G is of finite type
so is Coker(ϕ). Let U ⊂ X be open and let si ∈ Coker(ϕ)(U), i = 1, . . . , n be sections.
We have to show that the kernel of the associated morphism Ψ :

⊕n
i=1OU → Coker(ϕ)

is of finite type. There exists an open covering ofU such that on each open all the sections
si lift to sections si of G. Hence we may assume this is the case overU . We may in addition
assume there are sections tj , j = 1, . . . ,m of Im(ϕ) over U which generate Im(ϕ) over
U . Let Φ :

⊕m
j=1OU → Im(ϕ) be defined using tj and Ψ :

⊕m
j=1OU ⊕

⊕n
i=1OU → G
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using tj and si. Consider the following commutative diagram

0 //⊕m
j=1OU

Φ
��

//⊕m
j=1OU ⊕

⊕n
i=1OU

Ψ
��

//⊕n
i=1OU

Ψ
��

// 0

0 // Im(ϕ) // G // Coker(ϕ) // 0

By the snake lemma we get an exact sequence Ker(Ψ) → Ker(Ψ) → 0. Since Ker(Ψ) is
a finite type module, we see that Ker(Ψ) has finite type.

Proof of part (4). Let 0→ F1 → F2 → F3 → 0 be a short exact sequence ofOX -modules.
By part (3) it suffices to prove that if F1 and F3 are coherent so is F2. By Lemma 9.3 we
see that F2 has finite type. Let s1, . . . , sn be finitely many local sections of F2 defined
over a common open U of X . We have to show that the module of relations K between
them is of finite type. Consider the following commutative diagram

0 // 0 //

��

⊕n
i=1OU //

��

⊕n
i=1OU //

��

0

0 // F1 // F2 // F3 // 0

with obvious notation. By the snake lemma we get a short exact sequence 0 → K →
K3 → F1 where K3 is the module of relations among the images of the sections si in F3.
Since F1 is coherent we see that K is the kernel of a map from a finite type module to a
coherent module and hence finite type by (2).

Proof of (5). This follows because (3) and (4) show that Homology, Lemma 10.3 applies.
�

Lemma 12.5. Let (X,OX) be a ringed space. Let F be an OX -module. Assume OX
is a coherentOX -module. Then F is coherent if and only if it is of finite presentation.

Proof. Omitted. �

Lemma 12.6. Let X be a ringed space. Let ϕ : G → F be a homomorphism of
OX -modules. Let x ∈ X . Assume G of finite type, F coherent and the map on stalks
ϕx : Gx → Fx injective. Then there exists an open neighbourhood x ∈ U ⊂ X such that
ϕ|U is injective.

Proof. Denote K ⊂ G the kernel of ϕ. By Lemma 12.4 we see that K is a finite
type OX -module. Our assumption is that Kx = 0. By Lemma 9.5 there exists an open
neighbourhood U of x such that K|U = 0. Then U works. �

13. Closed immersions of ringed spaces

When do we declare a morphism of ringed spaces i : (Z,OZ) → (X,OX) to be a closed
immersion?

Motivated by the example of a closed immersion of normal topological spaces (ringed
with the sheaf of continuous functors), or differential manifolds (ringed with the sheaf of
differentiable functions), it seems natural to assume at least:

(1) The map i is a closed immersion of topological spaces.
(2) The associated mapOX → i∗OZ is surjective. Denote the kernel by I .
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Already these conditions imply a number of pleasing results: For example we prove that
the category of OZ -modules is equivalent to the category of OX -modules annihilated by
I generalizing the result on abelian sheaves of Section 6

However, in the Stacks project we choose the definition that guarantees that if i is a closed
immersion and (X,OX) is a scheme, then also (Z,OZ) is a scheme. Moreover, in this situ-
ation we want i∗ and i∗ to provide an equivalence between the category of quasi-coherent
OZ -modules and the category of quasi-coherent OX -modules annihilated by I . A min-
imal condition is that i∗OZ is a quasi-coherent sheaf of OX -modules. A good way to
guarantee that i∗OZ is a quasi-coherent OX -module is to assume that I is locally gener-
ated by sections. We can interpret this condition as saying “(Z,OZ) is locally on (X,OX)
defined by setting some regular functions fi, i.e., local sections ofOX , equal to zero”. This
leads to the following definition.

Definition 13.1. A closed immersion of ringed spaces1 is a morphism i : (Z,OZ)→
(X,OX) with the following properties:

(1) The map i is a closed immersion of topological spaces.
(2) The associated mapOX → i∗OZ is surjective. Denote the kernel by I .
(3) TheOX -module I is locally generated by sections.

Actually, this definition still does not guarantee that i∗ of a quasi-coherentOZ -module is
a quasi-coherent OX -module. The problem is that it is not clear how to convert a local
presentation of a quasi-coherentOZ -module into a local presentation for the pushforward.
However, the following is trivial.

Lemma 13.2. Let i : (Z,OZ) → (X,OX) be a closed immersion of ringed spaces.
Let F be a quasi-coherentOZ -module. Then i∗F is locally onX the cokernel of a map of
quasi-coherentOX -modules.

Proof. This is true because i∗OZ is quasi-coherent by definition. And locally on Z
the sheaf F is a cokernel of a map between direct sums of copies of OZ . Moreover, any
direct sum of copies of the the same quasi-coherent sheaf is quasi-coherent. And finally,
i∗ commutes with arbitrary colimits, see Lemma 6.3. Some details omitted. �

Lemma 13.3. Let i : (Z,OZ)→ (X,OX) be a morphism of ringed spaces. Assume i
is a homeomorphism onto a closed subset of X and that OX → i∗OZ is surjective. Let F
be anOZ -module. Then i∗F is of finite type if and only if F is of finite type.

Proof. Suppose that F is of finite type. Pick x ∈ X . If x 6∈ Z , then i∗F is zero
in a neighbourhood of x and hence finitely generated in a neighbourhood of x. If x =
i(z), then choose an open neighbourhood z ∈ V ⊂ Z and sections s1, . . . , sn ∈ F(V )
which generate F over V . Write V = Z ∩ U for some open U ⊂ X . Note that U is a
neighbourhood of x. Clearly the sections si give sections si of i∗F over U . The resulting
map ⊕

i=1,...,n
OU −→ i∗F|U

is surjective by inspection of what it does on stalks (here we use that OX → i∗OZ is
surjective). Hence i∗F is of finite type.

Conversely, suppose that i∗F is of finite type. Choose z ∈ Z. Setx = i(z). By assumption
there exists an open neighbourhood U ⊂ X of x, and sections s1, . . . , sn ∈ (i∗F)(U)

1This is nonstandard notation; see discussion above.
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which generate i∗F overU . Set V = Z∩U . By definition of i∗ the sections si correspond
to sections si of F over V . The resulting map⊕

i=1,...,n
OV −→ F|V

is surjective by inspection of what it does on stalks. Hence F is of finite type. �

Lemma 13.4. Let i : (Z,OZ)→ (X,OX) be a morphism of ringed spaces. Assume i
is a homeomorphism onto a closed subset ofX and i] : OX → i∗OZ is surjective. Denote
I ⊂ OX the kernel of i]. The functor

i∗ : Mod(OZ) −→Mod(OX)
is exact, fully faithful, with essential image thoseOX -modules G such that IG = 0.

Proof. We claim that for anOZ -module F the canonical map

i∗i∗F −→ F
is an isomorphism. We check this on stalks. Say z ∈ Z and x = i(z). We have

(i∗i∗F)z = (i∗F)x ⊗OX,x
OZ,z = Fz ⊗OX,x

OZ,z = Fz
by Sheaves, Lemma 26.4, the fact that OZ,z is a quotient of OX,x, and Sheaves, Lemma
32.1. It follows that i∗ is fully faithful.

Let G be aOX -module with IG = 0. We will prove the canonical map

G −→ i∗i
∗G

is an isomorphism. This proves that G = i∗F with F = i∗G which finishes the proof.
We check the displayed map induces an isomorphism on stalks. If x ∈ X , x 6∈ i(Z), then
Gx = 0 because Ix = OX,x in this case. As above (i∗i∗G)x = 0 by Sheaves, Lemma 32.1.
On the other hand, if x ∈ Z , then we obtain the map

Gx −→ Gx ⊗OX,x
OZ,x

by Sheaves, Lemmas 26.4 and 32.1. This map is an isomorphism becauseOZ,x = OX,x/Ix
and because Gx is annihilated by Ix by assumption. �

Remark 13.5. Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset. For
an OX -module F we can consider the submodule of sections with support in Z , denoted
HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z}
Observe that HZ(F)(U) is a module over OX(U), i.e., HZ(F) is an OX -module. By
constructionHZ(F) is the largestOX -submodule of F whose support is contained in Z.
Applying Lemma 13.4 to the morphism of ringed spaces (Z,OX |Z) → (X,OX) we may
(and we do) viewHZ(F) as anOX |Z -module on Z. Thus we obtain a functor

Mod(OX) −→Mod(OX |Z), F 7−→ HZ(F) viewed as anOX |Z -module on Z

This functor is left exact, but in general not exact. All of the statements made above follow
directly from Lemma 5.2. Clearly the construction is compatible with the construction in
Remark 6.2.

Lemma 13.6. Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of
a closed subset. The functor HZ : Mod(OX) → Mod(OX |Z) of Remark 13.5 is right
adjoint to i∗ : Mod(OX |Z)→Mod(OX).
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Proof. We have to show that for any OX -module F and any OX |Z -module G we
have

HomOX |Z (G,HZ(F)) = HomOX
(i∗G,F)

This is clear because after all any section of i∗G has support in Z. Details omitted. �

14. Locally free sheaves

Let (X,OX) be a ringed space. Our conventions allow (some of) the stalksOX,x to be the
zero ring. This means we have to be a little careful when defining the rank of a locally
free sheaf.

Definition 14.1. Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules.
(1) We say F is locally free if for every point x ∈ X there exist a set I and an open

neighbourhood x ∈ U ⊂ X such that F|U is isomorphic to
⊕

i∈I OX |U as an
OX |U -module.

(2) We say F is finite locally free if we may choose the index sets I to be finite.
(3) We sayF is finite locally free of rank r if we may choose the index sets I to have

cardinality r.

A finite direct sum of (finite) locally free sheaves is (finite) locally free. However, it may
not be the case that an infinite direct sum of locally free sheaves is locally free.

Lemma 14.2. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules. If F
is locally free then it is quasi-coherent.

Proof. Omitted. �

Lemma 14.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. If G is a
locally freeOY -module, then f∗G is a locally freeOX -module.

Proof. Omitted. �

Lemma 14.4. Let (X,OX) be a ringed space. Suppose that the support of OX is X ,
i.e., all stalks ofOX are nonzero rings. LetF be a locally free sheaf ofOX -modules. There
exists a locally constant function

rankF : X −→ {0, 1, 2, . . .} ∪ {∞}
such that for any point x ∈ X the cardinality of any set I such that F is isomorphic to⊕

i∈I OX in a neighbourhood of x is rankF (x).

Proof. Under the assumption of the lemma the cardinality of I can be read off from
the rank of the free module Fx over the nonzero ringOX,x, and it is constant in a neigh-
bourhood of x. �

Lemma 14.5. Let (X,OX) be a ringed space. Let r ≥ 0. Let ϕ : F → G be a map
of finite locally free OX -modules of rank r. Then ϕ is an isomorphism if and only if ϕ is
surjective.

Proof. Assume ϕ is surjective. Pick x ∈ X . There exists an open neighbourhood U
of x such that bothF|U and G|U are isomorphic toO⊕r

U . Pick lifts of the free generators of
G|U to obtain a map ψ : G|U → F|U such that ϕ|U ◦ψ = id. Hence we conclude that the
map Γ(U,F) → Γ(U,G) induced by ϕ is surjective. Since both Γ(U,F) and Γ(U,G) are
isomorphic to Γ(U,OU )⊕r as an Γ(U,OU )-module we may apply Algebra, Lemma 16.4 to
see that Γ(U,F)→ Γ(U,G) is injective. This finishes the proof. �
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Lemma 14.6. Let (X,OX) be a ringed space. If all stalks OX,x are local rings, then
any direct summand of a finite locally freeOX -module is finite locally free.

Proof. Assume F is a direct summand of the finite locally free OX -module H. Let
x ∈ X be a point. Then Hx is a finite free OX,x-module. Because OX,x is local, we see
that Fx ∼= O⊕r

X,x for some r, see Algebra, Lemma 78.2. By Lemma 11.6 we see that F is
free of rank r in an open neighbourhood of x. (Note that F is of finite presentation as a
summand ofH.) �

15. Bilinear maps

Let (X,OX) be a ringed space. Let F , G , and H be OX -modules. A bilinear map f :
F × G → H of sheaves of OX -modules is a map of sheaves of sets as indicated such that
for every open U ⊂ X the induced map

F(U)× G(U)→ H(U)
is anOX(U)-bilinear map of modules. Equivalently you can ask certain diagrams of maps
of sheaves of sets commute, immitating the usual axioms for bilinear maps of modules. For
example, the axiom f(x+ y, z) = f(x, z) + f(y, z) is represented by the commutativity
of the diagram

F × F × G
(f◦pr13,f◦pr23)

//

(+◦pr12,pr3)
��

H×H

+
��

F × G
f // H

Another characterization is this: if f : F×G → H is a map of sheaves of sets and it induces
a bilinar map of modules on stalks for all points of X , then f is a bilinear map of sheaves
of modules. This is true as you can test whether local sections are equal by checking on
stalks.

Let Mor(−,−) denote morphisms in the category of sheaves of sets on X . Another char-
acterization of a bilinear map is this: a map of sheaves of sets f : F × G → H is bilinear
if given any sheaf of sets S the rule

Mor(S,F)×Mor(S,G)→Mor(S,H), (a, b) 7→ f ◦ (a× b)
is a bilinear map of modules over the ring Mor(S,OX). We don’t usually take this point
of view as it is easier to think about sets of local sections and it is clearly equivalent.

Finally, here is yet another way to say the definition: OX is a ring object in the category
of sheaves of sets and F , G ,H are module objects over this ring. Then a bilinear map can
be defined for module objects over a ring object in any category. To formulate what is
a ring object and what is a module object over a ring object, and what is a bilinear map
of such in a category it is pleasant (but not strictly necessary) to assume the category has
finite products; and this is true for the category of sheaves of sets.

16. Tensor product

We have already briefly discussed the tensor product in the setting of change of rings in
Sheaves, Sections 6 and 20. Let us generalize this to tensor products of modules.

Let (X,OX) be a ringed space and let F and G beOX -modules. We define first the tensor
product presheaf

F ⊗p,OX
G
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as the rule which assigns toU ⊂ X open theOX(U)-moduleF(U)⊗OX(U)G(U). Having
defined this we define the tensor product sheaf as the sheafification of the above:

F ⊗OX
G = (F ⊗p,OX

G)#

This can be characterized as the sheaf of OX -modules such that for any third sheaf of
OX -modulesH we have

HomOX
(F ⊗OX

G,H) = BilinOX
(F × G,H).

Here the right hand side indicates the set of bilinear maps of sheaves of OX -modules as
defined in Section 15.

The tensor product of modulesM,N over a ringR satisfies symmetry, namelyM⊗RN =
N ⊗RM , hence the same holds for tensor products of sheaves of modules, i.e., we have

F ⊗OX
G = G ⊗OX

F

functorial in F , G. And since tensor product of modules satisfies associativity we also get
canonical functorial isomorphisms

(F ⊗OX
G)⊗OX

H = F ⊗OX
(G ⊗OX

H)

functorial in F , G , andH.

Lemma 16.1. Let (X,OX) be a ringed space. Let F , G be OX -modules. Let x ∈ X .
There is a canonical isomorphism ofOX,x-modules

(F ⊗OX
G)x = Fx ⊗OX,x

Gx
functorial in F and G.

Proof. Omitted. �

Lemma 16.2. Let (X,OX) be a ringed space. LetF ′, G′ be presheaves ofOX -modules
with sheafifications F , G. Then F ⊗OX

G = (F ′ ⊗p,OX
G′)#.

Proof. Omitted. �

Lemma 16.3. Let (X,OX) be a ringed space. Let G be anOX -module. IfF1 → F2 →
F3 → 0 is an exact sequence ofOX -modules then the induced sequence

F1 ⊗OX
G → F2 ⊗OX

G → F3 ⊗OX
G → 0

is exact.

Proof. This follows from the fact that exactness may be checked at stalks (Lemma
3.1), the description of stalks (Lemma 16.1) and the corresponding result for tensor prod-
ucts of modules (Algebra, Lemma 12.10). �

Lemma 16.4. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let F , G
beOY -modules. Then f∗(F ⊗OY

G) = f∗F ⊗OX
f∗G functorially in F , G.

Proof. Omitted. �

Lemma 16.5. Let (X,OX) be a ringed space. For anyOX -module F the functor

Mod(OX) −→Mod(OX), G 7−→ F ⊗OX
G

commutes with arbitrary colimits.
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Proof. Let I be a preordered set and let {Gi} be a system over I . Set G = colimi Gi.
Recall that G is the sheaf associated to the presheaf G′ : U 7→ colimi Gi(U), see Sheaves,
Section 29. By Lemma 16.2 the tensor productF⊗OX

G is the sheafification of the presheaf

U 7−→ F(U)⊗OX(U) colimi Gi(U) = colimi F(U)⊗OX(U) Gi(U)
where the equality sign is Algebra, Lemma 12.9. Hence the lemma follows from the de-
scription of colimits in Mod(OX), see Lemma 3.2. �

Lemma 16.6. Let (X,OX) be a ringed space. Let F , G beOX -modules.
(1) If F , G are locally generated by sections, so is F ⊗OX

G.
(2) If F , G are of finite type, so is F ⊗OX

G.
(3) If F , G are quasi-coherent, so is F ⊗OX

G.
(4) If F , G are of finite presentation, so is F ⊗OX

G.
(5) If F is of finite presentation and G is coherent, then F ⊗OX

G is coherent.
(6) If F , G are coherent, so is F ⊗OX

G.
(7) If F , G are locally free, so is F ⊗OX

G.

Proof. We first prove that the tensor product of locally free OX -modules is locally
free. This follows if we show that (

⊕
i∈I OX)⊗OX

(
⊕

j∈J OX) ∼=
⊕

(i,j)∈I×J OX . The
sheaf

⊕
i∈I OX is the sheaf associated to the presheaf U 7→

⊕
i∈I OX(U). Hence the

tensor product is the sheaf associated to the presheaf

U 7−→ (
⊕

i∈I
OX(U))⊗OX(U) (

⊕
j∈J
OX(U)).

We deduce what we want since for any ring R we have (
⊕

i∈I R) ⊗R (
⊕

j∈J R) =⊕
(i,j)∈I×J R.

If F2 → F1 → F → 0 is exact, then by Lemma 16.3 the complex F2 ⊗OX
G → F1 ⊗OX

G → F⊗OX
G → 0 is exact. Using this we can prove (5). Namely, in this case there exists

locally such an exact sequence withFi, i = 1, 2 finite free. Hence the two termsF2⊗OX
G

andF1⊗OX
G are isomorphic to finite direct sums ofG (for example by Lemma 16.5). Since

finite direct sums are coherent sheaves, these are coherent and so is the cokernel of the map,
see Lemma 12.4.

And if also G2 → G1 → G → 0 is exact, then we see that

F2 ⊗OX
G1 ⊕F1 ⊗OX

G2 → F1 ⊗OX
G1 → F ⊗OX

G → 0
is exact. Using this we can for example prove (3). Namely, the assumption means that
we can locally find presentations as above with Fi and Gi free OX -modules. Hence the
displayed presentation is a presentation of the tensor product by free sheaves as well.

The proof of the other statements is omitted. �

17. Flat modules

We can define flat modules exactly as in the case of modules over rings.

Definition 17.1. Let (X,OX) be a ringed space. An OX -module F is flat if the
functor

Mod(OX) −→Mod(OX), G 7→ G ⊗O F
is exact.

We can characterize flatness by looking at the stalks.
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Lemma 17.2. Let (X,OX) be a ringed space. An OX -module F is flat if and only if
the stalk Fx is a flatOX,x-module for all x ∈ X .

Proof. Assume Fx is a flatOX,x-module for all x ∈ X . In this case, if G → H → K
is exact, then also G ⊗OX

F → H ⊗OX
F → K ⊗OX

F is exact because we can check
exactness at stalks and because tensor product commutes with taking stalks, see Lemma
16.1. Conversely, suppose that F is flat, and let x ∈ X . Consider the skyscraper sheaves
ix,∗M where M is aOX,x-module. Note that

M ⊗OX,x
Fx = (ix,∗M ⊗OX

F)x
again by Lemma 16.1. Since ix,∗ is exact, we see that the fact that F is flat implies that
M 7→M ⊗OX,x

Fx is exact. Hence Fx is a flatOX,x-module. �

Thus the following definition makes sense.

Definition 17.3. Let (X,OX) be a ringed space. Let x ∈ X . An OX -module F is
flat at x if Fx is a flatOX,x-module.

Hence we see that F is a flatOX -module if and only if it is flat at every point.

Lemma 17.4. Let (X,OX) be a ringed space. A filtered colimit of flat OX -modules
is flat. A direct sum of flatOX -modules is flat.

Proof. This follows from Lemma 16.5, Lemma 16.1, Algebra, Lemma 8.8, and the fact
that we can check exactness at stalks. �

Lemma 17.5. Let (X,OX) be a ringed space. Let U ⊂ X be open. The sheaf jU !OU
is a flat sheaf ofOX -modules.

Proof. The stalks of jU !OU are either zero or equal toOX,x. Apply Lemma 17.2. �

Lemma 17.6. Let (X,OX) be a ringed space.
(1) Any sheaf ofOX -modules is a quotient of a direct sum

⊕
jUi!OUi .

(2) AnyOX -module is a quotient of a flatOX -module.

Proof. Let F be an OX -module. For every open U ⊂ X and every s ∈ F(U) we
get a morphism jU !OU → F , namely the adjoint to the morphism OU → F|U , 1 7→ s.
Clearly the map ⊕

(U,s)
jU !OU −→ F

is surjective, and the source is flat by combining Lemmas 17.4 and 17.5. �

Lemma 17.7. Let (X,OX) be a ringed space. Let
0→ F ′′ → F ′ → F → 0

be a short exact sequence of OX -modules. Assume F is flat. Then for any OX -module G
the sequence

0→ F ′′ ⊗O G → F ′ ⊗O G → F ⊗O G → 0
is exact.

Proof. Using that Fx is a flatOX,x-module for every x ∈ X and that exactness can
be checked on stalks, this follows from Algebra, Lemma 39.12. �

Lemma 17.8. Let (X,OX) be a ringed space. Let
0→ F2 → F1 → F0 → 0

be a short exact sequence ofOX -modules.
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(1) If F2 and F0 are flat so is F1.
(2) If F1 and F0 are flat so is F2.

Proof. Since exactness and flatness may be checked at the level of stalks this follows
from Algebra, Lemma 39.13. �

Lemma 17.9. Let (X,OX) be a ringed space. Let

. . .→ F2 → F1 → F0 → Q→ 0

be an exact complex of OX -modules. If Q and all Fi are flat OX -modules, then for any
OX -module G the complex

. . .→ F2 ⊗OX
G → F1 ⊗OX

G → F0 ⊗OX
G → Q⊗OX

G → 0

is exact also.

Proof. Follows from Lemma 17.7 by splitting the complex into short exact sequences
and using Lemma 17.8 to prove inductively that Im(Fi+1 → Fi) is flat. �

The following lemma gives one direction of the equational criterion of flatness (Algebra,
Lemma 39.11).

Lemma 17.10. Let (X,OX) be a ringed space. LetF be a flatOX -module. LetU ⊂ X
be open and let

OU
(f1,...,fn)−−−−−−→ O⊕n

U

(s1,...,sn)−−−−−−→ F|U
be a complex of OU -modules. For every x ∈ U there exists an open neighbourhood
V ⊂ U of x and a factorization

O⊕n
V

A−→ O⊕m
V

(t1,...,tm)−−−−−−→ F|V
of (s1, . . . , sn)|V such that A ◦ (f1, . . . , fn)|V = 0.

Proof. Let I ⊂ OU be the sheaf of ideals generated by f1, . . . , fn. Then
∑
fi⊗si is

a section of I ⊗OU
F|U which maps to zero inF|U . AsF|U is flat the map I ⊗OU

F|U →
F|U is injective. Since I ⊗OU

F|U is the sheaf associated to the presheaf tensor product,
we see there exists an open neighbourhood V ⊂ U of x such that

∑
fi|V ⊗ si|V is zero

in I(V ) ⊗O(V ) F(V ). Unwinding the definitions using Algebra, Lemma 107.10 we find
t1, . . . , tm ∈ F(V ) and aij ∈ O(V ) such that

∑
aijfi|V = 0 and si|V =

∑
aijtj . �

18. Duals

Let (X,OX) be a ringed space. The category of OX -modules endowed with the tensor
product constructed in Section 16 is a symmetric monoidal category. For an OX -module
F the following are equivalent

(1) F has a left dual in the monoidal category ofOX -modules,
(2) F is locally a direct summand of a finite freeOX -module, and
(3) F is of finite presentation and flat as anOX -module.

This is proved in Example 18.1 and Lemmas 18.2 and 18.3 of this section.

Example 18.1. Let (X,OX) be a ringed space. Let F be an OX -module which is
locally a direct summand of a finite freeOX -module. Then the map

F ⊗OX
HomOX

(F ,OX) −→ HomOX
(F ,F)
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is an isomorphism. Namely, this is a local question, it is true ifF is finite free, and it holds
for any summand of a module for which it is true. Denote

η : OX −→ F ⊗OX
HomOX

(F ,OX)

the map sending 1 to the section corresponding to idF under the isomorphism above.
Denote

ε : HomOX
(F ,OX)⊗OX

F −→ OX
the evaluation map. ThenHomOX

(F ,OX), η, ε is a left dual for F as in Categories, Def-
inition 43.5. We omit the verification that (1⊗ ε)◦ (η⊗1) = idF and (ε⊗1)◦ (1⊗ η) =
idHomOX (F,OX).

Lemma 18.2. Let (X,OX) be a ringed space. Let F be an OX -module. Let G, η, ε be
a left dual of F in the monoidal category ofOX -modules, see Categories, Definition 43.5.
Then

(1) F is locally a direct summand of a finite freeOX -module,
(2) the map e : HomOX

(F ,OX) → G sending a local section λ to (λ⊗ 1)(η) is an
isomorphism,

(3) we have ε(f, g) = e−1(g)(f) for local sections f and g of F and G.

Proof. The assumptions mean that

F η⊗1−−→ F ⊗OX
G ⊗OX

F 1⊗ε−−→ F and G 1⊗η−−→ G ⊗OX
F ⊗OX

G ε⊗1−−→ G

are the identity map. Let x ∈ X . We can find an open neighbourhood U of x, a finite
number of sections f1, . . . , fn and g1, . . . , gn ofF and G overU such that η(1) =

∑
figi.

Denote
O⊕n
U → F|U

the map sending the ith basis vector to fi. Then we can factor the map η|U over a map
η̃ : OU → O⊕n

U ⊗OU
G|U . We obtain a commutative diagram

F|U
η⊗1

//

η̃⊗1
))

F|U ⊗ G|U ⊗F|U 1⊗ε
// F|U

O⊕n
U ⊗ G|U ⊗F|U

OO

1⊗ε // O⊕n
U

OO

This shows that the identity on F locally onX factors through a finite free module. This
proves (1). Part (2) follows from Categories, Lemma 43.6 and its proof. Part (3) follows
from the first equality of the proof. You can also deduce (2) and (3) from the uniqueness
of left duals (Categories, Remark 43.7) and the construction of the left dual in Example
18.1. �

Lemma 18.3. Let (X,OX) be a ringed space. Let F be a flat OX -module of finite
presentation. Then F is locally a direct summand of a finite freeOX -module.

Proof. After replacingX by the members of an open covering, we may assume there
exists a presentation

O⊕r
X → O

⊕n
X → F → 0

Let x ∈ X . By Lemma 17.10 we can, after shrinking X to an open neighbourhood of x,
assume there exists a factorization

O⊕n
X → O⊕n1

X → F
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such that the composition O⊕r
X → O⊕n

X → O⊕n1
X annihilates the first summand of O⊕r

X .
Repeating this argument r − 1 more times we obtain a factorization

O⊕n
X → O⊕nr

X → F

such that the composition O⊕r
X → O⊕n

X → O⊕nr
X is zero. This means that the surjection

O⊕nr
X → F has a section and we win. �

19. Constructible sheaves of sets

LetX be a topological space. Given a set S recall that S or SX denotes the constant sheaf
with value S , see Sheaves, Definition 7.4. Let U ⊂ X be an open of a topological spaceX .
We will denote jU the inclusion morphism and we will denote jU ! : Sh(U)→ Sh(X) the
extension by the empty set described in Sheaves, Section 31.

Lemma 19.1. Let X be a topological space. Let B be a basis for the topology on X .
Let F be a sheaf of sets on X . There exists a set I and for each i ∈ I an element Ui ∈ B
and a finite set Si such that there exists a surjection

∐
i∈I jUi!Si → F .

Proof. Let S be a singleton set. We will prove the result with Si = S. For every
x ∈ X and element s ∈ Fx we can choose a U(x, s) ∈ B and s(x, s) ∈ F(U(x, s))
which maps to s in Fx. By Sheaves, Lemma 31.4 the section s(x, s) corresponds to a map
of sheaves jU(x,s)!S → F . Then ∐

(x,s)
jU(x,s)!S → F

is surjective on stalks and hence surjective. �

Lemma 19.2. Let X be a topological space. Let B be a basis for the topology of X
and assume that each U ∈ B is quasi-compact. Then every sheaf of sets on X is a filtered
colimit of sheaves of the form

(19.2.1) Coequalizer
( ∐

b=1,...,m jVb!Sb
//
//
∐
a=1,...,n jUa!Sa

)
with Ua and Vb in B and Sa and Sb finite sets.

Proof. By Lemma 19.1 every sheaf of setsF is the target of a surjection whose source
F0 is a coproduct of sheaves the form jU !S with U ∈ B and S finite. Applying this to
F0 ×F F0 we find that F is a coequalizer of a pair of maps∐

b∈B jVb!Sb
//
//
∐
a∈A jUa!Sa

for some index sets A, B and Vb and Ua in B and Sa and Sb finite. For every finite subset
B′ ⊂ B there is a finite subset A′ ⊂ A such that the coproduct over b ∈ B′ maps into
the coproduct over a ∈ A′ via both maps. Namely, we can view the right hand side as
a filtered colimit with injective transition maps. Hence taking sections over the quasi-
compact opens Vb, b ∈ B′ commutes with this coproduct, see Sheaves, Lemma 29.1. Thus
our sheaf is the colimit of the cokernels of these maps between finite coproducts. �

Lemma 19.3. LetX be a spectral topological space. Let B be the set of quasi-compact
open subsets of X . Let F be a sheaf of sets as in Equation (19.2.1). Then there exists a
continuous spectral map f : X → Y to a finite sober topological space Y and a sheaf of
sets G on Y with finite stalks such that f−1G ∼= F .
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Proof. We can writeX = limXi as a directed limit of finite sober spaces, see Topol-
ogy, Lemma 23.14. Of course the transition maps Xi′ → Xi are spectral and hence by
Topology, Lemma 24.5 the maps pi : X → Xi are spectral. For some i we can find opens
Ua,i and Vb,i of Xi whose inverse images are Ua and Vb, see Topology, Lemma 24.6. The
two maps

β, γ :
∐

b∈B
jVb!Sb −→

∐
a∈A

jUa!Sa

whose coequalizer is F correspond by adjunction to two families

βb, γb : Sb −→ Γ(Vb,
∐

a∈A
jUa!Sa), b ∈ B

of maps of sets. Observe that p−1
i (jUa,i!Sa) = jUa!Sa and (Xi′ → Xi)−1(jUa,i!Sa) =

jUa,i′ !Sa. It follows from Sheaves, Lemma 29.3 (and using that Sb and B are finite sets)
that after increasing i we find maps

βb,i, γb,i : Sb −→ Γ(Vb,i,
∐

a∈A
jUa,i!Sa), b ∈ B

which give rise to the maps βb and γb after pulling back by pi. These maps correspond in
turn to maps of sheaves

βi, γi :
∐

b∈B
jVb,i!Sb −→

∐
a∈A

jUa,i!Sa

on Xi. Then we can take Y = Xi and

G = Coequalizer
( ∐

b=1,...,m jVb,i!Sb
//
//
∐
a=1,...,n jUa,i!Sa

)
We omit some details. �

Lemma 19.4. LetX be a spectral topological space. Let B be the set of quasi-compact
open subsets ofX . LetF be a sheaf of sets as in Equation (19.2.1). Then there exist finitely
many constructible closed subsets Z1, . . . , Zn ⊂ X and finite sets Si such that F is iso-
morphic to a subsheaf of

∏
(Zi → X)∗Si.

Proof. By Lemma 19.3 we reduce to the case of a finite sober topological space and
a sheaf with finite stalks. In this case F ⊂

∏
x∈X ix,∗Fx where ix : {x} → X is the

embedding. We omit the proof that ix,∗Fx is a constant sheaf on {x}. �

20. Flat morphisms of ringed spaces

The pointwise definition is motivated by Lemma 17.2 and Definition 17.3 above.

Definition 20.1. Let f : X → Y be a morphism of ringed spaces. Let x ∈ X . We
say f is flat at x if the map of rings OY,f(x) → OX,x is flat. We say f is flat if f is flat at
every x ∈ X .

Consider the map of sheaves of rings f ] : f−1OY → OX . We see that the stalk at x is
the ring map f ]x : OY,f(x) → OX,x. Hence f is flat at x if and only if OX is flat at x as
an f−1OY -module. And f is flat if and only if OX is flat as an f−1OY -module. A very
special case of a flat morphism is an open immersion.

Lemma 20.2. Let f : X → Y be a flat morphism of ringed spaces. Then the pullback
functor f∗ : Mod(OY )→Mod(OX) is exact.
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Proof. The functor f∗ is the composition of the exact functor f−1 : Mod(OY ) →
Mod(f−1OY ) and the change of rings functor

Mod(f−1OY )→Mod(OX), F 7−→ F ⊗f−1OY
OX .

Thus the result follows from the discussion following Definition 20.1. �

Definition 20.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
F be a sheaf ofOX -modules.

(1) We say that F is flat over Y at a point x ∈ X if the stalk Fx is a flat OY,f(x)-
module.

(2) We say that F is flat over Y if F is flat over Y at every point x of X .

With this definition we see that F is flat over Y at x if and only if F is flat at x as an
f−1OY -module because (f−1OY )x = OY,f(x) by Sheaves, Lemma 21.5.

Lemma 20.4. Let f : X → Y be a morphism of ringed spaces. Let F be an OX -
module flat over Y . Then the functor

Mod(OY )→Mod(OX), G 7−→ f∗G ⊗OX
F

is exact.

Proof. This is true because f∗G⊗OX
F = f−1G⊗f−1OY

F , the functor f−1 is exact,
and F is a flat f−1OY -module. �

21. Symmetric and exterior powers

Let (X,OX) be a ringed space. Let F be an OX -module. We define the tensor algebra of
F to be the sheaf of noncommutativeOX -algebras

T(F) = TOX
(F) =

⊕
n≥0

Tn(F).

Here T0(F) = OX , T1(F) = F and for n ≥ 2 we have
Tn(F) = F ⊗OX

. . .⊗OX
F (n factors)

We define ∧(F) to be the quotient of T(F) by the two sided ideal generated by local
sections s⊗ s of T2(F) where s is a local section of F . This is called the exterior algebra
of F . Similarly, we define Sym(F) to be the quotient of T(F) by the two sided ideal
generated by local sections of the form s⊗ t− t⊗ s of T2(F).
Both ∧(F) and Sym(F) are graded OX -algebras, with grading inherited from T(F).
Moreover Sym(F) is commutative, and ∧(F) is graded commutative.

Lemma 21.1. In the situation described above. The sheaf ∧nF is the sheafification of
the presheaf

U 7−→ ∧nOX(U)(F(U)).
See Algebra, Section 13. Similarly, the sheaf SymnF is the sheafification of the presheaf

U 7−→ Symn
OX(U)(F(U)).

Proof. Omitted. It may be more efficient to define Sym(F) and ∧(F) in this way
instead of the method given above. �

Lemma 21.2. In the situation described above. Let x ∈ X . There are canonical iso-
morphisms of OX,x-modules T(F)x = T(Fx), Sym(F)x = Sym(Fx), and ∧(F)x =
∧(Fx).
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Proof. Clear from Lemma 21.1 above, and Algebra, Lemma 13.5. �

Lemma 21.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let F
be a sheaf of OY -modules. Then f∗T(F) = T(f∗F), and similarly for the exterior and
symmetric algebras associated to F .

Proof. Omitted. �

Lemma 21.4. Let (X,OX) be a ringed space. Let F2 → F1 → F → 0 be an exact
sequence of sheaves ofOX -modules. For each n ≥ 1 there is an exact sequence

F2 ⊗OX
Symn−1(F1)→ Symn(F1)→ Symn(F)→ 0

and similarly an exact sequence

F2 ⊗OX
∧n−1(F1)→ ∧n(F1)→ ∧n(F)→ 0

Proof. See Algebra, Lemma 13.2. �

Lemma 21.5. Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules.
(1) IfF is locally generated by sections, then so is each Tn(F),∧n(F), and Symn(F).
(2) If F is of finite type, then so is each Tn(F), ∧n(F), and Symn(F).
(3) If F is of finite presentation, then so is each Tn(F), ∧n(F), and Symn(F).
(4) If F is coherent, then for n > 0 each Tn(F), ∧n(F), and Symn(F) is coherent.
(5) If F is quasi-coherent, then so is each Tn(F), ∧n(F), and Symn(F).
(6) If F is locally free, then so is each Tn(F), ∧n(F), and Symn(F).

Proof. These statements for Tn(F) follow from Lemma 16.6.

Statements (1) and (2) follow from the fact that ∧n(F) and Symn(F) are quotients of
Tn(F).

Statement (6) follows from Algebra, Lemma 13.1.

For (3) and (5) we will use Lemma 21.4 above. By locally choosing a presentation F2 →
F1 → F → 0 with Fi free, or finite free and applying the lemma we see that Symn(F),
∧n(F) has a similar presentation; here we use (6) and Lemma 16.6.

To prove (4) we will use Algebra, Lemma 13.3. We may localize onX and assume thatF is
generated by a finite set (si)i∈I of global sections. The lemma mentioned above combined
with Lemma 21.1 above implies that for n ≥ 2 there exists an exact sequence⊕

j∈J
Tn−2(F)→ Tn(F)→ Symn(F)→ 0

where the index set J is finite. Now we know that Tn−2(F) is finitely generated and
hence the image of the first arrow is a coherent subsheaf of Tn(F), see Lemma 12.4. By
that same lemma we conclude that Symn(F) is coherent. �

Lemma 21.6. Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules.
(1) If F is quasi-coherent, then so is each T(F), ∧(F), and Sym(F).
(2) If F is locally free, then so is each T(F), ∧(F), and Sym(F).

Proof. It is not true that an infinite direct sum
⊕
Gi of locally free modules is lo-

cally free, or that an infinite direct sum of quasi-coherent modules is quasi-coherent. The
problem is that given a point x ∈ X the open neighbourhoods Ui of x on which Gi be-
comes free (resp. has a suitable presentation) may have an intersection which is not an
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open neighbourhood of x. However, in the proof of Lemma 21.5 we saw that once a suit-
able open neighbourhood forF has been chosen, then this open neighbourhood works for
each of the sheaves Tn(F), ∧n(F) and Symn(F). The lemma follows. �

22. Internal Hom

Let (X,OX) be a ringed space. Let F , G beOX -modules. Consider the rule
U 7−→ HomOX |U (F|U ,G|U ).

It follows from the discussion in Sheaves, Section 33 that this is a sheaf of abelian groups.
In addition, given an element ϕ ∈ HomOX |U (F|U ,G|U ) and a section f ∈ OX(U) then
we can define fϕ ∈ HomOX |U (F|U ,G|U ) by either precomposing with multiplication by
f on F|U or postcomposing with multiplication by f on G|U (it gives the same result).
Hence we in fact get a sheaf of OX -modules. We will denote this sheaf HomOX

(F ,G).
There is a canonical “evaluation” morphism

F ⊗OX
HomOX

(F ,G) −→ G.
For every x ∈ X there is also a canonical morphism

HomOX
(F ,G)x → HomOX,x

(Fx,Gx)
which is rarely an isomorphism.

Lemma 22.1. Let (X,OX) be a ringed space. Let F , G ,H beOX -modules. There is a
canonical isomorphism

HomOX
(F ⊗OX

G,H) −→ HomOX
(F ,HomOX

(G,H))
which is functorial in all three entries (sheaf Hom in all three spots). In particular, to give
a morphism F ⊗OX

G → H is the same as giving a morphism F → HomOX
(G,H).

Proof. This is the analogue of Algebra, Lemma 12.8. The proof is the same, and is
omitted. �

Lemma 22.2. Let (X,OX) be a ringed space. Let F , G beOX -modules.
(1) If F2 → F1 → F → 0 is an exact sequence ofOX -modules, then

0→ HomOX
(F ,G)→ HomOX

(F1,G)→ HomOX
(F2,G)

is exact.
(2) If 0→ G → G1 → G2 is an exact sequence ofOX -modules, then

0→ HomOX
(F ,G)→ HomOX

(F ,G1)→ HomOX
(F ,G2)

is exact.

Proof. Let F2 → F1 → F → 0 be as in (1). For every U ⊂ X open the sequence
0→ HomOU

(F|U ,G|U )→ HomOU
(F1|U ,G|U )→ HomOU

(F2|U ,G|U )
is exact by Homology, Lemma 5.8. This means that taking sections over U of the sequence
of sheaves in (1) produces an exact sequence of abelian groups. Hence the sequence in (1)
is exact by definition. The proof of (2) is exactly the same. �

Lemma 22.3. Let X be a topological space. Let O1 → O2 be a homomorphism of
sheaves of rings. Then we have

HomO1(FO1 ,G) = HomO2(F ,HomO1(O2,G))
bifunctorially in F ∈Mod(O2) and G ∈Mod(O1).
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Proof. Omitted. This is the analogue of Algebra, Lemma 14.4 and is proved in ex-
actly the same way. �

Lemma 22.4. Let (X,OX) be a ringed space. Let F , G be OX -modules. If F is of
finite type then the canonical map

HomOX
(F ,G)x → HomOX,x

(Fx,Gx)

is injective. If F is finitely presented, this canonical morphism is an isomorphism.

Proof. The map sends the equivalence class of (U,ϕ) inHomOX
(F ,G)x, where x ∈

U ⊂ X is open andϕ ∈ HomOU
(F|U ,G|U ), to the the induced map on stalks at x, namely

ϕx : Fx → Gx.

Suppose F is of finite type. Pick a representative (U,ϕ) of an element σ in the kernel
of the map, i.e., ϕx = 0. Shrinking U if necessary, choose sections s1, . . . , sn ∈ F(U)
generatingF|U . Since ϕx(six) = 0 and we are dealing with a finite number of sections, we
can find an open neighborhood V ⊂ U of x such that ϕV (si|V ) = 0 for all i = 1, . . . , n.
Since si|V , i = 1, . . . , n generateF|V this means that ϕ|V = 0. Since (U,ϕ) is equivalent
to (V, ϕ|V ) we conclude σ = 0 and injectivity of the map follows.

Next, assume F is finitely presented. By localizing on X we may assume that F has a
presentation ⊕

j=1,...,m
OX −→

⊕
i=1,...,n

OX → F → 0.

By Lemma 22.2 this gives an exact sequence 0 → HomOX
(F ,G) →

⊕
i=1,...,n G −→⊕

j=1,...,m G.Taking stalks we get an exact sequence 0→ HomOX
(F ,G)x →

⊕
i=1,...,n Gx −→⊕

j=1,...,m Gx and the result follows sinceFx sits in an exact sequence
⊕

j=1,...,mOX,x −→⊕
i=1,...,nOX,x → Fx → 0 which induces the exact sequence 0→ HomOX,x

(Fx,Gx)→⊕
i=1,...,n Gx −→

⊕
j=1,...,m Gx which is the same as the one above. �

Lemma 22.5. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let F , G
beOY -modules. If F is finitely presented and f is flat, then the canonical map

f∗HomOY
(F ,G) −→ HomOX

(f∗F , f∗G)

is an isomorphism.

Proof. Note that f∗F is also finitely presented (Lemma 11.4). Let x ∈ X map to y ∈
Y . Looking at the stalks at xwe get an isomorphism by Lemma 22.4 and More on Algebra,
Lemma 65.4 to see that in this case Hom commutes with base change by OY,y → OX,x.
Second proof: use the exact same argument as given in the proof of Lemma 22.4. �

Lemma 22.6. Let (X,OX) be a ringed space. LetF , G beOX -modules. IfF is finitely
presented then the sheafHomOX

(F ,G) is locally a kernel of a map between finite direct
sums of copies of G. In particular, if G is coherent thenHomOX

(F ,G) is coherent too.

Proof. The first assertion we saw in the proof of Lemma 22.4. And the result for
coherent sheaves then follows from Lemma 12.4. �

Lemma 22.7. LetX be a ringed space. LetF be anOX -module of finite presentation.
Let G = colimλ∈Λ Gλ be a filtered colimit ofOX -modules. Then the canonical map

colimλHomOX
(F ,Gλ) −→ HomOX

(F ,G)

is an isomorphism.
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Proof. Taking colimits of sheaves of modules commutes with restriction to opens,
see Sheaves, Section 29. Hence we may assume F has a global presentation⊕

j=1,...,m
OX −→

⊕
i=1,...,n

OX → F → 0

The functorHomOX
(−,−) commutes with finite direct sums in either variable andHomOX

(OX ,−)
is the identity functor. By this and by Lemma 22.2 we obtain an exact sequence

0→ HomOX
(F ,G)→

⊕
i=1,...,n

G →
⊕

j=1,...,m
G

Since filtered colimits are exact in Mod(OX) also the top row in the following commuta-
tive diagram is exact

0 // colimλHomOX
(F ,Gλ) //

��

colimλ

⊕
i=1,...,n Gλ //

��

colimλ

⊕
j=1,...,m Gλ

��
0 // HomOX

(F ,G) //⊕
i=1,...,n G //⊕

j=1,...,m G

Since the right two vertical arrows are isomorphisms we conclude. �

Lemma 22.8. LetX be a ringed space. Let I be a preordered set and let (Fi, ϕii′) be a
system over I consisting of sheaves ofOX -modules (see Categories, Section 21). Assume

(1) I is directed,
(2) G is anOX -module of finite presentation, and
(3) X has a cofinal system of open coverings U : X =

⋃
j∈J Uj with J finite and

Uj ∩ Uj′ quasi-compact for all j, j′ ∈ J .
Then we have

colimi HomX(G,Fi) = HomX(G, colimi Fi).

Proof. SetH = HomOX
(G, colimFi) andHi = HomOX

(G,Fi). Recall that

HomX(G,F) = Γ(X,H) and HomX(G,Fi) = Γ(X,Hi)

by construction. By Lemma 22.7 we have H = colimHi. Thus the lemma follows from
Sheaves, Lemma 29.1. �

Remark 22.9. In the lemma above some condition beyond the condition that X is
quasi-compact is necessary. See Sheaves, Example 29.2.

23. The annihilator of a sheaf of modules

Let (X,OX) be a ringed space. Let F be an OX -module. There is a canonical map of
sheaves ofOX -modules

OX −→ HomOX
(F ,F)

which sends a local section f ∈ OX(U) to the map f : F|U → F|U given by multiplica-
tion by f .

Definition 23.1. Let (X,OX) be a ringed space and let F be an OX -module. The
annihilator of F , denoted AnnOX

(F) is the kernel of the map OX → HomOX
(F ,F)

discussed above.
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For each x ∈ X , there is an inclusion of ideals ofOX,x:

(23.1.1) (AnnOX
(F))x ⊂ AnnOX,x

(Fx)

since after all any section of AnnOX
(F) will annihilate the stalks of F at all points at

which it is defined. Here is a simple situation in which (??) becomes an equality.

Lemma 23.2. Let (X,OX) be a ringed space and let F be a sheaf of OX -modules. If
F is of finite type, then (AnnOX

(F))x = AnnOX,x
(Fx).

Proof. By Lemma 22.4 the map

HomOX
(F ,F)x −→ HomOX,x

(Fx,Fx)

is injective. Thus any section f of OX over an open neighbourhood U of x which acts as
zero onFx will act as zero onF|V for someU ⊃ V 3 x open. Hence the inclusion (23.1.1)
is an equality. �

Lemma 23.3. Let (X,OX) be a ringed space, letF be anOX -module and let I ⊂ OX
be an ideal sheaf. If I ⊂ AnnOX

(F), thenF has a naturalOX/I-module structure which
agrees with the usual commutative algebra construction on stalks.

Proof. Applying the universal property of the cokernel of the inclusion I → OX ,
we obtain a commutative diagram

OX //

��

HomOX
(F ,F)

OX/I

88

ofOX -modules. By Lemma 22.1 the resulting mapOX/I → HomOX
(F ,F) corresponds

to a map ofOX -modules
OX/I ⊗OX

F −→ F
which means we have an OX/I-module structure on F compatible with the given OX -
module structure. We omit the verification of the statement on stalks. �

Lemma 23.4. Let (X,OX) be a ringed space. If OX and F are coherent, then so is
AnnOX

(F).

Proof. Since AnnOX
(F) is the kernel of OX → HomOX

(F ,F) by Lemma 12.4 it
suffices to show that HomOX

(F ,F) is coherent. This follows from Lemma 22.6 and the
fact that F is coherent and a fortiori finitely presented (Lemma 12.2). �

24. Koszul complexes

We suggest first reading the section on Koszul complexes in More on Algebra, Section 28.
We define the Koszul complex in the category ofOX -modules as follows.

Definition 24.1. Let X be a ringed space. Let ϕ : E → OX be an OX -module map.
The Koszul complexK•(ϕ) associated toϕ is the sheaf of commutative differential graded
algebras defined as follows:

(1) the underlying graded algebra is the exterior algebra K•(ϕ) = ∧(E),
(2) the differential d : K•(ϕ) → K•(ϕ) is the unique derivation such that d(e) =

ϕ(e) for all local sections e of E = K1(ϕ).
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Explicitly, if e1 ∧ . . . ∧ en is a wedge product of local sections of E , then

d(e1 ∧ . . . ∧ en) =
∑

i=1,...,n
(−1)i+1ϕ(ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en.

It is straightforward to see that this gives a well defined derivation on the tensor algebra,
which annihilates e ∧ e and hence factors through the exterior algebra.

Definition 24.2. Let X be a ringed space and let f1, . . . , fn ∈ Γ(X,OX). The
Koszul complex on f1, . . . , fr is the Koszul complex associated to the map (f1, . . . , fn) :
O⊕n
X → OX . Notation K•(OX , f1, . . . , fn), or K•(OX , f•).

Of course, given an OX -module map ϕ : E → OX , if E is finite locally free, then K•(ϕ)
is locally on X isomorphic to a Koszul complex K•(OX , f1, . . . , fn).

25. Invertible modules

Similarly to the case of modules over rings (More on Algebra, Section 117) we have the
following definition.

Definition 25.1. Let (X,OX) be a ringed space. An invertibleOX -module is a sheaf
ofOX -modules L such that the functor

Mod(OX) −→Mod(OX), F 7−→ L⊗OX
F

is an equivalence of categories. We say thatL is trivial if it is isomorphic as anOX -module
toOX .

Lemma 25.4 below explains the relationship with locally free modules of rank 1.

Lemma 25.2. Let (X,OX) be a ringed space. LetL be anOX -module. Equivalent are
(1) L is invertible, and
(2) there exists anOX -moduleN such that L ⊗OX

N ∼= OX .
In this case L is locally a direct summand of a finite free OX -module and the module N
in (2) is isomorphic toHomOX

(L,OX).

Proof. Assume (1). Then the functor −⊗OX
L is essentially surjective, hence there

exists anOX -moduleN as in (2). If (2) holds, then the functor−⊗OX
N is a quasi-inverse

to the functor −⊗OX
L and we see that (1) holds.

Assume (1) and (2) hold. Denoteψ : L⊗OX
N → OX the given isomorphism. Let x ∈ X .

Choose an open neighbourhood U an integer n ≥ 1 and sections si ∈ L(U), ti ∈ N (U)
such that ψ(

∑
si ⊗ ti) = 1. Consider the isomorphisms

L|U → L|U ⊗OU
L|U ⊗OU

N|U → L|U
where the first arrow sends s to

∑
si ⊗ s ⊗ ti and the second arrow sends s ⊗ s′ ⊗ t

to ψ(s′ ⊗ t)s. We conclude that s 7→
∑
ψ(s ⊗ ti)si is an automorphism of L|U . This

automorphism factors as
L|U → O⊕n

U → L|U
where the first arrow is given by s 7→ (ψ(s⊗ t1), . . . , ψ(s⊗ tn)) and the second arrow by
(a1, . . . , an) 7→

∑
aisi. In this way we conclude that L|U is a direct summand of a finite

freeOU -module.

Assume (1) and (2) hold. Consider the evaluation map

L ⊗OX
HomOX

(L,OX) −→ OX
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To finish the proof of the lemma we will show this is an isomorphism by checking it
induces isomorphisms on stalks. Let x ∈ X . Since we know (by the previous paragraph)
that L is a finitely presented OX -module we can use Lemma 22.4 to see that it suffices to
show that

Lx ⊗OX,x
HomOX,x

(Lx,OX,x) −→ OX,x
is an isomorphism. SinceLx⊗OX,x

Nx = (L⊗OX
N )x = OX,x (Lemma 16.1) the desired

result follows from More on Algebra, Lemma 117.2. �

Lemma 25.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback f∗L of an invertibleOY -module is invertible.

Proof. By Lemma 25.2 there exists an OY -module N such that L ⊗OY
N ∼= OY .

Pulling back we get f∗L ⊗OX
f∗N ∼= OX by Lemma 16.4. Thus f∗L is invertible by

Lemma 25.2. �

Lemma 25.4. Let (X,OX) be a ringed space. Any locally free OX -module of rank
1 is invertible. If all stalks OX,x are local rings, then the converse holds as well (but in
general this is not the case).

Proof. The parenthetical statement follows by considering a one point spaceX with
sheaf of rings OX given by a ring R. Then invertible OX -modules correspond to invert-
ible R-modules, hence as soon as Pic(R) is not the trivial group, then we get an example.

Assume L is locally free of rank 1 and consider the evaluation map

L ⊗OX
HomOX

(L,OX) −→ OX
Looking over an open covering trivialization L, we see that this map is an isomorphism.
Hence L is invertible by Lemma 25.2.

Assume all stalks OX,x are local rings and L invertible. In the proof of Lemma 25.2 we
have seen that Lx is an invertible OX,x-module for all x ∈ X . Since OX,x is local, we
see that Lx ∼= OX,x (More on Algebra, Section 117). Since L is of finite presentation by
Lemma 25.2 we conclude that L is locally free of rank 1 by Lemma 11.6. �

Lemma 25.5. Let (X,OX) be a ringed space.
(1) If L,N are invertibleOX -modules, then so is L ⊗OX

N .
(2) If L is an invertibleOX -module, then so isHomOX

(L,OX) and the evaluation
map L ⊗OX

HomOX
(L,OX)→ OX is an isomorphism.

Proof. Part (1) is clear from the definition and part (2) follows from Lemma 25.2 and
its proof. �

Definition 25.6. Let (X,OX) be a ringed space. Given an invertible sheaf L on X
and n ∈ Z we define the nth tensor power L⊗n of L as the image of OX under applying
the equivalence F 7→ F ⊗OX

L exactly n times.

This makes sense also for negative n as we’ve defined an invertibleOX -module as one for
which tensoring is an equivalence. More explicitly, we have

L⊗n =


OX if n = 0

HomOX
(L,OX) if n = −1

L ⊗OX
. . .⊗OX

L if n > 0
L⊗−1 ⊗OX

. . .⊗OX
L⊗−1 if n < −1
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see Lemma 25.5. With this definition we have canonical isomorphismsL⊗n⊗OX
L⊗m →

L⊗n+m, and these isomorphisms satisfy a commutativity and an associativity constraint
(formulation omitted).

Let (X,OX) be a ringed space. We can define a Z-graded ring structure on
⊕

Γ(X,L⊗n)
by mapping s ∈ Γ(X,L⊗n) and t ∈ Γ(X,L⊗m) to the section corresponding to s⊗ t in
Γ(X,L⊗n+m). We omit the verification that this defines a commutative and associative
ring with 1. However, by our conventions in Algebra, Section 56 a graded ring has no
nonzero elements in negative degrees. This leads to the following definition.

Definition 25.7. Let (X,OX) be a ringed space. Given an invertible sheaf L on X
we define the associated graded ring to be

Γ∗(X,L) =
⊕

n≥0
Γ(X,L⊗n)

Given a sheaf ofOX -modules F we set

Γ∗(X,L,F) =
⊕

n∈Z
Γ(X,F ⊗OX

L⊗n)

which we think of as a graded Γ∗(X,L)-module.

We often write simply Γ∗(L) and Γ∗(F) (although this is ambiguous if F is invertible).
The multiplication of Γ∗(L) on Γ∗(F) is defined using the isomorphisms above. If γ :
F → G is aOX -module map, then we get an Γ∗(L)-module homomorphism γ : Γ∗(F)→
Γ∗(G). If α : L → N is an OX -module map between invertible OX -modules, then we
obtain a graded ring homomorphism Γ∗(L) → Γ∗(N ). If f : (Y,OY ) → (X,OX) is a
morphism of ringed spaces and ifL is invertible onX , then we get an invertible sheaf f∗L
on Y (Lemma 25.3) and an induced homomorphism of graded rings

f∗ : Γ∗(X,L) −→ Γ∗(Y, f∗L)

Furthermore, there are some compatibilities between the constructions above whose state-
ments we omit.

Lemma 25.8. Let (X,OX) be a ringed space. There exists a set of invertible modules
{Li}i∈I such that each invertible module on X is isomorphic to exactly one of the Li.

Proof. Recall that any invertible OX -module is locally a direct summand of a fi-
nite free OX -module, see Lemma 25.2. For each open covering U : X =

⋃
j∈J Uj and

map r : J → N consider the sheaves of OX -modules F such that Fj = F|Uj is a di-
rect summand of O⊕r(j)

Uj
. The collection of isomorphism classes of Fj is a set, because

HomOU
(O⊕r

U ,O⊕r
U ) is a set. The sheaf F is gotten by glueing Fj , see Sheaves, Section

33. Note that the collection of all glueing data forms a set. The collection of all coverings
U : X =

⋃
j∈J Ui where J → P(X), j 7→ Uj is injective forms a set as well. For each

covering there is a set of maps r : J → N. Hence the collection of all F forms a set. �

This lemma says roughly speaking that the collection of isomorphism classes of invertible
sheaves forms a set. Lemma 25.5 says that tensor product defines the structure of an abelian
group on this set.

Definition 25.9. Let (X,OX) be a ringed space. The Picard group Pic(X) of X is
the abelian group whose elements are isomorphism classes of invertibleOX -modules, with
addition corresponding to tensor product.
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Lemma 25.10. Let X be a ringed space. Assume that each stalk OX,x is a local ring
with maximal ideal mx. Let L be an invertibleOX -module. For any section s ∈ Γ(X,L)
the set

Xs = {x ∈ X | image s 6∈ mxLx}
is open in X . The map s : OXs → L|Xs is an isomorphism, and there exists a section s′

of L⊗−1 over Xs such that s′(s|Xs) = 1.

Proof. Suppose x ∈ Xs. We have an isomorphism

Lx ⊗OX,x
(L⊗−1)x −→ OX,x

by Lemma 25.5. Both Lx and (L⊗−1)x are free OX,x-modules of rank 1. We conclude
from Algebra, Nakayama’s Lemma 20.1 that sx is a basis for Lx. Hence there exists a basis
element tx ∈ (L⊗−1)x such that sx ⊗ tx maps to 1. Choose an open neighbourhood U
of x such that tx comes from a section t of L⊗−1 over U and such that s ⊗ t maps to
1 ∈ OX(U). Clearly, for every x′ ∈ U we see that s generates the module Lx′ . Hence
U ⊂ Xs. This proves that Xs is open. Moreover, the section t constructed over U above
is unique, and hence these glue to give the section s′ of the lemma. �

It is also true that, given a morphism of locally ringed spaces f : Y → X (see Schemes,
Definition 2.1) that the inverse image f−1(Xs) is equal to Yf∗s, where f∗s ∈ Γ(Y, f∗L)
is the pullback of s.

26. Rank and determinant

Let (X,OX) be a ringed space. Consider the category Vect(X) of finite locally free OX -
modules. This is an exact category (see Injectives, Remark 9.6) whose admissible epimor-
phisms are surjections and whose admissible monomorphisms are kernels of surjections.
Moreover, there is a set of isomorphism classes of objects of Vect(X) (proof omitted).
Thus we can form the zeroth Grothendieck K-group K0(Vect(X)). Explicitly, in this
case K0(Vect(X)) is the abelian group generated by [E ] for E a finite locally free OX -
module, subject to the relations

[E ′] = [E ] + [E ′′]
whenever there is a short exact sequence 0 → E ′ → E → E ′′ → 0 of finite locally free
OX -modules.

Ranks. Assume all stalks OX,x are nonzero rings. Given a finite locally free OX -module
E , the rank is a locally constant function

rankE : X −→ Z≥0, x 7−→ rankOX,x
Ex

See Lemma 14.4. By definition of locally free modules the function rankE is locally con-
stant. If 0 → E ′ → E → E ′′ → 0 is a short exact sequence of finite locally free OX -
modules, then rankE = rankE′ + rankE′′ , Thus the rank defines a homomorphism

K0(Vect(X)) −→Mapcont(X,Z), [E ] 7−→ rankE

Determinants. Given a finite locally freeOX -module E we obtain a disjoint union decom-
position

X = X0 qX1 qX2 q . . .
withXi open and closed, such that E is finite locally free of rank i onXi (this is exactly the
same as saying the rankE is locally constant). In this case we define det(E) as the invertible
sheaf onX which is equal to ∧i(E|Xi) onXi for all i ≥ 0. Since the decomposition above
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is disjoint, there are no glueing conditions to check. By Lemma 26.1 below this defines a
homomorphism

det : K0(Vect(X)) −→ Pic(X), [E ] 7−→ det(E)
of abelian groups. The elements of Pic(X) we get in this manner are locally free of rank
1 (see below the lemma for a generalization).

Lemma 26.1. Let X be a ringed space. Let 0 → E ′ → E → E ′′ → 0 be a short exact
sequence of finite locally freeOX -modules. Then there is a canonical isomorphism

det(E ′)⊗OX
det(E ′′) −→ det(E)

ofOX -modules.

Proof. We can decompose X into disjoint open and closed subsets such that both E ′

and E ′′ have constant rank on them. Thus we reduce to the case where E ′ and E ′′ have
constant rank, say r′ and r′′. In this situation we define

∧r
′
(E ′)⊗OX

∧r
′′
(E ′′) −→ ∧r

′+r′′
(E)

as follows. Given local sections s′
1, . . . , s

′
r′ of E ′ and local sections s′′

1 , . . . , s
′′
r′′ of E ′′ we

map
s′

1 ∧ . . . ∧ s′
r′ ⊗ s′′

1 ∧ . . . ∧ s′′
r′′ to s′

1 ∧ . . . ∧ s′
r′ ∧ s̃′′

1 ∧ . . . ∧ s̃′′
r′′

where s̃′′
i is a local lift of the section s′′

i to a section of E . We omit the details. �

Let (X,OX) be a ringed space. Instead of looking at finite locally freeOX -modules we can
look at thoseOX -modulesF which are locally onX a direct summand of a finite freeOX -
module. This is the same thing as asking F to be a flatOX -module of finite presentation,
see Lemma 18.3. If all the stalks OX,x are local, then such a module F is finite locally
free, see Lemma 14.6. In general however this will not be the case; for example X could
be a point and Γ(X,OX) could be the product A× B of two nonzero rings and F could
correspond to A× 0. Thus for such a module the rank function is undefined. However, it
turns out we can still define det(F) and this will be an invertibleOX -module in the sense
of Definition 25.1 (not necessarily locally free of rank 1). Our construction will agree with
the one above in the case that F is finite locally free. We urge the reader to skip the rest
of this section.

Lemma 26.2. Let (X,OX) be a ringed space. Let F be a flat and finitely presented
OX -module. Denote

det(F) ⊂ ∧∗
OX

(F)
the annihilator of F ⊂ ∧∗

OX
(F). Then det(F) is an invertibleOX -module.

Proof. To prove this we may work locally onX . Hence we may assumeF is a direct
summand of a finite free module, see Lemma 18.3. Say F ⊕ G = O⊕n

X . Set R = OX(X).
Then we see F(X)⊕G(X) = R⊕n and correspondingly F(U)⊕G(U) = OX(U)⊕n for
all opens U ⊂ X . We conclude that F = FM as in Lemma 10.5 with M = F(X) a finite
projective R-module. In other words, we have F(U) = M ⊗R OX(U). This implies that
det(M) ⊗R OX(U) = det(F(U)) for all open U ⊂ X with det as in More on Algebra,
Section 118. By More on Algebra, Remark 118.1 we see that

det(M)⊗R OX(U) = det(F(U)) ⊂ ∧∗
OX(U)(F(U))

is the annihilator of F(U). We conclude that det(F) as defined in the statement of the
lemma is equal to Fdet(M). Some details omitted; one has to be careful as annihilators
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cannot be defined as the sheafification of taking annihilators on sections over opens. Thus
det(F) is the pullback of an invertible module and we conclude. �

27. Localizing sheaves of rings

Let X be a topological space and letOX be a presheaf of rings. Let S ⊂ OX be a presheaf
of sets contained inOX . Suppose that for every open U ⊂ X the set S(U) ⊂ OX(U) is a
multiplicative subset, see Algebra, Definition 9.1. In this case we can consider the presheaf
of rings

S−1OX : U 7−→ S(U)−1OX(U).
The restriction mapping sends the section f/s, f ∈ OX(U), s ∈ S(U) to (f |V )/(s|V ) if
V ⊂ U are opens of X .

Lemma 27.1. Let X be a topological space and let OX be a presheaf of rings. Let
S ⊂ OX be a pre-sheaf of sets contained in OX . Suppose that for every open U ⊂ X the
set S(U) ⊂ OX(U) is a multiplicative subset.

(1) There is a map of presheaves of rings OX → S−1OX such that every local
section of S maps to an invertible section ofOX .

(2) For any homomorphism of presheaves of rings OX → A such that each local
section of S maps to an invertible section ofA there exists a unique factorization
S−1OX → A.

(3) For any x ∈ X we have

(S−1OX)x = S−1
x OX,x.

(4) The sheafification (S−1OX)# is a sheaf of rings with a map of sheaves of rings
(OX)# → (S−1OX)# which is universal for maps of (OX)# into sheaves of
rings such that each local section of S maps to an invertible section.

(5) For any x ∈ X we have

(S−1OX)#
x = S−1

x OX,x.

Proof. Omitted. �

Let X be a topological space and letOX be a presheaf of rings. Let S ⊂ OX be a presheaf
of sets contained inOX . Suppose that for every open U ⊂ X the set S(U) ⊂ OX(U) is a
multiplicative subset. Let F be a presheaf ofOX -modules In this case we can consider the
presheaf of S−1OX -modules

S−1F : U 7−→ S(U)−1F(U).
The restriction mapping sends the section t/s, t ∈ F(U), s ∈ S(U) to (t|V )/(s|V ) if
V ⊂ U are opens of X .

Lemma 27.2. LetX be a topological space. LetOX be a presheaf of rings. LetS ⊂ OX
be a pre-sheaf of sets contained in OX . Suppose that for every open U ⊂ X the set
S(U) ⊂ OX(U) is a multiplicative subset. For any presheaf ofOX -modules F we have

S−1F = S−1OX ⊗p,OX
F

(see Sheaves, Section 6 for notation) and if F andOX are sheaves then
(S−1F)# = (S−1OX)# ⊗OX

F
(see Sheaves, Section 20 for notation).

Proof. Omitted. �
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28. Modules of differentials

In this section we briefly explain how to define the module of relative differentials for a
morphism of ringed spaces. We suggest the reader take a look at the corresponding section
in the chapter on commutative algebra (Algebra, Section 131).

Definition 28.1. LetX be a topological space. Letϕ : O1 → O2 be a homomorphism
of sheaves of rings. Let F be an O2-module. An O1-derivation or more precisely a ϕ-
derivation into F is a map D : O2 → F which is additive, annihilates the image of
O1 → O2, and satisfies the Leibniz rule

D(ab) = aD(b) +D(a)b
for all a, b local sections ofO2 (wherever they are both defined). We denote DerO1(O2,F)
the set of ϕ-derivations into F .

This is the sheaf theoretic analogue of Algebra, Definition 131.1. Given a derivation D :
O2 → F as in the definition the map on global sections

D : Γ(X,O2) −→ Γ(X,F)
is a Γ(X,O1)-derivation as in the algebra definition. Note that if α : F → G is a map of
O2-modules, then there is an induced map

DerO1(O2,F) −→ DerO1(O2,G)
given by the rule D 7→ α ◦D. In other words we obtain a functor.

Lemma 28.2. Let X be a topological space. Let ϕ : O1 → O2 be a homomorphism of
sheaves of rings. The functor

Mod(O2) −→ Ab, F 7−→ DerO1(O2,F)
is representable.

Proof. This is proved in exactly the same way as the analogous statement in algebra.
During this proof, for any sheaf of sets F on X , let us denote O2[F ] the sheafification of
the presheaf U 7→ O2(U)[F(U)] where this denotes the free O2(U)-module on the set
F(U). For s ∈ F(U) we denote [s] the corresponding section of O2[F ] over U . If F is a
sheaf ofO2-modules, then there is a canonical map

c : O2[F ] −→ F
which on the presheaf level is given by the rule

∑
fs[s] 7→

∑
fss. We will employ the

short hand [s] 7→ s to describe this map and similarly for other maps below. Consider the
map ofO2-modules

(28.2.1)

O2[O2 ×O2]⊕O2[O2 ×O2]⊕O2[O1] −→ O2[O2]
[(a, b)]⊕ [(f, g)]⊕ [h] 7−→ [a+ b]− [a]− [b]+

[fg]− g[f ]− f [g]+
[ϕ(h)]

with short hand notation as above. Set ΩO2/O1 equal to the cokernel of this map. Then it
is clear that there exists a map of sheaves of sets

d : O2 −→ ΩO2/O1

mapping a local section f to the image of [f ] in ΩO2/O1 . By construction d is a O1-
derivation. Next, letF be a sheaf ofO2-modules and letD : O2 → F be aO1-derivation.
Then we can consider theO2-linear mapO2[O2]→ F which sends [g] toD(g). It follows
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from the definition of a derivation that this map annihilates sections in the image of the
map (28.2.1) and hence defines a map

αD : ΩO2/O1 −→ F

Since it is clear that D = αD ◦ d the lemma is proved. �

Definition 28.3. Let X be a topological space. Let ϕ : O1 → O2 be a homomor-
phism of sheaves of rings onX . The module of differentials of ϕ is the object representing
the functor F 7→ DerO1(O2,F) which exists by Lemma 28.2. It is denoted ΩO2/O1 , and
the universal ϕ-derivation is denoted d : O2 → ΩO2/O1 .

Note that ΩO2/O1 is the cokernel of the map (28.2.1) of O2-modules. Moreover the map
d is described by the rule that df is the image of the local section [f ].

Lemma 28.4. Let X be a topological space. Let ϕ : O1 → O2 be a homomor-
phism of sheaves of rings on X . Then ΩO2/O1 is the sheaf associated to the presheaf
U 7→ ΩO2(U)/O1(U).

Proof. Consider the map (28.2.1). There is a similar map of presheaves whose value
on the open U is

O2(U)[O2(U)×O2(U)]⊕O2(U)[O2(U)×O2(U)]⊕O2(U)[O1(U)] −→ O2(U)[O2(U)]

The cokernel of this map has value ΩO2(U)/O1(U) over U by the construction of the mod-
ule of differentials in Algebra, Definition 131.2. On the other hand, the sheaves in (28.2.1)
are the sheafifications of the presheaves above. Thus the result follows as sheafification is
exact. �

Lemma 28.5. LetX be a topological space. Let ϕ : O1 → O2 be a homomorphism of
sheaves of rings. For U ⊂ X open there is a canonical isomorphism

ΩO2/O1 |U = Ω(O2|U )/(O1|U )

compatible with universal derivations.

Proof. Holds because ΩO2/O1 is the cokernel of the map (28.2.1). �

Lemma 28.6. Let f : Y → X be a continuous map of topological spaces. Let
ϕ : O1 → O2 be a homomorphism of sheaves of rings on X . Then there is a canoni-
cal identification f−1ΩO2/O1 = Ωf−1O2/f−1O1 compatible with universal derivations.

Proof. This holds because the sheaf ΩO2/O1 is the cokernel of the map (28.2.1) and a
similar statement holds for Ωf−1O2/f−1O1 , because the functor f−1 is exact, and because
f−1(O2[O2]) = f−1O2[f−1O2], f−1(O2[O2 × O2]) = f−1O2[f−1O2 × f−1O2], and
f−1(O2[O1]) = f−1O2[f−1O1]. �

Lemma 28.7. Let X be a topological space. Let O1 → O2 be a homomorphism of
sheaves of rings on X . Let x ∈ X . Then we have ΩO2/O1,x = ΩO2,x/O1,x .

Proof. This is a special case of Lemma 28.6 for the inclusion map {x} → X . An
alternative proof is to use Lemma 28.4, Sheaves, Lemma 17.2, and Algebra, Lemma 131.5 �
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Lemma 28.8. Let X be a topological space. Let

O2 ϕ
// O′

2

O1 //

OO

O′
1

OO

be a commutative diagram of sheaves of rings on X . The map O2 → O′
2 composed with

the map d : O′
2 → ΩO′

2/O′
1

is a O1-derivation. Hence we obtain a canonical map of O2-
modules ΩO2/O1 → ΩO′

2/O′
1
. It is uniquely characterized by the property that d(f) 7→

d(ϕ(f)) for any local section f ofO2. In this way Ω−/− becomes a functor on the category
of arrows of sheaves of rings.

Proof. This lemma proves itself. �

Lemma 28.9. In Lemma 28.8 suppose thatO2 → O′
2 is surjective with kernel I ⊂ O2

and assume thatO1 = O′
1. Then there is a canonical exact sequence ofO′

2-modules

I/I2 −→ ΩO2/O1 ⊗O2 O′
2 −→ ΩO′

2/O1 −→ 0

The leftmost map is characterized by the rule that a local section f of I maps to df ⊗ 1.

Proof. For a local section f of I denote f the image of f in I/I2. To show that the
map f 7→ df⊗1 is well defined we just have to check that df1f2⊗1 = 0 if f1, f2 are local
sections of I . And this is clear from the Leibniz rule df1f2 ⊗ 1 = (f1df2 + f2df1)⊗ 1 =
df2⊗f1 +df1⊗f2 = 0. A similar computation show this map isO′

2 = O2/I-linear. The
map on the right is the one from Lemma 28.8. To see that the sequence is exact, we can
check on stalks (Lemma 3.1). By Lemma 28.7 this follows from Algebra, Lemma 131.9. �

Definition 28.10. Let (f, f ]) : (X,OX)→ (S,OS) be a morphism of ringed spaces.
(1) LetF be anOX -module. AnS-derivation intoF is a f−1OS-derivation, or more

precisely a f ]-derivation in the sense of Definition 28.1. We denote DerS(OX ,F)
the set of S-derivations into F .

(2) The sheaf of differentials ΩX/S ofX overS is the module of differentials ΩOX/f−1OS

endowed with its universal S-derivation dX/S : OX → ΩX/S .

Here is a particular situation where derivations come up naturally.

Lemma 28.11. Let (f, f ]) : (X,OX) → (S,OS) be a morphism of ringed spaces.
Consider a short exact sequence

0→ I → A → OX → 0

Here A is a sheaf of f−1OS-algebras, π : A → OX is a surjection of sheaves of f−1OS-
algebras, and I = Ker(π) is its kernel. Assume I an ideal sheaf with square zero inA. So I
has a natural structure of anOX -module. A section s : OX → A of π is a f−1OS-algebra
map such that π ◦ s = id. Given any section s : OX → A of π and any S-derivation
D : OX → I the map

s+D : OX → A
is a section of π and every section s′ is of the form s+D for a unique S-derivation D.

Proof. Recall that the OX -module structure on I is given by hτ = h̃τ (multiplica-
tion inA) where h is a local section ofOX , and h̃ is a local lift of h to a local section ofA,
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and τ is a local section of I . In particular, given s, we may use h̃ = s(h). To verify that
s+D is a homomorphism of sheaves of rings we compute

(s+D)(ab) = s(ab) +D(ab)
= s(a)s(b) + aD(b) +D(a)b
= s(a)s(b) + s(a)D(b) +D(a)s(b)
= (s(a) +D(a))(s(b) +D(b))

by the Leibniz rule. In the same manner one shows s+D is a f−1OS-algebra map because
D is an S-derivation. Conversely, given s′ we set D = s′ − s. Details omitted. �

Lemma 28.12. Let
X ′

h′

��

f
// X

h

��
S′ g // S

be a commutative diagram of ringed spaces.
(1) The canonical mapOX → f∗OX′ composed with f∗dX′/S′ : f∗OX′ → f∗ΩX′/S′

is aS-derivation and we obtain a canonical map ofOX -modules ΩX/S → f∗ΩX′/S′ .
(2) The commutative diagram

f−1OX // OX′

f−1h−1OS

OO

// (h′)−1OS′

OO

induces by Lemmas 28.6 and 28.8 a canonical map f−1ΩX/S → ΩX′/S′ .
These two maps correspond (via adjointness of f∗ and f∗ and via f∗ΩX/S = f−1ΩX/S⊗f−1OX

OX′ and Sheaves, Lemma 20.2) to the sameOX′ -module homomorphism

cf : f∗ΩX/S −→ ΩX′/S′

which is uniquely characterized by the property that f∗dX/S(a) maps to dX′/S′(f∗a) for
any local section a ofOX .

Proof. Omitted. �

Lemma 28.13. Let
X ′′

��

g
// X ′

��

f
// X

��
S′′ // S′ // S

be a commutative diagram of ringed spaces. With notation as in Lemma 28.12 we have

cf◦g = cg ◦ g∗cf

as maps (f ◦ g)∗ΩX/S → ΩX′′/S′′ .

Proof. Omitted. �
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29. Finite order differential operators

In this section we introduce differential operators of finite order. We suggest the reader
take a look at the corresponding section in the chapter on commutative algebra (Algebra,
Section 133).

Definition 29.1. Let X be a topological space. Let ϕ : O1 → O2 be a homomor-
phism of sheaves of rings on X . Let k ≥ 0 be an integer. Let F , G be sheaves of O2-
modules. A differential operator D : F → G of order k is an is an O1-linear map such
that for all local sections g of O2 the map s 7→ D(gs) − gD(s) is a differential operator
of order k − 1. For the base case k = 0 we define a differential operator of order 0 to be
anO2-linear map.

If D : F → G is a differential operator of order k, then for all local sections g of O2
the map gD is a differential operator of order k. The sum of two differential operators of
order k is another. Hence the set of all these

Diffk(F ,G) = DiffkO2/O1
(F ,G)

is a Γ(X,O2)-module. We have

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

The rule which mapsU ⊂ X open to the module of differential operatorsD : F|U → G|U
of order k is a sheaf ofO2-modules onX . Thus we obtain a sheaf of differential operators
(if we ever need this we will add a definition here).

Lemma 29.2. Let X be a topological space. Let O1 → O2 be a map of sheaves of
rings on X . Let E ,F ,G be sheaves of O2-modules. If D : E → F and D′ : F → G
are differential operators of order k and k′, then D′ ◦D is a differential operator of order
k + k′.

Proof. Let g be a local section ofO2. Then the map which sends a local section x of
E to

D′(D(gx))− gD′(D(x)) = D′(D(gx))−D′(gD(x)) +D′(gD(x))− gD′(D(x))

is a sum of two compositions of differential operators of lower order. Hence the lemma
follows by induction on k + k′. �

Lemma 29.3. LetX be a topological space. LetO1 → O2 be a map of sheaves of rings
on X . Let F be a sheaf of O2-modules. Let k ≥ 0. There exists a sheaf of O2-modules
PkO2/O1

(F) and a canonical isomorphism

DiffkO2/O1
(F ,G) = HomO2(PkO2/O1

(F),G)

functorial in theO2-module G.

Proof. The existence follows from general category theoretic arguments (insert fu-
ture reference here), but we will also give a direct construction as this construction will
be useful in the future proofs. We will freely use the notation introduced in the proof of
Lemma 28.2. Given any differential operator D : F → G we obtain an O2-linear map
LD : O2[F ] → G sending [m] to D(m). If D has order 0 then LD annihilates the local
sections

[m+m′]− [m]− [m′], g0[m]− [g0m]
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where g0 is a local section of O2 and m,m′ are local sections of F . If D has order 1, then
LD annihilates the local sections

[m+m′ − [m]− [m′], f [m]− [fm], g0g1[m]− g0[g1m]− g1[g0m] + [g1g0m]

where f is a local section ofO1, g0, g1 are local sections ofO2, andm,m′ are local sections
of F . If D has order k, then LD annihilates the local sections [m + m′] − [m] − [m′],
f [m]− [fm], and the local sections

g0g1 . . . gk[m]−
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

Conversely, ifL : O2[F ]→ G is anO2-linear map annihilating all the local sections listed
in the previous sentence, then m 7→ L([m]) is a differential operator of order k. Thus we
see that PkO2/O1

(F) is the quotient of O2[F ] by the O2-submodule generated by these
local sections. �

Definition 29.4. Let X be a topoological space. Let O1 → O2 be a map of sheaves
of rings on X . Let F be a sheaf of O2-modules. The module PkO2/O1

(F) constructed in
Lemma 29.3 is called the module of principal parts of order k of F .

Note that the inclusions

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

correspond via Yoneda’s lemma (Categories, Lemma 3.5) to surjections

. . .→ P2
O2/O1

(F)→ P1
O2/O1

(F)→ P0
O2/O1

(F) = F

Lemma 29.5. Let X be a topological space. Let O1 → O2 be a homomorphism of
presheaves of rings on X . Let F be a presheaf ofO2-modules. Then Pk

O#
2 /O#

1
(F#) is the

sheaf associated to the presheaf U 7→ P kO2(U)/O1(U)(F(U)).

Proof. This can be proved in exactly the same way as is done for the sheaf of differ-
entials in Lemma 28.4. Perhaps a more pleasing approach is to use the universal property
of Lemma 29.3 directly to see the equality. We omit the details. �

Lemma 29.6. Let X be a topological space. Let O1 → O2 be a homomorphism of
sheaves of rings on X . Let F be a sheaf of O2-modules. There is a canonical short exact
sequence

0→ ΩO2/O1 ⊗O2 F → P1
O2/O1

(F)→ F → 0

functorial in F called the sequence of principal parts.

Proof. Follows from the commutative algebra version (Algebra, Lemma 133.6) and
Lemmas 28.4 and 29.5. �

Remark 29.7. Let X be a topological space. Suppose given a commutative diagram
of sheaves of rings

B // B′

A

OO

// A′

OO
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on X , a B-module F , a B′-module F ′, and a B-linear map F → F ′. Then we get a com-
patible system of module maps

. . . // P2
B′/A′(F ′) // P1

B′/A′(F ′) // P0
B′/A′(F ′)

. . . // P2
B/A(F) //

OO

P1
B/A(F) //

OO

P0
B/A(F)

OO

These maps are compatible with further composition of maps of this type. The easiest way
to see this is to use the description of the modulesPkB/A(M) in terms of (local) generators
and relations in the proof of Lemma 29.3 but it can also be seen directly from the universal
property of these modules. Moreover, these maps are compatible with the short exact
sequences of Lemma 29.6.

Next, we extend our definition to morphisms of ringed spaces.

Definition 29.8. Let (f, f ]) : (X,OX)→ (S,OS) be a morphism of ringed spaces.
Let F and G be OX -modules. Let k ≥ 0 be an integer. A differential operator of order
k on X/S is a differential operator D : F → G with respect to f ] : f−1OS → OX We
denote DiffkX/S(F ,G) the set of these differential operators.

30. The de Rham complex

The section is the analogue of Algebra, Section 132 for morphisms of ringed spaces. We
urge the reader to read that section first.

LetX be a topological space. LetA → B be a homomorphism of sheaves of rings. Denote
d : B → ΩB/A the module of differentials with its universal A-derivation constructed in
Section 28. Let

ΩiB/A = ∧iB(ΩB/A)
for i ≥ 0 be the ith exterior power as in Section 21.

Definition 30.1. In the situation above, the de Rham complex of B over A is the
unique complex

Ω0
B/A → Ω1

B/A → Ω2
B/A → . . .

of sheaves of A-modules whose differential in degree 0 is given by d : B → ΩB/A and
whose differentials in higher degrees have the following property

(30.1.1) d (b0db1 ∧ . . . ∧ dbp) = db0 ∧ db1 ∧ . . . ∧ dbp
where b0, . . . , bp ∈ B(U) are sections over a common open U ⊂ X .

We could construct this complex by repeating the cumbersome arguments given in Al-
gebra, Section 132. Instead we recall that ΩB/A is the sheafification of the presheaf U 7→
ΩB(U)/A(U), see Lemma 28.4. Thus ΩiB/A is the sheafification of the presheafU 7→ ΩiB(U)/A(U),
see Lemma 21.1. Therefore we can define the de Rham complex as the sheafification of the
rule

U 7−→ Ω•
B(U)/A(U)

Lemma 30.2. Let f : Y → X be a continuous map of topological spaces. LetA → B
be a homomorphism of sheaves of rings on X . Then there is a canonical identification
f−1Ω•

B/A = Ω•
f−1B/f−1A of de Rham complexes.
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Proof. Omitted. Hint: compare with Lemma 28.6. �

Lemma 30.3. LetX be a topological space. LetA → B be a homomorphism of sheaves
of rings on X . The differentials d : ΩiB/A → Ωi+1

B/A are differential operators of order 1.

Proof. Via our construction of the de Rham complex above as the sheafification of
the rule U 7→ Ω•

B(U)/A(U) this follows from Algebra, Lemma 133.8. �

Let X be a topological space. Let
B // B′

A //

OO

A′

OO

be a commutative diagram of sheaves of rings on X . There is a natural map of de Rham
complexes

Ω•
B/A −→ Ω•

B′/A′

Namely, in degree 0 this is the map B → B′, in degree 1 this is the map ΩB/A → ΩB′/A′

constructed in Section 28, and for p ≥ 2 it is the induced map ΩpB/A = ∧pB(ΩB/A) →
∧pB′(ΩB′/A′) = ΩpB′/A′ . The compatibility with differentials follows from the character-
ization of the differentials by the formula (30.1.1).

Definition 30.4. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. The
de Rham complex of f or of X over Y is the complex

Ω•
X/Y = Ω•

OX/f−1OY

Consider a commutative diagram of ringed spaces

X ′

h′

��

f
// X

h

��
S′ g // S

Then we obtain a canonical map

Ω•
X/S → f∗Ω•

X′/S′

of de Rham complexes. Namely, the commutative diagram of sheaves of rings

f−1OX // OX′

f−1h−1OS

OO

// (h′)−1OS′

OO

on X ′ produces a map of complexes (see above)

f−1Ω•
X/S = Ω•

f−1OX/f−1h−1OS
−→ Ω•

OX′/(h′)−1OS′ = Ω•
X′/S′

(using Lemma 30.2 for the first equality) and then we can use adjunction.

Lemma 30.5. Let f : X → Y be a morphism of ringed spaces. The differentials
d : ΩiX/Y → Ωi+1

X/Y are differential operators of order 1 on X/Y .

Proof. Immediate from Lemma 30.3 and the definition. �
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31. The naive cotangent complex

This section is the analogue of Algebra, Section 134 for morphisms of ringed spaces. We
urge the reader to read that section first.

Let X be a topological space. Let A → B be a homomorphism of sheaves of rings. In
this section, for any sheaf of sets E onX we denoteA[E ] the sheafification of the presheaf
U 7→ A(U)[E(U)]. Here A(U)[E(U)] denotes the polynomial algebra over A(U) whose
variables correspond to the elements of E(U). We denote [e] ∈ A(U)[E(U)] the variable
corresponding to e ∈ E(U). There is a canonical surjection ofA-algebras

(31.0.1) A[B] −→ B, [b] 7−→ b

whose kernel we denote I ⊂ A[B]. It is a simple observation that I is generated by the
local sections [b][b′]− [bb′] and [a]− a. According to Lemma 28.9 there is a canonical map

(31.0.2) I/I2 −→ ΩA[B]/A ⊗A[B] B
whose cokernel is canonically isomorphic to ΩB/A.

Definition 31.1. Let X be a topological space. Let A → B be a homomorphism of
sheaves of rings. The naive cotangent complex NLB/A is the chain complex (31.0.2)

NLB/A =
(
I/I2 −→ ΩA[B]/A ⊗A[B] B

)
with I/I2 placed in degree −1 and ΩA[B]/A ⊗A[B] B placed in degree 0.

This construction satisfies a functoriality similar to that discussed in Lemma 28.8 for mod-
ules of differentials. Namely, given a commutative diagram

(31.1.1)

B // B′

A

OO

// A′

OO

of sheaves of rings on X there is a canonical B-linear map of complexes

NLB/A −→ NLB′/A′

Namely, the maps in the commutative diagram give rise to a canonical mapA[B]→ A′[B′]
which maps I into I ′ = Ker(A′[B′] → B′). Thus a map I/I2 → I ′/(I ′)2 and a map
between modules of differentials, which together give the desired map between the naive
cotangent complexes. The map is compatible with compositions in the following sense:
given a commutative diagram

B // B′ // B′′

A

OO

// A′

OO

// A′′

OO

of sheaves of rings then the composition

NLB/A −→ NLB′/A′ −→ NLB′′/A′′

is the map for the outer rectangle.

We can choose a different presentation of B as a quotient of a polynomial algebra over
A and still obtain the same object of D(B). To explain this, suppose that E is a sheaves
of sets on X and α : E → B a map of sheaves of sets. Then we obtain an A-algebra
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homomorphism A[E ] → B. If this map is surjective, i.e., if α(E) generates B as an A-
algebra, then we set

NL(α) =
(
J /J 2 −→ ΩA[E]/A ⊗A[E] B

)
where J ⊂ A[E ] is the kernel of the surjectionA[E ]→ B. Here is the result.

Lemma 31.2. In the situation above there is a canonical isomorphismNL(α) = NLB/A
in D(B).

Proof. Observe that NLB/A = NL(idB). Thus it suffices to show that given two
maps αi : Ei → B as above, there is a canonical quasi-isomorphism NL(α1) = NL(α2) in
D(B). To see this set E = E1 q E2 and α = α1 q α2 : E → B. Set Ji = Ker(A[Ei]→ B)
and J = Ker(A[E ] → B). We obtain maps A[Ei] → A[E ] which send Ji into J . Thus
we obtain canonical maps of complexes

NL(αi) −→ NL(α)
and it suffices to show these maps are quasi-isomorphism. To see this it suffices to check on
stalks (Lemma 3.1). If x ∈ X then the stalk of NL(α) is the complex NL(αx) of Algebra,
Section 134 associated to the presentationAx[Ex]→ Bx coming from the map αx : Ex →
Bx. (Some details omitted; use Lemma 28.7 to see compatibility of forming differentials
and taking stalks.) We conclude the result holds by Algebra, Lemma 134.2. �

Lemma 31.3. Let f : X → Y be a continuous map of topological spaces. LetA → B
be a homomorphism of sheaves of rings on Y . Then f−1 NLB/A = NLf−1B/f−1A.

Proof. Omitted. Hint: Use Lemma 28.6. �

Lemma 31.4. LetX be a topological space. LetA → B be a homomorphism of sheaves
of rings on X . Let x ∈ X . Then we have NLB/A,x = NLBx/Ax

.

Proof. This is a special case of Lemma 31.3 for the inclusion map {x} → X . �

Lemma 31.5. Let X be a topological space. Let A → B → C be maps of sheaves of
rings. Let C be the cone (Derived Categories, Definition 9.1) of the map of complexes
NLC/A → NLC/B. There is a canonical map

c : NLB/A⊗BC −→ C[−1]
of complexes of C-modules which produces a canonical six term exact sequence

H0(NLB/A⊗BC) // H0(NLC/A) // H0(NLC/B) // 0

H−1(NLB/A⊗BC) // H−1(NLC/A) // H−1(NLC/B)

kk

of cohomology sheaves.

Proof. To give the map cwe have to give a map c1 : NLB/A⊗BC → NLC/A and an
explicit homotopy between the composition

NLB/A⊗BC → NLC/A → NLC/B

and the zero map, see Derived Categories, Lemma 9.3. For c1 we use the functoriality
described above for the obvious diagram. For the homotopy we use the map

NL0
B/A⊗BC −→ NL−1

C/B, d[b]⊗ 1 7−→ [ϕ(b)]− b[1]
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where ϕ : B → C is the given map. Please compare with Algebra, Remark 134.5. To see
the consequence for cohomology sheaves, it suffices to show thatH0(c) is an isomorphism
and H−1(c) surjective. To see this we can look at stalks, see Lemma 31.4, and then we
can use the corresponding result in commutative algebra, see Algebra, Lemma 134.4. Some
details omitted. �

The cotangent complex of a morphism of ringed spaces is defined in terms of the cotangent
complex we defined above.

Definition 31.6. The naive cotangent complex NLf = NLX/Y of a morphism of
ringed spaces f : (X,OX)→ (Y,OY ) is NLOX/f−1OY

.

Given a commutative diagram
X ′

g
//

f ′

��

X

f

��
Y ′ h // Y

of ringed spaces, there is a canonical map c : g∗ NLX/Y → NLX′/Y ′ . Namely, it is the
map

g∗ NLX/Y = OX′ ⊗g−1OX
NLg−1OX/g−1f−1OY

−→ NLOX′/(f ′)−1OY ′ = NLX′/Y ′

where the arrow comes from the commutative diagram of sheaves of rings

g−1OX
g]

// OX′

g−1f−1OY
g−1h] //

g−1f]

OO

(f ′)−1OY ′

(f ′)]

OO

as in (31.1.1) above. Given a second such diagram

X ′′
g′
//

��

X ′

��
Y ′′ // Y ′

the composition of (g′)∗c and the map c′ : (g′)∗ NLX′/Y ′ → NLX′′/Y ′′ is the map (g ◦
g′)∗ NLX′′/Y ′′ → NLX/Y .

Lemma 31.7. Let f : X → Y and g : Y → Z be morphisms of ringed spaces. Let
C be the cone of the map NLX/Z → NLX/Y of complexes of OX -modules. There is a
canonical map

f∗ NLY/Z → C[−1]
which produces a canonical six term exact sequence

H0(f∗ NLY/Z) // H0(NLX/Z) // H0(NLX/Y ) // 0

H−1(f∗ NLY/Z) // H−1(NLX/Z) // H−1(NLX/Y )

kk

of cohomology sheaves.
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Proof. Consider the maps of sheaves rings
(g ◦ f)−1OZ → f−1OY → OX

and apply Lemma 31.5. �
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CHAPTER 18

Modules on Sites

1. Introduction

In this document we work out basic notions of sheaves of modules on ringed topoi or
ringed sites. We first work out some basic facts on abelian sheaves. After this we intro-
duce ringed sites and ringed topoi. We work through some of the very basic notions on
(pre)sheaves ofO-modules, analogous to the material on (pre)sheaves ofO-modules in the
chapter on sheaves on spaces. Having done this, we duplicate much of the discussion in
the chapter on sheaves of modules (see Modules, Section 1). Basic references are [?], [?] and
[?].

2. Abelian presheaves

Let C be a category. Abelian presheaves were introduced in Sites, Sections 2 and 7 and dis-
cussed a bit more in Sites, Section 44. We will follow the convention of this last reference,
in that we think of an abelian presheaf as a presheaf of sets endowed with addition rules
on all sets of sections compatible with the restriction mappings. Recall that the category
of abelian presheaves on C is denoted PAb(C).

The category PAb(C) is abelian as defined in Homology, Definition 5.1. Given a map of
presheaves ϕ : G1 → G2 the kernel of ϕ is the abelian presheaf U 7→ Ker(G1(U) →
G2(U)) and the cokernel of ϕ is the presheaf U 7→ Coker(G1(U) → G2(U)). Since the
category of abelian groups is abelian it follows that Coim = Im because this holds over
each U . A sequence of abelian presheaves

G1 −→ G2 −→ G3

is exact if and only if G1(U) → G2(U) → G3(U) is an exact sequence of abelian groups
for all U ∈ Ob(C). We leave the verifications to the reader.

Lemma 2.1. Let C be a category.
(1) All limits and colimits exist in PAb(C).
(2) All limits and colimits commute with taking sections over objects of C.

Proof. Let I → PAb(C), i 7→ Fi be a diagram. We can simply define abelian
presheaves L and C by the rules

L : U 7−→ limi Fi(U)
and

C : U 7−→ colimi Fi(U).
It is clear that there are maps of abelian presheaves L → Fi and Fi → C , by using the
corresponding maps on groups of sections over each U . It is straightforward to check that
L and C endowed with these maps are the limit and colimit of the diagram in PAb(C).
This proves (1) and (2). Details omitted. �

1679
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3. Abelian sheaves

Let C be a site. The category of abelian sheaves on C is denoted Ab(C). It is the full sub-
category of PAb(C) consisting of those abelian presheaves whose underlying presheaves
of sets are sheaves. Properties (α) – (ζ) of Sites, Section 44 hold, see Sites, Proposition
44.3. In particular the inclusion functor Ab(C) → PAb(C) has a left adjoint, namely the
sheafification functor G 7→ G#.

We suggest the reader prove the lemma on a piece of scratch paper rather than reading the
proof.

Lemma 3.1. Let C be a site. Let ϕ : F → G be a morphism of abelian sheaves on C.
(1) The category Ab(C) is an abelian category.
(2) The kernel Ker(ϕ) ofϕ is the same as the kernel ofϕ as a morphism of presheaves.
(3) The morphism ϕ is injective (Homology, Definition 5.3) if and only if ϕ is injec-

tive as a map of presheaves (Sites, Definition 3.1), if and only if ϕ is injective as
a map of sheaves (Sites, Definition 11.1).

(4) The cokernel Coker(ϕ) of ϕ is the sheafification of the cokernel of ϕ as a mor-
phism of presheaves.

(5) The morphism ϕ is surjective (Homology, Definition 5.3) if and only if ϕ is sur-
jective as a map of sheaves (Sites, Definition 11.1).

(6) A complex of abelian sheaves

F → G → H
is exact at G if and only if for all U ∈ Ob(C) and all s ∈ G(U) mapping to zero
inH(U) there exists a covering {Ui → U}i∈I in C such that each s|Ui is in the
image of F(Ui)→ G(Ui).

Proof. We claim that Homology, Lemma 7.4 applies to the categories A = Ab(C)
and B = PAb(C), and the functors a : A → B (inclusion), and b : B → A (sheafifica-
tion). Let us check the assumptions of Homology, Lemma 7.4. Assumption (1) is that A,
B are additive categories, a, b are additive functors, and a is right adjoint to b. The first
two statements are clear and adjointness is Sites, Section 44 (ε). Assumption (2) says that
PAb(C) is abelian which we saw in Section 2 and that sheafification is left exact, which is
Sites, Section 44 (ζ). The final assumption is that ba ∼= idA which is Sites, Section 44 (δ).
Hence Homology, Lemma 7.4 applies and we conclude that Ab(C) is abelian.

In the proof of Homology, Lemma 7.4 it is shown that Ker(ϕ) and Coker(ϕ) are equal to
the sheafification of the kernel and cokernel ofϕ as a morphism of abelian presheaves. This
proves (4). Since the kernel is a equalizer (i.e., a limit) and since sheafification commutes
with finite limits, we conclude that (2) holds.

Statement (2) implies (3). Statement (4) implies (5) by our description of sheafification.
The characterization of exactness in (6) follows from (2) and (5), and the fact that the
sequence is exact if and only if Im(F → G) = Ker(G → H). �

Another way to say part (6) of the lemma is that a sequence of abelian sheaves

F1 −→ F2 −→ F3

is exact if and only if the sheafification of U 7→ Im(F1(U) → F2(U)) is equal to the
kernel of F2 → F3.

Lemma 3.2. Let C be a site.
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(1) All limits and colimits exist in Ab(C).
(2) Limits are the same as the corresponding limits of abelian presheaves over C (i.e.,

commute with taking sections over objects of C).
(3) Finite direct sums are the same as the corresponding finite direct sums in the

category of abelian pre-sheaves over C.
(4) A colimit is the sheafification of the corresponding colimit in the category of

abelian presheaves.
(5) Filtered colimits are exact.

Proof. By Lemma 2.1 limits and colimits of abelian presheaves exist, and are de-
scribed by taking limits and colimits on the level of sections over objects.

Let I → Ab(C), i 7→ Fi be a diagram. Let limi Fi be the limit of the diagram as an abelian
presheaf. By Sites, Lemma 10.1 this is an abelian sheaf. Then it is quite easy to see that
limi Fi is the limit of the diagram in Ab(C). This proves limits exist and (2) holds.

By Categories, Lemma 24.5, and because sheafification is left adjoint to the inclusion func-
tor we see that colimi F exists and is the sheafification of the colimit in PAb(C). This
proves colimits exist and (4) holds.

Finite direct sums are the same thing as finite products in any abelian category. Hence (3)
follows from (2).

Proof of (5). The statement means that given a system 0 → Fi → Gi → Hi → 0 of
exact sequences of abelian sheaves over a directed set I the sequence 0 → colimFi →
colimGi → colimHi → 0 is exact as well. A formal argument using Homology, Lemma
5.8 and the definition of colimits shows that the sequence colimFi → colimGi → colimHi →
0 is exact. Note that colimFi → colimGi is the sheafification of the map of presheaf col-
imits which is injective as each of the maps Fi → Gi is injective. Since sheafification is
exact we conclude. �

4. Free abelian presheaves

In order to prepare notation for the following definition, let us agree to denote the free
abelian group on a set S as1 Z[S] =

⊕
s∈S Z. It is characterized by the property

MorAb(Z[S], A) = MorSets(S,A)

In other words the construction S 7→ Z[S] is a left adjoint to the forgetful functor Ab→
Sets.

Definition 4.1. Let C be a category. Let G be a presheaf of sets. The free abelian
presheaf ZG on G is the abelian presheaf defined by the rule

U 7−→ Z[G(U)].

In the special case G = hX of a representable presheaf associated to an object X of C we
use the notation ZX = ZhX . In other words

ZX(U) = Z[MorC(U,X)].

This construction is clearly functorial in the presheafG. In fact it is adjoint to the forgetful
functor PAb(C)→ PSh(C). Here is the precise statement.

1In other chapters the notation Z[S] sometimes indicates the polynomial ring over Z on S.
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Lemma 4.2. Let C be a category. Let G , F be a presheaves of sets. LetA be an abelian
presheaf. Let U be an object of C. Then we have

MorPSh(C)(hU ,F) = F(U),
MorPAb(C)(ZG ,A) = MorPSh(C)(G,A),
MorPAb(C)(ZU ,A) = A(U).

All of these equalities are functorial.

Proof. Omitted. �

Lemma 4.3. Let C be a category. Let I be a set. For each i ∈ I let Gi be a presheaf of
sets. Then

Z∐
i

Gi =
⊕

i∈I
ZGi

in PAb(C).

Proof. Omitted. �

5. Free abelian sheaves

Here is the notion of a free abelian sheaf on a sheaf of sets.

Definition 5.1. Let C be a site. Let G be a presheaf of sets. The free abelian sheaf Z#
G

on G is the abelian sheaf Z#
G which is the sheafification of the free abelian presheaf on G.

In the special case G = hX of a representable presheaf associated to an object X of C we
use the notation Z#

X .

This construction is clearly functorial in the presheaf G. In fact it provides an adjoint to
the forgetful functor Ab(C)→ Sh(C). Here is the precise statement.

Lemma 5.2. Let C be a site. Let G , F be a sheaves of sets. Let A be an abelian sheaf.
Let U be an object of C. Then we have

MorSh(C)(h#
U ,F) = F(U),

MorAb(C)(Z#
G ,A) = MorSh(C)(G,A),

MorAb(C)(Z#
U ,A) = A(U).

All of these equalities are functorial.

Proof. Omitted. �

Lemma 5.3. Let C be a site. Let G be a presheaf of sets. Then Z#
G = (ZG#)#.

Proof. Omitted. �

6. Ringed sites

In this chapter we mainly work with sheaves of modules on a ringed site. Hence we need
to define this notion.

Definition 6.1. Ringed sites.
(1) A ringed site is a pair (C,O) where C is a site andO is a sheaf of rings on C. The

sheafO is called the structure sheaf of the ringed site.



7. RINGED TOPOI 1683

(2) Let (C,O), (C′,O′) be ringed sites. A morphism of ringed sites

(f, f ]) : (C,O) −→ (C′,O′)
is given by a morphism of sites f : C → C′ (see Sites, Definition 14.1) together
with a map of sheaves of rings f ] : f−1O′ → O, which by adjunction is the
same thing as a map of sheaves of rings f ] : O′ → f∗O.

(3) Let (f, f ]) : (C1,O1) → (C2,O2) and (g, g]) : (C2,O2) → (C3,O3) be mor-
phisms of ringed sites. Then we define the composition of morphisms of ringed
sites by the rule

(g, g]) ◦ (f, f ]) = (g ◦ f, f ] ◦ g]).
Here we use composition of morphisms of sites defined in Sites, Definition 14.5
and f ] ◦ g] indicates the morphism of sheaves of rings

O3
g]−→ g∗O2

g∗f
]

−−−→ g∗f∗O1 = (g ◦ f)∗O1

7. Ringed topoi

A ringed topos is just a ringed site, except that the notion of a morphism of ringed topoi
is different from the notion of a morphism of ringed sites.

Definition 7.1. Ringed topoi.
(1) A ringed topos is a pair (Sh(C),O) where C is a site andO is a sheaf of rings on
C. The sheafO is called the structure sheaf of the ringed topos.

(2) Let (Sh(C),O), (Sh(C′),O′) be ringed topoi. A morphism of ringed topoi

(f, f ]) : (Sh(C),O) −→ (Sh(C′),O′)
is given by a morphism of topoi f : Sh(C)→ Sh(C′) (see Sites, Definition 15.1)
together with a map of sheaves of rings f ] : f−1O′ → O, which by adjunction
is the same thing as a map of sheaves of rings f ] : O′ → f∗O.

(3) Let (f, f ]) : (Sh(C1),O1) → (Sh(C2),O2) and (g, g]) : (Sh(C2),O2) →
(Sh(C3),O3) be morphisms of ringed topoi. Then we define the composition
of morphisms of ringed topoi by the rule

(g, g]) ◦ (f, f ]) = (g ◦ f, f ] ◦ g]).
Here we use composition of morphisms of topoi defined in Sites, Definition 15.1
and f ] ◦ g] indicates the morphism of sheaves of rings

O3
g]−→ g∗O2

g∗f
]

−−−→ g∗f∗O1 = (g ◦ f)∗O1

Every morphism of ringed topoi is the composition of an equivalence of ringed topoi with
a morphism of ringed topoi associated to a morphism of ringed sites. Here is the precise
statement.

Lemma 7.2. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. There exists a factorization

(Sh(C),OC)
(f,f])

//

(g,g])
��

(Sh(D),OD)

(e,e])
��

(Sh(C′),OC′)
(h,h]) // (Sh(D′),OD′)

where
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(1) g : Sh(C)→ Sh(C′) is an equivalence of topoi induced by a special cocontinuous
functor C → C′ (see Sites, Definition 29.2),

(2) e : Sh(D)→ Sh(D′) is an equivalence of topoi induced by a special cocontinu-
ous functor D → D′ (see Sites, Definition 29.2),

(3) OC′ = g∗OC and g] is the obvious map,
(4) OD′ = e∗OD and e] is the obvious map,
(5) the sites C′ and D′ have final objects and fibre products (i.e., all finite limits),
(6) h is a morphism of sites induced by a continuous functor u : D′ → C′ which

commutes with all finite limits (i.e., it satisfies the assumptions of Sites, Proposi-
tion 14.7), and

(7) given any set of sheavesFi (resp. Gj) on C (resp.D) we may assume each of these
is a representable sheaf on C′ (resp. D′).

Moreover, if (f, f ]) is an equivalence of ringed topoi, then we can choose the diagram
such that C′ = D′,OC′ = OD′ and (h, h]) is the identity.

Proof. This follows from Sites, Lemma 29.6, and Sites, Remarks 29.7 and 29.8. You
just have to carry along the sheaves of rings. Some details omitted. �

8. 2-morphisms of ringed topoi

This is a brief section concerning the notion of a 2-morphism of ringed topoi.

Definition 8.1. Let f, g : (Sh(C),OC)→ (Sh(D),OD) be two morphisms of ringed
topoi. A 2-morphism from f to g is given by a transformation of functors t : f∗ → g∗
such that

OD
f]

||

g]

""
f∗OC

t // g∗OC

is commutative.

Pictorially we sometimes represent t as follows:

(Sh(C),OC)
f --

g
11�� t (Sh(D),OD)

As in Sites, Section 36 giving a 2-morphism t : f∗ → g∗ is equivalent to giving t : g−1 →
f−1 (usually denoted by the same symbol) such that the diagram

f−1OD

f] ##

g−1ODt
oo

g]{{
OC

is commutative. As in Sites, Section 36 the axioms of a strict 2-category hold with hori-
zontal and vertical compositions defined as explained in loc. cit.
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9. Presheaves of modules

Let C be a category. LetO be a presheaf of rings on C. At this point we have not yet defined
a presheaf ofO-modules. Thus we do so right now.

Definition 9.1. Let C be a category, and letO be a presheaf of rings on C.
(1) A presheaf ofO-modules is given by an abelian presheaf F together with a map

of presheaves of sets
O ×F −→ F

such that for every object U of C the map O(U) × F(U) → F(U) defines the
structure of anO(U)-module structure on the abelian group F(U).

(2) A morphism ϕ : F → G of presheaves of O-modules is a morphism of abelian
presheaves ϕ : F → G such that the diagram

O ×F //

id×ϕ
��

F

ϕ

��
O × G // G

commutes.
(3) The set ofO-module morphisms as above is denoted HomO(F ,G).
(4) The category of presheaves ofO-modules is denoted PMod(O).

Suppose that O1 → O2 is a morphism of presheaves of rings on the category C. In this
case, ifF is a presheaf ofO2-modules then we can think ofF as a presheaf ofO1-modules
by using the composition

O1 ×F → O2 ×F → F .

We sometimes denote this by FO1 to indicate the restriction of rings. We call this the
restriction of F . We obtain the restriction functor

PMod(O2) −→ PMod(O1)

On the other hand, given a presheaf of O1-modules G we can construct a presheaf of O2-
modulesO2 ⊗p,O1 G by the rule

U 7−→ (O2 ⊗p,O1 G) (U) = O2(U)⊗O1(U) G(U)

where U ∈ Ob(C), with obvious restriction mappings. The index p stands for “presheaf”
and not “point”. This presheaf is called the tensor product presheaf. We obtain the change
of rings functor

PMod(O1) −→ PMod(O2)

Lemma 9.2. With C ,O1 → O2, F and G as above there exists a canonical bijection

HomO1(G,FO1) = HomO2(O2 ⊗p,O1 G,F)

In other words, the restriction and change of rings functors defined above are adjoint to
each other.

Proof. This follows from the fact that for a ring mapA→ B the restriction functor
and the change of ring functor are adjoint to each other. �
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10. Sheaves of modules

Definition 10.1. Let C be a site. LetO be a sheaf of rings on C.
(1) A sheaf ofO-modules is a presheaf ofO-modulesF , see Definition 9.1, such that

the underlying presheaf of abelian groups F is a sheaf.
(2) A morphism of sheaves ofO-modules is a morphism of presheaves ofO-modules.
(3) Given sheaves of O-modules F and G we denote HomO(F ,G) the set of mor-

phism of sheaves ofO-modules.
(4) The category of sheaves ofO-modules is denoted Mod(O).

This definition kind of makes sense even ifO is just a presheaf of rings, although we do not
know any examples where this is useful, and we will avoid using the terminology “sheaves
ofO-modules” in caseO is not a sheaf of rings.

11. Sheafification of presheaves of modules

Lemma 11.1. Let C be a site. LetO be a presheaf of rings on C. Let F be a presheaf of
O-modules. Let O# be the sheafification of O as a presheaf of rings, see Sites, Section 44.
Let F# be the sheafification of F as a presheaf of abelian groups. There exists a unique
map of sheaves of sets

O# ×F# −→ F#

which makes the diagram
O ×F //

��

F

��
O# ×F# // F#

commute and which makes F# into a sheaf ofO#-modules. In addition, if G is a sheaf of
O#-modules, then any morphism of presheaves ofO-modulesF → G (into the restriction
of G to aO-module) factors uniquely as F → F# → G where F# → G is a morphism of
O#-modules.

Proof. Omitted. �

This actually means that the functor i : Mod(O#) → PMod(O) (combining restriction
and including sheaves into presheaves) and the sheafification functor of the lemma # :
PMod(O)→Mod(O#) are adjoint. In a formula

MorPMod(O)(F , iG) = MorMod(O#)(F#,G)
An important case happens when O is already a sheaf of rings. In this case the formula
reads

MorPMod(O)(F , iG) = MorMod(O)(F#,G)
becauseO = O# in this case.

Lemma 11.2. Let C be a site. Let O be a presheaf of rings on C The sheafification
functor

PMod(O) −→Mod(O#), F 7−→ F#

is exact.

Proof. This is true because it holds for sheafification PAb(C) → Ab(C). See the
discussion in Section 3. �
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Let C be a site. Let O1 → O2 be a morphism of sheaves of rings on C. In Section 9
we defined a restriction functor and a change of rings functor on presheaves of modules
associated to this situation.

If F is a sheaf of O2-modules then the restriction FO1 of F is clearly a sheaf of O1-
modules. We obtain the restriction functor

Mod(O2) −→Mod(O1)

On the other hand, given a sheaf ofO1-modules G the presheaf ofO2-modulesO2⊗p,O1 G
is in general not a sheaf. Hence we define the tensor product sheafO2⊗O1G by the formula

O2 ⊗O1 G = (O2 ⊗p,O1 G)#

as the sheafification of our construction for presheaves. We obtain the change of rings
functor

Mod(O1) −→Mod(O2)

Lemma 11.3. With X ,O1,O2, F and G as above there exists a canonical bijection

HomO1(G,FO1) = HomO2(O2 ⊗O1 G,F)
In other words, the restriction and change of rings functors are adjoint to each other.

Proof. This follows from Lemma 9.2 and the fact that HomO2(O2 ⊗O1 G,F) =
HomO2(O2 ⊗p,O1 G,F) because F is a sheaf. �

Lemma 11.4. Let C be a site. LetO → O′ be an epimorphism of sheaves of rings. Let
G1,G2 beO′-modules. Then

HomO′(G1,G2) = HomO(G1,G2).
In other words, the restriction functor Mod(O′)→Mod(O) is fully faithful.

Proof. This is the sheaf version of Algebra, Lemma 107.14 and is proved in exactly
the same way. �

12. Morphisms of topoi and sheaves of modules

All of this material is completely straightforward. We formulate everything in the case of
morphisms of topoi, but of course the results also hold in the case of morphisms of sites.

Lemma 12.1. Let C ,D be sites. Let f : Sh(C)→ Sh(D) be a morphism of topoi. LetO
be a sheaf of rings on C. Let F be a sheaf ofO-modules. There is a natural map of sheaves
of sets

f∗O × f∗F −→ f∗F
which turns f∗F into a sheaf of f∗O-modules. This construction is functorial in F .

Proof. Denote µ : O × F → F the multiplication map. Recall that f∗ (on sheaves
of sets) is left exact and hence commutes with products. Hence f∗µ is a map as indicated.
This proves the lemma. �

Lemma 12.2. Let C , D be sites. Let f : Sh(C) → Sh(D) be a morphism of topoi.
Let O be a sheaf of rings on D. Let G be a sheaf of O-modules. There is a natural map of
sheaves of sets

f−1O × f−1G −→ f−1G
which turns f−1G into a sheaf of f−1O-modules. This construction is functorial in G.
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Proof. Denote µ : O×G → G the multiplication map. Recall that f−1 (on sheaves
of sets) is exact and hence commutes with products. Hence f−1µ is a map as indicated.
This proves the lemma. �

Lemma 12.3. Let C ,D be sites. Let f : Sh(C)→ Sh(D) be a morphism of topoi. LetO
be a sheaf of rings onD. Let G be a sheaf ofO-modules. LetF be a sheaf of f−1O-modules.
Then

MorMod(f−1O)(f−1G,F) = MorMod(O)(G, f∗F).

Here we use Lemmas 12.2 and 12.1, and we think of f∗F as anO-module by restriction via
O → f∗f

−1O.

Proof. First we note that we have

MorAb(C)(f−1G,F) = MorAb(D)(G, f∗F).

by Sites, Proposition 44.3. Suppose that α : f−1G → F and β : G → f∗F are morphisms
of abelian sheaves which correspond via the formula above. We have to show that α is
f−1O-linear if and only if β is O-linear. For example, suppose α is f−1O-linear, then
clearly f∗α is f∗f

−1O-linear, and hence (as restriction is a functor) is O-linear. Hence it
suffices to prove that the adjunction map G → f∗f

−1G is O-linear. Using that both f∗
and f−1 commute with products (on sheaves of sets) this comes down to showing that

O × G //

��

f∗f
−1(O × G)

��
G // f∗f

−1G

is commutative. This holds because the adjunction mapping idSh(D) → f∗f
−1 is a trans-

formation of functors. We omit the proof of the implication β linear⇒ α linear. �

Lemma 12.4. Let C , D be sites. Let f : Sh(C)→ Sh(D) be a morphism of topoi. Let
O be a sheaf of rings on C. LetF be a sheaf ofO-modules. Let G be a sheaf of f∗O-modules.
Then

MorMod(O)(O ⊗f−1f∗O f−1G,F) = MorMod(f∗O)(G, f∗F).

Here we use Lemmas 12.2 and 12.1, and we use the canonical map f−1f∗O → O in the
definition of the tensor product.

Proof. Note that we have

MorMod(O)(O ⊗f−1f∗O f−1G,F) = MorMod(f−1f∗O)(f−1G,Ff−1f∗O)

by Lemma 11.3. Hence the result follows from Lemma 12.3. �

13. Morphisms of ringed topoi and modules

We have now introduced enough notation so that we are able to define the pullback and
pushforward of modules along a morphism of ringed topoi.

Definition 13.1. Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi or ringed sites.
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(1) Let F be a sheaf of OC-modules. We define the pushforward of F as the sheaf
ofOD-modules which as a sheaf of abelian groups equals f∗F and with module
structure given by the restriction via f ] : OD → f∗OC of the module structure

f∗OC × f∗F −→ f∗F

from Lemma 12.1.
(2) Let G be a sheaf of OD-modules. We define the pullback f∗G to be the sheaf of
OC-modules defined by the formula

f∗G = OC ⊗f−1OD f−1G

where the ring map f−1OD → OC is f ], and where the module structure is
given by Lemma 12.2.

Thus we have defined functors

f∗ : Mod(OC) −→ Mod(OD)
f∗ : Mod(OD) −→ Mod(OC)

The final result on these functors is that they are indeed adjoint as expected.

Lemma 13.2. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi or ringed sites. Let F be a sheaf of OC-modules. Let G be a sheaf of OD-modules.
There is a canonical bijection

HomOC (f∗G,F) = HomOD (G, f∗F).

In other words: the functor f∗ is the left adjoint to f∗.

Proof. This follows from the work we did before:

HomOC (f∗G,F) = MorMod(OC)(OC ⊗f−1OD f−1G,F)
= MorMod(f−1OD)(f−1G,Ff−1OD )
= HomOD (G, f∗F).

Here we use Lemmas 11.3 and 12.3. �

Lemma 13.3. (f, f ]) : (Sh(C1),O1) → (Sh(C2),O2) and (g, g]) : (Sh(C2),O2) →
(Sh(C3),O3) be morphisms of ringed topoi. There are canonical isomorphisms of functors
(g ◦ f)∗ ∼= g∗ ◦ f∗ and (g ◦ f)∗ ∼= f∗ ◦ g∗.

Proof. This is clear from the definitions. �

14. The abelian category of sheaves of modules

Let (Sh(C),O) be a ringed topos. LetF ,G be sheaves ofO-modules, see Sheaves, Definition
10.1. Letϕ,ψ : F → G be morphisms of sheaves ofO-modules. We defineϕ+ψ : F → G
to be the sum of ϕ and ψ as morphisms of abelian sheaves. This is clearly again a map of
O-modules. It is also clear that composition of maps ofO-modules is bilinear with respect
to this addition. Thus Mod(O) is a pre-additive category, see Homology, Definition 3.1.

We will denote 0 the sheaf of O-modules which has constant value {0} for all objects U
of C. Clearly this is both a final and an initial object of Mod(O). Given a morphism of
O-modules ϕ : F → G the following are equivalent: (a) ϕ is zero, (b) ϕ factors through
0, (c) ϕ is zero on sections over each object U .
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Moreover, given a pair F , G of sheaves ofO-modules we may define the direct sum as
F ⊕ G = F × G

with obvious maps (i, j, p, q) as in Homology, Definition 3.5. Thus Mod(O) is an additive
category, see Homology, Definition 3.8.
Let ϕ : F → G be a morphism of O-modules. We may define Ker(ϕ) to be the kernel of
ϕ as a map of abelian sheaves. By Section 3 this is the subsheaf of F with sections

Ker(ϕ)(U) = {s ∈ F(U) | ϕ(s) = 0 in G(U)}
for all objects U of C. It is easy to see that this is indeed a kernel in the category of O-
modules. In other words, a morphism α : H → F factors through Ker(ϕ) if and only if
ϕ ◦ α = 0.
Similarly, we define Coker(ϕ) as the cokernel of ϕ as a map of abelian sheaves. There is a
unique multiplication map

O × Coker(ϕ) −→ Coker(ϕ)
such that the map G → Coker(ϕ) becomes a morphism of O-modules (verification omit-
ted). The map G → Coker(ϕ) is surjective (as a map of sheaves of sets, see Section 3). To
show that Coker(ϕ) is a cokernel in Mod(O), note that if β : G → H is a morphism of
O-modules such that β ◦ ϕ is zero, then you get for every object U of C a map induced
by β from G(U)/ϕ(F(U)) into H(U). By the universal property of sheafification (see
Sheaves, Lemma 20.1) we obtain a canonical map Coker(ϕ) → H such that the original
β is equal to the composition G → Coker(ϕ) → H. The morphism Coker(ϕ) → H is
unique because of the surjectivity mentioned above.

Lemma 14.1. Let (Sh(C),O) be a ringed topos. The category Mod(O) is an abelian
category. The forgetful functor Mod(O) → Ab(C) is exact, hence kernels, cokernels and
exactness ofO-modules, correspond to the corresponding notions for abelian sheaves.

Proof. Above we have seen that Mod(O) is an additive category, with kernels and
cokernels and that Mod(O) → Ab(C) preserves kernels and cokernels. By Homology,
Definition 5.1 we have to show that image and coimage agree. This is clear because it is
true in Ab(C). The lemma follows. �

Lemma 14.2. Let (Sh(C),O) be a ringed topos. All limits and colimits exist in Mod(O)
and the forgetful functor Mod(O) → Ab(C) commutes with them. Moreover, filtered
colimits are exact.

Proof. The final statement follows from the first as filtered colimits are exact in
Ab(C) by Lemma 3.2. Let I → Mod(C), i 7→ Fi be a diagram. Let limi Fi be the limit of
the diagram in Ab(C). By the description of this limit in Lemma 3.2 we see immediately
that there exists a multiplication

O × limi Fi −→ limi Fi
which turns limi Fi into a sheaf of O-modules. It is easy to see that this is the limit of
the diagram in Mod(C). Let colimi Fi be the colimit of the diagram in PAb(C). By the
description of this colimit in the proof of Lemma 2.1 we see immediately that there exists
a multiplication

O × colimi Fi −→ colimi Fi
which turns colimi Fi into a presheaf of O-modules. Applying sheafification we get a
sheaf ofO-modules (colimi Fi)#, see Lemma 11.1. It is easy to see that (colimi Fi)# is the
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colimit of the diagram in Mod(O), and by Lemma 3.2 forgetting the O-module structure
is the colimit in Ab(C). �

The existence of limits and colimits allows us to consider exactness properties of functors
defined on the category of O-modules in terms of limits and colimits, as in Categories,
Section 23. See Homology, Lemma 7.2 for a description of exactness properties in terms of
short exact sequences.

Lemma 14.3. Let f : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi.
(1) The functor f∗ is left exact. In fact it commutes with all limits.
(2) The functor f∗ is right exact. In fact it commutes with all colimits.

Proof. This is true because (f∗, f∗) is an adjoint pair of functors, see Lemma 13.2.
See Categories, Section 24. �

Lemma 14.4. Let C be a site. If {pi}i∈I is a conservative family of points, then we
may check exactness of a sequence of abelian sheaves on the stalks at the points pi, i ∈ I .
If C has enough points, then exactness of a sequence of abelian sheaves may be checked on
stalks.

Proof. This is immediate from Sites, Lemma 38.2. �

15. Exactness of pushforward

Some technical lemmas concerning exactness properties of pushforward.

Lemma 15.1. Let f : Sh(C) → Sh(D) be a morphism of topoi. The following are
equivalent:

(1) f−1f∗F → F is surjective for all F in Ab(C), and
(2) f∗ : Ab(C)→ Ab(D) reflects surjections.

In this case the functor f∗ : Ab(C)→ Ab(D) is faithful.

Proof. Assume (1). Suppose that a : F → F ′ is a map of abelian sheaves on C such
that f∗a is surjective. As f−1 is exact this implies that f−1f∗a : f−1f∗F → f−1f∗F ′ is
surjective. Combined with (1) this implies that a is surjective. This means that (2) holds.

Assume (2). Let F be an abelian sheaf on C. We have to show that the map f−1f∗F → F
is surjective. By (2) it suffices to show that f∗f

−1f∗F → f∗F is surjective. And this is
true because there is a canonical map f∗F → f∗f

−1f∗F which is a one-sided inverse.

We omit the proof of the final assertion. �

Lemma 15.2. Let f : Sh(C) → Sh(D) be a morphism of topoi. Assume at least one
of the following properties holds

(1) f∗ transforms surjections of sheaves of sets into surjections,
(2) f∗ transforms surjections of abelian sheaves into surjections,
(3) f∗ commutes with coequalizers on sheaves of sets,
(4) f∗ commutes with pushouts on sheaves of sets,

Then f∗ : Ab(C)→ Ab(D) is exact.

Proof. Since f∗ : Ab(C) → Ab(D) is a right adjoint we already know that it trans-
forms a short exact sequence 0 → F1 → F2 → F3 → 0 of abelian sheaves on C into an
exact sequence

0→ f∗F1 → f∗F2 → f∗F3



1692 18. MODULES ON SITES

see Categories, Sections 23 and 24 and Homology, Section 7. Hence it suffices to prove that
the map f∗F2 → f∗F3 is surjective. If (1), (2) holds, then this is clear from the definitions.
By Sites, Lemma 41.1 we see that either (3) or (4) formally implies (1), hence in these cases
we are done also. �

Lemma 15.3. Let f : D → C be a morphism of sites associated to the continuous
functor u : C → D. Assume u is almost cocontinuous. Then

(1) f∗ : Ab(D)→ Ab(C) is exact.
(2) if f ] : f−1OC → OD is given so that f becomes a morphism of ringed sites, then

f∗ : Mod(OD)→Mod(OC) is exact.

Proof. Part (2) follows from part (1) by Lemma 14.2. Part (1) follows from Sites,
Lemmas 42.6 and 41.1. �

16. Exactness of lower shriek

Let u : C → D be a functor between sites. Assume that
(a) u is cocontinuous, and
(b) u is continuous.

Let g : Sh(C)→ Sh(D) be the morphism of topoi associated with u, see Sites, Lemma 21.1.
Recall that g−1 = up, i.e., g−1 is given by the simple formula (g−1G)(U) = G(u(U)), see
Sites, Lemma 21.5. We would like to show that g−1 : Ab(D) → Ab(C) has a left adjoint
g!. By Sites, Lemma 21.5 the functor gSh! = (up )# is a left adjoint on sheaves of sets.
Moreover, we know that gSh! F is the sheaf associated to the presheaf

V 7−→ colimV→u(U) F(U)

where the colimit is over (IuV )opp and is taken in the category of sets. Hence the following
definition is natural.

Definition 16.1. With u : C → D satisfying (a), (b) above. For F ∈ PAb(C) we
define gp!F as the presheaf

V 7−→ colimV→u(U) F(U)

with colimits over (IuV )opp taken in Ab. For F ∈ PAb(C) we set g!F = (gp!F)#.

The reason for being so explicit with this is that the functors gSh! and g! are different.
Whenever we use both we have to be careful to make the distinction clear.

Lemma 16.2. The functor gp! is a left adjoint to the functor up. The functor g! is a
left adjoint to the functor g−1. In other words the formulas

MorPAb(C)(F , upG) = MorPAb(D)(gp!F ,G),
MorAb(C)(F , g−1G) = MorAb(D)(g!F ,G)

hold bifunctorially in F and G.

Proof. The second formula follows formally from the first, since if F and G are
abelian sheaves then

MorAb(C)(F , g−1G) = MorPAb(D)(gp!F ,G)
= MorAb(D)(g!F ,G)

by the universal property of sheafification.
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To prove the first formula, letF , G be abelian presheaves. To prove the lemma we will con-
struct maps from the group on the left to the group on the right and omit the verification
that these are mutually inverse.
Note that there is a canonical map of abelian presheaves F → upgp!F which on sections
over U is the natural map F(U)→ colimu(U)→u(U ′) F(U ′), see Sites, Lemma 5.3. Given
a map α : gp!F → G we get upα : upgp!F → upG. which we can precompose by the map
F → upgp!F .
Note that there is a canonical map of abelian presheaves gp!u

pG → G which on sections
over V is the natural map colimV→u(U) G(u(U)) → G(V ). It maps a section s ∈ u(U)
in the summand corresponding to t : V → u(U) to t∗s ∈ G(V ). Hence, given a map
β : F → upG we get a map gp!β : gp!F → gp!u

pG which we can postcompose with the
map gp!u

pG → G above. �

Lemma 16.3. Let C and D be sites. Let u : C → D be a functor. Assume that
(a) u is cocontinuous,
(b) u is continuous, and
(c) fibre products and equalizers exist in C and u commutes with them.

In this case the functor g! : Ab(C)→ Ab(D) is exact.

Proof. Compare with Sites, Lemma 21.6. Assume (a), (b), and (c). We already know
that g! is right exact as it is a left adjoint, see Categories, Lemma 24.6 and Homology,
Section 7. We have g! = (gp! )#. We have to show that g! transforms injective maps
of abelian sheaves into injective maps of abelian presheaves. Recall that sheafification of
abelian presheaves is exact, see Lemma 3.2. Thus it suffices to show that gp! transforms
injective maps of abelian presheaves into injective maps of abelian presheaves. To do this
it suffices that colimits over the categories (IuV )opp of Sites, Section 5 transform injective
maps between diagrams into injections. This follows from Sites, Lemma 5.1 and Algebra,
Lemma 8.10. �

Lemma 16.4. Let C and D be sites. Let u : C → D be a functor. Assume that
(a) u is cocontinuous,
(b) u is continuous, and
(c) u is fully faithful.

For g!, g
−1, g∗ as above the canonical maps F → g−1g!F and g−1g∗F → F are isomor-

phisms for all abelian sheaves F on C.

Proof. The map g−1g∗F → F is an isomorphism by Sites, Lemma 21.7 and the fact
that pullback and pushforward of abelian sheaves agrees with pullback and pushforward
on the underlying sheaves of sets.
Pick U ∈ Ob(C). We will show that g−1g!F(U) = F(U). First, note that g−1g!F(U) =
g!F(u(U)). Hence it suffices to show that g!F(u(U)) = F(U). We know that g!F is the
(abelian) sheaf associated to the presheaf gp!F which is defined by the rule

V 7−→ colimV→u(U ′) F(U ′)
with colimit taken in Ab. If V = u(U), then, as u is fully faithful this colimit is over
U → U ′. Hence we conclude that gp!F(u(U) = F(U). Since u is cocontinuous and
continuous any covering of u(U) in D can be refined by a covering (!) {u(Ui) → u(U)}
ofD where {Ui → U} is a covering in C. This implies that (gp!F)+(u(U)) = F(U) also,
since in the colimit defining the value of (gp!F)+ on u(U) we may restrict to the cofinal
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system of coverings {u(Ui) → u(U)} as above. Hence we see that (gp!F)+(u(U)) =
F(U) for all objects U of C as well. Repeating this argument one more time gives the
equality (gp!F)#(u(U)) = F(U) for all objectsU of C. This produces the desired equality
g−1g!F = F . �

Remark 16.5. In general the functor g! cannot be extended to categories of modules
in case g is (part of) a morphism of ringed topoi. Namely, given any ring mapA→ B the
functor M 7→ B ⊗A M has a right adjoint (restriction) but not in general a left adjoint
(because its existence would imply that A → B is flat). We will see in Section 19 below
that it is possible to define j! on sheaves of modules in the case of a localization of sites.
We will discuss this in greater generality in Section 41 below.

Lemma 16.6. Let C andD be sites. Let g : Sh(C)→ Sh(D) be the morphism of topoi
associated to a continuous and cocontinuous functor u : C → D.

(1) If u has a left adjoint w, then g! agrees with gSh
! on underlying sheaves of sets

and g! is exact.
(2) If in addition w is cocontinuous, then g! = h−1 and g−1 = h∗ where h :

Sh(D)→ Sh(C) is the morphism of topoi associated to w.

Proof. This Lemma is the analogue of Sites, Lemma 23.1. From Sites, Lemma 19.3 we
see that the categories IuV have an initial object. Thus the underlying set of a colimit of a
system of abelian groups over (IuV )opp is the colimit of the underlying sets. Whence the
agreement of gSh

! and g! by our construction of g! in Definition 16.1. The exactness and
(2) follow immediately from the corresponding statements of Sites, Lemma 23.1. �

17. Global types of modules

Definition 17.1. Let (Sh(C),O) be a ringed topos. Let F be a sheaf ofO-modules.
(1) We sayF is a freeO-module ifF is isomorphic as anO-module to a sheaf of the

form
⊕

i∈I O.
(2) We say F is finite free if F is isomorphic as anO-module to a sheaf of the form⊕

i∈I O with a finite index set I .
(3) We say F is generated by global sections if there exists a surjection⊕

i∈I
O −→ F

from a freeO-module onto F .
(4) Given r ≥ 0 we sayF is generated by r global sections if there exists a surjection
O⊕r → F .

(5) We say F is generated by finitely many global sections if it is generated by r
global sections for some r ≥ 0.

(6) We say F has a global presentation if there exists an exact sequence⊕
j∈J
O −→

⊕
i∈I
O −→ F −→ 0

ofO-modules.
(7) We say F has a global finite presentation if there exists an exact sequence⊕

j∈J
O −→

⊕
i∈I
O −→ F −→ 0

ofO-modules with I and J finite sets.
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Note that for any set I the direct sum
⊕

i∈I O exists (Lemma 14.2) and is the sheafification
of the presheaf U 7→

⊕
i∈I O(U). This module is called the freeO-module on the set I .

Lemma 17.2. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let F be anOD-module.

(1) If F is free then f∗F is free.
(2) If F is finite free then f∗F is finite free.
(3) If F is generated by global sections then f∗F is generated by global sections.
(4) Given r ≥ 0 if F is generated by r global sections, then f∗F is generated by r

global sections.
(5) If F is generated by finitely many global sections then f∗F is generated by

finitely many global sections.
(6) If F has a global presentation then f∗F has a global presentation.
(7) If F has a finite global presentation then f∗F has a finite global presentation.

Proof. This is true because f∗ commutes with arbitrary colimits (Lemma 14.3) and
f∗OD = OC . �

18. Intrinsic properties of modules

Let P be a property of sheaves of modules on ringed topoi. We say P is an intrinsic prop-
erty if we have P(F) ⇔ P(f∗F) whenever (f, f ]) : (Sh(C′),O′) → (Sh(C),O) is an
equivalence of ringed topoi. For example, the property of being free is intrinsic. Indeed,
the freeO-module on the set I is characterized by the property that

MorMod(O)(
⊕

i∈I
O,F) =

∏
i∈I

MorSh(C)({∗},F)

for a variable F in Mod(O). Alternatively, we can also use Lemma 17.2 to see that being
free is intrinsic. In fact, each of the properties defined in Definition 17.1 is intrinsic for
the same reason. How will we go about defining other intrinsic properties ofO-modules?

The upshot of Lemma 7.2 is the following: Suppose you want to define an intrinsic prop-
erty P of anO-module on a topos. Then you can proceed as follows:

(1) Given any site C , any sheaf of rings O on C and any O-module F define the
corresponding property P(C,O,F).

(2) For any pair of sites C , C′, any special cocontinuous functor u : C → C′, any
sheaf of ringsO on C anyO-module F , show that

P(C,O,F)⇔ P(C′, g∗O, g∗F)

where g : Sh(C)→ Sh(C′) is the equivalence of topoi associated to u.
In this case, given any ringed topos (Sh(C),O) and any sheaf ofO-modules F we simply
say thatF has property P if P(C,O,F) is true. And Lemma 7.2 combined with (2) above
guarantees that this is well defined.

Moreover, the same Lemma 7.2 also guarantees that if in addition
(3) For any morphism of ringed sites (f, f ]) : (C,OC) → (D,OD) such that f is

given by a functor u : D → C satisfying the assumptions of Sites, Proposition
14.7, and anyOD-module G we have

P(D,OD,F)⇒ P(C,OC , f
∗F)
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then it is true that P is preserved under pullback of modules w.r.t. arbitrary morphisms
of ringed topoi.

We will use this method in the following sections to see that: locally free, locally generated
by sections, locally generated by r sections, finite type, finite presentation, quasi-coherent,
and coherent are intrinsic properties of modules.

Perhaps a more satisfying method would be to find an intrinsic definition of these notions,
rather than the laborious process sketched here. On the other hand, in many geometric
situations where we want to apply these definitions we are given a definite ringed site,
and a definite sheaf of modules, and it is nice to have a definition already adapted to this
language.

19. Localization of ringed sites

Let (C,O) be a ringed site. Let U ∈ Ob(C). We explain the counterparts of the results in
Sites, Section 25 in this setting.

Denote OU = j−1
U O the restriction of O to the site C/U . It is described by the simple

rule OU (V/U) = O(V ). With this notation the localization morphism jU becomes a
morphism of ringed topoi

(jU , j]U ) : (Sh(C/U),OU ) −→ (Sh(C),O)

namely, we take j]U : j−1
U O → OU the identity map. Moreover, we obtain the following

descriptions for pushforward and pullback of modules.

Definition 19.1. Let (C,O) be a ringed site. Let U ∈ Ob(C).
(1) The ringed site (C/U,OU ) is called the localization of the ringed site (C,O) at

the object U .
(2) The morphism of ringed topoi (jU , j]U ) : (Sh(C/U),OU ) → (Sh(C),O) is

called the localization morphism.
(3) The functor jU∗ : Mod(OU )→Mod(O) is called the direct image functor.
(4) For a sheaf ofO-modules F on C the sheaf j∗

UF is called the restriction of F to
C/U . We will sometimes denote it by F|C/U or even F|U . It is described by the
simple rule j∗

U (F)(X/U) = F(X).
(5) The left adjoint jU ! : Mod(OU )→Mod(O) of restriction is called extension by

zero. It exists and is exact by Lemmas 19.2 and 19.3.

As in the topological case, see Sheaves, Section 31, the extension by zero jU ! functor is
different from extension by the empty set jU ! defined on sheaves of sets. Here is the lemma
defining extension by zero.

Lemma 19.2. Let (C,O) be a ringed site. Let U ∈ Ob(C). The restriction functor
j∗
U : Mod(O)→Mod(OU ) has a left adjoint jU ! : Mod(OU )→Mod(O). So

MorMod(OU )(G, j∗
UF) = MorMod(O)(jU !G,F)

forF ∈ Ob(Mod(O)) and G ∈ Ob(Mod(OU )). Moreover, the extension by zero jU !G of
G is the sheaf associated to the presheaf

V 7−→
⊕

ϕ∈MorC(V,U)
G(V ϕ−→ U)

with obvious restriction mappings and an obviousO-module structure.
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Proof. The O-module structure on the presheaf is defined as follows. If f ∈ O(V )
and s ∈ G(V ϕ−→ U), then we define f · s = fs where f ∈ OU (ϕ : V → U) = O(V )
(becauseOU is the restriction ofO to C/U ).

Similarly, let α : G → F|U be a morphism of OU -modules. In this case we can define a
map from the presheaf of the lemma into F by mapping⊕

ϕ∈MorC(V,U)
G(V ϕ−→ U) −→ F(V )

by the rule that s ∈ G(V ϕ−→ U) maps to α(s) ∈ F(V ). It is clear that this isO-linear, and
hence induces a morphism ofO-modulesα′ : jU !G → F by the properties of sheafification
of modules (Lemma 11.1).

Conversely, let β : jU !G → F by a map of O-modules. Recall from Sites, Section 25 that
there exists an extension by the empty set jShU ! : Sh(C/U) → Sh(C) on sheaves of sets
which is left adjoint to j−1

U . Moreover, jShU ! G is the sheaf associated to the presheaf

V 7−→
∐

ϕ∈MorC(V,U)
G(V ϕ−→ U)

Hence there is a natural map jShU ! G → jU !G of sheaves of sets. Hence precomposing β by
this map we get a map of sheaves of sets jShU ! G → F which by adjunction corresponds
to a map of sheaves of sets β′ : G → F|U . We claim that β′ is OU -linear. Namely,
suppose that ϕ : V → U is an object of C/U and that s, s′ ∈ G(ϕ : V → U), and
f ∈ O(V ) = OU (ϕ : V → U). Then by the discussion above we see that β′(s+ s′), resp.
β′(fs) in F|U (ϕ : V → U) correspond to β(s + s′), resp. β(fs) in F(V ). Since β is a
homomorphism we conclude.

To conclude the proof of the lemma we have to show that the constructions α 7→ α′ and
β 7→ β′ are mutually inverse. We omit the verifications. �

Note that we have in the situation of Definition 19.1 we have

(19.2.1) HomO(jU !OU ,F) = HomOU
(OU , j∗

UF) = F(U)

for every O-module F . Namely, the first equality holds by the adjointness of jU ! and j∗
U

and the second because HomOU
(OU , j∗

UF) = j∗
UF(U/U) = F|U (U/U) = F(U).

Lemma 19.3. Let (C,O) be a ringed site. LetU ∈ Ob(C). The functor jU ! : Mod(OU )→
Mod(O) is exact.

Proof. Since jU ! is a left adjoint to j∗
U we see that it is right exact (see Categories,

Lemma 24.6 and Homology, Section 7). Hence it suffices to show that if G1 → G2 is an
injective map of OU -modules, then jU !G1 → jU !G2 is injective. The map on sections of
presheaves over an object V (as in Lemma 19.2) is the map⊕

ϕ∈MorC(V,U)
G1(V ϕ−→ U) −→

⊕
ϕ∈MorC(V,U)

G2(V ϕ−→ U)

which is injective by assumption. Since sheafification is exact by Lemma 11.2 we conclude
jU !G1 → jU !G2 is injective and we win. �

Lemma 19.4. Let (C,O) be a ringed site. Let U ∈ Ob(C). A complex ofOU -modules
G1 → G2 → G3 is exact if and only if jU !G1 → jU !G2 → jU !G3 is exact as a sequence of
O-modules.
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Proof. We already know that jU ! is exact, see Lemma 19.3. Thus it suffices to show
that jU ! : Mod(OU )→Mod(O) reflects injections and surjections.

For every G in Mod(OU ) we have the unit G → j∗
U jU !G of the adjunction. We claim

this map is an injection of sheaves. Namely, looking at the construction of Lemma 19.2
we see that this map is the sheafification of the rule sending the object V/U of C/U to the
injective map

G(V/U) −→
⊕

ϕ∈MorC(V,U)
G(V ϕ−→ U)

given by the inclusion of the summand corresponding to the structure morphism V → U .
Since sheafification is exact the claim follows. Some details omitted.

If G → G′ is a map ofOU -modules with jU !G → jU !G′ injective, then j∗
U jU !G → j∗

U jU !G′

is injective (restriction is exact), henceG → j∗
U jU !G′ is injective, henceG → G′ is injective.

We conclude that jU ! reflects injections.

Let a : G → G′ be a map of OU -modules such that jU !G → jU !G′ is surjective. Let H be
the cokernel of a. Then jU !H = 0 as jU ! is exact. By the above the mapH → j∗

U jU !H is
injective. HenceH = 0 as desired. �

Lemma 19.5. Let (C,O) be a ringed site. Let f : V → U be a morphism of C. Then
there exists a commutative diagram

(Sh(C/V ),OV )

(jV ,j]V ) ''

(j,j])
// (Sh(C/U),OU )

(jU ,j]U )ww
(Sh(C),O)

of ringed topoi. Here (j, j]) is the localization morphism associated to the object V/U of
the ringed site (C/V,OV ).

Proof. The only thing to check is that j]V = j] ◦ j−1(j]U ), since everything else fol-
lows directly from Sites, Lemma 25.8 and Sites, Equation (25.8.1). We omit the verification
of the equality. �

Remark 19.6. In the situation of Lemma 19.2 the diagram

Mod(OU )
jU!

//

forget

��

Mod(OC)

forget

��
Ab(C/U)

jAbU! // Ab(C)

commutes. This is clear from the explicit description of the functor jU ! in the lemma.

Remark 19.7. Localization and presheaves of modules; see Sites, Remark 25.10. Let
C be a category. Let O be a presheaf of rings. Let U be an object of C. Strictly speaking
the functors j∗

U , jU∗ and jU ! have not been defined for presheaves of O-modules. But
of course, we can think of a presheaf as a sheaf for the chaotic topology on C (see Sites,
Examples 6.6). Hence we also obtain a functor

j∗
U : PMod(O) −→ PMod(OU )

and functors
jU∗, jU ! : PMod(OU ) −→ PMod(O)
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which are right, left adjoint to j∗
U . Inspecting the proof of Lemma 19.2 we see that jU !G is

the presheaf
V 7−→

⊕
ϕ∈MorC(V,U)

G(V ϕ−→ U)

In addition the functor jU ! is exact (by Lemma 19.3 in the case of the discrete topologies).
Moreover, if C is actually a site, andO is actually a sheaf of rings, then the diagram

Mod(OU )
jU!

//

forget

��

Mod(O)

PMod(OU ) jU! // PMod(O)

( )#

OO

commutes.

Lemma 19.8. Let C be a site. Let U ∈ Ob(C). Assume that every X in C has at most
one morphism toU . LetF be an abelian sheaf on C/U . The canonical mapsF → j−1

U jU !F
and j−1

U jU∗F → F are isomorphisms.

Proof. This is a special case of Lemma 16.4 because the assumption onU is equivalent
to the fully faithfulness of the localization functor C/U → C. �

20. Localization of morphisms of ringed sites

This section is the analogue of Sites, Section 28.

Lemma 20.1. Let (f, f ]) : (C,O) −→ (D,O′) be a morphism of ringed sites where f
is given by the continuous functor u : D → C. Let V be an object ofD and set U = u(V ).
Then there is a canonical map of sheaves of rings (f ′)] such that the diagram of Sites,
Lemma 28.1 is turned into a commutative diagram of ringed topoi

(Sh(C/U),OU )
(jU ,j]U )

//

(f ′,(f ′)])
��

(Sh(C),O)

(f,f])
��

(Sh(D/V ),O′
V )

(jV ,j]V )
// (Sh(D),O′).

Moreover, in this situation we have f ′
∗j

−1
U = j−1

V f∗ and f ′
∗j

∗
U = j∗

V f∗.

Proof. Just take (f ′)] to be

(f ′)−1O′
V = (f ′)−1j−1

V O
′ = j−1

U f−1O′ j−1
U
f]

−−−−→ j−1
U O = OU

and everything else follows from Sites, Lemma 28.1. (Note that j−1 = j∗ on sheaves of
modules if j is a localization morphism, hence the first equality of functors implies the
second.) �

Lemma 20.2. Let (f, f ]) : (C,O) −→ (D,O′) be a morphism of ringed sites where
f is given by the continuous functor u : D → C. Let V ∈ Ob(D), U ∈ Ob(C) and
c : U → u(V ) a morphism of C. There exists a commutative diagram of ringed topoi

(Sh(C/U),OU )
(jU ,j]U )

//

(fc,f]c )
��

(Sh(C),O)

(f,f])
��

(Sh(D/V ),O′
V )

(jV ,j]V )
// (Sh(D),O′).
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The morphism (fc, f ]c ) is equal to the composition of the morphism

(f ′, (f ′)]) : (Sh(C/u(V )),Ou(V )) −→ (Sh(D/V ),O′
V )

of Lemma 20.1 and the morphism

(j, j]) : (Sh(C/U),OU )→ (Sh(C/u(V )),Ou(V ))
of Lemma 19.5. Given any morphisms b : V ′ → V , a : U ′ → U and c′ : U ′ → u(V ′) such
that

U ′
c′
//

a

��

u(V ′)

u(b)
��

U
c // u(V )

commutes, then the following diagram of ringed topoi

(Sh(C/U ′),OU ′)
(jU′/U ,j

]

U′/U
)
//

(fc′ ,f
]

c′ )
��

(Sh(C/U),OU )

(fc,f]c )
��

(Sh(D/V ′),O′
V ′)

(jV ′/V ,j
]

V ′/V
)
// (Sh(D/V ),O′

V ′)
commutes.

Proof. On the level of morphisms of topoi this is Sites, Lemma 28.3. To check that
the diagrams commute as morphisms of ringed topoi use Lemmas 19.5 and 20.1 exactly as
in the proof of Sites, Lemma 28.3. �

21. Localization of ringed topoi

This section is the analogue of Sites, Section 30 in the setting of ringed topoi.

Lemma 21.1. Let (Sh(C),O) be a ringed topos. LetF ∈ Sh(C) be a sheaf. For a sheaf
H on C denoteHF the sheafH×F seen as an object of the category Sh(C)/F . The pair
(Sh(C)/F ,OF ) is a ringed topos and there is a canonical morphism of ringed topoi

(jF , j
]
F ) : (Sh(C)/F ,OF ) −→ (Sh(C),O)

which is a localization as in Section 19 such that
(1) the functor j−1

F is the functorH 7→ HF ,
(2) the functor j∗

F is the functorH 7→ HF ,
(3) the functor jF ! on sheaves of sets is the forgetful functor G/F 7→ G ,
(4) the functor jF ! on sheaves of modules associates to the OF -module ϕ : G → F

theO-module which is the sheafification of the presheaf

V 7−→
⊕

s∈F(V )
{σ ∈ G(V ) | ϕ(σ) = s}

for V ∈ Ob(C).

Proof. By Sites, Lemma 30.1 we see that Sh(C)/F is a topos and that (1) and (3) are
true. In particular this shows that j−1

F O = OF and shows that OF is a sheaf of rings.
Thus we may choose the map j]F to be the identity, in particular we see that (2) is true.
Moreover, the proof of Sites, Lemma 30.1 shows that we may assume C is a site with all
finite limits and a subcanonical topology and that F = hU for some object U of C. Then
(4) follows from the description of jF ! in Lemma 19.2. Alternatively one could show
directly that the functor described in (4) is a left adjoint to j∗

F . �



21. LOCALIZATION OF RINGED TOPOI 1701

Definition 21.2. Let (Sh(C),O) be a ringed topos. Let F ∈ Sh(C).
(1) The ringed topos (Sh(C)/F ,OF ) is called the localization of the ringed topos

(Sh(C),O) at F .
(2) The morphism of ringed topoi (jF , j

]
F ) : (Sh(C)/F ,OF ) → (Sh(C),O) of

Lemma 21.1 is called the localization morphism.

We continue the tradition, established in the chapter on sites, that we check the localiza-
tion constructions on topoi are compatible with the constructions of localization on sites,
whenever this makes sense.

Lemma 21.3. With (Sh(C),O) andF ∈ Sh(C) as in Lemma 21.1. IfF = h#
U for some

object U of C then via the identification Sh(C/U) = Sh(C)/h#
U of Sites, Lemma 25.4 we

have
(1) canonicallyOU = OF , and
(2) with these identifications we have (jF , j

]
F ) = (jU , j]U ).

Proof. The assertion for underlying topoi is Sites, Lemma 30.5. Note thatOU is the
restriction ofO which by Sites, Lemma 25.7 corresponds toO×h#

U under the equivalence
of Sites, Lemma 25.4. By definition ofOF we get (1). What’s left is to prove that j]F = j]U
under this identification. We omit the verification. �

Localization is functorial in the following two ways: We can “relocalize” a localization (see
Lemma 21.4) or we can given a morphism of ringed topoi, localize upstairs at the inverse
image of a sheaf downstairs and get a commutative diagram of ringed topoi (see Lemma
22.1).

Lemma 21.4. Let (Sh(C),O) be a ringed topos. If s : G → F is a morphism of sheaves
on C then there exists a natural commutative diagram of morphisms of ringed topoi

(Sh(C)/G,OG)

(jG ,j
]
G) ''

(j,j])
// (Sh(C)/F ,OF )

(jF ,j
]
F )ww

(Sh(C),O)

where (j, j]) is the localization morphism of the ringed topos (Sh(C)/F ,OF ) at the object
G/F .

Proof. All assertions follow from Sites, Lemma 30.6 except the assertion that j]G =
j] ◦ j−1(j]F ). We omit the verification. �

Lemma 21.5. With (Sh(C),O), s : G → F as in Lemma 21.4. If there exist a mor-
phism f : V → U of C such that G = h#

V and F = h#
U and s is induced by f , then the

diagrams of Lemma 19.5 and Lemma 21.4 agree via the identifications (jF , j
]
F ) = (jU , j]U )

and (jG , j
]
G) = (jV , j]V ) of Lemma 21.3.

Proof. All assertions follow from Sites, Lemma 30.7 except for the assertion that the
two maps j] agree. This holds since in both cases the map j] is simply the identity. Some
details omitted. �
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22. Localization of morphisms of ringed topoi

This section is the analogue of Sites, Section 31.

Lemma 22.1. Let
f : (Sh(C),O) −→ (Sh(D),O′)

be a morphism of ringed topoi. Let G be a sheaf onD. Set F = f−1G. Then there exists a
commutative diagram of ringed topoi

(Sh(C)/F ,OF )
(jF ,j

]
F )

//

(f ′,(f ′)])
��

(Sh(C),O)

(f,f])
��

(Sh(D)/G,O′
G)

(jG ,j
]
G)

// (Sh(D),O′)

We have f ′
∗j

−1
F = j−1

G f∗ and f ′
∗j

∗
F = j∗

Gf∗. Moreover, the morphism f ′ is characterized
by the rule

(f ′)−1(H ϕ−→ G) = (f−1H f−1ϕ−−−→ F).

Proof. By Sites, Lemma 31.1 we have the diagram of underlying topoi, the equality
f ′

∗j
−1
F = j−1

G f∗, and the description of (f ′)−1. To define (f ′)] we use the map

(f ′)] : O′
G = j−1

G O
′ j−1

G f]

−−−−→ j−1
G f∗O = f ′

∗j
−1
F O = f ′

∗OF

or equivalently the map

(f ′)] : (f ′)−1O′
G = (f ′)−1j−1

G O
′ = j−1

F f−1O′ j−1
F f]

−−−−→ j−1
F O = OF .

We omit the verification that these two maps are indeed adjoint to each other. The second
construction of (f ′)] shows that the diagram commutes in the 2-category of ringed topoi
(as the maps j]F and j]G are identities). Finally, the equality f ′

∗j
∗
F = j∗

Gf∗ follows from the
equality f ′

∗j
−1
F = j−1

G f∗ and the fact that pullbacks of sheaves of modules and sheaves of
sets agree, see Lemma 21.1. �

Lemma 22.2. Let
f : (Sh(C),O) −→ (Sh(D),O′)

be a morphism of ringed topoi. Let G be a sheaf on D. Set F = f−1G. If f is given by a
continuous functor u : D → C and G = h#

V , then the commutative diagrams of Lemma
20.1 and Lemma 22.1 agree via the identifications of Lemma 21.3.

Proof. At the level of morphisms of topoi this is Sites, Lemma 31.2. This works also
on the level of morphisms of ringed topoi since the formulas defining (f ′)] in the proofs
of Lemma 20.1 and Lemma 22.1 agree. �

Lemma 22.3. Let (f, f ]) : (Sh(C),O)→ (Sh(D),O′) be a morphism of ringed topoi.
Let G be a sheaf onD, let F be a sheaf on C , and let s : F → f−1G a morphism of sheaves.
There exists a commutative diagram of ringed topoi

(Sh(C)/F ,OF )
(jF ,j

]
F )

//

(fc,f]c )
��

(Sh(C),O)

(f,f])
��

(Sh(D)/G,O′
G)

(jG ,j
]
G)

// (Sh(D),O′).
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The morphism (fs, f ]s) is equal to the composition of the morphism

(f ′, (f ′)]) : (Sh(C)/f−1G,Of−1G) −→ (Sh(D)/G,O′
G)

of Lemma 22.1 and the morphism

(j, j]) : (Sh(C)/F ,OF )→ (Sh(C)/f−1G,Of−1G)

of Lemma 21.4. Given any morphisms b : G′ → G , a : F ′ → F , and s′ : F ′ → f−1G′

such that
F ′

s′
//

a

��

f−1G′

f−1b

��
F s // f−1G

commutes, then the following diagram of ringed topoi

(Sh(C)/F ′,OF ′)
(jF′/F ,j

]

F′/F
)
//

(fs′ ,f
]

s′ )
��

(Sh(C)/F ,OF )

(fs,f]s)
��

(Sh(D)/G′,O′
G′)

(jG′/G ,j
]

G′/G
)
// (Sh(D)/G,O′

G′)

commutes.

Proof. On the level of morphisms of topoi this is Sites, Lemma 31.3. To check that
the diagrams commute as morphisms of ringed topoi use the commutative diagrams of
Lemmas 21.4 and 22.1. �

Lemma 22.4. Let (f, f ]) : (Sh(C),O) → (Sh(D),O′), s : F → f−1G be as in
Lemma 22.3. If f is given by a continuous functor u : D → C and G = h#

V , F = h#
U and

s comes from a morphism c : U → u(V ), then the commutative diagrams of Lemma 20.2
and Lemma 22.3 agree via the identifications of Lemma 21.3.

Proof. This is formal using Lemmas 21.5 and 22.2. �

23. Local types of modules

According to our general strategy explained in Section 18 we first define the local types
for sheaves of modules on a ringed site, and then we immediately show that these types
are intrinsic, hence make sense for sheaves of modules on ringed topoi.

Definition 23.1. Let (C,O) be a ringed site. LetF be a sheaf ofO-modules. We will
freely use the notions defined in Definition 17.1.

(1) We say F is locally free if for every object U of C there exists a covering {Ui →
U}i∈I of C such that each restriction F|C/Ui is a freeOUi -module.

(2) We say F is finite locally free if for every object U of C there exists a covering
{Ui → U}i∈I of C such that each restrictionF|C/Ui is a finite freeOUi -module.

(3) We sayF is locally generated by sections if for every object U of C there exists a
covering {Ui → U}i∈I of C such that each restriction F|C/Ui is anOUi -module
generated by global sections.

(4) Given r ≥ 0 we sat F is locally generated by r sections if for every object U of
C there exists a covering {Ui → U}i∈I of C such that each restriction F|C/Ui is
anOUi -module generated by r global sections.
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(5) We sayF is of finite type if for every objectU of C there exists a covering {Ui →
U}i∈I of C such that each restriction F|C/Ui is an OUi -module generated by
finitely many global sections.

(6) We say F is quasi-coherent if for every object U of C there exists a covering
{Ui → U}i∈I of C such that each restriction F|C/Ui is an OUi -module which
has a global presentation.

(7) We sayF is of finite presentation if for every objectU of C there exists a covering
{Ui → U}i∈I of C such that each restriction F|C/Ui is an OUi -module which
has a finite global presentation.

(8) We say F is coherent if and only if F is of finite type, and for every object U of
C and any s1, . . . , sn ∈ F(U) the kernel of the map

⊕
i=1,...,nOU → F|U is of

finite type on (C/U,OU ).

Lemma 23.2. Any of the properties (1) – (8) of Definition 23.1 is intrinsic (see discus-
sion in Section 18).

Proof. Let C , D be sites. Let u : C → D be a special cocontinuous functor. Let O
be a sheaf of rings on C. Let F be a sheaf of O-modules on C. Let g : Sh(C) → Sh(D)
be the equivalence of topoi associated to u. Set O′ = g∗O, and let g] : O′ → g∗O be
the identity. Finally, set F ′ = g∗F . Let Pl be one of the properties (1) – (7) listed in
Definition 23.1. (We will discuss the coherent case at the end of the proof.) Let Pg denote
the corresponding property listed in Definition 17.1. We have already seen that Pg is
intrinsic. We have to show that Pl(C,O,F) holds if and only if Pl(D,O′,F ′) holds.

Assume thatF hasPl. Let V be an object ofD. One of the properties of a special cocontin-
uous functor is that there exists a covering {u(Ui)→ V }i∈I in the siteD. By assumption,
for each i there exists a covering {Uij → Ui}j∈Ji in C such that each restriction F|Uij is
Pg . By Sites, Lemma 29.3 we have commutative diagrams of ringed topoi

(Sh(C/Uij),OUij ) //

��

(Sh(C),O)

��
(Sh(D/u(Uij)),O′

u(Uij)) // (Sh(D),O′)

where the vertical arrows are equivalences. Hence we conclude thatF ′|u(Uij) has property
Pg also. And moreover, {u(Uij) → V }i∈I,j∈Ji is a covering of the site D. Hence F ′ has
property Pl.

Assume that F ′ has Pl. Let U be an object of C. By assumption, there exists a covering
{Vi → u(U)}i∈I such thatF ′|Vi has propertyPg . Because u is cocontinuous we can refine
this covering by a family {u(Uj) → u(U)}j∈J where {Uj → U}j∈J is a covering in C.
Say the refinement is given by α : J → I and u(Uj) → Vα(j). Restricting is transitive,
i.e., (F ′|Vα(j))|u(Uj) = F ′|u(Uj). Hence by Lemma 17.2 we see that F ′|u(Uj) has property
Pg . Hence the diagram

(Sh(C/Uj),OUj ) //

��

(Sh(C),O)

��
(Sh(D/u(Uj)),O′

u(Uj)) // (Sh(D),O′)



23. LOCAL TYPES OF MODULES 1705

where the vertical arrows are equivalences shows that F|Uj has property Pg also. Thus F
has property Pl as desired.
Finally, we prove the lemma in case Pl = coherent2. Assume F is coherent. This implies
that F is of finite type and hence F ′ is of finite type also by the first part of the proof. Let
V be an object of D and let s1, . . . , sn ∈ F ′(V ). We have to show that the kernel K′ of⊕

j=1,...,nOV → F ′|V is of finite type onD/V . This means we have to show that for any
V ′/V there exists a covering {V ′

i → V ′} such that F ′|V ′
i

is generated by finitely many
sections. Replacing V by V ′ (and restricting the sections sj to V ′) we reduce to the case
whereV ′ = V . Since u is a special cocontinuous functor, there exists a covering {u(Ui)→
V }i∈I in the site D. Using the isomorphism of topoi Sh(C/Ui) = Sh(D/u(Ui)) we see
that K′|u(Ui) corresponds to the kernel Ki of a map

⊕
j=1,...,nOUi → F|Ui . Since F is

coherent we see thatKi is of finite type. Hence we conclude (by the first part of the proof
again) that K|u(Ui) is of finite type. Thus there exist coverings {Vil → u(Ui)} such that
K|Vil is generated by finitely many global sections. Since {Vil → V } is a covering of D
we conclude that K is of finite type as desired.
Assume F ′ is coherent. This implies that F ′ is of finite type and hence F is of finite type
also by the first part of the proof. Let U be an object of C , and let s1, . . . , sn ∈ F(U).
We have to show that the kernel K of

⊕
j=1,...,nOU → F|U is of finite type on C/U .

Using the isomorphism of topoi Sh(C/U) = Sh(D/u(U)) we see that K|U corresponds
to the kernel K′ of a map

⊕
j=1,...,nOu(U) → F ′|u(U). As F ′ is coherent, we see that K′

is of finite type. Hence, by the first part of the proof again, we conclude thatK is of finite
type. �

Hence from now on we may refer to the properties of O-modules defined in Definition
23.1 without specifying a site.

Lemma 23.3. Let (Sh(C),O) be a ringed topos. Let F be anO-module. Assume that
the site C has a final object X . Then

(1) The following are equivalent
(a) F is locally free,
(b) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

a locally freeOXi -module, and
(c) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

a freeOXi -module.
(2) The following are equivalent

(a) F is finite locally free,
(b) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

a finite locally freeOXi -module, and
(c) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

a finite freeOXi -module.
(3) The following are equivalent

(a) F is locally generated by sections,
(b) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

anOXi -module locally generated by sections, and
(c) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

anOXi -module globally generated by sections.
(4) Given r ≥ 0, the following are equivalent

2The mechanics of this are a bit awkward, and we suggest the reader skip this part of the proof.
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(a) F is locally generated by r sections,
(b) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

anOXi -module locally generated by r sections, and
(c) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

anOXi -module globally generated by r sections.
(5) The following are equivalent

(a) F is of finite type,
(b) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

anOXi -module of finite type, and
(c) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

anOXi -module globally generated by finitely many sections.
(6) The following are equivalent

(a) F is quasi-coherent,
(b) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

a quasi-coherentOXi -module, and
(c) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

anOXi -module which has a global presentation.
(7) The following are equivalent

(a) F is of finite presentation,
(b) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

anOXi -module of finite presentation, and
(c) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

anOXi -module has a finite global presentation.
(8) The following are equivalent

(a) F is coherent, and
(b) there exists a covering {Xi → X} in C such that each restriction F|C/Xi is

a coherentOXi -module.

Proof. In each case we have (a) ⇒ (b). In each of the cases (1) - (6) condition (b)
implies condition (c) by axiom (2) of a site (see Sites, Definition 6.2) and the definition of
the local types of modules. Suppose {Xi → X} is a covering. Then for every object U
of C we get an induced covering {Xi ×X U → U}. Moreover, the global property for
F|C/Xi in part (c) implies the corresponding global property for F|C/Xi×XU by Lemma
17.2, hence the sheaf has property (a) by definition. We omit the proof of (b)⇒ (a) in case
(7). �

Lemma 23.4. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Let F be anOD-module.

(1) If F is locally free then f∗F is locally free.
(2) If F is finite locally free then f∗F is finite locally free.
(3) If F is locally generated by sections then f∗F is locally generated by sections.
(4) IfF is locally generated by r sections then f∗F is locally generated by r sections.
(5) If F is of finite type then f∗F is of finite type.
(6) If F is quasi-coherent then f∗F is quasi-coherent.
(7) If F is of finite presentation then f∗F is of finite presentation.

Proof. According to the discussion in Section 18 we need only check preservation
under pullback for a morphism of ringed sites (f, f ]) : (C,OC) → (D,OD) such that
f is given by a left exact, continuous functor u : D → C between sites which have all
finite limits. Let G be a sheaf of OD-modules which has one of the properties (1) – (6) of
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Definition 23.1. We knowD has a final object Y and X = u(Y ) is a final object for C. By
assumption we have a covering {Yi → Y } such that G|D/Yi has the corresponding global
property. Set Xi = u(Yi) so that {Xi → X} is a covering in C. We get a commutative
diagram of morphisms ringed sites

(C/Xi,OC |Xi) //

��

(C,OC)

��
(D/Yi,OD|Yi) // (D,OD)

by Sites, Lemma 28.2. Hence by Lemma 17.2 that f∗G|Xi has the corresponding global
property. Hence we conclude that G has the local property we started out with by Lemma
23.3. �

24. Basic results on local types of modules

Basic lemmas related to the definitions made above.

Lemma 24.1. Let (C,O) be a ringed site. Let θ : G → F be a surjective O-module
map with F of finite presentation and G of finite type. Then Ker(θ) is of finite type.

Proof. Omitted. Hint: See Modules, Lemma 11.3. �

Lemma 24.2. Let C be a category viewed as a site with the chaotic topology, see Sites,
Example 6.6. LetO be a sheaf of rings on C and let F be a sheaf ofO-modules. Then F is
quasi-coherent if and only if for all U → V in C the canonical map

F(V )⊗O(V ) O(U) −→ F(U)
is an isomorphism.

Proof. Assume F is quasi-coherent and let U → V be a morphism of C. Since every
covering of V is given by an isomorphism we conclude from Definition 23.1 that there
exists a presentation ⊕

j∈J
OV −→

⊕
i∈I
OV −→ F|C/V −→ 0

Since the topology on C is chaotic, taking sections over any object of C is exact. We con-
clude that we obtain a presentation⊕

j∈J
O(V ) −→

⊕
i∈I
O(V ) −→ F(V ) −→ 0

ofF(V ) as anO(V )-module and similarly forF(U). This easily shows that the displayed
map in the statement of the lemma is an isomorphism.

Assume the displayed map in the statement of the lemma is an isomorphism for every
morphism U → V in C. Fix V and choose a presentation⊕

j∈J
O(V ) −→

⊕
i∈I
O(V ) −→ F(V ) −→ 0

of F(V ) as an O(V )-module. Then the assumption on F exactly means that the corre-
sponding sequence ⊕

j∈J
OV −→

⊕
i∈I
OV −→ F|C/V −→ 0

is exact and we conclude that F is quasi-coherent. �
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Lemma 24.3. Let C be a category viewed as a site with the chaotic topology, see Sites,
Example 6.6. Let O be a sheaf of rings on C. Assume for all U → V in C the restriction
mapO(V )→ O(U) is a flat ring map. Then the category of quasi-coherentO-modules is
a weak Serre subcategory of Mod(O).

Proof. We will check the definition of a weak Serre subcategory, see Homology, Def-
inition 10.1. To do this we will use the characterization of quasi-coherent modules given
in Lemma 24.2. Consider an exact sequence

F0 → F1 → F2 → F3 → F4

in Mod(O) with F0, F1, F3, and F4 quasi-coherent. Let U → V be a morphism of C and
consider the commutative diagram

F0(V )⊗O(V ) O(U) //

��

F1(V )⊗O(V ) O(U) //

��

F2(V )⊗O(V ) O(U) //

��

F3(V )⊗O(V ) O(U) //

��

F4(V )⊗O(V ) O(U)

��
F0(U) // F1(U) // F2(U) // F3(U) // F4(U)

By assumption the vertical arrows with indices 0, 1, 3, 4 are isomorphisms. Since the
topology on C is chaotic taking sections over an object of C is exact and hence the lower
row is exact. Since O(V ) → O(U) is flat also the upper row is exact. Thus we conclude
that the middle arrow is an isomorphism by the 5 lemma (Homology, Lemma 5.20). �

25. Closed immersions of ringed topoi

When do we declare a morphism of ringed topoi i : (Sh(C),O) → (Sh(D),O′) to be a
closed immersion? By analogy with the discussion in Modules, Section 13 it seems natural
to assume at least:

(1) The functor i is a closed immersion of topoi (Sites, Definition 43.7).
(2) The associated mapO′ → i∗O is surjective.

These conditions already imply a number of pleasing results which we discuss in this sec-
tion. However, it seems prudent to not actually define the notion of a closed immersion
of ringed topoi as there are many different definitions we could use.

Lemma 25.1. Let i : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi.
Assume i is a closed immersion of topoi and i] : O′ → i∗O is surjective. Denote I ⊂ O′

the kernel of i]. The functor

i∗ : Mod(O) −→Mod(O′)

is exact, fully faithful, with essential image thoseO′-modules G such that IG = 0.

Proof. By Lemma 15.2 and Sites, Lemma 43.8 we see that i∗ is exact. From the fact
that i∗ is fully faithful on sheaves of sets, and the fact that i] is surjective it follows that i∗ is
fully faithful as a functor Mod(O)→ Mod(O′). Namely, suppose that α : i∗F1 → i∗F2
is an O′-module map. By the fully faithfulness of i∗ we obtain a map β : F1 → F2 of
sheaves of sets. To prove β is a map of modules we have to show that

O ×F1 //

��

F1

��
O ×F2 // F2
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commutes. It suffices to prove commutativity after applying i∗. Consider

O′ × i∗F1 //

��

i∗O × i∗F1 //

��

i∗F1

��
O′ × i∗F2 // i∗O × i∗F2 // i∗F2

We know the outer rectangle commutes. Since i] is surjective we conclude.
To finish the proof we have to prove the statement on the essential image of i∗. It is clear
that i∗F is annihilated by I for anyO-module F . Conversely, let G be aO′-module with
IG = 0. By definition of a closed subtopos there exists a subsheaf U of the final object
of D such that the essential image of i∗ on sheaves of sets is the class of sheaves of setsH
such thatH× U → U is an isomorphism. In particular, i∗O × U = U . This implies that
I × U = O × U . Hence our module G satisfies G × U = {0} × U = U (because the zero
module is isomorphic to the final object of sheaves of sets). Thus there exists a sheaf of sets
F on C with i∗F = G. Since i∗ is fully faithful on sheaves of sets, we see that in order to
define the addition F ×F → F and the multiplicationO×F → F it suffices to use the
addition

G × G −→ G
(given to us as G is aO′-module) and the multiplication

i∗O × G → G
which is given to us as we have the multiplication by O′ which annihilates I by assump-
tion and i∗O = O′/I . By construction G is isomorphic to the pushforward of the O-
module F so constructed. �

26. Tensor product

In Sections 9 and 11 we defined the change of rings functor by a tensor product con-
struction. To be sure this construction makes sense also to define the tensor product of
presheaves of O-modules. To be precise, suppose C is a category, O is a presheaf of rings,
and F , G are presheaves ofO-modules. In this case we define F ⊗p,O G to be the presheaf

U 7−→ (F ⊗p,O G)(U) = F(U)⊗O(U) G(U)
If C is a site,O is a sheaf of rings and F , G are sheaves ofO-modules then we define

F ⊗O G = (F ⊗p,O G)#

to be the sheaf ofO-modules associated to the presheaf F ⊗p,O G.
Here are some formulas which we will use below without further mention:

(F ⊗p,O G)⊗p,O H = F ⊗p,O (G ⊗p,O H),
and similarly for sheaves. IfO1 → O2 is a map of presheaves of rings, then

(F ⊗p,O1 G)⊗p,O1 O2 = (F ⊗p,O1 O2)⊗p,O2 (G ⊗p,O1 O2),
and similarly for sheaves. These follow from their algebraic counterparts and sheafifica-
tion.

Lemma 26.1. Let C be a site. Let O be a presheaf of rings. Let F , G be presheaves of
O-modules. Then F# ⊗O# G# is equal to (F ⊗p,O G)#.

Proof. Omitted. Hint: use the characterization of tensor product in terms of bilinear
maps below and use the universal property of sheafification. �
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Let C be a site, let O be a sheaf of rings and let F , G , H be sheaves of O-modules. In this
case we define

BilinO(F × G,H) = {ϕ ∈ MorSh(C)(F × G,H) | ϕ isO-bilinear}.
With this definition we have

HomO(F ⊗O G,H) = BilinO(F × G,H).
In other words F ⊗O G represents the functor which associates to H the set of bilinear
maps F × G → H. In particular, since the notion of a bilinear map makes sense for a
pair of modules on a ringed topos, we see that the tensor product of sheaves of modules is
intrinsic to the topos (compare the discussion in Section 18). In fact we have the following.

Lemma 26.2. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let F , G beOD-modules. Then f∗(F ⊗OD G) = f∗F ⊗OC f

∗G functorially in F , G.

Proof. For a sheafH ofOC modules we have

HomOC (f∗(F ⊗O G),H) = HomOD (F ⊗O G, f∗H)
= BilinOD (F × G, f∗H)
= Bilinf−1OD (f−1F × f−1G,H)
= Homf−1OD (f−1F ⊗f−1OD f−1G,H)
= HomOC (f∗F ⊗f∗OD f∗G,H)

The interesting “=” in this sequence of equalities is the third equality. It follows from the
definition and adjointness of f∗ and f−1 (as discussed in previous sections) in a straight-
forward manner. �

Lemma 26.3. Let (C,O) be a ringed site. Let F , G be sheaves ofO-modules.
(1) If F , G are locally free, so is F ⊗O G.
(2) If F , G are finite locally free, so is F ⊗O G.
(3) If F , G are locally generated by sections, so is F ⊗O G.
(4) If F , G are of finite type, so is F ⊗O G.
(5) If F , G are quasi-coherent, so is F ⊗O G.
(6) If F , G are of finite presentation, so is F ⊗O G.
(7) If F is of finite presentation and G is coherent, then F ⊗O G is coherent.
(8) If F , G are coherent, so is F ⊗O G.

Proof. Omitted. Hint: Compare with Sheaves of Modules, Lemma 16.6. �

27. Internal Hom

Let C be a category and letO be a presheaf of rings. Let F , G be presheaves ofO-modules.
Consider the rule

U 7−→ HomOU
(F|U ,G|U ).

For ϕ : V → U in C we define a restriction mapping

HomOU
(F|U ,G|U ) −→ HomOV

(F|V ,G|V )
by restricting via the relocalization morphism j : C/V → C/U , see Sites, Lemma 25.8.
Hence this defines a presheafHomO(F ,G). In addition, given an elementϕ ∈ HomO|U (F|U ,G|U )
and a section f ∈ O(U) then we can define fϕ ∈ HomO|U (F|U ,G|U ) by either precom-
posing with multiplication by f on F|U or postcomposing with multiplication by f on
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G|U (it gives the same result). Hence we in fact get a presheaf of O-modules. There is a
canonical “evaluation” morphism

F ⊗p,O HomO(F ,G) −→ G.

Lemma 27.1. If C is a site, O is a sheaf of rings, F is a presheaf of O-modules, and G
is a sheaf ofO-modules, thenHomO(F ,G) is a sheaf ofO-modules.

Proof. Omitted. Hints: Note first that HomO(F ,G) = HomO(F#,G), which re-
duces the question to the case where both F and G are sheaves. The result for sheaves of
sets is Sites, Lemma 26.1. �

Lemma 27.2. Let (C,O) be a ringed site. Let F ,G be sheaves of O-modules. Then
formation ofHomO(F ,G) commutes with restriction to U for U ∈ Ob(C).

Proof. Immediate from the definition. �

Remark 27.3. Let f : (C,OC) → (D,OD) be a morphism of ringed sites. Let F ,G
be sheaves ofOD-modules. There is a canonical map

f∗HomOD (F ,G) −→ HomOC (f∗F , f∗G)

Namely, this map is adjoint to the map

HomOD (F ,G) −→ f∗HomOC (f∗F , f∗G)

defined as follows. Say f is given by the continuous functor u : D → C. For sections over
V ∈ Ob(D) we use the map

Γ(V,HomOD (F ,G)) = HomOV
(F|V ,G|V )

−→ HomOu(V )(f
∗F|u(V ),G|u(V ))

= Γ(u(V ),HomOC (f∗F , f∗G))
= Γ(V, f∗HomOC (f∗F , f∗G))

where for the arrow we use pullback by the morphism (C/u(V ),Ou(V )) → (D/V,OV )
induced by f .

In the situation of Lemma 27.1 the “evaluation” morphism factors through the tensor prod-
uct of sheaves of modules

F ⊗O HomO(F ,G) −→ G.

Lemma 27.4. Internal hom and (co)limits. Let C be a category and letO be a presheaf
of rings.

(1) For any presheaf ofO-modules F the functor

PMod(O) −→ PMod(O), G 7−→ HomO(F ,G)

commutes with arbitrary limits.
(2) For any presheaf ofO-modules G the functor

PMod(O) −→ PMod(O)opp, F 7−→ HomO(F ,G)

commutes with arbitrary colimits, in a formula

HomO(colimi Fi,G) = limiHomO(Fi,G).

Suppose that C is a site, andO is a sheaf of rings.
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(3) For any sheaf ofO-modules F the functor

Mod(O) −→Mod(O), G 7−→ HomO(F ,G)

commutes with arbitrary limits.
(4) For any sheaf ofO-modules G the functor

Mod(O) −→Mod(O)opp, F 7−→ HomO(F ,G)

commutes with arbitrary colimits, in a formula

HomO(colimi Fi,G) = limiHomO(Fi,G).

Proof. Let I → PMod(O), i 7→ Gi be a diagram. Let U be an object of the category
C. As j∗

U is both a left and a right adjoint we see that limi j
∗
UGi = j∗

U limi Gi. Hence we
have

HomO(F , limi Gi)(U) = HomOU
(F|U , limi Gi|U )

= limi HomOU
(F|U ,Gi|U )

= limiHomO(F ,Gi)(U)

by definition of a limit. This proves (1). Part (2) is proved in exactly the same way. Part
(3) follows from (1) because the limit of a diagram of sheaves is the same as the limit in the
category of presheaves. Finally, (4) follow because, in the formula we have

MorMod(O)(colimi Fi,G) = MorPMod(O)(colimPSh
i Fi,G)

as the colimit colimi Fi is the sheafification of the colimit colimPSh
i Fi in PMod(O).

Hence (4) follows from (2) (by the remark on limits above again). �

Lemma 27.5. Let (C,O) be a ringed site. Let F , G beO-modules.
(1) If F2 → F1 → F → 0 is an exact sequence ofO-modules, then

0→ HomO(F ,G)→ HomO(F1,G)→ HomO(F2,G)

is exact.
(2) If 0→ G → G1 → G2 is an exact sequence ofO-modules, then

0→ HomO(F ,G)→ HomO(F ,G1)→ HomO(F ,G2)

is exact.

Proof. Follows from Lemma 27.4 and Homology, Lemma 7.2. �

Lemma 27.6. Let C be a category. LetO be a presheaf of rings.
(1) Let F , G ,H be presheaves ofO-modules. There is a canonical isomorphism

HomO(F ⊗p,O G,H) −→ HomO(F ,HomO(G,H))

which is functorial in all three entries (sheaf Hom in all three spots). In partic-
ular,

MorPMod(O)(F ⊗p,O G,H) = MorPMod(O)(F ,HomO(G,H))

(2) Suppose that C is a site, O is a sheaf of rings, and F , G , H are sheaves of O-
modules. There is a canonical isomorphism

HomO(F ⊗O G,H) −→ HomO(F ,HomO(G,H))
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which is functorial in all three entries (sheaf Hom in all three spots). In partic-
ular,

MorMod(O)(F ⊗O G,H) = MorMod(O)(F ,HomO(G,H))

Proof. This is the analogue of Algebra, Lemma 12.8. The proof is the same, and is
omitted. �

Lemma 27.7. Tensor product and colimits. Let C be a category and letO be a presheaf
of rings.

(1) For any presheaf ofO-modules F the functor

PMod(O) −→ PMod(O), G 7−→ F ⊗p,O G
commutes with arbitrary colimits.

(2) Suppose that C is a site, andO is a sheaf of rings. For any sheaf ofO-modules F
the functor

Mod(O) −→Mod(O), G 7−→ F ⊗O G
commutes with arbitrary colimits.

Proof. This is because tensor product is adjoint to internal hom according to Lemma
27.6. See Categories, Lemma 24.5. �

Lemma 27.8. Let C be a category, resp. a site Let O → O′ be a map of presheaves,
resp. sheaves of rings. Then

HomO(G,F) = HomO′(G,HomO(O′,F))
for anyO′-module G andO-module F .

Proof. This is the analogue of Algebra, Lemma 14.4. The proof is the same, and is
omitted. �

Lemma 27.9. Let (C,O) be a ringed site. Let U ∈ Ob(C). For G in Mod(OU ) and F
in Mod(O) we have jU !G ⊗O F = jU !(G ⊗OU

F|U ).

Proof. LetH be an object of Mod(O). Then

HomO(jU !(G ⊗OU
F|U ),H) = HomOU

(G ⊗OU
F|U ,H|U )

= HomOU
(G,HomOU

(F|U ,H|U ))
= HomOU

(G,HomO(F ,H)|U )
= HomO(jU !G,HomO(F ,H))
= HomO(jU !G ⊗O F ,H)

The first equality because jU ! is a left adjoint to restriction of modules. The second by
Lemma 27.6. The third by Lemma 27.2. The fourth because jU ! is a left adjoint to restric-
tion of modules. The fifth by Lemma 27.6. The lemma follows from this and the Yoneda
lemma. �

Remark 27.10. Let C be a site. Let F be a sheaf of sets on C and consider the local-
ization morphism j : Sh(C)/F → Sh(C). See Sites, Definition 30.4. We claim that (a)
j!Z = Z#

F and (b) j!(j−1H) = j!Z⊗ZH for any abelian sheafH on C. Let G be an abelian
on C. Part (a) follows from the Yoneda lemma because

Hom(j!Z,G) = Hom(Z, j−1G) = Hom(Z#
F ,G)
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where the second equality holds because both sides of the equality evaluate to the set of
maps from F → G viewed as an abelian group. For (b) we use the Yoneda lemma and

Hom(j!(j−1H),G) = Hom(j−1H, j−1G)
= Hom(Z,Hom(j−1H, j−1G))
= Hom(Z, j−1Hom(H,G))
= Hom(j!Z,Hom(H,G))
= Hom(j!Z⊗Z H,G)

Here we use adjunction, the fact that takingHom commutes with localization, and Lemma
27.6.

Lemma 27.11. Let (C,O) be a ringed site. LetF be anO-module of finite presentation.
Let G = colimλ∈Λ Gλ be a filtered colimit ofO-modules. Then the canonical map

colimλHomO(F ,Gλ) −→ HomO(F ,G)
is an isomorphism.

Proof. It suffices to show the arrow is an isomorphism after restriction to U for all
U in C. Both taking colimits of sheaves of modules and taking internal hom commute
with restriction to U . See for example Lemmas 14.3 and 27.2. Fix U . Given a covering
{Ui → U}i∈I , then it suffices to prove the restriction to eachUi is an isomorphism. Hence
we may assume F has a global presentation⊕

j=1,...,m
O −→

⊕
i=1,...,n

O → F → 0

The functorHomO(−,−) commutes with finite direct sums in either variable andHomO(O,−)
is the identity functor. By this and by Lemma 27.5 we obtain an exact sequence

0→ HomO(F ,G)→
⊕

i=1,...,n
G →

⊕
j=1,...,m

G

Since filtered colimits are exact in Mod(O) by Lemma 14.2 also the top row in the follow-
ing commutative diagram is exact

0 // colimλHomO(F ,Gλ) //

��

colimλ

⊕
i=1,...,n Gλ //

��

colimλ

⊕
j=1,...,m Gλ

��
0 // HomO(F ,G) //⊕

i=1,...,n G //⊕
j=1,...,m G

Since the right two vertical arrows are isomorphisms we conclude. �

Lemma 27.12. Let (C,O) be a ringed site. Let G = colimλ∈Λ Gλ be a filtered colimit
ofO-modules. Let F be anO-module of finite presentation. Then we have

colimλ HomO(F ,Gλ) = HomO(F ,G).
if the hypotheses of Sites, Lemma 17.8 part (4) are satisfied for the site C; please see Sites,
Remark 17.9.

Proof. SetH = HomO(F , colimGλ) andHλ = HomO(F ,Gλ). Recall that
HomO(F ,G) = Γ(C,H) and HomO(F ,Gλ) = Γ(C,Hλ)

by construction. By Lemma 27.11 we haveH = colimHλ. Thus the lemma follows from
Sites, Lemma 17.8. �
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28. Flat modules

We can define flat modules exactly as in the case of modules over rings.

Definition 28.1. Let C be a category. LetO be a presheaf of rings.
(1) A presheaf F ofO-modules is called flat if the functor

PMod(O) −→ PMod(O), G 7→ G ⊗p,O F

is exact.
(2) A map O → O′ of presheaves of rings is called flat if O′ is flat as a presheaf of
O-modules.

(3) If C is a site, O is a sheaf of rings and F is a sheaf of O-modules, then we say F
is flat if the functor

Mod(O) −→Mod(O), G 7→ G ⊗O F

is exact.
(4) A mapO → O′ of sheaves of rings on a site is called flat ifO′ is flat as a sheaf of
O-modules.

The notion of a flat module or flat ring map is intrinsic (Section 18).

Lemma 28.2. Let C be a category. LetO be a presheaf of rings. Let F be a presheaf of
O-modules. If each F(U) is a flatO(U)-module, then F is flat.

Proof. This is immediate from the definitions. �

Lemma 28.3. Let C be a site. Let O be a presheaf of rings. Let F be a presheaf of
O-modules. If F is a flatO-module, then F# is a flatO#-module.

Proof. Omitted. (Hint: Sheafification is exact.) �

Lemma 28.4. Let C be a site. Let O be a presheaf of rings. Let F be a presheaf of O-
modules. Assume that every object U of C has a covering {Ui → U}i∈I such that F(Ui)
is a flatO(Ui)-module. Then F# is a flatO#-module.

Proof. Let G ⊂ G′ be an inclusion ofO#-modules. We have to show that

G ⊗O# F# −→ G′ ⊗O# F#

is injective. By Lemma 26.1 the source of this arrow is the sheafification of the presheaf
G ⊗p,O F and similarly for the target. If U is an object of C such that F(U) is a flat
O(U)-module, then

(G ⊗p,O F)(U) = G(U)⊗O(U) F(U) −→ G′(U)⊗O(U) F(U) = (G′ ⊗p,O F)(U)

is injective. Hence we reduce to showing: given a map of presheaves f : H → H′ on C
such that everyU in C has a covering {Ui → U}i∈I withH(Ui)→ H′(Ui) injective, then
f# is injective. This we leave to the reader as an exercise. �

Lemma 28.5. Colimits and tensor product.
(1) A filtered colimit of flat presheaves of modules is flat. A direct sum of flat

presheaves of modules is flat.
(2) A filtered colimit of flat sheaves of modules is flat. A direct sum of flat sheaves

of modules is flat.
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Proof. Part (1) follows from Lemma 27.7 and Algebra, Lemma 8.8 by looking at sec-
tions over objects. To see part (2), use Lemma 27.7 and the fact that a filtered colimit of
exact complexes is an exact complex (this uses that sheafification is exact and commutes
with colimits). Some details omitted. �

Lemma 28.6. Let (C,O) be a ringed site. Let U be an object of C. If F is a flat O-
module, then F|U is a flatOU -module.

Proof. Let G1 → G2 → G3 be an exact complex of OU -modules. Since jU ! is exact
(Lemma 19.3) and F is flat as anO-modules then we see that the complex made up of the
modules

jU !(Gi ⊗OU
F|U ) = jU !Gi ⊗O F

(Lemma 27.9) is exact. We conclude that G1 ⊗OU
F|U → G2 ⊗OU

F|U → G3 ⊗OU
F|U

is exact by Lemma 19.4. �

Lemma 28.7. Let C be a category. Let O be a presheaf of rings. Let U be an object of
C. Consider the functor jU : C/U → C.

(1) The presheaf ofO-modules jU !OU (see Remark 19.7) is flat.
(2) If C is a site,O is a sheaf of rings, jU !OU is a flat sheaf ofO-modules.

Proof. Proof of (1). By the discussion in Remark 19.7 we see that

jU !OU (V ) =
⊕

ϕ∈MorC(V,U)
O(V )

which is a flat O(V )-module. Hence (1) follows from Lemma 28.2. Then (2) follows as
jU !OU = (jU !OU )# (the first jU ! on sheaves, the second on presheaves) and Lemma 28.3.

�

Lemma 28.8. Let C be a category. LetO be a presheaf of rings.
(1) Any presheaf ofO-modules is a quotient of a direct sum

⊕
jUi!OUi .

(2) Any presheaf ofO-modules is a quotient of a flat presheaf ofO-modules.
(3) If C is a site,O is a sheaf of rings, then any sheaf ofO-modules is a quotient of a

direct sum
⊕
jUi!OUi .

(4) If C is a site,O is a sheaf of rings, then any sheaf ofO-modules is a quotient of a
flat sheaf ofO-modules.

Proof. Proof of (1). For every object U of C and every s ∈ F(U) we get a morphism
jU !OU → F , namely the adjoint to the morphismOU → F|U , 1 7→ s. Clearly the map⊕

(U,s)
jU !OU −→ F

is surjective. The source is flat by combining Lemmas 28.5 and 28.7 which proves (2). The
sheaf case follows from this either by sheafifying or repeating the same argument. �

Lemma 28.9. Let C be a category. LetO be a presheaf of rings. Let

0→ F ′′ → F ′ → F → 0

be a short exact sequence of presheaves ofO-modules. Let G be a presheaf ofO-modules.
(1) If F is a flat presheaf of modules, then the sequence

0→ F ′′ ⊗p,O G → F ′ ⊗p,O G → F ⊗p,O G → 0

is exact.
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(2) If C is a site,O, F , F ′, F ′′, and G are sheaves, and F is flat as a sheaf of modules,
then the sequence

0→ F ′′ ⊗O G → F ′ ⊗O G → F ⊗O G → 0
is exact.

Proof. Choose a flat presheaf ofO-modulesG′ which surjects ontoG. This is possible
by Lemma 28.8. Let G′′ = Ker(G′ → G). The lemma follows by applying the snake lemma
to the following diagram

0 0 0
↑ ↑ ↑

F ′′ ⊗p,O G → F ′ ⊗p,O G → F ⊗p,O G → 0
↑ ↑ ↑

0 → F ′′ ⊗p,O G′ → F ′ ⊗p,O G′ → F ⊗p,O G′ → 0
↑ ↑ ↑

F ′′ ⊗p,O G′′ → F ′ ⊗p,O G′′ → F ⊗p,O G′′ → 0
↑
0

with exact rows and columns. The middle row is exact because tensoring with the flat
module G′ is exact. The proof in the case of sheaves is exactly the same. �

Lemma 28.10. Let C be a category. LetO be a presheaf of rings. Let

0→ F2 → F1 → F0 → 0
be a short exact sequence of presheaves ofO-modules.

(1) If F2 and F0 are flat so is F1.
(2) If F1 and F0 are flat so is F2.

If C is a site andO is a sheaf of rings then the same result holds in Mod(O).

Proof. Let G• be an arbitrary exact complex of presheaves of O-modules. Assume
that F0 is flat. By Lemma 28.9 we see that

0→ G• ⊗p,O F2 → G• ⊗p,O F1 → G• ⊗p,O F0 → 0
is a short exact sequence of complexes of presheaves of O-modules. Hence (1) and (2)
follow from the snake lemma. The case of sheaves of modules is proved in the same way.

�

Lemma 28.11. Let C be a category. LetO be a presheaf of rings. Let

. . .→ F2 → F1 → F0 → Q→ 0
be an exact complex of presheaves ofO-modules. IfQ and all Fi are flatO-modules, then
for any presheaf G ofO-modules the complex

. . .→ F2 ⊗p,O G → F1 ⊗p,O G → F0 ⊗p,O G → Q⊗p,O G → 0
is exact also. If C is a site andO is a sheaf of rings then the same result holds Mod(O).

Proof. Follows from Lemma 28.9 by splitting the complex into short exact sequences
and using Lemma 28.10 to prove inductively that Im(Fi+1 → Fi) is flat. �

Lemma 28.12. Let (C,O) be a ringed site. If G andF are flatO-modules, then G⊗OF
is a flatO-module.
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Proof. This is true because

(G ⊗O F)⊗O H = G ⊗O (F ⊗O H)

and a composition of exact functors is exact. �

Lemma 28.13. Let O1 → O2 be a map of sheaves of rings on a site C. If G is a flat
O1-module, then G ⊗O1 O2 is a flatO2-module.

Proof. This is true because

(G ⊗O1 O2)⊗O2 H = G ⊗O1 F

(as sheaves of abelian groups for example). �

The following lemma is the analogue of the equational criterion of flatness (Algebra, Lemma
39.11).

Lemma 28.14. Let (C,O) be a ringed site. Let F be anO-module. The following are
equivalent

(1) F is a flatO-module.
(2) Let U be an object of C and let

OU
(f1,...,fn)−−−−−−→ O⊕n

U

(s1,...,sn)−−−−−−→ F|U
be a complex of OU -modules. Then there exists a covering {Ui → U} and for
each i a factorization

O⊕n
Ui

Bi−−→ O⊕li
Ui

(ti1,...,tili )
−−−−−−−→ F|Ui

of (s1, . . . , sn)|Ui such that Bi ◦ (f1, . . . , fn)|Ui = 0.
(3) Let U be an object of C and let

O⊕m
U

A−→ O⊕n
U

(s1,...,sn)−−−−−−→ F|U
be a complex of OU -modules. Then there exists a covering {Ui → U} and for
each i a factorization

O⊕n
Ui

Bi−−→ O⊕li
Ui

(ti1,...,tili )
−−−−−−−→ F|Ui

of (s1, . . . , sn)|Ui such that Bi ◦A|Ui = 0.

Proof. Assume (1). Let I ⊂ OU be the sheaf of ideals generated by f1, . . . , fn. Then∑
fj⊗sj is a section of I⊗OU

F|U which maps to zero inF|U . AsF|U is flat (Lemma 28.6)
the map I ⊗OU

F|U → F|U is injective. Since I ⊗OU
F|U is the sheaf associated to the

presheaf tensor product, we see there exists a covering {Ui → U} such that
∑
fj |Ui⊗sj |Ui

is zero in I(Ui) ⊗O(Ui) F(Ui). Unwinding the definitions using Algebra, Lemma 107.10
we find ti1, . . . , tili ∈ F(Ui) and aijk ∈ O(Ui) such that

∑
j aijkfj |Ui = 0 and sj |Ui =∑

k aijktik. Thus (2) holds.

Assume (2). Let U , n, m, A and s1, . . . , sn as in (3) be given. Observe that A has m
columns. We will prove the assertion of (3) is true by induction on m. For the base case
m = 0 we can use the factorization through the zero sheaf (in other words li = 0). Let
(f1, . . . , fn) be the last column of A and apply (2). This gives new diagrams

O⊕m
Ui

Bi◦A|Ui−−−−−→ O⊕li
Ui

(ti1,...,tili )
−−−−−−−→ F|Ui
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but the first column ofAi = Bi ◦A|Ui is zero. Hence we can apply the induction hypoth-
esis toUi, li,m−1, the matrix consisting of the firstm−1 columns ofAi, and ti1, . . . , tili
to get coverings {Uij → Uj} and factorizations

O⊕li
Uij

Cij−−→ O⊕kij
Uij

(vij1,...,vijkij )
−−−−−−−−−→ F|Uij

of (ti1, . . . , tili)|Uij such thatCi ◦Bi|Uij ◦A|Uij = 0. Then {Uij → U} is a covering and
we get the desired factorizations usingBij = Ci ◦Bi|Uij and vija. In this way we see that
(2) implies (3).

Assume (3). Let G → H be an injective homomorphism of O-modules. We have to show
that G ⊗O F → H⊗O F is injective. Let U be an object of C and let s ∈ (G ⊗O F)(U) be
a section which maps to zero inH⊗O F . We have to show that s is zero. Since G ⊗O F
is a sheaf, it suffices to find a covering {Ui → U}i∈I of C such that s|Ui is zero for all
i ∈ I . Hence we may always replace U by the members of a covering. In particular,
since G ⊗O F is the sheafification of G ⊗p,O F we may assume that s is the image of
s′ ∈ G(U) ⊗O(U) F(U). Arguing similarly for H ⊗O F we may assume that s′ maps
to zero in H(U) ⊗O(U) F(U). Write F(U) = colimMα as a filtered colimit of finitely
presentedO(U)-modulesMα (Algebra, Lemma 11.3). Since tensor product commutes with
filtered colimits (Algebra, Lemma 12.9) we can choose an α such that s′ comes from some
s′′ ∈ G(U)⊗O(U) Mα and such that s′′ maps to zero inH(U)⊗O(U) Mα. Fix α and s′′.
Choose a presentation

O(U)⊕m A−→ O(U)⊕n →Mα → 0

We apply (3) to the corresponding complex ofOU -modules

O⊕m
U

A−→ O⊕n
U

(s1,...,sn)−−−−−−→ F|U

After replacing U by the members of the covering Ui we find that the map

Mα → F(U)

factors through a free module O(U)⊕l for some l. Since G(U) → H(U) is injective we
conclude that

G(U)⊗O(U) O(U)⊕l → H(U)⊗O(U) O(U)⊕l

is injective too. Hence as s′′ maps to zero in the module on the right, it also maps to zero
in the module on the left, i.e., s is zero as desired. �

Lemma 28.15. Let C be a site. Let O′ → O be a surjection of sheaves of rings whose
kernel I is an ideal of square zero. Let F ′ be an O′-module and set F = F ′/IF ′. The
following are equivalent

(1) F ′ is a flatO′-module, and
(2) F is a flatO-module and I ⊗O F → F ′ is injective.

Proof. If (1) holds, then F = F ′ ⊗O′ O is flat over O by Lemma 28.13 and we
see the map I ⊗O F → F ′ is injective by applying − ⊗O′ F ′ to the exact sequence
0→ I → O′ → O → 0, see Lemma 28.9. Assume (2). In the rest of the proof we will use
without further mention thatK⊗O′ F ′ = K⊗O F for anyO′-moduleK annihilated by
I . Let α : G′ → H′ be an injective map of O′-modules. Let G ⊂ G′, resp.H ⊂ H′ be the
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subsheaf of sections annihilated by I . Consider the diagram

G ⊗O′ F ′ //

��

G′ ⊗O′ F ′ //

��

G′/G ⊗O′ F ′ //

��

0

H⊗O′ F ′ // H′ ⊗O′ F ′ // H′/H⊗O′ F ′ // 0

Note that G′/G andH′/H are annihilated by I and that G′/G → H′/H is injective. Thus
the right vertical arrow is injective asF is flat overO. The same is true for the left vertical
arrow. Hence the middle vertical arrow is injective and F ′ is flat. �

Lemma 28.16. Let C be a site. Let O → O′ be a flat homomorphism of sheaves
of rings. Let I ⊂ O be a sheaf of ideals such that the induced map O/I → O′/IO′

is an isomorphism. For any O-module F annihilated by In for some n ≥ 0 the map
id⊗ 1 : F → F ⊗O O′ is an isomorphism.

Proof. Omitted. Hint: See More on Algebra, Lemma 89.2. �

29. Duals

Let (C,O) be a ringed site. The category of O-modules endowed with the tensor product
constructed in Section 26 is a symmetric monoidal category. For an O-module F the
following are equivalent

(1) F has a left dual in the monoidal category ofO-modules,
(2) for every object U of C there exists a covering {Ui → U} such that F|Ui is a

direct summand of a finite freeO|Ui -module, and
(3) F is of finite presentation and flat as anO-module.

This is proved in Example 29.1 and Lemmas 29.2 and 29.3 of this section.

Example 29.1. Let (C,O) be a ringed site. Let F be anO-module such that for every
object U of C there exists a covering {Ui → U} such that F|Ui is a direct summand of a
finite freeO|Ui -module. Then the map

F ⊗O HomO(F ,O) −→ HomO(F ,F)
is an isomorphism. Namely, this is a local question, it is true ifF is finite free, and it holds
for any summand of a module for which it is true (details omitted). Denote

η : O −→ F ⊗O HomO(F ,O)
the map sending 1 to the section corresponding to idF under the isomorphism above.
Denote

ε : HomO(F ,O)⊗O F −→ O
the evaluation map. Then we see that HomO(F ,O), η, ε is a left dual for F as in Cat-
egories, Definition 43.5. We omit the verification that (1 ⊗ ε) ◦ (η ⊗ 1) = idF and
(ε⊗ 1) ◦ (1⊗ η) = idHomO(F,O).

Lemma 29.2. Let (C,O) be a ringed site. Let F be a O-module. Let G, η, ε be a left
dual of F in the monoidal category ofO-modules, see Categories, Definition 43.5. Then

(1) for every object U of C there exists a covering {Ui → U} such that F|Ui is a
direct summand of a finite freeO|Ui -module,

(2) the map e : HomO(F ,O) → G sending a local section λ to (λ ⊗ 1)(η) is an
isomorphism,

(3) we have ε(f, g) = e−1(g)(f) for local sections f and g of F and G.
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Proof. The assumptions mean that

F η⊗1−−→ F ⊗O G ⊗O F
1⊗ε−−→ F and G 1⊗η−−→ G ⊗O F ⊗O G

ε⊗1−−→ G
are the identity map. Let U be an object of C. After replacing U by the members of a
covering of U , we can find a finite number of sections f1, . . . , fn and g1, . . . , gn of F and
G over U such that η(1) =

∑
figi. Denote

O⊕n
U → F|U

the map sending the ith basis vector to fi. Then we can factor the map η|U over a map
η̃ : OU → O⊕n

U ⊗OU
G|U . We obtain a commutative diagram

F|U
η⊗1

//

η̃⊗1
))

F|U ⊗ G|U ⊗F|U 1⊗ε
// F|U

O⊕n
U ⊗ G|U ⊗F|U

OO

1⊗ε // O⊕n
U

OO

This shows that the identity onF|U factors through a finite freeOU -module. This proves
(1). Part (2) follows from Categories, Lemma 43.6 and its proof. Part (3) follows from
the first equality of the proof. You can also deduce (2) and (3) from the uniqueness of left
duals (Categories, Remark 43.7) and the construction of the left dual in Example 29.1. �

Lemma 29.3. Let (C,O) be a ringed site. Let F be locally of finite presentation and
flat. Then given an object U of C there exists a covering {Ui → U} such that F|Ui is a
direct summand of a finite freeOUi -module.

Proof. Choose an object U of C. After replacing U by the members of a covering,
we may assume there exists a presentation

O⊕r
U → O

⊕n
U → F|U → 0

By Lemma 28.14 we may, after replacing U by the members of a covering, assume there
exists a factorization

O⊕n
U → O⊕n1

U → F|U
such that the composition O⊕r

U → O⊕n
U → O⊕nr

U is zero. This means that the surjection
O⊕nr
U → F|U has a section and we win. �

30. Towards constructible modules

Recall that a quasi-compact object of a site is roughly an object such that every covering
of it can be refined by a finite covering (the actual definition is slightly more involved,
see Sites, Section 17). It turns out that if every object of a site has a covering by quasi-
compact objects, then the modules j!OU with U quasi-compact form a particularly nice
set of generators for the category of all modules.

Lemma 30.1. Let (C,O) be a ringed site. Let {Ui → U} be a covering of C. Then the
sequence ⊕

jUi×UUj !OUi×UUj →
⊕

jUi!OUi → j!OU → 0
is exact.

Proof. For any O-module F the functor HomO(−,F) turns our sequence into the
exact sequence 0 → F(U) →

∏
F(Ui) →

∏
F(Ui ×U Uj), see (19.2.1). The lemma

follows from this and Homology, Lemma 5.8. �
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Lemma 30.2. Let (C,O) be a ringed site. Let U = {Ui → U}i∈I be covering of C. If
U is quasi-compact, then there exist a finite subset I ′ ⊂ I such that the sequence⊕

i,i′∈I′
jUi×UUi′ !OUi×UUi′ →

⊕
i∈I′

jUi!OUi → j!OU → 0

is exact.

Proof. This lemma is immediate from Lemma 30.1 ifU satisfies condition (3) of Sites,
Lemma 17.2. We urge the reader to skip the proof in the general case. By definition there
exists a covering V = {Vj → U}j∈J and a morphism V → U of families of maps with
fixed target given by id : U → U , α : J → I , and fj : Vj → Uα(j) (see Sites, Definition
8.1) such that the image I ′ ⊂ I of α is finite. By Homology, Lemma 5.8 it suffices to show
that for any sheaf of O-modules F the functor HomO(−,F) turns the sequence of the
lemma into an exact sequence. By (19.2.1) we obtain the usual sequence

0→ F(U)→
∏

i∈I′
F(Ui)→

∏
i,i′∈I′

F(Ui ×U Ui′)

This is an exact sequence by Sites, Lemma 8.6 applied to the family of maps {Ui → U}i∈I′

which is refined by the covering V . �

Lemma 30.3. Let C be a site. Let W be a quasi-compact object of C.
(1) The functor Sh(C)→ Sets, F 7→ F(W ) commutes with coproducts.
(2) Let O be a sheaf of rings on C. The functor Mod(O) → Ab, F 7→ F(W )

commutes with direct sums.

Proof. Proof of (1). Taking sections over W commutes with filtered colimits with
injective transition maps by Sites, Lemma 17.7. If Fi is a family of sheaves of sets indexed
by a set I . Then

∐
Fi is the filtered colimit over the partially ordered set of finite subsets

E ⊂ I of the coproducts FE =
∐
i∈E Fi. Since the transition maps are injective we

conclude.
Proof of (2). Let Fi be a family of sheaves ofO-modules indexed by a set I . Then

⊕
Fi is

the filtered colimit over the partially ordered set of finite subsetsE ⊂ I of the direct sums
FE =

⊕
i∈E Fi. A filtered colimit of abelian sheaves can be computed in the category

of sheaves of sets. Moreover, for E ⊂ E′ the transition map FE → FE′ is injective
(as sheafification is exact and the injectivity is clear on underlying presheaves). Hence it
suffices to show the result for a finite index set by Sites, Lemma 17.7. The finite case is
dealt with in Lemma 3.2 (it holds over any object of C). �

Lemma 30.4. Let (C,O) be a ringed site. Let U be a quasi-compact object of C. Then
the functor HomO(j!OU ,−) commutes with direct sums.

Proof. This is true because HomO(j!OU ,F) = F(U) by (19.2.1) and because the
functor F 7→ F(U) commutes with direct sums by Lemma 30.3. �

In order to state the sharpest possible results in the following we introduce some notation.

Situation 30.5. Let C be a site. Let B ⊂ Ob(C) be a set of objects. We consider the
following conditions

(1) Every object of C has a covering by elements of B.
(2) Every U ∈ B is quasi-compact (Sites, Section 17).
(3) For a covering {Ui → U} with Ui, U ∈ B the fibre products Ui ×U Uj are

quasi-compact.

Lemma 30.6. In Situation 30.5 assume (1) holds.
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(1) Every sheaf of sets is the target of a surjective map whose source is a coproduct∐
h#
Ui

with Ui in B.
(2) IfO is a sheaf of rings, then everyO-module is a quotient of a direct sum

⊕
jUi!OUi

with Ui in B.

Proof. Part (1) follows from Sites, Lemmas 12.5 and 12.4. Part (2) follows from Lem-
mas 28.8 and 30.1. �

Lemma 30.7. In Situation 30.5 assume (1) and (2) hold.
(1) Every sheaf of sets is a filtered colimit of sheaves of the form

(30.7.1) Coequalizer
( ∐

j=1,...,m h
#
Vj

//
//
∐
i=1,...,n h

#
Ui

)
with Ui and Vj in B.

(2) If O is a sheaf of rings, then every O-module is a filtered colimit of sheaves of
the form

(30.7.2) Coker
(⊕

j=1,...,m
jVj !OVj −→

⊕
i=1,...,n

jUi!OUi
)

with Ui and Vj in B.

Proof. Proof of (1). By Lemma 30.6 every sheaf of setsF is the target of a surjection
whose source is a coprodF0 of sheaves the form h#

U with U ∈ B. Applying this toF0×F
F0 we find that F is a coequalizer of a pair of maps∐

j∈J h
#
Vj

//
//
∐
i∈I h

#
Ui

for some index sets I , J and Vj and Ui in B. For every finite subset J ′ ⊂ J there is a
finite subset I ′ ⊂ I such that the coproduct over j ∈ J ′ maps into the coprod over i ∈ I ′

via both maps, see Sites, Lemma 17.7. (Details omitted; hint: an infinite coproduct is the
filtered colimit of the finite sub-coproducts.) Thus our sheaf is the colimit of the cokernels
of these maps between finite coproducts.

Proof of (2). By Lemma 30.6 every module is a quotient of a direct sum of modules of the
form jU !OU with U ∈ B. Thus every module is a cokernel

Coker
(⊕

j∈J
jVj !OVj −→

⊕
i∈I

jUi!OUi
)

for some index sets I , J and Vj and Ui in B. For every finite subset J ′ ⊂ J there is a finite
subset I ′ ⊂ I such that the direct sum over j ∈ J ′ maps into the direct sum over i ∈ I ′,
see Lemma 30.4. Thus our module is the colimit of the cokernels of these maps between
finite direct sums. �

Lemma 30.8. In Situation 30.5 assume (1) and (2) hold. Let O be a sheaf of rings.
Then a cokernel of a map between modules as in (30.7.2) is another module as in (30.7.2).

Proof. Let F = Coker(
⊕
jVj !OVj →

⊕
jUi!OUi) as in (30.7.2). It suffices to show

that the cokernel of a map ϕ : jW !OW → F with W ∈ B is another module of the same
type. The map ϕ corresponds to s ∈ F(W ). Since

⊕
jUi!OUi → F is surjective, by (1)

we may choose a covering {Wk → W}k∈K with Wk ∈ B such that s|Wk
is the image

of some section sk of
⊕
jUi!OUi). By (2) the object W is quasi-compact. By Lemma 30.2
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there is a finite subset K ′ ⊂ K such that
⊕

k∈K′ jWk!OWk
→ jW !OW is surjective. We

conclude that Coker(ϕ) is equal to

Coker
(⊕

k∈K′
jWk!OWk

⊕
⊕

jVj !OVj −→
⊕

jUi!OUi
)

where the map
⊕

k∈K′ jWk!OWk
→
⊕
jUi!OUi corresponds to

∑
k∈K′ sk. This finishes

the proof. �

Lemma 30.9. In Situation 30.5 assume (1), (2), and (3) hold. LetO be a sheaf of rings.
Assume given a map ⊕

j=1,...,m
jVj !OVj −→

⊕
i=1,...,n

jUi!OUi

with Ui and Vj in B, and coverings {Uik → Ui}k∈Ki with Uik ∈ B. Then there exist
finite subsets K ′

i ⊂ Ki and a finite set L of Wl ∈ B and a commutative diagram⊕
l∈L jWl!OWl

��

//⊕
i=1,...,n

⊕
k∈K′

i
jUik!OUik

��⊕
j=1,...,m jVj !OVj //⊕

i=1,...,n jUi!OUi

inducing an isomorphism on cokernels of the horizontal maps.

Proof. SinceUi is quasi-compact, we may choose finite subsetsK ′
i ⊂ Ki as in Lemma

30.2. Then since
⊕

i=1,...,n
⊕

k∈K′
i
jUik!OUik →

⊕
i=1,...,n jUi!OUi is surjective, we can

find coverings {Vjm → Vj}m∈Mj with Vjm ∈ B such that we can find a commutative
diagram ⊕

j=1,...,m
⊕

m∈Mj
jVjm!OVjm

��

//⊕
i=1,...n

⊕
k∈K′

i
jUik!OUik

��⊕
j=1,...,m jVj !OVj //⊕

i=1,...,n jUi!OUi

Since Vj is quasi-compact, we can choose finite subsets M ′
j ⊂Mj as in Lemma 30.2. Set

L =
(∐

i=1,...,n
K ′
i ×K ′

i

)∐(∐
j=1,...,m

M ′
j

)
and for l = (k, k′) ∈ K ′

i × K ′
i ⊂ L set Wl = Uik ×Ui Uik′ and for l = m ∈ M ′

j ⊂ L
set Wl = Vjm. Since we have the exact sequences of Lemma 30.2 for the families {Uik →
Ui}k∈K′

i
we conclude that we get a diagram as in the statement of the lemma (details

omitted), except that it is not yet clear that Wl ∈ B. However, since Wl is quasi-compact
for all l ∈ L we do another application of Lemma 30.2 and find finite families of maps
{Wlt → Wl}t∈Tl with Wlt ∈ B such that

⊕
jWlt!OWlt

→ jWl!OWl
is surjective. Then

we replace L by
∐
l∈L Tl and everything is clear. �

Lemma 30.10. In Situation 30.5 assume (1), (2), and (3) hold. LetO be a sheaf of rings.
Then an extension of modules as in (30.7.2) is another module as in (30.7.2).

Proof. Let 0→ F1 → F2 → F3 → 0 be a short exact sequence of O-modules with
F1 and F3 as in (30.7.2). Choose presentations⊕

AVj →
⊕

AUi → F1 → 0 and
⊕

ATj →
⊕

AWi → F3 → 0
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In this proof the direct sums are always finite, and we writeAU = jU !OU forU ∈ B. Since
F2 → F3 is surjective, we can choose coverings {Wik → Wi} with Wik ∈ B such that
AWik

→ F3 lifts to a map AWik
→ F2. By Lemma 30.9 we may replace our collection

{Wi} by a finite subcollection of the collection {Wik} and assume the map
⊕
AWi

→ F3
lifts to a map into F2. Consider the kernel

K2 = Ker(
⊕

AUi ⊕
⊕

AWi −→ F2)

By the snake lemma this kernel surjects ontoK3 = Ker(
⊕
AWi

→ F3). Thus, arguing as
above, after replacing each Tj by a finite family of elements of B (permissible by Lemma
30.2) we may assume there is a map

⊕
ATj → K2 lifting the given map

⊕
ATj → K3.

Then
⊕
AVj ⊕

⊕
ATj → K2 is surjective which finishes the proof. �

Lemma 30.11. In Situation 30.5 assume (1), (2), and (3) hold. Let O be a sheaf of
rings. LetA ⊂Mod(O) be the full subcategory of modules isomorphic to a cokernel as in
(30.7.2). If the kernel of every map ofO-modules of the form⊕

j=1,...,m
jVj !OVj −→

⊕
i=1,...,n

jUi!OUi

with Ui and Vj in B, is inA, thenA is weak Serre subcategory of Mod(O).

Proof. We will use the criterion of Homology, Lemma 10.3. By the results of Lemmas
30.8 and 30.10 it suffices to see that the kernel of a map F → G between objects ofA is in
A. To prove this choose presentations⊕

AVj →
⊕

AUi → F → 0 and
⊕

ATj →
⊕

AWi
→ G → 0

In this proof the direct sums are always finite, and we write AU = jU !OU for U ∈ B.
Using Lemmas 30.1 and 30.9 and arguing as in the proof of Lemma 30.10 we may assume
that the map F → G lifts to a map of presentations⊕

AVj
//

��

⊕
AUi

//

��

F //

��

0

⊕
ATj //⊕AWi

// G // 0

Then we see that

Ker(F → G) = Coker
(⊕

AVj → Ker
(⊕

ATj ⊕
⊕

AUi →
⊕

AWi

))
and the lemma follows from the assumption and Lemma 30.8. �

31. Flat morphisms

Definition 31.1. Let (f, f ]) : (Sh(C),O) −→ (Sh(C′),O′) be a morphism of ringed
topoi. We say (f, f ]) is flat if the ring map f ] : f−1O′ → O is flat. We say a morphism
of ringed sites is flat if the associated morphism of ringed topoi is flat.

Lemma 31.2. Let f : Sh(C)→ Sh(C′) be a morphism of ringed topoi. Then

f−1 : Ab(C′) −→ Ab(C), F 7−→ f−1F
is exact. If (f, f ]) : (Sh(C),O)→ (Sh(C′),O′) is a flat morphism of ringed topoi then

f∗ : Mod(O′) −→Mod(O), F 7−→ f∗F
is exact.
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Proof. Given an abelian sheaf G on C′ the underlying sheaf of sets of f−1G is the
same as f−1 of the underlying sheaf of sets of G , see Sites, Section 44. Hence the exactness
of f−1 for sheaves of sets (required in the definition of a morphism of topoi, see Sites,
Definition 15.1) implies the exactness of f−1 as a functor on abelian sheaves.

To see the statement on modules recall that f∗F is defined as the tensor product f−1F⊗f−1O′,f]

O. Hence f∗ is a composition of functors both of which are exact. �

Definition 31.3. Let f : (Sh(C),O)→ (Sh(D),O′) be a morphism of ringed topoi.
Let F be a sheaf of O-modules. We say that F is flat over (Sh(D),O′) if F is flat as an
f−1O′-module.

This is compatible with the notion as defined for morphisms of ringed spaces, see Modules,
Definition 20.3 and the discussion following.

Lemma 31.4. Let f : (C,OC)→ (D,OD) be a morphism of ringed sites. Let F , G be
OD-modules. If F is finitely presented and f is flat, then the canonical map

f∗HomOD (F ,G) −→ HomOC (f∗F , f∗G)

of Remark 27.3 is an isomorphism.

Proof. Say f is given by the continuous functor u : D → C. We have to show
that the restriction of the map to C/U for any U ∈ Ob(C) is an isomorphism. We may
replaceU by the members of a covering ofU . Hence by Sites, Lemma 14.10 we may assume
there exists a morphism U → u(V ) for some V ∈ Ob(C). Of course, then we may
replace U by u(V ). Then since u is continuous, we may replace V by a covering and
assume there is a presentation O⊕m

V → O⊕n
V → F|V → 0 over D/V . Since formation

of Hom commutes with localization (Lemma 27.2) we may replace f by the morphism
(C/u(V ),Ou(V ))→ (D/V,OV ) induced by f . Hence we reduce to the case whereF has a
global presentationO⊕m

D → O⊕n
D → F → 0. Since f is flat and f∗OD = OC we obtain a

corresponding presentationO⊕m
C → O⊕n

C → f∗F → 0, see Lemma 31.2. Using thatHom
commutes with finite direct sums in the first variable, using that bothHomOC (OC ,−) and
HomOD (OD,−) are the identity functor, and using the functoriality of the construction
of Remark 27.3 we obtain a commutative diagram

0 // f∗HomOD (F ,G)

��

// f∗G⊕n

��

// f∗G⊕n

��
0 // HomOC (f∗F , f∗G) // f∗G⊕n // f∗G⊕n

where the right two vertical arrows are isomorphisms. By Lemma 27.5 the rows are exact.
We conclude by the 5 lemma. �

32. Invertible modules

Here is the definition.

Definition 32.1. Let (C,O) be a ringed site.
(1) A finite locally freeO-module F is said to have rank r if for every object U of C

there exists a covering {Ui → U} of U such that F|Ui is isomorphic to O⊕r
Ui

as
anOUi -module.
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(2) AnO-module L is invertible if the functor

Mod(O) −→Mod(O), F 7−→ F ⊗O L
is an equivalence.

(3) The sheafO∗ is the subsheaf ofO defined by the rule

U 7−→ O∗(U) = {f ∈ O(U) | ∃g ∈ O(U) such that fg = 1}
It is a sheaf of abelian groups with multiplication as the group law.

Lemma 40.7 below explains the relationship with locally free modules of rank 1.

Lemma 32.2. Let (C,O) be a ringed site. Let L be an O-module. The following are
equivalent:

(1) L is invertible, and
(2) there exists anO-moduleN such that L ⊗O N ∼= O.

In this case we have
(a) L is a flatO-module of finite presentation,
(b) for every object U of C there exists a covering U{Ui → U} such that L|Ui is a

direct summand of a finite free module, and
(c) the moduleN in (2) is isomorphic toHomO(L,O).

Proof. Assume (1). Then the functor − ⊗O L is essentially surjective, hence there
exists an O-module N as in (2). If (2) holds, then the functor − ⊗O N is a quasi-inverse
to the functor −⊗O L and we see that (1) holds.

Assume (1) and (2) hold. Since − ⊗O L is an equivalence, it is exact, and hence L is flat.
Denote ψ : L ⊗O N → O the given isomorphism. Let U be an object of C. We will
show that the restriction L to the members of a covering of U is a direct summand of a
free module, which will certainly imply that L is of finite presentation. By construction
of⊗ we may assume (after replacing U by the members of a covering) that there exists an
integer n ≥ 1 and sections xi ∈ L(U), yi ∈ N (U) such that ψ(

∑
xi⊗ yi) = 1. Consider

the isomorphisms
L|U → L|U ⊗OU

L|U ⊗OU
N|U → L|U

where the first arrow sends x to
∑
xi ⊗ x ⊗ yi and the second arrow sends x ⊗ x′ ⊗ y

to ψ(x′ ⊗ y)x. We conclude that x 7→
∑
ψ(x ⊗ yi)xi is an automorphism of L|U . This

automorphism factors as
L|U → O⊕n

U → L|U
where the first arrow is given by x 7→ (ψ(x⊗ y1), . . . , ψ(x⊗ yn)) and the second arrow
by (a1, . . . , an) 7→

∑
aixi. In this way we conclude that L|U is a direct summand of a

finite freeOU -module.

Assume (1) and (2) hold. Consider the evaluation map

L ⊗O HomO(L,OX) −→ OX
To finish the proof of the lemma we will show this is an isomorphism. By Lemma 27.6 we
have

HomO(O,O) = HomO(N ⊗O L,O) −→ HomO(N ,HomO(L,O))
The image of 1 gives a morphismN → HomO(L,O). Tensoring with L we obtain

O = L ⊗O N −→ L⊗O HomO(L,O)
This map is the inverse to the evaluation map; computation omitted. �
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Lemma 32.3. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
The pullback f∗L of an invertibleOD-module is invertible.

Proof. By Lemma 32.2 there exists an OD-module N such that L ⊗OD N ∼= OD.
Pulling back we get f∗L ⊗OC f

∗N ∼= OC by Lemma 26.2. Thus f∗L is invertible by
Lemma 32.2. �

Lemma 32.4. Let (C,O) be a ringed space.
(1) If L,N are invertibleO-modules, then so is L ⊗O N .
(2) If L is an invertible O-module, then so isHomO(L,O) and the evaluation map
L ⊗O HomO(L,O)→ O is an isomorphism.

Proof. Part (1) is clear from the definition and part (2) follows from Lemma 32.2 and
its proof. �

Lemma 32.5. Let (C,O) be a ringed space. There exists a set of invertible modules
{Li}i∈I such that each invertible module on (C,O) is isomorphic to exactly one of the
Li.

Proof. Omitted, but see Sheaves of Modules, Lemma 25.8. �

Lemma 32.5 says that the collection of isomorphism classes of invertible sheaves forms a
set. Lemma 32.4 says that tensor product defines the structure of an abelian group on this
set with inverse of L given byHomO(L,O).

In fact, given an invertibleO-moduleL and n ∈ Z we define the nth tensor powerL⊗n of
L as the image of O under applying the equivalence F 7→ F ⊗O L exactly n times. This
makes sense also for negative n as we’ve defined an invertibleO-module as one for which
tensoring is an equivalence. More explicitly, we have

L⊗n =


O if n = 0

HomO(L,O) if n = −1
L ⊗O . . .⊗O L if n > 0

L⊗−1 ⊗O . . .⊗O L⊗−1 if n < −1

see Lemma 32.4. With this definition we have canonical isomorphisms L⊗n ⊗O L⊗m →
L⊗n+m, and these isomorphisms satisfy a commutativity and an associativity constraint
(formulation omitted).

Definition 32.6. Let (C,O) be a ringed site. The Picard group Pic(O) of the ringed
site is the abelian group whose elements are isomorphism classes of invertibleO-modules,
with addition corresponding to tensor product.

33. Modules of differentials

In this section we briefly explain how to define the module of relative differentials for a
morphism of ringed topoi. We suggest the reader take a look at the corresponding section
in the chapter on commutative algebra (Algebra, Section 131).

Definition 33.1. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of sheaves of
rings. Let F be an O2-module. A O1-derivation or more precisely a ϕ-derivation into F
is a map D : O2 → F which is additive, annihilates the image of O1 → O2, and satisfies
the Leibniz rule

D(ab) = aD(b) +D(a)b
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for all a, b local sections ofO2 (wherever they are both defined). We denote DerO1(O2,F)
the set of ϕ-derivations into F .

This is the sheaf theoretic analogue of Algebra, Definition 33.1. Given a derivation D :
O2 → F as in the definition the map on global sections

D : Γ(O2) −→ Γ(F)

clearly is a Γ(O1)-derivation as in the algebra definition. Note that if α : F → G is a map
ofO2-modules, then there is an induced map

DerO1(O2,F) −→ DerO1(O2,G)

given by the rule D 7→ α ◦D. In other words we obtain a functor.

Lemma 33.2. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of sheaves of
rings. The functor

Mod(O2) −→ Ab, F 7−→ DerO1(O2,F)

is representable.

Proof. This is proved in exactly the same way as the analogous statement in algebra.
During this proof, for any sheaf of sets F on C , let us denote O2[F ] the sheafification of
the presheaf U 7→ O2(U)[F(U)] where this denotes the free O2(U)-module on the set
F(U). For s ∈ F(U) we denote [s] the corresponding section of O2[F ] over U . If F is a
sheaf ofO2-modules, then there is a canonical map

c : O2[F ] −→ F

which on the presheaf level is given by the rule
∑
fs[s] 7→

∑
fss. We will employ the

short hand [s] 7→ s to describe this map and similarly for other maps below. Consider the
map ofO2-modules

(33.2.1)

O2[O2 ×O2]⊕O2[O2 ×O2]⊕O2[O1] −→ O2[O2]
[(a, b)]⊕ [(f, g)]⊕ [h] 7−→ [a+ b]− [a]− [b]+

[fg]− g[f ]− f [g]+
[ϕ(h)]

with short hand notation as above. Set ΩO2/O1 equal to the cokernel of this map. Then it
is clear that there exists a map of sheaves of sets

d : O2 −→ ΩO2/O1

mapping a local section f to the image of [f ] in ΩO2/O1 . By construction d is a O1-
derivation. Next, letF be a sheaf ofO2-modules and letD : O2 → F be aO1-derivation.
Then we can consider theO2-linear mapO2[O2]→ F which sends [g] toD(g). It follows
from the definition of a derivation that this map annihilates sections in the image of the
map (33.2.1) and hence defines a map

αD : ΩO2/O1 −→ F

Since it is clear that D = αD ◦ d the lemma is proved. �

Definition 33.3. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of sheaves of
rings. The module of differentials of the ring map ϕ is the object representing the functor
F 7→ DerO1(O2,F) which exists by Lemma 33.2. It is denoted ΩO2/O1 , and the universal
ϕ-derivation is denoted d : O2 → ΩO2/O1 .
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Since this module and the derivation form the universal object representing a functor, this
notion is clearly intrinsic (i.e., does not depend on the choice of the site underlying the
ringed topos, see Section 18). Note that ΩO2/O1 is the cokernel of the map (33.2.1) ofO2-
modules. Moreover the map d is described by the rule that df is the image of the local
section [f ].

Lemma 33.4. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of presheaves of
rings. Then ΩO#

2 /O#
1

is the sheaf associated to the presheaf U 7→ ΩO2(U)/O1(U).

Proof. Consider the map (33.2.1). There is a similar map of presheaves whose value
on U ∈ Ob(C) is
O2(U)[O2(U)×O2(U)]⊕O2(U)[O2(U)×O2(U)]⊕O2(U)[O1(U)] −→ O2(U)[O2(U)]
The cokernel of this map has value ΩO2(U)/O1(U) over U by the construction of the mod-
ule of differentials in Algebra, Definition 131.2. On the other hand, the sheaves in (33.2.1)
are the sheafifications of the presheaves above. Thus the result follows as sheafification is
exact. �

Lemma 33.5. Let f : Sh(D) → Sh(C) be a morphism of topoi. Let ϕ : O1 → O2
be a homomorphism of sheaves of rings on C. Then there is a canonical identification
f−1ΩO2/O1 = Ωf−1O2/f−1O1 compatible with universal derivations.

Proof. This holds because the sheaf ΩO2/O1 is the cokernel of the map (33.2.1) and a
similar statement holds for Ωf−1O2/f−1O1 , because the functor f−1 is exact, and because
f−1(O2[O2]) = f−1O2[f−1O2], f−1(O2[O2 × O2]) = f−1O2[f−1O2 × f−1O2], and
f−1(O2[O1]) = f−1O2[f−1O1]. �

Lemma 33.6. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of sheaves of
rings. For any object U of C there is a canonical isomorphism

ΩO2/O1 |U = Ω(O2|U )/(O1|U )

compatible with universal derivations.
Proof. This is a special case of Lemma 33.5. �

Lemma 33.7. Let C be a site. Let

O2 ϕ
// O′

2

O1 //

OO

O′
1

OO

be a commutative diagram of sheaves of rings on C. The map O2 → O′
2 composed with

the map d : O′
2 → ΩO′

2/O′
1

is a O1-derivation. Hence we obtain a canonical map of
O2-modules ΩO2/O1 → ΩO′

2/O′
1
. It is uniquely characterized by the property that d(f)

mapsto d(ϕ(f)) for any local section f ofO2. In this way Ω−/− becomes a functor on the
category of arrows of sheaves of rings.

Proof. This lemma proves itself. �

Lemma 33.8. In Lemma 33.7 suppose thatO2 → O′
2 is surjective with kernel I ⊂ O2

and assume thatO1 = O′
1. Then there is a canonical exact sequence ofO′

2-modules

I/I2 −→ ΩO2/O1 ⊗O2 O′
2 −→ ΩO′

2/O1 −→ 0
The leftmost map is characterized by the rule that a local section f of I maps to df ⊗ 1.
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Proof. For a local section f of I denote f the image of f in I/I2. To show that the
map f 7→ df⊗1 is well defined we just have to check that df1f2⊗1 = 0 if f1, f2 are local
sections of I . And this is clear from the Leibniz rule df1f2 ⊗ 1 = (f1df2 + f2df1)⊗ 1 =
df2 ⊗ f1 + df2 ⊗ f1 = 0. A similar computation show this map is O′

2 = O2/I-linear.
The map on the right is the one from Lemma 33.7.
To see that the sequence is exact, we argue as follows. Let O′′

2 ⊂ O′
2 be the presheaf of

O1-algebras whose value onU is the image ofO2(U)→ O′
2(U). By Algebra, Lemma 131.9

the sequences

I(U)/I(U)2 −→ ΩO2(U)/O1(U) ⊗O2(U) O′′
2 (U) −→ ΩO′′

2 (U)/O1(U) −→ 0
are exact for all objects U of C. Since sheafification is exact this gives an exact sequence of
sheaves of (O′

2)#-modules. By Lemma 33.4 and the fact that (O′′
2 )# = O′

2 we conclude.
�

Here is a particular situation where derivations come up naturally.

Lemma 33.9. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of sheaves of
rings. Consider a short exact sequence

0→ F → A→ O2 → 0
Here A is a sheaf of O1-algebras, π : A → O2 is a surjection of sheaves of O1-algebras,
and F = Ker(π) is its kernel. Assume F an ideal sheaf with square zero inA. So F has a
natural structure of an O2-module. A section s : O2 → A of π is a O1-algebra map such
that π ◦ s = id. Given any section s : O2 → F of π and any ϕ-derivation D : O1 → F
the map

s+D : O1 → A
is a section of π and every section s′ is of the form s+D for a unique ϕ-derivation D.

Proof. Recall that the O2-module structure on F is given by hτ = h̃τ (multiplica-
tion inA) where h is a local section ofO2, and h̃ is a local lift of h to a local section ofA,
and τ is a local section of F . In particular, given s, we may use h̃ = s(h). To verify that
s+D is a homomorphism of sheaves of rings we compute

(s+D)(ab) = s(ab) +D(ab)
= s(a)s(b) + aD(b) +D(a)b
= s(a)s(b) + s(a)D(b) +D(a)s(b)
= (s(a) +D(a))(s(b) +D(b))

by the Leibniz rule. In the same manner one shows s+D is a O1-algebra map because D
is anO1-derivation. Conversely, given s′ we set D = s′ − s. Details omitted. �

Definition 33.10. Let X = (Sh(C),O) and Y = (Sh(C′),O′) be ringed topoi. Let
(f, f ]) : X → Y be a morphism of ringed topoi. In this situation

(1) for a sheaf F of O-modules a Y -derivation D : O → F is just a f ]-derivation,
and

(2) the sheaf of differentials ΩX/Y of X over Y is the module of differentials of
f ] : f−1O′ → O, see Definition 33.3.

Thus ΩX/Y comes equipped with a universal Y -derivation dX/Y : O −→ ΩX/Y . We
sometimes write ΩX/Y = Ωf .

Recall that f ] : f−1O′ → O so that this definition makes sense.
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Lemma 33.11. Let X = (Sh(CX),OX), Y = (Sh(CY ),OY ), X ′ = (Sh(CX′),OX′),
and Y ′ = (Sh(CY ′),OY ′) be ringed topoi. Let

X ′

��

f
// X

��
Y ′ // Y

be a commutative diagram of morphisms of ringed topoi. The map f ] : OX → f∗OX′

composed with the map f∗dX′/Y ′ : f∗OX′ → f∗ΩX′/Y ′ is a Y -derivation. Hence we
obtain a canonical map ofOX -modules ΩX/Y → f∗ΩX′/Y ′ , and by adjointness of f∗ and
f∗ a canonicalOX′ -module homomorphism

cf : f∗ΩX/Y −→ ΩX′/Y ′ .

It is uniquely characterized by the property that f∗dX/Y (t) mapsto dX′/Y ′(f∗t) for any
local section t ofOX .

Proof. This is clear except for the last assertion. Let us explain the meaning of this.
Let U ∈ Ob(CX) and let t ∈ OX(U). This is what it means for t to be a local section of
OX . Now, we may think of t as a map of sheaves of sets t : h#

U → OX . Then f−1t :
f−1h#

U → f−1OX . By f∗t we mean the composition

f−1h#
U

f−1t //

f∗t

**
f−1OX

f] // OX′

Note that dX/Y (t) ∈ ΩX/Y (U). Hence we may think of dX/Y (t) as a map dX/Y (t) :
h#
U → ΩX/Y . Then f−1dX/Y (t) : f−1h#

U → f−1ΩX/Y . By f∗dX/Y (t) we mean the
composition

f−1h#
U

f−1dX/Y (t)
//

f∗dX/Y (t)

++
f−1ΩX/Y

1⊗id // f∗ΩX/Y

OK, and now the statement of the lemma means that we have
cf ◦ f∗t = f∗dX/Y (t)

as maps from f−1h#
U to ΩX′/Y ′ . We omit the verification that this property holds for

cf as defined in the lemma. (Hint: The first map c′
f : ΩX/Y → f∗ΩX′/Y ′ satisfies

c′
f (dX/Y (t)) = f∗dX′/Y ′(f ](t)) as sections of f∗ΩX′/Y ′ over U , and you have to turn

this into the equality above by using adjunction.) The reason that this uniquely character-
izes cf is that the images of f∗dX/Y (t) generate theOX′ -module f∗ΩX/Y simply because
the local sections dX/Y (t) generate theOX -module ΩX/Y . �

34. Finite order differential operators

In this section we introduce differential operators of finite order. We suggest the reader
take a look at the corresponding section in the chapter on commutative algebra (Algebra,
Section 133).

Definition 34.1. Let C be a site. Let ϕ : O1 → O2 be a homomorphism of sheaves of
rings. Let k ≥ 0 be an integer. LetF , G be sheaves ofO2-modules. A differential operator
D : F → G of order k is an is anO1-linear map such that for all local sections g ofO2 the
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map s 7→ D(gs)− gD(s) is a differential operator of order k− 1. For the base case k = 0
we define a differential operator of order 0 to be anO2-linear map.

If D : F → G is a differential operator of order k, then for all local sections g of O2
the map gD is a differential operator of order k. The sum of two differential operators of
order k is another. Hence the set of all these

Diffk(F ,G) = DiffkO2/O1
(F ,G)

is a Γ(C,O2)-module. We have

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .
The rule which maps U ∈ Ob(C) to the module of differential operators D : F|U → G|U
of order k is a sheaf of O2-modules on the site C. Thus we obtain a sheaf of differential
operators (if we ever need this we will add a definition here).

Lemma 34.2. Let C be a site. Let O1 → O2 be a map of sheaves of rings. Let E ,F ,G
be sheaves of O2-modules. If D : E → F and D′ : F → G are differential operators of
order k and k′, then D′ ◦D is a differential operator of order k + k′.

Proof. Let g be a local section ofO2. Then the map which sends a local section x of
E to

D′(D(gx))− gD′(D(x)) = D′(D(gx))−D′(gD(x)) +D′(gD(x))− gD′(D(x))
is a sum of two compositions of differential operators of lower order. Hence the lemma
follows by induction on k + k′. �

Lemma 34.3. Let C be a site. Let O1 → O2 be a map of sheaves of rings. Let F be
a sheaf of O2-modules. Let k ≥ 0. There exists a sheaf of O2-modules PkO2/O1

(F) and a
canonical isomorphism

DiffkO2/O1
(F ,G) = HomO2(PkO2/O1

(F),G)

functorial in theO2-module G.

Proof. The existence follows from general category theoretic arguments (insert fu-
ture reference here), but we will also give a direct construction as this construction will
be useful in the future proofs. We will freely use the notation introduced in the proof of
Lemma 33.2. Given any differential operator D : F → G we obtain an O2-linear map
LD : O2[F ] → G sending [m] to D(m). If D has order 0 then LD annihilates the local
sections

[m+m′]− [m]− [m′], g0[m]− [g0m]
where g0 is a local section of O2 and m,m′ are local sections of F . If D has order 1, then
LD annihilates the local sections

[m+m′ − [m]− [m′], f [m]− [fm], g0g1[m]− g0[g1m]− g1[g0m] + [g1g0m]
where f is a local section ofO1, g0, g1 are local sections ofO2, andm,m′ are local sections
of F . If D has order k, then LD annihilates the local sections [m + m′] − [m] − [m′],
f [m]− [fm], and the local sections

g0g1 . . . gk[m]−
∑

g0 . . . ĝi . . . gk[gim] + . . .+ (−1)k+1[g0 . . . gkm]

Conversely, ifL : O2[F ]→ G is anO2-linear map annihilating all the local sections listed
in the previous sentence, then m 7→ L([m]) is a differential operator of order k. Thus we
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see that PkO2/O1
(F) is the quotient of O2[F ] by the O2-submodule generated by these

local sections. �

Definition 34.4. Let C be a site. Let O1 → O2 be a map of sheaves of rings. Let F
be a sheaf of O2-modules. The module PkO2/O1

(F) constructed in Lemma 34.3 is called
the module of principal parts of order k of F .

Note that the inclusions

Diff0(F ,G) ⊂ Diff1(F ,G) ⊂ Diff2(F ,G) ⊂ . . .

correspond via Yoneda’s lemma (Categories, Lemma 3.5) to surjections

. . .→ P2
O2/O1

(F)→ P1
O2/O1

(F)→ P0
O2/O1

(F) = F

Lemma 34.5. Let C be a site. Let O1 → O2 be a homomorphism of presheaves of
rings. Let F be a presheaf of O2-modules. Then Pk

O#
2 /O#

1
(F#) is the sheaf associated to

the presheaf U 7→ P kO2(U)/O1(U)(F(U)).

Proof. This can be proved in exactly the same way as is done for the sheaf of differ-
entials in Lemma 33.4. Perhaps a more pleasing approach is to use the universal property
of Lemma 34.3 directly to see the equality. We omit the details. �

Lemma 34.6. Let C be a site. Let O1 → O2 be a homomorphism of sheaves of rings.
Let F be a sheaf ofO2-modules. There is a canonical short exact sequence

0→ ΩO2/O1 ⊗O2 F → P1
O2/O1

(F)→ F → 0

functorial in F called the sequence of principal parts.

Proof. Follows from the commutative algebra version (Algebra, Lemma 133.6) and
Lemmas 33.4 and 34.5. �

Remark 34.7. Let C be a site. Suppose given a commutative diagram of sheaves of
rings

B // B′

A

OO

// A′

OO

a B-module F , a B′-module F ′, and a B-linear map F → F ′. Then we get a compatible
system of module maps

. . . // P2
B′/A′(F ′) // P1

B′/A′(F ′) // P0
B′/A′(F ′)

. . . // P2
B/A(F) //

OO

P1
B/A(F) //

OO

P0
B/A(F)

OO

These maps are compatible with further composition of maps of this type. The easiest way
to see this is to use the description of the modulesPkB/A(M) in terms of (local) generators
and relations in the proof of Lemma 34.3 but it can also be seen directly from the universal
property of these modules. Moreover, these maps are compatible with the short exact
sequences of Lemma 34.6.
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35. The naive cotangent complex

This section is the analogue of Algebra, Section 134 and Modules, Section 31. We advise
the reader to read those sections first.

Let C be a site. Let A → B be a homomorphism of sheaves of rings on C. In this sec-
tion, for any sheaf of sets E on C we denote A[E ] the sheafification of the presheaf U 7→
A(U)[E(U)]. Here A(U)[E(U)] denotes the polynomial algebra over A(U) whose vari-
ables correspond to the elements of E(U). We denote [e] ∈ A(U)[E(U)] the variable
corresponding to e ∈ E(U). There is a canonical surjection ofA-algebras

(35.0.1) A[B] −→ B, [b] 7−→ b

whose kernel we denote I ⊂ A[B]. It is a simple observation that I is generated by the
local sections [b][b′]− [bb′] and [a]− a. According to Lemma 33.8 there is a canonical map

(35.0.2) I/I2 −→ ΩA[B]/A ⊗A[B] B
whose cokernel is canonically isomorphic to ΩB/A.

Definition 35.1. Let C be a site. LetA → B be a homomorphism of sheaves of rings
on C. The naive cotangent complex NLB/A is the chain complex (35.0.2)

NLB/A =
(
I/I2 −→ ΩA[B]/A ⊗A[B] B

)
with I/I2 placed in degree −1 and ΩA[B]/A ⊗A[B] B placed in degree 0.

This construction satisfies a functoriality similar to that discussed in Lemma 33.7 for mod-
ules of differentials. Namely, given a commutative diagram

(35.1.1)

B // B′

A

OO

// A′

OO

of sheaves of rings on C there is a canonical B-linear map of complexes

NLB/A −→ NLB′/A′

Namely, the maps in the commutative diagram give rise to a canonical mapA[B]→ A′[B′]
which maps I into I ′ = Ker(A′[B′] → B′). Thus a map I/I2 → I ′/(I ′)2 and a map
between modules of differentials, which together give the desired map between the naive
cotangent complexes.

We can choose a different presentation of B as a quotient of a polynomial algebra over A
and still obtain the same object ofD(B). To explain this, suppose that E is a sheaves of sets
on C andα : E → B a map of sheaves of sets. Then we obtain anA-algebra homomorphism
A[E ]→ B. Assume this map is surjective, and let J ⊂ A[E ] be the kernel. Set

NL(α) =
(
J /J 2 −→ ΩA[E]/A ⊗A[E] B

)
Here is the result.

Lemma 35.2. In the situation above there is a canonical isomorphism NL(α) =
NLB/A in D(B).

Proof. Observe that NLB/A = NL(idB). Thus it suffices to show that given two
maps αi : Ei → B as above, there is a canonical quasi-isomorphism NL(α1) = NL(α2) in
D(B). To see this set E = E1 q E2 and α = α1 q α2 : E → B. Set Ji = Ker(A[Ei]→ B)
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and J = Ker(A[E ] → B). We obtain maps A[Ei] → A[E ] which send Ji into J . Thus
we obtain canonical maps of complexes

NL(αi) −→ NL(α)
and it suffices to show these maps are quasi-isomorphism. To see this we argue as fol-
lows. First, observe that H0(NL(αi)) = ΩB/A and H0(NL(α)) = ΩB/A by Lemma
33.8 hence the map is an isomorphism on cohomology sheaves in degree 0. Similarly,
we claim that H−1(NL(αi)) and H−1(NL(α)) are the sheaves associated to the presheaf
U 7→ H1(LB(U)/A(U)) where H1(L−/−) is as in Algebra, Definition 134.1. If the claim
holds, then the proof is finished.
Proof of the claim. Let α : E → B be as above. Let B′ ⊂ B be the subpresheaf of A-
algebras whose value on U is the image of A(U)[E(U)] → B(U). Let I ′ be the presheaf
whose value on U is the kernel of A(U)[E(U)] → B(U). Then I is the sheafification of
I ′ and B is the sheafification of B′. Similarly, H−1(NL(α)) is the sheafification of the
presheaf

U 7−→ Ker(I ′(U)/I ′(U)2 → ΩA(U)[E(U)]/A(U) ⊗A(U)[E(U)] B′(U))
by Lemma 33.4. By Algebra, Lemma 134.2 we conclude H−1(NL(α)) is the sheaf asso-
ciated to the presheaf U 7→ H1(LB′(U)/A(U)). Thus we have to show that the maps
H1(LB′(U)/A(U)) → H1(LB(U)/A(U)) induce an isomorphism H′

1 → H1 of sheafifica-
tions.
Injectivity of H′

1 → H1. Let f ∈ H1(LB′(U)/A(U)) map to zero in H1(U). To show:
f maps to zero in H′

1(U). The assumption means there is a covering {Ui → U} such
that f maps to zero in H1(LB(Ui)/A(Ui)) for all i. Replace U by Ui to get to the point
where f maps to zero inH1(LB(U)/A(U)). By Algebra, Lemma 134.9 we can find a finitely
generated subalgebra B′(U) ⊂ B ⊂ B(U) such that f maps to zero in H1(LB/A(U)).
Since B = (B′)# we can find a covering {Ui → U} such thatB → B(Ui) factors through
B′(Ui). Hence f maps to zero in H1(LB′(Ui)/A(Ui)) as desired.
The surjectivity ofH′

1 → H1 is proved in exactly the same way. �

Lemma 35.3. Let f : Sh(C) → Sh(D) be morphism of topoi. Let A → B be a
homomorphism of sheaves of rings on D. Then f−1 NLB/A = NLf−1B/f−1A.

Proof. Omitted. Hint: Use Lemma 33.5. �

The cotangent complex of a morphism of ringed topoi is defined in terms of the cotangent
complex we defined above.

Definition 35.4. Let X = (Sh(C),O) and Y = (Sh(C′),O′) be ringed topoi.
Let (f, f ]) : X → Y be a morphism of ringed topoi. The naive cotangent complex
NLf = NLX/Y of the given morphism of ringed topoi is NLO/f−1O′ . We sometimes
write NLX/Y = NLO/O′ .

36. Stalks of modules

We have to be a bit careful when taking stalks at points, since the colimit defining a stalk
(see Sites, Equation 32.1.1) may not be filtered3. On the other hand, by definition of a point
of a site the stalk functor is exact and commutes with arbitrary colimits. In other words,
it behaves exactly as if the colimit were filtered.

3Of course in almost any naturally occurring case the colimit is filtered and some of the discussion in this
section may be simplified.
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Lemma 36.1. Let C be a site. Let p be a point of C.
(1) We have (F#)p = Fp for any presheaf of sets on C.
(2) The stalk functor Sh(C) → Sets, F 7→ Fp is exact (see Categories, Definition

23.1) and commutes with arbitrary colimits.
(3) The stalk functor PSh(C) → Sets, F 7→ Fp is exact (see Categories, Definition

23.1) and commutes with arbitrary colimits.

Proof. By Sites, Lemma 32.5 we have (1). By Sites, Lemmas 32.4 we see that PSh(C)→
Sets,F 7→ Fp is a left adjoint, and by Sites, Lemma 32.5 we see the same thing for Sh(C)→
Sets, F 7→ Fp. Hence the stalk functor commutes with arbitrary colimits (see Categories,
Lemma 24.5). It follows from the definition of a point of a site, see Sites, Definition 32.2
that Sh(C) → Sets, F 7→ Fp is exact. Since sheafification is exact (Sites, Lemma 10.14) it
follows that PSh(C)→ Sets, F 7→ Fp is exact. �

In particular, since the stalk functor F 7→ Fp on presheaves commutes with all finite
limits and colimits we may apply the reasoning of the proof of Sites, Proposition 44.3.
The result of such an argument is that if F is a (pre)sheaf of algebraic structures listed in
Sites, Proposition 44.3 then the stalk Fp is naturally an algebraic structure of the same
kind. Let us explain this in detail when F is an abelian presheaf. In this case the addition
map + : F × F → F induces a map

+ : Fp ×Fp = (F × F)p −→ Fp
where the equal sign uses that stalk functor on presheaves of sets commutes with finite
limits. This defines a group structure on the stalk Fp. In this way we obtain our stalk
functor

PAb(C) −→ Ab, F 7−→ Fp
By construction the underlying set of Fp is the stalk of the underlying presheaf of sets.
This also defines our stalk functor for sheaves of abelian groups by precomposing with the
inclusion Ab(C) ⊂ PAb(C).

Lemma 36.2. Let C be a site. Let p be a point of C.
(1) The functor Ab(C)→ Ab, F 7→ Fp is exact.
(2) The stalk functor PAb(C)→ Ab, F 7→ Fp is exact.
(3) For F ∈ Ob(PAb(C)) we have Fp = F#

p .

Proof. This is formal from the results of Lemma 36.1 and the construction of the
stalk functor above. �

Next, we turn to the case of sheaves of modules. Let (C,O) be a ringed site. (It suffices for
the discussion that O be a presheaf of rings.) Let F be a presheaf of O-modules. Let p be
a point of C. In this case we get a map

· : Op ×Op = (O ×O)p −→ Op
which is the stalk of the multiplication map and

· : Op ×Fp = (O ×F)p −→ Fp
which is the stalk of the multiplication map. We omit the verification that this defines a
ring structure onOp and anOp-module structure on Fp. In this way we obtain a functor

PMod(O) −→Mod(Op), F 7−→ Fp
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By construction the underlying set of Fp is the stalk of the underlying presheaf of sets.
This also defines our stalk functor for sheaves of O-modules by precomposing with the
inclusion Mod(O) ⊂ PMod(O).

Lemma 36.3. Let (C,O) be a ringed site. Let p be a point of C.
(1) The functor Mod(O)→Mod(Op), F 7→ Fp is exact.
(2) The stalk functor PMod(O)→Mod(Op), F 7→ Fp is exact.
(3) For F ∈ Ob(PMod(O)) we have Fp = F#

p .

Proof. This is formal from the results of Lemma 36.2, the construction of the stalk
functor above, and Lemma 14.1. �

Lemma 36.4. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi or ringed sites. Let p be a point of C or Sh(C) and set q = f ◦ p. Then

(f∗F)p = Fq ⊗OD,q OC,p

for anyOD-module F .

Proof. We have
f∗F = f−1F ⊗f−1OD OC

by definition. Since taking stalks at p (i.e., applying p−1) commutes with ⊗ by Lemma
26.2 we win by the relation between the stalk of pullbacks at p and stalks at q explained
in Sites, Lemma 34.2 or Sites, Lemma 34.3. �

37. Skyscraper sheaves

Let p be a point of a site C or a topos Sh(C). In this section we study the exactness properties
of the functor which associates to an abelian groupA the skyscraper sheaf p∗A. First, recall
that p∗ : Sets→ Sh(C) has a lot of exactness properties, see Sites, Lemmas 32.9 and 32.10.

Lemma 37.1. Let C be a site. Let p be a point of C or of its associated topos.
(1) The functor p∗ : Ab→ Ab(C), A 7→ p∗A is exact.
(2) There is a functorial direct sum decomposition

p−1p∗A = A⊕ I(A)
for A ∈ Ob(Ab).

Proof. By Sites, Lemma 32.9 there are functorial maps A → p−1p∗A → A whose
composition equals idA. Hence a functorial direct sum decomposition as in (2) with I(A)
the kernel of the adjunction map p−1p∗A → A. The functor p∗ is left exact by Lemma
14.3. The functor p∗ transforms surjections into surjections by Sites, Lemma 32.10. Hence
(1) holds. �

To do the same thing for sheaves of modules, suppose given a point p of a ringed topos
(Sh(C),O). Recall that p−1 is just the stalk functor. Hence we can think of p as a mor-
phism of ringed topoi

(p, idOp
) : (Sh(pt),Op) −→ (Sh(C),O).

Thus we get a pullback functor p∗ : Mod(O) → Mod(Op) which equals the stalk func-
tor, and which we discussed in Lemma 36.3. In this section we consider the functor p∗ :
Mod(Op)→Mod(O).

Lemma 37.2. Let (Sh(C),O) be a ringed topos. Let p be a point of the topos Sh(C).
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(1) The functor p∗ : Mod(Op)→Mod(O), M 7→ p∗M is exact.
(2) The canonical surjection p−1p∗M →M isOp-linear.
(3) The functorial direct sum decomposition p−1p∗M = M ⊕ I(M) of Lemma 37.1

is notOp-linear in general.

Proof. Part (1) and surjectivity in (2) follow immediately from the corresponding
result for abelian sheaves in Lemma 37.1. Since p−1O = Op we have p−1 = p∗ and hence
p−1p∗M → M is the same as the counit p∗p∗M → M of the adjunction for modules,
whence linear.
Proof of (3). Suppose that G is a group. Consider the topos G-Sets = Sh(TG) and the
point p : Sets → G-Sets. See Sites, Section 9 and Example 33.7. Here p−1 is the functor
forgetting about theG-action. And p∗ is the right adjoint of the forgetful functor, sending
M to Map(G,M). The maps in the direct sum decomposition are the maps

M →Map(G,M)→M

where the first sendsm ∈M to the constant map with valuem and where the second map
is evaluation at the identity element 1 of G. Next, suppose that R is a ring endowed with
an action of G. This determines a sheaf of rings O on TG. The category of O-modules is
the category of R-modules M endowed with an action of G compatible with the action
on R. The R-module structure on Map(G,M) is given by

(rf)(σ) = σ(r)f(σ)
for r ∈ R and f ∈ Map(G,M). This is true because it is the unique G-invariant R-
module strucure compatible with evaluation at 1. The reader observes that in general the
image ofM →Map(G,M) is not anR-submodule (for example takeM = R and assume
the G-action is nontrivial), which concludes the proof. �

Example 37.3. Let G be a group. Consider the site TG and its point p, see Sites,
Example 33.7. LetR be a ring with aG-action which corresponds to a sheaf of ringsO on
TG. Then Op = R where we forget the G-action. In this case p−1p∗M = Map(G,M)
and I(M) = {f : G → M | f(1G) = 0} and M → Map(G,M) assigns to m ∈ M the
constant function with value m.

38. Localization and points

Lemma 38.1. Let (C,O) be a ringed site. Let p be a point of C. Let U be an object of
C. For G in Mod(OU ) we have

(jU !G)p =
⊕

q
Gq

where the coproduct is over the points q of C/U lying over p, see Sites, Lemma 35.2.

Proof. We use the description of jU !G as the sheaf associated to the presheaf V 7→⊕
ϕ∈MorC(V,U) G(V/ϕU) of Lemma 19.2. The stalk of jU !G at p is equal to the stalk of this

presheaf, see Lemma 36.3. Let u : C → Sets be the functor corresponding to p (see Sites,
Section 32). Hence we see that

(jU !G)p = colim(V,y)
⊕

ϕ:V→U
G(V/ϕU)

where the colimit is taken in the category of abelian groups. To a quadruple (V, y, ϕ, s)
occurring in this colimit, we can assign x = u(ϕ)(y) ∈ u(U). Hence we obtain

(jU !G)p =
⊕

x∈u(U)
colim(ϕ:V→U,y), u(ϕ)(y)=x G(V/ϕU).
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This is equal to the expression of the lemma by the description of the points q lying over
x in Sites, Lemma 35.2. �

Remark 38.2. Warning: The result of Lemma 38.1 has no analogue for jU,∗.

39. Pullbacks of flat modules

The pullback of a flat module along a morphism of ringed topoi is flat. This is a bit tricky
to prove.

Lemma 39.1. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi or ringed sites. Then f∗F is a flatOC-module whenever F is a flatOD-module.

Proof. Choose a diagram as in Lemma 7.2. Recall that being a flat module is intrinsic
(see Section 18 and Definition 28.1). Hence it suffices to prove the lemma for the morphism
(h, h]) : (Sh(C′),OC′) → (Sh(D′),OD′). In other words, we may assume that our sites
C and D have all finite limits and that f is a morphism of sites induced by a continuous
functor u : D → C which commutes with finite limits.
Recall that f∗F = OC ⊗f−1OD f−1F (Definition 13.1). By Lemma 28.13 it suffices to
prove that f−1F is a flat f−1OD-module. Combined with the previous paragraph this
reduces us to the situation of the next paragraph.
Assume C and D are sites which have all finite limits and that u : D → C is a continuous
functor which commutes with finite limits. Let O be a sheaf of rings on D and let F be a
flat O-module. Then u defines a morphism of sites f : C → D (Sites, Proposition 14.7).
To show: f−1F is a flat f−1O-module. Let U be an object of C and let

f−1O|U
(f1,...,fn)−−−−−−→ f−1O|⊕nU

(s1,...,sn)−−−−−−→ f−1F|U
be a complex of f−1O|U -modules. Our goal is to construct a factorization of (s1, . . . , sn)
on the members of a covering of U as in Lemma 28.14 part (2). Consider the elements
sa ∈ f−1F(U) and fa ∈ f−1O(U). Since f−1F , resp. f−1O is the sheafification of
upF we may, after replacing U by the members of a covering, assume that sa is the image
of an element s′

a ∈ upF(U) and fa is the image of an element f ′
a ∈ upO(U). Then

after another replacement ofU by the members of a covering we may assume that
∑
f ′
as

′
a

is zero in upF(U). Recall that the category (IuU )opp is directed (Sites, Lemma 5.2) and
that upF(U) = colim(Iu

U
)opp F(V ) and upO(U) = colim(Iu

U
)opp O(V ). Hence we may

assume there is a pair (V, φ) ∈ Ob(IuU ) where V is an object of D and φ is a morphism
φ : U → u(V ) of D and elements s′′

a ∈ F(V ) and f ′′
a ∈ O(V ) whose images in upF(U)

and upO(U) are equal to s′
a and f ′

a and such that
∑
f ′′
a s

′′
a = 0 in F(V ). Then we obtain

a complex

O|V
(f ′′

1 ,...,f
′′
n )−−−−−−−→ O|⊕nV

(s′′
1 ,...,s

′′
n)−−−−−−→ F|V

and we can apply the other direction of Lemma 28.14 to see there exists a covering {Vi →
V } of D and for each i a factorization

O|⊕nVi
B′′
i−−→ O|⊕liVi

(t′′
i1,...,t

′′
ili

)
−−−−−−−→ F|Vi

of (s′′
1 , . . . , s

′′
n)|Vi such that Bi ◦ (f ′′

1 , . . . , f
′′
n )|Vi = 0. Set Ui = U ×φ,u(V ) u(Vi), denote

Bi ∈ Mat(li × n, f−1O(Ui)) the image of B′′
i , and denote tij ∈ f−1F(Ui) the image of

t′′ij . Then we get a factorization

f−1O|⊕nUi
Bi−−→ f−1O|⊕liUi

(ti1,...,tili )
−−−−−−−→ F|Ui
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of (s1, . . . , sn)|Ui such that Bi ◦ (f1, . . . , fn)|Ui = 0. This finishes the proof. �

Lemma 39.2. Let (C,O) be a ringed site. Let p be a point of C. IfF is a flatO-module,
then Fp is a flatOp-module.

Proof. In Section 37 we have seen that we can think of p as a morphism of ringed
topoi

(p, idOp
) : (Sh(pt),Op) −→ (Sh(C),O).

such that the pullback functor p∗ : Mod(O) → Mod(Op) equals the stalk functor. Thus
the lemma follows from Lemma 39.1. �

Lemma 39.3. Let (C,O) be a ringed site. Let F be a sheaf ofO-modules. Let {pi}i∈I
be a conservative family of points of C. ThenF is flat if and only ifFpi is a flatOpi -module
for all i ∈ I .

Proof. By Lemma 39.2 we see one of the implications. For the converse, use that
(F⊗O G)p = Fp⊗Op

Gp by Lemma 26.2 (as taking stalks at p is given by p−1) and Lemma
14.4. �

Lemma 39.4. Let f : (Sh(C′),O′)→ (Sh(C′),O) be a morphism of ringed topoi. Let
0→ F → G → H → 0 be a short exact sequence of O-modules withH a flat O-module.
Then the sequence 0→ f∗F → f∗G → f∗H → 0 is exact as well.

Proof. Since f−1 is exact we have the short exact sequence 0→ f−1F → f−1G →
f−1H → 0 of f−1O-modules. By Lemma 39.1 the f−1O-module f−1H is flat. By Lemma
28.9 this implies that tensoring the sequence over f−1O with O′ the sequence remains
exact. Since f∗F = f−1F ⊗f−1O O′ and similarly for G andH we conclude. �

40. Locally ringed topoi

A reference for this section is [?, Exposé IV, Exercice 13.9].

Lemma 40.1. Let (C,O) be a ringed site. The following are equivalent
(1) For every object U of C and f ∈ O(U) there exists a covering {Uj → U} such

that for each j either f |Uj is invertible or (1− f)|Uj is invertible.
(2) For U ∈ Ob(C), n ≥ 1, and f1, . . . , fn ∈ O(U) which generate the unit ideal

inO(U) there exists a covering {Uj → U} such that for each j there exists an i
such that fi|Uj is invertible.

(3) The map of sheaves of sets

(O ×O)q (O ×O) −→ O ×O
which maps (f, a) in the first component to (f, af) and (f, b) in the second
component to (f, b(1− f)) is surjective.

Proof. It is clear that (2) implies (1). To show that (1) implies (2) we argue by induc-
tion onn. The first case isn = 2 (sincen = 1 is trivial). In this case we have a1f1+a2f2 =
1 for some a1, a2 ∈ O(U). By assumption we can find a covering {Uj → U} such that for
each j either a1f1|Uj is invertible or a2f2|Uj is invertible. Hence either f1|Uj is invertible
or f2|Uj is invertible as desired. For n > 2 we have a1f1 + . . . + anfn = 1 for some
a1, . . . , an ∈ O(U). By the case n = 2 we see that we have some covering {Uj → U}j∈J
such that for each j either fn|Uj is invertible or a1f1 + . . . + an−1fn−1|Uj is invertible.
Say the first case happens for j ∈ Jn. Set J ′ = J \ Jn. By induction hypothesis, for each
j ∈ J ′ we can find a covering {Ujk → Uj}k∈Kj such that for each k ∈ Kj there exists
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an i ∈ {1, . . . , n− 1} such that fi|Ujk is invertible. By the axioms of a site the family of
morphisms {Uj → U}j∈Jn ∪ {Ujk → U}j∈J′,k∈Kj is a covering which has the desired
property.

Assume (1). To see that the map in (3) is surjective, let (f, c) be a section ofO×O over U .
By assumption there exists a covering {Uj → U} such that for each j either f or 1 − f
restricts to an invertible section. In the first case we can take a = c|Uj (f |Uj )−1, and in the
second case we can take b = c|Uj (1− f |Uj )−1. Hence (f, c) is in the image of the map on
each of the members. Conversely, assume (3) holds. For any U and f ∈ O(U) there exists
a covering {Uj → U} of U such that the section (f, 1)|Uj is in the image of the map in (3)
on sections over Uj . This means precisely that either f or 1− f restricts to an invertible
section over Uj , and we see that (1) holds. �

Lemma 40.2. Let (C,O) be a ringed site. Consider the following conditions
(1) For every object U of C and f ∈ O(U) there exists a covering {Uj → U} such

that for each j either f |Uj is invertible or (1− f)|Uj is invertible.
(2) For every point p of C the stalkOp is either the zero ring or a local ring.

We always have (1)⇒ (2). If C has enough points then (1) and (2) are equivalent.

Proof. Assume (1). Let p be a point of C given by a functor u : C → Sets. Let
fp ∈ Op. Since Op is computed by Sites, Equation (32.1.1) we may represent fp by a
triple (U, x, f) where x ∈ U(U) and f ∈ O(U). By assumption there exists a covering
{Ui → U} such that for each i either f or 1−f is invertible onUi. Becauseu defines a point
of the site we see that for some i there exists an xi ∈ u(Ui) which maps to x ∈ u(U). By
the discussion surrounding Sites, Equation (32.1.1) we see that (U, x, f) and (Ui, xi, f |Ui)
define the same element of Op. Hence we conclude that either fp or 1 − fp is invertible.
ThusOp is a ring such that for every element a either a or 1− a is invertible. This means
thatOp is either zero or a local ring, see Algebra, Lemma 18.2.

Assume (2) and assume that C has enough points. Consider the map of sheaves of sets

O ×O qO ×O −→ O ×O

of Lemma 40.1 part (3). For any local ringR the corresponding map (R×R)q(R×R)→
R×R is surjective, see for example Algebra, Lemma 18.2. Since eachOp is a local ring or
zero the map is surjective on stalks. Hence, by our assumption that C has enough points it
is surjective and we win. �

In Modules, Section 2 we pointed out how in a ringed space (X,OX) there can be an open
subspace over which the structure sheaf is zero. To prevent this we can require the sections
1 and 0 to have different values in every stalk of the spaceX . In the setting of ringed topoi
and ringed sites the condition is that

(40.2.1) ∅# −→ Equalizer(0, 1 : ∗ −→ O)

is an isomorphism of sheaves. Here ∗ is the singleton sheaf, resp. ∅# is the “empty sheaf”,
i.e., the final, resp. initial object in the category of sheaves, see Sites, Example 10.2, resp.
Section 42. In other words, the condition is that whenever U ∈ Ob(C) is not sheaf theo-
retically empty, then 1, 0 ∈ O(U) are not equal. Let us state the obligatory lemma.

Lemma 40.3. Let (C,O) be a ringed site. Consider the statements
(1) (40.2.1) is an isomorphism, and
(2) for every point p of C the stalkOp is not the zero ring.
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We always have (1)⇒ (2) and if C has enough points then (1)⇔ (2).

Proof. Omitted. �

Lemmas 40.1, 40.2, and 40.3 motivate the following definition.

Definition 40.4. A ringed site (C,O) is said to be locally ringed site if (40.2.1) is an
isomorphism, and the equivalent properties of Lemma 40.1 are satisfied.

In [?, Exposé IV, Exercice 13.9] the condition that (40.2.1) be an isomorphism is missing
leading to a slightly different notion of a locally ringed site and locally ringed topos. As
we are motivated by the notion of a locally ringed space we decided to add this condition
(see explanation above).

Lemma 40.5. Being a locally ringed site is an intrinsic property. More precisely,
(1) if f : Sh(C′)→ Sh(C) is a morphism of topoi and (C,O) is a locally ringed site,

then (C′, f−1O) is a locally ringed site, and
(2) if (f, f ]) : (Sh(C′),O′) → (Sh(C),O) is an equivalence of ringed topoi, then

(C,O) is locally ringed if and only if (C′,O′) is locally ringed.

Proof. It is clear that (2) follows from (1). To prove (1) note that as f−1 is exact we
have f−1∗ = ∗, f−1∅# = ∅#, and f−1 commutes with products, equalizers and trans-
forms isomorphisms and surjections into isomorphisms and surjections. Thus f−1 trans-
forms the isomorphism (40.2.1) into its analogue for f−1O and transforms the surjection
of Lemma 40.1 part (3) into the corresponding surjection for f−1O. �

In fact Lemma 40.5 part (2) is the analogue of Schemes, Lemma 2.2. It assures us that the
following definition makes sense.

Definition 40.6. A ringed topos (Sh(C),O) is said to be locally ringed if the un-
derlying ringed site (C,O) is locally ringed.

Here is an example of a consequence of being locally ringed.

Lemma 40.7. Let (Sh(C),O) be a ringed topos. Any locally free O-module of rank
1 is invertible. If (C,O) is locally ringed, then the converse holds as well (but in general
this is not the case).

Proof. Assume L is locally free of rank 1 and consider the evaluation map
L ⊗O HomO(L,O) −→ O

Given any objectU of C and restricting to the members of a covering trivializingL, we see
that this map is an isomorphism (details omitted). Hence L is invertible by Lemma 32.2.
Assume (Sh(C),O) is locally ringed. Let U be an object of C. In the proof of Lemma 32.2
we have seen that there exists a covering {Ui → U} such that L|C/Ui is a direct summand
of a finite free OUi -module. After replacing U by Ui, let p : O⊕r

U → O⊕r
U be a projector

whose image is isomorphic to L|C/U . Then p corresponds to a matrix
P = (pij) ∈Mat(r × r,O(U))

which is a projector: P 2 = P . Set A = O(U) so that P ∈ Mat(r × r,A). By Algebra,
Lemma 78.2 the image of P is a finite locally free module M over A. Hence there are
f1, . . . , ft ∈ A generating the unit ideal, such that Mfi is finite free. By Lemma 40.1
after replacing U by the members of an open covering, we may assume that M is free.
This means that L|U is free (details omitted). Of course, since L is invertible, this is only
possible if the rank of L|U is 1 and the proof is complete. �
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Next, we want to work out what it means to have a morphism of locally ringed spaces. In
order to do this we have the following lemma.

Lemma 40.8. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. Consider the following conditions

(1) The diagram of sheaves

f−1(O∗
D)

f]
//

��

O∗
C

��
f−1(OD) f] // OC

is cartesian.
(2) For any point p of C , setting q = f ◦ p, the diagram

O∗
D,q

//

��

O∗
C,p

��
OD,q // OC,p

of sets is cartesian.
We always have (1) ⇒ (2). If C has enough points then (1) and (2) are equivalent. If
(Sh(C),OC) and (Sh(D),OD) are locally ringed topoi then (2) is equivalent to

(3) For any point p of C , setting q = f ◦p, the ring mapOD,q → OC,p is a local ring
map.

In fact, properties (2), or (3) for a conservative family of points implies (1).

Proof. This lemma proves itself, in other words, it follows by unwinding the defini-
tions. �

Definition 40.9. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of
ringed topoi. Assume (Sh(C),OC) and (Sh(D),OD) are locally ringed topoi. We say
that (f, f ]) is a morphism of locally ringed topoi if and only if the diagram of sheaves

f−1(O∗
D)

f]
//

��

O∗
C

��
f−1(OD) f] // OC

(see Lemma 40.8) is cartesian. If (f, f ]) is a morphism of ringed sites, then we say that it is a
morphism of locally ringed sites if the associated morphism of ringed topoi is a morphism
of locally ringed topoi.

It is clear that an isomorphism of ringed topoi between locally ringed topoi is automati-
cally an isomorphism of locally ringed topoi.

Lemma 40.10. Let (f, f ]) : (Sh(C1),O1)→ (Sh(C2),O2) and (g, g]) : (Sh(C2),O2)→
(Sh(C3),O3) be morphisms of locally ringed topoi. Then the composition (g, g])◦(f, f ])
(see Definition 7.1) is also a morphism of locally ringed topoi.

Proof. Omitted. �
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Lemma 40.11. If f : Sh(C′)→ Sh(C) is a morphism of topoi. IfO is a sheaf of rings
on C , then

f−1(O∗) = (f−1O)∗.

In particular, ifO turns C into a locally ringed site, then setting f ] = id the morphism of
ringed topoi

(f, f ]) : (Sh(C′), f−1O)→ (Sh(C,O)
is a morphism of locally ringed topoi.

Proof. Note that the diagram

O∗ //

u7→(u,u−1)
��

∗

1
��

O ×O
(a,b)7→ab // O

is cartesian. Since f−1 is exact we conclude that

f−1(O∗)

u7→(u,u−1)
��

// ∗

1
��

f−1O × f−1O
(a,b)7→ab // f−1O

is cartesian which implies the first assertion. For the second, note that (C′, f−1O) is a
locally ringed site by Lemma 40.5 so that the assertion makes sense. Now the first part
implies that the morphism is a morphism of locally ringed topoi. �

Lemma 40.12. Localization of locally ringed sites and topoi.
(1) Let (C,O) be a locally ringed site. Let U be an object of C. Then the localization

(C/U,OU ) is a locally ringed site, and the localization morphism

(jU , j]U ) : (Sh(C/U),OU )→ (Sh(C),O)

is a morphism of locally ringed topoi.
(2) Let (C,O) be a locally ringed site. Let f : V → U be a morphism of C. Then the

morphism

(j, j]) : (Sh(C/V ),OV )→ (Sh(C/U),OU )

of Lemma 19.5 is a morphism of locally ringed topoi.
(3) Let (f, f ]) : (C,O) −→ (D,O′) be a morphism of locally ringed sites where f

is given by the continuous functor u : D → C. Let V be an object of D and let
U = u(V ). Then the morphism

(f ′, (f ′)]) : (Sh(C/U),OU )→ (Sh(D/V ),O′
V )

of Lemma 20.1 is a morphism of locally ringed sites.
(4) Let (f, f ]) : (C,O) −→ (D,O′) be a morphism of locally ringed sites where f

is given by the continuous functor u : D → C. Let V ∈ Ob(D), U ∈ Ob(C),
and c : U → u(V ). Then the morphism

(fc, (fc)]) : (Sh(C/U),OU )→ (Sh(D/V ),O′
V )

of Lemma 20.2 is a morphism of locally ringed topoi.



1746 18. MODULES ON SITES

(5) Let (Sh(C),O) be a locally ringed topos. Let F be a sheaf on C. Then the local-
ization (Sh(C)/F ,OF ) is a locally ringed topos and the localization morphism

(jF , j
]
F ) : (Sh(C)/F ,OF )→ (Sh(C),O)

is a morphism of locally ringed topoi.
(6) Let (Sh(C),O) be a locally ringed topos. Let s : G → F be a map of sheaves on
C. Then the morphism

(j, j]) : (Sh(C)/G,OG) −→ (Sh(C)/F ,OF )
of Lemma 21.4 is a morphism of locally ringed topoi.

(7) Let f : (Sh(C),O) −→ (Sh(D),O′) be a morphism of locally ringed topoi. Let
G be a sheaf on D. Set F = f−1G. Then the morphism

(f ′, (f ′)]) : (Sh(C)/F ,OF ) −→ (Sh(D)/G,O′
G)

of Lemma 22.1 is a morphism of locally ringed topoi.
(8) Let f : (Sh(C),O) −→ (Sh(D),O′) be a morphism of locally ringed topoi. Let
G be a sheaf on D, let F be a sheaf on C , and let s : F → f−1G be a morphism
of sheaves. Then the morphism

(fs, (fs)]) : (Sh(C)/F ,OF ) −→ (Sh(D)/G,O′
G)

of Lemma 22.3 is a morphism of locally ringed topoi.

Proof. Part (1) is clear since OU is just the restriction of O, so Lemmas 40.5 and
40.11 apply. Part (2) is clear as the morphism (j, j]) is actually a localization of a locally
ringed site so (1) applies. Part (3) is clear also since (f ′)] is just the restriction of f ] to
the topos Sh(C)/F , see proof of Lemma 22.1 (hence the diagram of Definition 40.9 for
the morphism f ′ is just the restriction of the corresponding diagram for f , and restriction
is an exact functor). Part (4) follows formally on combining (2) and (3). Parts (5), (6),
(7), and (8) follow from their counterparts (1), (2), (3), and (4) by enlarging the sites as in
Lemma 7.2 and translating everything in terms of sites and morphisms of sites using the
comparisons of Lemmas 21.3, 21.5, 22.2, and 22.4. (Alternatively one could use the same
arguments as in the proofs of (1), (2), (3), and (4) to prove (5), (6), (7), and (8) directly.) �

41. Lower shriek for modules

In this section we extend the construction of g! discussed in Section 16 to the case of sheaves
of modules.

Lemma 41.1. Let u : C → D be a continuous and cocontinuous functor between sites.
Denote g : Sh(C)→ Sh(D) the associated morphism of topoi. LetOD be a sheaf of rings
on D. Set OC = g−1OD. Hence g becomes a morphism of ringed topoi with g∗ = g−1.
In this case there exists a functor

g! : Mod(OC) −→Mod(OD)
which is left adjoint to g∗.

Proof. Let U be an object of C. For anyOD-module G we have

HomOC (jU !OU , g−1G) = g−1G(U)
= G(u(U))
= HomOD (ju(U)!Ou(U),G)



41. LOWER SHRIEK FOR MODULES 1747

because g−1 is described by restriction, see Sites, Lemma 21.5. Of course a similar formula
holds a direct sum of modules of the form jU !OU . By Homology, Lemma 29.6 and Lemma
28.8 we see that g! exists. �

Remark 41.2. Warning! Let u : C → D, g, OD , and OC be as in Lemma 41.1. In
general it is not the case that the diagram

Mod(OC)
g!
//

forget

��

Mod(OD)

forget

��
Ab(C)

gAb! // Ab(D)

commutes (here gAb! is the one from Lemma 16.2). There is a transformation of functors

gAb! ◦ forget −→ forget ◦ g!

From the proof of Lemma 41.1 we see that this is an isomorphism if and only if gAb! jU !OU →
g!jU !OU is an isomorphism for all objects U of C. Since we have g!jU !OU = ju(U)!Ou(U)
this holds if and only if

gAb! jU !OU −→ ju(U)!Ou(U)

is an isomorphism for all objects U of C. Note that for such a U we obtain a commutative
diagram

C/U
u′
//

jU

��

D/u(U)

ju(U)

��
C u // D

of cocontinuous functors of sites, see Sites, Lemma 28.4 and therefore gAb! jU ! = ju(U)!(g′)Ab!
where g′ : Sh(C/U) → Sh(D/u(U)) is the morphism of topoi induced by the cocontin-
uous functor u′. Hence we see that g! = gAb! if the canonical map

(41.2.1) (g′)Ab! OU −→ Ou(U)

is an isomorphism for all objects U of C.

The following two results are of a slightly different nature.

Lemma 41.3. Assume given a commutative diagram

(Sh(C′),OC′)
(g′,(g′)])

//

(f ′,(f ′)])
��

(Sh(C),OC)

(f,f])
��

(Sh(D′),OD′)
(g,g]) // (Sh(D),OD)

of ringed topoi. Assume
(1) f , f ′, g, and g′ correspond to cocontinuous functors u, u′, v, and v′ as in Sites,

Lemma 21.1,
(2) v ◦ u′ = u ◦ v′,
(3) v and v′ are continuous as well as cocontinuous,
(4) for any object V ′ of D′ the functor u

′

V ′I → u
v(V ′)I given by v is cofinal, and

(5) g−1OD = OD′ and (g′)−1OC = OC′ .
Then we have f ′

∗ ◦ (g′)∗ = g∗ ◦ f∗ and g′
! ◦ (f ′)−1 = f−1 ◦ g! on modules.
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Proof. We have (g′)∗F = (g′)−1F and g∗G = g−1G because of condition (5). Thus
the first equality follows immediately from the corresponding equality in Sites, Lemma
28.6. Since the left adjoint functors g! and g′

! to g∗ and (g′)∗ exist by Lemma 41.1 we see
that the second equality follows by uniqueness of adjoint functors. �

Lemma 41.4. Consider a commutative diagram

(Sh(C′),OC′)
(g′,(g′)])

//

(f ′,(f ′)])
��

(Sh(C),OC)

(f,f])
��

(Sh(D′),OD′)
(g,g]) // (Sh(D),OD)

of ringed topoi and suppose we have functors

C′
v′
// C

D′ v //

u′

OO

D

u

OO

such that (with notation as in Sites, Sections 14 and 21) we have
(1) u and u′ are continuous and give rise to the morphisms f and f ′,
(2) v and v′ are cocontinuous giving rise to the morphisms g and g′,
(3) u ◦ v = v′ ◦ u′,
(4) v and v′ are continuous as well as cocontinuous, and
(5) g−1OD = OD′ and (g′)−1OC = OC′ .

Then f ′
∗ ◦ (g′)∗ = g∗ ◦ f∗ and g′

! ◦ (f ′)−1 = f−1 ◦ g! on modules.

Proof. We have (g′)∗F = (g′)−1F and g∗G = g−1G because of condition (5). Thus
the first equality follows immediately from the corresponding equality in Sites, Lemma
28.7. Since the left adjoint functors g! and g′

! to g∗ and (g′)∗ exist by Lemma 41.1 we see
that the second equality follows by uniqueness of adjoint functors. �

42. Constant sheaves

Let E be a set and let C be a site. We will denote E the constant sheaf with value E on
C. If E is an abelian group, ring, module, etc, then E is a sheaf of abelian groups, rings,
modules, etc.

Lemma 42.1. Let C be a site. If 0 → A → B → C → 0 is a short exact sequence of
abelian groups, then 0 → A → B → C → 0 is an exact sequence of abelian sheaves and
in fact it is even exact as a sequence of abelian presheaves.

Proof. Since sheafification is exact it is clear that 0 → A → B → C → 0 is an
exact sequence of abelian sheaves. Thus 0→ A→ B → C is an exact sequence of abelian
presheaves. To see thatB → C is surjective, pick a set theoretical section s : C → B. This
induces a section s : C → B of sheaves of sets left inverse to the surjection B → C. �

Lemma 42.2. Let C be a site. Let Λ be a ring and let M and Q be Λ-modules. If
Q is a finitely presented Λ-module, then we have M ⊗Λ Q(U) = M(U) ⊗Λ Q for all
U ∈ Ob(C).



42. CONSTANT SHEAVES 1749

Proof. Choose a presentation Λ⊕m → Λ⊕n → Q→ 0. This gives an exact sequence
M⊕m →M⊕n →M ⊗Q→ 0. By Lemma 42.1 we obtain an exact sequence

M(U)⊕m →M(U)⊕n →M ⊗Q(U)→ 0

which proves the lemma. (Note that taking sections over U always commutes with finite
direct sums, but not arbitrary direct sums.) �

Lemma 42.3. Let C be a site. Let Λ be a coherent ring. LetM be a flat Λ-module. For
U ∈ Ob(C) the module M(U) is a flat Λ-module.

Proof. Let I ⊂ Λ be a finitely generated ideal. By Algebra, Lemma 39.5 it suffices to
show that M(U) ⊗Λ I → M(U) is injective. As Λ is coherent I is finitely presented as
a Λ-module. By Lemma 42.2 we see that M(U) ⊗ I = M ⊗ I . Since M is flat the map
M ⊗ I →M is injective, whence M ⊗ I →M is injective. �

Lemma 42.4. Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. The
sheaf Λ∧ = lim Λ/In is a flat Λ-algebra. Moreover we have canonical identifications

Λ/IΛ = Λ/I = Λ∧/IΛ∧ = Λ∧/I · Λ∧ = Λ∧/I∧ = Λ/I

where I∧ = lim I/In.

Proof. To prove Λ∧ is flat, it suffices to show that Λ∧(U) is flat as a Λ-module for
each U ∈ Ob(C), see Lemmas 28.2 and 28.3. By Lemma 42.3 we see that

Λ∧(U) = lim Λ/In(U)

is a limit of a system of flat Λ/In-modules. By Lemma 42.1 we see that the transition maps
are surjective. We conclude by More on Algebra, Lemma 27.4.
To see the equalities, note that Λ(U)/IΛ(U) = Λ/I(U) by Lemma 42.2. It follows that
Λ/IΛ = Λ/I = Λ/I . The system of short exact sequences

0→ I/In(U)→ Λ/In(U)→ Λ/I(U)→ 0
has surjective transition maps, hence gives a short exact sequence

0→ lim I/In(U)→ lim Λ/In(U)→ lim Λ/I(U)→ 0

see Homology, Lemma 31.3. Thus we see that Λ∧/I∧ = Λ/I . Since

IΛ∧ ⊂ I · Λ∧ ⊂ I∧

it suffices to show that IΛ∧(U) = I∧(U) for all U . Choose generators I = (f1, . . . , fr).
For every n we obtain a short exact sequence

0→ Kn/(In)⊕r → (Λ/In)⊕r (f1,...,fr)−−−−−−→ I/In+1 → 0
where Kn = {(x1, . . . , xr) ∈ Λ⊕r |

∑
xifi ∈ In+1}. We obtain short exact sequences

0→ Kn/(In)⊕r(U)→ (Λ/In)⊕r(U)→ I/In+1(U)→ 0

A calculation shows Kn = K + (In)⊕r , hence the transition maps Kn+1/(In+1)⊕r →
Kn/(In)⊕r are surjective. Hence the system of modules on the left hand side has surjective
transition maps and a fortiori has ML. Thus we see that (f1, . . . , fr) : (Λ∧)⊕r(U) →
I∧(U) is surjective by Homology, Lemma 31.3 which is what we wanted to show. �

Lemma 42.5. Let C be a site. Let Λ be a ring and letM be a Λ-module. Assume Sh(C)
is not the empty topos. Then
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(1) M is a finite type sheaf of Λ-modules if and only if M is a finite Λ-module, and
(2) M is a finitely presented sheaf of Λ-modules if and only if M is a finitely pre-

sented Λ-module.

Proof. Proof of (1). If M is generated by x1, . . . , xr then x1, . . . , xr define global
sections of M which generate it, hence M is of finite type. Conversely, assume M is of
finite type. LetU ∈ C be an object which is not sheaf theoretically empty (Sites, Definition
42.1). Such an object exists as we assumed Sh(C) is not the empty topos. Then there exists
a covering {Ui → U} and finitely many sections sij ∈ M(Ui) generating M |Ui . After
refining the covering we may assume that sij come from elements xij of M . Then xij
define global sections of M whose restriction to U generate M .

Assume there exist elementsx1, . . . , xr ofM which define global sections ofM generating
M as a sheaf of Λ-modules. We will show that x1, . . . , xr generate M as a Λ-module. Let
x ∈ M . We can find a covering {Ui → U}i∈I and fi,j ∈ Λ(Ui) such that x|Ui =∑
fi,jxj |Ui . After refining the covering we may assume fi,j ∈ Λ. Since U is not sheaf

theoretically empty, there is at least one i ∈ I such thatUi is not sheaf theoretically empty.
Then the mapM →M(Ui) is injective (details omitted). We conclude that x =

∑
fi,jxj

in M as desired.

Proof of (2). Assume M is a Λ-module of finite presentation. By (1) we see that M is of
finite type. Choose generators x1, . . . , xr of M as a Λ-module. This determines a short
exact sequence 0→ K → Λ⊕r →M → 0 which turns into a short exact sequence

0→ K → Λ⊕r →M → 0

by Lemma 42.1. By Lemma 24.1 we see that K is of finite type. Hence K is a finite Λ-
module by (1). Thus M is a Λ-module of finite presentation. �

43. Locally constant sheaves

Here is the general definition.

Definition 43.1. Let C be a site. LetF be a sheaf of sets, groups, abelian groups, rings,
modules over a fixed ring Λ, etc.

(1) We say F is a constant sheaf of sets, groups, abelian groups, rings, modules over
a fixed ring Λ, etc if it is isomorphic as a sheaf of sets, groups, abelian groups,
rings, modules over a fixed ring Λ, etc to a constant sheaf E as in Section 42.

(2) We say F is locally constant if for every object U of C there exists a covering
{Ui → U} such that F|Ui is a constant sheaf.

(3) If F is a sheaf of sets or groups, then we say F is finite locally constant if the
constant values are finite sets or finite groups.

Lemma 43.2. Let f : Sh(C) → Sh(D) be a morphism of topoi. If G is a locally
constant sheaf of sets, groups, abelian groups, rings, modules over a fixed ring Λ, etc onD,
the same is true for f−1G on C.

Proof. Omitted. �

Lemma 43.3. Let C be a site with a final object X .
(1) Let ϕ : F → G be a map of locally constant sheaves of sets on C. If F is finite

locally constant, there exists a covering {Ui → X} such that ϕ|Ui is the map of
constant sheaves associated to a map of sets.
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(2) Let ϕ : F → G be a map of locally constant sheaves of abelian groups on C. If F
is finite locally constant, there exists a covering {Ui → X} such that ϕ|Ui is the
map of constant abelian sheaves associated to a map of abelian groups.

(3) Let Λ be a ring. Letϕ : F → G be a map of locally constant sheaves of Λ-modules
on C. IfF is of finite type, then there exists a covering {Ui → X} such thatϕ|Ui
is the map of constant sheaves of Λ-modules associated to a map of Λ-modules.

Proof. Proof omitted. �

Lemma 43.4. Let C be a site. Let Λ be a ring. Let M , N be Λ-modules. Let F ,G be a
locally constant sheaves of Λ-modules.

(1) If M is of finite presentation, then

HomΛ(M,N) = HomΛ(M,N)

(2) If M and N are both of finite presentation, then

IsomΛ(M,N) = IsomΛ(M,N)

(3) If F is of finite presentation, then HomΛ(F ,G) is a locally constant sheaf of
Λ-modules.

(4) IfF and G are both of finite presentation, then IsomΛ(F ,G) is a locally constant
sheaf of sets.

Proof. Proof of (1). Set E = HomΛ(M,N). We want to show the canonical map

E −→ HomΛ(M,N)

is an isomorphism. The module M has a presentation Λ⊕s → Λ⊕t → M → 0. Then E
sits in an exact sequence

0→ E → HomΛ(Λ⊕t, N)→ HomΛ(Λ⊕s, N)

and we have similarly

0→ HomΛ(M,N)→ HomΛ(Λ⊕t, N)→ HomΛ(Λ⊕s, N)

This reduces the question to the case where M is a finite free module where the result is
clear.

Proof of (3). The question is local on C , hence we may assume F = M and G = N for
some Λ-modules M and N . By Lemma 42.5 the module M is of finite presentation. Thus
the result follows from (1).

Parts (2) and (4) follow from parts (1) and (3) and the fact that Isom can be viewed as the
subsheaf of sections ofHomΛ(F ,G) which have an inverse inHomΛ(G,F). �

Lemma 43.5. Let C be a site.
(1) The category of finite locally constant sheaves of sets is closed under finite limits

and colimits inside Sh(C).
(2) The category of finite locally constant abelian sheaves is a weak Serre subcategory

of Ab(C).
(3) Let Λ be a Noetherian ring. The category of finite type, locally constant sheaves

of Λ-modules on C is a weak Serre subcategory of Mod(C,Λ).
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Proof. Proof of (1). We may work locally on C. Hence by Lemma 43.3 we may
assume we are given a finite diagram of finite sets such that our diagram of sheaves is
the associated diagram of constant sheaves. Then we just take the limit or colimit in the
category of sets and take the associated constant sheaf. Some details omitted.

To prove (2) and (3) we use the criterion of Homology, Lemma 10.3. Existence of ker-
nels and cokernels is argued in the same way as above. Of course, the reason for using
a Noetherian ring in (3) is to assure us that the kernel of a map of finite Λ-modules is a
finite Λ-module. To see that the category is closed under extensions (in the case of sheaves
Λ-modules), assume given an extension of sheaves of Λ-modules

0→ F → E → G → 0

on C with F , G finite type and locally constant. Localizing on C we may assume F and G
are constant, i.e., we get

0→M → E → N → 0
for some Λ-modules M,N . Choose generators y1, . . . , ym of N , so that we get a short
exact sequence 0 → K → Λ⊕m → N → 0 of Λ-modules. Localizing further we may
assume yj lifts to a section sj of E . Thus we see that E is a pushout as in the following
diagram

0 // K

��

// Λ⊕m

��

// N

��

// 0

0 // M // E // N // 0

By Lemma 43.3 again (and the fact that K is a finite Λ-module as Λ is Noetherian) we see
that the map K →M is locally constant, hence we conclude. �

Lemma 43.6. Let C be a site. Let Λ be a ring. The tensor product of two locally
constant sheaves of Λ-modules on C is a locally constant sheaf of Λ-modules.

Proof. Omitted. �

44. Localizing sheaves of rings

Let (C,O) be a ringed site. Let S ⊂ O be a sub-presheaf of sets such that for allU ∈ Ob(C)
the set S(U) ⊂ O(U) is a multiplicative subset, see Algebra, Definition 9.1. In this case
we can consider the presheaf of rings

S−1O : U 7−→ S(U)−1O(U).

The restriction mapping sends the section f/s, f ∈ O(U), s ∈ S(U) to (f |V )/(s|V ) for
V → U in C.

Lemma 44.1. In the situation above the map to the sheafification

O −→ (S−1O)#

is a homomorphism of sheaves of rings with the following universal property: for any
homomorphism of sheaves of rings O → A such that each local section of S maps to an
invertible section ofA there exists a unique factorization (S−1O)# → A.

Proof. Omitted. �
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Let (C,O) be a ringed site. Let S ⊂ O be a sub-presheaf of sets such that for all U ∈ C the
set S(U) ⊂ O(U) is a multiplicative subset. Let F be a sheaf of O-modules. In this case
we can consider the presheaf of S−1O-modules

S−1F : U 7−→ S(U)−1F(U).
The restriction mapping sends the section t/s, t ∈ F(U), s ∈ S(U) to (t|V )/(s|V ) if
V → U is a morphism of C. Then S−1F is a presheaf of S−1O-modules.

Lemma 44.2. In the situation above the map to the sheafification

F −→ (S−1F)#

has the following universal property: for any homomorphism of O-modules F → G
such that each local section of S acts invertibly on G there exists a unique factorization
(S−1F)# → G. Moreover we have

(S−1F)# = (S−1O)# ⊗O F
as sheaves of (S−1O)#-modules.

Proof. Omitted. �

45. Sheaves of pointed sets

In this section we collect some facts about sheaves of pointed sets which we’ve previously
mentioned only for abelian sheaves.
A pointed set is a pair (S, 0) where S is a set and 0 ∈ S is an element of S. A morphism
(S, 0)→ (S′, 0′) of pointed sets is simply a map of setsS → S′ sending 0 to 0′. We’ll abuse
notation and say “let S be a pointed set” to mean S is endowed with a marked element
0 ∈ S. A sheaf of pointed sets is the same thing as a sheaf of sets F endowed with a
“marking” 0 : ∗ → F where ∗ is the final sheaf (Sites, Example 10.2).
Given a morphism of sites or of topoi, there are pushforward and pullback functors on the
categories of sheaves of pointed sets, see Sites, Section 44. These are constructed by taking
the pushforward, resp. pullback of the underlying sheaf of sets and suitably marking it
(using that the pullback of the final sheaf is the final sheaf).
Let u : C → D be a continuous and cocontinuous functor between sites. Let g : Sh(C)→
Sh(D) be the morphism of topoi associated with u, see Sites, Lemma 21.1. Then g−1 on
sheaves of pointed sets has an left adjoint g! as well. The construction of this functor is
entirely analogous to the construction of g! on abelian sheaves in Section 16.
Similarly, if j : C/U → C is as in Section 19 then there is a left adjoint j! to the functor
j−1 on sheaves of pointed sets
If we ever need these facts and constructions we will precisely state and prove here the
corresponding lemmas.
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CHAPTER 19

Injectives

1. Introduction

In future chapters we will use the existence of injectives and K-injective complexes to
do cohomology of sheaves of modules on ringed sites. In this chapter we explain how
to produce injectives and K-injective complexes first for modules on sites and later more
generally for Grothendieck abelian categories.

We observe that we already know that the category of abelian groups and the category of
modules over a ring have enough injectives, see More on Algebra, Sections 54 and 55

2. Baer’s argument for modules

There is another, more set-theoretic approach to showing that any R-module M can be
imbedded in an injective module. This approach constructs the injective module by a
transfinite colimit of push-outs. While this method is somewhat abstract and more com-
plicated than the one of More on Algebra, Section 55, it is also more general. Apparently
this method originates with Baer, and was revisited by Cartan and Eilenberg in [?] and by
Grothendieck in [?]. There Grothendieck uses it to show that many other abelian cate-
gories have enough injectives. We will get back to the general case later (Section 11).

We begin with a few set theoretic remarks. Let {Bβ}β∈α be an inductive system of objects
in some category C , indexed by an ordinal α. Assume that colimβ∈αBβ exists in C. If A
is an object of C , then there is a natural map

(2.0.1) colimβ∈α MorC(A,Bβ) −→ MorC(A, colimβ∈αBβ).

because if one is given a map A → Bβ for some β, one naturally gets a map from A into
the colimit by composing with Bβ → colimβ∈αBα. Note that the left colimit is one of
sets! In general, (2.0.1) is neither injective or surjective.

Example 2.1. Consider the category of sets. Let A = N and Bn = {1, . . . , n} be
the inductive system indexed by the natural numbers where Bn → Bm for n ≤ m is the
obvious map. Then colimBn = N, so there is a map A → colimBn, which does not
factor as A→ Bm for any m. Consequently, colim Mor(A,Bn)→ Mor(A, colimBn) is
not surjective.

Example 2.2. Next we give an example where the map fails to be injective. LetBn =
N/{1, 2, . . . , n}, that is, the quotient set of N with the first n elements collapsed to one
element. There are natural maps Bn → Bm for n ≤ m, so the {Bn} form a system of
sets over N. It is easy to see that colimBn = {∗}: it is the one-point set. So it follows
that Mor(A, colimBn) is a one-element set for every set A. However, colim Mor(A,Bn)
is not a one-element set. Consider the family of maps A→ Bn which are just the natural
projections N→ N/{1, 2, . . . , n} and the family of mapsA→ Bn which map the whole

1757
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of A to the class of 1. These two families of maps are distinct at each step and thus are
distinct in colim Mor(A,Bn), but they induce the same map A→ colimBn.
Nonetheless, if we map out of a finite set then (2.0.1) is an isomorphism always.

Lemma 2.3. Suppose that, in (2.0.1), C is the category of sets andA is a finite set, then
the map is a bijection.

Proof. Let f : A → colimBβ . The range of f is finite, containing say elements
c1, . . . , cr ∈ colimBβ . These all come from some elements in Bβ for β ∈ α large by
definition of the colimit. Thus we can define f̃ : A → Bβ lifting f at a finite stage. This
proves that (2.0.1) is surjective. Next, suppose two maps f : A→ Bγ , f

′ : A→ Bγ′ define
the same map A → colimBβ . Then each of the finitely many elements of A gets sent to
the same point in the colimit. By definition of the colimit for sets, there is β ≥ γ, γ′ such
that the finitely many elements of A get sent to the same points in Bβ under f and f ′.
This proves that (2.0.1) is injective. �

The most interesting case of the lemma is when α = ω, i.e., when the system {Bβ} is a
system {Bn}n∈N over the natural numbers as in Examples 2.1 and 2.2. The essential idea
is that A is “small” relative to the long chain of compositions B1 → B2 → . . ., so that it
has to factor through a finite step. A more general version of this lemma can be found in
Sets, Lemma 7.1. Next, we generalize this to the category of modules.

Definition 2.4. Let C be a category, let I ⊂ Arrows(C), and let α be an ordinal. An
object A of C is said to be α-small with respect to I if whenever {Bβ} is a system over α
with transition maps in I , then the map (2.0.1) is an isomorphism.
In the rest of this section we shall restrict ourselves to the category of R-modules for a
fixed commutative ring R. We shall also take I to be the collection of injective maps, i.e.,
the monomorphisms in the category of modules overR. In this case, for any system {Bβ}
as in the definition each of the maps

Bβ → colimβ∈αBβ

is an injection. It follows that the map (2.0.1) is an injection. We can in fact interpret the
Bβ ’s as submodules of the module B = colimβ∈αBβ , and then we have B =

⋃
β∈αBβ .

This is not an abuse of notation if we identify Bα with the image in the colimit. We now
want to show that modules are always small for “large” ordinals α.

Proposition 2.5. Let R be a ring. Let M be an R-module. Let κ the cardinality of
the set of submodules of M . If α is an ordinal whose cofinality is bigger than κ, then M
is α-small with respect to injections.

Proof. The proof is straightforward, but let us first think about a special case. IfM is
finite, then the claim is that for any inductive system {Bβ}with injections between them,
parametrized by a limit ordinal, any map M → colimBβ factors through one of the Bβ .
And this we proved in Lemma 2.3.
Now we start the proof in the general case. We need only show that the map (2.0.1) is
a surjection. Let f : M → colimBβ be a map. Consider the subobjects {f−1(Bβ)} of
M , where Bβ is considered as a subobject of the colimit B =

⋃
β Bβ . If one of these, say

f−1(Bβ), fills M , then the map factors through Bβ .
So suppose to the contrary that all of the f−1(Bβ) were proper subobjects ofM . However,
we know that ⋃

f−1(Bβ) = f−1
(⋃

Bβ

)
= M.
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Now there are at most κ different subobjects of M that occur among the f−1(Bα), by
hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that as β′

ranges over S , the f−1(Bβ′) range over all the f−1(Bα).

However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In particular,
all the f−1(Bβ′), β′ ∈ S are contained in f−1(B

α̃
). It follows that f−1(B

α̃
) = M . In

particular, the map f factors through B
α̃

. �

From this lemma we will be able to deduce the existence of lots of injectives. Let us recall
Baer’s criterion.

Lemma 2.6 (Baer’s criterion). LetR be a ring. AnR-moduleQ is injective if and only
if in every commutative diagram

a

��

// Q

R

??

for a ⊂ R an ideal, the dotted arrow exists.

Proof. This is the equivalence of (1) and (3) in More on Algebra, Lemma 55.4; please
observe that the proof given there is elementary (and does not use Ext groups or the exis-
tence of injectives or projectives in the category of R-modules). �

If M is an R-module, then in general we may have a semi-complete diagram as in Lemma
2.6. In it, we can form the push-out

a

��

// M

��
R // R⊕a M.

Here the vertical map is injective, and the diagram commutes. The point is that we can
extend a→M to R if we extend M to the larger module R⊕a M .

The key point of Baer’s argument is to repeat this procedure transfinitely many times. To
do this we first define, given an R-module M the following (huge) pushout

(2.6.1)

⊕
a

⊕
ϕ∈HomR(a,M) a

//

��

M

��⊕
a

⊕
ϕ∈HomR(a,M) R

//M(M).

Here the top horizontal arrow maps the element a ∈ a in the summand corresponding
to ϕ to the element ϕ(a) ∈ M . The left vertical arrow maps a ∈ a in the summand
corresponding to ϕ simply to the element a ∈ R in the summand corresponding to ϕ.
The fundamental properties of this construction are formulated in the following lemma.

Lemma 2.7. Let R be a ring.
(1) The construction M 7→ (M →M(M)) is functorial in M .
(2) The map M →M(M) is injective.
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(3) For any ideal a and any R-module map ϕ : a → M there is an R-module map
ϕ′ : R→M(M) such that

a

��

ϕ
// M

��
R

ϕ′
//M(M)

commutes.

Proof. Parts (2) and (3) are immediate from the construction. To see (1), letχ : M →
N be an R-module map. We claim there exists a canonical commutative diagram⊕

a

⊕
ϕ∈HomR(a,M) a

//

�� ++

M

χ

++⊕
a

⊕
ϕ∈HomR(a,M) R

++

⊕
a

⊕
ψ∈HomR(a,N) a

//

��

N

⊕
a

⊕
ψ∈HomR(a,N) R

which induces the desired map M(M)→M(N). The middle east-south-east arrow maps
the summand a corresponding to ϕ via ida to the summand a corresponding to ψ = χ◦ϕ.
Similarly for the lower east-south-east arrow. Details omitted. �

The idea will now be to apply the functor M a transfinite number of times. We define
for each ordinal α a functor Mα on the category of R-modules, together with a natural
injection N → Mα(N). We do this by transfinite recursion. First, M1 = M is the
functor defined above. Now, suppose given an ordinal α, and suppose Mα′ is defined for
α′ < α. If α has an immediate predecessor α̃, we let

Mα = M ◦M
α̃
.

If not, i.e., if α is a limit ordinal, we let
Mα(N) = colimα′<α Mα′(N).

It is clear (e.g., inductively) that the Mα(N) form an inductive system over ordinals, so
this is reasonable.

Theorem 2.8. Let κ be the cardinality of the set of ideals inR, and letα be an ordinal
whose cofinality is greater than κ. Then Mα(N) is an injective R-module, and N →
Mα(N) is a functorial injective embedding.

Proof. By Baer’s criterion Lemma 2.6, it suffices to show that if a ⊂ R is an ideal,
then any map f : a→Mα(N) extends to R→Mα(N). However, we know since α is a
limit ordinal that

Mα(N) = colimβ<α Mβ(N),
so by Proposition 2.5, we find that

HomR(a,Mα(N)) = colimβ<α HomR(a,Mβ(N)).
This means in particular that there is some β′ < α such that f factors through the sub-
module Mβ′(N), as

f : a→Mβ′(N)→Mα(N).
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However, by the fundamental property of the functor M, see Lemma 2.7 part (3), we know
that the map a→Mβ′(N) can be extended to

R→M(Mβ′(N)) = Mβ′+1(N),

and the last object imbeds in Mα(N) (asβ′+1 < α sinceα is a limit ordinal). In particular,
f can be extended to Mα(N). �

3. G-modules

We will see later (Differential Graded Algebra, Section 17) that the category of modules
over an algebra has functorial injective embeddings. The construction is exactly the same
as the construction in More on Algebra, Section 55.

Lemma 3.1. Let G be a topological group. Let R be a ring. The category ModR,G
of R-G-modules, see Étale Cohomology, Definition 57.1, has functorial injective hulls. In
particular this holds for the category of discrete G-modules.

Proof. By the remark above the lemma the category ModR[G] has functorial injective
embeddings. Consider the forgetful functor v : ModR,G → ModR[G]. This functor is
fully faithful, transforms injective maps into injective maps and has a right adjoint, namely

u : M 7→ u(M) = {x ∈M | stabilizer of x is open}

Since v(M) = 0⇒M = 0 we conclude by Homology, Lemma 29.5. �

4. Abelian sheaves on a space

Lemma 4.1. Let X be a topological space. The category of abelian sheaves on X has
enough injectives. In fact it has functorial injective embeddings.

Proof. For an abelian group A we denote j : A → J(A) the functorial injective
embedding constructed in More on Algebra, Section 55. Let F be an abelian sheaf on X .
By Sheaves, Example 7.5 the assignment

I : U 7→ I(U) =
∏

x∈U
J(Fx)

is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U) to∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see Sheaves,

Lemma 11.1 for example.

It remains to prove the following: Given a rule x 7→ Ix which assigns to each point x ∈ X
an injective abelian group the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 27 for notation.) We
have

MorAb(Fx, Ix) = MorAb(X)(F , ix,∗Ix).

see Sheaves, Lemma 27.3. Hence it is clear that each ix,∗Ix is injective. Hence the injectivity
of I follows from Homology, Lemma 27.3. �
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5. Sheaves of modules on a ringed space

Lemma 5.1. Let (X,OX) be a ringed space, see Sheaves, Section 25. The category
of sheaves of OX -modules on X has enough injectives. In fact it has functorial injective
embeddings.

Proof. For any ring R and any R-module M we denote j : M → JR(M) the
functorial injective embedding constructed in More on Algebra, Section 55. Let F be a
sheaf ofOX -modules on X . By Sheaves, Examples 7.5 and 15.6 the assignment

I : U 7→ I(U) =
∏

x∈U
JOX,x

(Fx)

is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U) to∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see Sheaves,

Lemma 11.1 for example.

It remains to prove the following: Given a rule x 7→ Ix which assigns to each point x ∈ X
an injectiveOX,x-module the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 27 for notation.) We
have

HomOX,x
(Fx, Ix) = HomOX

(F , ix,∗Ix).
see Sheaves, Lemma 27.3. Hence it is clear that each ix,∗Ix is an injective OX -module
(see Homology, Lemma 29.1 or argue directly). Hence the injectivity of I follows from
Homology, Lemma 27.3. �

6. Abelian presheaves on a category

Let C be a category. Recall that this means that Ob(C) is a set. On the one hand, consider
abelian presheaves on C , see Sites, Section 2. On the other hand, consider families of abelian
groups indexed by elements of Ob(C); in other words presheaves on the discrete category
with underlying set of objects Ob(C). Let us denote this discrete category simply Ob(C).
There is a natural functor

i : Ob(C) −→ C
and hence there is a natural restriction or forgetful functor

v = ip : PAb(C) −→ PAb(Ob(C))

compare Sites, Section 5. We will denote presheaves on C by B and presheaves on Ob(C)
by A.

There are also two functors, namely ip and pi which assign an abelian presheaf on C to an
abelian presheaf on Ob(C), see Sites, Sections 5 and 19. Here we will use u = pi which is
defined (in the case at hand) as follows:

uA(U) =
∏

U ′→U
A(U ′).

So an element is a family (aφ)φ with φ ranging through all morphisms in C with target U .
The restriction map on uA corresponding to g : V → U maps our element (aφ)φ to the
element (ag◦ψ)ψ .
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There is a canonical surjective map vuA → A and a canonical injective map B → uvB.
We leave it to the reader to show that

MorPAb(C)(B, uA) = MorPAb(Ob(C))(vB,A).

in this simple case; the general case is in Sites, Section 5. Thus the pair (u, v) is an example
of a pair of adjoint functors, see Categories, Section 24.

At this point we can list the following facts about the situation above.
(1) The functors u and v are exact. This follows from the explicit description of

these functors given above.
(2) In particular the functor v transforms injective maps into injective maps.
(3) The category PAb(Ob(C)) has enough injectives.
(4) In fact there is a functorial injective embedding A 7→

(
A → J(A)

)
as in Ho-

mology, Definition 27.5. Namely, we can take J(A) to be the presheaf U 7→
J(A(U)), where J(−) is the functor constructed in More on Algebra, Section 55
for the ring Z.

Putting all of this together gives us the following procedure for embedding objects B of
PAb(C)) into an injective object: B → uJ(vB). See Homology, Lemma 29.5.

Proposition 6.1. For abelian presheaves on a category there is a functorial injective
embedding.

Proof. See discussion above. �

7. Abelian Sheaves on a site

Let C be a site. In this section we prove that there are enough injectives for abelian sheaves
on C.

Denote i : Ab(C) −→ PAb(C) the forgetful functor from abelian sheaves to abelian
presheaves. Let # : PAb(C) −→ Ab(C) denote the sheafification functor. Recall that
# is a left adjoint to i, that # is exact, and that iF# = F for any abelian sheaf F . Finally,
let G → J(G) denote the canonical embedding into an injective presheaf we found in
Section 6.

For any sheaf F in Ab(C) and any ordinal β we define a sheaf Jβ(F) by transfinite recur-
sion. We set J0(F) = F . We define J1(F) = J(iF)#. Sheafification of the canonical
map iF → J(iF) gives a functorial map

F −→ J1(F)

which is injective as # is exact. We set Jα+1(F) = J1(Jα(F)). So that there are canonical
injective maps Jα(F)→ Jα+1(F). For a limit ordinal β, we define

Jβ(F) = colimα<β Jα(F).

Note that this is a directed colimit. Hence for any ordinals α < β we have an injective
map Jα(F)→ Jβ(F).

Lemma 7.1. With notation as above. Suppose that G1 → G2 is an injective map of
abelian sheaves on C. Let α be an ordinal and let G1 → Jα(F) be a morphism of sheaves.
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There exists a morphism G2 → Jα+1(F) such that the following diagram commutes

G1

��

// G2

��
Jα(F) // Jα+1(F)

Proof. This is because the map iG1 → iG2 is injective and hence iG1 → iJα(F)
extends to iG2 → J(iJα(F)) which gives the desired map after applying the sheafification
functor. �

This lemma says that somehow the system {Jα(F)} is an injective embedding of F . Of
course we cannot take the limit over allα because they form a class and not a set. However,
the idea is now that you don’t have to check injectivity on all injections G1 → G2, plus the
following lemma.

Lemma 7.2. Suppose that Gi, i ∈ I is set of abelian sheaves on C. There exists an
ordinal β such that for any sheaf F , any i ∈ I , and any map ϕ : Gi → Jβ(F) there exists
an α < β such that ϕ factors through Jα(F).

Proof. This reduces to the case of a single sheaf G by taking the direct sum of all the
Gi.
Consider the sets

S =
∐

U∈Ob(C)
G(U).

and
Tβ =

∐
U∈Ob(C)

Jβ(F)(U)

The transition maps between the sets Tβ are injective. If the cofinality of β is large enough,
thenTβ = colimα<β Tα, see Sites, Lemma 17.10. A morphismG → Jβ(F) factors through
Jα(F) if and only if the associated map S → Tβ factors through Tα. By Sets, Lemma 7.1
if the cofinality of β is bigger than the cardinality of S , then the result of the lemma is
true. Hence the lemma follows from the fact that there are ordinals with arbitrarily large
cofinality, see Sets, Proposition 7.2. �

Recall that for an objectX of C we denote ZX the presheaf of abelian groups Γ(U,ZX) =
⊕U→XZ, see Modules on Sites, Section 4. The sheaf associated to this presheaf is denoted
Z#
X , see Modules on Sites, Section 5. It can be characterized by the property

(7.2.1) MorAb(C)(Z#
X ,G) = G(X)

where the element ϕ of the left hand side is mapped to ϕ(1 · idX) in the right hand side.
We can use these sheaves to characterize injective abelian sheaves.

Lemma 7.3. Suppose J is a sheaf of abelian groups with the following property: For
all X ∈ Ob(C), for any abelian subsheaf S ⊂ Z#

X and any morphism ϕ : S → J , there
exists a morphism Z#

X → J extending ϕ. Then J is an injective sheaf of abelian groups.

Proof. Let F → G be an injective map of abelian sheaves. Suppose ϕ : F → J is a
morphism. Arguing as in the proof of More on Algebra, Lemma 54.1 we see that it suffices
to prove that if F 6= G , then we can find an abelian sheaf F ′, F ⊂ F ′ ⊂ G such that (a)
the inclusion F ⊂ F ′ is strict, and (b) ϕ can be extended to F ′. To find F ′, let X be an
object of C such that the inclusionF(X) ⊂ G(X) is strict. Pick s ∈ G(X), s 6∈ F(X). Let
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ψ : Z#
X → G be the morphism corresponding to the section s via (7.2.1). Set S = ψ−1(F).

By assumption the morphism
S ψ−→ F ϕ−→ J

can be extended to a morphism ϕ′ : Z#
X → J . Note that ϕ′ annihilates the kernel of ψ

(as this is true for ϕ). Thus ϕ′ gives rise to a morphism ϕ′′ : Im(ψ) → J which agrees
with ϕ on the intersection F ∩ Im(ψ) by construction. Thus ϕ and ϕ′′ glue to give an
extension of ϕ to the strictly bigger subsheaf F ′ = F + Im(ψ). �

Theorem 7.4. The category of sheaves of abelian groups on a site has enough in-
jectives. In fact there exists a functorial injective embedding, see Homology, Definition
27.5.

Proof. Let Gi, i ∈ I be a set of abelian sheaves such that every subsheaf of every
Z#
X occurs as one of the Gi. Apply Lemma 7.2 to this collection to get an ordinal β. We

claim that for any sheaf of abelian groups F the map F → Jβ(F) is an injection of F
into an injective. Note that by construction the assignmentF 7→

(
F → Jβ(F)

)
is indeed

functorial.
The proof of the claim comes from the fact that by Lemma 7.3 it suffices to extend any
morphism γ : G → Jβ(F) from a subsheaf G of some Z#

X to all of Z#
X . Then by Lemma

7.2 the map γ lifts into Jα(F) for some α < β. Finally, we apply Lemma 7.1 to get the
desired extension of γ to a morphism into Jα+1(F)→ Jβ(F). �

8. Modules on a ringed site

Let C be a site. Let O be a sheaf of rings on C. By analogy with More on Algebra, Section
55 let us try to prove that there are enough injective O-modules. First of all, we pick an
injective embedding ⊕

U,I
jU !OU/I −→ J

where J is an injective abelian sheaf (which exists by the previous section). Here the
direct sum is over all objects U of C and over all O-submodules I ⊂ jU !OU . Please see
Modules on Sites, Section 19 to read about the functors restriction and extension by 0 for
the localization functor jU : C/U → C.
For any sheaf ofO-modules F denote

F∨ = Hom(F ,J )
with its naturalO-module structure. Insert here future reference to internal hom. We will
also need a canonical flat resolution of a sheaf of O-modules. This we can do as follows:
For anyO-module F we denote

F (F) =
⊕

U∈Ob(C),s∈F(U)
jU !OU .

This is a flat sheaf ofO-modules which comes equipped with a canonical surjectionF (F)→
F , see Modules on Sites, Lemma 28.8. Moreover the constructionF 7→ F (F) is functorial
in F .

Lemma 8.1. The functor F 7→ F∨ is exact.

Proof. This because J is an injective abelian sheaf. �

There is a canonical map ev : F → (F∨)∨ given by evaluation: given x ∈ F(U) we let
ev(x) ∈ (F∨)∨ = Hom(F∨,J ) be the map ϕ 7→ ϕ(x).



1766 19. INJECTIVES

Lemma 8.2. For anyO-module F the evaluation map ev : F → (F∨)∨ is injective.

Proof. You can check this using the definition of J . Namely, if s ∈ F(U) is not
zero, then let jU !OU → F be the map ofO-modules it corresponds to via adjunction. Let
I be the kernel of this map. There exists a nonzero map F ⊃ jU !OU/I → J which does
not annihilate s. As J is an injectiveO-module, this extends to a map ϕ : F → J . Then
ev(s)(ϕ) = ϕ(s) 6= 0 which is what we had to prove. �

The canonical surjection F (F) → F of O-modules turns into a canonical injection, see
above, ofO-modules

(F∨)∨ −→ (F (F∨))∨.

Set J(F) = (F (F∨))∨. The composition of ev with this the displayed map gives F →
J(F) functorially in F .

Lemma 8.3. LetO be a sheaf of rings. For everyO-module F theO-module J(F) is
injective.

Proof. We have to show that the functor HomO(G, J(F)) is exact. Note that

HomO(G, J(F)) = HomO(G, (F (F∨))∨)
= HomO(G,Hom(F (F∨),J ))
= Hom(G ⊗O F (F∨),J )

Thus what we want follows from the fact that F (F∨) is flat and J is injective. �

Theorem 8.4. Let C be a site. LetO be a sheaf of rings on C. The category of sheaves
of O-modules on a site has enough injectives. In fact there exists a functorial injective
embedding, see Homology, Definition 27.5.

Proof. From the discussion in this section. �

Proposition 8.5. Let C be a category. LetO be a presheaf of rings on C. The category
PMod(O) of presheaves ofO-modules has functorial injective embeddings.

Proof. We could prove this along the lines of the discussion in Section 6. But instead
we argue using the theorem above. Endow C with the structure of a site by letting the set of
coverings of an objectU consist of all singletons {f : V → U}where f is an isomorphism.
We omit the verification that this defines a site. A sheaf for this topology is the same as a
presheaf (proof omitted). Hence the theorem applies. �

9. Embedding abelian categories

In this section we show that an abelian category embeds in the category of abelian sheaves
on a site having enough points. The site will be the one described in the following lemma.

Lemma 9.1. LetA be an abelian category. Let

Cov = {{f : V → U} | f is surjective}.

Then (A,Cov) is a site, see Sites, Definition 6.2.

Proof. Note that Ob(A) is a set by our conventions about categories. An isomor-
phism is a surjective morphism. The composition of surjective morphisms is surjective.
And the base change of a surjective morphism in A is surjective, see Homology, Lemma
5.14. �
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LetA be a pre-additive category. In this case the Yoneda embeddingA → PSh(A), X 7→
hX factors through a functorA → PAb(A).

Lemma 9.2. Let A be an abelian category. Let C = (A,Cov) be the site defined in
Lemma 9.1. Then X 7→ hX defines a fully faithful, exact functor

A −→ Ab(C).
Moreover, the site C has enough points.

Proof. Suppose that f : V → U is a surjective morphism of A. Let K = Ker(f).
Recall that V ×U V = Ker((f,−f) : V ⊕ V → U), see Homology, Example 5.6. In
particular there exists an injection K ⊕K → V ×U V . Let p, q : V ×U V → V be the
two projection morphisms. Note that p − q : V ×U V → V is a morphism such that
f ◦ (p − q) = 0. Hence p − q factors through K → V . Let us denote this morphism by
c : V ×U V → K. And since the composition K ⊕K → V ×U V → K is surjective, we
conclude that c is surjective. It follows that

V ×U V
p−q−−→ V → U → 0

is an exact sequence ofA. Hence for an object X ofA the sequence
0→ HomA(U,X)→ HomA(V,X)→ HomA(V ×U V,X)

is an exact sequence of abelian groups, see Homology, Lemma 5.8. This means that hX
satisfies the sheaf condition on C.
The functor is fully faithful by Categories, Lemma 3.5. The functor is a left exact functor
between abelian categories by Homology, Lemma 5.8. To show that it is right exact, let
X → Y be a surjective morphism of A. Let U be an object of A, and let s ∈ hY (U) =
MorA(U, Y ) be a section of hY over U . By Homology, Lemma 5.14 the projection U ×Y
X → U is surjective. Hence {V = U ×Y X → U} is a covering of U such that s|V lifts
to a section of hX . This proves that hX → hY is a surjection of abelian sheaves, see Sites,
Lemma 11.2.
The site C has enough points by Sites, Proposition 39.3. �

Remark 9.3. The Freyd-Mitchell embedding theorem says there exists a fully faith-
ful exact functor from any abelian category A to the category of modules over a ring.
Lemma 9.2 is not quite as strong. But the result is suitable for the Stacks project as we
have to understand sheaves of abelian groups on sites in detail anyway. Moreover, “di-
agram chasing” works in the category of abelian sheaves on C , for example by working
with sections over objects, or by working on the level of stalks using that C has enough
points. To see how to deduce the Freyd-Mitchell embedding theorem from Lemma 9.2 see
Remark 9.5.

Remark 9.4. If A is a “big” abelian category, i.e., if A has a class of objects, then
Lemma 9.2 does not work. In this case, given any set of objects E ⊂ Ob(A) there exists
an abelian full subcategoryA′ ⊂ A such that Ob(A′) is a set andE ⊂ Ob(A′). Then one
can apply Lemma 9.2 toA′. One can use this to prove that results depending on a diagram
chase hold inA.

Remark 9.5. Let C be a site. Note that Ab(C) has enough injectives, see Theorem 7.4.
(In the case that C has enough points this is straightforward because p∗I is an injective
sheaf if I is an injective Z-module and p is a point.) Also, Ab(C) has a cogenerator (details
omitted). Hence Lemma 9.2 proves that we have a fully faithful, exact embeddingA → B
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where B has a cogenerator and enough injectives. We can apply this to Aopp and we get
a fully faithful exact functor i : A → D = Bopp where D has enough projectives and a
generator. Hence D has a projective generator P . Set R = MorD(P, P ). Then

A −→ModR, X 7−→ HomD(P,X).

One can check this is a fully faithful, exact functor. In other words, one retrieves the
Freyd-Mitchell theorem mentioned in Remark 9.3 above.

Remark 9.6. The arguments proving Lemmas 9.1 and 9.2 work also for exact cate-
gories, see [?, Appendix A] and [?, 1.1.4]. We quickly review this here and we add more
details if we ever need it in the Stacks project.

Let A be an additive category. A kernel-cokernel pair is a pair (i, p) of morphisms of A
with i : A→ B, p : B → C such that i is the kernel of p and p is the cokernel of i. Given
a set E of kernel-cokernel pairs we say i : A → B is an admissible monomorphism if
(i, p) ∈ E for some morphism p. Similarly we say a morphism p : B → C is an admissible
epimorphism if (i, p) ∈ E for some morphism i. The pair (A, E) is said to be an exact
category if the following axioms hold

(1) E is closed under isomorphisms of kernel-cokernel pairs,
(2) for any object A the morphism 1A is both an admissible epimorphism and an

admissible monomorphism,
(3) admissible monomorphisms are stable under composition,
(4) admissible epimorphisms are stable under composition,
(5) the push-out of an admissible monomorphism i : A → B via any morphism

A→ A′ exist and the induced morphism i′ : A′ → B′ is an admissible monomor-
phism, and

(6) the base change of an admissible epimorphism p : B → C via any morphism
C ′ → C exist and the induced morphism p′ : B′ → C ′ is an admissible epimor-
phism.

Given such a structure let C = (A,Cov) where coverings (i.e., elements of Cov) are given
by admissible epimorphisms. The axioms listed above immediately imply that this is a
site. Consider the functor

F : A −→ Ab(C), X 7−→ hX

exactly as in Lemma 9.2. It turns out that this functor is fully faithful, exact, and reflects
exactness. Moreover, any extension of objects in the essential image of F is in the essential
image of F .

10. Grothendieck’s AB conditions

This and the next few sections are mostly interesting for “big” abelian categories, i.e., those
categories listed in Categories, Remark 2.2. A good case to keep in mind is the category of
sheaves of modules on a ringed site.

Grothendieck proved the existence of injectives in great generality in the paper [?]. He
used the following conditions to single out abelian categories with special properties.

Definition 10.1. LetA be an abelian category. We name some conditions
AB3 A has direct sums,
AB4 A has AB3 and direct sums are exact,
AB5 A has AB3 and filtered colimits are exact.
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Here are the dual notions
AB3* A has products,
AB4* A has AB3* and products are exact,
AB5* A has AB3* and cofiltered limits are exact.

We say an object U of A is a generator if for every N ⊂ M , N 6= M in A there exists a
morphismU →M which does not factor throughN . We sayA is a Grothendieck abelian
category if it has AB5 and a generator.

Discussion: A direct sum in an abelian category is a coproduct. If an abelian category has
direct sums (i.e., AB3), then it has colimits, see Categories, Lemma 14.12. Similarly if A
has AB3* then it has limits, see Categories, Lemma 14.11. Exactness of direct sums means
the following: given an index set I and short exact sequences

0→ Ai → Bi → Ci → 0, i ∈ I
inA then the sequence

0→
⊕

i∈I
Ai →

⊕
i∈I

Bi →
⊕

i∈I
Ci → 0

is exact as well. Without assuming AB4 it is only true in general that the sequence is exact
on the right (i.e., taking direct sums is a right exact functor if direct sums exist). Similarly,
exactness of filtered colimits means the following: given a directed set I and a system of
short exact sequences

0→ Ai → Bi → Ci → 0
over I inA then the sequence

0→ colimi∈I Ai → colimi∈I Bi → colimi∈I Ci → 0
is exact as well. Without assuming AB5 it is only true in general that the sequence is
exact on the right (i.e., taking colimits is a right exact functor if colimits exist). A similar
explanation holds for AB4* and AB5*.

11. Injectives in Grothendieck categories

The existence of a generator implies that given an object M of a Grothendieck abelian
category A there is a set of subobjects. (This may not be true for a general “big” abelian
category.)

Lemma 11.1. LetA be an abelian category with a generator U andX and object ofA.
If κ is the cardinality of Mor(U,X) then

(1) There does not exist a strictly increasing (or strictly decreasing) chain of subob-
jects of X indexed by a cardinal bigger than κ.

(2) If α is an ordinal of cofinality > κ then any increasing (or decreasing) sequence
of subobjects of X indexed by α is eventually constant.

(3) The cardinality of the set of subobjects of X is ≤ 2κ.

Proof. For (1) assumeκ′ > κ is a cardinal and assumeXi, i ∈ κ′ is strictly increasing.
Then take for each i a φi ∈ Mor(U,X) such that φi factors throughXi+1 but not through
Xi. Then the morphisms φi are distinct, which contradicts the definition of κ.
Part (2) follows from the definition of cofinality and (1).
Proof of (3). For any subobject Y ⊂ X define SY ∈ P(Mor(U,X)) (power set) as SY =
{φ ∈ Mor(U,X) : φ) factors through Y }. Then Y = Y ′ if and only if SY = SY ′ . Hence
the cardinality of the set of subobjects is at most the cardinality of this power set. �
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By Lemma 11.1 the following definition makes sense.

Definition 11.2. Let A be a Grothendieck abelian category. Let M be an object of
A. The size |M | of M is the cardinality of the set of subobjects of M .

Lemma 11.3. LetA be a Grothendieck abelian category. If 0→M ′ →M →M ′′ →
0 is a short exact sequence ofA, then |M ′|, |M ′′| ≤ |M |.

Proof. Immediate from the definitions. �

Lemma 11.4. LetA be a Grothendieck abelian category with generator U .
(1) If |M | ≤ κ, then M is the quotient of a direct sum of at most κ copies of U .
(2) For every cardinal κ there exists a set of isomorphism classes of objects M with
|M | ≤ κ.

Proof. For (1) choose for every proper subobject M ′ ⊂ M a morphism ϕM ′ : U →
M whose image is not contained in M ′. Then

⊕
M ′⊂M ϕM ′ :

⊕
M ′⊂M U → M is

surjective. It is clear that (1) implies (2). �

Proposition 11.5. Let A be a Grothendieck abelian category. Let M be an object of
A. Let κ = |M |. If α is an ordinal whose cofinality is bigger than κ, then M is α-small
with respect to injections.

Proof. Please compare with Proposition 2.5. We need only show that the map (2.0.1)
is a surjection. Let f : M → colimBβ be a map. Consider the subobjects {f−1(Bβ)} of
M , where Bβ is considered as a subobject of the colimit B =

⋃
β Bβ . If one of these, say

f−1(Bβ), fills M , then the map factors through Bβ .
So suppose to the contrary that all of the f−1(Bβ) were proper subobjects ofM . However,
becauseA has AB5 we have

colim f−1(Bβ) = f−1 (colimBβ) = M.

Now there are at most κ different subobjects of M that occur among the f−1(Bα), by
hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that as β′

ranges over S , the f−1(Bβ′) range over all the f−1(Bα).
However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In particular,
all the f−1(Bβ′), β′ ∈ S are contained in f−1(B

α̃
). It follows that f−1(B

α̃
) = M . In

particular, the map f factors through B
α̃

. �

Lemma 11.6. LetA be a Grothendieck abelian category with generator U . An object
I ofA is injective if and only if in every commutative diagram

M

��

// I

U

??

for M ⊂ U a subobject, the dotted arrow exists.

Proof. Please see Lemma 2.6 for the case of modules. Choose an injection A ⊂ B
and a morphism ϕ : A → I . Consider the set S of pairs (A′, ϕ′) consisting of subobjects
A ⊂ A′ ⊂ B and a morphism ϕ′ : A′ → I extending ϕ. Define a partial ordering on this
set in the obvious manner. Choose a totally ordered subset T ⊂ S. Then

A′ = colimt∈T At
colimt∈T ϕt−−−−−−−→ I
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is an upper bound. Hence by Zorn’s lemma the set S has a maximal element (A′, ϕ′). We
claim that A′ = B. If not, then choose a morphism ψ : U → B which does not factor
through A′. Set N = A′ ∩ ψ(U). Set M = ψ−1(N). Then the map

M → N → A′ ϕ′

−→ I

can be extended to a morphism χ : U → I . Since χ|Ker(ψ) = 0 we see that χ factors as

U → Im(ψ) ϕ′′

−−→ I

Since ϕ′ and ϕ′′ agree on N = A′ ∩ Im(ψ) we see that combined the define a morphism
A′ + Im(ψ)→ I contradicting the assumed maximality of A′. �

Theorem 11.7. Let A be a Grothendieck abelian category. Then A has functorial
injective embeddings.

Proof. Please compare with the proof of Theorem 2.8. Choose a generator U of A.
For an object M we define M(M) by the following pushout diagram⊕

N⊂U
⊕

ϕ∈Hom(N,M) N
//

��

M

��⊕
N⊂U

⊕
ϕ∈Hom(N,M) U

//M(M).

Note that M → M(N) is a functor and that there exist functorial injective maps M →
M(M). By transfinite induction we define functors Mα(M) for every ordinalα. Namely,
set M0(M) = M . Given Mα(M) set Mα+1(M) = M(Mα(M)). For a limit ordinal β
set

Mβ(M) = colimα<β Mα(M).
Finally, pick any ordinal α whose cofinality is greater than |U |. Such an ordinal exists
by Sets, Proposition 7.2. We claim that M → Mα(M) is the desired functorial injective
embedding. Namely, if N ⊂ U is a subobject and ϕ : N → Mα(M) is a morphism,
then we see that ϕ factors through Mα′(M) for some α′ < α by Proposition 11.5. By
construction of M(−) we see that ϕ extends to a morphism from U into Mα′+1(M) and
hence into Mα(M). By Lemma 11.6 we conclude that Mα(M) is injective. �

12. K-injectives in Grothendieck categories

The material in this section is taken from the paper [?] authored by Serpé. This paper
generalizes some of the results of [?] by Spaltenstein to general Grothendieck abelian cat-
egories. Our Lemma 12.3 is only implicit in the paper by Serpé. Our approach is to mimic
Grothendieck’s proof of Theorem 11.7.

Lemma 12.1. Let A be a Grothendieck abelian category with generator U . Let c be
the function on cardinals defined by c(κ) = |

⊕
α∈κ U |. If π : M → N is a surjection

then there exists a subobject M ′ ⊂M which surjects onto N with |M ′| ≤ c(|N |).

Proof. For every proper subobject N ′ ⊂ N choose a morphism ϕN ′ : U →M such
that U →M → N does not factor through N ′. Set

M ′ = Im
(⊕

N ′⊂N
ϕN ′ :

⊕
N ′⊂N

U −→M
)

Then M ′ works. �
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Lemma 12.2. Let A be a Grothendieck abelian category. There exists a cardinal κ
such that given any acyclic complex M• we have

(1) if M• is nonzero, there is a nonzero subcomplex N• which is bounded above,
acyclic, and |Nn| ≤ κ,

(2) there exists a surjection of complexes⊕
i∈I

M•
i −→M•

where M•
i is bounded above, acyclic, and |Mn

i | ≤ κ.

Proof. Choose a generator U of A. Denote c the function of Lemma 12.1. Set κ =
sup{cn(|U |), n = 1, 2, 3, . . .}. Let n ∈ Z and let ψ : U → Mn be a morphism. In
order to prove (1) and (2) it suffices to prove there exists a subcomplex N• ⊂ M• which
is bounded above, acyclic, and |Nm| ≤ κ, such that ψ factors through Nn. To do this set
Nn = Im(ψ), Nn+1 = Im(U → Mn → Mn+1), and Nm = 0 for m ≥ n+ 2. Suppose
we have constructed Nm ⊂Mm for all m ≥ k such that

(1) d(Nm) ⊂ Nm+1, m ≥ k,
(2) Im(Nm−1 → Nm) = Ker(Nm → Nm+1) for all m ≥ k + 1, and
(3) |Nm| ≤ cmax{n−m,0}(|U |).

for some k ≤ n. Because M• is acyclic, we see that the subobject d−1(Ker(Nk →
Nk+1)) ⊂ Mk−1 surjects onto Ker(Nk → Nk+1). Thus we can choose Nk−1 ⊂ Mk−1

surjecting onto Ker(Nk → Nk+1) with |Nk−1| ≤ cn−k+1(|U |) by Lemma 12.1. The
proof is finished by induction on k. �

Lemma 12.3. Let A be a Grothendieck abelian category. Let κ be a cardinal as in
Lemma 12.2. Suppose that I• is a complex such that

(1) each Ij is injective, and
(2) for every bounded above acyclic complex M• such that |Mn| ≤ κ we have

HomK(A)(M•, I•) = 0.
Then I• is an K-injective complex.

Proof. Let M• be an acyclic complex. We are going to construct by induction on
the ordinal α an acyclic subcomplexK•

α ⊂M• as follows. For α = 0 we setK•
0 = 0. For

α > 0 we proceed as follows:
(1) If α = β + 1 and K•

β = M• then we choose K•
α = K•

β .
(2) If α = β + 1 and K•

β 6= M• then M•/K•
β is a nonzero acyclic complex. We

choose a subcomplexN•
α ⊂M•/K•

β as in Lemma 12.2. Finally, we letK•
α ⊂M•

be the inverse image of N•
α.

(3) If α is a limit ordinal we set K•
β = colimK•

α.
It is clear that M• = K•

α for a suitably large ordinal α. We will prove that

HomK(A)(K•
α, I

•)
is zero by transfinite induction on α. It holds for α = 0 sinceK•

0 is zero. Suppose it holds
for β and α = β + 1. In case (1) of the list above the result is clear. In case (2) there is a
short exact sequence of complexes

0→ K•
β → K•

α → N•
α → 0

Since each component of I• is injective we see that we obtain an exact sequence

HomK(A)(K•
β , I

•)→ HomK(A)(K•
α, I

•)→ HomK(A)(N•
α, I

•)
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By induction the term on the left is zero and by assumption on I• the term on the right is
zero. Thus the middle group is zero too. Finally, suppose that α is a limit ordinal. Then
we see that

Hom•(K•
α, I

•) = limβ<α Hom•(K•
β , I

•)
with notation as in More on Algebra, Section 71. These complexes compute morphisms in
K(A) by More on Algebra, Equation (71.0.1). Note that the transition maps in the system
are surjective because Ij is surjective for each j. Moreover, for a limit ordinal α we have
equality of limit and value (see displayed formula above). Thus we may apply Homology,
Lemma 31.8 to conclude. �

Lemma 12.4. Let A be a Grothendieck abelian category. Let (K•
i )i∈I be a set of

acyclic complexes. There exists a functor M• 7→M•(M•) and a natural transformation
jM• : M• →M•(M•) such

(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every i ∈ I and w : K•

i →M• the morphism jM• ◦w is homotopic to zero.

Proof. For every i ∈ I choose a (termwise) injective map of complexes K•
i → L•

i

which is homotopic to zero with L•
i quasi-isomorphic to zero. For example, take L•

i to be
the cone on the identity of K•

i . We define M•(M•) by the following pushout diagram⊕
i∈I
⊕

w:K•
i

→M• K•
i

//

��

M•

��⊕
i∈I
⊕

w:K•
i

→M• L•
i

//M•(M•).

Then M• →M•(M•) is a functor. The right vertical arrow defines the functorial injec-
tive map jM• . The cokernel of jM• is isomorphic to the direct sum of the cokernels of
the maps K•

i → L•
i hence acyclic. Thus jM• is a quasi-isomorphism. Part (2) holds by

construction. �

Lemma 12.5. LetA be a Grothendieck abelian category. There exists a functorM• 7→
N•(M•) and a natural transformation jM• : M• → N•(M•) such

(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every n ∈ Z the map Mn → Nn(M•) factors through a subobject In ⊂

Nn(M•) where In is an injective object ofA.

Proof. Choose a functorial injective embeddings iM : M → I(M), see Theorem
11.7. For every complexM• denoteJ•(M•) the complex with termsJn(M•) = I(Mn)⊕
I(Mn+1) and differential

dJ•(M•) =
(

0 1
0 0

)
There exists a canonical injective map of complexes uM• : M• → J•(M•) by mapping
Mn to I(Mn) ⊕ I(Mn+1) via the maps iMn : Mn → I(Mn) and iMn+1 ◦ d : Mn →
Mn+1 → I(Mn+1). Hence a short exact sequence of complexes

0→M• uM•−−−→ J•(M•) vM•−−−→ Q•(M•)→ 0
functorial in M•. Set

N•(M•) = C(vM•)•[−1].
Note that

Nn(M•) = Qn−1(M•)⊕ Jn(M•)
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with differential (
−dn−1

Q•(M•) −vnM•

0 dnJ•(M)

)
Hence we see that there is a map of complexes jM• : M• → N•(M•) induced by u. It
is injective and factors through an injective subobject by construction. The map jM• is a
quasi-isomorphism as one can prove by looking at the long exact sequence of cohomology
associated to the short exact sequences of complexes above. �

Theorem 12.6. Let A be a Grothendieck abelian category. For every complex M•

there exists a quasi-isomorphism M• → I• such that Mn → In is injective and In is an
injective object ofA for all n and I• is a K-injective complex. Moreover, the construction
is functorial in M•.

Proof. Please compare with the proof of Theorem 2.8 and Theorem 11.7. Choose a
cardinal κ as in Lemmas 12.2 and 12.3. Choose a set (K•

i )i∈I of bounded above, acyclic
complexes such that every bounded above acyclic complex K• such that |Kn| ≤ κ is
isomorphic to K•

i for some i ∈ I . This is possible by Lemma 11.4. Denote M•(−) the
functor constructed in Lemma 12.4. Denote N•(−) the functor constructed in Lemma
12.5. Both of these functors come with injective transformations id→M and id→ N.

Using transfinite recursion we define a sequence of functors Tα(−) and corresponding
transformations id→ Tα. Namely we set T0(M•) = M•. If Tα is given then we set

Tα+1(M•) = N•(M•(Tα(M•)))

If β is a limit ordinal we set

Tβ(M•) = colimα<β Tα(M•)

The transition maps of the system are injective quasi-isomorphisms. By AB5 we see that
the colimit is still quasi-isomorphic to M•. We claim that M• → Tα(M•) does the job
if the cofinality of α is larger than max(κ, |U |) where U is a generator of A. Namely, it
suffices to check conditions (1) and (2) of Lemma 12.3.

For (1) we use the criterion of Lemma 11.6. Suppose that M ⊂ U and ϕ : M → Tn
α(M•)

is a morphism for some n ∈ Z. By Proposition 11.5 we see thatϕ factor through Tn
α′(M•)

for some α′ < α. In particular, by the construction of the functor N•(−) we see that ϕ
factors through an injective object ofA which shows that ϕ lifts to a morphism on U .

For (2) letw : K• → Tα(M•) be a morphism of complexes whereK• is a bounded above
acyclic complex such that |Kn| ≤ κ. Then K• ∼= K•

i for some i ∈ I . Moreover, by
Proposition 11.5 once again we see that w factor through Tn

α′(M•) for some α′ < α. In
particular, by the construction of the functor M•(−) we see that w is homotopic to zero.
This finishes the proof. �

13. Additional remarks on Grothendieck abelian categories

In this section we put some results on Grothendieck abelian categories which are folklore.

Lemma 13.1. Let A be a Grothendieck abelian category. Let F : Aopp → Sets be a
functor. Then F is representable if and only if F commutes with colimits, i.e.,

F (colimiNi) = limF (Ni)

for any diagram I → A, i ∈ I .
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Proof. IfF is representable, then it commutes with colimits by definition of colimits.
Assume that F commutes with colimits. Then F (M ⊕N) = F (M)× F (N) and we can
use this to define a group structure onF (M). Hence we getF : A → Ab which is additive
and right exact, i.e., transforms a short exact sequence 0 → K → L → M → 0 into an
exact sequence F (K)← F (L)← F (M)← 0 (compare with Homology, Section 7).
Let U be a generator for A. Set A =

⊕
s∈F (U) U . Let suniv = (s)s∈F (U) ∈ F (A) =∏

s∈F (U) F (U). LetA′ ⊂ A be the largest subobject such that suniv restricts to zero onA′.
This exists becauseA is a Grothendieck category and because F commutes with colimits.
Because F commutes with colimits there exists a unique element suniv ∈ F (A/A′) which
maps to suniv in F (A). We claim that A/A′ represents F , in other words, the Yoneda
map

suniv : hA/A′ −→ F

is an isomorphism. Let M ∈ Ob(A) and s ∈ F (M). Consider the surjection

cM : AM =
⊕

ϕ∈HomA(U,M)
U −→M.

This gives F (cM )(s) = (sϕ) ∈
∏
ϕ F (U). Consider the map

ψ : AM =
⊕

ϕ∈HomA(U,M)
U −→

⊕
s∈F (U)

U = A

which maps the summand corresponding to ϕ to the summand corresponding to sϕ by
the identity map on U . Then suniv maps to (sϕ)ϕ by construction. in other words the
right square in the diagram

A′ // A
suniv

// F

K //

?

OO

AM

ψ

OO

// M

s

OO

commutes. Let K = Ker(AM → M). Since s restricts to zero on K we see that ψ(K) ⊂
A′ by definition of A′. Hence there is an induced morphism M → A/A′. This construc-
tion gives an inverse to the map hA/A′(M)→ F (M) (details omitted). �

Lemma 13.2. A Grothendieck abelian category has Ab3*.

Proof. Let Mi, i ∈ I be a family of objects of A indexed by a set I . The functor
F =

∏
i∈I hMi

commutes with colimits. Hence Lemma 13.1 applies. �

Remark 13.3. In the chapter on derived categories we consistently work with “small”
abelian categories (as is the convention in the Stacks project). For a “big” abelian category
A it isn’t clear that the derived categoryD(A) exists because it isn’t clear that morphisms
in the derived category are sets. In general this isn’t true, see Examples, Lemma 61.1. How-
ever, ifA is a Grothendieck abelian category, and givenK•, L• inK(A), then by Theorem
12.6 there exists a quasi-isomorphism L• → I• to a K-injective complex I• and Derived
Categories, Lemma 31.2 shows that

HomD(A)(K•, L•) = HomK(A)(K•, I•)
which is a set. Some examples of Grothendieck abelian categories are the category of
modules over a ring, or more generally the category of sheaves of modules on a ringed
site.

Lemma 13.4. LetA be a Grothendieck abelian category. Then
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(1) D(A) has both direct sums and products,
(2) direct sums are obtained by taking termwise direct sums of any complexes,
(3) products are obtained by taking termwise products of K-injective complexes.

Proof. LetK•
i , i ∈ I be a family of objects ofD(A) indexed by a set I . We claim that

the termwise direct sum
⊕

i∈I K
•
i is a direct sum inD(A). Namely, let I• be a K-injective

complex. Then we have

HomD(A)(
⊕

i∈I
K•
i , I

•) = HomK(A)(
⊕

i∈I
K•
i , I

•)

=
∏

i∈I
HomK(A)(K•

i , I
•)

=
∏

i∈I
HomD(A)(K•

i , I
•)

as desired. This is sufficient since any complex can be represented by a K-injective complex
by Theorem 12.6. To construct the product, choose a K-injective resolution K•

i → I•
i for

each i. Then we claim that
∏
i∈I I

•
i is a product in D(A). This follows from Derived

Categories, Lemma 31.5. �

Remark 13.5. Let R be a ring. Suppose that Mn, n ∈ Z are R-modules. Denote
En = Mn[−n] ∈ D(R). We claim that E =

⊕
Mn[−n] is both the direct sum and the

product of the objectsEn inD(R). To see that it is the direct sum, take a look at the proof
of Lemma 13.4. To see that it is the direct product, take injective resolutions Mn → I•

n.
By the proof of Lemma 13.4 we have∏

En =
∏

I•
n[−n]

in D(R). Since products in ModR are exact, we see that
∏
I•
n[−n] is quasi-isomorphic to

E. This works more generally in D(A) whereA is a Grothendieck abelian category with
Ab4*.

Lemma 13.6. Let F : A → B be an additive functor of abelian categories. Assume
(1) A is a Grothendieck abelian category,
(2) B has exact countable products, and
(3) F commutes with countable products.

Then RF : D(A)→ D(B) commutes with derived limits.

Proof. Observe that RF exists as A has enough K-injectives (Theorem 12.6 and
Derived Categories, Lemma 31.6). The statement means that if K = R limKn, then
RF (K) = R limRF (Kn). See Derived Categories, Definition 34.1 for notation. Since
RF is an exact functor of triangulated categories it suffices to see thatRF commutes with
countable products of objects of D(A). In the proof of Lemma 13.4 we have seen that
products in D(A) are computed by taking products of K-injective complexes and more-
over that a product of K-injective complexes is K-injective. Moreover, in Derived Cate-
gories, Lemma 34.2 we have seen that products inD(B) are computed by taking termwise
products. Since RF is computed by applying F to a K-injective representative and since
we’ve assumed F commutes with countable products, the lemma follows. �

The following lemma is some kind of generalization of the existence of Cartan-Eilenberg
resolutions (Derived Categories, Section 21).

Lemma 13.7. LetA be a Grothendieck abelian category. LetK• be a filtered complex
of A, see Homology, Definition 24.1. Then there exists a morphism j : K• → J• of
filtered complexes ofA such that
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(1) Jn, F pJn, Jn/F pJn and F pJn/F p
′
Jn are injective objects ofA,

(2) J•, F pJ•, J•/F pJ•, and F pJ•/F p
′
J• are K-injective complexes,

(3) j induces quasi-isomorphismsK• → J•,F pK• → F pJ•,K•/F pK• → J•/F pJ•,
and F pK•/F p

′
K• → F pJ•/F p

′
J•.

Proof. By Theorem 12.6 we obtain quasi-isomorphisms i : K• → I• and ip :
F pK• → Ip,• as well as commutative diagrams

K•

i
��

F pK•oo

ip

��
I• Ip,•

αpoo

and

F p
′
K•

ip
′

��

F pK•oo

ip

��
Ip

′,• Ip,•
αpp

′
oo

for p′ ≤ p

such that αp ◦ αp′p = αp
′

and αp
′p′′ ◦ αpp′ = αpp

′′
. The problem is that the maps

αp : Ip,• → I• need not be injective. For each p we choose an injection tp : Ip,• → Jp,•

into an acyclic K-injective complex Jp,• whose terms are injective objects ofA (first map
to the cone on the identity and then use the theorem). Choose a map of complexes sp :
I• → Jp,• such that the following diagram commutes

K•

i
��

F pK•oo

ip

��
I•

sp ##

Ip,•

tp

��
Jp,•

This is possible: the composition F pK• → Jp,• is homotopic to zero because Jp,• is
acyclic and K-injective (Derived Categories, Lemma 31.2). Since the objects Jp,n−1 are
injective and since F pKn → Kn → In are injective morphisms, we can lift the maps
F pKn → Jp,n−1 giving the homotopy to a map hn : In → Jp,n−1. Then we set sp equal
to h ◦ d + d ◦ h. (Warning: It will not be the case that tp = sp ◦ αp, so we have to be
careful not to use this below.)

Consider
J• = I• ×

∏
p
Jp,•

Because products inD(A) are given by taking products of K-injective complexes (Lemma
13.4) and since Jp,• is isomorphic to 0 in D(A) we see that J• → I• is an isomorphism
in D(A). Consider the map

j = i× (sp ◦ i)p∈Z : K• −→ I• ×
∏

p
Jp,• = J•

By our remarks above this is a quasi-isomorphism. It is also injective. For p ∈ Z we let
F pJ• ⊂ J• be

Im
(
αp × (tp

′
◦ αpp

′
)p′≤p : Ip,• → I• ×

∏
p′≤p

Jp
′,•
)
×
∏

p′>p
Jp

′,•

This complex is isomorphic to the complex Ip,• ×
∏
p′>p J

p,• as αpp = id and tp is
injective. Hence F pJ• is quasi-isomorphic to Ip,• (argue as above). We have j(F pK•) ⊂
F pJ• because of the commutativity of the diagram above. The corresponding map of
complexes F pK• → F pJ• is a quasi-isomorphism by what we just said. Finally, to see
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that F p+1J• ⊂ F pJ• use that αp+1p ◦ αpp′ = αp+1p′
and the commutativity of the first

displayed diagram in the first paragraph of the proof.

We claim that j : K• → J• is a solution to the problem posed by the lemma. Namely,
F pJn is an injective object ofA because it is isomorphic to Ip,n ×

∏
p′>p J

p′,n and prod-
ucts of injectives are injective. Then the injective map F pJn → Jn splits and hence the
quotient Jn/F pJn is injective as well as a direct summand of the injective object Jn. Simi-
larly forF pJn/F p

′
Jn. This in particular means that 0→ F pJ• → J• → J•/F pJ• → 0

is a termwise split short exact sequence of complexes, hence defines a distinguished tri-
angle in K(A) by fiat. Since J• and F pJ• are K-injective complexes we see that the
same is true for J•/F pJ• by Derived Categories, Lemma 31.3. A similar argument shows
that F pJ•/F p

′
J• is K-injective. By construction j : K• → J• and the induced maps

F pK• → F pJ• are quasi-isomorphisms. Using the long exact cohomology sequences
of the complexes in play we find that the same holds for K•/F pK• → J•/F pJ• and
F pK•/F p

′
K• → F pJ•/F p

′
J•. �

Remark 13.8. LetA be a Grothendieck abelian category. LetK• be a filtered complex
of A, see Homology, Definition 24.1. For ease of notation denote K , F pK , grpK the
object ofD(A) represented byK•, F pK•, grpK•. LetM ∈ D(A). Using Lemma 13.7 we
can construct a spectral sequence (Er, dr)r≥1 of bigraded objects of A with dr of bidgree
(r,−r + 1) and with

Ep,q1 = Extp+q(M, grpK)
If for every n we have

Extn(M,F pK) = 0 for p� 0 and Extn(M,F pK) = Extn(M,K) for p� 0
then the spectral sequence is bounded and converges to Extp+q(M,K). Namely, choose
any complex M• representing M , choose j : K• → J• as in the lemma, and consider the
complex

Hom•(M•, I•)
defined exactly as in More on Algebra, Section 71. SettingF p Hom•(M•, I•) = Hom•(M•, F pI•)
we obtain a filtered complex. The spectral sequence of Homology, Section 24 has differ-
entials and terms as described above; details omitted. The boundedness and convergence
follows from Homology, Lemma 24.13.

Remark 13.9. Let A be a Grothendieck abelian category. Let M,K be objects of
D(A). For any choice of complex K• representing K we can use the filtration F pK• =
τ≤−pK

• and the discussion in Remark 13.8 to get a spectral sequence with

Ep,q1 = Ext2p+q(M,H−p(K))
This spectral sequence is independent of the choice of complexK• representingK. After
renumbering p = −j and q = i + 2j we find a spectral sequence (E′

r, d
′
r)r≥2 with d′

r of
bidegree (r,−r + 1), with

(E′
2)i,j = Exti(M,Hj(K))

If M ∈ D−(A) and K ∈ D+(A) then both Er and E′
r are bounded and converge to

Extp+q(M,K). If we use the filtration F pK• = σ≥pK
• then we get

Ep,q1 = Extq(M,Kp)
If M ∈ D−(A) and K• is bounded below, then this spectral sequence is bounded and
converges to Extp+q(M,K).
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Remark 13.10. Let A be a Grothendieck abelian category. Let K ∈ D(A). Let M•

be a filtered complex of A, see Homology, Definition 24.1. For ease of notation denote
M , M/F pM , grpM the object of D(A) represented by M•, M•/F pM•, grpM•. Dually
to Remark 13.8 we can construct a spectral sequence (Er, dr)r≥1 of bigraded objects ofA
with dr of bidgree (r,−r + 1) and with

Ep,q1 = Extp+q(gr−pM,K)
If for every n we have
Extn(M/F pM,K) = 0 for p� 0 and Extn(M/F pM,K) = Extn(M,K) for p� 0
then the spectral sequence is bounded and converges to Extp+q(M,K). Namely, choose a
K-injective complex I• with injective terms representing K , see Theorem 12.6. Consider
the complex

Hom•(M•, I•)
defined exactly as in More on Algebra, Section 71. Setting

F p Hom•(M•, I•) = Hom•(M•/F−p+1M•, I•)
we obtain a filtered complex (note sign and shift in filtration). The spectral sequence of
Homology, Section 24 has differentials and terms as described above; details omitted. The
boundedness and convergence follows from Homology, Lemma 24.13.

Remark 13.11. Let A be a Grothendieck abelian category. Let M,K be objects of
D(A). For any choice of complexM• representingM we can use the filtration F pM• =
τ≤−pM

• and the discussion in Remark 13.8 to get a spectral sequence with

Ep,q1 = Ext2p+q(Hp(M),K)
This spectral sequence is independent of the choice of complexM• representingM . After
renumbering p = −j and q = i + 2j we find a spectral sequence (E′

r, d
′
r)r≥2 with d′

r of
bidegree (r,−r + 1), with

(E′
2)i,j = Exti(H−j(M),K)

IfM ∈ D−(A) andK ∈ D+(A) thenEr andE′
r are bounded and converge to Extp+q(M,K).

If we use the filtration F pM• = σ≥pM
• then we get

Ep,q1 = Extq(M−p,K)
If K ∈ D+(A) and M• is bounded above, then this spectral sequence is bounded and
converges to Extp+q(M,K).

Lemma 13.12. Let A be a Grothendieck abelian category. Suppose given an object
E ∈ D(A) and an inverse system {Ei}i∈Z of objects of D(A) over Z together with a
compatible system of maps Ei → E. Picture:

. . .→ Ei+1 → Ei → Ei−1 → . . .→ E

Then there exists a filtered complex K• of A (Homology, Definition 24.1) such that K•

represents E and F iK• represents Ei compatibly with the given maps.

Proof. By Theorem 12.6 we can choose a K-injective complex I• representing E all
of whose terms In are injective objects of A. Choose a complex G0,• representing E0.
Choose a map of complexes ϕ0 : G0,• → I• representing E0 → E. For i > 0 we
inductively represent Ei → Ei−1 by a map of complexes δ : Gi,• → Gi−1,• and we set
ϕi = δ◦ϕi−1. For i < 0 we inductively representEi+1 → Ei by a termwise injective map
of complexes δ : Gi+1,• → Gi,• (for example you can use Derived Categories, Lemma 9.6).
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Claim: we can find a map of complexes ϕi : Gi,• → I• representing the map Ei → E
and fitting into the commutative diagram

Gi+1,•
δ
//

ϕi+1

��

Gi,•

ϕizz
I•

Namely, we first choose any map of complexes ϕ : Gi,• → I• representing the mapEi →
E. Then we see that ϕ ◦ δ and ϕi+1 are homotopic by some homotopy hp : Gi+1,p →
Ip−1. Since the terms of I• are injective and since δ is termwise injective, we can lift hp to
(h′)p : Gi,p → Ip−1. Then we set ϕi = ϕ+ h′ ◦ d+ d ◦ h′ and we get what we claimed.

Next, we choose for every i a termwise injective map of complexes ai : Gi,• → J i,• with
J i,• acyclic, K-injective, with J i,p injective objects of A. To do this first map Gi,• to the
cone on the identity and then apply the theorem cited above. Arguing as above we can
find maps of complexes δ′ : J i,• → J i−1,• such that the diagrams

Gi,•
δ
//

ai

��

Gi−1,•

ai−1

��
J i,•

δ′
// J i−1,•

commute. (You could also use the functoriality of cones plus the functoriality in the
theorem to get this.) Then we consider the maps

Gi+1,• ×
∏
p>i+1 J

p,• //

))

Gi,• ×
∏
p>i J

p,• //

��

Gi−1,• ×
∏
p>i−1 J

p,•

uu
I• ×

∏
p J

p,•

Here the arrows on Jp,• are the obvious ones (identity or zero). On the factorGi,• we use
δ : Gi,• → Gi−1,•, the map ϕi : Gi,• → I•, the zero map 0 : Gi,• → Jp,• for p > i, the
map ai : Gi,• → Jp,• for p = i, and (δ′)i−p ◦ ai = ap ◦ δi−p : Gi,• → Jp,• for p < i.
We omit the verification that all the arrows in the diagram are termwise injective. Thus
we obtain a filtered complex. Because products in D(A) are given by taking products of
K-injective complexes (Lemma 13.4) and because Jp,• is zero in D(A) we conclude this
diagram represents the given diagram in the derived category. This finishes the proof. �

Lemma 13.13. In the situation of Lemma 13.12 assume we have a second inverse system
{(E′)i}i∈Z and a compatible system of maps (E′)i → E. Then there exists a bi-filtered
complexK• ofA such thatK• representsE ,F iK• representsEi, and (F ′)iK• represents
(E′)i compatibly with the given maps.

Proof. Using the lemma we can first choose K• and F . Then we can choose (K ′)•

and F ′ which work for {(E′)i}i∈Z and the maps (E′)i → E. Using Lemma 13.7 we can
assumeK• is a K-injective complex. Then we can choose a map of complexes (K ′)• → K•

corresponding to the given identifications (K ′)• ∼= E ∼= K•. We can additionally choose
a termwise injective map (K ′)• → J• with J• acyclic and K-injective. (To do this first
map (K ′)• to the cone on the identity and then apply Theorem 12.6.) Then (K ′)• →
K• × J• and K• → K• × J• are both termwise injective and quasi-isomorphisms (as
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the product represents E by Lemma 13.4). Then we can simply take the images of the
filtrations on K• and (K ′)• under these maps to conclude. �

14. The Gabriel-Popescu theorem

In this section we discuss the main theorem of [?]. The method of proof follows a write-
up by Jacob Lurie and another by Akhil Mathew who in turn follow the presentation by
Kuhn in [?]. See also [?].

Let A be a Grothendieck abelian category and let U be a generator for A, see Definition
10.1. Let R = HomA(U,U). Consider the functor G : A →ModR given by

G(A) = HomA(U,A)
endowed with its canonical right R-module structure.

Lemma 14.1. The functor G above has a left adjoint F : ModR → A.

Proof. We will give two proofs of this lemma.

The first proof will use the adjoint functor theorem, see Categories, Theorem 25.3. Observe
that thatG : A →ModR is left exact and sends products to products. HenceG commutes
with limits. To check the set theoretical condition in the theorem, suppose that M is an
object of ModR. Choose a suitably large cardinal κ and denoteE a set of objects ofA such
that every object A with |A| ≤ κ is isomorphic to an element of E. This is possible by
Lemma 11.4. Set I =

∐
A∈E HomR(M,G(A)). We think of an element i ∈ I as a pair

(Ai, fi). Finally, let A be an arbitrary object of A and f : M → G(A) arbitrary. We are
going to think of elements of Im(f) ⊂ G(A) = HomA(U,A) as maps u : U → A. Set

A′ = Im(
⊕

u∈Im(f)
U

u−→ A)

Since G is left exact, we see that G(A′) ⊂ G(A) contains Im(f) and we get f ′ : M →
G(A′) factoring f . On the other hand, the object A′ is the quotient of a direct sum of at
most |M | copies of U . Hence if κ = |

⊕
|M | U |, then we see that (A′, f ′) is isomorphic

to an element (Ai, fi) of E and we conclude that f factors as M fi−→ G(Ai) → G(A) as
desired.

The second proof will give a construction of F which will show that “F (M) = M ⊗RU”
in some sense. Namely, for any R-module M we can choose a resolution⊕

j∈J
R→

⊕
i∈I

R→M → 0

Then we define F (M) by the corresponding exact sequence⊕
j∈J

U →
⊕

i∈I
U → F (M)→ 0

This construction is independent of the choice of the resolution and is functorial; we omit
the details. For any A inA we obtain an exact sequence

0→ HomA(F (M), A)→
∏

i∈I
G(A)→

∏
j∈J

G(A)

which is isomorphic to the sequence

0→ HomR(M,G(A))→ HomR(
⊕

i∈I
R,G(A))→ HomR(

⊕
j∈J

R,G(A))

which shows that F is the left adjoint to G. �
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Lemma 14.2. Let f : M → G(A) be an injective map in ModR. Then the adjoint
map f ′ : F (M)→ A is injective too.

Proof. Choose a map R⊕n → M and consider the corresponding map U⊕n →
F (M). Consider a map v : U → U⊕n such that the composition U → U⊕n → F (M)→
A is 0. Then this arrow v : U → U⊕n is an element v of R⊕n mapping to zero in G(A).
Since f is injective, we conclude that v maps to zero inM which means thatU → U⊕n →
F (M) is zero by construction of F (M) in the proof of Lemma 14.1. SinceU is a generator
we conclude that

Ker(U⊕n → F (M)→ A) = Ker(U⊕n → F (M))

To finish the proof we choose a surjection
⊕

i∈I R→M and we consider the correspond-
ing surjection

π :
⊕

i∈I
U −→ F (M)

To prove f ′ is injective it suffices to show that Ker(π) = Ker(f ′ ◦ π) as subobjects of⊕
i∈I U . However, now we can write

⊕
i∈I U as the filtered colimit of its subobjects⊕

i∈I′ U where I ′ ⊂ I ranges over the finite subsets. Since filtered colimits are exact by
AB5 forA, we see that

Ker(π) = colimI′⊂I finite

(⊕
i∈I′

U
)⋂

Ker(π)

and
Ker(f ′ ◦ π) = colimI′⊂I finite

(⊕
i∈I′

U
)⋂

Ker(f ′ ◦ π)

and we get equality because the same is true for each I ′ by the first displayed equality
above. �

Theorem 14.3. LetA be a Grothendieck abelian category. Then there exists a (non-
commutative) ring R and functors G : A →ModR and F : ModR → A such that

(1) F is the left adjoint to G,
(2) G is fully faithful, and
(3) F is exact.

Moreover, the functors are the ones constructed above.

Proof. We first prove G is fully faithful, or equivalently that F ◦ G → id is an
isomorphism, see Categories, Lemma 24.4. First, given an objectA the mapF (G(A))→ A
is surjective, because every map of U → A factors through F (G(A)) by construction. On
the other hand, the map F (G(A))→ A is the adjoint of the map id : G(A)→ G(A) and
hence injective by Lemma 14.2.

The functor F is right exact as it is a left adjoint. Since ModR has enough projectives, to
show that F is exact, it is enough to show that the first left derived functor L1F is zero.
To prove L1F (M) = 0 for some R-module M choose an exact sequence 0→ K → P →
M → 0 of R-modules with P free. It suffices to show F (K) → F (P ) is injective. Now
we can write this sequence as a filtered colimit of sequences 0 → Ki → Pi → Mi → 0
with Pi a finite free R-module: just write P in this manner and set Ki = K ∩ Pi and
Mi = Im(Pi → M). Because F is a left adjoint it commutes with colimits and because
A is a Grothendieck abelian category, we find that F (K) → F (P ) is injective if each
F (Ki) → F (Pi) is injective. Thus it suffices to check F (K) → F (P ) is injective when
K ⊂ P = R⊕n. Thus F (K)→ U⊕n is injective by an application of Lemma 14.2. �
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Lemma 14.4. Let A be a Grothendieck abelian category. Let R, F , G be as in the
Gabriel-Popescu theorem (Theorem 14.3). Then we obtain derived functors

RG : D(A)→ D(ModR) and F : D(ModR)→ D(A)

such that F is left adjoint to RG, RG is fully faithful, and F ◦RG = id.

Proof. The existence and adjointness of the functors follows from Theorems 14.3
and 12.6 and Derived Categories, Lemmas 31.6, 16.9, and 30.3. The statementF ◦RG = id
follows because we can computeRG on an object ofD(A) by applyingG to a suitable rep-
resentative complex I• (for example a K-injective one) and then F (G(I•)) = I• because
F ◦G = id. Fully faithfulness of RG follows from this by Categories, Lemma 24.4. �

15. Brown representability and Grothendieck abelian categories

In this section we quickly prove a representability theorem for derived categories of Grothendieck
abelian categories. The reader should first read the case of compactly generated triangu-
lated categories in Derived Categories, Section 38. After that, instead of reading this sec-
tion, it makes sense to consult the literature for more general results of this nature, for
example see [?], [?], [?], or take a look at Derived Categories, Section 39.

Lemma 15.1. Let A be a Grothendieck abelian category. Let H : D(A) → Ab be a
contravariant cohomological functor which transforms direct sums into products. Then
H is representable.

Proof. Let R,F,G,RG be as in Lemma 14.4 and consider the functor H ◦ F :
D(ModR) → Ab. Observe that since F is a left adjoint it sends direct sums to direct
sums and hence H ◦ F transforms direct sums into products. On the other hand, the de-
rived category D(ModR) is generated by a single compact object, namely R. By Derived
Categories, Lemma 38.1 we see thatH ◦F is representable, say by L ∈ D(ModR). Choose
a distinguished triangle

M → L→ RG(F (L))→M [1]

in D(ModR). Then F (M) = 0 because F ◦ RG = id. Hence H(F (M)) = 0 hence
Hom(M,L) = 0. It follows that L → RG(F (L)) is the inclusion of a direct summand,
see Derived Categories, Lemma 4.11. For A in D(A) we obtain

H(A) = H(F (RG(A))
= Hom(RG(A), L)
→ Hom(RG(A), RG(F (L)))
= Hom(F (RG(A)), F (L))
= Hom(A,F (L))

where the arrow has a left inverse functorial in A. In other words, we find that H is the
direct summand of a representable functor. SinceD(A) is Karoubian (Derived Categories,
Lemma 4.14) we conclude. �

Proposition 15.2. Let A be a Grothendieck abelian category. Let D be a triangu-
lated category. Let F : D(A) → D be an exact functor of triangulated categories which
transforms direct sums into direct sums. Then F has an exact right adjoint.
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Proof. For an object Y of D consider the contravariant functor
D(A)→ Ab, W 7→ HomD(F (W ), Y )

This is a cohomological functor as F is exact and transforms direct sums into products
as F transforms direct sums into direct sums. Thus by Lemma 15.1 we find an object X
of D(A) such that HomD(A)(W,X) = HomD(F (W ), Y ). The existence of the adjoint
follows from Categories, Lemma 24.2. Exactness follows from Derived Categories, Lemma
7.1. �
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CHAPTER 20

Cohomology of Sheaves

1. Introduction

In this document we work out some topics on cohomology of sheaves on topological spaces.
We mostly work in the generality of modules over a sheaf of rings and we work with
morphisms of ringed spaces. To see what happens for sheaves on sites take a look at the
chapter Cohomology on Sites, Section 1. Basic references are [?] and [?].

2. Cohomology of sheaves

Let X be a topological space. Let F be an abelian sheaf. We know that the category of
abelian sheaves onX has enough injectives, see Injectives, Lemma 4.1. Hence we can choose
an injective resolution F [0]→ I•. As is customary we define

(2.0.1) Hi(X,F) = Hi(Γ(X, I•))

to be the ith cohomology group of the abelian sheaf F . The family of functors Hi(X,−)
forms a universal δ-functor from Ab(X)→ Ab.

Let f : X → Y be a continuous map of topological spaces. With F [0]→ I• as above we
define

(2.0.2) Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Ab(X)→ Ab(Y ).

Let (X,OX) be a ringed space. Let F be an OX -module. We know that the category of
OX -modules on X has enough injectives, see Injectives, Lemma 5.1. Hence we can choose
an injective resolution F [0]→ I•. As is customary we define

(2.0.3) Hi(X,F) = Hi(Γ(X, I•))

to be the ith cohomology group ofF . The family of functorsHi(X,−) forms a universal
δ-functor from Mod(OX)→ModOX(X).

Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. With F [0] → I• as above
we define

(2.0.4) Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Mod(OX)→Mod(OY ).

1787
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3. Derived functors

We briefly explain how to get right derived functors using resolution functors. For the
unbounded derived functors, please see Section 28.

Let (X,OX) be a ringed space. The category Mod(OX) is abelian, see Modules, Lemma
3.1. In this chapter we will write

K(OX) = K(Mod(OX)) and D(OX) = D(Mod(OX)).

and similarly for the bounded versions for the triangulated categories introduced in De-
rived Categories, Definition 8.1 and Definition 11.3. By Derived Categories, Remark 24.3
there exists a resolution functor

j = jX : K+(Mod(OX)) −→ K+(I)

whereI is the strictly full additive subcategory of Mod(OX) consisting of injective sheaves.
For any left exact functor F : Mod(OX)→ B into any abelian category B we will denote
RF the right derived functor described in Derived Categories, Section 20 and constructed
using the resolution functor jX just described:

(3.0.1) RF = F ◦ j′
X : D+(X) −→ D+(B)

see Derived Categories, Lemma 25.1 for notation. Note that we may think of RF as de-
fined on Mod(OX), Comp+(Mod(OX)),K+(X), orD+(X) depending on the situation.
According to Derived Categories, Definition 16.2 we obtain the ith right derived functor

(3.0.2) RiF = Hi ◦RF : Mod(OX) −→ B

so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories, Lemma
20.4.

Here are two special cases of this construction. Given a ringRwe writeK(R) = K(ModR)
and D(R) = D(ModR) and similarly for bounded versions. For any open U ⊂ X we
have a left exact functor Γ(U,−) : Mod(OX) −→ModOX(U) which gives rise to

(3.0.3) RΓ(U,−) : D+(X) −→ D+(OX(U))

by the discussion above. We set Hi(U,−) = RiΓ(U,−). If U = X we recover (2.0.3).
If f : X → Y is a morphism of ringed spaces, then we have the left exact functor f∗ :
Mod(OX) −→Mod(OY ) which gives rise to the derived pushforward

(3.0.4) Rf∗ : D+(X) −→ D+(Y )

The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher direct
image in accordance with (2.0.4). The two displayed functors above are exact functors of
derived categories.

Abuse of notation: When the functor Rf∗, or any other derived functor, is applied to
a sheaf F on X or a complex of sheaves it is understood that F has been replaced by a
suitable resolution of F . To facilitate this kind of operation we will say, given an object
F• ∈ D(OX), that a bounded below complex I• of injectives of Mod(OX) representsF•

in the derived category if there exists a quasi-isomorphismF• → I•. In the same vein the
phrase “let α : F• → G• be a morphism of D(OX)” does not mean that α is represented
by a morphism of complexes. If we have an actual morphism of complexes we will say so.
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4. First cohomology and torsors

Definition 4.1. Let X be a topological space. Let G be a sheaf of (possibly non-
commutative) groups on X . A torsor, or more precisely a G-torsor, is a sheaf of sets F on
X endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U)×F(U)→ F(U) is simply tran-
sitive, and

(2) for every x ∈ X the stalk Fx is nonempty.
A morphism of G-torsorsF → F ′ is simply a morphism of sheaves of sets compatible with
the G-actions. The trivial G-torsor is the sheaf G endowed with the obvious left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 4.2. LetX be a topological space. LetG be a sheaf of (possibly non-commutative)
groups on X . A G-torsor F is trivial if and only if F(X) 6= ∅.

Proof. Omitted. �

Lemma 4.3. Let X be a topological space. LetH be an abelian sheaf on X . There is a
canonical bijection between the set of isomorphism classes ofH-torsors and H1(X,H).

Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is the
sheafification of the rule which associates to U ⊂ X open the collection of finite formal
sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z

which to a local section
∑
ni[si] associates

∑
ni. The kernel of σ is generated by the

local section of the form [s]− [s′]. There is a canonical map a : Ker(σ)→ H which maps
[s]− [s′] 7→ h where h is the local section ofH such that h · s = s′. Consider the pushout
diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0

Here E is the extension obtained by pushout. From the long exact cohomology sequence
associated to the lower short exact sequence we obtain an element ξ = ξF ∈ H1(X,H)
by applying the boundary operator to 1 ∈ H0(X,Z).

Conversely, given ξ ∈ H1(X,H) we can associate to ξ a torsor as follows. Choose an
embedding H → I of H into an injective abelian sheaf I . We set Q = I/H so that we
have a short exact sequence

0 // H // I // Q // 0

The element ξ is the image of a global section q ∈ H0(X,Q) because H1(X, I) = 0 (see
Derived Categories, Lemma 20.4). LetF ⊂ I be the subsheaf (of sets) of sections that map
to q in the sheafQ. It is easy to verify that F is a torsor.

We omit the verification that the two constructions given above are mutually inverse. �
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5. First cohomology and extensions

Lemma 5.1. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules. There
is a canonical bijection

Ext1
Mod(OX)(OX ,F) −→ H1(X,F)

which associates to the extension
0→ F → E → OX → 0

the image of 1 ∈ Γ(X,OX) in H1(X,F).

Proof. Let us construct the inverse of the map given in the lemma. Let ξ ∈ H1(X,F).
Choose an injection F ⊂ I with I injective in Mod(OX). Set Q = I/F . By the long
exact sequence of cohomology, we see that ξ is the image of a section ξ̃ ∈ Γ(X,Q) =
HomOX

(OX ,Q). Now, we just form the pullback

0 // F // E //

��

OX //

ξ̃

��

0

0 // F // I // Q // 0
see Homology, Section 6. �

6. First cohomology and invertible sheaves

The Picard group of a ringed space is defined in Modules, Section 25.

Lemma 6.1. Let (X,OX) be a locally ringed space. There is a canonical isomorphism

H1(X,O∗
X) = Pic(X).

of abelian groups.

Proof. Let L be an invertibleOX -module. Consider the presheaf L∗ defined by the
rule

U 7−→ {s ∈ L(U) such thatOU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗
X(U) and s ∈ L∗(U),

then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a unique
f ∈ O∗

X(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally by Modules,
Lemma 25.4. In other words we see that L∗ is aO∗

X -torsor. Thus we get a map
invertible sheaves on (X,OX)

up to isomorphism −→ O∗
X -torsors

up to isomorphism
We omit the verification that this is a homomorphism of abelian groups. By Lemma 4.3
the right hand side is canonically bijective toH1(X,O∗

X). Thus we have to show this map
is injective and surjective.
Injective. If the torsor L∗ is trivial, this means by Lemma 4.2 that L∗ has a global section.
Hence this means exactly that L ∼= OX is the neutral element in Pic(X).
Surjective. Let F be anO∗

X -torsor. Consider the presheaf of sets
L1 : U 7−→ (F(U)×OX(U))/O∗

X(U)
where the action of f ∈ O∗

X(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of OX -
modules by setting (s, g) + (s′, g′) = (s, g + (s′/s)g′) where s′/s is the local section f
of O∗

X such that fs = s′, and h(s, g) = (s, hg) for h a local section of OX . We omit the
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verification that the sheafification L = L#
1 is an invertible OX -module whose associated

O∗
X -torsor L∗ is isomorphic to F . �

7. Locality of cohomology

The following lemma says there is no ambiguity in defining the cohomology of a sheaf F
over an open.

Lemma 7.1. Let X be a ringed space. Let U ⊂ X be an open subspace.
(1) If I is an injectiveOX -module then I|U is an injectiveOU -module.
(2) For any sheaf ofOX -modules F we have Hp(U,F) = Hp(U,F|U ).

Proof. Denote j : U → X the open immersion. Recall that the functor j−1 of
restriction to U is a right adjoint to the functor j! of extension by 0, see Sheaves, Lemma
31.8. Moreover, j! is exact. Hence (1) follows from Homology, Lemma 29.1.
By definition Hp(U,F) = Hp(Γ(U, I•)) where F → I• is an injective resolution in
Mod(OX). By the above we see that F|U → I•|U is an injective resolution in Mod(OU ).
Hence Hp(U,F|U ) is equal to Hp(Γ(U, I•|U )). Of course Γ(U,F) = Γ(U,F|U ) for any
sheaf F on X . Hence the equality in (2). �

Let X be a ringed space. Let F be a sheaf of OX -modules. Let U ⊂ V ⊂ X be open
subsets. Then there is a canonical restriction mapping
(7.1.1) Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U
functorial in F . Namely, choose any injective resolution F → I•. The restriction map-
pings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)
The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As indi-
cated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule U 7→ Hn(U,F)
is a presheaf of OX -modules. This presheaf is customarily denoted Hn(F). We will give
another interpretation of this presheaf in Lemma 11.4.

Lemma 7.2. LetX be a ringed space. LetF be a sheaf ofOX -modules. Let U ⊂ X be
an open subspace. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists an open covering
U =

⋃
i∈I Ui such that ξ|Ui = 0 for all i ∈ I .

Proof. Let F → I• be an injective resolution. Then

Hn(U,F) = Ker(In(U)→ In+1(U))
Im(In−1(U)→ In(U)) .

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation above.
Since I• is an injective resolution of F and n > 0 we see that the complex I• is exact in
degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves. Since ξ̃ is a section of
the kernel sheaf over U we conclude there exists an open covering U =

⋃
i∈I Ui such that

ξ̃|Ui is the image under d of a section ξi ∈ In−1(Ui). By our definition of the restriction
ξ|Ui as corresponding to the class of ξ̃|Ui we conclude. �

Lemma 7.3. Let f : X → Y be a morphism of ringed spaces. LetF be aOX -module.
The sheaves Rif∗F are the sheaves associated to the presheaves

V 7−→ Hi(f−1(V ),F)
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with restriction mappings as in Equation (7.1.1). There is a similar statement for Rif∗
applied to a bounded below complex F•.

Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the ith
cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .

By definition of the abelian category structure on OY -modules this cohomology sheaf is
the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V )→ f∗Ii+1(V ))
Im(f∗Ii−1(V )→ f∗Ii(V ))

and this is obviously equal to

Ker(Ii(f−1(V ))→ Ii+1(f−1(V )))
Im(Ii−1(f−1(V ))→ Ii(f−1(V )))

which is equal to Hi(f−1(V ),F) and we win. �

Lemma 7.4. Let f : X → Y be a morphism of ringed spaces. LetF be anOX -module.
Let V ⊂ Y be an open subspace. Denote g : f−1(V ) → V the restriction of f . Then we
have

Rpg∗(F|f−1(V )) = (Rpf∗F)|V
There is a similar statement for the derived image Rf∗F• where F• is a bounded below
complex ofOX -modules.

Proof. First proof. Apply Lemmas 7.3 and 7.1 to see the displayed equality. Second
proof. Choose an injective resolution F → I• and use that F|f−1(V ) → I•|f−1(V ) is an
injective resolution also. �

Remark 7.5. Here is a different approach to the proofs of Lemmas 7.2 and 7.3 above.
Let (X,OX) be a ringed space. Let iX : Mod(OX) → PMod(OX) be the inclusion
functor and let # be the sheafification functor. Recall that iX is left exact and # is exact.

(1) First prove Lemma 11.4 below which says that the right derived functors of iX
are given by RpiXF = Hp(F). Here is another proof: The equality is clear for
p = 0. Both (RpiX)p≥0 and (Hp)p≥0 are delta functors vanishing on injectives,
hence both are universal, hence they are isomorphic. See Homology, Section 12.

(2) A restatement of Lemma 7.2 is that (Hp(F))# = 0, p > 0 for any sheaf of
OX -modules F . To see this is true, use that # is exact so

(Hp(F))# = (RpiXF)# = Rp(# ◦ iX)(F) = 0

because # ◦ iX is the identity functor.
(3) Let f : X → Y be a morphism of ringed spaces. Let F be an OX -module. The

presheaf V 7→ Hp(f−1V,F) is equal to Rp(iY ◦ f∗)F . You can prove this by
noticing that both give universal delta functors as in the argument of (1) above.
Hence Lemma 7.3 says that Rpf∗F = (Rp(iY ◦ f∗)F)#. Again using that # is
exact a that # ◦ iY is the identity functor we see that

Rpf∗F = Rp(# ◦ iY ◦ f∗)F = (Rp(iY ◦ f∗)F)#

as desired.
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8. Mayer-Vietoris

Below will construct the Čech-to-cohomology spectral sequence, see Lemma 11.5. A special
case of that spectral sequence is the Mayer-Vietoris long exact sequence. Since it is such
a basic, useful and easy to understand variant of the spectral sequence we treat it here
separately.

Lemma 8.1. Let X be a ringed space. Let U ′ ⊂ U ⊂ X be open subspaces. For any
injectiveOX -module I the restriction mapping I(U)→ I(U ′) is surjective.

Proof. Let j : U → X and j′ : U ′ → X be the open immersions. Recall that j!OU
is the extension by zero of OU = OX |U , see Sheaves, Section 31. Since j! is a left adjoint
to restriction we see that for any sheaf F ofOX -modules

HomOX
(j!OU ,F) = HomOU

(OU ,F|U ) = F(U)

see Sheaves, Lemma 31.8. Similarly, the sheaf j′
!OU ′ represents the functor F 7→ F(U ′).

Moreover there is an obvious canonical map ofOX -modules

j′
!OU ′ −→ j!OU

which corresponds to the restriction mapping F(U)→ F(U ′) via Yoneda’s lemma (Cat-
egories, Lemma 3.5). By the description of the stalks of the sheaves j′

!OU ′ , j!OU we see
that the displayed map above is injective (see lemma cited above). Hence if I is an injective
OX -module, then the map

HomOX
(j!OU , I) −→ HomOX

(j′
!OU ′ , I)

is surjective, see Homology, Lemma 27.2. Putting everything together we obtain the lemma.
�

Lemma 8.2 (Mayer-Vietoris). Let X be a ringed space. Suppose that X = U ∪ V is a
union of two open subsets. For everyOX -moduleF there exists a long exact cohomology
sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

This long exact sequence is functorial in F .

Proof. The sheaf condition says that the kernel of (1,−1) : F(U)⊕F(V )→ F(U∩
V ) is equal to the image ofF(X) by the first map for any abelian sheafF . Lemma 8.1 above
implies that the map (1,−1) : I(U)⊕ I(V )→ I(U ∩ V ) is surjective whenever I is an
injectiveOX -module. Hence ifF → I• is an injective resolution ofF , then we get a short
exact sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.

Taking cohomology gives the result (use Homology, Lemma 13.12). We omit the proof of
the functoriality of the sequence. �

Lemma 8.3 (Relative Mayer-Vietoris). Let f : X → Y be a morphism of ringed
spaces. Suppose thatX = U∪V is a union of two open subsets. Denote a = f |U : U → Y ,
b = f |V : V → Y , and c = f |U∩V : U ∩ V → Y . For everyOX -module F there exists a
long exact sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .

This long exact sequence is functorial in F .
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Proof. Let F → I• be an injective resolution of F . We claim that we get a short
exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.

Namely, for any open W ⊂ Y , and for any n ≥ 0 the corresponding sequence of groups
of sections over W

0→ In(f−1(W ))→ In(U∩f−1(W ))⊕In(V ∩f−1(W ))→ In(U∩V ∩f−1(W ))→ 0

was shown to be short exact in the proof of Lemma 8.2. The lemma follows by taking
cohomology sheaves and using the fact that I•|U is an injective resolution of F|U and
similarly for I•|V , I•|U∩V see Lemma 7.1. �

9. The Čech complex and Čech cohomology

Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open covering, see Topology,

Basic notion (13). As is customary we denoteUi0...ip = Ui0 ∩ . . .∩Uip for the (p+1)-fold
intersection of members of U . Let F be an abelian presheaf on X . Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0...ip).

This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value inF(Ui0...ip). Note
that if s ∈ Č1(U ,F) and i, j ∈ I then sij and sji are both elements of F(Ui ∩ Uj) but
there is no imposed relation between sij and sji. In other words, we are not working with
alternating cochains (these will be defined in Section 23). We define

d : Čp(U ,F) −→ Čp+1(U ,F)

by the formula

(9.0.1) d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0...ip+1

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

Definition 9.1. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Let F be an abelian presheaf on X . The complex Č•(U ,F) is the Čech com-
plex associated to F and the open covering U . Its cohomology groups Hi(Č•(U ,F)) are
called the Čech cohomology groups associated toF and the covering U . They are denoted
Ȟi(U ,F).

Lemma 9.2. Let X be a topological space. Let F be an abelian presheaf on X . The
following are equivalent

(1) F is an abelian sheaf and
(2) for every open covering U : U =

⋃
i∈I Ui the natural map

F(U)→ Ȟ0(U ,F)

is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every open covering. �
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Lemma 9.3. Let X be a topological space. Let F be an abelian presheaf on X . Let
U : U =

⋃
i∈I Ui be an open covering. If Ui = U for some i ∈ I , then the extended Čech

complex
F(U)→ Č•(U ,F)

obtained by putting F(U) in degree −1 with differential given by the canonical map of
F(U) into Č0(U ,F) is homotopy equivalent to 0.

Proof. Fix an element i ∈ I with U = Ui. Observe that Ui0...ip = Ui0...̂ij ...ip if
ij = i. Let us define a homotopy

h :
∏

i0...ip+1
F(Ui0...ip+1) −→

∏
i0...ip

F(Ui0...ip)

by the rule
h(s)i0...ip = sii0...ip

In other words, h :
∏
i0
F(Ui0)→ F(U) is projection onto the factorF(Ui) = F(U) and

in general the map h equals the projection onto the factorsF(Uii1...ip+1) = F(Ui1...ip+1).
We compute

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ii0...ip

=
∑p

j=0
(−1)jsii0...̂ij ...ip + si0...ip +

∑p

j=0
(−1)j+1sii0...̂ij ...ip

= si0...ip

This proves the identity map is homotopic to zero as desired. �

10. Čech cohomology as a functor on presheaves

Warning: In this section we work almost exclusively with presheaves and categories of
presheaves and the results are completely wrong in the setting of sheaves and categories
of sheaves!

Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open covering. Let F be a presheaf

of OX -modules. We have the Čech complex Č•(U ,F) of F just by thinking of F as a
presheaf of abelian groups. However, each term Čp(U ,F) has a natural structure of a
OX(U)-module and the differential is given by OX(U)-module maps. Moreover, it is
clear that the construction

F 7−→ Č•(U ,F)
is functorial in F . In fact, it is a functor

(10.0.1) Č•(U ,−) : PMod(OX) −→ Comp+(ModOX(U))

see Derived Categories, Definition 8.1 for notation. Recall that the category of bounded
below complexes in an abelian category is an abelian category, see Homology, Lemma 13.9.

Lemma 10.1. The functor given by Equation (10.0.1) is an exact functor (see Homol-
ogy, Lemma 7.2).

Proof. For any open W ⊂ U the functor F 7→ F(W ) is an additive exact functor
from PMod(OX) to ModOX(U). The terms Čp(U ,F) of the complex are products of these
exact functors and hence exact. Moreover a sequence of complexes is exact if and only if
the sequence of terms in a given degree is exact. Hence the lemma follows. �
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Lemma 10.2. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open covering.

The functors F 7→ Ȟn(U ,F) form a δ-functor from the abelian category of presheaves
ofOX -modules to the category ofOX(U)-modules (see Homology, Definition 12.1).

Proof. By Lemma 10.1 a short exact sequence of presheaves of OX -modules 0 →
F1 → F2 → F3 → 0 is turned into a short exact sequence of complexes of OX(U)-
modules. Hence we can use Homology, Lemma 13.12 to get the boundary maps δF1→F2→F3 :
Ȟn(U ,F3) → Ȟn+1(U ,F1) and a corresponding long exact sequence. We omit the
verification that these maps are compatible with maps between short exact sequences of
presheaves. �

In the formulation of the following lemma we use the functor jp! of extension by 0 for
presheaves of modules relative to an open immersion j : U → X . See Sheaves, Section 31.
For any open W ⊂ X and any presheaf G ofOX |U -modules we have

(jp!G)(W ) =
{
G(W ) if W ⊂ U

0 else.
Moreover, the functor jp! is a left adjoint to the restriction functor see Sheaves, Lemma
31.8. In particular we have the following formula

HomOX
(jp!OU ,F) = HomOU

(OU ,F|U ) = F(U).
Since the functor F 7→ F(U) is an exact functor on the category of presheaves we con-
clude that the presheaf jp!OU is a projective object in the category PMod(OX), see Ho-
mology, Lemma 28.2.
Note that if we are given open subsets U ⊂ V ⊂ X with associated open immersions
jU , jV , then we have a canonical map (jU )p!OU → (jV )p!OV . It is the identity on sections
over any openW ⊂ U and 0 else. In terms of the identification HomOX

((jU )p!OU , (jV )p!OV ) =
(jV )p!OV (U) = OV (U) it corresponds to the element 1 ∈ OV (U).

Lemma 10.3. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. De-

note ji0...ip : Ui0...ip → X the open immersion. Consider the chain complex K(U)• of
presheaves ofOX -modules

. . .→
⊕
i0i1i2

(ji0i1i2)p!OUi0i1i2 →
⊕
i0i1

(ji0i1)p!OUi0i1 →
⊕
i0

(ji0)p!OUi0 → 0→ . . .

where the last nonzero term is placed in degree 0 and where the map
(ji0...ip+1)p!OUi0...ip+1

−→ (ji0...̂ij ...ip+1
)p!OUi0...̂ij ...ip+1

is given by (−1)j times the canonical map. Then there is an isomorphism

HomOX
(K(U)•,F) = Č•(U ,F)

functorial in F ∈ Ob(PMod(OX)).

Proof. We saw in the discussion just above the lemma that
HomOX

((ji0...ip)p!OUi0...ip ,F) = F(Ui0...ip).
Hence we see that it is indeed the case that the direct sum⊕

i0...ip
(ji0...ip)p!OUi0...ip

represents the functor
F 7−→

∏
i0...ip

F(Ui0...ip).
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Hence by Categories, Yoneda Lemma 3.5 we see that there is a complexK(U)• with terms
as given. It is a simple matter to see that the maps are as given in the lemma. �

Lemma 10.4. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

OU ⊂ OX be the image presheaf of the map
⊕
jp!OUi → OX . The chain complex

K(U)• of presheaves of Lemma 10.3 above has homology presheaves

Hi(K(U)•) =
{

0 if i 6= 0
OU if i = 0

Proof. Consider the extended complex Kext
• one gets by putting OU in degree −1

with the obvious map K(U)0 =
⊕

i0
(ji0)p!OUi0 → OU . It suffices to show that taking

sections of this extended complex over any open W ⊂ X leads to an acyclic complex. In
fact, we claim that for every W ⊂ X the complex Kext

• (W ) is homotopy equivalent to
the zero complex. Write I = I1 q I2 where W ⊂ Ui if and only if i ∈ I1.
If I1 = ∅, then the complex Kext

• (W ) = 0 so there is nothing to prove.
If I1 6= ∅, thenOU (W ) = OX(W ) and

Kext
p (W ) =

⊕
i0...ip∈I1

OX(W ).

This is true because of the simple description of the presheaves (ji0...ip)p!OUi0...ip . More-
over, the differential of the complex Kext

• (W ) is given by

d(s)i0...ip =
∑

j=0,...,p+1

∑
i∈I1

(−1)jsi0...ij−1iij ...ip .

The sum is finite as the element s has finite support. Fix an element ifix ∈ I1. Define a
map

h : Kext
p (W ) −→ Kext

p+1(W )
by the rule

h(s)i0...ip+1 =
{

0 if i0 6= ifix
si1...ip+1 if i0 = ifix

We will use the shorthand h(s)i0...ip+1 = (i0 = ifix)si1...ip for this. Then we compute
(dh+ hd)(s)i0...ip

=
∑
j

∑
i∈I1

(−1)jh(s)i0...ij−1iij ...ip + (i = i0)d(s)i1...ip

= si0...ip +
∑
j≥1

∑
i∈I1

(−1)j(i0 = ifix)si1...ij−1iij ...ip + (i0 = ifix)d(s)i1...ip

which is equal to si0...ip as desired. �

Lemma 10.5. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open covering

of U ⊂ X . The Čech cohomology functors Ȟp(U ,−) are canonically isomorphic as a
δ-functor to the right derived functors of the functor

Ȟ0(U ,−) : PMod(OX) −→ModOX(U).

Moreover, there is a functorial quasi-isomorphism

Č•(U ,F) −→ RȞ0(U ,F)
where the right hand side indicates the right derived functor

RȞ0(U ,−) : D+(PMod(OX)) −→ D+(OX(U))
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of the left exact functor Ȟ0(U ,−).

Proof. Note that the category of presheaves of OX -modules has enough injectives,
see Injectives, Proposition 8.5. Note that Ȟ0(U ,−) is a left exact functor from the cate-
gory of presheaves ofOX -modules to the category ofOX(U)-modules. Hence the derived
functor and the right derived functor exist, see Derived Categories, Section 20.

Let I be a injective presheaf of OX -modules. In this case the functor HomOX
(−, I) is

exact on PMod(OX). By Lemma 10.3 we have

HomOX
(K(U)•, I) = Č•(U , I).

By Lemma 10.4 we have thatK(U)• is quasi-isomorphic toOU [0]. Hence by the exactness
of Hom into I mentioned above we see that Ȟi(U , I) = 0 for all i > 0. Thus the δ-functor
(Ȟn, δ) (see Lemma 10.2) satisfies the assumptions of Homology, Lemma 12.4, and hence
is a universal δ-functor.

By Derived Categories, Lemma 20.4 also the sequence RiȞ0(U ,−) forms a universal δ-
functor. By the uniqueness of universal δ-functors, see Homology, Lemma 12.5 we con-
clude thatRiȞ0(U ,−) = Ȟi(U ,−). This is enough for most applications and the reader
is suggested to skip the rest of the proof.

Let F be any presheaf ofOX -modules. Choose an injective resolution F → I• in the cat-
egory PMod(OX). Consider the double complex Č•(U , I•) with terms Čp(U , Iq). Con-
sider the associated total complex Tot(Č•(U , I•)), see Homology, Definition 18.3. There
is a map of complexes

Č•(U ,F) −→ Tot(Č•(U , I•))
coming from the maps Čp(U ,F)→ Čp(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ Tot(Č•(U , I•))

coming from the maps Ȟ0(U , Iq)→ Č0(U , Iq). Both of these maps are quasi-isomorphisms
by an application of Homology, Lemma 25.4. Namely, the columns of the double complex
are exact in positive degrees because the Čech complex as a functor is exact (Lemma 10.1)
and the rows of the double complex are exact in positive degrees since as we just saw
the higher Čech cohomology groups of the injective presheaves Iq are zero. Since quasi-
isomorphisms become invertible in D+(OX(U)) this gives the last displayed morphism
of the lemma. We omit the verification that this morphism is functorial. �

11. Čech cohomology and cohomology

Lemma 11.1. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let I be

an injectiveOX -module. Then

Ȟp(U , I) =
{
I(U) if p = 0

0 if p > 0

Proof. An injectiveOX -module is also injective as an object in the category PMod(OX)
(for example since sheafification is an exact left adjoint to the inclusion functor, using Ho-
mology, Lemma 29.1). Hence we can apply Lemma 10.5 (or its proof) to see the result. �

Lemma 11.2. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. There is a

transformation
Č•(U ,−) −→ RΓ(U,−)
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of functors Mod(OX)→ D+(OX(U)). In particular this provides canonical maps Ȟp(U ,F)→
Hp(U,F) for F ranging over Mod(OX).

Proof. Let F be an OX -module. Choose an injective resolution F → I•. Consider
the double complex Č•(U , I•) with terms Čp(U , Iq). There is a map of complexes

α : Γ(U, I•) −→ Tot(Č•(U , I•))

coming from the maps Iq(U)→ Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ Tot(Č•(U , I•))

coming from the map F → I0. We can apply Homology, Lemma 25.4 to see that α is a
quasi-isomorphism. Namely, Lemma 11.1 implies that the qth row of the double complex
Č•(U , I•) is a resolution of Γ(U, Iq). Hence α becomes invertible in D+(OX(U)) and
the transformation of the lemma is the composition of β followed by the inverse of α. We
omit the verification that this is functorial. �

Lemma 11.3. Let X be a topological space. Let H be an abelian sheaf on X . Let
U : X =

⋃
i∈I Ui be an open covering. The map

Ȟ1(U ,H) −→ H1(X,H)

is injective and identifies Ȟ1(U ,H) via the bijection of Lemma 4.3 with the set of isomor-
phism classes ofH-torsors which restrict to trivial torsors over each Ui.

Proof. To see this we construct an inverse map. Namely, let F be aH-torsor whose
restriction to Ui is trivial. By Lemma 4.2 this means there exists a section si ∈ F(Ui). On
Ui0 ∩Ui1 there is a unique section si0i1 ofH such that si0i1 ·si0 |Ui0 ∩Ui1 = si1 |Ui0 ∩Ui1 . A
computation shows that si0i1 is a Čech cocycle and that its class is well defined (i.e., does
not depend on the choice of the sections si). The inverse maps the isomorphism class of
F to the cohomology class of the cocycle (si0i1). We omit the verification that this map
is indeed an inverse. �

Lemma 11.4. Let X be a ringed space. Consider the functor i : Mod(OX) →
PMod(OX). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words, the
sections of Rpi(F) over an open U are given by

Ker(Ip(U)→ Ip+1(U))
Im(Ip−1(U)→ Ip(U)) .

which is the definition of Hp(U,F). �

Lemma 11.5. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. For any

sheaf ofOX -modules F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U ,Hq(F))

converging to Hp+q(U,F). This spectral sequence is functorial in F .
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Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
22.2) for the functors

i : Mod(OX)→ PMod(OX) and Ȟ0(U ,−) : PMod(OX)→ModOX(U).

Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 9.2. We have that i(I) is Čech acyclic
by Lemma 11.1. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as functors on PMod(OX)
by Lemma 10.5. Putting everything together gives the lemma. �

Lemma 11.6. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

F be an OX -module. Assume that Hi(Ui0...ip ,F) = 0 for all i > 0, all p ≥ 0 and all
i0, . . . , ip ∈ I . Then Ȟp(U ,F) = Hp(U,F) asOX(U)-modules.

Proof. We will use the spectral sequence of Lemma 11.5. The assumptions mean that
Ep,q2 = 0 for all (p, q) with q 6= 0. Hence the spectral sequence degenerates at E2 and the
result follows. �

Lemma 11.7. Let X be a ringed space. Let
0→ F → G → H → 0

be a short exact sequence of OX -modules. Let U ⊂ X be an open subset. If there exists a
cofinal system of open coverings U of U such that Ȟ1(U ,F) = 0, then the map G(U)→
H(U) is surjective.

Proof. Take an element s ∈ H(U). Choose an open covering U : U =
⋃
i∈I Ui such

that (a) Ȟ1(U ,F) = 0 and (b) s|Ui is the image of a section si ∈ G(Ui). Since we can
certainly find a covering such that (b) holds it follows from the assumptions of the lemma
that we can find a covering such that (a) and (b) both hold. Consider the sections

si0i1 = si1 |Ui0i1 − si0 |Ui0i1 .

Since si lifts s we see that si0i1 ∈ F(Ui0i1). By the vanishing of Ȟ1(U ,F) we can find
sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0i1 − ti0 |Ui0i1 .
Then clearly the sections si− ti satisfy the sheaf condition and glue to a section of G over
U which maps to s. Hence we win. �

Lemma 11.8. Let X be a ringed space. Let F be anOX -module such that

Ȟp(U ,F) = 0
for all p > 0 and any open covering U : U =

⋃
i∈I Ui of an open ofX . ThenHp(U,F) =

0 for all p > 0 and any open U ⊂ X .

Proof. LetF be a sheaf satisfying the assumption of the lemma. We will indicate this
by saying “F has vanishing higher Čech cohomology for any open covering”. Choose an
embedding F → I into an injective OX -module. By Lemma 11.1 I has vanishing higher
Čech cohomology for any open covering. Let Q = I/F so that we have a short exact
sequence

0→ F → I → Q → 0.
By Lemma 11.7 and our assumptions this sequence is actually exact as a sequence of presheaves!
In particular we have a long exact sequence of Čech cohomology groups for any open
covering U , see Lemma 10.2 for example. This implies thatQ is also an OX -module with
vanishing higher Čech cohomology for all open coverings.
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Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any open U ⊂ X . Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 20.4). By the above we see that H0(U, I) → H0(U,Q) is surjective
and hence H1(U,F) = 0. Since F was an arbitrary OX -module with vanishing higher
Čech cohomology we conclude that alsoH1(U,Q) = 0 sinceQ is another of these sheaves
(see above). By the long exact sequence this in turn implies that H2(U,F) = 0. And so
on and so forth. �

Lemma 11.9. (Variant of Lemma 11.8.) Let X be a ringed space. Let B be a basis for
the topology on X . Let F be an OX -module. Assume there exists a set of open coverings
Cov with the following properties:

(1) For every U ∈ Cov with U : U =
⋃
i∈I Ui we have U,Ui ∈ B and every

Ui0...ip ∈ B.
(2) For every U ∈ B the open coverings of U occurring in Cov is a cofinal system

of open coverings of U .
(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.

Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.

Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F has
vanishing higher Čech cohomology for any U ∈ Cov”. Choose an embedding F → I
into an injective OX -module. By Lemma 11.1 I has vanishing higher Čech cohomology
for any U ∈ Cov. LetQ = I/F so that we have a short exact sequence

0→ F → I → Q → 0.

By Lemma 11.7 and our assumption (2) this sequence gives rise to an exact sequence

0→ F(U)→ I(U)→ Q(U)→ 0.

for everyU ∈ B. Hence for anyU ∈ Cov we get a short exact sequence of Čech complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0

since each term in the Čech complex is made up out of a product of values over elements
of B by assumption (1). In particular we have a long exact sequence of Čech cohomology
groups for any open covering U ∈ Cov. This implies that Q is also an OX -module with
vanishing higher Čech cohomology for all U ∈ Cov.
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Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 20.4). By the above we see that H0(U, I) → H0(U,Q) is surjective
and hence H1(U,F) = 0. Since F was an arbitrary OX -module with vanishing higher
Čech cohomology for all U ∈ Cov we conclude that also H1(U,Q) = 0 since Q is an-
other of these sheaves (see above). By the long exact sequence this in turn implies that
H2(U,F) = 0. And so on and so forth. �

Lemma 11.10. Let f : X → Y be a morphism of ringed spaces. Let I be an injective
OX -module. Then

(1) Ȟp(V, f∗I) = 0 for all p > 0 and any open covering V : V =
⋃
j∈J Vj of Y .

(2) Hp(V, f∗I) = 0 for all p > 0 and every open V ⊂ Y .
In other words, f∗I is right acyclic for Γ(V,−) (see Derived Categories, Definition 15.3)
for any V ⊂ Y open.

Proof. Set U : f−1(V ) =
⋃
j∈J f

−1(Vj). It is an open covering of X and

Č•(V, f∗I) = Č•(U , I).
This is true because

f∗I(Vj0...jp) = I(f−1(Vj0...jp)) = I(f−1(Vj0) ∩ . . . ∩ f−1(Vjp)) = I(Uj0...jp).
Thus the first statement of the lemma follows from Lemma 11.1. The second statement
follows from the first and Lemma 11.8. �

The following lemma implies in particular that f∗ : Ab(X)→ Ab(Y ) transforms injective
abelian sheaves into injective abelian sheaves.

Lemma 11.11. Let f : X → Y be a morphism of ringed spaces. Assume f is flat. Then
f∗I is an injectiveOY -module for any injectiveOX -module I .

Proof. In this case the functor f∗ transforms injections into injections (Modules,
Lemma 20.2). Hence the result follows from Homology, Lemma 29.1. �

Lemma 11.12. Let (X,OX) be a ringed space. Let I be a set. For i ∈ I let Fi be an
OX -module. Let U ⊂ X be open. The canonical map

Hp(U,
∏

i∈I
Fi) −→

∏
i∈I

Hp(U,Fi)

is an isomorphism for p = 0 and injective for p = 1.

Proof. The statement for p = 0 is true because the product of sheaves is equal to
the product of the underlying presheaves, see Sheaves, Section 29. Proof for p = 1. Set
F =

∏
Fi. Let ξ ∈ H1(U,F) map to zero in

∏
H1(U,Fi). By locality of cohomology,

see Lemma 7.2, there exists an open covering U : U =
⋃
Uj such that ξ|Uj = 0 for all
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j. By Lemma 11.3 this means ξ comes from an element ξ̌ ∈ Ȟ1(U ,F). Since the maps
Ȟ1(U ,Fi) → H1(U,Fi) are injective for all i (by Lemma 11.3), and since the image of
ξ is zero in

∏
H1(U,Fi) we see that the image ξ̌i = 0 in Ȟ1(U ,Fi). However, since

F =
∏
Fi we see that Č•(U ,F) is the product of the complexes Č•(U ,Fi), hence by

Homology, Lemma 32.1 we conclude that ξ̌ = 0 as desired. �

12. Flasque sheaves

Here is the definition.

Definition 12.1. Let X be a topological space. We say a presheaf of sets F is flasque
or flabby if for every U ⊂ V open in X the restriction map F(V )→ F(U) is surjective.

We will use this terminology also for abelian sheaves and sheaves of modules if X is a
ringed space. Clearly it suffices to assume the restriction mapsF(X)→ F(U) is surjective
for every open U ⊂ X .

Lemma 12.2. Let (X,OX) be a ringed space. Then any injectiveOX -module is flasque.

Proof. This is a reformulation of Lemma 8.1. �

Lemma 12.3. Let (X,OX) be a ringed space. Any flasque OX -module is acyclic for
RΓ(X,−) as well as RΓ(U,−) for any open U of X .

Proof. We will prove this using Derived Categories, Lemma 15.6. Since every injec-
tive module is flasque we see that we can embed every OX -module into a flasque module,
see Injectives, Lemma 4.1. Thus it suffices to show that given a short exact sequence

0→ F → G → H → 0
with F , G flasque, then H is flasque and the sequence remains short exact after taking
sections on any open ofX . In fact, the second statement implies the first. Thus, letU ⊂ X
be an open subspace. Let s ∈ H(U). We will show that we can lift s to a section of G over
U . To do this consider the set T of pairs (V, t) where V ⊂ U is open and t ∈ G(V ) is a
section mapping to s|V inH. We put a partial ordering on T by setting (V, t) ≤ (V ′, t′)
if and only if V ⊂ V ′ and t′|V = t. If (Vα, tα), α ∈ A is a totally ordered subset of
T , then V =

⋃
Vα is open and there is a unique section t ∈ G(V ) restricting to tα over

Vα by the sheaf condition on G. Thus by Zorn’s lemma there exists a maximal element
(V, t) in T . We will show that V = U thereby finishing the proof. Namely, pick any
x ∈ U . We can find a small open neighbourhood W ⊂ U of x and t′ ∈ G(W ) mapping
to s|W in H. Then t′|W∩V − t|W∩V maps to zero in H, hence comes from some section
r′ ∈ F(W ∩V ). Using thatF is flasque we find a section r ∈ F(W ) restricting to r′ over
W ∩ V . Modifying t′ by the image of r we may assume that t and t′ restrict to the same
section over W ∩ V . By the sheaf condition of G we can find a section t̃ of G over W ∪ V
restricting to t and t′. By maximality of (V, t) we see that V ∪W = V . Thus x ∈ V and
we are done. �

The following lemma does not hold for flasque presheaves.

Lemma 12.4. Let (X,OX) be a ringed space. Let F be a sheaf of OX -modules. Let
U : U =

⋃
Ui be an open covering. If F is flasque, then Ȟp(U ,F) = 0 for p > 0.

Proof. The presheavesHq(F) used in the statement of Lemma 11.5 are zero by Lemma
12.3. Hence Ȟp(U,F) = Hp(U,F) = 0 by Lemma 12.3 again. �
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Lemma 12.5. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let F be
a sheaf ofOX -modules. If F is flasque, then Rpf∗F = 0 for p > 0.

Proof. Immediate from Lemma 7.3 and Lemma 12.3. �

The following lemma can be proved by an elementary induction argument for finite cov-
erings, compare with the discussion of Čech cohomology in [?].

Lemma 12.6. Let X be a topological space. Let F be an abelian sheaf on X . Let
U : U =

⋃
i∈I Ui be an open covering. Assume the restriction mappings F(U)→ F(U ′)

are surjective for U ′ an arbitrary union of opens of the form Ui0...ip . Then Ȟp(U ,F)
vanishes for p > 0.

Proof. Let Y be the set of nonempty subsets of I . We will use the lettersA,B,C, . . .
to denote elements of Y , i.e., nonempty subsets of I . For a finite nonempty subset J ⊂ I
let

VJ = {A ∈ Y | J ⊂ A}
This means that V{i} = {A ∈ Y | i ∈ A} and VJ =

⋂
j∈J V{j}. Then VJ ⊂ VK if and

only if J ⊃ K. There is a unique topology on Y such that the collection of subsets VJ is
a basis for the topology on Y . Any open is of the form

V =
⋃

t∈T
VJt

for some family of finite subsets Jt. If Jt ⊂ Jt′ then we may remove Jt′ from the family
without changing V . Thus we may assume there are no inclusions among the Jt. In this
case the minimal elements of V are the sets A = Jt. Hence we can read off the family
(Jt)t∈T from the open V .
We can completely understand open coverings in Y . First, because the elements A ∈ Y
are nonempty subsets of I we have

Y =
⋃

i∈I
V{i}

To understand other coverings, let V be as above and let Vs ⊂ Y be an open corresponding
to the family (Js,t)t∈Ts . Then

V =
⋃

s∈S
Vs

if and only if for each t ∈ T there exists an s ∈ S and ts ∈ Ts such that Jt = Js,ts .
Namely, as the family (Jt)t∈T is minimal, the minimal elementA = Jt has to be in Vs for
some s, hence A ∈ VJts for some ts ∈ Ts. But since A is also minimal in Vs we conclude
that Jts = Jt.
Next we map the set of opens of Y to opens of X . Namely, we send Y to U , we use the
rule

VJ 7→ UJ =
⋂

i∈J
Ui

on the opens VJ , and we extend it to arbitrary opens V by the rule

V =
⋃

t∈T
VJt 7→

⋃
t∈T

UJt

The classification of open coverings of Y given above shows that this rule transforms
open coverings into open coverings. Thus we obtain an abelian sheaf G on Y by setting
G(Y ) = F(U) and for V =

⋃
t∈T VJt setting

G(V ) = F
(⋃

t∈T
UJt

)
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and using the restriction maps of F .

With these preliminaries out of the way we can prove our lemma as follows. We have an
open covering V : Y =

⋃
i∈I V{i} of Y . By construction we have an equality

Č•(V,G) = Č•(U ,F)
of Čech complexes. Since the sheaf G is flasque on Y (by our assumption on F in the
statement of the lemma) the vanishing follows from Lemma 12.4. �

13. The Leray spectral sequence

Lemma 13.1. Let f : X → Y be a morphism of ringed spaces. There is a commutative
diagram

D+(X)
RΓ(X,−)

//

Rf∗

��

D+(OX(X))

restriction
��

D+(Y )
RΓ(Y,−) // D+(OY (Y ))

More generally for any V ⊂ Y open and U = f−1(V ) there is a commutative diagram

D+(X)
RΓ(U,−)

//

Rf∗

��

D+(OX(U))

restriction
��

D+(Y )
RΓ(V,−) // D+(OY (V ))

See also Remark 13.2 for more explanation.

Proof. Let Γres : Mod(OX) → ModOY (Y ) be the functor which associates to
an OX -module F the global sections of F viewed as an OY (Y )-module via the map
f ] : OY (Y ) → OX(X). Let restriction : ModOX(X) → ModOY (Y ) be the restriction
functor induced by f ] : OY (Y ) → OX(X). Note that restriction is exact so that its
right derived functor is computed by simply applying the restriction functor, see Derived
Categories, Lemma 16.9. It is clear that

Γres = restriction ◦ Γ(X,−) = Γ(Y,−) ◦ f∗

We claim that Derived Categories, Lemma 22.1 applies to both compositions. For the first
this is clear by our remarks above. For the second, it follows from Lemma 11.10 which
implies that injectiveOX -modules are mapped to Γ(Y,−)-acyclic sheaves on Y . �

Remark 13.2. Here is a down-to-earth explanation of the meaning of Lemma 13.1. It
says that given f : X → Y andF ∈Mod(OX) and given an injective resolutionF → I•

we have
RΓ(X,F) is represented by Γ(X, I•)
Rf∗F is represented by f∗I•

RΓ(Y,Rf∗F) is represented by Γ(Y, f∗I•)
the last fact coming from Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) and
Lemma 11.10. Finally, it combines this with the trivial observation that

Γ(X, I•) = Γ(Y, f∗I•).
to arrive at the commutativity of the diagram of the lemma.

Lemma 13.3. Let X be a ringed space. Let F be anOX -module.
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(1) The cohomology groups Hi(U,F) for U ⊂ X open of F computed as an OX -
module, or computed as an abelian sheaf are identical.

(2) Let f : X → Y be a morphism of ringed spaces. The higher direct imagesRif∗F
of F computed as anOX -module, or computed as an abelian sheaf are identical.

There are similar statements in the case of bounded below complexes ofOX -modules.

Proof. Consider the morphism of ringed spaces (X,OX) → (X,ZX) given by the
identity on the underlying topological space and by the unique map of sheaves of rings
ZX → OX . Let F be an OX -module. Denote Fab the same sheaf seen as an ZX -module,
i.e., seen as a sheaf of abelian groups. Let F → I• be an injective resolution. By Remark
13.2 we see that Γ(X, I•) computes both RΓ(X,F) and RΓ(X,Fab). This proves (1).

To prove (2) we use (1) and Lemma 7.3. The result follows immediately. �

Lemma 13.4 (Leray spectral sequence). Let f : X → Y be a morphism of ringed
spaces. Let F• be a bounded below complex ofOX -modules. There is a spectral sequence

Ep,q2 = Hp(Y,Rqf∗(F•))

converging to Hp+q(X,F•).

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
22.2 coming from the composition of functors Γres = Γ(Y,−) ◦ f∗ where Γres is as in the
proof of Lemma 13.1. To see that the assumptions of Derived Categories, Lemma 22.2 are
satisfied, see the proof of Lemma 13.1 or Remark 13.2. �

Remark 13.5. The Leray spectral sequence, the way we proved it in Lemma 13.4 is a
spectral sequence of Γ(Y,OY )-modules. However, it is quite easy to see that it is in fact a
spectral sequence of Γ(X,OX)-modules. For example f gives rise to a morphism of ringed
spaces f ′ : (X,OX) → (Y, f∗OX). By Lemma 13.3 the terms Ep,qr of the Leray spectral
sequence for an OX -module F and f are identical with those for F and f ′ at least for
r ≥ 2. Namely, they both agree with the terms of the Leray spectral sequence for F as an
abelian sheaf. And since (f∗OX)(Y ) = OX(X) we see the result. It is often the case that
the Leray spectral sequence carries additional structure.

Lemma 13.6. Let f : X → Y be a morphism of ringed spaces. Let F be an OX -
module.

(1) If Rqf∗F = 0 for q > 0, then Hp(X,F) = Hp(Y, f∗F) for all p.
(2) IfHp(Y,Rqf∗F) = 0 for all q and p > 0, thenHq(X,F) = H0(Y,Rqf∗F) for

all q.

Proof. These are two simple conditions that force the Leray spectral sequence to
degenerate at E2. You can also prove these facts directly (without using the spectral se-
quence) which is a good exercise in cohomology of sheaves. �

Lemma 13.7. Let f : X → Y and g : Y → Z be morphisms of ringed spaces. In this
case Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors from D+(X)→ D+(Z).

Proof. We are going to apply Derived Categories, Lemma 22.1. It is clear that g∗ ◦
f∗ = (g ◦ f)∗, see Sheaves, Lemma 21.2. It remains to show that f∗I is g∗-acyclic. This
follows from Lemma 11.10 and the description of the higher direct imagesRig∗ in Lemma
7.3. �
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Lemma 13.8 (Relative Leray spectral sequence). Let f : X → Y and g : Y → Z be
morphisms of ringed spaces. Let F be anOX -module. There is a spectral sequence with

Ep,q2 = Rpg∗(Rqf∗F)

converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there is a
version for bounded below complexes ofOX -modules.

Proof. This is a Grothendieck spectral sequence for composition of functors and
follows from Lemma 13.7 and Derived Categories, Lemma 22.2. �

14. Functoriality of cohomology

Lemma 14.1. Let f : X → Y be a morphism of ringed spaces. Let G•, resp. F• be
a bounded below complex of OY -modules, resp. OX -modules. Let ϕ : G• → f∗F• be a
morphism of complexes. There is a canonical morphism

G• −→ Rf∗(F•)

in D+(Y ). Moreover this construction is functorial in the triple (G•,F•, ϕ).

Proof. Choose an injective resolution F• → I•. By definition Rf∗(F•) is repre-
sented by f∗I• in K+(OY ). The composition

G• → f∗F• → f∗I•

is a morphism inK+(Y ) which turns into the morphism of the lemma upon applying the
localization functor jY : K+(Y )→ D+(Y ). �

Let f : X → Y be a morphism of ringed spaces. Let G be an OY -module and let F be an
OX -module. Recall that an f -map ϕ from G to F is a map ϕ : G → f∗F , or what is the
same thing, a map ϕ : f∗G → F . See Sheaves, Definition 21.7. Such an f -map gives rise
to a morphism of complexes

(14.1.1) ϕ : RΓ(Y,G) −→ RΓ(X,F)

in D+(OY (Y )). Namely, we use the morphism G → Rf∗F in D+(Y ) of Lemma 14.1,
and we apply RΓ(Y,−). By Lemma 13.1 we see that RΓ(X,F) = RΓ(Y,Rf∗F) and we
get the displayed arrow. We spell this out completely in Remark 14.2 below. In particular
it gives rise to maps on cohomology

(14.1.2) ϕ : Hi(Y,G) −→ Hi(X,F).

Remark 14.2. Let f : X → Y be a morphism of ringed spaces. Let G be an OY -
module. Let F be an OX -module. Let ϕ be an f -map from G to F . Choose a resolution
F → I• by a complex of injectiveOX -modules. Choose resolutionsG → J • and f∗I• →
(J ′)• by complexes of injective OY -modules. By Derived Categories, Lemma 18.6 there
exists a map of complexes β such that the diagram

(14.2.1) G

��

// f∗F // f∗I•

��
J • β // (J ′)•
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commutes. Applying global section functors we see that we get a diagram

Γ(Y, f∗I•)

qis

��

Γ(X, I•)

Γ(Y,J •) β // Γ(Y, (J ′)•)

The complex on the bottom left represents RΓ(Y,G) and the complex on the top right
represents RΓ(X,F). The vertical arrow is a quasi-isomorphism by Lemma 13.1 which
becomes invertible after applying the localization functorK+(OY (Y ))→ D+(OY (Y )).
The arrow (14.1.1) is given by the composition of the horizontal map by the inverse of the
vertical map.

15. Refinements and Čech cohomology

Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui and V : X =

⋃
j∈J Vj be open

coverings. Assume that U is a refinement of V . Choose a map c : I → J such that
Ui ⊂ Vc(i) for all i ∈ I . This induces a map of Čech complexes

γ : Č•(V,F) −→ Č•(U ,F), (ξj0...jp) 7−→ (ξc(i0)...c(ip)|Ui0...ip )

functorial in the sheaf of OX -modules F . Suppose that c′ : I → J is a second map such
that Ui ⊂ Vc′(i) for all i ∈ I . Then the corresponding maps γ and γ′ are homotopic.
Namely, γ − γ′ = d ◦ h+ h ◦ d with h : Čp+1(V,F)→ Čp(U ,F) given by the rule

h(α)i0...ip =
∑p

a=0
(−1)aαc(i0)...c(ia)c′(ia)...c′(ip)

We omit the computation showing this works; please see the discussion following (25.0.2)
for the proof in a more general case. In particular, the map on Čech cohomology groups is
independent of the choice of c. Moreover, it is clear that ifW : X =

⋃
k∈KWk is a third

open covering and V is a refinement ofW , then the composition of the maps

Č•(W,F) −→ Č•(V,F) −→ Č•(U ,F)

associated to maps I → J and J → K is the map associated to the composition I → K.
In particular, we can define the Čech cohomology groups

Ȟp(X,F) = colimU Ȟ
p(U ,F)

where the colimit is over all open coverings of X preordered by refinement.

It turns out that the maps γ defined above are compatible with the map to cohomology,
in other words, the composition

Ȟp(V,F)→ Ȟp(U ,F) Lemma 11.2−−−−−−→ Hp(X,F)

is the canonical map from the first group to cohomology of Lemma 11.2. In the lemma
below we will prove this in a slightly more general setting. A consequence is that we
obtain a well defined map

(15.0.1) Ȟp(X,F) = colimU Ȟ
p(U ,F) −→ Hp(X,F)

from Čech cohomology to cohomology.
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Lemma 15.1. Let f : X → Y be a morphism of ringed spaces. Let ϕ : f∗G → F be
an f -map from anOY -module G to anOX -moduleF . Let U : X =

⋃
i∈I Ui and V : Y =⋃

j∈J Vj be open coverings. Assume thatU is a refinement of f−1V : X =
⋃
j∈J f

−1(Vj).
In this case there exists a commutative diagram

Č•(U ,F) // RΓ(X,F)

Č•(V,G) //

γ

OO

RΓ(Y,G)

OO

in D+(OX(X)) with horizontal arrows given by Lemma 11.2 and right vertical arrow by
(14.1.1). In particular we get commutative diagrams of cohomology groups

Ȟp(U ,F) // Hp(X,F)

Ȟp(V,G) //

γ

OO

Hp(Y,G)

OO

where the right vertical arrow is (14.1.2)

Proof. We first define the left vertical arrow. Namely, choose a map c : I → J such
that Ui ⊂ f−1(Vc(i)) for all i ∈ I . In degree p we define the map by the rule

γ(s)i0...ip = ϕ(s)c(i0)...c(ip)

This makes sense because ϕ does indeed induce maps G(Vc(i0)...c(ip)) → F(Ui0...ip) by
assumption. It is also clear that this defines a morphism of complexes. Choose injective
resolutions F → I• on X and G → J• on Y . According to the proof of Lemma 11.2 we
introduce the double complexes A•,• and B•,• with terms

Bp,q = Čp(V,J q) and Ap,q = Čp(U , Iq).

As in Remark 14.2 above we also choose an injective resolution f∗I → (J ′)• on Y and a
morphism of complexes β : J → (J ′)• making (14.2.1) commutes. We introduce some
more double complexes, namely (B′)•,• and (B′′)•,• with

(B′)p,q = Čp(V, (J ′)q) and (B′′)p,q = Čp(V, f∗Iq).

Note that there is an f -map of complexes from f∗I• to I•. Hence it is clear that the same
rule as above defines a morphism of double complexes

γ : (B′′)•,• −→ A•,•.

Consider the diagram of complexes

Č•(U ,F) // Tot(A•,•) Γ(X, I•)
qis

oo

Č•(V,G) //

γ

OO

Tot(B•,•) β // Tot((B′)•,•) Tot((B′′)•,•)oo

sγ

kk

Γ(Y,J •)

qis

OO

β // Γ(Y, (J ′)•)

OO

Γ(Y, f∗I•)

OO

qisoo
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The two horizontal arrows with targets Tot(A•,•) and Tot(B•,•) are the ones explained
in Lemma 11.2. The left upper shape (a pentagon) is commutative simply because (14.2.1)
is commutative. The two lower squares are trivially commutative. It is also immediate
from the definitions that the right upper shape (a square) is commutative. The result of
the lemma now follows from the definitions and the fact that going around the diagram on
the outer sides from Č•(V,G) to Γ(X, I•) either on top or on bottom is the same (where
you have to invert any quasi-isomorphisms along the way). �

16. Cohomology on Hausdorff quasi-compact spaces

For such a space Čech cohomology agrees with cohomology.

Lemma 16.1. Let X be a topological space. Let F be an abelian sheaf. Then the map
Ȟ1(X,F)→ H1(X,F) defined in (15.0.1) is an isomorphism.

Proof. Let U be an open covering of X . By Lemma 11.5 there is an exact sequence

0→ Ȟ1(U ,F)→ H1(X,F)→ Ȟ0(U ,H1(F))

Thus the map is injective. To show surjectivity it suffices to show that any element of
Ȟ0(U ,H1(F)) maps to zero after replacing U by a refinement. This is immediate from
the definitions and the fact thatH1(F) is a presheaf of abelian groups whose sheafification
is zero by locality of cohomology, see Lemma 7.2. �

Lemma 16.2. Let X be a Hausdorff and quasi-compact topological space. Let F be
an abelian sheaf on X . Then the map Ȟn(X,F) → Hn(X,F) defined in (15.0.1) is an
isomorphism for all n.

Proof. We already know that Ȟn(X,−) → Hn(X,−) is an isomorphism of func-
tors for n = 0, 1, see Lemma 16.1. The functors Hn(X,−) form a universal δ-functor, see
Derived Categories, Lemma 20.4. If we show that Ȟn(X,−) forms a universal δ-functor
and that Ȟn(X,−) → Hn(X,−) is compatible with boundary maps, then the map will
automatically be an isomorphism by uniqueness of universal δ-functors, see Homology,
Lemma 12.5.

Let 0 → F → G → H → 0 be a short exact sequence of abelian sheaves on X . Let
U : X =

⋃
i∈I Ui be an open covering. This gives a complex of complexes

0→ Č•(U ,F)→ Č•(U ,G)→ Č•(U ,H)→ 0

which is in general not exact on the right. The sequence defines the maps

Ȟn(U ,F)→ Ȟn(U ,G)→ Ȟn(U ,H)

but isn’t good enough to define a boundary operator δ : Ȟn(U ,H) → Ȟn+1(U ,F).
Indeed such a thing will not exist in general. However, given an element h ∈ Ȟn(U ,H)
which is the cohomology class of a cocycle h = (hi0...in) we can choose open coverings

Ui0...in =
⋃
Wi0...in,k

such that hi0...in |Wi0...in,k
lifts to a section of G over Wi0...in,k. By Topology, Lemma

13.5 (this is where we use the assumption that X is hausdorff and quasi-compact) we can
choose an open covering V : X =

⋃
j∈J Vj and α : J → I such that Vj ⊂ Uα(j) (it
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is a refinement) and such that for all j0, . . . , jn ∈ J there is a k such that Vj0...jn ⊂
Wα(j0)...α(jn),k. We obtain maps of complexes

0 // Č•(U ,F)

��

// Č•(U ,G)

��

// Č•(U ,H)

��

// 0

0 // Č•(V,F) // Č•(V,G) // Č•(V,H) // 0

In fact, the vertical arrows are the maps of complexes used to define the transition maps be-
tween the Čech cohomology groups. Our choice of refinement shows that we may choose

gj0...jn ∈ G(Vj0...jn), gj0...jn 7−→ hα(j0)...α(jn)|Vj0...jn

The cochain g = (gj0...jn) is not a cocycle in general but we know that its Čech boundary
d(g) maps to zero in Čn+1(V,H) (by the commutative diagram above and the fact that h
is a cocycle). Hence d(g) is a cocycle in Č•(V,F). This allows us to define

δ(h) = class of d(g) in Ȟn+1(V,F)

Now, given an element ξ ∈ Ȟn(X,G) we choose an open covering U and an element
h ∈ Ȟn(U ,G) mapping to ξ in the colimit defining Čech cohomology. Then we choose
V and g as above and set δ(ξ) equal to the image of δ(h) in Ȟn(X,F). At this point a
lot of properties have to be checked, all of which are straightforward. For example, we
need to check that our construction is independent of the choice of U , h,V, α : J → I, g.
The class of d(g) is independent of the choice of the lifts gi0...in because the difference
will be a coboundary. Independence of α holds1 because a different choice of α determines
homotopic vertical maps of complexes in the diagram above, see Section 15. For the other
choices we use that given a finite collection of coverings ofX we can always find a covering
refining all of them. We also need to check additivity which is shown in the same manner.
Finally, we need to check that the maps Ȟn(X,−) → Hn(X,−) are compatible with
boundary maps. To do this we choose injective resolutions

0 // F //

��

G //

��

H //

��

0

0 // I•
1

// I•
2

// I•
3

// 0

as in Derived Categories, Lemma 18.9. This will give a commutative diagram

0 // Č•(U ,F) //

��

Č•(U ,F) //

��

Č•(U ,F) //

��

0

0 // Tot(Č•(U , I•
1 )) // Tot(Č•(U , I•

2 )) // Tot(Č•(U , I•
3 )) // 0

HereU is an open covering as above and the vertical maps are those used to define the maps
Ȟn(U ,−)→ Hn(X,−), see Lemma 11.2. The bottom complex is exact as the sequence of
complexes of injectives is termwise split exact. Hence the boundary map in cohomology
is computed by the usual procedure for this lower exact sequence, see Homology, Lemma

1This is an important check because the nonuniqueness ofα is the only thing preventing us from taking the
colimit of Čech complexes over all open coverings of X to get a short exact sequence of complexes computing
Čech cohomology.
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13.12. The same will be true after passing to the refinement V where the boundary map
for Čech cohomology was defined. Hence the boundary maps agree because they use the
same construction (whenever the first one is defined on an element in Čech cohomology
on a given covering). This finishes our discussion of the construction of the structure
of a δ-functor on Čech cohomology and why this structure is compatible with the given
δ-functor structure on usual cohomology.

Finally, we may apply Lemma 11.1 to see that higher Čech cohomology is trivial on injec-
tive sheaves. Hence we see that Čech cohomology is a universal δ-functor by Homology,
Lemma 12.4. �

Lemma 16.3. Let X be a topological space. Let Z ⊂ X be a quasi-compact subset
such that any two points of Z have disjoint open neighbourhoods inX . For every abelian
sheaf F on X the canonical map

colimHp(U,F) −→ Hp(Z,F|Z)

where the colimit is over open neighbourhoods U of Z in X is an isomorphism.

Proof. We first prove this for p = 0. Injectivity follows from the definition of
F|Z and holds in general (for any subset of any topological space X). Next, suppose that
s ∈ H0(Z,F|Z). Then we can find opens Ui ⊂ X such that Z ⊂

⋃
Ui and such that

s|Z∩Ui comes from si ∈ F(Ui). It follows that there exist opens Wij ⊂ Ui ∩ Uj with
Wij ∩ Z = Ui ∩ Uj ∩ Z such that si|Wij = sj |Wij . Applying Topology, Lemma 13.7 we
find opens Vi of X such that Vi ⊂ Ui and such that Vi ∩ Vj ⊂ Wij . Hence we see that
si|Vi glue to a section of F over the open neighbourhood

⋃
Vi of Z.

To finish the proof, it suffices to show that if I is an injective abelian sheaf on X , then
Hp(Z, I|Z) = 0 for p > 0. This follows using short exact sequences and dimension
shifting; details omitted. Thus, suppose ξ is an element ofHp(Z, I|Z) for some p > 0. By
Lemma 16.2 the element ξ comes from Ȟp(V, I|Z) for some open covering V : Z =

⋃
Vi

of Z. Say ξ is the image of the class of a cocycle ξ = (ξi0...ip) in Čp(V, I|Z).

Let I ′ ⊂ I|Z be the subpresheaf defined by the rule

I ′(V ) = {s ∈ I|Z(V ) | ∃(U, t), U ⊂ X open, t ∈ I(U), V = Z ∩ U, s = t|Z∩U}

Then I|Z is the sheafification of I ′. Thus for every (p+ 1)-tuple i0 . . . ip we can find an
open coveringVi0...ip =

⋃
Wi0...ip,k such that ξi0...ip |Wi0...ip,k

is a section of I ′. Applying
Topology, Lemma 13.5 we may after refining V assume that each ξi0...ip is a section of the
presheaf I ′.

WriteVi = Z∩Ui for some opensUi ⊂ X . SinceI is flasque (Lemma 12.2) and since ξi0...ip
is a section ofI ′ for every (p+1)-tuple i0 . . . ip we can choose a section si0...ip ∈ I(Ui0...ip)
which restricts to ξi0...ip on Vi0...ip = Z ∩Ui0...ip . (This appeal to injectives being flasque
can be avoided by an additional application of Topology, Lemma 13.7.) Let s = (si0...ip) be
the corresponding cochain for the open coveringU =

⋃
Ui. Since d(ξ) = 0 we see that the

sections d(s)i0...ip+1 restrict to zero on Z ∩Ui0...ip+1 . Hence, by the initial remarks of the
proof, there exists open subsetsWi0...ip+1 ⊂ Ui0...ip+1 withZ∩Wi0...ip+1 = Z∩Ui0...ip+1

such that d(s)i0...ip+1 |Wi0...ip+1
= 0. By Topology, Lemma 13.7 we can find U ′

i ⊂ Ui
such that Z ⊂

⋃
U ′
i and such that U ′

i0...ip+1
⊂ Wi0...ip+1 . Then s′ = (s′

i0...ip
) with

s′
i0...ip

= si0...ip |U ′
i0...ip

is a cocycle for I for the open covering U ′ =
⋃
U ′
i of an open

neighbourhood of Z. Since I has trivial higher Čech cohomology groups (Lemma 11.1)
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we conclude that s′ is a coboundary. It follows that the image of ξ in the Čech complex
for the open covering Z =

⋃
Z ∩ U ′

i is a coboundary and we are done. �

17. The base change map

We will need to know how to construct the base change map in some cases. Since we have
not yet discussed derived pullback we only discuss this in the case of a base change by a flat
morphism of ringed spaces. Before we state the result, let us discuss flat pullback on the
derived category. Namely, suppose that g : X → Y is a flat morphism of ringed spaces.
By Modules, Lemma 20.2 the functor g∗ : Mod(OY ) → Mod(OX) is exact. Hence it has
a derived functor

g∗ : D+(Y )→ D+(X)

which is computed by simply pulling back an representative of a given object in D+(Y ),
see Derived Categories, Lemma 16.9. Hence as indicated we indicate this functor by g∗

rather than Lg∗.

Lemma 17.1. Let

X ′
g′
//

f ′

��

X

f

��
S′ g // S

be a commutative diagram of ringed spaces. Let F• be a bounded below complex of OX -
modules. Assume both g and g′ are flat. Then there exists a canonical base change map

g∗Rf∗F• −→ R(f ′)∗(g′)∗F•

in D+(S′).

Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma 11.11
we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g′)∗F•. Hence by
Derived Categories, Lemmas 18.6 and 18.7 the arrow β in the diagram

(g′)∗(g′)∗F• // (g′)∗J •

F•

adjunction

OO

// I•

β

OO

exists and is unique up to homotopy. Pushing down to S we get

f∗β : f∗I• −→ f∗(g′)∗J • = g∗(f ′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note that this
map is unique up to homotopy since the only choice in the whole process was the choice
of the map β and everything was done on the level of complexes. �

Remark 17.2. The “correct” version of the base change map is the map

Lg∗Rf∗F• −→ R(f ′)∗L(g′)∗F•.

The construction of this map involves unbounded complexes, see Remark 28.3.
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18. Proper base change in topology

In this section we prove a very general version of the proper base change theorem in topol-
ogy. It tells us that the stalks of the higher direct images Rpf∗ can be computed on the
fibre.

Lemma 18.1. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let y ∈ Y .
Assume that

(1) f is closed,
(2) f is separated, and
(3) f−1(y) is quasi-compact.

Then for E in D+(OX) we have (Rf∗E)y = RΓ(f−1(y), E|f−1(y)) in D+(OY,y).

Proof. The base change map of Lemma 17.1 gives a canonical map (Rf∗E)y →
RΓ(f−1(y), E|f−1(y)). To prove this map is an isomorphism, we representE by a bounded
below complex of injectives I•. Set Z = f−1({y}). The assumptions of Lemma 16.3 are
satisfied, see Topology, Lemma 4.2. Hence the restrictions In|Z are acyclic for Γ(Z,−).
ThusRΓ(Z,E|Z) is represented by the complex Γ(Z, I•|Z), see Derived Categories, Lemma
16.7. In other words, we have to show the map

colimV I•(f−1(V )) −→ Γ(Z, I•|Z)

is an isomorphism. Using Lemma 16.3 we see that it suffices to show that the collection
of open neighbourhoods f−1(V ) of Z = f−1({y}) is cofinal in the system of all open
neighbourhoods. If f−1({y}) ⊂ U is an open neighbourhood, then as f is closed the set
V = Y \ f(X \ U) is an open neighbourhood of y with f−1(V ) ⊂ U . This proves the
lemma. �

Theorem 18.2 (Proper base change). Consider a cartesian square of topological spaces

X ′ = Y ′ ×Y X

f ′

��

g′
// X

f

��
Y ′ g // Y

Assume that f is proper. Let E be an object of D+(X). Then the base change map

g−1Rf∗E −→ Rf ′
∗(g′)−1E

of Lemma 17.1 is an isomorphism in D+(Y ′).

Proof. Let y′ ∈ Y ′ be a point with image y ∈ Y . It suffices to show that the base
change map induces an isomorphism on stalks at y′. As f is proper it follows that f ′ is
proper, the fibres of f and f ′ are quasi-compact and f and f ′ are closed, see Topology,
Theorem 17.5 and Lemma 4.4. Thus we can apply Lemma 18.1 twice to see that

(Rf ′
∗(g′)−1E)y′ = RΓ((f ′)−1(y′), (g′)−1E|(f ′)−1(y′))

and
(Rf∗E)y = RΓ(f−1(y), E|f−1(y))

The induced map of fibres (f ′)−1(y′) → f−1(y) is a homeomorphism of topological
spaces and the pull back of E|f−1(y) is (g′)−1E|(f ′)−1(y′). The desired result follows. �
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Lemma 18.3 (Proper base change for sheaves of sets). Consider a cartesian square of
topological spaces

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

Assume that f is proper. Then g−1f∗F = f ′
∗(g′)−1F for any sheaf of sets F on X .

Proof. We argue exactly as in the proof of Theorem 18.2 and we find it suffices to
show (f∗F)y = Γ(Xy,F|Xy ). Then we argue as in Lemma 18.1 to reduce this to the p = 0
case of Lemma 16.3 for sheaves of sets. The first part of the proof of Lemma 16.3 works for
sheaves of sets and this finishes the proof. Some details omitted. �

19. Cohomology and colimits

Let X be a ringed space. Let (Fi, ϕii′) be a system of sheaves of OX -modules over the
directed set I , see Categories, Section 21. Since for each i there is a canonical map Fi →
colimi Fi we get a canonical map

colimiH
p(X,Fi) −→ Hp(X, colimi Fi)

for every p ≥ 0. Of course there is a similar map for every open U ⊂ X . These maps are
in general not isomorphisms, even for p = 0. In this section we generalize the results of
Sheaves, Lemma 29.1. See also Modules, Lemma 22.8 (in the special case G = OX ).

Lemma 19.1. Let X be a ringed space. Assume that the underlying topological space
of X has the following properties:

(1) there exists a basis of quasi-compact open subsets, and
(2) the intersection of any two quasi-compact opens is quasi-compact.

Then for any directed system (Fi, ϕii′) of sheaves of OX -modules and for any quasi-
compact open U ⊂ X the canonical map

colimiH
q(U,Fi) −→ Hq(U, colimi Fi)

is an isomorphism for every q ≥ 0.

Proof. It is important in this proof to argue for all quasi-compact opens U ⊂ X
at the same time. The result is true for q = 0 and any quasi-compact open U ⊂ X
by Sheaves, Lemma 29.1 (combined with Topology, Lemma 27.1). Assume that we have
proved the result for all q ≤ q0 and let us prove the result for q = q0 + 1.

By our conventions on directed systems the index set I is directed, and any system of
OX -modules (Fi, ϕii′) over I is directed. By Injectives, Lemma 5.1 the category of OX -
modules has functorial injective embeddings. Thus for any system (Fi, ϕii′) there exists
a system (Ii, ϕii′) with each Ii an injectiveOX -module and a morphism of systems given
by injective OX -module maps Fi → Ii. Denote Qi the cokernel so that we have short
exact sequences

0→ Fi → Ii → Qi → 0.
We claim that the sequence

0→ colimi Fi → colimi Ii → colimiQi → 0.
is also a short exact sequence of OX -modules. We may check this on stalks. By Sheaves,
Sections 28 and 29 taking stalks commutes with colimits. Since a directed colimit of short
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exact sequences of abelian groups is short exact (see Algebra, Lemma 8.8) we deduce the
result. We claim that Hq(U, colimi Ii) = 0 for all quasi-compact open U ⊂ X and all
q ≥ 1. Accepting this claim for the moment consider the diagram

colimiH
q0(U, Ii)

��

// colimiH
q0(U,Qi)

��

// colimiH
q0+1(U,Fi)

��

// 0

��
Hq0(U, colimi Ii) // Hq0(U, colimiQi) // Hq0+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper right
corner comes from the fact that the sheaves Ii are injective. The top row is exact by an
application of Algebra, Lemma 8.8. Hence by the snake lemma we deduce the result for
q = q0 + 1.

It remains to show that the claim is true. We will use Lemma 11.9. LetB be the collection of
all quasi-compact open subsets ofX . This is a basis for the topology onX by assumption.
Let Cov be the collection of finite open coverings U : U =

⋃
j=1,...,m Uj with each of U ,

Uj quasi-compact open in X . By the result for q = 0 we see that for U ∈ Cov we have

Č•(U , colimi Ii) = colimi Č•(U , Ii)

because all the multiple intersections Uj0...jp are quasi-compact. By Lemma 11.1 each of
the complexes in the colimit of Čech complexes is acyclic in degree≥ 1. Hence by Algebra,
Lemma 8.8 we see that also the Čech complex Č•(U , colimi Ii) is acyclic in degrees ≥ 1.
In other words we see that Ȟp(U , colimi Ii) = 0 for all p ≥ 1. Thus the assumptions of
Lemma 11.9 are satisfied and the claim follows. �

Next we formulate the analogy of Sheaves, Lemma 29.4 for cohomology. LetX be a spec-
tral space which is written as a cofiltered limit of spectral spaces Xi for a diagram with
spectral transition morphisms as in Topology, Lemma 24.5. Assume given

(1) an abelian sheaf Fi on Xi for all i ∈ Ob(I),
(2) for a : j → i an fa-mapϕa : Fi → Fj of abelian sheaves (see Sheaves, Definition

21.7)
such that ϕc = ϕb ◦ ϕa whenever c = a ◦ b. Set F = colim p−1

i Fi on X .

Lemma 19.2. In the situation discussed above. Let i ∈ Ob(I) and let Ui ⊂ Xi be
quasi-compact open. Then

colima:j→iH
p(f−1

a (Ui),Fj) = Hp(p−1
i (Ui),F)

for all p ≥ 0. In particular we have Hp(X,F) = colimHp(Xi,Fi).

Proof. The case p = 0 is Sheaves, Lemma 29.4.

In this paragraph we show that we can find a map of systems (γi) : (Fi, ϕa) → (Gi, ψa)
with Gi an injective abelian sheaf and γi injective. For each iwe pick an injectionFi → Ii
where Ii is an injective abelian sheaf on Xi. Then we can consider the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ik = Gi

where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ik. For

a : j → i in I there is a canonical map

ψa : f−1
a Gi → Gj
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whose components are the canonical maps f−1
b fa◦b,∗Ik → fb,∗Ik for b : k → j. Thus we

find an injection {γi} : {Fi, ϕa) → (Gi, ψa) of systems of abelian sheaves. Note that Gi
is an injective sheaf of abelian groups onXi, see Lemma 11.11 and Homology, Lemma 27.3.
This finishes the construction.

Arguing exactly as in the proof of Lemma 19.1 we see that it suffices to prove thatHp(X, colim f−1
i Gi) =

0 for p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every quasi-compact

open of X , it suffices to show that the Čech cohomology of G for any covering U of a
quasi-compact open of X by finitely many quasi-compact opens is zero, see Lemma 11.9.
Such a covering is the inverse by pi of such a covering Ui on the space Xi for some i by
Topology, Lemma 24.6. We have

Č•(U ,G) = colima:j→i Č•(f−1
a (Ui),Gj)

by the case p = 0. The right hand side is a filtered colimit of complexes each of which is
acyclic in positive degrees by Lemma 11.1. Thus we conclude by Algebra, Lemma 8.8. �

20. Vanishing on Noetherian topological spaces

The aim is to prove a theorem of Grothendieck namely Proposition 20.7. See [?].

Lemma 20.1. Let i : Z → X be a closed immersion of topological spaces. For any
abelian sheaf F on Z we have Hp(Z,F) = Hp(X, i∗F).

Proof. This is true because i∗ is exact (see Modules, Lemma 6.1), and henceRpi∗ = 0
as a functor (Derived Categories, Lemma 16.9). Thus we may apply Lemma 13.6. �

Lemma 20.2. Let X be an irreducible topological space. Then Hp(X,A) = 0 for all
p > 0 and any abelian group A.

Proof. Recall thatA is the constant sheaf as defined in Sheaves, Definition 7.4. Since
X is irreducible, any nonempty open U is irreducible and a fortiori connected. Hence for
U ⊂ X nonempty open we have A(U) = A. We have A(∅) = 0. Thus A is a flasque
abelian sheaf on X . The vanishing follows from Lemma 12.3. �

Lemma 20.3. LetX be a topological space such that the intersection of any two quasi-
compact opens is quasi-compact. Let F ⊂ Z be a subsheaf generated by finitely many
sections over quasi-compact opens. Then there exists a finite filtration

(0) = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F

by abelian subsheaves such that for each 0 < i ≤ n there exists a short exact sequence

0→ j′
!ZV → j!ZU → Fi/Fi−1 → 0

with j : U → X and j′ : V → X the inclusion of quasi-compact opens into X .

Proof. Say F is generated by the sections s1, . . . , st over the quasi-compact opens
U1, . . . , Ut. Since Ui is quasi-compact and si a locally constant function to Z we may
assume, after possibly replacing Ui by the parts of a finite decomposition into open and
closed subsets, that si is a constant section. Say si = ni with ni ∈ Z. Of course we can
remove (Ui, ni) from the list if ni = 0. Flipping signs if necessary we may also assume
ni > 0. Next, for any subset I ⊂ {1, . . . , t} we may add

⋂
i∈I Ui and gcd(ni, i ∈ I) to

the list. After doing this we see that our list (U1, n1), . . . , (Ut, nt) satisfies the following
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property: For x ∈ X set Ix = {i ∈ {1, . . . , t} | x ∈ Ui}. Then gcd(ni, i ∈ Ix) is attained
by ni for some i ∈ Ix.
As our filtration we take F0 = (0) and Fn generated by the sections ni over Ui for
those i such that ni ≤ n. It is clear that Fn = F for n � 0. Moreover, the quotient
Fn/Fn−1 is generated by the section n over U =

⋃
ni≤n Ui and the kernel of the map

j!ZU → Fn/Fn−1 is generated by the section n over V =
⋃
ni≤n−1 Ui. Thus a short

exact sequence as in the statement of the lemma. �

Lemma 20.4. Let X be a topological space. Let d ≥ 0 be an integer. Assume
(1) X is quasi-compact,
(2) the quasi-compact opens form a basis for X , and
(3) the intersection of two quasi-compact opens is quasi-compact.
(4) Hp(X, j!ZU ) = 0 for all p > d and any quasi-compact open j : U → X .

Then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X .

Proof. Let S =
∐
U⊂X F(U) whereU runs over the quasi-compact opens ofX . For

any finite subset A = {s1, . . . , sn} ⊂ S , let FA be the subsheaf of F generated by all si
(see Modules, Definition 4.5). Note that if A ⊂ A′, then FA ⊂ FA′ . Hence {FA} forms
a system over the directed partially ordered set of finite subsets of S. By Modules, Lemma
4.6 it is clear that

colimA FA = F
by looking at stalks. By Lemma 19.1 we have

Hp(X,F) = colimAH
p(X,FA)

Hence it suffices to prove the vanishing for the abelian sheaves FA. In other words, it
suffices to prove the result whenF is generated by finitely many local sections over quasi-
compact opens of X .
Suppose that F is generated by the local sections s1, . . . , sn. Let F ′ ⊂ F be the subsheaf
generated by s1, . . . , sn−1. Then we have a short exact sequence

0→ F ′ → F → F/F ′ → 0
From the long exact sequence of cohomology we see that it suffices to prove the vanishing
for the abelian sheaves F ′ and F/F ′ which are generated by fewer than n local sections.
Hence it suffices to prove the vanishing for sheaves generated by at most one local section.
These sheaves are exactly the quotients of the sheaves j!ZU where U is a quasi-compact
open of X .
Assume now that we have a short exact sequence

0→ K → j!ZU → F → 0
with U quasi-compact open inX . It suffices to show thatHq(X,K) is zero for q ≥ d+ 1.
As above we can write K as the filtered colimit of subsheaves K′ generated by finitely
many sections over quasi-compact opens. Then F is the filtered colimit of the sheaves
j!ZU/K′. In this way we reduce to the case that K is generated by finitely many sections
over quasi-compact opens. Note that K is a subsheaf of ZX . Thus by Lemma 20.3 there
exists a finite filtration of K whose successive quotientsQ fit into a short exact sequence

0→ j′′
! ZW → j′

!ZV → Q→ 0
with j′′ : W → X and j′ : V → X the inclusions of quasi-compact opens. Hence
the vanishing of Hp(X,Q) for p > d follows from our assumption (in the lemma) on
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the vanishing of the cohomology groups of j′′
! ZW and j′

!ZV . Returning to K this, via
an induction argument using the long exact cohomology sequence, implies the desired
vanishing for it as well. �

Example 20.5. Let X = N endowed with the topology whose opens are ∅, X , and
Un = {i | i ≤ n} for n ≥ 1. An abelian sheaf F on X is the same as an inverse system
of abelian groups An = F(Un) and Γ(X,F) = limAn. Since the inverse limit functor
is not an exact functor on the category of inverse systems, we see that there is an abelian
sheaf with nonzero H1. Finally, the reader can check that Hp(X, j!ZU ) = 0, p ≥ 1 if
j : U = Un → X is the inclusion. Thus we see that X is an example of a space satisfying
conditions (2), (3), and (4) of Lemma 20.4 for d = 0 but not the conclusion.

Lemma 20.6. Let X be an irreducible topological space. Let H ⊂ Z be an abelian
subsheaf of the constant sheaf. Then there exists a nonempty open U ⊂ X such that
H|U = dZU for some d ∈ Z.

Proof. Recall that Z(V ) = Z for any nonempty open V of X (see proof of Lemma
20.2). IfH = 0, then the lemma holds with d = 0. IfH 6= 0, then there exists a nonempty
open U ⊂ X such that H(U) 6= 0. Say H(U) = nZ for some n ≥ 1. Hence we see that
nZU ⊂ H|U ⊂ ZU . If the first inclusion is strict we can find a nonempty U ′ ⊂ U and an
integer 1 ≤ n′ < n such that n′ZU ′ ⊂ H|U ′ ⊂ ZU ′ . This process has to stop after a finite
number of steps, and hence we get the lemma. �

Proposition 20.7 (Grothendieck). LetX be a Noetherian topological space. If dim(X) ≤
d, then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X .

Proof. We prove this lemma by induction on d. So fix d and assume the lemma holds
for all Noetherian topological spaces of dimension < d.

Let F be an abelian sheaf onX . Suppose U ⊂ X is an open. Let Z ⊂ X denote the closed
complement. Denote j : U → X and i : Z → X the inclusion maps. Then there is a
short exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0
see Modules, Lemma 7.1. Note that j!j

∗F is supported on the topological closure Z ′ of
U , i.e., it is of the form i′∗F ′ for some abelian sheaf F ′ on Z ′, where i′ : Z ′ → X is the
inclusion.

We can use this to reduce to the case whereX is irreducible. Namely, according to Topol-
ogy, Lemma 9.2X has finitely many irreducible components. IfX has more than one irre-
ducible component, then letZ ⊂ X be an irreducible component ofX and setU = X \Z.
By the above, and the long exact sequence of cohomology, it suffices to prove the vanish-
ing of Hp(X, i∗i∗F) and Hp(X, i′∗F ′) for p > d. By Lemma 20.1 it suffices to prove
Hp(Z, i∗F) and Hp(Z ′,F ′) vanish for p > d. Since Z ′ and Z have fewer irreducible
components we indeed reduce to the case of an irreducible X .

If d = 0 andX is irreducible, thenX is the only nonempty open subset ofX . Hence every
sheaf is constant and higher cohomology groups vanish (for example by Lemma 20.2).

SupposeX is irreducible of dimension d > 0. By Lemma 20.4 we reduce to the case where
F = j!ZU for some open U ⊂ X . In this case we look at the short exact sequence

0→ j!(ZU )→ ZX → i∗ZZ → 0
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where Z = X \ U . By Lemma 20.2 we have the vanishing of Hp(X,ZX) for all p ≥ 1.
By induction we have Hp(X, i∗ZZ) = Hp(Z,ZZ) = 0 for p ≥ d. Hence we win by the
long exact cohomology sequence. �

21. Cohomology with support in a closed subset

This section just discusses the bare minimum – the discussion will be continued in Section
34.

Let X be a topological space and let Z ⊂ X be a closed subset. Let F be an abelian sheaf
on X . We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the subset of sections whose support is contained in Z. The support of a section is de-
fined in Modules, Definition 5.1. Modules, Lemma 5.2 implies that ΓZ(X,F) is a subgroup
of Γ(X,F). The same lemma guarantees that the assignmentF 7→ ΓZ(X,F) is a functor
in F . This functor is left exact but not exact in general.

Since the category of abelian sheaves has enough injectives (Injectives, Lemma 4.1) we we
obtain a right derived functor

RΓZ(X,−) : D+(X) −→ D+(Ab)

by Derived Categories, Lemma 20.2. The value ofRΓZ(X,−) on an objectK is computed
by representingK by a bounded below complex I• of injective abelian sheaves and taking
ΓZ(X, I•), see Derived Categories, Lemma 20.1. The cohomology groups of an abelian
sheaf F with support in Z defined by Hq

Z(X,F) = RqΓZ(X,F).

Let I be an injective abelian sheaf on X . Let U = X \ Z. Then the restriction map
I(X) → I(U) is surjective (Lemma 8.1) with kernel ΓZ(X, I). It immediately follows
that for K ∈ D+(X) there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]

in D+(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D+(X).

For an abelian sheaf F on X we can consider the subsheaf of sections with support in Z ,
denotedHZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z} = ΓZ∩U (U,F|U )

Using the equivalence of Modules, Lemma 6.1 we may viewHZ(F) as an abelian sheaf on
Z , see Modules, Remark 6.2. Thus we obtain a functor

Ab(X) −→ Ab(Z), F 7−→ HZ(F) viewed as a sheaf on Z

This functor is left exact, but in general not exact. Exactly as above we obtain a right
derived functor

RHZ : D+(X) −→ D+(Z)
the derived functor. We setHqZ(F) = RqHZ(F) so thatH0

Z(F) = HZ(F).

Observe that we have ΓZ(X,F) = Γ(Z,HZ(F)) for any abelian sheafF . By Lemma 21.1
below the functor HZ transforms injective abelian sheaves into sheaves right acyclic for
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Γ(Z,−). Thus by Derived Categories, Lemma 22.2 we obtain a convergent Grothendieck
spectral sequence

Ep,q2 = Hp(Z,HqZ(K))⇒ Hp+q
Z (X,K)

functorial in K in D+(X).

Lemma 21.1. Let i : Z → X be the inclusion of a closed subset. Let I be an injective
abelian sheaf on X . ThenHZ(I) is an injective abelian sheaf on Z.

Proof. This follows from Homology, Lemma 29.1 as HZ(−) is right adjoint to the
exact functor i∗. See Modules, Lemmas 6.1 and 6.3. �

22. Cohomology on spectral spaces

A key result on the cohomology of spectral spaces is Lemma 19.2 which loosely speaking
says that cohomology commutes with cofiltered limits in the category of spectral spaces
as defined in Topology, Definition 23.1. This can be applied to give analogues of Lemmas
16.3 and 18.1 as follows.

Lemma 22.1. Let X be a spectral space. Let F be an abelian sheaf on X . Let E ⊂ X
be a quasi-compact subset. Let W ⊂ X be the set of points of X which specialize to a
point of E.

(1) Hp(W,F|W ) = colimHp(U,F) where the colimit is over quasi-compact open
neighbourhoods of E ,

(2) Hp(W \ E,F|W\E) = colimHp(U \ E,F|U\E) if E is a constructible subset.

Proof. From Topology, Lemma 24.7 we see that W = limU where the limit is over
the quasi-compact opens containing E. Each U is a spectral space by Topology, Lemma
23.5. Thus we may apply Lemma 19.2 to conclude that (1) holds. The same proof works
for part (2) except we use Topology, Lemma 24.8. �

Lemma 22.2. Let f : X → Y be a spectral map of spectral spaces. Let y ∈ Y . Let
E ⊂ Y be the set of points specializing to y. Let F be an abelian sheaf on X . Then
(Rpf∗F)y = Hp(f−1(E),F|f−1(E)).

Proof. Observe that E =
⋂
V where V runs over the quasi-compact open neigh-

bourhoods of y inY . Hence f−1(E) =
⋂
f−1(V ). This implies that f−1(E) = lim f−1(V )

as topological spaces. Since f is spectral, each f−1(V ) is a spectral space too (Topology,
Lemma 23.5). We conclude that f−1(E) is a spectral space and that

Hp(f−1(E),F|f−1(E)) = colimHp(f−1(V ),F)
by Lemma 19.2. On the other hand, the stalk ofRpf∗F at y is given by the colimit on the
right. �

Lemma 22.3. Let X be a profinite topological space. Then Hq(X,F) = 0 for all
q > 0 and all abelian sheaves F .

Proof. Any open covering of X can be refined by a finite disjoint union decomposi-
tion with open parts, see Topology, Lemma 22.4. Hence ifF → G is a surjection of abelian
sheaves on X , then F(X) → G(X) is surjective. In other words, the global sections
functor is an exact functor. Therefore its higher derived functors are zero, see Derived
Categories, Lemma 16.9. �

The following result on cohomological vanishing improves Grothendieck’s result (Propo-
sition 20.7) and can be found in [?].
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Proposition 22.4. LetX be a spectral space of Krull dimension d. LetF be an abelian
sheaf on X .

(1) Hq(X,F) = 0 for q > d,
(2) Hd(X,F)→ Hd(U,F) is surjective for every quasi-compact open U ⊂ X ,
(3) Hq

Z(X,F) = 0 for q > d and any constructible closed subset Z ⊂ X .

Proof. We prove this result by induction on d.

If d = 0, then X is a profinite space, see Topology, Lemma 23.8. Thus (1) holds by Lemma
22.3. If U ⊂ X is quasi-compact open, then U is also closed as a quasi-compact subset of a
Hausdorff space. HenceX = U q (X \U) as a topological space and we see that (2) holds.
Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \ Z are profinite (namely U is quasi-compact because Z is con-
structible) and since we have (2) and (1) we obtain the desired vanishing of the cohomology
groups with support in Z.

Induction step. Assume d ≥ 1 and assume the proposition is valid for all spectral spaces
of dimension < d. We first prove part (2) for X . Let U be a quasi-compact open. Let
ξ ∈ Hd(U,F). Set Z = X \ U . Let W ⊂ X be the set of points specializing to Z. By
Lemma 22.1 we have

Hd(W \ Z,F|W\Z) = colimZ⊂V H
d(V \ Z,F)

where the colimit is over the quasi-compact open neighbourhoods V ofZ inX . By Topol-
ogy, Lemma 24.7 we see that W \Z is a spectral space. Since every point of W specializes
to a point of Z , we see that W \ Z is a spectral space of Krull dimension < d. By in-
duction hypothesis we see that the image of ξ in Hd(W \ Z,F|W\Z) is zero. By the
displayed formula, there exists a Z ⊂ V ⊂ X quasi-compact open such that ξ|V \Z = 0.
Since V \ Z = V ∩ U we conclude by the Mayer-Vietoris (Lemma 8.2) for the covering
X = U ∪ V that there exists a ξ̃ ∈ Hd(X,F) which restricts to ξ on U and to zero on V .
In other words, part (2) is true.

Proof of part (1) assuming (2). Choose an injective resolution F → I•. Set

G = Im(Id−1 → Id) = Ker(Id → Id+1)
For U ⊂ X quasi-compact open we have a map of exact sequences as follows

Id−1(X) //

��

G(X) //

��

Hd(X,F)

��

// 0

Id−1(U) // G(U) // Hd(U,F) // 0

The sheaf Id−1 is flasque by Lemma 12.2 and the fact that d ≥ 1. By part (2) we see
that the right vertical arrow is surjective. We conclude by a diagram chase that the map
G(X) → G(U) is surjective. By Lemma 12.6 we conclude that Ȟq(U ,G) = 0 for q > 0
and any finite covering U : U = U1 ∪ . . .∪Un of a quasi-compact open by quasi-compact
opens. Applying Lemma 11.9 we find that Hq(U,G) = 0 for all q > 0 and all quasi-
compact opensU ofX . By Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) we
conclude that

Hq(X,F) = Hq
(
Γ(X, I0)→ . . .→ Γ(X, Id−1)→ Γ(X,G)

)
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In particular the cohomology group vanishes if q > d.

Proof of (3). Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \ Z are spectral spaces (Topology, Lemma 23.5) of dimension ≤ d
and since we have (2) and (1) we obtain the desired vanishing. �

23. The alternating Čech complex

This section compares the Čech complex with the alternating Čech complex and some
related complexes.

Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open covering. For p ≥ 0 set

Čpalt(U ,F) =
{
s ∈ Čp(U ,F) such that si0...ip = 0 if in = im for some n 6= m

and si0...in...im...ip = −si0...im...in...ip in any case.

}
We omit the verification that the differential d of Equation (9.0.1) maps Čpalt(U ,F) into
Čp+1
alt (U ,F).

Definition 23.1. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Let F be an abelian presheaf on X . The complex Č•
alt(U ,F) is the alternating

Čech complex associated to F and the open covering U .

Hence there is a canonical morphism of complexes

Č•
alt(U ,F) −→ Č•(U ,F)

namely the inclusion of the alternating Čech complex into the usual Čech complex.

Suppose our covering U : U =
⋃
i∈I Ui comes equipped with a total ordering < on I . In

this case, set
Čpord(U ,F) =

∏
(i0,...,ip)∈Ip+1,i0<...<ip

F(Ui0...ip).

This is an abelian group. For s ∈ Čpord(U ,F) we denote si0...ip its value in F(Ui0...ip).
We define

d : Čpord(U ,F) −→ Čp+1
ord (U ,F)

by the formula

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0...ip+1

for any i0 < . . . < ip+1. Note that this formula is identical to Equation (9.0.1). It is
straightforward to see that d ◦ d = 0. In other words Č•

ord(U ,F) is a complex.

Definition 23.2. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume given a total ordering on I . Let F be an abelian presheaf on X . The
complex Č•

ord(U ,F) is the ordered Čech complex associated to F , the open covering U
and the given total ordering on I .

This complex is sometimes called the alternating Čech complex. The reason is that there is
an obvious comparison map between the ordered Čech complex and the alternating Čech
complex. Namely, consider the map

c : Č•
ord(U ,F) −→ Č•(U ,F)
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given by the rule

c(s)i0...ip =
{

0 if in = im for some n 6= m
sgn(σ)siσ(0)...iσ(p) if iσ(0) < iσ(1) < . . . < iσ(p)

Here σ denotes a permutation of {0, . . . , p} and sgn(σ) denotes its sign. The alternating
and ordered Čech complexes are often identified in the literature via the map c. Namely
we have the following easy lemma.

Lemma 23.3. LetX be a topological space. LetU : U =
⋃
i∈I Ui be an open covering.

Assume I comes equipped with a total ordering. The map c is a morphism of complexes.
In fact it induces an isomorphism

c : Č•
ord(U ,F)→ Č•

alt(U ,F)

of complexes.

Proof. Omitted. �

There is also a map
π : Č•(U ,F) −→ Č•

ord(U ,F)
which is described by the rule

π(s)i0...ip = si0...ip

whenever i0 < i1 < . . . < ip.

Lemma 23.4. LetX be a topological space. LetU : U =
⋃
i∈I Ui be an open covering.

Assume I comes equipped with a total ordering. The map π : Č•(U ,F)→ Č•
ord(U ,F) is

a morphism of complexes. It induces an isomorphism

π : Č•
alt(U ,F)→ Č•

ord(U ,F)

of complexes which is a left inverse to the morphism c.

Proof. Omitted. �

Remark 23.5. This means that if we have two total orderings <1 and <2 on the
index set I , then we get an isomorphism of complexes τ = π2 ◦ c1 : Čord-1(U ,F) →
Čord-2(U ,F). It is clear that

τ(s)i0...ip = sign(σ)siσ(0)...iσ(p)

where i0 <1 i1 <1 . . . <1 ip and iσ(0) <2 iσ(1) <2 . . . <2 iσ(p). This is the sense in
which the ordered Čech complex is independent of the chosen total ordering.

Lemma 23.6. LetX be a topological space. LetU : U =
⋃
i∈I Ui be an open covering.

Assume I comes equipped with a total ordering. The map c◦π is homotopic to the identity
on Č•(U ,F). In particular the inclusion map Č•

alt(U ,F) → Č•(U ,F) is a homotopy
equivalence.

Proof. For any multi-index (i0, . . . , ip) ∈ Ip+1 there exists a unique permutation
σ : {0, . . . , p} → {0, . . . , p} such that

iσ(0) ≤ iσ(1) ≤ . . . ≤ iσ(p) and σ(j) < σ(j + 1) if iσ(j) = iσ(j+1).

We denote this permutation σ = σi0...ip .
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For any permutation σ : {0, . . . , p} → {0, . . . , p} and any a, 0 ≤ a ≤ pwe denote σa the
permutation of {0, . . . , p} such that

σa(j) =
{

σ(j) if 0 ≤ j < a,
min{j′ | j′ > σa(j − 1), j′ 6= σ(k),∀k < a} if a ≤ j

So if p = 3 and σ, τ are given by

id 0 1 2 3
σ 3 2 1 0 and id 0 1 2 3

τ 3 0 2 1

then we have
id 0 1 2 3
σ0 0 1 2 3
σ1 3 0 1 2
σ2 3 2 0 1
σ3 3 2 1 0

and

id 0 1 2 3
τ0 0 1 2 3
τ1 3 0 1 2
τ2 3 0 1 2
τ3 3 0 2 1

It is clear that always σ0 = id and σp = σ.

Having introduced this notation we define for s ∈ Čp+1(U ,F) the element h(s) ∈
Čp(U ,F) to be the element with components

(23.6.1) h(s)i0...ip =
∑

0≤a≤p
(−1)asign(σa)siσ(0)...iσ(a)iσa(a)...iσa(p)

where σ = σi0...ip . The index iσ(a) occurs twice in iσ(0) . . . iσ(a)iσa(a) . . . iσa(p) once in
the first group of a + 1 indices and once in the second group of p − a + 1 indices since
σa(j) = σ(a) for some j ≥ a by definition of σa. Hence the sum makes sense since each
of the elements siσ(0)...iσ(a)iσa(a)...iσa(p) is defined over the open Ui0...ip . Note also that
for a = 0 we get si0...ip and for a = p we get (−1)psign(σ)siσ(0)...iσ(p) .

We claim that
(dh+ hd)(s)i0...ip = si0...ip − sign(σ)siσ(0)...iσ(p)

where σ = σi0...ip . We omit the verification of this claim. (There is a PARI/gp script
called first-homotopy.gp in the stacks-project subdirectory scripts which can be used to
check finitely many instances of this claim. We wrote this script to make sure the signs
are correct.) Write

κ : Č•(U ,F) −→ Č•(U ,F)
for the operator given by the rule

κ(s)i0...ip = sign(σi0...ip)siσ(0)...iσ(p) .

The claim above implies that κ is a morphism of complexes and that κ is homotopic to the
identity map of the Čech complex. This does not immediately imply the lemma since the
image of the operator κ is not the alternating subcomplex. Namely, the image of κ is the
“semi-alternating” complex Čpsemi-alt(U ,F) where s is a p-cochain of this complex if and
only if

si0...ip = sign(σ)siσ(0)...iσ(p)

for any (i0, . . . , ip) ∈ Ip+1 with σ = σi0...ip . We introduce yet another variant Čech
complex, namely the semi-ordered Čech complex defined by

Čpsemi-ord(U ,F) =
∏

i0≤i1≤...≤ip
F(Ui0...ip)
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It is easy to see that Equation (9.0.1) also defines a differential and hence that we get a
complex. It is also clear (analogous to Lemma 23.4) that the projection map

Č•
semi-alt(U ,F) −→ Č•

semi-ord(U ,F)
is an isomorphism of complexes.

Hence the Lemma follows if we can show that the obvious inclusion map

Čpord(U ,F) −→ Čpsemi-ord(U ,F)
is a homotopy equivalence. To see this we use the homotopy
(23.6.2)

h(s)i0...ip =
{

0 if i0 < i1 < . . . < ip
(−1)asi0...ia−1iaiaia+1...ip if i0 < i1 < . . . < ia−1 < ia = ia+1

We claim that

(dh+ hd)(s)i0...ip =
{

0 if i0 < i1 < . . . < ip
si0...ip else

We omit the verification. (There is a PARI/gp script called second-homotopy.gp in the
stacks-project subdirectory scripts which can be used to check finitely many instances of
this claim. We wrote this script to make sure the signs are correct.) The claim clearly
shows that the composition

Č•
semi-ord(U ,F) −→ Č•

ord(U ,F) −→ Č•
semi-ord(U ,F)

of the projection with the natural inclusion is homotopic to the identity map as desired.
�

Lemma 23.7. Let X be a topological space. Let F be an abelian presheaf on X . Let
U : U =

⋃
i∈I Ui be an open covering. If Ui = U for some i ∈ I , then the extended

alternating Čech complex
F(U)→ Č•

alt(U ,F)
obtained by putting F(U) in degree −1 with differential given by the canonical map of
F(U) into Č0(U ,F) is homotopy equivalent to 0. Similarly, for any total ordering on I
the extended ordered Čech complex

F(U)→ Č•
ord(U ,F)

is homotopy equivalent to 0.

First proof. Combine Lemmas 9.3 and 23.6. �

Second proof. Since the alternating and ordered Čech complexes are isomorphic it
suffices to prove this for the ordered one. We will use standard notation: a cochain s of
degree p in the extended ordered Čech complex has the form s = (si0...ip) where si0...ip
is in F(Ui0...ip) and i0 < . . . < ip. With this notation we have

d(x)i0...ip+1 =
∑

j
(−1)jxi0...̂ij ...ip

Fix an index i ∈ I with U = Ui. As homotopy we use the maps

h : cochains of degree p+ 1→ cochains of degree p

given by the rule

h(s)i0...ip = 0 if i ∈ {i0, . . . , ip} and h(s)i0...ip = (−1)jsi0...ijiij+1...ip if not
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Here j is the unique index such that ij < i < ij+1 in the second case; also, since U = Ui
we have the equality

F(Ui0...ip) = F(Ui0...ijiij+1...ip)
which we can use to make sense of thinking of (−1)jsi0...ijiij+1...ip as an element of
F(Ui0...ip). We will show by a computation that dh + hd equals the negative of the
identity map which finishes the proof. To do this fix s a cochain of degree p and let
i0 < . . . < ip be elements of I .

Case I: i ∈ {i0, . . . , ip}. Say i = it. Then we have h(d(s))i0...ip = 0. On the other hand
we have

d(h(s))i0...ip =
∑

(−1)jh(s)i0...̂ij ...ip = (−1)th(s)i0...̂i...ip = (−1)t(−1)t−1si0...ip

Thus (dh+ hd)(s)i0...ip = −si0...ip as desired.

Case II: i 6∈ {i0, . . . , ip}. Let j be such that ij < i < ij+1. Then we see that

h(d(s))i0...ip = (−1)jd(s)i0...ijiij+1...ip

=
∑

j′≤j
(−1)j+j

′
si0...̂ij′ ...ijiij+1...ip

− si0...ip

+
∑

j′>j
(−1)j+j

′+1si0...ijiij+1...̂ij′ ...ip

On the other hand we have

d(h(s))i0...ip =
∑

j′
(−1)j

′
h(s)i0...̂ij′ ...ip

=
∑

j′≤j
(−1)j

′+j−1si0...̂ij′ ...ijiij+1...ip

+
∑

j′>j
(−1)j

′+jsi0...ijiij+1...̂ij′ ...ip

Adding these up we obtain (dh+ hd)(s)i0...ip = −si0...ip as desired. �

24. Alternative view of the Čech complex

In this section we discuss an alternative way to establish the relationship between the Čech
complex and cohomology.

Lemma 24.1. Let X be a ringed space. Let U : X =
⋃
i∈I Ui be an open covering of

X . Let F be an OX -module. Denote Fi0...ip the restriction of F to Ui0...ip . There exists
a complex C•(U ,F) ofOX -modules with

Cp(U ,F) =
∏

i0...ip
(ji0...ip)∗Fi0...ip

and differential d : Cp(U ,F)→ Cp+1(U ,F) as in Equation (9.0.1). Moreover, there exists
a canonical map

F → C•(U ,F)
which is a quasi-isomorphism, i.e., C•(U ,F) is a resolution of F .

Proof. We check

0→ F → C0(U ,F)→ C1(U ,F)→ . . .

is exact on stalks. Let x ∈ X and choose ifix ∈ I such that x ∈ Uifix . Then define

h : Cp(U ,F)x → Cp−1(U ,F)x
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as follows: If s ∈ Cp(U ,F)x, take a representative

s̃ ∈ Cp(U ,F)(V ) =
∏

i0...ip
F(V ∩ Ui0 ∩ . . . ∩ Uip)

defined on some neighborhood V of x, and set

h(s)i0...ip−1 = s̃ifixi0...ip−1,x.

By the same formula (for p = 0) we get a map C0(U ,F)x → Fx. We compute formally
as follows:

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ifixi0...ip

=
∑p

j=0
(−1)jsifixi0...̂ij ...ip

+ si0...ip +
∑p

j=0
(−1)j+1sifixi0...̂ij ...ip

= si0...ip

This shows h is a homotopy from the identity map of the extended complex

0→ Fx → C0(U ,F)x → C1(U ,F)x → . . .

to zero and we conclude. �

With this lemma it is easy to reprove the Čech to cohomology spectral sequence of Lemma
11.5. Namely, let X , U , F as in Lemma 24.1 and let F → I• be an injective resolution.
Then we may consider the double complex

A•,• = Γ(X,C•(U , I•)).

By construction we have
Ap,q =

∏
i0...ip

Iq(Ui0...ip)

Consider the two spectral sequences of Homology, Section 25 associated to this double
complex, see especially Homology, Lemma 25.1. For the spectral sequence (′Er,

′dr)r≥0
we get ′Ep,q2 = Ȟp(U ,Hq(F)) because taking products is exact (Homology, Lemma
32.1). For the spectral sequence (′′Er,

′′dr)r≥0 we get ′′Ep,q2 = 0 if p > 0 and ′′E0,q
2 =

Hq(X,F). Namely, for fixed q the complex of sheaves C•(U , Iq) is a resolution (Lemma
24.1) of the injective sheaf Iq by injective sheaves (by Lemmas 7.1 and 11.11 and Homol-
ogy, Lemma 27.3). Hence the cohomology of Γ(X,C•(U , Iq)) is zero in positive degrees
and equal to Γ(X, Iq) in degree 0. Taking cohomology of the next differential we get our
claim about the spectral sequence (′′Er,

′′dr)r≥0. Whence the result since both spectral
sequences converge to the cohomology of the associated total complex of A•,•.

Definition 24.2. Let X be a topological space. An open covering X =
⋃
i∈I Ui is

said to be locally finite if for every x ∈ X there exists an open neighbourhood W of x
such that {i ∈ I |W ∩ Ui 6= ∅} is finite.

Remark 24.3. Let X =
⋃
i∈I Ui be a locally finite open covering. Denote ji : Ui →

X the inclusion map. Suppose that for each i we are given an abelian sheaf Fi on Ui.
Consider the abelian sheaf G =

⊕
i∈I(ji)∗Fi. Then for V ⊂ X open we actually have

Γ(V,G) =
∏

i∈I
Fi(V ∩ Ui).

In other words we have ⊕
i∈I

(ji)∗Fi =
∏

i∈I
(ji)∗Fi
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This seems strange until you realize that the direct sum of a collection of sheaves is the
sheafification of what you think it should be. See discussion in Modules, Section 3. Thus
we conclude that in this case the complex of Lemma 24.1 has terms

Cp(U ,F) =
⊕

i0...ip
(ji0...ip)∗Fi0...ip

which is sometimes useful.

25. Čech cohomology of complexes

In general for sheaves of abelian groups F and G on X there is a cup product map

Hi(X,F)×Hj(X,G) −→ Hi+j(X,F ⊗Z G).

In this section we define it using Čech cocycles by an explicit formula for the cup product.
If you are worried about the fact that cohomology may not equal Čech cohomology, then
you can use hypercoverings and still use the cocycle notation. This also has the advantage
that it works to define the cup product for hypercohomology on any topos (insert future
reference here).

Let F• be a bounded below complex of presheaves of abelian groups on X . We can often
compute Hn(X,F•) using Čech cocycles. Namely, let U : X =

⋃
i∈I Ui be an open cov-

ering ofX . Since the Čech complex Č•(U ,F) (Definition 9.1) is functorial in the presheaf
F we obtain a double complex Č•(U ,F•). The associated total complex to Č•(U ,F•) is
the complex with degree n term

Totn(Č•(U ,F•)) =
⊕

p+q=n

∏
i0...ip

Fq(Ui0...ip)

see Homology, Definition 18.3. A typical element in Totn will be denoted α = {αi0...ip}
where αi0...ip ∈ Fq(Ui0...ip). In other words the F -degree of αi0...ip is q = n − p. This
notation requires us to be aware of the degree α lives in at all times. We indicate this
situation by the formula degF (αi0...ip) = q. According to our conventions in Homology,
Definition 18.3 the differential of an element α of degree n is given by

d(α)i0...ip+1 =
∑p+1

j=0
(−1)jαi0...̂ij ...ip+1

+ (−1)p+1dF (αi0...ip+1)

where dF denotes the differential on the complexF•. The expression αi0...̂ij ...ip+1
means

the restriction of αi0...̂ij ...ip+1
∈ F(Ui0...̂ij ...ip+1

) to Ui0...ip+1 .

The construction of Tot(Č•(U ,F•)) is functorial in F•. As well there is a functorial
transformation

(25.0.1) Γ(X,F•) −→ Tot(Č•(U ,F•))

of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to the
element α = {αi0...ip} with αi0 = s|Ui0 and αi0...ip = 0 for p > 0.

Refinements. Let V = {Vj}j∈J be a refinement of U . This means there is a map t : J → I
such that Vj ⊂ Ut(j) for all j ∈ J . This gives rise to a functorial transformation

(25.0.2) Tt : Tot(Č•(U ,F•)) −→ Tot(Č•(V,F•)).

defined by the rule
Tt(α)j0...jp = αt(j0)...t(jp)|Vj0...jp

.
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Given two maps t, t′ : J → I as above the maps Tt and Tt′ constructed above are homo-
topic. The homotopy is given by

h(α)j0...jp =
∑p

a=0
(−1)aαt(j0)...t(ja)t′(ja)...t′(jp)

for an element α of degree n. This works because of the following computation, again
with α an element of degree n (so d(α) has degree n+ 1 and h(α) has degree n− 1):

(d(h(α)) + h(d(α)))j0...jp =
∑p

k=0
(−1)kh(α)j0...ĵk...jp

+

(−1)pdF (h(α)j0...jp)+∑p

a=0
(−1)ad(α)t(j0)...t(ja)t′(ja)...t′(jp)

=
∑p

k=0

∑k−1

a=0
(−1)k+aα

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)+∑p

k=0

∑p

a=k+1
(−1)k+a−1α

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)+∑p

a=0
(−1)p+adF (αt(j0)...t(ja)t′(ja)...t′(jp))+∑p

a=0

∑a

k=0
(−1)a+kα

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)+∑p

a=0

∑p

k=a
(−1)a+k+1α

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)+∑p

a=0
(−1)a+p+1dF (αt(j0)...t(ja)t′(ja)...t′(jp))

=αt′(j0)...t′(jp) + (−1)2p+1αt(j0)...t(jp)

=Tt′(α)j0...jp − Tt(α)j0...jp

We leave it to the reader to verify the cancellations. (Note that the terms having both k
and a in the 1st, 2nd and 4th, 5th summands cancel, except the ones where a = k which
only occur in the 4th and 5th and these cancel against each other except for the two desired
terms.) It follows that the induced map

Hn(Tt) : Hn(Tot(Č•(U ,F•)))→ Hn(Tot(Č•(V,F•)))
is independent of the choice of t. We define Čech hypercohomology as the limit of the
Čech cohomology groups over all refinements via the maps H•(Tt).

In the limit (over all open coverings of X) the following lemma provides a map of Čech
hypercohomology into cohomology, which is often an isomorphism and is always an iso-
morphism if we use hypercoverings.

Lemma 25.1. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. For a bounded below complex F• ofOX -modules there is a canonical map

Tot(Č•(U ,F•)) −→ RΓ(X,F•)
functorial in F• and compatible with (25.0.1) and (25.0.2). There is a spectral sequence
(Er, dr)r≥0 with

Ep,q2 = Hp(Tot(Č•(U ,Hq(F•)))
converging to Hp+q(X,F•).

Proof. Let I• be a bounded below complex of injectives. The map (25.0.1) for I• is
a map Γ(X, I•) → Tot(Č•(U , I•)). This is a quasi-isomorphism of complexes of abelian
groups as follows from Homology, Lemma 25.4 applied to the double complex Č•(U , I•)
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using Lemma 11.1. Suppose F• → I• is a quasi-isomorphism of F• into a bounded below
complex of injectives. SinceRΓ(X,F•) is represented by the complex Γ(X, I•) we obtain
the map of the lemma using

Tot(Č•(U ,F•)) −→ Tot(Č•(U , I•)).
We omit the verification of functoriality and compatibilities. To construct the spectral
sequence of the lemma, choose a Cartan-Eilenberg resolution F• → I•,•, see Derived
Categories, Lemma 21.2. In this case F• → Tot(I•,•) is an injective resolution and hence

Tot(Č•(U ,Tot(I•,•)))
computes RΓ(X,F•) as we’ve seen above. By Homology, Remark 18.4 we can view this
as the total complex associated to the triple complex Č•(U , I•,•) hence, using the same
remark we can view it as the total complex associate to the double complex A•,• with
terms

An,m =
⊕

p+q=n
Čp(U , Iq,m)

Since Iq,• is an injective resolution of Fq we can apply the first spectral sequence associ-
ated to A•,• (Homology, Lemma 25.1) to get a spectral sequence with

En,m1 =
⊕

p+q=n
Čp(U ,Hm(Fq))

which is the nth term of the complex Tot(Č•(U ,Hm(F•)). Hence we obtain E2 terms as
described in the lemma. Convergence by Homology, Lemma 25.3. �

Lemma 25.2. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. Let F• be a bounded below complex of OX -modules. If Hi(Ui0...ip ,Fq) = 0
for all i > 0 and all p, i0, . . . , ip, q, then the map Tot(Č•(U ,F•)) → RΓ(X,F•) of
Lemma 25.1 is an isomorphism.

Proof. Immediate from the spectral sequence of Lemma 25.1. �

Remark 25.3. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. Let F• be a bounded below complex of OX -modules. Let b be an integer. We
claim there is a commutative diagram

Tot(Č•(U ,F•))[b] //

γ

��

RΓ(X,F•)[b]

��
Tot(Č•(U ,F•[b])) // RΓ(X,F•[b])

in the derived category where the map γ is the map on complexes constructed in Homol-
ogy, Remark 18.5. This makes sense because the double complex Č•(U ,F•[b]) is clearly
the same as the double complex Č•(U ,F•)[0, b] introduced in Homology, Remark 18.5.
To check that the diagram commutes, we may choose an injective resolution F• → I• as
in the proof of Lemma 25.1. Chasing diagrams, we see that it suffices to check the diagram
commutes when we replace F• by I•. Then we consider the extended diagram

Γ(X, I•)[b] //

��

Tot(Č•(U , I•))[b] //

γ

��

RΓ(X, I•)[b]

��
Γ(X, I•[b]) // Tot(Č•(U , I•[b])) // RΓ(X, I•[b])
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where the left horizontal arrows are (25.0.1). Since in this case the horizonal arrows are
isomorphisms in the derived category (see proof of Lemma 25.1) it suffices to show that
the left square commutes. This is true because the map γ uses the sign 1 on the summands
Č0(U , Iq+b), see formula in Homology, Remark 18.5.

Let X be a topological space, let U : X =
⋃
i∈I Ui be an open covering, and let F•

be a bounded below complex of presheaves of abelian groups. Consider the map τ :
Tot(Č•(U ,F•))→ Tot(Č•(U ,F•)) defined by

τ(α)i0...ip = (−1)p(p+1)/2αip...i0 .

Then we have for an element α of degree n that

d(τ(α))i0...ip+1

=
∑p+1

j=0
(−1)jτ(α)i0...̂ij ...ip+1

+ (−1)p+1dF (τ(α)i0...ip+1)

=
∑p+1

j=0
(−1)j+

p(p+1)
2 αip+1...̂ij ...i0

+ (−1)p+1+ (p+1)(p+2)
2 dF (αip+1...i0)

On the other hand we have

τ(d(α))i0...ip+1

= (−1)
(p+1)(p+2)

2 d(α)ip+1...i0

= (−1)
(p+1)(p+2)

2

(∑p+1

j=0
(−1)jαip+1...̂ip+1−j ...i0

+ (−1)p+1dF (αip+1...i0)
)

Thus we conclude that d(τ(α)) = τ(d(α)) because p(p + 1)/2 ≡ (p + 1)(p + 2)/2 +
p+1 mod 2. In other words τ is an endomorphism of the complex Tot(Č•(U ,F•)). Note
that the diagram

Γ(X,F•) −→ Tot(Č•(U ,F•))
↓ id ↓ τ

Γ(X,F•) −→ Tot(Č•(U ,F•))

commutes. In addition τ is clearly compatible with refinements. This suggests that τ
acts as the identity on Čech cohomology (i.e., in the limit – provided Čech hypercoho-
mology agrees with hypercohomology, which is always the case if we use hypercover-
ings). We claim that τ actually is homotopic to the identity on the total Čech complex
Tot(Č•(U ,F•)). To prove this, we use as homotopy

h(α)i0...ip =
∑p

a=0
εp(a)αi0...iaip...ia with εp(a) = (−1)

(p−a)(p−a−1)
2 +p
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for α of degree n. As usual we omit writing |Ui0...ip . This works because of the following
computation, again with α an element of degree n:

(d(h(α)) + h(d(α)))i0...ip =
∑p

k=0
(−1)kh(α)i0...̂ik...ip+

(−1)pdF (h(α)i0...ip)+∑p

a=0
εp(a)d(α)i0...iaip...ia

=
∑p

k=0

∑k−1

a=0
(−1)kεp−1(a)αi0...iaip...îk...ia+∑p

k=0

∑p

a=k+1
(−1)kεp−1(a− 1)αi0...îk...iaip...ia+∑p

a=0
(−1)pεp(a)dF (αi0...iaip...ia)+∑p

a=0

∑a

k=0
εp(a)(−1)kαi0...îk...iaip...ia+∑p

a=0

∑p

k=a
εp(a)(−1)p+a+1−kαi0...iaip...îk...ia+∑p

a=0
εp(a)(−1)p+1dF (αi0...iaip...ia)

=εp(0)αip...i0 + εp(p)(−1)p+1αi0...ip

=(−1)
p(p+1)

2 αip...i0 − αi0...ip
The cancellations follow because

(−1)kεp−1(a) + εp(a)(−1)p+a+1−k = 0 and (−1)kεp−1(a− 1) + εp(a)(−1)k = 0

We leave it to the reader to verify the cancellations.

Suppose we have two bounded below complexes of abelian sheaves F• and G•. We define
the complex Tot(F•⊗ZG•) to be to complex with terms

⊕
p+q=n Fp⊗Gq and differential

according to the rule

(25.3.1) d(α⊗ β) = d(α)⊗ β + (−1)deg(α)α⊗ d(β)

when α and β are homogeneous, see Homology, Definition 18.3.

Suppose that M• and N• are two bounded below complexes of abelian groups. Then
if m, resp. n is a cocycle for M•, resp. N•, it is immediate that m ⊗ n is a cocycle for
Tot(M• ⊗N•). Hence a cup product

Hi(M•)×Hj(N•) −→ Hi+j(Tot(M• ⊗N•)).

This is discussed also in More on Algebra, Section 63.

So the construction of the cup product in hypercohomology of complexes rests on a con-
struction of a map of complexes

(25.3.2) Tot
(

Tot(Č•(U ,F•))⊗Z Tot(Č•(U ,G•))
)
−→ Tot(Č•(U ,Tot(F• ⊗ G•)))

This map is denoted ∪ and is given by the rule

(α ∪ β)i0...ip =
∑p

r=0
ε(n,m, p, r)αi0...ir ⊗ βir...ip .

where α has degree n and β has degree m and with

ε(n,m, p, r) = (−1)(p+r)n+rp+r.
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Note that ε(n,m, p, n) = 1. Hence if F• = F [0] is the complex consisting in a single
abelian sheafF placed in degree 0, then there no signs in the formula for ∪ (as in that case
αi0...ir = 0 unless r = n). For an explanation of why there has to be a sign and how to
compute it see [?, Exposee XVII] by Deligne. To check (25.3.2) is a map of complexes we
have to show that

d(α ∪ β) = d(α) ∪ β + (−1)deg(α)α ∪ d(β)

by the definition of the differential on Tot(Tot(Č•(U ,F•))⊗Z Tot(Č•(U ,G•))) as given
in Homology, Definition 18.3. We compute first

d(α ∪ β)i0...ip+1 =
∑p+1

j=0
(−1)j(α ∪ β)i0...̂ij ...ip+1

+ (−1)p+1dF⊗G((α ∪ β)i0...ip+1)

=
∑p+1

j=0

∑j−1

r=0
(−1)jε(n,m, p, r)αi0...ir ⊗ βir...̂ij ...ip+1

+∑p+1

j=0

∑p+1

r=j+1
(−1)jε(n,m, p, r − 1)αi0...̂ij ...ir ⊗ βir...ip+1+∑p+1

r=0
(−1)p+1ε(n,m, p+ 1, r)dF⊗G(αi0...ir ⊗ βir...ip+1)

and note that the summands in the last term equal

(−1)p+1ε(n,m, p+ 1, r)
(
dF (αi0...ir )⊗ βir...ip+1 + (−1)n−rαi0...ir ⊗ dG(βir...ip+1)

)
.

because degF (αi0...ir ) = n− r. On the other hand

(d(α) ∪ β)i0...ip+1 =
∑p+1

r=0
ε(n+ 1,m, p+ 1, r)d(α)i0...ir ⊗ βir...ip+1

=
∑p+1

r=0

∑r

j=0
ε(n+ 1,m, p+ 1, r)(−1)jαi0...îj ...ir ⊗ βir...ip+1+∑p+1

r=0
ε(n+ 1,m, p+ 1, r)(−1)rdF (αi0...ir )⊗ βir...ip+1

and

(α ∪ d(β))i0...ip+1 =
∑p+1

r=0
ε(n,m+ 1, p+ 1, r)αi0...ir ⊗ d(β)ir...ip+1

=
∑p+1

r=0

∑p+1

j=r
ε(n,m+ 1, p+ 1, r)(−1)j−rαi0...ir ⊗ βir...îj ...ip+1

+∑p+1

r=0
ε(n,m+ 1, p+ 1, r)(−1)p+1−rαi0...ir ⊗ dG(βir...ip+1)

The desired equality holds if we have

(−1)p+1ε(n,m, p+ 1, r) = ε(n+ 1,m, p+ 1, r)(−1)r

(−1)p+1ε(n,m, p+ 1, r)(−1)n−r = (−1)nε(n,m+ 1, p+ 1, r)(−1)p+1−r

ε(n+ 1,m, p+ 1, r)(−1)r = (−1)1+nε(n,m+ 1, p+ 1, r − 1)
(−1)jε(n,m, p, r) = (−1)nε(n,m+ 1, p+ 1, r)(−1)j−r

(−1)jε(n,m, p, r − 1) = ε(n+ 1,m, p+ 1, r)(−1)j

(The third equality is necessary to get the terms with r = j from d(α)∪ β and (−1)nα∪
d(β) to cancel each other.) We leave the verifications to the reader. (Alternatively, check
the script signs.gp in the scripts subdirectory of the Stacks project.)

Associativity of the cup product. Suppose that F•, G• and H• are bounded below com-
plexes of abelian groups on X . The obvious map (without the intervention of signs) is an
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isomorphism of complexes

Tot(Tot(F• ⊗Z G•)⊗Z H•) −→ Tot(F• ⊗Z Tot(G• ⊗Z H•)).

Another way to say this is that the triple complex F• ⊗Z G• ⊗Z H• gives rise to a well
defined total complex with differential satisfying

d(α⊗β⊗γ) = d(α)⊗β⊗γ+(−1)deg(α)α⊗d(β)⊗γ+(−1)deg(α)+deg(β)α⊗β⊗d(γ)

for homogeneous elements. Using this map it is easy to verify that

(α ∪ β) ∪ γ = α ∪ (β ∪ γ)

namely, if α has degree a, β has degree b and γ has degree c, then

((α ∪ β) ∪ γ)i0...ip =
∑p

r=0
ε(a+ b, c, p, r)(α ∪ β)i0...ir ⊗ γir...ip

=
∑p

r=0

∑r

s=0
ε(a+ b, c, p, r)ε(a, b, r, s)αi0...is ⊗ βis...ir ⊗ γir...ip

and

(α ∪ (β ∪ γ)i0...ip =
∑p

s=0
ε(a, b+ c, p, s)αi0...is ⊗ (β ∪ γ)is...ip

=
∑p

s=0

∑p

r=s
ε(a, b+ c, p, s)ε(b, c, p− s, r − s)αi0...is ⊗ βis...ir ⊗ γir...ip

and a trivial mod 2 calculation shows the signs match up. (Alternatively, check the script
signs.gp in the scripts subdirectory of the Stacks project.)

Finally, we indicate why the cup product preserves a graded commutative structure, at
least on a cohomological level. For this we use the operator τ introduced above. Let
F• be a bounded below complexes of abelian groups, and assume we are given a graded
commutative multiplication

∧• : Tot(F• ⊗F•) −→ F•.

This means the following: For s a local section of Fa, and t a local section of Fb we have
s ∧ t a local section of Fa+b. Graded commutative means we have s ∧ t = (−1)abt ∧ s.
Since∧ is a map of complexes we have d(s∧t) = d(s)∧t+(−1)as∧d(t). The composition

Tot(Tot(Č•(U ,F•))⊗Tot(Č•(U ,F•)))→ Tot(Č•(U ,Tot(F•⊗ZF•)))→ Tot(Č•(U ,F•))

induces a cup product on cohomology

Hn(Tot(Č•(U ,F•)))×Hm(Tot(Č•(U ,F•))) −→ Hn+m(Tot(Č•(U ,F•)))

and so in the limit also a product on Čech cohomology and therefore (using hypercover-
ings if needed) a product in cohomology of F•. We claim this product (on cohomology)
is graded commutative as well. To prove this we first consider an element α of degree n
in Tot(Č•(U ,F•)) and an element β of degree m in Tot(Č•(U ,F•)) and we compute

∧•(α ∪ β)i0...ip =
∑p

r=0
ε(n,m, p, r)αi0...ir ∧ βir...ip

=
∑p

r=0
ε(n,m, p, r)(−1)deg(αi0...ir ) deg(βir...ip )βir...ip ∧ αi0...ir
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because ∧ is graded commutative. On the other hand we have

τ(∧•(τ(β) ∪ τ(α)))i0...ip =χ(p)
∑p

r=0
ε(m,n, p, r)τ(β)ip...ip−r ∧ τ(α)ip−r...i0

=χ(p)
∑p

r=0
ε(m,n, p, r)χ(r)χ(p− r)βip−r...ip ∧ αi0...ip−r

=χ(p)
∑p

r=0
ε(m,n, p, p− r)χ(r)χ(p− r)βir...ip ∧ αi0...ir

where χ(t) = (−1)
t(t+1)

2 . Since we proved earlier that τ acts as the identity on cohomol-
ogy we have to verify that

ε(n,m, p, r)(−1)(n−r)(m−(p−r)) = (−1)nmχ(p)ε(m,n, p, p− r)χ(r)χ(p− r)
A trivial mod 2 calculation shows these signs match up. (Alternatively, check the script
signs.gp in the scripts subdirectory of the Stacks project.)

Finally, we study the compatibility of cup product with boundary maps. Suppose that

0→ F•
1 → F•

2 → F•
3 → 0 and 0← G•

1 ← G•
2 ← G•

3 ← 0
are short exact sequences of bounded below complexes of abelian sheaves on X . Let H•

be another bounded below complex of abelian sheaves, and suppose we have maps of com-
plexes

γi : Tot(F•
i ⊗Z G•

i ) −→ H•

which are compatible with the maps between the complexes, namely such that the dia-
grams

Tot(F•
1 ⊗Z G•

1 )

γ1

��

Tot(F•
1 ⊗Z G•

2 )oo

��
H• Tot(F•

2 ⊗Z G•
2 )γ2oo

and
Tot(F•

2 ⊗Z G•
2 )

γ2

��

Tot(F•
2 ⊗Z G•

3 )oo

��
H• Tot(F•

3 ⊗Z G•
3 )γ3oo

are commutative.

Lemma 25.4. In the situation above, assume Čech cohomology agrees with cohomol-
ogy for the sheaves Fpi and Gqj . Let a3 ∈ Hn(X,F•

3 ) and b1 ∈ Hm(X,G•
1 ). Then we

have
γ1(∂a3 ∪ b1) = (−1)n+1γ3(a3 ∪ ∂b1)

in Hn+m(X,H•) where ∂ indicates the boundary map on cohomology associated to the
short exact sequences of complexes above.

Proof. We will use the following conventions and notation. We think of Fp1 as a
subsheaf of Fp2 and we think of Gq3 as a subsheaf of Gq2 . Hence if s is a local section of Fp1
we use s to denote the corresponding section of Fp2 as well. Similarly for local sections of
Gq3 . Furthermore, if s is a local section of Fp2 then we denote s̄ its image in Fp3 . Similarly
for the map Gq2 → G

q
1 . In particular if s is a local section of Fp2 and s̄ = 0 then s is a local

section of Fp1 . The commutativity of the diagrams above implies, for local sections s of
Fp2 and t of Gq3 that γ2(s⊗ t) = γ3(s̄⊗ t) as sections ofHp+q .
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Let U : X =
⋃
i∈I Ui be an open covering of X . Suppose that α3, resp. β1 is a de-

gree n, resp. m cocycle of Tot(Č•(U ,F•
3 )), resp. Tot(Č•(U ,G•

1 )) representing a3, resp. b1.
After refining U if necessary, we can find cochains α2, resp. β2 of degree n, resp. m in
Tot(Č•(U ,F•

2 )), resp. Tot(Č•(U ,G•
2 )) mapping to α3, resp. β1. Then we see that

d(α2) = d(ᾱ2) = 0 and d(β2) = d(β̄2) = 0.
This means that α1 = d(α2) is a degree n + 1 cocycle in Tot(Č•(U ,F•

1 )) representing
∂a3. Similarly, β3 = d(β2) is a degreem+ 1 cocycle in Tot(Č•(U ,G•

3 )) representing ∂b1.
Thus we may compute

d(γ2(α2 ∪ β2)) = γ2(d(α2 ∪ β2))
= γ2(d(α2) ∪ β2 + (−1)nα2 ∪ d(β2))
= γ2(α1 ∪ β2) + (−1)nγ2(α2 ∪ β3)
= γ1(α1 ∪ β1) + (−1)nγ3(α3 ∪ β3)

So this even tells us that the sign is (−1)n+1 as indicated in the lemma2. �

Lemma 25.5. Let X be a topological space. LetO′ → O be a surjection of sheaves of
rings whose kernel I ⊂ O′ has square zero. Then M = H1(X, I) is a R = H0(X,O)-
module and the boundary map ∂ : R→M associated to the short exact sequence

0→ I → O′ → O → 0
is a derivation (Algebra, Definition 131.1).

Proof. The map O′ → Hom(I, I) factors through O as I · I = 0 by assumption.
Hence I is a sheaf of O-modules and this defines the R-module structure on M . The
boundary map is additive hence it suffices to prove the Leibniz rule. Let f ∈ R. Choose
an open covering U : X =

⋃
Ui such that there exist fi ∈ O′(Ui) lifting f |Ui ∈ O(Ui).

Observe that fi − fj is an element of I(Ui ∩ Uj). Then ∂(f) corresponds to the Čech
cohomology class of the 1-cocycle α with αi0i1 = fi0 − fi1 . (Observe that by Lemma
11.3 the first Čech cohomology group with respect to U is a submodule of M .) Next, let
g ∈ R be a second element and assume (after possibly refining the open covering) that
gi ∈ O′(Ui) lifts g|Ui ∈ O(Ui). Then we see that ∂(g) is given by the cocycle β with
βi0i1 = gi0 − gi1 . Since figi ∈ O′(Ui) lifts fg|Ui we see that ∂(fg) is given by the
cocycle γ with

γi0i1 = fi0gi0 − fi1gi1 = (fi0 − fi1)gi0 + fi1(gi0 − gi1) = αi0i1g + fβi0i1

by our definition of the O-module structure on I . This proves the Leibniz rule and the
proof is complete. �

26. Flat resolutions

A reference for the material in this section is [?]. Let (X,OX) be a ringed space. By
Modules, Lemma 17.6 any OX -module is a quotient of a flat OX -module. By Derived
Categories, Lemma 15.4 any bounded above complex ofOX -modules has a left resolution
by a bounded above complex of flatOX -modules. However, for unbounded complexes, it
turns out that flat resolutions aren’t good enough.

2The sign depends on the convention for the signs in the long exact sequence in cohomology associated to
a triangle inD(X). The conventions in the Stacks project are (a) distinguished triangles correspond to termwise
split exact sequences and (b) the boundary maps in the long exact sequence are given by the maps in the snake
lemma without the intervention of signs. See Derived Categories, Section 10.
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Lemma 26.1. Let (X,OX) be a ringed space. Let G• be a complex of OX -modules.
The functors

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(G• ⊗OX
F•)

and
K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX

G•)
are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 10.9. �

Definition 26.2. Let (X,OX) be a ringed space. A complex K• of OX -modules is
called K-flat if for every acyclic complex F• ofOX -modules the complex

Tot(F• ⊗OX
K•)

is acyclic.

Lemma 26.3. Let (X,OX) be a ringed space. Let K• be a K-flat complex. Then the
functor

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX
K•)

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 26.1 and the fact that quasi-isomorphisms are charac-
terized by having acyclic cones. �

Lemma 26.4. Let (X,OX) be a ringed space. Let K• be a complex of OX -modules.
Then K• is K-flat if and only if for all x ∈ X the complex K•

x of OX,x-modules is K-flat
(More on Algebra, Definition 59.1).

Proof. If K•
x is K-flat for all x ∈ X then we see that K• is K-flat because ⊗ and

direct sums commute with taking stalks and because we can check exactness at stalks, see
Modules, Lemma 3.1. Conversely, assume K• is K-flat. Pick x ∈ X M• be an acyclic
complex of OX,x-modules. Then ix,∗M

• is an acyclic complex of OX -modules. Thus
Tot(ix,∗M• ⊗OX

K•) is acyclic. Taking stalks at x shows that Tot(M• ⊗OX,x
K•
x) is

acyclic. �

Lemma 26.5. Let (X,OX) be a ringed space. If K•, L• are K-flat complexes of OX -
modules, then Tot(K• ⊗OX

L•) is a K-flat complex ofOX -modules.

Proof. Follows from the isomorphism

Tot(M• ⊗OX
Tot(K• ⊗OX

L•)) = Tot(Tot(M• ⊗OX
K•)⊗OX

L•)

and the definition. �

Lemma 26.6. Let (X,OX) be a ringed space. Let (K•
1,K•

2,K•
3) be a distinguished

triangle in K(Mod(OX)). If two out of three of K•
i are K-flat, so is the third.

Proof. Follows from Lemma 26.1 and the fact that in a distinguished triangle in
K(Mod(OX)) if two out of three are acyclic, so is the third. �

Lemma 26.7. Let (X,OX) be a ringed space. Let 0 → K•
1 → K•

2 → K•
3 → 0 be a

short exact sequence of complexes such that the terms of K•
3 are flat OX -modules. If two

out of three of K•
i are K-flat, so is the third.
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Proof. By Modules, Lemma 17.7 for every complex L• we obtain a short exact se-
quence

0→ Tot(L• ⊗OX
K•

1)→ Tot(L• ⊗OX
K•

1)→ Tot(L• ⊗OX
K•

1)→ 0

of complexes. Hence the lemma follows from the long exact sequence of cohomology
sheaves and the definition of K-flat complexes. �

Lemma 26.8. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback of a K-flat complex ofOY -modules is a K-flat complex ofOX -modules.

Proof. We can check this on stalks, see Lemma 26.4. Hence this follows from Sheaves,
Lemma 26.4 and More on Algebra, Lemma 59.3. �

Lemma 26.9. Let (X,OX) be a ringed space. A bounded above complex of flat OX -
modules is K-flat.

Proof. We can check this on stalks, see Lemma 26.4. Thus this lemma follows from
Modules, Lemma 17.2 and More on Algebra, Lemma 59.7. �

In the following lemma by a colimit of a system of complexes we mean the termwise col-
imit.

Lemma 26.10. Let (X,OX) be a ringed space. Let K•
1 → K•

2 → . . . be a system of
K-flat complexes. Then colimiK•

i is K-flat.

Proof. Because we are taking termwise colimits it is clear that

colimi Tot(F• ⊗OX
K•
i ) = Tot(F• ⊗OX

colimiK•
i )

Hence the lemma follows from the fact that filtered colimits are exact. �

Lemma 26.11. Let (X,OX) be a ringed space. For any complex G• of OX -modules
there exists a commutative diagram of complexes ofOX -modules

K•
1

��

// K•
2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the following properties: (1) the vertical arrows are quasi-isomorphisms and termwise
surjective, (2) each K•

n is a bounded above complex whose terms are direct sums of OX -
modules of the form jU !OU , and (3) the maps K•

n → K•
n+1 are termwise split injections

whose cokernels are direct sums of OX -modules of the form jU !OU . Moreover, the map
colimK•

n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immedi-
ately from Modules, Lemma 17.6 and Derived Categories, Lemma 29.1. The induced map
colimK•

n → G• is a quasi-isomorphism because filtered colimits are exact. �

Lemma 26.12. Let (X,OX) be a ringed space. For any complex G• there exists a
K-flat complex K• whose terms are flatOX -modules and a quasi-isomorphism K• → G•

which is termwise surjective.
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Proof. Choose a diagram as in Lemma 26.11. Each complex K•
n is a bounded above

complex of flat modules, see Modules, Lemma 17.5. Hence K•
n is K-flat by Lemma 26.9.

Thus colimK•
n is K-flat by Lemma 26.10. The induced map colimK•

n → G• is a quasi-
isomorphism and termwise surjective by construction. Property (3) of Lemma 26.11 shows
that colimKmn is a direct sum of flat modules and hence flat which proves the final asser-
tion. �

Lemma 26.13. Let (X,OX) be a ringed space. Letα : P• → Q• be a quasi-isomorphism
of K-flat complexes of OX -modules. For every complex F• of OX -modules the induced
map

Tot(idF• ⊗ α) : Tot(F• ⊗OX
P•) −→ Tot(F• ⊗OX

Q•)
is a quasi-isomorphism.

Proof. Choose a quasi-isomorphismK• → F• withK• a K-flat complex, see Lemma
26.12. Consider the commutative diagram

Tot(K• ⊗OX
P•) //

��

Tot(K• ⊗OX
Q•)

��
Tot(F• ⊗OX

P•) // Tot(F• ⊗OX
Q•)

The result follows as by Lemma 26.3 the vertical arrows and the top horizontal arrow are
quasi-isomorphisms. �

Let (X,OX) be a ringed space. Let F• be an object ofD(OX). Choose a K-flat resolution
K• → F•, see Lemma 26.12. By Lemma 26.1 we obtain an exact functor of triangulated
categories

K(OX) −→ K(OX), G• 7−→ Tot(G• ⊗OX
K•)

By Lemma 26.3 this functor induces a functorD(OX)→ D(OX) simply becauseD(OX)
is the localization ofK(OX) at quasi-isomorphisms. By Lemma 26.13 the resulting functor
(up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 26.14. Let (X,OX) be a ringed space. Let F• be an object of D(OX).
The derived tensor product

−⊗L
OX
F• : D(OX) −→ D(OX)

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
OX
G• ∼= G• ⊗L

OX
F•

for G• and F• inD(OX). Here we use sign rules as given in More on Algebra, Section 72.
Hence when we writeF•⊗L

OX
G• we will usually be agnostic about which variable we are

using to define the derived tensor product with.

Definition 26.15. Let (X,OX) be a ringed space. Let F , G be OX -modules. The
Tor’s of F and G are define by the formula

TorOX
p (F ,G) = H−p(F ⊗L

OX
G)

with derived tensor product as defined above.
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This definition implies that for every short exact sequence of OX -modules 0 → F1 →
F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗OX
G // F2 ⊗OX

G // F3 ⊗OX
G // 0

TorOX
1 (F1,G) // TorOX

1 (F2,G) // TorOX
1 (F3,G)

kk

for every OX -module G. This will be called the long exact sequence of Tor associated to
the situation.

Lemma 26.16. Let (X,OX) be a ringed space. Let F be anOX -module. The follow-
ing are equivalent

(1) F is a flatOX -module, and
(2) TorOX

1 (F ,G) = 0 for everyOX -module G.

Proof. If F is flat, then F ⊗OX
− is an exact functor and the satellites vanish. Con-

versely assume (2) holds. Then if G → H is injective with cokernel Q, the long exact se-
quence of Tor shows that the kernel ofF⊗OX

G → F⊗OX
H is a quotient of TorOX

1 (F ,Q)
which is zero by assumption. Hence F is flat. �

Lemma 26.17. Let (X,OX) be a ringed space. Let a : K• → L• be a map of complexes
of OX -modules. If K• is K-flat, then there exist a complex N • and maps of complexes
b : K• → N • and c : N • → L• such that

(1) N • is K-flat,
(2) c is a quasi-isomorphism,
(3) a is homotopic to c ◦ b.

If the terms of K• are flat, then we may chooseN •, b, and c such that the same is true for
N •.

Proof. We will use that the homotopy categoryK(Mod(OX)) is a triangulated cat-
egory, see Derived Categories, Proposition 10.3. Choose a distinguished triangle K• →
L• → C• → K•[1]. Choose a quasi-isomorphismM• → C• withM• K-flat with flat
terms, see Lemma 26.12. By the axioms of triangulated categories, we may fit the compo-
sitionM• → C• → K•[1] into a distinguished triangle K• → N • →M• → K•[1]. By
Lemma 26.6 we see that N • is K-flat. Again using the axioms of triangulated categories,
we can choose a map N • → L• fitting into the following morphism of distinghuised
triangles

K• //

��

N • //

��

M• //

��

K•[1]

��
K• // L• // C• // K•[1]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrowN • →
L• by the long exact sequences of cohomology associated to these distinguished triangles
(or you can look at the image of this diagram in D(OX) and use Derived Categories,
Lemma 4.3 if you like). This finishes the proof of (1), (2), and (3). To prove the final
assertion, we may chooseN • such thatNn ∼=Mn ⊕Kn, see Derived Categories, Lemma
10.7. Hence we get the desired flatness if the terms of K• are flat. �
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27. Derived pullback

Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. We can use K-flat resolutions
to define a derived pullback functor

Lf∗ : D(OY )→ D(OX)

Namely, for every complex ofOY -modules G• we can choose a K-flat resolutionK• → G•

and set Lf∗G• = f∗K•. You can use Lemmas 26.8, 26.12, and 26.13 to see that this is well
defined. However, to cross all the t’s and dot all the i’s it is perhaps more convenient to
use some general theory.

Lemma 27.1. The construction above is independent of choices and defines an exact
functor of triangulated categories Lf∗ : D(OY )→ D(OX).

Proof. To see this we use the general theory developed in Derived Categories, Sec-
tion 14. Set D = K(OY ) and D′ = D(OX). Let us write F : D → D′ the exact functor
of triangulated categories defined by the rule F (G•) = f∗G•. We let S be the set of quasi-
isomorphisms in D = K(OY ). This gives a situation as in Derived Categories, Situation
14.1 so that Derived Categories, Definition 14.2 applies. We claim that LF is everywhere
defined. This follows from Derived Categories, Lemma 14.15 with P ⊂ Ob(D) the col-
lection ofK-flat complexes: (1) follows from Lemma 26.12 and to see (2) we have to show
that for a quasi-isomorphism K•

1 → K•
2 between K-flat complexes of OY -modules the

map f∗K•
1 → f∗K•

2 is a quasi-isomorphism. To see this write this as

f−1K•
1 ⊗f−1OY

OX −→ f−1K•
2 ⊗f−1OY

OX

The functor f−1 is exact, hence the map f−1K•
1 → f−1K•

2 is a quasi-isomorphism. By
Lemma 26.8 applied to the morphism (X, f−1OY )→ (Y,OY ) the complexes f−1K•

1 and
f−1K•

2 are K-flat complexes of f−1OY -modules. Hence Lemma 26.13 guarantees that the
displayed map is a quasi-isomorphism. Thus we obtain a derived functor

LF : D(OY ) = S−1D −→ D′ = D(OX)

see Derived Categories, Equation (14.9.1). Finally, Derived Categories, Lemma 14.15 also
guarantees that LF (K•) = F (K•) = f∗K• when K• is K-flat, i.e., Lf∗ = LF is indeed
computed in the way described above. �

Lemma 27.2. Let f : X → Y and g : Y → Z be morphisms of ringed spaces. Then
Lf∗ ◦ Lg∗ = L(g ◦ f)∗ as functors D(OZ)→ D(OX).

Proof. LetE be an object ofD(OZ). By constructionLg∗E is computed by choosing
a K-flat complex K• representing E on Z and setting Lg∗E = g∗K•. By Lemma 26.8 we
see that g∗K• is K-flat on Y . Then Lf∗Lg∗E is given by f∗g∗K• = (g ◦ f)∗K• which
also represents L(g ◦ f)∗E. �

Lemma 27.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. There is
a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
OY
G•) = Lf∗F• ⊗L

OX
Lf∗G•

for F•,G• ∈ Ob(D(OY )).

Proof. We may assume thatF• and G• are K-flat complexes. In this caseF•⊗L
OY
G•

is just the total complex associated to the double complex F• ⊗OY
G•. By Lemma 26.5
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Tot(F• ⊗OY
G•) is K-flat also. Hence the isomorphism of the lemma comes from the

isomorphism
Tot(f∗F• ⊗OX

f∗G•) −→ f∗Tot(F• ⊗OY
G•)

whose constituents are the isomorphisms f∗Fp⊗OX
f∗Gq → f∗(Fp⊗OY

Gq) of Modules,
Lemma 16.4. �

Lemma 27.4. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. There is
a canonical bifunctorial isomorphism

F• ⊗L
OX

Lf∗G• = F• ⊗L
f−1OY

f−1G•

for F• in D(OX) and G• in D(OY ).

Proof. Let F be an OX -module and let G be an OY -module. Then F ⊗OX
f∗G =

F ⊗f−1OY
f−1G because f∗G = OX ⊗f−1OY

f−1G. The lemma follows from this and
the definitions. �

Lemma 27.5. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let K•

andM• be complexes ofOY -modules. The diagram

Lf∗(K• ⊗L
OY
M•) //

��

Lf∗Tot(K• ⊗OY
M•)

��
Lf∗K• ⊗L

OX
Lf∗M•

��

f∗Tot(K• ⊗OY
M•)

��
f∗K• ⊗L

OX
f∗M• // Tot(f∗K• ⊗OX

f∗M•)

commutes.

Proof. We will use the existence of K-flat resolutions as in Lemma 26.8. If we choose
such resolutions P• → K• andQ• →M•, then we see that

Lf∗Tot(P• ⊗OY
Q•) //

��

Lf∗Tot(K• ⊗OY
M•)

��
f∗Tot(P• ⊗OY

Q•)

��

// f∗Tot(K• ⊗OY
M•)

��
Tot(f∗P• ⊗OX

f∗Q•) // Tot(f∗K• ⊗OX
f∗M•)

commutes. However, now the left hand side of the diagram is the left hand side of the
diagram by our choice of P• andQ• and Lemma 26.5. �

28. Cohomology of unbounded complexes

Let (X,OX) be a ringed space. The category Mod(OX) is a Grothendieck abelian cate-
gory: it has all colimits, filtered colimits are exact, and it has a generator, namely⊕

U⊂X open
jU !OU ,

see Modules, Section 3 and Lemmas 17.5 and 17.6. By Injectives, Theorem 12.6 for every
complex F• of OX -modules there exists an injective quasi-isomorphism F• → I• to
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a K-injective complex of OX -modules all of whose terms are injective OX -modules and
moreover this embedding can be chosen functorial in the complex F•. It follows from
Derived Categories, Lemma 31.7 that

(1) any exact functor F : K(Mod(OX)) → D into a trianguated category D has a
right derived functor RF : D(OX)→ D,

(2) for any additive functor F : Mod(OX) → A into an abelian category A we
consider the exact functor F : K(Mod(OX)) → D(A) induced by F and we
obtain a right derived functor RF : D(OX)→ K(A).

By construction we have RF (F•) = F (I•) where F• → I• is as above.
Here are some examples of the above:

(1) The functor Γ(X,−) : Mod(OX)→ModΓ(X,OX) gives rise to
RΓ(X,−) : D(OX)→ D(Γ(X,OX))

We shall use the notation Hi(X,K) = Hi(RΓ(X,K)) for cohomology.
(2) For an openU ⊂ X we consider the functor Γ(U,−) : Mod(OX)→ModΓ(U,OX).

This gives rise to
RΓ(U,−) : D(OX)→ D(Γ(U,OX))

We shall use the notation Hi(U,K) = Hi(RΓ(U,K)) for cohomology.
(3) For a morphism of ringed spaces f : (X,OX)→ (Y,OY ) we consider the func-

tor f∗ : Mod(OX)→Mod(OY ) which gives rise to the total direct image
Rf∗ : D(OX) −→ D(OY )

on unbounded derived categories.

Lemma 28.1. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
functor Rf∗ defined above and the functor Lf∗ defined in Lemma 27.1 are adjoint:

HomD(OX)(Lf∗G•,F•) = HomD(OY )(G•, Rf∗F•)
bifunctorially in F• ∈ Ob(D(OX)) and G• ∈ Ob(D(OY )).

Proof. This follows formally from the fact thatRf∗ andLf∗ exist, see Derived Cat-
egories, Lemma 30.3. �

Lemma 28.2. Let f : X → Y and g : Y → Z be morphisms of ringed spaces. Then
Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors D(OX)→ D(OZ).

Proof. By Lemma 28.1 we see that Rg∗ ◦ Rf∗ is adjoint to Lf∗ ◦ Lg∗. We have
Lf∗ ◦ Lg∗ = L(g ◦ f)∗ by Lemma 27.2 and hence by uniqueness of adjoint functors we
have Rg∗ ◦Rf∗ = R(g ◦ f)∗. �

Remark 28.3. The construction of unbounded derived functor Lf∗ and Rf∗ allows
one to construct the base change map in full generality. Namely, suppose that

X ′
g′
//

f ′

��

X

f

��
S′ g // S

is a commutative diagram of ringed spaces. Let K be an object of D(OX). Then there
exists a canonical base change map

Lg∗Rf∗K −→ R(f ′)∗L(g′)∗K
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in D(OS′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗K → L(g′)∗K Since
L(f ′)∗Lg∗ = L(g′)∗Lf∗ we see this is the same as a map L(g′)∗Lf∗Rf∗K → L(g′)∗K
which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗K → K.

Remark 28.4. Consider a commutative diagram

X ′
k
//

f ′

��

X

f

��
Y ′ l //

g′

��

Y

g

��
Z ′ m // Z

of ringed spaces. Then the base change maps of Remark 28.3 for the two squares compose
to give the base change map for the outer rectangle. More precisely, the composition

Lm∗ ◦R(g ◦ f)∗ = Lm∗ ◦Rg∗ ◦Rf∗

→ Rg′
∗ ◦ Ll∗ ◦Rf∗

→ Rg′
∗ ◦Rf ′

∗ ◦ Lk∗

= R(g′ ◦ f ′)∗ ◦ Lk∗

is the base change map for the rectangle. We omit the verification.

Remark 28.5. Consider a commutative diagram

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

of ringed spaces. Then the base change maps of Remark 28.3 for the two squares compose
to give the base change map for the outer rectangle. More precisely, the composition

L(h ◦ h′)∗ ◦Rf∗ = L(h′)∗ ◦ Lh∗ ◦Rf∗

→ L(h′)∗ ◦Rf ′
∗ ◦ Lg∗

→ Rf ′′
∗ ◦ L(g′)∗ ◦ Lg∗

= Rf ′′
∗ ◦ L(g ◦ g′)∗

is the base change map for the rectangle. We omit the verification.

Lemma 28.6. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let K•

be a complex ofOX -modules. The diagram

Lf∗f∗K• //

��

f∗f∗K•

��
Lf∗Rf∗K• // K•

coming from Lf∗ → f∗ on complexes, f∗ → Rf∗ on complexes, and adjunction Lf∗ ◦
Rf∗ → id commutes in D(OX).
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Proof. We will use the existence of K-flat resolutions and K-injective resolutions, see
Lemma 26.8 and the discussion above. Choose a quasi-isomorphismK• → I• where I• is
K-injective as a complex ofOX -modules. Choose a quasi-isomorphismQ• → f∗I• where
Q• is K-flat as a complex ofOY -modules. We can choose a K-flat complex ofOY -modules
P• and a diagram of morphisms of complexes

P• //

��

f∗K•

��
Q• // f∗I•

commutative up to homotopy where the top horizontal arrow is a quasi-isomorphism.
Namely, we can first choose such a diagram for some complex P• because the quasi-
isomorphisms form a multiplicative system in the homotopy category of complexes and
then we can replace P• by a K-flat complex. Taking pullbacks we obtain a diagram of
morphisms of complexes

f∗P• //

��

f∗f∗K•

��

// K•

��
f∗Q• // f∗f∗I• // I•

commutative up to homotopy. The outer rectangle witnesses the truth of the statement
in the lemma. �

Remark 28.7. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
adjointness of Lf∗ and Rf∗ allows us to construct a relative cup product

Rf∗K ⊗L
OY

Rf∗L −→ Rf∗(K ⊗L
OX

L)

inD(OY ) for allK,L inD(OX). Namely, this map is adjoint to a map Lf∗(Rf∗K ⊗L
OY

Rf∗L)→ K⊗L
OX

L for which we can take the composition of the isomorphismLf∗(Rf∗K⊗L
OY

Rf∗L) = Lf∗Rf∗K⊗L
OX

Lf∗Rf∗L (Lemma 27.3) with the mapLf∗Rf∗K⊗L
OX

Lf∗Rf∗L→
K ⊗L

OX
L coming from the counit Lf∗ ◦Rf∗ → id.

29. Cohomology of filtered complexes

Filtered complexes of sheaves frequently come up in a natural fashion when studying
cohomology of algebraic varieties, for example the de Rham complex comes with its Hodge
filtration. In this sectionwe use the very general Injectives, Lemma 13.7 to find construct
spectral sequences on cohomology and we relate these to previously constructed spectral
sequences.

Lemma 29.1. Let (X,OX) be a ringed space. Let F• be a filtered complex of OX -
modules. There exists a canonical spectral sequence (Er, dr)r≥1 of bigraded Γ(X,OX)-
modules with dr of bidegree (r,−r + 1) and

Ep,q1 = Hp+q(X, grpF•)

If for every n we have

Hn(X,F pF•) = 0 for p� 0 and Hn(X,F pF•) = Hn(X,F•) for p� 0

then the spectral sequence is bounded and converges to H∗(X,F•).
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Proof. (For a proof in case the complex is a bounded below complex of modules with
finite filtrations, see the remark below.) Choose an map of filtered complexes j : F• → J •

as in Injectives, Lemma 13.7. The spectral sequence is the spectral sequence of Homology,
Section 24 associated to the filtered complex

Γ(X,J •) with F pΓ(X,J •) = Γ(X,F pJ •)
Since cohomology is computed by evaluating on K-injective representatives we see that
theE1 page is as stated in the lemma. The convergence and boundedness under the stated
conditions follows from Homology, Lemma 24.13. �

Remark 29.2. Let (X,OX) be a ringed space. Let F• be a filtered complex of OX -
modules. If F• is bounded from below and for each n the filtration on Fn is finite, then
there is a construction of the spectral sequence in Lemma 29.1 avoiding Injectives, Lemma
13.7. Namely, by Derived Categories, Lemma 26.9 there is a filtered quasi-isomorphism
i : F• → I• of filtered complexes with I• bounded below, the filtration on In is finite for
all n, and with each grpIn an injective OX -module. Then we take the spectral sequence
associated to

Γ(X, I•) with F pΓ(X, I•) = Γ(X,F pI•)
Since cohomology can be computed by evaluating on bounded below complexes of injec-
tives we see that theE1 page is as stated in the lemma. The convergence and boundedness
under the stated conditions follows from Homology, Lemma 24.11. In fact, this is a special
case of the spectral sequence in Derived Categories, Lemma 26.14.

Example 29.3. Let (X,OX) be a ringed space. Let F• be a complex ofOX -modules.
We can apply Lemma 29.1 with F pF• = τ≤−pF•. (If F• is bounded below we can use
Remark 29.2.) Then we get a spectral sequence

Ep,q1 = Hp+q(X,H−p(F•)[p]) = H2p+q(X,H−p(F•))
After renumbering p = −j and q = i + 2j we find that for any K ∈ D(OX) there is a
spectral sequence (E′

r, d
′
r)r≥2 of bigraded modules with d′

r of bidegree (r,−r + 1), with

(E′
2)i,j = Hi(X,Hj(K))

IfK is bounded below (for example), then this spectral sequence is bounded and converges
to Hi+j(X,K). In the bounded below case this spectral sequence is an example of the
second spectral sequence of Derived Categories, Lemma 21.3 (constructed using Cartan-
Eilenberg resolutions).

Example 29.4. Let (X,OX) be a ringed space. Let F• be a complex ofOX -modules.
We can apply Lemma 29.1 with F pF• = σ≥pF•. Then we get a spectral sequence

Ep,q1 = Hp+q(X,Fp[−p]) = Hq(X,Fp)
If F• is bounded below, then

(1) we can use Remark 29.2 to construct this spectral sequence,
(2) the spectral sequence is bounded and converges to Hi+j(X,F•), and
(3) the spectral sequence is equal to the first spectral sequence of Derived Categories,

Lemma 21.3 (constructed using Cartan-Eilenberg resolutions).

Lemma 29.5. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. LetF• be
a filtered complex ofOX -modules. There exists a canonical spectral sequence (Er, dr)r≥1
of bigradedOY -modules with dr of bidegree (r,−r + 1) and

Ep,q1 = Rp+qf∗grpF•
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If for every n we have

Rnf∗F
pF• = 0 for p� 0 and Rnf∗F

pF• = Rnf∗F• for p� 0
then the spectral sequence is bounded and converges to Rf∗F•.

Proof. The proof is exactly the same as the proof of Lemma 29.1. �

30. Godement resolution

A reference is [?].

Let (X,OX) be a ringed space. DenoteXdisc the discrete topological space with the same
points as X . Denote f : Xdisc → X the obvious continuous map. SetOXdisc = f−1OX .
Then f : (Xdisc,OXdisc) → (X,OX) is a flat morphism of ringed spaces. We can apply
the dual of the material in Simplicial, Section 34 to the adjoint pair of functors f∗, f∗ on
sheaves of modules. Thus we obtain an augmented cosimplicial object

id // f∗f
∗ //

// f∗f
∗f∗f

∗oo
//
//
//
f∗f

∗f∗f
∗f∗f

∗oo
oo

in the category of functors from Mod(OX) to itself, see Simplicial, Lemma 34.2. Moreover,
the augmentation

f∗ // f∗f∗f
∗ //

// f∗f∗f
∗f∗f

∗oo
//
//
//
f∗f∗f

∗f∗f
∗f∗f

∗oo
oo

is a homotopy equivalence, see Simplicial, Lemma 34.3.

Lemma 30.1. Let (X,OX) be a ringed space. For every sheaf ofOX -modulesF there
is a resolution

0→ F → f∗f
∗F → f∗f

∗f∗f
∗F → f∗f

∗f∗f
∗f∗f

∗F → . . .

functorial inF such that each term f∗f
∗ . . . f∗f

∗F is a flasqueOX -module and such that
for all x ∈ X the map

Fx[0]→
(

(f∗f
∗F)x → (f∗f

∗f∗f
∗F)x → (f∗f

∗f∗f
∗f∗f

∗F)x → . . .
)

is a homotopy equivalence in the category of complexes ofOX,x-modules.

Proof. The complex f∗f
∗F → f∗f

∗f∗f
∗F → f∗f

∗f∗f
∗f∗f

∗F → . . . is the com-
plex associated to the cosimplicial object with terms f∗f

∗F , f∗f
∗f∗f

∗F , f∗f
∗f∗f

∗f∗f
∗F , . . .

described above, see Simplicial, Section 25. The augmentation gives rise to the map F →
f∗f

∗F as indicated. For any abelian sheaf H on Xdisc the pushforward f∗H is flasque
because Xdisc is a discrete space and the pushforward of a flasque sheaf is flasque. Hence
the terms of the complex are flasqueOX -modules.

If x ∈ Xdisc = X is a point, then (f∗G)x = Gx for any OX -module G. Hence f∗ is
an exact functor and a complex of OX -modules G1 → G2 → G3 is exact if and only
if f∗G1 → f∗G2 → f∗G3 is exact (see Modules, Lemma 3.1). The result mentioned
in the introduction to this section proves the pullback by f∗ gives a homotopy equiv-
alence from the constant cosimplicial object f∗F to the cosimplicial object with terms
f∗f

∗F , f∗f
∗f∗f

∗F , f∗f
∗f∗f

∗f∗f
∗F , . . .. By Simplicial, Lemma 28.7 we obtain that

f∗F [0]→
(
f∗f∗f

∗F → f∗f∗f
∗f∗f

∗F → f∗f∗f
∗f∗f

∗f∗f
∗F → . . .

)
is a homotopy equivalence. This immediately implies the two remaining statements of the
lemma. �
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Lemma 30.2. Let (X,OX) be a ringed space. Let F• be a bounded below complex of
OX -modules. There exists a quasi-isomorphism F• → G• where G• be a bounded below
complex of flasque OX -modules and for all x ∈ X the map F•

x → G•
x is a homotopy

equivalence in the category of complexes ofOX,x-modules.

Proof. LetA be the category of complexes ofOX -modules and let B be the category
of complexes of OX -modules. Then we can apply the discussion above to the adjoint
functors f∗ and f∗ between A and B. Arguing exactly as in the proof of Lemma 30.1 we
get a resolution

0→ F• → f∗f
∗F• → f∗f

∗f∗f
∗F• → f∗f

∗f∗f
∗f∗f

∗F• → . . .

in the abelian category A such that each term of each f∗f
∗ . . . f∗f

∗F• is a flasque OX -
module and such that for all x ∈ X the map

F•
x [0]→

(
(f∗f

∗F•)x → (f∗f
∗f∗f

∗F•)x → (f∗f
∗f∗f

∗f∗f
∗F•)x → . . .

)
is a homotopy equivalence in the category of complexes of complexes of OX,x-modules.
Since a complex of complexes is the same thing as a double complex, we can consider the
induced map

F• → G• = Tot(f∗f
∗F• → f∗f

∗f∗f
∗F• → f∗f

∗f∗f
∗f∗f

∗F• → . . .)
Since the complex F• is bounded below, the same is true for G• and in fact each term of
G• is a finite direct sum of terms of the complexes f∗f

∗ . . . f∗f
∗F• and hence is flasque.

The final assertion of the lemma now follows from Homology, Lemma 25.5. Since this in
particular shows that F• → G• is a quasi-isomorphism, the proof is complete. �

31. Cup product

Let (X,OX) be a ringed space. Let K,M be objects of D(OX). Set A = Γ(X,OX). The
(global) cup product in this setting is a map

µ : RΓ(X,K)⊗L
A RΓ(X,M) −→ RΓ(X,K ⊗L

OX
M)

in D(A). We define it as the relative cup product for the morphism of ringed spaces
f : (X,OX) → (pt, A) as in Remark 28.7 via D(pt, A) = D(A). This map in particular
defines pairings

∪ : Hi(X,K)×Hj(X,M) −→ Hi+j(X,K ⊗L
OX

M)

Namely, given ξ ∈ Hi(X,K) = Hi(RΓ(X,K)) and η ∈ Hj(X,M) = Hj(RΓ(X,M))
we can first “tensor” them to get an element ξ ⊗ η in Hi+j(RΓ(X,K) ⊗L

A RΓ(X,M)),
see More on Algebra, Section 63. Then we can apply µ to get the desired element ξ ∪ η =
µ(ξ ⊗ η) of Hi+j(X,K ⊗L

OX
M).

Here is another way to think of the cup product of ξ and η. Namely, we can write

RΓ(X,K) = RHomX(OX ,K) and RΓ(X,M) = RHomX(OX ,M)
because Hom(OX ,−) = Γ(X,−). Thus ξ and η are the “same” thing as maps

ξ̃ : OX [−i]→ K and η̃ : OX [−j]→M

Combining this with the functoriality of the derived tensor product we obtain

OX [−i− j] = OX [−i]⊗L
OX
OX [−j] ξ̃⊗η̃−−→ K ⊗L

OX
M

which by the same token as above is an element of Hi+j(X,K ⊗L
OX

M).
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Lemma 31.1. This construction gives the cup product.

Proof. With f : (X,OX) → (pt, A) as above we have Rf∗(−) = RΓ(X,−) and
our map µ is adjoint to the map

Lf∗(Rf∗K ⊗L
A Rf∗M) = Lf∗Rf∗K ⊗L

OX
Lf∗Rf∗M

εK⊗εM−−−−−→ K ⊗L
OX

M

where ε is the counit of the adjunction between Lf∗ and Rf∗. If we think of ξ and η
as maps ξ : A[−i] → RΓ(X,K) and η : A[−j] → RΓ(X,M), then the tensor ξ ⊗ η
corresponds to the map3

A[−i− j] = A[−i]⊗L
A A[−j] ξ⊗η−−→ RΓ(X,K)⊗L

A RΓ(X,M)
By definition the cup product ξ ∪ η is the map A[−i− j]→ RΓ(X,K ⊗L

OX
M) which is

adjoint to
(εK ⊗ εM ) ◦ Lf∗(ξ ⊗ η) = (εK ◦ Lf∗ξ)⊗ (εM ◦ Lf∗η)

However, it is easy to see that εK ◦ Lf∗ξ = ξ̃ and εM ◦ Lf∗η = η̃. We conclude that
ξ̃ ∪ η = ξ̃ ⊗ η̃ which means we have the desired agreement. �

Remark 31.2. Let (X,OX) be a ringed space. Let K,M be objects of D(OX). Set
A = Γ(X,OX). Given ξ ∈ Hi(X,K) we get an associated map

ξ = “ξ ∪ −′′ : RΓ(X,M)[−i]→ RΓ(X,K ⊗L
OX

M)
by representing ξ as a map ξ : A[−i]→ RΓ(X,K) as in the proof of Lemma 31.1 and then
using the composition

RΓ(X,M)[−i] = A[−i]⊗L
ARΓ(X,M) ξ⊗1−−→ RΓ(X,K)⊗L

ARΓ(X,M)→ RΓ(X,K⊗L
OX

M)
where the second arrow is the global cup product µ above. On cohomology this recovers
the cup product by ξ as is clear from Lemma 31.1 and its proof.

Let us formulate and prove a natural compatibility of the relative cup product. Namely,
suppose that we have a morphism f : (X,OX) → (Y,OY ) of ringed spaces. Let K• and
M• be complexes ofOX -modules. There is a naive cup product

Tot(f∗K• ⊗OY
f∗M•) −→ f∗Tot(K• ⊗OX

M•)
We claim that this is related to the relative cup product.

Lemma 31.3. In the situation above the following diagram commutes

f∗K• ⊗L
OY

f∗M• //

��

Rf∗K• ⊗L
OY

Rf∗M•

Remark 28.7
��

Tot(f∗K• ⊗OY
f∗M•)

naive cup product
��

Rf∗(K• ⊗L
OX
M•)

��
f∗Tot(K• ⊗OX

M•) // Rf∗Tot(K• ⊗OX
M•)

3There is a sign hidden here, namely, the equality is defined by the composition

A[−i− j] → (A⊗L
A A)[−i− j] → A[−i] ⊗L

A A[−j]

where in the second step we use the identification of More on Algebra, Item (7) which uses a sign in principle.
Except, in this case the sign is +1 by our convention and even if it wasn’t +1 it wouldn’t matter since we used
the same sign in the identification OX [−i− j] = OX [−i] ⊗L

OX
OX [−j].



31. CUP PRODUCT 1851

Proof. By the construction in Remark 28.7 we see that going around the diagram
clockwise the map

f∗K• ⊗L
OY

f∗M• −→ Rf∗Tot(K• ⊗OX
M•)

is adjoint to the map

Lf∗(f∗K• ⊗L
OY

f∗M•) = Lf∗f∗K• ⊗L
OY

Lf∗f∗M•

→ Lf∗Rf∗K• ⊗L
OY

Lf∗Rf∗M•

→ K• ⊗L
OY
M•

→ Tot(K• ⊗OX
M•)

By Lemma 28.6 this is also equal to

Lf∗(f∗K• ⊗L
OY

f∗M•) = Lf∗f∗K• ⊗L
OY

Lf∗f∗M•

→ f∗f∗K• ⊗L
OY

f∗f∗M•

→ K• ⊗L
OY
M•

→ Tot(K• ⊗OX
M•)

Going around anti-clockwise we obtain the map adjoint to the map

Lf∗(f∗K• ⊗L
OY

f∗M•)→ Lf∗Tot(f∗K• ⊗OY
f∗M•)

→ Lf∗f∗Tot(K• ⊗OX
M•)

→ Lf∗Rf∗Tot(K• ⊗OX
M•)

→ Tot(K• ⊗OX
M•)

By Lemma 28.6 this is also equal to

Lf∗(f∗K• ⊗L
OY

f∗M•)→ Lf∗Tot(f∗K• ⊗OY
f∗M•)

→ Lf∗f∗Tot(K• ⊗OX
M•)

→ f∗f∗Tot(K• ⊗OX
M•)

→ Tot(K• ⊗OX
M•)

Now the proof is finished by a contemplation of the diagram

Lf∗(f∗K• ⊗L
OY

f∗M•)

��

// Lf∗f∗K• ⊗L
OX

Lf∗f∗M•

��
Lf∗Tot(f∗K• ⊗OY

f∗M•)

naive

��

// f∗Tot(f∗K• ⊗OY
f∗M•)

naive

xx ��

f∗f∗K• ⊗L
OX

f∗f∗M•

��xx

Lf∗f∗Tot(K• ⊗OX
M•)

��
f∗f∗Tot(K• ⊗OX

M•)

**

Tot(f∗f∗K• ⊗OX
f∗f∗M•)

��

K• ⊗L
OX
M•

tt
Tot(K• ⊗OX

M•)
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All of the polygons in this diagram commute. The top one commutes by Lemma 27.5. The
square with the two naive cup products commutes because Lf∗ → f∗ is functorial in the
complex of modules. Similarly with the square involving the two maps A• ⊗L B• →
Tot(A• ⊗B•). Finally, the commutativity of the remaining square is true on the level of
complexes and may be viewed as the definiton of the naive cup product (by the adjointness
of f∗ and f∗). The proof is finished because going around the diagram on the outside are
the two maps given above. �

Let (X,OX) be a ring space. LetK• andM• be complexes ofOX -modules. Then we have
a “naive” cup product

µ′ : Tot(Γ(X,K•)⊗A Γ(X,M•)) −→ Γ(X,Tot(K• ⊗OX
M•))

By Lemma 31.3 applied to the morphism (X,OX) → (pt, A) this naive cup product is
related to the cup product µ defined in the first paragraph of this section by the following
commutative diagram

Γ(X,K•)⊗L
A Γ(X,M•)

��

// RΓ(X,K•)⊗L
A RΓ(X,M•)

µ

��
Tot(Γ(X,K•)⊗A Γ(X,M•))

µ′

��

RΓ(X,K• ⊗L
OX
M•)

��
Γ(X,Tot(K• ⊗OX

M•)) // RΓ(X,Tot(K• ⊗OX
M•))

in D(A). On cohomology we obtain the commutative diagram

Hi(Γ(X,K•))×Hj(Γ(X,M•))

��

// Hi+j(X,Tot(K• ⊗OX
M•))

Hi(X,K•)×Hj(X,M•) ∪ // Hi+j(X,K• ⊗L
OX
M•)

OO

relating the naive cup product with the actual cuproduct.

Lemma 31.4. Let (X,OX) be a ringed space. Let K• and M• be bounded below
complexes ofOX -modules. Let U : X =

⋃
i∈I Ui be an open covering Then

Tot(Č•(U ,K•))⊗L
A Tot(Č•(U ,M•))

��

// RΓ(X,K•)⊗L
A RΓ(X,M•)

µ

��
Tot(Tot(Č•(U ,K•))⊗A Tot(Č•(U ,M•)))

(25.3.2)
��

RΓ(X,K• ⊗L
OX
M•)

��
Tot(Č•(U ,Tot(K• ⊗OX

M•))) // RΓ(X,Tot(K• ⊗OX
M•))

where the horizontal arrows are the ones in Lemma 25.1 commutes in D(A).

Proof. Choose quasi-isomorphisms of complexes a : K• → K•
1 and b :M• →M•

1
as in Lemma 30.2. Since the maps a and b on stalks are homotopy equivalences we see that
the induced map

Tot(K• ⊗OX
M•)→ Tot(K•

1 ⊗OX
M•

1)
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is a homotopy equivalence on stalks too (More on Algebra, Lemma 58.2) and hence a quasi-
isomorphism. Thus the targets

RΓ(X,Tot(K• ⊗OX
M•)) = RΓ(X,Tot(K•

1 ⊗OX
M•

1))

of the two diagrams are the same in D(A). It follows that it suffices to prove the diagram
commutes for K andM replaced by K1 andM1. This reduces us to the case discussed in
the next paragraph.

Assume K• andM• are bounded below complexes of flasque OX -modules and consider
the diagram relating the cup product with the cup product (25.3.2) on Čech complexes.
Then we can consider the commutative diagram

Γ(X,K•)⊗L
A Γ(X,M•)

��

// Tot(Č•(U ,K•))⊗L
A Tot(Č•(U ,M•))

��
Tot(Γ(X,K•)⊗A Γ(X,M•))

��

// Tot(Tot(Č•(U ,K•))⊗A Tot(Č•(U ,M•)))

(25.3.2)
��

Γ(X,Tot(K• ⊗OX
M•)) // Tot(Č•(U ,Tot(K• ⊗OX

M•)))

In this diagram the horizontal arrows are isomorphisms in D(A) because for a bounded
below complex of flasque modules such as K• we have

Γ(X,K•) = Tot(Č•(U ,K•)) = RΓ(X,K•)

in D(A). This follows from Lemma 12.3, Derived Categories, Lemma 16.7, and Lemma
25.2. Hence the commutativity of the diagram of the lemma involving (25.3.2) follows
from the already proven commutativity of Lemma 31.3 where f is the morphism to a
point (see discussion following Lemma 31.3). �

Lemma 31.5. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
relative cup product of Remark 28.7 is associative in the sense that the diagram

Rf∗K ⊗L
OY

Rf∗L⊗L
OY

Rf∗M //

��

Rf∗(K ⊗L
OX

L)⊗L
OY

Rf∗M

��
Rf∗K ⊗L

OY
Rf∗(L⊗L

OX
M) // Rf∗(K ⊗L

OX
L⊗L

OX
M)

is commutative in D(OY ) for all K,L,M in D(OX).

Proof. Going around either side we obtain the map adjoint to the obvious map

Lf∗(Rf∗K ⊗L
OY

Rf∗L⊗L
OY

Rf∗M) = Lf∗(Rf∗K)⊗L
OX

Lf∗(Rf∗L)⊗L
OX

Lf∗(Rf∗M)
→ K ⊗L

OX
L⊗L

OX
M

in D(OX). �
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Lemma 31.6. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
relative cup product of Remark 28.7 is commutative in the sense that the diagram

Rf∗K ⊗L
OY

Rf∗L //

ψ

��

Rf∗(K ⊗L
OX

L)

Rf∗ψ

��
Rf∗L⊗L

OY
Rf∗K // Rf∗(L⊗L

OX
K)

is commutative inD(OY ) for allK,L inD(OX). Hereψ is the commutativity constraint
on the derived category (Lemma 50.6).

Proof. Omitted. �

Lemma 31.7. Let f : (X,OX)→ (Y,OY ) and g : (Y,OY )→ (Z,OZ) be morphisms
of ringed spaces. The relative cup product of Remark 28.7 is compatible with compositions
in the sense that the diagram

R(g ◦ f)∗K ⊗L
OZ

R(g ◦ f)∗L

��

Rg∗Rf∗K ⊗L
OZ

Rg∗Rf∗L

��
R(g ◦ f)∗(K ⊗L

OX
L) Rg∗Rf∗(K ⊗L

OX
L) Rg∗(Rf∗K ⊗L

OY
Rf∗L)oo

is commutative in D(OZ) for all K,L in D(OX).

Proof. This is true because going around the diagram either way we obtain the map
adjoint to the map

L(g ◦ f)∗ (R(g ◦ f)∗K ⊗L
OZ

R(g ◦ f)∗L
)

= L(g ◦ f)∗R(g ◦ f)∗K ⊗L
OX

L(g ◦ f)∗R(g ◦ f)∗L)
→ K ⊗L

OX
L

in D(OX). To see this one uses that the composition of the counits like so

L(g ◦ f)∗R(g ◦ f)∗ = Lf∗Lg∗Rg∗Rf∗ → Lf∗Rf∗ → id

is the counit for L(g ◦ f)∗ and R(g ◦ f)∗. See Categories, Lemma 24.9. �

32. Some properties of K-injective complexes

Let (X,OX) be a ringed space. Let U ⊂ X be an open subset. Denote j : (U,OU ) →
(X,OX) the corresponding open immersion. The pullback functor j∗ is exact as it is just
the restriction functor. Thus derived pullbackLj∗ is computed on any complex by simply
restricting the complex. We often simply denote the corresponding functor

D(OX)→ D(OU ), E 7→ j∗E = E|U
Similarly, extension by zero j! : Mod(OU ) → Mod(OX) (see Sheaves, Section 31) is an
exact functor (Modules, Lemma 3.4). Thus it induces a functor

j! : D(OU )→ D(OX), F 7→ j!F

by simply applying j! to any complex representing the object F .

Lemma 32.1. LetX be a ringed space. LetU ⊂ X be an open subspace. The restriction
of a K-injective complex ofOX -modules to U is a K-injective complex ofOU -modules.



32. SOME PROPERTIES OF K-INJECTIVE COMPLEXES 1855

Proof. Follows from Derived Categories, Lemma 31.9 and the fact that the restric-
tion functor has the exact left adjoint j!. For the construction of j! see Sheaves, Section 31
and for exactness see Modules, Lemma 3.4. �

Lemma 32.2. Let X be a ringed space. Let U ⊂ X be an open subspace. For K in
D(OX) we have Hp(U,K) = Hp(U,K|U ).

Proof. Let I• be a K-injective complex ofOX -modules representing K. Then

Hq(U,K) = Hq(Γ(U, I•)) = Hq(Γ(U, I•|U ))
by construction of cohomology. By Lemma 32.1 the complexI•|U is a K-injective complex
representing K|U and the lemma follows. �

Lemma 32.3. Let (X,OX) be a ringed space. Let K be an object of D(OX). The
sheafification of

U 7→ Hq(U,K) = Hq(U,K|U )
is the qth cohomology sheaf Hq(K) of K.

Proof. The equality Hq(U,K) = Hq(U,K|U ) holds by Lemma 32.2. Choose a K-
injective complex I• representing K. Then

Hq(U,K) = Ker(Iq(U)→ Iq+1(U))
Im(Iq−1(U)→ Iq(U)) .

by our construction of cohomology. SinceHq(K) = Ker(Iq → Iq+1)/ Im(Iq−1 → Iq)
the result is clear. �

Lemma 32.4. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Given an
open subspace V ⊂ Y , set U = f−1(V ) and denote g : U → V the induced morphism.
Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• andRg∗(E|U ) = g∗(I•|U ) by Lemma 32.1. Since it is clear that (f∗F)|V = g∗(F|U )
for any sheaf F on X the result follows. �

Lemma 32.5. Let f : X → Y be a morphism of ringed spaces. Then RΓ(Y,−) ◦
Rf∗ = RΓ(X,−) as functorsD(OX)→ D(Γ(Y,OY )). More generally for V ⊂ Y open
and U = f−1(V ) we have RΓ(U,−) = RΓ(V,−) ◦Rf∗.

Proof. Let Z be the ringed space consisting of a singleton space with Γ(Z,OZ) =
Γ(Y,OY ). There is a canonical morphism Y → Z of ringed spaces inducing the identifi-
cation on global sections of structure sheaves. Then D(OZ) = D(Γ(Y,OY )). Hence the
assertionRΓ(Y,−)◦Rf∗ = RΓ(X,−) follows from Lemma 28.2 applied toX → Y → Z.

The second (more general) statement follows from the first statement after applying Lemma
32.4. �

Lemma 32.6. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let K be
in D(OX). Then Hi(Rf∗K) is the sheaf associated to the presheaf

V 7→ Hi(f−1(V ),K) = Hi(V,Rf∗K)

Proof. The equality Hi(f−1(V ),K) = Hi(V,Rf∗K) follows upon taking coho-
mology from the second statement in Lemma 32.5. Then the statement on sheafification
follows from Lemma 32.3. �
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Lemma 32.7. Let X be a ringed space. Let K be an object of D(OX) and denote Kab

its image in D(ZX).
(1) For any open U ⊂ X there is a canonical mapRΓ(U,K)→ RΓ(U,Kab) which

is an isomorphism in D(Ab).
(2) Let f : X → Y be a morphism of ringed spaces. There is a canonical map

Rf∗K → Rf∗(Kab) which is an isomorphism in D(ZY ).

Proof. The map is constructed as follows. Choose a K-injective complex I• repre-
senting K. Choose a quasi-isomorpism I• → J • where J • is a K-injective complex of
abelian groups. Then the map in (1) is given by Γ(U, I•)→ Γ(U,J •) and the map in (2)
is given by f∗I• → f∗J •. To show that these maps are isomorphisms, it suffices to prove
they induce isomorphisms on cohomology groups and cohomology sheaves. By Lemmas
32.2 and 32.6 it suffices to show that the map

H0(X,K) −→ H0(X,Kab)
is an isomorphism. Observe that

H0(X,K) = HomD(OX)(OX ,K)
and similarly for the other group. Choose any complex K• of OX -modules representing
K. By construction of the derived category as a localization we have

HomD(OX)(OX ,K) = colims:F•→OX
HomK(OX)(F•,K•)

where the colimit is over quasi-isomorphisms s of complexes of OX -modules. Similarly,
we have

HomD(Z
X

)(ZX ,K) = colims:G•→ZX HomK(Z
X

)(G•,K•)
Next, we observe that the quasi-isomorphisms s : G• → ZX with G• bounded above
complex of flat ZX -modules is cofinal in the system. (This follows from Modules, Lemma
17.6 and Derived Categories, Lemma 15.4; see discussion in Section 26.) Hence we can
construct an inverse to the map H0(X,K) −→ H0(X,Kab) by representing an element
ξ ∈ H0(X,Kab) by a pair

(s : G• → ZX , a : G• → K•)
with G• a bounded above complex of flat ZX -modules and sending this to

(G• ⊗Z
X
OX → OX ,G• ⊗Z

X
OX → K•)

The only thing to note here is that the first arrow is a quasi-isomorphism by Lemmas 26.13
and 26.9. We omit the detailed verification that this construction is indeed an inverse. �

Lemma 32.8. Let (X,OX) be a ringed space. Let U ⊂ X be an open subset. Denote
j : (U,OU ) → (X,OX) the corresponding open immersion. The restriction functor
D(OX)→ D(OU ) is a right adjoint to extension by zero j! : D(OU )→ D(OX).

Proof. This follows formally from the fact that j! and j∗ are adjoint and exact (and
hence Lj! = j! and Rj∗ = j∗ exist), see Derived Categories, Lemma 30.3. �

Lemma 32.9. Let f : X → Y be a flat morphism of ringed spaces. IfI• is a K-injective
complex ofOX -modules, then f∗I• is K-injective as a complex ofOY -modules.

Proof. This is true because

HomK(OY )(F•, f∗I•) = HomK(OX)(f∗F•, I•)
by Sheaves, Lemma 26.2 and the fact that f∗ is exact as f is assumed to be flat. �
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33. Unbounded Mayer-Vietoris

There is a Mayer-Vietoris sequence for unbounded cohomology as well.

Lemma 33.1. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of two
open subspaces. For any object E of D(OX) we have a distinguished triangle

jU∩V !E|U∩V → jU !E|U ⊕ jV !E|V → E → jU∩V !E|U∩V [1]
in D(OX).

Proof. We have seen in Section 32 that the restriction functors and the extension
by zero functors are computed by just applying the functors to any complex. Let E• be a
complex of OX -modules representing E. The distinguished triangle of the lemma is the
distinguished triangle associated (by Derived Categories, Section 12 and especially Lemma
12.1) to the short exact sequence of complexes ofOX -modules

0→ jU∩V !E•|U∩V → jU !E•|U ⊕ jV !E•|V → E• → 0
To see this sequence is exact one checks on stalks using Sheaves, Lemma 31.8 (computation
omitted). �

Lemma 33.2. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of two
open subspaces. For any object E of D(OX) we have a distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU∩V,∗E|U∩V → E[1]
in D(OX).

Proof. Choose a K-injective complex I• representingE whose terms In are injective
objects of Mod(OX), see Injectives, Theorem 12.6. We have seen that I•|U is a K-injective
complex as well (Lemma 32.1). HenceRjU,∗E|U is represented by jU,∗I•|U . Similarly for
V and U ∩V . Hence the distinguished triangle of the lemma is the distinguished triangle
associated (by Derived Categories, Section 12 and especially Lemma 12.1) to the short exact
sequence of complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU∩V,∗I•|U∩V → 0.
This sequence is exact because for any W ⊂ X open and any n the sequence

0→ In(W )→ In(W ∩ U)⊕ In(W ∩ V )→ In(W ∩ U ∩ V )→ 0
is exact (see proof of Lemma 8.2). �

Lemma 33.3. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of two
open subspaces of X . For objects E , F of D(OX) we have a Mayer-Vietoris sequence

. . . // Ext−1(EU∩V , FU∩V )

qqHom(E,F ) // Hom(EU , FU )⊕Hom(EV , FV ) // Hom(EU∩V , FU∩V )

where the subscripts denote restrictions to the relevant opens and the Hom’s and Ext’s are
taken in the relevant derived categories.

Proof. Use the distinguished triangle of Lemma 33.1 to obtain a long exact sequence
of Hom’s (from Derived Categories, Lemma 4.2) and use that

HomD(OX)(jU !E|U , F ) = HomD(OU )(E|U , F |U )
by Lemma 32.8. �
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Lemma 33.4. Let (X,OX) be a ringed space. Suppose that X = U ∪ V is a union of
two open subsets. For an object E of D(OX) we have a distinguished triangle

RΓ(X,E)→ RΓ(U,E)⊕RΓ(V,E)→ RΓ(U ∩ V,E)→ RΓ(X,E)[1]
and in particular a long exact cohomology sequence

. . .→ Hn(X,E)→ Hn(U,E)⊕H0(V,E)→ Hn(U ∩ V,E)→ Hn+1(X,E)→ . . .

The construction of the distinguished triangle and the long exact sequence is functorial
in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 12.6. Then RΓ(X,E) is
computed by Γ(X, I•). Similarly for U , V , and U ∩ V by Lemma 32.1. Hence the distin-
guished triangle of the lemma is the distinguished triangle associated (by Derived Cate-
gories, Section 12 and especially Lemma 12.1) to the short exact sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.
We have seen this is a short exact sequence in the proof of Lemma 8.2. The final statement
follows from the functoriality of the construction in Injectives, Theorem 12.6. �

Lemma 33.5. Let f : X → Y be a morphism of ringed spaces. Suppose that X =
U ∪ V is a union of two open subsets. Denote a = f |U : U → Y , b = f |V : V → Y ,
and c = f |U∩V : U ∩ V → Y . For every object E of D(OX) there exists a distinguished
triangle

Rf∗E → Ra∗(E|U )⊕Rb∗(E|V )→ Rc∗(E|U∩V )→ Rf∗E[1]
This triangle is functorial in E.

Proof. Choose a K-injective complex I• representingE. We may assume In is an in-
jective object of Mod(OX) for all n, see Injectives, Theorem 12.6. ThenRf∗E is computed
by f∗I•. Similarly for U , V , and U ∩ V by Lemma 32.1. Hence the distinguished triangle
of the lemma is the distinguished triangle associated (by Derived Categories, Section 12
and especially Lemma 12.1) to the short exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.
This is a short exact sequence of complexes by Lemma 8.3 and the fact that R1f∗I = 0
for an injective object I of Mod(OX). The final statement follows from the functoriality
of the construction in Injectives, Theorem 12.6. �

Lemma 33.6. Let (X,OX) be a ringed space. Let j : U → X be an open subspace.
Let T ⊂ X be a closed subset contained in U .

(1) IfE is an object ofD(OX) whose cohomology sheaves are supported on T , then
E → Rj∗(E|U ) is an isomorphism.

(2) If F is an object ofD(OU ) whose cohomology sheaves are supported on T , then
j!F → Rj∗F is an isomorphism.

Proof. Let V = X \ T and W = U ∩ V . Note that X = U ∪ V is an open cov-
ering of X . Denote jW : W → V the open immersion. Let E be an object of D(OX)
whose cohomology sheaves are supported on T . By Lemma 32.4 we have (Rj∗E|U )|V =
RjW,∗(E|W ) = 0 becauseE|W = 0 by our assumption. On the other hand,Rj∗(E|U )|U =
E|U . Thus (1) is clear. Let F be an object of D(OU ) whose cohomology sheaves are sup-
ported on T . By Lemma 32.4 we have (Rj∗F )|V = RjW,∗(F |W ) = 0 because F |W = 0
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by our assumption. We also have (j!F )|V = jW !(F |W ) = 0 (the first equality is immedi-
ate from the definition of extension by zero). Since both (Rj∗F )|U = F and (j!F )|U = F
we see that (2) holds. �

Lemma 33.7. Let (X,OX) be a ringed space. Set A = Γ(X,OX). Suppose that
X = U ∪ V is a union of two open subsets. For objects K and M of D(OX) we have a
map of distinguished triangles

RΓ(X,K)⊗L
A RΓ(X,M) //

��

RΓ(X,K ⊗L
OX

M)

��
RΓ(X,K)⊗L

A (RΓ(U,M)⊕RΓ(V,M)) //

��

RΓ(U,K ⊗L
OX

M)⊕RΓ(V,K ⊗L
OX

M))

��
RΓ(X,K)⊗L

A RΓ(U ∩ V,M) //

��

RΓ(U ∩ V,K ⊗L
OX

M)

��
RΓ(X,K)⊗L

A RΓ(X,M)[1] // RΓ(X,K ⊗L
OX

M)[1]

where
(1) the horizontal arrows are given by cup product,
(2) on the right hand side we have the distinguished triangle of Lemma 33.4 for

K ⊗L
OX

M , and
(3) on the left hand side we have the exact functor RΓ(X,K)⊗L

A − applied to the
distinguished triangle of Lemma 33.4 for M .

Proof. Choose a K-flat complex T • of flat A-modules representing RΓ(X,K), see
More on Algebra, Lemma 59.10. Denote T •⊗AOX the pullback of T • by the morphism of
ringed spaces (X,OX)→ (pt, A). There is a natural adjunction map ε : T •⊗AOX → K
in D(OX). Observe that T • ⊗A OX is a K-flat complex of OX -modules with flat terms,
see Lemma 26.8 and Modules, Lemma 20.2. By Lemma 26.17 we can find a morphism of
complexes

T • ⊗A OX −→ K•

of OX -modules representing ε such that K• is a K-flat complex with flat terms. Namely,
by the construction of D(OX) we can first represent ε by some map of complexes e :
T • ⊗A OX → L• of OX -modules representing ε and then we can apply the lemma to e.
Choose a K-injective complex I• whose terms are injectiveOX -modules representingM .
Finally, choose a quasi-isomorphism

Tot(K• ⊗O I•) −→ J •

into a K-injective complex whose terms are injective OX -modules. Observe that source
and target of this arrow represent K ⊗L

OX
M in D(OX). At this point, for any open

W ⊂ X we obtain a map of complexes

Tot(T • ⊗A I•(W ))→ Tot(K•(W )⊗A I•(W ))→ J •(W )

of A-modules whose composition represents the map

RΓ(X,K)⊗L
A RΓ(W,M) −→ RΓ(W,K ⊗L

OX
M)
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in D(A). Clearly, these maps are compatible with restriction mappings. OK, so now we
can consider the following commutative(!) diagram of complexes of A-modules

0

��

0

��
Tot(T • ⊗A I•(X))

��

// J •(X)

��
Tot(T • ⊗A (I•(U)⊕ I•(V ))

��

// J •(U)⊕ J •(V )

��
Tot(T • ⊗A I•(U ∩ V )) //

��

J •(U ∩ V )

��
0 0

By the proof of Lemma 8.2 the columns are exact sequences of complexes of A-modules
(this also uses that Tot(T • ⊗A −) transforms short exact sequences of complexes of A-
modules into short exact sequences as the terms of T • are flat A-modules). Since the dis-
tinguished triangles of Lemma 33.4 are the distinguished triangles associated to these short
exact sequences of complexes, the desired result follows from the functoriality of “taking
the associated distinguished triangle” discussed in Derived Categories, Section 12. �

34. Cohomology with support in a closed subset, II

We continue the discussion started in Section 21.

Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset. In this situation we can
consider the functor Mod(OX)→Mod(OX(X)) given byF 7→ ΓZ(X,F). See Modules,
Definition 5.1 and Modules, Lemma 5.2. Using K-injective resolutions, see Section 28, we
obtain the right derived functor

RΓZ(X,−) : D(OX)→ D(OX(X))
Given an object K in D(OX) we denote Hq

Z(X,K) = Hq(RΓZ(X,K)) the cohomol-
ogy module with support in Z. We will see later (Lemma 34.8) that this agrees with the
construction in Section 21.

For anOX -moduleF we can consider the subsheaf of sections with support inZ , denoted
HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z} = ΓZ∩U (U,F|U )
As discussed in Modules, Remark 13.5 we may viewHZ(F) as anOX |Z -module on Z and
we obtain a functor

Mod(OX) −→Mod(OX |Z), F 7−→ HZ(F) viewed as anOX |Z -module on Z

This functor is left exact, but in general not exact. Exactly as above we obtain a right
derived functor

RHZ : D(OX) −→ D(OX |Z)
We setHqZ(K) = Hq(RHZ(K)) so thatH0

Z(F) = HZ(F) for any sheaf ofOX -modules
F .
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Lemma 34.1. Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of a
closed subset.

(1) RHZ : D(OX)→ D(OX |Z) is right adjoint to i∗ : D(OX |Z)→ D(OX).
(2) For K in D(OX |Z) we have RHZ(i∗K) = K.
(3) Let G be a sheaf ofOX |Z -modules on Z. ThenHpZ(i∗G) = 0 for p > 0.

Proof. The functor i∗ is exact, so i∗ = Ri∗ = Li∗. Hence part (1) of the lemma
follows from Modules, Lemma 13.6 and Derived Categories, Lemma 30.3. Let K be as in
(2). We can represent K by a K-injective complex I• of OX |Z -modules. By Lemma 32.9
the complex i∗I•, which represents i∗K , is a K-injective complex of OX -modules. Thus
RHZ(i∗K) is computed byHZ(i∗I•) = I• which proves (2). Part (3) is a special case of
(2). �

Let (X,OX) be a ringed space and let Z ⊂ X be a closed subset. The category of OX -
modules whose support is contained in Z is a Serre subcategory of the category of allOX -
modules, see Homology, Definition 10.1 and Modules, Lemma 5.2. We denoteDZ(OX) the
strictly full saturated triangulated subcategory of D(OX) consisting of complexes whose
cohomology sheaves are supported on Z , see Derived Categories, Section 17.

Lemma 34.2. Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of a
closed subset.

(1) For K in D(OX |Z) we have i∗K in DZ(OX).
(2) The functor i∗ : D(OX |Z) → DZ(OX) is an equivalence with quasi-inverse

i−1|DZ(OX) = RHZ |DZ(OX).
(3) The functor i∗ ◦ RHZ : D(OX) → DZ(OX) is right adjoint to the inclusion

functor DZ(OX)→ D(OX).

Proof. Part (1) is immediate from the definitions. Part (3) is a formal consequence
of part (2) and Lemma 34.1. In the rest of the proof we prove part (2).

Let us think of i as the morphism of ringed spaces i : (Z,OX |Z)→ (X,OX). Recall that
i∗ and i∗ is an adjoint pair of functors. Since i is a closed immersion, i∗ is exact. Since
i−1OX = OX |Z is the structure sheaf of (Z,OX |Z) we see that i∗ = i−1 is exact and
we see that that i∗i∗ = i−1i∗ is isomorphic to the identify functor. See Modules, Lemmas
3.3 and 6.1. Thus i∗ : D(OX |Z) → DZ(OX) is fully faithful and i−1 determines a left
inverse. On the other hand, suppose that K is an object of DZ(OX) and consider the
adjunction map K → i∗i

−1K. Using exactness of i∗ and i−1 this induces the adjunction
maps Hn(K) → i∗i

−1Hn(K) on cohomology sheaves. Since these cohomology sheaves
are supported on Z we see these adjunction maps are isomorphisms and we conclude that
i∗ : D(OX |Z)→ DZ(OX) is an equivalence.

To finish the proof it suffices to show thatRHZ(K) = i−1K ifK is an object ofDZ(OX).
To do this we can use thatK = i∗i

−1K as we’ve just proved this is the case. Then Lemma
34.1 tells us what we want. �

Lemma 34.3. Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of a
closed subset. If I• is a K-injective complex of OX -modules, then HZ(I•) is K-injective
complex ofOX |Z -modules.

Proof. Since i∗ : Mod(OX |Z) → Mod(OX) is exact and left adjoint to HZ (Mod-
ules, Lemma 13.6) this follows from Derived Categories, Lemma 31.9. �
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Lemma 34.4. Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of a
closed subset. ThenRΓ(Z,−)◦RHZ = RΓZ(X,−) as functorsD(OX)→ D(OX(X)).

Proof. Follows from the construction of right derived functors using K-injective
resolutions, Lemma 34.3, and the fact that ΓZ(X,−) = Γ(Z,−) ◦ HZ . �

Lemma 34.5. Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of a
closed subset. Let U = X \ Z. There is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]
in D(OX(X)) functorial for K in D(OX).

Proof. Choose a K-injective complexI• all of whose terms are injectiveOX -modules
representingK. See Section 28. Recall that I•|U is a K-injective complex ofOU -modules,
see Lemma 32.1. Hence each of the derived functors in the distinguished triangle is gotten
by applying the underlying functor to I•. Hence we find that it suffices to prove that for
an injectiveOX -module I we have a short exact sequence

0→ ΓZ(X, I)→ Γ(X, I)→ Γ(U, I)→ 0
This follows from Lemma 8.1 and the definitions. �

Lemma 34.6. Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of a
closed subset. Denote j : U = X \ Z → X the inclusion of the complement. There is a
distinguished triangle

i∗RHZ(K)→ K → Rj∗(K|U )→ i∗RHZ(K)[1]
in D(OX) functorial for K in D(OX).

Proof. Choose a K-injective complexI• all of whose terms are injectiveOX -modules
representingK. See Section 28. Recall that I•|U is a K-injective complex ofOU -modules,
see Lemma 32.1. Hence each of the derived functors in the distinguished triangle is gotten
by applying the underlying functor to I•. Hence it suffices to prove that for an injective
OX -module I we have a short exact sequence

0→ i∗HZ(I)→ I → j∗(I|U )→ 0
This follows from Lemma 8.1 and the definitions. �

Lemma 34.7. Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset. Let
j : U → X be the inclusion of an open subset with U ∩ Z = ∅. Then RHZ(Rj∗K) = 0
for all K in D(OU ).

Proof. Choose a K-injective complex I• ofOU -modules representingK. Then j∗I•

represents Rj∗K. By Lemma 32.9 the complex j∗I• is a K-injective complex of OX -
modules. HenceHZ(j∗I•) representsRHZ(Rj∗K). Thus it suffices to show thatHZ(j∗G) =
0 for any abelian sheaf G on U . Thus we have to show that a section s of j∗G over
some open W which is supported on W ∩ Z is zero. The support condition means that
s|W\W∩Z = 0. Since j∗G(W ) = G(U ∩W ) = j∗G(W \W ∩ Z) this implies that s is
zero as desired. �

Lemma 34.8. Let (X,OX) be a ringed space. Let Z ⊂ X be a closed subset. LetK be
an object of D(OX) and denote Kab its image in D(ZX).

(1) There is a canonical map RΓZ(X,K) → RΓZ(X,Kab) which is an isomor-
phism in D(Ab).
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(2) There is a canonical map RHZ(K) → RHZ(Kab) which is an isomorphism in
D(ZZ).

Proof. Proof of (1). The map is constructed as follows. Choose a K-injective complex
of OX -modules I• representing K. Choose a quasi-isomorpism I• → J • where J • is a
K-injective complex of abelian groups. Then the map in (1) is given by

ΓZ(X, I•)→ ΓZ(X,J •)
determined by the fact that ΓZ is a functor on abelian sheaves. An easy check shows that
the resulting map combined with the canonical maps of Lemma 32.7 fit into a morphism
of distinguished triangles

RΓZ(X,K) //

��

RΓ(X,K) //

��

RΓ(U,K)

��
RΓZ(X,Kab) // RΓ(X,Kab) // RΓ(U,Kab)

of Lemma 34.5. Since two of the three arrows are isomorphisms by the lemma cited, we
conclude by Derived Categories, Lemma 4.3.
The proof of (2) is omitted. Hint: use the same argument with Lemma 34.6 for the distin-
guished triangle. �

Remark 34.9. Let (X,OX) be a ringed space. Let i : Z → X be the inclusion of a
closed subset. Given K and M in D(OX) there is a canonical map

K|Z ⊗L
OX |Z RHZ(M) −→ RHZ(K ⊗L

OX
M)

in D(OX |Z). Here K|Z = i−1K is the restriction of K to Z viewed as an object of
D(OX |Z). By adjointness of i∗ and RHZ of Lemma 34.1 to construct this map it suffices
to produce a canonical map

i∗

(
K|Z ⊗L

OX |Z RHZ(M)
)
−→ K ⊗L

OX
M

To construct this map, we choose a K-injective complex I• of OX -modules representing
M and a K-flat complexK• ofOX -modules representingK. Observe thatK•|Z is a K-flat
complex ofOX |Z -modules representingK|Z , see Lemma 26.8. Hence we need to produce
a map of complexes

i∗Tot
(
K•|Z ⊗OX |Z HZ(I•)

)
−→ Tot(K• ⊗OX

I•)
ofOX -modules. For this it suffices to produce maps

i∗(Ka|Z ⊗OX |Z HZ(Ib)) −→ Ka ⊗OX
Ib

Looking at stalks (for example), we see that the left hand side of this formula is equal to
Ka ⊗OX

i∗HZ(Ib) and we can use the inclusionHZ(Ib)→ Ib to get our map.

Remark 34.10. With notation as in Remark 34.9 we obtain a canonical cup product

Ha(X,K)×Hb
Z(X,M) = Ha(X,K)×Hb(Z,RHZ(M))

→ Ha(Z,K|Z)×Hb(Z,RHZ(M))
→ Ha+b(Z,K|Z ⊗L

OX |Z RHZ(M))

→ Ha+b(Z,RHZ(K ⊗L
OX

M))

= Ha+b
Z (X,K ⊗L

OX
M)
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Here the equal signs are given by Lemma 34.4, the first arrow is restriction toZ , the second
arrow is the cup product (Section 31), and the third arrow is the map from Remark 34.9.

Lemma 34.11. With notation as in Remark 34.9 the diagram

Hi(X,K)×Hj
Z(X,M) //

��

Hi+j
Z (X,K ⊗L

OX
M)

��
Hi(X,K)×Hj(X,M) // Hi+j(X,K ⊗L

OX
M)

commutes where the top horizontal arrow is the cup product of Remark 34.10.

Proof. Omitted. �

Remark 34.12. Let f : (X ′,OX′) → (X,OX) be a morphism of ringed spaces. Let
Z ⊂ X be a closed subset and Z ′ = f−1(Z). Denote f |Z′ : (Z ′,OX′ |Z′) → (Z,OX |Z)
be the induced morphism of ringed spaces. For anyK inD(OX) there is a canonical map

L(f |Z′)∗RHZ(K) −→ RHZ′(Lf∗K)

in D(OX′ |Z′). Denote i : Z → X and i′ : Z ′ → X ′ the inclusion maps. By Lemma 34.2
part (2) applied to i′ it is the same thing to give a map

i′∗L(f |Z′)∗RHZ(K) −→ i′∗RHZ′(Lf∗K)

in DZ′(OX′). The map of functors Lf∗ ◦ i∗ → i′∗ ◦ L(f |Z′)∗ of Remark 28.3 is an
isomorphism in this case (follows by checking what happens on stalks using that i∗ and
i′∗ are exact and that OZ,z = OX,z and similarly for Z ′). Hence it suffices to construct a
the top horizonal arrow in the following diagram

Lf∗i∗RHZ(K) //

''

i′∗RHZ′(Lf∗K)

ww
Lf∗K

The complex Lf∗i∗RHZ(K) is supported on Z ′. The south-east arrow comes from the
adjunction mapping i∗RHZ(K) → K (Lemma 34.1). Since the adjunction mapping
i′∗RHZ′(Lf∗K)→ Lf∗K is universal by Lemma 34.2 part (3), we find that the south-east
arrow factors uniquely over the south-west arrow and we obtain the desired arrow.

Lemma 34.13. With notation and assumptions as in Remark 34.12 the diagram

Hp
Z(X,K) //

��

Hp
Z′(X,Lf∗K)

��
Hp(X,K) // Hp(X ′, Lf∗K)

commutes. Here the top horizontal arrow comes from the identifications Hp
Z(X,K) =

Hp(Z,RHZ(K)) andHp
Z′(X ′, Lf∗K) = Hp(Z ′, RHZ′(K ′)), the pullback mapHp(Z,RHZ(K))→

Hp(Z ′, L(f |Z′)∗RHZ(K)), and the map constructed in Remark 34.12.

Proof. Omitted. Hints: Using that Hp(Z,RHZ(K)) = Hp(X, i∗RHZ(K)) and
similarly for RHZ′(Lf∗K) this follows from the functoriality of the pullback maps and
the commutative diagram used to define the map of Remark 34.12. �
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35. Inverse systems and cohomology, I

Let A be a ring and let I ⊂ A be an ideal. We prove some results on inverse systems of
sheaves of A/In-modules.

Lemma 35.1. Let I be an ideal of a ring A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on X such that Fn = Fn+1/I
nFn+1. Let

p ≥ 0. Assume ⊕
n≥0

Hp+1(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then the in-

verse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition4.

Proof. Set Nn = Hp+1(X, InFn+1) and let δn : Mn → Nn be the boundary map
on cohomology coming from the short exact sequence 0→ InFn+1 → Fn+1 → Fn → 0.
Then

⊕
Im(δn) ⊂

⊕
Nn is a graded submodule. Namely, if s ∈ Mn and f ∈ Im, then

we have a commutative diagram

0 // InFn+1

f

��

// Fn+1

f

��

// Fn

f

��

// 0

0 // In+mFn+m+1 // Fn+m+1 // Fn+m // 0

The middle vertical map is given by lifting a local section ofFn+1 to a section ofFn+m+1
and then multiplying by f ; similarly for the other vertical arrows. We conclude that
δn+m(fs) = fδn(s). By assumption we can find sj ∈ Mnj , j = 1, . . . , N such that
δnj (sj) generate

⊕
Im(δn) as a graded module. Let n > c = max(nj). Let s ∈ Mn.

Then we can find fj ∈ In−nj such that δn(s) =
∑
fjδnj (sj). We conclude that δ(s −∑

fjsj) = 0, i.e., we can find s′ ∈Mn+1 mapping to s−
∑
fjsj in Mn. It follows that

Im(Mn+1 →Mn−c) = Im(Mn →Mn−c)
Namely, the elements fjsj map to zero in Mn−c. This proves the lemma. �

Lemma 35.2. Let I be an ideal of a ring A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of A-modules on X such that Fn = Fn+1/I
nFn+1. Let p ≥ 0.

Given n define

Nn =
⋂

m≥n
Im
(
Hp+1(X, InFm+1)→ Hp+1(X, InFn+1)

)
If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module, then
the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition5.

Proof. The proof is exactly the same as the proof of Lemma 35.1. In fact, the result
will follow from the arguments given there as soon as we show that

⊕
Nn is a graded⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(X, InFn+1) and that the boundary maps δn :

Mn → Hp+1(X, InFn+1) have image contained in Nn.

4In fact, there exists a c ≥ 0 such that Im(Mn → Mn−c) is the stable image for all n ≥ c.
5In fact, there exists a c ≥ 0 such that Im(Mn → Mn−c) is the stable image for all n ≥ c.
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Suppose that ξ ∈ Nn and f ∈ Ik. Choose m� n+ k. Choose ξ′ ∈ Hp+1(X, InFm+1)
lifting ξ. We consider the diagram

0 // InFm+1

f

��

// Fm+1

f

��

// Fn

f

��

// 0

0 // In+kFm+1 // Fm+1 // Fn+k // 0

constructed as in the proof of Lemma 35.1. We get an induced map on cohomology and
we see that fξ′ ∈ Hp+1(X, In+kFm+1) maps to fξ. Since this is true for all m� n+ k
we see that fξ is in Nn+k as desired.
To see the boundary maps δn have image contained in Nn we consider the diagrams

0 // InFm+1

��

// Fm+1

��

// Fn

��

// 0

0 // InFn+1 // Fn+1 // Fn // 0

for m ≥ n. Looking at the induced maps on cohomology we conclude. �

Lemma 35.3. Let I be an ideal of a ring A. Let X be a topological space. Let
. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on X such that Fn = Fn+1/I
nFn+1. Let

p ≥ 0. Assume ⊕
n≥0

Hp(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then the limit

topology on M = limHp(X,Fn) is the I-adic topology.

Proof. Set Fn = Ker(M → Hp(X,Fn)) for n ≥ 1 and F 0 = M . Observe that
IFn ⊂ Fn+1. In particular InM ⊂ Fn. Hence the I-adic topology is finer than the limit
topology. For the converse, we will show that given n there exists an m ≥ n such that
Fm ⊂ InM 6. We have injective maps

Fn/Fn+1 −→ Hp(X,Fn+1)
whose image is contained in the image of Hp(X, InFn+1)→ Hp(X,Fn+1). Denote

En ⊂ Hp(X, InFn+1)
the inverse image ofFn/Fn+1. Then

⊕
En is a graded

⊕
In/In+1-submodule of

⊕
Hp(X, InFn+1)

and
⊕
En →

⊕
Fn/Fn+1 is a homomorphism of graded modules; details omitted. By

assumption
⊕
En is generated by finitely many homogeneous elements over

⊕
In/In+1.

Since En → Fn/Fn+1 is surjective, we see that the same thing is true of
⊕
Fn/Fn+1.

Hence we can find r and c1, . . . , cr ≥ 0 and ai ∈ F ci whose images in
⊕
Fn/Fn+1

generate. Set c = max(ci).
For n ≥ c we claim that IFn = Fn+1. The claim shows that Fn+c = InF c ⊂ InM
as desired. To prove the claim suppose a ∈ Fn+1. The image of a in Fn+1/Fn+2 is a
linear combination of our ai. Therefore a −

∑
fiai ∈ Fn+2 for some fi ∈ In+1−ci .

Since In+1−ci = I · In−ci as n ≥ ci we can write fi =
∑
gi,jhi,j with gi,j ∈ I and

hi,jai ∈ Fn. Thus we see that Fn+1 = Fn+2 + IFn. A simple induction argument

6In fact, there exist a c ≥ 0 such that Fn+c ⊂ InM for all n.
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gives Fn+1 = Fn+e + IFn for all e > 0. It follows that IFn is dense in Fn+1. Choose
generators k1, . . . , kr of I and consider the continuous map

u : (Fn)⊕r −→ Fn+1, (x1, . . . , xr) 7→
∑

kixi

(in the limit topology). By the above the image of (Fm)⊕r under u is dense in Fm+1 for
all m ≥ n. By the open mapping lemma (More on Algebra, Lemma 36.5) we find that u is
open. Hence u is surjective. Hence IFn = Fn+1 for n ≥ c. This concludes the proof. �

Lemma 35.4. Let I be an ideal of a ring A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on X such that Fn = Fn+1/I
nFn+1. Let

p ≥ 0. Given n define

Nn =
⋂

m≥n
Im (Hp(X, InFm+1)→ Hp(X, InFn+1))

If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module, then
the limit topology on M = limHp(X,Fn) is the I-adic topology.

Proof. The proof is exactly the same as the proof of Lemma 35.3. In fact, the re-
sult will follow from the arguments given there as soon as we show that

⊕
Nn is a graded⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(X, InFn+1) and thatFn/Fn+1 ⊂ Hp(X,Fn+1)

is contained in the image of Nn → Hp(X,Fn+1). In the proof of Lemma 35.2 we have
seen the statement on the module structure.

Let t ∈ Fn. Choose an element s ∈ Hp(X, InFn+1) which maps to the image of t in
Hp(X,Fn+1). We have to show that s is in Nn. Now Fn is the kernel of the map from
M → Hp(X,Fn) hence for all m ≥ n we can map t to an element tm ∈ Hp(X,Fm+1)
which maps to zero in Hp(X,Fn). Consider the cohomology sequence

Hp−1(X,Fn)→ Hp(X, InFm+1)→ Hp(X,Fm+1)→ Hp(X,Fn)
coming from the short exact sequence 0 → InFm+1 → Fm+1 → Fn → 0. We can
choose sm ∈ Hp(X, InFm+1) mapping to tm. Comparing the sequence above with the
one form = nwe see that sm maps to s up to an element in the image ofHp−1(X,Fn)→
Hp(X, InFn+1). However, this map factors through the mapHp(X, InFm+1)→ Hp(X, InFn+1)
and we see that s is in the image as desired. �

36. Inverse systems and cohomology, II

This section continues the discussion in Section 35 in the setting where the ideal is prin-
cipal.

Lemma 36.1. Let (X,OX) be a ringed space. Let f ∈ Γ(X,OX). Let

. . .→ F3 → F2 → F1

be inverse system ofOX -modules. Consider the conditions
(1) for all n ≥ 1 the map f : Fn+1 → Fn+1 factors through Fn+1 → Fn to give a

short exact sequence 0→ Fn → Fn+1 → F1 → 0,
(2) for all n ≥ 1 the map fn : Fn+1 → Fn+1 factors through Fn+1 → F1 to give

a short exact sequence 0→ F1 → Fn+1 → Fn → 0
(3) there exists anOX -module G which is f -divisible such that Fn = G[fn], and
(4) there exists anOX -module F which is f -torsion free such that Fn = F/fnF .
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Then (4)⇒ (3)⇔ (2)⇔ (1).

Proof. We omit the proof of the equivalence of (1) and (2). We omit the proof that
(3) implies (1). Given Fn as in (1) to prove (3) we set G = colimFn where the maps
F1 → F2 → F3 → . . . are as in (1). The map f : G → G is surjective as the image of
Fn+1 ⊂ G isFn ⊂ G by the short exact sequence (1). Thus G is an f -divisibleOX -module
with Fn = G[fn].
Assume givenF as in (4). The mapF/fn+1F → F/fnF is always surjective with kernel
the image of the map F/fF → F/fn+1F induced by multiplication with fn. To verify
(2) it suffices to see that the kernel of fn : F → F/fn+1F is fF . To see this it suffices
to show that given sections s, t of F over an open U ⊂ X with fns = fn+1t we have
s = ft. This is clear because f : F → F is injective as F is f -torsion free. �

Lemma 36.2. Suppose X , f , (Fn) satisfy condition (1) of Lemma 36.1. Let p ≥ 0 and
set Hp = limHp(X,Fn). Then f cHp is the kernel of Hp → Hp(X,Fc) for all c ≥ 1.
Thus the limit topology on Hp is the f -adic topology.

Proof. Let c ≥ 1. It is clear that f cHp maps to zero inHp(X,Fc). If ξ = (ξn) ∈ Hp

is small in the limit topology, then ξc = 0, and hence ξn maps to zero in Hp(X,Fc) for
n ≥ c. Consider the inverse system of short exact sequences

0→ Fn−c
fc−→ Fn → Fc → 0

and the corresponding inverse system of long exact cohomology sequences

Hp−1(X,Fc)→ Hp(X,Fn−c)→ Hp(X,Fn)→ Hp(X,Fc)
Since the term Hp−1(X,Fc) is independent of n we can choose a compatible sequence
of elements ξ′

n ∈ Hp(X,Fn−c) lifting ξn. Setting ξ′ = (ξ′
n) we see that ξ = f cξ′ as

desired. �

Lemma 36.3. Let A be a Noetherian ring complete with respect to a principal ideal
(f). Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules. Assume
(1) Γ(X,F1) is a finite A-module,
(2) X , f , (Fn) satisfy condition (1) of Lemma 36.1.

Then
M = lim Γ(X,Fn)

is a finite A-module, f is a nonzerodivisor on M , and M/fM is the image of M in
Γ(X,F1).

Proof. By Lemma 36.2 we haveM/fM ⊂ H0(X,F1). From (1) and the Noetherian
property ofAwe get thatM/fM is a finiteA-module. Observe that

⋂
fnM = 0 as fnM

maps to zero in H0(X,Fn). By Algebra, Lemma 96.12 we conclude that M is finite over
A. Finally, suppose s = (sn) ∈ M = limH0(X,Fn) satisfies fs = 0. Then sn+1 is in
the kernel of Fn+1 → Fn by condition (1) of Lemma 36.1. Hence sn = 0. Since n was
arbitrary, we see s = 0. Thus f is a nonzerodivisor on M . �

Lemma 36.4. Let A be a ring. Let f ∈ A. Let X be a topological space. Let
. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules. Let p ≥ 0. Assume
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(1) either Hp+1(X,F1) is an A-module of finite length or A is Noetherian and
Hp+1(X,F1) is a finite A-module,

(2) X , f , (Fn) satisfy condition (1) of Lemma 36.1.
Then the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition.

Proof. Set I = (f). We will use the criterion of Lemma 35.1. Observe that fn :
F1 → InFn+1 is an isomorphism for all n ≥ 0. Thus it suffices to show that⊕

n≥1
Hp+1(X,F1) · fn+1

is a graded S =
⊕

n≥0 A/(f) · fn-module satisfying the ascending chain condition. If
A is not Noetherian, then Hp+1(X,F1) has finite length and the result holds. If A is
Noetherian, then S is a Noetherian ring and the result holds as the module is finite over
S by the assumed finiteness of Hp+1(X,F1). Some details omitted. �

Lemma 36.5. Let A be a ring. Let f ∈ A. Let X be a topological space. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules. Let p ≥ 0. Assume
(1) either there is anm ≥ 1 such that the image ofHp+1(X,Fm)→ Hp+1(X,F1)

is an A-module of finite length or A is Noetherian and the intersection of the
images of Hp+1(X,Fm)→ Hp+1(X,F1) is a finite A-module,

(2) X , f , (Fn) satisfy condition (1) of Lemma 36.1.
Then the inverse system Mn = Hp(X,Fn) satisfies the Mittag-Leffler condition.

Proof. Set I = (f). We will use the criterion of Lemma 35.2 involving the modules
Nn. For m ≥ n we have InFm+1 = Fm+1−n. Thus we see that

Nn =
⋂

m≥1
Im
(
Hp+1(X,Fm)→ Hp+1(X,F1)

)
is independent of n and

⊕
Nn =

⊕
N1 · fn+1. Thus we conclude exactly as in the proof

of Lemma 36.4. �

Remark 36.6. Let (X,OX) be a ringed space. Let f ∈ Γ(X,OX). Let F be OX -
module. If F is f -torsion free, then for every p ≥ 0 we have a short exact sequence of
inverse systems

0→ {Hp(X,F)/fnHp(X,F)} → {Hp(X,F/fnF)} → {Hp+1(X,F)[fn]} → 0

Since the first inverse system has the Mittag-Leffler condition (ML) we learn three things
from this:

(1) There is a short exact sequence

0→ ̂Hp(X,F)→ limHp(X,F/fnF)→ Tf (Hp+1(X,F))→ 0

wherêdenotes the usual f -adic completion and Tf (−) denotes the f -adic Tate
module from More on Algebra, Example 93.5.

(2) We have R1 limHp(X,F/fnF) = R1 limHp+1(X,F)[fn].
(3) The system {Hp+1(X,F)[fn]} is ML if and only if {Hp(X,F/fnF)} is ML.

See Homology, Lemma 31.3 and More on Algebra, Lemmas 86.2 and 86.13.
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37. Derived limits

Let (X,OX) be a ringed space. Since the triangulated category D(OX) has products (In-
jectives, Lemma 13.4) it follows that D(OX) has derived limits, see Derived Categories,
Definition 34.1. If (Kn) is an inverse system in D(OX) then we denote R limKn the
derived limit.

Lemma 37.1. Let (X,OX) be a ringed space. For U ⊂ X open the functorRΓ(U,−)
commutes with R lim. Moreover, there are short exact sequences

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0
for any inverse system (Kn) in D(OX) and any m ∈ Z.

Proof. The first statement follows from Injectives, Lemma 13.6. Then we may apply
More on Algebra, Remark 86.10 toR limRΓ(U,Kn) = RΓ(U,R limKn) to get the short
exact sequences. �

Lemma 37.2. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Then
Rf∗ commutes with R lim, i.e., Rf∗ commutes with derived limits.

Proof. Let (Kn) be an inverse system in D(OX). Consider the defining distin-
guished triangle

R limKn →
∏

Kn →
∏

Kn

in D(OX). Applying the exact functor Rf∗ we obtain the distinguished triangle

Rf∗(R limKn)→ Rf∗

(∏
Kn

)
→ Rf∗

(∏
Kn

)
in D(OY ). Thus we see that it suffices to prove that Rf∗ commutes with products in
the derived category (which are not just given by products of complexes, see Injectives,
Lemma 13.4). However, since Rf∗ is a right adjoint by Lemma 28.1 this follows formally
(see Categories, Lemma 24.5). Caution: Note that we cannot apply Categories, Lemma
24.5 directly as R limKn is not a limit in D(OX). �

Remark 37.3. Let (X,OX) be a ringed space. Let (Kn) be an inverse system in
D(OX). Set K = R limKn. For each n and m let Hmn = Hm(Kn) be the mth co-
homology sheaf of Kn and similarly setHm = Hm(K). Let us denoteHmn the presheaf

U 7−→ Hmn (U) = Hm(U,Kn)
Similarly we setHm(U) = Hm(U,K). By Lemma 32.3 we see thatHmn is the sheafifica-
tion ofHmn andHm is the sheafification ofHm. Here is a diagram

K Hm

��

// Hm

��
R limKn limHmn // limHmn

In general it may not be the case that limHmn is the sheafification of limHmn . If U ⊂ X is
an open, then we have short exact sequences

(37.3.1) 0→ R1 limHm−1
n (U)→ Hm(U)→ limHmn (U)→ 0

by Lemma 37.1.

The following lemma applies to an inverse system of quasi-coherent modules with surjec-
tive transition maps on a scheme.
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Lemma 37.4. Let (X,OX) be a ringed space. Let (Fn) be an inverse system of OX -
modules. Let B be a set of opens of X . Assume

(1) every open of X has a covering whose members are elements of B,
(2) Hp(U,Fn) = 0 for p > 0 and U ∈ B,
(3) the inverse system Fn(U) has vanishing R1 lim for U ∈ B.

Then R limFn = limFn and we have Hp(U, limFn) = 0 for p > 0 and U ∈ B.

Proof. Set Kn = Fn and K = R limFn. Using the notation of Remark 37.3 and
assumption (2) we see that for U ∈ B we have Hmn (U) = 0 when m 6= 0 and H0

n(U) =
Fn(U). From Equation (37.3.1) and assumption (3) we see thatHm(U) = 0 when m 6= 0
and equal to limFn(U) when m = 0. Sheafifying using (1) we find that Hm = 0 when
m 6= 0 and equal to limFn when m = 0. Hence K = limFn. Since Hm(U,K) =
Hm(U) = 0 for m > 0 (see above) we see that the second assertion holds. �

Lemma 37.5. Let (X,OX) be a ringed space. Let (Kn) be an inverse system inD(OX).
Let x ∈ X and m ∈ Z. Assume there exist an integer n(x) and a fundamental system Ux
of open neighbourhoods of x such that for U ∈ Ux

(1) R1 limHm−1(U,Kn) = 0, and
(2) Hm(U,Kn)→ Hm(U,Kn(x)) is injective for n ≥ n(x).

Then the map on stalks Hm(R limKn)x → Hm(Kn(x))x is injective.

Proof. Let γ be an element ofHm(R limKn)x which maps to zero inHm(Kn(x))x.
Since Hm(R limKn) is the sheafification of U 7→ Hm(U,R limKn) (by Lemma 32.3)
we can choose U ∈ Ux and an element γ̃ ∈ Hm(U,R limKn) mapping to γ. Then γ̃
maps to γ̃n(x) ∈ Hm(U,Kn(x)). Using that Hm(Kn(x)) is the sheafification of U 7→
Hm(U,Kn(x)) (by Lemma 32.3 again) we see that after shrinking U we may assume that
γ̃n(x) = 0. For this U we consider the short exact sequence

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0
of Lemma 37.1. By assumption (1) the group on the left is zero and by assumption (2) the
group on the right maps injectively into Hm(U,Kn(x)). We conclude γ̃ = 0 and hence
γ = 0 as desired. �

Lemma 37.6. Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume that for
every x ∈ X there exist a function p(x,−) : Z → Z and a fundamental system Ux of
open neighbourhoods of x such that

Hp(U,Hm−p(E)) = 0 for U ∈ Ux and p > p(x,m)
Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. Set Kn = τ≥−nE and K = R limKn. The canonical map E → K comes
from the canonical maps E → Kn = τ≥−nE. We have to show that E → K induces
an isomorphism Hm(E) → Hm(K) of cohomology sheaves. In the rest of the proof
we fix m. If n ≥ −m, then the map E → τ≥−nE = Kn induces an isomorphism
Hm(E) → Hm(Kn). To finish the proof it suffices to show that for every x ∈ X there
exists an integer n(x) ≥ −m such that the map Hm(K)x → Hm(Kn(x))x is injective.
Namely, then the composition

Hm(E)x → Hm(K)x → Hm(Kn(x))x
is a bijection and the second arrow is injective, hence the first arrow is bijective. Set
n(x) = 1 + max{−m, p(x,m− 1)−m,−1 + p(x,m)−m,−2 + p(x,m+ 1)−m}.
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so that in any case n(x) ≥ −m. Claim: the maps

Hm−1(U,Kn+1)→ Hm−1(U,Kn) and Hm(U,Kn+1)→ Hm(U,Kn)
are isomorphisms for n ≥ n(x) and U ∈ Ux. The claim implies conditions (1) and (2)
of Lemma 37.5 are satisfied and hence implies the desired injectivity. Recall (Derived
Categories, Remark 12.4) that we have distinguished triangles

H−n−1(E)[n+ 1]→ Kn+1 → Kn → H−n−1(E)[n+ 2]
Looking at the asssociated long exact cohomology sequence the claim follows if

Hm+n(U,H−n−1(E)), Hm+n+1(U,H−n−1(E)), Hm+n+2(U,H−n−1(E))
are zero for n ≥ n(x) and U ∈ Ux. This follows from our choice of n(x) and the assump-
tion in the lemma. �

Lemma 37.7. Let (X,OX) be a ringed space. LetE ∈ D(OX). Assume that for every
x ∈ X there exist an integer dx ≥ 0 and a fundamental systemUx of open neighbourhoods
of x such that

Hp(U,Hq(E)) = 0 for U ∈ Ux, p > dx, and q < 0
Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. This follows from Lemma 37.6 with p(x,m) = dx + max(0,m). �

Lemma 37.8. Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume there exist a
function p(−) : Z→ Z and a set B of opens of X such that

(1) every open in X has a covering whose members are elements of B, and
(2) Hp(U,Hm−p(E)) = 0 for p > p(m) and U ∈ B.

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. Apply Lemma 37.6 with p(x,m) = p(m) and Ux = {U ∈ B | x ∈ U}. �

Lemma 37.9. Let (X,OX) be a ringed space. Let E ∈ D(OX). Assume there exist
an integer d ≥ 0 and a basis B for the topology of X such that

Hp(U,Hq(E)) = 0 for U ∈ B, p > d, and q < 0
Then the canonical map E → R lim τ≥−nE is an isomorphism in D(OX).

Proof. Apply Lemma 37.7 with dx = d and Ux = {U ∈ B | x ∈ U}. �

The lemmas above can be used to compute cohomology in certain situations.

Lemma 37.10. Let (X,OX) be a ringed space. Let K be an object of D(OX). Let B
be a set of opens of X . Assume

(1) every open of X has a covering whose members are elements of B,
(2) Hp(U,Hq(K)) = 0 for all p > 0, q ∈ Z, and U ∈ B.

Then Hq(U,K) = H0(U,Hq(K)) for q ∈ Z and U ∈ B.

Proof. Observe thatK = R lim τ≥−nK by Lemma 37.9 with d = 0. Let U ∈ B. By
Equation (37.3.1) we get a short exact sequence

0→ R1 limHq−1(U, τ≥−nK)→ Hq(U,K)→ limHq(U, τ≥−nK)→ 0
Condition (2) impliesHq(U, τ≥−nK) = H0(U,Hq(τ≥−nK)) for all q by using the spec-
tral sequence of Example 29.3. The spectral sequence converges because τ≥−nK is bounded
below. If n > −q then we have Hq(τ≥−nK) = Hq(K). Thus the systems on the left
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and the right of the displayed short exact sequence are eventually constant with values
H0(U,Hq−1(K)) and H0(U,Hq(K)). The lemma follows. �

Here is another case where we can describe the derived limit.

Lemma 37.11. Let (X,OX) be a ringed space. Let (Kn) be an inverse system of objects
of D(OX). Let B be a set of opens of X . Assume

(1) every open of X has a covering whose members are elements of B,
(2) for all U ∈ B and all q ∈ Z we have

(a) Hp(U,Hq(Kn)) = 0 for p > 0,
(b) the inverse system H0(U,Hq(Kn)) has vanishing R1 lim.

Then Hq(R limKn) = limHq(Kn) for q ∈ Z.

Proof. Set K = R limKn. We will use notation as in Remark 37.3. Let U ∈ B. By
Lemma 37.10 and (2)(a) we have Hq(U,Kn) = H0(U,Hq(Kn)). Using that the functor
RΓ(U,−) commutes with derived limits we have

Hq(U,K) = Hq(R limRΓ(U,Kn)) = limH0(U,Hq(Kn))
where the final equality follows from More on Algebra, Remark 86.10 and assumption
(2)(b). Thus Hq(U,K) is the inverse limit the sections of the sheaves Hq(Kn) over U .
Since limHq(Kn) is a sheaf we find using assumption (1) thatHq(K), which is the sheafi-
fication of the presheaf U 7→ Hq(U,K), is equal to limHq(Kn). This proves the lemma.

�

38. Producing K-injective resolutions

Let (X,OX) be a ringed space. Let F• be a complex of OX -modules. The category
Mod(OX) has enough injectives, hence we can use Derived Categories, Lemma 29.3 pro-
duce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•

2
// I•

1

in the category of complexes ofOX -modules such that
(1) the vertical arrows are quasi-isomorphisms,
(2) I•

n is a bounded below complex of injectives,
(3) the arrows I•

n+1 → I•
n are termwise split surjections.

The category of OX -modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•

n. By Derived Categories, Lemmas 31.4
and 31.8 this is a K-injective complex. In general the canonical map
(38.0.1) F• → I•

may not be a quasi-isomorphism. In the following lemma we describe some conditions
under which it is.

Lemma 38.1. In the situation described above. Denote Hm = Hm(F•) the mth
cohomology sheaf. Let B be a set of open subsets of X . Let d ∈ N. Assume

(1) every open in X has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d and q < 07.

7It suffices if ∀m, ∃p(m), Hp(U.Hm−p) = 0 for p > p(m), see Lemma 37.8.
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Then (38.0.1) is a quasi-isomorphism.

Proof. By Derived Categories, Lemma 34.4 it suffices to show that the canonical map
F• → R lim τ≥−nF• is an isomorphism. This is Lemma 37.9. �

Here is a technical lemma about the cohomology sheaves of the inverse limit of a system
of complexes of sheaves. In some sense this lemma is the wrong thing to try to prove as
one should take derived limits and not actual inverse limits.

Lemma 38.2. Let (X,OX) be a ringed space. Let (F•
n) be an inverse system of com-

plexes of OX -modules. Let m ∈ Z. Assume there exist a set B of open subsets of X and
an integer n0 such that

(1) every open in X has a covering whose members are elements of B,
(2) for every U ∈ B

(a) the systems of abelian groupsFm−2
n (U) andFm−1

n (U) have vanishingR1 lim
(for example these have the Mittag-Leffler condition),

(b) the system of abelian groups Hm−1(F•
n(U)) has vanishing R1 lim (for ex-

ample it has the Mittag-Leffler condition), and
(c) we have Hm(F•

n(U)) = Hm(F•
n0

(U)) for all n ≥ n0.

Then the maps Hm(F•) → limHm(F•
n) → Hm(F•

n0
) are isomorphisms of sheaves

where F• = limF•
n is the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of

limn Fm−2
n (U)→ limn Fm−1

n (U)→ limn Fmn (U)→ limn Fm+1
n (U)

in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply More on
Algebra, Lemma 86.3 to conclude that

Hm(F•(U)) = limHm(F•
n(U))

By assumption (2)(c) we conclude

Hm(F•(U)) = Hm(F•
n(U))

for alln ≥ n0. By assumption (1) we conclude that the sheafification ofU 7→ Hm(F•(U))
is equal to the sheafification of U 7→ Hm(F•

n(U)) for all n ≥ n0. Thus the inverse
system of sheaves Hm(F•

n) is constant for n ≥ n0 with value Hm(F•) which proves the
lemma. �

39. Inverse systems and cohomology, III

This section continues the discussion in Section 36 using derived limits.

Lemma 39.1. Let (X,OX) be a ringed space. Let A→ Γ(X,OX) be a ring map and
let f ∈ A. Let E be an object of D(OX). Denote

En = E ⊗OX
(OX

fn−−→ OX)
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and set E∧ = R limEn. For p ∈ Z is a canonical commutative diagram

0 0

0 // ̂Hp(X,E) //

OO

limHp(X,En) //

OO

Tf (Hp+1(X,E)) // 0

0 // H0(Hp(X,E)∧) //

OO

Hp(X,E∧) //

OO

Tf (Hp+1(X,E)) // 0

R1 limHp(X,E)[fn]

OO

∼= // R1 limHp−1(X,En)

OO

0

OO

0

OO

with exact rows and columns where ̂Hp(X,E) = limHp(X,E)/fnHp(X,E) is the
usual f -adic completion,Hp(X,E)∧ is the derived f -adic completion, andTf (Hp+1(X,E))
is the f -adic Tate module, see More on Algebra, Example 93.5. Finally, we haveHp(X,E∧) =
Hp(RΓ(X,E)∧).

Proof. Observe thatRΓ(X,E∧) = R limRΓ(X,En) by Lemma 37.2. On the other
hand, we have

RΓ(X,En) = RΓ(X,E)⊗L
A (A fn−−→ A)

(details omitted). We find thatRΓ(X,E∧) is the derived f -adic completionRΓ(X,E)∧.
Whence the diagram by More on Algebra, Lemma 93.6. �

Lemma 39.2. Let A be an abelian category. Let f : M →M be a morphism of A. If
M [fn] = Ker(fn : M →M) stabilizes, then the inverse systems

(M fn−−→M) and Coker(fn : M →M)

are pro-isomorphic in D(A).

Proof. There is clearly a map from the first inverse system to the second. Suppose
that M [f c] = M [f c+1] = M [f c+2] = . . .. Then we can define an arrow of inverse
systems in D(A) in the other direction by the diagrams

M/M [f c]
fn+c

//

fc

��

M

1
��

M
fn // M

Since the top horizontal arrow is injective the complex in the top row is quasi-isomorphic
to Coker(fn+c : M →M). Some details omitted. �

Example 39.3. Let (X,OX) be a ringed space. Let A → Γ(X,OX) be a ring map
and let f ∈ A. Let F be anOX -module. Assume there is a c such that F [f c] = F [fn] for
all n ≥ c. We are going to apply Lemma 39.1 with E = F . By Lemma 39.2 we see that
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the inverse system (En) is pro-isomorphic to the inverse system (F/fnF). We conclude
that for p ∈ Z we obtain a commutative diagram

0 0

0 // ̂Hp(X,F) //

OO

limHp(X,F/fnF) //

OO

Tf (Hp+1(X,F)) // 0

0 // H0(Hp(X,F)∧) //

OO

Hp(RΓ(X,F)∧) //

OO

Tf (Hp+1(X,F)) // 0

R1 limHp(X,F)[fn]

OO

∼= // R1 limHp−1(X,F/fnF)

OO

0

OO

0

OO

with exact rows and columns where ̂Hp(X,F) = limHp(X,F)/fnHp(X,F) is the
usual f -adic completion and M∧ denotes derived f -adic completion for M in D(A).

40. Čech cohomology of unbounded complexes

The construction of Section 25 isn’t the “correct” one for unbounded complexes. The
problem is that in the Stacks project we use direct sums in the totalization of a double
complex and we would have to replace this by a product. Instead of doing so in this section
we assume the covering is finite and we use the alternating Čech complex.

Let (X,OX) be a ringed space. Let F• be a complex of presheaves of OX -modules. Let
U : X =

⋃
i∈I Ui be a finite open covering of X . Since the alternating Čech com-

plex Č•
alt(U ,F) (Section 23) is functorial in the presheaf F we obtain a double complex

Č•
alt(U ,F•). In this section we work with the associated total complex. The construction

of Tot(Č•
alt(U ,F•)) is functorial in F•. As well there is a functorial transformation

(40.0.1) Γ(X,F•) −→ Tot(Č•
alt(U ,F•))

of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to the
element α = {αi0...ip} with αi0 = s|Ui0 and αi0...ip = 0 for p > 0.

Lemma 40.1. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be a finite open

covering. For a complex F• ofOX -modules there is a canonical map

Tot(Č•
alt(U ,F•)) −→ RΓ(X,F•)

functorial in F• and compatible with (40.0.1).

Proof. Let I• be a K-injective complex whose terms are injectiveOX -modules. The
map (40.0.1) for I• is a map Γ(X, I•) → Tot(Č•

alt(U , I•)). This is a quasi-isomorphism
of complexes of abelian groups as follows from Homology, Lemma 25.4 applied to the
double complex Č•

alt(U , I•) using Lemmas 11.1 and 23.6. Suppose F• → I• is a quasi-
isomorphism ofF• into a K-injective complex whose terms are injectives (Injectives, The-
orem 12.6). Since RΓ(X,F•) is represented by the complex Γ(X, I•) we obtain the map
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of the lemma using
Tot(Č•

alt(U ,F•)) −→ Tot(Č•
alt(U , I•)).

We omit the verification of functoriality and compatibilities. �

Lemma 40.2. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be a finite open

covering. LetF• be a complex ofOX -modules. LetB be a set of open subsets ofX . Assume
(1) every open in X has a covering whose members are elements of B,
(2) we have Ui0...ip ∈ B for all i0, . . . , ip ∈ I ,
(3) for every U ∈ B and p > 0 we have

(a) Hp(U,Fq) = 0,
(b) Hp(U,Coker(Fq−1 → Fq)) = 0, and
(c) Hp(U,Hq(F)) = 0.

Then the map
Tot(Č•

alt(U ,F•)) −→ RΓ(X,F•)
of Lemma 40.1 is an isomorphism in D(Ab).

Proof. First assume F• is bounded below. In this case the map

Tot(Č•
alt(U ,F•)) −→ Tot(Č•(U ,F•))

is a quasi-isomorphism by Lemma 23.6. Namely, the map of double complexes Č•
alt(U ,F•)→

Č•(U ,F•) induces an isomorphism between the first pages of the second spectral sequences
associated to these complexes (by Homology, Lemma 25.1) and these spectral sequences
converge (Homology, Lemma 25.3). Thus the conclusion in this case by Lemma 25.2 and
assumption (3)(a).

In general, by assumption (3)(c) we may choose a resolution F• → I• = lim I•
n as in

Lemma 38.1. Then the map of the lemma becomes

limn Tot(Č•
alt(U , τ≥−nF•)) −→ Γ(X, I•) = limn Γ(X, I•

n)

Here the arrow is in the derived category, but the equality on the right holds on the level
of complexes. Note that (3)(b) shows that τ≥−nF• is a bounded below complex satisfying
the hypothesis of the lemma. Thus the case of bounded below complexes shows each of
the maps

Tot(Č•
alt(U , τ≥−nF•)) −→ Γ(X, I•

n)
is a quasi-isomorphism. The cohomologies of the complexes on the left hand side in given
degree are eventually constant (as the alternating Čech complex is finite). Hence the same
is true on the right hand side. Thus the cohomology of the limit on the right hand side is
this constant value by Homology, Lemma 31.7 (or the stronger More on Algebra, Lemma
86.3) and we win. �

41. Hom complexes

Let (X,OX) be a ringed space. Let L• andM• be two complexes of OX -modules. We
construct a complex ofOX -modulesHom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomOX

(L−q,Mp)
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It is a good idea to think ofHomn as the sheaf ofOX -modules of allOX -linear maps from
L• toM• (viewed as graded OX -modules) which are homogenous of degree n. In this
terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
OX

(L•,M•). We omit the verification that d2 = 0. This construction is a
special case of Differential Graded Algebra, Example 26.6. It follows immediately from
the construction that we have
(41.0.1) Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•,M•[n])
for all n ∈ Z and every open U ⊂ X .

Lemma 41.1. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of OX -
modules there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗OX
L•),M•)

of complexes ofOX -modules functorial in K•,L•,M•.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.1. �

Lemma 41.2. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of OX -
modules there is a canonical morphism

Tot (Hom•(L•,M•)⊗OX
Hom•(K•,L•)) −→ Hom•(K•,M•)

of complexes ofOX -modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.3. �

Lemma 41.3. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of OX -
modules there is a canonical morphism

Tot (K• ⊗OX
Hom•(M•,L•)) −→ Hom•(M•,Tot(K• ⊗OX

L•))
of complexes ofOX -modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.4. �

Lemma 41.4. Let (X,OX) be a ringed space. Given complexesK•,L• ofOX -modules
there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗OX
L•))

of complexes ofOX -modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.5. �

Lemma 41.5. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of OX -
modules there is a canonical morphism

Tot(Hom•(L•,M•)⊗OX
K•) −→ Hom•(Hom•(K•,L•),M•)

of complexes ofOX -modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.6. �
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Lemma 41.6. Let (X,OX) be a ringed space. Let I• be a K-injective complex of
OX -modules. Let L• be a complex ofOX -modules. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )
for all U ⊂ X open.

Proof. We have
H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )

= HomD(OU )(L|U ,M |U )

The first equality is (41.0.1). The second equality is true because I•|U is K-injective by
Lemma 32.1. �

Lemma 41.7. Let (X,OX) be a ringed space. Let (I ′)• → I• be a quasi-isomorphism
of K-injective complexes of OX -modules. Let (L′)• → L• be a quasi-isomorphism of
complexes ofOX -modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)
is a quasi-isomorphism.

Proof. Let M be the object of D(OX) represented by I• and (I ′)•. Let L be the
object of D(OX) represented by L• and (L′)•. By Lemma 41.6 we see that the sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )
Thus the map is a quasi-isomorphism. �

Lemma 41.8. Let (X,OX) be a ringed space. Let I• be a K-injective complex ofOX -
modules. LetL• be a K-flat complex ofOX -modules. ThenHom•(L•, I•) is a K-injective
complex ofOX -modules.

Proof. Namely, if K• is an acyclic complex ofOX -modules, then

HomK(OX)(K•,Hom•(L•, I•)) = H0(Γ(X,Hom•(K•,Hom•(L•, I•))))
= H0(Γ(X,Hom•(Tot(K• ⊗OX

L•), I•)))
= HomK(OX)(Tot(K• ⊗OX

L•), I•)
= 0

The first equality by (41.0.1). The second equality by Lemma 41.1. The third equality
by (41.0.1). The final equality because Tot(K• ⊗OX

L•) is acyclic because L• is K-flat
(Definition 26.2) and because I• is K-injective. �

42. Internal hom in the derived category

Let (X,OX) be a ringed space. LetL,M be objects ofD(OX). We would like to construct
an object RHom(L,M) of D(OX) such that for every third object K of D(OX) there
exists a canonical bijection

(42.0.1) HomD(OX)(K,RHom(L,M)) = HomD(OX)(K ⊗L
OX

L,M)
Observe that this formula definesRHom(L,M) up to unique isomorphism by the Yoneda
lemma (Categories, Lemma 3.5).
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To construct such an object, choose a K-injective complex I• representing M and any
complex ofOX -modules L• representing L. Then we set

RHom(L,M) = Hom•(L•, I•)

where the right hand side is the complex of OX -modules constructed in Section 41. This
is well defined by Lemma 41.7. We get a functor

D(OX)opp ×D(OX) −→ D(OX), (K,L) 7−→ RHom(K,L)

As a prelude to proving (42.0.1) we compute the cohomology groups of RHom(K,L).

Lemma 42.1. Let (X,OX) be a ringed space. Let L,M be objects of D(OX). For
every open U we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )

and in particular H0(X,RHom(L,M)) = HomD(OX)(L,M).

Proof. Choose a K-injective complexI• ofOX -modules representingM and a K-flat
complexL• representingL. ThenHom•(L•, I•) is K-injective by Lemma 41.8. Hence we
can compute cohomology over U by simply taking sections over U and the result follows
from Lemma 41.6. �

Lemma 42.2. Let (X,OX) be a ringed space. LetK,L,M be objects ofD(OX). With
the construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
OX

L,M)

in D(OX) functorial in K,L,M which recovers (42.0.1) by taking H0(X,−).

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
OX -modules L• representing L. Let K• be any complex ofOX -modules representing K.
Then we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗OX
L•), I•)

by Lemma 41.1. Note that the left hand side represents RHom(K,RHom(L,M)) (use
Lemma 41.8) and that the right hand side represents RHom(K ⊗L

OX
L,M). This proves

the displayed formula of the lemma. Taking global sections and using Lemma 42.1 we
obtain (42.0.1). �

Lemma 42.3. Let (X,OX) be a ringed space. Let K,L be objects of D(OX). The
construction of RHom(K,L) commutes with restrictions to opens, i.e., for every open U
we have RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 32.1. �

Lemma 42.4. Let (X,OX) be a ringed space. The bifunctorRHom(−,−) transforms
distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment

(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable into a
termwise split short exact sequence. Details omitted. �
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Lemma 42.5. Let (X,OX) be a ringed space. Given K,L,M in D(OX) there is a
canonical morphism

RHom(L,M)⊗L
OX

RHom(K,L) −→ RHom(K,M)
in D(OX) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J •

representing L, and any complex of OX -modules K• representing K. By Lemma 41.2
there is a map of complexes

Tot (Hom•(J •, I•)⊗OX
Hom•(K•,J •)) −→ Hom•(K•, I•)

The complexes of OX -modules Hom•(J •, I•), Hom•(K•,J •), and Hom•(K•, I•) rep-
resent RHom(L,M), RHom(K,L), and RHom(K,M). If we choose a K-flat complex
H• and a quasi-isomorphismH• → Hom•(K•,J •), then there is a map

Tot (Hom•(J •, I•)⊗OX
H•) −→ Tot (Hom•(J •, I•)⊗OX

Hom•(K•,J •))
whose source representsRHom(L,M)⊗L

OX
RHom(K,L). Composing the two displayed

arrows gives the desired map. We omit the proof that the construction is functorial. �

Lemma 42.6. Let (X,OX) be a ringed space. Given K,L,M in D(OX) there is a
canonical morphism

K ⊗L
OX

RHom(M,L) −→ RHom(M,K ⊗L
OX

L)
in D(OX) functorial in K,L,M .

Proof. Choose a K-flat complex K• representing K , and a K-injective complex I•

representing L, and choose any complex of OX -modulesM• representing M . Choose a
quasi-isomorphism Tot(K• ⊗OX

I•) → J • where J • is K-injective. Then we use the
map

Tot (K• ⊗OX
Hom•(M•, I•))→ Hom•(M•,Tot(K• ⊗OX

I•))→ Hom•(M•,J •)
where the first map is the map from Lemma 41.3. �

Lemma 42.7. Let (X,OX) be a ringed space. GivenK,L inD(OX) there is a canon-
ical morphism

K −→ RHom(L,K ⊗L
OX

L)
in D(OX) functorial in both K and L.

Proof. Choose a K-flat complexK• representingK and any complex ofOX -modules
L• representingL. Choose a K-injective complexJ • and a quasi-isomorphism Tot(K•⊗OX

L•)→ J •. Then we use

K• → Hom•(L•,Tot(K• ⊗OX
L•))→ Hom•(L•,J •)

where the first map comes from Lemma 41.4. �

Lemma 42.8. Let (X,OX) be a ringed space. Let L be an object of D(OX). Set
L∨ = RHom(L,OX). For M in D(OX) there is a canonical map

(42.8.1) M ⊗L
OX

L∨ −→ RHom(L,M)
which induces a canonical map

H0(X,M ⊗L
OX

L∨) −→ HomD(OX)(L,M)
functorial in M in D(OX).
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Proof. The map (42.8.1) is a special case of Lemma 42.5 using the identificationM =
RHom(OX ,M). �

Lemma 42.9. Let (X,OX) be a ringed space. Let K,L,M be objects of D(OX).
There is a canonical morphism

RHom(L,M)⊗L
OX

K −→ RHom(RHom(K,L),M)

in D(OX) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J •

representing L, and a K-flat complex K• representing K. The map is defined using the
map

Tot(Hom•(J •, I•)⊗OX
K•) −→ Hom•(Hom•(K•,J •), I•)

of Lemma 41.5. By our particular choice of complexes the left hand side representsRHom(L,M)⊗L
OX

K and the right hand side representsRHom(RHom(K,L),M). We omit the proof that
this is functorial in all three objects of D(OX). �

Remark 42.10. Let (X,OX) be a ringed space. For K,K ′,M,M ′ in D(OX) there
is a canonical map

RHom(K,K ′)⊗L
OX

RHom(M,M ′) −→ RHom(K ⊗L
OX

M,K ′ ⊗L
OX

M ′)

Namely, by (42.0.1) is the same thing as a map

RHom(K,K ′)⊗L
OX

RHom(M,M ′)⊗L
OX

K ⊗L
OX

M −→ K ′ ⊗L
OX

M ′

For this we can first flip the middle two factors (with sign rules as in More on Algebra,
Section 72) and use the maps

RHom(K,K ′)⊗L
OX

K → K ′ and RHom(M,M ′)⊗L
OX

M →M ′

from Lemma 42.5 when thinking of K = RHom(OX ,K) and similarly for K ′, M , and
M ′.

Remark 42.11. Let f : X → Y be a morphism of ringed spaces. Let K,L be objects
of D(OX). We claim there is a canonical map

Rf∗RHom(L,K) −→ RHom(Rf∗L,Rf∗K)

Namely, by (42.0.1) this is the same thing as a map Rf∗RHom(L,K) ⊗L
OY

Rf∗L →
Rf∗K. For this we can use the composition

Rf∗RHom(L,K)⊗L
OY

Rf∗L→ Rf∗(RHom(L,K)⊗L
OX

L)→ Rf∗K

where the first arrow is the relative cup product (Remark 28.7) and the second arrow is
Rf∗ applied to the canonical map RHom(L,K)⊗L

OX
L→ K coming from Lemma 42.5

(withOX in one of the spots).

Remark 42.12. Let h : X → Y be a morphism of ringed spaces. Let K,L,M be
objects of D(OY ). The diagram

Rf∗RHomOX
(K,M)⊗L

OY
Rf∗M //

��

Rf∗
(
RHomOX

(K,M)⊗L
OX

M
)

��
RHomOY

(Rf∗K,Rf∗M)⊗L
OY

Rf∗M // Rf∗M
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is commutative. Here the left vertical arrow comes from Remark 42.11. The top horizontal
arrow is Remark 28.7. The other two arrows are instances of the map in Lemma 42.5 (with
one of the entries replaced withOX orOY ).

Remark 42.13. Let h : X → Y be a morphism of ringed spaces. Let K,L be objects
of D(OY ). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)
in D(OX). Namely, by (42.0.1) proved in Lemma 42.2 such a map is the same thing as a
map

Lh∗RHom(K,L)⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L) ⊗L K) by Lemma 27.3 hence it suffices to
construct a canonical map

RHom(K,L)⊗L K −→ L.

For this we take the arrow corresponding to
id : RHom(K,L) −→ RHom(K,L)

via (42.0.1).

Remark 42.14. Suppose that

X ′
h
//

f ′

��

X

f

��
S′ g // S

is a commutative diagram of ringed spaces. LetK,L be objects ofD(OX). We claim there
exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)
in D(OS′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)
→ Lh∗RHom(K,L)
→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second arrow is
the canonical map constructed in Remark 42.13.

43. Ext sheaves

Let (X,OX) be a ringed space. LetK,L ∈ D(OX). Using the construction of the internal
hom in the derived category we obtain a well defined sheaves ofOX -modules

Extn(K,L) = Hn(RHom(K,L))
by taking the nth cohomology sheaf of the object RHom(K,L) of D(OX). We will
sometimes write ExtnOX

(K,L) for this object. By Lemma 42.1 we see that this Extn-sheaf
is the sheafification of the rule

U 7−→ ExtnD(OU )(K|U , L|U )
By Example 29.3 there is always a spectral sequence

Ep,q2 = Hp(X, Extq(K,L))



1884 20. COHOMOLOGY OF SHEAVES

converging to Extp+q
D(OX)(K,L) in favorable situations (for example ifL is bounded below

and K is bounded above).

44. Global derived hom

Let (X,OX) be a ringed space. LetK,L ∈ D(OX). Using the construction of the internal
hom in the derived category we obtain a well defined object

RHomX(K,L) = RΓ(X,RHom(K,L))
in D(Γ(X,OX)). We will sometimes write RHomOX

(K,L) for this object. By Lemma
42.1 we have

H0(RHomX(K,L)) = HomD(OX)(K,L), Hp(RHomX(K,L)) = ExtpD(OX)(K,L)

If f : Y → X is a morphism of ringed spaces, then there is a canonical map

RHomX(K,L) −→ RHomY (Lf∗K,Lf∗L)
in D(Γ(X,OX)) by taking global sections of the map defined in Remark 42.13.

45. Glueing complexes

We can glue complexes! More precisely, in certain circumstances we can glue locally given
objects of the derived category to a global object. We first prove some easy cases and then
we’ll prove the very general [?, Theorem 3.2.4] in the setting of topological spaces and
open coverings.

Lemma 45.1. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of two
open subspaces of X . Suppose given

(1) an object A of D(OU ),
(2) an object B of D(OV ), and
(3) an isomorphism c : A|U∩V → B|U∩V .

Then there exists an object F of D(OX) and isomorphisms f : F |U → A, g : F |V → B
such that c = g|U∩V ◦ f−1|U∩V . Moreover, given

(1) an object E of D(OX),
(2) a morphism a : A→ E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),

such that
a|U∩V = b|U∩V ◦ c.

Then there exists a morphismF → E inD(OX) whose restriction toU is a◦f and whose
restriction to V is b ◦ g.

Proof. Denote jU , jV , jU∩V the corresponding open immersions. Choose a distin-
guished triangle

F → RjU,∗A⊕RjV,∗B → RjU∩V,∗(B|U∩V )→ F [1]
where the map RjV,∗B → RjU∩V,∗(B|U∩V ) is the obvious one and where RjU,∗A →
RjU∩V,∗(B|U∩V ) is the composition of RjU,∗A → RjU∩V,∗(A|U∩V ) with RjU∩V,∗c.
Restricting to U we obtain

F |U → A⊕ (RjV,∗B)|U → (RjU∩V,∗(B|U∩V ))|U → F |U [1]
Denote j : U∩V → U . Compatibility of restriction to opens and cohomology shows that
both (RjV,∗B)|U and (RjU∩V,∗(B|U∩V ))|U are canonically isomorphic to Rj∗(B|U∩V ).
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Hence the second arrow of the last displayed diagram has a section, and we conclude that
the morphism F |U → A is an isomorphism. Similarly, the morphism F |V → B is an
isomorphism. The existence of the morphism F → E follows from the Mayer-Vietoris
sequence for Hom, see Lemma 33.3. �

Lemma 45.2. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let B be
a basis for the topology on Y .

(1) Assume K is in D(OX) such that for V ∈ B we have Hi(f−1(V ),K) = 0
for i < 0. Then Rf∗K has vanishing cohomology sheaves in negative de-
grees, Hi(f−1(V ),K) = 0 for i < 0 for all opens V ⊂ Y , and the rule
V 7→ H0(f−1V,K) is a sheaf on Y .

(2) AssumeK,L are inD(OX) such that forV ∈ Bwe have Exti(K|f−1V , L|f−1V ) =
0 for i < 0. Then Exti(K|f−1V , L|f−1V ) = 0 for i < 0 for all opens V ⊂ Y
and the rule V 7→ Hom(K|f−1V , L|f−1V ) is a sheaf on Y .

Proof. Lemma 32.6 tells us Hi(Rf∗K) is the sheaf associated to the presheaf V 7→
Hi(f−1(V ),K) = Hi(V,Rf∗K). The assumptions in (1) imply that Rf∗K has van-
ishing cohomology sheaves in degrees < 0. We conclude that for any open V ⊂ Y the
cohomology group Hi(V,Rf∗K) is zero for i < 0 and is equal to H0(V,H0(Rf∗K)) for
i = 0. This proves (1).

To prove (2) apply (1) to the complex RHom(K,L) using Lemma 42.1 to do the transla-
tion. �

Situation 45.3. Let (X,OX) be a ringed space. We are given
(1) a collection of opens B of X ,
(2) for U ∈ B an object KU in D(OU ),
(3) for V ⊂ U with V,U ∈ B an isomorphism ρUV : KU |V → KV in D(OV ),

such that whenever we have W ⊂ V ⊂ U with U, V,W in B, then ρUW = ρVW ◦ ρUV |W .

We won’t be able to prove anything about this without making more assumptions. An
interesting case is where B is a basis for the topology on X . Another is the case where we
have a morphism f : X → Y of topological spaces and the elements of B are the inverse
images of the elements of a basis for the topology of Y .

In Situation 45.3 a solution will be a pair (K, ρU ) where K is an object of D(OX) and
ρU : K|U → KU , U ∈ B are isomorphisms such that we have ρUV ◦ ρU |V = ρV for all
V ⊂ U , U, V ∈ B. In certain cases solutions are unique.

Lemma 45.4. In Situation 45.3 assume
(1) X =

⋃
U∈B U and for U, V ∈ B we have U ∩ V =

⋃
W∈B,W⊂U∩V W ,

(2) for any U ∈ B we have Exti(KU ,KU ) = 0 for i < 0.
If a solution (K, ρU ) exists, then it is unique up to unique isomorphism and moreover
Exti(K,K) = 0 for i < 0.

Proof. Let (K, ρU ) and (K ′, ρ′
U ) be a pair of solutions. Let f : X → Y be the

continuous map constructed in Topology, Lemma 5.6. SetOY = f∗OX . Then K,K ′ and
B are as in Lemma 45.2 part (2). Hence we obtain the vanishing of negative exts forK and
we see that the rule

V 7−→ Hom(K|f−1V ,K
′|f−1V )
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is a sheaf on Y . As both (K, ρU ) and (K ′, ρ′
U ) are solutions the maps

(ρ′
U )−1 ◦ ρU : K|U −→ K ′|U

overU = f−1(f(U)) agree on overlaps. Hence we get a unique global section of the sheaf
above which defines the desired isomorphism K → K ′ compatible with all structure
available. �

Remark 45.5. With notation and assumptions as in Lemma 45.4. Suppose thatU, V ∈
B. Let B′ be the set of elements of B contained in U ∩ V . Then

({KU ′}U ′∈B′ , {ρU
′

V ′}V ′⊂U ′ with U ′,V ′∈B′)
is a system on the ringed spaceU∩V satisfying the assumptions of Lemma 45.4. Moreover,
both (KU |U∩V , ρ

U
U ′) and (KV |U∩V , ρ

V
U ′) are solutions to this system. By the lemma we

find a unique isomorphism

ρU,V : KU |U∩V −→ KV |U∩V

such that for every U ′ ⊂ U ∩ V , U ′ ∈ B the diagram

KU |U ′
ρU,V |U′

//

ρU
U′ ##

KV |U ′

ρV
U′{{

KU ′

commutes. Pick a third element W ∈ B. We obtain isomorphisms ρU,W : KU |U∩W →
KW |U∩W and ρV,W : KU |V ∩W → KW |V ∩W satisfying similar properties to those of
ρU,V . Finally, we have

ρU,W |U∩V ∩W = ρV,W |U∩V ∩W ◦ ρU,V |U∩V ∩W

This is true by the uniqueness in the lemma because both sides of the equality are the
unique isomorphism compatible with the maps ρUU ′′ and ρWU ′′ for U ′′ ⊂ U ∩ V ∩ W ,
U ′′ ∈ B. Some minor details omitted. The collection (KU , ρU,V ) is a descent datum in
the derived category for the open covering U : X =

⋃
U∈B U of X . In this language we

are looking for “effectiveness of the descent datum” when we look for the existence of a
solution.

Lemma 45.6. In Situation 45.3 assume
(1) X = U1 ∪ . . . ∪ Un with Ui ∈ B,
(2) for U, V ∈ B we have U ∩ V =

⋃
W∈B,W⊂U∩V W ,

(3) for any U ∈ B we have Exti(KU ,KU ) = 0 for i < 0.
Then a solution exists and is unique up to unique isomorphism.

Proof. Uniqueness was seen in Lemma 45.4. We may prove the lemma by induction
on n. The case n = 1 is immediate.

The case n = 2. Consider the isomorphism ρU1,U2 : KU1 |U1∩U2 → KU2 |U1∩U2 con-
structed in Remark 45.5. By Lemma 45.1 we obtain an object K in D(OX) and isomor-
phisms ρU1 : K|U1 → KU1 and ρU2 : K|U2 → KU2 compatible with ρU1,U2 . Take
U ∈ B. We will construct an isomorphism ρU : K|U → KU and we will leave it to
the reader to verify that (K, ρU ) is a solution. Consider the set B′ of elements of B con-
tained in eitherU∩U1 or contained inU∩U2. Then (KU , ρ

U
U ′) is a solution for the system

({KU ′}U ′∈B′ , {ρU ′

V ′}V ′⊂U ′ with U ′,V ′∈B′) on the ringed spaceU . We claim that (K|U , τU ′)
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is another solution where τU ′ for U ′ ∈ B′ is chosen as follows: if U ′ ⊂ U1 then we take
the composition

K|U ′
ρU1 |U′
−−−−→ KU1 |U ′

ρ
U1
U′−−→ KU ′

and if U ′ ⊂ U2 then we take the composition

K|U ′
ρU2 |U′
−−−−→ KU2 |U ′

ρ
U2
U′−−→ KU ′ .

To verify this is a solution use the property of the map ρU1,U2 described in Remark 45.5
and the compatibility of ρU1 and ρU2 with ρU1,U2 . Having said this we apply Lemma 45.4
to see that we obtain a unique isomorphism K|U ′ → KU ′ compatible with the maps τU ′

and ρUU ′ for U ′ ∈ B′.

The case n > 2. Consider the open subspace X ′ = U1 ∪ . . . ∪ Un−1 and let B′ be the set
of elements of B contained in X ′. Then we find a system ({KU}U∈B′ , {ρUV }U,V ∈B′) on
the ringed space X ′ to which we may apply our induction hypothesis. We find a solution
(KX′ , ρX

′

U ). Then we can consider the collectionB∗ = B∪{X ′} of opens ofX and we see
that we obtain a system ({KU}U∈B∗ , {ρUV }V⊂U with U,V ∈B∗). Note that this new system
also satisfies condition (3) by Lemma 45.4 applied to the solution KX′ . For this system
we have X = X ′ ∪ Un. This reduces us to the case n = 2 we worked out above. �

Lemma 45.7. Let X be a ringed space. Let E be a well ordered set and let

X =
⋃

α∈E
Wα

be an open covering with Wα ⊂ Wα+1 and Wα =
⋃
β<αWβ if α is not a successor.

Let Kα be an object of D(OWα
) with Exti(Kα,Kα) = 0 for i < 0. Assume given iso-

morphisms ραβ : Kα|Wβ
→ Kβ in D(OWβ

) for all β < α with ραγ = ρβγ ◦ ραβ |Wγ
for

γ < β < α. Then there exists an object K in D(OX) and isomorphisms K|Wα
→ Kα

for α ∈ E compatible with the isomorphisms ραβ .

Proof. In this proof α, β, γ, . . . represent elements of E. Choose a K-injective com-
plex I•

α on Wα representing Kα. For β < α denote jβ,α : Wβ → Wα the inclusion
morphism. Using transfinite recursion we will construct for all β < α a map of com-
plexes

τβ,α : (jβ,α)!I
•
β −→ I•

α

representing the adjoint to the inverse of the isomorphism ραβ : Kα|Wβ
→ Kβ . Moreover,

we will do this in such that for γ < β < α we have

τγ,α = τβ,α ◦ (jβ,α)!τγ,β

as maps of complexes. Namely, suppose already given τγ,β composing correctly for all
γ < β < α. If α = α′ + 1 is a successor, then we choose any map of complexes

(jα′,α)!I
•
α′ → I•

α

which is adjoint to the inverse of the isomorphism ραα′ : Kα|Wα′ → Kα′ (possible because
I•
α is K-injective) and for any β < α′ we set

τβ,α = τα′,α ◦ (jα′,α)!τβ,α′

If α is not a successor, then we can consider the complex on Wα given by

C• = colimβ<α(jβ,α)!I
•
β
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(termwise colimit) where the transition maps of the sequence are given by the maps τβ′,β

for β′ < β < α. We claim that C• represents Kα. Namely, for β < α the restriction of
the coprojection (jβ,α)!I

•
β → C• gives a map

σβ : I•
β −→ C•|Wβ

which is a quasi-isomorphism: if x ∈Wβ then looking at stalks we get

(C•)x = colimβ′<α

(
(jβ′,α)!I

•
β′

)
x

= colimβ≤β′<α(I•
β′)x ←− (I•

β)x
which is a quasi-isomorphism. Here we used that taking stalks commutes with colimits,
that filtered colimits are exact, and that the maps (I•

β)x → (I•
β′)x are quasi-isomorphisms

for β ≤ β′ < α. Hence (C•, σ−1
β ) is a solution to the system ({Kβ}β<α, {ρββ′}β′<β<α).

Since (Kα, ρ
α
β) is another solution we obtain a unique isomorphism σ : Kα → C• in

D(OWα) compatible with all our maps, see Lemma 45.6 (this is where we use the vanishing
of negative ext groups). Choose a morphism τ : C• → I•

α of complexes representing σ.
Then we set

τβ,α = τ |Wβ
◦ σβ

to get the desired maps. Finally, we take K to be the object of the derived category repre-
sented by the complex

K• = colimα∈E(Wα → X)!I
•
α

where the transition maps are given by our carefully constructed maps τβ,α for β < α.
Arguing exactly as above we see that for allα the restriction of the coprojection determines
an isomorphism

K|Wα
−→ Kα

compatible with the given maps ραβ . �

Using transfinite induction we can prove the result in the general case.

Theorem 45.8 (BBD gluing lemma). In Situation 45.3 assume
(1) X =

⋃
U∈B U ,

(2) for U, V ∈ B we have U ∩ V =
⋃
W∈B,W⊂U∩V W ,

(3) for any U ∈ B we have Exti(KU ,KU ) = 0 for i < 0.
Then there exists an object K of D(OX) and isomorphisms ρU : K|U → KU in D(OU )
for U ∈ B such that ρUV ◦ ρU |V = ρV for all V ⊂ U with U, V ∈ B. The pair (K, ρU ) is
unique up to unique isomorphism.

Proof. A pair (K, ρU ) is called a solution in the text above. The uniqueness follows
from Lemma 45.4. If X has a finite covering by elements of B (for example if X is quasi-
compact), then the theorem is a consequence of Lemma 45.6. In the general case we argue
in exactly the same manner, using transfinite induction and Lemma 45.7.

First we use transfinite recursion to choose opens Wα ⊂ X for any ordinal α. Namely,
we set W0 = ∅. If α = β + 1 is a successor, then either Wβ = X and we set Wα = X or
Wβ 6= X and we setWα = Wβ ∪Uα where Uα ∈ B is not contained inWβ . If α is a limit
ordinal we setWα =

⋃
β<αWβ . Then for large enoughαwe haveWα = X . Observe that

for every α the open Wα is a union of elements of B. Hence if Bα = {U ∈ B, U ⊂ Wα},
then

Sα = ({KU}U∈Bα , {ρUV }V⊂U with U,V ∈Bα)
is a system as in Lemma 45.4 on the ringed space Wα.
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We will show by transfinite induction that for every α the system Sα has a solution. This
will prove the theorem as this system is the system given in the theorem for large α.

The case where α = β + 1 is a successor ordinal. (This case was already treated in the
proof of the lemma above but for clarity we repeat the argument.) Recall that Wα =
Wβ ∪ Uα for some Uα ∈ B in this case. By induction hypothesis we have a solution
(KWβ

, {ρWβ

U }U∈Bβ ) for the system Sβ . Then we can consider the collection B∗
α = Bα ∪

{Wβ} of opens ofWα and we see that we obtain a system ({KU}U∈B∗
α
, {ρUV }V⊂U with U,V ∈B∗

α
).

Note that this new system also satisfies condition (3) by Lemma 45.4 applied to the solu-
tion KWβ

. For this system we have Wα = Wβ ∪ Uα. This reduces us to the case handled
in Lemma 45.6.

The case where α is a limit ordinal. Recall that Wα =
⋃
β<αWβ in this case. For β < α

let (KWβ
, {ρWβ

U }U∈Bβ ) be the solution for Sβ . For γ < β < α the restriction KWβ
|Wγ

endowed with the maps ρWβ

U , U ∈ Bγ is a solution for Sγ . By uniqueness we get unique
isomorphisms ρWβ

Wγ
: KWβ

|Wγ
→ KWγ

compatible with the maps ρWβ

U and ρWγ

U for U ∈
Bγ . These maps compose in the correct manner, i.e., ρWγ

Wδ
◦ ρWβ

Wγ
|Wδ

= ρWδ

Wβ
for δ < γ <

β < α. Thus we may apply Lemma 45.7 (note that the vanishing of negative exts is true
for KWβ

by Lemma 45.4 applied to the solution KWβ
) to obtain KWα and isomorphisms

ρWα

Wβ
: KWα |Wβ

−→ KWβ

compatible with the maps ρWβ

Wγ
for γ < β < α.

To show thatKWα
is a solution we still need to construct the isomorphisms ρWα

U : KWα
|U →

KU for U ∈ Bα satisfying certain compatibilities. We choose ρWα

U to be the unique map
such that for any β < α and any V ∈ Bβ with V ⊂ U the diagram

KWα |V
ρWα
U

|V
//

ρWα
Wβ

|V
��

KU |V

ρVU
��

KWβ

ρ
Wβ
V // KV

commutes. This makes sense because

({KV }V⊂U,V ∈Bβ for some β<α, {ρV
′

V }V⊂V ′ with V,V ′⊂U and V,V ′∈Bβ for some β<α)

is a system as in Lemma 45.4 on the ringed spaceU and because (KU , ρ
U
V ) and (KWα

|U , ρ
Wβ

V ◦
ρWα

Wβ
|V ) are both solutions for this system. This gives existence and uniqueness. We omit

the proof that these maps satisfy the desired compatibilities (it is just bookkeeping). �

46. Strictly perfect complexes

Strictly perfect complexes of modules are used to define the notions of pseudo-coherent
and perfect complexes later on. They are defined as follows.

Definition 46.1. Let (X,OX) be a ringed space. LetE• be a complex ofOX -modules.
We say E• is strictly perfect if E i is zero for all but finitely many i and E i is a direct sum-
mand of a finite freeOX -module for all i.

Warning: Since we do not assume that X is a locally ringed space, it may not be true that
a direct summand of a finite freeOX -module is finite locally free.
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Lemma 46.2. The cone on a morphism of strictly perfect complexes is strictly perfect.

Proof. This is immediate from the definitions. �

Lemma 46.3. The total complex associated to the tensor product of two strictly per-
fect complexes is strictly perfect.

Proof. Omitted. �

Lemma 46.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. If F•

is a strictly perfect complex of OY -modules, then f∗F• is a strictly perfect complex of
OX -modules.

Proof. The pullback of a finite free module is finite free. The functor f∗ is additive
functor hence preserves direct summands. The lemma follows. �

Lemma 46.5. Let (X,OX) be a ringed space. Given a solid diagram ofOX -modules

E

��

// F

G

p

OO

with E a direct summand of a finite freeOX -module and p surjective, then a dotted arrow
making the diagram commute exists locally on X .

Proof. We may assume E = O⊕n
X for some n. In this case finding the dotted arrow is

equivalent to lifting the images of the basis elements in Γ(X,F). This is locally possible
by the characterization of surjective maps of sheaves (Sheaves, Section 16). �

Lemma 46.6. Let (X,OX) be a ringed space.
(1) Let α : E• → F• be a morphism of complexes of OX -modules with E• strictly

perfect and F• acyclic. Then α is locally on X homotopic to zero.
(2) Let α : E• → F• be a morphism of complexes of OX -modules with E• strictly

perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then α is locally on X
homotopic to zero.

Proof. The first statement follows from the second, hence we only prove (2). We will
prove this by induction on the length of the complex E•. If E• ∼= E [−n] for some direct
summand E of a finite free OX -module and integer n ≥ a, then the result follows from
Lemma 46.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is surjective by the assumed
vanishing ofHn(F•). If E i is zero except for i ∈ [a, b], then we have a split exact sequence
of complexes

0→ Eb[−b]→ E• → σ≤b−1E• → 0
which determines a distinguished triangle in K(OX). Hence an exact sequence

HomK(OX)(σ≤b−1E•,F•)→ HomK(OX)(E•,F•)→ HomK(OX)(Eb[−b],F•)

by the axioms of triangulated categories. The composition Eb[−b]→ F• is locally homo-
topic to zero, whence we may assume our map comes from an element in the left hand side
of the displayed exact sequence above. This element is locally zero by induction hypoth-
esis. �
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Lemma 46.7. Let (X,OX) be a ringed space. Given a solid diagram of complexes of
OX -modules

E•

!!

α
// F•

G•

f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a and
surjective for j = a, then a dotted arrow making the diagram commute up to homotopy
exists locally on X .

Proof. Our assumptions on f imply the coneC(f)• has vanishing cohomology sheaves
in degrees ≥ a. Hence Lemma 46.6 guarantees there is an open covering X =

⋃
Ui such

that the composition E• → F• → C(f)• is homotopic to zero over Ui. Since

G• → F• → C(f)• → G•[1]
restricts to a distinguished triangle inK(OUi) we see that we can liftα|Ui up to homotopy
to a map αi : E•|Ui → G•|Ui as desired. �

Lemma 46.8. Let (X,OX) be a ringed space. Let E•,F• be complexes ofOX -modules
with E• strictly perfect.

(1) For any element α ∈ HomD(OX)(E•,F•) there exists an open covering X =⋃
Ui such that α|Ui is given by a morphism of complexes αi : E•|Ui → F•|Ui .

(2) Given a morphism of complexes α : E• → F• whose image in the group
HomD(OX)(E•,F•) is zero, there exists an open covering X =

⋃
Ui such that

α|Ui is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a quasi-
isomorphism f : F• → G• and a map of complexes β : E• → G• such that α = f−1β.
Thus the result follows from Lemma 46.7. We omit the proof of (2). �

Lemma 46.9. Let (X,OX) be a ringed space. Let E•,F• be complexes ofOX -modules
with E• strictly perfect. Then the internal hom RHom(E•,F•) is represented by the
complexH• with terms

Hn =
⊕

n=p+q
HomOX

(E−q,Fp)

and differential as described in Section 41.

Proof. Choose a quasi-isomorphismF• → I• into a K-injective complex. Let (H′)•

be the complex with terms

(H′)n =
∏

n=p+q
HomOX

(E−q, Ip)

which represents RHom(E•,F•) by the construction in Section 42. It suffices to show
that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an open U ⊂ X we have by inspection

H0(H•(U)) = HomK(OU )(E•|U ,K•|U )→ H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 46.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafification of
U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomology sheaves.
ThusH• is quasi-isomorphic to (H′)• which proves the lemma. �
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Lemma 46.10. In the situation of Lemma 46.9 if F• is K-flat, thenH• is K-flat.

Proof. Observe thatH• is simply the hom complexHom•(E•,F•) since the bound-
edness of the strictly prefect complex E• insures that the products in the definition of the
hom complex turn into direct sums. Let K• be an acyclic complex of OX -modules. Con-
sider the map

γ : Tot(K• ⊗Hom•(E•,F•)) −→ Hom•(E•,Tot(K• ⊗F•))
of Lemma 41.3. Since F• is K-flat, the complex Tot(K• ⊗ F•) is acyclic, and hence by
Lemma 46.8 (or Lemma 46.9 if you like) the target of γ is acyclic too. Hence to prove
the lemma it suffices to show that γ is an isomorphism of complexes. To see this, we may
argue by induction on the length of the complex E•. If the length is ≤ 1 then the E• is a
direct summand of O⊕n

X [k] for some n ≥ 0 and k ∈ Z and in this case the result follows
by inspection. If the length is > 1, then we reduce to smaller length by considering the
termwise split short exact sequence of complexes

0→ σ≥a+1E• → E• → σ≤aE• → 0
for a suitable a ∈ Z, see Homology, Section 15. Then γ fits into a morphism of termwise
split short exact sequences of complexes. By induction γ is an isomorphism for σ≥a+1E•

and σ≤aE• and hence the result for E• follows. Some details omitted. �

Lemma 46.11. Let (X,OX) be a ringed space. Let E•, F• be complexes of OX -
modules with

(1) Fn = 0 for n� 0,
(2) En = 0 for n� 0, and
(3) En isomorphic to a direct summand of a finite freeOX -module.

Then the internal hom RHom(E•,F•) is represented by the complexH• with terms

Hn =
⊕

n=p+q
HomOX

(E−q,Fp)

and differential as described in Section 42.

Proof. Choose a quasi-isomorphism F• → I• where I• is a bounded below com-
plex of injectives. Note that I• is K-injective (Derived Categories, Lemma 31.4). Hence
the construction in Section 42 shows that RHom(E•,F•) is represented by the complex
(H′)• with terms

(H′)n =
∏

n=p+q
HomOX

(E−q, Ip) =
⊕

n=p+q
HomOX

(E−q, Ip)

(equality because there are only finitely many nonzero terms). Note that H• is the total
complex associated to the double complex with terms HomOX

(E−q,Fp) and similarly
for (H′)•. The natural map (H′)• → H• comes from a map of double complexes. Thus
to show this map is a quasi-isomorphism, we may use the spectral sequence of a double
complex (Homology, Lemma 25.3)

′Ep,q1 = Hp(HomOX
(E−q,F•))

converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma it
suffices to show that F• → I• induces an isomorphism

Hp(HomOX
(E ,F•)) −→ Hp(HomOX

(E , I•))
on cohomology sheaves whenever E is a direct summand of a finite freeOX -module. Since
this is clear when E is finite free the result follows. �
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47. Pseudo-coherent modules

In this section we discuss pseudo-coherent complexes.

Definition 47.1. Let (X,OX) be a ringed space. LetE• be a complex ofOX -modules.
Let m ∈ Z.

(1) We say E• ism-pseudo-coherent if there exists an open coveringX =
⋃
Ui and

for each i a morphism of complexes αi : E•
i → E•|Ui where Ei is strictly perfect

on Ui and Hj(αi) is an isomorphism for j > m and Hm(αi) is surjective.
(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E of D(OX) is m-pseudo-coherent (resp. pseudo-coherent) if

and only if it can be represented by am-pseudo-coherent (resp. pseudo-coherent)
complex ofOX -modules.

If X is quasi-compact, then an m-pseudo-coherent object of D(OX) is in D−(OX). But
this need not be the case if X is not quasi-compact.

Lemma 47.2. Let (X,OX) be a ringed space. Let E be an object of D(OX).
(1) If there exists an open covering X =

⋃
Ui, strictly perfect complexes E•

i on Ui,
and maps αi : E•

i → E|Ui in D(OUi) with Hj(αi) an isomorphism for j > m
and Hm(αi) surjective, then E is m-pseudo-coherent.

(2) IfE ism-pseudo-coherent, then any complex representingE ism-pseudo-coherent.

Proof. LetF• be any complex representingE and letX =
⋃
Ui andαi : E•

i → E|Ui
be as in (1). We will show thatF• ism-pseudo-coherent as a complex, which will prove (1)
and (2) simultaneously. By Lemma 46.8 we can after refining the open coveringX =

⋃
Ui

represent the maps αi by maps of complexes αi : E•
i → F•|Ui . By assumptionHj(αi) are

isomorphisms for j > m, andHm(αi) is surjective whenceF• ism-pseudo-coherent. �

Lemma 47.3. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let E be
an object of D(OY ). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-coherent.

Proof. Represent E by a complex E• of OY -modules and choose an open covering
Y =

⋃
Vi and αi : E•

i → E•|Vi as in Definition 47.1. Set Ui = f−1(Vi). By Lemma 47.2
it suffices to show that Lf∗E•|Ui is m-pseudo-coherent. Choose a distinguished triangle

E•
i → E•|Vi → C → E•

i [1]
The assumption on αi means exactly that the cohomology sheaves Hj(C) are zero for all
j ≥ m. Denote fi : Ui → Vi the restriction of f . Note that Lf∗E•|Ui = Lf∗

i (E|Vi).
Applying Lf∗

i we obtain the distinguished triangle

Lf∗
i E•

i → Lf∗
i E|Vi → Lf∗

i C → Lf∗
i E•

i [1]
By the construction ofLf∗

i as a left derived functor we see thatHj(Lf∗
i C) = 0 for j ≥ m

(by the dual of Derived Categories, Lemma 16.1). Hence Hj(Lf∗
i αi) is an isomorphism

for j > m and Hm(Lf∗αi) is surjective. On the other hand, Lf∗
i E•

i = f∗
i E•

i . is strictly
perfect by Lemma 46.4. Thus we conclude. �

Lemma 47.4. Let (X,OX) be a ringed space and m ∈ Z. Let (K,L,M, f, g, h) be a
distinguished triangle in D(OX).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is m-
pseudo-coherent.

(2) If K and M are m-pseudo-coherent, then L is m-pseudo-coherent.
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(3) IfL is (m+1)-pseudo-coherent andM ism-pseudo-coherent, thenK is (m+1)-
pseudo-coherent.

Proof. Proof of (1). Choose an open coveringX =
⋃
Ui and maps αi : K•

i → K|Ui
inD(OUi) withK•

i strictly perfect andHj(αi) isomorphisms for j > m+1 and surjective
for j = m+ 1. We may replace K•

i by σ≥m+1K•
i and hence we may assume that Kji = 0

for j < m + 1. After refining the open covering we may choose maps βi : L•
i → L|Ui

in D(OUi) with L•
i strictly perfect such that Hj(β) is an isomorphism for j > m and

surjective for j = m. By Lemma 46.7 we can, after refining the covering, find maps of
complexes γi : K• → L• such that the diagrams

K|Ui // L|Ui

K•
i

αi

OO

γi // L•
i

βi

OO

are commutative inD(OUi) (this requires representing the maps αi, βi andK|Ui → L|Ui
by actual maps of complexes; some details omitted). The cone C(γi)• is strictly perfect
(Lemma 46.2). The commutativity of the diagram implies that there exists a morphism of
distinguished triangles

(K•
i ,L•

i , C(γi)•) −→ (K|Ui , L|Ui ,M |Ui).

It follows from the induced map on long exact cohomology sequences and Homology,
Lemmas 5.19 and 5.20 that C(γi)• → M |Ui induces an isomorphism on cohomology in
degrees > m and a surjection in degree m. Hence M is m-pseudo-coherent by Lemma
47.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. �

Lemma 47.5. Let (X,OX) be a ringed space. Let K,L be objects of D(OX).
(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-

coherent and Hj(L) = 0 for j > b, then K ⊗L
OX

L is t-pseudo-coherent with
t = max(m+ a, n+ b).

(2) If K and L are pseudo-coherent, then K ⊗L
OX

L is pseudo-coherent.

Proof. Proof of (1). By replacing X by the members of an open covering we may
assume there exist strictly perfect complexes K• and L• and maps α : K• → K and
β : L• → L with Hi(α) and isomorphism for i > n and surjective for i = n and with
Hi(β) and isomorphism for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗OX
L•)→ K ⊗L

OX
L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection for
i = t. This follows from the spectral sequence of tors (details omitted).

Proof of (2). We may first replaceX by the members of an open covering to reduce to the
case thatK and L are bounded above. Then the statement follows immediately from case
(1). �

Lemma 47.6. Let (X,OX) be a ringed space. Let m ∈ Z. If K ⊕ L is m-pseudo-
coherent (resp. pseudo-coherent) in D(OX) so are K and L.
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Proof. Assume thatK⊕L ism-pseudo-coherent. After replacingX by the members
of an open covering we may assume K ⊕ L ∈ D−(OX), hence L ∈ D−(OX). Note that
there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L, L⊕ L[1])

see Derived Categories, Lemma 4.10. By Lemma 47.4 we see that L ⊕ L[1] is m-pseudo-
coherent. Hence also L[1]⊕ L[2] is m-pseudo-coherent. By induction L[n]⊕ L[n+ 1] is
m-pseudo-coherent. Since L is bounded above we see that L[n] is m-pseudo-coherent for
large n. Hence working backwards, using the distinguished triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])

we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. �

Lemma 47.7. Let (X,OX) be a ringed space. Let m ∈ Z. Let F• be a (locally)
bounded above complex of OX -modules such that F i is (m − i)-pseudo-coherent for all
i. Then F• is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 47.4 and truncations as in the proof of More on
Algebra, Lemma 64.9. �

Lemma 47.8. Let (X,OX) be a ringed space. Let m ∈ Z. Let E be an object of
D(OX). If E is (locally) bounded above and Hi(E) is (m− i)-pseudo-coherent for all i,
then E is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 47.4 and truncations as in the proof of More on
Algebra, Lemma 64.10. �

Lemma 47.9. Let (X,OX) be a ringed space. Let K be an object of D(OX). Let
m ∈ Z.

(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a finite
typeOX -module.

(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m+ 1, then Hm+1(K) is a
finitely presentedOX -module.

Proof. Proof of (1). We may work locally on X . Hence we may assume there exists
a strictly perfect complex E• and a map α : E• → K which induces an isomorphism on
cohomology in degrees > m and a surjection in degree m. It suffices to prove the result
for E•. Let n be the largest integer such that En 6= 0. If n = m, thenHm(E•) is a quotient
of En and the result is clear. If n > m, then En−1 → En is surjective as Hn(E•) = 0.
By Lemma 46.5 we can locally find a section of this surjection and write En−1 = E ′⊕En.
Hence it suffices to prove the result for the complex (E ′)• which is the same as E• except
has E ′ in degree n− 1 and 0 in degree n. We win by induction on n.

Proof of (2). We may work locally on X . Hence we may assume there exists a strictly
perfect complex E• and a mapα : E• → K which induces an isomorphism on cohomology
in degrees> m and a surjection in degreem. As in the proof of (1) we can reduce to the case
that E i = 0 for i > m + 1. Then we see that Hm+1(K) ∼= Hm+1(E•) = Coker(Em →
Em+1) which is of finite presentation. �

Lemma 47.10. Let (X,OX) be a ringed space. Let F be a sheaf ofOX -modules.
(1) F viewed as an object ofD(OX) is 0-pseudo-coherent if and only if F is a finite

typeOX -module, and
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(2) F viewed as an object of D(OX) is (−1)-pseudo-coherent if and only if F is an
OX -module of finite presentation.

Proof. Use Lemma 47.9 to prove the implications in one direction and Lemma 47.8
for the other. �

48. Tor dimension

In this section we take a closer look at resolutions by flat modules.

Definition 48.1. Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a, b ∈ Z with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E ⊗L
OX
F) = 0 for all OX -modules

F and all i 6∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some a, b.
(3) We say E locally has finite tor dimension if there exists an open covering X =⋃

Ui such that E|Ui has finite tor dimension for all i.
An OX -module F has tor dimension ≤ d if F [0] viewed as an object of D(OX) has tor-
amplitude in [−d, 0].
Note that ifE as in the definition has finite tor dimension, thenE is an object ofDb(OX)
as can be seen by taking F = OX in the definition above.

Lemma 48.2. Let (X,OX) be a ringed space. Let E• be a bounded above complex of
flatOX -modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a flatOX -module.

Proof. As E• is a bounded above complex of flat modules we see that E• ⊗OX
F =

E• ⊗L
OX
F for anyOX -module F . Hence for everyOX -module F the sequence

Ea−2 ⊗OX
F → Ea−1 ⊗OX

F → Ea ⊗OX
F

is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1)→ 0 is a flat resolution
this implies that TorOX

1 (Coker(da−1),F) = 0 for all OX -modules F . This means that
Coker(da−1) is flat, see Lemma 26.16. �

Lemma 48.3. Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) E is represented by a complex E• of flatOX -modules with E i = 0 for i 6∈ [a, b].

Proof. If (2) holds, then we may computeE⊗L
OX
F = E•⊗OX

F and it is clear that
(1) holds.
Assume that (1) holds. We may represent E by a bounded above complex of flat OX -
modules K•, see Section 26. Let n be the largest integer such that Kn 6= 0. If n > b, then
Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see that Ker(Kn−1 → Kn) is
flat (Modules, Lemma 17.8). Hence we may replace K• by τ≤n−1K•. Thus, by induction
on n, we reduce to the case that K• is a complex of flat OX -modules with Ki = 0 for
i > b.
Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 48.2 and the definitions. �

Lemma 48.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let E
be an object of D(OY ). If E has tor amplitude in [a, b], then Lf∗E has tor amplitude in
[a, b].
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Proof. Assume E has tor amplitude in [a, b]. By Lemma 48.3 we can represent E by
a complex of E• of flat O-modules with E i = 0 for i 6∈ [a, b]. Then Lf∗E is represented
by f∗E•. By Modules, Lemma 20.2 the modules f∗E i are flat. Thus by Lemma 48.3 we
conclude that Lf∗E has tor amplitude in [a, b]. �

Lemma 48.5. Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) for every x ∈ X the object Ex of D(OX,x) has tor-amplitude in [a, b].

Proof. Taking stalks at x is the same thing as pulling back by the morphism of ringed
spaces (x,OX,x)→ (X,OX). Hence the implication (1)⇒ (2) follows from Lemma 48.4.
For the converse, note that taking stalks commutes with tensor products (Modules, Lemma
16.1). Hence

(E ⊗L
OX
F)x = Ex ⊗L

OX,x
Fx

On the other hand, taking stalks is exact, so

Hi(E ⊗L
OX
F)x = Hi((E ⊗L

OX
F)x) = Hi(Ex ⊗L

OX,x
Fx)

and we can check whether Hi(E ⊗L
OX
F) is zero by checking whether all of its stalks are

zero (Modules, Lemma 3.1). Thus (2) implies (1). �

Lemma 48.6. Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a distinguished
triangle in D(OX). Let a, b ∈ Z.

(1) IfK has tor-amplitude in [a+ 1, b+ 1] and L has tor-amplitude in [a, b] thenM
has tor-amplitude in [a, b].

(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a + 1, b + 1] and M has tor-amplitude in [a, b], then

K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that −⊗L

OX
F preserves distinguished

triangles. The easiest one to prove is (2) and the others follow from it by translation. �

Lemma 48.7. Let (X,OX) be a ringed space. LetK,L be objects ofD(OX). IfK has
tor-amplitude in [a, b] and L has tor-amplitude in [c, d] then K ⊗L

OX
L has tor amplitude

in [a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. �

Lemma 48.8. Let (X,OX) be a ringed space. Let a, b ∈ Z. For K , L objects of
D(OX) if K ⊕ L has tor amplitude in [a, b] so do K and L.

Proof. Clear from the fact that the Tor functors are additive. �

49. Perfect complexes

In this section we discuss properties of perfect complexes on ringed spaces.

Definition 49.1. Let (X,OX) be a ringed space. LetE• be a complex ofOX -modules.
We say E• is perfect if there exists an open covering X =

⋃
Ui such that for each i there

exists a morphism of complexes E•
i → E•|Ui which is a quasi-isomorphism with E•

i a
strictly perfect complex of OUi -modules. An object E of D(OX) is perfect if it can be
represented by a perfect complex ofOX -modules.
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Lemma 49.2. Let (X,OX) be a ringed space. Let E be an object of D(OX).
(1) If there exists an open covering X =

⋃
Ui and strictly perfect complexes E•

i on
Ui such that E•

i represents E|Ui in D(OUi), then E is perfect.
(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 47.2. �

Lemma 49.3. Let (X,OX) be a ringed space. Let E be an object of D(OX). Assume
that all stalksOX,x are local rings. Then the following are equivalent

(1) E is perfect,
(2) there exists an open covering X =

⋃
Ui such that E|Ui can be represented by a

finite complex of finite locally freeOUi -modules, and
(3) there exists an open covering X =

⋃
Ui such that E|Ui can be represented by a

finite complex of finite freeOUi -modules.

Proof. This follows from Lemma 49.2 and the fact that onX every direct summand
of a finite free module is finite locally free. See Modules, Lemma 14.6. �

Lemma 49.4. Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a ≤ b be integers. If E has tor amplitude in [a, b] and is (a− 1)-pseudo-coherent, then E
is perfect.

Proof. After replacingX by the members of an open covering we may assume there
exists a strictly perfect complex E• and a map α : E• → E such that Hi(α) is an iso-
morphism for i ≥ a. We may and do replace E• by σ≥a−1E•. Choose a distinguished
triangle

E• → E → C → E•[1]
From the vanishing of cohomology sheaves of E and E• and the assumption on α we
obtain C ∼= K[a − 2] with K = Ker(Ea−1 → Ea). Let F be an OX -module. Applying
−⊗L

OX
F the assumption thatE has tor amplitude in [a, b] impliesK⊗OX

F → Ea−1⊗OX

F has image Ker(Ea−1 ⊗OX
F → Ea ⊗OX

F). It follows that TorOX
1 (E ′,F) = 0 where

E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma 26.16). Thus E ′ is locally a direct
summand of a finite free module by Modules, Lemma 18.3. Thus locally the complex

E ′ → Ea−1 → . . .→ Eb

is quasi-isomorphic to E and E is perfect. �

Lemma 49.5. Let (X,OX) be a ringed space. Let E be an object of D(OX). The
following are equivalent

(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). By definition this means there exists an open coveringX =
⋃
Ui

such thatE|Ui is represented by a strictly perfect complex. ThusE is pseudo-coherent (i.e.,
m-pseudo-coherent for allm) by Lemma 47.2. Moreover, a direct summand of a finite free
module is flat, hence E|Ui has finite Tor dimension by Lemma 48.3. Thus (2) holds.
Assume (2). After replacing X by the members of an open covering we may assume there
exist integers a ≤ b such thatE has tor amplitude in [a, b]. SinceE ism-pseudo-coherent
for all m we conclude using Lemma 49.4. �

Lemma 49.6. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let E be
an object of D(OY ). If E is perfect in D(OY ), then Lf∗E is perfect in D(OX).
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Proof. This follows from Lemma 49.5, 48.4, and 47.3. (An alternative proof is to
copy the proof of Lemma 47.3.) �

Lemma 49.7. Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a distinguished
triangle inD(OX). If two out of three ofK,L,M are perfect then the third is also perfect.

Proof. First proof: Combine Lemmas 49.5, 47.4, and 48.6. Second proof (sketch):
Say K and L are perfect. After replacing X by the members of an open covering we
may assume that K and L are represented by strictly perfect complexesK• and L•. After
replacingX by the members of an open covering we may assume the mapK → L is given
by a map of complexes α : K• → L•, see Lemma 46.8. Then M is isomorphic to the cone
of α which is strictly perfect by Lemma 46.2. �

Lemma 49.8. Let (X,OX) be a ringed space. If K,L are perfect objects of D(OX),
then so is K ⊗L

OX
L.

Proof. Follows from Lemmas 49.5, 47.5, and 48.7. �

Lemma 49.9. Let (X,OX) be a ringed space. If K ⊕L is a perfect object of D(OX),
then so are K and L.

Proof. Follows from Lemmas 49.5, 47.6, and 48.8. �

Lemma 49.10. Let (X,OX) be a ringed space. Let j : U → X be an open subspace.
Let E be a perfect object of D(OU ) whose cohomology sheaves are supported on a closed
subset T ⊂ U with j(T ) closed in X . Then Rj∗E is a perfect object of D(OX).

Proof. Being a perfect complex is local on X . Thus it suffices to check that Rj∗E is
perfect when restricted to U and V = X \ j(T ). We have Rj∗E|U = E which is perfect.
We have Rj∗E|V = 0 because E|U\T = 0. �

Lemma 49.11. Let (X,OX) be a ringed space. Let E in D(OX) be perfect. Assume
that all stalksOX,x are local rings. Then the set

U = {x ∈ X | Hi(E)x is a finite freeOX,x-module for all i ∈ Z}

is open in X and is the maximal open set U ⊂ X such that Hi(E)|U is finite locally free
for all i ∈ Z.

Proof. Note that if V ⊂ X is some open such that Hi(E)|V is finite locally free
for all i ∈ Z then V ⊂ U . Let x ∈ U . We will show that an open neighbourhood of
x is contained in U and that Hi(E) is finite locally free on this neighbourhood for all
i. This will finish the proof. During the proof we may (finitely many times) replace X
by an open neighbourhood of x. Hence we may assume E is represented by a strictly
perfect complex E•. Say E i = 0 for i 6∈ [a, b]. We will prove the result by induction on
b − a. The module Hb(E) = Coker(db−1 : Eb−1 → Eb) is of finite presentation. Since
Hb(E)x is finite free, we conclude Hb(E) is finite free in an open neighbourhood of x by
Modules, Lemma 11.6. Thus after replacingX by a (possibly smaller) open neighbourhood
we may assume we have a direct sum decomposition Eb = Im(db−1)⊕Hb(E) andHb(E)
is finite free, see Lemma 46.5. Doing the same argument again, we see that we may assume
Eb−1 = Ker(db−1) ⊕ Im(db−1). The complex Ea → . . . → Eb−2 → Ker(db−1) is a
strictly perfect complex representing a perfect objectE′ withHi(E) = Hi(E′) for i 6= b.
Hence we conclude by our induction hypothesis. �
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50. Duals

In this section we characterize the dualizable objects of the category of complexes and of
the derived category. In particular, we will see that an object of D(OX) has a dual if and
only if it is perfect (this follows from Example 50.7 and Lemma 50.8).

Lemma 50.1. Let (X,OX) be a ringed space. The category of complexes of OX -
modules with tensor product defined by F• ⊗ G• = Tot(F• ⊗OX

G•) is a symmetric
monoidal category (for sign rules, see More on Algebra, Section 72).

Proof. Omitted. Hints: as unit 1 we take the complex having OX in degree 0 and
zero in other degrees with obvious isomorphisms Tot(1⊗OX

G•) = G• and Tot(F•⊗OX

1) = F•. to prove the lemma you have to check the commutativity of various diagrams,
see Categories, Definitions 43.1 and 43.9. The verifications are straightforward in each
case. �

Example 50.2. Let (X,OX) be a ringed space. Let F• be a locally bounded complex
ofOX -modules such that eachFn is locally a direct summand of a finite freeOX -module.
In other words, there is an open covering X =

⋃
Ui such that F•|Ui is a strictly perfect

complex. Consider the complex

G• = Hom•(F•,OX)
as in Section 41. Let

η : OX → Tot(F• ⊗OX
G•) and ε : Tot(G• ⊗OX

F•)→ OX
be η =

∑
ηn and ε =

∑
εn where ηn : OX → Fn ⊗OX

G−n and εn : G−n ⊗OX

Fn → OX are as in Modules, Example 18.1. Then G•, η, ε is a left dual for F• as in
Categories, Definition 43.5. We omit the verification that (1 ⊗ ε) ◦ (η ⊗ 1) = idF• and
(ε⊗ 1) ◦ (1⊗ η) = idG• . Please compare with More on Algebra, Lemma 72.2.

Lemma 50.3. Let (X,OX) be a ringed space. Let F• be a complex of OX -modules.
If F• has a left dual in the monoidal category of complexes of OX -modules (Categories,
Definition 43.5) then F• is a locally bounded complex whose terms are locally direct
summands of finite freeOX -modules and the left dual is as constructed in Example 50.2.

Proof. By uniqueness of left duals (Categories, Remark 43.7) we get the final state-
ment provided we show that F• is as stated. Let G•, η, ε be a left dual. Write η =

∑
ηn

and ε =
∑
εn where ηn : OX → Fn ⊗OX

G−n and εn : G−n ⊗OX
Fn → OX . Since

(1⊗ ε)◦ (η⊗1) = idF• and (ε⊗1)◦ (1⊗η) = idG• by Categories, Definition 43.5 we see
immediately that we have (1⊗ εn) ◦ (ηn ⊗ 1) = idFn and (εn ⊗ 1) ◦ (1⊗ ηn) = idG−n .
Hence we see that Fn is locally a direct summand of a finite freeOX -module by Modules,
Lemma 18.2. Since the sum η =

∑
ηn is locally finite, we conclude that F• is locally

bounded. �

Lemma 50.4. Let (X,OX) be a ringed space. LetK,L,M ∈ D(OX). IfK is perfect,
then the map

RHom(L,M)⊗L
OX

K −→ RHom(RHom(K,L),M)
of Lemma 42.9 is an isomorphism.

Proof. Since the map is globally defined and since formation of the right and left
hand side commute with localization (see Lemma 42.3), to prove this we may work locally
on X . Thus we may assume K is represented by a strictly perfect complex E•.
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If K1 → K2 → K3 is a distinguished triangle in D(OX), then we get distinguished
triangles

RHom(L,M)⊗L
OX

K1 → RHom(L,M)⊗L
OX

K2 → RHom(L,M)⊗L
OX

K3

and

RHom(RHom(K1, L),M)→ RHom(RHom(K2, L),M)RHom(RHom(K3, L),M)

See Section 26 and Lemma 42.4. The arrow of Lemma 42.9 is functorial inK hence we get
a morphism between these distinguished triangles. Thus, if the result holds for K1 and
K3, then the result holds for K2 by Derived Categories, Lemma 4.3.

Combining the remarks above with the distinguished triangles

σ≥nE• → E• → σ≤n−1E•

of stupid trunctions, we reduce to the case whereK consists of a direct summand of a finite
freeOX -module placed in some degree. By an obvious compatibility of the problem with
direct sums (similar to what was said above) and shifts this reduces us to the case where
K = O⊕n

X for some integer n. This case is clear. �

Lemma 50.5. Let (X,OX) be a ringed space. Let K be a perfect object of D(OX).
ThenK∨ = RHom(K,OX) is a perfect object too and (K∨)∨ ∼= K. There are functorial
isomorphisms

M ⊗L
OX

K∨ = RHom(K,M)
and

H0(X,M ⊗L
OX

K∨) = HomD(OX)(K,M)
for M in D(OX).

Proof. By Lemma 42.9 there is a canonical map

K = RHom(OX ,OX)⊗L
OX

K −→ RHom(RHom(K,OX),OX) = (K∨)∨

which is an isomorphism by Lemma 50.4. To check the other statements we will use with-
out further mention that formation of internal hom commutes with restriction to opens
(Lemma 42.3). We may check K∨ is perfect locally on X . By Lemma 42.8 to see the final
statement it suffices to check that the map (42.8.1)

M ⊗L
OX

K∨ −→ RHom(K,M)

is an isomorphism. This is local on X as well. Hence it suffices to prove these two state-
ments K is represented by a strictly perfect complex.

AssumeK is represented by the strictly perfect complex E•. Then it follows from Lemma
46.9 thatK∨ is represented by the complex whose terms are (E−n)∨ = HomOX

(E−n,OX)
in degree n. Since E−n is a direct summand of a finite free OX -module, so is (E−n)∨.
Hence K∨ is represented by a strictly perfect complex too and we see that K∨ is perfect.
To see that (42.8.1) is an isomorphism, representM by a complexF•. By Lemma 46.9 the
complex RHom(K,M) is represented by the complex with terms⊕

n=p+q
HomOX

(E−q,Fp)

On the other hand, the object M ⊗L
OX

K∨ is represented by the complex with terms⊕
n=p+q

Fp ⊗OX
(E−q)∨



1902 20. COHOMOLOGY OF SHEAVES

Thus the assertion that (42.8.1) is an isomorphism reduces to the assertion that the canon-
ical map

F ⊗OX
HomOX

(E ,OX) −→ HomOX
(E ,F)

is an isomorphism when E is a direct summand of a finite free OX -module and F is any
OX -module. This follows immediately from the corresponding statement when E is finite
free. �

Lemma 50.6. Let (X,OX) be a ringed space. The derived categoryD(OX) is a sym-
metric monoidal category with tensor product given by derived tensor product with usual
associativity and commutativity constraints (for sign rules, see More on Algebra, Section
72).

Proof. Omitted. Compare with Lemma 50.1. �

Example 50.7. Let (X,OX) be a ringed space. Let K be a perfect object of D(OX).
Set K∨ = RHom(K,OX) as in Lemma 50.5. Then the map

K ⊗L
OX

K∨ −→ RHom(K,K)

is an isomorphism (by the lemma). Denote

η : OX −→ K ⊗L
OX

K∨

the map sending 1 to the section corresponding to idK under the isomorphism above.
Denote

ε : K∨ ⊗L
OX

K −→ OX
the evaluation map (to construct it you can use Lemma 42.5 for example). Then K∨, η, ε
is a left dual for K as in Categories, Definition 43.5. We omit the verification that (1 ⊗
ε) ◦ (η ⊗ 1) = idK and (ε⊗ 1) ◦ (1⊗ η) = idK∨ .

Lemma 50.8. Let (X,OX) be a ringed space. Let M be an object of D(OX). If M
has a left dual in the monoidal category D(OX) (Categories, Definition 43.5) then M is
perfect and the left dual is as constructed in Example 50.7.

Proof. Let x ∈ X . It suffices to find an open neighbourhood U of x such that M
restricts to a perfect complex over U . Hence during the proof we can (finitely often)
replace X by an open neighbourhood of x. Let N, η, ε be a left dual.

We are going to use the following argument several times. Choose any complexM• of
OX -modules representing M . Choose a K-flat complex N • representing N whose terms
are flatOX -modules, see Lemma 26.12. Consider the map

η : OX → Tot(M• ⊗OX
N •)

After shrinking X we can find an integer N and for i = 1, . . . , N integers ni ∈ Z and
sections fi and gi ofMni andN−ni such that

η(1) =
∑

i
fi ⊗ gi

Let K• ⊂ M• be any subcomplex of OX -modules containing the sections fi for i =
1, . . . , N . Since Tot(K• ⊗OX

N •) ⊂ Tot(M• ⊗OX
N •) by flatness of the modulesNn,

we see that η factors through

η̃ : OX → Tot(K• ⊗OX
N •)
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Denoting K the object of D(OX) represented by K• we find a commutative diagram

M
η⊗1

//

η̃⊗1 ))

M ⊗L N ⊗L M
1⊗ε
// M

K ⊗L N ⊗L M

OO

1⊗ε // K

OO

Since the composition of the upper row is the identity on M we conclude that M is a
direct summand of K in D(OX).

As a first use of the argument above, we can choose the subcomplex K• = σ≥aτ≤bM•

with a < ni < b for i = 1, . . . , N . Thus M is a direct summand in D(OX) of a bounded
complex and we conclude we may assumeM is inDb(OX). (Recall that the process above
involves shrinking X .)

SinceM is inDb(OX) we may chooseM• to be a bounded above complex of flat modules
(by Modules, Lemma 17.6 and Derived Categories, Lemma 15.4). Then we can choose
K• = σ≥aM• with a < ni for i = 1, . . . , N in the argument above. Thus we find that
we may assume M is a direct summand in D(OX) of a bounded complex of flat modules.
In particular, M has finite tor amplitude.

Say M has tor amplitude in [a, b]. Assuming M is m-pseudo-coherent we are going to
show that (after shrinking X) we may assume M is (m − 1)-pseudo-coherent. This will
finish the proof by Lemma 49.4 and the fact that M is (b + 1)-pseudo-coherent in any
case. After shrinking X we may assume there exists a strictly perfect complex E• and a
map α : E• →M inD(OX) such thatHi(α) is an isomorphism for i > m and surjective
for i = m. We may and do assume that E i = 0 for i < m. Choose a distinguished triangle

E• →M → L→ E•[1]

Observe that Hi(L) = 0 for i ≥ m. Thus we may represent L by a complex L• with
Li = 0 for i ≥ m. The map L → E•[1] is given by a map of complexes L• → E•[1]
which is zero in all degrees except in degree m− 1 where we obtain a map Lm−1 → Em,
see Derived Categories, Lemma 27.3. Then M is represented by the complex

M• : . . .→ Lm−2 → Lm−1 → Em → Em+1 → . . .

Apply the discussion in the second paragraph to this complex to get sections fi ofMni for
i = 1, . . . , N . For n < m let Kn ⊂ Ln be the OX -submodule generated by the sections
fi for ni = n and d(fi) for ni = n − 1. For n ≥ m set Kn = En. Clearly, we have a
morphism of distinguished triangles

E• //M• // L• // E•[1]

E• //

OO

K• //

OO

σ≤m−1K• //

OO

E•[1]

OO

where all the morphisms are as indicated above. Denote K the object of D(OX) corre-
sponding to the complex K•. By the arguments in the second paragraph of the proof we
obtain a morphism s : M → K in D(OX) such that the composition M → K → M is
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the identity on M . We don’t know that the diagram

E• // K• K

E•

id

OO

i //M• M

s

OO

commutes, but we do know it commutes after composing with the map K → M . By
Lemma 46.8 after shrinking X we may assume that s ◦ i is given by a map of complexes
σ : E• → K•. By the same lemma we may assume the composition of σ with the inclusion
K• ⊂ M• is homotopic to zero by some homotopy {hi : E i → Mi−1}. Thus, after
replacing Km−1 by Km−1 + Im(hm) (note that after doing this it is still the case that
Km−1 is generated by finitely many global sections), we see that σ itself is homotopic to
zero! This means that we have a commutative solid diagram

E• // M // L• // E•[1]

E• //

OO

K //

OO

σ≤m−1K• //

OO

E•[1]

OO

E• //

OO

M //

s

OO

L• //

OO

E•[1]

OO

By the axioms of triangulated categories we obtain a dotted arrow fitting into the diagram.
Looking at cohomology sheaves in degree m− 1 we see that we obtain

Hm−1(M) // Hm−1(L•) // Hm(E•)

Hm−1(K) //

OO

Hm−1(σ≤m−1K•) //

OO

Hm(E•)

OO

Hm−1(M) //

OO

Hm−1(L•) //

OO

Hm(E•)

OO

Since the vertical compositions are the identity in both the left and right column, we con-
clude the vertical composition Hm−1(L•) → Hm−1(σ≤m−1K•) → Hm−1(L•) in the
middle is surjective! In particular Hm−1(σ≤m−1K•) → Hm−1(L•) is surjective. Using
the induced map of long exact sequences of cohomology sheaves from the morphism of
triangles above, a diagram chase shows this implies Hi(K)→ Hi(M) is an isomorphism
for i ≥ m and surjective for i = m − 1. By construction we can choose an r ≥ 0 and a
surjectionO⊕r

X → Km−1. Then the composition

(O⊕r
X → E

m → Em+1 → . . .) −→ K −→M

induces an isomorphism on cohomology sheaves in degrees≥ m and a surjection in degree
m− 1 and the proof is complete. �

51. Miscellany

Some results which do not fit anywhere else.
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Lemma 51.1. Let (X,OX) be a ringed space. Let (Kn)n∈N be a system of perfect
objects of D(OX). Let K = hocolimKn be the derived colimit (Derived Categories, Def-
inition 33.1). Then for any object E of D(OX) we have

RHom(K,E) = R limE ⊗L
OX

K∨
n

where (K∨
n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 50.5 we have R limE ⊗L
OX

K∨
n = R limRHom(Kn, E) which

fits into the distinguished triangle

R limRHom(Kn, E)→
∏

RHom(Kn, E)→
∏

RHom(Kn, E)

Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K it suffices

to show that
∏
RHom(Kn, E) = RHom(

⊕
Kn, E). This is a formal consequence of

(42.0.1) and the fact that derived tensor product commutes with direct sums. �

Lemma 51.2. Let (X,OX) be a ringed space. LetK andE be objects ofD(OX) with
E perfect. The diagram

H0(X,K ⊗L
OX

E∨)×H0(X,E) //

��

H0(X,K ⊗L
OX

E∨ ⊗L
OX

E)

��
HomX(E,K)×H0(X,E) // H0(X,K)

commutes where the top horizontal arrow is the cup product, the right vertical arrow uses
ε : E∨ ⊗L

OX
E → OX (Example 50.7), the left vertical arrow uses Lemma 50.5, and the

bottom horizontal arrow is the obvious one.

Proof. We will abbreviate⊗ = ⊗L
OX

andO = OX . We will identifyE andK with
RHom(O, E) and RHom(O,K) and we will identify E∨ with RHom(E,O).

Let ξ ∈ H0(X,K ⊗ E∨) and η ∈ H0(X,E). Denote ξ̃ : O → K ⊗ E∨ and η̃ : O → E
the corresponding maps in D(O). By Lemma 31.1 the cup product ξ ∪ η corresponds to
ξ̃ ⊗ η̃ : O → K ⊗ E∨ ⊗ E.

We claim the map ξ′ : E → K corresponding to ξ by Lemma 50.5 is the composition

E = O ⊗ E ξ̃⊗1E−−−→ K ⊗ E∨ ⊗ E 1K⊗ε−−−→ K

The construction in Lemma 50.5 uses the evaluation map (42.8.1) which in turn is con-
structed using the identification of E with RHom(O, E) and the composition ◦ con-
structed in Lemma 42.5. Hence ξ′ is the composition

E = O ⊗RHom(O, E) ξ̃⊗1−−→ RHom(O,K)⊗RHom(E,O)⊗RHom(O, E)
◦⊗1−−→ RHom(E,K)⊗RHom(O, E)
◦−→ RHom(O,K) = K

The claim follows immediately from this and the fact that the composition ◦ constructed
in Lemma 42.5 is associative (insert future reference here) and the fact that ε is defined as
the composition ◦ : E∨ ⊗ E → O in Example 50.7.

Using the results from the previous two paragraphs, we find the statement of the lemma is
that (1K ⊗ ε) ◦ (ξ̃⊗ η̃) is equal to (1K ⊗ ε) ◦ (ξ̃⊗ 1E) ◦ (1O⊗ η̃) which is immediate. �
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Lemma 51.3. Let h : X → Y be a morphism of ringed spaces. LetK,M be objects of
D(OY ). The canonical map

Lh∗RHom(K,M) −→ RHom(Lh∗K,Lh∗M)

of Remark 42.13 is an isomorphism in the following cases
(1) K is perfect,
(2) h is flat, K is pseudo-coherent, and M is (locally) bounded below,
(3) OX has finite tor dimension over h−1OY , K is pseudo-coherent, and M is (lo-

cally) bounded below,

Proof. Proof of (1). The question is local on Y , hence we may assume that K is rep-
resented by a strictly perfect complex E•, see Section 49. Choose a K-flat complexF• rep-
resenting M . Apply Lemma 46.9 to see that RHom(K,L) is represented by the complex
H• = Hom•(E•,F•) with terms Hn =

⊕
n=p+qHomOX

(E−q,Fp). By the construc-
tion of Lh∗ in Section 27 we see that Lh∗K is represented by the strictly perfect complex
h∗E• (Lemma 46.4). Similarly, the object Lh∗M is represented by the complex h∗F•.
Finally, the object Lh∗RHom(K,M) is represented by h∗H• as H• is K-flat by Lemma
46.10. Thus to finish the proof it suffices to show that h∗H• = Hom•(h∗E•, h∗F•). For
this it suffices to note that h∗Hom(E ,F) = Hom(h∗E ,F) whenever E is a direct sum-
mand of a finite freeOX -module.

Proof of (2). Since h is flat, we can compute Lh∗ by simply using h∗ on any complex of
OY -modules. In particular we haveHi(Lh∗K) = h∗Hi(K) for all i ∈ Z. SayHi(M) =
0 for i < a. Let K ′ → K be a morphism of D(OY ) which defines an isomorphism
Hi(K ′)→ Hi(K) for all i ≥ b. Then the corresponding maps

RHom(K,M)→ RHom(K ′,M)

and
RHom(Lh∗K,Lh∗M)→ RHom(Lh∗K ′, Lh∗M)

are isomorphisms on cohomology sheaves in degrees < a − b (details omitted). Thus to
prove the map in the statement of the lemma induces an isomorphism on cohomology
sheaves in degrees < a − b it suffices to prove the result for K ′ in those degrees. Also, as
in the proof of part (1) the question is local on Y . Thus we may assume K is represented
by a strictly perfect complex, see Section 47. This reduces us to case (1).

Proof of (3). The proof is the same as the proof of (2) except one uses thatLh∗ has bounded
cohomological dimension to get the desired vanishing. We omit the details. �

Lemma 51.4. Let X be a ringed space. Let K,M be objects of D(OX). Let x ∈ X .
The canonical map

RHom(K,M)x −→ RHomOX,x
(Kx,Mx)

is an isomorphism in the following cases
(1) K is perfect,
(2) K is pseudo-coherent and M is (locally) bounded below.

Proof. Let Y = {x} be the singleton ringed space with structure sheaf given by
OX,x. Then apply Lemma 51.3 to the flat inclusion morphism Y → X . �
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52. Invertible objects in the derived category

We characterize invertible objects in the derived category of a ringed space (both in the
case where the stalks of the structure sheaf are local and where not).

Lemma 52.1. Let (X,OX) be a ringed space. Set R = Γ(X,OX). The category of
OX -modules which are summands of finite freeOX -modules is equivalent to the category
of finite projective R-modules.

Proof. Observe that a finite projective R-module is the same thing as a summand of
a finite freeR-module. The equivalence is given by the functor E 7→ Γ(X, E). The inverse
functor is given by the construction of Modules, Lemma 10.5. �

Lemma 52.2. Let (X,OX) be a ringed space. Let M be an object of D(OX). The
following are equivalent

(1) M is invertible in D(OX), see Categories, Definition 43.4, and
(2) there is a locally finite direct product decomposition

OX =
∏

n∈Z
On

and for each n there is an invertible On-moduleHn (Modules, Definition 25.1)
and M =

⊕
Hn[−n] in D(OX).

If (1) and (2) hold, then M is a perfect object of D(OX). If OX,x is a local ring for all
x ∈ X these condition are also equivalent to

(3) there exists an open covering X =
⋃
Ui and for each i an integer ni such that

M |Ui is represented by an invertibleOUi -module placed in degree ni.

Proof. Assume (2). Consider the object RHom(M,OX) and the composition map

RHom(M,OX)⊗L
OX

M → OX
To prove this is an isomorphism, we may work locally. Thus we may assume OX =∏
a≤n≤bOn and M =

⊕
a≤n≤bHn[−n]. Then it suffices to show that

RHom(Hm,OX)⊗L
OX
Hn

is zero if n 6= m and equal to On if n = m. The case n 6= m follows from the fact that
On and Om are flat OX -algebras with On ⊗OX

Om = 0. Using the local structure of
invertible OX -modules (Modules, Lemma 25.2) and working locally the isomorphism in
case n = m follows in a straightforward manner; we omit the details. Because D(OX) is
symmetric monoidal, we conclude that M is invertible.

Assume (1). The description in (2) shows that we have a candidate forOn, namely,HomOX
(Hn(M),Hn(M)).

If this is a locally finite family of sheaves of rings and if OX =
∏
On, then we immedi-

ately obtain the direct sum decomposition M =
⊕
Hn(M)[−n] using the idempotents

inOX coming from the product decomposition. This shows that in order to prove (2) we
may work locally on X .

Choose an object N of D(OX) and an isomorphism M ⊗L
OX

N ∼= OX . Let x ∈ X .
Then N is a left dual for M in the monoidal category D(OX) and we conclude that M is
perfect by Lemma 50.8. By symmetry we see that N is perfect. After replacing X by an
open neighbourhood of x, we may assume M and N are represented by a strictly perfect
complexes E• andF•. ThenM⊗L

OX
N is represented by Tot(E•⊗OX

F•). After another
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shinking ofX we may assume the mutually inverse isomorphismsOX →M ⊗L
OX

N and
M ⊗L

OX
N → OX are given by maps of complexes

α : OX → Tot(E• ⊗OX
F•) and β : Tot(E• ⊗OX

F•)→ OX
See Lemma 46.8. Then β ◦ α = 1 as maps of complexes and α ◦ β = 1 as a morphism in
D(OX). After shrinking X we may assume the composition α ◦ β is homotopic to 1 by
some homotopy θ with components

θn : Totn(E• ⊗OX
F•)→ Totn−1(E• ⊗OX

F•)

by the same lemma as before. Set R = Γ(X,OX). By Lemma 52.1 we find that we obtain
(1) M• = Γ(X, E•) is a bounded complex of finite projective R-modules,
(2) N• = Γ(X,F•) is a bounded complex of finite projective R-modules,
(3) α and β correspond to maps of complexes a : R → Tot(M• ⊗R N•) and b :

Tot(M• ⊗R N•)→ R,
(4) θn corresponds to a map hn : Totn(M• ⊗R N•)→ Totn−1(M• ⊗R N•), and
(5) b ◦ a = 1 and b ◦ a− 1 = dh+ hd,

It follows that M• and N• define mutually inverse objects of D(R). By More on Al-
gebra, Lemma 126.4 we find a product decomposition R =

∏
a≤n≤bRn and invertible

Rn-modules Hn such that M• ∼=
⊕

a≤n≤bH
n[−n]. This isomorphism in D(R) can be

lifted to an morphism ⊕
Hn[−n] −→M•

of complexes because each Hn is projective as an R-module. Correspondingly, using
Lemma 52.1 again, we obtain an morphism⊕

Hn ⊗R OX [−n]→ E•

which is an isomorphism in D(OX). SettingOn = Rn ⊗R OX we conclude (2) is true.

If all stalks of OX are local, then it is straightforward to prove the equivalence of (2) and
(3). We omit the details. �

53. Compact objects

In this section we study compact objects in the derived category of modules on a ringed
space. We recall that compact objects are defined in Derived Categories, Definition 37.1.
On suitable ringed spaces the perfect objects are compact.

Lemma 53.1. Let X be a ringed space. Let j : U → X be the inclusion of an open.
TheOX -module j!OU is a compact object of D(OX) if there exists an integer d such that

(1) Hp(U,F) = 0 for all p > d, and
(2) the functors F 7→ Hp(U,F) commute with direct sums.

Proof. Assume (1) and (2). Since Hom(j!OU ,F) = F(U) by Sheaves, Lemma 31.8
we have Hom(j!OU ,K) = RΓ(U,K) for K in D(OX). Thus we have to show that
RΓ(U,−) commutes with direct sums. The first assumption means that the functor F =
H0(U,−) has finite cohomological dimension. Moreover, the second assumption implies
any direct sum of injective modules is acyclic for F . Let Ki be a family of objects of
D(OX). Choose K-injective representatives I•

i with injective terms representing Ki, see
Injectives, Theorem 12.6. Since we may compute RF by applying F to any complex of
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acyclics (Derived Categories, Lemma 32.2) and since
⊕
Ki is represented by

⊕
I•
i (Injec-

tives, Lemma 13.4) we conclude thatRΓ(U,
⊕
Ki) is represented by

⊕
H0(U, I•

i ). Hence
RΓ(U,−) commutes with direct sums as desired. �

Lemma 53.2. Let X be a ringed space. Assume that the underlying topological space
of X has the following properties:

(1) X is quasi-compact,
(2) there exists a basis of quasi-compact open subsets, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Let K be a perfect object of D(OX). Then
(a) K is a compact object of D+(OX) in the following sense: if M =

⊕
i∈IMi is

bounded below, then Hom(K,M) =
⊕

i∈I Hom(K,Mi).
(b) IfX has finite cohomological dimension, i.e., if there exists a d such thatHi(X,F) =

0 for i > d, then K is a compact object of D(OX).

Proof. Let K∨ be the dual of K , see Lemma 50.5. Then we have
HomD(OX)(K,M) = H0(X,K∨ ⊗L

OX
M)

functorially in M in D(OX). Since K∨ ⊗L
OX
− commutes with direct sums it suffices to

show that RΓ(X,−) commutes with the relevant direct sums.
Proof of (b). Since RΓ(X,K) = RHom(OX ,K) and since Hp(X,−) commutes with
direct sums by Lemma 19.1 this is a special case of Lemma 53.1
Proof of (a). Let Ii, i ∈ I be a collection of injective OX -modules. By Lemma 19.1 we see
that

Hp(X,
⊕

i∈I
Ii) =

⊕
i∈I

Hp(X, Ii) = 0

for all p. Now if M =
⊕
Mi is as in (a), then we see that there exists an a ∈ Z such

that Hn(Mi) = 0 for n < a. Thus we can choose complexes of injective OX -modules
I•
i representing Mi with Ini = 0 for n < a, see Derived Categories, Lemma 18.3. By

Injectives, Lemma 13.4 we see that the direct sum complex
⊕
I•
i represents M . By Leray

acyclicity (Derived Categories, Lemma 16.7) we see that

RΓ(X,M) = Γ(X,
⊕
I•
i ) =

⊕
Γ(X,

⊕
I•
i ) =

⊕
RΓ(X,Mi)

as desired. �

54. Projection formula

In this section we collect variants of the projection formula. The most basic version is
Lemma 54.2. After we state and prove it, we discuss a more general version involving
perfect complexes.

Lemma 54.1. Let X be a ringed space. Let I be an injective OX -module. Let E be
an OX -module. Assume E is finite locally free on X , see Modules, Definition 14.1. Then
E ⊗OX

I is an injectiveOX -module.

Proof. This is true because under the assumptions of the lemma we have
HomOX

(F , E ⊗OX
I) = HomOX

(F ⊗OX
E∨, I)

where E∨ = HomOX
(E ,OX) is the dual of E which is finite locally free also. Since

tensoring with a finite locally free sheaf is an exact functor we win by Homology, Lemma
27.2. �
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Lemma 54.2. Let f : X → Y be a morphism of ringed spaces. Let F be an OX -
module. Let E be an OY -module. Assume E is finite locally free on Y , see Modules, Defi-
nition 14.1. Then there exist isomorphisms

E ⊗OY
Rqf∗F −→ Rqf∗(f∗E ⊗OX

F)

for all q ≥ 0. In fact there exists an isomorphism

E ⊗OY
Rf∗F −→ Rf∗(f∗E ⊗OX

F)

in D+(Y ) functorial in F .

Proof. Choose an injective resolution F → I• onX . Note that f∗E is finite locally
free also, hence we get a resolution

f∗E ⊗OX
F −→ f∗E ⊗OX

I•

which is an injective resolution by Lemma 54.1. Apply f∗ to see that

Rf∗(f∗E ⊗OX
F) = f∗(f∗E ⊗OX

I•).

Hence the lemma follows if we can show that f∗(f∗E⊗OX
F) = E⊗OY

f∗(F) functorially
in the OX -module F . This is clear when E = O⊕n

Y , and follows in general by working
locally on Y . Details omitted. �

Let f : X → Y be a morphism of ringed spaces. Let E ∈ D(OX) and K ∈ D(OY ).
Without any further assumptions there is a map

(54.2.1) Rf∗E ⊗L
OY

K −→ Rf∗(E ⊗L
OX

Lf∗K)

Namely, it is the adjoint to the canonical map

Lf∗(Rf∗E ⊗L
OY

K) = Lf∗Rf∗E ⊗L
OX

Lf∗K −→ E ⊗L
OX

Lf∗K

coming from the map Lf∗Rf∗E → E and Lemmas 27.3 and 28.1. A reasonably general
version of the projection formula is the following.

Lemma 54.3. Let f : X → Y be a morphism of ringed spaces. Let E ∈ D(OX) and
K ∈ D(OY ). If K is perfect, then

Rf∗E ⊗L
OY

K = Rf∗(E ⊗L
OX

Lf∗K)

in D(OY ).

Proof. To check (54.2.1) is an isomorphism we may work locally on Y , i.e., we have
to find a covering {Vj → Y } such that the map restricts to an isomorphism on Vj . By
definition of perfect objects, this means we may assume K is represented by a strictly
perfect complex of OY -modules. Note that, completely generally, the statement is true
for K = K1 ⊕ K2, if and only if the statement is true for K1 and K2. Hence we may
assume K is a finite complex of finite free OY -modules. In this case a simple argument
involving stupid truncations reduces the statement to the case where K is represented by
a finite free OY -module. Since the statement is invariant under finite direct summands
in the K variable, we conclude it suffices to prove it for K = OY [n] in which case it is
trivial. �

Here is a case where the projection formula is true in complete generality.

Lemma 54.4. Let f : X → Y be a morphism of ringed spaces such that f is a home-
omorphism onto a closed subset. Then (54.2.1) is an isomorphism always.
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Proof. Since f is a homeomorphism onto a closed subset, the functor f∗ is exact
(Modules, Lemma 6.1). HenceRf∗ is computed by applying f∗ to any representative com-
plex. Choose a K-flat complexK• ofOY -modules representingK and choose any complex
E• ofOX -modules representing E. Then Lf∗K is represented by f∗K• which is a K-flat
complex ofOX -modules (Lemma 26.8). Thus the right hand side of (54.2.1) is represented
by

f∗Tot(E• ⊗OX
f∗K•)

By the same reasoning we see that the left hand side is represented by

Tot(f∗E• ⊗OY
K•)

Since f∗ commutes with direct sums (Modules, Lemma 6.3) it suffices to show that

f∗(E ⊗OX
f∗K) = f∗E ⊗OY

K

for any OX -module E and OY -module K. We will check this by checking on stalks. Let
y ∈ Y . If y 6∈ f(X), then the stalks of both sides are zero. If y = f(x), then we see that
we have to show

Ex ⊗OX,x
(OX,x ⊗OY,y

Fy) = Ex ⊗OY,y
Fy

(using Sheaves, Lemma 32.1 and Lemma 26.4). This equality holds and therefore the lemma
has been proved. �

Remark 54.5. The map (54.2.1) is compatible with the base change map of Remark
28.3 in the following sense. Namely, suppose that

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

is a commutative diagram of ringed spaces. Let E ∈ D(OX) and K ∈ D(OY ). Then the
diagram

Lg∗(Rf∗E ⊗L
OY

K)
p

//

t

��

Lg∗Rf∗(E ⊗L
OX

Lf∗K)

b

��
Lg∗Rf∗E ⊗L

OY ′ Lg
∗K

b

��

Rf ′
∗L(g′)∗(E ⊗L

OX
Lf∗K)

t

��
Rf ′

∗L(g′)∗E ⊗L
OY ′ Lg

∗K

p
++

Rf ′
∗(L(g′)∗E ⊗L

OY ′ L(g′)∗Lf∗K)

c

��
Rf ′

∗(L(g′)∗E ⊗L
OY ′ L(f ′)∗Lg∗K)

is commutative. Here arrows labeled t are gotten by an application of Lemma 27.3, arrows
labeled b by an application of Remark 28.3, arrows labeled p by an application of (54.2.1),
and c comes from L(g′)∗ ◦ Lf∗ = L(f ′)∗ ◦ Lg∗. We omit the verification.
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55. An operator introduced by Berthelot and Ogus

This section continuous the discussion started in More on Algebra, Section 95. We strongly
encourage the reader to read that section first.

Lemma 55.1. Let (X,OX) be a ringed space. Let I ⊂ OX be a sheaf of ideals. Con-
sider the following two conditions

(1) for every x ∈ X there exists an open neighbourhoodU ⊂ X of x and f ∈ I(U)
such that I|U = OU · f and f : OU → OU is injective, and

(2) I is invertible as anOX -module.
Then (1) implies (2) and the converse is true if all stalks OX,x of the structure sheaf are
local rings.

Proof. Omitted. Hint: Use Modules, Lemma 25.4. �

Situation 55.2. Let (X,OX) be a ringed space. Let I ⊂ OX be a sheaf of ideals
satisfying condition (1) of Lemma 55.18.

Lemma 55.3. In Situation 55.2 letF be anOX -module. The following are equivalent
(1) the subsheaf F [I] ⊂ F of sections annihilated by I is zero,
(2) the subsheaf F [In] is zero for all n ≥ 1,
(3) the multiplication map I ⊗OX

F → F is injective,
(4) for every open U ⊂ X such that I|U = OU · f for some f ∈ I(U) the map

f : F|U → F|U is injective,
(5) for every x ∈ X and generator f of the ideal Ix ⊂ OX,x the element f is a

nonzerodivisor on the stalk Fx.

Proof. Omitted. �

In Situation 55.2 let F be an OX -module. If the equivalent conditions of Lemma 55.3
hold, then we will say that F is I-torsion free. If so, then for any i ∈ Z we will denote

IiF = I⊗i ⊗OX
F

so that we have inclusions

. . . ⊂ Ii+1F ⊂ IiF ⊂ Ii−1F ⊂ . . .
The modules IiF are locally isomorphic to F asOX -modules, but not globally.

Let F• be a complex of I-torsion freeOX -modules with differentials di : F i → F i+1. In
this case we define ηIF• to be the complex with terms

(ηIF)i = Ker
(
di,−1 : IiF i ⊕ Ii+1F i+1 → IiF i+1)

= Ker
(
di : IiF i → IiF i+1/Ii+1F i+1)

and differential induced by di. In other words, a local section s of (ηIF)i is the same
thing as a local section s of IiF i such that its image di(s) in IiF i+1 is in the subsheaf
Ii+1F i+1. Observe that ηIF• is another complex of I-torsion free modules.

Let a• : F• → G• be a map of complexes of I-torsion free OX -modules. Then we obtain
a map of complexes

ηIa
• : ηIF• −→ ηIG•

8The discussion in this section can be generalized to the case where all we require is that I is an invertible
OX -module as defined in Modules, Section 25.
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induced by the maps IiF i → IiGi. The reader checks that we obtain an endo-functor on
the category of complexes of I-torsion freeOX -modules.
If a•, b• : F• → G• are two maps of complexes of I-torsion free OX -modules and h =
{hi : F i → Gi−1} is a homotopy between a• and b•, then we define ηIh to be the family
of maps (ηIh)i : (ηIF)i → (ηIG)i−1 which sends x to hi(x); this makes sense as x a local
section of IiF i implies hi(x) is a local section of IiGi−1 which is certainly contained in
(ηIG)i−1. The reader checks that ηIh is a homotopy between ηIa

• and ηIb
•. All in all

we see that we obtain a functor
ηf : K(I-torsion freeOX -modules) −→ K(I-torsion freeOX -modules)

on the homotopy category (Derived Categories, Section 8) of the additive category of I-
torsion freeOX -modules. There is no sense in which ηI is an exact functor of triangulated
categories; compare with More on Algebra, Example 95.1.

Lemma 55.4. In Situation 55.2 let F• be a complex of I-torsion free OX -modules.
For x ∈ X choose a generator f ∈ Ix. Then the stalk (ηIF•)x is canonically isomorphic
to the complex ηfF•

x constructed in More on Algebra, Section 95.

Proof. Omitted. �

Lemma 55.5. In Situation 55.2 let F• be a complex of I-torsion free OX -modules.
There is a canonical isomorphism

I⊗i ⊗OX

(
Hi(F•)/Hi(F•)[I]

)
−→ Hi(ηIF•)

of cohomology sheaves.

Proof. We define a map

I⊗i ⊗OX
Hi(F•) −→ Hi(ηIF•)

as follows. Let g be a local section of I⊗i and let s be a local section of Hi(F•). Then s
is (locally) the class of a local section s of Ker(di : F i → F i+1). Then we send g ⊗ s to
the local section gs of (ηIF)i ⊂ IiF . Of course gs is in the kernel of di on ηIF• and
hence defines a local section of Hi(ηIF•). Checking that this is well defined is without
problems. We claim that this map factors through an isomorphism as given in the lemma.
This we my check on stalks and hence via Lemma 55.4 this translates into the result of
More on Algebra, Lemma 95.2. �

Lemma 55.6. In Situation 55.2 let F• → G• be a map of complexes of I-torsion free
OX -modules. Then the induced map ηIF• → ηIG• is a quasi-isomorphism too.

Proof. This is true because the isomorphisms of Lemma 55.5 are compatible with
maps of complexes. �

Lemma 55.7. In Situation 55.2 there is an additive functor9LηI : D(OX)→ D(OX)
such that if M in D(OX) is represented by a complex F• of I-torsion free OX -modules,
then LηIM = ηIF•. Similarly for morphisms.

Proof. Denote T ⊂ Mod(OX) the full subcategory of I-torsion free OX -modules.
We have a corresponding inclusion

K(T ) ⊂ K(Mod(OX)) = K(OX)

9Beware that this functor isn’t exact, i.e., does not transform distinguished triangles into distinguished
triangles.
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of K(T ) as a full triangulated subcategory of K(OX). Let S ⊂ Arrows(K(T )) be the
quasi-isomorphisms. We will apply Derived Categories, Lemma 5.8 to show that the map

S−1K(T ) −→ D(OX)

is an equivalence of triangulated categories. The lemma shows that it suffices to prove:
given a complex G• ofOX -modules, there exists a quasi-isomorphismF• → G• withF• a
complex of I-torsion freeOX -modules. By Lemma 26.12 we can find a quasi-isomorphism
F• → G• such that the complex F• is K-flat (we won’t use this) and consists of flat OX -
modules F i. By the third characterization of Lemma 55.3 we see that a flatOX -module is
an I-torsion freeOX -module and we are done.

With these preliminaries out of the way we can define Lηf . Namely, by the discussion
following Lemma 55.3 this section we have already a well defined functor

K(T ) ηf−→ K(T )→ K(OX)→ D(OX)

which according to Lemma 55.6 sends quasi-isomorphisms to quasi-isomorphisms. Hence
this functor factors over S−1K(T ) = D(OX) by Categories, Lemma 27.8. �

In Situation 55.2 let us construct the Bockstein operators. First we observe that there is a
commutative diagram

0 // Ii+1 //

��

Ii //

��

Ii/Ii+1 // 0

0 // Ii+1/Ii+2 // Ii/Ii+2 // Ii/Ii+1 // 0

whose rows are short exact sequences of OX -modules. Let M be an object of D(OX).
Tensoring the above diagram with M gives a morphism

M ⊗L Ii+1 //

��

M ⊗L Ii //

��

M ⊗L Ii/Ii+1

id
��

M ⊗L Ii+1/Ii+2 // M ⊗L Ii/Ii+2 // M ⊗L Ii/Ii+1

of distinguished triangles. The long exact sequence of cohomology sheaves associated the
bottom triangle in particular determines the Bockstein operator

β = βi : Hi(M ⊗L Ii/Ii+1) −→ Hi+1(M ⊗L Ii+1/Ii+2)

for all i ∈ Z. For later use we record here that by the commutative diagram above there
is a factorization

(55.7.1)

Hi(M ⊗L Ii/Ii+1)
δ

//

β **

Hi+1(M ⊗L Ii+1)

��
Hi+1(M ⊗L Ii+1/Ii+2)
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of the Bockstein operator where δ is the boundary operator coming from the top distin-
guished triangle in the commutative diagram above. We obtain a complex

(55.7.2) H•(M/I) =



. . .
↓

Hi−1(M ⊗L Ii−1/Ii)
↓ β

Hi(M ⊗L Ii/Ii+1)
↓ β

Hi+1(M ⊗L Ii+1/Ii+2)
↓
. . .


i.e., that β ◦ β = 0. Namely, we can check this on stalks and in this case we can deduce
it from the corresponding result in algebra shown in More on Algebra, Section 95. Alter-
native proof: the short exact sequences 0 → Ii+1/Ii+2 → Ii/Ii+2 → Ii/Ii+1 → 0
define maps bi : Ii/Ii+1 → (Ii+1/Ii+2)[1] in D(OX) which induce the maps β above
by tensoring with M and taking cohomology sheaves. Then one shows that the compo-
sition bi+1[1] ◦ bi : Ii/Ii+1 → (Ii+1/Ii+2)[1] → (Ii+2/Ii+3)[2] is zero in D(OX) by
using the criterion in Derived Categories, Lemma 27.7 using that the module Ii/Ii+3 is
an extension of Ii+1/Ii+3 by Ii/Ii+1.

Lemma 55.8. In Situation 55.2 let M be an object of D(OX). There is a canonical
isomorphism

LηIM ⊗L OX/I −→ H•(M/I)
in D(OX) where the right hand side is the complex (55.7.2).

Proof. By the construction of LηI in Lemma 55.6 we may assume M is represented
by a complex of I-torsion free OX -modules F•. Then LηIM is represented by the com-
plex ηIF• which is a complex of I-torsion free OX -modules as well. Thus LηIM ⊗L

OX/I is represented by the complex ηIF• ⊗ OX/I . Similarly, the complex H•(M/I)
has terms Hi(F• ⊗ Ii/Ii+1).

Let f be a local generator for I . Let s be a local section of (ηIF)i. Then we can write
s = f is′ for a local section s′ of F i and similarly di(s) = f i+1t for a local section t of
F i+1. Thus di maps f is′ to zero in F i+1 ⊗ Ii/Ii+1. Hence we may map s to the class of
f is′ in Hi(F• ⊗ Ii/Ii+1). This rule defines a map

(ηIF)i ⊗OX/I −→ Hi(F• ⊗ Ii/Ii+1)

ofOX -modules. A calculation shows that these maps are compatible with differentials (es-
sentially because β sends the class of f is′ to the class of f i+1t), whence a map of complexes
representing the arrow in the statement of the lemma.

To finish the proof, we observe that the construction given in the previous paragraph
agrees on stalks with the maps constructed in More on Algebra, Lemma 95.6 hence we
conclude. �

Lemma 55.9. In Situation 55.2 let F• be a complex of I-torsion free OX -modules.
Let L be an invertibleOX -module. Then ηI(F• ⊗ L) = (ηIF•)⊗ L.

Proof. Immediate from the construction. �
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Lemma 55.10. In Situation 55.2 letM be an object ofD(OX). Let x ∈ X withOX,x
nonzero. IfHi(M)x is finite free overOX,x, thenHi(LηIM)x is finite free overOX,x of
the same rank.

Proof. Namely, say f ∈ OX,x generates the stalk Ix. Then f is a nonzerodivisor
in OX,x and hence Hi(M)x[f ] = 0. Thus by Lemma 55.5 we see that Hi(LηIM)x is
isomorphic to Iix ⊗OX,x

Hi(M)x which is free of the same rank as desired. �
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CHAPTER 21

Cohomology on Sites

1. Introduction

In this document we work out some topics on cohomology of sheaves. We work out what
happens for sheaves on sites, although often we will simply duplicate the discussion, the
constructions, and the proofs from the topological case in the case. Basic references are
[?], [?] and [?].

2. Cohomology of sheaves

Let C be a site, see Sites, Definition 6.2. Let F be an abelian sheaf on C. We know that the
category of abelian sheaves on C has enough injectives, see Injectives, Theorem 7.4. Hence
we can choose an injective resolution F [0]→ I•. For any object U of the site C we define

(2.0.1) Hi(U,F) = Hi(Γ(U, I•))

to be the ith cohomology group of the abelian sheaf F over the object U . In other words,
these are the right derived functors of the functor F 7→ F(U). The family of functors
Hi(U,−) forms a universal δ-functor Ab(C)→ Ab.

It sometimes happens that the site C does not have a final object. In this case we define the
global sections of a presheaf of sets F over C to be the set

(2.0.2) Γ(C,F) = MorPSh(C)(e,F)

where e is a final object in the category of presheaves on C. In this case, given an abelian
sheaf F on C , we define the ith cohomology group of F on C as follows

(2.0.3) Hi(C,F) = Hi(Γ(C, I•))

in other words, it is the ith right derived functor of the global sections functor. The family
of functors Hi(C,−) forms a universal δ-functor Ab(C)→ Ab.

Let f : Sh(C) → Sh(D) be a morphism of topoi, see Sites, Definition 15.1. With F [0] →
I• as above we define

(2.0.4) Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . These are the right derived functors of f∗. The
family of functors Rif∗ forms a universal δ-functor from Ab(C)→ Ab(D).

Let (C,O) be a ringed site, see Modules on Sites, Definition 6.1. Let F be an O-module.
We know that the category of O-modules has enough injectives, see Injectives, Theorem
8.4. Hence we can choose an injective resolution F [0]→ I•. For any object U of the site
C we define

(2.0.5) Hi(U,F) = Hi(Γ(U, I•))

1919
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to be the the ith cohomology group of F over U . The family of functors Hi(U,−) forms
a universal δ-functor Mod(O)→ModO(U). Similarly

(2.0.6) Hi(C,F) = Hi(Γ(C, I•))
it the ith cohomology group ofF on C. The family of functorsHi(C,−) forms a universal
δ-functor Mod(C)→ModΓ(C,O).

Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi, see Modules on Sites,
Definition 7.1. With F [0]→ I• as above we define

(2.0.7) Rif∗F = Hi(f∗I•)
to be the ith higher direct image of F . These are the right derived functors of f∗. The
family of functors Rif∗ forms a universal δ-functor from Mod(O)→Mod(O′).

3. Derived functors

We briefly explain an approach to right derived functors using resolution functors. Namely,
suppose that (C,O) is a ringed site. In this chapter we will write

K(O) = K(Mod(O)) and D(O) = D(Mod(O))
and similarly for the bounded versions for the triangulated categories introduced in De-
rived Categories, Definition 8.1 and Definition 11.3. By Derived Categories, Remark 24.3
there exists a resolution functor

j = j(C,O) : K+(Mod(O)) −→ K+(I)
where I is the strictly full additive subcategory of Mod(O) which consists of injective
O-modules. For any left exact functor F : Mod(O)→ B into any abelian category B we
will denote RF the right derived functor of Derived Categories, Section 20 constructed
using the resolution functor j just described:

(3.0.1) RF = F ◦ j′ : D+(O) −→ D+(B)
see Derived Categories, Lemma 25.1 for notation. Note that we may think of RF as de-
fined on Mod(O), Comp+(Mod(O)), or K+(O) depending on the situation. According
to Derived Categories, Definition 16.2 we obtain the ithe right derived functor

(3.0.2) RiF = Hi ◦RF : Mod(O) −→ B
so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories, Lemma
20.4.

Here are two special cases of this construction. Given a ringRwe writeK(R) = K(ModR)
and D(R) = D(ModR) and similarly for the bounded versions. For any object U of C
have a left exact functor Γ(U,−) : Mod(O) −→ModO(U) which gives rise to

RΓ(U,−) : D+(O) −→ D+(O(U))
by the discussion above. Note that Hi(U,−) = RiΓ(U,−) is compatible with (2.0.5)
above. We similarly have

RΓ(C,−) : D+(O) −→ D+(Γ(C,O))
compatible with (2.0.6). If f : (Sh(C),O) → (Sh(D),O′) is a morphism of ringed topoi
then we get a left exact functor f∗ : Mod(O) → Mod(O′) which gives rise to derived
pushforward

Rf∗ : D+(O)→ D+(O′)
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The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher direct
image in accordance with (2.0.7). The displayed functors above are exact functor of de-
rived categories.

4. First cohomology and torsors

Definition 4.1. Let C be a site. LetG be a sheaf of (possibly non-commutative) groups
on C. A pseudo torsor, or more precisely a pseudo G-torsor, is a sheaf of sets F on C
endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U)×F(U)→ F(U) is simply tran-
sitive.

A morphism of pseudo G-torsorsF → F ′ is simply a morphism of sheaves of sets compat-
ible with the G-actions. A torsor, or more precisely a G-torsor, is a pseudo G-torsor such
that in addition

(2) for everyU ∈ Ob(C) there exists a covering {Ui → U}i∈I ofU such thatF(Ui)
is nonempty for all i ∈ I .

A morphism of G-torsors is simply a morphism of pseudo G-torsors. The trivial G-torsor
is the sheaf G endowed with the obvious left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 4.2. Let C be a site. Let G be a sheaf of (possibly non-commutative) groups
on C. A G-torsor F is trivial if and only if Γ(C,F) 6= ∅.

Proof. Omitted. �

Lemma 4.3. Let C be a site. Let H be an abelian sheaf on C. There is a canonical
bijection between the set of isomorphism classes ofH-torsors and H1(C,H).

Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is the
sheafification of the rule which associates to U ∈ Ob(C) the collection of finite formal
sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z

which to a local section
∑
ni[si] associates

∑
ni. The kernel of σ is generated by sections

of the form [s]− [s′]. There is a canonical map a : Ker(σ)→ Hwhich maps [s]− [s′] 7→ h
where h is the local section ofH such that h · s = s′. Consider the pushout diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0

Here E is the extension obtained by pushout. From the long exact cohomology sequence
associated to the lower short exact sequence we obtain an element ξ = ξF ∈ H1(C,H) by
applying the boundary operator to 1 ∈ H0(C,Z).

Conversely, given ξ ∈ H1(C,H) we can associate to ξ a torsor as follows. Choose an
embedding H → I of H into an injective abelian sheaf I . We set Q = I/H so that we
have a short exact sequence

0 // H // I // Q // 0
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The element ξ is the image of a global section q ∈ H0(C,Q) because H1(C, I) = 0 (see
Derived Categories, Lemma 20.4). LetF ⊂ I be the subsheaf (of sets) of sections that map
to q in the sheafQ. It is easy to verify that F is aH-torsor.

We omit the verification that the two constructions given above are mutually inverse. �

5. First cohomology and extensions

Lemma 5.1. Let (C,O) be a ringed site. Let F be a sheaf ofO-modules on C. There is
a canonical bijection

Ext1
Mod(O)(O,F) −→ H1(C,F)

which associates to the extension

0→ F → E → O → 0

the image of 1 ∈ Γ(C,O) in H1(C,F).

Proof. Let us construct the inverse of the map given in the lemma. Let ξ ∈ H1(C,F).
Choose an injection F ⊂ I with I injective in Mod(O). Set Q = I/F . By the long
exact sequence of cohomology, we see that ξ is the image of a section ξ̃ ∈ Γ(C,Q) =
HomO(O,Q). Now, we just form the pullback

0 // F // E //

��

O //

ξ̃

��

0

0 // F // I // Q // 0

see Homology, Section 6. �

The following lemma will be superseded by the more general Lemma 12.4.

Lemma 5.2. Let (C,O) be a ringed site. Let F be a sheaf ofO-modules on C. Let Fab
denote the underlying sheaf of abelian groups. Then there is a functorial isomorphism

H1(C,Fab) = H1(C,F)

where the left hand side is cohomology computed in Ab(C) and the right hand side is
cohomology computed in Mod(O).

Proof. Let Z denote the constant sheaf Z. As Ab(C) = Mod(Z) we may apply
Lemma 5.1 twice, and it follows that we have to show

Ext1
Mod(O)(O,F) = Ext1

Mod(Z)(Z,Fab).

Suppose that 0 → F → E → O → 0 is an extension in Mod(O). Then we can use the
obvious map of abelian sheaves 1 : Z → O and pullback to obtain an extension Eab, like
so:

0 // Fab // Eab //

��

Z //

1
��

0

0 // F // E // O // 0
The converse is a little more fun. Suppose that 0→ Fab → Eab → Z→ 0 is an extension
in Mod(Z). Since Z is a flat Z-module we see that the sequence

0→ Fab ⊗Z O → Eab ⊗Z O → Z⊗Z O → 0
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is exact, see Modules on Sites, Lemma 28.9. Of course Z ⊗Z O = O. Hence we can form
the pushout via the (O-linear) multiplication map µ : F ⊗Z O → F to get an extension
ofO by F , like this

0 // Fab ⊗Z O //

µ

��

Eab ⊗Z O //

��

O // 0

0 // F // E // O // 0

which is the desired extension. We omit the verification that these constructions are mu-
tually inverse. �

6. First cohomology and invertible sheaves

The Picard group of a ringed site is defined in Modules on Sites, Section 32.

Lemma 6.1. Let (C,O) be a locally ringed site. There is a canonical isomorphism

H1(C,O∗) = Pic(O).

of abelian groups.

Proof. Let L be an invertible O-module. Consider the presheaf L∗ defined by the
rule

U 7−→ {s ∈ L(U) such thatOU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗(U) and s ∈ L∗(U),
then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a unique
f ∈ O∗(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally by Modules on
Sites, Lemma 40.7. In other words we see that L∗ is aO∗-torsor. Thus we get a map

set of invertible sheaves on (C,O)
up to isomorphism −→ set ofO∗-torsors

up to isomorphism

We omit the verification that this is a homomorphism of abelian groups. By Lemma 4.3
the right hand side is canonically bijective to H1(C,O∗). Thus we have to show this map
is injective and surjective.

Injective. If the torsor L∗ is trivial, this means by Lemma 4.2 that L∗ has a global section.
Hence this means exactly that L ∼= O is the neutral element in Pic(O).

Surjective. Let F be anO∗-torsor. Consider the presheaf of sets

L1 : U 7−→ (F(U)×O(U))/O∗(U)

where the action of f ∈ O∗(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of O-
modules by setting (s, g) + (s′, g′) = (s, g + (s′/s)g′) where s′/s is the local section f
of O∗ such that fs = s′, and h(s, g) = (s, hg) for h a local section of O. We omit the
verification that the sheafification L = L#

1 is an invertible O-module whose associated
O∗-torsor L∗ is isomorphic to F . �
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7. Locality of cohomology

The following lemma says there is no ambiguity in defining the cohomology of a sheaf F
over an object of the site.

Lemma 7.1. Let (C,O) be a ringed site. Let U be an object of C.
(1) If I is an injectiveO-module then I|U is an injectiveOU -module.
(2) For any sheaf ofO-modules F we have Hp(U,F) = Hp(C/U,F|U ).

Proof. Recall that the functor j−1
U of restriction toU is a right adjoint to the functor

jU ! of extension by 0, see Modules on Sites, Section 19. Moreover, jU ! is exact. Hence (1)
follows from Homology, Lemma 29.1.

By definition Hp(U,F) = Hp(I•(U)) where F → I• is an injective resolution in
Mod(O). By the above we see that F|U → I•|U is an injective resolution in Mod(OU ).
Hence Hp(U,F|U ) is equal to Hp(I•|U (U)). Of course F(U) = F|U (U) for any sheaf
F on C. Hence the equality in (2). �

The following lemma will be use to see what happens if we change a partial universe, or
to compare cohomology of the small and big étale sites.

Lemma 7.2. Let C and D be sites. Let u : C → D be a functor. Assume u satisfies the
hypotheses of Sites, Lemma 21.8. Let g : Sh(C) → Sh(D) be the associated morphism of
topoi. For any abelian sheaf F on D we have isomorphisms

RΓ(C, g−1F) = RΓ(D,F),
in particular Hp(C, g−1F) = Hp(D,F) and for any U ∈ Ob(C) we have isomorphisms

RΓ(U, g−1F) = RΓ(u(U),F),
in particular Hp(U, g−1F) = Hp(u(U),F). All of these isomorphisms are functorial in
F .

Proof. Since it is clear that Γ(C, g−1F) = Γ(D,F) by hypothesis (e), it suffices to
show that g−1 transforms injective abelian sheaves into injective abelian sheaves. As usual
we use Homology, Lemma 29.1 to see this. The left adjoint to g−1 is g! = f−1 with the
notation of Sites, Lemma 21.8 which is an exact functor. Hence the lemma does indeed
apply. �

Let (C,O) be a ringed site. Let F be a sheaf ofO-modules. Let ϕ : U → V be a morphism
ofO. Then there is a canonical restriction mapping

(7.2.1) Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U
functorial in F . Namely, choose any injective resolution F → I•. The restriction map-
pings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)
The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As indi-
cated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule U 7→ Hn(U,F)
is a presheaf of O-modules. This presheaf is customarily denoted Hn(F). We will give
another interpretation of this presheaf in Lemma 10.5.

The following lemma says that it is possible to kill higher cohomology classes by going to
a covering.
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Lemma 7.3. Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let U be an
object of C. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists a covering {Ui → U} of
C such that ξ|Ui = 0 for all i ∈ I .

Proof. Let F → I• be an injective resolution. Then

Hn(U,F) = Ker(In(U)→ In+1(U))
Im(In−1(U)→ In(U)) .

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation above.
Since I• is an injective resolution of F and n > 0 we see that the complex I• is exact in
degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves. Since ξ̃ is a section of
the kernel sheaf overU we conclude there exists a covering {Ui → U} of the site such that
ξ̃|Ui is the image under d of a section ξi ∈ In−1(Ui). By our definition of the restriction
ξ|Ui as corresponding to the class of ξ̃|Ui we conclude. �

Lemma 7.4. Let f : (C,OC)→ (D,OD) be a morphism of ringed sites corresponding
to the continuous functor u : D → C. For any F ∈ Ob(Mod(OC)) the sheaf Rif∗F is
the sheaf associated to the presheaf

V 7−→ Hi(u(V ),F)

Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the ith
cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .

By definition of the abelian category structure on OD-modules this cohomology sheaf is
the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V )→ f∗Ii+1(V ))
Im(f∗Ii−1(V )→ f∗Ii(V ))

and this is obviously equal to

Ker(Ii(u(V ))→ Ii+1(u(V )))
Im(Ii−1(u(V ))→ Ii(u(V )))

which is equal to Hi(u(V ),F) and we win. �

8. The Čech complex and Čech cohomology

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed target,
see Sites, Definition 6.1. Assume that all fibre products Ui0 ×U . . .×U Uip exist in C. Let
F be an abelian presheaf on C. Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0 ×U . . .×U Uip).

This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value in the factor
F(Ui0 ×U . . .×U Uip). We define

d : Čp(U ,F) −→ Čp+1(U ,F)

by the formula

(8.0.1) d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0 ×U ...×UUip+1



1926 21. COHOMOLOGY ON SITES

where the restriction is via the projection map

Ui0 ×U . . .×U Uip+1 −→ Ui0 ×U . . .×U Ûij ×U . . .×U Uip+1 .

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

Definition 8.1. Let C be a category. LetU = {Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in C. Let F be an
abelian presheaf on C. The complex Č•(U ,F) is the Čech complex associated toF and the
family U . Its cohomology groups Hi(Č•(U ,F)) are called the Čech cohomology groups
of F with respect to U . They are denoted Ȟi(U ,F).

We observe that any covering {Ui → U} of a site C is a family of morphisms with fixed
target to which the definition applies.

Lemma 8.2. Let C be a site. Let F be an abelian presheaf on C. The following are
equivalent

(1) F is an abelian sheaf on C and
(2) for every covering U = {Ui → U}i∈I of the site C the natural map

F(U)→ Ȟ0(U ,F)
(see Sites, Section 10) is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every covering of C. �

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms of C with fixed
target such that all fibre products Ui0 ×U . . . ×U Uip exist in C. Let V = {Vj → V }j∈J
be another. Let f : U → V , α : I → J and fi : Ui → Vα(i) be a morphism of families
of morphisms with fixed target, see Sites, Section 8. In this case we get a map of Čech
complexes

(8.2.1) ϕ : Č•(V,F) −→ Č•(U ,F)
which in degree p is given by

ϕ(s)i0...ip = (fi0 × . . .× fip)∗sα(i0)...α(ip)

9. Čech cohomology as a functor on presheaves

Warning: In this section we work exclusively with abelian presheaves on a category. The
results are completely wrong in the setting of sheaves and categories of sheaves!
Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed target
such that all fibre products Ui0 ×U . . .×U Uip exist in C. Let F be an abelian presheaf on
C. The construction

F 7−→ Č•(U ,F)
is functorial in F . In fact, it is a functor
(9.0.1) Č•(U ,−) : PAb(C) −→ Comp+(Ab)
see Derived Categories, Definition 8.1 for notation. Recall that the category of bounded
below complexes in an abelian category is an abelian category, see Homology, Lemma 13.9.

Lemma 9.1. The functor given by Equation (9.0.1) is an exact functor (see Homology,
Lemma 7.2).
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Proof. For any object W of C the functor F 7→ F(W ) is an additive exact func-
tor from PAb(C) to Ab. The terms Čp(U ,F) of the complex are products of these exact
functors and hence exact. Moreover a sequence of complexes is exact if and only if the
sequence of terms in a given degree is exact. Hence the lemma follows. �

Lemma 9.2. Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in C. The functors
F 7→ Ȟn(U ,F) form a δ-functor from the abelian category PAb(C) to the category of
Z-modules (see Homology, Definition 12.1).

Proof. By Lemma 9.1 a short exact sequence of abelian presheaves 0→ F1 → F2 →
F3 → 0 is turned into a short exact sequence of complexes of Z-modules. Hence we
can use Homology, Lemma 13.12 to get the boundary maps δF1→F2→F3 : Ȟn(U ,F3) →
Ȟn+1(U ,F1) and a corresponding long exact sequence. We omit the verification that
these maps are compatible with maps between short exact sequences of presheaves. �

Lemma 9.3. Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in C. Consider the
chain complex ZU,• of abelian presheaves

. . .→
⊕
i0i1i2

ZUi0 ×UUi1 ×UUi2 →
⊕
i0i1

ZUi0 ×UUi1 →
⊕
i0

ZUi0 → 0→ . . .

where the last nonzero term is placed in degree 0 and where the map

ZUi0 ×U ...×uUip+1
−→ Z

Ui0 ×U ...Ûij ...×UUip+1

is given by (−1)j times the canonical map. Then there is an isomorphism

HomPAb(C)(ZU,•,F) = Č•(U ,F)

functorial in F ∈ Ob(PAb(C)).

Proof. This is a tautology based on the fact that

HomPAb(C)(
⊕
i0...ip

ZUi0 ×U ...×UUip ,F) =
∏
i0...ip

HomPAb(C)(ZUi0 ×U ...×UUip ,F)

=
∏
i0...ip

F(Ui0 ×U . . .×U Uip)

see Modules on Sites, Lemma 4.2. �

Lemma 9.4. Let C be a category. Let U = {fi : Ui → U}i∈I be a family of mor-
phisms with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in C. The
chain complex ZU,• of presheaves of Lemma 9.3 above is exact in positive degrees, i.e., the
homology presheaves Hi(ZU,•) are zero for i > 0.
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Proof. Let V be an object of C. We have to show that the chain complex of abelian
groups ZU,•(V ) is exact in degrees > 0. This is the complex

. . .

��⊕
i0i1i2

Z[MorC(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
i0i1

Z[MorC(V,Ui0 ×U Ui1)]

��⊕
i0

Z[MorC(V,Ui0)]

��
0

For any morphism ϕ : V → U denote Morϕ(V,Ui) = {ϕi : V → Ui | fi ◦ ϕi = ϕ}. We
will use a similar notation for Morϕ(V,Ui0 ×U . . . ×U Uip). Note that composing with
the various projection maps between the fibred productsUi0×U . . .×U Uip preserves these
morphism sets. Hence we see that the complex above is the same as the complex

. . .

��⊕
ϕ

⊕
i0i1i2

Z[Morϕ(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
ϕ

⊕
i0i1

Z[Morϕ(V,Ui0 ×U Ui1)]

��⊕
ϕ

⊕
i0

Z[Morϕ(V,Ui0)]

��
0

Next, we make the remark that we have

Morϕ(V,Ui0 ×U . . .×U Uip) = Morϕ(V,Ui0)× . . .×Morϕ(V,Uip)
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Using this and the fact that Z[A]⊕ Z[B] = Z[AqB] we see that the complex becomes

. . .

��⊕
ϕ Z

[∐
i0i1i2

Morϕ(V,Ui0)×Morϕ(V,Ui1)×Morϕ(V,Ui2)
]

��⊕
ϕ Z

[∐
i0i1

Morϕ(V,Ui0)×Morϕ(V,Ui1)
]

��⊕
ϕ Z

[∐
i0

Morϕ(V,Ui0)
]

��
0

Finally, on setting Sϕ =
∐
i∈I Morϕ(V,Ui) we see that we get⊕

ϕ
(. . .→ Z[Sϕ × Sϕ × Sϕ]→ Z[Sϕ × Sϕ]→ Z[Sϕ]→ 0→ . . .)

Thus we have simplified our task. Namely, it suffices to show that for any nonempty set
S the (extended) complex of free abelian groups

. . .→ Z[S × S × S]→ Z[S × S]→ Z[S] Σ−→ Z→ 0→ . . .

is exact in all degrees. To see this fix an element s ∈ S , and use the homotopy

n(s0,...,sp) 7−→ n(s,s0,...,sp)

with obvious notations. �

Lemma 9.5. Let C be a category. LetU = {fi : Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in C. Let O be a
presheaf of rings on C. The chain complex

ZU,• ⊗p,Z O

is exact in positive degrees. Here ZU,• is the chain complex of Lemma 9.3, and the tensor
product is over the constant presheaf of rings with value Z.

Proof. Let V be an object of C. In the proof of Lemma 9.4 we saw that ZU,•(V ) is
isomorphic as a complex to a direct sum of complexes which are homotopic to Z placed in
degree zero. Hence also ZU,•(V )⊗Z O(V ) is isomorphic as a complex to a direct sum of
complexes which are homotopic to O(V ) placed in degree zero. Or you can use Modules
on Sites, Lemma 28.11, which applies since the presheaves ZU,i are flat, and the proof of
Lemma 9.4 shows that H0(ZU,•) is a flat presheaf also. �

Lemma 9.6. Let C be a category. LetU = {fi : Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in C. The Čech
cohomology functors Ȟp(U ,−) are canonically isomorphic as a δ-functor to the right
derived functors of the functor

Ȟ0(U ,−) : PAb(C) −→ Ab.
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Moreover, there is a functorial quasi-isomorphism

Č•(U ,F) −→ RȞ0(U ,F)

where the right hand side indicates the derived functor

RȞ0(U ,−) : D+(PAb(C)) −→ D+(Z)

of the left exact functor Ȟ0(U ,−).

Proof. Note that the category of abelian presheaves has enough injectives, see Injec-
tives, Proposition 6.1. Note that Ȟ0(U ,−) is a left exact functor from the category of
abelian presheaves to the category of Z-modules. Hence the derived functor and the right
derived functor exist, see Derived Categories, Section 20.

Let I be a injective abelian presheaf. In this case the functor HomPAb(C)(−, I) is exact on
PAb(C). By Lemma 9.3 we have

HomPAb(C)(ZU,•, I) = Č•(U , I).

By Lemma 9.4 we have that ZU,• is exact in positive degrees. Hence by the exactness of
Hom into I mentioned above we see that Ȟi(U , I) = 0 for all i > 0. Thus the δ-functor
(Ȟn, δ) (see Lemma 9.2) satisfies the assumptions of Homology, Lemma 12.4, and hence is
a universal δ-functor.

By Derived Categories, Lemma 20.4 also the sequence RiȞ0(U ,−) forms a universal δ-
functor. By the uniqueness of universal δ-functors, see Homology, Lemma 12.5 we con-
clude thatRiȞ0(U ,−) = Ȟi(U ,−). This is enough for most applications and the reader
is suggested to skip the rest of the proof.

LetF be any abelian presheaf on C. Choose an injective resolutionF → I• in the category
PAb(C). Consider the double complex Č•(U , I•) with terms Čp(U , Iq). Next, consider
the total complex Tot(Č•(U , I•)) associated to this double complex, see Homology, Sec-
tion 18. There is a map of complexes

Č•(U ,F) −→ Tot(Č•(U , I•))

coming from the maps Čp(U ,F)→ Čp(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ Tot(Č•(U , I•))

coming from the maps Ȟ0(U , Iq)→ Č0(U , Iq). Both of these maps are quasi-isomorphisms
by an application of Homology, Lemma 25.4. Namely, the columns of the double complex
are exact in positive degrees because the Čech complex as a functor is exact (Lemma 9.1)
and the rows of the double complex are exact in positive degrees since as we just saw
the higher Čech cohomology groups of the injective presheaves Iq are zero. Since quasi-
isomorphisms become invertible in D+(Z) this gives the last displayed morphism of the
lemma. We omit the verification that this morphism is functorial. �

10. Čech cohomology and cohomology

The relationship between cohomology and Čech cohomology comes from the fact that
the Čech cohomology of an injective abelian sheaf is zero. To see this we note that an
injective abelian sheaf is an injective abelian presheaf and then we apply results in Čech
cohomology in the preceding section.
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Lemma 10.1. Let C be a site. An injective abelian sheaf is also injective as an object in
the category PAb(C).

Proof. Apply Homology, Lemma 29.1 to the categories A = Ab(C), B = PAb(C),
the inclusion functor and sheafification. (See Modules on Sites, Section 3 to see that all
assumptions of the lemma are satisfied.) �

Lemma 10.2. Let C be a site. Let U = {Ui → U}i∈I be a covering of C. Let I be an
injective abelian sheaf, i.e., an injective object of Ab(C). Then

Ȟp(U , I) =
{
I(U) if p = 0

0 if p > 0

Proof. By Lemma 10.1 we see that I is an injective object in PAb(C). Hence we can
apply Lemma 9.6 (or its proof) to see the vanishing of higher Čech cohomology group.
For the zeroth see Lemma 8.2. �

Lemma 10.3. Let C be a site. Let U = {Ui → U}i∈I be a covering of C. There is a
transformation

Č•(U ,−) −→ RΓ(U,−)
of functors Ab(C)→ D+(Z). In particular this gives a transformation of functors Ȟp(U,F)→
Hp(U,F) for F ranging over Ab(C).

Proof. Let F be an abelian sheaf. Choose an injective resolution F → I•. Consider
the double complex Č•(U , I•) with terms Čp(U , Iq). Next, consider the associated total
complex Tot(Č•(U , I•)), see Homology, Definition 18.3. There is a map of complexes

α : Γ(U, I•) −→ Tot(Č•(U , I•))

coming from the maps Iq(U)→ Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ Tot(Č•(U , I•))

coming from the map F → I0. We can apply Homology, Lemma 25.4 to see that α is a
quasi-isomorphism. Namely, Lemma 10.2 implies that the qth row of the double complex
Č•(U , I•) is a resolution of Γ(U, Iq). Hence α becomes invertible in D+(Z) and the
transformation of the lemma is the composition of β followed by the inverse of α. We
omit the verification that this is functorial. �

Lemma 10.4. Let C be a site. Let G be an abelian sheaf on C. Let U = {Ui → U}i∈I
be a covering of C. The map

Ȟ1(U ,G) −→ H1(U,G)

is injective and identifies Ȟ1(U ,G) via the bijection of Lemma 4.3 with the set of isomor-
phism classes of G|U -torsors which restrict to trivial torsors over each Ui.

Proof. To see this we construct an inverse map. Namely, let F be a G|U -torsor on
C/U whose restriction to C/Ui is trivial. By Lemma 4.2 this means there exists a sec-
tion si ∈ F(Ui). On Ui0 ×U Ui1 there is a unique section si0i1 of G such that si0i1 ·
si0 |Ui0 ×UUi1 = si1 |Ui0 ×UUi1 . An easy computation shows that si0i1 is a Čech cocycle and
that its class is well defined (i.e., does not depend on the choice of the sections si). The
inverse maps the isomorphism class of F to the cohomology class of the cocycle (si0i1).
We omit the verification that this map is indeed an inverse. �
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Lemma 10.5. Let C be a site. Consider the functor i : Ab(C) → PAb(C). It is a left
exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)
see discussion in Section 7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words, the
sections of Rpi(F) over an object U of C are given by

Ker(In(U)→ In+1(U))
Im(In−1(U)→ In(U)) .

which is the definition of Hp(U,F). �

Lemma 10.6. Let C be a site. Let U = {Ui → U}i∈I be a covering of C. For any
abelian sheaf F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U ,Hq(F))
converging to Hp+q(U,F). This spectral sequence is functorial in F .

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
22.2) for the functors

i : Ab(C)→ PAb(C) and Ȟ0(U ,−) : PAb(C)→ Ab.

Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 8.2. We have that i(I) is Čech acyclic
by Lemma 10.2. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as functors on PAb(C) by
Lemma 9.6. Putting everything together gives the lemma. �

Lemma 10.7. Let C be a site. Let U = {Ui → U}i∈I be a covering. Let F ∈
Ob(Ab(C)). Assume that Hi(Ui0 ×U . . . ×U Uip ,F) = 0 for all i > 0, all p ≥ 0 and
all i0, . . . , ip ∈ I . Then Ȟp(U ,F) = Hp(U,F).

Proof. We will use the spectral sequence of Lemma 10.6. The assumptions mean that
Ep,q2 = 0 for all (p, q) with q 6= 0. Hence the spectral sequence degenerates at E2 and the
result follows. �

Lemma 10.8. Let C be a site. Let

0→ F → G → H → 0
be a short exact sequence of abelian sheaves on C. Let U be an object of C. If there exists a
cofinal system of coverings U ofU such that Ȟ1(U ,F) = 0, then the map G(U)→ H(U)
is surjective.

Proof. Take an element s ∈ H(U). Choose a covering U = {Ui → U}i∈I such that
(a) Ȟ1(U ,F) = 0 and (b) s|Ui is the image of a section si ∈ G(Ui). Since we can certainly
find a covering such that (b) holds it follows from the assumptions of the lemma that we
can find a covering such that (a) and (b) both hold. Consider the sections

si0i1 = si1 |Ui0 ×UUi1 − si0 |Ui0 ×UUi1 .

Since si lifts s we see that si0i1 ∈ F(Ui0 ×U Ui1). By the vanishing of Ȟ1(U ,F) we can
find sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0 ×UUi1 − ti0 |Ui0 ×UUi1 .
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Then clearly the sections si− ti satisfy the sheaf condition and glue to a section of G over
U which maps to s. Hence we win. �

Lemma 10.9. (Variant of Cohomology, Lemma 11.8.) Let C be a site. Let CovC be
the set of coverings of C (see Sites, Definition 6.2). Let B ⊂ Ob(C), and Cov ⊂ CovC be
subsets. Let F be an abelian sheaf on C. Assume that

(1) For every U ∈ Cov, U = {Ui → U}i∈I we have U,Ui ∈ B and every Ui0 ×U
. . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system of
coverings of U .

(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.

Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.

Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F has
vanishing higher Čech cohomology for any U ∈ Cov”. Choose an embedding F → I
into an injective abelian sheaf. By Lemma 10.2 I has vanishing higher Čech cohomology
for any U ∈ Cov. LetQ = I/F so that we have a short exact sequence

0→ F → I → Q → 0.

By Lemma 10.8 and our assumption (2) this sequence gives rise to an exact sequence

0→ F(U)→ I(U)→ Q(U)→ 0.

for everyU ∈ B. Hence for anyU ∈ Cov we get a short exact sequence of Čech complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0

since each term in the Čech complex is made up out of a product of values over elements
of B by assumption (1). In particular we have a long exact sequence of Čech cohomology
groups for any covering U ∈ Cov. This implies that Q is also an abelian sheaf with
vanishing higher Čech cohomology for all U ∈ Cov.

Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 20.4). By the above we see that H0(U, I) → H0(U,Q) is surjective
and hence H1(U,F) = 0. Since F was an arbitrary abelian sheaf with vanishing higher
Čech cohomology for all U ∈ Cov we conclude that also H1(U,Q) = 0 since Q is an-
other of these sheaves (see above). By the long exact sequence this in turn implies that
H2(U,F) = 0. And so on and so forth. �
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11. Second cohomology and gerbes

Let p : S → C be a gerbe over a site all of whose automorphism groups are commutative.
In this situation the first and second cohomology groups of the sheaf of automorphisms
(Stacks, Lemma 11.8) controls the existence of objects.

The following lemma will be made obsolete by a more complete discussion of this rela-
tionship we will add in the future.

Lemma 11.1. Let C be a site. Let p : S → C be a gerbe over a site whose automorphism
sheaves are abelian. Let G be the sheaf of abelian groups constructed in Stacks, Lemma 11.8.
Let U be an object of C such that

(1) there exists a cofinal system of coverings {Ui → U} ofU in C such thatH1(Ui,G) =
0 and H1(Ui ×U Uj ,G) = 0 for all i, j , and

(2) H2(U,G) = 0.
Then there exists an object of S lying over U .

Proof. By Stacks, Definition 11.1 there exists a covering U = {Ui → U} and xi in S
lying over Ui. Write Uij = Ui ×U Uj . By (1) after refining the covering we may assume
that H1(Ui,G) = 0 and H1(Uij ,G) = 0. Consider the sheaf

Fij = Isom(xi|Uij , xj |Uij )

on C/Uij . Since G|Uij = Aut(xi|Uij ) we see that there is an action

G|Uij ×Fij → Fij
by precomposition. It is clear thatFij is a pseudo G|Uij -torsor and in fact a torsor because
any two objects of a gerbe are locally isomorphic. By our choice of the covering and by
Lemma 4.3 these torsors are trivial (and hence have global sections by Lemma 4.2). In
other words, we can choose isomorphisms

ϕij : xi|Uij −→ xj |Uij
To find an object x over U we are going to massage our choice of these ϕij to get a descent
datum (which is necessarily effective as p : S → C is a stack). Namely, the obstruction
to being a descent datum is that the cocycle condition may not hold. Namely, set Uijk =
Ui ×U Uj ×U Uk. Then we can consider

gijk = ϕ−1
ik |Uijk ◦ ϕjk|Uijk ◦ ϕij |Uijk

which is an automorphism of xi over Uijk. Thus we may and do consider gijk as a section
of G over Uijk. A computation (omitted) shows that (gi0i1i2) is a 2-cocycle in the Čech
complex Č•(U ,G) of G with respect to the coveringU . By the spectral sequence of Lemma
10.6 and since H1(Ui,G) = 0 for all i we see that Ȟ2(U ,G) → H2(U,G) is injective.
Hence (gi0i1i2) is a coboundary by our assumption that H2(U,G) = 0. Thus we can
find sections gij ∈ G(Uij) such that g−1

ik |Uijkgjk|Uijkgij |Uijk = gijk for all i, j, k. After
replacing ϕij by ϕijg−1

ij we see that ϕij gives a descent datum on the objects xi over Ui
and the proof is complete. �

12. Cohomology of modules

Everything that was said for cohomology of abelian sheaves goes for cohomology of mod-
ules, since the two agree.
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Lemma 12.1. Let (C,O) be a ringed site. An injective sheaf of modules is also injective
as an object in the category PMod(O).

Proof. Apply Homology, Lemma 29.1 to the categoriesA = Mod(O),B = PMod(O),
the inclusion functor and sheafification. (See Modules on Sites, Section 11 to see that all
assumptions of the lemma are satisfied.) �

Lemma 12.2. Let (C,O) be a ringed site. Consider the functor i : Mod(C) →
PMod(C). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)
see discussion in Section 7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I• in
Mod(O). By definition Rpi is the pth cohomology presheaf of the complex I•. In other
words, the sections of Rpi(F) over an object U of C are given by

Ker(In(U)→ In+1(U))
Im(In−1(U)→ In(U)) .

which is the definition of Hp(U,F). �

Lemma 12.3. Let (C,O) be a ringed site. Let U = {Ui → U}i∈I be a covering of C.
Let I be an injectiveO-module, i.e., an injective object of Mod(O). Then

Ȟp(U , I) =
{
I(U) if p = 0

0 if p > 0

Proof. Lemma 9.3 gives the first equality in the following sequence of equalities

Č•(U , I) = MorPAb(C)(ZU,•, I)
= MorPMod(Z)(ZU,•, I)
= MorPMod(O)(ZU,• ⊗p,Z O, I)

The third equality by Modules on Sites, Lemma 9.2. By Lemma 12.1 we see that I is an
injective object in PMod(O). Hence HomPMod(O)(−, I) is an exact functor. By Lemma
9.5 we see the vanishing of higher Čech cohomology groups. For the zeroth see Lemma
8.2. �

Lemma 12.4. Let C be a site. Let O be a sheaf of rings on C. Let F be an O-module,
and denote Fab the underlying sheaf of abelian groups. Then we have

Hi(C,Fab) = Hi(C,F)
and for any object U of C we also have

Hi(U,Fab) = Hi(U,F).
Here the left hand side is cohomology computed in Ab(C) and the right hand side is co-
homology computed in Mod(O).

Proof. By Derived Categories, Lemma 20.4 the δ-functor (F 7→ Hp(U,F))p≥0 is
universal. The functor Mod(O)→ Ab(C),F 7→ Fab is exact. Hence (F 7→ Hp(U,Fab))p≥0
is a δ-functor also. Suppose we show that (F 7→ Hp(U,Fab))p≥0 is also universal. This
will imply the second statement of the lemma by uniqueness of universal δ-functors, see
Homology, Lemma 12.5. Since Mod(O) has enough injectives, it suffices to show that
Hi(U, Iab) = 0 for any injective object I in Mod(O), see Homology, Lemma 12.4.
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Let I be an injective object of Mod(O). Apply Lemma 10.9 with F = I , B = C and
Cov = CovC . Assumption (3) of that lemma holds by Lemma 12.3. Hence we see that
Hi(U, Iab) = 0 for every object U of C.

If C has a final object then this also implies the first equality. If not, then according to
Sites, Lemma 29.5 we see that the ringed topos (Sh(C),O) is equivalent to a ringed topos
where the underlying site does have a final object. Hence the lemma follows. �

Lemma 12.5. Let C be a site. Let I be a set. For i ∈ I let Fi be an abelian sheaf on C.
Let U ∈ Ob(C). The canonical map

Hp(U,
∏

i∈I
Fi) −→

∏
i∈I

Hp(U,Fi)

is an isomorphism for p = 0 and injective for p = 1.

Proof. The statement for p = 0 is true because the product of sheaves is equal to
the product of the underlying presheaves, see Sites, Lemma 10.1. Proof for p = 1. Set
F =

∏
Fi. Let ξ ∈ H1(U,F) map to zero in

∏
H1(U,Fi). By locality of cohomology,

see Lemma 7.3, there exists a covering U = {Uj → U} such that ξ|Uj = 0 for all j.
By Lemma 10.4 this means ξ comes from an element ξ̌ ∈ Ȟ1(U ,F). Since the maps
Ȟ1(U ,Fi) → H1(U,Fi) are injective for all i (by Lemma 10.4), and since the image of
ξ is zero in

∏
H1(U,Fi) we see that the image ξ̌i = 0 in Ȟ1(U ,Fi). However, since

F =
∏
Fi we see that Č•(U ,F) is the product of the complexes Č•(U ,Fi), hence by

Homology, Lemma 32.1 we conclude that ξ̌ = 0 as desired. �

Lemma 12.6. Let (C,O) be a ringed site. Let a : U ′ → U be a monomorphism in C.
Then for any injectiveO-module I the restriction mapping I(U)→ I(U ′) is surjective.

Proof. Let j : C/U → C and j′ : C/U ′ → C be the localization morphisms (Modules
on Sites, Section 19). Since j! is a left adjoint to restriction we see that for any sheaf F of
O-modules

HomO(j!OU ,F) = HomOU
(OU ,F|U ) = F(U)

Similarly, the sheaf j′
!OU ′ represents the functor F 7→ F(U ′). Moreover below we de-

scribe a canonical map ofO-modules

j′
!OU ′ −→ j!OU

which corresponds to the restriction mapping F(U)→ F(U ′) via Yoneda’s lemma (Cat-
egories, Lemma 3.5). It suffices to prove the displayed map of modules is injective, see
Homology, Lemma 27.2.

To construct our map it suffices to construct a map between the presheaves which assign
to an object V of C theO(V )-module⊕

ϕ′∈MorC(V,U ′)
O(V ) and

⊕
ϕ∈MorC(V,U)

O(V )

see Modules on Sites, Lemma 19.2. We take the map which maps the summand correspond-
ing to ϕ′ to the summand corresponding to ϕ = a◦ϕ′ by the identity map onO(V ). As a
is a monomorphism, this map is injective. As sheafification is exact, the result follows. �
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13. Totally acyclic sheaves

Let (C,O) be a ringed site. Let K be a presheaf of sets on C (we intentionally use a roman
capital here to distinguish from abelian sheaves). Given a sheaf ofO-modules F we set

F(K) = MorPSh(C)(K,F) = MorSh(C)(K#,F)
The functor F 7→ F(K) is a left exact functor Mod(O) → Ab hence we have its right
derived functors. We will denote these Hp(K,F) so that H0(K,F) = F(K).
Here are some observations:

(1) Since F(K) = F(K#), we have Hp(K,F) = Hp(K#,F). Allowing K to be
a presheaf in the definition above is a purely notational convenience.

(2) Suppose that K = hU or K = h#
U for some object U of C. Then Hp(K,F) =

Hp(U,F), because MorSh(C)(h#
U ,F) = F(U), see Sites, Section 12.

(3) IfO = Z (the constant sheaf), then the cohomology groups are functorsHp(K,−) :
Ab(C)→ Ab since Mod(O) = Ab(C) in this case.

We can translate some of our already proven results using this language.
Lemma 13.1. Let (C,O) be a ringed site. Let K be a presheaf of sets on C. Let F be

anO-module and denote Fab the underlying sheaf of abelian groups. Then Hp(K,F) =
Hp(K,Fab).

Proof. We may replace K by its sheafification and assume K is a sheaf. Note that
both Hp(K,F) and Hp(K,Fab) depend only on the topos, not on the underlying site.
Hence by Sites, Lemma 29.5 we may replace C by a “larger” site such that K = hU for
some object U of C. In this case the result follows from Lemma 12.4. �

Lemma 13.2. Let C be a site. Let K ′ → K be a map of presheaves of sets on C whose
sheafification is surjective. SetK ′

p = K ′×K . . .×K K ′ (p+ 1-factors). For every abelian
sheaf F there is a spectral sequence with Ep,q1 = Hq(K ′

p,F) converging to Hp+q(K,F).

Proof. Since sheafification is exact, we see that (K ′
p)# is equal to (K ′)#×K# . . .×K#

(K ′)# (p+1-factors). Thus we may replaceK andK ′ by their sheafifications and assume
K → K ′ is a surjective map of sheaves. After replacing C by a “larger” site as in Sites,
Lemma 29.5 we may assume that K,K ′ are objects of C and that U = {K ′ → K} is a
covering. Then we have the Čech to cohomology spectral sequence of Lemma 10.6 whose
E1 page is as indicated in the statement of the lemma. �

Lemma 13.3. Let C be a site. Let K be a sheaf of sets on C. Consider the morphism
of topoi j : Sh(C/K)→ Sh(C), see Sites, Lemma 30.3. Then j−1 preserves injectives and
Hp(K,F) = Hp(C/K, j−1F) for any abelian sheaf F on C.

Proof. By Sites, Lemmas 30.1 and 30.3 the morphism of topoi j is equivalent to a
localization. Hence this follows from Lemma 7.1. �

Keeping in mind Lemma 13.1 we see that the following definition is the “correct one” also
for sheaves of modules on ringed sites.

Definition 13.4. Let C be a site. We say an abelian sheaf F is totally acyclic1 if for
every sheaf of sets K we have Hp(K,F) = 0 for all p ≥ 1.

1Although this terminology is is used in [?, Vbis, Proposition 1.3.10] this is probably nonstandard notation.
In [?, V, Definition 4.1] this property is dubbed “flasque”, but we cannot use this because it would clash with our
definition of flasque sheaves on topological spaces. Please email stacks.project@gmail.com if you have a better
suggestion.

mailto:stacks.project@gmail.com
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It is clear that being totally acyclic is an intrinsic property, i.e., preserved under equiva-
lences of topoi. A totally acyclic sheaf has vanishing higher cohomology on all objects of
the site, but in general the condition of being totally acyclic is strictly stronger. Here is a
characterization of totally acyclic sheaves which is sometimes useful.

Lemma 13.5. Let C be a site. Let F be an abelian sheaf. If
(1) Hp(U,F) = 0 for p > 0 and U ∈ Ob(C), and
(2) for every surjection K ′ → K of sheaves of sets the extended Čech complex

0→ H0(K,F)→ H0(K ′,F)→ H0(K ′ ×K K ′,F)→ . . .

is exact,
then F is totally acyclic (and the converse holds too).

Proof. By assumption (1) we haveHp(h#
U , g

−1I) = 0 for all p > 0 and all objectsU
of C. Note that if K =

∐
Ki is a coproduct of sheaves of sets on C then Hp(K, g−1I) =∏

Hp(Ki, g
−1I). For any sheaf of sets K there exists a surjection

K ′ =
∐

h#
Ui
−→ K

see Sites, Lemma 12.5. Thus we conclude that: (*) for every sheaf of sets K there exists a
surjection K ′ → K of sheaves of sets such that Hp(K ′,F) = 0 for p > 0. We claim that
(*) and condition (2) imply that F is totally acyclic. Note that conditions (*) and (2) only
depend on F as an object of the topos Sh(C) and not on the underlying site. (We will not
use property (1) in the rest of the proof.)
We are going to prove by induction on n ≥ 0 that (*) and (2) imply the following induc-
tion hypothesis IHn: Hp(K,F) = 0 for all 0 < p ≤ n and all sheaves of sets K. Note
that IH0 holds. Assume IHn. Pick a sheaf of setsK. Pick a surjectionK ′ → K such that
Hp(K ′,F) = 0 for all p > 0. We have a spectral sequence with

Ep,q1 = Hq(K ′
p,F)

covering to Hp+q(K,F), see Lemma 13.2. By IHn we see that Ep,q1 = 0 for 0 < q ≤ n

and by assumption (2) we see that Ep,02 = 0 for p > 0. Finally, we have E0,q
1 = 0 for

q > 0 becauseHq(K ′,F) = 0 by choice ofK ′. Hence we conclude thatHn+1(K,F) = 0
because all the terms Ep,q2 with p+ q = n+ 1 are zero. �

14. The Leray spectral sequence

The key to proving the existence of the Leray spectral sequence is the following lemma.
Lemma 14.1. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.

Then for any injective object I in Mod(OC) the pushforward f∗I is totally acyclic.
Proof. LetK be a sheaf of sets onD. By Modules on Sites, Lemma 7.2 we may replace

C , D by “larger” sites such that f comes from a morphism of ringed sites induced by a
continuous functor u : D → C such that K = hV for some object V of D.
Thus we have to show that Hq(V, f∗I) is zero for q > 0 and all objects V of D when f
is given by a morphism of ringed sites. Let V = {Vj → V } be any covering of D. Since
u is continuous we see that U = {u(Vj) → u(V )} is a covering of C. Then we have an
equality of Čech complexes

Č•(V, f∗I) = Č•(U , I)
by the definition of f∗. By Lemma 12.3 we see that the cohomology of this complex is zero
in positive degrees. We win by Lemma 10.9. �
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For flat morphisms the functor f∗ preserves injective modules. In particular the functor
f∗ : Ab(C) → Ab(D) always transforms injective abelian sheaves into injective abelian
sheaves.

Lemma 14.2. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
If f is flat, then f∗I is an injectiveOD-module for any injectiveOC-module I .

Proof. In this case the functor f∗ is exact, see Modules on Sites, Lemma 31.2. Hence
the result follows from Homology, Lemma 29.1. �

Lemma 14.3. Let (Sh(C),OC) be a ringed topos. A totally acyclic sheaf is right acyclic
for the following functors:

(1) the functor H0(U,−) for any object U of C ,
(2) the functor F 7→ F(K) for any presheaf of sets K ,
(3) the functor Γ(C,−) of global sections,
(4) the functor f∗ for any morphism f : (Sh(C),OC) → (Sh(D),OD) of ringed

topoi.

Proof. Part (2) is the definition of a totally acyclic sheaf. Part (1) is a consequence
of (2) as pointed out in the discussion following the definition of totally acyclic sheaves.
Part (3) is a special case of (2) where K = e is the final object of Sh(C).
To prove (4) we may assume, by Modules on Sites, Lemma 7.2 that f is given by a morphism
of sites. In this case we see that Rif∗, i > 0 of a totally acyclic sheaf are zero by the
description of higher direct images in Lemma 7.4. �

Remark 14.4. As a consequence of the results above we find that Derived Cate-
gories, Lemma 22.1 applies to a number of situations. For example, given a morphism
f : (Sh(C),OC)→ (Sh(D),OD) of ringed topoi we have

RΓ(D, Rf∗F) = RΓ(C,F)
for any sheaf of OC-modules F . Namely, for an injective OX -module I the OD-module
f∗I is totally acyclic by Lemma 14.1 and a totally acyclic sheaf is acyclic for Γ(D,−) by
Lemma 14.3.

Lemma 14.5 (Leray spectral sequence). Let f : (Sh(C),OC) → (Sh(D),OD) be a
morphism of ringed topoi. Let F• be a bounded below complex of OC-modules. There is
a spectral sequence

Ep,q2 = Hp(D, Rqf∗(F•))
converging to Hp+q(C,F•).

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
22.2 coming from the composition of functors Γ(C,−) = Γ(D,−) ◦ f∗. To see that the
assumptions of Derived Categories, Lemma 22.2 are satisfied, see Lemmas 14.1 and 14.3. �

Lemma 14.6. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let F be anOC-module.

(1) If Rqf∗F = 0 for q > 0, then Hp(C,F) = Hp(D, f∗F) for all p.
(2) If Hp(D, Rqf∗F) = 0 for all q and p > 0, then Hq(C,F) = H0(D, Rqf∗F)

for all q.

Proof. These are two simple conditions that force the Leray spectral sequence to
converge. You can also prove these facts directly (without using the spectral sequence)
which is a good exercise in cohomology of sheaves. �
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Lemma 14.7 (Relative Leray spectral sequence). Let f : (Sh(C),OC)→ (Sh(D),OD)
and g : (Sh(D),OD) → (Sh(E),OE) be morphisms of ringed topoi. Let F be an OC-
module. There is a spectral sequence with

Ep,q2 = Rpg∗(Rqf∗F)
converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there is a
version for bounded below complexes ofOC-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors, see De-
rived Categories, Lemma 22.2 and Lemmas 14.1 and 14.3. �

15. The base change map

In this section we construct the base change map in some cases; the general case is treated in
Remark 19.3. The discussion in this section avoids using derived pullback by restricting to
the case of a base change by a flat morphism of ringed sites. Before we state the result, let us
discuss flat pullback on the derived category. Suppose g : (Sh(C),OC) → (Sh(D),OD)
is a flat morphism of ringed topoi. By Modules on Sites, Lemma 31.2 the functor g∗ :
Mod(OD)→Mod(OC) is exact. Hence it has a derived functor

g∗ : D(OD)→ D(OC)
which is computed by simply pulling back an representative of a given object in D(OD),
see Derived Categories, Lemma 16.9. It preserved the bounded (above, below) subcate-
gories. Hence as indicated we indicate this functor by g∗ rather than Lg∗.

Lemma 15.1. Let

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

be a commutative diagram of ringed topoi. Let F• be a bounded below complex of OC-
modules. Assume both g and g′ are flat. Then there exists a canonical base change map

g∗Rf∗F• −→ R(f ′)∗(g′)∗F•

in D+(OD′).

Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma 14.2
we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g′)∗F•. Hence by
Derived Categories, Lemmas 18.6 and 18.7 the arrow β in the diagram

(g′)∗(g′)∗F• // (g′)∗J •

F•

adjunction

OO

// I•

β

OO

exists and is unique up to homotopy. Pushing down to D we get

f∗β : f∗I• −→ f∗(g′)∗J • = g∗(f ′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note that this
map is unique up to homotopy since the only choice in the whole process was the choice
of the map β and everything was done on the level of complexes. �
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16. Cohomology and colimits

Let (C,O) be a ringed site. Let I →Mod(O), i 7→ Fi be a diagram over the index category
I , see Categories, Section 14. For each i there is a canonical map Fi → colimi Fi which
induces a map on cohomology. Hence we get a canonical map

colimiH
p(U,Fi) −→ Hp(U, colimi Fi)

for every p ≥ 0 and every object U of C. These maps are in general not isomorphisms,
even for p = 0.

The following lemma is the analogue of Sites, Lemma 17.7 for cohomology.

Lemma 16.1. Let C be a site. Let CovC be the set of coverings of C (see Sites, Definition
6.2). Let B ⊂ Ob(C), and Cov ⊂ CovC be subsets. Assume that

(1) For every U ∈ Cov we have U = {Ui → U}i∈I with I finite, U,Ui ∈ B and
every Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system of
coverings of U .

Then the map
colimiH

p(U,Fi) −→ Hp(U, colimi Fi)
is an isomorphism for every p ≥ 0, every U ∈ B, and every filtered diagram I → Ab(C).

Proof. To prove the lemma we will argue by induction on p. Note that we require
in (1) the coverings U ∈ Cov to be finite, so that all the elements of B are quasi-compact.
Hence (2) and (1) imply that any U ∈ B satisfies the hypothesis of Sites, Lemma 17.7 (4).
Thus we see that the result holds for p = 0. Now we assume the lemma holds for p and
prove it for p+ 1.

Choose a filtered diagram F : I → Ab(C), i 7→ Fi. Since Ab(C) has functorial injective
embeddings, see Injectives, Theorem 7.4, we can find a morphism of filtered diagramsF →
I such that each Fi → Ii is an injective map of abelian sheaves into an injective abelian
sheaf. DenoteQi the cokernel so that we have short exact sequences

0→ Fi → Ii → Qi → 0.

Since colimits of sheaves are the sheafification of colimits on the level of presheaves, since
sheafification is exact, and since filtered colimits of abelian groups are exact (see Algebra,
Lemma 8.8), we see the sequence

0→ colimi Fi → colimi Ii → colimiQi → 0.

is also a short exact sequence. We claim that Hq(U, colimi Ii) = 0 for all U ∈ B and all
q ≥ 1. Accepting this claim for the moment consider the diagram

colimiH
p(U, Ii)

��

// colimiH
p(U,Qi)

��

// colimiH
p+1(U,Fi)

��

// 0

��
Hp(U, colimi Ii) // Hp(U, colimiQi) // Hp+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper right
corner comes from the fact that the sheaves Ii are injective. The top row is exact by an
application of Algebra, Lemma 8.8. Hence by the snake lemma we deduce the result for
p+ 1.
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It remains to show that the claim is true. We will use Lemma 10.9. By the result for p = 0
we see that for U ∈ Cov we have

Č•(U , colimi Ii) = colimi Č•(U , Ii)

because all the Uj0 ×U . . .×U Ujp are in B. By Lemma 10.2 each of the complexes in the
colimit of Čech complexes is acyclic in degree ≥ 1. Hence by Algebra, Lemma 8.8 we see
that also the Čech complex Č•(U , colimi Ii) is acyclic in degrees ≥ 1. In other words we
see that Ȟp(U , colimi Ii) = 0 for all p ≥ 1. Thus the assumptions of Lemma 10.9. are
satisfied and the claim follows. �

Lemma 16.2. Let C be a site. Let S ⊂ Ob(Sh(C)) be a subset. Denote ∗ the final
object of Sh(C). Assume

(1) for some K ∈ S the map K → ∗ is surjective,
(2) given a surjective map of sheaves F → K with K ∈ S there exists a K ′ ∈ S

and a map K ′ → F such that the composition K ′ → K is surjective,
(3) given K,K ′ ∈ S there is a surjection K ′′ → K ×K ′ with K ′′ ∈ S ,
(4) givena, b : K → K ′ withK,K ′ ∈ S there exists a surjectionK ′′ → Equalizer(a, b)

with K ′′ ∈ S , and
(5) every K ∈ S is quasi-compact (Sites, Definition 17.4).

Then for all p ≥ 0 the map

colimλH
p(C,Fλ) −→ Hp(C, colimλ Fλ)

is an isomorphism for every filtered diagram Λ→ Ab(C), λ 7→ Fλ.

Proof. We will prove this by induction on p. The base case p = 0 follows from Sites,
Lemma 17.8 part (4). We check the assumptions hold, but we urge the reader to skip this
part. Suppose F → ∗ is surjective. Choose K ∈ S and K → ∗ surjective as in (1). Then
F ×K → K is surjective. Choose K ′ → F ×K with K ′ ∈ S and K ′ → K surjective
as in (2). Then there is a map K ′ → F and K ′ → ∗ is surjective. Hence Sites, Lemma
17.8 assumption (4)(a) is satisfied. By Sites, Lemma 17.5, assumptions (3) and (5) we see
thatK ×K is quasi-compact for allK ∈ S. Hence Sites, Lemma 17.8 assumption (4)(b) is
satisfied. This finishes the proof of the base case.

Induction step. Assume the result holds for Hp for p ≤ p0 and for all topoi Sh(C) such
that a set S ⊂ Ob(Sh(C)) can be found satisfying (1) – (5). Arguing exactly as in the proof
of Lemma 16.1 we see that it suffices to show: given a filtered colimit I = colim Iλ with
Iλ injective abelian sheaves, we have Hp0+1(C, I) = 0. Choose K → ∗ surjective with
K ∈ S as in (1). Denote Kn the n-fold self product of K. Consider the spectral sequence

Ep,q1 = Hq(Kp+1, I)⇒ Hp+q(∗, I) = Hp+q(C, I)

of Lemma 13.2. Recall that Hq(Kp+1,F) = Hq(C/Kp+1, j−1F), for any abelian sheaf
on C , see Lemma 13.3. We have j−1I = colim j−1Iλ as j−1 commutes with colimits.
The restrictions j−1Iλ are injective abelian sheaves on C/Kp+1 by Lemma 7.1. Below
we will show that the induction hypothesis applies to C/Kp+1 and hence we see that
Hq(Kp+1, I) = colimHq(Kp+1, Iλ) = 0 for q < p0 + 1 (vanishing as Iλ is injective).
It follows that

Hp0+1(C, I) = Hp0+1 (. . .→ H0(Kp0 , I)→ H0(Kp0+1, I)→ H0(Kp0+2, I)→ . . .
)
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Again using the induction hypothesis, the complex depicted on the right hand side is the
colimit over Λ of the complexes

. . .→ H0(Kp0 , Iλ)→ H0(Kp0+1, Iλ)→ H0(Kp0+2, Iλ)→ . . .

These complexes are exact as Iλ is an injective abelian sheaf (follows from the spectral
sequence for example). Since filtered colimits are exact in the category of abelian groups
we obtain the desired vanishing.

We still have to show that the induction hypothesis applies to the site C/Kn for all n ≥
1. Recall that Sh(C/Kn) = Sh(C)/Kn, see Sites, Lemma 30.3. Thus we may work in
Sh(C)/Kn. Denote Sn ⊂ Ob(Sh(C/Kn) the set of objects of the form K ′ → Kn. We
check each property in turn:

(1) By (3) and induction there exists a surjection K ′ → Kn with K ′ ∈ S. Then
(K ′ → Kn)→ (Kn → Kn) is a surjection in Sh(C)/Kn and Kn → Kn is the
final object of Sh(C)/Kn. Hence (1) holds for Sn,

(2) Property (2) for Sn is an immediate consquence of (2) for S.
(3) Let a : K1 → Kn and b : K2 → Kn be in Sn. Then (K1 → Kn)×(K2 → Kn)

is the object K1 ×Kn K2 → Kn of Sh(C)/Kn. The subsheaf K1 ×Kn K2 ⊂
K1 × K2 is the equalizer of a ◦ pr1 and b ◦ pr2. Write a = (a1, . . . , an) and
b = (b1, . . . , bn). Pick K3 → K1 ×K2 surjective with K3 ∈ S; this is possibly
by assumption (3) for C. Pick

K4 −→ Equalizer(K3 → K1 ×K2
a1,b1−−−→ K)

surjective with K4 ∈ S. This is possible by assumption (4) for C. Pick

K5 −→ Equalizer(K4 → K1 ×K2
a2,b2−−−→ K)

surjective with K5 ∈ S. Again this is possible. Continue in this fashion until
we get

K3+n −→ Equalizer(K2+n → K1 ×K2
an,bn−−−→ K)

surjective with K3+n ∈ S. By construction K3+n → K1 ×Kn K2 is surjective.
Hence (K3+n → Kn) is in Sn and surjects onto the product (K1 → Kn) ×
(K2 → Kn). Thus (3) holds for Sn.

(4) Property (4) for Sn is an immediate consequence of property (4) for S.
(5) Property (5) for Sn is a consequence of property (5) for S. Namely, an object
F → Kn of Sh(C)/Kn corresponds to a quasi-compact object of Sh(C/Kn) if
and only if F is a quasi-compact object of Sh(C).

This finishes the proof of the lemma. �

Remark 16.3. Let C be a site. Let B ⊂ Ob(C) be a subset. Let S ⊂ Ob(Sh(C)) be the
set of sheaves K which have the form

K =
∐

i=1,...,n
h#
Ui

with U1, . . . , Un ∈ B. Then we can ask: when does this set satisfy the assumptions of
Lemma 16.2? One answer is that it suffices if

(1) for some n ≥ 0, U1, . . . , Un ∈ B the map
∐
i=1,...,n h

#
Ui
→ ∗ is surjective,

(2) every covering of U ∈ B can be refined by a covering of the form {Ui →
U}i=1,...,n with Ui ∈ B,
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(3) given U,U ′ ∈ B there exist n ≥ 0, U1, . . . , Un ∈ B, maps Ui → U and Ui → U ′

such that
∐
i=1,...,n h

#
Ui
→ h#

U × h
#
U ′ is surjective,

(4) given morphisms a, b : U → U ′ in C with U,U ′ ∈ B, there exist U1, . . . , Un ∈
B, maps Ui → U equalizing a, b such that

∐
i=1,...,n h

#
Ui
→ Equalizer(h#

a , h
#
b :

h#
U → h#

U ′) is surjective.
We omit the detailed verification, except to mention that part (2) above insures that every
element of B is quasi-compact and hence every K ∈ S is quasi-compact as well by Sites,
Lemma 17.6.

Lemma 16.4. Let I be a cofiltered index category and let (Ci, fa) be an inverse system
of sites over I as in Sites, Situation 18.1. Set C = colim Ci as in Sites, Lemmas 18.2 and 18.3.
Moreover, assume given

(1) an abelian sheaf Fi on Ci for all i ∈ Ob(I),
(2) for a : j → i a map ϕa : f−1

a Fi → Fj of abelian sheaves on Cj
such that ϕc = ϕb ◦ f−1

b ϕa whenever c = a ◦ b. Then there exists a map of systems
(Fi, ϕa)→ (Gi, ψa) such that Fi → Gi is injective and Gi is an injective abelian sheaf.

Proof. For each i we pick an injection Fi → Ai where Ai is an injective abelian
sheaf on Ci. Then we can consider the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ak = Gi

where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ak. For

a : j → i in I there is a canonical map

ψa : f−1
a Gi → Gj

whose components are the canonical maps f−1
b fa◦b,∗Ak → fb,∗Ak for b : k → j. Thus

we find an injection (γi) : (Fi, ϕa)→ (Gi, ψa) of systems of abelian sheaves. Note that Gi
is an injective sheaf of abelian groups on Ci, see Lemma 14.2 and Homology, Lemma 27.3.
This finishes the construction. �

Lemma 16.5. In the situation of Lemma 16.4 set F = colim f−1
i Fi. Let i ∈ Ob(I),

Xi ∈ Ob(Ci). Then

colima:j→iH
p(ua(Xi),Fj) = Hp(ui(Xi),F)

for all p ≥ 0.

Proof. The case p = 0 is Sites, Lemma 18.4.

Choose (Fi, ϕa)→ (Gi, ψa) as in Lemma 16.4. Arguing exactly as in the proof of Lemma
16.1 we see that it suffices to prove that Hp(X, colim f−1

i Gi) = 0 for p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every object of C we

show that the Čech cohomology of G for any covering U of C is zero (Lemma 10.9). The
covering U comes from a covering Ui of Ci for some i. We have

Č•(U ,G) = colima:j→i Č•(ua(Ui),Gj)

by the case p = 0. The right hand side is acyclic in positive degrees as a filtered colimit of
acyclic complexes by Lemma 10.2. See Algebra, Lemma 8.8. �
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17. Flat resolutions

In this section we redo the arguments of Cohomology, Section 26 in the setting of ringed
sites and ringed topoi.

Lemma 17.1. Let (C,O) be a ringed site. Let G• be a complex of O-modules. The
functors

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(G• ⊗O F•)
and

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O G•)
are exact functors of triangulated categories.

Proof. This follows from Derived Categories, Remark 10.9. �

Definition 17.2. Let (C,O) be a ringed site. A complex K• of O-modules is called
K-flat if for every acyclic complex F• ofO-modules the complex

Tot(F• ⊗O K•)
is acyclic.

Lemma 17.3. Let (C,O) be a ringed site. LetK• be a K-flat complex. Then the functor
K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O K•)

transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 17.1 and the fact that quasi-isomorphisms are charac-
terized by having acyclic cones. �

Lemma 17.4. Let (C,O) be a ringed site. Let U be an object of C. If K• is a K-flat
complex ofO-modules, then K•|U is a K-flat complex ofOU -modules.

Proof. Let G• be an exact complex of OU -modules. Since jU ! is exact (Modules on
Sites, Lemma 19.3) and K• is a K-flat complex ofO-modules we see that the complex

jU !(Tot(G• ⊗OU
K•|U )) = Tot(jU !G• ⊗O K•)

is exact. Here the equality comes from Modules on Sites, Lemma 27.9 and the fact that jU !
commutes with direct sums (as a left adjoint). We conclude because jU ! reflects exactness
by Modules on Sites, Lemma 19.4. �

Lemma 17.5. Let (C,O) be a ringed site. IfK•,L• are K-flat complexes ofO-modules,
then Tot(K• ⊗O L•) is a K-flat complex ofO-modules.

Proof. Follows from the isomorphism
Tot(M• ⊗O Tot(K• ⊗O L•)) = Tot(Tot(M• ⊗O K•)⊗O L•)

and the definition. �

Lemma 17.6. Let (C,O) be a ringed site. Let (K•
1,K•

2,K•
3) be a distinguished triangle

in K(Mod(O)). If two out of three of K•
i are K-flat, so is the third.

Proof. Follows from Lemma 17.1 and the fact that in a distinguished triangle in
K(Mod(O)) if two out of three are acyclic, so is the third. �

Lemma 17.7. Let (C,O) be a ringed site. Let 0 → K•
1 → K•

2 → K•
3 → 0 be a short

exact sequence of complexes such that the terms of K•
3 are flat O-modules. If two out of

three of K•
i are K-flat, so is the third.
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Proof. By Modules on Sites, Lemma 28.9 for every complex L• we obtain a short
exact sequence

0→ Tot(L• ⊗O K•
1)→ Tot(L• ⊗O K•

1)→ Tot(L• ⊗O K•
1)→ 0

of complexes. Hence the lemma follows from the long exact sequence of cohomology
sheaves and the definition of K-flat complexes. �

Lemma 17.8. Let (C,O) be a ringed site. A bounded above complex of flatO-modules
is K-flat.

Proof. Let K• be a bounded above complex of flat O-modules. Let L• be an acyclic
complex ofO-modules. Note thatL• = colimm τ≤mL• where we take termwise colimits.
Hence also

Tot(K• ⊗O L•) = colimm Tot(K• ⊗O τ≤mL•)
termwise. Hence to prove the complex on the left is acyclic it suffices to show each of the
complexes on the right is acyclic. Since τ≤mL• is acyclic this reduces us to the case where
L• is bounded above. In this case the spectral sequence of Homology, Lemma 25.3 has

′Ep,q1 = Hp(L• ⊗R Kq)

which is zero as Kq is flat and L• acyclic. Hence we win. �

Lemma 17.9. Let (C,O) be a ringed site. Let K•
1 → K•

2 → . . . be a system of K-flat
complexes. Then colimiK•

i is K-flat.

Proof. Because we are taking termwise colimits it is clear that

colimi Tot(F• ⊗O K•
i ) = Tot(F• ⊗O colimiK•

i )

Hence the lemma follows from the fact that filtered colimits are exact. �

Lemma 17.10. Let (C,O) be a ringed site. For any complex G• of O-modules there
exists a commutative diagram of complexes ofO-modules

K•
1

��

// K•
2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the following properties: (1) the vertical arrows are quasi-isomorphisms and termwise
surjective, (2) each K•

n is a bounded above complex whose terms are direct sums of O-
modules of the form jU !OU , and (3) the maps K•

n → K•
n+1 are termwise split injections

whose cokernels are direct sums of O-modules of the form jU !OU . Moreover, the map
colimK•

n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immediately
from Modules on Sites, Lemma 28.8 and Derived Categories, Lemma 29.1. The induced
map colimK•

n → G• is a quasi-isomorphism because filtered colimits are exact. �

Lemma 17.11. Let (C,O) be a ringed site. For any complex G• there exists a K-flat
complexK• whose terms are flatO-modules and a quasi-isomorphismK• → G• which is
termwise surjective.
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Proof. Choose a diagram as in Lemma 17.10. Each complex K•
n is a bounded above

complex of flat modules, see Modules on Sites, Lemma 28.7. HenceK•
n is K-flat by Lemma

17.8. Thus colimK•
n is K-flat by Lemma 17.9. The induced map colimK•

n → G• is a
quasi-isomorphism and termwise surjective by construction. Property (3) of Lemma 17.10
shows that colimKmn is a direct sum of flat modules and hence flat which proves the final
assertion. �

Lemma 17.12. Let (C,O) be a ringed site. Let α : P• → Q• be a quasi-isomorphism
of K-flat complexes ofO-modules. For every complexF• ofO-modules the induced map

Tot(idF• ⊗ α) : Tot(F• ⊗O P•) −→ Tot(F• ⊗O Q•)

is a quasi-isomorphism.

Proof. Choose a quasi-isomorphismK• → F• withK• a K-flat complex, see Lemma
17.11. Consider the commutative diagram

Tot(K• ⊗O P•) //

��

Tot(K• ⊗O Q•)

��
Tot(F• ⊗O P•) // Tot(F• ⊗O Q•)

The result follows as by Lemma 17.3 the vertical arrows and the top horizontal arrow are
quasi-isomorphisms. �

Let (C,O) be a ringed site. Let F• be an object of D(O). Choose a K-flat resolution
K• → F•, see Lemma 17.11. By Lemma 17.1 we obtain an exact functor of triangulated
categories

K(O) −→ K(O), G• 7−→ Tot(G• ⊗O K•)

By Lemma 17.3 this functor induces a functorD(O)→ D(O) simply becauseD(O) is the
localization ofK(O) at quasi-isomorphisms. By Lemma 17.12 the resulting functor (up to
isomorphism) does not depend on the choice of the K-flat resolution.

Definition 17.13. Let (C,O) be a ringed site. Let F• be an object of D(O). The
derived tensor product

−⊗L
O F• : D(O) −→ D(O)

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
O G• ∼= G• ⊗L

O F•

for G• and F• in D(O). Hence when we write F• ⊗L
O G• we will usually be agnostic

about which variable we are using to define the derived tensor product with.

Definition 17.14. Let (C,O) be a ringed site. Let F , G be O-modules. The Tor’s of
F and G are defined by the formula

TorO
p (F ,G) = H−p(F ⊗L

O G)

with derived tensor product as defined above.
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This definition implies that for every short exact sequence of O-modules 0 → F1 →
F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗O G // F2 ⊗O G // F3 ⊗O G // 0

TorO
1 (F1,G) // TorO

1 (F2,G) // TorO
1 (F3,G)

kk

for everyO-module G. This will be called the long exact sequence of Tor associated to the
situation.

Lemma 17.15. Let (C,O) be a ringed site. Let F be an O-module. The following are
equivalent

(1) F is a flatO-module, and
(2) TorO

1 (F ,G) = 0 for everyO-module G.

Proof. If F is flat, then F ⊗O − is an exact functor and the satellites vanish. Con-
versely assume (2) holds. Then if G → H is injective with cokernel Q, the long exact
sequence of Tor shows that the kernel ofF ⊗O G → F ⊗OH is a quotient of TorO

1 (F ,Q)
which is zero by assumption. Hence F is flat. �

Lemma 17.16. Let (C,O) be a ringed site. Let K• be a K-flat, acyclic complex with
flat terms. Then F = Ker(Kn → Kn+1) is a flatO-module.

Proof. Observe that

. . .→ Kn−2 → Kn−1 → F → 0

is a flat resolution of our module F . Since a bounded above complex of flat modules is
K-flat (Lemma 17.8) we may use this resolution to compute Tori(F ,G) for anyO-module
G. On the one handK•⊗L

O G is zero inD(O) becauseK• is acyclic and on the other hand
it is represented by K• ⊗O G. Hence we see that

Kn−3 ⊗O G → Kn−2 ⊗O G → Kn−1 ⊗O G

is exact. Thus Tor1(F ,G) = 0 and we conclude by Lemma 17.15. �

Lemma 17.17. Let (C,O) be a ringed space. Let a : K• → L• be a map of complexes
of O-modules. If K• is K-flat, then there exist a complex N • and maps of complexes
b : K• → N • and c : N • → L• such that

(1) N • is K-flat,
(2) c is a quasi-isomorphism,
(3) a is homotopic to c ◦ b.

If the terms of K• are flat, then we may chooseN •, b, and c such that the same is true for
N •.

Proof. We will use that the homotopy category K(Mod(O)) is a triangulated cat-
egory, see Derived Categories, Proposition 10.3. Choose a distinguished triangle K• →
L• → C• → K•[1]. Choose a quasi-isomorphismM• → C• withM• K-flat with flat
terms, see Lemma 17.11. By the axioms of triangulated categories, we may fit the compo-
sitionM• → C• → K•[1] into a distinguished triangle K• → N • →M• → K•[1]. By
Lemma 17.6 we see that N • is K-flat. Again using the axioms of triangulated categories,
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we can choose a map N • → L• fitting into the following morphism of distinghuised
triangles

K• //

��

N • //

��

M• //

��

K•[1]

��
K• // L• // C• // K•[1]

Since two out of three of the arrows are quasi-isomorphisms, so is the third arrowN • →
L• by the long exact sequences of cohomology associated to these distinguished triangles
(or you can look at the image of this diagram inD(O) and use Derived Categories, Lemma
4.3 if you like). This finishes the proof of (1), (2), and (3). To prove the final assertion, we
may choose N • such that Nn ∼=Mn ⊕ Kn, see Derived Categories, Lemma 10.7. Hence
we get the desired flatness if the terms of K• are flat. �

18. Derived pullback

Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi. We can use K-flat
resolutions to define a derived pullback functor

Lf∗ : D(O′)→ D(O)

Lemma 18.1. Let f : (Sh(C′),O′)→ (Sh(C),O) be a morphism of ringed topoi. Let
K• be a K-flat complex of O-modules whose terms are flat O-modules. Then f∗K• is a
K-flat complex ofO′-modules whose terms are flatO′-modules.

Proof. The terms f∗Kn are flatO′-modules by Modules on Sites, Lemma 39.1. Choose
a diagram

K•
1

��

// K•
2

��

// . . .

τ≤1K• // τ≤2K• // . . .

as in Lemma 17.10. We will use all of the properties stated in the lemma without further
mention. Each K•

n is a bounded above complex of flat modules, see Modules on Sites,
Lemma 28.7. Consider the short exact sequence of complexes

0→M• → colimK•
n → K• → 0

definingM•. By Lemmas 17.8 and 17.9 the complex colimK•
n is K-flat and by Modules

on Sites, Lemma 28.5 it has flat terms. By Modules on Sites, Lemma 28.10 M• has flat
terms, by Lemma 17.7M• is K-flat, and by the long exact cohomology sequenceM• is
acyclic (because the second arrow is a quasi-isomorphism). The pullback f∗(colimK•

n) =
colim f∗K•

n is a colimit of bounded below complexes of flat O′-modules and hence is K-
flat (by the same lemmas as above). The pullback of our short exact sequence

0→ f∗M• → f∗(colimK•
n)→ f∗K• → 0

is a short exact sequence of complexes by Modules on Sites, Lemma 39.4. Hence by Lemma
17.7 it suffices to show that f∗M• is K-flat. This reduces us to the case discussed in the
next paragraph.

Assume K• is acyclic as well as K-flat and with flat terms. Then Lemma 17.16 guarantees
that all terms of τ≤nK• are flat O-modules. We choose a diagram as above and we will
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use all the properties proven above for this diagram. DenoteM•
n the kernel of the map

of complexes K•
n → τ≤nK• so that we have short exact sequences of complexes

0→M•
n → K•

n → τ≤nK• → 0
By Modules on Sites, Lemma 28.10 we see that the terms of the complex M•

n are flat.
Hence we see thatM = colimM•

n is a filtered colimit of bounded below complexes of
flat modules in this case. Thus f∗M• is K-flat (same argument as above) and we win. �

Lemma 18.2. Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
There exists an exact functor

Lf∗ : D(O′) −→ D(O)
of triangulated categories so that Lf∗K• = f∗K• for any K-flat complex K• with flat
terms and in particular for any bounded above complex of flatO′-modules.

Proof. To see this we use the general theory developed in Derived Categories, Sec-
tion 14. Set D = K(O′) and D′ = D(O). Let us write F : D → D′ the exact functor of
triangulated categories defined by the rule F (G•) = f∗G•. We let S be the set of quasi-
isomorphisms in D = K(O′). This gives a situation as in Derived Categories, Situation
14.1 so that Derived Categories, Definition 14.2 applies. We claim that LF is everywhere
defined. This follows from Derived Categories, Lemma 14.15 with P ⊂ Ob(D) the col-
lection of K-flat complexesK• with flat terms. Namely, (1) follows from Lemma 17.11 and
to see (2) we have to show that for a quasi-isomorphismK•

1 → K•
2 between elements of P

the map f∗K•
1 → f∗K•

2 is a quasi-isomorphism. To see this write this as

f−1K•
1 ⊗f−1O′ O −→ f−1K•

2 ⊗f−1O′ O

The functor f−1 is exact, hence the map f−1K•
1 → f−1K•

2 is a quasi-isomorphism. The
complexes f−1K•

1 and f−1K•
2 are K-flat complexes of f−1O′-modules by Lemma 18.1

because we can consider the morphism of ringed topoi (Sh(C), f−1O′) → (Sh(C′),O′).
Hence Lemma 17.12 guarantees that the displayed map is a quasi-isomorphism. Thus we
obtain a derived functor

LF : D(O′) = S−1D −→ D′ = D(O)
see Derived Categories, Equation (14.9.1). Finally, Derived Categories, Lemma 14.15 also
guarantees that LF (K•) = F (K•) = f∗K• when K• is in P . The proof is finished by
observing that bounded above complexes of flat modules are in P by Lemma 17.8. �

Lemma 18.3. Consider morphisms of ringed topoi f : (Sh(C),OC)→ (Sh(D),OD)
and g : (Sh(D),OD)→ (Sh(E),OE). ThenLf∗◦Lg∗ = L(g◦f)∗ as functorsD(OE)→
D(OC).

Proof. Let E be an object of D(OE). We may represent E by a K-flat complex K•

with flat terms, see Lemma 17.11. By construction Lg∗E is computed by g∗K•, see Lemma
18.2. By Lemma 18.1 the complex g∗K• is K-flat with flat terms. Hence Lf∗Lg∗E is
represented by f∗g∗K•. Since also L(g ◦ f)∗E is represented by (g ◦ f)∗K• = f∗g∗K•

we conclude. �

Lemma 18.4. Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi.
There is a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
O′ G•) = Lf∗F• ⊗L

O Lf∗G•

for F•,G• ∈ Ob(D(O′)).
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Proof. By our construction of derived pullback in Lemma 18.2. and the existence of
resolutions in Lemma 17.11 we may replaceF• and G• by complexes ofO′-modules which
are K-flat and have flat terms. In this case F• ⊗L

O′ G• is just the total complex associated
to the double complexF•⊗O′ G•. The complex Tot(F•⊗O′ G•) is K-flat with flat terms
by Lemma 17.5 and Modules on Sites, Lemma 28.12. Hence the isomorphism of the lemma
comes from the isomorphism

Tot(f∗F• ⊗O f∗G•) −→ f∗Tot(F• ⊗O′ G•)
whose constituents are the isomorphisms f∗Fp ⊗O f∗Gq → f∗(Fp ⊗O′ Gq) of Modules
on Sites, Lemma 26.2. �

Lemma 18.5. Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
There is a canonical bifunctorial isomorphism

F• ⊗L
O Lf∗G• = F• ⊗L

f−1OY
f−1G•

for F• in D(O) and G• in D(O′).

Proof. Let F be an O-module and let G be an O′-module. Then F ⊗O f∗G =
F ⊗f−1O′ f−1G because f∗G = O ⊗f−1O′ f−1G. The lemma follows from this and
the definitions. �

Lemma 18.6. Let (C,O) be a ringed site. Let K• be a complex ofO-modules.
(1) If K• is K-flat, then for every point p of the site C the complex of Op-modules
K•
p is K-flat in the sense of More on Algebra, Definition 59.1

(2) If C has enough points, then the converse is true.

Proof. Proof of (2). If C has enough points andK•
p is K-flat for all points p of C then

we see thatK• is K-flat because⊗ and direct sums commute with taking stalks and because
we can check exactness at stalks, see Modules on Sites, Lemma 14.4.
Proof of (1). AssumeK• is K-flat. Choose a quasi-isomorphism a : L• → K• such thatL•

is K-flat with flat terms, see Lemma 17.11. Any pullback of L• is K-flat, see Lemma 18.1.
In particular the stalk L•

p is a K-flat complex of Op-modules. Thus the cone C(a) on a is
a K-flat (Lemma 17.6) acyclic complex of O-modules and it suffuces to show the stalk of
C(a) is K-flat (by More on Algebra, Lemma 59.5). Thus we may assume that K• is K-flat
and acyclic.
Assume K• is acyclic and K-flat. Before continuing we replace the site C by another one
as in Sites, Lemma 29.5 to insure that C has all finite limits. This implies the category
of neighbourhoods of p is filtered (Sites, Lemma 33.2) and the colimit defining the stalk
of a sheaf is filtered. Let M be a finitely presented Op-module. It suffices to show that
K•⊗OpM is acyclic, see More on Algebra, Lemma 59.9. SinceOp is the filtered colimit of
O(U) where U runs over the neighbourhoods of p, we can find a neighbourhood (U, x) of
p and a finitely presented O(U)-module M ′ whose base change to Op is M , see Algebra,
Lemma 127.6. By Lemma 17.4 we may replace C,O,K• by C/U,OU ,K•|U . We conclude
that we may assume there exists an O-module F such that M ∼= Fp. Since K• is K-flat
and acyclic, we see that K• ⊗O F is acyclic (as it computes the derived tensor product by
definition). Taking stalks is an exact functor, hence we get that K• ⊗Op M is acyclic as
desired. �

Lemma 18.7. Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
If C has enough points, then the pullback of a K-flat complex of O′-modules is a K-flat
complex ofO-modules.
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Proof. This follows from Lemma 18.6, Modules on Sites, Lemma 36.4, and More on
Algebra, Lemma 59.3. �

Lemma 18.8. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let K• andM• be complexes ofOD-modules. The diagram

Lf∗(K• ⊗L
OD
M•) //

��

Lf∗Tot(K• ⊗OD M•)

��
Lf∗K• ⊗L

OC
Lf∗M•

��

f∗Tot(K• ⊗OD M•)

��
f∗K• ⊗L

OC
f∗M• // Tot(f∗K• ⊗OC f

∗M•)

commutes.

Proof. We will use the existence of K-flat resolutions with flat terms (Lemma 17.11),
we will use that derived pullback is computed by such complexes (Lemma 18.2), and that
pullbacks preserve these properties (Lemma 18.1). If we choose such resolutionsP• → K•

andQ• →M•, then we see that

Lf∗Tot(P• ⊗OD Q•) //

��

Lf∗Tot(K• ⊗OD M•)

��
f∗Tot(P• ⊗OD Q•)

��

// f∗Tot(K• ⊗OD M•)

��
Tot(f∗P• ⊗OC f

∗Q•) // Tot(f∗K• ⊗OC f
∗M•)

commutes. However, now the left hand side of the diagram is the left hand side of the
diagram by our choice of P• andQ• and Lemma 17.5. �

19. Cohomology of unbounded complexes

Let (C,O) be a ringed site. The category Mod(O) is a Grothendieck abelian category: it
has all colimits, filtered colimits are exact, and it has a generator, namely⊕

U∈Ob(C)
jU !OU ,

see Modules on Sites, Section 14 and Lemmas 28.7 and 28.8. By Injectives, Theorem 12.6 for
every complexF• ofO-modules there exists an injective quasi-isomorphismF• → I• to a
K-injective complex ofO-modules and moreover this embedding can be chosen functorial
in F•. It follows from Derived Categories, Lemma 31.7 that

(1) any exact functor F : K(Mod(O)) → D into a trianguated category D has a
right derived functor RF : D(O)→ D,

(2) for any additive functor F : Mod(O) → A into an abelian category A we
consider the exact functor F : K(Mod(O)) → D(A) induced by F and we
obtain a right derived functor RF : D(O)→ K(A).

By construction we have RF (F•) = F (I•) where F• → I• is as above.

Here are some examples of the above:
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(1) The functor Γ(C,−) : Mod(O)→ModΓ(C,O) gives rise to

RΓ(C,−) : D(O) −→ D(Γ(C,O))

We shall use the notation Hi(C,K) = Hi(RΓ(C,K)) for cohomology.
(2) For an object U of C we consider the functor Γ(U,−) : Mod(O)→ModΓ(U,O).

This gives rise to

RΓ(U,−) : D(O)→ D(Γ(U,O))

We shall use the notation Hi(U,K) = Hi(RΓ(U,K)) for cohomology.
(3) For a morphism of ringed topoi f : (Sh(C),O)→ (Sh(D),O′) we consider the

functor f∗ : Mod(O)→Mod(O′) which gives rise to the total direct image

Rf∗ : D(O) −→ D(O′)

on unbounded derived categories.

Lemma 19.1. Let f : (Sh(C),O)→ (Sh(D),O′) be a morphism of ringed topoi. The
functor Rf∗ defined above and the functor Lf∗ defined in Lemma 18.2 are adjoint:

HomD(O)(Lf∗G•,F•) = HomD(O′)(G•, Rf∗F•)

bifunctorially in F• ∈ Ob(D(O)) and G• ∈ Ob(D(O′)).

Proof. This follows formally from the fact thatRf∗ andLf∗ exist, see Derived Cat-
egories, Lemma 30.3. �

Lemma 19.2. Let f : (Sh(C),OC)→ (Sh(D),OD) and g : (Sh(D),OD)→ (Sh(E),OE)
be morphisms of ringed topoi. ThenRg∗◦Rf∗ = R(g◦f)∗ as functorsD(OC)→ D(OE).

Proof. By Lemma 19.1 we see that Rg∗ ◦ Rf∗ is adjoint to Lf∗ ◦ Lg∗. We have
Lf∗ ◦ Lg∗ = L(g ◦ f)∗ by Lemma 18.3 and hence by uniqueness of adjoint functors we
have Rg∗ ◦Rf∗ = R(g ◦ f)∗. �

Remark 19.3. The construction of unbounded derived functor Lf∗ and Rf∗ allows
one to construct the base change map in full generality. Namely, suppose that

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

is a commutative diagram of ringed topoi. LetK be an object ofD(OC). Then there exists
a canonical base change map

Lg∗Rf∗K −→ R(f ′)∗L(g′)∗K

in D(OD′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗K → L(g′)∗K. Since
L(f ′)∗◦Lg∗ = L(g′)∗◦Lf∗ we see this is the same as a mapL(g′)∗Lf∗Rf∗K → L(g′)∗K
which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗K → K.
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Remark 19.4. Consider a commutative diagram

(Sh(B′),OB′)
k
//

f ′

��

(Sh(B),OB)

f

��
(Sh(C′),OC′) l //

g′

��

(Sh(C),OC)

g

��
(Sh(D′),OD′) m // (Sh(D),OD)

of ringed topoi. Then the base change maps of Remark 19.3 for the two squares compose
to give the base change map for the outer rectangle. More precisely, the composition

Lm∗ ◦R(g ◦ f)∗ = Lm∗ ◦Rg∗ ◦Rf∗

→ Rg′
∗ ◦ Ll∗ ◦Rf∗

→ Rg′
∗ ◦Rf ′

∗ ◦ Lk∗

= R(g′ ◦ f ′)∗ ◦ Lk∗

is the base change map for the rectangle. We omit the verification.

Remark 19.5. Consider a commutative diagram

(Sh(C′′),OC′′)
g′
//

f ′′

��

(Sh(C′),OC′)
g
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′′),OD′′) h′

// (Sh(D′),OD′) h // (Sh(D),OD)

of ringed topoi. Then the base change maps of Remark 19.3 for the two squares compose
to give the base change map for the outer rectangle. More precisely, the composition

L(h ◦ h′)∗ ◦Rf∗ = L(h′)∗ ◦ Lh∗ ◦Rf∗

→ L(h′)∗ ◦Rf ′
∗ ◦ Lg∗

→ Rf ′′
∗ ◦ L(g′)∗ ◦ Lg∗

= Rf ′′
∗ ◦ L(g ◦ g′)∗

is the base change map for the rectangle. We omit the verification.

Lemma 19.6. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let K• be a complex ofOC-modules. The diagram

Lf∗f∗K• //

��

f∗f∗K•

��
Lf∗Rf∗K• // K•

coming from Lf∗ → f∗ on complexes, f∗ → Rf∗ on complexes, and adjunction Lf∗ ◦
Rf∗ → id commutes in D(OC).

Proof. We will use the existence of K-flat resolutions and K-injective resolutions, see
Lemmas 17.11, 18.2, and 18.1 and the discussion above. Choose a quasi-isomorphismK• →
I• where I• is K-injective as a complex of OC-modules. Choose a quasi-isomorphism
Q• → f∗I• whereQ• is a K-flat complex ofOD-modules with flat terms. We can choose
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a K-flat complex ofOD-modules P• with flat terms and a diagram of morphisms of com-
plexes

P• //

��

f∗K•

��
Q• // f∗I•

commutative up to homotopy where the top horizontal arrow is a quasi-isomorphism.
Namely, we can first choose such a diagram for some complex P• because the quasi-
isomorphisms form a multiplicative system in the homotopy category of complexes and
then we can choose a resolution of P• by a K-flat complex with flat terms. Taking pull-
backs we obtain a diagram of morphisms of complexes

f∗P• //

��

f∗f∗K•

��

// K•

��
f∗Q• // f∗f∗I• // I•

commutative up to homotopy. The outer rectangle witnesses the truth of the statement
in the lemma. �

Remark 19.7. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
The adjointness of Lf∗ and Rf∗ allows us to construct a relative cup product

Rf∗K ⊗L
OD

Rf∗L −→ Rf∗(K ⊗L
OC

L)

in D(OD) for all K,L in D(OC). Namely, this map is adjoint to a map Lf∗(Rf∗K ⊗L
OD

Rf∗L)→ K⊗L
OC
L for which we can take the composition of the isomorphismLf∗(Rf∗K⊗L

OD

Rf∗L) = Lf∗Rf∗K⊗L
OC
Lf∗Rf∗L (Lemma 18.4) with the mapLf∗Rf∗K⊗L

OC
Lf∗Rf∗L→

K ⊗L
OC

L coming from the counit Lf∗ ◦Rf∗ → id.

Lemma 19.8. Let C be a site. LetA ⊂ Ab(C) denote the Serre subcategory consisting
of torsion abelian sheaves. Then the functor D(A)→ DA(C) is an equivalence.

Proof. A key observation is that an injective abelian sheaf I is divisible. Namely, if
s ∈ I(U) is a local section, then we interpret s as a map s : jU !Z → I and we apply the
defining property of an injective object to the injective map of sheaves n : jU !Z → jU !Z
to see that there exists an s′ ∈ I(U) with ns′ = s.
For a sheafF denoteFtor its torsion subsheaf. We claim that if I• is a complex of injective
abelian sheaves whose cohomology sheaves are torsion, then

I•
tor → I•

is a quasi-isomorphism. Namely, by flatness of Q over Z we have
Hp(I•)⊗Z Q = Hp(I• ⊗Z Q)

which is zero because the cohomology sheaves are torsion. By divisibility (shown above)
we see that I• → I•⊗Z Q is surjective with kernel I•

tor. The claim follows from the long
exact sequence of cohomology sheaves associated to the short exact sequence you get.
To prove the lemma we will construct right adjoint T : D(C) → D(A). Namely, given
K in D(C) we can represent K by a K-injective complex I• whose cohomology sheaves
are injective, see Injectives, Theorem 12.6. Then we set T (K) = I•

tor , in other words,
T is the right derived functor of taking torsion. The functor T is a right adjoint to i :
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D(A) → DA(C). This readily follows from the observation that if F• is a complex of
torsion sheaves, then

HomK(A)(F•, I•
tor) = HomK(Ab(C))(F•, I•)

in particular I•
tor is a K-injective complex of A. Some details omitted; in case of doubt,

it also follows from the more general Derived Categories, Lemma 30.3. Our claim above
gives that L = T (i(L)) for L in D(A) and i(T (K)) = K if K is in DA(C). Using
Categories, Lemma 24.4 the result follows. �

20. Some properties of K-injective complexes

Let (C,O) be a ringed site. Let U be an object of C. Denote j : (Sh(C/U),OU ) →
(Sh(C),O) the corresponding localization morphism. The pullback functor j∗ is exact as
it is just the restriction functor. Thus derived pullback Lj∗ is computed on any complex
by simply restricting the complex. We often simply denote the corresponding functor

D(O)→ D(OU ), E 7→ j∗E = E|U
Similarly, extension by zero j! : Mod(OU )→ Mod(O) (see Modules on Sites, Definition
19.1) is an exact functor (Modules on Sites, Lemma 19.3). Thus it induces a functor

j! : D(OU )→ D(O), F 7→ j!F

by simply applying j! to any complex representing the object F .

Lemma 20.1. Let (C,O) be a ringed site. Let U be an object of C. The restriction of a
K-injective complex ofO-modules to C/U is a K-injective complex ofOU -modules.

Proof. Follows immediately from Derived Categories, Lemma 31.9 and the fact that
the restriction functor has the exact left adjoint j!. See discussion above. �

Lemma 20.2. Let (C,O) be a ringed site. Let U ∈ Ob(C). For K in D(O) we have
Hp(U,K) = Hp(C/U,K|C/U ).

Proof. Let I• be a K-injective complex ofO-modules representing K. Then

Hq(U,K) = Hq(Γ(U, I•)) = Hq(Γ(C/U, I•|C/U ))

by construction of cohomology. By Lemma 20.1 the complex I•|C/U is a K-injective com-
plex representing K|C/U and the lemma follows. �

Lemma 20.3. Let (C,O) be a ringed site. LetK be an object ofD(O). The sheafifica-
tion of

U 7→ Hq(U,K) = Hq(C/U,K|C/U )
is the qth cohomology sheaf Hq(K) of K.

Proof. The equality Hq(U,K) = Hq(C/U,K|C/U ) holds by Lemma 20.2. Choose
a K-injective complex I• representing K. Then

Hq(U,K) = Ker(Iq(U)→ Iq+1(U))
Im(Iq−1(U)→ Iq(U)) .

by our construction of cohomology. SinceHq(K) = Ker(Iq → Iq+1)/ Im(Iq−1 → Iq)
the result is clear. �
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Lemma 20.4. Let f : (C,OC)→ (D,OD) be a morphism of ringed sites correspond-
ing to the continuous functor u : D → C. Given V ∈ D, set U = u(V ) and denote
g : (C/U,OU ) → (D/V,OV ) the induced morphism of ringed sites (Modules on Sites,
Lemma 20.1). Then (Rf∗E)|D/V = Rg∗(E|C/U ) for E in D(OC).

Proof. Represent E by a K-injective complex I• of OC-modules. Then Rf∗(E) =
f∗I• and Rg∗(E|C/U ) = g∗(I•|C/U ) by Lemma 20.1. Since it is clear that (f∗F)|D/V =
g∗(F|C/U ) for any sheafF on C (see Modules on Sites, Lemma 20.1 or the more basic Sites,
Lemma 28.1) the result follows. �

Lemma 20.5. Let f : (C,OC) → (D,OD) be a morphism of ringed sites corre-
sponding to the continuous functor u : D → C. Then RΓ(D,−) ◦ Rf∗ = RΓ(C,−)
as functors D(OC) → D(Γ(OD)). More generally, for V ∈ D with U = u(V ) we have
RΓ(U,−) = RΓ(V,−) ◦Rf∗.

Proof. Consider the punctual topos pt endowed withOpt given by the ring Γ(OD).
There is a canonical morphism (D,OD)→ (pt,Opt) of ringed topoi inducing the identifi-
cation on global sections of structure sheaves. ThenD(Opt) = D(Γ(OD)). The assertion
RΓ(D,−) ◦Rf∗ = RΓ(C,−) follows from Lemma 19.2 applied to

(C,OC)→ (D,OD)→ (pt,Opt)

The second (more general) statement follows from the first statement after applying Lemma
20.4. �

Lemma 20.6. Let f : (C,OC)→ (D,OD) be a morphism of ringed sites correspond-
ing to the continuous functor u : D → C. Let K be in D(OC). Then Hi(Rf∗K) is the
sheaf associated to the presheaf

V 7→ Hi(u(V ),K) = Hi(V,Rf∗K)

Proof. The equality Hi(u(V ),K) = Hi(V,Rf∗K) follows upon taking cohomol-
ogy from the second statement in Lemma 20.5. Then the statement on sheafification fol-
lows from Lemma 20.3. �

Lemma 20.7. Let (C,OC) be a ringed site. Let K be an object of D(OC) and denote
Kab its image in D(ZC).

(1) There is a canonical map RΓ(C,K)→ RΓ(C,Kab) which is an isomorphism in
D(Ab).

(2) For any U ∈ C there is a canonical map RΓ(U,K) → RΓ(U,Kab) which is an
isomorphism in D(Ab).

(3) Let f : (C,OC) → (D,OD) be a morphism of ringed sites. There is a canonical
map Rf∗K → Rf∗(Kab) which is an isomorphism in D(ZD).

Proof. The map is constructed as follows. Choose a K-injective complex I• rep-
resenting K. Choose a quasi-isomorpism I• → J • where J • is a K-injective complex
of abelian groups. Then the map in (1) is given by Γ(C, I•) → Γ(C,J •) (2) is given
by Γ(U, I•) → Γ(U,J •) and the map in (3) is given by f∗I• → f∗J •. To show that
these maps are isomorphisms, it suffices to prove they induce isomorphisms on cohomol-
ogy groups and cohomology sheaves. By Lemmas 20.2 and 20.6 it suffices to show that the
map

H0(C,K) −→ H0(C,Kab)
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is an isomorphism. Observe that

H0(C,K) = HomD(OC)(OC ,K)
and similarly for the other group. Choose any complex K• of OC-modules representing
K. By construction of the derived category as a localization we have

HomD(OC)(OC ,K) = colims:F•→OC HomK(OC)(F•,K•)
where the colimit is over quasi-isomorphisms s of complexes of OC-modules. Similarly,
we have

HomD(ZC)(ZC ,K) = colims:G•→ZC
HomK(ZC)(G•,K•)

Next, we observe that the quasi-isomorphisms s : G• → ZC with G• bounded above
complex of flat ZC-modules is cofinal in the system. (This follows from Modules on Sites,
Lemma 28.8 and Derived Categories, Lemma 15.4; see discussion in Section 17.) Hence
we can construct an inverse to the map H0(C,K) −→ H0(C,Kab) by representing an
element ξ ∈ H0(C,Kab) by a pair

(s : G• → ZC , a : G• → K•)
with G• a bounded above complex of flat ZC-modules and sending this to

(G• ⊗ZC
OC → OC ,G• ⊗ZC

OC → K•)

The only thing to note here is that the first arrow is a quasi-isomorphism by Lemmas 17.12
and 17.8. We omit the detailed verification that this construction is indeed an inverse. �

Lemma 20.8. Let (C,O) be a ringed site. LetU be an object of C. Denote j : (Sh(C/U),OU )→
(Sh(C),O) the corresponding localization morphism. The restriction functor D(O) →
D(OU ) is a right adjoint to extension by zero j! : D(OU )→ D(O).

Proof. We have to show that

HomD(O)(j!E,F ) = HomD(OU )(E,F |U )
Choose a complex E• of OU -modules representing E and choose a K-injective complex
I• representing F . By Lemma 20.1 the complex I•|U is K-injective as well. Hence we see
that the formula above becomes

HomD(O)(j!E•, I•) = HomD(OU )(E•, I•|U )

which holds as |U and j! are adjoint functors (Modules on Sites, Lemma 19.2) and Derived
Categories, Lemma 31.2. �

Lemma 20.9. Let (C,O) be a ringed site. Let U ∈ Ob(C). For L inD(OU ) andK in
D(O) we have j!L⊗L

O K = j!(L⊗L
OU

K|U ).

Proof. Represent L by a complex of OU -modules and K by a K-flat complexe of
O-modules and apply Modules on Sites, Lemma 27.9. Details omitted. �

Lemma 20.10. Let f : (Sh(C),OC) → (Sh(D),OD) be a flat morphism of ringed
topoi. If I• is a K-injective complex ofOC-modules, then f∗I• is K-injective as a complex
ofOD-modules.

Proof. This is true because

HomK(OD)(F•, f∗I•) = HomK(OC)(f∗F•, I•)
by Modules on Sites, Lemma 13.2 and the fact that f∗ is exact as f is assumed to be flat. �
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Lemma 20.11. Let C be a site. Let O → O′ be a map of sheaves of rings. If I• is a
K-injective complex of O-modules, then HomO(O′, I•) is a K-injective complex of O′-
modules.

Proof. This is true because HomK(O′)(G•,HomO(O′, I•)) = HomK(O)(G•, I•)
by Modules on Sites, Lemma 27.8. �

21. Localization and cohomology

Let C be a site. Let f : X → Y be a morphism of C. Then we obtain a morphism of topoi

jX/Y : Sh(C/X) −→ Sh(C/Y )

See Sites, Sections 25 and 27. Some questions about cohomology are easier for this type
of morphisms of topoi. Here is an example where we get a trivial type of base change
theorem.

Lemma 21.1. Let C be a site. Let

X ′

��

// X

��
Y ′ // Y

be a cartesian diagram of C. Then we have j−1
Y ′/Y ◦ RjX/Y,∗ = RjX′/Y ′,∗ ◦ j−1

X′/X as
functors D(C/X)→ D(C/Y ′).

Proof. Let E ∈ D(C/X). Choose a K-injective complex I• of abelian sheaves on
C/X representing E. By Lemma 20.1 we see that j−1

X′/XI
• is K-injective too. Hence

we may compute RjX′/Y ′(j−1
X′/XE) by jX′/Y ′,∗j

−1
X′/XI

•. Thus we see that the equal-
ity holds by Sites, Lemma 27.5. �

If we have a ringed site (C,O) and a morphism f : X → Y of C , then jX/Y becomes a
morphism of ringed topoi

jX/Y : (Sh(C/X),OX) −→ (Sh(C/Y ),OY )

See Modules on Sites, Lemma 19.5.

Lemma 21.2. Let (C,O) be a ringed site. Let

X ′

��

// X

��
Y ′ // Y

be a cartesian diagram of C. Then we have j∗
Y ′/Y ◦ RjX/Y,∗ = RjX′/Y ′,∗ ◦ j∗

X′/X as
functors D(OX)→ D(OY ′).

Proof. Since j−1
Y ′/YOY = OY ′ we have j∗

Y ′/Y = Lj∗
Y ′/Y = j−1

Y ′/Y . Similarly we
have j∗

X′/X = Lj∗
X′/X = j−1

X′/X . Thus by Lemma 20.7 it suffices to prove the result on
derived categories of abelian sheaves which we did in Lemma 21.1. �
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22. Inverse systems and cohomology

We prove some results on inverse systems of sheaves of modules.

Lemma 22.1. Let I be an ideal of a ring A. Let C be a site. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on C such that Fn = Fn+1/I
nFn+1. Let

p ≥ 0. Assume ⊕
n≥0

Hp+1(C, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then the in-

verse system Mn = Hp(C,Fn) satisfies the Mittag-Leffler condition2.

Proof. SetNn = Hp+1(C, InFn+1) and let δn : Mn → Nn be the boundary map on
cohomology coming from the short exact sequence 0 → InFn+1 → Fn+1 → Fn → 0.
Then

⊕
Im(δn) ⊂

⊕
Nn is a graded submodule. Namely, if s ∈ Mn and f ∈ Im, then

we have a commutative diagram

0 // InFn+1

f

��

// Fn+1

f

��

// Fn

f

��

// 0

0 // In+mFn+m+1 // Fn+m+1 // Fn+m // 0

The middle vertical map is given by lifting a local section ofFn+1 to a section ofFn+m+1
and then multiplying by f ; similarly for the other vertical arrows. We conclude that
δn+m(fs) = fδn(s). By assumption we can find sj ∈ Mnj , j = 1, . . . , N such that
δnj (sj) generate

⊕
Im(δn) as a graded module. Let n > c = max(nj). Let s ∈ Mn.

Then we can find fj ∈ In−nj such that δn(s) =
∑
fjδnj (sj). We conclude that δ(s −∑

fjsj) = 0, i.e., we can find s′ ∈Mn+1 mapping to s−
∑
fjsj in Mn. It follows that

Im(Mn+1 →Mn−c) = Im(Mn →Mn−c)

Namely, the elements fjsj map to zero in Mn−c. This proves the lemma. �

Lemma 22.2. Let I be an ideal of a ring A. Let C be a site. Let

. . .→ F3 → F2 → F1

be an inverse system ofA-modules on C such thatFn = Fn+1/I
nFn+1. Let p ≥ 0. Given

n define
Nn =

⋂
m≥n

Im
(
Hp+1(C, InFm+1)→ Hp+1(C, InFn+1)

)
If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module, then
the inverse system Mn = Hp(C,Fn) satisfies the Mittag-Leffler condition3.

Proof. The proof is exactly the same as the proof of Lemma 22.1. In fact, the result
will follow from the arguments given there as soon as we show that

⊕
Nn is a graded⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(C, InFn+1) and that the boundary maps δn :

Mn → Hp+1(C, InFn+1) have image contained in Nn.

2In fact, there exists a c ≥ 0 such that Im(Mn → Mn−c) is the stable image for all n ≥ c.
3In fact, there exists a c ≥ 0 such that Im(Mn → Mn−c) is the stable image for all n ≥ c.
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Suppose that ξ ∈ Nn and f ∈ Ik. Choose m � n + k. Choose ξ′ ∈ Hp+1(C, InFm+1)
lifting ξ. We consider the diagram

0 // InFm+1

f

��

// Fm+1

f

��

// Fn

f

��

// 0

0 // In+kFm+1 // Fm+1 // Fn+k // 0

constructed as in the proof of Lemma 22.1. We get an induced map on cohomology and
we see that fξ′ ∈ Hp+1(C, In+kFm+1) maps to fξ. Since this is true for all m� n+ k
we see that fξ is in Nn+k as desired.
To see the boundary maps δn have image contained in Nn we consider the diagrams

0 // InFm+1

��

// Fm+1

��

// Fn

��

// 0

0 // InFn+1 // Fn+1 // Fn // 0

for m ≥ n. Looking at the induced maps on cohomology we conclude. �

Lemma 22.3. Let I be an ideal of a ring A. Let C be a site. Let
. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on C such that Fn = Fn+1/I
nFn+1. Let

p ≥ 0. Assume ⊕
n≥0

Hp(C, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then the limit

topology on M = limHp(C,Fn) is the I-adic topology.

Proof. Set Fn = Ker(M → Hp(C,Fn)) for n ≥ 1 and F 0 = M . Observe that
IFn ⊂ Fn+1. In particular InM ⊂ Fn. Hence the I-adic topology is finer than the limit
topology. For the converse, we will show that given n there exists an m ≥ n such that
Fm ⊂ InM4. We have injective maps

Fn/Fn+1 −→ Hp(C,Fn+1)
whose image is contained in the image of Hp(C, InFn+1)→ Hp(C,Fn+1). Denote

En ⊂ Hp(C, InFn+1)
the inverse image ofFn/Fn+1. Then

⊕
En is a graded

⊕
In/In+1-submodule of

⊕
Hp(C, InFn+1)

and
⊕
En →

⊕
Fn/Fn+1 is a homomorphism of graded modules; details omitted. By

assumption
⊕
En is generated by finitely many homogeneous elements over

⊕
In/In+1.

Since En → Fn/Fn+1 is surjective, we see that the same thing is true of
⊕
Fn/Fn+1.

Hence we can find r and c1, . . . , cr ≥ 0 and ai ∈ F ci whose images in
⊕
Fn/Fn+1

generate. Set c = max(ci).
For n ≥ c we claim that IFn = Fn+1. The claim shows that Fn+c = InF c ⊂ InM
as desired. To prove the claim suppose a ∈ Fn+1. The image of a in Fn+1/Fn+2 is a
linear combination of our ai. Therefore a −

∑
fiai ∈ Fn+2 for some fi ∈ In+1−ci .

Since In+1−ci = I · In−ci as n ≥ ci we can write fi =
∑
gi,jhi,j with gi,j ∈ I and

hi,jai ∈ Fn. Thus we see that Fn+1 = Fn+2 + IFn. A simple induction argument

4In fact, there exist a c ≥ 0 such that Fn+c ⊂ InM for all n.
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gives Fn+1 = Fn+e + IFn for all e > 0. It follows that IFn is dense in Fn+1. Choose
generators k1, . . . , kr of I and consider the continuous map

u : (Fn)⊕r −→ Fn+1, (x1, . . . , xr) 7→
∑

kixi

(in the limit topology). By the above the image of (Fm)⊕r under u is dense in Fm+1 for
all m ≥ n. By the open mapping lemma (More on Algebra, Lemma 36.5) we find that u is
open. Hence u is surjective. Hence IFn = Fn+1 for n ≥ c. This concludes the proof. �

Lemma 22.4. Let I be an ideal of a ring A. Let C be a site. Let

. . .→ F3 → F2 → F1

be an inverse system of sheaves of A-modules on C such that Fn = Fn+1/I
nFn+1. Let

p ≥ 0. Given n define

Nn =
⋂

m≥n
Im (Hp(C, InFm+1)→ Hp(C, InFn+1))

If
⊕
Nn satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module, then
the limit topology on M = limHp(C,Fn) is the I-adic topology.

Proof. The proof is exactly the same as the proof of Lemma 22.3. In fact, the result
will follow from the arguments given there as soon as we show that

⊕
Nn is a graded⊕

n≥0 I
n/In+1-submodule of

⊕
Hp+1(C, InFn+1) and that Fn/Fn+1 ⊂ Hp(C,Fn+1)

is contained in the image of Nn → Hp(C,Fn+1). In the proof of Lemma 22.2 we have
seen the statement on the module structure.

Let t ∈ Fn. Choose an element s ∈ Hp(C, InFn+1) which maps to the image of t in
Hp(C,Fn+1). We have to show that s is in Nn. Now Fn is the kernel of the map from
M → Hp(C,Fn) hence for all m ≥ n we can map t to an element tm ∈ Hp(C,Fm+1)
which maps to zero in Hp(C,Fn). Consider the cohomology sequence

Hp−1(C,Fn)→ Hp(C, InFm+1)→ Hp(C,Fm+1)→ Hp(C,Fn)

coming from the short exact sequence 0 → InFm+1 → Fm+1 → Fn → 0. We can
choose sm ∈ Hp(C, InFm+1) mapping to tm. Comparing the sequence above with the
one form = nwe see that sm maps to s up to an element in the image ofHp−1(C,Fn)→
Hp(C, InFn+1). However, this map factors through the mapHp(C, InFm+1)→ Hp(C, InFn+1)
and we see that s is in the image as desired. �

23. Derived and homotopy limits

Let C be a site. Consider the category C × N with Mor((U, n), (V,m)) = ∅ if n > m
and Mor((U, n), (V,m)) = Mor(U, V ) else. We endow this with the structure of a site by
letting coverings be families {(Ui, n) → (U, n)} such that {Ui → U} is a covering of C.
Then the reader verifies immediately that sheaves on C ×N are the same thing as inverse
systems of sheaves on C. In particular Ab(C ×N) is inverse systems of abelian sheaves on
C. Consider now the functor

lim : Ab(C ×N)→ Ab(C)

which takes an inverse system to its limit. This is nothing but g∗ where g : Sh(C ×N)→
Sh(C) is the morphism of topoi associated to the continuous and cocontinuous functor
C ×N→ C. (Observe that g−1 assigns to a sheaf on C the corresponding constant inverse
system.)
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By the general machinery explained above we obtain a derived functor

R lim = Rg∗ : D(C ×N)→ D(C).

As indicated this functor is often denoted R lim.

On the other hand, the continuous and cocontinuous functors C → C ×N, U 7→ (U, n)
define morphisms of topoi in : Sh(C)→ Sh(C ×N). Of course i−1

n is the functor which
picks the nth term of the inverse system. Thus there are transformations of functors
i−1
n+1 → i−1

n . Hence given K ∈ D(C × N) we get Kn = i−1
n K ∈ D(C) and maps

Kn+1 → Kn. In Derived Categories, Definition 34.1 we have defined the notion of a
homotopy limit

R limKn ∈ D(C)
We claim the two notions agree (as far as it makes sense).

Lemma 23.1. Let C be a site. Let K be an object of D(C ×N). Set Kn = i−1
n K as

above. Then
R limK ∼= R limKn

in D(C).

Proof. To calculateR lim on an objectK ofD(C×N) we choose a K-injective repre-
sentative I• whose terms are injective objects of Ab(C ×N), see Injectives, Theorem 12.6.
We may and do think of I• as an inverse system of complexes (I•

n) and then we see that

R limK = lim I•
n

where the right hand side is the termwise inverse limit.

Let J = (Jn) be an injective object of Ab(C ×N). The morphisms (U, n)→ (U, n+ 1)
are monomorphisms of C ×N, hence J (U, n+ 1)→ J (U, n) is surjective (Lemma 12.6).
It follows that Jn+1 → Jn is surjective as a map of presheaves.

Note that the functor i−1
n has an exact left adjoint in,!. Namely, in,!F is the inverse system

. . . 0→ 0→ F → . . .→ F . Thus the complexes i−1
n I• = I•

n are K-injective by Derived
Categories, Lemma 31.9.

Because we chose our K-injective complex to have injective terms we conclude that

0→ lim I•
n →

∏
I•
n →

∏
I•
n → 0

is a short exact sequence of complexes of abelian sheaves as it is a short exact sequence
of complexes of abelian presheaves. Moreover, the products in the middle and the right
represent the products in D(C), see Injectives, Lemma 13.4 and its proof (this is where we
use that I•

n is K-injective). Thus R limK is a homotopy limit of the inverse system (Kn)
by definition of homotopy limits in triangulated categories. �

Lemma 23.2. Let (C,O) be a ringed site. The functors RΓ(C,−) and RΓ(U,−) for
U ∈ Ob(C) commute with R lim. Moreover, there are short exact sequences

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0

for any inverse system (Kn) in D(O) and m ∈ Z. Similar for Hm(C, R limKn).

Proof. The first statement follows from Injectives, Lemma 13.6. Then we may apply
More on Algebra, Remark 86.10 toR limRΓ(U,Kn) = RΓ(U,R limKn) to get the short
exact sequences. �
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Lemma 23.3. Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
Then Rf∗ commutes with R lim, i.e., Rf∗ commutes with derived limits.

Proof. Let (Kn) be an inverse system of objects ofD(O). By induction on nwe may
choose actual complexesK•

n ofO-modules and maps of complexesK•
n+1 → K•

n represent-
ing the mapsKn+1 → Kn inD(O). In other words, there exists an objectK inD(C×N)
whose associated inverse system is the given one. Next, consider the commutative diagram

Sh(C ×N)
g

//

f×1
��

Sh(C)

f

��
Sh(C′ ×N) g′

// Sh(C′)

of morphisms of topoi. It follows that R limR(f × 1)∗K = Rf∗R limK. Working
through the definitions and using Lemma 23.1 we obtain thatR lim(Rf∗Kn) = Rf∗(R limKn).
Alternate proof in case C has enough points. Consider the defining distinguished triangle

R limKn →
∏

Kn →
∏

Kn

in D(O). Applying the exact functor Rf∗ we obtain the distinguished triangle

Rf∗(R limKn)→ Rf∗

(∏
Kn

)
→ Rf∗

(∏
Kn

)
in D(O′). Thus we see that it suffices to prove that Rf∗ commutes with products in the
derived category (which are not just given by products of complexes, see Injectives, Lemma
13.4). However, since Rf∗ is a right adjoint by Lemma 19.1 this follows formally (see
Categories, Lemma 24.5). Caution: Note that we cannot apply Categories, Lemma 24.5
directly as R limKn is not a limit in D(O). �

Remark 23.4. Let (C,O) be a ringed site. Let (Kn) be an inverse system in D(O).
Set K = R limKn. For each n and m letHmn = Hm(Kn) be the mth cohomology sheaf
of Kn and similarly setHm = Hm(K). Let us denoteHmn the presheaf

U 7−→ Hmn (U) = Hm(U,Kn)
Similarly we setHm(U) = Hm(U,K). By Lemma 20.3 we see thatHmn is the sheafifica-
tion ofHmn andHm is the sheafification ofHm. Here is a diagram

K Hm

��

// Hm

��
R limKn limHmn // limHmn

In general it may not be the case that limHmn is the sheafification of limHmn . If U ∈ C ,
then we have short exact sequences

(23.4.1) 0→ R1 limHm−1
n (U)→ Hm(U)→ limHmn (U)→ 0

by Lemma 23.2.

The following lemma applies to an inverse system of quasi-coherent modules with surjec-
tive transition maps on an algebraic space or an algebraic stack.

Lemma 23.5. Let (C,O) be a ringed site. Let (Fn) be an inverse system ofO-modules.
Let B ⊂ Ob(C) be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
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(2) Hp(U,Fn) = 0 for p > 0 and U ∈ B,
(3) the inverse system Fn(U) has vanishing R1 lim for U ∈ B.

Then R limFn = limFn and we have Hp(U, limFn) = 0 for p > 0 and U ∈ B.

Proof. Set Kn = Fn and K = R limFn. Using the notation of Remark 23.4 and
assumption (2) we see that for U ∈ B we have Hmn (U) = 0 when m 6= 0 and H0

n(U) =
Fn(U). From Equation (23.4.1) and assumption (3) we see thatHm(U) = 0 when m 6= 0
and equal to limFn(U) when m = 0. Sheafifying using (1) we find that Hm = 0 when
m 6= 0 and equal to limFn when m = 0. Hence K = limFn. Since Hm(U,K) =
Hm(U) = 0 for m > 0 (see above) we see that the second assertion holds. �

Lemma 23.6. Let (C,O) be a ringed site. Let (Kn) be an inverse system inD(O). Let
V ∈ Ob(C) and m ∈ Z. Assume there exist an integer n(V ) and a cofinal system CovV
of coverings of V such that for {Vi → V } ∈ CovV

(1) R1 limHm−1(Vi,Kn) = 0, and
(2) Hm(Vi,Kn)→ Hm(Vi,Kn(V )) is injective for n ≥ n(V ).

Then the map on sections Hm(R limKn)(V )→ Hm(Kn(V ))(V ) is injective.

Proof. Let γ ∈ Hm(R limKn)(V ) map to zero inHm(Kn(V ))(V ). SinceHm(R limKn)
is the sheafification of U 7→ Hm(U,R limKn) (by Lemma 20.3) we can choose {Vi →
V } ∈ CovV and elements γ̃i ∈ Hm(Vi, R limKn) mapping to γ|Vi . Then γ̃i maps to
γ̃i,n(V ) ∈ Hm(Vi,Kn(V )). Using thatHm(Kn(V )) is the sheafification ofU 7→ Hm(U,Kn(V ))
(by Lemma 20.3 again) we see that after replacing {Vi → V } by a refinement we may as-
sume that γ̃i,n(V ) = 0 for all i. For this covering we consider the short exact sequences

0→ R1 limHm−1(Vi,Kn)→ Hm(Vi, R limKn)→ limHm(Vi,Kn)→ 0

of Lemma 23.2. By assumption (1) the group on the left is zero and by assumption (2) the
group on the right maps injectively into Hm(Vi,Kn(V )). We conclude γ̃i = 0 and hence
γ = 0 as desired. �

Lemma 23.7. Let (C,O) be a ringed site. Let E ∈ D(O). Let B ⊂ Ob(C) be a subset.
Assume

(1) every object of C has a covering whose members are elements of B, and
(2) for every V ∈ B there exist a function p(V,−) : Z → Z and a cofinal system

CovV of coverings of V such that

Hp(Vi,Hm−p(E)) = 0

for all {Vi → V } ∈ CovV and all integers p,m satisfying p > p(V,m).
Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. Set Kn = τ≥−nE and K = R limKn. The canonical map E → K comes
from the canonical maps E → Kn = τ≥−nE. We have to show that E → K induces an
isomorphism Hm(E) → Hm(K) of cohomology sheaves. In the rest of the proof we fix
m. If n ≥ −m, then the map E → τ≥−nE = Kn induces an isomorphism Hm(E) →
Hm(Kn). To finish the proof it suffices to show that for every V ∈ B there exists an
integer n(V ) ≥ −m such that the map Hm(K)(V ) → Hm(Kn(V ))(V ) is injective.
Namely, then the composition

Hm(E)(V )→ Hm(K)(V )→ Hm(Kn(V ))(V )
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is a bijection and the second arrow is injective, hence the first arrow is bijective. By prop-
erty (1) this will imply Hm(E)→ Hm(K) is an isomorphism. Set
n(V ) = 1 + max{−m, p(V,m− 1)−m,−1 + p(V,m)−m,−2 + p(V,m+ 1)−m}.
so that in any case n(V ) ≥ −m. Claim: the maps

Hm−1(Vi,Kn+1)→ Hm−1(Vi,Kn) and Hm(Vi,Kn+1)→ Hm(Vi,Kn)
are isomorphisms for n ≥ n(V ) and {Vi → V } ∈ CovV . The claim implies conditions
(1) and (2) of Lemma 23.6 are satisfied and hence implies the desired injectivity. Recall
(Derived Categories, Remark 12.4) that we have distinguished triangles

H−n−1(E)[n+ 1]→ Kn+1 → Kn → H−n−1(E)[n+ 2]
Looking at the asssociated long exact cohomology sequence the claim follows if

Hm+n(Vi,H−n−1(E)), Hm+n+1(Vi,H−n−1(E)), Hm+n+2(Vi,H−n−1(E))
are zero for n ≥ n(V ) and {Vi → V } ∈ CovV . This follows from our choice of n(V )
and the assumption in the lemma. �

Lemma 23.8. Let (C,O) be a ringed site. Let E ∈ D(O). Let B ⊂ Ob(C) be a subset.
Assume

(1) every object of C has a covering whose members are elements of B, and
(2) for every V ∈ B there exist an integer dV ≥ 0 and a cofinal system CovV of

coverings of V such that
Hp(Vi,Hq(E)) = 0 for {Vi → V } ∈ CovV , p > dV , and q < 0

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. This follows from Lemma 23.7 with p(V,m) = dV + max(0,m). �

Lemma 23.9. Let (C,O) be a ringed site. Let E ∈ D(O). Assume there exists a
function p(−) : Z→ Z and a subset B ⊂ Ob(C) such that

(1) every object of C has a covering whose members are elements of B,
(2) Hp(V,Hm−p(E)) = 0 for p > p(m) and V ∈ B.

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. Apply Lemma 23.7 with p(V,m) = p(m) and CovV equal to the set of cov-
erings {Vi → V } with Vi ∈ B for all i. �

Lemma 23.10. Let (C,O) be a ringed site. Let E ∈ D(O). Assume there exists an
integer d ≥ 0 and a subset B ⊂ Ob(C) such that

(1) every object of C has a covering whose members are elements of B,
(2) Hp(V,Hq(E)) = 0 for p > d, q < 0, and V ∈ B.

Then the canonical map E → R lim τ≥−nE is an isomorphism in D(O).

Proof. Apply Lemma 23.8 with dV = d and CovV equal to the set of coverings
{Vi → V } with Vi ∈ B for all i. �

The lemmas above can be used to compute cohomology in certain situations.

Lemma 23.11. Let (C,O) be a ringed site. LetK be an object ofD(O). LetB ⊂ Ob(C)
be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
(2) Hp(U,Hq(K)) = 0 for all p > 0, q ∈ Z, and U ∈ B.
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Then Hq(U,K) = H0(U,Hq(K)) for q ∈ Z and U ∈ B.

Proof. Observe that K = R lim τ≥−nK by Lemma 23.10 with d = 0. Let U ∈ B.
By Equation (23.4.1) we get a short exact sequence

0→ R1 limHq−1(U, τ≥−nK)→ Hq(U,K)→ limHq(U, τ≥−nK)→ 0
Condition (2) impliesHq(U, τ≥−nK) = H0(U,Hq(τ≥−nK)) for all q by using the spec-
tral sequence of Derived Categories, Lemma 21.3. The spectral sequence converges because
τ≥−nK is bounded below. If n > −q then we haveHq(τ≥−nK) = Hq(K). Thus the sys-
tems on the left and the right of the displayed short exact sequence are eventually constant
with values H0(U,Hq−1(K)) and H0(U,Hq(K)) and the lemma follows. �

Here is another case where we can describe the derived limit.

Lemma 23.12. Let (C,O) be a ringed site. Let (Kn) be an inverse system of objects of
D(O). Let B ⊂ Ob(C) be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for all U ∈ B and all q ∈ Z we have

(a) Hp(U,Hq(Kn)) = 0 for p > 0,
(b) the inverse system H0(U,Hq(Kn)) has vanishing R1 lim.

Then Hq(R limKn) = limHq(Kn) for q ∈ Z.

Proof. Set K = R limKn. We will use notation as in Remark 23.4. Let U ∈ B. By
Lemma 23.11 and (2)(a) we have Hq(U,Kn) = H0(U,Hq(Kn)). Using that the functor
RΓ(U,−) commutes with derived limits we have

Hq(U,K) = Hq(R limRΓ(U,Kn)) = limH0(U,Hq(Kn))
where the final equality follows from More on Algebra, Remark 86.10 and assumption
(2)(b). Thus Hq(U,K) is the inverse limit the sections of the sheaves Hq(Kn) over U .
Since limHq(Kn) is a sheaf we find using assumption (1) thatHq(K), which is the sheafi-
fication of the presheaf U 7→ Hq(U,K), is equal to limHq(Kn). This proves the lemma.

�

24. Producing K-injective resolutions

Let (C,O) be a ringed site. LetF• be a complex ofO-modules. The category Mod(O) has
enough injectives, hence we can use Derived Categories, Lemma 29.3 produce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•

2
// I•

1

in the category of complexes ofO-modules such that
(1) the vertical arrows are quasi-isomorphisms,
(2) I•

n is a bounded below complex of injectives,
(3) the arrows I•

n+1 → I•
n are termwise split surjections.

The category of O-modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•

n. By Derived Categories, Lemmas
31.4 and 31.8 this is a K-injective complex. In general the canonical map

(24.0.1) F• → I•
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may not be a quasi-isomorphism. In the following lemma we describe some conditions
under which it is.

Lemma 24.1. In the situation described above. Denote Hm = Hm(F•) the mth
cohomology sheaf. Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d and q < 05.

Then (24.0.1) is a quasi-isomorphism.

Proof. By Derived Categories, Lemma 34.4 it suffices to show that the canonical map
F• → R lim τ≥−nF• is an isomorphism. This follows from Lemma 23.10. �

Here is a technical lemma about cohomology sheaves of termwise limits of inverse systems
of complexes of modules. We should avoid using this lemma as much as possible and
instead use arguments with derived inverse limits.

Lemma 24.2. Let (C,O) be a ringed site. Let (F•
n) be an inverse system of complexes

ofO-modules. Let m ∈ Z. Suppose given B ⊂ Ob(C) and an integer n0 such that
(1) every object of C has a covering whose members are elements of B,
(2) for every U ∈ B

(a) the systems of abelian groupsFm−2
n (U) andFm−1

n (U) have vanishingR1 lim
(for example these have the Mittag-Leffler property),

(b) the system of abelian groups Hm−1(F•
n(U)) has vanishing R1 lim (for ex-

ample it has the Mittag-Leffler property), and
(c) we have Hm(F•

n(U)) = Hm(F•
n0

(U)) for all n ≥ n0.
Then the maps Hm(F•) → limHm(F•

n) → Hm(F•
n0

) are isomorphisms of sheaves
where F• = limF•

n is the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of

limn Fm−2
n (U)→ limn Fm−1

n (U)→ limn Fmn (U)→ limn Fm+1
n (U)

in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply More on
Algebra, Lemma 86.3 to conclude that

Hm(F•(U)) = limHm(F•
n(U))

By assumption (2)(c) we conclude
Hm(F•(U)) = Hm(F•

n(U))
for alln ≥ n0. By assumption (1) we conclude that the sheafification ofU 7→ Hm(F•(U))
is equal to the sheafification of U 7→ Hm(F•

n(U)) for all n ≥ n0. Thus the inverse
system of sheaves Hm(F•

n) is constant for n ≥ n0 with value Hm(F•) which proves the
lemma. �

25. Bounded cohomological dimension

In this section we ask when a functorRf∗ has bounded cohomological dimension. This is
a rather subtle question when we consider unbounded complexes.

Situation 25.1. Let C be a site. LetO be a sheaf of rings on C. LetA ⊂Mod(O) be a
weak Serre subcategory. We assume the following is true: there exists a subset B ⊂ Ob(C)
such that

5It suffices if ∀m, ∃p(m), Hp(U.Hm−p) = 0 for p > p(m), see Lemma 23.9.
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(1) every object of C has a covering whose members are in B, and
(2) for every V ∈ B there exists an integer dV and a cofinal system CovV of cover-

ings of V such that
Hp(Vi,F) = 0 for {Vi → V } ∈ CovV , p > dV , and F ∈ Ob(A)

Lemma 25.2. In Situation 25.1 for anyE ∈ DA(O) the canonical mapE → R lim τ≥−nE
is an isomorphism in D(O).

Proof. Follows immediately from Lemma 23.8. �

Lemma 25.3. In Situation 25.1 let (Kn) be an inverse system inD+
A(O). Assume that

for every j the inverse system (Hj(Kn)) inA is eventually constant with valueHj . Then
Hj(R limKn) = Hj for all j.

Proof. Let V ∈ B. Let {Vi → V } be in the set CovV of Situation 25.1. Because Kn

is bounded below there is a spectral sequence
Ep,q2 = Hp(Vi,Hq(Kn))

converging toHp+q(Vi,Kn). See Derived Categories, Lemma 21.3. Observe thatEp,q2 = 0
for p > dV by assumption. Pick n0 such that

Hj+1 = Hj+1(Kn),
Hj = Hj(Kn),
. . . ,

Hj−dV −2 = Hj−dV −2(Kn)
for all n ≥ n0. Comparing the spectral sequences above for Kn and Kn0 , we see that
for n ≥ n0 the cohomology groupsHj−1(Vi,Kn) andHj(Vi,Kn) are independent of n.
It follows that the map on sections Hj(R limKn)(V ) → Hj(Kn)(V ) is injective for n
large enough (depending on V ), see Lemma 23.6. Since every object of C can be covered
by elements of B, we conclude that the map Hj(R limKn)→ Hj is injective.
Surjectivity is shown in a similar manner. Namely, pick U ∈ Ob(C) and γ ∈ Hj(U).
We want to lift γ to a section of Hj(R limKn) after replacing U by the members of a
covering. Hence we may assume U = V ∈ B by property (1) of Situation 25.1. Pick n0
such that

Hj+1 = Hj+1(Kn),
Hj = Hj(Kn),
. . . ,

Hj−dV −2 = Hj−dV −2(Kn)
for all n ≥ n0. Choose an element {Vi → V } of CovV such that γ|Vi ∈ Hj(Vi) =
Hj(Kn0)(Vi) lifts to an element γn0,i ∈ Hj(Vi,Kn0). This is possible because Hj(Kn0)
is the sheafification of U 7→ Hj(U,Kn0) by Lemma 20.3. By the discussion in the first
paragraph of the proof we have that Hj−1(Vi,Kn) and Hj(Vi,Kn) are independent of
n ≥ n0. Hence γn0,i lifts to an element γi ∈ Hj(Vi, R limKn) by Lemma 23.2. This
finishes the proof. �

Lemma 25.4. Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi. Let
A ⊂Mod(O) andA′ ⊂Mod(O′) be weak Serre subcategories. Assume there is an integer
N such that

(1) C,O,A satisfy the assumption of Situation 25.1,
(2) C′,O′,A′ satisfy the assumption of Situation 25.1,
(3) Rpf∗F ∈ Ob(A′) for p ≥ 0 and F ∈ Ob(A),
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(4) Rpf∗F = 0 for p > N and F ∈ Ob(A),
Then for K in DA(O) we have

(a) Rf∗K is in DA′(O′),
(b) the map Hj(Rf∗K)→ Hj(Rf∗(τ≥−nK)) is an isomorphism for j ≥ N − n.

Proof. By Lemma 25.2 we haveK = R lim τ≥−nK. By Lemma 23.3 we haveRf∗K =
R limRf∗τ≥−nK. The complexesRf∗τ≥−nK are bounded below. The spectral sequence

Ep,q2 = Rpf∗H
q(τ≥−nK)

converging to Hp+q(Rf∗τ≥−nK) (Derived Categories, Lemma 21.3) and assumption (3)
show that Rf∗τ≥−nK lies in D+

A′(O′), see Homology, Lemma 24.11. Observe that for
m ≥ n the map

Rf∗(τ≥−mK) −→ Rf∗(τ≥−nK)
induces an isomorphism on cohomology sheaves in degrees j ≥ −n + N by the spectral
sequences above. Hence we may apply Lemma 25.3 to conclude. �

It turns out that we sometimes need a variant of the lemma above where the assumptions
are sligthly different.

Situation 25.5. Let f : (C,O) → (C′,O′) be a morphism of ringed sites. Let u :
C′ → C be the corresponding continuous functor of sites. Let A ⊂ Mod(O) be a weak
Serre subcategory. We assume the following is true: there exists a subset B′ ⊂ Ob(C′)
such that

(1) every object of C′ has a covering whose members are in B′, and
(2) for every V ′ ∈ B′ there exists an integer dV ′ and a cofinal system CovV ′ of

coverings of V ′ such that

Hp(u(V ′
i ),F) = 0 for {V ′

i → V ′} ∈ CovV ′ , p > dV ′ , and F ∈ Ob(A)

Lemma 25.6. Let f : (C,O) → (C′,O′) be a morphism of ringed sites. assume
moreover there is an integer N such that

(1) C,O,A satisfy the assumption of Situation 25.1,
(2) f : (C,O)→ (C′,O′) andA satisfy the assumption of Situation 25.5,
(3) Rpf∗F = 0 for p > N and F ∈ Ob(A),

Then for K in DA(O) the map Hj(Rf∗K)→ Hj(Rf∗(τ≥−nK)) is an isomorphism for
j ≥ N − n.

Proof. LetK be inDA(O). By Lemma 25.2 we haveK = R lim τ≥−nK. By Lemma
23.3 we haveRf∗K = R limRf∗(τ≥−nK). LetV ′ ∈ B′ and let {V ′

i → V ′} be an element
of CovV ′ . Then we consider

Hj(V ′
i , Rf∗K) = Hj(u(V ′

i ),K) and Hj(V ′
i , Rf∗(τ≥−nK)) = Hj(u(V ′

i ), τ≥−nK)
The assumption in Situation 25.5 implies that the last group is independent of n for n
large enough depending on j and dV ′ . Some details omitted. We apply this for j and j−1
and via Lemma 23.2 this gives that

Hj(V ′
i , Rf∗K) = limHj(V ′

i , Rf∗(τ≥−nK))
and the system on the right is constant for n larger than a constant depending only on
dV ′ and j. Thus Lemma 23.6 implies that

Hj(Rf∗K)(V ′) −→
(
limHj(Rf∗(τ≥−nK))

)
(V ′)
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is injective. Since the elements V ′ ∈ B′ cover every object of C′ we conclude that the map
Hj(Rf∗K)→ limHj(Rf∗(τ≥−nK)) is injective. The spectral sequence

Ep,q2 = Rpf∗H
q(τ≥−nK)

converging to Hp+q(Rf∗(τ≥−nK)) (Derived Categories, Lemma 21.3) and assumption
(3) show that Hj(Rf∗(τ≥−nK)) is constant for n ≥ N − j. Hence Hj(Rf∗K) →
Hj(Rf∗(τ≥−nK)) is injective for j ≥ N − n.

Thus we proved the lemma with “isomorphism” in the last line of the lemma replaced by
“injective”. However, now choose j and n with j ≥ N − n. Then consider the distin-
guished triangle

τ≤−n−1K → K → τ≥−nK → (τ≤−n−1K)[1]
See Derived Categories, Remark 12.4. Since τ≥−nτ≤−n−1K = 0, the injectivity already
proven for τ−n−1K implies

0 = Hj(Rf∗(τ≤−n−1K)) = Hj+1(Rf∗(τ≤−n−1K)) = Hj+2(Rf∗(τ≤−n−1K)) = . . .

By the long exact cohomology sequence associated to the distinguished triangle

Rf∗(τ≤−n−1K)→ Rf∗K → Rf∗(τ≥−nK)→ Rf∗(τ≤−n−1K)[1]
this implies that Hj(Rf∗K)→ Hj(Rf∗(τ≥−nK)) is an isomorphism. �

26. Mayer-Vietoris

For the usual statement and proof of Mayer-Vietoris, please see Cohomology, Section 8.

Let (C,O) be a ringed site. Consider a commutative diagram

E

��

// Y

��
Z // X

in the category C. In this situation, given an object K of D(O) we get what looks like the
beginning of a distinguished triangle

RΓ(X,K)→ RΓ(Z,K)⊕RΓ(Y,K)→ RΓ(E,K)
In the following lemma we make this more precise.

Lemma 26.1. In the situation above, choose a K-injective complex I• of O-modules
representingK. Using−1 times the canonical map for one of the four arrows we get maps
of complexes

I•(X) α−→ I•(Z)⊕ I•(Y ) β−→ I•(E)
with β ◦ α = 0. Thus a canonical map

cKX,Z,Y,E : I•(X) −→ C(β)•[−1]
This map is canonical in the sense that a different choice of K-injective complex repre-
senting K determines an isomorphic arrow in the derived category of abelian groups. If
cKX,Z,Y,E is an isomorphism, then using its inverse we obtain a canonical distinguished
triangle

RΓ(X,K)→ RΓ(Z,K)⊕RΓ(Y,K)→ RΓ(E,K)→ RΓ(X,K)[1]
All of these constructions are functorial in K.
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Proof. This lemma proves itself. For example, if J • is a second K-injective com-
plex representing K , then we can choose a quasi-isomorphism I• → J • which deter-
mines quasi-isomorphisms between all the complexes in sight. Details omitted. For the
construction of cones and the relationship with distinguished triangles see Derived Cate-
gories, Sections 9 and 10. �

Lemma 26.2. In the situation above, letK1 → K2 → K3 → K1[1] be a distinguished
triangle in D(O). If cKiX,Z,Y,E is a quasi-isomorphism for two i out of {1, 2, 3}, then it is a
quasi-isomorphism for the third i.

Proof. By rotating the triangle we may assume cK1
X,Z,Y,E and cK2

X,Z,Y,E are quasi-
isomorphisms. Choose a map f : I•

1 → I•
2 of K-injective complexes of O-modules rep-

resenting K1 → K2. Then K3 is represented by the K-injective complex C(f)•, see
Derived Categories, Lemma 31.3. Then the morphism cK3

X,Z,Y,E is an isomorphism as it
is the third leg in a map of distinguished triangles in K(Ab) whose other two legs are
quasi-isomorphisms. Some details omitted; use Derived Categories, Lemma 4.3. �

Let us give a criterion for when this does produce a distinguished triangle.

Lemma 26.3. In the situation above assume
(1) h#

X = h#
Y qh#

E
h#
Z , and

(2) h#
E → h#

Y is injective.
Then the construction of Lemma 26.1 produces a distinguished triangle

RΓ(X,K)→ RΓ(Z,K)⊕RΓ(Y,K)→ RΓ(E,K)→ RΓ(X,K)[1]
functorial for K in D(C).

Proof. We can representK by a K-injective complex whose terms are injective abelian
sheaves, see Section 19. Thus it suffices to show: if I is an injective abelian sheaf, then

0→ I(X)→ I(Z)⊕ I(Y )→ I(E)→ 0
is a short exact sequence. The first arrow is injective because by condition (1) the map
hY q hZ → hX becomes surjective after sheafification, which means that {Y → X,Z →
X} can be refined by a covering of X . The last arrow is surjective because I(Y )→ I(E)
is surjective. Namely, we have I(E) = Hom(Z#

E , I), I(Y ) = Hom(Z#
Y , I), the map

Z#
E → Z#

Y is injective by (2), and I is an injective abelian sheaf. Please compare with
Modules on Sites, Section 5. Finally, suppose we have s ∈ I(Y ) and t ∈ F(Z) mapping
to the same element of I(E). Then s and t define a map

sq t : h#
Y q h

#
Z −→ I

which by assumption factors through h#
Y qh#

E
h#
Z . Thus by assumption (1) we obtain a

unique map h#
X → I which corresponds to an element of I(X) restricting to s on Y and

t on Z. �

Lemma 26.4. Let C be a site. Consider a commutative diagram

D //

��

F

��
E // G

of presheaves of sets on C and assume that
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(1) G# = E# qD# F#, and
(2) D# → F# is injective.

Then there is a canonical distinguished triangle
RΓ(G,K)→ RΓ(E ,K)⊕RΓ(F ,K)→ RΓ(D,K)→ RΓ(G,K)[1]

functorial in K ∈ D(C) where RΓ(G,−) is the cohomology discussed in Section 13.

Proof. Since sheafification is exact and since RΓ(G,−) = RΓ(G#,−) we may as-
sume D, E ,F ,G are sheaves of sets. Moreover, the cohomology RΓ(G,−) only depends
on the topos, not on the underlying site. Hence by Sites, Lemma 29.5 we may replace C
by a “larger” site with a subcanonical topology such that G = hX , F = hY , E = hZ ,
and D = hE for some objects X,Y, Z,E of C. In this case the result follows from Lemma
26.3. �

27. Comparing two topologies

Let C be a category. Let Cov(C) ⊃ Cov′(C) be two ways to endow C with the structure of a
site. Denote τ the topology corresponding to Cov(C) and τ ′ the topology corresponding
to Cov′(C). Then the identity functor on C defines a morphism of sites

ε : Cτ −→ Cτ ′

where ε∗ is the identity functor on underlying presheaves and where ε−1 is the τ -sheafification
of a τ ′-sheaf. See Sites, Examples 14.3 and 22.3. In the situation above we have the follow-
ing

(1) ε∗ : Sh(Cτ )→ Sh(Cτ ′) is fully faithful and ε−1 ◦ ε∗ = id,
(2) ε∗ : Ab(Cτ )→ Ab(Cτ ′) is fully faithful and ε−1 ◦ ε∗ = id,
(3) Rε∗ : D(Cτ )→ D(Cτ ′) is fully faithful and ε−1 ◦Rε∗ = id,
(4) if O is a sheaf of rings for the τ -topology, then O is also a sheaf for the τ ′-

topology and ε becomes a flat morphism of ringed sites
ε : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′)

(5) ε∗ : Mod(Oτ )→Mod(Oτ ′) is fully faithful and ε∗ ◦ ε∗ = id
(6) Rε∗ : D(Oτ )→ D(Oτ ′) is fully faithful and ε∗ ◦Rε∗ = id.

Here are some explanations.
Ad (1). Let F be a sheaf of sets in the τ -topology. Then ε∗F is just F viewed as a sheaf in
the τ ′-topology. Applying ε−1 means taking the τ -sheafification of F , which doesn’t do
anything as F is already a τ -sheaf. Thus ε−1(ε∗F)) = F . The fully faithfulness follows
by Categories, Lemma 24.4.
Ad (2). This is a consequence of (1) since pullback and pushforward of abelian sheaves is
the same as doing those operations on the underlying sheaves of sets.
Ad (3). Let K be an object of D(Cτ ). To compute Rε∗K we choose a K-injective complex
I• representing K and we set Rε∗K = ε∗I•. Since ε−1 : D(Cτ ′) → D(Cτ ) is com-
puted on an object L by applying the exact functor ε−1 to any complex of abelian sheaves
representing L, we find that ε−1Rε∗K is represented by ε−1ε∗I•. By Part (1) we have
I• = ε−1ε∗I•. In other words, we have ε−1 ◦Rε∗ = id and we conclude as before.
Ad (4). Observe that ε−1Oτ ′ = Oτ , see discussion in part (1). Hence ε is a flat morphism
of ringed sites, see Modules on Sites, Definition 31.1. Not only that, it is moreover clear
that ε∗ = ε−1 onOτ ′ -modules (the pullback as a module has the same underlying abelian
sheaf as the pullback of the underlying abelian sheaf).
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Ad (5). This is clear from (2) and what we said in (4).

Ad (6). This is analogous to (3). We omit the details.

28. Formalities on cohomological descent

In this section we discuss only to what extent a morphism of ringed topoi determines an
embedding from the derived category downstairs to the derived category upstairs. Here
is a typical result.

Lemma 28.1. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Consider the full subcategory D′ ⊂ D(OD) consisting of objects K such that

K −→ Rf∗Lf
∗K

is an isomorphism. ThenD′ is a saturated triangulated strictly full subcategory ofD(OD)
and the functor Lf∗ : D′ → D(OC) is fully faithful.

Proof. See Derived Categories, Definition 6.1 for the definition of saturated in this
setting. See Derived Categories, Lemma 4.16 for a discussion of triangulated subcategories.
The canonical map of the lemma is the unit of the adjoint pair of functors (Lf∗, Rf∗), see
Lemma 19.1. Having said this the proof that D′ is a saturated triangulated subcategory is
omitted; it follows formally from the fact thatLf∗ andRf∗ are exact functors of triangu-
lated categories. The final part follows formally from fact that Lf∗ and Rf∗ are adjoint;
compare with Categories, Lemma 24.4. �

Lemma 28.2. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Consider the full subcategory D′ ⊂ D(OC) consisting of objects K such that

Lf∗Rf∗K −→ K

is an isomorphism. ThenD′ is a saturated triangulated strictly full subcategory ofD(OC)
and the functor Rf∗ : D′ → D(OD) is fully faithful.

Proof. See Derived Categories, Definition 6.1 for the definition of saturated in this
setting. See Derived Categories, Lemma 4.16 for a discussion of triangulated subcategories.
The canonical map of the lemma is the counit of the adjoint pair of functors (Lf∗, Rf∗),
see Lemma 19.1. Having said this the proof that D′ is a saturated triangulated subcate-
gory is omitted; it follows formally from the fact that Lf∗ and Rf∗ are exact functors of
triangulated categories. The final part follows formally from fact that Lf∗ and Rf∗ are
adjoint; compare with Categories, Lemma 24.4. �

Lemma 28.3. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let K be an object of D(OC). Assume

(1) f is flat,
(2) K is bounded below,
(3) f∗Rf∗H

q(K)→ Hq(K) is an isomorphism.
Then f∗Rf∗K → K is an isomorphism.

Proof. Observe that f∗Rf∗K → K is an isomorphism if and only if it is an iso-
morphism on cohomology sheaves Hj . Observe that Hj(f∗Rf∗K) = f∗Hj(Rf∗K) =
f∗Hj(Rf∗τ≤jK) = Hj(f∗Rf∗τ≤jK). Hence we may assume that K is bounded. Then
property (3) tells us the cohomology sheaves are in the triangulated subcategory D′ ⊂
D(OC) of Lemma 28.2. Hence K is in it too. �
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Lemma 28.4. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let K be an object of D(OD). Assume

(1) f is flat,
(2) K is bounded below,
(3) Hq(K)→ Rf∗f

∗Hq(K) is an isomorphism.
Then K → Rf∗f

∗K is an isomorphism.

Proof. Observe thatK → Rf∗f
∗K is an isomorphism if and only if it is an isomor-

phism on cohomology sheaves Hj . Observe that Hj(Rf∗f
∗K) = Hj(Rf∗τ≤jf

∗K) =
Hj(Rf∗f

∗τ≤jK). Hence we may assume that K is bounded. Then property (3) tells us
the cohomology sheaves are in the triangulated subcategoryD′ ⊂ D(OD) of Lemma 28.1.
Hence K is in it too. �

Lemma 28.5. Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi. Let
A ⊂Mod(O) andA′ ⊂Mod(O′) be weak Serre subcategories. Assume

(1) f is flat,
(2) f∗ induces an equivalence of categoriesA′ → A,
(3) F ′ → Rf∗f

∗F ′ is an isomorphism for F ′ ∈ Ob(A′).
Then f∗ : D+

A′(O′) → D+
A(O) is an equivalence of categories with quasi-inverse given

by Rf∗ : D+
A(O)→ D+

A′(O′).

Proof. By assumptions (2) and (3) and Lemmas 28.4 and 28.1 we see that f∗ : D+
A′(O′)→

D+
A(O) is fully faithful. Let F ∈ Ob(A). Then we can write F = f∗F ′. Then Rf∗F =

Rf∗f
∗F ′ = F ′. In particular, we have Rpf∗F = 0 for p > 0 and f∗F ∈ Ob(A′). Thus

for any K ∈ D+
A(O) we see, using the spectral sequence Ep,q2 = Rpf∗H

q(K) converging
to Rp+qf∗K , that Rf∗K is in D+

A′(O′). Of course, it also follows from Lemmas 28.3 and
28.2 that Rf∗ : D+

A(O) → D+
A′(O′) is fully faithful. Since f∗ and Rf∗ are adjoint we

then get the result of the lemma, for example by Categories, Lemma 24.4. �

Lemma 28.6. Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi. Let
A ⊂Mod(O) andA′ ⊂Mod(O′) be weak Serre subcategories. Assume

(1) f is flat,
(2) f∗ induces an equivalence of categoriesA′ → A,
(3) F ′ → Rf∗f

∗F ′ is an isomorphism for F ′ ∈ Ob(A′),
(4) C,O,A satisfy the assumption of Situation 25.1,
(5) C′,O′,A′ satisfy the assumption of Situation 25.1.

Then f∗ : DA′(O′) → DA(O) is an equivalence of categories with quasi-inverse given
by Rf∗ : DA(O)→ DA′(O′).

Proof. Since f∗ is exact, it is clear that f∗ defines a functor f∗ : DA′(O′)→ DA(O)
as in the statement of the lemma and that moreover this functor commutes with the trun-
cation functors τ≥−n. We already know that f∗ andRf∗ are quasi-inverse equivalence on
the corresponding bounded below categories, see Lemma 28.5. By Lemma 25.4 withN = 0
we see that Rf∗ indeed defines a functor Rf∗ : DA(O) → DA′(O′) and that moreover
this functor commutes with the truncation functors τ≥−n. Thus for K in DA(O) the
map f∗Rf∗K → K is an isomorphism as this is true on trunctions. Similarly, for K ′ in
DA′(O′) the map K ′ → Rf∗f

∗K ′ is an isomorphism as this is true on trunctions. This
finishes the proof. �
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Lemma 28.7. Let f : (C,O) → (C′,O′) be a morphism of ringed sites. Let A ⊂
Mod(O) andA′ ⊂Mod(O′) be weak Serre subcategories. Assume

(1) f is flat,
(2) f∗ induces an equivalence of categoriesA′ → A,
(3) F ′ → Rf∗f

∗F ′ is an isomorphism for F ′ ∈ Ob(A′),
(4) C,O,A satisfy the assumption of Situation 25.1,
(5) f : (C,O)→ (C′,O′) andA satisfy the assumption of Situation 25.5.

Then f∗ : DA′(O′) → DA(O) is an equivalence of categories with quasi-inverse given
by Rf∗ : DA(O)→ DA′(O′).

Proof. The proof of this lemma is exactly the same as the proof of Lemma 28.6 except
the reference to Lemma 25.4 is replaced by a reference to Lemma 25.6. �

29. Comparing two topologies, II

Let C be a category. Let Cov(C) ⊃ Cov′(C) be two ways to endow C with the structure of a
site. Denote τ the topology corresponding to Cov(C) and τ ′ the topology corresponding
to Cov′(C). Then the identity functor on C defines a morphism of sites

ε : Cτ −→ Cτ ′

where ε∗ is the identity functor on underlying presheaves and where ε−1 is the τ -sheafification
of a τ ′-sheaf (hence clearly exact). Let O be a sheaf of rings for the τ -topology. Then O
is also a sheaf for the τ ′-topology and ε becomes a morphism of ringed sites

ε : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′)

For more discussion, see Section 27.

Lemma 29.1. With ε : (Cτ ,Oτ ) → (Cτ ′ ,Oτ ′) as above. Let B ⊂ Ob(C) be a subset.
LetA ⊂ PMod(O) be a full subcategory. Assume

(1) every object ofA is a sheaf for the τ -topology,
(2) A is a weak Serre subcategory of Mod(Oτ ),
(3) every object of C has a τ ′-covering whose members are elements of B, and
(4) for every U ∈ B we have Hp

τ (U,F) = 0, p > 0 for all F ∈ A.
Then A is a weak Serre subcategory of Mod(Oτ ′) and there is an equivalence of triangu-
lated categories DA(Oτ ) = DA(Oτ ′) given by ε∗ and Rε∗.

Proof. Since ε−1Oτ ′ = Oτ we see that ε is a flat morphism of ringed sites and that
in fact ε−1 = ε∗ on sheaves of modules. By property (1) we can think of every object of
A as a sheaf of Oτ -modules and as a sheaf of Oτ ′ -modules. In other words, we have fully
faithful inclusion functors

A →Mod(Oτ )→Mod(Oτ ′)

To avoid confusion we will denote A′ ⊂ Mod(Oτ ′) the image of A. Then it is clear that
ε∗ : A → A′ and ε∗ : A′ → A are quasi-inverse equivalences (see discussion preceding
the lemma and use that objects ofA′ are sheaves in the τ topology).

Conditions (3) and (4) imply that Rpε∗F = 0 for p > 0 and F ∈ Ob(A). This is true
becauseRpε∗ is the sheaf associated to the presheaveU 7→ Hp

τ (U,F), see Lemma 7.4. Thus
any exact complex inA (which is the same thing as an exact complex in Mod(Oτ ) whose
terms are inA, see Homology, Lemma 10.3) remains exact upon applying the functor ε∗.
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Consider an exact sequence

F ′
0 → F ′

1 → F ′
2 → F ′

3 → F ′
4

in Mod(Oτ ′) with F ′
0,F ′

1,F ′
3,F ′

4 in A′. Apply the exact functor ε∗ to get an exact se-
quence

ε∗F ′
0 → ε∗F ′

1 → ε∗F ′
2 → ε∗F ′

3 → ε∗F ′
4

in Mod(Oτ ). Since A is a weak Serre subcategory and since ε∗F ′
0, ε

∗F ′
1, ε

∗F ′
3, ε

∗F ′
4 are

in A, we conclude that ε∗F2 is in A by Homology, Definition 10.1. Consider the map of
sequences

F ′
0

//

��

F ′
1

//

��

F ′
2

//

��

F ′
3

//

��

F ′
4

��
ε∗ε

∗F ′
0

// ε∗ε∗F ′
1

// ε∗ε∗F ′
2

// ε∗ε∗F ′
3

// ε∗ε∗F ′
4

The lower row is exact by the discussion in the preceding paragraph. The vertical arrows
with index 0, 1, 3, 4 are isomorphisms by the discussion in the first paragraph. By the 5
lemma (Homology, Lemma 5.20) we find that F ′

2
∼= ε∗ε

∗F ′
2 and hence F ′

2 is inA′. In this
way we see that A′ is a weak Serre subcategory of Mod(Oτ ′), see Homology, Definition
10.1.

At this point it makes sense to talk about the derived categories DA(Oτ ) and DA′(Oτ ′),
see Derived Categories, Section 17. To finish the proof we show that conditions (1) – (5)
of Lemma 28.7 apply. We have already seen (1), (2), (3) above. Note that since every object
has a τ ′-covering by objects of B, a fortiori every object has a τ -covering by objects of
B. Hence condition (4) of Lemma 28.7 is satisfied. Similarly, condition (5) is satisfied as
well. �

Lemma 29.2. With ε : (Cτ ,Oτ )→ (Cτ ′ ,Oτ ′) as above. Let A be a set and for α ∈ A
let

Eα

��

// Yα

��
Zα // Xα

be a commutative diagram in the category C. Assume that
(1) a τ ′-sheaf F ′ is a τ -sheaf if F ′(Xα) = F ′(Zα)×F ′(Eα) F ′(Yα) for all α,
(2) forK ′ inD(Oτ ′) in the essential image ofRε∗ the maps cK

′

Xα,Zα,Yα,Eα
of Lemma

26.1 are isomorphisms for all α.
ThenK ′ ∈ D+(Oτ ′) is in the essential image ofRε∗ if and only if the maps cK

′

Xα,Zα,Yα,Eα
are isomorphisms for all α.

Proof. The “only if” direction is implied by assumption (2). On the other hand, ifK ′

has a unique nonzero cohomology sheaf, then the “if” direction follows from assumption
(1). In general we will use an induction argument to prove the “if” direction. Let us say
an object K ′ of D+(Oτ ′) satisfies (P) if the maps cK

′

Xα,Zα,Yα,Eα
are isomorphisms for all

α ∈ A.

Namely, let K ′ be an object of D+(Oτ ′) satisfying (P). Choose a distinguished triangle

K ′ → Rε∗ε
−1K ′ →M ′ → K ′[1]
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in D+(Oτ ′) where the first arrow is the adjuntion map. By (2) and Lemma 26.2 we see
that M ′ has (P). On the other hand, applying ε−1 and using that ε−1Rε∗ = id by Section
27 we find that ε−1M ′ = 0. In the next paragraph we will show M ′ = 0 which finishes
the proof.

Let K ′ be an object of D+(Oτ ′) satisfying (P) with ε−1K ′ = 0. We will show K ′ = 0.
Namely, given n ∈ Z such that Hi(K ′) = 0 for i < n we will show that Hn(K ′) = 0.
For α ∈ A we have a distinguished triangle

RΓτ ′(Xα,K
′)→ RΓτ ′(Zα,K ′)⊕RΓτ ′(Yα,K ′)→ RΓτ ′(Eα,K ′)→ RΓτ ′(Xα,K

′)[1]

by Lemma 26.1. Taking cohomology in degree n and using the assumed vanishing of co-
homology sheaves of K ′ we obtain an exact sequence

0→ Hn
τ ′(Xα,K

′)→ Hn
τ ′(Zα,K ′)⊕Hn

τ ′(Yα,K ′)→ Hn
τ ′(Eα,K ′)

which is the same as the exact sequence

0→ Γ(Xα,H
n(K ′))→ Γ(Zα,Hn(K ′))⊕ Γ(Yα,Hn(K ′))→ Γ(Eα,Hn(K ′))

We conclude thatHn(K ′) is a a τ -sheaf by assumption (1). However, since the τ -sheafification
ε−1Hn(K ′) = Hn(ε−1K ′) is 0 as ε−1K ′ = 0 we conclude that Hn(K ′) = 0 as de-
sired. �

Lemma 29.3. With ε : (Cτ ,Oτ )→ (Cτ ′ ,Oτ ′) as above. Let

E

��

// Y

��
Z // X

be a commutative diagram in the category C such that

(1) h#
X = h#

Y qh#
E
h#
Z , and

(2) h#
E → h#

Y is injective
where # denotes τ -sheafification. Then for K ′ ∈ D(Oτ ′) in the essential image of Rε∗
the map cK

′

X,Z,Y,E of Lemma 26.1 (using the τ ′-topology) is an isomorphism.

Proof. This helper lemma is an almost immediate consequence of Lemma 26.3 and we
strongly urge the reader skip the proof. Say K ′ = Rε∗K. Choose a K-injective complex
of Oτ -modules J • representing K. Then ε∗J • is a K-injective complex of Oτ ′ -modules
representing K ′, see Lemma 20.10. Next,

0→ J •(X) α−→ J •(Z)⊕ J •(Y ) β−→ J •(E)→ 0

is a short exact sequence of complexes of abelian groups, see Lemma 26.3 and its proof.
Since this is the same as the sequence of complexes of abelian groups which is used to
define cK

′

X,Z,Y,E , we conclude. �

30. Comparing cohomology

We develop some general theory which will help us compare cohomology in different
topologies. Given C , τ , and τ ′ as in Section 27 and a morphism f : X → Y in C we obtain
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a commutative diagram of morphisms of topoi

(30.0.1)

Sh(Cτ/X)
fτ

//

εX

��

Sh(Cτ/Y )

εY

��
Sh(Cτ ′/X)

fτ′ // Sh(Cτ ′/X)

Here the morphism εX , resp. εY is the comparison morphism of Section 27 for the cat-
egory C/X endowed with the two topologies τ and τ ′. The morphisms fτ and fτ ′ are
“relocalization” morphisms (Sites, Lemma 25.8). The commutativity of the diagram is a
special case of Sites, Lemma 28.1 (applied with C = Cτ/Y , D = Cτ ′/Y , u = id, U = X ,
and V = X). We also get εX,∗ ◦ f−1

τ = f−1
τ ′ ◦ εY,∗ either from the lemma or because it is

obvious.

Situation 30.1. With C , τ , and τ ′ as in Section 27. Assume we are given a subset
P ⊂ Arrows(C) and for every objectX of C we are given a weak Serre subcategoryA′

X ⊂
Ab(Cτ ′/X). We make the following assumption:

(1) given f : X → Y in P and Y ′ → Y general, then X ×Y Y ′ exists and X ×Y
Y ′ → Y ′ is in P ,

(2) f−1
τ ′ sendsA′

Y intoA′
X for any morphism f : X → Y of C ,

(3) givenX in C andF ′ inA′
X , thenF ′ satisfies the sheaf condition for τ -coverings,

i.e., F ′ = εX,∗ε
−1
X F ′,

(4) if f : X → Y in P and F ′ ∈ Ob(A′
X), then Rifτ ′,∗F ′ ∈ Ob(A′

Y ) for i ≥ 0.
(5) if {Ui → U}i∈I is a τ -covering, then there exist

(a) a τ ′-covering {Vj → U}j∈J ,
(b) a τ -covering {fj : Wj → Vj} consisting of a single fj ∈ P , and
(c) a τ ′-covering {Wjk →Wj}k∈Kj

such that {Wjk → U}j∈J,k∈Kj is a refinement of {Ui → U}i∈I .

Lemma 30.2. In Situation 30.1 forX in C denoteAX the objects of Ab(Cτ/X) of the
form ε−1

X F ′ with F ′ inA′
X . Then

(1) for F in Ab(Cτ/X) we have F ∈ AX ⇔ εX,∗F ∈ A′
X , and

(2) f−1
τ sendsAY intoAX for any morphism f : X → Y of C.

Proof. Part (1) follows from (3) and part (2) follows from (2) and the commutativity
of (30.0.1) which gives ε−1

X ◦ f
−1
τ ′ = f−1

τ ◦ ε−1
Y . �

Our next goal is to prove Lemmas 30.10 and 30.9. We will do this by an induction argu-
ment using the following induction hypothesis.

(Vn) For X in C and F inAX we have RiεX,∗F = 0 for 1 ≤ i ≤ n.

Lemma 30.3. In Situation 30.1 assume (Vn) holds. For f : X → Y in P and F in
AX we have Rifτ ′,∗εX,∗F = εY,∗R

ifτ,∗F for i ≤ n.

Proof. We will use the commutative diagram (30.0.1) without further mention. In
particular have

Rfτ ′,∗RεX,∗F = RεY,∗Rfτ,∗F
Assumption (Vn) tells us that εX,∗F → RεX,∗F is an isomorphism in degrees≤ n. Hence
Rfτ ′,∗εX,∗F → Rfτ ′,∗RεX,∗F is an isomorphism in degrees ≤ n. We conclude that

Rifτ ′,∗εX,∗F → Hi(RεY,∗Rfτ,∗F)
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is an isomorphism for i ≤ n. We will prove the lemma by looking at the second page of
the spectral sequence of Lemma 14.7 for RεY,∗Rfτ,∗F . Here is a picture:

. . . . . . . . . . . .
εY,∗R

2fτ,∗F R1εY,∗R
2fτ,∗F R2εY,∗R

2fτ,∗F . . .
εY,∗R

1fτ,∗F R1εY,∗R
1fτ,∗F R2εY,∗R

1fτ,∗F . . .
εY,∗fτ,∗F R1εY,∗fτ,∗F R2εY,∗fτ,∗F . . .

Let (Cm) be the hypothesis: Rifτ ′,∗εX,∗F = εY,∗R
ifτ,∗F for i ≤ m. Observe that (C0)

holds. We will show that (Cm−1) ⇒ (Cm) for m < n. Namely, if (Cm−1) holds, then
for n ≥ p > 0 and q ≤ m− 1 we have

RpεY,∗R
qfτ,∗F = RpεY,∗ε

−1
Y εY,∗R

qfτ,∗F
= RpεY,∗ε

−1
Y Rqfτ ′,∗εX,∗F = 0

First equality as ε−1
Y εY,∗ = id, the second by (Cm−1), and the final by by (Vn) because

ε−1
Y Rqfτ ′,∗εX,∗F is in AY by (4). Looking at the spectral sequence we see that E0,m

2 =
εY,∗R

mfτ,∗F is the only nonzero term Ep,q2 with p + q = m. Recall that dp,qr : Ep,qr →
Ep+r,q−r+1
r . Hence there are no nonzero differentials dp,qr , r ≥ 2 either emanating or

entering this spot. We conclude that Hm(RεY,∗Rfτ,∗F) = εY,∗R
mfτ,∗F which implies

(Cm) by the discussion above.

Finally, assume (Cn−1). The same analysis shows that E0,n
2 = εY,∗R

nfτ,∗F is the only
nonzero term Ep,q2 with p + q = n. We do still have no nonzero differentials entering
this spot, but there can be a nonzero differential emanating it. Namely, the map d0,n

n+1 :
εY,∗R

nfτ,∗F → Rn+1εY,∗fτ,∗F . We conclude that there is an exact sequence

0→ Rnfτ ′,∗εX,∗F → εY,∗R
nfτ,∗F → Rn+1εY,∗fτ,∗F

By (4) and (3) the sheaf Rnfτ ′,∗εX,∗F satisfies the sheaf property for τ -coverings as does
εY,∗R

nfτ,∗F (use the description of ε∗ in Section 27). However, the τ -sheafification of the
τ ′-sheafRn+1εY,∗fτ,∗F is zero (by locality of cohomology; use Lemmas 7.3 and 7.4). Thus
Rnfτ ′,∗εX,∗F → εY,∗R

nfτ,∗F has to be an isomorphism and the proof is complete. �

If E′, resp. E is an object of D(Cτ ′/X), resp. D(Cτ/X) then we will write Hn
τ ′(U,E′),

resp. Hn
τ (U,E) for the cohomology of E′, resp. E over an object U of C/X .

Lemma 30.4. In Situation 30.1 if (Vn) holds, then for X in C and L ∈ D(Cτ ′/X)
with Hi(L) = 0 for i < 0 and Hi(L) in A′

X for 0 ≤ i ≤ n we have Hn
τ ′(X,L) =

Hn
τ (X, ε−1

X L).

Proof. By Lemma 20.5 we have Hn
τ (X, ε−1

X L) = Hn
τ ′(X,RεX,∗ε−1

X L). There is a
spectral sequence

Ep,q2 = RpεX,∗ε
−1
X Hq(L)

converging to Hp+q(RεX,∗ε−1
X L). By (Vn) we have the vanishing of Ep,q2 for 0 < p ≤ n

and 0 ≤ q ≤ n. Thus E0,q
2 = εX,∗ε

−1
X Hq(L) = Hq(L) are the only nonzero terms Ep,q2

with p+ q ≤ n. It follows that the map

L −→ RεX,∗ε
−1
X L

is an isomorphism in degrees≤ n (small detail omitted). Hence we find thatHi
τ ′(X,L) =

Hi
τ ′(X,RεX,∗ε−1

X L) for i ≤ n. Thus the lemma is proved. �
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Lemma 30.5. In Situation 30.1 if (Vn) holds, then for X in C and F in AX the map
Hn+1
τ ′ (X, εX,∗F) → Hn+1

τ (X,F) is injective with image those classes which become
trivial on a τ ′-covering of X .

Proof. Recall that ε−1
X εX,∗F = F hence the map is given by pulling back cohomol-

ogy classes by εX . The Leray spectral sequence (Lemma 14.5)
Ep,q2 = Hp

τ ′(X,RqεX,∗F)⇒ Hp+q
τ (X,F)

combined with the assumed vanishing gives an exact sequence

0→ Hn+1
τ ′ (X, εX,∗F)→ Hn+1

τ (X,F)→ H0
τ ′(X,Rn+1εX,∗F)

This is a restatement of the lemma. �

Lemma 30.6. In Situation 30.1 let f : X → Y be in P such that {X → Y } is a
τ -covering. Let F ′ be inA′

Y . If n ≥ 0 and

θ ∈ Equalizer
(
Hn+1
τ ′ (X,F ′) //

// H
n+1
τ ′ (X ×Y X,F ′)

)
then there exists a τ ′-covering {Yi → Y } such that θ restricts to zero in Hn+1

τ ′ (Yi ×Y
X,F ′).

Proof. Observe that X ×Y X exists by (1). For Z in C/Y denote F ′|Z the restric-
tion of F ′ to Cτ ′/Z. Recall that Hn+1

τ ′ (X,F ′) = Hn+1(Cτ ′/X,F ′|X), see Lemma 7.1.
The lemma asserts that the image θ ∈ H0(Y,Rn+1fτ ′,∗F ′|X) of θ is zero. Consider the
cartesian diagram

X ×Y X
pr1

��

pr2
// X

f

��
X

f // Y

By trivial base change (Lemma 21.1) we have

f−1
τ ′ R

n+1fτ ′,∗(F ′|X) = Rn+1pr1,τ ′,∗(F ′|X×YX)

If pr−1
1 θ = pr−1

2 θ, then the section f−1
τ ′ θ of f−1

τ ′ Rn+1fτ ′,∗(F ′|X) is zero, because it is
clear that pr−1

1 θ maps to the zero element inH0(X,Rn+1pr1,τ ′,∗(F ′|X×YX)). By (2) we
haveF ′|X inA′

X . Thus G′ = Rn+1fτ ′,∗(F ′|X) is an object ofA′
Y by (4). Thus G′ satisfies

the sheaf property for τ -coverings by (3). Since {X → Y } is a τ -covering we conclude
that restriction G′(Y )→ G′(X) is injective. It follows that θ is zero. �

Lemma 30.7. In Situation 30.1 we have (Vn)⇒ (Vn+1).

Proof. Let X in C and F in AX . Let ξ ∈ Hn+1
τ (U,F) for some U/X . We have to

show that ξ restricts to zero on the members of a τ ′-covering of U . See Lemma 7.4. It
follows from this that we may replace U by the members of a τ ′-covering of U .
By locality of cohomology (Lemma 7.3) we can choose a τ -covering {Ui → U} such that
ξ restricts to zero on Ui. Choose {Vj → V }, {fj : Wj → Vj}, and {Wjk → Wj} as in
(5). After replacing both U by Vj and F by its restriction to Cτ/Vj , which is allowed by
(1), we reduce to the case discussed in the next paragraph.
Here f : X → Y is an element of P such that {X → Y } is a τ -covering, F is an object
of AY , and ξ ∈ Hn+1

τ (Y,F) is such that there exists a τ ′-covering {Xi → X}i∈I such
that ξ restricts to zero on Xi for all i ∈ I . Problem: show that ξ restricts to zero on a
τ ′-covering of Y .
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By Lemma 30.5 there exists a unique τ ′-cohomology class θ ∈ Hn+1
τ ′ (X, εX,∗F) whose

image is ξ|X . Since ξ|X pulls back to the same class onX×Y X via the two projections, we
find that the same is true for θ (by uniqueness). By Lemma 30.6 we see that after replacing
Y by the members of a τ ′-covering, we may assume that θ = 0. Consequently, we may
assume that ξ|X is zero.
Let f : X → Y be an element of P such that {X → Y } is a τ -covering, F is an object of
AY , and ξ ∈ Hn+1

τ (Y,F) maps to zero in Hn+1
τ (X,F). Problem: show that ξ restricts

to zero on a τ ′-covering of Y .
The assumptions tell us ξ maps to zero under the map

F −→ Rfτ,∗f
−1
τ F

Use Lemma 20.5. A simple argument using the distinguished triangle of truncations (De-
rived Categories, Remark 12.4) shows that ξ maps to zero under the map

F −→ τ≤nRfτ,∗f
−1
τ F

We will compare this with the map εY,∗F → K where

K = τ≤nRfτ ′,∗f
−1
τ ′ εY,∗F = τ≤nRfτ ′,∗εX,∗f

−1
τ F

The equality εX,∗f−1
τ = f−1

τ ′ εY,∗ is a property of (30.0.1). Consider the map

Rfτ ′,∗εX,∗f
−1
τ F −→ Rfτ ′,∗RεX,∗f

−1
τ F = RεY,∗Rfτ,∗f

−1
τ F

used in the proof of Lemma 30.3 which induces by adjunction a map

ε−1
Y Rfτ ′,∗εX,∗f

−1
τ F → Rfτ,∗f

−1
τ F

Taking trunctions we find a map

ε−1
Y K −→ τ≤nRfτ,∗f

−1
τ F

which is an isomorphism by Lemma 30.3; the lemma applies because f−1
τ F is in AX by

Lemma 30.2. Choose a distinguished triangle
εY,∗F → K → L→ εY,∗F [1]

The map F → fτ,∗f
−1
τ F is injective as {X → Y } is a τ -covering. Thus εY,∗F →

εY,∗fτ,∗f
−1
τ F = fτ ′,∗f

−1
τ ′ εY,∗F is injective too. Hence L only has nonzero cohomology

sheaves in degrees 0, . . . , n. As fτ ′,∗f
−1
τ ′ εY,∗F is inA′

Y by (2) and (4) we conclude that

H0(L) = Coker(εY,∗F → fτ ′,∗f
−1
τ ′ εY,∗F)

is in the weak Serre subcategoryA′
Y . For 1 ≤ i ≤ nwe see thatHi(L) = Rifτ ′,∗f

−1
τ ′ εY,∗F

is in A′
Y by (2) and (4). Pulling back the distinguished triangle above by εY we get the

distinguished triangle

F → τ≤nRfτ,∗f
−1
τ F → ε−1

Y L→ F [1]
Since ξ maps to zero in the middle term we find that ξ is the image of an element ξ′ ∈
Hn
τ (Y, ε−1

Y L). By Lemma 30.4 we have

Hn
τ ′(Y, L) = Hn

τ (Y, ε−1
Y L),

Thus we may lift ξ′ to an element ofHn
τ ′(Y, L) and take the boundary intoHn+1

τ ′ (Y, εY,∗F)
to see that ξ is in the image of the canonical map Hn+1

τ ′ (Y, εY,∗F) → Hn+1
τ (Y,F). By

locality of cohomology for Hn+1
τ ′ (Y, εY,∗F), see Lemma 7.3, we conclude. �

Lemma 30.8. In Situation 30.1 we have that (Vn) is true for all n. Moreover:
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(1) ForX in C andK ′ ∈ D+
A′
X

(Cτ ′/X) the mapK ′ → RεX,∗(ε−1
X K ′) is an isomor-

phism.
(2) For f : X → Y inP andK ′ ∈ D+

A′
X

(Cτ ′/X) we haveRfτ ′,∗K
′ ∈ D+

A′
X

(Cτ ′/Y )
and ε−1

Y (Rfτ ′,∗K
′) = Rfτ,∗(ε−1

X K ′).

Proof. Observe that (V0) holds as it is the empty condition. Then we get (Vn) for
all n by Lemma 30.7.

Proof of (1). The object K = ε−1
X K ′ has cohomology sheaves Hi(K) = ε−1

X Hi(K ′) in
AX . Hence the spectral sequence

Ep,q2 = RpεX,∗H
q(K)⇒ Hp+q(RεX,∗K)

degenerates by (Vn) for all n and we find

Hn(RεX,∗K) = εX,∗H
n(K) = εX,∗ε

−1
X Hi(K ′) = Hi(K ′).

again because Hi(K ′) is in A′
X . Thus the canonical map K ′ → RεX,∗(ε−1

X K ′) is an
isomorphism.

Proof of (2). Using the spectral sequence

Ep,q2 = Rpfτ ′,∗H
q(K ′)⇒ Rp+qfτ ′,∗K

′

the fact thatRpfτ ′,∗H
q(K ′) is inA′

Y by (4), the fact thatA′
Y is a weak Serre subcategory

of Ab(Cτ ′/Y ), and Homology, Lemma 24.11 we conclude thatRfτ ′,∗K
′ ∈ D+

A′
X

(Cτ ′/X).
To finish the proof we have to show the base change map

ε−1
Y (Rfτ ′,∗K

′) −→ Rfτ,∗(ε−1
X K ′)

is an isomorphism. Comparing the spectral sequence above to the spectral sequence

Ep,q2 = Rpfτ,∗H
q(ε−1

X K ′)⇒ Rp+qfτ,∗ε
−1
X K ′

we reduce this to the case where K ′ has a single nonzero cohomology sheaf F ′ in A′
X ;

details omitted. Then Lemma 30.3 gives ε−1
Y Rifτ ′,∗F ′ = Rifτ,∗ε

−1
X F ′ for all i and the

proof is complete. �

Lemma 30.9. In Situation 30.1. For any X in C the category AX ⊂ Ab(Cτ/X) is a
weak Serre subcategory and the functor

RεX,∗ : D+
AX

(Cτ/X) −→ D+
A′
X

(Cτ ′/X)

is an equivalence with quasi-inverse given by ε−1
X .

Proof. We need to check the conditions listed in Homology, Lemma 10.3 for AX .
If ϕ : F → G is a map in AX , then εX,∗ϕ : εX,∗F → εX,∗G is a map in A′

X . Hence
Ker(εX,∗ϕ) and Coker(εX,∗ϕ) are objects of A′

X as this is a weak Serre subcategory of
Ab(Cτ ′/X). Applying ε−1

X we obtain an exact sequence

0→ ε−1
X Ker(εX,∗ϕ)→ F → G → ε−1

X Coker(εX,∗ϕ)→ 0
and we see that Ker(ϕ) and Coker(ϕ) are inAX . Finally, suppose that

0→ F1 → F2 → F3 → 0
is a short exact sequence in Ab(Cτ/X) with F1 and F3 in AX . Then applying εX,∗ we
obtain an exact sequence

0→ εX,∗F1 → εX,∗F2 → εX,∗F3 → R1εX,∗F1 = 0
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Vanishing by Lemma 30.8. Hence εX,∗F2 is in A′
X as this is a weak Serre subcategory of

Ab(Cτ ′/X). Pulling back by εX we conclude that F2 is inAX .
Thus AX is a weak Serre subcategory of Ab(Cτ/X) and it makes sense to consider the
category D+

AX
(Cτ/X). Observe that ε−1

X : A′
X → AX is an equivalence and that F ′ →

RεX,∗ε
−1
X F ′ is an isomorphism forF ′ inA′

X since we have (Vn) for all n by Lemma 30.8.
Thus we conclude by Lemma 28.5. �

Lemma 30.10. In Situation 30.1. Let X be in C.
(1) for F ′ inA′

X we have Hn
τ ′(X,F ′) = Hn

τ (X, ε−1
X F ′),

(2) for K ′ ∈ D+
A′
X

(Cτ ′/X) we have Hn
τ ′(X,K ′) = Hn

τ (X, ε−1
X K ′).

Proof. This follows from Lemma 30.8 by Remark 14.4. �

31. Cohomology on Hausdorff and locally quasi-compact spaces

We continue our convention to say “Hausdorff and locally quasi-compact” instead of say-
ing “locally compact” as is often done in the literature. Let LC denote the category whose
objects are Hausdorff and locally quasi-compact topological spaces and whose morphisms
are continuous maps.

Lemma 31.1. The category LC has fibre products and a final object and hence has
arbitrary finite limits. Given morphisms X → Z and Y → Z in LC with X and Y
quasi-compact, then X ×Z Y is quasi-compact.

Proof. The final object is the singleton space. Given morphismsX → Z andY → Z
of LC the fibre product X ×Z Y is a subspace of X × Y . Hence X ×Z Y is Hausdorff as
X × Y is Hausdorff by Topology, Section 3.
If X and Y are quasi-compact, then X × Y is quasi-compact by Topology, Theorem 14.4.
Since X ×Z Y is a closed subset of X × Y (Topology, Lemma 3.4) we find that X ×Z Y
is quasi-compact by Topology, Lemma 12.3.
Finally, returning to the general case, if x ∈ X and y ∈ Y we can pick quasi-compact
neighbourhoods x ∈ E ⊂ X and y ∈ F ⊂ Y and we find thatE×Z F is a quasi-compact
neighbourhood of (x, y) by the result above. ThusX×ZY is an object of LC by Topology,
Lemma 13.2. �

We can endow LC with a stronger topology than the usual one.

Definition 31.2. Let {fi : Xi → X} be a family of morphisms with fixed target
in the category LC. We say this family is a qc covering6 if for every x ∈ X there exist
i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a neighbour-

hood of x.

Observe that an open coveringX =
⋃
Ui of an object of LC gives a qc covering {Ui → X}

because X is locally quasi-compact. We start with the obligatory lemma.

Lemma 31.3. Let X be a Hausdorff and locally quasi-compact space, in other words,
an object of LC.

(1) If X ′ → X is an isomorphism in LC then {X ′ → X} is a qc covering.
(2) If {fi : Xi → X}i∈I is a qc covering and for each i we have a qc covering
{gij : Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a qc covering.

6This is nonstandard notation. We chose it to remind the reader of fpqc coverings of schemes.
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(3) If {Xi → X}i∈I is a qc covering and X ′ → X is a morphism of LC then
{X ′ ×X Xi → X ′}i∈I is a qc covering.

Proof. Part (1) holds by the remark above that open coverings are qc coverings.

Proof of (2). Let x ∈ X . Choose i1, . . . , in ∈ I and Ea ⊂ Xia quasi-compact such that⋃
fia(Ea) is a neighbourhood of x. For every e ∈ Ea we can find a finite subset Je ⊂ Jia

and quasi-compact Fe,j ⊂ Xij , j ∈ Je such that
⋃
gij(Fe,j) is a neighbourhood of e.

Since Ea is quasi-compact we find a finite collection e1, . . . , ema such that

Ea ⊂
⋃

k=1,...,ma

⋃
j∈Jek

gij(Fek,j)

Then we find that ⋃
a=1,...,n

⋃
k=1,...,ma

⋃
j∈Jek

fi(gij(Fek,j))

is a neighbourhood of x.

Proof of (3). Let x′ ∈ X ′ be a point. Let x ∈ X be its image. Choose i1, . . . , in ∈
I and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a neighbourhood of x.

Choose a quasi-compact neighbourhoodF ⊂ X ′ of x′ which maps into the quasi-compact
neighbourhood

⋃
fij (Ej) of x. Then F ×X Ej ⊂ X ′ ×X Xij is a quasi-compact subset

and F is the image of the map
∐
F ×X Ej → F . Hence the base change is a qc covering

and the proof is finished. �

Since all objects of LC are Hausdorff any morphism f : X → Y of LC is a separated
continuous map of topological spaces. Hence f is a proper map of topological spaces if
and only if f is universally closed. See discussion in Topology, Section 17.

Lemma 31.4. Let f : X → Y be a morphism of LC. If f is proper and surjective,
then {f : X → Y } is a qc covering.

Proof. Let y ∈ Y be a point. For each x ∈ Xy choose a quasi-compact neighbour-
hood Ex ⊂ X . Choose x ∈ Ux ⊂ Ex open. Since f is proper the fibre Xy is quasi-
compact and we find x1, . . . , xn ∈ Xy such that Xy ⊂ Ux1 ∪ . . . ∪ Uxn . We claim that
f(Ex1) ∪ . . . ∪ f(Exn) is a neighbourhood of y. Namely, as f is closed (Topology, Theo-
rem 17.5) we see that Z = f(X \Ux1 ∪ . . .∪Uxn) is a closed subset of Y not containing y.
As f is surjective we see that Y \Z is contained in f(Ex1)∪ . . .∪ f(Exn) as desired. �

Besides some set theoretic issues Lemma 31.3 shows that LC with the collection of qc cover-
ings forms a site. We will denote this site (suitably modified to overcome the set theoretical
issues) LCqc.

Remark 31.5 (Set theoretic issues). The category LC is a “big” category as its objects
form a proper class. Similarly, the coverings form a proper class. Let us define the size of
a topological space X to be the cardinality of the set of points of X . Choose a function
Bound on cardinals, for example as in Sets, Equation (9.1.1). Finally, let S0 be an initial set
of objects of LC, for example S0 = {(R, euclidean topology)}. Exactly as in Sets, Lemma
9.2 we can choose a limit ordinal α such that LCα = LC∩Vα contains S0 and is preserved
under all countable limits and colimits which exist in LC. Moreover, if X ∈ LCα and if
Y ∈ LC and size(Y ) ≤ Bound(size(X)), then Y is isomorphic to an object of LCα.
Next, we apply Sets, Lemma 11.1 to choose set Cov of qc covering on LCα such that every
qc covering in LCα is combinatorially equivalent to a covering this set. In this way we
obtain a site (LCα,Cov) which we will denote LCqc.
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There is a second topology on the site LCqc of Remark 31.5. Namely, given an objectX we
can consider all coverings {Xi → X} of LCqc such that Xi → X is an open immersion.
We denote this site LCZar. The identity functor LCZar → LCqc is continuous and defines
a morphism of sites

ε : LCqc −→ LCZar
See Section 27. For a Hausdorff and locally quasi-compact topological space X , more pre-
cisely for X ∈ Ob(LCqc), we denote the induced morphism

εX : LCqc/X −→ LCZar/X

(see Sites, Lemma 28.1). Let XZar be the site whose objects are opens of X , see Sites, Ex-
ample 6.4. There is a morphism of sites

πX : LCZar/X −→ XZar

given by the continuous functor XZar → LCZar/X , U 7→ U . Namely, XZar has fibre
products and a final object and the functor above commutes with these and Sites, Propo-
sition 14.7 applies. We often think of π as a morphism of topoi

πX : Sh(LCZar/X) −→ Sh(X)

using the equality Sh(XZar) = Sh(X).

Lemma 31.6. Let X be an object of LCqc. Let F be a sheaf on X . The rule

LCqc/X −→ Sets, (f : Y → X) 7−→ Γ(Y, f−1F)

is a sheaf and a fortiori also a sheaf on LCZar/X . This sheaf is equal toπ−1
X F on LCZar/X

and ε−1
X π−1

X F on LCqc/X .

Proof. Denote G the presheaf given by the formula in the lemma. Of course the
pullback f−1 in the formula denotes usual pullback of sheaves on topological spaces. It is
immediate from the definitions that G is a sheaf for the Zar topology.

Let Y → X be a morphism in LCqc. Let V = {gi : Yi → Y }i∈I be a qc covering. To
prove G is a sheaf for the qc topology it suffices to show that G(Y ) → H0(V,G) is an
isomorphism, see Sites, Section 10. We first point out that the map is injective as a qc
covering is surjective and we can detect equality of sections at stalks (use Sheaves, Lemmas
11.1 and 21.4). Thus G is a separated presheaf on LCqc hence it suffices to show that any
element (si) ∈ H0(V,G) maps to an element in the image of G(Y ) after replacing V by a
refinement (Sites, Theorem 10.10).

Identifying sheaves on Yi,Zar and sheaves on Yi we find that G|Yi,Zar is the pullback of
f−1F under the continuous map gi : Yi → Y . Thus we can choose an open covering
Yi =

⋃
Vij such that for each j there is an open Wij ⊂ Y and a section tij ∈ G(Wij)

such that Vij maps into Wij and such that s|Vij is the pullback of tij . In other words,
after refining the covering {Yi → Y } we may assume there are opens Wi ⊂ Y such that
Yi → Y factors through Wi and sections ti of G over Wi which restrict to the given
sections si. Moreover, if y ∈ Y is in the image of both Yi → Y and Yj → Y , then the
images ti,y and tj,y in the stalk f−1Fy agree (because si and sj agree over Yi×Y Yj). Thus
for y ∈ Y there is a well defined element ty of f−1Fy agreeing with ti,y whenever y is in
the image of Yi → Y . We will show that the element (ty) comes from a global section of
f−1F over Y which will finish the proof of the lemma.
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It suffices to show that this is true locally on Y , see Sheaves, Section 17. Let y0 ∈ Y . Pick
i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Yij such that

⋃
gij (Ej) is a neighbour-

hood of y0. Let V ⊂ Y be an open neighbourhood of y0 contained in
⋃
gij (Ej) and

contained in Wi1 ∩ . . . ∩ Win . Since ti1,y0 = . . . = tin,y0 , after shrinking V we may
assume the sections tij |V , j = 1, . . . , n of f−1F agree. As V ⊂

⋃
gij (Ej) we see that

(ty)y∈V comes from this section.

We still have to show that G is equal to ε−1
X π−1

X F on LCqc, resp. π−1
X F on LCZar. In both

cases the pullback is defined by taking the presheaf

(f : Y → X) 7−→ colimf(Y )⊂U⊂X F(U)

and then sheafifying. Sheafifying in the Zar topology exactly produces our sheaf G and
the fact that G is a qc sheaf, shows that it works as well in the qc topology. �

Let X ∈ Ob(LCZar) and let H be an abelian sheaf on LCZar/X . Then we will write
Hn
Zar(U,H) for the cohomology ofH over an object U of LCZar/X .

Lemma 31.7. Let X be an object of LCZar. Then
(1) for F ∈ Ab(X) we have Hn

Zar(X,π
−1
X F) = Hn(X,F),

(2) πX,∗ : Ab(LCZar/X)→ Ab(X) is exact,
(3) the unit id→ πX,∗ ◦ π−1

X of the adjunction is an isomorphism, and
(4) for K ∈ D(X) the canonical map K → RπX,∗π

−1
X K is an isomorphism.

Let f : X → Y be a morphism of LCZar. Then
(5) there is a commutative diagram

Sh(LCZar/X)
fZar

//

πX

��

Sh(LCZar/Y )

πY

��
Sh(XZar)

f // Sh(YZar)

of topoi,
(6) for L ∈ D+(Y ) we have Hn

Zar(X,π
−1
Y L) = Hn(X, f−1L),

(7) if f is proper, then we have
(a) π−1

Y ◦ f∗ = fZar,∗ ◦ π−1
X as functors Sh(X)→ Sh(LCZar/Y ),

(b) π−1
Y ◦Rf∗ = RfZar,∗ ◦ π−1

X as functors D+(X)→ D+(LCZar/Y ).

Proof. Proof of (1). The equality Hn
Zar(X,π

−1
X F) = Hn(X,F) is a general fact

coming from the trivial observation that coverings of X in LCZar are the same thing as
open coverings of X . The reader who wishes to see a detailed proof should apply Lemma
7.2 to the functor XZar → LCZar.

Proof of (2). This is true becauseπX,∗ = τ−1
X for some morphism of topoi τX : Sh(XZar)→

Sh(LCZar) as follows from Sites, Lemma 21.8 applied to the functor XZar → LCZar/X
used to define πX .

Proof of (3). This is true because τ−1
X ◦ π−1

X is the identity functor by Sites, Lemma 21.8.
Or you can deduce it from the explicit description of π−1

X in Lemma 31.6.

Proof of (4). Apply (3) to an complex of abelian sheaves representing K.

Proof of (5). The morphism of topoi fZar comes from an application of Sites, Lemma 25.8
and in our case comes from the continuous functor Z/Y 7→ Z ×Y X/X by Sites, Lemma
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27.3. The diagram commutes simply because the corresponding continuous functors com-
pose correctly (see Sites, Lemma 14.4).

Proof of (6). We have Hn
Zar(X,π

−1
Y G) = Hn

Zar(X, f
−1
Zarπ

−1
Y G) for G in Ab(Y ), see

Lemma 7.1. This is equal to Hn
Zar(X,π

−1
X f−1G) by the commutativity of the diagram

in (5). Hence we conclude by (1) in the case L consists of a single sheaf in degree 0. The
general case follows by representing L by a bounded below complex of abelian sheaves.

Proof of (7a). Let F be a sheaf on X . Let g : Z → Y be an object of LCZar/Y . Consider
the fibre product

Z ′
f ′
//

g′

��

Z

g

��
X

f // Y

Then we have

(fZar,∗π−1
X F)(Z/Y ) = (π−1

X F)(Z ′/X) = Γ(Z ′, (g′)−1F) = Γ(Z, f ′
∗(g′)−1F)

the second equality by Lemma 31.6. On the other hand

(π−1
Y f∗F)(Z/Y ) = Γ(Z, g−1f∗F)

again by Lemma 31.6. Hence by proper base change for sheaves of sets (Cohomology,
Lemma 18.3) we conclude the two sets are canonically isomorphic. The isomorphism is
compatible with restriction mappings and defines an isomorphismπ−1

Y f∗F = fZar,∗π
−1
X F .

Thus an isomorphism of functors π−1
Y ◦ f∗ = fZar,∗ ◦ π−1

X .

Proof of (7b). LetK ∈ D+(X). By Lemma 20.6 thenth cohomology sheaf ofRfZar,∗π−1
X K

is the sheaf associated to the presheaf

(g : Z → Y ) 7−→ Hn
Zar(Z ′, π−1

X K)

with notation as above. Observe that

Hn
Zar(Z ′, π−1

X K) = Hn(Z ′, (g′)−1K)
= Hn(Z,Rf ′

∗(g′)−1K)
= Hn(Z, g−1Rf∗K)
= Hn

Zar(Z, π−1
Y Rf∗K)

The first equality is (6) applied to K and g′ : Z ′ → X . The second equality is Leray for
f ′ : Z ′ → Z (Cohomology, Lemma 13.1). The third equality is the proper base change
theorem (Cohomology, Theorem 18.2). The fourth equality is (6) applied to g : Z → Y

and Rf∗K. Thus RfZar,∗π−1
X K and π−1

Y Rf∗K have the same cohomology sheaves. We
omit the verification that the canonical base change map π−1

Y Rf∗K → RfZar,∗π
−1
X K

induces this isomorphism. �

In the situation of Lemma 31.6 the composition of ε and π and the equality Sh(X) =
Sh(XZar) determine a morphism of topoi

aX : Sh(LCqc/X) −→ Sh(X)
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Lemma 31.8. Let f : X → Y be a morphism of LCqc. Then there are commutative
diagrams of topoi

Sh(LCqc/X)
fqc

//

εX

��

Sh(LCqc/Y )

εY

��
Sh(LCZar/X) fZar // Sh(LCZar/Y )

and

Sh(LCqc/X)
fqc

//

aX

��

Sh(LCqc/Y )

aY

��
Sh(X) f // Sh(Y )

with aX = πX ◦ εX , aY = πX ◦ εX . If f is proper, then a−1
Y ◦ f∗ = fqc,∗ ◦ a−1

X .

Proof. The morphism of topoi fqc is the one from Sites, Lemma 25.8 which in our
case comes from the continuous functor Z/Y 7→ Z ×Y X/X , see Sites, Lemma 27.3. The
diagram on the left commutes because the corresponding continuous functors compose
correctly (see Sites, Lemma 14.4). The diagram on the right commutes because the one on
the left does and because of part (5) of Lemma 31.7.

Proof of the final assertion. The reader may repeat the proof of part (7a) of Lemma 31.7; we
will instead deduce this from it. As εY,∗ is the identity functor on underlying presheaves,
it reflects isomorphisms. The description in Lemma 31.6 shows that εY,∗ ◦a−1

Y = π−1
Y and

similarly for X . To show that the canonical map a−1
Y f∗F → fqc,∗a

−1
X F is an isomor-

phism, it suffices to show that

π−1
Y f∗F = εY,∗a

−1
Y f∗F → εY,∗fqc,∗a

−1
X F = fZar,∗εX,∗a

−1
X F = fZar,∗π

−1
X F

is an isomorphism. This is part (7a) of Lemma 31.7. �

Lemma 31.9. Consider the comparison morphism ε : LCqc → LCZar. Let P de-
note the class of proper maps of topological spaces. For X in LCZar denote A′

X ⊂
Ab(LCZar/X) the full subcategory consisting of sheaves of the form π−1

X F with F in
Ab(X). Then (1), (2), (3), (4), and (5) of Situation 30.1 hold.

Proof. We first show that A′
X ⊂ Ab(LCZar/X) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 10.3. Parts (1), (2), (3) are
immediate as π−1

X is exact and fully faithful by Lemma 31.7 part (3). If 0→ π−1
X F → G →

π−1
X F ′ → 0 is a short exact sequence in Ab(LCZar/X) then 0→ F → πX,∗G → F ′ → 0

is exact by Lemma 31.7 part (2). Hence G = π−1
X πX,∗G is in A′

X which checks the final
condition.

Property (1) holds by Lemma 31.1 and the fact that the base change of a proper map is a
proper map (see Topology, Theorem 17.5 and Lemma 4.4).

Property (2) follows from the commutative diagram (5) in Lemma 31.7.

Property (3) is Lemma 31.6.

Property (4) is Lemma 31.7 part (7)(b).

Proof of (5). Suppose given a qc covering {Ui → U}. For u ∈ U pick i1, . . . , im ∈ I and
quasi-compact subsets Ej ⊂ Uij such that

⋃
fij (Ej) is a neighbourhood of u. Observe

that Y =
∐
j=1,...,mEj → U is proper as a continuous map between Hausdorff quasi-

compact spaces (Topology, Lemma 17.7). Choose an open neighbourhoodu ∈ V contained
in
⋃
fij (Ej). Then Y ×U V → V is a surjective proper morphism and hence a qc covering

by Lemma 31.4. Since we can do this for every u ∈ U we see that (5) holds. �

Lemma 31.10. With notation as above.
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(1) For X ∈ Ob(LCqc) and an abelian sheaf F on X we have εX,∗a−1
X F = π−1

X F
and RiεX,∗(a−1

X F) = 0 for i > 0.
(2) For a proper morphism f : X → Y in LCqc and abelian sheaf F on X we have

a−1
Y (Rif∗F) = Rifqc,∗(a−1

X F) for all i.
(3) For X ∈ Ob(LCqc) and K in D+(X) the map π−1

X K → RεX,∗(a−1
X K) is an

isomorphism.
(4) For a proper morphism f : X → Y in LCqc andK inD+(X) we havea−1

Y (Rf∗K) =
Rfqc,∗(a−1

X K).

Proof. By Lemma 31.9 the lemmas in Section 30 all apply to our current setting. To
translate the results observe that the categoryAX of Lemma 30.2 is the essential image of
a−1
X : Ab(X)→ Ab(LCqc/X).

Part (1) is equivalent to (Vn) for all n which holds by Lemma 30.8.

Part (2) follows by applying ε−1
Y to the conclusion of Lemma 30.3.

Part (3) follows from Lemma 30.8 part (1) becauseπ−1
X K is inD+

A′
X

(LCZar/X) and a−1
X =

ε−1
X ◦ a

−1
X .

Part (4) follows from Lemma 30.8 part (2) for the same reason. �

Lemma 31.11. Let X be an object of LCqc. For K ∈ D+(X) the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh(LCqc/X)→ Sh(X) as above.

Proof. We first reduce the statement to the case whereK is given by a single abelian
sheaf. Namely, representK by a bounded below complexF•. By the case of a sheaf we see
thatFn = aX,∗a

−1
X Fn and that the sheavesRqaX,∗a−1

X Fn are zero for q > 0. By Leray’s
acyclicity lemma (Derived Categories, Lemma 16.7) applied to a−1

X F• and the functor
aX,∗ we conclude. From now on assume K = F .

By Lemma 31.6 we have aX,∗a−1
X F = F . Thus it suffices to show that RqaX,∗a−1

X F = 0
for q > 0. For this we can use aX = εX ◦ πX and the Leray spectral sequence Lemma
14.7. By Lemma 31.10 we have RiεX,∗(a−1

X F) = 0 for i > 0 and εX,∗a−1
X F = π−1

X F . By
Lemma 31.7 we have RjπX,∗(π−1

X F) = 0 for j > 0. This concludes the proof. �

Lemma 31.12. With X ∈ Ob(LCqc) and aX : Sh(LCqc/X)→ Sh(X) as above:
(1) for an abelian sheaf F on X we have Hn(X,F) = Hn

qc(X, a−1
X F),

(2) for K ∈ D+(X) we have Hn(X,K) = Hn
qc(X, a−1

X K).
For example, if A is an abelian group, then we have Hn(X,A) = Hn

qc(X,A).

Proof. This follows from Lemma 31.11 by Remark 14.4. �

32. Spectral sequences for Ext

In this section we collect various spectral sequences that come up when considering the
Ext functors. For any pair of complexes G•,F• of complexes of modules on a ringed site
(C,O) we denote

ExtnO(G•,F•) = HomD(O)(G•,F•[n])
according to our general conventions in Derived Categories, Section 27.
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Example 32.1. Let (C,O) be a ringed site. Let K• be a bounded above complex of
O-modules. Let F be anO-module. Then there is a spectral sequence with E2-page

Ei,j2 = ExtiO(H−j(K•),F)⇒ Exti+jO (K•,F)

and another spectral sequence with E1-page

Ei,j1 = ExtjO(K−i,F)⇒ Exti+jO (K•,F).

To construct these spectral sequences choose an injective resolutionF → I• and consider
the two spectral sequences coming from the double complex HomO(K•, I•), see Homol-
ogy, Section 25.

33. Cup product

Let (C,O) be a ringed site. Let K,M be objects of D(O). Set A = Γ(C,O). The (global)
cup product in this setting is a map

RΓ(C,K)⊗L
A RΓ(C,M) −→ RΓ(C,K ⊗L

O M)

in D(A). We define it as the relative cup product for the morphism of ringed topoi
(Sh(C),O)→ (Sh(pt), A) as in Remark 19.7.

Let us formulate and prove a natural compatibility of the relative cup product. Namely,
suppose that we have a morphism f : (Sh(C),OC) → (Sh(D),OD) of ringed topoi. Let
K• andM• be complexes ofOC-modules. There is a naive cup product

Tot(f∗K• ⊗OD f∗M•) −→ f∗Tot(K• ⊗OC M•)

We claim that this is related to the relative cup product.

Lemma 33.1. In the situation above the following diagram commutes

f∗K• ⊗L
OD

f∗M• //

��

Rf∗K• ⊗L
OD

Rf∗M•

Remark 19.7
��

Tot(f∗K• ⊗OD f∗M•)

naive cup product
��

Rf∗(K• ⊗L
OC
M•)

��
f∗Tot(K• ⊗OC M•) // Rf∗Tot(K• ⊗OC M•)

Proof. By the construction in Remark 19.7 we see that going around the diagram
clockwise the map

f∗K• ⊗L
OD

f∗M• −→ Rf∗Tot(K• ⊗OC M•)

is adjoint to the map

Lf∗(f∗K• ⊗L
OD

f∗M•) = Lf∗f∗K• ⊗L
OD

Lf∗f∗M•

→ Lf∗Rf∗K• ⊗L
OD

Lf∗Rf∗M•

→ K• ⊗L
OD
M•

→ Tot(K• ⊗OC M•)
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By Lemma 19.6 this is also equal to

Lf∗(f∗K• ⊗L
OD

f∗M•) = Lf∗f∗K• ⊗L
OD

Lf∗f∗M•

→ f∗f∗K• ⊗L
OD

f∗f∗M•

→ K• ⊗L
OD
M•

→ Tot(K• ⊗OC M•)

Going around anti-clockwise we obtain the map adjoint to the map

Lf∗(f∗K• ⊗L
OD

f∗M•)→ Lf∗Tot(f∗K• ⊗OD f∗M•)
→ Lf∗f∗Tot(K• ⊗OC M•)
→ Lf∗Rf∗Tot(K• ⊗OC M•)
→ Tot(K• ⊗OC M•)

By Lemma 19.6 this is also equal to

Lf∗(f∗K• ⊗L
OD

f∗M•)→ Lf∗Tot(f∗K• ⊗OD f∗M•)
→ Lf∗f∗Tot(K• ⊗OC M•)
→ f∗f∗Tot(K• ⊗OC M•)
→ Tot(K• ⊗OC M•)

Now the proof is finished by a contemplation of the diagram

Lf∗(f∗K• ⊗L
OD

f∗M•)

��

// Lf∗f∗K• ⊗L
OC

Lf∗f∗M•

��
Lf∗Tot(f∗K• ⊗OD f∗M•)

naive

��

// f∗Tot(f∗K• ⊗OD f∗M•)

naive

xx ��

f∗f∗K• ⊗L
OC

f∗f∗M•

��xx

Lf∗f∗Tot(K• ⊗OC M•)

��
f∗f∗Tot(K• ⊗OC M•)

**

Tot(f∗f∗K• ⊗OC f
∗f∗M•)

��

K• ⊗L
OC
M•

tt
Tot(K• ⊗OC M•)

All of the polygons in this diagram commute. The top one commutes by Lemma 18.8. The
square with the two naive cup products commutes because Lf∗ → f∗ is functorial in the
complex of modules. Similarly with the square involving the two maps A• ⊗L B• →
Tot(A• ⊗B•). Finally, the commutativity of the remaining square is true on the level of
complexes and may be viewed as the definiton of the naive cup product (by the adjointness
of f∗ and f∗). The proof is finished because going around the diagram on the outside are
the two maps given above. �
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Lemma 33.2. Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi. The
relative cup product of Remark 19.7 is associative in the sense that the diagram

Rf∗K ⊗L
O′ Rf∗L⊗L

O′ Rf∗M //

��

Rf∗(K ⊗L
O L)⊗L

O′ Rf∗M

��
Rf∗K ⊗L

O′ Rf∗(L⊗L
O M) // Rf∗(K ⊗L

O L⊗L
O M)

is commutative in D(O′) for all K,L,M in D(O).

Proof. Going around either side we obtain the map adjoint to the obvious map

Lf∗(Rf∗K ⊗L
O′ Rf∗L⊗L

O′ Rf∗M) = Lf∗(Rf∗K)⊗L
O Lf∗(Rf∗L)⊗L

O Lf∗(Rf∗M)
→ K ⊗L

O L⊗L
O M

in D(O). �

Lemma 33.3. Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi. The
relative cup product of Remark 19.7 is commutative in the sense that the diagram

Rf∗K ⊗L
O′ Rf∗L //

ψ

��

Rf∗(K ⊗L
O L)

Rf∗ψ

��
Rf∗L⊗L

O′ Rf∗K // Rf∗(L⊗L
O K)

is commutative in D(O′) for all K,L in D(O). Here ψ is the commutativity constraint
on the derived category (Lemma 48.5).

Proof. Omitted. �

Lemma 33.4. Let f : (Sh(C),O)→ (Sh(C′),O′) and f ′ : (Sh(C′),O′)→ (Sh(C′′),O′′)
be morphisms of ringed topoi. The relative cup product of Remark 19.7 is compatible with
compositions in the sense that the diagram

R(f ′ ◦ f)∗K ⊗L
O′′ R(f ′ ◦ f)∗L

��

Rf ′
∗Rf∗K ⊗L

O′′ Rf ′
∗Rf∗L

��
R(f ′ ◦ f)∗(K ⊗L

O L) Rf ′
∗Rf∗(K ⊗L

O L) Rf ′
∗(Rf∗K ⊗L

O′ Rf∗L)oo

is commutative in D(O′′) for all K,L in D(O).

Proof. This is true because going around the diagram either way we obtain the map
adjoint to the map

L(f ′ ◦ f)∗ (R(f ′ ◦ f)∗K ⊗L
O′′ R(f ′ ◦ f)∗L

)
= L(f ′ ◦ f)∗R(f ′ ◦ f)∗K ⊗L

O L(f ′ ◦ f)∗R(f ′ ◦ f)∗L)
→ K ⊗L

O L

in D(O). To see this one uses that the composition of the counits like so

L(f ′ ◦ f)∗R(f ′ ◦ f)∗ = Lf∗L(f ′)∗Rf ′
∗Rf∗ → Lf∗Rf∗ → id

is the counit for L(f ′ ◦ f)∗ and R(f ′ ◦ f)∗. See Categories, Lemma 24.9. �



1994 21. COHOMOLOGY ON SITES

34. Hom complexes

Let (C,O) be a ringed site. LetL• andM• be two complexes ofO-modules. We construct
a complex ofO-modulesHom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomO(L−q,Mp)

It is a good idea to think of Homn as the sheaf of O-modules of all O-linear maps from
L• to M• (viewed as graded O-modules) which are homogenous of degree n. In this
terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
O(L•,M•). We omit the verification that d2 = 0. This construction is a

special case of Differential Graded Algebra, Example 26.6. It follows immediately from
the construction that we have

(34.0.1) Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•|U ,M•[n]|U )
for all n ∈ Z and every U ∈ Ob(C). Similarly, we have

(34.0.2) Hn(Γ(C,Hom•(L•,M•))) = HomK(O)(L•,M•[n])
for the complex of global sections.

Lemma 34.1. Let (C,O) be a ringed site. Given complexesK•,L•,M• ofO-modules
there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗O L•),M•)
of complexes ofO-modules functorial in K•,L•,M•.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.1. �

Lemma 34.2. Let (C,O) be a ringed site. Given complexesK•,L•,M• ofO-modules
there is a canonical morphism

Tot (Hom•(L•,M•)⊗O Hom•(K•,L•)) −→ Hom•(K•,M•)
of complexes ofO-modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.3. �

Lemma 34.3. Let (C,O) be a ringed site. Given complexesK•,L•,M• ofO-modules
there is a canonical morphism

Tot (K• ⊗O Hom•(M•,L•)) −→ Hom•(M•,Tot(K• ⊗O L•))
of complexes ofO-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.4. �

Lemma 34.4. Let (C,O) be a ringed site. Given complexesK•,L•,M• ofO-modules
there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗O L•))
of complexes ofO-modules functorial in both complexes.
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Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.5. �

Lemma 34.5. Let (C,O) be a ringed site. Given complexesK•,L•,M• ofO-modules
there is a canonical morphism

Tot(Hom•(L•,M•)⊗O K•) −→ Hom•(Hom•(K•,L•),M•)
of complexes ofO-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 71.6. �

Lemma 34.6. Let (C,O) be a ringed site. Let L and M be objects of D(O). Let I• be
a K-injective complex of O-modules representing M . Let L• be a complex of O-modules
representing L. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )

for all U ∈ Ob(C). Similarly, H0(Γ(C,Hom•(L•, I•))) = HomD(O)(L,M).

Proof. We have

H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )
= HomD(OU )(L|U ,M |U )

The first equality is (34.0.1). The second equality is true because I•|U is K-injective by
Lemma 20.1. The proof of the last equation is similar except that it uses (34.0.2). �

Lemma 34.7. Let (C,O) be a ringed site. Let (I ′)• → I• be a quasi-isomorphism of K-
injective complexes of O-modules. Let (L′)• → L• be a quasi-isomorphism of complexes
ofO-modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)
is a quasi-isomorphism.

Proof. LetM be the object ofD(O) represented by I• and (I ′)•. LetL be the object
of D(O) represented by L• and (L′)•. By Lemma 34.6 we see that the sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )
Thus the map is a quasi-isomorphism. �

Lemma 34.8. Let (C,O) be a ringed site. Let I• be a K-injective complex of O-
modules. Let L• be a K-flat complex of O-modules. ThenHom•(L•, I•) is a K-injective
complex ofO-modules.

Proof. Namely, if K• is an acyclic complex ofO-modules, then

HomK(O)(K•,Hom•(L•, I•)) = H0(Γ(C,Hom•(K•,Hom•(L•, I•))))
= H0(Γ(C,Hom•(Tot(K• ⊗O L•), I•)))
= HomK(O)(Tot(K• ⊗O L•), I•)
= 0
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The first equality by (34.0.2). The second equality by Lemma 34.1. The third equality
by (34.0.2). The final equality because Tot(K• ⊗O L•) is acyclic because L• is K-flat
(Definition 17.2) and because I• is K-injective. �

35. Internal hom in the derived category

Let (C,O) be a ringed site. Let L,M be objects of D(O). We would like to construct an
object RHom(L,M) of D(O) such that for every third object K of D(O) there exists a
canonical bijection

(35.0.1) HomD(O)(K,RHom(L,M)) = HomD(O)(K ⊗L
O L,M)

Observe that this formula definesRHom(L,M) up to unique isomorphism by the Yoneda
lemma (Categories, Lemma 3.5).
To construct such an object, choose a K-injective complex of O-modules I• representing
M and any complex ofO-modules L• representing L. Then we set Then we set

RHom(L,M) = Hom•(L•, I•)
where the right hand side is the complex ofO-modules constructed in Section 34. This is
well defined by Lemma 34.7. We get a functor

D(O)opp ×D(O) −→ D(O), (K,L) 7−→ RHom(K,L)
As a prelude to proving (35.0.1) we compute the cohomology groups of RHom(K,L).

Lemma 35.1. Let (C,O) be a ringed site. Let K,L be objects of D(O). For every
object U of C we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )
and we have H0(C, RHom(L,M)) = HomD(O)(L,M).

Proof. Choose a K-injective complex I• ofO-modules representing M and a K-flat
complexL• representingL. ThenHom•(L•, I•) is K-injective by Lemma 34.8. Hence we
can compute cohomology over U by simply taking sections over U and the result follows
from Lemma 34.6. �

Lemma 35.2. Let (C,O) be a ringed site. Let K,L,M be objects of D(O). With the
construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
O L,M)

in D(O) functorial in K,L,M which recovers (35.0.1) on taking H0(C,−).

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
O-modules L• representing L. For any complex ofO-modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗O L•), I•)
by Lemma 34.1. Note that the left hand side represents RHom(K,RHom(L,M)) (use
Lemma 34.8) and that the right hand side representsRHom(K⊗L

OL,M). This proves the
displayed formula of the lemma. Taking global sections and using Lemma 35.1 we obtain
(35.0.1). �

Lemma 35.3. Let (C,O) be a ringed site. LetK,L be objects ofD(O). The construc-
tion of RHom(K,L) commutes with restrictions, i.e., for every object U of C we have
RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 20.1. �
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Lemma 35.4. Let (C,O) be a ringed site. The bifunctor RHom(−,−) transforms
distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment
(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable into a
termwise split short exact sequence. Details omitted. �

Lemma 35.5. Let (C,O) be a ringed site. Let K,L,M be objects of D(O). There is a
canonical morphism

RHom(L,M)⊗L
O K −→ RHom(RHom(K,L),M)

in D(O) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex J •

representing L, and a K-flat complex K• representing K. The map is defined using the
map

Tot(Hom•(J •, I•)⊗O K•) −→ Hom•(Hom•(K•,J •), I•)
of Lemma 34.5. By our particular choice of complexes the left hand side representsRHom(L,M)⊗L

O
K and the right hand side representsRHom(RHom(K,L),M). We omit the proof that
this is functorial in all three objects of D(O). �

Lemma 35.6. Let (C,O) be a ringed site. GivenK,L,M inD(O) there is a canonical
morphism

RHom(L,M)⊗L
O RHom(K,L) −→ RHom(K,M)

in D(O).

Proof. Choose a K-injective complex I• representing M , a K-injective complex J •

representing L, and any complex ofO-modulesK• representingK. By Lemma 34.2 there
is a map of complexes

Tot (Hom•(J •, I•)⊗O Hom•(K•,J •)) −→ Hom•(K•, I•)
The complexes of O-modulesHom•(J •, I•),Hom•(K•,J •), andHom•(K•, I•) repre-
sentRHom(L,M),RHom(K,L), andRHom(K,M). If we choose a K-flat complexH•

and a quasi-isomorphismH• → Hom•(K•,J •), then there is a map
Tot (Hom•(J •, I•)⊗O H•) −→ Tot (Hom•(J •, I•)⊗O Hom•(K•,J •))

whose source representsRHom(L,M)⊗L
O RHom(K,L). Composing the two displayed

arrows gives the desired map. We omit the proof that the construction is functorial. �

Lemma 35.7. Let (C,O) be a ringed site. GivenK,L,M inD(O) there is a canonical
morphism

K ⊗L
O RHom(M,L) −→ RHom(M,K ⊗L

O L)
in D(O) functorial in K,L,M .

Proof. Choose a K-flat complex K• representing K , and a K-injective complex I•

representing L, and choose any complex of O-modules M• representing M . Choose a
quasi-isomorphism Tot(K• ⊗OX

I•) → J • where J • is K-injective. Then we use the
map

Tot (K• ⊗O Hom•(M•, I•))→ Hom•(M•,Tot(K• ⊗O I•))→ Hom•(M•,J •)
where the first map is the map from Lemma 34.3. �



1998 21. COHOMOLOGY ON SITES

Lemma 35.8. Let (C,O) be a ringed site. Given K,L in D(O) there is a canonical
morphism

K −→ RHom(L,K ⊗L
O L)

in D(O) functorial in both K and L.

Proof. Choose a K-flat complexK• representingK and any complex ofO-modules
L• representingL. Choose a K-injective complexJ • and a quasi-isomorphism Tot(K•⊗O
L•)→ J •. Then we use

K• → Hom•(L•,Tot(K• ⊗O L•))→ Hom•(L•,J •)

where the first map comes from Lemma 34.4. �

Lemma 35.9. Let (C,O) be a ringed site. Let L be an object of D(O). Set L∨ =
RHom(L,O). For M in D(O) there is a canonical map

(35.9.1) M ⊗L
O L∨ −→ RHom(L,M)

which induces a canonical map

H0(C,M ⊗L
O L∨) −→ HomD(O)(L,M)

functorial in M in D(O).

Proof. The map (35.9.1) is a special case of Lemma 35.6 using the identificationM =
RHom(O,M). �

Remark 35.10. Let f : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi.
Let K,L be objects of D(OC). We claim there is a canonical map

Rf∗RHom(L,K) −→ RHom(Rf∗L,Rf∗K)

Namely, by (35.0.1) this is the same thing as a map Rf∗RHom(L,K) ⊗L
OD

Rf∗L →
Rf∗K. For this we can use the composition

Rf∗RHom(L,K)⊗L
OD

Rf∗L→ Rf∗(RHom(L,K)⊗L
OC

L)→ Rf∗K

where the first arrow is the relative cup product (Remark 19.7) and the second arrow is
Rf∗ applied to the canonical map RHom(L,K)⊗L

OC
L→ K coming from Lemma 35.6

(withOC in one of the spots).

Remark 35.11. Let h : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
Let K,L be objects of D(O′). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)

inD(O). Namely, by (35.0.1) proved in Lemma 35.2 such a map is the same thing as a map

Lh∗RHom(K,L)⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L) ⊗L K) by Lemma 18.4 hence it suffices to
construct a canonical map

RHom(K,L)⊗L K −→ L.

For this we take the arrow corresponding to

id : RHom(K,L) −→ RHom(K,L)

via (35.0.1).
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Remark 35.12. Suppose that

(Sh(C′),OC′)
h
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let K,L be objects of D(OC). We claim there
exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)

in D(OD′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)
→ Lh∗RHom(K,L)
→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second arrow is
the canonical map constructed in Remark 35.11.

36. Global derived hom

Let (Sh(C),O) be a ringed topos. LetK,L ∈ D(O). Using the construction of the internal
hom in the derived category we obtain a well defined object

RHomO(K,L) = RΓ(C, RHom(K,L))

in D(Γ(C,O)). By Lemma 35.1 we have

H0(RHomO(K,L)) = HomD(O)(K,L)

and
Hp(RHomO(K,L)) = ExtpD(O)(K,L)

If f : (C′,O′)→ (C,O) is a morphism of ringed topoi, then there is a canonical map

RHomO(K,L) −→ RHomO′(Lf∗K,Lf∗L)

in D(Γ(O)) by taking global sections of the map defined in Remark 35.11.

37. Derived lower shriek

In this section we study morphisms g of ringed topoi where besides Lg∗ and Rg∗ there
also exists a derived functor Lg!.

Lemma 37.1. Let u : C → D be a continuous and cocontinuous functor of sites.
Let g : Sh(C) → Sh(D) be the corresponding morphism of topoi. Let OD be a sheaf of
rings and let I be an injective OD-module. Then Hp(U, g−1I) = 0 for all p > 0 and
U ∈ Ob(C).

Proof. The vanishing of the lemma follows from Lemma 10.9 if we can prove van-
ishing of all higher Čech cohomology groups Ȟp(U , g−1I) for any covering U = {Ui →
U} of C. Since u is continuous, u(U) = {u(Ui) → u(U)} is a covering of D, and
u(Ui0 ×U . . .×U Uin) = u(Ui0)×u(U) . . .×u(U) u(Uin). Thus we have

Ȟp(U , g−1I) = Ȟp(u(U), I)



2000 21. COHOMOLOGY ON SITES

because g−1 = up by Sites, Lemma 21.5. Since I is an injective OD-module these Čech
cohomology groups vanish, see Lemma 12.3. �

Lemma 37.2. Let u : C → D be a continuous and cocontinuous functor of sites. Let
g : Sh(C) → Sh(D) be the corresponding morphism of topoi. Let OD be a sheaf of rings
and set OC = g−1OD. The functor g! : Mod(OC) → Mod(OD) (see Modules on Sites,
Lemma 41.1) has a left derived functor

Lg! : D(OC) −→ D(OD)
which is left adjoint to g∗. Moreover, for U ∈ Ob(C) we have

Lg!(jU !OU ) = g!jU !OU = ju(U)!Ou(U).

where jU ! and ju(U)! are extension by zero associated to the localization morphism jU :
C/U → C and ju(U) : D/u(U)→ D.

Proof. We are going to use Derived Categories, Proposition 29.2 to construct Lg!.
To do this we have to verify assumptions (1), (2), (3), (4), and (5) of that proposition. First,
since g! is a left adjoint we see that it is right exact and commutes with all colimits, so (5)
holds. Conditions (3) and (4) hold because the category of modules on a ringed site is a
Grothendieck abelian category. Let P ⊂ Ob(Mod(OC)) be the collection ofOC-modules
which are direct sums of modules of the form jU !OU . Note that g!jU !OU = ju(U)!Ou(U),
see proof of Modules on Sites, Lemma 41.1. EveryOC-module is a quotient of an object of
P , see Modules on Sites, Lemma 28.8. Thus (1) holds. Finally, we have to prove (2). Let
K• be a bounded above acyclic complex of OC-modules with Kn ∈ P for all n. We have
to show that g!K• is exact. To do this it suffices to show, for every injective OD-module
I that

HomD(OD)(g!K•, I[n]) = 0
for all n ∈ Z. Since I is injective we have

HomD(OD)(g!K•, I[n]) = HomK(OD)(g!K•, I[n])
= Hn(HomOD (g!K•, I))
= Hn(HomOC (K•, g−1I))

the last equality by the adjointness of g! and g−1.
The vanishing of this group would be clear if g−1I were an injective OC-module. But
g−1I isn’t necessarily an injective OC-module as g! isn’t exact in general. We do know
that

ExtpOC
(jU !OU , g−1I) = Hp(U, g−1I) = 0 for p ≥ 1

Here the first equality follows from HomOC (jU !OU ,H) = H(U) and taking derived func-
tors and the vanishing of Hp(U, g−1I) for p > 0 and U ∈ Ob(C) follows from Lemma
37.1. Since each K−q is a direct sum of modules of the form jU !OU we see that

ExtpOC
(K−q, g−1I) = 0 for p ≥ 1 and all q

Let us use the spectral sequence (see Example 32.1)

Ep,q1 = ExtpOC
(K−q, g−1I)⇒ Extp+q

OC
(K•, g−1I) = 0.

Note that the spectral sequence abuts to zero asK• is acyclic (hence vanishes in the derived
category, hence produces vanishing ext groups). By the vanishing of higher exts proved
above the only nonzero terms on the E1 page are the terms E0,q

1 = HomOC (K−q, g−1I).
We conclude that the complex HomOC (K•, g−1I) is acyclic as desired.
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Thus the left derived functor Lg! exists. It is left adjoint to g−1 = g∗ = Rg∗ = Lg∗, i.e.,
we have

(37.2.1) HomD(OC)(K, g∗L) = HomD(OD)(Lg!K,L)

by Derived Categories, Lemma 30.3. This finishes the proof. �

Remark 37.3. Warning! Let u : C → D, g, OD , and OC be as in Lemma 37.2. In
general it is not the case that the diagram

D(OC)
Lg!

//

forget

��

D(OD)

forget

��
D(C)

LgAb! // D(D)

commutes where the functor LgAb! is the one constructed in Lemma 37.2 but using the
constant sheaf Z as the structure sheaf on both C and D. In general it isn’t even the case
that g! = gAb! (see Modules on Sites, Remark 41.2), but this phenomenon can occur even
if g! = gAb! ! Namely, the construction of Lg! in the proof of Lemma 37.2 shows that Lg!
agrees with LgAb

! if and only if the canonical maps

LgAb! jU !OU −→ ju(U)!Ou(U)

are isomorphisms in D(D) for all objects U in C. In general all we can say is that there
exists a natural transformation

LgAb! ◦ forget −→ forget ◦ Lg!

Lemma 37.4. Let u : C → D be a continuous and cocontinuous functor of sites. Let
g : Sh(C) → Sh(D) be the corresponding morphism of topoi. Let OD be a sheaf of rings
and let I be an injective OD-module. If gSh! : Sh(C) → Sh(D) commutes with fibre
products7, then g−1I is totally acyclic.

Proof. We will use the criterion of Lemma 13.5. Condition (1) holds by Lemma 37.1.
Let K ′ → K be a surjective map of sheaves of sets on C. Since gSh! is a left adjoint, we see
that gSh! K ′ → gSh! K is surjective. Observe that

H0(K ′ ×K . . .×K K ′, g−1I) = H0(gSh! (K ′ ×K . . .×K K ′), I)
= H0(gSh! K ′ ×gSh! K . . .×gSh! K gSh! K ′, I)

by our assumption on gSh! . Since I is an injective module it is totally acyclic by Lemma
14.1 (applied to the identity). Hence we can use the converse of Lemma 13.5 to see that the
complex

0→ H0(K, g−1I)→ H0(K ′, g−1I)→ H0(K ′ ×K K ′, g−1I)→ . . .

is exact as desired. �

Lemma 37.5. Let u : C → D be a continuous and cocontinuous functor of sites. Let
g : Sh(C)→ Sh(D) be the corresponding morphism of topoi. Let U ∈ Ob(C).

(1) For M in D(D) we have RΓ(U, g−1M) = RΓ(u(U),M).
(2) If OD is a sheaf of rings and OC = g−1OD , then for M in D(OD) we have

RΓ(U, g∗M) = RΓ(u(U),M).

7Holds if C has finite connected limits and u commutes with them, see Sites, Lemma 21.6.
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Proof. In the bounded below case (1) and (2) can be seen by representing K by a
bounded below complex of injectives and using Lemma 37.1 as well as Leray’s acyclicity
lemma. In the unbounded case, first note that (1) is a special case of (2). For (2) we can use
RΓ(U, g∗M) = RHomOC (jU !OU , g∗M) = RHomOD (ju(U)!Ou(U),M) = RΓ(u(U),M)
where the middle equality is a consequence of Lemma 37.2. �

Lemma 37.6. Assume given a commutative diagram

(Sh(C′),OC′)
(g′,(g′)])

//

(f ′,(f ′)])
��

(Sh(C),OC)

(f,f])
��

(Sh(D′),OD′)
(g,g]) // (Sh(D),OD)

of ringed topoi. Assume
(1) f , f ′, g, and g′ correspond to cocontinuous functors u, u′, v, and v′ as in Sites,

Lemma 21.1,
(2) v ◦ u′ = u ◦ v′,
(3) v and v′ are continuous as well as cocontinuous,
(4) for any object V ′ of D′ the functor u

′

V ′I → u
v(V ′)I given by v is cofinal,

(5) g−1OD = OD′ and (g′)−1OC = OC′ , and
(6) g′

! : Ab(C′)→ Ab(C) is exact8.
Then we have Rf ′

∗ ◦ (g′)∗ = g∗ ◦Rf∗ as functors D(OC)→ D(OD′).

Proof. We have g∗ = Lg∗ = g−1 and (g′)∗ = L(g′)∗ = (g′)−1 by condition (5).
By Lemma 20.7 it suffices to prove the result on the derived category D(C) of abelian
sheaves. Choose an object K ∈ D(C). Let I• be a K-injective complex of abelian sheaves
on C representing K. By Derived Categories, Lemma 31.9 and assumption (6) we find
that (g′)−1I• is a K-injective complex of abelian sheaves on C′. By Modules on Sites,
Lemma 41.3 we find that f ′

∗(g′)−1I• = g−1f∗I•. Since f∗I• represents Rf∗K and since
f ′

∗(g′)−1I• represents Rf ′
∗(g′)−1K we conclude. �

Lemma 37.7. Consider a commutative diagram

(Sh(C′),OC′
(g′,(g′)])

//

(f ′,(f ′)])
��

(Sh(C),OC)

(f,f])
��

(Sh(D′),OD′)
(g,g]) // (Sh(D),OD)

of ringed topoi and suppose we have functors

C′
v′
// C

D′ v //

u′

OO

D

u

OO

such that (with notation as in Sites, Sections 14 and 21) we have
(1) u and u′ are continuous and give rise to the morphisms f and f ′,
(2) v and v′ are cocontinuous giving rise to the morphisms g and g′,

8Holds if fibre products and equalizers exist in C′ and v′ commutes with them, see Modules on Sites, Lemma
16.3.
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(3) u ◦ v = v′ ◦ u′,
(4) v and v′ are continuous as well as cocontinuous, and
(5) g−1OD = OD′ and (g′)−1OC = OC′ .

Then Rf ′
∗ ◦ (g′)∗ = g∗ ◦Rf∗ as functors D+(OC)→ D+(OD′). If in addition

(6) g′
! : Ab(C′)→ Ab(C) is exact9,

then Rf ′
∗ ◦ (g′)∗ = g∗ ◦Rf∗ as functors D(OC)→ D(OD′).

Proof. We have g∗ = Lg∗ = g−1 and (g′)∗ = L(g′)∗ = (g′)−1 by condition (5).
By Lemma 20.7 it suffices to prove the result on the derived category D+(C) or D(C) of
abelian sheaves.
Choose an object K ∈ D+(C). Let I• be a bounded below complex of injective abelian
sheaves on C representing K. By Lemma 37.1 we see that Hp(U ′, (g′)−1Iq) = 0 for all
p > 0 and any q and any U ′ ∈ Ob(C′). Recall that Rpf ′

∗(g′)−1Iq is the sheaf associated
to the presheaf V ′ 7→ Hp(u′(V ′), (g′)−1Iq), see Lemma 7.4. Thus we see that (g′)−1Iq is
right acyclic for the functor f ′

∗. By Leray’s acyclicity lemma (Derived Categories, Lemma
16.7) we find that f ′

∗(g′)∗I• represents Rf ′
∗(g′)−1K. By Modules on Sites, Lemma 41.4

we find that f ′
∗(g′)−1I• = g−1f∗I•. Since g−1f∗I• represents g−1Rf∗K we conclude.

Choose an objectK ∈ D(C). Let I• be a K-injective complex of abelian sheaves on C repre-
sentingK. By Derived Categories, Lemma 31.9 and assumption (6) we find that (g′)−1I•

is a K-injective complex of abelian sheaves on C′. By Modules on Sites, Lemma 41.4 we
find that f ′

∗(g′)−1I• = g−1f∗I•. Since f∗I• represents Rf∗K and since f ′
∗(g′)−1I•

represents Rf ′
∗(g′)−1K we conclude. �

38. Derived lower shriek for fibred categories

In this section we work out some special cases of the situation discussed in Section 37. We
make sure that we have equality between lower shriek on modules and sheaves of abelian
groups. We encourage the reader to skip this section on a first reading.

Situation 38.1. Here (D,OD) be a ringed site and p : C → D is a fibred category.
We endow C with the topology inherited from D (Stacks, Section 10). We denote π :
Sh(C) → Sh(D) the morphism of topoi associated to p (Stacks, Lemma 10.3). We set
OC = π−1OD so that we obtain a morphism of ringed topoi

π : (Sh(C),OC) −→ (Sh(D),OD)
Lemma 38.2. Assumptions and notation as in Situation 38.1. For U ∈ Ob(C) con-

sider the induced morphism of topoi
πU : Sh(C/U) −→ Sh(D/p(U))

Then there exists a morphism of topoi
σ : Sh(D/p(U))→ Sh(C/U)

such that πU ◦ σ = id and σ−1 = πU,∗.

Proof. Observe that πU is the restriction of π to the localizations, see Sites, Lemma
28.4. For an object V → p(U) of D/p(U) denote V ×p(U) U → U the strongly cartesian
morphism of C over D which exists as p is a fibred category. The functor

v : D/p(U)→ C/U, V/p(U) 7→ V ×p(U) U/U

9Holds if fibre products and equalizers exist in C′ and v′ commutes with them, see Modules on Sites, Lemma
16.3.
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is continuous by the definition of the topology on C. Moreover, it is a right adjoint to p
by the definition of strongly cartesian morphisms. Hence we are in the situation discussed
in Sites, Section 22 and we see that the sheaf πU,∗F is equal to V 7→ F(V ×p(U) U) (see
especially Sites, Lemma 22.2).
But here we have more. Namely, the functor v is also cocontinuous (as all morphisms in
coverings of C are strongly cartesian). Hence v defines a morphism σ as indicated in the
lemma. The equality σ−1 = πU,∗ is immediate from the definition. Since π−1

U G is given
by the rule U ′/U 7→ G(p(U ′)/p(U)) it follows that σ−1 ◦ π−1

U = id which proves the
equality πU ◦ σ = id. �

Situation 38.3. Let (D,OD) be a ringed site. Let u : C′ → C be a 1-morphism of
fibred categories overD (Categories, Definition 33.9). Endow C and C′ with their inherited
topologies (Stacks, Definition 10.2) and let π : Sh(C) → Sh(D), π′ : Sh(C′) → Sh(D),
and g : Sh(C′) → Sh(C) be the corresponding morphisms of topoi (Stacks, Lemma 10.3).
SetOC = π−1OD andOC′ = (π′)−1OD. Observe that g−1OC = OC′ so that

(Sh(C′),OC′)

π′
''

g
// (Sh(C),OC)

π
ww

(Sh(D),OD)

is a commutative diagram of morphisms of ringed topoi.

Lemma 38.4. Assumptions and notation as in Situation 38.3. For U ′ ∈ Ob(C′) set
U = u(U ′) and V = p′(U ′) and consider the induced morphisms of ringed topoi

(Sh(C′/U ′),OU ′)

π′
U′ ))

g′
// (Sh(C),OU )

πUvv
(Sh(D/V ),OV )

Then there exists a morphism of topoi
σ′ : Sh(D/V )→ Sh(C′/U ′),

such that setting σ = g′ ◦ σ′ we have π′
U ′ ◦ σ′ = id, πU ◦ σ = id, (σ′)−1 = π′

U ′,∗, and
σ−1 = πU,∗.

Proof. Let v′ : D/V → C′/U ′ be the functor constructed in the proof of Lemma 38.2
starting with p′ : C′ → D′ and the object U ′. Since u is a 1-morphism of fibred categories
over D it transforms strongly cartesian morphisms into strongly cartesian morphisms,
hence the functor v = u◦v′ is the functor of the proof of Lemma 38.2 relative to p : C → D
and U . Thus our lemma follows from that lemma. �

Lemma 38.5. Assumption and notation as in Situation 38.3.
(1) There are left adjoints g! : Mod(OC′) → Mod(OC) and gAb

! : Ab(C′) → Ab(C)
to g∗ = g−1 on modules and on abelian sheaves.

(2) The diagram
Mod(OC′)

��

g!
// Mod(OC)

��
Ab(C′)

gAb
! // Ab(C)
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commutes.
(3) There are left adjoints Lg! : D(OC′) → D(OC) and LgAb

! : D(C′) → D(C) to
g∗ = g−1 on derived categories of modules and abelian sheaves.

(4) The diagram

D(OC′)

��

Lg!

// D(OC)

��
D(C′)

LgAb
! // D(C)

commutes.

Proof. The functor u is continuous and cocontinuous Stacks, Lemma 10.3. Hence the
existence of the functors g!, gAb

! , Lg!, and LgAb
! can be found in Modules on Sites, Sections

16 and 41 and Section 37.

To prove (2) it suffices to show that the canonical map

gAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism for all objects U ′ of C′, see Modules on Sites, Remark 41.2. Similarly, to
prove (4) it suffices to show that the canonical map

LgAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism in D(C) for all objects U ′ of C′, see Remark 37.3. This will also imply
the previous formula hence this is what we will show.

We will use that for a localization morphism j the functors j! and jAb
! agree (see Mod-

ules on Sites, Remark 19.6) and that j! is exact (Modules on Sites, Lemma 19.3). Let
us adopt the notation of Lemma 38.4. Since LgAb

! ◦ jU ′! = jU ! ◦ L(g′)Ab
! (by com-

mutativity of Sites, Lemma 28.4 and uniqueness of adjoint functors) it suffices to prove
that L(g′)Ab

! OU ′ = OU . Using the results of Lemma 38.4 we have for any object E of
D(C/u(U ′)) the following sequence of equalities

HomD(C/U)(L(g′)Ab
! OU ′ , E) = HomD(C′/U ′)(OU ′ , (g′)−1E)

= HomD(C′/U ′)((π′
U ′)−1OV , (g′)−1E)

= HomD(D/V )(OV , Rπ′
U ′,∗(g′)−1E)

= HomD(D/V )(OV , (σ′)−1(g′)−1E)
= HomD(D/V )(OV , σ−1E)
= HomD(D/V )(OV , πU,∗E)
= HomD(C/U)(π−1

U OV , E)
= HomD(C/U)(OU , E)

By Yoneda’s lemma we conclude. �

Remark 38.6. Assumptions and notation as in Situation 38.1. Note that setting C′ =
D and u equal to the structure functor of C gives a situation as in Situation 38.3. Hence
Lemma 38.5 tells us we have functors π!, πAb

! , Lπ!, and LπAb
! such that forget ◦ π! =

πAb
! ◦ forget and forget ◦ Lπ! = LπAb

! ◦ forget.
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Remark 38.7. Assumptions and notation as in Situation 38.3. Let F be an abelian
sheaf on C , let F ′ be an abelian sheaf on C′, and let t : F ′ → g−1F be a map. Then we
obtain a canonical map

Lπ′
!(F ′) −→ Lπ!(F)

by using the adjoint g!F ′ → F of t, the map Lg!(F ′) → g!F ′, and the equality Lπ′
! =

Lπ! ◦ Lg!.

Lemma 38.8. Assumptions and notation as in Situation 38.1. For F in Ab(C) the
sheaf π!F is the sheaf associated to the presheaf

V 7−→ colimCopp
V
F|CV

with restriction maps as indicated in the proof.

Proof. DenoteH be the rule of the lemma. For a morphism h : V ′ → V of D there
is a pullback functor h∗ : CV → CV ′ of fibre categories (Categories, Definition 33.6).
Moreover for U ∈ Ob(CV ) there is a strongly cartesian morphism h∗U → U covering h.
Restriction along these strongly cartesian morphisms defines a transformation of functors

F|CV −→ F|CV ′ ◦ h∗.

Hence a mapH(V )→ H(V ′) between colimits, see Categories, Lemma 14.8.

To prove the lemma we show that

MorPSh(D)(H,G) = MorSh(C)(F , π−1G)

for every sheaf G on C. An element of the left hand side is a compatible system of maps
F(U) → G(p(U)) for all U in C. Since π−1G(U) = G(p(U)) by our choice of topology
on C we see the same thing is true for the right hand side and we win. �

39. Homology on a category

In the case of a category over a point we will baptize the left derived lower shriek functors
the homology functors.

Example 39.1 (Category over point). Let C be a category. Endow C with the chaotic
topology (Sites, Example 6.6). Thus presheaves and sheaves agree on C. The functor p :
C → ∗ where ∗ is the category with a single object and a single morphism is cocontinuous
and continuous. Let π : Sh(C) → Sh(∗) be the corresponding morphism of topoi. Let B
be a ring. We endow ∗ with the sheaf of rings B and C with OC = π−1B which we will
denote B. In this way

π : (Sh(C), B)→ (Sh(∗), B)
is an example of Situation 38.1. By Remark 38.6 we do not need to distinguish between
π! on modules or abelian sheaves. By Lemma 38.8 we see that π!F = colimCopp F . Thus
Lnπ! is the nth left derived functor of taking colimits. In the following, we write

Hn(C,F) = Lnπ!(F)

and we will name this the nth homology group of F on C.

Example 39.2 (Computing homology). In Example 39.1 we can compute the functors
Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the chain complex

K•(F) : . . .→
⊕

U2→U1→U0
F(U0)→

⊕
U1→U0

F(U0)→
⊕

U0
F(U0)



39. HOMOLOGY ON A CATEGORY 2007

where the transition maps are given by
(U2 → U1 → U0, s) 7−→ (U1 → U0, s)− (U2 → U0, s) + (U2 → U1, s|U1)

and similarly in other degrees. By construction
H0(C,F) = colimCopp F = H0(K•(F)),

see Categories, Lemma 14.12. The construction of K•(F) is functorial in F and trans-
forms short exact sequences of Ab(C) into short exact sequences of complexes. Thus the
sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology, Definition 12.1
and Lemma 13.12. For F = jU !ZU the complex K•(F) is the complex associated to the
free Z-module on the simplicial set X• with terms

Xn =
∐

Un→...→U1→U0
MorC(U0, U)

This simplicial set is homotopy equivalent to the constant simplicial set on a singleton
{∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by mapping ∗
to (U → . . .→ U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 26.2) defining the homotopy between the two maps X• → X• are
given by the rule

hn,i : (Un → . . .→ U0, f) 7−→ (Un → . . .→ Ui → U → . . .→ U, id)
for i > 0 and hn,0 = id. Verifications omitted. This implies that K•(jU !ZU ) has triv-
ial cohomology in negative degrees (by the functoriality of Simplicial, Remark 26.4 and
the result of Simplicial, Lemma 27.1). Thus K•(F) computes the left derived functors
Hn(C,−) of H0(C,−) for example by (the duals of) Homology, Lemma 12.4 and Derived
Categories, Lemma 16.6.

Example 39.3. Let u : C′ → C be a functor. Endow C′ and C with the chaotic
topology as in Example 39.1. The functors u, C′ → ∗, and C → ∗ where ∗ is the category
with a single object and a single morphism are cocontinuous and continuous. Let g :
Sh(C′) → Sh(C), π′ : Sh(C′) → Sh(∗), and π : Sh(C) → Sh(∗), be the corresponding
morphisms of topoi. LetB be a ring. We endow ∗with the sheaf of ringsB and C′, C with
the constant sheaf B. In this way

(Sh(C′), B)

π′
''

g
// (Sh(C), B)

π
xx

(Sh(∗), B)

is an example of Situation 38.3. Thus Lemma 38.5 applies to g so we do not need to dis-
tinguish between g! on modules or abelian sheaves. In particular Remark 38.7 produces
canonical maps

Hn(C′,F ′) −→ Hn(C,F)
whenever we have F in Ab(C), F ′ in Ab(C′), and a map t : F ′ → g−1F . In terms of the
computation of homology given in Example 39.2 we see that these maps come from a map
of complexes

K•(F ′) −→ K•(F)
given by the rule

(U ′
n → . . .→ U ′

0, s
′) 7−→ (u(U ′

n)→ . . .→ u(U ′
0), t(s′))
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with obvious notation.

Remark 39.4. Notation and assumptions as in Example 39.1. Let F• be a bounded
complex of abelian sheaves on C. For any object U of C there is a canonical map

F•(U) −→ Lπ!(F•)

in D(Ab). If F• is a complex of B-modules then this map is in D(B). To prove this,
note that we compute Lπ!(F•) by taking a quasi-isomorphism P• → F• where P• is a
complex of projectives. However, since the topology is chaotic this means that P•(U)→
F•(U) is a quasi-isomorphism hence can be inverted in D(Ab), resp. D(B). Composing
with the canonical mapP•(U)→ π!(P•) coming from the computation of π! as a colimit
we obtain the desired arrow.

Lemma 39.5. Notation and assumptions as in Example 39.1. If C has either an initial
or a final object, then Lπ! ◦ π−1 = id on D(Ab), resp. D(B).

Proof. If C has an initial object, then π! is computed by evaluating on this object and
the statement is clear. If C has a final object, then Rπ∗ is computed by evaluating on this
object, hence Rπ∗ ◦ π−1 ∼= id on D(Ab), resp. D(B). This implies that π−1 : D(Ab) →
D(C), resp. π−1 : D(B)→ D(B) is fully faithful, see Categories, Lemma 24.4. Then the
same lemma implies that Lπ! ◦ π−1 = id as desired. �

Lemma 39.6. Notation and assumptions as in Example 39.1. Let B → B′ be a ring
map. Consider the commutative diagram of ringed topoi

(Sh(C), B)

π

��

(Sh(C), B′)

π′

��

h
oo

(∗, B) (∗, B′)foo

Then Lπ! ◦ Lh∗ = Lf∗ ◦ Lπ′
! .

Proof. Both functors are right adjoint to the obvious functor D(B′)→ D(B). �

Lemma 39.7. Notation and assumptions as in Example 39.1. Let U• be a cosimplicial
object in C such that for every U ∈ Ob(C) the simplicial set MorC(U•, U) is homotopy
equivalent to the constant simplicial set on a singleton. Then

Lπ!(F) = F(U•)

in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

Proof. As Lπ! agrees for modules and abelian sheaves by Lemma 38.5 it suffices to
prove this when F is an abelian sheaf. For U ∈ Ob(C) the abelian sheaf jU !ZU is a
projective object of Ab(C) since Hom(jU !ZU ,F) = F(U) and taking sections is an exact
functor as the topology is chaotic. Every abelian sheaf is a quotient of a direct sum of
jU !ZU by Modules on Sites, Lemma 28.8. Thus we can compute Lπ!(F) by choosing a
resolution

. . .→ G−1 → G0 → F → 0
whose terms are direct sums of sheaves of the form above and taking Lπ!(F) = π!(G•).
Consider the double complexA•,• = G•(U•). The mapG0 → F gives a map of complexes
A0,• → F(U•). Since π! is computed by taking the colimit over Copp (Lemma 38.8) we
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see that the two compositions Gm(U1) → Gm(U0) → π!Gm are equal. Thus we obtain a
canonical map of complexes

Tot(A•,•) −→ π!(G•) = Lπ!(F)
To prove the lemma it suffices to show that the complexes

. . .→ Gm(U1)→ Gm(U0)→ π!Gm → 0
are exact, see Homology, Lemma 25.4. Since the sheaves Gm are direct sums of the sheaves
jU !ZU we reduce toG = jU !ZU . The complex jU !ZU (U•) is the complex of abelian groups
associated to the free Z-module on the simplicial set MorC(U•, U) which we assumed to
be homotopy equivalent to a singleton. We conclude that

jU !ZU (U•)→ Z
is a homotopy equivalence of abelian groups hence a quasi-isomorphism (Simplicial, Re-
mark 26.4 and Lemma 27.1). This finishes the proof since π!jU !ZU = Z as was shown in
the proof of Lemma 38.5. �

Lemma 39.8. Notation and assumptions as in Example 39.3. If there exists a cosim-
plicial object U ′

• of C′ such that Lemma 39.7 applies to both U ′
• in C′ and u(U ′

•) in C , then
we have Lπ′

! ◦ g−1 = Lπ! as functors D(C)→ D(Ab), resp. D(C, B)→ D(B).

Proof. Follows immediately from Lemma 39.7 and the fact that g−1 is given by pre-
composing with u. �

Lemma 39.9. Let Ci, i = 1, 2 be categories. Let ui : C1 × C2 → Ci be the projection
functors. Let B be a ring. Let gi : (Sh(C1 × C2), B)→ (Sh(Ci), B) be the corresponding
morphisms of ringed topoi, see Example 39.3. For Ki ∈ D(Ci, B) we have

L(π1 × π2)!(g−1
1 K1 ⊗L

B g
−1
2 K2) = Lπ1,!(K1)⊗L

B Lπ2,!(K2)
in D(B) with obvious notation.

Proof. As both sides commute with colimits, it suffices to prove this forK1 = jU !BU
and K2 = jV !BV for U ∈ Ob(C1) and V ∈ Ob(C2). See construction of Lπ! in Lemma
37.2. In this case

g−1
1 K1 ⊗L

B g
−1
2 K2 = g−1

1 K1 ⊗B g−1
2 K2 = j(U,V )!B(U,V )

Verification omitted. Hence the result follows as both the left and the right hand side of
the formula of the lemma evaluate to B, see construction of Lπ! in Lemma 37.2. �

Lemma 39.10. Notation and assumptions as in Example 39.1. If there exists a cosim-
plicial object U• of C such that Lemma 39.7 applies, then

Lπ!(K1 ⊗L
B K2) = Lπ!(K1)⊗L

B Lπ!(K2)
for all Ki ∈ D(B).

Proof. Consider the diagram of categories and functors

C

C u // C × C
u2

""

u1

<<

C
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where u is the diagonal functor and ui are the projection functors. This gives morphisms
of ringed topoi g, g1, g2. For any object (U1, U2) of C we have

MorC×C(u(U•), (U1, U2)) = MorC(U•, U1)×MorC(U•, U2)

which is homotopy equivalent to a point by Simplicial, Lemma 26.10. Thus Lemma 39.8
gives Lπ!(g−1K) = L(π × π)!(K) for any K in D(C × C, B). Take K = g−1

1 K1 ⊗L
B

g−1
2 K2. Then g−1K = K1 ⊗L

B K2 because g−1 = g∗ = Lg∗ commutes with derived
tensor product (Lemma 18.4). To finish we apply Lemma 39.9. �

Remark 39.11 (Simplicial modules). Let C = ∆ and let B be any ring. This is a
special case of Example 39.1 where the assumptions of Lemma 39.7 hold. Namely, let U•
be the cosimplicial object of ∆ given by the identity functor. To verify the condition we
have to show that for [m] ∈ Ob(∆) the simplicial set ∆[m] : n 7→ Mor∆([n], [m]) is
homotopy equivalent to a point. This is explained in Simplicial, Example 26.7.

In this situation the category Mod(B) is just the category of simplicial B-modules and
the functor Lπ! sends a simplicial B-module M• to its associated complex s(M•) of B-
modules. Thus the results above can be reinterpreted in terms of results on simplicial
modules. For example a special case of Lemma 39.10 is: if M•, M ′

• are flat simplicial
B-modules, then the complex s(M• ⊗B M ′

•) is quasi-isomorphic to the total complex
associated to the double complex s(M•) ⊗B s(M ′

•). (Hint: use flatness to convert from
derived tensor products to usual tensor products.) This is a special case of the Eilenberg-
Zilber theorem which can be found in [?].

Lemma 39.12. Let C be a category (endowed with chaotic topology). LetO → O′ be
a map of sheaves of rings on C. Assume

(1) there exists a cosimplicial object U• in C as in Lemma 39.7, and
(2) Lπ!O → Lπ!O′ is an isomorphism.

For K in D(O) we have
Lπ!(K) = Lπ!(K ⊗L

O O′)
in D(Ab).

Proof. Note: in this proof Lπ! denotes the left derived functor of π! on abelian
sheaves. Since Lπ! commutes with colimits, it suffices to prove this for bounded above
complexes ofO-modules (compare with argument of Derived Categories, Proposition 29.2
or just stick to bounded above complexes). Every such complex is quasi-isomorphic to a
bounded above complex whose terms are direct sums of jU !OU withU ∈ Ob(C), see Mod-
ules on Sites, Lemma 28.8. Thus it suffices to prove the lemma for jU !OU . By assumption

S• = MorC(U•, U)

is a simplicial set homotopy equivalent to the constant simplicial set on a singleton. Set
Pn = O(Un) and P ′

n = O′(Un). Observe that the complex associated to the simplicial
abelian group

X• : n 7−→
⊕

s∈Sn
Pn

computesLπ!(jU !OU ) by Lemma 39.7. Since jU !OU is a flatO-module we have jU !OU⊗L
O

O′ = jU !O′
U and Lπ! of this is computed by the complex associated to the simplicial

abelian group
X ′

• : n 7−→
⊕

s∈Sn
P ′
n
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As the rule which to a simplicial set T• associated the simplicial abelian group with terms⊕
t∈Tn Pn is a functor, we see that X• → P• is a homotopy equivalence of simplicial

abelian groups. Similarly, the rule which to a simplicial set T• associates the simplicial
abelian group with terms

⊕
t∈Tn P

′
n is a functor. Hence X ′

• → P ′
• is a homotopy equiva-

lence of simplicial abelian groups. By assumption P• → P ′
• is a quasi-isomorphism (since

P•, resp. P ′
• computes Lπ!O, resp. Lπ!O′ by Lemma 39.7). We conclude that X• and X ′

•
are quasi-isomorphic as desired. �

Remark 39.13. Let C andB be as in Example 39.1. Assume there exists a cosimplicial
object as in Lemma 39.7. Let O → B be a map sheaf of rings on C which induces an
isomorphism Lπ!O → Lπ!B. In this case we obtain an exact functor of triangulated
categories

Lπ! : D(O) −→ D(B)
Namely, for any objectK ofD(O) we haveLπAb

! (K) = LπAb
! (K⊗L

OB) by Lemma 39.12.
Thus we can define the displayed functor as the composition of−⊗L

O B with the functor
Lπ! : D(B) → D(B). In other words, we obtain a B-module structure on Lπ!(K)
coming from the (canonical, functorial) identification of Lπ!(K) with Lπ!(K ⊗L

O B) of
the lemma.

40. Calculating derived lower shriek

In this section we apply the results from Section 39 to compute Lπ! in Situation 38.1 and
Lg! in Situation 38.3.

Lemma 40.1. Assumptions and notation as in Situation 38.1. For F in PAb(C) and
n ≥ 0 consider the abelian sheaf Ln(F) onD which is the sheaf associated to the presheaf

V 7−→ Hn(CV ,F|CV )
with restriction maps as indicated in the proof. Then Ln(F) = Ln(F#).

Proof. For a morphism h : V ′ → V ofD there is a pullback functor h∗ : CV → CV ′

of fibre categories (Categories, Definition 33.6). Moreover for U ∈ Ob(CV ) there is a
strongly cartesian morphism h∗U → U covering h. Restriction along these strongly
cartesian morphisms defines a transformation of functors

F|CV −→ F|CV ′ ◦ h∗.

By Example 39.3 we obtain the desired restriction map

Hn(CV ,F|CV ) −→ Hn(CV ′ ,F|CV ′ )

Let us denote Ln,p(F) this presheaf, so that Ln(F) = Ln,p(F)#. The canonical map
γ : F → F+ (Sites, Theorem 10.10) defines a canonical map Ln,p(F) → Ln,p(F+). We
have to prove this map becomes an isomorphism after sheafification.

Let us use the computation of homology given in Example 39.2. Denote K•(F|CV ) the
complex associated to the restriction of F to the fibre category CV . By the remarks above
we obtain a presheaf K•(F) of complexes

V 7−→ K•(F|CV )
whose cohomology presheaves are the presheaves Ln,p(F). Thus it suffices to show that

K•(F) −→ K•(F+)
becomes an isomorphism on sheafification.
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Injectivity. Let V be an object of D and let ξ ∈ Kn(F)(V ) be an element which maps to
zero in Kn(F+)(V ). We have to show there exists a covering {Vj → V } such that ξ|Vj
is zero in Kn(F)(Vj). We write

ξ =
∑

(Ui,n+1 → . . .→ Ui,0, σi)

with σi ∈ F(Ui,0). We arrange it so that each sequence of morphisms Un → . . . →
U0 of CV occurs are most once. Since the sums in the definition of the complex K• are
direct sums, the only way this can map to zero in K•(F+)(V ) is if all σi map to zero
in F+(Ui,0). By construction of F+ there exist coverings {Ui,0,j → Ui,0} such that
σi|Ui,0,j is zero. By our construction of the topology on C we can write Ui,0,j → Ui,0 as
the pullback (Categories, Definition 33.6) of some morphisms Vi,j → V and moreover
each {Vi,j → V } is a covering. Choose a covering {Vj → V } dominating each of the
coverings {Vi,j → V }. Then it is clear that ξ|Vj = 0.
Surjectivity. Proof omitted. Hint: Argue as in the proof of injectivity. �

Lemma 40.2. Assumptions and notation as in Situation 38.1. For F in Ab(C) and
n ≥ 0 the sheaf Lnπ!(F) is equal to the sheaf Ln(F) constructed in Lemma 40.1.

Proof. Consider the sequence of functors F 7→ Ln(F) from PAb(C) → Ab(C).
Since for each V ∈ Ob(D) the sequence of functors Hn(CV ,−) forms a δ-functor so do
the functors F 7→ Ln(F). Our goal is to show these form a universal δ-functor. In order
to do this we construct some abelian presheaves on which these functors vanish.

ForU ′ ∈ Ob(C) consider the abelian presheafFU ′ = jPAb
U ′! ZU ′ (Modules on Sites, Remark

19.7). Recall that
FU ′(U) =

⊕
MorC(U,U ′)

Z

If U lies over V = p(U) in D) and U ′ lies over V ′ = p(U ′) then any morphism a : U →
U ′ factors uniquely as U → h∗U ′ → U ′ where h = p(a) : V → V ′ (see Categories,
Definition 33.6). Hence we see that

FU ′ |CV =
⊕

h∈MorD(V,V ′)
jh∗U ′!Zh∗U ′

where jh∗U ′ : Sh(CV /h∗U ′) → Sh(CV ) is the localization morphism. The sheaves
jh∗U ′!Zh∗U ′ have vanishing higher homology groups (see Example 39.2). We conclude
that Ln(FU ′) = 0 for all n > 0 and all U ′. It follows that any abelian presheaf F is a
quotient of an abelian presheaf G withLn(G) = 0 for all n > 0 (Modules on Sites, Lemma
28.8). Since Ln(F) = Ln(F#) we see that the same thing is true for abelian sheaves.
Thus the sequence of functors Ln(−) is a universal delta functor on Ab(C) (Homology,
Lemma 12.4). Since we have agreement with H−n(Lπ!(−)) for n = 0 by Lemma 38.8
we conclude by uniqueness of universal δ-functors (Homology, Lemma 12.5) and Derived
Categories, Lemma 16.6. �

Lemma 40.3. Assumptions and notation as in Situation 38.3. For an abelian sheafF ′

on C′ the sheaf Lng!(F ′) is the sheaf associated to the presheaf
U 7−→ Hn(IU ,F ′

U )
For notation and restriction maps see proof.

Proof. Say p(U) = V . The category IU is the category of pairs (U ′, ϕ) where ϕ :
U → u(U ′) is a morphism of C with p(ϕ) = idV , i.e.,ϕ is a morphism of the fibre category
CV . Morphisms (U ′

1, ϕ1) → (U ′
2, ϕ2) are given by morphisms a : U ′

1 → U ′
2 of the fibre
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category C′
V such that ϕ2 = u(a)◦ϕ1. The presheafF ′

U sends (U ′, ϕ) toF ′(U ′). We will
construct the restriction mappings below.

Choose a factorization

C′
u′
// C′′ u′′

//
w
oo C

of u as in Categories, Lemma 33.14. Then g! = g′′
! ◦ g′

! and similarly for derived functors.
On the other hand, the functor g′

! is exact, see Modules on Sites, Lemma 16.6. Thus we get
Lg!(F ′) = Lg′′

! (F ′′) where F ′′ = g′
!F ′. Note that F ′′ = h−1F ′ where h : Sh(C′′) →

Sh(C′) is the morphism of topoi associated to w, see Sites, Lemma 23.1. The functor u′′

turns C′′ into a fibred category over C , hence Lemma 40.2 applies to the computation of
Lng

′′
! . The result follows as the construction of C′′ in the proof of Categories, Lemma

33.14 shows that the fibre category C′′
U is equal to IU . Moreover, h−1F ′|C′′

U
is given by

the rule described above (as w is continuous and cocontinuous by Stacks, Lemma 10.3 so
we may apply Sites, Lemma 21.5). �

41. Simplicial modules

LetA• be a simplicial ring. Recall that we may think ofA• as a sheaf on ∆ (endowed with
the chaotic topology), see Simplicial, Section 4. Then a simplicial module M• over A• is
just a sheaf of A•-modules on ∆. In other words, for every n ≥ 0 we have an An-module
Mn and for every map ϕ : [n]→ [m] we have a corresponding map

M•(ϕ) : Mm −→Mn

which is A•(ϕ)-linear such that these maps compose in the usual manner.

Let C be a site. A simplicial sheaf of rings A• on C is a simplicial object in the category
of sheaves of rings on C. In this case the assignment U 7→ A•(U) is a sheaf of simplicial
rings and in fact the two notions are equivalent. A similar discussion holds for simplicial
abelian sheaves, simplicial sheaves of Lie algebras, and so on.

However, as in the case of simplicial rings above, there is another way to think about
simplicial sheaves. Namely, consider the projection

p : ∆× C −→ C

This defines a fibred category with strongly cartesian morphisms exactly the morphisms of
the form ([n], U)→ ([n], V ). We endow the category ∆×C with the topology inherited
from C (see Stacks, Section 10). The simple description of the coverings in ∆× C (Stacks,
Lemma 10.1) immediately implies that a simplicial sheaf of rings on C is the same thing as
a sheaf of rings on ∆× C.

By analogy with the case of simplicial modules over a simplicial ring, we define simplicial
modules over simplicial sheaves of rings as follows.

Definition 41.1. Let C be a site. Let A• be a simplicial sheaf of rings on C. A sim-
plicial A•-module F• (sometimes called a simplicial sheaf of A•-modules) is a sheaf of
modules over the sheaf of rings on ∆× C associated toA•.

We obtain a category Mod(A•) of simplicial modules and a corresponding derived cate-
gory D(A•). Given a mapA• → B• of simplicial sheaves of rings we obtain a functor

−⊗L
A•
B• : D(A•) −→ D(B•)
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Moreover, the material of the preceding sections determines a functor

Lπ! : D(A•) −→ D(C)
Given a simplicial module F• the object Lπ!(F•) is represented by the associated chain
complex s(F•) (Simplicial, Section 23). This follows from Lemmas 40.2 and 39.7.

Lemma 41.2. Let C be a site. LetA• → B• be a homomorphism of simplicial sheaves
of rings on C. If Lπ!A• → Lπ!B• is an isomorphism in D(C), then we have

Lπ!(K) = Lπ!(K ⊗L
A•
B•)

for all K in D(A•).

Proof. Let ([n], U) be an object of ∆× C. Since Lπ! commutes with colimits, it suf-
fices to prove this for bounded above complexes of O-modules (compare with argument
of Derived Categories, Proposition 29.2 or just stick to bounded above complexes). Ev-
ery such complex is quasi-isomorphic to a bounded above complex whose terms are flat
modules, see Modules on Sites, Lemma 28.8. Thus it suffices to prove the lemma for a flat
A•-module F . In this case the derived tensor product is the usual tensor product and is a
sheaf also. Hence by Lemma 40.2 we can compute the cohomology sheaves of both sides
of the equation by the procedure of Lemma 40.1. Thus it suffices to prove the result for
the restriction of F to the fibre categories (i.e., to ∆ × U ). In this case the result follows
from Lemma 39.12. �

Remark 41.3. Let C be a site. Let ε : A• → O be an augmentation (Simplicial,
Definition 20.1) in the category of sheaves of rings. Assume ε induces a quasi-isomorphism
s(A•)→ O. In this case we obtain an exact functor of triangulated categories

Lπ! : D(A•) −→ D(O)
Namely, for any object K of D(A•) we have Lπ!(K) = Lπ!(K ⊗L

A•
O) by Lemma 41.2.

Thus we can define the displayed functor as the composition of−⊗L
A•
O with the functor

Lπ! : D(∆× C, π−1O)→ D(O) of Remark 38.6. In other words, we obtain aO-module
structure on Lπ!(K) coming from the (canonical, functorial) identification of Lπ!(K)
with Lπ!(K ⊗L

A•
O) of the lemma.

42. Cohomology on a category

In the situation of Example 39.1 in addition to the derived functor Lπ!, we also have
the functor Rπ∗. For an abelian sheaf F on C we have Hn(C,F) = H−n(Lπ!F) and
Hn(C,F) = Hn(Rπ∗F).

Example 42.1 (Computing cohomology). In Example 39.1 we can compute the func-
tors Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the cochain complex

K•(F) :
∏

U0
F(U0)→

∏
U0→U1

F(U0)→
∏

U0→U1→U2
F(U0)→ . . .

where the transition maps are given by

(sU0→U1) 7−→ ((U0 → U1 → U2) 7→ sU0→U1 − sU0→U2 + sU1→U2 |U0)
and similarly in other degrees. By construction

H0(C,F) = limCopp F = H0(K•(F)),
see Categories, Lemma 14.11. The construction of K•(F) is functorial in F and trans-
forms short exact sequences of Ab(C) into short exact sequences of complexes. Thus the
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sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology, Definition 12.1
and Lemma 13.12. For an object U of C denote pU : Sh(∗) → Sh(C) the correspond-
ing point with p−1

U equal to evaluation at U , see Sites, Example 33.8. Let A be an abelian
group and set F = pU,∗A. In this case the complex K•(F) is the complex with terms
Map(Xn, A) where

Xn =
∐

U0→...→Un−1→Un
MorC(U,U0)

This simplicial set is homotopy equivalent to the constant simplicial set on a singleton
{∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by mapping ∗
to (U → . . .→ U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 26.2) defining the homotopy between the two maps X• → X• are
given by the rule

hn,i : (U0 → . . .→ Un, f) 7−→ (U → . . .→ U → Ui → . . .→ Un, id)

for i > 0 and hn,0 = id. Verifications omitted. Since Map(−, A) is a contravariant func-
tor, implies thatK•(pU,∗A) has trivial cohomology in positive degrees (by the functorial-
ity of Simplicial, Remark 26.4 and the result of Simplicial, Lemma 28.6). This implies that
K•(F) is acyclic in positive degrees also ifF is a product of sheaves of the form pU,∗A. As
every abelian sheaf on C embeds into such a product we conclude that K•(F) computes
the left derived functors Hn(C,−) of H0(C,−) for example by Homology, Lemma 12.4
and Derived Categories, Lemma 16.6.

Example 42.2 (Computing Exts). In Example 39.1 assume we are moreover given a
sheaf of rings O on C. Let F , G be O-modules. Consider the complex K•(G,F) with
degree n term ∏

U0→U1→...→Un
HomO(Un)(G(Un),F(U0))

and transition map given by

(ϕU0→U1) 7−→ ((U0 → U1 → U2) 7→ ϕU0→U1 ◦ ρ
U2
U1
− ϕU0→U2 + ρU1

U0
◦ ϕU1→U2

and similarly in other degrees. Here the ρ’s indicate restriction maps. By construction

HomO(G,F) = H0(K•(G,F))

for all pairs ofO-modulesF ,G. The assignment (G,F) 7→ K•(G,F) is a bifunctor which
transforms direct sums in the first variable into products and commutes with products in
the second variable. We claim that

ExtiO(G,F) = Hi(K•(G,F))

for i ≥ 0 provided either
(1) G(U) is a projectiveO(U)-module for all U ∈ Ob(C), or
(2) F(U) is an injectiveO(U)-module for all U ∈ Ob(C).

Namely, case (1) the functorK•(G,−) is an exact functor from the category ofO-modules
to the category of cochain complexes of abelian groups. Thus, arguing as in Example 42.1,
it suffices to show that K•(G,F) is acyclic in positive degrees when F is pU,∗A for an
O(U)-module A. Choose a short exact sequence

(42.2.1) 0→ G′ →
⊕

jUi!OUi → G → 0
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see Modules on Sites, Lemma 28.8. Since (1) holds for the middle and right sheaves, it
also holds for G′ and evaluating (42.2.1) on an object of C gives a split exact sequence of
modules. We obtain a short exact sequence of complexes

0→ K•(G,F)→
∏

K•(jUi!OUi ,F)→ K•(G′,F)→ 0

for any F , in particular F = pU,∗A. On H0 we obtain

0→ Hom(G, pU,∗A)→ Hom(
∏

jUi!OUi , pU,∗A)→ Hom(G′, pU,∗A)→ 0

which is exact as Hom(H, pU,∗A) = HomO(U)(H(U), A) and the sequence of sections of
(42.2.1) over U is split exact. Thus we can use dimension shifting to see that it suffices to
prove K•(jU ′!OU ′ , pU,∗A) is acyclic in positive degrees for all U,U ′ ∈ Ob(C). In this
case Kn(jU ′!OU ′ , pU,∗A) is equal to∏

U→U0→U1→...→Un→U ′
A

In other words, K•(jU ′!OU ′ , pU,∗A) is the complex with terms Map(X•, A) where

Xn =
∐

U0→...→Un−1→Un
MorC(U,U0)×MorC(Un, U ′)

This simplicial set is homotopy equivalent to the constant simplicial set on a singleton {∗}
as can be proved in exactly the same way as the corresponding statement in Example 42.1.
This finishes the proof of the claim.

The argument in case (2) is similar (but dual).

43. Modules on a category

The material in this section will be used to define a variant of the derived category of
quasi-coherent modules on a stack in groupoids over the category of schemes. See Sheaves
on Stacks, Section 26.

Let C be a category. We think of C as a site with the chaotic topology. As in Example 42.2
we let O be a sheaf of rings on C. In other words, O is a presheaf of rings on the category
C , see Categories, Definition 3.3.

Definition 43.1. In the situation above, we denote QC (C,O) or simply QC (O) the
full subcategory of D(O) = D(C,O) consisting of objects K such that for all U → V in
C the canonical map

RΓ(V,K)⊗L
O(V ) O(U) −→ RΓ(U,K)

is an isomorphism in D(O(U)).

Lemma 43.2. In the situation above, the subcategory QC (O) is a strictly full, satu-
rated, triangulated subcategory of D(O) preserved by arbitrary direct sums.

Proof. Let U be an object of C. Since the topology on C is chaotic, the functor F 7→
F(U) is exact and commutes with direct sums. Hence the exact functorK 7→ RΓ(U,K) is
computed by representing K by any complex F• ofO-modules and taking F•(U). Thus
RΓ(U,−) commutes with direct sums, see Injectives, Lemma 13.4. Similarly, given a mor-
phism U → V of C the derived tensor product functor − ⊗L

O(V ) O(U) : D(O(V )) →
D(O(U)) is exact and commutes with direct sums. The lemma follows from these obser-
vations in a straightforward manner; details omitted. �
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Lemma 43.3. In the situation above, suppose thatM is an object of QC (O) and b ∈ Z
such that Hi(M) = 0 for all i > b. Then Hb(M) is a quasi-coherent module on (C,O)
in the sense of Modules on Sites, Definition 23.1.

Proof. By Modules on Sites, Lemma 24.2 it suffices to show that for every morphism
U → V of C the map

Hp(M)(V )⊗O(V ) O(U)→ Hb(M)(U)

is an isomorphism. We are given that the map

RΓ(V,M)⊗L
O(V ) O(U)→ RΓ(U,M)

is an isomorphism. Thus the result by the Tor spectral sequence for example. Details
omitted. �

Lemma 43.4. In the situation above, suppose that C has a final object X . Set R =
O(X) and denote f : (C,O) → (pt,R) the obvious morphism of sites. Then QC (O) =
D(R) given by Lf∗ and Rf∗.

Proof. Omitted. �

Lemma 43.5. In the situation above, suppose that K is an object of QC (O) and M
arbitrary in D(O). For every object U of C we have

HomD(OU )(K|U ,M |U ) = RHomO(U)(RΓ(U,K), RΓ(U,M))

Proof. We may replace C by C/U . Thus we may assumeU = X is a final object of C.
By Lemma 43.4 we see that K = Lf∗P where P = RΓ(U,K) = RΓ(X,K) = Rf∗K.
Thus the result because Lf∗ is the left adjoint to Rf∗(−) = RΓ(U,−). �

Let (C,O) be as above. For a complex F• ofO-modules we define the size |F•| of F• as

|F•| =
∣∣∣∣∐i∈Z, U∈Ob(C)

F i(U)
∣∣∣∣

For an object K of D(O) we define the size |K| of K to be the cardinal

|K| = min {|F•| where F• represents K}

By properties of cardinals the minimum exists.

Lemma 43.6. In the situation above, there exists a cardinal κ with the following
property: given a complex F• of O-modules and subsets ΩiU ⊂ F i(U) there exists a
subcomplexH• ⊂ F• with ΩiU ⊂ Hi(U) and |H•| ≤ max(κ, |

⋃
ΩiU |).

Proof. DefineHi(U) to be theO(U)-submodule of F i(U) generated by the images
of ΩiV and d(Ωi−1

U ) by restriction along any morphism f : U → V . The cardinality of
Hi(U) is bounded by the maximum of ℵ0, the cardinality of theO(U), the cardinality of
Arrows(C), and |

⋃
ΩiU |. Details omitted. �

Lemma 43.7. In the situation above, there exists a cardinal κ with the following
property: given a complexF• ofO-modules representing an objectK ofD(O) there exists
a subcomplexH• ⊂ F• such thatH• represents K and such that |H•| ≤ max(κ, |K|).
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Proof. First, for every i andU we choose a subset ΩiU ⊂ Ker(d : F i(U)→ F i+1(U))
mapping bijectively ontoHi(K)(U) = Hi(F•(U)). Hence |ΩiU | ≤ |K| as we may repre-
sentK by a complex whose size is |K|. Applying Lemma 43.6 we find a subcomplex S• ⊂
F• of size at most max(κ, |K|) containing ΩiU and hence such that Hi(S•) → Hi(F•)
is a surjection of sheaves.

We are going to inductively construct subcomplexes

S• = S•
0 ⊂ S•

1 ⊂ S•
2 ⊂ . . . ⊂ F•

of size≤ max(κ, |K|) such that the kernel ofHi(S•
n)→ Hi(F•) is the same as the kernel

of Hi(S•
n)→ Hi(S•

n+1). Once this is done we can takeH• =
⋃
S•
n as our solution.

Construction of S•
n+1 given S•

n. For ever U and i let Ωi−1
U ⊂ F i−1(U) be a subset such

that d : F i−1(U)→ F i(U) maps Ωi−1
U bijectively onto

Sin(U) ∩ Im(d : F i−1(U)→ F i(U))
Observe that |ΩiU | ≤ |K| because Sin(U) is so bounded. Then we get S•

n+1 by an applica-
tion of Lemma 43.6 to the subsets

Si(U) ∪ ΩiU ⊂ F i(U)
and everything is clear. �

Lemma 43.8. In the situation above, there exists a cardinal κ with the following
properties:

(1) for every nonzero objectK of QC (O) there exists a nonzero morphismE → K
of QC (O) such that |E| ≤ κ,

(2) for every morphism α : E →
⊕

nKn of QC (O) such that |E| ≤ κ, there exist
morphisms En → Kn in QC (O) with |En| ≤ κ such that α factors through⊕
En →

⊕
Kn.

Proof. Let κ be an upper bound for the following set of cardinals:
(1) |

∐
V jU !OU (V )| for all U ∈ Ob(C),

(2) the cardinals κ(O(V )→ O(U)) found in More on Algebra, Lemma 102.5 for all
morphisms U → V in C ,

(3) the cardinal found in Lemma 43.7.
We claim that for any complexF• representing an object of QC (O) and any subcomplex
S• ⊂ F• with |S•| ≤ κ there exists a subcomplexH• of F• containing S• such thatH•

represents an object of QC (O) and such that |H•| ≤ κ. In the next two paragraphs we
show that the claim implies the lemma.

As in (1) let K be a nonzero object of QC (O). Say K is represented by the complex of
O-modules F•. Then Hi(F•) is nonzero for some i. Hence there exists an object U of C
and a section s ∈ F i(U) with d(s) = 0 which determines a nonzero section of Hi(F•)
overU . Then the image of s : jU !OU [−i]→ F• is a subcomplex S• ⊂ F• with |S•| ≤ κ.
Applying the claim we getH• → F• in QC (O) nonzero with |H•| ≤ κ. Thus (1) holds.

Let α : E →
⊕
Kn be as in (2). Choose any complexesK•

n representingKn. Then
⊕
K•
n

represents
⊕
Kn. By the construction of the derived category we can represent E by a

complex E• such that α is represented by a morphism a : E• →
⊕
K•
n of complexes. By

Lemma 43.7 and our choice of κ above we may assume |E•| ≤ κ. By the claim we get
subcomplexes E•

n ⊂ K•
n representing objectsEn of QC (O) with |En| ≤ κ containing the

image of an : E• → K•
n as desired.
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Proof of the claim. LetF• be a complex representing an object of QC (O) and letS• ⊂ F•

be a subcomplex of size ≤ κ. We are going to inductively construct subcomplexes
S• = S•

0 ⊂ S•
1 ⊂ S•

2 ⊂ . . . ⊂ F•

of size ≤ κ such that for every morphism f : U → V of C and every i ∈ Z
(1) the kernel of the arrow Hi(S•

n(V ) ⊗L
O(V ) O(U)) → Hi(S•

n(U)) maps to zero
in Hi(S•

n+1(V )⊗L
O(V ) O(U)),

(2) the image of the arrow Hi(S•
n(U)) → Hi(S•

n+1(U)) is contained in the image
of Hi(S•

n+1(V )⊗L
O(V ) O(U))→ Hi(S•

n+1(U)),
Once this is done we can set H• =

⋃
S•
n. Namely, since derived tensor product and

taking cohomology of complexes of modules over rings commute with filtered colimits,
the conditions (1) and (2) together will guarantee that

H•(V )⊗L
O(V ) O(U) −→ H•(U)

is an isomorphism on cohomology in all degrees and hence an isomorphism in D(O(U))
for all f : U → V in C. HenceH• represents an object of QC (O) as desired.
Construction of Sn+1 given Sn. For every morphism f : U → V of C we consider the
commutative diagram

S•
n(V ) //

��

S•
n(U)

��
F•(V ) // F•(U)

This is a diagram as in More on Algebra, Lemma 102.5 for the ring map O(V ) → O(U),
i.e., the bottom row induces an isomorphism

F•(V )⊗L
O(V ) O(U) −→ F•(U)

in D(O(U)). Thus we may choose subcomplexes
S•
n(V ) ⊂M•

f ⊂ F•(V ) and S•
n(U) ⊂ N•

f ⊂ F•(U)

as in More on Algebra, Lemma 102.5 and in particular we see that |N i
f |, |M i

f | ≤ κ. Next,
we apply Lemma 43.6 using the subsets

Sin(U)q
∐

f :U→V
N i
f q

∐
g:W→U

M i
g ⊂ F i(U)

to find a subcomplex
S•
n ⊂ S•

n+1 ⊂ F•

with containing those subsets and such that |S•
n+1| ≤ κ. Conditions (1) and (2) hold

because the corresponding statements hold for S•
n(V ) ⊂ M•

f and S•
n(U) ⊂ N•

f by the
construction in More on Algebra, Lemma 102.5. Thus the proof is complete. �

Proposition 43.9. Let C be a category viewed as a site with the chaotic topology. Let
O be a sheaf of rings on C. With QC (O) as in Definition 43.1 we have

(1) QC (O) is a strictly full, saturated, triangulated subcategory of D(O) preserved
by arbitrary direct sums,

(2) any contravariant cohomological functor H : QC (O)→ Ab which transforms
direct sums into products is representable,

(3) any exact functorF : QC (O)→ D of triangulated categories which transforms
direct sums into direct sums has an exact right adjoint, and
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(4) the inclusion functor QC (O)→ D(O) has an exact right adjoint.

Proof. Part (1) is Lemma 43.2. Part (2) follows from Lemma 43.8 and Derived Cat-
egories, Lemma 39.1. Part (3) follows from Lemma 43.8 and Derived Categories, Proposi-
tion 39.2. Part (4) is a special case of (3). �

Letu : C′ → C be a functor between categories. If we view C and C′ as sites with the chaotic
topology, then u is a continuous and cocontinuous functor. Hence we obtain a morphism
g : Sh(C′) → Sh(C) of topoi, see Sites, Lemma 21.1. Additionally, suppose given sheaves
of rings O on C and O′ on C′ and a map g] : g−1O → O′. We denote the corresponding
morphism of ringed topoi simply g : (Sh(C′),O′) → (Sh(C),O), see Modules on Sites,
Section 7.

Lemma 43.10. Let g : (Sh(C′),O′) → (Sh(C),O) be as above. Then the functor
Lg∗ : D(O)→ D(O′) maps QC (O) into QC (O′).

Proof. Let U ′ ∈ Ob(C′) with image U = u(U ′) in C. Let pt denote the category
with a single object and a single morphism. Denote (Sh(pt),O′(U ′)) and (Sh(pt),O(U))
the ringed topoi as indicated. Of course we identify the derived category of modules on
these ringed topoi withD(O′(U ′)) andD(O(U)). Then we have a commutative diagram
of ringed topoi

(Sh(pt),O′(U ′))
U ′

//

��

(Sh(C′),O′)

g

��
(Sh(pt),O(U)) U // (Sh(C),O)

Pullback along the lower horizontal morphism sends K in D(O) to RΓ(U,K). Pullback
by the left vertical arrow sendsM toM ⊗L

O(U)O
′(U ′). Going around the diagram either

direction produces the same result (Lemma 18.3) and hence we conclude

RΓ(U ′, Lg∗K) = RΓ(U,K)⊗L
O(U) O

′(U ′)

Finally, let f ′ : U ′ → V ′ be a morphism in C′ and denote f = u(f ′) : U = u(U ′) →
V = u(V ′) the image in C. If K is in QC (O) then we have

RΓ(V ′, Lg∗K)⊗L
O′(V ′) O

′(U ′) = RΓ(V,K)⊗L
O(V ) O

′(V ′)⊗L
O′(V ′) O

′(U ′)

= RΓ(V,K)⊗L
O(V ) O

′(U ′)

= RΓ(V,K)⊗L
O(V ) O(U)⊗L

O(U) O
′(U ′)

= RΓ(U,K)⊗L
O(U) O

′(U ′)
= RΓ(U ′, Lg∗K)

as desired. Here we have used the observation above both for U ′ and V ′. �

Lemma 43.11. Let C be a category viewed as a site with the chaotic topology. Let O
be a sheaf of rings on C. Assume for all U → V in C the restriction map O(V ) → O(U)
is a flat ring map. Then QC (O) agrees with the subcategory DQCoh(O) ⊂ D(O) of
complexes whose cohomology sheaves are quasi-coherent.

Proof. Recall that QCoh(O) ⊂ Mod(O) is a weak Serre subcategory under our as-
sumptions, see Modules on Sites, Lemma 24.3. Thus taking the full subcategory

DQCoh(O) = DQCoh(O)(Mod(O))
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ofD(O) makes sense, see Derived Categories, Section 17. (Strictly speaking we don’t need
this in the proof of the lemma.)
LetM be an object of QC (O). Since for every morphism U → V in C the restriction map
O(V )→ O(U) is flat, we see that

Hi(M)(U) = Hi(RΓ(U,M))
= Hi(RΓ(V,M)⊗L

O(V ) O(U))

= Hi(RΓ(V,M))⊗O(V ) O(U)
= Hi(M)(V )⊗O(V ) O(U)

and hence Hi(M) is quasi-coherent by Modules on Sites, Lemma 24.2. The first and last
equality above follow from the fact that taking sections over an object of C is an exact
functor due to the fact that the topology on C is chaotic.
Conversely, if M is an object of DQCoh(O), then due to Modules on Sites, Lemma 24.2
we see that the map RΓ(V,M) → RΓ(U,M) induces isomorphisms Hi(M)(U) →
Hi(M)(V ) ⊗O(V ) O(U). Whence RΓ(V,K) ⊗L

O(V ) O(U) → RΓ(U,K) is an iso-
morphism in D(O(U)) by the flatness of O(V ) → O(U) and we conclude that M is
in QC (O). �

Lemma 43.12. Let ε : (Cτ ,Oτ )→ (Cτ ′ ,Oτ ′) be as in Section 27. Assume
(1) τ ′ is the chaotic topology on the category C ,
(2) for all U ∈ Ob(C) and all K-flat complexes ofO(U)-modules M• the map

M• −→ RΓ((C/U)τ , (M• ⊗O(U) OU )#)
is a quasi-isomorphism (see proof for an explanation).

Then ε∗ andRε∗ define mutually quasi-inverse equivalences between QC (O) and the full
subcategory of D(Cτ ,Oτ ) consisting of objects K such that Rε∗K is in QC (O)10.

Proof. We will use the observations made in Section 27 without further mention.
Since Rε∗ is fully faithful and ε∗ ◦ Rε∗ = id, to prove the lemma it suffices to show
that for M in QC (O) we have Rε∗(ε∗M) = M . Condition (2) is exactly the condition
needed to see this. Namely, we choose a K-flat complexM• ofO-modules with flat terms
representing M . Then we see that ε∗M is represented by the τ -sheafification (M•)# of
M•. Let U ∈ Ob(C). By Leray we get

RΓ(U,Rε∗(ε∗M)) = RΓ((C/U)τ , (M•)#|C/U ) = RΓ((C/U)τ , (M•|C/U )#)
The last equality since sheafification commutes with restriction to C/U . As usual, denote
OU the restriction ofO to C/U . Consider the map

M•(U)⊗O(U) OU −→M•|C/U
of complexes ofOU -modules (in τ ′-topology). By our choice ofM• the complexM•(U)
is a K-flat complex of O(U)-modules; see Lemma 18.1 and use that the inclusion of U
into C defines a morphism of ringed topoi (Sh(pt),O(U))→ (Sh(Cτ ′),O). SinceM is in
QC (O) we conclude that the displayed arrow is a quasi-isomorphism. Since sheafification
is exact, we see that the same remains true after sheafification. Hence

RΓ(U,Rε∗(ε∗M)) = RΓ((C/U)τ , (M• ⊗O(U) OU )#)
and assumption (2) tells us this is equal to RΓ(U,M) =M•(U) as desired. �

10This means that RΓ(V,K) ⊗L
O(V ) O(U) → RΓ(U,K) is an isomorphism for all U → V in C.
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Lemma 43.13. Notation and assumptions as in Lemma 43.12. Suppose that K is an
object of QC (O) and M arbitrary in D(Oτ ). For every object U of C we have

HomD((OU )τ )(ε∗K|U ,M |U ) = RHomO(U)(RΓ(U,K), RΓ(U,M))

Proof. We have

HomD((OU )τ )(ε∗K|U ,M |U ) = HomD((OU )τ′ )(K|U , Rε∗M |U )
by adjunction. Hence the result by Lemma 43.5 and the fact that

RΓ(U,M) = RΓ(U,Rε∗M)
by Leray. �

44. Strictly perfect complexes

This section is the analogue of Cohomology, Section 46.

Definition 44.1. Let (C,O) be a ringed site. Let E• be a complex ofO-modules. We
say E• is strictly perfect if E i is zero for all but finitely many i and E i is a direct summand
of a finite freeO-module for all i.

Let U be an object of C. We will often say “Let E• be a strictly perfect complex of OU -
modules” to mean E• is a strictly perfect complex of modules on the ringed site (C/U,OU ),
see Modules on Sites, Definition 19.1.

Lemma 44.2. The cone on a morphism of strictly perfect complexes is strictly perfect.

Proof. This is immediate from the definitions. �

Lemma 44.3. The total complex associated to the tensor product of two strictly per-
fect complexes is strictly perfect.

Proof. Omitted. �

Lemma 44.4. Let (f, f ]) : (C,OC) → (D,OD) be a morphism of ringed topoi. If
F• is a strictly perfect complex of OD-modules, then f∗F• is a strictly perfect complex
ofOC-modules.

Proof. We have seen in Modules on Sites, Lemma 17.2 that the pullback of a finite
free module is finite free. The functor f∗ is additive functor hence preserves direct sum-
mands. The lemma follows. �

Lemma 44.5. Let (C,O) be a ringed site. Let U be an object of C. Given a solid
diagram ofOU -modules

E

��

// F

G

p

OO

with E a direct summand of a finite free OU -module and p surjective, then there exists a
covering {Ui → U} such that a dotted arrow making the diagram commute exists over
each Ui.

Proof. We may assume E = O⊕n
U for some n. In this case finding the dotted arrow

is equivalent to lifting the images of the basis elements in Γ(U,F). This is locally possible
by the characterization of surjective maps of sheaves (Sites, Section 11). �
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Lemma 44.6. Let (C,O) be a ringed site. Let U be an object of C.
(1) Let α : E• → F• be a morphism of complexes of OU -modules with E• strictly

perfect and F• acyclic. Then there exists a covering {Ui → U} such that each
α|Ui is homotopic to zero.

(2) Let α : E• → F• be a morphism of complexes of OU -modules with E• strictly
perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then there exists a
covering {Ui → U} such that each α|Ui is homotopic to zero.

Proof. The first statement follows from the second, hence we only prove (2). We will
prove this by induction on the length of the complex E•. If E• ∼= E [−n] for some direct
summand E of a finite free O-module and integer n ≥ a, then the result follows from
Lemma 44.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is surjective by the assumed
vanishing ofHn(F•). If E i is zero except for i ∈ [a, b], then we have a split exact sequence
of complexes

0→ Eb[−b]→ E• → σ≤b−1E• → 0
which determines a distinguished triangle in K(OU ). Hence an exact sequence

HomK(OU )(σ≤b−1E•,F•)→ HomK(OU )(E•,F•)→ HomK(OU )(Eb[−b],F•)

by the axioms of triangulated categories. The composition Eb[−b] → F• is homotopic
to zero on the members of a covering of U by the above, whence we may assume our map
comes from an element in the left hand side of the displayed exact sequence above. This
element is zero on the members of a covering of U by induction hypothesis. �

Lemma 44.7. Let (C,O) be a ringed site. Let U be an object of C. Given a solid
diagram of complexes ofOU -modules

E•

!!

α
// F•

G•

f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a and
surjective for j = a, then there exists a covering {Ui → U} and for each i a dotted arrow
over Ui making the diagram commute up to homotopy.

Proof. Our assumptions on f imply the coneC(f)• has vanishing cohomology sheaves
in degrees ≥ a. Hence Lemma 44.6 guarantees there is a covering {Ui → U} such that
the composition E• → F• → C(f)• is homotopic to zero over Ui. Since

G• → F• → C(f)• → G•[1]

restricts to a distinguished triangle inK(OUi) we see that we can liftα|Ui up to homotopy
to a map αi : E•|Ui → G•|Ui as desired. �

Lemma 44.8. Let (C,O) be a ringed site. Let U be an object of C. Let E•, F• be
complexes ofOU -modules with E• strictly perfect.

(1) For any element α ∈ HomD(OU )(E•,F•) there exists a covering {Ui → U}
such that α|Ui is given by a morphism of complexes αi : E•|Ui → F•|Ui .

(2) Given a morphism of complexes α : E• → F• whose image in the group
HomD(OU )(E•,F•) is zero, there exists a covering {Ui → U} such that α|Ui
is homotopic to zero.
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Proof. Proof of (1). By the construction of the derived category we can find a quasi-
isomorphism f : F• → G• and a map of complexes β : E• → G• such that α = f−1β.
Thus the result follows from Lemma 44.7. We omit the proof of (2). �

Lemma 44.9. Let (C,O) be a ringed site. Let E•,F• be complexes ofO-modules with
E• strictly perfect. Then the internal homRHom(E•,F•) is represented by the complex
H• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 35.

Proof. Choose a quasi-isomorphismF• → I• into a K-injective complex. Let (H′)•

be the complex with terms

(H′)n =
∏

n=p+q
HomO(L−q, Ip)

which represents RHom(E•,F•) by the construction in Section 35. It suffices to show
that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an object U of C we have by inspection

H0(H•(U)) = HomK(OU )(E•|U ,K•|U )→ H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 44.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafification of
U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomology sheaves.
ThusH• is quasi-isomorphic to (H′)• which proves the lemma. �

Lemma 44.10. Let (C,O) be a ringed site. Let E•, F• be complexes of O-modules
with

(1) Fn = 0 for n� 0,
(2) En = 0 for n� 0, and
(3) En isomorphic to a direct summand of a finite freeO-module.

Then the internal hom RHom(E•,F•) is represented by the complexH• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 35.

Proof. Choose a quasi-isomorphismF• → I• where I• is a bounded below complex
of injectives. Note that I• is K-injective (Derived Categories, Lemma 31.4). Hence the
construction in Section 35 shows thatRHom(E•,F•) is represented by the complex (H′)•

with terms

(H′)n =
∏

n=p+q
HomO(E−q, Ip) =

⊕
n=p+q

HomO(E−q, Ip)

(equality because there are only finitely many nonzero terms). Note that H• is the total
complex associated to the double complex with termsHomO(E−q,Fp) and similarly for
(H′)•. The natural map (H′)• → H• comes from a map of double complexes. Thus
to show this map is a quasi-isomorphism, we may use the spectral sequence of a double
complex (Homology, Lemma 25.3)

′Ep,q1 = Hp(HomO(E−q,F•))
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converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma it
suffices to show that F• → I• induces an isomorphism

Hp(HomO(E ,F•)) −→ Hp(HomO(E , I•))

on cohomology sheaves whenever E is a direct summand of a finite freeO-module. Since
this is clear when E is finite free the result follows. �

45. Pseudo-coherent modules

In this section we discuss pseudo-coherent complexes.

Definition 45.1. Let (C,O) be a ringed site. Let E• be a complex ofO-modules. Let
m ∈ Z.

(1) We say E• ism-pseudo-coherent if for every objectU of C there exists a covering
{Ui → U} and for each i a morphism of complexes αi : E•

i → E•|Ui where Ei
is a strictly perfect complex of OUi -modules and Hj(αi) is an isomorphism for
j > m and Hm(αi) is surjective.

(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E of D(O) is m-pseudo-coherent (resp. pseudo-coherent) if

and only if it can be represented by am-pseudo-coherent (resp. pseudo-coherent)
complex ofO-modules.

If C has a final object X which is quasi-compact (for example if every covering of X can
be refined by a finite covering), then an m-pseudo-coherent object of D(O) is in D−(O).
But this need not be the case in general.

Lemma 45.2. Let (C,O) be a ringed site. Let E be an object of D(O).
(1) If C has a final object X and if there exist a covering {Ui → X}, strictly perfect

complexes E•
i of OUi -modules, and maps αi : E•

i → E|Ui in D(OUi) with
Hj(αi) an isomorphism for j > m andHm(αi) surjective, thenE ism-pseudo-
coherent.

(2) If E is m-pseudo-coherent, then any complex of O-modules representing E is
m-pseudo-coherent.

(3) If for every object U of C there exists a covering {Ui → U} such that E|Ui is
m-pseudo-coherent, then E is m-pseudo-coherent.

Proof. Let F• be any complex representing E and let X , {Ui → X}, and αi : Ei →
E|Ui be as in (1). We will show that F• is m-pseudo-coherent as a complex, which will
prove (1) and (2) in case C has a final object. By Lemma 44.8 we can after refining the
covering {Ui → X} represent the maps αi by maps of complexes αi : E•

i → F•|Ui . By
assumption Hj(αi) are isomorphisms for j > m, and Hm(αi) is surjective whence F• is
m-pseudo-coherent.

Proof of (2). By the above we see that F•|U is m-pseudo-coherent as a complex of OU -
modules for all objects U of C. It is a formal consequence of the definitions that F• is
m-pseudo-coherent.

Proof of (3). Follows from the definitions and Sites, Definition 6.2 part (2). �

Lemma 45.3. Let (f, f ]) : (C,OC)→ (D,OD) be a morphism of ringed sites. Let E
be an object of D(OC). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-coherent.
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Proof. Say f is given by the functor u : D → C. Let U be an object of C. By Sites,
Lemma 14.10 we can find a covering {Ui → U} and for each i a morphism Ui → u(Vi)
for some object Vi of D. By Lemma 45.2 it suffices to show that Lf∗E|Ui is m-pseudo-
coherent. To do this it is enough to show that Lf∗E|u(Vi) is m-pseudo-coherent, since
Lf∗E|Ui is the restriction of Lf∗E|u(Vi) to C/Ui (via Modules on Sites, Lemma 19.5). By
the commutative diagram of Modules on Sites, Lemma 20.1 it suffices to prove the lemma
for the morphism of ringed sites (C/u(Vi),Ou(Vi))→ (D/Vi,OVi). Thus we may assume
D has a final object Y such that X = u(Y ) is a final object of C.

Let {Vi → Y } be a covering such that for each i there exists a strictly perfect complex
F•
i of OVi -modules and a morphism αi : F•

i → E|Vi of D(OVi) such that Hj(αi) is an
isomorphism for j > m and Hm(αi) is surjective. Arguing as above it suffices to prove
the result for (C/u(Vi),Ou(Vi))→ (D/Vi,OVi). Hence we may assume that there exists a
strictly perfect complexF• ofOD-modules and a morphism α : F• → E ofD(OD) such
that Hj(α) is an isomorphism for j > m and Hm(α) is surjective. In this case, choose a
distinguished triangle

F• → E → C → F•[1]
The assumption on α means exactly that the cohomology sheaves Hj(C) are zero for all
j ≥ m. Applying Lf∗ we obtain the distinguished triangle

Lf∗F• → Lf∗E → Lf∗C → Lf∗F•[1]

By the construction ofLf∗ as a left derived functor we see thatHj(Lf∗C) = 0 for j ≥ m
(by the dual of Derived Categories, Lemma 16.1). HenceHj(Lf∗α) is an isomorphism for
j > m and Hm(Lf∗α) is surjective. On the other hand, since F• is a bounded above
complex of flat OD-modules we see that Lf∗F• = f∗F•. Applying Lemma 44.4 we
conclude. �

Lemma 45.4. Let (C,O) be a ringed site and m ∈ Z. Let (K,L,M, f, g, h) be a
distinguished triangle in D(O).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is m-
pseudo-coherent.

(2) If K and M are m-pseudo-coherent, then L is m-pseudo-coherent.
(3) IfL is (m+1)-pseudo-coherent andM ism-pseudo-coherent, thenK is (m+1)-

pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. Choose a covering {Ui → U} and
maps αi : K•

i → K|Ui in D(OUi) with K•
i strictly perfect and Hj(αi) isomorphisms for

j > m+ 1 and surjective for j = m+ 1. We may replaceK•
i by σ≥m+1K•

i and hence we
may assume thatKji = 0 for j < m+ 1. After refining the covering we may choose maps
βi : L•

i → L|Ui in D(OUi) with L•
i strictly perfect such that Hj(β) is an isomorphism

for j > m and surjective for j = m. By Lemma 44.7 we can, after refining the covering,
find maps of complexes γi : K• → L• such that the diagrams

K|Ui // L|Ui

K•
i

αi

OO

γi // L•
i

βi

OO

are commutative inD(OUi) (this requires representing the maps αi, βi andK|Ui → L|Ui
by actual maps of complexes; some details omitted). The cone C(γi)• is strictly perfect
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(Lemma 44.2). The commutativity of the diagram implies that there exists a morphism of
distinguished triangles

(K•
i ,L•

i , C(γi)•) −→ (K|Ui , L|Ui ,M |Ui).

It follows from the induced map on long exact cohomology sequences and Homology,
Lemmas 5.19 and 5.20 that C(γi)• → M |Ui induces an isomorphism on cohomology in
degrees > m and a surjection in degree m. Hence M is m-pseudo-coherent by Lemma
45.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. �

Lemma 45.5. Let (C,O) be a ringed site. Let K,L be objects of D(O).
(1) IfK isn-pseudo-coherent andHi(K) = 0 for i > a andL ism-pseudo-coherent

andHj(L) = 0 for j > b, thenK⊗L
OL is t-pseudo-coherent with t = max(m+

a, n+ b).
(2) If K and L are pseudo-coherent, then K ⊗L

O L is pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. By replacing U by the members of
a covering and replacing C by the localization C/U we may assume there exist strictly
perfect complexes K• and L• and maps α : K• → K and β : L• → L with Hi(α) and
isomorphism for i > n and surjective for i = n and with Hi(β) and isomorphism for
i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗O L•)→ K ⊗L
O L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection for
i = t. This follows from the spectral sequence of tors (details omitted).

Proof of (2). Let U be an object of C. We may first replace U by the members of a covering
and C by the localization C/U to reduce to the case thatK andL are bounded above. Then
the statement follows immediately from case (1). �

Lemma 45.6. Let (C,O) be a ringed site. Letm ∈ Z. IfK ⊕L ism-pseudo-coherent
(resp. pseudo-coherent) in D(O) so are K and L.

Proof. Assume that K ⊕ L is m-pseudo-coherent. Let U be an object of C. After
replacing U by the members of a covering we may assume K ⊕ L ∈ D−(OU ), hence
L ∈ D−(OU ). Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L, L⊕ L[1])

see Derived Categories, Lemma 4.10. By Lemma 45.4 we see that L ⊕ L[1] is m-pseudo-
coherent. Hence also L[1]⊕ L[2] is m-pseudo-coherent. By induction L[n]⊕ L[n+ 1] is
m-pseudo-coherent. Since L is bounded above we see that L[n] is m-pseudo-coherent for
large n. Hence working backwards, using the distinguished triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])

we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. �

Lemma 45.7. Let (C,O) be a ringed site. Let K be an object of D(O). Let m ∈ Z.
(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a finite

typeO-module.
(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m+ 1, then Hm+1(K) is a

finitely presentedO-module.
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Proof. Proof of (1). Let U be an object of C. We have to show thatHm(K) is can be
generated by finitely many sections over the members of a covering of U (see Modules on
Sites, Definition 23.1). Thus during the proof we may (finitely often) choose a covering
{Ui → U} and replace C by C/Ui and U by Ui. In particular, by our definitions we may
assume there exists a strictly perfect complex E• and a map α : E• → K which induces
an isomorphism on cohomology in degrees > m and a surjection in degree m. It suffices
to prove the result for E•. Let n be the largest integer such that En 6= 0. If n = m, then
Hm(E•) is a quotient of En and the result is clear. If n > m, then En−1 → En is surjective
asHn(E•) = 0. By Lemma 44.5 we can (after replacing U by the members of a covering)
find a section of this surjection and write En−1 = E ′ ⊕ En. Hence it suffices to prove the
result for the complex (E ′)• which is the same as E• except has E ′ in degree n − 1 and 0
in degree n. We win by induction on n.

Proof of (2). Pick an objectU of C. As in the proof of (1) we may work locally onU . Hence
we may assume there exists a strictly perfect complex E• and a map α : E• → K which
induces an isomorphism on cohomology in degrees > m and a surjection in degree m. As
in the proof of (1) we can reduce to the case that E i = 0 for i > m+ 1. Then we see that
Hm+1(K) ∼= Hm+1(E•) = Coker(Em → Em+1) which is of finite presentation. �

46. Tor dimension

In this section we take a closer look at resolutions by flat modules.

Definition 46.1. Let (C,O) be a ringed site. LetE be an object ofD(O). Let a, b ∈ Z
with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E ⊗L
O F) = 0 for all O-modules F

and all i 6∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some a, b.
(3) We say E locally has finite tor dimension if for any object U of C there exists a

covering {Ui → U} such that E|Ui has finite tor dimension for all i.
An O-module F has tor dimension ≤ d if F [0] viewed as an object of D(O) has tor-
amplitude in [−d, 0].

Note that if E as in the definition has finite tor dimension, then E is an object of Db(O)
as can be seen by taking F = O in the definition above.

Lemma 46.2. Let (C,O) be a ringed site. Let E• be a bounded above complex of flat
O-modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a flatO-module.

Proof. As E• is a bounded above complex of flat modules we see that E• ⊗O F =
E• ⊗L

O F for anyO-module F . Hence for everyO-module F the sequence

Ea−2 ⊗O F → Ea−1 ⊗O F → Ea ⊗O F

is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1) → 0 is a flat resolu-
tion this implies that TorO

1 (Coker(da−1),F) = 0 for all O-modules F . This means that
Coker(da−1) is flat, see Lemma 17.15. �

Lemma 46.3. Let (C,O) be a ringed site. Let E be an object of D(O). Let a, b ∈ Z
with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) E is represented by a complex E• of flatO-modules with E i = 0 for i 6∈ [a, b].
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Proof. If (2) holds, then we may compute E ⊗L
O F = E• ⊗O F and it is clear that

(1) holds.

Assume that (1) holds. We may represent E by a bounded above complex of flat O-
modules K•, see Section 17. Let n be the largest integer such that Kn 6= 0. If n > b, then
Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see that Ker(Kn−1 → Kn) is
flat (Modules on Sites, Lemma 28.10). Hence we may replace K• by τ≤n−1K•. Thus, by
induction on n, we reduce to the case thatK• is a complex of flatO-modules withKi = 0
for i > b.

Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 46.2 and the definitions. �

Lemma 46.4. Let (C,O) be a ringed site. LetE be an object ofD(O). Let a ∈ Z. The
following are equivalent

(1) E has tor-amplitude in [a,∞].
(2) E can be represented by a K-flat complex E• of flat O-modules with E i = 0 for

i 6∈ [a,∞].
Moreover, we can choose E• such that any pullback by a morphism of ringed sites is a
K-flat complex with flat terms.

Proof. The implication (2)⇒ (1) is immediate. Assume (1) holds. First we choose a
K-flat complex K• with flat terms representing E , see Lemma 17.11. For any O-module
M the cohomology of

Kn−1 ⊗OM→Kn ⊗OM→Kn+1 ⊗OM
computes Hn(E ⊗L

O M). This is always zero for n < a. Hence if we apply Lemma 46.2
to the complex . . .→ Ka−1 → Ka → Ka+1 we conclude thatN = Coker(Ka−1 → Ka)
is a flatO-module. We set

E• = τ≥aK• = (. . .→ 0→ N → Ka+1 → . . .)
The kernel L• of K• → E• is the complex

L• = (. . .→ Ka−1 → I → 0→ . . .)
where I ⊂ Ka is the image of Ka−1 → Ka. Since we have the short exact sequence
0 → I → Ka → N → 0 we see that I is a flat O-module. Thus L• is a bounded above
complex of flat modules, hence K-flat by Lemma 17.8. It follows that E• is K-flat by Lemma
17.7.

Proof of the final assertion. Let f : (C′,O′) → (C,O) be a morphism of ringed sites.
By Lemma 18.1 the complex f∗K• is K-flat with flat terms. The complex f∗L• is K-flat
as it is a bounded above complex of flat O′-modules. We have a short exact sequence of
complexes ofO′-modules

0→ f∗L• → f∗K• → f∗E• → 0
because the short exact sequence 0 → I → Ka → N → 0 of flat modules pulls back
to a short exact sequence. By Lemma 17.7. the complex f∗E• is K-flat and the proof is
complete. �

Lemma 46.5. Let (f, f ]) : (C,OC)→ (D,OD) be a morphism of ringed sites. Let E
be an object of D(OD). If E has tor amplitude in [a, b], then Lf∗E has tor amplitude in
[a, b].
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Proof. Assume E has tor amplitude in [a, b]. By Lemma 46.3 we can represent E by
a complex of E• of flat O-modules with E i = 0 for i 6∈ [a, b]. Then Lf∗E is represented
by f∗E•. By Modules on Sites, Lemma 39.1 the module f∗E i are flat. Thus by Lemma 46.3
we conclude that Lf∗E has tor amplitude in [a, b]. �

Lemma 46.6. Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distinguished
triangle in D(O). Let a, b ∈ Z.

(1) IfK has tor-amplitude in [a+ 1, b+ 1] and L has tor-amplitude in [a, b] thenM
has tor-amplitude in [a, b].

(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a + 1, b + 1] and M has tor-amplitude in [a, b], then

K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that − ⊗L

O F preserves distinguished
triangles. The easiest one to prove is (2) and the others follow from it by translation. �

Lemma 46.7. Let (C,O) be a ringed site. Let K,L be objects of D(O). If K has tor-
amplitude in [a, b] and L has tor-amplitude in [c, d] then K ⊗L

O L has tor amplitude in
[a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. �

Lemma 46.8. Let (C,O) be a ringed site. Let a, b ∈ Z. For K , L objects of D(O) if
K ⊕ L has tor amplitude in [a, b] so do K and L.

Proof. Clear from the fact that the Tor functors are additive. �

Lemma 46.9. Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. Let K be an
object of D(O).

(1) If K ⊗L
O O/I is bounded above, then K ⊗L

O O/In is uniformly bounded above
for all n.

(2) IfK⊗L
OO/I as an object ofD(O/I) has tor amplitude in [a, b], thenK⊗L

OO/In
as an object of D(O/In) has tor amplitude in [a, b] for all n.

Proof. Proof of (1). Assume thatK⊗L
OO/I is bounded above, sayHi(K⊗L

OO/I) =
0 for i > b. Note that we have distinguished triangles

K ⊗L
O In/In+1 → K ⊗L

O O/In+1 → K ⊗L
O O/In → K ⊗L

O In/In+1[1]
and that

K ⊗L
O In/In+1 =

(
K ⊗L

O O/I
)
⊗L

O/I I
n/In+1

By induction we conclude that Hi(K ⊗L
O O/In) = 0 for i > b for all n.

Proof of (2). Assume K ⊗L
O O/I as an object of D(O/I) has tor amplitude in [a, b]. Let

F be a sheaf ofO/In-modules. Then we have a finite filtration
0 ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F

whose successive quotients are sheaves ofO/I-modules. Thus to prove that K ⊗L
O O/In

has tor amplitude in [a, b] it suffices to showHi(K⊗L
OO/In⊗L

O/InG) is zero for i 6∈ [a, b]
for allO/I-modules G. Since(

K ⊗L
O O/In

)
⊗L

O/In G =
(
K ⊗L

O O/I
)
⊗L

O/I G

for every sheaf ofO/I-modules G the result follows. �
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Lemma 46.10. Let (C,O) be a ringed site. Let E be an object of D(O). Let a, b ∈ Z.
(1) IfE has tor amplitude in [a, b], then for every point p of the site C the object Ep

of D(Op) has tor amplitude in [a, b].
(2) If C has enough points, then the converse is true.

Proof. Proof of (1). This follows because taking stalks at p is the same as pulling
back by the morphism of ringed sites (p,Op) → (C,O) and hence we can apply Lemma
46.5.

Proof of (2). If C has enough points, then we can check vanishing of Hi(E ⊗L
O F) at

stalks, see Modules on Sites, Lemma 14.4. Since Hi(E ⊗L
O F)p = Hi(Ep ⊗L

Op
Fp) we

conclude. �

47. Perfect complexes

In this section we discuss properties of perfect complexes on ringed sites.

Definition 47.1. Let (C,O) be a ringed site. Let E• be a complex ofO-modules. We
say E• is perfect if for every object U of C there exists a covering {Ui → U} such that for
each i there exists a morphism of complexes E•

i → E•|Ui which is a quasi-isomorphism
with E•

i strictly perfect. An objectE ofD(O) is perfect if it can be represented by a perfect
complex ofO-modules.

Lemma 47.2. Let (C,O) be a ringed site. Let E be an object of D(O).
(1) If C has a final object X and there exist a covering {Ui → X}, strictly perfect

complexes E•
i of OUi -modules, and isomorphisms αi : E•

i → E|Ui in D(OUi),
then E is perfect.

(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 45.2. �

Lemma 47.3. Let (C,O) be a ringed site. Let E be an object of D(O). Let a ≤ b be
integers. IfE has tor amplitude in [a, b] and is (a−1)-pseudo-coherent, thenE is perfect.

Proof. Let U be an object of C. After replacing U by the members of a covering and
C by the localization C/U we may assume there exists a strictly perfect complex E• and a
map α : E• → E such that Hi(α) is an isomorphism for i ≥ a. We may and do replace
E• by σ≥a−1E•. Choose a distinguished triangle

E• → E → C → E•[1]
From the vanishing of cohomology sheaves of E and E• and the assumption on α we
obtain C ∼= K[a − 2] with K = Ker(Ea−1 → Ea). Let F be an O-module. Applying
−⊗L

O F the assumption that E has tor amplitude in [a, b] implies K ⊗O F → Ea−1 ⊗O
F has image Ker(Ea−1 ⊗O F → Ea ⊗O F). It follows that TorO

1 (E ′,F) = 0 where
E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma 17.15). Thus there exists a covering
{Ui → U} such that E ′|Ui is a direct summand of a finite free module by Modules on Sites,
Lemma 29.3. Thus the complex

E ′|Ui → Ea−1|Ui → . . .→ Eb|Ui
is quasi-isomorphic to E|Ui and E is perfect. �

Lemma 47.4. Let (C,O) be a ringed site. Let E be an object of D(O). The following
are equivalent
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(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). Let U be an object of C. By definition there exists a covering
{Ui → U} such that E|Ui is represented by a strictly perfect complex. Thus E is pseudo-
coherent (i.e.,m-pseudo-coherent for allm) by Lemma 45.2. Moreover, a direct summand
of a finite free module is flat, hence E|Ui has finite Tor dimension by Lemma 46.3. Thus
(2) holds.

Assume (2). Let U be an object of C. After replacing U by the members of a covering we
may assume there exist integers a ≤ b such thatE|U has tor amplitude in [a, b]. SinceE|U
is m-pseudo-coherent for all m we conclude using Lemma 47.3. �

Lemma 47.5. Let (f, f ]) : (C,OC)→ (D,OD) be a morphism of ringed sites. Let E
be an object of D(OD). If E is perfect in D(OD), then Lf∗E is perfect in D(OC).

Proof. This follows from Lemma 47.4, 46.5, and 45.3. �

Lemma 47.6. Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distinguished
triangle inD(O). If two out of three ofK,L,M are perfect then the third is also perfect.

Proof. First proof: Combine Lemmas 47.4, 45.4, and 46.6. Second proof (sketch):
Say K and L are perfect. Let U be an object of C. After replacing U by the members of a
covering we may assume that K|U and L|U are represented by strictly perfect complexes
K• and L•. After replacing U by the members of a covering we may assume the map
K|U → L|U is given by a map of complexes α : K• → L•, see Lemma 44.8. Then M |U is
isomorphic to the cone of α which is strictly perfect by Lemma 44.2. �

Lemma 47.7. Let (C,O) be a ringed site. IfK,L are perfect objects ofD(O), then so
is K ⊗L

O L.

Proof. Follows from Lemmas 47.4, 45.5, and 46.7. �

Lemma 47.8. Let (C,O) be a ringed site. If K ⊕ L is a perfect object of D(O), then
so are K and L.

Proof. Follows from Lemmas 47.4, 45.6, and 46.8. �

48. Duals

In this section we characterize the dualizable objects of the category of complexes and of
the derived category. In particular, we will see that an object of D(O) has a dual if and
only if it is perfect (this follows from Example 48.6 and Lemma 48.7).

Lemma 48.1. Let (C,O) be a ringed space. The category of complexes ofO-modules
with tensor product defined by F• ⊗ G• = Tot(F• ⊗O G•) is a symmetric monoidal
category.

Proof. Omitted. Hints: as unit 1 we take the complex having O in degree 0 and
zero in other degrees with obvious isomorphisms Tot(1 ⊗O G•) = G• and Tot(F• ⊗O
1) = F•. to prove the lemma you have to check the commutativity of various diagrams,
see Categories, Definitions 43.1 and 43.9. The verifications are straightforward in each
case. �
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Example 48.2. Let (C,O) be a ringed site. Let F• be a complex of O-modules such
that for every U ∈ Ob(C) there exists a covering {Ui → U} such that F•|Ui is strictly
perfect. Consider the complex

G• = Hom•(F•,O)

as in Section 34. Let

η : O → Tot(F• ⊗O G•) and ε : Tot(G• ⊗O F•)→ O

be η =
∑
ηn and ε =

∑
εn where ηn : O → Fn ⊗O G−n and εn : G−n ⊗O Fn → O are

as in Modules on Sites, Example 29.1. Then G•, η, ε is a left dual for F• as in Categories,
Definition 43.5. We omit the verification that (1⊗ε)◦(η⊗1) = idF• and (ε⊗1)◦(1⊗η) =
idG• . Please compare with More on Algebra, Lemma 72.2.

Lemma 48.3. Let (C,O) be a ringed site. LetF• be a complex ofO-modules. IfF• has
a left dual in the monoidal category of complexes of O-modules (Categories, Definition
43.5) then for every object U of C there exists a covering {Ui → U} such that F•|Ui is
strictly perfect and the left dual is as constructed in Example 48.2.

Proof. By uniqueness of left duals (Categories, Remark 43.7) we get the final state-
ment provided we show that F• is as stated. Let G•, η, ε be a left dual. Write η =

∑
ηn

and ε =
∑
εn where ηn : O → Fn ⊗O G−n and εn : G−n ⊗O Fn → O. Since

(1⊗ ε)◦ (η⊗1) = idF• and (ε⊗1)◦ (1⊗η) = idG• by Categories, Definition 43.5 we see
immediately that we have (1⊗ εn)◦ (ηn⊗1) = idFn and (εn⊗1)◦ (1⊗ηn) = idG−n . In
other words, we see that G−n is a left dual ofFn and we see that Modules on Sites, Lemma
29.2 applies to each Fn. Let U be an object of C. There exists a covering {Ui → U} such
that for every i only a finite number of ηn|Ui are nonzero. Thus after replacing U by Ui
we may assume only a finite number of ηn|U are nonzero and by the lemma cited this im-
plies only a finite number of Fn|U are nonzero. Using the lemma again we can then find
a covering {Ui → U} such that each Fn|Ui is a direct summand of a finite freeO-module
and the proof is complete. �

Lemma 48.4. Let (C,O) be a ringed site. Let K be a perfect object of D(O). Then
K∨ = RHom(K,O) is a perfect object too and (K∨)∨ ∼= K. There are functorial iso-
morphisms

M ⊗L
O K∨ = RHomO(K,M)

and
H0(C,M ⊗L

O K∨) = HomD(O)(K,M)
for M in D(O).

Proof. We will us without further mention that formation of internal hom com-
mutes with restriction (Lemma 35.3). Let U be an arbitrary object of C. To check thatK∨

is perfect, it suffices to show that there exists a covering {Ui → U} such that K∨|Ui is
perfect for all i. There is a canonical map

K = RHom(OX ,OX)⊗L
OX

K −→ RHom(RHom(K,OX),OX) = (K∨)∨

see Lemma 35.5. It suffices to prove there is a covering {Ui → U} such that the restriction
of this map to C/Ui is an isomorphism for all i. By Lemma 35.9 to see the final statement
it suffices to check that the map (35.9.1)

M ⊗L
O K∨ −→ RHom(K,M)
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is an isomorphism. This is a local question as well (in the sense above). Hence it suffices
to prove the lemma when K is represented by a strictly perfect complex.

AssumeK is represented by the strictly perfect complex E•. Then it follows from Lemma
44.9 that K∨ is represented by the complex whose terms are (En)∨ = HomO(En,O) in
degree −n. Since En is a direct summand of a finite free O-module, so is (En)∨. Hence
K∨ is represented by a strictly perfect complex too and we see that K∨ is perfect. The
map K → (K∨)∨ is an isomorphism as it is given up to sign by the evaluation maps
En → ((En)∨)∨ which are isomorphisms. To see that (35.9.1) is an isomorphism, represent
M by a K-flat complex F•. By Lemma 44.9 the complex RHom(K,M) is represented
by the complex with terms ⊕

n=p+q
HomO(E−q,Fp)

On the other hand, the object M ⊗L
O K∨ is represented by the complex with terms⊕
n=p+q

Fp ⊗O (E−q)∨

Thus the assertion that (35.9.1) is an isomorphism reduces to the assertion that the canon-
ical map

F ⊗O HomO(E ,O) −→ HomO(E ,F)
is an isomorphism when E is a direct summand of a finite free O-module and F is any
O-module. This follows immediately from the corresponding statement when E is finite
free. �

Lemma 48.5. Let (C,O) be a ringed site. The derived category D(O) is a symmet-
ric monoidal category with tensor product given by derived tensor product with usual
associativity and commutativity constraints (for sign rules, see More on Algebra, Section
72).

Proof. Omitted. Compare with Lemma 48.1. �

Example 48.6. Let (C,O) be a ringed site. Let K be a perfect object of D(O). Set
K∨ = RHom(K,O) as in Lemma 48.4. Then the map

K ⊗L
O K∨ −→ RHom(K,K)

is an isomorphism (by the lemma). Denote

η : O −→ K ⊗L
O K∨

the map sending 1 to the section corresponding to idK under the isomorphism above.
Denote

ε : K∨ ⊗L
O K −→ O

the evaluation map (to construct it you can use Lemma 35.6 for example). Then K∨, η, ε
is a left dual for K as in Categories, Definition 43.5. We omit the verification that (1 ⊗
ε) ◦ (η ⊗ 1) = idK and (ε⊗ 1) ◦ (1⊗ η) = idK∨ .

Lemma 48.7. Let (C,O) be a ringed site. LetM be an object ofD(O). IfM has a left
dual in the monoidal category D(O) (Categories, Definition 43.5) then M is perfect and
the left dual is as constructed in Example 48.6.
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Proof. Let N, η, ε be a left dual. Observe that for any object U of C the restriction
N |U , η|U , ε|U is a left dual for M |U .

LetU be an object of C. It suffices to find a covering {Ui → U}i∈I fo C such thatM |Ui is a
perfect object ofD(OUi). Hence we may replace C,O,M,N, η, ε byC/U,OU ,M |U , N |U , η|U , ε|U
and assume C has a final object X . Moreover, during the proof we can (finitely often) re-
place X by the members of a covering {Ui → X} of X .

We are going to use the following argument several times. Choose any complexM• of
O-modules representing M . Choose a K-flat complex N • representing N whose terms
are flatO-modules, see Lemma 17.11. Consider the map

η : O → Tot(M• ⊗O N •)

After replacing X by the members of a covering, we can find an integer N and for i =
1, . . . , N integers ni ∈ Z and sections fi and gi ofMni andN−ni such that

η(1) =
∑

i
fi ⊗ gi

Let K• ⊂ M• be any subcomplex of O-modules containing the sections fi for i =
1, . . . , N . Since Tot(K• ⊗O N •) ⊂ Tot(M• ⊗O N •) by flatness of the modules Nn,
we see that η factors through

η̃ : O → Tot(K• ⊗O N •)

Denoting K the object of D(O) represented by K• we find a commutative diagram

M
η⊗1

//

η̃⊗1 ))

M ⊗L N ⊗L M
1⊗ε
// M

K ⊗L N ⊗L M

OO

1⊗ε // K

OO

Since the composition of the upper row is the identity on M we conclude that M is a
direct summand of K in D(O).

As a first use of the argument above, we can choose the subcomplex K• = σ≥aτ≤bM•

with a < ni < b for i = 1, . . . , N . Thus M is a direct summand in D(O) of a bounded
complex and we conclude we may assume M is in Db(O). (Recall that the process above
involves replacing X by the members of a covering.)

Since M is in Db(O) we may chooseM• to be a bounded above complex of flat modules
(by Modules, Lemma 17.6 and Derived Categories, Lemma 15.4). Then we can choose
K• = σ≥aM• with a < ni for i = 1, . . . , N in the argument above. Thus we find that
we may assume M is a direct summand in D(O) of a bounded complex of flat modules.
In particular, we find M has finite tor amplitude.

Say M has tor amplitude in [a, b]. Assuming M is m-pseudo-coherent we are going to
show that (after replacingX by the members of a covering) we may assumeM is (m−1)-
pseudo-coherent. This will finish the proof by Lemma 47.3 and the fact thatM is (b+ 1)-
pseudo-coherent in any case. After replacing X by the members of a covering we may
assume there exists a strictly perfect complex E• and a map α : E• → M in D(O) such
thatHi(α) is an isomorphism for i > m and surjective for i = m. We may and do assume
that E i = 0 for i < m. Choose a distinguished triangle

E• →M → L→ E•[1]
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Observe that Hi(L) = 0 for i ≥ m. Thus we may represent L by a complex L• with
Li = 0 for i ≥ m. The map L → E•[1] is given by a map of complexes L• → E•[1]
which is zero in all degrees except in degree m− 1 where we obtain a map Lm−1 → Em,
see Derived Categories, Lemma 27.3. Then M is represented by the complex

M• : . . .→ Lm−2 → Lm−1 → Em → Em+1 → . . .

Apply the discussion in the second paragraph to this complex to get sections fi ofMni

for i = 1, . . . , N . For n < m letKn ⊂ Ln be theO-submodule generated by the sections
fi for ni = n and d(fi) for ni = n − 1. For n ≥ m set Kn = En. Clearly, we have a
morphism of distinguished triangles

E• //M• // L• // E•[1]

E• //

OO

K• //

OO

σ≤m−1K• //

OO

E•[1]

OO

where all the morphisms are as indicated above. DenoteK the object ofD(O) correspond-
ing to the complexK•. By the arguments in the second paragraph of the proof we obtain a
morphism s : M → K in D(O) such that the composition M → K →M is the identity
on M . We don’t know that the diagram

E• // K• K

E•

id

OO

i //M• M

s

OO

commutes, but we do know it commutes after composing with the map K → M . By
Lemma 44.8 after replacing X by the members of a covering, we may assume that s ◦ i
is given by a map of complexes σ : E• → K•. By the same lemma we may assume the
composition of σ with the inclusion K• ⊂ M• is homotopic to zero by some homotopy
{hi : E i → Mi−1}. Thus, after replacing Km−1 by Km−1 + Im(hm) (note that after
doing this it is still the case that Km−1 is generated by finitely many global sections),
we see that σ itself is homotopic to zero! This means that we have a commutative solid
diagram

E• // M // L• // E•[1]

E• //

OO

K //

OO

σ≤m−1K• //

OO

E•[1]

OO

E• //

OO

M //

s

OO

L• //

OO

E•[1]

OO
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By the axioms of triangulated categories we obtain a dotted arrow fitting into the diagram.
Looking at cohomology sheaves in degree m− 1 we see that we obtain

Hm−1(M) // Hm−1(L•) // Hm(E•)

Hm−1(K) //

OO

Hm−1(σ≤m−1K•) //

OO

Hm(E•)

OO

Hm−1(M) //

OO

Hm−1(L•) //

OO

Hm(E•)

OO

Since the vertical compositions are the identity in both the left and right column, we con-
clude the vertical composition Hm−1(L•) → Hm−1(σ≤m−1K•) → Hm−1(L•) in the
middle is surjective! In particular Hm−1(σ≤m−1K•) → Hm−1(L•) is surjective. Using
the induced map of long exact sequences of cohomology sheaves from the morphism of
triangles above, a diagram chase shows this implies Hi(K)→ Hi(M) is an isomorphism
for i ≥ m and surjective for i = m − 1. By construction we can choose an r ≥ 0 and a
surjectionO⊕r → Km−1. Then the composition

(O⊕r → Em → Em+1 → . . .) −→ K −→M

induces an isomorphism on cohomology sheaves in degrees≥ m and a surjection in degree
m− 1 and the proof is complete. �

Lemma 48.8. Let (C,O) be a ringed site. Let (Kn)n∈N be a system of perfect objects
of D(O). Let K = hocolimKn be the derived colimit (Derived Categories, Definition
33.1). Then for any object E of D(O) we have

RHom(K,E) = R limE ⊗L
O K∨

n

where (K∨
n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 48.4 we haveR limE⊗L
OK

∨
n = R limRHom(Kn, E) which fits

into the distinguished triangle

R limRHom(Kn, E)→
∏

RHom(Kn, E)→
∏

RHom(Kn, E)

Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K it suffices

to show that
∏
RHom(Kn, E) = RHom(

⊕
Kn, E). This is a formal consequence of

(35.0.1) and the fact that derived tensor product commutes with direct sums. �

49. Invertible objects in the derived category

We characterize invertible objects in the derived category of a ringed space (both in the
case of a locally ringed topos and in the general case).

Lemma 49.1. Let (C,O) be a ringed space. Set R = Γ(C,O). The category of O-
modules which are summands of finite free O-modules is equivalent to the category of
finite projective R-modules.

Proof. Observe that a finite projective R-module is the same thing as a summand
of a finite free R-module. The equivalence is given by the functor E 7→ Γ(C, E). The
inverse functor is given by the following construction. Consider the morphism of topoi
f : Sh(C) → Sh(pt) with f∗ given by taking global sections and f−1 by sending a set
S , i.e., an object of Sh(pt), to the constant sheaf with value S. We obtain a morphism
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(f, f ]) : (Sh(C),O)→ (Sh(pt), R) of ringed topoi by using the identity map R→ f∗O.
Then the inverse functor is given by f∗. �

Lemma 49.2. Let (C,O) be a ringed site. LetM be an object ofD(O). The following
are equivalent

(1) M is invertible in D(O), see Categories, Definition 43.4, and
(2) there is a locally finite11 direct product decomposition

O =
∏

n∈Z
On

and for each n there is an invertible On-module Hn (Modules on Sites, Defini-
tion 32.1) and M =

⊕
Hn[−n] in D(O).

If (1) and (2) hold, then M is a perfect object of D(O). If (C,O) is a locally ringed site
these condition are also equivalent to

(3) for every object U of C there exists a covering {Ui → U} and for each i an
integer ni such that M |Ui is represented by an invertibleOUi -module placed in
degree ni.

Proof. Assume (2). Consider the object RHom(M,O) and the composition map

RHom(M,O)⊗L
O M → O

To prove this is an isomorphism, we may work locally. Thus we may assumeO =
∏
a≤n≤bOn

and M =
⊕

a≤n≤bHn[−n]. Then it suffices to show that

RHom(Hm,O)⊗L
O Hn

is zero if n 6= m and equal toOn if n = m. The case n 6= m follows from the fact thatOn
andOm are flatO-algebras withOn⊗OOm = 0. Using the local structure of invertibleO-
modules (Modules on Sites, Lemma 32.2) and working locally the isomorphism in case n =
m follows in a straightforward manner; we omit the details. Because D(O) is symmetric
monoidal, we conclude that M is invertible.
Assume (1). The description in (2) shows that we have a candidate forOn, namely,HomO(Hn(M),Hn(M)).
If this is a locally finite family of sheaves of rings and ifO =

∏
On, then we immediately

obtain the direct sum decomposition M =
⊕
Hn(M)[−n] using the idempotents in O

coming from the product decomposition. This shows that in order to prove (2) we may
work locally in the following sense. Let U be an object of C. We have to show there exists
a covering {Ui → U} of U such that withOn as above we have the statements above and
those of (2) after restriction to C/Ui. Thus we may assume C has a final object X and dur-
ing the proof of (2) we may finitely many times replace X by the members of a covering
of X .
Choose an objectN ofD(O) and an isomorphismM⊗L

ON
∼= O. ThenN is a left dual for

M in the monoidal categoryD(O) and we conclude thatM is perfect by Lemma 48.7. By
symmetry we see that N is perfect. After replacing X by the members of a covering, we
may assume M and N are represented by a strictly perfect complexes E• and F•. Then
M ⊗L

O N is represented by Tot(E• ⊗O F•). After replacing X by the members of a
covering of X we may assume the mutually inverse isomorphisms O → M ⊗L

O N and
M ⊗L

O N → O are given by maps of complexes
α : O → Tot(E• ⊗O F•) and β : Tot(E• ⊗O F•)→ O

11This means that for every object U of C there is a covering {Ui → U} such that for every i the sheaf
On|Ui is nonzero for only a finite number of n.
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See Lemma 44.8. Then β ◦ α = 1 as maps of complexes and α ◦ β = 1 as a morphism in
D(O). After replacing X by the members of a covering of X we may assume the compo-
sition α ◦ β is homotopic to 1 by some homotopy θ with components

θn : Totn(E• ⊗O F•)→ Totn−1(E• ⊗O F•)

by the same lemma as before. Set R = Γ(C,O). By Lemma 49.1 we find that we obtain
(1) M• = Γ(X, E•) is a bounded complex of finite projective R-modules,
(2) N• = Γ(X,F•) is a bounded complex of finite projective R-modules,
(3) α and β correspond to maps of complexes a : R → Tot(M• ⊗R N•) and b :

Tot(M• ⊗R N•)→ R,
(4) θn corresponds to a map hn : Totn(M• ⊗R N•)→ Totn−1(M• ⊗R N•), and
(5) b ◦ a = 1 and b ◦ a− 1 = dh+ hd,

It follows that M• and N• define mutually inverse objects of D(R). By More on Al-
gebra, Lemma 126.4 we find a product decomposition R =

∏
a≤n≤bRn and invertible

Rn-modules Hn such that M• ∼=
⊕

a≤n≤bH
n[−n]. This isomorphism in D(R) can be

lifted to an morphism ⊕
Hn[−n] −→M•

of complexes because each Hn is projective as an R-module. Correspondingly, using
Lemma 49.1 again, we obtain an morphism⊕

Hn ⊗R O[−n]→ E•

which is an isomorphism in D(O). Here M ⊗R O denotes the functor from finite pro-
jective R-modules to O-modules constructed in the proof of Lemma 49.1. Setting On =
Rn ⊗R O we conclude (2) is true.

If (C,O) is a locally ringed site, then given an objectU and a finite product decomposition
O|U =

∏
a≤n≤bOn|U we can find a covering {Ui → U} such that for every i there

is at most one n with On|Ui nonzero. This follows readily from part (2) of Modules on
Sites, Lemma 40.1 and the definition of locally ringed sites as given in Modules on Sites,
Definition 40.4. From this the implication (2)⇒ (3) is easily seen. The implication (3)⇒
(2) holds without any assumptions on the ringed site. We omit the details. �

50. Projection formula

Let f : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi. LetE ∈ D(OC) and
K ∈ D(OD). Without any further assumptions there is a map

(50.0.1) Rf∗E ⊗L
OD

K −→ Rf∗(E ⊗L
OC

Lf∗K)

Namely, it is the adjoint to the canonical map

Lf∗(Rf∗E ⊗L
OD

K) = Lf∗Rf∗E ⊗L
OC

Lf∗K −→ E ⊗L
OC

Lf∗K

coming from the map Lf∗Rf∗E → E and Lemmas 18.4 and 19.1. A reasonably general
version of the projection formula is the following.

Lemma 50.1. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let E ∈ D(OC) and K ∈ D(OD). If K is perfect, then

Rf∗E ⊗L
OD

K = Rf∗(E ⊗L
OC

Lf∗K)

in D(OD).
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Proof. To check (50.0.1) is an isomorphism we may work locally on D, i.e., for any
object V of D we have to find a covering {Vj → V } such that the map restricts to an
isomorphism on Vj . By definition of perfect objects, this means we may assume K is rep-
resented by a strictly perfect complex of OD-modules. Note that, completely generally,
the statement is true for K = K1 ⊕ K2, if and only if the statement is true for K1 and
K2. Hence we may assume K is a finite complex of finite free OD-modules. In this case
a simple argument involving stupid truncations reduces the statement to the case where
K is represented by a finite freeOD-module. Since the statement is invariant under finite
direct summands in the K variable, we conclude it suffices to prove it for K = OD[n] in
which case it is trivial. �

Remark 50.2. The map (50.0.1) is compatible with the base change map of Remark
19.3 in the following sense. Namely, suppose that

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′) g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let E ∈ D(OC) and K ∈ D(OD). Then the
diagram

Lg∗(Rf∗E ⊗L
OD

K)
p

//

t

��

Lg∗Rf∗(E ⊗L
OC

Lf∗K)

b

��
Lg∗Rf∗E ⊗L

OD′ Lg
∗K

b

��

Rf ′
∗L(g′)∗(E ⊗L

OC
Lf∗K)

t

��
Rf ′

∗L(g′)∗E ⊗L
OD′ Lg

∗K

p
++

Rf ′
∗(L(g′)∗E ⊗L

OD′ L(g′)∗Lf∗K)

c

��
Rf ′

∗(L(g′)∗E ⊗L
OD′ L(f ′)∗Lg∗K)

is commutative. Here arrows labeled t are gotten by an application of Lemma 18.4, arrows
labeled b by an application of Remark 19.3, arrows labeled p by an application of (50.0.1),
and c comes from L(g′)∗ ◦ Lf∗ = L(f ′)∗ ◦ Lg∗. We omit the verification.

51. Weakly contractible objects

An object U of a site is weakly contractible if every surjection F → G of sheaves of sets
gives rise to a surjection F(U)→ G(U), see Sites, Definition 40.2.

Lemma 51.1. Let C be a site. Let U be a weakly contractible object of C. Then
(1) the functor F 7→ F(U) is an exact functor Ab(C)→ Ab,
(2) Hp(U,F) = 0 for every abelian sheaf F and all p ≥ 1, and
(3) for any sheaf of groups G any G-torsor has a section over U .

Proof. The first statement follows immediately from the definition (see also Homol-
ogy, Section 7). The higher derived functors vanish by Derived Categories, Lemma 16.9.
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Let F be a G-torsor. Then F → ∗ is a surjective map of sheaves. Hence (3) follows from
the definition as well. �

It is convenient to list some consequences of having enough weakly contractible objects
here.

Proposition 51.2. Let C be a site. Let B ⊂ Ob(C) such that every U ∈ B is weakly
contractible and every object of C has a covering by elements of B. Let O be a sheaf of
rings on C. Then

(1) A complex F1 → F2 → F3 of O-modules is exact, if and only if F1(U) →
F2(U)→ F3(U) is exact for all U ∈ B.

(2) Every object K of D(O) is a derived limit of its canonical truncations: K =
R lim τ≥−nK.

(3) Given an inverse system . . .→ F3 → F2 → F1 with surjective transition maps,
the projection limFn → F1 is surjective.

(4) Products are exact on Mod(O).
(5) Products on D(O) can be computed by taking products of any representative

complexes.
(6) If (Fn) is an inverse system ofO-modules, thenRp limFn = 0 for all p > 1 and

R1 limFn = Coker(
∏
Fn →

∏
Fn)

where the map is (xn) 7→ (xn − f(xn+1)).
(7) If (Kn) is an inverse system of objects of D(O), then there are short exact se-

quences

0→ R1 limHp−1(Kn)→ Hp(R limKn)→ limHp(Kn)→ 0

Proof. Proof of (1). If the sequence is exact, then evaluating at any weakly con-
tractible element of C gives an exact sequence by Lemma 51.1. Conversely, assume that
F1(U) → F2(U) → F3(U) is exact for all U ∈ B. Let V be an object of C and let
s ∈ F2(V ) be an element of the kernel of F2 → F3. By assumption there exists a cover-
ing {Ui → V } with Ui ∈ B. Then s|Ui lifts to a section si ∈ F1(Ui). Thus s is a section
of the image sheaf Im(F1 → F2). In other words, the sequence F1 → F2 → F3 is exact.

Proof of (2). This holds by Lemma 23.10 with d = 0.

Proof of (3). Let (Fn) be a system as in (2) and set F = limFn. If U ∈ B, then
F(U) = limFn(U) surjects onto F1(U) as all the transition maps Fn+1(U) → Fn(U)
are surjective. ThusF → F1 is surjective by Sites, Definition 11.1 and the assumption that
every object has a covering by elements of B.

Proof of (4). Let Fi,1 → Fi,2 → Fi,3 be a family of exact sequences of O-modules. We
want to show that

∏
Fi,1 →

∏
Fi,2 →

∏
Fi,3 is exact. We use the criterion of (1). Let

U ∈ B. Then
(
∏
Fi,1)(U)→ (

∏
Fi,2)(U)→ (

∏
Fi,3)(U)

is the same as ∏
Fi,1(U)→

∏
Fi,2(U)→

∏
Fi,3(U)

Each of the sequencesFi,1(U)→ Fi,2(U)→ Fi,3(U) are exact by (1). Thus the displayed
sequences are exact by Homology, Lemma 32.1. We conclude by (1) again.

Proof of (5). Follows from (4) and (slightly generalized) Derived Categories, Lemma 34.2.
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Proof of (6) and (7). We refer to Section 23 for a discussion of derived and homotopy limits
and their relationship. By Derived Categories, Definition 34.1 we have a distinguished
triangle

R limKn →
∏

Kn →
∏

Kn → R limKn[1]
Taking the long exact sequence of cohomology sheaves we obtain

Hp−1(
∏

Kn)→ Hp−1(
∏

Kn)→ Hp(R limKn)→ Hp(
∏

Kn)→ Hp(
∏

Kn)

Since products are exact by (4) this becomes∏
Hp−1(Kn)→

∏
Hp−1(Kn)→ Hp(R limKn)→

∏
Hp(Kn)→

∏
Hp(Kn)

Now we first apply this to the caseKn = Fn[0] where (Fn) is as in (6). We conclude that
(6) holds. Next we apply it to (Kn) as in (7) and we conclude (7) holds. �

52. Compact objects

In this section we study compact objects in the derived category of modules on a ringed
site. We recall that compact objects are defined in Derived Categories, Definition 37.1.

Lemma 52.1. Let A be a Grothendieck abelian category. Let S ⊂ Ob(A) be a set of
objects such that

(1) any object ofA is a quotient of a direct sum of elements of S , and
(2) for any E ∈ S the functor HomA(E,−) commutes with direct sums.

Then every compact object of D(A) is a direct summand in D(A) of a finite complex of
finite direct sums of elements of S.

Proof. Assume K ∈ D(A) is a compact object. Represent K by a complex K• and
consider the map

K• −→
⊕

n≥0
τ≥nK

•

where we have used the canonical truncations, see Homology, Section 15. This makes sense
as in each degree the direct sum on the right is finite. By assumption this map factors
through a finite direct sum. We conclude that K → τ≥nK is zero for at least one n, i.e.,
K is in D−(R).

We may representK by a bounded above complexK• each of whose terms is a direct sum
of objects from S , see Derived Categories, Lemma 15.4. Note that we have

K• =
⋃

n≤0
σ≥nK

•

where we have used the stupid truncations, see Homology, Section 15. Hence by Derived
Categories, Lemmas 33.7 and 33.9 we see that 1 : K• → K• factors through σ≥nK

• →
K• in D(R). Thus we see that 1 : K• → K• factors as

K• ϕ−→ L• ψ−→ K•

in D(A) for some complex L• which is bounded and whose terms are direct sums of ele-
ments of S. Say Li is zero for i 6∈ [a, b]. Let c be the largest integer≤ b+ 1 such that Li a
finite direct sum of elements of S for i < c. Claim: if c < b + 1, then we can modify L•

to increase c. By induction this claim will show we have a factorization of 1K as

K
ϕ−→ L

ψ−→ K



52. COMPACT OBJECTS 2043

in D(A) where L can be represented by a finite complex of finite direct sums of elements
ofS. Note that e = ϕ◦ψ ∈ EndD(A)(L) is an idempotent. By Derived Categories, Lemma
4.14 we see that L = Ker(e)⊕Ker(1− e). The map ϕ : K → L induces an isomorphism
with Ker(1− e) in D(R) and we conclude.

Proof of the claim. Write Lc =
⊕

λ∈Λ Eλ. Since Lc−1 is a finite direct sum of elements
of S we can by assumption (2) find a finite subset Λ′ ⊂ Λ such that Lc−1 → Lc factors
through

⊕
λ∈Λ′ Eλ ⊂ Lc. Consider the map of complexes

π : L• −→ (
⊕

λ∈Λ\Λ′
Eλ)[−i]

given by the projection onto the factors corresponding to Λ \ Λ′ in degree i. By our
assumption on K we see that, after possibly replacing Λ′ by a larger finite subset, we may
assume that π ◦ ϕ = 0 in D(A). Let (L′)• ⊂ L• be the kernel of π. Since π is surjective
we get a short exact sequence of complexes, which gives a distinguished triangle in D(A)
(see Derived Categories, Lemma 12.1). Since HomD(A)(K,−) is homological (see Derived
Categories, Lemma 4.2) and π ◦ϕ = 0, we can find a morphism ϕ′ : K• → (L′)• inD(A)
whose composition with (L′)• → L• gives ϕ. Setting ψ′ equal to the composition of ψ
with (L′)• → L• we obtain a new factorization. Since (L′)• agrees with L• except in
degree c and since (L′)c =

⊕
λ∈Λ′ Eλ the claim is proved. �

Lemma 52.2. Let (C,O) be a ringed site. Assume every object of C has a covering by
quasi-compact objects. Then every compact object of D(O) is a direct summand in D(O)
of a finite complex whose terms are finite direct sums of O-modules of the form j!OU
where U is a quasi-compact object of C.

Proof. Apply Lemma 52.1 where S ⊂ Ob(Mod(O)) is the set of modules of the
form j!OU with U ∈ Ob(C) quasi-compact. Assumption (1) holds by Modules on Sites,
Lemma 28.8 and the assumption that every U can be covered by quasi-compact objects.
Assumption (2) follows as

HomO(j!OU ,F) = F(U)
which commutes with direct sums by Sites, Lemma 17.7. �

In the situation of the lemma above it is not always true that the modules j!OU are compact
objects ofD(O) (even ifU is a quasi-compact object of C). Here are two lemmas addressing
this issue.

Lemma 52.3. Let (C,O) be a ringed site. LetU be an object of C. Assume the functors
F 7→ Hp(U,F) commute with direct sums. Then O-module j!OU is a compact object
of D+(O) in the following sense: if M =

⊕
i∈IMi in D(O) is bounded below, then

Hom(jU !OU ,M) =
⊕

i∈I Hom(jU !OU ,Mi).

Proof. Since Hom(jU !OU ,−) is the same as the functor F 7→ F(U) by Modules on
Sites, Equation (19.2.1) it suffices to prove that Hp(U,M) =

⊕
Hp(U,Mi). Let Ii, i ∈ I

be a collection of injectiveO-modules. By assumption we have

Hp(U,
⊕

i∈I
Ii) =

⊕
i∈I

Hp(U, Ii) = 0

for all p. Since M =
⊕
Mi is bounded below, we see that there exists an a ∈ Z such

that Hn(Mi) = 0 for n < a. Thus we can choose complexes of injective O-modues
I•
i representing Mi with Ini = 0 for n < a, see Derived Categories, Lemma 18.3. By
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Injectives, Lemma 13.4 we see that the direct sum complex
⊕
I•
i represents M . By Leray

acyclicity (Derived Categories, Lemma 16.7) we see that

RΓ(U,M) = Γ(U,
⊕
I•
i ) =

⊕
Γ(U,

⊕
I•
i ) =

⊕
RΓ(U,Mi)

as desired. �

Lemma 52.4. Let (C,O) be a ringed site with set of coverings CovC . Let B ⊂ Ob(C),
and Cov ⊂ CovC be subsets. Assume that

(1) For every U ∈ Cov we have U = {Ui → U}i∈I with I finite, U,Ui ∈ B and
every Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system of
coverings of U .

Then for U ∈ B the object jU !OU is a compact object ofD+(O) in the following sense: if
M =

⊕
i∈IMi inD(O) is bounded below, then Hom(jU !OU ,M) =

⊕
i∈I Hom(jU !OU ,Mi).

Proof. This follows from Lemma 52.3 and Lemma 16.1. �

Lemma 52.5. Let (C,O) be a ringed site. LetU be an object of C. TheO-module j!OU
is a compact object of D(O) if there exists an integer d such that

(1) Hp(U,F) = 0 for all p > d, and
(2) the functors F 7→ Hp(U,F) commute with direct sums.

Proof. Assume (1) and (2). Recall that Hom(j!OU ,K) = RΓ(U,K) forK inD(O).
Thus we have to show that RΓ(U,−) commutes with direct sums. The first assumption
means that the functor F = H0(U,−) has finite cohomological dimension. Moreover,
the second assumption implies any direct sum of injective modules is acyclic for F . LetKi

be a family of objects ofD(O). Choose K-injective representatives I•
i with injective terms

representing Ki, see Injectives, Theorem 12.6. Since we may compute RF by applying
F to any complex of acyclics (Derived Categories, Lemma 32.2) and since

⊕
Ki is rep-

resented by
⊕
I•
i (Injectives, Lemma 13.4) we conclude that RΓ(U,

⊕
Ki) is represented

by
⊕
H0(U, I•

i ). Hence RΓ(U,−) commutes with direct sums as desired. �

Lemma 52.6. Let (C,O) be a ringed site. Let U be an object of C which is quasi-
compact and weakly contractible. Then j!OU is a compact object of D(O).

Proof. Combine Lemmas 52.5 and 51.1 with Modules on Sites, Lemma 30.3. �

Lemma 52.7. Let (C,O) be a ringed site. Assume C has the following properties
(1) C has a quasi-compact final object X ,
(2) every quasi-compact object of C has a cofinal system of coverings which are finite

and consist of quasi-compact objects,
(3) for a finite covering {Ui → U}i∈I with U , Ui quasi-compact the fibre products

Ui ×U Uj are quasi-compact.
Let K be a perfect object of D(O). Then

(a) K is a compact object of D+(O) in the following sense: if M =
⊕

i∈IMi is
bounded below, then Hom(K,M) =

⊕
i∈I Hom(K,Mi).

(b) If (C,O) has finite cohomological dimension, i.e., if there exists a d such that
Hi(X,F) = 0 for i > d for any O-module F , then K is a compact object of
D(O).
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Proof. Let K∨ be the dual of K , see Lemma 48.4. Then we have
HomD(O)(K,M) = H0(X,K∨ ⊗L

O M)

functorially inM inD(O). SinceK∨⊗L
O− commutes with direct sums it suffices to show

that RΓ(X,−) commutes with the relevant direct sums.
Proof of (a). After reformulation as above this is a special case of Lemma 52.4 withU = X .
Proof of (b). Since RΓ(X,K) = RHom(O,K) and since Hp(X,−) commutes with
direct sums by Lemma 16.1 this is a special case of Lemma 52.5. �

53. Complexes with locally constant cohomology sheaves

Locally constant sheaves are introduced in Modules on Sites, Section 43. Let C be a site. Let
Λ be a ring. We denoteD(C,Λ) the derived category of the abelian category of Λ-modules
on C.

Lemma 53.1. Let C be a site with final object X . Let Λ be a Noetherian ring. Let
K ∈ Db(C,Λ) with Hi(K) locally constant sheaves of Λ-modules of finite type. Then
there exists a covering {Ui → X} such that each K|Ui is represented by a complex of
locally constant sheaves of Λ-modules of finite type.

Proof. Let a ≤ b be such that Hi(K) = 0 for i 6∈ [a, b]. By induction on b − a
we will prove there exists a covering {Ui → X} such that K|Ui can be represented by a
complexM•

Ui
withMp a finite type Λ-module andMp = 0 for p 6∈ [a, b]. If b = a, then

this is clear. In general, we may replace X by the members of a covering and assume that
Hb(K) is constant, say Hb(K) = M . By Modules on Sites, Lemma 42.5 the module M is
a finite Λ-module. Choose a surjection Λ⊕r →M given by generators x1, . . . , xr of M .
By a slight generalization of Lemma 7.3 (details omitted) there exists a covering {Ui → X}
such that xi ∈ H0(X,Hb(K)) lifts to an element of Hb(Ui,K). Thus, after replacing X
by theUi we reach the situation where there is a map Λ⊕r[−b]→ K inducing a surjection
on cohomology sheaves in degree b. Choose a distinguished triangle

Λ⊕r[−b]→ K → L→ Λ⊕r[−b+ 1]
Now the cohomology sheaves of L are nonzero only in the interval [a, b− 1], agree with
the cohomology sheaves of K in the interval [a, b− 2] and there is a short exact sequence

0→ Hb−1(K)→ Hb−1(L)→ Ker(Λ⊕r →M)→ 0

in degree b−1. By Modules on Sites, Lemma 43.5 we see thatHb−1(L) is locally constant
of finite type. By induction hypothesis we obtain an isomorphism M• → L in D(C,Λ)
with Mp a finite Λ-module and Mp = 0 for p 6∈ [a, b − 1]. The map L → Λ⊕r[−b + 1]
gives a mapM b−1 → Λ⊕r which locally is constant (Modules on Sites, Lemma 43.3). Thus
we may assume it is given by a mapM b−1 → Λ⊕r. The distinguished triangle shows that
the compositionM b−2 →M b−1 → Λ⊕r is zero and the axioms of triangulated categories
produce an isomorphism

Ma → . . .→M b−1 → Λ⊕r −→ K

in D(C,Λ). �

Let C be a site. Let Λ be a ring. Using the morphism Sh(C)→ Sh(pt) we see that there is
a functor D(Λ)→ D(C,Λ), K 7→ K.

Lemma 53.2. Let C be a site with final object X . Let Λ be a ring. Let
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(1) K a perfect object of D(Λ),
(2) a finite complex K• of finite projective Λ-modules representing K ,
(3) L• a complex of sheaves of Λ-modules, and
(4) ϕ : K → L• a map in D(C,Λ).

Then there exists a covering {Ui → X} and maps of complexes αi : K•|Ui → L•|Ui
representing ϕ|Ui .

Proof. Follows immediately from Lemma 44.8. �

Lemma 53.3. Let C be a site with final object X . Let Λ be a ring. Let K,L be objects
of D(Λ) with K perfect. Let ϕ : K → L be map in D(C,Λ). There exists a covering
{Ui → X} such that ϕ|Ui is equal to αi for some map αi : K → L in D(Λ).

Proof. Follows from Lemma 53.2 and Modules on Sites, Lemma 43.3. �

Lemma 53.4. Let C be a site. Let Λ be a Noetherian ring. Let K,L ∈ D−(C,Λ). If
the cohomology sheaves of K and L are locally constant sheaves of Λ-modules of finite
type, then the cohomology sheaves of K ⊗L

Λ L are locally constant sheaves of Λ-modules
of finite type.

Proof. We’ll prove this as an application of Lemma 53.1. Note that Hi(K ⊗L
Λ L)

is the same as Hi(τ≥i−1K ⊗L
Λ τ≥i−1L). Thus we may assume K and L are bounded. By

Lemma 53.1 we may assume thatK andL are represented by complexes of locally constant
sheaves of Λ-modules of finite type. Then we can replace these complexes by bounded
above complexes of finite free Λ-modules. In this case the result is clear. �

Lemma 53.5. Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Let
K ∈ D−(C,Λ). If the cohomology sheaves of K ⊗L

Λ Λ/I are locally constant sheaves
of Λ/I-modules of finite type, then the cohomology sheaves of K ⊗L

Λ Λ/In are locally
constant sheaves of Λ/In-modules of finite type for all n ≥ 1.

Proof. Recall that the locally constant sheaves of Λ-modules of finite type form a
weak Serre subcategory of all Λ-modules, see Modules on Sites, Lemma 43.5. Thus the
subcategory of D(C,Λ) consisting of complexes whose cohomology sheaves are locally
constant sheaves of Λ-modules of finite type forms a strictly full, saturated triangulated
subcategory of D(C,Λ), see Derived Categories, Lemma 17.1. Next, consider the distin-
guished triangles

K ⊗L
Λ I

n/In+1 → K ⊗L
Λ Λ/In+1 → K ⊗L

Λ Λ/In → K ⊗L
Λ I

n/In+1[1]
and the isomorphisms

K ⊗L
Λ I

n/In+1 =
(
K ⊗L

Λ Λ/I
)
⊗L

Λ/I I
n/In+1

Combined with Lemma 53.4 we obtain the result. �
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CHAPTER 22

Differential Graded Algebra

1. Introduction

In this chapter we talk about differential graded algebras, modules, categories, etc. A basic
reference is [?]. A survey paper is [?].

Since we do not worry about length of exposition in the Stacks project we first develop
the material in the setting of categories of differential graded modules. After that we redo
the constructions in the setting of differential graded modules over differential graded
categories.

2. Conventions

In this chapter we hold on to the convention that ring means commutative ring with 1.
If R is a ring, then an R-algebra A will be an R-module A endowed with an R-bilinear
mapA×A→ A (multiplication) such that multiplication is associative and has a unit. In
other words, these are unital associative R-algebras such that the structure map R → A
maps into the center of A.

Sign rules. In this chapter we will work with graded algebras and graded modules of-
ten equipped with differentials. The sign rules on underlying complexes will always be
(compatible with) those introduced in More on Algebra, Section 72. This will occasion-
ally cause the multiplicative structure to be twisted in unexpected ways especially when
considering left modules or the relationship between left and right modules.

3. Differential graded algebras

Just the definitions.

Definition 3.1. Let R be a commutative ring. A differential graded algebra over R
is either

(1) a chain complex A• of R-modules endowed with R-bilinear maps An ×Am →
An+m, (a, b) 7→ ab such that

dn+m(ab) = dn(a)b+ (−1)nadm(b)
and such that

⊕
An becomes an associative and unital R-algebra, or

(2) a cochain complexA• ofR-modules endowed withR-bilinear mapsAn×Am →
An+m, (a, b) 7→ ab such that

dn+m(ab) = dn(a)b+ (−1)nadm(b)
and such that

⊕
An becomes an associative and unital R-algebra.

We often just write A =
⊕
An or A =

⊕
An and think of this as an associative unital

R-algebra endowed with a Z-grading and anR-linear operator d whose square is zero and

2049
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which satisfies the Leibniz rule as explained above. In this case we often say “Let (A, d) be
a differential graded algebra”.

The Leibniz rule relating differentials and multiplication on a differential gradedR-algebra
A exactly means that the multiplication map defines a map of cochain complexes

Tot(A• ⊗R A•)→ A•

Here A• denote the underlying cochain complex of A.

Definition 3.2. A homomorphism of differential graded algebras f : (A, d) →
(B, d) is an algebra map f : A→ B compatible with the gradings and d.

Definition 3.3. A differential graded algebra (A, d) is commutative ifab = (−1)nmba
for a in degree n and b in degreem. We sayA is strictly commutative if in addition a2 = 0
for deg(a) odd.

The following definition makes sense in general but is perhaps “correct” only when ten-
soring commutative differential graded algebras.

Definition 3.4. Let R be a ring. Let (A, d), (B, d) be differential graded algebras
over R. The tensor product differential graded algebra of A and B is the algebra A⊗R B
with multiplication defined by

(a⊗ b)(a′ ⊗ b′) = (−1)deg(a′) deg(b)aa′ ⊗ bb′

endowed with differential d defined by the rule d(a ⊗ b) = d(a) ⊗ b + (−1)ma ⊗ d(b)
where m = deg(a).

Lemma 3.5. LetR be a ring. Let (A, d), (B, d) be differential graded algebras overR.
Denote A•, B• the underlying cochain complexes. As cochain complexes of R-modules
we have

(A⊗R B)• = Tot(A• ⊗R B•).

Proof. Recall that the differential of the total complex is given by dp,q1 + (−1)pdp,q2
on Ap ⊗R Bq . And this is exactly the same as the rule for the differential on A ⊗R B in
Definition 3.4. �

4. Differential graded modules

Our default in this chapter is right modules; we discuss left modules in Section 11.

Definition 4.1. LetR be a ring. Let (A, d) be a differential graded algebra overR. A
(right) differential graded module M over A is a right A-module M which has a grading
M =

⊕
Mn and a differential d such thatMnAm ⊂Mn+m, such that d(Mn) ⊂Mn+1,

and such that
d(ma) = d(m)a+ (−1)nmd(a)

for a ∈ A and m ∈ Mn. A homomorphism of differential graded modules f : M → N
is an A-module map compatible with gradings and differentials. The category of (right)
differential graded A-modules is denoted Mod(A,d).

Note that we can think ofM as a cochain complexM• of (right)R-modules. Namely, for
r ∈ R we have d(r) = 0 and r maps to a degree 0 element of A, hence d(mr) = d(m)r.
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The Leibniz rule relating differentials and multiplication on a differential gradedR-module
M over a differential graded R-algebra A exactly means that the multiplication map de-
fines a map of cochain complexes

Tot(M• ⊗R A•)→M•

Here A• and M• denote the underlying cochain complexes of A and M .

Lemma 4.2. Let (A, d) be a differential graded algebra. The category Mod(A,d) is
abelian and has arbitrary limits and colimits.

Proof. Kernels and cokernels commute with taking underlying A-modules. Simi-
larly for direct sums and colimits. In other words, these operations in Mod(A,d) commute
with the forgetful functor to the category ofA-modules. This is not the case for products
and limits. Namely, ifNi, i ∈ I is a family of differential gradedA-modules, then the prod-
uct
∏
Ni in Mod(A,d) is given by setting (

∏
Ni)n =

∏
Nn
i and

∏
Ni =

⊕
n(
∏
Ni)n.

Thus we see that the product does commute with the forgetful functor to the category
of graded A-modules. A category with products and equalizers has limits, see Categories,
Lemma 14.11. �

Thus, if (A, d) is a differential graded algebra over R, then there is an exact functor

Mod(A,d) −→ Comp(R)

of abelian categories. For a differential graded moduleM the cohomology groupsHn(M)
are defined as the cohomology of the corresponding complex of R-modules. Therefore, a
short exact sequence 0→ K → L→M → 0 of differential graded modules gives rise to
a long exact sequence

(4.2.1) Hn(K)→ Hn(L)→ Hn(M)→ Hn+1(K)

of cohomology modules, see Homology, Lemma 13.12.

Moreover, from now on we borrow all the terminology used for complexes of modules.
For example, we say that a differential graded A-module M is acyclic if Hk(M) = 0 for
all k ∈ Z. We say that a homomorphism M → N of differential graded A-modules is a
quasi-isomorphism if it induces isomorphisms Hk(M) → Hk(N) for all k ∈ Z. And so
on and so forth.

Definition 4.3. Let (A, d) be a differential graded algebra. Let M be a differential
graded module whose underlying complex ofR-modules isM•. For any k ∈ Z we define
the k-shifted module M [k] as follows

(1) the underlying complex of R-modules of M [k] is M•[k], i.e., we have M [k]n =
Mn+k and dM [k] = (−1)kdM and

(2) as A-module the multiplication

(M [k])n ×Am −→ (M [k])n+m

is equal to the given multiplication Mn+k ×Am →Mn+k+m.
For a morphism f : M → N of differential gradedA-modules we let f [k] : M [k]→ N [k]
be the map equal to f on underlying A-modules. This defines a functor [k] : Mod(A,d) →
Mod(A,d).
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Let us check that with this choice the Leibniz rule is satisfied. Let x ∈ M [k]n = Mn+k

and a ∈ Am and denoting ·M [k] the product in M [k] then we see

dM [k](x ·M [k] a) = (−1)kdM (xa)
= (−1)kdM (x)a+ (−1)k+n+kxd(a)
= dM [k](x)a+ (−1)nxd(a)
= dM [k](x) ·M [k] a+ (−1)nx ·M [k] d(a)

This is what we want as x has degreen as a homogeneous element ofM [k]. We also observe
that with these choices we may think of the multiplication map as the map of complexes

Tot(M•[k]⊗R A•)→ Tot(M• ⊗R A•)[k]→M•[k]

where the first arrow is More on Algebra, Section 72 (7) which in this case does not involve
a sign. (In fact, we could have deduced that the Liebniz rule holds from this observation.)

The remarks in Homology, Section 14 apply. In particular, we will identify the cohomol-
ogy groups of all shifts M [k] without the intervention of signs.

At this point we have enough structure to talk about triangles, see Derived Categories,
Definition 3.1. In fact, our next goal is to develop enough theory to be able to state and
prove that the homotopy category of differential graded modules is a triangulated cate-
gory. First we define the homotopy category.

5. The homotopy category

Our homotopies take into account the A-module structure and the grading, but not the
differential (of course).

Definition 5.1. Let (A, d) be a differential graded algebra. Let f, g : M → N be
homomorphisms of differential graded A-modules. A homotopy between f and g is an
A-module map h : M → N such that

(1) h(Mn) ⊂ Nn−1 for all n, and
(2) f(x)− g(x) = dN (h(x)) + h(dM (x)) for all x ∈M .

If a homotopy exists, then we say f and g are homotopic.

Thus h is compatible with the A-module structure and the grading but not with the dif-
ferential. If f = g and h is a homotopy as in the definition, then h defines a morphism
h : M → N [−1] in Mod(A,d).

Lemma 5.2. Let (A, d) be a differential graded algebra. Let f, g : L → M be ho-
momorphisms of differential graded A-modules. Suppose given further homomorphisms
a : K → L, and c : M → N . If h : L → M is an A-module map which defines a
homotopy between f and g, then c ◦ h ◦ a defines a homotopy between c ◦ f ◦ a and
c ◦ g ◦ a.

Proof. Immediate from Homology, Lemma 13.7. �

This lemma allows us to define the homotopy category as follows.

Definition 5.3. Let (A, d) be a differential graded algebra. The homotopy category,
denotedK(Mod(A,d)), is the category whose objects are the objects of Mod(A,d) and whose
morphisms are homotopy classes of homomorphisms of differential graded A-modules.
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The notation K(Mod(A,d)) is not standard but at least is consistent with the use of K(−)
in other places of the Stacks project.

Lemma 5.4. Let (A, d) be a differential graded algebra. The homotopy category
K(Mod(A,d)) has direct sums and products.

Proof. Omitted. Hint: Just use the direct sums and products as in Lemma 4.2. This
works because we saw that these functors commute with the forgetful functor to the cat-
egory of graded A-modules and because

∏
is an exact functor on the category of families

of abelian groups. �

6. Cones

We introduce cones for the category of differential graded modules.

Definition 6.1. Let (A, d) be a differential graded algebra. Let f : K → L be a
homomorphism of differential gradedA-modules. The cone of f is the differential graded
A-module C(f) given by C(f) = L⊕K with grading C(f)n = Ln ⊕Kn+1 and differ-
ential

dC(f) =
(

dL f
0 −dK

)
It comes equipped with canonical morphisms of complexes i : L→ C(f) and p : C(f)→
K[1] induced by the obvious maps L→ C(f) and C(f)→ K.

The formation of the cone triangle is functorial in the following sense.

Lemma 6.2. Let (A, d) be a differential graded algebra. Suppose that

K1
f1

//

a

��

L1

b

��
K2

f2 // L2

is a diagram of homomorphisms of differential graded A-modules which is commutative
up to homotopy. Then there exists a morphism c : C(f1) → C(f2) which gives rise to a
morphism of triangles

(a, b, c) : (K1, L1, C(f1), f1, i1, p1)→ (K1, L1, C(f1), f2, i2, p2)

in K(Mod(A,d)).

Proof. Let h : K1 → L2 be a homotopy between f2 ◦ a and b ◦ f1. Define c by the
matrix

c =
(
b h
0 a

)
: L1 ⊕K1 → L2 ⊕K2

A matrix computation show that c is a morphism of differential graded modules. It is
trivial that c ◦ i1 = i2 ◦ b, and it is trivial also to check that p2 ◦ c = a ◦ p1. �

7. Admissible short exact sequences

An admissible short exact sequence is the analogue of termwise split exact sequences in the
setting of differential graded modules.

Definition 7.1. Let (A, d) be a differential graded algebra.
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(1) A homomorphism K → L of differential graded A-modules is an admissible
monomorphism if there exists a graded A-module map L → K which is left
inverse to K → L.

(2) A homomorphism L → M of differential graded A-modules is an admissible
epimorphism if there exists a graded A-module map M → L which is right
inverse to L→M .

(3) A short exact sequence 0 → K → L → M → 0 of differential graded A-
modules is an admissible short exact sequence if it is split as a sequence of graded
A-modules.

Thus the splittings are compatible with all the data except for the differentials. Given an
admissible short exact sequence we obtain a triangle; this is the reason that we require our
splittings to be compatible with the A-module structure.

Lemma 7.2. Let (A, d) be a differential graded algebra. Let 0→ K → L→M → 0
be an admissible short exact sequence of differential graded A-modules. Let s : M → L
and π : L→ K be splittings such that Ker(π) = Im(s). Then we obtain a morphism

δ = π ◦ dL ◦ s : M → K[1]
of Mod(A,d) which induces the boundary maps in the long exact sequence of cohomology
(4.2.1).

Proof. The mapπ◦dL◦s is compatible with theA-module structure and the gradings
by construction. It is compatible with differentials by Homology, Lemmas 14.10. LetR be
the ring that A is a differential graded algebra over. The equality of maps is a statement
about R-modules. Hence this follows from Homology, Lemmas 14.10 and 14.11. �

Lemma 7.3. Let (A, d) be a differential graded algebra. Let

K
f
//

a

��

L

b
��

M
g // N

be a diagram of homomorphisms of differential graded A-modules commuting up to ho-
motopy.

(1) If f is an admissible monomorphism, then b is homotopic to a homomorphism
which makes the diagram commute.

(2) If g is an admissible epimorphism, then a is homotopic to a morphism which
makes the diagram commute.

Proof. Let h : K → N be a homotopy between bf and ga, i.e., bf − ga = dh+ hd.
Suppose that π : L → K is a graded A-module map left inverse to f . Take b′ = b −
dhπ − hπd. Suppose s : N → M is a graded A-module map right inverse to g. Take
a′ = a+ dsh+ shd. Computations omitted. �

Lemma 7.4. Let (A, d) be a differential graded algebra. Let α : K → L be a homo-
morphism of differential graded A-modules. There exists a factorization

K
α̃ //

α

77L̃
π // L

in Mod(A,d) such that



8. DISTINGUISHED TRIANGLES 2055

(1) α̃ is an admissible monomorphism (see Definition 7.1),
(2) there is a morphism s : L → L̃ such that π ◦ s = idL and such that s ◦ π is

homotopic to idL̃.

Proof. The proof is identical to the proof of Derived Categories, Lemma 9.6. Namely,
we set L̃ = L⊕ C(1K) and we use elementary properties of the cone construction. �

Lemma 7.5. Let (A, d) be a differential graded algebra. LetL1 → L2 → . . .→ Ln be
a sequence of composable homomorphisms of differential gradedA-modules. There exists
a commutative diagram

L1 // L2 // . . . // Ln

M1 //

OO

M2 //

OO

. . . // Mn

OO

in Mod(A,d) such that each Mi →Mi+1 is an admissible monomorphism and each Mi →
Li is a homotopy equivalence.

Proof. The case n = 1 is without content. Lemma 7.4 is the case n = 2. Suppose
we have constructed the diagram except for Mn. Apply Lemma 7.4 to the composition
Mn−1 → Ln−1 → Ln. The result is a factorization Mn−1 →Mn → Ln as desired. �

Lemma 7.6. Let (A, d) be a differential graded algebra. Let 0→ Ki → Li →Mi →
0, i = 1, 2, 3 be admissible short exact sequence of differential graded A-modules. Let
b : L1 → L2 and b′ : L2 → L3 be homomorphisms of differential graded modules such
that

K1

0
��

// L1 //

b

��

M1

0
��

K2 // L2 // M2

and

K2

0
��

// L2 //

b′

��

M2

0
��

K3 // L3 // M3

commute up to homotopy. Then b′ ◦ b is homotopic to 0.

Proof. By Lemma 7.3 we can replace b and b′ by homotopic maps such that the right
square of the left diagram commutes and the left square of the right diagram commutes.
In other words, we have Im(b) ⊂ Im(K2 → L2) and Ker((b′)n) ⊃ Im(K2 → L2). Then
b ◦ b′ = 0 as a map of modules. �

8. Distinguished triangles

The following lemma produces our distinguished triangles.

Lemma 8.1. Let (A, d) be a differential graded algebra. Let 0→ K → L→ M → 0
be an admissible short exact sequence of differential graded A-modules. The triangle

(8.1.1) K → L→M
δ−→ K[1]

with δ as in Lemma 7.2 is, up to canonical isomorphism in K(Mod(A,d)), independent of
the choices made in Lemma 7.2.

Proof. Namely, let (s′, π′) be a second choice of splittings as in Lemma 7.2. Then we
claim that δ and δ′ are homotopic. Namely, write s′ = s+ α ◦ h and π′ = π + g ◦ β for
some unique homomorphisms of A-modules h : M → K and g : M → K of degree −1.
Then g = −h and g is a homotopy between δ and δ′. The computations are done in the
proof of Homology, Lemma 14.12. �
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Definition 8.2. Let (A, d) be a differential graded algebra.
(1) If 0 → K → L → M → 0 is an admissible short exact sequence of differential

graded A-modules, then the triangle associated to 0 → K → L → M → 0 is
the triangle (8.1.1) of K(Mod(A,d)).

(2) A triangle ofK(Mod(A,d)) is called a distinguished triangle if it is isomorphic to
a triangle associated to an admissible short exact sequence of differential graded
A-modules.

9. Cones and distinguished triangles

Let (A, d) be a differential graded algebra. Let f : K → L be a homomorphism of differ-
ential graded A-modules. Then (K,L,C(f), f, i, p) forms a triangle:

K → L→ C(f)→ K[1]

in Mod(A,d) and hence in K(Mod(A,d)). Cones are not distinguished triangles in general,
but the difference is a sign or a rotation (your choice). Here are two precise statements.

Lemma 9.1. Let (A, d) be a differential graded algebra. Let f : K → L be a homo-
morphism of differential graded modules. The triangle (L,C(f),K[1], i, p, f [1]) is the
triangle associated to the admissible short exact sequence

0→ L→ C(f)→ K[1]→ 0

coming from the definition of the cone of f .

Proof. Immediate from the definitions. �

Lemma 9.2. Let (A, d) be a differential graded algebra. Let α : K → L and β : L→
M define an admissible short exact sequence

0→ K → L→M → 0

of differential graded A-modules. Let (K,L,M,α, β, δ) be the associated triangle. Then
the triangles

(M [−1],K, L, δ[−1], α, β) and (M [−1],K,C(δ[−1]), δ[−1], i, p)

are isomorphic.

Proof. Using a choice of splittings we write L = K ⊕M and we identify α and β
with the natural inclusion and projection maps. By construction of δ we have

dB =
(
dK δ
0 dM

)
On the other hand the cone of δ[−1] : M [−1]→ K is given as C(δ[−1]) = K ⊕M with
differential identical with the matrix above! Whence the lemma. �

Lemma 9.3. Let (A, d) be a differential graded algebra. Let f1 : K1 → L1 and
f2 : K2 → L2 be homomorphisms of differential graded A-modules. Let

(a, b, c) : (K1, L1, C(f1), f1, i1, p1) −→ (K1, L1, C(f1), f2, i2, p2)

be any morphism of triangles ofK(Mod(A,d)). If a and b are homotopy equivalences then
so is c.



9. CONES AND DISTINGUISHED TRIANGLES 2057

Proof. Let a−1 : K2 → K1 be a homomorphism of differential graded A-modules
which is inverse to a in K(Mod(A,d)). Let b−1 : L2 → L1 be a homomorphism of differ-
ential graded A-modules which is inverse to b in K(Mod(A,d)). Let c′ : C(f2) → C(f1)
be the morphism from Lemma 6.2 applied to f1 ◦a−1 = b−1 ◦f2. If we can show that c◦c′

and c′ ◦ c are isomorphisms in K(Mod(A,d)) then we win. Hence it suffices to prove the
following: Given a morphism of triangles (1, 1, c) : (K,L,C(f), f, i, p) in K(Mod(A,d))
the morphism c is an isomorphism inK(Mod(A,d)). By assumption the two squares in the
diagram

L //

1
��

C(f) //

c

��

K[1]

1
��

L // C(f) // K[1]

commute up to homotopy. By construction ofC(f) the rows form admissible short exact
sequences. Thus we see that (c − 1)2 = 0 in K(Mod(A,d)) by Lemma 7.6. Hence c is an
isomorphism in K(Mod(A,d)) with inverse 2− c. �

The following lemma shows that the collection of triangles of the homotopy category
given by cones and the distinguished triangles are the same up to isomorphisms, at least
up to sign!

Lemma 9.4. Let (A, d) be a differential graded algebra.
(1) Given an admissible short exact sequence 0 → K

α−→ L → M → 0 of differ-
ential graded A-modules there exists a homotopy equivalence C(α)→M such
that the diagram

K //

��

L

��

// C(α)
−p
//

��

K[1]

��
K

α // L
β // M

δ // K[1]

defines an isomorphism of triangles in K(Mod(A,d)).
(2) Given a morphism of complexes f : K → L there exists an isomorphism of

triangles

K //

��

L̃

��

// M
δ
//

��

K[1]

��
K // L // C(f) −p // K[1]

where the upper triangle is the triangle associated to a admissible short exact
sequence K → L̃→M .

Proof. Proof of (1). We have C(α) = L ⊕ K and we simply define C(α) → M
via the projection onto L followed by β. This defines a morphism of differential graded
modules because the compositions Kn+1 → Ln+1 → Mn+1 are zero. Choose splittings
s : M → L and π : L → K with Ker(π) = Im(s) and set δ = π ◦ dL ◦ s as usual. To
get a homotopy inverse we take M → C(α) given by (s,−δ). This is compatible with
differentials because δn can be characterized as the unique map Mn → Kn+1 such that
d ◦ sn − sn+1 ◦ d = α ◦ δn, see proof of Homology, Lemma 14.10. The composition
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M → C(f) → M is the identity. The composition C(f) → M → C(f) is equal to the
morphism (

s ◦ β 0
−δ ◦ β 0

)
To see that this is homotopic to the identity map use the homotopy h : C(α) → C(α)
given by the matrix (

0 0
π 0

)
: C(α) = L⊕K → L⊕K = C(α)

It is trivial to verify that(
1 0
0 1

)
−
(
s
−δ

)(
β 0

)
=
(

d α
0 −d

)(
0 0
π 0

)
+
(

0 0
π 0

)(
d α
0 −d

)
To finish the proof of (1) we have to show that the morphisms −p : C(α) → K[1] (see
Definition 6.1) and C(α) → M → K[1] agree up to homotopy. This is clear from the
above. Namely, we can use the homotopy inverse (s,−δ) : M → C(α) and check instead
that the two maps M → K[1] agree. And note that p ◦ (s,−δ) = −δ as desired.

Proof of (2). We let f̃ : K → L̃, s : L → L̃ and π : L → L be as in Lemma 7.4. By
Lemmas 6.2 and 9.3 the triangles (K,L,C(f), i, p) and (K, L̃, C(f̃), ĩ, p̃) are isomorphic.
Note that we can compose isomorphisms of triangles. Thus we may replace L by L̃ and f
by f̃ . In other words we may assume that f is an admissible monomorphism. In this case
the result follows from part (1). �

10. The homotopy category is triangulated

We first prove that it is pre-triangulated.

Lemma 10.1. Let (A, d) be a differential graded algebra. The homotopy category
K(Mod(A,d)) with its natural translation functors and distinguished triangles is a pre-
triangulated category.

Proof. Proof of TR1. By definition every triangle isomorphic to a distinguished
one is distinguished. Also, any triangle (K,K, 0, 1, 0, 0) is distinguished since 0→ K →
K → 0 → 0 is an admissible short exact sequence. Finally, given any homomorphism
f : K → L of differential graded A-modules the triangle (K,L,C(f), f, i,−p) is distin-
guished by Lemma 9.4.

Proof of TR2. Let (X,Y, Z, f, g, h) be a triangle. Assume (Y, Z,X[1], g, h,−f [1]) is dis-
tinguished. Then there exists an admissible short exact sequence 0→ K → L→M → 0
such that the associated triangle (K,L,M,α, β, δ) is isomorphic to (Y, Z,X[1], g, h,−f [1]).
Rotating back we see that (X,Y, Z, f, g, h) is isomorphic to (M [−1],K, L,−δ[−1], α, β).
It follows from Lemma 9.2 that the triangle (M [−1],K, L, δ[−1], α, β) is isomorphic to
(M [−1],K,C(δ[−1]), δ[−1], i, p). Precomposing the previous isomorphism of triangles
with−1 onY it follows that (X,Y, Z, f, g, h) is isomorphic to (M [−1],K,C(δ[−1]), δ[−1], i,−p).
Hence it is distinguished by Lemma 9.4. On the other hand, suppose that (X,Y, Z, f, g, h)
is distinguished. By Lemma 9.4 this means that it is isomorphic to a triangle of the
form (K,L,C(f), f, i,−p) for some morphism f of Mod(A,d). Then the rotated triangle
(Y, Z,X[1], g, h,−f [1]) is isomorphic to (L,C(f),K[1], i,−p,−f [1]) which is isomor-
phic to the triangle (L,C(f),K[1], i, p, f [1]). By Lemma 9.1 this triangle is distinguished.
Hence (Y, Z,X[1], g, h,−f [1]) is distinguished as desired.
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Proof of TR3. Let (X,Y, Z, f, g, h) and (X ′, Y ′, Z ′, f ′, g′, h′) be distinguished triangles
of K(A) and let a : X → X ′ and b : Y → Y ′ be morphisms such that f ′ ◦ a =
b ◦ f . By Lemma 9.4 we may assume that (X,Y, Z, f, g, h) = (X,Y,C(f), f, i,−p)
and (X ′, Y ′, Z ′, f ′, g′, h′) = (X ′, Y ′, C(f ′), f ′, i′,−p′). At this point we simply apply
Lemma 6.2 to the commutative diagram given by f, f ′, a, b. �

Before we prove TR4 in general we prove it in a special case.

Lemma 10.2. Let (A, d) be a differential graded algebra. Suppose that α : K →
L and β : L → M are admissible monomorphisms of differential graded A-modules.
Then there exist distinguished triangles (K,L,Q1, α, p1, d1), (K,M,Q2, β ◦ α, p2, d2)
and (L,M,Q3, β, p3, d3) for which TR4 holds.

Proof. Say π1 : L→ K and π3 : M → L are homomorphisms of gradedA-modules
which are left inverse toα andβ. Then alsoK →M is an admissible monomorphism with
left inverseπ2 = π1◦π3. Let us writeQ1,Q2 andQ3 for the cokernels ofK → L,K →M ,
and L → M . Then we obtain identifications (as graded A-modules) Q1 = Ker(π1),
Q3 = Ker(π3) and Q2 = Ker(π2). Then L = K ⊕ Q1 and M = L ⊕ Q3 as graded
A-modules. This implies M = K ⊕Q1 ⊕Q3. Note that π2 = π1 ◦ π3 is zero on both Q1
and Q3. Hence Q2 = Q1 ⊕Q3. Consider the commutative diagram

0 → K → L → Q1 → 0
↓ ↓ ↓

0 → K → M → Q2 → 0
↓ ↓ ↓

0 → L → M → Q3 → 0
The rows of this diagram are admissible short exact sequences, and hence determine dis-
tinguished triangles by definition. Moreover downward arrows in the diagram above are
compatible with the chosen splittings and hence define morphisms of triangles

(K → L→ Q1 → K[1]) −→ (K →M → Q2 → K[1])
and

(K →M → Q2 → K[1]) −→ (L→M → Q3 → L[1]).
Note that the splittings Q3 →M of the bottom sequence in the diagram provides a split-
ting for the split sequence 0→ Q1 → Q2 → Q3 → 0 upon composing withM → Q2. It
follows easily from this that the morphism δ : Q3 → Q1[1] in the corresponding distin-
guished triangle

(Q1 → Q2 → Q3 → Q1[1])
is equal to the composition Q3 → L[1] → Q1[1]. Hence we get a structure as in the
conclusion of axiom TR4. �

Here is the final result.

Proposition 10.3. Let (A, d) be a differential graded algebra. The homotopy cate-
gory K(Mod(A,d)) of differential graded A-modules with its natural translation functors
and distinguished triangles is a triangulated category.

Proof. We know that K(Mod(A,d)) is a pre-triangulated category. Hence it suffices
to prove TR4 and to prove it we can use Derived Categories, Lemma 4.15. Let K → L
and L → M be composable morphisms of K(Mod(A,d)). By Lemma 7.5 we may assume
that K → L and L → M are admissible monomorphisms. In this case the result follows
from Lemma 10.2. �
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11. Left modules

Everything we have said sofar has an analogue in the setting of left differential graded
modules, except that one has to take care with some sign rules.

Let (A, d) be a differential graded R-algebra. Exactly analogous to right modules, we
define a left differential graded A-module M as a left A-module M which has a grading
M =

⊕
Mn and a differential d, such thatAnMm ⊂Mn+m, such that d(Mn) ⊂Mn+1,

and such that
d(am) = d(a)m+ (−1)deg(a)ad(m)

for homogeneous elements a ∈ A andm ∈M . As before this Leibniz rule exactly signifies
that the multiplication defines a map of complexes

Tot(A• ⊗RM•)→M•

Here A• and M• denote the complexes of R-modules underlying A and M .

Definition 11.1. Let R be a ring. Let (A, d) be a differential graded algebra over R.
The opposite differential graded algebra is the differential graded algebra (Aopp, d) over
R where Aopp = A as a graded R-module, d = d, and multiplication is given by

a ·opp b = (−1)deg(a) deg(b)ba

for homogeneous elements a, b ∈ A.

This makes sense because

d(a ·opp b) = (−1)deg(a) deg(b)d(ba)

= (−1)deg(a) deg(b)d(b)a+ (−1)deg(a) deg(b)+deg(b)bd(a)

= (−1)deg(a)a ·opp d(b) + d(a) ·opp b

as desired. In terms of underlying complexes of R-modules this means that the diagram

Tot(A• ⊗R A•)
multiplication ofAopp

//

commutativity constraint
��

A•

id
��

Tot(A• ⊗R A•)
multiplication ofA // A•

commutes. Here the commutativity constraint on the symmetric monoidal category of
complexes of R-modules is given in More on Algebra, Section 72.

Let (A, d) be a differential graded algebra over R. Let M be a left differential graded
A-module. We will denote Mopp the module M viewed as a right Aopp-module with
multiplication ·opp defined by the rule

m ·opp a = (−1)deg(a) deg(m)am

for a and m homogeneous. This is compatible with differentials because we could have
used the diagram

Tot(M• ⊗R A•)
multiplication onMopp

//

commutativity constraint
��

M•

id
��

Tot(A• ⊗RM•)
multiplication onM // M•
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to define the multiplication ·opp on Mopp. To see that it is an associative multiplication
we compute for homogeneous elements a, b ∈ A and m ∈M that

m ·opp (a ·opp b) = (−1)deg(a) deg(b)m ·opp (ba)

= (−1)deg(a) deg(b)+deg(ab) deg(m)bam

= (−1)deg(a) deg(b)+deg(ab) deg(m)+deg(b) deg(am)(am) ·opp b

= (−1)deg(a) deg(b)+deg(ab) deg(m)+deg(b) deg(am)+deg(a) deg(m)(m ·opp a) ·opp b
= (m ·opp a) ·opp b

Of course, we could have been shown this using the compatibility between the associativ-
ity and commutativity constraint on the symmetric monoidal category of complexes of
R-modules as well.

Lemma 11.2. Let (A, d) be a differential graded R-algebra. The functor M 7→Mopp

from the category of left differential gradedA-modules to the category of right differential
graded Aopp-modules is an equivalence.

Proof. Omitted. �

Mext, we come to shifts. Let (A, d) be a differential graded algebra. Let M be a left dif-
ferential graded A-module whose underlying complex of R-modules is denoted M•. For
any k ∈ Z we define the k-shifted module M [k] as follows

(1) the underlying complex of R-modules of M [k] is M•[k]
(2) as A-module the multiplication

An × (M [k])m −→ (M [k])n+m

is equal to (−1)nk times the given multiplication An ×Mm+k →Mn+m+k.
Let us check that with this choice the Leibniz rule is satisfied. Let a ∈ An and x ∈
M [k]m = Mm+k and denoting ·M [k] the product in M [k] then we see

dM [k](a ·M [k] x) = (−1)k+nkdM (ax)
= (−1)k+nkd(a)x+ (−1)k+nk+nadM (x)
= d(a) ·M [k] x+ (−1)nk+nadM [k](x)
= d(a) ·M [k] x+ (−1)na ·M [k] dM [k](x)

This is what we want as a has degree n as a homogeneous element of A. We also observe
that with these choices we may think of the multiplication map as the map of complexes

Tot(A• ⊗RM•[k])→ Tot(A• ⊗RM•)[k]→M•[k]
where the first arrow is More on Algebra, Section 72 (7) which in this case involves exactly
the sign we chose above. (In fact, we could have deduced that the Liebniz rule holds from
this observation.)
With the rule above we have canonical identifications

(M [k])opp = Mopp[k]
of right differential graded Aopp-modules defined without the intervention of signs, in
other words, the equivalence of Lemma 11.2 is compatible with shift functors.
Our choice above necessitates the following definition.

Definition 11.3. Let R be a ring. Let A be a Z-graded R-algebra.
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(1) Given a right graded A-module M we define the kth shifted A-module M [k] as
the same as a right A-module but with grading (M [k])n = Mn+k.

(2) Given a left gradedA-moduleM we define the kth shiftedA-moduleM [k] as the
module with grading (M [k])n = Mn+k and multiplication An × (M [k])m →
(M [k])n+m equal to (−1)nk times the given multiplication An × Mm+k →
Mn+m+k.

Let (A, d) be a differential graded algebra. Let f, g : M → N be homomorphisms of left
differential graded A-modules. A homotopy between f and g is a graded A-module map
h : M → N [−1] (observe the shift!) such that

f(x)− g(x) = dN (h(x)) + h(dM (x))

for all x ∈ M . If a homotopy exists, then we say f and g are homotopic. Thus h is
compatible with the A-module structure (with the shifted one on N ) and the grading
(with shifted grading on N ) but not with the differential. If f = g and h is a homotopy,
then h defines a morphism h : M → N [−1] of left differential graded A-modules.

With the rule above we find that f, g : M → N are homotopic if and only if the induced
morphisms fopp, gopp : Mopp → Nopp are homotopic as right differential graded Aopp-
module homomorphisms (with the same homotopy).

The homotopy category, cones, admissible short exact sequences, distinguished triangles
are all defined in exactly the same manner as for right differential graded modules (and
everything agrees on underlying complexes ofR-modules with the constructions for com-
plexes of R-modules). In this manner we obtain the analogue of Proposition 10.3 for left
modules as well, or we can deduce it by working with right modules over the opposite
algebra.

12. Tensor product

Let R be a ring. Let A be an R-algebra (see Section 2). Given a right A-module M and a
left A-module N there is a tensor product

M ⊗A N

This tensor product is a module overR. As anR-moduleM⊗AN is generated by symbols
x⊗ y with x ∈M and y ∈ N subject to the relations

(x1 + x2)⊗ y − x1 ⊗ y − x2 ⊗ y,
x⊗ (y1 + y2)− x⊗ y1 − x⊗ y2,

xa⊗ y − x⊗ ay

for a ∈ A, x, x1, x2 ∈M and y, y1, y2 ∈ N . We list some properties of the tensor product

In each variable the tensor product is right exact, in fact commutes with direct sums and
arbitrary colimits.

The tensor product M ⊗AN is the receptacle of the universal A-bilinear map M ×N →
M ⊗A N , (x, y) 7→ x⊗ y. In a formula

BilinearA(M ×N,Q) = HomR(M ⊗A N,Q)

for any R-module Q.
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If A is a Z-graded algebra and M , N are graded A-modules then M ⊗A N is a graded
R-module. Then nth graded piece (M ⊗A N)n of M ⊗A N is equal to

Coker
(⊕

r+t+s=n
Mr ⊗R At ⊗R Ns →

⊕
p+q=n

Mp ⊗R Nq
)

where the map sends x⊗ a⊗ y to x⊗ ay− xa⊗ y for x ∈Mr , y ∈ Ns, and a ∈ At with
r + s + t = n. In this case the map M × N → M ⊗A N is A-bilinear and compatible
with gradings and universal in the sense that

GradedBilinearA(M ×N,Q) = HomgradedR-modules(M ⊗A N,Q)
for any graded R-module Q with an obvious notion of graded bilinar map.
If (A, d) is a differential graded algebra andM andN are left and right differential graded
A-modules, then M ⊗A N is a differential graded R-module with differential

d(x⊗ y) = d(x)⊗ y + (−1)deg(x)x⊗ d(y)
for x ∈ M and y ∈ N homogeneous. In this case the map M × N → M ⊗A N is A-
bilinear, compatible with gradings, and compatible with differentials and universal in the
sense that

DifferentialGradedBilinearA(M ×N,Q) = HomComp(R)(M ⊗A N,Q)
for any differential graded R-module Q with an obvious notion of differential graded
bilinar map.

13. Hom complexes and differential graded modules

We urge the reader to skip this section.
Let R be a ring and let M• be a complex of R-modules. Consider the complex of R-
modules

E• = Hom•(M•,M•)
introduced in More on Algebra, Section 71. By More on Algebra, Lemma 71.3 there is a
canonical composition law

Tot(E• ⊗R E•)→ E•

which is a map of complexes. Thus we see thatE• with this multiplication is a differential
graded R-algebra which we will denote (E, d). Moreover, viewing M• as Hom•(R,M•)
we see that composition defines a multiplication

Tot(E• ⊗RM•)→M•

which turns M• into a left differential graded E-module which we will denote M .

Lemma 13.1. In the situation above, letA be a differential gradedR-algebra. To give
a left A-module structure on M is the same thing as giving a homomorphism A → E of
differential graded R-algebras.

Proof. Proof omitted. Observe that no signs intervene in this correspondence. �

We continue with the discussion above and we assume given another complex N• of R-
modules. Consider the complex of R-modules Hom•(M•, N•) introduced in More on
Algebra, Section 71. As above we see that composition

Tot(Hom•(M•, N•)⊗R E•)→ Hom•(M•, N•)
defines a multiplication which turns Hom•(M•, N•) into a right differential graded E-
module. Using Lemma 13.1 we conclude that given a left differential gradedA-moduleM
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and a complex of R-modules N• there is a canonical right differential graded A-module
whose underlying complex of R-modules is Hom•(M•, N•) and where multiplication

Homn(M•, N•)×Am −→ Homn+m(M•, N•)
sends f = (fp,q)p+q=n with fp,q ∈ Hom(M−q, Np) and a ∈ Am to the element f · a =
(fp,q ◦ a) where fp,q ◦ a is the map

M−q−m a−→M−q fp,q−−→ Np, x 7−→ fp,q(ax)
without the intervention of signs. Let us use the notation Hom(M,N•) to denote this
right differential graded A-module.

Lemma 13.2. Let R be a ring. Let (A, d) be a differential graded R-algebra. Let M ′

be a right differential graded A-module and let M be a left differential graded A-module.
Let N• be a complex of R-modules. Then we have

HomMod(A,d)(M
′,Hom(M,N•)) = HomComp(R)(M ′ ⊗AM,N•)

where M ⊗AM is viewed as a complex of R-modules as in Section 12.

Proof. Let us show that both sides correspond to graded A-bilinear maps

M ′ ×M −→ N•

compatible with differentials. We have seen this is true for the right hand side in Section
12. Given an element g of the left hand side, the equality of More on Algebra, Lemma 71.1
determines a map of complexes ofR-modules g′ : Tot(M ′⊗RM)→ N•. In other words,
we obtain a graded R-bilinear map g′′ : M ′ ×M → N• compatible with differentials.
The A-linearity of g translates immediately into A-bilinarity of g′′. �

LetR,M•,E•,E , andM be as above. However, now suppose given a differential gradedR-
algebraA and a right differential gradedA-module structure onM . Then we can consider
the map

Tot(A• ⊗RM•) ψ−→ Tot(A• ⊗RM•)→M•

where the first arrow is the commutativity constraint on the differential graded category
of complexes of R-modules. This corresponds to a map

τ : A• −→ E•

of complexes of R-modules. Recall that En =
∏
p+q=n HomR(M−q,Mp) and write

τ(a) = (τp,q(a))p+q=n for a ∈ An. Then we see

τp,q(a) : M−q −→Mp, x 7−→ (−1)deg(a) deg(x)xa = (−1)−nqxa

This is not compatible with the product on A as the readed should expect from the dis-
cussion in Section 11. Namely, we have

τ(aa′) = (−1)deg(a) deg(a′)τ(a′)τ(a)
We conclude the following lemma is true

Lemma 13.3. In the situation above, letA be a differential gradedR-algebra. To give
a right A-module structure on M is the same thing as giving a homomorphism τ : A →
Eopp of differential graded R-algebras.

Proof. See discussion above and note that the construction of τ from the multipli-
cation map Mn ×Am →Mn+m uses signs. �
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Let R, M•, E•, E , A and M be as above and let a right differential graded A-module
structure on M be given as in the lemma. In this case there is a canonical left differential
graded A-module whose underlying complex of R-modules is Hom•(M•, N•). Namely,
for multiplication we can use

Tot(A• ⊗R Hom•(M•, N•)) ψ−→ Tot(Hom•(M•, N•)⊗R A•)
τ−→ Tot(Hom•(M•, N•)⊗R Hom•(M•,M•))
→ Tot(Hom•(M•, N•)

The first arrow uses the commutativity constraint on the category of complexes of R-
modules, the second arrow is described above, and the third arrow is the composition law
for the Hom complex. Each map is a map of complexes, hence the result is a map of com-
plexes. In fact, this construction turns Hom•(M•, N•) into a left differential graded A-
module (associativity of the multiplication can be shown using the symmetric monoidal
structure or by a direct calculation using the formulae below). Let us explicate the multi-
plication

An ×Homm(M•, N•) −→ Homn+m(M•, N•)

It sends a ∈ An and f = (fp,q)p+q=m with fp,q ∈ Hom(M−q, Np) to the element a · f
with constituents

(−1)nmfp,q ◦ τ−q,q+n(a) = (−1)nm−n(q+n)fp,q ◦ a = (−1)np+nfp,q ◦ a

in HomR(M−q−n, Np) where fp,q ◦ a is the map

M−q−n a−→M−q fp,q−−→ Np, x 7−→ fp,q(xa)

Here a sign of (−1)np+n does intervene. Let us use the notation Hom(M,N•) to denote
this left differential graded A-module.

Lemma 13.4. Let R be a ring. Let (A, d) be a differential graded R-algebra. Let M
be a right differential gradedA-module and letM ′ be a left differential gradedA-module.
Let N• be a complex of R-modules. Then we have

Homleft diff gradedA-modules(M ′,Hom(M,N•)) = HomComp(R)(M ⊗AM ′, N•)

where M ⊗AM ′ is viewed as a complex of R-modules as in Section 12.

Proof. Let us show that both sides correspond to graded A-bilinear maps

M ×M ′ −→ N•

compatible with differentials. We have seen this is true for the right hand side in Section
12. Given an element g of the left hand side, the equality of More on Algebra, Lemma 71.1
determines a map of complexes g′ : Tot(M ′ ⊗R M) → N•. We precompose with the
commutativity constraint to get

Tot(M ⊗RM ′) ψ−→ Tot(M ′ ⊗RM) g′

−→ N•

which corresponds to a graded R-bilinear map g′′ : M × M ′ → N• compatible with
differentials. TheA-linearity of g translates immediately intoA-bilinarity of g′′. Namely,
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say x ∈Me and x′ ∈ (M ′)e′
and a ∈ An. Then on the one hand we have

g′′(x, ax′) = (−1)e(n+e′)g′(ax′ ⊗ x)

= (−1)e(n+e′)g(ax′)(x)

= (−1)e(n+e′)(a · g(x′))(x)

= (−1)e(n+e′)+n(n+e+e′)+ng(x′)(xa)

and on the other hand we have

g′′(xa, x′) = (−1)(e+n)e′
g′(x′ ⊗ xa) = (−1)(e+n)e′

g(x′)(xa)

which is the same thing by a trivial mod 2 calculation of the exponents. �

Remark 13.5. Let R be a ring. Let A be a differential graded R-algebra. Let M be
a left differential graded A-module. Let N• be a complex of R-modules. The construc-
tions above produce a right differential graded A-module Hom(M,N•) and then a leftt
differential graded A-module Hom(Hom(M,N•), N•). We claim there is an evaluation
map

ev : M −→ Hom(Hom(M,N•), N•)
in the category of left differential gradedA-modules. To define it, by Lemma 13.2 it suffices
to construct an A-bilinear pairing

Hom(M,N•)×M −→ N•

compatible with grading and differentials. For this we take

(f, x) 7−→ f(x)

We leave it to the reader to verify this is compatible with grading, differentials, and A-
bilinear. The map ev on underlying complexes of R-modules is More on Algebra, Item
(17).

Remark 13.6. Let R be a ring. Let A be a differential graded R-algebra. Let M be
a right differential graded A-module. Let N• be a complex of R-modules. The construc-
tions above produce a left differential graded A-module Hom(M,N•) and then a right
differential graded A-module Hom(Hom(M,N•), N•). We claim there is an evaluation
map

ev : M −→ Hom(Hom(M,N•), N•)
in the category of right differential graded A-modules. To define it, by Lemma 13.2 it
suffices to construct an A-bilinear pairing

M ×Hom(M,N•) −→ N•

compatible with grading and differentials. For this we take

(x, f) 7−→ (−1)deg(x) deg(f)f(x)

We leave it to the reader to verify this is compatible with grading, differentials, and A-
bilinear. The map ev on underlying complexes of R-modules is More on Algebra, Item
(17).

Remark 13.7. Let R be a ring. Let A be a differential graded R-algebra. Let M• and
N• be complexes of R-modules. Let k ∈ Z and consider the isomorphism

Hom•(M•, N•)[−k] −→ Hom•(M•[k], N•)
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of complexes ofR-modules defined in More on Algebra, Item (18). IfM• has the structure
of a left, resp. right differential graded A-module, then this is a map of right, resp. left
differential graded A-modules (with the module structures as defined in this section). We
omit the verification; we warn the reader that theA-module structure on the shift of a left
graded A-module is defined using a sign, see Definition 11.3.

14. Projective modules over algebras

In this section we discuss projective modules over algebras analogous to Algebra, Section
77. This section should probably be moved somewhere else.

Let R be a ring and let A be an R-algebra, see Section 2 for our conventions. It is clear
that A is a projective right A-module since HomA(A,M) = M for any right A-module
M (and thus HomA(A,−) is exact). Conversely, let P be a projective right A-module.
Then we can choose a surjection

⊕
i∈I A→ P by choosing a set {pi}i∈I of generators of

P over A. Since P is projective there is a left inverse to the surjection, and we find that
P is isomorphic to a direct summand of a free module, exactly as in the commutative case
(Algebra, Lemma 77.2).

We conclude
(1) the category of A-modules has enough projectives,
(2) A is a projective A-module,
(3) every A-module is a quotient of a direct sum of copies of A,
(4) every projective A-module is a direct summand of a direct sum of copies of A.

15. Projective modules over graded algebras

In this section we discuss projective graded modules over graded algebras analogous to
Algebra, Section 77.

Let R be a ring. Let A be a Z-graded algebra over R. Section 2 for our conventions. Let
ModA denote the category of graded right A-modules. For an integer k let A[k] denote
the shift of A. For a graded right A-module we have

HomModA(A[k],M) = M−k

As the functor M 7→M−k is exact on ModA we conclude that A[k] is a projective object
of ModA. Conversely, suppose that P is a projective object of ModA. By choosing a set of
homogeneous generators of P as an A-module, we can find a surjection⊕

i∈I
A[ki] −→ P

Thus we conclude that a projective object of ModA is a direct summand of a direct sum of
the shifts A[k].

We conclude
(1) the category of graded A-modules has enough projectives,
(2) A[k] is a projective A-module for every k ∈ Z,
(3) every graded A-module is a quotient of a direct sum of copies of the modules

A[k] for varying k,
(4) every projective A-module is a direct summand of a direct sum of copies of the

modules A[k] for varying k.
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16. Projective modules and differential graded algebras

If (A, d) is a differential graded algebra and P is an object of Mod(A,d) then we say P is
projective as a graded A-module or sometimes P is graded projective to mean that P is a
projective object of the abelian category ModA of graded A-modules as in Section 15.

Lemma 16.1. Let (A, d) be a differential graded algebra. Let M → P be a surjective
homomorphism of differential gradedA-modules. IfP is projective as a gradedA-module,
then M → P is an admissible epimorphism.

Proof. This is immediate from the definitions. �

Lemma 16.2. Let (A, d) be a differential graded algebra. Then we have

HomMod(A,d)(A[k],M) = Ker(d : M−k →M−k+1)

and
HomK(Mod(A,d))(A[k],M) = H−k(M)

for any differential graded A-module M .

Proof. Immediate from the definitions. �

17. Injective modules over algebras

In this section we discuss injective modules over algebras analogous to More on Algebra,
Section 55. This section should probably be moved somewhere else.

Let R be a ring and let A be an R-algebra, see Section 2 for our conventions. For a right
A-module M we set

M∨ = HomZ(M,Q/Z)
which we think of as a left A-module by the multiplication (af)(x) = f(xa). Namely,
((ab)f)(x) = f(xab) = (bf)(xa) = (a(bf))(x). Conversely, if M is a left A-module,
then M∨ is a right A-module. Since Q/Z is an injective abelian group (More on Algebra,
Lemma 54.1), the functor M 7→ M∨ is exact (More on Algebra, Lemma 55.6). Moreover,
the evaluation mapM → (M∨)∨ is injective for all modulesM (More on Algebra, Lemma
55.7).

We claim that A∨ is an injective right A-module. Namely, given a right A-module N we
have

HomA(N,A∨) = HomA(N,HomZ(A,Q/Z)) = N∨

and we conclude because the functorN 7→ N∨ is exact. The second equality holds because

HomZ(N,HomZ(A,Q/Z)) = HomZ(N ⊗Z A,Q/Z)
by Algebra, Lemma 12.8. Inside this module A-linearity exactly picks out the bilinear
maps ϕ : N ×A→ Q/Z which have the same value on x⊗ a and xa⊗ 1, i.e., come from
elements of N∨.

Finally, for every rightA-moduleM we can choose a surjection
⊕

i∈I A→M∨ to get an
injection M → (M∨)∨ →

∏
i∈I A

∨.

We conclude
(1) the category of A-modules has enough injectives,
(2) A∨ is an injective A-module, and
(3) every A-module injects into a product of copies of A∨.
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18. Injective modules over graded algebras

In this section we discuss injective graded modules over graded algebras analogous to More
on Algebra, Section 55.
Let R be a ring. Let A be a Z-graded algebra over R. Section 2 for our conventions. If M
is a graded R-module we set

M∨ =
⊕

n∈Z
HomZ(M−n,Q/Z) =

⊕
n∈Z

(M−n)∨

as a graded R-module (no signs in the actions of R on the homogeneous parts). If M has
the structure of a left gradedA-module, then we define a right gradedA-module structure
on M∨ by letting a ∈ Am act by

(M−n)∨ → (M−n−m)∨, f 7→ f ◦ a
as in Section 13. If M has the structure of a right graded A-module, then we define a left
graded A-module structure on M∨ by letting a ∈ An act by

(M−m)∨ → (M−m−n)∨, f 7→ (−1)nmf ◦ a
as in Section 13 (the sign is forced on us because we want to use the same formula for
the case when working with differential graded modules — if you only care about graded
modules, then you can omit the sign here). On the category of (left or right) graded A-
modules the functor M 7→ M∨ is exact (check on graded pieces). Moreover, there is an
injective evaluation map

ev : M −→ (M∨)∨, evn = (−1)n the evaluation map Mn → ((Mn)∨)∨

of graded R-modules, see More on Algebra, Item (17). This evaluation map is a left, resp.
rightA-module homomorphism ifM is a left, resp. rightA-module, see Remarks 13.5 and
13.6. Finally, given k ∈ Z there is a canonical isomorphism

M∨[−k] −→ (M [k])∨

of graded R-modules which uses a sign and which, if M is a left, resp. right A-module, is
an isomorphism of right, resp. left A-modules. See Remark 13.7.
We claim that A∨ is an injective object of the category ModA of graded right A-modules.
Namely, given a graded right A-module N we have

HomModA(N,A∨) = HomComp(Z)(N ⊗A A,Q/Z)) = (N0)∨

by Lemma 13.2 (applied to the case where all the differentials are zero). We conclude
because the functor N 7→ (N0)∨ = (N∨)0 is exact.
Finally, for every graded right A-module M we can choose a surjection of graded left
A-modules ⊕

i∈I
A[ki]→M∨

where A[ki] denotes the shift of A by ki ∈ Z. We do this by choosing homogeneous
generators for M∨. In this way we get an injection

M → (M∨)∨ →
∏

A[ki]∨ =
∏

A∨[−ki]

Observe that the products in the formula above are products in the category of graded
modules (in other words, take products in each degree and then take the direct sum of the
pieces).
We conclude that
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(1) the category of graded A-modules has enough injectives,
(2) for every k ∈ Z the module A∨[k] is injective, and
(3) every A-module injects into a product in the category of graded modules of

copies of shifts A∨[k].

19. Injective modules and differential graded algebras

If (A, d) is a differential graded algebra and I is an object of Mod(A,d) then we say I is in-
jective as a gradedA-module or sometimes I is graded injective to mean that I is a injective
object of the abelian category ModA of graded A-modules.

Lemma 19.1. Let (A, d) be a differential graded algebra. Let I → M be an injective
homomorphism of differential graded A-modules. If I is graded injective, then I →M is
an admissible monomorphism.

Proof. This is immediate from the definitions. �

Let (A, d) be a differential graded algebra. If M is a left, resp. right differential graded
A-module, then

M∨ = Hom•(M•,Q/Z)
with A-module structure constructed in Section 18 is a right, resp. left differential graded
A-module by the discussion in Section 13. By Remarks 13.5 and 13.6 there evaluation map
of Section 18

M −→ (M∨)∨

is a homomorphism of left, resp. right differential graded A-modules

Lemma 19.2. Let (A, d) be a differential graded algebra. If M is a left differential
graded A-module and N is a right differential graded A-module, then

HomMod(A,d)(N,M
∨) = HomComp(Z)(N ⊗AM,Q/Z)

= DifferentialGradedBilinearA(N ×M,Q/Z)

Proof. The first equality is Lemma 13.2 and the second equality was shown in Section
12. �

Lemma 19.3. Let (A, d) be a differential graded algebra. Then we have

HomMod(A,d)(M,A∨[k]) = Ker(d : (M∨)k → (M∨)k+1)
and

HomK(Mod(A,d))(M,A∨[k]) = Hk(M∨)
as functors in the differential graded A-module M .

Proof. This is clear from the discussion above. �

20. P-resolutions

This section is the analogue of Derived Categories, Section 29.
Let (A, d) be a differential graded algebra. Let P be a differential graded A-module. We
say P has property (P) if it there exists a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P
by differential graded submodules such that

(1) P =
⋃
FpP ,
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(2) the inclusions FiP → Fi+1P are admissible monomorphisms,
(3) the quotients Fi+1P/FiP are isomorphic as differential graded A-modules to a

direct sum of A[k].
In fact, condition (2) is a consequence of condition (3), see Lemma 16.1. Moreover, the
reader can verify that as a gradedA-module P will be isomorphic to a direct sum of shifts
of A.

Lemma 20.1. Let (A, d) be a differential graded algebra. LetP be a differential graded
A-module. If F• is a filtration as in property (P), then we obtain an admissible short exact
sequence

0→
⊕

FiP →
⊕

FiP → P → 0
of differential graded A-modules.

Proof. The second map is the direct sum of the inclusion maps. The first map on
the summand FiP of the source is the sum of the identity FiP → FiP and the negative
of the inclusion map FiP → Fi+1P . Choose homomorphisms si : Fi+1P → FiP of
graded A-modules which are left inverse to the inclusion maps. Composing gives maps
sj,i : FjP → FiP for all j > i. Then a left inverse of the first arrow maps x ∈ FjP to
(sj,0(x), sj,1(x), . . . , sj,j−1(x), 0, . . .) in

⊕
FiP . �

The following lemma shows that differential graded modules with property (P) are the
dual notion to K-injective modules (i.e., they are K-projective in some sense). See Derived
Categories, Definition 31.1.

Lemma 20.2. Let (A, d) be a differential graded algebra. LetP be a differential graded
A-module with property (P). Then

HomK(Mod(A,d))(P,N) = 0

for all acyclic differential graded A-modules N .

Proof. We will use that K(Mod(A,d)) is a triangulated category (Proposition 10.3).
Let F• be a filtration on P as in property (P). The short exact sequence of Lemma 20.1
produces a distinguished triangle. Hence by Derived Categories, Lemma 4.2 it suffices to
show that

HomK(Mod(A,d))(FiP,N) = 0
for all acyclic differential graded A-modules N and all i. Each of the differential graded
modules FiP has a finite filtration by admissible monomorphisms, whose graded pieces
are direct sums of shifts A[k]. Thus it suffices to prove that

HomK(Mod(A,d))(A[k], N) = 0

for all acyclic differential graded A-modules N and all k. This follows from Lemma 16.2.
�

Lemma 20.3. Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism P → M of differential graded A-
modules with the following properties

(1) P →M is surjective,
(2) Ker(dP )→ Ker(dM ) is surjective, and
(3) P sits in an admissible short exact sequence 0→ P ′ → P → P ′′ → 0 where P ′,

P ′′ are direct sums of shifts of A.
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Proof. Let Pk be the free A-module with generators x, y in degrees k and k + 1.
Define the structure of a differential graded A-module on Pk by setting d(x) = y and
d(y) = 0. For every element m ∈ Mk there is a homomorphism Pk → M sending x to
m and y to d(m). Thus we see that there is a surjection from a direct sum of copies of Pk
to M . This clearly produces P → M having properties (1) and (3). To obtain property
(2) note that if m ∈ Ker(dM ) has degree k, then there is a map A[k]→ M mapping 1 to
m. Hence we can achieve (2) by adding a direct sum of copies of shifts of A. �

Lemma 20.4. Let (A, d) be a differential graded algebra. Let M be a differential
graded A-module. There exists a homomorphism P → M of differential graded A-
modules such that

(1) P →M is a quasi-isomorphism, and
(2) P has property (P).

Proof. Set M = M0. We inductively choose short exact sequences

0→Mi+1 → Pi →Mi → 0

where the maps Pi →Mi are chosen as in Lemma 20.3. This gives a “resolution”

. . .→ P2
f2−→ P1

f1−→ P0 →M → 0

Then we set
P =

⊕
i≥0

Pi

as an A-module with grading given by Pn =
⊕

a+b=n P
b
−a and differential (as in the

construction of the total complex associated to a double complex) by

dP (x) = f−a(x) + (−1)adP−a(x)

for x ∈ P b−a. With these conventions P is indeed a differential gradedA-module. Recall-
ing that each Pi has a two step filtration 0→ P ′

i → Pi → P ′′
i → 0 we set

F2iP =
⊕

i≥j≥0
Pj ⊂

⊕
i≥0

Pi = P

and we add P ′
i+1 to F2iP to get F2i+1. These are differential graded submodules and

the successive quotients are direct sums of shifts of A. By Lemma 16.1 we see that the
inclusions FiP → Fi+1P are admissible monomorphisms. Finally, we have to show that
the map P → M (given by the augmentation P0 → M ) is a quasi-isomorphism. This
follows from Homology, Lemma 26.2. �

21. I-resolutions

This section is the dual of the section on P-resolutions.

Let (A, d) be a differential graded algebra. Let I be a differential graded A-module. We
say I has property (I) if it there exists a filtration

I = F0I ⊃ F1I ⊃ F2I ⊃ . . . ⊃ 0

by differential graded submodules such that
(1) I = lim I/FpI ,
(2) the maps I/Fi+1I → I/FiI are admissible epimorphisms,
(3) the quotients FiI/Fi+1I are isomorphic as differential graded A-modules to

products of the modules A∨[k] constructed in Section 19.
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In fact, condition (2) is a consequence of condition (3), see Lemma 19.1. The reader can
verify that as a graded module I will be isomorphic to a product of A∨[k].

Lemma 21.1. Let (A, d) be a differential graded algebra. Let I be a differential graded
A-module. If F• is a filtration as in property (I), then we obtain an admissible short exact
sequence

0→ I →
∏

I/FiI →
∏

I/FiI → 0
of differential graded A-modules.

Proof. Omitted. Hint: This is dual to Lemma 20.1. �

The following lemma shows that differential graded modules with property (I) are the
analogue of K-injective modules. See Derived Categories, Definition 31.1.

Lemma 21.2. Let (A, d) be a differential graded algebra. Let I be a differential graded
A-module with property (I). Then

HomK(Mod(A,d))(N, I) = 0
for all acyclic differential graded A-modules N .

Proof. We will use that K(Mod(A,d)) is a triangulated category (Proposition 10.3).
Let F• be a filtration on I as in property (I). The short exact sequence of Lemma 21.1
produces a distinguished triangle. Hence by Derived Categories, Lemma 4.2 it suffices to
show that

HomK(Mod(A,d))(N, I/FiI) = 0
for all acyclic differential graded A-modules N and all i. Each of the differential graded
modules I/FiI has a finite filtration by admissible monomorphisms, whose graded pieces
are products of A∨[k]. Thus it suffices to prove that

HomK(Mod(A,d))(N,A∨[k]) = 0
for all acyclic differential graded A-modules N and all k. This follows from Lemma 19.3
and the fact that (−)∨ is an exact functor. �

Lemma 21.3. Let (A, d) be a differential graded algebra. LetM be a differential graded
A-module. There exists a homomorphism M → I of differential graded A-modules with
the following properties

(1) M → I is injective,
(2) Coker(dM )→ Coker(dI) is injective, and
(3) I sits in an admissible short exact sequence 0→ I ′ → I → I ′′ → 0 where I ′, I ′′

are products of shifts of A∨.

Proof. We will use the functors N 7→ N∨ (from left to right differential graded
modules and from right to left differential graded modules) constructed in Section 19 and
all of their properties. For every k ∈ Z let Qk be the free left A-module with generators
x, y in degrees k and k+ 1. Define the structure of a left differential gradedA-module on
Qk by setting d(x) = y and d(y) = 0. Arguing exactly as in the proof of Lemma 20.3 we
find a surjection ⊕

i∈I
Qki −→M∨

of left differential graded A-modules. Then we can consider the injection

M → (M∨)∨ → (
⊕

i∈I
Qki)∨ =

∏
i∈I

Iki



2074 22. DIFFERENTIAL GRADED ALGEBRA

where Ik = Q∨
−k is the “dual” right differential graded A-module. Further, the short

exact sequence 0 → A[−k − 1] → Qk → A[−k] → 0 produces a short exact sequence
0→ A∨[k]→ Ik → A∨[k + 1]→ 0.
The result of the previous paragraph produces M → I having properties (1) and (3). To
obtain property (2), suppose m ∈ Coker(dM ) is a nonzero element of degree k. Pick a
map λ : Mk → Q/Z which vanishes on Im(Mk−1 → Mk) but not on m. By Lemma
19.3 this corresponds to a homomorphism M → A∨[k] of differential graded A-modules
which does not vanish on m. Hence we can achieve (2) by adding a product of copies of
shifts of A∨. �

Lemma 21.4. Let (A, d) be a differential graded algebra. LetM be a differential graded
A-module. There exists a homomorphism M → I of differential graded A-modules such
that

(1) M → I is a quasi-isomorphism, and
(2) I has property (I).

Proof. Set M = M0. We inductively choose short exact sequences
0→Mi → Ii →Mi+1 → 0

where the maps Mi → Ii are chosen as in Lemma 21.3. This gives a “resolution”

0→M → I0
f0−→ I1

f1−→ I1 → . . .

Denote I the differential graded A-module with graded parts

In =
∏

i≥0
In−i
i

and differential defined by
dI(x) = fi(x) + (−1)idIi(x)

for x ∈ In−i
i . With these conventions I is indeed a differential gradedA-module. Recall-

ing that each Ii has a two step filtration 0→ I ′
i → Ii → I ′′

i → 0 we set

F2iI
n =

∏
j≥i

In−j
j ⊂

∏
i≥0

In−i
i = In

and we add a factor I ′
i+1 to F2iI to get F2i+1I . These are differential graded submodules

and the successive quotients are products of shifts of A∨. By Lemma 19.1 we see that the
inclusions Fi+1I → FiI are admissible monomorphisms. Finally, we have to show that
the map M → I (given by the augmentation M → I0) is a quasi-isomorphism. This
follows from Homology, Lemma 26.3. �

22. The derived category

Recall that the notions of acyclic differential graded modules and quasi-isomorphism of
differential graded modules make sense (see Section 4).

Lemma 22.1. Let (A, d) be a differential graded algebra. The full subcategory Ac of
K(Mod(A,d)) consisting of acyclic modules is a strictly full saturated triangulated subcat-
egory of K(Mod(A,d)). The corresponding saturated multiplicative system (see Derived
Categories, Lemma 6.10) of K(Mod(A,d)) is the class Qis of quasi-isomorphisms. In par-
ticular, the kernel of the localization functor

Q : K(Mod(A,d))→ Qis−1K(Mod(A,d))
is Ac. Moreover, the functor H0 factors through Q.
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Proof. We know that H0 is a homological functor by the long exact sequence of
homology (4.2.1). The kernel of H0 is the subcategory of acyclic objects and the arrows
with induce isomorphisms on all Hi are the quasi-isomorphisms. Thus this lemma is a
special case of Derived Categories, Lemma 6.11.

Set theoretical remark. The construction of the localization in Derived Categories, Propo-
sition 5.6 assumes the given triangulated category is “small”, i.e., that the underlying col-
lection of objects forms a set. Let Vα be a partial universe (as in Sets, Section 5) containing
(A, d) and where the cofinality of α is bigger than ℵ0 (see Sets, Proposition 7.2). Then we
can consider the category Mod(A,d),α of differential graded A-modules contained in Vα.
A straightforward check shows that all the constructions used in the proof of Proposition
10.3 work inside of Mod(A,d),α (because at worst we take finite direct sums of differential
graded modules). Thus we obtain a triangulated category Qis−1

α K(Mod(A,d),α). We will
see below that if β > α, then the transition functors

Qis−1
α K(Mod(A,d),α) −→ Qis−1

β K(Mod(A,d),β)

are fully faithful as the morphism sets in the quotient categories are computed by maps
in the homotopy categories from P-resolutions (the construction of a P-resolution in the
proof of Lemma 20.4 takes countable direct sums as well as direct sums indexed over subsets
of the given module). The reader should therefore think of the category of the lemma as
the union of these subcategories. �

Taking into account the set theoretical remark at the end of the proof of the preceding
lemma we define the derived category as follows.

Definition 22.2. Let (A, d) be a differential graded algebra. Let Ac and Qis be as in
Lemma 22.1. The derived category of (A, d) is the triangulated category

D(A, d) = K(Mod(A,d))/Ac = Qis−1K(Mod(A,d)).

We denote H0 : D(A, d) → ModR the unique functor whose composition with the
quotient functor gives back the functor H0 defined above.

Here is the promised lemma computing morphism sets in the derived category.

Lemma 22.3. Let (A, d) be a differential graded algebra. LetM andN be differential
graded A-modules.

(1) Let P →M be a P-resolution as in Lemma 20.4. Then

HomD(A,d)(M,N) = HomK(Mod(A,d))(P,N)

(2) Let N → I be an I-resolution as in Lemma 21.4. Then

HomD(A,d)(M,N) = HomK(Mod(A,d))(M, I)

Proof. Let P →M be as in (1). Since P →M is a quasi-isomorphism we see that

HomD(A,d)(P,N) = HomD(A,d)(M,N)

by definition of the derived category. A morphism f : P → N in D(A, d) is equal to
s−1f ′ where f ′ : P → N ′ is a morphism and s : N → N ′ is a quasi-isomorphism.
Choose a distinguished triangle

N → N ′ → Q→ N [1]
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As s is a quasi-isomorphism, we see that Q is acyclic. Thus HomK(Mod(A,d))(P,Q[k]) = 0
for all k by Lemma 20.2. Since HomK(Mod(A,d))(P,−) is cohomological, we conclude that
we can lift f ′ : P → N ′ uniquely to a morphism f : P → N . This finishes the proof.

The proof of (2) is dual to that of (1) using Lemma 21.2 in stead of Lemma 20.2. �

Lemma 22.4. Let (A, d) be a differential graded algebra. Then

(1) D(A, d) has both direct sums and products,
(2) direct sums are obtained by taking direct sums of differential graded modules,
(3) products are obtained by taking products of differential graded modules.

Proof. We will use that Mod(A,d) is an abelian category with arbitrary direct sums
and products, and that these give rise to direct sums and products in K(Mod(A,d)). See
Lemmas 4.2 and 5.4.

Let Mj be a family of differential graded A-modules. Consider the graded direct sum
M =

⊕
Mj which is a differential graded A-module with the obvious. For a differential

graded A-module N choose a quasi-isomorphism N → I where I is a differential graded
A-module with property (I). See Lemma 21.4. Using Lemma 22.3 we have

HomD(A,d)(M,N) = HomK(A,d)(M, I)

=
∏

HomK(A,d)(Mj , I)

=
∏

HomD(A,d)(Mj , N)

whence the existence of direct sums in D(A, d) as given in part (2) of the lemma.

Let Mj be a family of differential graded A-modules. Consider the product M =
∏
Mj

of differential graded A-modules. For a differential graded A-module N choose a quasi-
isomorphism P → N where P is a differential graded A-module with property (P). See
Lemma 20.4. Using Lemma 22.3 we have

HomD(A,d)(N,M) = HomK(A,d)(P,M)

=
∏

HomK(A,d)(P,Mj)

=
∏

HomD(A,d)(N,Mj)

whence the existence of direct sums in D(A, d) as given in part (3) of the lemma. �

Remark 22.5. Let R be a ring. Let (A, d) be a differential graded R-algebra. Using
P-resolutions we can sometimes reduce statements about general objects of D(A, d) to
statements about A[k]. Namely, let T be a property of objects of D(A, d) and assume that

(1) if Ki, i ∈ I is a family of objects of D(A, d) and T (Ki) holds for all i ∈ I , then
T (
⊕
Ki),

(2) if K → L→M → K[1] is a distinguished triangle of D(A, d) and T holds for
two, then T holds for the third object, and

(3) T (A[k]) holds for all k ∈ Z.

Then T holds for all objects of D(A, d). This is clear from Lemmas 20.1 and 20.4.
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23. The canonical delta-functor

Let (A, d) be a differential graded algebra. Consider the functor Mod(A,d) → K(Mod(A,d)).
This functor is not a δ-functor in general. However, it turns out that the functor Mod(A,d) →
D(A, d) is a δ-functor. In order to see this we have to define the morphisms δ associated
to a short exact sequence

0→ K
a−→ L

b−→M → 0

in the abelian category Mod(A,d). Consider the cone C(a) of the morphism a. We have
C(a) = L⊕K and we define q : C(a)→M via the projection to L followed by b. Hence
a homomorphism of differential graded A-modules

q : C(a) −→M.

It is clear that q ◦ i = b where i is as in Definition 6.1. Note that, as a is injective, the
kernel of q is identified with the cone of idK which is acyclic. Hence we see that q is a
quasi-isomorphism. According to Lemma 9.4 the triangle

(K,L,C(a), a, i,−p)

is a distinguished triangle in K(Mod(A,d)). As the localization functor K(Mod(A,d)) →
D(A, d) is exact we see that (K,L,C(a), a, i,−p) is a distinguished triangle in D(A, d).
Since q is a quasi-isomorphism we see that q is an isomorphism in D(A, d). Hence we
deduce that

(K,L,M, a, b,−p ◦ q−1)

is a distinguished triangle of D(A, d). This suggests the following lemma.

Lemma 23.1. Let (A, d) be a differential graded algebra. The functor Mod(A,d) →
D(A, d) defined has the natural structure of a δ-functor, with

δK→L→M = −p ◦ q−1

with p and q as explained above.

Proof. We have already seen that this choice leads to a distinguished triangle when-
ever given a short exact sequence of complexes. We have to show functoriality of this
construction, see Derived Categories, Definition 3.6. This follows from Lemma 6.2 with a
bit of work. Compare with Derived Categories, Lemma 12.1. �

Lemma 23.2. Let (A, d) be a differential graded algebra. Let Mn be a system of dif-
ferential graded modules. Then the derived colimit hocolimMn inD(A, d) is represented
by the differential graded module colimMn.

Proof. Set M = colimMn. We have an exact sequence of differential graded mod-
ules

0→
⊕

Mn →
⊕

Mn →M → 0

by Derived Categories, Lemma 33.6 (applied the underlying complexes of abelian groups).
The direct sums are direct sums in D(A) by Lemma 22.4. Thus the result follows from
the definition of derived colimits in Derived Categories, Definition 33.1 and the fact that
a short exact sequence of complexes gives a distinguished triangle (Lemma 23.1). �



2078 22. DIFFERENTIAL GRADED ALGEBRA

24. Linear categories

Just the definitions.

Definition 24.1. Let R be a ring. An R-linear category A is a category where ev-
ery morphism set is given the structure of an R-module and where for x, y, z ∈ Ob(A)
composition law

HomA(y, z)×HomA(x, y) −→ HomA(x, z)

is R-bilinear.

Thus composition determines an R-linear map

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of R-modules. Note that we do not assume R-linear categories to be additive.

Definition 24.2. Let R be a ring. A functor of R-linear categories, or an R-linear
functor is a functorF : A → Bwhere for all objects x, y ofA the mapF : HomA(x, y)→
HomB(F (x), F (y)) is a homomorphism of R-modules.

25. Graded categories

Just some definitions.

Definition 25.1. Let R be a ring. A graded category A over R is a category where
every morphism set is given the structure of a graded R-module and where for x, y, z ∈
Ob(A) composition is R-bilinear and induces a homomorphism

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of graded R-modules (i.e., preserving degrees).

In this situation we denote Homi
A(x, y) the degree i part of the graded object HomA(x, y),

so that
HomA(x, y) =

⊕
i∈Z

Homi
A(x, y)

is the direct sum decomposition into graded parts.

Definition 25.2. LetR be a ring. A functor of graded categories overR, or a graded
functor is a functorF : A → Bwhere for all objects x, y ofA the mapF : HomA(x, y)→
HomA(F (x), F (y)) is a homomorphism of graded R-modules.

Given a graded category we are often interested in the corresponding “usual” category of
maps of degree 0. Here is a formal definition.

Definition 25.3. Let R be a ring. Let A be a graded category over R. We let A0 be
the category with the same objects asA and with

HomA0(x, y) = Hom0
A(x, y)

the degree 0 graded piece of the graded module of morphisms ofA.

Definition 25.4. Let R be a ring. Let A be a graded category over R. A direct sum
(x, y, z, i, j, p, q) in A (notation as in Homology, Remark 3.6) is a graded direct sum if
i, j, p, q are homogeneous of degree 0.
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Example 25.5 (Graded category of graded objects). Let B be an additive category.
Recall that we have defined the category Gr(B) of graded objects of B in Homology, Def-
inition 16.1. In this example, we will construct a graded category Grgr(B) over R = Z
whose associated category Grgr(B)0 recovers Gr(B). As objects of Grgr(B) we take graded
objects of B. Then, given graded objects A = (Ai) and B = (Bi) of B we set

HomGrgr(B)(A,B) =
⊕

n∈Z
Homn(A,B)

where the graded piece of degree n is the abelian group of homogeneous maps of degree n
from A to B. Explicitly we have

Homn(A,B) =
∏

p+q=n
HomB(A−q, Bp)

(observe reversal of indices and observe that we have a product here and not a direct sum).
In other words, a degree n morphism f from A to B can be seen as a system f = (fp,q)
where p, q ∈ Z, p+ q = n with fp,q : A−q → Bp a morphism of B. Given graded objects
A, B, C of B composition of morphisms in Grgr(B) is defined via the maps

Homm(B,C)×Homn(A,B) −→ Homn+m(A,C)

by simple composition (g, f) 7→ g ◦ f of homogeneous maps of graded objects. In terms
of components we have

(g ◦ f)p,r = gp,q ◦ f−q,r

where q is such that p+ q = m and −q + r = n.

Example 25.6 (Graded category of graded modules). LetA be a Z-graded algebra over
a ring R. We will construct a graded category ModgrA over R whose associated category
(ModgrA )0 is the category of graded A-modules. As objects of ModgrA we take right graded
A-modules (see Section 14). Given graded A-modules L and M we set

HomModgr
A

(L,M) =
⊕

n∈Z
Homn(L,M)

where Homn(L,M) is the set of right A-module maps L → M which are homogeneous
of degree n, i.e., f(Li) ⊂M i+n for all i ∈ Z. In terms of components, we have that

Homn(L,M) ⊂
∏

p+q=n
HomR(L−q,Mp)

(observe reversal of indices) is the subset consisting of those f = (fp,q) such that

fp,q(ma) = fp−i,q+i(m)a

for a ∈ Ai and m ∈ L−q−i. For graded A-modules K , L, M we define composition in
ModgrA via the maps

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)

by simple composition of right A-module maps: (g, f) 7→ g ◦ f .

Remark 25.7. Let R be a ring. Let D be an R-linear category endowed with a col-
lection of R-linear functors [n] : D → D, x 7→ x[n] indexed by n ∈ Z such that
[n] ◦ [m] = [n + m] and [0] = idD (equality as functors). This allows us to construct
a graded category Dgr over R with the same objects of D setting

HomDgr (x, y) =
⊕

n∈Z
HomD(x, y[n])
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for x, y in D. Observe that (Dgr)0 = D (see Definition 25.3). Moreover, the graded
category Dgr inherits R-linear graded functors [n] satisfying [n] ◦ [m] = [n + m] and
[0] = idDgr with the property that

HomDgr (x, y[n]) = HomDgr (x, y)[n]

as graded R-modules compatible with composition of morphisms.

Conversely, suppose given a graded category A over R endowed with a collection of R-
linear graded functors [n] satisfying [n]◦[m] = [n+m] and [0] = idA which are moreover
equipped with isomorphisms

HomA(x, y[n]) = HomA(x, y)[n]

as graded R-modules compatible with composition of morphisms. Then the reader easily
shows thatA = (A0)gr.

Here are two examples of the relationship D ↔ A we established above:
(1) Let B be an additive category. If D = Gr(B), then A = Grgr(B) as in Example

25.5.
(2) If A is a graded ring and D = ModA is the category of graded right A-modules,

thenA = ModgrA , see Example 25.6.

26. Differential graded categories

Note that if R is a ring, then R is a differential graded algebra over itself (with R = R0

of course). In this case a differential graded R-module is the same thing as a complex of
R-modules. In particular, given two differential graded R-modules M and N we denote
M ⊗RN the differential gradedR-module corresponding to the total complex associated
to the double complex obtained by the tensor product of the complexes of R-modules
associated to M and N .

Definition 26.1. Let R be a ring. A differential graded category A over R is a cat-
egory where every morphism set is given the structure of a differential graded R-module
and where for x, y, z ∈ Ob(A) composition is R-bilinear and induces a homomorphism

HomA(y, z)⊗R HomA(x, y) −→ HomA(x, z)

of differential graded R-modules.

The final condition of the definition signifies the following: if f ∈ Homn
A(x, y) and

g ∈ Homm
A (y, z) are homogeneous of degrees n and m, then

d(g ◦ f) = d(g) ◦ f + (−1)mg ◦ d(f)

in Homn+m+1
A (x, z). This follows from the sign rule for the differential on the total

complex of a double complex, see Homology, Definition 18.3.

Definition 26.2. Let R be a ring. A functor of differential graded categories over
R is a functor F : A → B where for all objects x, y of A the map F : HomA(x, y) →
HomA(F (x), F (y)) is a homomorphism of differential graded R-modules.

Given a differential graded category we are often interested in the corresponding cate-
gories of complexes and homotopy category. Here is a formal definition.

Definition 26.3. Let R be a ring. Let A be a differential graded category over R.
Then we let
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(1) the category of complexes ofA1 be the category Comp(A) whose objects are the
same as the objects ofA and with

HomComp(A)(x, y) = Ker(d : Hom0
A(x, y)→ Hom1

A(x, y))

(2) the homotopy category of A be the category K(A) whose objects are the same
as the objects ofA and with

HomK(A)(x, y) = H0(HomA(x, y))

Our use of the symbol K(A) is nonstandard, but at least is compatible with the use of
K(−) in other chapters of the Stacks project.

Definition 26.4. Let R be a ring. LetA be a differential graded category over R. A
direct sum (x, y, z, i, j, p, q) in A (notation as in Homology, Remark 3.6) is a differential
graded direct sum if i, j, p, q are homogeneous of degree 0 and closed, i.e., d(i) = 0, etc.

Lemma 26.5. LetR be a ring. A functor F : A → B of differential graded categories
over R induces functors Comp(A)→ Comp(B) and K(A)→ K(B).

Proof. Omitted. �

Example 26.6 (Differential graded category of complexes). Let B be an additive cat-
egory. We will construct a differential graded category Compdg(B) over R = Z whose
associated category of complexes is Comp(B) and whose associated homotopy category is
K(B). As objects of Compdg(B) we take complexes of B. Given complexesA• andB• of
B, we sometimes also denoteA• andB• the corresponding graded objects of B (i.e., forget
about the differential). Using this abuse of notation, we set

HomCompdg(B)(A•, B•) = HomGrgr(B)(A•, B•) =
⊕

n∈Z
Homn(A,B)

as a graded Z-module with notation and definitions as in Example 25.5. In other words,
the nth graded piece is the abelian group of homogeneous morphism of degree n of graded
objects

Homn(A•, B•) =
∏

p+q=n
HomB(A−q, Bp)

Observe reversal of indices and observe we have a direct product and not a direct sum. For
an element f ∈ Homn(A•, B•) of degree n we set

d(f) = dB ◦ f − (−1)nf ◦ dA
The sign is exactly as in More on Algebra, Section 72. To make sense of this we think of dB
and dA as maps of graded objects of B homogeneous of degree 1 and we use composition
in the category Grgr(B) on the right hand side. In terms of components, if f = (fp,q)
with fp,q : A−q → Bp we have

(26.6.1) d(fp,q) = dB ◦ fp,q − (−1)p+qfp,q ◦ dA
Note that the first term of this expression is in HomB(A−q, Bp+1) and the second term is
in HomB(A−q−1, Bp). The reader checks that

(1) d has square zero,
(2) an element f in Homn(A•, B•) has d(f) = 0 if and only if the morphism f :

A• → B•[n] of graded objects of B is actually a map of complexes,
(3) in particular, the category of complexes of Compdg(B) is equal to Comp(B),

1This may be nonstandard terminology.
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(4) the morphism of complexes defined by f as in (2) is homotopy equivalent to zero
if and only if f = d(g) for some g ∈ Homn−1(A•, B•).

(5) in particular, we obtain a canonical isomorphism

HomK(B)(A•, B•) −→ H0(HomCompdg(B)(A•, B•))

and the homotopy category of Compdg(B) is equal to K(B).
Given complexes A•, B•, C• we define composition

Homm(B•, C•)×Homn(A•, B•) −→ Homn+m(A•, C•)

by composition (g, f) 7→ g ◦ f in the graded category Grgr(B), see Example 25.5. This
defines a map of differential graded modules

HomCompdg(B)(B•, C•)⊗R HomCompdg(B)(A•, B•) −→ HomCompdg(B)(A•, C•)

as required in Definition 26.1 because

d(g ◦ f) = dC ◦ g ◦ f − (−1)n+mg ◦ f ◦ dA
= (dC ◦ g − (−1)mg ◦ dB) ◦ f + (−1)mg ◦ (dB ◦ f − (−1)nf ◦ dA)
= d(g) ◦ f + (−1)mg ◦ d(f)

as desired.

Lemma 26.7. Let F : B → B′ be an additive functor between additive categories.
Then F induces a functor of differential graded categories

F : Compdg(B)→ Compdg(B′)

of Example 26.6 inducing the usual functors on the category of complexes and the homo-
topy categories.

Proof. Omitted. �

Example 26.8 (Differential graded category of differential graded modules). Let (A, d)
be a differential graded algebra over a ringR. We will construct a differential graded cate-
gory Moddg(A,d) overRwhose category of complexes is Mod(A,d) and whose homotopy cat-
egory isK(Mod(A,d)). As objects of Moddg(A,d) we take the differential gradedA-modules.
Given differential graded A-modules L and M we set

HomModdg(A,d)
(L,M) = HomModgr

A
(L,M) =

⊕
Homn(L,M)

as a graded R-module where the right hand side is defined as in Example 25.6. In other
words, the nth graded piece Homn(L,M) is the R-module of right A-module maps ho-
mogeneous of degree n. For an element f ∈ Homn(L,M) we set

d(f) = dM ◦ f − (−1)nf ◦ dL
To make sense of this we think of dM and dL as graded R-module maps and we use com-
position of graded R-module maps. It is clear that d(f) is homogeneous of degree n + 1
as a graded R-module map, and it is A-linear because

d(f)(xa) = dM (f(x)a)− (−1)nf(dL(xa))

= dM (f(x))a+ (−1)deg(x)+nf(x)d(a)− (−1)nf(dL(x))a− (−1)n+deg(x)f(x)d(a)
= d(f)(x)a
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as desired (observe that this calculation would not work without the sign in the definition
of our differential on Hom). Similar formulae to those of Example 26.6 hold for the dif-
ferential of f in terms of components. The reader checks (in the same way as in Example
26.6) that

(1) d has square zero,
(2) an element f in Homn(L,M) has d(f) = 0 if and only if f : L → M [n] is a

homomorphism of differential graded A-modules,
(3) in particular, the category of complexes of Moddg(A,d) is Mod(A,d),
(4) the homomorphism defined by f as in (2) is homotopy equivalent to zero if and

only if f = d(g) for some g ∈ Homn−1(L,M).
(5) in particular, we obtain a canonical isomorphism

HomK(Mod(A,d))(L,M) −→ H0(HomModdg(A,d)
(L,M))

and the homotopy category of Moddg(A,d) is K(Mod(A,d)).
Given differential graded A-modules K , L, M we define composition

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)
by composition of homogeneous rightA-module maps (g, f) 7→ g ◦ f . This defines a map
of differential graded modules

HomModdg(A,d)
(L,M)⊗R HomModdg(A,d)

(K,L) −→ HomModdg(A,d)
(K,M)

as required in Definition 26.1 because
d(g ◦ f) = dM ◦ g ◦ f − (−1)n+mg ◦ f ◦ dK

= (dM ◦ g − (−1)mg ◦ dL) ◦ f + (−1)mg ◦ (dL ◦ f − (−1)nf ◦ dK)
= d(g) ◦ f + (−1)mg ◦ d(f)

as desired.

Lemma 26.9. Let ϕ : (A, d) → (E, d) be a homomorphism of differential graded
algebras. Then ϕ induces a functor of differential graded categories

F : Moddg(E,d) −→Moddg(A,d)

of Example 26.8 inducing obvious restriction functors on the categories of differential
graded modules and homotopy categories.

Proof. Omitted. �

Lemma 26.10. Let R be a ring. LetA be a differential graded category over R. Let x
be an object ofA. Let

(E, d) = HomA(x, x)
be the differential graded R-algebra of endomorphisms of x. We obtain a functor

A −→Moddg(E,d), y 7−→ HomA(x, y)

of differential graded categories by letting E act on HomA(x, y) via composition in A.
This functor induces functors

Comp(A)→Mod(A,d) and K(A)→ K(Mod(A,d))
by an application of Lemma 26.5.

Proof. This lemma proves itself. �
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27. Obtaining triangulated categories

In this section we discuss the most general setup to which the arguments proving Derived
Categories, Proposition 10.3 and Proposition 10.3 apply.
Let R be a ring. Let A be a differential graded category over R. To make our argument
work, we impose some axioms onA:

(A) A has a zero object and differential graded direct sums of two objects (as in Def-
inition 26.4).

(B) there are functors [n] : A −→ A of differential graded categories such that
[0] = idA and [n+m] = [n] ◦ [m] and given isomorphisms

HomA(x, y[n]) = HomA(x, y)[n]
of differential graded R-modules compatible with composition.

Given our differential graded categoryA we say
(1) a sequence x → y → z of morphisms of Comp(A) is an admissible short exact

sequence if there exists an isomorphism y ∼= x ⊕ z in the underlying graded
category such that x→ z and y → z are (co)projections.

(2) a morphism x → y of Comp(A) is an admissible monomorphism if it extends
to an admissible short exact sequence x→ y → z.

(3) a morphism y → z of Comp(A) is an admissible epimorphism if it extends to
an admissible short exact sequence x→ y → z.

The next lemma tells us an admissible short exact sequence gives a triangle, provided we
have axioms (A) and (B).

Lemma 27.1. Let A be a differential graded category satisfying axioms (A) and (B).
Given an admissible short exact sequence x→ y → z we obtain (see proof) a triangle

x→ y → z → x[1]
in Comp(A) with the property that any two compositions in z[−1] → x → y → z →
x[1] are zero in K(A).

Proof. Choose a diagram
x

1
//

a
��

x

y

π

??

b

��
z

1 //

s

??

z

giving the isomorphism of graded objects y ∼= x ⊕ z as in the definition of an admissible
short exact sequence. Here are some equations that hold in this situation

(1) 1 = πa and hence d(π)a = 0,
(2) 1 = bs and hence bd(s) = 0,
(3) 1 = aπ + sb and hence ad(π) + d(s)b = 0,
(4) πs = 0 and hence d(π)s+ πd(s) = 0,
(5) d(s) = aπd(s) because d(s) = (aπ + sb)d(s) and bd(s) = 0,
(6) d(π) = d(π)sb because d(π) = d(π)(aπ + sb) and d(π)a = 0,
(7) d(πd(s)) = 0 because if we postcompose it with the monomorphism a we get

d(aπd(s)) = d(d(s)) = 0, and
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(8) d(d(π)s) = 0 as by (4) it is the negative of d(πd(s)) which is 0 by (7).
We’ve used repeatedly that d(a) = 0, d(b) = 0, and that d(1) = 0. By (7) we see that

δ = πd(s) = −d(π)s : z → x[1]

is a morphism in Comp(A). By (5) we see that the composition aδ = aπd(s) = d(s)
is homotopic to zero. By (6) we see that the composition δb = −d(π)sb = d(−π) is
homotopic to zero. �

Besides axioms (A) and (B) we need an axiom concerning the existence of cones. We for-
malize everything as follows.

Situation 27.2. HereR is a ring andA is a differential graded category overR having
axioms (A), (B), and

(C) given an arrow f : x → y of degree 0 with d(f) = 0 there exists an admissible
short exact sequence y → c(f) → x[1] in Comp(A) such that the map x[1] →
y[1] of Lemma 27.1 is equal to f [1].

We will call c(f) a cone of the morphism f . If (A), (B), and (C) hold, then cones are
functorial in a weak sense.

Lemma 27.3. In Situation 27.2 suppose that

x1
f1

//

a

��

y1

b

��
x2

f2 // y2

is a diagram of Comp(A) commutative up to homotopy. Then there exists a morphism
c : c(f1)→ c(f2) which gives rise to a morphism of triangles

(a, b, c) : (x1, y1, c(f1))→ (x1, y1, c(f1))

in K(A).

Proof. The assumption means there exists a morphism h : x1 → y2 of degree −1
such that d(h) = bf1 − f2a. Choose isomorphisms c(fi) = yi ⊕ xi[1] of graded objects
compatible with the morphisms yi → c(fi) → xi[1]. Let’s denote ai : yi → c(fi),
bi : c(fi) → xi[1], si : xi[1] → c(fi), and πi : c(fi) → yi the given morphisms. Recall
that xi[1]→ yi[1] is given by πid(si). By axiom (C) this means that

fi = πid(si) = −d(πi)si
(we identify Hom(xi, yi) with Hom(xi[1], yi[1]) using the shift functor [1]). Set c =
a2bπ1 + s2ab1 + a2hb. Then, using the equalities found in the proof of Lemma 27.1 we
obtain

d(c) = a2bd(π1) + d(s2)ab1 + a2d(h)b1

= −a2bf1b1 + a2f2ab1 + a2(bf1 − f2a)b1

= 0

(where we have used in particular that d(π1) = d(π1)s1b1 = f1b1 and d(s2) = a2π2d(s2) =
a2f2). Thus c is a degree 0 morphism c : c(f1) → c(f2) of A compatible with the given
morphisms yi → c(fi)→ xi[1]. �
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In Situation 27.2 we say that a triangle (x, y, z, f, g, h) inK(A) is a distinguished triangle
if there exists an admissible short exact sequence x′ → y′ → z′ such that (x, y, z, f, g, h)
is isomorphic as a triangle in K(A) to the triangle (x′, y′, z′, x′ → y′, y′ → z′, δ) con-
structed in Lemma 27.1. We will show below that

K(A) is a triangulated category

This result, although not as general as one might think, applies to a number of natural
generalizations of the cases covered so far in the Stacks project. Here are some examples:

(1) Let (X,OX) be a ringed space. Let (A, d) be a sheaf of differential graded OX -
algebras. Let A be the differential graded category of differential graded A-
modules. Then K(A) is a triangulated category.

(2) Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential gradedO-algebras.
LetA be the differential graded category of differential gradedA-modules. Then
K(A) is a triangulated category. See Differential Graded Sheaves, Proposition
22.4.

(3) Two examples with a different flavor may be found in Examples, Section 69.
The following simple lemma is a key to the construction.

Lemma 27.4. In Situation 27.2 given any object x of A, and the cone C(1x) of the
identity morphism 1x : x→ x, the identity morphism on C(1x) is homotopic to zero.

Proof. Consider the admissible short exact sequence given by axiom (C).

x
a // C(1x)
π

oo
b // x[1]
s
oo

Then by Lemma 27.1, identifying hom-sets under shifting, we have 1x = πd(s) = −d(π)s
where s is regarded as a morphism in Hom−1

A (x,C(1x)). Therefore a = aπd(s) = d(s)
using formula (5) of Lemma 27.1, and b = −d(π)sb = −d(π) by formula (6) of Lemma
27.1. Hence

1C(1x) = aπ + sb = d(s)π − sd(π) = d(sπ)

since s is of degree −1. �

A more general version of the above lemma will appear in Lemma 27.13. The following
lemma is the analogue of Lemma 7.3.

Lemma 27.5. In Situation 27.2 given a diagram

x
f //

a

��

y

b

��
z

g // w

in Comp(A) commuting up to homotopy. Then
(1) If f is an admissible monomorphism, then b is homotopic to a morphism b′ which

makes the diagram commute.
(2) If g is an admissible epimorphism, then a is homotopic to a morphism a′ which

makes the diagram commute.
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Proof. To prove (1), observe that the hypothesis implies that there is some h ∈
HomA(x,w) of degree−1 such that bf − ga = d(h). Since f is an admissible monomor-
phism, there is a morphism π : y → x in the category A of degree 0. Let b′ = b− d(hπ).
Then

b′f = bf − d(hπ)f =bf − d(hπf) (since d(f) = 0)
=bf − d(h)
=ga

as desired. The proof for (2) is omitted. �

The following lemma is the analogue of Lemma 7.4.

Lemma 27.6. In Situation 27.2 let α : x → y be a morphism in Comp(A). Then
there exists a factorization in Comp(A):

x
α̃ // ỹ

π // y
s

oo

such that
(1) α̃ is an admissible monomorphism, and πα̃ = α.
(2) There exists a morphism s : y → ỹ in Comp(A) such that πs = 1y and sπ is

homotopic to 1ỹ .

Proof. By axiom (A), we may let ỹ be the differential graded direct sum of y and
C(1x), i.e., there exists a diagram

y
s // y ⊕ C(1x)
π

oo
p // C(1x)
t

oo

where all morphisms are of degree zero, and in Comp(A). Let ỹ = y ⊕ C(1x). Then
1ỹ = sπ + tp. Consider now the diagram

x
α̃ // ỹ

π // y
s

oo

where α̃ is induced by the morphism x
α−→ y and the natural morphism x→ C(1x) fitting

in the admissible short exact sequence

x // C(1x)oo // x[1]oo

So the morphismC(1x)→ x of degree 0 in this diagram, together with the zero morphism
y → x, induces a degree-0 morphism β : ỹ → x. Then α̃ is an admissible monomorphism
since it fits into the admissible short exact sequence

x
α̃ // ỹ // x[1]

Furthermore, πα̃ = α by the construction of α̃, and πs = 1y by the first diagram. It
remains to show that sπ is homotopic to 1ỹ . Write 1x as d(h) for some degree −1 map.
Then, our last statement follows from

1ỹ − sπ =tp
=t(dh)p (by Lemma 27.4)
=d(thp)

since dt = dp = 0, and t is of degree zero. �
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The following lemma is the analogue of Lemma 7.5.

Lemma 27.7. In Situation 27.2 let x1 → x2 → . . .→ xn be a sequence of composable
morphisms in Comp(A). Then there exists a commutative diagram in Comp(A):

x1 // x2 // . . . // xn

y1 //

OO

y2 //

OO

. . . // yn

OO

such that each yi → yi+1 is an admissible monomorphism and each yi → xi is a homotopy
equivalence.

Proof. The case for n = 1 is trivial: one simply takes y1 = x1 and the identity
morphism on x1 is in particular a homotopy equivalence. The case n = 2 is given by
Lemma 27.6. Suppose we have constructed the diagram up to xn−1. We apply Lemma
27.6 to the composition yn−1 → xn−1 → xn to obtain yn. Then yn−1 → yn will be an
admissible monomorphism, and yn → xn a homotopy equivalence. �

The following lemma is the analogue of Lemma 7.6.

Lemma 27.8. In Situation 27.2 let xi → yi → zi be morphisms in A (i = 1, 2, 3)
such that x2 → y2 → z2 is an admissible short exact sequence. Let b : y1 → y2 and
b′ : y2 → y3 be morphisms in Comp(A) such that

x1

0
��

// y1 //

b

��

z1

0
��

x2 // y2 // z2

and

x2

0
��

// y2 //

b′

��

z2

0
��

x3 // y3 // z3

commute up to homotopy. Then b′ ◦ b is homotopic to 0.

Proof. By Lemma 27.5, we can replace b and b′ by homotopic maps b̃ and b̃′, such
that the right square of the left diagram commutes and the left square of the right diagram
commutes. Say b = b̃+ d(h) and b′ = b̃′ + d(h′) for degree−1 morphisms h and h′ inA.
Hence

b′b = b̃′b̃+ d(b̃′h+ h′b̃+ h′d(h))
since d(b̃) = d(b̃′) = 0, i.e. b′b is homotopic to b̃′b̃. We now want to show that b̃′b̃ =
0. Because x2

f−→ y2
g−→ z2 is an admissible short exact sequence, there exist degree 0

morphisms π : y2 → x2 and s : z2 → y2 such that idy2 = fπ + sg. Therefore

b̃′b̃ = b̃′(fπ + sg)b̃ = 0

since gb̃ = 0 and b̃′f = 0 as consequences of the two commuting squares. �

The following lemma is the analogue of Lemma 8.1.

Lemma 27.9. In Situation 27.2 let 0→ x→ y → z → 0 be an admissible short exact
sequence in Comp(A). The triangle

x // y // z
δ // x[1]

with δ : z → x[1] as defined in Lemma 27.1 is up to canonical isomorphism in K(A),
independent of the choices made in Lemma 27.1.
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Proof. Suppose δ is defined by the splitting

x
a // y

b //
π
oo z

s
oo

and δ′ is defined by the splitting with π′, s′ in place of π, s. Then

s′ − s = (aπ + sb)(s′ − s) = aπs′

since bs′ = bs = 1z and πs = 0. Similarly,

π′ − π = (π′ − π)(aπ + sb) = π′sb

Since δ = πd(s) and δ′ = π′d(s′) as constructed in Lemma 27.1, we may compute

δ′ = π′d(s′) = (π + π′sb)d(s+ aπs′) = δ + d(πs′)
using πa = 1x, ba = 0, and π′sbd(s′) = π′sbaπd(s′) = 0 by formula (5) in Lemma
27.1. �

The following lemma is the analogue of Lemma 9.1.

Lemma 27.10. In Situation 27.2 let f : x → y be a morphism in Comp(A). The
triangle (y, c(f), x[1], i, p, f [1]) is the triangle associated to the admissible short exact se-
quence

y // c(f) // x[1]
where the cone c(f) is defined as in Lemma 27.1.

Proof. This follows from axiom (C). �

The following lemma is the analogue of Lemma 9.2.

Lemma 27.11. In Situation 27.2 let α : x → y and β : y → z define an admissible
short exact sequence

x // y // z

in Comp(A). Let (x, y, z, α, β, δ) be the associated triangle in K(A). Then, the triangles

(z[−1], x, y, δ[−1], α, β) and (z[−1], x, c(δ[−1]), δ[−1], i, p)
are isomorphic.

Proof. We have a diagram of the form

z[−1]
δ[−1] //

1
��

x
α //

1

��

y
β //

��

α̃
oo z

1

��

β̃

oo

z[−1]
δ[−1] // x

i // c(δ[−1])
p //

ĩ

oo z
p̃
oo

with splittings to α, β, i, and p given by α̃, β̃, ĩ, and p̃ respectively. Define a morphism
y → c(δ[−1]) by iα̃ + p̃β and a morphism c(δ[−1]) → y by αĩ + β̃p. Let us first check
that these define morphisms in Comp(A). We remark that by identities from Lemma 27.1,
we have the relation δ[−1] = α̃d(β̃) = −d(α̃)β̃ and the relation δ[−1] = ĩd(p̃). Then

d(α̃) = d(α̃)β̃β
= −δ[−1]β
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where we have used equation (6) of Lemma 27.1 for the first equality and the preceeding
remark for the second. Similarly, we obtain d(p̃) = iδ[−1]. Hence

d(iα̃+ p̃β) = d(i)α̃+ id(α̃) + d(p̃)β + p̃d(β)
= id(α̃) + d(p̃)β
= −iδ[−1]β + iδ[−1]β
= 0

so iα̃ + p̃β is indeed a morphism of Comp(A). By a similar calculation, αĩ + β̃p is also
a morphism of Comp(A). It is immediate that these morphisms fit in the commutative
diagram. We compute:

(iα̃+ p̃β)(αĩ+ β̃p) = iα̃αĩ+ iα̃β̃p+ p̃βαĩ+ p̃ββ̃p

= ĩi+ p̃p

= 1c(δ[−1])

where we have freely used the identities of Lemma 27.1. Similarly, we compute (αĩ +
β̃p)(iα̃ + p̃β) = 1y , so we conclude y ∼= c(δ[−1]). Hence, the two triangles in question
are isomorphic. �

The following lemma is the analogue of Lemma 9.3.

Lemma 27.12. In Situation 27.2 let f1 : x1 → y1 and f2 : x2 → y2 be morphisms in
Comp(A). Let

(a, b, c) : (x1, y1, c(f1), f1, i1, p1)→ (x2, y2, c(f2), f2, i1, p1)
be any morphism of triangles in K(A). If a and b are homotopy equivalences, then so is
c.

Proof. Since a and b are homotopy equivalences, they are invertible in K(A) so let
a−1 and b−1 denote their inverses in K(A), giving us a commutative diagram

x2

a−1

��

f2 // y2

b−1

��

i2 // c(f2)

c′

��
x1

f1 // y1
i1 // c(f1)

where the map c′ is defined via Lemma 27.3 applied to the left commutative box of the
above diagram. Since the diagram commutes in K(A), it suffices by Lemma 27.8 to prove
the following: given a morphism of triangle (1, 1, c) : (x, y, c(f), f, i, p)→ (x, y, c(f), f, i, p)
in K(A), the map c is an isomorphism in K(A). We have the commutative diagrams in
K(A):

y

1

��

// c(f)

c

��

// x[1]

1
��

y // c(f) // x[1]

⇒

y

0

��

// c(f)

c−1
��

// x[1]

0
��

y // c(f) // x[1]
Since the rows are admissible short exact sequences, we obtain the identity (c − 1)2 = 0
by Lemma 27.8, from which we conclude that 2− c is inverse to c in K(A) so that c is an
isomorphism. �

The following lemma is the analogue of Lemma 9.4.
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Lemma 27.13. In Situation 27.2.

(1) Given an admissible short exact sequence x α−→ y
β−→ z. Then there exists a

homotopy equivalence e : C(α)→ z such that the diagram

(27.13.1)

x
α //

��

y
b //

��

C(α) −c //

e

��

x[1]

��
x

α // y
β // z

δ // x[1]

defines an isomorphism of triangles in K(A). Here y b−→ C(α) c−→ x[1] is the
admissible short exact sequence given as in axiom (C).

(2) Given a morphism α : x→ y in Comp(A), let x α̃−→ ỹ → y be the factorization
given as in Lemma 27.6, where the admissible monomorphism x

α̃−→ y extends
to the admissible short exact sequence

x
α̃ // ỹ // z

Then there exists an isomorphism of triangles

x
α̃ //

��

ỹ //

��

z
δ //

e

��

x[1]

��
x

α // y // C(α) −c // x[1]

where the upper triangle is the triangle associated to the sequence x α̃−→ ỹ → z.

Proof. For (1), we consider the more complete diagram, without the sign change on
c:

x
α //

��

y
π
oo

b //

��

C(α)
p

oo
c //

e

��

x[1]
σ
oo

��

α // y[1]
π
oo

x
α // y

β //
π
oo z

δ //
s

oo

f

OO

x[1]

where the admissible short exact sequence x α−→ y
β−→ z is given the splitting π, s, and the

admissible short exact sequence y b−→ C(α) c−→ x[1] is given the splitting p, σ. Note that
(identifying hom-sets under shifting)

α = pd(σ) = −d(p)σ, δ = πd(s) = −d(π)s

by the construction in Lemma 27.1.

We define e = βp and f = bs−σδ. We first check that they are morphisms in Comp(A).
To show that d(e) = βd(p) vanishes, it suffices to show that βd(p)b and βd(p)σ both
vanish, whereas

βd(p)b = βd(pb) = βd(1y) = 0, βd(p)σ = −βα = 0
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Similarly, to check that d(f) = bd(s) − d(σ)δ vanishes, it suffices to check the post-
compositions by p and c both vanish, whereas

pbd(s)− pd(σ)δ =d(s)− αδ = d(s)− απd(s) = 0
cbd(s)− cd(σ)δ =− cd(σ)δ = −d(cσ)δ = 0

The commutativity of left two squares of the diagram 27.13.1 follows directly from defi-
nition. Before we prove the commutativity of the right square (up to homotopy), we first
check that e is a homotopy equivalence. Clearly,

ef = βp(bs− σδ) = βs = 1z
To check that fe is homotopic to 1C(α), we first observe

bα = bpd(α) = d(σ), αc = −d(p)σc = −d(p), d(π)p = d(π)sβp = −δβp
Using these identities, we compute

1C(α) =bp+ σc (from y
b−→ C(α) c−→ x[1])

=b(απ + sβ)p+ σ(πα)c (from x
α−→ y

β−→ z)
=d(σ)πp+ bsβp− σπd(p) (by the first two identities above)
=d(σ)πp+ bsβp− σδβp+ σδβp− σπd(p)
=(bs− σδ)βp+ d(σ)πp− σd(π)p− σπd(p) (by the third identity above)
=fe+ d(σπp)

since σ ∈ Hom−1(x,C(α)) (cf. proof of Lemma 27.4). Hence e and f are homotopy
inverses. Finally, to check that the right square of diagram 27.13.1 commutes up to homo-
topy, it suffices to check that −cf = δ. This follows from

−cf = −c(bs− σδ) = cσδ = δ

since cb = 0.
For (2), consider the factorization x α̃−→ ỹ → y given as in Lemma 27.6, so the second mor-
phism is a homotopy equivalence. By Lemmas 27.3 and 27.12, there exists an isomorphism
of triangles between

x
α−→ y → C(α)→ x[1] and x

α̃−→ ỹ → C(α̃)→ x[1]
Since we can compose isomorphisms of triangles, by replacing α by α̃, y by ỹ, andC(α) by
C(α̃), we may assume α is an admissible monomorphism. In this case, the result follows
from (1). �

The following lemma is the analogue of Lemma 10.1.

Lemma 27.14. In Situation 27.2 the homotopy categoryK(A) with its natural trans-
lation functors and distinguished triangles is a pre-triangulated category.

Proof. We will verify each of TR1, TR2, and TR3.
Proof of TR1. By definition every triangle isomorphic to a distinguished one is distin-
guished. Since

x
1x // x // 0

is an admissible short exact sequence, (x, x, 0, 1x, 0, 0) is a distinguished triangle. More-
over, given a morphismα : x→ y in Comp(A), the triangle given by (x, y, c(α), α, i,−p)
is distinguished by Lemma 27.13.
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Proof of TR2. Let (x, y, z, α, β, γ) be a triangle and suppose (y, z, x[1], β, γ,−α[1]) is dis-
tinguished. Then there exists an admissible short exact sequence 0→ x′ → y′ → z′ → 0
such that the associated triangle (x′, y′, z′, α′, β′, γ′) is isomorphic to (y, z, x[1], β, γ,−α[1]).
After rotating, we conclude that (x, y, z, α, β, γ) is isomorphic to (z′[−1], x′, y′, γ′[−1], α′, β′).
By Lemma 27.11, we deduce that (z′[−1], x′, y′, γ′[−1], α′, β′) is isomorphic to (z′[−1], x′, c(γ′[−1]), γ′[−1], i, p).
Composing the two isomorphisms with sign changes as indicated in the following dia-
gram:

x
α //

��

y
β //

��

z
γ //

��

x[1]

��
z′[−1]

−γ′[−1] //

−1z′[−1]

��

x
α′

// y′ β′
//

��

z′

−1z′

��
z′[−1]

γ′[−1] // x
α′
// c(γ′[−1]) −p // z′

We conclude that (x, y, z, α, β, γ) is distinguished by Lemma 27.13 (2). Conversely, sup-
pose that (x, y, z, α, β, γ) is distinguished, so that by Lemma 27.13 (1), it is isomorphic to a
triangle of the form (x′, y′, c(α′), α′, i,−p) for some morphismα′ : x′ → y′ in Comp(A).
The rotated triangle (y, z, x[1], β, γ,−α[1]) is isomorphic to the triangle (y′, c(α′), x′[1], i,−p,−α[1])
which is isomorphic to (y′, c(α′), x′[1], i, p, α[1]). By Lemma 27.10, this triangle is distin-
guished, from which it follows that (y, z, x[1], β, γ,−α[1]) is distinguished.

Proof of TR3: Suppose (x, y, z, α, β, γ) and (x′, y′, z′, α′, β′, γ′) are distinguished trian-
gles of Comp(A) and let f : x → x′ and g : y → y′ be morphisms such that α′ ◦ f =
g ◦ α. By Lemma 27.13, we may assume that (x, y, z, α, β, γ) = (x, y, c(α), α, i,−p)
and (x′, y′, z′, α′, β′, γ′) = (x′, y′, c(α′), α′, i′,−p′). Now apply Lemma 27.3 and we are
done. �

The following lemma is the analogue of Lemma 10.2.

Lemma 27.15. In Situation 27.2 given admissible monomorphisms x α−→ y, y β−→
z in A, there exist distinguished triangles (x, y, q1, α, p1, δ1), (x, z, q2, βα, p2, δ2) and
(y, z, q3, β, p3, δ3) for which TR4 holds.

Proof. Given admissible monomorphisms x α−→ y and y β−→ z, we can find distin-
guished triangles, via their extensions to admissible short exact sequences,

x
α // y
π1
oo

p1 // q1
δ1 //

s1
oo x[1]

x
βα // z
π1π3
oo

p2 // q2
δ2 //

s2
oo x[1]

y
β // z
π3
oo

p3 // q3
δ3 //

s3
oo x[1]



2094 22. DIFFERENTIAL GRADED ALGEBRA

In these diagrams, the maps δi are defined as δi = πid(si) analagous to the maps defined
in Lemma 27.1. They fit in the following solid commutative diagram

x
α //

βα

%%

y

β

��

π1
oo

p1 // q1
δ1 //

s1
oo

p2βs1

��

x[1]

z

π3

OO

p3

��

p2

%%

π1π3

ee

q3

s3

OO

δ3

��

q2p3s2
oo

s2

ee

δ2

%%
y[1] x[1]

where we have defined the dashed arrows as indicated. Clearly, their composition p3s2p2βs1 =
0 since s2p2 = 0. We claim that they both are morphisms of Comp(A). We can check
this using equations in Lemma 27.1:

d(p2βs1) = p2βd(s1) = p2βαπ1d(s1) = 0
since p2βα = 0, and

d(p3s2) = p3d(s2) = p3βαπ1π3d(s2) = 0
since p3β = 0. To check that q1 → q2 → q3 is an admissible short exact sequence, it
remains to show that in the underlying graded category, q2 = q1 ⊕ q3 with the above
two morphisms as coprojection and projection. To do this, observe that in the underlying
graded category C , there hold

y = x⊕ q1, z = y ⊕ q3 = x⊕ q1 ⊕ q3

where π1π3 gives the projection morphism onto the first factor: x ⊕ q1 ⊕ q3 → z. By
axiom (A) on A, C is an additive category, hence we may apply Homology, Lemma 3.10
and conclude that

Ker(π1π3) = q1 ⊕ q3

in C. Another application of Homology, Lemma 3.10 to z = x ⊕ q2 gives Ker(π1π3) =
q2. Hence q2 ∼= q1 ⊕ q3 in C. It is clear that the dashed morphisms defined above give
coprojection and projection.

Finally, we have to check that the morphism δ : q3 → q1[1] induced by the admissible
short exact sequence q1 → q2 → q3 agrees with p1δ3. By the construction in Lemma 27.1,
the morphism δ is given by

p1π3s2d(p2s3) =p1π3s2p2d(s3)
=p1π3(1− βαπ1π3)d(s3)
=p1π3d(s3) (since π3β = 0)
=p1δ3

as desired. The proof is complete. �

Putting everything together we finally obtain the analogue of Proposition 10.3.
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Proposition 27.16. In Situation 27.2 the homotopy category K(A) with its natural
translation functors and distinguished triangles is a triangulated category.

Proof. By Lemma 27.14 we know that K(A) is pre-triangulated. Combining Lem-
mas 27.7 and 27.15 with Derived Categories, Lemma 4.15, we conclude that K(A) is a
triangulated category. �

Lemma 27.17. Let R be a ring. Let F : A → B be a functor between differential
graded categories overR satisfying axioms (A), (B), and (C) such that F (x[1]) = F (x)[1].
Then F induces an exact functor K(A)→ K(B) of triangulated categories.

Proof. Namely, if x → y → z is an admissible short exact sequence in Comp(A),
thenF (x)→ F (y)→ F (z) is an admissible short exact sequence in Comp(B). Moreover,
the “boundary” morphism δ = πd(s) : z → x[1] constructed in Lemma 27.1 produces
the morphism F (δ) : F (z) → F (x[1]) = F (x)[1] which is equal to the boundary map
F (π)d(F (s)) for the admissible short exact sequence F (x)→ F (y)→ F (z). �

28. Bimodules

We continue the discussion started in Section 12.

Definition 28.1. Bimodules. Let R be a ring.
(1) Let A and B be R-algebras. An (A,B)-bimodule is an R-module M equippend

with R-bilinear maps

A×M →M, (a, x) 7→ ax and M ×B →M, (x, b) 7→ xb

such that the following hold
(a) a′(ax) = (a′a)x and (xb)b′ = x(bb′),
(b) a(xb) = (ax)b, and
(c) 1x = x = x1.

(2) Let A and B be Z-graded R-algebras. A graded (A,B)-bimodule is an (A,B)-
bimoduleM which has a gradingM =

⊕
Mn such thatAnMm ⊂Mn+m and

MnBm ⊂Mn+m.
(3) Let A and B be differential graded R-algebras. A differential graded (A,B)-

bimodule is a graded (A,B)-bimodule which comes equipped with a differential
d : M →M homogeneous of degree 1 such that d(ax) = d(a)x+(−1)deg(a)ad(x)
and d(xb) = d(x)b+(−1)deg(x)xd(b) for homogeneous elements a ∈ A, x ∈M ,
b ∈ B.

Observe that a differential graded (A,B)-bimodule M is the same thing as a right differ-
ential graded B-module which is also a left differential graded A-module such that the
grading and differentials agree and such that the A-module structure commutes with the
B-module structure. Here is a precise statement.

Lemma 28.2. Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. Let M be a right differential graded B-module. There is a 1-to-1 correspondence
between (A,B)-bimodule structures on M compatible with the given differential graded
B-module structure and homomorphisms

A −→ HomModdg(B,d)
(M,M)

of differential graded R-algebras.
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Proof. Let µ : A ×M → M define a left differential graded A-module structure
on the underlying complex of R-modules M• of M . By Lemma 13.1 the structure µ cor-
responds to a map γ : A → Hom•(M•,M•) of differential graded R-algebras. The
assertion of the lemma is simply that µ commutes with theB-action, if and only if γ ends
up inside

HomModdg(B,d)
(M,M) ⊂ Hom•(M•,M•)

We omit the detailed calculation. �

LetM be a differential graded (A,B)-bimodule. Recall from Section 11 that the left differ-
ential graded A-module structure corresponds to a right differential graded Aopp-module
structure. Since the A and B module structures commute this gives M the structure of a
differential graded Aopp ⊗R B-module:

x · (a⊗ b) = (−1)deg(a) deg(x)axb

Conversely, if we have a differential graded Aopp ⊗R B-module M , then we can use the
formula above to get a differential graded (A,B)-bimodule.

Lemma 28.3. Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. The construction above defines an equivalence of categories

differential graded
(A,B)-bimodules ←→

right differential graded
Aopp ⊗R B-modules

Proof. Immediate from discussion the above. �

Let R be a ring. Let (A, d) and (B, d) be differential graded R-algebras. Let P be a differ-
ential graded (A,B)-bimodule. We say P has property (P) if it there exists a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P

by differential graded (A,B)-bimodules such that
(1) P =

⋃
FpP ,

(2) the inclusions FiP → Fi+1P are split as graded (A,B)-bimodule maps,
(3) the quotientsFi+1P/FiP are isomorphic as differential graded (A,B)-bimodules

to a direct sum of (A⊗R B)[k].

Lemma 28.4. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
Let M be a differential graded (A,B)-bimodule. There exists a homomorphism P → M
of differential graded (A,B)-bimodules which is a quasi-isomorphism such that P has
property (P) as defined above.

Proof. Immediate from Lemmas 28.3 and 20.4. �

Lemma 28.5. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
Let P be a differential graded (A,B)-bimodule having property (P) with corresponding
filtration F•, then we obtain a short exact sequence

0→
⊕

FiP →
⊕

FiP → P → 0

of differential graded (A,B)-bimodules which is split as a sequence of graded (A,B)-
bimodules.

Proof. Immediate from Lemmas 28.3 and 20.1. �
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29. Bimodules and tensor product

Let R be a ring. Let A and B be R-algebras. Let M be a right A-module. Let N be a
(A,B)-bimodule. Then M ⊗A N is a right B-module.

If in the situation of the previous paragraphA andB are Z-graded algebras,M is a graded
A-module, andN is a graded (A,B)-bimodule, thenM⊗AN is a right gradedB-module.
The construction is functorial in M and defines a functor

−⊗A N : ModgrA −→ModgrB
of graded categories as in Example 25.6. Namely, ifM andM ′ are gradedA-modules and
f : M → M ′ is an A-module homomorphism homogeneous of degree n, then f ⊗ idN :
M ⊗A N →M ′ ⊗A N is a B-module homomorphism homogeneous of degree n.

If in the situation of the previous paragraph (A, d) and (B, d) are differential graded alge-
bras,M is a differential gradedA-module, andN is a differential graded (A,B)-bimodule,
then M ⊗A N is a right differential graded B-module.

Lemma 29.1. Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. Let N be a differential graded (A,B)-bimodule. Then M 7→ M ⊗A N defines a
functor

−⊗A N : Moddg(A,d) −→Moddg(B,d)

of differential graded categories. This functor induces functors

Mod(A,d) →Mod(B,d) and K(Mod(A,d))→ K(Mod(B,d))

by an application of Lemma 26.5.

Proof. Above we have seen how the construction defines a functor of underlying
graded categories. Thus it suffices to show that the construction is compatible with dif-
ferentials. Let M and M ′ be differential graded A-modules and let f : M → M ′ be an
A-module homomorphism which is homogeneous of degree n. Then we have

d(f) = dM ′ ◦ f − (−1)nf ◦ dM
On the other hand, we have

d(f ⊗ idN ) = dM ′⊗AN ◦ (f ⊗ idN )− (−1)n(f ⊗ idN ) ◦ dM⊗AN

Applying this to an element x⊗ y with x ∈M and y ∈ N homogeneous we get

d(f ⊗ idN )(x⊗ y) =dM ′(f(x))⊗ y + (−1)n+deg(x)f(x)⊗ dN (y)

− (−1)nf(dM (x))⊗ y − (−1)n+deg(x)f(x)⊗ dN (y)
=d(f)(x⊗ y)

Thus we see that d(f)⊗ idN = d(f ⊗ idN ) and the proof is complete. �

Remark 29.2. Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. Let N be a differential graded (A,B)-bimodule. Let M be a right differential
graded A-module. Then for every k ∈ Z there is an isomorphism

(M ⊗A N)[k] −→M [k]⊗A N

of right differential gradedB-modules defined without the intervention of signs, see More
on Algebra, Section 72.
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If we have a ringR andR-algebrasA,B, andC , a rightA-moduleM , an (A,B)-bimodule
N , and a (B,C)-bimodule N ′, then N ⊗B N ′ is a (A,C)-bimodule and we have

(M ⊗A N)⊗B N ′ = M ⊗A (N ⊗B N ′)

This equality continuous to hold in the graded and in the differential graded case. See
More on Algebra, Section 72 for sign rules.

30. Bimodules and internal hom

Let R be a ring. If A is an R-algebra (see our conventions in Section 2) and M , M ′ are
right A-modules, then we define

HomA(M,M ′) = {f : M →M ′ | f is A-linear}

as usual.

Let R-be a ring. Let A and B be R-algebras. Let N be an (A,B)-bimodule. Let N ′ be a
right B-module. In this situation we will think of

HomB(N,N ′)

as a right A-module using precomposition.

LetR-be a ring. LetA andB be Z-gradedR-algebras. LetN be a graded (A,B)-bimodule.
LetN ′ be a right gradedB-module. In this situation we will think of the gradedR-module

HomModgr
B

(N,N ′)

defined in Example 25.6 as a right gradedA-module using precomposition. The construc-
tion is functorial in N ′ and defines a functor

HomModgr
B

(N,−) : ModgrB −→ModgrA
of graded categories as in Example 25.6. Namely, if N1 and N2 are graded B-modules
and f : N1 → N2 is a B-module homomorphism homogeneous of degree n, then the
induced map HomModgr

B
(N,N1) → HomModgr

B
(N,N2) is an A-module homomorphism

homogeneous of degree n.

Let R be a ring. Let A and B be differential Z-graded R-algebras. Let N be a differential
graded (A,B)-bimodule. LetN ′ be a right differential gradedB-module. In this situation
we will think of the differential graded R-module

HomModdg(B,d)
(N,N ′)

defined in Example 26.8 as a right differential graded A-module using precomposition
as in the graded case. This is compatible with differentials because multiplication is the
composition

HomModdg
B

(N,N ′)⊗RA→ HomModdg
B

(N,N ′)⊗RHomModdg
B

(N,N)→ HomModdg
B

(N,N ′)

The first arrow uses the map of Lemma 28.2 and the second arrow is the composition in
the differential graded category Moddg(B,d).

Lemma 30.1. Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. Let N be a differential graded (A,B)-bimodule. The construction above defines
a functor

HomModdg(B,d)
(N,−) : Moddg(B,d) −→Moddg(A,d)
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of differential graded categories. This functor induces functors

Mod(B,d) →Mod(A,d) and K(Mod(B,d))→ K(Mod(A,d))

by an application of Lemma 26.5.

Proof. Above we have seen how the construction defines a functor of underlying
graded categories. Thus it suffices to show that the construction is compatible with differ-
entials. Let N1 and N2 be differential graded B-modules. Write

H12 = HomModdg(B,d)
(N1, N2), H1 = HomModdg(B,d)

(N,N1), H2 = HomModdg(B,d)
(N,N2)

Consider the composition
c : H12 ⊗R H1 −→ H2

in the differential graded category Moddg(B,d). Let f : N1 → N2 be aB-module homomor-
phism which is homogeneous of degree n, in other words, f ∈ Hn

12. The functor in the
lemma sends f to cf : H1 → H2, g 7→ c(f, g). Simlarly for d(f). On the other hand, the
differential on

HomModdg(A,d)
(H1,H2)

sends cf to dH2 ◦ cf − (−1)ncf ◦ dH1 . As c is a morphism of complexes of R-modules we
have dc(f, g) = c(df, g) + (−1)nc(f, dg). Hence we see that

(dcf )(g) = dc(f, g)− (−1)nc(f, dg)
= c(df, g) + (−1)nc(f, dg)− (−1)nc(f, dg)
= c(df, g) = cdf (g)

and the proof is complete. �

Remark 30.2. Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. Let N be a differential graded (A,B)-bimodule. Let N ′ be a right differential
graded B-module. Then for every k ∈ Z there is an isomorphism

HomModgr
B

(N,N ′)[k] −→ HomModgr
B

(N,N ′[k])

of right differential gradedA-modules defined without the intervention of signs, see More
on Algebra, Section 72.

Lemma 30.3. LetR be a ring. LetA andB beR-algebras. LetM be a rightA-module,
N an (A,B)-bimodule, andN ′ a rightB-module. Then we have a canonical isomorphism

HomB(M ⊗A N,N ′) = HomA(M,HomB(N,N ′))

of R-modules. If A, B, M , N , N ′ are compatibly graded, then we have a canonical iso-
morphism

HomModgr
B

(M ⊗A N,N ′) = HomModgr
A

(M,HomModgr
B

(N,N ′))

of graded R-modules If A, B, M , N , N ′ are compatibly differential graded, then we have
a canonical isomorphism

HomModdg(B,d)
(M ⊗A N,N ′) = HomModdg(A,d)

(M,HomModdg(B,d)
(N,N ′))

of complexes of R-modules.
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Proof. Omitted. Hint: in the ungraded case interpret both sides as A-bilinear maps
ψ : M × N → N ′ which are B-linear on the right. In the (differential) graded case,
use the isomorphism of More on Algebra, Lemma 71.1 and check it is compatible with the
module structures. Alternatively, use the isomorphism of Lemma 13.2 and show that it is
compatible with the B-module structures. �

31. Derived Hom

This section is analogous to More on Algebra, Section 73.

Let R be a ring. Let (A, d) and (B, d) be differential graded algebras over R. Let N be a
differential graded (A,B)-bimodule. Consider the functor

(31.0.1) HomModdg(B,d)
(N,−) : Mod(B,d) −→Mod(A,d)

of Section 30.

Lemma 31.1. The functor (31.0.1) defines an exact functorK(Mod(B,d))→ K(Mod(A,d))
of triangulated categories.

Proof. Via Lemma 30.1 and Remark 30.2 this follows from the general principle of
Lemma 27.17. �

Recall that we have an exact functor of triangulated categories

HomModdg(B,d)
(N,−) : K(Mod(B,d))→ K(Mod(A,d))

see Lemma 31.1. Consider the diagram

K(Mod(B,d))

��

see above
//

F
))

K(Mod(A,d))

��
D(B, d) // D(A, d)

We would like to construct a dotted arrow as the right derived functor of the composi-
tion F . (Warning: in most interesting cases the diagram will not commute.) Namely,
in the general setting of Derived Categories, Section 14 we want to compute the right
derived functor of F with respect to the multiplicative system of quasi-isomorphisms in
K(Mod(A,d)).

Lemma 31.2. In the situation above, the right derived functor of F exists. We denote
it RHom(N,−) : D(B, d)→ D(A, d).

Proof. We will use Derived Categories, Lemma 14.15 to prove this. As our collection
I of objects we will use the objects with property (I). Property (1) was shown in Lemma
21.4. Property (2) holds because if s : I → I ′ is a quasi-isomorphism of modules with
property (I), then s is a homotopy equivalence by Lemma 22.3. �

Lemma 31.3. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
Let f : N → N ′ be a homomorphism of differential graded (A,B)-bimodules. Then f
induces a morphism of functors

− ◦ f : RHom(N ′,−) −→ RHom(N,−)

If f is a quasi-isomorphism, then f ◦ − is an isomorphism of functors.
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Proof. Write B = Moddg(B,d) the differential graded category of differential graded
B-modules, see Example 26.8. Let I be a differential graded B-module with property (I).
Then f ◦ − : HomB(N ′, I) → HomB(N, I) is a map of differential graded A-modules.
Moreover, this is functorial with respect to I . Since the functors RHom(N ′,−) and
RHom(N,−) are computed by applying HomB into objects with property (I) (Lemma
31.2) we obtain a transformation of functors as indicated.

Assume that f is a quasi-isomorphism. Let F• be the given filtration on I . Since I =
lim I/FpI we see that HomB(N ′, I) = lim HomB(N ′, I/FpI) and HomB(N, I) = lim HomB(N, I/FpI).
Since the transition maps in the system I/FpI are split as graded modules, we see that the
transition maps in the systems HomB(N ′, I/FpI) and HomB(N, I/FpI) are surjective.
Hence HomB(N ′, I), resp. HomB(N, I) viewed as a complex of abelian groups computes
R lim of the system of complexes HomB(N ′, I/FpI), resp. HomB(N, I/FpI). See More
on Algebra, Lemma 86.1. Thus it suffices to prove each

HomB(N ′, I/FpI)→ HomB(N, I/FpI)
is a quasi-isomorphism. Since the surjections I/Fp+1I → I/FpI are split as maps of
graded B-modules we see that

0→ HomB(N ′, FpI/Fp+1I)→ HomB(N ′, I/Fp+1I)→ HomB(N ′, I/FpI)→ 0
is a short exact sequence of differential graded A-modules. There is a similar sequence
for N and f induces a map of short exact sequences. Hence by induction on p (start-
ing with p = 0 when I/F0I = 0) we conclude that it suffices to show that the map
HomB(N ′, FpI/Fp+1I)→ HomB(N,FpI/Fp+1I) is a quasi-isomorphism. SinceFpI/Fp+1I
is a product of shifts of A∨ it suffice to prove HomB(N ′, B∨[k]) → HomB(N,B∨[k])
is a quasi-isomorphism. By Lemma 19.3 it suffices to show (N ′)∨ → N∨ is a quasi-
isomorphism. This is true because f is a quasi-isomorphism and ( )∨ is an exact func-
tor. �

Lemma 31.4. Let (A, d) and (B, d) be differential graded algebras over a ring R. Let
N be a differential graded (A,B)-bimodule. Then for everyn ∈ Z there are isomorphisms

Hn(RHom(N,M)) = ExtnD(B,d)(N,M)

of R-modules functorial in M . It is also functorial in N with respect to the operation
described in Lemma 31.3.

Proof. In the proof of Lemma 31.2 we have seen

RHom(N,M) = HomModdg(B,d)
(N, I)

as a differential graded A-module where M → I is a quasi-isomorphism of M into a
differential gradedB-module with property (I). Hence this complex has the correct coho-
mology modules by Lemma 22.3. We omit a discussion of the functorial nature of these
identifications. �

Lemma 31.5. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
LetN be a differential graded (A,B)-bimodule. If HomD(B,d)(N,N ′) = HomK(Mod(B,d))(N,N ′)
for allN ′ ∈ K(B, d), for example ifN has property (P) as a differential gradedB-module,
then

RHom(N,M) = HomModdg(B,d)
(N,M)

functorially in M in D(B, d).
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Proof. By construction (Lemma 31.2) to findRHom(N,M) we choose a quasi-isomorphism
M → I where I is a differential gradedB-module with property (I) and we setRHom(N,M) =
HomModdg(B,d)

(N, I). By assumption the map

HomModdg(B,d)
(N,M) −→ HomModdg(B,d)

(N, I)

induced byM → I is a quasi-isomorphism, see discussion in Example 26.8. This proves the
lemma. If N has property (P) as a B-module, then we see that the assumption is satisfied
by Lemma 22.3. �

32. Variant of derived Hom

Let A be an abelian category. Consider the differential graded category Compdg(A) of
complexes ofA, see Example 26.6. Let K• be a complex ofA. Set

(E, d) = HomCompdg(A)(K•,K•)
and consider the functor of differential graded categories

Compdg(A) −→Moddg(E,d), X• 7−→ HomCompdg(A)(K•, X•)

of Lemma 26.10.

Lemma 32.1. In the situation above. If the right derived functor RHom(K•,−)
of Hom(K•,−) : K(A) → D(Ab) is everywhere defined on D(A), then we obtain a
canonical exact functor

RHom(K•,−) : D(A) −→ D(E, d)
of triangulated categories which reduces to the usual one on taking associated complexes
of abelian groups.

Proof. Note that we have an associated functor K(A) → K(Mod(E,d)) by Lemma
26.10. We claim this functor is an exact functor of triangulated categories. Namely, let
f : A• → B• be a map of complexes ofA. Then a computation shows that

HomCompdg(A)(K•, C(f)•) = C
(

HomCompdg(A)(K•, A•)→ HomCompdg(A)(K•, B•)
)

where the right hand side is the cone in Mod(E,d) defined earlier in this chapter. This
shows that our functor is compatible with cones, hence with distinguished triangles. Let
X• be an object of K(A). Consider the category of quasi-isomorphisms s : X• → Y •.
We are given that the functor (s : X• → Y •) 7→ HomA(K•, Y •) is essentially constant
when viewed in D(Ab). But since the forgetful functor D(E, d)→ D(Ab) is compatible
with taking cohomology, the same thing is true in D(E, d). This proves the lemma. �

Warning: Although the lemma holds as stated and may be useful as stated, the differential
algebra E isn’t the “correct” one unless Hn(E) = ExtnD(A)(K•,K•) for all n ∈ Z.

33. Derived tensor product

This section is analogous to More on Algebra, Section 60.

Let R be a ring. Let (A, d) and (B, d) be differential graded algebras over R. Let N be a
differential graded (A,B)-bimodule. Consider the functor

(33.0.1) Mod(A,d) −→Mod(B,d), M 7−→M ⊗A N
defined in Section 29.
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Lemma 33.1. The functor (33.0.1) defines an exact functor of triangulated categories
K(Mod(A,d))→ K(Mod(B,d)).

Proof. Via Lemma 29.1 and Remark 29.2 this follows from the general principle of
Lemma 27.17. �

At this point we can consider the diagram

K(Mod(A,d))

��

−⊗AN
//

F
))

K(Mod(B,d))

��
D(A, d) // D(B, d)

The dotted arrow that we will construct below will be the left derived functor of the
compositionF . (Warning: the diagram will not commute.) Namely, in the general setting
of Derived Categories, Section 14 we want to compute the left derived functor of F with
respect to the multiplicative system of quasi-isomorphisms in K(Mod(A,d)).

Lemma 33.2. In the situation above, the left derived functor of F exists. We denote
it −⊗L

A N : D(A, d)→ D(B, d).

Proof. We will use Derived Categories, Lemma 14.15 to prove this. As our collection
P of objects we will use the objects with property (P). Property (1) was shown in Lemma
20.4. Property (2) holds because if s : P → P ′ is a quasi-isomorphism of modules with
property (P), then s is a homotopy equivalence by Lemma 22.3. �

Lemma 33.3. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
Let f : N → N ′ be a homomorphism of differential graded (A,B)-bimodules. Then f
induces a morphism of functors

1⊗ f : −⊗L
A N −→ −⊗L

A N
′

If f is a quasi-isomorphism, then 1⊗ f is an isomorphism of functors.

Proof. Let M be a differential graded A-module with property (P). Then 1 ⊗ f :
M ⊗A N → M ⊗A N ′ is a map of differential graded B-modules. Moreover, this is
functorial with respect to M . Since the functors − ⊗L

A N and − ⊗L
A N

′ are computed
by tensoring on objects with property (P) (Lemma 33.2) we obtain a transformation of
functors as indicated.

Assume that f is a quasi-isomorphism. Let F• be the given filtration on M . Observe that
M ⊗A N = colimFi(M)⊗A N and M ⊗A N ′ = colimFi(M)⊗A N ′. Hence it suffices
to show that Fn(M) ⊗A N → Fn(M) ⊗A N ′ is a quasi-isomorphism (filtered colimits
are exact, see Algebra, Lemma 8.8). Since the inclusions Fn(M) → Fn+1(M) are split as
maps of graded A-modules we see that

0→ Fn(M)⊗A N → Fn+1(M)⊗A N → Fn+1(M)/Fn(M)⊗A N → 0

is a short exact sequence of differential graded B-modules. There is a similar sequence
for N ′ and f induces a map of short exact sequences. Hence by induction on n (starting
with n = −1 when F−1(M) = 0) we conclude that it suffices to show that the map
Fn+1(M)/Fn(M) ⊗A N → Fn+1(M)/Fn(M) ⊗A N ′ is a quasi-isomorphism. This is
true because Fn+1(M)/Fn(M) is a direct sum of shifts ofA and the result is true forA[k]
as f : N → N ′ is a quasi-isomorphism. �
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Lemma 33.4. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
LetN be a differential graded (A,B)-bimodule which has property (P) as a left differential
graded A-module. Then M ⊗L

A N is computed by M ⊗A N for all differential graded A-
modules M .

Proof. Let f : M → M ′ be a homomorphism of differential graded A-modules
which is a quasi-isomorphism. We claim that f ⊗ id : M ⊗A N → M ′ ⊗A N is a quasi-
isomorphism. If this is true, then by the construction of the derived tensor product in
the proof of Lemma 33.2 we obtain the desired result. The construction of the map f ⊗ id
only depends on the left differential gradedA-module structure onN . Moreover, we have
M⊗AN = N⊗AoppM = N⊗L

AoppM becauseN has property (P) as a differential graded
Aopp-module. Hence the claim follows from Lemma 33.3. �

Lemma 33.5. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
Let N be a differential graded (A,B)-bimodule. Then the functor

−⊗L
A N : D(A, d) −→ D(B, d)

of Lemma 33.2 is a left adjoint to the functor

RHom(N,−) : D(B, d) −→ D(A, d)
of Lemma 31.2.

Proof. This follows from Derived Categories, Lemma 30.1 and the fact that−⊗AN
and HomModdg(B,d)

(N,−) are adjoint by Lemma 30.3. �

Example 33.6. Let R be a ring. Let (A, d) → (B, d) be a homomorphism of differ-
ential graded R-algebras. Then we can view B as a differential graded (A,B)-bimodule
and we get a functor

−⊗A B : D(A, d) −→ D(B, d)
By Lemma 33.5 the left adjoint of this is the functor RHom(B,−). For a differential
gradedB-module let us denoteNA the differential gradedA-module obtained fromN by
restriction via A→ B. Then we clearly have a canonical isomorphism

HomModdg(B,d)
(B,N) −→ NA, f 7−→ f(1)

functorial in the B-module N . Thus we see that RHom(B,−) is the restriction functor
and we obtain

HomD(A,d)(M,NA) = HomD(B,d)(M ⊗L
A B,N)

bifunctorially in M and N exactly as in the case of commutative rings. Finally, observe
that restriction is a tensor functor as well, since NA = N ⊗B BBA = N ⊗L

B BBA where
BBA is B viewed as a differential graded (B,A)-bimodule.

Lemma 33.7. With notation and assumptions as in Lemma 33.5. Assume
(1) N defines a compact object of D(B, d), and
(2) the map Hk(A)→ HomD(B,d)(N,N [k]) is an isomorphism for all k ∈ Z.

Then the functor −⊗L
A N is fully faithful.

Proof. Our functor has a left adjoint given by RHom(N,−) by Lemma 33.5. By
Categories, Lemma 24.4 it suffices to show that for a differential graded A-module M the
map

M −→ RHom(N,M ⊗L
A N)
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is an isomorphism in D(A, d). For this it suffices to show that

Hn(M) −→ ExtnD(B,d)(N,M ⊗L
A N)

is an isomorphism, see Lemma 31.4. Since N is a compact object the right hand side com-
mutes with direct sums. Thus by Remark 22.5 it suffices to prove this map is an isomor-
phism for M = A[k]. Since (A[k] ⊗L

A N) = N [k] by Remark 29.2, assumption (2) on N
is that the result holds for these. �

Lemma 33.8. LetR→ R′ be a ring map. Let (A, d) be a differential gradedR-algebra.
Let (A′, d) be the base change, i.e.,A′ = A⊗RR′. IfA is K-flat as a complex ofR-modules,
then

(1) −⊗L
A A

′ : D(A, d)→ D(A′, d) is equal to the right derived functor of

K(A, d) −→ K(A′, d), M 7−→M ⊗R R′

(2) the diagram

D(A, d)
−⊗L

AA
′
//

restriction

��

D(A′, d)

restriction

��
D(R)

−⊗L
RR

′
// D(R′)

commutes, and
(3) ifM is K-flat as a complex ofR-modules, then the differential gradedA′-module

M ⊗R R′ represents M ⊗L
A A

′.

Proof. For any differential graded A-module M there is a canonical map

cM : M ⊗R R′ −→M ⊗A A′

Let P be a differential graded A-module with property (P). We claim that cP is an iso-
morphism and that P is K-flat as a complex of R-modules. This will prove all the results
stated in the lemma by formal arguments using the definition of derived tensor product
in Lemma 33.2 and More on Algebra, Section 59.

Let F• be the filtration on P showing that P has property (P). Note that cA is an iso-
morphism and A is K-flat as a complex of R-modules by assumption. Hence the same is
true for direct sums of shifts ofA (you can use More on Algebra, Lemma 59.8 to deal with
direct sums if you like). Hence this holds for the complexes Fp+1P/FpP . Since the short
exact sequences

0→ FpP → Fp+1P → Fp+1P/FpP → 0
are split exact as sequences of graded modules, we can argue by induction that cFpP is
an isomorphism for all p and that FpP is K-flat as a complex of R-modules (use More
on Algebra, Lemma 59.5). Finally, using that P = colimFpP we conclude that cP is an
isomorphism and thatP is K-flat as a complex ofR-modules (use More on Algebra, Lemma
59.8). �

Lemma 33.9. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
Let T be a differential graded (A,B)-bimodule. Assume

(1) T defines a compact object of D(B, d), and
(2) S = HomModdg(B,d)

(T,B) represents RHom(T,B) in D(A, d).
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Then S has a structure of a differential graded (B,A)-bimodule and there is an isomor-
phism

N ⊗L
B S −→ RHom(T,N)

functorial in N in D(B, d).

Proof. Write B = Moddg(B,d). The right A-module structure on S comes from the
mapA→ HomB(T, T ) and the composition HomB(T,B)⊗HomB(T, T )→ HomB(T,B)
defined in Example 26.8. Using this multiplication a second time there is a map

cN : N ⊗B S = HomB(B,N)⊗B HomB(T,B) −→ HomB(T,N)
functorial inN . GivenN we can choose quasi-isomorphisms P → N → I where P , resp.
I is a differential gradedB-module with property (P), resp. (I). Then using cN we obtain a
mapP⊗BS → HomB(T, I) between the objects representingS⊗L

BN andRHom(T,N).
Clearly this defines a transformation of functors c as in the lemma.

To prove that c is an isomorphism of functors, we may assumeN is a differential gradedB-
module which has property (P). SinceT defines a compact object inD(B, d) and since both
sides of the arrow define exact functors of triangulated categories, we reduce using Lemma
20.1 to the case where N has a finite filtration whose graded pieces are direct sums of
B[k]. Using again that both sides of the arrow are exact functors of triangulated categories
and compactness of T we reduce to the case N = B[k]. Assumption (2) is exactly the
assumption that c is an isomorphism in this case. �

34. Composition of derived tensor products

We encourage the reader to skip this section.

LetR be a ring. Let (A, d), (B, d), and (C, d) be differential gradedR-algebras. LetN be a
differential graded (A,B)-bimodule. Let N ′ be a differential graded (B,C)-module. We
denote NB the bimodule N viewed as a differential graded B-module (forgetting about
the A-structure). There is a canonical map

(34.0.1) NB ⊗L
B N

′ −→ (N ⊗B N ′)C
in D(C, d). Here (N ⊗B N ′)C denotes the (A,C)-bimodule N ⊗B N ′ viewed as a dif-
ferential graded C-module. Namely, this map comes from the fact that the derived tensor
product always maps to the plain tensor product (as it is a left derived functor).

Lemma 34.1. Let R be a ring. Let (A, d), (B, d), and (C, d) be differential graded R-
algebras. Let N be a differential graded (A,B)-bimodule. Let N ′ be a differential graded
(B,C)-module. Assume (34.0.1) is an isomorphism. Then the composition

D(A, d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C, d)

is isomorphic to −⊗L
A N

′′ with N ′′ = N ⊗B N ′ viewed as (A,C)-bimodule.

Proof. Let us define a transformation of functors

(−⊗L
A N)⊗L

B N
′ −→ −⊗L

A N
′′

To do this, let M be a differential graded A-module with property (P). According to the
construction of the functor−⊗L

AN
′′ of the proof of Lemma 33.2 the plain tensor product

M ⊗A N ′′ represents M ⊗L
A N

′′ in D(C, d). Then we write

M ⊗A N ′′ = M ⊗A (N ⊗B N ′) = (M ⊗A N)⊗B N ′
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The moduleM ⊗AN representsM ⊗L
AN inD(B, d). Choose a quasi-isomorphismQ→

M ⊗A N where Q is a differential graded B-module with property (P). Then Q ⊗B N ′

represents (M ⊗L
A N)⊗L

B N
′ in D(C, d). Thus we can define our map via

(M ⊗L
A N)⊗L

B N
′ = Q⊗B N ′ →M ⊗A N ⊗B N ′ = M ⊗L

A N
′′

The construction of this map is functorial in M and compatible with distinguished trian-
gles and direct sums; we omit the details. Consider the property T of objectsM ofD(A, d)
expressing that this map is an isomorphism. Then

(1) if T holds for Mi then T holds for
⊕
Mi,

(2) if T holds for 2-out-of-3 in a distinguished triangle, then it holds for the third,
and

(3) T holds for A[k] because here we obtain a shift of the map (34.0.1) which we
have assumed is an isomorphism.

Thus by Remark 22.5 property T always holds and the proof is complete. �

Let R be a ring. Let (A, d), (B, d), and (C, d) be differential graded R-algebras. We tem-
porarily denote (A ⊗R B)B the differential graded algebra A ⊗R B viewed as a (right)
differential graded B-module, and B(B ⊗R C)C the differential graded algebra B ⊗R C
viewed as a differential graded (B,C)-bimodule. Then there is a canonical map

(34.1.1) (A⊗R B)B ⊗L
B B(B ⊗R C)C −→ (A⊗R B ⊗R C)C

inD(C, d) where (A⊗RB⊗RC)C denotes the differential gradedR-algebraA⊗RB⊗R
C viewed as a (right) differential graded C-module. Namely, this map comes from the
identification

(A⊗R B)B ⊗B B(B ⊗R C)C = (A⊗R B ⊗R C)C
and the fact that the derived tensor product always maps to the plain tensor product (as
it is a left derived functor).

Lemma 34.2. Let R be a ring. Let (A, d), (B, d), and (C, d) be differential graded R-
algebras. Assume that (34.1.1) is an isomorphism. Let N be a differential graded (A,B)-
bimodule. Let N ′ be a differential graded (B,C)-bimodule. Then the composition

D(A, d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C, d)

is isomorphic to−⊗L
A N

′′ for a differential graded (A,C)-bimodule N ′′ described in the
proof.

Proof. By Lemma 33.3 we may replace N and N ′ by quasi-isomorphic bimodules.
Thus we may assumeN , resp.N ′ has property (P) as differential graded (A,B)-bimodule,
resp. (B,C)-bimodule, see Lemma 28.4. We claim the lemma holds with the (A,C)-
bimodule N ′′ = N ⊗B N ′. To prove this, it suffices to show that

NB ⊗L
B N

′ −→ (N ⊗B N ′)C
is an isomorphism in D(C, d), see Lemma 34.1.

Let F• be the filtration on N as in property (P) for bimodules. By Lemma 28.5 there is a
short exact sequence

0→
⊕

FiN →
⊕

FiN → N → 0
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of differential graded (A,B)-bimodules which is split as a sequence of graded (A,B)-
bimodules. A fortiori this is an admissible short exact sequence of differential graded B-
modules and this produces a distinguished triangle⊕

FiNB →
⊕

FiNB → NB →
⊕

FiNB [1]

in D(B, d). Using that − ⊗L
B N

′ is an exact functor of triangulated categories and com-
mutes with direct sums and using that − ⊗B N ′ transforms admissible exact sequences
into admissible exact sequences and commutes with direct sums we reduce to proving that

(FpN)B ⊗L
B N

′ −→ (FpN)B ⊗B N ′

is a quasi-isomorphism for all p. Repeating the argument with the short exact sequences
of (A,B)-bimodules

0→ FpN → Fp+1N → Fp+1N/FpN → 0

which are split as graded (A,B)-bimodules we reduce to showing the same statement for
Fp+1N/FpN . Since these modules are direct sums of shifts of (A ⊗R B)B we reduce to
showing that

(A⊗R B)B ⊗L
B N

′ −→ (A⊗R B)B ⊗B N ′

is a quasi-isomorphism.

Choose a filtrationF• onN ′ as in property (P) for bimodules. Choose a quasi-isomorphism
P → (A ⊗R B)B of differential graded B-modules where P has property (P). We have
to show that P ⊗B N ′ → (A ⊗R B)B ⊗B N ′ is a quasi-isomorphism because P ⊗B
N ′ represents (A ⊗R B)B ⊗L

B N ′ in D(C, d) by the construction in Lemma 33.2. As
N ′ = colimFpN

′ we find that it suffices to show that P ⊗B FpN ′ → (A ⊗R B)B ⊗B
FpN

′ is a quasi-isomorphism. Using the short exact sequences 0→ FpN
′ → Fp+1N

′ →
Fp+1N

′/FpN
′ → 0 which are split as graded (B,C)-bimodules we reduce to showing

P ⊗B Fp+1N
′/FpN

′ → (A ⊗R B)B ⊗B Fp+1N
′/FpN

′ is a quasi-isomorphism for all
p. Then finally using that Fp+1N

′/FpN
′ is a direct sum of shifts of B(B ⊗R C)C we

conclude that it suffices to show that

P ⊗B B(B ⊗R C)C → (A⊗R B)B ⊗B B(B ⊗R C)C
is a quasi-isomorphism. Since P → (A ⊗R B)B is a resolution by a module satisfying
property (P) this map of differential graded C-modules represents the morphism (34.1.1)
in D(C, d) and the proof is complete. �

Lemma 34.3. Let R be a ring. Let (A, d), (B, d), and (C, d) be differential graded
R-algebras. If C is K-flat as a complex of R-modules, then (34.1.1) is an isomorphism and
the conclusion of Lemma 34.2 is valid.

Proof. Choose a quasi-isomorphism P → (A ⊗R B)B of differential graded B-
modules, where P has property (P). Then we have to show that

P ⊗B (B ⊗R C) −→ (A⊗R B)⊗B (B ⊗R C)

is a quasi-isomorphism. Equivalently we are looking at

P ⊗R C −→ A⊗R B ⊗R C

This is a quasi-isomorphism ifC is K-flat as a complex ofR-modules by More on Algebra,
Lemma 59.2. �
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35. Variant of derived tensor product

Let (C,O) be a ringed site. Then we have the functors

Comp(O)→ K(O)→ D(O)

and as we’ve seen above we have differential graded enhancement Compdg(O). Namely,
this is the differential graded category of Example 26.6 associated to the abelian category
Mod(O). Let K• be a complex of O-modules in other words, an object of Compdg(O).
Set

(E, d) = HomCompdg(O)(K•,K•)
This is a differential graded Z-algebra. We claim there is an analogue of the derived base
change in this situation.

Lemma 35.1. In the situation above there is a functor

−⊗E K• : Moddg(E,d) −→ Compdg(O)

of differential graded categories. This functor sends E to K• and commutes with direct
sums.

Proof. Let M be a differential graded E-module. For every object U of C the com-
plex K•(U) is a left differential graded E-module as well as a right O(U)-module. The
actions commute, so we have a bimodule. Thus, by the constructions in Sections 12 and 28
we can form the tensor product

M ⊗E K•(U)
which is a differential graded O(U)-module, i.e., a complex of O(U)-modules. This con-
struction is functorial with respect to U , hence we can sheafify to get a complex of O-
modules which we denote

M ⊗E K•

Moreover, for eachU the construction determines a functor Moddg(E,d) → Compdg(O(U))
of differential graded categories by Lemma 29.1. It is therefore clear that we obtain a
functor as stated in the lemma. �

Lemma 35.2. The functor of Lemma 35.1 defines an exact functor of triangulated
categories K(Mod(E,d))→ K(O).

Proof. The functor induces a functor between homotopy categories by Lemma 26.5.
We have to show that − ⊗E K• transforms distinguished triangles into distinguished
triangles. Suppose that 0 → K → L → M → 0 is an admissible short exact sequence
of differential graded E-modules. Let s : M → L be a graded E-module homomorphism
which is left inverse to L→M . Then s defines a map M ⊗E K• → L⊗E K• of graded
O-modules (i.e., respecting O-module structure and grading, but not differentials) which
is left inverse to L⊗E K• →M ⊗E K•. Thus we see that

0→ K ⊗E K• → L⊗E K• →M ⊗E K• → 0

is a termwise split short exact sequences of complexes, i.e., a defines a distinguished triangle
in K(O). �

Lemma 35.3. The functor K(Mod(E,d)) → K(O) of Lemma 35.2 has a left derived
version defined on all of D(E, d). We denote it −⊗L

E K
• : D(E, d)→ D(O).
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Proof. We will use Derived Categories, Lemma 14.15 to prove this. As our collection
P of objects we will use the objects with property (P). Property (1) was shown in Lemma
20.4. Property (2) holds because if s : P → P ′ is a quasi-isomorphism of modules with
property (P), then s is a homotopy equivalence by Lemma 22.3. �

Lemma 35.4. Let R be a ring. Let C be a site. Let O be a sheaf of commutative R-
algebras. LetK• be a complex ofO-modules. The functor of Lemma 35.3 has the following
property: For every M , N in D(E, d) there is a canonical map

RHom(M,N) −→ RHomO(M ⊗L
E K

•, N ⊗L
E K

•)
in D(R) which on cohomology modules gives the maps

ExtnD(E,d)(M,N)→ ExtnD(O)(M ⊗L
E K

•, N ⊗L
E K

•)

induced by the functor −⊗L
E K

•.

Proof. The right hand side of the arrow is the global derived hom introduced in
Cohomology on Sites, Section 36 which has the correct cohomology modules. For the left
hand side we think of M as a (R,A)-bimodule and we have the derived Hom introduced
in Section 31 which also has the correct cohomology modules. To prove the lemma we
may assume M and N are differential graded E-modules with property (P); this does not
change the left hand side of the arrow by Lemma 31.3. By Lemma 31.5 this means that the
left hand side of the arrow becomes HomModdg(B,d)

(M,N). In Lemmas 35.1, 35.2, and 35.3
we have constructed a functor

−⊗E K• : Moddg(E,d) −→ Compdg(O)

of differential graded categories and we have shown that − ⊗L
E K

• is computed by eval-
uating this functor on differential graded E-modules with property (P). Hence we obtain
a map of complexes of R-modules

HomModdg(B,d)
(M,N) −→ HomCompdg(O)(M ⊗E K•, N ⊗E K•)

For any complexes ofO-modules F•, G• there is a canonical map
HomCompdg(O)(F•,G•) = Γ(C,Hom•(F•,G•)) −→ RHomO(F•,G•).

Combining these maps we obtain the desired map of the lemma. �

Lemma 35.5. Let (C,O) be a ringed site. Let K• be a complex of O-modules. Then
the functor

−⊗L
E K

• : D(E, d) −→ D(O)
of Lemma 35.3 is a left adjoint of the functor

RHom(K•,−) : D(O) −→ D(E, d)
of Lemma 32.1.

Proof. The statement means that we have
HomD(E,d)(M,RHom(K•, L•)) = HomD(O)(M ⊗L

E K
•, L•)

bifunctorially in M and L•. To see this we may replace M by a differential graded E-
module P with property (P). We also may replace L• by a K-injective complex of O-
modules I•. The computation of the derived functors given in the lemmas referenced in
the statement combined with Lemma 22.3 translates the above into

HomK(Mod(E,d))(P,HomB(K•, I•)) = HomK(O)(P ⊗E K•, I•)
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where B = Compdg(O). There is an evaluation map from right to left functorial in P
and I• (details omitted). Choose a filtration F• on P as in the definition of property (P).
By Lemma 20.1 and the fact that both sides of the equation are homological functors in P
on K(Mod(E,d)) we reduce to the case where P is replaced by the differential graded E-
module

⊕
FiP . Since both sides turn direct sums in the variable P into direct products

we reduce to the case where P is one of the differential graded E-modules FiP . Since
eachFiP has a finite filtration (given by admissible monomorphisms) whose graded pieces
are graded projective E-modules we reduce to the case where P is a graded projective E-
module. In this case we clearly have

HomModdg(E,d)
(P,HomB(K•, I•)) = HomCompdg(O)(P ⊗E K•, I•)

as graded Z-modules (because this statement reduces to the case P = E[k] where it is
obvious). As the isomorphism is compatible with differentials we conclude. �

Lemma 35.6. Let (C,O) be a ringed site. LetK• be a complex ofO-modules. Assume
(1) K• represents a compact object of D(O), and
(2) E = HomCompdg(O)(K•,K•) computes the ext groups of K• in D(O).

Then the functor
−⊗L

E K
• : D(E, d) −→ D(O)

of Lemma 35.3 is fully faithful.

Proof. Because our functor has a left adjoint given by RHom(K•,−) by Lemma
35.5 it suffices to show for a differential graded E-module M that the map

H0(M) −→ HomD(O)(K•,M ⊗L
E K

•)
is an isomorphism. We may assume that M = P is a differential graded E-module which
has property (P). Since K• defines a compact object, we reduce using Lemma 20.1 to the
case where P has a finite filtration whose graded pieces are direct sums of E[k]. Again
using compactness we reduce to the case P = E[k]. The assumption on K• is that the
result holds for these. �

36. Characterizing compact objects

Compact objects of additive categories are defined in Derived Categories, Definition 37.1.
In this section we characterize compact objects of the derived category of a differential
graded algebra.

Remark 36.1. Let (A, d) be a differential graded algebra. Is there a characterization
of those differential graded A-modules P for which we have

HomK(A,d)(P,M) = HomD(A,d)(P,M)
for all differential gradedA-modulesM? LetD ⊂ K(A, d) be the full subcategory whose
objects are the objects P satisfying the above. Then D is a strictly full saturated triangu-
lated subcategory of K(A, d). If P is projective as a graded A-module, then to see where
P is an object of D it is enough to check that HomK(A,d)(P,M) = 0 whenever M is
acyclic. However, in general it is not enough to assume that P is projective as a graded
A-module. Example: take A = R = k[ε] where k is a field and k[ε] = k[x]/(x2) is the
ring of dual numbers. Let P be the object with Pn = R for all n ∈ Z and differential
given by multiplication by ε. Then idP ∈ HomK(A,d)(P, P ) is a nonzero element but P
is acyclic.
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Remark 36.2. Let (A, d) be a differential graded algebra. Let us say a differential
graded A-module M is finite if M is generated, as a right A-module, by finitely many
elements. If P is a differential gradedA-module which is finite graded projective, then we
can ask: Does P give a compact object ofD(A, d)? Presumably, this is not true in general,
but we do not know a counter example. However, if P is also an object of the category D
of Remark 36.1, then this is the case (this follows from the fact that direct sums inD(A, d)
are given by direct sums of modules; details omitted).

Lemma 36.3. Let (A, d) be a differential graded algebra. Let E be a compact object
of D(A, d). Let P be a differential graded A-module which has a finite filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ FnP = P

by differential graded submodules such that

Fi+1P/FiP ∼=
⊕

j∈Ji
A[ki,j ]

as differential graded A-modules for some sets Ji and integers ki,j . Let E → P be a
morphism of D(A, d). Then there exists a differential graded submodule P ′ ⊂ P such
that Fi+1P ∩P ′/(FiP ∩P ′) is equal to

⊕
j∈J′

i
A[ki,j ] for some finite subsets J ′

i ⊂ Ji and
such that E → P factors through P ′.

Proof. We will prove by induction on −1 ≤ m ≤ n that there exists a differential
graded submodule P ′ ⊂ P such that

(1) FmP ⊂ P ′,
(2) for i ≥ m the quotient Fi+1P ∩P ′/(FiP ∩P ′) is isomorphic to

⊕
j∈J′

i
A[ki,j ]

for some finite subsets J ′
i ⊂ Ji, and

(3) E → P factors through P ′.
The base case is m = n where we can take P ′ = P .

Induction step. Assume P ′ works for m. For i ≥ m and j ∈ J ′
i let xi,j ∈ Fi+1P ∩ P ′

be a homogeneous element of degree ki,j whose image in Fi+1P ∩ P ′/(FiP ∩ P ′) is the
generator in the summand corresponding to j ∈ Ji. The xi,j generate P ′/FmP as an
A-module. Write

d(xi,j) =
∑

xi′,j′ai
′,j′

i,j + yi,j

with yi,j ∈ FmP and ai
′,j′

i,j ∈ A. There exists a finite subset J ′
m−1 ⊂ Jm−1 such that

each yi,j maps to an element of the submodule
⊕

j∈J′
m−1

A[km−1,j ] of FmP/Fm−1P .
Let P ′′ ⊂ FmP be the inverse image of

⊕
j∈J′

m−1
A[km−1,j ] under the map FmP →

FmP/Fm−1P . Then we see that the A-submodule

P ′′ +
∑

xi,jA

is a differential graded submodule of the type we are looking for. Moreover

P ′/(P ′′ +
∑

xi,jA) =
⊕

j∈Jm−1\J′
m−1

A[km−1,j ]

SinceE is compact, the composition of the given mapE → P ′ with the quotient map, fac-
tors through a finite direct subsum of the module displayed above. Hence after enlarging
J ′
m−1 we may assume E → P ′ factors through P ′′ +

∑
xi,jA as desired. �

It is not true that every compact object of D(A, d) comes from a finite graded projective
differential graded A-module, see Examples, Section 68.
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Proposition 36.4. Let (A, d) be a differential graded algebra. Let E be an object of
D(A, d). Then the following are equivalent

(1) E is a compact object,
(2) E is a direct summand of an object of D(A, d) which is represented by a differ-

ential graded module P which has a finite filtration F• by differential graded
submodules such that FiP/Fi−1P are finite direct sums of shifts of A.

Proof. Assume E is compact. By Lemma 20.4 we may assume that E is represented
by a differential gradedA-module P with property (P). Consider the distinguished trian-
gle ⊕

FiP →
⊕

FiP → P
δ−→
⊕

FiP [1]
coming from the admissible short exact sequence of Lemma 20.1. Since E is compact we
have δ =

∑
i=1,...,n δi for some δi : P → FiP [1]. Since the composition of δ with

the map
⊕
FiP [1] →

⊕
FiP [1] is zero (Derived Categories, Lemma 4.1) it follows that

δ = 0 (follows as
⊕
FiP →

⊕
FiP maps the summand FiP via the difference of id

and the inclusion map into Fi−1P ). Thus we see that the identity on E factors through⊕
FiP in D(A, d) (by Derived Categories, Lemma 4.11). Next, we use that P is compact

again to see that the map E →
⊕
FiP factors through

⊕
i=1,...,n FiP for some n. In

other words, the identity on E factors through
⊕

i=1,...,n FiP . By Lemma 36.3 we see
that the identity of E factors as E → P → E where P is as in part (2) of the statement
of the lemma. In other words, we have proven that (1) implies (2).
Assume (2). By Derived Categories, Lemma 37.2 it suffices to show that P gives a compact
object. Observe that P has property (P), hence we have

HomD(A,d)(P,M) = HomK(A,d)(P,M)
for any differential graded moduleM by Lemma 22.3. As direct sums inD(A, d) are given
by direct sums of graded modules (Lemma 22.4) we reduce to showing that HomK(A,d)(P,M)
commutes with direct sums. Using that K(A, d) is a triangulated category, that Hom is a
cohomological functor in the first variable, and the filtration on P , we reduce to the case
that P is a finite direct sum of shifts of A. Thus we reduce to the case P = A[k] which is
clear. �

Lemma 36.5. Let (A, d) be a differential graded algebra. For every compact objectE
ofD(A, d) there exist integers a ≤ b such that HomD(A,d)(E,M) = 0 ifHi(M) = 0 for
i ∈ [a, b].

Proof. Observe that the collection of objects of D(A, d) for which such a pair of
integers exists is a saturated, strictly full triangulated subcategory of D(A, d). Thus by
Proposition 36.4 it suffices to prove this when E is represented by a differential graded
module P which has a finite filtration F• by differential graded submodules such that
FiP/Fi−1P are finite direct sums of shifts of A. Using the compatibility with triangles,
we see that it suffices to prove it for P = A. In this case HomD(A,d)(A,M) = H0(M)
and the result holds with a = b = 0. �

If (A, d) is just an algebra placed in degree 0 with zero differential or more generally lives in
only a finite number of degrees, then we do obtain the more precise description of compact
objects.

Lemma 36.6. Let (A, d) be a differential graded algebra. Assume that An = 0 for
|n| � 0. Let E be an object of D(A, d). The following are equivalent
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(1) E is a compact object, and
(2) E can be represented by a differential gradedA-module P which is finite projec-

tive as a gradedA-module and satisfies HomK(A,d)(P,M) = HomD(A,d)(P,M)
for every differential graded A-module M .

Proof. Let D ⊂ K(A, d) be the triangulated subcategory discussed in Remark 36.1.
LetP be an object ofD which is finite projective as a gradedA-module. ThenP represents
a compact object of D(A, d) by Remark 36.2.
To prove the converse, let E be a compact object of D(A, d). Fix a ≤ b as in Lemma 36.5.
After decreasing a and increasing b if necessary, we may also assume that Hi(E) = 0 for
i 6∈ [a, b] (this follows from Proposition 36.4 and our assumption onA). Moreover, fix an
integer c > 0 such that An = 0 if |n| ≥ c.
By Proposition 36.4 we see thatE is a direct summand, inD(A, d), of a differential graded
A-module P which has a finite filtration F• by differential graded submodules such that
FiP/Fi−1P are finite direct sums of shifts of A. In particular, P has property (P) and we
have HomD(A,d)(P,M) = HomK(A,d)(P,M) for any differential graded module M by
Lemma 22.3. In other words, P is an object of the triangulated subcategory D ⊂ K(A, d)
discussed in Remark 36.1. Note that P is finite free as a graded A-module.
Choose n > 0 such that b + 4c − n < a. Represent the projector onto E by an en-
domorphism ϕ : P → P of differential graded A-modules. Consider the distinguished
triangle

P
1−ϕ−−−→ P → C → P [1]

in K(A, d) where C is the cone of the first arrow. Then C is an object of D, we have
C ∼= E ⊕ E[1] in D(A, d), and C is a finite graded free A-module. Next, consider a
distinguished triangle

C[1]→ C → C ′ → C[2]
in K(A, d) where C ′ is the cone on a morphism C[1]→ C representing the composition

C[1] ∼= E[1]⊕ E[2]→ E[1]→ E ⊕ E[1] ∼= C

in D(A, d). Then we see that C ′ represents E ⊕ E[2]. Continuing in this manner we see
that we can find a differential graded A-module P which is an object of D, is a finite free
as a graded A-module, and represents E ⊕ E[n].
Choose a basis xi, i ∈ I of homogeneous elements forP as anA-module. Let di = deg(xi).
Let P1 be the A-submodule of P generated by xi and d(xi) for di ≤ a− c− 1. Let P2 be
the A-submodule of P generated by xi and d(xi) for di ≥ b− n+ c. We observe

(1) P1 and P2 are differential graded submodules of P ,
(2) P t1 = 0 for t ≥ a,
(3) P t1 = P t for t ≤ a− 2c,
(4) P t2 = 0 for t ≤ b− n,
(5) P t2 = P t for t ≥ b− n+ 2c.

As b−n+ 2c ≥ a− 2c by our choice of n we obtain a short exact sequence of differential
graded A-modules

0→ P1 ∩ P2 → P1 ⊕ P2
π−→ P → 0

Since P is projective as a graded A-module this is an admissible short exact sequence
(Lemma 16.1). Hence we obtain a boundary map δ : P → (P1 ∩ P2)[1] in K(A, d),
see Lemma 7.2. Since P = E ⊕ E[n] and since P1 ∩ P2 lives in degrees (b − n, a) we
find that HomD(A,d)(E ⊕ E[n], (P1 ∩ P2)[1]) is zero. Therefore δ = 0 as a morphism
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in K(A, d) as P is an object of D. By Derived Categories, Lemma 4.11 we can find a map
s : P → P1⊕P2 such that π◦s = idP +dh+hd for some h : P → P of degree−1. Since
P1 ⊕ P2 → P is surjective and since P is projective as a graded A-module we can choose
a homogeneous lift h̃ : P → P1 ⊕ P2 of h. Then we change s into s + dh̃ + h̃d to get
π ◦ s = idP . This means we obtain a direct sum decomposition P = s−1(P1)⊕ s−1(P2).
Since s−1(P2) is equal to P in degrees ≥ b− n+ 2c we see that s−1(P2) → P → E is a
quasi-isomorphism, i.e., an isomorphism in D(A, d). This finishes the proof. �

37. Equivalences of derived categories

LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras. A natural question
that arises in nature is what it means thatD(A, d) is equivalent toD(B, d) as anR-linear
triangulated category. This is a rather subtle question and it will turn out it isn’t always
the correct question to ask. Nonetheless, in this section we collection some conditions that
guarantee this is the case.
We strongly urge the reader to take a look at the groundbreaking paper [?] on this topic.

Lemma 37.1. LetR be a ring. Let (A, d)→ (B, d) be a homomorphism of differential
graded algebras over R, which induces an isomorphism on cohomology algebras. Then

−⊗L
A B : D(A, d)→ D(B, d)

gives anR-linear equivalence of triangulated categories with quasi-inverse the restriction
functor N 7→ NA.

Proof. By Lemma 33.7 the functor M 7−→ M ⊗L
A B is fully faithful. By Lemma

33.5 the functor N 7−→ RHom(B,N) = NA is a right adjoint, see Example 33.6. It
is clear that the kernel of RHom(B,−) is zero. Hence the result follows from Derived
Categories, Lemma 7.2. �

When we analyze the proof above we see that we obtain the following generalization for
free.

Lemma 37.2. Let R be a ring. Let (A, d) and (B, d) be differential graded algebras
over R. Let N be a differential graded (A,B)-bimodule. Assume that

(1) N defines a compact object of D(B, d),
(2) if N ′ ∈ D(B, d) and HomD(B,d)(N,N ′[n]) = 0 for n ∈ Z, then N ′ = 0, and
(3) the map Hk(A)→ HomD(B,d)(N,N [k]) is an isomorphism for all k ∈ Z.

Then
−⊗L

A N : D(A, d)→ D(B, d)
gives an R-linear equivalence of triangulated categories.

Proof. By Lemma 33.7 the functor M 7−→ M ⊗L
A N is fully faithful. By Lemma

33.5 the functorN ′ 7−→ RHom(N,N ′) is a right adjoint. By assumption (3) the kernel of
RHom(N,−) is zero. Hence the result follows from Derived Categories, Lemma 7.2. �

Remark 37.3. In Lemma 37.2 we can replace condition (2) by the condition that
N is a classical generator for Dcompact(B, d), see Derived Categories, Proposition 37.6.
Moreover, if we knew that RHom(N,B) is a compact object of D(A, d), then it suffices
to check that N is a weak generator for Dcompact(B, d). We omit the proof; we will add
it here if we ever need it in the Stacks project.

Sometimes the B-module P in the lemma below is called an “(A,B)-tilting complex”.
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Lemma 37.4. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
Assume that A = H0(A). The following are equivalent

(1) D(A, d) and D(B, d) are equivalent as R-linear triangulated categories, and
(2) there exists an object P of D(B, d) such that

(a) P is a compact object of D(B, d),
(b) if N ∈ D(B, d) with HomD(B,d)(P,N [i]) = 0 for i ∈ Z, then N = 0,
(c) HomD(B,d)(P, P [i]) = 0 for i 6= 0 and equal to A for i = 0.

The equivalence D(A, d)→ D(B, d) constructed in (2) sends A to P .

Proof. Let F : D(A, d) → D(B, d) be an equivalence. Then F maps compact ob-
jects to compact objects. Hence P = F (A) is compact, i.e., (2)(a) holds. Conditions (2)(b)
and (2)(c) are immediate from the fact that F is an equivalence.
Let P be an object as in (2). Represent P by a differential graded module with property
(P). Set

(E, d) = HomModdg(B,d)
(P, P )

Then H0(E) = A and Hk(E) = 0 for k 6= 0 by Lemma 22.3 and assumption (2)(c).
Viewing P as a (E,B)-bimodule and using Lemma 37.2 and assumption (2)(b) we obtain
an equivalence

D(E, d)→ D(B, d)
sending E to P . Let E′ ⊂ E be the differential graded R-subalgebra with

(E′)i =

 Ei if i < 0
Ker(E0 → E1) if i = 0

0 if i > 0
Then there are quasi-isomorphisms of differential graded algebras (A, d) ← (E′, d) →
(E, d). Thus we obtain equivalences

D(A, d)← D(E′, d)→ D(E, d)→ D(B, d)
by Lemma 37.1. �

Remark 37.5. LetR be a ring. Let (A, d) and (B, d) be differential gradedR-algebras.
Suppose given an R-linear equivalence

F : D(A, d) −→ D(B, d)
of triangulated categories. Set N = F (A). Then N is a differential graded B-module.
Since F is an equivalence and A is a compact object of D(A, d), we conclude that N is a
compact object ofD(B, d). SinceA generatesD(A, d) andF is an equivalence, we see that
N generates D(B, d). Finally, Hk(A) = HomD(A,d)(A,A[k]) and as F an equivalence
we see that F induces an isomorphism Hk(A) = HomD(B,d)(N,N [k]) for all k. In order
to conclude that there is an equivalence D(A, d) −→ D(B, d) which arises from the
construction in Lemma 37.2 all we need is a leftA-module structure onN compatible with
derivation and commuting with the given right B-module structure. In fact, it suffices to
do this after replacingN by a quasi-isomorphic differential gradedB-module. The module
structure can be constructed in certain cases. For example, if we assume thatF can be lifted
to a differential graded functor

F dg : Moddg(A,d) −→Moddg(B,d)

(for notation see Example 26.8) between the associated differential graded categories, then
this holds. Another case is discussed in the proposition below.
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Proposition 37.6. Let R be a ring. Let (A, d) and (B, d) be differential graded R-
algebras. Let F : D(A, d) → D(B, d) be an R-linear equivalence of triangulated cate-
gories. Assume that

(1) A = H0(A), and
(2) B is K-flat as a complex of R-modules.

Then there exists an (A,B)-bimodule N as in Lemma 37.2.

Proof. As in Remark 37.5 above, we setN = F (A) inD(B, d). We may assume that
N is a differential graded B-module with property (P). Set

(E, d) = HomModdg(B,d)
(N,N)

ThenH0(E) = A andHk(E) = 0 for k 6= 0 by Lemma 22.3. Moreover, by the discussion
in Remark 37.5 and by Lemma 37.2 we see thatN as a (E,B)-bimodule induces an equiva-
lence−⊗L

EN : D(E, d)→ D(B, d). LetE′ ⊂ E be the differential gradedR-subalgebra
with

(E′)i =

 Ei if i < 0
Ker(E0 → E1) if i = 0

0 if i > 0
Then there are quasi-isomorphisms of differential graded algebras (A, d) ← (E′, d) →
(E, d). Thus we obtain equivalences

D(A, d)← D(E′, d)→ D(E, d)→ D(B, d)
by Lemma 37.1. Note that the quasi-inverseD(A, d)→ D(E′, d) of the left vertical arrow
is given by M 7→ M ⊗L

A A where A is viewed as a (A,E′)-bimodule, see Example 33.6.
On the other hand the functor D(E′, d) → D(B, d) is given by M 7→ M ⊗L

E′ N where
N is as above. We conclude by Lemma 34.3. �

Remark 37.7. Let A,B, F,N be as in Proposition 37.6. It is not clear that F and
the functor G(−) = − ⊗L

A N are isomorphic. By construction there is an isomorphism
N = G(A) → F (A) in D(B, d). It is straightforward to extend this to a functorial
isomorphism G(M) → F (M) for M is a differential graded A-module which is graded
projective (e.g., a sum of shifts of A). Then one can conclude that G(M) ∼= F (M) when
M is a cone of a map between such modules. We don’t know whether more is true in
general.

Lemma 37.8. Let R be a ring. Let A and B be R-algebras. The following are equiva-
lent

(1) there is an R-linear equivalence D(A)→ D(B) of triangulated categories,
(2) there exists an object P of D(B) such that

(a) P can be represented by a finite complex of finite projective B-modules,
(b) if K ∈ D(B) with ExtiB(P,K) = 0 for i ∈ Z, then K = 0, and
(c) ExtiB(P, P ) = 0 for i 6= 0 and equal to A for i = 0.

Moreover, if B is flat as an R-module, then this is also equivalent to
(3) there exists an (A,B)-bimodule N such that − ⊗L

A N : D(A) → D(B) is an
equivalence.

Proof. The equivalence of (1) and (2) is a special case of Lemma 37.4 combined with
the result of Lemma 36.6 characterizing compact objects of D(B) (small detail omitted).
The equivalence with (3) if B is R-flat follows from Proposition 37.6. �
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Remark 37.9. Let R be a ring. Let A and B be R-algebras. If D(A) and D(B) are
equivalent asR-linear triangulated categories, then the centers ofA andB are isomorphic
as R-algebras. In particular, if A and B are commutative, then A ∼= B. The rather tricky
proof can be found in [?, Proposition 9.2] or [?, Proposition 6.3.2]. Another approach
might be to use Hochschild cohomology (see remark below).

Remark 37.10. Let R be a ring. Let (A, d) and (B, d) be differential graded R-
algebras which are derived equivalent, i.e., such that there exists an R-linear equivalence
D(A, d) → D(B, d) of triangulated categories. We would like to show that certain in-
variants of (A, d) and (B, d) coincide. In many situations one has more control of the
situation. For example, it may happen that there is an equivalence of the form

−⊗A Ω : D(A, d) −→ D(B, d)

for some differential graded (A,B)-bimodule Ω (this happens in the situation of Propo-
sition 37.6 and is often true if the equivalence comes from a geometric construction). If
also the quasi-inverse of our functor is given as

−⊗L
B Ω′ : D(B, d) −→ D(A, d)

for a differential graded (B,A)-bimodule Ω′ (and as before such a module Ω′ often exists
in practice). In this case we can consider the functor

D(Aopp ⊗R A, d) −→ D(Bopp ⊗R B, d), M 7−→ Ω′ ⊗L
AM ⊗L

A Ω

on derived categories of bimodules (use Lemma 28.3 to turn bimodules into right modules).
Observe that this functor sends the (A,A)-bimoduleA to the (B,B)-bimoduleB. Under
suitable conditions (e.g., flatness of A, B, Ω over R, etc) this functor will be an equiva-
lence as well. If this is the case, then it follows that we have isomorphisms of Hochschild
cohomology groups

HHi(A, d) = HomD(Aopp⊗RA,d)(A,A[i]) −→ HomD(Bopp⊗RB,d)(B,B[i]) = HHi(B, d).

For example, if A = H0(A), then HH0(A, d) is equal to the center of A, and this gives a
conceptual proof of the result mentioned in Remark 37.9. If we ever need this remark we
will provide a precise statement with a detailed proof here.

38. Resolutions of differential graded algebras

Let R be a ring. Under our assumptions the free R-algebra R〈S〉 on a set S is the algebra
with R-basis the expressions

s1s2 . . . sn

where n ≥ 0 and s1, . . . , sn ∈ S is a sequence of elements of S. Multiplication is given
by concatenation

(s1s2 . . . sn) · (s′
1s

′
2 . . . s

′
m) = s1 . . . sns

′
1 . . . s

′
m

This algebra is characterized by the property that the map

MorR-alg(R〈S〉, A)→Map(S,A), ϕ 7−→ (s 7→ ϕ(s))

is a bijection for every R-algebra A.

In the category of gradedR-algebras our setS should come with a grading, which we think
of as a map deg : S → Z. Then R〈S〉 has a grading such that the monomials have degree

deg(s1s2 . . . sn) = deg(s1) + . . .+ deg(sn)
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In this setting we have
MorgradedR-alg(R〈S〉, A)→Mapgraded sets(S,A), ϕ 7−→ (s 7→ ϕ(s))

is a bijection for every graded R-algebra A.
IfA is a gradedR-algebra andS is a graded set, then we can similarly formA〈S〉. Elements
of A〈S〉 are sums of elements of the form

a0s1a1s2 . . . an−1snan

with ai ∈ Amodulo the relations that these expressions areR-multilinear in (a0, . . . , an).
Thus for every sequence s1, . . . , sn of elements of S there is an inclusion

A⊗R . . .⊗R A ⊂ A〈S〉
and the algebra is the direct sum of these. With this definition the reader shows that the
map

MorgradedR-alg(A〈S〉, B)→ MorgradedR-alg(A,B)×Mapgraded sets(S,B),

sending ϕ to (ϕ|A, (s 7→ ϕ(s))) is a bijection for every graded R-algebra A. We observe
that if A was a free graded R-algebra, then so is A〈S〉.
Suppose that A is a differential graded R-algebra and that S is a graded set. Suppose
moreover for every s ∈ S we are given a homogeneous element fs ∈ A with deg(fs) =
deg(s)+1 and dfs = 0. Then there exists a unique structure of differential graded algebra
on A〈S〉 with d(s) = fs. For example, given a, b, c ∈ A and s, t ∈ S we would define

d(asbtc) = d(a)sbtc+ (−1)deg(a)afsbtc+ (−1)deg(a)+deg(s)asd(b)tc

+ (−1)deg(a)+deg(s)+deg(b)asbftc+ (−1)deg(a)+deg(s)+deg(b)+deg(t)asbtd(c)
We omit the details.

Lemma 38.1. Let R be a ring. Let (B, d) be a differential graded R-algebra. There
exists a quasi-isomorphism (A, d) → (B, d) of differential graded R-algebras with the
following properties

(1) A is K-flat as a complex of R-modules,
(2) A is a free graded R-algebra.

Proof. First we claim we can find (A0, d) → (B, d) having (1) and (2) inducing a
surjection on cohomology. Namely, take a graded set S and for each s ∈ S a homogeneous
element bs ∈ Ker(d : B → B) of degree deg(s) such that the classes bs inH∗(B) generate
H∗(B) as an R-module. Then we can set A0 = R〈S〉 with zero differential and A0 → B
given by mapping s to bs.
Given A0 → B inducing a surjection on cohomology we construct a sequence

A0 → A1 → A2 → . . . B

by induction. Given An → B we set Sn be a graded set and for each s ∈ Sn we let
as ∈ Ker(An → An) be a homogeneous element of degree deg(s) + 1 mapping to a class
as in H∗(An) which maps to zero in H∗(B). We choose Sn large enough so that the
elements as generate Ker(H∗(An)→ H∗(B)) as an R-module. Then we set

An+1 = An〈Sn〉
with differential given by d(s) = as see discussion above. Then each (An, d) satisfies (1)
and (2), we omit the details. The map H∗(An)→ H∗(B) is surjective as this was true for
n = 0.
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It is clear that A = colimAn is a free graded R-algebra. It is K-flat by More on Algebra,
Lemma 59.8. The mapH∗(A)→ H∗(B) is an isomorphism as it is surjective and injective:
every element of H∗(A) comes from an element of H∗(An) for some n and if it dies in
H∗(B), then it dies in H∗(An+1) hence in H∗(A). �

As an application we prove the “correct” version of Lemma 34.2.

Lemma 38.2. Let R be a ring. Let (A, d), (B, d), and (C, d) be differential graded
R-algebras. Assume A⊗R C represents A⊗L

R C in D(R). Let N be a differential graded
(A,B)-bimodule. LetN ′ be a differential graded (B,C)-bimodule. Then the composition

D(A, d)
−⊗L

AN // D(B, d)
−⊗L

BN
′
// D(C, d)

is isomorphic to −⊗L
A N

′′ for some differential graded (A,C)-bimodule N ′′.

Proof. Using Lemma 38.1 we choose a quasi-isomorphism (B′, d)→ (B, d) withB′

K-flat as a complex of R-modules. By Lemma 37.1 the functor − ⊗L
B′ B : D(B′, d) →

D(B, d) is an equivalence with quasi-inverse given by restriction. Note that restriction is
canonically isomorphic to the functor−⊗L

B B : D(B, d)→ D(B′, d) whereB is viewed
as a (B,B′)-bimodule. Thus it suffices to prove the lemma for the compositions

D(A)→ D(B)→ D(B′), D(B′)→ D(B)→ D(C), D(A)→ D(B′)→ D(C).

The first one is Lemma 34.3 because B′ is K-flat as a complex of R-modules. The second
one is true because B ⊗L

B N
′ = N ′ = B ⊗B N ′ and hence Lemma 34.1 applies. Thus we

reduce to the case where B is K-flat as a complex of R-modules.

Assume B is K-flat as a complex of R-modules. It suffices to show that (34.1.1) is an iso-
morphism, see Lemma 34.2. Choose a quasi-isomorphism L→ A where L is a differential
gradedR-module which has property (P). Then it is clear that P = L⊗R B has property
(P) as a differential gradedB-module. Hence we have to show that P → A⊗RB induces
a quasi-isomorphism

P ⊗B (B ⊗R C) −→ (A⊗R B)⊗B (B ⊗R C)

We can rewrite this as

P ⊗R B ⊗R C −→ A⊗R B ⊗R C

Since B is K-flat as a complex of R-modules, it follows from More on Algebra, Lemma
59.2 that it is enough to show that

P ⊗R C → A⊗R C

is a quasi-isomorphism, which is exactly our assumption. �

The following lemma does not really belong in this section, but there does not seem to be
a good natural spot for it.

Lemma 38.3. Let (A, d) be a differential graded algebra with Hi(A) countable for
each i. Let M be an object of D(A, d). Then the following are equivalent

(1) M = hocolimEn with En compact in D(A, d), and
(2) Hi(M) is countable for each i.
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Proof. Assume (1) holds. Then we have Hi(M) = colimHi(En) by Derived Cat-
egories, Lemma 33.8. Thus it suffices to prove that Hi(En) is countable for each n. By
Proposition 36.4 we see thatEn is isomorphic inD(A, d) to a direct summand of a differ-
ential graded module P which has a finite filtration F• by differential graded submodules
such that FjP/Fj−1P are finite direct sums of shifts of A. By assumption the groups
Hi(FjP/Fj−1P ) are countable. Arguing by induction on the length of the filtration and
using the long exact cohomology sequence we conclude that (2) is true. The interesting
implication is the other one.

We claim there is a countable differential graded subalgebra A′ ⊂ A such that the inclu-
sion map A′ → A defines an isomorphism on cohomology. To construct A′ we choose
countable differential graded subalgebras

A1 ⊂ A2 ⊂ A3 ⊂ . . .

such that (a) Hi(A1) → Hi(A) is surjective, and (b) for n > 1 the kernel of the map
Hi(An−1) → Hi(An) is the same as the kernel of the map Hi(An−1) → Hi(A). To
constructA1 take any countable collection of cochains S ⊂ A generating the cohomology
ofA (as a ring or as a graded abelian group) and letA1 be the differential graded subalgebra
ofA generated by S. To constructAn givenAn−1 for each cochain a ∈ Ain−1 which maps
to zero in Hi(A) choose sa ∈ Ai−1 with d(sa) = a and let An be the differential graded
subalgebra of A generated by An−1 and the elements sa. Finally, take A′ =

⋃
An.

By Lemma 37.1 the restriction map D(A, d) → D(A′, d), M 7→ MA′ is an equivalence.
Since the cohomology groups of M and MA′ are the same, we see that it suffices to prove
the implication (2)⇒ (1) for (A′, d).

Assume A is countable. By the exact same type of argument as given above we see that
for M in D(A, d) the following are equivalent: Hi(M) is countable for each i and M
can be represented by a countable differential graded module. Hence in order to prove the
implication (2)⇒ (1) we reduce to the situation described in the next paragraph.

Assume A is countable and that M is a countable differential graded module over A. We
claim there exists a homomorphism P →M of differential graded A-modules such that

(1) P →M is a quasi-isomorphism,
(2) P has property (P), and
(3) P is countable.

Looking at the proof of the construction of P-resolutions in Lemma 20.4 we see that it
suffices to show that we can prove Lemma 20.3 in the setting of countable differential
graded modules. This is immediate from the proof.

Assume that A is countable and that M is a countable differential graded module with
property (P). Choose a filtration

0 = F−1P ⊂ F0P ⊂ F1P ⊂ . . . ⊂ P

by differential graded submodules such that we have
(1) P =

⋃
FpP ,

(2) FiP → Fi+1P is an admissible monomorphism,
(3) isomorphisms of differential graded modules FiP/Fi−1P →

⊕
j∈Ji A[kj ] for

some sets Ji and integers kj .
Of course Ji is countable for each i. For each i and j ∈ Ji choose xi,j ∈ FiP of degree kj
whose image in FiP/Fi−1P generates the summand corresponding to j.
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Claim: Givenn and finite subsetsSi ⊂ Ji, i = 1, . . . , n there exist finite subsetsSi ⊂ Ti ⊂
Ji, i = 1, . . . , n such that P ′ =

⊕
i≤n

⊕
j∈Ti Axi,j is a differential graded submodule of

P . This was shown in the proof of Lemma 36.3 but it is also easily shown directly: the
elements xi,j freely generate P as a right A-module. The structure of P shows that

d(xi,j) =
∑

i′<i
xi′,j′ai′,j′

where of course the sum is finite. Thus givenS0, . . . , Sn we can first chooseS0 ⊂ S′
0, . . . , Sn−1 ⊂

S′
n−1 with d(xn,j) ∈

⊕
i′<n,j′∈S′

i′
xi′,j′A for all j ∈ Sn. Then by induction on n we can

choose S′
0 ⊂ T0, . . . , S

′
n−1 ⊂ Tn−1 to make sure that

⊕
i′<n,j′∈Ti′

xi′,j′A is a differential
graded A-submodule. Setting Tn = Sn we find that P ′ =

⊕
i≤n,j∈Ti xi,jA is as desired.

From the claim it is clear that P =
⋃
P ′
n is a countable rising union of P ′

n as above.
By construction each P ′

n is a differential graded module with property (P) such that the
filtration is finite and the succesive quotients are finite direct sums of shifts of A. Hence
P ′
n defines a compact object of D(A, d), see for example Proposition 36.4. Since P =

hocolimP ′
n in D(A, d) by Lemma 23.2 the proof of the implication (2)⇒ (1) is complete.

�
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CHAPTER 23

Divided Power Algebra

1. Introduction

In this chapter we talk about divided power algebras and what you can do with them. A
reference is the book [?].

2. Divided powers

In this section we collect some results on divided power rings. We will use the convention
0! = 1 (as empty products should give 1).

Definition 2.1. Let A be a ring. Let I be an ideal of A. A collection of maps γn :
I → I , n > 0 is called a divided power structure on I if for all n ≥ 0, m > 0, x, y ∈ I ,
and a ∈ A we have

(1) γ1(x) = x, we also set γ0(x) = 1,
(2) γn(x)γm(x) = (n+m)!

n!m! γn+m(x),
(3) γn(ax) = anγn(x),
(4) γn(x+ y) =

∑
i=0,...,n γi(x)γn−i(y),

(5) γn(γm(x)) = (nm)!
n!(m!)n γnm(x).

Note that the rational numbers (n+m)!
n!m! and (nm)!

n!(m!)n occurring in the definition are in fact
integers; the first is the number of ways to choose n out of n + m and the second counts
the number of ways to divide a group of nm objects into n groups of m. We make some
remarks about the definition which show that γn(x) is a replacement for xn/n! in I .

Lemma 2.2. Let A be a ring. Let I be an ideal of A.
(1) If γ is a divided power structure1 on I , then n!γn(x) = xn for n ≥ 1, x ∈ I .

Assume A is torsion free as a Z-module.
(2) A divided power structure on I , if it exists, is unique.
(3) If γn : I → I are maps then

γ is a divided power structure⇔ n!γn(x) = xn ∀x ∈ I, n ≥ 1.

(4) The ideal I has a divided power structure if and only if there exists a set of gen-
erators xi of I as an ideal such that for all n ≥ 1 we have xni ∈ (n!)I .

Proof. Proof of (1). If γ is a divided power structure, then condition (2) (applied to 1
and n− 1 instead of n and m) implies that nγn(x) = γ1(x)γn−1(x). Hence by induction
and condition (1) we get n!γn(x) = xn.

Assume A is torsion free as a Z-module. Proof of (2). This is clear from (1).

1Here and in the following, γ stands short for a sequence of maps γ1, γ2, γ3, . . . from I to I .

2125
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Proof of (3). Assume that n!γn(x) = xn for all x ∈ I and n ≥ 1. Since A ⊂ A ⊗Z Q it
suffices to prove the axioms (1) – (5) of Definition 2.1 in caseA is a Q-algebra. In this case
γn(x) = xn/n! and it is straightforward to verify (1) – (5); for example, (4) corresponds
to the binomial formula

(x+ y)n =
∑

i=0,...,n

n!
i!(n− i)!x

iyn−i

We encourage the reader to do the verifications to make sure that we have the coefficients
correct.

Proof of (4). Assume we have generators xi of I as an ideal such that xni ∈ (n!)I for all
n ≥ 1. We claim that for all x ∈ I we have xn ∈ (n!)I . If the claim holds then we can
set γn(x) = xn/n! which is a divided power structure by (3). To prove the claim we note
that it holds for x = axi. Hence we see that the claim holds for a set of generators of I as
an abelian group. By induction on the length of an expression in terms of these, it suffices
to prove the claim for x + y if it holds for x and y. This follows immediately from the
binomial theorem. �

Example 2.3. Let p be a prime number. LetA be a ring such that every integer n not
divisible by p is invertible, i.e., A is a Z(p)-algebra. Then I = pA has a canonical divided
power structure. Namely, given x = pa ∈ I we set

γn(x) = pn

n! a
n

The reader verifies immediately that pn/n! ∈ pZ(p) for n ≥ 1 (for instance, this can be
derived from the fact that the exponent of p in the prime factorization of n! is bn/pc +⌊
n/p2⌋+

⌊
n/p3⌋+ . . .), so that the definition makes sense and gives us a sequence of maps

γn : I → I . It is a straightforward exercise to verify that conditions (1) – (5) of Definition
2.1 are satisfied. Alternatively, it is clear that the definition works forA0 = Z(p) and then
the result follows from Lemma 4.2.

We notice that γn (0) = 0 for any ideal I of A and any divided power structure γ on I .
(This follows from axiom (3) in Definition 2.1, applied to a = 0.)

Lemma 2.4. Let A be a ring. Let I be an ideal of A. Let γn : I → I , n ≥ 1 be a
sequence of maps. Assume

(a) (1), (3), and (4) of Definition 2.1 hold for all x, y ∈ I , and
(b) properties (2) and (5) hold for x in some set of generators of I as an ideal.

Then γ is a divided power structure on I .

Proof. The numbers (1), (2), (3), (4), (5) in this proof refer to the conditions listed in
Definition 2.1. Applying (3) we see that if (2) and (5) hold for x then (2) and (5) hold for
ax for all a ∈ A. Hence we see (b) implies (2) and (5) hold for a set of generators of I as
an abelian group. Hence, by induction of the length of an expression in terms of these it
suffices to prove that, given x, y ∈ I such that (2) and (5) hold for x and y, then (2) and
(5) hold for x+ y.

Proof of (2) for x+ y. By (4) we have

γn(x+ y)γm(x+ y) =
∑

i+j=n, k+l=m
γi(x)γk(x)γj(y)γl(y)
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Using (2) for x and y this equals∑ (i+ k)!
i!k!

(j + l)!
j!l! γi+k(x)γj+l(y)

Comparing this with the expansion

γn+m(x+ y) =
∑

γa(x)γb(y)

we see that we have to prove that given a+ b = n+m we have∑
i+k=a, j+l=b, i+j=n, k+l=m

(i+ k)!
i!k!

(j + l)!
j!l! = (n+m)!

n!m! .

Instead of arguing this directly, we note that the result is true for the ideal I = (x, y)
in the polynomial ring Q[x, y] because γn(f) = fn/n!, f ∈ I defines a divided power
structure on I . Hence the equality of rational numbers above is true.

Proof of (5) for x + y given that (1) – (4) hold and that (5) holds for x and y. We will
again reduce the proof to an equality of rational numbers. Namely, using (4) we can write
γn(γm(x+ y)) = γn(

∑
γi(x)γj(y)). Using (4) we can write γn(γm(x+ y)) as a sum of

terms which are products of factors of the form γk(γi(x)γj(y)). If i > 0 then

γk(γi(x)γj(y)) = γj(y)kγk(γi(x))

= (ki)!
k!(i!)k γj(y)kγki(x)

= (ki)!
k!(i!)k

(kj)!
(j!)k γki(x)γkj(y)

using (3) in the first equality, (5) for x in the second, and (2) exactly k times in the third.
Using (5) for y we see the same equality holds when i = 0. Continuing like this using all
axioms but (5) we see that we can write

γn(γm(x+ y)) =
∑

i+j=nm
cijγi(x)γj(y)

for certain universal constants cij ∈ Z. Again the fact that the equality is valid in the
polynomial ring Q[x, y] implies that the coefficients cij are all equal to (nm)!/n!(m!)n as
desired. �

Lemma 2.5. Let A be a ring with two ideals I, J ⊂ A. Let γ be a divided power
structure on I and let δ be a divided power structure on J . Then

(1) γ and δ agree on IJ ,
(2) if γ and δ agree on I ∩ J then they are the restriction of a unique divided power

structure ε on I + J .

Proof. Let x ∈ I and y ∈ J . Then

γn(xy) = ynγn(x) = n!δn(y)γn(x) = δn(y)xn = δn(xy).

Hence γ and δ agree on a set of (additive) generators of IJ . By property (4) of Definition
2.1 it follows that they agree on all of IJ .

Assume γ and δ agree on I ∩ J . Let z ∈ I + J . Write z = x + y with x ∈ I and y ∈ J .
Then we set

εn(z) =
∑

γi(x)δn−i(y)
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for all n ≥ 1. To see that this is well defined, suppose that z = x′ + y′ is another repre-
sentation with x′ ∈ I and y′ ∈ J . Then w = x− x′ = y′ − y ∈ I ∩ J . Hence∑

i+j=n
γi(x)δj(y) =

∑
i+j=n

γi(x′ + w)δj(y)

=
∑

i′+l+j=n
γi′(x′)γl(w)δj(y)

=
∑

i′+l+j=n
γi′(x′)δl(w)δj(y)

=
∑

i′+j′=n
γi′(x′)δj′(y + w)

=
∑

i′+j′=n
γi′(x′)δj′(y′)

as desired. Hence, we have defined maps εn : I + J → I + J for all n ≥ 1; it is easy
to see that εn |I= γn and εn |J= δn. Next, we prove conditions (1) – (5) of Definition
2.1 for the collection of maps εn. Properties (1) and (3) are clear. To see (4), suppose that
z = x+ y and z′ = x′ + y′ with x, x′ ∈ I and y, y′ ∈ J and compute

εn(z + z′) =
∑

a+b=n
γa(x+ x′)δb(y + y′)

=
∑

i+i′+j+j′=n
γi(x)γi′(x′)δj(y)δj′(y′)

=
∑

k=0,...,n

∑
i+j=k

γi(x)δj(y)
∑

i′+j′=n−k
γi′(x′)δj′(y′)

=
∑

k=0,...,n
εk(z)εn−k(z′)

as desired. Now we see that it suffices to prove (2) and (5) for elements of I or J , see Lemma
2.4. This is clear because γ and δ are divided power structures.
The existence of a divided power structure ε on I + J whose restrictions to I and J are γ
and δ is thus proven; its uniqueness is rather clear. �

Lemma 2.6. Let p be a prime number. Let A be a ring, let I ⊂ A be an ideal, and
let γ be a divided power structure on I . Assume p is nilpotent in A/I . Then I is locally
nilpotent if and only if p is nilpotent in A.

Proof. If pN = 0 in A, then for x ∈ I we have xpN = (pN)!γpN (x) = 0 because
(pN)! is divisible by pN . Conversely, assume I is locally nilpotent. We’ve also assumed
that p is nilpotent inA/I , hence pr ∈ I for some r, hence pr nilpotent, hence p nilpotent.

�

3. Divided power rings

There is a category of divided power rings. Here is the definition.

Definition 3.1. A divided power ring is a triple (A, I, γ) where A is a ring, I ⊂ A
is an ideal, and γ = (γn)n≥1 is a divided power structure on I . A homomorphism of
divided power rings ϕ : (A, I, γ) → (B, J, δ) is a ring homomorphism ϕ : A → B such
that ϕ(I) ⊂ J and such that δn(ϕ(x)) = ϕ(γn(x)) for all x ∈ I and n ≥ 1.

We sometimes say “let (B, J, δ) be a divided power algebra over (A, I, γ)” to indicate that
(B, J, δ) is a divided power ring which comes equipped with a homomorphism of divided
power rings (A, I, γ)→ (B, J, δ).

Lemma 3.2. The category of divided power rings has all limits and they agree with
limits in the category of rings.
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Proof. The empty limit is the zero ring (that’s weird but we need it). The product of
a collection of divided power rings (At, It, γt), t ∈ T is given by (

∏
At,
∏
It, γ) where

γn((xt)) = (γt,n(xt)). The equalizer of α, β : (A, I, γ) → (B, J, δ) is just C = {a ∈
A | α(a) = β(a)} with ideal C ∩ I and induced divided powers. It follows that all limits
exist, see Categories, Lemma 14.11. �

The following lemma illustrates a very general category theoretic phenomenon in the case
of divided power algebras.

Lemma 3.3. Let C be the category of divided power rings. Let F : C → Sets be a
functor. Assume that

(1) there exists a cardinal κ such that for every f ∈ F (A, I, γ) there exists a mor-
phism (A′, I ′, γ′)→ (A, I, γ) of C such that f is the image of f ′ ∈ F (A′, I ′, γ′)
and |A′| ≤ κ, and

(2) F commutes with limits.
Then F is representable, i.e., there exists an object (B, J, δ) of C such that

F (A, I, γ) = HomC((B, J, δ), (A, I, γ))
functorially in (A, I, γ).

Proof. This is a special case of Categories, Lemma 25.1. �

Lemma 3.4. The category of divided power rings has all colimits.

Proof. The empty colimit is Z with divided power ideal (0). Let’s discuss general
colimits. Let C be a category and let c 7→ (Ac, Ic, γc) be a diagram. Consider the functor

F (B, J, δ) = limc∈C Hom((Ac, Ic, γc), (B, J, δ))
Note that any f = (fc)c∈C ∈ F (B, J, δ) has the property that all the images fc(Ac)
generate a subringB′ ofB of bounded cardinalityκ and that all the images fc(Ic) generate
a divided power sub ideal J ′ of B′. And we get a factorization of f as a f ′ in F (B′)
followed by the inclusion B′ → B. Also, F commutes with limits. Hence we may apply
Lemma 3.3 to see that F is representable and we win. �

Remark 3.5. The forgetful functor (A, I, γ) 7→ A does not commute with colimits.
For example, let

(B, J, δ) // (B′′, J ′′, δ′′)

(A, I, γ) //

OO

(B′, J ′, δ′)

OO

be a pushout in the category of divided power rings. Then in general the map B ⊗A
B′ → B′′ isn’t an isomorphism. (It is always surjective.) An explicit example is given by
(A, I, γ) = (Z, (0), ∅), (B, J, δ) = (Z/4Z, 2Z/4Z, δ), and (B′, J ′, δ′) = (Z/4Z, 2Z/4Z, δ′)
where δ2(2) = 2 and δ′

2(2) = 0. More precisely, using Lemma 5.3 we let δ, resp. δ′ be the
unique divided power structure on J , resp. J ′ such that δ2 : J → J , resp. δ′

2 : J ′ → J ′

is the map 0 7→ 0, 2 7→ 2, resp. 0 7→ 0, 2 7→ 0. Then (B′′, J ′′, δ′′) = (F2, (0), ∅) which
doesn’t agree with the tensor product. However, note that it is always true that

B′′/J ′′ = B/J ⊗A/I B′/J ′

as can be seen from the universal property of the pushout by considering maps into divided
power algebras of the form (C, (0), ∅).
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4. Extending divided powers

Here is the definition.

Definition 4.1. Given a divided power ring (A, I, γ) and a ring mapA→ B we say
γ extends to B if there exists a divided power structure γ̄ on IB such that (A, I, γ) →
(B, IB, γ̄) is a homomorphism of divided power rings.

Lemma 4.2. Let (A, I, γ) be a divided power ring. Let A → B be a ring map. If γ
extends to B then it extends uniquely. Assume (at least) one of the following conditions
holds

(1) IB = 0,
(2) I is principal, or
(3) A→ B is flat.

Then γ extends to B.

Proof. Any element of IB can be written as a finite sum
∑t
i=1 bixi with bi ∈ B and

xi ∈ I . If γ extends to γ̄ on IB then γ̄n(xi) = γn(xi). Thus, conditions (3) and (4) in
Definition 2.1 imply that

γ̄n(
∑t

i=1
bixi) =

∑
n1+...+nt=n

∏t

i=1
bnii γni(xi)

Thus we see that γ̄ is unique if it exists.

If IB = 0 then setting γ̄n(0) = 0 works. If I = (x) then we define γ̄n(bx) = bnγn(x).
This is well defined: if b′x = bx, i.e., (b− b′)x = 0 then

bnγn(x)− (b′)nγn(x) = (bn − (b′)n)γn(x)
= (bn−1 + . . .+ (b′)n−1)(b− b′)γn(x) = 0

because γn(x) is divisible by x (since γn(I) ⊂ I) and hence annihilated by b − b′. Next,
we prove conditions (1) – (5) of Definition 2.1. Parts (1), (2), (3), (5) are obvious from the
construction. For (4) suppose that y, z ∈ IB, say y = bx and z = cx. Then y + z =
(b+ c)x hence

γ̄n(y + z) = (b+ c)nγn(x)

=
∑ n!

i!(n− i)!b
icn−iγn(x)

=
∑

bicn−iγi(x)γn−i(x)

=
∑

γ̄i(y)γ̄n−i(z)

as desired.

Assume A→ B is flat. Suppose that b1, . . . , br ∈ B and x1, . . . , xr ∈ I . Then

γ̄n(
∑

bixi) =
∑

be1
1 . . . berr γe1(x1) . . . γer (xr)

where the sum is over e1+. . .+er = n if γ̄n exists. Next suppose that we have c1, . . . , cs ∈
B and aij ∈ A such that bi =

∑
aijcj . Setting yj =

∑
aijxi we claim that∑

be1
1 . . . berr γe1(x1) . . . γer (xr) =

∑
cd1

1 . . . cdss γd1(y1) . . . γds(ys)

in B where on the right hand side we are summing over d1 + . . . + ds = n. Namely,
using the axioms of a divided power structure we can expand both sides into a sum with
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coefficients in Z[aij ] of terms of the form cd1
1 . . . cdss γe1(x1) . . . γer (xr). To see that the

coefficients agree we note that the result is true in Q[x1, . . . , xr, c1, . . . , cs, aij ] with γ the
unique divided power structure on (x1, . . . , xr). By Lazard’s theorem (Algebra, Theorem
81.4) we can writeB as a directed colimit of finite freeA-modules. In particular, if z ∈ IB
is written as z =

∑
xibi and z =

∑
x′
i′b

′
i′ , then we can find c1, . . . , cs ∈ B and aij , a′

i′j ∈
A such that bi =

∑
aijcj and b′

i′ =
∑
a′
i′jcj such that yj =

∑
xiaij =

∑
x′
i′a

′
i′j holds2.

Hence the procedure above gives a well defined map γ̄n on IB. By construction γ̄ satisfies
conditions (1), (3), and (4). Moreover, for x ∈ I we have γ̄n(x) = γn(x). Hence it follows
from Lemma 2.4 that γ̄ is a divided power structure on IB. �

Lemma 4.3. Let (A, I, γ) be a divided power ring.
(1) If ϕ : (A, I, γ) → (B, J, δ) is a homomorphism of divided power rings, then

Ker(ϕ) ∩ I is preserved by γn for all n ≥ 1.
(2) Let a ⊂ A be an ideal and set I ′ = I ∩ a. The following are equivalent

(a) I ′ is preserved by γn for all n > 0,
(b) γ extends to A/a, and
(c) there exist a set of generators xi of I ′ as an ideal such that γn(xi) ∈ I ′ for

all n > 0.

Proof. Proof of (1). This is clear. Assume (2)(a). Define γ̄n(x mod I ′) = γn(x) mod
I ′ for x ∈ I . This is well defined since γn(x+y) = γn(x) mod I ′ for y ∈ I ′ by Definition
2.1 (4) and the fact that γj(y) ∈ I ′ by assumption. It is clear that γ̄ is a divided power
structure as γ is one. Hence (2)(b) holds. Also, (2)(b) implies (2)(a) by part (1). It is clear
that (2)(a) implies (2)(c). Assume (2)(c). Note that γn(x) = anγn(xi) ∈ I ′ for x = axi.
Hence we see that γn(x) ∈ I ′ for a set of generators of I ′ as an abelian group. By induction
on the length of an expression in terms of these, it suffices to prove ∀n : γn(x + y) ∈ I ′

if ∀n : γn(x), γn(y) ∈ I ′. This follows immediately from the fourth axiom of a divided
power structure. �

Lemma 4.4. Let (A, I, γ) be a divided power ring. Let E ⊂ I be a subset. Then the
smallest ideal J ⊂ I preserved by γ and containing all f ∈ E is the ideal J generated by
γn(f), n ≥ 1, f ∈ E.

Proof. Follows immediately from Lemma 4.3. �

Lemma 4.5. Let (A, I, γ) be a divided power ring. Let p be a prime. If p is nilpotent
in A/I , then

(1) the p-adic completion A∧ = limeA/p
eA surjects onto A/I ,

(2) the kernel of this map is the p-adic completion I∧ of I , and
(3) each γn is continuous for the p-adic topology and extends to γ∧

n : I∧ → I∧

defining a divided power structure on I∧.
If moreover A is a Z(p)-algebra, then

(4) for e large enough the ideal peA ⊂ I is preserved by the divided power structure
γ and

(A∧, I∧, γ∧) = lime(A/peA, I/peA, γ̄)
in the category of divided power rings.

2This can also be proven without recourse to Algebra, Theorem 81.4. Indeed, if z =
∑

xibi and z =∑
x′
i′b

′
i′ , then

∑
xibi−

∑
x′
i′b

′
i′ = 0 is a relation in theA-moduleB. Thus, Algebra, Lemma 39.11 (applied

to the xi and x′
i′ taking the place of the fi , and the bi and b′

i′ taking the role of the xi) yields the existence of
the c1, . . . , cs ∈ B and aij , a′

i′j ∈ A as required.
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Proof. Let t ≥ 1 be an integer such that ptA/I = 0, i.e., ptA ⊂ I . The map
A∧ → A/I is the composition A∧ → A/ptA → A/I which is surjective (for exam-
ple by Algebra, Lemma 96.1). As peI ⊂ peA ∩ I ⊂ pe−tI for e ≥ t we see that the kernel
of the composition A∧ → A/I is the p-adic completion of I . The map γn is continuous
because

γn(x+ pey) =
∑

i+j=n
pjeγi(x)γj(y) = γn(x) mod peI

by the axioms of a divided power structure. It is clear that the axioms for divided power
structures are inherited by the maps γ∧

n from the maps γn. Finally, to see the last statement
say e > t. Then peA ⊂ I and γ1(peA) ⊂ peA and for n > 1 we have

γn(pea) = pnγn(pe−1a) = pn

n! p
n(e−1)an ∈ peA

as pn/n! ∈ Z(p) and as n ≥ 2 and e ≥ 2 so n(e − 1) ≥ e. This proves that γ extends to
A/peA, see Lemma 4.3. The statement on limits is clear from the construction of limits in
the proof of Lemma 3.2. �

5. Divided power polynomial algebras

A very useful example is the divided power polynomial algebra. LetA be a ring. Let t ≥ 1.
We will denote A〈x1, . . . , xt〉 the following A-algebra: As an A-module we set

A〈x1, . . . , xt〉 =
⊕

n1,...,nt≥0
Ax

[n1]
1 . . . x

[nt]
t

with multiplication given by

x
[n]
i x

[m]
i = (n+m)!

n!m! x
[n+m]
i .

We also set xi = x
[1]
i . Note that 1 = x

[0]
1 . . . x

[0]
t . There is a similar construction which

gives the divided power polynomial algebra in infinitely many variables. There is an
canonical A-algebra map A〈x1, . . . , xt〉 → A sending x[n]

i to zero for n > 0. The kernel
of this map is denoted A〈x1, . . . , xt〉+.

Lemma 5.1. Let (A, I, γ) be a divided power ring. There exists a unique divided
power structure δ on

J = IA〈x1, . . . , xt〉+A〈x1, . . . , xt〉+
such that

(1) δn(xi) = x
[n]
i , and

(2) (A, I, γ)→ (A〈x1, . . . , xt〉, J, δ) is a homomorphism of divided power rings.
Moreover, (A〈x1, . . . , xt〉, J, δ) has the following universal property: A homomorphism
of divided power rings ϕ : (A〈x1, . . . , xt〉, J, δ)→ (C,K, ε) is the same thing as a homo-
morphism of divided power rings A→ C and elements k1, . . . , kt ∈ K.

Proof. We will prove the lemma in case of a divided power polynomial algebra in
one variable. The result for the general case can be argued in exactly the same way, or
by noting that A〈x1, . . . , xt〉 is isomorphic to the ring obtained by adjoining the divided
power variables x1, . . . , xt one by one.

Let A〈x〉+ be the ideal generated by x, x[2], x[3], . . .. Note that J = IA〈x〉+ A〈x〉+ and
that

IA〈x〉 ∩A〈x〉+ = IA〈x〉 ·A〈x〉+
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Hence by Lemma 2.5 it suffices to show that there exist divided power structures on the
ideals IA〈x〉 andA〈x〉+. The existence of the first follows from Lemma 4.2 asA→ A〈x〉
is flat. For the second, note that if A is torsion free, then we can apply Lemma 2.2 (4) to
see that δ exists. Namely, choosing as generators the elements x[m] we see that (x[m])n =
(nm)!
(m!)n x

[nm] and n! divides the integer (nm)!
(m!)n . In general write A = R/a for some torsion

free ring R (e.g., a polynomial ring over Z). The kernel of R〈x〉 → A〈x〉 is
⊕

ax[m].
Applying criterion (2)(c) of Lemma 4.3 we see that the divided power structure onR〈x〉+
extends to A〈x〉 as desired.

Proof of the universal property. Given a homomorphism ϕ : A → C of divided power
rings and k1, . . . , kt ∈ K we consider

A〈x1, . . . , xt〉 → C, x
[n1]
1 . . . x

[nt]
t 7−→ εn1(k1) . . . εnt(kt)

usingϕ on coefficients. The only thing to check is that this is anA-algebra homomorphism
(details omitted). The inverse construction is clear. �

Remark 5.2. Let (A, I, γ) be a divided power ring. There is a variant of Lemma 5.1
for infinitely many variables. First note that if s < t then there is a canonical map

A〈x1, . . . , xs〉 → A〈x1, . . . , xt〉

Hence if W is any set, then we set

A〈xw : w ∈W 〉 = colimE⊂W A〈xe : e ∈ E〉

(colimit over E finite subset of W ) with transition maps as above. By the definition of
a colimit we see that the universal mapping property of A〈xw : w ∈ W 〉 is completely
analogous to the mapping property stated in Lemma 5.1.

The following lemma can be found in [?].

Lemma 5.3. Let p be a prime number. Let A be a ring such that every integer n not
divisible by p is invertible, i.e., A is a Z(p)-algebra. Let I ⊂ A be an ideal. Two divided
power structures γ, γ′ on I are equal if and only if γp = γ′

p. Moreover, given a map
δ : I → I such that

(1) p!δ(x) = xp for all x ∈ I ,
(2) δ(ax) = apδ(x) for all a ∈ A, x ∈ I , and
(3) δ(x+ y) = δ(x) +

∑
i+j=p,i,j≥1

1
i!j!x

iyj + δ(y) for all x, y ∈ I ,
then there exists a unique divided power structure γ on I such that γp = δ.

Proof. If n is not divisible by p, then γn(x) = cxγn−1(x) where c is a unit in Z(p).
Moreover,

γpm(x) = cγm(γp(x))
where c is a unit in Z(p). Thus the first assertion is clear. For the second assertion, we can,
working backwards, use these equalities to define all γn. More precisely, if n = a0 +a1p+
. . .+ aep

e with ai ∈ {0, . . . , p− 1} then we set

γn(x) = cnx
a0δ(x)a1 . . . δe(x)ae

for cn ∈ Z(p) defined by

cn = (p!)a1+a2(1+p)+...+ae(1+...+pe−1)/n!.
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Now we have to show the axioms (1) – (5) of a divided power structure, see Definition
2.1. We observe that (1) and (3) are immediate. Verification of (2) and (5) is by a direct
calculation which we omit. Let x, y ∈ I . We claim there is a ring map

ϕ : Z(p)〈u, v〉 −→ A

which maps u[n] to γn(x) and v[n] to γn(y). By construction of Z(p)〈u, v〉 this means we
have to check that

γn(x)γm(x) = (n+m)!
n!m! γn+m(x)

in A and similarly for y. This is true because (2) holds for γ. Let ε denote the divided
power structure on the ideal Z(p)〈u, v〉+ of Z(p)〈u, v〉. Next, we claim that ϕ(εn(f)) =
γn(ϕ(f)) for f ∈ Z(p)〈u, v〉+ and all n. This is clear for n = 0, 1, . . . , p − 1. For
n = p it suffices to prove it for a set of generators of the ideal Z(p)〈u, v〉+ because both
εp and γp = δ satisfy properties (1) and (3) of the lemma. Hence it suffices to prove that
γp(γn(x)) = (pn)!

p!(n!)p γpn(x) and similarly for y, which follows as (5) holds for γ. Now, if
n = a0 + a1p + . . . + aep

e is an arbitrary integer written in p-adic expansion as above,
then

εn(f) = cnf
a0γp(f)a1 . . . γep(f)ae

because ε is a divided power structure. Hence we see that ϕ(εn(f)) = γn(ϕ(f)) holds for
all n. Applying this for f = u+ v we see that axiom (4) for γ follows from the fact that
ε is a divided power structure. �

6. Tate resolutions

In this section we briefly discuss the resolutions constructed in [?] and [?] which combine
divided power structures with differential graded algebras. In this section we will use
homological notation for differential graded algebras. Our differential graded algebras
will sit in nonnegative homological degrees. Thus our differential graded algebras (A, d)
will be given as chain complexes

. . .→ A2 → A1 → A0 → 0→ . . .

endowed with a multiplication.
Let R be a ring (commutative, as usual). In this section we will often consider graded
R-algebras A =

⊕
d≥0 Ad whose components are zero in negative degrees. We will set

A+ =
⊕

d>0 Ad. We will write Aeven =
⊕

d≥0 A2d and Aodd =
⊕

d≥0 A2d+1. Recall
that A is graded commutative if xy = (−1)deg(x) deg(y)yx for homogeneous elements
x, y. Recall that A is strictly graded commutative if in addition x2 = 0 for homogeneous
elements x of odd degree. Finally, to understand the following definition, keep in mind
that γn(x) = xn/n! if A is a Q-algebra.

Definition 6.1. Let R be a ring. Let A =
⊕

d≥0 Ad be a graded R-algebra which is
strictly graded commutative. A collection of maps γn : Aeven,+ → Aeven,+ defined for
all n > 0 is called a divided power structure on A if we have

(1) γn(x) ∈ A2nd if x ∈ A2d,
(2) γ1(x) = x for any x, we also set γ0(x) = 1,
(3) γn(x)γm(x) = (n+m)!

n!m! γn+m(x),
(4) γn(xy) = xnγn(y) for all x ∈ Aeven and y ∈ Aeven,+,
(5) γn(xy) = 0 if x, y ∈ Aodd homogeneous and n > 1
(6) if x, y ∈ Aeven,+ then γn(x+ y) =

∑
i=0,...,n γi(x)γn−i(y),
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(7) γn(γm(x)) = (nm)!
n!(m!)n γnm(x) for x ∈ Aeven,+.

Observe that conditions (2), (3), (4), (6), and (7) imply that γ is a “usual” divided power
structure on the ideal Aeven,+ of the (commutative) ring Aeven, see Sections 2, 3, 4, and
5. In particular, we have n!γn(x) = xn for all x ∈ Aeven,+. Condition (1) states that γ is
compatible with grading and condition (5) tells us γn for n > 1 vanishes on products of
homogeneous elements of odd degree. But note that it may happen that

γ2(z1z2 + z3z4) = z1z2z3z4

is nonzero if z1, z2, z3, z4 are homogeneous elements of odd degree.

Example 6.2 (Adjoining odd variable). LetR be a ring. Let (A, γ) be a strictly graded
commutative graded R-algebra endowed with a divided power structure as in the defini-
tion above. Let d > 0 be an odd integer. In this setting we can adjoin a variable T of
degree d to A. Namely, set

A〈T 〉 = A⊕AT
with grading given byA〈T 〉m = Am⊕Am−dT . We claim there is a unique divided power
structure on A〈T 〉 compatible with the given divided power structure on A. Namely, we
set

γn(x+ yT ) = γn(x) + γn−1(x)yT
for x ∈ Aeven,+ and y ∈ Aodd.

Example 6.3 (Adjoining even variable). LetR be a ring. Let (A, γ) be a strictly graded
commutative graded R-algebra endowed with a divided power structure as in the defini-
tion above. Let d > 0 be an even integer. In this setting we can adjoin a variable T of
degree d to A. Namely, set

A〈T 〉 = A⊕AT ⊕AT (2) ⊕AT (3) ⊕ . . .
with multiplication given by

T (n)T (m) = (n+m)!
n!m! T (n+m)

and with grading given by

A〈T 〉m = Am ⊕Am−dT ⊕Am−2dT
(2) ⊕ . . .

We claim there is a unique divided power structure on A〈T 〉 compatible with the given
divided power structure on A such that γn(T (i)) = T (ni). To define the divided power
structure we first set

γn

(∑
i>0

xiT
(i)
)

=
∑∏

n=
∑

ei
xeii T

(iei)

if xi is in Aeven. If x0 ∈ Aeven,+ then we take

γn

(∑
i≥0

xiT
(i)
)

=
∑

a+b=n
γa(x0)γb

(∑
i>0

xiT
(i)
)

where γb is as defined above.

Remark 6.4. We can also adjoin a set (possibly infinite) of exterior or divided power
generators in a given degree d > 0, rather than just one as in Examples 6.2 and 6.3. Namely,
following Remark 5.2: for (A, γ) as above and a set J , let A〈Tj : j ∈ J〉 be the directed
colimit of the algebras A〈Tj : j ∈ S〉 over all finite subsets S of J . It is immediate that
this algebra has a unique divided power structure, compatible with the given structure on
A and on each generator Tj .
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At this point we tie in the definition of divided power structures with differentials. To
understand the definition note that d(xn/n!) = d(x)xn−1/(n − 1)! if A is a Q-algebra
and x ∈ Aeven,+.

Definition 6.5. Let R be a ring. Let A =
⊕

d≥0 Ad be a differential graded R-
algebra which is strictly graded commutative. A divided power structure γ onA is compat-
ible with the differential graded structure if d(γn(x)) = d(x)γn−1(x) for all x ∈ Aeven,+.

Warning: Let (A, d, γ) be as in Definition 6.5. It may not be true that γn(x) is a bound-
ary, if x is a boundary. Thus γ in general does not induce a divided power structure on
the homology algebra H(A). In some papers the authors put an additional compatibility
condition in order to ensure that this is the case, but we elect not to do so.

Lemma 6.6. Let (A, d, γ) and (B, d, γ) be as in Definition 6.5. Let f : A → B be a
map of differential graded algebras compatible with divided power structures. Assume

(1) Hk(A) = 0 for k > 0, and
(2) f is surjective.

Then γ induces a divided power structure on the graded R-algebra H(B).

Proof. Suppose that x and x′ are homogeneous of the same degree 2d and define the
same cohomology class in H(B). Say x′ − x = d(w). Choose a lift y ∈ A2d of x and a
lift z ∈ A2d+1 of w. Then y′ = y + d(z) is a lift of x′. Hence

γn(y′) =
∑

γi(y)γn−i(d(z)) = γn(y) +
∑

i<n
γi(y)γn−i(d(z))

Since A is acyclic in positive degrees and since d(γj(d(z))) = 0 for all j we can write this
as

γn(y′) = γn(y) +
∑

i<n
γi(y)d(zi)

for some zi in A. Moreover, for 0 < i < n we have

d(γi(y)zi) = d(γi(y))zi + γi(y)d(zi) = d(y)γi−1(y)zi + γi(y)d(zi)

and the first term maps to zero in B as d(y) maps to zero in B. Hence γn(x′) and γn(x)
map to the same element of H(B). Thus we obtain a well defined map γn : H2d(B) →
H2nd(B) for all d > 0 and n > 0. We omit the verification that this defines a divided
power structure on H(B). �

Lemma 6.7. Let (A, d, γ) be as in Definition 6.5. Let R→ R′ be a ring map. Then d
and γ induce similar structures on A′ = A ⊗R R′ such that (A′, d, γ) is as in Definition
6.5.

Proof. Observe thatA′
even = Aeven⊗RR′ andA′

even,+ = Aeven,+⊗RR′. Hence we
are trying to show that the divided powers γ extend toA′

even (terminology as in Definition
4.1). Once we have shown γ extends it follows easily that this extension has all the desired
properties.

Choose a polynomialR-algebraP (on any set of generators) and a surjection ofR-algebras
P → R′. The ring map Aeven → Aeven ⊗R P is flat, hence the divided powers γ extend
toAeven⊗RP uniquely by Lemma 4.2. Let J = Ker(P → R′). To show that γ extends to
A⊗RR′ it suffices to show that I ′ = Ker(Aeven,+⊗R P → Aeven,+⊗RR′) is generated
by elements z such that γn(z) ∈ I ′ for all n > 0. This is clear as I ′ is generated by
elements of the form x⊗ f with x ∈ Aeven,+ and f ∈ Ker(P → R′). �
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Lemma 6.8. Let (A, d, γ) be as in Definition 6.5. Let d ≥ 1 be an integer. Let A〈T 〉
be the graded divided power polynomial algebra on T with deg(T ) = d constructed in
Example 6.2 or 6.3. Let f ∈ Ad−1 be an element with d(f) = 0. There exists a unique
differential d onA〈T 〉 such that d(T ) = f and such that d is compatible with the divided
power structure on A〈T 〉.

Proof. This is proved by a direct computation which is omitted. �

In Lemma 12.3 we will compute the cohomology of A〈T 〉 in some special cases. Here is
Tate’s construction, as extended by Avramov and Halperin.

Lemma 6.9. Let R → S be a homomorphism of commutative rings. There exists a
factorization

R→ A→ S

with the following properties:
(1) (A, d, γ) is as in Definition 6.5,
(2) A→ S is a quasi-isomorphism (if we endow S with the zero differential),
(3) A0 = R[xj : j ∈ J ]→ S is any surjection of a polynomial ring onto S , and
(4) A is a graded divided power polynomial algebra over R.

The last condition means that A is constructed out of A0 by successively adjoining a set
of variables T in each degree > 0 as in Example 6.2 or 6.3. Moreover, if R is Noetherian
andR→ S is of finite type, thenA can be taken to have only finitely many generators in
each degree.

Proof. We write out the construction for the case that R is Noetherian and R→ S
is of finite type. Without those assumptions, the proof is the same, except that we have to
use some set (possibly infinite) of generators in each degree.

Start of the construction: Let A(0) = R[x1, . . . , xn] be a (usual) polynomial ring and let
A(0) → S be a surjection. As grading we take A(0)0 = A(0) and A(0)d = 0 for d 6= 0.
Thus d = 0 and γn, n > 0, is zero as well.

Choose generators f1, . . . , fm ∈ R[x1, . . . , xn] for the kernel of the given map A(0) =
R[x1, . . . , xn]→ S. We apply Example 6.2 m times to get

A(1) = A(0)〈T1, . . . , Tm〉

with deg(Ti) = 1 as a graded divided power polynomial algebra. We set d(Ti) = fi. Since
A(1) is a divided power polynomial algebra over A(0) and since d(fi) = 0 this extends
uniquely to a differential on A(1) by Lemma 6.8.

Induction hypothesis: Assume we are given factorizations

R→ A(0)→ A(1)→ . . .→ A(m)→ S

where A(0) and A(1) are as above and each R → A(m′) → S for 2 ≤ m′ ≤ m satisfies
properties (1) and (4) of the statement of the lemma and (2) replaced by the condition that
Hi(A(m′))→ Hi(S) is an isomorphism for m′ > i ≥ 0. The base case is m = 1.

Induction step: Assume we have R → A(m) → S as in the induction hypothesis. Con-
sider the groupHm(A(m)). This is a module overH0(A(m)) = S. In fact, it is a subquo-
tient ofA(m)m which is a finite type module overA(m)0 = R[x1, . . . , xn]. Thus we can
pick finitely many elements

e1, . . . , et ∈ Ker(d : A(m)m → A(m)m−1)
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which map to generators of this module. Applying Example 6.2 or 6.3 t times we get

A(m+ 1) = A(m)〈T1, . . . , Tt〉

with deg(Ti) = m+1 as a graded divided power algebra. We set d(Ti) = ei. SinceA(m+
1) is a divided power polynomial algebra over A(m) and since d(ei) = 0 this extends
uniquely to a differential onA(m+1) compatible with the divided power structure. Since
we’ve added only material in degree m + 1 and higher we see that Hi(A(m + 1)) =
Hi(A(m)) for i < m. Moreover, it is clear that Hm(A(m+ 1)) = 0 by construction.

To finish the proof we observe that we have shown there exists a sequence of maps

R→ A(0)→ A(1)→ . . .→ A(m)→ A(m+ 1)→ . . .→ S

and to finish the proof we set A = colimA(m). �

Lemma 6.10. Let R → S be a pseudo-coherent ring map (More on Algebra, Def-
inition 82.1). Then Lemma 6.9 holds, with the resolution A of S having finitely many
generators in each degree.

Proof. This is proved in exactly the same way as Lemma 6.9. The only additional
twist is that, given A(m) → S we have to show that Hm = Hm(A(m)) is a finite
R[x1, . . . , xm]-module (so that in the next step we need only add finitely many variables).
Consider the complex

. . .→ A(m)m−1 → A(m)m → A(m)m−1 → . . .→ A(m)0 → S → 0

SinceS is a pseudo-coherentR[x1, . . . , xn]-module and sinceA(m)i is a finite freeR[x1, . . . , xn]-
module we conclude that this is a pseudo-coherent complex, see More on Algebra, Lemma
64.9. Since the complex is exact in (homological) degrees > m we conclude that Hm is a
finite R-module by More on Algebra, Lemma 64.3. �

Lemma 6.11. Let R be a commutative ring. Suppose that (A, d, γ) and (B, d, γ) are
as in Definition 6.5. Let ϕ : H0(A)→ H0(B) be an R-algebra map. Assume

(1) A is a graded divided power polynomial algebra over R.
(2) Hk(B) = 0 for k > 0.

Then there exists a map ϕ : A → B of differential graded R-algebras compatible with
divided powers that lifts ϕ.

Proof. The assumption means that A is obtained from R by successively adjoining
some set of polynomial generators in degree zero, exterior generators in positive odd de-
grees, and divided power generators in positive even degrees. So we have a filtration
R ⊂ A(0) ⊂ A(1) ⊂ . . . of A such that A(m + 1) is obtained from A(m) by adjoin-
ing generators of the appropriate type (which we simply call “divided power generators”)
in degree m + 1. In particular, A(0) → H0(A) is a surjection from a (usual) polynomial
algebra over R onto H0(A). Thus we can lift ϕ to an R-algebra map ϕ(0) : A(0)→ B0.

Write A(1) = A(0)〈Tj : j ∈ J〉 for some set J of divided power variables Tj of degree
1. Let fj ∈ B0 be fj = ϕ(0)(d(Tj)). Observe that fj maps to zero in H0(B) as dTj maps
to zero in H0(A). Thus we can find bj ∈ B1 with d(bj) = fj . By the universal property
of divided power polynomial algebras from Lemma 5.1, we find a lift ϕ(1) : A(1)→ B of
ϕ(0) mapping Tj to fj .

Having constructed ϕ(m) for some m ≥ 1 we can construct ϕ(m+ 1) : A(m+ 1)→ B
in exactly the same manner. We omit the details. �
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Lemma 6.12. Let R be a commutative ring. Let S and T be commutative R-algebras.
Then there is a canonical structure of a strictly graded commutative R-algebra with di-
vided powers on

TorR∗ (S, T ).

Proof. Choose a factorization R → A → S as above. Since A → S is a quasi-
isomorphism and since Ad is a free R-module, we see that the differential graded algebra
B = A ⊗R T computes the Tor groups displayed in the lemma. Choose a surjection
R[yj : j ∈ J ] → T . Then we see that B is a quotient of the differential graded algebra
A[yj : j ∈ J ] whose homology sits in degree 0 (it is equal to S[yj : j ∈ J ]). By Lemma
6.7 the differential graded algebras B and A[yj : j ∈ J ] have divided power structures
compatible with the differentials. Hence we obtain our divided power structure onH(B)
by Lemma 6.6.
The divided power algebra structure constructed in this way is independent of the choice
of A. Namely, if A′ is a second choice, then Lemma 6.11 implies there is a map A → A′

preserving all structure and the augmentations towards S. Then the induced map B =
A ⊗R T → A′ ⊗R T ′ = B′ also preserves all structure and is a quasi-isomorphism. The
induced isomorphism of Tor algebras is therefore compatible with products and divided
powers. �

7. Application to complete intersections

LetR be a ring. Let (A, d, γ) be as in Definition 6.5. A derivation of degree 2 is anR-linear
map θ : A→ A with the following properties

(1) θ(Ad) ⊂ Ad−2,
(2) θ(xy) = θ(x)y + xθ(y),
(3) θ commutes with d,
(4) θ(γn(x)) = θ(x)γn−1(x) for all x ∈ A2d all d.

In the following lemma we construct a derivation.

Lemma 7.1. Let R be a ring. Let (A, d, γ) be as in Definition 6.5. Let R′ → R be a
surjection of rings whose kernel has square zero and is generated by one element f . If A
is a graded divided power polynomial algebra overR with finitely many variables in each
degree, then we obtain a derivation θ : A/IA→ A/IA where I is the annihilator of f in
R.

Proof. Since A is a divided power polynomial algebra, we can find a divided power
polynomial algebra A′ over R′ such that A = A′ ⊗R R′. Moreover, we can lift d to an
R-linear operator d on A′ such that

(1) d(xy) = d(x)y + (−1)deg(x)xd(y) for x, y ∈ A′ homogeneous, and
(2) d(γn(x)) = d(x)γn−1(x) for x ∈ A′

even,+.
We omit the details (hint: proceed one variable at the time). However, it may not be
the case that d2 is zero on A′. It is clear that d2 maps A′ into fA′ ∼= A/IA. Hence d2

annihilates fA′ and factors as a map A→ A/IA. Since d2 is R-linear we obtain our map
θ : A/IA→ A/IA. The verification of the properties of a derivation is immediate. �

Lemma 7.2. Assumption and notation as in Lemma 7.1. Suppose S = H0(A) is iso-
morphic to R[x1, . . . , xn]/(f1, . . . , fm) for some n, m, and fj ∈ R[x1, . . . , xn]. More-
over, suppose given a relation ∑

rjfj = 0
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with rj ∈ R[x1, . . . , xn]. Choose r′
j , f

′
j ∈ R′[x1, . . . , xn] lifting rj , fj . Write

∑
r′
jf

′
j =

gf for some g ∈ R/I[x1, . . . , xn]. If H1(A) = 0 and all the coefficients of each rj are in
I , then there exists an element ξ ∈ H2(A/IA) such that θ(ξ) = g in S/IS.

Proof. Let A(0) ⊂ A(1) ⊂ A(2) ⊂ . . . be the filtration of A such that A(m) is
gotten from A(m − 1) by adjoining divided power variables of degree m. Then A(0) is
a polynomial algebra over R equipped with an R-algebra surjection A(0) → S. Thus we
can choose a map

ϕ : R[x1, . . . , xn]→ A(0)
lifting the augmentations to S. Next, A(1) = A(0)〈T1, . . . , Tt〉 for some divided power
variables Ti of degree 1. Since H0(A) = S we can pick ξj ∈

∑
A(0)Ti with d(ξj) =

ϕ(fj). Then

d
(∑

ϕ(rj)ξj
)

=
∑

ϕ(rj)ϕ(fj) =
∑

ϕ(rjfj) = 0

SinceH1(A) = 0 we can pick ξ ∈ A2 with d(ξ) =
∑
ϕ(rj)ξj . If the coefficients of rj are

in I , then the same is true for ϕ(rj). In this case d(ξ) dies in A1/IA1 and hence ξ defines
a class in H2(A/IA).

The construction of θ in the proof of Lemma 7.1 proceeds by successively lifting A(i) to
A′(i) and lifting the differential d. We lift ϕ to ϕ′ : R′[x1, . . . , xn] → A′(0). Next,
we have A′(1) = A′(0)〈T1, . . . , Tt〉. Moreover, we can lift ξj to ξ′

j ∈
∑
A′(0)Ti. Then

d(ξ′
j) = ϕ′(f ′

j) + faj for some aj ∈ A′(0). Consider a lift ξ′ ∈ A′
2 of ξ. Then we know

that
d(ξ′) =

∑
ϕ′(r′

j)ξ′
j +

∑
fbiTi

for some bi ∈ A(0). Applying d again we find

θ(ξ) =
∑

ϕ′(r′
j)ϕ′(f ′

j) +
∑

fϕ′(r′
j)aj +

∑
fbid(Ti)

The first term gives us what we want. The second term is zero because the coefficients of
rj are in I and hence are annihilated by f . The third term maps to zero in H0 because
d(Ti) maps to zero. �

The method of proof of the following lemma is apparently due to Gulliksen.

Lemma 7.3. LetR′ → R be a surjection of Noetherian rings whose kernel has square
zero and is generated by one element f . LetS = R[x1, . . . , xn]/(f1, . . . , fm). Let

∑
rjfj =

0 be a relation in R[x1, . . . , xn]. Assume that
(1) each rj has coefficients in the annihilator I of f in R,
(2) for some lifts r′

j , f
′
j ∈ R′[x1, . . . , xn] we have

∑
r′
jf

′
j = gf where g is not

nilpotent in S/IS.
Then S does not have finite tor dimension over R (i.e., S is not a perfect R-algebra).

Proof. Choose a Tate resolution R→ A→ S as in Lemma 6.9. Let ξ ∈ H2(A/IA)
and θ : A/IA → A/IA be the element and derivation found in Lemmas 7.1 and 7.2.
Observe that

θn(γn(ξ)) = gn

in H0(A/IA) = S/IS. Hence if g is not nilpotent in S/IS , then ξn is nonzero in
H2n(A/IA) for all n > 0. Since H2n(A/IA) = TorR2n(S,R/I) we conclude. �

The following result can be found in [?].
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Lemma 7.4. Let (A,m) be a Noetherian local ring. Let I ⊂ J ⊂ A be proper ideals.
If A/J has finite tor dimension over A/I , then I/mI → J/mJ is injective.

Proof. Let f ∈ I be an element mapping to a nonzero element of I/mI which is
mapped to zero in J/mJ . We can choose an ideal I ′ with mI ⊂ I ′ ⊂ I such that I/I ′

is generated by the image of f . Set R = A/I and R′ = A/I ′. Let J = (a1, . . . , am) for
some aj ∈ A. Then f =

∑
bjaj for some bj ∈ m. Let rj , fj ∈ R resp. r′

j , f
′
j ∈ R′ be the

image of bj , aj . Then we see we are in the situation of Lemma 7.3 (with the ideal I of that
lemma equal to mR) and the lemma is proved. �

Lemma 7.5. Let (A,m) be a Noetherian local ring. Let I ⊂ J ⊂ A be proper ideals.
Assume

(1) A/J has finite tor dimension over A/I , and
(2) J is generated by a regular sequence.

Then I is generated by a regular sequence and J/I is generated by a regular sequence.

Proof. By Lemma 7.4 we see that I/mI → J/mJ is injective. Thus we can find
s ≤ r and a minimal system of generators f1, . . . , fr of J such that f1, . . . , fs are in I and
form a minimal system of generators of I . The lemma follows as any minimal system of
generators of J is a regular sequence by More on Algebra, Lemmas 30.15 and 30.7. �

Lemma 7.6. LetR→ S be a local ring map of Noetherian local rings. Let I ⊂ R and
J ⊂ S be ideals with IS ⊂ J . If R→ S is flat and S/mRS is regular, then the following
are equivalent

(1) J is generated by a regular sequence andS/J has finite tor dimension as a module
over R/I ,

(2) J is generated by a regular sequence and TorR/Ip (S/J,R/mR) is nonzero for
only finitely many p,

(3) I is generated by a regular sequence and J/IS is generated by a regular sequence
in S/IS.

Proof. If (3) holds, then J is generated by a regular sequence, see for example More
on Algebra, Lemmas 30.13 and 30.7. Moreover, if (3) holds, then S/J = (S/I)/(J/I)
has finite projective dimension over S/IS because the Koszul complex will be a finite free
resolution of S/J over S/IS. Since R/I → S/IS is flat, it then follows that S/J has
finite tor dimension over R/I by More on Algebra, Lemma 66.11. Thus (3) implies (1).
The implication (1)⇒ (2) is trivial. Assume (2). By More on Algebra, Lemma 77.6 we find
that S/J has finite tor dimension over S/IS. Thus we can apply Lemma 7.5 to conclude
that IS and J/IS are generated by regular sequences. Let f1, . . . , fr ∈ I be a minimal
system of generators of I . Since R → S is flat, we see that f1, . . . , fr form a minimal
system of generators for IS in S. Thus f1, . . . , fr ∈ R is a sequence of elements whose
images in S form a regular sequence by More on Algebra, Lemmas 30.15 and 30.7. Thus
f1, . . . , fr is a regular sequence in R by Algebra, Lemma 68.5. �

8. Local complete intersection rings

Let (A,m) be a Noetherian complete local ring. By the Cohen structure theorem (see
Algebra, Theorem 160.8) we can writeA as the quotient of a regular Noetherian complete
local ring R. Let us say that A is a complete intersection if there exists some surjection
R→ AwithR a regular local ring such that the kernel is generated by a regular sequence.
The following lemma shows this notion is independent of the choice of the surjection.



2142 23. DIVIDED POWER ALGEBRA

Lemma 8.1. Let (A,m) be a Noetherian complete local ring. The following are equiv-
alent

(1) for every surjection of local ringsR→ A withR a regular local ring, the kernel
of R→ A is generated by a regular sequence, and

(2) for some surjection of local rings R→ A with R a regular local ring, the kernel
of R→ A is generated by a regular sequence.

Proof. Let k be the residue field of A. If the characteristic of k is p > 0, then we
denote Λ a Cohen ring (Algebra, Definition 160.5) with residue field k (Algebra, Lemma
160.6). If the characteristic of k is 0 we set Λ = k. Recall that Λ[[x1, . . . , xn]] for any n
is formally smooth over Z, resp. Q in the m-adic topology, see More on Algebra, Lemma
39.1. Fix a surjection Λ[[x1, . . . , xn]] → A as in the Cohen structure theorem (Algebra,
Theorem 160.8).
LetR→ A be a surjection from a regular local ringR. Let f1, . . . , fr be a minimal sequence
of generators of Ker(R → A). We will use without further mention that an ideal in a
Noetherian local ring is generated by a regular sequence if and only if any minimal set of
generators is a regular sequence. Observe that f1, . . . , fr is a regular sequence in R if and
only if f1, . . . , fr is a regular sequence in the completionR∧ by Algebra, Lemmas 68.5 and
97.2. Moreover, we have

R∧/(f1, . . . , fr)R∧ = (R/(f1, . . . , fn))∧ = A∧ = A

because A is mA-adically complete (first equality by Algebra, Lemma 97.1). Finally, the
ring R∧ is regular since R is regular (More on Algebra, Lemma 43.4). Hence we may
assume R is complete.
IfR is complete we can choose a map Λ[[x1, . . . , xn]]→ R lifting the given map Λ[[x1, . . . , xn]]→
A, see More on Algebra, Lemma 37.5. By adding some more variables y1, . . . , ym mapping
to generators of the kernel of R→ A we may assume that Λ[[x1, . . . , xn, y1, . . . , ym]]→
R is surjective (some details omitted). Then we can consider the commutative diagram

Λ[[x1, . . . , xn, y1, . . . , ym]] //

��

R

��
Λ[[x1, . . . , xn]] // A

By Algebra, Lemma 135.6 we see that the condition for R → A is equivalent to the con-
dition for the fixed chosen map Λ[[x1, . . . , xn]] → A. This finishes the proof of the
lemma. �

The following two lemmas are sanity checks on the definition given above.

Lemma 8.2. Let R be a regular ring. Let p ⊂ R be a prime. Let f1, . . . , fr ∈ p be a
regular sequence. Then the completion of

A = (R/(f1, . . . , fr))p = Rp/(f1, . . . , fr)Rp

is a complete intersection in the sense defined above.

Proof. The completion of A is equal to A∧ = R∧
p /(f1, . . . , fr)R∧

p because comple-
tion for finite modules over the Noetherian ring Rp is exact (Algebra, Lemma 97.1). The
image of the sequence f1, . . . , fr inRp is a regular sequence by Algebra, Lemmas 97.2 and
68.5. Moreover, R∧

p is a regular local ring by More on Algebra, Lemma 43.4. Hence the
result holds by our definition of complete intersection for complete local rings. �
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The following lemma is the analogue of Algebra, Lemma 135.4.

Lemma 8.3. Let R be a regular ring. Let p ⊂ R be a prime. Let I ⊂ p be an ideal. Set
A = (R/I)p = Rp/Ip. The following are equivalent

(1) the completion of A is a complete intersection in the sense above,
(2) Ip ⊂ Rp is generated by a regular sequence,
(3) the module (I/I2)p can be generated by dim(Rp)− dim(A) elements,
(4) add more here.

Proof. We may and do replace R by its localization at p. Then p = m is the max-
imal ideal of R and A = R/I . Let f1, . . . , fr ∈ I be a minimal sequence of generators.
The completion of A is equal to A∧ = R∧/(f1, . . . , fr)R∧ because completion for finite
modules over the Noetherian ring Rp is exact (Algebra, Lemma 97.1).

If (1) holds, then the image of the sequence f1, . . . , fr in R∧ is a regular sequence by
assumption. Hence it is a regular sequence in R by Algebra, Lemmas 97.2 and 68.5. Thus
(1) implies (2).

Assume (3) holds. Set c = dim(R)− dim(A) and let f1, . . . , fc ∈ I map to generators of
I/I2. by Nakayama’s lemma (Algebra, Lemma 20.1) we see that I = (f1, . . . , fc). SinceR
is regular and hence Cohen-Macaulay (Algebra, Proposition 103.4) we see that f1, . . . , fc
is a regular sequence by Algebra, Proposition 103.4. Thus (3) implies (2). Finally, (2)
implies (1) by Lemma 8.2. �

The following result is due to Avramov, see [?].

Proposition 8.4. Let A → B be a flat local homomorphism of Noetherian local
rings. Then the following are equivalent

(1) B∧ is a complete intersection,
(2) A∧ and (B/mAB)∧ are complete intersections.

Proof. Consider the diagram

B // B∧

A

OO

// A∧

OO

Since the horizontal maps are faithfully flat (Algebra, Lemma 97.3) we conclude that the
right vertical arrow is flat (for example by Algebra, Lemma 99.15). Moreover, we have
(B/mAB)∧ = B∧/mA∧B∧ by Algebra, Lemma 97.1. Thus we may assume A and B are
complete local Noetherian rings.

Assume A and B are complete local Noetherian rings. Choose a diagram

S // B

R

OO

// A

OO

as in More on Algebra, Lemma 39.3. Let I = Ker(R → A) and J = Ker(S → B). Note
that since R/I = A → B = S/J is flat the map J/IS ⊗R R/mR → J/J ∩ mRS is an
isomorphism. Hence a minimal system of generators of J/IS maps to a minimal system
of generators of Ker(S/mRS → B/mAB). Finally, S/mRS is a regular local ring.
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Assume (1) holds, i.e., J is generated by a regular sequence. Since A = R/I → B = S/J
is flat we see Lemma 7.6 applies and we deduce that I and J/IS are generated by regular
sequences. We have dim(B) = dim(A) + dim(B/mAB) and dim(S/IS) = dim(A) +
dim(S/mRS) (Algebra, Lemma 112.7). Thus J/IS is generated by

dim(S/IS)− dim(S/J) = dim(S/mRS)− dim(B/mAB)

elements (Algebra, Lemma 60.13). It follows that Ker(S/mRS → B/mAB) is generated
by the same number of elements (see above). Hence Ker(S/mRS → B/mAB) is generated
by a regular sequence, see for example Lemma 8.3. In this way we see that (2) holds.

If (2) holds, then I and J/J ∩ mRS are generated by regular sequences. Lifting these
generators (see above), using flatness of R/I → S/IS , and using Grothendieck’s lemma
(Algebra, Lemma 99.3) we find that J/IS is generated by a regular sequence in S/IS.
Thus Lemma 7.6 tells us that J is generated by a regular sequence, whence (1) holds. �

Definition 8.5. Let A be a Noetherian ring.
(1) If A is local, then we say A is a complete intersection if its completion is a com-

plete intersection in the sense above.
(2) In general we say A is a local complete intersection if all of its local rings are

complete intersections.

We will check below that this does not conflict with the terminology introduced in Alge-
bra, Definitions 135.1 and 135.5. But first, we show this “makes sense” by showing that if
A is a Noetherian local complete intersection, then A is a local complete intersection, i.e.,
all of its local rings are complete intersections.

Lemma 8.6. Let (A,m) be a Noetherian local ring. Let p ⊂ A be a prime ideal. If A
is a complete intersection, then Ap is a complete intersection too.

Proof. Choose a prime q ofA∧ lying over p (this is possible asA→ A∧ is faithfully
flat by Algebra, Lemma 97.3). Then Ap → (A∧)q is a flat local ring homomorphism.
Thus by Proposition 8.4 we see that Ap is a complete intersection if and only if (A∧)q is
a complete intersection. Thus it suffices to prove the lemma in case A is complete (this is
the key step of the proof).

Assume A is complete. By definition we may write A = R/(f1, . . . , fr) for some regular
sequence f1, . . . , fr in a regular local ring R. Let q ⊂ R be the prime corresponding to p.
Observe that f1, . . . , fr ∈ q and that Ap = Rq/(f1, . . . , fr)Rq. Hence Ap is a complete
intersection by Lemma 8.2. �

Lemma 8.7. Let A be a Noetherian ring. Then A is a local complete intersection if
and only if Am is a complete intersection for every maximal ideal m of A.

Proof. This follows immediately from Lemma 8.6 and the definitions. �

Lemma 8.8. Let S be a finite type algebra over a field k.
(1) for a prime q ⊂ S the local ring Sq is a complete intersection in the sense of

Algebra, Definition 135.5 if and only if Sq is a complete intersection in the sense
of Definition 8.5, and

(2) S is a local complete intersection in the sense of Algebra, Definition 135.1 if and
only if S is a local complete intersection in the sense of Definition 8.5.



9. LOCAL COMPLETE INTERSECTION MAPS 2145

Proof. Proof of (1). Let k[x1, . . . , xn]→ S be a surjection. Let p ⊂ k[x1, . . . , xn] be
the prime ideal corresponding to q. Let I ⊂ k[x1, . . . , xn] be the kernel of our surjection.
Note that k[x1, . . . , xn]p → Sq is surjective with kernel Ip. Observe that k[x1, . . . , xn] is
a regular ring by Algebra, Proposition 114.2. Hence the equivalence of the two notions in
(1) follows by combining Lemma 8.3 with Algebra, Lemma 135.7.
Having proved (1) the equivalence in (2) follows from the definition and Algebra, Lemma
135.9. �

Lemma 8.9. Let A → B be a flat local homomorphism of Noetherian local rings.
Then the following are equivalent

(1) B is a complete intersection,
(2) A and B/mAB are complete intersections.

Proof. Now that the definition makes sense this is a trivial reformulation of the
(nontrivial) Proposition 8.4. �

9. Local complete intersection maps

Let A→ B be a local homomorphism of Noetherian complete local rings. A consequence
of the Cohen structure theorem is that we can find a commutative diagram

S // B

A

__ OO

of Noetherian complete local rings with S → B surjective, A → S flat, and S/mAS a
regular local ring. This follows from More on Algebra, Lemma 39.3. Let us (temporarily)
say A → S → B is a good factorization of A → B if S is a Noetherian local ring,
A → S → B are local ring maps, S → B surjective, A → S flat, and S/mAS regular.
Let us say that A → B is a complete intersection homomorphism if there exists some
good factorization A→ S → B such that the kernel of S → B is generated by a regular
sequence. The following lemma shows this notion is independent of the choice of the
diagram.

Lemma 9.1. Let A → B be a local homomorphism of Noetherian complete local
rings. The following are equivalent

(1) for some good factorization A → S → B the kernel of S → B is generated by
a regular sequence, and

(2) for every good factorization A→ S → B the kernel of S → B is generated by
a regular sequence.

Proof. Let A → S → B be a good factorization. As B is complete we obtain a
factorizationA→ S∧ → B where S∧ is the completion of S. Note that this is also a good
factorization: The ring map S → S∧ is flat (Algebra, Lemma 97.2), hence A→ S∧ is flat.
The ring S∧/mAS

∧ = (S/mAS)∧ is regular since S/mAS is regular (More on Algebra,
Lemma 43.4). Let f1, . . . , fr be a minimal sequence of generators of Ker(S → B). We
will use without further mention that an ideal in a Noetherian local ring is generated by a
regular sequence if and only if any minimal set of generators is a regular sequence. Observe
that f1, . . . , fr is a regular sequence in S if and only if f1, . . . , fr is a regular sequence in
the completion S∧ by Algebra, Lemma 68.5. Moreover, we have

S∧/(f1, . . . , fr)R∧ = (S/(f1, . . . , fn))∧ = B∧ = B
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because B is mB-adically complete (first equality by Algebra, Lemma 97.1). Thus the ker-
nel of S → B is generated by a regular sequence if and only if the kernel of S∧ → B is
generated by a regular sequence. Hence it suffices to consider good factorizations where S
is complete.

Assume we have two factorizations A → S → B and A → S′ → B with S and S′

complete. By More on Algebra, Lemma 39.4 the ring S ×B S′ is a Noetherian complete
local ring. Hence, using More on Algebra, Lemma 39.3 we can choose a good factorization
A → S′′ → S ×B S′ with S′′ complete. Thus it suffices to show: If A → S′ → S → B
are comparable good factorizations, then Ker(S → B) is generated by a regular sequence
if and only if Ker(S′ → B) is generated by a regular sequence.

Let A → S′ → S → B be comparable good factorizations. First, since S′/mRS
′ →

S/mRS is a surjection of regular local rings, the kernel is generated by a regular sequence
x1, . . . , xc ∈ mS′/mRS

′ which can be extended to a regular system of parameters for
the regular local ring S′/mRS

′, see (Algebra, Lemma 106.4). Set I = Ker(S′ → S). By
flatness of S over R we have

I/mRI = Ker(S′/mRS
′ → S/mRS) = (x1, . . . , xc).

Choose lifts x1, . . . , xc ∈ I . These lifts form a regular sequence generating I as S′ is flat
over R, see Algebra, Lemma 99.3.

We conclude that if also Ker(S → B) is generated by a regular sequence, then so is
Ker(S′ → B), see More on Algebra, Lemmas 30.13 and 30.7.

Conversely, assume that J = Ker(S′ → B) is generated by a regular sequence. Because
the generators x1, . . . , xc of I map to linearly independent elements of mS′/m2

S′ we see
that I/mS′I → J/mS′J is injective. Hence there exists a minimal system of generators
x1, . . . , xc, y1, . . . , yd for J . Then x1, . . . , xc, y1, . . . , yd is a regular sequence and it fol-
lows that the images of y1, . . . , yd in S form a regular sequence generating Ker(S → B).
This finishes the proof of the lemma. �

In the following proposition observe that the condition on vanishing of Tor’s applies in
particular if B has finite tor dimension over A and thus in particular if B is flat over A.

Proposition 9.2. Let A → B be a local homomorphism of Noetherian local rings.
Then the following are equivalent

(1) B is a complete intersection and TorAp (B,A/mA) is nonzero for only finitely
many p,

(2) A is a complete intersection andA∧ → B∧ is a complete intersection homomor-
phism in the sense defined above.

Proof. Let F• → A/mA be a resolution by finite free A-modules. Observe that
TorAp (B,A/mA) is the pth homology of the complex F• ⊗A B. Let F∧

• = F• ⊗A A∧

be the completion. Then F∧
• is a resolution of A∧/mA∧ by finite free A∧-modules (as

A → A∧ is flat and completion on finite modules is exact, see Algebra, Lemmas 97.1 and
97.2). It follows that

F∧
• ⊗A∧ B∧ = F• ⊗A B ⊗B B∧

By flatness of B → B∧ we conclude that

TorA
∧

p (B∧, A∧/mA∧) = TorAp (B,A/mA)⊗B B∧
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In this way we see that the condition in (1) on the local ring map A→ B is equivalent to
the same condition for the local ring map A∧ → B∧. Thus we may assume A and B are
complete local Noetherian rings (since the other conditions are formulated in terms of the
completions in any case).

Assume A and B are complete local Noetherian rings. Choose a diagram

S // B

R

OO

// A

OO

as in More on Algebra, Lemma 39.3. Let I = Ker(R → A) and J = Ker(S → B). The
proposition now follows from Lemma 7.6. �

Remark 9.3. It appears difficult to define an good notion of “local complete inter-
section homomorphisms” for maps between general Noetherian rings. The reason is that,
for a local Noetherian ring A, the fibres of A → A∧ are not local complete intersection
rings. Thus, if A → B is a local homomorphism of local Noetherian rings, and the map
of completions A∧ → B∧ is a complete intersection homomorphism in the sense defined
above, then (Ap)∧ → (Bq)∧ is in general not a complete intersection homomorphism
in the sense defined above. A solution can be had by working exclusively with excellent
Noetherian rings. More generally, one could work with those Noetherian rings whose
formal fibres are complete intersections, see [?]. We will develop this theory in Dualizing
Complexes, Section 23.

To finish of this section we compare the notion defined above with the notion introduced
in More on Algebra, Section 8.

Lemma 9.4. Consider a commutative diagram

S // B

A

__ OO

of Noetherian local rings with S → B surjective, A→ S flat, and S/mAS a regular local
ring. The following are equivalent

(1) Ker(S → B) is generated by a regular sequence, and
(2) A∧ → B∧ is a complete intersection homomorphism as defined above.

Proof. Omitted. Hint: the proof is identical to the argument given in the first para-
graph of the proof of Lemma 9.1. �

Lemma 9.5. Let A be a Noetherian ring. Let A → B be a finite type ring map. The
following are equivalent

(1) A→ B is a local complete intersection in the sense of More on Algebra, Defini-
tion 33.2,

(2) for every prime q ⊂ B and with p = A ∩ q the ring map (Ap)∧ → (Bq)∧ is a
complete intersection homomorphism in the sense defined above.

Proof. Choose a surjection R = A[x1, . . . , xn] → B. Observe that A → R is flat
with regular fibres. Let I be the kernel of R → B. Assume (2). Then we see that I is
locally generated by a regular sequence by Lemma 9.4 and Algebra, Lemma 68.6. In other
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words, (1) holds. Conversely, assume (1). Then after localizing onR andB we can assume
that I is generated by a Koszul regular sequence. By More on Algebra, Lemma 30.7 we
find that I is locally generated by a regular sequence. Hence (2) hold by Lemma 9.4. Some
details omitted. �

Lemma 9.6. Let A be a Noetherian ring. Let A → B be a finite type ring map such
that the image of Spec(B) → Spec(A) contains all closed points of Spec(A). Then the
following are equivalent

(1) B is a complete intersection and A→ B has finite tor dimension,
(2) A is a complete intersection and A → B is a local complete intersection in the

sense of More on Algebra, Definition 33.2.

Proof. This is a reformulation of Proposition 9.2 via Lemma 9.5. We omit the details.
�

10. Smooth ring maps and diagonals

In this section we use the material above to characterize smooth ring maps as those whose
diagonal is perfect.

Lemma 10.1. Let A → B be a local ring homomorphism of Noetherian local rings
such that B is flat and essentially of finite type over A. If

B ⊗A B −→ B

is a perfect ring map, i.e., if B has finite tor dimension over B ⊗A B, then B is the local-
ization of a smooth A-algebra.

Proof. AsB is essentially of finite type overA, so isB⊗AB and in particularB⊗AB
is Noetherian. Hence the quotientB ofB⊗AB is pseudo-coherent overB⊗AB (More on
Algebra, Lemma 64.17) which explains why perfectness of the ring map (More on Algebra,
Definition 82.1) agrees with the condition of finite tor dimension.
We may writeB = R/K whereR is the localization ofA[x1, . . . , xn] at a prime ideal and
K ⊂ R is an ideal. Denote m ⊂ R ⊗A R the maximal ideal which is the inverse image
of the maximal ideal of B via the surjection R ⊗A R → B ⊗A B → B. Then we have
surjections

(R⊗A R)m → (B ⊗A B)m → B

and hence ideals I ⊂ J ⊂ (R⊗AR)m as in Lemma 7.4. We conclude that I/mI → J/mJ
is injective.
Let K = (f1, . . . , fr) with r minimal. We may and do assume that fi ∈ R is the image
of an element of A[x1, . . . , xn] which we also denote fi. Observe that I is generated by
f1⊗1, . . . , fr⊗1 and 1⊗f1, . . . , 1⊗fr. We claim that this is a minimal set of generators
of I . Namely, if κ is the common residue field of R, B, (R⊗A R)m, and (B⊗A B)m then
we have a map R⊗A R→ R⊗A κ⊕ κ⊗A R which factors through (R⊗A R)m. Since
B is flat over A and since we have the short exact sequence 0 → K → R → B → 0
we see that K ⊗A κ ⊂ R ⊗A κ, see Algebra, Lemma 39.12. Thus restricting the map
(R⊗A R)m → R⊗A κ⊕ κ⊗A R to I we obtain a map

I → K ⊗A κ⊕ κ⊗A K → K ⊗B κ⊕ κ⊗B K.
The elements f1⊗1, . . . , fr⊗1, 1⊗f1, . . . , 1⊗fr map to a basis of the target of this map,
since by Nakayama’s lemma (Algebra, Lemma 20.1) f1, . . . , fr map to a basis of K ⊗B κ.
This proves our claim.
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The ideal J is generated by f1⊗1, . . . , fr⊗1 and the elements x1⊗1−1⊗x1, . . . , xn⊗
1 − 1 ⊗ xn (for the proof it suffices to see that these elements are contained in the ideal
J). Now we can write

fi ⊗ 1− 1⊗ fi =
∑

gij(xj ⊗ 1− 1⊗ xj)

for some gij in (R⊗A R)m. This is a general fact about elements of A[x1, . . . , xn] whose
proof we omit. Denote aij ∈ κ the image of gij . Another computation shows that aij
is the image of ∂fi/∂xj in κ. The injectivity of I/mI → J/mJ and the remarks made
above forces the matrix (aij) to have maximal rank r. Set

C = A[x1, . . . , xn]/(f1, . . . , fr)

and consider the naive cotangent complex NLC/A ∼= (C⊕r → C⊕n) where the map is
given by the matrix of partial derivatives. Thus NLC/A⊗AB is isomorphic to a free B-
module of rank n − r placed in degree 0. Hence Cg is smooth over A for some g ∈ C
mapping to a unit in B, see Algebra, Lemma 137.12. This finishes the proof. �

Lemma 10.2. Let A→ B be a flat finite type ring map of Noetherian rings. If

B ⊗A B −→ B

is a perfect ring map, i.e., if B has finite tor dimension over B ⊗A B, then B is a smooth
A-algebra.

Proof. This follows from Lemma 10.1 and general facts about smooth ring maps, see
Algebra, Lemmas 137.12 and 137.13. Alternatively, the reader can slightly modify the proof
of Lemma 10.1 to prove this lemma. �

11. Freeness of the conormal module

Tate resolutions and derivations on them can be used to prove (stronger) versions of the
results in this section, see [?]. Two more elementary references are [?] and [?].

Lemma 11.1. Let R be a Noetherian local ring. Let I ⊂ R be an ideal of finite projec-
tive dimension over R. If F ⊂ I/I2 is a direct summand isomorphic to R/I , then there
exists a nonzerodivisor x ∈ I such that the image of x in I/I2 generates F .

Proof. By assumption we may choose a finite free resolution

0→ R⊕ne → R⊕ne−1 → . . .→ R⊕n1 → R→ R/I → 0

Thenϕ1 : R⊕n1 → R has rank 1 and we see that I contains a nonzerodivisor y by Algebra,
Proposition 102.9. Let p1, . . . , pn be the associated primes of R, see Algebra, Lemma 63.5.
Let I2 ⊂ J ⊂ I be an ideal such that J/I2 = F . Then J 6⊂ pi for all i as y2 ∈ J and
y2 6∈ pi, see Algebra, Lemma 63.9. By Nakayama’s lemma (Algebra, Lemma 20.1) we have
J 6⊂ mJ + I2. By Algebra, Lemma 15.2 we can pick x ∈ J , x 6∈ mJ + I2 and x 6∈ pi
for i = 1, . . . , n. Then x is a nonzerodivisor and the image of x in I/I2 generates (by
Nakayama’s lemma) the summand J/I2 ∼= R/I . �

Lemma 11.2. Let R be a Noetherian local ring. Let I ⊂ R be an ideal of finite projec-
tive dimension over R. If F ⊂ I/I2 is a direct summand free of rank r, then there exists
a regular sequence x1, . . . , xr ∈ I such that x1 mod I2, . . . , xr mod I2 generate F .
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Proof. If r = 0 there is nothing to prove. Assume r > 0. We may pick x ∈ I
such that x is a nonzerodivisor and x mod I2 generates a summand of F isomorphic to
R/I , see Lemma 11.1. Consider the ring R′ = R/(x) and the ideal I ′ = I/(x). Of course
R′/I ′ = R/I . The short exact sequence

0→ R/I
x−→ I/xI → I ′ → 0

splits because the map I/xI → I/I2 sends xR/xI to a direct summand. Now I/xI =
I ⊗L

R R
′ has finite projective dimension over R′, see More on Algebra, Lemmas 74.3 and

74.9. Hence the summand I ′ has finite projective dimension over R′. On the other hand,
we have the short exact sequence 0→ xR/xI → I/I2 → I ′/(I ′)2 → 0 and we conclude
I ′/(I ′)2 has the free direct summand F ′ = F/(R/I · x) of rank r − 1. By induction on
r we may we pick a regular sequence x′

2, . . . , x
′
r ∈ I ′ such that there congruence classes

freely generateF ′. If x1 = x and x2, . . . , xr are any elements lifting x′
1, . . . , x

′
r inR, then

we see that the lemma holds. �

Proposition 11.3. LetR be a Noetherian ring. Let I ⊂ R be an ideal which has finite
projective dimension and such that I/I2 is finite locally free overR/I . Then I is a regular
ideal (More on Algebra, Definition 32.1).

Proof. By Algebra, Lemma 68.6 it suffices to show that Ip ⊂ Rp is generated by a
regular sequence for every p ⊃ I . Thus we may assumeR is local. If I/I2 has rank r, then
by Lemma 11.2 we find a regular sequence x1, . . . , xr ∈ I generating I/I2. By Nakayama
(Algebra, Lemma 20.1) we conclude that I is generated by x1, . . . , xr. �

For any local complete intersection homomorphismA→ B of rings, the naive cotangent
complex NLB/A is perfect of tor-amplitude in [−1, 0], see More on Algebra, Lemma 85.4.
Using the above, we can show that this sometimes characterizes local complete intersection
homomorphisms.

Lemma 11.4. LetA→ B be a perfect (More on Algebra, Definition 82.1) ring homo-
morphism of Noetherian rings. Then the following are equivalent

(1) NLB/A has tor-amplitude in [−1, 0],
(2) NLB/A is a perfect object of D(B) with tor-amplitude in [−1, 0], and
(3) A→ B is a local complete intersection (More on Algebra, Definition 33.2).

Proof. Write B = A[x1, . . . , xn]/I . Then NLB/A is represented by the complex

I/I2 −→
⊕

Bdxi

of B-modules with I/I2 placed in degree −1. Since the term in degree 0 is finite free,
this complex has tor-amplitude in [−1, 0] if and only if I/I2 is a flat B-module, see More
on Algebra, Lemma 66.2. Since I/I2 is a finite B-module and B is Noetherian, this is
true if and only if I/I2 is a finite locally free B-module (Algebra, Lemma 78.2). Thus the
equivalence of (1) and (2) is clear. Moreover, the equivalence of (1) and (3) also follows
if we apply Proposition 11.3 (and the observation that a regular ideal is a Koszul regular
ideal as well as a quasi-regular ideal, see More on Algebra, Section 32). �

Lemma 11.5. LetA→ B be a flat ring map of finite presentation. Then the following
are equivalent

(1) NLB/A has tor-amplitude in [−1, 0],
(2) NLB/A is a perfect object of D(B) with tor-amplitude in [−1, 0],
(3) A→ B is syntomic (Algebra, Definition 136.1), and
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(4) A→ B is a local complete intersection (More on Algebra, Definition 33.2).

Proof. The equivalence of (3) and (4) is More on Algebra, Lemma 33.5.

If A→ B is syntomic, then we can find a cocartesian diagram

B0 // B

A0 //

OO

A

OO

such that A0 → B0 is syntomic and A0 is Noetherian, see Algebra, Lemmas 127.18 and
168.9. By Lemma 11.4 we see thatNLB0/A0 is perfect of tor-amplitude in [−1, 0]. By More
on Algebra, Lemma 85.3 we conclude the same thing is true forNLB/A = NLB0/A0 ⊗L

B0
B

(see also More on Algebra, Lemmas 66.13 and 74.9). This proves that (3) implies (2).

Assume (1). By More on Algebra, Lemma 85.3 for every ring map A → k where k is a
field, we see that NLB⊗Ak/k has tor-amplitude in [−1, 0] (see More on Algebra, Lemma
66.13). Hence by Lemma 11.4 we see that k → B ⊗A k is a local complete intersection
homomorphism. Thus A → B is syntomic by definition. This proves (1) implies (3) and
finishes the proof. �

12. Koszul complexes and Tate resolutions

In this section we “lift” the result of More on Algebra, Lemma 94.1 to the category of
differential graded algebras endowed with divided powers compatible with the differen-
tial graded structure (beware that in this section we represent Koszul complexes as chain
complexes whereas in locus citatus we use cochain complexes).

Let R be a ring. Let I ⊂ R be an ideal generated by f1, . . . , fr ∈ R. For n ≥ 1 we denote

Kn = Kn,• = R〈ξ1, . . . , ξr〉

the differential graded Koszul algebra with ξi in degree 1 and d(ξi) = fi. There exists a
unique divided power structure on this (as in Definition 6.5), see Example 6.2. Form > n
the transition map Km → Kn is the differential graded algebra map compatible with
divided powers given by sending ξi to fm−n

i ξi.

Lemma 12.1. In the situation above, if R is Noetherian, then for every n there exists
an N ≥ n and maps

KN → A→ R/(fN1 , . . . , fNr ) and A→ Kn

with the following properties
(1) (A, d, γ) is as in Definition 6.5,
(2) A→ R/(fN1 , . . . , fNr ) is a quasi-isomorphism,
(3) the composition KN → A→ R/(fN1 , . . . , fNr ) is the canonical map,
(4) the composition KN → A→ Kn is the transition map,
(5) A0 = R→ R/(fN1 , . . . , fNr ) is the canonical surjection,
(6) A is a graded divided power polynomial algebra overR with finitely many gen-

erators in each degree, and
(7) A→ Kn is a homomorphism of differential graded R-algebras compatible with

divided powers which induces the canonical mapR/(fN1 , . . . , fNr )→ R/(fn1 , . . . , fnr )
on homology in degree 0.
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Condition (4) means that A is constructed out of A0 by successively adjoining a finite set
of variables T in each degree > 0 as in Example 6.2 or 6.3.

Proof. Fix n. If r = 0, then we can just pick A = R. Assume r > 0. By More on
Algebra, Lemma 94.1 (translated into the language of chain complexes) we can choose

nr > nr−1 > . . . > n1 > n0 = n

such that the transition maps Kni+1 → Kni on Koszul algebras (see above) induce the
zero map on homology in degrees > 0. We will prove the lemma with N = nr.

We will construct A exactly as in the statement and proof of Lemma 6.9. Thus we will
have

A = colimA(m), and A(0)→ A(1)→ A(2)→ . . .→ R/(fN1 , . . . , fNr )

This will immediately give us properties (1), (2), (5), and (6). To finish the proof we will
construct the R-algebra maps KN → A→ Kn. To do this we will construct

(1) an isomorphism A(1)→ KN = Knr ,
(2) a map A(2)→ Knr−1 ,
(3) . . .
(4) a map A(r)→ Kn1 ,
(5) a map A(r + 1)→ Kn0 = Kn, and
(6) a map A→ Kn.

In each of these steps the map constructed will be between differential graded algebras
compatibly endowed with divided powers and each of the maps will be compatible with
the previous one via the transition maps between the Koszul algebras and each of the maps
will induce the obvious canonical map on homology in degree 0.

Recall thatA(0) = R. Form = 1, the proof of Lemma 6.9 choosesA(1) = R〈T1, . . . , Tr〉
with Ti of degree 1 and with d(Ti) = fNi . Namely, the fNi are generators of the kernel of
A(0)→ R/(fN1 , . . . , fNr ). Thus for A(1)→ KN = Knr we use the map

ϕ1 : A(1) −→ Knr , Ti 7−→ ξi

which is an isomorphism.

For m = 2, the construction in the proof of Lemma 6.9 chooses generators e1, . . . , et ∈
Ker(d : A(1)1 → A(1)0). The construction proceeds by takingA(2) = A(1)〈T1, . . . , Tt〉
as a divided power polynomial algebra with Ti of degree 2 and with d(Ti) = ei. Since
ϕ1(ei) is a cocycle in Knr we see that its image in Knr−1 is a coboundary by our choice
of nr and nr−1 above. Hence we can construct the following commutative diagram

A(1)

��

ϕ1
// Knr

��
A(2) ϕ2 // Knr−1

by sending Ti to an element in degree 2 whose boundary is the image of ϕ1(ei). The map
ϕ2 exists and is compatible with the differential and the divided powers by the universal
of the divided power polynomial algebra.

The algebra A(m) and the map ϕm : A(m) → Knr+1−m are constructed in exactly the
same manner for m = 2, . . . , r.
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Given the map A(r) → Kn1 we see that the composition Hr(A(r)) → Hr(Kn1) →
Hr(Kn0) ⊂ (Kn0)r is zero, hence we can extend this to A(r + 1) → Kn0 = Kn by
sending the new polynomial generators of A(r + 1) to zero.

Having constructedA(r+1)→ Kn0 = Kn we can simply extend toA(r+2), A(r+3), . . .
in the only possible way by sending the new polynomial generators to zero. This finishes
the proof. �

Remark 12.2. In the situation above, ifR is Noetherian, we can inductively choose a
sequence of integers 1 = n0 < n1 < n2 < . . . such that for i = 1, 2, 3, . . . we have maps
Kni → Ai → R/(fni1 , . . . , fnir ) and Ai → Kni−1 as in Lemma 12.1. Denote Ai+1 → Ai
the composition Ai+1 → Kni → Ai. Then the diagram

Kn1

��

Kn2

��

oo Kn3

��

oo . . .oo

A1

��

A2oo

��

A3oo

��

. . .oo

K1 Kn1
oo Kn2

oo . . .oo

commutes. In this way we see that the inverse systems (Kn) and (An) are pro-isomorphic
in the category of differential graded R-algebras with compatible divided powers.

Lemma 12.3. Let (A, d, γ), d ≥ 1, f ∈ Ad−1, and A〈T 〉 be as in Lemma 6.8.
(1) If d = 1, then there is a long exact sequences

. . .→ H0(A) f−→ H0(A)→ H0(A〈T 〉)→ 0

(2) For d = 2 there is a bounded spectral sequence (E1)i,j = Hj−i(A)·T [i] converg-
ing to Hi+j(A〈T 〉). The differential (d1)i,j : Hj−i(A) · T [i] → Hj−i+1(A) ·
T [i−1] sends ξ · T [i] to the class of fξ · T [i−1].

(3) Add more here for other degrees as needed.

Proof. For d = 1, we have a short exact sequence of complexes

0→ A→ A〈T 〉 → A · T → 0

and the result (1) follows easily from this. For d = 2 we view A〈T 〉 as a filtered chain
complex with subcomplexes

F pA〈T 〉 =
⊕

i≤p
A · T [i]

Applying the spectral sequence of Homology, Section 24 (translated into chain complexes)
we obtain (2). �

The following lemma will be needed later.

Lemma 12.4. In the situation above, for all n ≥ t ≥ 1 there exists an N > n and a
map

Kt −→ Kn ⊗R Kt

in the derived category of left differential graded KN -modules whose composition with
the multiplication map is the transition map (in either direction).
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Proof. We first prove this for r = 1. Set f = f1. Write Kt = R〈x〉, Kn = R〈y〉,
and KN = R〈z〉 with x, y, z of degree 1 and d(x) = f t, d(y) = fn, and d(z) = fN . For
all N > t we claim there is a quasi-isomorphism

BN,t = R〈x, z, u〉 −→ Kt, x 7→ x, z 7→ fN−tx, u 7→ 0
Here the left hand side denotes the divided power polynomial algebra in variables x and
z of degree 1 and u of degree 2 with d(x) = f t, d(z) = fN , and d(u) = z − fN−tx. To
prove the claim, we observe that the following three submodules of H∗(R〈x, z〉) are the
same

(1) the kernel of H∗(R〈x, z〉)→ H∗(Kt),
(2) the image of z − fN−tx : H∗(R〈x, z〉)→ H∗(R〈x, z〉), and
(3) the kernel of z − fN−tx : H∗(R〈x, z〉)→ H∗(R〈x, z〉).

This observation is proved by a direct computation3 which we omit. Then we can apply
Lemma 12.3 part (2) to see that the claim is true.
Via the homomorphism KN → BN,t of differential graded R-algebras sending z to z, we
may viewBN,t → Kt as a quasi-isomorphism of left differential gradedKN -modules. To
define the arrow in the statement of the lemma we use the homomorphism

BN,t = R〈x, z, u〉 → Kn⊗RKt, x 7→ 1⊗x, z 7→ fN−ny⊗1, u 7→ −fN−n−ty⊗x
This makes sense as long as we assume N ≥ n + t. It is a pleasant computation to show
that the (pre or post) composition with the multiplication map is the transition map.
For r > 1 we proceed by writing each of the Koszul algebras as a tensor product of Koszul
algebras in 1 variable and we apply the previous construction. In other words, we write

Kt = R〈x1, . . . , xr〉 = R〈x1〉 ⊗R . . .⊗R R〈xr〉
where xi is in degree 1 and d(xi) = f ti . In the case r > 1 we then use

BN,t = R〈x1, z1, u1〉 ⊗R . . .⊗R R〈xr, zr, ur〉
where xi, zi have degree 1 and ui has degree 2 and we have d(xi) = f ti , d(zi) = fNi , and
d(ui) = zi − fN−t

i xi. The tensor product map BN,t → Kt will be a quasi-isomorphism
as it is a tensor product of quasi-isomorphisms between bounded above complexes of free
R-modules. Finally, we define the map

BN,t → Kn ⊗R Kt = R〈y1, . . . , yr〉 ⊗R R〈x1, . . . , xr〉
as the tensor product of the maps constructed in the case of r = 1 or simply by the rules
xi 7→ 1 ⊗ xi, zi 7→ fN−n

i yi ⊗ 1, and ui 7→ −fN−n−t
i yi ⊗ xi which makes sense as long

as N ≥ n+ t. We omit the details. �
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CHAPTER 24

Differential Graded Sheaves

1. Introduction

This chapter is a continuation of the discussion started in Differential Graded Algebra,
Section 1. A survey paper is [?].

2. Conventions

In this chapter we hold on to the convention that ring means commutative ring with 1. If
R is a ring, then an R-algebra A will be an R-module A endowed with an R-bilinear map
A × A → A (multiplication) such that multiplication is associative and has an identity.
In other words, these are unital associativeR-algebras such that the structure mapR→ A
maps into the center of A.

3. Sheaves of graded algebras

Please skip this section.

Definition 3.1. Let (C,O) be a ringed site. A sheaf of graded O-algebras or a sheaf
of graded algebras on (C,O) is given by a family An indexed by n ∈ Z of O-modules
endowed withO-bilinear maps

An ×Am → An+m, (a, b) 7−→ ab

called the multiplication maps with the following properties
(1) multiplication is associative, and
(2) there is a global section 1 ofA0 which is a two-sided identity for multiplication.

We often denote such a structureA. A homomorphism of gradedO-algebras f : A → B is
a family of maps fn : An → Bn ofO-modules compatible with the multiplication maps.

Given a gradedO-algebraA and an object U ∈ Ob(C) we use the notation

A(U) = Γ(U,A) =
⊕

n∈Z
An(U)

This is a gradedO(U)-algebra.

Remark 3.2. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. We have

(1) Let A be a graded OC-algebra. The multiplication maps of A induce multipli-
cation maps f∗An × f∗Am → f∗An+m and via f ] we may view these as OD-
bilinear maps. We will denote f∗A the gradedOD-algebra we so obtain.

(2) Let B be a graded OD-algebra. The multiplication maps of B induce multipli-
cation maps f∗Bn × f∗Bm → f∗Bn+m and using f ] we may view these as
OC-bilinear maps. We will denote f∗B the gradedOC-algebra we so obtain.

2157
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(3) The set of homomorphisms f∗B → A of graded OC-algebras is in 1-to-1 corre-
spondence with the set of homomorphisms B → f∗A of gradedOC-algebras.

Part (3) follows immediately from the usual adjunction between f∗ and f∗ on sheaves of
modules.

4. Sheaves of graded modules

Please skip this section.

Definition 4.1. Let (C,O) be a ringed site. Let A be a sheaf of graded algebras on
(C,O). A (right) graded A-module or (right) graded module over A is given by a family
Mn indexed by n ∈ Z ofO-modules endowed withO-bilinear maps

Mn ×Am →Mn+m, (x, a) 7−→ xa

called the multiplication maps with the following properties
(1) multiplication satisfies (xa)a′ = x(aa′),
(2) the identity section 1 ofA0 acts as the identity onMn for all n.

We often say “letM be a gradedA-module” to indicate this situation. A homomorphism
of graded A-modules f : M → N is a family of maps fn : Mn → Nn of O-modules
compatible with the multiplication maps. The category of (right) graded A-modules is
denoted Mod(A).

We can define left graded modules in exactly the same manner but our default in the
chapter will be right modules.
Given a gradedA-moduleM and an object U ∈ Ob(C) we use the notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a (right) gradedA(U)-module.

Lemma 4.2. Let (C,O) be a ringed site. Let A be a graded O-algebra. The category
Mod(A) is an abelian category with the following properties

(1) Mod(A) has arbitrary direct sums,
(2) Mod(A) has arbitrary colimits,
(3) filtered colimit in Mod(A) are exact,
(4) Mod(A) has arbitrary products,
(5) Mod(A) has arbitrary limits.

The functor
Mod(A) −→Mod(O), M 7−→Mn

sending a gradedA-module to its nth term commutes with all limits and colimits.

The lemma says that we may take limits and colimits termwise. It also says (or implies if
you like) that the forgetful functor

Mod(A) −→ gradedO-modules
commutes with all limits and colimits.

Proof. Let us denote grn : Mod(A)→ Mod(O) the functor in the statement of the
lemma. Consider a homomorphism f : M → N of graded A-modules. The kernel and
cokernel of f as maps of gradedO-modules are additionally endowed with multiplication
maps as in Definition 4.1. Hence these are also the kernel and cokernel in Mod(A). Thus
Mod(A) is an abelian category and taking kernels and cokernels commutes with grn.
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To prove the existence of limits and colimits it is sufficient to prove the existence of prod-
ucts and direct sums, see Categories, Lemmas 14.11 and 14.12. The same lemmas show that
proving the commutation of limits and colimits with grn follows if grn commutes with
direct sums and products.

LetMt, t ∈ T be a set of gradedA-modules. Then we can consider the gradedA-module
whose degree n term is

⊕
t∈TMn

t (with obvious multiplication maps). The reader easily
verifies that this is a direct sum in Mod(A). Similarly for products.

Observe that grn is an exact functor for all n and that a complexM1 → M2 → M3
of Mod(A) is exact if and only if grnM1 → grnM2 → grnM3 is exact in Mod(O) for
all n. Hence we conclude that (3) holds as filtered colimits are exact in Mod(O); it is a
Grothendieck abelian category, see Cohomology on Sites, Section 19. �

5. The graded category of sheaves of graded modules

Please skip this section. This section is the analogue of Differential Graded Algebra, Exam-
ple 25.6. For our conventions on graded categories, please see Differential Graded Algebra,
Section 25.

Let (C,O) be a ringed site. LetA be a sheaf of graded algebras on (C,O). We will construct
a graded category Modgr(A) over R = Γ(C,O) whose associated category (Modgr(A))0

is the category of graded A-modules. As objects of Modgr(A) we take right graded A-
modules (see Section 4). Given gradedA-modules L andM we set

HomModgr(A)(L,M) =
⊕

n∈Z
Homn(L,M)

where Homn(L,M) is the set of right A-module maps f : L → M which are homoge-
neous of degree n. More precisely, f is given by a family of maps f : Li → Mi+n for
i ∈ Z compatible with the multiplication maps. In terms of components, we have that

Homn(L,M) ⊂
∏

p+q=n
HomO(L−q,Mp)

(observe reversal of indices) is the subset consisting of those f = (fp,q) such that

fp,q(ma) = fp−i,q+i(m)a
for local sections a of Ai and m of L−q−i. For graded A-modules K, L, M we define
composition in Modgr(A) via the maps

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)
by simple composition of rightA-module maps: (g, f) 7→ g ◦ f .

6. Tensor product for sheaves of graded modules

Please skip this section. This section is the analogue of part of Differential Graded Algebra,
Section 12.

Let (C,O) be a ringed site. LetA be a sheaf of graded algebras on (C,O). LetM be a right
gradedA-module and letN be a left gradedA-module. Then we define the tensor product
M⊗A N to be the gradedO-module whose degree n term is

(M⊗A N )n = Coker
(⊕

r+s+t=n
Mr ⊗O As ⊗O N t −→

⊕
p+q=n

Mp ⊗O N q
)

where the map sends the local section x⊗ a⊗ y ofMr ⊗O As ⊗O N t to xa⊗ y − x⊗
ay. With this definition we have that (M⊗A N )n is the sheafification of the presheaf
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U 7→ (M(U) ⊗A(U) N (U))n where the tensor product of graded modules is as defined
in Differential Graded Algebra, Section 12.
If we fix the left gradedA-moduleN we obtain a functor

−⊗A N : Mod(A) −→ Gr(Mod(O)) = gradedO-modules
For the notation Gr(−) please see Homology, Definition 16.1. The graded category of
graded O-modules is denoted Grgr(Mod(O)), see Differential Graded Algebra, Example
25.5. The functor above can be upgraded to a functor of graded categories

−⊗A N : Modgr(A) −→ Grgr(Mod(O))
by sending homomorphisms of degree n fromM→M′ to the induced map of degree n
fromM⊗A N toM′ ⊗A N .

7. Internal hom for sheaves of graded modules

We urge the reader to skip this section.
We are going to need the sheafified version of the construction in Section 5. Let (C,O),
A,M, L be as in Section 5. Then we define

Homgr
A (M,L)

as the gradedO-module whose degree n term

Homn
A(M,L) ⊂

∏
p+q=n

HomO(L−q,Mp)

is the subsheaf consisting of those local sections f = (fp,q) such that
fp,q(ma) = fp−i,q+i(m)a

for local sections a ofAi and m of L−q−i. As in Section 5 there is a composition map
Homgr

A (L,M)⊗O Homgr
A (K,L) −→ Homgr

A (K,M)
where the left hand side is the tensor product of graded O-modules defined in Section 6.
This map is given by the composition map

Homm
A (L,M)⊗O Homn

A(K,L) −→ Homn+m
A (K,M)

defined by simple composition (locally).
With these definitions we have

HomModgr(A)(L,M) = Γ(C,Homgr
A (L,M))

as graded R-modules compatible with composition.

8. Sheaves of graded bimodules and tensor-hom adjunction

Please skip this section.

Definition 8.1. Let (C,O) be a ringed site. Let A and B be a sheaves of graded
algebras on (C,O). A graded (A,B)-bimodule is given by a familyMn indexed by n ∈ Z
ofO-modules endowed withO-bilinear maps

Mn × Bm →Mn+m, (x, b) 7−→ xb

and
An ×Mm →Mn+m, (a, x) 7−→ ax

called the multiplication maps with the following properties
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(1) multiplication satisfies a(a′x) = (aa′)x and (xb)b′ = x(bb′),
(2) (ax)b = a(xb),
(3) the identity section 1 ofA0 acts as the identity by multiplication, and
(4) the identity section 1 of B0 acts as the identity by multiplication.

We often denote such a structure M. A homomorphism of graded (A,B)-bimodules
f : M → N is a family of maps fn : Mn → Nn of O-modules compatible with
the multiplication maps.
Given a graded (A,B)-bimoduleM and an object U ∈ Ob(C) we use the notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a graded (A(U),B(U))-bimodule.
Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras on (C,O). Let
M be a right graded A-module and let N be a graded (A,B)-bimodule. In this case the
graded tensor product defined in Section 6

M⊗A N
is a right graded B-module with obvious multiplication maps. This construction defines
a functor and a functor of graded categories

⊗AN : Mod(A) −→Mod(B) and ⊗A N : Modgr(A) −→Modgr(B)
by sending homomorphisms of degree n fromM→M′ to the induced map of degree n
fromM⊗A N toM′ ⊗A N .
Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras on (C,O). Let N
be a graded (A,B)-bimodule. Let L be a right graded B-module. In this case the graded
internal hom defined in Section 7

Homgr
B (N ,L)

is a right gradedA-module with multiplication maps1

Homn
B(N ,L)×Am −→ Homn+m

B (N ,L)
sending a section f = (fp,q) ofHomn

B(N ,L) over U and a section a ofAm over U to the
section fa ifHomn+m

B (N ,L) over U defined as the family of maps

N−q−m|U
a·−−−→ N−q|U

fp,q−−→Mp|U
We omit the verification that this is well defined. This construction defines a functor and
a functor of graded categories
Homgr

B (N ,−) : Mod(B) −→Mod(A) and Homgr
B (N ,−) : Modgr(B) −→Modgr(A)

by sending homomorphisms of degree n from L → L′ to the induced map of degree n
fromHomgr

B (N ,L) toHomgr
B (N ,L′).

Lemma 8.2. Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras
on (C,O). LetM be a right gradedA-module. LetN be a graded (A,B)-bimodule. Let L
be a right graded B-module. With conventions as above we have

HomModgr(B)(M⊗A N ,L) = HomModgr(A)(M,Homgr
B (N ,L))

and
Homgr

B (M⊗A N ,L) = Homgr
A (M,Homgr

B (N ,L))

1Our conventions are here that this does not involve any signs.
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functorially inM,N , L.

Proof. Omitted. Hint: This follows by interpreting both sides as A-bilinear graded
maps ψ :M×N → L which are B-linear on the right. �

Let (C,O) be a ringed site. Let A and B be a sheaves of graded algebras on (C,O). As a
special case of the above, suppose we are given a homomorphism ϕ : A → B of graded
O-algebras. Then we obtain a functor and a functor of graded categories

⊗A,ϕB : Mod(A) −→Mod(B) and ⊗A,ϕ B : Modgr(A) −→Modgr(B)
On the other hand, we have the restriction functors

resϕ : Mod(B) −→Mod(A) and resϕ : Modgr(B) −→Modgr(A)
We can use the lemma above to show these functors are adjoint to each other (as usual
with restriction and base change). Namely, let us write ABB for B viewed as a graded
(A,B)-bimodule. Then for any right graded B-module L we have

Homgr
B (ABB,L) = resϕ(L)

as right gradedA-modules. Thus Lemma 8.2 tells us that we have a functorial isomorphism

HomModgr(B)(M⊗A,ϕ B,L) = HomModgr(A)(M, resϕ(L))
We usually drop the dependence on ϕ in this formula if it is clear from context. In the
same manner we obtain the equality

Homgr
B (M⊗A B,L) = Homgr

A (M,L)
of gradedO-modules.

9. Pull and push for sheaves of graded modules

We advise the reader to skip this section.

Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let A be a
gradedOC-algebra. Let B be a gradedOD-algebra. Suppose we are given a map

ϕ : f−1B → A
of graded f−1OD-algebras. By the adjunction of restriction and extension of scalars, this
is the same thing as a map ϕ : f∗B → A of graded OC-algebras or equivalently ϕ can be
viewed as a map

ϕ : B → f∗A
of gradedOD-algebras. See Remark 3.2.

Let us define a functor
f∗ : Mod(A) −→Mod(B)

Given a gradedA-moduleM we define f∗M to be the graded B-module whose degree n
term is f∗Mn. As multiplication we use

f∗Mn × Bm (id,ϕm)−−−−−→ f∗Mn × f∗Am
f∗µn,m−−−−−→ f∗Mn+m

where µn,m : Mn × Am → Mn+m is the multiplication map for M over A. This
uses that f∗ commutes with products. The construction is clearly functorial inM and we
obtain our functor.

Let us define a functor
f∗ : Mod(B) −→Mod(A)



10. LOCALIZATION AND SHEAVES OF GRADED MODULES 2163

We will define this functor as a composite of functors

Mod(B) f−1

−−→Mod(f−1B)
−⊗f−1BA
−−−−−−−→Mod(A)

First, given a graded B-moduleN we define f−1N to be the graded f−1B-module whose
degree n term is f−1Nn. As multiplication we use

f−1νn,m : f−1Nn × f−1Bm −→ f−1Nn+m

where νn,m : Nn×Bm → Nn+m is the multiplication map forN over B. This uses that
f−1 commutes with products. The construction is clearly functorial in N and we obtain
our functor f−1. Having said this, we can use the tensor product discussion in Section 8
to define the functor

−⊗f−1B A : Mod(f−1B) −→Mod(A)

Finally, we set
f∗N = f−1N ⊗f−1B,ϕ A

as already foretold above.

The functors f∗ and f∗ are readily enhanced to give functors of graded categories

f∗ : Modgr(A) −→Modgr(B) and f∗ : Modgr(B) −→Modgr(A)

which do the same thing on underlying objects and are defined by functoriality of the
constructions on homogenous morphisms of degree n.

Lemma 9.1. In the situation above we have

HomModgr(B)(N , f∗M) = HomModgr(A)(f∗N ,M)

Proof. Omitted. Hints: First prove that f−1 and f∗ are adjoint as functors between
Mod(B) and Mod(f−1B) using the adjunction between f−1 and f∗ on sheaves of abelian
groups. Next, use the adjunction between base change and restriction given in Section
8. �

10. Localization and sheaves of graded modules

We advise the reader to skip this section.

Let (C,O) be a ringed site. Let U ∈ Ob(C) and denote

j : (Sh(C/U),OU ) −→ (Sh(C),O)

the corresponding localization morphism (Modules on Sites, Section 19). Below we will
use the following fact: forOU -modulesMi, i = 1, 2 and aO-moduleA there is a canonical
map

j! : HomOU
(M1 ⊗OU

A|U ,M2) −→ HomO(j!M1 ⊗O A, j!M2)
Namely, we have j!(M1 ⊗OU

A|U ) = j!M1 ⊗O A by Modules on Sites, Lemma 27.9.

Let A be a graded O-algebra. We will denote AU the restriction of A to C/U , in other
words, we haveAU = j∗A = j−1A. In Section 9 we have constructed adjoint functors

j∗ : Modgr(AU ) −→Modgr(A) and j∗ : Modgr(A) −→Modgr(AU )

with j∗ left adjoint to j∗. We claim there is in addition an exact functor

j! : Modgr(AU ) −→Modgr(A)



2164 24. DIFFERENTIAL GRADED SHEAVES

left adjoint to j∗. Namely, given a gradedAU -moduleM we define j!M to be the graded
A-module whose degree n term is j!Mn. As multiplication map we use

j!µn,m : j!Mn ×Am → j!Mn+m

where µm,n : Mn × Am → Mn+m is the given multiplication map. Given a homoge-
neous map f : M → M′ of degree n of graded AU -modules, we obtain a homogeneous
map j!f : j!M→ j!M′ of degree n. Thus we obtain our functor.

Lemma 10.1. In the situation above we have

HomModgr(A)(j!M,N ) = HomModgr(AU )(M, j∗N )

Proof. By the discussion in Modules on Sites, Section 19 the functors j! and j∗ on
O-modules are adjoint. Thus if we only look at theO-module structures we know that

HomGrgr(Mod(O))(j!M,N ) = HomGrgr(Mod(OU ))(M, j∗N )

(Recall that Grgr(Mod(O)) denotes the graded category of graded O-modules.) Then
one has to check that these identifications map the A-module maps on the left hand side
to the AU -module maps on the right hand side. To check this, given OU -linear maps
fn :Mn → j∗Nn+d corresponding to O-linear maps gn : j!Mn → Nn+d it suffices to
show that

Mn ⊗OU
AmU fn⊗1

//

��

j∗Nn+d ⊗OU
AmU

��
Mn+m fn+m

// j∗Nn+m+d

commutes if and only if

j!Mn ⊗O Am
gn⊗1

//

��

Nn+d ⊗O AmU

��
j!Mn+m gn+m

// Nn+m+d

commutes. However, we know that

HomOU
(Mn ⊗OU

AmU , j∗Nn+d+m) = HomO(j!(Mn ⊗OU
AmU ),Nn+d+m)

= HomO(j!Mn ⊗O Am,Nn+d+m)

by the already used Modules on Sites, Lemma 27.9. We omit the verification that shows
that the obstruction to the commutativity of the first diagram in the first group maps to
the obstruction to the commutativity of the second diagram in the last group. �

Lemma 10.2. In the situation above, letM be a right graded AU -module and let N
be a left gradedA-module. Then

j!M⊗A N = j!(M⊗AU
N|U )

as gradedO-modules functorially inM andN .

Proof. Recall that the degree n component of j!M ⊗A N is the cokernel of the
canonical map⊕

r+s+t=n
j!Mr ⊗O As ⊗O N t −→

⊕
p+q=n

j!Mp ⊗O N q
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See Section 6. By Modules on Sites, Lemma 27.9 this is the same thing as the cokernel of⊕
r+s+t=n

j!(Mr ⊗OU
As|U ⊗OU

N t|U ) −→
⊕

p+q=n
j!(Mp ⊗OU

N q|U )

and we win. An alternative proof would be to redo the Yoneda argument given in the
proof of the lemma cited above. �

11. Shift functors on sheaves of graded modules

We urge the reader to skip this section. It turns out that sheaves of graded modules over
a graded algebra are an example of the phenomenon discussed in Differential Graded Al-
gebra, Remark 25.7.

Let (C,O) be a ringed site. Let A be a sheaf of graded algebras on (C,O). Let M be a
graded A-module. Let k ∈ Z. We define the kth shift ofM, denotedM[k], to be the
gradedA-module whose nth part is given by

(M[k])n =Mn+k

is the (n+ k)th part ofM. As multiplication maps

(M[k])n ×Am −→ (M[k])n+m

we simply use the multiplication maps

Mn+k ×Am −→Mn+m+k

ofM. It is clear that we have defined a functor [k], that we have [k + l] = [k] ◦ [l], and
that we have

HomModgr(A)(L,M[k]) = HomModgr(A)(L,M)[k]

(without the intervention of signs) functorially in M and L. Thus we see indeed that
the graded category of graded A-modules can be recovered from the ordinary category
of graded A-modules and the shift functors as discussed in Differential Graded Algebra,
Remark 25.7.

Lemma 11.1. Let (C,O) be a ringed site. Let A be a graded O-algebra. The category
Mod(A) is a Grothendieck abelian category.

Proof. By Lemma 4.2 and the definition of a Grothendieck abelian category (Injec-
tives, Definition 10.1) it suffices to show that Mod(A) has a generator. We claim that

G =
⊕

k,U
jU !AU [k]

is a generator where the sum is over all objects U of C and k ∈ Z. Indeed, given a graded
A-moduleM if there are no nonzero maps from G toM, then we see that for all k and U
we have

HomMod(A)(jU !AU [k],M) = HomMod(AU )(AU [k],M|U ) = Γ(U,M−k)

is equal to zero. HenceM is zero. �
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12. Sheaves of differential graded algebras

This section is the analogue of Differential Graded Algebra, Section 3.

Definition 12.1. Let (C,O) be a ringed site. A sheaf of differential gradedO-algebras
or a sheaf of differential graded algebras on (C,O) is a cochain complexA• ofO-modules
endowed withO-bilinear maps

An ×Am → An+m, (a, b) 7−→ ab

called the multiplication maps with the following properties
(1) multiplication is associative,
(2) there is a global section 1 ofA0 which is a two-sided identity for multiplication,
(3) for U ∈ Ob(C), a ∈ An(U), and b ∈ Am(U) we have

dn+m(ab) = dn(a)b+ (−1)nadm(b)
We often denote such a structure (A, d). A homomorphism of differential graded O-
algebras from (A, d) to (B, d) is a map f : A• → B• of complexes ofO-modules compat-
ible with the multiplication maps.

Given a differential gradedO-algebra (A, d) and an objectU ∈ Ob(C) we use the notation

A(U) = Γ(U,A) =
⊕

n∈Z
An(U)

This is a differential gradedO(U)-algebra.
As much as possible, we will think of a differential graded O-algebra (A, d) as a graded
O-algebra A endowed with the operator d : A → A of degree 1 (where A is viewed as a
gradedO-module) satisfying the Leibniz rule given in the definition.

Remark 12.2. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi.

(1) Let (A, d) be a differential gradedOC-algebra. The pushforward will be the dif-
ferential gradedOD-algebra (f∗A, d) where f∗A is as in Remark 3.2 and d = f∗d
as maps f∗An → f∗An+1. We omit the verification that the Leibniz rule is sat-
isfied.

(2) Let B be a differential graded OD-algebra. The pullback will be the differential
gradedOC-algebra (f∗B, d) where f∗B is as in Remark 3.2 and d = f∗d as maps
f∗Bn → f∗Bn+1. We omit the verification that the Leibniz rule is satisfied.

(3) The set of homomorphisms f∗B → A of differential graded OC-algebras is in
1-to-1 correspondence with the set of homomorphisms B → f∗A of differential
gradedOD-algebras.

Part (3) follows immediately from the usual adjunction between f∗ and f∗ on sheaves of
modules.

13. Sheaves of differential graded modules

This section is the analogue of Differential Graded Algebra, Section 4.

Definition 13.1. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). A (right) differential graded A-module or (right) differential
graded module overA is a cochain complexM• endowed withO-bilinear maps

Mn ×Am →Mn+m, (x, a) 7−→ xa

called the multiplication maps with the following properties
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(1) multiplication satisfies (xa)a′ = x(aa′),
(2) the identity section 1 ofA0 acts as the identity onMn for all n,
(3) for U ∈ Ob(C), x ∈Mn(U), and a ∈ Am(U) we have

dn+m(xa) = dn(x)a+ (−1)nxdm(a)

We often say “let M be a differential graded A-module” to indicate this situation. A
homomorphism of differential graded A-modules fromM toN is a map f :M• → N •

of complexes of O-modules compatible with the multiplication maps. The category of
(right) differential gradedA-modules is denoted Mod(A, d).

We can define left differential graded modules in exactly the same manner but our default
in the chapter will be right modules.

Given a differential gradedA-moduleM and an object U ∈ Ob(C) we use the notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a (right) differential gradedA(U)-module.

Lemma 13.2. Let (C,O) be a ringed site. Let (A, d) be a differential gradedO-algebra.
The category Mod(A, d) is an abelian category with the following properties

(1) Mod(A, d) has arbitrary direct sums,
(2) Mod(A, d) has arbitrary colimits,
(3) filtered colimit in Mod(A, d) are exact,
(4) Mod(A, d) has arbitrary products,
(5) Mod(A, d) has arbitrary limits.

The forgetful functor
Mod(A, d) −→Mod(A)

sending a differential graded A-module to its underlying graded module commutes with
all limits and colimits.

Proof. Let us denote F : Mod(A, d)→Mod(A) the functor in the statement of the
lemma. Observe that the category Mod(A) has properties (1) – (5), see Lemma 4.2.

Consider a homomorphism f :M→ N of graded A-modules. The kernel and cokernel
of f as maps of gradedA-modules are additionally endowed with differentials as in Defi-
nition 13.1. Hence these are also the kernel and cokernel in Mod(A, d). Thus Mod(A, d)
is an abelian category and taking kernels and cokernels commutes with F .

To prove the existence of limits and colimits it is sufficient to prove the existence of prod-
ucts and direct sums, see Categories, Lemmas 14.11 and 14.12. The same lemmas show that
proving the commutation of limits and colimits withF follows ifF commutes with direct
sums and products.

LetMt, t ∈ T be a set of differential graded A-modules. Then we can consider the di-
rect sum

⊕
Mt as a graded A-module. Since the direct sum of graded modules is done

termwise, it is clear that
⊕
Mt comes endowed with a differential. The reader easily

verifies that this is a direct sum in Mod(A, d). Similarly for products.

Observe that F is an exact functor and that a complexM1 →M2 →M3 of Mod(A, d)
is exact if and only if F (M1) → F (M2) → F (M3) is exact in Mod(A). Hence we
conclude that (3) holds as filtered colimits are exact in Mod(A). �
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Combining Lemmas 13.2 and 4.2 we find that there is an exact and faithful functor

Mod(A, d) −→ Comp(O)

of abelian categories. For a differential gradedA-moduleM the cohomologyO-modules,
denotedHi(M), are defined as the cohomology of the complex ofO-modules correspond-
ing toM. Therefore, a short exact sequence 0 → K → L → M → 0 of differential
gradedA-modules gives rise to a long exact sequence

(13.2.1) Hn(K)→ Hn(L)→ Hn(M)→ Hn+1(K)

of cohomology modules, see Homology, Lemma 13.12.

Moreover, from now on we borrow all the terminology used for complexes of modules.
For example, we say that a differential gradedA-moduleM is acyclic if Hk(M) = 0 for
all k ∈ Z. We say that a homomorphismM→ N of differential graded A-modules is a
quasi-isomorphism if it induces isomorphisms Hk(M) → Hk(N ) for all k ∈ Z. And so
on and so forth.

14. The differential graded category of modules

This section is the analogue of Differential Graded Algebra, Example 26.8. For our con-
ventions on differential graded categories, please see Differential Graded Algebra, Section
26.

Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded algebras on (C,O).
We will construct a differential graded category

Moddg(A, d)

over R = Γ(C,O) whose associated category of complexes is the category of differential
gradedA-modules:

Mod(A, d) = Comp(Moddg(A, d))
As objects of Moddg(A, d) we take right differential graded A-modules, see Section 13.
Given differential gradedA-modules L andM we set

HomModdg(A,d)(L,M) = HomModgr(A)(L,M) =
⊕

n∈Z
Homn(L,M)

as a graded R-module, see Section 5. In other words, the nth graded piece Homn(L,M)
is the R-module of right A-module maps homogeneous of degree n. For an element f ∈
Homn(L,M) we set

d(f) = dM ◦ f − (−1)nf ◦ dL

To make sense of this we think of dM and dL as gradedO-module maps and we use com-
position of gradedO-module maps. It is clear that d(f) is homogeneous of degree n+1 as
a graded O-module map, and it is A-linear because for homogeneous local sections x and
a ofM andA we have

d(f)(xa) = dM(f(x)a)− (−1)nf(dL(xa))

= dM(f(x))a+ (−1)deg(x)+nf(x)d(a)− (−1)nf(dL(x))a− (−1)n+deg(x)f(x)d(a)
= d(f)(x)a

as desired (observe that this calculation would not work without the sign in the definition
of our differential on Hom).
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For differential gradedA-modules K, L,M we have already defined the composition

Homm(L,M)×Homn(K,L) −→ Homn+m(K,M)

in Section 5 by the usual composition of maps of sheaves. This defines a map of differential
graded modules

HomModdg(A,d)(L,M)⊗R HomModdg(A,d)(K,L) −→ HomModdg(A,d)(K,M)

as required in Differential Graded Algebra, Definition 26.1 because

d(g ◦ f) = dM ◦ g ◦ f − (−1)n+mg ◦ f ◦ dK

= (dM ◦ g − (−1)mg ◦ dL) ◦ f + (−1)mg ◦ (dL ◦ f − (−1)nf ◦ dK)
= d(g) ◦ f + (−1)mg ◦ d(f)

if f has degree n and g has degree m as desired.

15. Tensor product for sheaves of differential graded modules

This section is the analogue of part of Differential Graded Algebra, Section 12.

Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded algebras on (C,O).
LetM be a right differential graded A-module and let N be a left differential graded A-
module. In this situation we define the tensor productM⊗A N as follows. As a graded
O-module it is given by the construction in Section 6. It comes endowed with a differential

dM⊗AN : (M⊗A N )n −→ (M⊗A N )n+1

defined by the rule that

dM⊗AN (x⊗ y) = dM(x)⊗ y + (−1)deg(x)x⊗ dN (y)

for homogeneous local sections x and y of M and N . To see that this is well defined
we have to show that dM⊗AN annihilates elements of the form xa ⊗ y − x ⊗ ay for
homogeneous local sections x, a, y ofM,A,N . We compute

dM⊗AN (xa⊗ y − x⊗ ay)

= dM(xa)⊗ y + (−1)deg(x)+deg(a)xa⊗ dN (y)− dM(x)⊗ ay − (−1)deg(x)x⊗ dN (ay)

= dM(x)a⊗ y + (−1)deg(x)xd(a)⊗ y + (−1)deg(x)+deg(a)xa⊗ dN (y)

− dM(x)⊗ ay − (−1)deg(x)x⊗ d(a)y − (−1)deg(x)+deg(a)x⊗ adN (y)

then we observe that the elements

dM(x)a⊗y−dM(x)⊗ay, xd(a)⊗y−x⊗d(a)y, and xa⊗dN (y)−x⊗adN (y)

map to zero in M ⊗A N and we conclude. We omit the verification that dM⊗AN ◦
dM⊗AN = 0.

If we fix the left differential gradedA-moduleN we obtain a functor

−⊗A N : Mod(A, d) −→ Comp(O)

where on the right hand side we have the category of complexes of O-modules. This can
be upgraded to a functor of differential graded categories

−⊗A N : Moddg(A, d) −→ Compdg(O)
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On underlying graded objects, we send a homomorphism f :M→M′ of degree n to the
degree n map f ⊗ idN :M⊗A N → M′ ⊗A N , because this is what we did in Section
6. To show that this works, we have to verify that the map

HomModdg(A,d)(M,M′) −→ HomCompdg(O)(M⊗A N ,M′ ⊗A N )

is compatible with differentials. To see this for f as above we have to show that

(dM′ ◦ f − (−1)nf ◦ dM)⊗ idN

is equal to
dM′⊗AN ◦ (f ⊗ idN )− (−1)n(f ⊗ idN ) ◦ dM⊗AN

Let us compute the effect of these operators on a local section of the form x ⊗ y with x
and y homogeneous local sections ofM andN . For the first we obtain

(dM′(f(x))− (−1)nf(dM(x)))⊗ y
and for the second we obtain

dM′⊗AN (f(x)⊗ y)− (−1)n(f ⊗ idN )(dM⊗AN (x⊗ y)

= dM′(f(x))⊗ y + (−1)deg(x)+nf(x)⊗ dN (y)

− (−1)nf(dM(x))⊗ y − (−1)n(−1)deg(x)f(x)⊗ dN (y)
which is indeeed the same local section.

16. Internal hom for sheaves of differential graded modules

We are going to need the sheafified version of the construction in Section 14. Let (C,O),
A,M, L be as in Section 14. Then we define

Homdg
A (M,L) = Homgr

A (M,L) =
⊕

n∈Z
Homn

A(M,L)

as a graded O-module, see Section 7. In other words, a section f of the nth graded piece
Homn

A(L,M) over U is a map of right AU -module map L|U → M|U homogeneous of
degree n. For such f we set

d(f) = dM|U ◦ f − (−1)nf ◦ dL|U
To make sense of this we think of dM|U and dL|U as gradedOU -module maps and we use
composition of graded OU -module maps. It is clear that d(f) is homogeneous of degree
n+ 1 as a gradedOU -module map. Using the exact same computation as in Section 14 we
see that d(f) isAU -linear.

As in Section 14 there is a composition map

Homdg
A (L,M)⊗O Homdg

A (K,L) −→ Homdg
A (K,M)

where the left hand side is the tensor product of differential gradedO-modules defined in
Section 15. This map is given by the composition map

Homm(L,M)⊗O Homn(K,L) −→ Homn+m(K,M)
defined by simple composition (locally). Using the exact same computation as in Section
14 on local sections we see that the composition map is a morphism of differential graded
O-modules.

With these definitions we have

HomModdg(A)(L,M) = Γ(C,Homdg
A (L,M))
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as graded R-modules compatible with composition.

17. Sheaves of differential graded bimodules and tensor-hom adjunction

This section is the analogue of part of Differential Graded Algebra, Section 12.

Definition 17.1. Let (C,O) be a ringed site. LetA and B be a sheaves of differential
graded algebras on (C,O). A differential graded (A,B)-bimodule is given by a complex
M• ofO-modules endowed withO-bilinear maps

Mn × Bm →Mn+m, (x, b) 7−→ xb

and
An ×Mm →Mn+m, (a, x) 7−→ ax

called the multiplication maps with the following properties
(1) multiplication satisfies a(a′x) = (aa′)x and (xb)b′ = x(bb′),
(2) (ax)b = a(xb),
(3) d(ax) = d(a)x+ (−1)deg(a)ad(x) and d(xb) = d(x)b+ (−1)deg(x)xd(b),
(4) the identity section 1 ofA0 acts as the identity by multiplication, and
(5) the identity section 1 of B0 acts as the identity by multiplication.

We often denote such a structureM and sometimes we write AMB. A homomorphism of
differential graded (A,B)-bimodules f :M→ N is a map of complexes f :M• → N •

ofO-modules compatible with the multiplication maps.

Given a differential graded (A,B)-bimodule M and an object U ∈ Ob(C) we use the
notation

M(U) = Γ(U,M) =
⊕

n∈Z
Mn(U)

This is a differential graded (A(U),B(U))-bimodule.

Observe that a differential graded (A,B)-bimodule M is the same thing as a right dif-
ferential graded B-module which is also a left differential gradedA-module such that the
grading and differentials agree and such that the A-module structure commutes with the
B-module structure. Here is a precise statement.

Lemma 17.2. Let (C,O) be a ringed site. Let A and B be a sheaves of differential
graded algebras on (C,O). Let N be a right differential graded B-module. There is a 1-
to-1 correspondence between (A,B)-bimodule structures onN compatible with the given
differential graded B-module structure and homomorphisms

A −→ Homdg
B (N ,N )

of differential gradedO-algebras.

Proof. Omitted. �

Let (C,O) be a ringed site. Let A and B be a sheaves of differential graded algebras on
(C,O). LetM be a right differential graded A-module and letN be a differential graded
(A,B)-bimodule. In this case the differential graded tensor product defined in Section 15

M⊗A N
is a right differential graded B-module with multiplication maps as in Section 8. This
construction defines a functor and a functor of graded categories

⊗AN : Mod(A, d) −→Mod(B, d) and ⊗A N : Moddg(A, d) −→Moddg(B, d)
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by sending homomorphisms of degree n fromM→M′ to the induced map of degree n
fromM⊗A N toM′ ⊗A N .

Let (C,O) be a ringed site. Let A and B be a sheaves of differential graded algebras on
(C,O). LetN be a differential graded (A,B)-bimodule. LetL be a right differential graded
B-module. In this case the differential graded internal hom defined in Section 16

Homdg
B (N ,L)

is a right differential gradedA-module where the right gradedA-module structure is the
one defined in Section 8. Another way to define the multiplication is the use the compo-
sition

Homdg
B (N ,L)⊗O A → Homdg

B (N ,L)⊗O Homdg
B (N ,N )→ Homdg

B (N ,L)

where the first arrow comes from Lemma 17.2 and the second arrow is the composition of
Section 16. Since these arrows are both compatible with differentials, we conclude that we
indeed obtain a differential graded A-module. This construction defines a functor and a
functor of differential graded categories

Homdg
B (N ,−) : Mod(B, d) −→Mod(A) and Homdg

B (N ,−) : Moddg(B, d) −→Moddg(A, d)

by sending homomorphisms of degree n from L → L′ to the induced map of degree n
fromHomdg

B (N ,L) toHomdg
B (N ,L′).

Lemma 17.3. Let (C,O) be a ringed site. Let A and B be a sheaves of differential
graded algebras on (C,O). LetM be a right differential graded A-module. Let N be a
differential graded (A,B)-bimodule. LetL be a right differential graded B-module. With
conventions as above we have

HomModdg(B,d)(M⊗A N ,L) = HomModdg(A,d)(M,Homdg
B (N ,L))

and
Homdg

B (M⊗A N ,L) = Homdg
A (M,Homdg

B (N ,L))
functorially inM,N , L.

Proof. Omitted. Hint: On the graded level we have seen this is true in Lemma 8.2.
Thus it suffices to check the isomorphisms are compatible with differentials which can be
done by a computation on the level of local sections. �

Let (C,O) be a ringed site. Let A and B be a sheaves of differential graded algebras on
(C,O). As a special case of the above, suppose we are given a homomorphism ϕ : A → B
of differential graded O-algebras. Then we obtain a functor and a functor of differential
graded categories

⊗A,ϕB : Mod(A, d) −→Mod(B, d) and ⊗A,ϕ B : Moddg(A, d) −→Moddg(B, d)

On the other hand, we have the restriction functors

resϕ : Mod(B, d) −→Mod(A, d) and resϕ : Moddg(B, d) −→Moddg(A, d)

We can use the lemma above to show these functors are adjoint to each other (as usual
with restriction and base change). Namely, let us write ABB for B viewed as a differential
graded (A,B)-bimodule. Then for any right differential graded B-module L we have

Homdg
B (ABB,L) = resϕ(L)
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as right differential gradedA-modules. Thus Lemma 8.2 tells us that we have a functorial
isomorphism

HomModdg(B,d)(M⊗A,ϕ B,L) = HomModdg(A,d)(M, resϕ(L))
We usually drop the dependence on ϕ in this formula if it is clear from context. In the
same manner we obtain the equality

Homdg
B (M⊗A B,L) = Homdg

A (M,L)
of gradedO-modules.

18. Pull and push for sheaves of differential graded modules

Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let A be a
differential gradedOC-algebra. Let B be a differential gradedOD-algebra. Suppose we are
given a map

ϕ : f−1B → A
of differential graded f−1OD-algebras. By the adjunction of restriction and extension of
scalars, this is the same thing as a map ϕ : f∗B → A of differential gradedOC-algebras or
equivalently ϕ can be viewed as a map

ϕ : B → f∗A
of differential gradedOD-algebras. See Remark 12.2.

Let us define a functor
f∗ : Mod(A, d) −→Mod(B, d)

Given a differential gradedA-moduleMwe define f∗M to be the graded B-module con-
structed in Section 9 with differential given by the maps f∗d : f∗Mn → f∗Mn+1. The
construction is clearly functorial inM and we obtain our functor.

Let us define a functor
f∗ : Mod(B, d) −→Mod(A, d)

Given a differential graded B-moduleN we define f∗N to be the graded A-module con-
structed in Section 9. Recall that

f∗N = f−1N ⊗f−1B A
Since f−1N comes with the differentials f−1d : f−1Nn → f−1Nn+1 we can view
this tensor product as an example of the tensor product discussed in Section 17 which
provides us with a differential. The construction is clearly functorial inN and we obtain
our functor f∗.

The functors f∗ and f∗ are readily enhanced to give functors of differential graded cate-
gories

f∗ : Moddg(A, d) −→Moddg(B, d) and f∗ : Moddg(B, d) −→Moddg(A, d)
which do the same thing on underlying objects and are defined by functoriality of the
constructions on homogenous morphisms of degree n.

Lemma 18.1. In the situation above we have

HomModdg(B,d)(N , f∗M) = HomModdg(A,d)(f∗N ,M)

Proof. Omitted. Hints: This is true for the underlying graded categories by Lemma
9.1. A calculation shows that these isomorphisms are compatible with differentials. �
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19. Localization and sheaves of differential graded modules

Let (C,O) be a ringed site. Let U ∈ Ob(C) and denote

j : (Sh(C/U),OU ) −→ (Sh(C),O)

the corresponding localization morphism (Modules on Sites, Section 19). Below we will
use the following fact: forOU -modulesMi, i = 1, 2 and aO-moduleA there is a canonical
map

j! : HomOU
(M1 ⊗OU

A|U ,M2) −→ HomO(j!M1 ⊗O A, j!M2)
Namely, we have j!(M1 ⊗OU

A|U ) = j!M1 ⊗O A by Modules on Sites, Lemma 27.9.

LetA be a differential gradedO-algebra. We will denoteAU the restriction ofA to C/U ,
in other words, we have AU = j∗A = j−1A. In Section 18 we have constructed adjoint
functors

j∗ : Moddg(AU , d) −→Moddg(A, d) and j∗ : Moddg(A, d) −→Moddg(AU , d)

with j∗ left adjoint to j∗. We claim there is in addition an exact functor

j! : Moddg(AU , d) −→Moddg(A, d)

right adjoint to j∗. Namely, given a differential graded AU -moduleM we define j!M
to be the graded A-module constructed in Section 10 with differentials j!d : j!Mn →
j!Mn+1. Given a homogeneous map f :M→M′ of degree n of differential gradedAU -
modules, we obtain a homogeneous map j!f : j!M → j!M′ of degree n of differential
graded A-modules. We omit the straightforward verification that this construction is
compatible with differentials. Thus we obtain our functor.

Lemma 19.1. In the situation above we have

HomModdg(A,d)(j!M,N ) = HomModdg(AU ,d)(M, j∗N )

Proof. Omitted. Hint: We have seen in Lemma 10.1 that the lemma is true on graded
level. Thus all that needs to be checked is that the resulting isomorphism is compatible
with differentials. �

Lemma 19.2. In the situation above, letM be a right differential gradedAU -module
and letN be a left differential gradedA-module. Then

j!M⊗A N = j!(M⊗AU
N|U )

as complexes ofO-modules functorially inM andN .

Proof. As graded modules, this follows from Lemma 10.2. We omit the verification
that this isomorphism is compatible with differentials. �

20. Shift functors on sheaves of differential graded modules

Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on (C,O). Let
M be a differential graded A-module. Let k ∈ Z. We define the kth shift ofM, denoted
M[k], as follows

(1) as a gradedA-module we letM[k] be as defined in Section 11,
(2) the differential dM[k] : (M[k])n → (M[k])n+1 is defined to be (−1)kdM :
Mn+k →Mn+k+1.
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For a homomorphism f : L → M of A-modules homogeneous of degree n, we let f [k] :
L[k] → M[k] be given by the same component maps as f . Then f [k] is a homogeneous
A-module map of degree n. This gives a map

HomModdg(A,d)(L,M) −→ HomModdg(A,d)(L[k],M[k])

compatible with differentials (it follows from the fact that the signs of the differentials of
L andM are changed by the same amount). These choices are compatible with the choice
in Differential Graded Algebra, Definition 4.3. It is clear that we have defined a functor

[k] : Moddg(A, d) −→Moddg(A, d)

of differential graded categories and that we have [k + l] = [k] ◦ [l].

We claim that the isomorphism

HomModdg(A,d)(L,M[k]) = HomModdg(A,d)(L,M)[k]

defined in Section 11 on underlying graded modules is compatible with the differentials.
To see this, suppose we have a rightA-module map f : L →M[k] homogeneous of degree
n; this is an element of degree n of the LHS. Denote f ′ : L → M the homogeneous A-
module map of degree n + k with the same component maps as f . By our conventions,
this is the corresponding element of degree n of the RHS. By definition of the differential
of LHS we obtain

dLHS(f) = dM[k] ◦ f − (−1)nf ◦ dL = (−1)kdM ◦ f − (−1)nf ◦ dL

and for the differential on the RHS we obtain

dRHS(f ′) = (−1)k
(
dM ◦ f ′ − (−1)n+kf ′ ◦ dL

)
= (−1)kdM ◦ f ′ − (−1)nf ′ ◦ dL

These maps have the same component maps and the proof is complete.

21. The homotopy category

This section is the analogue of Differential Graded Algebra, Section 5.

Definition 21.1. Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let f, g : M → N be homomorphisms of differential graded A-
modules. A homotopy between f and g is a gradedA-module map h :M→N homoge-
neous of degree −1 such that

f − g = dN ◦ h+ h ◦ dM

If a homotopy exists, then we say f and g are homotopic.

In the situation of the definition, if we have maps a : K → M and c : N → L then we
see that

h is a homotopy
between f and g ⇒ c ◦ h ◦ a is a homotopy

between c ◦ f ◦ a and c ◦ g ◦ a
Thus we can define composition of homotopy classes of morphisms in Mod(A, d).

Definition 21.2. Let (C,O) be a ringed site. LetA be a sheaf of differential graded al-
gebras on (C,O). The homotopy category, denotedK(Mod(A, d)), is the category whose
objects are the objects of Mod(A, d) and whose morphisms are homotopy classes of homo-
morphisms of differential gradedA-modules.
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The notationK(Mod(A, d)) is not standard but at least is consistent with the use ofK(−)
in other places of the Stacks project.

In Differential Graded Algebra, Definition 26.3 we have defined what we mean by the
category of complexes Comp(S) and the homotopy categoryK(S) of a differential graded
category S . Applying this to the differential graded category Moddg(A, d) we obtain

Mod(A, d) = Comp(Moddg(A, d))
(see discussion in Section 14) and we obtain

K(Mod(A, d)) = K(Moddg(A, d))
To see that this last equality is true, note that we have the equality

dHomModdg(A,d)(M,N )(h) = dN ◦ h+ h ◦ dM

when h is as in Definition 21.1. We omit the details.

Lemma 21.3. Let (C,O) be a ringed site. LetA be a sheaf of differential graded alge-
bras on (C,O). The homotopy category K(Mod(A, d)) has direct sums and products.

Proof. Omitted. Hint: Just use the direct sums and products as in Lemma 13.2. This
works because we saw that these functors commute with the forgetful functor to the cat-
egory of graded A-modules and because

∏
and

⊕
are exact functors on the category of

families of abelian groups. �

22. Cones and triangles

In this section we use the material from Differential Graded Algebra, Section 27 to con-
clude that the homotopy category of the category of differential graded A-modules is a
triangulated category.

Lemma 22.1. Let (C,O) be a ringed site. LetA be a sheaf of differential graded alge-
bras on (C,O). The differential graded category Moddg(A, d) satisfies axioms (A) and (B)
of Differential Graded Algebra, Section 27.

Proof. Suppose given differential gradedA-modulesM andN . Consider the differ-
ential graded A-moduleM⊕N defined in the obvious manner. Then the coprojections
i : M → M⊕ N and j : N → M⊕ N and the projections p : M⊕ N → N and
q : M⊕N → M are morphisms of differential graded A-modules. Hence i, j, p, q are
homogeneous of degree 0 and closed, i.e., d(i) = 0, etc. Thus this direct sum is a differen-
tial graded sum in the sense of Differential Graded Algebra, Definition 26.4. This proves
axiom (A).

Axiom (B) was shown in Section 20. �

Let (C,O) be a ringed site. LetA be a sheaf of differential graded algebras on (C,O). Recall
that a sequence

0→ K → L → N → 0
in Mod(A, d) is called an admissible short exact sequence (in Differential Graded Algebra,
Section 27) if it is split in Mod(A). In other words, if it is split as a sequence of graded
A-modules. Denote s : N → L and π : L → K graded A-module splittings. Combining
Lemma 22.1 and Differential Graded Algebra, Lemma 27.1 we obtain a triangle

K → L → N → K[1]
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where the arrow N → K[1] in the proof of Differential Graded Algebra, Lemma 27.1 is
constructed as

δ = π ◦ dHomModdg(A,d)(L,M)(s) = π ◦ dL ◦ s− π ◦ s ◦ dN = π ◦ dL ◦ s

with apologies for the horrendous notation. In any case, we see that in our setting the
boundary map δ as constructed in Differential Graded Algebra, Lemma 27.1 agrees on
underlying complexes of O-modules with the usual boundary map used throughout the
Stacks project for termwise split short exact sequences of complexes, see Derived Cate-
gories, Definition 9.9.

Definition 22.2. Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let f : K → L be a homomorphism of differential gradedA-modules.
The cone of f is the differential gradedA-module C(f) defined as follows:

(1) the underlying complex ofO-modules is the cone of the corresponding map f :
K• → L• of complexes of A-modules, i.e., we have C(f)n = Ln ⊕ Kn+1 and
differential

dC(f) =
(

dL f
0 −dK

)
(2) the multiplication map

C(f)n ×Am → C(f)n+m

is the direct sum of the multiplication map Ln × Am → Ln+m and the multi-
plication map Kn+1 ×Am → Kn+1+m.

It comes equipped with canonical hommorphisms of differential graded A-modules i :
L → C(f) and p : C(f)→ K[1] induced by the obvious maps.

Observe that in the situation of the definition the sequence
0→ L → C(f)→ K[1]→ 0

is an addmissible short exact sequence.

Lemma 22.3. Let (C,O) be a ringed site. LetA be a sheaf of differential graded alge-
bras on (C,O). The differential graded category Moddg(A, d) satisfies axiom (C) formu-
lated in Differential Graded Algebra, Situation 27.2.

Proof. Let f : K → L be a homomorphism of differential graded A-modules. By
the above we have an admissible short exact sequence

0→ L → C(f)→ K[1]→ 0
To finish the proof we have to show that the boundary map

δ : K[1]→ L[1]
associated to this (see discussion above) is equal to f [1]. For the section s : K[1]→ C(f)
we use in degree n the embedddingKn+1 → C(f)n. Then in degree n the map π is given
by the projections C(f)n → Ln. Then finally we have to compute

δ = π ◦ dC(f) ◦ s
(see discussion above). In matrix notation this is equal to(

1 0
)(dL f

0 −dK

)(
0
1

)
= f

as desired. �
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At this point we know that all lemmas proved in Differential Graded Algebra, Section
27 are valid for the differential graded category Moddg(A, d). In particular, we have the
following.

Proposition 22.4. Let (C,O) be a ringed site. LetA be a sheaf of differential graded
algebras on (C,O). The homotopy category K(Mod(A, d)) is a triangulated category
where

(1) the shift functors are those constructed in Section 20,
(2) the distinghuished triangles are those triangles inK(Mod(A, d)) which are iso-

morphic as a triangle to a triangle

K → L → N δ−→ K[1], δ = π ◦ dL ◦ s
constructed from an admissible short exact sequence 0→ K → L → N → 0 in
Mod(A, d) above.

Proof. Recall that K(Mod(A, d)) = K(Moddg(A, d)), see Section 21. Having said
this, the proposition follows from Lemmas 22.1 and 22.3 and Differential Graded Algebra,
Proposition 27.16. �

Remark 22.5. Let (C,O) be a ringed site. Let A be a sheaf of differential graded
algebras on (C,O). Let C = C(idA) be the cone on the identity map A → A viewed as a
map of differential gradedA-modules. Then

HomMod(A,d)(C,M) = {(x, y) ∈ Γ(C,M0)× Γ(C,M−1) | x = d(y)}
where the map from left to right sends f to the pair (x, y) where x is the image of the
global section (0, 1) of C−1 = A−1 ⊕ A0 and where y is the image of the global section
(1, 0) of C0 = A0 ⊕A1.

Lemma 22.6. Let (C,O) be a ringed site. Let (A, d) be a differential gradedO-algebra.
The category Mod(A, d) is a Grothendieck abelian category.

Proof. By Lemma 13.2 and the definition of a Grothendieck abelian category (Injec-
tives, Definition 10.1) it suffices to show that Mod(A, d) has a generator. For every object
U of C we denote CU the cone on the identity map AU → AU as in Remark 22.5. We
claim that

G =
⊕

k,U
jU !CU [k]

is a generator where the sum is over all objects U of C and k ∈ Z. Indeed, given a differ-
ential graded A-moduleM if there are no nonzero maps from G toM, then we see that
for all k and U we have

HomMod(A)(jU !CU [k],M)
= HomMod(AU )(CU [k],M|U )
= {(x, y) ∈M−k(U)×M−k−1(U) | x = d(y)}

is equal to zero. HenceM is zero. �

23. Flat resolutions

This section is the analogue of Differential Graded Algebra, Section 20.

Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on (C,O). Let
us call a right differential gradedA-module P good if
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(1) the functorN 7→ P ⊗A N is exact on the category of graded leftA-modules,
(2) ifN is an acyclic differential graded leftA-module, then P ⊗A N is acyclic,
(3) for any morphism (f, f ]) : (Sh(C′),O′)→ (Sh(C),O) of ringed topoi and any

differential graded O′-algebra A′ and any map ϕ : f−1A → A′ of differen-
tial graded f−1OD-algebras we have properties (1) and (2) for the pullback f∗P
(Section 18) viewed as a differential gradedA′-module.

The first condition means that P is flat as a right gradedA-module, the second condition
means that P is K-flat in the sense of Spaltenstein (see Cohomology on Sites, Section 17),
and the third condition is that this holds after arbitrary base change.
Perhaps surprisingly, there are many good modules.

Lemma 23.1. Let (C,O) be a ringed site. LetA be a sheaf of differential graded alge-
bras on (C,O). Let U ∈ Ob(C). Then j!AU is a good differential gradedA-module.

Proof. LetN be a left gradedA-module. By Lemma 10.2 we have
j!AU ⊗A N = j!(AU ⊗AU

N|U ) = j!(NU )
as graded modules. Since both restriction to U and j! are exact this proves condition (1).
The same argument works for (2) using Lemma 19.2.
Consider a morphism (f, f ]) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi, a differential
graded O′-algebra A′, and a map ϕ : f−1A → A′ of differential graded f−1O-algebras.
We have to show that

f∗j!AU = f−1j!AU ⊗f−1A A′

satisfies (1) and (2) for the ringed topos (Sh(C′),O′) endowed with the sheaf of differential
graded O′-algebras A′. To prove this we may replace (Sh(C),O) and (Sh(C′),O′) by
equivalent ringed topoi. Thus by Modules on Sites, Lemma 7.2 we may assume that f
comes from a morphism of sites f : C → C′ given by the continuous functor u : C → C′.
In this case, set U ′ = u(U) and denote j′ : Sh(C′/U ′) → Sh(C′) the corresponding
localization morphism. We obtain a commutative square of morphisms of ringed topoi

(Sh(C′/U ′),O′
U ′)

(j′,(j′)])
//

(f ′,(f ′)])
��

(Sh(C′),O′)

(f,f])
��

(Sh(C/U),OU )
(j,j]) // (Sh(C),O).

and we have f ′
∗(j′)−1 = j−1f∗. See Modules on Sites, Lemma 20.1. By uniqueness of

adjoints we obtain f−1j! = j′
!(f ′)−1. Thus we obtain

f∗j!AU = f−1j!AU ⊗f−1A A′

= j′
!(f ′)−1AU ⊗f−1A A′

= j′
!
(
(f ′)−1AU ⊗f−1A|U′ A′|U ′

)
= j′

!A′
U ′

The first equation is the definition of the pullback of j!AU to a differential graded module
over A′. The second equation because f−1j! = j′

!(f ′)−1. The third equation by Lemma
19.2 applied to the ringed site (C′, f−1O) with sheaf of differential graded algebras f−1A
and with differential graded modules (f ′)−1AU on C′/U ′ andA′ on C′. The fourth equa-
tion holds because of course we have (f ′)−1AU = f−1A|U ′ . Hence we see that the pull-
back is another module of the same kind and we’ve proven conditions (1) and (2) for it
above. �
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Lemma 23.2. et (C,O) be a ringed site. LetA be a sheaf of differential graded algebras
on (C,O). Let 0 → P → P ′ → P ′′ → 0 be an admissible short exact sequence of
differential graded A-modules. If two-out-of-three of these modules are good, so is the
third.

Proof. For condition (1) this is immediate as the sequence is a direct sum at the
graded level. For condition (2) note that for any left differential graded A-module, the
sequence

0→ P ⊗A N → P ′ ⊗A N → P ′′ ⊗A N → 0
is an admissible short exact sequence of differential graded O-modules (since forgetting
the differential the tensor product is just taken in the category of graded modules). Hence
if two out of three are exact as complexes ofO-modules, so is the third. Finally, the same
argument shows that given a morphism (f, f ]) : (Sh(C′),O′) → (Sh(C),O) of ringed
topoi, a differential graded O′-algebra A′, and a map ϕ : f−1A → A′ of differential
graded f−1O-algebras we have that

0→ f∗P → f∗P ′ → f∗P ′′ → 0
is an admissible short exact sequence of differential graded A′-modules and the same ar-
gument as above applies here. �

Lemma 23.3. Let (C,O) be a ringed site. LetA be a sheaf of differential graded alge-
bras on (C,O). An arbitrary direct sum of good differential gradedA-modules is good. A
filtered colimit of good differential gradedA-modules is good.

Proof. Omitted. Hint: direct sums and filtered colimits commute with tensor prod-
ucts and with pullbacks. �

Lemma 23.4. Let (C,O) be a ringed site. LetA be a sheaf of differential graded alge-
bras on (C,O). LetM be a differential graded A-module. There exists a homomorphism
P →M of differential gradedA-modules with the following properties

(1) P →M is surjective,
(2) Ker(dP)→ Ker(dM) is surjective, and
(3) P is good.

Proof. Consider triples (U, k, x) where U is an object of C , k ∈ Z, and x is a section
ofMk overU with dM(x) = 0. Then we obtain a unique morphism of differential graded
AU -modules ϕx : AU [−k] → M|U mapping 1 to x. This is adjoint to a morphism ψx :
jU !AU [−k]→M. Observe that 1 ∈ AU (U) corresponds to a section 1 ∈ jU !AU [−k](U)
of degree k whose differential is zero and which is mapped to x by ψx. Thus if we consider
the map ⊕

(U,k,x)
jU !AU [−k] −→M

then we will have conditions (2) and (3). Namely, the objects jU !AU [−k] are good (Lemma
23.1) and any direct sum of good objects is good (Lemma 23.3).

Next, consider triples (U, k, x) where U is an object of C , k ∈ Z, and x is a section of
Mk (not necessarily annihilated by the differential). Then we can consider the cone CU
on the identity map AU → AU as in Remark 22.5. The element x will determine a map
ϕx : CU [−k − 1] → AU , see Remark 22.5. Now, since we have an admissible short exact
sequence

0→ AU → CU → AU [1]→ 0
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we conclude that jU !CU is a good module by Lemma 23.2 and the already used Lemma
23.1. As above we conclude that the direct sum of the maps ψx : jU !CU →M adjoint to
the ϕx ⊕

(U,k,x)
jU !CU −→M

is surjective. Taking the direct sum with the map produced in the first paragraph we
conclude. �

Remark 23.5. Let (C,O) be a ringed site. A sheaf of graded sets on C is a sheaf of sets
S endowed with a map deg : S → Z of sheaves of sets. Let us denote O[S] the graded
O-module which is the free O-module on the graded sheaf of sets S . More precisely, the
nth graded part ofO[S] is the sheafification of the rule

U 7−→
⊕

s∈S(U), deg(s)=n
s · O(U)

With zero differential we also may consider this as a differential gradedO-module. LetA
be a sheaf of gradedO-algebras Then we similarly defineA[S] to be the gradedA-module
whose nth graded part is the sheafification of the rule

U 7−→
⊕

s∈S(U)
s · An−deg(s)(U)

IfA is a differential gradedO-algebra, the we turn this into a differential gradedO-module
by setting d(s) = 0 for all s ∈ S(U) and sheafifying.

Lemma 23.6. Let (C,O) be a ringed site. LetA be a differential gradedA-algebra. Let
S be a sheaf of graded sets on C. Then the free graded module A[S] on S endowed with
differential as in Remark 23.5 is a good differential gradedA-module.

Proof. LetN be a left gradedA-module. Then we have

A[S]⊗A N = O[S]⊗O N = N [S]
where N [S is the graded O-module whose degree n part is the sheaf associated to the
presheaf

U 7−→
⊕

s∈S(U)
s · Nn−deg(s)(U)

It is clear that N → N [S] is an exact functor, hence A[S is flat as a graded A-module.
Next, suppose thatN is a differential graded leftA-module. Then we have

H∗(A[S]⊗A N ) = H∗(O[S]⊗O N )
as graded sheaves ofO-modules, which by the flatness (overO) is equal to

H∗(N )[S]
as a gradedO-module. Hence ifN is acyclic, thenA[S]⊗A N is acyclic.

Finally, consider a morphism (f, f ]) : (Sh(C′),O′) → (Sh(C),O) of ringed topoi, a
differential graded O′-algebra A′, and a map ϕ : f−1A → A′ of differential graded
f−1O-algebras. Then it is straightforward to see that

f∗A[S] = A′[f−1S]
which finishes the proof that our module is good. �

Lemma 23.7. Let (C,O) be a ringed site. LetA be a sheaf of differential graded alge-
bras on (C,O). LetM be a differential graded A-module. There exists a homomorphism
P →M of differential gradedA-modules with the following properties
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(1) P →M is a quasi-isomorphism, and
(2) P is good.

First proof. Let S0 be the sheaf of graded sets (Remark 23.5) whose degree n part is
Ker(dnM). Consider the homomorphism of differential graded modules

P0 = A[S0] −→M
where the left hand side is as in Remark 23.5 and the map sends a local section s ofS0 to the
corresponding local section ofMdeg(s) (which is in the kernel of the differential, so our
map is a map of differential graded modules indeed). By construction the induced maps
on cohomology sheaves Hn(P0) → Hn(M) are surjective. We are going to inductively
construct maps

P0 → P1 → P2 → . . .→M
Observe that of course H∗(Pi) → H∗(M) will be surjective for all i. Given Pi → M
denote Si+1 the sheaf of graded sets whose degree n part is

Ker(dn+1
Pi )×Mn+1,dMn

Then we set
Pi+1 = Pi ⊕A[Si+1]

as gradedA-module with differential and map toM defined as follows
(1) for local sections of Pi use the differential on Pi and the given map toM,
(2) for a local section s = (p,m) of Si+1 we set d(s) equal to p viewed as a section

of Pi of degree deg(s) + 1 and we map s to m inM, and
(3) extend the differential uniquely so that the Leibniz rule holds.

This makes sense because d(m) is the image of p and d(p) = 0. Finally, we set P =
colimPi with the induced map toM.

The map P → M is a quasi-isomorphism: we have Hn(P) = colimHn(Pi) and for
each i the map Hn(Pi) → Hn(M) is surjective with kernel annihilated by the map
Hn(Pi) → Hn(Pi+1) by construction. Each Pi is good because P0 is good by Lemma
23.6 and each Pi+1 is in the middle of the admissible short exact sequence 0 → Pi →
Pi+1 → A[Si+1] → 0 whose outer terms are good by induction. Hence Pi+1 is good by
Lemma 23.2. Finally, we conclude that P is good by Lemma 23.3. �

Second proof. We urge the reader to read the proof of Differential Graded Algebra,
Lemma 20.4 before reading this proof. SetM =M0. We inductively choose short exact
sequences

0→Mi+1 → Pi →Mi → 0
where the maps Pi →Mi are chosen as in Lemma 23.4. This gives a “resolution”

. . .→ P2
f2−→ P1

f1−→ P0 →M→ 0
Then we let P be the differential gradedA-module defined as follows

(1) as a gradedA-module we setP =
⊕

a≤0 P−a[−a], i.e., the degree n part is given
by Pn =

⊕
a+b=n Pb−a,

(2) the differential on P is as in the construction of the total complex associated to
a double complex given by

dP(x) = f−a(x) + (−1)adP−a(x)

for x a local section of Pb−a.
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With these conventions P is indeed a differential graded A-module; we omit the details.
There is a map P →M of differential gradedA-modules which is zero on the summands
P−a[−a] for a < 0 and the given map P0 →M for a = 0. Observe that we have

P = colimi FiP

where FiP ⊂ P is the differential graded A-submodule whose underlying graded A-
module is

FiP =
⊕

i≥−a≥0
P−a[−a]

It is immediate that the maps

0→ F1P → F2P → F3P → . . .→ P

are all admissible monomorphisms and we have admissible short exact sequences

0→ FiP → Fi+1P → Pi+1[i+ 1]→ 0
By induction and Lemma 23.2 we find that FiP is a good differential graded A-module.
Since P = colimFiP we find that P is good by Lemma 23.3.

Finally, we have to show that P → M is a quasi-isomorphism. If C has enough points,
then this follows from the elementary Homology, Lemma 26.2 by checking on stalks. In
general, we can argue as follows (this proof is far too long — there is an alternative argu-
ment by working with local sections as in the elementary proof but it is also rather long).
Since filtered colimits are exact on the category of abelian sheaves, we have

Hd(P) = colimHd(FiP)
We claim that for each i ≥ 0 and d ∈ Z we have (a) a short exact sequence

0→ Hd(Mi+1[i])→ Hd(FiP)→ Hd(M)→ 0
where the second arrow comes from FiP → P →M and (b) the composition

Hd(Mi+1[i])→ Hd(FiP)→ Hd(Fi+1P)
is zero. It is clear that the claim suffices to finish the proof.

Proof of the claim. For any i ≥ 0 there is a map Mi+1[i] → FiP coming from the
inclusion ofMi+1 into Pi as the kernel of fi. Consider the short exact sequence

0→Mi+1[i]→ FiP → Ci → 0
of complexes of O-modules defining Ci. Observe that C0 = M0 = M. Also, observe
that Ci is the total complex associated to the double complex C•,•

i with columns

Mi = Pi/Mi+1,Pi−1, . . . ,P0

in degree−i,−i+ 1, . . . , 0. There is a map of double complexes C•,•
i → C•,•

i−1 which is 0
on the column in degree −i, is the surjection Pi−1 →Mi−1 in degree −i+ 1, and is the
identity on the other columns. Hence there are maps of complexes

Ci −→ Ci−1

These maps are surjective quasi-isomorphisms because the kernel is the total complex on
the double complex with columnsMi,Mi in degrees −i,−i + 1 and the identity map
between these two columns. Using the resulting identifications Hd(Ci) = Hd(Ci−1 =
. . . = Hd(M) this already shows we get a long exact sequence

Hd(Mi+1[i])→ Hd(FiP)→ Hd(M)→ Hd+1(Mi+1[i])
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from the short exact sequence of complexes above. However, we also have the commuta-
tive diagram

Mi+2[i+ 1]
a

// Ti+1 // Fi+1P // Ci+1

��
Mi+1[i] //

b

OO

FiP

OO

// Ci

where Ti+1 is the total complex on the double complex with columns Pi+1,Mi+1 placed
in degrees −i− 1 and −i. In other words, Ti+1 is a shift of the cone on the map Pi+1 →
Mi+1 and we find that a is a quasi-isomorphism and the map a−1 ◦ b is a shift of the third
map of the distinguished triangle in D(O) associated to the short exact sequence

0→Mi+2 → Pi+1 →Mi+1 → 0
The map Hd(Pi+1) → Hd(Mi+1) is surjective because we chose our maps such that
Ker(dPi+1)→ Ker(dMi+1) is surjective. Thus we see that a−1 ◦ b is zero on cohomology
sheaves. This proves part (b) of the claim. Since Ti+1 is the kernel of the surjective map
of complexes Fi+1P → Ci we find a map of long exact cohomology sequences

Hd(Ti+1) // Hd(Fi+1P) // Hd(M) // Hd+1(Ti+1)

Hd(Mi+1[i]) //

OO

Hd(FiP) //

OO

Hd(M) //

OO

Hd+1(Mi+1[i])

OO

Here we know, by the discussion above, that the vertical maps on the outside are zero.
Hence the maps Hd(Fi+1P) → Hd(M) are surjective and part (a) of the claim follows.
More precisely, the claim follows for i > 0 and we leave the claim for i = 0 to the reader
(actually it suffices to prove the claim for all i� 0 in order to get the lemma). �

Lemma 23.8. Let (C,O) be a ringed site. LetA be a sheaf of differential graded alge-
bras on (C,O). Let P be a good acyclic right differential gradedA-module.

(1) for any differential graded left A-module N the tensor product P ⊗A N is
acyclic,

(2) for any morphism (f, f ]) : (Sh(C′),O′)→ (Sh(C),O) of ringed topoi and any
differential graded O′-algebra A′ and any map ϕ : f−1A → A′ of differential
graded f−1O-algebras the pullback f∗P is acyclic and good.

Proof. Proof of (1). By Lemma 23.7 we can choose a good left differential gradedQ
and a quasi-isomorphismQ → N . Then P ⊗A Q is acyclic becauseQ is good. LetN ′ be
the cone on the mapQ → N . Then P ⊗AN ′ is acyclic because P is good and becauseN ′

is acyclic (as the cone on a quasi-isomorphism). We have a distinguished triangle
Q → N → N ′ → Q[1]

in K(Mod(A, d)) by our construction of the triangulated structure. Since P ⊗A − sends
distinguished triangles to distinguished triangles, we obtain a distinguished triangle

P ⊗A Q → P ⊗A N → P ⊗A N ′ → P ⊗A Q[1]
in K(Mod(O)). Thus we conclude.
Proof of (2). Observe that f∗P is good by our definition of good modules. Recall that
f∗P = f−1P ⊗f−1A A′. Then f−1P is a good acyclic (because f−1 is exact) differential
graded f−1A-module. Hence we see that f∗P is acyclic by part (1). �
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24. The differential graded hull of a graded module

The differential graded hull of a graded moduleN is the result of applying the functor G
in the following lemma.

Lemma 24.1. Let (C,O) be a ringed site. Let A be a sheaf of differential graded al-
gebras on (C,O). The forgetful functor F : Mod(A, d) → Mod(A) has a left adjoint
G : Mod(A)→Mod(A, d).

Proof. To prove the existence ofGwe can use the adjoint functor theorem, see Cate-
gories, Theorem 25.3 (observe that we have switched the roles of F andG). The exactness
conditions on F are satisfied by Lemma 13.2. The set theoretic condition can be seen as
follows: suppose given a gradedA-moduleN . Then for any map

ϕ : N −→ F (M)
we can consider the smallest differential graded A-submoduleM′ ⊂ M with Im(ϕ) ⊂
F (M′). It is clear thatM′ is the image of the map of gradedA-modules

N ⊕N [−1]⊗O A −→M
defined by

(n,
∑

ni ⊗ ai) 7−→ ϕ(n) +
∑

d(ϕ(ni))ai
because the image of this map is easily seen to be a differential graded submodule ofM.
Thus the number of possible isomorphism classes of theseM′ is bounded and we conclude.

�

Let (C,O) be a ringed site. Let A be a sheaf of differential graded algebras on (C,O). Let
M be a differential gradedA-module and suppose we have a short exact sequence

0→ N → F (M)→ N ′ → 0
in Mod(A). Then we obtain a canonical gradedA-module homomorphism

d : N → N ′[1]
as follows: given a local section x ofN denote d(x) the image inN ′ of dM(x) when x is
viewed as a local section ofM.

Lemma 24.2. The functors F,G of Lemma 24.1 have the following properties. Given
a gradedA-moduleN we have

(1) the counitN → F (G(N )) is injective,
(2) the map d : N → Coker(N → F (G(N )))[1] is an isomorphism, and
(3) G(N ) is an acyclic differential gradedA-module.

Proof. We observe that property (3) is a consequence of properties (1) and (2). Namely,
if s is a nonzero local section of F (G(N )) with d(s) = 0, then s cannot be in the image
ofN → F (G(N )). Hence we can write the image s of s in the cokernel as d(s′) for some
local section s′ of N . Then we see that s = d(s′) because the difference s − d(s′) is still
in the kernel of d and is contained in the image of the counit.
Let us write temporarily Agr , respectively Adg the sheaf A viewed as a (right) graded
module over itself, respectively as a (right) differential graded module over itself. The
most important case of the lemma is to understand what is G(Agr). Of course G(Agr) is
the object of Mod(A, d) representing the functor

M 7−→ HomMod(A)(Agr, F (M)) = Γ(C,M)
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By Remark 22.5 we see that this functor represented by C[−1] where C is the cone on the
identity ofAdg . We have a short exact sequence

0→ Adg[−1]→ C[−1]→ Adg → 0
in Mod(A, d) which is split by the counit Agr → F (C[−1]) in Mod(A). Thus G(Agr)
satisfies properties (1) and (2).
Let U be an object of C. Denote jU : C/U → C the localization morphism. Denote AU
the restriction ofA toU . We will use the notationAU,gr to denoteAU viewed as a graded
AU -module. Denote FU : Mod(AU , d) → Mod(AU ) the forgetful functor and denote
GU its adjoint. Then we have the commutative diagrams

Mod(A, d)

j∗
U

��

F
// Mod(A)

j∗
U

��
Mod(AU , d) FU // Mod(AU )

and

Mod(AU , d)
FU

//

jU!

��

Mod(AU )

jU!

��
Mod(A, d) F // Mod(A)

by the construction of j∗
U and jU ! in Sections 9, 18, 10, and 19. By uniqueness of adjoints

we obtain jU ! ◦GU = G ◦ jU !. Since jU ! is an exact functor, we see that the properties (1)
and (2) for the counit AU,gr → FU (GU (AU,gr)) which we’ve seen in the previous part
of the proof imply properties (1) and (2) for the counit jU !AU,gr → F (G(jU !AU,gr)) =
jU !FU (GU (AU,gr)).
In the proof of Lemma 11.1 we have seen that any object of Mod(A) is a quotient of a direct
sum of copies of jU !AU,gr. Since G is a left adjoint, we see that G commutes with direct
sums. Thus properties (1) and (2) hold for direct sums of objects for which they hold. Thus
we see that every objectN of Mod(A) fits into an exact sequence

N1 → N0 → N → 0
such that (1) and (2) hold for N1 and N0. We leave it to the reader to deduce (1) and (2)
forN using that G is right exact. �

25. K-injective differential graded modules

This section is the analogue of Injectives, Section 12 in the setting of sheaves of differential
graded modules over a sheaf of differential graded algebras.

Lemma 25.1. Let (C,O) be a ringed site. LetA be a sheaf of graded algebras on (C,O).
There exists a set T and for each t ∈ T an injective map Nt → N ′

t of graded A-modules
such that an object I of Mod(A) is injective if and only if for every solid diagram

Nt //

��

I

N ′
t

??

a dotted arrow exists in Mod(A) making the diagram commute.
Proof. This is true in any Grothendieck abelian category, see Injectives, Lemma 11.6.

By Lemma 11.1 the category Mod(A) is a Grothendieck abelian category. �

Definition 25.2. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). A diffential graded A-module I is said to be graded injective2

2This may be nonstandard terminology.
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ifM viewed as a gradedA-module is an injective object of the category Mod(A) of graded
A-modules.

Remark 25.3. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). Let I be a graded injective diffential gradedA-module. Let

0→M1 →M2 →M3 → 0

be a short exact sequence of differential gradedA-modules. Since I is graded injective we
obtain a short exact sequence of complexes

0→ HomModdg(A,d)(M3, I)→ HomModdg(A,d)(M2, I)→ HomModdg(A,d)(M1, I)→ 0

of Γ(C,O)-modules. Taking cohomology we obtain a long exact sequence

HomK(Mod(A,d))(M3, I)

��

HomK(Mod(A,d))(M3, I)[1]

��
HomK(Mod(A,d))(M2, I)

��

HomK(Mod(A,d))(M2, I)[1]

��
HomK(Mod(A,d))(M1, I)

99

HomK(Mod(A,d))(M1, I)[1]

of groups of homomorphisms in the homotopy category. The point is that we get this even
though we didn’t assume that our short exact sequence is admissible (so the short exact
sequence in general does not define a distinguished triangle in the homotopy category).

Lemma 25.4. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). Let T be a set and for each t ∈ T let It be a graded injective diffential
gradedA-module. Then

∏
It is a graded injective differential gradedA-module.

Proof. This is true because products of injectives are injectives, see Homology, Lemma
27.3, and because products in Mod(A, d) are compatible with products in Mod(A) via the
forgetful functor. �

Lemma 25.5. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). There exists a set T and for each t ∈ T an injective mapMt →M′

t of
acyclic differential gradedA-modules such that for an object I of Mod(A, d) the following
are equivalent

(1) I is graded injective, and
(2) for every solid diagram

Mt
//

��

I

M′
t

>>

a dotted arrow exists in Mod(A, d) making the diagram commute.

Proof. Let T andNt → N ′
t be as in Lemma 25.1. DenoteF : Mod(A, d)→Mod(A)

the forgetful functor. Let G be the left adjoint functor to F as in Lemma 24.1. Set

Mt = G(Nt)→ G(N ′
t ) =M′

t
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This is an injective map of acyclic differential gradedA-modules by Lemma 24.2. SinceG
is the left adjoint to F we see that there exists a dotted arrow in the diagram

Mt
//

��

I

M′
t

>>

if and only if there exists a dotted arrow in the diagram

Nt //

��

F (I)

N ′
t

==

Hence the result follows from the choice of our collection of arrowsNt → N ′
t . �

Lemma 25.6. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). There exists a set S and for each s an acyclic differential graded A-
moduleMs such that for every nonzero acyclic differential gradedA-moduleM there is
an s ∈ S and an injective mapMs →M in Mod(A, d).

Proof. Before we start recall that our conventions guarantee the site C has a set of
objects and morphisms and a set Cov(C) of coverings. If F is a differential graded A-
module, let us define |F| to be the sum of the cardinality of∐

(U,n)
Fn(U)

as U ranges over the objects of C and n ∈ Z. Choose an infinite cardinal κ bigger than the
cardinals |Ob(C)|, |Arrows(C)|, |Cov(C)|, sup |I| for {Ui → U}i∈I ∈ Cov(C), and |A|.

Let F ⊂ M be an inclusion of differential graded A-modules. Suppose given a set K
and for each k ∈ K a triple (Uk, nk, xk) consisting of an object Uk of C , integer nk ,
and a section xk ∈ Mnk(Uk). Then we can consider the smallest differential graded A-
submodule F ′ ⊂M containing F and the sections xk for k ∈ K. We can describe

(F ′)n(U) ⊂Mn(U)

as the set of elements x ∈ Mn(U) such that there exists {fi : Ui → U}i∈I ∈ Cov(C)
such that for each i ∈ I there is a finite set Ti and morphisms gt : Ui → Ukt

f∗
i x = yi +

∑
t∈Ti

aitg
∗
t xkt + bitg

∗
t d(xkt)

for some section yi ∈ Fn(U) and sections ait ∈ An−nkt (Ui) and bit ∈ An−nkt−1(Ui).
(Details omitted; hints: these sections are certainly in F ′ and you show conversely that
this rule defines a differential gradedA-submodule.) It follows from this description that
|F ′| ≤ max(|F|, |K|, κ).

LetM be a nonzero acyclic differential gradedA-module. Then we can find an integer n
and a nonzero section x ofMn over some object U of C. Let

F0 ⊂M
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be the smallest differential gradedA-submodule containing x. By the previous paragraph
we have |F0| ≤ κ. By induction, given F0, . . . ,Fn define Fn+1 as follows. Consider the
set

L = {(U, n, x)}{Ui → U}i∈I , (xi)i∈I)}
of triples where U is an object of C , n ∈ Z, and x ∈ Fn(U) with d(x) = 0. SinceM is
acyclic for each triple l = (Ul, nl, xl) ∈ Lwe can choose {(Ul,i → Ul}i∈Il ∈ Cov(C) and
xl,i ∈Mnl−1(Ul,i) such that d(xl,i) = x|Ul,i . Then we set

K = {(Ul,i, nl − 1, xl,i) | l ∈ L, i ∈ Il}

and we letFn+1 be the smallest differential gradedA-submodule ofM containingFn and
the sections xl,i. Since |K| ≤ max(κ, |Fn|) we conclude that |Fn+1| ≤ κ by induction.

By construction the inclusion Fn → Fn+1 induces the zero map on cohomology sheaves.
Hence we see that F =

⋃
Fn is a nonzero acyclic submodule with |F| ≤ κ. Since there is

only a set of isomorphism classes of differential graded A-modules F with |F| bounded,
we conclude. �

Definition 25.7. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). A diffential graded A-module I is K-injective if for every
acyclic differential gradedM we have

HomK(Mod(A,d))(M, I) = 0

Please note the similarity with Derived Categories, Definition 31.1.

Lemma 25.8. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). Let T be a set and for each t ∈ T let It be a K-injective diffential
gradedA-module. Then

∏
It is a K-injective differential gradedA-module.

Proof. Let K be an acyclic differential gradedA-module. Then we have

HomModdg(A,d)(K,
∏

t∈T
It) =

∏
t∈T

HomModdg(A,d)(K, It)

because taking products in Mod(A, d) commutes with the forgetful functor to gradedA-
modules. Since taking products is an exact functor on the category of abelian groups we
conclude. �

Lemma 25.9. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). Let I be a K-injective and graded injective object of Mod(A, d). For
every solid diagram in Mod(A, d)

M
a
//

b
��

I

M′

>>

where b is injective andM is acyclic a dotted arrow exists making the diagram commute.

Proof. SinceM is acyclic and I is K-injective, there exists a graded A-module map
h :M→ I of degree−1 such that a = d(h). Since I is graded injective and b is injective,
there exists a gradedA-module map h′ :M′ → I of degree−1 such that h = h′ ◦b. Then
we can take a′ = d(h′) as the dotted arrow. �
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Lemma 25.10. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). Let I be a K-injective and graded injective object of Mod(A, d). For
every solid diagram in Mod(A, d)

M
a
//

b
��

I

M′

>>

where b is a quasi-isomorphism a dotted arrow exists making the diagram commute up to
homotopy.

Proof. After replacingM′ by the direct sum ofM′ and the cone on the identity on
M (which is acyclic) we may assume b is also injective. Then the cokernelQ of b is acyclic.
Thus we see that

HomK(Mod(A,d))(Q, I) = HomK(Mod(A,d))(Q, I)[1] = 0
as I is K-injective. As I is graded injective by Remark 25.3 we see that

HomK(Mod(A,d))(M′, I) −→ HomK(Mod(A,d))(M, I)
is bijective and the proof is complete. �

Lemma 25.11. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). There exists a setR and for each r ∈ R an injective mapMr →M′

r of
acyclic differential gradedA-modules such that for an object I of Mod(A, d) the following
are equivalent

(1) I is K-injective and graded injective, and
(2) for every solid diagram

Mr
//

��

I

M′
r

>>

a dotted arrow exists in Mod(A, d) making the diagram commute.

Proof. LetT andMt →M′
t be as in Lemma 25.5. LetS andMs be as in Lemma 25.6.

Choose an injective mapMs → M′
s of acyclic differential graded A-modules which is

homotopic to zero. This is possible because we may takeM′
s to be the cone on the identity;

in that case it is even true that the identity onM′
s is homotopic to zero, see Differential

Graded Algebra, Lemma 27.4 which applies by the discussion in Section 22. We claim that
R = T

∐
S with the given maps works.

The implication (1)⇒ (2) holds by Lemma 25.9.

Assume (2). First, by Lemma 25.5 we see that I is graded injective. Next, let M be an
acyclic differential gradedA-module. We have to show that

HomK(Mod(A,d))(M, I) = 0
The proof will be exactly the same as the proof of Injectives, Lemma 12.3.

We are going to construct by induction on the ordinal α an acyclic differential graded
submodule Kα ⊂ M as follows. For α = 0 we set K0 = 0. For α > 0 we proceed as
follows:
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(1) If α = β + 1 and Kβ =M then we choose Kα = Kβ .
(2) If α = β + 1 and Kβ 6=M thenM/Kβ is a nonzero acyclic differential graded
A-module. We choose a differential gradedA submoduleNα ⊂M/Kβ isomor-
phic toMs for some s ∈ S , see Lemma 25.6. Finally, we let Kα ⊂ M be the
inverse image ofNα.

(3) If α is a limit ordinal we set Kβ = colimKα.
It is clear thatM = Kα for a suitably large ordinal α. We will prove that

HomK(Mod(A,d))(Kα, I)
is zero by transfinite induction on α. It holds for α = 0 sinceK0 is zero. Suppose it holds
for β and α = β + 1. In case (1) of the list above the result is clear. In case (2) there is a
short exact sequence

0→ Kβ → Kα → Nα → 0
By Remark 25.3 and since we’ve seen that I is graded injective, we obtain an exact sequence

HomK(Mod(A,d))(Kβ , I)→ HomK(Mod(A,d))(Kα, I)→ HomK(Mod(A,d))(Nα, I)
By induction the term on the left is zero. By assumption (2) the term on the right is
zero: any mapMs → I factors throughM′

s and hence is homotopic to zero. Thus the
middle group is zero too. Finally, suppose that α is a limit ordinal. Because we also have
Kα = colimKα as gradedA-modules we see that

HomModdg(A,d)(Kα, I) = limβ<α HomModdg(A,d)(Kβ , I)
as complexes of abelian groups. The cohomology groups of these complexes compute mor-
phisms inK(Mod(A, d)) between shifts. The transition maps in the system of complexes
are surjective by Remark 25.3 because I is graded injective. Moreover, for a limit ordinal
β ≤ α we have equality of limit and value. Thus we may apply Homology, Lemma 31.8
to conclude. �

Lemma 25.12. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). Let R be a set and for each r ∈ R let an injective mapMr →M′

r of
acyclic differential gradedA-modules be given. There exists a functorM : Mod(A, d)→
Mod(A, d) and a natural transformation j : id→M such that

(1) jM :M→M(M) is injective and a quasi-isomorphism,
(2) for every solid diagram

Mr
//

��

M

jM

��
M′

r
// M(M)

a dotted arrow exists in Mod(A, d) making the diagram commute.

Proof. We define M(M) as the pushout in the following diagram⊕
(r,ϕ)Mr

//

��

M

��⊕
(r,ϕ)M′

r
// M(M)

where the direct sum is over all pairs (r, ϕ) with r ∈ R and ϕ ∈ HomMod(A,d)(Mr,M).
Since the pushout of an injective map is injective, we see thatM → M(M) is injective.
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Since the cokernel of the left vertical arrow is acyclic, we see that the (isomorphic) cokernel
ofM → M(M) is acyclic, henceM → M(M) is a quasi-isomorphism. Property (2)
holds by construction. We omit the verification that this procedure can be turned into a
functor. �

Theorem 25.13. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). For every differential gradedA-moduleM there exists a quasi-
isomorphismM → I where I is a graded injective and K-injective differential graded
A-module. Moreover, the construction is functorial inM.

Proof. Let R andMr →M′
r be a set of morphisms of Mod(A, d) found in Lemma

25.11. LetM with transformation id→M be as constructed in Lemma 25.12 usingR and
Mr →M′

r. Using transfinite recursion we define a sequence of functorsMα and natural
transformations Mβ →Mα for α < β by setting

(1) M0 = id,
(2) Mα+1 = M ◦Mα with natural transformation Mβ → Mα+1 for β < α + 1

coming from the already constructedMβ →Mα and the mapsMα →M ◦Mα

coming from id→M , and
(3) Mα = colimβ<αMβ if α is a limit ordinal with the coprojections as transfor-

mations Mβ →Mα for α < β.

Observe that for every differential gradedA-module the mapsM→Mβ(M)→Mα(M)
are injective quasi-isomorphisms (as filtered colimits are exact).

Recall that Mod(A, d) is a Grothendieck abelian category. Thus by Injectives, Proposition
11.5 (applied to the direct sum ofMr for all r ∈ R) there is a limit ordinal α such that
Mr is α-small with respect to injections for every r ∈ R. We claim thatM→ Mα(M)
is the desired functorial embedding ofM into a graded injective K-injective module.

Namely, any mapMr → Mα(M) factors through Mβ(M) for some β < α. However,
by the construction of M we see that this means thatMr →Mβ+1(M) = M(Mβ(M))
factors throughM′

r. Since Mβ(M) ⊂ Mβ+1(M) ⊂ Mα(M) we get the desired fac-
torizaton into Mα(M). We conclude by our choice of R and Mr → M′

r in Lemma
25.11. �

26. The derived category

This section is the analogue of Differential Graded Algebra, Section 22.

Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded algebras on (C,O).
We will construct the derived category D(A, d) by inverting the quasi-isomorphisms in
K(Mod(A, d)).

Lemma 26.1. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded al-
gebras on (C,O). The functor H0 : Mod(A, d)→Mod(O) of Section 13 factors through
a functor

H0 : K(Mod(A, d))→Mod(O)

which is homological in the sense of Derived Categories, Definition 3.5.
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Proof. It follows immediately from the definitions that there is a commutative dia-
gram

Mod(A, d) //

��

K(Mod(A, d))

��
Comp(O) // K(Mod(O))

Since H0(M) is defined as the zeroth cohomology sheaf of the underlying complex of
O-modules ofM the lemma follows from the case of complexes ofO-modules which is a
special case of Derived Categories, Lemma 11.1. �

Lemma 26.2. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded al-
gebras on (C,O). The full subcategory Ac of the homotopy categoryK(Mod(A, d)) con-
sisting of acyclic modules is a strictly full saturated triangulated subcategory ofK(Mod(A, d)).

Proof. Of course an objectM of K(Mod(A, d)) is in Ac if and only if Hi(M) =
H0(M[i]) is zero for all i. The lemma follows from this, Lemma 26.1, and Derived Cat-
egories, Lemma 6.3. See also Derived Categories, Definitions 6.1 and 3.4 and Lemma
4.16. �

Lemma 26.3. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). Consider the subclass Qis ⊂ Arrows(K(Mod(A, d))) consisting of
quasi-isomorphisms. This is a saturated multiplicative system compatible with the trian-
gulated structure on K(Mod(A, d)).

Proof. Observe that if f, g : M → N are morphisms of Mod(A, d) which are ho-
motopic, then f is a quasi-isomorphism if and only if g is a quasi-isomorphism. Namely,
the maps Hi(f) = H0(f [i]) and Hi(g) = H0(g[i]) are the same by Lemma 26.1. Thus
it is unambiguous to say that a morphism of the homotopy category K(Mod(A, d)) is a
quasi-isomorphism. For definitions of “multiplicative system”, “saturated”, and “compati-
ble with the triangulated structure” see Derived Categories, Definition 5.1 and Categories,
Definitions 27.1 and 27.20.

To actually prove the lemma consider the composition of exact functors of triangulated
categories

K(Mod(A, d)) −→ K(Mod(O)) −→ D(O)
and observe that a morphism f :M→N ofK(Mod(A, d)) is in Qis if and only if it maps
to an isomorphism in D(O). Thus the lemma follows from Derived Categories, Lemma
5.4. �

In the situation of Lemma 26.3 we can apply Derived Categories, Proposition 5.6 to obtain
an exact functor of triangulated categories

Q : K(Mod(A, d)) −→ Qis−1K(Mod(A, d))
However, as Mod(A, d) is a “big” category, i.e., its objects form a proper class, it isn’t im-
mediately clear that givenM and N the construction of Qis−1K(Mod(A, d)) produces
a set

MorQis−1K(Mod(A,d))(M,N )
of morphisms. However, this is true thanks to our construction of K-injective complexes.
Namely, by Theorem 25.13 we can choose a quasi-isomorphism s0 : N → I where I is a
graded injective and K-injective differential gradedA-module. Next, recall that elements
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of the displayed set are equivalence classes of pairs (f :M→N ′, s : N → N ′) where f is
an arbitrary morphism ofK(Mod(A, d)) and s is a quasi-isomorphsm, see the description
of the left calculus of fractions in Categories, Section 27. By Lemma 25.10 we can choose
the dotted arrow

M
f

!!

N
s

}}

s0

��
N ′ s′

// I
making the diagram commute (in the homotopy category). Thus the pair (f, s) is equiv-
alent to the pair (s′ ◦ f, s0) and we find that the collection of equivalence classes forms a
set.

Definition 26.4. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential
graded algebras on (C,O). Let Qis be as in Lemma 26.3. The derived category of (A, d) is
the triangulated category

D(A, d) = Qis−1K(Mod(A, d))
discussed in more detail above.

We prove some facts about this construction.

Lemma 26.5. In Definition 26.4 the kernel of the localization functorQ : K(Mod(A, d))→
D(A, d) is the category Ac of Lemma 26.2.

Proof. This is immediate from Derived Categories, Lemma 5.9 and the fact that 0→
M is a quasi-isomorphism if and only ifM is acyclic. �

Lemma 26.6. In Definition 26.4 the functorH0 : K(Mod(A, d))→Mod(O) factors
through a homological functor H0 : D(A, d)→Mod(O).

Proof. Follows immediately from Derived Categories, Lemma 5.7. �

Here is the promised lemma computing morphism sets in the derived category.

Lemma 26.7. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). LetM andN be differential gradedA-modules. LetN → I be a quasi-
isomorphism withI a graded injective and K-injective differential gradedA-module. Then

HomD(A,d)(M,N ) = HomK(Mod(A,d))(M, I)

Proof. SinceN → I is a quasi-isomorphism we see that

HomD(A,d)(M,N ) = HomD(A,d)(M, I)
In the discussion preceding Definition 26.4 we found, using Lemma 25.10, that any mor-
phismM→ I inD(A, d) can be represented by a morphism f :M→ I inK(Mod(A, d)).
Now, if f, f ′ : M → I are two morphism in K(Mod(A, d)), then they define the same
morphism in D(A, d) if and only if there exists a quasi-isomorphism g : I → K in
K(Mod(A, d)) such that g ◦ f = g ◦ f ′, see Categories, Lemma 27.6. However, by Lemma
25.10 there exists a map h : K → I such that h ◦ g = idI in in K(Mod(A, d)). Thus
g ◦ f = g ◦ f ′ implies f = f ′ and the proof is complete. �

Lemma 26.8. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). Then

(1) D(A, d) has both direct sums and products,
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(2) direct sums are obtained by taking direct sums of differential gradedA-modules,
(3) products are obtained by taking products of K-injective differential graded mod-

ules.

Proof. We will use that Mod(A, d) is an abelian category with arbitrary direct sums
and products, and that these give rise to direct sums and products in K(Mod(A, d)). See
Lemmas 13.2 and 21.3.

Let Mj be a family of differential graded A-modules. Consider the direct sum M =⊕
Mj as a differential graded A-module. For a differential graded A-module N choose

a quasi-isomorphism N → I where I is graded injective and K-injective as a differential
gradedA-module. See Theorem 25.13. Using Lemma 26.7 we have

HomD(A,d)(M,N ) = HomK(A,d)(M, I)

=
∏

HomK(A,d)(Mj , I)

=
∏

HomD(A,d)(Mj , I)

whence the existence of direct sums in D(A, d) as given in part (2) of the lemma.

LetMj be a family of differential gradedA-modules. For each j choose a quasi-isomorphism
M→ Ij where Ij is graded injective and K-injective as a differential graded A-module.
Consider the product I =

∏
Ij of differential graded A-modules. By Lemmas 25.8 and

25.4 we see that I is graded injective and K-injective as a differential graded A-module.
For a differential gradedA-moduleN using Lemma 26.7 we have

HomD(A,d)(N , I) = HomK(A,d)(N , I)

=
∏

HomK(A,d)(N , Ij)

=
∏

HomD(A,d)(N ,Mj)

whence the existence of products in D(A, d) as given in part (3) of the lemma. �

27. The canonical delta-functor

Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded algebras on (C,O).
Consider the functor Mod(A, d) → K(Mod(A, d)). This functor is not a δ-functor in
general. However, it turns out that the functor Mod(A, d) → D(A, d) is a δ-functor. In
order to see this we have to define the morphisms δ associated to a short exact sequence

0→ K a−→ L b−→M→ 0

in the abelian category Mod(A, d). Consider the cone C(a) of the morphism a together
with its canonical morphisms i : L → C(a) and p : C(a) → K[1], see Definition 22.2.
There is a homomorphism of differential gradedA-modules

q : C(a) −→M

by Differential Graded Algebra, Lemma 27.3 (which we may use by the discussion in Sec-
tion 22) applied to the diagram

K
a
//

��

L

b
��

0 //M
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The map q is a quasi-isomorphism for example because this is true in the category of mor-
phisms of complexes of O-modules, see discussion in Derived Categories, Section 12. Ac-
cording to Differential Graded Algebra, Lemma 27.13 (which we may use by the discussion
in Section 22) the triangle

(K,L, C(a), a, i,−p)
is a distinguished triangle inK(Mod(A, d)). As the localization functorK(Mod(A, d))→
D(A, d) is exact we see that (K,L, C(a), a, i,−p) is a distinguished triangle in D(A, d).
Since q is a quasi-isomorphism we see that q is an isomorphism in D(A, d). Hence we
deduce that

(K,L,M, a, b,−p ◦ q−1)
is a distinguished triangle of D(A, d). This suggests the following lemma.

Lemma 27.1. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). The localization functor Mod(A, d)→ D(A, d) has the natural struc-
ture of a δ-functor, with

δK→L→M = −p ◦ q−1

with p and q as explained above.

Proof. We have already seen that this choice leads to a distinguished triangle when-
ever given a short exact sequence of complexes. We have to show functoriality of this con-
struction, see Derived Categories, Definition 3.6. This follows from Differential Graded
Algebra, Lemma 27.3 (which we may use by the discussion in Section 22) with a bit of
work. Compare with Derived Categories, Lemma 12.1. �

Lemma 27.2. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). LetMn be a system of differential graded A-modules. Then the de-
rived colimit hocolimMn in D(A, d) is represented by the differential graded module
colimMn.

Proof. SetM = colimMn. We have an exact sequence of differential graded A-
modules

0→
⊕
Mn →

⊕
Mn →M→ 0

by Derived Categories, Lemma 33.6 (applied the underlying complexes of O-modules).
The direct sums are direct sums in D(A, d) by Lemma 26.8. Thus the result follows from
the definition of derived colimits in Derived Categories, Definition 33.1 and the fact that
a short exact sequence of complexes gives a distinguished triangle (Lemma 27.1). �

28. Derived pullback

Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let A be a
differential gradedOC-algebra. Let B be a differential gradedOD-algebra. Suppose we are
given a map

ϕ : f−1B → A
of differential graded f−1OD-algebras. By the adjunction of restriction and extension of
scalars, this is the same thing as a map ϕ : f∗B → A of differential gradedOC-algebras or
equivalently ϕ can be viewed as a map

ϕ : B → f∗A

of differential gradedOD-algebras. See Remark 12.2.
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In addition to the above, let A′ be a second differential graded OC-algebra and letN be a
differential graded (A,A′)-bimodule. In this setting we can consider the functor

Mod(B, d) −→Mod(A′, d), M 7−→ f∗M⊗A N

Observe that this extends to a functor

Moddg(B, d) −→Moddg(A′, d), M 7−→ f∗M⊗A N

of differential graded categories by the discussion in Sections 18 and 17. It follows formally
that we also obtain an exact functor

(28.0.1) K(Mod(B, d)) −→ K(Mod(A′, d)), M 7−→ f∗M⊗A N

of triangulated categories.

Lemma 28.1. In the situation above, the functor (28.0.1) composed with the local-
ization functor K(Mod(A′, d)) → D(A′, d) has a left derived extension D(B, d) →
D(A′, d) whose value on a good right differential graded B-module P is f∗P ⊗A N .

Proof. Recall that for any (right) differential graded B-module M there exists a
quasi-isomorphism P → M with P a good differential graded B-module. See Lemma
23.7. Hence by Derived Categories, Lemma 14.15 it suffices to show that given a quasi-
isomorphism P → P ′ of good differential graded B-modules the induced map

f∗P ⊗A N −→ f∗P ′ ⊗A N

is a quasi-isomorphism. The cone P ′′ on P → P ′ is a good differential graded A-module
by Lemma 23.2. Since we have a distinguished triangle

P → P ′ → P ′′ → P[1]

in K(Mod(B, d)) we obtain a distinguished triangle

f∗P ⊗A N → f∗P ′ ⊗A N → f∗P ′′ ⊗A N → f∗P[1]⊗A N

in K(Mod(A′, d)). By Lemma 23.8 the differential graded module f∗P ′′⊗AN is acyclic
and the proof is complete. �

Definition 28.2. Derived tensor product and derived pullback.
(1) Let (C,O) be a ringed site. Let A, B be differential graded O-algebras. Let N

be a differential graded (A,B)-bimodule. The functorD(A, d)→ D(B, d) con-
structed in Lemma 28.1 is called the derived tensor product and denoted−⊗L

AN .
(2) Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi. LetA

be a differential graded OC-algebra. Let B be a differential graded OD-algebra.
Let ϕ : B → f∗A be a homomorphism of differential graded OD-algebras. The
functor D(B, d) → D(A, d) constructed in Lemma 28.1 is called derived pull-
back and denote Lf∗.

With this language in place we can express some obvious compatibilities.

Lemma 28.3. In Lemma 28.1 the functor D(B, d) → D(A′, d) is equal to M 7→
Lf∗M⊗L

A N .

Proof. Immediate from the fact that we can compute these functors by representing
objects by good differential graded modules and because f∗P is a good differential graded
A-module if P is a good differential graded B-module. �
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Lemma 28.4. Let (f, f ]) : (Sh(C),O) → (Sh(C′),O′) and (g, g]) : (Sh(C′),O′) →
(Sh(C′′),O′′) be morphisms of ringed topoi. Let A, A′, and A′′ be a differential graded
O-algebra, O′-algebra, and O′′-algebra. Let ϕ : A′ → f∗A and ϕ′ : A′′ → g∗A′ be a
homomorphism of differential graded O′-algebras and O′′-algebras. Then we have L(g ◦
f)∗ = Lf∗ ◦ Lg∗ : D(A′′, d)→ D(A, d).

Proof. Immediate from the fact that we can compute these functors by representing
objects by good differential graded modules and because f∗P is a good differential graded
A′-module of P is a good differential gradedA-module. �

Let (C,O) be a ringed site. Let A, B be differential graded O-algebras. Let N → N ′ be a
homomorphism of differential graded (A,B)-bimodules. Then we obtain canonical maps

t :M⊗L
A N −→M⊗L

A N ′

functorial inM inD(A, d) which define a natural transformation between exact functors
D(A, d) → D(B, d) of triangulated categories. The value of t on a good differential
gradedA-module P is the obvious map

P ⊗L
A N = P ⊗A N −→ P ⊗A N ′ = P ⊗L

A N ′

Lemma 28.5. In the situation above, if N → N ′ is an isomorphism on cohomology
sheaves, then t is an isomorphism of functors (−⊗L

A N )→ (−⊗L
A N ′).

Proof. It is enough to show that P ⊗A N → P ⊗A N ′ is an isomorphism on co-
homology sheaves for any good differential graded A-module P . To do this, let N ′′ be
the cone on the mapN → N ′ as a left differential graded A-module, see Definition 22.2.
(To be sure, N ′′ is a bimodule too but we don’t need this.) By functoriality of the tensor
construction (it is a functor of differential graded categories) we see that P ⊗A N ′′ is the
cone (as a complex ofO-modules) on the map P ⊗A N → P ⊗A N ′. Hence it suffices to
show that P ⊗AN ′′ is acyclic. This follows from the fact that P is good and the fact that
N ′′ is acyclic as a cone on a quasi-isomorphism. �

Lemma 28.6. Let (C,O) be a ringed site. Let A, B be differential graded O-algebras.
Let N be a differential graded (A,B)-bimodule. If N is good as a left differential graded
A-module, then we haveM⊗L

AN =M⊗AN for all differential gradedA-modulesM.

Proof. Let P → M be a quasi-isomorphism where P is a good (right) differential
graded A-module. To prove the lemma we have to show that P ⊗A N → M⊗A N is
a quasi-isomorphism. The cone C on the map P → M is an acyclic right differential
graded A-module. Hence C ⊗A N is acyclic as N is assumed good as a left differential
graded A-module. Since C ⊗A N is the cone on the maps P ⊗A N → M⊗A N as a
complex ofO-modules we conclude. �

Lemma 28.7. Let (C,O) be a ringed site. Let A, A′, A′′ be differential graded O-
algebras. LetN andN ′ be a differential graded (A,A′)-bimodule and (A′,A′′)-bimodule.
Assume that the canonical map

N ⊗L
A′ N ′ −→ N ⊗A′ N ′

in D(A′′, d) is a quasi-isomorphism. Then we have

(M⊗L
A N )⊗L

A′ N ′ =M⊗L
A (N ⊗A′ N ′)

as functors D(A, d)→ D(A′′, d).
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Proof. Choose a good differential gradedA-moduleP and a quasi-isomorphismP →
M, see Lemma 23.7. Then

M⊗L
A (N ⊗A′ N ′) = P ⊗A N ⊗A′ N ′

and we have
(M⊗L

A N )⊗L
A′ N ′ = (P ⊗A N )⊗L

A′ N ′

Thus we have to show the canonical map

(P ⊗A N )⊗L
A′ N ′ −→ P ⊗A N ⊗A′ N ′

is a quasi-isomorphism. Choose a quasi-isomorphism Q → N ′ where Q is a good left
differential graded A′-module (Lemma 23.7). By Lemma 28.6 the map above as a map in
the derived category ofO-modules is the map

P ⊗A N ⊗A′ Q −→ P ⊗A N ⊗A′ N ′

Since N ⊗A′ Q → N ⊗A′ N ′ is a quasi-isomorphism by assumption and P is a good
differential graded A-module this map is an quasi-isomorphism by Lemma 28.5 (the left
and right hand side compute P ⊗L

A (N ⊗A′ Q) and P ⊗L
A (N ⊗A′ N ′) or you can just

repeat the argument in the proof of the lemma). �

29. Derived pushforward

The existence of enough K-injective guarantees that we can take the right derived functor
of any exact functor on the homotopy category.

Lemma 29.1. Let (C,O) be a ringed site. Let (A, d) be a sheaf of differential graded
algebras on (C,O). Then any exact functor

T : K(Mod(A, d)) −→ D

of triangulated categories has a right derived extension RT : D(A, d) → D whose value
on a graded injective and K-injective differential gradedA-module I is T (I).

Proof. By Theorem 25.13 for any (right) differential gradedA-moduleM there ex-
ists a quasi-isomorphism M → I where I is a graded injective and K-injective differ-
ential graded A-module. Hence by Derived Categories, Lemma 14.15 it suffices to show
that given a quasi-isomorphism I → I ′ of differential gradedA-modules which are both
graded injective and K-injective then T (I) → T (I ′) is an isomorphism. This is true be-
cause the map I → I ′ is an isomorphism in K(Mod(A, d)) as follows for example from
Lemma 26.7 (or one can deduce it from Lemma 25.10). �

There are a number of functors we have already seen to which this applies. Here are two
examples.

Definition 29.2. Derived internal hom and derived pushforward.
(1) Let (C,O) be a ringed site. LetA, B be differential gradedO-algebras. LetN be

a differential graded (A,B)-bimodule. The right derived extension

RHomB(N ,−) : D(B, d) −→ D(A, d)

of the internal hom functorHomdg
B (N ,−) is called derived internal hom.
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(2) Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed topoi. LetA
be a differential graded OC-algebra. Let B be a differential graded OD-algebra.
Let ϕ : B → f∗A be a homomorphism of differential graded OD-algebras. The
right derived extension

Rf∗ : D(A, d) −→ D(B, d)
of the pushforward f∗ is called derived pushforward.

It turns out thatRf∗ : D(A, d)→ D(B, d) agrees with derived pusforward on underlying
complexes ofO-modules, see Lemma 29.8.
These functors are the adjoints of derived pullback and derived tensor product.

Lemma 29.3. Let (C,O) be a ringed site. Let A, B be differential graded O-algebras.
LetN be a differential graded (A,B)-bimodule. Then

RHomB(N ,−) : D(B, d) −→ D(A, d)
is right adjoint to

−⊗L
A N : D(A, d) −→ D(B, d)

Proof. This follows from Derived Categories, Lemma 30.1 and Lemma 17.3. �

Lemma 29.4. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. LetA be a differential gradedOC-algebra. LetB be a differential gradedOD-algebra.
Let ϕ : B → f∗A be a homomorphism of differential gradedOD-algebras. Then

Rf∗ : D(A, d) −→ D(B, d)
is right adjoint to

Lf∗ : D(B, d) −→ D(A, d)

Proof. This follows from Derived Categories, Lemma 30.1 and Lemma 18.1. �

Next, we discuss what happens in the situation considered in Section 28.
Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi. Let A be a
differential gradedOC-algebra. Let B be a differential gradedOD-algebra. Suppose we are
given a map

ϕ : f−1B → A
of differential graded f−1OD-algebras. By the adjunction of restriction and extension of
scalars, this is the same thing as a map ϕ : f∗B → A of differential gradedOC-algebras or
equivalently ϕ can be viewed as a map

ϕ : B → f∗A
of differential gradedOD-algebras. See Remark 12.2.
In addition to the above, let A′ be a second differential graded OC-algebra and letN be a
differential graded (A,A′)-bimodule. In this setting we can consider the functor

Mod(A′, d) −→Mod(B, d), M 7−→ f∗Homdg
A′(N ,M)

Observe that this extends to a functor
Moddg(A′, d) −→Moddg(B, d), M 7−→ f∗Homdg

A′(N ,M)
of differential graded categories by the discussion in Sections 18 and 17. It follows formally
that we also obtain an exact functor
(29.4.1) K(Mod(A′, d)) −→ K(Mod(B, d)), M 7−→ f∗Homdg

A′(N ,M)
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of triangulated categories.

Lemma 29.5. In the situation above, denote RT : D(A′, d) → D(B, d) the right
derived extension of (29.4.1). Then we have

RT (M) = Rf∗RHom(N ,M)
functorially inM.

Proof. By Lemmas 17.3 and 18.1 the functor (29.4.1) is right adjoint to the functor
(28.0.1). By Derived Categories, Lemma 30.1 the functorRT is right adjoint to the functor
of Lemma 28.1 which is equal to Lf∗(−) ⊗L

A N by Lemma 28.3. By Lemmas 29.3 and
29.4 the functor Lf∗(−)⊗L

AN is left adjoint toRf∗RHom(N ,−) Thus we conclude by
uniqueness of adjoints. �

Lemma 29.6. Let (f, f ]) : (Sh(C),O) → (Sh(C′),O′) and (g, g]) : (Sh(C′),O′) →
(Sh(C′′),O′′) be morphisms of ringed topoi. Let A, A′, and A′′ be a differential graded
O-algebra, O′-algebra, and O′′-algebra. Let ϕ : A′ → f∗A and ϕ′ : A′′ → g∗A′ be a
homomorphism of differential gradedO′-algebras andO′′-algebras. Then we have R(g ◦
f)∗ = Rg∗ ◦Rf∗ : D(A, d)→ D(A′′, d).

Proof. Follows from Lemmas 28.4 and 29.4 and uniqueness of adjoints. �

Lemma 29.7. Let (C,O) be a ringed site. Let A, A′, A′′ be differential graded O-
algebras. LetN andN ′ be a differential graded (A,A′)-bimodule and (A′,A′′)-bimodule.
Assume that the canonical map

N ⊗L
A′ N ′ −→ N ⊗A′ N ′

in D(A′′, d) is a quasi-isomorphism. Then we have

RHomA′′(N ⊗A′ N ′,−) = RHomA′(N , RHomA′′(N ′,−))
as functors D(A′′, d)→ D(A, d).

Proof. Follows from Lemmas 28.7 and 29.3 and uniqueness of adjoints. �

Lemma 29.8. Let (f, f ]) : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed
topoi. LetA be a differential gradedOC-algebra. LetB be a differential gradedOD-algebra.
Let ϕ : B → f∗A be a homomorphism of differential gradedOD-algebras. The diagram

D(A, d)

Rf∗

��

forget
// D(OC)

Rf∗

��
D(B, d) forget // D(OD)

commutes.

Proof. Besides identifying some categories, this lemma follows immediately from
Lemma 29.6.

We may view (OC , 0) as a differential graded OC-algebra by placing OC in degree 0 and
endowing it with the zero differential. It is clear that we have

Mod(OC , 0) = Comp(OC) and D(OC , 0) = D(OC)
Via this identification the forgetful functor Mod(A, d) → Comp(OC) is the “pushfor-
ward” idC,∗ defined in Section 18 corresponding to the identity morphism idC : (C,OC)→
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(C,OC) of ringed topoi and the map (OC , 0)→ (A, d) of differential gradedOC-algebras.
Since idC,∗ is exact, we immediately see that

RidC,∗ = forget : D(A, d) −→ D(OC , 0) = D(OC)
The exact same reasoning shows that

RidD,∗ = forget : D(B, d) −→ D(OD, 0) = D(OD)
Moreover, the construction of Rf∗ : D(OC)→ D(OD) of Cohomology on Sites, Section
19 agrees with the construction of Rf∗ : D(OC , 0) → D(OD, 0) in Definition 29.2 as
both functors are defined as the right derived extension of pushforward on underlying
complexes of modules. By Lemma 29.6 we see that both Rf∗ ◦ RidC,∗ and RidD,∗ ◦ Rf∗
are the derived functors of f∗ ◦ forget = forget ◦ f∗ and hence equal by uniqueness of
adjoints. �

Lemma 29.9. Let (C,O) be a ringed site. Let A be a differential graded O-algebra.
LetM be a differential gradedA-module. Let n ∈ Z. We have

Hn(C,M) = HomD(A,d)(A,M[n])
where on the left hand side we have the cohomology ofM viewed as a complex of O-
modules.

Proof. To prove the formula, observe that
RΓ(C,M) = Γ(C, I)

whereM → I is a quasi-isomorphism to a graded injective and K-injective differential
gradedA-module I (combine Lemmas 29.1 and 29.8). By Lemma 26.7 we have

HomD(A,d)(A,M[n]) = HomK(Mod(A,d))(M, I[n]) = H0(Γ(C, I[n])) = Hn(Γ(C, I))
Combining these two results we obtain our equality. �

30. Equivalences of derived categories

This section is the analogue of Differential Graded Algebra, Section 37.

Lemma 30.1. Let (C,O) be a ringed site. If ϕ : A → B is a homomorphism of
differential graded O-algebras which induces an isomorphism on cohomology sheaves,
then

D(A, d) −→ D(B, d), M 7−→M⊗L
A B

is an equivalence of categories.

Proof. Recall that the restriction functor
Moddg(B, d)→Moddg(A, d), N 7→ resϕN

is a right adjoint to

Moddg(A, d)→Moddg(B, d), M 7→M⊗A B
See Section 17. Since restriction sends quasi-isomorphisms to quasi-isomorphisms, we see
that it trivially has a left derived extension (given by restriction). This functor will be
right adjoint to −⊗L

A B by Derived Categories, Lemma 30.1. The adjunction map

M→ resϕ(M⊗L
A B)

is an isomorphism in D(A, d) by our assumption that A → B is a quasi-isomorphism
of (left) differential graded A-modules. In particular, the functor of the lemma is fully
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faithful, see Categories, Lemma 24.4. It is clear that the kernel of the restriction functor
D(B, d)→ D(A, d) is zero. Thus we conclude by Derived Categories, Lemma 7.2. �

31. Resolutions of differential graded algebras

This section is the analogue of Differential Graded Algebra, Section 38.

Let (C,O) be a ringed site. As in Remark 23.5 consider a sheaf of graded sets S on C. Let
us think of the r-fold self product S × . . . × S as a sheaf of graded sets with the rule
deg(s1 · . . . · sr) =

∑
deg(si). Here given local sections si ∈ S(U), i = 1, . . . , r we use

s1 · . . . · sr to denote the corresponding section of S × . . .×S over U . Let us denoteO〈S〉
the free gradedO-algebra on S . More precisely, we set

O〈S〉 = O ⊕
⊕

r≥1
O[S × . . .× S]

with notation as in Remark 23.5. This becomes a sheaf of graded O-algebras by concate-
nation

(s1 · . . . · sr)(s′
1 · . . . · s′

r′) = s1 · . . . sr · s′
1 · . . . · s′

r′

We may endow O〈S〉 with a differential by setting d(s) = 0 for all local sections s of S
and extending uniquely using the Leibniz rule although it is important to also consider
other differentials.

Indeed, suppose that we are given a system of the following kind
(1) for i = 0, 1, 2, . . . sheaves of graded sets Si,
(2) for i = 0, 1, 2, . . . maps

δi+1 : Si+1 −→ Ai = O〈S0 q . . .q Si〉

of sheaves of graded sets of degree 1 whose image is contained in the kernel of
the inductively defined differential on the target.

More precisely, we first set A0 = O〈S0〉 and we endow it with the unique differential
satisfying the Leibniz rule where d(s) = 0 for any local section s of S . By induction,
assume given a differential d onAi. Then we extend it to the unique differential onAi+1
satisfying the Leibniz rule and with

d(s) = δ(s)
where δ(s) = δj(s) if s is in the summand Sj of S0q . . .qSi+1. This makes sense exactly
because δ(s) is in the kernel of the inductively defined differential.

Lemma 31.1. In the situation above the differential gradedO-algebra

A = colimAi
has the following property: for any morphism (f, f ]) : (Sh(C′),O′) → (Sh(C),O) of
ringed topoi, the pullback f∗A is flat as a gradedO′-module and is K-flat as a complex of
O′-modules.

Proof. Observe that f∗A = colim f∗Ai and that

f∗Ai = O′〈f−1S0 q . . .q f−1Si〉

with differential given by the inductive procedure above using f−1δi+1. Thus it suffices
to prove thatA is flat as a gradedO-module and is K-flat as a complex ofO-modules. For
this it suffices to prove that eachAi is flat as a gradedO-module and is K-flat as a complex
ofO-modules, compare with Lemma 23.3.
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For i ≥ 1 write S = S0q . . .qSi so that we haveAi = O〈S〉 as a gradedO-algebra. We
are going to construct a filtration of this algebra by differential gradedO-submodules.

SetW = Zi+1
≥0 considered with lexicographical ordering. Namely, givenw = (w0, . . . wi)

and w′ = (w′
0, . . . , w

′
i) in W we say

w > w′ ⇔ ∃j, 0 ≤ j ≤ i : wi = w′
i, wi−1 = w′

i−1, . . . , wj+1 = w′
j+1, wj > w′

j

and so on. Suppose given a section s = s1 · . . . · sr of S × . . . × S over U . We say that
the weight of s is defined if we have sa ∈ Sja(U) for a unique 0 ≤ ja ≤ i. In this case we
define the weight

w(s) = (w0(s), . . . , wi(s)) ∈W, wj(s) = |{a | ja = j}|

The weight of any section of S × . . .×S is defined locally. The reader checks easily that
we obtain a disjoint union decompostion

S × . . .× S =
∐

w∈W
(S × . . .× S)w

into the subsheaves of sections of a given weight. Of course onlyw ∈W with
∑

0≤j≤i wj =
r show up for a given r. We correspondingly obtain a decomposition

Ai = O ⊕
⊕

r≥1

⊕
w∈W

O[(S × . . .× S)w]

The rest of the proof relies on the following trivial observation: given r, w and local
section s = s1 · . . . · sr of (S × . . .× S)w we have

d(s) is a local section ofO ⊕
⊕

r′≥1

⊕
w′∈W, w′<w

O[(S × . . .× S)w′ ]

The reason is that in each of the expressions

(−1)deg(s1)+...+deg(sa−1)s1 · . . . sa−1 · δ(sa) · sa+1 · . . . · sr
whose sum give the element d(s) the element δ(sa) is locally a O-linear combination of
elements s′

1 · . . . · s′
r′ with s′

a′ in Sj′
a

for some 0 ≤ j′
a′ < ja where ja is such that sa is

section of Sja .

What this means is the following. Suppose for w ∈W we set

FwAi = O ⊕
⊕

r≥1

⊕
w′∈W, w′≤w

O[(S × . . .× S)w′ ]

By the observation above this is a differential graded O-submodule. We get admissible
short exact sequences

0→ colimw′<w Fw′Ai → FwAi →
⊕

r≥1
O[(S × . . .× S)w]→ 0

of differential gradedA-modules where the differential on the right hand side is zero.

Now we finish the proof by transfinite induction over the ordered setW . The differential
graded complex F0A0 is the summand O and this is K-flat and graded flat. For w ∈ W
if the result is true for Fw′Ai for w′ < w, then by Lemmas 23.3, 23.2, and 23.6 we obtain
the result for w. Finally, we haveAi = colimw∈W FwAi and we conclude. �

Lemma 31.2. Let (C,O) be a ringed site. Let (B, d) be a differential gradedO-algebra.
There exists a quasi-isomorphism of differential graded O-algebras (A, d) → (B, d) such
that A is graded flat and K-flat as a complex of O-modules and such that the same is true
after pullback by any morphism of ringed topoi.
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Proof. The proof is exactly the same as the first proof of Lemma 23.7 but now work-
ing with free graded algebras instead of free graded modules.

We will constructA = colimAi as in Lemma 31.1 by constructing

A0 → A1 → A2 → . . .→ B

Let S0 be the sheaf of graded sets (Remark 23.5) whose degree n part is Ker(dnB). Consider
the homomorphism of differential graded modules

A0 = O〈S0〉 −→ B

where map sends a local section s of S0 to the corresponding local section of Adeg(s)

(which is in the kernel of the differential, so our map is a map of differential graded algebras
indeed). By construction the induced maps on cohomology sheaves Hn(A0) → Hn(B)
are surjective and hence the same will remain true for all i.

Induction step of the construction. Given Ai → B denote Si+1 the sheaf of graded sets
whose degree n part is

Ker(dn+1
Ai

)×Bn+1,d Bn

This comes equipped with a canonical map

δi+1 : Si+1 −→ Ai

whose image is contained in the kernel of dAi
by construction. Hence Ai+1 = O〈S0 q

. . .Si+1〉 has a differential exteding the differential onAi, see discussion at the start of this
section. The map from Ai+1 to B is the unique map of graded algebras which restricts
to the given map on Ai and sends a local section s = (a, b) of Si+1 to b in B. This is
compatible with differentials exactly because d(b) is the image of a in B.

The map A → B is a quasi-isomorphism: we have Hn(A) = colimHn(Ai) and for each
i the mapHn(Ai)→ Hn(B) is surjective with kernel annihilated by the mapHn(Ai)→
Hn(Ai+1) by construction. Finally, the flatness condition forA where shown in Lemma
31.1. �

32. Miscellany

Let (f, f ]) : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi. Let A be a sheaf
of differential gradedO-algebras. Using the composition3

A⊗L
O A −→ A⊗O A −→ A

and the relative cup product (see Cohomology on Sites, Remark 19.7 and Section 33) we
obtain a multiplication4

µ : Rf∗A⊗L
O′ Rf∗A −→ Rf∗A

3It would be more precise to write F (A) ⊗L
O F (A) → F (A ⊗O A) → F (A) were F denotes the

forgetful functor to complexes of O-modules. Also, note that A ⊗O A indicates the tensor product of Section
15 so that F (A ⊗O A) = Tot(F (A) ⊗O F (A)). The first arrow of the sequence is the canonical map from the
derived tensor product of two complexes of O-modules to the usual tensor product of complexes of O-modules.

4Here and below Rf∗ : D(O) → D(O′) is the derived functor studied in Cohomology on Sites, Section
19 ff.
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in D(O′). This multiplication is associative in the sense that the diagram

Rf∗A⊗L
O′ Rf∗A⊗L

O′ Rf∗A
µ⊗1

//

1⊗µ
��

Rf∗A⊗L
O′ Rf∗A

µ

��
Rf∗A⊗L

O′ Rf∗A
µ // Rf∗A

commutes in D(O′); this follows from Cohomology on Sites, Lemma 33.2. In exactly the
same way, given a right differential gradedA-moduleM we obtain a multiplication

µM : Rf∗M⊗L
O′ Rf∗A −→ Rf∗M

in D(O′). This multiplication is compatible with µ above in the sense that the diagram

Rf∗M⊗L
O′ Rf∗A⊗L

O′ Rf∗A
µM⊗1

//

1⊗µ
��

Rf∗M⊗L
O′ Rf∗A

µM

��
Rf∗M⊗L

O′ Rf∗A
µM // Rf∗M

commutes in D(O′); again this follows from Cohomology on Sites, Lemma 33.2.

A particular example of the above is when one takes f to be the morphism to the punctual
topos Sh(pt). In that case µ is just the cup product map

RΓ(C,A)⊗L
Γ(C,O) RΓ(C,A) −→ RΓ(C,A), η ⊗ θ 7→ η ∪ θ

and similarly µM is the cup product map

RΓ(C,M)⊗L
Γ(C,O) RΓ(C,A) −→ RΓ(C,M), η ⊗ θ 7→ η ∪ θ

In general, via the identifications

RΓ(C,A) = RΓ(C′, Rf∗A) and RΓ(C,M) = RΓ(C′, Rf∗M)
of Cohomology on Sites, Remark 14.4 the map µM induces the cup product on cohomol-
ogy. To see this use Cohomology on Sites, Lemma 33.4 where the second morphism of
topoi is the morphism from Sh(C′) to the punctual topos as above.

IfM1 → M2 is a homomorphism of right differential graded A-modules, then the dia-
gram

Rf∗M1 ⊗L
O′ Rf∗A µM1

//

��

Rf∗M1

��
Rf∗M2 ⊗L

O′ Rf∗A
µM2 // Rf∗M2

commutes inD(O′); this follows from the fact that the relative cup product is functorial.
Suppose we have a short exact sequence

0→M1
a−→M2 →M3 → 0

of right differential gradedA-modules. Then we claim that the diagram

Rf∗M3 ⊗L
O′ Rf∗A µM3

//

Rf∗δ⊗id
��

Rf∗M3

Rf∗δ

��
Rf∗M1[1]⊗L

O′ Rf∗A
µM1[1] // Rf∗M1[1]



32. MISCELLANY 2207

commutes in D(O′) where δ : M3 → M1[1] is the morphism of D(O) coming from
the given short exact sequence (see Derived Categories, Section 12). This is clear if our
sequence is split as a sequence of graded right A-modules, because in this case δ can be
represented by a map of right A-modules and the discussion above applies. In general we
argue using the cone on a and the diagram

M1 a
//

��

M2
i
//

��

C(a)
−p
//

q

��

M1[1]

��
M1 //M2 //M3

δ //M1[1]

where the right square is commutative in D(O) by the definition of δ in Derived Cat-
egories, Lemma 12.1. Now the cone C(a) has the structure of a right differential graded
A-module such that i, p, q are homomorphisms of right differential gradedA-modules, see
Definition 22.2. Hence by the above we know that the corresponding diagrams commute
for the morphisms q and−p. Since q is an isomorphism in D(O) we conclude the same is
true for δ as desired.

In the situation above given a right differential gradedA-moduleM let

ξ ∈ Hn(C,M)

In other words, ξ is a degree n cohomology class in the cohomology of M viewed as a
complex ofO-modules. By Lemma 29.9 we can construct maps

x : A →M′[n] and s :M→M′

of right differential graded A-modules where s is a quasi-isomorphism and such that ξ is
the image of 1 ∈ H0(C,A) via the morphism s[n]−1 ◦ x in the derived category D(A, d)
and a fortiori in the derived category D(O). It follows that the corresponding map

ξ′ = (s[n])−1 ◦ x : A −→M[n]

in D(O) is uniquely characterized by the following two properties
(1) ξ′ can be lifted to a morphism in D(A, d), and
(2) ξ = ξ′(1) in H0(C,M[n]) = Hn(C,M).

Using the compatibilities of x and s with the relative cup product discussed above it fol-
lows that for every5 morphism of ringed topoi (f, f ]) : (Sh(C),O) → (Sh(C′),O′) the
derived pushforward

Rf∗ξ
′ : Rf∗A −→ Rf∗M[n]

of ξ′ is compatible with the maps µ and µM[n] constructed above in the sense that the
diagram

Rf∗A⊗L
O′ Rf∗A µ

//

Rf∗ξ
′⊗id
��

Rf∗A

Rf∗ξ
′

��
Rf∗M[n]⊗L

O′ Rf∗A
µM[n] // Rf∗M[n]

5For example the identity morphism.
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commutes in D(O′). Using this compatibility for the map to the punctual topos, we see
in particular that

RΓ(C,A)⊗L
Γ(C,O) RΓ(C,A)

ξ′⊗id
��

// RΓ(C,A)

ξ′

��
RΓ(C,M[n])⊗L

Γ(C,O) RΓ(C,A) // RΓ(C,M[n])

commutes. Combined with ξ′(1) = ξ this implies that the induced map on cohomology

ξ′ : RΓ(C,A)→ RΓ(C,M[n]), η 7→ ξ ∪ η

is given by left cup product by ξ as indicated.

33. Differential graded modules on a category

This section is the continuation of Cohomology on Sites, Section 43.

Let C be a category. We think of C as a site with the chaotic topology. Let O be a sheaf
of rings on C. Let (A, d) be a sheaf of differential graded O-algebras. In other words,
O is a presheaf of rings on the category C and (A, d) is a presheaf of differential graded
O-algebras on C , see Categories, Definition 3.3.

Definition 33.1. In the situation above, we denote QC (A, d) the full subcategory
of D(A, d) consisting of objects M such that for all U → V in C the canonical map

RΓ(V,M)⊗L
A(V ) A(U) −→ RΓ(U,M)

is an isomorphism in D(A(U), d).

Lemma 33.2. In the situation above, the subcategory QC (A, d) is a strictly full, sat-
urated, triangulated subcategory of D(A, d) preserved by arbitrary direct sums.

Proof. Let U be an object of C. Since the topology on C is chaotic, the functor
F 7→ F(U) is exact and commutes with direct sums. Hence the exact functor M 7→
RΓ(U,M) is computed by representing K by any differential graded A-moduleM and
takingM(U). Thus RΓ(U,−) commutes with direct sums, see Lemma 26.8. Similarly,
given a morphism U → V of C the derived tensor product functor − ⊗L

O(A) A(U) :
D(A(V )) → D(A(U)) is exact and commutes with direct sums. The lemma follows
from these observations in a straightforward manner; details omitted. �

Remark 33.3. As above, let C be a category viewed as a site with the chaotic topology,
let O be a sheaf of rings on C , and let (A, d) be a sheaf of differential graded O-algebras.
Then the analogue of Cohomology on Sites, Proposition 43.9 holds for QC (A, d) with
almost exactly the same proof:

(1) any contravariant cohomological functor H : QC (A, d) → Ab which trans-
forms direct sums into products is representable,

(2) any exact functor F : QC (A, d) → D of triangulated categories which trans-
forms direct sums into direct sums has an exact right adjoint, and

(3) the inclusion functor QC (A, d)→ D(A, d) has an exact right adjoint.
If we ever need this we will precisely formulate and prove this here.
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Letu : C′ → C be a functor between categories. If we view C and C′ as sites with the chaotic
topology, then u is a continuous and cocontinuous functor. Hence we obtain a morphism
g : Sh(C′) → Sh(C) of topoi, see Sites, Lemma 21.1. Additionally, suppose given sheaves
of rings O on C and O′ on C′ and a map g] : g−1O → O′. We denote the corresponding
morphism of ringed topoi simply g : (Sh(C′),O′) → (Sh(C),O), see Modules on Sites,
Section 7. Finally, suppose that (A, d) is a sheaf of differential gradedO-algebras and that
(A′, d) is a sheaf of differential gradedO′-algebras and moreover that we are given a map
ϕ : g∗A → A′ of differential gradedO′-algebras (see Section 18).

Lemma 33.4. Let g : (Sh(C′),O′) → (Sh(C),O) and ϕ : g∗A → A′ be as above.
Then the functor Lg∗ : D(A, d)→ D(A′, d) maps QC (A, d) into QC (A′, d).

Proof. LetU ′ ∈ Ob(C′) with imageU = u(U ′) in C. Let pt denote the category with
a single object and a single morphism. Denote (Sh(pt),O′(U ′)) and (Sh(pt),O(U)) the
ringed topoi as indicated endowed with the differential graded algebrasA′(U) andA(U).
Of course we identify the derived category of differential graded modules on these with
D(A′(U ′), d) and D(A(U), d). Then we have a commutative diagram of ringed topoi

(Sh(pt),O′(U ′))
U ′

//

��

(Sh(C′),O′)

g

��
(Sh(pt),O(U)) U // (Sh(C),O)

each endowed with corresponding differential graded algebras. Pullback along the lower
horizontal morphism sendsM inD(A, d) toRΓ(U,K) viewed as an object inD(A(U), d).
Pullback by the left vertical arrow sends M to M ⊗L

A(U) A
′(U ′). Going around the dia-

gram either direction produces the same result (Lemma 28.4) and hence we conclude

RΓ(U ′, Lg∗K) = RΓ(U,K)⊗L
A(U) A

′(U ′)

Finally, let f ′ : U ′ → V ′ be a morphism in C′ and denote f = u(f ′) : U = u(U ′) →
V = u(V ′) the image in C. If K is in QC (A, d) then we have

RΓ(V ′, Lg∗K)⊗L
A′(V ′) A

′(U ′) = RΓ(V,K)⊗L
A(V ) A

′(V ′)⊗L
A′(V ′) A

′(U ′)

= RΓ(V,K)⊗L
A(V ) A

′(U ′)

= RΓ(V,K)⊗L
A(V ) A(U)⊗L

A(U) A
′(U ′)

= RΓ(U,K)⊗L
A(U) A

′(U ′)
= RΓ(U ′, Lg∗K)

as desired. Here we have used the observation above both for U ′ and V ′. �

34. Differential graded modules on a category, bis

We develop a few more results on the notion of quasi-coherent modules introduced in
Section 33.

Lemma 34.1. Let C,O,A be as in Section 33. Let C′ ⊂ C be a full subcategory with
the following property: for every U ∈ Ob(C) the category U/C′ of arrows U → U ′

is cofiltered. Denote O′,A′ the restrictions of O,A to C′. Then restrictions induces an
equivalence QC (A, d)→ QC (A′, d).
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Proof. We will construct a quasi-inverse of the functor. Namely, letM ′ be an object
of QC (A′, d). We may representM ′ by a good differential graded moduleM′, see Lemma
23.7. Then for everyU ′ ∈ Ob(C′) the differential gradedA′(U ′)-moduleM′(U) is K-flat
and graded flat and for every morphism U ′

1 → U ′
2 of C′ the map

M′(U ′
2)⊗A′(U ′

2) A′(U ′
1) −→M′(U ′

1)

is a quasi-isomorphism (as the source represents the derived tensor product). Consider the
differential gradedA-moduleM defined by the rule

M(U) = colimU→U ′∈U/C′M′(U ′)⊗A′(U ′) A(U)

This is a filtered colimit of complexes by our assumption in the lemma. Since M ′ is in
QC (A′, d) all the transition maps in the system are quasi-isomorphisms. Since filtered
colimits are exact, we see that M(U) in D(A(U), d) is isomorphic to M′(U ′) ⊗A′(U ′)
A(U) for any morphism U → U ′ with U ′ ∈ Ob(C′).

We claim thatM is in QC (A, d): namely, given U → V in C we choose a map V → V ′

with V ′ ∈ Ob(C′). By the above we see that the mapM(V )→M(U) is identified with
the map

M′(V ′)⊗A′(V ′) A(V ) −→M′(V ′)⊗A′(V ′) A(U)

SinceM′(V ′) is K-flat as differential gradede A′(V ′)-module, we conclude the claim is
true.

The natural mapM|C′ →M′ is an isomorphism inD(A′, d) as follows immediately from
the above.

Conversely, if we have an objectE of QC (A, d), then we represent it by a good differential
graded module E . SettingM′ = E|C′ (this is another good differential graded module) we
see that there is a map

E →M

wich over U in C is given by the map

E(U) −→ colimU→U ′∈U/C′ E(U ′)⊗A′(U ′) A(U)

which is a quasi-isomorphism by the same reason. Thus restriction and the construction
above are quasi-inverse functors as desired. �

Lemma 34.2. Let C,O be as in Section 33. Let ϕ : A → B be a homomorphism of dif-
ferential gradedO-algebras which induces an isomorphism on cohomology sheaves, then
the equivalence D(A, d)→ D(B, d) of Lemma 30.1 induces an equivalence QC (A, d)→
QC (B, d).

Proof. It suffices to show the following: given a morphism U → V of C and M in
D(A, d) the following are equivalent

(1) RΓ(V,M)⊗L
A(V ) A(U)→ Γ(U,M) is an isomorphism in D(A(U), d), and

(2) RΓ(V,M⊗L
AB)⊗L

B(V )B(U)→ Γ(U,M⊗L
AB) is an isomorphism inD(B(U), d).

Since the topology on C is chaotic, this simply boils down to fact thatA(U)→ B(U) and
A(V )→ B(V ) are quasi-isomorphisms. Details omitted. �
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35. Inverse systems of differential graded algebras

In this section we consider the following special case of the situation discussed in Section
33:

(1) C is the category N with a unique morphism i→ j if and only if i ≤ j ,
(2) O is the constant (pre)sheaf of rings with value a given ring R.

In this setting a sheaf A of differential graded O-algebras is the same thing as an in-
verse system (An) of differential graded R-algebras. A sheaf M of differential graded
A-modules is the same thing as an inverse system (Mn) whereMn is a differential graded
An-module and the transition maps Mn+1 →Mn are An+1-module maps.

Suppose thatB = (Bn) is a second inverse system of differential gradedR-algebras. Given
a morphism ϕ : (An) → (Bn) of pro-objects we will construct an exact functor from
QC (A, d) to QC (B, d). Namely, according to Categories, Example 22.6 the morphism
ϕ is given by a sequence . . . ≥ m(3) ≥ m(2) ≥ m(1) of integers and a commutative
diagram

. . . // Am(3)

ϕ3

��

// Am(2)

ϕ2

��

// Am(1)

ϕ1

��
. . . // B3 // B2 // B1

of differential gradedR-algebras. Then given a good sheaf of differential gradedA-modules
M = (Mn) representing an object of QC (A, d) we can set

Nn = Mm(n) ⊗Am(n) Bn

This inverse system determines an object of QC (B, d) because theAm(n)-modulesMm(n)
are K-flat; details omitted. We also leave it to the reader to show that the resulting functor
is independent of the choices made in its construction.

Lemma 35.1. In the situation above, suppose that A = (An) and B = (Bn) are in-
verse systems of differential gradedR-algebras. If ϕ : (An)→ (Bn) is an isomorphism of
pro-objects, then the functor QC (A, d)→ QC (B, d) constructed above is an equivalence.

Proof. Let ψ : (Bn) → (An) be a morphism of pro-objects which is inverse to ϕ.
According to the discussion in Categories, Example 22.6 we may assume that ϕ is given by
a system of maps as above and ψ is given n(1) < n(2) < . . . and a commutative diagram

. . . // Bn(3)

ψ3

��

// Bn(2)

ψ2

��

// Bn(1)

ψ1

��
. . . // A3 // A2 // A1

of differential graded R-algebras. Since ϕ ◦ ψ = id we may, after possibly increasing the
values of the functions n(·) andm(·) assume thatBn(m(i)) → Am(i) → Bi is the identity.
It follows that the composition of the functors

QC (B, d)→ QC (A, d)→ QC (B, d)

sends a good sheaf of differential graded B-modules N = (Nn) to the inverse system
N ′ = (N ′

i) with values
N ′
i = Nn(m(i)) ⊗Bn(m(i)) Bi
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which is canonically quasi-isomorphic to N exactly because N is an object of QC (B, d)
and because Nj is a K-flat differential graded module for all j. Since the same is true for
the composition the other way around we conclude. �

Let C = N andO the constant sheaf with value a ring R and letA be given by an inverse
system (An) of differential graded R-algebras. Suppose given two left differential graded
A-modules N and N ′ given by inverse systems (Nn) and (N ′

n). Thus each Nn and N ′
n

is a left differential graded An-module. Let us temporarily say that (Nn) and (N ′
n) are

pro-isomorphic in the derived category if there exist a sequence of integers

1 = n0 < n1 < n2 < n3 < . . .

and maps
Nn2i → N ′

n2i−1
in D(Aoppn2i

, d)
and

N ′
n2i+1

→ N ′
n2i

in D(Aoppn2i+1
, d)

such that the compositions Nn2i → Nn2i−2 and N ′
n2i+1

→ N ′
2i−1 are given by the transi-

tion maps of the respective systems.

Lemma 35.2. If (Nn) and (N ′
n) are pro-isomorphic in the derived category as defined

above, then for every object (Mn) of D(N,A) we have

R lim(Mn ⊗L
An Nn) = R lim(Mn ⊗L

An N
′
n)

in D(R).

Proof. The assumption implies that the inverse system (Mn ⊗L
An

Nn) of D(R) is
pro-isomorphic (in the usual sense) to the inverse system (Mn ⊗L

An
N ′
n) of D(R). Hence

the result follows from the fact that takingR lim is well defined for inverse systems in the
derived category, see discussion in More on Algebra, Section 87. �

Lemma 35.3. Let R be a ring. Let f1, . . . , fr ∈ R. Let Kn be the Koszul com-
plex on fn1 , . . . , fnr viewed as a differential graded R-algebra. Let (Mn) be an object of
D(N, (Kn)). Then for any t ≥ 1 we have

R lim(Mn ⊗L
R Kt) = R lim(Mn ⊗L

Kn Kt)
in D(R).

Proof. We fix t ≥ 1. For n ≥ t let us denote nKt the differential graded R-algebra
Kt viewed as a left differential graded Kn-module. Observe that

Mn ⊗L
R Kt = Mn ⊗L

Kn (Kn ⊗L
R Kt) = Mn ⊗L

Kn (Kn ⊗R Kt)
Hence by Lemma 35.2 it suffices to show that (nKt) and (Kn ⊗R Kt) are pro-isomorphic
in the derived category. The multiplication maps

Kn ⊗R Kt −→ nKt

are maps of left differential graded Kn-modules. Thus to finish the proof it suffices to
show that for all n ≥ 1 there exists an N > n and a map

NKt −→ NKn ⊗R Kt

in D(Kopp
N , d) whose composition with the multiplication map is the transition map (in

either direction). This is done in Divided Power Algebra, Lemma 12.4 by an explicit con-
struction. �
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Proposition 35.4. LetR be a Noetherian ring. Let I ⊂ R be an ideal. The following
three categories are canonically equivalent:

(1) Let A be the sheaf of R-algebras on N corresponding to the inverse system of
R-algebras An = R/In. The category QC (A).

(2) Choose generators f1, . . . , fr of I . Let B be the sheaf of differential graded R-
algebras on N corresponding to the inverse system of Koszul algebras on fn1 , . . . , fnr .
The category QC (B).

(3) The full subcategory Dcomp(R, I) ⊂ D(R) of derived complete objects, see
More on Algebra, Definition 91.4 and text following.

Proof. Consider the obvious morphism f : (Sh(N),A) → (Sh(pt), R) of ringed
topoi and let us consider the adjoint functors Lf∗ andRf∗. The first restricts to a functor

F : Dcomp(R, I) −→ QC (A)

which sends an objectK ofDcomp(R, I) represented by a K-flat complexK• to the object
(K• ⊗R R/In) of QC (A). The second restricts to a functor

G : QC (A) −→ Dcomp(R, I)

which sends an object (M•
n) of QC (A) to R limM•

n . The output is derived complete
for example by More on Algebra, Lemma 91.14. Also, it follows from More on Algebra,
Proposition 94.2 thatG◦F = id. Thus to see that F andG are quasi-inverse equivalences
it suffices to see that the kernel ofG is zero (see Derived Categories, Lemma 7.2). However,
it does not appear easy to show this directly!

In this paragraph we will show that QC (A) and QC (B) are equivalent. Write B = (Bn)
whereBn is the Koszul complex viewed as a cochain complex in degrees−r,−r+1, . . . , 0.
By Divided Power Algebra, Remark 12.2 (but with chain complexes turned into cochain
complexes) we can find 1 < n1 < n2 < . . . and maps of differential graded R-algebras
Bni → Ei → R/(fni1 , . . . , fnir ) and Ei → Bni−1 such that

Bn1

��

Bn2

��

oo Bn3

��

oo . . .oo

E1

��

E2oo

��

E3oo

��

. . .oo

B1 Bn1
oo Bn2

oo . . .oo

is a commutative diagram of differential gradedR-algebras and such thatEi → R/(fni1 , . . . , fnir )
is a quasi-isomorphism. We conclude

(1) there is an equivalence between QC (B) and QC ((Ei)),
(2) there is an equivalence between QC ((Ei)) and QC ((R/(fni1 , . . . , fnir ))),
(3) there is an equivalence between QC ((R/(fni1 , . . . , fnir ))) and QC (A).

Namely, for (1) we can apply Lemma 35.1 to the diagram above which shows that (Ei)
and (Bn) are pro-isomorphic. For (2) we can apply Lemma 34.2 to the inverse system of
quasi-isomorphismsEi → R/(fni1 , . . . , fnir ). For (3) we can apply Lemma 35.1 and the el-
ementary fact that the inverse systems (R/In) and (R/(fni1 , . . . , fnir ) are pro-isomorphic.
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Exactly as in the first paragraph of the proof we can define adjoint functors6

F ′ : Dcomp(R, I) −→ QC (B) and G′ : QC (B) −→ Dcomp(R, I).
The first sends an object K of Dcomp(R, I) represented by a K-flat complex K• to the
object (K• ⊗R Bn) of QC (B). The second sends an object (Mn) of QC (B) to R limMn.
Arguing as above it suffices to show that the kernel of G′ is zero. So letM = (Mn) be a
good sheaf of differential graded modules over B which represents an object of QC (B) in
the kernel of G′. Then

0 = R limMn ⇒ 0 = (R limMn)⊗L
R Bt = R lim(Mn ⊗L

R Bt)
By Lemma 35.3 we haveR lim(Mn⊗L

RBt) = R lim(Mn⊗L
Bn
Bt). Since (Mn) is an object

of QC (B) we see that the inverse system Mn ⊗L
Bn

Bt is eventually constant with value
Mt. Hence Mt = 0 as desired. �

Remark 35.5. Let R be a ring and let f1, . . . , fr ∈ R be a sequence of elements
generating an ideal I . LetKn be the Koszul complex on fn1 , . . . , fnr viewed as a differential
graded R-algebra. We say f1, . . . , fr is a weakly proregular sequence if for all n there is
an m > n such that Km → Kn induces the zero map on cohomology except in degree
0. If so, then the arguments in the proof of Proposition 35.4 continue to work even when
R is not Noetherian. In particular we see that QC ({R/In}) is equivalent as an R-linear
triangulated category to the category Dcomp(R, I) of derived complete objects, provided
I can be generated by a weakly proregular sequence. If the need arises, we will precisely
state and prove this here.
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CHAPTER 25

Hypercoverings

1. Introduction

Let C be a site, see Sites, Definition 6.2. Let X be an object of C. Given an abelian sheaf F
on C we would like to compute its cohomology groups

Hi(X,F).
According to our general definitions (Cohomology on Sites, Section 2) this cohomology
group is computed by choosing an injective resolution 0 → F → I0 → I1 → . . . and
setting

Hi(X,F) = Hi(Γ(X, I0)→ Γ(X, I1)→ Γ(X, I2)→ . . .)
The goal of this chapter is to show that we may also compute these cohomology groups
without choosing an injective resolution (in the case that C has fibre products). To do this
we will use hypercoverings.
A hypercovering in a site is a generalization of a covering, see [?, Exposé V, Sec. 7]. Given a
hypercoveringK of an objectX , there is a Čech to cohomology spectral sequence express-
ing the cohomology of an abelian sheafF overX in terms of the cohomology of the sheaf
over the componentsKn ofK. It turns out that there are always enough hypercoverings,
so that taking the colimit over all hypercoverings, the spectral sequence degenerates and
the cohomology ofF overX is computed by the colimit of the Čech cohomology groups.
A more general gadget one can consider is a simplicial augmentation where one has coho-
mological descent, see [?, Exposé Vbis]. A nice manuscript on cohomological descent is the
text by Brian Conrad, see https://math.stanford.edu/~conrad/papers/hypercover.
pdf. We will come back to these issue in the chapter on simplicial spaces where we will
show, for example, that proper hypercoverings of “locally compact” topological spaces are
of cohomological descent (Simplicial Spaces, Section 25). Our method of attack will be
to reduce this statement to the Čech to cohomology spectral sequence constructed in this
chapter.

2. Semi-representable objects

In order to start we make the following definition. The letters “SR” stand for Semi-
Representable.

Definition 2.1. Let C be a category. We denote SR(C) the category of semi-representable
objects defined as follows

(1) objects are families of objects {Ui}i∈I , and
(2) morphisms {Ui}i∈I → {Vj}j∈J are given by a map α : I → J and for each

i ∈ I a morphism fi : Ui → Vα(i) of C.
Let X ∈ Ob(C) be an object of C. The category of semi-representable objects over X is
the category SR(C, X) = SR(C/X).

2217

https://math.stanford.edu/~conrad/papers/hypercover.pdf
https://math.stanford.edu/~conrad/papers/hypercover.pdf


2218 25. HYPERCOVERINGS

This definition is essentially equivalent to [?, Exposé V, Subsection 7.3.0]. Note that this
is a “big” category. We will later “bound” the size of the index sets I that we need for
hypercoverings of X . We can then redefine SR(C, X) to become a category. Let’s spell
out the objects and morphisms SR(C, X):

(1) objects are families of morphisms {Ui → X}i∈I , and
(2) morphisms {Ui → X}i∈I → {Vj → X}j∈J are given by a map α : I → J and

for each i ∈ I a morphism fi : Ui → Vα(i) over X .
There is a forgetful functor SR(C, X)→ SR(C).

Definition 2.2. Let C be a category. We denote F the functor which associates a
presheaf to a semi-representable object. In a formula

F : SR(C) −→ PSh(C)
{Ui}i∈I 7−→ qi∈IhUi

where hU denotes the representable presheaf associated to the object U .

Given a morphism U → X we obtain a morphism hU → hX of representable presheaves.
Thus we often think of F on SR(C, X) as a functor into the category of presheaves of sets
over hX , namely PSh(C)/hX . Here is a picture:

SR(C, X)
F
//

��

PSh(C)/hX

��
SR(C) F // PSh(C)

Next we discuss the existence of limits in the category of semi-representable objects.

Lemma 2.3. Let C be a category.
(1) the category SR(C) has coproducts and F commutes with them,
(2) the functor F : SR(C)→ PSh(C) commutes with limits,
(3) if C has fibre products, then SR(C) has fibre products,
(4) if C has products of pairs, then SR(C) has products of pairs,
(5) if C has equalizers, so does SR(C), and
(6) if C has a final object, so does SR(C).

Let X ∈ Ob(C).
(1) the category SR(C, X) has coproducts and F commutes with them,
(2) if C has fibre products, then SR(C, X) has finite limits and F : SR(C, X) →

PSh(C)/hX commutes with them.

Proof. Proof of the results on SR(C). Proof of (1). The coproduct of {Ui}i∈I and
{Vj}j∈J is {Ui}i∈I q {Vj}j∈J , in other words, the family of objects whose index set is
I q J and for an element k ∈ I q J gives Ui if k = i ∈ I and gives Vj if k = j ∈ J .
Similarly for coproducts of families of objects. It is clear that F commutes with these.

Proof of (2). ForU in Ob(C) consider the object {U} of SR(C). It is clear that MorSR(C)({U},K)) =
F (K)(U) for K ∈ Ob(SR(C)). Since limits of presheaves are computed at the level of
sections (Sites, Section 4) we conclude that F commutes with limits.

Proof of (3). Suppose given a morphism (α, fi) : {Ui}i∈I → {Vj}j∈J and a morphism
(β, gk) : {Wk}k∈K → {Vj}j∈J . The fibred product of these morphisms is given by

{Ui ×fi,Vj ,gk Wk}(i,j,k)∈I×J×K such that j=α(i)=β(k)
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The fibre products exist if C has fibre products.
Proof of (4). The product of {Ui}i∈I and {Vj}j∈J is {Ui × Vj}i∈I,j∈J . The products
exist if C has products.
Proof of (5). The equalizer of two maps (α, fi), (α′, f ′

i) : {Ui}i∈I → {Vj}j∈J is
{Eq(fi, f ′

i : Ui → Vα(i))}i∈I, α(i)=α′(i)

The equalizers exist if C has equalizers.
Proof of (6). If X is a final object of C , then {X} is a final object of SR(C).
Proof of the statements about SR(C, X). These follow from the results above applied to
the category C/X using that SR(C/X) = SR(C, X) and that PSh(C/X) = PSh(C)/hX
(Sites, Lemma 25.4 applied to C endowed with the chaotic topology). However we also
argue directly as follows. It is clear that the coproduct of {Ui → X}i∈I and {Vj →
X}j∈J is {Ui → X}i∈I q {Vj → X}j∈J and similarly for coproducts of families of
families of morphisms with target X . The object {X → X} is a final object of SR(C, X).
Suppose given a morphism (α, fi) : {Ui → X}i∈I → {Vj → X}j∈J and a morphism
(β, gk) : {Wk → X}k∈K → {Vj → X}j∈J . The fibred product of these morphisms is
given by

{Ui ×fi,Vj ,gk Wk → X}(i,j,k)∈I×J×K such that j=α(i)=β(k)

The fibre products exist by the assumption that C has fibre products. Thus SR(C, X) has
finite limits, see Categories, Lemma 18.4. We omit verifying the statements on the functor
F in this case. �

3. Hypercoverings

If we assume our category is a site, then we can make the following definition.

Definition 3.1. Let C be a site. Let f = (α, fi) : {Ui}i∈I → {Vj}j∈J be a morphism
in the category SR(C). We say that f is a covering if for every j ∈ J the family of
morphisms {Ui → Vj}i∈I,α(i)=j is a covering for the site C. Let X be an object of C. A
morphism K → L in SR(C, X) is a covering if its image in SR(C) is a covering.

Lemma 3.2. Let C be a site.
(1) A composition of coverings in SR(C) is a covering.
(2) If K → L is a covering in SR(C) and L′ → L is a morphism, then L′ ×L K

exists and L′ ×L K → L′ is a covering.
(3) If C has products of pairs, and A→ B and K → L are coverings in SR(C), then

A×K → B × L is a covering.
LetX ∈ Ob(C). Then (1) and (2) holds for SR(C, X) and (3) holds if C has fibre products.

Proof. Part (1) is immediate from the axioms of a site. Part (2) follows by the con-
struction of fibre products in SR(C) in the proof of Lemma 2.3 and the requirement that
the morphisms in a covering of C are representable. Part (3) follows by thinking of
A×K → B×L as the compositionA×K → B×K → B×L and hence a composition of
basechanges of coverings. The final statement follows because SR(C, X) = SR(C/X). �

By Lemma 2.3 and Simplicial, Lemma 19.2 the coskeleton of a truncated simplicial object
of SR(C, X) exists if C has fibre products. Hence the following definition makes sense.

Definition 3.3. Let C be a site. Assume C has fibre products. Let X ∈ Ob(C) be an
object of C. A hypercovering of X is a simplicial object K of SR(C, X) such that
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(1) The object K0 is a covering of X for the site C.
(2) For every n ≥ 0 the canonical morphism

Kn+1 −→ (cosknsknK)n+1

is a covering in the sense defined above.

Condition (1) makes sense since each object of SR(C, X) is after all a family of morphisms
with target X . It could also be formulated as saying that the morphism of K0 to the final
object of SR(C, X) is a covering.

Example 3.4 (Čech hypercoverings). Let C be a site with fibre products. Let {Ui →
X}i∈I be a covering of C. Set K0 = {Ui → X}i∈I . Then K0 is a 0-truncated simplicial
object of SR(C, X). Hence we may form

K = cosk0K0.

ClearlyK passes condition (1) of Definition 3.3. Since all the morphismsKn+1 → (cosknsknK)n+1
are isomorphisms by Simplicial, Lemma 19.10 it also passes condition (2). Note that the
terms Kn are the usual

Kn = {Ui0 ×X Ui1 ×X . . .×X Uin → X}(i0,i1,...,in)∈In+1

A hypercovering of X of this form is called a Čech hypercovering of X .

Example 3.5 (Hypercovering by a simplicial object of the site). Let C be a site with
fibre products. Let X ∈ Ob(C). Let U be a simplicial object of C. As usual we denote
Un = U([n]). Finally, assume given an augmentation

a : U → X

In this situation we can consider the simplicial object K of SR(C, X) with terms Kn =
{Un → X}. Then K is a hypercovering of X in the sense of Definition 3.3 if and only if
the following three conditions1 hold:

(1) {U0 → X} is a covering of C ,
(2) {U1 → U0 ×X U0} is a covering of C ,
(3) {Un+1 → (cosknsknU)n+1} is a covering of C for n ≥ 1.

We omit the straightforward verification.

Example 3.6 (Čech hypercovering associated to a cover). Let C be a site with fibre
products. Let U → X be a morphism of C such that {U → X} is a covering of C2.
Consider the simplical object K of SR(C, X) with terms

Kn = {U ×X U ×X . . .×X U → X} (n+ 1 factors)

Then K is a hypercovering of X . This example is a special case of both Example 3.4 and
of Example 3.5.

Lemma 3.7. Let C be a site with fibre products. Let X ∈ Ob(C) be an object of C.
The collection of all hypercoverings of X forms a set.

1As C has fibre products, the category C/X has all finite limits. Hence the required coskeleta exist by
Simplicial, Lemma 19.2.

2A morphism of C with this property is sometimes called a “cover”.
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Proof. Since C is a site, the set of all coverings of X forms a set. Thus we see that
the collection of possible K0 forms a set. Suppose we have shown that the collection of
all possible K0, . . . ,Kn form a set. Then it is enough to show that given K0, . . . ,Kn the
collection of all possibleKn+1 forms a set. And this is clearly true since we have to choose
Kn+1 among all possible coverings of (cosknsknK)n+1. �

Remark 3.8. The lemma does not just say that there is a cofinal system of choices of
hypercoverings that is a set, but that really the hypercoverings form a set.

The category of presheaves on C has finite (co)limits. Hence the functors coskn exists for
presheaves of sets.

Lemma 3.9. Let C be a site with fibre products. Let X ∈ Ob(C) be an object of C.
LetK be a hypercovering ofX . Consider the simplicial object F (K) of PSh(C), endowed
with its augmentation to the constant simplicial presheaf hX .

(1) The morphism of presheaves F (K)0 → hX becomes a surjection after sheafifi-
cation.

(2) The morphism

(d1
0, d

1
1) : F (K)1 −→ F (K)0 ×hX F (K)0

becomes a surjection after sheafification.
(3) For every n ≥ 1 the morphism

F (K)n+1 −→ (cosknsknF (K))n+1

turns into a surjection after sheafification.

Proof. We will use the fact that if {Ui → U}i∈I is a covering of the site C , then the
morphism

qi∈IhUi → hU

becomes surjective after sheafification, see Sites, Lemma 12.4. Thus the first assertion fol-
lows immediately.

For the second assertion, note that according to Simplicial, Example 19.1 the simplicial
object cosk0sk0K has terms K0 × . . .×K0. Thus according to the definition of a hyper-
covering we see that (d1

0, d
1
1) : K1 → K0 ×K0 is a covering. Hence (2) follows from the

claim above and the fact that F transforms products into fibred products over hX .

For the third, we claim that cosknsknF (K) = F (cosknsknK) for n ≥ 1. To prove
this, denote temporarily F ′ the functor SR(C, X) → PSh(C)/hX . By Lemma 2.3 the
functor F ′ commutes with finite limits. By our description of the coskn functor in Sim-
plicial, Section 12 we see that cosknsknF ′(K) = F ′(cosknsknK). Recall that the cat-
egory used in the description of (cosknU)m in Simplicial, Lemma 19.2 is the category
(∆/[m])opp≤n . It is an amusing exercise to show that (∆/[m])≤n is a connected category
(see Categories, Definition 16.1) as soon as n ≥ 1. Hence, Categories, Lemma 16.2 shows
that cosknsknF ′(K) = cosknsknF (K). Whence the claim. Property (2) follows from
this, because now we see that the morphism in (2) is the result of applying the functor F
to a covering as in Definition 3.1, and the result follows from the first fact mentioned in
this proof. �
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4. Acyclicity

Let C be a site. For a presheaf of setsF we denote ZF the presheaf of abelian groups defined
by the rule

ZF (U) = free abelian group on F(U).
We will sometimes call this the free abelian presheaf on F . Of course the construction
F 7→ ZF is a functor and it is left adjoint to the forgetful functor PAb(C)→ PSh(C). Of
course the sheafification Z#

F is a sheaf of abelian groups, and the functorF 7→ Z#
F is a left

adjoint as well. We sometimes call Z#
F the free abelian sheaf on F .

For an objectX of the site C we denote ZX the free abelian presheaf on hX , and we denote
Z#
X its sheafification.

Definition 4.1. Let C be a site. LetK be a simplicial object of PSh(C). By the above
we get a simplicial object Z#

K of Ab(C). We can take its associated complex of abelian
presheaves s(Z#

K), see Simplicial, Section 23. The homology of K is the homology of the
complex of abelian sheaves s(Z#

K).

In other words, the ith homology Hi(K) of K is the sheaf of abelian groups Hi(K) =
Hi(s(Z#

K)). In this section we worry about the homology in caseK is a hypercovering of
an object X of C.

Lemma 4.2. Let C be a site. Let F → G be a morphism of presheaves of sets. Denote
K the simplicial object of PSh(C) whose nth term is the (n+ 1)st fibre product of F over
G , see Simplicial, Example 3.5. Then, if F → G is surjective after sheafification, we have

Hi(K) =
{

0 if i > 0
Z#

G if i = 0

The isomorphism in degree 0 is given by the morphism H0(K) → Z#
G coming from the

map (Z#
K)0 = Z#

F → Z#
G .

Proof. Let G′ ⊂ G be the image of the morphism F → G. Let U ∈ Ob(C). Set
A = F(U) and B = G′(U). Then the simplicial set K(U) is equal to the simplicial set
with n-simplices given by

A×B A×B . . .×B A (n+ 1 factors).

By Simplicial, Lemma 32.3 the morphism K(U) → B is a trivial Kan fibration. Thus it
is a homotopy equivalence (Simplicial, Lemma 30.8). Hence applying the functor “free
abelian group on” to this we deduce that

ZK(U) −→ ZB
is a homotopy equivalence. Note that s(ZB) is the complex

. . .→
⊕

b∈B
Z 0−→

⊕
b∈B

Z 1−→
⊕

b∈B
Z 0−→

⊕
b∈B

Z→ 0

see Simplicial, Lemma 23.3. Thus we see thatHi(s(ZK(U))) = 0 for i > 0, andH0(s(ZK(U))) =⊕
b∈B Z =

⊕
s∈G′(U) Z. These identifications are compatible with restriction maps.

We conclude that Hi(s(ZK)) = 0 for i > 0 and H0(s(ZK)) = ZG′ , where here we
compute homology groups in PAb(C). Since sheafification is an exact functor we deduce
the result of the lemma. Namely, the exactness implies that H0(s(ZK))# = H0(s(Z#

K)),
and similarly for other indices. �
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Lemma 4.3. Let C be a site. Let f : L → K be a morphism of simplicial objects of
PSh(C). Let n ≥ 0 be an integer. Assume that

(1) For i < n the morphism Li → Ki is an isomorphism.
(2) The morphism Ln → Kn is surjective after sheafification.
(3) The canonical map L→ cosknsknL is an isomorphism.
(4) The canonical map K → cosknsknK is an isomorphism.

Then Hi(f) : Hi(L)→ Hi(K) is an isomorphism.

Proof. This proof is exactly the same as the proof of Lemma 4.2 above. Namely,
we first let K ′

n ⊂ Kn be the sub presheaf which is the image of the map Ln → Kn.
Assumption (2) means that the sheafification of K ′

n is equal to the sheafification of Kn.
Moreover, sinceLi = Ki for all i < nwe see that get an n-truncated simplicial presheafU
by takingU0 = L0 = K0, . . . , Un−1 = Ln−1 = Kn−1, Un = K ′

n. DenoteK ′ = cosknU ,
a simplicial presheaf. Because we can constructK ′

m as a finite limit, and since sheafification
is exact, we see that (K ′

m)# = Km. In other words, (K ′)# = K#. We conclude, by
exactness of sheafification once more, thatHi(K) = Hi(K ′). Thus it suffices to prove the
lemma for the morphism L → K ′, in other words, we may assume that Ln → Kn is a
surjective morphism of presheaves!

In this case, for any object U of C we see that the morphism of simplicial sets

L(U) −→ K(U)
satisfies all the assumptions of Simplicial, Lemma 32.1. Hence it is a trivial Kan fibration.
In particular it is a homotopy equivalence (Simplicial, Lemma 30.8). Thus

ZL(U) −→ ZK(U)
is a homotopy equivalence too. This for all U . The result follows. �

Lemma 4.4. Let C be a site. Let K be a simplicial presheaf. Let G be a presheaf. Let
K → G be an augmentation of K towards G. Assume that

(1) The morphism of presheaves K0 → G becomes a surjection after sheafification.
(2) The morphism

(d1
0, d

1
1) : K1 −→ K0 ×G K0

becomes a surjection after sheafification.
(3) For every n ≥ 1 the morphism

Kn+1 −→ (cosknsknK)n+1

turns into a surjection after sheafification.
Then Hi(K) = 0 for i > 0 and H0(K) = Z#

G .

Proof. DenoteKn = cosknsknK for n ≥ 1. DefineK0 as the simplicial object with
terms (K0)n equal to the (n + 1)-fold fibred product K0 ×G . . . ×G K0, see Simplicial,
Example 3.5. We have morphisms

K −→ . . .→ Kn → Kn−1 → . . .→ K1 → K0.

The morphisms K → Ki, Kj → Ki for j ≥ i ≥ 1 come from the universal properties of
the coskn functors. The morphismK1 → K0 is the canonical morphism from Simplicial,
Remark 20.4. We also recall that K0 → cosk1sk1K

0 is an isomorphism, see Simplicial,
Lemma 20.3.

By Lemma 4.2 we see that Hi(K0) = 0 for i > 0 and H0(K0) = Z#
G .
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Pick n ≥ 1. Consider the morphism Kn → Kn−1. It is an isomorphism on terms of de-
gree< n. Note thatKn → cosknsknKn andKn−1 → cosknsknKn−1 are isomorphisms.
Note that (Kn)n = Kn and that (Kn−1)n = (coskn−1skn−1K)n. Hence by assumption,
we have that (Kn)n → (Kn−1)n is a morphism of presheaves which becomes surjective
after sheafification. By Lemma 4.3 we conclude that Hi(Kn) = Hi(Kn−1). Combined
with the above this proves the lemma. �

Lemma 4.5. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X . The homology of the simplicial presheaf F (K) is 0 in degrees > 0
and equal to Z#

X in degree 0.

Proof. Combine Lemmas 4.4 and 3.9. �

5. Čech cohomology and hypercoverings

Let C be a site. Consider a presheaf of abelian groups F on the site C. It defines a functor

F : SR(C)opp −→ Ab

{Ui}i∈I 7−→
∏

i∈I
F(Ui)

Thus a simplicial object K of SR(C) is turned into a cosimplicial object F(K) of Ab. The
cochain complex s(F(K)) associated to F(K) (Simplicial, Section 25) is called the Čech
complex of F with respect to the simplicial object K. We set

Ȟi(K,F) = Hi(s(F(K))).

and we call it the ith Čech cohomology group of F with respect to K. In this section we
prove analogues of some of the results for Čech cohomology of open coverings proved in
Cohomology, Sections 9, 10 and 11.

Lemma 5.1. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X . Let F be a sheaf of abelian groups on C. Then Ȟ0(K,F) = F(X).

Proof. We have

Ȟ0(K,F) = Ker(F(K0) −→ F(K1))

Write K0 = {Ui → X}. It is a covering in the site C. As well, we have that K1 →
K0×K0 is a covering in SR(C, X). Hence we may write K1 = qi0,i1∈I{Vi0i1j → X} so
that the morphism K1 → K0 ×K0 is given by coverings {Vi0i1j → Ui0 ×X Ui1} of the
site C. Thus we can further identify

Ȟ0(K,F) = Ker(
∏

i
F(Ui) −→

∏
i0i1j
F(Vi0i1j))

with obvious map. The sheaf property of F implies that Ȟ0(K,F) = H0(X,F). �

In fact this property characterizes the abelian sheaves among all abelian presheaves on C
of course. The analogue of Cohomology, Lemma 5.2 in this case is the following.

Lemma 5.2. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X . Let I be an injective sheaf of abelian groups on C. Then

Ȟp(K, I) =
{
I(X) if p = 0

0 if p > 0



5. ČECH COHOMOLOGY AND HYPERCOVERINGS 2225

Proof. Observe that for any object Z = {Ui → X} of SR(C, X) and any abelian
sheaf F on C we have

F(Z) =
∏
F(Ui)

=
∏

MorPSh(C)(hUi ,F)
= MorPSh(C)(F (Z),F)
= MorPAb(C)(ZF (Z),F)
= MorAb(C)(Z#

F (Z),F)

Thus we see, for any simplicial object K of SR(C, X) that we have

(5.2.1) s(F(K)) = HomAb(C)(s(Z#
F (K)),F)

see Definition 4.1 for notation. The complex of sheaves s(Z#
F (K)) is quasi-isomorphic to

Z#
X if K is a hypercovering, see Lemma 4.5. We conclude that if I is an injective abelian

sheaf, and K a hypercovering, then the complex s(I(K)) is acyclic except possibly in
degree 0. In other words, we have

Ȟi(K, I) = 0
for i > 0. Combined with Lemma 5.1 the lemma is proved. �

Next we come to the analogue of Cohomology on Sites, Lemma 10.6. Let C be a site. Let
F be a sheaf of abelian groups on C. Recall that Hi(F) indicates the presheaf of abelian
groups on C which is defined by the rule Hi(F) : U 7−→ Hi(U,F). We extend this to
SR(C) as in the introduction to this section.

Lemma 5.3. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X . Let F be a sheaf of abelian groups on C. There is a map

s(F(K)) −→ RΓ(X,F)
in D+(Ab) functorial in F , which induces natural transformations

Ȟi(K,−) −→ Hi(X,−)
as functors Ab(C)→ Ab. Moreover, there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(K,Hq(F))
converging to Hp+q(X,F). This spectral sequence is functorial in F and in the hyper-
covering K.

Proof. We could prove this by the same method as employed in the corresponding
lemma in the chapter on cohomology. Instead let us prove this by a double complex argu-
ment.

Choose an injective resolution F → I• in the category of abelian sheaves on C. Consider
the double complex A•,• with terms

Ap,q = Iq(Kp)
where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential
on the complex s(Iq(K)) associated to the cosimplicial abelian group Ip(K) and the
differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the differential Iq → Iq+1.
Denote Tot(A•,•) the total complex associated to the double complexA•,•, see Homology,
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Section 18. We will use the two spectral sequences (′Er,
′dr) and (′′Er,

′′dr) associated to
this double complex, see Homology, Section 25.
By Lemma 5.2 the complexes s(Iq(K)) are acyclic in positive degrees and have H0 equal
to Iq(X). Hence by Homology, Lemma 25.4 the natural map

I•(X) −→ Tot(A•,•)
is a quasi-isomorphism of complexes of abelian groups. In particular we conclude that
Hn(Tot(A•,•)) = Hn(X,F).
The map s(F(K)) −→ RΓ(X,F) of the lemma is the composition of the map s(F(K))→
Tot(A•,•) followed by the inverse of the displayed quasi-isomorphism above. This works
because I•(X) is a representative of RΓ(X,F).
Consider the spectral sequence (′Er,

′dr)r≥0. By Homology, Lemma 25.1 we see that
′Ep,q2 = Hp

I (Hq
II(A

•,•))
In other words, we first take cohomology with respect to d2 which gives the groups ′Ep,q1 =
Hq(F)(Kp). Hence it is indeed the case (by the description of the differential ′d1) that
′Ep,q2 = Ȟp(K,Hq(F)). By the above and Homology, Lemma 25.3 we see that this con-
verges to Hn(X,F) as desired.
We omit the proof of the statements regarding the functoriality of the above constructions
in the abelian sheaf F and the hypercovering K. �

6. Hypercoverings a la Verdier

The astute reader will have noticed that all we need in order to get the Čech to cohomology
spectral sequence for a hypercovering of an object X , is the conclusion of Lemma 3.9.
Therefore the following definition makes sense.

Definition 6.1. Let C be a site. Assume C has equalizers and fibre products. Let G be
a presheaf of sets. A hypercovering of G is a simplicial object K of SR(C) endowed with
an augmentation F (K)→ G such that

(1) F (K0)→ G becomes surjective after sheafification,
(2) F (K1)→ F (K0)×G F (K0) becomes surjective after sheafification, and
(3) F (Kn+1) −→ F ((cosknsknK)n+1) for n ≥ 1 becomes surjective after sheafifi-

cation.
We say that a simplicial object K of SR(C) is a hypercovering if K is a hypercovering of
the final object ∗ of PSh(C).

The assumption that C has fibre products and equalizers guarantees that SR(C) has fibre
products and equalizers and F commutes with these (Lemma 2.3) which suffices to de-
fine the coskeleton functors used (see Simplicial, Remark 19.11 and Categories, Lemma
18.2). If C is general, we can replace the condition (3) by the condition that F (Kn+1) −→
((cosknsknF (K))n+1) for n ≥ 1 becomes surjective after sheafification and the results of
this section remain valid.
Let F be an abelian sheaf on C. In the previous section, we defined the Čech complex of
F with respect to a simplicial object K of SR(C). Next, given a presheaf G we set

H0(G,F) = MorPSh(C)(G,F) = MorSh(C)(G#,F) = H0(G#,F)
with notation as in Cohomology on Sites, Section 13. This is a left exact functor and its
higher derived functors (briefly studied in Cohomology on Sites, Section 13) are denoted
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Hi(G,F). We will show that given a hypercoveringK ofG , there is a Čech to cohomology
spectral sequence converging to the cohomology Hi(G,F). Note that if G = ∗, then
Hi(∗,F) = Hi(C,F) recovers the cohomology of F on the site C.

Lemma 6.2. Let C be a site with equalizers and fibre products. Let G be a presheaf
on C. Let K be a hypercovering of G. Let F be a sheaf of abelian groups on C. Then
Ȟ0(K,F) = H0(G,F).

Proof. This follows from the definition of H0(G,F) and the fact that

F (K1) //
// F (K0) // G

becomes an coequalizer diagram after sheafification. �

Lemma 6.3. Let C be a site with equalizers and fibre products. Let G be a presheaf on
C. LetK be a hypercovering of G. Let I be an injective sheaf of abelian groups on C. Then

Ȟp(K, I) =
{
H0(G, I) if p = 0

0 if p > 0

Proof. By (5.2.1) we have

s(F(K)) = HomAb(C)(s(Z#
F (K)),F)

The complex s(Z#
F (K)) is quasi-isomorphic to Z#

G , see Lemma 4.4. We conclude that if I
is an injective abelian sheaf, then the complex s(I(K)) is acyclic except possibly in degree
0. In other words, we have Ȟi(K, I) = 0 for i > 0. Combined with Lemma 6.2 the lemma
is proved. �

Lemma 6.4. Let C be a site with equalizers and fibre products. Let G be a presheaf on
C. LetK be a hypercovering of G. Let F be a sheaf of abelian groups on C. There is a map

s(F(K)) −→ RΓ(G,F)

in D+(Ab) functorial in F , which induces a natural transformation

Ȟi(K,−) −→ Hi(G,−)

of functors Ab(C)→ Ab. Moreover, there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(G,F). This spectral sequence is functorial in F and in the hyper-
covering K.

Proof. Choose an injective resolutionF → I• in the category of abelian sheaves on
C. Consider the double complex A•,• with terms

Ap,q = Iq(Kp)

where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential Ip →
Ip+1 and the differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the differential
on the complex s(Ip(K)) associated to the cosimplicial abelian group Ip(K) as explained
above. We will use the two spectral sequences (′Er,

′dr) and (′′Er,
′′dr) associated to this

double complex, see Homology, Section 25.
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By Lemma 6.3 the complexes s(Ip(K)) are acyclic in positive degrees and haveH0 equal to
H0(G, Ip). Hence by Homology, Lemma 25.4 and its proof the spectral sequence (′Er,

′dr)
degenerates, and the natural map

H0(G, I•) −→ Tot(A•,•)

is a quasi-isomorphism of complexes of abelian groups. The map s(F(K)) −→ RΓ(G,F)
of the lemma is the composition of the natural map s(F(K)) → Tot(A•,•) followed by
the inverse of the displayed quasi-isomorphism above. This works because H0(G, I•) is a
representative of RΓ(G,F).

Consider the spectral sequence (′′Er,
′′dr)r≥0. By Homology, Lemma 25.1 we see that

′′Ep,q2 = Hp
II(H

q
I (A•,•))

In other words, we first take cohomology with respect to d1 which gives the groups ′′Ep,q1 =
Hp(F)(Kq). Hence it is indeed the case (by the description of the differential ′′d1) that
′′Ep,q2 = Ȟp(K,Hq(F)). Since this spectral sequence converges to the cohomology of
Tot(A•,•) the proof is finished. �

Lemma 6.5. Let C be a site with equalizers and fibre products. Let K be a hypercov-
ering. Let F be an abelian sheaf. There is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(K,Hq(F))

converging to the global cohomology groups Hp+q(F).

Proof. This is a special case of Lemma 6.4. �

7. Covering hypercoverings

Here are some ways to construct hypercoverings. We note that since the category SR(C, X)
has fibre products the category of simplicial objects of SR(C, X) has fibre products as well,
see Simplicial, Lemma 7.2.

Lemma 7.1. Let C be a site with fibre products. Let X be an object of C. Let K,L,M
be simplicial objects of SR(C, X). Let a : K → L, b : M → L be morphisms. Assume

(1) K is a hypercovering of X ,
(2) the morphism M0 → L0 is a covering, and
(3) for all n ≥ 0 in the diagram

Mn+1

��

//

γ

**

(cosknsknM)n+1

��

Ln+1 ×(cosknsknL)n+1 (cosknsknM)n+1

tt

33

Ln+1 // (cosknsknL)n+1

the arrow γ is a covering.
Then the fibre product K ×LM is a hypercovering of X .
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Proof. The morphism (K ×L M)0 = K0 ×L0 M0 → K0 is a base change of a
covering by (2), hence a covering, see Lemma 3.2. And K0 → {X → X} is a covering by
(1). Thus (K×LM)0 → {X → X} is a covering by Lemma 3.2. HenceK×LM satisfies
the first condition of Definition 3.3.

We still have to check that

Kn+1 ×Ln+1 Mn+1 = (K ×LM)n+1 −→ (cosknskn(K ×LM))n+1

is a covering for all n ≥ 0. We abbreviate as follows: A = (cosknsknK)n+1, B =
(cosknsknL)n+1, andC = (cosknsknM)n+1. The functor cosknskn commutes with fibre
products, see Simplicial, Lemma 19.13. Thus the right hand side above is equal toA×B C.
Consider the following commutative diagram

Kn+1 ×Ln+1 Mn+1 //

��

Mn+1

��
γ

&& **Kn+1 //

((

Ln+1

**

Ln+1 ×B Coo // C

��
A // B

This diagram shows that

Kn+1 ×Ln+1 Mn+1 = (Kn+1 ×B C)×(Ln+1×BC),γ Mn+1

Now, Kn+1 ×B C → A ×B C is a base change of the covering Kn+1 → A via the
morphism A ×B C → A, hence is a covering. By assumption (3) the morphism γ is a
covering. Hence the morphism

(Kn+1 ×B C)×(Ln+1×BC),γ Mn+1 −→ Kn+1 ×B C

is a covering as a base change of a covering. The lemma follows as a composition of cov-
erings is a covering. �

Lemma 7.2. Let C be a site with fibre products. Let X be an object of C. If K,L are
hypercoverings of X , then K × L is a hypercovering of X .

Proof. You can either verify this directly, or use Lemma 7.1 above and check that
L→ {X → X} has property (3). �

Let C be a site with fibre products. Let X be an object of C. Since the category SR(C, X)
has coproducts and finite limits, it is permissible to speak about the objects U × K and
Hom(U,K) for certain simplicial sets U (for example those with finitely many nonde-
generate simplices) and any simplicial object K of SR(C, X). See Simplicial, Sections 13
and 17.

Lemma 7.3. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering ofX . Let k ≥ 0 be an integer. Let u : Z → Kk be a covering in SR(C, X).
Then there exists a morphism of hypercoverings f : L → K such that Lk → Kk factors
through u.

Proof. Denote Y = Kk. Let C[k] be the cosimplicial set defined in Simplicial, Ex-
ample 5.6. We will use the description of Hom(C[k], Y ) and Hom(C[k], Z) given in Sim-
plicial, Lemma 15.2. There is a canonical morphism K → Hom(C[k], Y ) corresponding
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to id : Kk = Y → Y . Consider the morphism Hom(C[k], Z) → Hom(C[k], Y ) which
on degree n terms is the morphism∏

α:[k]→[n]
Z −→

∏
α:[k]→[n]

Y

using the given morphism Z → Y on each factor. Set

L = K ×Hom(C[k],Y ) Hom(C[k], Z).

The morphism Lk → Kk sits in to a commutative diagram

Lk //

��

∏
α:[k]→[k] Z

prid[k] //

��

Z

��
Kk

// ∏
α:[k]→[k] Y

prid[k] // Y

Since the composition of the two bottom arrows is the identity we conclude that we have
the desired factorization.

We still have to show that L is a hypercovering of X . To see this we will use Lemma 7.1.
Condition (1) is satisfied by assumption. For (2), the morphism

Hom(C[k], Z)0 → Hom(C[k], Y )0

is a covering because it is isomorphic to Z → Y as there is only one morphism [k]→ [0].

Let us consider condition (3) for n = 0. Then, since (cosk0T )1 = T × T (Simplicial,
Example 19.1) and since Hom(C[k], Z)1 =

∏
α:[k]→[1] Z we obtain the diagram∏

α:[k]→[1] Z
//

��

Z × Z

��∏
α:[k]→[1] Y

// Y × Y

with horizontal arrows corresponding to the projection onto the factors corresponding to
the two nonsurjective α. Thus the arrow γ is the morphism∏

α:[k]→[1]
Z −→

∏
α:[k]→[1] not onto

Z ×
∏

α:[k]→[1] onto
Y

which is a product of coverings and hence a covering by Lemma 3.2.

Let us consider condition (3) for n > 0. We claim there is an injective map τ : S′ → S of
finite sets, such that for any object T of SR(C, X) the morphism

(7.3.1) Hom(C[k], T )n+1 → (cosknskn Hom(C[k], T ))n+1

is isomorphic to the projection
∏
s∈S T →

∏
s′∈S′ T functorially in T . If this is true, then

we see, arguing as in the previous paragraph, that the arrow γ is the morphism∏
s∈S

Z −→
∏

s∈S′
Z ×

∏
s6∈τ(S′)

Y

which is a product of coverings and hence a covering by Lemma 3.2. By construction, we
have Hom(C[k], T )n+1 =

∏
α:[k]→[n+1] T (see Simplicial, Lemma 15.2). Correspondingly

we take S = Map([k], [n + 1]). On the other hand, Simplicial, Lemma 19.5, provides
a description of points of (cosknskn Hom(C[k], T ))n+1 as sequences (f0, . . . , fn+1) of
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points of Hom(C[k], T )n satisfying dnj−1fi = dni fj for 0 ≤ i < j ≤ n+ 1. We can write
fi = (fi,α) with fi,α a point of T and α ∈Map([k], [n]). The conditions translate into

fi,δn
j−1◦β = fj,δn

i
◦β

for any 0 ≤ i < j ≤ n+ 1 and β : [k]→ [n− 1]. Thus we see that
S′ = {0, . . . , n+ 1} ×Map([k], [n])/ ∼

where the equivalence relation is generated by the equivalences
(i, δnj−1 ◦ β) ∼ (j, δni ◦ β)

for 0 ≤ i < j ≤ n + 1 and β : [k] → [n − 1]. A computation (omitted) shows that the
morphism (7.3.1) corresponds to the map S′ → S which sends (i, α) to δn+1

i ◦ α ∈ S. (It
may be a comfort to the reader to see that this map is well defined by part (1) of Simplicial,
Lemma 2.3.) To finish the proof it suffices to show that if α, α′ : [k] → [n] and 0 ≤ i <
j ≤ n+ 1 are such that

δn+1
i ◦ α = δn+1

j ◦ α′

then we have α = δnj−1 ◦ β and α′ = δni ◦ β for some β : [k]→ [n− 1]. This is easy to see
and omitted. �

Lemma 7.4. Let C be a site with fibre products. Let X be an object of C. Let K be
a hypercovering of X . Let n ≥ 0 be an integer. Let u : F → F (Kn) be a morphism of
presheaves which becomes surjective on sheafification. Then there exists a morphism of
hypercoverings f : L→ K such that F (fn) : F (Ln)→ F (Kn) factors through u.

Proof. Write Kn = {Ui → X}i∈I . Thus the map u is a morphism of presheaves of
setsu : F → qhui . The assumption onumeans that for every i ∈ I there exists a covering
{Uij → Ui}j∈Ii of the site C and a morphism of presheaves tij : hUij → F such that u◦tij
is the map hUij → hUi coming from the morphism Uij → Ui. Set J = qi∈IIi, and let
α : J → I be the obvious map. For j ∈ J denote Vj = Uα(j)j . Set Z = {Vj → X}j∈J .
Finally, consider the morphism u′ : Z → Kn given by α : J → I and the morphisms
Vj = Uα(j)j → Uα(j) above. Clearly, this is a covering in the category SR(C, X), and by
construction F (u′) : F (Z) → F (Kn) factors through u. Thus the result follows from
Lemma 7.3 above. �

8. Adding simplices

In this section we prove some technical lemmas which we will need later. Let C be a site
with fibre products. Let X be an object of C. As we pointed out in Section 7 above, the
objects U ×K and Hom(U,K) for certain simplicial sets U and any simplicial object K
of SR(C, X) are defined. See Simplicial, Sections 13 and 17.

Lemma 8.1. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X . Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty for all n.
Assume that U has finitely many nondegenerate simplices. Suppose n ≥ 0 and x ∈ Vn,
x 6∈ Un are such that

(1) Vi = Ui for i < n,
(2) Vn = Un ∪ {x},
(3) any z ∈ Vj , z 6∈ Uj for j > n is degenerate.

Then the morphism
Hom(V,K)0 −→ Hom(U,K)0

of SR(C, X) is a covering.
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Proof. If n = 0, then it follows easily that V = U q∆[0] (see below). In this case
Hom(V,K)0 = Hom(U,K)0 × K0. The result, in this case, then follows from Lemma
3.2.

Let a : ∆[n] → V be the morphism associated to x as in Simplicial, Lemma 11.3. Let us
write ∂∆[n] = i(n−1)!skn−1∆[n] for the (n − 1)-skeleton of ∆[n]. Let b : ∂∆[n] → U
be the restriction of a to the (n− 1) skeleton of ∆[n]. By Simplicial, Lemma 21.7 we have
V = U q∂∆[n] ∆[n]. By Simplicial, Lemma 17.5 we get that

Hom(V,K)0 //

��

Hom(U,K)0

��
Hom(∆[n],K)0 // Hom(∂∆[n],K)0

is a fibre product square. Thus it suffices to show that the bottom horizontal arrow is a
covering. By Simplicial, Lemma 21.11 this arrow is identified with

Kn → (coskn−1skn−1K)n
and hence is a covering by definition of a hypercovering. �

Lemma 8.2. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X . Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty for all n.
Assume that U and V have finitely many nondegenerate simplices. Then the morphism

Hom(V,K)0 −→ Hom(U,K)0

of SR(C, X) is a covering.

Proof. By Lemma 8.1 above, it suffices to prove a simple lemma about inclusions of
simplicial sets U ⊂ V as in the lemma. And this is exactly the result of Simplicial, Lemma
21.8. �

Lemma 8.3. Let C be a site with fibre products. Let X be an object of C. Let K be a
hypercovering of X . Then

(1) Kn is a covering of X for each n ≥ 0,
(2) dni : Kn → Kn−1 is a covering for all n ≥ 1 and 0 ≤ i ≤ n.

Proof. Recall thatK0 is a covering ofX by Definition 3.3 and that this is equivalent
to saying that K0 → {X → X} is a covering in the sense of Definition 3.1. Hence (1)
follows from (2) because it will prove that the compositionKn → Kn−1 → . . .→ K0 →
{X → X} is a covering by Lemma 3.2.

Proof of (2). Observe that Mor(∆[n],K)0 = Kn by Simplicial, Lemma 17.4. Therefore
(2) follows from Lemma 8.2 applied to the n+1 different inclusions ∆[n−1]→ ∆[n]. �

Remark 8.4. A useful special case of Lemmas 8.2 and 8.3 is the following. Suppose
we have a category C having fibre products. Let P ⊂ Arrows(C) be a subset stable under
base change, stable under composition, and containing all isomorphisms. Then one says a
P -hypercovering is an augmentation a : U → X from a simplicial object of C such that

(1) U0 → X is in P ,
(2) U1 → U0 ×X U0 is in P ,
(3) Un+1 → (cosknsknU)n+1 is in P for n ≥ 1.
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The category C/X has all finite limits, hence the coskeleta used in the formulation above
exist (see Categories, Lemma 18.4). Then we claim that the morphisms Un → X and
dni : Un → Un−1 are in P . This follows from the aforementioned lemmas by turning
C into a site whose coverings are {f : V → U} with f ∈ P and taking K given by
Kn = {Un → X}.

9. Homotopies

Let C be a site with fibre products. Let X be an object of C. Let L be a simplicial object of
SR(C, X). According to Simplicial, Lemma 17.4 there exists an object Hom(∆[1], L) in
the category Simp(SR(C, X)) which represents the functor

T 7−→ MorSimp(SR(C,X))(∆[1]× T,L)
There is a canonical morphism

Hom(∆[1], L)→ L× L

coming from ei : ∆[0]→ ∆[1] and the identification Hom(∆[0], L) = L.

Lemma 9.1. Let C be a site with fibre products. Let X be an object of C. Let L be a
simplicial object of SR(C, X). Let n ≥ 0. Consider the commutative diagram

(9.1.1) Hom(∆[1], L)n+1 //

��

(cosknskn Hom(∆[1], L))n+1

��
(L× L)n+1 // (cosknskn(L× L))n+1

coming from the morphism defined above. We can identify the terms in this diagram as
follows, where ∂∆[n+ 1] = in!skn∆[n+ 1] is the n-skeleton of the (n+ 1)-simplex:

Hom(∆[1], L)n+1 = Hom(∆[1]×∆[n+ 1], L)0

(cosknskn Hom(∆[1], L))n+1 = Hom(∆[1]× ∂∆[n+ 1], L)0

(L× L)n+1 = Hom((∆[n+ 1]q∆[n+ 1], L)0

(cosknskn(L× L))n+1 = Hom(∂∆[n+ 1]q ∂∆[n+ 1], L)0

and the morphism between these objects of SR(C, X) come from the commutative diagram
of simplicial sets

(9.1.2) ∆[1]×∆[n+ 1] ∆[1]× ∂∆[n+ 1]oo

∆[n+ 1]q∆[n+ 1]

OO

∂∆[n+ 1]q ∂∆[n+ 1]oo

OO

Moreover the fibre product of the bottom arrow and the right arrow in (9.1.1) is equal to

Hom(U,L)0

where U ⊂ ∆[1] ×∆[n + 1] is the smallest simplicial subset such that both ∆[n + 1] q
∆[n+ 1] and ∆[1]× ∂∆[n+ 1] map into it.

Proof. The first and third equalities are Simplicial, Lemma 17.4. The second and
fourth follow from the cited lemma combined with Simplicial, Lemma 21.11. The last
assertion follows from the fact that U is the push-out of the bottom and right arrow of
the diagram (9.1.2), via Simplicial, Lemma 17.5. To see that U is equal to this push-out
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it suffices to see that the intersection of ∆[n + 1] q ∆[n + 1] and ∆[1] × ∂∆[n + 1] in
∆[1]×∆[n+ 1] is equal to ∂∆[n+ 1]q ∂∆[n+ 1]. This we leave to the reader. �

Lemma 9.2. Let C be a site with fibre products. Let X be an object of C. Let K,L be
hypercoverings of X . Let a, b : K → L be morphisms of hypercoverings. There exists a
morphism of hypercoverings c : K ′ → K such that a ◦ c is homotopic to b ◦ c.

Proof. Consider the following commutative diagram

K ′ def

c

((

K ×(L×L) Hom(∆[1], L) //

��

Hom(∆[1], L)

��
K

(a,b) // L× L

By the functorial property of Hom(∆[1], L) the composition of the horizontal morphisms
corresponds to a morphism K ′ × ∆[1] → L which defines a homotopy between c ◦ a
and c ◦ b. Thus if we can show that K ′ is a hypercovering of X , then we obtain the
lemma. To see this we will apply Lemma 7.1 to the pair of morphisms K → L × L and
Hom(∆[1], L)→ L×L. Condition (1) of Lemma 7.1 is satisfied. Condition (2) of Lemma
7.1 is true because Hom(∆[1], L)0 = L1, and the morphism (d1

0, d
1
1) : L1 → L0 × L0 is

a covering of SR(C, X) by our assumption that L is a hypercovering. To prove condition
(3) of Lemma 7.1 we use Lemma 9.1 above. According to this lemma the morphism γ of
condition (3) of Lemma 7.1 is the morphism

Hom(∆[1]×∆[n+ 1], L)0 −→ Hom(U,L)0

where U ⊂ ∆[1] × ∆[n + 1]. According to Lemma 8.2 this is a covering and hence the
claim has been proven. �

Remark 9.3. Note that the crux of the proof is to use Lemma 8.2. This lemma is
completely general and does not care about the exact shape of the simplicial sets (as long
as they have only finitely many nondegenerate simplices). It seems altogether reasonable
to expect a result of the following kind: Given any morphism a : K × ∂∆[k]→ L, with
K and L hypercoverings, there exists a morphism of hypercoverings c : K ′ → K and a
morphism g : K ′ ×∆[k]→ L such that g|K′×∂∆[k] = a ◦ (c× id∂∆[k]). In other words,
the category of hypercoverings is in a suitable sense contractible.

10. Cohomology and hypercoverings

Let C be a site with fibre products. Let X be an object of C. Let F be a sheaf of abelian
groups on C. LetK,L be hypercoverings ofX . If a, b : K → L are homotopic maps, then
F(a),F(b) : F(K)→ F(L) are homotopic maps, see Simplicial, Lemma 28.4. Hence have
the same effect on cohomology groups of the associated cochain complexes, see Simplicial,
Lemma 28.6. We are going to use this to define the colimit over all hypercoverings.

Let us temporarily denote HC(C, X) the category whose objects are hypercoverings of
X and whose morphisms are maps between hypercoverings of X up to homotopy. We
have seen that this is a category and not a “big” category, see Lemma 3.7. The opposite
to HC(C, X) will be the index category for our diagram, see Categories, Section 14 for
terminology. Consider the diagram

Ȟi(−,F) : HC(C, X)opp −→ Ab.
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By Lemmas 7.2 and 9.2 and the remark on homotopies above, this diagram is directed, see
Categories, Definition 19.1. Thus the colimit

Ȟi
HC(X,F) = colimK∈HC(C,X) Ȟ

i(K,F)

has a particularly simple description (see location cited).

Theorem 10.1. Let C be a site with fibre products. LetX be an object of C. Let i ≥ 0.
The functors

Ab(C) −→ Ab
F 7−→ Hi(X,F)
F 7−→ Ȟi

HC(X,F)
are canonically isomorphic.

Proof using spectral sequences. Suppose that ξ ∈ Hp(X,F) for some p ≥ 0.
Let us show that ξ is in the image of the map Ȟp(X,F) → Hp(X,F) of Lemma 5.3 for
some hypercovering K of X .

This is true if p = 0 by Lemma 5.1. If p = 1, choose a Čech hypercovering K of X
as in Example 3.4 starting with a covering K0 = {Ui → X} in the site C such that
ξ|Ui = 0, see Cohomology on Sites, Lemma 7.3. It follows immediately from the spectral
sequence in Lemma 5.3 that ξ comes from an element of Ȟ1(K,F) in this case. In general,
choose any hypercoveringK ofX such that ξmaps to zero inHp(F)(K0) (using Example
3.4 and Cohomology on Sites, Lemma 7.3 again). By the spectral sequence of Lemma 5.3
the obstruction for ξ to come from an element of Ȟp(K,F) is a sequence of elements
ξ1, . . . , ξp−1 with ξq ∈ Ȟp−q(K,Hq(F)) (more precisely the images of the ξq in certain
subquotients of these groups).

We can inductively replace the hypercovering K by refinements such that the obstruc-
tions ξ1, . . . , ξp−1 restrict to zero (and not just the images in the subquotients – so no
subtlety here). Indeed, suppose we have already managed to reach the situation where
ξq+1, . . . , ξp−1 are zero. Note that ξq ∈ Ȟp−q(K,Hq(F)) is the class of some element

ξ̃q ∈ Hq(F)(Kp−q) =
∏

Hq(Ui,F)

if Kp−q = {Ui → X}i∈I . Let ξq,i be the component of ξ̃q in Hq(Ui,F). As q ≥ 1 we
can use Cohomology on Sites, Lemma 7.3 yet again to choose coverings {Ui,j → Ui} of
the site such that each restriction ξq,i|Ui,j = 0. Consider the object Z = {Ui,j → X}
of the category SR(C, X) and its obvious morphism u : Z → Kp−q . It is clear that
u is a covering, see Definition 3.1. By Lemma 7.3 there exists a morphism L → K of
hypercoverings of X such that Lp−q → Kp−q factors through u. Then clearly the image
of ξq inHq(F)(Lp−q). is zero. Since the spectral sequence of Lemma 5.3 is functorial this
means that after replacing K by L we reach the situation where ξq, . . . , ξp−1 are all zero.
Continuing like this we end up with a hypercovering where they are all zero and hence ξ
is in the image of the map Ȟp(X,F)→ Hp(X,F).

Suppose that K is a hypercovering of X , that ξ ∈ Ȟp(K,F) and that the image of ξ
under the map Ȟp(X,F) → Hp(X,F) of Lemma 5.3 is zero. To finish the proof of
the theorem we have to show that there exists a morphism of hypercoverings L → K

such that ξ restricts to zero in Ȟp(L,F). By the spectral sequence of Lemma 5.3 the
vanishing of the image of ξ inHp(X,F) means that there exist elements ξ1, . . . , ξp−2 with
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ξq ∈ Ȟp−1−q(K,Hq(F)) (more precisely the images of these in certain subquotients)
such that the images dp−1−q,q

q+1 ξq (in the spectral sequence) add up to ξ. Hence by exactly
the same mechanism as above we can find a morphism of hypercoverings L → K such
that the restrictions of the elements ξq , q = 1, . . . , p− 2 in Ȟp−1−q(L,Hq(F)) are zero.
Then it follows that ξ is zero since the morphism L→ K induces a morphism of spectral
sequences according to Lemma 5.3. �

Proof without using spectral sequences. We have seen the result for i = 0, see
Lemma 5.1. We know that the functorsHi(X,−) form a universal δ-functor, see Derived
Categories, Lemma 20.4. In order to prove the theorem it suffices to show that the sequence
of functors Ȟi

HC(X,−) forms a δ-functor. Namely we know that Čech cohomology is
zero on injective sheaves (Lemma 5.2) and then we can apply Homology, Lemma 12.4.

Let
0→ F → G → H → 0

be a short exact sequence of abelian sheaves on C. Let ξ ∈ Ȟp
HC(X,H). Choose a hyper-

covering K of X and an element σ ∈ H(Kp) representing ξ in cohomology. There is a
corresponding exact sequence of complexes

0→ s(F(K))→ s(G(K))→ s(H(K))
but we are not assured that there is a zero on the right also and this is the only thing that
prevents us from defining δ(ξ) by a simple application of the snake lemma. Recall that

H(Kp) =
∏
H(Ui)

if Kp = {Ui → X}. Let σ =
∏
σi with σi ∈ H(Ui). Since G → H is a surjection

of sheaves we see that there exist coverings {Ui,j → Ui} such that σi|Ui,j is the image
of some element τi,j ∈ G(Ui,j). Consider the object Z = {Ui,j → X} of the category
SR(C, X) and its obvious morphism u : Z → Kp. It is clear that u is a covering, see
Definition 3.1. By Lemma 7.3 there exists a morphism L → K of hypercoverings of X
such that Lp → Kp factors through u. After replacing K by L we may therefore assume
that σ is the image of an element τ ∈ G(Kp). Note that d(σ) = 0, but not necessarily
d(τ) = 0. Thus d(τ) ∈ F(Kp+1) is a cocycle. In this situation we define δ(ξ) as the class
of the cocycle d(τ) in Ȟp+1

HC (X,F).

At this point there are several things to verify: (a) δ(ξ) does not depend on the choice
of τ , (b) δ(ξ) does not depend on the choice of the hypercovering L → K such that σ
lifts, and (c) δ(ξ) does not depend on the initial hypercovering and σ chosen to represent
ξ. We omit the verification of (a), (b), and (c); the independence of the choices of the
hypercoverings really comes down to Lemmas 7.2 and 9.2. We also omit the verification
that δ is functorial with respect to morphisms of short exact sequences of abelian sheaves
on C.

Finally, we have to verify that with this definition of δ our short exact sequence of abelian
sheaves above leads to a long exact sequence of Čech cohomology groups. First we show
that if δ(ξ) = 0 (with ξ as above) then ξ is the image of some element ξ′ ∈ Ȟp

HC(X,G).
Namely, if δ(ξ) = 0, then, with notation as above, we see that the class of d(τ) is zero in
Ȟp+1
HC (X,F). Hence there exists a morphism of hypercoverings L → K such that the

restriction of d(τ) to an element of F(Lp+1) is equal to d(υ) for some υ ∈ F(Lp). This
implies that τ |Lp + υ form a cocycle, and determine a class ξ′ ∈ Ȟp(L,G) which maps to
ξ as desired.
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We omit the proof that if ξ′ ∈ Ȟp+1
HC (X,F) maps to zero in Ȟp+1

HC (X,G), then it is equal
to δ(ξ) for some ξ ∈ Ȟp

HC(X,H). �

Next, we deduce Verdier’s case of Theorem 10.1 by a sleight of hand.

Proposition 10.2. Let C be a site with fibre products and products of pairs. Let F be
an abelian sheaf on C. Let i ≥ 0. Then

(1) for every ξ ∈ Hi(F) there exists a hypercovering K such that ξ is in the image
of the canonical map Ȟi(K,F)→ Hi(F), and

(2) if K,L are hypercoverings and ξK ∈ Ȟi(K,F), ξL ∈ Ȟi(L,F) are elements
mapping to the same element of Hi(F), then there exists a hypercovering M
and morphisms M → K and M → L such that ξK and ξL map to the same
element of Ȟi(M,F).

In other words, modulo set theoretical issues, the cohomology groups of F on C are the
colimit of the Čech cohomology groups of F over all hypercoverings.

Proof. This result is a trivial consequence of Theorem 10.1. Namely, we can artifi-
cially replace C with a slightly bigger site C′ such that (I) C′ has a final object X and (II)
hypercoverings in C are more or less the same thing as hypercoverings ofX in C′. But due
to the nature of things, there is quite a bit of bookkeeping to do.

Let us call a family of morphisms {Ui → U} in C with fixed target a weak covering if the
sheafification of the map

∐
i∈I hUi → hU becomes surjective. We construct a new site C′

as follows
(1) as a category set Ob(C′) = Ob(C)q{X} and add a unique morphism toX from

every object of C′,
(2) C′ has fibre products as fibre products and products of pairs exist in C ,
(3) coverings of C′ are weak coverings of C together with those {Ui → X}i∈I such

that either Ui = X for some i, or Ui 6= X for all i and the map
∐
hUi → ∗ of

presheaves on C becomes surjective after sheafification on C ,
(4) we apply Sets, Lemma 11.1 to restrict the coverings to obtain our site C′.

Then Sh(C′) = Sh(C) because the inclusion functor C → C′ is a special cocontinuous
functor (see Sites, Definition 29.2). We omit the straightforward verifications.

Choose a covering {Ui → X} of C′ such that Ui is an object of C for all i (possible because
C → C′ is special cocontinuous). Then K0 = {Ui → X} is a covering in the site C′

constructed above. We view K0 as an object of SR(C′, X) and we set Kinit = cosk0(K0).
Then Kinit is a hypercovering of X , see Example 3.4. Note that every Kinit,n has the
shape {Wj → X} with Wj ∈ Ob(C).

Proof of (1). Choose ξ ∈ Hi(F) = Hi(X,F ′) where F ′ is the abelian sheaf on C′

corresponding to F on C. By Theorem 10.1 there exists a morphism of hypercoverings
K ′ → Kinit of X in C′ such that ξ comes from an element of Ȟi(K ′,F). Write K ′

n =
{Un,j → X}. Now since K ′

n maps to Kinit,n we see that Un,j is an object of C. Hence
we can define a simplicial object K of SR(C) by setting Kn = {Un,j}. Since coverings in
C′ consisting of families of morphisms of C are weak coverings, we see that K is a hyper-
covering in the sense of Definition 6.1. Finally, since F ′ is the unique sheaf on C′ whose
restriction to C is equal to F we see that the Čech complexes s(F(K)) and s(F ′(K ′)) are
identical and (1) follows. (Compatibility with map into cohomology groups omitted.)
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Proof of (2). LetK andL be hypercoverings in C. LetK ′ andL′ be the simplicial objects of
SR(C′, X) gotten fromK andL by the functor SR(C)→ SR(C′, X), {Ui} 7→ {Ui → X}.
As before we have equality of Čech complexes and hence we obtain ξK′ and ξL′ mapping to
the same cohomology class ofF ′ over C′. After possibly enlarging our choice of coverings
in C′ (due to a set theoretical issue) we may assume that K ′ and L′ are hypercoverings of
X in C′; this is true by our definition of hypercoverings in Definition 6.1 and the fact that
weak coverings in C give coverings in C′. By Theorem 10.1 there exists a hypercovering
M ′ of X in C′ and morphisms M ′ → K ′, M ′ → L′, and M ′ → Kinit such that ξK′ and
ξL′ restrict to the same element of Ȟi(M ′,F). Unwinding this statement as above we find
that (2) is true. �

11. Hypercoverings of spaces

The theory above is mildly interesting even in the case of topological spaces. In this case
we can work out what a hypercovering is and see what the result actually says.
Let X be a topological space. Consider the site XZar of Sites, Example 6.4. Recall that an
object ofXZar is simply an open ofX and that morphisms ofXZar correspond simply to
inclusions. So what is a hypercovering of X for the site XZar?
Let us first unwind Definition 2.1. An object of SR(XZar, X) is simply given by a set I
and for each i ∈ I an open Ui ⊂ X . Let us denote this by {Ui}i∈I since there can be no
confusion about the morphism Ui → X . A morphism {Ui}i∈I → {Vj}j∈J between two
such objects is given by a map of sets α : I → J such that Ui ⊂ Vα(i) for all i ∈ I . When
is such a morphism a covering? This is the case if and only if for every j ∈ J we have
Vj =

⋃
i∈I, α(i)=j Ui (and is a covering in the site XZar).

Using the above we get the following description of a hypercovering in the site XZar. A
hypercovering of X in XZar is given by the following data

(1) a simplicial set I (see Simplicial, Section 11), and
(2) for each n ≥ 0 and every i ∈ In an open set Ui ⊂ X .

We will denote such a collection of data by the notation (I, {Ui}). In order for this to be
a hypercovering of X we require the following properties

• for i ∈ In and 0 ≤ a ≤ n we have Ui ⊂ Udna (i),
• for i ∈ In and 0 ≤ a ≤ n we have Ui = Usna (i),
• we have

(11.0.1) X =
⋃

i∈I0
Ui,

• for every i0, i1 ∈ I0, we have

(11.0.2) Ui0 ∩ Ui1 =
⋃

i∈I1, d1
0(i)=i0, d1

1(i)=i1
Ui,

• for everyn ≥ 1 and every (i0, . . . , in+1) ∈ (In)n+2 such that dnb−1(ia) = dna(ib)
for all 0 ≤ a < b ≤ n+ 1 we have

(11.0.3) Ui0 ∩ . . . ∩ Uin+1 =
⋃

i∈In+1, d
n+1
a (i)=ia, a=0,...,n+1

Ui,

• each of the open coverings (11.0.1), (11.0.2), and (11.0.3) is an element of Cov(XZar)
(this is a set theoretic condition, bounding the size of the index sets of the cov-
erings).

Conditions (11.0.1) and (11.0.2) should be familiar from the chapter on sheaves on spaces
for example, and condition (11.0.3) is the natural generalization.
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Remark 11.1. One feature of this description is that if one of the multiple intersec-
tionsUi0∩ . . .∩Uin+1 is empty then the covering on the right hand side may be the empty
covering. Thus it is not automatically the case that the maps In+1 → (cosknsknI)n+1 are
surjective. This means that the geometric realization of I may be an interesting (non-
contractible) space.
In fact, let I ′

n ⊂ In be the subset consisting of those simplices i ∈ In such that Ui 6= ∅.
It is easy to see that I ′ ⊂ I is a subsimplicial set, and that (I ′, {Ui}) is a hypercovering.
Hence we can always refine a hypercovering to a hypercovering where none of the opens
Ui is empty.

Remark 11.2. Let us repackage this information in yet another way. Namely, sup-
pose that (I, {Ui}) is a hypercovering of the topological space X . Given this data we can
construct a simplicial topological space U• by setting

Un =
∐

i∈In
Ui,

and where for given ϕ : [n]→ [m] we let morphisms U(ϕ) : Un → Um be the morphism
coming from the inclusions Ui ⊂ Uϕ(i) for i ∈ In. This simplicial topological space
comes with an augmentation ε : U• → X . With this morphism the simplicial space U•
becomes a hypercovering of X along which one has cohomological descent in the sense
of [?, Exposé Vbis]. In other words, Hn(U•, ε

∗F) = Hn(X,F). (Insert future reference
here to cohomology over simplicial spaces and cohomological descent formulated in those
terms.) Suppose that F is an abelian sheaf on X . In this case the spectral sequence of
Lemma 5.3 becomes the spectral sequence with E1-term

Ep,q1 = Hq(Up, ε∗qF)⇒ Hp+q(U•, ε
∗F) = Hp+q(X,F)

comparing the total cohomology of ε∗F to the cohomology groups of F over the pieces
of U•. (Insert future reference to this spectral sequence here.)

In topology we often want to find hypercoverings of X which have the property that all
theUi come from a given basis for the topology ofX and that all the coverings (11.0.2) and
(11.0.3) are from a given cofinal collection of coverings. Here are two example lemmas.

Lemma 11.3. Let X be a topological space. Let B be a basis for the topology of X .
There exists a hypercovering (I, {Ui}) of X such that each Ui is an element of B.

Proof. Let n ≥ 0. Let us say that an n-truncated hypercovering of X is given by an
n-truncated simplicial set I and for each i ∈ Ia, 0 ≤ a ≤ n an open Ui of X such that
the conditions defining a hypercovering hold whenever they make sense. In other words
we require the inclusion relations and covering conditions only when all simplices that
occur in them are a-simplices with a ≤ n. The lemma follows if we can prove that given
a n-truncated hypercovering (I, {Ui}) with all Ui ∈ B we can extend it to an (n + 1)-
truncated hypercovering without adding any a-simplices for a ≤ n. This we do as follows.
First we consider the (n + 1)-truncated simplicial set I ′ defined by I ′ = skn+1(cosknI).
Recall that

I ′
n+1 =

{
(i0, . . . , in+1) ∈ (In)n+2 such that

dnb−1(ia) = dna(ib) for all 0 ≤ a < b ≤ n+ 1

}
If i′ ∈ I ′

n+1 is degenerate, say i′ = sna(i) then we setUi′ = Ui (this is forced on us anyway
by the second condition). We also set Ji′ = {i′} in this case. If i′ ∈ I ′

n+1 is nondegenerate,
say i′ = (i0, . . . , in+1), then we choose a set Ji′ and an open covering

(11.3.1) Ui0 ∩ . . . ∩ Uin+1 =
⋃

i∈Ji′
Ui,
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with Ui ∈ B for i ∈ Ji′ . Set
In+1 =

∐
i′∈I′

n+1
Ji′

There is a canonical map π : In+1 → I ′
n+1 which is a bijection over the set of degenerate

simplices in I ′
n+1 by construction. For i ∈ In+1 we define dn+1

a (i) = dn+1
a (π(i)). For i ∈

In we define sna(i) ∈ In+1 as the unique simplex lying over the degenerate simplex sna(i) ∈
I ′
n+1. We omit the verification that this defines an (n + 1)-truncated hypercovering of
X . �

Lemma 11.4. Let X be a topological space. Let B be a basis for the topology of X .
Assume that

(1) X is quasi-compact,
(2) each U ∈ B is quasi-compact open, and
(3) the intersection of any two quasi-compact opens in X is quasi-compact.

Then there exists a hypercovering (I, {Ui}) of X with the following properties
(1) each Ui is an element of the basis B,
(2) each of the In is a finite set, and in particular
(3) each of the coverings (11.0.1), (11.0.2), and (11.0.3) is finite.

Proof. This follows directly from the construction in the proof of Lemma 11.3 if we
choose finite coverings by elements of B in (11.3.1). Details omitted. �

12. Constructing hypercoverings

Let C be a site. In this section we will think of a simplicial object of SR(C) as follows. As
usual, we setKn = K([n]) and we denoteK(ϕ) : Kn → Km the morphism associated to
ϕ : [m]→ [n]. We may writeKn = {Un,i}i∈In . Forϕ : [m]→ [n] the morphismK(ϕ) :
Kn → Km is given by a map α(ϕ) : In → Im and morphisms fϕ,i : Un,i → Um,α(ϕ)(i)
for i ∈ In. The fact that K is a simplicial object of SR(C) implies that (In, α(ϕ)) is a
simplicial set and that fψ,α(ϕ)(i) ◦ fϕ,i = fϕ◦ψ,i when ψ : [l]→ [m].

Lemma 12.1. Let C be a site. Let K be an r-truncated simplicial object of SR(C). The
following are equivalent

(1) K is split (Simplicial, Definition 18.1),
(2) fϕ,i : Un,i → Um,α(ϕ)(i) is an isomorphism for r ≥ n ≥ 0, ϕ : [m] → [n]

surjective, i ∈ In, and
(3) fσn

j
,i : Un,i → Un+1,α(σn

j
)(i) is an isomorphism for 0 ≤ j ≤ n < r, i ∈ In.

The same holds for simplicial objects if in (2) and (3) we set r =∞.

Proof. The splitting of a simplicial set is unique and is given by the nondegenerate
indices N(In) in each degree n, see Simplicial, Lemma 18.2. The coproduct of two objects
{Ui}i∈I and {Uj}j∈J of SR(C) is given by {Ul}l∈IqJ with obvious notation. Hence a
splitting of K must be given by N(Kn) = {Ui}i∈N(In). The equivalence of (1) and
(2) now follows by unwinding the definitions. The equivalence of (2) and (3) follows
from the fact that any surjection ϕ : [m] → [n] is a composition of morphisms σkj with
k = n, n+ 1, . . . ,m− 1. �

Lemma 12.2. Let C be a site with fibre products. Let B ⊂ Ob(C) be a subset. Assume
(1) any object U of C has a covering {Uj → U}j∈J with Uj ∈ B, and
(2) if {Uj → U}j∈J is a covering with Uj ∈ B and {U ′ → U} is a morphism with

U ′ ∈ B, then {Uj → U}j∈J q {U ′ → U} is a covering.
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Then for any X in C there is a hypercovering K of X such that Kn = {Un,i}i∈In with
Un,i ∈ B for all i ∈ In.

Proof. A warmup for this proof is the proof of Lemma 11.3 and we encourage the
reader to read that proof first.

First we replace C by the site C/X . After doing so we may assume thatX is the final object
of C and that C has all finite limits (Categories, Lemma 18.4).

Letn ≥ 0. Let us say that ann-truncatedB-hypercovering ofX is given by ann-truncated
simplicial object K of SR(C) such that for i ∈ Ia, 0 ≤ a ≤ n we have Ua,i ∈ B and such
that K0 is a covering of X and Ka+1 → (coskaskaK)a+1 for a = 0, . . . , n − 1 is a
covering as in Definition 3.1.

SinceX has a covering {U0,i → X}i∈I0 with Ui ∈ B by assumption, we get a 0-truncated
B-hypercovering of X . Observe that any 0-truncated B-hypercovering of X is split, see
Lemma 12.1.

The lemma follows if we can prove forn ≥ 0 that given a splitn-truncatedB-hypercovering
K of X we can extend it to a split (n+ 1)-truncated B-hypercovering of X .

Construction of the extension. Consider the (n + 1)-truncated simplicial object K ′ =
skn+1(cosknK) of SR(C). Write

K ′
n+1 = {U ′

n+1,i}i∈I′
n+1

Since K = sknK ′ we have Ka = K ′
a for 0 ≤ a ≤ n. For every i′ ∈ I ′

n+1 we choose a
covering

(12.2.1) {gn+1,j : Un+1,j → U ′
n+1,i′}j∈Ji′

with Un+1,j ∈ B for j ∈ Ji′ . This is possible by our assumption on B in the lemma. For
0 ≤ m ≤ n denote Nm ⊂ Im the subset of nondegenerate indices. We set

In+1 =
∐

ϕ:[n+1]→[m] surjective, 0≤m≤n
Nm q

∐
i′∈I′

n+1
Ji′

For j ∈ In+1 we set

Un+1,j =
{
Um,i if j = (ϕ, i) where ϕ : [n+ 1]→ [m], i ∈ Nm
Un+1,j if j ∈ Ji′ where i′ ∈ I ′

n+1

with obvious notation. We set Kn+1 = {Un+1,j}j∈In+1 . By construction Un+1,j is an
element of B for all j ∈ In+1. Let us define compatible maps

In+1 → I ′
n+1 and Kn+1 → K ′

n+1

Namely, the first map is given by (ϕ, i) 7→ α′(ϕ)(i) and (j ∈ Ji′) 7→ i′. For the second
map we use the morphisms

f ′
ϕ,i : Um,i → U ′

n+1,α′(ϕ)(i) and gn+1,j : Un+1,j → U ′
n+1,i′

We claim the morphism

Kn+1 → K ′
n+1 = (cosknsknK ′)n+1 = (cosknK)n+1

is a covering as in Definition 3.1. Namely, if i′ ∈ I ′
n+1, then either i′ is nondegenerate

and the inverse image of i′ in In+1 is equal to Ji′ and we get a covering of U ′
n+1,i′ by our

choice (12.2.1), or i′ is degenerate and the inverse image of i′ in In+1 is Ji′ q {(ϕ, i)} for
a unique pair (ϕ, i) and we get a covering by our choice (12.2.1) and assumption (2) of the
lemma.
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To finish the proof we have to define the morphismsK(ϕ) : Kn+1 → Km corresponding
to morphisms ϕ : [m] → [n + 1], 0 ≤ m ≤ n and the morphisms K(ϕ) : Km →
Kn+1 corresponding to morphisms ϕ : [n + 1] → [m], 0 ≤ m ≤ n satisfying suitable
composition relations. For the first kind we use the composition

Kn+1 → K ′
n+1

K′(ϕ)−−−−→ K ′
m = Km

to define K(ϕ) : Kn+1 → Km. For the second kind, suppose given ϕ : [n + 1] → [m],
0 ≤ m ≤ n. We define the corresponding morphism K(ϕ) : Km → Kn+1 as follows:

(1) for i ∈ Im there is a unique surjective map ψ : [m] → [m0] and a unique
i0 ∈ Im0 nondegenerate such that α(ψ)(i0) = i3,

(2) we set ϕ0 = ψ0 ◦ ϕ : [n+ 1]→ [m0] and we map i ∈ Im to (ϕ0, i0) ∈ In+1, in
other words, α(ϕ)(i) = (ϕ0, i0), and

(3) the morphism fϕ,i : Um,i → Un+1,α(ϕ)(i) = Um0,i0 is the inverse of the iso-
morphism fψ,i0 : Um0,i0 → Um,i (see Lemma 12.1).

We omit the straightforward but cumbersome verification that this defines a split (n+1)-
truncatedB-hypercovering ofX extending the given n-truncated one. In fact, everything
is clear from the above, except for the verification that the morphisms K(ϕ) compose
correctly for all ϕ : [a]→ [b] with 0 ≤ a, b ≤ n+ 1. �

Lemma 12.3. Let C be a site with equalizers and fibre products. Let B ⊂ Ob(C) be
a subset. Assume that any object of C has a covering whose members are elements of B.
Then there is a hypercovering K such that Kn = {Ui}i∈In with Ui ∈ B for all i ∈ In.

Proof. This proof is almost the same as the proof of Lemma 12.2. We will only ex-
plain the differences.

Let n ≥ 1. Let us say that an n-truncated B-hypercovering is given by an n-truncated
simplicial object K of SR(C) such that for i ∈ Ia, 0 ≤ a ≤ n we have Ua,i ∈ B and such
that

(1) F (K0)# → ∗ is surjective,
(2) F (K1)# → F (K0)# × F (K0)# is surjective,
(3) F (Ka+1)# → F ((coskaskaK)a+1)# for a = 1, . . . , n− 1 is surjective.

We first explicitly construct a split 1-truncated B-hypercovering.

Take I0 = B and K0 = {U}U∈B. Then (1) holds by our assumption on B. Set

Ω = {(U, V,W, a, b) | U, V,W ∈ B, a : U → V, b : U →W}

Then we set I1 = I0 q Ω. For i ∈ I1 we set U1,i = U0,i if i ∈ I0 and U1,i = U if
i = (U, V,W, a, b) ∈ Ω. The map K(σ0

0) : K0 → K1 corresponds to the inclusion
α(σ0

0) : I0 → I1 and the identity fσ0
0 ,i

: U0,i → U1,i on objects. The mapsK(δ1
0),K(δ1

1) :
K1 → K0 correspond to the two maps I1 → I0 which are the identity on I0 ⊂ I1 and
map (U, V,W, a, b) ∈ Ω ⊂ I1 to V , resp. W . The corresponding morphisms fδ1

0 ,i
, fδ1

1 ,i
:

U1,i → U0,i are the identity if i ∈ I0 and a, b in case i = (U, V,W, a, b) ∈ Ω. The reason
that (2) holds is that any section of F (K0)#×F (K0)# over an object U of C comes, after
replacingU by the members of a covering, from a mapU → F (K0)×F (K0). This in turn
means we have V,W ∈ B and two morphisms U → V and U →W . Further replacing U
by the members of a covering we may assume U ∈ B as desired.

3For example, if i is nondegenerate, then m = m0 and ψ = id[m].
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The lemma follows if we can prove that given a split n-truncated B-hypercovering K for
n ≥ 1 we can extend it to a split (n+ 1)-truncated B-hypercovering. Here the argument
proceeds exactly as in the proof of Lemma 12.2. We omit the precise details, except for
the following comments. First, we do not need assumption (2) in the proof of the cur-
rent lemma as we do not need the morphism Kn+1 → (cosknK)n+1 to be covering; we
only need it to induce a surjection on associated sheaves of sets which follows from Sites,
Lemma 12.4. Second, the assumption that C has fibre products and equalizers guarantees
that SR(C) has fibre products and equalizers and F commutes with these (Lemma 2.3).
This suffices assure us the coskeleton functors used exist (see Simplicial, Remark 19.11 and
Categories, Lemma 18.2). �

Lemma 12.4. Let f : C → D be a morphism of sites given by the functor u : D →
C. Assume D and C have equalizers and fibre products and u commutes with them. If a
simplicial object K of SR(D) is a hypercovering, then u(K) is a hypercovering.

Proof. If we write Kn = {Un,i}i∈In as in the introduction to this section, then
u(K) is the object of SR(C) given by u(Kn) = {u(Ui)}i∈In . By Sites, Lemma 13.5 we
have f−1h#

U = h#
u(U) for U ∈ Ob(D). This means that f−1F (Kn)# = F (u(Kn))#

for all n. Let us check the conditions (1), (2), (3) for u(K) to be a hypercovering from
Definition 6.1. Since f−1 is an exact functor, we find that

F (u(K0))# = f−1F (K0)# → f−1∗ = ∗
is surjective as a pullback of a surjective map and we get (1). Similarly,

F (u(K1))# = f−1F (K1)# → f−1(F (K0)× F (K0))# = F (u(K0))# × F (u(K0))#

is surjective as a pullback and we get (2). For condition (3), in order to conclude by the
same method it suffices if

F ((cosknsknu(K))n+1)# = f−1F ((cosknsknK)n+1)#

The above shows that f−1F (−) = F (u(−)). Thus it suffices to show that u commutes
with the limits used in defining (cosknsknK)n+1 for n ≥ 1. By Simplicial, Remark 19.11
these limits are finite connected limits and u commutes with these by assumption. �

Lemma 12.5. Let C , D be sites. Let u : D → C be a continuous functor. Assume D
and C have fibre products and u commutes with them. Let Y ∈ D and K ∈ SR(D, Y ) a
hypercovering of Y . Then u(K) is a hypercovering of u(Y ).

Proof. This is easier than the proof of Lemma 12.4 because the notion of being a hy-
percovering of an object is stronger, see Definitions 3.3 and 3.1. Namely, u sends coverings
to coverings by the definition of a morphism of sites. It suffices to check u commutes with
the limits used in defining (cosknsknK)n+1 for n ≥ 1. This is clear because the induced
functorD/Y → C/X commutes with all finite limits (and source and target have all finite
limits by Categories, Lemma 18.4). �

Lemma 12.6. Let C be a site. Let B ⊂ Ob(C) be a subset. Assume
(1) C has fibre products,
(2) for all X ∈ Ob(C) there exists a finite covering {Ui → X}i∈I with Ui ∈ B,
(3) if {Ui → X}i∈I is a finite covering with Ui ∈ B and U → X is a morphism

with U ∈ B, then {Ui → X}i∈I q {U → X} is a covering.
Then for every X there exists a hypercovering K of X such that each Kn = {Un,i →
X}i∈In with In finite and Un,i ∈ B.
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Proof. This lemma is the analogue of Lemma 11.4 for sites. To prove the lemma we
follow exactly the proof of Lemma 12.2 paying attention to the following two points

(a) We choose our initial covering {U0,i → X}i∈I0 with U0,i ∈ B such that the
index set I0 is finite, and

(b) in choosing the coverings (12.2.1) we choose Ji′ finite.
The reader sees easily that with these modifications we end up with finite index sets In for
all n. �

Remark 12.7. Let C be a site. Let K and L be objects of SR(C). Write K = {Ui}i∈I
and L = {Vj}j∈J . Assume U =

∐
i∈I Ui and V =

∐
j∈J Vj exist. Then we get

MorSR(C)(K,L) −→ MorC(U, V )
as follows. Given f : K → L given by α : I → J and fi : Ui → Vα(i) we obtain a
transformation of functors

MorC(V,−) =
∏

j∈J
MorC(Vj ,−)→

∏
i∈I

MorC(Ui,−) = MorC(U,−)

sending (gj)j∈J to (gα(i) ◦ fi)i∈I . Hence the Yoneda lemma produces the corresponding
map U → V . Of course, U → V maps the summand Ui into the summand Vα(i) via the
morphism fi.

Remark 12.8. Let C be a site. Assume C has fibre products and equalizers and let K
be a hypercovering. Write Kn = {Un,i}i∈In . Suppose that

(a) Un =
∐
i∈In Un,i exists, and

(b)
∐
i∈In hUn,i → hUn induces an isomorphism on sheafifications.

Then we get another simplicial object L of SR(C) with Ln = {Un}, see Remark 12.7.
Now we claim that L is a hypercovering. To see this we check conditions (1), (2), (3) of
Definition 6.1. Condition (1) follows from (b) and (1) for K. Condition (2) follows in
exactly the same way. Condition (3) follows because

F ((cosknsknL)n+1)# = ((cosknsknF (L)#)n+1)
= ((cosknsknF (K)#)n+1)
= F ((cosknsknK)n+1)#

for n ≥ 1 and hence the condition for K implies the condition for L exactly as in (1) and
(2). Note that F commutes with connected limits and sheafification is exact proving the
first and last equality; the middle equality follows as F (K)# = F (L)# by (b).

Remark 12.9. Let C be a site. Let X ∈ Ob(C). Assume C has fibre products and let
K be a hypercovering of X . Write Kn = {Un,i}i∈In . Suppose that

(a) Un =
∐
i∈In Un,i exists,

(b) given morphisms (α, fi) : {Ui}i∈I → {Vj}j∈J and (β, gk) : {Wk}k∈K →
{Vj}j∈J in SR(C) such that U =

∐
Ui, V =

∐
Vj , and W =

∐
Wj exist, then

U ×V W =
∐

(i,j,k),α(i)=j=β(k) Ui ×Vj Wk ,
(c) if (α, fi) : {Ui}i∈I → {Vj}j∈J is a covering in the sense of Definition 3.1 and

U =
∐
Ui and V =

∐
Vj exist, then the corresponding morphism U → V of

Remark 12.7 is a covering of C.
Then we get another simplicial object L of SR(C) with Ln = {Un}, see Remark 12.7.
Now we claim that L is a hypercovering of X . To see this we check conditions (1), (2)
of Definition 3.3. Condition (1) follows from (c) and (1) for K because (1) for K says
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K0 = {U0,i}i∈I0 is a covering of {X} in the sense of Definition 3.1. Condition (2) follows
because C/X has all finite limits hence SR(C/X) has all finite limits, and condition (b) says
the construction of “taking disjoint unions” commutes with these fimite limits. Thus the
morphism

Ln+1 −→ (cosknsknL)n+1

is a covering as it is the consequence of applying our “taking disjoint unions” functor to
the morphism

Kn+1 −→ (cosknsknK)n+1

which is assumed to be a covering in the sense of Definition 3.1 by (2) for K. This makes
sense because property (b) in particular assures us that if we start with a finite diagram of
semi-representable objects overX for which we can take disjoint unions, then the limit of
the diagram in SR(C/X) still is a semi-representable object over X for which we can take
disjoint unions.
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CHAPTER 26

Schemes

1. Introduction

In this document we define schemes. A basic reference is [?].

2. Locally ringed spaces

Recall that we defined ringed spaces in Sheaves, Section 25. Briefly, a ringed space is a pair
(X,OX) consisting of a topological space X and a sheaf of rings OX . A morphism of
ringed spaces f : (X,OX) → (Y,OY ) is given by a continuous map f : X → Y and an
f -map of sheaves of rings f ] : OY → OX . You can think of f ] as a map OY → f∗OX ,
see Sheaves, Definition 21.7 and Lemma 21.8.

A good geometric example of this to keep in mind is C∞-manifolds and morphisms of
C∞-manifolds. Namely, ifM is a C∞-manifold, then the sheaf C∞

M of smooth functions is
a sheaf of rings onM . And any map f : M → N of manifolds is smooth if and only if for
every local section h of C∞

N the composition h ◦ f is a local section of C∞
M . Thus a smooth

map f gives rise in a natural way to a morphism of ringed spaces

f : (M, C∞
M ) −→ (N, C∞

N )

see Sheaves, Example 25.2. It is instructive to consider what happens to stalks. Namely,
let m ∈ M with image f(m) = n ∈ N . Recall that the stalk C∞

M,m is the ring of germs
of smooth functions at m, see Sheaves, Example 11.4. The algebra of germs of functions
on (M,m) is a local ring with maximal ideal the functions which vanish at m. Similarly
for C∞

N,n. The map on stalks f ] : C∞
N,n → C∞

M,m maps the maximal ideal into the maximal
ideal, simply because f(m) = n.

In algebraic geometry we study schemes. On a scheme the sheaf of rings is not determined
by an intrinsic property of the space. The spectrum of a ring R (see Algebra, Section 17)
endowed with a sheaf of rings constructed out of R (see below), will be our basic build-
ing block. It will turn out that the stalks of O on Spec(R) are the local rings of R at its
primes. There are two reasons to introduce locally ringed spaces in this setting: (1) There
is in general no mechanism that assigns to a continuous map of spectra a map of the cor-
responding rings. This is why we add as an extra datum the map f ]. (2) If we consider
morphisms of these spectra in the category of ringed spaces, then the maps on stalks may
not be local homomorphisms. Since our geometric intuition says it should we introduce
locally ringed spaces as follows.

Definition 2.1. Locally ringed spaces.
(1) A locally ringed space (X,OX) is a pair consisting of a topological space X and

a sheaf of ringsOX all of whose stalks are local rings.

2249
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(2) Given a locally ringed space (X,OX) we say that OX,x is the local ring of X
at x. We denote mX,x or simply mx the maximal ideal of OX,x. Moreover, the
residue field of X at x is the residue field κ(x) = OX,x/mx.

(3) A morphism of locally ringed spaces (f, f ]) : (X,OX) → (Y,OY ) is a mor-
phism of ringed spaces such that for all x ∈ X the induced ring mapOY,f(x) →
OX,x is a local ring map.

We will usually suppress the sheaf of rings OX in the notation when discussing locally
ringed spaces. We will simply refer to “the locally ringed space X”. We will by abuse of
notation think of X also as the underlying topological space. Finally we will denote the
corresponding sheaf of rings OX as the structure sheaf of X . In addition, it is customary
to denote the maximal ideal of the local ring OX,x by mX,x or simply mx. We will say
“let f : X → Y be a morphism of locally ringed spaces” thereby suppressing the structure
sheaves even further. In this case, we will by abuse of notation think of f : X → Y also as
the underlying continuous map of topological spaces. The f -map corresponding to f will
customarily be denoted f ]. The condition that f is a morphism of locally ringed spaces
can then be expressed by saying that for every x ∈ X the map on stalks

f ]x : OY,f(x) −→ OX,x

maps the maximal ideal mY,f(x) into mX,x.

Let us use these notational conventions to show that the collection of locally ringed spaces
and morphisms of locally ringed spaces forms a category. In order to see this we have to
show that the composition of morphisms of locally ringed spaces is a morphism of locally
ringed spaces. OK, so let f : X → Y and g : Y → Z be morphism of locally ringed
spaces. The composition of f and g is defined in Sheaves, Definition 25.3. Let x ∈ X . By
Sheaves, Lemma 21.10 the composition

OZ,g(f(x))
g]−→ OY,f(x)

f]−→ OX,x

is the associated map on stalks for the morphism g ◦ f . The result follows since a compo-
sition of local ring homomorphisms is a local ring homomorphism.

A pleasing feature of the definition is the fact that the functor

Locally ringed spaces −→ Ringed spaces

reflects isomorphisms (plus more). Here is a less abstract statement.

Lemma 2.2. Let X , Y be locally ringed spaces. If f : X → Y is an isomorphism of
ringed spaces, then f is an isomorphism of locally ringed spaces.

Proof. This follows trivially from the corresponding fact in algebra: Suppose A, B
are local rings. Any isomorphism of rings A→ B is a local ring homomorphism. �

3. Open immersions of locally ringed spaces

Definition 3.1. Let f : X → Y be a morphism of locally ringed spaces. We say that
f is an open immersion if f is a homeomorphism of X onto an open subset of Y , and the
map f−1OY → OX is an isomorphism.

The following construction is parallel to Sheaves, Definition 31.2 (3).
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Example 3.2. Let X be a locally ringed space. Let U ⊂ X be an open subset. Let
OU = OX |U be the restriction ofOX to U . For u ∈ U the stalkOU,u is equal to the stalk
OX,u, and hence is a local ring. Thus (U,OU ) is a locally ringed space and the morphism
j : (U,OU )→ (X,OX) is an open immersion.

Definition 3.3. Let X be a locally ringed space. Let U ⊂ X be an open subset. The
locally ringed space (U,OU ) of Example 3.2 above is the open subspace ofX associated to
U .

Lemma 3.4. Let f : X → Y be an open immersion of locally ringed spaces. Let
j : V = f(X) → Y be the open subspace of Y associated to the image of f . There is a
unique isomorphism f ′ : X ∼= V of locally ringed spaces such that f = j ◦ f ′.

Proof. Let f ′ be the homeomorphism betweenX and V induced by f . Then f = j ◦
f ′ as maps of topological spaces. Since there is an isomorphism of sheaves f ] : f−1(OY )→
OX , there is an isomorphism of rings f ] : Γ(U, f−1(OY )) → Γ(U,OX) for each open
subset U ⊂ X . Since OV = j−1OY and f−1 = f ′−1j−1 (Sheaves, Lemma 21.6) we see
that f−1OY = f ′−1OV , hence Γ(U, f ′−1(OV )) → Γ(U, f−1(OY )) is an isomorphism
for every U ⊂ X open. By composing these we get an isomorphism of rings

Γ(U, f ′−1(OV ))→ Γ(U,OX)
for each open subset U ⊂ X , and therefore an isomorphism of sheaves f−1(OV ) →
OX . In other words, we have an isomorphism f ′] : f ′−1(OV ) → OX and therefore an
isomorphism of locally ringed spaces (f ′, f ′]) : (X,OX) → (V,OV ) (use Lemma 2.2).
Note that f = j ◦ f ′ as morphisms of locally ringed spaces by construction.

Suppose we have another morphism f ′′ : (X,OX) → (V,OV ) such that f = j ◦ f ′′. At
any point x ∈ X , we have j(f ′(x)) = j(f ′′(x)) from which it follows that f ′(x) = f ′′(x)
since j is the inclusion map; therefore f ′ and f ′′ are the same as morphisms of topological
spaces. On structure sheaves, for each open subsetU ⊂ X we have a commutative diagram

Γ(U, f−1(OY ))

∼=

��

∼= // Γ(U,OX)

Γ(U, f ′−1(OV ))

f ′]

88

f ′′]

AA

from which we see that f ′] and f ′′] define the same morphism of sheaves. �

From now on we do not distinguish between open subsets and their associated subspaces.

Lemma 3.5. Let f : X → Y be a morphism of locally ringed spaces. Let U ⊂ X ,
and V ⊂ Y be open subsets. Suppose that f(U) ⊂ V . There exists a unique morphism
of locally ringed spaces f |U : U → V such that the following diagram is a commutative
square of locally ringed spaces

U

f |U
��

// X

f

��
V // Y

Proof. Omitted. �
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In the following we will use without further mention the following fact which follows
from the lemma above. Given any morphism f : Y → X of locally ringed spaces, and
any open subset U ⊂ X such that f(Y ) ⊂ U , then there exists a unique morphism of
locally ringed spaces Y → U such that the composition Y → U → X is equal to f . In
fact, we will even by abuse of notation write f : Y → U since this rarely gives rise to
confusion.

4. Closed immersions of locally ringed spaces

We follow our conventions introduced in Modules, Definition 13.1.

Definition 4.1. Let i : Z → X be a morphism of locally ringed spaces. We say that
i is a closed immersion if:

(1) The map i is a homeomorphism of Z onto a closed subset of X .
(2) The mapOX → i∗OZ is surjective; let I denote the kernel.
(3) TheOX -module I is locally generated by sections.

Lemma 4.2. Let f : Z → X be a morphism of locally ringed spaces. In order for f
to be a closed immersion it suffices that there exists an open coveringX =

⋃
Ui such that

each f : f−1Ui → Ui is a closed immersion.

Proof. Omitted. �

Example 4.3. LetX be a locally ringed space. Let I ⊂ OX be a sheaf of ideals which
is locally generated by sections as a sheaf ofOX -modules. LetZ be the support of the sheaf
of rings OX/I . This is a closed subset of X , by Modules, Lemma 5.3. Denote i : Z → X
the inclusion map. By Modules, Lemma 6.1 there is a unique sheaf of ringsOZ on Z with
i∗OZ = OX/I . For any z ∈ Z the stalk OZ,z is equal to a quotient OX,i(z)/Ii(z) of
a local ring and nonzero, hence a local ring. Thus i : (Z,OZ) → (X,OX) is a closed
immersion of locally ringed spaces.

Definition 4.4. Let X be a locally ringed space. Let I be a sheaf of ideals on X
which is locally generated by sections. The locally ringed space (Z,OZ) of Example 4.3
above is the closed subspace of X associated to the sheaf of ideals I .

Lemma 4.5. Let f : X → Y be a closed immersion of locally ringed spaces. Let
I be the kernel of the map OY → f∗OX . Let i : Z → Y be the closed subspace of Y
associated to I . There is a unique isomorphism f ′ : X ∼= Z of locally ringed spaces such
that f = i ◦ f ′.

Proof. Omitted. �

Lemma 4.6. LetX , Y be locally ringed spaces. Let I ⊂ OX be a sheaf of ideals locally
generated by sections. Let i : Z → X be the associated closed subspace. A morphism
f : Y → X factors through Z if and only if the map f∗I → f∗OX = OY is zero. If this
is the case the morphism g : Y → Z such that f = i ◦ g is unique.

Proof. Clearly if f factors as Y → Z → X then the map f∗I → OY is zero.
Conversely suppose that f∗I → OY is zero. Pick any y ∈ Y , and consider the ring
map f ]y : OX,f(y) → OY,y . Since the composition If(y) → OX,f(y) → OY,y is zero by
assumption and since f ]y(1) = 1 we see that 1 6∈ If(y), i.e., If(y) 6= OX,f(y). We conclude
that f(Y ) ⊂ Z = Supp(OX/I). Hence f = i ◦ g where g : Y → Z is continuous.
Consider the map f ] : OX → f∗OY . The assumption f∗I → OY is zero implies that the
composition I → OX → f∗OY is zero by adjointness of f∗ and f∗. In other words, we
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obtain a morphism of sheaves of rings f ] : OX/I → f∗OY . Note that f∗OY = i∗g∗OY
and thatOX/I = i∗OZ . By Sheaves, Lemma 32.4 we obtain a unique morphism of sheaves
of rings g] : OZ → g∗OY whose pushforward under i is f ]. We omit the verification that
(g, g]) defines a morphism of locally ringed spaces and that f = i ◦ g as a morphism of
locally ringed spaces. The uniqueness of (g, g]) was pointed out above. �

Lemma 4.7. Let f : X → Y be a morphism of locally ringed spaces. Let I ⊂ OY
be a sheaf of ideals which is locally generated by sections. Let i : Z → Y be the closed
subspace associated to the sheaf of ideals I . LetJ be the image of the map f∗I → f∗OY =
OX . Then this ideal is locally generated by sections. Moreover, let i′ : Z ′ → X be the
associated closed subspace of X . There exists a unique morphism of locally ringed spaces
f ′ : Z ′ → Z such that the following diagram is a commutative square of locally ringed
spaces

Z ′

f ′

��

i′
// X

f

��
Z

i // Y

Moreover, this diagram is a fibre square in the category of locally ringed spaces.

Proof. The idealJ is locally generated by sections by Modules, Lemma 8.2. The rest
of the lemma follows from the characterization, in Lemma 4.6 above, of what it means for
a morphism to factor through a closed subspace. �

5. Affine schemes

Let R be a ring. Consider the topological space Spec(R) associated to R, see Algebra,
Section 17. We will endow this space with a sheaf of ringsOSpec(R) and the resulting pair
(Spec(R),OSpec(R)) will be an affine scheme.

Recall that Spec(R) has a basis of open setsD(f), f ∈ Rwhich we call standard opens, see
Algebra, Definition 17.3. In addition, the intersection of two standard opens is another:
D(f) ∩D(g) = D(fg), f, g ∈ R.

Lemma 5.1. Let R be a ring. Let f ∈ R.
(1) If g ∈ R and D(g) ⊂ D(f), then

(a) f is invertible in Rg ,
(b) ge = af for some e ≥ 1 and a ∈ R,
(c) there is a canonical ring map Rf → Rg , and
(d) there is a canonical Rf -module map Mf →Mg for any R-module M .

(2) Any open covering of D(f) can be refined to a finite open covering of the form
D(f) =

⋃n
i=1 D(gi).

(3) If g1, . . . , gn ∈ R, then D(f) ⊂
⋃
D(gi) if and only if g1, . . . , gn generate the

unit ideal in Rf .

Proof. Recall that D(g) = Spec(Rg) (see Algebra, Lemma 17.6). Thus (a) holds
because f maps to an element of Rg which is not contained in any prime ideal, and hence
invertible, see Algebra, Lemma 17.2. Write the inverse of f in Rg as a/gd. This means
gd − af is annihilated by a power of g, whence (b). For (c), the map Rf → Rg exists by
(a) from the universal property of localization, or we can define it by mapping b/fn to
anb/gne. The equality Mf = M ⊗R Rf can be used to obtain the map on modules, or we
can define Mf →Mg by mapping x/fn to anx/gne.
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Recall that D(f) is quasi-compact, see Algebra, Lemma 29.1. Hence the second statement
follows directly from the fact that the standard opens form a basis for the topology.

The third statement follows directly from Algebra, Lemma 17.2. �

In Sheaves, Section 30 we defined the notion of a sheaf on a basis, and we showed that it is
essentially equivalent to the notion of a sheaf on the space, see Sheaves, Lemmas 30.6 and
30.9. Moreover, we showed in Sheaves, Lemma 30.4 that it is sufficient to check the sheaf
condition on a cofinal system of open coverings for each standard open. By the lemma
above it suffices to check on the finite coverings by standard opens.

Definition 5.2. Let R be a ring.
(1) A standard open covering of Spec(R) is a covering Spec(R) =

⋃n
i=1 D(fi),

where f1, . . . , fn ∈ R.
(2) Suppose that D(f) ⊂ Spec(R) is a standard open. A standard open covering of

D(f) is a covering D(f) =
⋃n
i=1 D(gi), where g1, . . . , gn ∈ R.

Let R be a ring. Let M be an R-module. We will define a presheaf M̃ on the basis of
standard opens. Suppose that U ⊂ Spec(R) is a standard open. If f, g ∈ R are such
that D(f) = D(g), then by Lemma 5.1 above there are canonical maps Mf → Mg and
Mg →Mf which are mutually inverse. Hence we may choose any f such that U = D(f)
and define

M̃(U) = Mf .

Note that if D(g) ⊂ D(f), then by Lemma 5.1 above we have a canonical map

M̃(D(f)) = Mf −→Mg = M̃(D(g)).

Clearly, this defines a presheaf of abelian groups on the basis of standard opens. IfM = R,
then R̃ is a presheaf of rings on the basis of standard opens.

Let us compute the stalk of M̃ at a point x ∈ Spec(R). Suppose that x corresponds to the
prime p ⊂ R. By definition of the stalk we see that

M̃x = colimf∈R,f 6∈pMf

Here the set {f ∈ R, f 6∈ p} is preordered by the rule f ≥ f ′ ⇔ D(f) ⊂ D(f ′). If
f1, f2 ∈ R \ p, then we have f1f2 ≥ f1 in this ordering. Hence by Algebra, Lemma 9.9
we conclude that

M̃x = Mp.

Next, we check the sheaf condition for the standard open coverings. IfD(f) =
⋃n
i=1 D(gi),

then the sheaf condition for this covering is equivalent with the exactness of the sequence

0→Mf →
⊕

Mgi →
⊕

Mgigj .

Note that D(gi) = D(fgi), and hence we can rewrite this sequence as the sequence

0→Mf →
⊕

Mfgi →
⊕

Mfgigj .

In addition, by Lemma 5.1 above we see that g1, . . . , gn generate the unit ideal in Rf .
Thus we may apply Algebra, Lemma 24.1 to the module Mf over Rf and the elements
g1, . . . , gn. We conclude that the sequence is exact. By the remarks made above, we see
that M̃ is a sheaf on the basis of standard opens.
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Thus we conclude from the material in Sheaves, Section 30 that there exists a unique sheaf
of ringsOSpec(R) which agrees with R̃ on the standard opens. Note that by our computa-
tion of stalks above, the stalks of this sheaf of rings are all local rings.

Similarly, for anyR-moduleM there exists a unique sheaf ofOSpec(R)-modules F which
agrees with M̃ on the standard opens, see Sheaves, Lemma 30.12.

Definition 5.3. Let R be a ring.
(1) The structure sheaf OSpec(R) of the spectrum of R is the unique sheaf of rings
OSpec(R) which agrees with R̃ on the basis of standard opens.

(2) The locally ringed space (Spec(R),OSpec(R)) is called the spectrum of R and
denoted Spec(R).

(3) The sheaf of OSpec(R)-modules extending M̃ to all opens of Spec(R) is called
the sheaf ofOSpec(R)-modules associated toM . This sheaf is denoted M̃ as well.

We summarize the results obtained so far.

Lemma 5.4. LetR be a ring. LetM be anR-module. Let M̃ be the sheaf ofOSpec(R)-
modules associated to M .

(1) We have Γ(Spec(R),OSpec(R)) = R.
(2) We have Γ(Spec(R), M̃) = M as an R-module.
(3) For every f ∈ R we have Γ(D(f),OSpec(R)) = Rf .
(4) For every f ∈ R we have Γ(D(f), M̃) = Mf as an Rf -module.
(5) Whenever D(g) ⊂ D(f) the restriction mappings on OSpec(R) and M̃ are the

maps Rf → Rg and Mf →Mg from Lemma 5.1.
(6) Let p be a prime ofR, and let x ∈ Spec(R) be the corresponding point. We have
OSpec(R),x = Rp.

(7) Let p be a prime ofR, and let x ∈ Spec(R) be the corresponding point. We have
M̃x = Mp as an Rp-module.

Moreover, all these identifications are functorial in the R module M . In particular, the
functor M 7→ M̃ is an exact functor from the category of R-modules to the category of
OSpec(R)-modules.

Proof. Assertions (1) - (7) are clear from the discussion above. The exactness of the
functor M 7→ M̃ follows from the fact that the functor M 7→ Mp is exact and the fact
that exactness of short exact sequences may be checked on stalks, see Modules, Lemma
3.1. �

Definition 5.5. An affine scheme is a locally ringed space isomorphic as a locally
ringed space to Spec(R) for some ringR. A morphism of affine schemes is a morphism in
the category of locally ringed spaces.

It turns out that affine schemes play a special role among all locally ringed spaces, which
is what the next section is about.

6. The category of affine schemes

Note that if Y is an affine scheme, then its points are in canonical 1 − 1 bijection with
prime ideals in Γ(Y,OY ).
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Lemma 6.1. Let X be a locally ringed space. Let Y be an affine scheme. Let f ∈
Mor(X,Y ) be a morphism of locally ringed spaces. Given a point x ∈ X consider the
ring maps

Γ(Y,OY ) f]−→ Γ(X,OX)→ OX,x
Let p ⊂ Γ(Y,OY ) denote the inverse image of mx. Let y ∈ Y be the corresponding point.
Then f(x) = y.

Proof. Consider the commutative diagram

Γ(X,OX) // OX,x

Γ(Y,OY ) //

OO

OY,f(x)

OO

(see the discussion of f -maps below Sheaves, Definition 21.7). Since the right vertical
arrow is local we see that mf(x) is the inverse image of mx. The result follows. �

Lemma 6.2. Let X be a locally ringed space. Let f ∈ Γ(X,OX). The set

D(f) = {x ∈ X | image f 6∈ mx}
is open. Moreover f |D(f) has an inverse.

Proof. This is a special case of Modules, Lemma 25.10, but we also give a direct proof.
Suppose that U ⊂ X and V ⊂ X are two open subsets such that f |U has an inverse
g and f |V has an inverse h. Then clearly g|U∩V = h|U∩V . Thus it suffices to show
that f is invertible in an open neighbourhood of any x ∈ D(f). This is clear because
f 6∈ mx implies that f ∈ OX,x has an inverse g ∈ OX,x which means there is some open
neighbourhood x ∈ U ⊂ X so that g ∈ OX(U) and g · f |U = 1. �

Lemma 6.3. In Lemma 6.2 above, ifX is an affine scheme, then the openD(f) agrees
with the standard open D(f) defined previously (in Algebra, Definition 17.1).

Proof. Omitted. �

Lemma 6.4. Let X be a locally ringed space. Let Y be an affine scheme. The map

Mor(X,Y ) −→ Hom(Γ(Y,OY ),Γ(X,OX))
which maps f to f ] (on global sections) is bijective.

Proof. Since Y is affine we have (Y,OY ) ∼= (Spec(R),OSpec(R)) for some ring R.
During the proof we will use facts about Y and its structure sheaf which are direct conse-
quences of things we know about the spectrum of a ring, see e.g. Lemma 5.4.

Motivated by the lemmas above we construct the inverse map. Let ψY : Γ(Y,OY ) →
Γ(X,OX) be a ring map. First, we define the corresponding map of spaces

Ψ : X −→ Y

by the rule of Lemma 6.1. In other words, given x ∈ X we define Ψ(x) to be the point
of Y corresponding to the prime in Γ(Y,OY ) which is the inverse image of mx under the
composition Γ(Y,OY ) ψY−−→ Γ(X,OX)→ OX,x.

We claim that the map Ψ : X → Y is continuous. The standard opens D(g), for g ∈
Γ(Y,OY ) are a basis for the topology of Y . Thus it suffices to prove that Ψ−1(D(g)) is
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open. By construction of Ψ the inverse image Ψ−1(D(g)) is exactly the set D(ψY (g)) ⊂
X which is open by Lemma 6.2. Hence Ψ is continuous.
Next we construct a Ψ-map of sheaves from OY to OX . By Sheaves, Lemma 30.14 it
suffices to define ring maps ψD(g) : Γ(D(g),OY ) → Γ(Ψ−1(D(g)),OX) compatible
with restriction maps. We have a canonical isomorphism Γ(D(g),OY ) = Γ(Y,OY )g ,
because Y is an affine scheme. Because ψY (g) is invertible onD(ψY (g)) we see that there
is a canonical map

Γ(Y,OY )g −→ Γ(Ψ−1(D(g)),OX) = Γ(D(ψY (g)),OX)
extending the map ψY by the universal property of localization. Note that there is no
choice but to take the canonical map here! And we take this, combined with the canonical
identification Γ(D(g),OY ) = Γ(Y,OY )g , to be ψD(g). This is compatible with local-
ization since the restriction mapping on the affine schemes are defined in terms of the
universal properties of localization also, see Lemmas 5.4 and 5.1.
Thus we have defined a morphism of ringed spaces (Ψ, ψ) : (X,OX) → (Y,OY ) recov-
ering ψY on global sections. To see that it is a morphism of locally ringed spaces we have
to show that the induced maps on local rings

ψx : OY,Ψ(x) −→ OX,x
are local. This follows immediately from the commutative diagram of the proof of Lemma
6.1 and the definition of Ψ.
Finally, we have to show that the constructions (Ψ, ψ) 7→ ψY and the constructionψY 7→
(Ψ, ψ) are inverse to each other. Clearly, ψY 7→ (Ψ, ψ) 7→ ψY . Hence the only thing to
prove is that given ψY there is at most one pair (Ψ, ψ) giving rise to it. The uniqueness
of Ψ was shown in Lemma 6.1 and given the uniqueness of Ψ the uniqueness of the map
ψ was pointed out during the course of the proof above. �

Lemma 6.5. The category of affine schemes is equivalent to the opposite of the cate-
gory of rings. The equivalence is given by the functor that associates to an affine scheme
the global sections of its structure sheaf.

Proof. This is now clear from Definition 5.5 and Lemma 6.4. �

Lemma 6.6. Let Y be an affine scheme. Let f ∈ Γ(Y,OY ). The open subspace D(f)
is an affine scheme.

Proof. We may assume that Y = Spec(R) and f ∈ R. Consider the morphism of
affine schemes φ : U = Spec(Rf ) → Spec(R) = Y induced by the ring map R → Rf .
By Algebra, Lemma 17.6 we know that it is a homeomorphism onto D(f). On the other
hand, the map φ−1OY → OU is an isomorphism on stalks, hence an isomorphism. Thus
we see that φ is an open immersion. We conclude thatD(f) is isomorphic to U by Lemma
3.4. �

Lemma 6.7. The category of affine schemes has finite products, and fibre products. In
other words, it has finite limits. Moreover, the products and fibre products in the category
of affine schemes are the same as in the category of locally ringed spaces. In a formula, we
have (in the category of locally ringed spaces)

Spec(R)× Spec(S) = Spec(R⊗Z S)
and given ring maps R→ A, R→ B we have

Spec(A)×Spec(R) Spec(B) = Spec(A⊗R B).
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Proof. This is just an application of Lemma 6.4. First of all, by that lemma, the affine
scheme Spec(Z) is the final object in the category of locally ringed spaces. Thus the first
displayed formula follows from the second. To prove the second note that for any locally
ringed space X we have

Mor(X, Spec(A⊗R B)) = Hom(A⊗R B,OX(X))
= Hom(A,OX(X))×Hom(R,OX(X)) Hom(B,OX(X))
= Mor(X, Spec(A))×Mor(X,Spec(R)) Mor(X, Spec(B))

which proves the formula. See Categories, Section 6 for the relevant definitions. �

Lemma 6.8. LetX be a locally ringed space. AssumeX = U qV withU and V open
and such that U , V are affine schemes. Then X is an affine scheme.

Proof. SetR = Γ(X,OX). Note thatR = OX(U)×OX(V ) by the sheaf property.
By Lemma 6.4 there is a canonical morphism of locally ringed spaces X → Spec(R). By
Algebra, Lemma 21.2 we see that as a topological space Spec(OX(U))q Spec(OX(V )) =
Spec(R) with the maps coming from the ring homomorphisms R → OX(U) and R →
OX(V ). This of course means that Spec(R) is the coproduct in the category of locally
ringed spaces as well. By assumption the morphism X → Spec(R) induces an isomor-
phism of Spec(OX(U)) with U and similarly for V . Hence X → Spec(R) is an isomor-
phism. �

7. Quasi-coherent sheaves on affines

Recall that we have defined the abstract notion of a quasi-coherent sheaf in Modules, Def-
inition 10.1. In this section we show that any quasi-coherent sheaf on an affine scheme
Spec(R) corresponds to the sheaf M̃ associated to an R-module M .

Lemma 7.1. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let M be an
R-module. There exists a canonical isomorphism between the sheaf M̃ associated to the
R-moduleM (Definition 5.3) and the sheafFM associated to theR-moduleM (Modules,
Definition 10.6). This isomorphism is functorial in M . In particular, the sheaves M̃ are
quasi-coherent. Moreover, they are characterized by the following mapping property

HomOX
(M̃,F) = HomR(M,Γ(X,F))

for any sheaf of OX -modules F . Here a map α : M̃ → F corresponds to its effect on
global sections.

Proof. By Modules, Lemma 10.5 we have a morphism FM → M̃ corresponding
to the map M → Γ(X, M̃) = M . Let x ∈ X correspond to the prime p ⊂ R. The
induced map on stalks are the mapsOX,x ⊗RM →Mp which are isomorphisms because
Rp ⊗R M = Mp. Hence the map FM → M̃ is an isomorphism. The mapping property
follows from the mapping property of the sheaves FM . �

Lemma 7.2. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. There are
canonical isomorphisms

(1) M̃ ⊗R N ∼= M̃ ⊗OX
Ñ , see Modules, Section 16.

(2) T̃n(M) ∼= Tn(M̃), ˜Symn(M) ∼= Symn(M̃), and ∧̃n(M) ∼= ∧n(M̃), see Mod-
ules, Section 21.
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(3) if M is a finitely presented R-module, then HomOX
(M̃, Ñ) ∼= ˜HomR(M,N),

see Modules, Section 22.

First proof. Using Lemma 7.1 and Modules, Lemma 10.5 we see that the functor
M 7→ M̃ can be viewed asπ∗ for a morphismπ of ringed spaces. And pulling back modules
commutes with tensor constructions by Modules, Lemmas 16.4 and 21.3. The morphism
π : (X,OX) → ({∗}, R) is flat for example because the stalks of OX are localizations of
R (Lemma 5.4) and hence flat over R. Thus pullback by π commutes with internal hom
if the first module is finitely presented by Modules, Lemma 22.5. �

Second proof. Proof of (1). By Lemma 7.1 to give a map M̃ ⊗R N into M̃ ⊗OX
Ñ

we have to give a map on global sections M ⊗R N → Γ(X, M̃ ⊗OX
Ñ) which exists

by definition of the tensor product of sheaves of modules. To see that this map is an
isomorphism it suffices to check that it is an isomorphism on stalks. And this follows from
the description of the stalks of M̃ (either in Lemma 5.4 or in Modules, Lemma 10.5), the
fact that tensor product commutes with localization (Algebra, Lemma 12.16) and Modules,
Lemma 16.1.

Proof of (2). This is similar to the proof of (1), using Algebra, Lemma 13.6 and Modules,
Lemma 21.2.

Proof of (3). Since the construction M 7→ M̃ is functorial there is an R-linear map
HomR(M,N)→ HomOX

(M̃, Ñ). The target of this map is the global sections ofHomOX
(M̃, Ñ).

Hence by Lemma 7.1 we obtain a map ofOX -modules ˜HomR(M,N)→ HomOX
(M̃, Ñ).

We check that this is an isomorphism by comparing stalks. IfM is finitely presented as an
R-module then M̃ has a global finite presentation as an OX -module. Hence we conclude
using Algebra, Lemma 10.2 and Modules, Lemma 22.4. �

Third proof of part (1). For any OX -module F we have the following isomor-
phisms functorial in M , N , and F

HomOX
(M̃ ⊗OX

Ñ ,F) = HomOX
(M̃,HomOX

(Ñ ,F))

= HomR(M,Γ(X,HomOX
(Ñ ,F))

= HomR(M,HomOX
(Ñ ,F))

= HomR(M,HomR(N,Γ(X,F)))
= HomR(M ⊗R N,Γ(X,F))

= HomOX
(M̃ ⊗R N,F)

The first equality is Modules, Lemma 22.1. The second equality is the universal property of
M̃ , see Lemma 7.1. The third equality holds by definition ofHom. The fourth equality is
the universal property of Ñ . Then fifth equality is Algebra, Lemma 12.8. The final equality
is the universal property of M̃ ⊗R N . By the Yoneda lemma (Categories, Lemma 3.5) we
obtain (1). �

Lemma 7.3. Let (X,OX) = (Spec(S),OSpec(S)), (Y,OY ) = (Spec(R),OSpec(R))
be affine schemes. Let ψ : (X,OX) → (Y,OY ) be a morphism of affine schemes, corre-
sponding to the ring map ψ] : R→ S (see Lemma 6.5).

(1) We have ψ∗M̃ = ˜S ⊗RM functorially in the R-module M .
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(2) We have ψ∗Ñ = ÑR functorially in the S-module N .

Proof. The first assertion follows from the identification in Lemma 7.1 and the result
of Modules, Lemma 10.7. The second assertion follows from the fact that ψ−1(D(f)) =
D(ψ](f)) and hence

ψ∗Ñ(D(f)) = Ñ(D(ψ](f))) = Nψ](f) = (NR)f = ÑR(D(f))

as desired. �

Lemma 7.3 above says in particular that if you restrict the sheaf M̃ to a standard affine
open subspace D(f), then you get M̃f . We will use this from now on without further
mention.

Lemma 7.4. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let F be a
quasi-coherentOX -module. ThenF is isomorphic to the sheaf associated to theR-module
Γ(X,F).

Proof. Let F be a quasi-coherent OX -module. Since every standard open D(f) is
quasi-compact we see that X is a locally quasi-compact, i.e., every point has a fundamen-
tal system of quasi-compact neighbourhoods, see Topology, Definition 13.1. Hence by
Modules, Lemma 10.8 for every prime p ⊂ R corresponding to x ∈ X there exists an
open neighbourhood x ∈ U ⊂ X such thatF|U is isomorphic to the quasi-coherent sheaf
associated to some OX(U)-module M . In other words, we get an open covering by U ’s
with this property. By Lemma 5.1 for example we can refine this covering to a standard
open covering. Thus we get a covering Spec(R) =

⋃
D(fi) and Rfi -modules Mi and

isomorphisms ϕi : F|D(fi) → FMi
for some Rfi -module Mi. On the overlaps we get

isomorphisms

FMi
|D(fifj)

ϕ−1
i

|D(fifj)
// F|D(fifj)

ϕj |D(fifj)
// FMj

|D(fifj).

Let us denote these ψij . It is clear that we have the cocycle condition

ψjk|D(fifjfk) ◦ ψij |D(fifjfk) = ψik|D(fifjfk)

on triple overlaps.

Recall that each of the open subspaces D(fi), D(fifj), D(fifjfk) is an affine scheme.
Hence the sheaves FMi are isomorphic to the sheaves M̃i by Lemma 7.1 above. In partic-
ular we see that FMi

(D(fifj)) = (Mi)fj , etc. Also by Lemma 7.1 above we see that ψij
corresponds to a unique Rfifj -module isomorphism

ψij : (Mi)fj −→ (Mj)fi
namely, the effect ofψij on sections overD(fifj). Moreover these then satisfy the cocycle
condition that

(Mi)fjfk

ψij %%

ψik // (Mk)fifj

(Mj)fifk

ψjk

99

commutes (for any triple i, j, k).
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Now Algebra, Lemma 24.5 shows that there exist an R-module M such that Mi = Mfi

compatible with the morphisms ψij . Consider FM = M̃ . At this point it is a formal-
ity to show that M̃ is isomorphic to the quasi-coherent sheaf F we started out with.
Namely, the sheaves F and M̃ give rise to isomorphic sets of glueing data of sheaves of
OX -modules with respect to the covering X =

⋃
D(fi), see Sheaves, Section 33 and in

particular Lemma 33.4. Explicitly, in the current situation, this boils down to the follow-
ing argument: Let us construct an R-module map

M −→ Γ(X,F).

Namely, given m ∈ M we get mi = m/1 ∈ Mfi = Mi by construction of M . By
construction of Mi this corresponds to a section si ∈ F(Ui). (Namely, ϕ−1

i (mi).) We
claim that si|D(fifj) = sj |D(fifj). This is true because, by construction of M , we have
ψij(mi) = mj , and by the construction of the ψij . By the sheaf condition of F this
collection of sections gives rise to a unique section s of F over X . We leave it to the
reader to show that m 7→ s is a R-module map. By Lemma 7.1 we obtain an associated
OX -module map

M̃ −→ F .
By construction this map reduces to the isomorphisms ϕ−1

i on eachD(fi) and hence is an
isomorphism. �

Lemma 7.5. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. The functors
M 7→ M̃ and F 7→ Γ(X,F) define quasi-inverse equivalences of categories

QCoh(OX) //
ModRoo

between the category of quasi-coherentOX -modules and the category of R-modules.

Proof. See Lemmas 7.1 and 7.4 above. �

From now on we will not distinguish between quasi-coherent sheaves on affine schemes
and sheaves of the form M̃ .

Lemma 7.6. Let X = Spec(R) be an affine scheme. Kernels and cokernels of maps
of quasi-coherentOX -modules are quasi-coherent.

Proof. This follows from the exactness of the functor˜since by Lemma 7.1 we know
that any map ψ : M̃ → Ñ comes from an R-module map ϕ : M → N . (So we have
Ker(ψ) = K̃er(ϕ) and Coker(ψ) = ˜Coker(ϕ).) �

Lemma 7.7. Let X = Spec(R) be an affine scheme. The direct sum of an arbitrary
collection of quasi-coherent sheaves on X is quasi-coherent. The same holds for colimits.

Proof. Suppose Fi, i ∈ I is a collection of quasi-coherent sheaves on X . By Lemma
7.5 above we can write Fi = M̃i for some R-module Mi. Set M =

⊕
Mi. Consider the

sheaf M̃ . For each standard open D(f) we have

M̃(D(f)) = Mf =
(⊕

Mi

)
f

=
⊕

Mi,f .

Hence we see that the quasi-coherent OX -module M̃ is the direct sum of the sheaves Fi.
A similar argument works for general colimits. �
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Lemma 7.8. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Suppose that

0→ F1 → F2 → F3 → 0

is a short exact sequence of sheaves ofOX -modules. If two out of three are quasi-coherent
then so is the third.

Proof. This is clear in case both F1 and F2 are quasi-coherent because the functor
M 7→ M̃ is exact, see Lemma 5.4. Similarly in case both F2 and F3 are quasi-coherent.
Now, suppose that F1 = M̃1 and F3 = M̃3 are quasi-coherent. Set M2 = Γ(X,F2). We
claim it suffices to show that the sequence

0→M1 →M2 →M3 → 0

is exact. Namely, if this is the case, then (by using the mapping property of Lemma 7.1)
we get a commutative diagram

0 // M̃1 //

��

M̃2 //

��

M̃3 //

��

0

0 // F1 // F2 // F3 // 0

and we win by the snake lemma.

The “correct” argument here would be to show first that H1(X,F) = 0 for any quasi-
coherent sheaf F . This is actually not all that hard, but it is perhaps better to postpone
this till later. Instead we use a small trick.

Pick m ∈M3 = Γ(X,F3). Consider the following set

I = {f ∈ R | the element fm comes from M2}.

Clearly this is an ideal. It suffices to show 1 ∈ I . Hence it suffices to show that for any
prime p there exists an f ∈ I , f 6∈ p. Let x ∈ X be the point corresponding to p. Because
surjectivity can be checked on stalks there exists an open neighbourhood U of x such that
m|U comes from a local section s ∈ F2(U). In fact we may assume that U = D(f) is a
standard open, i.e., f ∈ R, f 6∈ p. We will show that for some N � 0 we have fN ∈ I ,
which will finish the proof.

Take any point z ∈ V (f), say corresponding to the prime q ⊂ R. We can also find a
g ∈ R, g 6∈ q such that m|D(g) lifts to some s′ ∈ F2(D(g)). Consider the difference
s|D(fg) − s′|D(fg). This is an element m′ of F1(D(fg)) = (M1)fg . For some integer
n = n(z) the element fnm′ comes from some m′

1 ∈ (M1)g . We see that fns extends to
a section σ of F2 on D(f) ∪D(g) because it agrees with the restriction of fns′ +m′

1 on
D(f) ∩D(g) = D(fg). Moreover, σ maps to the restriction of fnm to D(f) ∪D(g).

Since V (f) is quasi-compact, there exists a finite list of elements g1, . . . , gm ∈ R such
that V (f) ⊂

⋃
D(gj), an integer n > 0 and sections σj ∈ F2(D(f) ∪ D(gj)) such

that σj |D(f) = fns and σj maps to the section fnm|D(f)∪D(gj) of F3. Consider the
differences

σj |D(f)∪D(gjgk) − σk|D(f)∪D(gjgk).

These correspond to sections of F1 over D(f) ∪ D(gjgk) which are zero on D(f). In
particular their images in F1(D(gjgk)) = (M1)gjgk are zero in (M1)gjgkf . Thus some
high power of f kills each and every one of these. In other words, the elements fNσj , for
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some N � 0 satisfy the glueing condition of the sheaf property and give rise to a section
σ of F2 over

⋃
(D(f) ∪D(gj)) = X as desired. �

8. Closed subspaces of affine schemes

Example 8.1. Let R be a ring. Let I ⊂ R be an ideal. Consider the morphism of
affine schemes i : Z = Spec(R/I) → Spec(R) = X . By Algebra, Lemma 17.7 this is
a homeomorphism of Z onto a closed subset of X . Moreover, if I ⊂ p ⊂ R is a prime
corresponding to a point x = i(z), x ∈ X , z ∈ Z , then on stalks we get the map

OX,x = Rp −→ Rp/IRp = OZ,z

Thus we see that i is a closed immersion of locally ringed spaces, see Definition 4.1. Clearly,
this is (isomorphic) to the closed subspace associated to the quasi-coherent sheaf of ideals
Ĩ , as in Example 4.3.

Lemma 8.2. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let i : Z →
X be any closed immersion of locally ringed spaces. Then there exists a unique ideal
I ⊂ R such that the morphism i : Z → X can be identified with the closed immersion
Spec(R/I)→ Spec(R) constructed in Example 8.1 above.

Proof. This is kind of silly! Namely, by Lemma 4.5 we can identifyZ → X with the
closed subspace associated to a sheaf of ideals I ⊂ OX as in Definition 4.4 and Example
4.3. By our conventions this sheaf of ideals is locally generated by sections as a sheaf
of OX -modules. Hence the quotient sheaf OX/I is locally on X the cokernel of a map⊕

j∈J OU → OU . Thus by definition,OX/I is quasi-coherent. By our results in Section
7 it is of the form S̃ for someR-module S. Moreover, sinceOX = R̃→ S̃ is surjective we
see by Lemma 7.8 that also I is quasi-coherent, say I = Ĩ . Of course I ⊂ R and S = R/I
and everything is clear. �

9. Schemes

Definition 9.1. A scheme is a locally ringed space with the property that every
point has an open neighbourhood which is an affine scheme. A morphism of schemes is a
morphism of locally ringed spaces. The category of schemes will be denoted Sch.

LetX be a scheme. We will use the following (very slight) abuse of language. We will say
U ⊂ X is an affine open, or an open affine if the open subspace U is an affine scheme. We
will often write U = Spec(R) to indicate that U is isomorphic to Spec(R) and moreover
that we will identify (temporarily) U and Spec(R).

Lemma 9.2. Let X be a scheme. Let j : U → X be an open immersion of locally
ringed spaces. Then U is a scheme. In particular, any open subspace of X is a scheme.

Proof. Let U ⊂ X . Let u ∈ U . Pick an affine open neighbourhood u ∈ V ⊂ X .
Because standard opens of V form a basis of the topology on V we see that there exists a
f ∈ OV (V ) such that u ∈ D(f) ⊂ U . And D(f) is an affine scheme by Lemma 6.6. This
proves that every point of U has an open neighbourhood which is affine. �

Clearly the lemma (or its proof) shows that any scheme X has a basis (see Topology, Sec-
tion 5) for the topology consisting of affine opens.
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Example 9.3. Let k be a field. An example of a scheme which is not affine is given by
the open subspaceU = Spec(k[x, y])\{(x, y)} of the affine schemeX = Spec(k[x, y]). It
is covered by two affines, namelyD(x) = Spec(k[x, y, 1/x]) andD(y) = Spec(k[x, y, 1/y])
whose intersection is D(xy) = Spec(k[x, y, 1/xy]). By the sheaf property for OU there
is an exact sequence

0→ Γ(U,OU )→ k[x, y, 1/x]× k[x, y, 1/y]→ k[x, y, 1/xy]
We conclude that the map k[x, y] → Γ(U,OU ) (coming from the morphism U → X) is
an isomorphism. ThereforeU cannot be affine since if it was then by Lemma 6.5 we would
have U ∼= X .

10. Immersions of schemes

In Lemma 9.2 we saw that any open subspace of a scheme is a scheme. Below we will prove
that the same holds for a closed subspace of a scheme.
Note that the notion of a quasi-coherent sheaf of OX -modules is defined for any ringed
space X in particular when X is a scheme. By our efforts in Section 7 we know that such
a sheaf is on any affine open U ⊂ X of the form M̃ for someOX(U)-module M .

Lemma 10.1. Let X be a scheme. Let i : Z → X be a closed immersion of locally
ringed spaces.

(1) The locally ringed space Z is a scheme,
(2) the kernel I of the mapOX → i∗OZ is a quasi-coherent sheaf of ideals,
(3) for any affine open U = Spec(R) of X the morphism i−1(U) → U can be

identified with Spec(R/I)→ Spec(R) for some ideal I ⊂ R, and
(4) we have I|U = Ĩ .

In particular, any sheaf of ideals locally generated by sections is a quasi-coherent sheaf of
ideals (and vice versa), and any closed subspace of X is a scheme.

Proof. Let i : Z → X be a closed immersion. Let z ∈ Z be a point. Choose any
affine open neighbourhood i(z) ∈ U ⊂ X . Say U = Spec(R). By Lemma 8.2 we know
that i−1(U) → U can be identified with the morphism of affine schemes Spec(R/I) →
Spec(R). First of all this implies that z ∈ i−1(U) ⊂ Z is an affine neighbourhood of
z. Thus Z is a scheme. Second this implies that I|U is Ĩ . In other words for every point
x ∈ i(Z) there exists an open neighbourhood such that I is quasi-coherent in that neigh-
bourhood. Note that I|X\i(Z) ∼= OX\i(Z). Thus the restriction of the sheaf of ideals is
quasi-coherent on X \ i(Z) also. We conclude that I is quasi-coherent. �

Definition 10.2. Let X be a scheme.
(1) A morphism of schemes is called an open immersion if it is an open immersion

of locally ringed spaces (see Definition 3.1).
(2) An open subscheme ofX is an open subspace ofX in the sense of Definition 3.3;

an open subscheme of X is a scheme by Lemma 9.2.
(3) A morphism of schemes is called a closed immersion if it is a closed immersion

of locally ringed spaces (see Definition 4.1).
(4) A closed subscheme ofX is a closed subspace ofX in the sense of Definition 4.4;

a closed subscheme is a scheme by Lemma 10.1.
(5) A morphism of schemes f : X → Y is called an immersion, or a locally closed

immersion if it can be factored as j ◦ i where i is a closed immersion and j is an
open immersion.
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It follows from the lemmas in Sections 3 and 4 that any open (resp. closed) immersion of
schemes is isomorphic to the inclusion of an open (resp. closed) subscheme of the target.
Our definition of a closed immersion is halfway between Hartshorne and EGA. Hartshorne
defines a closed immersion as a morphism f : X → Y of schemes which induces a home-
omorphism of X onto a closed subset of Y such that f# : OY → f∗OX is surjective,
see [?, Page 85]. We will show this is equivalent to our notion in Lemma 24.2. In [?],
Grothendieck and Dieudonné first define closed subschemes via the construction of Ex-
ample 4.3 using quasi-coherent sheaves of ideals and then define a closed immersion as a
morphism f : X → Y which induces an isomorphism with a closed subscheme. It follows
from Lemma 10.1 that this agrees with our notion.
Pedagogically speaking the definition above is a disaster/nightmare. In teaching this mate-
rial to students, we have found it often convenient to define a closed immersion as an affine
morphism f : X → Y of schemes such that f# : OY → f∗OX is surjective. Namely, it
turns out that the notion of an affine morphism (Morphisms, Section 11) is quite natural
and easy to understand.
For more information on closed immersions we suggest the reader visit Morphisms, Sec-
tions 2 and 4.
We will discuss locally closed subschemes and immersions at the end of this section.

Remark 10.3. If f : X → Y is an immersion of schemes, then it is in general not
possible to factor f as an open immersion followed by a closed immersion. See Morphisms,
Example 3.4.

Lemma 10.4. Let f : Y → X be an immersion of schemes. Then f is a closed
immersion if and only if f(Y ) ⊂ X is a closed subset.

Proof. If f is a closed immersion then f(Y ) is closed by definition. Conversely,
suppose that f(Y ) is closed. By definition there exists an open subscheme U ⊂ X such
that f is the composition of a closed immersion i : Y → U and the open immersion
j : U → X . Let I ⊂ OU be the quasi-coherent sheaf of ideals associated to the closed
immersion i. Note that I|U\i(Y ) = OU\i(Y ) = OX\i(Y )|U\i(Y ). Thus we may glue (see
Sheaves, Section 33) I and OX\i(Y ) to a sheaf of ideals J ⊂ OX . Since every point of
X has a neighbourhood where J is quasi-coherent, we see that J is quasi-coherent (in
particular locally generated by sections). By construction OX/J is supported on U and
equal toOU/I . Thus we see that the closed subspaces associated to I andJ are canonically
isomorphic, see Example 4.3. In particular the closed subspace of U associated to I is
isomorphic to a closed subspace ofX . Since Y → U is identified with the closed subspace
associated to I , see Lemma 4.5, we conclude that Y → U → X is a closed immersion. �

Let f : Y → X be an immersion. Let Z = f(Y ) \ f(Y ) which is a closed subset of
X . Let U = X \ Z. The lemma implies that U is the biggest open subspace of X such
that f : Y → X factors through a closed immersion into U . We define a locally closed
subscheme ofX as a pair (Z,U) consisting of a closed subscheme Z of an open subscheme
U of X such that in addition Z ∪ U = X . We usually just say “let Z be a locally closed
subscheme of X” since we may recover U from the morphism Z → X . The above then
shows that any immersion f : Y → X factors uniquely as Y → Z → X where Z is a
locally closed subspace of X and Y → Z is an isomorphism.
The interest of this is that the collection of locally closed subschemes ofX forms a set. We
may define a partial ordering on this set, which we call inclusion for obvious reasons. To
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be explicit, if Z → X and Z ′ → X are two locally closed subschemes of X , then we say
that Z is contained in Z ′ simply if the morphism Z → X factors through Z ′. If it does,
then of course Z is identified with a unique locally closed subscheme of Z ′, and so on.
For more information on immersions, we refer the reader to Morphisms, Section 3.

11. Zariski topology of schemes

See Topology, Section 1 for some basic material in topology adapted to the Zariski topology
of schemes.

Lemma 11.1. Let X be a scheme. Any irreducible closed subset of X has a unique
generic point. In other words,X is a sober topological space, see Topology, Definition 8.6.

Proof. Let Z ⊂ X be an irreducible closed subset. For every affine open U ⊂ X ,
U = Spec(R) we know that Z ∩ U = V (I) for a unique radical ideal I ⊂ R. Note that
Z ∩ U is either empty or irreducible. In the second case (which occurs for at least one U )
we see that I = p is a prime ideal, which is a generic point ξ of Z ∩ U . It follows that
Z = {ξ}, in other words ξ is a generic point of Z. If ξ′ was a second generic point, then
ξ′ ∈ Z ∩ U and it follows immediately that ξ′ = ξ. �

Lemma 11.2. LetX be a scheme. The collection of affine opens ofX forms a basis for
the topology on X .

Proof. This follows from the discussion on open subschemes in Section 9. �

Remark 11.3. In general the intersection of two affine opens in X is not affine open.
See Example 14.3.

Lemma 11.4. The underlying topological space of any scheme is locally quasi-compact,
see Topology, Definition 13.1.

Proof. This follows from Lemma 11.2 above and the fact that the spectrum of ring
is quasi-compact, see Algebra, Lemma 17.10. �

Lemma 11.5. Let X be a scheme. Let U, V be affine opens of X , and let x ∈ U ∩ V .
There exists an affine open neighbourhoodW of x such thatW is a standard open of both
U and V .

Proof. Write U = Spec(A) and V = Spec(B). Say x corresponds to the prime
p ⊂ A and the prime q ⊂ B. We may choose an f ∈ A, f 6∈ p such that D(f) ⊂ U ∩ V .
Note that any standard open of D(f) is a standard open of Spec(A) = U . Hence we may
assume that U ⊂ V . In other words, now we may think of U as an affine open of V . Next
we choose a g ∈ B, g 6∈ q such that D(g) ⊂ U . In this case we see that D(g) = D(gA)
where gA ∈ A denotes the image of g by the mapB → A. Thus the lemma is proved. �

Lemma 11.6. Let X be a scheme. Let X =
⋃
i Ui be an affine open covering. Let

V ⊂ X be an affine open. There exists a standard open covering V =
⋃
j=1,...,m Vj (see

Definition 5.2) such that each Vj is a standard open in one of the Ui.

Proof. Pick v ∈ V . Then v ∈ Ui for some i. By Lemma 11.5 above there exists an
open v ∈ Wv ⊂ V ∩ Ui such that Wv is a standard open in both V and Ui. Since V is
quasi-compact the lemma follows. �

Lemma 11.7. Let X be a scheme. Let B be the set of affine opens of X . Let F be a
presheaf of sets on B, see Sheaves, Definition 30.1. The following are equivalent
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(1) F is the restriction of a sheaf on X to B,
(2) F is a sheaf on B, and
(3) F(∅) is a singleton and wheneverU = V ∪W withU, V,W ∈ B and V,W ⊂ U

standard open (Algebra, Definition 17.3) the map

F(U) −→ F(V )×F(W )

is injective with image the set of pairs (s, t) such that s|V ∩W = t|V ∩W .

Proof. The equivalence of (1) and (2) is Sheaves, Lemma 30.7. It is clear that (2) im-
plies (3). Hence it suffices to prove that (3) implies (2). By Sheaves, Lemma 30.4 and Lemma
5.1 it suffices to prove the sheaf condition holds for standard open coverings (Definition
5.2) of elements ofB. LetU = U1∪. . .∪Un be a standard open covering withU ⊂ X affine
open. We will prove the sheaf condition for this covering by induction onn. Ifn = 0, then
U is empty and we get the sheaf condition by assumption. If n = 1, then there is nothing
to prove. If n = 2, then this is assumption (3). If n > 2, then we write Ui = D(fi) for
fi ∈ A = OX(U). Suppose that si ∈ F(Ui) are sections such that si|Ui∩Uj = sj |Ui∩Uj
for all 1 ≤ i < j ≤ n. SinceU = U1∪ . . .∪Un we have 1 =

∑
i=1,...,n aifi inA for some

ai ∈ A, see Algebra, Lemma 17.2. Set g =
∑
i=1,...,n−1 aifi. Then U = D(g) ∪ D(fn).

Observe thatD(g) = D(gf1)∪ . . .∪D(gfn−1) is a standard open covering. By induction
there is a unique section s′ ∈ F(D(g)) which agrees with si|D(gfi) for i = 1, . . . , n− 1.
We claim that s′ and sn have the same restriction to D(gfn). This is true by induction
and the covering D(gfn) = D(gfnf1) ∪ . . . ∪D(gfnfn−1). Thus there is a unique sec-
tion s ∈ F(U) whose restriction to D(g) is s′ and whose restriction to D(fn) is sn. We
omit the verification that s restricts to si on D(fi) for i = 1, . . . , n− 1 and we omit the
verification that s is unique. �

Lemma 11.8. LetX be a scheme whose underlying topological space is a finite discrete
set. Then X is affine.

Proof. Say X = {x1, . . . , xn}. Then Ui = {xi} is an open neighbourhood of xi.
By Lemma 11.2 it is affine. Hence X is a finite disjoint union of affine schemes, and hence
is affine by Lemma 6.8. �

Example 11.9. There exists a scheme without closed points. Namely, letR be a local
domain whose spectrum looks like (0) = p0 ⊂ p1 ⊂ p2 ⊂ . . . ⊂ m. Then the open
subscheme Spec(R) \ {m} does not have a closed point. To see that such a ring R exists,
we use that given any totally ordered group (Γ,≥) there exists a valuation ring A with
valuation group (Γ,≥), see [?]. See Algebra, Section 50 for notation. We take Γ = Zx1 ⊕
Zx2 ⊕ Zx3 ⊕ . . . and we define

∑
i aixi ≥ 0 if and only if the first nonzero ai is > 0, or

all ai = 0. So x1 ≥ x2 ≥ x3 ≥ . . . ≥ 0. The subsets xi + Γ≥0 are prime ideals of (Γ,≥),
see Algebra, notation above Lemma 50.17. These together with ∅ and Γ≥0 are the only
prime ideals. Hence A is an example of a ring with the given structure of its spectrum, by
Algebra, Lemma 50.17.

12. Reduced schemes

Definition 12.1. Let X be a scheme. We say X is reduced if every local ring OX,x
is reduced.

Lemma 12.2. A scheme X is reduced if and only if OX(U) is a reduced ring for all
U ⊂ X open.
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Proof. Assume that X is reduced. Let f ∈ OX(U) be a section such that fn = 0.
Then the image of f in OU,u is zero for all u ∈ U . Hence f is zero, see Sheaves, Lemma
11.1. Conversely, assume thatOX(U) is reduced for all opensU . Pick any nonzero element
f ∈ OX,x. Any representative (U, f ∈ O(U)) of f is nonzero and hence not nilpotent.
Hence f is not nilpotent inOX,x. �

Lemma 12.3. An affine scheme Spec(R) is reduced if and only if R is reduced.

Proof. The direct implication follows immediately from Lemma 12.2 above. In the
other direction it follows since any localization of a reduced ring is reduced, and in par-
ticular the local rings of a reduced ring are reduced. �

Lemma 12.4. LetX be a scheme. Let T ⊂ X be a closed subset. There exists a unique
closed subscheme Z ⊂ X with the following properties: (a) the underlying topological
space of Z is equal to T , and (b) Z is reduced.

Proof. Let I ⊂ OX be the sub presheaf defined by the rule
I(U) = {f ∈ OX(U) | f(t) = 0 for all t ∈ T ∩ U}

Here we use f(t) to indicate the image of f in the residue field κ(t) of X at t. Because
of the local nature of the condition it is clear that I is a sheaf of ideals. Moreover, let
U = Spec(R) be an affine open. We may write T ∩ U = V (I) for a unique radical ideal
I ⊂ R. Given a prime p ∈ V (I) corresponding to t ∈ T ∩ U and an element f ∈ R
we have f(t) = 0 ⇔ f ∈ p. Hence I(U) =

⋂
p∈V (I) p = I by Algebra, Lemma 17.2.

Moreover, for any standard open D(g) ⊂ Spec(R) = U we have I(D(g)) = Ig by the
same reasoning. Thus Ĩ and I|U agree (as ideals) on a basis of opens and hence are equal.
Therefore I is a quasi-coherent sheaf of ideals.
At this point we may defineZ as the closed subspace associated to the sheaf of ideals I . For
every affine open U = Spec(R) ofX we see that Z ∩U = Spec(R/I) where I is a radical
ideal and hence Z is reduced (by Lemma 12.3 above). By construction the underlying
closed subset of Z is T . Hence we have found a closed subscheme with properties (a) and
(b).
Let Z ′ ⊂ X be a second closed subscheme with properties (a) and (b). For every affine
open U = Spec(R) of X we see that Z ′ ∩ U = Spec(R/I ′) for some ideal I ′ ⊂ R. By
Lemma 12.3 the ringR/I ′ is reduced and hence I ′ is radical. Since V (I ′) = T ∩U = V (I)
we deduced that I = I ′ by Algebra, Lemma 17.2. Hence Z ′ and Z are defined by the same
sheaf of ideals and hence are equal. �

Definition 12.5. Let X be a scheme. Let Z ⊂ X be a closed subset. A scheme
structure on Z is given by a closed subscheme Z ′ of X whose underlying set is equal to
Z. We often say “let (Z,OZ) be a scheme structure on Z” to indicate this. The reduced
induced scheme structure onZ is the one constructed in Lemma 12.4. The reductionXred

of X is the reduced induced scheme structure on X itself.

Often when we say “let Z ⊂ X be an irreducible component of X” we think of Z as a
reduced closed subscheme of X using the reduced induced scheme structure.

Remark 12.6. Let X be a scheme. Let T ⊂ X be a locally closed subset. In this
situation we sometimes also use the phrase “reduced induced scheme structure on T ”. It
refers to the reduced induced scheme structure from Definition 12.5 when we view T as a
closed subset of the open subscheme X \ ∂T of X . Here ∂T = T \ T is the “boundary” of
T in the topological space of X .
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Lemma 12.7. Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let Y be a
reduced scheme. A morphism f : Y → X factors through Z if and only if f(Y ) ⊂ Z (set
theoretically). In particular, any morphism Y → X factors as Y → Xred → X .

Proof. Assume f(Y ) ⊂ Z (set theoretically). Let I ⊂ OX be the ideal sheaf of Z.
For any affine opens U ⊂ X , Spec(B) = V ⊂ Y with f(V ) ⊂ U and any g ∈ I(U) the
pullback b = f ](g) ∈ Γ(V,OY ) = B maps to zero in the residue field of any y ∈ V . In
other words b ∈

⋂
p⊂B p. This implies b = 0 as B is reduced (Lemma 12.2, and Algebra,

Lemma 17.2). Hence f factors through Z by Lemma 4.6. �

13. Points of schemes

Given a scheme X we can define a functor

hX : Schopp −→ Sets, T 7−→ Mor(T,X).

See Categories, Example 3.4. This is called the functor of points ofX . A fun part of scheme
theory is to find descriptions of the internal geometry of X in terms of this functor hX .
In this section we find a simple way to describe points of X .

Let X be a scheme. Let R be a local ring with maximal ideal m ⊂ R. Suppose that
f : Spec(R)→ X is a morphism of schemes. Let x ∈ X be the image of the closed point
m ∈ Spec(R). Then we obtain a local homomorphism of local rings

f ] : OX,x −→ OSpec(R),m = R.

Lemma 13.1. Let X be a scheme. Let R be a local ring. The construction above gives
a bijective correspondence between morphisms Spec(R)→ X and pairs (x, ϕ) consisting
of a point x ∈ X and a local homomorphism of local rings ϕ : OX,x → R.

Proof. Let A be a ring. For any ring homomorphism ψ : A → R there exists a
unique prime ideal p ⊂ A and a factorization A→ Ap → R where the last map is a local
homomorphism of local rings. Namely, p = ψ−1(m). Via Lemma 6.4 this proves that the
lemma holds if X is an affine scheme.

Let X be a general scheme. Any x ∈ X is contained in an open affine U ⊂ X . By the
affine case we conclude that every pair (x, ϕ) occurs as the end product of the construction
above the lemma.

To finish the proof it suffices to show that any morphism f : Spec(R) → X has image
contained in any affine open containing the image x of the closed point of Spec(R). In
fact, let x ∈ V ⊂ X be any open neighbourhood containing x. Then f−1(V ) ⊂ Spec(R)
is an open containing the unique closed point and hence equal to Spec(R). �

As a special case of the lemma above we obtain for every point x of a schemeX a canonical
morphism

(13.1.1) Spec(OX,x) −→ X

corresponding to the identity map on the local ring of X at x. We may reformulate the
lemma above as saying that for any morphism f : Spec(R) → X there exists a unique
point x ∈ X such that f factors as Spec(R) → Spec(OX,x) → X where the first map
comes from a local homomorphismOX,x → R.
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In case we have a morphism of schemes f : X → S , and a point x mapping to a point
s ∈ S we obtain a commutative diagram

Spec(OX,x) //

��

X

��
Spec(OS,s) // S

where the left vertical map corresponds to the local ring map f ]x : OS,s → OX,x.

Lemma 13.2. LetX be a scheme. Let x, x′ ∈ X be points ofX . Then x′ ∈ X is a gen-
eralization of x if and only if x′ is in the image of the canonical morphism Spec(OX,x)→
X .

Proof. A continuous map preserves the relation of specialization/generalization. Since
every point of Spec(OX,x) is a generalization of the closed point we see every point in the
image of Spec(OX,x)→ X is a generalization of x. Conversely, suppose that x′ is a gen-
eralization of x. Choose an affine open neighbourhood U = Spec(R) of x. Then x′ ∈ U .
Say p ⊂ R and p′ ⊂ R are the primes corresponding to x and x′. Since x′ is a gener-
alization of x we see that p′ ⊂ p. This means that p′ is in the image of the morphism
Spec(OX,x) = Spec(Rp)→ Spec(R) = U ⊂ X as desired. �

Now, let us discuss morphisms from spectra of fields. Let (R,m, κ) be a local ring with
maximal ideal m and residue field κ. Let K be a field. A local homomorphism R→ K by
definition factors as R→ κ→ K , i.e., is the same thing as a morphism κ→ K. Thus we
see that morphisms

Spec(K) −→ X

correspond to pairs (x, κ(x) → K). We may define a preorder on morphisms of spectra
of fields to X by saying that Spec(K)→ X dominates Spec(L)→ X if Spec(K)→ X
factors through Spec(L) → X . This suggests the following notion: Let us temporarily
say that two morphisms p : Spec(K)→ X and q : Spec(L)→ X are equivalent if there
exists a third field Ω and a commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K) p // X

Of course this immediately implies that the unique points of all three of the schemes
Spec(K), Spec(L), and Spec(Ω) map to the same x ∈ X . Thus a diagram (by the re-
marks above) corresponds to a point x ∈ X and a commutative diagram

Ω Loo

K

OO

κ(x)oo

OO

of fields. This defines an equivalence relation, because given any set of field extensions
Ki/κ there exists some field extension Ω/κ such that all the field extensions Ki are con-
tained in the extension Ω.
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Lemma 13.3. Let X be a scheme. Points of X correspond bijectively to equivalence
classes of morphisms from spectra of fields into X . Moreover, each equivalence class con-
tains a (unique up to unique isomorphism) smallest element Spec(κ(x))→ X .

Proof. Follows from the discussion above. �

Of course the morphisms Spec(κ(x)) → X factor through the canonical morphisms
Spec(OX,x) → X . And the content of Lemma 13.2 is in this setting that the morphism
Spec(κ(x′))→ X factors as Spec(κ(x′))→ Spec(OX,x)→ X whenever x′ is a general-
ization of x. In case we have a morphism of schemes f : X → S , and a point x mapping
to a point s ∈ S we obtain a commutative diagram

Spec(κ(x)) //

��

Spec(OX,x) //

��

X

��
Spec(κ(s)) // Spec(OS,s) // S.

14. Glueing schemes

Let I be a set. For each i ∈ I let (Xi,Oi) be a locally ringed space. (Actually the construc-
tion that follows works equally well for ringed spaces.) For each pair i, j ∈ I letUij ⊂ Xi

be an open subspace. For each pair i, j ∈ I , let

ϕij : Uij → Uji

be an isomorphism of locally ringed spaces. For convenience we assume that Uii = Xi

and ϕii = idXi . For each triple i, j, k ∈ I assume that

(1) we have ϕ−1
ij (Uji ∩ Ujk) = Uij ∩ Uik , and

(2) the diagram

Uij ∩ Uik ϕik
//

ϕij
&&

Uki ∩ Ukj

Uji ∩ Ujk

ϕjk

88

is commutative.

Let us call a collection (I, (Xi)i∈I , (Uij)i,j∈I , (ϕij)i,j∈I) satisfying the conditions above
a glueing data.

Lemma 14.1. Given any glueing data of locally ringed spaces there exists a locally
ringed spaceX and open subspaces Ui ⊂ X together with isomorphisms ϕi : Xi → Ui of
locally ringed spaces such that

(1) X =
⋃
i∈I Ui,

(2) ϕi(Uij) = Ui ∩ Uj , and
(3) ϕij = ϕ−1

j |Ui∩Uj ◦ ϕi|Uij .
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The locally ringed space X is characterized by the following mapping properties: Given
a locally ringed space Y we have

Mor(X,Y ) = {(fi)i∈I | fi : Xi → Y, fj ◦ ϕij = fi|Uij}
f 7→ (f |Ui ◦ ϕi)i∈I

Mor(Y,X) =
{

open covering Y =
⋃
i∈I Vi and (gi : Vi → Xi)i∈I such that

g−1
i (Uij) = Vi ∩ Vj and gj |Vi∩Vj = ϕij ◦ gi|Vi∩Vj

}
g 7→ Vi = g−1(Ui), gi = ϕ−1

i ◦ g|Vi
Proof. We construct X in stages. As a set we take

X = (
∐

Xi)/ ∼ .

Here given x ∈ Xi and x′ ∈ Xj we say x ∼ x′ if and only if x ∈ Uij , x′ ∈ Uji and
ϕij(x) = x′. This is an equivalence relation since if x ∈ Xi, x′ ∈ Xj , x′′ ∈ Xk , and
x ∼ x′ and x′ ∼ x′′, then x′ ∈ Uji∩Ujk , hence by condition (1) of a glueing data also x ∈
Uij ∩Uik and x′′ ∈ Uki ∩Ukj and by condition (2) we see that ϕik(x) = x′′. (Reflexivity
and symmetry follows from our assumptions that Uii = Xi and ϕii = idXi .) Denote
ϕi : Xi → X the natural maps. Denote Ui = ϕi(Xi) ⊂ X . Note that ϕi : Xi → Ui is a
bijection.

The topology on X is defined by the rule that U ⊂ X is open if and only if ϕ−1
i (U)

is open for all i. We leave it to the reader to verify that this does indeed define a topol-
ogy. Note that in particular Ui is open since ϕ−1

j (Ui) = Uji which is open in Xj for
all j. Moreover, for any open set W ⊂ Xi the image ϕi(W ) ⊂ Ui is open because
ϕ−1
j (ϕi(W )) = ϕ−1

ji (W ∩ Uij). Therefore ϕi : Xi → Ui is a homeomorphism.

To obtain a locally ringed space we have to construct the sheaf of rings OX . We do this
by glueing the sheaves of ringsOUi := ϕi,∗Oi. Namely, in the commutative diagram

Uij ϕij
//

ϕi|Uij ##

Uji

ϕj |Uji{{
Ui ∩ Uj

the arrow on top is an isomorphism of ringed spaces, and hence we get unique isomor-
phisms of sheaves of rings

OUi |Ui∩Uj −→ OUj |Ui∩Uj .
These satisfy a cocycle condition as in Sheaves, Section 33. By the results of that section
we obtain a sheaf of rings OX on X such that OX |Ui is isomorphic to OUi compatibly
with the glueing maps displayed above. In particular (X,OX) is a locally ringed space
since the stalks ofOX are equal to the stalks ofOi at corresponding points.
The proof of the mapping properties is omitted. �

Lemma 14.2. In Lemma 14.1 above, assume that allXi are schemes. Then the resulting
locally ringed space X is a scheme.

Proof. This is clear since each of the Ui is a scheme and hence every x ∈ X has an
affine neighbourhood. �

It is customary to think ofXi as an open subspace ofX via the isomorphisms ϕi. We will
do this in the next two examples.



15. A REPRESENTABILITY CRITERION 2273

Example 14.3 (Affine space with zero doubled). Let k be a field. Let n ≥ 1. Let
X1 = Spec(k[x1, . . . , xn]), let X2 = Spec(k[y1, . . . , yn]). Let 01 ∈ X1 be the point
corresponding to the maximal ideal (x1, . . . , xn) ⊂ k[x1, . . . , xn]. Let 02 ∈ X2 be the
point corresponding to the maximal ideal (y1, . . . , yn) ⊂ k[y1, . . . , yn]. Let U12 = X1 \
{01} and let U21 = X2 \ {02}. Let ϕ12 : U12 → U21 be the isomorphism coming from
the isomorphism of k-algebras k[y1, . . . , yn] → k[x1, . . . , xn] mapping yi to xi (which
induces X1 ∼= X2 mapping 01 to 02). Let X be the scheme obtained from the glueing
data (X1, X2, U12, U21, ϕ12, ϕ21 = ϕ−1

12 ). Via the slight abuse of notation introduced
above the example we think of X1, X2 ⊂ X as open subschemes. There is a morphism
f : X → Spec(k[t1, . . . , tn]) which on X1 (resp. X2) corresponds to k algebra map
k[t1, . . . , tn]→ k[x1, . . . , xn] (resp. k[t1, . . . , tn]→ k[y1, . . . , yn]) mapping ti to xi (resp.
ti to yi). It is easy to see that this morphism identifies k[t1, . . . , tn] with Γ(X,OX). Since
f(01) = f(02) we see that X is not affine.

Note that X1 and X2 are affine opens of X . But, if n = 2, then X1 ∩ X2 is the scheme
described in Example 9.3 and hence not affine. Thus in general the intersection of affine
opens of a scheme is not affine. (This fact holds more generally for any n > 1.)

Another curious feature of this example is the following. If n > 1 there are many irre-
ducible closed subsets T ⊂ X (take the closure of any non closed point inX1 for example).
But unless T = {01}, or T = {02} we have 01 ∈ T ⇔ 02 ∈ T . Proof omitted.

Example 14.4 (Projective line). Let k be a field. Let X1 = Spec(k[x]), let X2 =
Spec(k[y]). Let 0 ∈ X1 be the point corresponding to the maximal ideal (x) ⊂ k[x].
Let ∞ ∈ X2 be the point corresponding to the maximal ideal (y) ⊂ k[y]. Let U12 =
X1\{0} = D(x) = Spec(k[x, 1/x]) and letU21 = X2\{∞} = D(y) = Spec(k[y, 1/y]).
Let ϕ12 : U12 → U21 be the isomorphism coming from the isomorphism of k-algebras
k[y, 1/y] → k[x, 1/x] mapping y to 1/x. Let P1

k be the scheme obtained from the glue-
ing data (X1, X2, U12, U21, ϕ12, ϕ21 = ϕ−1

12 ). Via the slight abuse of notation introduced
above the example we think of Xi ⊂ P1

k as open subschemes. In this case we see that
Γ(P1

k,O) = k because the only polynomials g(x) in x such that g(1/y) is also a polyno-
mial in y are constant polynomials. Since P1

k is infinite we see that P1
k is not affine.

We claim that there exists an affine open U ⊂ P1
k which contains both 0 and∞. Namely,

let U = P1
k \ {1}, where 1 is the point of X1 corresponding to the maximal ideal (x− 1)

and also the point of X2 corresponding to the maximal ideal (y − 1). Then it is easy to
see that s = 1/(x− 1) = y/(1− y) ∈ Γ(U,OU ). In fact you can show that Γ(U,OU ) is
equal to the polynomial ring k[s] and that the corresponding morphism U → Spec(k[s])
is an isomorphism of schemes. Details omitted.

15. A representability criterion

In this section we reformulate the glueing lemma of Section 14 in terms of functors. We
recall some of the material from Categories, Section 3. Recall that given a scheme X we
can define a functor

hX : Schopp −→ Sets, T 7−→ Mor(T,X).

This is called the functor of points of X .

Let F be a contravariant functor from the category of schemes to the category of sets. In
a formula

F : Schopp −→ Sets.
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We will use the same terminology as in Sites, Section 2. Namely, given a scheme T , an
element ξ ∈ F (T ), and a morphism f : T ′ → T we will denote f∗ξ the element F (f)(ξ),
and sometimes we will even use the notation ξ|T ′

Definition 15.1. (See Categories, Definition 3.6.) Let F be a contravariant functor
from the category of schemes to the category of sets (as above). We say that F is repre-
sentable by a scheme or representable if there exists a scheme X such that hX ∼= F .

Suppose that F is representable by the schemeX and that s : hX → F is an isomorphism.
By Categories, Yoneda Lemma 3.5 the pair (X, s : hX → F ) is unique up to unique
isomorphism if it exists. Moreover, the Yoneda lemma says that given any contravariant
functor F as above and any scheme Y , we have a bijection

MorFun(Schopp,Sets)(hY , F ) −→ F (Y ), s 7−→ s(idY ).

Here is the reverse construction. Given any ξ ∈ F (Y ) the transformation of functors
sξ : hY → F associates to any morphism f : T → Y the element f∗ξ ∈ F (T ).

In particular, in the case that F is representable, there exists a scheme X and an element
ξ ∈ F (X) such that the corresponding morphism hX → F is an isomorphism. In this
case we also say the pair (X, ξ) represents F . The element ξ ∈ F (X) is often called the
“universal family” for reasons that will become more clear when we talk about algebraic
stacks (insert future reference here). For the moment we simply observe that the fact that
if the pair (X, ξ) represents F , then every element ξ′ ∈ F (T ) for any T is of the form
ξ′ = f∗ξ for a unique morphism f : T → X .

Example 15.2. Consider the rule which associates to every scheme T the set F (T ) =
Γ(T,OT ). We can turn this into a contravariant functor by using for a morphism f :
T ′ → T the pullback map f ] : Γ(T,OT ) → Γ(T ′,OT ′). Given a ring R and an element
t ∈ R there exists a unique ring homomorphism Z[x] → R which maps x to t. Thus,
using Lemma 6.4, we see that

Mor(T, Spec(Z[x])) = Hom(Z[x],Γ(T,OT )) = Γ(T,OT ).

This does indeed give an isomorphism hSpec(Z[x]) → F . What is the “universal family”
ξ? To get it we have to apply the identifications above to idSpec(Z[x]). Clearly under
the identifications above this gives that ξ = x ∈ Γ(Spec(Z[x]),OSpec(Z[x])) = Z[x] as
expected.

Definition 15.3. Let F be a contravariant functor on the category of schemes with
values in sets.

(1) We say that F satisfies the sheaf property for the Zariski topology if for every
scheme T and every open covering T =

⋃
i∈I Ui, and for any collection of ele-

ments ξi ∈ F (Ui) such that ξi|Ui∩Uj = ξj |Ui∩Uj there exists a unique element
ξ ∈ F (T ) such that ξi = ξ|Ui in F (Ui).

(2) A subfunctorH ⊂ F is a rule that associates to every scheme T a subsetH(T ) ⊂
F (T ) such that the maps F (f) : F (T )→ F (T ′) maps H(T ) into H(T ′) for all
morphisms of schemes f : T ′ → T .

(3) Let H ⊂ F be a subfunctor. We say that H ⊂ F is representable by open
immersions if for all pairs (T, ξ), where T is a scheme and ξ ∈ F (T ) there exists
an open subscheme Uξ ⊂ T with the following property:
(*) A morphism f : T ′ → T factors through Uξ if and only if f∗ξ ∈ H(T ′).
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(4) Let I be a set. For each i ∈ I let Hi ⊂ F be a subfunctor. We say that the
collection (Hi)i∈I covers F if and only if for every ξ ∈ F (T ) there exists an
open covering T =

⋃
Ui such that ξ|Ui ∈ Hi(Ui).

In condition (4), if Hi ⊂ F is representable by open immersions for all i, then to check
(Hi)i∈I covers F , it suffices to check F (T ) =

⋃
Hi(T ) whenever T is the spectrum of a

field.

Lemma 15.4. LetF be a contravariant functor on the category of schemes with values
in the category of sets. Suppose that

(1) F satisfies the sheaf property for the Zariski topology,
(2) there exists a set I and a collection of subfunctors Fi ⊂ F such that

(a) each Fi is representable,
(b) each Fi ⊂ F is representable by open immersions, and
(c) the collection (Fi)i∈I covers F .

Then F is representable.

Proof. Let Xi be a scheme representing Fi and let ξi ∈ Fi(Xi) ⊂ F (Xi) be the
“universal family”. Because Fj ⊂ F is representable by open immersions, there exists an
open Uij ⊂ Xi such that T → Xi factors through Uij if and only if ξi|T ∈ Fj(T ). In
particular ξi|Uij ∈ Fj(Uij) and therefore we obtain a canonical morphismϕij : Uij → Xj

such that ϕ∗
ijξj = ξi|Uij . By definition of Uji this implies that ϕij factors through Uji.

Since (ϕij ◦ ϕji)∗ξj = ϕ∗
ji(ϕ∗

ijξj) = ϕ∗
jiξi = ξj we conclude that ϕij ◦ ϕji = idUji

because the pair (Xj , ξj) represents Fj . In particular the maps ϕij : Uij → Uji are
isomorphisms of schemes. Next we have to show that ϕ−1

ij (Uji ∩ Ujk) = Uij ∩ Uik.
This is true because (a) Uji ∩ Ujk is the largest open of Uji such that ξj restricts to an
element of Fk , (b) Uij ∩ Uik is the largest open of Uij such that ξi restricts to an element
of Fk , and (c) ϕ∗

ijξj = ξi. Moreover, the cocycle condition in Section 14 follows because
both ϕjk|Uji∩Ujk ◦ ϕij |Uij∩Uik and ϕik|Uij∩Uik pullback ξk to the element ξi. Thus we
may apply Lemma 14.2 to obtain a scheme X with an open covering X =

⋃
Ui and

isomorphisms ϕi : Xi → Ui with properties as in Lemma 14.1. Let ξ′
i = (ϕ−1

i )∗ξi. The
conditions of Lemma 14.1 imply that ξ′

i|Ui∩Uj = ξ′
j |Ui∩Uj . Therefore, by the condition

that F satisfies the sheaf condition in the Zariski topology we see that there exists an
element ξ′ ∈ F (X) such that ξi = ϕ∗

i ξ
′|Ui for all i. Since ϕi is an isomorphism we also

get that (Ui, ξ′|Ui) represents the functor Fi.

We claim that the pair (X, ξ′) represents the functor F . To show this, let T be a scheme
and let ξ ∈ F (T ). We will construct a unique morphism g : T → X such that g∗ξ′ = ξ.
Namely, by the condition that the subfunctors Fi cover F there exists an open covering
T =

⋃
Vi such that for each i the restriction ξ|Vi ∈ Fi(Vi). Moreover, since each of the

inclusions Fi ⊂ F are representable by open immersions we may assume that each Vi ⊂ T
is maximal open with this property. Because, (Ui, ξ′

Ui
) represents the functor Fi we get

a unique morphism gi : Vi → Ui such that g∗
i ξ

′|Ui = ξ|Vi . On the overlaps Vi ∩ Vj the
morphisms gi and gj agree, for example because they both pull back ξ′|Ui∩Uj ∈ Fi(Ui∩Uj)
to the same element. Thus the morphisms gi glue to a unique morphism from T → X as
desired. �

Remark 15.5. Suppose the functor F is defined on all locally ringed spaces, and if
conditions of Lemma 15.4 are replaced by the following:

(1) F satisfies the sheaf property on the category of locally ringed spaces,
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(2) there exists a set I and a collection of subfunctors Fi ⊂ F such that
(a) each Fi is representable by a scheme,
(b) each Fi ⊂ F is representable by open immersions on the category of locally

ringed spaces, and
(c) the collection (Fi)i∈I coversF as a functor on the category of locally ringed

spaces.

We leave it to the reader to spell this out further. Then the end result is that the functor
F is representable in the category of locally ringed spaces and that the representing object
is a scheme.

16. Existence of fibre products of schemes

A very basic question is whether or not products and fibre products exist on the category of
schemes. We first prove abstractly that products and fibre products exist, and in the next
section we show how we may think in a reasonable way about fibre products of schemes.

Lemma 16.1. The category of schemes has a final object, products and fibre products.
In other words, the category of schemes has finite limits, see Categories, Lemma 18.4.

Proof. Please skip this proof. It is more important to learn how to work with the
fibre product which is explained in the next section.

By Lemma 6.4 the scheme Spec(Z) is a final object in the category of locally ringed spaces.
Thus it suffices to prove that fibred products exist.

Let f : X → S and g : Y → S be morphisms of schemes. We have to show that the
functor

F : Schopp −→ Sets
T 7−→ Mor(T,X)×Mor(T,S) Mor(T, Y )

is representable. We claim that Lemma 15.4 applies to the functor F . If we prove this then
the lemma is proved.

First we show that F satisfies the sheaf property in the Zariski topology. Namely, suppose
that T is a scheme, T =

⋃
i∈I Ui is an open covering, and ξi ∈ F (Ui) such that ξi|Ui∩Uj =

ξj |Ui∩Uj for all pairs i, j. By definition ξi corresponds to a pair (ai, bi) where ai : Ui → X
and bi : Ui → Y are morphisms of schemes such that f ◦ ai = g ◦ bi. The glueing
condition says that ai|Ui∩Uj = aj |Ui∩Uj and bi|Ui∩Uj = bj |Ui∩Uj . Thus by glueing the
morphisms ai we obtain a morphism of locally ringed spaces (i.e., a morphism of schemes)
a : T → X and similarly b : T → Y (see for example the mapping property of Lemma
14.1). Moreover, on the members of an open covering the compositions f ◦ a and g ◦ b
agree. Therefore f ◦a = g◦b and the pair (a, b) defines an element ofF (T ) which restricts
to the pairs (ai, bi) on each Ui. The sheaf condition is verified.

Next, we construct the family of subfunctors. Choose an open covering by open affines
S =

⋃
i∈I Ui. For every i ∈ I choose open coverings by open affines f−1(Ui) =

⋃
j∈Ji Vj

and g−1(Ui) =
⋃
k∈KiWk. Note that X =

⋃
i∈I
⋃
j∈Ji Vj is an open covering and

similarly for Y . For any i ∈ I and each pair (j, k) ∈ Ji × Ki we have a commutative
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diagram

Wk

��   
Vj

!!

// Ui

  

Y

��
X // S

where all the skew arrows are open immersions. For such a triple we get a functor

Fi,j,k : Schopp −→ Sets
T 7−→ Mor(T, Vj)×Mor(T,Ui) Mor(T,Wk).

There is an obvious transformation of functors Fi,j,k → F (coming from the huge com-
mutative diagram above) which is injective, so we may think of Fi,j,k as a subfunctor of
F .

We check condition (2)(a) of Lemma 15.4. This follows directly from Lemma 6.7. (Note
that we use here that the fibre products in the category of affine schemes are also fibre
products in the whole category of locally ringed spaces.)

We check condition (2)(b) of Lemma 15.4. Let T be a scheme and let ξ ∈ F (T ). In other
words, ξ = (a, b) where a : T → X and b : T → Y are morphisms of schemes such that
f ◦a = g ◦ b. Set Vi,j,k = a−1(Vj)∩ b−1(Wk). For any further morphism h : T ′ → T we
have h∗ξ = (a◦h, b◦h). Hence we see that h∗ξ ∈ Fi,j,k(T ′) if and only if a(h(T ′)) ⊂ Vj
and b(h(T ′)) ⊂ Wk. In other words, if and only if h(T ′) ⊂ Vi,j,k. This proves condition
(2)(b).

We check condition (2)(c) of Lemma 15.4. Let T be a scheme and let ξ = (a, b) ∈ F (T )
as above. Set Vi,j,k = a−1(Vj) ∩ b−1(Wk) as above. Condition (2)(c) just means that
T =

⋃
Vi,j,k which is evident. Thus the lemma is proved and fibre products exist. �

Remark 16.2. Using Remark 15.5 you can show that the fibre product of morphisms
of schemes exists in the category of locally ringed spaces and is a scheme.

17. Fibre products of schemes

Here is a review of the general definition, even though we have already shown that fibre
products of schemes exist.

Definition 17.1. Given morphisms of schemes f : X → S and g : Y → S the fibre
product is a scheme X ×S Y together with projection morphisms p : X ×S Y → X and
q : X ×S Y → Y sitting into the following commutative diagram

X ×S Y q
//

p

��

Y

g

��
X

f // S

which is universal among all diagrams of this sort, see Categories, Definition 6.1.
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In other words, given any solid commutative diagram of morphisms of schemes

T

**((

  

X ×S Y

��

// Y

��
X // S

there exists a unique dotted arrow making the diagram commute. We will prove some
lemmas which will tell us how to think about fibre products.

Lemma 17.2. Let f : X → S and g : Y → S be morphisms of schemes with the same
target. If X,Y, S are all affine then X ×S Y is affine.

Proof. Suppose that X = Spec(A), Y = Spec(B) and S = Spec(R). By Lemma
6.7 the affine scheme Spec(A⊗RB) is the fibre productX×S Y in the category of locally
ringed spaces. Hence it is a fortiori the fibre product in the category of schemes. �

Lemma 17.3. Let f : X → S and g : Y → S be morphisms of schemes with the
same target. Let X ×S Y , p, q be the fibre product. Suppose that U ⊂ S , V ⊂ X ,
W ⊂ Y are open subschemes such that f(V ) ⊂ U and g(W ) ⊂ U . Then the canonical
morphism V ×U W → X ×S Y is an open immersion which identifies V ×U W with
p−1(V ) ∩ q−1(W ).

Proof. Let T be a scheme. Suppose a : T → V and b : T → W are morphisms
such that f ◦ a = g ◦ b as morphisms into U . Then they agree as morphisms into S. By
the universal property of the fibre product we get a unique morphism T → X ×S Y . Of
course this morphism has image contained in the open p−1(V )∩q−1(W ). Thus p−1(V )∩
q−1(W ) is a fibre product of V and W over U . The result follows from the uniqueness of
fibre products, see Categories, Section 6. �

In particular this shows that V ×UW = V ×SW in the situation of the lemma. Moreover,
ifU, V,W are all affine, then we know that V ×UW is affine. And of course we may cover
X ×S Y by such affine opens V ×U W . We formulate this as a lemma.

Lemma 17.4. Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let S =

⋃
Ui be any affine open covering of S. For each i ∈ I , let

f−1(Ui) =
⋃
j∈Ji Vj be an affine open covering of f−1(Ui) and let g−1(Ui) =

⋃
k∈KiWk

be an affine open covering of g−1(Ui). Then

X ×S Y =
⋃

i∈I

⋃
j∈Ji, k∈Ki

Vj ×Ui Wk

is an affine open covering of X ×S Y .

Proof. See discussion above the lemma. �

In other words, we might have used the previous lemma to construct the fibre product
directly by glueing the affine schemes. (Which is of course exactly what we did in the
proof of Lemma 16.1 anyway.) Here is a way to describe the set of points of a fibre product
of schemes.



17. FIBRE PRODUCTS OF SCHEMES 2279

Lemma 17.5. Let f : X → S and g : Y → S be morphisms of schemes with the same
target. Points z of X ×S Y are in bijective correspondence to quadruples

(x, y, s, p)
where x ∈ X , y ∈ Y , s ∈ S are points with f(x) = s, g(y) = s and p is a prime ideal
of the ring κ(x) ⊗κ(s) κ(y). The residue field of z corresponds to the residue field of the
prime p.

Proof. Let z be a point of X ×S Y and let us construct a quadruple as above. Recall
that we may think of z as a morphism Spec(κ(z)) → X ×S Y , see Lemma 13.3. This
morphism corresponds to morphisms a : Spec(κ(z)) → X and b : Spec(κ(z)) → Y
such that f ◦ a = g ◦ b. By the same lemma again we get points x ∈ X , y ∈ Y lying
over the same point s ∈ S as well as field maps κ(x) → κ(z), κ(y) → κ(z) such that
the compositions κ(s) → κ(x) → κ(z) and κ(s) → κ(y) → κ(z) are the same. In other
words we get a ring map κ(x)⊗κ(s) κ(y)→ κ(z). We let p be the kernel of this map.

Conversely, given a quadruple (x, y, s, p) we get a commutative solid diagram

X ×S Y

  

++Spec(κ(x)⊗κ(s) κ(y)/p) //

��

ii

Spec(κ(y))

��

// Y

��

Spec(κ(x)) //

��

Spec(κ(s))

$$
X // S

see the discussion in Section 13. Thus we get the dotted arrow. The corresponding point
z of X ×S Y is the image of the generic point of Spec(κ(x)⊗κ(s) κ(y)/p). We omit the
verification that the two constructions are inverse to each other. �

Lemma 17.6. Let f : X → S and g : Y → S be morphisms of schemes with the same
target.

(1) If f : X → S is a closed immersion, then X ×S Y → Y is a closed immersion.
Moreover, if X → S corresponds to the quasi-coherent sheaf of ideals I ⊂ OS ,
then X ×S Y → Y corresponds to the sheaf of ideals Im(g∗I → OY ).

(2) If f : X → S is an open immersion, then X ×S Y → Y is an open immersion.
(3) If f : X → S is an immersion, then X ×S Y → Y is an immersion.

Proof. Assume thatX → S is a closed immersion corresponding to the quasi-coherent
sheaf of ideals I ⊂ OS . By Lemma 4.7 the closed subspace Z ⊂ Y defined by the sheaf
of ideals Im(g∗I → OY ) is the fibre product in the category of locally ringed spaces. By
Lemma 10.1Z is a scheme. HenceZ = X×SY and the first statement follows. The second
follows from Lemma 17.3 for example. The third is a combination of the first two. �

Definition 17.7. Let f : X → Y be a morphism of schemes. Let Z ⊂ Y be a
closed subscheme of Y . The inverse image f−1(Z) of the closed subschemeZ is the closed
subscheme Z ×Y X of X . See Lemma 17.6 above.

We may occasionally also use this terminology with locally closed and open subschemes.
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18. Base change in algebraic geometry

One motivation for the introduction of the language of schemes is that it gives a very
precise notion of what it means to define a variety over a particular field. For example a
variety X over Q is synonymous (Varieties, Definition 3.1) with X → Spec(Q) which is
of finite type, separated, irreducible and reduced1. In any case, the idea is more generally to
work with schemes over a given base scheme, often denoted S. We use the language: “let
X be a scheme over S” to mean simply that X comes equipped with a morphism X → S.
In diagrams we will try to picture the structure morphism X → S as a downward arrow
fromX to S. We are often more interested in the properties ofX relative to S rather than
the internal geometry of X . For example, we would like to know things about the fibres
of X → S , what happens to X after base change, and so on.
We introduce some of the language that is customarily used. Of course this language is just
a special case of thinking about the category of objects over a given object in a category,
see Categories, Example 2.13.

Definition 18.1. Let S be a scheme.
(1) We say X is a scheme over S to mean that X comes equipped with a morphism

of schemes X → S. The morphism X → S is sometimes called the structure
morphism.

(2) IfR is a ring we sayX is a scheme overR instead ofX is a scheme over Spec(R).
(3) A morphism f : X → Y of schemes over S is a morphism of schemes such that

the composition X → Y → S of f with the structure morphism of Y is equal
to the structure morphism of X .

(4) We denote MorS(X,Y ) the set of all morphisms from X to Y over S.
(5) Let X be a scheme over S. Let S′ → S be a morphism of schemes. The base

change of X is the scheme XS′ = S′ ×S X over S′.
(6) Let f : X → Y be a morphism of schemes over S. Let S′ → S be a morphism

of schemes. The base change of f is the induced morphism f ′ : XS′ → YS′

(namely the morphism idS′ ×idS f ).
(7) Let R be a ring. Let X be a scheme over R. Let R→ R′ be a ring map. The base

change XR′ is the scheme Spec(R′)×Spec(R) X over R′.
Here is a typical result.

Lemma 18.2. Let S be a scheme. Let f : X → Y be an immersion (resp. closed
immersion, resp. open immersion) of schemes over S. Then any base change of f is an
immersion (resp. closed immersion, resp. open immersion).

Proof. We can think of the base change of f via the morphism S′ → S as the top
left vertical arrow in the following commutative diagram:

XS′ //

��

X

��

��

YS′ //

��

Y

��
S′ // S

1Of course algebraic geometers still quibble over whether one should require X to be geometrically irre-
ducible over Q.
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The diagram implies XS′ ∼= YS′ ×Y X , and the lemma follows from Lemma 17.6. �

In fact this type of result is so typical that there is a piece of language to express it. Here
it is.

Definition 18.3. Properties and base change.
(1) Let P be a property of schemes over a base. We say that P is preserved under ar-

bitrary base change, or simply thatP is preserved under base change if whenever
X/S has P , any base change XS′/S′ has P .

(2) Let P be a property of morphisms of schemes over a base. We say that P is pre-
served under arbitrary base change, or simply that preserved under base change
if whenever f : X → Y over S has P , any base change f ′ : XS′ → YS′ over S′

has P .

At this point we can say that “being a closed immersion” is preserved under arbitrary base
change.

Definition 18.4. Let f : X → S be a morphism of schemes. Let s ∈ S be a point.
The scheme theoretic fibre Xs of f over s, or simply the fibre of f over s, is the scheme
fitting in the following fibre product diagram

Xs = Spec(κ(s))×S X //

��

X

��
Spec(κ(s)) // S

We think of the fibre Xs always as a scheme over κ(s).

Lemma 18.5. Let f : X → S be a morphism of schemes. Consider the diagrams

Xs
//

��

X

��

Spec(OS,s)×S X //

��

X

��
Spec(κ(s)) // S Spec(OS,s) // S

In both cases the top horizontal arrow is a homeomorphism onto its image.

Proof. Choose an open affine U ⊂ S that contains s. The bottom horizontal mor-
phisms factor throughU , see Lemma 13.1 for example. Thus we may assume thatS is affine.
If X is also affine, then the result follows from Algebra, Remark 17.8. In the general case
the result follows by covering X by open affines. �

19. Quasi-compact morphisms

A scheme is quasi-compact if its underlying topological space is quasi-compact. There is a
relative notion which is defined as follows.

Definition 19.1. A morphism of schemes is called quasi-compact if the underlying
map of topological spaces is quasi-compact, see Topology, Definition 12.1.

Lemma 19.2. Let f : X → S be a morphism of schemes. The following are equivalent
(1) f : X → S is quasi-compact,
(2) the inverse image of every affine open is quasi-compact, and
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(3) there exists some affine open covering S =
⋃
i∈I Ui such that f−1(Ui) is quasi-

compact for all i.

Proof. Suppose we are given a covering S =
⋃
i∈I Ui as in (3). First, let U ⊂ S be

any affine open. For any u ∈ U we can find an index i(u) ∈ I such that u ∈ Ui(u). As
standard opens form a basis for the topology onUi(u) we can findWu ⊂ U∩Ui(u) which is
standard open in Ui(u). By compactness we can find finitely many points u1, . . . , un ∈ U
such that U =

⋃n
j=1 Wuj . For each j write f−1Ui(uj) =

⋃
k∈Kj Vjk as a finite union

of affine opens. Since Wuj ⊂ Ui(uj) is a standard open we see that f−1(Wuj ) ∩ Vjk is a
standard open of Vjk , see Algebra, Lemma 17.4. Hence f−1(Wuj ) ∩ Vjk is affine, and so
f−1(Wuj ) is a finite union of affines. This proves that the inverse image of any affine open
is a finite union of affine opens.

Next, assume that the inverse image of every affine open is a finite union of affine opens.
Let K ⊂ S be any quasi-compact open. Since S has a basis of the topology consisting of
affine opens we see that K is a finite union of affine opens. Hence the inverse image of K
is a finite union of affine opens. Hence f is quasi-compact.

Finally, assume that f is quasi-compact. In this case the argument of the previous para-
graph shows that the inverse image of any affine is a finite union of affine opens. �

Lemma 19.3. Being quasi-compact is a property of morphisms of schemes over a base
which is preserved under arbitrary base change.

Proof. Omitted. �

Lemma 19.4. The composition of quasi-compact morphisms is quasi-compact.

Proof. This follows from the definitions and Topology, Lemma 12.2. �

Lemma 19.5. A closed immersion is quasi-compact.

Proof. Follows from the definitions and Topology, Lemma 12.3. �

Example 19.6. An open immersion is in general not quasi-compact. The standard ex-
ample of this is the open subspaceU ⊂ X , whereX = Spec(k[x1, x2, x3, . . .]), whereU is
X\{0}, and where 0 is the point ofX corresponding to the maximal ideal (x1, x2, x3, . . .).

Lemma 19.7. Let f : X → S be a quasi-compact morphism of schemes. The follow-
ing are equivalent

(1) f(X) ⊂ S is closed, and
(2) f(X) ⊂ S is stable under specialization.

Proof. We have (1)⇒ (2) by Topology, Lemma 19.2. Assume (2). Let U ⊂ S be an
affine open. It suffices to prove that f(X) ∩ U is closed. Since U ∩ f(X) is stable under
specializations in U , we have reduced to the case where S is affine. Because f is quasi-
compact we deduce that X = f−1(S) is quasi-compact as S is affine. Thus we may write
X =

⋃n
i=1 Ui with Ui ⊂ X open affine. Say S = Spec(R) and Ui = Spec(Ai) for some

R-algebra Ai. Then f(X) = Im(Spec(A1 × . . . × An) → Spec(R)). Thus the lemma
follows from Algebra, Lemma 41.5. �

Lemma 19.8. Let f : X → S be a quasi-compact morphism of schemes. Then f is
closed if and only if specializations lift along f , see Topology, Definition 19.4.
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Proof. According to Topology, Lemma 19.7 if f is closed then specializations lift
along f . Conversely, suppose that specializations lift along f . Let Z ⊂ X be a closed
subset. We may think of Z as a scheme with the reduced induced scheme structure, see
Definition 12.5. Since Z ⊂ X is closed the restriction of f to Z is still quasi-compact.
Moreover specializations lift along Z → S as well, see Topology, Lemma 19.5. Hence it
suffices to prove f(X) is closed if specializations lift along f . In particular f(X) is stable
under specializations, see Topology, Lemma 19.6. Thus f(X) is closed by Lemma 19.7. �

20. Valuative criterion for universal closedness

In Topology, Section 17 there is a discussion of proper maps as closed maps of topological
spaces all of whose fibres are quasi-compact, or as maps such that all base changes are closed
maps. Here is the corresponding notion in algebraic geometry.

Definition 20.1. A morphism of schemes f : X → S is said to be universally closed
if every base change f ′ : XS′ → S′ is closed.

In fact the adjective “universally” is often used in this way. In other words, given a prop-
erty P of morphisms then we say that “X → S is universally P” if and only if every base
change XS′ → S′ has P .

Please take a look at Morphisms, Section 41 for a more detailed discussion of the properties
of universally closed morphisms. In this section we restrict the discussion to the relation-
ship between universal closed morphisms and morphisms satisfying the existence part of
the valuative criterion.

Lemma 20.2. Let f : X → S be a morphism of schemes.
(1) If f is universally closed then specializations lift along any base change of f , see

Topology, Definition 19.4.
(2) If f is quasi-compact and specializations lift along any base change of f , then f

is universally closed.

Proof. Part (1) is a direct consequence of Topology, Lemma 19.7. Part (2) follows
from Lemmas 19.8 and 19.3. �

Definition 20.3. Let f : X → S be a morphism of schemes. We say f satisfies the
existence part of the valuative criterion if given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

S

where A is a valuation ring with field of fractions K , the dotted arrow exists. We say f
satisfies the uniqueness part of the valuative criterion if there is at most one dotted arrow
given any diagram as above (without requiring existence of course).

A valuation ring is a local domain maximal among the relation of domination in its frac-
tion field, see Algebra, Definition 50.1. Hence the spectrum of a valuation ring has a unique
generic point η and a unique closed point 0, and of course we have the specialization η  0.
The significance of valuation rings is that any specialization of points in any scheme is the
image of η  0 under some morphism from the spectrum of some valuation ring. Here is
the precise result.
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Lemma 20.4. Let S be a scheme. Let s′  s be a specialization of points of S. Then
(1) there exists a valuation ring A and a morphism f : Spec(A)→ S such that the

generic point η of Spec(A) maps to s′ and the special point maps to s, and
(2) given a field extensionK/κ(s′) we may arrange it so that the extensionκ(η)/κ(s′)

induced by f is isomorphic to the given extension.

Proof. Let s′  s be a specialization in S , and let K/κ(s′) be an extension of fields.
By Lemma 13.2 and the discussion following Lemma 13.3 this leads to ring maps OS,s →
κ(s′) → K. Let A ⊂ K be any valuation ring whose field of fractions is K and which
dominates the image of OS,s → K , see Algebra, Lemma 50.2. The ring map OS,s → A
induces the morphism f : Spec(A) → S , see Lemma 13.1. This morphism has all the
desired properties by construction. �

Lemma 20.5. Let f : X → S be a morphism of schemes. The following are equivalent
(1) Specializations lift along any base change of f
(2) The morphism f satisfies the existence part of the valuative criterion.

Proof. Assume (1) holds. Let a solid diagram as in Definition 20.3 be given. In order
to find the dotted arrow we may replace X → S by XSpec(A) → Spec(A) since after
all the assumption is stable under base change. Thus we may assume S = Spec(A). Let
x′ ∈ X be the image of Spec(K) → X , so that we have κ(x′) ⊂ K , see Lemma 13.3. By
assumption there exists a specialization x′  x in X such that x maps to the closed point
of S = Spec(A). We get a local ring map A → OX,x and a ring map OX,x → κ(x′), see
Lemma 13.2 and the discussion following Lemma 13.3. The composition A → OX,x →
κ(x′) → K is the given injection A → K. Since A → OX,x is local, the image of
OX,x → K dominates A and hence is equal to A, by Algebra, Definition 50.1. Thus we
obtain a ring mapOX,x → A and hence a morphism Spec(A)→ X (see Lemma 13.1 and
discussion following it). This proves (2).

Conversely, assume (2) holds. It is immediate that the existence part of the valuative crite-
rion holds for any base changeXS′ → S′ of f by considering the following commutative
diagram

Spec(K) //

��

XS′ //

��

X

��
Spec(A) //

:: 55

S′ // S

Namely, the more horizontal dotted arrow will lead to the other one by definition of the
fibre product. OK, so it clearly suffices to show that specializations lift along f . Let s′  s
be a specialization in S , and let x′ ∈ X be a point lying over s′. Apply Lemma 20.4 to
s′  s and the extension of fields K = κ(x′)/κ(s′). We get a commutative diagram

Spec(K) //

��

X

��
Spec(A) //

44

Spec(OS,s) // S

and by condition (2) we get the dotted arrow. The image x of the closed point of Spec(A)
in X will be a solution to our problem, i.e., x is a specialization of x′ and maps to s. �
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Proposition 20.6 (Valuative criterion of universal closedness). Let f be a quasi-
compact morphism of schemes. Then f is universally closed if and only if f satisfies the
existence part of the valuative criterion.

Proof. This is a formal consequence of Lemmas 20.2 and 20.5 above. �

Example 20.7. Let k be a field. Consider the structure morphism p : P1
k → Spec(k)

of the projective line over k, see Example 14.4. Let us use the valuative criterion above to
prove that p is universally closed. By construction P1

k is covered by two affine opens and
hence p is quasi-compact. Let a commutative diagram

Spec(K)
ξ

//

��

P1
k

��
Spec(A) ϕ // Spec(k)

be given, whereA is a valuation ring andK is its field of fractions. Recall that P1
k is gotten

by glueing Spec(k[x]) to Spec(k[y]) by glueingD(x) toD(y) via x = y−1 (or more sym-
metrically xy = 1). To show there is a morphism Spec(A)→ P1

k fitting diagonally into
the diagram above we may assume that ξ maps into the open Spec(k[x]) (by symmetry).
This gives the following commutative diagram of rings

K k[x]
ξ]

oo

A

OO

k

OO

ϕ]oo

By Algebra, Lemma 50.4 we see that either ξ](x) ∈ A or ξ](x)−1 ∈ A. In the first case we
get a ring map

k[x]→ A, λ 7→ ϕ](λ), x 7→ ξ](x)
fitting into the diagram of rings above, and we win. In the second case we see that we get
a ring map

k[y]→ A, λ 7→ ϕ](λ), y 7→ ξ](x)−1.

This gives a morphism Spec(A) → Spec(k[y]) → P1
k which fits diagonally into the

initial commutative diagram of this example (check omitted).

21. Separation axioms

A topological space X is Hausdorff if and only if the diagonal ∆ ⊂ X × X is a closed
subset. The analogue in algebraic geometry is, given a scheme X over a base scheme S , to
consider the diagonal morphism

∆X/S : X −→ X ×S X.
This is the unique morphism of schemes such that pr1 ◦∆X/S = idX and pr2 ◦∆X/S =
idX (it exists in any category with fibre products).

Lemma 21.1. The diagonal morphism of a morphism between affines is closed.

Proof. The diagonal morphism associated to the morphism Spec(S)→ Spec(R) is
the morphism on spectra corresponding to the ring map S ⊗R S → S , a⊗ b 7→ ab. This
map is clearly surjective, so S ∼= S ⊗R S/J for some ideal J ⊂ S ⊗R S. Hence ∆ is a
closed immersion according to Example 8.1 �
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Lemma 21.2. Let X be a scheme over S. The diagonal morphism ∆X/S is an immer-
sion.

Proof. Recall that if V ⊂ X is affine open and maps into U ⊂ S affine open, then
V ×U V is affine open inX×SX , see Lemmas 17.2 and 17.3. Consider the open subscheme
W ofX×SX which is the union of these affine opens V ×U V . By Lemma 4.2 it is enough
to show that each morphism ∆−1

X/S(V ×U V ) → V ×U V is a closed immersion. Since
V = ∆−1

X/S(V ×U V ) we are just checking that ∆V/U is a closed immersion, which is
Lemma 21.1. �

Definition 21.3. Let f : X → S be a morphism of schemes.
(1) We say f is separated if the diagonal morphism ∆X/S is a closed immersion.
(2) We say f is quasi-separated if the diagonal morphism ∆X/S is a quasi-compact

morphism.
(3) We say a scheme Y is separated if the morphism Y → Spec(Z) is separated.
(4) We say a scheme Y is quasi-separated if the morphism Y → Spec(Z) is quasi-

separated.

By Lemmas 21.2 and 10.4 we see that ∆X/S is a closed immersion if an only if ∆X/S(X) ⊂
X ×S X is a closed subset. Moreover, by Lemma 19.5 we see that a separated morphism is
quasi-separated. The reason for introducing quasi-separated morphisms is that nonsepa-
rated morphisms come up naturally in studying algebraic varieties (especially when doing
moduli, algebraic stacks, etc). But most often they are still quasi-separated.

Example 21.4. Here is an example of a non-quasi-separated morphism. SupposeX =
X1 ∪ X2 → S = Spec(k) with X1 = X2 = Spec(k[t1, t2, t3, . . .]) glued along the
complement of {0} = {(t1, t2, t3, . . .)} (glued as in Example 14.3). In this case the inverse
image of the affine schemeX1×SX2 under ∆X/S is the scheme Spec(k[t1, t2, t3, . . .])\{0}
which is not quasi-compact.

Lemma 21.5. LetX , Y be schemes overS. Let a, b : X → Y be morphisms of schemes
over S. There exists a largest locally closed subscheme Z ⊂ X such that a|Z = b|Z . In
fact Z is the equalizer of (a, b). Moreover, if Y is separated over S , then Z is a closed
subscheme.

Proof. The equalizer of (a, b) is for categorical reasons the fibre product Z in the
following diagram

Z = Y ×(Y×SY ) X //

��

X

(a,b)
��

Y
∆Y/S // Y ×S Y

Thus the lemma follows from Lemmas 18.2, 21.2 and Definition 21.3. �

Lemma 21.6. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) The morphism f is quasi-separated.
(2) For every pair of affine opens U, V ⊂ X which map into a common affine open

of S the intersection U ∩ V is a finite union of affine opens of X .
(3) There exists an affine open covering S =

⋃
i∈I Ui and for each i an affine open

covering f−1Ui =
⋃
j∈Ii Vj such that for each i and each pair j, j′ ∈ Ii the

intersection Vj ∩ Vj′ is a finite union of affine opens of X .
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Proof. Let us prove that (3) implies (1). By Lemma 17.4 the covering X ×S X =⋃
i

⋃
j,j′ Vj×Ui Vj′ is an affine open covering ofX×SX . Moreover, ∆−1

X/S(Vj×Ui Vj′) =
Vj ∩ Vj′ . Hence the implication follows from Lemma 19.2.
The implication (1)⇒ (2) follows from the fact that under the hypotheses of (2) the fibre
product U ×S V is an affine open of X ×S X . The implication (2)⇒ (3) is trivial. �

Lemma 21.7. Let f : X → S be a morphism of schemes.
(1) If f is separated then for every pair of affine opens (U, V ) of X which map into

a common affine open of S we have
(a) the intersection U ∩ V is affine.
(b) the ring mapOX(U)⊗Z OX(V )→ OX(U ∩ V ) is surjective.

(2) If any pair of points x1, x2 ∈ X lying over a common point s ∈ S are contained
in affine opens x1 ∈ U , x2 ∈ V which map into a common affine open of S such
that (a), (b) hold, then f is separated.

Proof. Assume f separated. Suppose (U, V ) is a pair as in (1). Let W = Spec(R)
be an affine open of S containing both f(U) and f(V ). Write U = Spec(A) and V =
Spec(B) for R-algebras A and B. By Lemma 17.3 we see that U ×S V = U ×W V =
Spec(A⊗RB) is an affine open ofX×SX . Hence, by Lemma 10.1 we see that ∆−1(U×S
V )→ U×SV can be identified with Spec((A⊗RB)/J) for some ideal J ⊂ A⊗RB. Thus
U ∩V = ∆−1(U ×S V ) is affine. Assertion (1)(b) holds becauseA⊗Z B → (A⊗RB)/J
is surjective.
Assume the hypothesis formulated in (2) holds. Clearly the collection of affine opens
U ×S V for pairs (U, V ) as in (2) form an affine open covering ofX×SX (see e.g. Lemma
17.4). Hence it suffices to show that each morphism U ∩V = ∆−1

X/S(U ×S V )→ U ×S V
is a closed immersion, see Lemma 4.2. By assumption (a) we have U ∩ V = Spec(C) for
some ring C. After choosing an affine openW = Spec(R) of S into which both U and V
map and writing U = Spec(A), V = Spec(B) we see that the assumption (b) means that
the composition

A⊗Z B → A⊗R B → C

is surjective. HenceA⊗RB → C is surjective and we conclude that Spec(C)→ Spec(A⊗R
B) is a closed immersion. �

Example 21.8. Let k be a field. Consider the structure morphism p : P1
k → Spec(k)

of the projective line over k, see Example 14.4. Let us use the lemma above to prove that p
is separated. By construction P1

k is covered by two affine opens U = Spec(k[x]) and V =
Spec(k[y]) with intersection U ∩ V = Spec(k[x, y]/(xy − 1)) (using obvious notation).
Thus it suffices to check that conditions (2)(a) and (2)(b) of Lemma 21.7 hold for the pairs
of affine opens (U,U), (U, V ), (V,U) and (V, V ). For the pairs (U,U) and (V, V ) this is
trivial. For the pair (U, V ) this amounts to proving thatU ∩V is affine, which is true, and
that the ring map

k[x]⊗Z k[y] −→ k[x, y]/(xy − 1)
is surjective. This is clear because any element in the right hand side can be written as a
sum of a polynomial in x and a polynomial in y.

Lemma 21.9. Let f : X → T and g : Y → T be morphisms of schemes with the
same target. Let h : T → S be a morphism of schemes. Then the induced morphism
i : X ×T Y → X ×S Y is an immersion. If T → S is separated, then i is a closed
immersion. If T → S is quasi-separated, then i is a quasi-compact morphism.
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Proof. By general category theory the following diagram

X ×T Y //

��

X ×S Y

��
T

∆T/S //// T ×S T

is a fibre product diagram. The lemma follows from Lemmas 21.2, 17.6 and 19.3. �

Lemma 21.10. Let g : X → Y be a morphism of schemes over S. The morphism
i : X → X ×S Y is an immersion. If Y is separated over S it is a closed immersion. If Y
is quasi-separated over S it is quasi-compact.

Proof. This is a special case of Lemma 21.9 applied to the morphismX = X×Y Y →
X ×S Y . �

Lemma 21.11. Let f : X → S be a morphism of schemes. Let s : S → X be a section
of f (in a formula f ◦ s = idS). Then s is an immersion. If f is separated then s is a closed
immersion. If f is quasi-separated, then s is quasi-compact.

Proof. This is a special case of Lemma 21.10 applied to g = s so the morphism i =
s : S → S ×S X . �

Lemma 21.12. Permanence properties.
(1) A composition of separated morphisms is separated.
(2) A composition of quasi-separated morphisms is quasi-separated.
(3) The base change of a separated morphism is separated.
(4) The base change of a quasi-separated morphism is quasi-separated.
(5) A (fibre) product of separated morphisms is separated.
(6) A (fibre) product of quasi-separated morphisms is quasi-separated.

Proof. Let X → Y → Z be morphisms. Assume that X → Y and Y → Z are
separated. The composition

X → X ×Y X → X ×Z X

is closed because the first one is by assumption and the second one by Lemma 21.9. The
same argument works for “quasi-separated” (with the same references).

Let f : X → Y be a morphism of schemes over a base S. Let S′ → S be a morphism of
schemes. Let f ′ : XS′ → YS′ be the base change of f . Then the diagonal morphism of f ′

is a morphism

∆f ′ : XS′ = S′ ×S X −→ XS′ ×YS′ XS′ = S′ ×S (X ×Y X)

which is easily seen to be the base change of ∆f . Thus (3) and (4) follow from the fact
that closed immersions and quasi-compact morphisms are preserved under arbitrary base
change (Lemmas 17.6 and 19.3).

If f : X → Y and g : U → V are morphisms of schemes over a base S , then f × g is the
composition of X ×S U → X ×S V (a base change of g) and X ×S V → Y ×S V (a base
change of f ). Hence (5) and (6) follow from (1) – (4). �

Lemma 21.13. Let f : X → Y and g : Y → Z be morphisms of schemes. If g ◦ f is
separated then so is f . If g ◦ f is quasi-separated then so is f .
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Proof. Assume that g ◦ f is separated. Consider the factorizationX → X ×Y X →
X ×Z X of the diagonal morphism of g ◦ f . By Lemma 21.9 the last morphism is an
immersion. By assumption the image of X in X ×Z X is closed. Hence it is also closed in
X ×Y X . Thus we see that X → X ×Y X is a closed immersion by Lemma 10.4.
Assume that g ◦ f is quasi-separated. Let V ⊂ Y be an affine open which maps into an
affine open of Z. Let U1, U2 ⊂ X be affine opens which map into V . Then U1 ∩ U2 is a
finite union of affine opens because U1, U2 map into a common affine open of Z. Since we
may cover Y by affine opens like V we deduce the lemma from Lemma 21.6. �

Lemma 21.14. Let f : X → Y and g : Y → Z be morphisms of schemes. If g ◦ f is
quasi-compact and g is quasi-separated then f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y .
The first map is quasi-compact by Lemma 21.11 because it is a section of the quasi-separated
morphism X ×Z Y → X (a base change of g, see Lemma 21.12). The second map is quasi-
compact as it is the base change of g ◦ f , see Lemma 19.3. And compositions of quasi-
compact morphisms are quasi-compact, see Lemma 19.4. �

Lemma 21.15. An affine scheme is separated. A morphism from an affine scheme to
another scheme is separated.

Proof. Let U = Spec(A) be an affine scheme. Then U → Spec(Z) has closed diag-
onal by Lemma 21.1. Thus U is separated by Definition 21.3. If U → X is a morphism
of schemes, then we can apply Lemma 21.13 to the morphisms U → X → Spec(Z) to
conclude that U → X is separated. �

You may have been wondering whether the condition of only considering pairs of affine
opens whose image is contained in an affine open is really necessary to be able to conclude
that their intersection is affine. Often it isn’t!

Lemma 21.16. Let f : X → S be a morphism. Assume f is separated and S is a
separated scheme. Suppose U ⊂ X and V ⊂ X are affine. Then U ∩ V is affine (and a
closed subscheme of U × V ).

Proof. In this caseX is separated by Lemma 21.12. HenceU ∩V is affine by applying
Lemma 21.7 to the morphism X → Spec(Z). �

On the other hand, the following example shows that we cannot expect the image of an
affine to be contained in an affine.

Example 21.17. Consider the nonaffine scheme U = Spec(k[x, y]) \ {(x, y)} of Ex-
ample 9.3. On the other hand, consider the scheme

GL2,k = Spec(k[a, b, c, d, 1/ad− bc]).
There is a morphism GL2,k → U corresponding to the ring map x 7→ a, y 7→ b. It is easy
to see that this is a surjective morphism, and hence the image is not contained in any affine
open of U . In fact, the affine scheme GL2,k also surjects onto P1

k , and P1
k does not even

have an immersion into any affine scheme.

Remark 21.18. The category of quasi-compact and quasi-separated schemes C has
the following properties. If X,Y ∈ Ob(C), then any morphism of schemes f : X →
Y is quasi-compact and quasi-separated by Lemmas 21.14 and 21.13 with Z = Spec(Z).
Moreover, if X → Y and Z → Y are morphisms C , then X ×Y Z is an object of C
too. Namely, the projection X ×Y Z → Z is quasi-compact and quasi-separated as a base
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change of the morphism Z → Y , see Lemmas 21.12 and 19.3. Hence the composition
X ×Y Z → Z → Spec(Z) is quasi-compact and quasi-separated, see Lemmas 21.12 and
19.4.

22. Valuative criterion of separatedness

Lemma 22.1. Let f : X → S be a morphism of schemes. If f is separated, then f
satisfies the uniqueness part of the valuative criterion.

Proof. Let a diagram as in Definition 20.3 be given. Suppose there are two mor-
phisms a, b : Spec(A) → X fitting into the diagram. Let Z ⊂ Spec(A) be the equalizer
of a and b. By Lemma 21.5 this is a closed subscheme of Spec(A). By assumption it con-
tains the generic point of Spec(A). SinceA is a domain this implies Z = Spec(A). Hence
a = b as desired. �

Lemma 22.2 (Valuative criterion separatedness). Let f : X → S be a morphism.
Assume

(1) the morphism f is quasi-separated, and
(2) the morphism f satisfies the uniqueness part of the valuative criterion.

Then f is separated.

Proof. By assumption (1), Proposition 20.6, and Lemmas 21.2 and 10.4 we see that it
suffices to prove the morphism ∆X/S : X → X ×S X satisfies the existence part of the
valuative criterion. Let a solid commutative diagram

Spec(K) //

��

X

��
Spec(A) //

99

X ×S X

be given. The lower right arrow corresponds to a pair of morphisms a, b : Spec(A)→ X
over S. By (2) we see that a = b. Hence using a as the dotted arrow works. �

23. Monomorphisms

Definition 23.1. A morphism of schemes is called a monomorphism if it is a monomor-
phism in the category of schemes, see Categories, Definition 13.1.

Lemma 23.2. Let j : X → Y be a morphism of schemes. Then j is a monomorphism
if and only if the diagonal morphism ∆X/Y : X → X ×Y X is an isomorphism.

Proof. This is true in any category with fibre products. �

Lemma 23.3. A monomorphism of schemes is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma 23.2
above. �

Lemma 23.4. A composition of monomorphisms is a monomorphism.

Proof. True in any category. �

Lemma 23.5. The base change of a monomorphism is a monomorphism.

Proof. True in any category with fibre products. �
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Lemma 23.6. Let j : X → Y be a morphism of schemes. If j is injective on points,
then j is separated.

Proof. Let z be a point of X ×Y X . Then x = pr1(z) and pr2(z) are the same
because j maps these points to the same point y of Y . Then we can choose an affine open
neighbourhood V ⊂ Y of y and an affine open neighbourhood U ⊂ X of x with j(U) ⊂
V . Then z ∈ U×V U ⊂ X×Y X . HenceX×Y X is the union of the affine opensU×V U .
Since ∆−1

X/Y (U ×V U) = U and since U → U ×V U is a closed immersion, we conclude
that ∆X/Y is a closed immersion (see argument in the proof of Lemma 21.2). �

Lemma 23.7. Let j : X → Y be a morphism of schemes. If
(1) j is injective on points, and
(2) for any x ∈ X the ring map j]x : OY,j(x) → OX,x is surjective,

then j is a monomorphism.

Proof. Let a, b : Z → X be two morphisms of schemes such that j ◦ a = j ◦ b.
Then (1) implies a = b as underlying maps of topological spaces. For any z ∈ Z we have
a]z ◦ j

]
a(z) = b]z ◦ j

]
b(z) as maps OY,j(a(z)) → OZ,z . The surjectivity of the maps j]x forces

a]z = b]z , ∀z ∈ Z. This implies that a] = b]. Hence we conclude a = b as morphisms of
schemes as desired. �

Lemma 23.8. An immersion of schemes is a monomorphism. In particular, any im-
mersion is separated.

Proof. We can see this by checking that the criterion of Lemma 23.7 applies. More
elegantly perhaps, we can use that Lemmas 3.5 and 4.6 imply that open and closed immer-
sions are monomorphisms and hence any immersion (which is a composition of such) is a
monomorphism. �

Lemma 23.9. Let f : X → S be a separated morphism. Any locally closed subscheme
Z ⊂ X is separated over S.

Proof. Follows from Lemma 23.8 and the fact that a composition of separated mor-
phisms is separated (Lemma 21.12). �

Example 23.10. The morphism Spec(Q) → Spec(Z) is a monomorphism. This is
true because Q ⊗Z Q = Q. More generally, for any scheme S and any point s ∈ S the
canonical morphism

Spec(OS,s) −→ S

is a monomorphism.

Lemma 23.11. Let k1, . . . , kn be fields. For any monomorphism of schemes X →
Spec(k1 × . . . × kn) there exists a subset I ⊂ {1, . . . , n} such that X ∼= Spec(

∏
i∈I ki)

as schemes over Spec(k1 × . . .× kn). More generally, if X =
∐
i∈I Spec(ki) is a disjoint

union of spectra of fields and Y → X is a monomorphism, then there exists a subset J ⊂ I
such that Y =

∐
i∈J Spec(ki).

Proof. First reduce to the case n = 1 (or #I = 1) by taking the inverse images
of the open and closed subschemes Spec(ki). In this case X has only one point hence
is affine. The corresponding algebra problem is this: If k → R is an algebra map with
R ⊗k R ∼= R, then R ∼= k or R = 0. This holds for dimension reasons. See also Algebra,
Lemma 107.8 �
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24. Functoriality for quasi-coherent modules

LetX be a scheme. We denote QCoh(OX) the category of quasi-coherentOX -modules as
defined in Modules, Definition 10.1. We have seen in Section 7 that the category QCoh(OX)
has a lot of good properties when X is affine. Since the property of being quasi-coherent
is local on X , these properties are inherited by the category of quasi-coherent sheaves on
any scheme X . We enumerate them here.

(1) A sheaf ofOX -modulesF is quasi-coherent if and only if the restriction ofF to
each affine open U = Spec(R) is of the form M̃ for some R-module M .

(2) A sheaf ofOX -modulesF is quasi-coherent if and only if the restriction ofF to
each of the members of an affine open covering is quasi-coherent.

(3) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(4) Any colimit of quasi-coherent sheaves is quasi-coherent.
(5) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-coherent.
(6) Given a short exact sequence of OX -modules 0→ F1 → F2 → F3 → 0 if two

out of three are quasi-coherent so is the third.
(7) Given a morphism of schemes f : Y → X the pullback of a quasi-coherent
OX -module is a quasi-coherentOY -module. See Modules, Lemma 10.4.

(8) Given two quasi-coherentOX -modules the tensor product is quasi-coherent, see
Modules, Lemma 16.6.

(9) Given a quasi-coherent OX -module F the tensor, symmetric and exterior alge-
bras on F are quasi-coherent, see Modules, Lemma 21.6.

(10) Given two quasi-coherentOX -modulesF , G such thatF is of finite presentation,
then the internal hom HomOX

(F ,G) is quasi-coherent, see Modules, Lemma
22.6 and (5) above.

On the other hand, it is in general not the case that the pushforward of a quasi-coherent
module is quasi-coherent. Here is a case where this does hold.

Lemma 24.1. Let f : X → S be a morphism of schemes. If f is quasi-compact and
quasi-separated then f∗ transforms quasi-coherent OX -modules into quasi-coherent OS-
modules.

Proof. The question is local on S and hence we may assume that S is affine. Because
X is quasi-compact we may write X =

⋃n
i=1 Ui with each Ui open affine. Because f is

quasi-separated we may write Ui ∩Uj =
⋃nij
k=1 Uijk for some affine open Uijk , see Lemma

21.6. Denote fi : Ui → S and fijk : Uijk → S the restrictions of f . For any open V of S
and any sheaf F on X we have

f∗F(V ) = F(f−1V )

= Ker
(⊕

i
F(f−1V ∩ Ui)→

⊕
i,j,k
F(f−1V ∩ Uijk)

)
= Ker

(⊕
i
fi,∗(F|Ui)(V )→

⊕
i,j,k

fijk,∗(F|Uijk)(V )
)

= Ker
(⊕

i
fi,∗(F|Ui)→

⊕
i,j,k

fijk,∗(F|Uijk)
)

(V )

In other words there is an exact sequence of sheaves

0→ f∗F →
⊕

fi,∗Fi →
⊕

fijk,∗Fijk

where Fi,Fijk denotes the restriction of F to the corresponding open. If F is a quasi-
coherentOX -module thenFi is a quasi-coherentOUi -module andFijk is a quasi-coherent
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OUijk -module. Hence by Lemma 7.3 we see that the second and third term of the exact
sequence are quasi-coherentOS-modules. Thus we conclude that f∗F is a quasi-coherent
OS-module. �

Using this we can characterize (closed) immersions of schemes as follows.

Lemma 24.2. Let f : X → Y be a morphism of schemes. Suppose that
(1) f induces a homeomorphism of X with a closed subset of Y , and
(2) f ] : OY → f∗OX is surjective.

Then f is a closed immersion of schemes.

Proof. Assume (1) and (2). By (1) the morphism f is quasi-compact (see Topology,
Lemma 12.3). Conditions (1) and (2) imply conditions (1) and (2) of Lemma 23.7. Hence
f : X → Y is a monomorphism. In particular, f is separated, see Lemma 23.3. Hence
Lemma 24.1 above applies and we conclude that f∗OX is a quasi-coherent OY -module.
Therefore the kernel of OY → f∗OX is quasi-coherent by Lemma 7.8. Since a quasi-
coherent sheaf is locally generated by sections (see Modules, Definition 10.1) this implies
that f is a closed immersion, see Definition 4.1. �

We can use this lemma to prove the following lemma.

Lemma 24.3. A composition of immersions of schemes is an immersion, a composi-
tion of closed immersions of schemes is a closed immersion, and a composition of open
immersions of schemes is an open immersion.

Proof. This is clear for the case of open immersions since an open subspace of an
open subspace is also an open subspace.
Suppose a : Z → Y and b : Y → X are closed immersions of schemes. We will verify
that c = b ◦ a is also a closed immersion. The assumption implies that a and b are homeo-
morphisms onto closed subsets, and hence also c = b◦a is a homeomorphism onto a closed
subset. Moreover, the map OX → c∗OZ is surjective since it factors as the composition
of the surjective maps OX → b∗OY and b∗OY → b∗a∗OZ (surjective as b∗ is exact, see
Modules, Lemma 6.1). Hence by Lemma 24.2 above c is a closed immersion.
Finally, we come to the case of immersions. Suppose a : Z → Y and b : Y → X are
immersions of schemes. This means there exist open subschemes V ⊂ Y and U ⊂ X such
that a(Z) ⊂ V , b(Y ) ⊂ U and a : Z → V and b : Y → U are closed immersions. Since
the topology on Y is induced from the topology on U we can find an open U ′ ⊂ U such
that V = b−1(U ′). Then we see that Z → V = b−1(U ′)→ U ′ is a composition of closed
immersions and hence a closed immersion. This proves that Z → X is an immersion and
we win. �
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CHAPTER 27

Constructions of Schemes

1. Introduction

In this chapter we introduce ways of constructing schemes out of others. A basic reference
is [?].

2. Relative glueing

The following lemma is relevant in case we are trying to construct a schemeX over S , and
we already know how to construct the restriction ofX to the affine opens of S. The actual
result is completely general and works in the setting of (locally) ringed spaces, although
our proof is written in the language of schemes.

Lemma 2.1. Let S be a scheme. Let B be a basis for the topology of S. Suppose given
the following data:

(1) For every U ∈ B a scheme fU : XU → U over U .
(2) For U, V ∈ B with V ⊂ U a morphism ρUV : XV → XU over U .

Assume that
(a) each ρUV induces an isomorphism XV → f−1

U (V ) of schemes over V ,
(b) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have ρUW = ρUV ◦ ρVW .

Then there exists a morphism f : X → S of schemes and isomorphisms iU : f−1(U) →
XU over U ∈ B such that for V,U ∈ B with V ⊂ U the composition

XV

i−1
V // f−1(V ) inclusion // f−1(U) iU // XU

is the morphism ρUV . Moreover X is unique up to unique isomorphism over S.

Proof. To prove this we will use Schemes, Lemma 15.4. First we define a contravari-
ant functor F from the category of schemes to the category of sets. Namely, for a scheme
T we set

F (T ) =
{

(g, {hU}U∈B), g : T → S, hU : g−1(U)→ XU ,
fU ◦ hU = g|g−1(U), hU |g−1(V ) = ρUV ◦ hV ∀ V,U ∈ B, V ⊂ U

}
.

The restriction mapping F (T ) → F (T ′) given a morphism T ′ → T is just gotten by
composition. For any W ∈ B we consider the subfunctor FW ⊂ F consisting of those
systems (g, {hU}) such that g(T ) ⊂W .

First we show F satisfies the sheaf property for the Zariski topology. Suppose that T is a
scheme, T =

⋃
Vi is an open covering, and ξi ∈ F (Vi) is an element such that ξi|Vi∩Vj =

ξj |Vi∩Vj . Say ξi = (gi, {hi,U}). Then we immediately see that the morphisms gi glue to
a unique global morphism g : T → S. Moreover, it is clear that g−1(U) =

⋃
g−1
i (U).

Hence the morphisms hi,U : g−1
i (U) → XU glue to a unique morphism hU : g−1(U) →

2297
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XU . It is easy to verify that the system (g, {hU}) is an element of F (T ). Hence F satisfies
the sheaf property for the Zariski topology.

Next we verify that each FW , W ∈ B is representable. Namely, we claim that the trans-
formation of functors

FW −→ Mor(−, XW ), (g, {hU}) 7−→ hW

is an isomorphism. To see this suppose that T is a scheme andα : T → XW is a morphism.
Set g = fW ◦ α. For any U ∈ B such that U ⊂ W we can define hU : g−1(U)→ XU be
the composition (ρWU )−1◦α|g−1(U). This works because the imageα(g−1(U)) is contained
in f−1

W (U) and condition (a) of the lemma. It is clear that fU ◦ hU = g|g−1(U) for such a
U . Moreover, if also V ∈ B and V ⊂ U ⊂W , then ρUV ◦hV = hU |g−1(V ) by property (b)
of the lemma. We still have to define hU for an arbitrary elementU ∈ B. SinceB is a basis
for the topology on S we can find an open covering U ∩W =

⋃
Ui with Ui ∈ B. Since

g maps into W we have g−1(U) = g−1(U ∩W ) =
⋃
g−1(Ui). Consider the morphisms

hi = ρUUi ◦ hUi : g−1(Ui)→ XU . It is a simple matter to use condition (b) of the lemma
to prove that hi|g−1(Ui)∩g−1(Uj) = hj |g−1(Ui)∩g−1(Uj). Hence these morphisms glue to
give the desired morphism hU : g−1(U) → XU . We omit the (easy) verification that
the system (g, {hU}) is an element of FW (T ) which maps to α under the displayed arrow
above.

Next, we verify each FW ⊂ F is representable by open immersions. This is clear from the
definitions.

Finally we have to verify the collection (FW )W∈B covers F . This is clear by construction
and the fact that B is a basis for the topology of S.

Let X be a scheme representing the functor F . Let (f, {iU}) ∈ F (X) be a “universal
family”. Since each FW is representable by XW (via the morphism of functors displayed
above) we see that iW : f−1(W ) → XW is an isomorphism as desired. The lemma is
proved. �

Lemma 2.2. Let S be a scheme. Let B be a basis for the topology of S. Suppose given
the following data:

(1) For every U ∈ B a scheme fU : XU → U over U .
(2) For every U ∈ B a quasi-coherent sheaf FU over XU .
(3) For every pair U, V ∈ B such that V ⊂ U a morphism ρUV : XV → XU .
(4) For every pair U, V ∈ B such that V ⊂ U a morphism θUV : (ρUV )∗FU → FV .

Assume that
(a) each ρUV induces an isomorphism XV → f−1

U (V ) of schemes over V ,
(b) each θUV is an isomorphism,
(c) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have ρUW = ρUV ◦ ρVW ,
(d) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have θUW = θVW ◦ (ρVW )∗θUV .

Then there exists a morphism of schemes f : X → S together with a quasi-coherent sheaf
F on X and isomorphisms iU : f−1(U)→ XU and θU : i∗UFU → F|f−1(U) over U ∈ B
such that for V,U ∈ B with V ⊂ U the composition

XV

i−1
V // f−1(V ) inclusion // f−1(U) iU // XU
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is the morphism ρUV , and the composition

(2.2.1) (ρUV )∗FU = (i−1
V )∗((i∗UFU )|f−1(V ))

θU |f−1(V )−−−−−−→ (i−1
V )∗(F|f−1(V ))

θ−1
V−−→ FV

is equal to θUV . Moreover (X,F) is unique up to unique isomorphism over S.

Proof. By Lemma 2.1 we get the scheme X over S and the isomorphisms iU . Set
F ′
U = i∗UFU for U ∈ B. This is a quasi-coherentOf−1(U)-module. The maps

F ′
U |f−1(V ) = i∗UFU |f−1(V ) = i∗V (ρUV )∗FU

i∗V θ
U
V−−−→ i∗V FV = F ′

V

define isomorphisms (θ′)UV : F ′
U |f−1(V ) → F ′

V whenever V ⊂ U are elements of B.
Condition (d) says exactly that this is compatible in case we have a triple of elements
W ⊂ V ⊂ U of B. This allows us to get well defined isomorphisms

ϕ12 : F ′
U1
|f−1(U1∩U2) −→ F ′

U2
|f−1(U1∩U2)

whenever U1, U2 ∈ B by covering the intersection U1 ∩ U2 =
⋃
Vj by elements Vj of B

and taking

ϕ12|Vj =
(

(θ′)U2
Vj

)−1
◦ (θ′)U1

Vj
.

We omit the verification that these maps do indeed glue to a ϕ12 and we omit the verifi-
cation of the cocycle condition of a glueing datum for sheaves (as in Sheaves, Section 33).
By Sheaves, Lemma 33.2 we get our F on X . We omit the verification of (2.2.1). �

Remark 2.3. There is a functoriality property for the constructions explained in
Lemmas 2.1 and 2.2. Namely, suppose given two collections of data (fU : XU → U, ρUV )
and (gU : YU → U, σUV ) as in Lemma 2.1. Suppose for every U ∈ B given a morphism
hU : XU → YU over U compatible with the restrictions ρUV and σUV . Functoriality means
that this gives rise to a morphism of schemes h : X → Y over S restricting back to the
morphisms hU , where f : X → S is obtained from the datum (fU : XU → U, ρUV ) and
g : Y → S is obtained from the datum (gU : YU → U, σUV ).

Similarly, suppose given two collections of data (fU : XU → U,FU , ρUV , θUV ) and (gU :
YU → U,GU , σUV , ηUV ) as in Lemma 2.2. Suppose for every U ∈ B given a morphism
hU : XU → YU over U compatible with the restrictions ρUV and σUV , and a morphism
τU : h∗

UGU → FU compatible with the maps θUV and ηUV . Functoriality means that these
give rise to a morphism of schemes h : X → Y over S restricting back to the morphisms
hU , and a morphism h∗G → F restricting back to the maps hU where (f : X → S,F)
is obtained from the datum (fU : XU → U,FU , ρUV , θUV ) and where (g : Y → S,G) is
obtained from the datum (gU : YU → U,GU , σUV , ηUV ).

We omit the verifications and we omit a suitable formulation of “equivalence of categories”
between relative glueing data and relative objects.

3. Relative spectrum via glueing

Situation 3.1. Here S is a scheme, andA is a quasi-coherentOS-algebra. This means
thatA is a sheaf ofOS-algebras which is quasi-coherent as anOS-module.

In this section we outline how to construct a morphism of schemes

Spec
S

(A) −→ S
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by glueing the spectra Spec(Γ(U,A)) where U ranges over the affine opens of S. We first
show that the spectra of the values ofA over affines form a suitable collection of schemes,
as in Lemma 2.1.

Lemma 3.2. In Situation 3.1. Suppose U ⊂ U ′ ⊂ S are affine opens. Let A = A(U)
and A′ = A(U ′). The map of rings A′ → A induces a morphism Spec(A) → Spec(A′),
and the diagram

Spec(A) //

��

Spec(A′)

��
U // U ′

is cartesian.

Proof. Let R = OS(U) and R′ = OS(U ′). Note that the map R ⊗R′ A′ → A is
an isomorphism as A is quasi-coherent (see Schemes, Lemma 7.3 for example). The result
follows from the description of the fibre product of affine schemes in Schemes, Lemma
6.7. �

In particular the morphism Spec(A)→ Spec(A′) of the lemma is an open immersion.

Lemma 3.3. In Situation 3.1. Suppose U ⊂ U ′ ⊂ U ′′ ⊂ S are affine opens. Let A =
A(U), A′ = A(U ′) and A′′ = A(U ′′). The composition of the morphisms Spec(A) →
Spec(A′), and Spec(A′) → Spec(A′′) of Lemma 3.2 gives the morphism Spec(A) →
Spec(A′′) of Lemma 3.2.

Proof. This follows as the mapA′′ → A is the composition ofA′′ → A′ andA′ → A
(becauseA is a sheaf). �

Lemma 3.4. In Situation 3.1. There exists a morphism of schemes

π : Spec
S

(A) −→ S

with the following properties:
(1) for every affine open U ⊂ S there exists an isomorphism iU : π−1(U) →

Spec(A(U)), and
(2) for U ⊂ U ′ ⊂ S affine open the composition

Spec(A(U))
i−1
U // π−1(U) inclusion // π−1(U ′)

iU′ // Spec(A(U ′))

is the open immersion of Lemma 3.2 above.

Proof. Follows immediately from Lemmas 2.1, 3.2, and 3.3. �

4. Relative spectrum as a functor

We place ourselves in Situation 3.1, i.e., S is a scheme and A is a quasi-coherent sheaf of
OS-algebras.

For any f : T → S the pullback f∗A is a quasi-coherent sheaf of OT -algebras. We are
going to consider pairs (f : T → S, ϕ) where f is a morphism of schemes and ϕ : f∗A →
OT is a morphism of OT -algebras. Note that this is the same as giving a f−1OS-algebra
homomorphismϕ : f−1A → OT , see Sheaves, Lemma 20.2. This is also the same as giving
an OS-algebra map ϕ : A → f∗OT , see Sheaves, Lemma 24.7. We will use all three ways
of thinking about ϕ, without further mention.
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Given such a pair (f : T → S, ϕ) and a morphism a : T ′ → T we get a second pair
(f ′ = f ◦ a, ϕ′ = a∗ϕ) which we call the pullback of (f, ϕ). One way to describe ϕ′ =
a∗ϕ is as the composition A → f∗OT → f ′

∗OT ′ where the second map is f∗a
] with

a] : OT → a∗OT ′ . In this way we have defined a functor
F : Schopp −→ Sets(4.0.1)

T 7−→ F (T ) = {pairs (f, ϕ) as above}

Lemma 4.1. In Situation 3.1. Let F be the functor associated to (S,A) above. Let
g : S′ → S be a morphism of schemes. SetA′ = g∗A. Let F ′ be the functor associated to
(S′,A′) above. Then there is a canonical isomorphism

F ′ ∼= hS′ ×hS F
of functors.

Proof. A pair (f ′ : T → S′, ϕ′ : (f ′)∗A′ → OT ) is the same as a pair (f, ϕ : f∗A →
OT ) together with a factorization of f as f = g ◦ f ′. Namely with this notation we have
(f ′)∗A′ = (f ′)∗g∗A = f∗A. Hence the lemma. �

Lemma 4.2. In Situation 3.1. Let F be the functor associated to (S,A) above. If S is
affine, then F is representable by the affine scheme Spec(Γ(S,A)).

Proof. Write S = Spec(R) and A = Γ(S,A). Then A is an R-algebra and A = Ã.
The ring map R→ A gives rise to a canonical map

funiv : Spec(A) −→ S = Spec(R).

We have f∗
univA = Ã⊗R A by Schemes, Lemma 7.3. Hence there is a canonical map

ϕuniv : f∗
univA = Ã⊗R A −→ Ã = OSpec(A)

coming from the A-module map A ⊗R A → A, a ⊗ a′ 7→ aa′. We claim that the pair
(funiv, ϕuniv) represents F in this case. In other words we claim that for any scheme T
the map

Mor(T, Spec(A)) −→ {pairs (f, ϕ)}, a 7−→ (funiv ◦ a, a∗ϕuniv)
is bijective.
Let us construct the inverse map. For any pair (f : T → S, ϕ) we get the induced ring
map

A = Γ(S,A) f∗
// Γ(T, f∗A) ϕ // Γ(T,OT )

This induces a morphism of schemes T → Spec(A) by Schemes, Lemma 6.4.
The verification that this map is inverse to the map displayed above is omitted. �

Lemma 4.3. In Situation 3.1. The functor F is representable by a scheme.

Proof. We are going to use Schemes, Lemma 15.4.
First we check that F satisfies the sheaf property for the Zariski topology. Namely, sup-
pose that T is a scheme, that T =

⋃
i∈I Ui is an open covering, and that (fi, ϕi) ∈ F (Ui)

such that (fi, ϕi)|Ui∩Uj = (fj , ϕj)|Ui∩Uj . This implies that the morphisms fi : Ui → S
glue to a morphism of schemes f : T → S such that f |Ii = fi, see Schemes, Section 14.
Thus f∗

i A = f∗A|Ui and by assumption the morphisms ϕi agree on Ui ∩ Uj . Hence by
Sheaves, Section 33 these glue to a morphism of OT -algebras f∗A → OT . This proves
that F satisfies the sheaf condition with respect to the Zariski topology.
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Let S =
⋃
i∈I Ui be an affine open covering. Let Fi ⊂ F be the subfunctor consisting of

those pairs (f : T → S, ϕ) such that f(T ) ⊂ Ui.
We have to show each Fi is representable. This is the case because Fi is identified with the
functor associated to Ui equipped with the quasi-coherent OUi -algebra A|Ui , by Lemma
4.1. Thus the result follows from Lemma 4.2.
Next we show that Fi ⊂ F is representable by open immersions. Let (f : T → S, ϕ) ∈
F (T ). Consider Vi = f−1(Ui). It follows from the definition ofFi that given a : T ′ → T
we gave a∗(f, ϕ) ∈ Fi(T ′) if and only if a(T ′) ⊂ Vi. This is what we were required to
show.
Finally, we have to show that the collection (Fi)i∈I covers F . Let (f : T → S, ϕ) ∈
F (T ). Consider Vi = f−1(Ui). Since S =

⋃
i∈I Ui is an open covering of S we see that

T =
⋃
i∈I Vi is an open covering of T . Moreover (f, ϕ)|Vi ∈ Fi(Vi). This finishes the

proof of the lemma. �

Lemma 4.4. In Situation 3.1. The scheme π : Spec
S

(A)→ S constructed in Lemma
3.4 and the scheme representing the functorF are canonically isomorphic as schemes over
S.

Proof. Let X → S be the scheme representing the functor F . Consider the sheaf
of OS-algebras R = π∗OSpec

S
(A). By construction of Spec

S
(A) we have isomorphisms

A(U) → R(U) for every affine open U ⊂ S; this follows from Lemma 3.4 part (1). For
U ⊂ U ′ ⊂ S open these isomorphisms are compatible with the restriction mappings; this
follows from Lemma 3.4 part (2). Hence by Sheaves, Lemma 30.13 these isomorphisms
result from an isomorphism of OS-algebras ϕ : A → R. Hence this gives an element
(Spec

S
(A), ϕ) ∈ F (Spec

S
(A)). SinceX represents the functorF we get a corresponding

morphism of schemes can : Spec
S

(A)→ X over S.

Let U ⊂ S be any affine open. Let FU ⊂ F be the subfunctor of F corresponding to
pairs (f, ϕ) over schemes T with f(T ) ⊂ U . Clearly the base change XU represents FU .
Moreover,FU is represented by Spec(A(U)) = π−1(U) according to Lemma 4.2. In other
words XU

∼= π−1(U). We omit the verification that this identification is brought about
by the base change of the morphism can to U . �

Definition 4.5. Let S be a scheme. Let A be a quasi-coherent sheaf of OS-algebras.
The relative spectrum of A over S , or simply the spectrum of A over S is the scheme
constructed in Lemma 3.4 which represents the functor F (4.0.1), see Lemma 4.4. We
denote it π : Spec

S
(A)→ S. The “universal family” is a morphism ofOS-algebras

A −→ π∗OSpec
S

(A)

The following lemma says among other things that forming the relative spectrum com-
mutes with base change.

Lemma 4.6. Let S be a scheme. Let A be a quasi-coherent sheaf of OS-algebras. Let
π : Spec

S
(A)→ S be the relative spectrum ofA over S.

(1) For every affine open U ⊂ S the inverse image π−1(U) is affine.
(2) For every morphism g : S′ → S we have S′ ×S Spec

S
(A) = Spec

S′(g∗A).
(3) The universal map

A −→ π∗OSpec
S

(A)

is an isomorphism ofOS-algebras.
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Proof. Part (1) comes from the description of the relative spectrum by glueing, see
Lemma 3.4. Part (2) follows immediately from Lemma 4.1. Part (3) follows because it is
local on S and it is clear in case S is affine by Lemma 4.2 for example. �

Lemma 4.7. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. By Schemes, Lemma 24.1 the sheaf f∗OX is a quasi-coherent sheaf of OS-
algebras. There is a canonical morphism

can : X −→ Spec
S

(f∗OX)

of schemes over S. For any affine open U ⊂ S the restriction can|f−1(U) is identified
with the canonical morphism

f−1(U) −→ Spec(Γ(f−1(U),OX))

coming from Schemes, Lemma 6.4.

Proof. The morphism comes, via the definition of Spec as the scheme representing
the functor F , from the canonical map ϕ : f∗f∗OX → OX (which by adjointness of push
and pull corresponds to id : f∗OX → f∗OX ). The statement on the restriction to f−1(U)
follows from the description of the relative spectrum over affines, see Lemma 4.2. �

5. Affine n-space

As an application of the relative spectrum we define affine n-space over a base scheme S as
follows. For any integer n ≥ 0 we can consider the quasi-coherent sheaf of OS-algebras
OS [T1, . . . , Tn]. It is quasi-coherent because as a sheaf of OS-modules it is just the direct
sum of copies ofOS indexed by multi-indices.

Definition 5.1. Let S be a scheme and n ≥ 0. The scheme

An
S = Spec

S
(OS [T1, . . . , Tn])

over S is called affine n-space over S. If S = Spec(R) is affine then we also call this affine
n-space over R and we denote it An

R.

Note that An
R = Spec(R[T1, . . . , Tn]). For any morphism g : S′ → S of schemes we have

g∗OS [T1, . . . , Tn] = OS′ [T1, . . . , Tn] and hence An
S′ = S′ ×S An

S is the base change.
Therefore an alternative definition of affine n-space is the formula

An
S = S ×Spec(Z) An

Z.

Also, a morphism from an S-scheme f : X → S to An
S is given by a homomorphism

of OS-algebras OS [T1, . . . , Tn] → f∗OX . This is clearly the same thing as giving the
images of the Ti. In other words, a morphism from X to An

S over S is the same as giving
n elements h1, . . . , hn ∈ Γ(X,OX).

6. Vector bundles

Let S be a scheme. Let E be a quasi-coherent sheaf of OS-modules. By Modules, Lemma
21.6 the symmetric algebra Sym(E) of E overOS is a quasi-coherent sheaf ofOS-algebras.
Hence it makes sense to apply the construction of the previous section to it.
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Definition 6.1. Let S be a scheme. Let E be a quasi-coherent OS-module1. The
vector bundle associated to E is

V(E) = Spec
S

(Sym(E)).

The vector bundle associated to E comes with a bit of extra structure. Namely, we have a
grading

π∗OV(E) =
⊕

n≥0
Symn(E).

which turns π∗OV(E) into a graded OS-algebra. Conversely, we can recover E from the
degree 1 part of this. Thus we define an abstract vector bundle as follows.

Definition 6.2. Let S be a scheme. A vector bundle π : V → S over S is an affine
morphism of schemes such that π∗OV is endowed with the structure of a graded OS-
algebra π∗OV =

⊕
n≥0 En such that E0 = OS and such that the maps

Symn(E1) −→ En
are isomorphisms for all n ≥ 0. A morphism of vector bundles over S is a morphism
f : V → V ′ such that the induced map

f∗ : π′
∗OV ′ −→ π∗OV

is compatible with the given gradings.

An example of a vector bundle over S is affine n-space An
S over S , see Definition 5.1. This

is true becauseOS [T1, . . . , Tn] = Sym(O⊕n
S ).

Lemma 6.3. The category of vector bundles over a scheme S is anti-equivalent to the
category of quasi-coherentOS-modules.

Proof. Omitted. Hint: In one direction one uses the functor Spec
S

(Sym∗
OS

(−)) and
in the other the functor (π : V → S)  (π∗OV )1 where the subscript indicates we take
the degree 1 part. �

7. Cones

In algebraic geometry cones correspond to graded algebras. By our conventions a graded
ring or algebra A comes with a grading A =

⊕
d≥0 Ad by the nonnegative integers, see

Algebra, Section 56.

Definition 7.1. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Assume that OS → A0 is an isomorphism2. The cone associated to A or the affine cone
associated toA is

C(A) = Spec
S

(A).

The cone associated to a graded sheaf of OS-algebras comes with a bit of extra structure.
Namely, we obtain a grading

π∗OC(A) =
⊕

n≥0
An

Thus we can define an abstract cone as follows.

1The reader may expect here the condition that E is finite locally free. We do not do so in order to be
consistent with [?, II, Definition 1.7.8].

2Often one imposes the assumption that A is generated by A1 over OS . We do not assume this in order
to be consistent with [?, II, (8.3.1)].



8. PROJ OF A GRADED RING 2305

Definition 7.2. Let S be a scheme. A cone π : C → S over S is an affine morphism
of schemes such that π∗OC is endowed with the structure of a gradedOS-algebra π∗OC =⊕

n≥0An such that A0 = OS . A morphism of cones from π : C → S to π′ : C ′ → S is
a morphism f : C → C ′ such that the induced map

f∗ : π′
∗OC′ −→ π∗OC

is compatible with the given gradings.

Any vector bundle is an example of a cone. In fact the category of vector bundles over S
is a full subcategory of the category of cones over S.

8. Proj of a graded ring

In this section we construct Proj of a graded ring following [?, II, Section 2].

Let S be a graded ring. Consider the topological space Proj(S) associated to S , see Algebra,
Section 57. We will endow this space with a sheaf of ringsOProj(S) such that the resulting
pair (Proj(S),OProj(S)) will be a scheme.

Recall that Proj(S) has a basis of open sets D+(f), f ∈ Sd, d ≥ 1 which we call standard
opens, see Algebra, Section 57. This terminology will always imply that f is homogeneous
of positive degree even if we forget to mention it. In addition, the intersection of two
standard opens is another: D+(f) ∩ D+(g) = D+(fg), for f, g ∈ S homogeneous of
positive degree.

Lemma 8.1. Let S be a graded ring. Let f ∈ S homogeneous of positive degree.
(1) If g ∈ S homogeneous of positive degree and D+(g) ⊂ D+(f), then

(a) f is invertible in Sg , and fdeg(g)/gdeg(f) is invertible in S(g),
(b) ge = af for some e ≥ 1 and a ∈ S homogeneous,
(c) there is a canonical S-algebra map Sf → Sg ,
(d) there is a canonical S0-algebra map S(f) → S(g) compatible with the map

Sf → Sg ,
(e) the map S(f) → S(g) induces an isomorphism

(S(f))gdeg(f)/fdeg(g) ∼= S(g),

(f) these maps induce a commutative diagram of topological spaces

D+(g)

��

{Z-graded primes of Sg}oo //

��

Spec(S(g))

��
D+(f) {Z-graded primes of Sf}oo // Spec(S(f))

where the horizontal maps are homeomorphisms and the vertical maps are
open immersions,

(g) there are compatible canonical Sf and S(f)-module maps Mf → Mg and
M(f) →M(g) for any graded S-module M , and

(h) the map M(f) →M(g) induces an isomorphism

(M(f))gdeg(f)/fdeg(g) ∼= M(g).

(2) Any open covering ofD+(f) can be refined to a finite open covering of the form
D+(f) =

⋃n
i=1 D+(gi).
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(3) Let g1, . . . , gn ∈ S be homogeneous of positive degree. ThenD+(f) ⊂
⋃
D+(gi)

if and only if gdeg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn) generate the unit ideal in

S(f).

Proof. Recall that D+(g) = Spec(S(g)) with identification given by the ring maps
S → Sg ← S(g), see Algebra, Lemma 57.3. Thus fdeg(g)/gdeg(f) is an element of S(g)
which is not contained in any prime ideal, and hence invertible, see Algebra, Lemma 17.2.
We conclude that (a) holds. Write the inverse of f in Sg as a/gd. We may replace a by its
homogeneous part of degree d deg(g) − deg(f). This means gd − af is annihilated by a
power of g, whence ge = af for some a ∈ S homogeneous of degree e deg(g) − deg(f).
This proves (b). For (c), the map Sf → Sg exists by (a) from the universal property
of localization, or we can define it by mapping b/fn to anb/gne. This clearly induces a
map of the subrings S(f) → S(g) of degree zero elements as well. We can similarly define
Mf →Mg andM(f) →M(g) by mapping x/fn to anx/gne. The statements writing S(g)
resp. M(g) as principal localizations of S(f) resp. M(f) are clear from the formulas above.
The maps in the commutative diagram of topological spaces correspond to the ring maps
given above. The horizontal arrows are homeomorphisms by Algebra, Lemma 57.3. The
vertical arrows are open immersions since the left one is the inclusion of an open subset.
The openD+(f) is quasi-compact because it is homeomorphic to Spec(S(f)), see Algebra,
Lemma 17.10. Hence the second statement follows directly from the fact that the standard
opens form a basis for the topology.
The third statement follows directly from Algebra, Lemma 17.2. �

In Sheaves, Section 30 we defined the notion of a sheaf on a basis, and we showed that it is
essentially equivalent to the notion of a sheaf on the space, see Sheaves, Lemmas 30.6 and
30.9. Moreover, we showed in Sheaves, Lemma 30.4 that it is sufficient to check the sheaf
condition on a cofinal system of open coverings for each standard open. By the lemma
above it suffices to check on the finite coverings by standard opens.

Definition 8.2. Let S be a graded ring. Suppose thatD+(f) ⊂ Proj(S) is a standard
open. A standard open covering of D+(f) is a covering D+(f) =

⋃n
i=1 D+(gi), where

g1, . . . , gn ∈ S are homogeneous of positive degree.

Let S be a graded ring. Let M be a graded S-module. We will define a presheaf M̃ on
the basis of standard opens. Suppose that U ⊂ Proj(S) is a standard open. If f, g ∈ S
are homogeneous of positive degree such thatD+(f) = D+(g), then by Lemma 8.1 above
there are canonical maps M(f) → M(g) and M(g) → M(f) which are mutually inverse.
Hence we may choose any f such that U = D+(f) and define

M̃(U) = M(f).

Note that if D+(g) ⊂ D+(f), then by Lemma 8.1 above we have a canonical map

M̃(D+(f)) = M(f) −→M(g) = M̃(D+(g)).
Clearly, this defines a presheaf of abelian groups on the basis of standard opens. IfM = S ,
then S̃ is a presheaf of rings on the basis of standard opens. And for generalM we see that
M̃ is a presheaf of S̃-modules on the basis of standard opens.

Let us compute the stalk of M̃ at a point x ∈ Proj(S). Suppose that x corresponds to the
homogeneous prime ideal p ⊂ S. By definition of the stalk we see that

M̃x = colimf∈Sd,d>0,f 6∈pM(f)
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Here the set {f ∈ Sd, d > 0, f 6∈ p} is preordered by the rule f ≥ f ′ ⇔ D+(f) ⊂
D+(f ′). If f1, f2 ∈ S \ p are homogeneous of positive degree, then we have f1f2 ≥ f1
in this ordering. In Algebra, Section 57 we defined M(p) as the module whose elements
are fractions x/f with x, f homogeneous, deg(x) = deg(f), f 6∈ p. Since p ∈ Proj(S)
there exists at least one f0 ∈ S homogeneous of positive degree with f0 6∈ p. Hence
x/f = f0x/ff0 and we see that we may always assume the denominator of an element in
M(p) has positive degree. From these remarks it follows easily that

M̃x = M(p).

Next, we check the sheaf condition for the standard open coverings. IfD+(f) =
⋃n
i=1 D+(gi),

then the sheaf condition for this covering is equivalent with the exactness of the sequence

0→M(f) →
⊕

M(gi) →
⊕

M(gigj).

Note that D+(gi) = D+(fgi), and hence we can rewrite this sequence as the sequence

0→M(f) →
⊕

M(fgi) →
⊕

M(fgigj).

By Lemma 8.1 we see that gdeg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn) generate the unit ideal

in S(f), and that the modules M(fgi), M(fgigj) are the principal localizations of the S(f)-
module M(f) at these elements and their products. Thus we may apply Algebra, Lemma
24.1 to the moduleM(f) overS(f) and the elements gdeg(f)

1 /fdeg(g1), . . . , g
deg(f)
n /fdeg(gn).

We conclude that the sequence is exact. By the remarks made above, we see that M̃ is a
sheaf on the basis of standard opens.
Thus we conclude from the material in Sheaves, Section 30 that there exists a unique sheaf
of ringsOProj(S) which agrees with S̃ on the standard opens. Note that by our computation
of stalks above and Algebra, Lemma 57.5 the stalks of this sheaf of rings are all local rings.
Similarly, for any graded S-module M there exists a unique sheaf of OProj(S)-modules F
which agrees with M̃ on the standard opens, see Sheaves, Lemma 30.12.

Definition 8.3. Let S be a graded ring.
(1) The structure sheaf OProj(S) of the homogeneous spectrum of S is the unique

sheaf of ringsOProj(S) which agrees with S̃ on the basis of standard opens.
(2) The locally ringed space (Proj(S),OProj(S)) is called the homogeneous spectrum

of S and denoted Proj(S).
(3) The sheaf ofOProj(S)-modules extending M̃ to all opens of Proj(S) is called the

sheaf ofOProj(S)-modules associated to M . This sheaf is denoted M̃ as well.

We summarize the results obtained so far.

Lemma 8.4. Let S be a graded ring. LetM be a graded S-module. Let M̃ be the sheaf
ofOProj(S)-modules associated to M .

(1) For every f ∈ S homogeneous of positive degree we have
Γ(D+(f),OProj(S)) = S(f).

(2) For every f ∈ S homogeneous of positive degree we have Γ(D+(f), M̃) = M(f)
as an S(f)-module.

(3) WheneverD+(g) ⊂ D+(f) the restriction mappings onOProj(S) and M̃ are the
maps S(f) → S(g) and M(f) →M(g) from Lemma 8.1.
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(4) Let p be a homogeneous prime of S not containing S+, and let x ∈ Proj(S) be
the corresponding point. We haveOProj(S),x = S(p).

(5) Let p be a homogeneous prime of S not containing S+, and let x ∈ Proj(S) be
the corresponding point. We have Fx = M(p) as an S(p)-module.

(6) There is a canonical ring map S0 −→ Γ(Proj(S), S̃) and a canonical S0-module
map M0 −→ Γ(Proj(S), M̃) compatible with the descriptions of sections over
standard opens and stalks above.

Moreover, all these identifications are functorial in the graded S-moduleM . In particular,
the functor M 7→ M̃ is an exact functor from the category of graded S-modules to the
category ofOProj(S)-modules.

Proof. Assertions (1) - (5) are clear from the discussion above. We see (6) since there
are canonical mapsM0 →M(f), x 7→ x/1 compatible with the restriction maps described
in (3). The exactness of the functor M 7→ M̃ follows from the fact that the functor
M 7→ M(p) is exact (see Algebra, Lemma 57.5) and the fact that exactness of short exact
sequences may be checked on stalks, see Modules, Lemma 3.1. �

Remark 8.5. The map from M0 to the global sections of M̃ is generally far from
being an isomorphism. A trivial example is to take S = k[x, y, z] with 1 = deg(x) =
deg(y) = deg(z) (or any number of variables) and to take M = S/(x100, y100, z100). It
is easy to see that M̃ = 0, but M0 = k.

Lemma 8.6. Let S be a graded ring. Let f ∈ S be homogeneous of positive degree.
Suppose that D(g) ⊂ Spec(S(f)) is a standard open. Then there exists an h ∈ S ho-
mogeneous of positive degree such that D(g) corresponds to D+(h) ⊂ D+(f) via the
homeomorphism of Algebra, Lemma 57.3. In fact we can take h such that g = h/fn for
some n.

Proof. Write g = h/fn for some h homogeneous of positive degree and somen ≥ 1.
If D+(h) is not contained in D+(f) then we replace h by hf and n by n+ 1. Then h has
the required shape and D+(h) ⊂ D+(f) corresponds to D(g) ⊂ Spec(S(f)). �

Lemma 8.7. Let S be a graded ring. The locally ringed space Proj(S) is a scheme.
The standard opens D+(f) are affine opens. For any graded S-module M the sheaf M̃ is
a quasi-coherent sheaf ofOProj(S)-modules.

Proof. Consider a standard openD+(f) ⊂ Proj(S). By Lemmas 8.1 and 8.4 we have
Γ(D+(f),OProj(S)) = S(f), and we have a homeomorphism ϕ : D+(f) → Spec(S(f)).
For any standard open D(g) ⊂ Spec(S(f)) we may pick an h ∈ S+ as in Lemma 8.6.
Then ϕ−1(D(g)) = D+(h), and by Lemmas 8.4 and 8.1 we see

Γ(D+(h),OProj(S)) = S(h) = (S(f))hdeg(f)/fdeg(h) = (S(f))g = Γ(D(g),OSpec(S(f))).
Thus the restriction ofOProj(S) to D+(f) corresponds via the homeomorphism ϕ exactly
to the sheaf OSpec(S(f)) as defined in Schemes, Section 5. We conclude that D+(f) is an
affine scheme isomorphic to Spec(S(f)) via ϕ and hence that Proj(S) is a scheme.

In exactly the same way we show that M̃ is a quasi-coherent sheaf of OProj(S)-modules.
Namely, the argument above will show that

M̃ |D+(f) ∼= ϕ∗
(
M̃(f)

)
which shows that M̃ is quasi-coherent. �
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Lemma 8.8. Let S be a graded ring. The scheme Proj(S) is separated.

Proof. We have to show that the canonical morphism Proj(S) → Spec(Z) is sepa-
rated. We will use Schemes, Lemma 21.7. Thus it suffices to show given any pair of standard
opens D+(f) and D+(g) that D+(f) ∩ D+(g) = D+(fg) is affine (clear) and that the
ring map

S(f) ⊗Z S(g) −→ S(fg)

is surjective. Any element s in S(fg) is of the form s = h/(fngm) with h ∈ S ho-
mogeneous of degree n deg(f) + m deg(g). We may multiply h by a suitable monomial
f igj and assume that n = n′ deg(g), and m = m′ deg(f). Then we can rewrite s as
s = h/f (n′+m′) deg(g) · fm′ deg(g)/gm

′ deg(f). So s is indeed in the image of the displayed
arrow. �

Lemma 8.9. Let S be a graded ring. The scheme Proj(S) is quasi-compact if and
only if there exist finitely many homogeneous elements f1, . . . , fn ∈ S+ such that S+ ⊂√

(f1, . . . , fn). In this case Proj(S) = D+(f1) ∪ . . . ∪D+(fn).

Proof. Given such a collection of elements the standard affine opens D+(fi) cover
Proj(S) by Algebra, Lemma 57.3. Conversely, if Proj(S) is quasi-compact, then we may
cover it by finitely many standard opens D+(fi), i = 1, . . . , n and we see that S+ ⊂√

(f1, . . . , fn) by the lemma referenced above. �

Lemma 8.10. Let S be a graded ring. The scheme Proj(S) has a canonical morphism
towards the affine scheme Spec(S0), agreeing with the map on topological spaces coming
from Algebra, Definition 57.1.

Proof. We saw above that our construction of S̃ , resp. M̃ gives a sheaf ofS0-algebras,
resp. S0-modules. Hence we get a morphism by Schemes, Lemma 6.4. This morphism,
when restricted to D+(f) comes from the canonical ring map S0 → S(f). The maps
S → Sf , S(f) → Sf are S0-algebra maps, see Lemma 8.1. Hence if the homogeneous
prime p ⊂ S corresponds to the Z-graded prime p′ ⊂ Sf and the (usual) prime p′′ ⊂ S(f),
then each of these has the same inverse image in S0. �

Lemma 8.11. Let S be a graded ring. If S is finitely generated as an algebra over S0,
then the morphism Proj(S) → Spec(S0) satisfies the existence and uniqueness parts of
the valuative criterion, see Schemes, Definition 20.3.

Proof. The uniqueness part follows from the fact that Proj(S) is separated (Lemma
8.8 and Schemes, Lemma 22.1). Choose xi ∈ S+ homogeneous, i = 1, . . . , n which gener-
ate S over S0. Let di = deg(xi) and set d = lcm{di}. Suppose we are given a diagram

Spec(K) //

��

Proj(S)

��
Spec(A) // Spec(S0)

as in Schemes, Definition 20.3. Denote v : K∗ → Γ the valuation of A, see Algebra,
Definition 50.13. We may choose an f ∈ S+ homogeneous such that Spec(K) maps into
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D+(f). Then we get a commutative diagram of ring maps

K S(f)ϕ
oo

A

OO

S0oo

OO

After renumbering we may assume that ϕ(xdeg(f)
i /fdi) is nonzero for i = 1, . . . , r and

zero for i = r + 1, . . . , n. Since the open sets D+(xi) cover Proj(S) we see that r ≥ 1.
Let i0 ∈ {1, . . . , r} be an index minimizing γi = (d/di)v(ϕ(xdeg(f)

i /fdi)) in Γ. For
convenience set x0 = xi0 and d0 = di0 . The ring map ϕ factors though a map ϕ′ :
S(fx0) → K which gives a ring map S(x0) → S(fx0) → K. The algebra S(x0) is generated
over S0 by the elements xe1

1 . . . xenn /x
e0
0 , where

∑
eidi = e0d0. If ei > 0 for some i > r,

then ϕ′(xe1
1 . . . xenn /x

e0
0 ) = 0. If ei = 0 for i > r, then we have

deg(f)v(ϕ′(xe1
1 . . . xerr /x

e0
0 )) = v(ϕ′(xe1 deg(f)

1 . . . xer deg(f)
r /x

e0 deg(f)
0 ))

=
∑

eiv(ϕ′(xdeg(f)
i /fdi))− e0v(ϕ′(xdeg(f)

0 /fd0))

=
∑

eidiγi − e0d0γ0

≥
∑

eidiγ0 − e0d0γ0 = 0

because γ0 is minimal among the γi. This implies that S(x0) maps into A via ϕ′. The
corresponding morphism of schemes Spec(A) → Spec(S(x0)) = D+(x0) ⊂ Proj(S)
provides the morphism fitting into the first commutative diagram of this proof. �

We saw in the proof of Lemma 8.11 that, under the hypotheses of that lemma, the mor-
phism Proj(S) → Spec(S0) is quasi-compact as well. Hence (by Schemes, Proposition
20.6) we see that Proj(S)→ Spec(S0) is universally closed in the situation of the lemma.
We give several examples showing these results do not hold without some assumption on
the graded ring S.

Example 8.12. Let C[X1, X2, X3, . . .] be the graded C-algebra with each Xi in de-
gree 1. Consider the ring map

C[X1, X2, X3, . . .] −→ C[tα;α ∈ Q≥0]

which maps Xi to t1/i. The right hand side becomes a valuation ring A upon localization
at the idealm = (tα;α > 0). LetK be the fraction field ofA. The above gives a morphism
Spec(K) → Proj(C[X1, X2, X3, . . .]) which does not extend to a morphism defined on
all of Spec(A). The reason is that the image of Spec(A) would be contained in one of the
D+(Xi) but then Xi+1/Xi would map to an element of A which it doesn’t since it maps
to t1/(i+1)−1/i.

Example 8.13. Let R = C[t] and

S = R[X1, X2, X3, . . .]/(X2
i − tXi+1).

The grading is such that R = S0 and deg(Xi) = 2i−1. Note that if p ∈ Proj(S) then
t 6∈ p (otherwise p has to contain all of the Xi which is not allowed for an element of
the homogeneous spectrum). Thus we see that D+(Xi) = D+(Xi+1) for all i. Hence
Proj(S) is quasi-compact; in fact it is affine since it is equal to D+(X1). It is easy to see
that the image of Proj(S)→ Spec(R) is D(t). Hence the morphism Proj(S)→ Spec(R)
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is not closed. Thus the valuative criterion cannot apply because it would imply that the
morphism is closed (see Schemes, Proposition 20.6 ).

Example 8.14. LetA be a ring. Let S = A[T ] as a gradedA algebra with T in degree
1. Then the canonical morphism Proj(S)→ Spec(A) (see Lemma 8.10) is an isomorphism.

Example 8.15. LetX = Spec(A) be an affine scheme, and letU ⊂ X be an open sub-
scheme. Grade A[T ] by setting deg T = 1. Define S to be the subring of A[T ] generated
by A and all fT i, where i ≥ 0 and where f ∈ A is such that D(f) ⊂ U . We claim that S
is a graded ring with S0 = A such that Proj(S) ∼= U , and this isomorphism identifies the
canonical morphism Proj(S)→ Spec(A) of Lemma 8.10 with the inclusion U ⊂ X .

Suppose p ∈ Proj(S) is such that every fT ∈ S1 is in p. Then every generator fT i with
i ≥ 1 is in p because (fT i)2 = (fT )(fT 2i−1) ∈ p and p is radical. But then p ⊃ S+,
which is impossible. Consequently Proj(S) is covered by the standard open affine subsets
{D+(fT )}fT∈S1 .

Observe that, if fT ∈ S1, then the inclusion S ⊂ A[T ] induces a graded isomorphism of
S[(fT )−1] withA[T, T−1, f−1]. Hence the standard open subsetD+(fT ) ∼= Spec(S(fT ))
is isomorphic to Spec(A[T, T−1, f−1]0) = Spec(A[f−1]). It is clear that this isomor-
phism is a restriction of the canonical morphism Proj(S) → Spec(A). If in addition
gT ∈ S1, then S[(fT )−1, (gT )−1] ∼= A[T, T−1, f−1, g−1] as graded rings, so D+(fT ) ∩
D+(gT ) ∼= Spec(A[f−1, g−1]). Therefore Proj(S) is the union of open subschemes
D+(fT ) which are isomorphic to the open subschemes D(f) ⊂ X under the canoni-
cal morphism, and these open subschemes intersect in Proj(S) in the same way they do
in X . We conclude that the canonical morphism is an isomorphism of Proj(S) with the
union of all D(f) ⊂ U , which is U .

9. Quasi-coherent sheaves on Proj

Let S be a graded ring. Let M be a graded S-module. We saw in Lemma 8.4 how to
construct a quasi-coherent sheaf of modules M̃ on Proj(S) and a map

(9.0.1) M0 −→ Γ(Proj(S), M̃)

of the degree 0 part of M to the global sections of M̃ . The degree 0 part of the nth twist
M(n) of the graded moduleM (see Algebra, Section 56) is equal toMn. Hence we can get
maps

(9.0.2) Mn −→ Γ(Proj(S), M̃(n)).

We would like to be able to perform this operation for any quasi-coherent sheaf F on
Proj(S). We will do this by tensoring with the nth twist of the structure sheaf, see Defi-
nition 10.1. In order to relate the two notions we will use the following lemma.

Lemma 9.1. Let S be a graded ring. Let (X,OX) = (Proj(S),OProj(S)) be the scheme
of Lemma 8.7. Let f ∈ S+ be homogeneous. Let x ∈ X be a point corresponding to the
homogeneous prime p ⊂ S. Let M , N be graded S-modules. There is a canonical map of
OProj(S)-modules

M̃ ⊗OX
Ñ −→ M̃ ⊗S N

which induces the canonical map M(f) ⊗S(f) N(f) → (M ⊗S N)(f) on sections over
D+(f) and the canonical mapM(p)⊗S(p) N(p) → (M⊗SN)(p) on stalks at x. Moreover,
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the following diagram

M0 ⊗S0 N0 //

��

(M ⊗S N)0

��

Γ(X, M̃ ⊗OX
Ñ) // Γ(X, M̃ ⊗S N)

is commutative where the vertical maps are given by (9.0.1).

Proof. To construct a morphism as displayed is the same as constructing a OX -
bilinear map

M̃ × Ñ −→ M̃ ⊗S N
see Modules, Section 16. It suffices to define this on sections over the opensD+(f) compat-
ible with restriction mappings. On D+(f) we use the S(f)-bilinear map M(f) ×N(f) →
(M ⊗S N)(f), (x/fn, y/fm) 7→ (x⊗ y)/fn+m. Details omitted. �

Remark 9.2. In general the map constructed in Lemma 9.1 above is not an isomor-
phism. Here is an example. Let k be a field. Let S = k[x, y, z] with k in degree 0 and
deg(x) = 1, deg(y) = 2, deg(z) = 3. Let M = S(1) and N = S(2), see Algebra, Section
56 for notation. Then M ⊗S N = S(3). Note that

Sz = k[x, y, z, 1/z]
S(z) = k[x3/z, xy/z, y3/z2] ∼= k[u, v, w]/(uw − v3)
M(z) = S(z) · x+ S(z) · y2/z ⊂ Sz
N(z) = S(z) · y + S(z) · x2 ⊂ Sz

S(3)(z) = S(z) · z ⊂ Sz
Consider the maximal idealm = (u, v, w) ⊂ S(z). It is not hard to see that bothM(z)/mM(z)
and N(z)/mN(z) have dimension 2 over κ(m). But S(3)(z)/mS(3)(z) has dimension 1.
Thus the map M(z) ⊗N(z) → S(3)(z) is not an isomorphism.

10. Invertible sheaves on Proj

Recall from Algebra, Section 56 the construction of the twisted module M(n) associated
to a graded module over a graded ring.

Definition 10.1. Let S be a graded ring. Let X = Proj(S).

(1) We define OX(n) = S̃(n). This is called the nth twist of the structure sheaf of
Proj(S).

(2) For any sheaf ofOX -modules F we set F(n) = F ⊗OX
OX(n).

We are going to use Lemma 9.1 to construct some canonical maps. Since S(n)⊗S S(m) =
S(n+m) we see that there are canonical maps

(10.1.1) OX(n)⊗OX
OX(m) −→ OX(n+m).

These maps are not isomorphisms in general, see the example in Remark 9.2. The same
example shows thatOX(n) is not an invertible sheaf on X in general. Tensoring with an
arbitraryOX -module F we get maps

(10.1.2) OX(n)⊗OX
F(m) −→ F(n+m).
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The maps (10.1.1) on global sections give a map of graded rings

(10.1.3) S −→
⊕

n≥0
Γ(X,OX(n)).

And for an arbitraryOX -module F the maps (10.1.2) give a graded module structure

(10.1.4)
⊕

n≥0
Γ(X,OX(n))×

⊕
m∈Z

Γ(X,F(m)) −→
⊕

m∈Z
Γ(X,F(m))

and via (10.1.3) also a S-module structure. More generally, given any graded S-module
M we have M(n) = M ⊗S S(n). Hence we get maps

(10.1.5) M̃(n) = M̃ ⊗OX
OX(n) −→ M̃(n).

On global sections (9.0.2) defines a map of graded S-modules

(10.1.6) M −→
⊕

n∈Z
Γ(X, M̃(n)).

Here is an important fact which follows basically immediately from the definitions.

Lemma 10.2. Let S be a graded ring. SetX = Proj(S). Let f ∈ S be homogeneous of
degree d > 0. The sheaves OX(nd)|D+(f) are invertible, and in fact trivial for all n ∈ Z
(see Modules, Definition 25.1). The maps (10.1.1) restricted to D+(f)

OX(nd)|D+(f) ⊗OD+(f) OX(m)|D+(f) −→ OX(nd+m)|D+(f),

the maps (10.1.2) restricted to D+(f)
OX(nd)|D+(f) ⊗OD+(f) F(m)|D+(f) −→ F(nd+m)|D+(f),

and the maps (10.1.5) restricted to D+(f)

M̃(nd)|D+(f) = M̃ |D+(f) ⊗OD+(f) OX(nd)|D+(f) −→ M̃(nd)|D+(f)

are isomorphisms for all n,m ∈ Z.

Proof. The (not graded) S-module maps S → S(nd), and M → M(nd), given by
x 7→ fnx become isomorphisms after inverting f . The first shows that S(f) ∼= S(nd)(f)
which gives an isomorphism OD+(f) ∼= OX(nd)|D+(f). The second shows that the map
S(nd)(f) ⊗S(f) M(f) → M(nd)(f) is an isomorphism. The case of the map (10.1.2) is a
consequence of the case of the map (10.1.1). �

Lemma 10.3. Let S be a graded ring. LetM be a graded S-module. SetX = Proj(S).
Assume X is covered by the standard opens D+(f) with f ∈ S1, e.g., if S is generated
by S1 over S0. Then the sheavesOX(n) are invertible and the maps (10.1.1), (10.1.2), and
(10.1.5) are isomorphisms. In particular, these maps induce isomorphisms

OX(1)⊗n ∼= OX(n) and M̃ ⊗OX
OX(n) = M̃(n) ∼= M̃(n)

Thus (9.0.2) becomes a map

(10.3.1) Mn −→ Γ(X, M̃(n))
and (10.1.6) becomes a map

(10.3.2) M −→
⊕

n∈Z
Γ(X, M̃(n)).

Proof. Under the assumptions of the lemmaX is covered by the open subsetsD+(f)
with f ∈ S1 and the lemma is a consequence of Lemma 10.2 above. �
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Lemma 10.4. Let S be a graded ring. Set X = Proj(S). Fix d ≥ 1 an integer. The
following open subsets of X are equal:

(1) The largest open subset W = Wd ⊂ X such that each OX(dn)|W is invertible
and all the multiplication maps OX(nd)|W ⊗OW

OX(md)|W → OX(nd +
md)|W (see 10.1.1) are isomorphisms.

(2) The union of the open subsetsD+(fg) with f, g ∈ S homogeneous and deg(f) =
deg(g) + d.

Moreover, all the maps M̃(nd)|W = M̃ |W ⊗OW
OX(nd)|W → M̃(nd)|W (see 10.1.5) are

isomorphisms.

Proof. If x ∈ D+(fg) with deg(f) = deg(g) + d then on D+(fg) the sheaves
OX(dn) are generated by the element (f/g)n = f2n/(fg)n. This implies x is in the open
subset W defined in (1) by arguing as in the proof of Lemma 10.2.
Conversely, suppose that OX(d) is free of rank 1 in an open neighbourhood V of x ∈ X
and all the multiplication maps OX(nd)|V ⊗OV

OX(md)|V → OX(nd + md)|V are
isomorphisms. We may choose h ∈ S+ homogeneous such that x ∈ D+(h) ⊂ V . By
the definition of the twists of the structure sheaf we conclude there exists an element s of
(Sh)d such that sn is a basis of (Sh)nd as a module over S(h) for all n ∈ Z. We may write
s = f/hm for some m ≥ 1 and f ∈ Sd+m deg(h). Set g = hm so s = f/g. Note that
x ∈ D+(g) by construction. Note that gd ∈ (Sh)−d deg(g). By assumption we can write
this as a multiple of sdeg(g) = fdeg(g)/gdeg(g), say gd = a/ge · fdeg(g)/gdeg(g). Then we
conclude that gd+e+deg(g) = afdeg(g) and hence also x ∈ D+(f). So x is an element of
the set defined in (2).
The existence of the generating section s = f/g over the affine openD+(fg) whose pow-
ers freely generate the sheaves of modules OX(nd) easily implies that the multiplication
maps M̃(nd)|W = M̃ |W ⊗OW

OX(nd)|W → M̃(nd)|W (see 10.1.5) are isomorphisms.
Compare with the proof of Lemma 10.2. �

Recall from Modules, Lemma 25.10 that given an invertible sheaf L on a locally ringed
space X , and given a global section s of L the set Xs = {x ∈ X | s 6∈ mxLx} is open.

Lemma 10.5. Let S be a graded ring. Set X = Proj(S). Fix d ≥ 1 an integer. Let
W = Wd ⊂ X be the open subscheme defined in Lemma 10.4. Let n ≥ 1 and f ∈ Snd.
Denote s ∈ Γ(W,OW (nd)) the section which is the image of f via (10.1.3) restricted to
W . Then

Ws = D+(f) ∩W.

Proof. Let D+(ab) ⊂ W be a standard affine open with a, b ∈ S homogeneous and
deg(a) = deg(b) + d. Note that D+(ab) ∩D+(f) = D+(abf). On the other hand the
restriction of s to D+(ab) corresponds to the element f/1 = bnf/an(a/b)n ∈ (Sab)nd.
We have seen in the proof of Lemma 10.4 that (a/b)n is a generator for OW (nd) over
D+(ab). We conclude that Ws ∩ D+(ab) is the principal open associated to bnf/an ∈
OX(D+(ab)). Thus the result of the lemma is clear. �

The following lemma states the properties that we will later use to characterize schemes
with an ample invertible sheaf.

Lemma 10.6. Let S be a graded ring. Let X = Proj(S). Let Y ⊂ X be a quasi-
compact open subscheme. Denote OY (n) the restriction of OX(n) to Y . There exists an
integer d ≥ 1 such that
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(1) the subscheme Y is contained in the open Wd defined in Lemma 10.4,
(2) the sheafOY (dn) is invertible for all n ∈ Z,
(3) all the maps OY (nd) ⊗OY

OY (m) −→ OY (nd + m) of Equation (10.1.1) are
isomorphisms,

(4) all the maps M̃(nd)|Y = M̃ |Y ⊗OY
OX(nd)|Y → M̃(nd)|Y (see 10.1.5) are

isomorphisms,
(5) given f ∈ Snd denote s ∈ Γ(Y,OY (nd)) the image of f via (10.1.3) restricted

to Y , then D+(f) ∩ Y = Ys,
(6) a basis for the topology on Y is given by the collection of opens Ys, where s ∈

Γ(Y,OY (nd)), n ≥ 1, and
(7) a basis for the topology ofY is given by those opensYs ⊂ Y , for s ∈ Γ(Y,OY (nd)),

n ≥ 1 which are affine.

Proof. Since Y is quasi-compact there exist finitely many homogeneous fi ∈ S+,
i = 1, . . . , n such that the standard opens D+(fi) give an open covering of Y . Let
di = deg(fi) and set d = d1 . . . dn. Note that D+(fi) = D+(fd/dii ) and hence we see
immediately that Y ⊂ Wd, by characterization (2) in Lemma 10.4 or by (1) using Lemma
10.2. Note that (1) implies (2), (3) and (4) by Lemma 10.4. (Note that (3) is a special case
of (4).) Assertion (5) follows from Lemma 10.5. Assertions (6) and (7) follow because the
open subsets D+(f) form a basis for the topology of X and are affine. �

Lemma 10.7. LetS be a graded ring. SetX = Proj(S). LetF be a quasi-coherentOX -
module. Set M =

⊕
n∈Z Γ(X,F(n)) as a graded S-module, using (10.1.4) and (10.1.3).

Then there is a canonicalOX -module map

M̃ −→ F

functorial in F such that the induced map M0 → Γ(X,F) is the identity.

Proof. Let f ∈ S be homogeneous of degree d > 0. Recall that M̃ |D+(f) corresponds
to the S(f)-module M(f) by Lemma 8.4. Thus we can define a canonical map

M(f) −→ Γ(D+(f),F), m/fn 7−→ m|D+(f) ⊗ f |−nD+(f)

which makes sense because f |D+(f) is a trivializing section of the invertible sheafOX(d)|D+(f),
see Lemma 10.2 and its proof. Since M̃ is quasi-coherent, this leads to a canonical map

M̃ |D+(f) −→ F|D+(f)

via Schemes, Lemma 7.1. We obtain a global map if we prove that the displayed maps glue
on overlaps. Proof of this is omitted. We also omit the proof of the final statement. �

11. Functoriality of Proj

A graded ring map ψ : A → B does not always give rise to a morphism of associated
projective homogeneous spectra. The reason is that the inverse image ψ−1(q) of a homo-
geneous prime q ⊂ B may contain the irrelevant primeA+ even if q does not containB+.
The correct result is stated as follows.

Lemma 11.1. Let A, B be two graded rings. Set X = Proj(A) and Y = Proj(B). Let
ψ : A→ B be a graded ring map. Set

U(ψ) =
⋃

f∈A+ homogeneous
D+(ψ(f)) ⊂ Y.
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Then there is a canonical morphism of schemes

rψ : U(ψ) −→ X

and a map of Z-gradedOU(ψ)-algebras

θ = θψ : r∗
ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the following properties:
(1) For every d ≥ 0 the diagram

Ad

��

ψ
// Bd

��
Γ(X,OX(d)) θ // Γ(U(ψ),OY (d)) Γ(Y,OY (d))oo

is commutative.
(2) For any f ∈ A+ homogeneous we have r−1

ψ (D+(f)) = D+(ψ(f)) and the
restriction of rψ to D+(ψ(f)) corresponds to the ring map A(f) → B(ψ(f))
induced by ψ.

Proof. Clearly condition (2) uniquely determines the morphism of schemes and the
open subset U(ψ). Pick f ∈ Ad with d ≥ 1. Note that OX(n)|D+(f) corresponds
to the A(f)-module (Af )n and that OY (n)|D+(ψ(f)) corresponds to the B(ψ(f))-module
(Bψ(f))n. In other words θ when restricted to D+(ψ(f)) corresponds to a map of Z-
graded B(ψ(f))-algebras

Af ⊗A(f) B(ψ(f)) −→ Bψ(f)

Condition (1) determines the images of all elements ofA. Since f is an invertible element
which is mapped to ψ(f) we see that 1/fm is mapped to 1/ψ(f)m. It easily follows from
this that θ is uniquely determined, namely it is given by the rule

a/fm ⊗ b/ψ(f)e 7−→ ψ(a)b/ψ(f)m+e.

To show existence we remark that the proof of uniqueness above gave a well defined pre-
scription for the morphism r and the map θ when restricted to every standard open of the
formD+(ψ(f)) ⊂ U(ψ) intoD+(f). Call these rf and θf . Hence we only need to verify
that if D+(f) ⊂ D+(g) for some f, g ∈ A+ homogeneous, then the restriction of rg to
D+(ψ(f)) matches rf . This is clear from the formulas given for r and θ above. �

Lemma 11.2. Let A, B, and C be graded rings. Set X = Proj(A), Y = Proj(B) and
Z = Proj(C). Let ϕ : A→ B, ψ : B → C be graded ring maps. Then we have

U(ψ ◦ ϕ) = r−1
ϕ (U(ψ)) and rψ◦ϕ = rϕ ◦ rψ|U(ψ◦ϕ).

In addition we have
θψ ◦ r∗

ψθϕ = θψ◦ϕ

with obvious notation.

Proof. Omitted. �

Lemma 11.3. With hypotheses and notation as in Lemma 11.1 above. Assume Ad →
Bd is surjective for all d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
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(3) the maps θ : r∗
ψOX(n)→ OY (n) are surjective but not isomorphisms in general

(even if A→ B is surjective).

Proof. Part (1) follows from the definition of U(ψ) and the fact that D+(f) =
D+(fn) for any n > 0. For f ∈ A+ homogeneous we see that A(f) → B(ψ(f)) is
surjective because any element of B(ψ(f)) can be represented by a fraction b/ψ(f)n with
n arbitrarily large (which forces the degree of b ∈ B to be large). This proves (2). The
same argument shows the map

Af → Bψ(f)

is surjective which proves the surjectivity of θ. For an example where this map is not an
isomorphism consider the graded ring A = k[x, y] where k is a field and deg(x) = 1,
deg(y) = 2. Set I = (x), so that B = k[y]. Note that OY (1) = 0 in this case. But it is
easy to see that r∗

ψOX(1) is not zero. (There are less silly examples.) �

Lemma 11.4. With hypotheses and notation as in Lemma 11.1 above. Assume Ad →
Bd is an isomorphism for all d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is an isomorphism, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.

Proof. We have (1) by Lemma 11.3. Let f ∈ A+ be homogeneous. The assumption
on ψ implies that Af → Bf is an isomorphism (details omitted). Thus it is clear that rψ
and θ restrict to isomorphisms over D+(f). The lemma follows. �

Lemma 11.5. With hypotheses and notation as in Lemma 11.1 above. Assume Ad →
Bd is surjective for d� 0 and that A is generated by A1 over A0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.

Proof. By Lemmas 11.4 and 11.2 we may replace B by the image of A→ B without
changing X or the sheaves OX(n). Thus we may assume that A → B is surjective. By
Lemma 11.3 we get (1) and (2) and surjectivity in (3). By Lemma 10.3 we see that both
OX(n) andOY (n) are invertible. Hence θ is an isomorphism. �

Lemma 11.6. With hypotheses and notation as in Lemma 11.1 above. Assume there
exists a ring map R→ A0 and a ring map R→ R′ such that B = R′ ⊗R A. Then

(1) U(ψ) = Y ,
(2) the diagram

Y = Proj(B)
rψ
//

��

Proj(A) = X

��
Spec(R′) // Spec(R)

is a fibre product square, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.

Proof. This follows immediately by looking at what happens over the standard opens
D+(f) for f ∈ A+. �
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Lemma 11.7. With hypotheses and notation as in Lemma 11.1 above. Assume there
exists a g ∈ A0 such that ψ induces an isomorphism Ag → B. Then U(ψ) = Y , rψ :
Y → X is an open immersion which induces an isomorphism of Y with the inverse image
of D(g) ⊂ Spec(A0). Moreover the map θ is an isomorphism.

Proof. This is a special case of Lemma 11.6 above. �

Lemma 11.8. Let S be a graded ring. Let d ≥ 1. Set S′ = S(d) with notation as in Al-
gebra, Section 56. SetX = Proj(S) andX ′ = Proj(S′). There is a canonical isomorphism
i : X → X ′ of schemes such that

(1) for any graded S-module M setting M ′ = M (d), we have a canonical isomor-
phism M̃ → i∗M̃ ′,

(2) we have canonical isomorphismsOX(nd)→ i∗OX′(n)
and these isomorphisms are compatible with the multiplication maps of Lemma 9.1 and
hence with the maps (10.1.1), (10.1.2), (10.1.3), (10.1.4), (10.1.5), and (10.1.6) (see proof for
precise statements.

Proof. The injective ring map S′ → S (which is not a homomorphism of graded
rings due to our conventions), induces a map j : Spec(S) → Spec(S′). Given a graded
prime ideal p ⊂ S we see that p′ = j(p) = S′ ∩ p is a graded prime ideal of S′. Moreover,
if f ∈ S+ is homogeneous and f 6∈ p, then fd ∈ S′

+ and fd 6∈ p′. Conversely, if
p′ ⊂ S′ is a graded prime ideal not containing some homogeneous element f ∈ S′

+, then
p = {g ∈ S | gd ∈ p′} is a graded prime ideal of S not containing f whose image
under j is p′. To see that p is an ideal, note that if g, h ∈ p, then (g + h)2d ∈ p′ by the
binomial formula and hence g + h ∈ p′ as p′ is a prime. In this way we see that j induces
a homeomorphism i : X → X ′. Moreover, given f ∈ S+ homogeneous, then we have
S(f) ∼= S′

(fd). Since these isomorphisms are compatible with the restrictions mappings
of Lemma 8.1, we see that there exists an isomorphism i] : i−1OX′ → OX of structure
sheaves on X and X ′, hence i is an isomorphism of schemes.

LetM be a graded S-module. Given f ∈ S+ homogeneous, we haveM(f) ∼= M ′
(fd), hence

in exactly the same manner as above we obtain the isomorphism in (1). The isomorphisms
in (2) are a special case of (1) for M = S(nd) which gives M ′ = S′(n). Let M and N be
graded S-modules. Then we have

M ′ ⊗S′ N ′ = (M ⊗S N)(d) = (M ⊗S N)′

as can be verified directly from the definitions. Having said this the compatibility with
the multiplication maps of Lemma 9.1 is the commutativity of the diagram

M̃ ⊗OX
Ñ

(1)⊗(1)
��

// M̃ ⊗S N

(1)
��

i∗(M̃ ′ ⊗OX′ Ñ ′) // i∗( ˜M ′ ⊗S′ N ′)

This can be seen by looking at the construction of the maps over the open D+(f) =
D+(fd) where the top horizontal arrow is given by the mapM(f)×N(f) → (M⊗SN)(f)
and the lower horizontal arrow by the mapM ′

(fd)×N
′
(fd) → (M ′⊗S′N ′)(fd). Since these

maps agree via the identificationsM(f) = M ′
(fd), etc, we get the desired compatibility. We

omit the proof of the other compatibilities. �
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12. Morphisms into Proj

Let S be a graded ring. Let X = Proj(S) be the homogeneous spectrum of S. Let d ≥ 1
be an integer. Consider the open subscheme

(12.0.1) Ud =
⋃

f∈Sd
D+(f) ⊂ X = Proj(S)

Note that d|d′ ⇒ Ud ⊂ Ud′ and X =
⋃
d Ud. Neither X nor Ud need be quasi-compact,

see Algebra, Lemma 57.3. Let us write OUd(n) = OX(n)|Ud . By Lemma 10.2 we know
that OUd(nd), n ∈ Z is an invertible OUd -module and that all the multiplication maps
OUd(nd)⊗OUd

OUd(m)→ OUd(nd+m) of (10.1.1) are isomorphisms. In particular we
have OUd(nd) ∼= OUd(d)⊗n. The graded ring map (10.1.3) on global sections combined
with restriction to Ud give a homomorphism of graded rings

(12.0.2) ψd : S(d) −→ Γ∗(Ud,OUd(d)).

For the notationS(d), see Algebra, Section 56. For the notation Γ∗ see Modules, Definition
25.7. Moreover, since Ud is covered by the opens D+(f), f ∈ Sd we see that OUd(d) is
globally generated by the sections in the image of ψd1 : S(d)

1 = Sd → Γ(Ud,OUd(d)), see
Modules, Definition 4.1.

Let Y be a scheme, and let ϕ : Y → X be a morphism of schemes. Assume the image
ϕ(Y ) is contained in the open subscheme Ud of X . By the discussion following Modules,
Definition 25.7 we obtain a homomorphism of graded rings

Γ∗(Ud,OUd(d)) −→ Γ∗(Y, ϕ∗OX(d)).

The composition of this and ψd gives a graded ring homomorphism

(12.0.3) ψdϕ : S(d) −→ Γ∗(Y, ϕ∗OX(d))

which has the property that the invertible sheaf ϕ∗OX(d) is globally generated by the
sections in the image of (S(d))1 = Sd → Γ(Y, ϕ∗OX(d)).

Lemma 12.1. Let S be a graded ring, and X = Proj(S). Let d ≥ 1 and Ud ⊂ X as
above. Let Y be a scheme. Let L be an invertible sheaf on Y . Let ψ : S(d) → Γ∗(Y,L)
be a graded ring homomorphism such that L is generated by the sections in the image of
ψ|Sd : Sd → Γ(Y,L). Then there exist a morphism ϕ : Y → X such that ϕ(Y ) ⊂ Ud
and an isomorphism α : ϕ∗OUd(d)→ L such that ψdϕ agrees with ψ via α:

Γ∗(Y,L) Γ∗(Y, ϕ∗OUd(d))
α
oo Γ∗(Ud,OUd(d))

ϕ∗
oo

S(d)

ψ

OO

S(d)

ψd

OO

ψdϕ

ii

idoo

commutes. Moreover, the pair (ϕ, α) is unique.

Proof. Pick f ∈ Sd. Denote s = ψ(f) ∈ Γ(Y,L). On the open set Ys where s
does not vanish multiplication by s induces an isomorphism OYs → L|Ys , see Modules,
Lemma 25.10. We will denote the inverse of this map x 7→ x/s, and similarly for powers
of L. Using this we define a ring map ψ(f) : S(f) → Γ(Ys,O) by mapping the fraction
a/fn to ψ(a)/sn. By Schemes, Lemma 6.4 this corresponds to a morphism ϕf : Ys →
Spec(S(f)) = D+(f). We also introduce the isomorphism αf : ϕ∗

fOD+(f)(d) → L|Ys
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which maps the pullback of the trivializing section f over D+(f) to the trivializing sec-
tion s over Ys. With this choice the commutativity of the diagram in the lemma holds
with Y replaced by Ys, ϕ replaced by ϕf , and α replaced by αf ; verification omitted.

Suppose that f ′ ∈ Sd is a second element, and denote s′ = ψ(f ′) ∈ Γ(Y,L). Then
Ys ∩ Ys′ = Yss′ and similarly D+(f) ∩ D+(f ′) = D+(ff ′). In Lemma 10.6 we saw
that D+(f ′) ∩ D+(f) is the same as the set of points of D+(f) where the section of
OX(d) defined by f ′ does not vanish. Hence ϕ−1

f (D+(f ′) ∩ D+(f)) = Ys ∩ Ys′ =
ϕ−1
f ′ (D+(f ′) ∩ D+(f)). On D+(f) ∩ D+(f ′) the fraction f/f ′ is an invertible section

of the structure sheaf with inverse f ′/f . Note that ψ(f ′)(f/f ′) = ψ(f)/s′ = s/s′ and
ψ(f)(f ′/f) = ψ(f ′)/s = s′/s. We claim there is a unique ring map S(ff ′) → Γ(Yss′ ,O)
making the following diagram commute

Γ(Ys,O) // Γ(Yss′ ,O) Γ(Ys,′O)oo

S(f) //

ψ(f)

OO

S(ff ′)

OO

S(f ′)oo

ψ(f′)

OO

It exists because we may use the rule x/(ff ′)n 7→ ψ(x)/(ss′)n, which “works” by the
formulas above. Uniqueness follows as Proj(S) is separated, see Lemma 8.8 and its proof.
This shows that the morphisms ϕf and ϕf ′ agree over Ys ∩ Ys′ . The restrictions of αf
and αf ′ agree over Ys ∩ Ys′ because the regular functions s/s′ and ψ(f ′)(f) agree. This
proves that the morphisms ψf glue to a global morphism from Y into Ud ⊂ X , and that
the maps αf glue to an isomorphism satisfying the conditions of the lemma.

We still have to show the pair (ϕ, α) is unique. Suppose (ϕ′, α′) is a second such pair. Let
f ∈ Sd. By the commutativity of the diagrams in the lemma we have that the inverse
images of D+(f) under both ϕ and ϕ′ are equal to Yψ(f). Since the opens D+(f) are a
basis for the topology onX , and sinceX is a sober topological space (see Schemes, Lemma
11.1) this means the maps ϕ and ϕ′ are the same on underlying topological spaces. Let us
use s = ψ(f) to trivialize the invertible sheaf L over Yψ(f). By the commutativity of
the diagrams we have that α⊗n(ψdϕ(x)) = ψ(x) = (α′)⊗n(ψdϕ′(x)) for all x ∈ Snd. By
construction of ψdϕ and ψdϕ′ we have ψdϕ(x) = ϕ](x/fn)ψdϕ(fn) over Yψ(f), and similarly
for ψdϕ′ . By the commutativity of the diagrams of the lemma we deduce that ϕ](x/fn) =
(ϕ′)](x/fn). This proves that ϕ and ϕ′ induce the same morphism from Yψ(f) into the
affine scheme D+(f) = Spec(S(f)). Hence ϕ and ϕ′ are the same as morphisms. Finally,
it remains to show that the commutativity of the diagram of the lemma singles out, given
ϕ, a unique α. We omit the verification. �

We continue the discussion from above the lemma. Let S be a graded ring. Let Y be a
scheme. We will consider triples (d,L, ψ) where

(1) d ≥ 1 is an integer,
(2) L is an invertibleOY -module, and
(3) ψ : S(d) → Γ∗(Y,L) is a graded ring homomorphism such that L is generated

by the global sections ψ(f), with f ∈ Sd.
Given a morphism h : Y ′ → Y and a triple (d,L, ψ) over Y we can pull it back to the
triple (d, h∗L, h∗ ◦ ψ). Given two triples (d,L, ψ) and (d,L′, ψ′) with the same integer
d we say they are strictly equivalent if there exists an isomorphism β : L → L′ such that
β ◦ ψ = ψ′ as graded ring maps S(d) → Γ∗(Y,L′).
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For each integer d ≥ 1 we define

Fd : Schopp −→ Sets,
Y 7−→ {strict equivalence classes of triples (d,L, ψ) as above}

with pullbacks as defined above.

Lemma 12.2. Let S be a graded ring. Let X = Proj(S). The open subscheme Ud ⊂
X (12.0.1) represents the functor Fd and the triple (d,OUd(d), ψd) defined above is the
universal family (see Schemes, Section 15).

Proof. This is a reformulation of Lemma 12.1 �

Lemma 12.3. Let S be a graded ring generated as an S0-algebra by the elements of S1.
In this case the scheme X = Proj(S) represents the functor which associates to a scheme
Y the set of pairs (L, ψ), where

(1) L is an invertibleOY -module, and
(2) ψ : S → Γ∗(Y,L) is a graded ring homomorphism such that L is generated by

the global sections ψ(f), with f ∈ S1

up to strict equivalence as above.

Proof. Under the assumptions of the lemma we have X = U1 and the lemma is a
reformulation of Lemma 12.2 above. �

We end this section with a discussion of a functor corresponding to Proj(S) for a general
graded ring S. We advise the reader to skip the rest of this section.

Fix an arbitrary graded ring S. Let T be a scheme. We will say two triples (d,L, ψ) and
(d′,L′, ψ′) over T with possibly different integers d, d′ are equivalent if there exists an
isomorphism β : L⊗d′ → (L′)⊗d of invertible sheaves over T such that β ◦ ψ|S(dd′) and
ψ′|S(dd′) agree as graded ring maps S(dd′) → Γ∗(Y, (L′)⊗dd′).

Lemma 12.4. Let S be a graded ring. Set X = Proj(S). Let T be a scheme. Let
(d,L, ψ) and (d′,L′, ψ′) be two triples over T . The following are equivalent:

(1) Let n = lcm(d, d′). Write n = ad = a′d′. There exists an isomorphism β :
L⊗a → (L′)⊗a′

with the property that β ◦ ψ|S(n) and ψ′|S(n) agree as graded
ring maps S(n) → Γ∗(Y, (L′)⊗n).

(2) The triples (d,L, ψ) and (d′,L′, ψ′) are equivalent.
(3) For some positive integern = ad = a′d′ there exists an isomorphismβ : L⊗a →

(L′)⊗a′
with the property that β ◦ψ|S(n) and ψ′|S(n) agree as graded ring maps

S(n) → Γ∗(Y, (L′)⊗n).
(4) The morphisms ϕ : T → X and ϕ′ : T → X associated to (d,L, ψ) and

(d′,L′, ψ′) are equal.

Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible de-
grees and powers of invertible sheaves. Also (3) implies (4) by the uniqueness statement
in Lemma 12.1. Thus we have to prove that (4) implies (1). Assume (4), in other words
ϕ = ϕ′. Note that this implies that we may write L = ϕ∗OX(d) and L′ = ϕ∗OX(d′).
Moreover, via these identifications we have that the graded ring mapsψ andψ′ correspond
to the restriction of the canonical graded ring map

S −→
⊕

n≥0
Γ(X,OX(n))
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to S(d) and S(d′) composed with pullback by ϕ (by Lemma 12.1 again). Hence taking β to
be the isomorphism

(ϕ∗OX(d))⊗a = ϕ∗OX(n) = (ϕ∗OX(d′))⊗a′

works. �

Let S be a graded ring. Let X = Proj(S). Over the open subscheme scheme Ud ⊂
X = Proj(S) (12.0.1) we have the triple (d,OUd(d), ψd). Clearly, if d|d′ the triples
(d,OUd(d), ψd) and (d′,OUd′ (d′), ψd′) are equivalent when restricted to the open Ud
(which is a subset ofUd′ ). This, combined with Lemma 12.1 shows that morphismsY → X
correspond roughly to equivalence classes of triples over Y . This is not quite true since if
Y is not quasi-compact, then there may not be a single triple which works. Thus we have
to be slightly careful in defining the corresponding functor.
Here is one possible way to do this. Suppose d′ = ad. Consider the transformation of
functorsFd → Fd′ which assigns to the triple (d,L, ψ) overT the triple (d′,L⊗a, ψ|S(d′)).
One of the implications of Lemma 12.4 is that the transformation Fd → Fd′ is injective!
For a quasi-compact scheme T we define

F (T ) =
⋃

d∈N
Fd(T )

with transition maps as explained above. This clearly defines a contravariant functor on
the category of quasi-compact schemes with values in sets. For a general scheme T we
define

F (T ) = limV⊂T quasi-compact open F (V ).
In other words, an element ξ of F (T ) corresponds to a compatible system of choices of
elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . We omit the
definition of the pullback map F (T )→ F (T ′) for a morphism T ′ → T of schemes. Thus
we have defined our functor

F : Schopp −→ Sets

Lemma 12.5. Let S be a graded ring. LetX = Proj(S). The functor F defined above
is representable by the scheme X .

Proof. We have seen above that the functor Fd corresponds to the open subscheme
Ud ⊂ X . Moreover the transformation of functors Fd → Fd′ (if d|d′) defined above
corresponds to the inclusion morphism Ud → Ud′ (see discussion above). Hence to show
that F is represented by X it suffices to show that T → X for a quasi-compact scheme T
ends up in some Ud, and that for a general scheme T we have

Mor(T,X) = limV⊂T quasi-compact open Mor(V,X).
These verifications are omitted. �

13. Projective space

Projective space is one of the fundamental objects studied in algebraic geometry. In this
section we just give its construction as Proj of a polynomial ring. Later we will discover
many of its beautiful properties.

Lemma 13.1. Let S = Z[T0, . . . , Tn] with deg(Ti) = 1. The scheme
Pn

Z = Proj(S)
represents the functor which associates to a scheme Y the pairs (L, (s0, . . . , sn)) where
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(1) L is an invertibleOY -module, and
(2) s0, . . . , sn are global sections of L which generate L

up to the following equivalence: (L, (s0, . . . , sn)) ∼ (N , (t0, . . . , tn))⇔ there exists an
isomorphism β : L → N with β(si) = ti for i = 0, . . . , n.

Proof. This is a special case of Lemma 12.3 above. Namely, for any graded ringAwe
have

Morgradedrings(Z[T0, . . . , Tn], A) = A1 × . . .×A1

ψ 7→ (ψ(T0), . . . , ψ(Tn))

and the degree 1 part of Γ∗(Y,L) is just Γ(Y,L). �

Definition 13.2. The scheme Pn
Z = Proj(Z[T0, . . . , Tn]) is called projective n-space

over Z. Its base change Pn
S to a scheme S is called projective n-space over S. IfR is a ring

the base change to Spec(R) is denoted Pn
R and called projective n-space over R.

Given a scheme Y over S and a pair (L, (s0, . . . , sn)) as in Lemma 13.1 the induced mor-
phism to Pn

S is denoted
ϕ(L,(s0,...,sn)) : Y −→ Pn

S

This makes sense since the pair defines a morphism into Pn
Z and we already have the struc-

ture morphism into S so combined we get a morphism into Pn
S = Pn

Z×S. Note that this
is the S-morphism characterized by

L = ϕ∗
(L,(s0,...,sn))OPn

R
(1) and si = ϕ∗

(L,(s0,...,sn))Ti

where we think of Ti as a global section ofOPn
S
(1) via (10.1.3).

Lemma 13.3. Projective n-space over Z is covered by n+ 1 standard opens

Pn
Z =

⋃
i=0,...,n

D+(Ti)

where each D+(Ti) is isomorphic to An
Z affine n-space over Z.

Proof. This is true because Z[T0, . . . , Tn]+ = (T0, . . . , Tn) and since

Spec
(

Z
[
T0

Ti
, . . . ,

Tn
Ti

])
∼= An

Z

in an obvious way. �

Lemma 13.4. Let S be a scheme. The structure morphism Pn
S → S is

(1) separated,
(2) quasi-compact,
(3) satisfies the existence and uniqueness parts of the valuative criterion, and
(4) universally closed.

Proof. All these properties are stable under base change (this is clear for the last two
and for the other two see Schemes, Lemmas 21.12 and 19.3). Hence it suffices to prove
them for the morphism Pn

Z → Spec(Z). Separatedness is Lemma 8.8. Quasi-compactness
follows from Lemma 13.3. Existence and uniqueness of the valuative criterion follow from
Lemma 8.11. Universally closed follows from the above and Schemes, Proposition 20.6.

�
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Remark 13.5. What’s missing in the list of properties above? Well to be sure the
property of being of finite type. The reason we do not list this here is that we have not
yet defined the notion of finite type at this point. (Another property which is missing is
“smoothness”. And I’m sure there are many more you can think of.)

Lemma 13.6 (Segre embedding). Let S be a scheme. There exists a closed immersion

Pn
S ×S Pm

S −→ Pnm+n+m
S

called the Segre embedding.

Proof. It suffices to prove this when S = Spec(Z). Hence we will drop the in-
dex S and work in the absolute setting. Write Pn = Proj(Z[X0, . . . , Xn]), Pm =
Proj(Z[Y0, . . . , Ym]), and Pnm+n+m = Proj(Z[Z0, . . . , Znm+n+m]). In order to map
into Pnm+n+m we have to write down an invertible sheaf L on the left hand side and
(n + 1)(m + 1) sections si which generate it. See Lemma 13.1. The invertible sheaf we
take is

L = pr∗
1OPn(1)⊗ pr∗

2OPm(1)

The sections we take are

s0 = X0Y0, s1 = X1Y0, . . . , sn = XnY0, sn+1 = X0Y1, . . . , snm+n+m = XnYm.

These generate L since the sections Xi generate OPn(1) and the sections Yj generate
OPm(1). The induced morphism ϕ has the property that

ϕ−1(D+(Zi+(n+1)j)) = D+(Xi)×D+(Yj).

Hence it is an affine morphism. The corresponding ring map in case (i, j) = (0, 0) is the
map

Z[Z1/Z0, . . . , Znm+n+m/Z0] −→ Z[X1/X0, . . . , Xn/X0, Y1/Y0, . . . , Yn/Y0]

which maps Zi/Z0 to the element Xi/X0 for i ≤ n and the element Z(n+1)j/Z0 to the
element Yj/Y0. Hence it is surjective. A similar argument works for the other affine
open subsets. Hence the morphism ϕ is a closed immersion (see Schemes, Lemma 4.2 and
Example 8.1.) �

The following two lemmas are special cases of more general results later, but perhaps it
makes sense to prove these directly here now.

Lemma 13.7. Let R be a ring. Let Z ⊂ Pn
R be a closed subscheme. Let

Id = Ker
(
R[T0, . . . , Tn]d −→ Γ(Z,OPn

R
(d)|Z)

)
Then I =

⊕
Id ⊂ R[T0, . . . , Tn] is a graded ideal and Z = Proj(R[T0, . . . , Tn]/I).

Proof. It is clear that I is a graded ideal. SetZ ′ = Proj(R[T0, . . . , Tn]/I). By Lemma
11.5 we see that Z ′ is a closed subscheme of Pn

R. To see the equality Z = Z ′ it suffices to
check on an standard affine open D+(Ti). By renumbering the homogeneous coordinates
we may assume i = 0. Say Z ∩D+(T0), resp. Z ′ ∩D+(T0) is cut out by the ideal J , resp.
J ′ of R[T1/T0, . . . , Tn/T0]. Then J ′ is the ideal generated by the elements F/T deg(F )

0
where F ∈ I is homogeneous. Suppose the degree of F ∈ I is d. Since F vanishes as a
section ofOPn

R
(d) restricted to Z we see that F/T d0 is an element of J . Thus J ′ ⊂ J .
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Conversely, suppose that f ∈ J . If f has total degree d in T1/T0, . . . , Tn/T0, then we can
write f = F/T d0 for some F ∈ R[T0, . . . , Tn]d. Pick i ∈ {1, . . . , n}. Then Z ∩D+(Ti) is
cut out by some ideal Ji ⊂ R[T0/Ti, . . . , Tn/Ti]. Moreover,

J ·R
[
T1

T0
, . . . ,

Tn
T0
,
T0

Ti
, . . . ,

Tn
Ti

]
= Ji ·R

[
T1

T0
, . . . ,

Tn
T0
,
T0

Ti
, . . . ,

Tn
Ti

]
The left hand side is the localization of J with respect to the element Ti/T0 and the right
hand side is the localization of Ji with respect to the element T0/Ti. It follows that
T di0 F/T d+di

i is an element of Ji for some di sufficiently large. This proves that Tmax(di)
0 F

is an element of I , because its restriction to each standard affine open D+(Ti) vanishes on
the closed subscheme Z ∩D+(Ti). Hence f ∈ J ′ and we conclude J ⊂ J ′ as desired. �

The following lemma is a special case of the more general Properties, Lemmas 28.3 or 28.5.

Lemma 13.8. Let R be a ring. Let F be a quasi-coherent sheaf on Pn
R. For d ≥ 0 set

Md = Γ(Pn
R,F ⊗OPn

R

OPn
R

(d)) = Γ(Pn
R,F(d))

Then M =
⊕

d≥0 Md is a graded R[T0, . . . , Rn]-module and there is a canonical isomor-
phism F = M̃ .

Proof. The multiplication maps
R[T0, . . . , Rn]e ×Md −→Md+e

come from the natural isomorphisms
OPn

R
(e)⊗OPn

R

F(d) −→ F(e+ d)

see Equation (10.1.4). Let us construct the map c : M̃ → F . On each of the standard
affines Ui = D+(Ti) we see that Γ(Ui, M̃) = (M [1/Ti])0 where the subscript 0 means
degree 0 part. An element of this can be written as m/T di with m ∈ Md. Since Ti is a
generator of O(1) over Ui we can always write m|Ui = mi ⊗ T di where mi ∈ Γ(Ui,F)
is a unique section. Thus a natural guess is c(m/T di ) = mi. A small argument, which is
omitted here, shows that this gives a well defined map c : M̃ → F if we can show that

(Ti/Tj)dmi|Ui∩Uj = mj |Ui∩Uj
inM [1/TiTj ]. But this is clear since on the overlap the generators Ti and Tj ofO(1) differ
by the invertible function Ti/Tj .
Injectivity of c. We may check for injectivity over the affine opens Ui. Let i ∈ {0, . . . , n}
and let s be an element s = m/T di ∈ Γ(Ui, M̃) such that c(m/T di ) = 0. By the descrip-
tion of c above this means that mi = 0, hence m|Ui = 0. Hence T ei m = 0 in M for some
e. Hence s = m/T di = T ei /T

e+d
i = 0 as desired.

Surjectivity of c. We may check for surjectivity over the affine opens Ui. By renumber-
ing it suffices to check it over U0. Let s ∈ F(U0). Let us write F|Ui = Ñi for some
R[T0/Ti, . . . , T0/Ti]-module Ni, which is possible because F is quasi-coherent. So s cor-
responds to an element x ∈ N0. Then we have that

(Ni)Tj/Ti ∼= (Nj)Ti/Tj
(where the subscripts mean “principal localization at”) as modules over the ring

R

[
T0

Ti
, . . . ,

Tn
Ti
,
T0

Tj
, . . . ,

Tn
Tj

]
.
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This means that for some large integer d there exist elements si ∈ Ni, i = 1, . . . , n such
that

s = (Ti/T0)dsi
on U0 ∩ Ui. Next, we look at the difference

tij = si − (Tj/Ti)dsj
on Ui ∩ Uj , 0 < i < j. By our choice of si we know that tij |U0∩Ui∩Uj = 0. Hence there
exists a large integer e such that (T0/Ti)etij = 0. Set s′

i = (T0/Ti)esi, and s′
0 = s. Then

we will have
s′
a = (Tb/Ta)e+ds′

b

on Ua ∩ Ub for all a, b. This is exactly the condition that the elements s′
a glue to a global

section m ∈ Γ(Pn
R,F(e+ d)). And moreover c(m/T e+d

0 ) = s by construction. Hence c
is surjective and we win. �

Lemma 13.9. Let X be a scheme. Let L be an invertible sheaf and let s0, . . . , sn be
global sections of L which generate it. Let F be the kernel of the induced mapO⊕n+1

X →
L. Then F ⊗ L is globally generated.

Proof. In fact the result is true if X is any locally ringed space. The sheaf F is a
finite locally freeOX -module of rank n. The elements

sij = (0, . . . , 0, sj , 0, . . . , 0,−si, 0, . . . , 0) ∈ Γ(X,L⊕n+1)
with sj in the ith spot and−si in the jth spot map to zero inL⊗2. Hence sij ∈ Γ(X,F⊗OX

L). A local computation shows that these sections generate F ⊗ L.

Alternative proof. Consider the morphismϕ : X → Pn
Z associated to the pair (L, (s0, . . . , sn)).

Since the pullback of O(1) is L and since the pullback of Ti is si, it suffices to prove
the lemma in the case of Pn

Z. In this case the sheaf F corresponds to the graded S =
Z[T0, . . . , Tn] module M which fits into the short exact sequence

0→M → S⊕n+1 → S(1)→ 0
where the second map is given by T0, . . . , Tn. In this case the statement above translates
into the statement that the elements

Tij = (0, . . . , 0, Tj , 0, . . . , 0,−Ti, 0, . . . , 0) ∈M(1)0

generate the graded module M(1) over S. We omit the details. �

14. Invertible sheaves and morphisms into Proj

Let T be a scheme and let L be an invertible sheaf on T . For a section s ∈ Γ(T,L) we
denote Ts the open subset of points where s does not vanish. See Modules, Lemma 25.10.
We can view the following lemma as a slight generalization of Lemma 12.3. It also is a
generalization of Lemma 11.1.

Lemma 14.1. Let A be a graded ring. Set X = Proj(A). Let T be a scheme. Let L be
an invertible OT -module. Let ψ : A → Γ∗(T,L) be a homomorphism of graded rings.
Set

U(ψ) =
⋃

f∈A+ homogeneous
Tψ(f)

The morphism ψ induces a canonical morphism of schemes

rL,ψ : U(ψ) −→ X
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together with a map of Z-gradedOT -algebras

θ : r∗
L,ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
L⊗d|U(ψ).

The triple (U(ψ), rL,ψ, θ) is characterized by the following properties:
(1) For f ∈ A+ homogeneous we have r−1

L,ψ(D+(f)) = Tψ(f).
(2) For every d ≥ 0 the diagram

Ad

(10.1.3)
��

ψ
// Γ(T,L⊗d)

restrict

��
Γ(X,OX(d)) θ // Γ(U(ψ),L⊗d)

is commutative.
Moreover, for any d ≥ 1 and any open subscheme V ⊂ T such that the sections in ψ(Ad)
generate L⊗d|V the morphism rL,ψ|V agrees with the morphism ϕ : V → Proj(A) and
the map θ|V agrees with the map α : ϕ∗OX(d) → L⊗d|V where (ϕ, α) is the pair of
Lemma 12.1 associated to ψ|A(d) : A(d) → Γ∗(V,L⊗d).

Proof. Suppose that we have two triples (U, r : U → X, θ) and (U ′, r′ : U ′ →
X, θ′) satisfying (1) and (2). Property (1) implies that U = U ′ = U(ψ) and that r = r′ as
maps of underlying topological spaces, since the opensD+(f) form a basis for the topology
onX , and sinceX is a sober topological space (see Algebra, Section 57 and Schemes, Lemma
11.1). Let f ∈ A+ be homogeneous. Note that Γ(D+(f),

⊕
n∈ZOX(n)) = Af as a Z-

graded algebra. Consider the two Z-graded ring maps

θ, θ′ : Af −→ Γ(Tψ(f),
⊕
L⊗n).

We know that multiplication by f (resp. ψ(f)) is an isomorphism on the left (resp. right)
hand side. We also know that θ(x/1) = θ′(x/1) = ψ(x)|Tψ(f) by (2) for all x ∈ A. Hence
we deduce easily that θ = θ′ as desired. Considering the degree 0 parts we deduce that
r] = (r′)], i.e., that r = r′ as morphisms of schemes. This proves the uniqueness.

Now we come to existence. By the uniqueness just proved, it is enough to construct the
pair (r, θ) locally on T . Hence we may assume that T = Spec(R) is affine, that L = OT
and that for some f ∈ A+ homogeneous we have ψ(f) generates OT = O⊗ deg(f)

T . In
other words, ψ(f) = u ∈ R∗ is a unit. In this case the map ψ is a graded ring map

A −→ R[x] = Γ∗(T,OT )
which maps f to uxdeg(f). Clearly this extends (uniquely) to a Z-graded ring map θ :
Af → R[x, x−1] by mapping 1/f to u−1x− deg(f). This map in degree zero gives the ring
map A(f) → R which gives the morphism r : T = Spec(R)→ Spec(A(f)) = D+(f) ⊂
X . Hence we have constructed (r, θ) in this special case.

Let us show the last statement of the lemma. According to Lemma 12.1 the morphism
constructed there is the unique one such that the displayed diagram in its statement com-
mutes. The commutativity of the diagram in the lemma implies the commutativity when
restricted to V and A(d). Whence the result. �

Remark 14.2. Assumptions as in Lemma 14.1 above. The image of the morphism rL,ψ
need not be contained in the locus where the sheafOX(1) is invertible. Here is an example.
Let k be a field. Let S = k[A,B,C] graded by deg(A) = 1, deg(B) = 2, deg(C) = 3. Set
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X = Proj(S). Let T = P2
k = Proj(k[X0, X1, X2]). Recall that L = OT (1) is invertible

and thatOT (n) = L⊗n. Consider the composition ψ of the maps

S → k[X0, X1, X2]→ Γ∗(T,L).

Here the first map is A 7→ X0, B 7→ X2
1 , C 7→ X3

2 and the second map is (10.1.3). By the
lemma this corresponds to a morphism rL,ψ : T → X = Proj(S) which is easily seen to
be surjective. On the other hand, in Remark 9.2 we showed that the sheaf OX(1) is not
invertible at all points of X .

15. Relative Proj via glueing

Situation 15.1. Here S is a scheme, andA is a quasi-coherent gradedOS-algebra.

In this section we outline how to construct a morphism of schemes

Proj
S

(A) −→ S

by glueing the homogeneous spectra Proj(Γ(U,A)) where U ranges over the affine opens
of S. We first show that the homogeneous spectra of the values of A over affines form a
suitable collection of schemes, as in Lemma 2.1.

Lemma 15.2. In Situation 15.1. SupposeU ⊂ U ′ ⊂ S are affine opens. LetA = A(U)
and A′ = A(U ′). The map of graded rings A′ → A induces a morphism r : Proj(A) →
Proj(A′), and the diagram

Proj(A) //

��

Proj(A′)

��
U // U ′

is cartesian. Moreover there are canonical isomorphisms θ : r∗OProj(A′)(n)→ OProj(A)(n)
compatible with multiplication maps.

Proof. Let R = OS(U) and R′ = OS(U ′). Note that the map R ⊗R′ A′ → A is
an isomorphism as A is quasi-coherent (see Schemes, Lemma 7.3 for example). Hence the
lemma follows from Lemma 11.6. �

In particular the morphism Proj(A)→ Proj(A′) of the lemma is an open immersion.

Lemma 15.3. In Situation 15.1. Suppose U ⊂ U ′ ⊂ U ′′ ⊂ S are affine opens. Let
A = A(U), A′ = A(U ′) and A′′ = A(U ′′). The composition of the morphisms r :
Proj(A) → Proj(A′), and r′ : Proj(A′) → Proj(A′′) of Lemma 15.2 gives the morphism
r′′ : Proj(A)→ Proj(A′′) of Lemma 15.2. A similar statement holds for the isomorphisms
θ.

Proof. This follows from Lemma 11.2 since the map A′′ → A is the composition of
A′′ → A′ and A′ → A. �

Lemma 15.4. In Situation 15.1. There exists a morphism of schemes

π : Proj
S

(A) −→ S

with the following properties:
(1) for every affine open U ⊂ S there exists an isomorphism iU : π−1(U) →

Proj(A) with A = A(U), and
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(2) for U ⊂ U ′ ⊂ S affine open the composition

Proj(A)
i−1
U // π−1(U) inclusion // π−1(U ′)

iU′ // Proj(A′)

with A = A(U), A′ = A(U ′) is the open immersion of Lemma 15.2 above.

Proof. Follows immediately from Lemmas 2.1, 15.2, and 15.3. �

Lemma 15.5. In Situation 15.1. The morphism π : Proj
S

(A) → S of Lemma 15.4
comes with the following additional structure. There exists a quasi-coherent Z-graded
sheaf ofOProj

S
(A)-algebras

⊕
n∈ZOProj

S
(A)(n), and a morphism of gradedOS-algebras

ψ : A −→
⊕

n≥0
π∗

(
OProj

S
(A)(n)

)
uniquely determined by the following property: For every affine open U ⊂ S with A =
A(U) there is an isomorphism

θU : i∗U
(⊕

n∈Z
OProj(A)(n)

)
−→

(⊕
n∈Z
OProj

S
(A)(n)

)
|π−1(U)

of Z-gradedOπ−1(U)-algebras such that

An
ψ

//

(10.1.3)
''

Γ(π−1(U),OProj
S

(A)(n))

Γ(Proj(A),OProj(A)(n))
θU

44

is commutative.

Proof. We are going to use Lemma 2.2 to glue the sheaves of Z-graded algebras⊕
n∈ZOProj(A)(n) for A = A(U), U ⊂ S affine open over the scheme Proj

S
(A). We

have constructed the data necessary for this in Lemma 15.2 and we have checked con-
dition (d) of Lemma 2.2 in Lemma 15.3. Hence we get the sheaf of Z-graded OProj

S
(A)-

algebras
⊕

n∈ZOProj
S

(A)(n) together with the isomorphisms θU for all U ⊂ S affine
open and all n ∈ Z. For every affine open U ⊂ S with A = A(U) we have a map
A → Γ(Proj(A),

⊕
n≥0OProj(A)(n)). Hence the map ψ exists by functoriality of rela-

tive glueing, see Remark 2.3. The diagram of the lemma commutes by construction. This
characterizes the sheaf of Z-graded OProj

S
(A)-algebras

⊕
OProj

S
(A)(n) because the proof

of Lemma 11.1 shows that having these diagrams commute uniquely determines the maps
θU . Some details omitted. �

16. Relative Proj as a functor

We place ourselves in Situation 15.1. So S is a scheme and A =
⊕

d≥0Ad is a quasi-
coherent gradedOS-algebra. In this section we relativize the construction of Proj by con-
structing a functor which the relative homogeneous spectrum will represent. As a result
we will construct a morphism of schemes

Proj
S

(A) −→ S

which above affine opens of S will look like the homogeneous spectrum of a graded ring.
The discussion will be modeled after our discussion of the relative spectrum in Section
4. The easier method using glueing schemes of the form Proj(A), A = Γ(U,A), U ⊂ S
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affine open, is explained in Section 15, and the result in this section will be shown to be
isomorphic to that one.

Fix for the moment an integer d ≥ 1. We denote A(d) =
⊕

n≥0And similarly to the
notation in Algebra, Section 56. Let T be a scheme. Let us consider quadruples (d, f :
T → S,L, ψ) over T where

(1) d is the integer we fixed above,
(2) f : T → S is a morphism of schemes,
(3) L is an invertibleOT -module, and
(4) ψ : f∗A(d) →

⊕
n≥0 L⊗n is a homomorphism of gradedOT -algebras such that

f∗Ad → L is surjective.
Given a morphism h : T ′ → T and a quadruple (d, f,L, ψ) over T we can pull it back
to the quadruple (d, f ◦ h, h∗L, h∗ψ) over T ′. Given two quadruples (d, f,L, ψ) and
(d, f ′,L′, ψ′) over T with the same integer d we say they are strictly equivalent if f = f ′

and there exists an isomorphism β : L → L′ such that β ◦ ψ = ψ′ as graded OT -algebra
maps f∗A(d) →

⊕
n≥0(L′)⊗n.

For each integer d ≥ 1 we define

Fd : Schopp −→ Sets,
T 7−→ {strict equivalence classes of (d, f : T → S,L, ψ) as above}

with pullbacks as defined above.

Lemma 16.1. In Situation 15.1. Let d ≥ 1. Let Fd be the functor associated to (S,A)
above. Let g : S′ → S be a morphism of schemes. Set A′ = g∗A. Let F ′

d be the functor
associated to (S′,A′) above. Then there is a canonical isomorphism

F ′
d
∼= hS′ ×hS Fd

of functors.

Proof. A quadruple (d, f ′ : T → S′,L′, ψ′ : (f ′)∗(A′)(d) →
⊕

n≥0(L′)⊗n) is the
same as a quadruple (d, f,L, ψ : f∗A(d) →

⊕
n≥0 L⊗n) together with a factorization of

f as f = g ◦ f ′. Namely, the correspondence is f = g ◦ f ′, L = L′ and ψ = ψ′ via the
identifications (f ′)∗(A′)(d) = (f ′)∗g∗(A(d)) = f∗A(d). Hence the lemma. �

Lemma 16.2. In Situation 15.1. Let Fd be the functor associated to (d, S,A) above.
If S is affine, then Fd is representable by the open subscheme Ud (12.0.1) of the scheme
Proj(Γ(S,A)).

Proof. Write S = Spec(R) and A = Γ(S,A). Then A is a graded R-algebra and
A = Ã. To prove the lemma we have to identify the functor Fd with the functor F triplesd

of triples defined in Section 12.

Let (d, f : T → S,L, ψ) be a quadruple. We may think of ψ as aOS-module mapA(d) →⊕
n≥0 f∗L⊗n. Since A(d) is quasi-coherent this is the same thing as an R-linear homo-

morphism of graded rings A(d) → Γ(S,
⊕

n≥0 f∗L⊗n). Clearly, Γ(S,
⊕

n≥0 f∗L⊗n) =
Γ∗(T,L). Thus we may associate to the quadruple the triple (d,L, ψ).

Conversely, let (d,L, ψ) be a triple. The composition R → A0 → Γ(T,OT ) determines
a morphism f : T → S = Spec(R), see Schemes, Lemma 6.4. With this choice of f the
map A(d) → Γ(S,

⊕
n≥0 f∗L⊗n) is R-linear, and hence corresponds to a ψ which we can
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use for a quadruple (d, f : T → S,L, ψ). We omit the verification that this establishes an
isomorphism of functors Fd = F triplesd . �

Lemma 16.3. In Situation 15.1. The functor Fd is representable by a scheme.
Proof. We are going to use Schemes, Lemma 15.4.

First we check that Fd satisfies the sheaf property for the Zariski topology. Namely, sup-
pose that T is a scheme, that T =

⋃
i∈I Ui is an open covering, and that (d, fi,Li, ψi) ∈

Fd(Ui) such that (d, fi,Li, ψi)|Ui∩Uj and (d, fj ,Lj , ψj)|Ui∩Uj are strictly equivalent.
This implies that the morphisms fi : Ui → S glue to a morphism of schemes f : T → S

such that f |Ii = fi, see Schemes, Section 14. Thus f∗
i A(d) = f∗A(d)|Ui . It also implies

there exist isomorphisms βij : Li|Ui∩Uj → Lj |Ui∩Uj such that βij ◦ψi = ψj on Ui ∩Uj .
Note that the isomorphisms βij are uniquely determined by this requirement because the
maps f∗

i Ad → Li are surjective. In particular we see that βjk ◦βij = βik onUi∩Uj ∩Uk.
Hence by Sheaves, Section 33 the invertible sheaves Li glue to an invertibleOT -module L
and the morphisms ψi glue to morphism ofOT -algebras ψ : f∗A(d) →

⊕
n≥0 L⊗n. This

proves that Fd satisfies the sheaf condition with respect to the Zariski topology.
Let S =

⋃
i∈I Ui be an affine open covering. Let Fd,i ⊂ Fd be the subfunctor consisting

of those pairs (f : T → S, ϕ) such that f(T ) ⊂ Ui.
We have to show each Fd,i is representable. This is the case because Fd,i is identified with
the functor associated to Ui equipped with the quasi-coherent graded OUi -algebra A|Ui
by Lemma 16.1. Thus the result follows from Lemma 16.2.
Next we show that Fd,i ⊂ Fd is representable by open immersions. Let (f : T → S, ϕ) ∈
Fd(T ). Consider Vi = f−1(Ui). It follows from the definition ofFd,i that given a : T ′ →
T we gave a∗(f, ϕ) ∈ Fd,i(T ′) if and only if a(T ′) ⊂ Vi. This is what we were required
to show.
Finally, we have to show that the collection (Fd,i)i∈I covers Fd. Let (f : T → S, ϕ) ∈
Fd(T ). Consider Vi = f−1(Ui). Since S =

⋃
i∈I Ui is an open covering of S we see that

T =
⋃
i∈I Vi is an open covering of T . Moreover (f, ϕ)|Vi ∈ Fd,i(Vi). This finishes the

proof of the lemma. �

At this point we can redo the material at the end of Section 12 in the current relative
setting and define a functor which is representable by Proj

S
(A). To do this we introduce

the notion of equivalence between two quadruples (d, f : T → S,L, ψ) and (d′, f ′ :
T → S,L′, ψ′) with possibly different values of the integers d, d′. Namely, we say these
are equivalent if f = f ′, and there exists an isomorphism β : L⊗d′ → (L′)⊗d such that
β◦ψ|f∗A(dd′) = ψ′|f∗A(dd′) . The following lemma implies that this defines an equivalence
relation. (This is not a complete triviality.)

Lemma 16.4. In Situation 15.1. Let T be a scheme. Let (d, f,L, ψ), (d′, f ′,L′, ψ′) be
two quadruples over T . The following are equivalent:

(1) Let m = lcm(d, d′). Write m = ad = a′d′. We have f = f ′ and there exists
an isomorphism β : L⊗a → (L′)⊗a′

with the property that β ◦ ψ|f∗A(m) and
ψ′|f∗A(m) agree as graded ring maps f∗A(m) →

⊕
n≥0(L′)⊗mn.

(2) The quadruples (d, f,L, ψ) and (d′, f ′,L′, ψ′) are equivalent.
(3) We have f = f ′ and for some positive integer m = ad = a′d′ there exists

an isomorphism β : L⊗a → (L′)⊗a′
with the property that β ◦ ψ|f∗A(m) and

ψ′|f∗A(m) agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn.
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Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible de-
grees and powers of invertible sheaves. Assume (3) for some integer m = ad = a′d′.
Let m0 = lcm(d, d′) and write it as m0 = a0d = a′

0d
′. We are given an isomorphism

β : L⊗a → (L′)⊗a′
with the property described in (3). We want to find an isomor-

phism β0 : L⊗a0 → (L′)⊗a′
0 having that property as well. Since by assumption the maps

ψ : f∗Ad → L and ψ′ : (f ′)∗Ad′ → L′ are surjective the same is true for the maps
ψ : f∗Am0 → L⊗a0 and ψ′ : (f ′)∗Am0 → (L′)⊗a0 . Hence if β0 exists it is uniquely
determined by the condition that β0 ◦ ψ = ψ′. This means that we may work locally on
T . Hence we may assume that f = f ′ : T → S maps into an affine open, in other words
we may assume that S is affine. In this case the result follows from the corresponding
result for triples (see Lemma 12.4) and the fact that triples and quadruples correspond in
the affine base case (see proof of Lemma 16.2). �

Suppose d′ = ad. Consider the transformation of functors Fd → Fd′ which assigns
to the quadruple (d, f,L, ψ) over T the quadruple (d′, f,L⊗a, ψ|f∗A(d′)). One of the
implications of Lemma 16.4 is that the transformation Fd → Fd′ is injective! For a quasi-
compact scheme T we define

F (T ) =
⋃

d∈N
Fd(T )

with transition maps as explained above. This clearly defines a contravariant functor on
the category of quasi-compact schemes with values in sets. For a general scheme T we
define

F (T ) = limV⊂T quasi-compact open F (V ).
In other words, an element ξ of F (T ) corresponds to a compatible system of choices of
elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . We omit the
definition of the pullback map F (T )→ F (T ′) for a morphism T ′ → T of schemes. Thus
we have defined our functor
(16.4.1) F : Schopp −→ Sets

Lemma 16.5. In Situation 15.1. The functor F above is representable by a scheme.
Proof. Let Ud → S be the scheme representing the functor Fd defined above. Let

Ld, ψd : π∗
dA(d) →

⊕
n≥0 L

⊗n
d be the universal object. If d|d′, then we may consider the

quadruple (d′, πd,L⊗d′/d
d , ψd|A(d′)) which determines a canonical morphism Ud → Ud′

over S. By construction this morphism corresponds to the transformation of functors
Fd → Fd′ defined above.
For every affine open Spec(R) = V ⊂ S setting A = Γ(V,A) we have a canonical iden-
tification of the base change Ud,V with the corresponding open subscheme of Proj(A), see
Lemma 16.2. Moreover, the morphisms Ud,V → Ud′,V constructed above correspond to
the inclusions of opens in Proj(A). Thus we conclude that Ud → Ud′ is an open immer-
sion.
This allows us to construct X by glueing the schemes Ud along the open immersions
Ud → Ud′ . Technically, it is convenient to choose a sequence d1|d2|d3| . . . such that
every positive integer divides one of the di and to simply take X =

⋃
Udi using the open

immersions above. It is then a simple matter to prove thatX represents the functorF . �

Lemma 16.6. In Situation 15.1. The scheme π : Proj
S

(A)→ S constructed in Lemma
15.4 and the scheme representing the functor F are canonically isomorphic as schemes
over S.
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Proof. Let X be the scheme representing the functor F . Note that X is a scheme
over S since the functorF comes equipped with a natural transformationF → hS . Write
Y = Proj

S
(A). We have to show that X ∼= Y as S-schemes. We give two arguments.

The first argument uses the construction ofX as the union of the schemesUd representing
Fd in the proof of Lemma 16.5. Over each affine open of S we can identifyX with the ho-
mogeneous spectrum of the sections ofA over that open, since this was true for the opens
Ud. Moreover, these identifications are compatible with further restrictions to smaller
affine opens. On the other hand, Y was constructed by glueing these homogeneous spec-
tra. Hence we can glue these isomorphisms to an isomorphism between X and Proj

S
(A)

as desired. Details omitted.
Here is the second argument. Lemma 15.5 shows that there exists a morphism of graded
algebras

ψ : π∗A −→
⊕

n≥0
OY (n)

over Y which on sections over affine opens of S agrees with (10.1.3). Hence for every y ∈
Y there exists an open neighbourhood V ⊂ Y of y and an integer d ≥ 1 such that for d|n
the sheafOY (n)|V is invertible and the multiplication mapsOY (n)|V ⊗OV

OY (m)|V →
OY (n+m)|V are isomorphisms. Thusψ restricted to the sheaf π∗A(d)|V gives an element
of Fd(V ). Since the opens V cover Y we see “ψ” gives rise to an element of F (Y ). Hence
a canonical morphism Y → X over S. Because this construction is completely canonical
to see that it is an isomorphism we may work locally on S. Hence we reduce to the case S
affine where the result is clear. �

Definition 16.7. Let S be a scheme. Let A be a quasi-coherent sheaf of graded OS-
algebras. The relative homogeneous spectrum ofA over S , or the homogeneous spectrum
of A over S , or the relative Proj of A over S is the scheme constructed in Lemma 15.4
which represents the functor F (16.4.1), see Lemma 16.6. We denote it π : Proj

S
(A)→ S.

The relative Proj comes equipped with a quasi-coherent sheaf of Z-graded algebras
⊕

n∈ZOProj
S

(A)(n)
(the twists of the structure sheaf) and a “universal” homomorphism of graded algebras

ψuniv : A −→ π∗

(⊕
n≥0
OProj

S
(A)(n)

)
see Lemma 15.5. We may also think of this as a homomorphism

ψuniv : π∗A −→
⊕

n≥0
OProj

S
(A)(n)

if we like. The following lemma is a formulation of the universality of this object.

Lemma 16.8. In Situation 15.1. Let (f : T → S, d,L, ψ) be a quadruple. Let rd,L,ψ :
T → Proj

S
(A) be the associated S-morphism. There exists an isomorphism of Z-graded

OT -algebras
θ : r∗

d,L,ψ

(⊕
n∈Z
OProj

S
(A)(nd)

)
−→

⊕
n∈Z
L⊗n

such that the following diagram commutes

A(d)
ψ

//

ψuniv ''

f∗
(⊕

n∈Z L⊗n)

π∗

(⊕
n≥0OProj

S
(A)(nd)

) θ

55
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The commutativity of this diagram uniquely determines θ.

Proof. Note that the quadruple (f : T → S, d,L, ψ) defines an element of Fd(T ).
Let Ud ⊂ Proj

S
(A) be the locus where the sheaf OProj

S
(A)(d) is invertible and generated

by the image of ψuniv : π∗Ad → OProj
S

(A)(d). Recall that Ud represents the functor Fd,
see the proof of Lemma 16.5. Hence the result will follow if we can show the quadruple
(Ud → S, d,OUd(d), ψuniv|A(d)) is the universal family, i.e., the representing object in
Fd(Ud). We may do this after restricting to an affine open of S because (a) the forma-
tion of the functors Fd commutes with base change (see Lemma 16.1), and (b) the pair
(
⊕

n∈ZOProj
S

(A)(n), ψuniv) is constructed by glueing over affine opens in S (see Lemma
15.5). Hence we may assume that S is affine. In this case the functor of quadruples Fd
and the functor of triples Fd agree (see proof of Lemma 16.2) and moreover Lemma 12.2
shows that (d,OUd(d), ψd) is the universal triple over Ud. Going backwards through the
identifications in the proof of Lemma 16.2 shows that (Ud → S, d,OUd(d), ψuniv|A(d)) is
the universal quadruple as desired. �

Lemma 16.9. Let S be a scheme and A be a quasi-coherent sheaf of graded OS-
algebras. The morphism π : Proj

S
(A)→ S is separated.

Proof. To prove a morphism is separated we may work locally on the base, see Schemes,
Section 21. By construction Proj

S
(A) is over any affine U ⊂ S isomorphic to Proj(A)

with A = A(U). By Lemma 8.8 we see that Proj(A) is separated. Hence Proj(A) → U is
separated (see Schemes, Lemma 21.13) as desired. �

Lemma 16.10. Let S be a scheme and A be a quasi-coherent sheaf of graded OS-
algebras. Let g : S′ → S be any morphism of schemes. Then there is a canonical isomor-
phism

r : Proj
S′(g

∗A) −→ S′ ×S Proj
S

(A)
as well as a corresponding isomorphism

θ : r∗pr∗
2

(⊕
d∈Z
OProj

S
(A)(d)

)
−→

⊕
d∈Z
OProj

S′ (g∗A)(d)

of Z-gradedOProj
S′ (g∗A)-algebras.

Proof. This follows from Lemma 16.1 and the construction of Proj
S

(A) in Lemma
16.5 as the union of the schemes Ud representing the functors Fd. In terms of the con-
struction of relative Proj via glueing this isomorphism is given by the isomorphisms con-
structed in Lemma 11.6 which provides us with the isomorphism θ. Some details omit-
ted. �

Lemma 16.11. Let S be a scheme. Let A be a quasi-coherent sheaf of graded OS-
modules generated as anA0-algebra byA1. In this case the scheme X = Proj

S
(A) repre-

sents the functor F1 which associates to a scheme f : T → S over S the set of pairs (L, ψ),
where

(1) L is an invertibleOT -module, and
(2) ψ : f∗A →

⊕
n≥0 L⊗n is a graded OT -algebra homomorphism such that

f∗A1 → L is surjective
up to strict equivalence as above. Moreover, in this case all the quasi-coherent sheaves
OProj(A)(n) are invertible OProj(A)-modules and the multiplication maps induce isomor-
phismsOProj(A)(n)⊗OProj(A) OProj(A)(m) = OProj(A)(n+m).
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Proof. Under the assumptions of the lemma the sheaves OProj(A)(n) are invertible
and the multiplication maps isomorphisms by Lemma 16.5 and Lemma 12.3 over affine
opens of S. Thus X actually represents the functor F1, see proof of Lemma 16.5. �

17. Quasi-coherent sheaves on relative Proj

We briefly discuss how to deal with graded modules in the relative setting.

We place ourselves in Situation 15.1. SoS is a scheme, andA is a quasi-coherent gradedOS-
algebra. LetM =

⊕
n∈ZMn be a graded A-module, quasi-coherent as an OS-module.

We are going to describe the associated quasi-coherent sheaf of modules on Proj
S

(A). We
first describe the value of this sheaf on schemes T mapping into the relative Proj.

Let T be a scheme. Let (d, f : T → S,L, ψ) be a quadruple over T , as in Section 16. We
define a quasi-coherent sheaf M̃T ofOT -modules as follows

(17.0.1) M̃T =
(
f∗M(d) ⊗f∗A(d)

(⊕
n∈Z
L⊗n

))
0

So M̃T is the degree 0 part of the tensor product of the graded f∗A(d)-modules M(d)

and
⊕

n∈Z L⊗n. Note that the sheaf M̃T depends on the quadruple even though we
suppressed this in the notation. This construction has the pleasing property that given any
morphism g : T ′ → T we have M̃T ′ = g∗M̃T where M̃T ′ denotes the quasi-coherent
sheaf associated to the pullback quadruple (d, f ◦ g, g∗L, g∗ψ).

Since all sheaves in (17.0.1) are quasi-coherent we can spell out the construction over an
affine open Spec(C) = V ⊂ T which maps into an affine open Spec(R) = U ⊂ S.
Namely, suppose thatA|U corresponds to the gradedR-algebraA, thatM|U corresponds
to the graded A-module M , and that L|V corresponds to the invertible C-module L. The
map ψ gives rise to a graded R-algebra map γ : A(d) →

⊕
n≥0 L

⊗n. (Tensor powers of L
over C.) Then (M̃T )|V is the quasi-coherent sheaf associated to the C-module

NR,C,A,M,γ =
(
M (d) ⊗A(d),γ

(⊕
n∈Z

L⊗n
))

0

By assumption we may even cover T by affine opens V such that there exists some a ∈ Ad
such that γ(a) ∈ L is a C-basis for the module L. In that case any element ofNR,C,A,M,γ

is a sum of pure tensors
∑
mi ⊗ γ(a)−ni with m ∈ Mnid. In fact we may multiply

each mi with a suitable positive power of a and collect terms to see that each element of
NR,C,A,M,γ can be written as m⊗ γ(a)−n with m ∈Mnd and n� 0. In other words we
see that in this case

NR,C,A,M,γ = M(a) ⊗A(a) C

where the mapA(a) → C is the mapx/an 7→ γ(x)/γ(a)n. In other words, this is the value
of M̃ onD+(a) ⊂ Proj(A) pulled back to Spec(C) via the morphism Spec(C)→ D+(a)
coming from γ.

Lemma 17.1. In Situation 15.1. For any quasi-coherent sheaf of gradedA-modulesM
on S , there exists a canonical associated sheaf ofOProj

S
(A)-modules M̃with the following

properties:
(1) Given a scheme T and a quadruple (T → S, d,L, ψ) over T corresponding to a

morphism h : T → Proj
S

(A) there is a canonical isomorphism M̃T = h∗M̃
where M̃T is defined by (17.0.1).
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(2) The isomorphisms of (1) are compatible with pullbacks.
(3) There is a canonical map

π∗M0 −→ M̃.

(4) The constructionM 7→ M̃ is functorial inM.
(5) The constructionM 7→ M̃ is exact.
(6) There are canonical maps

M̃ ⊗OProj
S

(A) Ñ −→ M̃ ⊗A N

as in Lemma 9.1.
(7) There exist canonical maps

π∗M−→
⊕

n∈Z
M̃(n)

generalizing (10.1.6).
(8) The formation of M̃ commutes with base change.

Proof. Omitted. We should split this lemma into parts and prove the parts sepa-
rately. �

18. Functoriality of relative Proj

This section is the analogue of Section 11 for the relative Proj. Let S be a scheme. A graded
OS-algebra map ψ : A → B does not always give rise to a morphism of associated relative
Proj. The correct result is stated as follows.

Lemma 18.1. Let S be a scheme. LetA, B be two graded quasi-coherentOS-algebras.
Set p : X = Proj

S
(A) → S and q : Y = Proj

S
(B) → S. Let ψ : A → B be a homo-

morphism of graded OS-algebras. There is a canonical open U(ψ) ⊂ Y and a canonical
morphism of schemes

rψ : U(ψ) −→ X

over S and a map of Z-gradedOU(ψ)-algebras

θ = θψ : r∗
ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the property that for any affine open W ⊂ S
the triple

(U(ψ) ∩ p−1W, rψ|U(ψ)∩p−1W : U(ψ) ∩ p−1W → q−1W, θ|U(ψ)∩p−1W )
is equal to the triple associated toψ : A(W )→ B(W ) in Lemma 11.1 via the identifications
p−1W = Proj(A(W )) and q−1W = Proj(B(W )) of Section 15.

Proof. This lemma proves itself by glueing the local triples. �

Lemma 18.2. Let S be a scheme. Let A, B, and C be quasi-coherent graded OS-
algebras. Set X = Proj

S
(A), Y = Proj

S
(B) and Z = Proj

S
(C). Let ϕ : A → B,

ψ : B → C be gradedOS-algebra maps. Then we have

U(ψ ◦ ϕ) = r−1
ϕ (U(ψ)) and rψ◦ϕ = rϕ ◦ rψ|U(ψ◦ϕ).

In addition we have
θψ ◦ r∗

ψθϕ = θψ◦ϕ

with obvious notation.
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Proof. Omitted. �

Lemma 18.3. With hypotheses and notation as in Lemma 18.1 above. AssumeAd →
Bd is surjective for d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are surjective but not isomorphisms in general
(even ifA → B is surjective).

Proof. Follows on combining Lemma 18.1 with Lemma 11.3. �

Lemma 18.4. With hypotheses and notation as in Lemma 18.1 above. AssumeAd →
Bd is an isomorphism for all d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is an isomorphism, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.

Proof. Follows on combining Lemma 18.1 with Lemma 11.4. �

Lemma 18.5. With hypotheses and notation as in Lemma 18.1 above. AssumeAd →
Bd is surjective for d� 0 and thatA is generated byA1 overA0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗

ψOX(n)→ OY (n) are isomorphisms.

Proof. Follows on combining Lemma 18.1 with Lemma 11.5. �

19. Invertible sheaves and morphisms into relative Proj

It seems that we may need the following lemma somewhere. The situation is the following:
(1) Let S be a scheme.
(2) LetA be a quasi-coherent gradedOS-algebra.
(3) Denote π : Proj

S
(A)→ S the relative homogeneous spectrum over S.

(4) Let f : X → S be a morphism of schemes.
(5) Let L be an invertibleOX -module.
(6) Let ψ : f∗A →

⊕
d≥0 L⊗d be a homomorphism of gradedOX -algebras.

Given this data set
U(ψ) =

⋃
(U,V,a)

Uψ(a)

where (U, V, a) satisfies:
(1) V ⊂ S affine open,
(2) U = f−1(V ), and
(3) a ∈ A(V )+ is homogeneous.

Namely, then ψ(a) ∈ Γ(U,L⊗ deg(a)) and Uψ(a) is the corresponding open (see Modules,
Lemma 25.10).

Lemma 19.1. With assumptions and notation as above. The morphism ψ induces a
canonical morphism of schemes over S

rL,ψ : U(ψ) −→ Proj
S

(A)
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together with a map of gradedOU(ψ)-algebras

θ : r∗
L,ψ

(⊕
d≥0
OProj

S
(A)(d)

)
−→

⊕
d≥0
L⊗d|U(ψ)

characterized by the following properties:
(1) For every open V ⊂ S and every d ≥ 0 the diagram

Ad(V )

ψ

��

ψ
// Γ(f−1(V ),L⊗d)

restrict

��
Γ(π−1(V ),OProj

S
(A)(d)) θ // Γ(f−1(V ) ∩ U(ψ),L⊗d)

is commutative.
(2) For any d ≥ 1 and any open subscheme W ⊂ X such that ψ|W : f∗Ad|W →
L⊗d|W is surjective the restriction of the morphism rL,ψ agrees with the mor-
phismW → Proj

S
(A) which exists by the construction of the relative homoge-

neous spectrum, see Definition 16.7.
(3) For any affine open V ⊂ S , the restriction

(U(ψ) ∩ f−1(V ), rL,ψ|U(ψ)∩f−1(V ), θ|U(ψ)∩f−1(V ))

agrees via iV (see Lemma 15.4) with the triple (U(ψ′), rL,ψ′ , θ′) of Lemma 14.1
associated to the map ψ′ : A = A(V )→ Γ∗(f−1(V ),L|f−1(V )) induced by ψ.

Proof. Use characterization (3) to construct the morphism rL,ψ and θ locally over
S. Use the uniqueness of Lemma 14.1 to show that the construction glues. Details omitted.

�

20. Twisting by invertible sheaves and relative Proj

Let S be a scheme. Let A =
⊕

d≥0Ad be a quasi-coherent graded OS-algebra. Let L
be an invertible sheaf on S. In this situation we obtain another quasi-coherent graded
OS-algebra, namely

B =
⊕

d≥0
Ad ⊗OS

L⊗d

It turns out thatA and B have isomorphic relative homogeneous spectra.

Lemma 20.1. With notation S , A, L and B as above. There is a canonical isomor-
phism

P = Proj
S

(A)
g

//

π

%%

Proj
S

(B) = P ′

π′

yy
S

with the following properties
(1) There are isomorphisms θn : g∗OP ′(n)→ OP (n)⊗ π∗L⊗n which fit together

to give an isomorphism of Z-graded algebras

θ : g∗
(⊕

n∈Z
OP ′(n)

)
−→

⊕
n∈Z
OP (n)⊗ π∗L⊗n
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(2) For every open V ⊂ S the diagrams

An(V )⊗ L⊗n(V )
multiply

//

ψ⊗π∗

��

Bn(V )

ψ

��

Γ(π−1V,OP (n))⊗ Γ(π−1V, π∗L⊗n)

multiply

��
Γ(π−1V,OP (n)⊗ π∗L⊗n) Γ(π′−1V,OP ′(n))θnoo

are commutative.
(3) Add more here as necessary.

Proof. This is the identity map when L ∼= OS . In general choose an open covering
of S such that L is trivialized over the pieces and glue the corresponding maps. Details
omitted. �

21. Projective bundles

Let S be a scheme. Let E be a quasi-coherent sheaf of OS-modules. By Modules, Lemma
21.6 the symmetric algebra Sym(E) of E overOS is a quasi-coherent sheaf ofOS-algebras.
Note that it is generated in degree 1 overOS . Hence it makes sense to apply the construc-
tion of the previous section to it, specifically Lemmas 16.5 and 16.11.

Definition 21.1. Let S be a scheme. Let E be a quasi-coherent OS-module3. We
denote

π : P(E) = Proj
S

(Sym(E)) −→ S

and we call it the projective bundle associated to E . The symbol OP(E)(n) indicates the
invertibleOP(E)-module of Lemma 16.11 and is called the nth twist of the structure sheaf.

According to Lemma 15.5 there are canonicalOS-module homomorphisms
Symn(E) −→ π∗OP(E)(n) equivalently π∗Symn(E) −→ OP(E)(n)

for all n ≥ 0. In particular, for n = 1 we have
E −→ π∗OP(E)(1) equivalently π∗E −→ OP(E)(1)

and the map π∗E → OP(E)(1) is a surjection by Lemma 16.11. This is a good way to
remember how we have normalized our construction of P(E).
Warning: In some references the scheme P(E) is only defined for E finite locally free on
S. Moreover sometimes P(E) is actually defined as our P(E∨) where E∨ is the dual of E
(and this is done only when E is finite locally free).
Let S , E , P(E) → S be as in Definition 21.1. Let f : T → S be a scheme over S. Let
ψ : f∗E → L be a surjection where L is an invertible OT -module. The induced graded
OT -algebra map

f∗Sym(E) = Sym(f∗E)→ Sym(L) =
⊕

n≥0
L⊗n

corresponds to a morphism
ϕL,ψ : T −→ P(E)

3The reader may expect here the condition that E is finite locally free. We do not do so in order to be
consistent with [?, II, Definition 4.1.1].
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over S by our construction of the relative Proj as the scheme representing the functor F
in Section 16. On the other hand, given a morphism ϕ : T → P(E) over S we can set
L = ϕ∗OP(E)(1) and ψ : f∗E → L equal to the pullback by ϕ of the canonical surjection
π∗E → OP(E)(1). By Lemma 16.11 these constructions are inverse bijections between the
set of isomorphism classes of pairs (L, ψ) and the set of morphisms ϕ : T → P(E) over
S. Thus we see that P(E) represents the functor which associates to f : T → S the set of
OT -module quotients of f∗E which are locally free of rank 1.

Example 21.2 (Projective space of a vector space). Let k be a field. Let V be a k-vector
space. The corresponding projective space is the k-scheme

P(V ) = Proj(Sym(V ))

where Sym(V ) is the symmetric algebra on V over k. Of course we have P(V ) ∼= Pn
k if

dim(V ) = n+ 1 because then the symmetric algebra on V is isomorphic to a polynomial
ring in n + 1 variables. If we think of V as a quasi-coherent module on Spec(k), then
P(V ) is the corresponding projective space bundle over Spec(k). By the discussion above
a k-valued point p of P(V ) corresponds to a surjection of k-vector spaces V → Lp with
dim(Lp) = 1. More generally, letX be a scheme over k, letL be an invertibleOX -module,
and let ψ : V → Γ(X,L) be a k-linear map such that L is generated as anOX -module by
the sections in the image of ψ. Then the discussion above gives a canonical morphism

ϕL,ψ : X −→ P(V )

of schemes over k such that there is an isomorphism θ : ϕ∗
L,ψOP(V )(1) → L and such

that ψ agrees with the composition

V → Γ(P(V ),OP(V )(1))→ Γ(X,ϕ∗
L,ψOP(V )(1))→ Γ(X,L)

See Lemma 14.1. If V ⊂ Γ(X,L) is a subspace, then we will denote the morphism con-
structed above simply as ϕL,V . If dim(V ) = n+ 1 and we choose a basis v0, . . . , vn of V
then the diagram

X
ϕL,ψ

// P(V )

∼=
��

X
ϕ(L,(s0,...,sn)) // Pn

k

is commutative, where si = ψ(vi) ∈ Γ(X,L), where ϕ(L,(s0,...,sn)) is as in Section 13, and
where the right vertical arrow corresponds to the isomorphism k[T0, . . . , Tn]→ Sym(V )
sending Ti to vi.

Example 21.3. The map Symn(E)→ π∗(OP(E)(n)) is an isomorphism if E is locally
free, but in general need not be an isomorphism. In fact we will give an example where
this map is not injective for n = 1. Set S = Spec(A) with

A = k[u, v, s1, s2, t1, t2]/I

where k is a field and

I = (−us1 + vt1 + ut2, vs1 + us2 − vt2, vs2, ut1).

Denote u the class of u in A and similarly for the other variables. Let M = (Ax ⊕
Ay)/A(ux+ vy) so that

Sym(M) = A[x, y]/(ux+ vy) = k[x, y, u, v, s1, s2, t1, t2]/J
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where
J = (−us1 + vt1 + ut2, vs1 + us2 − vt2, vs2, ut1, ux+ vy).

In this case the projective bundle associated to the quasi-coherent sheaf E = M̃ on S =
Spec(A) is the scheme

P = Proj(Sym(M)).
Note that this scheme as an affine open covering P = D+(x) ∪ D+(y). Consider the
element m ∈M which is the image of the element us1x+ vt2y. Note that

x(us1x+ vt2y) = (s1x+ s2y)(ux+ vy) mod I
and

y(us1x+ vt2y) = (t1x+ t2y)(ux+ vy) mod I.
The first equation implies that m maps to zero as a section of OP (1) on D+(x) and the
second that it maps to zero as a section of OP (1) on D+(y). This shows that m maps to
zero in Γ(P,OP (1)). On the other hand we claim thatm 6= 0, so thatm gives an example
of a nonzero global section of E mapping to zero in Γ(P,OP (1)). Assume m = 0 to get a
contradiction. In this case there exists an element f ∈ k[u, v, s1, s2, t1, t2] such that

us1x+ vt2y = f(ux+ vy) mod I
Since I is generated by homogeneous polynomials of degree 2 we may decompose f into
its homogeneous components and take the degree 1 component. In other words we may
assume that

f = au+ bv + α1s1 + α2s2 + β1t1 + β2t2

for some a, b, α1, α2, β1, β2 ∈ k. The resulting conditions are that

us1 − u(au+ bv + α1s1 + α2s2 + β1t1 + β2t2) ∈ I
vt2 − v(au+ bv + α1s1 + α2s2 + β1t1 + β2t2) ∈ I

There are no terms u2, uv, v2 in the generators of I and hence we see a = b = 0. Thus we
get the relations

us1 − u(α1s1 + α2s2 + β1t1 + β2t2) ∈ I
vt2 − v(α1s1 + α2s2 + β1t1 + β2t2) ∈ I

We may use the first generator of I to replace any occurrence of us1 by vt1 + ut2, the
second generator of I to replace any occurrence of vs1 by−us2 + vt2, the third generator
to remove occurrences of vs2 and the third to remove occurrences of ut1. Then we get the
relations

(1− α1)vt1 + (1− α1)ut2 − α2us2 − β2ut2 = 0
(1− α1)vt2 + α1us2 − β1vt1 − β2vt2 = 0

This implies that α1 should be both 0 and 1 which is a contradiction as desired.

Lemma 21.4. Let S be a scheme. The structure morphism P(E)→ S of a projective
bundle over S is separated.

Proof. Immediate from Lemma 16.9. �

Lemma 21.5. Let S be a scheme. Let n ≥ 0. Then Pn
S is a projective bundle over S.

Proof. Note that

Pn
Z = Proj(Z[T0, . . . , Tn]) = Proj

Spec(Z)

(
˜Z[T0, . . . , Tn]

)
where the grading on the ring Z[T0, . . . , Tn] is given by deg(Ti) = 1 and the elements of Z
are in degree 0. Recall that Pn

S is defined as Pn
Z×Spec(Z)S. Moreover, forming the relative
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homogeneous spectrum commutes with base change, see Lemma 16.10. For any scheme
g : S → Spec(Z) we have g∗OSpec(Z)[T0, . . . , Tn] = OS [T0, . . . , Tn]. Combining the
above we see that

Pn
S = Proj

S
(OS [T0, . . . , Tn]).

Finally, note that OS [T0, . . . , Tn] = Sym(O⊕n+1
S ). Hence we see that Pn

S is a projective
bundle over S. �

22. Grassmannians

In this section we introduce the standard Grassmannian functors and we show that they
are represented by schemes. Pick integers k, n with 0 < k < n. We will construct a
functor

(22.0.1) G(k, n) : Sch −→ Sets

which will loosely speaking parametrize k-dimensional subspaces of n-space. However,
for technical reasons it is more convenient to parametrize (n− k)-dimensional quotients
and this is what we will do.

More precisely,G(k, n) associates to a scheme S the setG(k, n)(S) of isomorphism classes
of surjections

q : O⊕n
S −→ Q

whereQ is a finite locally freeOS-module of rank n−k. Note that this is indeed a set, for
example by Modules, Lemma 9.8 or by the observation that the isomorphism class of the
surjection q is determined by the kernel of q (and given a sheaf there is a set of subsheaves).
Given a morphism of schemes f : T → S we let G(k, n)(f) : G(k, n)(S)→ G(k, n)(T )
which sends the isomorphism class of q : O⊕n

S −→ Q to the isomorphism class of f∗q :
O⊕n
T −→ f∗Q. This makes sense since (1) f∗OS = OT , (2) f∗ is additive, (3) f∗ preserves

locally free modules (Modules, Lemma 14.3), and (4) f∗ is right exact (Modules, Lemma
3.3).

Lemma 22.1. Let 0 < k < n. The functor G(k, n) of (22.0.1) is representable by a
scheme.

Proof. Set F = G(k, n). To prove the lemma we will use the criterion of Schemes,
Lemma 15.4. The reason F satisfies the sheaf property for the Zariski topology is that we
can glue sheaves, see Sheaves, Section 33 (some details omitted).

The family of subfunctors Fi. Let I be the set of subsets of {1, . . . , n} of cardinality n−k.
Given a scheme S and j ∈ {1, . . . , n} we denote ej the global section

ej = (0, . . . , 0, 1, 0, . . . , 0) (1 in jth spot)

of O⊕n
S . Of course these sections freely generate O⊕n

S . Similarly, for j ∈ {1, . . . , n− k}
we denote fj the global section of O⊕n−k

S which is zero in all summands except the jth
where we put a 1. For i ∈ I we let

si : O⊕n−k
S −→ O⊕n

S

which is the direct sum of the coprojections OS → O⊕n
S corresponding to elements of i.

More precisely, if i = {i1, . . . , in−k} with i1 < i2 < . . . < in−k then si maps fj to eij
for j ∈ {1, . . . , n− k}. With this notation we can set

Fi(S) = {q : O⊕n
S → Q ∈ F (S) | q ◦ si is surjective} ⊂ F (S)
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Given a morphism f : T → S of schemes the pullback f∗si is the corresponding map
over T . Since f∗ is right exact (Modules, Lemma 3.3) we conclude that Fi is a subfunctor
of F .
Representability ofFi. To prove this we may assume (after renumbering) that i = {1, . . . , n−
k}. This means si is the inclusion of the first n − k summands. Observe that if q ◦ si is
surjective, then q ◦ si is an isomorphism as a surjective map between finite locally free
modules of the same rank (Modules, Lemma 14.5). Thus if q : O⊕n

S → Q is an element of
Fi(S), then we can use q ◦ si to identifyQ withO⊕n−k

S . After doing so we obtain

q : O⊕n
S −→ O⊕n−k

S

mapping ej to fj (notation as above) for j = 1, . . . , n − k. To determine q completely
we have to fix the images q(en−k+1), . . . , q(en) in Γ(S,O⊕n−k

S ). It follows that Fi is
isomorphic to the functor

S 7−→
∏

j=n−k+1,...,n
Γ(S,O⊕n−k

S )

This functor is isomorphic to the k(n−k)-fold self product of the functor S 7→ Γ(S,OS).
By Schemes, Example 15.2 the latter is representable by A1

Z. It follows Fi is representable
by Ak(n−k)

Z since fibred product over Spec(Z) is the product in the category of schemes.
The inclusion Fi ⊂ F is representable by open immersions. Let S be a scheme and let
q : O⊕n

S → Q be an element of F (S). By Modules, Lemma 9.4. the set Ui = {s ∈ S |
(q ◦ si)s surjective} is open in S. Since OS,s is a local ring and Qs a finite OS,s-module
by Nakayama’s lemma (Algebra, Lemma 20.1) we have

s ∈ Ui ⇔
(
the map κ(s)⊕n−k → Qs/msQs induced by (q ◦ si)s is surjective

)
Let f : T → S be a morphism of schemes and let t ∈ T be a point mapping to s ∈ S. We
have (f∗Q)t = Qs ⊗OS,s

OT,t (Sheaves, Lemma 26.4) and so on. Thus the map

κ(t)⊕n−k → (f∗Q)t/mt(f∗Q)t
induced by (f∗q ◦ f∗si)t is the base change of the map κ(s)⊕n−k → Qs/msQs above by
the field extension κ(t)/κ(s). It follows that s ∈ Ui if and only if t is in the corresponding
open for f∗q. In particular T → S factors through Ui if and only if f∗q ∈ Fi(T ) as
desired.
The collection Fi, i ∈ I covers F . Let q : O⊕n

S → Q be an element of F (S). We have
to show that for every point s of S there exists an i ∈ I such that si is surjective in a
neighbourhood of s. Thus we have to show that one of the compositions

κ(s)⊕n−k si−→ κ(s)⊕n → Qs/msQs
is surjective (see previous paragraph). As Qs/msQs is a vector space of dimension n − k
this follows from the theory of vector spaces. �

Definition 22.2. Let 0 < k < n. The scheme G(k, n) representing the functor
G(k, n) is called Grassmannian over Z. Its base change G(k, n)S to a scheme S is called
Grassmannian over S. If R is a ring the base change to Spec(R) is denoted G(k, n)R and
called Grassmannian over R.

The definition makes sense as we’ve shown in Lemma 22.1 that these functors are indeed
representable.

Lemma 22.3. Let n ≥ 1. There is a canonical isomorphism G(n, n+ 1) = Pn
Z.
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Proof. According to Lemma 13.1 the scheme Pn
Z represents the functor which assigns

to a scheme S the set of isomorphisms classes of pairs (L, (s0, . . . , sn)) consisting of an
invertible module L and an (n + 1)-tuple of global sections generating L. Given such a
pair we obtain a quotient

O⊕n+1
S −→ L, (h0, . . . , hn) 7−→

∑
hisi.

Conversely, given an element q : O⊕n+1
S → Q of G(n, n + 1)(S) we obtain such a pair,

namely (Q, (q(e1), . . . , q(en+1))). Here ei, i = 1, . . . , n + 1 are the standard generating
sections of the free module O⊕n+1

S . We omit the verification that these constructions
define mutually inverse transformations of functors. �
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CHAPTER 28

Properties of Schemes

1. Introduction

In this chapter we introduce some absolute properties of schemes. A foundational refer-
ence is [?].

2. Constructible sets

Constructible and locally constructible sets are introduced in Topology, Section 15. We
may characterize locally constructible subsets of schemes as follows.

Lemma 2.1. Let X be a scheme. A subset E of X is locally constructible in X if and
only if E ∩ U is constructible in U for every affine open U of X .

Proof. Assume E is locally constructible. Then there exists an open covering X =⋃
Ui such that E ∩ Ui is constructible in Ui for each i. Let V ⊂ X be any affine open.

We can find a finite open affine covering V = V1 ∪ . . . ∪ Vm such that for each j we
have Vj ⊂ Ui for some i = i(j). By Topology, Lemma 15.4 we see that each E ∩ Vj is
constructible in Vj . Since the inclusions Vj → V are quasi-compact (see Schemes, Lemma
19.2) we conclude thatE∩V is constructible inV by Topology, Lemma 15.6. The converse
implication is immediate. �

Lemma 2.2. Let X be a scheme and let E ⊂ X be a locally constructible subset. Let
ξ ∈ X be a generic point of an irreducible component of X .

(1) If ξ ∈ E , then an open neighbourhood of ξ is contained in E.
(2) If ξ 6∈ E , then an open neighbourhood of ξ is disjoint from E.

Proof. As the complement of a locally constructible subset is locally constructible it
suffices to show (2). We may assume X is affine and hence E constructible (Lemma 2.1).
In this case X is a spectral space (Algebra, Lemma 26.2). Then ξ 6∈ E implies ξ 6∈ E by
Topology, Lemma 23.6 and the fact that there are no points of X different from ξ which
specialize to ξ. �

Lemma 2.3. Let X be a quasi-separated scheme. The intersection of any two quasi-
compact opens of X is a quasi-compact open of X . Every quasi-compact open of X is
retrocompact in X .

Proof. If U and V are quasi-compact open then U ∩ V = ∆−1(U × V ), where
∆ : X → X ×X is the diagonal. As X is quasi-separated we see that ∆ is quasi-compact.
Hence we see that U ∩V is quasi-compact as U ×V is quasi-compact (details omitted; use
Schemes, Lemma 17.4 to see U ×V is a finite union of affines). The other assertions follow
from the first and Topology, Lemma 27.1. �

Lemma 2.4. Let X be a quasi-compact and quasi-separated scheme. Then the under-
lying topological space of X is a spectral space.

2347
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Proof. By Topology, Definition 23.1 we have to check thatX is sober, quasi-compact,
has a basis of quasi-compact opens, and the intersection of any two quasi-compact opens is
quasi-compact. This follows from Schemes, Lemma 11.1 and 11.2 and Lemma 2.3 above. �

Lemma 2.5. Let X be a quasi-compact and quasi-separated scheme. Any locally con-
structible subset of X is constructible.

Proof. As X is quasi-compact we can choose a finite affine open covering X = V1 ∪
. . . ∪ Vm. As X is quasi-separated each Vi is retrocompact in X by Lemma 2.3. Hence by
Topology, Lemma 15.6 we see that E ⊂ X is constructible in X if and only if E ∩ Vj is
constructible in Vj . Thus we win by Lemma 2.1. �

Lemma 2.6. Let X be a scheme. A subset E of X is retrocompact in X if and only if
E ∩ U is quasi-compact for every affine open U of X .

Proof. Immediate from the fact that every quasi-compact open ofX is a finite union
of affine opens. �

Lemma 2.7. A partition X =
∐
i∈I Xi of a scheme X with retrocompact parts is

locally finite if and only if the parts are locally constructible.

Proof. See Topology, Definitions 12.1, 28.1, and 28.4 for the definitions of retrocom-
pact, partition, and locally finite.
If the partition is locally finite and U ⊂ X is an affine open, then we see that U =∐
i∈I U ∩ Xi is a finite partition (more precisely, all but a finite number of its parts are

empty). Hence U ∩ Xi is quasi-compact and its complement is retrocompact in U as a
finite union of retrocompact parts. Thus U ∩ Xi is constructible by Topology, Lemma
15.13. It follows that Xi is locally constructible by Lemma 2.1.
Assume the parts are locally constructible. Then for any affine open U ⊂ X we obtain
a covering U =

∐
Xi ∩ U by constructible subsets. Since the constructible topology is

quasi-compact, see Topology, Lemma 23.2, this covering has a finite refinement, i.e., the
partition is locally finite. �

3. Integral, irreducible, and reduced schemes

Definition 3.1. Let X be a scheme. We say X is integral if it is nonempty and for
every nonempty affine open Spec(R) = U ⊂ X the ring R is an integral domain.

Lemma 3.2. Let X be a scheme. The following are equivalent.
(1) The scheme X is reduced, see Schemes, Definition 12.1.
(2) There exists an affine open covering X =

⋃
Ui such that each Γ(Ui,OX) is

reduced.
(3) For every affine open U ⊂ X the ringOX(U) is reduced.
(4) For every open U ⊂ X the ringOX(U) is reduced.

Proof. See Schemes, Lemmas 12.2 and 12.3. �

Lemma 3.3. Let X be a scheme. The following are equivalent.
(1) The scheme X is irreducible.
(2) There exists an affine open covering X =

⋃
i∈I Ui such that I is not empty, Ui

is irreducible for all i ∈ I , and Ui ∩ Uj 6= ∅ for all i, j ∈ I .
(3) The scheme X is nonempty and every nonempty affine open U ⊂ X is irre-

ducible.
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Proof. Assume (1). By Schemes, Lemma 11.1 we see thatX has a unique generic point
η. Then X = {η}. Hence η is an element of every nonempty affine open U ⊂ X . This
implies that η ∈ U is dense hence U is irreducible. It also implies any two nonempty
affines meet. Thus (1) implies both (2) and (3).

Assume (2). Suppose X = Z1 ∪ Z2 is a union of two closed subsets. For every i we see
that either Ui ⊂ Z1 or Ui ⊂ Z2. Pick some i ∈ I and assume Ui ⊂ Z1 (possibly after
renumbering Z1, Z2). For any j ∈ I the open subset Ui ∩Uj is dense in Uj and contained
in the closed subset Z1 ∩ Uj . We conclude that also Uj ⊂ Z1. Thus X = Z1 as desired.

Assume (3). Choose an affine open covering X =
⋃
i∈I Ui. We may assume that each Ui

is nonempty. Since X is nonempty we see that I is not empty. By assumption each Ui is
irreducible. SupposeUi∩Uj = ∅ for some pair i, j ∈ I . Then the openUiqUj = Ui∪Uj
is affine, see Schemes, Lemma 6.8. Hence it is irreducible by assumption which is absurd.
We conclude that (3) implies (2). The lemma is proved. �

Lemma 3.4. A scheme X is integral if and only if it is reduced and irreducible.

Proof. If X is irreducible, then every affine open Spec(R) = U ⊂ X is irreducible.
If X is reduced, then R is reduced, by Lemma 3.2 above. Hence R is reduced and (0) is a
prime ideal, i.e., R is an integral domain.

If X is integral, then for every nonempty affine open Spec(R) = U ⊂ X the ring R is
reduced and hence X is reduced by Lemma 3.2. Moreover, every nonempty affine open is
irreducible. Hence X is irreducible, see Lemma 3.3. �

In Examples, Section 6 we construct a connected affine scheme all of whose local rings are
domains, but which is not integral.

4. Types of schemes defined by properties of rings

In this section we study what properties of rings allow one to define local properties of
schemes.

Definition 4.1. Let P be a property of rings. We say that P is local if the following
hold:

(1) For any ring R, and any f ∈ R we have P (R)⇒ P (Rf ).
(2) For any ring R, and fi ∈ R such that (f1, . . . , fn) = R then ∀i, P (Rfi) ⇒

P (R).

Definition 4.2. Let P be a property of rings. Let X be a scheme. We say X is
locally P if for any x ∈ X there exists an affine open neighbourhood U of x in X such
thatOX(U) has property P .

This is only a good notion if the property is local. Even if P is a local property we will
not automatically use this definition to say that a scheme is “locally P ” unless we also
explicitly state the definition elsewhere.

Lemma 4.3. LetX be a scheme. Let P be a local property of rings. The following are
equivalent:

(1) The scheme X is locally P .
(2) For every affine open U ⊂ X the property P (OX(U)) holds.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) satisfies

P .
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(4) There exists an open covering X =
⋃
Xj such that each open subscheme Xj is

locally P .
Moreover, if X is locally P then every open subscheme is locally P .

Proof. Of course (1)⇔ (3) and (2)⇒ (1). If (3)⇒ (2), then the final statement of
the lemma holds and it follows easily that (4) is also equivalent to (1). Thus we show (3)
⇒ (2).

Let X =
⋃
Ui be an affine open covering, say Ui = Spec(Ri). Assume P (Ri). Let

Spec(R) = U ⊂ X be an arbitrary affine open. By Schemes, Lemma 11.6 there exists
a standard covering of U = Spec(R) by standard opens D(fj) such that each ring Rfj
is a principal localization of one of the rings Ri. By Definition 4.1 (1) we get P (Rfj ).
Whereupon P (R) by Definition 4.1 (2). �

Here is a sample application.

Lemma 4.4. Let X be a scheme. Then X is reduced if and only if X is “locally re-
duced” in the sense of Definition 4.2.

Proof. This is clear from Lemma 3.2. �

Lemma 4.5. The following properties of a ring R are local.
(1) (Cohen-Macaulay.) The ring R is Noetherian and CM, see Algebra, Definition

104.6.
(2) (Regular.) The ring R is Noetherian and regular, see Algebra, Definition 110.7.
(3) (Absolutely Noetherian.) The ring R is of finite type over Z.
(4) Add more here as needed.1

Proof. Omitted. �

5. Noetherian schemes

Recall that a ring R is Noetherian if it satisfies the ascending chain condition of ideals.
Equivalently every ideal of R is finitely generated.

Definition 5.1. Let X be a scheme.
(1) We sayX is locally Noetherian if every x ∈ X has an affine open neighbourhood

Spec(R) = U ⊂ X such that the ring R is Noetherian.
(2) We say X is Noetherian if X is locally Noetherian and quasi-compact.

Here is the standard result characterizing locally Noetherian schemes.

Lemma 5.2. Let X be a scheme. The following are equivalent:
(1) The scheme X is locally Noetherian.
(2) For every affine open U ⊂ X the ringOX(U) is Noetherian.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is Noe-

therian.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme Xj is

locally Noetherian.
Moreover, if X is locally Noetherian then every open subscheme is locally Noetherian.

1But we only list those properties here which we have not already dealt with separately somewhere else.
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Proof. To show this it suffices to show that being Noetherian is a local property of
rings, see Lemma 4.3. Any localization of a Noetherian ring is Noetherian, see Algebra,
Lemma 31.1. By Algebra, Lemma 23.2 we see the second property to Definition 4.1. �

Lemma 5.3. Any immersion Z → X with X locally Noetherian is quasi-compact.

Proof. A closed immersion is clearly quasi-compact. A composition of quasi-compact
morphisms is quasi-compact, see Topology, Lemma 12.2. Hence it suffices to show that
an open immersion into a locally Noetherian scheme is quasi-compact. Using Schemes,
Lemma 19.2 we reduce to the case whereX is affine. Any open subset of the spectrum of a
Noetherian ring is quasi-compact (for example combine Algebra, Lemma 31.5 and Topol-
ogy, Lemmas 9.2 and 12.13). �

Lemma 5.4. A locally Noetherian scheme is quasi-separated.

Proof. By Schemes, Lemma 21.6 we have to show that the intersection U ∩V of two
affine opens of X is quasi-compact. This follows from Lemma 5.3 above on considering
the open immersion U ∩ V → U for example. (But really it is just because any open of
the spectrum of a Noetherian ring is quasi-compact.) �

Lemma 5.5. A (locally) Noetherian scheme has a (locally) Noetherian underlying
topological space, see Topology, Definition 9.1.

Proof. This is because a Noetherian scheme is a finite union of spectra of Noetherian
rings and Algebra, Lemma 31.5 and Topology, Lemma 9.4. �

Lemma 5.6. Any locally closed subscheme of a (locally) Noetherian scheme is (lo-
cally) Noetherian.

Proof. Omitted. Hint: Any quotient, and any localization of a Noetherian ring is
Noetherian. For the Noetherian case use again that any subset of a Noetherian space is a
Noetherian space (with induced topology). �

Lemma 5.7. A Noetherian scheme has a finite number of irreducible components.

Proof. The underlying topological space of a Noetherian scheme is Noetherian (Lemma
5.5) and we conclude because a Noetherian topological space has only finitely many irre-
ducible components (Topology, Lemma 9.2). �

Lemma 5.8. Any morphism of schemes f : X → Y with X Noetherian is quasi-
compact.

Proof. Use Lemma 5.5 and use that any subset of a Noetherian topological space is
quasi-compact (see Topology, Lemmas 9.2 and 12.13). �

Here is a fun lemma. It says that every locally Noetherian scheme has plenty of closed
points (at least one in every closed subset).

Lemma 5.9. Any nonempty locally Noetherian scheme has a closed point. Any
nonempty closed subset of a locally Noetherian scheme has a closed point. Equivalently,
any point of a locally Noetherian scheme specializes to a closed point.

Proof. The second assertion follows from the first (using Schemes, Lemma 12.4 and
Lemma 5.6). Consider any nonempty affine openU ⊂ X . Let x ∈ U be a closed point. If x
is a closed point of X then we are done. If not, let X0 ⊂ X be the reduced induced closed
subscheme structure on {x}. Then U0 = U ∩ X0 is an affine open of X0 by Schemes,
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Lemma 10.1 and U0 = {x}. Let y ∈ X0, y 6= x be a specialization of x. Consider the
local ring R = OX0,y . This is a Noetherian local ring as X0 is Noetherian by Lemma 5.6.
Denote V ⊂ Spec(R) the inverse image of U0 in Spec(R) by the canonical morphism
Spec(R) → X0 (see Schemes, Section 13.) By construction V is a singleton with unique
point corresponding to x (use Schemes, Lemma 13.2). By Algebra, Lemma 61.1 we see
that dim(R) = 1. In other words, we see that y is an immediate specialization of x (see
Topology, Definition 20.1). In other words, any point y 6= x such that x  y is an
immediate specialization of x. Clearly each of these points is a closed point as desired. �

Lemma 5.10. Let X be a locally Noetherian scheme. Let x′  x be a specialization
of points of X . Then

(1) there exists a discrete valuation ring R and a morphism f : Spec(R)→ X such
that the generic point η of Spec(R) maps to x′ and the special point maps to x,
and

(2) given a finitely generated field extensionK/κ(x′) we may arrange it so that the
extension κ(η)/κ(x′) induced by f is isomorphic to the given one.

Proof. Let x′  x be a specialization in X , and let K/κ(x′) be a finitely generated
extension of fields. By Schemes, Lemma 13.2 and the discussion following Schemes, Lemma
13.3 this leads to ring maps OX,x → κ(x′) → K. Let R ⊂ K be any discrete valuation
ring whose field of fractions is K and which dominates the image of OX,x → K , see
Algebra, Lemma 119.13. The ring map OX,x → R induces the morphism f : Spec(R)→
X , see Schemes, Lemma 13.1. This morphism has all the desired properties by construction.

�

Lemma 5.11. Let S be a Noetherian scheme. Let T ⊂ S be an infinite subset. Then
there exists an infinite subset T ′ ⊂ T such that there are no nontrivial specializations
among the points T ′.

Proof. Let T0 ⊂ T be the set of t ∈ T which do not specialize to another point
of T . If T0 is infinite, then T ′ = T0 works. Hence we may and do assume T0 is finite.
Inductively, for i > 0, consider the set Ti ⊂ T of t ∈ T such that

(1) t 6∈ Ti−1 ∪ Ti−2 ∪ . . . ∪ T0,
(2) there exist a nontrivial specialization t t′ with t′ ∈ Ti−1, and
(3) for any nontrivial specialization t t′ with t′ ∈ T we have t′ ∈ Ti−1 ∪ Ti−2 ∪

. . . ∪ T0.
Again, if Ti is infinite, then T ′ = Ti works. Let d be the maximum of the dimensions of the
local rings OS,t for t ∈ T0; then d is an integer because T0 is finite and the dimensions of
the local rings are finite by Algebra, Proposition 60.9. Then Ti = ∅ for i > d. Namely, if
t ∈ Ti then we can find a sequence of nontrivial specializations t = ti  ti−1  . . . t0
with t0 ∈ T0. As the points t = ti, ti−1, . . . , t0 are in Spec(OS,t0) (Schemes, Lemma 13.2),
we see that i ≤ d. Thus

⋃
Ti = Td ∪ . . . ∪ T0 is a finite subset of T .

Suppose t ∈ T is not in
⋃
Ti. Then there must be a specialization t  t′ with t′ ∈ T

and t′ 6∈
⋃
Ti. (Namely, if every specialization of t is in the finite set Td ∪ . . . ∪ T0, then

there is a maximum i such that there is some specialization t  t′ with t′ ∈ Ti and then
t ∈ Ti+1 by construction.) Hence we get an infinite sequence

t t′  t′′  . . .

of nontrivial specializations between points of T \
⋃
Ti. This is impossible because the

underlying topological space of S is Noetherian by Lemma 5.4. �
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Lemma 5.12. Let S be a Noetherian scheme. Let T ⊂ S be a subset. Let T0 ⊂ T be the
set of t ∈ T such that there is no nontrivial specialization t′  t with t′ ∈ T ′. Then (a)
there are no specializations among the points of T0, (b) every point of T is a specialization
of a point of T0, and (c) the closures of T and T0 are the same.

Proof. Recall that dim(OS,s) < ∞ for any s ∈ S , see Algebra, Proposition 60.9.
Let t ∈ T . If t′  t, then by dimension theory dim(OS,t′) ≤ dim(OS,t) with equality
if and only if t′ = t. Thus if we pick t′  t with dim(OT,t′) minimal, then t′ ∈ T0. In
other words, every t ∈ T is the specialization of an element of T0. �

Lemma 5.13. Let S be a Noetherian scheme. Let T ⊂ S be an infinite dense subset.
Then there exist a countable subset E ⊂ T which is dense in S.

Proof. Let T ′ be the set of points s ∈ S such that {s}∩T contains a countable subset
whose closure is {s}. Since a finite set is countable we have T ⊂ T ′. For s ∈ T ′ choose
such a countable subset Es ⊂ {s} ∩ T . Let E′ = {s1, s2, s3, . . .} ⊂ T ′ be a countable
subset. Then the closure of E′ in S is the closure of the countable subset

⋃
nEsn of T . It

follows that if Z is an irreducible component of the closure of E′, then the generic point
of Z is in T ′.

Denote T ′
0 ⊂ T ′ the subset of t ∈ T ′ such that there is no nontrivial specialization t′  t

with t′ ∈ T ′ as in Lemma 5.12 whose results we will use without further mention. If
T ′

0 is infinite, then we choose a countable subset E′ ⊂ T ′
0. By the argument in the first

paragraph, the generic points of the irreducible components of the closure of E′ are in
T ′. However, since one of these points specializes to infinitely many distinct elements of
E′ ⊂ T ′

0 this is a contradiction. Thus T ′
0 is finite, say T ′

0 = {s1, . . . , sm}. Then it follows
that S , which is the closure of T , is contained in the closure of {s1, . . . , sm}, which in turn
is contained in the closure of the countable subset Es1 ∪ . . . ∪ Esm ⊂ T as desired. �

6. Jacobson schemes

Recall that a space is said to be Jacobson if the closed points are dense in every closed subset,
see Topology, Section 18.

Definition 6.1. A scheme S is said to be Jacobson if its underlying topological space
is Jacobson.

Recall that a ring R is Jacobson if every radical ideal of R is the intersection of maximal
ideals, see Algebra, Definition 35.1.

Lemma 6.2. An affine scheme Spec(R) is Jacobson if and only if the ring R is Jacob-
son.

Proof. This is Algebra, Lemma 35.4. �

Here is the standard result characterizing Jacobson schemes. Intuitively it claims that
Jacobson⇔ locally Jacobson.

Lemma 6.3. Let X be a scheme. The following are equivalent:
(1) The scheme X is Jacobson.
(2) The scheme X is “locally Jacobson” in the sense of Definition 4.2.
(3) For every affine open U ⊂ X the ringOX(U) is Jacobson.
(4) There exists an affine open covering X =

⋃
Ui such that eachOX(Ui) is Jacob-

son.
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(5) There exists an open covering X =
⋃
Xj such that each open subscheme Xj is

Jacobson.
Moreover, if X is Jacobson then every open subscheme is Jacobson.

Proof. The final assertion of the lemma holds by Topology, Lemma 18.5. The equiv-
alence of (5) and (1) is Topology, Lemma 18.4. Hence, using Lemma 6.2, we see that (1)⇔
(2). To finish proving the lemma it suffices to show that “Jacobson” is a local property of
rings, see Lemma 4.3. Any localization of a Jacobson ring at an element is Jacobson, see
Algebra, Lemma 35.14. Suppose R is a ring, f1, . . . , fn ∈ R generate the unit ideal and
each Rfi is Jacobson. Then we see that Spec(R) =

⋃
D(fi) is a union of open subsets

which are all Jacobson, and hence Spec(R) is Jacobson by Topology, Lemma 18.4 again.
This proves the second property of Definition 4.1. �

Many schemes used commonly in algebraic geometry are Jacobson, see Morphisms, Lemma
16.10. We mention here the following interesting case.

Lemma 6.4. Examples of Noetherian Jacobson schemes.
(1) If (R,m) is a Noetherian local ring, then the punctured spectrum Spec(R)\{m}

is a Jacobson scheme.
(2) IfR is a Noetherian ring with Jacobson radical rad(R) then Spec(R)\V (rad(R))

is a Jacobson scheme.
(3) If (R, I) is a Zariski pair (More on Algebra, Definition 10.1) with R Noetherian,

then Spec(R) \ V (I) is a Jacobson scheme.

Proof. Proof of (3). Observe that Spec(R)−V (I) has a covering by the affine opens
Spec(Rf ) for f ∈ I . The rings Rf are Jacobson by More on Algebra, Lemma 10.5. Hence
Spec(R) \ V (I) is Jacobson by Lemma 6.3. Parts (1) and (2) are special cases of (3).
Direct proof of case (1). Since Spec(R) is a Noetherian scheme, S is a Noetherian scheme
(Lemma 5.6). Hence S is a sober, Noetherian topological space (use Schemes, Lemma 11.1).
Assume S is not Jacobson to get a contradiction. By Topology, Lemma 18.3 there exists
some non-closed point ξ ∈ S such that {ξ} is locally closed. This corresponds to a prime
p ⊂ R such that (1) there exists a prime q, p ⊂ q ⊂ m with both inclusions strict, and (2)
{p} is open in Spec(R/p). This is impossible by Algebra, Lemma 61.1. �

7. Normal schemes

Recall that a ringR is said to be normal if all its local rings are normal domains, see Algebra,
Definition 37.11. A normal domain is a domain which is integrally closed in its field of
fractions, see Algebra, Definition 37.1. Thus it makes sense to define a normal scheme as
follows.

Definition 7.1. A scheme X is normal if and only if for all x ∈ X the local ring
OX,x is a normal domain.

This seems to be the definition used in EGA, see [?, 0, 4.1.4]. Suppose X = Spec(A), and
A is reduced. Then saying thatX is normal is not equivalent to saying thatA is integrally
closed in its total ring of fractions. However, if A is Noetherian then this is the case (see
Algebra, Lemma 37.16).

Lemma 7.2. Let X be a scheme. The following are equivalent:
(1) The scheme X is normal.
(2) For every affine open U ⊂ X the ringOX(U) is normal.
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(3) There exists an affine open coveringX =
⋃
Ui such that eachOX(Ui) is normal.

(4) There exists an open covering X =
⋃
Xj such that each open subscheme Xj is

normal.
Moreover, if X is normal then every open subscheme is normal.

Proof. This is clear from the definitions. �

Lemma 7.3. A normal scheme is reduced.

Proof. Immediate from the definitions. �

Lemma 7.4. Let X be an integral scheme. Then X is normal if and only if for every
affine open U ⊂ X the ringOX(U) is a normal domain.

Proof. This follows from Algebra, Lemma 37.10. �

Lemma 7.5. LetX be a scheme such that any quasi-compact open has a finite number
of irreducible components. The following are equivalent:

(1) X is normal, and
(2) X is a disjoint union of normal integral schemes.

Proof. It is immediate from the definitions that (2) implies (1). Let X be a normal
scheme such that every quasi-compact open has a finite number of irreducible components.
IfX is affine thenX satisfies (2) by Algebra, Lemma 37.16. For a generalX , letX =

⋃
Xi

be an affine open covering. Note that also each Xi has but a finite number of irreducible
components, and the lemma holds for each Xi. Let T ⊂ X be an irreducible component.
By the affine case each intersection T ∩Xi is open in Xi and an integral normal scheme.
Hence T ⊂ X is open, and an integral normal scheme. This proves that X is the disjoint
union of its irreducible components, which are integral normal schemes. �

Lemma 7.6. Let X be a Noetherian scheme. The following are equivalent:
(1) X is normal, and
(2) X is a finite disjoint union of normal integral schemes.

Proof. This is a special case of Lemma 7.5 because a Noetherian scheme has a Noe-
therian underlying topological space (Lemma 5.5 and Topology, Lemma 9.2). �

Lemma 7.7. Let X be a locally Noetherian scheme. The following are equivalent:
(1) X is normal, and
(2) X is a disjoint union of integral normal schemes.

Proof. Omitted. Hint: This is purely topological from Lemma 7.6. �

Remark 7.8. Let X be a normal scheme. If X is locally Noetherian then we see that
X is integral if and only if X is connected, see Lemma 7.7. But there exists a connected
affine scheme X such that OX,x is a domain for all x ∈ X , but X is not irreducible, see
Examples, Section 6. This example is even a normal scheme (proof omitted), so beware!

Lemma 7.9. Let X be an integral normal scheme. Then Γ(X,OX) is a normal do-
main.

Proof. Set R = Γ(X,OX). It is clear that R is a domain. Suppose f = a/b is an
element of its fraction field which is integral overR. Say we have fd+

∑
i=0,...,d−1 aif

i =
0 with ai ∈ R. Let U ⊂ X be a nonempty affine open. Since b ∈ R is not zero and
since X is integral we see that also b|U ∈ OX(U) is not zero. Hence a/b is an element
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of the fraction field of OX(U) which is integral over OX(U) (because we can use the
same polynomial fd +

∑
i=0,...,d−1 ai|Uf i = 0 on U ). Since OX(U) is a normal domain

(Lemma 7.2), we see that fU = (a|U )/(b|U ) ∈ OX(U). It is clear that fU |V = fV
whenever V ⊂ U ⊂ X are nonempty affine open. Hence the local sections fU glue to an
element g ∈ R = Γ(X,OX). Then bg and a restrict to the same element of OX(U) for
all U as above, hence bg = a, in other words, g maps to f in the fraction field of R. �

8. Cohen-Macaulay schemes

Recall, see Algebra, Definition 104.1, that a local Noetherian ring (R,m) is said to be
Cohen-Macaulay if depthm(R) = dim(R). Recall that a Noetherian ring R is said to be
Cohen-Macaulay if every local ring Rp of R is Cohen-Macaulay, see Algebra, Definition
104.6.

Definition 8.1. LetX be a scheme. We sayX is Cohen-Macaulay if for every x ∈ X
there exists an affine open neighbourhood U ⊂ X of x such that the ring OX(U) is
Noetherian and Cohen-Macaulay.

Lemma 8.2. Let X be a scheme. The following are equivalent:
(1) X is Cohen-Macaulay,
(2) X is locally Noetherian and all of its local rings are Cohen-Macaulay, and
(3) X is locally Noetherian and for any closed point x ∈ X the local ring OX,x is

Cohen-Macaulay.

Proof. Algebra, Lemma 104.5 says that the localization of a Cohen-Macaulay local
ring is Cohen-Macaulay. The lemma follows by combining this with Lemma 5.2, with the
existence of closed points on locally Noetherian schemes (Lemma 5.9), and the definitions.

�

Lemma 8.3. Let X be a scheme. The following are equivalent:
(1) The scheme X is Cohen-Macaulay.
(2) For every affine openU ⊂ X the ringOX(U) is Noetherian and Cohen-Macaulay.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is Noe-

therian and Cohen-Macaulay.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme Xj is

Cohen-Macaulay.
Moreover, if X is Cohen-Macaulay then every open subscheme is Cohen-Macaulay.

Proof. Combine Lemmas 5.2 and 8.2. �

More information on Cohen-Macaulay schemes and depth can be found in Cohomology
of Schemes, Section 11.

9. Regular schemes

Recall, see Algebra, Definition 60.10, that a local Noetherian ring (R,m) is said to be
regular if m can be generated by dim(R) elements. Recall that a Noetherian ring R is
said to be regular if every local ring Rp of R is regular, see Algebra, Definition 110.7.

Definition 9.1. LetX be a scheme. We sayX is regular, or nonsingular if for every
x ∈ X there exists an affine open neighbourhood U ⊂ X of x such that the ring OX(U)
is Noetherian and regular.

Lemma 9.2. Let X be a scheme. The following are equivalent:
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(1) X is regular,
(2) X is locally Noetherian and all of its local rings are regular, and
(3) X is locally Noetherian and for any closed point x ∈ X the local ring OX,x is

regular.

Proof. By the discussion in Algebra preceding Algebra, Definition 110.7 we know
that the localization of a regular local ring is regular. The lemma follows by combining
this with Lemma 5.2, with the existence of closed points on locally Noetherian schemes
(Lemma 5.9), and the definitions. �

Lemma 9.3. Let X be a scheme. The following are equivalent:
(1) The scheme X is regular.
(2) For every affine open U ⊂ X the ringOX(U) is Noetherian and regular.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is Noe-

therian and regular.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme Xj is

regular.
Moreover, if X is regular then every open subscheme is regular.

Proof. Combine Lemmas 5.2 and 9.2. �

Lemma 9.4. A regular scheme is normal.

Proof. See Algebra, Lemma 157.5. �

10. Dimension

The dimension of a scheme is just the dimension of its underlying topological space.

Definition 10.1. Let X be a scheme.
(1) The dimension ofX is just the dimension ofX as a topological spaces, see Topol-

ogy, Definition 10.1.
(2) For x ∈ X we denote dimx(X) the dimension of the underlying topological

space of X at x as in Topology, Definition 10.1. We say dimx(X) is the dimen-
sion of X at x.

As a scheme has a sober underlying topological space (Schemes, Lemma 11.1) we may com-
pute the dimension of X as the supremum of the lengths n of chains

T0 ⊂ T1 ⊂ . . . ⊂ Tn

of irreducible closed subsets of X , or as the supremum of the lengths n of chains of spe-
cializations

ξn  ξn−1  . . . ξ0

of points of X .

Lemma 10.2. Let X be a scheme. The following are equal
(1) The dimension of X .
(2) The supremum of the dimensions of the local rings of X .
(3) The supremum of dimx(X) for x ∈ X .
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Proof. Note that given a chain of specializations
ξn  ξn−1  . . . ξ0

of points of X all of the points ξi correspond to prime ideals of the local ring of X at
ξ0 by Schemes, Lemma 13.2. Hence we see that the dimension of X is the supremum of
the dimensions of its local rings. In particular dimx(X) ≥ dim(OX,x) as dimx(X) is
the minimum of the dimensions of open neighbourhoods of x. Thus supx∈X dimx(X) ≥
dim(X). On the other hand, it is clear that supx∈X dimx(X) ≤ dim(X) as dim(U) ≤
dim(X) for any open subset of X . �

Lemma 10.3. Let X be a scheme. Let Y ⊂ X be an irreducible closed subset. Let
ξ ∈ Y be the generic point. Then

codim(Y,X) = dim(OX,ξ)
where the codimension is as defined in Topology, Definition 11.1.

Proof. By Topology, Lemma 11.2 we may replaceX by an affine open neighbourhood
of ξ. In this case the result follows easily from Algebra, Lemma 26.3. �

Lemma 10.4. Let X be a scheme. Let x ∈ X . Then x is a generic point of an irre-
ducible component of X if and only if dim(OX,x) = 0.

Proof. This follows from Lemma 10.3 for example. �

Lemma 10.5. A locally Noetherian scheme of dimension 0 is a disjoint union of spec-
tra of Artinian local rings.

Proof. A Noetherian ring of dimension 0 is a finite product of Artinian local rings,
see Algebra, Proposition 60.7. Hence an affine open of a locally Noetherian scheme X of
dimension 0 has discrete underlying topological space. This implies that the topology on
X is discrete. The lemma follows easily from these remarks. �

Lemma 10.6. Let X be a scheme of dimension zero. The following are equivalent
(1) X is quasi-separated,
(2) X is separated,
(3) X is Hausdorff,
(4) every affine open is closed.

In this case the connected components of X are points and every quasi-compact open of
X is affine. In particular, if X is quasi-compact, then X is affine.

Proof. As the dimension of X is zero, we see that for any affine open U ⊂ X the
spaceU is profinite and satisfies a bunch of other properties which we will use freely below,
see Algebra, Lemma 26.5. We choose an affine open covering X =

⋃
Ui.

If (4) holds, then Ui ∩ Uj is a closed subset of Ui, hence quasi-compact, hence X is quasi-
separated, by Schemes, Lemma 21.6, hence (1) holds.
If (1) holds, thenUi∩Uj is a quasi-compact open ofUi hence closed inUi. ThenUi∩Uj →
Ui is an open immersion whose image is closed, hence it is a closed immersion. In particular
Ui∩Uj is affine andO(Ui)→ OX(Ui∩Uj) is surjective. ThusX is separated by Schemes,
Lemma 21.7, hence (2) holds.
Assume (2) and let x, y ∈ X . Say x ∈ Ui. If y ∈ Ui too, then we can find disjoint
open neighbourhoods of x and y because Ui is Hausdorff. Say y 6∈ Ui and y ∈ Uj . Then
y 6∈ Ui ∩ Uj which is an affine open of Uj and hence closed in Uj . Thus we can find an
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open neighbourhood of y not meeting Ui and we conclude that X is Hausdorff, hence (3)
holds.
Assume (3). Let U ⊂ X be affine open. Then U is closed in X by Topology, Lemma 12.4.
This proves (4) holds.
Assume X satisfies the equivalent conditions (1) – (4). We prove the final statements of
the lemma. Say x, y ∈ X with x 6= y. Since y does not specialize to x we can choose
U ⊂ X affine open with x ∈ U and y 6∈ U . Then we see that X = U q (X \ U) is
a decomposistion into open and closed subsets which shows that x and y do not belong
to the same connected component of X . Next, assume U ⊂ X is a quasi-compact open.
Write U = U1 ∪ . . . ∪ Un as a union of affine opens. We will prove by induction on
n that U is affine. This immediately reduces us to the case n = 2. In this case we have
U = (U1 \ U2) q (U1 ∩ U2) q (U2 \ U1) and the arguments above show that each of the
pieces is affine. �

11. Catenary schemes

Recall that a topological space X is called catenary if for every pair of irreducible closed
subsets T ⊂ T ′ there exist a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

and every such chain has the same length. See Topology, Definition 11.4.

Definition 11.1. Let S be a scheme. We say S is catenary if the underlying topolog-
ical space of S is catenary.

Recall that a ring A is called catenary if for any pair of prime ideals p ⊂ q there exists a
maximal chain of primes

p = p0 ⊂ . . . ⊂ pe = q

and all of these have the same length. See Algebra, Definition 105.1.

Lemma 11.2. Let S be a scheme. The following are equivalent
(1) S is catenary,
(2) there exists an open covering of S all of whose members are catenary schemes,
(3) for every affine open Spec(R) = U ⊂ S the ring R is catenary, and
(4) there exists an affine open covering S =

⋃
Ui such that each Ui is the spectrum

of a catenary ring.
Moreover, in this case any locally closed subscheme of S is catenary as well.

Proof. Combine Topology, Lemma 11.5, and Algebra, Lemma 105.2. �

Lemma 11.3. Let S be a locally Noetherian scheme. The following are equivalent:
(1) S is catenary, and
(2) locally in the Zariski topology there exists a dimension function onS (see Topol-

ogy, Definition 20.1).

Proof. This follows from Topology, Lemmas 11.5, 20.2, and 20.4, Schemes, Lemma
11.1 and finally Lemma 5.5. �

It turns out that a scheme is catenary if and only if its local rings are catenary.

Lemma 11.4. Let X be a scheme. The following are equivalent
(1) X is catenary, and
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(2) for any x ∈ X the local ringOX,x is catenary.

Proof. Assume X is catenary. Let x ∈ X . By Lemma 11.2 we may replace X by
an affine open neighbourhood of x, and then Γ(X,OX) is a catenary ring. By Algebra,
Lemma 105.4 any localization of a catenary ring is catenary. WhenceOX,x is catenary.
Conversely assume all local rings of X are catenary. Let Y ⊂ Y ′ be an inclusion of irre-
ducible closed subsets of X . Let ξ ∈ Y be the generic point. Let p ⊂ OX,ξ be the prime
corresponding to the generic point of Y ′, see Schemes, Lemma 13.2. By that same lemma
the irreducible closed subsets of X in between Y and Y ′ correspond to primes q ⊂ OX,ξ
with p ⊂ q ⊂ mξ . Hence we see all maximal chains of these are finite and have the same
length asOX,ξ is a catenary ring. �

12. Serre’s conditions

Here are two technical notions that are often useful. See also Cohomology of Schemes,
Section 11.

Definition 12.1. Let X be a locally Noetherian scheme. Let k ≥ 0.
(1) We sayX is regular in codimension k, or we sayX has property (Rk) if for every

x ∈ X we have
dim(OX,x) ≤ k ⇒ OX,x is regular

(2) We say X has property (Sk) if for every x ∈ X we have depth(OX,x) ≥
min(k, dim(OX,x)).

The phrase “regular in codimension k” makes sense since we have seen in Section 11 that
if Y ⊂ X is irreducible closed with generic point x, then dim(OX,x) = codim(Y,X).
For example condition (R0) means that for every generic point η ∈ X of an irreducible
component of X the local ringOX,η is a field. But for general Noetherian schemes it can
happen that the regular locus of X is badly behaved, so care has to be taken.

Lemma 12.2. Let X be a locally Noetherian scheme. Then X is regular if and only if
X has (Rk) for all k ≥ 0.

Proof. Follows from Lemma 9.2 and the definitions. �

Lemma 12.3. Let X be a locally Noetherian scheme. Then X is Cohen-Macaulay if
and only if X has (Sk) for all k ≥ 0.

Proof. By Lemma 8.2 we reduce to looking at local rings. Hence the lemma is true
because a Noetherian local ring is Cohen-Macaulay if and only if it has depth equal to its
dimension. �

Lemma 12.4. Let X be a locally Noetherian scheme. Then X is reduced if and only
if X has properties (S1) and (R0).

Proof. This is Algebra, Lemma 157.3. �

Lemma 12.5. LetX be a locally Noetherian scheme. ThenX is normal if and only if
X has properties (S2) and (R1).

Proof. This is Algebra, Lemma 157.4. �

Lemma 12.6. Let X be a locally Noetherian scheme which is normal and has dimen-
sion ≤ 1. Then X is regular.
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Proof. This follows from Lemma 12.5 and the definitions. �

Lemma 12.7. Let X be a locally Noetherian scheme which is normal and has dimen-
sion ≤ 2. Then X is Cohen-Macaulay.

Proof. This follows from Lemma 12.5 and the definitions. �

13. Japanese and Nagata schemes

The notions considered in this section are not prominently defined in EGA. A “universally
Japanese scheme” is mentioned and defined in [?, IV Corollary 5.11.4]. A “Japanese scheme”
is mentioned in [?, IV Remark 10.4.14 (ii)] but no definition is given. A Nagata scheme (as
given below) occurs in a few places in the literature (see for example [?, Definition 8.2.30]
and [?, Page 142]).

We briefly recall that a domainR is called Japanese if the integral closure ofR in any finite
extension of its fraction field is finite overR. A ringR is called universally Japanese if for
any finite type ring mapR→ S with S a domain S is Japanese. A ringR is called Nagata
if it is Noetherian and R/p is Japanese for every prime p of R.

Definition 13.1. Let X be a scheme.
(1) Assume X integral. We say X is Japanese if for every x ∈ X there exists an

affine open neighbourhood x ∈ U ⊂ X such that the ring OX(U) is Japanese
(see Algebra, Definition 161.1).

(2) We say X is universally Japanese if for every x ∈ X there exists an affine open
neighbourhood x ∈ U ⊂ X such that the ring OX(U) is universally Japanese
(see Algebra, Definition 162.1).

(3) We sayX is Nagata if for every x ∈ X there exists an affine open neighbourhood
x ∈ U ⊂ X such that the ringOX(U) is Nagata (see Algebra, Definition 162.1).

Being Nagata is the same thing as being locally Noetherian and universally Japanese, see
Lemma 13.8.

Remark 13.2. In [?] a (locally Noetherian) scheme X is called Japanese if for every
x ∈ X and every associated prime p of OX,x the ring OX,x/p is Japanese. We do not use
this definition since there exists a one dimensional Noetherian domain with excellent (in
particular Japanese) local rings whose normalization is not finite. See [?, Example 1] or
[?] or [?, Exposé XIX]. On the other hand, we could circumvent this problem by calling
a scheme X Japanese if for every affine open Spec(A) ⊂ X the ring A/p is Japanese for
every associated prime p of A.

Lemma 13.3. A Nagata scheme is locally Noetherian.

Proof. This is true because a Nagata ring is Noetherian by definition. �

Lemma 13.4. Let X be an integral scheme. The following are equivalent:
(1) The scheme X is Japanese.
(2) For every affine open U ⊂ X the domainOX(U) is Japanese.
(3) There exists an affine open coveringX =

⋃
Ui such that eachOX(Ui) is Japan-

ese.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme Xj is

Japanese.
Moreover, if X is Japanese then every open subscheme is Japanese.
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Proof. This follows from Lemma 4.3 and Algebra, Lemmas 161.3 and 161.4. �

Lemma 13.5. Let X be a scheme. The following are equivalent:

(1) The scheme X is universally Japanese.
(2) For every affine open U ⊂ X the ringOX(U) is universally Japanese.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is uni-

versally Japanese.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme Xj is

universally Japanese.

Moreover, ifX is universally Japanese then every open subscheme is universally Japanese.

Proof. This follows from Lemma 4.3 and Algebra, Lemmas 162.4 and 162.7. �

Lemma 13.6. Let X be a scheme. The following are equivalent:

(1) The scheme X is Nagata.
(2) For every affine open U ⊂ X the ringOX(U) is Nagata.
(3) There exists an affine open coveringX =

⋃
Ui such that eachOX(Ui) is Nagata.

(4) There exists an open covering X =
⋃
Xj such that each open subscheme Xj is

Nagata.

Moreover, if X is Nagata then every open subscheme is Nagata.

Proof. This follows from Lemma 4.3 and Algebra, Lemmas 162.6 and 162.7. �

Lemma 13.7. Let X be a locally Noetherian scheme. Then X is Nagata if and only if
every integral closed subscheme Z ⊂ X is Japanese.

Proof. AssumeX is Nagata. Let Z ⊂ X be an integral closed subscheme. Let z ∈ Z.
Let Spec(A) = U ⊂ X be an affine open containing z such that A is Nagata. Then
Z ∩ U ∼= Spec(A/p) for some prime p, see Schemes, Lemma 10.1 (and Definition 3.1). By
Algebra, Definition 162.1 we see that A/p is Japanese. Hence Z is Japanese by definition.

Assume every integral closed subscheme of X is Japanese. Let Spec(A) = U ⊂ X be
any affine open. As X is locally Noetherian we see that A is Noetherian (Lemma 5.2). Let
p ⊂ A be a prime ideal. We have to show that A/p is Japanese. Let T ⊂ U be the closed
subset V (p) ⊂ Spec(A). Let T ⊂ X be the closure. Then T is irreducible as the closure
of an irreducible subset. Hence the reduced closed subscheme defined by T is an integral
closed subscheme (called T again), see Schemes, Lemma 12.4. In other words, Spec(A/p)
is an affine open of an integral closed subscheme of X . This subscheme is Japanese by
assumption and by Lemma 13.4 we see that A/p is Japanese. �

Lemma 13.8. Let X be a scheme. The following are equivalent:

(1) X is Nagata, and
(2) X is locally Noetherian and universally Japanese.

Proof. This is Algebra, Proposition 162.15. �

This discussion will be continued in Morphisms, Section 18.
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14. The singular locus

Here is the definition.

Definition 14.1. Let X be a locally Noetherian scheme. The regular locus Reg(X)
ofX is the set of x ∈ X such thatOX,x is a regular local ring. The singular locus Sing(X)
is the complementX \Reg(X), i.e., the set of points x ∈ X such thatOX,x is not a regular
local ring.

The regular locus of a locally Noetherian scheme is stable under generalizations, see the
discussion preceding Algebra, Definition 110.7. However, for general locally Noetherian
schemes the regular locus need not be open. In More on Algebra, Section 47 the reader
can find some criteria for when this is the case. We will discuss this further in Morphisms,
Section 19.

15. Local irreducibility

Recall that in More on Algebra, Section 106 we introduced the notion of a (geometrically)
unibranch local ring.

Definition 15.1. Let X be a scheme. Let x ∈ X . We say X is unibranch at x if the
local ring OX,x is unibranch. We say X is geometrically unibranch at x if the local ring
OX,x is geometrically unibranch. We say X is unibranch if X is unibranch at all of its
points. We say X is geometrically unibranch if X is geometrically unibranch at all of its
points.

To be sure, it can happen that a local ring A is geometrically unibranch (in the sense of
More on Algebra, Definition 106.1) but the scheme Spec(A) is not geometrically uni-
branch in the sense of Definition 15.1. For example this happens if A is the local ring at
the vertex of the cone over an irreducible plane curve which has ordinary double point
singularity (a node).

Lemma 15.2. A normal scheme is geometrically unibranch.

Proof. This follows from the definitions. Namely, a scheme is normal if the local
rings are normal domains. It is immediate from the More on Algebra, Definition 106.1
that a local normal domain is geometrically unibranch. �

Lemma 15.3. Let X be a Noetherian scheme. The following are equivalent
(1) X is geometrically unibranch (Definition 15.1),
(2) for every point x ∈ X which is not the generic point of an irreducible compo-

nent ofX , the punctured spectrum of the strict henselizationOshX,x is connected.

Proof. More on Algebra, Lemma 106.5 shows that (1) implies that the punctured
spectra in (2) are irreducible and in particular connected.

Assume (2). Let x ∈ X . We have to show that OX,x is geometrically unibranch. By
induction on dim(OX,x) we may assume that the result holds for every nontrivial gener-
alization of x. We may replace X by Spec(OX,x). In other words, we may assume that
X = Spec(A) with A local and that Ap is geometrically unibranch for each nonmaximal
prime p ⊂ A.

Let Ash be the strict henselization of A. If q ⊂ Ash is a prime lying over p ⊂ A, then
Ap → Ashq is a filtered colimit of étale algebras. Hence the strict henselizations of Ap and
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Ashq are isomorphic. Thus by More on Algebra, Lemma 106.5 we conclude that Ashq has a
unique minimal prime ideal for every nonmaximal prime q of Ash.
Let q1, . . . , qr be the minimal primes of Ash. We have to show that r = 1. By the above
we see that V (q1) ∩ V (qj) = {msh} for j = 2, . . . , r. Hence V (q1) \ {msh} is an open
and closed subset of the punctured spectrum of Ash which is a contradiction with the
assumption that this punctured spectrum is connected unless r = 1. �

Definition 15.4. Let X be a scheme. Let x ∈ X . The number of branches of X at x
is the number of branches of the local ringOX,x as defined in More on Algebra, Definition
106.6. The number of geometric branches of X at x is the number of geometric branches
of the local ringOX,x as defined in More on Algebra, Definition 106.6.

Often we want to compare this with the branches of the complete local ring, but the com-
parison is not straightforward in general; some information on this topic can be found in
More on Algebra, Section 108.

Lemma 15.5. Let X be a scheme and x ∈ X . Let Xi, i ∈ I be the irreducible compo-
nents of X passing through x. Then the number of (geometric) branches of X at x is the
sum over i ∈ I of the number of (geometric) branches of Xi at x.

Proof. We view the Xi as integral closed subschemes of X , see Schemes, Definition
12.5 and Lemma 3.4. Observe that the number of (geometric) branches of Xi at x is at
least 1 for all i (essentially by definition). Recall that the Xi correspond 1-to-1 with the
minimal prime ideals pi ⊂ OX,x, see Algebra, Lemma 26.3. Thus, if I is infinite, then
OX,x has infinitely many minimal primes, whence both OhX,x and OshX,x have infinitely
many minimal primes (combine Algebra, Lemmas 30.5 and 30.7 and the injectivity of the
maps OX,x → OhX,x → OshX,x). In this case the number of (geometric) branches of X at
x is defined to be∞ which is also true for the sum. Thus we may assume I is finite. Let
A′ be the integral closure ofOX,x in the total ring of fractions Q of (OX,x)red. Let A′

i be
the integral closure of OX,x/pi in the total ring of fractions Qi of OX,x/pi. By Algebra,
Lemma 25.4 we have Q =

∏
i∈I Qi. Thus A′ =

∏
A′
i. Then the equality of the lemma

follows from More on Algebra, Lemma 106.7 which expresses the number of (geometric)
branches in terms of the maximal ideals of A′. �

Lemma 15.6. Let X be a scheme. Let x ∈ X .
(1) The number of branches of X at x is 1 if and only if X is unibranch at x.
(2) The number of geometric branches ofX at x is 1 if and only ifX is geometrically

unibranch at x.

Proof. This lemma follows immediately from the definitions and the corresponding
result for rings, see More on Algebra, Lemma 106.7. �

16. Characterizing modules of finite type and finite presentation

Let X be a scheme. Let F be a quasi-coherent OX -module. The following lemma implies
thatF is of finite type (see Modules, Definition 9.1) if and only ifF is on each open affine
Spec(A) = U ⊂ X of the form M̃ for some finite type A-module M . Similarly, F is of
finite presentation (see Modules, Definition 11.1) if and only if F is on each open affine
Spec(A) = U ⊂ X of the form M̃ for some finitely presented A-module M .

Lemma 16.1. Let X = Spec(R) be an affine scheme. The quasi-coherent sheaf of
OX -modules M̃ is a finite typeOX -module if and only if M is a finite R-module.
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Proof. Assume M̃ is a finite type OX -module. This means there exists an open
covering of X such that M̃ restricted to the members of this covering is globally gen-
erated by finitely many sections. Thus there also exists a standard open covering X =⋃
i=1,...,nD(fi) such that M̃ |D(fi) is generated by finitely many sections. Thus Mfi is

finitely generated for each i. Hence we conclude by Algebra, Lemma 23.2. �

Lemma 16.2. Let X = Spec(R) be an affine scheme. The quasi-coherent sheaf of
OX -modules M̃ is an OX -module of finite presentation if and only if M is an R-module
of finite presentation.

Proof. Assume M̃ is an OX -module of finite presentation. By Lemma 16.1 we see
that M is a finite R-module. Choose a surjection Rn → M with kernel K. By Schemes,
Lemma 5.4 there is a short exact sequence

0→ K̃ →
⊕
O⊕n
X → M̃ → 0

By Modules, Lemma 11.3 we see that K̃ is a finite typeOX -module. Hence by Lemma 16.1
again we see that K is a finite R-module. Hence M is an R-module of finite presentation.

�

17. Sections over principal opens

Here is a typical result of this kind. We will use a more naive but more direct method of
proof in later lemmas.

Lemma 17.1. Let X be a scheme. Let f ∈ Γ(X,OX). Denote Xf ⊂ X the open
where f is invertible, see Schemes, Lemma 6.2. If X is quasi-compact and quasi-separated,
the canonical map

Γ(X,OX)f −→ Γ(Xf ,OX)
is an isomorphism. Moreover, if F is a quasi-coherent sheaf ofOX -modules the map

Γ(X,F)f −→ Γ(Xf ,F)
is an isomorphism.

Proof. Write R = Γ(X,OX). Consider the canonical morphism
ϕ : X −→ Spec(R)

of schemes, see Schemes, Lemma 6.4. Then the inverse image of the standard open D(f)
on the right hand side is Xf on the left hand side. Moreover, since X is assumed quasi-
compact and quasi-separated the morphism ϕ is quasi-compact and quasi-separated, see
Schemes, Lemma 19.2 and 21.13. Hence by Schemes, Lemma 24.1 we see that ϕ∗F is quasi-
coherent. Hence we see that ϕ∗F = M̃ withM = Γ(X,F) as anR-module. Thus we see
that

Γ(Xf ,F) = Γ(D(f), ϕ∗F) = Γ(D(f), M̃) = Mf

which is exactly the content of the lemma. The first displayed isomorphism of the lemma
follows by taking F = OX . �

Recall that given a scheme X , an invertible sheaf L on X , and a sheaf of OX -modules
F we get a graded ring Γ∗(X,L) =

⊕
n≥0 Γ(X,L⊗n) and a graded Γ∗(X,L)-module

Γ∗(X,L,F) =
⊕

n∈Z Γ(X,F ⊗OX
L⊗n) see Modules, Definition 25.7. If we have more-

over a section s ∈ Γ(X,L), then we obtain a map
(17.1.1) Γ∗(X,L,F)(s) −→ Γ(Xs,F|Xs)
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which sends t/sn where t ∈ Γ(X,F ⊗OX
L⊗n) to t|Xs ⊗ s|−nXs . This makes sense because

Xs ⊂ X is by definition the open over which s has an inverse, see Modules, Lemma 25.10.

Lemma 17.2. LetX be a scheme. Let L be an invertible sheaf onX . Let s ∈ Γ(X,L).
Let F be a quasi-coherentOX -module.

(1) If X is quasi-compact, then (17.1.1) is injective, and
(2) if X is quasi-compact and quasi-separated, then (17.1.1) is an isomorphism.

In particular, the canonical map

Γ∗(X,L)(s) −→ Γ(Xs,OX), a/sn 7−→ a⊗ s−n

is an isomorphism if X is quasi-compact and quasi-separated.

Proof. Assume X is quasi-compact. Choose a finite affine open covering X = U1 ∪
. . . ∪ Um with Uj affine and L|Uj ∼= OUj . Via this isomorphism, the image s|Uj corre-
sponds to some fj ∈ Γ(Uj ,OUj ). Then Xs ∩ Uj = D(fj).

Proof of (1). Let t/sn be an element in the kernel of (17.1.1). Then t|Xs = 0. Hence
(t|Uj )|D(fj) = 0. By Lemma 17.1 we conclude that fejj t|Uj = 0 for some ej ≥ 0. Let
e = max(ej). Then we see that t⊗ se restricts to zero on Uj for all j , hence is zero. Since
t/sn is equal to t⊗ se/sn+e in Γ∗(X,L,F)(s) we conclude that t/sn = 0 as desired.

Proof of (2). Assume X is quasi-compact and quasi-separated. Then Uj ∩ Uj′ is quasi-
compact for all pairs j, j′, see Schemes, Lemma 21.6. By part (1) we know (17.1.1) is in-
jective. Let t′ ∈ Γ(Xs,F|Xs). For every j , there exist an integer ej ≥ 0 and t′j ∈
Γ(Uj ,F|Uj ) such that t′|D(fj) corresponds to t′j/f

ej
j via the isomorphism of Lemma 17.1.

Set e = max(ej) and

tj = f
e−ej
j t′j ⊗ qej ∈ Γ(Uj , (F ⊗OX

L⊗e)|Uj )

where qj ∈ Γ(Uj ,L|Uj ) is the trivializing section coming from the isomorphism L|Uj ∼=
OUj . In particular we have s|Uj = fjqj . Using this a calculation shows that tj |Uj∩Uj′

and tj′ |Uj∩Uj′ map to the same section of F over Uj ∩Uj′ ∩Xs. By quasi-compactness of
Uj ∩ Uj′ and part (1) there exists an integer e′ ≥ 0 such that

tj |Uj∩Uj′ ⊗ se
′
|Uj∩Uj′ = tj′ |Uj∩Uj′ ⊗ se

′
|Uj∩Uj′

as sections of F ⊗L⊗e+e′
over Uj ∩Uj′ . We may choose the same e′ to work for all pairs

j, j′. Then the sheaf conditions implies there is a section t ∈ Γ(X,F ⊗ L⊗e+e′) whose
restriction to Uj is tj ⊗ se

′ |Uj . A simple computation shows that t/se+e′
maps to t′ as

desired. �

Let X be a scheme. Let L be an invertible OX -module. Let F and G be quasi-coherent
OX -modules. Consider the graded Γ∗(X,L)-module

M =
⊕

n∈Z
HomOX

(F ,G ⊗OX
L⊗n)

Next, let s ∈ Γ(X,L) be a section. Then there is a canonical map

(17.2.1) M(s) −→ HomOXs
(F|Xs ,G|Xs)

which sends α/sn to the map α|Xs ⊗ s|−nXs . The following lemma, combined with Lemma
22.4, says roughly that, if X is quasi-compact and quasi-separated, the category of finitely
presented OXs -modules is the category of finitely presented OX -modules with the mul-
tiplicative system of maps sn : F → F ⊗OX

L⊗n inverted.
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Lemma 17.3. LetX be a scheme. LetL be an invertibleOX -module. Let s ∈ Γ(X,L)
be a section. Let F , G be quasi-coherentOX -modules.

(1) If X is quasi-compact and F is of finite type, then (17.2.1) is injective, and
(2) if X is quasi-compact and quasi-separated and F is of finite presentation, then

(17.2.1) is bijective.

Proof. We first prove the lemma in caseX = Spec(A) is affine andL = OX . In this
case s corresponds to an element f ∈ A. Say F = M̃ and G = Ñ for some A-modules M
and N . Then the lemma translates (via Lemmas 16.1 and 16.2) into the following algebra
statements

(1) If M is a finite A-module and ϕ : M → N is an A-module map such that the
induced map Mf → Nf is zero, then fnϕ = 0 for some n.

(2) IfM is a finitely presentedA-module, then HomA(M,N)f = HomAf (Mf , Nf ).
The second statement is Algebra, Lemma 10.2 and we omit the proof of the first statement.

Next, we prove (1) for general X . Assume X is quasi-compact and hoose a finite affine
open coveringX = U1∪ . . .∪Um with Uj affine and L|Uj ∼= OUj . Via this isomorphism,
the image s|Uj corresponds to some fj ∈ Γ(Uj ,OUj ). Then Xs ∩ Uj = D(fj). Let α/sn
be an element in the kernel of (17.2.1). Then α|Xs = 0. Hence (α|Uj )|D(fj) = 0. By the
affine case treated above we conclude that fejj α|Uj = 0 for some ej ≥ 0. Let e = max(ej).
Then we see that α⊗ se restricts to zero on Uj for all j , hence is zero. Since α/sn is equal
to α⊗ se/sn+e in M(s) we conclude that α/sn = 0 as desired.

Proof of (2). Since F is of finite presentation, the sheafHomOX
(F ,G) is quasi-coherent,

see Schemes, Section 24. Moreover, it is clear that

HomOX
(F ,G ⊗OX

L⊗n) = HomOX
(F ,G)⊗OX

L⊗n

for alln. Hence in this case the statement follows from Lemma 17.2 applied toHomOX
(F ,G).
�

18. Quasi-affine schemes

Definition 18.1. A schemeX is called quasi-affine if it is quasi-compact and isomor-
phic to an open subscheme of an affine scheme.

Lemma 18.2. Let A be a ring and let U ⊂ Spec(A) be a quasi-compact open sub-
scheme. For F quasi-coherent on U the canonical map

˜H0(U,F)|U → F
is an isomorphism.

Proof. Denote j : U → Spec(A) the inclusion morphism. Then H0(U,F) =
H0(Spec(A), j∗F) and j∗F is quasi-coherent by Schemes, Lemma 24.1. Hence j∗F =
˜H0(U,F) by Schemes, Lemma 7.5. Restricting back to U we get the lemma. �

Lemma 18.3. Let X be a scheme. Let f ∈ Γ(X,OX). Assume X is quasi-compact
and quasi-separated and assume that Xf is affine. Then the canonical morphism

j : X −→ Spec(Γ(X,OX))
from Schemes, Lemma 6.4 induces an isomorphism ofXf = j−1(D(f)) onto the standard
affine open D(f) ⊂ Spec(Γ(X,OX)).
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Proof. This is clear as j induces an isomorphism of rings Γ(X,OX)f → OX(Xf )
by Lemma 17.1 above. �

Lemma 18.4. Let X be a scheme. Then X is quasi-affine if and only if the canonical
morphism

X −→ Spec(Γ(X,OX))
from Schemes, Lemma 6.4 is a quasi-compact open immersion.

Proof. If the displayed morphism is a quasi-compact open immersion then X is iso-
morphic to a quasi-compact open subscheme of Spec(Γ(X,OX)) and clearly X is quasi-
affine.

Assume X is quasi-affine, say X ⊂ Spec(R) is quasi-compact open. This in particular
implies that X is separated, see Schemes, Lemma 23.9. Let A = Γ(X,OX). Consider the
ring map R → A coming from R = Γ(Spec(R),OSpec(R)) and the restriction mapping
of the sheafOSpec(R). By Schemes, Lemma 6.4 we obtain a factorization:

X −→ Spec(A) −→ Spec(R)
of the inclusion morphism. Let x ∈ X . Choose r ∈ R such that x ∈ D(r) andD(r) ⊂ X .
Denote f ∈ A the image of r inA. The openXf of Lemma 17.1 above is equal toD(r) ⊂ X
and hence Af ∼= Rr by the conclusion of that lemma. Hence D(r) → Spec(A) is an
isomorphism onto the standard affine open D(f) of Spec(A). Since X can be covered by
such affine opens D(f) we win. �

Lemma 18.5. Let U → V be an open immersion of quasi-affine schemes. Then

U

��

j
// Spec(Γ(U,OU ))

��
U // V

j′
// Spec(Γ(V,OV ))

is cartesian.

Proof. The diagram is commutative by Schemes, Lemma 6.4. Write A = Γ(U,OU )
and B = Γ(V,OV ). Let g ∈ B be such that Vg is affine and contained in U . This means
that if f is the image of g inA, thenUf = Vg . By Lemma 18.3 we see that j′ induces an iso-
morphism of Vg with the standard openD(g) of Spec(B). Thus Vg×Spec(B) Spec(A)→
Spec(A) is an isomorphism onto D(f) ⊂ Spec(A). By Lemma 18.3 again j maps Uf iso-
morphically to D(f). Thus we see that Uf = Uf ×Spec(B) Spec(A). Since by Lemma
18.4 we can cover U by Vg = Uf as above, we see that U → U ×Spec(B) Spec(A) is an
isomorphism. �

Lemma 18.6. Let X be a quasi-affine scheme. There exists an integer n ≥ 0, an affine
scheme T , and a morphism T → X such that for every morphismX ′ → X withX ′ affine
the fibre product X ′ ×X T is isomorphic to An

X′ over X ′.

Proof. By definition, there exists a ring A such that X is isomorphic to a quasi-
compact open subscheme U ⊂ Spec(A). Recall that the standard opensD(f) ⊂ Spec(A)
form a basis for the topology, see Algebra, Section 17. Since U is quasi-compact we can
choose f1, . . . , fn ∈ A such that U = D(f1) ∪ . . . ∪D(fn). Thus we may assume X =
Spec(A) \ V (I) where I = (f1, . . . , fn). We set

T = Spec(A[t, x1, . . . , xn]/(f1x1 + . . .+ fnxn − 1))
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The structure morphism T → Spec(A) factors through the openX to give the morphism
T → X . IfX ′ = Spec(A′) and the morphismX ′ → X corresponds to the ring mapA→
A′, then the images f ′

1, . . . , f
′
n ∈ A′ of f1, . . . , fn generate the unit ideal in A′. Say 1 =

f ′
1a

′
1 + . . .+f ′

na
′
n. The base changeX ′×X T is the spectrum ofA′[t, x1, . . . , xn]/(f ′

1x1 +
. . .+ f ′

nxn − 1). We claim the A′-algebra homomorphism
ϕ : A′[y1, . . . , yn] −→ A′[t, x1, . . . , xn, xn+1]/(f ′

1x1 + . . .+ f ′
nxn − 1)

sending yi to a′
it+ xi is an isomorphism. The claim finishes the proof of the lemma. The

inverse of ϕ is given by the A′-algebra homomorphism
ψ : A′[t, x1, . . . , xn, xn+1]/(f ′

1x1 + . . .+ f ′
nxn − 1) −→ A′[y1, . . . , yn]

sending t to −1 + f ′
1y1 + . . . + f ′

nyn and xi to yi + a′
i − a′

i(f ′
1y1 + . . . + f ′

nyn) for
i = 1, . . . , n. This makes sense because

∑
f ′
ixi is mapped to∑

f ′
i(yi + a′

i − a′
i(
∑
f ′
jyj)) = (

∑
f ′
iyi) + 1− (

∑
f ′
jyj) = 1

To see the maps are mutually inverse one computes as follows:
ϕ(ψ(t) = ϕ(−1 +

∑
f ′
iyi) = −1 +

∑
f ′
i(a′

it+ xi) = t
ϕ(ψ(xi)) = ϕ(yi + a′

i − a′
i(
∑
f ′
jyj)) = a′

it+ xi + a′
i − a′

i(
∑
f ′
ja

′
jt+ f ′

jxj) = xi
ψ(ϕ(yi)) = ψ(a′

it+ xi) = a′
i(−1 +

∑
f ′
jyj) + yi + a′

i − a′
i(
∑
f ′
jyj) = yi

This finishes the proof. �

19. Flat modules

On any ringed space (X,OX) we know what it means for an OX -module to be flat (at a
point), see Modules, Definition 17.1 (Definition 17.3). For quasi-coherent sheaves on an
affine scheme this matches the notion defined in the algebra chapter.

Lemma 19.1. LetX = Spec(R) be an affine scheme. LetF = M̃ for someR-module
M . The quasi-coherent sheaf F is a flatOX -module if and only if M is a flat R-module.

Proof. Flatness of F may be checked on the stalks, see Modules, Lemma 17.2. The
same is true in the case of modules over a ring, see Algebra, Lemma 39.18. And since
Fx = Mp if x corresponds to p the lemma is true. �

20. Locally free modules

On any ringed space we know what it means for anOX -module to be (finite) locally free.
On an affine scheme this matches the notion defined in the algebra chapter.

Lemma 20.1. LetX = Spec(R) be an affine scheme. LetF = M̃ for someR-module
M . The quasi-coherent sheaf F is a (finite) locally freeOX -module of if and only if M is
a (finite) locally free R-module.

Proof. Follows from the definitions, see Modules, Definition 14.1 and Algebra, Def-
inition 78.1. �

We can characterize finite locally free modules in many different ways.

Lemma 20.2. LetX be a scheme. LetF be a quasi-coherentOX -module. The follow-
ing are equivalent:

(1) F is a flatOX -module of finite presentation,
(2) F is OX -module of finite presentation and for all x ∈ X the stalk Fx is a free
OX,x-module,
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(3) F is a locally free, finite typeOX -module,
(4) F is a finite locally freeOX -module, and
(5) F is an OX -module of finite type, for every x ∈ X the stalk Fx is a free OX,x-

module, and the function
ρF : X → Z, x 7−→ dimκ(x) Fx ⊗OX,x

κ(x)
is locally constant in the Zariski topology on X .

Proof. This lemma immediately reduces to the affine case. In this case the lemma is
a reformulation of Algebra, Lemma 78.2. The translation uses Lemmas 16.1, 16.2, 19.1, and
20.1. �

Lemma 20.3. Let X be a reduced scheme. Let F be a quasi-coherent OX -module.
Then the equivalent conditions of Lemma 20.2 are also equivalent to

(6) F is anOX -module of finite type and the function
ρF : X → Z, x 7−→ dimκ(x) Fx ⊗OX,x

κ(x)
is locally constant in the Zariski topology on X .

Proof. This lemma immediately reduces to the affine case. In this case the lemma is
a reformulation of Algebra, Lemma 78.3. �

21. Locally projective modules

A consequence of the work done in the algebra chapter is that it makes sense to define a
locally projective module as follows.

Definition 21.1. Let X be a scheme. Let F be a quasi-coherent OX -module. We
say F is locally projective if for every affine open U ⊂ X the OX(U)-module F(U) is
projective.

Lemma 21.2. LetX be a scheme. LetF be a quasi-coherentOX -module. The follow-
ing are equivalent

(1) F is locally projective, and
(2) there exists an affine open covering X =

⋃
Ui such that the OX(Ui)-module

F(Ui) is projective for every i.
In particular, if X = Spec(A) and F = M̃ then F is locally projective if and only if M
is a projective A-module.

Proof. First, note that if M is a projective A-module and A → B is a ring map,
then M ⊗A B is a projective B-module, see Algebra, Lemma 94.1. Hence if U is an affine
open such that F(U) is a projective OX(U)-module, then the standard open D(f) is an
affine open such that F(D(f)) is a projective OX(D(f))-module for all f ∈ OX(U).
Assume (2) holds. Let U ⊂ X be an arbitrary affine open. We can find an open covering
U =

⋃
j=1,...,mD(fj) by finitely many standard opens D(fj) such that for each j the

open D(fj) is a standard open of some Ui, see Schemes, Lemma 11.5. Hence, if we set
A = OX(U) and if M is an A-module such that F|U corresponds to M , then we see
that Mfj is a projective Afj -module. It follows that A → B =

∏
Afj is a faithfully flat

ring map such that M ⊗A B is a projective B-module. Hence M is projective by Algebra,
Theorem 95.6. �

Lemma 21.3. Let f : X → Y be a morphism of schemes. Let G be a quasi-coherent
OY -module. If G is locally projective on Y , then f∗G is locally projective on X .
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Proof. See Algebra, Lemma 94.1. �

22. Extending quasi-coherent sheaves

It is sometimes useful to be able to show that a given quasi-coherent sheaf on an open
subscheme extends to the whole scheme.

Lemma 22.1. Let j : U → X be a quasi-compact open immersion of schemes.
(1) Any quasi-coherent sheaf on U extends to a quasi-coherent sheaf on X .
(2) LetF be a quasi-coherent sheaf onX . Let G ⊂ F|U be a quasi-coherent subsheaf.

There exists a quasi-coherent subsheafH of F such thatH|U = G as subsheaves
of F|U .

(3) Let F be a quasi-coherent sheaf on X . Let G be a quasi-coherent sheaf on U . Let
ϕ : G → F|U be a morphism of OU -modules. There exists a quasi-coherent
sheaf H of OX -modules and a map ψ : H → F such that H|U = G and that
ψ|U = ϕ.

Proof. An immersion is separated (see Schemes, Lemma 23.8) and j is quasi-compact
by assumption. Hence for any quasi-coherent sheaf G on U the sheaf j∗G is an extension
to X . See Schemes, Lemma 24.1 and Sheaves, Section 31.
Assume F , G are as in (2). Then j∗G is a quasi-coherent sheaf on X (see above). It is a
subsheaf of j∗j

∗F . Hence the kernel
H = Ker(F ⊕ j∗G −→ j∗j

∗F)
is quasi-coherent as well, see Schemes, Section 24. It is formal to check that H ⊂ F and
thatH|U = G (using the material in Sheaves, Section 31 again).
Part (3) is proved in the same manner as (2). Just takeH = Ker(F ⊕ j∗G → j∗j

∗F) with
its obvious map to F and its obvious identification with G over U . �

Lemma 22.2. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open. Let F be a quasi-coherent OX -module. Let G ⊂ F|U be a
quasi-coherent OU -submodule which is of finite type. Then there exists a quasi-coherent
submodule G′ ⊂ F which is of finite type such that G′|U = G.

Proof. Let n be the minimal number of affine opens Ui ⊂ X , i = 1, . . . , n such that
X = U ∪

⋃
Ui. (Here we use that X is quasi-compact.) Suppose we can prove the lemma

for the case n = 1. Then we can successively extend G to a G1 over U ∪ U1 to a G2 over
U ∪U1 ∪U2 to a G3 over U ∪U1 ∪U2 ∪U3, and so on. Thus we reduce to the case n = 1.
Thus we may assume that X = U ∪ V with V affine. Since X is quasi-separated and U ,
V are quasi-compact open, we see that U ∩ V is a quasi-compact open. It suffices to prove
the lemma for the system (V,U ∩V,F|V ,G|U∩V ) since we can glue the resulting sheaf G′

over V to the given sheaf G over U along the common value over U ∩ V . Thus we reduce
to the case where X is affine.
Assume X = Spec(R). Write F = M̃ for some R-module M . By Lemma 22.1 above we
may find a quasi-coherent subsheaf H ⊂ F which restricts to G over U . Write H = Ñ
for some R-module N . For every u ∈ U there exists an f ∈ R such that u ∈ D(f) ⊂ U
and such that Nf is finitely generated, see Lemma 16.1. Since U is quasi-compact we can
cover it by finitely many D(fi) such that Nfi is generated by finitely many elements, say
xi,1/f

N
i , . . . , xi,ri/f

N
i . Let N ′ ⊂ N be the submodule generated by the elements xi,j .

Then the subsheaf G′ = Ñ ′ ⊂ H ⊂ F works. �
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Lemma 22.3. Let X be a quasi-compact and quasi-separated scheme. Any quasi-
coherent sheaf ofOX -modules is the directed colimit of its quasi-coherentOX -submodules
which are of finite type.

Proof. The colimit is directed because if G1, G2 are quasi-coherent subsheaves of fi-
nite type, then the image of G1 ⊕ G2 → F is a quasi-coherent submodule of finite type.
Let U ⊂ X be any affine open, and let s ∈ Γ(U,F) be any section. Let G ⊂ F|U be
the subsheaf generated by s. Then clearly G is quasi-coherent and has finite type as an
OU -module. By Lemma 22.2 we see that G is the restriction of a quasi-coherent subsheaf
G′ ⊂ F which has finite type. Since X has a basis for the topology consisting of affine
opens we conclude that every local section of F is locally contained in a quasi-coherent
submodule of finite type. Thus we win. �

Lemma 22.4. LetX be a quasi-compact and quasi-separated scheme. LetF be a quasi-
coherentOX -module. LetU ⊂ X be a quasi-compact open. LetG be anOU -module which
is of finite presentation. Let ϕ : G → F|U be a morphism of OU -modules. Then there
exists anOX -module G′ of finite presentation, and a morphism ofOX -modules ϕ′ : G′ →
F such that G′|U = G and such that ϕ′|U = ϕ.

Proof. The beginning of the proof is a repeat of the beginning of the proof of Lemma
22.2. We write it out carefuly anyway.
Let n be the minimal number of affine opens Ui ⊂ X , i = 1, . . . , n such that X =
U ∪

⋃
Ui. (Here we use that X is quasi-compact.) Suppose we can prove the lemma

for the case n = 1. Then we can successively extend the pair (G, ϕ) to a pair (G1, ϕ1) over
U ∪U1 to a pair (G2, ϕ2) over U ∪U1 ∪U2 to a pair (G3, ϕ3) over U ∪U1 ∪U2 ∪U3, and
so on. Thus we reduce to the case n = 1.
Thus we may assume that X = U ∪ V with V affine. Since X is quasi-separated and U
quasi-compact, we see that U ∩V ⊂ V is quasi-compact. Suppose we prove the lemma for
the system (V,U ∩ V,F|V ,G|U∩V , ϕ|U∩V ) thereby producing (G′, ϕ′) over V . Then we
can glue G′ over V to the given sheaf G over U along the common value over U ∩ V , and
similarly we can glue the map ϕ′ to the map ϕ along the common value over U ∩V . Thus
we reduce to the case where X is affine.
Assume X = Spec(R). By Lemma 22.1 above we may find a quasi-coherent sheafH with
a map ψ : H → F over X which restricts to G and ϕ over U . By Lemma 22.2 we can
find a finite type quasi-coherentOX -submoduleH′ ⊂ H such thatH′|U = G. Thus after
replacing H by H′ and ψ by the restriction of ψ to H′ we may assume that H is of finite
type. By Lemma 16.2 we conclude that H = Ñ with N a finitely generated R-module.
Hence there exists a surjection as in the following short exact sequence of quasi-coherent
OX -modules

0→ K → O⊕n
X → H→ 0

whereK is defined as the kernel. SinceG is of finite presentation andH|U = G by Modules,
Lemma 11.3 the restriction K|U is an OU -module of finite type. Hence by Lemma 22.2
again we see that there exists a finite type quasi-coherent OX -submodule K′ ⊂ K such
that K′|U = K|U . The solution to the problem posed in the lemma is to set

G′ = O⊕n
X /K′

which is clearly of finite presentation and restricts to give G on U with ϕ′ equal to the
composition

G′ = O⊕n
X /K′ → O⊕n

X /K = H ψ−→ F .
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This finishes the proof of the lemma. �

Lemma 22.5. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X be a
quasi-compact open. Let G be anOU -module.

(1) If G is quasi-coherent and of finite type, then there exists a quasi-coherent OX -
module G′ of finite type such that G′|U = G.

(2) If G is of finite presentation, then there exists anOX -module G′ of finite presen-
tation such that G′|U = G.

Proof. Part (2) is the special case of Lemma 22.4 where F = 0. For part (1) we first
write G = F|U for some quasi-coherent OX -module by Lemma 22.1 and then we apply
Lemma 22.2 with G = F|U . �

The following lemma says that every quasi-coherent sheaf on a quasi-compact and quasi-
separated scheme is a filtered colimit of O-modules of finite presentation. Actually, we
reformulate this in (perhaps more familiar) terms of directed colimits over directed sets in
the next lemma.

Lemma 22.6. Let X be a scheme. Assume X is quasi-compact and quasi-separated.
Let F be a quasi-coherentOX -module. There exist

(1) a filtered index category I (see Categories, Definition 19.1),
(2) a diagram I →Mod(OX) (see Categories, Section 14), i 7→ Fi,
(3) morphisms ofOX -modules ϕi : Fi → F

such that each Fi is of finite presentation and such that the morphisms ϕi induce an iso-
morphism

colimi Fi = F .

Proof. Choose a set I and for each i ∈ I an OX -module of finite presentation and
a homomorphism of OX -modules ϕi : Fi → F with the following property: For any
ψ : G → F with G of finite presentation there is an i ∈ I such that there exists an
isomorphism α : Fi → G with ϕi = ψ ◦ α. It is clear from Modules, Lemma 9.8 that
such a set exists (see also its proof). We denote I the category with Ob(I) = I and given
i, i′ ∈ I we set

MorI(i, i′) = {α : Fi → Fi′ | α ◦ ϕi′ = ϕi}.
We claim that I is a filtered category and that F = colimi Fi.
Let i, i′ ∈ I . Then we can consider the morphism

Fi ⊕Fi′ −→ F
which is the direct sum ofϕi andϕi′ . Since a direct sum of finitely presentedOX -modules
is finitely presented we see that there exists some i′′ ∈ I such that ϕi′′ : Fi′′ → F is iso-
morphic to the displayed arrow towards F above. Since there are commutative diagrams

Fi //

��

F

Fi ⊕Fi′ // F

and Fi′ //

��

F

Fi ⊕Fi′ // F

we see that there are morphisms i → i′′ and i′ → i′′ in I . Next, suppose that we have
i, i′ ∈ I and morphisms α, β : i → i′ (corresponding to OX -module maps α, β : Fi →
Fi′ ). In this case consider the coequalizer

G = Coker(Fi
α−β−−−→ Fi′)
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Note that G is an OX -module of finite presentation. Since by definition of morphisms in
the category I we have ϕi′ ◦ α = ϕi′ ◦ β we see that we get an induced map ψ : G → F .
Hence again the pair (G, ψ) is isomorphic to the pair (Fi′′ , ϕi′′) for some i′′. Hence we see
that there exists a morphism i′ → i′′ in I which equalizes α and β. Thus we have shown
that the category I is filtered.

We still have to show that the colimit of the diagram is F . By definition of the colimit,
and by our definition of the category I there is a canonical map

ϕ : colimi Fi −→ F .
Pick x ∈ X . Let us show that ϕx is an isomorphism. Recall that

(colimi Fi)x = colimi Fi,x,
see Sheaves, Section 29. First we show that the map ϕx is injective. Suppose that s ∈ Fi,x
is an element such that s maps to zero in Fx. Then there exists a quasi-compact open U
such that s comes from s ∈ Fi(U) and such that ϕi(s) = 0 in F(U). By Lemma 22.2 we
can find a finite type quasi-coherent subsheaf K ⊂ Ker(ϕi) which restricts to the quasi-
coherentOU -submodule ofFi generated by s: K|U = OU · s ⊂ Fi|U . Clearly,Fi/K is of
finite presentation and the map ϕi factors through the quotient map Fi → Fi/K. Hence
we can find an i′ ∈ I and a morphism α : Fi → Fi′ in I which can be identified with the
quotient map Fi → Fi/K. Then it follows that the section s maps to zero in Fi′(U) and
in particular in (colimi Fi)x = colimi Fi,x. The injectivity follows. Finally, we show
that the map ϕx is surjective. Pick s ∈ Fx. Choose a quasi-compact open neighbourhood
U ⊂ X ofx such that s corresponds to a section s ∈ F(U). Consider the map s : OU → F
(multiplication by s). By Lemma 22.4 there exists anOX -module G of finite presentation
and an OX -module map G → F such that G|U → F|U is identified with s : OU → F .
Again by definition of I there exists an i ∈ I such that G → F is isomorphic to ϕi :
Fi → F . Clearly there exists a section s′ ∈ Fi(U) mapping to s ∈ F(U). This proves
surjectivity and the proof of the lemma is complete. �

Lemma 22.7. Let X be a scheme. Assume X is quasi-compact and quasi-separated.
Let F be a quasi-coherentOX -module. There exist

(1) a directed set I (see Categories, Definition 21.1),
(2) a system (Fi, ϕii′) over I in Mod(OX) (see Categories, Definition 21.2)
(3) morphisms ofOX -modules ϕi : Fi → F

such that each Fi is of finite presentation and such that the morphisms ϕi induce an iso-
morphism

colimi Fi = F .

Proof. This is a direct consequence of Lemma 22.6 and Categories, Lemma 21.5 (com-
bined with the fact that colimits exist in the category of sheaves of OX -modules, see
Sheaves, Section 29). �

Lemma 22.8. Let X be a scheme. Assume X is quasi-compact and quasi-separated.
Let F be a finite type quasi-coherentOX -module. Then we can write F = colimFi with
Fi of finite presentation and all transition maps Fi → Fi′ surjective.

Proof. Write F = colimGi as a filtered colimit of finitely presented OX -modules
(Lemma 22.7). We claim that Gi → F is surjective for some i. Namely, choose a finite
affine open covering X = U1 ∪ . . . ∪ Um. Choose sections sjl ∈ F(Uj) generating F|Uj ,
see Lemma 16.1. By Sheaves, Lemma 29.1 we see that sjl is in the image of Gi → F for i
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large enough. Hence Gi → F is surjective for i large enough. Choose such an i and let
K ⊂ Gi be the kernel of the map Gi → F . Write K = colimKa as the filtered colimit
of its finite type quasi-coherent submodules (Lemma 22.3). Then F = colimGi/Ka is a
solution to the problem posed by the lemma. �

Lemma 22.9. LetX be a quasi-compact and quasi-separated scheme. LetF be a finite
type quasi-coherent OX -module. Let U ⊂ X be a quasi-compact open such that F|U is
of finite presentation. Then there exists a map of OX -modules ϕ : G → F with (a) G of
finite presentation, (b) ϕ is surjective, and (c) ϕ|U is an isomorphism.

Proof. WriteF = colimFi as a directed colimit with eachFi of finite presentation,
see Lemma 22.7. Choose a finite affine open coveringX =

⋃
Vj and choose finitely many

sections sjl ∈ F(Vj) generating F|Vj , see Lemma 16.1. By Sheaves, Lemma 29.1 we see
that sjl is in the image of Fi → F for i large enough. Hence Fi → F is surjective for i
large enough. Choose such an i and let K ⊂ Fi be the kernel of the map Fi → F . Since
FU is of finite presentation, we see that K|U is of finite type, see Modules, Lemma 11.3.
Hence we can find a finite type quasi-coherent submodule K′ ⊂ K with K′|U = K|U , see
Lemma 22.2. Then G = Fi/K′ with the given map G → F is a solution. �

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent OX -
algebra A of finite presentation. This means that for every affine open Spec(R) ⊂ X we
have A = Ã where A is a (commutative) R-algebra which is of finite presentation as an
R-algebra.

Lemma 22.10. Let X be a scheme. Assume X is quasi-compact and quasi-separated.
LetA be a quasi-coherentOX -algebra. There exist

(1) a directed set I (see Categories, Definition 21.1),
(2) a system (Ai, ϕii′) over I in the category ofOX -algebras,
(3) morphisms ofOX -algebras ϕi : Ai → A

such that each Ai is a quasi-coherent OX -algebra of finite presentation and such that the
morphisms ϕi induce an isomorphism

colimiAi = A.

Proof. First we writeA = colimi Fi as a directed colimit of finitely presented quasi-
coherent sheaves as in Lemma 22.7. For each i let Bi = Sym(Fi) be the symmetric algebra
on Fi overOX . Write Ii = Ker(Bi → A). Write Ii = colimj Fi,j where Fi,j is a finite
type quasi-coherent submodule of Ii, see Lemma 22.3. Set Ii,j ⊂ Ii equal to the Bi-ideal
generated by Fi,j . Set Ai,j = Bi/Ii,j . Then Ai,j is a quasi-coherent finitely presented
OX -algebra. Define (i, j) ≤ (i′, j′) if i ≤ i′ and the map Bi → Bi′ maps the ideal Ii,j
into the ideal Ii′,j′ . Then it is clear thatA = colimi,j Ai,j . �

Let X be a scheme. In the following lemma we use the notion of a quasi-coherent OX -
algebra A of finite type. This means that for every affine open Spec(R) ⊂ X we have
A = Ã where A is a (commutative) R-algebra which is of finite type as an R-algebra.

Lemma 22.11. Let X be a scheme. Assume X is quasi-compact and quasi-separated.
Let A be a quasi-coherent OX -algebra. Then A is the directed colimit of its finite type
quasi-coherentOX -subalgebras.

Proof. If A1,A2 ⊂ A are quasi-coherent OX -subalgebras of finite type, then the
image of A1 ⊗OX

A2 → A is also a quasi-coherent OX -subalgebra of finite type (some
details omitted) which contains both A1 and A2. In this way we see that the system is



2376 28. PROPERTIES OF SCHEMES

directed. To show that A is the colimit of this system, write A = colimiAi as a directed
colimit of finitely presented quasi-coherent OX -algebras as in Lemma 22.10. Then the
images A′

i = Im(Ai → A) are quasi-coherent subalgebras of A of finite type. Since A is
the colimit of these the result follows. �

Let X be a scheme. In the following lemma we use the notion of a finite (resp. integral)
quasi-coherent OX -algebra A. This means that for every affine open Spec(R) ⊂ X we
have A = Ã where A is a (commutative) R-algebra which is finite (resp. integral) as an
R-algebra.

Lemma 22.12. Let X be a scheme. Assume X is quasi-compact and quasi-separated.
Let A be a finite quasi-coherent OX -algebra. Then A = colimAi is a directed colimit
of finite and finitely presented quasi-coherent OX -algebras such that all transition maps
Ai′ → Ai are surjective.

Proof. By Lemma 22.8 there exists a finitely presented OX -module F and a surjec-
tion F → A. Using the algebra structure we obtain a surjection

Sym∗
OX

(F) −→ A

DenoteJ the kernel. WriteJ = colim Ei as a filtered colimit of finite typeOX -submodules
Ei (Lemma 22.3). Set

Ai = Sym∗
OX

(F)/(Ei)

where (Ei) indicates the ideal sheaf generated by the image of Ei → Sym∗
OX

(F). Then
each Ai is a finitely presented OX -algebra, the transition maps are surjections, and A =
colimAi. To finish the proof we still have to show that Ai is a finite OX -algebra for i
sufficiently large. To do this we choose an affine open coveringX = U1 ∪ . . .∪Um. Take
generators fj,1, . . . , fj,Nj ∈ Γ(Ui,F). As A(Uj) is a finite OX(Uj)-algebra we see that
for each k there exists a monic polynomial Pj,k ∈ O(Uj)[T ] such that Pj,k(fj,k) is zero
inA(Uj). Since A = colimAi by construction, we have Pj,k(fj,k) = 0 inAi(Uj) for all
sufficiently large i. For such i the algebrasAi are finite. �

Lemma 22.13. Let X be a scheme. Assume X is quasi-compact and quasi-separated.
LetA be an integral quasi-coherentOX -algebra. Then

(1) A is the directed colimit of its finite quasi-coherentOX -subalgebras, and
(2) A is a direct colimit of finite and finitely presented quasi-coherentOX -algebras.

Proof. By Lemma 22.11 we have A = colimAi where Ai ⊂ A runs through the
quasi-coherentOX -algebras of finite type. Any finite type quasi-coherentOX -subalgebra
of A is finite (apply Algebra, Lemma 36.5 to Ai(U) ⊂ A(U) for affine opens U in X).
This proves (1).

To prove (2), write A = colimFi as a colimit of finitely presented OX -modules using
Lemma 22.7. For each i, let Ji be the kernel of the map

Sym∗
OX

(Fi) −→ A

For i′ ≥ i there is an induced map Ji → Ji′ and we have A = colim Sym∗
OX

(Fi)/Ji.
Moreover, the quasi-coherent OX -algebras Sym∗

OX
(Fi)/Ji are finite (see above). Write

Ji = colim Eik as a colimit of finitely presented OX -modules. Given i′ ≥ i and k there
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exists a k′ such that we have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Modules, Lemma 22.8. This induces a map

Aik = Sym∗
OX

(Fi)/(Eik) −→ Sym∗
OX

(Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras Aki are
of finite presentation and finite for k large enough (see proof of Lemma 22.12). Finally,
we have

colimAik = colimAi = A
Namely, the first equality was shown in the proof of Lemma 22.12 and the second equality
becauseA is the colimit of the modules Fi. �

23. Gabber’s result

In this section we prove a result of Gabber which guarantees that on every scheme there
exists a cardinal κ such that every quasi-coherent module F is the union of its quasi-
coherent κ-generated subsheaves. It follows that the category of quasi-coherent sheaves
on a scheme is a Grothendieck abelian category having limits and enough injectives2.

Definition 23.1. Let (X,OX) be a ringed space. Let κ be an infinite cardinal. We
say a sheaf of OX -modules F is κ-generated if there exists an open covering X =

⋃
Ui

such that F|Ui is generated by a subset Ri ⊂ F(Ui) whose cardinality is at most κ.

Note that a direct sum of at most κ κ-generated modules is again κ-generated because
κ ⊗ κ = κ, see Sets, Section 6. In particular this holds for the direct sum of two κ-
generated modules. Moreover, a quotient of a κ-generated sheaf is κ-generated. (But the
same needn’t be true for submodules.)

Lemma 23.2. Let (X,OX) be a ringed space. Let κ be a cardinal. There exists a set
T and a family (Ft)t∈T of κ-generated OX -modules such that every κ-generated OX -
module is isomorphic to one of the Ft.

Proof. There is a set of coverings of X (provided we disallow repeats). Suppose
X =

⋃
Ui is a covering and suppose Fi is an OUi -module. Then there is a set of iso-

morphism classes of OX -modules F with the property that F|Ui ∼= Fi since there is a
set of glueing maps. This reduces us to proving there is a set of (isomorphism classes of)
quotients ⊕k∈κOX → F for any ringed space X . This is clear. �

Here is the result the title of this section refers to.

Lemma 23.3. Let X be a scheme. There exists a cardinal κ such that every quasi-
coherent module F is the directed colimit of its quasi-coherent κ-generated submodules.

Proof. Choose an affine open covering X =
⋃
i∈I Ui. For each pair i, j choose

an affine open covering Ui ∩ Uj =
⋃
k∈Iij Uijk. Write Ui = Spec(Ai) and Uijk =

Spec(Aijk). Let κ be any infinite cardinal ≥ than the cardinality of any of the sets I , Iij .

2Nicely explained in a blog post by Akhil Mathew.

https://amathew.wordpress.com/2011/07/30/quasi-coherent-sheaves-presentable-categories-and-a-result-of-gabber/
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Let F be a quasi-coherent sheaf. Set Mi = F(Ui) and Mijk = F(Uijk). Note that
Mi ⊗Ai Aijk = Mijk = Mj ⊗Aj Aijk.

see Schemes, Lemma 7.3. Using the axiom of choice we choose a map
(i, j, k,m) 7→ S(i, j, k,m)

which associates to every i, j ∈ I , k ∈ Iij and m ∈ Mi a finite subset S(i, j, k,m) ⊂ Mj

such that we have
m⊗ 1 =

∑
m′∈S(i,j,k,m)

m′ ⊗ am′

in Mijk for some am′ ∈ Aijk. Moreover, let’s agree that S(i, i, k,m) = {m} for all
i, j = i, k,m as above. Fix such a map.
Given a family S = (Si)i∈I of subsets Si ⊂Mi of cardinality at most κ we set S ′ = (S′

i)
where

S′
j =

⋃
(i,k,m) such thatm∈Si

S(i, j, k,m)

Note that Si ⊂ S′
i. Note that S′

i has cardinality at most κ because it is a union over a
set of cardinality at most κ of finite sets. Set S(0) = S , S(1) = S ′ and by induction
S(n+1) = (S(n))′. Then set S(∞) =

⋃
n≥0 S(n). Writing S(∞) = (S(∞)

i ) we see that for
any elementm ∈ S(∞)

i the image ofm inMijk can be written as a finite sum
∑
m′⊗am′

with m′ ∈ S(∞)
j . In this way we see that setting

Ni = Ai-submodule of Mi generated by S(∞)
i

we have
Ni ⊗Ai Aijk = Nj ⊗Aj Aijk.

as submodules of Mijk. Thus there exists a quasi-coherent subsheaf G ⊂ F with G(Ui) =
Ni. Moreover, by construction the sheaf G is κ-generated.
Let {Gt}t∈T be the set of κ-generated quasi-coherent subsheaves. If t, t′ ∈ T then Gt+Gt′
is also a κ-generated quasi-coherent subsheaf as it is the image of the map Gt ⊕ Gt′ → F .
Hence the system (ordered by inclusion) is directed. The arguments above show that every
section of F over Ui is in one of the Gt (because we can start with S such that the given
section is an element of Si). Hence colimt Gt → F is both injective and surjective as
desired. �

Proposition 23.4. Let X be a scheme.
(1) The category QCoh(OX) is a Grothendieck abelian category. Consequently,

QCoh(OX) has enough injectives and all limits.
(2) The inclusion functor QCoh(OX)→Mod(OX) has a right adjoint3

Q : Mod(OX) −→ QCoh(OX)
such that for every quasi-coherent sheaf F the adjunction mapping Q(F)→ F
is an isomorphism.

Proof. Part (1) means QCoh(OX) (a) has all colimits, (b) filtered colimits are ex-
act, and (c) has a generator, see Injectives, Section 10. By Schemes, Section 24 colimits in
QCoh(OX) exist and agree with colimits in Mod(OX). By Modules, Lemma 3.2 filtered
colimits are exact. Hence (a) and (b) hold. To construct a generator U , pick a cardinal κ
as in Lemma 23.3. Pick a collection (Ft)t∈T of κ-generated quasi-coherent sheaves as in

3This functor is sometimes called the coherator.
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Lemma 23.2. Set U =
⊕

t∈T Ft. Since every object of QCoh(OX) is a filtered colimit
of κ-generated quasi-coherent modules, i.e., of objects isomorphic to Ft, it is clear that U
is a generator. The assertions on limits and injectives hold in any Grothendieck abelian
category, see Injectives, Theorem 11.7 and Lemma 13.2.

Proof of (2). To construct Q we use the following general procedure. Given an object F
of Mod(OX) we consider the functor

QCoh(OX)opp −→ Sets, G 7−→ HomX(G,F)
This functor transforms colimits into limits, hence is representable, see Injectives, Lemma
13.1. Thus there exists a quasi-coherent sheafQ(F) and a functorial isomorphism HomX(G,F) =
HomX(G, Q(F)) for G in QCoh(OX). By the Yoneda lemma (Categories, Lemma 3.5)
the constructionF  Q(F) is functorial inF . By constructionQ is a right adjoint to the
inclusion functor. The fact that Q(F)→ F is an isomorphism when F is quasi-coherent
is a formal consequence of the fact that the inclusion functor QCoh(OX) → Mod(OX)
is fully faithful. �

24. Sections with support in a closed subset

Given any topological spaceX , a closed subsetZ ⊂ X , and an abelian sheafF you can take
the subsheaf of sections whose support is contained in Z. IfX is a scheme, Z a closed sub-
scheme, and F a quasi-coherent module there is a variant where you take sections which
are scheme theoretically supported on Z. However, in the scheme setting you have to be
careful because the resultingOX -module may not be quasi-coherent.

Lemma 24.1. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X be
an open subscheme. The following are equivalent:

(1) U is retrocompact in X ,
(2) U is quasi-compact,
(3) U is a finite union of affine opens, and
(4) there exists a finite type quasi-coherent sheaf of idealsI ⊂ OX such thatX\U =

V (I) (set theoretically).

Proof. The equivalence of (1), (2), and (3) follows from Lemma 2.3. Assume (1), (2),
(3). Let T = X \ U . By Schemes, Lemma 12.4 there exists a unique quasi-coherent sheaf
of ideals J cutting out the reduced induced closed subscheme structure on T . Note that
J |U = OU which is an OU -modules of finite type. By Lemma 22.2 there exists a quasi-
coherent subsheaf I ⊂ J which is of finite type and has the property that I|U = J |U .
ThenX \U = V (I) and we obtain (4). Conversely, if I is as in (4) andW = Spec(R) ⊂
X is an affine open, then I|W = Ĩ for some finitely generated ideal I ⊂ R, see Lemma
16.1. It follows that U ∩W = Spec(R)\V (I) is quasi-compact, see Algebra, Lemma 29.1.
Hence U ⊂ X is retrocompact by Lemma 2.6. �

Lemma 24.2. LetX be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals. Let
F be a quasi-coherentOX -module. Consider the sheaf ofOX -modulesF ′ which associates
to every open U ⊂ X

F ′(U) = {s ∈ F(U) | Is = 0}
Assume I is of finite type. Then

(1) F ′ is a quasi-coherent sheaf ofOX -modules,
(2) on any affine open U ⊂ X we have F ′(U) = {s ∈ F(U) | I(U)s = 0}, and
(3) F ′

x = {s ∈ Fx | Ixs = 0}.
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Proof. It is clear that the rule definingF ′ gives a subsheaf ofF (the sheaf condition
is easy to verify). Hence we may work locally on X to verify the other statements. In
other words we may assume thatX = Spec(A),F = M̃ and I = Ĩ . It is clear that in this
case F ′(U) = {x ∈ M | Ix = 0} =: M ′ because Ĩ is generated by its global sections I
which proves (2). To showF ′ is quasi-coherent it suffices to show that for every f ∈ Awe
have {x ∈Mf | Ifx = 0} = (M ′)f . Write I = (g1, . . . , gt), which is possible because I
is of finite type, see Lemma 16.1. If x = y/fn and Ifx = 0, then that means that for every
i there exists an m ≥ 0 such that fmgix = 0. We may choose one m which works for all
i (and this is where we use that I is finitely generated). Then we see that fmx ∈ M ′ and
x/fn = fmx/fn+m in (M ′)f as desired. The proof of (3) is similar and omitted. �

Definition 24.3. LetX be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals
of finite type. Let F be a quasi-coherent OX -module. The subsheaf F ′ ⊂ F defined in
Lemma 24.2 above is called the subsheaf of sections annihilated by I .

Lemma 24.4. Let f : X → Y be a quasi-compact and quasi-separated morphism of
schemes. Let I ⊂ OY be a quasi-coherent sheaf of ideals of finite type. Let F be a quasi-
coherent OX -module. Let F ′ ⊂ F be the subsheaf of sections annihilated by f−1IOX .
Then f∗F ′ ⊂ f∗F is the subsheaf of sections annihilated by I .

Proof. Omitted. (Hint: The assumption that f is quasi-compact and quasi-separated
implies that f∗F is quasi-coherent so that Lemma 24.2 applies to I and f∗F .) �

For an abelian sheaf on a topological space we have discussed the subsheaf of sections
with support in a closed subset in Modules, Remark 6.2. For quasi-coherent modules this
submodule isn’t always a quasi-coherent module, but if the closed subset has a retrocompact
complement, then it is.

Lemma 24.5. Let X be a scheme. Let Z ⊂ X be a closed subset. Let F be a quasi-
coherent OX -module. Consider the sheaf of OX -modules F ′ which associates to every
open U ⊂ X

F ′(U) = {s ∈ F(U) | the support of s is contained in Z ∩ U}
If X \ Z is a retrocompact open of X , then

(1) for an affine open U ⊂ X there exist a finitely generated ideal I ⊂ OX(U) such
that Z ∩ U = V (I),

(2) for U and I as in (1) we have F ′(U) = {x ∈ F(U) | Inx = 0 for some n},
(3) F ′ is a quasi-coherent sheaf ofOX -modules.

Proof. Part (1) is Algebra, Lemma 29.1. Let U = Spec(A) and I be as in (1). Then
F|U is the quasi-coherent sheaf associated to some A-module M . We have

F ′(U) = {x ∈M | x = 0 in Mp for all p 6∈ Z}.
by Modules, Definition 5.1. Thus x ∈ F ′(U) if and only if V (Ann(x)) ⊂ V (I), see
Algebra, Lemma 40.7. Since I is finitely generated this is equivalent to Inx = 0 for some
n. This proves (2).
Proof of (3). Observe that given U ⊂ X open there is an exact sequence

0→ F ′(U)→ F(U)→ F(U \ Z)
If we denote j : X \ Z → X the inclusion morphism, then we observe that F(U \ Z) is
the sections of the module j∗(F|X\Z) over U . Thus we have an exact sequence

0→ F ′ → F → j∗(F|X\Z)



25. SECTIONS OF QUASI-COHERENT SHEAVES 2381

The restriction F|X\Z is quasi-coherent. Hence j∗(F|X\Z) is quasi-coherent by Schemes,
Lemma 24.1 and our assumption that j is quasi-compact (any open immersion is separated).
Hence F ′ is quasi-coherent as a kernel of a map of quasi-coherent modules, see Schemes,
Section 24. �

Definition 24.6. Let X be a scheme. Let T ⊂ X be a closed subset whose comple-
ment is retrocompact in X . Let F be a quasi-coherent OX -module. The quasi-coherent
subsheafF ′ ⊂ F defined in Lemma 24.5 is called the subsheaf of sections supported on T .

Lemma 24.7. Let f : X → Y be a quasi-compact and quasi-separated morphism of
schemes. Let Z ⊂ Y be a closed subset such that Y \ Z is retrocompact in Y . Let F be a
quasi-coherent OX -module. Let F ′ ⊂ F be the subsheaf of sections supported in f−1Z.
Then f∗F ′ ⊂ f∗F is the subsheaf of sections supported in Z.

Proof. Omitted. (Hint: First show that X \ f−1Z is retrocompact in X as Y \ Z is
retrocompact in Y . Hence Lemma 24.5 applies to f−1Z andF . As f is quasi-compact and
quasi-separated we see that f∗F is quasi-coherent. Hence Lemma 24.5 applies to Z and
f∗F . Finally, match the sheaves directly.) �

25. Sections of quasi-coherent sheaves

Here is a computation of sections of a quasi-coherent sheaf on a quasi-compact open of an
affine spectrum.

Lemma 25.1. Let A be a ring. Let I ⊂ A be a finitely generated ideal. Let M be an
A-module. Then there is a canonical map

colimn HomA(In,M) −→ Γ(Spec(A) \ V (I), M̃).

This map is always injective. If for all x ∈ M we have Ix = 0⇒ x = 0 then this map is
an isomorphism. In general, setMn = {x ∈M | Inx = 0}, then there is an isomorphism

colimn HomA(In,M/Mn) −→ Γ(Spec(A) \ V (I), M̃).

Proof. Since In+1 ⊂ In and Mn ⊂ Mn+1 we can use composition via these maps
to get canonical maps of A-modules

HomA(In,M) −→ HomA(In+1,M)

and
HomA(In,M/Mn) −→ HomA(In+1,M/Mn+1)

which we will use as the transition maps in the systems. Given an A-module map ϕ :
In → M , then we get a map of sheaves ϕ̃ : Ĩn → M̃ which we can restrict to the
open Spec(A) \ V (I). Since Ĩn restricted to this open gives the structure sheaf we get an
element of Γ(Spec(A) \ V (I), M̃). We omit the verification that this is compatible with
the transition maps in the system HomA(In,M). This gives the first arrow. To get the
second arrow we note that M̃ and M̃/Mn agree over the open Spec(A) \ V (I) since the
sheaf M̃n is clearly supported on V (I). Hence we can use the same mechanism as before.

Next, we work out how to define this arrow in terms of algebra. Say I = (f1, . . . , ft).
Then Spec(A) \ V (I) =

⋃
i=1,...,tD(fi). Hence

0→ Γ(Spec(A) \ V (I), M̃)→
⊕

i
Mfi →

⊕
i,j
Mfifj
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is exact. Suppose that ϕ : In →M is an A-module map. Consider the vector of elements
ϕ(fni )/fni ∈ Mfi . It is easy to see that this vector maps to zero in the second direct sum
of the exact sequence above. Whence an element of Γ(Spec(A) \ V (I), M̃). We omit the
verification that this description agrees with the one given above.

Let us show that the first arrow is injective using this description. Namely, if ϕ maps to
zero, then for each i the element ϕ(fni )/fni is zero in Mfi . In other words we see that for
each i we have fmi ϕ(fni ) = 0 for some m ≥ 0. We may choose a single m which works
for all i. Then we see that ϕ(fn+m

i ) = 0 for all i. It is easy to see that this means that
ϕ|It(n+m−1)+1 = 0 in other words that ϕ maps to zero in the t(n+m− 1) + 1st term of
the colimit. Hence injectivity follows.

Note that each Mn = 0 in case we have Ix = 0 ⇒ x = 0 for x ∈ M . Thus to finish the
proof of the lemma it suffices to show that the second arrow is an isomorphism.

Let us attempt to construct an inverse of the second map of the lemma. Let s ∈ Γ(Spec(A)\
V (I), M̃). This corresponds to a vector xi/fni with xi ∈M of the first direct sum of the
exact sequence above. Hence for each i, j there exists m ≥ 0 such that fmi fmj (fnj xi −
fni xj) = 0 in M . We may choose a single m which works for all pairs i, j. After replac-
ing xi by fmi xi and n by n+m we see that we get fnj xi = fni xj in M for all i, j. Let us
introduce

Kn = {x ∈M | fn1 x = . . . = fnt x = 0}
We claim there is an A-module map

ϕ : It(n−1)+1 −→M/Kn

which maps the monomial fe1
1 . . . fett with

∑
ei = t(n−1)+1 to the class moduloKn of

the expression fe1
1 . . . fei−ni . . . fett xi where i is chosen such that ei ≥ n (note that there

is at least one such i). To see that this is indeed the case suppose that∑
E=(e1,...,et),|E|=t(n−1)+1

aEf
e1
1 . . . fett = 0

is a relation between the monomials with coefficients aE in A. Then we would map this
to

z =
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . f

ei(E)−n
i(E) . . . fett xi(E)

where for each multiindex E we have chosen a particular i(E) such that ei(E) ≥ n. Note
that if we multiply this by fnj for any j , then we get zero, since by the relations fnj xi =
fni xj above we get

fnj z =
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . f

ej+n
j . . . f

ei(E)−n
i(E) . . . fett xi(E)

=
∑

E=(e1,...,et),|E|=t(n−1)+1
aEf

e1
1 . . . fett xj = 0.

Hence z ∈ Kn and we see that every relation gets mapped to zero in M/Kn. This proves
the claim.

Note thatKn ⊂Mt(n−1)+1. Hence the mapϕ in particular gives rise to anA-module map
It(n−1)+1 →M/Mt(n−1)+1. This proves the second arrow of the lemma is surjective. We
omit the proof of injectivity. �

Example 25.2. We will give two examples showing that the first displayed map of
Lemma 25.1 is not an isomorphism.
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Let k be a field. Consider the ring
A = k[x, y, z1, z2, . . .]/(xnzn).

Set I = (x) and let M = A. Then the element y/x defines a section of the structure
sheaf of Spec(A) overD(x) = Spec(A) \ V (I). We claim that y/x is not in the image of
the canonical map colim HomA(In, A) → Ax = O(D(x)). Namely, if so it would come
from a homomorphism ϕ : In → A for some n. Set a = ϕ(xn). Then we would have
xm(xa−xny) = 0 for somem > 0. This would mean that xm+1a = xm+ny. This would
mean that ϕ(xn+m+1) = xm+ny. This leads to a contradiction because it would imply
that

0 = ϕ(0) = ϕ(zn+m+1x
n+m+1) = xm+nyzn+m+1

which is not true in the ring A.
Let k be a field. Consider the ring

A = k[f, g, x, y, {an, bn}n≥1]/(fy − gx, {anfn + bng
n}n≥1).

Set I = (f, g) and letM = A. Then x/f ∈ Af and y/g ∈ Ag map to the same element of
Afg . Hence these define a section s of the structure sheaf of Spec(A) overD(f)∪D(g) =
Spec(A) \ V (I). However, there is no n ≥ 0 such that s comes from an A-module map
ϕ : In → A as in the source of the first displayed arrow of Lemma 25.1. Namely, given
such a module map set xn = ϕ(fn) and yn = ϕ(gn). Then fmxn = fn+m−1x and
gmyn = gn+m−1y for some m ≥ 0 (see proof of the lemma). But then we would have
0 = ϕ(0) = ϕ(an+mf

n+m + bn+mg
n+m) = an+mf

n+m−1x+ bn+mg
n+m−1y which is

not the case in the ring A.

We will improve on the following lemma in the Noetherian case, see Cohomology of
Schemes, Lemma 10.5.

Lemma 25.3. Let X be a quasi-compact scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals of finite type. Let Z ⊂ X be the closed subscheme defined by I and set
U = X \ Z. Let F be a quasi-coherentOX -module. The canonical map

colimn HomOX
(In,F) −→ Γ(U,F)

is injective. Assume further thatX is quasi-separated. LetFn ⊂ F be subsheaf of sections
annihilated by In. The canonical map

colimn HomOX
(In,F/Fn) −→ Γ(U,F)

is an isomorphism.

Proof. Let Spec(A) = W ⊂ X be an affine open. Write F|W = M̃ for some A-
module M and I|W = Ĩ for some finite type ideal I ⊂ A. Restricting the first displayed
map of the lemma to W we obtain the first displayed map of Lemma 25.1. Since we can
coverX by a finite number of affine opens this proves the first displayed map of the lemma
is injective.

We have Fn|W = M̃n whereMn ⊂M is defined as in Lemma 25.1 (details omitted). The
lemma guarantees that we have a bijection

colimn HomOW
(In|W , (F/Fn)|W ) −→ Γ(U ∩W,F)

for any such affine open W .
To see the second displayed arrow of the lemma is bijective, we choose a finite affine open
covering X =

⋃
j=1,...,mWj . The injectivity follows immediately from the above and
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the finiteness of the covering. If X is quasi-separated, then for each pair j, j′ we choose a
finite affine open covering

Wj ∩Wj′ =
⋃

k=1,...,mjj′
Wjj′k.

Let s ∈ Γ(U,F). As seen above for each j there exists an nj and a map ϕj : Inj |Wj
→

(F/Fnj )|Wj
which corresponds to s|U∩Wj

. By the same token for each triple (j, j′, k)
there exists an integer njj′k such that the restriction of ϕj and ϕj′ as maps Injj′k →
F/Fnjj′k agree over Wjj′k. Let n = max{nj , njj′k} and we see that the ϕj glue as maps
In → F/Fn over X . This proves surjectivity of the map. �

26. Ample invertible sheaves

Recall from Modules, Lemma 25.10 that given an invertible sheaf L on a locally ringed
space X , and given a global section s of L the set Xs = {x ∈ X | s 6∈ mxLx} is open. A
general remark is thatXs∩Xs′ = Xss′ , where ss′ denote the section s⊗s′ ∈ Γ(X,L⊗L′).

Definition 26.1. Let X be a scheme. Let L be an invertible OX -module. We say L
is ample if

(1) X is quasi-compact, and
(2) for every x ∈ X there exists an n ≥ 1 and s ∈ Γ(X,L⊗n) such that x ∈ Xs

and Xs is affine.

Lemma 26.2. LetX be a scheme. LetL be an invertibleOX -module. Let n ≥ 1. Then
L is ample if and only if L⊗n is ample.

Proof. This follows from the fact that Xsn = Xs. �

Lemma 26.3. Let X be a scheme. Let L be an ample invertible OX -module. For any
closed subscheme Z ⊂ X the restriction of L to Z is ample.

Proof. This is clear since a closed subset of a quasi-compact space is quasi-compact
and a closed subscheme of an affine scheme is affine (see Schemes, Lemma 8.2). �

Lemma 26.4. LetX be a scheme. LetL be an invertibleOX -module. Let s ∈ Γ(X,L).
For any affine U ⊂ X the intersection U ∩Xs is affine.

Proof. This translates into the following algebra problem. Let R be a ring. Let N
be an invertible R-module (i.e., locally free of rank 1). Let s ∈ N be an element. Then
U = {p | s 6∈ pN} is an affine open subset of Spec(R).
LetA =

⊕
n≥0 An be the symmetric algebra ofN (which is commutative) and view s as an

element of A1. Set B = A/(s− 1)A. This is an R-algebra whose construction commutes
with any base change R → R′. Thus B′ = B ⊗R R′ is the zero ring if s maps to zero in
N ′ = N ⊗R R′. It follows that if x ∈ Spec(R) \ U , then B ⊗R κ(x) = 0. We conclude
that Spec(B)→ Spec(R) factors through U as the fibres over x 6∈ U are empty. On the
other hand, if Spec(R′) ⊂ U is an affine open, then s maps to a basis element of N ′ and
we see that B′ = R′[s]/(s − 1) ∼= R′. It follows that Spec(B) → U is an isomorphism
and U is indeed affine. �

Lemma 26.5. Let X be a scheme. Let L andM be invertibleOX -modules. If
(1) L is ample, and
(2) the open sets Xt where t ∈ Γ(X,M⊗m) for m > 0 cover X ,

then L ⊗M is ample.
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Proof. We check the conditions of Definition 26.1. As L is ample we see that X is
quasi-compact. Let x ∈ X . Choose n ≥ 1, m ≥ 1, s ∈ Γ(X,L⊗n), and t ∈ Γ(X,M⊗m)
such that x ∈ Xs, x ∈ Xt andXs is affine. Then smtn ∈ Γ(X, (L⊗M)⊗nm), x ∈ Xsmtn ,
and Xsmtn is affine by Lemma 26.4. �

Lemma 26.6. Let X be a scheme. Let L be an invertible OX -module. Assume the
open setsXs, where s ∈ Γ(X,L⊗n) and n ≥ 1, form a basis for the topology onX . Then
among those opens, the open sets Xs which are affine form a basis for the topology on X .

Proof. Let x ∈ X . Choose an affine open neighbourhood Spec(R) = U ⊂ X of x.
By assumption, there exists a n ≥ 1 and a s ∈ Γ(X,L⊗n) such that Xs ⊂ U . By Lemma
26.4 above the intersectionXs = U ∩Xs is affine. SinceU can be chosen arbitrarily small
we win. �

Lemma 26.7. Let X be a scheme and L be an invertible OX -module. Assume for
every point x of X there exists n ≥ 1 and s ∈ Γ(X,L⊗n) such that x ∈ Xs and Xs is
affine. Then X is separated.

Proof. We show first that X is quasi-separated. By assumption we can find a cover-
ing ofX by affine opens of the formXs. By Lemma 26.4, the intersection of any two such
sets is affine, so Schemes, Lemma 21.6 implies that X is quasi-separated.

To show that X is separated, we can use the valuative criterion, Schemes, Lemma 22.2.
Thus, let A be a valuation ring with fraction field K and consider two morphisms f, g :
Spec(A) → X such that the two compositions Spec(K) → Spec(A) → X agree. As A
is local, there exists p, q ≥ 1, s ∈ Γ(X,L⊗p), and t ∈ Γ(X,L⊗q) such that Xs and Xt are
affine, f(SpecA) ⊆ Xs, and g(SpecA) ⊆ Xt. We now replace s by sq , t by tp, and L by
L⊗pq . This is harmless as Xs = Xsq and Xt = Xtp , and now s and t are both sections of
the same sheaf L.

The quasi-coherent module f∗L corresponds to an A-module M and g∗L corresponds
to an A-module N by our classification of quasi-coherent modules over affine schemes
(Schemes, Lemma 7.4). The A-modules M and N are locally free of rank 1 (Lemma 20.1)
and as A is local they are free (Algebra, Lemma 55.8). Therefore we may identify M and
N with A-submodules of M ⊗A K and N ⊗A K. The equality f |Spec(K) = g|Spec(K)
determines an isomorphism φ : M ⊗A K → N ⊗A K.

Let x ∈ M and y ∈ N be the elements corresponding to the pullback of s along f and
g, respectively. These satisfy φ(x ⊗ 1) = y ⊗ 1. The image of f is contained in Xs,
so x 6∈ mAM , that is, x generates M . Hence φ determines an isomorphism of M with
the submodule of N generated by y. Arguing symmetrically using t, φ−1 determines an
isomorphism ofN with a submodule ofM . Consequentlyφ restricts to an isomorphism of
M and N . Since x generates M , its image y generates N , implying y 6∈ mAN . Therefore
g(Spec(A)) ⊆ Xs. Because Xs is affine, it is separated by Schemes, Lemma 21.15, and we
conclude f = g. �

Lemma 26.8. Let X be a scheme. If there exists an ample invertible sheaf on X then
X is separated.

Proof. Follows immediately from Lemma 26.7 and Definition 26.1. �

Lemma 26.9. Let X be a scheme. Let L be an invertible OX -module. Set S =
Γ∗(X,L) as a graded ring. If every point ofX is contained in one of the open subschemes
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Xs, for some s ∈ S+ homogeneous, then there is a canonical morphism of schemes
f : X −→ Y = Proj(S),

to the homogeneous spectrum of S (see Constructions, Section 8). This morphism has the
following properties

(1) f−1(D+(s)) = Xs for any s ∈ S+ homogeneous,
(2) there are OX -module maps f∗OY (n) → L⊗n compatible with multiplication

maps, see Constructions, Equation (10.1.1),
(3) the composition Sn → Γ(Y,OY (n))→ Γ(X,L⊗n) is the identity map, and
(4) for every x ∈ X there is an integer d ≥ 1 and an open neighbourhood U ⊂ X

of x such that f∗OY (dn)|U → L⊗dn|U is an isomorphism for all n ∈ Z.

Proof. Denote ψ : S → Γ∗(X,L) the identity map. We are going to use the triple
(U(ψ), rL,ψ, θ) of Constructions, Lemma 14.1. By assumption the open subscheme U(ψ)
of equals X . Hence rL,ψ : U(ψ)→ Y is defined on all of X . We set f = rL,ψ . The maps
in part (2) are the components of θ. Part (3) follows from condition (2) in the lemma cited
above. Part (1) follows from (3) combined with condition (1) in the lemma cited above.
Part (4) follows from the last statement in Constructions, Lemma 14.1 since the map α
mentioned there is an isomorphism. �

Lemma 26.10. Let X be a scheme. Let L be an invertible OX -module. Set S =
Γ∗(X,L). Assume (a) every point of X is contained in one of the open subschemes Xs,
for some s ∈ S+ homogeneous, and (b)X is quasi-compact. Then the canonical morphism
of schemes f : X −→ Proj(S) of Lemma 26.9 above is quasi-compact with dense image.

Proof. To prove f is quasi-compact it suffices to show that f−1(D+(s)) is quasi-
compact for any s ∈ S+ homogeneous. WriteX =

⋃
i=1,...,nXi as a finite union of affine

opens. By Lemma 26.4 each intersectionXs∩Xi is affine. HenceXs =
⋃
i=1,...,nXs∩Xi

is quasi-compact. Assume that the image of f is not dense to get a contradiction. Then,
since the opensD+(s) with s ∈ S+ homogeneous form a basis for the topology on Proj(S),
we can find such an swithD+(s) 6= ∅ and f(X)∩D+(s) = ∅. By Lemma 26.9 this means
Xs = ∅. By Lemma 17.2 this means that a power sn is the zero section of L⊗n deg(s). This
in turn means that D+(s) = ∅ which is the desired contradiction. �

Lemma 26.11. Let X be a scheme. Let L be an invertible OX -module. Set S =
Γ∗(X,L). Assume L is ample. Then the canonical morphism of schemes f : X −→
Proj(S) of Lemma 26.9 is an open immersion with dense image.

Proof. By Lemma 26.7 we see thatX is quasi-separated. Choose finitely many s1, . . . , sn ∈
S+ homogeneous such that Xsi are affine, and X =

⋃
Xsi . Say si has degree di. The in-

verse image of D+(si) under f is Xsi , see Lemma 26.9. By Lemma 17.2 the ring map

(S(di))(si) = Γ(D+(si),OProj(S)) −→ Γ(Xsi ,OX)
is an isomorphism. Hence f induces an isomorphismXsi → D+(si). Thus f is an isomor-
phism ofX onto the open subscheme

⋃
i=1,...,nD+(si) of Proj(S). The image is dense by

Lemma 26.10. �

Lemma 26.12. LetX be a scheme. LetS be a graded ring. AssumeX is quasi-compact,
and assume there exists an open immersion

j : X −→ Y = Proj(S).
Then j∗OY (d) is an invertible ample sheaf for some d > 0.
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Proof. This is Constructions, Lemma 10.6. �

Proposition 26.13. Let X be a quasi-compact scheme. Let L be an invertible sheaf
on X . Set S = Γ∗(X,L). The following are equivalent:

(1) L is ample,
(2) the open sets Xs, with s ∈ S+ homogeneous, cover X and the associated mor-

phism X → Proj(S) is an open immersion,
(3) the open setsXs, with s ∈ S+ homogeneous, form a basis for the topology ofX ,
(4) the open sets Xs, with s ∈ S+ homogeneous, which are affine form a basis for

the topology of X ,
(5) for every quasi-coherent sheaf F on X the sum of the images of the canonical

maps
Γ(X,F ⊗OX

L⊗n)⊗Z L⊗−n −→ F
with n ≥ 1 equals F ,

(6) same property as (5) with F ranging over all quasi-coherent sheaves of ideals,
(7) X is quasi-separated and for every quasi-coherent sheaf F of finite type on X

there exists an integer n0 such that F ⊗OX
L⊗n is globally generated for all

n ≥ n0,
(8) X is quasi-separated and for every quasi-coherent sheaf F of finite type on X

there exist integers n > 0, k ≥ 0 such that F is a quotient of a direct sum of k
copies of L⊗−n, and

(9) same as in (8) with F ranging over all sheaves of ideals of finite type on X .

Proof. Lemma 26.11 is (1)⇒ (2). Lemmas 26.2 and 26.12 provide the implication (1)
⇐ (2). The implications (2)⇒ (4)⇒ (3) are clear from Constructions, Section 8. Lemma
26.6 is (3)⇒ (1). Thus we see that the first 4 conditions are all equivalent.
Assume the equivalent conditions (1) – (4). Note that in particular X is separated (as
an open subscheme of the separated scheme Proj(S)). Let F be a quasi-coherent sheaf
on X . Choose s ∈ S+ homogeneous such that Xs is affine. We claim that any section
m ∈ Γ(Xs,F) is in the image of one of the maps displayed in (5) above. This will imply
(5) since these affines Xs cover X . Namely, by Lemma 17.2 we may write m as the image
of m′ ⊗ s−n for some n ≥ 1, some m′ ∈ Γ(X,F ⊗ L⊗n). This proves the claim.
Clearly (5)⇒ (6). Let us assume (6) and prove L is ample. Pick x ∈ X . Let U ⊂ X be
an affine open which contains x. Set Z = X \ U . We may think of Z as a reduced closed
subscheme, see Schemes, Section 12. Let I ⊂ OX be the quasi-coherent sheaf of ideals
corresponding to the closed subscheme Z. By assumption (6), there exists an n ≥ 1 and
a section s ∈ Γ(X, I ⊗ L⊗n) such that s does not vanish at x (more precisely such that
s 6∈ mxIx ⊗L⊗n

x ). We may think of s as a section of L⊗n. Since it clearly vanishes along
Z we see that Xs ⊂ U . Hence Xs is affine, see Lemma 26.4. This proves that L is ample.
At this point we have proved that (1) – (6) are equivalent.
Assume the equivalent conditions (1) – (6). In the following we will use the fact that
the tensor product of two sheaves of modules which are globally generated is globally
generated without further mention (see Modules, Lemma 4.3). By (1) we can find elements
si ∈ Sdi with di ≥ 1 such thatX =

⋃
i=1,...,nXsi . Set d = d1 . . . dn. It follows thatL⊗d

is globally generated by
s
d/d1
1 , . . . , sd/dnn .

This means that if L⊗j is globally generated then so is L⊗j+dn for all n ≥ 0. Fix a
j ∈ {0, . . . , d − 1}. For any point x ∈ X there exists an n ≥ 1 and a global section s
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of Lj+dn which does not vanish at x, as follows from (5) applied to F = L⊗j and ample
invertible sheaf L⊗d. Since X is quasi-compact there we may find a finite list of integers
ni and global sections si of L⊗j+dni which do not vanish at any point of X . Since L⊗d

is globally generated this means that L⊗j+dn is globally generated where n = max{ni}.
Since we proved this for every congruence class mod d we conclude that there exists an
n0 = n0(L) such that L⊗n is globally generated for all n ≥ n0. At this point we see that
if F is globally generated then so is F ⊗ L⊗n for all n ≥ n0.
We continue to assume the equivalent conditions (1) – (6). LetF be a quasi-coherent sheaf
ofOX -modules of finite type. Denote Fn ⊂ F the image of the canonical map of (5). By
constructionFn⊗L⊗n is globally generated. By (5) we seeF is the sum of the subsheaves
Fn, n ≥ 1. By Modules, Lemma 9.7 we see that F =

∑
n=1,...,N Fn for some N ≥ 1.

It follows that F ⊗ L⊗n is globally generated whenever n ≥ N + n0(L) with n0(L) as
above. We conclude that (1) – (6) implies (7).
Assume (7). Let F be a quasi-coherent sheaf of OX -modules of finite type. By (7) there
exists an integer n ≥ 1 such that the canonical map

Γ(X,F ⊗OX
L⊗n)⊗Z L⊗−n −→ F

is surjective. Let I be the set of finite subsets of Γ(X,F ⊗OX
L⊗n) partially ordered by

inclusion. Then I is a directed partially ordered set. For i = {s1, . . . , sr(i)} let Fi ⊂ F
be the image of the map ⊕

j=1,...,r(i)
L⊗−n −→ F

which is multiplication by sj on the jth factor. The surjectivity above implies that F =
colimi∈I Fi. Hence Modules, Lemma 9.7 applies and we conclude that F = Fi for some
i. Hence we have proved (8). In other words, (7)⇒ (8).
The implication (8)⇒ (9) is trivial.
Finally, assume (9). Let I ⊂ OX be a quasi-coherent sheaf of ideals. By Lemma 22.3 (this
is where we use the condition that X be quasi-separated) we see that I = colimα Iα with
each Iα quasi-coherent of finite type. Since by assumption each of the Iα is a quotient
of negative tensor powers of L we conclude the same for I (but of course without the
finiteness or boundedness of the powers). Hence we conclude that (9) implies (6). This
ends the proof of the proposition. �

Lemma 26.14. Let X be a scheme. Let L be an ample invertible OX -module. Let
i : X ′ → X be a morphism of schemes. Assume at least one of the following conditions
holds

(1) i is a quasi-compact immersion,
(2) X ′ is quasi-compact and i is an immersion,
(3) i is quasi-compact and induces a homeomorphism between X ′ and i(X ′),
(4) X ′ is quasi-compact and i induces a homeomorphism between X ′ and i(X ′).

Then i∗L is ample on X ′.

Proof. Observe that in cases (1) and (3) the schemeX ′ is quasi-compact asX is quasi-
compact by Definition 26.1. Thus it suffices to prove (2) and (4). Since (2) is a special case
of (4) it suffices to prove (4).
Assume condition (4) holds. For s ∈ Γ(X,L⊗d) denote s′ = i∗s the pullback of s to X ′.
Note that s′ is a section of (i∗L)⊗d. By Proposition 26.13 the opensXs, for s ∈ Γ(X,L⊗d),
form a basis for the topology on X . Since X ′

s′ = i−1(Xs) and since X ′ → i(X ′) is a
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homeomorphism, we conclude the opens X ′
s′ form a basis for the topology of X ′. Hence

i∗L is ample by Proposition 26.13. �

Lemma 26.15. Let S be a quasi-separated scheme. Let X , Y be schemes over S. Let L
be an ample invertible OX -module and let N be an ample invertible OY -module. Then
M = pr∗

1L ⊗OX×SY
pr∗

2N is an ample invertible sheaf on X ×S Y .

Proof. The morphism i : X ×S Y → X × Y is a quasi-compact immersion, see
Schemes, Lemma 21.9. On the other hand,M is the pullback by i of the corresponding
invertible module on X × Y . By Lemma 26.14 it suffices to prove the lemma for X × Y .
We check (1) and (2) of Definition 26.1 forM on X × Y .
Since X and Y are quasi-compact, so is X × Y . Let z ∈ X × Y be a point. Let x ∈ X and
y ∈ Y be the projections. Choose n > 0 and s ∈ Γ(X,L⊗n) such thatXs is an affine open
neighbourhood of x. Choose m > 0 and t ∈ Γ(Y,N⊗m) such that Yt is an affine open
neighbourhood of y. Then r = pr∗

1s⊗ pr∗
2t is a section ofM with (X × Y )r = Xs × Yt.

This is an affine open neighbourhood of z and the proof is complete. �

27. Affine and quasi-affine schemes

Lemma 27.1. Let X be a scheme. Then X is quasi-affine if and only ifOX is ample.

Proof. Suppose that X is quasi-affine. Set A = Γ(X,OX). Consider the open im-
mersion

j : X −→ Spec(A)
from Lemma 18.4. Note that Spec(A) = Proj(A[T ]), see Constructions, Example 8.14.
Hence we can apply Lemma 26.12 to deduce thatOX is ample.
Suppose thatOX is ample. Note that Γ∗(X,OX) ∼= A[T ] as graded rings. Hence the result
follows from Lemmas 26.11 and 18.4 taking into account that Spec(A) = Proj(A[T ]) for
any ring A as seen above. �

Lemma 27.2. Let X be a quasi-affine scheme. For any quasi-compact immersion i :
X ′ → X the scheme X ′ is quasi-affine.

Proof. This can be proved directly without making use of the material on ample
invertible sheaves; we urge the reader to do this on a napkin. Since X is quasi-affine, we
have that OX is ample by Lemma 27.1. Then OX′ is ample by Lemma 26.14. Then X ′ is
quasi-affine by Lemma 27.1. �

Lemma 27.3. Let X be a scheme. Suppose that there exist finitely many elements
f1, . . . , fn ∈ Γ(X,OX) such that

(1) each Xfi is an affine open of X , and
(2) the ideal generated by f1, . . . , fn in Γ(X,OX) is equal to the unit ideal.

Then X is affine.

Proof. Assume we have f1, . . . , fn as in the lemma. We may write 1 =
∑
gifi for

some gj ∈ Γ(X,OX) and hence it is clear that X =
⋃
Xfi . (The fi’s cannot all vanish at

a point.) Since eachXfi is quasi-compact (being affine) it follows thatX is quasi-compact.
Hence we see that X is quasi-affine by Lemma 27.1 above. Consider the open immersion

j : X → Spec(Γ(X,OX)),
see Lemma 18.4. The inverse image of the standard open D(fi) on the right hand side
is equal to Xfi on the left hand side and the morphism j induces an isomorphism Xfi

∼=



2390 28. PROPERTIES OF SCHEMES

D(fi), see Lemma 18.3. Since the fi generate the unit ideal we see that Spec(Γ(X,OX)) =⋃
i=1,...,nD(fi). Thus j is an isomorphism. �

28. Quasi-coherent sheaves and ample invertible sheaves

Theme of this section: in the presence of an ample invertible sheaf every quasi-coherent
sheaf comes from a graded module.

Situation 28.1. LetX be a scheme. LetL be an ample invertible sheaf onX . Set S =
Γ∗(X,L) as a graded ring. Set Y = Proj(S). Let f : X → Y be the canonical morphism
of Lemma 26.9. It comes equipped with a Z-graded OX -algebra map

⊕
f∗OY (n) →⊕

L⊗n.

The following lemma is really a special case of the next lemma but it seems like a good
idea to point out its validity first.

Lemma 28.2. In Situation 28.1. The canonical morphism f : X → Y mapsX into the
open subscheme W = W1 ⊂ Y where OY (1) is invertible and where all multiplication
maps OY (n) ⊗OY

OY (m) → OY (n + m) are isomorphisms (see Constructions, Lemma
10.4). Moreover, the maps f∗OY (n)→ L⊗n are all isomorphisms.

Proof. By Proposition 26.13 there exists an integer n0 such that L⊗n is globally
generated for all n ≥ n0. Let x ∈ X be a point. By the above we can find a ∈ Sn0 and b ∈
Sn0+1 such that a and b do not vanish at x. Hence f(x) ∈ D+(a)∩D+(b) = D+(ab). By
Constructions, Lemma 10.4 we see that f(x) ∈ W1 as desired. By Constructions, Lemma
14.1 which was used in the construction of the map f the maps f∗OY (n0) → L⊗n0 and
f∗OY (n0 + 1) → L⊗n0+1 are isomorphisms in a neighbourhood of x. By compatibility
with the algebra structure and the fact that f maps into W we conclude all the maps
f∗OY (n)→ L⊗n are isomorphisms in a neighbourhood of x. Hence we win. �

Recall from Modules, Definition 25.7 that given a locally ringed space X , an invertible
sheaf L, and aOX -module F we have the graded Γ∗(X,L)-module

Γ∗(X,L,F) =
⊕

n∈Z
Γ(X,F ⊗OX

L⊗n).

The following lemma says that, in Situation 28.1, we can recover a quasi-coherent OX -
moduleF from this graded module. Take a look also at Constructions, Lemma 13.8 where
we prove this lemma in the special case X = Pn

R.

Lemma 28.3. In Situation 28.1. Let F be a quasi-coherent sheaf on X . Set M =
Γ∗(X,L,F) as a graded S-module. There are isomorphisms

f∗M̃ −→ F

functorial in F such that M0 → Γ(Proj(S), M̃)→ Γ(X,F) is the identity map.

Proof. Let s ∈ S+ be homogeneous such that Xs is affine open in X . Recall that
M̃ |D+(s) corresponds to the S(s)-module M(s), see Constructions, Lemma 8.4. Recall
that f−1(D+(s)) = Xs. As X carries an ample invertible sheaf it is quasi-compact
and quasi-separated, see Section 26. By Lemma 17.2 there is a canonical isomorphism
M(s) = Γ∗(X,L,F)(s) → Γ(Xs,F). Since F is quasi-coherent this leads to a canon-
ical isomorphism

f∗M̃ |Xs → F|Xs
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Since L is ample on X we know that X is covered by the affine opens of the form Xs.
Hence it suffices to prove that the displayed maps glue on overlaps. Proof of this is omitted.

�

Remark 28.4. With assumptions and notation of Lemma 28.3. Denote the displayed
map of the lemma by θF . Note that the isomorphism f∗OY (n)→ L⊗n of Lemma 28.2 is
just θL⊗n . Consider the multiplication maps

M̃ ⊗OY
OY (n) −→ M̃(n)

see Constructions, Equation (10.1.5). Pull this back to X and consider

f∗M̃ ⊗OX
f∗OY (n) //

θF ⊗θL⊗n

��

f∗M̃(n)

θF⊗L⊗n

��
F ⊗ L⊗n id // F ⊗ L⊗n

Here we have used the obvious identificationM(n) = Γ∗(X,L,F ⊗L⊗n). This diagram
commutes. Proof omitted.

It should be possible to deduce the following lemma from Lemma 28.3 (or conversely) but
it seems simpler to just repeat the proof.

Lemma 28.5. Let S be a graded ring such that X = Proj(S) is quasi-compact. Let F
be a quasi-coherent OX -module. Set M =

⊕
n∈Z Γ(X,F(n)) as a graded S-module, see

Constructions, Section 10. The map

M̃ −→ F

of Constructions, Lemma 10.7 is an isomorphism. IfX is covered by standard opensD+(f)
where f has degree 1, then the induced maps Mn → Γ(X,F(n)) are the identity maps.

Proof. SinceX is quasi-compact we can find homogeneous elements f1, . . . , fn ∈ S
of positive degrees such that X = D+(f1) ∪ . . . ∪ D+(fn). Let d be the least common
multiple of the degrees of f1, . . . , fn. After replacing fi by a power we may assume that
each fi has degree d. Then we see that L = OX(d) is invertible, the multiplication maps
OX(ad) ⊗ OX(bd) → OX((a + b)d) are isomorphisms, and each fi determines a global
section si of L such that Xsi = D+(fi), see Constructions, Lemmas 10.4 and 10.5. Thus
Γ(X,F(ad)) = Γ(X,F ⊗ L⊗a). Recall that M̃ |D+(fi) corresponds to the S(fi)-module
M(fi), see Constructions, Lemma 8.4. Since the degree of fi is d, the isomorphism class
of M(fi) depends only on the homogeneous summands of M of degree divisible by d.
More precisely, the isomorphism class of M(fi) depends only on the graded Γ∗(X,L)-
module Γ∗(X,L,F) and the image si of fi in Γ∗(X,L). The scheme X is quasi-compact
by assumption and separated by Constructions, Lemma 8.8. By Lemma 17.2 there is a
canonical isomorphism

M(fi) = Γ∗(X,L,F)(si) → Γ(Xsi ,F).

The construction of the map in Constructions, Lemma 10.7 then shows that it is an iso-
morphism over D+(fi) hence an isomorphism as X is covered by these opens. We omit
the proof of the final statement. �
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29. Finding suitable affine opens

In this section we collect some results on the existence of affine opens in more and less
general situations.

Lemma 29.1. Let X be a quasi-separated scheme. Let Z1, . . . , Zn be pairwise distinct
irreducible components ofX , see Topology, Section 8. Let ηi ∈ Zi be their generic points,
see Schemes, Lemma 11.1. There exist affine open neighbourhoods ηi ∈ Ui such that Ui ∩
Uj = ∅ for all i 6= j. In particular, U = U1 ∪ . . . ∪ Un is an affine open containing all of
the points η1, . . . , ηn.

Proof. Let Vi be any affine open containing ηi and disjoint from the closed set Z1 ∪
. . . Ẑi . . . ∪ Zn. Since X is quasi-separated for each i the union Wi =

⋃
j,j 6=i Vi ∩ Vj is a

quasi-compact open of Vi not containing ηi. We can find open neighbourhoods Ui ⊂ Vi
containing ηi and disjoint fromWi by Algebra, Lemma 26.4. Finally, U is affine since it is
the spectrum of the ringR1× . . .×Rn whereRi = OX(Ui), see Schemes, Lemma 6.8. �

Remark 29.2. Lemma 29.1 above is false if X is not quasi-separated. Here is an
example. Take R = Q[x, y1, y2, . . .]/((x − i)yi). Consider the minimal prime ideal
p = (y1, y2, . . .) of R. Glue two copies of Spec(R) along the (not quasi-compact) open
Spec(R) \ V (p) to get a scheme X (glueing as in Schemes, Example 14.3). Then the two
maximal points of X corresponding to p are not contained in a common affine open. The
reason is that any open of Spec(R) containing p contains infinitely many of the “lines”
x = i, yj = 0, j 6= i with parameter yi. Details omitted.

Notwithstanding the example above, for “most” finite sets of irreducible closed subsets
one can apply Lemma 29.1 above, at least if X is quasi-compact. This is true because X
contains a dense open which is separated.

Lemma 29.3. Let X be a quasi-compact scheme. There exists a dense open V ⊂ X
which is separated.

Proof. Say X =
⋃
i=1,...,n Ui is a union of n affine open subschemes. We will prove

the lemma by induction on n. It is trivial for n = 1. Let V ′ ⊂
⋃
i=1,...,n−1 Ui be a

separated dense open subscheme, which exists by induction hypothesis. Consider

V = V ′ q (Un \ V ′).

It is clear that V is separated and a dense open subscheme of X . �

It turns out that, even if X is quasi-separated as well as quasi-compact, there does not
exist a separated, quasi-compact dense open, see Examples, Lemma 26.2. Here is a slight
refinement of Lemma 29.1 above.

Lemma 29.4. LetX be a quasi-separated scheme. Let Z1, . . . , Zn be pairwise distinct
irreducible components ofX . Let ηi ∈ Zi be their generic points. Let x ∈ X be arbitrary.
There exists an affine open U ⊂ X containing x and all the ηi.

Proof. Suppose that x ∈ Z1∩ . . .∩Zr and x 6∈ Zr+1, . . . , Zn. Then we may choose
an affine open W ⊂ X such that x ∈ W and W ∩ Zi = ∅ for i = r + 1, . . . , n. Note
that clearly ηi ∈W for i = 1, . . . , r. By Lemma 29.1 we may choose affine opens Ui ⊂ X
which are pairwise disjoint such that ηi ∈ Ui for i = r + 1, . . . , n. Since X is quasi-
separated the opensW ∩Ui are quasi-compact and do not contain ηi for i = r+ 1, . . . , n.
Hence by Algebra, Lemma 26.4 we may shrinkUi such thatW∩Ui = ∅ for i = r+1, . . . , n.
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Then the union U = W ∪
⋃
i=r+1,...,n Ui is disjoint and hence (by Schemes, Lemma 6.8)

a suitable affine open. �

Lemma 29.5. Let X be a scheme. Assume either
(1) The scheme X is quasi-affine.
(2) The scheme X is isomorphic to a locally closed subscheme of an affine scheme.
(3) There exists an ample invertible sheaf on X .
(4) The scheme X is isomorphic to a locally closed subscheme of Proj(S) for some

graded ring S.
Then for any finite subset E ⊂ X there exists an affine open U ⊂ X with E ⊂ U .

Proof. By Properties, Definition 18.1 a quasi-affine scheme is a quasi-compact open
subscheme of an affine scheme. Any affine scheme Spec(R) is isomorphic to Proj(R[X])
where R[X] is graded by setting deg(X) = 1. By Proposition 26.13 if X has an ample
invertible sheaf then X is isomorphic to an open subscheme of Proj(S) for some graded
ring S. Hence, it suffices to prove the lemma in case (4). (We urge the reader to prove case
(2) directly for themselves.)

Thus assume X ⊂ Proj(S) is a locally closed subscheme where S is some graded ring.
Let T = X \ X . Recall that the standard opens D+(f) form a basis of the topology on
Proj(S). Since E is finite we may choose finitely many homogeneous elements fi ∈ S+
such that

E ⊂ D+(f1) ∪ . . . ∪D+(fn) ⊂ Proj(S) \ T
Suppose thatE = {p1, . . . , pm} as a subset of Proj(S). Consider the ideal I = (f1, . . . , fn) ⊂
S. Since I 6⊂ pj for all j = 1, . . . ,m we see from Algebra, Lemma 57.6 that there exists
a homogeneous element f ∈ I , f 6∈ pj for all j = 1, . . . ,m. Then E ⊂ D+(f) ⊂
D+(f1)∪ . . .∪D+(fn). SinceD+(f) does not meet T we see thatX ∩D+(f) is a closed
subscheme of the affine scheme D+(f), hence is an affine open of X as desired. �

Lemma 29.6. Let X be a scheme. Let L be an ample invertible sheaf on X . Let

E ⊂W ⊂ X

with E finite and W open in X . Then there exists an n > 0 and a section s ∈ Γ(X,L⊗n)
such that Xs is affine and E ⊂ Xs ⊂W .

Proof. The reader can modify the proof of Lemma 29.5 to prove this lemma; we will
instead deduce the lemma from it. By Lemma 29.5 we can choose an affine open U ⊂ W
such that E ⊂ U . Consider the graded ring S = Γ∗(X,L) =

⊕
n≥0 Γ(X,L⊗n). For

each x ∈ E let px ⊂ S be the graded ideal of sections vanishing at x. It is clear that px
is a prime ideal and since some power of L is globally generated, it is clear that S+ 6⊂ px.
Let I ⊂ S be the graded ideal of sections vanishing on all points of X \ U . Since the sets
Xs form a basis for the topology we see that I 6⊂ px for all x ∈ E. By (graded) prime
avoidance (Algebra, Lemma 57.6) we can find s ∈ I homogeneous with s 6∈ px for all
x ∈ E. Then E ⊂ Xs ⊂ U and Xs is affine by Lemma 26.4. �

Lemma 29.7. LetX be a quasi-affine scheme. Let L be an invertibleOX -module. Let
E ⊂ W ⊂ X with E finite and W open. Then there exists an s ∈ Γ(X,L) such that Xs

is affine and E ⊂ Xs ⊂W .

Proof. The proof of this lemma has a lot in common with the proof of Algebra,
Lemma 15.2. Say E = {x1, . . . , xn}. If E = W = ∅, then s = 0 works. If W 6= ∅, then
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we may assume E 6= ∅ by adding a point if necessary. Thus we may assume n ≥ 1. We
will prove the lemma by induction on n.
Base case: n = 1. After replacing W by an affine open neighbourhood of x1 in W , we
may assumeW is affine. Combining Lemmas 27.1 and Proposition 26.13 we see that every
quasi-coherent OX -module is globally generated. Hence there exists a global section s of
L which does not vanish at x1. On the other hand, let Z ⊂ X be the reduced induced
closed subscheme onX \W . Applying global generation to the quasi-coherent ideal sheaf
I of Z we find a global section f of I which does not vanish at x1. Then s′ = fs is a
global section of Lwhich does not vanish at x1 such thatXs′ ⊂W . ThenXs′ is affine by
Lemma 26.4.
Induction step for n > 1. If there is a specialization xi  xj for i 6= j , then it suffices
to prove the lemma for {x1, . . . , xn} \ {xi} and we are done by induction. Thus we may
assume there are no specializations among the xi. By either Lemma 29.5 or Lemma 29.6
we may assume W is affine. By induction we can find a global section s of L such that
Xs ⊂ W is affine and contains x1, . . . , xn−1. If xn ∈ Xs then we are done. Assume s is
zero at xn. By the case n = 1 we can find a global section s′ of L with {xn} ⊂ Xs′ ⊂
W \ {x1, . . . , xn−1}. Here we use that xn is not a specialization of x1, . . . , xn−1. Then
s+ s′ is a global section of L which is nonvanishing at x1, . . . , xn with Xs+s′ ⊂ W and
we conclude as before. �

Lemma 29.8. Let X be a scheme and x ∈ X a point. There exists an affine open
neighbourhood U ⊂ X of x such that the canonical map OX(U) → OX,x is injective in
each of the following cases:

(1) X is integral,
(2) X is locally Noetherian,
(3) X is reduced and has a finite number of irreducible components.

Proof. After translation into algebra, this follows from Algebra, Lemma 31.9. �
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CHAPTER 29

Morphisms of Schemes

1. Introduction

In this chapter we introduce some types of morphisms of schemes. A basic reference is [?].

2. Closed immersions

In this section we elucidate some of the results obtained previously on closed immersions of
schemes. Recall that a morphism of schemes i : Z → X is defined to be a closed immersion
if (a) i induces a homeomorphism onto a closed subset of X , (b) i] : OX → i∗OZ is
surjective, and (c) the kernel of i] is locally generated by sections, see Schemes, Definitions
10.2 and 4.1. It turns out that, given that Z and X are schemes, there are many different
ways of characterizing a closed immersion.

Lemma 2.1. Let i : Z → X be a morphism of schemes. The following are equivalent:
(1) The morphism i is a closed immersion.
(2) For every affine open Spec(R) = U ⊂ X , there exists an ideal I ⊂ R such that

i−1(U) = Spec(R/I) as schemes over U = Spec(R).
(3) There exists an affine open covering X =

⋃
j∈J Uj , Uj = Spec(Rj) and for

every j ∈ J there exists an ideal Ij ⊂ Rj such that i−1(Uj) = Spec(Rj/Ij) as
schemes over Uj = Spec(Rj).

(4) The morphism i induces a homeomorphism of Z with a closed subset of X and
i] : OX → i∗OZ is surjective.

(5) The morphism i induces a homeomorphism of Z with a closed subset of X , the
map i] : OX → i∗OZ is surjective, and the kernel Ker(i]) ⊂ OX is a quasi-
coherent sheaf of ideals.

(6) The morphism i induces a homeomorphism of Z with a closed subset of X , the
map i] : OX → i∗OZ is surjective, and the kernel Ker(i]) ⊂ OX is a sheaf of
ideals which is locally generated by sections.

Proof. Condition (6) is our definition of a closed immersion, see Schemes, Defini-
tions 4.1 and 10.2. So (6)⇔ (1). We have (1)⇒ (2) by Schemes, Lemma 10.1. Trivially (2)
⇒ (3).
Assume (3). Each of the morphisms Spec(Rj/Ij)→ Spec(Rj) is a closed immersion, see
Schemes, Example 8.1. Hence i−1(Uj)→ Uj is a homeomorphism onto its image and i]|Uj
is surjective. Hence i is a homeomorphism onto its image and i] is surjective since this may
be checked locally. We conclude that (3)⇒ (4).
The implication (4)⇒ (1) is Schemes, Lemma 24.2. The implication (5)⇒ (6) is trivial.
And the implication (6)⇒ (5) follows from Schemes, Lemma 10.1. �

Lemma 2.2. LetX be a scheme. Let i : Z → X and i′ : Z ′ → X be closed immersions
and consider the ideal sheaves I = Ker(i]) and I ′ = Ker((i′)]) ofOX .

2397



2398 29. MORPHISMS OF SCHEMES

(1) The morphism i : Z → X factors as Z → Z ′ → X for some a : Z → Z ′ if and
only if I ′ ⊂ I . If this happens, then a is a closed immersion.

(2) We have Z ∼= Z ′ over X if and only if I = I ′.

Proof. This follows from our discussion of closed subspaces in Schemes, Section 4
especially Schemes, Lemmas 4.5 and 4.6. It also follows in a straightforward way from
characterization (3) in Lemma 2.1 above. �

Lemma 2.3. Let X be a scheme. Let I ⊂ OX be a sheaf of ideals. The following are
equivalent:

(1) I is locally generated by sections as a sheaf ofOX -modules,
(2) I is quasi-coherent as a sheaf ofOX -modules, and
(3) there exists a closed immersion i : Z → X of schemes whose corresponding

sheaf of ideals Ker(i]) is equal to I .

Proof. The equivalence of (1) and (2) is immediate from Schemes, Lemma 10.1. If (1)
holds, then there is a closed subspace i : Z → X with I = Ker(i]) by Schemes, Definition
4.4 and Example 4.3. By Schemes, Lemma 10.1 this is a closed immersion of schemes and
(3) holds. Conversely, if (3) holds, then (2) holds by Schemes, Lemma 10.1 (which applies
because a closed immersion of schemes is a fortiori a closed immersion of locally ringed
spaces). �

Lemma 2.4. The base change of a closed immersion is a closed immersion.

Proof. See Schemes, Lemma 18.2. �

Lemma 2.5. A composition of closed immersions is a closed immersion.

Proof. We have seen this in Schemes, Lemma 24.3, but here is another proof. Namely,
it follows from the characterization (3) of closed immersions in Lemma 2.1. Since if I ⊂ R
is an ideal, and J ⊂ R/I is an ideal, then J = J/I for some ideal J ⊂ R which contains
I and (R/I)/J = R/J . �

Lemma 2.6. A closed immersion is quasi-compact.

Proof. This lemma is a duplicate of Schemes, Lemma 19.5. �

Lemma 2.7. A closed immersion is separated.

Proof. This lemma is a special case of Schemes, Lemma 23.8. �

3. Immersions

In this section we collect some facts on immersions.

Lemma 3.1. Let Z → Y → X be morphisms of schemes.
(1) If Z → X is an immersion, then Z → Y is an immersion.
(2) If Z → X is a quasi-compact immersion and Y → X is quasi-separated, then

Z → Y is a quasi-compact immersion.
(3) If Z → X is a closed immersion and Y → X is separated, then Z → Y is a

closed immersion.
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Proof. In each case the proof is to contemplate the commutative diagram

Z //

##

Y ×X Z //

��

Z

��
Y // X

where the composition of the top horizontal arrows is the identity. Let us prove (1). The
first horizontal arrow is a section of Y ×X Z → Z , whence an immersion by Schemes,
Lemma 21.11. The arrow Y ×X Z → Y is a base change of Z → X hence an immersion
(Schemes, Lemma 18.2). Finally, a composition of immersions is an immersion (Schemes,
Lemma 24.3). This proves (1). The other two results are proved in exactly the same man-
ner. �

Lemma 3.2. Let h : Z → X be an immersion. If h is quasi-compact, then we can
factor h = i ◦ j with j : Z → Z an open immersion and i : Z → X a closed immersion.

Proof. Note that h is quasi-compact and quasi-separated (see Schemes, Lemma 23.8).
Hence h∗OZ is a quasi-coherent sheaf of OX -modules by Schemes, Lemma 24.1. This
implies that I = Ker(OX → h∗OZ) is a quasi-coherent sheaf of ideals, see Schemes,
Section 24. Let Z ⊂ X be the closed subscheme corresponding to I , see Lemma 2.3. By
Schemes, Lemma 4.6 the morphism h factors as h = i◦j where i : Z → X is the inclusion
morphism. To see that j is an open immersion, choose an open subscheme U ⊂ X such
that h induces a closed immersion of Z into U . Then it is clear that I|U is the sheaf of
ideals corresponding to the closed immersion Z → U . Hence we see that Z = Z ∩U . �

Lemma 3.3. Let h : Z → X be an immersion. If Z is reduced, then we can factor
h = i ◦ j with j : Z → Z an open immersion and i : Z → X a closed immersion.

Proof. LetZ ⊂ X be the closure ofh(Z) with the reduced induced closed subscheme
structure, see Schemes, Definition 12.5. By Schemes, Lemma 12.7 the morphism h factors
as h = i ◦ j with i : Z → X the inclusion morphism and j : Z → Z. From the definition
of an immersion we see there exists an open subschemeU ⊂ X such that h factors through
a closed immersion into U . Hence Z ∩ U and h(Z) are reduced closed subschemes of U
with the same underlying closed set. Hence by the uniqueness in Schemes, Lemma 12.4 we
see that h(Z) ∼= Z ∩ U . So j induces an isomorphism of Z with Z ∩ U . In other words j
is an open immersion. �

Example 3.4. Here is an example of an immersion which is not a composition of an
open immersion followed by a closed immersion. Let k be a field. LetX = Spec(k[x1, x2, x3, . . .]).
Let U =

⋃∞
n=1 D(xn). Then U → X is an open immersion. Consider the ideals

In = (xn1 , xn2 , . . . , xnn−1, xn − 1, xn+1, xn+2, . . .) ⊂ k[x1, x2, x3, . . .][1/xn].
Note that Ink[x1, x2, x3, . . .][1/xnxm] = (1) for any m 6= n. Hence the quasi-coherent
ideals Ĩn on D(xn) agree on D(xnxm), namely Ĩn|D(xnxm) = OD(xnxm) if n 6= m.
Hence these ideals glue to a quasi-coherent sheaf of ideals I ⊂ OU . Let Z ⊂ U be the
closed subscheme corresponding to I . Thus Z → X is an immersion.

We claim that we cannot factor Z → X as Z → Z → X , where Z → X is closed and
Z → Z is open. Namely, Z would have to be defined by an ideal I ⊂ k[x1, x2, x3, . . .]
such that In = Ik[x1, x2, x3, . . .][1/xn]. But the only element f ∈ k[x1, x2, x3, . . .]
which ends up in all In is 0! Hence I does not exist.
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Lemma 3.5. Let f : Y → X be a morphism of schemes. If for all y ∈ Y there is an
open subscheme f(y) ∈ U ⊂ X such that f |f−1(U) : f−1(U)→ U is an immersion, then
f is an immersion.

Proof. This statement follows readily from the discussion of closed subschemes at
the end of Schemes, Section 10 but we will also give a detailed proof. Let Z ⊂ X be the
closure of f(Y ). Since taking closures commutes with restricting to opens, we see from the
assumption that f(Y ) ⊂ Z is open. Hence Z ′ = Z \ f(Y ) is closed. Hence X ′ = X \ Z ′

is an open subscheme of X and f factors as f : Y → X ′ followed by the inclusion. If
y ∈ Y and U ⊂ X is as in the statement of the lemma, then U ′ = X ′ ∩ U is an open
neighbourhood of f ′(y) such that (f ′)−1(U ′) → U ′ is an immersion (Lemma 3.1) with
closed image. Hence it is a closed immersion, see Schemes, Lemma 10.4. Since being a
closed immersion is local on the target (for example by Lemma 2.1) we conclude that f ′ is
a closed immersion as desired. �

4. Closed immersions and quasi-coherent sheaves

The following lemma finally does for quasi-coherent sheaves on schemes what Modules,
Lemma 6.1 does for abelian sheaves. See also the discussion in Modules, Section 13.

Lemma 4.1. Let i : Z → X be a closed immersion of schemes. Let I ⊂ OX be the
quasi-coherent sheaf of ideals cutting out Z. The functor

i∗ : QCoh(OZ) −→ QCoh(OX)

is exact, fully faithful, with essential image those quasi-coherentOX -modules G such that
IG = 0.

Proof. A closed immersion is quasi-compact and separated, see Lemmas 2.6 and 2.7.
Hence Schemes, Lemma 24.1 applies and the pushforward of a quasi-coherent sheaf on Z
is indeed a quasi-coherent sheaf on X .

By Modules, Lemma 13.4 the functor i∗ is fully faithful.

Now we turn to the description of the essential image of the functor i∗. We have I(i∗F) =
0 for any quasi-coherentOZ -module, for example by Modules, Lemma 13.4. Next, suppose
that G is any quasi-coherent OX -module such that IG = 0. It suffices to show that the
canonical map

G −→ i∗i
∗G

is an isomorphism1. In the case of schemes and quasi-coherent modules, working affine lo-
cally onX and using Lemma 2.1 and Schemes, Lemma 7.3 it suffices to prove the following
algebraic statement: Given a ringR, an ideal I and anR-moduleN such that IN = 0 the
canonical map

N −→ N ⊗R R/I, n 7−→ n⊗ 1
is an isomorphism of R-modules. Proof of this easy algebra fact is omitted. �

Let i : Z → X be a closed immersion. Because of the lemma above we often, by abuse of
notation, denote F the sheaf i∗F on X .

1This was proved in a more general situation in the proof of Modules, Lemma 13.4.
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Lemma 4.2. Let X be a scheme. Let F be a quasi-coherent OX -module. Let G ⊂ F
be a OX -submodule. There exists a unique quasi-coherent OX -submodule G′ ⊂ G with
the following property: For every quasi-coherentOX -moduleH the map

HomOX
(H,G′) −→ HomOX

(H,G)
is bijective. In particular G′ is the largest quasi-coherent OX -submodule of F contained
in G.

Proof. Let Ga, a ∈ A be the set of quasi-coherent OX -submodules contained in G.
Then the image G′ of ⊕

a∈A
Ga −→ F

is quasi-coherent as the image of a map of quasi-coherent sheaves on X is quasi-coherent
and since a direct sum of quasi-coherent sheaves is quasi-coherent, see Schemes, Section
24. The module G′ is contained in G. Hence this is the largest quasi-coherentOX -module
contained in G.

To prove the formula, let H be a quasi-coherent OX -module and let α : H → G be an
OX -module map. The image of the composition H → G → F is quasi-coherent as the
image of a map of quasi-coherent sheaves. Hence it is contained in G′. Hence α factors
through G′ as desired. �

Lemma 4.3. Let i : Z → X be a closed immersion of schemes. There is a functor2

i! : QCoh(OX)→ QCoh(OZ) which is a right adjoint to i∗. (Compare Modules, Lemma
6.3.)

Proof. Given quasi-coherentOX -module G we consider the subsheafHZ(G) of G of
local sections annihilated by I . By Lemma 4.2 there is a canonical largest quasi-coherent
OX -submoduleHZ(G)′. By construction we have

HomOX
(i∗F ,HZ(G)′) = HomOX

(i∗F ,G)
for any quasi-coherentOZ -module F . Hence we can set i!G = i∗(HZ(G)′). Details omit-
ted. �

Using the 1-to-1 corresponding between quasi-coherent sheaves of ideals and closed sub-
schemes (see Lemma 2.3) we can define scheme theoretic intersections and unions of closed
subschemes.

Definition 4.4. LetX be a scheme. LetZ, Y ⊂ X be closed subschemes correspond-
ing to quasi-coherent ideal sheaves I,J ⊂ OX . The scheme theoretic intersection of Z
and Y is the closed subscheme of X cut out by I + J . The scheme theoretic union of Z
and Y is the closed subscheme of X cut out by I ∩ J .

Lemma 4.5. Let X be a scheme. Let Z, Y ⊂ X be closed subschemes. Let Z ∩ Y be
the scheme theoretic intersection of Z and Y . Then Z ∩ Y → Z and Z ∩ Y → Y are
closed immersions and

Z ∩ Y //

��

Z

��
Y // X

is a cartesian diagram of schemes, i.e., Z ∩ Y = Z ×X Y .

2This is likely nonstandard notation.
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Proof. The morphisms Z ∩ Y → Z and Z ∩ Y → Y are closed immersions by
Lemma 2.2. Let U = Spec(A) be an affine open ofX and let Z ∩U and Y ∩U correspond
to the ideals I ⊂ A and J ⊂ A. Then Z ∩ Y ∩ U corresponds to I + J ⊂ A. Since
A/I⊗AA/J = A/(I+J) we see that the diagram is cartesian by our description of fibre
products of schemes in Schemes, Section 17. �

Lemma 4.6. Let S be a scheme. Let X,Y ⊂ S be closed subschemes. Let X ∪ Y be
the scheme theoretic union of X and Y . Let X ∩ Y be the scheme theoretic intersection
of X and Y . Then X → X ∪ Y and Y → X ∪ Y are closed immersions, there is a short
exact sequence

0→ OX∪Y → OX ×OY → OX∩Y → 0
ofOS-modules, and the diagram

X ∩ Y //

��

X

��
Y // X ∪ Y

is cocartesian in the category of schemes, i.e., X ∪ Y = X qX∩Y Y .

Proof. The morphisms X → X ∪ Y and Y → X ∪ Y are closed immersions by
Lemma 2.2. In the short exact sequence we use the equivalence of Lemma 4.1 to think of
quasi-coherent modules on closed subschemes of S as quasi-coherent modules on S. For
the first map in the sequence we use the canonical mapsOX∪Y → OX andOX∪Y → OY
and for the second map we use the canonical map OX → OX∩Y and the negative of the
canonical map OY → OX∩Y . Then to check exactness we may work affine locally. Let
U = Spec(A) be an affine open of S and let X ∩ U and Y ∩ U correspond to the ideals
I ⊂ A and J ⊂ A. Then (X ∪ Y ) ∩ U corresponds to I ∩ J ⊂ A and X ∩ Y ∩ U
corresponds to I + J ⊂ A. Thus exactness follows from the exactness of

0→ A/I ∩ J → A/I ×A/J → A/(I + J)→ 0

To show the diagram is cocartesian, suppose we are given a scheme T and morphisms of
schemes f : X → T , g : Y → T agreeing as morphisms X ∩ Y → T . Goal: Show there
exists a unique morphism h : X ∪ Y → T agreeing with f and g. To construct h we may
work affine locally onX ∪Y , see Schemes, Section 14. If s ∈ X , s 6∈ Y , thenX → X ∪Y
is an isomorphism in a neighbourhood of s and it is clear how to construct h. Similarly for
s ∈ Y , s 6∈ X . For s ∈ X ∩ Y we can pick an affine open V = Spec(B) ⊂ T containing
f(s) = g(s). Then we can choose an affine open U = Spec(A) ⊂ S containing s such
that f(X ∩U) and g(Y ∩U) are contained in V . The morphisms f |X∩U and g|Y ∩V into
V correspond to ring maps

B → A/I and B → A/J

which agree as maps into A/(I + J). By the short exact sequence displayed above there
is a unique lift of these ring homomorphism to a ring map B → A/I ∩ J as desired. �

5. Supports of modules

In this section we collect some elementary results on supports of quasi-coherent modules
on schemes. Recall that the support of a sheaf of modules has been defined in Modules,
Section 5. On the other hand, the support of a module was defined in Algebra, Section 62.
These match.
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Lemma 5.1. LetX be a scheme. LetF be a quasi-coherent sheaf onX . Let Spec(A) =
U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let p ⊂ A be the
corresponding prime. The following are equivalent

(1) p is in the support of M , and
(2) x is in the support of F .

Proof. This follows from the equality Fx = Mp, see Schemes, Lemma 5.4 and the
definitions. �

Lemma 5.2. Let X be a scheme. Let F be a quasi-coherent sheaf on X . The support
of F is closed under specialization.

Proof. If x′  x is a specialization and Fx = 0 then Fx′ is zero, as Fx′ is a local-
ization of the module Fx. Hence the complement of Supp(F) is closed under generaliza-
tion. �

For finite type quasi-coherent modules the support is closed, can be checked on fibres, and
commutes with base change.

Lemma 5.3. Let F be a finite type quasi-coherent module on a scheme X . Then
(1) The support of F is closed.
(2) For x ∈ X we have

x ∈ Supp(F)⇔ Fx 6= 0⇔ Fx ⊗OX,x
κ(x) 6= 0.

(3) For any morphism of schemes f : Y → X the pullback f∗F is of finite type as
well and we have Supp(f∗F) = f−1(Supp(F)).

Proof. Part (1) is a reformulation of Modules, Lemma 9.6. You can also combine
Lemma 5.1, Properties, Lemma 16.1, and Algebra, Lemma 40.5 to see this. The first equiva-
lence in (2) is the definition of support, and the second equivalence follows from Nakayama’s
lemma, see Algebra, Lemma 20.1. Let f : Y → X be a morphism of schemes. Note that
f∗F is of finite type by Modules, Lemma 9.2. For the final assertion, let y ∈ Y with image
x ∈ X . Recall that

(f∗F)y = Fx ⊗OX,x
OY,y,

see Sheaves, Lemma 26.4. Hence (f∗F)y ⊗ κ(y) is nonzero if and only if Fx ⊗ κ(x) is
nonzero. By (2) this implies x ∈ Supp(F) if and only if y ∈ Supp(f∗F), which is the
content of assertion (3). �

Lemma 5.4. LetF be a finite type quasi-coherent module on a schemeX . There exists
a smallest closed subscheme i : Z → X such that there exists a quasi-coherentOZ -module
G with i∗G ∼= F . Moreover:

(1) If Spec(A) ⊂ X is any affine open, and F|Spec(A) = M̃ then Z ∩ Spec(A) =
Spec(A/I) where I = AnnA(M).

(2) The quasi-coherent sheaf G is unique up to unique isomorphism.
(3) The quasi-coherent sheaf G is of finite type.
(4) The support of G and of F is Z.

Proof. Suppose that i′ : Z ′ → X is a closed subscheme which satisfies the descrip-
tion on open affines from the lemma. Then by Lemma 4.1 we see that F ∼= i′∗G′ for some
unique quasi-coherent sheaf G′ onZ ′. Furthermore, it is clear thatZ ′ is the smallest closed
subscheme with this property (by the same lemma). Finally, using Properties, Lemma 16.1
and Algebra, Lemma 5.5 it follows that G′ is of finite type. We have Supp(G′) = Z by
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Algebra, Lemma 40.5. Hence, in order to prove the lemma it suffices to show that the
characterization in (1) actually does define a closed subscheme. And, in order to do this it
suffices to prove that the given rule produces a quasi-coherent sheaf of ideals, see Lemma
2.3. This comes down to the following algebra fact: IfA is a ring, f ∈ A, andM is a finite
A-module, then AnnA(M)f = AnnAf (Mf ). We omit the proof. �

Definition 5.5. Let X be a scheme. Let F be a quasi-coherent OX -module of finite
type. The scheme theoretic support of F is the closed subscheme Z ⊂ X constructed in
Lemma 5.4.

In this situation we often think of F as a quasi-coherent sheaf of finite type on Z (via the
equivalence of categories of Lemma 4.1).

6. Scheme theoretic image

Caution: Some of the material in this section is ultra-general and behaves differently from
what you might expect.

Lemma 6.1. Let f : X → Y be a morphism of schemes. There exists a closed sub-
schemeZ ⊂ Y such that f factors throughZ and such that for any other closed subscheme
Z ′ ⊂ Y such that f factors through Z ′ we have Z ⊂ Z ′.

Proof. Let I = Ker(OY → f∗OX). If I is quasi-coherent then we just take Z to be
the closed subscheme determined by I , see Lemma 2.3. This works by Schemes, Lemma 4.6.
In general the same lemma requires us to show that there exists a largest quasi-coherent
sheaf of ideals I ′ contained in I . This follows from Lemma 4.2. �

Definition 6.2. Let f : X → Y be a morphism of schemes. The scheme theoretic
image of f is the smallest closed subscheme Z ⊂ Y through which f factors, see Lemma
6.1 above.

For a morphism f : X → Y of schemes with scheme theoretic image Z we often denote
f : X → Z the factorization of f through its scheme theoretic image. If the morphism f
is not quasi-compact, then (in general)

(1) the set theoretic inclusion f(X) ⊂ Z is not an equality, i.e., f(X) ⊂ Z is not a
dense subset, and

(2) the construction of the scheme theoretic image does not commute with restric-
tion to open subschemes to Y .

In Examples, Section 23 the reader finds an example for both phenomena. These phenom-
ena can arise even for immersions, see Examples, Section 25. However, the next lemma
shows that both disasters are avoided when the morphism is quasi-compact.

Lemma 6.3. Let f : X → Y be a morphism of schemes. Let Z ⊂ Y be the scheme
theoretic image of f . If f is quasi-compact then

(1) the sheaf of ideals I = Ker(OY → f∗OX) is quasi-coherent,
(2) the scheme theoretic image Z is the closed subscheme determined by I ,
(3) for any open U ⊂ Y the scheme theoretic image of f |f−1(U) : f−1(U) → U is

equal to Z ∩ U , and
(4) the image f(X) ⊂ Z is a dense subset ofZ , in other words the morphismX → Z

is dominant (see Definition 8.1).
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Proof. Part (4) follows from part (3). To show (3) it suffices to prove (1) since the
formation of I commutes with restriction to open subschemes of Y . And if (1) holds
then in the proof of Lemma 6.1 we showed (2). Thus it suffices to prove that I is quasi-
coherent. Since the property of being quasi-coherent is local we may assume Y is affine.
As f is quasi-compact, we can find a finite affine open coveringX =

⋃
i=1,...,n Ui. Denote

f ′ the composition
X ′ =

∐
Ui −→ X −→ Y.

Then f∗OX is a subsheaf of f ′
∗OX′ , and hence I = Ker(OY → f ′

∗OX′). By Schemes,
Lemma 24.1 the sheaf f ′

∗OX′ is quasi-coherent on Y . Hence we win. �

Example 6.4. IfA→ B is a ring map with kernel I , then the scheme theoretic image
of Spec(B) → Spec(A) is the closed subscheme Spec(A/I) of Spec(A). This follows
from Lemma 6.3.

If the morphism is quasi-compact, then the scheme theoretic image only adds points which
are specializations of points in the image.

Lemma 6.5. Let f : X → Y be a quasi-compact morphism. Let Z be the scheme
theoretic image of f . Let z ∈ Z3. There exists a valuation ring A with fraction field K
and a commutative diagram

Spec(K) //

��

X

����
Spec(A) // Z // Y

such that the closed point of Spec(A) maps to z. In particular any point of Z is the
specialization of a point of f(X).

Proof. Let z ∈ Spec(R) = V ⊂ Y be an affine open neighbourhood of z. By Lemma
6.3 the intersection Z ∩ V is the scheme theoretic image of f−1(V ) → V . Hence we
may replace Y by V and assume Y = Spec(R) is affine. In this case X is quasi-compact
as f is quasi-compact. Say X = U1 ∪ . . . ∪ Un is a finite affine open covering. Write
Ui = Spec(Ai). Let I = Ker(R → A1 × . . . × An). By Lemma 6.3 again we see that Z
corresponds to the closed subscheme Spec(R/I) ofY . If p ⊂ R is the prime corresponding
to z, then we see that Ip ⊂ Rp is not an equality. Hence (as localization is exact, see
Algebra, Proposition 9.12) we see that Rp → (A1)p × . . .× (An)p is not zero. Hence one
of the rings (Ai)p is not zero. Hence there exists an i and a prime qi ⊂ Ai lying over a
prime pi ⊂ p. By Algebra, Lemma 50.2 we can choose a valuation ring A ⊂ K = κ(qi)
dominating the local ringRp/piRp ⊂ κ(qi). This gives the desired diagram. Some details
omitted. �

Lemma 6.6. Let
X1

��

f1

// Y1

��
X2

f2 // Y2

3By Lemma 6.3 set-theoretically Z agrees with the closure of f(X) in Y .
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be a commutative diagram of schemes. LetZi ⊂ Yi, i = 1, 2 be the scheme theoretic image
of fi. Then the morphism Y1 → Y2 induces a morphism Z1 → Z2 and a commutative
diagram

X1 //

��

Z1

��

// Y1

��
X2 // Z2 // Y2

Proof. The scheme theoretic inverse image of Z2 in Y1 is a closed subscheme of Y1
through which f1 factors. Hence Z1 is contained in this. This proves the lemma. �

Lemma 6.7. Let f : X → Y be a morphism of schemes. If X is reduced, then the
scheme theoretic image of f is the reduced induced scheme structure on f(X).

Proof. This is true because the reduced induced scheme structure on f(X) is clearly
the smallest closed subscheme of Y through which f factors, see Schemes, Lemma 12.7. �

Lemma 6.8. Let f : X → Y be a separated morphism of schemes. Let V ⊂ Y be a
retrocompact open. Let s : V → X be a morphism such that f ◦ s = idV . Let Y ′ be the
scheme theoretic image of s. Then Y ′ → Y is an isomorphism over V .

Proof. The assumption that V is retrocompact in Y (Topology, Definition 12.1)
means that V → Y is a quasi-compact morphism. By Schemes, Lemma 21.14 the mor-
phism s : V → X is quasi-compact. Hence the construction of the scheme theoretic
image Y ′ of s commutes with restriction to opens by Lemma 6.3. In particular, we see
that Y ′ ∩ f−1(V ) is the scheme theoretic image of a section of the separated morphism
f−1(V ) → V . Since a section of a separated morphism is a closed immersion (Schemes,
Lemma 21.11), we conclude that Y ′ ∩ f−1(V )→ V is an isomorphism as desired. �

7. Scheme theoretic closure and density

We take the following definition from [?, IV, Definition 11.10.2].

Definition 7.1. Let X be a scheme. Let U ⊂ X be an open subscheme.
(1) The scheme theoretic image of the morphism U → X is called the scheme the-

oretic closure of U in X .
(2) We sayU is scheme theoretically dense inX if for every openV ⊂ X the scheme

theoretic closure of U ∩ V in V is equal to V .

With this definition it is not the case thatU is scheme theoretically dense inX if and only
if the scheme theoretic closure of U is X , see Example 7.2. This is somewhat inelegant;
but see Lemmas 7.3 and 7.8 below. On the other hand, with this definition U is scheme
theoretically dense in X if and only if for every V ⊂ X open the ring map OX(V ) →
OX(U∩V ) is injective, see Lemma 7.5 below. In particular we see that scheme theoretically
dense implies dense which is pleasing.

Example 7.2. Here is an example where scheme theoretic closure being X does not
imply dense for the underlying topological spaces. Let k be a field. SetA = k[x, z1, z2, . . .]/(xnzn)
Set I = (z1, z2, . . .) ⊂ A. Consider the affine scheme X = Spec(A) and the open sub-
scheme U = X \ V (I). Since A →

∏
nAzn is injective we see that the scheme theoretic

closure of U is X . Consider the morphism X → Spec(k[x]). This morphism is surjective
(set all zn = 0 to see this). But the restriction of this morphism to U is not surjective
because it maps to the point x = 0. Hence U cannot be topologically dense in X .
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Lemma 7.3. Let X be a scheme. Let U ⊂ X be an open subscheme. If the inclusion
morphism U → X is quasi-compact, then U is scheme theoretically dense in X if and
only if the scheme theoretic closure of U in X is X .

Proof. Follows from Lemma 6.3 part (3). �

Example 7.4. Let A be a ring and X = Spec(A). Let f1, . . . , fn ∈ A and let U =
D(f1) ∪ . . . ∪D(fn). Let I = Ker(A →

∏
Afi). Then the scheme theoretic closure of

U in X is the closed subscheme Spec(A/I) of X . Note that U → X is quasi-compact.
Hence by Lemma 7.3 we see U is scheme theoretically dense in X if and only if I = 0.

Lemma 7.5. Let j : U → X be an open immersion of schemes. Then U is scheme
theoretically dense in X if and only ifOX → j∗OU is injective.

Proof. If OX → j∗OU is injective, then the same is true when restricted to any
open V of X . Hence the scheme theoretic closure of U ∩ V in V is equal to V , see proof
of Lemma 6.1. Conversely, suppose that the scheme theoretic closure of U ∩ V is equal to
V for all opens V . Suppose thatOX → j∗OU is not injective. Then we can find an affine
open, say Spec(A) = V ⊂ X and a nonzero element f ∈ A such that f maps to zero in
Γ(V ∩U,OX). In this case the scheme theoretic closure of V ∩U in V is clearly contained
in Spec(A/(f)) a contradiction. �

Lemma 7.6. Let X be a scheme. If U , V are scheme theoretically dense open sub-
schemes of X , then so is U ∩ V .

Proof. Let W ⊂ X be any open. Consider the map OX(W ) → OX(W ∩ V ) →
OX(W ∩V ∩U). By Lemma 7.5 both maps are injective. Hence the composite is injective.
Hence by Lemma 7.5 U ∩ V is scheme theoretically dense in X . �

Lemma 7.7. Let h : Z → X be an immersion. Assume either h is quasi-compact or Z
is reduced. Let Z ⊂ X be the scheme theoretic image of h. Then the morphism Z → Z is
an open immersion which identifies Z with a scheme theoretically dense open subscheme
of Z. Moreover, Z is topologically dense in Z.

Proof. By Lemma 3.2 or Lemma 3.3 we can factor Z → X as Z → Z1 → X with
Z → Z1 open and Z1 → X closed. On the other hand, let Z → Z ⊂ X be the scheme
theoretic closure of Z → X . We conclude that Z ⊂ Z1. Since Z is an open subscheme of
Z1 it follows that Z is an open subscheme of Z as well. In the case that Z is reduced we
know thatZ ⊂ Z1 is topologically dense by the construction ofZ1 in the proof of Lemma
3.3. HenceZ1 andZ have the same underlying topological spaces. ThusZ ⊂ Z1 is a closed
immersion into a reduced scheme which induces a bijection on underlying topological
spaces, and hence it is an isomorphism. In the case that Z → X is quasi-compact we argue
as follows: The assertion that Z is scheme theoretically dense in Z follows from Lemma
6.3 part (3). The last assertion follows from Lemma 6.3 part (4). �

Lemma 7.8. Let X be a reduced scheme and let U ⊂ X be an open subscheme. Then
the following are equivalent

(1) U is topologically dense in X ,
(2) the scheme theoretic closure of U in X is X , and
(3) U is scheme theoretically dense in X .

Proof. This follows from Lemma 7.7 and the fact that a closed subscheme Z of X
whose underlying topological space equals X must be equal to X as a scheme. �
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Lemma 7.9. Let X be a scheme and let U ⊂ X be a reduced open subscheme. Then
the following are equivalent

(1) the scheme theoretic closure of U in X is X , and
(2) U is scheme theoretically dense in X .

If this holds then X is a reduced scheme.

Proof. This follows from Lemma 7.7 and the fact that the scheme theoretic closure
of U in X is reduced by Lemma 6.7. �

Lemma 7.10. Let S be a scheme. Let X , Y be schemes over S. Let f, g : X → Y be
morphisms of schemes over S. Let U ⊂ X be an open subscheme such that f |U = g|U . If
the scheme theoretic closure of U in X is X and Y → S is separated, then f = g.

Proof. Follows from the definitions and Schemes, Lemma 21.5. �

8. Dominant morphisms

The definition of a morphism of schemes being dominant is a little different from what
you might expect if you are used to the notion of a dominant morphism of varieties.

Definition 8.1. A morphism f : X → S of schemes is called dominant if the image
of f is a dense subset of S.

So for example, if k is an infinite field and λ1, λ2, . . . is a countable collection of distinct
elements of k, then the morphism∐

i=1,2,...
Spec(k) −→ Spec(k[x])

with ith factor mapping to the point x = λi is dominant.

Lemma 8.2. Let f : X → S be a morphism of schemes. If every generic point of
every irreducible component of S is in the image of f , then f is dominant.

Proof. This is a topological fact which follows directly from the fact that the topo-
logical space underlying a scheme is sober, see Schemes, Lemma 11.1, and that every point
of S is contained in an irreducible component of S , see Topology, Lemma 8.3. �

The expectation that morphisms are dominant only if generic points of the target are in
the image does hold if the morphism is quasi-compact.

Lemma 8.3. Let f : X → S be a quasi-compact morphism of schemes. Then f is
dominant if and only if for every irreducible component Z ⊂ S the generic point of Z is
in the image of f .

Proof. Let V ⊂ S be an affine open. Because f is quasi-compact we may choose
finitely many affine opens Ui ⊂ f−1(V ), i = 1, . . . , n covering f−1(V ). Consider the
morphism of affines

f ′ :
∐

i=1,...,n
Ui −→ V.

A disjoint union of affines is affine, see Schemes, Lemma 6.8. Generic points of irreducible
components of V are exactly the generic points of the irreducible components of S that
meet V . Also, f is dominant if and only if f ′ is dominant no matter what choices of
V, n, Ui we make above. Thus we have reduced the lemma to the case of a morphism of
affine schemes. The affine case is Algebra, Lemma 30.6. �
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Lemma 8.4. Let f : X → S be a quasi-compact dominant morphism of schemes. Let
g : S′ → S be a morphism of schemes and denote f ′ : X ′ → S′ the base change of f by
g. If generalizations lift along g, then f ′ is dominant.

Proof. Observe that f ′ is quasi-compact by Schemes, Lemma 19.3. Let η′ ∈ S′ be
the generic point of an irreducible component of S′. If generalizations lift along g, then
η = g(η′) is the generic point of an irreducible component of S. By Lemma 8.3 we see that
η is in the image of f . Hence η′ is in the image of f ′ by Schemes, Lemma 17.5. It follows
that f ′ is dominant by Lemma 8.3. �

Lemma 8.5. Let f : X → S be a quasi-compact morphism of schemes. Let η ∈ S be
a generic point of an irreducible component of S. If η 6∈ f(X) then there exists an open
neighbourhood V ⊂ S of η such that f−1(V ) = ∅.

Proof. Let Z ⊂ S be the scheme theoretic image of f . We have to show that η 6∈ Z.
This follows from Lemma 6.5 but can also be seen as follows. By Lemma 6.3 the morphism
X → Z is dominant, which by Lemma 8.3 means all the generic points of all irreducible
components of Z are in the image of X → Z. By assumption we see that η 6∈ Z since η
would be the generic point of some irreducible component of Z if it were in Z. �

There is another case where dominant is the same as having all generic points of irreducible
components in the image.

Lemma 8.6. Let f : X → S be a morphism of schemes. Suppose that X has finitely
many irreducible components. Then f is dominant (if and) only if for every irreducible
component Z ⊂ S the generic point of Z is in the image of f . If so, then S has finitely
many irreducible components as well.

Proof. Assume f is dominant. SayX = Z1 ∪Z2 ∪ . . .∪Zn is the decomposition of
X into irreducible components. Let ξi ∈ Zi be its generic point, so Zi = {ξi}. Note that
f(Zi) is an irreducible subset of S. Hence

S = f(X) =
⋃
f(Zi) =

⋃
{f(ξi)}

is a finite union of irreducible subsets whose generic points are in the image of f . The
lemma follows. �

Lemma 8.7. Let f : X → Y be a morphism of integral schemes. The following are
equivalent

(1) f is dominant,
(2) f maps the generic point of X to the generic point of Y ,
(3) for some nonempty affine opens U ⊂ X and V ⊂ Y with f(U) ⊂ V the ring

mapOY (V )→ OX(U) is injective,
(4) for all nonempty affine opens U ⊂ X and V ⊂ Y with f(U) ⊂ V the ring map
OY (V )→ OX(U) is injective,

(5) for some x ∈ X with image y = f(x) ∈ Y the local ring map OY,y → OX,x is
injective, and

(6) for all x ∈ X with image y = f(x) ∈ Y the local ring map OY,y → OX,x is
injective.

Proof. The equivalence of (1) and (2) follows from Lemma 8.6. Let U ⊂ X and
V ⊂ Y be nonempty affine opens with f(U) ⊂ V . Recall that the rings A = OX(U)
and B = OY (V ) are integral domains. The morphism f |U : U → V corresponds to a
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ring map ϕ : B → A. The generic points of X and Y correspond to the prime ideals
(0) ⊂ A and (0) ⊂ B. Thus (2) is equivalent to the condition (0) = ϕ−1((0)), i.e., to
the condition that ϕ is injective. In this way we see that (2), (3), and (4) are equivalent.
Similarly, given x and y as in (5) the local ringsOX,x andOY,y are domains and the prime
ideals (0) ⊂ OX,x and (0) ⊂ OY,y correspond to the generic points of X and Y (via the
identification of the spectrum of the local ring at x with the set of points specializing to
x, see Schemes, Lemma 13.2). Thus we can argue in the exact same manner as above to see
that (2), (5), and (6) are equivalent. �

9. Surjective morphisms

Definition 9.1. A morphism of schemes is said to be surjective if it is surjective on
underlying topological spaces.

Lemma 9.2. The composition of surjective morphisms is surjective.

Proof. Omitted. �

Lemma 9.3. LetX and Y be schemes over a base scheme S. Given points x ∈ X and
y ∈ Y , there is a point of X ×S Y mapping to x and y under the projections if and only
if x and y lie above the same point of S.

Proof. The condition is obviously necessary, and the converse follows from the proof
of Schemes, Lemma 17.5. �

Lemma 9.4. The base change of a surjective morphism is surjective.

Proof. Let f : X → Y be a morphism of schemes over a base scheme S. If S′ → S
is a morphism of schemes, let p : XS′ → X and q : YS′ → Y be the canonical projections.
The commutative square

XS′

fS′

��

p
// X

f

��
YS′

q // Y.

identifies XS′ as a fibre product of X → Y and YS′ → Y . Let Z be a subset of the under-
lying topological space of X . Then q−1(f(Z)) = fS′(p−1(Z)), because y′ ∈ q−1(f(Z))
if and only if q(y′) = f(x) for some x ∈ Z , if and only if, by Lemma 9.3, there exists
x′ ∈ XS′ such that fS′(x′) = y′ and p(x′) = x. In particular taking Z = X we see that
if f is surjective so is the base change fS′ : XS′ → YS′ . �

Example 9.5. Bijectivity is not stable under base change, and so neither is injectivity.
For example consider the bijection Spec(C) → Spec(R). The base change Spec(C ⊗R
C) → Spec(C) is not injective, since there is an isomorphism C ⊗R C ∼= C × C (the
decomposition comes from the idempotent 1⊗1+i⊗i

2 ) and hence Spec(C ⊗R C) has two
points.

Lemma 9.6. Let
X

f
//

p
  

Y

q
��

Z

be a commutative diagram of morphisms of schemes. If f is surjective and p is quasi-
compact, then q is quasi-compact.
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Proof. Let W ⊂ Z be a quasi-compact open. By assumption p−1(W ) is quasi-
compact. Hence by Topology, Lemma 12.7 the inverse image q−1(W ) = f(p−1(W ))
is quasi-compact too. This proves the lemma. �

10. Radicial and universally injective morphisms

In this section we define what it means for a morphism of schemes to be radicial and what
it means for a morphism of schemes to be universally injective. We then show that these
notions agree. The reason for introducing both is that in the case of algebraic spaces there
are corresponding notions which may not always agree.

Definition 10.1. Let f : X → S be a morphism.
(1) We say that f is universally injective if and only if for any morphism of schemes

S′ → S the base change f ′ : XS′ → S′ is injective (on underlying topological
spaces).

(2) We say f is radicial if f is injective as a map of topological spaces, and for every
x ∈ X the field extension κ(x)/κ(f(x)) is purely inseparable.

Lemma 10.2. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) For every field K the induced map Mor(Spec(K), X) → Mor(Spec(K), S) is
injective.

(2) The morphism f is universally injective.
(3) The morphism f is radicial.
(4) The diagonal morphism ∆X/S : X −→ X ×S X is surjective.

Proof. LetK be a field, and let s : Spec(K)→ S be a morphism. Giving a morphism
x : Spec(K) → X such that f ◦ x = s is the same as giving a section of the projection
XK = Spec(K)×S X → Spec(K), which in turn is the same as giving a point x ∈ XK

whose residue field is K. Hence we see that (2) implies (1).

Conversely, suppose that (1) holds. Assume that x, x′ ∈ XS′ map to the same point s′ ∈
S′. Choose a commutative diagram

K κ(x)oo

κ(x′)

OO

κ(s′)oo

OO

of fields. By Schemes, Lemma 13.3 we get two morphisms a, a′ : Spec(K) → XS′ . One
corresponding to the point x and the embedding κ(x) ⊂ K and the other corresponding
to the point x′ and the embedding κ(x′) ⊂ K. Also we have f ′ ◦ a = f ′ ◦ a′. Condition
(1) now implies that the compositions of a and a′ with XS′ → X are equal. Since XS′ is
the fibre product of S′ and X over S we see that a = a′. Hence x = x′. Thus (1) implies
(2).

If there are two different points x, x′ ∈ X mapping to the same point of s then (2) is vio-
lated. If for some s = f(x), x ∈ X the field extension κ(x)/κ(s) is not purely inseparable,
then we may find a field extension K/κ(s) such that κ(x) has two κ(s)-homomorphisms
intoK. By Schemes, Lemma 13.3 this implies that the map Mor(Spec(K), X)→ Mor(Spec(K), S)
is not injective, and hence (1) is violated. Thus we see that the equivalent conditions (1)
and (2) imply f is radicial, i.e., they imply (3).
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Assume (3). By Schemes, Lemma 13.3 a morphism Spec(K) → X is given by a pair
(x, κ(x) → K). Property (3) says exactly that associating to the pair (x, κ(x) → K)
the pair (s, κ(s) → κ(x) → K) is injective. In other words (1) holds. At this point we
know that (1), (2) and (3) are all equivalent.
Finally, we prove the equivalence of (4) with (1), (2) and (3). A point of X ×S X is
given by a quadruple (x1, x2, s, p), where x1, x2 ∈ X , f(x1) = f(x2) = s and p ⊂
κ(x1)⊗κ(s) κ(x2) is a prime ideal, see Schemes, Lemma 17.5. If f is universally injective,
then by taking S′ = X in the definition of universally injective, ∆X/S must be surjective
since it is a section of the injective morphism X ×S X −→ X . Conversely, if ∆X/S is
surjective, then always x1 = x2 = x and there is exactly one such prime ideal p, which
means that κ(s) ⊂ κ(x) is purely inseparable. Hence f is radicial. Alternatively, if ∆X/S

is surjective, then for any S′ → S the base change ∆XS′/S′ is surjective which implies
that f is universally injective. This finishes the proof of the lemma. �

Lemma 10.3. A universally injective morphism is separated.

Proof. Combine Lemma 10.2 with the remark that X → S is separated if and only
if the image of ∆X/S is closed inX ×SX , see Schemes, Definition 21.3 and the discussion
following it. �

Lemma 10.4. A base change of a universally injective morphism is universally injec-
tive.

Proof. This is formal. �

Lemma 10.5. A composition of radicial morphisms is radicial, and so the same holds
for the equivalent condition of being universally injective.

Proof. Omitted. �

11. Affine morphisms

Definition 11.1. A morphism of schemes f : X → S is called affine if the inverse
image of every affine open of S is an affine open of X .

Lemma 11.2. An affine morphism is separated and quasi-compact.

Proof. Let f : X → S be affine. Quasi-compactness is immediate from Schemes,
Lemma 19.2. We will show f is separated using Schemes, Lemma 21.7. Let x1, x2 ∈ X
be points of X which map to the same point s ∈ S. Choose any affine open W ⊂ S
containing s. By assumption f−1(W ) is affine. Apply the lemma cited with U = V =
f−1(W ). �

Lemma 11.3. Let f : X → S be a morphism of schemes. The following are equivalent
(1) The morphism f is affine.
(2) There exists an affine open coveringS =

⋃
Wj such that each f−1(Wj) is affine.

(3) There exists a quasi-coherent sheaf of OS-algebras A and an isomorphism X ∼=
Spec

S
(A) of schemes over S. See Constructions, Section 4 for notation.

Moreover, in this case X = Spec
S

(f∗OX).

Proof. It is obvious that (1) implies (2).
Assume S =

⋃
j∈JWj is an affine open covering such that each f−1(Wj) is affine. By

Schemes, Lemma 19.2 we see that f is quasi-compact. By Schemes, Lemma 21.6 we see the
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morphism f is quasi-separated. Hence by Schemes, Lemma 24.1 the sheaf A = f∗OX is a
quasi-coherent sheaf of OS-algebras. Thus we have the scheme g : Y = Spec

S
(A) → S

over S. The identity map id : A = f∗OX → f∗OX provides, via the definition of the
relative spectrum, a morphism can : X → Y over S , see Constructions, Lemma 4.7. By
assumption and the lemma just cited the restriction can|f−1(Wj) : f−1(Wj)→ g−1(Wj)
is an isomorphism. Thus can is an isomorphism. We have shown that (2) implies (3).

Assume (3). By Constructions, Lemma 4.6 we see that the inverse image of every affine
open is affine, and hence the morphism is affine by definition. �

Remark 11.4. We can also argue directly that (2) implies (1) in Lemma 11.3 above as
follows. Assume S =

⋃
Wj is an affine open covering such that each f−1(Wj) is affine.

First argue thatA = f∗OX is quasi-coherent as in the proof above. Let Spec(R) = V ⊂ S
be affine open. We have to show that f−1(V ) is affine. Set A = A(V ) = f∗OX(V ) =
OX(f−1(V )). By Schemes, Lemma 6.4 there is a canonical morphism ψ : f−1(V ) →
Spec(A) over Spec(R) = V . By Schemes, Lemma 11.6 there exists an integer n ≥ 0, a
standard open covering V =

⋃
i=1,...,nD(hi), hi ∈ R, and a map a : {1, . . . , n} → J

such that each D(hi) is also a standard open of the affine scheme Wa(i). The inverse
image of a standard open under a morphism of affine schemes is standard open, see Algebra,
Lemma 17.4. Hence we see that f−1(D(hi)) is a standard open of f−1(Wa(i)), in particular
that f−1(D(hi)) is affine. Because A is quasi-coherent we have Ahi = A(D(hi)) =
OX(f−1(D(hi))), so f−1(D(hi)) is the spectrum ofAhi . It follows that the morphism ψ
induces an isomorphism of the open f−1(D(hi)) with the open Spec(Ahi) of Spec(A).
Since f−1(V ) =

⋃
f−1(D(hi)) and Spec(A) =

⋃
Spec(Ahi) we win.

Lemma 11.5. Let S be a scheme. There is an anti-equivalence of categories

Schemes affine
over S ←→ quasi-coherent sheaves

ofOS-algebras

which associates to f : X → S the sheaf f∗OX . Moreover, this equivalence is compatible
with arbitrary base change.

Proof. The functor from right to left is given by Spec
S

. The two functors are mu-
tually inverse by Lemma 11.3 and Constructions, Lemma 4.6 part (3). The final statement
is Constructions, Lemma 4.6 part (2). �

Lemma 11.6. Let f : X → S be an affine morphism of schemes. LetA = f∗OX . The
functor F 7→ f∗F induces an equivalence of categories{

category of quasi-coherent
OX -modules

}
−→

{
category of quasi-coherent

A-modules

}
Moreover, an A-module is quasi-coherent as an OS-module if and only if it is quasi-
coherent as anA-module.

Proof. Omitted. �

Lemma 11.7. The composition of affine morphisms is affine.

Proof. Let f : X → Y and g : Y → Z be affine morphisms. Let U ⊂ Z be affine
open. Then g−1(U) is affine by assumption on g. Whereupon f−1(g−1(U)) is affine by
assumption on f . Hence (g ◦ f)−1(U) is affine. �

Lemma 11.8. The base change of an affine morphism is affine.
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Proof. Let f : X → S be an affine morphism. Let S′ → S be any morphism.
Denote f ′ : XS′ = S′ ×S X → S′ the base change of f . For every s′ ∈ S′ there
exists an open affine neighbourhood s′ ∈ V ⊂ S′ which maps into some open affine
U ⊂ S. By assumption f−1(U) is affine. By the material in Schemes, Section 17 we see
that f−1(U)V = V ×U f−1(U) is affine and equal to (f ′)−1(V ). This proves that S′

has an open covering by affines whose inverse image under f ′ is affine. We conclude by
Lemma 11.3 above. �

Lemma 11.9. A closed immersion is affine.

Proof. The first indication of this is Schemes, Lemma 8.2. See Schemes, Lemma 10.1
for a complete statement. �

Lemma 11.10. Let X be a scheme. Let L be an invertible OX -module. Let s ∈
Γ(X,L). The inclusion morphism j : Xs → X is affine.

Proof. This follows from Properties, Lemma 26.4 and the definition. �

Lemma 11.11. Suppose g : X → Y is a morphism of schemes over S.
(1) If X is affine over S and ∆ : Y → Y ×S Y is affine, then g is affine.
(2) If X is affine over S and Y is separated over S , then g is affine.
(3) A morphism from an affine scheme to a scheme with affine diagonal is affine.
(4) A morphism from an affine scheme to a separated scheme is affine.

Proof. Proof of (1). The base change X ×S Y → Y is affine by Lemma 11.8. The
morphism (1, g) : X → X ×S Y is the base change of Y → Y ×S Y by the morphism
X×SY → Y×SY . Hence it is affine by Lemma 11.8. The composition of affine morphisms
is affine (see Lemma 11.7) and (1) follows. Part (2) follows from (1) as a closed immersion
is affine (see Lemma 11.9) and Y/S separated means ∆ is a closed immersion. Parts (3) and
(4) are special cases of (1) and (2). �

Lemma 11.12. A morphism between affine schemes is affine.

Proof. Immediate from Lemma 11.11 with S = Spec(Z). It also follows directly
from the equivalence of (1) and (2) in Lemma 11.3. �

Lemma 11.13. LetS be a scheme. LetA be an Artinian ring. Any morphism Spec(A)→
S is affine.

Proof. Omitted. �

Lemma 11.14. Let j : Y → X be an immersion of schemes. Assume there exists an
open U ⊂ X with complement Z = X \ U such that

(1) U → X is affine,
(2) j−1(U)→ U is affine, and
(3) j(Y ) ∩ Z is closed.

Then j is affine. In particular, if X is affine, so is Y .

Proof. By Schemes, Definition 10.2 there exists an open subscheme W ⊂ X such
that j factors as a closed immersion i : Y → W followed by the inclusion morphism
W → X . Since a closed immersion is affine (Lemma 11.9), we see that for every x ∈ W
there is an affine open neighbourhood of x in X whose inverse image under j is affine. If
x ∈ U , then the same thing is true by assumption (2). Finally, assume x ∈ Z and x 6∈W .
Then x 6∈ j(Y )∩Z. By assumption (3) we can find an affine open neighbourhood V ⊂ X
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of x which does not meet j(Y ) ∩ Z. Then j−1(V ) = j−1(V ∩ U) which is affine by
assumptions (1) and (2). It follows that j is affine by Lemma 11.3. �

12. Families of ample invertible modules

A short section on the notion of a family of ample invertible modules.

Definition 12.1. Let X be a scheme. Let {Li}i∈I be a family of invertible OX -
modules. We say {Li}i∈I is an ample family of invertible modules on X if

(1) X is quasi-compact, and
(2) for every x ∈ X there exists an i ∈ I , an n ≥ 1, and s ∈ Γ(X,L⊗n

i ) such that
x ∈ Xs and Xs is affine.

If {Li}i∈I is an ample family of invertible modules on a schemeX , then there exists a finite
subset I ′ ⊂ I such that {Li}i∈I′ is an ample family of invertible modules on X (follows
immediately from quasi-compactness). A scheme having an ample family of invertible
modules has an affine diagonal by the next lemma and hence is a fortiori quasi-separated.

Lemma 12.2. Let X be a scheme such that for every point x ∈ X there exists an
invertible OX -module L and a global section s ∈ Γ(X,L) such that x ∈ Xs and Xs is
affine. Then the diagonal of X is an affine morphism.

Proof. Given invertible OX -modules L, M and global sections s ∈ Γ(X,L), t ∈
Γ(X,M) such thatXs andXt are affine we have to proveXs∩Xt is affine. Namely, then
Lemma 11.3 applied to ∆ : X → X × X and the fact that ∆−1(Xs × Xt) = Xs ∩ Xt

shows that ∆ is affine. The fact that Xs ∩ Xt is affine follows from Properties, Lemma
26.4. �

Remark 12.3. In Properties, Lemma 26.7 we see that a scheme which has an ample
invertible module is separated. This is wrong for schemes having an ample family of in-
vertible modules. Namely, let X be as in Schemes, Example 14.3 with n = 1, i.e., the
affine line with zero doubled. We use the notation of that example except that we write
x for x1 and y for y1. There is, for every integer n, an invertible sheaf Ln on X which is
trivial on X1 and X2 and whose transition function U12 → U21 is f(x) 7→ ynf(y). The
global sections of Ln are pairs (f(x), g(y)) ∈ k[x] ⊕ k[y] such that ynf(y) = g(y). The
sections s = (1, y) of L1 and t = (x, 1) of L−1 determine an open affine cover because
Xs = X1 and Xt = X2. Therefore X has an ample family of invertible modules but it is
not separated.

13. Quasi-affine morphisms

Recall that a scheme X is called quasi-affine if it is quasi-compact and isomorphic to an
open subscheme of an affine scheme, see Properties, Definition 18.1.

Definition 13.1. A morphism of schemes f : X → S is called quasi-affine if the
inverse image of every affine open of S is a quasi-affine scheme.

Lemma 13.2. A quasi-affine morphism is separated and quasi-compact.

Proof. Let f : X → S be quasi-affine. Quasi-compactness is immediate from Schemes,
Lemma 19.2. Let U ⊂ S be an affine open. If we can show that f−1(U) is a separated
scheme, then f is separated (Schemes, Lemma 21.7 shows that being separated is local on
the base). By assumption f−1(U) is isomorphic to an open subscheme of an affine scheme.
An affine scheme is separated and hence every open subscheme of an affine scheme is sep-
arated as desired. �
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Lemma 13.3. Let f : X → S be a morphism of schemes. The following are equivalent
(1) The morphism f is quasi-affine.
(2) There exists an affine open covering S =

⋃
Wj such that each f−1(Wj) is quasi-

affine.
(3) There exists a quasi-coherent sheaf of OS-algebras A and a quasi-compact open

immersion
X //

��

Spec
S

(A)

{{
S

over S.
(4) Same as in (3) but with A = f∗OX and the horizontal arrow the canonical

morphism of Constructions, Lemma 4.7.

Proof. It is obvious that (1) implies (2) and that (4) implies (3).

Assume S =
⋃
j∈JWj is an affine open covering such that each f−1(Wj) is quasi-affine.

By Schemes, Lemma 19.2 we see that f is quasi-compact. By Schemes, Lemma 21.6 we see
the morphism f is quasi-separated. Hence by Schemes, Lemma 24.1 the sheafA = f∗OX is
a quasi-coherent sheaf ofOX -algebras. Thus we have the scheme g : Y = Spec

S
(A)→ S

over S. The identity map id : A = f∗OX → f∗OX provides, via the definition of the
relative spectrum, a morphism can : X → Y over S , see Constructions, Lemma 4.7. By
assumption, the lemma just cited, and Properties, Lemma 18.4 the restriction can|f−1(Wj) :
f−1(Wj) → g−1(Wj) is a quasi-compact open immersion. Thus can is a quasi-compact
open immersion. We have shown that (2) implies (4).

Assume (3). Choose any affine open U ⊂ S. By Constructions, Lemma 4.6 we see that
the inverse image of U in the relative spectrum is affine. Hence we conclude that f−1(U)
is quasi-affine (note that quasi-compactness is encoded in (3) as well). Thus (3) implies
(1). �

Lemma 13.4. The composition of quasi-affine morphisms is quasi-affine.

Proof. Let f : X → Y and g : Y → Z be quasi-affine morphisms. Let U ⊂ Z be
affine open. Then g−1(U) is quasi-affine by assumption on g. Let j : g−1(U) → V be a
quasi-compact open immersion into an affine scheme V . By Lemma 13.3 above we see that
f−1(g−1(U)) is a quasi-compact open subscheme of the relative spectrum Spec

g−1(U)(A)
for some quasi-coherent sheaf of Og−1(U)-algebras A. By Schemes, Lemma 24.1 the sheaf
A′ = j∗A is a quasi-coherent sheaf of OV -algebras with the property that j∗A′ = A.
Hence we get a commutative diagram

f−1(g−1(U)) // Spec
g−1(U)(A) //

��

Spec
V

(A′)

��
g−1(U) j // V

with the square being a fibre square, see Constructions, Lemma 4.6. Note that the upper
right corner is an affine scheme. Hence (g ◦ f)−1(U) is quasi-affine. �

Lemma 13.5. The base change of a quasi-affine morphism is quasi-affine.
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Proof. Let f : X → S be a quasi-affine morphism. By Lemma 13.3 above we can
find a quasi-coherent sheaf of OS-algebras A and a quasi-compact open immersion X →
Spec

S
(A) over S. Let g : S′ → S be any morphism. Denote f ′ : XS′ = S′ ×S X →

S′ the base change of f . Since the base change of a quasi-compact open immersion is a
quasi-compact open immersion we see that XS′ → Spec

S′(g∗A) is a quasi-compact open
immersion (we have used Schemes, Lemmas 19.3 and 18.2 and Constructions, Lemma 4.6).
By Lemma 13.3 again we conclude that XS′ → S′ is quasi-affine. �

Lemma 13.6. A quasi-compact immersion is quasi-affine.

Proof. Let X → S be a quasi-compact immersion. We have to show the inverse
image of every affine open is quasi-affine. Hence, assuming S is an affine scheme, we have
to show X is quasi-affine. By Lemma 7.7 the morphism X → S factors as X → Z → S
where Z is a closed subscheme of S and X ⊂ Z is a quasi-compact open. Since S is affine
Lemma 2.1 implies Z is affine. Hence we win. �

Lemma 13.7. Let S be a scheme. Let X be an affine scheme. A morphism f : X → S
is quasi-affine if and only if it is quasi-compact. In particular any morphism from an affine
scheme to a quasi-separated scheme is quasi-affine.

Proof. Let V ⊂ S be an affine open. Then f−1(V ) is an open subscheme of the
affine scheme X , hence quasi-affine if and only if it is quasi-compact. This proves the
first assertion. The quasi-compactness of any f : X → S where X is affine and S quasi-
separated follows from Schemes, Lemma 21.14 applied to X → S → Spec(Z). �

Lemma 13.8. Suppose g : X → Y is a morphism of schemes over S. If X is quasi-
affine over S and Y is quasi-separated over S , then g is quasi-affine. In particular, any
morphism from a quasi-affine scheme to a quasi-separated scheme is quasi-affine.

Proof. The base changeX×S Y → Y is quasi-affine by Lemma 13.5. The morphism
X → X ×S Y is a quasi-compact immersion as Y → S is quasi-separated, see Schemes,
Lemma 21.11. A quasi-compact immersion is quasi-affine by Lemma 13.6 and the composi-
tion of quasi-affine morphisms is quasi-affine (see Lemma 13.4). Thus we win. �

14. Types of morphisms defined by properties of ring maps

In this section we study what properties of ring maps allow one to define local properties
of morphisms of schemes.

Definition 14.1. Let P be a property of ring maps.
(1) We say that P is local if the following hold:

(a) For any ring mapR→ A, and any f ∈ Rwe have P (R→ A)⇒ P (Rf →
Af ).

(b) For any rings R, A, any f ∈ R, a ∈ A, and any ring map Rf → A we have
P (Rf → A)⇒ P (R→ Aa).

(c) For any ring map R → A, and ai ∈ A such that (a1, . . . , an) = A then
∀i, P (R→ Aai)⇒ P (R→ A).

(2) We say that P is stable under base change if for any ring maps R→ A, R→ R′

we have P (R→ A)⇒ P (R′ → R′ ⊗R A).
(3) We say that P is stable under composition if for any ring mapsA→ B, B → C

we have P (A→ B) ∧ P (B → C)⇒ P (A→ C).
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Definition 14.2. Let P be a property of ring maps. Let f : X → S be a morphism
of schemes. We say f is locally of type P if for any x ∈ X there exists an affine open
neighbourhood U of x inX which maps into an affine open V ⊂ S such that the induced
ring mapOS(V )→ OX(U) has property P .

This is not a “good” definition unless the propertyP is a local property. Even ifP is a local
property we will not automatically use this definition to say that a morphism is “locally
of type P ” unless we also explicitly state the definition elsewhere.

Lemma 14.3. Let f : X → S be a morphism of schemes. Let P be a property of ring
maps. Let U be an affine open of X , and V an affine open of S such that f(U) ⊂ V . If f
is locally of type P and P is local, then P (OS(V )→ OX(U)) holds.

Proof. As f is locally of type P for every u ∈ U there exists an affine open Uu ⊂ X
mapping into an affine open Vu ⊂ S such that P (OS(Vu)→ OX(Uu)) holds. Choose an
open neighbourhood U ′

u ⊂ U ∩ Uu of u which is standard affine open in both U and Uu,
see Schemes, Lemma 11.5. By Definition 14.1 (1)(b) we see that P (OS(Vu) → OX(U ′

u))
holds. Hence we may assume that Uu ⊂ U is a standard affine open. Choose an open
neighbourhood V ′

u ⊂ V ∩ Vu of f(u) which is standard affine open in both V and Vu, see
Schemes, Lemma 11.5. Then U ′

u = f−1(V ′
u)∩Uu is a standard affine open of Uu (hence of

U ) and we have P (OS(V ′
u)→ OX(U ′

u)) by Definition 14.1 (1)(a). Hence we may assume
both Uu ⊂ U and Vu ⊂ V are standard affine open. Applying Definition 14.1 (1)(b) one
more time we conclude that P (OS(V ) → OX(Uu)) holds. Because U is quasi-compact
we may choose a finite number of points u1, . . . , un ∈ U such that

U = Uu1 ∪ . . . ∪ Uun .

By Definition 14.1 (1)(c) we conclude that P (OS(V )→ OX(U)) holds. �

Lemma 14.4. Let P be a local property of ring maps. Let f : X → S be a morphism
of schemes. The following are equivalent

(1) The morphism f is locally of type P .
(2) For every affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V we have P (OS(V ) →
OX(U)).

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is locally of
type P .

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that P (OS(Vj) → OX(Ui)) holds, for all j ∈ J, i ∈

Ij .
Moreover, if f is locally of type P then for any open subschemes U ⊂ X , V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is locally of type P .

Proof. This follows from Lemma 14.3 above. �

Lemma 14.5. Let P be a property of ring maps. Assume P is local and stable under
composition. The composition of morphisms locally of type P is locally of type P .

Proof. Let f : X → Y and g : Y → Z be morphisms locally of type P . Let
x ∈ X . Choose an affine open neighbourhood W ⊂ Z of g(f(x)). Choose an affine
open neighbourhood V ⊂ g−1(W ) of f(x). Choose an affine open neighbourhood U ⊂
f−1(V ) of x. By Lemma 14.4 the ring maps OZ(W ) → OY (V ) and OY (V ) → OX(U)
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satisfy P . HenceOZ(W )→ OX(U) satisfies P as P is assumed stable under composition.
�

Lemma 14.6. Let P be a property of ring maps. Assume P is local and stable under
base change. The base change of a morphism locally of type P is locally of type P .

Proof. Let f : X → S be a morphism locally of type P . Let S′ → S be any
morphism. Denote f ′ : XS′ = S′ ×S X → S′ the base change of f . For every s′ ∈ S′

there exists an open affine neighbourhood s′ ∈ V ′ ⊂ S′ which maps into some open
affine V ⊂ S. By Lemma 14.4 the open f−1(V ) is a union of affines Ui such that the
ring maps OS(V ) → OX(Ui) all satisfy P . By the material in Schemes, Section 17 we
see that f−1(U)V ′ = V ′ ×V f−1(V ) is the union of the affine opens V ′ ×V Ui. Since
OXS′ (V ′ ×V Ui) = OS′(V ′) ⊗OS(V ) OX(Ui) we see that the ring maps OS′(V ′) →
OXS′ (V ′ ×V Ui) satisfy P as P is assumed stable under base change. �

Lemma 14.7. The following properties of a ring map R→ A are local.
(1) (Isomorphism on local rings.) For every prime q ofA lying over p ⊂ R the ring

map R→ A induces an isomorphism Rp → Aq.
(2) (Open immersion.) For every prime q ofA there exists an f ∈ R, ϕ(f) 6∈ q such

that the ring map ϕ : R→ A induces an isomorphism Rf → Af .
(3) (Reduced fibres.) For every prime p of R the fibre ring A⊗R κ(p) is reduced.
(4) (Fibres of dimension at most n.) For every prime p ofR the fibre ringA⊗Rκ(p)

has Krull dimension at most n.
(5) (Locally Noetherian on the target.) The ring map R→ A has the property that

A is Noetherian.
(6) Add more here as needed4.

Proof. Omitted. �

Lemma 14.8. The following properties of ring maps are stable under base change.
(1) (Isomorphism on local rings.) For every prime q ofA lying over p ⊂ R the ring

map R→ A induces an isomorphism Rp → Aq.
(2) (Open immersion.) For every prime q ofA there exists an f ∈ R, ϕ(f) 6∈ q such

that the ring map ϕ : R→ A induces an isomorphism Rf → Af .
(3) Add more here as needed5.

Proof. Omitted. �

Lemma 14.9. The following properties of ring maps are stable under composition.
(1) (Isomorphism on local rings.) For every prime q ofA lying over p ⊂ R the ring

map R→ A induces an isomorphism Rp → Aq.
(2) (Open immersion.) For every prime q ofA there exists an f ∈ R, ϕ(f) 6∈ q such

that the ring map ϕ : R→ A induces an isomorphism Rf → Af .
(3) (Locally Noetherian on the target.) The ring map R→ A has the property that

A is Noetherian.
(4) Add more here as needed6.

Proof. Omitted. �

4But only those properties that are not already dealt with separately elsewhere.
5But only those properties that are not already dealt with separately elsewhere.
6But only those properties that are not already dealt with separately elsewhere.
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15. Morphisms of finite type

Recall that a ring map R → A is said to be of finite type if A is isomorphic to a quotient
of R[x1, . . . , xn] as an R-algebra, see Algebra, Definition 6.1.

Definition 15.1. Let f : X → S be a morphism of schemes.
(1) We say that f is of finite type at x ∈ X if there exists an affine open neighbour-

hood Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is of finite type.

(2) We say that f is locally of finite type if it is of finite type at every point of X .
(3) We say that f is of finite type if it is locally of finite type and quasi-compact.

Lemma 15.2. Let f : X → S be a morphism of schemes. The following are equivalent
(1) The morphism f is locally of finite type.
(2) For all affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the ring map OS(V ) →
OX(U) is of finite type.

(3) There exist an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is locally of
finite type.

(4) There exist an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is of finite

type, for all j ∈ J, i ∈ Ij .
Moreover, if f is locally of finite type then for any open subschemes U ⊂ X , V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is locally of finite type.

Proof. This follows from Lemma 14.3 if we show that the property “R → A is of
finite type” is local. We check conditions (a), (b) and (c) of Definition 14.1. By Algebra,
Lemma 14.2 being of finite type is stable under base change and hence we conclude (a)
holds. By Algebra, Lemma 6.2 being of finite type is stable under composition and trivially
for any ring R the ring map R → Rf is of finite type. We conclude (b) holds. Finally,
property (c) is true according to Algebra, Lemma 23.3. �

Lemma 15.3. The composition of two morphisms which are locally of finite type is
locally of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 15.2 we saw that being of finite type is a local prop-
erty of ring maps. Hence the first statement of the lemma follows from Lemma 14.5 com-
bined with the fact that being of finite type is a property of ring maps that is stable un-
der composition, see Algebra, Lemma 6.2. By the above and the fact that compositions
of quasi-compact morphisms are quasi-compact, see Schemes, Lemma 19.4 we see that the
composition of morphisms of finite type is of finite type. �

Lemma 15.4. The base change of a morphism which is locally of finite type is locally
of finite type. The same is true for morphisms of finite type.

Proof. In the proof of Lemma 15.2 we saw that being of finite type is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 14.6 combined
with the fact that being of finite type is a property of ring maps that is stable under base
change, see Algebra, Lemma 14.2. By the above and the fact that a base change of a quasi-
compact morphism is quasi-compact, see Schemes, Lemma 19.3 we see that the base change
of a morphism of finite type is a morphism of finite type. �
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Lemma 15.5. A closed immersion is of finite type. An immersion is locally of finite
type.

Proof. This is true because an open immersion is a local isomorphism, and a closed
immersion is obviously of finite type. �

Lemma 15.6. Let f : X → S be a morphism. If S is (locally) Noetherian and f
(locally) of finite type then X is (locally) Noetherian.

Proof. This follows immediately from the fact that a ring of finite type over a Noe-
therian ring is Noetherian, see Algebra, Lemma 31.1. (Also: use the fact that the source of
a quasi-compact morphism with quasi-compact target is quasi-compact.) �

Lemma 15.7. Let f : X → S be locally of finite type with S locally Noetherian.
Then f is quasi-separated.

Proof. In fact, it is true that X is quasi-separated, see Properties, Lemma 5.4 and
Lemma 15.6 above. Then apply Schemes, Lemma 21.13 to conclude that f is quasi-separated.

�

Lemma 15.8. Let X → Y be a morphism of schemes over a base scheme S. If X is
locally of finite type over S , then X → Y is locally of finite type.

Proof. Via Lemma 15.2 this translates into the following algebra fact: Given ring
maps A→ B → C such that A→ C is of finite type, then B → C is of finite type. (See
Algebra, Lemma 6.2). �

16. Points of finite type and Jacobson schemes

LetS be a scheme. A finite type point s ofS is a point such that the morphism Spec(κ(s))→
S is of finite type. The reason for studying this is that finite type points can replace closed
points in a certain sense and in certain situations. There are always enough of them for
example. Moreover, a scheme is Jacobson if and only if all finite type points are closed
points.

Lemma 16.1. Let S be a scheme. Let k be a field. Let f : Spec(k)→ S be a morphism.
The following are equivalent:

(1) The morphism f is of finite type.
(2) The morphism f is locally of finite type.
(3) There exists an affine openU = Spec(R) of S such that f corresponds to a finite

ring map R→ k.
(4) There exists an affine open U = Spec(R) of S such that the image of f consists

of a closed point u in U and the field extension k/κ(u) is finite.

Proof. The equivalence of (1) and (2) is obvious as Spec(k) is a singleton and hence
any morphism from it is quasi-compact.
Suppose f is locally of finite type. Choose any affine open Spec(R) = U ⊂ S such that
the image of f is contained in U , and the ring map R → k is of finite type. Let p ⊂ R be
the kernel. ThenR/p ⊂ k is of finite type. By Algebra, Lemma 34.2 there exist a f ∈ R/p
such that (R/p)f is a field and (R/p)f → k is a finite field extension. If f ∈ R is a lift of
f , then we see that k is a finite Rf -module. Thus (2)⇒ (3).
Suppose that Spec(R) = U ⊂ S is an affine open such that f corresponds to a finite ring
map R→ k. Then f is locally of finite type by Lemma 15.2. Thus (3)⇒ (2).
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Suppose R→ k is finite. The image of R→ k is a field over which k is finite by Algebra,
Lemma 36.18. Hence the kernel of R→ k is a maximal ideal. Thus (3)⇒ (4).
The implication (4)⇒ (3) is immediate. �

Lemma 16.2. Let S be a scheme. Let A be an Artinian local ring with residue field κ.
Let f : Spec(A) → S be a morphism of schemes. Then f is of finite type if and only if
the composition Spec(κ)→ Spec(A)→ S is of finite type.

Proof. Since the morphism Spec(κ)→ Spec(A) is of finite type it is clear that if f
is of finite type so is the composition Spec(κ) → S (see Lemma 15.3). For the converse,
note that Spec(A) → S maps into some affine open U = Spec(B) of S as Spec(A) has
only one point. To finish apply Algebra, Lemma 54.4 to B → A. �

Recall that given a point s of a scheme S there is a canonical morphism Spec(κ(s))→ S ,
see Schemes, Section 13.

Definition 16.3. Let S be a scheme. Let us say that a point s of S is a finite type
point if the canonical morphism Spec(κ(s)) → S is of finite type. We denote Sft-pts the
set of finite type points of S.

We can describe the set of finite type points as follows.

Lemma 16.4. Let S be a scheme. We have

Sft-pts =
⋃

U⊂S open
U0

where U0 is the set of closed points of U . Here we may let U range over all opens or over
all affine opens of S.

Proof. Immediate from Lemma 16.1. �

Lemma 16.5. Let f : T → S be a morphism of schemes. If f is locally of finite type,
then f(Tft-pts) ⊂ Sft-pts.

Proof. IfT is the spectrum of a field this is Lemma 16.1. In general it follows since the
composition of morphisms locally of finite type is locally of finite type (Lemma 15.3). �

Lemma 16.6. Let f : T → S be a morphism of schemes. If f is locally of finite type
and surjective, then f(Tft-pts) = Sft-pts.

Proof. We have f(Tft-pts) ⊂ Sft-pts by Lemma 16.5. Let s ∈ S be a finite type point.
As f is surjective the scheme Ts = Spec(κ(s)) ×S T is nonempty, therefore has a finite
type point t ∈ Ts by Lemma 16.4. Now Ts → T is a morphism of finite type as a base
change of s→ S (Lemma 15.4). Hence the image of t in T is a finite type point by Lemma
16.5 which maps to s by construction. �

Lemma 16.7. Let S be a scheme. For any locally closed subset T ⊂ S we have
T 6= ∅ ⇒ T ∩ Sft-pts 6= ∅.

In particular, for any closed subset T ⊂ S we see that T ∩ Sft-pts is dense in T .

Proof. Note that T carries a scheme structure (see Schemes, Lemma 12.4) such that
T → S is a locally closed immersion. Any locally closed immersion is locally of finite
type, see Lemma 15.5. Hence by Lemma 16.5 we see Tft-pts ⊂ Sft-pts. Finally, any nonempty
affine open of T has at least one closed point which is a finite type point of T by Lemma
16.4. �
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It follows that most of the material from Topology, Section 18 goes through with the set
of closed points replaced by the set of points of finite type. In fact, if S is Jacobson then
we recover the closed points as the finite type points.

Lemma 16.8. Let S be a scheme. The following are equivalent:
(1) the scheme S is Jacobson,
(2) Sft-pts is the set of closed points of S ,
(3) for all T → S locally of finite type closed points map to closed points, and
(4) for all T → S locally of finite type closed points t ∈ T map to closed points

s ∈ S with κ(s) ⊂ κ(t) finite.

Proof. We have trivially (4) ⇒ (3) ⇒ (2). Lemma 16.7 shows that (2) implies (1).
Hence it suffices to show that (1) implies (4). Suppose that T → S is locally of finite type.
Choose t ∈ T closed and let s ∈ S be the image. Choose affine open neighbourhoods
Spec(R) = U ⊂ S of s and Spec(A) = V ⊂ T of twith V mapping intoU . The induced
ring mapR→ A is of finite type (see Lemma 15.2) andR is Jacobson by Properties, Lemma
6.3. Thus the result follows from Algebra, Proposition 35.19. �

Lemma 16.9. Let S be a Jacobson scheme. Any scheme locally of finite type over S
is Jacobson.

Proof. This is clear from Algebra, Proposition 35.19 (and Properties, Lemma 6.3 and
Lemma 15.2). �

Lemma 16.10. The following types of schemes are Jacobson.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over Z.
(3) Any scheme locally of finite type over a 1-dimensional Noetherian domain with

infinitely many primes.
(4) A scheme of the form Spec(R) \ {m} where (R,m) is a Noetherian local ring.

Also any scheme locally of finite type over it.

Proof. We will use Lemma 16.9 without mention. The spectrum of a field is clearly
Jacobson. The spectrum of Z is Jacobson, see Algebra, Lemma 35.6. For (3) see Algebra,
Lemma 61.4. For (4) see Properties, Lemma 6.4. �

17. Universally catenary schemes

Recall that a topological space X is called catenary if for every pair of irreducible closed
subsets T ⊂ T ′ there exist a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Te = T ′

and every such chain has the same length. See Topology, Definition 11.4. Recall that a
scheme is catenary if its underlying topological space is catenary. See Properties, Defini-
tion 11.1.

Definition 17.1. Let S be a scheme. Assume S is locally Noetherian. We say S is
universally catenary if for every morphism X → S locally of finite type the scheme X is
catenary.

This is a “better” notion than catenary as there exist Noetherian schemes which are cate-
nary but not universally catenary. See Examples, Section 18. Many schemes are univer-
sally catenary, see Lemma 17.5 below.
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Recall that a ring A is called catenary if for any pair of prime ideals p ⊂ q there exists a
maximal chain of primes

p = p0 ⊂ . . . ⊂ pe = q

and all of these have the same length. See Algebra, Definition 105.1. We have seen the
relationship between catenary schemes and catenary rings in Properties, Section 11. Recall
that a ringA is called universally catenary ifA is Noetherian and for every finite type ring
mapA→ B the ringB is catenary. See Algebra, Definition 105.3. Many interesting rings
which come up in algebraic geometry satisfy this property.

Lemma 17.2. Let S be a locally Noetherian scheme. The following are equivalent
(1) S is universally catenary,
(2) there exists an open covering of S all of whose members are universally catenary

schemes,
(3) for every affine open Spec(R) = U ⊂ S the ring R is universally catenary, and
(4) there exists an affine open covering S =

⋃
Ui such that each Ui is the spectrum

of a universally catenary ring.
Moreover, in this case any scheme locally of finite type over S is universally catenary as
well.

Proof. By Lemma 15.5 an open immersion is locally of finite type. A composition
of morphisms locally of finite type is locally of finite type (Lemma 15.3). Thus it is clear
that if S is universally catenary then any open and any scheme locally of finite type over
S is universally catenary as well. This proves the final statement of the lemma and that
(1) implies (2).

If Spec(R) is a universally catenary scheme, then every scheme Spec(A) with A a finite
typeR-algebra is catenary. Hence all these ringsA are catenary by Algebra, Lemma 105.2.
Thus R is universally catenary. Combined with the remarks above we conclude that (1)
implies (3), and (2) implies (4). Of course (3) implies (4) trivially.

To finish the proof we show that (4) implies (1). Assume (4) and letX → S be a morphism
locally of finite type. We can find an affine open covering X =

⋃
Vj such that each

Vj → S maps into one of the Ui. By Lemma 15.2 the induced ring map O(Ui) → O(Vj)
is of finite type. Hence O(Vj) is catenary. Hence X is catenary by Properties, Lemma
11.2. �

Lemma 17.3. Let S be a locally Noetherian scheme. The following are equivalent:
(1) S is universally catenary, and
(2) all local ringsOS,s of S are universally catenary.

Proof. Assume that all local rings of S are universally catenary. Let f : X → S
be locally of finite type. We know that X is catenary if and only if OX,x is catenary for
all x ∈ X . If f(x) = s, then OX,x is essentially of finite type over OS,s. Hence OX,x is
catenary by the assumption thatOS,s is universally catenary.

Conversely, assume that S is universally catenary. Let s ∈ S. We may replace S by an
affine open neighbourhood of s by Lemma 17.2. Say S = Spec(R) and s corresponds to
the prime ideal p. Any finite typeRp-algebraA′ is of the formAp for some finite typeR-
algebra A. By assumption (and Lemma 17.2 if you like) the ring A is catenary, and hence
A′ (a localization of A) is catenary. Thus Rp is universally catenary. �
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Lemma 17.4. Let S be a locally Noetherian scheme. Then S is universally catenary
if and only if the irreducible components of S are universally catenary.

Proof. Omitted. For the affine case, please see Algebra, Lemma 105.8. �

Lemma 17.5. The following types of schemes are universally catenary.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Cohen-Macaulay scheme.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a 1-dimensional Noetherian domain.
(5) And so on.

Proof. All of these follow from the fact that a Cohen-Macaulay ring is universally
catenary, see Algebra, Lemma 105.9. Also, use the last assertion of Lemma 17.2. Some
details omitted. �

18. Nagata schemes, reprise

See Properties, Section 13 for the definitions and basic properties of Nagata and universally
Japanese schemes.

Lemma 18.1. Let f : X → S be a morphism. If S is Nagata and f locally of finite
type then X is Nagata. If S is universally Japanese and f locally of finite type then X is
universally Japanese.

Proof. For “universally Japanese” this follows from Algebra, Lemma 162.4. For “Na-
gata” this follows from Algebra, Proposition 162.15. �

Lemma 18.2. The following types of schemes are Nagata.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a Dedekind ring of characteristic zero.
(5) And so on.

Proof. By Lemma 18.1 we only need to show that the rings mentioned above are
Nagata rings. For this see Algebra, Proposition 162.16. �

19. The singular locus, reprise

We look for a criterion that implies openness of the regular locus for any scheme locally
of finite type over the base. Here is the definition.

Definition 19.1. LetX be a locally Noetherian scheme. We sayX is J-2 if for every
morphism Y → X which is locally of finite type the regular locus Reg(Y ) is open in Y .

This is the analogue of the corresponding notion for Noetherian rings, see More on Alge-
bra, Definition 47.1.

Lemma 19.2. Let X be a locally Noetherian scheme. The following are equivalent
(1) X is J-2,
(2) there exists an open covering of X all of whose members are J-2 schemes,
(3) for every affine open Spec(R) = U ⊂ X the ring R is J-2, and
(4) there exists an affine open covering S =

⋃
Ui such that eachO(Ui) is J-2 for all

i.
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Moreover, in this case any scheme locally of finite type over X is J-2 as well.

Proof. By Lemma 15.5 an open immersion is locally of finite type. A composition
of morphisms locally of finite type is locally of finite type (Lemma 15.3). Thus it is clear
that if X is J-2 then any open and any scheme locally of finite type over X is J-2 as well.
This proves the final statement of the lemma.

If Spec(R) is J-2, then for every finite type R-algebra A the regular locus of the scheme
Spec(A) is open. Hence R is J-2, by definition (see More on Algebra, Definition 47.1).
Combined with the remarks above we conclude that (1) implies (3), and (2) implies (4). Of
course (1)⇒ (2) and (3)⇒ (4) trivially.

To finish the proof we show that (4) implies (1). Assume (4) and let Y → X be a morphism
locally of finite type. We can find an affine open covering Y =

⋃
Vj such that each

Vj → X maps into one of theUi. By Lemma 15.2 the induced ring mapO(Ui)→ O(Vj) is
of finite type. Hence the regular locus of Vj = Spec(O(Vj)) is open. Since Reg(Y )∩Vj =
Reg(Vj) we conclude that Reg(Y ) is open as desired. �

Lemma 19.3. The following types of schemes are J-2.
(1) Any scheme locally of finite type over a field.
(2) Any scheme locally of finite type over a Noetherian complete local ring.
(3) Any scheme locally of finite type over Z.
(4) Any scheme locally of finite type over a Noetherian local ring of dimension 1.
(5) Any scheme locally of finite type over a Nagata ring of dimension 1.
(6) Any scheme locally of finite type over a Dedekind ring of characteristic zero.
(7) And so on.

Proof. By Lemma 19.2 we only need to show that the rings mentioned above are J-2.
For this see More on Algebra, Proposition 48.7. �

20. Quasi-finite morphisms

A solid treatment of quasi-finite morphisms is the basis of many developments further
down the road. It will lead to various versions of Zariski’s Main Theorem, behaviour of
dimensions of fibres, descent for étale morphisms, etc, etc. Before reading this section it
may be a good idea to take a look at the algebra results in Algebra, Section 122.

Recall that a finite type ring mapR→ A is quasi-finite at a prime q if q defines an isolated
point of its fibre, see Algebra, Definition 122.3.

Definition 20.1. Let f : X → S be a morphism of schemes.
(1) We say that f is quasi-finite at a point x ∈ X if there exist an affine neighbour-

hood Spec(A) = U ⊂ X of x and an affine open Spec(R) = V ⊂ S such that
f(U) ⊂ V , the ring map R → A is of finite type, and R → A is quasi-finite at
the prime of A corresponding to x (see above).

(2) We say f is locally quasi-finite if f is quasi-finite at every point x of X .
(3) We say that f is quasi-finite if f is of finite type and every point x is an isolated

point of its fibre.

Trivially, a locally quasi-finite morphism is locally of finite type. We will see below that a
morphism f which is locally of finite type is quasi-finite at x if and only if x is isolated in
its fibre. Moreover, the set of points at which a morphism is quasi-finite is open; we will
see this in Section 56 on Zariski’s Main Theorem.
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Lemma 20.2. Let f : X → S be a morphism of schemes. Let x ∈ X be a point. Set
s = f(x). If κ(x)/κ(s) is an algebraic field extension, then

(1) x is a closed point of its fibre, and
(2) if in addition s is a closed point of S , then x is a closed point of X .

Proof. The second statement follows from the first by elementary topology. Ac-
cording to Schemes, Lemma 18.5 to prove the first statement we may replaceX byXs and
S by Spec(κ(s)). Thus we may assume that S = Spec(k) is the spectrum of a field. In this
case, let Spec(A) = U ⊂ X be any affine open containing x. The point x corresponds to
a prime ideal q ⊂ A such that κ(q)/k is an algebraic field extension. By Algebra, Lemma
35.9 we see that q is a maximal ideal, i.e., x ∈ U is a closed point. Since the affine opens
form a basis of the topology of X we conclude that {x} is closed. �

The following lemma is a version of the Hilbert Nullstellensatz.

Lemma 20.3. Let f : X → S be a morphism of schemes. Let x ∈ X be a point. Set
s = f(x). Assume f is locally of finite type. Then x is a closed point of its fibre if and
only if κ(x)/κ(s) is a finite field extension.

Proof. If the extension is finite, then x is a closed point of the fibre by Lemma 20.2
above. For the converse, assume that x is a closed point of its fibre. Choose affine opens
Spec(A) = U ⊂ X and Spec(R) = V ⊂ S such that f(U) ⊂ V . By Lemma 15.2 the ring
mapR→ A is of finite type. Let q ⊂ A, resp. p ⊂ R be the prime ideal corresponding to x,
resp. s. Consider the fibre ringA = A⊗R κ(p). Let q be the prime ofA corresponding to
q. The assumption that x is a closed point of its fibre implies that q is a maximal ideal ofA.
SinceA is an algebra of finite type over the field κ(p) we see by the Hilbert Nullstellensatz,
see Algebra, Theorem 34.1, that κ(q) is a finite extension of κ(p). Since κ(s) = κ(p) and
κ(x) = κ(q) = κ(q) we win. �

Lemma 20.4. Let f : X → S be a morphism of schemes which is locally of finite
type. Let g : S′ → S be any morphism. Denote f ′ : X ′ → S′ the base change. If x′ ∈ X ′

maps to a point x ∈ X which is closed in Xf(x) then x′ is closed in X ′
f ′(x′).

Proof. The residue field κ(x′) is a quotient of κ(f ′(x′))⊗κ(f(x)) κ(x), see Schemes,
Lemma 17.5. Hence it is a finite extension of κ(f ′(x′)) as κ(x) is a finite extension of
κ(f(x)) by Lemma 20.3. Thus we see that x′ is closed in its fibre by applying that lemma
one more time. �

Lemma 20.5. Let f : X → S be a morphism of schemes. Let x ∈ X be a point. Set
s = f(x). If f is quasi-finite at x, then the residue field extension κ(x)/κ(s) is finite.

Proof. This is clear from Algebra, Definition 122.3. �

Lemma 20.6. Let f : X → S be a morphism of schemes. Let x ∈ X be a point. Set
s = f(x). Let Xs be the fibre of f at s. Assume f is locally of finite type. The following
are equivalent:

(1) The morphism f is quasi-finite at x.
(2) The point x is isolated in Xs.
(3) The point x is closed inXs and there is no point x′ ∈ Xs, x′ 6= x which special-

izes to x.
(4) For any pair of affine opens Spec(A) = U ⊂ X , Spec(R) = V ⊂ S with

f(U) ⊂ V and x ∈ U corresponding to q ⊂ A the ring map R → A is quasi-
finite at q.
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Proof. Assume f is quasi-finite atx. By assumption there exist opensU ⊂ X , V ⊂ S
such that f(U) ⊂ V , x ∈ U and x an isolated point of Us. Hence {x} ⊂ Us is an open
subset. Since Us = U ∩ Xs ⊂ Xs is also open we conclude that {x} ⊂ Xs is an open
subset also. Thus we conclude that x is an isolated point of Xs.

Note thatXs is a Jacobson scheme by Lemma 16.10 (and Lemma 15.4). Ifx is isolated inXs,
i.e., {x} ⊂ Xs is open, then {x} contains a closed point (by the Jacobson property), hence
x is closed in Xs. It is clear that there is no point x′ ∈ Xs, distinct from x, specializing to
x.

Assume that x is closed in Xs and that there is no point x′ ∈ Xs, distinct from x, special-
izing to x. Consider a pair of affine opens Spec(A) = U ⊂ X , Spec(R) = V ⊂ S with
f(U) ⊂ V and x ∈ U . Let q ⊂ A correspond to x and p ⊂ R correspond to s. By Lemma
15.2 the ring map R→ A is of finite type. Consider the fibre ring A = A⊗R κ(p). Let q
be the prime ofA corresponding to q. Since Spec(A) is an open subscheme of the fibreXs

we see that q is a maximal ideal of A and that there is no point of Spec(A) specializing to
q. This implies that dim(Aq) = 0. Hence by Algebra, Definition 122.3 we see thatR→ A
is quasi-finite at q, i.e., X → S is quasi-finite at x by definition.

At this point we have shown conditions (1) – (3) are all equivalent. It is clear that (4)
implies (1). And it is also clear that (2) implies (4) since if x is an isolated point ofXs then
it is also an isolated point of Us for any open U which contains it. �

Lemma 20.7. Let f : X → S be a morphism of schemes. Let s ∈ S. Assume that
(1) f is locally of finite type, and
(2) f−1({s}) is a finite set.

ThenXs is a finite discrete topological space, and f is quasi-finite at each point ofX lying
over s.

Proof. Suppose T is a scheme which (a) is locally of finite type over a field k, and
(b) has finitely many points. Then Lemma 16.10 shows T is a Jacobson scheme. A finite
Jacobson space is discrete, see Topology, Lemma 18.6. Apply this remark to the fibre Xs

which is locally of finite type over Spec(κ(s)) to see the first statement. Finally, apply
Lemma 20.6 to see the second. �

Lemma 20.8. Let f : X → S be a morphism of schemes. Assume f is locally of finite
type. Then the following are equivalent

(1) f is locally quasi-finite,
(2) for every s ∈ S the fibre Xs is a discrete topological space, and
(3) for every morphism Spec(k) → S where k is a field the base change Xk has an

underlying discrete topological space.

Proof. It is immediate that (3) implies (2). Lemma 20.6 shows that (2) is equivalent to
(1). Assume (2) and let Spec(k)→ S be as in (3). Denote s ∈ S the image of Spec(k)→ S.
Then Xk is the base change of Xs via Spec(k) → Spec(κ(s)). Hence every point of Xk

is closed by Lemma 20.4. As Xk → Spec(k) is locally of finite type (by Lemma 15.4),
we may apply Lemma 20.6 to conclude that every point of Xk is isolated, i.e., Xk has a
discrete underlying topological space. �

Lemma 20.9. Let f : X → S be a morphism of schemes. Then f is quasi-finite if and
only if f is locally quasi-finite and quasi-compact.
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Proof. Assume f is quasi-finite. It is quasi-compact by Definition 15.1. Let x ∈ X .
We see that f is quasi-finite at x by Lemma 20.6. Hence f is quasi-compact and locally
quasi-finite.

Assume f is quasi-compact and locally quasi-finite. Then f is of finite type. Let x ∈ X
be a point. By Lemma 20.6 we see that x is an isolated point of its fibre. The lemma is
proved. �

Lemma 20.10. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) f is quasi-finite, and
(2) f is locally of finite type, quasi-compact, and has finite fibres.

Proof. Assume f is quasi-finite. In particular f is locally of finite type and quasi-
compact (since it is of finite type). Let s ∈ S. Since every x ∈ Xs is isolated in Xs we
see that Xs =

⋃
x∈Xs{x} is an open covering. As f is quasi-compact, the fibre Xs is

quasi-compact. Hence we see that Xs is finite.

Conversely, assume f is locally of finite type, quasi-compact and has finite fibres. Then it
is locally quasi-finite by Lemma 20.7. Hence it is quasi-finite by Lemma 20.9. �

Recall that a ring map R → A is quasi-finite if it is of finite type and quasi-finite at all
primes of A, see Algebra, Definition 122.3.

Lemma 20.11. Let f : X → S be a morphism of schemes. The following are equiva-
lent

(1) The morphism f is locally quasi-finite.
(2) For every pair of affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the ring map
OS(V )→ OX(U) is quasi-finite.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is locally
quasi-finite.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj)→ OX(Ui) is quasi-finite,

for all j ∈ J, i ∈ Ij .
Moreover, if f is locally quasi-finite then for any open subschemes U ⊂ X , V ⊂ S with
f(U) ⊂ V the restriction f |U : U → V is locally quasi-finite.

Proof. For a ring map R → A let us define P (R → A) to mean “R → A is quasi-
finite” (see remark above lemma). We claim that P is a local property of ring maps. We
check conditions (a), (b) and (c) of Definition 14.1. In the proof of Lemma 15.2 we have
seen that (a), (b) and (c) hold for the property of being “of finite type”. Note that, for
a finite type ring map R → A, the property R → A is quasi-finite at q depends only
on the local ring Aq as an algebra over Rp where p = R ∩ q (usual abuse of notation).
Using these remarks (a), (b) and (c) of Definition 14.1 follow immediately. For example,
suppose R → A is a ring map such that all of the ring maps R → Aai are quasi-finite
for a1, . . . , an ∈ A generating the unit ideal. We conclude that R → A is of finite type.
Also, for any prime q ⊂ A the local ringAq is isomorphic as anR-algebra to the local ring
(Aai)qi for some i and some qi ⊂ Aai . Hence we conclude that R → A is quasi-finite at
q.
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We conclude that Lemma 14.3 applies with P as in the previous paragraph. Hence it suf-
fices to prove that f is locally quasi-finite is equivalent to f is locally of type P . Since
P (R → A) is “R → A is quasi-finite” which means R → A is quasi-finite at every prime
of A, this follows from Lemma 20.6. �

Lemma 20.12. The composition of two morphisms which are locally quasi-finite is
locally quasi-finite. The same is true for quasi-finite morphisms.

Proof. In the proof of Lemma 20.11 we saw that P =“quasi-finite” is a local property
of ring maps, and that a morphism of schemes is locally quasi-finite if and only if it is
locally of typeP as in Definition 14.2. Hence the first statement of the lemma follows from
Lemma 14.5 combined with the fact that being quasi-finite is a property of ring maps that
is stable under composition, see Algebra, Lemma 122.7. By the above, Lemma 20.9 and
the fact that compositions of quasi-compact morphisms are quasi-compact, see Schemes,
Lemma 19.4 we see that the composition of quasi-finite morphisms is quasi-finite. �

We will see later (Lemma 56.2) that the set U of the following lemma is open.

Lemma 20.13. Let f : X → S be a morphism of schemes. Let g : S′ → S be
a morphism of schemes. Denote f ′ : X ′ → S′ the base change of f by g and denote
g′ : X ′ → X the projection. Assume X is locally of finite type over S.

(1) Let U ⊂ X (resp. U ′ ⊂ X ′) be the set of points where f (resp. f ′) is quasi-finite.
Then U ′ = U ×S S′ = (g′)−1(U).

(2) The base change of a locally quasi-finite morphism is locally quasi-finite.
(3) The base change of a quasi-finite morphism is quasi-finite.

Proof. The first and second assertion follow from the corresponding algebra result,
see Algebra, Lemma 122.8 (combined with the fact that f ′ is also locally of finite type
by Lemma 15.4). By the above, Lemma 20.9 and the fact that a base change of a quasi-
compact morphism is quasi-compact, see Schemes, Lemma 19.3 we see that the base change
of a quasi-finite morphism is quasi-finite. �

Lemma 20.14. Let f : X → S be a morphism of schemes of finite type. Let s ∈ S.
There are at most finitely many points of X lying over s at which f is quasi-finite.

Proof. The fibreXs is a scheme of finite type over a field, hence Noetherian (Lemma
15.6). Hence the topology on Xs is Noetherian (Properties, Lemma 5.5) and can have at
most a finite number of isolated points (by elementary topology). Thus our lemma follows
from Lemma 20.6. �

Lemma 20.15. Let f : X → Y be a morphism of schemes. If f is locally of finite type
and a monomorphism, then f is separated and locally quasi-finite.

Proof. A monomorphism is separated by Schemes, Lemma 23.3. A monomorphism
is injective, hence we get f is quasi-finite at every x ∈ X for example by Lemma 20.6. �

Lemma 20.16. Any immersion is locally quasi-finite.

Proof. This is true because an open immersion is a local isomorphism and a closed
immersion is clearly quasi-finite. �

Lemma 20.17. Let X → Y be a morphism of schemes over a base scheme S. Let
x ∈ X . If X → S is quasi-finite at x, then X → Y is quasi-finite at x. If X is locally
quasi-finite over S , then X → Y is locally quasi-finite.
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Proof. Via Lemma 20.11 this translates into the following algebra fact: Given ring
maps A → B → C such that A → C is quasi-finite, then B → C is quasi-finite. This
follows from Algebra, Lemma 122.6 with R = A, S = S′ = C and R′ = B. �

Lemma 20.18. Let f : X → Y and g : Y → S be morphisms of schemes. If f is
surjective, g ◦ f locally quasi-finite, and g locally of finite type, then g : Y → S is locally
quasi-finite.

Proof. Let x ∈ X with images y ∈ Y and s ∈ S. Since g ◦ f is locally quasi-finite
by Lemma 20.5 the extension κ(x)/κ(s) is finite. Hence κ(y)/κ(s) is finite. Hence y is
a closed point of Ys by Lemma 20.2. Since f is surjective, we see that every point of Y is
closed in its fibre over S. Thus by Lemma 20.6 we conclude that g is quasi-finite at every
point. �

21. Morphisms of finite presentation

Recall that a ring mapR→ A is of finite presentation ifA is isomorphic toR[x1, . . . , xn]/(f1, . . . , fm)
as an R-algebra for some n,m and some polynomials fj , see Algebra, Definition 6.1.

Definition 21.1. Let f : X → S be a morphism of schemes.
(1) We say that f is of finite presentation at x ∈ X if there exists an affine open

neighbourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S
with f(U) ⊂ V such that the induced ring mapR→ A is of finite presentation.

(2) We say that f is locally of finite presentation if it is of finite presentation at every
point of X .

(3) We say that f is of finite presentation if it is locally of finite presentation, quasi-
compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism which
is locally of finite presentation. Later we will characterize morphisms which are locally of
finite presentation as those morphisms such that

colim MorS(Ti, X) = MorS(limTi, X)

for any directed system of affine schemes Ti over S. See Limits, Proposition 6.1. In Limits,
Section 10 we show that, if S = limi Si is a limit of affine schemes, any schemeX of finite
presentation over S descends to a scheme Xi over Si for some i.

Lemma 21.2. Let f : X → S be a morphism of schemes. The following are equivalent
(1) The morphism f is locally of finite presentation.
(2) For every affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the ring map OS(V )→
OX(U) is of finite presentation.

(3) There exist an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is locally of
finite presentation.

(4) There exist an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is of finite

presentation, for all j ∈ J, i ∈ Ij .
Moreover, if f is locally of finite presentation then for any open subschemes U ⊂ X ,
V ⊂ S with f(U) ⊂ V the restriction f |U : U → V is locally of finite presentation.
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Proof. This follows from Lemma 14.4 if we show that the property “R → A is of
finite presentation” is local. We check conditions (a), (b) and (c) of Definition 14.1. By
Algebra, Lemma 14.2 being of finite presentation is stable under base change and hence
we conclude (a) holds. By Algebra, Lemma 6.2 being of finite presentation is stable under
composition and trivially for any ring R the ring map R → Rf is of finite presentation.
We conclude (b) holds. Finally, property (c) is true according to Algebra, Lemma 23.3. �

Lemma 21.3. The composition of two morphisms which are locally of finite presenta-
tion is locally of finite presentation. The same is true for morphisms of finite presentation.

Proof. In the proof of Lemma 21.2 we saw that being of finite presentation is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma 14.5
combined with the fact that being of finite presentation is a property of ring maps that is
stable under composition, see Algebra, Lemma 6.2. By the above and the fact that composi-
tions of quasi-compact, quasi-separated morphisms are quasi-compact and quasi-separated,
see Schemes, Lemmas 19.4 and 21.12 we see that the composition of morphisms of finite
presentation is of finite presentation. �

Lemma 21.4. The base change of a morphism which is locally of finite presentation
is locally of finite presentation. The same is true for morphisms of finite presentation.

Proof. In the proof of Lemma 21.2 we saw that being of finite presentation is a local
property of ring maps. Hence the first statement of the lemma follows from Lemma 14.5
combined with the fact that being of finite presentation is a property of ring maps that
is stable under base change, see Algebra, Lemma 14.2. By the above and the fact that a
base change of a quasi-compact, quasi-separated morphism is quasi-compact and quasi-
separated, see Schemes, Lemmas 19.3 and 21.12 we see that the base change of a morphism
of finite presentation is a morphism of finite presentation. �

Lemma 21.5. Any open immersion is locally of finite presentation.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 21.6. Any open immersion is of finite presentation if and only if it is quasi-
compact.

Proof. We have seen (Lemma 21.5) that an open immersion is locally of finite pre-
sentation. We have seen (Schemes, Lemma 23.8) that an immersion is separated and hence
quasi-separated. From this and Definition 21.1 the lemma follows. �

Lemma 21.7. A closed immersion i : Z → X is of finite presentation if and only if
the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is of finite type (as
anOX -module).

Proof. On any affine open Spec(R) ⊂ X we have i−1(Spec(R)) = Spec(R/I) and
I = Ĩ . Moreover, I is of finite type if and only if I is a finite R-module for every such
affine open (see Properties, Lemma 16.1). And R/I is of finite presentation over R if and
only if I is a finite R-module. Hence we win. �

Lemma 21.8. A morphism which is locally of finite presentation is locally of finite
type. A morphism of finite presentation is of finite type.

Proof. Omitted. �

Lemma 21.9. Let f : X → S be a morphism.
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(1) If S is locally Noetherian and f locally of finite type then f is locally of finite
presentation.

(2) If S is locally Noetherian and f of finite type then f is of finite presentation.

Proof. The first statement follows from the fact that a ring of finite type over a
Noetherian ring is of finite presentation, see Algebra, Lemma 31.4. Suppose that f is of
finite type and S is locally Noetherian. Then f is quasi-compact and locally of finite
presentation by (1). Hence it suffices to prove that f is quasi-separated. This follows from
Lemma 15.7 (and Lemma 21.8). �

Lemma 21.10. Let S be a scheme which is quasi-compact and quasi-separated. IfX is
of finite presentation over S , then X is quasi-compact and quasi-separated.

Proof. Omitted. �

Lemma 21.11. Let f : X → Y be a morphism of schemes over S.
(1) If X is locally of finite presentation over S and Y is locally of finite type over

S , then f is locally of finite presentation.
(2) IfX is of finite presentation over S and Y is quasi-separated and locally of finite

type over S , then f is of finite presentation.

Proof. Proof of (1). Via Lemma 21.2 this translates into the following algebra fact:
Given ring maps A → B → C such that A → C is of finite presentation and A → B is
of finite type, then B → C is of finite presentation. See Algebra, Lemma 6.2.

Part (2) follows from (1) and Schemes, Lemmas 21.13 and 21.14. �

Lemma 21.12. Let f : X → Y be a morphism of schemes with diagonal ∆ : X →
X ×Y X . If f is locally of finite type then ∆ is locally of finite presentation. If f is
quasi-separated and locally of finite type, then ∆ is of finite presentation.

Proof. Note that ∆ is a morphism of schemes over X (via the second projection
X ×Y X → X). Assume f is locally of finite type. Note that X is of finite presenta-
tion over X and X ×Y X is locally of finite type over X (by Lemma 15.4). Thus the
first statement holds by Lemma 21.11. The second statement follows from the first, the
definitions, and the fact that a diagonal morphism is a monomorphism, hence separated
(Schemes, Lemma 23.3). �

22. Constructible sets

Constructible and locally constructible sets of schemes have been discussed in Properties,
Section 2. In this section we prove some results concerning images and inverse images
of (locally) constructible sets. The main result is Chevalley’s theorem which states that
the image of a locally constructible set under a morphism of finite presentation is locally
constructible.

Lemma 22.1. Let f : X → Y be a morphism of schemes. Let E ⊂ Y be a subset. If
E is (locally) constructible in Y , then f−1(E) is (locally) constructible in X .

Proof. To show that the inverse image of every constructible subset is constructible
it suffices to show that the inverse image of every retrocompact open V of Y is retro-
compact in X , see Topology, Lemma 15.3. The significance of V being retrocompact in
Y is just that the open immersion V → Y is quasi-compact. Hence the base change
f−1(V ) = X ×Y V → X is quasi-compact too, see Schemes, Lemma 19.3. Hence we see
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f−1(V ) is retrocompact in X . Suppose E is locally constructible in Y . Choose x ∈ X .
Choose an affine neighbourhood V of f(x) and an affine neighbourhoodU ⊂ X of x such
that f(U) ⊂ V . Thus we think of f |U : U → V as a morphism into V . By Properties,
Lemma 2.1 we see that E ∩ V is constructible in V . By the constructible case we see that
(f |U )−1(E∩V ) is constructible inU . Since (f |U )−1(E∩V ) = f−1(E)∩U we win. �

Lemma 22.2. Let f : X → Y be a morphism of schemes. Assume
(1) f is quasi-compact and locally of finite presentation, and
(2) Y is quasi-compact and quasi-separated.

Then the image of every constructible subset of X is constructible in Y .

Proof. By Properties, Lemma 2.5 it suffices to prove this lemma in case Y is affine. In
this case X is quasi-compact. Hence we can write X = U1 ∪ . . . ∪ Un with each Ui affine
open inX . IfE ⊂ X is constructible, then eachE ∩Ui is constructible too, see Topology,
Lemma 15.4. Hence, since f(E) =

⋃
f(E ∩ Ui) and since finite unions of constructible

sets are constructible, this reduces us to the case where X is affine. In this case the result
is Algebra, Theorem 29.10. �

Theorem 22.3 (Chevalley’s Theorem). Let f : X → Y be a morphism of schemes.
Assume f is quasi-compact and locally of finite presentation. Then the image of every
locally constructible subset is locally constructible.

Proof. Let E ⊂ X be locally constructible. We have to show that f(E) is locally
constructible too. We will show that f(E)∩V is constructible for any affine open V ⊂ Y .
Thus we reduce to the case whereY is affine. In this caseX is quasi-compact. Hence we can
writeX = U1∪ . . .∪Un with eachUi affine open inX . IfE ⊂ X is locally constructible,
then eachE∩Ui is constructible, see Properties, Lemma 2.1. Hence, since f(E) =

⋃
f(E∩

Ui) and since finite unions of constructible sets are constructible, this reduces us to the case
where X is affine. In this case the result is Algebra, Theorem 29.10. �

Lemma 22.4. Let X be a scheme. Let x ∈ X . Let E ⊂ X be a locally constructible
subset. If {x′ | x′  x} ⊂ E , then E contains an open neighbourhood of x.

Proof. Assume {x′ | x′  x} ⊂ E. We may assume X is affine. In this case
E is constructible, see Properties, Lemma 2.1. In particular, also the complement Ec is
constructible. By Algebra, Lemma 29.4 we can find a morphism of affine schemes f :
Y → X such thatEc = f(Y ). Let Z ⊂ X be the scheme theoretic image of f . By Lemma
6.5 and the assumption {x′ | x′  x} ⊂ E we see that x 6∈ Z. Hence X \ Z ⊂ E is an
open neighbourhood of x contained in E. �

23. Open morphisms

Definition 23.1. Let f : X → S be a morphism.
(1) We say f is open if the map on underlying topological spaces is open.
(2) We say f is universally open if for any morphism of schemes S′ → S the base

change f ′ : XS′ → S′ is open.

According to Topology, Lemma 19.7 generalizations lift along certain types of open maps
of topological spaces. In fact generalizations lift along any open morphism of schemes (see
Lemma 23.5). Also, we will see that generalizations lift along flat morphisms of schemes
(Lemma 25.9). This sometimes in turn implies that the morphism is open.

Lemma 23.2. Let f : X → S be a morphism.
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(1) If f is locally of finite presentation and generalizations lift along f , then f is
open.

(2) If f is locally of finite presentation and generalizations lift along every base
change of f , then f is universally open.

Proof. It suffices to prove the first assertion. This reduces to the case where both X
and S are affine. In this case the result follows from Algebra, Lemma 41.3 and Proposition
41.8. �

See also Lemma 25.10 for the case of a morphism flat of finite presentation.

Lemma 23.3. A composition of (universally) open morphisms is (universally) open.

Proof. Omitted. �

Lemma 23.4. Let k be a field. Let X be a scheme over k. The structure morphism
X → Spec(k) is universally open.

Proof. Let S → Spec(k) be a morphism. We have to show that the base change
XS → S is open. The question is local on S and X , hence we may assume that S and X
are affine. In this case the result is Algebra, Lemma 41.10. �

Lemma 23.5. Let ϕ : X → Y be a morphism of schemes. If ϕ is open, then ϕ is
generizing (i.e., generalizations lift alongϕ). Ifϕ is universally open, thenϕ is universally
generizing.

Proof. Assume ϕ is open. Let y′  y be a specialization of points of Y . Let x ∈ X
with ϕ(x) = y. Choose affine opens U ⊂ X and V ⊂ Y such that ϕ(U) ⊂ V and x ∈ U .
Then also y′ ∈ V . Hence we may replace X by U and Y by V and assume X , Y affine.
The affine case is Algebra, Lemma 41.2 (combined with Algebra, Lemma 41.3). �

Lemma 23.6. Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be
open and surjective such that the base change f ′ : X ′ → Y ′ is quasi-compact. Then f is
quasi-compact.

Proof. Let V ⊂ Y be a quasi-compact open. As g is open and surjective we can find
a quasi-compact open W ′ ⊂ W such that g(W ′) = V . By assumption (f ′)−1(W ′) is
quasi-compact. The image of (f ′)−1(W ′) in X is equal to f−1(V ), see Lemma 9.3. Hence
f−1(V ) is quasi-compact as the image of a quasi-compact space, see Topology, Lemma 12.7.
Thus f is quasi-compact. �

24. Submersive morphisms

Definition 24.1. Let f : X → Y be a morphism of schemes.
(1) We say f is submersive7 if the continuous map of underlying topological spaces

is submersive, see Topology, Definition 6.3.
(2) We say f is universally submersive if for every morphism of schemes Y ′ → Y

the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

Lemma 24.2. The base change of a universally submersive morphism of schemes by
any morphism of schemes is universally submersive.

7This is very different from the notion of a submersion of differential manifolds.
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Proof. This is immediate from the definition. �

Lemma 24.3. The composition of a pair of (universally) submersive morphisms of
schemes is (universally) submersive.

Proof. Omitted. �

25. Flat morphisms

Flatness is one of the most important technical tools in algebraic geometry. In this sec-
tion we introduce this notion. We intentionally limit the discussion to straightforward
observations, apart from Lemma 25.10. A very important class of results, namely criteria
for flatness, are discussed in Algebra, Sections 99, 101, 128, and More on Morphisms, Sec-
tion 16. There is a chapter dedicated to advanced material on flat morphisms of schemes,
namely More on Flatness, Section 1.

Recall that a module M over a ring R is flat if the functor − ⊗R M : ModR → ModR
is exact. A ring map R → A is said to be flat if A is flat as an R-module. See Algebra,
Definition 39.1.

Definition 25.1. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf ofOX -modules.

(1) We say f is flat at a point x ∈ X if the local ringOX,x is flat over the local ring
OS,f(x).

(2) We say that F is flat over S at a point x ∈ X if the stalk Fx is a flat OS,f(x)-
module.

(3) We say f is flat if f is flat at every point of X .
(4) We say that F is flat over S if F is flat over S at every point x of X .

Thus we see that f is flat if and only if the structure sheafOX is flat over S.

Lemma 25.2. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf ofOX -modules. The following are equivalent

(1) The sheaf F is flat over S.
(2) For every affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the OS(V )-module
F(U) is flat.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the modules F|Ui is flat over Vj , for all j ∈ J, i ∈ Ij .
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that F(Ui) is a flatOS(Vj)-module, for all j ∈ J, i ∈

Ij .
Moreover, ifF is flat overS then for any open subschemesU ⊂ X , V ⊂ S with f(U) ⊂ V
the restriction F|U is flat over V .

Proof. LetR→ A be a ring map. LetM be anA-module. IfM isR-flat, then for all
primes q the module Mq is flat over Rp with p the prime of R lying under q. Conversely,
if Mq is flat over Rp for all primes q of A, then M is flat over R. See Algebra, Lemma
39.18. This equivalence easily implies the statements of the lemma. �

Lemma 25.3. Let f : X → S be a morphism of schemes. The following are equivalent
(1) The morphism f is flat.
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(2) For every affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the ring map OS(V )→
OX(U) is flat.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is flat.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such thatOS(Vj)→ OX(Ui) is flat, for all j ∈ J, i ∈ Ij .

Moreover, if f is flat then for any open subschemes U ⊂ X , V ⊂ S with f(U) ⊂ V the
restriction f |U : U → V is flat.

Proof. This is a special case of Lemma 25.2 above. �

Lemma 25.4. Let f : X → Y be an affine morphism of schemes over a base scheme
S. Let F be a quasi-coherent OX -module. Then F is flat over S if and only if f∗F is flat
over S.

Proof. By Lemma 25.2 and the fact that f is an affine morphism, this reduces us to
the affine case. SayX → Y → S corresponds to the ring mapsC ← B ← A. LetN be the
C-module corresponding to F . Recall that f∗F corresponds to N viewed as a B-module,
see Schemes, Lemma 7.3. Thus the result is clear. �

Lemma 25.5. Let X → Y → Z be morphisms of schemes. Let F be a quasi-coherent
OX -module. Let x ∈ X with image y in Y . If F is flat over Y at x, and Y is flat over Z at
y, then F is flat over Z at x.

Proof. See Algebra, Lemma 39.4. �

Lemma 25.6. The composition of flat morphisms is flat.

Proof. This is a special case of Lemma 25.5. �

Lemma 25.7. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf of OX -modules. Let g : S′ → S be a morphism of schemes. Denote g′ : X ′ =
XS′ → X the projection. Let x′ ∈ X ′ be a point with image x = g′(x′) ∈ X . If F is flat
over S at x, then (g′)∗F is flat over S′ at x′. In particular, if F is flat over S , then (g′)∗F
is flat over S′.

Proof. See Algebra, Lemma 39.7. �

Lemma 25.8. The base change of a flat morphism is flat.

Proof. This is a special case of Lemma 25.7. �

Lemma 25.9. Let f : X → S be a flat morphism of schemes. Then generalizations
lift along f , see Topology, Definition 19.4.

Proof. See Algebra, Section 41. �

Lemma 25.10. A flat morphism locally of finite presentation is universally open.

Proof. This follows from Lemmas 25.9 and Lemma 23.2 above. We can also argue
directly as follows.
Let f : X → S be flat and locally of finite presentation. By Lemmas 25.8 and 21.4 any base
change of f is flat and locally of finite presentation. Hence it suffices to show f is open.
To show f is open it suffices to show that we may coverX by open affinesX =

⋃
Ui such

that Ui → S is open. We may cover X by affine opens Ui ⊂ X such that each Ui maps
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into an affine open Vi ⊂ S and such that the induced ring map OS(Vi) → OX(Ui) is
flat and of finite presentation (Lemmas 25.3 and 21.2). Then Ui → Vi is open by Algebra,
Proposition 41.8 and the proof is complete. �

Lemma 25.11. Let f : X → Y be a morphism of schemes. Let F be a quasi-coherent
OX -module. Assume f locally finite presentation, F of finite type, X = Supp(F), and F
flat over Y . Then f is universally open.

Proof. By Lemmas 25.7, 21.4, and 5.3 the assumptions are preserved under base change.
By Lemma 23.2 it suffices to show that generalizations lift along f . This follows from Al-
gebra, Lemma 41.12. �

Lemma 25.12. Let f : X → Y be a quasi-compact, surjective, flat morphism. A subset
T ⊂ Y is open (resp. closed) if and only f−1(T ) is open (resp. closed). In other words, f
is a submersive morphism.

Proof. The question is local on Y , hence we may assume that Y is affine. In this case
X is quasi-compact as f is quasi-compact. Write X = X1 ∪ . . . ∪Xn as a finite union of
affine opens. Then f ′ : X ′ = X1 q . . . qXn → Y is a surjective flat morphism of affine
schemes. Note that for T ⊂ Y we have (f ′)−1(T ) = f−1(T )∩X1q . . .q f−1(T )∩Xn.
Hence, f−1(T ) is open if and only if (f ′)−1(T ) is open. Thus we may assume bothX and
Y are affine.

Let f : Spec(B)→ Spec(A) be a surjective morphism of affine schemes corresponding to
a flat ring map A → B. Suppose that f−1(T ) is closed, say f−1(T ) = V (J) for J ⊂ B
an ideal. Then T = f(f−1(T )) = f(V (J)) is the image of Spec(B/J)→ Spec(A) (here
we use that f is surjective). On the other hand, generalizations lift along f (Lemma 25.9).
Hence by Topology, Lemma 19.6 we see that Y \ T = f(X \ f−1(T )) is stable under
generalization. Hence T is stable under specialization (Topology, Lemma 19.2). Thus T is
closed by Algebra, Lemma 41.5. �

Lemma 25.13. Let h : X → Y be a morphism of schemes over S. Let G be a quasi-
coherent sheaf on Y . Let x ∈ X with y = h(x) ∈ Y . If h is flat at x, then

G flat over S at y ⇔ h∗G flat over S at x.

In particular: If h is surjective and flat, then G is flat over S , if and only if h∗G is flat over
S. If h is surjective and flat, and X is flat over S , then Y is flat over S.

Proof. You can prove this by applying Algebra, Lemma 39.9. Here is a direct proof.
Let s ∈ S be the image of y. Consider the local ring maps OS,s → OY,y → OX,x. By
assumption the ring map OY,y → OX,x is faithfully flat, see Algebra, Lemma 39.17. Let
N = Gy . Note that h∗Gx = N ⊗OY,y

OX,x, see Sheaves, Lemma 26.4. Let M ′ → M be
an injection ofOS,s-modules. By the faithful flatness mentioned above we have

Ker(M ′ ⊗OS,s
N →M ⊗OS,s

N)⊗OY,y
OX,x

= Ker(M ′ ⊗OS,s
N ⊗OY,y

OX,x →M ⊗OS,s
N ⊗OY,y

OX,x)

Hence the equivalence of the lemma follows from the second characterization of flatness
in Algebra, Lemma 39.5. �

Lemma 25.14. Let f : Y → X be a morphism of schemes. LetF be a finite type quasi-
coherent OX -module with scheme theoretic support Z ⊂ X . If f is flat, then f−1(Z) is
the scheme theoretic support of f∗F .
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Proof. Using the characterization of scheme theoretic support on affines as given in
Lemma 5.4 we reduce to Algebra, Lemma 40.4. �

Lemma 25.15. Let f : X → Y be a flat morphism of schemes. Let V ⊂ Y be a retro-
compact open which is scheme theoretically dense. Then f−1V is scheme theoretically
dense in X .

Proof. We will use the characterization of Lemma 7.5. We have to show that for any
open U ⊂ X the map OX(U) → OX(U ∩ f−1V ) is injective. It suffices to prove this
when U is an affine open which maps into an affine open W ⊂ Y . Say W = Spec(A)
and U = Spec(B). Then V ∩W = D(f1) ∪ . . . ∪D(fn) for some fi ∈ A, see Algebra,
Lemma 29.1. Thus we have to show that B → Bf1 × . . .×Bfn is injective. We are given
thatA→ Af1 × . . .×Afn is injective and thatA→ B is flat. SinceBfi = Afi ⊗AB we
win. �

Lemma 25.16. Let f : X → Y be a flat morphism of schemes. Let g : V → Y be
a quasi-compact morphism of schemes. Let Z ⊂ Y be the scheme theoretic image of g
and let Z ′ ⊂ X be the scheme theoretic image of the base change V ×Y X → X . Then
Z ′ = f−1Z.

Proof. Recall that Z is cut out by I = Ker(OY → g∗OV ) and Z ′ is cut out by
I ′ = Ker(OX → (V ×Y X → X)∗OV×YX), see Lemma 6.3. Hence the question is local
on X and Y and we may assume X and Y affine. Note that we may replace V by

∐
Vi

where V = V1 ∪ . . .∪Vn is a finite affine open covering. Hence we may assume g is affine.
In this case (V ×Y X → X)∗OV×YX is the pullback of g∗OV by f . Since f is flat we
conclude that f∗I = I ′ and the lemma holds. �

26. Flat closed immersions

Connected components of schemes are not always open. But they do always have a canon-
ical scheme structure. We explain this in this section.

Lemma 26.1. Let X be a scheme. The rule which associates to a closed subscheme of
X its underlying closed subset defines a bijection{

closed subschemes Z ⊂ X
such that Z → X is flat

}
↔
{

closed subsets Z ⊂ X
closed under generalizations

}
If Z ⊂ X is such a closed subscheme, every morphism of schemes g : Y → X with
g(Y ) ⊂ Z set theoretically factors (scheme theoretically) through Z.

Proof. The affine case of the bijection is Algebra, Lemma 108.4. For general schemes
X the bijection follows by covering X by affines and glueing. Details omitted. For the
final assertion, observe that the projection Z ×X,g Y → Y is a flat (Lemma 25.8) closed
immersion which is bijective on underlying topological spaces and hence must be an iso-
morphism by the bijection esthablished in the first part of the proof. �

Lemma 26.2. A flat closed immersion of finite presentation is the open immersion of
an open and closed subscheme.

Proof. The affine case is Algebra, Lemma 108.5. In general the lemma follows by
covering X by affines. Details omitted. �

Note that a connected component T of a scheme X is a closed subset stable under gener-
alization. Hence the following definition makes sense.
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Definition 26.3. Let X be a scheme. Let T ⊂ X be a connected component. The
canonical scheme structure on T is the unique scheme structure on T such that the closed
immersion T → X is flat, see Lemma 26.1.

It turns out that we can determine when every finite flatOX -module is finite locally free
using the previous lemma.

Lemma 26.4. Let X be a scheme. The following are equivalent
(1) every finite flat quasi-coherentOX -module is finite locally free, and
(2) every closed subset Z ⊂ X which is closed under generalizations is open.

Proof. In the affine case this is Algebra, Lemma 108.6. The scheme case does not
follow directly from the affine case, so we simply repeat the arguments.

Assume (1). Consider a closed immersion i : Z → X such that i is flat. Then i∗OZ is quasi-
coherent and flat, hence finite locally free by (1). Thus Z = Supp(i∗OZ) is also open and
we see that (2) holds. Hence the implication (1)⇒ (2) follows from the characterization
of flat closed immersions in Lemma 26.1.

For the converse assume that X satisfies (2). Let F be a finite flat quasi-coherent OX -
module. The support Z = Supp(F) ofF is closed, see Modules, Lemma 9.6. On the other
hand, if x  x′ is a specialization, then by Algebra, Lemma 78.5 the module Fx′ is free
overOX,x′ , and

Fx = Fx′ ⊗OX,x′ OX,x.
Hence x′ ∈ Supp(F)⇒ x ∈ Supp(F), in other words, the support is closed under gener-
alization. As X satisfies (2) we see that the support of F is open and closed. The modules
∧i(F), i = 1, 2, 3, . . . are finite flat quasi-coherentOX -modules also, see Modules, Section
21. Note that Supp(∧i+1(F)) ⊂ Supp(∧i(F)). Thus we see that there exists a decompo-
sition

X = U0 q U1 q U2 q . . .
by open and closed subsets such that the support of ∧i(F) is Ui ∪Ui+1 ∪ . . . for all i. Let
x be a point of X , and say x ∈ Ur. Note that ∧i(F)x ⊗ κ(x) = ∧i(Fx ⊗ κ(x)). Hence,
x ∈ Ur implies that Fx ⊗ κ(x) is a vector space of dimension r. By Nakayama’s lemma,
see Algebra, Lemma 20.1 we can choose an affine open neighbourhood U ⊂ Ur ⊂ X of x
and sections s1, . . . , sr ∈ F(U) such that the induced map

O⊕r
U −→ F|U , (f1, . . . , fr) 7−→

∑
fisi

is surjective. This means that ∧r(F|U ) is a finite flat quasi-coherent OU -module whose
support is all of U . By the above it is generated by a single element, namely s1 ∧ . . .∧ sr.
Hence ∧r(F|U ) ∼= OU/I for some quasi-coherent sheaf of ideals I such thatOU/I is flat
over OU and such that V (I) = U . It follows that I = 0 by applying Lemma 26.1. Thus
s1 ∧ . . . ∧ sr is a basis for ∧r(F|U ) and it follows that the displayed map is injective as
well as surjective. This proves that F is finite locally free as desired. �

27. Generic flatness

A scheme of finite type over an integral base is flat over a dense open of the base. In
Algebra, Section 118 we proved a Noetherian version, a version for morphisms of finite
presentation, and a general version. We only state and prove the general version here.
However, it turns out that this will be superseded by Proposition 27.2 which shows the
result holds if we only assume the base is reduced.
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Proposition 27.1 (Generic flatness). Let f : X → S be a morphism of schemes. Let
F be a quasi-coherent sheaf ofOX -modules. Assume

(1) S is integral,
(2) f is of finite type, and
(3) F is a finite typeOX -module.

Then there exists an open dense subscheme U ⊂ S such that XU → U is flat and of finite
presentation and such that F|XU is flat over U and of finite presentation overOXU .

Proof. AsS is integral it is irreducible (see Properties, Lemma 3.4) and any nonempty
open is dense. Hence we may replace S by an affine open of S and assume that S =
Spec(A) is affine. As S is integral we see that A is a domain. As f is of finite type, it
is quasi-compact, so X is quasi-compact. Hence we can find a finite affine open cover
X =

⋃
i=1,...,nXi. Write Xi = Spec(Bi). Then Bi is a finite type A-algebra, see Lemma

15.2. Moreover there are finite type Bi-modules Mi such that F|Xi is the quasi-coherent
sheaf associated to theBi-moduleMi, see Properties, Lemma 16.1. Next, for each pair of in-
dices i, j choose an ideal Iij ⊂ Bi such thatXi\Xi∩Xj = V (Iij) insideXi = Spec(Bi).
Set Mij = Bi/Iij and think of it as a Bi-module. Then V (Iij) = Supp(Mij) and Mij is
a finite Bi-module.
At this point we apply Algebra, Lemma 118.3 the pairs (A → Bi,Mij) and to the pairs
(A → Bi,Mi). Thus we obtain nonzero fij , fi ∈ A such that (a) Afij → Bi,fij is
flat and of finite presentation and Mij,fij is flat over Afij and of finite presentation over
Bi,fij , and (b)Bi,fi is flat and of finite presentation overAf andMi,fi is flat and of finite
presentation over Bi,fi . Set f = (

∏
fi)(

∏
fij). We claim that taking U = D(f) works.

To prove our claim we may replace A by Af , i.e., perform the base change by U =
Spec(Af ) → S. After this base change we see that each of A → Bi is flat and of fi-
nite presentation and thatMi,Mij are flat overA and of finite presentation overBi. This
already proves that X → S is quasi-compact, locally of finite presentation, flat, and that
F is flat over S and of finite presentation overOX , see Lemma 21.2 and Properties, Lemma
16.2. Since Mij is of finite presentation over Bi we see that Xi ∩Xj = Xi \ Supp(Mij)
is a quasi-compact open of Xi, see Algebra, Lemma 40.8. Hence we see that X → S is
quasi-separated by Schemes, Lemma 21.6. This proves the proposition. �

It actually turns out that there is also a version of generic flatness over an arbitrary reduced
base. Here it is.

Proposition 27.2 (Generic flatness, reduced case). Let f : X → S be a morphism of
schemes. Let F be a quasi-coherent sheaf ofOX -modules. Assume

(1) S is reduced,
(2) f is of finite type, and
(3) F is a finite typeOX -module.

Then there exists an open dense subscheme U ⊂ S such that XU → U is flat and of finite
presentation and such that F|XU is flat over U and of finite presentation overOXU .

Proof. For the impatient reader: This proof is a repeat of the proof of Proposition
27.1 using Algebra, Lemma 118.7 instead of Algebra, Lemma 118.3.
Since being flat and being of finite presentation is local on the base, see Lemmas 25.2 and
21.2, we may work affine locally on S. Thus we may assume that S = Spec(A), whereA is
a reduced ring (see Properties, Lemma 3.2). As f is of finite type, it is quasi-compact, so X
is quasi-compact. Hence we can find a finite affine open cover X =

⋃
i=1,...,nXi. Write
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Xi = Spec(Bi). Then Bi is a finite type A-algebra, see Lemma 15.2. Moreover there are
finite type Bi-modules Mi such that F|Xi is the quasi-coherent sheaf associated to the
Bi-module Mi, see Properties, Lemma 16.1. Next, for each pair of indices i, j choose an
ideal Iij ⊂ Bi such thatXi \Xi∩Xj = V (Iij) insideXi = Spec(Bi). SetMij = Bi/Iij
and think of it as aBi-module. Then V (Iij) = Supp(Mij) andMij is a finiteBi-module.

At this point we apply Algebra, Lemma 118.7 the pairs (A → Bi,Mij) and to the pairs
(A → Bi,Mi). Thus we obtain dense opens U(A → Bi,Mij) ⊂ S and dense opens
U(A → Bi,Mi) ⊂ S with notation as in Algebra, Equation (118.3.2). Since a finite
intersection of dense opens is dense open, we see that

U =
⋂

i,j
U(A→ Bi,Mij) ∩

⋂
i
U(A→ Bi,Mi)

is open and dense in S. We claim that U is the desired open.

Pick u ∈ U . By definition of the loci U(A → Bi,Mij) and U(A → B,Mi) there exist
fij , fi ∈ A such that (a) u ∈ D(fi) and u ∈ D(fij), (b) Afij → Bi,fij is flat and of finite
presentation and Mij,fij is flat over Afij and of finite presentation over Bi,fij , and (c)
Bi,fi is flat and of finite presentation over Af and Mi,fi is flat and of finite presentation
over Bi,fi . Set f = (

∏
fi)(

∏
fij). Now it suffices to prove that X → S is flat and of

finite presentation overD(f) and thatF restricted toXD(f) is flat overD(f) and of finite
presentation over the structure sheaf of XD(f).

Hence we may replace A by Af , i.e., perform the base change by Spec(Af ) → S. After
this base change we see that each ofA→ Bi is flat and of finite presentation and thatMi,
Mij are flat over A and of finite presentation over Bi. This already proves that X → S
is quasi-compact, locally of finite presentation, flat, and that F is flat over S and of finite
presentation over OX , see Lemma 21.2 and Properties, Lemma 16.2. Since Mij is of finite
presentation over Bi we see that Xi ∩Xj = Xi \ Supp(Mij) is a quasi-compact open of
Xi, see Algebra, Lemma 40.8. Hence we see that X → S is quasi-separated by Schemes,
Lemma 21.6. This proves the proposition. �

Remark 27.3. The results above are a first step towards more refined flattening tech-
niques for morphisms of schemes. The article [?] by Raynaud and Gruson contains many
wonderful results in this direction.

28. Morphisms and dimensions of fibres

LetX be a topological space, and x ∈ X . Recall that we have defined dimx(X) as the min-
imum of the dimensions of the open neighbourhoods of x inX . See Topology, Definition
10.1.

Lemma 28.1. Let f : X → S be a morphism of schemes. Let x ∈ X and set s = f(x).
Assume f is locally of finite type. Then

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)).

Proof. This immediately reduces to the case S = s, and X affine. In this case the
result follows from Algebra, Lemma 116.3. �

Lemma 28.2. Let f : X → Y and g : Y → S be morphisms of schemes. Let x ∈ X
and set y = f(x), s = g(y). Assume f and g locally of finite type. Then

dimx(Xs) ≤ dimx(Xy) + dimy(Ys).
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Moreover, equality holds if OXs,x is flat over OYs,y , which holds for example if OX,x is
flat overOY,y .

Proof. Note that trdegκ(s)(κ(x)) = trdegκ(y)(κ(x)) + trdegκ(s)(κ(y)). Thus by
Lemma 28.1 the statement is equivalent to

dim(OXs,x) ≤ dim(OXy,x) + dim(OYs,y).

For this see Algebra, Lemma 112.6. For the flat case see Algebra, Lemma 112.7. �

Lemma 28.3. Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a fibre product diagram of schemes. Assume f locally of finite type. Suppose that
x′ ∈ X ′, x = g′(x′), s′ = f ′(x′) and s = g(s′) = f(x). Then

(1) dimx(Xs) = dimx′(X ′
s′),

(2) if F is the fibre of the morphism X ′
s′ → Xs over x, then

dim(OF,x′) = dim(OX′
s′ ,x

′)− dim(OXs,x) = trdegκ(s)(κ(x))− trdegκ(s′)(κ(x′))

In particular dim(OX′
s′ ,x

′) ≥ dim(OXs,x) and trdegκ(s)(κ(x)) ≥ trdegκ(s′)(κ(x′)).
(3) given s′, s, x there exists a choice of x′ such that dim(OX′

s′ ,x
′) = dim(OXs,x)

and trdegκ(s)(κ(x)) = trdegκ(s′)(κ(x′)).

Proof. Part (1) follows immediately from Algebra, Lemma 116.6. Parts (2) and (3)
from Algebra, Lemma 116.7. �

The following lemma follows from a nontrivial algebraic result. Namely, the algebraic
version of Zariski’s main theorem.

Lemma 28.4. Let f : X → S be a morphism of schemes. Let n ≥ 0. Assume f is
locally of finite type. The set

Un = {x ∈ X | dimxXf(x) ≤ n}

is open in X .

Proof. This is immediate from Algebra, Lemma 125.6 �

Lemma 28.5. Let f : X → Y be a morphism of finite type with Y quasi-compact.
Then the dimension of the fibres of f is bounded.

Proof. By Lemma 28.4 the set Un ⊂ X of points where the dimension of the fibre
is ≤ n is open. Since f is of finite type, every point is contained in some Un (because the
dimension of a finite type algebra over a field is finite). Since Y is quasi-compact and f is
of finite type, we see that X is quasi-compact. Hence X = Un for some n. �

Lemma 28.6. Let f : X → S be a morphism of schemes. Let n ≥ 0. Assume f is
locally of finite presentation. The open

Un = {x ∈ X | dimxXf(x) ≤ n}

of Lemma 28.4 is retrocompact in X . (See Topology, Definition 12.1.)
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Proof. The topological spaceX has a basis for its topology consisting of affine opens
U ⊂ X such that the induced morphism f |U : U → S factors through an affine open
V ⊂ S. Hence it is enough to show that U ∩Un is quasi-compact for such a U . Note that
Un ∩ U is the same as the open {x ∈ U | dimx Uf(x) ≤ n}. This reduces us to the case
whereX and S are affine. In this case the lemma follows from Algebra, Lemma 125.8 (and
Lemma 21.2). �

Lemma 28.7. Let f : X → S be a morphism of schemes. Let x  x′ be a nontrivial
specialization of points inX lying over the same point s ∈ S. Assume f is locally of finite
type. Then

(1) dimx(Xs) ≤ dimx′(Xs),
(2) dim(OXs,x) < dim(OXs,x′), and
(3) trdegκ(s)(κ(x)) > trdegκ(s)(κ(x′)).

Proof. Part (1) follows from the fact that any open ofXs containing x′ also contains
x. Part (2) follows sinceOXs,x is a localization ofOXs,x′ at a prime ideal, hence any chain
of prime ideals in OXs,x is part of a strictly longer chain of primes in OXs,x′ . The last
inequality follows from Algebra, Lemma 116.2. �

29. Morphisms of given relative dimension

In order to be able to speak comfortably about morphisms of a given relative dimension
we introduce the following notion.

Definition 29.1. Let f : X → S be a morphism of schemes. Assume f is locally of
finite type.

(1) We say f is of relative dimension ≤ d at x if dimx(Xf(x)) ≤ d.
(2) We say f is of relative dimension ≤ d if dimx(Xf(x)) ≤ d for all x ∈ X .
(3) We say f is of relative dimension d if all nonempty fibresXs are equidimensional

of dimension d.

This is not a particularly well behaved notion, but it works well in a number of situations.

Lemma 29.2. Let f : X → S be a morphism of schemes which is locally of finite
type. If f has relative dimension d, then so does any base change of f . Same for relative
dimension ≤ d.

Proof. This is immediate from Lemma 28.3. �

Lemma 29.3. Let f : X → Y , g : Y → Z be locally of finite type. If f has relative
dimension≤ d and g has relative dimension≤ e then g◦f has relative dimension≤ d+e.
If

(1) f has relative dimension d,
(2) g has relative dimension e, and
(3) f is flat,

then g ◦ f has relative dimension d+ e.

Proof. This is immediate from Lemma 28.2. �

In general it is not possible to decompose a morphism into its pieces where the relative
dimension is a given one. However, it is possible if the morphism has Cohen-Macaulay
fibres and is flat of finite presentation.
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Lemma 29.4. Let f : X → S be a morphism of schemes. Assume that
(1) f is flat,
(2) f is locally of finite presentation, and
(3) for all s ∈ S the fibre Xs is Cohen-Macaulay (Properties, Definition 8.1)

Then there exist open and closed subschemes Xd ⊂ X such that X =
∐
d≥0 Xd and

f |Xd : Xd → S has relative dimension d.

Proof. This is immediate from Algebra, Lemma 130.8. �

Lemma 29.5. Let f : X → S be a morphism of schemes. Assume f is locally of finite
type. Let x ∈ X with s = f(x). Then f is quasi-finite at x if and only if dimx(Xs) = 0.
In particular, f is locally quasi-finite if and only if f has relative dimension 0.

Proof. If f is quasi-finite at x then κ(x) is a finite extension of κ(s) (by Lemma 20.5)
and x is isolated inXs (by Lemma 20.6), hence dimx(Xs) = 0 by Lemma 28.1. Conversely,
if dimx(Xs) = 0 then by Lemma 28.1 we see κ(s) ⊂ κ(x) is algebraic and there are no
other points of Xs specializing to x. Hence x is closed in its fibre by Lemma 20.2 and by
Lemma 20.6 (3) we conclude that f is quasi-finite at x. �

Lemma 29.6. Let f : X → Y be a morphism of locally Noetherian schemes which is
flat, locally of finite type and of relative dimension d. For every point x in X with image
y in Y we have dimx(X) = dimy(Y ) + d.

Proof. After shrinking X and Y to open neighborhoods of x and y, we can assume
that dim(X) = dimx(X) and dim(Y ) = dimy(Y ), by definition of the dimension of a
scheme at a point (Properties, Definition 10.1). The morphism f is open by Lemmas 21.9
and 25.10. Hence we can shrink Y to arrange that f is surjective. It remains to show that
dim(X) = dim(Y ) + d.

Let a be a point in X with image b in Y . By Algebra, Lemma 112.7,

dim(OX,a) = dim(OY,b) + dim(OXb,a).

Taking the supremum over all points a in X , it follows that dim(X) = dim(Y ) + d, as
we want, see Properties, Lemma 10.2. �

30. Syntomic morphisms

An algebraA over a field k is called a global complete intersection over k ifA ∼= k[x1, . . . , xn]/(f1, . . . , fc)
and dim(A) = n− c. An algebra A over a field k is called a local complete intersection if
Spec(A) can be covered by standard opens each of which are global complete intersections
over k. See Algebra, Section 135. Recall that a ring mapR→ A is syntomic if it is of finite
presentation, flat with local complete intersection rings as fibres, see Algebra, Definition
136.1.

Definition 30.1. Let f : X → S be a morphism of schemes.
(1) We say that f is syntomic at x ∈ X if there exists an affine open neighbourhood

Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with f(U) ⊂ V
such that the induced ring map R→ A is syntomic.

(2) We say that f is syntomic if it is syntomic at every point of X .
(3) If S = Spec(k) and f is syntomic, then we say that X is a local complete inter-

section over k.
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(4) A morphism of affine schemes f : X → S is called standard syntomic if there
exists a global relative complete intersection R → R[x1, . . . , xn]/(f1, . . . , fc)
(see Algebra, Definition 136.5) such that X → S is isomorphic to

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

In the literature a syntomic morphism is sometimes referred to as a flat local complete
intersection morphism. It turns out this is a convenient class of morphisms. For example
one can define a syntomic topology using these, which is finer than the smooth and étale
topologies, but has many of the same formal properties.

A global relative complete intersection (which we used to define standard syntomic ring
maps) is in particular flat. In More on Morphisms, Section 62 we will consider morphisms
X → S which locally are of the form

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

for some Koszul-regular sequence f1, . . . , fr in R[x1, . . . , xn]. Such a morphism will be
called a local complete intersection morphism. Once we have this definition in place it will
be the case that a morphism is syntomic if and only if it is a flat, local complete intersection
morphism.

Note that there is no separation or quasi-compactness hypotheses in the definition of a
syntomic morphism. Hence the question of being syntomic is local in nature on the source.
Here is the precise result.

Lemma 30.2. Let f : X → S be a morphism of schemes. The following are equivalent
(1) The morphism f is syntomic.
(2) For every affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the ring map OS(V )→
OX(U) is syntomic.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is syntomic.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is syntomic,

for all j ∈ J, i ∈ Ij .
Moreover, if f is syntomic then for any open subschemes U ⊂ X , V ⊂ S with f(U) ⊂ V
the restriction f |U : U → V is syntomic.

Proof. This follows from Lemma 14.3 if we show that the property “R→ A is syn-
tomic” is local. We check conditions (a), (b) and (c) of Definition 14.1. By Algebra, Lemma
136.3 being syntomic is stable under base change and hence we conclude (a) holds. By Al-
gebra, Lemma 136.17 being syntomic is stable under composition and trivially for any ring
R the ring map R→ Rf is syntomic. We conclude (b) holds. Finally, property (c) is true
according to Algebra, Lemma 136.4. �

Lemma 30.3. The composition of two morphisms which are syntomic is syntomic.

Proof. In the proof of Lemma 30.2 we saw that being syntomic is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 14.5 combined
with the fact that being syntomic is a property of ring maps that is stable under composi-
tion, see Algebra, Lemma 136.17. �

Lemma 30.4. The base change of a morphism which is syntomic is syntomic.



30. SYNTOMIC MORPHISMS 2447

Proof. In the proof of Lemma 30.2 we saw that being syntomic is a local property of
ring maps. Hence the lemma follows from Lemma 14.5 combined with the fact that being
syntomic is a property of ring maps that is stable under base change, see Algebra, Lemma
136.3. �

Lemma 30.5. Any open immersion is syntomic.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 30.6. A syntomic morphism is locally of finite presentation.

Proof. True because a syntomic ring map is of finite presentation by definition. �

Lemma 30.7. A syntomic morphism is flat.

Proof. True because a syntomic ring map is flat by definition. �

Lemma 30.8. A syntomic morphism is universally open.

Proof. Combine Lemmas 30.6, 30.7, and 25.10. �

Let k be a field. Let A be a local k-algebra essentially of finite type over k. Recall that A
is called a complete intersection over k if we can write A ∼= R/(f1, . . . , fc) where R is a
regular local ring essentially of finite type over k, and f1, . . . , fc is a regular sequence in
R, see Algebra, Definition 135.5.

Lemma 30.9. Let k be a field. Let X be a scheme locally of finite type over k. The
following are equivalent:

(1) X is a local complete intersection over k,
(2) for every x ∈ X there exists an affine open U = Spec(R) ⊂ X neighbourhood

of x such that R ∼= k[x1, . . . , xn]/(f1, . . . , fc) is a global complete intersection
over k, and

(3) for every x ∈ X the local ringOX,x is a complete intersection over k.

Proof. The corresponding algebra results can be found in Algebra, Lemmas 135.8 and
135.9. �

The following lemma says locally any syntomic morphism is standard syntomic. Hence
we can use standard syntomic morphisms as a local model for a syntomic morphism. More-
over, it says that a flat morphism of finite presentation is syntomic if and only if the fibres
are local complete intersection schemes.

Lemma 30.10. Let f : X → S be a morphism of schemes. Let x ∈ X be a point with
image s = f(x). Let V ⊂ S be an affine open neighbourhood of s. The following are
equivalent

(1) The morphism f is syntomic at x.
(2) There exist an affine open U ⊂ X with x ∈ U and f(U) ⊂ V such that f |U :

U → V is standard syntomic.
(3) The morphism f is of finite presentation at x, the local ring map OS,s → OX,x

is flat andOX,x/msOX,x is a complete intersection over κ(s) (see Algebra, Def-
inition 135.5).

Proof. Follows from the definitions and Algebra, Lemma 136.15. �

Lemma 30.11. Let f : X → S be a morphism of schemes. If f is flat, locally of finite
presentation, and all fibres Xs are local complete intersections, then f is syntomic.
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Proof. Clear from Lemmas 30.9 and 30.10 and the isomorphisms of local ringsOX,x/msOX,x ∼=
OXs,x. �

Lemma 30.12. Let f : X → S be a morphism of schemes. Assume f locally of finite
type. Formation of the set

T = {x ∈ X | OXf(x),x is a complete intersection over κ(f(x))}
commutes with arbitrary base change: For any morphism g : S′ → S , consider the base
change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X . Then the corresponding
set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). In particular, if f is assumed flat,
and locally of finite presentation then the same holds for the open set of points where f is
syntomic.

Proof. Let s′ ∈ S′ be a point, and let s = g(s′). Then we have
X ′
s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres. Hence
the first part is equivalent to Algebra, Lemma 135.10. The second part follows from the
first because in that case T is the set of points where f is syntomic according to Lemma
30.10. �

Lemma 30.13. LetR be a ring. LetR→ A = R[x1, . . . , xn]/(f1, . . . , fc) be a relative
global complete intersection. Set S = Spec(R) and X = Spec(A). Consider the mor-
phism f : X → S associated to the ring map R→ A. The function x 7→ dimx(Xf(x)) is
constant with value n− c.

Proof. By Algebra, Definition 136.5 R → A being a relative global complete in-
tersection means all nonzero fibre rings have dimension n − c. Thus for a prime p of R
the fibre ring κ(p)[x1, . . . , xn]/(f1, . . . , f c) is either zero or a global complete intersec-
tion ring of dimension n − c. By the discussion following Algebra, Definition 135.1 this
implies it is equidimensional of dimension n− c. Whence the lemma. �

Lemma 30.14. Let f : X → S be a syntomic morphism. The functionx 7→ dimx(Xf(x))
is locally constant on X .

Proof. By Lemma 30.10 the morphism f locally looks like a standard syntomic mor-
phism of affines. Hence the result follows from Lemma 30.13. �

Lemma 30.14 says that the following definition makes sense.

Definition 30.15. Let d ≥ 0 be an integer. We say a morphism of schemes f : X →
S is syntomic of relative dimension d if f is syntomic and the function dimx(Xf(x)) = d
for all x ∈ X .

In other words, f is syntomic and the nonempty fibres are equidimensional of dimension
d.

Lemma 30.16. Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective and syntomic,
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(2) p is syntomic, and
(3) q is locally of finite presentation8.

Then q is syntomic.

Proof. By Lemma 25.13 we see that q is flat. Hence it suffices to show that the fibres
of Y → S are local complete intersections, see Lemma 30.11. Let s ∈ S. Consider the
morphismXs → Ys. This is a base change of the morphismX → Y and hence surjective,
and syntomic (Lemma 30.4). For the same reasonXs is syntomic over κ(s). Moreover, Ys
is locally of finite type over κ(s) (Lemma 15.4). In this way we reduce to the case where
S is the spectrum of a field.

Assume S = Spec(k). Let y ∈ Y . Choose an affine open Spec(A) ⊂ Y neighbourhood
of y. Let Spec(B) ⊂ X be an affine open such that f(Spec(B)) ⊂ Spec(A), contain-
ing a point x ∈ X such that f(x) = y. Choose a surjection k[x1, . . . , xn] → A with
kernel I . Choose a surjection A[y1, . . . , ym] → B, which gives rise in turn to a sur-
jection k[xi, yj ] → B with kernel J . Let q ⊂ k[xi, yj ] be the prime corresponding to
y ∈ Spec(B) and let p ⊂ k[xi] the prime corresponding to x ∈ Spec(A). Since x maps
to y we have p = q ∩ k[xi]. Consider the following commutative diagram of local rings:

OX,x Bq k[x1, . . . , xn, y1, . . . , ym]qoo

OY,y

OO

Ap

OO

k[x1, . . . , xn]poo

OO

We claim that the hypotheses of Algebra, Lemma 135.12 are satisfied. Conditions (1) and
(2) are trivial. Condition (4) follows as X → Y is flat. Condition (3) follows as the rings
OY,y and OXy,x = OX,x/myOX,x are complete intersection rings by our assumptions
that f and p are syntomic, see Lemma 30.10. The output of Algebra, Lemma 135.12 is
exactly that OY,y is a complete intersection ring! Hence by Lemma 30.10 again we see
that Y is syntomic over k at y as desired. �

31. Conormal sheaf of an immersion

Let i : Z → X be a closed immersion. Let I ⊂ OX be the corresponding quasi-coherent
sheaf of ideals. Consider the short exact sequence

0→ I2 → I → I/I2 → 0

of quasi-coherent sheaves onX . Since the sheaf I/I2 is annihilated by I it corresponds to
a sheaf on Z by Lemma 4.1. This quasi-coherent OZ -module is called the conormal sheaf
ofZ inX and is often simply denoted I/I2 by the abuse of notation mentioned in Section
4.

In case i : Z → X is a (locally closed) immersion we define the conormal sheaf of i as the
conormal sheaf of the closed immersion i : Z → X \ ∂Z , where ∂Z = Z \ Z. It is often
denoted I/I2 where I is the ideal sheaf of the closed immersion i : Z → X \ ∂Z.

Definition 31.1. Let i : Z → X be an immersion. The conormal sheaf CZ/X of Z
in X or the conormal sheaf of i is the quasi-coherentOZ -module I/I2 described above.

8In fact, if f is surjective, flat, and locally of finite presentation and p is syntomic, then both q and f are
syntomic, see Descent, Lemma 14.7.
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In [?, IV Definition 16.1.2] this sheaf is denotedNZ/X . We will not follow this convention
since we would like to reserve the notationNZ/X for the normal sheaf of the immersion.
It is defined as

NZ/X = HomOZ
(CZ/X ,OZ) = HomOZ

(I/I2,OZ)
provided the conormal sheaf is of finite presentation (otherwise the normal sheaf may
not even be quasi-coherent). We will come back to the normal sheaf later (insert future
reference here).

Lemma 31.2. Let i : Z → X be an immersion. The conormal sheaf of i has the
following properties:

(1) Let U ⊂ X be any open subscheme such that i factors as Z i′−→ U → X where i′
is a closed immersion. Let I = Ker((i′)]) ⊂ OU . Then

CZ/X = (i′)∗I and i′∗CZ/X = I/I2

(2) For any affine open Spec(R) = U ⊂ X such that Z ∩ U = Spec(R/I) there is
a canonical isomorphism Γ(Z ∩ U, CZ/X) = I/I2.

Proof. Mostly clear from the definitions. Note that given a ring R and an ideal I of
R we have I/I2 = I ⊗R R/I . Details omitted. �

Lemma 31.3. Let
Z

i
//

f

��

X

g

��
Z ′ i′ // X ′

be a commutative diagram in the category of schemes. Assume i, i′ immersions. There is
a canonical map ofOZ -modules

f∗CZ′/X′ −→ CZ/X
characterized by the following property: For every pair of affine opens (Spec(R) = U ⊂
X, Spec(R′) = U ′ ⊂ X ′) with f(U) ⊂ U ′ such that Z ∩U = Spec(R/I) and Z ′ ∩U ′ =
Spec(R′/I ′) the induced map

Γ(Z ′ ∩ U ′, CZ′/X′) = I ′/I ′2 −→ I/I2 = Γ(Z ∩ U, CZ/X)

is the one induced by the ring map f ] : R′ → R which has the property f ](I ′) ⊂ I .

Proof. Let ∂Z ′ = Z ′ \Z ′ and ∂Z = Z \Z. These are closed subsets ofX ′ and ofX .
Replacing X ′ by X ′ \ ∂Z ′ and X by X \

(
g−1(∂Z ′) ∪ ∂Z

)
we see that we may assume

that i and i′ are closed immersions.
The fact that g ◦ i factors through i′ implies that g∗I ′ maps into I under the canonical
map g∗I ′ → OX , see Schemes, Lemmas 4.6 and 4.7. Hence we get an induced map of
quasi-coherent sheaves g∗(I ′/(I ′)2)→ I/I2. Pulling back by i gives i∗g∗(I ′/(I ′)2)→
i∗(I/I2). Note that i∗(I/I2) = CZ/X . On the other hand, i∗g∗(I ′/(I ′)2) = f∗(i′)∗(I ′/(I ′)2) =
f∗CZ′/X′ . This gives the desired map.

Checking that the map is locally described as the given map I ′/(I ′)2 → I/I2 is a matter of
unwinding the definitions and is omitted. Another observation is that given any x ∈ i(Z)
there do exist affine open neighbourhoods U , U ′ with f(U) ⊂ U ′ and Z ∩ U as well as
U ′ ∩ Z ′ closed such that x ∈ U . Proof omitted. Hence the requirement of the lemma
indeed characterizes the map (and could have been used to define it). �
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Lemma 31.4. Let
Z

i
//

f

��

X

g

��
Z ′ i′ // X ′

be a fibre product diagram in the category of schemes with i, i′ immersions. Then the
canonical map f∗CZ′/X′ → CZ/X of Lemma 31.3 is surjective. If g is flat, then it is an
isomorphism.

Proof. Let R′ → R be a ring map, and I ′ ⊂ R′ an ideal. Set I = I ′R. Then
I ′/(I ′)2 ⊗R′ R → I/I2 is surjective. If R′ → R is flat, then I = I ′ ⊗R′ R and I2 =
(I ′)2 ⊗R′ R and we see the map is an isomorphism. �

Lemma 31.5. Let Z → Y → X be immersions of schemes. Then there is a canonical
exact sequence

i∗CY/X → CZ/X → CZ/Y → 0
where the maps come from Lemma 31.3 and i : Z → Y is the first morphism.

Proof. Via Lemma 31.3 this translates into the following algebra fact. Suppose that
C → B → A are surjective ring maps. Let I = Ker(B → A), J = Ker(C → A) and
K = Ker(C → B). Then there is an exact sequence

K/K2 ⊗B A→ J/J2 → I/I2 → 0.

This follows immediately from the observation that I = J/K. �

32. Sheaf of differentials of a morphism

We suggest the reader take a look at the corresponding section in the chapter on commuta-
tive algebra (Algebra, Section 131) and the corresponding section in the chapter on sheaves
of modules (Modules, Section 28).

Definition 32.1. Let f : X → S be a morphism of schemes. The sheaf of differen-
tials ΩX/S of X over S is the sheaf of differentials of f viewed as a morphism of ringed
spaces (Modules, Definition 28.10) equipped with its universal S-derivation

dX/S : OX −→ ΩX/S .

It turns out that ΩX/S is a quasi-coherent OX -module for example as it is isomorphic to
the conormal sheaf of the diagonal morphism ∆ : X → X ×S X (Lemma 32.7). We have
defined the module of differentials of X over S using a universal property, namely as the
receptacle of the universal derivation. If you have any other construction of the sheaf of
relative differentials which satisfies this universal property then, by the Yoneda lemma, it
will be canonically isomorphic to the one defined above. For convenience we restate the
universal property here.

Lemma 32.2. Let f : X → S be a morphism of schemes. The map

HomOX
(ΩX/S ,F) −→ DerS(OX ,F), α 7−→ α ◦ dX/S

is an isomorphism of functors Mod(OX)→ Sets.

Proof. This is just a restatement of the definition. �
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Lemma 32.3. Let f : X → S be a morphism of schemes. Let U ⊂ X , V ⊂ S be open
subschemes such that f(U) ⊂ V . Then there is a unique isomorphism ΩX/S |U = ΩU/V
ofOU -modules such that dX/S |U = dU/V .

Proof. This is a special case of Modules, Lemma 28.5 if we use the canonical identi-
fication f−1OS |U = (f |U )−1OV . �

From now on we will use these canonical identifications and simply write ΩU/S or ΩU/V
for the restriction of ΩX/S to U .

Lemma 32.4. Let R → A be a ring map. Let F be a sheaf of OX -modules on X =
Spec(A). Set S = Spec(R). The rule which associates to an S-derivation on F its action
on global sections defines a bijection between the set of S-derivations of F and the set of
R-derivations on M = Γ(X,F).

Proof. Let D : A → M be an R-derivation. We have to show there exists a unique
S-derivation on F which gives rise to D on global sections. Let U = D(f) ⊂ X be a
standard affine open. Any element of Γ(U,OX) is of the form a/fn for some a ∈ A and
n ≥ 0. By the Leibniz rule we have

D(a)|U = a/fnD(fn)|U + fnD(a/fn)
in Γ(U,F). Since f acts invertibly on Γ(U,F) this completely determines the value of
D(a/fn) ∈ Γ(U,F). This proves uniqueness. Existence follows by simply defining

D(a/fn) := (1/fn)D(a)|U − a/f2nD(fn)|U
and proving this has all the desired properties (on the basis of standard opens of X). De-
tails omitted. �

Lemma 32.5. Let f : X → S be a morphism of schemes. For any pair of affine opens
Spec(A) = U ⊂ X , Spec(R) = V ⊂ S with f(U) ⊂ V there is a unique isomorphism

Γ(U,ΩX/S) = ΩA/R.
compatible with dX/S and d : A→ ΩA/R.

Proof. By Lemma 32.3 we may replace X and S by U and V . Thus we may assume
X = Spec(A) andS = Spec(R) and we have to show the lemma withU = X andV = S.
Consider the A-module M = Γ(X,ΩX/S) together with the R-derivation dX/S : A →
M . Let N be another A-module and denote Ñ the quasi-coherent OX -module associated
to N , see Schemes, Section 7. Precomposing by dX/S : A→M we get an arrow

α : HomA(M,N) −→ DerR(A,N)
Using Lemmas 32.2 and 32.4 we get identifications

HomOX
(ΩX/S , Ñ) = DerS(OX , Ñ) = DerR(A,N)

Taking global sections determines an arrow HomOX
(ΩX/S , Ñ)→ HomR(M,N). Com-

bining this arrow and the identifications above we get an arrow

β : DerR(A,N) −→ HomR(M,N)
Checking what happens on global sections, we find that α and β are each others inverse.
Hence we see that dX/S : A→M satisfies the same universal property as d : A→ ΩA/R,
see Algebra, Lemma 131.3. Thus the Yoneda lemma (Categories, Lemma 3.5) implies there
is a unique isomorphism of A-modules M ∼= ΩA/R compatible with derivations. �
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Remark 32.6. The lemma above gives a second way of constructing the module of
differentials. Namely, let f : X → S be a morphism of schemes. Consider the collec-
tion of all affine opens U ⊂ X which map into an affine open of S. These form a basis
for the topology on X . Thus it suffices to define Γ(U,ΩX/S) for such U . We simply set
Γ(U,ΩX/S) = ΩA/R if A, R are as in Lemma 32.5 above. This works, but it takes some-
what more algebraic preliminaries to construct the restriction mappings and to verify the
sheaf condition with this ansatz.

The following lemma gives yet another way to define the sheaf of differentials and it in
particular shows that ΩX/S is quasi-coherent if X and S are schemes.

Lemma 32.7. Let f : X → S be a morphism of schemes. There is a canonical isomor-
phism between ΩX/S and the conormal sheaf of the diagonal morphism ∆X/S : X −→
X ×S X .

Proof. We first establish the existence of a couple of “global” sheaves and global maps
of sheaves, and further down we describe the constructions over some affine opens.

Recall that ∆ = ∆X/S : X → X ×S X is an immersion, see Schemes, Lemma 21.2. Let J
be the ideal sheaf of the immersion which lives over some open subschemeW ofX ×S X
such that ∆(X) ⊂W is closed. Let us take the one that was found in the proof of Schemes,
Lemma 21.2. Note that the sheaf of ringsOW /J 2 is supported on ∆(X). Moreover it sits
in a short exact sequence of sheaves

0→ J /J 2 → OW /J 2 → ∆∗OX → 0.

Using ∆−1 we can think of this as a surjection of sheaves of f−1OS-algebras with kernel
the conormal sheaf of ∆ (see Definition 31.1 and Lemma 31.2).

0→ CX/X×SX → ∆−1(OW /J 2)→ OX → 0

This places us in the situation of Modules, Lemma 28.11. The projection morphisms pi :
X×SX → X , i = 1, 2 induce maps of sheaves of rings (pi)] : (pi)−1OX → OX×SX . We
may restrict toW and quotient byJ 2 to get (pi)−1OX → OW /J 2. Since ∆−1p−1

i OX =
OX we get maps

si : OX → ∆−1(OW /J 2).
Both s1 and s2 are sections to the map ∆−1(OW /J 2) → OX , as in Modules, Lemma
28.11. Thus we get an S-derivation d = s2 − s1 : OX → CX/X×SX . By the universal
property of the module of differentials we find a uniqueOX -linear map

ΩX/S −→ CX/X×SX , fdg 7−→ fs2(g)− fs1(g)

To see the map is an isomorphism, let us work this out over suitable affine opens. We can
cover X by affine opens Spec(A) = U ⊂ X whose image is contained in an affine open
Spec(R) = V ⊂ S. According to the proof of Schemes, Lemma 21.2U×V U ⊂ X×SX is
an affine open contained in the openW mentioned above. AlsoU×V U = Spec(A⊗RA).
The sheaf J corresponds to the ideal J = Ker(A⊗R A→ A). The short exact sequence
to the short exact sequence of A⊗R A-modules

0→ J/J2 → (A⊗R A)/J2 → A→ 0

The sections si correspond to the ring maps

A −→ (A⊗R A)/J2, s1 : a 7→ a⊗ 1, s2 : a 7→ 1⊗ a.
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By Lemma 31.2 we have Γ(U, CX/X×SX) = J/J2 and by Lemma 32.5 we have Γ(U,ΩX/S) =
ΩA/R. The map above is the map adb 7→ a⊗ b− ab⊗ 1 which is shown to be an isomor-
phism in Algebra, Lemma 131.13. �

Lemma 32.8. Let
X ′

��

f
// X

��
S′ // S

be a commutative diagram of schemes. The canonical mapOX → f∗OX′ composed with
the map f∗dX′/S′ : f∗OX′ → f∗ΩX′/S′ is a S-derivation. Hence we obtain a canonical
map of OX -modules ΩX/S → f∗ΩX′/S′ , and by adjointness of f∗ and f∗ a canonical
OX′ -module homomorphism

cf : f∗ΩX/S −→ ΩX′/S′ .

It is uniquely characterized by the property that f∗dX/S(h) maps to dX′/S′(f∗h) for any
local section h ofOX .

Proof. This is a special case of Modules, Lemma 28.12. In the case of schemes we can
also use the functoriality of the conormal sheaves (see Lemma 31.3) and Lemma 32.7 to
define cf . Or we can use the characterization in the last line of the lemma to glue maps
defined on affine patches (see Algebra, Equation (131.4.1)). �

Lemma 32.9. Let f : X → Y , g : Y → S be morphisms of schemes. Then there is a
canonical exact sequence

f∗ΩY/S → ΩX/S → ΩX/Y → 0

where the maps come from applications of Lemma 32.8.

Proof. This is the sheafified version of Algebra, Lemma 131.7. �

Lemma 32.10. LetX → S be a morphism of schemes. Let g : S′ → S be a morphism
of schemes. Let X ′ = XS′ be the base change of X . Denote g′ : X ′ → X the projection.
Then the map

(g′)∗ΩX/S → ΩX′/S′

of Lemma 32.8 is an isomorphism.

Proof. This is the sheafified version of Algebra, Lemma 131.12. �

Lemma 32.11. Let f : X → S and g : Y → S be morphisms of schemes with the
same target. Let p : X ×S Y → X and q : X ×S Y → Y be the projection morphisms.
The maps from Lemma 32.8

p∗ΩX/S ⊕ q∗ΩY/S −→ ΩX×SY/S

give an isomorphism.

Proof. By Lemma 32.10 the composition p∗ΩX/S → ΩX×SY/S → ΩX×SY/Y is
an isomorphism, and similarly for q. Moreover, the cokernel of p∗ΩX/S → ΩX×SY/S is
ΩX×SY/X by Lemma 32.9. The result follows. �

Lemma 32.12. Let f : X → S be a morphism of schemes. If f is locally of finite type,
then ΩX/S is a finite typeOX -module.
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Proof. Immediate from Algebra, Lemma 131.16, Lemma 32.5, Lemma 15.2, and Prop-
erties, Lemma 16.1. �

Lemma 32.13. Let f : X → S be a morphism of schemes. If f is locally of finite
presentation, then ΩX/S is anOX -module of finite presentation.

Proof. Immediate from Algebra, Lemma 131.15, Lemma 32.5, Lemma 21.2, and Prop-
erties, Lemma 16.2. �

Lemma 32.14. If X → S is an immersion, or more generally a monomorphism, then
ΩX/S is zero.

Proof. This is true because ∆X/S is an isomorphism in this case and hence has trivial
conormal sheaf. Hence ΩX/S = 0 by Lemma 32.7. The algebraic version is Algebra,
Lemma 131.4. �

Lemma 32.15. Let i : Z → X be an immersion of schemes overS. There is a canonical
exact sequence

CZ/X → i∗ΩX/S → ΩZ/S → 0

where the first arrow is induced by dX/S and the second arrow comes from Lemma 32.8.

Proof. This is the sheafified version of Algebra, Lemma 131.9. However we should
make sure we can define the first arrow globally. Hence we explain the meaning of “in-
duced by dX/S” here. Namely, we may assume that i is a closed immersion by shrinking
X . Let I ⊂ OX be the sheaf of ideals corresponding to Z ⊂ X . Then dX/S : I → ΩX/S
maps the subsheaf I2 ⊂ I to IΩX/S . Hence it induces a map I/I2 → ΩX/S/IΩX/S
which is OX/I-linear. By Lemma 4.1 this corresponds to a map CZ/X → i∗ΩX/S as
desired. �

Lemma 32.16. Let i : Z → X be an immersion of schemes over S , and assume i
(locally) has a left inverse. Then the canonical sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0

of Lemma 32.15 is (locally) split exact. In particular, if s : S → X is a section of the
structure morphism X → S then the map CS/X → s∗ΩX/S induced by dX/S is an iso-
morphism.

Proof. Follows from Algebra, Lemma 131.10. Clarification: if g : X → Z is a left
inverse of i, then i∗cg is a right inverse of the map i∗ΩX/S → ΩZ/S . Also, if s is a section,
then it is an immersion s : Z = S → X over S (see Schemes, Lemma 21.11) and in that
case ΩZ/S = 0. �

Remark 32.17. Let X → S be a morphism of schemes. According to Lemma 32.11
we have

ΩX×SX/S = pr∗
1ΩX/S ⊕ pr∗

2ΩX/S
On the other hand, the diagonal morphism ∆ : X → X ×S X is an immersion, which
locally has a left inverse. Hence by Lemma 32.16 we obtain a canonical short exact sequence

0→ CX/X×SX → ΩX/S ⊕ ΩX/S → ΩX/S → 0
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Note that the right arrow is (1, 1) which is indeed a split surjection. On the other hand, by
Lemma 32.7 we have an identification ΩX/S = CX/X×SX . Because we chose dX/S(f) =
s2(f)− s1(f) in this identification it turns out that the left arrow is the map (−1, 1)9.

Lemma 32.18. Let
Z

i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are immersions. Then there is a
canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0

where the first arrow comes from Lemma 31.3 and the second from Lemma 32.15.

Proof. The algebraic version of this is Algebra, Lemma 134.7. �

33. Finite order differential operators

We suggest the reader take a look at the corresponding section in the chapter on com-
mutative algebra (Algebra, Section 133) and the corresponding section in the chapter on
sheaves of modules (Modules, Section 29).

Lemma 33.1. Let R → A be a ring map. Denote f : X → S the corresponding
morphism of affine schemes. LetF and G beOX -modules. IfF is quasi-coherent then the
map

DiffkX/S(F ,G)→ DiffkA/R(Γ(X,F),Γ(X,G))

sending a differential operator to its action on global sections is bijective.

Proof. Write F = M̃ for some A-module M . Set N = Γ(X,G). Let D : M → N
be a differential operator of order k. We have to show there exists a unique differential
operator F → G of order k which gives rise to D on global sections. Let U = D(f) ⊂ X
be a standard affine open. Then F(U) = Mf is the localization. By Algebra, Lemma
133.10 the differential operator D extends to a unique differential operator

Df : F(U) = M̃(U) = Mf → Nf = Ñ(U)

The uniqueness shows that these maps Df glue to give a map of sheaves M̃ → Ñ on the
basis of all standard opens of X . Hence we get a unique map of sheaves D̃ : M̃ → Ñ

agreeing with these maps by the material in Sheaves, Section 30. Since D̃ is given by
differential operators of order k on the standard opens, we find that D̃ is a differential
operator of order k (small detail omitted). Finally, we can post-compose with the canonical
OX -module map c : Ñ → G (Schemes, Lemma 7.1) to get c ◦ D̃ : F → G which is a
differential operator of order k by Modules, Lemma 29.2. This proves existence. We omit
the proof of uniqueness. �

9Namely, the local section dX/S(f) = 1 ⊗ f − f ⊗ 1 of the ideal sheaf of ∆ maps via dX×SX/X to the
local section 1 ⊗ 1 ⊗ 1 ⊗ f − 1 ⊗ f ⊗ 1 ⊗ 1 − 1 ⊗ 1 ⊗ f ⊗ 1 + f ⊗ 1 ⊗ 1 ⊗ 1 = pr∗

2dX/S(f) − pr∗
1dX/S(f).
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Lemma 33.2. Let a : X → S and b : Y → S be morphisms of schemes. LetF andF ′

be quasi-coherent OX -modules. Let D : F → F ′ be a differential operator of order k on
X/S. Let G be a quasi-coherentOY -module. Then there is a unique differential operator

D′ : pr∗
1F ⊗OX×SY

pr∗
2G −→ pr∗

1F
′ ⊗OX×SY

pr∗
2G

of order k on X ×S Y/Y such that D′(s⊗ t) = D(s)⊗ t for local sections s of F and t
of G.

Proof. In case X , Y , and S are affine, this follows, via Lemma 33.1, from the cor-
responding algebra result, see Algebra, Lemma 133.11. In general, one uses coverings by
affines (for example as in Schemes, Lemma 17.4) to construct D′ globally. Details omit-
ted. �

Remark 33.3. Let a : X → S and b : Y → S be morphisms of schemes. Denote
p : X ×S Y → X and q : X ×S Y → Y the projections. In this remark, given an
OX -module F and anOY -module G let us set

F � G = p∗F ⊗OX×SY
q∗G

Denote AX/S the additive category whose objects are quasi-coherent OX -modules and
whose morphisms are differential operators of finite order on X/S. Similarly for AY/S
andAX×SY/S . The construction of Lemma 33.2 determines a functor

� : AX/S ×AY/S −→ AX×SY/S , (F ,G) 7−→ F � G

which is bilinear on morphisms. If X = Spec(A), Y = Spec(B), and S = Spec(R),
then via the identification of quasi-coherent sheaves with modules this functor is given by
(M,N) 7→ M ⊗R N on objects and sends the morphism (D,D′) : (M,N) → (M ′, N ′)
to D ⊗D′ : M ⊗R N →M ′ ⊗R N ′.

34. Smooth morphisms

Let f : X → Y be a continuous map of topological spaces. Consider the following condi-
tion: For every x ∈ X there exist open neighbourhoods x ∈ U ⊂ X and f(x) ∈ V ⊂ Y ,
and an integer d such that f(U) ⊂ V and such that we obtain a commutative diagram

X

��

Uoo

��

π
// V ×Rd

{{
Y Voo

where π is a homeomorphism onto an open subset. Smooth morphisms of schemes are the
analogue of these maps in the category of schemes. See Lemma 34.11 and Lemma 36.20.

Contrary to expectations (perhaps) the notion of a smooth ring map is not defined solely
in terms of the module of differentials. Namely, recall that R → A is a smooth ring map
if A is of finite presentation over R and if the naive cotangent complex of A over R is
quasi-isomorphic to a projective module placed in degree 0, see Algebra, Definition 137.1.

Definition 34.1. Let f : X → S be a morphism of schemes.
(1) We say that f is smooth at x ∈ X if there exist an affine open neighbourhood

Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with f(U) ⊂ V
such that the induced ring map R→ A is smooth.

(2) We say that f is smooth if it is smooth at every point of X .
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(3) A morphism of affine schemes f : X → S is called standard smooth if there
exists a standard smooth ring mapR→ R[x1, . . . , xn]/(f1, . . . , fc) (see Algebra,
Definition 137.6) such that X → S is isomorphic to

Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ Spec(R).

A pleasing feature of this definition is that the set of points where a morphism is smooth
is automatically open.
Note that there is no separation or quasi-compactness hypotheses in the definition. Hence
the question of being smooth is local in nature on the source. Here is the precise result.

Lemma 34.2. Let f : X → S be a morphism of schemes. The following are equivalent
(1) The morphism f is smooth.
(2) For every affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the ring map OS(V )→
OX(U) is smooth.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is smooth.
(4) There exists an affine open covering S =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is smooth, for

all j ∈ J, i ∈ Ij .
Moreover, if f is smooth then for any open subschemes U ⊂ X , V ⊂ S with f(U) ⊂ V
the restriction f |U : U → V is smooth.

Proof. This follows from Lemma 14.3 if we show that the property “R → A is
smooth” is local. We check conditions (a), (b) and (c) of Definition 14.1. By Algebra,
Lemma 137.4 being smooth is stable under base change and hence we conclude (a) holds.
By Algebra, Lemma 137.14 being smooth is stable under composition and for any ring R
the ring map R→ Rf is (standard) smooth. We conclude (b) holds. Finally, property (c)
is true according to Algebra, Lemma 137.13. �

The following lemma characterizes a smooth morphism as a flat, finitely presented mor-
phism with smooth fibres. Note that schemes smooth over a field are discussed in more
detail in Varieties, Section 25.

Lemma 34.3. Let f : X → S be a morphism of schemes. If f is flat, locally of finite
presentation, and all fibres Xs are smooth, then f is smooth.

Proof. Follows from Algebra, Lemma 137.17. �

Lemma 34.4. The composition of two morphisms which are smooth is smooth.

Proof. In the proof of Lemma 34.2 we saw that being smooth is a local property
of ring maps. Hence the first statement of the lemma follows from Lemma 14.5 combined
with the fact that being smooth is a property of ring maps that is stable under composition,
see Algebra, Lemma 137.14. �

Lemma 34.5. The base change of a morphism which is smooth is smooth.

Proof. In the proof of Lemma 34.2 we saw that being smooth is a local property of
ring maps. Hence the lemma follows from Lemma 14.5 combined with the fact that being
smooth is a property of ring maps that is stable under base change, see Algebra, Lemma
137.4. �

Lemma 34.6. Any open immersion is smooth.
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Proof. This is true because an open immersion is a local isomorphism. �

Lemma 34.7. A smooth morphism is syntomic.

Proof. See Algebra, Lemma 137.10. �

Lemma 34.8. A smooth morphism is locally of finite presentation.

Proof. True because a smooth ring map is of finite presentation by definition. �

Lemma 34.9. A smooth morphism is flat.

Proof. Combine Lemmas 30.7 and 34.7. �

Lemma 34.10. A smooth morphism is universally open.

Proof. Combine Lemmas 34.9, 34.8, and 25.10. Or alternatively, combine Lemmas
34.7, 30.8. �

The following lemma says locally any smooth morphism is standard smooth. Hence we
can use standard smooth morphisms as a local model for a smooth morphism.

Lemma 34.11. Let f : X → S be a morphism of schemes. Let x ∈ X be a point. Let
V ⊂ S be an affine open neighbourhood of f(x). The following are equivalent

(1) The morphism f is smooth at x.
(2) There exists an affine open U ⊂ X , with x ∈ U and f(U) ⊂ V such that the

induced morphism f |U : U → V is standard smooth.

Proof. Follows from the definitions and Algebra, Lemmas 137.7 and 137.10. �

Lemma 34.12. Let f : X → S be a morphism of schemes. Assume f is smooth. Then
the module of differentials ΩX/S of X over S is finite locally free and

rankx(ΩX/S) = dimx(Xf(x))

for every x ∈ X .

Proof. The statement is local on X and S. By Lemma 34.11 above we may assume
that f is a standard smooth morphism of affines. In this case the result follows from Alge-
bra, Lemma 137.7 (and the definition of a relative global complete intersection, see Algebra,
Definition 136.5). �

Lemma 34.12 says that the following definition makes sense.

Definition 34.13. Let d ≥ 0 be an integer. We say a morphism of schemes f :
X → S is smooth of relative dimension d if f is smooth and ΩX/S is finite locally free of
constant rank d.

In other words, f is smooth and the nonempty fibres are equidimensional of dimension
d. By Lemma 34.14 below this is also the same as requiring: (a) f is locally of finite pre-
sentation, (b) f is flat, (c) all nonempty fibres equidimensional of dimension d, and (d)
ΩX/S finite locally free of rank d. It is not enough to simply assume that f is flat, of fi-
nite presentation, and ΩX/S is finite locally free of rank d. A counter example is given by
Spec(Fp[t])→ Spec(Fp[tp]).

Here is a differential criterion of smoothness at a point. There are many variants of this
result all of which may be useful at some point. We will just add them here as needed.
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Lemma 34.14. Let f : X → S be a morphism of schemes. Let x ∈ X . Set s = f(x).
Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is smooth at x.
(2) The local ring mapOS,s → OX,x is flat and Xs → Spec(κ(s)) is smooth at x.
(3) The local ring map OS,s → OX,x is flat and the OX,x-module ΩX/S,x can be

generated by at most dimx(Xf(x)) elements.
(4) The local ring mapOS,s → OX,x is flat and the κ(x)-vector space

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)

can be generated by at most dimx(Xf(x)) elements.
(5) There exist affine opens U ⊂ X , and V ⊂ S such that x ∈ U , f(U) ⊂ V and

the induced morphism f |U : U → V is standard smooth.
(6) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with x ∈ U

corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a presentation

A = R[x1, . . . , xn]/(f1, . . . , fc)

with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


mapping to an element of A not in q.

Proof. Note that if f is smooth at x, then we see from Lemma 34.11 that (5) holds,
and (6) is a slightly weakened version of (5). Moreover, f smooth implies that the ring
map OS,s → OX,x is flat (see Lemma 34.9) and that ΩX/S is finite locally free of rank
equal to dimx(Xs) (see Lemma 34.12). Thus (1) implies (3) and (4). By Lemma 34.5 we
also see that (1) implies (2).

By Lemma 32.10 the module of differentials ΩXs/s of the fibreXs over κ(s) is the pullback
of the module of differentials ΩX/S ofX over S. Hence the displayed equality in part (4)
of the lemma. By Lemma 32.12 these modules are of finite type. Hence the minimal number
of generators of the modules ΩX/S,x and ΩXs/s,x is the same and equal to the dimension
of this κ(x)-vector space by Nakayama’s Lemma (Algebra, Lemma 20.1). This in particular
shows that (3) and (4) are equivalent.

Algebra, Lemma 137.17 shows that (2) implies (1). Algebra, Lemma 140.3 shows that (3)
and (4) imply (2). Finally, (6) implies (5) see for example Algebra, Example 137.8 and (5)
implies (1) by Algebra, Lemma 137.7. �

Lemma 34.15. Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let W ⊂ X , resp. W ′ ⊂ X ′ be the open subscheme of
points where f , resp. f ′ is smooth. Then W ′ = (g′)−1(W ) if

(1) f is flat and locally of finite presentation, or
(2) f is locally of finite presentation and g is flat.
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Proof. Assume first that f locally of finite type. Consider the set

T = {x ∈ X | Xf(x) is smooth over κ(f(x)) at x}

and the corresponding set T ′ ⊂ X ′ for f ′. Then we claim T ′ = (g′)−1(T ). Namely, let
s′ ∈ S′ be a point, and let s = g(s′). Then we have

X ′
s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres. Hence the
claim is equivalent to Algebra, Lemma 137.19.

Thus case (1) follows because in case (1) T is the (open) set of points where f is smooth by
Lemma 34.14.

In case (2) let x′ ∈ W ′. Then g′ is flat at x′ (Lemma 25.7) and g ◦ f is flat at x′ (Lemma
25.5). It follows that f is flat at x = g′(x′) by Lemma 25.13. On the other hand, since
x′ ∈ T ′ (Lemma 34.5) we see that x ∈ T . Hence f is smooth at x by Lemma 34.14. �

Here is a lemma that actually uses the vanishing of H−1 of the naive cotangent complex
for a smooth ring map.

Lemma 34.16. Let f : X → Y , g : Y → S be morphisms of schemes. Assume f is
smooth. Then

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0
(see Lemma 32.9) is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps A→
B → C with B → C smooth, then the sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of Algebra, Lemma 131.7 is exact. This is Algebra, Lemma 139.1. �

Lemma 34.17. Let i : Z → X be an immersion of schemes over S. Assume that Z is
smooth over S. Then the canonical exact sequence

0→ CZ/X → i∗ΩX/S → ΩZ/S → 0
of Lemma 32.15 is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps A→
B → C with A→ C smooth and B → C surjective with kernel J , then the sequence

0→ J/J2 → C ⊗B ΩB/A → ΩC/A → 0
of Algebra, Lemma 131.9 is exact. This is Algebra, Lemma 139.2. �

Lemma 34.18. Let
Z

i
//

j   

X

��
Y

be a commutative diagram of schemes where i and j are immersions andX → Y is smooth.
Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0
of Lemma 32.18 is exact.
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Proof. The algebraic version of this lemma is the following: Given ring maps A→
B → C with A→ C surjective and A→ B smooth, then the sequence

0→ I/I2 → J/J2 → C ⊗B ΩB/A → 0

of Algebra, Lemma 134.7 is exact. This is Algebra, Lemma 139.3. �

Lemma 34.19. Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, and smooth,
(2) p is smooth, and
(3) q is locally of finite presentation10.

Then q is smooth.

Proof. By Lemma 25.13 we see that q is flat. Pick a point y ∈ Y . Pick a point x ∈ X
mapping to y. Suppose f has relative dimension a at x and p has relative dimension b at x.
By Lemma 34.12 this means that ΩX/S,x is free of rank b and ΩX/Y,x is free of rank a. By
the short exact sequence of Lemma 34.16 this means that (f∗ΩY/S)x is free of rank b− a.
By Nakayama’s Lemma this implies that ΩY/S,y can be generated by b− a elements. Also,
by Lemma 28.2 we see that dimy(Ys) = b− a. Hence we conclude that Y → S is smooth
at y by Lemma 34.14 part (2). �

In the situation of the following lemma the image of σ is locally onX cut out by a regular
sequence, see Divisors, Lemma 22.8.

Lemma 34.20. Let f : X → S be a morphism of schemes. Let σ : S → X be a section
of f . Let s ∈ S be a point such that f is smooth at x = σ(s). Then there exist affine open
neighbourhoods Spec(A) = U ⊂ S of s and Spec(B) = V ⊂ X of x such that

(1) f(V ) ⊂ U and σ(U) ⊂ V ,
(2) with I = Ker(σ# : B → A) the module I/I2 is a free A-module, and
(3) B∧ ∼= A[[x1, . . . , xd]] asA-algebras whereB∧ denotes the completion ofB with

respect to I .

Proof. Pick an affine open U ⊂ S containing s Pick an affine open V ⊂ f−1(U)
containing x. Pick an affine open U ′ ⊂ σ−1(V ) containing s. Note that V ′ = f−1(U ′)∩
V is affine as it is equal to the fibre product V ′ = U ′ ×U V . Then U ′ and V ′ satisfy
(1). Write U ′ = Spec(A′) and V ′ = Spec(B′). By Algebra, Lemma 139.4 the module
I ′/(I ′)2 is finite locally free as a A′-module. Hence after replacing U ′ by a smaller affine
open U ′′ ⊂ U ′ and V ′ by V ′′ = V ′ ∩ f−1(U ′′) we obtain the situation where I ′′/(I ′′)2 is
free, i.e., (2) holds. In this case (3) holds also by Algebra, Lemma 139.4. �

The dimension of a schemeX at a pointx (Properties, Definition 10.1) is just the dimension
of X at x as a topological space, see Topology, Definition 10.1. This is not the dimension
of the local ringOX,x, in general.

10In fact this is implied by (1) and (2), see Descent, Lemma 14.3. Moreover, it suffices to assume f is surjec-
tive, flat and locally of finite presentation, see Descent, Lemma 14.5.
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Lemma 34.21. Let f : X → Y be a smooth morphism of locally Noetherian schemes.
For every point x in X with image y in Y ,

dimx(X) = dimy(Y ) + dimx(Xy),
where Xy denotes the fiber over y.

Proof. After replacing X by an open neighborhood of x, there is a natural number
d such that all fibers of X → Y have dimension d at every point, see Lemma 34.12. Then
f is flat (Lemma 34.9), locally of finite type (Lemma 34.8), and of relative dimension d.
Hence the result follows from Lemma 29.6. �

35. Unramified morphisms

We briefly discuss unramified morphisms before the (perhaps) more interesting class of
étale morphisms. Recall that a ring map R → A is unramified if it is of finite type and
ΩA/R = 0 (this is the definition of [?]). A ring map R→ A is called G-unramified if it is
of finite presentation and ΩA/R = 0 (this is the definition of [?]). See Algebra, Definition
151.1.

Definition 35.1. Let f : X → S be a morphism of schemes.
(1) We say that f is unramified atx ∈ X if there exists an affine open neighbourhood

Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with f(U) ⊂ V
such that the induced ring map R→ A is unramified.

(2) We say that f is G-unramified at x ∈ X if there exists an affine open neigh-
bourhood Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with
f(U) ⊂ V such that the induced ring map R→ A is G-unramified.

(3) We say that f is unramified if it is unramified at every point of X .
(4) We say that f is G-unramified if it is G-unramified at every point of X .

Note that a G-unramified morphism is unramified. Hence any result for unramified mor-
phisms implies the corresponding result for G-unramified morphisms. Moreover, if S is
locally Noetherian then there is no difference between G-unramified and unramified mor-
phisms, see Lemma 35.6. A pleasing feature of this definition is that the set of points where
a morphism is unramified (resp. G-unramified) is automatically open.

Lemma 35.2. Let f : X → S be a morphism of schemes. Then
(1) f is unramified if and only if f is locally of finite type and ΩX/S = 0, and
(2) f is G-unramified if and only if f is locally of finite presentation and ΩX/S = 0.

Proof. By definition a ring map R → A is unramified (resp. G-unramified) if and
only if it is of finite type (resp. finite presentation) and ΩA/R = 0. Hence the lemma
follows directly from the definitions and Lemma 32.5. �

Note that there is no separation or quasi-compactness hypotheses in the definition. Hence
the question of being unramified is local in nature on the source. Here is the precise result.

Lemma 35.3. Let f : X → S be a morphism of schemes. The following are equivalent
(1) The morphism f is unramified (resp. G-unramified).
(2) For every affine open U ⊂ X , V ⊂ S with f(U) ⊂ V the ring map OS(V ) →
OX(U) is unramified (resp. G-unramified).

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is unramified
(resp. G-unramified).
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(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is unramified

(resp. G-unramified), for all j ∈ J, i ∈ Ij .
Moreover, if f is unramified (resp. G-unramified) then for any open subschemes U ⊂ X ,
V ⊂ S with f(U) ⊂ V the restriction f |U : U → V is unramified (resp. G-unramified).

Proof. This follows from Lemma 14.3 if we show that the property “R → A is un-
ramified” is local. We check conditions (a), (b) and (c) of Definition 14.1. These properties
are proved in Algebra, Lemma 151.3. �

Lemma 35.4. The composition of two morphisms which are unramified is unrami-
fied. The same holds for G-unramified morphisms.

Proof. The proof of Lemma 35.3 shows that being unramified (resp. G-unramified) is
a local property of ring maps. Hence the first statement of the lemma follows from Lemma
14.5 combined with the fact that being unramified (resp. G-unramified) is a property of
ring maps that is stable under composition, see Algebra, Lemma 151.3. �

Lemma 35.5. The base change of a morphism which is unramified is unramified. The
same holds for G-unramified morphisms.

Proof. The proof of Lemma 35.3 shows that being unramified (resp. G-unramified)
is a local property of ring maps. Hence the lemma follows from Lemma 14.6 combined
with the fact that being unramified (resp. G-unramified) is a property of ring maps that is
stable under base change, see Algebra, Lemma 151.3. �

Lemma 35.6. Let f : X → S be a morphism of schemes. Assume S is locally Noe-
therian. Then f is unramified if and only if f is G-unramified.

Proof. Follows from the definitions and Lemma 21.9. �

Lemma 35.7. Any open immersion is G-unramified.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 35.8. A closed immersion i : Z → X is unramified. It is G-unramified if and
only if the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is of finite
type (as anOX -module).

Proof. Follows from Lemma 21.7 and Algebra, Lemma 151.3. �

Lemma 35.9. An unramified morphism is locally of finite type. A G-unramified mor-
phism is locally of finite presentation.

Proof. An unramified ring map is of finite type by definition. A G-unramified ring
map is of finite presentation by definition. �

Lemma 35.10. Let f : X → S be a morphism of schemes. If f is unramified at x then
f is quasi-finite at x. In particular, an unramified morphism is locally quasi-finite.

Proof. See Algebra, Lemma 151.6. �

Lemma 35.11. Fibres of unramified morphisms.
(1) Let X be a scheme over a field k. The structure morphism X → Spec(k) is

unramified if and only if X is a disjoint union of spectra of finite separable field
extensions of k.
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(2) If f : X → S is an unramified morphism then for every s ∈ S the fibre Xs is a
disjoint union of spectra of finite separable field extensions of κ(s).

Proof. Part (2) follows from part (1) and Lemma 35.5. Let us prove part (1). We
first use Algebra, Lemma 151.7. This lemma implies that if X is a disjoint union of spectra
of finite separable field extensions of k then X → Spec(k) is unramified. Conversely,
suppose that X → Spec(k) is unramified. By Algebra, Lemma 151.5 for every x ∈ X the
residue field extension κ(x)/k is finite separable. Since X → Spec(k) is locally quasi-
finite (Lemma 35.10) we see that all points ofX are isolated closed points, see Lemma 20.6.
Thus X is a discrete space, in particular the disjoint union of the spectra of its local rings.
By Algebra, Lemma 151.5 again these local rings are fields, and we win. �

The following lemma characterizes an unramified morphisms as morphisms locally of fi-
nite type with unramified fibres.

Lemma 35.12. Let f : X → S be a morphism of schemes.
(1) If f is unramified then for any x ∈ X the field extension κ(x)/κ(f(x)) is finite

separable.
(2) If f is locally of finite type, and for every s ∈ S the fibre Xs is a disjoint union

of spectra of finite separable field extensions of κ(s) then f is unramified.
(3) If f is locally of finite presentation, and for every s ∈ S the fibre Xs is a dis-

joint union of spectra of finite separable field extensions of κ(s) then f is G-
unramified.

Proof. Follows from Algebra, Lemmas 151.5 and 151.7. �

Here is a characterization of unramified morphisms in terms of the diagonal morphism.

Lemma 35.13. Let f : X → S be a morphism.
(1) If f is unramified, then the diagonal morphism ∆ : X → X ×S X is an open

immersion.
(2) If f is locally of finite type and ∆ is an open immersion, then f is unramified.
(3) If f is locally of finite presentation and ∆ is an open immersion, then f is G-

unramified.

Proof. The first statement follows from Algebra, Lemma 151.4. The second state-
ment from the fact that ΩX/S is the conormal sheaf of the diagonal morphism (Lemma
32.7) and hence clearly zero if ∆ is an open immersion. �

Lemma 35.14. Let f : X → S be a morphism of schemes. Let x ∈ X . Set s = f(x).
Assume f is locally of finite type (resp. locally of finite presentation). The following are
equivalent:

(1) The morphism f is unramified (resp. G-unramified) at x.
(2) The fibre Xs is unramified over κ(s) at x.
(3) TheOX,x-module ΩX/S,x is zero.
(4) TheOXs,x-module ΩXs/s,x is zero.
(5) The κ(x)-vector space

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)

is zero.
(6) We have msOX,x = mx and the field extension κ(x)/κ(s) is finite separable.
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Proof. Note that if f is unramified at x, then we see that ΩX/S = 0 in a neighbour-
hood ofx by the definitions and the results on modules of differentials in Section 32. Hence
(1) implies (3) and the vanishing of the right hand vector space in (5). It also implies (2)
because by Lemma 32.10 the module of differentials ΩXs/s of the fibreXs over κ(s) is the
pullback of the module of differentials ΩX/S ofX over S. This fact on modules of differ-
entials also implies the displayed equality of vector spaces in part (4). By Lemma 32.12 the
modules ΩX/S,x and ΩXs/s,x are of finite type. Hence the modules ΩX/S,x and ΩXs/s,x
are zero if and only if the corresponding κ(x)-vector space in (4) is zero by Nakayama’s
Lemma (Algebra, Lemma 20.1). This in particular shows that (3), (4) and (5) are equivalent.
The support of ΩX/S is closed inX , see Modules, Lemma 9.6. Assumption (3) implies that
x is not in the support. Hence ΩX/S is zero in a neighbourhood of x, which implies (1).
The equivalence of (1) and (3) applied to Xs → s implies the equivalence of (2) and (4).
At this point we have seen that (1) – (5) are equivalent.

Alternatively you can use Algebra, Lemma 151.3 to see the equivalence of (1) – (5) more
directly.

The equivalence of (1) and (6) follows from Lemma 35.12. It also follows more directly
from Algebra, Lemmas 151.5 and 151.7. �

Lemma 35.15. Let f : X → S be a morphism of schemes. Assume f locally of finite
type. Formation of the open set

T = {x ∈ X | Xf(x) is unramified over κ(f(x)) at x}
= {x ∈ X | X is unramified over S at x}

commutes with arbitrary base change: For any morphism g : S′ → S , consider the base
change f ′ : X ′ → S′ of f and the projection g′ : X ′ → X . Then the corresponding
set T ′ for the morphism f ′ is equal to T ′ = (g′)−1(T ). If f is assumed locally of finite
presentation then the same holds for the open set of points where f is G-unramified.

Proof. Let s′ ∈ S′ be a point, and let s = g(s′). Then we have

X ′
s′ = Spec(κ(s′))×Spec(κ(s)) Xs

In other words the fibres of the base change are the base changes of the fibres. In particular

ΩXs/s,x ⊗OXs,x
κ(x′) = ΩX′

s′/s
′,x′ ⊗OX′

s′ ,x
′ κ(x′)

see Lemma 32.10. Whence x′ ∈ T ′ if and only if x ∈ T by Lemma 35.14. The second
part follows from the first because in that case T is the (open) set of points where f is
G-unramified according to Lemma 35.14. �

Lemma 35.16. Let f : X → Y be a morphism of schemes over S.
(1) If X is unramified over S , then f is unramified.
(2) If X is G-unramified over S and Y is locally of finite type over S , then f is

G-unramified.

Proof. Assume that X is unramified over S. By Lemma 15.8 we see that f is locally
of finite type. By assumption we have ΩX/S = 0. Hence ΩX/Y = 0 by Lemma 32.9. Thus
f is unramified. If X is G-unramified over S and Y is locally of finite type over S , then
by Lemma 21.11 we see that f is locally of finite presentation and we conclude that f is
G-unramified. �
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Lemma 35.17. Let S be a scheme. Let X , Y be schemes over S. Let f, g : X → Y be
morphisms over S. Let x ∈ X . Assume that

(1) the structure morphism Y → S is unramified,
(2) f(x) = g(x) in Y , say y = f(x) = g(x), and
(3) the induced maps f ], g] : κ(y)→ κ(x) are equal.

Then there exists an open neighbourhood of x in X on which f and g are equal.

Proof. Consider the morphism (f, g) : X → Y ×SY . By assumption (1) and Lemma
35.13 the inverse image of ∆Y/S(Y ) is open inX . And assumptions (2) and (3) imply that
x is in this open subset. �

36. Étale morphisms

The Zariski topology of a scheme is a very coarse topology. This is particularly clear
when looking at varieties over C. It turns out that declaring an étale morphism to be
the analogue of a local isomorphism in topology introduces a much finer topology. On
varieties over C this topology gives rise to the “correct” Betti numbers when computing
cohomology with finite coefficients. Another observable is that if f : X → Y is an
étale morphism of varieties over C, and if x is a closed point of X , then f induces an
isomorphismO∧

Y,f(x) → O
∧
X,x of complete local rings.

In this section we start our study of these matters. In fact we deliberately restrict our
discussion to a minimum since we will discuss more interesting results elsewhere. Recall
that a ring map R → A is said to be étale if it is smooth and ΩA/R = 0, see Algebra,
Definition 143.1.

Definition 36.1. Let f : X → S be a morphism of schemes.
(1) We say that f is étale at x ∈ X if there exists an affine open neighbourhood

Spec(A) = U ⊂ X of x and affine open Spec(R) = V ⊂ S with f(U) ⊂ V
such that the induced ring map R→ A is étale.

(2) We say that f is étale if it is étale at every point of X .
(3) A morphism of affine schemes f : X → S is called standard étale if X → S is

isomorphic to
Spec(R[x]h/(g))→ Spec(R)

whereR→ R[x]h/(g) is a standard étale ring map, see Algebra, Definition 144.1,
i.e., g is monic and g′ invertible in R[x]h/(g).

A morphism is étale if and only if it is smooth of relative dimension 0 (see Definition
34.13). A pleasing feature of the definition is that the set of points where a morphism is
étale is automatically open.

Note that there is no separation or quasi-compactness hypotheses in the definition. Hence
the question of being étale is local in nature on the source. Here is the precise result.

Lemma 36.2. Let f : X → S be a morphism of schemes. The following are equivalent
(1) The morphism f is étale.
(2) For every affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the ring map OS(V )→
OX(U) is étale.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is étale.
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(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj)→ OX(Ui) is étale, for all

j ∈ J, i ∈ Ij .
Moreover, if f is étale then for any open subschemes U ⊂ X , V ⊂ S with f(U) ⊂ V the
restriction f |U : U → V is étale.

Proof. This follows from Lemma 14.3 if we show that the property “R→ A is étale”
is local. We check conditions (a), (b) and (c) of Definition 14.1. These all follow from
Algebra, Lemma 143.3. �

Lemma 36.3. The composition of two morphisms which are étale is étale.

Proof. In the proof of Lemma 36.2 we saw that being étale is a local property of ring
maps. Hence the first statement of the lemma follows from Lemma 14.5 combined with
the fact that being étale is a property of ring maps that is stable under composition, see
Algebra, Lemma 143.3. �

Lemma 36.4. The base change of a morphism which is étale is étale.

Proof. In the proof of Lemma 36.2 we saw that being étale is a local property of ring
maps. Hence the lemma follows from Lemma 14.5 combined with the fact that being étale
is a property of ring maps that is stable under base change, see Algebra, Lemma 143.3. �

Lemma 36.5. Let f : X → S be a morphism of schemes. Let x ∈ X . Then f is étale
at x if and only if f is smooth and unramified at x.

Proof. This follows immediately from the definitions. �

Lemma 36.6. An étale morphism is locally quasi-finite.

Proof. By Lemma 36.5 an étale morphism is unramified. By Lemma 35.10 an unram-
ified morphism is locally quasi-finite. �

Lemma 36.7. Fibres of étale morphisms.
(1) LetX be a scheme over a field k. The structure morphismX → Spec(k) is étale

if and only if X is a disjoint union of spectra of finite separable field extensions
of k.

(2) If f : X → S is an étale morphism, then for every s ∈ S the fibreXs is a disjoint
union of spectra of finite separable field extensions of κ(s).

Proof. You can deduce this from Lemma 35.11 via Lemma 36.5 above. Here is a direct
proof.
We will use Algebra, Lemma 143.4. Hence it is clear that ifX is a disjoint union of spectra
of finite separable field extensions of k then X → Spec(k) is étale. Conversely, suppose
that X → Spec(k) is étale. Then for any affine open U ⊂ X we see that U is a finite
disjoint union of spectra of finite separable field extensions of k. Hence all points ofX are
closed points (see Lemma 20.2 for example). Thus X is a discrete space and we win. �

The following lemma characterizes an étale morphism as a flat, finitely presented mor-
phism with “étale fibres”.

Lemma 36.8. Let f : X → S be a morphism of schemes. If f is flat, locally of
finite presentation, and for every s ∈ S the fibre Xs is a disjoint union of spectra of finite
separable field extensions of κ(s), then f is étale.
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Proof. You can deduce this from Algebra, Lemma 143.7. Here is another proof.

By Lemma 36.7 a fibre Xs is étale and hence smooth over s. By Lemma 34.3 we see that
X → S is smooth. By Lemma 35.12 we see that f is unramified. We conclude by Lemma
36.5. �

Lemma 36.9. Any open immersion is étale.

Proof. This is true because an open immersion is a local isomorphism. �

Lemma 36.10. An étale morphism is syntomic.

Proof. See Algebra, Lemma 137.10 and use that an étale morphism is the same as a
smooth morphism of relative dimension 0. �

Lemma 36.11. An étale morphism is locally of finite presentation.

Proof. True because an étale ring map is of finite presentation by definition. �

Lemma 36.12. An étale morphism is flat.

Proof. Combine Lemmas 30.7 and 36.10. �

Lemma 36.13. An étale morphism is open.

Proof. Combine Lemmas 36.12, 36.11, and 25.10. �

The following lemma says locally any étale morphism is standard étale. This is actually
kind of a tricky result to prove in complete generality. The tricky parts are hidden in the
chapter on commutative algebra. Hence a standard étale morphism is a local model for a
general étale morphism.

Lemma 36.14. Let f : X → S be a morphism of schemes. Let x ∈ X be a point. Let
V ⊂ S be an affine open neighbourhood of f(x). The following are equivalent

(1) The morphism f is étale at x.
(2) There exist an affine open U ⊂ X with x ∈ U and f(U) ⊂ V such that the

induced morphism f |U : U → V is standard étale (see Definition 36.1).

Proof. Follows from the definitions and Algebra, Proposition 144.4. �

Here is a differential criterion of étaleness at a point. There are many variants of this result
all of which may be useful at some point. We will just add them here as needed.

Lemma 36.15. Let f : X → S be a morphism of schemes. Let x ∈ X . Set s = f(x).
Assume f is locally of finite presentation. The following are equivalent:

(1) The morphism f is étale at x.
(2) The local ring mapOS,s → OX,x is flat and Xs → Spec(κ(s)) is étale at x.
(3) The local ring map OS,s → OX,x is flat and Xs → Spec(κ(s)) is unramified at

x.
(4) The local ring mapOS,s → OX,x is flat and theOX,x-module ΩX/S,x is zero.
(5) The local ring mapOS,s → OX,x is flat and the κ(x)-vector space

ΩXs/s,x ⊗OXs,x
κ(x) = ΩX/S,x ⊗OX,x

κ(x)
is zero.

(6) The local ring map OS,s → OX,x is flat, we have msOX,x = mx and the field
extension κ(x)/κ(s) is finite separable.
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(7) There exist affine opens U ⊂ X , and V ⊂ S such that x ∈ U , f(U) ⊂ V and
the induced morphism f |U : U → V is standard smooth of relative dimension
0.

(8) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with x ∈ U
corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a presentation

A = R[x1, . . . , xn]/(f1, . . . , fn)
with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2
. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


mapping to an element of A not in q.

(9) There exist affine opens U ⊂ X , and V ⊂ S such that x ∈ U , f(U) ⊂ V and
the induced morphism f |U : U → V is standard étale.

(10) There exist affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S with x ∈ U
corresponding to q ⊂ A, and f(U) ⊂ V such that there exists a presentation

A = R[x]Q/(P ) = R[x, 1/Q]/(P )
with P,Q ∈ R[x], P monic and P ′ = dP/dx mapping to an element of A not
in q.

Proof. Use Lemma 36.14 and the definitions to see that (1) implies all of the other
conditions. For each of the conditions (2) – (10) combine Lemmas 34.14 and 35.14 to see
that (1) holds by showing f is both smooth and unramified at x and applying Lemma 36.5.
Some details omitted. �

Lemma 36.16. A morphism is étale at a point if and only if it is flat and G-unramified
at that point. A morphism is étale if and only if it is flat and G-unramified.

Proof. This is clear from Lemmas 36.15 and 35.14. �

Lemma 36.17. Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let W ⊂ X , resp. W ′ ⊂ X ′ be the open subscheme of
points where f , resp. f ′ is étale. Then W ′ = (g′)−1(W ) if

(1) f is flat and locally of finite presentation, or
(2) f is locally of finite presentation and g is flat.

Proof. Assume first that f locally of finite type. Consider the set
T = {x ∈ X | f is unramified at x}

and the corresponding set T ′ ⊂ X ′ for f ′. Then T ′ = (g′)−1(T ) by Lemma 35.15.
Thus case (1) follows because in case (1) T is the (open) set of points where f is étale by
Lemma 36.16.
In case (2) let x′ ∈ W ′. Then g′ is flat at x′ (Lemma 25.7) and g ◦ f ′ is flat at x′ (Lemma
25.5). It follows that f is flat at x = g′(x′) by Lemma 25.13. On the other hand, since
x′ ∈ T ′ (Lemma 34.5) we see that x ∈ T . Hence f is étale at x by Lemma 36.15. �
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Our proof of the following lemma is somewhat complicated. It uses the “Critère de plat-
itude par fibres” to see that a morphism X → Y over S between schemes étale over S is
automatically flat. The details are in the chapter on commutative algebra.

Lemma 36.18. Let f : X → Y be a morphism of schemes over S. If X and Y are
étale over S , then f is étale.

Proof. See Algebra, Lemma 143.8. �

Lemma 36.19. Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, and étale,
(2) p is étale, and
(3) q is locally of finite presentation11.

Then q is étale.
Proof. By Lemma 34.19 we see that q is smooth. Thus we only need to see that q

has relative dimension 0. This follows from Lemma 28.2 and the fact that f and p have
relative dimension 0. �

A final characterization of smooth morphisms is that a smooth morphism f : X → S is
locally the composition of an étale morphism by a projection Ad

S → S.
Lemma 36.20. Let ϕ : X → Y be a morphism of schemes. Let x ∈ X . Let V ⊂ Y

be an affine open neighbourhood of ϕ(x). If ϕ is smooth at x, then there exists an integer
d ≥ 0 and an affine open U ⊂ X with x ∈ U and ϕ(U) ⊂ V such that there exists a
commutative diagram

X

��

Uoo

��

π
// Ad

V

~~
Y Voo

where π is étale.
Proof. By Lemma 34.11 we can find an affine openU as in the lemma such that ϕ|U :

U → V is standard smooth. Write U = Spec(A) and V = Spec(R) so that we can write
A = R[x1, . . . , xn]/(f1, . . . , fc)

with

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fc/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fc/∂x2
. . . . . . . . . . . .

∂f1/∂xc ∂f2/∂xc . . . ∂fc/∂xc


mapping to an invertible element ofA. Then it is clear thatR[xc+1, . . . , xn]→ A is stan-
dard smooth of relative dimension 0. Hence it is smooth of relative dimension 0. In other
words the ring map R[xc+1, . . . , xn] → A is étale. As An−c

V = Spec(R[xc+1, . . . , xn])
the lemma with d = n− c. �

11In fact this is implied by (1) and (2), see Descent, Lemma 14.3. Moreover, it suffices to assume that f is
surjective, flat and locally of finite presentation, see Descent, Lemma 14.5.
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37. Relatively ample sheaves

Let X be a scheme and L an invertible sheaf on X . Then L is ample on X if X is quasi-
compact and every point of X is contained in an affine open of the form Xs, where s ∈
Γ(X,L⊗n) and n ≥ 1, see Properties, Definition 26.1. We turn this into a relative notion
as follows.

Definition 37.1. Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. We say L is relatively ample, or f -relatively ample, or ample on X/S , or
f -ample if f : X → S is quasi-compact, and if for every affine open V ⊂ S the restriction
of L to the open subscheme f−1(V ) of X is ample.

We note that the existence of a relatively ample sheaf on X does not force the morphism
X → S to be of finite type.

Lemma 37.2. Let X → S be a morphism of schemes. Let L be an invertible OX -
module. Let n ≥ 1. Then L is f -ample if and only if L⊗n is f -ample.

Proof. This follows from Properties, Lemma 26.2. �

Lemma 37.3. Let f : X → S be a morphism of schemes. If there exists an f -ample
invertible sheaf, then f is separated.

Proof. Being separated is local on the base (see Schemes, Lemma 21.7 for example; it
also follows easily from the definition). Hence we may assume S is affine and X has an
ample invertible sheaf. In this case the result follows from Properties, Lemma 26.8. �

There are many ways to characterize relatively ample invertible sheaves, analogous to the
equivalent conditions in Properties, Proposition 26.13. We will add these here as needed.

Lemma 37.4. Let f : X → S be a quasi-compact morphism of schemes. Let L be an
invertible sheaf on X . The following are equivalent:

(1) The invertible sheaf L is f -ample.
(2) There exists an open covering S =

⋃
Vi such that each L|f−1(Vi) is ample rela-

tive to f−1(Vi)→ Vi.
(3) There exists an affine open covering S =

⋃
Vi such that eachL|f−1(Vi) is ample.

(4) There exists a quasi-coherent graded OS-algebra A and a map of graded OX -
algebras ψ : f∗A →

⊕
d≥0 L⊗d such that U(ψ) = X and

rL,ψ : X −→ Proj
S

(A)

is an open immersion (see Constructions, Lemma 19.1 for notation).
(5) The morphism f is quasi-separated and part (4) above holds withA = f∗(

⊕
d≥0 L⊗d)

and ψ the adjunction mapping.
(6) Same as (4) but just requiring rL,ψ to be an immersion.

Proof. It is immediate from the definition that (1) implies (2) and (2) implies (3). It
is clear that (5) implies (4).

Assume (3) holds for the affine open covering S =
⋃
Vi. We are going to show (5) holds.

Since each f−1(Vi) has an ample invertible sheaf we see that f−1(Vi) is separated (Prop-
erties, Lemma 26.8). Hence f is separated. By Schemes, Lemma 24.1 we see that A =
f∗(
⊕

d≥0 L⊗d) is a quasi-coherent graded OS-algebra. Denote ψ : f∗A →
⊕

d≥0 L⊗d

the adjunction mapping. The description of the open U(ψ) in Constructions, Section 19
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and the definition of ampleness of L|f−1(Vi) show that U(ψ) = X . Moreover, Construc-
tions, Lemma 19.1 part (3) shows that the restriction of rL,ψ to f−1(Vi) is the same as the
morphism from Properties, Lemma 26.9 which is an open immersion according to Prop-
erties, Lemma 26.11. Hence (5) holds.

Let us show that (4) implies (1). Assume (4). Denote π : Proj
S

(A) → S the structure
morphism. Choose V ⊂ S affine open. By Constructions, Definition 16.7 we see that
π−1(V ) ⊂ Proj

S
(A) is equal to Proj(A) where A = A(V ) as a graded ring. Hence rL,ψ

maps f−1(V ) isomorphically onto a quasi-compact open of Proj(A). Moreover, L⊗d is
isomorphic to the pullback of OProj(A)(d) for some d ≥ 1. (See part (3) of Constructions,
Lemma 19.1 and the final statement of Constructions, Lemma 14.1.) This implies that
L|f−1(V ) is ample by Properties, Lemmas 26.12 and 26.2.

Assume (6). By the equivalence of (1) - (5) above we see that the property of being rela-
tively ample on X/S is local on S. Hence we may assume that S is affine, and we have to
show thatL is ample onX . In this case the morphism rL,ψ is identified with the morphism,
also denoted rL,ψ : X → Proj(A) associated to the map ψ : A = A(V )→ Γ∗(X,L). (See
references above.) As above we also see that L⊗d is the pullback of the sheaf OProj(A)(d)
for some d ≥ 1. Moreover, since X is quasi-compact we see that X gets identified with
a closed subscheme of a quasi-compact open subscheme Y ⊂ Proj(A). By Constructions,
Lemma 10.6 (see also Properties, Lemma 26.12) we see that OY (d′) is an ample invertible
sheaf on Y for some d′ ≥ 1. Since the restriction of an ample sheaf to a closed subscheme
is ample, see Properties, Lemma 26.3 we conclude that the pullback of OY (d′) is ample.
Combining these results with Properties, Lemma 26.2 we conclude that L is ample as de-
sired. �

Lemma 37.5. Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Assume S affine. Then L is f -relatively ample if and only if L is ample on
X .

Proof. Immediate from Lemma 37.4 and the definitions. �

Lemma 37.6. Let f : X → S be a morphism of schemes. Then f is quasi-affine if and
only ifOX is f -relatively ample.

Proof. Follows from Properties, Lemma 27.1 and the definitions. �

Lemma 37.7. Let f : X → Y be a morphism of schemes, M an invertible OY -
module, and L an invertibleOX -module.

(1) If L is f -ample andM is ample, then L ⊗ f∗M⊗a is ample for a� 0.
(2) IfM is ample and f quasi-affine, then f∗M is ample.

Proof. Assume L is f -ample and M ample. By assumption Y and f are quasi-
compact (see Definition 37.1 and Properties, Definition 26.1). Hence X is quasi-compact.
By Properties, Lemma 26.8 the scheme Y is separated and by Lemma 37.3 the morphism
f is separated. Hence X is separated by Schemes, Lemma 21.12. Pick x ∈ X . We can
choose m ≥ 1 and t ∈ Γ(Y,M⊗m) such that Yt is affine and f(x) ∈ Yt. Since L
restricts to an ample invertible sheaf on f−1(Yt) = Xf∗t we can choose n ≥ 1 and
s ∈ Γ(Xf∗t,L⊗n) with x ∈ (Xf∗t)s with (Xf∗t)s affine. By Properties, Lemma 17.2 part
(2) whose assumptions are satisfied by the above, there exists an integer e ≥ 1 and a section
s′ ∈ Γ(X,L⊗n ⊗ f∗M⊗em) which restricts to s(f∗t)e on Xf∗t. For any b > 0 consider
the section s′′ = s′(f∗t)b of L⊗n⊗ f∗M⊗(e+b)m. ThenXs′′ = (Xf∗t)s is an affine open
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of X containing x. Picking b such that n divides e+ b we see L⊗n ⊗ f∗M⊗(e+b)m is the
nth power ofL⊗f∗M⊗a for some a and we can get any a divisible bym and big enough.
SinceX is quasi-compact a finite number of these affine opens coverX . We conclude that
for some a sufficiently divisible and large enough the invertible sheafL⊗f∗M⊗a is ample
on X . On the other hand, we know thatM⊗c (and hence its pullback to X) is globally
generated for all c � 0 by Properties, Proposition 26.13. Thus L ⊗ f∗M⊗a+c is ample
(Properties, Lemma 26.5) for c� 0 and (1) is proved.
Part (2) follows from Lemma 37.6, Properties, Lemma 26.2, and part (1). �

Lemma 37.8. Let g : Y → S and f : X → Y be morphisms of schemes. LetM be
an invertibleOY -module. Let L be an invertibleOX -module. If S is quasi-compact,M is
g-ample, and L is f -ample, then L ⊗ f∗M⊗a is g ◦ f -ample for a� 0.

Proof. Let S =
⋃
i=1,...,n Vi be a finite affine open covering. By Lemma 37.4 it

suffices to prove that L ⊗ f∗M⊗a is ample on (g ◦ f)−1(Vi) for i = 1, . . . , n. Thus the
lemma follows from Lemma 37.7. �

Lemma 37.9. Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Let S′ → S be a morphism of schemes. Let f ′ : X ′ → S′ be the base change
of f and denote L′ the pullback of L to X ′. If L is f -ample, then L′ is f ′-ample.

Proof. By Lemma 37.4 it suffices to find an affine open covering S′ =
⋃
U ′
i such

that L′ restricts to an ample invertible sheaf on (f ′)−1(U ′
i) for all i. We may choose U ′

i

mapping into an affine open Ui ⊂ S. In this case the morphism (f ′)−1(U ′
i)→ f−1(Ui) is

affine as a base change of the affine morphism U ′
i → Ui (Lemma 11.8). Thus L′|(f ′)−1(U ′

i
)

is ample by Lemma 37.7. �

Lemma 37.10. Let g : Y → S and f : X → Y be morphisms of schemes. Let L be an
invertibleOX -module. If L is g ◦ f -ample and f is quasi-compact12 then L is f -ample.

Proof. Assume f is quasi-compact and L is g ◦ f -ample. Let U ⊂ S be an affine
open and let V ⊂ Y be an affine open with g(V ) ⊂ U . Then L|(g◦f)−1(U) is ample
on (g ◦ f)−1(U) by assumption. Since f−1(V ) ⊂ (g ◦ f)−1(U) we see that L|f−1(V )
is ample on f−1(V ) by Properties, Lemma 26.14. Namely, f−1(V ) → (g ◦ f)−1(U) is
a quasi-compact open immersion by Schemes, Lemma 21.14 as (g ◦ f)−1(U) is separated
(Properties, Lemma 26.8) and f−1(V ) is quasi-compact (as f is quasi-compact). Thus we
conclude that L is f -ample by Lemma 37.4. �

38. Very ample sheaves

Recall that given a quasi-coherent sheaf E on a scheme S the projective bundle associated
to E is the morphism P(E) → S , where P(E) = Proj

S
(Sym(E)), see Constructions,

Definition 21.1.

Definition 38.1. Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. We say L is relatively very ample or more precisely f -relatively very ample,
or very ample on X/S , or f -very ample if there exist a quasi-coherent OS-module E and
an immersion i : X → P(E) over S such that L ∼= i∗OP(E)(1).

Since there is no assumption of quasi-compactness in this definition it is not true in general
that a relatively very ample invertible sheaf is a relatively ample invertible sheaf.

12This follows if g is quasi-separated by Schemes, Lemma 21.14.
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Lemma 38.2. Let f : X → S be a morphism of schemes. Let L be an invertible OX -
module. If f is quasi-compact and L is a relatively very ample invertible sheaf, then L is
a relatively ample invertible sheaf.

Proof. By definition there exists quasi-coherent OS-module E and an immersion
i : X → P(E) over S such that L ∼= i∗OP(E)(1). Set A = Sym(E), so P(E) = Proj

S
(A)

by definition. The gradedOS-algebraA comes equipped with a map

ψ : A →
⊕

n≥0
π∗OP(E)(n)→

⊕
n≥0

f∗L⊗n

where the second arrow uses the identification L ∼= i∗OP(E)(1). By adjointness of f∗
and f∗ we get a morphism ψ : f∗A →

⊕
n≥0 L⊗n. We omit the verification that the

morphism rL,ψ associated to this map is exactly the immersion i. Hence the result follows
from part (6) of Lemma 37.4. �

To arrive at the correct converse of this lemma we ask whether given a relatively ample
invertible sheaf L there exists an integer n ≥ 1 such that L⊗n is relatively very ample?
In general this is false. There are several things that prevent this from being true:

(1) Even if S is affine, it can happen that no finite integer n works because X → S
is not of finite type, see Example 38.4.

(2) The base not being quasi-compact means the result can be prevented from being
true even with f finite type. Namely, given a field k there exists a scheme Xd

of finite type over k with an ample invertible sheaf OXd(1) so that the smallest
tensor power ofOXd(1) which is very ample is the dth power. See Example 38.5.
Taking f to be the disjoint union of the schemes Xd mapping to the disjoint
union of copies of Spec(k) gives an example.

To see our version of the converse take a look at Lemma 39.5 below. We will do some
preliminary work before proving it.

Example 38.3. Let S be a scheme. LetA be a quasi-coherent gradedOS-algebra gen-
erated by A1 over A0. Set X = Proj

S
(A). In this case OX(1) is a very ample invertible

sheaf on X . Namely, the morphism associated to the gradedOS-algebra map

Sym∗
OX

(A1) −→ A

is a closed immersion X → P(A1) which pulls back OP(A1)(1) to OX(1), see Construc-
tions, Lemma 18.5.

Example 38.4. Let k be a field. Consider the graded k-algebra

A = k[U, V, Z1, Z2, Z3, . . .]/I with I = (U2 − Z2
1 , U

4 − Z2
2 , U

6 − Z2
3 , . . .)

with grading given by deg(U) = deg(V ) = deg(Z1) = 1 and deg(Zd) = d. Note
that X = Proj(A) is covered by D+(U) and D+(V ). Hence the sheaves OX(n) are all
invertible and isomorphic to OX(1)⊗n. In particular OX(1) is ample and f -ample for
the morphism f : X → Spec(k). We claim that no power of OX(1) is f -relatively very
ample. Namely, it is easy to see that Γ(X,OX(n)) is the degree n summand of the algebra
A. Hence ifOX(n) were very ample, then X would be a closed subscheme of a projective
space over k and hence of finite type over k. On the other hand D+(V ) is the spectrum
of k[t, t1, t2, . . .]/(t2 − t21, t4 − t22, t6 − t23, . . .) which is not of finite type over k.
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Example 38.5. Let k be an infinite field. Let λ1, λ2, λ3, . . . be pairwise distinct ele-
ments of k∗. (This is not strictly necessary, and in fact the example works perfectly well
even if all λi are equal to 1.) Consider the graded k-algebra

Ad = k[U, V, Z]/Id with Id = (Z2 −
∏2d

i=1
(U − λiV )).

with grading given by deg(U) = deg(V ) = 1 and deg(Z) = d. ThenXd = Proj(Ad) has
ample invertible sheaf OXd(1). We claim that if OXd(n) is very ample, then n ≥ d. The
reason for this is that Z has degree d, and hence Γ(Xd,OXd(n)) = k[U, V ]n for n < d.
Details omitted.

Lemma 38.6. Let f : X → S be a morphism of schemes. Let L be an invertible sheaf
on X . If L is relatively very ample on X/S then f is separated.

Proof. Being separated is local on the base (see Schemes, Section 21). An immersion
is separated (see Schemes, Lemma 23.8). Hence the lemma follows since locally X has
an immersion into the homogeneous spectrum of a graded ring which is separated, see
Constructions, Lemma 8.8. �

Lemma 38.7. Let f : X → S be a morphism of schemes. Let L be an invertible sheaf
on X . Assume f is quasi-compact. The following are equivalent

(1) L is relatively very ample on X/S ,
(2) there exists an open covering S =

⋃
Vj such that L|f−1(Vj) is relatively very

ample on f−1(Vj)/Vj for all j ,
(3) there exists a quasi-coherent sheaf of gradedOS-algebrasA generated in degree

1 over OS and a map of graded OX -algebras ψ : f∗A →
⊕

n≥0 L⊗n such that
f∗A1 → L is surjective and the associated morphism rL,ψ : X → Proj

S
(A) is

an immersion, and
(4) f is quasi-separated, the canonical map ψ : f∗f∗L → L is surjective, and the

associated map rL,ψ : X → P(f∗L) is an immersion.

Proof. It is clear that (1) implies (2). It is also clear that (4) implies (1); the hypoth-
esis of quasi-separation in (4) is used to guarantee that f∗L is quasi-coherent via Schemes,
Lemma 24.1.

Assume (2). We will prove (4). Let S =
⋃
Vj be an open covering as in (2). Set Xj =

f−1(Vj) and fj : Xj → Vj the restriction of f . We see that f is separated by Lemma 38.6
(as being separated is local on the base). By assumption there exists a quasi-coherentOVj -
module Ej and an immersion ij : Xj → P(Ej) with L|Xj ∼= i∗jOP(Ej)(1). The morphism
ij corresponds to a surjection f∗

j Ej → L|Xj , see Constructions, Section 21. This map is
adjoint to a map Ej → f∗L|Vj such that the composition

f∗
j Ej → (f∗f∗L)|Xj → L|Xj

is surjective. We conclude that ψ : f∗f∗L → L is surjective. Let rL,ψ : X → P(f∗L)
be the associated morphism. We still have to show that rL,ψ is an immersion; we urge
the reader to prove this for themselves. The OVj -module map Ej → f∗L|Vj determines a
homomorphism on symmetric algebras, which in turn defines a morphism

P(f∗L|Vj ) ⊃ Uj −→ P(Ej)
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where Uj is the open subscheme of Constructions, Lemma 18.1. The compatibility of ψ
with Ej → f∗L|Vj shows that rL,ψ(Xj) ⊂ Uj and that there is a factorization

Xj

rL,ψ // Uj // P(Ej)

We omit the verification. This shows that rL,ψ is an immersion.
At this point we see that (1), (2) and (4) are equivalent. Clearly (4) implies (3). Assume
(3). We will prove (1). Let A be a quasi-coherent sheaf of graded OS-algebras generated
in degree 1 over OS . Consider the map of graded OS-algebras Sym(A1) → A. This is
surjective by hypothesis and hence induces a closed immersion

Proj
S

(A) −→ P(A1)

which pulls back O(1) to O(1), see Constructions, Lemma 18.5. Hence it is clear that (3)
implies (1). �

Lemma 38.8. Let f : X → S be a morphism of schemes. Let L be an invertible OX -
module. Let S′ → S be a morphism of schemes. Let f ′ : X ′ → S′ be the base change of f
and denote L′ the pullback of L to X ′. If L is f -very ample, then L′ is f ′-very ample.

Proof. By Definition 38.1 there exists there exist a quasi-coherentOS-module E and
an immersion i : X → P(E) over S such that L ∼= i∗OP(E)(1). The base change of
P(E) to S′ is the projective bundle associated to the pullback E ′ of E and the pullback
ofOP(E)(1) isOP(E′)(1), see Constructions, Lemma 16.10. Finally, the base change of an
immersion is an immersion (Schemes, Lemma 18.2). �

39. Ample and very ample sheaves relative to finite type morphisms

In fact most of the material in this section is about the notion of a (quasi-)projective mor-
phism which we have not defined yet.

Lemma 39.1. Let f : X → S be a morphism of schemes. Let L be an invertible sheaf
on X . Assume that

(1) the invertible sheaf L is very ample on X/S ,
(2) the morphism X → S is of finite type, and
(3) S is affine.

Then there exist ann ≥ 0 and an immersion i : X → Pn
S overS such thatL ∼= i∗OPn

S
(1).

Proof. Assume (1), (2) and (3). Condition (3) means S = Spec(R) for some ring
R. Condition (1) means by definition there exists a quasi-coherent OS-module E and an
immersion α : X → P(E) such thatL = α∗OP(E)(1). Write E = M̃ for someR-module
M . Thus we have

P(E) = Proj(SymR(M)).
Since α is an immersion, and since the topology of Proj(SymR(M)) is generated by the
standard opens D+(f), f ∈ Symd

R(M), d ≥ 1, we can find for each x ∈ X an f ∈
Symd

R(M), d ≥ 1, with α(x) ∈ D+(f) such that

α|α−1(D+(f)) : α−1(D+(f))→ D+(f)
is a closed immersion. Condition (2) implies X is quasi-compact. Hence we can find a
finite collection of elements fj ∈ Symdj

R (M), dj ≥ 1 such that for each f = fj the
displayed map above is a closed immersion and such that α(X) ⊂

⋃
D+(fj). Write

Uj = α−1(D+(fj)). Note that Uj is affine as a closed subscheme of the affine scheme
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D+(fj). Write Uj = Spec(Aj). Condition (2) also implies that Aj is of finite type over
R, see Lemma 15.2. Choose finitely many xj,k ∈ Aj which generate Aj as a R-algebra.
Since α|Uj is a closed immersion we see that xj,k is the image of an element

fj,k/f
ej,k
j ∈ SymR(M)(fj) = Γ(D+(fj),OProj(SymR(M))).

Finally, choose n ≥ 1 and elements y0, . . . , yn ∈ M such that each of the polynomials
fj , fj,k ∈ SymR(M) is a polynomial in the elements yt with coefficients in R. Consider
the graded ring map

ψ : R[Y0, . . . , Yn] −→ SymR(M), Yi 7−→ yi.

Denote Fj , Fj,k the elements of R[Y0, . . . , Yn] such that ψ(Fj) = fj and ψ(Fj,k) = fj,k.
By Constructions, Lemma 11.1 we obtain an open subscheme

U(ψ) ⊂ Proj(SymR(M))
and a morphism rψ : U(ψ) → Pn

R. This morphism satisfies r−1
ψ (D+(Fj)) = D+(fj),

and hence we see that α(X) ⊂ U(ψ). Moreover, it is clear that
i = rψ ◦ α : X −→ Pn

R

is still an immersion since i](Fj,k/F
ej,k
j ) = xj,k ∈ Aj = Γ(Uj ,OX) by construction.

Moreover, the morphism rψ comes equipped with a map θ : r∗
ψOPn

R
(1)→ OProj(SymR(M))(1)|U(ψ)

which is an isomorphism in this case (for construction θ see lemma cited above; some
details omitted). Since the original map α was assumed to have the property that L =
α∗OProj(SymR(M))(1) we win. �

Lemma 39.2. Letπ : X → S be a morphism of schemes. Assume thatX is quasi-affine
and that π is locally of finite type. Then there exist n ≥ 0 and an immersion i : X → An

S

over S.

Proof. Let A = Γ(X,OX). By assumption X is quasi-compact and is identified
with an open subscheme of Spec(A), see Properties, Lemma 18.4. Moreover, the set of
opens Xf , for those f ∈ A such that Xf is affine, forms a basis for the topology of X ,
see the proof of Properties, Lemma 18.4. Hence we can find a finite number of fj ∈ A,
j = 1, . . . ,m such that X =

⋃
Xfj , and such that π(Xfj ) ⊂ Vj for some affine open

Vj ⊂ S. By Lemma 15.2 the ring maps O(Vj) → O(Xfj ) = Afj are of finite type. Thus
we may choose a1, . . . , aN ∈ A such that the elements a1, . . . , aN , 1/fj generateAfj over
O(Vj) for each j. Take n = m+N and let

i : X −→ An
S

be the morphism given by the global sections f1, . . . , fm, a1, . . . , aN of the structure sheaf
of X . Let D(xj) ⊂ An

S be the open subscheme where the jth coordinate function is
nonzero. Then for 1 ≤ j ≤ m we have i−1(D(xj)) = Xfj and the induced morphism
Xfj → D(xj) factors through the affine open Spec(O(Vj)[x1, . . . , xn, 1/xj ]) of D(xj).
Since the ring map O(Vj)[x1, . . . , xn, 1/xj ]→ Afj is surjective by construction we con-
clude that i−1(D(xj))→ D(xj) is an immersion as desired. �

Lemma 39.3. Let f : X → S be a morphism of schemes. Let L be an invertible sheaf
on X . Assume that

(1) the invertible sheaf L is ample on X , and
(2) the morphism X → S is locally of finite type.

Then there exists a d0 ≥ 1 such that for every d ≥ d0 there exist an n ≥ 0 and an
immersion i : X → Pn

S over S such that L⊗d ∼= i∗OPn
S
(1).
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Proof. Let A = Γ∗(X,L) =
⊕

d≥0 Γ(X,L⊗d). By Properties, Proposition 26.13
the set of affine opensXa with a ∈ A+ homogeneous forms a basis for the topology ofX .
Hence we can find finitely many such elements a0, . . . , an ∈ A+ such that

(1) we have X =
⋃
i=0,...,nXai ,

(2) each Xai is affine, and
(3) each Xai maps into an affine open Vi ⊂ S.

By Lemma 15.2 we see that the ring mapsOS(Vi)→ OX(Xai) are of finite type. Hence we
can find finitely many elements fij ∈ OX(Xai), j = 1, . . . , ni which generate OX(Xai)
as an OS(Vi)-algebra. By Properties, Lemma 17.2 we may write each fij as aij/a

eij
i for

some aij ∈ A+ homogeneous. Let N be a positive integer which is a common multiple of
all the degrees of the elements ai, aij . Consider the elements

a
N/ deg(ai)
i , aija

(N/ deg(ai))−eij
i ∈ AN .

By construction these generate the invertible sheaf L⊗N over X . Hence they give rise to
a morphism

j : X −→ Pm
S with m = n+

∑
ni

over S , see Constructions, Lemma 13.1 and Definition 13.2. Moreover, j∗OPS (1) = L⊗N .
We name the homogeneous coordinates T0, . . . , Tn, Tij instead of T0, . . . , Tm. For i =
0, . . . , n we have i−1(D+(Ti)) = Xai . Moreover, pulling back the element Tij/Ti via j]
we get the element fij ∈ OX(Xai). Hence the morphism j restricted toXai gives a closed
immersion of Xai into the affine open D+(Ti)∩Pm

Vi
of PN

S . Hence we conclude that the
morphism j is an immersion. This implies the lemma holds for some d and n which is
enough in virtually all applications.

This proves that for one d2 ≥ 1 (namely d2 = N above), some m ≥ 0 there exists
some immersion j : X → Pm

S given by global sections s′
0, . . . , s

′
m ∈ Γ(X,L⊗d2). By

Properties, Proposition 26.13 we know there exists an integer d1 such thatL⊗d is globally
generated for all d ≥ d1. Set d0 = d1 + d2. We claim that the lemma holds with this
value of d0. Namely, given an integer d ≥ d0 we may choose s′′

1 , . . . , s
′′
t ∈ Γ(X,L⊗d−d2)

which generate L⊗d−d2 over X . Set k = (m + 1)t and denote s0, . . . , sk the collection
of sections s′

αs
′′
β , α = 0, . . . ,m, β = 1, . . . , t. These generate L⊗d over X and therefore

define a morphism
i : X −→ Pk−1

S

such that i∗OPn
S
(1) ∼= L⊗d. To see that i is an immersion, observe that i is the composition

X −→ Pm
S ×S Pt−1

S −→ Pk−1
S

where the first morphism is (j, j′) with j′ given by s′′
1 , . . . , s

′′
t and the second morphism

is the Segre embedding (Constructions, Lemma 13.6). Since j is an immersion, so is (j, j′)
(apply Lemma 3.1 to X → Pm

S ×S Pt−1
S → Pm

S ). Thus i is a composition of immersions
and hence an immersion (Schemes, Lemma 24.3). �

Lemma 39.4. Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Assume S affine and f of finite type. The following are equivalent

(1) L is ample on X ,
(2) L is f -ample,
(3) L⊗d is f -very ample for some d ≥ 1,
(4) L⊗d is f -very ample for all d� 1,
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(5) for some d ≥ 1 there exist n ≥ 1 and an immersion i : X → Pn
S such that

L⊗d ∼= i∗OPn
S
(1), and

(6) for all d � 1 there exist n ≥ 1 and an immersion i : X → Pn
S such that

L⊗d ∼= i∗OPn
S
(1).

Proof. The equivalence of (1) and (2) is Lemma 37.5. The implication (2)⇒ (6) is
Lemma 39.3. Trivially (6) implies (5). As Pn

S is a projective bundle over S (see Construc-
tions, Lemma 21.5) we see that (5) implies (3) and (6) implies (4) from the definition of a
relatively very ample sheaf. Trivially (4) implies (3). To finish we have to show that (3)
implies (2) which follows from Lemma 38.2 and Lemma 37.2. �

Lemma 39.5. Let f : X → S be a morphism of schemes. Let L be an invertible
OX -module. Assume S quasi-compact and f of finite type. The following are equivalent

(1) L is f -ample,
(2) L⊗d is f -very ample for some d ≥ 1,
(3) L⊗d is f -very ample for all d� 1.

Proof. Trivially (3) implies (2). Lemma 38.2 guarantees that (2) implies (1) since a
morphism of finite type is quasi-compact by definition. Assume thatL is f -ample. Choose
a finite affine open covering S = V1 ∪ . . . ∪ Vm. Write Xi = f−1(Vi). By Lemma 39.4
above we see there exists a d0 such that L⊗d is relatively very ample on Xi/Vi for all
d ≥ d0. Hence we conclude (1) implies (3) by Lemma 38.7. �

The following two lemmas provide the most used and most useful characterizations of
relatively very ample and relatively ample invertible sheaves when the morphism is of
finite type.

Lemma 39.6. Let f : X → S be a morphism of schemes. Let L be an invertible sheaf
on X . Assume f is of finite type. The following are equivalent:

(1) L is f -relatively very ample, and
(2) there exist an open covering S =

⋃
Vj , for each j an integer nj , and immersions

ij : Xj = f−1(Vj) = Vj ×S X −→ Pnj
Vj

over Vj such that L|Xj ∼= i∗jOP
nj
Vj

(1).

Proof. We see that (1) implies (2) by taking an affine open covering ofS and applying
Lemma 39.1 to each of the restrictions of f and L. We see that (2) implies (1) by Lemma
38.7. �

Lemma 39.7. Let f : X → S be a morphism of schemes. Let L be an invertible sheaf
on X . Assume f is of finite type. The following are equivalent:

(1) L is f -relatively ample, and
(2) there exist an open covering S =

⋃
Vj , for each j an integers dj ≥ 1, nj ≥ 0,

and immersions
ij : Xj = f−1(Vj) = Vj ×S X −→ Pnj

Vj

over Vj such that L⊗dj |Xj ∼= i∗jOP
nj
Vj

(1).

Proof. We see that (1) implies (2) by taking an affine open covering ofS and applying
Lemma 39.4 to each of the restrictions of f and L. We see that (2) implies (1) by Lemma
37.4. �
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Lemma 39.8. Let f : X → S be a morphism of schemes. Let N , L be invertible
OX -modules. Assume S is quasi-compact, f is of finite type, and L is f -ample. Then
N ⊗OX

L⊗d is f -very ample for all d� 1.

Proof. By Lemma 39.6 we reduce to the case S is affine. Combining Lemma 39.4
and Properties, Proposition 26.13 we can find an integer d0 such that N ⊗ L⊗d0 is glob-
ally generated. Choose global sections s0, . . . , sn of N ⊗ L⊗d0 which generate it. This
determines a morphism j : X → Pn

S over S. By Lemma 39.4 we can also pick an integer
d1 such that for all d ≥ d1 there exist sections td,0, . . . , td,n(d) of L⊗d which generate it
and define an immersion

jd = ϕL⊗d,td,0,...,td,n(d) : X −→ Pn(d)
S

over S. Then for d ≥ d0 + d1 we can consider the morphism

ϕN ⊗L⊗d,sj⊗td−d0,i
: X −→ P(n+1)(n(d−d0)+1)−1

S

This morphism is an immersion as it is the composition

X → Pn
S ×S Pn(d−d0)

S → P(n+1)(n(d−d0)+1)−1
S

where the first morphism is (j, jd−d0) and the second is the Segre embedding (Construc-
tions, Lemma 13.6). Since j is an immersion, so is (j, jd−d0) (apply Lemma 3.1). We have
a composition of immersions and hence an immersion (Schemes, Lemma 24.3). �

40. Quasi-projective morphisms

The discussion in the previous section suggests the following definitions. We take our
definition of quasi-projective from [?]. The version with the letter “H” is the definition in
[?].

Definition 40.1. Let f : X → S be a morphism of schemes.
(1) We say f is quasi-projective if f is of finite type and there exists an f -relatively

ample invertibleOX -module.
(2) We say f is H-quasi-projective if there exists a quasi-compact immersion X →

Pn
S over S for some n.13

(3) We say f is locally quasi-projective if there exists an open covering S =
⋃
Vj

such that each f−1(Vj)→ Vj is quasi-projective.

As this definition suggests the property of being quasi-projective is not local on S. At a
later stage we will be able to say more about the category of quasi-projective schemes, see
More on Morphisms, Section 49.

Lemma 40.2. A base change of a quasi-projective morphism is quasi-projective.

Proof. This follows from Lemmas 15.4 and 37.9. �

Lemma 40.3. Let f : X → Y and g : Y → S be morphisms of schemes. If S is
quasi-compact and f and g are quasi-projective, then g ◦ f is quasi-projective.

Proof. This follows from Lemmas 15.3 and 37.8. �

13This is not exactly the same as the definition in Hartshorne. Namely, the definition in Hartshorne (8th
corrected printing, 1997) is that f should be the composition of an open immersion followed by a H-projective
morphism (see Definition 43.1), which does not imply f is quasi-compact. See Lemma 43.11 for the implication
in the other direction.
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Lemma 40.4. Let f : X → S be a morphism of schemes. If f is quasi-projective, or
H-quasi-projective or locally quasi-projective, then f is separated of finite type.

Proof. Omitted. �

Lemma 40.5. A H-quasi-projective morphism is quasi-projective.

Proof. Omitted. �

Lemma 40.6. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) The morphism f is locally quasi-projective.
(2) There exists an open covering S =

⋃
Vj such that each f−1(Vj) → Vj is H-

quasi-projective.

Proof. By Lemma 40.5 we see that (2) implies (1). Assume (1). The question is local
on S and hence we may assume S is affine, X of finite type over S and L is a relatively
ample invertible sheaf on X/S. By Lemma 39.4 we may assume L is ample on X . By
Lemma 39.3 we see that there exists an immersion ofX into a projective space over S , i.e.,
X is H-quasi-projective over S as desired. �

Lemma 40.7. A quasi-affine morphism of finite type is quasi-projective.

Proof. This follows from Lemma 37.6. �

Lemma 40.8. Let g : Y → S and f : X → Y be morphisms of schemes. If g ◦ f is
quasi-projective and f is quasi-compact14, then f is quasi-projective.

Proof. Observe that f is of finite type by Lemma 15.8. Thus the lemma follows from
Lemma 37.10 and the definitions. �

41. Proper morphisms

The notion of a proper morphism plays an important role in algebraic geometry. An im-
portant example of a proper morphism will be the structure morphism Pn

S → S of pro-
jective n-space, and this is in fact the motivating example leading to the definition.

Definition 41.1. Let f : X → S be a morphism of schemes. We say f is proper if f
is separated, finite type, and universally closed.

The morphism from the affine line with zero doubled to the affine line is of finite type
and universally closed, so the separation condition is necessary in the definition above. In
the rest of this section we prove some of the basic properties of proper morphisms and of
universally closed morphisms.

Lemma 41.2. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) The morphism f is universally closed.
(2) There exists an open covering S =

⋃
Vj such that f−1(Vj)→ Vj is universally

closed for all indices j.

Proof. This is clear from the definition. �

Lemma 41.3. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

14This follows if g is quasi-separated by Schemes, Lemma 21.14.
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(1) The morphism f is proper.
(2) There exists an open covering S =

⋃
Vj such that f−1(Vj) → Vj is proper for

all indices j.

Proof. Omitted. �

Lemma 41.4. The composition of proper morphisms is proper. The same is true for
universally closed morphisms.

Proof. A composition of closed morphisms is closed. If X → Y → Z are uni-
versally closed morphisms and Z ′ → Z is any morphism, then we see that Z ′ ×Z X =
(Z ′ ×Z Y ) ×Y X → Z ′ ×Z Y is closed and Z ′ ×Z Y → Z ′ is closed. Hence the result
for universally closed morphisms. We have seen that “separated” and “finite type” are pre-
served under compositions (Schemes, Lemma 21.12 and Lemma 15.3). Hence the result for
proper morphisms. �

Lemma 41.5. The base change of a proper morphism is proper. The same is true for
universally closed morphisms.

Proof. This is true by definition for universally closed morphisms. It is true for sep-
arated morphisms (Schemes, Lemma 21.12). It is true for morphisms of finite type (Lemma
15.4). Hence it is true for proper morphisms. �

Lemma 41.6. A closed immersion is proper, hence a fortiori universally closed.

Proof. The base change of a closed immersion is a closed immersion (Schemes, Lemma
18.2). Hence it is universally closed. A closed immersion is separated (Schemes, Lemma
23.8). A closed immersion is of finite type (Lemma 15.5). Hence a closed immersion is
proper. �

Lemma 41.7. Suppose given a commutative diagram of schemes

X //

��

Y

��
S

with Y separated over S.
(1) IfX → S is universally closed, then the morphismX → Y is universally closed.
(2) If X is proper over S , then the morphism X → Y is proper.

In particular, in both cases the image of X in Y is closed.

Proof. Assume that X → S is universally closed (resp. proper). We factor the
morphism as X → X ×S Y → Y . The first morphism is a closed immersion, see
Schemes, Lemma 21.10. Hence the first morphism is proper (Lemma 41.6). The projec-
tion X ×S Y → Y is the base change of a universally closed (resp. proper) morphism
and hence universally closed (resp. proper), see Lemma 41.5. Thus X → Y is universally
closed (resp. proper) as the composition of universally closed (resp. proper) morphisms
(Lemma 41.4). �

The proof of the following lemma is due to Bjorn Poonen, see this location.

Lemma 41.8. A universally closed morphism of schemes is quasi-compact.

https://mathoverflow.net/questions/23337/is-a-universally-closed-morphism-of-schemes-quasi-compact/23528#23528
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Proof. Let f : X → S be a morphism. Assume that f is not quasi-compact. Our goal
is to show that f is not universally closed. By Schemes, Lemma 19.2 there exists an affine
openV ⊂ S such that f−1(V ) is not quasi-compact. To achieve our goal it suffices to show
that f−1(V )→ V is not universally closed, hence we may assume that S = Spec(A) for
some ring A.

WriteX =
⋃
i∈I Xi where theXi are affine open subschemes ofX . LetT = Spec(A[yi; i ∈

I]). Let Ti = D(yi) ⊂ T . Let Z be the closed set (X ×S T )−
⋃
i∈I(Xi×S Ti). It suffices

to prove that the image fT (Z) of Z under fT : X ×S T → T is not closed.

There exists a point s ∈ S such that there is no neighborhood U of s in S such that XU

is quasi-compact. Otherwise we could cover S with finitely many such U and Schemes,
Lemma 19.2 would imply f quasi-compact. Fix such an s ∈ S.

First we check that fT (Zs) 6= Ts. Let t ∈ T be the point lying over s with κ(t) = κ(s)
such that yi = 1 in κ(t) for all i. Then t ∈ Ti for all i, and the fiber of Zs → Ts above t
is isomorphic to (X −

⋃
i∈I Xi)s, which is empty. Thus t ∈ Ts − fT (Zs).

Assume fT (Z) is closed in T . Then there exists an element g ∈ A[yi; i ∈ I] with fT (Z) ⊂
V (g) but t 6∈ V (g). Hence the image of g in κ(t) is nonzero. In particular some coefficient
of g has nonzero image in κ(s). Hence this coefficient is invertible on some neighborhood
U of s. Let J be the finite set of j ∈ I such that yj appears in g. Since XU is not quasi-
compact, we may choose a point x ∈ X −

⋃
j∈J Xj lying above some u ∈ U . Since g

has a coefficient that is invertible on U , we can find a point t′ ∈ T lying above u such
that t′ 6∈ V (g) and t′ ∈ V (yi) for all i /∈ J . This is true because V (yi; i ∈ I, i 6∈ J) =
Spec(A[tj ; j ∈ J ]) and the set of points of this scheme lying over u is bijective with
Spec(κ(u)[tj ; j ∈ J ]). In other words t′ /∈ Ti for each i /∈ J . By Schemes, Lemma 17.5
we can find a point z of X ×S T mapping to x ∈ X and to t′ ∈ T . Since x 6∈ Xj for
j ∈ J and t′ 6∈ Ti for i ∈ I \ J we see that z ∈ Z. On the other hand fT (z) = t′ 6∈ V (g)
which contradicts fT (Z) ⊂ V (g). Thus the assumption “fT (Z) closed” is wrong and we
conclude indeed that fT is not closed, as desired. �

The following lemma says that the image of a proper scheme (in a separated scheme of
finite type over the base) is proper.

Lemma 41.9. Let S be a scheme. Let f : X → Y be a morphism of schemes over S.
IfX is universally closed over S and f is surjective then Y is universally closed over S. In
particular, if also Y is separated and locally of finite type over S , then Y is proper over S.

Proof. Assume X is universally closed and f surjective. Denote p : X → S , q :
Y → S the structure morphisms. Let S′ → S be a morphism of schemes. The base change
f ′ : XS′ → YS′ is surjective (Lemma 9.4), and the base change p′ : XS′ → S′ is closed.
If T ⊂ YS′ is closed, then (f ′)−1(T ) ⊂ XS′ is closed, hence p′((f ′)−1(T )) = q′(T ) is
closed. So q′ is closed. This proves the first statement. Thus Y → S is quasi-compact by
Lemma 41.8 and hence Y → S is proper by definition if in addition Y → S is locally of
finite type and separated. �

Lemma 41.10. Suppose given a commutative diagram of schemes

X
h

//

f ��

Y

g
��

S
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Assume
(1) X → S is a universally closed (for example proper) morphism, and
(2) Y → S is separated and locally of finite type.

Then the scheme theoretic image Z ⊂ Y of h is proper over S and X → Z is surjective.

Proof. The scheme theoretic image of h is constructed in Section 6. Since f is quasi-
compact (Lemma 41.8) we find that h is quasi-compact (Schemes, Lemma 21.14). Hence
h(X) ⊂ Z is dense (Lemma 6.3). On the other hand h(X) is closed in Y (Lemma 41.7)
hence X → Z is surjective. Thus Z → S is a proper (Lemma 41.9). �

The target of a separated scheme under a surjective universally closed morphism is sepa-
rated.

Lemma 41.11. Let S be a scheme. Let f : X → Y be a surjective universally closed
morphism of schemes over S.

(1) If X is quasi-separated, then Y is quasi-separated.
(2) If X is separated, then Y is separated.
(3) If X is quasi-separated over S , then Y is quasi-separated over S.
(4) If X is separated over S , then Y is separated over S.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = Spec(Z) (see
Schemes, Definition 21.3). Consider the commutative diagram

X

��

∆X/S

// X ×S X

��
Y

∆Y/S // Y ×S Y

The left vertical arrow is surjective (i.e., universally surjective). The right vertical arrow
is universally closed as a composition of the universally closed morphisms X ×S X →
X ×S Y → Y ×S Y . Hence it is also quasi-compact, see Lemma 41.8.
Assume X is quasi-separated over S , i.e., ∆X/S is quasi-compact. If V ⊂ Y ×S Y is a
quasi-compact open, then V ×Y×SY X → ∆−1

Y/S(V ) is surjective and V ×Y×SY X is
quasi-compact by our remarks above. We conclude that ∆Y/S is quasi-compact, i.e., Y is
quasi-separated over S.
Assume X is separated over S , i.e., ∆X/S is a closed immersion. Then X → Y ×S Y is
closed as a composition of closed morphisms. Since X → Y is surjective, it follows that
∆Y/S(Y ) is closed in Y ×S Y . Hence Y is separated over S by the discussion following
Schemes, Definition 21.3. �

42. Valuative criteria

We have already discussed the valuative criterion for universal closedness and for separat-
edness in Schemes, Sections 20 and 22. In this section we will discuss some consequences
and variants. In Limits, Section 15 we will show that it suffices to consider discrete valua-
tion rings when working with locally Noetherian schemes and morphisms of finite type.

Lemma 42.1 (Valuative criterion for properness). Let S be a scheme. Let f : X → Y
be a morphism of schemes over S. Assume f is of finite type and quasi-separated. Then
the following are equivalent

(1) f is proper,
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(2) f satisfies the valuative criterion (Schemes, Definition 20.3),
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

whereA is a valuation ring with field of fractionsK , there exists a unique dotted
arrow making the diagram commute.

Proof. Part (3) is a reformulation of (2). Thus the lemma is a formal consequence of
Schemes, Proposition 20.6 and Lemma 22.2 and the definitions. �

One usually does not have to consider all possible diagrams when testing the valuative
criterion. We will call a valuative criterion as in the next lemma a “refined valuative
criterion”.

Lemma 42.2. Let f : X → S and h : U → X be morphisms of schemes. Assume
that f and h are quasi-compact and that h(U) is dense in X . If given any commutative
solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a valuation ring with field of fractions K , there exists a unique dotted ar-
row making the diagram commute, then f is universally closed. If moreover f is quasi-
separated, then f is separated.

Proof. To prove f is universally closed we will verify the existence part of the val-
uative criterion for f which suffices by Schemes, Proposition 20.6. To do this, consider a
commutative diagram

Spec(K) //

��

X

��
Spec(A) // S

where A is a valuation ring and K is the fraction field of A. Note that since valuation
rings and fields are reduced, we may replace U , X , and S by their respective reductions
by Schemes, Lemma 12.7. In this case the assumption that h(U) is dense means that the
scheme theoretic image of h : U → X is X , see Lemma 6.7. We may also replace S by
an affine open through which the morphism Spec(A)→ S factors. Thus we may assume
that S = Spec(R).

Let Spec(B) ⊂ X be an affine open through which the morphism Spec(K) → X
factors. Choose a polynomial algebra P over B and a B-algebra surjection P → K.
Then Spec(P ) → X is flat. Hence the scheme theoretic image of the morphism U ×X
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Spec(P ) → Spec(P ) is Spec(P ) by Lemma 25.16. By Lemma 6.5 we can find a commu-
tative diagram

Spec(K ′) //

��

U ×X Spec(P )

��
Spec(A′) // Spec(P )

where A′ is a valuation ring and K ′ is the fraction field of A′ such that the closed point
of Spec(A′) maps to Spec(K) ⊂ Spec(P ). In other words, there is a B-algebra map
ϕ : K → A′/mA′ . Choose a valuation ringA′′ ⊂ A′/mA′ dominating ϕ(A) with field of
fractions K ′′ = A′/mA′ (Algebra, Lemma 50.2). We set

C = {λ ∈ A′ | λ mod mA′ ∈ A′′}.

which is a valuation ring by Algebra, Lemma 50.10. As C is an R-algebra with fraction
field K ′, we obtain a commutative diagram

Spec(K ′) //

��

U // X

��
Spec(C) //

66

S

as in the statement of the lemma. Thus a dotted arrow fitting into the diagram as indicated.
By the uniqueness assumption of the lemma the composition Spec(A′)→ Spec(C)→ X
agrees with the given morphism Spec(A′) → Spec(P ) → Spec(B) ⊂ X . Hence the
restriction of the morphism to the spectrum ofC/mA′ = A′′ induces the given morphism
Spec(K ′′) = Spec(A′/mA′) → Spec(K) → X . Let x ∈ X be the image of the closed
point of Spec(A′′) → X . The image of the induced ring map OX,x → A′′ is a local
subring which is contained inK ⊂ K ′′. SinceA is maximal for the relation of domination
in K and since A ⊂ A′′, we have A = K ∩ A′′. We conclude that OX,x → A′′ factors
through A ⊂ A′′. In this way we obtain our desired arrow Spec(A)→ X .

Finally, assume f is quasi-separated. Then ∆ : X → X ×S X is quasi-compact. Given a
solid diagram

Spec(K) //

��

U
h // X

∆
��

Spec(A) //

55

X ×S X

where A is a valuation ring with field of fractions K , there exists a unique dotted arrow
making the diagram commute. Namely, the lower horizontal arrow is the same thing as a
pair of morphisms Spec(A) → X which can serve as the dotted arrow in the diagram of
the lemma. Thus the required uniqueness shows that the lower horizontal arrow factors
through ∆. Hence we can apply the result we just proved to ∆ : X → X ×S X and
h : U → X and conclude that ∆ is universally closed. Clearly this means that f is
separated. �

Remark 42.3. The assumption on uniqueness of the dotted arrows in Lemma 42.2 is
necessary (details omitted). Of course, uniqueness is guaranteed if f is separated (Schemes,
Lemma 22.1).
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Lemma 42.4. Let S be a scheme. Let X , Y be schemes over S. Let s ∈ S and x ∈ X ,
y ∈ Y points over s.

(1) Let f, g : X → Y be morphisms over S such that f(x) = g(x) = y and
f ]x = g]x : OY,y → OX,x. Then there is an open neighbourhood U ⊂ X with
f |U = g|U in the following cases
(a) Y is locally of finite type over S ,
(b) X is integral,
(c) X is locally Noetherian, or
(d) X is reduced with finitely many irreducible components.

(2) Let ϕ : OY,y → OX,x be a local OS,s-algebra map. Then there exists an open
neighbourhood U ⊂ X of x and a morphism f : U → Y mapping x to y with
f ]x = ϕ in the following cases
(a) Y is locally of finite presentation over S ,
(b) Y is locally of finite type and X is integral,
(c) Y is locally of finite type and X is locally Noetherian, or
(d) Y is locally of finite type and X is reduced with finitely many irreducible

components.

Proof. Proof of (1). We may replaceX , Y , S by suitable affine open neighbourhoods
of x, y, s and reduce to the following algebra problem: given a ringR, twoR-algebra maps
ϕ,ψ : B → A such that

(1) R → B is of finite type, or A is a domain, or A is Noetherian, or A is reduced
and has finitely many minimal primes,

(2) the two maps B → Ap are the same for some prime p ⊂ A,
show that ϕ,ψ define the same map B → Ag for a suitable g ∈ A, g 6∈ p. If R → B is
of finite type, let t1, . . . , tm ∈ B be generators of B as an R-algebra. For each j we can
find gj ∈ A, gj 6∈ p such that ϕ(tj) and ψ(tj) have the same image in Agj . Then we set
g =

∏
gj . In the other cases (if A is a domain, Noetherian, or reduced with finitely many

minimal primes), we can find a g ∈ A, g 6∈ p such that Ag ⊂ Ap. See Algebra, Lemma
31.9. Thus the maps B → Ag are equal as desired.

Proof of (2). To do this we may replace X , Y , and S by suitable affine opens. Say X =
Spec(A), Y = Spec(B), and S = Spec(R). Let p ⊂ A be the prime ideal corresponding
to x. Let q ⊂ B be the prime corresponding to y. Then ϕ is a local R-algebra map
ϕ : Bq → Ap. If R→ B is a ring map of finite presentation, then there exists a g ∈ A \ p
and an R-algebra map B → Ag such that

Bq ϕ
// Ap

B

OO

// Ag

OO

commutes, see Algebra, Lemmas 127.3 and 9.9. The induced morphism Spec(Ag) →
Spec(B) works. If B is of finite type over R, let t1, . . . , tm ∈ B be generators of B as an
R-algebra. Then we can choose gj ∈ A, gj 6∈ p such that ϕ(tj) ∈ Im(Agj → Ap). Thus
after replacing A by A[1/

∏
gj ] we may assume that B maps into the image of A → Ap.

If we can find a g ∈ A, g 6∈ p such that Ag → Ap is injective, then we’ll get the desired
R-algebra mapB → Ag . Thus the proof is finished by another application of See Algebra,
Lemma 31.9. �
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Lemma 42.5. Let S be a scheme. LetX , Y be schemes over S. Let x ∈ X . Let U ⊂ X
be an open and let f : U → Y be a morphism over S. Assume

(1) x is in the closure of U ,
(2) X is reduced with finitely many irreducible components or X is Noetherian,
(3) OX,x is a valuation ring,
(4) Y → S is proper

Then there exists an open U ⊂ U ′ ⊂ X containing x and an S-morphism f ′ : U ′ → Y
extending f .

Proof. It is harmless to replaceX by an open neighbourhood of x inX (small detail
omitted). By Properties, Lemma 29.8 we may assumeX is affine with Γ(X,OX) ⊂ OX,x.
In particularX is integral with a unique generic point ξ whose residue field is the fraction
field K of the valuation ring OX,x. Since x is in the closure of U we see that U is not
empty, hence U contains ξ. Thus by the valuative criterion of properness (Lemma 42.1)
there is a morphism t : Spec(OX,x)→ Y fitting into a commutative diagram

Spec(K)

ξ

��

// Spec(OX,x)

t

��
U

f // Y

of morphisms of schemes over S. Applying Lemma 42.4 with y = t(x) and ϕ = t]x we
obtain an open neighbourhood V ⊂ X of x and a morphism g : V → Y over S which
sends x to y and such that g]x = t]x. As Y → S is separated, the equalizer E of f |U∩V and
g|U∩V is a closed subscheme of U ∩ V , see Schemes, Lemma 21.5. Since f and g determine
the same morphism Spec(K) → Y by construction we see that E contains the generic
point of the integral scheme U ∩V . HenceE = U ∩V and we conclude that f and g glue
to a morphism U ′ = U ∪ V → Y as desired. �

43. Projective morphisms

We will use the definition of a projective morphism from [?]. The version of the definition
with the “H” is the one from [?]. The resulting definitions are different. Both are useful.

Definition 43.1. Let f : X → S be a morphism of schemes.
(1) We say f is projective if X is isomorphic as an S-scheme to a closed subscheme

of a projective bundle P(E) for some quasi-coherent, finite typeOS-module E .
(2) We say f is H-projective if there exists an integer n and a closed immersion

X → Pn
S over S.

(3) We say f is locally projective if there exists an open covering S =
⋃
Ui such

that each f−1(Ui)→ Ui is projective.

As expected, a projective morphism is quasi-projective, see Lemma 43.10. Conversely,
quasi-projective morphisms are often compositions of open immersions and projective
morphisms, see Lemma 43.12. For an overview of properties of projective morphisms over
a quasi-projective base, see More on Morphisms, Section 50.

Example 43.2. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra
generated by A1 over A0. Assume furthermore that A1 is of finite type over OS . Set
X = Proj

S
(A). In this case X → S is projective. Namely, the morphism associated to

the gradedOS-algebra map
Sym∗

OX
(A1) −→ A
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is a closed immersion, see Constructions, Lemma 18.5.

Lemma 43.3. An H-projective morphism is H-quasi-projective. An H-projective mor-
phism is projective.

Proof. The first statement is immediate from the definitions. The second holds as
Pn
S is a projective bundle over S , see Constructions, Lemma 21.5. �

Lemma 43.4. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) The morphism f is locally projective.
(2) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is H-

projective.

Proof. By Lemma 43.3 we see that (2) implies (1). Assume (1). For every point s ∈
S we can find Spec(R) = U ⊂ S an affine open neighbourhood of s such that XU is
isomorphic to a closed subscheme of P(E) for some finite type, quasi-coherent sheaf of
OU -modules E . Write E = M̃ for some finite type R-module M (see Properties, Lemma
16.1). Choose generators x0, . . . , xn ∈ M of M as an R-module. Consider the surjective
graded R-algebra map

R[X0, . . . , Xn] −→ SymR(M).
According to Constructions, Lemma 11.3 the corresponding morphism

P(E)→ Pn
R

is a closed immersion. Hence we conclude that f−1(U) is isomorphic to a closed subscheme
of Pn

U (as a scheme over U ). In other words: (2) holds. �

Lemma 43.5. A locally projective morphism is proper.

Proof. Let f : X → S be locally projective. In order to show that f is proper we may
work locally on the base, see Lemma 41.3. Hence, by Lemma 43.4 above we may assume
there exists a closed immersion X → Pn

S . By Lemmas 41.4 and 41.6 it suffices to prove
that Pn

S → S is proper. Since Pn
S → S is the base change of Pn

Z → Spec(Z) it suffices to
show that Pn

Z → Spec(Z) is proper, see Lemma 41.5. By Constructions, Lemma 8.8 the
scheme Pn

Z is separated. By Constructions, Lemma 8.9 the scheme Pn
Z is quasi-compact.

It is clear that Pn
Z → Spec(Z) is locally of finite type since Pn

Z is covered by the affine
opens D+(Xi) each of which is the spectrum of the finite type Z-algebra

Z[X0/Xi, . . . , Xn/Xi].

Finally, we have to show that Pn
Z → Spec(Z) is universally closed. This follows from

Constructions, Lemma 8.11 and the valuative criterion (see Schemes, Proposition 20.6).
�

Lemma 43.6. Let f : X → S be a proper morphism of schemes. If there exists an
f -ample invertible sheaf on X , then f is locally projective.

Proof. If there exists an f -ample invertible sheaf, then we can locally on S find an
immersion i : X → Pn

S , see Lemma 39.4. Since X → S is proper the morphism i is a
closed immersion, see Lemma 41.7. �

Lemma 43.7. A composition of H-projective morphisms is H-projective.
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Proof. Suppose X → Y and Y → Z are H-projective. Then there exist closed
immersions X → Pn

Y over Y , and Y → Pm
Z over Z. Consider the following diagram

X //

��

Pn
Y

//

��

Pn
Pm
Z

}}

Pn
Z ×Z Pm

Z
// Pnm+n+m

Z

uu

Y //

��

Pm
Z

}}
Z

Here the rightmost top horizontal arrow is the Segre embedding, see Constructions, Lemma
13.6. The diagram identifies X as a closed subscheme of Pnm+n+m

Z as desired. �

Lemma 43.8. A base change of a H-projective morphism is H-projective.

Proof. This is true because the base change of projective space over a scheme is pro-
jective space, and the fact that the base change of a closed immersion is a closed immersion,
see Schemes, Lemma 18.2. �

Lemma 43.9. A base change of a (locally) projective morphism is (locally) projective.

Proof. This is true because the base change of a projective bundle over a scheme is
a projective bundle, the pullback of a finite type O-module is of finite type (Modules,
Lemma 9.2) and the fact that the base change of a closed immersion is a closed immersion,
see Schemes, Lemma 18.2. Some details omitted. �

Lemma 43.10. A projective morphism is quasi-projective.

Proof. Let f : X → S be a projective morphism. Choose a closed immersion i :
X → P(E) where E is a quasi-coherent, finite type OS-module. Then L = i∗OP(E)(1)
is f -very ample. Since f is proper (Lemma 43.5) it is quasi-compact. Hence Lemma 38.2
implies that L is f -ample. Since f is proper it is of finite type. Thus we’ve checked all the
defining properties of quasi-projective holds and we win. �

Lemma 43.11. Let f : X → S be a H-quasi-projective morphism. Then f factors as
X → X ′ → S where X → X ′ is an open immersion and X ′ → S is H-projective.

Proof. By definition we can factor f as a quasi-compact immersion i : X → Pn
S

followed by the projection Pn
S → S. By Lemma 7.7 there exists a closed subscheme X ′ ⊂

Pn
S such that i factors through an open immersion X → X ′. The lemma follows. �

Lemma 43.12. Let f : X → S be a quasi-projective morphism with S quasi-compact
and quasi-separated. Then f factors as X → X ′ → S where X → X ′ is an open immer-
sion and X ′ → S is projective.

Proof. Let L be f -ample. Since f is of finite type and S is quasi-compact L⊗n is
f -very ample for some n > 0, see Lemma 39.5. Replace L by L⊗n. Write F = f∗L. This
is a quasi-coherent OS-module by Schemes, Lemma 24.1 (quasi-projective morphisms are
quasi-compact and separated, see Lemma 40.4). By Properties, Lemma 22.7 we can find a
directed set I and a system of finite type quasi-coherent OS-modules Ei over I such that
F = colim Ei. Consider the compositions ψi : f∗Ei → f∗F → L. Choose a finite affine
open covering S =

⋃
j=1,...,m Vj . For each j we can choose sections

sj,0, . . . , sj,nj ∈ Γ(f−1(Vj),L) = f∗L(Vj) = F(Vj)
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which generate L over f−1Vj and define an immersion

f−1Vj −→ Pnj
Vj
,

see Lemma 39.1. Choose i such that there exist sections ej,t ∈ Ei(Vj) mapping to sj,t in
F for all j = 1, . . . ,m and t = 1, . . . , nj . Then the map ψi is surjective as the sections
f∗ej,t have the same image as the sections sj,t which generateL|f−1Vj . Whence we obtain
a morphism

rL,ψi : X −→ P(Ei)
over S such that over Vj we have a factorization

f−1Vj → P(Ei)|Vj → Pnj
Vj

of the immersion given above. It follows that rL,ψi |Vj is an immersion, see Lemma 3.1.
Since S =

⋃
Vj we conclude that rL,ψi is an immersion. Note that rL,ψi is quasi-compact

as X → S is quasi-compact and P(Ei) → S is separated (see Schemes, Lemma 21.14). By
Lemma 7.7 there exists a closed subscheme X ′ ⊂ P(Ei) such that i factors through an
open immersion X → X ′. Then X ′ → S is projective by definition and we win. �

Lemma 43.13. Let S be a quasi-compact and quasi-separated scheme. Let f : X → S
be a morphism of schemes. Then

(1) f is projective if and only if f is quasi-projective and proper, and
(2) f is H-projective if and only if f is H-quasi-projective and proper.

Proof. If f is projective, then f is quasi-projective by Lemma 43.10 and proper by
Lemma 43.5. Conversely, if X → S is quasi-projective and proper, then we can choose
an open immersion X → X ′ with X ′ → S projective by Lemma 43.12. Since X → S is
proper, we see that X is closed in X ′ (Lemma 41.7), i.e., X → X ′ is a (open and) closed
immersion. Since X ′ is isomorphic to a closed subscheme of a projective bundle over S
(Definition 43.1) we see that the same thing is true for X , i.e., X → S is a projective
morphism. This proves (1). The proof of (2) is the same, except it uses Lemmas 43.3 and
43.11. �

Lemma 43.14. Let f : X → Y and g : Y → S be morphisms of schemes. If S is
quasi-compact and quasi-separated and f and g are projective, then g ◦ f is projective.

Proof. By Lemmas 43.10 and 43.5 we see that f and g are quasi-projective and proper.
By Lemmas 41.4 and 40.3 we see that g ◦ f is proper and quasi-projective. Thus g ◦ f is
projective by Lemma 43.13. �

Lemma 43.15. Let g : Y → S and f : X → Y be morphisms of schemes. If g ◦ f is
projective and g is separated, then f is projective.

Proof. Choose a closed immersion X → P(E) where E is a quasi-coherent, finite
type OS-module. Then we get a morphism X → P(E)×S Y . This morphism is a closed
immersion because it is the composition

X → X ×S Y → P(E)×S Y
where the first morphism is a closed immersion by Schemes, Lemma 21.10 (and the fact
that g is separated) and the second as the base change of a closed immersion. Finally, the
fibre product P(E)×S Y is isomorphic to P(g∗E) and pullback preserves quasi-coherent,
finite type modules. �

Lemma 43.16. Let S be a scheme which admits an ample invertible sheaf. Then
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(1) any projective morphism X → S is H-projective, and
(2) any quasi-projective morphism X → S is H-quasi-projective.

Proof. The assumptions on S imply that S is quasi-compact and separated, see Prop-
erties, Definition 26.1 and Lemma 26.11 and Constructions, Lemma 8.8. Hence Lemma
43.12 applies and we see that (1) implies (2). Let E be a finite type quasi-coherent OS-
module. By our definition of projective morphisms it suffices to show that P(E) → S is
H-projective. If E is generated by finitely many global sections, then the corresponding
surjectionO⊕n

S → E induces a closed immersion

P(E) −→ P(O⊕n
S ) = Pn

S

as desired. In general, let L be an invertible sheaf on S. By Properties, Proposition 26.13
there exists an integer n such that E ⊗OS

L⊗n is globally generated by finitely many
sections. Since P(E) = P(E ⊗OS

L⊗n) by Constructions, Lemma 20.1 this finishes the
proof. �

Lemma 43.17. Let f : X → S be a universally closed morphism. LetL be an f -ample
invertibleOX -module. Then the canonical morphism

r : X −→ Proj
S

(⊕
d≥0

f∗L⊗d
)

of Lemma 37.4 is an isomorphism.

Proof. Observe that f is quasi-compact because the existence of an f -ample invert-
ible module forces f to be quasi-compact. By the lemma cited the morphism r is an open
immersion. On the other hand, the image of r is closed by Lemma 41.7 (the target of
r is separated over S by Constructions, Lemma 16.9). Finally, the image of r is dense
by Properties, Lemma 26.11 (here we also use that it was shown in the proof of Lemma
37.4 that the morphism r over affine opens of S is given by the canonical morphism of
Properties, Lemma 26.9). Thus we conclude that r is a surjective open immersion, i.e., an
isomorphism. �

Lemma 43.18. Let f : X → S be a universally closed morphism. LetL be an f -ample
invertibleOX -module. Let s ∈ Γ(X,L). Then Xs → S is an affine morphism.

Proof. The question is local on S (Lemma 11.3) hence we may assume S is affine. By
Lemma 43.17 we can writeX = Proj(A) whereA is a graded ring and s corresponds to f ∈
A1 and Xs = D+(f) (Properties, Lemma 26.9) which proves the lemma by construction
of Proj(A), see Constructions, Section 8. �

44. Integral and finite morphisms

Recall that a ring map R→ A is said to be integral if every element of A satisfies a monic
equation with coefficients in R. Recall that a ring map R → A is said to be finite if A is
finite as an R-module. See Algebra, Definition 36.1.

Definition 44.1. Let f : X → S be a morphism of schemes.
(1) We say that f is integral if f is affine and if for every affine open Spec(R) =

V ⊂ S with inverse image Spec(A) = f−1(V ) ⊂ X the associated ring map
R→ A is integral.

(2) We say that f is finite if f is affine and if for every affine open Spec(R) = V ⊂ S
with inverse image Spec(A) = f−1(V ) ⊂ X the associated ring map R→ A is
finite.
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It is clear that integral/finite morphisms are separated and quasi-compact. It is also clear
that a finite morphism is a morphism of finite type. Most of the lemmas in this section are
completely standard. But note the fun Lemma 44.7 at the end of the section.

Lemma 44.2. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) The morphism f is integral.
(2) There exists an affine open covering S =

⋃
Ui such that each f−1(Ui) is affine

andOS(Ui)→ OX(f−1(Ui)) is integral.
(3) There exists an open covering S =

⋃
Ui such that each f−1(Ui) → Ui is inte-

gral.
Moreover, if f is integral then for every open subscheme U ⊂ S the morphism f :
f−1(U)→ U is integral.

Proof. See Algebra, Lemma 36.14. Some details omitted. �

Lemma 44.3. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) The morphism f is finite.
(2) There exists an affine open covering S =

⋃
Ui such that each f−1(Ui) is affine

andOS(Ui)→ OX(f−1(Ui)) is finite.
(3) There exists an open covering S =

⋃
Ui such that each f−1(Ui)→ Ui is finite.

Moreover, if f is finite then for every open subschemeU ⊂ S the morphism f : f−1(U)→
U is finite.

Proof. See Algebra, Lemma 36.14. Some details omitted. �

Lemma 44.4. A finite morphism is integral. An integral morphism which is locally
of finite type is finite.

Proof. See Algebra, Lemma 36.3 and Lemma 36.5. �

Lemma 44.5. A composition of finite morphisms is finite. Same is true for integral
morphisms.

Proof. See Algebra, Lemmas 7.3 and 36.6. �

Lemma 44.6. A base change of a finite morphism is finite. Same is true for integral
morphisms.

Proof. See Algebra, Lemma 36.13. �

Lemma 44.7. Let f : X → S be a morphism of schemes. The following are equiva-
lent

(1) f is integral, and
(2) f is affine and universally closed.

Proof. Assume (1). An integral morphism is affine by definition. A base change of
an integral morphism is integral so in order to prove (2) it suffices to show that an integral
morphism is closed. This follows from Algebra, Lemmas 36.22 and 41.6.

Assume (2). We may assume f is the morphism f : Spec(A) → Spec(R) coming from a
ring map R → A. Let a be an element of A. We have to show that a is integral over R,
i.e. that in the kernel I of the map R[x]→ A sending x to a there is a monic polynomial.



44. INTEGRAL AND FINITE MORPHISMS 2495

Consider the ring B = A[x]/(ax− 1) and let J be the kernel of the composition R[x]→
A[x] → B. If f ∈ J there exists q ∈ A[x] such that f = (ax − 1)q in A[x] so if
f =

∑
i fix

i and q =
∑
i qix

i, for all i ≥ 0 we have fi = aqi−1 − qi. For n ≥ deg q + 1
the polynomial∑

i≥0
fix

n−i =
∑

i≥0
(aqi−1 − qi)xn−i = (a− x)

∑
i≥0

qix
n−i−1

is clearly in I ; if f0 = 1 this polynomial is also monic, so we are reduced to prove that J
contains a polynomial with constant term 1. We do it by proving Spec(R[x]/(J + (x))
is empty.
Since f is universally closed the base change Spec(A[x]) → Spec(R[x]) is closed. Hence
the image of the closed subset Spec(B) ⊂ Spec(A[x]) is the closed subset Spec(R[x]/J) ⊂
Spec(R[x]), see Example 6.4 and Lemma 6.3. In particular Spec(B) → Spec(R[x]/J) is
surjective. Consider the following diagram where every square is a pullback:

Spec(B) g // // Spec(R[x]/J) // Spec(R[x])

∅

OO

// Spec(R[x]/(J + (x)))

OO

// Spec(R)

0

OO

The bottom left corner is empty because it is the spectrum of R ⊗R[x] B where the map
R[x]→ B sendsx to an invertible element andR[x]→ R sendsx to 0. Since g is surjective
this implies Spec(R[x]/(J + (x))) is empty, as we wanted to show. �

Lemma 44.8. Let f : X → S be an integral morphism. Then every point of X is
closed in its fibre.

Proof. See Algebra, Lemma 36.20. �

Lemma 44.9. Let f : X → Y be an integral morphism. Then dim(X) ≤ dim(Y ).
If f is surjective then dim(X) = dim(Y ).

Proof. Since the dimension of X and Y is the supremum of the dimensions of the
members of an affine open covering, we may assume Y and X are affine. The inequality
follows from Algebra, Lemma 112.3. The equality then follows from Algebra, Lemmas
112.1 and 36.22. �

Lemma 44.10. A finite morphism is quasi-finite.

Proof. This is implied by Algebra, Lemma 122.4 and Lemma 20.9. Alternatively, all
points in fibres are closed points by Lemma 44.8 (and the fact that a finite morphism is
integral) and use Lemma 20.6 (3) to see that f is quasi-finite at x for all x ∈ X . �

Lemma 44.11. Let f : X → S be a morphism of schemes. The following are equiva-
lent

(1) f is finite, and
(2) f is affine and proper.

Proof. This follows formally from Lemma 44.7, the fact that a finite morphism is
integral and separated, the fact that a proper morphism is the same thing as a finite type,
separated, universally closed morphism, and the fact that an integral morphism of finite
type is finite (Lemma 44.4). �

Lemma 44.12. A closed immersion is finite (and a fortiori integral).
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Proof. True because a closed immersion is affine (Lemma 11.9) and a surjective ring
map is finite and integral. �

Lemma 44.13. Let Xi → Y , i = 1, . . . , n be finite morphisms of schemes. Then
X1 q . . .qXn → Y is finite too.

Proof. Follows from the algebra fact that if R → Ai, i = 1, . . . , n are finite ring
maps, then R→ A1 × . . .×An is finite too. �

Lemma 44.14. Let f : X → Y and g : Y → Z be morphisms.
(1) If g ◦ f is finite and g separated then f is finite.
(2) If g ◦ f is integral and g separated then f is integral.

Proof. Assume g ◦f is finite (resp. integral) and g separated. The base changeX×Z
Y → Y is finite (resp. integral) by Lemma 44.6. The morphism X → X ×Z Y is a closed
immersion as Y → Z is separated, see Schemes, Lemma 21.11. A closed immersion is finite
(resp. integral), see Lemma 44.12. The composition of finite (resp. integral) morphisms is
finite (resp. integral), see Lemma 44.5. Thus we win. �

Lemma 44.15. Let f : X → Y be a morphism of schemes. If f is finite and a
monomorphism, then f is a closed immersion.

Proof. This reduces to Algebra, Lemma 107.6. �

Lemma 44.16. A finite morphism is projective.

Proof. Let f : X → S be a finite morphism. Then f∗OX is a quasi-coherent OS-
module (Lemma 11.5) of finite type (by our definition of finite morphisms and Properties,
Lemma 16.1). We claim there is a closed immersion

σ : X −→ P(f∗OX) = Proj
S

(Sym∗
OS

(f∗OX))

over S , which finishes the proof. Namely, we let σ be the morphism which corresponds
(via Constructions, Lemma 16.11) to the surjection

f∗f∗OX −→ OX
coming from the adjunction map f∗f∗ → id. Then σ is a closed immersion by Schemes,
Lemma 21.11 and Constructions, Lemma 21.4. �

45. Universal homeomorphisms

The following definition is really superfluous since a universal homeomorphism is really
just an integral, universally injective and surjective morphism, see Lemma 45.5.

Definition 45.1. A morphism f : X → Y of schemes is called a universal homeo-
morphism if the base change f ′ : Y ′×Y X → Y ′ is a homeomorphism for every morphism
Y ′ → Y .

First we state the obligatory lemmas.

Lemma 45.2. The base change of a universal homeomorphism of schemes by any
morphism of schemes is a universal homeomorphism.

Proof. This is immediate from the definition. �

Lemma 45.3. The composition of a pair of universal homeomorphisms of schemes is
a universal homeomorphism.
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Proof. Omitted. �

The following simple lemma is the key to characterizing universal homeomorphisms.

Lemma 45.4. Let f : X → Y be a morphism of schemes. If f is a homeomorphism
onto a closed subset of Y then f is affine.

Proof. Let y ∈ Y be a point. If y 6∈ f(X), then there exists an affine neighbourhood
of y which is disjoint from f(X). If y ∈ f(X), let x ∈ X be the unique point of X
mapping to y. Let y ∈ V be an affine open neighbourhood. Let U ⊂ X be an affine open
neighbourhood of x which maps into V . Since f(U) ⊂ V ∩ f(X) is open in the induced
topology by our assumption on f we may choose a h ∈ Γ(V,OY ) such that y ∈ D(h) and
D(h) ∩ f(X) ⊂ f(U). Denote h′ ∈ Γ(U,OX) the restriction of f ](h) to U . Then we
see that D(h′) ⊂ U is equal to f−1(D(h)). In other words, every point of Y has an open
neighbourhood whose inverse image is affine. Thus f is affine, see Lemma 11.3. �

Lemma 45.5. Let f : X → Y be a morphism of schemes. The following are equiva-
lent:

(1) f is a universal homeomorphism, and
(2) f is integral, universally injective and surjective.

Proof. Assume f is a universal homeomorphism. By Lemma 45.4 we see that f is
affine. Since f is clearly universally closed we see that f is integral by Lemma 44.7. It is
also clear that f is universally injective and surjective.

Assume f is integral, universally injective and surjective. By Lemma 44.7 f is universally
closed. Since it is also universally bijective (see Lemma 9.4) we see that it is a universal
homeomorphism. �

Lemma 45.6. Let X be a scheme. The canonical closed immersion Xred → X (see
Schemes, Definition 12.5) is a universal homeomorphism.

Proof. Omitted. �

Lemma 45.7. Let f : X → S and S′ → S be morphisms of schemes. Assume
(1) S′ → S is a closed immersion,
(2) S′ → S is bijective on points,
(3) X ×S S′ → S′ is a closed immersion, and
(4) X → S is of finite type or S′ → S is of finite presentation.

Then f : X → S is a closed immersion.

Proof. Assumptions (1) and (2) imply that S′ → S is a universal homeomorphism
(for example because Sred = S′

red and using Lemma 45.6). Hence (3) implies thatX → S
is homeomorphism onto a closed subset of S. Then X → S is affine by Lemma 45.4. Let
U ⊂ S be an affine open, say U = Spec(A). Then S′ = Spec(A/I) by (1) for a locally
nilpotent ideal I by (2). As f is affine we see that f−1(U) = Spec(B). Assumption (4)
tells us B is a finite type A-algebra (Lemma 15.2) or that I is finitely generated (Lemma
21.7). Assumption (3) is that A/I → B/IB is surjective. From Algebra, Lemma 126.9
if A → B is of finite type or Algebra, Lemma 20.1 if I is finitely generated and hence
nilpotent we deduce that A → B is surjective. This means that f is a closed immersion,
see Lemma 2.1. �
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Lemma 45.8. Let f : X → Z be the composition of two morphisms g : X → Y and
h : Y → Z. If two of the morphisms {f, g, h} are universal homeomorphisms, so is the
third morphism.

Proof. If both of g and h are universal homeomorphisms, so is f by Lemma 45.3.

Suppose both of f and g are universal homeomorphisms. We want to show that h is also.
Now base change the diagram along an arbitrary morphism α : Z ′ → Z of schemes, we
get the following diagram with all squares Cartesian:

X ′ g′
//

��

Y ′ h′
//

��

Z ′

��
X

g // Y
h // Z.

Our assumption implies that the composition f ′ = h′ ◦ g′ : X ′ → Z ′ and g′ : X ′ → Y ′

are homeomorphisms, therefore so is h′. This finishes the proof of h being a universal
homeomorphism.

Finally, assume f and h are universal homeomorphisms. We want to show that g is a
universal homeomorphism. Let β : Y ′ → Y be an arbitrary morphism of schemes. We
get the following diagram with all squares Cartesian:

X ′ g′
//

��

Y ′

γ

��
X ′′ g′′

//

��

Y ′′ h′′
//

��

Y ′

h◦β
��

X
g // Y

h // Z.

Here the morphism γ : Y ′ → Y ′′ is defined by the universal property of fiber products
and the two morphisms idY ′ : Y ′ → Y ′ and β : Y ′ → Y . We shall prove that g′ is a
homeomorphism. Since the property of being a homeomorphism has 2-out-of-3 property,
we see that g′′ is a homeomorphism. Staring at the top square, it suffices to prove that γ
is a universal homeomorphism. Since h′′ is a homeomorphism, we see that it is an affine
morphism by Lemma 45.4 and a fortiori separated (Lemma 11.2). Since h′′ ◦ γ is the iden-
tity, we see that γ is a closed immersion by Schemes, Lemma 21.11. Since h′′ is bijective, it
follows that γ is a bijective closed immersion and hence a universal homeomorphism (for
example by the characterization in Lemma 45.5) as desired. �

46. Universal homeomorphisms of affine schemes

In this section we characterize universal homeomorphisms of affine schemes.

Lemma 46.1. Let A→ B be a ring map such that the induced morphism of schemes
f : Spec(B) → Spec(A) is a universal homeomorphism, resp. a universal homeomor-
phism inducing isomorphisms on residue fields, resp. universally closed, resp. universally
closed and universally injective. Then for any A-subalgebra B′ ⊂ B the same thing is
true for f ′ : Spec(B′)→ Spec(A).
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Proof. If f is universally closed, then B is integral over A by Lemma 44.7. Hence
B′ is integral over A and f ′ is universally closed (by the same lemma). This proves the
case where f is universally closed.

Continuing, we see that B is integral over B′ (Algebra, Lemma 36.15) which implies
Spec(B) → Spec(B′) is surjective (Algebra, Lemma 36.17). Thus if A → B induces
purely inseparable extensions of residue fields, then the same is true for A → B′. This
proves the case where f is universally closed and universally injective, see Lemma 10.2.

The case where f is a universal homeomorphism follows from the remarks above, Lemma
45.5, and the obvious observation that if f is surjective, then so is f ′.

If A→ B induces isomorphisms on residue fields, then so does A→ B′ (see argument in
second paragraph). In this way we see that the lemma holds in the remaining case. �

Lemma 46.2. LetA be a ring. LetB = colimBλ be a filtered colimit ofA-algebras. If
each fλ : Spec(Bλ) → Spec(A) is a universal homeomorphism, resp. a universal home-
omorphism inducing isomorphisms on residue fields, resp. universally closed, resp. uni-
versally closed and universally injective, then the same thing is true for f : Spec(B) →
Spec(A).

Proof. If fλ is universally closed, then Bλ is integral over A by Lemma 44.7. Hence
B is integral overA and f is universally closed (by the same lemma). This proves the case
where each fλ is universally closed.

For a prime q ⊂ B lying over p ⊂ A denote qλ ⊂ Bλ the inverse image. Then κ(q) =
colim κ(qλ). Thus if A → Bλ induces purely inseparable extensions of residue fields,
then the same is true for A→ B. This proves the case where fλ is universally closed and
universally injective, see Lemma 10.2.

The case where f is a universal homeomorphism follows from the remarks above and
Lemma 45.5 combined with the fact that prime ideals inB are the same thing as compatible
sequences of prime ideals in all of the Bλ.

If A→ Bλ induces isomorphisms on residue fields, then so does A→ B (see argument in
second paragraph). In this way we see that the lemma holds in the remaining case. �

Lemma 46.3. Let A ⊂ B be a ring extension. Let S ⊂ A be a multiplicative subset.
Let n ≥ 1 and bi ∈ B for 1 ≤ i ≤ n. Any x ∈ S−1B such that

x 6∈ S−1A and bixi ∈ S−1A for i = 1, . . . , n

is equal to s−1y with s ∈ S and y ∈ B such that

y 6∈ A and biyi ∈ A for i = 1, . . . , n

Proof. Omitted. Hint: clear denominators. �

Lemma 46.4. Let A ⊂ B be a ring extension. If there exists b ∈ B, b 6∈ A and an
integer n ≥ 2 with bn ∈ A and bn+1 ∈ A, then there exists a b′ ∈ B, b′ 6∈ A with
(b′)2 ∈ A and (b′)3 ∈ A.

Proof. Let b and n be as in the lemma. Then all sufficiently large powers of b are in
A. Namely, (bn)k(bn+1)i = b(k+i)n+i which implies any power bm with m ≥ n2 is in A.
Hence if i ≥ 1 is the largest integer such that bi 6∈ A, then (bi)2 ∈ A and (bi)3 ∈ A. �
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Lemma 46.5. Let A ⊂ B be a ring extension such that Spec(B) → Spec(A) is a
universal homeomorphism inducing isomorphisms on residue fields. IfA 6= B, then there
exists a b ∈ B, b 6∈ A with b2 ∈ A and b3 ∈ A.

Proof. Recall that A ⊂ B is integral (Lemma 44.7). By Lemma 46.1 we may assume
thatB is generated by a single element overA. HenceB is finite overA (Algebra, Lemma
36.5). Hence the support of B/A as an A-module is closed and not empty (Algebra, Lem-
mas 40.5 and 40.2). Let p ⊂ A be a minimal prime of the support. After replacingA ⊂ B
by Ap ⊂ Bp (permissible by Lemma 46.3) we may assume that (A,m) is a local ring, that
B is finite over A, and that B/A has support {m} as an A-module. Since B/A is a fi-
nite module, we see that I = AnnA(B/A) satisfies m =

√
I (Algebra, Lemma 40.5). Let

m′ ⊂ B be the unique prime ideal lying over m. Because Spec(B)→ Spec(A) is a home-
omorphism, we find that m′ =

√
IB. For f ∈ m′ pick n ≥ 1 such that fn ∈ IB. Then

also fn+1 ∈ IB. Since IB ⊂ A by our choice of I we conclude that fn, fn+1 ∈ A. Using
Lemma 46.4 we conclude our lemma is true if m′ 6⊂ A. However, if m′ ⊂ A, then m′ = m
and we conclude that A = B as the residue fields are isomorphic as well by assumption.
This contradiction finishes the proof. �

Lemma 46.6. Let A ⊂ B be a ring extension such that Spec(B) → Spec(A) is a
universal homeomorphism. IfA 6= B, then either there exists a b ∈ B, b 6∈ Awith b2 ∈ A
and b3 ∈ A or there exists a prime number p and a b ∈ B, b 6∈ A with pb ∈ A and bp ∈ A.

Proof. The argument is almost exactly the same as in the proof of Lemma 46.5 but
we write everything out to make sure it works.
Recall that A ⊂ B is integral (Lemma 44.7). By Lemma 46.1 we may assume that B is
generated by a single element over A. Hence B is finite over A (Algebra, Lemma 36.5).
Hence the support ofB/A as anA-module is closed and not empty (Algebra, Lemmas 40.5
and 40.2). Let p ⊂ A be a minimal prime of the support. After replacing A ⊂ B by
Ap ⊂ Bp (permissible by Lemma 46.3) we may assume that (A,m) is a local ring, thatB is
finite overA, and thatB/A has support {m} as anA-module. SinceB/A is a finite module,
we see that I = AnnA(B/A) satisfies m =

√
I (Algebra, Lemma 40.5). Let m′ ⊂ B be the

unique prime ideal lying over m. Because Spec(B)→ Spec(A) is a homeomorphism, we
find that m′ =

√
IB. For f ∈ m′ pick n ≥ 1 such that fn ∈ IB. Then also fn+1 ∈ IB.

Since IB ⊂ A by our choice of I we conclude that fn, fn+1 ∈ A. Using Lemma 46.4 we
conclude our lemma is true if m′ 6⊂ A. If m′ ⊂ A, then m′ = m. SinceA 6= B we conclude
the map κ = A/m→ B/m′ = κ′ of residue fields cannot be an isomorphism. By Lemma
10.2 we conclude that the characteristic of κ is a prime number p and that the extension
κ′/κ is purely inseparable. Pick b ∈ B whose image in κ′ is an element not contained in κ
but whose pth power is in κ. Then b 6∈ A, bp ∈ A, and pb ∈ A (because pb ∈ m′ = m ⊂ A)
as desired. �

Proposition 46.7. Let A ⊂ B be a ring extension. The following are equivalent
(1) Spec(B)→ Spec(A) is a universal homeomorphism inducing isomorphisms on

residue fields, and
(2) every finite subset E ⊂ B is contained in an extension

A[b1, . . . , bn] ⊂ B
such that b2

i , b
3
i ∈ A[b1, . . . , bi−1] for i = 1, . . . , n.

Proof. Assume (1). Using transfinite recursion we construct for each ordinal α an
A-subalgebra Bα ⊂ B as follows. Set B0 = A. If α is a limit ordinal, then we set Bα =



46. UNIVERSAL HOMEOMORPHISMS OF AFFINE SCHEMES 2501

colimβ<αBβ . If α = β + 1, then either Bβ = B in which case we set Bα = Bβ or Bβ 6=
B, in which case we apply Lemma 46.5 to choose a bα ∈ B, bα 6∈ Bβ with b2

α, b
3
α ∈ Bβ and

we set Bα = Bβ [bα] ⊂ B. Clearly, B = colimBα (in fact B = Bα for some ordinal α as
one sees by looking at cardinalities). We will prove, by transfinite induction, that (2) holds
for A → Bα for every ordinal α. It is clear for α = 0. Assume the statement holds for
every β < α and letE ⊂ Bα be a finite subset. Ifα is a limit ordinal, thenBα =

⋃
β<αBβ

and we see thatE ⊂ Bβ for some β < αwhich proves the result in this case. If α = β+1,
then Bα = Bβ [bα]. Thus any e ∈ E can be written as a polynomial e =

∑
de,ib

i
α with

de,i ∈ Bβ . Let D ⊂ Bβ be the set D = {de,i} ∪ {b2
α, b

3
α}. By induction assumption there

exists anA-subalgebraA[b1, . . . , bn] ⊂ Bβ as in the statement of the lemma containingD.
Then A[b1, . . . , bn, bα] ⊂ Bα is an A-subalgebra of Bα as in the statement of the lemma
containing E.

Assume (2). WriteB = colimBλ as the colimit of its finiteA-subalgebras. By Lemma 46.2
it suffices to show that Spec(Bλ) → Spec(A) is a universal homeomorphism inducing
isomorphisms on residue fields. Compositions of universally closed morphisms are uni-
versally closed and the same thing for morphisms which induce isomorphisms on residue
fields. Thus it suffices to show that ifA ⊂ B andB is generated by a single element bwith
b2, b3 ∈ A, then (1) holds. Such an extension is integral and hence Spec(B) → Spec(A)
is universally closed and surjective (Lemma 44.7 and Algebra, Lemma 36.17). Note that
(b2)3 = (b3)2 in A. For any ring map ϕ : A → K to a field K we see that there ex-
ists a λ ∈ K with ϕ(b2) = λ2 and ϕ(b3) = λ3. Namely, λ = 0 if ϕ(b2) = 0 and
λ = ϕ(b3)/ϕ(b2) if not. Thus B ⊗A K is a quotient of K[x]/(x2 − λ2, x3 − λ3). This
ring has exactly one prime with residue fieldK. This implies that Spec(B)→ Spec(A) is
bijective and induces isomorphisms on residue fields. Combined with universal closedness
this shows (1) is true, see Lemmas 45.5 and 10.2. �

Proposition 46.8. Let A ⊂ B be a ring extension. The following are equivalent
(1) Spec(B)→ Spec(A) is a universal homeomorphism, and
(2) every finite subset E ⊂ B is contained in an extension

A[b1, . . . , bn] ⊂ B

such that for i = 1, . . . , n we have
(a) b2

i , b
3
i ∈ A[b1, . . . , bi−1], or

(b) there exists a prime number p with pbi, bpi ∈ A[b1, . . . , bi−1].

Proof. The proof is exactly the same as the proof of Proposition 46.7 except for the
following changes:

(1) Use Lemma 46.6 instead of Lemma 46.5 which means that for each successor
ordinalα = β+1 we either have b2

α, b
3
α ∈ Bβ or we have a prime p and pbα, bpα ∈

Bβ .
(2) If α is a successor ordinal, then takeD = {de,i}∪{b2

α, b
3
α} or takeD = {de,i}∪

{pbα, bpα} depending on which case α falls into.
(3) In the proof of (2)⇒ (1) we also need to consider the case where B is generated

over A by a single element b with pb, bp ∈ B for some prime number p. Here
A ⊂ B induces a universal homeomorphism on spectra for example by Algebra,
Lemma 46.7.

This finishes the proof. �
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Lemma 46.9. Let p be a prime number. Let A→ B be a ring map which induces an
isomorphism A[1/p] → B[1/p] (for example if p is nilpotent in A). The following are
equivalent

(1) Spec(B)→ Spec(A) is a universal homeomorphism, and
(2) the kernel ofA→ B is a locally nilpotent ideal and for every b ∈ B there exists

a p-power q with qb and bq in the image of A→ B.

Proof. If (2) holds, then (1) holds by Algebra, Lemma 46.7. Assume (1). Then the
kernel of A → B consists of nilpotent elements by Algebra, Lemma 30.6. Thus we may
replace A by the image of A → B and assume that A ⊂ B. By Algebra, Lemma 46.5 the
set

B′ = {b ∈ B | pnb, bp
n

∈ A for some n ≥ 0}
is anA-subalgebra ofB (being closed under products is trivial). We have to showB′ = B.
If not, then according to Lemma 46.6 there exists a b ∈ B, b 6∈ B′ with either b2, b3 ∈ B′

or there exists a prime number ` with `b, b` ∈ B′. We will show both cases lead to a
contradiction, thereby proving the lemma.
Since A[1/p] = B[1/p] we can choose a p-power q such that qb ∈ A.

If b2, b3 ∈ B′ then also bq ∈ B′. By definition of B′ we find that (bq)q′ ∈ A for some
p-power q′. Then qq′b, bqq

′ ∈ A whence b ∈ B′ which is a contradiction.
Assume now there exists a prime number ` with `b, b` ∈ B′. If ` 6= p then `b ∈ B′ and
qb ∈ A ⊂ B′ imply b ∈ B′ a contradiction. Thus ` = p and bp ∈ B′ and we get a
contradiction exactly as before. �

Lemma 46.10. Let A be a ring. Let x, y ∈ A.
(1) If x3 = y2 in A, then A → B = A[t]/(t2 − x, t3 − y) induces bijections on

residue fields and a universal homeomorphism on spectra.
(2) If there is a prime number p such that ppx = yp inA, thenA→ B = A[t]/(tp−

x, pt− y) induces a universal homeomorphism on spectra.

Proof. We will use the criterion of Lemma 45.5 to check this. In both cases the ring
map is integral. Thus it suffices to show that given a field k and a ring map ϕ : A→ k the
k-algebraB⊗A k has a unique prime ideal whose residue field is equal to k in case (1) and
purely inseparable over k in case (2). See Lemma 10.2.
In case (1) set λ = 0 if ϕ(x) = 0 and set λ = ϕ(y)/ϕ(x) if not. Then B = k[t]/(t2 −
λ2, t3 − λ2). Thus the result is clear.
In case (2) if the characteristic of k is p, then we obtainϕ(y) = 0 andB = k[t]/(tp−ϕ(x))
which is a local Artinian k-algebra whose residue field is either k or a degree p purely
inseparable extension of k. If the characteristic of k is not p, then setting λ = ϕ(y)/p we
see B = k[t]/(t− λ) = k and we conclude as well. �

Lemma 46.11. Let A→ B be a ring map.
(1) IfA→ B induces a universal homeomorphism on spectra, thenB = colimBi is

a filtered colimit of finitely presented A-algebras Bi such that A → Bi induces
a universal homeomorphism on spectra.

(2) If A → B induces isomorphisms on residue fields and a universal homeomor-
phism on spectra, then B = colimBi is a filtered colimit of finitely presented
A-algebras Bi such that A → Bi induces isomorphisms on residue fields and a
universal homeomorphism on spectra.



47. ABSOLUTE WEAK NORMALIZATION AND SEMINORMALIZATION 2503

Proof. Proof of (1). We will use the criterion of Algebra, Lemma 127.4. Let A→ C
be of finite presentation and let ϕ : C → B be an A-algebra map. Let B′ = ϕ(C) ⊂ B
be the image. Then A → B′ induces a universal homeomorphism on spectra by Lemma
46.1. By Algebra, Lemma 127.2 we can write B′ = colimi∈I Bi with A → Bi of finite
presentation and surjective transition maps. By Algebra, Lemma 127.3 we can choose an
index 0 ∈ I and a factorization C → B0 → B′ of the map C → B′. We claim that
Spec(Bi) → Spec(A) is a universal homeomorphism for i sufficiently large. The claim
finishes the proof of (1).
Proof of the claim. By Lemma 45.6 the ring mapAred → B′

red induces a universal homeo-
morphism on spectra. ThusAred ⊂ B′

red by Algebra, Lemma 30.6. SettingA′ = Im(A→
B′) we have surjections A→ A′ → Ared inducing bijections Spec(Ared) = Spec(A′) =
Spec(A). Thus A′ ⊂ B′ induces a universal homeomorphism on spectra. By Proposition
46.8 and the fact that B′ is finite type over A′ we can find n and b′

1, . . . , b
′
n ∈ B′ such

that B′ = A′[b′
1, . . . , b

′
n] and such that for j = 1, . . . , n we have

(1) (b′
j)2, (b′

j)3 ∈ A′[b′
1, . . . , b

′
j−1], or

(2) there exists a prime number p with pb′
j , (b′

j)p ∈ A′[b′
1, . . . , b

′
j−1].

Choose b1, . . . , bn ∈ B0 lifting b′
1, . . . , b

′
n. For i ≥ 0 denote bj,i the image of bj in Bi.

For large enough i we will have for j = 1, . . . , n
(1) b2

j,i, b
3
j,i ∈ Ai[b1,i, . . . , bj−1,i], or

(2) there exists a prime number p with pbj,i, bpj,i ∈ Ai[b1,i, . . . , bj−1,i].
Here Ai ⊂ Bi is the image of A → Bi. Observe that A → Ai is a surjective ring
map whose kernel is a locally nilpotent ideal. After increasing i more if necessary, we
may assume Bi is generated by b1, . . . , bn over Ai, in other words Bi = Ai[b1, . . . , bn].
By Algebra, Lemmas 46.7 and 46.4 we conclude that A → Ai → Ai[b1] → . . . →
Ai[b1, . . . , bn] = Bi induce universal homeomorphisms on spectra. This finishes the proof
of the claim.
The proof of (2) is exactly the same. �

47. Absolute weak normalization and seminormalization

Motivated by the results proved in the previous section we give the following definition.

Definition 47.1. Let A be a ring.
(1) We sayA is seminormal if for all x, y ∈ A with x3 = y2 there is a unique a ∈ A

with x = a2 and y = a3.
(2) We say A is absolutely weakly normal if (a) A is seminormal and (b) for any

prime number p and x, y ∈ A with ppx = yp there is a unique a ∈ A with
x = ap and y = pa.

An amusing observation, see [?], is that in the definition of seminormal rings it suffices15 to
assume the existence of a. Absolutely weakly normal schemes were defined in [?, Appendix
B].

Lemma 47.2. Being seminormal or being absolutely weakly normal is a local property
of rings, see Properties, Definition 4.1.

15Let A be a ring such that for all x, y ∈ A with x3 = y2 there is an a ∈ A with x = a2 and y = a3.
Then A is reduced: if x2 = 0, then x2 = x3 and hence there exists an a such that x = a3 and x = a2.
Then x = a3 = ax = a4 = x2 = 0. Finally, if a2

1 = a2
2 and a3

1 = a3
2 for a1, a2 in a reduced ring, then

(a1 − a2)3 = a3
1 − 3a2

1a2 + 3a1a2
2 − a3

2 = (1 − 3 + 3 − 1)a3
1 = 0 and hence a1 = a2.
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Proof. Suppose thatA is seminormal and f ∈ A. Let x′, y′ ∈ Af with (x′)3 = (y′)2.
Write x′ = x/f2n and y′ = y/f3n for some n ≥ 0 and x, y ∈ A. After replacing x, y by
f2mx, f3my and n by n + m, we see that x3 = y2 in A. Then we find a unique a ∈ A
with x = a2 and y = a3. Setting a′ = a/fn we get x′ = (a′)2 and y′ = (a′)3 as desired.
Uniqueness of a′ follows from uniqueness of a. In exactly the same manner the reader
shows that if A is absolutely weakly normal, then Af is absolutely weakly normal.
AssumeA is a ring and f1, . . . , fn ∈ A generate the unit ideal. AssumeAfi is seminormal
for each i. Let x, y ∈ A with x3 = y2. For each i we find a unique ai ∈ Afi with x = a2

i

and y = a3
i in Afi . By the uniqueness and the result of the first paragraph (which tells

us that Afifj is seminormal) we see that ai and aj map to the same element of Afifj . By
Algebra, Lemma 24.2 we find a unique a ∈ A mapping to ai in Afi for all i. Then x = a2

and y = a3 by the same token. Clearly this a is unique. Thus A is seminormal. If we
assume Afi is absolutely weakly normal, then the exact same argument shows that A is
absolutely weakly normal. �

Next we define seminormal schemes and absolutely weakly normal schemes.

Definition 47.3. Let X be a scheme.
(1) We say X is seminormal if every x ∈ X has an affine open neighbourhood

Spec(R) = U ⊂ X such that the ring R is seminormal.
(2) We say X is absolutely weakly normal if every x ∈ X has an affine open neigh-

bourhood Spec(R) = U ⊂ X such that the ringR is absolutely weakly normal.

Here is the obligatory lemma.

Lemma 47.4. Let X be a scheme. The following are equivalent:
(1) The scheme X is seminormal.
(2) For every affine open U ⊂ X the ringOX(U) is seminormal.
(3) There exists an affine open covering X =

⋃
Ui such that each OX(Ui) is semi-

normal.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme Xj is

seminormal.
Moreover, if X is seminormal then every open subscheme is seminormal. The same state-
ments are true with “seminormal” replaced by “absolutely weakly normal”.

Proof. Combine Properties, Lemma 4.3 and Lemma 47.2. �

Lemma 47.5. A seminormal scheme or ring is reduced. A fortiori the same is true for
absolutely weakly normal schemes or rings.

Proof. Let A be a ring. If a ∈ A is nonzero but a2 = 0, then a2 = 02 and a3 = 03

and hence A is not seminormal. �

Lemma 47.6. Let A be a ring.
(1) The category of ring maps A → B inducing a universal homeomorphism on

spectra has a final object A→ Aawn.
(2) GivenA→ B in the category of (1) the resulting mapB → Aawn is an isomor-

phism if and only if B is absolutely weakly normal.
(3) The category of ring maps A→ B inducing isomorphisms on residue fields and

a universal homeomorphism on spectra has a final object A→ Asn.
(4) Given A → B in the category of (3) the resulting map B → Asn is an isomor-

phism if and only if B is seminormal.
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For any ring map ϕ : A → A′ there are unique maps ϕawn : Aawn → (A′)awn and
ϕsn : Asn → (A′)sn compatible with ϕ.

Proof. We prove (1) and (2) and we omit the proof of (3) and (4) and the final state-
ment. Consider the category of A-algebras of the form

B = A[x1, . . . , xn]/J
where J is a finitely generated ideal such thatA→ B defines a universal homeomorphism
on spectra. We claim this category is directed (Categories, Definition 19.1). Namely, given

B = A[x1, . . . , xn]/J and B′ = A[x1, . . . , xn′ ]/J ′

then we can consider
B′′ = A[x1, . . . , xn+n′ ]/J ′′

where J ′′ is generated by the elements of J and the elements f(xn+1, . . . , xn+n′) where
f ∈ J ′. Then we have A-algebra homomorphisms B → B′′ and B′ → B′′ which
induce an isomorphism B ⊗A B′ → B′′. It follows from Lemmas 45.2 and 45.3 that
Spec(B′′) → Spec(A) is a universal homeomorphism and hence A → B′′ is in our cate-
gory. Finally, given ϕ,ϕ′ : B → B′ in our category with B as displayed above, then we
consider the quotient B′′ of B′ by the ideal generated by ϕ(xi) − ϕ′(xi), i = 1, . . . , n.
Since Spec(B′) = Spec(B) we see that Spec(B′′) → Spec(B′) is a bijective closed im-
mersion hence a universal homeomorphism. Thus B′′ is in our category and ϕ,ϕ′ are
equalized by B′ → B′′. This completes the proof of our claim. We set

Aawn = colimB

where the colimit is over the category just described. Observe that A → Aawn induces a
universal homeomorphism on spectra by Lemma 46.2 (this is where we use the category is
directed).
Given a ring map A → B of finite presentation inducing a universal homeomorphism
on spectra, we get a canonical map B → Aawn by the very construction of Aawn. Since
everyA→ B as in (1) is a filtered colimit ofA→ B as in (1) of finite presentation (Lemma
46.11), we see that A→ Aawn is final in the category (1).
Letx, y ∈ Aawn be elements such thatx3 = y2. ThenAawn → Aawn[t]/(t2−x, t3−y) in-
duces a universal homeomorphism on spectra by Lemma 46.10. ThusA→ Aawn[t]/(t2−
x, t3−y) is in the category (1) and we obtain a uniqueA-algebra mapAawn[t]/(t2−x, t3−
y) → Aawn. The image a ∈ Aawn of t is therefore the unique element such that a2 = x
and a3 = y in Aawn. In exactly the same manner, given a prime p and x, y ∈ Aawn with
ppx = yp we find a unique a ∈ Aawn with ap = x and pq = y. Thus Aawn is absolutely
weakly normal by definition.
Finally, let A → B be in the category (1) with B absolutely weakly normal. Since
Aawn → Bawn induces a universal homeomorphism on spectra and since Aawn is re-
duced (Lemma 47.5) we find Aawn ⊂ Bawn (see Algebra, Lemma 30.6). If this inclusion
is not an equality, then Lemma 46.6 implies there is an element b ∈ Bawn, b 6∈ Aawn such
that either b2, b3 ∈ Aawn or pb, bp ∈ Aawn for some prime number p. However, by the
existence and uniqueness in Definition 47.1 this forces b ∈ Aawn and hence we obtain the
contradiction that finishes the proof. �

Lemma 47.7. Let X be a scheme.
(1) The category of universal homeomorphismsY → X has an initial objectXawn →

X .
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(2) Given Y → X in the category of (1) the resulting morphism Xawn → Y is an
isomorphism if and only if Y is absolutely weakly normal.

(3) The category of universal homeomorphisms Y → X which induce ismomor-
phisms on residue fields has an initial object Xsn → X .

(4) Given Y → X in the category of (3) the resulting morphism Xsn → Y is an
isomorphism if and only if Y is seminormal.

For any morphismh : X ′ → X of schemes there are unique morphismshawn : (X ′)awn →
Xawn and hsn : (X ′)sn → Xsn compatible with h.

Proof. We will prove (1) and (2) and omit the proof of (3) and (4). Let h : X ′ → X
be a morphism of schemes. If (1) holds for X and X ′, then X ′ ×X Xawn → X ′ is a
universal homeomorphism and hence we get a unique morphism (X ′)awn → X ′×XXawn

over X ′ by the universal property of (X ′)awn → X ′. Composed with the projection
X ′ ×X Xawn → Xawn we obtain hawn. If in addition (2) holds for X and X ′ and h is
an open immersion, thenX ′×X Xawn is absolutely weakly normal (Lemma 47.4) and we
deduce that (X ′)awn → X ′ ×X Xawn is an isomorphism.
Recall that any universal homeomorphism is affine, see Lemma 45.4. Thus if X is affine
then (1) and (2) follow immediately from Lemma 47.6. LetX be a scheme and let B be the
set of affine opens of X . For each U ∈ B we obtain Uawn → U and for V ⊂ U , V,U ∈ B
we obtain a canonical isomorphism ρV,U : V awn → V ×U Uawn by the discussion in
the previous paragraph. Thus by relative glueing (Constructions, Lemma 2.1) we obtain a
morphism Xawn → X which restricts to Uawn over U compatibly with the ρV,U . Next,
let Y → X be a universal homeomorphism. Then U ×X Y → U is a universal home-
omorphism for U ∈ B and we obtain a unique morphism gU : Uawn → U ×X Y over
U . These gU are compatible with the morphisms ρV,U ; details omitted. Hence there is a
unique morphism g : Xawn → Y over X agreeing with gU over U , see Constructions,
Remark 2.3. This proves (1) for X . Part (2) follows because it holds affine locally. �

Definition 47.8. Let X be a scheme.
(1) The morphism Xsn → X constructed in Lemma 47.7 is the seminormalization

of X .
(2) The morphism Xawn → X constructed in Lemma 47.7 is the absolute weak

normalization of X .

To be sure, the seminormalization Xsn of X is a seminormal scheme and the absolute
weak normalization Xawn is an absolutely weakly normal scheme. Moreover, for any
morphism h : Y → X of schemes we obtain a canonical commutative diagram

Y awn

hawn

��

// Y sn

hsn

��

// Y

h
��

Xawn // Xsn // X

of schemes; the arrows hsn and hawn are the unique ones compatible with h.

Lemma 47.9. Let X be a scheme. The following are equivalent
(1) X is seminormal,
(2) X is equal to its own seminormalization, i.e., the morphism Xsn → X is an

isomorphism,
(3) if π : Y → X is a universal homomorphism inducing isomorphisms on residue

fields with Y reduced, then π is an isomorphism.
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Proof. The equivalence of (1) and (2) is clear from Lemma 47.7. If (3) holds, then
Xsn → X is an isomorphism and we see that (2) holds.

Assume (2) holds and let π : Y → X be a universal homomorphism inducing isomor-
phisms on residue fields with Y reduced. Then there exists a factorization X → Y → X
of idX by Lemma 47.7. ThenX → Y is a closed immersion (by Schemes, Lemma 21.11 and
the fact that π is separated for example by Lemma 10.3). Since X → Y is also a bijection
on points, the reducedness of Y shows that it has to be an isomorphism. This finishes the
proof. �

Lemma 47.10. Let X be a scheme. The following are equivalent
(1) X is absolutely weakly normal,
(2) X is equal to its own absolute weak normalization, i.e., the morphism Xawn →

X is an isomorphism,
(3) if π : Y → X is a universal homomorphism with Y reduced, then π is an

isomorphism.

Proof. This is proved in exactly the same manner as Lemma 47.9. �

48. Finite locally free morphisms

In many papers the authors use finite flat morphisms when they really mean finite locally
free morphisms. The reason is that if the base is locally Noetherian then this is the same
thing. But in general it is not, see Exercises, Exercise 5.3.

Definition 48.1. Let f : X → S be a morphism of schemes. We say f is finite
locally free if f is affine and f∗OX is a finite locally free OS-module. In this case we say
f is has rank or degree d if the sheaf f∗OX is finite locally free of degree d.

Note that if f : X → S is finite locally free then S is the disjoint union of open and closed
subschemes Sd such that f−1(Sd)→ Sd is finite locally free of degree d.

Lemma 48.2. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) f is finite locally free,
(2) f is finite, flat, and locally of finite presentation.

If S is locally Noetherian these are also equivalent to
(3) f is finite and flat.

Proof. Let V ⊂ S be affine open. In all three cases the morphism is affine hence
f−1(V ) is affine. Thus we may write V = Spec(R) and f−1(V ) = Spec(A) for some R-
algebraA. Assume (1). This means we can cover S by affine opens V = Spec(R) such that
A is finite free as an R-module. Then R→ A is of finite presentation by Algebra, Lemma
7.4. Thus (2) holds. Conversely, assume (2). For every affine open V = Spec(R) of S
the ring map R → A is finite and of finite presentation and A is flat as an R-module. By
Algebra, Lemma 36.23 we see that A is finitely presented as an R-module. Thus Algebra,
Lemma 78.2 impliesA is finite locally free. Thus (1) holds. The Noetherian case follows as
a finite module over a Noetherian ring is a finitely presented module, see Algebra, Lemma
31.4. �

Lemma 48.3. A composition of finite locally free morphisms is finite locally free.

Proof. Omitted. �
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Lemma 48.4. A base change of a finite locally free morphism is finite locally free.

Proof. Omitted. �

Lemma 48.5. Let f : X → S be a finite locally free morphism of schemes. There
exists a disjoint union decomposition S =

∐
d≥0 Sd by open and closed subschemes such

that setting Xd = f−1(Sd) the restrictions f |Xd are finite locally free morphisms Xd →
Sd of degree d.

Proof. This is true because a finite locally free sheaf locally has a well defined rank.
Details omitted. �

Lemma 48.6. Let f : Y → X be a finite morphism with X affine. There exists a
diagram

Z ′

  

Y ′
i

oo

��

// Y

��
X ′ // X

where
(1) Y ′ → Y and X ′ → X are surjective finite locally free,
(2) Y ′ = X ′ ×X Y ,
(3) i : Y ′ → Z ′ is a closed immersion,
(4) Z ′ → X ′ is finite locally free, and
(5) Z ′ =

⋃
j=1,...,m Z

′
j is a (set theoretic) finite union of closed subschemes, each of

which maps isomorphically to X ′.

Proof. Write X = Spec(A) and Y = Spec(B). See also More on Algebra, Section
21. Let x1, . . . , xn ∈ B be generators of B over A. For each i we can choose a monic
polynomial Pi(T ) ∈ A[T ] such that P (xi) = 0 in B. By Algebra, Lemma 136.14 (applied
n times) there exists a finite locally free ring extension A ⊂ A′ such that each Pi splits
completely:

Pi(T ) =
∏

k=1,...,di
(T − αik)

for certain αik ∈ A′. Set

C = A′[T1, . . . , Tn]/(P1(T1), . . . , Pn(Tn))

and B′ = A′ ⊗A B. The map C → B′, Ti 7→ 1 ⊗ xi is an A′-algebra surjection. Setting
X ′ = Spec(A′), Y ′ = Spec(B′) and Z ′ = Spec(C) we see that (1) – (4) hold. Part (5)
holds because set theoretically Spec(C) is the union of the closed subschemes cut out by
the ideals

(T1 − α1k1 , T2 − α2k2 , . . . , Tn − αnkn)
for any 1 ≤ ki ≤ di. �

The following lemma is stated in the correct generality in Lemma 56.4 below.

Lemma 48.7. Let f : Y → X be a finite morphism of schemes. Let T ⊂ Y be a closed
nowhere dense subset of Y . Then f(T ) ⊂ X is a closed nowhere dense subset of X .

Proof. By Lemma 44.11 we know that f(T ) ⊂ X is closed. Let X =
⋃
Xi be an

affine covering. Since T is nowhere dense in Y , we see that also T ∩ f−1(Xi) is nowhere
dense in f−1(Xi). Hence if we can prove the theorem in the affine case, then we see that
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f(T )∩Xi is nowhere dense. This then implies that T is nowhere dense inX by Topology,
Lemma 21.4.

Assume X is affine. Choose a diagram

Z ′

  

Y ′
i

oo

f ′

��

a
// Y

f

��
X ′ b // X

as in Lemma 48.6. The morphisms a, b are open since they are finite locally free (Lemmas
48.2 and 25.10). Hence T ′ = a−1(T ) is nowhere dense, see Topology, Lemma 21.6. The
morphism b is surjective and open. Hence, if we can prove f ′(T ′) = b−1(f(T )) is nowhere
dense, then f(T ) is nowhere dense, see Topology, Lemma 21.6. As i is a closed immersion,
by Topology, Lemma 21.5 we see that i(T ′) ⊂ Z ′ is closed and nowhere dense. Thus we
have reduced the problem to the case discussed in the following paragraph.

Assume that Y =
⋃
i=1,...,n Yi is a finite union of closed subsets, each mapping isomor-

phically to X . Consider Ti = Yi ∩ T . If each of the Ti is nowhere dense in Yi, then each
f(Ti) is nowhere dense in X as Yi → X is an isomorphism. Hence f(T ) = f(Ti) is a
finite union of nowhere dense closed subsets of X and we win, see Topology, Lemma 21.2.
Suppose not, say T1 contains a nonempty open V ⊂ Y1. We are going to show this leads
to a contradiction. Consider Y2 ∩ V ⊂ V . This is either a proper closed subset, or equal
to V . In the first case we replace V by V \ V ∩ Y2, so V ⊂ T1 is open in Y1 and does
not meet Y2. In the second case we have V ⊂ Y1 ∩ Y2 is open in both Y1 and Y2. Repeat
sequentially with i = 3, . . . , n. The result is a disjoint union decomposition

{1, . . . , n} = I1 q I2, 1 ∈ I1

and an open V of Y1 contained in T1 such that V ⊂ Yi for i ∈ I1 and V ∩ Yi = ∅ for
i ∈ I2. Set U = f(V ). This is an open of X since f |Y1 : Y1 → X is an isomorphism.
Then

f−1(U) = V q
⋃

i∈I2
(Yi ∩ f−1(U))

As
⋃
i∈I2

Yi is closed, this implies that V ⊂ f−1(U) is open, hence V ⊂ Y is open. This
contradicts the assumption that T is nowhere dense in Y , as desired. �

49. Rational maps

Let X be a scheme. Note that if U , V are dense open in X , then so is U ∩ V .

Definition 49.1. Let X , Y be schemes.
(1) Let f : U → Y , g : V → Y be morphisms of schemes defined on dense open

subsets U , V of X . We say that f is equivalent to g if f |W = g|W for some
W ⊂ U ∩ V dense open in X .

(2) A rational map from X to Y is an equivalence class for the equivalence relation
defined in (1).

(3) If X , Y are schemes over a base scheme S we say that a rational map from X to
Y is an S-rational map from X to Y if there exists a representative f : U → Y
of the equivalence class which is an S-morphism.

We say that two morphisms f , g as in (1) of the definition define the same rational map
instead of saying that they are equivalent. In some cases rational maps are determined by
maps on local rings at generic points.
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Lemma 49.2. Let S be a scheme. Let X and Y be schemes over S. Assume X has
finitely many irreducible components with generic points x1, . . . , xn. Let si ∈ S be the
image of xi. Consider the map{

S-rational maps
from X to Y

}
−→

{
(y1, ϕ1, . . . , yn, ϕn) where yi ∈ Y lies over si and
ϕi : OY,yi → OX,xi is a localOS,si -algebra map

}
which sends f : U → Y to the 2n-tuple with yi = f(xi) and ϕi = f ]xi . Then

(1) If Y → S is locally of finite type, then the map is injective.
(2) If Y → S is locally of finite presentation, then the map is bijective.
(3) If Y → S is locally of finite type and X reduced, then the map is bijective.

Proof. Observe that any dense open ofX contains the points xi so the construction
makes sense. To prove (1) or (2) we may replaceX by any dense open. Thus if Z1, . . . , Zn
are the irreducible components of X , then we may replace X by X \

⋃
i 6=j Zi ∩Zj . After

doing thisX is the disjoint union of its irreducible components (viewed as open and closed
subschemes). Then both the right hand side and the left hand side of the arrow are prod-
ucts over the irreducible components and we reduce to the case where X is irreducible.

AssumeX is irreducible with generic point x lying over s ∈ S. Part (1) follows from part
(1) of Lemma 42.4. Parts (2) and (3) follow from part (2) of the same lemma. �

Definition 49.3. Let X be a scheme. A rational function on X is a rational map
from X to A1

Z.

See Constructions, Definition 5.1 for the definition of the affine line A1. LetX be a scheme
over S. For any open U ⊂ X a morphism U → A1

Z is the same as a morphism U → A1
S

over S. Hence a rational function is also the same as a S-rational map from X into A1
S .

Recall that we have the canonical identification Mor(T,A1
Z) = Γ(T,OT ) for any scheme

T , see Schemes, Example 15.2. Hence A1
Z is a ring-object in the category of schemes. More

precisely, the morphisms

+ : A1
Z ×A1

Z −→ A1
Z

(f, g) 7−→ f + g

∗ : A1
Z ×A1

Z −→ A1
Z

(f, g) 7−→ fg

satisfy all the axioms of the addition and multiplication in a ring (commutative with 1 as
always). Hence also the set of rational maps into A1

Z has a natural ring structure.

Definition 49.4. Let X be a scheme. The ring of rational functions on X is the
ringR(X) whose elements are rational functions with addition and multiplication as just
described.

For schemes with finitely many irreducible components we can compute this.

Lemma 49.5. LetX be a scheme with finitely many irreducible componentsX1, . . . , Xn.
If ηi ∈ Xi is the generic point, then

R(X) = OX,η1 × . . .×OX,ηn
If X is reduced this is equal to

∏
κ(ηi). If X is integral then R(X) = OX,η = κ(η) is a

field.
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Proof. Let U ⊂ X be an open dense subset. Then Ui = (U ∩ Xi) \ (
⋃
j 6=iXj) is

nonempty open as it contained ηi, contained in Xi, and
⋃
Ui ⊂ U ⊂ X is dense. Thus

the identification in the lemma comes from the string of equalities

R(X) = colimU⊂X open dense Mor(U,A1
Z)

= colimU⊂X open denseOX(U)

= colimηi∈Ui⊂X open
∏
OX(Ui)

=
∏

colimηi∈Ui⊂X openOX(Ui)

=
∏
OX,ηi

where the second equality is Schemes, Example 15.2. The final statement follows from
Algebra, Lemma 25.1. �

Definition 49.6. Let X be an integral scheme. The function field, or the field of
rational functions of X is the field R(X).

We may occasionally indicate this field k(X) instead of R(X). We can use the notion
of the function field to elucidate the separation condition on an integral scheme. Note
that by Lemma 49.5 on an integral scheme every local ringOX,x may be viewed as a local
subring of R(X).

Lemma 49.7. LetX be an integral separated scheme. LetZ1,Z2 be distinct irreducible
closed subsets ofX . Let ηi be the generic point of Zi. If Z1 6⊂ Z2, thenOX,η1 6⊂ OX,η2 as
subrings of R(X). In particular, if Z1 = {x} consists of one closed point x, there exists a
function regular in a neighborhood of x which is not inOX,η2 .

Proof. First observe that under the assumption ofX being separated, there is a unique
map of schemes Spec(OX,η2)→ X over X such that the composition

Spec(R(X)) −→ Spec(OX,η2) −→ X

is the canonical map Spec(R(X)) → X . Namely, there is the canonical map can :
Spec(OX,η2) → X , see Schemes, Equation (13.1.1). Given a second morphism a to X ,
we have that a agrees with can on the generic point of Spec(OX,η2) by assumption. Now
X being separated guarantees that the subset in Spec(OX,η2) where these two maps agree
is closed, see Schemes, Lemma 21.5. Hence a = can on all of Spec(OX,η2).

Assume Z1 6⊂ Z2 and assume on the contrary that OX,η1 ⊂ OX,η2 as subrings of R(X).
Then we would obtain a second morphism

Spec(OX,η2) −→ Spec(OX,η1) −→ X.

By the above this composition would have to be equal to can. This implies that η2 special-
izes to η1 (see Schemes, Lemma 13.2). But this contradicts our assumption Z1 6⊂ Z2. �

Definition 49.8. Let ϕ be a rational map between two schemes X and Y . We say ϕ
is defined in a point x ∈ X if there exists a representative (U, f) of ϕ with x ∈ U . The
domain of definition of ϕ is the set of all points where ϕ is defined.

With this definition it isn’t true in general that ϕ has a representative which is defined on
all of the domain of definition.
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Lemma 49.9. Let X and Y be schemes. Assume X reduced and Y separated. Let ϕ
be a rational map from X to Y with domain of definition U ⊂ X . Then there exists a
unique morphism f : U → Y representing ϕ. If X and Y are schemes over a separated
scheme S and if ϕ is an S-rational map, then f is a morphism over S.

Proof. Let (V, g) and (V ′, g′) be representatives of ϕ. Then g, g′ agree on a dense
open subschemeW ⊂ V ∩V ′. On the other hand, the equalizerE of g|V ∩V ′ and g′|V ∩V ′

is a closed subscheme ofV ∩V ′ (Schemes, Lemma 21.5). NowW ⊂ E implies thatE = V ∩
V ′ set theoretically. As V ∩V ′ is reduced we concludeE = V ∩V ′ scheme theoretically,
i.e., g|V ∩V ′ = g′|V ∩V ′ . It follows that we can glue the representatives g : V → Y of
ϕ to a morphism f : U → Y , see Schemes, Lemma 14.1. We omit the proof of the final
statement. �

In general it does not make sense to compose rational maps. The reason is that the image
of a representative of the first rational map may have empty intersection with the domain
of definition of the second. However, if we assume that our schemes are irreducible and
we look at dominant rational maps, then we can compose rational maps.

Definition 49.10. LetX and Y be irreducible schemes. A rational map fromX to Y
is called dominant if any representative f : U → Y is a dominant morphism of schemes.

By Lemma 8.6 it is equivalent to require that the generic point η ∈ X maps to the generic
point ξ ofY , i.e., f(η) = ξ for any representative f : U → Y . We can compose a dominant
rational map ϕ between irreducible schemes X and Y with an arbitrary rational map ψ
from Y to Z. Namely, choose representatives f : U → Y with U ⊂ X open dense and
g : V → Z with V ⊂ Y open dense. Then W = f−1(V ) ⊂ X is open nonempty
(because it contains the generic point of X) and we let ψ ◦ ϕ be the equivalence class of
g ◦ f |W : W → Z. We omit the verification that this is well defined.
In this way we obtain a category whose objects are irreducible schemes and whose mor-
phisms are dominant rational maps. Given a base scheme S we can similarly define a cat-
egory whose objects are irreducible schemes over S and whose morphisms are dominant
S-rational maps.

Definition 49.11. Let X and Y be irreducible schemes.
(1) We say X and Y are birational if X and Y are isomorphic in the category of

irreducible schemes and dominant rational maps.
(2) Assume X and Y are schemes over a base scheme S. We say X and Y are S-

birational ifX and Y are isomorphic in the category of irreducible schemes over
S and dominant S-rational maps.

If X and Y are birational irreducible schemes, then the set of rational maps from X to Z
is bijective with the set of rational map from Y to Z for all schemes Z (functorially in
Z). For “general” irreducible schemes this is just one possible definition. Another would
be to require X and Y have isomorphic rings of rational functions. For varieties these
conditions are equivalent, see Lemma 50.6.

Lemma 49.12. Let X and Y be irreducible schemes.
(1) The schemesX andY are birational if and only if they have isomorphic nonempty

opens.
(2) Assume X and Y are schemes over a base scheme S. Then X and Y are S-

birational if and only if there are nonempty opens U ⊂ X and V ⊂ Y which
are S-isomorphic.
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Proof. Assume X and Y are birational. Let f : U → Y and g : V → X define
inverse dominant rational maps fromX to Y and from Y toX . We may assume V affine.
We may replace U by an affine open of f−1(V ). As g ◦ f is the identity as a dominant
rational map, we see that the composition U → V → X is the identity on a dense open of
U . Thus after replacing U by a smaller affine open we may assume that U → V → X is
the inclusion ofU intoX . It follows thatU → V is an immersion (apply Schemes, Lemma
21.11 to U → g−1(U) → U ). However, switching the roles of U and V and redoing the
argument above, we see that there exists a nonempty affine open V ′ ⊂ V such that the
inclusion factors as V ′ → U → V . Then V ′ → U is necessarily an open immersion.
Namely, V ′ → f−1(V ′)→ V ′ are monomorphisms (Schemes, Lemma 23.8) composing to
the identity, hence isomorphisms. Thus V ′ is isomorphic to an open of both X and Y . In
the S-rational maps case, the exact same argument works. �

Remark 49.13. Here is a generalization of the category of irreducible schemes and
dominant rational maps. For a scheme X denote X0 the set of points x ∈ X with
dim(OX,x) = 0, in other words, X0 is the set of generic points of irreducible compo-
nents of X . Then we can consider the category with

(1) objects are schemes X such that every quasi-compact open has finitely many
irreducible components, and

(2) morphisms from X to Y are rational maps f : U → Y from X to Y such that
f(U0) = Y 0.

If U ⊂ X is a dense open of a scheme, then U0 ⊂ X0 need not be an equality, but if X is
an object of our category, then this is the case. Thus given two morphisms in our category,
the composition is well defined and a morphism in our category.

Remark 49.14. There is a variant of Definition 49.1 where we consider only those
morphism U → Y defined on scheme theoretically dense open subschemes U ⊂ X . We
use Lemma 7.6 to see that we obtain an equivalence relation. An equivalence class of these
is called a pseudo-morphism from X to Y . If X is reduced the two notions coincide.

50. Birational morphisms

You may be used to the notion of a birational map of varieties having the property that
it is an isomorphism over an open subset of the target. However, in general a birational
morphism may not be an isomorphism over any nonempty open, see Example 50.4. Here
is the formal definition.

Definition 50.1. Let X , Y be schemes. Assume X and Y have finitely many irre-
ducible components. We say a morphism f : X → Y is birational if

(1) f induces a bijection between the set of generic points of irreducible components
of X and the set of generic points of the irreducible components of Y , and

(2) for every generic point η ∈ X of an irreducible component of X the local ring
mapOY,f(η) → OX,η is an isomorphism.

We will see below that the fibres of a birational morphism over generic points are single-
tons. Moreover, we will see that in most cases one encounters in practice the existence a
birational morphism between irreducible schemesX andY impliesX andY are birational
schemes.

Lemma 50.2. Let f : X → Y be a morphism of schemes having finitely many irre-
ducible components. If f is birational then f is dominant.
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Proof. Follows from Lemma 8.2 and the definition. �

Lemma 50.3. Let f : X → Y be a birational morphism of schemes having finitely
many irreducible components. If y ∈ Y is the generic point of an irreducible component,
then the base change X ×Y Spec(OY,y)→ Spec(OY,y) is an isomorphism.

Proof. We may assumeY = Spec(B) is affine and irreducible. ThenX is irreducible
too. If we prove the result for any nonempty affine open U ⊂ X , then the result holds for
X (small argument omitted). Hence we may assumeX is affine too, sayX = Spec(A). Let
y ∈ Y correspond to the minimal prime q ⊂ B. By assumption A has a unique minimal
prime p lying over q and Bq → Ap is an isomorphism. It follows that Aq → κ(p) is
surjective, hence pAq is a maximal ideal. On the other hand pAq is the unique minimal
prime of Aq. We conclude that pAq is the unique prime of Aq and that Aq = Ap. Since
Aq = A⊗B Bq the lemma follows. �

Example 50.4. Here are two examples of birational morphisms which are not iso-
morphisms over any open of the target.

First example. Let k be an infinite field. Let A = k[x]. Let B = k[x, {yα}α∈k]/((x −
α)yα, yαyβ). There is an inclusionA ⊂ B and a retractionB → A setting all yα equal to
zero. Both the morphism Spec(A) → Spec(B) and the morphism Spec(B) → Spec(A)
are birational but not an isomorphism over any open.

Second example. Let A be a domain. Let S ⊂ A be a multiplicative subset not containing
0. With B = S−1A the morphism f : Spec(B) → Spec(A) is birational. If there exists
an open U of Spec(A) such that f−1(U) → U is an isomorphism, then there exists an
a ∈ A such that each every element of S becomes invertible in the principal localization
Aa. Taking A = Z and S the set of odd integers give a counter example.

Lemma 50.5. Let f : X → Y be a birational morphism of schemes having finitely
many irreducible components over a base scheme S. Assume one of the following condi-
tions is satisfied

(1) f is locally of finite type and Y reduced,
(2) f is locally of finite presentation.

Then there exist dense opensU ⊂ X and V ⊂ Y such that f(U) ⊂ V and f |U : U → V is
an isomorphism. In particular if X and Y are irreducible, then X and Y are S-birational.

Proof. There is an immediate reduction to the case where X and Y are irreducible
which we omit. Moreover, after shrinking further and we may assumeX and Y are affine,
say X = Spec(A) and Y = Spec(B). By assumption A, resp. B has a unique minimal
prime p, resp. q, the prime p lies over q, and Bq = Ap. By Lemma 50.3 we have Bq =
Aq = Ap.

Suppose B → A is of finite type, say A = B[x1, . . . , xn]. There exist a bi ∈ B and
gi ∈ B \ q such that bi/gi maps to the image of xi in Aq. Hence bi − gixi maps to zero
in Ag′

i
for some g′

i ∈ B \ q. Setting g =
∏
gig

′
i we see that Bg → Ag is surjective.

If moreover Y is reduced, then the map Bg → Bq is injective and hence Bg → Ag is
injective as well. This proves case (1).

Proof of (2). By the argument given in the previous paragraph we may assume thatB → A
is surjective. As f is locally of finite presentation the kernel J ⊂ B is a finitely generated
ideal. Say J = (b1, . . . , br). Since Bq = Aq there exist gi ∈ B \ q such that gibi = 0.
Setting g =

∏
gi we see that Bg → Ag is an isomorphism. �



51. GENERICALLY FINITE MORPHISMS 2515

Lemma 50.6. Let S be a scheme. LetX and Y be irreducible schemes locally of finite
presentation over S. Let x ∈ X and y ∈ Y be the generic points. The following are
equivalent

(1) X and Y are S-birational,
(2) there exist nonempty opens of X and Y which are S-isomorphic, and
(3) x and y map to the same point s of S and OX,x and OY,y are isomorphic as
OS,s-algebras.

Proof. We have seen the equivalence of (1) and (2) in Lemma 49.12. It is immediate
that (2) implies (3). To finish we assume (3) holds and we prove (1). By Lemma 49.2 there
is a rational map f : U → Y which sends x ∈ U to y and induces the given isomorphism
OY,y ∼= OX,x. Thus f is a birational morphism and hence induces an isomorphism on
nonempty opens by Lemma 50.5. This finishes the proof. �

Lemma 50.7. Let S be a scheme. Let X and Y be integral schemes locally of finite
type over S. Let x ∈ X and y ∈ Y be the generic points. The following are equivalent

(1) X and Y are S-birational,
(2) there exist nonempty opens of X and Y which are S-isomorphic, and
(3) x and y map to the same point s ∈ S and κ(x) ∼= κ(y) as κ(s)-extensions.

Proof. We have seen the equivalence of (1) and (2) in Lemma 49.12. It is immediate
that (2) implies (3). To finish we assume (3) holds and we prove (1). Observe thatOX,x =
κ(x) and OY,y = κ(y) by Algebra, Lemma 25.1. By Lemma 49.2 there is a rational map
f : U → Y which sends x ∈ U to y and induces the given isomorphism OY,y ∼= OX,x.
Thus f is a birational morphism and hence induces an isomorphism on nonempty opens
by Lemma 50.5. This finishes the proof. �

51. Generically finite morphisms

In this section we characterize maps between schemes which are locally of finite type and
which are “generically finite” in some sense.

Lemma 51.1. Let X , Y be schemes. Let f : X → Y be locally of finite type. Let
η ∈ Y be a generic point of an irreducible component of Y . The following are equivalent:

(1) the set f−1({η}) is finite,
(2) there exist affine opens Ui ⊂ X , i = 1, . . . , n and V ⊂ Y with f(Ui) ⊂ V ,

η ∈ V and f−1({η}) ⊂
⋃
Ui such that each f |Ui : Ui → V is finite.

If f is quasi-separated, then these are also equivalent to
(3) there exist affine opens V ⊂ Y , and U ⊂ X with f(U) ⊂ V , η ∈ V and

f−1({η}) ⊂ U such that f |U : U → V is finite.
If f is quasi-compact and quasi-separated, then these are also equivalent to

(4) there exists an affine open V ⊂ Y , η ∈ V such that f−1(V )→ V is finite.

Proof. The question is local on the base. Hence we may replace Y by an affine neigh-
bourhood of η, and we may and do assume throughout the proof below that Y is affine,
say Y = Spec(R).

It is clear that (2) implies (1). Assume that f−1({η}) = {ξ1, . . . , ξn} is finite. Choose
affine opens Ui ⊂ X with ξi ∈ Ui. By Algebra, Lemma 122.10 we see that after replacing
Y by a standard open in Y each of the morphisms Ui → Y is finite. In other words (2)
holds.
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It is clear that (3) implies (1). Assume f is quasi-separated and (1). Write f−1({η}) =
{ξ1, . . . , ξn}. There are no specializations among the ξi by Lemma 20.7. Since each ξi
maps to the generic point η of an irreducible component of Y , there cannot be a nontrivial
specialization ξ  ξi in X (since ξ would map to η as well). We conclude each ξi is a
generic point of an irreducible component of X . Since Y is affine and f quasi-separated
we seeX is quasi-separated. By Properties, Lemma 29.1 we can find an affine open U ⊂ X
containing each ξi. By Algebra, Lemma 122.10 we see that after replacing Y by a standard
open in Y the morphisms U → Y is finite. In other words (3) holds.

It is clear that (4) implies all of (1) – (3) with no further assumptions on f . Suppose that
f is quasi-compact and quasi-separated. We have to show that the equivalent conditions
(1) – (3) imply (4). Let U , V be as in (3). Replace Y by V . Since f is quasi-compact and
Y is quasi-compact (being affine) we see that X is quasi-compact. Hence Z = X \ U is
quasi-compact, hence the morphism f |Z : Z → Y is quasi-compact. By construction
of Z we see that η 6∈ f(Z). Hence by Lemma 8.5 we see that there exists an affine open
neighbourhood V ′ of η in Y such that f−1(V ′) ∩ Z = ∅. Then we have f−1(V ′) ⊂ U
and this means that f−1(V ′)→ V ′ is finite. �

Example 51.2. Let A =
∏
n∈N F2. Every element of A is an idempotent. Hence

every prime ideal is maximal with residue field F2. Thus the topology on X = Spec(A)
is totally disconnected and quasi-compact. The projection maps A → F2 define open
points of Spec(A). It cannot be the case that all the points ofX are open sinceX is quasi-
compact. Let x ∈ X be a closed point which is not open. Then we can form a scheme Y
which is two copies of X glued along X \ {x}. In other words, this is X with x doubled,
compare Schemes, Example 14.3. The morphism f : Y → X is quasi-compact, finite type
and has finite fibres but is not quasi-separated. The point x ∈ X is a generic point of an
irreducible component of X (since X is totally disconnected). But properties (3) and (4)
of Lemma 51.1 do not hold. The reason is that for any open neighbourhood x ∈ U ⊂ X
the inverse image f−1(U) is not affine because functions on f−1(U) cannot separate the
two points lying over x (proof omitted; this is a nice exercise). Hence the condition that
f is quasi-separated is necessary in parts (3) and (4) of the lemma.

Remark 51.3. An alternative to Lemma 51.1 is the statement that a quasi-finite mor-
phism is finite over a dense open of the target. This will be shown in More on Morphisms,
Lemma 45.2.

Lemma 51.4. Let X , Y be schemes. Let f : X → Y be locally of finite type. Let
X0, resp. Y 0 denote the set of generic points of irreducible components ofX , resp. Y . Let
η ∈ Y 0. The following are equivalent

(1) f−1({η}) ⊂ X0,
(2) f is quasi-finite at all points lying over η,
(3) f is quasi-finite at all ξ ∈ X0 lying over η.

Proof. Condition (1) implies there are no specializations among the points of the
fibre Xη . Hence (2) holds by Lemma 20.6. The implication (2)⇒ (3) is immediate. Since
η is a generic point of Y , the generic points of Xη are generic points of X . Hence (3)
and Lemma 20.6 imply the generic points of Xη are also closed. Thus all points of Xη are
generic and we see that (1) holds. �

Lemma 51.5. Let X , Y be schemes. Let f : X → Y be locally of finite type. Let X0,
resp. Y 0 denote the set of generic points of irreducible components ofX , resp. Y . Assume



51. GENERICALLY FINITE MORPHISMS 2517

(1) X0 and Y 0 are finite and f−1(Y 0) = X0,
(2) either f is quasi-compact or f is separated.

Then there exists a dense open V ⊂ Y such that f−1(V )→ V is finite.

Proof. Since Y has finitely many irreducible components, we can find a dense open
which is a disjoint union of its irreducible components. Thus we may assume Y is irre-
ducible affine with generic point η. Then the fibre over η is finite as X0 is finite.

Assume f is separated and Y irreducible affine. Choose V ⊂ Y and U ⊂ X as in Lemma
51.1 part (3). Since f |U : U → V is finite, we see that U ⊂ f−1(V ) is closed as well as
open (Lemmas 41.7 and 44.11). Thus f−1(V ) = U qW for some open subscheme W of
X . However, since U contains all the generic points of X we conclude that W = ∅ as
desired.

Assume f is quasi-compact and Y irreducible affine. ThenX is quasi-compact, hence there
exists a dense open subscheme U ⊂ X which is separated (Properties, Lemma 29.3). Since
the set of generic points X0 is finite, we see that X0 ⊂ U . Thus η 6∈ f(X \ U). Since
X \ U → Y is quasi-compact, we conclude that there is a nonempty open V ⊂ Y such
that f−1(V ) ⊂ U , see Lemma 8.3. After replacing X by f−1(V ) and Y by V we reduce
to the separated case which we dealt with in the preceding paragraph. �

Lemma 51.6. LetX , Y be schemes. Let f : X → Y be a birational morphism between
schemes which have finitely many irreducible components. Assume

(1) either f is quasi-compact or f is separated, and
(2) either f is locally of finite type and Y is reduced or f is locally of finite presen-

tation.
Then there exists a dense open V ⊂ Y such that f−1(V )→ V is an isomorphism.

Proof. By Lemma 51.5 we may assume that f is finite. Since Y has finitely many ir-
reducible components, we can find a dense open which is a disjoint union of its irreducible
components. Thus we may assume Y is irreducible. By Lemma 50.5 we find a nonempty
open U ⊂ X such that f |U : U → Y is an open immersion. After removing the closed
(as f finite) subset f(X \ U) from Y we see that f is an isomorphism. �

Lemma 51.7. Let X , Y be integral schemes. Let f : X → Y be locally of finite type.
Assume f is dominant. The following are equivalent:

(1) the extension R(Y ) ⊂ R(X) has transcendence degree 0,
(2) the extension R(Y ) ⊂ R(X) is finite,
(3) there exist nonempty affine opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V and

f |U : U → V is finite, and
(4) the generic point of X is the only point of X mapping to the generic point of

Y .
If f is separated or if f is quasi-compact, then these are also equivalent to

(5) there exists a nonempty affine open V ⊂ Y such that f−1(V )→ V is finite.

Proof. Choose any affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ Y such
that f(U) ⊂ V . Then R and A are domains by definition. The ring map R → A is of
finite type (Lemma 15.2). By Lemma 8.6 the generic point of X maps to the generic point
of Y hence R → A is injective. Let K = R(Y ) be the fraction field of R and L = R(X)
the fraction field of A. Then L/K is a finitely generated field extension. Hence we see
that (1) is equivalent to (2).
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Suppose (2) holds. Let x1, . . . , xn ∈ A be generators of A over R. By assumption there
exist nonzero polynomialsPi(X) ∈ R[X] such thatPi(xi) = 0. Let fi ∈ R be the leading
coefficient of Pi. Then we conclude that Rf1...fn → Af1...fn is finite, i.e., (3) holds. Note
that (3) implies (2). So now we see that (1), (2) and (3) are all equivalent.

Let η be the generic point of X , and let η′ ∈ Y be the generic point of Y . Assume (4).
Then dimη(Xη′) = 0 and we see that R(X) = κ(η) has transcendence degree 0 over
R(Y ) = κ(η′) by Lemma 28.1. In other words (1) holds. Assume the equivalent conditions
(1), (2) and (3). Suppose that x ∈ X is a point mapping to η′. As x is a specialization of η,
this gives inclusions R(Y ) ⊂ OX,x ⊂ R(X), which implies OX,x is a field, see Algebra,
Lemma 36.19. Hence x = η. Thus we see that (1) – (4) are all equivalent.

It is clear that (5) implies (3) with no additional assumptions on f . What remains is to
prove that if f is either separated or quasi-compact, then the equivalent conditions (1) –
(4) imply (5). This follows from Lemma 51.5. �

Definition 51.8. Let X and Y be integral schemes. Let f : X → Y be locally of
finite type and dominant. Assume [R(X) : R(Y )] < ∞, or any other of the equivalent
conditions (1) – (4) of Lemma 51.7. Then the positive integer

deg(X/Y ) = [R(X) : R(Y )]

is called the degree of X over Y .

It is possible to extend this notion to a morphism f : X → Y if (a) Y is integral with
generic point η, (b) f is locally of finite type, and (c) f−1({η}) is finite. In this case we
can define

deg(X/Y ) =
∑

ξ∈X, f(ξ)=η
dimR(Y )(OX,ξ).

Namely, given that R(Y ) = κ(η) = OY,η (Lemma 49.5) the dimensions above are finite
by Lemma 51.1 above. However, for most applications the definition given above is the
right one.

Lemma 51.9. Let X , Y , Z be integral schemes. Let f : X → Y and g : Y → Z
be dominant morphisms locally of finite type. Assume that [R(X) : R(Y )] < ∞ and
[R(Y ) : R(Z)] <∞. Then

deg(X/Z) = deg(X/Y ) deg(Y/Z).

Proof. This comes from the multiplicativity of degrees in towers of finite extensions
of fields, see Fields, Lemma 7.7. �

Remark 51.10. Let f : X → Y be a morphism of schemes which is locally of finite
type. There are (at least) two properties that we could use to define generically finite
morphisms. These correspond to whether you want the property to be local on the source
or local on the target:

(1) (Local on the target; suggested by Ravi Vakil.) Assume every quasi-compact open
of Y has finitely many irreducible components (for example if Y is locally Noe-
therian). The requirement is that the inverse image of each generic point is finite,
see Lemma 51.1.

(2) (Local on the source.) The requirement is that there exists a dense open U ⊂ X
such that U → Y is locally quasi-finite.
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In case (1) the requirement can be formulated without the auxiliary condition on Y , but
probably doesn’t give the right notion for general schemes. Property (2) as formulated
doesn’t imply that the fibres over generic points are finite; however, if f is quasi-compact
and Y is as in (1) then it does.

Definition 51.11. Let X be an integral scheme. A modification of X is a birational
proper morphism f : X ′ → X with X ′ integral.

Let f : X ′ → X be a modification as in the definition. By Lemma 51.7 there exists a
nonempty U ⊂ X such that f−1(U) → U is finite. By generic flatness (Proposition
27.1) we may assume f−1(U) → U is flat and of finite presentation. So f−1(U) → U is
finite locally free (Lemma 48.2). Since f is birational, the degree ofX ′ overX is 1. Hence
f−1(U) → U is finite locally free of degree 1, in other words it is an isomorphism. Thus
we can redefine a modification to be a proper morphism f : X ′ → X of integral schemes
such that f−1(U)→ U is an isomorphism for some nonempty open U ⊂ X .

Definition 51.12. Let X be an integral scheme. An alteration of X is a proper dom-
inant morphism f : Y → X with Y integral such that f−1(U) → U is finite for some
nonempty open U ⊂ X .

This is the definition as given in [?], except that here we do not require X and Y to be
Noetherian. Arguing as above we see that an alteration is a proper dominant morphism
f : Y → X of integral schemes which induces a finite extension of function fields, i.e.,
such that the equivalent conditions of Lemma 51.7 hold.

52. The dimension formula

For morphisms between Noetherian schemes we can say a little more about dimensions
of local rings. Here is an important (and not so hard to prove) result. Recall that R(X)
denotes the function field of an integral scheme X .

Lemma 52.1. Let S be a scheme. Let f : X → S be a morphism of schemes. Let
x ∈ X , and set s = f(x). Assume

(1) S is locally Noetherian,
(2) f is locally of finite type,
(3) X and S integral, and
(4) f dominant.

We have

(52.1.1) dim(OX,x) ≤ dim(OS,s) + trdegR(S)R(X)− trdegκ(s)κ(x).

Moreover, equality holds if S is universally catenary.

Proof. The corresponding algebra statement is Algebra, Lemma 113.1. �

Lemma 52.2. Let S be a scheme. Let f : X → S be a morphism of schemes. Let
x ∈ X , and set s = f(x). Assume S is locally Noetherian and f is locally of finite type,
We have

(52.2.1) dim(OX,x) ≤ dim(OS,s) + E − trdegκ(s)κ(x).

where E is the maximum of trdegκ(f(ξ))(κ(ξ)) where ξ runs over the generic points of
irreducible components of X containing x.
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Proof. Let X1, . . . , Xn be the irreducible components of X containing x endowed
with their reduced induced scheme structure. These correspond to the minimal primes qi
of OX,x and hence there are finitely many of them (Schemes, Lemma 13.2 and Algebra,
Lemma 31.6). Then dim(OX,x) = max dim(OX,x/qi) = max dim(OXi,x). The ξ’s oc-
curring in the definition of E are exactly the generic points ξi ∈ Xi. Let Zi = {f(ξi)} ⊂
S endowed with the reduced induced scheme structure. The composition Xi → X → S
factors through Zi (Schemes, Lemma 12.7). Thus we may apply the dimension formula
(Lemma 52.1) to see that dim(OXi,x) ≤ dim(OZi,x)+trdegκ(f(ξ))(κ(ξ))−trdegκ(s)κ(x).
Putting everything together we obtain the lemma. �

An application is the construction of a dimension function on any scheme of finite type
over a universally catenary scheme endowed with a dimension function. For the definition
of dimension functions, see Topology, Definition 20.1.

Lemma 52.3. Let S be a locally Noetherian and universally catenary scheme. Let
δ : S → Z be a dimension function. Let f : X → S be a morphism of schemes. Assume
f locally of finite type. Then the map

δ = δX/S : X −→ Z
x 7−→ δ(f(x)) + trdegκ(f(x))κ(x)

is a dimension function on X .

Proof. Let f : X → S be locally of finite type. Let x y, x 6= y be a specialization
in X . We have to show that δX/S(x) > δX/S(y) and that δX/S(x) = δX/S(y) + 1 if y is
an immediate specialization of x.

Choose an affine open V ⊂ S containing the image of y and choose an affine open U ⊂ X
mapping into V and containing y. We may clearly replace X by U and S by V . Thus
we may assume that X = Spec(A) and S = Spec(R) and that f is given by a ring map
R→ A. The ring R is universally catenary (Lemma 17.2) and the map R→ A is of finite
type (Lemma 15.2).

Let q ⊂ A be the prime ideal corresponding to the point x and let p ⊂ R be the prime
ideal corresponding to f(x). The restriction δ′ of δ to S′ = Spec(R/p) ⊂ S is a di-
mension function. The ring R/p is universally catenary. The restriction of δX/S to
X ′ = Spec(A/q) is clearly equal to the function δX′/S′ constructed using the dimen-
sion function δ′. Hence we may assume in addition to the above that R ⊂ A are domains,
in other words thatX and S are integral schemes, and that x is the generic point ofX and
f(x) is the generic point of S.

Note that OX,x = R(X) and that since x  y, x 6= y, the spectrum of OX,y has at
least two points (Schemes, Lemma 13.2) hence dim(OX,y) > 0 . If y is an immediate
specialization of x, then Spec(OX,y) = {x, y} and dim(OX,y) = 1.

Write s = f(x) and t = f(y). We compute

δX/S(x)− δX/S(y) = δ(s) + trdegκ(s)κ(x)− δ(t)− trdegκ(t)κ(y)
= δ(s)− δ(t) + trdegR(S)R(X)− trdegκ(t)κ(y)
= δ(s)− δ(t) + dim(OX,y)− dim(OS,t)

where we use equality in (52.1.1) in the last step. Since δ is a dimension function on the
schemeS and s ∈ S is the generic point, the difference δ(s)−δ(t) is equal to codim({t}, S)
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by Topology, Lemma 20.2. This is equal to dim(OS,t) by Properties, Lemma 10.3. Hence
we conclude that

δX/S(x)− δX/S(y) = dim(OX,y)
and the lemma follows from what we said above about dim(OX,y). �

Another application of the dimension formula is that the dimension does not change under
“alterations” (to be defined later).

Lemma 52.4. Let f : X → Y be a morphism of schemes. Assume that
(1) Y is locally Noetherian,
(2) X and Y are integral schemes,
(3) f is dominant, and
(4) f is locally of finite type.

Then we have
dim(X) ≤ dim(Y ) + trdegR(Y )R(X).

If f is closed16 then equality holds.

Proof. Let f : X → Y be as in the lemma. Let ξ0  ξ1  . . . ξe be a sequence of
specializations in X . Set x = ξe and y = f(x). Observe that e ≤ dim(OX,x) as the given
specializations occur in the spectrum ofOX,x, see Schemes, Lemma 13.2. By the dimension
formula, Lemma 52.1, we see that

e ≤ dim(OX,x)
≤ dim(OY,y) + trdegR(Y )R(X)− trdegκ(y)κ(x)
≤ dim(OY,y) + trdegR(Y )R(X)

Hence we conclude that e ≤ dim(Y ) + trdegR(Y )R(X) as desired.

Next, assume f is also closed. Say ξ0  ξ1  . . . ξd is a sequence of specializations in
Y . We want to show that dim(X) ≥ d + r. We may assume that ξ0 = η is the generic
point of Y . The generic fibre Xη is a scheme locally of finite type over κ(η) = R(Y ).
It is nonempty as f is dominant. Hence by Lemma 16.10 it is a Jacobson scheme. Thus
by Lemma 16.8 we can find a closed point ξ0 ∈ Xη and the extension κ(η) ⊂ κ(ξ0) is a
finite extension. Note thatOX,ξ0 = OXη,ξ0 because η is the generic point of Y . Hence we
see that dim(OX,ξ0) = r by Lemma 52.1 applied to the scheme Xη over the universally
catenary scheme Spec(κ(η)) (see Lemma 17.5) and the point ξ0. This means that we can
find ξ−r  . . .  ξ−1  ξ0 in X . On the other hand, as f is closed specializations lift
along f , see Topology, Lemma 19.7. Thus, as ξ0 lies over η = ξ0 we can find specializations
ξ0  ξ1  . . . ξd lying over ξ0  ξ1  . . . ξd. In other words we have

ξ−r  . . . ξ−1  ξ0  ξ1  . . . ξd

which means that dim(X) ≥ d+ r as desired. �

Lemma 52.5. Let f : X → Y be a morphism of schemes. Assume that Y is locally
Noetherian and f is locally of finite type. Then

dim(X) ≤ dim(Y ) + E

where E is the supremum of trdegκ(f(ξ))(κ(ξ)) where ξ runs through the generic points
of the irreducible components of X .

16For example if f is proper, see Definition 41.1.



2522 29. MORPHISMS OF SCHEMES

Proof. Immediate consequence of Lemma 52.2 and Properties, Lemma 10.2. �

53. Relative normalization

In this section we construct the normalization of one scheme in another.

Lemma 53.1. Let X be a scheme. Let A be a quasi-coherent sheaf of OX -algebras.
The subsheafA′ ⊂ A defined by the rule

U 7−→ {f ∈ A(U) | fx ∈ Ax integral overOX,x for all x ∈ U}

is a quasi-coherent OX -algebra, the stalk A′
x is the integral closure of OX,x in Ax, and

for any affine open U ⊂ X the ring A′(U) ⊂ A(U) is the integral closure of OX(U) in
A(U).

Proof. This is a subsheaf by the local nature of the conditions. It is an OX -algebra
by Algebra, Lemma 36.7. LetU ⊂ X be an affine open. SayU = Spec(R) and sayA is the
quasi-coherent sheaf associated to the R-algebra A. Then according to Algebra, Lemma
36.12 the value of A′ over U is given by the integral closure A′ of R in A. This proves
the last assertion of the lemma. To prove that A′ is quasi-coherent, it suffices to show
that A′(D(f)) = A′

f . This follows from the fact that integral closure and localization
commute, see Algebra, Lemma 36.11. The same fact shows that the stalks are as advertised.

�

Definition 53.2. LetX be a scheme. LetA be a quasi-coherent sheaf ofOX -algebras.
The integral closure ofOX inA is the quasi-coherentOX -subalgebraA′ ⊂ A constructed
in Lemma 53.1 above.

In the setting of the definition above we can consider the morphism of relative spectra

Y = Spec
X

(A) //

&&

X ′ = Spec
X

(A′)

xx
X

see Lemma 11.5. The scheme X ′ → X will be the normalization of X in the scheme
Y . Here is a slightly more general setting. Suppose we have a quasi-compact and quasi-
separated morphism f : Y → X of schemes. In this case the sheaf of OX -algebras f∗OY
is quasi-coherent, see Schemes, Lemma 24.1. Taking the integral closure O′ ⊂ f∗OY we
obtain a quasi-coherent sheaf ofOX -algebras whose relative spectrum is the normalization
of X in Y . Here is the formal definition.

Definition 53.3. Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let O′ be the integral closure of OX in f∗OY . The normalization of X in Y
is the scheme17

ν : X ′ = Spec
X

(O′)→ X

over X . It comes equipped with a natural factorization

Y
f ′

−→ X ′ ν−→ X

of the initial morphism f .

17The scheme X′ need not be normal, for example if Y = X and f = idX , then X′ = X .
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The factorization is the composition of the canonical morphism Y → Spec(f∗OY ) (see
Constructions, Lemma 4.7) and the morphism of relative spectra coming from the inclu-
sion mapO′ → f∗OY . We can characterize the normalization as follows.

Lemma 53.4. Let f : Y → X be a quasi-compact and quasi-separated morphism of
schemes. The factorization f = ν ◦ f ′, where ν : X ′ → X is the normalization of X in
Y is characterized by the following two properties:

(1) the morphism ν is integral, and
(2) for any factorization f = π ◦ g, with π : Z → X integral, there exists a commu-

tative diagram

Y

f ′

��

g
// Z

π

��
X ′

h

>>

ν // X

for some unique morphism h : X ′ → Z.
Moreover, the morphism f ′ : Y → X ′ is dominant and in (2) the morphism h : X ′ → Z
is the normalization of Z in Y .

Proof. Let O′ ⊂ f∗OY be the integral closure of OX as in Definition 53.3. The
morphism ν is integral by construction, which proves (1). Assume given a factorization
f = π ◦ g with π : Z → X integral as in (2). By Definition 44.1 π is affine, and hence
Z is the relative spectrum of a quasi-coherent sheaf of OX -algebras B. The morphism
g : Y → Z corresponds to a map of OX -algebras χ : B → f∗OY . Since B(U) is integral
over OX(U) for every affine open U ⊂ X (by Definition 44.1) we see from Lemma 53.1
that χ(B) ⊂ O′. By the functoriality of the relative spectrum Lemma 11.5 this provides
us with a unique morphism h : X ′ → Z. We omit the verification that the diagram
commutes.

It is clear that (1) and (2) characterize the factorization f = ν ◦ f ′ since it characterizes it
as an initial object in a category.

From the universal property in (2) we see that f ′ does not factor through a proper closed
subscheme ofX ′. Hence the scheme theoretic image of f ′ isX ′. Since f ′ is quasi-compact
(by Schemes, Lemma 21.14 and the fact that ν is separated as an affine morphism) we see
that f ′(Y ) is dense in X ′. Hence f ′ is dominant.

The morphism h in (2) is integral by Lemma 44.14. Given a factorization g = π′ ◦ g′ with
π′ : Z ′ → Z integral, we get a factorization f = (π ◦ π′) ◦ g′ and we get a morphism
h′ : X ′ → Z ′. Uniqueness implies that π′ ◦ h′ = h. Hence the characterization (1), (2)
applies to the morphism h : X ′ → Z which gives the last statement of the lemma. �

Lemma 53.5. Let
Y2

f2

��

// Y1

f1

��
X2 // X1

be a commutative diagram of morphisms of schemes. Assume f1, f2 quasi-compact and
quasi-separated. Let fi = νi ◦f ′

i , i = 1, 2 be the canonical factorizations, where νi : X ′
i →
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Xi is the normalization of Xi in Yi. Then there exists a unique arrow X ′
2 → X ′

1 fitting
into a commutative diagram

Y2

f ′
2
��

// Y1

f ′
1
��

X ′
2

ν2

��

// X ′
1

ν1

��
X2 // X1

Proof. By Lemmas 53.4 (1) and 44.6 the base change X2 ×X1 X
′
1 → X2 is inte-

gral. Note that f2 factors through this morphism. Hence we get a unique morphism
X ′

2 → X2 ×X1 X
′
1 from Lemma 53.4 (2). This gives the arrow X ′

2 → X ′
1 fitting into the

commutative diagram and uniqueness follows as well. �

Lemma 53.6. Let f : Y → X be a quasi-compact and quasi-separated morphism of
schemes. LetU ⊂ X be an open subscheme and set V = f−1(U). Then the normalization
of U in V is the inverse image of U in the normalization of X in Y .

Proof. Clear from the construction. �

Lemma 53.7. Let f : Y → X be a quasi-compact and quasi-separated morphism of
schemes. Let X ′ be the normalization of X in Y . Then the normalization of X ′ in Y is
X ′.

Proof. If Y → X ′′ → X ′ is the normalization ofX ′ in Y , then we can apply Lemma
53.4 to the composition X ′′ → X to get a canonical morphism h : X ′ → X ′′ over X .
We omit the verification that the morphisms h andX ′′ → X ′ are mutually inverse (using
uniqueness of the factorization in the lemma). �

Lemma 53.8. Let f : Y → X be a quasi-compact and quasi-separated morphism of
schemes. Let X ′ → X be the normalization of X in Y . If Y is reduced, so is X ′.

Proof. This follows from the fact that a subring of a reduced ring is reduced. Some
details omitted. �

Lemma 53.9. Let f : Y → X be a quasi-compact and quasi-separated morphism
of schemes. Let X ′ → X be the normalization of X in Y . Every generic point of an
irreducible component of X ′ is the image of a generic point of an irreducible component
of Y .

Proof. By Lemma 53.6 we may assumeX = Spec(A) is affine. Choose a finite affine
open covering Y =

⋃
Spec(Bi). Then X ′ = Spec(A′) and the morphisms Spec(Bi) →

Y → X ′ jointly define an injective A-algebra map A′ →
∏
Bi. Thus the lemma follows

from Algebra, Lemma 30.5. �

Lemma 53.10. Let f : Y → X be a quasi-compact and quasi-separated morphism of
schemes. Suppose that Y = Y1 q Y2 is a disjoint union of two schemes. Write fi = f |Yi .
Let X ′

i be the normalization of X in Yi. Then X ′
1 qX ′

2 is the normalization of X in Y .

Proof. In terms of integral closures this corresponds to the following fact: Let A→
B be a ring map. Suppose that B = B1 × B2. Let A′

i be the integral closure of A in Bi.
ThenA′

1×A′
2 is the integral closure ofA inB. The reason this works is that the elements
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(1, 0) and (0, 1) ofB are idempotents and hence integral overA. Thus the integral closure
A′ of A in B is a product and it is not hard to see that the factors are the integral closures
A′
i as described above (some details omitted). �

Lemma 53.11. Let f : X → S be a quasi-compact, quasi-separated and universally
closed morphisms of schemes. Then f∗OX is integral over OS . In other words, the nor-
malization of S in X is equal to the factorization

X −→ Spec
S

(f∗OX) −→ S

of Constructions, Lemma 4.7.

Proof. The question is local on S , hence we may assume S = Spec(R) is affine. Let
h ∈ Γ(X,OX). We have to show that h satisfies a monic equation over R. Think of h as
a morphism as in the following commutative diagram

X
h

//

f ��

A1
S

~~
S

Let Z ⊂ A1
S be the scheme theoretic image of h, see Definition 6.2. The morphism h

is quasi-compact as f is quasi-compact and A1
S → S is separated, see Schemes, Lemma

21.14. By Lemma 6.3 the morphism X → Z is dominant. By Lemma 41.7 the morphism
X → Z is closed. Hence h(X) = Z (set theoretically). Thus we can use Lemma 41.9 to
conclude that Z → S is universally closed (and even proper). Since Z ⊂ A1

S , we see that
Z → S is affine and proper, hence integral by Lemma 44.7. Writing A1

S = Spec(R[T ])
we conclude that the ideal I ⊂ R[T ] of Z contains a monic polynomial P (T ) ∈ R[T ].
Hence P (h) = 0 and we win. �

Lemma 53.12. Let f : Y → X be an integral morphism. Then the normalization of
X in Y is equal to Y .

Proof. By Lemma 44.7 this is a special case of Lemma 53.11. �

Lemma 53.13. Let f : Y → X be a quasi-compact and quasi-separated morphism of
schemes. Let X ′ be the normalization of X in Y . Assume

(1) Y is a normal scheme,
(2) quasi-compact opens of Y have finitely many irreducible components.

ThenX ′ is a disjoint union of integral normal schemes. Moreover, the morphism Y → X ′

is dominant and induces a bijection of irreducible components.

Proof. Let U ⊂ X be an affine open. Consider the inverse image U ′ of U in X ′. Set
V = f−1(U). By Lemma 53.6 we V → U ′ → U is the normalization of U in V . Say U =
Spec(A). Then V is quasi-compact, and hence has a finite number of irreducible compo-
nents by assumption. Hence V =

∐
i=1,...n Vi is a finite disjoint union of normal integral

schemes by Properties, Lemma 7.5. By Lemma 53.10 we see thatU ′ =
∐
i=1,...,n U

′
i , where

U ′
i is the normalization ofU in Vi. By Properties, Lemma 7.9 we see thatBi = Γ(Vi,OVi)

is a normal domain. Note that U ′
i = Spec(A′

i), whereA′
i ⊂ Bi is the integral closure ofA

in Bi, see Lemma 53.1. By Algebra, Lemma 37.2 we see that A′
i ⊂ Bi is a normal domain.

Hence U ′ =
∐
U ′
i is a finite union of normal integral schemes and hence is normal.

As X ′ has an open covering by the schemes U ′ we conclude from Properties, Lemma 7.2
that X ′ is normal. On the other hand, each U ′ is a finite disjoint union of irreducible
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schemes, hence every quasi-compact open ofX ′ has finitely many irreducible components
(by a topological argument which we omit). ThusX ′ is a disjoint union of normal integral
schemes by Properties, Lemma 7.5. It is clear from the description of X ′ above that Y →
X ′ is dominant and induces a bijection on irreducible components V → U ′ for every
affine open U ⊂ X . The bijection of irreducible components for the morphism Y → X ′

follows from this by a topological argument (omitted). �

Lemma 53.14. Let f : X → S be a morphism. Assume that
(1) S is a Nagata scheme,
(2) f is quasi-compact and quasi-separated,
(3) quasi-compact opens of X have finitely many irreducible components,
(4) if x ∈ X is a generic point of an irreducible component, then the field extension

κ(x)/κ(f(x)) is finitely generated, and
(5) X is reduced.

Then the normalization ν : S′ → S of S in X is finite.

Proof. There is an immediate reduction to the caseS = Spec(R) whereR is a Nagata
ring by assumption (1). We have to show that the integral closure A of R in Γ(X,OX) is
finite over R. Since f is quasi-compact by assumption (2) we can write X =

⋃
i=1,...,n Ui

with each Ui affine. Say Ui = Spec(Bi). Each Bi is reduced by assumption (5) and has
finitely many minimal primes qi1, . . . , qimi by assumption (3) and Algebra, Lemma 26.1.
We have

Γ(X,OX) ⊂ B1 × . . .×Bn ⊂
∏

i=1,...,n

∏
j=1,...,mi

(Bi)qij

the second inclusion by Algebra, Lemma 25.2. We have κ(qij) = (Bi)qij by Algebra,
Lemma 25.1. Hence the integral closure A of R in Γ(X,OX) is contained in the product
of the integral closures Aij of R in κ(qij). Since R is Noetherian it suffices to show that
Aij is a finiteR-module for each i, j. Let pij ⊂ R be the image of qij . As κ(qij)/κ(pij) is a
finitely generated field extension by assumption (4), we see thatR→ κ(qij) is essentially
of finite type. Thus R→ Aij is finite by Algebra, Lemma 162.2. �

Lemma 53.15. Let f : X → S be a morphism. Assume that
(1) S is a Nagata scheme,
(2) f is of finite type,
(3) X is reduced.

Then the normalization ν : S′ → S of S in X is finite.

Proof. This is a special case of Lemma 53.14. Namely, (2) holds as the finite type
morphism f is quasi-compact by definition and quasi-separated by Lemma 15.7. Condition
(3) holds because X is locally Noetherian by Lemma 15.6. Finally, condition (4) holds
because a finite type morphism induces finitely generated residue field extensions. �

Lemma 53.16. Let f : Y → X be a finite type morphism of schemes with Y reduced
and X Nagata. Let X ′ be the normalization of X in Y . Let x′ ∈ X ′ be a point such that

(1) dim(OX′,x′) = 1, and
(2) the fibre of Y → X ′ over x′ is empty.

ThenOX′,x′ is a discrete valuation ring.

Proof. We can replace X by an affine neighbourhood of the image of x′. Hence we
may assume X = Spec(A) with A Nagata. By Lemma 53.15 the morphism X ′ → X is
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finite. Hence we can write X ′ = Spec(A′) for a finite A-algebra A′. By Lemma 53.7 after
replacing X by X ′ we reduce to the case described in the next paragraph.

The case X = X ′ = Spec(A) with A Noetherian. Let p ⊂ A be the prime ideal corre-
sponding to our point x′. Choose g ∈ p not contained in any minimal prime of A (use
prime avoidance and the fact that A has finitely many minimal primes, see Algebra, Lem-
mas 15.2 and 31.6). Set Z = f−1V (g) ⊂ Y ; it is a closed subscheme of Y . Then f(Z) does
not contain any generic point by choice of g and does not contain x′ because x′ is not in the
image of f . The closure of f(Z) is the set of specializations of points of f(Z) by Lemma
6.5. Thus the closure of f(Z) does not contain x′ because the condition dim(OX′,x′) = 1
implies only the generic points ofX = X ′ specialize to x′. In other words, after replacing
X by an affine open neighbourhood of x′ we may assume that f−1V (g) = ∅. Thus g maps
to an invertible global function on Y and we obtain a factorization

A→ Ag → Γ(Y,OY )
Since X = X ′ this implies that A is equal to the integral closure of A in Ag . By Algebra,
Lemma 36.11 we conclude that Ap is the integral closure of Ap in Ap[1/g]. By our choice
of g, since dim(Ap) = 1 and since A is reduced we see that Ap[1/g] is a finite product of
fields (the product of the residue fields of the minimal primes contained in p). Hence Ap

is normal (Algebra, Lemma 37.16) and the proof is complete. Some details omitted. �

54. Normalization

Next, we come to the normalization of a scheme X . We only define/construct it when
X has locally finitely many irreducible components. Let X be a scheme such that every
quasi-compact open has finitely many irreducible components. Let X(0) ⊂ X be the set
of generic points of irreducible components of X . Let

(54.0.1) f : Y =
∐

η∈X(0)
Spec(κ(η)) −→ X

be the inclusion of the generic points intoX using the canonical maps of Schemes, Section
13. Note that this morphism is quasi-compact by assumption and quasi-separated as Y is
separated (see Schemes, Section 21).

Definition 54.1. LetX be a scheme such that every quasi-compact open has finitely
many irreducible components. We define the normalization of X as the morphism

ν : Xν −→ X

which is the normalization ofX in the morphism f : Y → X (54.0.1) constructed above.

Any locally Noetherian scheme has a locally finite set of irreducible components and the
definition applies to it. Usually the normalization is defined only for reduced schemes.
With the definition above the normalization of X is the same as the normalization of the
reduction Xred of X .

Lemma 54.2. LetX be a scheme such that every quasi-compact open has finitely many
irreducible components. The normalization morphism ν factors through the reduction
Xred and Xν → Xred is the normalization of Xred.

Proof. Let f : Y → X be the morphism (54.0.1). We get a factorization Y →
Xred → X of f from Schemes, Lemma 12.7. By Lemma 53.4 we obtain a canonical mor-
phismXν → Xred and thatXν is the normalization ofXred in Y . The lemma follows as
Y → Xred is identical to the morphism (54.0.1) constructed for Xred. �
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If X is reduced, then the normalization of X is the same as the relative spectrum of the
integral closure of OX in the sheaf of meromorphic functions KX (see Divisors, Section
23). Namely,KX = f∗OY in this case, see Divisors, Lemma 25.1 and its proof. We describe
this here explicitly.

Lemma 54.3. Let X be a reduced scheme such that every quasi-compact open has
finitely many irreducible components. Let Spec(A) = U ⊂ X be an affine open. Then

(1) A has finitely many minimal primes q1, . . . , qt,
(2) the total ring of fractions Q(A) of A is Q(A/q1)× . . .×Q(A/qt),
(3) the integral closureA′ ofA inQ(A) is the product of the integral closures of the

domains A/qi in the fields Q(A/qi), and
(4) ν−1(U) is identified with the spectrum ofA′ where ν : Xν → X is the normal-

ization morphism.

Proof. Minimal primes correspond to irreducible components (Algebra, Lemma 26.1),
hence we have (1) by assumption. Then (0) = q1 ∩ . . .∩ qt becauseA is reduced (Algebra,
Lemma 17.2). Then we have Q(A) =

∏
Aqi =

∏
κ(qi) by Algebra, Lemmas 25.4 and

25.1. This proves (2). Part (3) follows from Algebra, Lemma 37.16, or Lemma 53.10. Part
(4) holds because it is clear that f−1(U)→ U is the morphism

Spec
(∏

κ(qi)
)
−→ Spec(A)

where f : Y → X is the morphism (54.0.1). �

Lemma 54.4. Let X be a scheme such that every quasi-compact open has a finite
number of irreducible components. Let ν : Xν → X be the normalization of X . Let
x ∈ X . Then the following are canonically isomorphic asOX,x-algebras

(1) the stalk (ν∗OXν )x,
(2) the integral closure ofOX,x in the total ring of fractions of (OX,x)red,
(3) the integral closure of OX,x in the product of the residue fields of the minimal

primes ofOX,x (and there are finitely many of these).

Proof. After replacingX by an affine open neighbourhood of xwe may assume that
X has finitely many irreducible components and that x is contained in each of them. Then
the stalk (ν∗OXν )x is the integral closure of A = OX,x in the product L of the residue
fields of the minimal primes of A. This follows from the construction of the normaliza-
tion and Lemma 53.1. Alternatively, you can use Lemma 54.3 and the fact that normal-
ization commutes with localization (Algebra, Lemma 36.11). SinceAred has finitely many
minimal primes (because these correspond exactly to the generic points of the irreducible
components of X passing through x) we see that L is the total ring of fractions of Ared
(Algebra, Lemma 25.4). Thus our ring is also the integral closure of A in the total ring of
fractions of Ared. �

Lemma 54.5. Let X be a scheme such that every quasi-compact open has finitely
many irreducible components.

(1) The normalization Xν is a disjoint union of integral normal schemes.
(2) The morphism ν : Xν → X is integral, surjective, and induces a bijection on

irreducible components.
(3) For any integral morphism α : X ′ → X such that for U ⊂ X quasi-compact

open the inverse image α−1(U) has finitely many irreducible components and
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α|α−1(U) : α−1(U)→ U is birational18 there exists a factorizationXν → X ′ →
X and Xν → X ′ is the normalization of X ′.

(4) For any morphism Z → X with Z a normal scheme such that each irreducible
component of Z dominates an irreducible component ofX there exists a unique
factorization Z → Xν → X .

Proof. Let f : Y → X be as in (54.0.1). The scheme Xν is a disjoint union of
normal integral schemes because Y is normal and every affine open of Y has finitely many
irreducible components, see Lemma 53.13. This proves (1). Alternatively one can deduce
(1) from Lemmas 54.2 and 54.3.

The morphism ν is integral by Lemma 53.4. By Lemma 53.13 the morphism Y → Xν

induces a bijection on irreducible components, and by construction of Y this implies that
Xν → X induces a bijection on irreducible components. By construction f : Y → X is
dominant, hence also ν is dominant. Since an integral morphism is closed (Lemma 44.7)
this implies that ν is surjective. This proves (2).

Suppose that α : X ′ → X is as in (3). It is clear that X ′ satisfies the assumptions under
which the normalization is defined. Let f ′ : Y ′ → X ′ be the morphism (54.0.1) con-
structed starting withX ′. As α is locally birational it is clear that Y ′ = Y and f = α◦f ′.
Hence the factorization Xν → X ′ → X exists and Xν → X ′ is the normalization of X ′

by Lemma 53.4. This proves (3).

Let g : Z → X be a morphism whose domain is a normal scheme and such that every
irreducible component dominates an irreducible component of X . By Lemma 54.2 we
have Xν = Xν

red and by Schemes, Lemma 12.7 Z → X factors through Xred. Hence we
may replaceX byXred and assumeX is reduced. Moreover, as the factorization is unique
it suffices to construct it locally on Z. Let W ⊂ Z and U ⊂ X be affine opens such that
g(W ) ⊂ U . Write U = Spec(A) andW = Spec(B), with g|W given by ϕ : A→ B. We
will use the results of Lemma 54.3 freely. Let p1, . . . , pt be the minimal primes ofA. As Z
is normal, we see that B is a normal ring, in particular reduced. Moreover, by assumption
any minimal prime q ⊂ B we have that ϕ−1(q) is a minimal prime of A. Hence if x ∈ A
is a nonzerodivisor, i.e., x 6∈

⋃
pi, then ϕ(x) is a nonzerodivisor in B. Thus we obtain a

canonical ring map Q(A) → Q(B). As B is normal it is equal to its integral closure in
Q(B) (see Algebra, Lemma 37.12). Hence we see that the integral closureA′ ⊂ Q(A) ofA
maps into B via the canonical map Q(A)→ Q(B). Since ν−1(U) = Spec(A′) this gives
the canonical factorization W → ν−1(U) → U of ν|W . We omit the verification that it
is unique. �

Lemma 54.6. Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. Let Zi ⊂ X , i ∈ I be the irreducible components of X
endowed with the reduced induced structure. Let Zνi → Zi be the normalization. Then∐
i∈I Z

ν
i → X is the normalization of X .

Proof. We may assumeX is reduced, see Lemma 54.2. Then the lemma follows either
from the local description in Lemma 54.3 or from Lemma 54.5 part (3) because

∐
Zi → X

is integral and locally birational (asX is reduced and has locally finitely many irreducible
components). �

18This awkward formulation is necessary as we’ve only defined what it means for a morphism to be bira-
tional if the source and target have finitely many irreducible components. It suffices if X′

red → Xred satisfies
the condition.
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Lemma 54.7. LetX be a reduced scheme with finitely many irreducible components.
Then the normalization morphism Xν → X is birational.

Proof. The normalization induces a bijection of irreducible components by Lemma
54.5. Let η ∈ X be a generic point of an irreducible component of X and let ην ∈ Xν

be the generic point of the corresponding irreducible component of Xν . Then ην 7→ η
and to finish the proof we have to show that OX,η → OXν ,ην is an isomorphism, see
Definition 50.1. Because X and Xν are reduced, we see that both local rings are equal
to their residue fields (Algebra, Lemma 25.1). On the other hand, by the construction of
the normalization as the normalization of X in Y =

∐
Spec(κ(η)) we see that we have

κ(η) ⊂ κ(ην) ⊂ κ(η) and the proof is complete. �

Lemma 54.8. A finite (or even integral) birational morphism f : X → Y of integral
schemes with Y normal is an isomorphism.

Proof. Let V ⊂ Y be an affine open with inverse image U ⊂ X which is an affine
open too. Since f is a birational morphism of integral schemes, the homomorphismOY (V )→
OX(U) is an injective map of domains which induces an isomorphism of fraction fields.
As Y is normal, the ring OY (V ) is integrally closed in the fraction field. Since f is fi-
nite (or integral) every element of OX(U) is integral over OY (V ). We conclude that
OY (V ) = OX(U). This proves that f is an isomorphism as desired. �

Lemma 54.9. LetX be an integral, Japanese scheme. The normalization ν : Xν → X
is a finite morphism.

Proof. Follows from the definition (Properties, Definition 13.1) and Lemma 54.3.
Namely, in this case the lemma says that ν−1(Spec(A)) is the spectrum of the integral
closure of A in its field of fractions. �

Lemma 54.10. LetX be a Nagata scheme. The normalization ν : Xν → X is a finite
morphism.

Proof. Note that a Nagata scheme is locally Noetherian, thus Definition 54.1 does
apply. The lemma is now a special case of Lemma 53.14 but we can also prove it directly
as follows. Write Xν → X as the composition Xν → Xred → X . As Xred → X is a
closed immersion it is finite. Hence it suffices to prove the lemma for a reduced Nagata
scheme (by Lemma 44.5). Let Spec(A) = U ⊂ X be an affine open. By Lemma 54.3 we
have ν−1(U) = Spec(

∏
A′
i) where A′

i is the integral closure of A/qi in its fraction field.
As A is a Nagata ring (see Properties, Lemma 13.6) each of the ring extensions A/qi ⊂ A′

i

are finite. Hence A→
∏
A′
i is a finite ring map and we win. �

Lemma 54.11. Let X be an irreducible, geometrically unibranch scheme. The nor-
malization morphism ν : Xν → X is a universal homeomorphism.

Proof. We have to show that ν is integral, universally injective, and surjective, see
Lemma 45.5. By Lemma 54.5 the morphism ν is integral. Let x ∈ X and set A = OX,x.
Since X is irreducible we see that A has a single minimal prime p and Ared = A/p. By
Lemma 54.4 the stalk A′ = (ν∗OXν )x is the integral closure of A in the fraction field of
Ared. By More on Algebra, Definition 106.1 we see that A′ has a single prime m′ lying
over mx ⊂ A and κ(m′)/κ(x) is purely inseparable. Hence ν is bijective (hence surjective)
and universally injective by Lemma 10.2. �
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55. Weak normalization

We will only define the weak normalization of a scheme when it locally has finitely many
irreducible components; similar to the case of normalization.

Lemma 55.1. LetA→ B be a ring map inducing a dominant morphism Spec(B)→
Spec(A) of spectra. There exists an A-subalgebra B′ ⊂ B such that

(1) Spec(B′)→ Spec(A) is a universal homeomorphism,
(2) given a factorizationA→ C → B such that Spec(C)→ Spec(A) is a universal

homeomorphism, the image of C → B is contained in B′.

Proof. We will use Lemma 45.6 without further mention. Consider the commuta-
tive diagram

B // Bred

A

OO

// Ared

OO

For any factorizationA→ C → B ofA→ B as in (2), we see thatAred → Cred → Bred
is a factorization of Ared → Bred as in (2). It follows that if the lemma holds for Ared →
Bred and produces the Ared-subalgebra B′

red ⊂ Bred, then setting B′ ⊂ B equal to the
inverse image of B′

red solves the lemma for A→ B. This reduces us to the case discussed
in the next paragraph.
Assume A and B are reduced. In this case A ⊂ B by Algebra, Lemma 30.6. Let A →
C → B be a factorization as in (2). Then we may apply Proposition 46.8 to A ⊂ C to
see that every element of C is contained in an extension A[c1, . . . , cn] ⊂ C such that for
i = 1, . . . , n we have

(1) c2
i , c

3
i ∈ A[c1, . . . , ci−1], or

(2) there exists a prime number p with pci, cpi ∈ A[c1, . . . , ci−1].
Thus property (2) holds if we define B′ ⊂ B to be the subset of elements b ∈ B which
are contained in an extension A[b1, . . . , bn] ⊂ B such that (*) holds: for i = 1, . . . , n we
have

(1) b2
i , b

3
i ∈ A[b1, . . . , bi−1], or

(2) there exists a prime number p with pbi, bpi ∈ A[b1, . . . , bi−1].
There are only two things to check: (a) B′ is an A-subalgebra, and (b) Spec(B′) →
Spec(A) is a universal homeomorphism. Part (a) follows because givenn ≥ 0 and b1, . . . , bn ∈
B satisfying (*) and m ≥ 0 and b′

1, . . . , b
′
m ∈ B satisfying (*), the integer n + m and

b1, . . . , bn, b
′
1, . . . , b

′
m ∈ B also satisfies (*). Finally, part (b) holds by Proposition 46.8

and our construction of B′. �

Lemma 55.2. LetA→ B be a ring map inducing a dominant morphism Spec(B)→
Spec(A) of spectra. Formation of the A-subalgebra B′ ⊂ B in Lemma 55.1 commutes
with localization (see proof for explanation).

Proof. Let S ⊂ A be a multiplicative subset. Then S−1A → S−1B is a ring map
which induces a dominant morphism Spec(S−1B) → Spec(S−1A) as well (see Lemmas
8.4 and 25.9). Hence Lemma 55.1 produces an S−1A-subalgebra (S−1B)′ ⊂ S−1B. The
statement means that S−1B′ = (S−1B)′ as S−1A-subalgebras of S−1B.
To see this is true, we will use the construction of B′ and (S−1B)′ in the proof of Lemma
55.1. In the first step, we see that B′ is the inverse image of the Ared-subalgebra B′

red ⊂
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Bred constructed for the ring map Ared → Bred and similarly for (S−1B)′. Noting that
S−1Bred = (S−1B)red this reduces us to the case discussed in the next paragraph.
IfA andB are reduced, we have constructedB′ as the union of the subalgebrasA[b1, . . . , bn]
such that for i = 1, . . . , n we have

(1) b2
i , b

3
i ∈ A[b1, . . . , bi−1], or

(2) there exists a prime number p with pbi, bpi ∈ A[b1, . . . , bi−1].
Similarly for (S−1B)′ ⊂ S−1B. Thus it is clear that the image of B′ → B → S−1B
is contained in (S−1B)′. To show that the corresponding map S−1B′ → (S−1B)′ is
surjective, one uses Lemma 46.3 to clear denominators successively; we omit the details.

�

Lemma 55.3. LetA→ B be a ring map inducing a dominant morphism Spec(B)→
Spec(A) of spectra. There exists an A-subalgebra B′ ⊂ B such that

(1) Spec(B′) → Spec(A) is a universal homeomorphism inducing isomorphisms
on residue fields,

(2) given a factorizationA→ C → B such that Spec(C)→ Spec(A) is a universal
homeomorphism inducing isomorphisms on residue fields, the image of C → B
is contained in B′.

Proof. This proof is exactly the same as the proof of Lemma 55.1 except we use
Proposition 46.7 in stead of Proposition 46.8 �

Lemma 55.4. LetA→ B be a ring map inducing a dominant morphism Spec(B)→
Spec(A) of spectra. Formation of the A-subalgebra B′ ⊂ B in Lemma 55.3 commutes
with localization (see proof for explanation).

Proof. The proof is the same as the proof of Lemma 55.2. �

Lemma 55.5. Let f : Y → X be a quasi-compact, quasi-separated, and dominant
morphism of schemes.

(1) The category of factorizations Y → X ′ → X where X ′ → X is a universal
homeomorphism has an initial object Y → XY/wn → X .

(2) The category of factorizations Y → X ′ → X where X ′ → X is a universal
homeomorphism inducing isomorphisms on residue fields has an initial object
Y → XY/sn → X .

Moreover, formation of the factorization Y → XY/wn → X and Y → XY/sn → X
commutes with base change to open subschemes of X .

Proof. We will prove (1) and omit the proof of (2); also the final assertion will fol-
low from the construction of the factorization. We will use Lemma 45.5 without further
mention. First, let Y → XY/n → X be the normalization of X in Y , see Definition 53.3.
For Y → X ′ → X as in (1), we obtain a unique morphism XY/n → X ′ compatible with
the given morphisms, see Lemma 53.4. Thus it suffices to prove the lemma with f replaced
by XY/n → X . This reduces us to the case studied in the next paragraph.
Assume f is integral (the rest of the proof works more generally if f is affine). Let U =
Spec(A) be an affine open of X and let V = f−1(U) = Spec(B) be the inverse image
in Y . Then A → B is a ring map which induces a dominant morphism on spectra. By
Lemma 55.1 we obtain anA-subalgebraB′ ⊂ B such that setting UV/wn = Spec(B′) the
factorization V → UV/wn → U is initial in the category of factorizations V → U ′ → U
where U ′ → U is a universal homeomorphism.
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If U1 ⊂ U2 ⊂ X are affine opens, then setting Vi = f−1(Ui) we obtain a canonical
morphism

ρU2
U1

: UV1/wn
1 → U1 ×U2 U

V2/wn
2

over U1 by the universal property of UV1/wn
1 . These morphisms satisfy a natural func-

toriality which we leave to the reader to formulate and prove. Furthermore, the mor-
phism ρU2

U1
is an isomorphism; this follows from Lemma 55.2 provided that U1 ⊂ U2

is a standard open and in the general case can be reduced to this case by the functorial
nature of these maps and Schemes, Lemma 11.5 (details omitted). Thus by relative glue-
ing (Constructions, Lemma 2.1) we obtain a morphism XY/wn → X which restricts to
UV/wn → U over U compatibly with the ρU2

U1
. Of course, the morphisms V → UV/wn

glue to a morphism Y → XY/wn (see Constructions, Remark 2.3) and we get our factor-
ization Y → XY/wn → X where the second morphism is a universal homeomorphism.

Finally, let Y → X ′ → X be a factorization as in (1). With V → UV/wn → U ⊂ X
as above, we obtain a factorization V → U ×X X ′ → U where the second arrow is a
universal homeomorphism and we obtain a unique morphism gU : UV/wn → U ×X X ′

overU by the universal property ofUV/wn. These gU are compatible with the morphisms
ρU2
U1

; details omitted. Hence there is a unique morphism g : XY/wn → X ′ overX agreeing
with gU over U , see Constructions, Remark 2.3. This proves that Y → XY/wn → X is
initial in our category and the proof is complete. �

Definition 55.6. Let f : Y → X be a quasi-compact, quasi-separated, and dominant
morphism of schemes.

(1) The factorization Y → XY/sn → X constructed in Lemma 55.5 part (2) is the
seminormalization of X in Y .

(2) The factorization Y → XY/wn → X constructed in Lemma 55.5 part (1) is the
weak normalization of X in Y .

Here is a way to reinterpret the seminormalization of a scheme which locally has finitely
many irreducible components.

Lemma 55.7. Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. Let ν : Xν → X be the normalization of X . Then the
seminormalization of X in Xν is is the seminormalization of X . In a formula: Xsn =
XXν/sn.

Proof. Let f : Y → X be as in (54.0.1) so that Xν is the normalization of X in
Y . The seminormalization Xsn → X of X is the initial object in the category of uni-
versal homeomorphisms X ′ → X inducing isomorphisms on residue fields. Since Y is
the disjoint union of the spectra of the residue fields at the generic points of irreducible
components of X , we see that for any X ′ → X in this category we obtain a canonical lift
f ′ : Y → X ′ of f . Then by Lemma 53.4 we obtain a canonical morphism Xν → X ′.
Whence in turn a canonical morphism XXν/sn → X ′ by the universal property of
XXν/sn. In this way we see that XXν/sn satisfies the same universal property that Xsn

has and we conclude. �

Lemma 55.7 motivates the following definition. Since we have only constructed the nor-
malization in caseX locally has finitely many irreducible components, we will also restrict
ourselves to that case for the weak normalization.
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Definition 55.8. LetX be a scheme such that every quasi-compact open has finitely
many irreducible components. We define the weak normalization of X as the weak nor-
malization

Xν −→ Xwn −→ X

of X in the normalization Xν of X (Definition 54.1). In a formula: Xwn = XXν/wn.

Combined with Lemma 55.7 we see that for a scheme X which locally has finitely many
irreducible components there are canonical morphisms

Xν → Xwn → Xsn → X

Having made this definition, we can say what it means for a scheme to be weakly normal
(provided it has locally finitely many irreducible components).

Definition 55.9. LetX be a scheme such that every quasi-compact open has finitely
many irreducible components. We say X is weakly normal if the weak normalization
Xwn → X is an isomorphism (Definition 55.8).

It follows immediately from the definitions that for a scheme X such that every quasi-
compact open has finitely many irreducible components we have

X normal⇒ X weakly normal⇒ X seminormal

We can work out the meaning of weak normality in the affine case as follows.

Lemma 55.10. Let X = Spec(A) be an affine scheme which has finitely many irre-
ducible components. Then X is weakly normal if and only if

(1) A is seminormal (Definition 47.1),
(2) for a prime number p and z, w ∈ A such that (a) z is a nonzerodivisor, (b) wp is

divisible by zp, and (c) pw is divisible by z, then w is divisible by z.

Proof. Assume X is weakly normal. Since a weakly normal scheme is seminormal,
we see that (1) holds (by our definition of weakly normal schemes). In particular A is
reduced. Let p, z, w be as in (2). Choose x, y ∈ A such that zpx = wp and zy = pw.
Then ppx = yp. The ring map A → C = A[t]/(tp − x, pt − y) induces a universal
homeomorphism on spectra. The normalization Xν of X is the spectrum of the integral
closureA′ ofA in the total ring of fractions ofA, see Lemma 54.3. Note that a = w/z ∈ A′

because ap = x. Hence we have an A-algebra homomorphism A → C → A′ sending t
to a. At this point the defining property X = Xwn = XXν/wn of being weakly normal
tells us that C → A′ maps into A. Thus we find a ∈ A as desired.

Conversely, assume (1) and (2). Let A′ be as in the previous paragraph. We have to show
that XXν/wn = X . By construction in the proof of Lemma 55.1, the scheme XXν/wn is
the spectrum of the subring of A′ which is the union of the subrings A[a1, . . . , an] ⊂ A′

such that for i = 1, . . . , n we have
(a) a2

i , a
3
i ∈ A[a1, . . . , ai−1], or

(b) there exists a prime number p with pai, api ∈ A[a1, . . . , ai−1].
Then we can use (1) and (2) to inductively see that a1, . . . , an ∈ A; we omit the details.
Consequently, we have X = XXν/wn and hence X is weakly normal. �

Here is the obligatory lemma.

Lemma 55.11. Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. The following are equivalent:
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(1) The scheme X is weakly normal.
(2) For every affine open U ⊂ X the ring OX(U) satisfies conditions (1) and (2) of

Lemma 55.10.
(3) There exists an affine open covering X =

⋃
Ui such that each ring OX(Ui)

satisfies conditions (1) and (2) of Lemma 55.10.
(4) There exists an open covering X =

⋃
Xj such that each open subscheme Xj is

weakly normal.
Moreover, if X is weakly normal then every open subscheme is weakly normal.

Proof. The condition toX be weakly normal is that the morphismXwn = XXν/wn →
X is an isomorphism. Since the construction of Xν → X commutes with base change to
open subschemes and since the construction of XXν/wn commutes with base change to
open subschemes of X (Lemma 55.5) the lemma is clear. �

56. Zariski’s Main Theorem (algebraic version)

This is the version you can prove using purely algebraic methods. Before we can prove
more powerful versions (for non-affine morphisms) we need to develop more tools. See
Cohomology of Schemes, Section 21 and More on Morphisms, Section 43.

Theorem 56.1 (Algebraic version of Zariski’s Main Theorem). Let f : Y → X be an
affine morphism of schemes. Assume f is of finite type. LetX ′ be the normalization ofX
in Y . Picture:

Y

f   

f ′
// X ′

ν
~~

X

Then there exists an open subscheme U ′ ⊂ X ′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ Y is the set of points at which f is quasi-finite.

Proof. There is an immediate reduction to the case whereX and hence Y are affine.
Say X = Spec(R) and Y = Spec(A). Then X ′ = Spec(A′), where A′ is the integral
closure ofR inA, see Definitions 53.2 and 53.3. By Algebra, Theorem 123.12 for every y ∈
Y at which f is quasi-finite, there exists an openU ′

y ⊂ X ′ such that (f ′)−1(U ′
y)→ U ′

y is an
isomorphism. Set U ′ =

⋃
U ′
y where y ∈ Y ranges over all points where f is quasi-finite.

It remains to show that f is quasi-finite at all points of (f ′)−1(U ′). If y ∈ (f ′)−1(U ′)
with image x ∈ X , then we see that Yx → X ′

x is an isomorphism in a neighbourhood of
y. Hence there is no point of Yx which specializes to y, since this is true for f ′(y) in X ′

x,
see Lemma 44.8. By Lemma 20.6 part (3) this implies f is quasi-finite at y. �

We can use the algebraic version of Zariski’s Main Theorem to show that the set of points
where a morphism is quasi-finite is open.

Lemma 56.2. Let f : X → S be a morphism of schemes. The set of points ofX where
f is quasi-finite is an open U ⊂ X . The induced morphism U → S is locally quasi-finite.

Proof. Suppose f is quasi-finite at x. Let x ∈ U = Spec(A) ⊂ X , V = Spec(R) ⊂
S be affine opens as in Definition 20.1. By either Theorem 56.1 above or Algebra, Lemma
123.13, the set of primes q at which R→ A is quasi-finite is open in Spec(A). Since these
all correspond to points ofX where f is quasi-finite we get the first statement. The second
statement is obvious. �
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We will improve the following lemma to general quasi-finite separated morphisms later,
see More on Morphisms, Lemma 43.3.

Lemma 56.3. Let f : Y → X be a morphism of schemes. Assume
(1) X and Y are affine, and
(2) f is quasi-finite.

Then there exists a diagram
Y

f   

j
// Z

π~~
X

with Z affine, π finite and j an open immersion.

Proof. This is Algebra, Lemma 123.14 reformulated in the language of schemes. �

Lemma 56.4. Let f : Y → X be a quasi-finite morphism of schemes. Let T ⊂ Y be
a closed nowhere dense subset of Y . Then f(T ) ⊂ X is a nowhere dense subset of X .

Proof. As in the proof of Lemma 48.7 this reduces immediately to the case where
the base X is affine. In this case Y =

⋃
i=1,...,n Yi is a finite union of affine opens (as f is

quasi-compact). Since each T ∩ Yi is nowhere dense, and since a finite union of nowhere
dense sets is nowhere dense (see Topology, Lemma 21.2), it suffices to prove that the image
f(T ∩ Yi) is nowhere dense in X . This reduces us to the case where both X and Y are
affine. At this point we apply Lemma 56.3 above to get a diagram

Y

f   

j
// Z

π~~
X

with Z affine, π finite and j an open immersion. Set T = j(T ) ⊂ Z. By Topology,
Lemma 21.3 we see T is nowhere dense in Z. Since f(T ) ⊂ π(T ) the lemma follows from
the corresponding result in the finite case, see Lemma 48.7. �

57. Universally bounded fibres

Let X be a scheme over a field k. If X is finite over k, then X = Spec(A) where A is a
finite k-algebra. Another way to say this is that X is finite locally free over Spec(k), see
Definition 48.1. Hence X → Spec(k) has a degree which is an integer d ≥ 0, namely
d = dimk(A). We sometime call this the degree of the (finite) scheme X over k.

Definition 57.1. Let f : X → Y be a morphism of schemes.
(1) We say the integer n bounds the degrees of the fibres of f if for all y ∈ Y the

fibre Xy is a finite scheme over κ(y) whose degree over κ(y) is ≤ n.
(2) We say the fibres of f are universally bounded19 if there exists an integernwhich

bounds the degrees of the fibres of f .

Note that in particular the number of points in a fibre is bounded by n as well. (The
converse does not hold, even if all fibres are finite reduced schemes.)

Lemma 57.2. Let f : X → Y be a morphism of schemes. Let n ≥ 0. The following
are equivalent:

19This is probably nonstandard notation.
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(1) the integer n bounds the degrees of the fibres of f , and
(2) for every morphism Spec(k) → Y , where k is a field, the fibre product Xk =

Spec(k)×Y X is finite over k of degree ≤ n.
In this case the fibres of f are universally bounded and the schemes Xk have at most n
points. More precisely, if Xk = {x1, . . . , xt}, then we have

n ≥
∑

i=1,...,t
[κ(xi) : k]

Proof. The implication (2)⇒ (1) is trivial. The other implication holds because if
the image of Spec(k) → Y is y, then Xk = Spec(k) ×Spec(κ(y)) Xy . By definition the
fibres of f being universally bounded means that some n exists. Finally, suppose that
Xk = Spec(A). Then dimk A = n. Hence A is Artinian, all prime ideals are maximal
ideals mi, and A is the product of the localizations at these maximal ideals. See Algebra,
Lemmas 53.2 and 53.6. Thenmi corresponds to xi, we haveAmi = OXk,xi and hence there
is a surjection A →

⊕
κ(mi) =

⊕
κ(xi) which implies the inequality in the statement

of the lemma by linear algebra. �

Lemma 57.3. If f is a finite locally free morphism of degree d, then d bounds the
degree of the fibres of f .

Proof. This is true because any base change of f is finite locally free of degree d
(Lemma 48.4) and hence the fibres of f all have degree d. �

Lemma 57.4. A composition of morphisms with universally bounded fibres is a mor-
phism with universally bounded fibres. More precisely, assume that n bounds the degrees
of the fibres of f : X → Y and m bounds the degrees of g : Y → Z. Then nm bounds
the degrees of the fibres of g ◦ f : X → Z.

Proof. Let f : X → Y and g : Y → Z have universally bounded fibres. Say
that deg(Xy/κ(y)) ≤ n for all y ∈ Y , and that deg(Yz/κ(z)) ≤ m for all z ∈ Z. Let
z ∈ Z be a point. By assumption the scheme Yz is finite over Spec(κ(z)). In particular,
the underlying topological space of Yz is a finite discrete set. The fibres of the morphism
fz : Xz → Yz are the fibres of f at the corresponding points of Y , which are finite discrete
sets by the reasoning above. Hence we conclude that the underlying topological space of
Xz is a finite discrete set as well. Thus Xz is an affine scheme (this is a nice exercise;
it also follows for example from Properties, Lemma 29.1 applied to the set of all points
of Xz). Write Xz = Spec(A), Yz = Spec(B), and k = κ(z). Then k → B → A
and we know that (a) dimk(B) ≤ m, and (b) for every maximal ideal m ⊂ B we have
dimκ(m)(A/mA) ≤ n. We claim this implies that dimk(A) ≤ nm. Note that B is
the product of its localizations Bm, for example because Yz is a disjoint union of 1-point
schemes, or by Algebra, Lemmas 53.2 and 53.6. So we see that dimk(B) =

∑
m dimk(Bm)

and dimk(A) =
∑

m dimk(Am) where in both cases m runs over the maximal ideals of B
(not of A). By the above, and Nakayama’s Lemma (Algebra, Lemma 20.1) we see that each
Am is a quotient of B⊕n

m as a Bm-module. Hence dimk(Am) ≤ n dimk(Bm). Putting
everything together we see that

dimk(A) =
∑

m
dimt a(Am) ≤

∑
m
n dimk(Bm) = n dimk(B) ≤ nm

as desired. �

Lemma 57.5. A base change of a morphism with universally bounded fibres is a mor-
phism with universally bounded fibres. More precisely, if n bounds the degrees of the
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fibres of f : X → Y and Y ′ → Y is any morphism, then the degrees of the fibres of the
base change f ′ : Y ′ ×Y X → Y ′ is also bounded by n.

Proof. This is clear from the result of Lemma 57.2. �

Lemma 57.6. Let f : X → Y be a morphism of schemes. Let Y ′ → Y be a morphism
of schemes, and let f ′ : X ′ = XY ′ → Y ′ be the base change of f . If Y ′ → Y is surjec-
tive and f ′ has universally bounded fibres, then f has universally bounded fibres. More
precisely, if n bounds the degree of the fibres of f ′, then also n bounds the degrees of the
fibres of f .

Proof. Let n ≥ 0 be an integer bounding the degrees of the fibres of f ′. We claim
that n works for f also. Namely, if y ∈ Y is a point, then choose a point y′ ∈ Y ′ lying
over y and observe that

X ′
y′ = Spec(κ(y′))×Spec(κ(y)) Xy.

Since X ′
y′ is assumed finite of degree ≤ n over κ(y′) it follows that also Xy is finite of

degree ≤ n over κ(y). (Some details omitted.) �

Lemma 57.7. An immersion has universally bounded fibres.

Proof. The integer n = 1 works in the definition. �

Lemma 57.8. Let f : X → Y be an étale morphism of schemes. Let n ≥ 0. The
following are equivalent

(1) the integer n bounds the degrees of the fibres,
(2) for every field k and morphism Spec(k)→ Y the base changeXk = Spec(k)×Y

X has at most n points, and
(3) for every y ∈ Y and every separable algebraic closureκ(y) ⊂ κ(y)sep the scheme

Xκ(y)sep has at most n points.

Proof. This follows from Lemma 57.2 and the fact that the fibres Xy are disjoint
unions of spectra of finite separable field extensions of κ(y), see Lemma 36.7. �

Having universally bounded fibres is an absolute notion and not a relative notion. This is
why the condition in the following lemma is that X is quasi-compact, and not that f is
quasi-compact.

Lemma 57.9. Let f : X → Y be a morphism of schemes. Assume that
(1) f is locally quasi-finite, and
(2) X is quasi-compact.

Then f has universally bounded fibres.

Proof. Since X is quasi-compact, there exists a finite affine open covering X =⋃
i=1,...,n Ui and affine opens Vi ⊂ Y , i = 1, . . . , n such that f(Ui) ⊂ Vi. Because of

the local nature of “local quasi-finiteness” (see Lemma 20.6 part (4)) we see that the mor-
phisms f |Ui : Ui → Vi are locally quasi-finite morphisms of affines, hence quasi-finite, see
Lemma 20.9. For y ∈ Y it is clear that Xy =

⋃
y∈Vi(Ui)y is an open covering. Hence it

suffices to prove the lemma for a quasi-finite morphism of affines (namely, if ni works for
the morphism f |Ui : Ui → Vi, then

∑
ni works for f ).
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Assume f : X → Y is a quasi-finite morphism of affines. By Lemma 56.3 we can find a
diagram

X

f   

j
// Z

π
��

Y

with Z affine, π finite and j an open immersion. Since j has universally bounded fibres
(Lemma 57.7) this reduces us to showing that π has universally bounded fibres (Lemma
57.4).

This reduces us to a morphism of the form Spec(B) → Spec(A) where A → B is finite.
Say B is generated by x1, . . . , xn over A and say Pi(T ) ∈ A[T ] is a monic polynomial of
degree di such thatPi(xi) = 0 inB (a finite ring extension is integral, see Algebra, Lemma
36.3). With these notations it is clear that⊕

0≤ei<di,i=1,...n
A −→ B, (a(e1,...,en)) 7−→

∑
a(e1,...,en)x

e1
1 . . . xenn

is a surjective A-module map. Thus for any prime p ⊂ A this induces a surjective map
κ(p)-vector spaces

κ(p)⊕d1...dn −→ B ⊗A κ(p)
In other words, the integer d1 . . . dn works in the definition of a morphism with univer-
sally bounded fibres. �

Lemma 57.10. Consider a commutative diagram of morphisms of schemes

X

g
  

f
// Y

h��
Z

If g has universally bounded fibres, and f is surjective and flat, then also h has universally
bounded fibres. More precisely, ifn bounds the degree of the fibres of g, then alson bounds
the degree of the fibres of h.

Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
the degree of the fibres of g is bounded by n ∈ N. We claim n also works for h. Let
z ∈ Z. Consider the morphism of schemes Xz → Yz . It is flat and surjective. By
assumption Xz is a finite scheme over κ(z), in particular it is the spectrum of an Ar-
tinian ring (by Algebra, Lemma 53.2). By Lemma 11.13 the morphism Xz → Yz is affine
in particular quasi-compact. It follows from Lemma 25.12 that Yz is a finite discrete as
this holds for Xz . Hence Yz is an affine scheme (this is a nice exercise; it also follows
for example from Properties, Lemma 29.1 applied to the set of all points of Yz). Write
Yz = Spec(B) and Xz = Spec(A). Then A is faithfully flat over B, so B ⊂ A. Hence
dimk(B) ≤ dimk(A) ≤ n as desired. �

58. Miscellany

Results which do not fit elsewhere.

Lemma 58.1. Let f : Y → X be a morphism of schemes. Let x ∈ X be a point.
Assume that Y is reduced and f(Y ) is set-theoretically contained in {x}. Then f factors
through the canonical morphism x = Spec(κ(x))→ X .
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Proof. Omitted. Hints: working affine locally one reduces to a commutative algebra
lemma. Given a ring map A → B with B reduced such that there exists a unique prime
ideal p ⊂ A in the image of Spec(B) → Spec(A), then A → B factors through κ(p).
This is a nice exercise. �

Lemma 58.2. Let f : Y → X be a morphism of schemes. Let E ⊂ X . Assume X is
locally Noetherian, there are no nontrivial specializations among the elements of E , Y is
reduced, and f(Y ) ⊂ E. Then f factors through

∐
x∈E x→ X .

Proof. When E is a singleton this follows from Lemma 58.1. If E is finite, then E
(with the induced topology of X) is a finite discrete space by our assumption on special-
izations. Hence this case reduces to the singleton case. In general, there is a reduction to
the case where X and Y are affine schemes. Say f : Y → X corresponds to the ring map
ϕ : A → B. Denote A′ ⊂ B the image of ϕ. Let E′ ⊂ Spec(A′) ⊂ Spec(A) be the
set of minimal primes of A′. By Algebra, Lemma 30.5 the set E′ is contained in the image
of Spec(B) → Spec(A′) ⊂ Spec(A). We conclude that E′ ⊂ E. Since A′ is Noether-
ian we have E′ is finite by Algebra, Lemma 31.6. Since any other point in the image of
Spec(B) → Spec(A) is a specialization of an element of E′ and in E , we conclude that
the image is contained in E′ (by our assumption on specializations between points of E).
Thus we reduce to the case where E is finite which we dealt with above. �
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CHAPTER 30

Cohomology of Schemes

1. Introduction

In this chapter we first prove a number of results on the cohomology of quasi-coherent
sheaves. A fundamental reference is [?]. Having done this we will elaborate on cohomol-
ogy of coherent sheaves in the Noetherian setting. See [?].

2. Čech cohomology of quasi-coherent sheaves

Let X be a scheme. Let U ⊂ X be an affine open. Recall that a standard open covering of
U is a covering of the form U : U =

⋃n
i=1 D(fi) where f1, . . . , fn ∈ Γ(U,OX) generate

the unit ideal, see Schemes, Definition 5.2.

Lemma 2.1. Let X be a scheme. Let F be a quasi-coherent OX -module. Let U : U =⋃n
i=1 D(fi) be a standard open covering of an affine open of X . Then Ȟp(U ,F) = 0 for

all p > 0.

Proof. WriteU = Spec(A) for some ringA. In other words, f1, . . . , fn are elements
ofAwhich generate the unit ideal ofA. WriteF|U = M̃ for someA-moduleM . Clearly
the Čech complex Č•(U ,F) is identified with the complex∏

i0
Mfi0

→
∏

i0i1
Mfi0fi1

→
∏

i0i1i2
Mfi0fi1fi2

→ . . .

We are asked to show that the extended complex

(2.1.1) 0→M →
∏

i0
Mfi0

→
∏

i0i1
Mfi0fi1

→
∏

i0i1i2
Mfi0fi1fi2

→ . . .

(whose truncation we have studied in Algebra, Lemma 24.1) is exact. It suffices to show
that (2.1.1) is exact after localizing at a prime p, see Algebra, Lemma 23.1. In fact we will
show that the extended complex localized at p is homotopic to zero.

There exists an index i such that fi 6∈ p. Choose and fix such an element ifix. Note that
Mfifix ,p

= Mp. Similarly for a localization at a product fi0 . . . fip and p we can drop any
fij for which ij = ifix. Let us define a homotopy

h :
∏

i0...ip+1
Mfi0 ...fip+1 ,p

−→
∏

i0...ip
Mfi0 ...fip ,p

by the rule
h(s)i0...ip = sifixi0...ip

(This is “dual” to the homotopy in the proof of Cohomology, Lemma 10.4.) In other words,
h :
∏
i0
Mfi0 ,p

→Mp is projection onto the factor Mfifix ,p
= Mp and in general the map

2543



2544 30. COHOMOLOGY OF SCHEMES

h equal projection onto the factors Mfifixfi1 ...fip+1 ,p
= Mfi1 ...fip+1 ,p

. We compute

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ifixi0...ip

=
∑p

j=0
(−1)jsifixi0...̂ij ...ip

+ si0...ip +
∑p

j=0
(−1)j+1sifixi0...̂ij ...ip

= si0...ip

This proves the identity map is homotopic to zero as desired. �

The following lemma says in particular that for any affine scheme X and any quasi-
coherent sheaf F on X we have

Hp(X,F) = 0
for all p > 0.

Lemma 2.2. LetX be a scheme. LetF be a quasi-coherentOX -module. For any affine
open U ⊂ X we have Hp(U,F) = 0 for all p > 0.

Proof. We are going to apply Cohomology, Lemma 11.9. As our basis B for the
topology ofX we are going to use the affine opens ofX . As our set Cov of open coverings
we are going to use the standard open coverings of affine opens of X . Next we check that
conditions (1), (2) and (3) of Cohomology, Lemma 11.9 hold. Note that the intersection
of standard opens in an affine is another standard open. Hence property (1) holds. The
coverings form a cofinal system of open coverings of any element ofB, see Schemes, Lemma
5.1. Hence (2) holds. Finally, condition (3) of the lemma follows from Lemma 2.1. �

Here is a relative version of the vanishing of cohomology of quasi-coherent sheaves on
affines.

Lemma 2.3. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. If f is affine then Rif∗F = 0 for all i > 0.

Proof. According to Cohomology, Lemma 7.3 the sheaf Rif∗F is the sheaf associ-
ated to the presheaf V 7→ Hi(f−1(V ),F|f−1(V )). By assumption, whenever V is affine
we have that f−1(V ) is affine, see Morphisms, Definition 11.1. By Lemma 2.2 we conclude
that Hi(f−1(V ),F|f−1(V )) = 0 whenever V is affine. Since S has a basis consisting of
affine opens we win. �

Lemma 2.4. Let f : X → S be an affine morphism of schemes. Let F be a quasi-
coherentOX -module. Then Hi(X,F) = Hi(S, f∗F) for all i ≥ 0.

Proof. Follows from Lemma 2.3 and the Leray spectral sequence. See Cohomology,
Lemma 13.6. �

The following two lemmas explain when Čech cohomology can be used to compute coho-
mology of quasi-coherent modules.

Lemma 2.5. Let X be a scheme. The following are equivalent
(1) X has affine diagonal ∆ : X → X ×X ,
(2) for U, V ⊂ X affine open, the intersection U ∩ V is affine, and
(3) there exists an open covering U : X =

⋃
i∈I Ui such that Ui0...ip is affine open

for all p ≥ 0 and all i0, . . . , ip ∈ I .
In particular this holds if X is separated.
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Proof. AssumeX has affine diagonal. Let U, V ⊂ X be affine opens. Then U ∩V =
∆−1(U × V ) is affine. Thus (2) holds. It is immediate that (2) implies (3). Conversely, if
there is a covering of X as in (3), then X × X =

⋃
Ui × Ui′ is an affine open covering,

and we see that ∆−1(Ui × Ui′) = Ui ∩ Ui′ is affine. Then ∆ is an affine morphism by
Morphisms, Lemma 11.3. The final assertion follows from Schemes, Lemma 21.7. �

Lemma 2.6. Let X be a scheme. Let U : X =
⋃
i∈I Ui be an open covering such that

Ui0...ip is affine open for all p ≥ 0 and all i0, . . . , ip ∈ I . In this case for any quasi-coherent
sheaf F we have

Ȟp(U ,F) = Hp(X,F)
as Γ(X,OX)-modules for all p.

Proof. In view of Lemma 2.2 this is a special case of Cohomology, Lemma 11.6. �

3. Vanishing of cohomology

We have seen that on an affine scheme the higher cohomology groups of any quasi-coherent
sheaf vanish (Lemma 2.2). It turns out that this also characterizes affine schemes. We give
two versions.

Lemma 3.1. Let X be a scheme. Assume that
(1) X is quasi-compact,
(2) for every quasi-coherent sheaf of ideals I ⊂ OX we have H1(X, I) = 0.

Then X is affine.

Proof. Let x ∈ X be a closed point. Let U ⊂ X be an affine open neighbourhood
of x. Write U = Spec(A) and let m ⊂ A be the maximal ideal corresponding to x. Set
Z = X \U and Z ′ = Z ∪ {x}. By Schemes, Lemma 12.4 there are quasi-coherent sheaves
of ideals I , resp. I ′ cutting out the reduced closed subschemes Z , resp. Z ′. Consider the
short exact sequence

0→ I ′ → I → I/I ′ → 0.
Since x is a closed point ofX and x 6∈ Z we see that I/I ′ is supported at x. In fact, the re-
striction of I/I ′ toU corresponds to theA-moduleA/m. Hence we see that Γ(X, I/I ′) =
A/m. Since by assumptionH1(X, I ′) = 0 we see there exists a global section f ∈ Γ(X, I)
which maps to the element 1 ∈ A/m as a section of I/I ′. Clearly we have x ∈ Xf ⊂ U .
This implies thatXf = D(fA) where fA is the image of f inA = Γ(U,OX). In particular
Xf is affine.

Consider the unionW =
⋃
Xf over all f ∈ Γ(X,OX) such thatXf is affine. Obviously

W is open in X . By the arguments above every closed point of X is contained in W . The
closed subset X \W of X is also quasi-compact (see Topology, Lemma 12.3). Hence it has
a closed point if it is nonempty (see Topology, Lemma 12.8). This would contradict the
fact that all closed points are in W . Hence we conclude X = W .

Choose finitely many f1, . . . , fn ∈ Γ(X,OX) such that X = Xf1 ∪ . . . ∪Xfn and such
that each Xfi is affine. This is possible as we’ve seen above. By Properties, Lemma 27.3
to finish the proof it suffices to show that f1, . . . , fn generate the unit ideal in Γ(X,OX).
Consider the short exact sequence

0 // F // O⊕n
X

f1,...,fn // OX // 0
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The arrow defined by f1, . . . , fn is surjective since the opens Xfi cover X . We let F be
the kernel of this surjective map. Observe that F has a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F
so that each subquotientFi/Fi−1 is isomorphic to a quasi-coherent sheaf of ideals. Namely
we can take Fi to be the intersection of F with the first i direct summands of O⊕n

X . The
assumption of the lemma implies that H1(X,Fi/Fi−1) = 0 for all i. This implies that
H1(X,F2) = 0 because it is sandwiched between H1(X,F1) and H1(X,F2/F1). Con-
tinuing like this we deduce that H1(X,F) = 0. Therefore we conclude that the map⊕

i=1,...,n Γ(X,OX) f1,...,fn // Γ(X,OX)

is surjective as desired. �

Note that if X is a Noetherian scheme then every quasi-coherent sheaf of ideals is auto-
matically a coherent sheaf of ideals and a finite type quasi-coherent sheaf of ideals. Hence
the preceding lemma and the next lemma both apply in this case.

Lemma 3.2. Let X be a scheme. Assume that
(1) X is quasi-compact,
(2) X is quasi-separated, and
(3) H1(X, I) = 0 for every quasi-coherent sheaf of ideals I of finite type.

Then X is affine.

Proof. By Properties, Lemma 22.3 every quasi-coherent sheaf of ideals is a directed
colimit of quasi-coherent sheaves of ideals of finite type. By Cohomology, Lemma 19.1 tak-
ing cohomology onX commutes with directed colimits. Hence we see thatH1(X, I) = 0
for every quasi-coherent sheaf of ideals on X . In other words we see that Lemma 3.1 ap-
plies. �

We can use the arguments given above to find a sufficient condition to see when an invert-
ible sheaf is ample. However, we warn the reader that this condition is not necessary.

Lemma 3.3. Let X be a scheme. Let L be an invertibleOX -module. Assume that
(1) X is quasi-compact,
(2) for every quasi-coherent sheaf of ideals I ⊂ OX there exists an n ≥ 1 such that

H1(X, I ⊗OX
L⊗n) = 0.

Then L is ample.

Proof. This is proved in exactly the same way as Lemma 3.1. Let x ∈ X be a closed
point. Let U ⊂ X be an affine open neighbourhood of x such that L|U ∼= OU . Write
U = Spec(A) and let m ⊂ A be the maximal ideal corresponding to x. Set Z = X \ U
and Z ′ = Z ∪ {x}. By Schemes, Lemma 12.4 there are quasi-coherent sheaves of ideals I ,
resp. I ′ cutting out the reduced closed subschemes Z , resp. Z ′. Consider the short exact
sequence

0→ I ′ → I → I/I ′ → 0.
For every n ≥ 1 we obtain a short exact sequence

0→ I ′ ⊗OX
L⊗n → I ⊗OX

L⊗n → I/I ′ ⊗OX
L⊗n → 0.

By our assumption we may pick n such that H1(X, I ′ ⊗OX
L⊗n) = 0. Since x is a

closed point of X and x 6∈ Z we see that I/I ′ is supported at x. In fact, the restriction
of I/I ′ to U corresponds to the A-module A/m. Since L is trivial on U we see that the
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restriction of I/I ′ ⊗OX
L⊗n to U also corresponds to the A-module A/m. Hence we

see that Γ(X, I/I ′ ⊗OX
L⊗n) = A/m. By our choice of n we see there exists a global

section s ∈ Γ(X, I ⊗OX
L⊗n) which maps to the element 1 ∈ A/m. Clearly we have

x ∈ Xs ⊂ U because s vanishes at points of Z. This implies that Xs = D(f) where
f ∈ A is the image of s in A ∼= Γ(U,L⊗n). In particular Xs is affine.
Consider the union W =

⋃
Xs over all s ∈ Γ(X,L⊗n) for n ≥ 1 such that Xs is affine.

Obviously W is open in X . By the arguments above every closed point of X is contained
in W . The closed subset X \W of X is also quasi-compact (see Topology, Lemma 12.3).
Hence it has a closed point if it is nonempty (see Topology, Lemma 12.8). This would
contradict the fact that all closed points are in W . Hence we conclude X = W . This
means that L is ample by Properties, Definition 26.1. �

There is a variant of Lemma 3.3 with finite type ideal sheaves which we will formulate
and prove here if we ever need it.

Lemma 3.4. Let f : X → Y be a quasi-compact morphism with X and Y quasi-
separated. If R1f∗I = 0 for every quasi-coherent sheaf of ideals I on X , then f is affine.

Proof. Let V ⊂ Y be an affine open subscheme. We have to show that U = f−1(V )
is affine. The inclusion morphism V → Y is quasi-compact by Schemes, Lemma 21.14.
Hence the base change U → X is quasi-compact, see Schemes, Lemma 19.3. Thus any
quasi-coherent sheaf of ideals I on U extends to a quasi-coherent sheaf of ideals onX , see
Properties, Lemma 22.1. Since the formation of R1f∗ is local on Y (Cohomology, Section
7) we conclude that R1(U → V )∗I = 0 by the assumption in the lemma. Hence by
the Leray Spectral sequence (Cohomology, Lemma 13.4) we conclude that H1(U, I) =
H1(V, (U → V )∗I). Since (U → V )∗I is quasi-coherent by Schemes, Lemma 24.1, we
have H1(V, (U → V )∗I) = 0 by Lemma 2.2. Thus we find that U is affine by Lemma
3.1. �

4. Quasi-coherence of higher direct images

We have seen that the higher cohomology groups of a quasi-coherent module on an affine
are zero. For (quasi-)separated quasi-compact schemes X this implies vanishing of coho-
mology groups of quasi-coherent sheaves beyond a certain degree. However, it may not
be the case that X has finite cohomological dimension, because that is defined in terms of
vanishing of cohomology of allOX -modules.

Lemma 4.1 (Induction Principle). LetX be a quasi-compact and quasi-separated scheme.
Let P be a property of the quasi-compact opens of X . Assume that

(1) P holds for every affine open of X ,
(2) if U is quasi-compact open, V affine open, P holds for U , V , and U ∩ V , then P

holds for U ∪ V .
Then P holds for every quasi-compact open of X and in particular for X .

Proof. First we argue by induction that P holds for separated quasi-compact opens
W ⊂ X . Namely, such an open can be written as W = U1 ∪ . . . ∪ Un and we can
do induction on n using property (2) with U = U1 ∪ . . . ∪ Un−1 and V = Un. This is
allowed becauseU ∩V = (U1∩Un)∪ . . .∪(Un−1∩Un) is also a union of n−1 affine open
subschemes by Schemes, Lemma 21.7 applied to the affine opens Ui and Un of W . Having
said this, for any quasi-compact openW ⊂ X we can do induction on the number of affine
opens needed to cover W using the same trick as before and using that the quasi-compact
open Ui ∩ Un is separated as an open subscheme of the affine scheme Un. �
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Lemma 4.2. Let X be a quasi-compact scheme with affine diagonal (for example if
X is separated). Let t = t(X) be the minimal number of affine opens needed to cover X .
Then Hn(X,F) = 0 for all n ≥ t and all quasi-coherent sheaves F .

Proof. First proof. By induction on t. If t = 1 the result follows from Lemma 2.2.
If t > 1 write X = U ∪ V with V affine open and U = U1 ∪ . . . ∪ Ut−1 a union of t− 1
open affines. Note that in this case U ∩ V = (U1 ∩ V )∪ . . . (Ut−1 ∩ V ) is also a union of
t− 1 affine open subschemes. Namely, since the diagonal is affine, the intersection of two
affine opens is affine, see Lemma 2.5. We apply the Mayer-Vietoris long exact sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

see Cohomology, Lemma 8.2. By induction we see that the groups Hi(U,F), Hi(V,F),
Hi(U ∩ V,F) are zero for i ≥ t − 1. It follows immediately that Hi(X,F) is zero for
i ≥ t.

Second proof. Let U : X =
⋃t
i=1 Ui be a finite affine open covering. Since X is has affine

diagonal the multiple intersections Ui0...ip are all affine, see Lemma 2.5. By Lemma 2.6 the
Čech cohomology groups Ȟp(U ,F) agree with the cohomology groups. By Cohomol-
ogy, Lemma 23.6 the Čech cohomology groups may be computed using the alternating
Čech complex Č•

alt(U ,F). As the covering consists of t elements we see immediately that
Čpalt(U ,F) = 0 for all p ≥ t. Hence the result follows. �

Lemma 4.3. LetX be a quasi-compact scheme with affine diagonal (for example ifX
is separated). Then

(1) given a quasi-coherent OX -module F there exists an embedding F → F ′ of
quasi-coherentOX -modules such that Hp(X,F ′) = 0 for all p ≥ 1, and

(2) {Hn(X,−)}n≥0 is a universal δ-functor from QCoh(OX) to Ab.

Proof. Let X =
⋃
Ui be a finite affine open covering. Set U =

∐
Ui and denote

j : U → X the morphism inducing the given open immersions Ui → X . Since U is an
affine scheme and X has affine diagonal, the morphism j is affine, see Morphisms, Lemma
11.11. For everyOX -moduleF there is a canonical mapF → j∗j

∗F . This map is injective
as can be seen by checking on stalks: if x ∈ Ui, then we have a factorization

Fx → (j∗j
∗F)x → (j∗F)x′ = Fx

where x′ ∈ U is the point x viewed as a point ofUi ⊂ U . Now ifF is quasi-coherent, then
j∗F is quasi-coherent on the affine scheme U hence has vanishing higher cohomology by
Lemma 2.2. Then Hp(X, j∗j

∗F) = 0 for p > 0 by Lemma 2.4 as j is affine. This proves
(1). Finally, we see that the map Hp(X,F)→ Hp(X, j∗j

∗F) is zero and part (2) follows
from Homology, Lemma 12.4. �

Lemma 4.4. LetX be a quasi-compact quasi-separated scheme. LetX = U1∪ . . .∪Ut
be an open covering with each Ui quasi-compact and separated (for example affine). Set

d = maxI⊂{1,...,t}

(
|I|+ t(

⋂
i∈I

Ui)− 1
)

where t(U) is the minimal number of affines needed to cover the schemeU . ThenHn(X,F) =
0 for all n ≥ d and all quasi-coherent sheaves F .

Proof. Note that sinceX is quasi-separated andUi quasi-compact the numbers t(
⋂
i∈I Ui)

are finite. Proof using induction on t. If t = 1 then the result follows from Lemma 4.2.
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If t > 1, write X = U ∪ V with U = U1 ∪ . . . ∪ Ut−1 and V = Ut. We apply the
Mayer-Vietoris long exact sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

see Cohomology, Lemma 8.2. Since V is affine, we have Hi(V,F) = 0 for i ≥ 0. By
induction hypothesis we have Hi(U,F) = 0 for

i ≥ maxI⊂{1,...,t−1}

(
|I|+ t(

⋂
i∈I

Ui)− 1
)

and the bound on the right is less than the bound in the statement of the lemma. Finally
we may use our induction hypothesis for the open U ∩V = (U1∩Ut)∪ . . .∪ (Ut−1∩Ut)
to get the vanishing of Hi(U ∩ V,F) = 0 for

i ≥ maxI⊂{1,...,t−1}

(
|I|+ t(Ut ∩

⋂
i∈I

Ui)− 1
)

Since the bound on the right is at least 1 less than the bound in the statement of the lemma,
the lemma follows. �

Lemma 4.5. Let f : X → S be a morphism of schemes. Assume that f is quasi-
separated and quasi-compact.

(1) For any quasi-coherentOX -moduleF the higher direct imagesRpf∗F are quasi-
coherent on S.

(2) If S is quasi-compact, there exists an integer n = n(X,S, f) such thatRpf∗F =
0 for all p ≥ n and any quasi-coherent sheaf F on X .

(3) In fact, if S is quasi-compact we can find n = n(X,S, f) such that for every
morphism of schemes S′ → S we haveRp(f ′)∗F ′ = 0 for p ≥ n and any quasi-
coherent sheaf F ′ on X ′. Here f ′ : X ′ = S′ ×S X → S′ is the base change of
f .

Proof. We first prove (1). Note that under the hypotheses of the lemma the sheaf
R0f∗F = f∗F is quasi-coherent by Schemes, Lemma 24.1. Using Cohomology, Lemma 7.4
we see that forming higher direct images commutes with restriction to open subschemes.
Since being quasi-coherent is local on S we reduce to the case discussed in the next para-
graph.

Proof of (1) in case S is affine. We will use the induction principle. Since f quasi-compact
and quasi-separated we see thatX is quasi-compact and quasi-separated. ForU ⊂ X quasi-
compact open and a = f |U we let P (U) be the property thatRpa∗F is quasi-coherent on
S for all quasi-coherent modules F on U and all p ≥ 0. Since P (X) is (1), it suffices the
prove conditions (1) and (2) of Lemma 4.1 hold. If U is affine, then P (U) holds because
Rpa∗F = 0 for p ≥ 1 (by Lemma 2.3 and Morphisms, Lemma 11.12) and we’ve already
observed the result holds for p = 0 in the first paragraph. Next, let U ⊂ X be a quasi-
compact open, V ⊂ X an affine open, and assume P (U), P (V ), P (U ∩ V ) hold. Let
a = f |U , b = f |V , c = f |U∩V , and g = f |U∪V . Then for any quasi-coherent OU∪V -
module F we have the relative Mayer-Vietoris sequence

0→ g∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1g∗F → . . .

see Cohomology, Lemma 8.3. ByP (U),P (V ),P (U∩V ) we see thatRpa∗(F|U ),Rpb∗(F|V )
and Rpc∗(F|U∩V ) are all quasi-coherent. Using the results on quasi-coherent sheaves in
Schemes, Section 24 this implies that each of the sheaves Rpg∗F is quasi-coherent since
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it sits in the middle of a short exact sequence with a cokernel of a map between quasi-
coherent sheaves on the left and a kernel of a map between quasi-coherent sheaves on the
right. Whence P (U ∪ V ) and the proof of (1) is complete.

Next, we prove (3) and a fortiori (2). Choose a finite affine open coveringS =
⋃
j=1,...m Sj .

For each j choose a finite affine open covering f−1(Sj) =
⋃
i=1,...tj Uji. Let

dj = maxI⊂{1,...,tj}

(
|I|+ t(

⋂
i∈I

Uji)
)

be the integer found in Lemma 4.4. We claim that n(X,S, f) = max dj works.

Namely, let S′ → S be a morphism of schemes and let F ′ be a quasi-coherent sheaf on
X ′ = S′ ×S X . We want to show that Rpf ′

∗F ′ = 0 for p ≥ n(X,S, f). Since this
question is local on S′ we may assume that S′ is affine and maps into Sj for some j. Then
X ′ = S′ ×Sj f−1(Sj) is covered by the open affines S′ ×Sj Uji, i = 1, . . . tj and the
intersections ⋂

i∈I
S′ ×Sj Uji = S′ ×Sj

⋂
i∈I

Uji

are covered by the same number of affines as before the base change. Applying Lemma 4.4
we getHp(X ′,F ′) = 0. By the first part of the proof we already know that eachRqf ′

∗F ′

is quasi-coherent hence has vanishing higher cohomology groups on our affine scheme S′,
thus we see thatH0(S′, Rpf ′

∗F ′) = Hp(X ′,F ′) = 0 by Cohomology, Lemma 13.6. Since
Rpf ′

∗F ′ is quasi-coherent we conclude that Rpf ′
∗F ′ = 0. �

Lemma 4.6. Let f : X → S be a morphism of schemes. Assume that f is quasi-
separated and quasi-compact. Assume S is affine. For any quasi-coherent OX -module F
we have

Hq(X,F) = H0(S,Rqf∗F)

for all q ∈ Z.

Proof. Consider the Leray spectral sequence Ep,q2 = Hp(S,Rqf∗F) converging to
Hp+q(X,F), see Cohomology, Lemma 13.4. By Lemma 4.5 we see that the sheavesRqf∗F
are quasi-coherent. By Lemma 2.2 we see that Ep,q2 = 0 when p > 0. Hence the spectral
sequence degenerates at E2 and we win. See also Cohomology, Lemma 13.6 (2) for the
general principle. �

5. Cohomology and base change, I

Let f : X → S be a morphism of schemes. LetF be a quasi-coherent sheaf onX . Suppose
further that g : S′ → S is any morphism of schemes. Denote X ′ = XS′ = S′ ×S X the
base change of X and denote f ′ : X ′ → S′ the base change of f . Also write g′ : X ′ → X
the projection, and set F ′ = (g′)∗F . Here is a diagram representing the situation:

(5.0.1)

F ′ = (g′)∗F X ′
g′
//

f ′

��

X

f

��

F

Rf ′
∗F ′ S′ g // S Rf∗F

Here is the simplest case of the base change property we have in mind.
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Lemma 5.1. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. Assume f is affine. In this case f∗F ∼= Rf∗F is a quasi-coherent sheaf, and
for every base change diagram (5.0.1) we have

g∗f∗F = f ′
∗(g′)∗F .

Proof. The vanishing of higher direct images is Lemma 2.3. The statement is local
on S and S′. Hence we may assume X = Spec(A), S = Spec(R), S′ = Spec(R′) and
F = M̃ for some A-module M . We use Schemes, Lemma 7.3 to describe pullbacks and
pushforwards of F . Namely, X ′ = Spec(R′ ⊗R A) and F ′ is the quasi-coherent sheaf
associated to (R′ ⊗R A)⊗AM . Thus we see that the lemma boils down to the equality

(R′ ⊗R A)⊗AM = R′ ⊗RM

as R′-modules. �

In many situations it is sufficient to know about the following special case of cohomology
and base change. It follows immediately from the stronger results in Section 7, but since
it is so important it deserves its own proof.

Lemma 5.2 (Flat base change). Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

Let F be a quasi-coherent OX -module with pullback F ′ = (g′)∗F . Assume that g is flat
and that f is quasi-compact and quasi-separated. For any i ≥ 0

(1) the base change map of Cohomology, Lemma 17.1 is an isomorphism

g∗Rif∗F −→ Rif ′
∗F ′,

(2) if S = Spec(A) and S′ = Spec(B), then Hi(X,F)⊗A B = Hi(X ′,F ′).

Proof. Using Cohomology, Lemma 17.1 in (1) is allowed since g′ is flat by Mor-
phisms, Lemma 25.8. Having said this, part (1) follows from part (2). Namely, part (1)
is local on S′ and hence we may assume S and S′ are affine. In other words, we have S =
Spec(A) and S′ = Spec(B) as in (2). Then sinceRif∗F is quasi-coherent (Lemma 4.5), it
is the quasi-coherentOS-module associated to theA-moduleH0(S,Rif∗F) = Hi(X,F)
(equality by Lemma 4.6). Similarly, Rif ′

∗F ′ is the quasi-coherent OS′ -module associated
to the B-module Hi(X ′,F ′). Since pullback by g corresponds to − ⊗A B on modules
(Schemes, Lemma 7.3) we see that it suffices to prove (2).

Let A → B be a flat ring homomorphism. Let X be a quasi-compact and quasi-separated
scheme over A. Let F be a quasi-coherent OX -module. Set XB = X ×Spec(A) Spec(B)
and denote FB the pullback of F . We are trying to show that the map

Hi(X,F)⊗A B −→ Hi(XB ,FB)

(given by the reference in the statement of the lemma) is an isomorphism.

In case X is separated, choose an affine open covering U : X = U1 ∪ . . . ∪ Ut and recall
that

Ȟp(U ,F) = Hp(X,F),
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see Lemma 2.6. If UB : XB = (U1)B ∪ . . . ∪ (Ut)B we obtain by base change, then it is
still the case that each (Ui)B is affine and that XB is separated. Thus we obtain

Ȟp(UB ,FB) = Hp(XB ,FB).
We have the following relation between the Čech complexes

Č•(UB ,FB) = Č•(U ,F)⊗A B
as follows from Lemma 5.1. Since A → B is flat, the same thing remains true on taking
cohomology.
In case X is quasi-separated, choose an affine open covering U : X = U1 ∪ . . . ∪ Ut. We
will use the Čech-to-cohomology spectral sequence Cohomology, Lemma 11.5. The reader
who wishes to avoid this spectral sequence can use Mayer-Vietoris and induction on t as in
the proof of Lemma 4.5. The spectral sequence has E2-page Ep,q2 = Ȟp(U ,Hq(F)) and
converges to Hp+q(X,F). Similarly, we have a spectral sequence with E2-page Ep,q2 =
Ȟp(UB ,Hq(FB)) which converges to Hp+q(XB ,FB). Since the intersections Ui0...ip
are quasi-compact and separated, the result of the second paragraph of the proof gives
Ȟp(UB ,Hq(FB)) = Ȟp(U ,Hq(F)) ⊗A B. Using that A → B is flat we conclude that
Hi(X,F)⊗A B → Hi(XB ,FB) is an isomorphism for all i and we win. �

Lemma 5.3 (Finite locally free base change). Consider a cartesian diagram of schemes

Y

g

��

h
// X

f

��
Spec(B) // Spec(A)

LetF be a quasi-coherentOX -module with pullback G = h∗F . IfB is a finite locally free
A-module, then Hi(X,F)⊗A B = Hi(Y,G).

Warning: Do not use this lemma unless you understand the difference between this and
Lemma 5.2.

Proof. In case X is separated, choose an affine open covering U : X =
⋃
i∈I Ui and

recall that
Ȟp(U ,F) = Hp(X,F),

see Lemma 2.6. Let V : Y =
⋃
i∈I g

−1(Ui) be the corresponding affine open covering of
Y . The opens Vi = g−1(Ui) = Ui ×Spec(A) Spec(B) are affine and Y is separated. Thus
we obtain

Ȟp(V,G) = Hp(Y,G).
We claim the map of Čech complexes

Č•(U ,F)⊗A B −→ Č•(V,G)
is an isomorphism. Namely, asB is finitely presented as anA-module we see that tensoring
with B over A commutes with products, see Algebra, Proposition 89.3. Thus it suffices to
show that the maps Γ(Ui0...ip ,F)⊗AB → Γ(Vi0...ip ,G) are isomorphisms which follows
from Lemma 5.1. SinceA→ B is flat, the same thing remains true on taking cohomology.
In the general case we argue in exactly the same way using affine open covering U : X =⋃
i∈I Ui and the corresponding covering V : Y =

⋃
i∈I Vi with Vi = g−1(Ui) as above.

We will use the Čech-to-cohomology spectral sequence Cohomology, Lemma 11.5. The
spectral sequence has E2-page Ep,q2 = Ȟp(U ,Hq(F)) and converges to Hp+q(X,F).
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Similarly, we have a spectral sequence with E2-page Ep,q2 = Ȟp(V,Hq(G)) which con-
verges toHp+q(Y,G). Since the intersectionsUi0...ip are separated, the result of the previ-
ous paragraph gives isomorphisms Γ(Ui0...ip ,Hq(F))⊗AB → Γ(Vi0...ip ,Hq(G)). Using
that−⊗A B commutes with products and is exact, we conclude that Ȟp(U ,Hq(F))⊗A
B → Ȟp(V,Hq(G)) is an isomorphism. Using that A → B is flat we conclude that
Hi(X,F)⊗A B → Hi(Y,G) is an isomorphism for all i and we win. �

6. Colimits and higher direct images

General results of this nature can be found in Cohomology, Section 19, Sheaves, Lemma
29.1, and Modules, Lemma 22.8.

Lemma 6.1. Let f : X → S be a quasi-compact and quasi-separated morphism of
schemes. LetF = colimFi be a filtered colimit of quasi-coherent sheaves onX . Then for
any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.

Proof. Recall that Rpf∗F is the sheaf associated to U 7→ Hp(f−1U,F), see Co-
homology, Lemma 7.3. Recall that the colimit is the sheaf associated to the presheaf
colimit (taking colimits over opens). Hence we can apply Cohomology, Lemma 19.1 to
Hp(f−1U,−) where U is affine to conclude. (Because the basis of affine opens in f−1U
satisfies the assumptions of that lemma.) �

7. Cohomology and base change, II

Let f : X → S be a morphism of schemes and let F be a quasi-coherent OX -module. If
f is quasi-compact and quasi-separated we would like to represent Rf∗F by a complex of
quasi-coherent sheaves on S. This follows from the fact that the sheavesRif∗F are quasi-
coherent if S is quasi-compact and has affine diagonal, using thatDQCoh(S) is equivalent
to D(QCoh(OS)), see Derived Categories of Schemes, Proposition 7.5.
In this section we will use a different approach which produces an explicit complex having
a good base change property. The construction is particularly easy if f andS are separated,
or more generally have affine diagonal. Since this is the case which by far the most often
used we treat it separately.

Lemma 7.1. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. AssumeX is quasi-compact andX and S have affine diagonal (e.g., ifX and
S are separated). In this case we can compute Rf∗F as follows:

(1) Choose a finite affine open covering U : X =
⋃
i=1,...,n Ui.

(2) For i0, . . . , ip ∈ {1, . . . , n} denote fi0...ip : Ui0...ip → S the restriction of f to
the intersection Ui0...ip = Ui0 ∩ . . . ∩ Uip .

(3) Set Fi0...ip equal to the restriction of F to Ui0...ip .
(4) Set

Čp(U , f,F) =
⊕

i0...ip
fi0...ip∗Fi0...ip

and define differentials d : Čp(U , f,F) → Čp+1(U , f,F) as in Cohomology,
Equation (9.0.1).

Then the complex Č•(U , f,F) is a complex of quasi-coherent sheaves on S which comes
equipped with an isomorphism

Č•(U , f,F) −→ Rf∗F
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in D+(S). This isomorphism is functorial in the quasi-coherent sheaf F .

Proof. Consider the resolution F → C•(U ,F) of Cohomology, Lemma 24.1. We
have an equality of complexes Č•(U , f,F) = f∗C

•(U ,F) of quasi-coherentOS-modules.
The morphisms ji0...ip : Ui0...ip → X and the morphisms fi0...ip : Ui0...ip → S are
affine by Morphisms, Lemma 11.11 and Lemma 2.5. Hence Rqji0...ip∗Fi0...ip as well as
Rqfi0...ip∗Fi0...ip are zero for q > 0 (Lemma 2.3). Using f ◦ ji0...ip = fi0...ip and the
spectral sequence of Cohomology, Lemma 13.8 we conclude that Rqf∗(ji0...ip∗Fi0...ip) =
0 for q > 0. Since the terms of the complex C•(U ,F) are finite direct sums of the sheaves
ji0...ip∗Fi0...ip we conclude using Leray’s acyclicity lemma (Derived Categories, Lemma
16.7) that

Rf∗F = f∗C
•(U ,F) = Č•(U , f,F)

as desired. �

Next, we are going to consider what happens if we do a base change.

Lemma 7.2. With notation as in diagram (5.0.1). Assume f : X → S and F satisfy
the hypotheses of Lemma 7.1. Choose a finite affine open covering U : X =

⋃
Ui of X .

There is a canonical isomorphism

g∗Č•(U , f,F) −→ Rf ′
∗F ′

in D+(S′). Moreover, if S′ → S is affine, then in fact

g∗Č•(U , f,F) = Č•(U ′, f ′,F ′)
with U ′ : X ′ =

⋃
U ′
i where U ′

i = (g′)−1(Ui) = Ui,S′ is also affine.

Proof. In fact we may define U ′
i = (g′)−1(Ui) = Ui,S′ no matter whether S′ is

affine over S or not. Let U ′ : X ′ =
⋃
U ′
i be the induced covering of X ′. In this case we

claim that
g∗Č•(U , f,F) = Č•(U ′, f ′,F ′)

with Č•(U ′, f ′,F ′) defined in exactly the same manner as in Lemma 7.1. This is clear from
the case of affine morphisms (Lemma 5.1) by working locally on S′. Moreover, exactly as
in the proof of Lemma 7.1 one sees that there is an isomorphism

Č•(U ′, f ′,F ′) −→ Rf ′
∗F ′

inD+(S′) since the morphisms U ′
i → X ′ and U ′

i → S′ are still affine (being base changes
of affine morphisms). Details omitted. �

The lemma above says that the complex

K• = Č•(U , f,F)
is a bounded below complex of quasi-coherent sheaves on S which universally computes
the higher direct images of f : X → S. This is something about this particular complex
and it is not preserved by replacing Č•(U , f,F) by a quasi-isomorphic complex in general!
In other words, this is not a statement that makes sense in the derived category. The reason
is that the pullback g∗K• is not equal to the derived pullback Lg∗K• of K• in general!

Here is a more general case where we can prove this statement. We remark that the con-
dition of S being separated is harmless in most applications, since this is usually used to
prove some local property of the total derived image. The proof is significantly more in-
volved and uses hypercoverings; it is a nice example of how you can use them sometimes.
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Lemma 7.3. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X . Assume that f is quasi-compact and quasi-separated and that S is quasi-
compact and separated. There exists a bounded below complex K• of quasi-coherentOS-
modules with the following property: For every morphism g : S′ → S the complex g∗K•

is a representative for Rf ′
∗F ′ with notation as in diagram (5.0.1).

Proof. (If f is separated as well, please see Lemma 7.2.) The assumptions imply in
particular that X is quasi-compact and quasi-separated as a scheme. Let B be the set of
affine opens of X . By Hypercoverings, Lemma 11.4 we can find a hypercovering K =
(I, {Ui}) such that each In is finite and eachUi is an affine open ofX . By Hypercoverings,
Lemma 5.3 there is a spectral sequence with E2-page

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(X,F). Note that Ȟp(K,Hq(F)) is the pth cohomology group of
the complex∏

i∈I0
Hq(Ui,F)→

∏
i∈I1

Hq(Ui,F)→
∏

i∈I2
Hq(Ui,F)→ . . .

Since each Ui is affine we see that this is zero unless q = 0 in which case we obtain∏
i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

Thus we conclude that RΓ(X,F) is computed by this complex.

For any n and i ∈ In denote fi : Ui → S the restriction of f to Ui. As S is separated and
Ui is affine this morphism is affine. Consider the complex of quasi-coherent sheaves

K• = (
∏

i∈I0
fi,∗F|Ui →

∏
i∈I1

fi,∗F|Ui →
∏

i∈I2
fi,∗F|Ui → . . .)

on S. As in Hypercoverings, Lemma 5.3 we obtain a map K• → Rf∗F in D(OS) by
choosing an injective resolution ofF (details omitted). Consider any affine scheme V and
a morphism g : V → S. Then the base changeXV has a hypercoveringKV = (I, {Ui,V })
obtained by base change. Moreover, g∗fi,∗F = fi,V,∗(g′)∗F|Ui,V . Thus the arguments
above prove that Γ(V, g∗K•) computes RΓ(XV , (g′)∗F). This finishes the proof of the
lemma as it suffices to prove the equality of complexes Zariski locally on S′. �

The following lemma is a variant to flat base change.

Lemma 7.4. Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

Let F be a quasi-coherentOX -module. Let G be a quasi-coherentOS′ -module flat over S.
Assume f is quasi-compact and quasi-separated. For any i ≥ 0 there is an identification

G ⊗OS′ g
∗Rif∗F = Rif ′

∗
(
(f ′)∗G ⊗OX′ (g′)∗F

)
Proof. Let us construct a map from left to right. First, we have the base change map

Lg∗Rf∗F → Rf ′
∗L(g′)∗F . There is also the adjunction map G → Rf ′

∗L(f ′)∗G. Using
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the relative cup product We obtain

G ⊗L
OS′ Lg

∗Rf∗F → Rf ′
∗L(f ′)∗G ⊗L

OS′ Rf
′
∗L(g′)∗F

→ Rf ′
∗

(
L(f ′)∗G ⊗L

OX′ L(g′)∗F
)

→ Rf ′
∗
(
(f ′)∗G ⊗OX′ (g′)∗F

)
where for the middle arrow we used the relative cup product, see Cohomology, Remark
28.7. The source of the composition is

G ⊗L
OS′ Lg

∗Rf∗F = G ⊗L
g−1OS

g−1Rf∗F

by Cohomology, Lemma 27.4. Since G is flat as a sheaf of g−1OS-modules and since g−1 is
an exact functor, this is a complex whose ith cohomology sheaf is G⊗g−1OS

g−1Rif∗F =
G ⊗OS′ g

∗Rif∗F . In this way we obtain global maps from left to right in the equality
of the lemma. To show this map is an isomorphism we may work locally on S′. Thus we
may and do assume that S and S′ are affine schemes.

Proof in case S and S′ are affine. Say S = Spec(A) and S′ = Spec(B) and say G cor-
responds to the B-module N which is assumed to be A-flat. Since S is affine, X is quasi-
compact and quasi-separated. We will use a hypercovering argument to finish the proof;
if X is separated or has affine diagonal, then you can use a Čech covering. Let B be the
set of affine opens of X . By Hypercoverings, Lemma 11.4 we can find a hypercovering
K = (I, {Ui}) of X such that each In is finite and each Ui is an affine open of X . By
Hypercoverings, Lemma 5.3 there is a spectral sequence with E2-page

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(X,F). Since each Ui is affine and F is quasi-coherent the value of
Hq(F) is zero on Ui for q > 0. Thus the spectral sequence degenerates and we conclude
that the cohomology modules Hq(X,F) are computed by∏

i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

Next, note that the base change of our hypercovering to S′ is a hypercovering of X ′ =
S′ ×S X . The schemes S′ ×S Ui are affine too and we have(

(f ′)∗G ⊗OS′ (g′)∗F
)

(S′ ×S Ui) = N ⊗A F(Ui)

In this way we conclude that the cohomology modules Hq(X ′, (f ′)∗G ⊗OS′ (g′)∗F) are
computed by

N ⊗A
(∏

i∈I0
F(Ui)→

∏
i∈I1
F(Ui)→

∏
i∈I2
F(Ui)→ . . .

)
Since N is flat over A, we conclude that

Hq(X ′, (f ′)∗G ⊗OS′ (g′)∗F) = N ⊗A Hq(X,F)

Since this is the translation into algebra of the statement we had to show the proof is
complete. �
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8. Cohomology of projective space

In this section we compute the cohomology of the twists of the structure sheaf on Pn
S

over a scheme S. Recall that Pn
S was defined as the fibre product Pn

S = S ×Spec(Z) Pn
Z in

Constructions, Definition 13.2. It was shown to be equal to

Pn
S = Proj

S
(OS [T0, . . . , Tn])

in Constructions, Lemma 21.5. In particular, projective space is a particular case of a pro-
jective bundle. If S = Spec(R) is affine then we have

Pn
S = Pn

R = Proj(R[T0, . . . , Tn]).
All these identifications are compatible and compatible with the constructions of the twisted
structure sheavesOPn

S
(d).

Before we state the result we need some notation. LetR be a ring. Recall thatR[T0, . . . , Tn]
is a gradedR-algebra where each Ti is homogeneous of degree 1. Denote (R[T0, . . . , Tn])d
the degree d summand. It is a finite free R-module of rank

(
n+d
d

)
when d ≥ 0 and zero

else. It has a basis consisting of monomials T e0
0 . . . T enn with

∑
ei = d. We will also use

the following notation: R[ 1
T0
, . . . , 1

Tn
] denotes the Z-graded ring with 1

Ti
in degree −1.

In particular the Z-graded R[ 1
T0
, . . . , 1

Tn
] module

1
T0 . . . Tn

R[ 1
T0
, . . . ,

1
Tn

]

which shows up in the statement below is zero in degrees ≥ −n, is free on the generator
1

T0...Tn
in degree −n− 1 and is free of rank (−1)n

(
n+d
d

)
for d ≤ −n− 1.

Lemma 8.1. Let R be a ring. Let n ≥ 0 be an integer. We have

Hq(Pn,OPn
R

(d)) =


(R[T0, . . . , Tn])d if q = 0

0 if q 6= 0, n(
1

T0...Tn
R[ 1

T0
, . . . , 1

Tn
]
)
d

if q = n

as R-modules.

Proof. We will use the standard affine open covering

U : Pn
R =

⋃n

i=0
D+(Ti)

to compute the cohomology using the Čech complex. This is permissible by Lemma 2.6
since any intersection of finitely many affine D+(Ti) is also a standard affine open (see
Constructions, Section 8). In fact, we can use the alternating or ordered Čech complex
according to Cohomology, Lemmas 23.3 and 23.6.

The ordering we will use on {0, . . . , n} is the usual one. Hence the complex we are looking
at has terms

Čpord(U ,OPR(d)) =
⊕

i0<...<ip
(R[T0, . . . , Tn,

1
Ti0 . . . Tip

])d

Moreover, the maps are given by the usual formula

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

see Cohomology, Section 23. Note that each term of this complex has a natural Zn+1-
grading. Namely, we get this by declaring a monomial T e0

0 . . . T enn to be homogeneous
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with weight (e0, . . . , en) ∈ Zn+1. It is clear that the differential given above respects the
grading. In a formula we have

Č•
ord(U ,OPR(d)) =

⊕
~e∈Zn+1

Č•(~e)

where not all summands on the right hand side occur (see below). Hence in order to com-
pute the cohomology modules of the complex it suffices to compute the cohomology of
the graded pieces and take the direct sum at the end.
Fix ~e = (e0, . . . , en) ∈ Zn+1. In order for this weight to occur in the complex above we
need to assume e0 + . . .+en = d (if not then it occurs for a different twist of the structure
sheaf of course). Assuming this, set

NEG(~e) = {i ∈ {0, . . . , n} | ei < 0}.
With this notation the weight ~e summand Č•(~e) of the Čech complex above has the fol-
lowing terms

Čp(~e) =
⊕

i0<...<ip, NEG(~e)⊂{i0,...,ip}
R · T e0

0 . . . T enn

In other words, the terms corresponding to i0 < . . . < ip such that NEG(~e) is not
contained in {i0 . . . ip} are zero. The differential of the complex Č•(~e) is still given by the
exact same formula as above.
Suppose that NEG(~e) = {0, . . . , n}, i.e., that all exponents ei are negative. In this case
the complex Č•(~e) has only one term, namely Čn(~e) = R · 1

T
−e0
0 ...T−en

n

. Hence in this case

Hq(Č•(~e)) =
{
R · 1

T
−e0
0 ...T−en

n

if q = n

0 if else

The direct sum of all of these terms clearly gives the value(
1

T0 . . . Tn
R[ 1
T0
, . . . ,

1
Tn

]
)
d

in degreen as stated in the lemma. Moreover these terms do not contribute to cohomology
in other degrees (also in accordance with the statement of the lemma).

Assume NEG(~e) = ∅. In this case the complex Č•(~e) has a summand R corresponding
to all i0 < . . . < ip. Let us compare the complex Č•(~e) to another complex. Namely,
consider the affine open covering

V : Spec(R) =
⋃

i∈{0,...,n}
Vi

where Vi = Spec(R) for all i. Consider the alternating Čech complex

Č•
ord(V,OSpec(R))

By the same reasoning as above this computes the cohomology of the structure sheaf on
Spec(R). Hence we see that Hp(Č•

ord(V,OSpec(R))) = R if p = 0 and is 0 whenever
p > 0. For these facts, see Lemma 2.1 and its proof. Note that also Č•

ord(V,OSpec(R)) has a
summandR for every i0 < . . . < ip and has exactly the same differential as Č•(~e). In other
words these complexes are isomorphic complexes and hence have the same cohomology.
We conclude that

Hq(Č•(~e)) =
{
R · T e0

0 . . . T enn if q = 0
0 if else
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in the case that NEG(~e) = ∅. The direct sum of all of these terms clearly gives the value
(R[T0, . . . , Tn])d

in degree 0 as stated in the lemma. Moreover these terms do not contribute to cohomology
in other degrees (also in accordance with the statement of the lemma).

To finish the proof of the lemma we have to show that the complexes Č•(~e) are acyclic
when NEG(~e) is neither empty nor equal to {0, . . . , n}. Pick an index ifix 6∈ NEG(~e)
(such an index exists). Consider the map

h : Čp+1(~e)→ Čp(~e)
given by the rule that for i0 < . . . < ip we have

h(s)i0...ip =


0 if p 6∈ {0, . . . , n− 1}
0 if ifix ∈ {i0, . . . , ip}

sifixi0...ip if ifix < i0
(−1)asi0...ia−1ifixia...ip if ia−1 < ifix < ia

(−1)psi0...ip if ip < ifix

Please compare with the proof of Lemma 2.1. This makes sense because we have
NEG(~e) ⊂ {i0, . . . , ip} ⇔ NEG(~e) ⊂ {ifix, i0, . . . , ip}

The exact same (combinatorial) computation1 as in the proof of Lemma 2.1 shows that
(hd+ dh)(s)i0...ip = si0...ip

Hence we see that the identity map of the complex Č•(~e) is homotopic to zero which
implies that it is acyclic. �

In the following lemma we are going to use the pairing of free R-modules

R[T0, . . . , Tn]× 1
T0 . . . Tn

R[ 1
T0
, . . . ,

1
Tn

] −→ R

which is defined by the rule

(f, g) 7−→ coefficient of
1

T0 . . . Tn
in fg.

In other words, the basis element T e0
0 . . . T enn pairs with the basis element T d0

0 . . . T dnn to
give 1 if and only if ei + di = −1 for all i, and pairs to zero in all other cases. Using this
pairing we get an identification(

1
T0 . . . Tn

R[ 1
T0
, . . . ,

1
Tn

]
)
d

= HomR((R[T0, . . . , Tn])−n−1−d, R)

1For example, suppose that i0 < . . . < ip is such that ifix 6∈ {i0, . . . , ip} and that ia−1 < ifix < ia for
some 1 ≤ a ≤ p. Then we have

(dh+ hd)(s)i0...ip

=
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + (−1)ad(s)i0...ia−1ifixia...ip

=
∑a−1

j=0
(−1)j+a−1si0...̂ij ...ia−1ifixia...ip

+
∑p

j=a
(−1)j+asi0...ia−1ifixia...̂ij ...ip

+∑a−1

j=0
(−1)a+jsi0...̂ij ...ia−1ifixia...ip

+ (−1)2asi0...ip +
∑p

j=a
(−1)a+j+1si0...ia−1ifixia...̂ij ...ip

= si0...ip

as desired. The other cases are similar.
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Thus we can reformulate the result of Lemma 8.1 as saying that

(8.1.1) Hq(Pn,OPn
R

(d)) =

 (R[T0, . . . , Tn])d if q = 0
0 if q 6= 0, n

HomR((R[T0, . . . , Tn])−n−1−d, R) if q = n

Lemma 8.2. The identifications of Equation (8.1.1) are compatible with base change
w.r.t. ring maps R → R′. Moreover, for any f ∈ R[T0, . . . , Tn] homogeneous of degree
m the map multiplication by f

OPn
R

(d) −→ OPn
R

(d+m)

induces the map on the cohomology group via the identifications of Equation (8.1.1) which
is multiplication by f for H0 and the contragredient of multiplication by f

(R[T0, . . . , Tn])−n−1−(d+m) −→ (R[T0, . . . , Tn])−n−1−d

on Hn.

Proof. Suppose that R → R′ is a ring map. Let U be the standard affine open cov-
ering of Pn

R, and let U ′ be the standard affine open covering of Pn
R′ . Note that U ′ is the

pullback of the covering U under the canonical morphism Pn
R′ → Pn

R. Hence there is a
map of Čech complexes

γ : Č•
ord(U ,OPR(d)) −→ Č•

ord(U ′,OPR′ (d))
which is compatible with the map on cohomology by Cohomology, Lemma 15.1. It is
clear from the computations in the proof of Lemma 8.1 that this map of Čech complexes
is compatible with the identifications of the cohomology groups in question. (Namely
the basis elements for the Čech complex over R simply map to the corresponding basis
elements for the Čech complex over R′.) Whence the first statement of the lemma.
Now fix the ring R and consider two homogeneous polynomials f, g ∈ R[T0, . . . , Tn]
both of the same degree m. Since cohomology is an additive functor, it is clear that the
map induced by multiplication by f + g is the same as the sum of the maps induced by
multiplication by f and the map induced by multiplication by g. Moreover, since coho-
mology is a functor, a similar result holds for multiplication by a product fg where f, g
are both homogeneous (but not necessarily of the same degree). Hence to verify the second
statement of the lemma it suffices to prove this when f = x ∈ R or when f = Ti. In
the case of multiplication by an element x ∈ R the result follows since every cohomology
groups or complex in sight has the structure of an R-module or complex of R-modules.
Finally, we consider the case of multiplication by Ti as aOPn

R
-linear map

OPn
R

(d) −→ OPn
R

(d+ 1)

The statement onH0 is clear. For the statement onHn consider multiplication by Ti as a
map on Čech complexes

Č•
ord(U ,OPR(d)) −→ Č•

ord(U ,OPR(d+ 1))
We are going to use the notation introduced in the proof of Lemma 8.1. We consider the
effect of multiplication by Ti in terms of the decompositions

Č•
ord(U ,OPR(d)) =

⊕
~e∈Zn+1,

∑
ei=d
Č•(~e)

and
Č•
ord(U ,OPR(d+ 1)) =

⊕
~e∈Zn+1,

∑
ei=d+1

Č•(~e)
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It is clear that it maps the subcomplex Č•(~e) to the subcomplex Č•(~e + ~bi) where ~bi =
(0, . . . , 0, 1, 0, . . . , 0)) the ith basis vector. In other words, it maps the summand of Hn

corresponding to ~e with ei < 0 and
∑
ei = d to the summand of Hn corresponding to

~e +~bi (which is zero if ei + bi ≥ 0). It is easy to see that this corresponds exactly to the
action of the contragredient of multiplication by Ti as a map

(R[T0, . . . , Tn])−n−1−(d+1) −→ (R[T0, . . . , Tn])−n−1−d

This proves the lemma. �

Before we state the relative version we need some notation. Namely, recall thatOS [T0, . . . , Tn]
is a gradedOS-module where eachTi is homogeneous of degree 1. Denote (OS [T0, . . . , Tn])d
the degree d summand. It is a finite locally free sheaf of rank

(
n+d
d

)
on S.

Lemma 8.3. Let S be a scheme. Let n ≥ 0 be an integer. Consider the structure
morphism

f : Pn
S −→ S.

We have

Rqf∗(OPn
S
(d)) =

 (OS [T0, . . . , Tn])d if q = 0
0 if q 6= 0, n

HomOS
((OS [T0, . . . , Tn])−n−1−d,OS) if q = n

Proof. Omitted. Hint: This follows since the identifications in (8.1.1) are compatible
with affine base change by Lemma 8.2. �

Next we state the version for projective bundles associated to finite locally free sheaves.
Let S be a scheme. Let E be a finite locally free OS-module of constant rank n + 1, see
Modules, Section 14. In this case we think of Sym(E) as a graded OS-module where E is
the graded part of degree 1. And Symd(E) is the degree d summand. It is a finite locally
free sheaf of rank

(
n+d
d

)
on S. Recall that our normalization is that

π : P(E) = Proj
S

(Sym(E)) −→ S

and that there are natural maps Symd(E)→ π∗OP(E)(d).

Lemma 8.4. Let S be a scheme. Let n ≥ 1. Let E be a finite locally free OS-module
of constant rank n+ 1. Consider the structure morphism

π : P(E) −→ S.

We have

Rqπ∗(OP(E)(d)) =

 Symd(E) if q = 0
0 if q 6= 0, n

HomOS
(Sym−n−1−d(E)⊗OS

∧n+1E ,OS) if q = n

These identifications are compatible with base change and isomorphism between locally
free sheaves.

Proof. Consider the canonical map

π∗E −→ OP(E)(1)

and twist down by 1 to get
π∗(E)(−1) −→ OP(E)
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This is a surjective map from a locally free rank n+1 sheaf onto the structure sheaf. Hence
the corresponding Koszul complex is exact (More on Algebra, Lemma 28.5). In other words
there is an exact complex

0→ π∗(∧n+1E)(−n− 1)→ . . .→ π∗(∧iE)(−i)→ . . .→ π∗E(−1)→ OP(E) → 0

We will think of the termπ∗(∧iE)(−i) as being in degree−i. We are going to compute the
higher direct images of this acyclic complex using the first spectral sequence of Derived
Categories, Lemma 21.3. Namely, we see that there is a spectral sequence with terms

Ep,q1 = Rqπ∗
(
π∗(∧−pE)(p)

)
converging to zero! By the projection formula (Cohomology, Lemma 54.2) we have

Ep,q1 = ∧−pE ⊗OS
Rqπ∗

(
OP(E)(p)

)
.

Note that locally on S the sheaf E is trivial, i.e., isomorphic to O⊕n+1
S , hence locally on

S the morphism P(E) → S can be identified with Pn
S → S. Hence locally on S we can

use the result of Lemmas 8.1, 8.2, or 8.3. It follows that Ep,q1 = 0 unless (p, q) is (0, 0) or
(−n− 1, n). The nonzero terms are

E0,0
1 = π∗OP(E) = OS

E−n−1,n
1 = Rnπ∗

(
π∗(∧n+1E)(−n− 1)

)
= ∧n+1E ⊗OS

Rnπ∗
(
OP(E)(−n− 1)

)
Hence there can only be one nonzero differential in the spectral sequence namely the map
d−n−1,n
n+1 : E−n−1,n

n+1 → E0,0
n+1 which has to be an isomorphism (because the spectral se-

quence converges to the 0 sheaf). Thus Ep,q1 = Ep,qn+1 and we obtain a canonical isomor-
phism

∧n+1E ⊗OS
Rnπ∗

(
OP(E)(−n− 1)

)
= Rnπ∗

(
π∗(∧n+1E)(−n− 1)

) d−n−1,n
n+1−−−−−→ OS

Since ∧n+1E is an invertible sheaf, this implies that Rnπ∗OP(E)(−n− 1) is invertible as
well and canonically isomorphic to the inverse of ∧n+1E . In other words we have proved
the case d = −n− 1 of the lemma.

Working locally on S we see immediately from the computation of cohomology in Lem-
mas 8.1, 8.2, or 8.3 the statements on vanishing of the lemma. Moreover the result on
R0π∗ is clear as well, since there are canonical maps Symd(E) → π∗OP(E)(d) for all d.
It remains to show that the description of Rnπ∗OP(E)(d) is correct for d < −n − 1. In
order to do this we consider the map

π∗(Sym−d−n−1(E))⊗OP(E) OP(E)(d) −→ OP(E)(−n− 1)

Applying Rnπ∗ and the projection formula (see above) we get a map

Sym−d−n−1(E)⊗OS
Rnπ∗(OP(E)(d)) −→ Rnπ∗OP(E)(−n− 1) = (∧n+1E)⊗−1

(the last equality we have shown above). Again by the local calculations of Lemmas 8.1,
8.2, or 8.3 it follows that this map induces a perfect pairing betweenRnπ∗(OP(E)(d)) and
Sym−d−n−1(E)⊗ ∧n+1(E) as desired. �
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9. Coherent sheaves on locally Noetherian schemes

We have defined the notion of a coherent module on any ringed space in Modules, Sec-
tion 12. Although it is possible to consider coherent sheaves on non-Noetherian schemes
we will always assume the base scheme is locally Noetherian when we consider coherent
sheaves. Here is a characterization of coherent sheaves on locally Noetherian schemes.

Lemma 9.1. Let X be a locally Noetherian scheme. Let F be an OX -module. The
following are equivalent

(1) F is coherent,
(2) F is a quasi-coherent, finite typeOX -module,
(3) F is a finitely presentedOX -module,
(4) for any affine open Spec(A) = U ⊂ X we have F|U = M̃ with M a finite

A-module, and
(5) there exists an affine open covering X =

⋃
Ui, Ui = Spec(Ai) such that each

F|Ui = M̃i with Mi a finite Ai-module.
In particular OX is coherent, any invertible OX -module is coherent, and more generally
any finite locally freeOX -module is coherent.

Proof. The implications (1)⇒ (2) and (1)⇒ (3) hold in general, see Modules, Lemma
12.2. If F is finitely presented then F is quasi-coherent, see Modules, Lemma 11.2. Hence
also (3)⇒ (2).
Assume F is a quasi-coherent, finite type OX -module. By Properties, Lemma 16.1 we see
that on any affine open Spec(A) = U ⊂ X we haveF|U = M̃ withM a finiteA-module.
Since A is Noetherian we see that M has a finite resolution

A⊕m → A⊕n →M → 0.
Hence F is of finite presentation by Properties, Lemma 16.2. In other words (2)⇒ (3).
By Modules, Lemma 12.5 it suffices to show that OX is coherent in order to show that
(3) implies (1). Thus we have to show: given any open U ⊂ X and any finite collection
of sections fi ∈ OX(U), i = 1, . . . , n the kernel of the map

⊕
i=1,...,nOU → OU is

of finite type. Since being of finite type is a local property it suffices to check this in a
neighbourhood of any x ∈ U . Thus we may assume U = Spec(A) is affine. In this case
f1, . . . , fn ∈ A are elements of A. Since A is Noetherian, see Properties, Lemma 5.2 the
kernel K of the map

⊕
i=1,...,nA → A is a finite A-module. See for example Algebra,

Lemma 51.1. As the functor˜is exact, see Schemes, Lemma 5.4 we get an exact sequence

K̃ →
⊕

i=1,...,n
OU → OU

and by Properties, Lemma 16.1 again we see that K̃ is of finite type. We conclude that (1),
(2) and (3) are all equivalent.
It follows from Properties, Lemma 16.1 that (2) implies (4). It is trivial that (4) implies (5).
The discussion in Schemes, Section 24 show that (5) implies that F is quasi-coherent and
it is clear that (5) implies that F is of finite type. Hence (5) implies (2) and we win. �

Lemma 9.2. Let X be a locally Noetherian scheme. The category of coherent OX -
modules is abelian. More precisely, the kernel and cokernel of a map of coherent OX -
modules are coherent. Any extension of coherent sheaves is coherent.

Proof. This is a restatement of Modules, Lemma 12.4 in a particular case. �
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The following lemma does not always hold for the category of coherent OX -modules on
a general ringed space X .

Lemma 9.3. LetX be a locally Noetherian scheme. LetF be a coherentOX -module.
Any quasi-coherent submodule of F is coherent. Any quasi-coherent quotient module of
F is coherent.

Proof. We may assume that X is affine, say X = Spec(A). Properties, Lemma 5.2
implies that A is Noetherian. Lemma 9.1 turns this into algebra. The algebraic counter
part of the lemma is that a quotient, or a submodule of a finite A-module is a finite A-
module, see for example Algebra, Lemma 51.1. �

Lemma 9.4. LetX be a locally Noetherian scheme. LetF ,G be coherentOX -modules.
TheOX -modules F ⊗OX

G andHomOX
(F ,G) are coherent.

Proof. It is shown in Modules, Lemma 22.6 that HomOX
(F ,G) is coherent. The

result for tensor products is Modules, Lemma 16.6 �

Lemma 9.5. LetX be a locally Noetherian scheme. LetF ,G be coherentOX -modules.
Let ϕ : G → F be a homomorphism ofOX -modules. Let x ∈ X .

(1) If Fx = 0 then there exists an open neighbourhood U ⊂ X of x such that
F|U = 0.

(2) If ϕx : Gx → Fx is injective, then there exists an open neighbourhood U ⊂ X
of x such that ϕ|U is injective.

(3) If ϕx : Gx → Fx is surjective, then there exists an open neighbourhood U ⊂ X
of x such that ϕ|U is surjective.

(4) If ϕx : Gx → Fx is bijective, then there exists an open neighbourhood U ⊂ X
of x such that ϕ|U is an isomorphism.

Proof. See Modules, Lemmas 9.4, 9.5, and 12.6. �

Lemma 9.6. LetX be a locally Noetherian scheme. LetF ,G be coherentOX -modules.
Let x ∈ X . Suppose ψ : Gx → Fx is a map of OX,x-modules. Then there exists an open
neighbourhood U ⊂ X of x and a map ϕ : G|U → F|U such that ϕx = ψ.

Proof. In view of Lemma 9.1 this is a reformulation of Modules, Lemma 22.4. �

Lemma 9.7. LetX be a locally Noetherian scheme. LetF be a coherentOX -module.
Then Supp(F) is closed, and F comes from a coherent sheaf on the scheme theoretic sup-
port of F , see Morphisms, Definition 5.5.

Proof. Let i : Z → X be the scheme theoretic support of F and let G be the finite
type quasi-coherent sheaf on Z such that i∗G ∼= F . Since Z = Supp(F) we see that the
support is closed. The scheme Z is locally Noetherian by Morphisms, Lemmas 15.5 and
15.6. Finally, G is a coherentOZ -module by Lemma 9.1 �

Lemma 9.8. Let i : Z → X be a closed immersion of locally Noetherian schemes.
Let I ⊂ OX be the quasi-coherent sheaf of ideals cutting out Z. The functor i∗ induces
an equivalence between the category of coherent OX -modules annihilated by I and the
category of coherentOZ -modules.

Proof. The functor is fully faithful by Morphisms, Lemma 4.1. Let F be a coherent
OX -module annihilated by I . By Morphisms, Lemma 4.1 we can write F = i∗G for some
quasi-coherent sheafG onZ. By Modules, Lemma 13.3 we see thatG is of finite type. Hence
G is coherent by Lemma 9.1. Thus the functor is also essentially surjective as desired. �
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Lemma 9.9. Let f : X → Y be a morphism of schemes. Let F be a quasi-coherent
OX -module. Assume f is finite and Y locally Noetherian. Then Rpf∗F = 0 for p > 0
and f∗F is coherent if F is coherent.

Proof. The higher direct images vanish by Lemma 2.3 and because a finite morphism
is affine (by definition). Note that the assumptions imply that alsoX is locally Noetherian
(see Morphisms, Lemma 15.6) and hence the statement makes sense. Let Spec(A) = V ⊂
Y be an affine open subset. By Morphisms, Definition 44.1 we see that f−1(V ) = Spec(B)
with A → B finite. Lemma 9.1 turns the statement of the lemma into the following
algebra fact: If M is a finite B-module, then M is also finite viewed as a A-module, see
Algebra, Lemma 7.2. �

In the situation of the lemma also the higher direct images are coherent since they vanish.
We will show that this is always the case for a proper morphism between locally Noether-
ian schemes (Proposition 19.1).

Lemma 9.10. Let X be a locally Noetherian scheme. Let F be a coherent sheaf with
dim(Supp(F)) ≤ 0. ThenF is generated by global sections andHi(X,F) = 0 for i > 0.

Proof. By Lemma 9.7 we see that F = i∗G where i : Z → X is the inclusion
of the scheme theoretic support of F and where G is a coherent OZ -module. Since the
dimension ofZ is 0, we seeZ is a disjoint union of affines (Properties, Lemma 10.5). Hence
G is globally generated and the higher cohomology groups of G are zero (Lemma 2.2).
Hence F = i∗G is globally generated. Since the cohomologies of F and G agree (Lemma
2.4 applies as a closed immersion is affine) we conclude that the higher cohomology groups
of F are zero. �

Lemma 9.11. Let X be a scheme. Let j : U → X be the inclusion of an open. Let
T ⊂ X be a closed subset contained in U . IfF is a coherentOU -module with Supp(F) ⊂
T , then j∗F is a coherentOX -module.

Proof. Consider the open coveringX = U ∪ (X \T ). Then j∗F|U = F is coherent
and j∗F|X\T = 0 is also coherent. Hence j∗F is coherent. �

10. Coherent sheaves on Noetherian schemes

In this section we mention some properties of coherent sheaves on Noetherian schemes.

Lemma 10.1. Let X be a Noetherian scheme. Let F be a coherent OX -module. The
ascending chain condition holds for quasi-coherent submodules of F . In other words,
given any sequence

F1 ⊂ F2 ⊂ . . . ⊂ F
of quasi-coherent submodules, then Fn = Fn+1 = . . . for some n ≥ 0.

Proof. Choose a finite affine open covering. On each member of the covering we get
stabilization by Algebra, Lemma 51.1. Hence the lemma follows. �

Lemma 10.2. LetX be a Noetherian scheme. LetF be a coherent sheaf onX . Let I ⊂
OX be a quasi-coherent sheaf of ideals corresponding to a closed subschemeZ ⊂ X . Then
there is some n ≥ 0 such that InF = 0 if and only if Supp(F) ⊂ Z (set theoretically).

Proof. This follows immediately from Algebra, Lemma 62.4 because X has a finite
covering by spectra of Noetherian rings. �
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Lemma 10.3 (Artin-Rees). Let X be a Noetherian scheme. Let F be a coherent sheaf
on X . Let G ⊂ F be a quasi-coherent subsheaf. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Then there exists a c ≥ 0 such that for all n ≥ c we have

In−c(IcF ∩ G) = InF ∩ G

Proof. This follows immediately from Algebra, Lemma 51.2 because X has a finite
covering by spectra of Noetherian rings. �

Lemma 10.4. Let X be a Noetherian scheme. Every quasi-coherent OX -module is
the filtered colimit of its coherent submodules.

Proof. This is a reformulation of Properties, Lemma 22.3 in view of the fact that a
finite type quasi-coherentOX -module is coherent by Lemma 9.1. �

Lemma 10.5. Let X be a Noetherian scheme. Let F be a quasi-coherentOX -module.
Let G be a coherent OX -module. Let I ⊂ OX be a quasi-coherent sheaf of ideals. Denote
Z ⊂ X the corresponding closed subscheme and set U = X \ Z. There is a canonical
isomorphism

colimn HomOX
(InG,F) −→ HomOU

(G|U ,F|U ).
In particular we have an isomorphism

colimn HomOX
(In,F) −→ Γ(U,F).

Proof. We first prove the second map is an isomorphism. It is injective by Properties,
Lemma 25.3. Since F is the union of its coherent submodules, see Properties, Lemma 22.3
(and Lemma 9.1) we may and do assume that F is coherent to prove surjectivity. Let
Fn denote the quasi-coherent subsheaf of F consisting of sections annihilated by In, see
Properties, Lemma 25.3. Since F1 ⊂ F2 ⊂ . . . we see that Fn = Fn+1 = . . . for some
n ≥ 0 by Lemma 10.1. SetH = Fn for this n. By Artin-Rees (Lemma 10.3) there exists an
c ≥ 0 such that ImF ∩H ⊂ Im−cH. Picking m = n+ c we get ImF ∩H ⊂ InH = 0.
Thus if we set F ′ = ImF then we see that F ′ ∩ Fn = 0 and F ′|U = F|U . Note in
particular that the subsheaf (F ′)N of sections annihilated by IN is zero for all N ≥ 0.
Hence by Properties, Lemma 25.3 we deduce that the top horizontal arrow in the following
commutative diagram is a bijection:

colimn HomOX
(In,F ′) //

��

Γ(U,F ′)

��
colimn HomOX

(In,F) // Γ(U,F)

Since also the right vertical arrow is a bijection we conclude that the bottom horizontal
arrow is surjective as desired.

Next, we prove the first arrow of the lemma is a bijection. By Lemma 9.1 the sheaf G is of
finite presentation and hence the sheafH = HomOX

(G,F) is quasi-coherent, see Schemes,
Section 24. By definition we have

H(U) = HomOU
(G|U ,F|U )

Pick a ψ in the right hand side of the first arrow of the lemma, i.e., ψ ∈ H(U). The result
just proved applies to H and hence there exists an n ≥ 0 and an ϕ : In → H which
recovers ψ on restriction to U . By Modules, Lemma 22.1 ϕ corresponds to a map

ϕ : In ⊗OX
G −→ F .
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This is almost what we want except that the source of the arrow is the tensor product of In
and G and not the product. We will show that, at the cost of increasing n, the difference
is irrelevant. Consider the short exact sequence

0→ K → In ⊗OX
G → InG → 0

where K is defined as the kernel. Note that InK = 0 (proof omitted). By Artin-Rees
again we see that

K ∩ Im(In ⊗OX
G) = 0

for some m large enough. In other words we see that
Im(In ⊗OX

G) −→ In+mG
is an isomorphism. Let ϕ′ be the restriction of ϕ to this submodule thought of as a map
Im+nG → F . Then ϕ′ gives an element of the left hand side of the first arrow of the
lemma which maps to ψ via the arrow. In other words we have proved surjectivity of the
arrow. We omit the proof of injectivity. �

Lemma 10.6. Let X be a locally Noetherian scheme. Let F , G be coherent OX -
modules. Let U ⊂ X be open and let ϕ : F|U → G|U be an OU -module map. Then
there exists a coherent submodule F ′ ⊂ F agreeing with F over U such that ϕ extends
to ϕ′ : F ′ → G.

Proof. Let I ⊂ OX be the coherent sheaf of ideals cutting out the reduced induced
scheme structure onX \U . IfX is Noetherian, then Lemma 10.5 tells us that we can take
F ′ = InF for some n. The general case will follow from this using Zorn’s lemma.
Consider the set of triples (U ′,F ′, ϕ′) where U ⊂ U ′ ⊂ X is open, F ′ ⊂ F|U ′ is a
coherent subsheaf agreeing with F over U , and ϕ′ : F ′ → G|U ′ restricts to ϕ over U . We
say (U ′′,F ′′, ϕ′′) ≥ (U ′,F ′, ϕ′) if and only if U ′′ ⊃ U ′, F ′′|U ′ = F ′, and ϕ′′|U ′ = ϕ′. It
is clear that if we have a totally ordered collection of triples (Ui,Fi, ϕi), then we can glue
theFi to a subsheafF ′ ofF overU ′ =

⋃
Ui and extendϕ to a mapϕ′ : F ′ → G|U ′ . Hence

any totally ordered subset of triples has an upper bound. Finally, suppose that (U ′,F ′, ϕ′)
is any triple but U ′ 6= X . Then we can choose an affine open W ⊂ X which is not
contained in U ′. By the result of the first paragraph we can extend the subsheaf F ′|W∩U ′

and the restriction ϕ′|W∩U ′ to some subsheaf F ′′ ⊂ F|W and map ϕ′′ : F ′′ → G|W .
Of course the agreement between (F ′, ϕ′) and (F ′′, ϕ′′) over W ∩ U ′ exactly means that
we can extend this to a triple (U ′ ∪W,F ′′′, ϕ′′′). Hence any maximal triple (U ′,F ′, ϕ′)
(which exist by Zorn’s lemma) must have U ′ = X and the proof is complete. �

11. Depth

In this section we talk a little bit about depth and property (Sk) for coherent modules on
locally Noetherian schemes. Note that we have already discussed this notion for locally
Noetherian schemes in Properties, Section 12.

Definition 11.1. Let X be a locally Noetherian scheme. Let F be a coherent OX -
module. Let k ≥ 0 be an integer.

(1) We say F has depth k at a point x of X if depthOX,x
(Fx) = k.

(2) We say X has depth k at a point x of X if depth(OX,x) = k.
(3) We say F has property (Sk) if

depthOX,x
(Fx) ≥ min(k, dim(Supp(Fx)))

for all x ∈ X .
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(4) We say X has property (Sk) ifOX has property (Sk).

Any coherent sheaf satisfies condition (S0). Condition (S1) is equivalent to having no
embedded associated points, see Divisors, Lemma 4.3.

Lemma 11.2. Let X be a locally Noetherian scheme. Let F , G be coherent OX -
modules and x ∈ X .

(1) If Gx has depth ≥ 1, thenHomOX
(F ,G)x has depth ≥ 1.

(2) If Gx has depth ≥ 2, then HomOX
(F ,G)x has depth ≥ 2.

Proof. Observe that HomOX
(F ,G) is a coherent OX -module by Lemma 9.4. Co-

herent modules are of finite presentation (Lemma 9.1) hence taking stalks commutes with
taking Hom and Hom, see Modules, Lemma 22.4. Thus we reduce to the case of finite
modules over local rings which is More on Algebra, Lemma 23.10. �

Lemma 11.3. Let X be a locally Noetherian scheme. Let F , G be coherent OX -
modules.

(1) If G has property (S1), thenHomOX
(F ,G) has property (S1).

(2) If G has property (S2), thenHomOX
(F ,G) has property (S2).

Proof. Follows immediately from Lemma 11.2 and the definitions. �

We have seen in Properties, Lemma 12.3 that a locally Noetherian scheme is Cohen-Macaulay
if and only if (Sk) holds for all k. Thus it makes sense to introduce the following defini-
tion, which is equivalent to the condition that all stalks are Cohen-Macaulay modules.

Definition 11.4. Let X be a locally Noetherian scheme. Let F be a coherent OX -
module. We say F is Cohen-Macaulay if and only if (Sk) holds for all k ≥ 0.

Lemma 11.5. Let X be a regular scheme. Let F be a coherent OX -module. The fol-
lowing are equivalent

(1) F is Cohen-Macaulay and Supp(F) = X ,
(2) F is finite locally free of rank > 0.

Proof. Let x ∈ X . If (2) holds, then Fx is a free OX,x-module of rank > 0. Hence
depth(Fx) = dim(OX,x) because a regular local ring is Cohen-Macaulay (Algebra, Lemma
106.3). Conversely, if (1) holds, thenFx is a maximal Cohen-Macaulay module overOX,x
(Algebra, Definition 103.8). Hence Fx is free by Algebra, Lemma 106.6. �

12. Devissage of coherent sheaves

Let X be a Noetherian scheme. Consider an integral closed subscheme i : Z → X . It is
often convenient to consider coherent sheaves of the form i∗G where G is a coherent sheaf
onZ. In particular we are interested in these sheaves when G is a torsion free rank 1 sheaf.
For example G could be a nonzero sheaf of ideals on Z , or even more specifically G = OZ .
Throughout this section we will use that a coherent sheaf is the same thing as a finite type
quasi-coherent sheaf and that a quasi-coherent subquotient of a coherent sheaf is coherent,
see Section 9. The support of a coherent sheaf is closed, see Modules, Lemma 9.6.

Lemma 12.1. LetX be a Noetherian scheme. LetF be a coherent sheaf onX . Suppose
that Supp(F) = Z ∪ Z ′ with Z , Z ′ closed. Then there exists a short exact sequence of
coherent sheaves

0→ G′ → F → G → 0
with Supp(G′) ⊂ Z ′ and Supp(G) ⊂ Z.
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Proof. Let I ⊂ OX be the sheaf of ideals defining the reduced induced closed sub-
scheme structure onZ , see Schemes, Lemma 12.4. Consider the subsheaves G′

n = InF and
the quotients Gn = F/InF . For each n we have a short exact sequence

0→ G′
n → F → Gn → 0

For every point x of Z ′ \ Z we have Ix = OX,x and hence Gn,x = 0. Thus we see that
Supp(Gn) ⊂ Z. Note that X \ Z ′ is a Noetherian scheme. Hence by Lemma 10.2 there
exists an n such that G′

n|X\Z′ = InF|X\Z′ = 0. For such an n we see that Supp(G′
n) ⊂

Z ′. Thus setting G′ = G′
n and G = Gn works. �

Lemma 12.2. Let X be a Noetherian scheme. Let i : Z → X be an integral closed
subscheme. Let ξ ∈ Z be the generic point. Let F be a coherent sheaf on X . Assume that
Fξ is annihilated by mξ . Then there exist an integer r ≥ 0 and a coherent sheaf of ideals
I ⊂ OZ and an injective map of coherent sheaves

i∗
(
I⊕r)→ F

which is an isomorphism in a neighbourhood of ξ.

Proof. Let J ⊂ OX be the ideal sheaf of Z. LetF ′ ⊂ F be the subsheaf of local sec-
tions of F which are annihilated by J . It is a quasi-coherent sheaf by Properties, Lemma
24.2. Moreover, F ′

ξ = Fξ because Jξ = mξ and part (3) of Properties, Lemma 24.2. By
Lemma 9.5 we see that F ′ → F induces an isomorphism in a neighbourhood of ξ. Hence
we may replace F by F ′ and assume that F is annihilated by J .

Assume JF = 0. By Lemma 9.8 we can write F = i∗G for some coherent sheaf G on Z.
Suppose we can find a morphism I⊕r → G which is an isomorphism in a neighbourhood
of the generic point ξ of Z. Then applying i∗ (which is left exact) we get the result of the
lemma. Hence we have reduced to the case X = Z.

SupposeZ = X is an integral Noetherian scheme with generic point ξ. Note thatOX,ξ =
κ(ξ) is the function field of X in this case. Since Fξ is a finite Oξ-module we see that
r = dimκ(ξ) Fξ is finite. Hence the sheaves O⊕r

X and F have isomorphic stalks at ξ. By
Lemma 9.6 there exists a nonempty open U ⊂ X and a morphism ψ : O⊕r

X |U → F|U
which is an isomorphism at ξ, and hence an isomorphism in a neighbourhood of ξ by
Lemma 9.5. By Schemes, Lemma 12.4 there exists a quasi-coherent sheaf of ideals I ⊂ OX
whose associated closed subscheme Z ⊂ X is the complement of U . By Lemma 10.5 there
exists an n ≥ 0 and a morphism In(O⊕r

X ) → F which recovers our ψ over U . Since
In(O⊕r

X ) = (In)⊕r we get a map as in the lemma. It is injective becauseX is integral and
it is injective at the generic point of X (easy proof omitted). �

Lemma 12.3. Let X be a Noetherian scheme. Let F be a coherent sheaf on X . There
exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that for each j = 1, . . . ,m there exist an integral closed
subscheme Zj ⊂ X and a nonzero coherent sheaf of ideals Ij ⊂ OZj such that

Fj/Fj−1 ∼= (Zj → X)∗Ij

Proof. Consider the collection

T =
{
Z ⊂ X closed such that there exists a coherent sheaf F

with Supp(F) = Z for which the lemma is wrong

}
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We are trying to show that T is empty. If not, then becauseX is Noetherian we can choose
a minimal element Z ∈ T . This means that there exists a coherent sheaf F on X whose
support is Z and for which the lemma does not hold. Clearly Z 6= ∅ since the only sheaf
whose support is empty is the zero sheaf for which the lemma does hold (with m = 0).
If Z is not irreducible, then we can write Z = Z1 ∪ Z2 with Z1, Z2 closed and strictly
smaller than Z. Then we can apply Lemma 12.1 to get a short exact sequence of coherent
sheaves

0→ G1 → F → G2 → 0
with Supp(Gi) ⊂ Zi. By minimality of Z each of Gi has a filtration as in the statement
of the lemma. By considering the induced filtration on F we arrive at a contradiction.
Hence we conclude that Z is irreducible.
Suppose Z is irreducible. Let J be the sheaf of ideals cutting out the reduced induced
closed subscheme structure of Z , see Schemes, Lemma 12.4. By Lemma 10.2 we see there
exists an n ≥ 0 such that J nF = 0. Hence we obtain a filtration

0 = J nF ⊂ J n−1F ⊂ . . . ⊂ JF ⊂ F
each of whose successive subquotients is annihilated by J . Hence if each of these subquo-
tients has a filtration as in the statement of the lemma then also F does. In other words
we may assume that J does annihilate F .
In the case where Z is irreducible and JF = 0 we can apply Lemma 12.2. This gives a
short exact sequence

0→ i∗(I⊕r)→ F → Q→ 0
whereQ is defined as the quotient. SinceQ is zero in a neighbourhood of ξ by the lemma
just cited we see that the support ofQ is strictly smaller than Z. Hence we see thatQ has
a filtration of the desired type by minimality of Z. But then clearly F does too, which is
our final contradiction. �

Lemma 12.4. LetX be a Noetherian scheme. LetP be a property of coherent sheaves
on X . Assume

(1) For any short exact sequence of coherent sheaves
0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) For every integral closed subscheme Z ⊂ X and every quasi-coherent sheaf of

ideals I ⊂ OZ we have P for i∗I .
Then property P holds for every coherent sheaf on X .

Proof. First note that if F is a coherent sheaf with a filtration
0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P , then so does F . This
follows from the property (1) for P . On the other hand, by Lemma 12.3 we can filter any
F with successive subquotients as in (2). Hence the lemma follows. �

Lemma 12.5. Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible closed
subset with generic point ξ. Let P be a property of coherent sheaves on X with support
contained in Z0 such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.
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(2) For every integral closed subscheme Z ⊂ Z0 ⊂ X , Z 6= Z0 and every quasi-
coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I .

(3) There exists some coherent sheaf G on X such that
(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ ,
(c) dimκ(ξ) Gξ = 1, and
(d) property P holds for G.

Then property P holds for every coherent sheaf F on X whose support is contained in
Z0.

Proof. First note that if F is a coherent sheaf with support contained in Z0 with a
filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that each of Fi/Fi−1 has property P , then so does F . Or,
if F has property P and all but one of the Fi/Fi−1 has property P then so does the last
one. This follows from assumption (1).
As a first application we conclude that any coherent sheaf whose support is strictly con-
tained in Z0 has property P . Namely, such a sheaf has a filtration (see Lemma 12.3) whose
subquotients have property P according to (2).
Let G be as in (3). By Lemma 12.2 there exist a sheaf of ideals I on Z0, an integer r ≥ 1,
and a short exact sequence

0→ ((Z0 → X)∗I)⊕r → G → Q→ 0
where the support of Q is strictly contained in Z0. By (3)(c) we see that r = 1. Since Q
has property P too we conclude that (Z0 → X)∗I has property P .
Next, suppose that I ′ 6= 0 is another quasi-coherent sheaf of ideals on Z0. Then we can
consider the intersection I ′′ = I ′ ∩ I and we get two short exact sequences

0→ (Z0 → X)∗I ′′ → (Z0 → X)∗I → Q → 0
and

0→ (Z0 → X)∗I ′′ → (Z0 → X)∗I ′ → Q′ → 0.
Note that the support of the coherent sheavesQ andQ′ are strictly contained inZ0. Hence
Q and Q′ have property P (see above). Hence we conclude using (1) that (Z0 → X)∗I ′′

and (Z0 → X)∗I ′ both have P as well.
The final step of the proof is to note that any coherent sheaf F on X whose support
is contained in Z0 has a filtration (see Lemma 12.3 again) whose subquotients all have
property P by what we just said. �

Lemma 12.6. LetX be a Noetherian scheme. LetP be a property of coherent sheaves
on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.

(2) For every integral closed subscheme Z ⊂ X with generic point ξ there exists
some coherent sheaf G such that
(a) Supp(G) = Z ,
(b) Gξ is annihilated by mξ ,
(c) dimκ(ξ) Gξ = 1, and
(d) property P holds for G.
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Then property P holds for every coherent sheaf on X .

Proof. According to Lemma 12.4 it suffices to show that for all integral closed sub-
schemes Z ⊂ X and all quasi-coherent ideal sheaves I ⊂ OZ we have P for (Z → X)∗I .
If this fails, then since X is Noetherian there is a minimal integral closed subscheme
Z0 ⊂ X such that P fails for (Z0 → X)∗I0 for some quasi-coherent sheaf of ideals
I0 ⊂ OZ0 , but P does hold for (Z → X)∗I for all integral closed subschemes Z ⊂ Z0,
Z 6= Z0 and quasi-coherent ideal sheaves I ⊂ OZ . Since we have the existence of G for
Z0 by part (2), according to Lemma 12.5 this cannot happen. �

Lemma 12.7. Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible closed
subset with generic point ξ. Let P be a property of coherent sheaves on X such that

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every integral closed subscheme Z ⊂ Z0 ⊂ X , Z 6= Z0 and every quasi-

coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I .
(4) There exists some coherent sheaf G such that

(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ , and
(c) for every quasi-coherent sheaf of ideals J ⊂ OX such that Jξ = OX,ξ

there exists a quasi-coherent subsheaf G′ ⊂ JG with G′
ξ = Gξ and such

that P holds for G′.
Then property P holds for every coherent sheaf F on X whose support is contained in
Z0.

Proof. Note that if F is a coherent sheaf with a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P , then so does F . This
follows from assumption (1).

As a first application we conclude that any coherent sheaf whose support is strictly con-
tained in Z0 has property P . Namely, such a sheaf has a filtration (see Lemma 12.3) whose
subquotients have property P according to (3).

Let us denote i : Z0 → X the closed immersion. Consider a coherent sheaf G as in (4). By
Lemma 12.2 there exists a sheaf of ideals I on Z0 and a short exact sequence

0→ i∗I⊕r → G → Q→ 0

where the support of Q is strictly contained in Z0. In particular r > 0 and I is nonzero
because the support of G is equal to Z0. Let I ′ ⊂ I be any nonzero quasi-coherent sheaf
of ideals on Z0 contained in I . Then we also get a short exact sequence

0→ i∗(I ′)⊕r → G → Q′ → 0

whereQ′ has support properly contained in Z0. Let J ⊂ OX be a quasi-coherent sheaf of
ideals cutting out the support of Q′ (for example the ideal corresponding to the reduced
induced closed subscheme structure on the support of Q′). Then Jξ = OX,ξ . By Lemma
10.2 we see that J nQ′ = 0 for some n. Hence J nG ⊂ i∗(I ′)⊕r. By assumption (4)(c)
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of the lemma we see there exists a quasi-coherent subsheaf G′ ⊂ J nG with G′
ξ = Gξ for

which property P holds. Hence we get a short exact sequence

0→ G′ → i∗(I ′)⊕r → Q′′ → 0

whereQ′′ has support properly contained inZ0. Thus by our initial remarks and property
(1) of the lemma we conclude that i∗(I ′)⊕r satisfies P . Hence we see that i∗I ′ satisfies
P by (2). Finally, for an arbitrary quasi-coherent sheaf of ideals I ′′ ⊂ OZ0 we can set
I ′ = I ′′ ∩ I and we get a short exact sequence

0→ i∗(I ′)→ i∗(I ′′)→ Q′′′ → 0

where Q′′′ has support properly contained in Z0. Hence we conclude that property P
holds for i∗I ′′ as well.

The final step of the proof is to note that any coherent sheaf F on X whose support
is contained in Z0 has a filtration (see Lemma 12.3 again) whose subquotients all have
property P by what we just said. �

Lemma 12.8. LetX be a Noetherian scheme. Let P be a property of coherent sheaves
on X such that

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every integral closed subscheme Z ⊂ X with generic point ξ there exists

some coherent sheaf G such that
(a) Supp(G) = Z ,
(b) Gξ is annihilated by mξ , and
(c) for every quasi-coherent sheaf of ideals J ⊂ OX such that Jξ = OX,ξ

there exists a quasi-coherent subsheaf G′ ⊂ JG with G′
ξ = Gξ and such

that P holds for G′.
Then property P holds for every coherent sheaf on X .

Proof. Follows from Lemma 12.7 in exactly the same way that Lemma 12.6 follows
from Lemma 12.5. �

13. Finite morphisms and affines

In this section we use the results of the preceding sections to show that the image of a
Noetherian affine scheme under a finite morphism is affine. We will see later that this
result holds more generally (see Limits, Lemma 11.1 and Proposition 11.2).

Lemma 13.1. Let f : Y → X be a morphism of schemes. Assume f is finite, surjective
andX locally Noetherian. Let Z ⊂ X be an integral closed subscheme with generic point
ξ. Then there exists a coherent sheaf F on Y such that the support of f∗F is equal to Z
and (f∗F)ξ is annihilated by mξ .

Proof. Note that Y is locally Noetherian by Morphisms, Lemma 15.6. Because f is
surjective the fibre Yξ is not empty. Pick ξ′ ∈ Y mapping to ξ. Let Z ′ = {ξ′}. We may
think ofZ ′ ⊂ Y as a reduced closed subscheme, see Schemes, Lemma 12.4. Hence the sheaf
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F = (Z ′ → Y )∗OZ′ is a coherent sheaf on Y (see Lemma 9.9). Look at the commutative
diagram

Z ′
i′
//

f ′

��

Y

f

��
Z

i // X

We see that f∗F = i∗f
′
∗OZ′ . Hence the stalk of f∗F at ξ is the stalk of f ′

∗OZ′ at ξ.
Note that since Z ′ is integral with generic point ξ′ we have that ξ′ is the only point of
Z ′ lying over ξ, see Algebra, Lemmas 36.3 and 36.20. Hence the stalk of f ′

∗OZ′ at ξ equal
OZ′,ξ′ = κ(ξ′). In particular the stalk of f∗F at ξ is not zero. This combined with the
fact that f∗F is of the form i∗f

′
∗(something) implies the lemma. �

Lemma 13.2. Let f : Y → X be a morphism of schemes. Let F be a quasi-coherent
sheaf on Y . Let I be a quasi-coherent sheaf of ideals on X . If the morphism f is affine
then If∗F = f∗(f−1IF).

Proof. The notation means the following. Since f−1 is an exact functor we see that
f−1I is a sheaf of ideals of f−1OX . Via the map f ] : f−1OX → OY this acts on F .
Then f−1IF is the subsheaf generated by sums of local sections of the form aswhere a is
a local section of f−1I and s is a local section of F . It is a quasi-coherentOY -submodule
of F because it is also the image of a natural map f∗I ⊗OY

F → F .

Having said this the proof is straightforward. Namely, the question is local and hence we
may assume X is affine. Since f is affine we see that Y is affine too. Thus we may write
Y = Spec(B), X = Spec(A), F = M̃ , and I = Ĩ . The assertion of the lemma in this
case boils down to the statement that

I(MA) = ((IB)M)A
where MA indicates the A-module associated to the B-module M . �

Lemma 13.3. Let f : Y → X be a morphism of schemes. Assume
(1) f finite,
(2) f surjective,
(3) Y affine, and
(4) X Noetherian.

Then X is affine.

Proof. We will prove that under the assumptions of the lemma for any coherent
OX -module F we have H1(X,F) = 0. This will in particular imply that H1(X, I) = 0
for every quasi-coherent sheaf of ideals ofOX . Then it follows thatX is affine from either
Lemma 3.1 or Lemma 3.2.

Let P be the property of coherent sheaves F on X defined by the rule

P(F)⇔ H1(X,F) = 0.
We are going to apply Lemma 12.8. Thus we have to verify (1), (2) and (3) of that lemma for
P . Property (1) follows from the long exact cohomology sequence associated to a short
exact sequence of sheaves. Property (2) follows since H1(X,−) is an additive functor.
To see (3) let Z ⊂ X be an integral closed subscheme with generic point ξ. Let F be a
coherent sheaf on Y such that the support of f∗F is equal to Z and (f∗F)ξ is annihilated
by mξ , see Lemma 13.1. We claim that taking G = f∗F works. We only have to verify
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part (3)(c) of Lemma 12.8. Hence assume that J ⊂ OX is a quasi-coherent sheaf of ideals
such that Jξ = OX,ξ . A finite morphism is affine hence by Lemma 13.2 we see that JG =
f∗(f−1JF). Also, as pointed out in the proof of Lemma 13.2 the sheaf f−1JF is a quasi-
coherent OY -module. Since Y is affine we see that H1(Y, f−1JF) = 0, see Lemma 2.2.
Since f is finite, hence affine, we see that

H1(X,JG) = H1(X, f∗(f−1JF)) = H1(Y, f−1JF) = 0

by Lemma 2.4. Hence the quasi-coherent subsheaf G′ = JG satisfies P . This verifies
property (3)(c) of Lemma 12.8 as desired. �

14. Coherent sheaves on Proj, I

In this section we discuss coherent sheaves on Proj(A) whereA is a Noetherian graded ring
generated byA1 overA0. In the next section we discuss what happens ifA is not generated
by degree 1 elements. First, we formulate an all-in-one result for projective space over a
Noetherian ring.

Lemma 14.1. LetR be a Noetherian ring. Let n ≥ 0 be an integer. For every coherent
sheaf F on Pn

R we have the following:
(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕

j=1,...,r
OPn

R
(dj) −→ F .

(2) We have Hi(Pn
R,F) = 0 unless 0 ≤ i ≤ n.

(3) For any i the cohomology group Hi(Pn
R,F) is a finite R-module.

(4) If i > 0, then Hi(Pn
R,F(d)) = 0 for all d large enough.

(5) For any k ∈ Z the graded R[T0, . . . , Tn]-module⊕
d≥k

H0(Pn
R,F(d))

is a finite R[T0, . . . , Tn]-module.

Proof. We will use that OPn
R

(1) is an ample invertible sheaf on the scheme Pn
R.

This follows directly from the definition since Pn
R covered by the standard affine opens

D+(Ti). Hence by Properties, Proposition 26.13 every finite type quasi-coherent OPn
R

-
module is a quotient of a finite direct sum of tensor powers ofOPn

R
(1). On the other hand

coherent sheaves and finite type quasi-coherent sheaves are the same thing on projective
space over R by Lemma 9.1. Thus we see (1).

Projective n-space Pn
R is covered by n + 1 affines, namely the standard opens D+(Ti),

i = 0, . . . , n, see Constructions, Lemma 13.3. Hence we see that for any quasi-coherent
sheaf F on Pn

R we have Hi(Pn
R,F) = 0 for i ≥ n+ 1, see Lemma 4.2. Hence (2) holds.

Let us prove (3) and (4) simultaneously for all coherent sheaves on Pn
R by descending

induction on i. Clearly the result holds for i ≥ n+ 1 by (2). Suppose we know the result
for i + 1 and we want to show the result for i. (If i = 0, then part (4) is vacuous.) Let F
be a coherent sheaf on Pn

R. Choose a surjection as in (1) and denote G the kernel so that
we have a short exact sequence

0→ G →
⊕

j=1,...,r
OPn

R
(dj)→ F → 0
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By Lemma 9.2 we see that G is coherent. The long exact cohomology sequence gives an
exact sequence

Hi(Pn
R,
⊕

j=1,...,r
OPn

R
(dj))→ Hi(Pn

R,F)→ Hi+1(Pn
R,G).

By induction assumption the rightR-module is finite and by Lemma 8.1 the leftR-module
is finite. Since R is Noetherian it follows immediately that Hi(Pn

R,F) is a finite R-
module. This proves the induction step for assertion (3). SinceOPn

R
(d) is invertible we see

that twisting on Pn
R is an exact functor (since you get it by tensoring with an invertible

sheaf, see Constructions, Definition 10.1). This means that for all d ∈ Z the sequence

0→ G(d)→
⊕

j=1,...,r
OPn

R
(dj + d)→ F(d)→ 0

is short exact. The resulting cohomology sequence is

Hi(Pn
R,
⊕

j=1,...,r
OPn

R
(dj + d))→ Hi(Pn

R,F(d))→ Hi+1(Pn
R,G(d)).

By induction assumption we see the module on the right is zero for d � 0 and by the
computation in Lemma 8.1 the module on the left is zero as soon as d ≥ −min{dj} and
i ≥ 1. Hence the induction step for assertion (4). This concludes the proof of (3) and (4).
In order to prove (5) note that for all sufficiently large d the map

H0(Pn
R,
⊕

j=1,...,r
OPn

R
(dj + d))→ H0(Pn

R,F(d))

is surjective by the vanishing ofH1(Pn
R,G(d)) we just proved. In other words, the module

Mk =
⊕

d≥k
H0(Pn

R,F(d))

is for k large enough a quotient of the corresponding module

Nk =
⊕

d≥k
H0(Pn

R,
⊕

j=1,...,r
OPn

R
(dj + d))

When k is sufficiently small (e.g. k < −dj for all j) then

Nk =
⊕

j=1,...,r
R[T0, . . . , Tn](dj)

by our computations in Section 8. In particular it is finitely generated. Suppose k ∈ Z is
arbitrary. Choose k− � k � k+. Consider the diagram

Nk− Nk+

��

oo

Mk Mk+
oo

where the vertical arrow is the surjective map above and the horizontal arrows are the
obvious inclusion maps. By what was said above we see that Nk− is a finitely generated
R[T0, . . . , Tn]-module. Hence Nk+ is a finitely generated R[T0, . . . , Tn]-module because
it is a submodule of a finitely generated module and the ring R[T0, . . . , Tn] is Noether-
ian. Since the vertical arrow is surjective we conclude that Mk+ is a finitely generated
R[T0, . . . , Tn]-module. The quotient Mk/Mk+ is finite as an R-module since it is a finite
direct sum of the finite R-modules H0(Pn

R,F(d)) for k ≤ d < k+. Note that we use
part (3) for i = 0 here. Hence Mk/Mk+ is a fortiori a finite R[T0, . . . , Tn]-module. In
other words, we have sandwiched Mk between two finite R[T0, . . . , Tn]-modules and we
win. �
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Lemma 14.2. LetA be a graded ring such thatA0 is Noetherian andA is generated by
finitely many elements ofA1 overA0. SetX = Proj(A). ThenX is a Noetherian scheme.
Let F be a coherentOX -module.

(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

OX(dj) −→ F .

(2) For any p the cohomology group Hp(X,F) is a finite A0-module.
(3) If p > 0, then Hp(X,F(d)) = 0 for all d large enough.
(4) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F(d))

is a finite A-module.

Proof. By assumption there exists a surjection of graded A0-algebras

A0[T0, . . . , Tn] −→ A

where deg(Tj) = 1 for j = 0, . . . , n. By Constructions, Lemma 11.5 this defines a closed
immersion i : X → Pn

A0
such that i∗OPn

A0
(1) = OX(1). In particular, X is Noetherian

as a closed subscheme of the Noetherian scheme Pn
A0

. We claim that the results of the
lemma for F follow from the corresponding results of Lemma 14.1 for the coherent sheaf
i∗F (Lemma 9.8) on Pn

A0
. For example, by this lemma there exists a surjection⊕

j=1,...,r
OPn

A0
(dj) −→ i∗F .

By adjunction this corresponds to a map
⊕

j=1,...,rOX(dj) −→ F which is surjective as
well. The statements on cohomology follow from the fact thatHp(X,F(d)) = Hp(Pn

A0
, i∗F(d))

by Lemma 2.4. �

Lemma 14.3. Let A be a graded ring such that A0 is Noetherian and A is generated
by finitely many elements of A1 over A0. Let M be a finite graded A-module. Set X =
Proj(A) and let M̃ be the quasi-coherentOX -module on X associated to M . The maps

Mn −→ Γ(X, M̃(n))
from Constructions, Lemma 10.3 are isomorphisms for all sufficiently large n.

Proof. Because M is a finite A-module we see that M̃ is a finite type OX -module,
i.e., a coherent OX -module. Set N =

⊕
n∈Z Γ(X, M̃(n)). We have to show that the

map M → N of graded A-modules is an isomorphism in all sufficiently large degrees. By
Properties, Lemma 28.5 we have a canonical isomorphism Ñ → M̃ such that the induced
maps Nn → Nn = Γ(X, M̃(n)) are the identity maps. Thus we have maps M̃ → Ñ →
M̃ such that for all n the diagram

Mn

��

// Nn

��
Γ(X, M̃(n)) // Γ(X, Ñ(n))

∼= // Γ(X, M̃(n))

is commutative. This means that the composition

Mn → Γ(X, M̃(n))→ Γ(X, Ñ(n))→ Γ(X, M̃(n))
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is equal to the canonical map Mn → Γ(X, M̃(n)). Clearly this implies that the com-
position M̃ → Ñ → M̃ is the identity. Hence M̃ → Ñ is an isomorphism. Let
K = Ker(M → N) and Q = Coker(M → N). Recall that the functor M 7→ M̃ is
exact, see Constructions, Lemma 8.4. Hence we see that K̃ = 0 and Q̃ = 0. Recall that
A is a Noetherian ring, M is a finitely generated A-module, and N is a graded A-module
such that N ′ =

⊕
n≥0 Nn is finitely generated by the last part of Lemma 14.2. Hence

K ′ =
⊕

n≥0 Kn and Q′ =
⊕

n≥0 Qn are finite A-modules. Observe that Q̃ = Q̃′

and K̃ = K̃ ′. Thus to finish the proof it suffices to show that a finite A-module K
with K̃ = 0 has only finitely many nonzero homogeneous parts Kd with d ≥ 0. To
do this, let x1, . . . , xr ∈ K be homogeneous generators say sitting in degrees d1, . . . , dr.
Let f1, . . . , fn ∈ A1 be elements generating A over A0. For each i and j there exists an
nij ≥ 0 such that fniji xj = 0 in Kdj+nij : if not then xi/fdii ∈ K(fi) would not be zero,
i.e., K̃ would not be zero. Then we see that Kd is zero for d > maxj(dj +

∑
i nij) as

every element ofKd is a sum of terms where each term is a monomials in the fi times one
of the xj of total degree d. �

Let A be a graded ring such that A0 is Noetherian and A is generated by finitely many
elements of A1 over A0. Recall that A+ =

⊕
n>0 An is the irrelevant ideal. Let M be a

graded A-module. Recall that M is an A+-power torsion module if for all x ∈ M there
is an n ≥ 1 such that (A+)nx = 0, see More on Algebra, Definition 88.1. If M is finitely
generated, then we see that this is equivalent to Mn = 0 for n � 0. Sometimes A+-
power torsion modules are called torsion modules. Sometimes a graded A-module M is
called torsion free if x ∈ M with (A+)nx = 0, n > 0 implies x = 0. Denote ModA the
category of gradedA-modules, ModfgA the full subcategory of finitely generated ones, and
ModfgA,torsion the full subcategory of modules M such that Mn = 0 for n� 0.

Proposition 14.4. Let A be a graded ring such that A0 is Noetherian and A is gen-
erated by finitely many elements of A1 over A0. Set X = Proj(A). The functor M 7→ M̃
induces an equivalence

ModfgA /ModfgA,torsion −→ Coh(OX)

whose quasi-inverse is given by F 7−→
⊕

n≥0 Γ(X,F(n)).

Proof. The subcategory ModfgA,torsion is a Serre subcategory of ModfgA , see Homol-
ogy, Definition 10.1. This is clear from the description of objects given above but it also
follows from More on Algebra, Lemma 88.5. Hence the quotient category on the left of
the arrow is defined in Homology, Lemma 10.6. To define the functor of the proposition,
it suffices to show that the functor M 7→ M̃ sends torsion modules to 0. This is clear
because for any f ∈ A+ homogeneous the module Mf is zero and hence the value M(f)

of M̃ on D+(f) is zero too.

By Lemma 14.2 the proposed quasi-inverse makes sense. Namely, the lemma shows that
F 7−→

⊕
n≥0 Γ(X,F(n)) is a functor Coh(OX)→ ModfgA which we can compose with

the quotient functor ModfgA →ModfgA /ModfgA,torsion.

By Lemma 14.3 the composite left to right to left is isomorphic to the identity functor.

Finally, let F be a coherentOX -module. SetM =
⊕

n∈Z Γ(X,F(n)) viewed as a graded
A-module, so that our functor sends F to M≥0 =

⊕
n≥0 Mn. By Properties, Lemma 28.5
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the canonical map M̃ → F is an isomorphism. Since the inclusion map M≥0 → M

defines an isomorphism M̃≥0 → M̃ we conclude that the composite right to left to right
is isomorphic to the identity functor as well. �

15. Coherent sheaves on Proj, II

In this section we discuss coherent sheaves on Proj(A) where A is a Noetherian graded
ring. Most of the results will be deduced by sleight of hand from the corresponding result
in the previous section where we discussed what happens if A is generated by degree 1
elements.

Lemma 15.1. Let A be a Noetherian graded ring. Set X = Proj(A). Then X is a
Noetherian scheme. Let F be a coherentOX -module.

(1) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

OX(dj) −→ F .

(2) For any p the cohomology group Hp(X,F) is a finite A0-module.
(3) If p > 0, then Hp(X,F(d)) = 0 for all d large enough.
(4) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F(d))

is a finite A-module.

Proof. We will prove this by reducing the statement to Lemma 14.2. By Algebra,
Lemmas 58.2 and 58.1 the ring A0 is Noetherian and A is generated over A0 by finitely
many elements f1, . . . , fr homogeneous of positive degree. Let d be a sufficiently divisible
integer. Set A′ = A(d) with notation as in Algebra, Section 56. Then A′ is generated over
A′

0 = A0 by elements of degree 1, see Algebra, Lemma 56.2. Thus Lemma 14.2 applies to
X ′ = Proj(A′).

By Constructions, Lemma 11.8 there exist an isomorphism of schemes i : X → X ′ and
isomorphisms OX(nd) → i∗OX′(n) compatible with the map A′ → A and the maps
An → H0(X,OX(n)) and A′

n → H0(X ′,OX′(n)). Thus Lemma 14.2 implies X is
Noetherian and that (1) and (2) hold. To see (3) and (4) we can use that for any fixed k, p,
and q we have⊕

dn+q≥k
Hp(X,F(dn+ q)) =

⊕
dn+q≥k

Hp(X ′, (i∗F(q))(n)

by the compatibilities above. If p > 0, we have the vanishing of the right hand side for
k depending on q large enough by Lemma 14.2. Since there are only a finite number of
congruence classes of integers modulo d, we see that (3) holds forF onX . If p = 0, then we
have that the right hand side is a finite A′-module by Lemma 14.2. Using the finiteness of
congruence classes once more, we find that

⊕
n≥kH

0(X,F(n)) is a finiteA′-module too.
Since theA′-module structure comes from theA-module structure (by the compatibilities
mentioned above), we conclude it is finite as an A-module as well. �

Lemma 15.2. Let A be a Noetherian graded ring and let d be the lcm of generators
of A over A0. Let M be a finite graded A-module. Set X = Proj(A) and let M̃ be the
quasi-coherentOX -module on X associated to M . Let k ∈ Z.

(1) N ′ =
⊕

n≥kH
0(X, M̃(n)) is a finite A-module,
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(2) N =
⊕

n≥kH
0(X, M̃(n)) is a finite A-module,

(3) there is a canonical map N → N ′,
(4) if k is small enough there is a canonical map M → N ′,
(5) the map Mn → N ′

n is an isomorphism for n� 0,
(6) Nn → N ′

n is an isomorphism for d|n.

Proof. The map N → N ′ in (3) comes from Constructions, Equation (10.1.5) by
taking global sections.

By Constructions, Equation (10.1.6) there is a map of gradedA-modulesM →
⊕

n∈Z H
0(X, M̃(n)).

If the generators of M sit in degrees ≥ k, then the image is contained in the submodule
N ′ ⊂

⊕
n∈Z H

0(X, M̃(n)) and we get the map in (4).
By Algebra, Lemmas 58.2 and 58.1 the ringA0 is Noetherian andA is generated overA0 by
finitely many elements f1, . . . , fr homogeneous of positive degree. Let d = lcm(deg(fi)).
Then we see that (6) holds for example by Constructions, Lemma 10.4.

Because M is a finite A-module we see that M̃ is a finite typeOX -module, i.e., a coherent
OX -module. Thus part (2) follows from Lemma 15.1.
We will deduce (1) from (2) using a trick. For q ∈ {0, . . . , d− 1} write

qN =
⊕

n+q≥k
H0(X, M̃(q)(n))

By part (2) these are finite A-modules. The Noetherian ring A is finite over A(d) =⊕
n≥0 Adn, because it is generated by fi over A(d) and fdi ∈ A(d). Hence qN is a fi-

nite A(d)-module. Moreover, A(d) is Noetherian (follows from Algebra, Lemma 57.9). It
follows that theA(d)-submodule qN (d) =

⊕
n∈Z

qNdn is a finite module overA(d). Using
the isomorphisms ˜M(dn+ q) = M̃(q)(dn) we can write

N ′ =
⊕

q∈{0,...,d−1}

⊕
dn+q≥k

H0(X, M̃(q)(dn)) =
⊕

q∈{0,...,d−1}
qN (d)

Thus N ′ is finite over A(d) and a fortiori finite over A. Thus (1) is true.

Let K be a finite A-module such that K̃ = 0. We claim that Kn = 0 for d|n and n �
0. Arguing as above we see that K(d) is a finite A(d)-module. Let x1, . . . , xm ∈ K be
homogeneous generators of K(d) over A(d), say sitting in degrees d1, . . . , dm with d|dj .
For each i and j there exists an nij ≥ 0 such that fniji xj = 0 in Kdj+nij : if not then
xj/f

di/ deg(fi)
i ∈ K(fi) would not be zero, i.e., K̃ would not be zero. Here we use that

deg(fi)|d|dj for all i, j. We conclude that Kn is zero for n with d|n and n > maxj(dj +∑
i nij deg(fi)) as every element ofKn is a sum of terms where each term is a monomials

in the fi times one of the xj of total degree n.
To finish the proof, we have to show that M → N ′ is an isomorphism in all sufficiently
large degrees. The map N → N ′ induces an isomorphism Ñ → Ñ ′ because on the affine
opens D+(fi) = D+(fdi ) the corresponding modules are isomorphic: N(fi)

∼= N(fd
i

)
∼=

N ′
(fd
i

)
∼= N ′

(fi) by property (6). By Properties, Lemma 28.5 we have a canonical isomor-

phism Ñ → M̃ . The composition Ñ → M̃ → Ñ ′ is the isomorphism above (proof
omitted; hint: look on standard affine opens to check this). Thus the map M → N ′ in-
duces an isomorphism M̃ → Ñ ′. Let K = Ker(M → N ′) and Q = Coker(M → N ′).
Recall that the functor M 7→ M̃ is exact, see Constructions, Lemma 8.4. Hence we see
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that K̃ = 0 and Q̃ = 0. By the result of the previous paragraph we see that Kn = 0 and
Qn = 0 for d|n and n � 0. At this point we finally see the advantage of using N ′ over
N : the functor M  N ′ is compatible with shifts (immediate from the construction).
Thus, repeating the whole argument with M replaced by M(q) we find that Kn = 0 and
Qn = 0 for n ≡ q mod d and n � 0. Since there are only finitely many congruence
classes modulo n the proof is finished. �

LetA be a Noetherian graded ring. Recall thatA+ =
⊕

n>0 An is the irrelevant ideal. By
Algebra, Lemmas 58.2 and 58.1 the ring A0 is Noetherian and A is generated over A0 by
finitely many elements f1, . . . , fr homogeneous of positive degree. Let d = lcm(deg(fi)).
Let M be a graded A-module. In this situation we say a homogeneous element x ∈ M is
irrelevant2 if

(A+x)nd = 0 for all n� 0
If x ∈M is homogeneous and irrelevant and f ∈ A is homogeneous, then fx is irrelevant
too. Hence the set of irrelevant elements generate a graded submodule Mirrelevant ⊂
M . We will say M is irrelevant if every homogeneous element of M is irrelevant, i.e.,
if Mirrelevant = M . If M is finitely generated, then we see that this is equivalent to
Mnd = 0 for n � 0. Denote ModA the category of graded A-modules, ModfgA the
full subcategory of finitely generated ones, and ModfgA,irrelevant the full subcategory of
irrelevant modules.

Proposition 15.3. LetA be a Noetherian graded ring. SetX = Proj(A). The functor
M 7→ M̃ induces an equivalence

ModfgA /ModfgA,irrelevant −→ Coh(OX)

whose quasi-inverse is given by F 7−→
⊕

n≥0 Γ(X,F(n)).

Proof. We urge the reader to read the proof in the case whereA is generated in degree
1 first, see Proposition 14.4. Let f1, . . . , fr ∈ A be homogeneous elements of positive
degree which generate A over A0. Let d be the lcm of the degrees di of fi. Let M be
a finite A-module. Let us show that M̃ is zero if and only if M is an irrelevant graded
A-module (as defined above the statement of the proposition). Namely, let x ∈ M be a
homogeneous element. Choose k ∈ Z sufficiently small and let N → N ′ and M → N ′

be as in Lemma 15.2. We may also pick l sufficiently large such that Mn → Nn is an
isomorphism for n ≥ l. If M̃ is zero, then N = 0. Thus for any f ∈ A+ homogeneous
with deg(f) + deg(x) = nd and nd > l we see that fx is zero because Nnd → N ′

nd and
Mnd → N ′

nd are isomorphisms. Hencex is irrelevant. Conversely, assumeM is irrelevant.
Then Mnd is zero for n� 0 (see discussion above proposition). Clearly this implies that
M(fi) = M(fd/ deg(fi)

i
) = 0, whence M̃ = 0 by construction.

It follows that the subcategory ModfgA,irrelevant is a Serre subcategory of ModfgA as the
kernel of the exact functor M 7→ M̃ , see Homology, Lemma 10.4 and Constructions,
Lemma 8.4. Hence the quotient category on the left of the arrow is defined in Homology,
Lemma 10.6. To define the functor of the proposition, it suffices to show that the functor
M 7→ M̃ sends irrelevant modules to 0 which we have shown above.

2This is nonstandard notation.
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By Lemma 15.1 the proposed quasi-inverse makes sense. Namely, the lemma shows that
F 7−→

⊕
n≥0 Γ(X,F(n)) is a functor Coh(OX)→ ModfgA which we can compose with

the quotient functor ModfgA →ModfgA /ModfgA,irrelevant.

By Lemma 15.2 the composite left to right to left is isomorphic to the identity functor.
Namely, let M be a finite graded A-module and let k ∈ Z sufficiently small and let N →
N ′ and M → N ′ be as in Lemma 15.2. Then the kernel and cokernel of M → N ′ are
nonzero in only finitely many degrees, hence are irrelevant. Moreover, the kernel and
cokernel of the mapN → N ′ are zero in all sufficiently large degrees divisible by d, hence
these are irrelevant modules too. Thus M → N ′ and N → N ′ are both isomorphisms in
the quotient category, as desired.
Finally, let F be a coherentOX -module. SetM =

⊕
n∈Z Γ(X,F(n)) viewed as a graded

A-module, so that our functor sends F to M≥0 =
⊕

n≥0 Mn. By Properties, Lemma 28.5
the canonical map M̃ → F is an isomorphism. Since the inclusion map M≥0 → M

defines an isomorphism M̃≥0 → M̃ we conclude that the composite right to left to right
is isomorphic to the identity functor as well. �

16. Higher direct images along projective morphisms

We first state and prove a result for when the base is affine and then we deduce some results
for projective morphisms.

Lemma 16.1. Let R be a Noetherian ring. Let X → Spec(R) be a proper morphism.
Let L be an ample invertible sheaf on X . Let F be a coherentOX -module.

(1) The graded ring A =
⊕

d≥0 H
0(X,L⊗d) is a finitely generated R-algebra.

(2) There exists an r ≥ 0 and d1, . . . , dr ∈ Z and a surjection⊕
j=1,...,r

L⊗dj −→ F .

(3) For any p the cohomology group Hp(X,F) is a finite R-module.
(4) If p > 0, then Hp(X,F ⊗OX

L⊗d) = 0 for all d large enough.
(5) For any k ∈ Z the graded A-module⊕

d≥k
H0(X,F ⊗OX

L⊗d)

is a finite A-module.
Proof. By Morphisms, Lemma 39.4 there exists a d > 0 and an immersion i : X →

Pn
R such that L⊗d ∼= i∗OPn

R
(1). Since X is proper over R the morphism i is a closed

immersion (Morphisms, Lemma 41.7). Thus we have Hi(X,G) = Hi(Pn
R, i∗G) for any

quasi-coherent sheaf G onX (by Lemma 2.4 and the fact that closed immersions are affine,
see Morphisms, Lemma 11.9). Moreover, if G is coherent, then i∗G is coherent as well
(Lemma 9.8). We will use these facts without further mention.
Proof of (1). Set S = R[T0, . . . , Tn] so that Pn

R = Proj(S). Observe thatA is an S-algebra
(but the ring map S → A is not a homomorphism of graded rings because Sn maps into
Adn). By the projection formula (Cohomology, Lemma 54.2) we have

i∗(L⊗nd+q) = i∗(L⊗q)⊗OPn
R

OPn
R

(n)

for all n ∈ Z. We conclude that
⊕

n≥0 And+q is a finite graded S-module by Lemma 14.1.
Since A =

⊕
q∈{0,...,d−1

⊕
n≥0 And+q we see that A is finite as an S-algebra, hence (1) is

true.
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Proof of (2). This follows from Properties, Proposition 26.13.

Proof of (3). Apply Lemma 14.1 and use Hp(X,F) = Hp(Pn
R, i∗F).

Proof of (4). Fix p > 0. By the projection formula we have

i∗(F ⊗OX
L⊗nd+q) = i∗(F ⊗OX

L⊗q)⊗OPn
R

OPn
R

(n)

for all n ∈ Z. By Lemma 14.1 we conclude thatHp(X,F ⊗Lnd+q) = 0 for n� 0. Since
there are only finitely many congruence classes of integers modulo d this proves (4).

Proof of (5). Fix an integer k. Set M =
⊕

n≥kH
0(X,F ⊗ L⊗n). Arguing as above we

conclude that
⊕

nd+q≥kMnd+q is a finite gradedS-module. SinceM =
⊕

q∈{0,...,d−1}
⊕

nd+q≥kMnd+q
we see that M is finite as an S-module. Since the S-module structure factors through the
ring map S → A, we conclude that M is finite as an A-module. �

Lemma 16.2. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. Let L be an invertible sheaf on X . Assume that

(1) S is Noetherian,
(2) f is proper,
(3) F is coherent, and
(4) L is relatively ample on X/S.

Then there exists an n0 such that for all n ≥ n0 we have

Rpf∗
(
F ⊗OX

L⊗n) = 0

for all p > 0.

Proof. Choose a finite affine open covering S =
⋃
Vj and set Xj = f−1(Vj).

Clearly, if we solve the question for each of the finitely many systems (Xj → Vj ,L|Xj ,F|Vj )
then the result follows. Thus we may assume S is affine. In this case the vanishing of
Rpf∗(F ⊗L⊗n) is equivalent to the vanishing ofHp(X,F ⊗L⊗n), see Lemma 4.6. Thus
the required vanishing follows from Lemma 16.1 (which applies because L is ample on X
by Morphisms, Lemma 39.4). �

Lemma 16.3. Let S be a locally Noetherian scheme. Let f : X → S be a locally
projective morphism. Let F be a coherent OX -module. Then Rif∗F is a coherent OS-
module for all i ≥ 0.

Proof. We first remark that a locally projective morphism is proper (Morphisms,
Lemma 43.5) and hence of finite type. In particular X is locally Noetherian (Morphisms,
Lemma 15.6) and hence the statement makes sense. Moreover, by Lemma 4.5 the sheaves
Rpf∗F are quasi-coherent.

Having said this the statement is local on S (for example by Cohomology, Lemma 7.4).
Hence we may assume S = Spec(R) is the spectrum of a Noetherian ring, and X is a
closed subscheme of Pn

R for some n, see Morphisms, Lemma 43.4. In this case, the sheaves
Rpf∗F are the quasi-coherent sheaves associated to theR-modulesHp(X,F), see Lemma
4.6. Hence it suffices to show that R-modules Hp(X,F) are finite R-modules (Lemma
9.1). This follows from Lemma 16.1 (because the restriction of OPn

R
(1) to X is ample on

X). �
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17. Ample invertible sheaves and cohomology

Here is a criterion for ampleness on proper schemes over affine bases in terms of vanishing
of cohomology after twisting.

Lemma 17.1. Let R be a Noetherian ring. Let f : X → Spec(R) be a proper mor-
phism. Let L be an invertibleOX -module. The following are equivalent

(1) L is ample on X (this is equivalent to many other things, see Properties, Propo-
sition 26.13 and Morphisms, Lemma 39.4),

(2) for every coherent OX -module F there exists an n0 ≥ 0 such that Hp(X,F ⊗
L⊗n) = 0 for all n ≥ n0 and p > 0, and

(3) for every quasi-coherent sheaf of ideals I ⊂ OX , there exists an n ≥ 1 such that
H1(X, I ⊗ L⊗n) = 0.

Proof. The implication (1)⇒ (2) follows from Lemma 16.1. The implication (2)⇒
(3) is trivial. The implication (3)⇒ (1) is Lemma 3.3. �

Lemma 17.2. Let R be a Noetherian ring. Let f : Y → X be a morphism of schemes
proper overR. LetL be an invertibleOX -module. Assume f is finite and surjective. Then
L is ample if and only if f∗L is ample.

Proof. The pullback of an ample invertible sheaf by a quasi-affine morphism is am-
ple, see Morphisms, Lemma 37.7. This proves one of the implications as a finite morphism
is affine by definition.

Assume that f∗L is ample. Let P be the following property on coherentOX -modules F :
there exists an n0 such that Hp(X,F ⊗ L⊗n) = 0 for all n ≥ n0 and p > 0. We will
prove that P holds for any coherent OX -module F , which implies L is ample by Lemma
17.1. We are going to apply Lemma 12.8. Thus we have to verify (1), (2) and (3) of that
lemma forP . Property (1) follows from the long exact cohomology sequence associated to
a short exact sequence of sheaves and the fact that tensoring with an invertible sheaf is an
exact functor. Property (2) follows since Hp(X,−) is an additive functor. To see (3) let
Z ⊂ X be an integral closed subscheme with generic point ξ. LetF be a coherent sheaf on
Y such that the support of f∗F is equal to Z and (f∗F)ξ is annihilated by mξ , see Lemma
13.1. We claim that taking G = f∗F works. We only have to verify part (3)(c) of Lemma
12.8. Hence assume that J ⊂ OX is a quasi-coherent sheaf of ideals such that Jξ = OX,ξ .
A finite morphism is affine hence by Lemma 13.2 we see that JG = f∗(f−1JF). Also, as
pointed out in the proof of Lemma 13.2 the sheaf f−1JF is a coherentOY -module. As L
is ample we see from Lemma 17.1 that there exists an n0 such that

Hp(Y, f−1JF ⊗OY
f∗L⊗n) = 0,

for n ≥ n0 and p > 0. Since f is finite, hence affine, we see that

Hp(X,JG ⊗OX
L⊗n) = Hp(X, f∗(f−1JF)⊗OX

L⊗n)
= Hp(X, f∗(f−1JF ⊗OY

f∗L⊗n))
= Hp(Y, f−1JF ⊗OY

f∗L⊗n) = 0

Here we have used the projection formula (Cohomology, Lemma 54.2) and Lemma 2.4.
Hence the quasi-coherent subsheaf G′ = JG satisfies P . This verifies property (3)(c) of
Lemma 12.8 as desired. �
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Cohomology is functorial. In particular, given a ringed spaceX , an invertibleOX -module
L, a section s ∈ Γ(X,L) we get maps

Hp(X,F) −→ Hp(X,F ⊗OX
L), ξ 7−→ sξ

induced by the map F → F ⊗OX
L which is multiplication by s. We set Γ∗(X,L) =⊕

n≥0 Γ(X,L⊗n) as a graded ring, see Modules, Definition 25.7. Given a sheaf of OX -
modules F and an integer p ≥ 0 we set

Hp
∗ (X,L,F) =

⊕
n∈Z

Hp(X,F ⊗OX
L⊗n)

This is a graded Γ∗(X,L)-module by the multiplication defined above. Warning: the
notation Hp

∗ (X,L,F) is nonstandard.

Lemma 17.3. LetX be a scheme. Let L be an invertible sheaf onX . Let s ∈ Γ(X,L).
Let F be a quasi-coherent OX -module. If X is quasi-compact and quasi-separated, the
canonical map

Hp
∗ (X,L,F)(s) −→ Hp(Xs,F)

which maps ξ/sn to s−nξ is an isomorphism.

Proof. Note that for p = 0 this is Properties, Lemma 17.2. We will prove the state-
ment using the induction principle (Lemma 4.1) where for U ⊂ X quasi-compact open
we let P (U) be the property: for all p ≥ 0 the map

Hp
∗ (U,L,F)(s) −→ Hp(Us,F)

is an isomorphism.

If U is affine, then both sides of the arrow displayed above are zero for p > 0 by Lemma
2.2 and Properties, Lemma 26.4 and the statement is true. If P is true for U , V , and U ∩V ,
then we can use the Mayer-Vietoris sequences (Cohomology, Lemma 8.2) to obtain a map
of long exact sequences

Hp−1
∗ (U ∩ V,L,F)(s) //

��

Hp
∗ (U ∪ V,L,F)(s) //

��

Hp
∗ (U,L,F)(s) ⊕Hp

∗ (V,L,F)(s)

��
Hp−1(Us ∩ Vs,F) // Hp(Us ∪ Vs,F) // Hp(Us,F)⊕Hp(Vs,F)

(only a snippet shown). Observe that Us ∩ Vs = (U ∩ V )s and that Us ∪ Vs = (U ∪ V )s.
Thus the left and right vertical maps are isomorphisms (as well as one more to the right
and one more to the left which are not shown in the diagram). We conclude thatP (U∪V )
holds by the 5-lemma (Homology, Lemma 5.20). This finishes the proof. �

Lemma 17.4. LetX be a scheme. LetL be an invertibleOX -module. Let s ∈ Γ(X,L)
be a section. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) Xs is affine.

Then for every quasi-coherent OX -module F and every p > 0 and all ξ ∈ Hp(X,F)
there exists an n ≥ 0 such that snξ = 0 in Hp(X,F ⊗OX

L⊗n).

Proof. Recall that Hp(Xs,G) is zero for every quasi-coherent module G by Lemma
2.2. Hence the lemma follows from Lemma 17.3. �

For a more general version of the following lemma see Limits, Lemma 11.4.
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Lemma 17.5. Let i : Z → X be a closed immersion of Noetherian schemes inducing
a homeomorphism of underlying topological spaces. Let L be an invertible sheaf on X .
Then i∗L is ample on Z , if and only if L is ample on X .

Proof. If L is ample, then i∗L is ample for example by Morphisms, Lemma 37.7.
Assume i∗L is ample. We have to show thatL is ample onX . Let I ⊂ OX be the coherent
sheaf of ideals cutting out the closed subscheme Z. Since i(Z) = X set theoretically we
see that In = 0 for some n by Lemma 10.2. Consider the sequence

X = Zn ⊃ Zn−1 ⊃ Zn−2 ⊃ . . . ⊃ Z1 = Z

of closed subschemes cut out by 0 = In ⊂ In−1 ⊂ . . . ⊂ I . Then each of the closed
immersions Zi → Zi−1 is defined by a coherent sheaf of ideals of square zero. In this way
we reduce to the case that I2 = 0.

Consider the short exact sequence

0→ I → OX → i∗OZ → 0

of quasi-coherentOX -modules. Tensoring with L⊗n we obtain short exact sequences

(17.5.1) 0→ I ⊗OX
L⊗n → L⊗n → i∗i

∗L⊗n → 0

As I2 = 0, we can use Morphisms, Lemma 4.1 to think of I as a quasi-coherentOZ -module
and then I ⊗OX

L⊗n = I ⊗OZ
i∗L⊗n with obvious abuse of notation. Moreover, the

cohomology of this sheaf over Z is canonically the same as the cohomology of this sheaf
over X (as i is a homeomorphism).

Let x ∈ X be a point and denote z ∈ Z the corresponding point. Because i∗L is ample
there exists an n and a section s ∈ Γ(Z, i∗L⊗n) with z ∈ Zs and with Zs affine. The
obstruction to lifting s to a section of L⊗n over X is the boundary

ξ = ∂s ∈ H1(X, I ⊗OX
L⊗n) = H1(Z, I ⊗OZ

i∗L⊗n)

coming from the short exact sequence of sheaves (17.5.1). If we replace s by se+1 then ξ
is replaced by ∂(se+1) = (e+ 1)seξ in H1(Z, I ⊗OZ

i∗L⊗(e+1)n) because the boundary
map for

0→
⊕

m≥0
I ⊗OX

L⊗m →
⊕

m≥0
L⊗m →

⊕
m≥0

i∗i
∗L⊗m → 0

is a derivation by Cohomology, Lemma 25.5. By Lemma 17.4 we see that seξ is zero for
e large enough. Hence, after replacing s by a power, we can assume s is the image of a
section s′ ∈ Γ(X,L⊗n). Then Xs′ is an open subscheme and Zs → Xs′ is a surjective
closed immersion of Noetherian schemes withZs affine. HenceXs is affine by Lemma 13.3
and we conclude that L is ample. �

For a more general version of the following lemma see Limits, Lemma 11.5.

Lemma 17.6. Let i : Z → X be a closed immersion of Noetherian schemes inducing
a homeomorphism of underlying topological spaces. Then X is quasi-affine if and only if
Z is quasi-affine.

Proof. Recall that a scheme is quasi-affine if and only if the structure sheaf is ample,
see Properties, Lemma 27.1. Hence if Z is quasi-affine, then OZ is ample, hence OX is
ample by Lemma 17.5, hence X is quasi-affine. A proof of the converse, which can also be
seen in an elementary way, is gotten by reading the argument just given backwards. �
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Lemma 17.7. LetX be a scheme. Let L be an ample invertibleOX -module. Let n0 be
an integer. If Hp(X,L⊗−n) = 0 for n ≥ n0 and p > 0, then X is affine.

Proof. We claim Hp(X,F) = 0 for every quasi-coherent OX -module and p > 0.
Since X is quasi-compact by Properties, Definition 26.1 the claim finishes the proof by
Lemma 3.1. The scheme X is separated by Properties, Lemma 26.8. Say X is covered by
e + 1 affine opens. Then Hp(X,F) = 0 for p > e, see Lemma 4.2. Thus we may use
descending induction on p to prove the claim. Writing F as a filtered colimit of finite
type quasi-coherent modules (Properties, Lemma 22.3) and using Cohomology, Lemma
19.1 we may assumeF is of finite type. Then we can choose n > n0 such thatF⊗OX

L⊗n

is globally generated, see Properties, Proposition 26.13. This means there is a short exact
sequence

0→ F ′ →
⊕

i∈I
L⊗−n → F → 0

for some set I (in fact we can choose I finite). By induction hypothesis we haveHp+1(X,F ′) =
0 and by assumption (combined with the already used commutation of cohomology with
colimits) we have Hp(X,

⊕
i∈I L⊗−n) = 0. From the long exact cohomology sequence

we conclude that Hp(X,F) = 0 as desired. �

Lemma 17.8. Let X be a quasi-affine scheme. If Hp(X,OX) = 0 for p > 0, then X
is affine.

Proof. SinceOX is ample by Properties, Lemma 27.1 this follows from Lemma 17.7.
�

18. Chow’s Lemma

In this section we prove Chow’s lemma in the Noetherian case (Lemma 18.1). In Limits,
Section 12 we prove some variants for the non-Noetherian case.

Lemma 18.1. Let S be a Noetherian scheme. Let f : X → S be a separated morphism
of finite type. Then there exist an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

whereX ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective. Moreover, we

may arrange it such that there exists a dense open subschemeU ⊂ X such that π−1(U)→
U is an isomorphism.

Proof. All of the schemes we will encounter during the rest of the proof are going
to be of finite type over the Noetherian scheme S and hence Noetherian (see Morphisms,
Lemma 15.6). All morphisms between them will automatically be quasi-compact, locally
of finite type and quasi-separated, see Morphisms, Lemma 15.8 and Properties, Lemmas 5.4
and 5.8.
The scheme X has only finitely many irreducible components (Properties, Lemma 5.7).
Say X = X1 ∪ . . . ∪ Xr is the decomposition of X into irreducible components. Let
ηi ∈ Xi be the generic point. For every point x ∈ X there exists an affine open Ux ⊂ X
which contains x and each of the generic points ηi. See Properties, Lemma 29.4. SinceX is
quasi-compact, we can find a finite affine open coveringX = U1∪ . . .∪Um such that each
Ui contains η1, . . . , ηr. In particular we conclude that the open U = U1 ∩ . . . ∩Um ⊂ X



2588 30. COHOMOLOGY OF SCHEMES

is a dense open. This and the fact that the Ui are affine opens covering X are all that we
will use below.

Let X∗ ⊂ X be the scheme theoretic closure of U → X , see Morphisms, Definition 6.2.
LetU∗

i = X∗∩Ui. Note thatU∗
i is a closed subscheme ofUi. HenceU∗

i is affine. SinceU is
dense inX the morphismX∗ → X is a surjective closed immersion. It is an isomorphism
over U . Hence we may replace X by X∗ and Ui by U∗

i and assume that U is scheme
theoretically dense in X , see Morphisms, Definition 7.1.

By Morphisms, Lemma 39.3 we can find an immersion ji : Ui → Pni
S for each i. By

Morphisms, Lemma 7.7 we can find closed subschemes Zi ⊂ Pni
S such that ji : Ui → Zi is

a scheme theoretically dense open immersion. Note thatZi → S is proper, see Morphisms,
Lemma 43.5. Consider the morphism

j = (j1|U , . . . , jm|U ) : U −→ Pn1
S ×S . . .×S Pnm

S .

By the lemma cited above we can find a closed subscheme Z of Pn1
S ×S . . .×S Pnm

S such
that j : U → Z is an open immersion and such that U is scheme theoretically dense in Z.
The morphism Z → S is proper. Consider the ith projection

pri|Z : Z −→ Pni
S .

This morphism factors through Zi (see Morphisms, Lemma 6.6). Denote pi : Z → Zi the
induced morphism. This is a proper morphism, see Morphisms, Lemma 41.7 for example.
At this point we have that U ⊂ Ui ⊂ Zi are scheme theoretically dense open immersions.
Moreover, we can think of Z as the scheme theoretic image of the “diagonal” morphism
U → Z1 ×S . . .×S Zm.

Set Vi = p−1
i (Ui). Note that pi|Vi : Vi → Ui is proper. Set X ′ = V1 ∪ . . . ∪ Vm. By

construction X ′ has an immersion into the scheme Pn1
S ×S . . . ×S Pnm

S . Thus by the
Segre embedding (see Constructions, Lemma 13.6) we see that X ′ has an immersion into a
projective space over S.

We claim that the morphisms pi|Vi : Vi → Ui glue to a morphism X ′ → X . Namely, it
is clear that pi|U is the identity map from U to U . Since U ⊂ X ′ is scheme theoretically
dense by construction, it is also scheme theoretically dense in the open subscheme Vi∩Vj .
Thus we see that pi|Vi∩Vj = pj |Vi∩Vj as morphisms into the separated S-scheme X , see
Morphisms, Lemma 7.10. We denote the resulting morphism π : X ′ → X .

We claim that π−1(Ui) = Vi. Since π|Vi = pi|Vi it follows that Vi ⊂ π−1(Ui). Consider
the diagram

Vi //

pi|Vi ##

π−1(Ui)

��
Ui

Since Vi → Ui is proper we see that the image of the horizontal arrow is closed, see Mor-
phisms, Lemma 41.7. Since Vi ⊂ π−1(Ui) is scheme theoretically dense (as it contains U )
we conclude that Vi = π−1(Ui) as claimed.

This shows that π−1(Ui) → Ui is identified with the proper morphism pi|Vi : Vi → Ui.
Hence we see that X has a finite affine covering X =

⋃
Ui such that the restriction of π

is proper on each member of the covering. Thus by Morphisms, Lemma 41.3 we see that
π is proper.
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Finally we have to show that π−1(U) = U . To see this we argue in the same way as above
using the diagram

U //

##

π−1(U)

��
U

and using that idU : U → U is proper and thatU is scheme theoretically dense in π−1(U).
�

Remark 18.2. In the situation of Chow’s Lemma 18.1:
(1) The morphismπ is actually H-projective (hence projective, see Morphisms, Lemma

43.3) since the morphismX ′ → Pn
S ×S X = Pn

X is a closed immersion (use the
fact that π is proper, see Morphisms, Lemma 41.7).

(2) We may assume that π−1(U) is scheme theoretically dense in X ′. Namely, we
can simply replace X ′ by the scheme theoretic closure of π−1(U). In this case
we can think of U as a scheme theoretically dense open subscheme of X ′. See
Morphisms, Section 6.

(3) If X is reduced then we may choose X ′ reduced. This is clear from (2).

19. Higher direct images of coherent sheaves

In this section we prove the fundamental fact that the higher direct images of a coherent
sheaf under a proper morphism are coherent.

Proposition 19.1. Let S be a locally Noetherian scheme. Let f : X → S be a proper
morphism. Let F be a coherent OX -module. Then Rif∗F is a coherent OS-module for
all i ≥ 0.

Proof. Since the problem is local onS we may assume thatS is a Noetherian scheme.
Since a proper morphism is of finite type we see that in this caseX is a Noetherian scheme
also. Consider the property P of coherent sheaves on X defined by the rule

P(F)⇔ Rpf∗F is coherent for all p ≥ 0
We are going to use the result of Lemma 12.6 to prove that P holds for every coherent
sheaf on X .
Let

0→ F1 → F2 → F3 → 0
be a short exact sequence of coherent sheaves on X . Consider the long exact sequence of
higher direct images

Rp−1f∗F3 → Rpf∗F1 → Rpf∗F2 → Rpf∗F3 → Rp+1f∗F1

Then it is clear that if 2-out-of-3 of the sheavesFi have propertyP , then the higher direct
images of the third are sandwiched in this exact complex between two coherent sheaves.
Hence these higher direct images are also coherent by Lemma 9.2 and 9.3. Hence property
P holds for the third as well.
Let Z ⊂ X be an integral closed subscheme. We have to find a coherent sheaf F on X
whose support is contained inZ , whose stalk at the generic point ξ ofZ is a 1-dimensional
vector space over κ(ξ) such that P holds for F . Denote g = f |Z : Z → S the restriction
of f . Suppose we can find a coherent sheaf G on Z such that (a) Gξ is a 1-dimensional
vector space over κ(ξ), (b) Rpg∗G = 0 for p > 0, and (c) g∗G is coherent. Then we can
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consider F = (Z → X)∗G. As Z → X is a closed immersion we see that (Z → X)∗G
is coherent on X and Rp(Z → X)∗G = 0 for p > 0 (Lemma 9.9). Hence by the relative
Leray spectral sequence (Cohomology, Lemma 13.8) we will have Rpf∗F = Rpg∗G = 0
for p > 0 and f∗F = g∗G is coherent. Finally Fξ = ((Z → X)∗G)ξ = Gξ which verifies
the condition on the stalk at ξ. Hence everything depends on finding a coherent sheaf G
on Z which has properties (a), (b), and (c).

We can apply Chow’s Lemma 18.1 to the morphism Z → S. Thus we get a diagram

Z

g
��

Z ′

g′

��

π
oo

i
// Pm

S

}}
S

as in the statement of Chow’s lemma. Also, let U ⊂ Z be the dense open subscheme
such that π−1(U) → U is an isomorphism. By the discussion in Remark 18.2 we see that
i′ = (i, π) : Z ′ → Pm

Z is a closed immersion. Hence

L = i∗OPm
S

(1) ∼= (i′)∗OPm
Z

(1)

is g′-relatively ample and π-relatively ample (for example by Morphisms, Lemma 39.7).
Hence by Lemma 16.2 there exists an n ≥ 0 such that both Rpπ∗L⊗n = 0 for all p > 0
andRp(g′)∗L⊗n = 0 for all p > 0. Set G = π∗L⊗n. Property (a) holds because π∗L⊗n|U
is an invertible sheaf (as π−1(U) → U is an isomorphism). Properties (b) and (c) hold
because by the relative Leray spectral sequence (Cohomology, Lemma 13.8) we have

Ep,q2 = Rpg∗R
qπ∗L⊗n ⇒ Rp+q(g′)∗L⊗n

and by choice of n the only nonzero terms in Ep,q2 are those with q = 0 and the only
nonzero terms of Rp+q(g′)∗L⊗n are those with p = q = 0. This implies that Rpg∗G = 0
for p > 0 and that g∗G = (g′)∗L⊗n. Finally, applying the previous Lemma 16.3 we see
that g∗G = (g′)∗L⊗n is coherent as desired. �

Lemma 19.2. Let S = Spec(A) withA a Noetherian ring. Let f : X → S be a proper
morphism. Let F be a coherent OX -module. Then Hi(X,F) is a finite A-module for all
i ≥ 0.

Proof. This is just the affine case of Proposition 19.1. Namely, by Lemmas 4.5 and
4.6 we know thatRif∗F is the quasi-coherent sheaf associated to theA-moduleHi(X,F)
and by Lemma 9.1 this is a coherent sheaf if and only ifHi(X,F) is anA-module of finite
type. �

Lemma 19.3. Let A be a Noetherian ring. Let B be a finitely generated graded A-
algebra. Let f : X → Spec(A) be a proper morphism. Set B = f∗B̃. Let F be a quasi-
coherent graded B-module of finite type.

(1) For every p ≥ 0 the graded B-module Hp(X,F) is a finite B-module.
(2) If L is an ample invertibleOX -module, then there exists an integer d0 such that

Hp(X,F ⊗ L⊗d) = 0 for all p > 0 and d ≥ d0.
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Proof. To prove this we consider the fibre product diagram

X ′ = Spec(B)×Spec(A) X π
//

f ′

��

X

f

��
Spec(B) // Spec(A)

Note that f ′ is a proper morphism, see Morphisms, Lemma 41.5. Also, B is a finitely
generated A-algebra, and hence Noetherian (Algebra, Lemma 31.1). This implies that X ′

is a Noetherian scheme (Morphisms, Lemma 15.6). Note that X ′ is the relative spectrum
of the quasi-coherent OX -algebra B by Constructions, Lemma 4.6. Since F is a quasi-
coherent B-module we see that there is a unique quasi-coherentOX′ -moduleF ′ such that
π∗F ′ = F , see Morphisms, Lemma 11.6 Since F is finite type as a B-module we conclude
that F ′ is a finite type OX′ -module (details omitted). In other words, F ′ is a coherent
OX′ -module (Lemma 9.1). Since the morphism π : X ′ → X is affine we have

Hp(X,F) = Hp(X ′,F ′)
by Lemma 2.4. Thus (1) follows from Lemma 19.2. Given L as in (2) we set L′ = π∗L.
Note that L′ is ample on X ′ by Morphisms, Lemma 37.7. By the projection formula (Co-
homology, Lemma 54.2) we have π∗(F ′⊗L′) = F⊗L. Thus part (2) follows by the same
reasoning as above from Lemma 16.2. �

20. The theorem on formal functions

In this section we study the behaviour of cohomology of sequences of sheaves either of the
form {InF}n≥0 or of the form {F/InF}n≥0 as n varies.

Here and below we use the following notation. Given a morphism of schemes f : X → Y ,
a quasi-coherent sheaf F on X , and a quasi-coherent sheaf of ideals I ⊂ OY we denote
InF the quasi-coherent subsheaf generated by products of local sections of f−1(In) and
F . In a formula

InF = Im (f∗(In)⊗OX
F −→ F) .

Note that there are natural maps

f−1(In)⊗f−1OY
ImF −→ f∗(In)⊗OX

ImF −→ In+mF

Hence a section of In will give rise to a map Rpf∗(ImF) → Rpf∗(In+mF) by func-
toriality of higher direct images. Localizing and then sheafifying we see that there are
OY -module maps

In ⊗OY
Rpf∗(ImF) −→ Rpf∗(In+mF).

In other words we see that
⊕

n≥0 R
pf∗(InF) is a graded

⊕
n≥0 In-module.

If Y = Spec(A) and I = Ĩ we denote InF simply InF . The maps introduced above give
M =

⊕
Hp(X, InF) the structure of a graded S =

⊕
In-module. If f is proper, A is

Noetherian and F is coherent, then this turns out to be a module of finite type.

Lemma 20.1. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Set B =
⊕

n≥0 I
n.

Let f : X → Spec(A) be a proper morphism. Let F be a coherent sheaf on X . Then for
every p ≥ 0 the graded B-module

⊕
n≥0 H

p(X, InF) is a finite B-module.

Proof. Let B =
⊕
InOX = f∗B̃. Then

⊕
InF is a finite type graded B-module.

Hence the result follows from Lemma 19.3 part (1). �
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Lemma 20.2. Given a morphism of schemes f : X → Y , a quasi-coherent sheafF on
X , and a quasi-coherent sheaf of ideals I ⊂ OY . Assume Y locally Noetherian, f proper,
and F coherent. Then

M =
⊕

n≥0
Rpf∗(InF)

is a gradedA =
⊕

n≥0 In-module which is quasi-coherent and of finite type.

Proof. The statement is local on Y , hence this reduces to the case where Y is affine.
In the affine case the result follows from Lemma 20.1. Details omitted. �

Lemma 20.3. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let f : X →
Spec(A) be a proper morphism. Let F be a coherent sheaf on X . Then for every p ≥ 0
there exists an integer c ≥ 0 such that

(1) the multiplication map In−c⊗Hp(X, IcF)→ Hp(X, InF) is surjective for all
n ≥ c,

(2) the image of Hp(X, In+mF) → Hp(X, InF) is contained in the submodule
Im−eHp(X, InF) where e = max(0, c− n) for n+m ≥ c, n,m ≥ 0,

(3) we have

Ker(Hp(X, InF)→ Hp(X,F)) = Ker(Hp(X, InF)→ Hp(X, In−cF))
for n ≥ c,

(4) there are maps InHp(X,F)→ Hp(X, In−cF) for n ≥ c such that the compo-
sitions

Hp(X, InF)→ In−cHp(X,F)→ Hp(X, In−2cF)
and

InHp(X,F)→ Hp(X, In−cF)→ In−2cHp(X,F)
for n ≥ 2c are the canonical ones, and

(5) the inverse systems (Hp(X, InF)) and (InHp(X,F)) are pro-isomorphic.

Proof. Write Mn = Hp(X, InF) for n ≥ 1 and M0 = Hp(X,F) so that we have
maps . . .→M3 →M2 →M1 →M0. Setting B =

⊕
n≥0 I

n, then M =
⊕

n≥0 Mn is a
finite gradedB-module, see Lemma 20.1. Observe that the productsBn⊗Mm →Mm+n,
a ⊗m 7→ a ·m are compatible with the maps in our inverse system in the sense that the
diagrams

Bn ⊗AMm
//

��

Mn+m

��
Bn ⊗AMm′ // Mn+m′

commute for n,m′ ≥ 0 and m ≥ m′.

Proof of (1). Choose d1, . . . , dt ≥ 0 and xi ∈Mdi such thatM is generated by x1, . . . , xt
over B. For any c ≥ max{di} we conclude that Bn−c ·Mc = Mn for n ≥ c and we
conclude (1) is true.

Proof of (2). Let c be as in the proof of (1). Let n+m ≥ c. We have Mn+m = Bn+m−c ·
Mc. If c > n then we use Mc → Mn and the compatibility of products with transition
maps pointed out above to conclude that the image of Mn+m → Mn is contained in
In+m−cMn. If c ≤ n, then we write Mn+m = Bm · Bn−c ·Mc = Bm ·Mn to see that
the image is contained in ImMn. This proves (2).
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Let Kn ⊂ Mn be the kernel of the map Mn → M0. The compatibility of products with
transition maps pointed out above shows thatK =

⊕
Kn ⊂M is a gradedB-submodule.

As B is Noetherian and M is a finitely generated graded B-module, this shows that K is
a finitely generated graded B-module. Choose d′

1, . . . , d
′
t′ ≥ 0 and yi ∈ Kd′

i
such that K

is generated by y1, . . . , yt′ over B. Set c = max(d′
i, d

′
j). Since yi ∈ Ker(Md′

i
→ M0) we

see thatBn ·yi ⊂ Ker(Mn+d′
i
→Mn). In this way we see thatKn = Ker(Mn →Mn−c)

for n ≥ c. This proves (3).
Consider the following commutative solid diagram

In ⊗AM0 //

��

InM0 //

��

M0

��
Mn

// Mn−c // M0

Since the kernel of the surjective arrow In ⊗AM0 → InM0 maps into Kn by the above
we obtain the dotted arrow and the composition InM0 → Mn−c → M0 is the canonical
map. Then clearly the composition InM0 → Mn−c → In−2cM0 is the canonical map
for n ≥ 2c. Consider the composition Mn → In−cM0 → Mn−2c. The first map sends
an element of the form a ·m with a ∈ In−c and m ∈ Mc to am′ where m′ is the image
of m in M0. Then the second map sends this to a ·m′ in Mn−2c and we see (4) is true.
Part (5) is an immediate consequence of (4) and the definition of morphisms of pro-objects.

�

In the situation of Lemmas 20.1 and 20.3 consider the inverse system
F/IF ← F/I2F ← F/I3F ← . . .

We would like to know what happens to the cohomology groups. Here is a first result.

Lemma 20.4. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let f : X →
Spec(A) be a proper morphism. Let F be a coherent sheaf on X . Fix p ≥ 0. There exists
a c ≥ 0 such that

(1) for all n ≥ c we have
Ker(Hp(X,F)→ Hp(X,F/InF)) ⊂ In−cHp(X,F).

(2) the inverse system
(Hp(X,F/InF))n∈N

satisfies the Mittag-Leffler condition (see Homology, Definition 31.2), and
(3) we have

Im(Hp(X,F/IkF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))
for all k ≥ n+ c.

Proof. Let c = max{cp, cp+1}, where cp, cp+1 are the integers found in Lemma 20.3
for Hp and Hp+1.
Let us prove part (1). Consider the short exact sequence

0→ InF → F → F/InF → 0
From the long exact cohomology sequence we see that

Ker(Hp(X,F)→ Hp(X,F/InF)) = Im(Hp(X, InF)→ Hp(X,F))
Hence by Lemma 20.3 part (2) we see that this is contained in In−cHp(X,F) for n ≥ c.
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Note that part (3) implies part (2) by definition of the Mittag-Leffler systems.

Let us prove part (3). Fix an n. Consider the commutative diagram

0 // InF // F // F/InF // 0

0 // In+mF //

OO

F //

OO

F/In+mF //

OO

0

This gives rise to the following commutative diagram

Hp(X,F) // Hp(X,F/InF)
δ

// Hp+1(X, InF) // Hp+1(X,F)

Hp(X,F) //

1

OO

Hp(X,F/In+mF) //

γ

OO

Hp+1(X, In+mF)

α

OO

β // Hp+1(X,F)

1

OO

with exact rows. By Lemma 20.3 part (4) the kernel of β is equal to the kernel of α for
m ≥ c. By a diagram chase this shows that the image of γ is contained in the kernel of δ
which shows that part (3) is true (set k = n+m to get it). �

Theorem 20.5 (Theorem on formal functions). Let A be a Noetherian ring. Let I ⊂
A be an ideal. Let f : X → Spec(A) be a proper morphism. Let F be a coherent sheaf on
X . Fix p ≥ 0. The system of maps

Hp(X,F)/InHp(X,F) −→ Hp(X,F/InF)
define an isomorphism of limits

Hp(X,F)∧ −→ limnH
p(X,F/InF)

where the left hand side is the completion of theA-moduleHp(X,F) with respect to the
ideal I , see Algebra, Section 96. Moreover, this is in fact a homeomorphism for the limit
topologies.

Proof. This follows from Lemma 20.4 as follows. Set M = Hp(X,F), Mn =
Hp(X,F/InF), and denote Nn = Im(M → Mn). By Lemma 20.4 parts (2) and (3)
we see that (Mn) is a Mittag-Leffler system with Nn ⊂ Mn equal to the image of Mk for
all k � n. It follows that limMn = limNn as topological modules (with limit topolo-
gies). On the other hand, the Nn form an inverse system of quotients of the module M
and hence limNn is the completion of M with respect to the topology given by the ker-
nels Kn = Ker(M → Nn). By Lemma 20.4 part (1) we have Kn ⊂ In−cM and since
Nn ⊂ Mn is annihilated by In we have InM ⊂ Kn. Thus the topology defined using
the submodules Kn as a fundamental system of open neighbourhoods of 0 is the same as
the I-adic topology and we find that the induced map M∧ = limM/InM → limNn =
limMn is an isomorphism of topological modules3. �

Lemma 20.6. Let A be a ring. Let I ⊂ A be an ideal. Assume A is Noetherian and
complete with respect to I . Let f : X → Spec(A) be a proper morphism. Let F be a
coherent sheaf on X . Then

Hp(X,F) = limnH
p(X,F/InF)

for all p ≥ 0.
3To be sure, the limit topology on M∧ is the same as its I-adic topology as follows from Algebra, Lemma

96.3. See More on Algebra, Section 36.
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Proof. This is a reformulation of the theorem on formal functions (Theorem 20.5) in
the case of a complete Noetherian base ring. Namely, in this case theA-moduleHp(X,F)
is finite (Lemma 19.2) hence I-adically complete (Algebra, Lemma 97.1) and we see that
completion on the left hand side is not necessary. �

Lemma 20.7. Given a morphism of schemes f : X → Y and a quasi-coherent sheaf
F on X . Assume

(1) Y locally Noetherian,
(2) f proper, and
(3) F coherent.

Let y ∈ Y be a point. Consider the infinitesimal neighbourhoods

Xn = Spec(OY,y/mny )×Y X
in
//

fn

��

X

f

��
Spec(OY,y/mny ) cn // Y

of the fibre X1 = Xy and set Fn = i∗nF . Then we have

(Rpf∗F)∧
y
∼= limnH

p(Xn,Fn)

asO∧
Y,y-modules.

Proof. This is just a reformulation of a special case of the theorem on formal func-
tions, Theorem 20.5. Let us spell it out. Note thatOY,y is a Noetherian local ring. Consider
the canonical morphism c : Spec(OY,y) → Y , see Schemes, Equation (13.1.1). This is a
flat morphism as it identifies local rings. Denote momentarily f ′ : X ′ → Spec(OY,y) the
base change of f to this local ring. We see that c∗Rpf∗F = Rpf ′

∗F ′ by Lemma 5.2. More-
over, the infinitesimal neighbourhoods of the fibre Xy and X ′

y are identified (verification
omitted; hint: the morphisms cn factor through c).
Hence we may assume that Y = Spec(A) is the spectrum of a Noetherian local ring A
with maximal ideal m and that y ∈ Y corresponds to the closed point (i.e., to m). In
particular it follows that

(Rpf∗F)y = Γ(Y,Rpf∗F) = Hp(X,F).

In this case also, the morphisms cn are each closed immersions. Hence their base changes
in are closed immersions as well. Note that in,∗Fn = in,∗i

∗
nF = F/mnF . By the Leray

spectral sequence for in, and Lemma 9.9 we see that
Hp(Xn,Fn) = Hp(X, in,∗Fn) = Hp(X,F/mnF)

Hence we may indeed apply the theorem on formal functions to compute the limit in the
statement of the lemma and we win. �

Here is a lemma which we will generalize later to fibres of dimension> 0, namely the next
lemma.

Lemma 20.8. Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume
(1) Y locally Noetherian,
(2) f is proper, and
(3) f−1({y}) is finite.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > 0.
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Proof. The fibre Xy is finite, and by Morphisms, Lemma 20.7 it is a finite discrete
space. Moreover, the underlying topological space of each infinitesimal neighbourhood
Xn is the same. Hence each of the schemesXn is affine according to Schemes, Lemma 11.8.
Hence it follows that Hp(Xn,Fn) = 0 for all p > 0. Hence we see that (Rpf∗F)∧

y = 0
by Lemma 20.7. Note that Rpf∗F is coherent by Proposition 19.1 and hence Rpf∗Fy is
a finite OY,y-module. By Nakayama’s lemma (Algebra, Lemma 20.1) if the completion of
a finite module over a local ring is zero, then the module is zero. Whence (Rpf∗F)y =
0. �

Lemma 20.9. Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume
(1) Y locally Noetherian,
(2) f is proper, and
(3) dim(Xy) = d.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > d.

Proof. The fibre Xy is of finite type over Spec(κ(y)). Hence Xy is a Noetherian
scheme by Morphisms, Lemma 15.6. Hence the underlying topological space of Xy is
Noetherian, see Properties, Lemma 5.5. Moreover, the underlying topological space of
each infinitesimal neighbourhood Xn is the same as that of Xy . Hence Hp(Xn,Fn) = 0
for all p > d by Cohomology, Proposition 20.7. Hence we see that (Rpf∗F)∧

y = 0 by
Lemma 20.7 for p > d. Note that Rpf∗F is coherent by Proposition 19.1 and hence
Rpf∗Fy is a finite OY,y-module. By Nakayama’s lemma (Algebra, Lemma 20.1) if the
completion of a finite module over a local ring is zero, then the module is zero. Whence
(Rpf∗F)y = 0. �

21. Applications of the theorem on formal functions

We will add more here as needed. For the moment we need the following characterization
of finite morphisms in the Noetherian case.

Lemma 21.1. (For a more general version see More on Morphisms, Lemma 44.1.) Let
f : X → S be a morphism of schemes. Assume S is locally Noetherian. The following
are equivalent

(1) f is finite, and
(2) f is proper with finite fibres.

Proof. A finite morphism is proper according to Morphisms, Lemma 44.11. A finite
morphism is quasi-finite according to Morphisms, Lemma 44.10. A quasi-finite morphism
has finite fibres, see Morphisms, Lemma 20.10. Hence a finite morphism is proper and has
finite fibres.

Assume f is proper with finite fibres. We want to show f is finite. In fact it suffices to
prove f is affine. Namely, if f is affine, then it follows that f is integral by Morphisms,
Lemma 44.7 whereupon it follows from Morphisms, Lemma 44.4 that f is finite.

To show that f is affine we may assume that S is affine, and our goal is to show that X is
affine too. Since f is proper we see that X is separated and quasi-compact. Hence we may
use the criterion of Lemma 3.2 to prove thatX is affine. To see this let I ⊂ OX be a finite
type ideal sheaf. In particular I is a coherent sheaf on X . By Lemma 20.8 we conclude
that R1f∗Is = 0 for all s ∈ S. In other words, R1f∗I = 0. Hence we see from the
Leray Spectral Sequence for f that H1(X, I) = H1(S, f∗I). Since S is affine, and f∗I is
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quasi-coherent (Schemes, Lemma 24.1) we conclude H1(S, f∗I) = 0 from Lemma 2.2 as
desired. Hence H1(X, I) = 0 as desired. �

As a consequence we have the following useful result.

Lemma 21.2. (For a more general version see More on Morphisms, Lemma 44.2.) Let
f : X → S be a morphism of schemes. Let s ∈ S. Assume

(1) S is locally Noetherian,
(2) f is proper, and
(3) f−1({s}) is a finite set.

Then there exists an open neighbourhood V ⊂ S of s such that f |f−1(V ) : f−1(V )→ V
is finite.

Proof. The morphism f is quasi-finite at all the points of f−1({s}) by Morphisms,
Lemma 20.7. By Morphisms, Lemma 56.2 the set of points at which f is quasi-finite is an
open U ⊂ X . Let Z = X \ U . Then s 6∈ f(Z). Since f is proper the set f(Z) ⊂ S is
closed. Choose any open neighbourhood V ⊂ S of swithZ∩V = ∅. Then f−1(V )→ V
is locally quasi-finite and proper. Hence it is quasi-finite (Morphisms, Lemma 20.9), hence
has finite fibres (Morphisms, Lemma 20.10), hence is finite by Lemma 21.1. �

Lemma 21.3. Let f : X → Y be a proper morphism of schemes with Y Noetherian.
Let L be an invertibleOX -module. LetF be a coherentOX -module. Let y ∈ Y be a point
such that Ly is ample on Xy . Then there exists a d0 such that for all d ≥ d0 we have

Rpf∗(F ⊗OX
L⊗d)y = 0 for p > 0

and the map
f∗(F ⊗OX

L⊗d)y −→ H0(Xy,Fy ⊗OXy
L⊗d
y )

is surjective.

Proof. Note thatOY,y is a Noetherian local ring. Consider the canonical morphism
c : Spec(OY,y)→ Y , see Schemes, Equation (13.1.1). This is a flat morphism as it identifies
local rings. Denote momentarily f ′ : X ′ → Spec(OY,y) the base change of f to this local
ring. We see that c∗Rpf∗F = Rpf ′

∗F ′ by Lemma 5.2. Moreover, the fibres Xy and X ′
y

are identified. Hence we may assume that Y = Spec(A) is the spectrum of a Noetherian
local ring (A,m, κ) and y ∈ Y corresponds to m. In this case Rpf∗(F ⊗OX

L⊗d)y =
Hp(X,F ⊗OX

L⊗d) for all p ≥ 0. Denote fy : Xy → Spec(κ) the projection.

Let B = Grm(A) =
⊕

n≥0 m
n/mn+1. Consider the sheaf B = f∗

y B̃ of quasi-coherent
gradedOXy -algebras. We will use notation as in Section 20 with I replaced bym. SinceXy

is the closed subscheme ofX cut out bymOX we may think ofmnF/mn+1F as a coherent
OXy -module, see Lemma 9.8. Then

⊕
n≥0 m

nF/mn+1F is a quasi-coherent graded B-
module of finite type because it is generated in degree zero over B and because the degree
zero part is Fy = F/mF which is a coherent OXy -module. Hence by Lemma 19.3 part
(2) we see that

Hp(Xy,m
nF/mn+1F ⊗OXy

L⊗d
y ) = 0

for all p > 0, d ≥ d0, and n ≥ 0. By Lemma 2.4 this is the same as the statement that
Hp(X,mnF/mn+1F ⊗OX

L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0.

Consider the short exact sequences

0→ mnF/mn+1F → F/mn+1F → F/mnF → 0
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of coherent OX -modules. Tensoring with L⊗d is an exact functor and we obtain short
exact sequences

0→ mnF/mn+1F ⊗OX
L⊗d → F/mn+1F ⊗OX

L⊗d → F/mnF ⊗OX
L⊗d → 0

Using the long exact cohomology sequence and the vanishing above we conclude (using
induction) that

(1) Hp(X,F/mnF ⊗OX
L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0, and

(2) H0(X,F/mnF⊗OX
L⊗d)→ H0(Xy,Fy⊗OXy

L⊗d
y ) is surjective for all d ≥ d0

and n ≥ 1.
By the theorem on formal functions (Theorem 20.5) we find that the m-adic completion
of Hp(X,F ⊗OX

L⊗d) is zero for all d ≥ d0 and p > 0. Since Hp(X,F ⊗OX
L⊗d) is a

finiteA-module by Lemma 19.2 it follows from Nakayama’s lemma (Algebra, Lemma 20.1)
that Hp(X,F ⊗OX

L⊗d) is zero for all d ≥ d0 and p > 0. For p = 0 we deduce from
Lemma 20.4 part (3) that H0(X,F ⊗OX

L⊗d) → H0(Xy,Fy ⊗OXy
L⊗d
y ) is surjective,

which gives the final statement of the lemma. �

Lemma 21.4. (For a more general version see More on Morphisms, Lemma 50.3.) Let
f : X → Y be a proper morphism of schemes with Y Noetherian. Let L be an invertible
OX -module. Let y ∈ Y be a point such that Ly is ample on Xy . Then there is an open
neighbourhood V ⊂ Y of y such that L|f−1(V ) is ample on f−1(V )/V .

Proof. Pick d0 as in Lemma 21.3 forF = OX . Pick d ≥ d0 so that we can find r ≥ 0
and sections sy,0, . . . , sy,r ∈ H0(Xy,L⊗d

y ) which define a closed immersion

ϕy = ϕL⊗d
y ,(sy,0,...,sy,r) : Xy → Pr

κ(y).

This is possible by Morphisms, Lemma 39.4 but we also use Morphisms, Lemma 41.7 to see
that ϕy is a closed immersion and Constructions, Section 13 for the description of mor-
phisms into projective space in terms of invertible sheaves and sections. By our choice
of d0, after replacing Y by an open neighbourhood of y, we can choose s0, . . . , sr ∈
H0(X,L⊗d) mapping to sy,0, . . . , sy,r. Let Xsi ⊂ X be the open subset where si is a
generator of L⊗d. Since the sy,i generate L⊗d

y we see that Xy ⊂ U =
⋃
Xsi . Since

X → Y is closed, we see that there is an open neighbourhood y ∈ V ⊂ Y such that
f−1(V ) ⊂ U . After replacing Y by V we may assume that the si generate L⊗d. Thus we
obtain a morphism

ϕ = ϕL⊗d,(s0,...,sr) : X −→ Pr
Y

with L⊗d ∼= ϕ∗OPr
Y

(1) whose base change to y gives ϕy .

We will finish the proof by a sleight of hand; the “correct” proof proceeds by directly
showing that ϕ is a closed immersion after base changing to an open neighbourhood of y.
Namely, by Lemma 21.2 we see that ϕ is a finite over an open neighbourhood of the fibre
Pr
κ(y) of Pr

Y → Y above y. Using that Pr
Y → Y is closed, after shrinking Y we may

assume that ϕ is finite. Then L⊗d ∼= ϕ∗OPr
Y

(1) is ample by the very general Morphisms,
Lemma 37.7. �

22. Cohomology and base change, III

In this section we prove the simplest case of a very general phenomenon that will be dis-
cussed in Derived Categories of Schemes, Section 22. Please see Remark 22.2 for a transla-
tion of the following lemma into algebra.
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Lemma 22.1. Let A be a Noetherian ring and set S = Spec(A). Let f : X → S be a
proper morphism of schemes. Let F be a coherentOX -module flat over S. Then

(1) RΓ(X,F) is a perfect object of D(A), and
(2) for any ring map A→ A′ the base change map

RΓ(X,F)⊗L
A A

′ −→ RΓ(XA′ ,FA′)
is an isomorphism.

Proof. Choose a finite affine open covering X =
⋃
i=1,...,n Ui. By Lemmas 7.1 and

7.2 the Čech complex K• = Č•(U ,F) satisfies
K• ⊗A A′ = RΓ(XA′ ,FA′)

for all ring maps A → A′. Let K•
alt = Č•

alt(U ,F) be the alternating Čech complex. By
Cohomology, Lemma 23.6 there is a homotopy equivalenceK•

alt → K• ofA-modules. In
particular, we have

K•
alt ⊗A A′ = RΓ(XA′ ,FA′)

as well. Since F is flat over A we see that each Kn
alt is flat over A (see Morphisms, Lemma

25.2). Since moreover K•
alt is bounded above (this is why we switched to the alternating

Čech complex)K•
alt⊗AA′ = K•

alt⊗L
AA

′ by the definition of derived tensor products (see
More on Algebra, Section 59). By Lemma 19.2 the cohomology groupsHi(K•

alt) are finite
A-modules. As K•

alt is bounded, we conclude that K•
alt is pseudo-coherent, see More on

Algebra, Lemma 64.17. Given anyA-moduleM setA′ = A⊕M whereM is a square zero
ideal, i.e., (a,m) · (a′,m′) = (aa′, am′ + a′m). By the above we see that K•

alt ⊗L
A A

′ has
cohomology in degrees 0, . . . , n. Hence K•

alt ⊗L
AM has cohomology in degrees 0, . . . , n.

Hence K•
alt has finite Tor dimension, see More on Algebra, Definition 66.1. We win by

More on Algebra, Lemma 74.2. �

Remark 22.2. A consequence of Lemma 22.1 is that there exists a finite complex of
finite projective A-modules M• such that we have

Hi(XA′ ,FA′) = Hi(M• ⊗A A′)
functorially in A′. The condition that F is flat over A is essential, see [?].

23. Coherent formal modules

As we do not yet have the theory of formal schemes to our disposal, we develop a bit
of language that replaces the notion of a “coherent module on a Noetherian adic formal
scheme”.
Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent sheaf of ideals. We
will consider inverse systems (Fn) of coherentOX -modules such that

(1) Fn is annihilated by In, and
(2) the transition maps induce isomorphisms Fn+1/InFn+1 → Fn.

A morphism of such inverse systems is defined as usual. Let us denote the category of these
inverse systems with Coh(X, I). We are going to proceed by proving a bunch of lemmas
about objects in this category. In fact, most of the lemmas that follow are straightforward
consequences of the following description of the category in the affine case.

Lemma 23.1. IfX = Spec(A) is the spectrum of a Noetherian ring and I is the quasi-
coherent sheaf of ideals associated to the ideal I ⊂ A, then Coh(X, I) is equivalent to the
category of finite A∧-modules where A∧ is the completion of A with respect to I .
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Proof. Let ModfgA,I be the category of inverse systems (Mn) of finiteA-modules sat-
isfying: (1) Mn is annihilated by In and (2) Mn+1/I

nMn+1 = Mn. By the correspon-
dence between coherent sheaves onX and finiteA-modules (Lemma 9.1) it suffices to show
ModfgA,I is equivalent to the category of finite A∧-modules. To see this it suffices to prove
that given an object (Mn) of ModfgA,I the module

M = limMn

is a finite A∧-module and that M/InM = Mn. As the transition maps are surjective, we
see that M → M1 is surjective. Pick x1, . . . , xt ∈ M which map to generators of M1.
This induces a map of systems (A/In)⊕t →Mn. By Nakayama’s lemma (Algebra, Lemma
20.1) these maps are surjective. Let Kn ⊂ (A/In)⊕t be the kernel. Property (2) implies
that Kn+1 → Kn is surjective, in particular the system (Kn) satisfies the Mittag-Leffler
condition. By Homology, Lemma 31.3 we obtain an exact sequence 0→ K → (A∧)⊕t →
M → 0 with K = limKn. Hence M is a finite A∧-module. As K → Kn is surjective it
follows that

M/InM = Coker(K → (A/In)⊕t) = (A/In)⊕t/Kn = Mn

as desired. �

Lemma 23.2. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals.

(1) The category Coh(X, I) is abelian.
(2) For U ⊂ X open the restriction functor Coh(X, I)→ Coh(U, I|U ) is exact.
(3) Exactness in Coh(X, I) may be checked by restricting to the members of an open

covering of X .

Proof. Let α = (αn) : (Fn)→ (Gn) be a morphism of Coh(X, I). The cokernel of
α is the inverse system (Coker(αn)) (details omitted). To describe the kernel let

K′
l,m = Im(Ker(αl)→ Fm)

for l ≥ m. We claim:
(a) the inverse system (K′

l,m)l≥m is eventually constant, say with value K′
m,

(b) the system (K′
m/InK′

m)m≥n is eventually constant, say with value Kn,
(c) the system (Kn) forms an object of Coh(X, I), and
(d) this object is the kernel of α.

To see (a), (b), and (c) we may work affine locally, say X = Spec(A) and I corresponds
to the ideal I ⊂ A. By Lemma 23.1 α corresponds to a map f : M → N of finite A∧-
modules. DenoteK = Ker(f). Note thatA∧ is a Noetherian ring (Algebra, Lemma 97.6).
Choose an integer c ≥ 0 such that K ∩ InM ⊂ In−cK for n ≥ c (Algebra, Lemma 51.2)
and which satisfies Algebra, Lemma 51.3 for the map f and the ideal I∧ = IA∧. Then
K′
l,m corresponds to the A-module

K ′
l,m = a−1(I lN) + ImM

ImM
= K + I l−cf−1(IcN) + ImM

ImM
= K + ImM

ImM

where the last equality holds if l ≥ m + c. So K′
m corresponds to the A-module K/K ∩

ImM and K′
m/InK′

m corresponds to
K

K ∩ ImM + InK
= K

InK

for m ≥ n+ c by our choice of c above. Hence Kn corresponds to K/InK.
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We prove (d). It is clear from the description on affines above that the composition
(Kn)→ (Fn)→ (Gn) is zero. Let β : (Hn)→ (Fn) be a morphism such that α ◦ β = 0.
ThenHl → Fl maps into Ker(αl). SinceHm = Hl/ImHl for l ≥ m we obtain a system
of maps Hm → K′

l,m. Thus a map Hm → K′
m. Since Hn = Hm/InHm we obtain a

system of mapsHn → K′
m/InK′

m and hence a mapHn → Kn as desired.

To finish the proof of (1) we still have to show that Coim = Im in Coh(X, I). We have
seen above that taking kernels and cokernels commutes, over affines, with the description
of Coh(X, I) as a category of modules. Since Im = Coim holds in the category of modules
this gives Coim = Im in Coh(X, I). Parts (2) and (3) of the lemma are immediate from
our construction of kernels and cokernels. �

Lemma 23.3. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. A map (Fn)→ (Gn) is surjective in Coh(X, I) if and only if F1 → G1 is
surjective.

Proof. Omitted. Hint: Look on affine opens, use Lemma 23.1, and use Algebra, Lemma
20.1. �

Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent sheaf of ideals. There
is a functor

(23.3.1) Coh(OX) −→ Coh(X, I), F 7−→ F∧

which associates to the coherentOX -moduleF the objectF∧ = (F/InF) of Coh(X, I).

Lemma 23.4. The functor (23.3.1) is exact.

Proof. It suffices to check this locally on X . Hence we may assume X is affine, i.e.,
we have a situation as in Lemma 23.1. The functor is the functor ModfgA → ModfgA∧

which associates to a finite A-module M the completion M∧. Thus the result follows
from Algebra, Lemma 97.2. �

Lemma 23.5. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let F , G be coherentOX -modules. SetH = HomOX

(G,F). Then

limH0(X,H/InH) = MorCoh(X,I)(G∧,F∧).

Proof. To prove this we may work affine locally on X . Hence we may assume X =
Spec(A) and F , G given by finite A-module M and N . ThenH corresponds to the finite
A-module H = HomA(M,N). The statement of the lemma becomes the statement

H∧ = HomA∧(M∧, N∧)
via the equivalence of Lemma 23.1. By Algebra, Lemma 97.2 (used 3 times) we have

H∧ = HomA(M,N)⊗A A∧ = HomA∧(M ⊗A A∧, N ⊗A A∧) = HomA∧(M∧, N∧)
where the second equality uses that A∧ is flat over A (see More on Algebra, Lemma 65.4).
The lemma follows. �

Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals. We say
an object (Fn) of Coh(X, I) is I-power torsion or is annihilated by a power of I if there
exists a c ≥ 1 such that Fn = Fc for all n ≥ c. If this is the case we will say that (Fn)
is annihilated by Ic. If X = Spec(A) is affine, then, via the equivalence of Lemma 23.1,
these objects corresponds exactly to the finite A-modules annihilated by a power of I or
by Ic.



2602 30. COHOMOLOGY OF SCHEMES

Lemma 23.6. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let G be a coherentOX -module. Let (Fn) an object of Coh(X, I).

(1) Ifα : (Fn)→ G∧ is a map whose kernel and cokernel are annihilated by a power
of I , then there exists a unique (up to unique isomorphism) triple (F , a, β)
where
(a) F is a coherentOX -module,
(b) a : F → G is anOX -module map whose kernel and cokernel are annihilated

by a power of I ,
(c) β : (Fn)→ F∧ is an isomorphism, and
(d) α = a∧ ◦ β.

(2) Ifα : G∧ → (Fn) is a map whose kernel and cokernel are annihilated by a power
of I , then there exists a unique (up to unique isomorphism) triple (F , a, β)
where
(a) F is a coherentOX -module,
(b) a : G → F is anOX -module map whose kernel and cokernel are annihilated

by a power of I ,
(c) β : F∧ → (Fn) is an isomorphism, and
(d) α = β ◦ a∧.

Proof. Proof of (1). The uniqueness implies it suffices to construct (F , a, β) Zariski
locally on X . Thus we may assume X = Spec(A) and I corresponds to the ideal I ⊂ A.
In this situation Lemma 23.1 applies. Let M ′ be the finite A∧-module corresponding to
(Fn). Let N be the finite A-module corresponding to G. Then α corresponds to a map

ϕ : M ′ −→ N∧

whose kernel and cokernel are annihilated by It for some t. Recall that N∧ = N ⊗A A∧

(Algebra, Lemma 97.1). By More on Algebra, Lemma 89.16 there is an A-module map
ψ : M → N whose kernel and cokernel are I-power torsion and an isomorphism M ⊗A
A∧ = M ′ compatible with ϕ. As N and M ′ are finite modules, we conclude that M is
a finite A-module, see More on Algebra, Remark 89.19. Hence M ⊗A A∧ = M∧. We
omit the verification that the triple (M,N → M,M∧ → M ′) so obtained is unique up
to unique isomorphism.

The proof of (2) is exactly the same and we omit it. �

Lemma 23.7. LetX be a Noetherian scheme and let I ⊂ OX be a quasi-coherent sheaf
of ideals. Any object of Coh(X, I) which is annihilated by a power of I is in the essential
image of (23.3.1). Moreover, if F , G are in Coh(OX) and either F or G is annihilated by
a power of I , then the maps

HomX(F ,G)

��

ExtX(F ,G)

��
HomCoh(X,I)(F∧,G∧) ExtCoh(X,I)(F∧,G∧)

are isomorphisms.

Proof. Suppose (Fn) is an object of Coh(X, I) which is annihilated by Ic for some
c ≥ 1. Then Fn → Fc is an isomorphism for n ≥ c. Hence if we set F = Fc, then we see
that F∧ ∼= (Fn). This proves the first assertion.
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Let F , G be objects of Coh(OX) such that either F or G is annihilated by Ic for some
c ≥ 1. ThenH = HomOX

(G,F) is a coherent OX -module annihilated by Ic. Hence we
see that

HomX(G,F) = H0(X,H) = limH0(X,H/InH) = MorCoh(X,I)(G∧,F∧).
see Lemma 23.5. This proves the statement on homomorphisms.
The notation Ext refers to extensions as defined in Homology, Section 6. The injectivity
of the map on Ext’s follows immediately from the bijectivity of the map on Hom’s. For
surjectivity, assume F is annihilated by a power of I . Then part (1) of Lemma 23.6 shows
that given an extension

0→ G∧ → (En)→ F∧ → 0
in Coh(U, IOU ) the morphism G∧ → (En) is isomorphic to G → E∧ for some G → E in
Coh(OU ). Similarly in the other case. �

Lemma 23.8. Let X be a Noetherian scheme and let I ⊂ OX be a quasi-coherent
sheaf of ideals. If (Fn) is an object of Coh(X, I) then

⊕
Ker(Fn+1 → Fn) is a finite

type, graded, quasi-coherent
⊕
In/In+1-module.

Proof. The question is local on X hence we may assume X is affine, i.e., we have
a situation as in Lemma 23.1. In this case, if (Fn) corresponds to the finite A∧ module
M , then

⊕
Ker(Fn+1 → Fn) corresponds to

⊕
InM/In+1M which is clearly a finite

module over
⊕
In/In+1. �

Lemma 23.9. Let f : X → Y be a morphism of Noetherian schemes. LetJ ⊂ OY be
a quasi-coherent sheaf of ideals and set I = f−1JOX . Then there is a right exact functor

f∗ : Coh(Y,J ) −→ Coh(X, I)
which sends (Gn) to (f∗Gn). If f is flat, then f∗ is an exact functor.

Proof. Since f∗ : Coh(OY )→ Coh(OX) is right exact we have

f∗Gn = f∗(Gn+1/InGn+1) = f∗Gn+1/f
−1Inf∗Gn+1 = f∗Gn+1/J nf∗Gn+1

hence the pullback of a system is a system. The construction of cokernels in the proof of
Lemma 23.2 shows that f∗ : Coh(Y,J ) → Coh(X, I) is always right exact. If f is flat,
then f∗ : Coh(OY )→ Coh(OX) is an exact functor. It follows from the construction of
kernels in the proof of Lemma 23.2 that in this case f∗ : Coh(Y,J ) → Coh(X, I) also
transforms kernels into kernels. �

Lemma 23.10. Let f : X ′ → X be a morphism of Noetherian schemes. Let Z ⊂ X
be a closed subscheme and denote Z ′ = f−1Z the scheme theoretic inverse image. Let
I ⊂ OX , I ′ ⊂ OX′ be the corresponding quasi-coherent sheaves of ideals. If f is flat
and the induced morphism Z ′ → Z is an isomorphism, then the pullback functor f∗ :
Coh(X, I)→ Coh(X ′, I ′) (Lemma 23.9) is an equivalence.

Proof. IfX andX ′ are affine, then this follows immediately from More on Algebra,
Lemma 89.3. To prove it in general we let Zn ⊂ X , Z ′

n ⊂ X ′ be the nth infinitesimal
neighbourhoods of Z , Z ′. The induced morphism Zn → Z ′

n is a homeomorphism on
underlying topological spaces. On the other hand, if z′ ∈ Z ′ maps to z ∈ Z , then the
ring map OX,z → OX′,z′ is flat and induces an isomorphism OX,z/Iz → OX′,z′/I ′

z′ .
Hence it induces an isomorphism OX,z/Inz → OX′,z′/(I ′

z′)n for all n ≥ 1 for example
by More on Algebra, Lemma 89.2. Thus Z ′

n → Zn is an isomorphism of schemes. Thus
f∗ induces an equivalence between the category of coherent OX -modules annihilated by
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In and the category of coherentOX′ -modules annihilated by (I ′)n, see Lemma 9.8. This
clearly implies the lemma. �

Lemma 23.11. Let X be a Noetherian scheme. Let I,J ⊂ OX be quasi-coherent
sheaves of ideals. If V (I) = V (J ) is the same closed subset of X , then Coh(X, I) and
Coh(X,J ) are equivalent.

Proof. First, assume X = Spec(A) is affine. Let I, J ⊂ A be the ideals correspond-
ing to I,J . Then V (I) = V (J) implies we have Ic ⊂ J and Jd ⊂ I for some c, d ≥ 1 by
elementary properties of the Zariski topology (see Algebra, Section 17 and Lemma 32.5).
Hence the I-adic and J -adic completions of A agree, see Algebra, Lemma 96.9. Thus the
equivalence follows from Lemma 23.1 in this case.
In general, using what we said above and the fact thatX is quasi-compact, to choose c, d ≥
1 such that Ic ⊂ J and J d ⊂ I . Then given an object (Fn) in Coh(X, I) we claim that
the inverse system

(Fcn/J nFcn)
is in Coh(X,J ). This may be checked on the members of an affine covering; we omit
the details. In the same manner we can construct an object of Coh(X, I) starting with an
object of Coh(X,J ). We omit the verification that these constructions define mutually
quasi-inverse functors. �

24. Grothendieck’s existence theorem, I

In this section we discuss Grothendieck’s existence theorem for the projective case. We
will use the notion of coherent formal modules developed in Section 23. The reader who is
familiar with formal schemes is encouraged to read the statement and proof of the theorem
in [?].

Lemma 24.1. Let A be Noetherian ring complete with respect to an ideal I . Let f :
X → Spec(A) be a proper morphism. Let I = IOX . Then the functor (23.3.1) is fully
faithful.

Proof. Let F , G be coherent OX -modules. Then H = HomOX
(G,F) is a coherent

OX -module, see Modules, Lemma 22.6. By Lemma 23.5 the map
limnH

0(X,H/InH)→ MorCoh(X,I)(G∧,F∧)
is bijective. Hence fully faithfulness of (23.3.1) follows from the theorem on formal func-
tions (Lemma 20.6) for the coherent sheafH. �

Lemma 24.2. Let A be Noetherian ring and I ⊂ A an ideal. Let f : X → Spec(A)
be a proper morphism and let L be an f -ample invertible sheaf. Let I = IOX . Let (Fn)
be an object of Coh(X, I). Then there exists an integer d0 such that

H1(X,Ker(Fn+1 → Fn)⊗ L⊗d) = 0
for all n ≥ 0 and all d ≥ d0.

Proof. Set B =
⊕
In/In+1 and B =

⊕
In/In+1 = f∗B̃. By Lemma 23.8 the

graded quasi-coherent B-module G =
⊕

Ker(Fn+1 → Fn) is of finite type. Hence the
lemma follows from Lemma 19.3 part (2). �

Lemma 24.3. Let A be Noetherian ring complete with respect to an ideal I . Let f :
X → Spec(A) be a projective morphism. Let I = IOX . Then the functor (23.3.1) is an
equivalence.
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Proof. We have already seen that (23.3.1) is fully faithful in Lemma 24.1. Thus it
suffices to show that the functor is essentially surjective.

We first show that every object (Fn) of Coh(X, I) is the quotient of an object in the
image of (23.3.1). LetL be an f -ample invertible sheaf onX . Choose d0 as in Lemma 24.2.
Choose a d ≥ d0 such thatF1⊗L⊗d is globally generated by some sections s1,1, . . . , st,1.
Since the transition maps of the system

H0(X,Fn+1 ⊗ L⊗d) −→ H0(X,Fn ⊗ L⊗d)
are surjective by the vanishing of H1 we can lift s1,1, . . . , st,1 to a compatible system of
global sections s1,n, . . . , st,n of Fn ⊗L⊗d. These determine a compatible system of maps

(s1,n, . . . , st,n) : (L⊗−d)⊕t −→ Fn
Using Lemma 23.3 we deduce that we have a surjective map(

(L⊗−d)⊕t)∧ −→ (Fn)
as desired.

The result of the previous paragraph and the fact that Coh(X, I) is abelian (Lemma 23.2)
implies that every object of Coh(X, I) is a cokernel of a map between objects coming from
Coh(OX). As (23.3.1) is fully faithful and exact by Lemmas 24.1 and 23.4 we conclude. �

25. Grothendieck’s existence theorem, II

In this section we discuss Grothendieck’s existence theorem in the proper case. Before we
give the statement and proof, we need to develop a bit more theory regarding the categories
Coh(X, I) of coherent formal modules introduced in Section 23.

Remark 25.1. Let X be a Noetherian scheme and let I,K ⊂ OX be quasi-coherent
sheaves of ideals. Let α : (Fn) → (Gn) be a morphism of Coh(X, I). Given an affine
open Spec(A) = U ⊂ X with I|U ,K|U corresponding to ideals I,K ⊂ A denote αU :
M → N of finite A∧-modules which corresponds to α|U via Lemma 23.1. We claim the
following are equivalent

(1) there exists an integer t ≥ 1 such that Ker(αn) and Coker(αn) are annihilated
by Kt for all n ≥ 1,

(2) for any affine open Spec(A) = U ⊂ X as above the modules Ker(αU ) and
Coker(αU ) are annihilated by Kt for some integer t ≥ 1, and

(3) there exists a finite affine open covering X =
⋃
Ui such that the conclusion of

(2) holds for αUi .
If these equivalent conditions hold we will say that α is a map whose kernel and cokernel
are annihilated by a power ofK. To see the equivalence we use the following commutative
algebra fact: suppose given an exact sequence

0→ T →M → N → Q→ 0
of A-modules with T and Q annihilated by Kt for some ideal K ⊂ A. Then for every
f, g ∈ Kt there exists a canonical map ”fg” : N →M such that M → N →M is equal
to multiplication by fg. Namely, for y ∈ N we can pick x ∈ M mapping to fy in N
and then we can set ”fg”(y) = gx. Thus it is clear that Ker(M/JM → N/JN) and
Coker(M/JM → N/JN) are annihilated by K2t for any ideal J ⊂ A.

Applying the commutative algebra fact to αUi and J = In we see that (3) implies (1).
Conversely, suppose (1) holds and M → N is equal to αU . Then there is a t ≥ 1 such
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that Ker(M/InM → N/InN) and Coker(M/InM → N/InN) are annihilated by Kt

for all n. We obtain maps ”fg” : N/InN → M/InM which in the limit induce a map
N →M asN andM are I-adically complete. Since the composition withN →M → N
is multiplication by fg we conclude that fg annihilates T and Q. In other words T and
Q are annihilated by K2t as desired.

Lemma 25.2. Let X be a Noetherian scheme. Let I,K ⊂ OX be quasi-coherent
sheaves of ideals. Let Xe ⊂ X be the closed subscheme cut out by Ke. Let Ie = IOXe .
Let (Fn) be an object of Coh(X, I). Assume

(1) the functor Coh(OXe)→ Coh(Xe, Ie) is an equivalence for all e ≥ 1, and
(2) there exists a coherent sheaf H on X and a map α : (Fn) → H∧ whose kernel

and cokernel are annihilated by a power of K.
Then (Fn) is in the essential image of (23.3.1).

Proof. During this proof we will use without further mention that for a closed im-
mersion i : Z → X the functor i∗ gives an equivalence between the category of coherent
modules on Z and coherent modules onX annihilated by the ideal sheaf of Z , see Lemma
9.8. In particular we may identify Coh(OXe) with the category of coherentOX -modules
annihilated byKe and Coh(Xe, Ie) as the full subcategory of Coh(X, I) of objects annihi-
lated byKe. Moreover (1) tells us these two categories are equivalent under the completion
functor (23.3.1).

Applying this equivalence we get a coherent OX -module Ge annihilated by Ke corre-
sponding to the system (Fn/KeFn) of Coh(X, I). The maps Fn/Ke+1Fn → Fn/KeFn
correspond to canonical maps Ge+1 → Ge which induce isomorphisms Ge+1/KeGe+1 →
Ge. Hence (Ge) is an object of Coh(X,K). The map α induces a system of maps

Fn/KeFn −→ H/(In +Ke)H

whence maps Ge → H/KeH (by the equivalence of categories again). Let t ≥ 1 be an
integer, which exists by assumption (2), such that Kt annihilates the kernel and cokernel
of all the maps Fn → H/InH. Then K2t annihilates the kernel and cokernel of the
maps Fn/KeFn → H/(In +Ke)H, see Remark 25.1. Whereupon we conclude that K4t

annihilates the kernel and the cokernel of the maps

Ge −→ H/KeH,

see Remark 25.1. We apply Lemma 23.6 to obtain a coherent OX -module F , a map a :
F → H and an isomorphism β : (Ge) → (F/KeF) in Coh(X,K). Working backwards,
for a given n the triple (F/InF , a mod In, β mod In) is a triple as in the lemma for
the morphism αn mod Ke : (Fn/KeFn) → (H/(In + Ke)H) of Coh(X,K). Thus the
uniqueness in Lemma 23.6 gives a canonical isomorphismF/InF → Fn compatible with
all the morphisms in sight. This finishes the proof of the lemma. �

Lemma 25.3. Let Y be a Noetherian scheme. Let J ,K ⊂ OY be quasi-coherent
sheaves of ideals. Let f : X → Y be a proper morphism which is an isomorphism over
V = Y \ V (K). Set I = f−1JOX . Let (Gn) be an object of Coh(Y,J ), let F be a
coherent OX -module, and let β : (f∗Gn)→ F∧ be an isomorphism in Coh(X, I). Then
there exists a map

α : (Gn) −→ (f∗F)∧

in Coh(Y,J ) whose kernel and cokernel are annihilated by a power of K.
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Proof. Since f is a proper morphism we see that f∗F is a coherent OY -module
(Proposition 19.1). Thus the statement of the lemma makes sense. Consider the com-
positions

γn : Gn → f∗f
∗Gn → f∗(F/InF).

Here the first map is the adjunction map and the second is f∗βn. We claim that there exists
a unique α as in the lemma such that the compositions

Gn
αn−−→ f∗F/J nf∗F → f∗(F/InF)

equal γn for all n. Because of the uniqueness we may assume that Y = Spec(B) is affine.
Let J ⊂ B corresponds to the ideal J . Set

Mn = H0(X,F/InF) and M = H0(X,F)

By Lemma 20.4 and Theorem 20.5 the inverse limit of the modules Mn equals the com-
pletionM∧ = limM/JnM . SetNn = H0(Y,Gn) andN = limNn. Via the equivalence
of categories of Lemma 23.1 the finite B∧ modules N and M∧ correspond to (Gn) and
f∗F∧. It follows from this that α has to be the morphism of Coh(Y,J ) corresponding to
the homomorphism

lim γn : N = limnNn −→ limMn = M∧

of finite B∧-modules.

We still have to show that the kernel and cokernel of α are annihilated by a power of K.
Set Y ′ = Spec(B∧) and X ′ = Y ′ ×Y X . Let K′, J ′, G′

n and I ′, F ′ be the pullback of
K, J , Gn and I , F , to Y ′ and X ′. The projection morphism f ′ : X ′ → Y ′ is the base
change of f by Y ′ → Y . Note that Y ′ → Y is a flat morphism of schemes as B → B∧

is flat by Algebra, Lemma 97.2. Hence f ′
∗F ′, resp. f ′

∗(f ′)∗G′
n is the pullback of f∗F , resp.

f∗f
∗Gn to Y ′ by Lemma 5.2. The uniqueness of our construction shows the pullback of

α to Y ′ is the corresponding map α′ constructed for the situation on Y ′. Moreover, to
check that the kernel and cokernel of α are annihilated by Kt it suffices to check that the
kernel and cokernel of α′ are annihilated by (K′)t. Namely, to see this we need to check
this for kernels and cokernels of the maps αn and α′

n (see Remark 25.1) and the ring map
B → B∧ induces an equivalence of categories between modules annihilated by Jn and
(J ′)n, see More on Algebra, Lemma 89.3. Thus we may assumeB is complete with respect
to J .

Assume Y = Spec(B) is affine, J corresponds to the ideal J ⊂ B, and B is complete
with respect to J . In this case (Gn) is in the essential image of the functor Coh(OY ) →
Coh(Y,J ). Say G is a coherent OY -module such that (Gn) = G∧. Note that f∗(G∧) =
(f∗G)∧. Hence Lemma 24.1 tells us that β comes from an isomorphism b : f∗G → F and
α is the completion functor applied to

G → f∗f
∗G ∼= f∗F

Hence we are trying to verify that the kernel and cokernel of the adjunction map c :
G → f∗f

∗G are annihilated by a power of K. However, since the restriction f |f−1(V ) :
f−1(V ) → V is an isomorphism we see that c|V is an isomorphism. Thus the coherent
sheaves Ker(c) and Coker(c) are supported on V (K) hence are annihilated by a power of
K (Lemma 10.2) as desired. �

The following proposition is the form of Grothendieck’s existence theorem which is most
often used in practice.
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Proposition 25.4. Let A be a Noetherian ring complete with respect to an ideal I .
Let f : X → Spec(A) be a proper morphism of schemes. Set I = IOX . Then the functor
(23.3.1) is an equivalence.

Proof. We have already seen that (23.3.1) is fully faithful in Lemma 24.1. Thus it
suffices to show that the functor is essentially surjective.

Consider the collection Ξ of quasi-coherent sheaves of ideals K ⊂ OX such that every
object (Fn) annihilated byK is in the essential image. We want to show (0) is in Ξ. If not,
then since X is Noetherian there exists a maximal quasi-coherent sheaf of ideals K not in
Ξ, see Lemma 10.1. After replacing X by the closed subscheme of X corresponding to K
we may assume that every nonzero K is in Ξ. (This uses the correspondence by coherent
modules annihilated byK and coherent modules on the closed subscheme corresponding to
K, see Lemma 9.8.) Let (Fn) be an object of Coh(X, I). We will show that this object is in
the essential image of the functor (23.3.1), thereby completion the proof of the proposition.

Apply Chow’s lemma (Lemma 18.1) to find a proper surjective morphism f : X ′ → X
which is an isomorphism over a dense open U ⊂ X such that X ′ is projective over A.
Let K be the quasi-coherent sheaf of ideals cutting out the reduced complement X \ U .
By the projective case of Grothendieck’s existence theorem (Lemma 24.3) there exists a
coherent module F ′ on X ′ such that (F ′)∧ ∼= (f∗Fn). By Proposition 19.1 the OX -
module H = f∗F ′ is coherent and by Lemma 25.3 there exists a morphism (Fn) → H∧

of Coh(X, I) whose kernel and cokernel are annihilated by a power ofK. The powersKe
are all in Ξ so that (23.3.1) is an equivalence for the closed subschemes Xe = V (Ke). We
conclude by Lemma 25.2. �

26. Being proper over a base

This is just a short section to point out some useful features of closed subsets proper over
a base and finite type, quasi-coherent modules with support proper over a base.

Lemma 26.1. Let f : X → S be a morphism of schemes which is locally of finite
type. Let Z ⊂ X be a closed subset. The following are equivalent

(1) the morphismZ → S is proper ifZ is endowed with the reduced induced closed
subscheme structure (Schemes, Definition 12.5),

(2) for some closed subscheme structure on Z the morphism Z → S is proper,
(3) for any closed subscheme structure on Z the morphism Z → S is proper.

Proof. The implications (3)⇒ (1) and (1)⇒ (2) are immediate. Thus it suffices to
prove that (2) implies (3). We urge the reader to find their own proof of this fact. Let Z ′

andZ ′′ be closed subscheme structures onZ such thatZ ′ → S is proper. We have to show
thatZ ′′ → S is proper. LetZ ′′′ = Z ′∪Z ′′ be the scheme theoretic union, see Morphisms,
Definition 4.4. ThenZ ′′′ is another closed subscheme structure onZ. This follows for ex-
ample from the description of scheme theoretic unions in Morphisms, Lemma 4.6. Since
Z ′′ → Z ′′′ is a closed immersion it suffices to prove that Z ′′′ → S is proper (see Mor-
phisms, Lemmas 41.6 and 41.4). The morphism Z ′ → Z ′′′ is a bijective closed immersion
and in particular surjective and universally closed. Then the fact thatZ ′ → S is separated
implies that Z ′′′ → S is separated, see Morphisms, Lemma 41.11. Moreover Z ′′′ → S
is locally of finite type as X → S is locally of finite type (Morphisms, Lemmas 15.5 and
15.3). Since Z ′ → S is quasi-compact and Z ′ → Z ′′′ is a homeomorphism we see that
Z ′′′ → S is quasi-compact. Finally, since Z ′ → S is universally closed, we see that the
same thing is true for Z ′′′ → S by Morphisms, Lemma 41.9. This finishes the proof. �
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Definition 26.2. Let f : X → S be a morphism of schemes which is locally of finite
type. LetZ ⊂ X be a closed subset. We sayZ is proper over S if the equivalent conditions
of Lemma 26.1 are satisfied.

The lemma used in the definition above is false if the morphism f : X → S is not locally
of finite type. Therefore we urge the reader not to use this terminology if f is not locally
of finite type.

Lemma 26.3. Let f : X → S be a morphism of schemes which is locally of finite
type. Let Y ⊂ Z ⊂ X be closed subsets. If Z is proper over S , then the same is true for Y .

Proof. Omitted. �

Lemma 26.4. Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

with f locally of finite type. If Z is a closed subset of X proper over S , then (g′)−1(Z) is
a closed subset of X ′ proper over S′.

Proof. Observe that the statement makes sense as f ′ is locally of finite type by Mor-
phisms, Lemma 15.4. Endow Z with the reduced induced closed subscheme structure.
Denote Z ′ = (g′)−1(Z) the scheme theoretic inverse image (Schemes, Definition 17.7).
Then Z ′ = X ′ ×X Z = (S′ ×S X)×X Z = S′ ×S Z is proper over S′ as a base change
of Z over S (Morphisms, Lemma 41.5). �

Lemma 26.5. Let S be a scheme. Let f : X → Y be a morphism of schemes which
are locally of finite type over S.

(1) If Y is separated over S and Z ⊂ X is a closed subset proper over S , then f(Z)
is a closed subset of Y proper over S.

(2) If f is universally closed and Z ⊂ X is a closed subset proper over S , then f(Z)
is a closed subset of Y proper over S.

(3) If f is proper andZ ⊂ Y is a closed subset proper over S , then f−1(Z) is a closed
subset of X proper over S.

Proof. Proof of (1). Assume Y is separated over S and Z ⊂ X is a closed subset
proper over S. Endow Z with the reduced induced closed subscheme structure and apply
Morphisms, Lemma 41.10 to Z → Y over S to conclude.
Proof of (2). Assume f is universally closed and Z ⊂ X is a closed subset proper over
S. Endow Z and Z ′ = f(Z) with their reduced induced closed subscheme structures.
We obtain an induced morphism Z → Z ′. Denote Z ′′ = f−1(Z ′) the scheme theoretic
inverse image (Schemes, Definition 17.7). Then Z ′′ → Z ′ is universally closed as a base
change of f (Morphisms, Lemma 41.5). Hence Z → Z ′ is universally closed as a com-
position of the closed immersion Z → Z ′′ and Z ′′ → Z ′ (Morphisms, Lemmas 41.6 and
41.4). We conclude that Z ′ → S is separated by Morphisms, Lemma 41.11. Since Z → S
is quasi-compact and Z → Z ′ is surjective we see that Z ′ → S is quasi-compact. Since
Z ′ → S is the composition of Z ′ → Y and Y → S we see that Z ′ → S is locally of finite
type (Morphisms, Lemmas 15.5 and 15.3). Finally, since Z → S is universally closed, we
see that the same thing is true for Z ′ → S by Morphisms, Lemma 41.9. This finishes the
proof.
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Proof of (3). Assume f is proper and Z ⊂ Y is a closed subset proper over S. Endow Z
with the reduced induced closed subscheme structure. Denote Z ′ = f−1(Z) the scheme
theoretic inverse image (Schemes, Definition 17.7). Then Z ′ → Z is proper as a base
change of f (Morphisms, Lemma 41.5). Whence Z ′ → S is proper as the composition of
Z ′ → Z and Z → S (Morphisms, Lemma 41.4). This finishes the proof. �

Lemma 26.6. Let f : X → S be a morphism of schemes which is locally of finite
type. Let Zi ⊂ X , i = 1, . . . , n be closed subsets. If Zi, i = 1, . . . , n are proper over S ,
then the same is true for Z1 ∪ . . . ∪ Zn.

Proof. EndowZi with their reduced induced closed subscheme structures. The mor-
phism

Z1 q . . .q Zn −→ X

is finite by Morphisms, Lemmas 44.12 and 44.13. As finite morphisms are universally
closed (Morphisms, Lemma 44.11) and since Z1 q . . . q Zn is proper over S we conclude
by Lemma 26.5 part (2) that the image Z1 ∪ . . . ∪ Zn is proper over S. �

Let f : X → S be a morphism of schemes which is locally of finite type. Let F be a finite
type, quasi-coherentOX -module. Then the support Supp(F) ofF is a closed subset ofX ,
see Morphisms, Lemma 5.3. Hence it makes sense to say “the support of F is proper over
S”.

Lemma 26.7. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a finite type, quasi-coherentOX -module. The following are equivalent

(1) the support of F is proper over S ,
(2) the scheme theoretic support ofF (Morphisms, Definition 5.5) is proper over S ,

and
(3) there exists a closed subscheme Z ⊂ X and a finite type, quasi-coherent OZ -

module G such that (a) Z → S is proper, and (b) (Z → X)∗G = F .

Proof. The support Supp(F) of F is a closed subset of X , see Morphisms, Lemma
5.3. Hence we can apply Definition 26.2. Since the scheme theoretic support of F is a
closed subscheme whose underlying closed subset is Supp(F) we see that (1) and (2) are
equivalent by Definition 26.2. It is clear that (2) implies (3). Conversely, if (3) is true, then
Supp(F) ⊂ Z (an inclusion of closed subsets of X) and hence Supp(F) is proper over S
for example by Lemma 26.3. �

Lemma 26.8. Consider a cartesian diagram of schemes

X ′

f ′

��

g′
// X

f

��
S′ g // S

with f locally of finite type. Let F be a finite type, quasi-coherent OX -module. If the
support of F is proper over S , then the support of (g′)∗F is proper over S′.

Proof. Observe that the statement makes sense because (g′) ∗ F is of finite type by
Modules, Lemma 9.2. We have Supp((g′)∗F) = (g′)−1(Supp(F)) by Morphisms, Lemma
5.3. Thus the lemma follows from Lemma 26.4. �

Lemma 26.9. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F , G be finite type, quasi-coherentOX -module.
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(1) If the supports of F , G are proper over S , then the same is true for F ⊕ G , for
any extension of G by F , for Im(u) and Coker(u) given any OX -module map
u : F → G , and for any quasi-coherent quotient of F or G.

(2) If S is locally Noetherian, then the category of coherentOX -modules with sup-
port proper over S is a Serre subcategory (Homology, Definition 10.1) of the
abelian category of coherentOX -modules.

Proof. Proof of (1). Let Z , Z ′ be the support of F and G. Then all the sheaves
mentioned in (1) have support contained in Z ∪Z ′. Thus the assertion itself is clear from
Lemmas 26.3 and 26.6 provided we check that these sheaves are finite type and quasi-
coherent. For quasi-coherence we refer the reader to Schemes, Section 24. For “finite
type” we suggest the reader take a look at Modules, Section 9.
Proof of (2). The proof is the same as the proof of (1). Note that the assertions make
sense asX is locally Noetherian by Morphisms, Lemma 15.6 and by the description of the
category of coherent modules in Section 9. �

Lemma 26.10. Let S be a locally Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let F be a coherent OX -module with support
proper over S. Then Rpf∗F is a coherentOS-module for all p ≥ 0.

Proof. By Lemma 26.7 there exists a closed immersion i : Z → X and a finite type,
quasi-coherentOZ -module G such that (a) g = f ◦ i : Z → S is proper, and (b) i∗G = F .
We see that Rpg∗G is coherent on S by Proposition 19.1. On the other hand, Rqi∗G = 0
for q > 0 (Lemma 9.9). By Cohomology, Lemma 13.8 we get Rpf∗F = Rpg∗G which
concludes the proof. �

Lemma 26.11. Let S be a Noetherian scheme. Let f : X → S be a finite type mor-
phism. Let I ⊂ OX be a quasi-coherent sheaf of ideals. The following are Serre subcate-
gories of Coh(X, I)

(1) the full subcategory of Coh(X, I) consisting of those objects (Fn) such that the
support of F1 is proper over S ,

(2) the full subcategory of Coh(X, I) consisting of those objects (Fn) such that
there exists a closed subscheme Z ⊂ X proper over S with IZFn = 0 for all
n ≥ 1.

Proof. We will use the criterion of Homology, Lemma 10.2. Moreover, we will use
that if 0 → (Gn) → (Fn) → (Hn) → 0 is a short exact sequence of Coh(X, I), then (a)
Gn → Fn → Hn → 0 is exact for all n ≥ 1 and (b) Gn is a quotient of Ker(Fm → Hm)
for some m ≥ n. See proof of Lemma 23.2.
Proof of (1). Let (Fn) be an object of Coh(X, I). Then Supp(Fn) = Supp(F1) for all
n ≥ 1. Hence by remarks (a) and (b) above we see that for any short exact sequence 0 →
(Gn) → (Fn) → (Hn) → 0 of Coh(X, I) we have Supp(G1) ∪ Supp(H1) = Supp(F1).
This proves that the category defined in (1) is a Serre subcategory of Coh(X, I).
Proof of (2). Here we argue the same way. Let 0→ (Gn)→ (Fn)→ (Hn)→ 0 be a short
exact sequence of Coh(X, I). If Z ⊂ X is a closed subscheme and IZ annihilates Fn for
all n, then IZ annihilates Gn and Hn for all n by (a) and (b) above. Hence if Z → S is
proper, then we conclude that the category defined in (2) is closed under taking sub and
quotient objects inside of Coh(X, I). Finally, suppose that Z ⊂ X and Y ⊂ X are closed
subschemes proper over S such that IZGn = 0 and IYHn = 0 for all n ≥ 1. Then it
follows from (a) above that IZ∪Y = IZ · IY annihilates Fn for all n. By Lemma 26.6
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(and via Definition 26.2 which tells us we may choose an arbitrary scheme structure used
on the union) we see that Z ∪ Y → S is proper and the proof is complete. �

27. Grothendieck’s existence theorem, III

To state the general version of Grothendieck’s existence theorem we introduce a bit more
notation. Let A be a Noetherian ring complete with respect to an ideal I . Let f : X →
Spec(A) be a separated finite type morphism of schemes. Set I = IOX . In this situation
we let

Cohsupport proper overA(OX)
be the full subcategory of Coh(OX) consisting of those coherentOX -modules whose sup-
port is proper over Spec(A). This is a Serre subcategory of Coh(OX), see Lemma 26.9.
Similarly, we let

Cohsupport proper overA(X, I)
be the full subcategory of Coh(X, I) consisting of those objects (Fn) such that the support
of F1 is proper over Spec(A). This is a Serre subcategory of Coh(X, I) by Lemma 26.11
part (1). Since the support of a quotient module is contained in the support of the module,
it follows that (23.3.1) induces a functor

(27.0.1) Cohsupport proper overA(OX) −→ Cohsupport proper overA(X, I)

We are now ready to state the main theorem of this section.

Theorem 27.1 (Grothendieck’s existence theorem). LetA be a Noetherian ring com-
plete with respect to an ideal I . LetX be a separated, finite type scheme overA. Then the
functor (27.0.1)

Cohsupport proper overA(OX) −→ Cohsupport proper overA(X, I)

is an equivalence.

Proof. We will use the equivalence of categories of Lemma 9.8 without further men-
tion. For a closed subscheme Z ⊂ X proper over A in this proof we will say a coherent
module onX is “supported onZ” if it is annihilated by the ideal sheaf ofZ or equivalently
if it is the pushforward of a coherent module on Z. By Proposition 25.4 we know that the
result is true for the functor between coherent modules and systems of coherent modules
supported on Z. Hence it suffices to show that every object of Cohsupport proper overA(OX)
and every object of Cohsupport proper overA(X, I) is supported on a closed subschemeZ ⊂ X
proper overA. This holds by definition for objects of Cohsupport proper overA(OX). We will
prove this statement for objects of Cohsupport proper overA(X, I) using the method of proof
of Proposition 25.4. We urge the reader to read that proof first.

Consider the collection Ξ of quasi-coherent sheaves of idealsK ⊂ OX such that the state-
ment holds for every object (Fn) of Cohsupport proper overA(X, I) annihilated by K. We
want to show (0) is in Ξ. If not, then since X is Noetherian there exists a maximal quasi-
coherent sheaf of ideals K not in Ξ, see Lemma 10.1. After replacing X by the closed sub-
scheme of X corresponding to K we may assume that every nonzero K is in Ξ. Let (Fn)
be an object of Cohsupport proper overA(X, I). We will show that this object is supported on
a closed subscheme Z ⊂ X proper over A, thereby completing the proof of the theorem.

Apply Chow’s lemma (Lemma 18.1) to find a proper surjective morphism f : Y → X
which is an isomorphism over a dense openU ⊂ X such that Y is H-quasi-projective over
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A. Choose an open immersion j : Y → Y ′ with Y ′ projective over A, see Morphisms,
Lemma 43.11. Observe that

Supp(f∗Fn) = f−1Supp(Fn) = f−1Supp(F1)
The first equality by Morphisms, Lemma 5.3. By assumption and Lemma 26.5 part (3) we
see that f−1Supp(F1) is proper overA. Hence the image of f−1Supp(F1) under j is closed
in Y ′ by Lemma 26.5 part (1). Thus F ′

n = j∗f
∗Fn is coherent on Y ′ by Lemma 9.11. It

follows that (F ′
n) is an object of Coh(Y ′, IOY ′). By the projective case of Grothendieck’s

existence theorem (Lemma 24.3) there exists a coherent OY ′ -module F ′ and an isomor-
phism (F ′)∧ ∼= (F ′

n) in Coh(Y ′, IOY ′). Since F ′/IF ′ = F ′
1 we see that

Supp(F ′) ∩ V (IOY ′) = Supp(F ′
1) = j(f−1Supp(F1))

The structure morphism p′ : Y ′ → Spec(A) is proper, hence p′(Supp(F ′) \ j(Y )) is
closed in Spec(A). A nonempty closed subset of Spec(A) contains a point of V (I) as I
is contained in the Jacobson radical of A by Algebra, Lemma 96.6. The displayed equa-
tion shows that Supp(F ′) ∩ (p′)−1V (I) ⊂ j(Y ) hence we conclude that Supp(F ′) ⊂
j(Y ). Thus F ′|Y = j∗F ′ is supported on a closed subscheme Z ′ of Y proper over A and
(F ′|Y )∧ = (f∗Fn).

LetK be the quasi-coherent sheaf of ideals cutting out the reduced complementX \U . By
Proposition 19.1 theOX -moduleH = f∗(F ′|Y ) is coherent and by Lemma 25.3 there ex-
ists a morphism α : (Fn)→ H∧ of Coh(X, I) whose kernel and cokernel are annihilated
by a power Kt of K. We obtain an exact sequence

0→ Ker(α)→ (Fn)→ H∧ → Coker(α)→ 0
in Coh(X, I). If Z0 ⊂ X is the scheme theoretic support of H, then it is clear that
Z0 ⊂ f(Z ′) set-theoretically. Hence Z0 is proper over A by Lemma 26.3 and Lemma
26.5 part (2). Hence H∧ is in the subcategory defined in Lemma 26.11 part (2) and a
fortiori in Cohsupport proper overA(X, I). We conclude that Ker(α) and Coker(α) are in
Cohsupport proper overA(X, I) by Lemma 26.11 part (1). By induction hypothesis, more pre-
cisely becauseKt is in Ξ, we see that Ker(α) and Coker(α) are in the subcategory defined
in Lemma 26.11 part (2). Since this is a Serre subcategory by the lemma, we conclude that
the same is true for (Fn) which is what we wanted to show. �

Remark 27.2 (Unwinding Grothendieck’s existence theorem). LetA be a Noetherian
ring complete with respect to an ideal I . Write S = Spec(A) and Sn = Spec(A/In).
Let X → S be a separated morphism of finite type. For n ≥ 1 we set Xn = X ×S Sn.
Picture:

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . . X

��
S1 // S2 // S3 // . . . S

In this situation we consider systems (Fn, ϕn) where
(1) Fn is a coherentOXn -module,
(2) ϕn : i∗nFn+1 → Fn is an isomorphism, and
(3) Supp(F1) is proper over S1.

Theorem 27.1 says that the completion functor

coherentOX -modules F
with support proper over A −→ systems (Fn)

as above
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is an equivalence of categories. In the special case thatX is proper overAwe can omit the
conditions on the supports.

28. Grothendieck’s algebraization theorem

Our first result is a translation of Grothendieck’s existence theorem in terms of closed
subschemes and finite morphisms.

Lemma 28.1. Let A be a Noetherian ring complete with respect to an ideal I . Write
S = Spec(A) and Sn = Spec(A/In). LetX → S be a separated morphism of finite type.
For n ≥ 1 we set Xn = X ×S Sn. Suppose given a commutative diagram

Z1 //

��

Z2 //

��

Z3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of schemes with cartesian squares. Assume that
(1) Z1 → X1 is a closed immersion, and
(2) Z1 → S1 is proper.

Then there exists a closed immersion of schemes Z → X such that Zn = Z ×S Sn.
Moreover, Z is proper over S.

Proof. Let’s write jn : Zn → Xn for the vertical morphisms. As the squares in the
statement are cartesian we see that the base change of jn to X1 is j1. Thus Morphisms,
Lemma 45.7 shows that jn is a closed immersion. Set Fn = jn,∗OZn , so that j]n is a
surjectionOXn → Fn. Again using that the squares are cartesian we see that the pullback
ofFn+1 toXn isFn. Hence Grothendieck’s existence theorem, as reformulated in Remark
27.2, tells us there exists a mapOX → F of coherentOX -modules whose restriction toXn

recovers OXn → Fn. Moreover, the support of F is proper over S. As the completion
functor is exact (Lemma 23.4) we see that the cokernel Q of OX → F has vanishing
completion. Since F has support proper over S and so does Q this implies that Q = 0
for example because the functor (27.0.1) is an equivalence by Grothendieck’s existence
theorem. ThusF = OX/J for some quasi-coherent sheaf of idealsJ . SettingZ = V (J )
finishes the proof. �

In the following lemma it is actually enough to assume that Y1 → X1 is finite as it will
imply that Yn → Xn is finite too (see More on Morphisms, Lemma 3.3).

Lemma 28.2. Let A be a Noetherian ring complete with respect to an ideal I . Write
S = Spec(A) and Sn = Spec(A/In). LetX → S be a separated morphism of finite type.
For n ≥ 1 we set Xn = X ×S Sn. Suppose given a commutative diagram

Y1 //

��

Y2 //

��

Y3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of schemes with cartesian squares. Assume that
(1) Yn → Xn is a finite morphism, and
(2) Y1 → S1 is proper.

Then there exists a finite morphism of schemes Y → X such that Yn = Y ×S Sn. More-
over, Y is proper over S.



28. GROTHENDIECK’S ALGEBRAIZATION THEOREM 2615

Proof. Let’s write fn : Yn → Xn for the vertical morphisms. Set Fn = fn,∗OYn .
This is a coherent OXn -module as fn is finite (Lemma 9.9). Using that the squares are
cartesian we see that the pullback of Fn+1 to Xn is Fn. Hence Grothendieck’s existence
theorem, as reformulated in Remark 27.2, tells us there exists a coherent OX -module F
whose restriction toXn recoversFn. Moreover, the support ofF is proper over S. As the
completion functor is fully faithful (Theorem 27.1) we see that the multiplication maps
Fn⊗OXn

Fn → Fn fit together to give an algebra structure onF . Setting Y = Spec
X

(F)
finishes the proof. �

Lemma 28.3. Let A be a Noetherian ring complete with respect to an ideal I . Write
S = Spec(A) and Sn = Spec(A/In). Let X , Y be schemes over S. For n ≥ 1 we set
Xn = X ×S Sn and Yn = Y ×S Sn. Suppose given a compatible system of commutative
diagrams

Xn+1

##

gn+1
// Yn+1

{{
Xn

66

  

gn
// Yn

55

||

Sn+1

Sn

55

Assume that
(1) X → S is proper, and
(2) Y → S is separated of finite type.

Then there exists a unique morphism of schemes g : X → Y over S such that gn is the
base change of g to Sn.

Proof. The morphisms (1, gn) : Xn → Xn ×S Yn are closed immersions because
Yn → Sn is separated (Schemes, Lemma 21.11). Thus by Lemma 28.1 there exists a closed
subschemeZ ⊂ X×SY proper overS whose base change toSn recoversXn ⊂ Xn×SYn.
The first projection p : Z → X is a proper morphism (as Z is proper over S , see Mor-
phisms, Lemma 41.7) whose base change to Sn is an isomorphism for all n. In particular,
p : Z → X is finite over an open neighbourhood of X0 by Lemma 21.2. As X is proper
over S this open neighbourhood is all of X and we conclude p : Z → X is finite. Apply-
ing the equivalence of Proposition 25.4 we see that p∗OZ = OX as this is true modulo In
for all n. Hence p is an isomorphism and we obtain the morphism g as the composition
X ∼= Z → Y . We omit the proof of uniqueness. �

In order to prove an “abstract” algebraization theorem we need to assume we have an ample
invertible sheaf, as the result is false without such an assumption.

Theorem 28.4 (Grothendieck’s algebraization theorem). LetA be a Noetherian ring
complete with respect to an ideal I . Set S = Spec(A) and Sn = Spec(A/In). Consider
a commutative diagram

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . .

S1 // S2 // S3 // . . .



2616 30. COHOMOLOGY OF SCHEMES

of schemes with cartesian squares. Suppose given (Ln, ϕn) where each Ln is an invertible
sheaf on Xn and ϕn : i∗nLn+1 → Ln is an isomorphism. If

(1) X1 → S1 is proper, and
(2) L1 is ample on X1

then there exists a proper morphism of schemes X → S and an ample invertible OX -
module L and isomorphisms Xn

∼= X ×S Sn and Ln ∼= L|Xn compatible with the mor-
phisms in and ϕn.

Proof. Since the squares in the diagram are cartesian and since the morphisms Sn →
Sn+1 are closed immersions, we see that the morphisms in are closed immersions too. In
particular we may think of Xm as a closed subscheme of Xn for m < n. In fact Xm is
the closed subscheme cut out by the quasi-coherent sheaf of ideals ImOXn . Moreover, the
underlying topological spaces of the schemes X1, X2, X3, . . . are all identified, hence we
may (and do) think of sheaves OXn as living on the same underlying topological space;
similarly for coherentOXn -modules. Set

Fn = Ker(OXn+1 → OXn)
so that we obtain short exact sequences

0→ Fn → OXn+1 → OXn → 0
By the above we have Fn = InOXn+1 . It follows Fn is a coherent sheaf onXn+1 annihi-
lated by I , hence we may (and do) think of it as a coherent moduleOX1 -module. Observe
that for m > n the sheaf

InOXm/In+1OXm
maps isomorphically to Fn under the map OXm → OXn+1 . Hence given n1, n2 ≥ 0 we
can pick an m > n1 + n2 and consider the multiplication map

In1OXm × In2OXm −→ In1+n2OXm → Fn1+n2

This induces anOX1 -bilinear map

Fn1 ×Fn2 −→ Fn1+n2

which in turn defines the structure of a gradedOX1 -algebra on F =
⊕

n≥0 Fn.

Set B =
⊕
In/In+1; this is a finitely generated graded A/I-algebra. Set B = (X1 →

S1)∗B̃. The discussion above provides us with a canonical surjection

B −→ F

of gradedOX1 -algebras. In particular we see that F is a finite type quasi-coherent graded
B-module. By Lemma 19.3 we can find an integer d0 such that H1(X1,F ⊗ L⊗d) = 0
for all d ≥ d0. Pick a d ≥ d0 such that there exist sections s0,1, . . . , sN,1 ∈ Γ(X1,L⊗d

1 )
which induce an immersion

ψ1 : X1 → PN
S1

over S1, see Morphisms, Lemma 39.4. As X1 is proper over S1 we see that ψ1 is a closed
immersion, see Morphisms, Lemma 41.7 and Schemes, Lemma 10.4. We are going to “lift”
ψ1 to a compatible system of closed immersions of Xn into PN .

Upon tensoring the short exact sequences of the first paragraph of the proof by L⊗d
n+1 we

obtain short exact sequences

0→ Fn ⊗ L⊗d
n+1 → L

⊗d
n+1 → L

⊗d
n+1 → 0
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Using the isomorphismsϕn we obtain isomorphismsLn+1⊗OXl = Ll for l ≤ n. Whence
the sequence above becomes

0→ Fn ⊗ L⊗d
1 → L⊗d

n+1 → L⊗d
n → 0

The vanishing of H1(X,Fn ⊗ L⊗d
1 ) implies we can inductively lift s0,1, . . . , sN,1 ∈

Γ(X1,L⊗d
1 ) to sections s0,n, . . . , sN,n ∈ Γ(Xn,L⊗d

n ). Thus we obtain a commutative
diagram

X1
i1
//

ψ1
��

X2
i2
//

ψ2
��

X3 //

ψ3
��

. . .

PN
S1

// PN
S2

// PN
S3

// . . .

where ψn = ϕ(Ln,(s0,n,...,sN,n)) in the notation of Constructions, Section 13. As the
squares in the statement of the theorem are cartesian we see that the squares in the above
diagram are cartesian. We win by applying Lemma 28.1. �
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CHAPTER 31

Divisors

1. Introduction

In this chapter we study some very basic questions related to defining divisors, etc. A basic
reference is [?].

2. Associated points

Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is associated to M
if there exists an element of M whose annihilator is p. See Algebra, Definition 63.1. Here
is the definition of associated points for quasi-coherent sheaves on schemes as given in [?,
IV Definition 3.1.1].

Definition 2.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X .
(1) We say x ∈ X is associated to F if the maximal ideal mx is associated to the
OX,x-module Fx.

(2) We denote Ass(F) or AssX(F) the set of associated points of F .
(3) The associated points of X are the associated points ofOX .

These definitions are most useful when X is locally Noetherian and F of finite type. For
example it may happen that a generic point of an irreducible component of X is not as-
sociated to X , see Example 2.7. In the non-Noetherian case it may be more convenient to
use weakly associated points, see Section 5. Let us link the scheme theoretic notion with
the algebraic notion on affine opens; note that this correspondence works perfectly only
for locally Noetherian schemes.

Lemma 2.2. LetX be a scheme. LetF be a quasi-coherent sheaf onX . Let Spec(A) =
U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let p ⊂ A be the
corresponding prime.

(1) If p is associated to M , then x is associated to F .
(2) If p is finitely generated, then the converse holds as well.

In particular, if X is locally Noetherian, then the equivalence
p ∈ Ass(M)⇔ x ∈ Ass(F)

holds for all pairs (p, x) as above.

Proof. This follows from Algebra, Lemma 63.15. But we can also argue directly as
follows. Suppose p is associated to M . Then there exists an m ∈ M whose annihilator
is p. Since localization is exact we see that pAp is the annihilator of m/1 ∈ Mp. Since
Mp = Fx (Schemes, Lemma 5.4) we conclude that x is associated to F .
Conversely, assume that x is associated to F , and p is finitely generated. As x is associated
to F there exists an element m′ ∈ Mp whose annihilator is pAp. Write m′ = m/f for
some f ∈ A, f 6∈ p. The annihilator I of m is an ideal of A such that IAp = pAp. Hence

2619
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I ⊂ p, and (p/I)p = 0. Since p is finitely generated, there exists a g ∈ A, g 6∈ p such that
g(p/I) = 0. Hence the annihilator of gm is p and we win.

If X is locally Noetherian, then A is Noetherian (Properties, Lemma 5.2) and p is always
finitely generated. �

Lemma 2.3. LetX be a scheme. LetF be a quasi-coherentOX -module. Then Ass(F) ⊂
Supp(F).

Proof. This is immediate from the definitions. �

Lemma 2.4. Let X be a scheme. Let 0 → F1 → F2 → F3 → 0 be a short ex-
act sequence of quasi-coherent sheaves on X . Then Ass(F2) ⊂ Ass(F1) ∪ Ass(F3) and
Ass(F1) ⊂ Ass(F2).

Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence ofOX,x-modules. Hence the lemma follows from Algebra, Lemma
63.3. �

Lemma 2.5. LetX be a locally Noetherian scheme. Let F be a coherentOX -module.
Then Ass(F) ∩ U is finite for every quasi-compact open U ⊂ X .

Proof. This is true because the set of associated primes of a finite module over a Noe-
therian ring is finite, see Algebra, Lemma 63.5. To translate from schemes to algebra use
that U is a finite union of affine opens, each of these opens is the spectrum of a Noetherian
ring (Properties, Lemma 5.2), F corresponds to a finite module over this ring (Cohomol-
ogy of Schemes, Lemma 9.1), and finally use Lemma 2.2. �

Lemma 2.6. Let X be a locally Noetherian scheme. Let F be a quasi-coherent OX -
module. Then

F = 0⇔ Ass(F) = ∅.

Proof. If F = 0, then Ass(F) = ∅ by definition. Conversely, if Ass(F) = ∅, then
F = 0 by Algebra, Lemma 63.7. To translate from schemes to algebra, restrict to any affine
and use Lemma 2.2. �

Example 2.7. Let k be a field. The ring R = k[x1, x2, x3, . . .]/(x2
i ) is local with

locally nilpotent maximal ideal m. There exists no element ofRwhich has annihilator m.
Hence Ass(R) = ∅, and X = Spec(R) is an example of a scheme which has no associated
points.

Lemma 2.8. Let X be a locally Noetherian scheme. Let F be a quasi-coherent OX -
module. If U ⊂ X is open and Ass(F) ⊂ U , then Γ(X,F)→ Γ(U,F) is injective.

Proof. Let s ∈ Γ(X,F) be a section which restricts to zero on U . Let F ′ ⊂ F be
the image of the map OX → F defined by s. Then Supp(F ′) ∩ U = ∅. On the other
hand, Ass(F ′) ⊂ Ass(F) by Lemma 2.4. Since also Ass(F ′) ⊂ Supp(F ′) (Lemma 2.3) we
conclude Ass(F ′) = ∅. Hence F ′ = 0 by Lemma 2.6. �

Lemma 2.9. Let X be a locally Noetherian scheme. Let F be a quasi-coherent OX -
module. Let x ∈ Supp(F) be a point in the support of F which is not a specialization
of another point of Supp(F). Then x ∈ Ass(F). In particular, any generic point of an
irreducible component of X is an associated point of X .
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Proof. Sincex ∈ Supp(F) the moduleFx is not zero. Hence Ass(Fx) ⊂ Spec(OX,x)
is nonempty by Algebra, Lemma 63.7. On the other hand, by assumption Supp(Fx) =
{mx}. Since Ass(Fx) ⊂ Supp(Fx) (Algebra, Lemma 63.2) we see that mx is associated to
Fx and we win. �

The following lemma is the analogue of More on Algebra, Lemma 23.12.

Lemma 2.10. Let X be a locally Noetherian scheme. Let ϕ : F → G be a map of
quasi-coherent OX -modules. Assume that for every x ∈ X at least one of the following
happens

(1) Fx → Gx is injective, or
(2) x 6∈ Ass(F).

Then ϕ is injective.

Proof. The assumptions imply that Ass(Ker(ϕ)) = ∅ and hence Ker(ϕ) = 0 by
Lemma 2.6. �

Lemma 2.11. Let X be a locally Noetherian scheme. Let ϕ : F → G be a map of
quasi-coherent OX -modules. Assume F is coherent and that for every x ∈ X one of the
following happens

(1) Fx → Gx is an isomorphism, or
(2) depth(Fx) ≥ 2 and x 6∈ Ass(G).

Then ϕ is an isomorphism.

Proof. This is a translation of More on Algebra, Lemma 23.13 into the language of
schemes. �

3. Morphisms and associated points

Let f : X → S be a morphism of schemes. Let F be a sheaf of OX -modules. If s ∈ S is a
point, then it is often convenient to denote Fs the OXs -module one gets by pulling back
F by the morphism is : Xs → X . Here Xs is the scheme theoretic fibre of f over s. In a
formula

Fs = i∗sF
Of course, this notation clashes with the already existing notation for the stalk of F at a
point x ∈ X if f = idX . However, the notation is often convenient, as in the formulation
of the following lemma.

Lemma 3.1. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X which is flat over S. Let G be a quasi-coherent sheaf on S. Then we have

AssX(F ⊗OX
f∗G) ⊃

⋃
s∈AssS(G)

AssXs(Fs)

and equality holds if S is locally Noetherian (for the notation Fs see above).

Proof. Let x ∈ X and let s = f(x) ∈ S. Set B = OX,x, A = OS,s, N = Fx, and
M = Gs. Note that the stalk ofF⊗OX

f∗G at x is equal to theB-moduleM⊗AN . Hence
x ∈ AssX(F⊗OX

f∗G) if and only ifmB is in AssB(M⊗AN). Similarly s ∈ AssS(G) and
x ∈ AssXs(Fs) if and only ifmA ∈ AssA(M) andmB/mAB ∈ AssB⊗κ(mA)(N⊗κ(mA)).
Thus the lemma follows from Algebra, Lemma 65.5. �



2622 31. DIVISORS

4. Embedded points

Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is an embedded
associated prime of M if it is an associated prime of M which is not minimal among the
associated primes of M . See Algebra, Definition 67.1. Here is the definition of embedded
associated points for quasi-coherent sheaves on schemes as given in [?, IV Definition 3.1.1].

Definition 4.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X .
(1) An embedded associated point of F is an associated point which is not maximal

among the associated points ofF , i.e., it is the specialization of another associated
point of F .

(2) A point x ofX is called an embedded point if x is an embedded associated point
ofOX .

(3) An embedded component of X is an irreducible closed subset Z = {x} where x
is an embedded point of X .

In the Noetherian case when F is coherent we have the following.

Lemma 4.2. LetX be a locally Noetherian scheme. LetF be a coherentOX -module.
Then

(1) the generic points of irreducible components of Supp(F) are associated points
of F , and

(2) an associated point of F is embedded if and only if it is not a generic point of an
irreducible component of Supp(F).

In particular an embedded point of X is an associated point of X which is not a generic
point of an irreducible component of X .

Proof. Recall that in this case Z = Supp(F) is closed, see Morphisms, Lemma 5.3
and that the generic points of irreducible components of Z are associated points of F , see
Lemma 2.9. Finally, we have Ass(F) ⊂ Z , by Lemma 2.3. These results, combined with
the fact that Z is a sober topological space and hence every point of Z is a specialization
of a generic point of Z , imply (1) and (2). �

Lemma 4.3. Let X be a locally Noetherian scheme. Let F be a coherent sheaf on X .
Then the following are equivalent:

(1) F has no embedded associated points, and
(2) F has property (S1).

Proof. This is Algebra, Lemma 157.2, combined with Lemma 2.2 above. �

Lemma 4.4. LetX be a locally Noetherian scheme of dimension≤ 1. The following
are equivalent

(1) X is Cohen-Macaulay, and
(2) X has no embedded points.

Proof. Follows from Lemma 4.3 and the definitions. �

Lemma 4.5. LetX be a locally Noetherian scheme. LetU ⊂ X be an open subscheme.
The following are equivalent

(1) U is scheme theoretically dense in X (Morphisms, Definition 7.1),
(2) U is dense in X and U contains all embedded points of X .
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Proof. The question is local on X , hence we may assume that X = Spec(A) where
A is a Noetherian ring. Then U is quasi-compact (Properties, Lemma 5.3) hence U =
D(f1) ∪ . . . ∪ D(fn) (Algebra, Lemma 29.1). In this situation U is scheme theoretically
dense in X if and only if A→ Af1 × . . .×Afn is injective, see Morphisms, Example 7.4.
Condition (2) translated into algebra means that for every associated prime p of A there
exists an i with fi 6∈ p.

Assume (1), i.e., A → Af1 × . . . × Afn is injective. If x ∈ A has annihilator a prime p,
then x maps to a nonzero element of Afi for some i and hence fi 6∈ p. Thus (2) holds.
Assume (2), i.e., every associated prime p of A corresponds to a prime of Afi for some i.
ThenA→ Af1× . . .×Afn is injective becauseA→

∏
p∈Ass(A) Ap is injective by Algebra,

Lemma 63.19. �

Lemma 4.6. Let X be a locally Noetherian scheme. Let F be a coherent sheaf on X .
The set of coherent subsheaves

{K ⊂ F | Supp(K) is nowhere dense in Supp(F)}
has a maximal element K. Setting F ′ = F/K we have the following

(1) Supp(F ′) = Supp(F),
(2) F ′ has no embedded associated points, and
(3) there exists a dense open U ⊂ X such that U ∩ Supp(F) is dense in Supp(F)

and F ′|U ∼= F|U .

Proof. This follows from Algebra, Lemmas 67.2 and 67.3. Note that U can be taken
as the complement of the closure of the set of embedded associated points of F . �

Lemma 4.7. Let X be a locally Noetherian scheme. Let F be a coherentOX -module
without embedded associated points. Set

I = Ker(OX −→ HomOX
(F ,F)).

This is a coherent sheaf of ideals which defines a closed subschemeZ ⊂ X without embed-
ded points. Moreover there exists a coherent sheaf G onZ such that (a)F = (Z → X)∗G ,
(b) G has no associated embedded points, and (c) Supp(G) = Z (as sets).

Proof. Some of the statements we have seen in the proof of Cohomology of Schemes,
Lemma 9.7. The others follow from Algebra, Lemma 67.4. �

5. Weakly associated points

LetR be a ring and letM be anR-module. Recall that a prime p ⊂ R is weakly associated
toM if there exists an elementm ofM such that p is minimal among the primes containing
the annihilator of m. See Algebra, Definition 66.1. If R is a local ring with maximal ideal
m, then m is weakly associated to M if and only if there exists an element m ∈M whose
annihilator has radical m, see Algebra, Lemma 66.2.

Definition 5.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X .
(1) We say x ∈ X is weakly associated to F if the maximal ideal mx is weakly

associated to theOX,x-module Fx.
(2) We denote WeakAss(F) the set of weakly associated points of F .
(3) The weakly associated points of X are the weakly associated points ofOX .

In this case, on any affine open, this corresponds exactly to the weakly associated primes
as defined above. Here is the precise statement.
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Lemma 5.2. LetX be a scheme. LetF be a quasi-coherent sheaf onX . Let Spec(A) =
U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let p ⊂ A be the
corresponding prime. The following are equivalent

(1) p is weakly associated to M , and
(2) x is weakly associated to F .

Proof. This follows from Algebra, Lemma 66.2. �

Lemma 5.3. Let X be a scheme. Let F be a quasi-coherentOX -module. Then
Ass(F) ⊂WeakAss(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. �

Lemma 5.4. Let X be a scheme. Let 0 → F1 → F2 → F3 → 0 be a short ex-
act sequence of quasi-coherent sheaves on X . Then WeakAss(F2) ⊂ WeakAss(F1) ∪
WeakAss(F3) and WeakAss(F1) ⊂WeakAss(F2).

Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence ofOX,x-modules. Hence the lemma follows from Algebra, Lemma
66.4. �

Lemma 5.5. Let X be a scheme. Let F be a quasi-coherentOX -module. Then
F = (0)⇔WeakAss(F) = ∅

Proof. Follows from Lemma 5.2 and Algebra, Lemma 66.5 �

Lemma 5.6. Let X be a scheme. Let F be a quasi-coherent OX -module. If U ⊂ X is
open and WeakAss(F) ⊂ U , then Γ(X,F)→ Γ(U,F) is injective.

Proof. Let s ∈ Γ(X,F) be a section which restricts to zero on U . Let F ′ ⊂ F be
the image of the map OX → F defined by s. Then Supp(F ′) ∩ U = ∅. On the other
hand, WeakAss(F ′) ⊂WeakAss(F) by Lemma 5.4. Since also WeakAss(F ′) ⊂ Supp(F ′)
(Lemma 5.3) we conclude WeakAss(F ′) = ∅. Hence F ′ = 0 by Lemma 5.5. �

Lemma 5.7. Let X be a scheme. Let F be a quasi-coherent OX -module. Let x ∈
Supp(F) be a point in the support of F which is not a specialization of another point
of Supp(F). Then x ∈ WeakAss(F). In particular, any generic point of an irreducible
component of X is weakly associated toOX .

Proof. Since x ∈ Supp(F) the module Fx is not zero. Hence WeakAss(Fx) ⊂
Spec(OX,x) is nonempty by Algebra, Lemma 66.5. On the other hand, by assumption
Supp(Fx) = {mx}. Since WeakAss(Fx) ⊂ Supp(Fx) (Algebra, Lemma 66.6) we see that
mx is weakly associated to Fx and we win. �

Lemma 5.8. Let X be a scheme. Let F be a quasi-coherent OX -module. If mx is a
finitely generated ideal ofOX,x, then

x ∈ Ass(F)⇔ x ∈WeakAss(F).
In particular, if X is locally Noetherian, then Ass(F) = WeakAss(F).

Proof. See Algebra, Lemma 66.9. �

Lemma 5.9. Let f : X → S be a quasi-compact and quasi-separated morphism of
schemes. Let F be a quasi-coherent OX -module. Let s ∈ S be a point which is not in the
image of f . Then s is not weakly associated to f∗F .
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Proof. Consider the base change f ′ : X ′ → Spec(OS,s) of f by the morphism
g : Spec(OS,s)→ S and denote g′ : X ′ → X the other projection. Then

(f∗F)s = (g∗f∗F)s = (f ′
∗(g′)∗F)s

The first equality because g induces an isomorphism on local rings at s and the second by
flat base change (Cohomology of Schemes, Lemma 5.2). Of course s ∈ Spec(OS,s) is not in
the image of f ′. Thus we may assume S is the spectrum of a local ring (A,m) and s corre-
sponds to m. By Schemes, Lemma 24.1 the sheaf f∗F is quasi-coherent, say corresponding
to the A-module M . As s is not in the image of f we see that X =

⋃
a∈m f

−1D(a)
is an open covering. Since X is quasi-compact we can find a1, . . . , an ∈ m such that
X = f−1D(a1) ∪ . . . ∪ f−1D(an). It follows that

M →Ma1 ⊕ . . .⊕Mar

is injective. Hence for any nonzero element m of the stalk Mp there exists an i such that
anim is nonzero for all n ≥ 0. Thus m is not weakly associated to M . �

Lemma 5.10. Let X be a scheme. Let ϕ : F → G be a map of quasi-coherent OX -
modules. Assume that for every x ∈ X at least one of the following happens

(1) Fx → Gx is injective, or
(2) x 6∈WeakAss(F).

Then ϕ is injective.

Proof. The assumptions imply that WeakAss(Ker(ϕ)) = ∅ and hence Ker(ϕ) = 0
by Lemma 5.5. �

Lemma 5.11. LetX be a locally Noetherian scheme. LetF be a coherentOX -module.
Let j : U → X be an open subscheme such that for x ∈ X \ U we have depth(Fx) ≥ 2.
Then

F −→ j∗(F|U )
is an isomorphism and consequently Γ(X,F)→ Γ(U,F) is an isomorphism too.

Proof. We claim Lemma 2.11 applies to the map displayed in the lemma. Let x ∈ X .
If x ∈ U , then the map is an isomorphism on stalks as j∗(F|U )|U = F|U . If x ∈ X \ U ,
then x 6∈ Ass(j∗(F|U )) (Lemmas 5.9 and 5.3). Since we’ve assumed depth(Fx) ≥ 2 this
finishes the proof. �

Lemma 5.12. LetX be a reduced scheme. Then the weakly associated points ofX are
exactly the generic points of the irreducible components of X .

Proof. Follows from Algebra, Lemma 66.3. �

6. Morphisms and weakly associated points

Lemma 6.1. Let f : X → S be an affine morphism of schemes. Let F be a quasi-
coherentOX -module. Then we have

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

Proof. We may assume X and S affine, so X → S comes from a ring map A → B.
Then F = M̃ for some B-module M . By Lemma 5.2 the weakly associated points of F
correspond exactly to the weakly associated primes ofM . Similarly, the weakly associated
points of f∗F correspond exactly to the weakly associated primes of M as an A-module.
Hence the lemma follows from Algebra, Lemma 66.11. �
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Lemma 6.2. Let f : X → S be an affine morphism of schemes. Let F be a quasi-
coherentOX -module. If X is locally Noetherian, then we have

f(AssX(F)) = AssS(f∗F) = WeakAssS(f∗F) = f(WeakAssX(F))

Proof. We may assume X and S affine, so X → S comes from a ring map A → B.
As X is locally Noetherian the ring B is Noetherian, see Properties, Lemma 5.2. Write
F = M̃ for some B-module M . By Lemma 2.2 the associated points of F correspond
exactly to the associated primes of M , and any associated prime of M as an A-module is
an associated points of f∗F . Hence the inclusion

f(AssX(F)) ⊂ AssS(f∗F)
follows from Algebra, Lemma 63.13. We have the inclusion

AssS(f∗F) ⊂WeakAssS(f∗F)
by Lemma 5.3. We have the inclusion

WeakAssS(f∗F) ⊂ f(WeakAssX(F))
by Lemma 6.1. The outer sets are equal by Lemma 5.8 hence we have equality everywhere.

�

Lemma 6.3. Let f : X → S be a finite morphism of schemes. Let F be a quasi-
coherentOX -module. Then WeakAss(f∗F) = f(WeakAss(F)).

Proof. We may assumeX and S affine, soX → S comes from a finite ring mapA→
B. WriteF = M̃ for someB-moduleM . By Lemma 5.2 the weakly associated points ofF
correspond exactly to the weakly associated primes ofM . Similarly, the weakly associated
points of f∗F correspond exactly to the weakly associated primes of M as an A-module.
Hence the lemma follows from Algebra, Lemma 66.13. �

Lemma 6.4. Let f : X → S be a morphism of schemes. Let G be a quasi-coherent
OS-module. Let x ∈ X with s = f(x). If f is flat at x, the point x is a generic point of
the fibre Xs, and s ∈WeakAssS(G), then x ∈WeakAss(f∗G).

Proof. Let A = OS,s, B = OX,x, and M = Gs. Let m ∈ M be an element whose
annihilator I = {a ∈ A | am = 0} has radical mA. Then m ⊗ 1 has annihilator IB as
A → B is faithfully flat. Thus it suffices to see that

√
IB = mB . This follows from the

fact that the maximal ideal of B/mAB is locally nilpotent (see Algebra, Lemma 25.1) and
the assumption that

√
I = mA. Some details omitted. �

Lemma 6.5. Let K/k be a field extension. Let X be a scheme over k. Let F be a
quasi-coherent OX -module. Let y ∈ XK with image x ∈ X . If y is a weakly associated
point of the pullback FK , then x is a weakly associated point of F .

Proof. This is the translation of Algebra, Lemma 66.19 into the language of schemes.
�

Here is a simple lemma where we find that pushforwards often have depth at least 2.

Lemma 6.6. Let f : X → S be a quasi-compact and quasi-separated morphism of
schemes. Let F be a quasi-coherentOX -module. Let s ∈ S.

(1) If s 6∈ f(X), then s is not weakly associated to f∗F .
(2) If s 6∈ f(X) andOS,s is Noetherian, then s is not associated to f∗F .
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(3) If s 6∈ f(X), (f∗F)s is a finite OS,s-module, and OS,s is Noetherian, then
depth((f∗F)s) ≥ 2.

(4) If F is flat over S and a ∈ ms is a nonzerodivisor, then a is a nonzerodivisor on
(f∗F)s.

(5) If F is flat over S and a, b ∈ ms is a regular sequence, then a is a nonzerodivisor
on (f∗F)s and b is a nonzerodivisor on (f∗F)s/a(f∗F)s.

(6) If F is flat over S and (f∗F)s is a finite OS,s-module, then depth((f∗F)s) ≥
min(2, depth(OS,s)).

Proof. Part (1) is Lemma 5.9. Part (2) follows from (1) and Lemma 5.8.

Proof of part (3). To show the depth is≥ 2 it suffices to show that HomOS,s
(κ(s), (f∗F)s) =

0 and Ext1
OS,s

(κ(s), (f∗F)s) = 0, see Algebra, Lemma 72.5. Using the exact sequence
0→ ms → OS,s → κ(s)→ 0 it suffices to prove that the map

HomOS,s
(OS,s, (f∗F)s)→ HomOS,s

(ms, (f∗F)s)

is an isomorphism. By flat base change (Cohomology of Schemes, Lemma 5.2) we may
replace S by Spec(OS,s) and X by Spec(OS,s)×S X . Denote m ⊂ OS the ideal sheaf of
s. Then we see that

HomOS,s
(ms, (f∗F)s) = HomOS

(m, f∗F) = HomOX
(f∗m,F)

the first equality because S is local with closed point s and the second equality by ad-
junction for f∗, f∗ on quasi-coherent modules. However, since s 6∈ f(X) we see that
f∗m = OX . Working backwards through the arguments we get the desired equality.

For the proof of (4), (5), and (6) we use flat base change (Cohomology of Schemes, Lemma
5.2) to reduce to the case whereS is the spectrum ofOS,s. Then a nonzerodivisor a ∈ OS,s
deterimines a short exact sequence

0→ OS
a−→ OS → OS/aOS → 0

Since F is flat over S , we obtain an exact sequence

0→ F a−→ F → F/aF → 0

Pushing forward we obtain an exact sequence

0→ f∗F
a−→ f∗F → f∗(F/aF)

This proves (4) and it shows that f∗F/af∗F ⊂ f∗(F/aF). If b is a nonzerodivisor on
OS,s/aOS,s, then the exact same argument shows b : F/aF → F/aF is injective. Push-
ing forward we conclude

b : f∗(F/aF)→ f∗(F/aF)
is injective and hence also b : f∗F/af∗F → f∗F/af∗F is injective. This proves (5). Part
(6) follows from (4) and (5) and the definitions. �

7. Relative assassin

Let A → B be a ring map. Let N be a B-module. Recall that a prime q ⊂ B is said to
be in the relative assassin of N over B/A if q is an associated prime of N ⊗A κ(p). Here
p = A ∩ q. See Algebra, Definition 65.2. Here is the definition of the relative assassin for
quasi-coherent sheaves over a morphism of schemes.
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Definition 7.1. Let f : X → S be a morphism of schemes. LetF be a quasi-coherent
OX -module. The relative assassin of F in X over S is the set

AssX/S(F) =
⋃

s∈S
AssXs(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.

Again there is a caveat that this is best used when the fibres of f are locally Noetherian and
F is of finite type. In the general case we should probably use the relative weak assassin
(defined in the next section). Let us link the scheme theoretic notion with the algebraic
notion on affine opens; note that this correspondence works perfectly only for morphisms
of schemes whose fibres are locally Noetherian.

Lemma 7.2. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf onX . Let U ⊂ X and V ⊂ S be affine opens with f(U) ⊂ V . Write U = Spec(A),
V = Spec(R), and set M = Γ(U,F). Let x ∈ U , and let p ⊂ A be the corresponding
prime. Then

p ∈ AssA/R(M)⇒ x ∈ AssX/S(F)
If all fibres Xs of f are locally Noetherian, then p ∈ AssA/R(M) ⇔ x ∈ AssX/S(F) for
all pairs (p, x) as above.

Proof. The set AssA/R(M) is defined in Algebra, Definition 65.2. Choose a pair
(p, x). Let s = f(x). Let r ⊂ R be the prime lying under p, i.e., the prime corresponding to
s. Let p′ ⊂ A⊗R κ(r) be the prime whose inverse image is p, i.e., the prime corresponding
tox viewed as a point of its fibreXs. Then p ∈ AssA/R(M) if and only if p′ is an associated
prime of M ⊗R κ(r), see Algebra, Lemma 65.1. Note that the ring A⊗R κ(r) corresponds
to Us and the module M ⊗R κ(r) corresponds to the quasi-coherent sheaf Fs|Us . Hence
x is an associated point of Fs by Lemma 2.2. The reverse implication holds if p′ is finitely
generated which is how the last sentence is seen to be true. �

Lemma 7.3. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. Let g : S′ → S be a morphism of schemes. Consider the base change diagram

X ′

��

g′
// X

��
S′ g // S

and set F ′ = (g′)∗F . Let x′ ∈ X ′ be a point with images x ∈ X , s′ ∈ S′ and s ∈ S.
Assume f locally of finite type. Thenx′ ∈ AssX′/S′(F ′) if and only ifx ∈ AssX/S(F) and
x′ corresponds to a generic point of an irreducible component of Spec(κ(s′)⊗κ(s) κ(x)).

Proof. Consider the morphism X ′
s′ → Xs of fibres. As Xs′ = Xs ×Spec(κ(s))

Spec(κ(s′)) this is a flat morphism. Moreover F ′
s′ is the pullback of Fs via this mor-

phism. As Xs is locally of finite type over the Noetherian scheme Spec(κ(s)) we have
that Xs is locally Noetherian, see Morphisms, Lemma 15.6. Thus we may apply Lemma
3.1 and we see that

AssX′
s′

(F ′
s′) =

⋃
x∈Ass(Fs)

Ass((X ′
s′)x).

Thus to prove the lemma it suffices to show that the associated points of the fibre (X ′
s′)x of

the morphismX ′
s′ → Xs overx are its generic points. Note that (X ′

s′)x = Spec(κ(s′)⊗κ(s)
κ(x)) as schemes. By Algebra, Lemma 167.1 the ring κ(s′) ⊗κ(s) κ(x) is a Noetherian
Cohen-Macaulay ring. Hence its associated primes are its minimal primes, see Algebra,
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Proposition 63.6 (minimal primes are associated) and Algebra, Lemma 157.2 (no embed-
ded primes). �

Remark 7.4. With notation and assumptions as in Lemma 7.3 we see that it is always
the case that (g′)−1(AssX/S(F)) ⊃ AssX′/S′(F ′). If the morphism S′ → S is locally
quasi-finite, then we actually have

(g′)−1(AssX/S(F)) = AssX′/S′(F ′)
because in this case the field extensions κ(s′)/κ(s) are always finite. In fact, this holds
more generally for any morphism g : S′ → S such that all the field extensions κ(s′)/κ(s)
are algebraic, because in this case all prime ideals of κ(s′) ⊗κ(s) κ(x) are maximal (and
minimal) primes, see Algebra, Lemma 36.19.

8. Relative weak assassin

Definition 8.1. Let f : X → S be a morphism of schemes. LetF be a quasi-coherent
OX -module. The relative weak assassin of F in X over S is the set

WeakAssX/S(F) =
⋃

s∈S
WeakAss(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.

Lemma 8.2. Let f : X → S be a morphism of schemes which is locally of finite type.
Let F be a quasi-coherentOX -module. Then WeakAssX/S(F) = AssX/S(F).

Proof. This is true because the fibres of f are locally Noetherian schemes, and as-
sociated and weakly associated points agree on locally Noetherian schemes, see Lemma
5.8. �

Lemma 8.3. Let f : X → S be a morphism of schemes. Let i : Z → X be a
finite morphism. Let F be a quasi-coherent OZ -module. Then WeakAssX/S(i∗F) =
i(WeakAssZ/S(F)).

Proof. Let is : Zs → Xs be the induced morphism between fibres. Then (i∗F)s =
is,∗(Fs) by Cohomology of Schemes, Lemma 5.1 and the fact that i is affine. Hence we
may apply Lemma 6.3 to conclude. �

9. Fitting ideals

This section is the continuation of the discussion in More on Algebra, Section 8. Let S
be a scheme. Let F be a finite type quasi-coherent OS-module. In this situation we can
construct the Fitting ideals

0 = Fit−1(F) ⊂ Fit0(F) ⊂ Fit1(F) ⊂ . . . ⊂ OS
as the sequence of quasi-coherent ideals characterized by the following property: for every
affine open U = Spec(A) of S if F|U corresponds to the A-module M , then Fiti(F)|U
corresponds to the ideal Fiti(M) ⊂ A. This is well defined and a quasi-coherent sheaf of
ideals because if f ∈ A, then the ith Fitting ideal of Mf over Af is equal to Fiti(M)Af
by More on Algebra, Lemma 8.4.

Alternatively, we can construct the Fitting ideals in terms of local presentations of F .
Namely, if U ⊂ X is open, and⊕

i∈I
OU → O⊕n

U → F|U → 0
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is a presentation ofF overU , then Fitr(F)|U is generated by the (n−r)×(n−r)-minors
of the matrix defining the first arrow of the presentation. This is compatible with the
construction above because this is how the Fitting ideal of a module over a ring is actually
defined. Some details omitted.

Lemma 9.1. Let f : T → S be a morphism of schemes. Let F be a finite type quasi-
coherentOS-module. Then f−1Fiti(F) · OT = Fiti(f∗F).

Proof. Follows immediately from More on Algebra, Lemma 8.4 part (3). �

Lemma 9.2. Let S be a scheme. Let F be a finitely presented OS-module. Then
Fitr(F) is a quasi-coherent ideal of finite type.

Proof. Follows immediately from More on Algebra, Lemma 8.4 part (4). �

Lemma 9.3. Let S be a scheme. LetF be a finite type, quasi-coherentOS-module. Let
Z0 ⊂ S be the closed subscheme cut out by Fit0(F). Let Z ⊂ S be the scheme theoretic
support of F . Then

(1) Z ⊂ Z0 ⊂ S as closed subschemes,
(2) Z = Z0 = Supp(F) as closed subsets,
(3) there exists a finite type, quasi-coherentOZ0 -module G0 with

(Z0 → X)∗G0 = F .

Proof. Recall that Z is locally cut out by the annihilator of F , see Morphisms, Def-
inition 5.5 (which uses Morphisms, Lemma 5.4 to define Z). Hence we see that Z ⊂ Z0
scheme theoretically by More on Algebra, Lemma 8.4 part (6). On the other hand we have
Z = Supp(F) set theoretically by Morphisms, Lemma 5.4 and we have Z0 = Z set theo-
retically by More on Algebra, Lemma 8.4 part (7). Finally, to get G0 as in part (3) we can
either use that we have G on Z as in Morphisms, Lemma 5.4 and set G0 = (Z → Z0)∗G
or we can use Morphisms, Lemma 4.1 and the fact that Fit0(F) annihilates F by More on
Algebra, Lemma 8.4 part (6). �

Lemma 9.4. Let S be a scheme. Let F be a finite type, quasi-coherent OS-module.
Let s ∈ S. Then F can be generated by r elements in a neighbourhood of s if and only if
Fitr(F)s = OS,s.

Proof. Follows immediately from More on Algebra, Lemma 8.6. �

Lemma 9.5. Let S be a scheme. Let F be a finite type, quasi-coherent OS-module.
Let r ≥ 0. The following are equivalent

(1) F is finite locally free of rank r
(2) Fitr−1(F) = 0 and Fitr(F) = OS , and
(3) Fitk(F) = 0 for k < r and Fitk(F) = OS for k ≥ r.

Proof. Follows immediately from More on Algebra, Lemma 8.7. �

Lemma 9.6. Let S be a scheme. Let F be a finite type, quasi-coherent OS-module.
The closed subschemes

S = Z−1 ⊃ Z0 ⊃ Z1 ⊃ Z2 . . .

defined by the Fitting ideals of F have the following properties
(1) The intersection

⋂
Zr is empty.
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(2) The functor (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT is locally generated by ≤ r sections
∅ otherwise

is representable by the open subscheme S \ Zr.
(3) The functor Fr : (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT locally free rank r
∅ otherwise

is representable by the locally closed subscheme Zr−1 \ Zr of S.
If F is of finite presentation, then Zr → S , S \Zr → S , and Zr−1 \Zr → S are of finite
presentation.

Proof. Part (1) is true because over every affine open U there is an integer n such
that Fitn(F)|U = OU . Namely, we can take n to be the number of generators of F over
U , see More on Algebra, Section 8.

For any morphism g : T → S we see from Lemmas 9.1 and 9.4 thatFT is locally generated
by ≤ r sections if and only if Fitr(F) · OT = OT . This proves (2).

For any morphism g : T → S we see from Lemmas 9.1 and 9.5 that FT is free of rank r if
and only if Fitr(F) · OT = OT and Fitr−1(F) · OT = 0. This proves (3).

Assume F is of finite presentation. Then each of the morphisms Zr → S is of finite
presentation as Fitr(F) is of finite type (Lemma 9.2 and Morphisms, Lemma 21.7). This
implies that Zr−1 \ Zr is a retrocompact open in Zr (Properties, Lemma 24.1) and hence
the morphism Zr−1 \ Zr → Zr is of finite presentation as well. �

Lemma 9.6 notwithstanding the following lemma does not hold ifF is a finite type quasi-
coherent module. Namely, the stratification still exists but it isn’t true that it represents
the functor Fflat in general.

Lemma 9.7. Let S be a scheme. Let F be an OS-module of finite presentation. Let
S = Z−1 ⊃ Z0 ⊃ Z1 ⊃ . . . be as in Lemma 9.6. Set Sr = Zr−1 \Zr. Then S′ =

∐
r≥0 Sr

represents the functor

Fflat : Sch/S −→ Sets, T 7−→
{
{∗} if FT flat over T
∅ otherwise

Moreover, F|Sr is locally free of rank r and the morphisms Sr → S and S′ → S are of
finite presentation.

Proof. Suppose that g : T → S is a morphism of schemes such that the pullback
FT = g∗F is flat. Then FT is a flatOT -module of finite presentation. Hence FT is finite
locally free, see Properties, Lemma 20.2. Thus T =

∐
r≥0 Tr , where FT |Tr is locally free

of rank r. This implies that

Fflat =
∐

r≥0
Fr

in the category of Zariski sheaves on Sch/S where Fr is as in Lemma 9.6. It follows
that Fflat is represented by

∐
r≥0(Zr−1 \ Zr) where Zr is as in Lemma 9.6. The other

statements also follow from the lemma. �
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Example 9.8. Let R =
∏
n∈N F2. Let I ⊂ R be the ideal of elements a = (an)n∈N

almost all of whose components are zero. Let m be a maximal ideal containing I . Then
M = R/m is a finite flatR-module, becauseR is absolutely flat (More on Algebra, Lemma
104.6). Set S = Spec(R) andF = M̃ . The closed subschemes of Lemma 9.6 are S = Z−1,
Z0 = Spec(R/m), and Zi = ∅ for i > 0. But id : S → S does not factor through
(S \ Z0) q Z0 because m is a nonisolated point of S. Thus Lemma 9.7 does not hold for
finite type modules.

10. The singular locus of a morphism

Let f : X → S be a finite type morphism of schemes. The set U of points where f is
smooth is an open of X (by Morphisms, Definition 34.1). In many situations it is useful
to have a canonical closed subscheme Sing(f) ⊂ X whose complement is U and whose
formation commutes with arbitrary change of base.
If f is of finite presentation, then one choice would be to consider the closed subscheme Z
cut out by functions which are affine locally “strictly standard” in the sense of Smoothing
Ring Maps, Definition 2.3. It follows from Smoothing Ring Maps, Lemma 2.7 that if f ′ :
X ′ → S′ is the base change of f by a morphism S′ → S , then Z ′ ⊂ S′ ×S Z where Z ′ is
the closed subscheme ofX ′ cut out by functions which are affine locally strictly standard.
However, equality isn’t clear. The notion of a strictly standard element was useful in the
chapter on Popescu’s theorem. The closed subscheme defined by these elements is (as far
as we know) not used in the literature1.
If f is flat, of finite presentation, and the fibres of f all are equidimensional of dimension
d, then the dth fitting ideal of ΩX/S is used to get a good closed subscheme. For any mor-
phism of finite type the closed subschemes ofX defined by the fitting ideals of ΩX/S define
a stratification of X in terms of the rank of ΩX/S whose formation commutes with base
change. This can be helpful; it is related to embedding dimensions of fibres, see Varieties,
Section 46.

Lemma 10.1. Let f : X → S be a morphism of schemes which is locally of finite
type. Let X = Z−1 ⊃ Z0 ⊃ Z1 ⊃ . . . be the closed subschemes defined by the fitting
ideals of ΩX/S . Then the formation of Zi commutes with arbitrary base change.

Proof. Observe that ΩX/S is a finite type quasi-coherent OX -module (Morphisms,
Lemma 32.12) hence the fitting ideals are defined. If f ′ : X ′ → S′ is the base change
of f by g : S′ → S , then ΩX′/S′ = (g′)∗ΩX/S where g′ : X ′ → X is the projection
(Morphisms, Lemma 32.10). Hence (g′)−1Fiti(ΩX/S) · OX′ = Fiti(ΩX′/S′). This means
that

Z ′
i = (g′)−1(Zi) = Zi ×X X ′

scheme theoretically and this is the meaning of the statement of the lemma. �

The 0th fitting ideal of Ω cuts out the “ramified locus” of the morphism.

Lemma 10.2. Let f : X → S be a morphism of schemes which is locally of finite
type. The closed subscheme Z ⊂ X cut out by the 0th fitting ideal of ΩX/S is exactly the
set of points where f is not unramified.

Proof. By Lemma 9.3 the complement of Z is exactly the locus where ΩX/S is zero.
This is exactly the set of points where f is unramified by Morphisms, Lemma 35.2. �

1If f is a local complete intersection morphism (More on Morphisms, Definition 62.2) then the closed
subscheme cut out by the locally strictly standard elements is the correct thing to look at.
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Lemma 10.3. Let f : X → S be a morphism of schemes. Let d ≥ 0 be an integer.
Assume

(1) f is flat,
(2) f is locally of finite presentation, and
(3) every nonempty fibre of f is equidimensional of dimension d.

Let Z ⊂ X be the closed subscheme cut out by the dth fitting ideal of ΩX/S . Then Z is
exactly the set of points where f is not smooth.

Proof. By Lemma 9.6 the complement of Z is exactly the locus where ΩX/S can
be generated by at most d elements. Hence the lemma follows from Morphisms, Lemma
34.14. �

11. Torsion free modules

This section is the analogue of More on Algebra, Section 22 for quasi-coherent modules.

Lemma 11.1. Let X be an integral scheme with generic point η. Let F be a quasi-
coherent OX -module. Let U ⊂ X be nonempty open and s ∈ F(U). The following are
equivalent

(1) for some x ∈ U the image of s in Fx is torsion,
(2) for all x ∈ U the image of s in Fx is torsion,
(3) the image of s in Fη is zero,
(4) the image of s in j∗Fη is zero, where j : η → X is the inclusion morphism.

Proof. Omitted. �

Definition 11.2. LetX be an integral scheme. LetF be a quasi-coherentOX -module.
(1) We say a local section of F is torsion if it satisfies the equivalent conditions of

Lemma 11.1.
(2) We say F is torsion free if every torsion section of F is 0.

Here is the obligatory lemma comparing this to the usual algebraic notion.

Lemma 11.3. Let X be an integral scheme. Let F be a quasi-coherent OX -module.
The following are equivalent

(1) F is torsion free,
(2) for U ⊂ X affine open F(U) is a torsion freeO(U)-module.

Proof. Omitted. �

Lemma 11.4. Let X be an integral scheme. Let F be a quasi-coherent OX -module.
The torsion sections ofF form a quasi-coherentOX -submoduleFtors ⊂ F . The quotient
module F/Ftors is torsion free.

Proof. Omitted. See More on Algebra, Lemma 22.2 for the algebraic analogue. �

Lemma 11.5. Let X be an integral scheme. Any flat quasi-coherent OX -module is
torsion free.

Proof. Omitted. See More on Algebra, Lemma 22.9. �

Lemma 11.6. Let f : X → Y be a flat morphism of integral schemes. Let G be a
torsion free quasi-coherentOY -module. Then f∗G is a torsion freeOX -module.

Proof. Omitted. See More on Algebra, Lemma 23.7 for the algebraic analogue. �
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Lemma 11.7. Let f : X → Y be a flat morphism of schemes. If Y is integral and the
generic fibre of f is integral, then X is integral.

Proof. The algebraic analogue is this: let A be a domain with fraction field K and
let B be a flat A-algebra such that B ⊗A K is a domain. Then B is a domain. This is true
because B is torsion free by More on Algebra, Lemma 22.9 and hence B ⊂ B ⊗A K. �

Lemma 11.8. Let X be an integral scheme. Let F be a quasi-coherent OX -module.
Then F is torsion free if and only if Fx is a torsion freeOX,x-module for all x ∈ X .

Proof. Omitted. See More on Algebra, Lemma 22.6. �

Lemma 11.9. Let X be an integral scheme. Let 0 → F → F ′ → F ′′ → 0 be a short
exact sequence of quasi-coherent OX -modules. If F and F ′′ are torsion free, then F ′ is
torsion free.

Proof. Omitted. See More on Algebra, Lemma 22.5 for the algebraic analogue. �

Lemma 11.10. Let X be a locally Noetherian integral scheme with generic point η.
Let F be a nonzero coherentOX -module. The following are equivalent

(1) F is torsion free,
(2) η is the only associated prime of F ,
(3) η is in the support of F and F has property (S1), and
(4) η is in the support of F and F has no embedded associated prime.

Proof. This is a translation of More on Algebra, Lemma 22.8 into the language of
schemes. We omit the translation. �

Lemma 11.11. Let X be an integral regular scheme of dimension ≤ 1. Let F be a
coherentOX -module. The following are equivalent

(1) F is torsion free,
(2) F is finite locally free.

Proof. It is clear that a finite locally free module is torsion free. For the converse,
we will show that if F is torsion free, then Fx is a free OX,x-module for all x ∈ X . This
is enough by Algebra, Lemma 78.2 and the fact that F is coherent. If dim(OX,x) = 0,
then OX,x is a field and the statement is clear. If dim(OX,x) = 1, then OX,x is a discrete
valuation ring (Algebra, Lemma 119.7) and Fx is torsion free. Hence Fx is free by More
on Algebra, Lemma 22.11. �

Lemma 11.12. LetX be an integral scheme. LetF , G be quasi-coherentOX -modules.
If G is torsion free and F is of finite presentation, thenHomOX

(F ,G) is torsion free.
Proof. The statement makes sense becauseHomOX

(F ,G) is quasi-coherent by Schemes,
Section 24. To see the statement is true, see More on Algebra, Lemma 22.12. Some details
omitted. �

Lemma 11.13. Let X be an integral locally Noetherian scheme. Let ϕ : F → G be a
map of quasi-coherentOX -modules. Assume F is coherent, G is torsion free, and that for
every x ∈ X one of the following happens

(1) Fx → Gx is an isomorphism, or
(2) depth(Fx) ≥ 2.

Then ϕ is an isomorphism.
Proof. This is a translation of More on Algebra, Lemma 23.14 into the language of

schemes. �
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12. Reflexive modules

This section is the analogue of More on Algebra, Section 23 for coherent modules on locally
Noetherian schemes. The reason for working with coherent modules is thatHomOX

(F ,G)
is coherent for every pair of coherentOX -modules F ,G , see Modules, Lemma 22.6.

Definition 12.1. LetX be an integral locally Noetherian scheme. LetF be a coherent
OX -module. The reflexive hull of F is theOX -module

F∗∗ = HomOX
(HomOX

(F ,OX),OX)
We say F is reflexive if the natural map j : F −→ F∗∗ is an isomorphism.

It follows from Lemma 12.8 that the reflexive hull is a reflexiveOX -module. You can use
the same definition to define reflexive modules in more general situations, but this does not
seem to be very useful. Here is the obligatory lemma comparing this to the usual algebraic
notion.

Lemma 12.2. Let X be an integral locally Noetherian scheme. Let F be a coherent
OX -module. The following are equivalent

(1) F is reflexive,
(2) for U ⊂ X affine open F(U) is a reflexiveO(U)-module.

Proof. Omitted. �

Remark 12.3. If X is a scheme of finite type over a field, then sometimes a differ-
ent notion of reflexive modules is used (see for example [?, bottom of page 5 and Def-
inition 1.1.9]). This other notion uses RHom into a dualizing complex ω•

X instead of
into OX and should probably have a different name because it can be different when X
is not Gorenstein. For example, if X = Spec(k[t3, t4, t5]), then a computation shows the
dualizing sheaf ωX is not reflexive in our sense, but it is reflexive in the other sense as
ωX → Hom(Hom(ωX , ωX), ωX) is an isomorphism.

Lemma 12.4. Let X be an integral locally Noetherian scheme. Let F be a coherent
OX -module.

(1) If F is reflexive, then F is torsion free.
(2) The map j : F −→ F∗∗ is injective if and only if F is torsion free.

Proof. Omitted. See More on Algebra, Lemma 23.2. �

Lemma 12.5. Let X be an integral locally Noetherian scheme. Let F be a coherent
OX -module. The following are equivalent

(1) F is reflexive,
(2) Fx is a reflexiveOX,x-module for all x ∈ X ,
(3) Fx is a reflexiveOX,x-module for all closed points x ∈ X .

Proof. By Modules, Lemma 22.4 we see that (1) and (2) are equivalent. Since every
point of X specializes to a closed point (Properties, Lemma 5.9) we see that (2) and (3) are
equivalent. �

Lemma 12.6. Let f : X → Y be a flat morphism of integral locally Noetherian
schemes. Let G be a coherent reflexive OY -module. Then f∗G is a coherent reflexive
OX -module.

Proof. Omitted. See More on Algebra, Lemma 22.4 for the algebraic analogue. �
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Lemma 12.7. Let X be an integral locally Noetherian scheme. Let 0 → F → F ′ →
F ′′ be an exact sequence of coherentOX -modules. IfF ′ is reflexive andF ′′ is torsion free,
then F is reflexive.

Proof. Omitted. See More on Algebra, Lemma 23.5. �

Lemma 12.8. Let X be an integral locally Noetherian scheme. Let F , G be coherent
OX -modules. If G is reflexive, thenHomOX

(F ,G) is reflexive.

Proof. The statement makes sense becauseHomOX
(F ,G) is coherent by Cohomol-

ogy of Schemes, Lemma 9.4. To see the statement is true, see More on Algebra, Lemma
23.8. Some details omitted. �

Remark 12.9. Let X be an integral locally Noetherian scheme. Thanks to Lemma
12.8 we know that the reflexive hull F∗∗ of a coherent OX -module is coherent reflexive.
Consider the category C of coherent reflexive OX -modules. Taking reflexive hulls gives
a left adjoint to the inclusion functor C → Coh(OX). Observe that C is an additive
category with kernels and cokernels. Namely, given ϕ : F → G in C , the usual kernel
Ker(ϕ) is reflexive (Lemma 12.7) and the reflexive hull Coker(ϕ)∗∗ of the usual cokernel
is the cokernel in C. Moreover C inherits a tensor product

F ⊗C G = (F ⊗OX
G)∗∗

which is associative and symmetric. There is an internal Hom in the sense that for any
three objects F ,G,H of C we have the identity

HomC(F ⊗C G,H) = HomC(F ,HomOX
(G,H))

see Modules, Lemma 22.1. In C every objectF has a dual objectHomOX
(F ,OX). Without

further conditions on X it can happen that
HomOX

(F ,G) 6∼= HomOX
(F ,OX)⊗C G and F ⊗C HomOX

(F ,OX) 6∼= OX
for F ,G of rank 1 in C. To make an example let X = Spec(R) where R is as in More on
Algebra, Example 23.17 and let F ,G be the modules corresponding to M . Computation
omitted.

Lemma 12.10. Let X be an integral locally Noetherian scheme. Let F be a coherent
OX -module. The following are equivalent

(1) F is reflexive,
(2) for each x ∈ X one of the following happens

(a) Fx is a reflexiveOX,x-module, or
(b) depth(Fx) ≥ 2.

Proof. Omitted. See More on Algebra, Lemma 23.15. �

Lemma 12.11. Let X be an integral locally Noetherian scheme. Let F be a coherent
reflexiveOX -module. Let x ∈ X .

(1) If depth(OX,x) ≥ 2, then depth(Fx) ≥ 2.
(2) If X is (S2), then F is (S2).

Proof. Omitted. See More on Algebra, Lemma 23.16. �

Lemma 12.12. Let X be an integral locally Noetherian scheme. Let j : U → X be an
open subscheme with complement Z. Assume OX,z has depth ≥ 2 for all z ∈ Z. Then
j∗ and j∗ define an equivalence of categories between the category of coherent reflexive
OX -modules and the category of coherent reflexiveOU -modules.
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Proof. Let F be a coherent reflexiveOX -module. For z ∈ Z the stalk Fz has depth
≥ 2 by Lemma 12.11. ThusF → j∗j

∗F is an isomorphism by Lemma 5.11. Conversely, let
G be a coherent reflexive OU -module. It suffices to show that j∗G is a coherent reflexive
OX -module. To prove this we may assume X is affine. By Properties, Lemma 22.5 there
exists a coherent OX -module F with G = j∗F . After replacing F by its reflexive hull,
we may assume F is reflexive (see discussion above and in particular Lemma 12.8). By the
above j∗G = j∗j

∗F = F as desired. �

If the scheme is normal, then reflexive is the same thing as torsion free and (S2).

Lemma 12.13. Let X be an integral locally Noetherian normal scheme. Let F be a
coherentOX -module. The following are equivalent

(1) F is reflexive,
(2) F is torsion free and has property (S2), and
(3) there exists an open subscheme j : U → X such that

(a) every irreducible component of X \ U has codimension ≥ 2 in X ,
(b) j∗F is finite locally free, and
(c) F = j∗j

∗F .

Proof. Using Lemma 12.2 the equivalence of (1) and (2) follows from More on Al-
gebra, Lemma 23.18. Let U ⊂ X be as in (3). By Properties, Lemma 12.5 we see that
depth(OX,x) ≥ 2 for x 6∈ U . Since a finite locally free module is reflexive, we conclude
(3) implies (1) by Lemma 12.12.

Assume (1). Let U ⊂ X be the maximal open subscheme such that j∗F = F|U is finite
locally free. So (3)(b) holds. Let x ∈ X be a point. If Fx is a free OX,x-module, then
x ∈ U , see Modules, Lemma 11.6. If dim(OX,x) ≤ 1, then OX,x is either a field or a
discrete valuation ring (Properties, Lemma 12.5) and hence Fx is free (More on Algebra,
Lemma 22.11). Thus x 6∈ U ⇒ dim(OX,x) ≥ 2. Then Properties, Lemma 10.3 shows (3)(a)
holds. By the already used Properties, Lemma 12.5 we also see that depth(OX,x) ≥ 2 for
x 6∈ U and hence (3)(c) follows from Lemma 12.12. �

Lemma 12.14. Let X be an integral locally Noetherian normal scheme with generic
point η. Let F , G be coherent OX -modules. Let T : Gη → Fη be a linear map. Then T
extends to a map G → F∗∗ ofOX -modules if and only if

(*) for every x ∈ X with dim(OX,x) = 1 we have

T (Im(Gx → Gη)) ⊂ Im(Fx → Fη).

Proof. BecauseF∗∗ is torsion free andFη = F∗∗
η an extension, if it exists, is unique.

Thus it suffices to prove the lemma over the members of an open covering of X , i.e., we
may assume X is affine. In this case we are asking the following algebra question: Let R
be a Noetherian normal domain with fraction field K , let M , N be finite R-modules, let
T : M ⊗RK → N ⊗RK be a K-linear map. When does T extend to a map N →M∗∗?
By More on Algebra, Lemma 23.19 this happens if and only if Np maps into (M/Mtors)p
for every height 1 prime p of R. This is exactly condition (∗) of the lemma. �

Lemma 12.15. Let X be a regular scheme of dimension ≤ 2. Let F be a coherent
OX -module. The following are equivalent

(1) F is reflexive,
(2) F is finite locally free.
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Proof. It is clear that a finite locally free module is reflexive. For the converse, we
will show that if F is reflexive, then Fx is a free OX,x-module for all x ∈ X . This is
enough by Algebra, Lemma 78.2 and the fact that F is coherent. If dim(OX,x) = 0,
then OX,x is a field and the statement is clear. If dim(OX,x) = 1, then OX,x is a discrete
valuation ring (Algebra, Lemma 119.7) andFx is torsion free. HenceFx is free by More on
Algebra, Lemma 22.11. If dim(OX,x) = 2, then OX,x is a regular local ring of dimension
2. By More on Algebra, Lemma 23.18 we see that Fx has depth ≥ 2. Hence F is free by
Algebra, Lemma 106.6. �

13. Effective Cartier divisors

We define the notion of an effective Cartier divisor before any other type of divisor.

Definition 13.1. Let S be a scheme.
(1) A locally principal closed subscheme of S is a closed subscheme whose sheaf of

ideals is locally generated by a single element.
(2) An effective Cartier divisor on S is a closed subschemeD ⊂ S whose ideal sheaf
ID ⊂ OS is an invertibleOS-module.

Thus an effective Cartier divisor is a locally principal closed subscheme, but the converse
is not always true. Effective Cartier divisors are closed subschemes of pure codimension 1
in the strongest possible sense. Namely they are locally cut out by a single element which
is a nonzerodivisor. In particular they are nowhere dense.

Lemma 13.2. Let S be a scheme. Let D ⊂ S be a closed subscheme. The following
are equivalent:

(1) The subscheme D is an effective Cartier divisor on S.
(2) For every x ∈ D there exists an affine open neighbourhood Spec(A) = U ⊂ S

of x such that U ∩D = Spec(A/(f)) with f ∈ A a nonzerodivisor.

Proof. Assume (1). For every x ∈ D there exists an affine open neighbourhood
Spec(A) = U ⊂ S of x such that ID|U ∼= OU . In other words, there exists a section
f ∈ Γ(U, ID) which freely generates the restriction ID|U . Hence f ∈ A, and the mul-
tiplication map f : A → A is injective. Also, since ID is quasi-coherent we see that
D ∩ U = Spec(A/(f)).

Assume (2). Letx ∈ D. By assumption there exists an affine open neighbourhood Spec(A) =
U ⊂ S of x such that U ∩ D = Spec(A/(f)) with f ∈ A a nonzerodivisor. Then
ID|U ∼= OU since it is equal to (̃f) ∼= Ã ∼= OU . Of course ID restricted to the open
subscheme S \D is isomorphic toOS\D. Hence ID is an invertibleOS-module. �

Lemma 13.3. Let S be a scheme. Let Z ⊂ S be a locally principal closed subscheme.
Let U = S \ Z. Then U → S is an affine morphism.

Proof. The question is local onS , see Morphisms, Lemmas 11.3. Thus we may assume
S = Spec(A) and Z = V (f) for some f ∈ A. In this case U = D(f) = Spec(Af ) is
affine hence U → S is affine. �

Lemma 13.4. Let S be a scheme. Let D ⊂ S be an effective Cartier divisor. Let
U = S \D. Then U → S is an affine morphism and U is scheme theoretically dense in S.
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Proof. Affineness is Lemma 13.3. The density question is local on S , see Morphisms,
Lemma 7.5. Thus we may assume S = Spec(A) and D corresponding to the nonzero-
divisor f ∈ A, see Lemma 13.2. Thus A ⊂ Af which implies that U ⊂ S is scheme
theoretically dense, see Morphisms, Example 7.4. �

Lemma 13.5. LetS be a scheme. LetD ⊂ S be an effective Cartier divisor. Let s ∈ D.
If dims(S) <∞, then dims(D) < dims(S).

Proof. Assume dims(S) <∞. Let U = Spec(A) ⊂ S be an affine open neighbour-
hood of s such that dim(U) = dims(S) and such thatD = V (f) for some nonzerodivisor
f ∈ A (see Lemma 13.2). Recall that dim(U) is the Krull dimension of the ringA and that
dim(U ∩ D) is the Krull dimension of the ring A/(f). Then f is not contained in any
minimal prime of A. Hence any maximal chain of primes in A/(f), viewed as a chain of
primes in A, can be extended by adding a minimal prime. �

Definition 13.6. Let S be a scheme. Given effective Cartier divisorsD1,D2 on S we
setD = D1 +D2 equal to the closed subscheme of S corresponding to the quasi-coherent
sheaf of ideals ID1ID2 ⊂ OS . We call this the sum of the effective Cartier divisors D1
and D2.

It is clear that we may define the sum
∑
niDi given finitely many effective Cartier divisors

Di on X and nonnegative integers ni.

Lemma 13.7. The sum of two effective Cartier divisors is an effective Cartier divisor.

Proof. Omitted. Locally f1, f2 ∈ A are nonzerodivisors, then also f1f2 ∈ A is a
nonzerodivisor. �

Lemma 13.8. Let X be a scheme. Let D,D′ be two effective Cartier divisors on X .
If D ⊂ D′ (as closed subschemes of X), then there exists an effective Cartier divisor D′′

such that D′ = D +D′′.

Proof. Omitted. �

Lemma 13.9. Let X be a scheme. Let Z, Y be two closed subschemes of X with ideal
sheaves I and J . If IJ defines an effective Cartier divisor D ⊂ X , then Z and Y are
effective Cartier divisors and D = Z + Y .

Proof. Applying Lemma 13.2 we obtain the following algebra situation: A is a ring,
I, J ⊂ A ideals and f ∈ A a nonzerodivisor such that IJ = (f). Thus the result follows
from Algebra, Lemma 120.16. �

Lemma 13.10. Let X be a scheme. Let D,D′ ⊂ X be effective Cartier divisors such
that the scheme theoretic intersection D ∩D′ is an effective Cartier divisor on D′. Then
D +D′ is the scheme theoretic union of D and D′.

Proof. See Morphisms, Definition 4.4 for the definition of scheme theoretic inter-
section and union. To prove the lemma working locally (using Lemma 13.2) we obtain
the following algebra problem: Given a ring A and nonzerodivisors f1, f2 ∈ A such that
f1 maps to a nonzerodivisor in A/f2A, show that f1A ∩ f2A = f1f2A. We omit the
straightforward argument. �

Recall that we have defined the inverse image of a closed subscheme under any morphism
of schemes in Schemes, Definition 17.7.
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Lemma 13.11. Let f : S′ → S be a morphism of schemes. Let Z ⊂ S be a locally
principal closed subscheme. Then the inverse image f−1(Z) is a locally principal closed
subscheme of S′.

Proof. Omitted. �

Definition 13.12. Let f : S′ → S be a morphism of schemes. Let D ⊂ S be an
effective Cartier divisor. We say the pullback ofD by f is defined if the closed subscheme
f−1(D) ⊂ S′ is an effective Cartier divisor. In this case we denote it either f∗D or
f−1(D) and we call it the pullback of the effective Cartier divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in practice.
Here is an example lemma.

Lemma 13.13. Let f : X → Y be a morphism of schemes. Let D ⊂ Y be an effective
Cartier divisor. The pullback of D by f is defined in each of the following cases:

(1) f(x) 6∈ D for any weakly associated point x of X ,
(2) X , Y integral and f dominant,
(3) X reduced and f(ξ) 6∈ D for any generic point ξ of any irreducible component

of X ,
(4) X is locally Noetherian and f(x) 6∈ D for any associated point x of X ,
(5) X is locally Noetherian, has no embedded points, and f(ξ) 6∈ D for any generic

point ξ of an irreducible component of X ,
(6) f is flat, and
(7) add more here as needed.

Proof. The question is local on X , and hence we reduce to the case where X =
Spec(A), Y = Spec(R), f is given by ϕ : R → A and D = Spec(R/(t)) where t ∈ R is
a nonzerodivisor. The goal in each case is to show that ϕ(t) ∈ A is a nonzerodivisor.
In case (1) this follows from Algebra, Lemma 66.7. Case (4) is a special case of (1) by Lemma
5.8. Case (5) follows from (4) and the definitions. Case (3) is a special case of (1) by Lemma
5.12. Case (2) is a special case of (3). If R → A is flat, then t : R → R being injective
shows that t : A→ A is injective. This proves (6). �

Lemma 13.14. Let f : S′ → S be a morphism of schemes. Let D1, D2 be effective
Cartier divisors on S. If the pullbacks of D1 and D2 are defined then the pullback of
D = D1 +D2 is defined and f∗D = f∗D1 + f∗D2.

Proof. Omitted. �

14. Effective Cartier divisors and invertible sheaves

Since an effective Cartier divisor has an invertible ideal sheaf (Definition 13.1) the follow-
ing definition makes sense.

Definition 14.1. Let S be a scheme. Let D ⊂ S be an effective Cartier divisor with
ideal sheaf ID.

(1) The invertible sheafOS(D) associated to D is defined by

OS(D) = HomOS
(ID,OS) = I⊗−1

D .

(2) The canonical section, usually denoted 1 or 1D , is the global section of OS(D)
corresponding to the inclusion mapping ID → OS .

(3) We writeOS(−D) = OS(D)⊗−1 = ID.
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(4) Given a second effective Cartier divisor D′ ⊂ S we define OS(D − D′) =
OS(D)⊗OS

OS(−D′).

Some comments. We will see below that the assignment D 7→ OS(D) turns addition of
effective Cartier divisors (Definition 13.6) into addition in the Picard group of S (Lemma
14.4). However, the expression D − D′ in the definition above does not have any geo-
metric meaning. More precisely, we can think of the set of effective Cartier divisors on S
as a commutative monoid EffCart(S) whose zero element is the empty effective Cartier
divisor. Then the assignment (D,D′) 7→ OS(D −D′) defines a group homomorphism

EffCart(S)gp −→ Pic(S)
where the left hand side is the group completion of EffCart(S). In other words, when we
writeOS(D −D′) we may think of D −D′ as an element of EffCart(S)gp.

Lemma 14.2. Let S be a scheme and let D ⊂ S be an effective Cartier divisor. Then
the conormal sheaf is CD/S = ID|D = OS(−D)|D and the normal sheaf is ND/S =
OS(D)|D.

Proof. This follows from Morphisms, Lemma 31.2. �

Lemma 14.3. Let X be a scheme. Let D,C ⊂ X be effective Cartier divisors with
C ⊂ D and let D′ = D + C. Then there is a short exact sequence

0→ OX(−D)|C → OD′ → OD → 0
ofOX -modules.

Proof. In the statement of the lemma and in the proof we use the equivalence of
Morphisms, Lemma 4.1 to think of quasi-coherent modules on closed subschemes of X as
quasi-coherent modules on X . Let I be the ideal sheaf of D in D′. Then there is a short
exact sequence

0→ I → OD′ → OD → 0
because D → D′ is a closed immersion. There is a canonical surjection I → I/I2 =
CD/D′ . We have CD/X = OX(−D)|D by Lemma 14.2 and there is a canonical surjective
map

CD/X −→ CD/D′

see Morphisms, Lemmas 31.3 and 31.4. Thus it suffices to show: (a) I2 = 0 and (b) I is an
invertibleOC -module. Both (a) and (b) can be checked locally, hence we may assumeX =
Spec(A), D = Spec(A/fA) and C = Spec(A/gA) where f, g ∈ A are nonzerodivisors
(Lemma 13.2). Since C ⊂ D we see that f ∈ gA. Then I = fA/fgA has square zero and
is invertible as an A/gA-module as desired. �

Lemma 14.4. Let S be a scheme. Let D1, D2 be effective Cartier divisors on S. Let
D = D1 +D2. Then there is a unique isomorphism

OS(D1)⊗OS
OS(D2) −→ OS(D)

which maps 1D1 ⊗ 1D2 to 1D.

Proof. Omitted. �

Lemma 14.5. Let f : S′ → S be a morphism of schemes. Let D be a effective Cartier
divisors on S. If the pullback ofD is defined then f∗OS(D) = OS′(f∗D) and the canon-
ical section 1D pulls back to the canonical section 1f∗D.

Proof. Omitted. �
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Definition 14.6. Let (X,OX) be a locally ringed space. Let L be an invertible sheaf
on X . A global section s ∈ Γ(X,L) is called a regular section if the map OX → L,
f 7→ fs is injective.

Lemma 14.7. Let X be a locally ringed space. Let f ∈ Γ(X,OX). The following are
equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is a nonzerodivisor.

If X is a scheme these are also equivalent to
(3) for any affine open Spec(A) = U ⊂ X the image f ∈ A is a nonzerodivisor,
(4) there exists an affine open covering X =

⋃
Spec(Ai) such that the image of f

in Ai is a nonzerodivisor for all i.

Proof. Omitted. �

Note that a global section s of an invertibleOX -module Lmay be seen as anOX -module
map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See Modules, Definition
25.6 for the definition of the dual invertible sheaf.)

Definition 14.8. Let X be a scheme. Let L be an invertible sheaf. Let s ∈ Γ(X,L)
be a global section. The zero scheme of s is the closed subschemeZ(s) ⊂ X defined by the
quasi-coherent sheaf of ideals I ⊂ OX which is the image of the map s : L⊗−1 → OX .

Lemma 14.9. Let X be a scheme. Let L be an invertible sheaf. Let s ∈ Γ(X,L).
(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L) is zero or-

dered by inclusion. The zero schemeZ(s) is the maximal element of this ordered
set.

(2) For any morphism of schemes f : Y → X we have f∗s = 0 in Γ(Y, f∗L) if and
only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subscheme.
(4) The zero scheme Z(s) is an effective Cartier divisor if and only if s is a regular

section of L.

Proof. Omitted. �

Lemma 14.10. Let X be a scheme.
(1) IfD ⊂ X is an effective Cartier divisor, then the canonical section 1D ofOX(D)

is regular.
(2) Conversely, if s is a regular section of the invertible sheaf L, then there exists

a unique effective Cartier divisor D = Z(s) ⊂ X and a unique isomorphism
OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps

{
effective Cartier divisors on X

}
↔

 isomorphism classes of pairs (L, s)
consisting of an invertibleOX -module
L and a regular global section s


Proof. Omitted. �

Remark 14.11. LetX be a scheme,L an invertibleOX -module, and s a regular section
of L. Then the zero scheme D = Z(s) is an effective Cartier divisor on X and there are
short exact sequences

0→ OX → L → i∗(L|D)→ 0 and 0→ L⊗−1 → OX → i∗OD → 0.
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Given an effective Cartier divisor D ⊂ X using Lemmas 14.10 and 14.2 we get

0→ OX → OX(D)→ i∗(ND/X)→ 0 and 0→ OX(−D)→ OX → i∗(OD)→ 0

15. Effective Cartier divisors on Noetherian schemes

In the locally Noetherian setting most of the discussion of effective Cartier divisors and
regular sections simplifies somewhat.

Lemma 15.1. Let X be a locally Noetherian scheme. Let L be an invertible OX -
module. Let s ∈ Γ(X,L). Then s is a regular section if and only if s does not vanish in
the associated points of X .

Proof. Omitted. Hint: reduce to the affine case and L trivial and then use Lemma
14.7 and Algebra, Lemma 63.9. �

Lemma 15.2. LetX be a locally Noetherian scheme. LetD ⊂ X be a closed subscheme
corresponding to the quasi-coherent ideal sheaf I ⊂ OX .

(1) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by one element, then
D is locally principal.

(2) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by a single nonzerodi-
visor, then D is an effective Cartier divisor.

Proof. Let Spec(A) be an affine neighbourhood of a point x ∈ D. Let p ⊂ A be the
prime corresponding to x. Let I ⊂ A be the ideal defining the trace of D on Spec(A).
SinceA is Noetherian (asX is locally Noetherian) the ideal I is generated by finitely many
elements, say I = (f1, . . . , fr). Under the assumption of (1) we have Ip = (f) for some
f ∈ Ap. Then fi = gif for some gi ∈ Ap. Write gi = ai/hi and f = f ′/h for some
ai, hi, f

′, h ∈ A, hi, h 6∈ p. Then Ih1...hrh ⊂ Ah1...hrh is principal, because it is generated
by f ′. This proves (1). For (2) we may assume I = (f). The assumption implies that the
image of f in Ap is a nonzerodivisor. Then f is a nonzerodivisor on a neighbourhood of
x by Algebra, Lemma 68.6. This proves (2). �

Lemma 15.3. Let X be a locally Noetherian scheme.
(1) LetD ⊂ X be a locally principal closed subscheme. Let ξ ∈ D be a generic point

of an irreducible component of D. Then dim(OX,ξ) ≤ 1.
(2) Let D ⊂ X be an effective Cartier divisor. Let ξ ∈ D be a generic point of an

irreducible component of D. Then dim(OX,ξ) = 1.

Proof. Proof of (1). By assumption we may assumeX = Spec(A) andD = Spec(A/(f))
where A is a Noetherian ring and f ∈ A. Let ξ correspond to the prime ideal p ⊂ A. The
assumption that ξ is a generic point of an irreducible component ofD signifies p is minimal
over (f). Thus dim(Ap) ≤ 1 by Algebra, Lemma 60.11.

Proof of (2). By part (1) we see that dim(OX,ξ) ≤ 1. On the other hand, the local equa-
tion f is a nonzerodivisor in Ap by Lemma 13.2 which implies the dimension is at least 1
(because there must be a prime inAp not containing f by the elementary Algebra, Lemma
17.2). �

Lemma 15.4. Let X be a Noetherian scheme. Let D ⊂ X be an integral closed sub-
scheme which is also an effective Cartier divisor. Then the local ring of X at the generic
point of D is a discrete valuation ring.
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Proof. By Lemma 13.2 we may assume X = Spec(A) andD = Spec(A/(f)) where
A is a Noetherian ring and f ∈ A is a nonzerodivisor. The assumption that D is integral
signifies that (f) is prime. Hence the local ring of X at the generic point is A(f) which is
a Noetherian local ring whose maximal ideal is generated by a nonzerodivisor. Thus it is
a discrete valuation ring by Algebra, Lemma 119.7. �

Lemma 15.5. Let X be a locally Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor. If X is (Sk), then D is (Sk−1).

Proof. Let x ∈ D. Then OD,x = OX,x/(f) where f ∈ OX,x is a nonzerodivisor.
By assumption we have depth(OX,x) ≥ min(dim(OX,x), k). By Algebra, Lemma 72.7
we have depth(OD,x) = depth(OX,x) − 1 and by Algebra, Lemma 60.13 dim(OD,x) =
dim(OX,x)− 1. It follows that depth(OD,x) ≥ min(dim(OD,x), k − 1) as desired. �

Lemma 15.6. Let X be a locally Noetherian normal scheme. Let D ⊂ X be an effec-
tive Cartier divisor. Then D is (S1).

Proof. By Properties, Lemma 12.5 we see thatX is (S2). Thus we conclude by Lemma
15.5. �

Lemma 15.7. Let X be a Noetherian scheme. Let D ⊂ X be an integral closed sub-
scheme. Assume that

(1) D has codimension 1 in X , and
(2) OX,x is a UFD for all x ∈ D.

Then D is an effective Cartier divisor.

Proof. Let x ∈ D and set A = OX,x. Let p ⊂ A correspond to the generic point of
D. ThenAp has dimension 1 by assumption (1). Thus p is a prime ideal of height 1. Since
A is a UFD this implies that p = (f) for some f ∈ A. Of course f is a nonzerodivisor and
we conclude by Lemma 15.2. �

Lemma 15.8. Let X be a Noetherian scheme. Let Z ⊂ X be a closed subscheme.
Assume there exist integral effective Cartier divisorsDi ⊂ X and a closed subset Z ′ ⊂ X
of codimension ≥ 2 such that Z ⊂ Z ′ ∪

⋃
Di set-theoretically. Then there exists an

effective Cartier divisor of the form
D =

∑
aiDi ⊂ Z

such thatD → Z is an isomorphism away from codimension 2 inX . The existence of the
Di is guaranteed ifOX,x is a UFD for all x ∈ Z or if X is regular.

Proof. Let ξi ∈ Di be the generic point and let Oi = OX,ξi be the local ring which
is a discrete valuation ring by Lemma 15.4. Let ai ≥ 0 be the minimal valuation of an
element of IZ,ξi ⊂ Oi. We claim that the effective Cartier divisor D =

∑
aiDi works.

Namely, suppose that x ∈ X . Let A = OX,x. Let D1, . . . , Dn be the pairwise distinct
divisors Di such that x ∈ Di. For 1 ≤ i ≤ n let fi ∈ A be a local equation for Di. Then
fi is a prime element ofA andOi = A(fi). Let I = IZ,x ⊂ A be the stalk of the ideal sheaf
of Z. By our choice of ai we have IA(fi) = faii A(fi). We claim that I ⊂ (

∏
i=1,...,n f

ai
i ).

Proof of the claim. The localization map ϕ : A/(fi) → A(fi)/fiA(fi) is injective as the
prime ideal (fi) is the inverse image of the maximal ideal fiA(fi). By induction on n we
deduce that ϕn : A/(fni ) → A(fi)/f

n
i A(fi) is also injective. Since ϕai(I) = 0, we have

I ⊂ (faii ). Thus, for any x ∈ I , we may write x = fa1
1 x1 for some x1 ∈ A. Since

D1, . . . , Dn are pairwise distinct, fi is a unit in A(fj) for i 6= j. Comparing x and x1
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at A(fi) for n ≥ i > 1, we still have x1 ∈ (faii ). Repeating the previous process, we
inductively write xi = f

ai+1
i+1 xi+1 for any n > i ≥ 1. In conclusion, x ∈ (

∏
i=1,...n f

ai
i )

for any x ∈ I as desired.

The claim shows that IZ ⊂ ID , i.e., that D ⊂ Z. Moreover, we also see that D and Z
agree at the ξi, which proves that D → Z is an isomorphism away from codimension 2
on X .

To see the final statements we argue as follows. A regular local ring is a UFD (More on
Algebra, Lemma 121.2) hence it suffices to argue in the UFD case. In that case, let Di be
the irreducible components of Z which have codimension 1 in X . By Lemma 15.7 each
Di is an effective Cartier divisor. �

Lemma 15.9. Let Z ⊂ X be a closed subscheme of a Noetherian scheme. Assume
(1) Z has no embedded points,
(2) every irreducible component of Z has codimension 1 in X ,
(3) every local ringOX,x, x ∈ Z is a UFD or X is regular.

Then Z is an effective Cartier divisor.

Proof. Let D =
∑
aiDi be as in Lemma 15.8 where Di ⊂ Z are the irreducible

components of Z. If D → Z is not an isomorphism, then OZ → OD has a nonzero
kernel sitting in codimension ≥ 2. This would mean that Z has embedded points, which
is forbidden by assumption (1). Hence D ∼= Z as desired. �

Lemma 15.10. Let R be a Noetherian UFD. Let I ⊂ R be an ideal such that R/I
has no embedded primes and such that every minimal prime over I has height 1. Then
I = (f) for some f ∈ R.

Proof. By Lemma 15.9 the ideal sheaf Ĩ is invertible on Spec(R). By More on Alge-
bra, Lemma 117.3 it is generated by a single element. �

Lemma 15.11. Let X be a Noetherian scheme. Let D ⊂ X be an effective Cartier
divisor. Assume that there exist integral effective Cartier divisors Di ⊂ X such that
D ⊂

⋃
Di set theoretically. Then D =

∑
aiDi for some ai ≥ 0. The existence of the

Di is guaranteed ifOX,x is a UFD for all x ∈ D or if X is regular.

Proof. Choose ai as in Lemma 15.8 and set D′ =
∑
aiDi. Then D′ → D is an

inclusion of effective Cartier divisors which is an isomorphism away from codimension 2
on X . Pick x ∈ X . Set A = OX,x and let f, f ′ ∈ A be the nonzerodivisor generating
the ideal of D,D′ in A. Then f = gf ′ for some g ∈ A. Moreover, for every prime p of
height ≤ 1 of A we see that g maps to a unit of Ap. This implies that g is a unit because
the minimal primes over (g) have height 1 (Algebra, Lemma 60.11). �

Lemma 15.12. Let X be a Noetherian scheme which has an ample invertible sheaf.
Then every invertibleOX -module is isomorphic to

OX(D −D′) = OX(D)⊗OX
OX(D′)⊗−1

for some effective Cartier divisorsD,D′ inX . Moreover, given a finite subsetE ⊂ X we
may choose D,D′ such that E ∩ D = ∅ and E ∩ D′ = ∅. If X is quasi-affine, then we
may choose D′ = ∅.
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Proof. Let x1, . . . , xn be the associated points of X (Lemma 2.5).
IfX is quasi-affine andN is any invertibleOX -module, then we can pick a section t ofN
which does not vanish at any of the points ofE∪{x1, . . . , xn}, see Properties, Lemma 29.7.
Then t is a regular section of N by Lemma 15.1. Hence N ∼= OX(D) where D = Z(t)
is the effective Cartier divisor corresponding to t, see Lemma 14.10. Since E ∩D = ∅ by
construction we are done in this case.
Returning to the general case, letL be an ample invertible sheaf onX . There exists an n >
0 and a section s ∈ Γ(X,L⊗n) such thatXs is affine and such thatE∪{x1, . . . , xn} ⊂ Xs

(Properties, Lemma 29.6).
LetN be an arbitrary invertibleOX -module. By the quasi-affine case, we can find a section
t ∈ N (Xs) which does not vanish at any point ofE∪{x1, . . . , xn}. By Properties, Lemma
17.2 we see that for some e ≥ 0 the section se|Xst extends to a global section τ ofL⊗e⊗N .
Thus both L⊗e ⊗N and L⊗e are invertible sheaves which have global sections which do
not vanish at any point of E ∪ {x1, . . . , xn}. Thus these are regular sections by Lemma
15.1. Hence L⊗e ⊗N ∼= OX(D) and L⊗e ∼= OX(D′) for some effective Cartier divisors
D and D′, see Lemma 14.10. By construction E ∩D = ∅ and E ∩D′ = ∅ and the proof
is complete. �

Lemma 15.13. Let X be an integral regular scheme of dimension 2. Let i : D → X
be the immersion of an effective Cartier divisor. Let F → F ′ → i∗G → 0 be an exact
sequence of coherentOX -modules. Assume

(1) F ,F ′ are locally free of rank r on a nonempty open of X ,
(2) D is an integral scheme,
(3) G is a finite locally freeOD-module of rank s.

Then L = (∧rF)∗∗ and L′ = (∧rF ′)∗∗ are invertible OX -modules and L′ ∼= L(kD) for
some k ∈ {0, . . . ,min(s, r)}.

Proof. The first statement follows from Lemma 12.15 as assumption (1) implies that
L and L′ have rank 1. Taking ∧r and double duals are functors, hence we obtain a canon-
ical map σ : L → L′ which is an isomorphism over the nonempty open of (1), hence
nonzero. To finish the proof, it suffices to see that σ viewed as a global section ofL′⊗L⊗−1

does not vanish at any codimension point ofX , except at the generic point ofD and there
with vanishing order at most min(s, r).
Translated into algebra, we arrive at the following problem: Let (A,m, κ) be a discrete val-
uation ring with fraction field K. Let M →M ′ → N → 0 be an exact sequence of finite
A-modules with dimK(M ⊗K) = dimK(M ′ ⊗K) = r and with N ∼= κ⊕s. Show that
the induced map L = ∧r(M)∗∗ → L′ = ∧r(M ′)∗∗ vanishes to order at most min(s, r).
We will use the structure theorem for modules overA, see More on Algebra, Lemma 124.3
or 124.9. Dividing out a finiteA-module by a torsion submodule does not change the dou-
ble dual. Thus we may replace M by M/Mtors and M ′ by M ′/ Im(Mtors → M ′) and
assume that M is torsion free. Then M → M ′ is injective and M ′

tors → N is injective.
Hence we may replace M ′ by M ′/M ′

tors and N by N/M ′
tors. Thus we reduce to the case

where M and M ′ are free of rank r and N ∼= κ⊕s. In this case σ is the determinant of
M →M ′ and vanishes to order s for example by Algebra, Lemma 121.7. �

16. Complements of affine opens

In this section we discuss the result that the complement of an affine open in a variety has
pure codimension 1.
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Lemma 16.1. Let (A,m) be a Noetherian local ring. The punctured spectrum U =
Spec(A) \ {m} of A is affine if and only if dim(A) ≤ 1.

Proof. If dim(A) = 0, then U is empty hence affine (equal to the spectrum of the
0 ring). If dim(A) = 1, then we can choose an element f ∈ m not contained in any of
the finite number of minimal primes of A (Algebra, Lemmas 31.6 and 15.2). Then U =
Spec(Af ) is affine.

The converse is more interesting. We will give a somewhat nonstandard proof and discuss
the standard argument in a remark below. Assume U = Spec(B) is affine. Since affine-
ness and dimension are not affecting by going to the reduction we may replace A by the
quotient by its ideal of nilpotent elements and assumeA is reduced. SetQ = B/A viewed
as an A-module. The support of Q is {m} as Ap = Bp for all nonmaximal primes p of
A. We may assume dim(A) ≥ 1, hence as above we can pick f ∈ m not contained in any
of the minimal ideals of A. Since A is reduced this implies that f is a nonzerodivisor. In
particular dim(A/fA) = dim(A) − 1, see Algebra, Lemma 60.13. Applying the snake
lemma to multiplication by f on the short exact sequence 0 → A → B → Q → 0 we
obtain

0→ Q[f ]→ A/fA→ B/fB → Q/fQ→ 0
where Q[f ] = Ker(f : Q → Q). This implies that Q[f ] is a finite A-module. Since
the support of Q[f ] is {m} we see l = lengthA(Q[f ]) < ∞ (Algebra, Lemma 62.3). Set
ln = lengthA(Q[fn]). The exact sequence

0→ Q[fn]→ Q[fn+1] fn−−→ Q[f ]
shows inductively that ln <∞ and that ln ≤ ln+1. Considering the exact sequence

0→ Q[f ]→ Q[fn+1] f−→ Q[fn]→ Q/fQ

and we see that the image of Q[fn] in Q/fQ has length ln − ln+1 + l ≤ l. Since Q =⋃
Q[fn] we find that the length ofQ/fQ is at most l, i.e., bounded. ThusQ/fQ is a finite

A-module. HenceA/fA→ B/fB is a finite ring map, in particular induces a closed map
on spectra (Algebra, Lemmas 36.22 and 41.6). On the other hand Spec(B/fB) is the
punctured spectrum of Spec(A/fA). This is a contradiction unless Spec(B/fB) = ∅
which means that dim(A/fA) = 0 as desired. �

Remark 16.2. If (A,m) is a Noetherian local normal domain of dimension≥ 2 andU
is the punctured spectrum of A, then Γ(U,OU ) = A. This algebraic version of Hartogs’s
theorem follows from the fact that A =

⋂
height(p)=1 Ap we’ve seen in Algebra, Lemma

157.6. Thus in this case U cannot be affine (since it would force m to be a point of U ).
This is often used as the starting point of the proof of Lemma 16.1. To reduce the case
of a general Noetherian local ring to this case, we first complete (to get a Nagata local
ring), then replace A by A/q for a suitable minimal prime, and then normalize. Each of
these steps does not change the dimension and we obtain a contradiction. You can skip
the completion step, but then the normalization in general is not a Noetherian domain.
However, it is still a Krull domain of the same dimension (this is proved using Krull-
Akizuki) and one can apply the same argument.

Remark 16.3. It is not clear how to characterize the non-Noetherian local rings
(A,m) whose punctured spectrum is affine. Such a ring has a finitely generated ideal I
with m =

√
I . Of course if we can take I generated by 1 element, then A has an affine

puncture spectrum; this gives lots of non-Noetherian examples. Conversely, it follows
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from the argument in the proof of Lemma 16.1 that such a ring cannot possess a nonzero-
divisor f ∈ m with H0

I (A/fA) = 0 (so A cannot have a regular sequence of length 2).
Moreover, the same holds for any ringA′ which is the target of a local homomorphism of
local rings A→ A′ such that mA′ =

√
mA′.

Lemma 16.4. Let X be a locally Noetherian scheme. Let U ⊂ X be an open sub-
scheme such that the inclusion morphism U → X is affine. For every generic point ξ of
an irreducible component of X \ U the local ring OX,ξ has dimension ≤ 1. If U is dense
or if ξ is in the closure of U , then dim(OX,ξ) = 1.

Proof. Since ξ is a generic point of X \ U , we see that
Uξ = U ×X Spec(OX,ξ) ⊂ Spec(OX,ξ)

is the punctured spectrum of OX,ξ (hint: use Schemes, Lemma 13.2). As U → X is affine,
we see that Uξ → Spec(OX,ξ) is affine (Morphisms, Lemma 11.8) and we conclude that
Uξ is affine. Hence dim(OX,ξ) ≤ 1 by Lemma 16.1. If ξ ∈ U , then there is a specialization
η → ξ where η ∈ U (just take η a generic point of an irreducible component of U which
contains ξ; since U is locally Noetherian, hence locally has finitely many irreducible com-
ponents, we see that η ∈ U ). Then η ∈ Spec(OX,ξ) and we see that the dimension cannot
be 0. �

Lemma 16.5. LetX be a separated locally Noetherian scheme. LetU ⊂ X be an affine
open. For every generic point ξ of an irreducible component ofX \U the local ringOX,ξ
has dimension ≤ 1. If U is dense or if ξ is in the closure of U , then dim(OX,ξ) = 1.

Proof. This follows from Lemma 16.4 because the morphism U → X is affine by
Morphisms, Lemma 11.11. �

The following lemma can sometimes be used to produce effective Cartier divisors.
Lemma 16.6. Let X be a Noetherian separated scheme. Let U ⊂ X be a dense affine

open. If OX,x is a UFD for all x ∈ X \ U , then there exists an effective Cartier divisor
D ⊂ X with U = X \D.

Proof. Since X is Noetherian, the complement X \ U has finitely many irreducible
componentsD1, . . . , Dr (Properties, Lemma 5.7 applied to the reduced induced subscheme
structure on X \ U ). Each Di ⊂ X has codimension 1 by Lemma 16.5 (and Properties,
Lemma 10.3). Thus Di is an effective Cartier divisor by Lemma 15.7. Hence we can take
D = D1 + . . .+Dr. �

Lemma 16.7. Let X be a Noetherian scheme with affine diagonal. Let U ⊂ X be a
dense affine open. IfOX,x is a UFD for all x ∈ X \U , then there exists an effective Cartier
divisor D ⊂ X with U = X \D.

Proof. Since X is Noetherian, the complement X \ U has finitely many irreducible
componentsD1, . . . , Dr (Properties, Lemma 5.7 applied to the reduced induced subscheme
structure on X \U ). We view Di as a reduced closed subscheme of X . Let X =

⋃
j∈J Xj

be an affine open covering of X . For all j in J , set Uj = U ∩ Xj . Since X has affine
diagonal, the scheme

Uj = X ×(X×X) (U ×Xj)
is affine. Therefore, as Xj is separated, it follows from Lemma 16.6 and its proof that for
all j ∈ J and 1 ≤ i ≤ r the intersection Di ∩Xj is either empty or an effective Cartier
divisor in Xj . Thus Di ⊂ X is an effective Cartier divisor (as this is a local property).
Hence we can take D = D1 + . . .+Dr. �
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Lemma 16.8. Let X be a quasi-compact, regular scheme with affine diagonal. Then
X has an ample family of invertible modules (Morphisms, Definition 12.1.

Proof. Observe thatX is a finite disjoint union of integral schemes (Properties, Lem-
mas 9.4 and 7.6). Thus we may assume that X is integral as well as Noetherian, regular,
and having affine diagonal. Let x ∈ X . Choose an affine open neighbourhood U ⊂ X of
x. SinceX is integral,U is dense inX . By More on Algebra, Lemma 121.2 the local rings of
X are UFDs. Hence by Lemma 16.7 we can find an effective Cartier divisorD ⊂ X whose
complement is U . Then the canonical section s = 1D of L = OX(D), see Definition 14.1,
vanishes exactly alongD hence U = Xs. Thus both conditions in Morphisms, Definition
12.1 hold and we are done. �

17. Norms

Let π : X → Y be a finite morphism of schemes and let d ≥ 1 be an integer. Let us say
there exists a norm of degree d for π2 if there exists a multiplicative map

Normπ : π∗OX → OY

of sheaves such that

(1) the compositionOY
π]−→ π∗OX

Normπ−−−−→ OY equals g 7→ gd, and
(2) for V ⊂ Y open if f ∈ OX(π−1V ) is zero at x ∈ π−1(V ), then Normπ(f) is

zero at π(x).
We observe that condition (1) forces π to be surjective. Since Normπ is multiplicative
it sends units to units hence, given y ∈ Y , if f is a regular function on X defined at but
nonvanishing at any x ∈ X with π(x) = y, then Normπ(f) is defined and does not vanish
at y. This holds without requiring (2); in fact, the constructions in this section will only
require condition (1) and only certain vanishing properties (which are used in particular
in the proof of Lemma 17.4) will require property (2).

Lemma 17.1. Let π : X → Y be a finite morphism of schemes. Let L be an invertible
OX -module. Let y ∈ Y . There exists an open neighbourhood V ⊂ Y of y such that
L|π−1(V ) is trivial.

Proof. Clearly we may assume Y and hence X affine. Since π is finite the fibre
π−1({y}) over y is finite. Since X is affine, we can pick s ∈ Γ(X,L) not vanishing in
any point of π−1({y}). This follows from Properties, Lemma 29.7 but we also give a
direct argument. Namely, we can pick a finite set E ⊂ X of closed points such that every
x ∈ π−1({y}) specializes to some point of E. For x ∈ E denote ix : x → X the closed
immersion. Then L →

⊕
x∈E ix,∗i

∗
xL is a surjective map of quasi-coherentOX -modules,

and hence the map

Γ(X,L)→
⊕

x∈E
Lx/mxLx

is surjective (as taking global sections is an exact functor on the category of quasi-coherent
OX -modules, see Schemes, Lemma 7.5). Thus we can find an s ∈ Γ(X,L) not vanishing
at any point specializing to a point of E. Then Xs ⊂ X is an open neighbourhood of
π−1({y}). Since π is finite, hence closed, we conclude that there is an open neighbourhood
V ⊂ Y of y whose inverse image is contained in Xs as desired. �

2This is nonstandard notation.
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Lemma 17.2. Let π : X → Y be a finite morphism of schemes. If there exists a norm
of degree d for π, then there exists a homomorphism of abelian groups

Normπ : Pic(X)→ Pic(Y )
such that Normπ(π∗N ) ∼= N⊗d for all invertibleOY -modulesN .

Proof. We will use the correspondence between isomorphism classes of invertible
OX -modules and elements ofH1(X,O∗

X) given in Cohomology, Lemma 6.1 without fur-
ther mention. We explain how to take the norm of an invertibleOX -module L. Namely,
by Lemma 17.1 there exists an open covering Y =

⋃
Vj such that L|π−1Vj is trivial.

Choose a generating section sj ∈ L(π−1Vj) for each j. On the overlaps π−1Vj ∩ π−1Vj′

we can write
sj = ujj′sj′

for a unique ujj′ ∈ O∗
X(π−1Vj ∩ π−1Vj′). Thus we can consider the elements

vjj′ = Normπ(ujj′) ∈ O∗
Y (Vj ∩ Vj′)

These elements satisfy the cocycle condition (because the ujj′ do and Normπ is multiplica-
tive) and therefore define an invertibleOY -module. We omit the verification that: this is
well defined, additive on Picard groups, and satisfies the property Normπ(π∗N ) ∼= N⊗d

for all invertibleOY -modulesN . �

Lemma 17.3. Let π : X → Y be a finite morphism of schemes. Assume there exists
a norm of degree d for π. For any OX -linear map ϕ : L → L′ of invertible OX -modules
there is anOY -linear map

Normπ(ϕ) : Normπ(L) −→ Normπ(L′)
with Normπ(L), Normπ(L′) as in Lemma 17.2. Moreover, for y ∈ Y the following are
equivalent

(1) ϕ is zero at a point of x ∈ X with π(x) = y, and
(2) Normπ(ϕ) is zero at y.

Proof. We choose an open covering Y =
⋃
Vj such that L and L′ are trivial over

the opens π−1Vj . This is possible by Lemma 17.1. Choose generating sections sj and s′
j of

L and L′ over the opens π−1Vj . Then ϕ(sj) = fjs
′
j for some fj ∈ OX(π−1Vj). Define

Normπ(ϕ) to be multiplication by Normπ(fj) on Vj . An simple calculation involving the
cocycles used to construct Normπ(L), Normπ(L′) in the proof of Lemma 17.2 shows that
this defines a map as stated in the lemma. The final statement follows from condition (2)
in the definition of a norm map of degree d. Some details omitted. �

Lemma 17.4. Let π : X → Y be a finite morphism of schemes. Assume X has an
ample invertible sheaf and there exists a norm of degree d for π. Then Y has an ample
invertible sheaf.

Proof. Let L be the ample invertible sheaf onX given to us by assumption. We will
prove thatN = Normπ(L) is ample on Y .
Since X is quasi-compact (Properties, Definition 26.1) and X → Y surjective (by the
existence of Normπ) we see that Y is quasi-compact. Let y ∈ Y be a point. To finish the
proof we will show that there exists a section t of some positive tensor power ofN which
does not vanish at y such that Yt is affine. To do this, choose an affine open neighbourhood
V ⊂ Y of y. Choose n� 0 and a section s ∈ Γ(X,L⊗n) such that

π−1({y}) ⊂ Xs ⊂ π−1V
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by Properties, Lemma 29.6. Then t = Normπ(s) is a section of N⊗n which does not
vanish at x and with Yt ⊂ V , see Lemma 17.3. Then Yt is affine by Properties, Lemma
26.4. �

Lemma 17.5. Let π : X → Y be a finite morphism of schemes. Assume X is quasi-
affine and there exists a norm of degree d for π. Then Y is quasi-affine.

Proof. By Properties, Lemma 27.1 we see that OX is an ample invertible sheaf on
X . The proof of Lemma 17.4 shows that Normπ(OX) = OY is an ample invertible OY -
module. Hence Properties, Lemma 27.1 shows that Y is quasi-affine. �

Lemma 17.6. Let π : X → Y be a finite locally free morphism of degree d ≥ 1. Then
there exists a canonical norm of degree d whose formation commutes with arbitrary base
change.

Proof. Let V ⊂ Y be an affine open such that (π∗OX)|V is finite free of rank d.
Choosing a basis we obtain an isomorphism

O⊕d
V
∼= (π∗OX)|V

For every f ∈ π∗OX(V ) = OX(π−1(V )) multiplication by f defines a OV -linear en-
domorphism mf of the displayed free vector bundle. Thus we get a d × d matrix Mf ∈
Mat(d× d,OY (V )) and we can set

Normπ(f) = det(Mf )
Since the determinant of a matrix is independent of the choice of the basis chosen we see
that this is well defined which also means that this construction will glue to a global map
as desired. Compatibility with base change is straightforward from the construction.

Property (1) follows from the fact that the determinant of a d × d diagonal matrix with
entries g, g, . . . , g is gd. To see property (2) we may base change and assume that Y is the
spectrum of a field k. Then X = Spec(A) with A a k-algebra with dimk(A) = d. If
there exists an x ∈ X such that f ∈ A vanishes at x, then there exists a map A → κ
into a field such that f maps to zero in κ. Then f : A → A cannot be surjective, hence
det(f : A→ A) = 0 as desired. �

Lemma 17.7. Let π : X → Y be a finite surjective morphism with X and Y integral
and Y normal. Then there exists a norm of degree [R(X) : R(Y )] for π.

Proof. Let Spec(B) ⊂ Y be an affine open subset and let Spec(A) ⊂ X be its inverse
image. Then A and B are domains. Let K be the fraction field of A and L the fraction
field of B. Picture:

L // K

B

OO

// A

OO

Since K/L is a finite extension, there is a norm map NormK/L : K∗ → L∗ of degree d =
[K : L]; this is given by mapping f ∈ K to detL(f : K → K) as in the proof of Lemma
17.6. Observe that the characteristic polynomial of f : K → K is a power of the minimal
polynomial of f over L; in particular NormK/L(f) is a power of the constant coefficient
of the minimal polynomial of f over L. Hence by Algebra, Lemma 38.6 NormK/L maps
A intoB. This determines a compatible system of maps on sections over affines and hence
a global norm map Normπ of degree d.
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Property (1) is immediate from the construction. To see property (2) let f ∈ A be con-
tained in the prime ideal p ⊂ A. Let fm + b1f

m−1 + . . . + bm be the minimal polyno-
mial of f over L. By Algebra, Lemma 38.6 we have bi ∈ B. Hence b0 ∈ B ∩ p. Since
NormK/L(f) = b

d/m
0 (see above) we conclude that the norm vanishes in the image point

of p. �

Lemma 17.8. Let X be a Noetherian scheme. Let p be a prime number such that
pOX = 0. Then for some e > 0 there exists a norm of degree pe for Xred → X where
Xred is the reduction of X .

Proof. Let A be a Noetherian ring with pA = 0. Let I ⊂ A be the ideal of nilpotent
elements. Then In = 0 for some n (Algebra, Lemma 32.5). Pick e such that pe ≥ n. Then

A/I −→ A, f mod I 7−→ fp
e

is well defined. This produces a norm of degree pe for Spec(A/I) → Spec(A). Now if
X is obtained by glueing some affine schemes Spec(Ai) then for some e � 0 these maps
glue to a norm map for Xred → X . Details omitted. �

Proposition 17.9. Let π : X → Y be a finite surjective morphism of schemes. As-
sume that X has an ample invertibleOX -module. If

(1) π is finite locally free, or
(2) Y is an integral normal scheme, or
(3) Y is Noetherian, pOY = 0, and X = Yred,

then Y has an ample invertibleOY -module.

Proof. Case (1) follows from a combination of Lemmas 17.6 and 17.4. Case (3) fol-
lows from a combination of Lemmas 17.8 and 17.4. In case (2) we first replace X by an
irreducible component of X which dominates Y (viewed as a reduced closed subscheme
of X). Then we can apply Lemma 17.7. �

Lemma 17.10. Let π : X → Y be a finite surjective morphism of schemes. Assume
that X is quasi-affine. If either

(1) π is finite locally free, or
(2) Y is an integral normal scheme

then Y is quasi-affine.

Proof. Case (1) follows from a combination of Lemmas 17.6 and 17.5. In case (2) we
first replaceX by an irreducible component ofX which dominates Y (viewed as a reduced
closed subscheme of X). Then we can apply Lemma 17.7. �

18. Relative effective Cartier divisors

The following lemma shows that an effective Cartier divisor which is flat over the base is
really a “family of effective Cartier divisors” over the base. For example the restriction to
any fibre is an effective Cartier divisor.

Lemma 18.1. Let f : X → S be a morphism of schemes. Let D ⊂ X be a closed
subscheme. Assume

(1) D is an effective Cartier divisor, and
(2) D → S is a flat morphism.

Then for every morphism of schemes g : S′ → S the pullback (g′)−1D is an effective
Cartier divisor on X ′ = S′ ×S X where g′ : X ′ → X is the projection.
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Proof. Using Lemma 13.2 we translate this as follows into algebra. Let A → B be a
ring map and h ∈ B. Assume h is a nonzerodivisor and that B/hB is flat over A. Then

0→ B
h−→ B → B/hB → 0

is a short exact sequence of A-modules with B/hB flat over A. By Algebra, Lemma 39.12
this sequence remains exact on tensoring over A with any module, in particular with any
A-algebra A′. �

This lemma is the motivation for the following definition.

Definition 18.2. Let f : X → S be a morphism of schemes. A relative effective
Cartier divisor on X/S is an effective Cartier divisor D ⊂ X such that D → S is a flat
morphism of schemes.

We warn the reader that this may be nonstandard notation. In particular, in [?, IV, Section
21.15] the notion of a relative divisor is discussed only when X → S is flat and locally
of finite presentation. Our definition is a bit more general. However, it turns out that if
x ∈ D then X → S is flat at x in many cases (but not always).

Lemma 18.3. Let f : X → S be a morphism of schemes. If D1, D2 ⊂ X are relative
effective Cartier divisor on X/S then so is D1 +D2 (Definition 13.6).

Proof. This translates into the following algebra fact: LetA→ B be a ring map and
h1, h2 ∈ B. Assume the hi are nonzerodivisors and thatB/hiB is flat overA. Then h1h2
is a nonzerodivisor and B/h1h2B is flat over A. The reason is that we have a short exact
sequence

0→ B/h1B → B/h1h2B → B/h2B → 0

where the first arrow is given by multiplication by h2. Since the outer two are flat modules
over A, so is the middle one, see Algebra, Lemma 39.13. �

Lemma 18.4. Let f : X → S be a morphism of schemes. If D1, D2 ⊂ X are relative
effective Cartier divisor on X/S and D1 ⊂ D2 as closed subschemes, then the effective
Cartier divisor D such that D2 = D1 + D (Lemma 13.8) is a relative effective Cartier
divisor on X/S.

Proof. This translates into the following algebra fact: Let A → B be a ring map
and h1, h2 ∈ B. Assume the hi are nonzerodivisors, that B/hiB is flat over A, and that
(h2) ⊂ (h1). Then we can write h2 = hh1 where h ∈ B is a nonzerodivisor. We get a
short exact sequence

0→ B/hB → B/h2B → B/h1B → 0

where the first arrow is given by multiplication by h1. Since the right two are flat modules
over A, so is the middle one, see Algebra, Lemma 39.13. �

Lemma 18.5. Let f : X → S be a morphism of schemes. Let D ⊂ X be a relative
effective Cartier divisor on X/S. If x ∈ D andOX,x is Noetherian, then f is flat at x.

Proof. Set A = OS,f(x) and B = OX,x. Let h ∈ B be an element which generates
the ideal of D. Then h is a nonzerodivisor in B such that B/hB is a flat local A-algebra.
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Let I ⊂ A be a finitely generated ideal. Consider the commutative diagram

0 // B
h

// B // B/hB // 0

0 // B ⊗A I
h //

OO

B ⊗A I //

OO

B/hB ⊗A I //

OO

0

The lower sequence is short exact as B/hB is flat over A, see Algebra, Lemma 39.12.
The right vertical arrow is injective as B/hB is flat over A, see Algebra, Lemma 39.5.
Hence multiplication by h is surjective on the kernel K of the middle vertical arrow. By
Nakayama’s lemma, see Algebra, Lemma 20.1 we conclude that K = 0. Hence B is flat
over A, see Algebra, Lemma 39.5. �

The following lemma relies on the algebraic version of openness of the flat locus. The
scheme theoretic version can be found in More on Morphisms, Section 15.

Lemma 18.6. Let f : X → S be a morphism of schemes. Let D ⊂ X be a relative
effective Cartier divisor. If f is locally of finite presentation, then there exists an open
subscheme U ⊂ X such that D ⊂ U and such that f |U : U → S is flat.

Proof. Pick x ∈ D. It suffices to find an open neighbourhood U ⊂ X of x such that
f |U is flat. Hence the lemma reduces to the case thatX = Spec(B) and S = Spec(A) are
affine and that D is given by a nonzerodivisor h ∈ B. By assumption B is a finitely pre-
sented A-algebra and B/hB is a flat A-algebra. We are going to use absolute Noetherian
approximation.

Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume h is the image of h′ ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebraA0 ⊂ A such that all the coefficients of the polynomials
h′, g1, . . . , gm are in A0. Then we can set B0 = A0[x1, . . . , xn]/(g1, . . . , gm) and h0 the
image of h′ in B0. Then B = B0 ⊗A0 A and B/hB = B0/h0B0 ⊗A0 A. By Algebra,
Lemma 168.1 we may, after enlarging A0, assume that B0/h0B0 is flat over A0. Let K0 =
Ker(h0 : B0 → B0). As B0 is of finite type over Z we see that K0 is a finitely generated
ideal. Let A1 ⊂ A be a finite type Z-subalgebra containing A0 and denote B1, h1, K1 the
corresponding objects over A1. By More on Algebra, Lemma 31.3 the map K0 ⊗A0 A1 →
K1 is surjective. On the other hand, the kernel of h : B → B is zero by assumption.
Hence every element of K0 maps to zero in K1 for sufficiently large subrings A1 ⊂ A.
Since K0 is finitely generated, we conclude that K1 = 0 for a suitable choice of A1.

Set f1 : X1 → S1 equal to Spec of the ring map A1 → B1. Set D1 = Spec(B1/h1B1).
SinceB = B1⊗A1A, i.e.,X = X1×S1 S , it now suffices to prove the lemma forX1 → S1
and the relative effective Cartier divisor D1, see Morphisms, Lemma 25.7. Hence we have
reduced to the case where A is a Noetherian ring. In this case we know that the ring map
A→ B is flat at every prime q of V (h) by Lemma 18.5. Combined with the fact that the
flat locus is open in this case, see Algebra, Theorem 129.4 we win. �

There is also the following lemma (whose idea is apparently due to Michael Artin, see [?])
which needs no finiteness assumptions at all.

Lemma 18.7. Let f : X → S be a morphism of schemes. Let D ⊂ X be a relative
effective Cartier divisor on X/S. If f is flat at all points of X \D, then f is flat.

Proof. This translates into the following algebra fact: LetA→ B be a ring map and
h ∈ B. Assume h is a nonzerodivisor, that B/hB is flat over A, and that the localization
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Bh is flat overA. ThenB is flat overA. The reason is that we have a short exact sequence
0→ B → Bh → colimn(1/hn)B/B → 0

and that the second and third terms are flat over A, which implies that B is flat over A
(see Algebra, Lemma 39.13). Note that a filtered colimit of flat modules is flat (see Algebra,
Lemma 39.3) and that by induction on n each (1/hn)B/B ∼= B/hnB is flat over A since
it fits into the short exact sequence

0→ B/hn−1B
h−→ B/hnB → B/hB → 0

Some details omitted. �

Example 18.8. Here is an example of a relative effective Cartier divisorD where the
ambient scheme is not flat in a neighbourhood of D. Namely, let A = k[t] and

B = k[t, x, y, x−1y, x−2y, . . .]/(ty, tx−1y, tx−2y, . . .)
Then B is not flat over A but B/xB ∼= A is flat over A. Moreover x is a nonzerodivisor
and hence defines a relative effective Cartier divisor in Spec(B) over Spec(A).

If the ambient scheme is flat and locally of finite presentation over the base, then we can
characterize a relative effective Cartier divisor in terms of its fibres. See also More on
Morphisms, Lemma 23.1 for a slightly different take on this lemma.

Lemma 18.9. Let ϕ : X → S be a flat morphism which is locally of finite presenta-
tion. Let Z ⊂ X be a closed subscheme. Let x ∈ Z with image s ∈ S.

(1) IfZs ⊂ Xs is a Cartier divisor in a neighbourhood of x, then there exists an open
U ⊂ X and a relative effective Cartier divisorD ⊂ U such that Z ∩U ⊂ D and
Zs ∩ U = Ds.

(2) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, the morphism Z → X
is of finite presentation, and Z → S is flat at x, then we can choose U and D
such that Z ∩ U = D.

(3) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x and Z is a locally prin-
cipal closed subscheme ofX in a neighbourhood of x, then we can choose U and
D such that Z ∩ U = D.

In particular, if Z → S is locally of finite presentation and flat and all fibres Zs ⊂ Xs are
effective Cartier divisors, then Z is a relative effective Cartier divisor. Similarly, if Z is a
locally principal closed subscheme of X such that all fibres Zs ⊂ Xs are effective Cartier
divisors, then Z is a relative effective Cartier divisor.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such that
ϕ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to s. Let q ⊂ B be
the prime ideal corresponding to x. Let I ⊂ B be the ideal corresponding to Z. By the
initial assumption of the lemma we know that A → B is flat and of finite presentation.
The assumption in (1) means that, after shrinking Spec(B), we may assume I(B⊗A κ(p))
is generated by a single element which is a nonzerodivisor in B ⊗A κ(p). Say f ∈ I
maps to this generator. We claim that after inverting an element g ∈ B, g 6∈ q the closed
subscheme D = V (f) ⊂ Spec(Bg) is a relative effective Cartier divisor.
By Algebra, Lemma 168.1 we can find a flat finite type ring map A0 → B0 of Noetherian
rings, an element f0 ∈ B0, a ring map A0 → A and an isomorphism A ⊗A0 B0 ∼= B. If
p0 = A0 ∩ p then we see that

B ⊗A κ(p) = (B0 ⊗A0 κ(p0))⊗κ(p0)) κ(p)
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hence f0 is a nonzerodivisor inB0⊗A0 κ(p0). By Algebra, Lemma 99.2 we see that f0 is a
nonzerodivisor in (B0)q0 where q0 = B0∩q and that (B0/f0B0)q0 is flat overA0. Hence
by Algebra, Lemma 68.6 and Algebra, Theorem 129.4 there exists a g0 ∈ B0, g0 6∈ q0 such
that f0 is a nonzerodivisor in (B0)g0 and such that (B0/f0B0)g0 is flat over A0. Hence
we see that D0 = V (f0) ⊂ Spec((B0)g0) is a relative effective Cartier divisor. Since we
know that this property is preserved under base change, see Lemma 18.1, we obtain the
claim mentioned above with g equal to the image of g0 in B.

At this point we have proved (1). To see (2) consider the closed immersion Z → D.
The surjective ring map u : OD,x → OZ,x is a map of flat local OS,s-algebras which are
essentially of finite presentation, and which becomes an isomorphisms after dividing by
ms. Hence it is an isomorphism, see Algebra, Lemma 128.4. It follows that Z → D is an
isomorphism in a neighbourhood of x, see Algebra, Lemma 126.6. To see (3), after possibly
shrinking U we may assume that the ideal of D is generated by a single nonzerodivisor f
and the ideal of Z is generated by an element g. Then f = gh. But g|Us and f |Us cut out
the same effective Cartier divisor in a neighbourhood of x. Hence h|Xs is a unit inOXs,x,
hence h is a unit inOX,x hence h is a unit in an open neighbourhood of x. I.e.,Z∩U = D
after shrinking U .

The final statements of the lemma follow immediately from parts (2) and (3), combined
with the fact that Z → S is locally of finite presentation if and only if Z → X is of finite
presentation, see Morphisms, Lemmas 21.3 and 21.11. �

19. The normal cone of an immersion

Let i : Z → X be a closed immersion. Let I ⊂ OX be the corresponding quasi-coherent
sheaf of ideals. Consider the quasi-coherent sheaf of gradedOX -algebras

⊕
n≥0 In/In+1.

Since the sheaves In/In+1 are each annihilated by I this graded algebra corresponds
to a quasi-coherent sheaf of graded OZ -algebras by Morphisms, Lemma 4.1. This quasi-
coherent gradedOZ -algebra is called the conormal algebra of Z in X and is often simply
denoted

⊕
n≥0 In/In+1 by the abuse of notation mentioned in Morphisms, Section 4.

Let f : Z → X be an immersion. We define the conormal algebra of f as the conormal
sheaf of the closed immersion i : Z → X \ ∂Z , where ∂Z = Z \ Z. It is often denoted⊕

n≥0 In/In+1 where I is the ideal sheaf of the closed immersion i : Z → X \ ∂Z.

Definition 19.1. Let f : Z → X be an immersion. The conormal algebra CZ/X,∗
of Z in X or the conormal algebra of f is the quasi-coherent sheaf of gradedOZ -algebras⊕

n≥0 In/In+1 described above.

Thus CZ/X,1 = CZ/X is the conormal sheaf of the immersion. Also CZ/X,0 = OZ and
CZ/X,n is a quasi-coherentOZ -module characterized by the property

(19.1.1) i∗CZ/X,n = In/In+1

where i : Z → X \ ∂Z and I is the ideal sheaf of i as above. Finally, note that there is a
canonical surjective map

(19.1.2) Sym∗(CZ/X) −→ CZ/X,∗
of quasi-coherent gradedOZ -algebras which is an isomorphism in degrees 0 and 1.

Lemma 19.2. Let i : Z → X be an immersion. The conormal algebra of i has the
following properties:
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(1) Let U ⊂ X be any open such that i(Z) is a closed subset of U . Let I ⊂ OU be
the sheaf of ideals corresponding to the closed subscheme i(Z) ⊂ U . Then

CZ/X,∗ = i∗
(⊕

n≥0
In
)

= i−1
(⊕

n≥0
In/In+1

)
(2) For any affine open Spec(R) = U ⊂ X such that Z ∩ U = Spec(R/I) there is

a canonical isomorphism Γ(Z ∩ U, CZ/X,∗) =
⊕

n≥0 I
n/In+1.

Proof. Mostly clear from the definitions. Note that given a ring R and an ideal I of
R we have In/In+1 = In ⊗R R/I . Details omitted. �

Lemma 19.3. Let
Z

i
//

f

��

X

g

��
Z ′ i′ // X ′

be a commutative diagram in the category of schemes. Assume i, i′ immersions. There is
a canonical map of gradedOZ -algebras

f∗CZ′/X′,∗ −→ CZ/X,∗
characterized by the following property: For every pair of affine opens (Spec(R) = U ⊂
X, Spec(R′) = U ′ ⊂ X ′) with f(U) ⊂ U ′ such that Z ∩U = Spec(R/I) and Z ′ ∩U ′ =
Spec(R′/I ′) the induced map

Γ(Z ′ ∩ U ′, CZ′/X′,∗) =
⊕

(I ′)n/(I ′)n+1 −→
⊕

n≥0
In/In+1 = Γ(Z ∩ U, CZ/X,∗)

is the one induced by the ring map f ] : R′ → R which has the property f ](I ′) ⊂ I .

Proof. Let ∂Z ′ = Z ′ \Z ′ and ∂Z = Z \Z. These are closed subsets ofX ′ and ofX .
Replacing X ′ by X ′ \ ∂Z ′ and X by X \

(
g−1(∂Z ′) ∪ ∂Z

)
we see that we may assume

that i and i′ are closed immersions.

The fact that g ◦ i factors through i′ implies that g∗I ′ maps into I under the canonical
map g∗I ′ → OX , see Schemes, Lemmas 4.6 and 4.7. Hence we get an induced map of quasi-
coherent sheaves g∗((I ′)n/(I ′)n+1)→ In/In+1. Pulling back by i gives i∗g∗((I ′)n/(I ′)n+1)→
i∗(In/In+1). Note that i∗(In/In+1) = CZ/X,n. On the other hand, i∗g∗((I ′)n/(I ′)n+1) =
f∗(i′)∗((I ′)n/(I ′)n+1) = f∗CZ′/X′,n. This gives the desired map.

Checking that the map is locally described as the given map (I ′)n/(I ′)n+1 → In/In+1 is
a matter of unwinding the definitions and is omitted. Another observation is that given
any x ∈ i(Z) there do exist affine open neighbourhoodsU ,U ′ with f(U) ⊂ U ′ andZ∩U
as well as U ′ ∩ Z ′ closed such that x ∈ U . Proof omitted. Hence the requirement of the
lemma indeed characterizes the map (and could have been used to define it). �

Lemma 19.4. Let
Z

i
//

f

��

X

g

��
Z ′ i′ // X ′

be a fibre product diagram in the category of schemes with i, i′ immersions. Then the
canonical map f∗CZ′/X′,∗ → CZ/X,∗ of Lemma 19.3 is surjective. If g is flat, then it is an
isomorphism.
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Proof. Let R′ → R be a ring map, and I ′ ⊂ R′ an ideal. Set I = I ′R. Then
(I ′)n/(I ′)n+1 ⊗R′ R→ In/In+1 is surjective. If R′ → R is flat, then In = (I ′)n ⊗R′ R
and we see the map is an isomorphism. �

Definition 19.5. Let i : Z → X be an immersion of schemes. The normal cone
CZX of Z in X is

CZX = Spec
Z

(CZ/X,∗)
see Constructions, Definitions 7.1 and 7.2. The normal bundle of Z in X is the vector
bundle

NZX = Spec
Z

(Sym(CZ/X))
see Constructions, Definitions 6.1 and 6.2.

Thus CZX → Z is a cone over Z andNZX → Z is a vector bundle over Z (recall that in
our terminology this does not imply that the conormal sheaf is a finite locally free sheaf).
Moreover, the canonical surjection (19.1.2) of graded algebras defines a canonical closed
immersion

(19.5.1) CZX −→ NZX

of cones over Z.

20. Regular ideal sheaves

In this section we generalize the notion of an effective Cartier divisor to higher codi-
mension. Recall that a sequence of elements f1, . . . , fr of a ring R is a regular sequence
if for each i = 1, . . . , r the element fi is a nonzerodivisor on R/(f1, . . . , fi−1) and
R/(f1, . . . , fr) 6= 0, see Algebra, Definition 68.1. There are three closely related weaker
conditions that we can impose. The first is to assume that f1, . . . , fr is a Koszul-regular
sequence, i.e., that Hi(K•(f1, . . . , fr)) = 0 for i > 0, see More on Algebra, Definition
30.1. The sequence is called an H1-regular sequence if H1(K•(f1, . . . , fr)) = 0. Another
condition we can impose is that with J = (f1, . . . , fr), the map

R/J [T1, . . . , Tr] −→
⊕

n≥0
Jn/Jn+1

which maps Ti to fi mod J2 is an isomorphism. In this case we say that f1, . . . , fr is a
quasi-regular sequence, see Algebra, Definition 69.1. Given an R-module M there is also
a notion of M -regular and M -quasi-regular sequence.

We can generalize this to the case of ringed spaces as follows. Let X be a ringed space
and let f1, . . . , fr ∈ Γ(X,OX). We say that f1, . . . , fr is a regular sequence if for each
i = 1, . . . , r the map

(20.0.1) fi : OX/(f1, . . . , fi−1) −→ OX/(f1, . . . , fi−1)

is an injective map of sheaves. We say that f1, . . . , fr is a Koszul-regular sequence if the
Koszul complex

(20.0.2) K•(OX , f•),

see Modules, Definition 24.2, is acyclic in degrees > 0. We say that f1, . . . , fr is a H1-
regular sequence if the Koszul complex K•(OX , f•) is exact in degree 1. Finally, we say
that f1, . . . , fr is a quasi-regular sequence if the map

(20.0.3) OX/J [T1, . . . , Tr] −→
⊕

d≥0
J d/J d+1
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is an isomorphism of sheaves whereJ ⊂ OX is the sheaf of ideals generated by f1, . . . , fr.
(There is also a notion ofF -regular andF -quasi-regular sequence for a givenOX -module
F which we will introduce here if we ever need it.)

Lemma 20.1. Let X be a ringed space. Let f1, . . . , fr ∈ Γ(X,OX). We have the
following implications f1, . . . , fr is a regular sequence⇒ f1, . . . , fr is a Koszul-regular
sequence⇒ f1, . . . , fr is anH1-regular sequence⇒ f1, . . . , fr is a quasi-regular sequence.

Proof. Since we may check exactness at stalks, a sequence f1, . . . , fr is a regular se-
quence if and only if the maps

fi : OX,x/(f1, . . . , fi−1) −→ OX,x/(f1, . . . , fi−1)

are injective for all x ∈ X . In other words, the image of the sequence f1, . . . , fr in the ring
OX,x is a regular sequence for all x ∈ X . The other types of regularity can be checked
stalkwise as well (details omitted). Hence the implications follow from More on Algebra,
Lemmas 30.2, 30.3, and 30.6. �

Definition 20.2. Let X be a ringed space. Let J ⊂ OX be a sheaf of ideals.
(1) We say J is regular if for every x ∈ Supp(OX/J ) there exists an open neigh-

bourhood x ∈ U ⊂ X and a regular sequence f1, . . . , fr ∈ OX(U) such that
J |U is generated by f1, . . . , fr.

(2) We say J is Koszul-regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a Koszul-regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(3) We say J is H1-regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a H1-regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(4) We say J is quasi-regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a quasi-regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

Many properties of this notion immediately follow from the corresponding notions for
regular and quasi-regular sequences in rings.

Lemma 20.3. Let X be a ringed space. Let J be a sheaf of ideals. We have the fol-
lowing implications: J is regular ⇒ J is Koszul-regular ⇒ J is H1-regular ⇒ J is
quasi-regular.

Proof. The lemma immediately reduces to Lemma 20.1. �

Lemma 20.4. LetX be a locally ringed space. Let J ⊂ OX be a sheaf of ideals. Then
J is quasi-regular if and only if the following conditions are satisfied:

(1) J is anOX -module of finite type,
(2) J /J 2 is a finite locally freeOX/J -module, and
(3) the canonical maps

Symn
OX/J (J /J 2) −→ J n/J n+1

are isomorphisms for all n ≥ 0.

Proof. It is clear that if U ⊂ X is an open such that J |U is generated by a quasi-
regular sequence f1, . . . , fr ∈ OX(U) then J |U is of finite type, J |U/J 2|U is free with
basis f1, . . . , fr , and the maps in (3) are isomorphisms because they are coordinate free
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formulation of the degree n part of (20.0.3). Hence it is clear that being quasi-regular
implies conditions (1), (2), and (3).

Conversely, suppose that (1), (2), and (3) hold. Pick a point x ∈ Supp(OX/J ). Then there
exists a neighbourhood U ⊂ X of x such that J |U/J 2|U is free of rank r overOU/J |U .
After possibly shrinking U we may assume there exist f1, . . . , fr ∈ J (U) which map
to a basis of J |U/J 2|U as an OU/J |U -module. In particular we see that the images of
f1, . . . , fr inJx/J 2

x generate. Hence by Nakayama’s lemma (Algebra, Lemma 20.1) we see
that f1, . . . , fr generate the stalk Jx. Hence, since J is of finite type, by Modules, Lemma
9.4 after shrinking U we may assume that f1, . . . , fr generate J . Finally, from (3) and
the isomorphism J |U/J 2|U =

⊕
OU/J |Ufi it is clear that f1, . . . , fr ∈ OX(U) is a

quasi-regular sequence. �

Lemma 20.5. Let (X,OX) be a locally ringed space. Let J ⊂ OX be a sheaf of
ideals. Let x ∈ X and f1, . . . , fr ∈ Jx whose images give a basis for the κ(x)-vector space
Jx/mxJx.

(1) IfJ is quasi-regular, then there exists an open neighbourhood such that f1, . . . , fr ∈
OX(U) form a quasi-regular sequence generating J |U .

(2) IfJ isH1-regular, then there exists an open neighbourhood such that f1, . . . , fr ∈
OX(U) form an H1-regular sequence generating J |U .

(3) IfJ is Koszul-regular, then there exists an open neighbourhood such that f1, . . . , fr ∈
OX(U) form an Koszul-regular sequence generating J |U .

Proof. First assume thatJ is quasi-regular. We may choose an open neighbourhood
U ⊂ X ofx and a quasi-regular sequence g1, . . . , gs ∈ OX(U) which generatesJ |U . Note
that this implies thatJ /J 2 is free of rank s overOU/J |U (see Lemma 20.4 and its proof)
and hence r = s. We may shrink U and assume f1, . . . , fr ∈ J (U). Thus we may write

fi =
∑

aijgj

for some aij ∈ OX(U). By assumption the matrixA = (aij) maps to an invertible matrix
over κ(x). Hence, after shrinking U once more, we may assume that (aij) is invertible.
Thus we see that f1, . . . , fr give a basis for (J /J 2)|U which proves that f1, . . . , fr is a
quasi-regular sequence over U .

Note that in order to prove (2) and (3) we may, because the assumptions of (2) and (3)
are stronger than the assumption in (1), already assume that f1, . . . , fr ∈ J (U) and fi =∑
aijgj with (aij) invertible as above, where now g1, . . . , gr is a H1-regular or Koszul-

regular sequence. Since the Koszul complex on f1, . . . , fr is isomorphic to the Koszul
complex on g1, . . . , gr via the matrix (aij) (see More on Algebra, Lemma 28.4) we conclude
that f1, . . . , fr is H1-regular or Koszul-regular as desired. �

Lemma 20.6. Any regular, Koszul-regular,H1-regular, or quasi-regular sheaf of ideals
on a scheme is a finite type quasi-coherent sheaf of ideals.

Proof. This follows as such a sheaf of ideals is locally generated by finitely many sec-
tions. And any sheaf of ideals locally generated by sections on a scheme is quasi-coherent,
see Schemes, Lemma 10.1. �

Lemma 20.7. Let X be a scheme. Let J be a sheaf of ideals. Then J is regular (resp.
Koszul-regular,H1-regular, quasi-regular) if and only if for every x ∈ Supp(OX/J ) there
exists an affine open neighbourhood x ∈ U ⊂ X , U = Spec(A) such that J |U = Ĩ
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and such that I is generated by a regular (resp. Koszul-regular, H1-regular, quasi-regular)
sequence f1, . . . , fr ∈ A.

Proof. By assumption we can find an open neighbourhood U of x over which J is
generated by a regular (resp. Koszul-regular,H1-regular, quasi-regular) sequence f1, . . . , fr ∈
OX(U). After shrinking U we may assume that U is affine, say U = Spec(A). Since J is
quasi-coherent by Lemma 20.6 we see that J |U = Ĩ for some ideal I ⊂ A. Now we can
use the fact that ˜ : ModA −→ QCoh(OU )
is an equivalence of categories which preserves exactness. For example the fact that the
functions fi generate J means that the fi, seen as elements of A generate I . The fact
that (20.0.1) is injective (resp. (20.0.2) is exact, (20.0.2) is exact in degree 1, (20.0.3) is
an isomorphism) implies the corresponding property of the map A/(f1, . . . , fi−1) →
A/(f1, . . . , fi−1) (resp. the complexK•(A, f1, . . . , fr), the mapA/I[T1, . . . , Tr]→

⊕
In/In+1).

Thus f1, . . . , fr ∈ A is a regular (resp. Koszul-regular,H1-regular, quasi-regular) sequence
of the ring A. �

Lemma 20.8. LetX be a locally Noetherian scheme. LetJ ⊂ OX be a quasi-coherent
sheaf of ideals. Let x be a point of the support ofOX/J . The following are equivalent

(1) Jx is generated by a regular sequence inOX,x,
(2) Jx is generated by a Koszul-regular sequence inOX,x,
(3) Jx is generated by an H1-regular sequence inOX,x,
(4) Jx is generated by a quasi-regular sequence inOX,x,
(5) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ and

I is generated by a regular sequence in A, and
(6) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ and

I is generated by a Koszul-regular sequence in A, and
(7) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ and

I is generated by an H1-regular sequence in A, and
(8) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ and

I is generated by a quasi-regular sequence in A,
(9) there exists a neighbourhood U of x such that J |U is regular, and

(10) there exists a neighbourhood U of x such that J |U is Koszul-regular, and
(11) there exists a neighbourhood U of x such that J |U is H1-regular, and
(12) there exists a neighbourhood U of x such that J |U is quasi-regular.

In particular, on a locally Noetherian scheme the notions of regular, Koszul-regular, H1-
regular, or quasi-regular ideal sheaf all agree.

Proof. It follows from Lemma 20.7 that (5)⇔ (9), (6)⇔ (10), (7)⇔ (11), and (8)⇔
(12). It is clear that (5)⇒ (1), (6)⇒ (2), (7)⇒ (3), and (8)⇒ (4). We have (1)⇒ (5) by
Algebra, Lemma 68.6. We have (9)⇒ (10)⇒ (11)⇒ (12) by Lemma 20.3. Finally, (4)⇒
(1) by Algebra, Lemma 69.6. Now all 12 statements are equivalent. �

21. Regular immersions

Let i : Z → X be an immersion of schemes. By definition this means there exists an open
subscheme U ⊂ X such that Z is identified with a closed subscheme of U . Let I ⊂ OU be
the corresponding quasi-coherent sheaf of ideals. Suppose U ′ ⊂ X is a second such open
subscheme, and denote I ′ ⊂ OU ′ the corresponding quasi-coherent sheaf of ideals. Then
I|U∩U ′ = I ′|U∩U ′ . Moreover, the support of OU/I is Z which is contained in U ∩ U ′



2662 31. DIVISORS

and is also the support ofOU ′/I ′. Hence it follows from Definition 20.2 that I is a regular
ideal if and only if I ′ is a regular ideal. Similarly for being Koszul-regular, H1-regular, or
quasi-regular.

Definition 21.1. Let i : Z → X be an immersion of schemes. Choose an open
subscheme U ⊂ X such that i identifies Z with a closed subscheme of U and denote
I ⊂ OU the corresponding quasi-coherent sheaf of ideals.

(1) We say i is a regular immersion if I is regular.
(2) We say i is a Koszul-regular immersion if I is Koszul-regular.
(3) We say i is a H1-regular immersion if I is H1-regular.
(4) We say i is a quasi-regular immersion if I is quasi-regular.

The discussion above shows that this is independent of the choice ofU . The conditions are
listed in decreasing order of strength, see Lemma 21.2. A Koszul-regular closed immersion
is smooth locally a regular immersion, see Lemma 21.11. In the locally Noetherian case all
four notions agree, see Lemma 20.8.

Lemma 21.2. Let i : Z → X be an immersion of schemes. We have the following
implications: i is regular⇒ i is Koszul-regular⇒ i is H1-regular⇒ i is quasi-regular.

Proof. The lemma immediately reduces to Lemma 20.3. �

Lemma 21.3. Let i : Z → X be an immersion of schemes. Assume X is locally
Noetherian. Then i is regular⇔ i is Koszul-regular⇔ i isH1-regular⇔ i is quasi-regular.

Proof. Follows immediately from Lemma 21.2 and Lemma 20.8. �

Lemma 21.4. Let i : Z → X be a regular (resp. Koszul-regular, H1-regular, quasi-
regular) immersion. Let X ′ → X be a flat morphism. Then the base change i′ : Z ×X
X ′ → X ′ is a regular (resp. Koszul-regular, H1-regular, quasi-regular) immersion.

Proof. Via Lemma 20.7 this translates into the algebraic statements in Algebra, Lem-
mas 68.5 and 69.3 and More on Algebra, Lemma 30.5. �

Lemma 21.5. Let i : Z → X be an immersion of schemes. Then i is a quasi-regular
immersion if and only if the following conditions are satisfied

(1) i is locally of finite presentation,
(2) the conormal sheaf CZ/X is finite locally free, and
(3) the map (19.1.2) is an isomorphism.

Proof. An open immersion is locally of finite presentation. Hence we may replace
X by an open subscheme U ⊂ X such that i identifies Z with a closed subscheme of U ,
i.e., we may assume that i is a closed immersion. Let I ⊂ OX be the corresponding quasi-
coherent sheaf of ideals. Recall, see Morphisms, Lemma 21.7 that I is of finite type if and
only if i is locally of finite presentation. Hence the equivalence follows from Lemma 20.4
and unwinding the definitions. �

Lemma 21.6. Let Z → Y → X be immersions of schemes. Assume that Z → Y is
H1-regular. Then the canonical sequence of Morphisms, Lemma 31.5

0→ i∗CY/X → CZ/X → CZ/Y → 0

is exact and locally split.
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Proof. Since CZ/Y is finite locally free (see Lemma 21.5 and Lemma 20.3) it suffices to
prove that the sequence is exact. By what was proven in Morphisms, Lemma 31.5 it suffices
to show that the first map is injective. Working affine locally this reduces to the following
question: Suppose that we have a ring A and ideals I ⊂ J ⊂ A. Assume that J/I ⊂ A/I
is generated by an H1-regular sequence. Does this imply that I/I2 ⊗A A/J → J/J2 is
injective? Note that I/I2⊗AA/J = I/IJ . Hence we are trying to prove that I∩J2 = IJ .
This is the result of More on Algebra, Lemma 30.9. �

A composition of quasi-regular immersions may not be quasi-regular, see Algebra, Remark
69.8. The other types of regular immersions are preserved under composition.

Lemma 21.7. Let i : Z → Y and j : Y → X be immersions of schemes.
(1) If i and j are regular immersions, so is j ◦ i.
(2) If i and j are Koszul-regular immersions, so is j ◦ i.
(3) If i and j are H1-regular immersions, so is j ◦ i.
(4) If i is an H1-regular immersion and j is a quasi-regular immersion, then j ◦ i is

a quasi-regular immersion.

Proof. The algebraic version of (1) is Algebra, Lemma 68.7. The algebraic version
of (2) is More on Algebra, Lemma 30.13. The algebraic version of (3) is More on Algebra,
Lemma 30.11. The algebraic version of (4) is More on Algebra, Lemma 30.10. �

Lemma 21.8. Let i : Z → Y and j : Y → X be immersions of schemes. Assume that
the sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

of Morphisms, Lemma 31.5 is exact and locally split.
(1) If j ◦ i is a quasi-regular immersion, so is i.
(2) If j ◦ i is a H1-regular immersion, so is i.
(3) If both j and j ◦ i are Koszul-regular immersions, so is i.

Proof. After shrinking Y and X we may assume that i and j are closed immersions.
Denote I ⊂ OX the ideal sheaf of Y and J ⊂ OX the ideal sheaf of Z. The conormal
sequence is 0 → I/IJ → J /J 2 → J /(I + J 2) → 0. Let z ∈ Z and set y = i(z),
x = j(y) = j(i(z)). Choose f1, . . . , fn ∈ Ix which map to a basis of Ix/mzIx. Extend
this to f1, . . . , fn, g1, . . . , gm ∈ Jx which map to a basis of Jx/mzJx. This is possible as
we have assumed that the sequence of conormal sheaves is split in a neighbourhood of z,
hence Ix/mxIx → Jx/mxJx is injective.

Proof of (1). By Lemma 20.5 we can find an affine open neighbourhood U of x such that
f1, . . . , fn, g1, . . . , gm forms a quasi-regular sequence generating J . Hence by Algebra,
Lemma 69.5 we see that g1, . . . , gm induces a quasi-regular sequence on Y ∩U cutting out
Z.

Proof of (2). Exactly the same as the proof of (1) except using More on Algebra, Lemma
30.12.

Proof of (3). By Lemma 20.5 (applied twice) we can find an affine open neighbourhood U
ofx such that f1, . . . , fn forms a Koszul-regular sequence generatingI and f1, . . . , fn, g1, . . . , gm
forms a Koszul-regular sequence generating J . Hence by More on Algebra, Lemma 30.14
we see that g1, . . . , gm induces a Koszul-regular sequence on Y ∩ U cutting out Z. �
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Lemma 21.9. Let i : Z → Y and j : Y → X be immersions of schemes. Pick z ∈ Z
and denote y ∈ Y , x ∈ X the corresponding points. Assume X is locally Noetherian.
The following are equivalent

(1) i is a regular immersion in a neighbourhood of z and j is a regular immersion in
a neighbourhood of y,

(2) i and j ◦ i are regular immersions in a neighbourhood of z,
(3) j ◦ i is a regular immersion in a neighbourhood of z and the conormal sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
is split exact in a neighbourhood of z.

Proof. SinceX (and hence Y ) is locally Noetherian all 4 types of regular immersions
agree, and moreover we may check whether a morphism is a regular immersion on the level
of local rings, see Lemma 20.8. The implication (1)⇒ (2) is Lemma 21.7. The implication
(2)⇒ (3) is Lemma 21.6. Thus it suffices to prove that (3) implies (1).

Assume (3). Set A = OX,x. Denote I ⊂ A the kernel of the surjective map OX,x →
OY,y and denote J ⊂ A the kernel of the surjective map OX,x → OZ,z . Note that any
minimal sequence of elements generating J inA is a quasi-regular hence regular sequence,
see Lemma 20.5. By assumption the conormal sequence

0→ I/IJ → J/J2 → J/(I + J2)→ 0
is split exact as a sequence of A/J -modules. Hence we can pick a minimal system of gen-
erators f1, . . . , fn, g1, . . . , gm of J with f1, . . . , fn ∈ I a minimal system of generators
of I . As pointed out above f1, . . . , fn, g1, . . . , gm is a regular sequence in A. It follows
directly from the definition of a regular sequence that f1, . . . , fn is a regular sequence in
A and g1, . . . , gm is a regular sequence in A/I . Thus j is a regular immersion at y and i is
a regular immersion at z. �

Remark 21.10. In the situation of Lemma 21.9 parts (1), (2), (3) are not equivalent to
“j ◦ i and j are regular immersions at z and y”. An example is X = A1

k = Spec(k[x]),
Y = Spec(k[x]/(x2)) and Z = Spec(k[x]/(x)).

Lemma 21.11. Let i : Z → X be a Koszul regular closed immersion. Then there exists
a surjective smooth morphism X ′ → X such that the base change i′ : Z ×X X ′ → X ′ of
i is a regular immersion.

Proof. We may assume that X is affine and the ideal of Z generated by a Koszul-
regular sequence by replacing X by the members of a suitable affine open covering (affine
opens as in Lemma 20.7). The affine case is More on Algebra, Lemma 30.17. �

Lemma 21.12. Let i : Z → X be an immersion. If Z andX are regular schemes, then
i is a regular immersion.

Proof. Let z ∈ Z. By Lemma 20.8 it suffices to show that the kernel of OX,z →
OZ,z is generated by a regular sequence. This follows from Algebra, Lemmas 106.4 and
106.3. �

22. Relative regular immersions

In this section we consider the base change property for regular immersions. The follow-
ing lemma does not hold for regular immersions or for Koszul immersions, see Examples,
Lemma 14.2.
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Lemma 22.1. Let f : X → S be a morphism of schemes. Let i : Z ⊂ X be an
immersion. Assume

(1) i is an H1-regular (resp. quasi-regular) immersion, and
(2) Z → S is a flat morphism.

Then for every morphism of schemes g : S′ → S the base change Z ′ = S′×S Z → X ′ =
S′ ×S X is an H1-regular (resp. quasi-regular) immersion.

Proof. Unwinding the definitions and using Lemma 20.7 this translates into More
on Algebra, Lemma 31.4. �

This lemma is the motivation for the following definition.

Definition 22.2. Let f : X → S be a morphism of schemes. Let i : Z → X be an
immersion.

(1) We say i is a relative quasi-regular immersion if Z → S is flat and i is a quasi-
regular immersion.

(2) We say i is a relativeH1-regular immersion ifZ → S is flat and i is anH1-regular
immersion.

We warn the reader that this may be nonstandard notation. Lemma 22.1 guarantees that
relative quasi-regular (resp.H1-regular) immersions are preserved under any base change.
A relative H1-regular immersion is a relative quasi-regular immersion, see Lemma 21.2.
Please take a look at Lemma 22.6 (or Lemma 22.4) which shows that ifZ → X is a relative
H1-regular (or quasi-regular) immersion and the ambient scheme is (flat and) locally of
finite presentation over S , then Z → X is actually a regular immersion and the same
remains true after any base change.

Lemma 22.3. Let f : X → S be a morphism of schemes. Let Z → X be a relative
quasi-regular immersion. If x ∈ Z andOX,x is Noetherian, then f is flat at x.

Proof. Let f1, . . . , fr ∈ OX,x be a quasi-regular sequence cutting out the ideal of
Z at x. By Algebra, Lemma 69.6 we know that f1, . . . , fr is a regular sequence. Hence
fr is a nonzerodivisor on OX,x/(f1, . . . , fr−1) such that the quotient is a flat OS,f(x)-
module. By Lemma 18.5 we conclude that OX,x/(f1, . . . , fr−1) is a flat OS,f(x)-module.
Continuing by induction we find thatOX,x is a flatOS,s-module. �

Lemma 22.4. Let X → S be a morphism of schemes. Let Z → X be an immersion.
Assume

(1) X → S is flat and locally of finite presentation,
(2) Z → X is a relative quasi-regular immersion.

Then Z → X is a regular immersion and the same remains true after any base change.

Proof. Pick x ∈ Z with image s ∈ S. To prove this it suffices to find an affine
neighbourhood of x contained in U such that the result holds on that affine open. Hence
we may assume that X is affine and there exist a quasi-regular sequence f1, . . . , fr ∈
Γ(X,OX) such that Z = V (f1, . . . , fr). By More on Algebra, Lemma 31.4 the sequence
f1|Xs , . . . , fr|Xs is a quasi-regular sequence in Γ(Xs,OXs). Since Xs is Noetherian, this
implies, possibly after shrinking X a bit, that f1|Xs , . . . , fr|Xs is a regular sequence, see
Algebra, Lemmas 69.6 and 68.6. By Lemma 18.9 it follows that Z1 = V (f1) ⊂ X is a rel-
ative effective Cartier divisor, again after possibly shrinking X a bit. Applying the same
lemma again, but now to Z2 = V (f1, f2) ⊂ Z1 we see that Z2 ⊂ Z1 is a relative effective
Cartier divisor. And so on until on reaches Z = Zn = V (f1, . . . , fn). Since being a
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relative effective Cartier divisor is preserved under arbitrary base change, see Lemma 18.1,
we also see that the final statement of the lemma holds. �

Remark 22.5. The codimension of a relative quasi-regular immersion, if it is constant,
does not change after a base change. In fact, if we have a ring map A → B and a quasi-
regular sequence f1, . . . , fr ∈ B such thatB/(f1, . . . , fr) is flat overA, then for any ring
map A → A′ we have a quasi-regular sequence f1 ⊗ 1, . . . , fr ⊗ 1 in B′ = B ⊗A A′ by
More on Algebra, Lemma 31.4 (which was used in the proof of Lemma 22.1 above). Now
the proof of Lemma 22.4 shows that ifA→ B is flat and locally of finite presentation, then
for every prime ideal q′ ⊂ B′ the sequence f1 ⊗ 1, . . . , fr ⊗ 1 is even a regular sequence
in the local ring B′

q′ .

Lemma 22.6. Let X → S be a morphism of schemes. Let Z → X be a relative
H1-regular immersion. Assume X → S is locally of finite presentation. Then

(1) there exists an open subscheme U ⊂ X such that Z ⊂ U and such that U → S
is flat, and

(2) Z → X is a regular immersion and the same remains true after any base change.

Proof. Pick x ∈ Z. To prove (1) suffices to find an open neighbourhood U ⊂ X of
x such that U → S is flat. Hence the lemma reduces to the case that X = Spec(B) and
S = Spec(A) are affine and thatZ is given by anH1-regular sequence f1, . . . , fr ∈ B. By
assumption B is a finitely presented A-algebra and B/(f1, . . . , fr)B is a flat A-algebra.
We are going to use absolute Noetherian approximation.
Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume fi is the image of f ′

i ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebra A0 ⊂ A such that all the coefficients of the polynomi-
als f ′

1, . . . , f
′
r, g1, . . . , gm are in A0. We set B0 = A0[x1, . . . , xn]/(g1, . . . , gm) and we

denote fi,0 the image of f ′
i in B0. Then B = B0 ⊗A0 A and

B/(f1, . . . , fr) = B0/(f0,1, . . . , f0,r)⊗A0 A.

By Algebra, Lemma 168.1 we may, after enlarging A0, assume that B0/(f0,1, . . . , f0,r)
is flat over A0. It may not be the case at this point that the Koszul cohomology group
H1(K•(B0, f0,1, . . . , f0,r)) is zero. On the other hand, asB0 is Noetherian, it is a finitely
generated B0-module. Let ξ1, . . . , ξn ∈ H1(K•(B0, f0,1, . . . , f0,r)) be generators. Let
A0 ⊂ A1 ⊂ A be a larger finite type Z-subalgebra of A. Denote f1,i the image of f0,i in
B1 = B0 ⊗A0 A1. By More on Algebra, Lemma 31.3 the map

H1(K•(B0, f0,1, . . . , f0,r))⊗A0 A1 −→ H1(K•(B1, f1,1, . . . , f1,r))
is surjective. Furthermore, it is clear that the colimit (over all choices of A1 as above) of
the complexes K•(B1, f1,1, . . . , f1,r) is the complex K•(B, f1, . . . , fr) which is acyclic
in degree 1. Hence

colimA0⊂A1⊂AH1(K•(B1, f1,1, . . . , f1,r)) = 0
by Algebra, Lemma 8.8. Thus we can find a choice of A1 such that ξ1, . . . , ξn all map
to zero in H1(K•(B1, f1,1, . . . , f1,r)). In other words, the Koszul cohomology group
H1(K•(B1, f1,1, . . . , f1,r)) is zero.
Consider the morphism of affine schemes X1 → S1 equal to Spec of the ring map A1 →
B1 and Z1 = Spec(B1/(f1,1, . . . , f1,r)). Since B = B1 ⊗A1 A, i.e., X = X1 ×S1 S ,
and similarly Z = Z1 ×S S1, it now suffices to prove (1) for X1 → S1 and the relative
H1-regular immersion Z1 → X1, see Morphisms, Lemma 25.7. Hence we have reduced to
the case where X → S is a finite type morphism of Noetherian schemes. In this case we
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know thatX → S is flat at every point of Z by Lemma 22.3. Combined with the fact that
the flat locus is open in this case, see Algebra, Theorem 129.4 we see that (1) holds. Part
(2) then follows from an application of Lemma 22.4. �

If the ambient scheme is flat and locally of finite presentation over the base, then we can
characterize a relative quasi-regular immersion in terms of its fibres.

Lemma 22.7. Let ϕ : X → S be a flat morphism which is locally of finite presenta-
tion. Let T ⊂ X be a closed subscheme. Let x ∈ T with image s ∈ S.

(1) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, then there
exists an open U ⊂ X and a relative quasi-regular immersion Z ⊂ U such that
Zs = Ts ∩ Us and T ∩ U ⊂ Z.

(2) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, the morphism
T → X is of finite presentation, and T → S is flat at x, then we can choose U
and Z as in (1) such that T ∩ U = Z.

(3) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, and T is cut
out by c equations in a neighbourhood of x, where c = dimx(Xs)− dimx(Ts),
then we can choose U and Z as in (1) such that T ∩ U = Z.

In each case Z → U is a regular immersion by Lemma 22.4. In particular, if T → S is
locally of finite presentation and flat and all fibres Ts ⊂ Xs are quasi-regular immersions,
then T → X is a relative quasi-regular immersion.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such that
ϕ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to s. Let q ⊂ B be
the prime ideal corresponding to x. Let I ⊂ B be the ideal corresponding to T . By the
initial assumption of the lemma we know that A → B is flat and of finite presentation.
The assumption in (1) means that, after shrinking Spec(B), we may assume I(B⊗A κ(p))
is generated by a quasi-regular sequence of elements. After possibly localizing B at some
g ∈ B, g 6∈ q we may assume there exist f1, . . . , fr ∈ I which map to a quasi-regular
sequence inB⊗Aκ(p) which generates I(B⊗Aκ(p)). By Algebra, Lemmas 69.6 and 68.6
we may assume after another localization that f1, . . . , fr ∈ I form a regular sequence in
B ⊗A κ(p). By Lemma 18.9 it follows that Z1 = V (f1) ⊂ Spec(B) is a relative effective
Cartier divisor, again after possibly localizing B. Applying the same lemma again, but
now to Z2 = V (f1, f2) ⊂ Z1 we see that Z2 ⊂ Z1 is a relative effective Cartier divisor.
And so on until one reaches Z = Zn = V (f1, . . . , fn). Then Z → Spec(B) is a regular
immersion and Z is flat over S , in particular Z → Spec(B) is a relative quasi-regular
immersion over Spec(A). This proves (1).
To see (2) consider the closed immersion Z → D. The surjective ring map u : OD,x →
OZ,x is a map of flat local OS,s-algebras which are essentially of finite presentation, and
which becomes an isomorphisms after dividing by ms. Hence it is an isomorphism, see
Algebra, Lemma 128.4. It follows that Z → D is an isomorphism in a neighbourhood of
x, see Algebra, Lemma 126.6.
To see (3), after possibly shrinking U we may assume that the ideal of Z is generated
by a regular sequence f1, . . . , fr (see our construction of Z above) and the ideal of T is
generated by g1, . . . , gc. We claim that c = r. Namely,

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)),
dimx(Ts) = dim(OTs,x) + trdegκ(s)(κ(x)),

dim(OXs,x) = dim(OTs,x) + r
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the first two equalities by Algebra, Lemma 116.3 and the second by r times applying Al-
gebra, Lemma 60.13. As T ⊂ Z we see that fi =

∑
bijgj . But the ideals of Z and T cut

out the same quasi-regular closed subscheme of Xs in a neighbourhood of x. Hence the
matrix (bij) mod mx is invertible (some details omitted). Hence (bij) is invertible in an
open neighbourhood of x. In other words, T ∩ U = Z after shrinking U .

The final statements of the lemma follow immediately from part (2), combined with the
fact that Z → S is locally of finite presentation if and only if Z → X is of finite presen-
tation, see Morphisms, Lemmas 21.3 and 21.11. �

The following lemma is an enhancement of Morphisms, Lemma 34.20.

Lemma 22.8. Let f : X → S be a smooth morphism of schemes. Let σ : S → X be a
section of f . Then σ is a regular immersion.

Proof. By Schemes, Lemma 21.10 the morphism σ is an immersion. After replacing
X by an open neighbourhood of σ(S) we may assume that σ is a closed immersion. Let
T = σ(S) be the corresponding closed subscheme of X . Since T → S is an isomorphism
it is flat and of finite presentation. Also a smooth morphism is flat and locally of finite
presentation, see Morphisms, Lemmas 34.9 and 34.8. Thus, according to Lemma 22.7, it
suffices to show that Ts ⊂ Xs is a quasi-regular closed subscheme. This follows immedi-
ately from Morphisms, Lemma 34.20 but we can also see it directly as follows. Let k be a
field and letA be a smooth k-algebra. Let m ⊂ A be a maximal ideal whose residue field is
k. Then m is generated by a quasi-regular sequence, possibly after replacing A by Ag for
some g ∈ A, g 6∈ m. In Algebra, Lemma 140.3 we proved that Am is a regular local ring,
hence mAm is generated by a regular sequence. This does indeed imply that m is gener-
ated by a regular sequence (after replacing A by Ag for some g ∈ A, g 6∈ m), see Algebra,
Lemma 68.6. �

The following lemma has a kind of converse, see Lemma 22.12.

Lemma 22.9. Let
Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth, and i, j
immersions. If j is a regular (resp. Koszul-regular, H1-regular, quasi-regular) immersion,
then so is i.

Proof. We can write i as the composition

Y → Y ×S X → X

By Lemma 22.8 the first arrow is a regular immersion. The second arrow is a flat base
change of Y → S , hence is a regular (resp. Koszul-regular, H1-regular, quasi-regular)
immersion, see Lemma 21.4. We conclude by an application of Lemma 21.7. �

Lemma 22.10. Let
Y

��

i
// X

��
S



22. RELATIVE REGULAR IMMERSIONS 2669

be a commutative diagram of morphisms of schemes. Assume that Y → S is syntomic,
X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. After replacing X by an open neighbourhood of i(Y ) we may assume that i
is a closed immersion. Let T = i(Y ) be the corresponding closed subscheme of X . Since
T ∼= Y the morphism T → S is flat and of finite presentation (Morphisms, Lemmas 30.6
and 30.7). Also a smooth morphism is flat and locally of finite presentation (Morphisms,
Lemmas 34.9 and 34.8). Thus, according to Lemma 22.7, it suffices to show that Ts ⊂ Xs is
a quasi-regular closed subscheme. AsXs is locally of finite type over a field, it is Noetherian
(Morphisms, Lemma 15.6). Thus we can check that Ts ⊂ Xs is a quasi-regular immersion
at points, see Lemma 20.8. Take t ∈ Ts. By Morphisms, Lemma 30.9 the local ringOTs,t is
a local complete intersection overκ(s). The local ringOXs,t is regular, see Algebra, Lemma
140.3. By Algebra, Lemma 135.7 we see that the kernel of the surjectionOXs,t → OTs,t is
generated by a regular sequence, which is what we had to show. �

Lemma 22.11. Let
Y

��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume that Y → S is smooth,
X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. This is a special case of Lemma 22.10 because a smooth morphism is syntomic,
see Morphisms, Lemma 34.7. �

Lemma 22.12. Let
Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth and i and
j immersions. If i is a Koszul-regular (resp. H1-regular, quasi-regular) immersion, then so
is j.

Proof. We will use Lemma 21.2 without further mention. Let y ∈ Y be any point.
Set x = i(y) and set s = j(y). It suffices to prove the result after replacing X and S
by open neighbourhoods U and V of x and s and Y by an open neighbourhood of y in
i−1(U) ∩ j−1(V ).

We first prove the result for X = An
S . After replacing S by an affine open V and replac-

ing Y by j−1(V ) we may assume that j is a closed immersions and S is affine. Write
S = Spec(A). Then j : Y → S defines an isomorphism of Y to the closed sub-
scheme Spec(A/I) for some ideal I ⊂ A. The map i : Y = Spec(A/I) → An

S =
Spec(A[x1, . . . , xn]) corresponds to an A-algebra homomorphism i] : A[x1, . . . , xn] →
A/I . Choose ai ∈ A which map to i](xi) in A/I . Observe that the ideal of the closed
immersion i is

J = (x1 − a1, . . . , xn − an) + IA[x1, . . . , xn].
Set K = (x1 − a1, . . . , xn − an). We claim the sequence

0→ K/KJ → J/J2 → J/(K + J2)→ 0
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is split exact. To see this note thatK/K2 is free with basisxi−ai over the ringA[x1, . . . , xn]/K ∼=
A. Hence K/KJ is free with the same basis over the ring A[x1, . . . , xn]/J ∼= A/I . On
the other hand, taking derivatives gives a map

dA[x1,...,xn]/A : J/J2 −→ ΩA[x1,...,xn]/A ⊗A[x1,...,xn] A[x1, . . . , xn]/J

which maps the generators xi − ai to the basis elements dxi of the free module on the
right. The claim follows. Moreover, note that x1 − a1, . . . , xn − an is a regular sequence
in A[x1, . . . , xn] with quotient ring A[x1, . . . , xn]/(x1 − a1, . . . , xn − an) ∼= A. Thus
we have a factorization

Y → V (x1 − a1, . . . , xn − an)→ An
S

of our closed immersion i where the composition is Koszul-regular (resp. H1-regular,
quasi-regular), the second arrow is a regular immersion, and the associated conormal se-
quence is split. Now the result follows from Lemma 21.8.

Next, we prove the result holds if i is H1-regular or quasi-regular. Namely, shrinking as
in the first paragraph of the proof, we may assume that Y ,X , and S are affine. In this case
we can choose a closed immersion h : X → An

S over S for some n. Note that h is a regular
immersion by Lemma 22.11. Hence h ◦ i is a H1-regular or quasi-regular immersion, see
Lemma 21.7 (note that this step does not work in the “quasi-regular case”). Thus we reduce
to the case X = An

S and S affine we proved above.

Finally, assume i is quasi-regular. After shrinking as in the first paragraph of the proof, we
may use Morphisms, Lemma 36.20 to factor f asX → An

S → S where the first morphism
X → An

S is étale. This reduces the problem to the the two cases (a) X = An
S and (b) f is

étale. Case (a) was handled in the second paragraph of the proof. Case (b) is handled by
the next paragraph.

Assume f is étale. After shrinking we may assumeX , Y , and S affine i and j closed immer-
sions (small detail omitted). Say S = Spec(A), X = Spec(B) and Y = Spec(B/J) =
Spec(A/I). Shrinking further we may assume J is generated by a quasi-regular sequence.
The ring mapA→ B is étale, hence formally étale (Algebra, Lemma 150.2). Thus

⊕
In/In+1 ∼=⊕

Jn/Jn+1 by Algebra, Lemma 150.5. Since J is generated by a quasi-regular sequence,
so is I . This finishes the proof. �

23. Meromorphic functions and sections

This section contains only the general definitions and some elementary results. See [?] for
some possible pitfalls3.

Let (X,OX) be a locally ringed space. For any open U ⊂ X we have defined the set
S(U) ⊂ OX(U) of regular sections of OX over U , see Definition 14.6. The restriction
of a regular section to a smaller open is regular. Hence S : U 7→ S(U) is a subsheaf (of
sets) of OX . We sometimes denote S = SX if we want to indicate the dependence on X .
Moreover, S(U) is a multiplicative subset of the ring OX(U) for each U . Hence we may
consider the presheaf of rings

U 7−→ S(U)−1OX(U),

see Modules, Lemma 27.1.

3Danger, Will Robinson!
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Definition 23.1. Let (X,OX) be a locally ringed space. The sheaf of meromorphic
functions onX is the sheafKX associated to the presheaf displayed above. A meromorphic
function on X is a global section of KX .

Since each element of each S(U) is a nonzerodivisor on OX(U) we see that the natural
map of sheaves of ringsOX → KX is injective.

Example 23.2. Let A = C[x, {yα}α∈C]/((x − α)yα, yαyβ). Any element of A can
be written uniquely as f(x)+

∑
λαyα with f(x) ∈ C[x] and λα ∈ C. LetX = Spec(A).

In this case OX = KX , since on any affine open D(f) the ring Af any nonzerodivisor is
a unit (proof omitted).

Let (X,OX) be a locally ringed space. Let F be a sheaf of OX -modules. Consider the
presheaf U 7→ S(U)−1F(U). Its sheafification is the sheaf F ⊗OX

KX , see Modules,
Lemma 27.2.

Definition 23.3. Let X be a locally ringed space. Let F be a sheaf ofOX -modules.
(1) We denote KX(F) the sheaf of KX -modules which is the sheafification of the

presheaf U 7→ S(U)−1F(U). Equivalently KX(F) = F ⊗OX
KX (see above).

(2) A meromorphic section of F is a global section of KX(F).

In particular we have

KX(F)x = Fx ⊗OX,x
KX,x = S−1

x Fx
for any point x ∈ X . However, one has to be careful since it may not be the case that Sx
is the set of nonzerodivisors in the local ring OX,x. Namely, there is always an injective
map

KX,x −→ Q(OX,x)
to the total quotient ring. It is also surjective if and only if Sx is the set of nonzerodivisors
in OX,x. The sheaves of meromorphic sections aren’t quasi-coherent modules in general,
but they do have some properties in common with quasi-coherent modules.

Definition 23.4. Let f : (X,OX) → (Y,OY ) be a morphism of locally ringed
spaces. We say that pullbacks of meromorphic functions are defined for f if for every pair
of open U ⊂ X , V ⊂ Y such that f(U) ⊂ V , and any section s ∈ Γ(V,SY ) the pullback
f ](s) ∈ Γ(U,OX) is an element of Γ(U,SX).

In this case there is an induced map f ] : f−1KY → KX , in other words we obtain a
commutative diagram of morphisms of ringed spaces

(X,KX) //

f

��

(X,OX)

f

��
(Y,KY ) // (Y,OY )

We sometimes denote f∗(s) = f ](s) for a section s ∈ Γ(Y,KY ).

Lemma 23.5. Let f : X → Y be a morphism of schemes. In each of the following
cases pullbacks of meromorphic functions are defined.

(1) every weakly associated point of X maps to a generic point of an irreducible
component of Y ,

(2) X , Y are integral and f is dominant,
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(3) X is integral and the generic point ofX maps to a generic point of an irreducible
component of Y ,

(4) X is reduced and every generic point of every irreducible component ofX maps
to the generic point of an irreducible component of Y ,

(5) X is locally Noetherian, and any associated point of X maps to a generic point
of an irreducible component of Y ,

(6) X is locally Noetherian, has no embedded points and any generic point of an
irreducible component of X maps to the generic point of an irreducible compo-
nent of Y , and

(7) f is flat.

Proof. The question is local on X and Y . Hence we reduce to the case where X =
Spec(A), Y = Spec(R) and f is given by a ring map ϕ : R→ A. By the characterization
of regular sections of the structure sheaf in Lemma 14.7 we have to show that R → A
maps nonzerodivisors to nonzerodivisors. Let t ∈ R be a nonzerodivisor.

If R → A is flat, then t : R → R being injective shows that t : A → A is injective. This
proves (7).

In the other cases we note that t is not contained in any of the minimal primes ofR (because
every element of a minimal prime in a ring is a zerodivisor). Hence in case (1) we see that
ϕ(t) is not contained in any weakly associated prime of A. Thus this case follows from
Algebra, Lemma 66.7. Case (5) is a special case of (1) by Lemma 5.8. Case (6) follows from
(5) and the definitions. Case (4) is a special case of (1) by Lemma 5.12. Cases (2) and (3)
are special cases of (4). �

Lemma 23.6. Let X be a scheme such that
(a) every weakly associated point of X is a generic point of an irreducible compo-

nent of X , and
(b) any quasi-compact open has a finite number of irreducible components.

Let X0 be the set of generic points of irreducible components of X . Then we have

KX =
⊕

η∈X0
jη,∗OX,η =

∏
η∈X0

jη,∗OX,η

where jη : Spec(OX,η)→ X is the canonical map of Schemes, Section 13. Moreover
(1) KX is a quasi-coherent sheaf ofOX -algebras,
(2) for every quasi-coherentOX -module F the sheaf

KX(F) =
⊕

η∈X0
jη,∗Fη =

∏
η∈X0

jη,∗Fη

of meromorphic sections of F is quasi-coherent,
(3) Sx ⊂ OX,x is the set of nonzerodivisors for any x ∈ X ,
(4) KX,x is the total quotient ring ofOX,x for any x ∈ X ,
(5) KX(U) equals the total quotient ring ofOX(U) for any affine open U ⊂ X ,
(6) the ring of rational functions of X (Morphisms, Definition 49.3) is the ring of

meromorphic functions on X , in a formula: R(X) = Γ(X,KX).

Proof. Observe that a locally finite direct sum of sheaves of modules is equal to the
product since you can check this on stalks for example. Then sinceKX(F) = F⊗OX

KX
we see that (2) follows from the other statements. Also, observe that part (6) follows from
the initial statement of the lemma and Morphisms, Lemma 49.5 when X0 is finite; the
general case of (6) follows from this by glueing (argument omitted).
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Let j : Y =
∐
η∈X0 Spec(OX,η) → X be the product of the morphisms jη . We have to

show that KX = j∗OY . First note that KY = OY as Y is a disjoint union of spectra of
local rings of dimension 0: in a local ring of dimension zero any nonzerodivisor is a unit.
Next, note that pullbacks of meromorphic functions are defined for j by Lemma 23.5. This
gives a map

KX −→ j∗OY .

Let Spec(A) = U ⊂ X be an affine open. Then A is a ring with finitely many minimal
primes q1, . . . , qt and every weakly associated prime of A is one of the qi. We obtain
Q(A) =

∏
Aqi by Algebra, Lemmas 25.4 and 66.7. In other words, already the value of

the presheaf U 7→ S(U)−1OX(U) agrees with j∗OY (U) on our affine open U . Hence the
displayed map is an isomorphism which proves the first displayed equality in the statement
of the lemma.

Finally, we prove (1), (3), (4), and (5). Part (5) we saw during the course of the proof
that KX = j∗OY . The morphism j is quasi-compact by our assumption that the set of
irreducible components ofX is locally finite. Hence j is quasi-compact and quasi-separated
(as Y is separated). By Schemes, Lemma 24.1 j∗OY is quasi-coherent. This proves (1). Let
x ∈ X . We may choose an affine open neighbourhood U = Spec(A) of x all of whose
irreducible components pass through x. Then A ⊂ Ap because every weakly associated
prime ofA is contained in p hence elements ofA\p are nonzerodivisors by Algebra, Lemma
66.7. It follows easily that any nonzerodivisor ofAp is the image of a nonzerodivisor on a
(possibly smaller) affine open neighbourhood of x. This proves (3). Part (4) follows from
part (3) by computing stalks. �

Definition 23.7. LetX be a locally ringed space. LetL be an invertibleOX -module.
A meromorphic section s of L is said to be regular if the induced map KX → KX(L) is
injective. In other words, s is a regular section of the invertible KX -module KX(L), see
Definition 14.6.

Let us spell out when (regular) meromorphic sections can be pulled back.

Lemma 23.8. Let f : X → Y be a morphism of locally ringed spaces. Assume that
pullbacks of meromorphic functions are defined for f (see Definition 23.4).

(1) LetF be a sheaf ofOY -modules. There is a canonical pullback map f∗ : Γ(Y,KY (F))→
Γ(X,KX(f∗F)) for meromorphic sections of F .

(2) Let L be an invertible OX -module. A regular meromorphic section s of L pulls
back to a regular meromorphic section f∗s of f∗L.

Proof. Omitted. �

Lemma 23.9. LetX be a scheme. LetL be an invertibleOX -module. Let s be a regular
meromorphic section of L. Let us denote I ⊂ OX the sheaf of ideals defined by the rule

I(V ) = {f ∈ OX(V ) | fs ∈ L(V )}.

The formula makes sense since L(V ) ⊂ KX(L)(V ). Then I is a quasi-coherent sheaf of
ideals and we have injective maps

1 : I −→ OX , s : I −→ L

whose cokernels are supported on closed nowhere dense subsets of X .
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Proof. The question is local on X . Hence we may assume that X = Spec(A), and
L = OX . After shrinking further we may assume that s = a/b with a, b ∈ A both
nonzerodivisors in A. Set I = {x ∈ A | x(a/b) ∈ A}.
To show that I is quasi-coherent we have to show that If = {x ∈ Af | x(a/b) ∈ Af}
for every f ∈ A. If c/fn ∈ Af , (c/fn)(a/b) ∈ Af , then we see that fmc(a/b) ∈ A for
some m, hence c/fn ∈ If . Conversely it is easy to see that If is contained in {x ∈ Af |
x(a/b) ∈ Af}. This proves quasi-coherence.

Let us prove the final statement. It is clear that (b) ⊂ I . Hence V (I) ⊂ V (b) is a nowhere
dense subset as b is a nonzerodivisor. Thus the cokernel of 1 is supported in a nowhere
dense closed set. The same argument works for the cokernel of s since s(b) = (a) ⊂ sI ⊂
A. �

Definition 23.10. Let X be a scheme. Let L be an invertible OX -module. Let s be
a regular meromorphic section of L. The sheaf of ideals I constructed in Lemma 23.9 is
called the ideal sheaf of denominators of s.

24. Meromorphic functions and sections; Noetherian case

For locally Noetherian schemes we can prove some results about the sheaf of meromor-
phic functions. However, there is an example in [?] showing that KX need not be quasi-
coherent for a Noetherian scheme X .

Lemma 24.1. LetX be a quasi-compact scheme. Leth ∈ Γ(X,OX) and f ∈ Γ(X,KX)
such that f restricts to zero on Xh. Then hnf = 0 for some n� 0.

Proof. We can find a covering of X by affine opens U such that f |U = s−1a with
a ∈ OX(U) and s ∈ S(U). Since X is quasi-compact we can cover it by finitely many
affine opens of this form. Thus it suffices to prove the lemma when X = Spec(A) and
f = s−1a. Note that s ∈ A is a nonzerodivisor hence it suffices to prove the result
when f = a. The condition f |Xh = 0 implies that a maps to zero in Ah = OX(Xh) as
OX ⊂ KX . Thus hna = 0 for some n > 0 as desired. �

Lemma 24.2. Let X be a locally Noetherian scheme.
(1) For any x ∈ X we have Sx ⊂ OX,x is the set of nonzerodivisors, and hence
KX,x is the total quotient ring ofOX,x.

(2) For any affine open U ⊂ X the ring KX(U) equals the total quotient ring of
OX(U).

Proof. To prove this lemma we may assume X is the spectrum of a Noetherian ring
A. Say x ∈ X corresponds to p ⊂ A.

Proof of (1). It is clear that Sx is contained in the set of nonzerodivisors of OX,x = Ap.
For the converse, let f, g ∈ A, g 6∈ p and assume f/g is a nonzerodivisor in Ap. Let
I = {a ∈ A | af = 0}. Then we see that Ip = 0 by exactness of localization. Since A
is Noetherian we see that I is finitely generated and hence that g′I = 0 for some g′ ∈ A,
g′ 6∈ p. Hence f is a nonzerodivisor in Ag′ , i.e., in a Zariski open neighbourhood of p.
Thus f/g is an element of Sx.

Proof of (2). Let f ∈ Γ(X,KX) be a meromorphic function. Set I = {a ∈ A | af ∈ A}.
Fix a prime p ⊂ A corresponding to the point x ∈ X . By (1) we can write the image
of f in the stalk at p as a/b, a, b ∈ Ap with b ∈ Ap not a zerodivisor. Write b = c/d
with c, d ∈ A, d 6∈ p. Then ad − cf is a section of KX which vanishes in an open
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neighbourhood of x. Say it vanishes on D(e) with e ∈ A, e 6∈ p. Then en(ad − cf) = 0
for some n � 0 by Lemma 24.1. Thus enc ∈ I and enc maps to a nonzerodivisor in Ap.
Let Ass(A) = {q1, . . . , qt} be the associated primes of A. By looking at IAqi and using
Algebra, Lemma 63.15 the above says that I 6⊂ qi for each i. By Algebra, Lemma 15.2
there exists an element x ∈ I , x 6∈

⋃
qi. By Algebra, Lemma 63.9 we see that x is not

a zerodivisor on A. Hence f = (xf)/x is an element of the total ring of fractions of A.
This proves (2). �

Lemma 24.3. Let X be a locally Noetherian scheme having no embedded points. Let
X0 be the set of generic points of irreducible components of X . Then we have

KX =
⊕

η∈X0
jη,∗OX,η =

∏
η∈X0

jη,∗OX,η

where jη : Spec(OX,η)→ X is the canonical map of Schemes, Section 13. Moreover
(1) KX is a quasi-coherent sheaf ofOX -algebras,
(2) for every quasi-coherentOX -module F the sheaf

KX(F) =
⊕

η∈X0
jη,∗Fη =

∏
η∈X0

jη,∗Fη

of meromorphic sections of F is quasi-coherent, and
(3) the ring of rational functions of X is the ring of meromorphic functions on X ,

in a formula: R(X) = Γ(X,KX).

Proof. This lemma is a special case of Lemma 23.6 because in the locally Noetherian
case weakly associated points are the same thing as associated points by Lemma 5.8. �

Lemma 24.4. LetX be a locally Noetherian scheme having no embedded points. Let
L be an invertibleOX -module. Then L has a regular meromorphic section.

Proof. For each generic point η of X pick a generator sη of the free rank 1 module
Lη over the artinian local ringOX,η . It follows immediately from the description of KX
and KX(L) in Lemma 24.3 that s =

∏
sη is a regular meromorphic section of L. �

Lemma 24.5. Suppose given
(1) X a locally Noetherian scheme,
(2) L an invertibleOX -module,
(3) s a regular meromorphic section of L, and
(4) F coherent on X without embedded associated points and Supp(F) = X .

Let I ⊂ OX be the ideal of denominators of s. Let T ⊂ X be the union of the supports of
OX/I and L/s(I) which is a nowhere dense closed subset T ⊂ X according to Lemma
23.9. Then there are canonical injective maps

1 : IF → F , s : IF → F ⊗OX
L

whose cokernels are supported on T .

Proof. Reduce to the affine case with L ∼= OX , and s = a/b with a, b ∈ A both
nonzerodivisors. Proof of reduction step omitted. Write F = M̃ . Let I = {x ∈ A |
x(a/b) ∈ A} so that I = Ĩ (see proof of Lemma 23.9). Note that T = V (I)∪ V ((a/b)I).
For any A-module M consider the map 1 : IM → M ; this is the map that gives rise to
the map 1 of the lemma. Consider on the other hand the map σ : IM →Mb, x 7→ ax/b.
Since b is not a zerodivisor in A, and since M has support Spec(A) and no embedded
primes we see that b is a nonzerodivisor on M also. Hence M ⊂ Mb. By definition of I
we haveσ(IM) ⊂M as submodules ofMb. Hence we get anA-module map s : IM →M
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(namely the unique map such that s(z)/1 = σ(z) in Mb for all z ∈ IM ). It is injective
because a is a nonzerodivisor also (on bothA andM ). It is clear thatM/IM is annihilated
by I and that M/s(IM) is annihilated by (a/b)I . Thus the lemma follows. �

25. Meromorphic functions and sections; reduced case

For a scheme which is reduced and which locally has finitely many irreducible compo-
nents, the sheaf of meromorphic functions is quasi-coherent.

Lemma 25.1. Let X be a reduced scheme such that any quasi-compact open has a
finite number of irreducible components. LetX0 be the set of generic points of irreducible
components of X . Then we have

KX =
⊕

η∈X0
jη,∗κ(η) =

∏
η∈X0

jη,∗κ(η)

where jη : Spec(κ(η))→ X is the canonical map of Schemes, Section 13. Moreover
(1) KX is a quasi-coherent sheaf ofOX -algebras,
(2) for every quasi-coherentOX -module F the sheaf

KX(F) =
⊕

η∈X0
jη,∗Fη =

∏
η∈X0

jη,∗Fη

of meromorphic sections of F is quasi-coherent,
(3) Sx ⊂ OX,x is the set of nonzerodivisors for any x ∈ X ,
(4) KX,x is the total quotient ring ofOX,x for any x ∈ X ,
(5) KX(U) equals the total quotient ring ofOX(U) for any affine open U ⊂ X ,
(6) the ring of rational functions of X is the ring of meromorphic functions on X ,

in a formula: R(X) = Γ(X,KX).

Proof. This lemma is a special case of Lemma 23.6 because on a reduced scheme the
weakly associated points are the generic points by Lemma 5.12. �

Lemma 25.2. Let X be a scheme. Assume X is reduced and any quasi-compact open
U ⊂ X has a finite number of irreducible components. Then the normalization morphism
ν : Xν → X is the morphism

Spec
X

(O′) −→ X

whereO′ ⊂ KX is the integral closure ofOX in the sheaf of meromorphic functions.

Proof. Compare the definition of the normalization morphism ν : Xν → X (see
Morphisms, Definition 54.1) with the description of KX in Lemma 25.1 above. �

Lemma 25.3. Let X be an integral scheme with generic point η. We have
(1) the sheaf of meromorphic functions is isomorphic to the constant sheaf with

value the function field (see Morphisms, Definition 49.6) of X .
(2) for any quasi-coherent sheafF onX the sheafKX(F) is isomorphic to the con-

stant sheaf with value Fη .

Proof. Omitted. �

In some cases we can show regular meromorphic sections exist.

Lemma 25.4. Let X be a scheme. Let L be an invertible OX -module. In each of the
following cases L has a regular meromorphic section:

(1) X is integral,



26. WEIL DIVISORS 2677

(2) X is reduced and any quasi-compact open has a finite number of irreducible com-
ponents,

(3) X is locally Noetherian and has no embedded points.

Proof. In case (1) let η ∈ X be the generic point. We have seen in Lemma 25.3 that
KX , resp. KX(L) is the constant sheaf with value κ(η), resp. Lη . Since dimκ(η) Lη = 1
we can pick a nonzero element s ∈ Lη . Clearly s is a regular meromorphic section of L.
In case (2) pick sη ∈ Lη nonzero for all generic points η of X ; this is possible as Lη is a
1-dimensional vector space over κ(η). It follows immediately from the description ofKX
andKX(L) in Lemma 25.1 that s =

∏
sη is a regular meromorphic section of L. Case (3)

is Lemma 24.4. �

26. Weil divisors

We will introduce Weil divisors and rational equivalence of Weil divisors for locally Noe-
therian integral schemes. Since we are not assuming our schemes are quasi-compact we
have to be a little careful when defining Weil divisors. We have to allow infinite sums
of prime divisors because a rational function may have infinitely many poles for example.
For quasi-compact schemes our Weil divisors are finite sums as usual. Here is a basic lemma
we will often use to prove collections of closed subschemes are locally finite.

Lemma 26.1. Let X be a locally Noetherian scheme. Let Z ⊂ X be a closed sub-
scheme. The collection of irreducible components of Z is locally finite in X .

Proof. Let U ⊂ X be a quasi-compact open subscheme. Then U is a Noetherian
scheme, and hence has a Noetherian underlying topological space (Properties, Lemma 5.5).
Hence every subspace is Noetherian and has finitely many irreducible components (see
Topology, Lemma 9.2). �

Recall that if Z is an irreducible closed subset of a scheme X , then the codimension of Z
in X is equal to the dimension of the local ring OX,ξ , where ξ ∈ Z is the generic point.
See Properties, Lemma 10.3.

Definition 26.2. Let X be a locally Noetherian integral scheme.
(1) A prime divisor is an integral closed subscheme Z ⊂ X of codimension 1.
(2) A Weil divisor is a formal sumD =

∑
nZZ where the sum is over prime divisors

of X and the collection {Z | nZ 6= 0} is locally finite (Topology, Definition
28.4).

The group of all Weil divisors on X is denoted Div(X).

Our next task is to define the Weil divisor associated to a rational function. In order to
do this we use the order of vanishing of a rational function along a prime divisor which is
defined as follows.

Definition 26.3. Let X be a locally Noetherian integral scheme. Let f ∈ R(X)∗.
For every prime divisor Z ⊂ X we define the order of vanishing of f along Z as the
integer

ordZ(f) = ordOX,ξ
(f)

where the right hand side is the notion of Algebra, Definition 121.2 and ξ is the generic
point of Z.
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Note that for f, g ∈ R(X)∗ we have

ordZ(fg) = ordZ(f) + ordZ(g).

Of course it can happen that ordZ(f) < 0. In this case we say that f has a pole along Z
and that −ordZ(f) > 0 is the order of pole of f along Z. It is important to note that the
condition ordZ(f) ≥ 0 is not equivalent to the condition f ∈ OX,ξ unless the local ring
OX,ξ is a discrete valuation ring.

Lemma 26.4. Let X be a locally Noetherian integral scheme. Let f ∈ R(X)∗. Then
the collections

{Z ⊂ X | Z a prime divisor with generic point ξ and f not inOX,ξ}

and
{Z ⊂ X | Z a prime divisor and ordZ(f) 6= 0}

are locally finite in X .

Proof. There exists a nonempty open subscheme U ⊂ X such that f corresponds to
a section of Γ(U,O∗

X). Hence the prime divisors which can occur in the sets of the lemma
are all irreducible components of X \ U . Hence Lemma 26.1 gives the desired result. �

This lemma allows us to make the following definition.

Definition 26.5. Let X be a locally Noetherian integral scheme. Let f ∈ R(X)∗.
The principal Weil divisor associated to f is the Weil divisor

div(f) = divX(f) =
∑

ordZ(f)[Z]

where the sum is over prime divisors and ordZ(f) is as in Definition 26.3. This makes
sense by Lemma 26.4.

Lemma 26.6. LetX be a locally Noetherian integral scheme. Let f, g ∈ R(X)∗. Then

divX(fg) = divX(f) + divX(g)

as Weil divisors on X .

Proof. This is clear from the additivity of the ord functions. �

We see from the lemma above that the collection of principal Weil divisors form a sub-
group of the group of all Weil divisors. This leads to the following definition.

Definition 26.7. Let X be a locally Noetherian integral scheme. The Weil divisor
class group ofX is the quotient of the group of Weil divisors by the subgroup of principal
Weil divisors. Notation: Cl(X).

By construction we obtain an exact complex

(26.7.1) R(X)∗ div−−→ Div(X)→ Cl(X)→ 0

which we can think of as a presentation of Cl(X). Our next task is to relate the Weil
divisor class group to the Picard group.
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27. The Weil divisor class associated to an invertible module

In this section we go through exactly the same progression as in Section 26 to define a
canonical map Pic(X)→ Cl(X) on a locally Noetherian integral scheme.

LetX be a scheme. LetL be an invertibleOX -module. Let ξ ∈ X be a point. If sξ, s′
ξ ∈ Lξ

generate Lξ as OX,ξ-module, then there exists a unit u ∈ O∗
X,ξ such that sξ = us′

ξ . The
stalk of the sheaf of meromorphic sections KX(L) of L at x is equal to KX,x ⊗OX,x

Lx.
Thus the image of any meromorphic section s of L in the stalk at x can be written as
s = fsξ with f ∈ KX,x. Below we will abbreviate this by saying f = s/sξ . Also, if X is
integral we have KX,x = R(X) is equal to the function field of X , so s/sξ ∈ R(X). If s
is a regular meromorphic section, then actually s/sξ ∈ R(X)∗. On an integral scheme a
regular meromorphic section is the same thing as a nonzero meromorphic section. Finally,
we see that s/sξ is independent of the choice of sξ up to multiplication by a unit of the
local ringOX,x. Putting everything together we see the following definition makes sense.

Definition 27.1. Let X be a locally Noetherian integral scheme. Let L be an invert-
ibleOX -module. Let s ∈ Γ(X,KX(L)) be a regular meromorphic section ofL. For every
prime divisor Z ⊂ X we define the order of vanishing of s along Z as the integer

ordZ,L(s) = ordOX,ξ
(s/sξ)

where the right hand side is the notion of Algebra, Definition 121.2, ξ ∈ Z is the generic
point, and sξ ∈ Lξ is a generator.

As in the case of principal divisors we have the following lemma.

Lemma 27.2. Let X be a locally Noetherian integral scheme. Let L be an invertible
OX -module. Let s ∈ KX(L) be a regular (i.e., nonzero) meromorphic section of L. Then
the sets

{Z ⊂ X | Z a prime divisor with generic point ξ and s not in Lξ}

and
{Z ⊂ X | Z is a prime divisor and ordZ,L(s) 6= 0}

are locally finite in X .

Proof. There exists a nonempty open subscheme U ⊂ X such that s corresponds to
a section of Γ(U,L) which generates L over U . Hence the prime divisors which can occur
in the sets of the lemma are all irreducible components ofX \U . Hence Lemma 26.1. gives
the desired result. �

Lemma 27.3. Let X be a locally Noetherian integral scheme. Let L be an invertible
OX -module. Let s, s′ ∈ KX(L) be nonzero meromorphic sections of L. Then f = s/s′ is
an element of R(X)∗ and we have∑

ordZ,L(s)[Z] =
∑

ordZ,L(s′)[Z] + div(f)

as Weil divisors.

Proof. This is clear from the definitions. Note that Lemma 27.2 guarantees that the
sums are indeed Weil divisors. �

Definition 27.4. LetX be a locally Noetherian integral scheme. Let L be an invert-
ibleOX -module.
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(1) For any nonzero meromorphic section s of L we define the Weil divisor associ-
ated to s as

divL(s) =
∑

ordZ,L(s)[Z] ∈ Div(X)

where the sum is over prime divisors.
(2) We define Weil divisor class associated to L as the image of divL(s) in Cl(X)

where s is any nonzero meromorphic section of L over X . This is well defined
by Lemma 27.3.

As expected this construction is additive in the invertible module.

Lemma 27.5. Let X be a locally Noetherian integral scheme. Let L, N be invertible
OX -modules. Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st is a
nonzero meromorphic section of L ⊗N , and

divL⊗N (st) = divL(s) + divN (t)
in Div(X). In particular, the Weil divisor class ofL⊗OX

N is the sum of the Weil divisor
classes of L andN .

Proof. Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st is a
nonzero meromorphic section of L ⊗ N . Let Z ⊂ X be a prime divisor. Let ξ ∈ Z be
its generic point. Choose generators sξ ∈ Lξ , and tξ ∈ Nξ . Then sξtξ is a generator for
(L ⊗N )ξ . So st/(sξtξ) = (s/sξ)(t/tξ). Hence we see that

divL⊗N ,Z(st) = divL,Z(s) + divN ,Z(t)
by the additivity of the ordZ function. �

In this way we obtain a homomorphism of abelian groups

(27.5.1) Pic(X) −→ Cl(X)
which assigns to an invertible module its Weil divisor class.

Lemma 27.6. LetX be a locally Noetherian integral scheme. IfX is normal, then the
map (27.5.1) Pic(X)→ Cl(X) is injective.

Proof. LetL be an invertibleOX -module whose associated Weil divisor class is triv-
ial. Let s be a regular meromorphic section of L. The assumption means that divL(s) =
div(f) for some f ∈ R(X)∗. Then we see that t = f−1s is a regular meromorphic section
of L with divL(t) = 0, see Lemma 27.3. We will show that t defines a trivialization of
L which finishes the proof of the lemma. In order to prove this we may work locally on
X . Hence we may assume that X = Spec(A) is affine and that L is trivial. Then A is a
Noetherian normal domain and t is an element of its fraction field such that ordAp

(t) = 0
for all height 1 primes p of A. Our goal is to show that t is a unit of A. Since Ap is a
discrete valuation ring for height one primes of A (Algebra, Lemma 157.4), the condition
signifies that t ∈ A∗

p for all primes p of height 1. This implies t ∈ A and t−1 ∈ A by
Algebra, Lemma 157.6 and the proof is complete. �

Lemma 27.7. Let X be a locally Noetherian integral scheme. Consider the map
(27.5.1) Pic(X)→ Cl(X). The following are equivalent

(1) the local rings of X are UFDs, and
(2) X is normal and Pic(X)→ Cl(X) is surjective.

In this case Pic(X)→ Cl(X) is an isomorphism.
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Proof. If (1) holds, then X is normal by Algebra, Lemma 120.11. Hence the map
(27.5.1) is injective by Lemma 27.6. Moreover, every prime divisor D ⊂ X is an effective
Cartier divisor by Lemma 15.7. In this case the canonical section 1D ofOX(D) (Definition
14.1) vanishes exactly alongD and we see that the class ofD is the image ofOX(D) under
the map (27.5.1). Thus the map is surjective as well.

Assume (2) holds. Pick a prime divisor D ⊂ X . Since (27.5.1) is surjective there exists an
invertible sheaf L, a regular meromorphic section s, and f ∈ R(X)∗ such that divL(s) +
div(f) = [D]. In other words, divL(fs) = [D]. Let x ∈ X and let A = OX,x. Thus A is
a Noetherian local normal domain with fraction field K = R(X). Every height 1 prime
of A corresponds to a prime divisor on X and every invertible OX -module restricts to
the trivial invertible module on Spec(A). It follows that for every height 1 prime p ⊂ A
there exists an element f ∈ K such that ordAp

(f) = 1 and ordAp′ (f) = 0 for every
other height one prime p′. Then f ∈ A by Algebra, Lemma 157.6. Arguing in the same
fashion we see that every element g ∈ p is of the form g = af for some a ∈ A. Thus we
see that every height one prime ideal ofA is principal andA is a UFD by Algebra, Lemma
120.6. �

28. More on invertible modules

In this section we discuss some properties of invertible modules.

Lemma 28.1. Let ϕ : X → Y be a morphism of schemes. Let L be an invertible
OX -module. Assume that

(1) X is locally Noetherian,
(2) Y is locally Noetherian, integral, and normal,
(3) ϕ is flat with integral (hence nonempty) fibres,
(4) ϕ is either quasi-compact or locally of finite type,
(5) L is trivial when restricted to the generic fibre of ϕ.

Then L ∼= ϕ∗N for some invertibleOY -moduleN .

Proof. Let ξ ∈ Y be the generic point. LetXξ be the scheme theoretic fibre ofϕ over
ξ. Denote Lξ the pullback of L to Xξ . Assumption (5) means that Lξ is trivial. Choose a
trivializing section s ∈ Γ(Xξ,Lξ). Observe that X is integral by Lemma 11.7. Hence we
can think of s as a regular meromorphic section ofL. Pullbacks of meromorphic functions
are defined for ϕ by Lemma 23.5. LetN ⊂ KY be theOY -module whose sections over an
open V ⊂ Y are those meromorphic functions g ∈ KY (V ) such thatϕ∗(g)s ∈ L(ϕ−1V ).
A priori ϕ∗(g)s is a section of KX(L) over ϕ−1V . We claim thatN is an invertible OY -
module and that the map

ϕ∗N −→ L, g 7−→ gs

is an isomorphism.

We first prove the claim in the following situation: X and Y are affine and L trivial. Say
Y = Spec(R), X = Spec(A) and s given by the element s ∈ A ⊗R K where K is the
fraction field of R. We can write s = a/r for some nonzero r ∈ R and a ∈ A. Since s
generatesL on the generic fibre we see that there exists an s′ ∈ A⊗RK such that ss′ = 1.
Thus we see that s = r′/a′ for some nonzero r′ ∈ R and a′ ∈ A. Let p1, . . . , pn ⊂ R
be the minimal primes over rr′. Each Rpi is a discrete valuation ring (Algebra, Lemmas
60.11 and 157.4). By assumption qi = piA is a prime. Hence qiAqi is generated by a single
element and we find that Aqi is a discrete valuation ring as well (Algebra, Lemma 119.7).
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Of course Rpi → Aqi has ramification index 1. Let ei, e′
i ≥ 0 be the valuation of a, a′ in

Aqi . Then ei + e′
i is the valuation of rr′ in Rpi . Note that

p
(e1+e′

1)
1 ∩ . . . ∩ p

(en+e′
n)

i = (rr′)

in R by Algebra, Lemma 157.6. Set

I = p
(e1)
1 ∩ . . . ∩ p

(en)
i and I ′ = p

(e′
1)

1 ∩ . . . ∩ p
(e′
n)

i

so that II ′ ⊂ (rr′). Observe that

IA = (p(e1)
1 ∩ . . . ∩ p

(en)
i )A = (p1A)(e1) ∩ . . . ∩ (piA)(en)

by Algebra, Lemmas 64.3 and 39.2. Similarly for I ′A. Hence a ∈ IA and a′ ∈ I ′A. We
conclude that IA⊗A I ′A→ rr′A is surjective. By faithful flatness ofR→ Awe find that
I ⊗R I ′ → (rr′) is surjective as well. It follows that II ′ = (rr′) and I and I ′ are finite
locally free of rank 1, see Algebra, Lemma 120.16. Thus Zariski locally on R we can write
I = (g) and I ′ = (g′) with gg′ = rr′. Then a = ug and a′ = u′g′ for some u, u′ ∈ A.
We conclude that u, u′ are units. Thus Zariski locally on R we have s = ug/r and the
claim follows in this case.

Let y ∈ Y be a point. Pick x ∈ X mapping to y. We may apply the result of the pre-
vious paragraph to Spec(OX,x) → Spec(OY,y). We conclude there exists an element
g ∈ R(Y )∗ well defined up to multiplication by an element ofO∗

Y,y such that ϕ∗(g)s gen-
erates Lx. Hence ϕ∗(g)s generates L in a neighbourhood U of x. Suppose x′ is a second
point lying over y and g′ ∈ R(Y )∗ is such that ϕ∗(g′)s generatesL in an open neighbour-
hood U ′ of x′. Then we can choose a point x′′ in U ∩ U ′ ∩ ϕ−1({y}) because the fibre
is irreducible. By the uniqueness for the ring map OY,y → OX,x′′ we find that g and g′

differ (multiplicatively) by an element in O∗
Y,y . Hence we see that ϕ∗(g)s is a generator

for L on an open neighbourhood of ϕ−1(y). Let Z ⊂ X be the set of points z ∈ X such
that ϕ∗(g)s does not generate Lz . The arguments above show that Z is closed and that
Z = ϕ−1(T ) for some subset T ⊂ Y with y 6∈ T . If we can show that T is closed, then g
will be a generator forN as anOY -module in the open neighbourhood Y \T of y thereby
finishing the proof (some details omitted).

If ϕ is quasi-compact, then T is closed by Morphisms, Lemma 25.12. If ϕ is locally of finite
type, then ϕ is open by Morphisms, Lemma 25.10. Then Y \ T is open as the image of the
open X \ Z. �

Lemma 28.2. Let X be a locally Noetherian scheme. Let U ⊂ X be an open and let
D ⊂ U be an effective Cartier divisor. If OX,x is a UFD for all x ∈ X \ U , then there
exists an effective Cartier divisor D′ ⊂ X with D = U ∩D′.

Proof. Let D′ ⊂ X be the scheme theoretic image of the morphism D → X . Since
X is locally Noetherian the morphism D → X is quasi-compact, see Properties, Lemma
5.3. Hence the formation of D′ commutes with passing to opens in X by Morphisms,
Lemma 6.3. Thus we may assume X = Spec(A) is affine. Let I ⊂ A be the ideal corre-
sponding to D′. Let p ⊂ A be a prime ideal corresponding to a point of X \ U . To finish
the proof it is enough to show that Ip is generated by one element, see Lemma 15.2. Thus
we may replace X by Spec(Ap), see Morphisms, Lemma 25.16. In other words, we may
assume that X is the spectrum of a local UFD A. Then all local rings of A are UFD’s. It
follows that D =

∑
aiDi with Di ⊂ U an integral effective Cartier divisor, see Lemma

15.11. The generic points ξi of Di correspond to prime ideals pi ⊂ A of height 1, see
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Lemma 15.3. Then pi = (fi) for some prime element fi ∈ A and we conclude that D′ is
cut out by

∏
faii as desired. �

Lemma 28.3. Let X be a locally Noetherian scheme. Let U ⊂ X be an open and let
L be an invertible OU -module. If OX,x is a UFD for all x ∈ X \ U , then there exists an
invertibleOX -module L′ with L ∼= L′|U .

Proof. Choose x ∈ X , x 6∈ U . We will show there exists an affine open neighbour-
hood W ⊂ X , such that L|W∩U extends to an invertible sheaf on W . This implies by
glueing of sheaves (Sheaves, Section 33) that we can extend L to the strictly bigger open
U ∪W . LetW = Spec(A) be an affine open neighbourhood. Since U ∩W is quasi-affine,
we see that we can writeL|W∩U asO(D1)⊗O(D2)⊗−1 for some effective Cartier divisors
D1, D2 ⊂W ∩U , see Lemma 15.12. Then D1 and D2 extend to effective Cartier divisors
of W by Lemma 28.2 which gives us the extension of the invertible sheaf.

If X is Noetherian (which is the case most used in practice), the above combined with
Noetherian induction finishes the proof. In the general case we argue as follows. First,
because every local ring of a point outside of U is a domain and X is locally Noetherian,
we see that the closure of U in X is open. Thus we may assume that U ⊂ X is dense
and schematically dense. Now we consider the set T of triples (U ′,L′, α) where U ⊂
U ′ ⊂ X is an open subscheme, L′ is an invertible OU ′ -module, and α : L′|U → L is an
isomorphism. We endow T with a partial ordering ≤ defined by the rule (U ′,L′, α) ≤
(U ′′,L′′, α′) if and only if U ′ ⊂ U ′′ and there exists an isomorphism β : L′′|U ′ → L′

compatible with α and α′. Observe that β is unique (if it exists) because U ⊂ X is dense.
The first part of the proof shows that for any element t = (U ′,L′, α) of T with U ′ 6= X
there exists a t′ ∈ T with t′ > t. Hence to finish the proof it suffices to show that Zorn’s
lemma applies. Thus consider a totally ordered subset I ⊂ T . If i ∈ I corresponds to
the triple (Ui,Li, αi), then we can construct an invertible module L′ on U ′ =

⋃
Ui as

follows. For W ⊂ U ′ open and quasi-compact we see that W ⊂ Ui for some i and we set

L′(W ) = Li(W )
For the transition maps we use the β’s (which are unique and hence compose correctly).
This defines an invertible O-module L′ on the basis of quasi-compact opens of U ′ which
is sufficient to define an invertible module (Sheaves, Section 30). We omit the details. �

Lemma 28.4. Let R be a UFD. The Picard groups of the following are trivial.
(1) Spec(R) and any open subscheme of it.
(2) An

R = Spec(R[x1, . . . , xn]) and any open subscheme of it.
In particular, the Picard group of any open subscheme of affine n-space An

k over a field k
is trivial.

Proof. Since R is a UFD so is any localization of it and any polynomial ring over it
(Algebra, Lemma 120.10). Thus if U ⊂ An

R is open, then the map Pic(An
R) → Pic(U)

is surjective by Lemma 28.3. The vanishing of Pic(An
R) is equivalent to the vanishing of

the picard group of the UFD R[x1, . . . , xn] which is proved in More on Algebra, Lemma
117.3. �

Lemma 28.5. Let R be a UFD. The Picard group of Pn
R is Z. More precisely, there is

an isomorphism
Z −→ Pic(Pn

R), m 7−→ OPn
R

(m)
In particular, the Picard group of Pn

k of projective space over a field k is Z.
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Proof. Observe that the local rings of X = Pn
R are UFDs because X is covered

by affine pieces isomorphic to An
R and R[x1, . . . , xn] is a UFD (Algebra, Lemma 120.10).

Hence X is an integral Noetherian scheme all of whose local rings are UFDs and we see
that Pic(X) = Cl(X) by Lemma 27.7.
The displayed map is a group homomorphism by Constructions, Lemma 10.3. The map
is injective because H0 of OX and OX(m) are non-isomorphic R-modules if m > 0, see
Cohomology of Schemes, Lemma 8.1. Let L be an invertible module on X . Consider the
open U = D+(T0) ∼= An

R. The complement H = X \ U is a prime divisor because it
is isomorphic to Proj(R[T1, . . . , Tn]) which is integral by the discussion in the previous
paragraph. In fact H is the zero scheme of the regular global section T0 of OX(1) hence
OX(1) maps to the class of H in Cl(X). By Lemma 28.4 we see that L|U ∼= OU . Let
s ∈ L(U) be a trivializing section. Then we can think of s as a regular meromorphic
section of L and we see that necessarily divL(s) = m[H] for somem ∈ Z asH is the only
prime divisor of X not meeting U . In other words, we see that L andOX(m) map to the
same element of Cl(X) and hence L ∼= OX(m) as desired. �

29. Weil divisors on normal schemes

First we discuss properties of reflexive modules.

Lemma 29.1. Let X be an integral locally Noetherian normal scheme. For F and G
coherent reflexiveOX -modules the map

(HomOX
(F ,OX)⊗OX

G)∗∗ → HomOX
(F ,G)

is an isomorphism. The rule F ,G 7→ (F ⊗OX
G)∗∗ defines an abelian group law on the

set of isomorphism classes of rank 1 coherent reflexiveOX -modules.

Proof. Although not strictly necessary, we recommend reading Remark 12.9 before
proceeding with the proof. Choose an open subscheme j : U → X such that every
irreducible component of X \ U has codimension ≥ 2 in X and such that j∗F and j∗G
are finite locally free, see Lemma 12.13. The map

HomOU
(j∗F ,OU )⊗OU

j∗G → HomOU
(j∗F , j∗G)

is an isomorphism, because we may check it locally and it is clear when the modules are
finite free. Observe that j∗ applied to the displayed arrow of the lemma gives the arrow
we’ve just shown is an isomorphism (small detail omitted). Since j∗ defines an equivalence
between coherent reflexive modules onU and coherent reflexive modules onX (by Lemma
12.12 and Serre’s criterion Properties, Lemma 12.5), we conclude that the arrow of the
lemma is an isomorphism too. If F has rank 1, then j∗F is an invertible OU -module and
the reflexive module F∨ = Hom(F ,OX) restricts to its inverse. It follows in the same
manner as before that (F ⊗OX

F∨)∗∗ = OX . In this way we see that we have inverses
for the group law given in the statement of the lemma. �

Lemma 29.2. Let X be an integral locally Noetherian normal scheme. The group
of rank 1 coherent reflexive OX -modules is isomorphic to the Weil divisor class group
Cl(X) of X .

Proof. Let F be a rank 1 coherent reflexive OX -module. Choose an open U ⊂ X
such that every irreducible component ofX \U has codimension≥ 2 inX and such that
F|U is invertible, see Lemma 12.13. Observe that Cl(U) = Cl(X) as the Weil divisor class
group ofX only depends on its field of rational functions and the points of codimension 1
and their local rings. Thus we can define the Weil divisor class ofF to be the Weil divisor
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class of F|U in Cl(U). We omit the verification that this is independent of the choice of
U .

Denote Cl′(X) the set of isomorphism classes of rank 1 coherent reflexive OX -modules.
The construction above gives a group homorphism

Cl′(X) −→ Cl(X)

because for any pair F ,G of elements of Cl′(X) we can choose a U which works for both
and the assignment (27.5.1) sending an invertible module to its Weil divisor class is a ho-
morphism. IfF is in the kernel of this map, then we find that F|U is trivial (Lemma 27.6)
and hence F is trivial too by Lemma 12.12 and Serre’s criterion Properties, Lemma 12.5.
To finish the proof it suffices to check the map is surjective.

LetD =
∑
nZZ be a Weil divisor onX . We claim that there is an openU ⊂ X such that

every irreducible component ofX \U has codimension≥ 2 inX and such that Z|U is an
effective Cartier divisor for nZ 6= 0. To prove the claim we may assumeX is affine. Then
we may assumeD = n1Z1 + . . .+nrZr is a finite sum with Z1, . . . , Zr pairwise distinct.
After throwing out Zi ∩ Zj for i 6= j we may assume Z1, . . . , Zr are pairwise disjoint.
This reduces us to the case of a single prime divisor Z on X . As X is (R1) by Properties,
Lemma 12.5 the local ringOX,ξ at the generic point ξ of Z is a discrete valuation ring. Let
f ∈ OX,ξ be a uniformizer. Let V ⊂ X be an open neighbourhood of ξ such that f is the
image of an element f ∈ OX(V ). After shrinking V we may assume that Z ∩ V = V (f)
scheme theoretically, since this is true in the local ring at ξ. In this case taking

U = X \ (Z \ V ) = (X \ Z) ∪ V

gives the desired open, thereby proving the claim.

In order to show that the divisor class ofD is in the image, we may writeD =
∑
nZ<0 nZZ−∑

nZ>0(−nZ)Z. By additivity of the map constructed above, we may and do assume
nZ ≤ 0 for all prime divisors Z (this step may be avoided if the reader so desires).
Let U ⊂ X be as in the claim above. If U is quasi-compact, then we write D|U =
−n1Z1 − . . .− nrZr for pairwise distinct prime divisors Zi and ni > 0 and we consider
the invertibleOU -module

L = In1
1 . . . Inrr ⊂ OU

where Ii is the ideal sheaf of Zi. This is invertible by our choice of U and Lemma 13.7.
Also divL(1) = D|U . Since L = F|U for some rank 1 coherent reflexive OX -module F
by Lemma 12.12 we find that D is in the image of our map.

IfU is not quasi-compact, then we defineL ⊂ OU locally by the displayed formula above.
The reader shows that the construction glues and finishes the proof exactly as before.
Details omitted. �

Lemma 29.3. Let X be an integral locally Noetherian normal scheme. Let F be a
rank 1 coherent reflexiveOX -module. Let s ∈ Γ(X,F). Let

U = {x ∈ X | s : OX,x → Fx is an isomorphism}

Then j : U → X is an open subscheme of X and

j∗OU = colim(OX
s−→ F s−→ F [2] s−→ F [3] s−→ . . .)

where F [1] = F and inductively F [n+1] = (F ⊗OX
F [n])∗∗.
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Proof. The set U is open by Modules, Lemmas 9.4 and 12.6. Observe that j is quasi-
compact by Properties, Lemma 5.3. To prove the final statement it suffices to show for
every quasi-compact open W ⊂ X there is an isomorphism

colim Γ(W,F [n]) −→ Γ(U ∩W,OU )

of OX(W )-modules compatible with restriction maps. We will omit the verification of
compatibilities. After replacingX byW and rewriting the above in terms of homs, we see
that it suffices to construct an isomorphism

colim HomOX
(OX ,F [n]) −→ HomOU

(OU ,OU )

Choose an open V ⊂ X such that every irreducible component ofX \V has codimension
≥ 2 in X and such that F|V is invertible, see Lemma 12.13. Then restriction defines an
equivalence of categories between rank 1 coherent reflexive modules on X and V and
between rank 1 coherent reflexive modules on U and V ∩U . See Lemma 12.12 and Serre’s
criterion Properties, Lemma 12.5. Thus it suffices to construct an isomorphism

colim Γ(V, (F|V )⊗n) −→ Γ(V ∩ U,OU )

Since F|V is invertible and since U ∩ V is equal to the set of points where s|V generates
this invertible module, this is a special case of Properties, Lemma 17.2 (there is an explicit
formula for the map as well). �

Lemma 29.4. Assumptions and notation as in Lemma 29.3. If s is nonzero, then every
irreducible component of X \ U has codimension 1 in X .

Proof. Let ξ ∈ X be a generic point of an irreducible component Z of X \U . After
replacingX by an open neighbourhood of ξ we may assume thatZ = X \U is irreducible.
Since s : OU → F|U is an isomorphism, if the codimension of Z in X is ≥ 2, then
s : OX → F is an isomorphism by Lemma 12.12 and Serre’s criterion Properties, Lemma
12.5. This would mean that Z = ∅, a contradiction. �

Remark 29.5. LetA be a Noetherian normal domain. LetM be a rank 1 finite reflex-
ive A-module. Let s ∈ M be nonzero. Let p1, . . . , pr be the height 1 primes of A in the
support of M/As. Then the open U of Lemma 29.3 is

U = Spec(A) \ (V (p1) ∪ . . . ∪ V (pr))

by Lemma 29.4. Moreover, if M [n] denotes the reflexive hull of M ⊗A . . . ⊗A M (n-
factors), then

Γ(U,OU ) = colimM [n]

according to Lemma 29.3.

Lemma 29.6. Assumptions and notation as in Lemma 29.3. The following are equiv-
alent

(1) the inclusion morphism j : U → X is affine, and
(2) for every x ∈ X \ U there is an n > 0 such that sn ∈ mxF [n]

x .

Proof. Assume (1). Then for x ∈ X \ U the inverse image Ux of U under the
canonical morphism fx : Spec(OX,x) → X is affine and does not contain x. Thus
mxΓ(Ux,OUx) is the unit ideal. In particular, we see that we can write

1 =
∑

figi
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with fi ∈ mx and gi ∈ Γ(Ux,OUx). By Lemma 29.3 we have Γ(Ux,OUx) = colimF [n]
x

with transition maps given by multiplication by s. Hence for some n > 0 we have

sn =
∑

fiti

for some ti = sngi ∈ F [n]
x . Thus (2) holds.

Conversely, assume that (2) holds. To prove j is affine is local onX , see Morphisms, Lemma
11.3. Thus we may and do assume thatX is affine. Our goal is to show that U is affine. By
Cohomology of Schemes, Lemma 17.8 it suffices to show that Hp(U,OU ) = 0 for p > 0.
Since Hp(U,OU ) = H0(X,Rpj∗OU ) (Cohomology of Schemes, Lemma 4.6) and since
Rpj∗OU is quasi-coherent (Cohomology of Schemes, Lemma 4.5) it is enough to show the
stalk (Rpj∗OU )x at a point x ∈ X is zero. Consider the base change diagram

Ux

jx

��

// U

j

��
Spec(OX,x) // X

By Cohomology of Schemes, Lemma 5.2 we have (Rpj∗OU )x = Rpjx,∗OUx . Hence we
may assume X is local with closed point x and we have to show U is affine (because this
is equivalent to the desired vanishing by the reference given above). In particular d =
dim(X) is finite (Algebra, Proposition 60.9). If x ∈ U , then U = X and the result is
clear. If d = 0 and x 6∈ U , then U = ∅ and the result is clear. Now assume d > 0 and
x 6∈ U . Since j∗OU = colimF [n] our assumption means that we can write

1 =
∑

figi

for some n > 0, fi ∈ mx, and gi ∈ O(U). By induction on d we know that D(fi) ∩ U is
affine for all i: going through the whole argument just given with X replaced by D(fi)
we end up with Noetherian local rings whose dimension is strictly smaller than d. Hence
U is affine by Properties, Lemma 27.3 as desired. �

30. Relative Proj

Some results on relative Proj. First some very basic results. Recall that a relative Proj is
always separated over the base, see Constructions, Lemma 16.9.

Lemma 30.1. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra. Let
p : X = Proj

S
(A)→ S be the relative Proj ofA. If one of the following holds

(1) A is of finite type as a sheaf ofA0-algebras,
(2) A is generated byA1 as anA0-algebra andA1 is a finite typeA0-module,
(3) there exists a finite type quasi-coherentA0-submoduleF ⊂ A+ such thatA+/FA

is a locally nilpotent sheaf of ideals ofA/FA,
then p is quasi-compact.

Proof. The question is local on the base, see Schemes, Lemma 19.2. Thus we may
assume S is affine. Say S = Spec(R) andA corresponds to the gradedR-algebraA. Then
X = Proj(A), see Constructions, Section 15. In case (1) we may after possibly localizing
more assume that A is generated by homogeneous elements f1, . . . , fn ∈ A+ over A0.
ThenA+ = (f1, . . . , fn) by Algebra, Lemma 58.1. In case (3) we see thatF = M̃ for some
finite typeA0-moduleM ⊂ A+. SayM =

∑
A0fi. Say fi =

∑
fi,j is the decomposition
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into homogeneous pieces. The condition in (3) signifies thatA+ ⊂
√

(fi,j). Thus in both
cases we conclude that Proj(A) is quasi-compact by Constructions, Lemma 8.9. Finally,
(2) follows from (1). �

Lemma 30.2. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra. Let
p : X = Proj

S
(A) → S be the relative Proj of A. If A is of finite type as a sheaf of

OS-algebras, then p is of finite type andOX(d) is a finite typeOX -module.

Proof. The assumption implies that p is quasi-compact, see Lemma 30.1. Hence it
suffices to show that p is locally of finite type. Thus the question is local on the base
and target, see Morphisms, Lemma 15.2. Say S = Spec(R) and A corresponds to the
graded R-algebra A. After further localizing on S we may assume that A is a finite type
R-algebra. The scheme X is constructed out of glueing the spectra of the rings A(f) for
f ∈ A+ homogeneous. Each of these is of finite type over R by Algebra, Lemma 57.9 part
(1). Thus Proj(A) is of finite type over R. To see the statement on OX(d) use part (2) of
Algebra, Lemma 57.9. �

Lemma 30.3. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra. Let
p : X = Proj

S
(A)→ S be the relative Proj ofA. IfOS → A0 is an integral algebra map4

andA is of finite type as anA0-algebra, then p is universally closed.

Proof. The question is local on the base. Thus we may assume that X = Spec(R)
is affine. Let A be the quasi-coherent OX -algebra associated to the graded R-algebra A.
The assumption is that R → A0 is integral and A is of finite type over A0. Write X →
Spec(R) as the composition X → Spec(A0) → Spec(R). Since R → A0 is an integral
ring map, we see that Spec(A0)→ Spec(R) is universally closed, see Morphisms, Lemma
44.7. The quasi-compact (see Constructions, Lemma 8.9) morphism

X = Proj(A)→ Spec(A0)

satisfies the existence part of the valuative criterion by Constructions, Lemma 8.11 and
hence it is universally closed by Schemes, Proposition 20.6. Thus X → Spec(R) is uni-
versally closed as a composition of universally closed morphisms. �

Lemma 30.4. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra. Let
p : X = Proj

S
(A)→ S be the relative Proj ofA. The following conditions are equivalent

(1) A0 is a finite typeOS-module andA is of finite type as anA0-algebra,
(2) A0 is a finite typeOS-module andA is of finite type as anOS-algebra

If these conditions hold, then p is locally projective and in particular proper.

Proof. Assume that A0 is a finite type OS-module. Choose an affine open U =
Spec(R) ⊂ X such that A corresponds to a graded R-algebra A with A0 a finite R-
module. Condition (1) means that (after possibly localizing further on S) thatA is a finite
typeA0-algebra and condition (2) means that (after possibly localizing further on S) that
A is a finite type R-algebra. Thus these conditions imply each other by Algebra, Lemma
6.2.

A locally projective morphism is proper, see Morphisms, Lemma 43.5. Thus we may now
assume that S = Spec(R) and X = Proj(A) and that A0 is finite over R and A of finite
type over R. We will show that X = Proj(A) → Spec(R) is projective. We urge the

4In other words, the integral closure of OS in A0 , see Morphisms, Definition 53.2, equals A0.
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reader to prove this for themselves, by directly constructing a closed immersion ofX into
a projective space over R, instead of reading the argument we give below.

By Lemma 30.2 we see that X is of finite type over Spec(R). Constructions, Lemma
10.6 tells us that OX(d) is ample on X for some d ≥ 1 (see Properties, Section 26).
HenceX → Spec(R) is quasi-projective (by Morphisms, Definition 40.1). By Morphisms,
Lemma 43.12 we conclude that X is isomorphic to an open subscheme of a scheme projec-
tive over Spec(R). Therefore, to finish the proof, it suffices to show that X → Spec(R)
is universally closed (use Morphisms, Lemma 41.7). This follows from Lemma 30.3. �

Lemma 30.5. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra. Let
p : X = Proj

S
(A) → S be the relative Proj of A. If A is generated by A1 over A0 and

A1 is a finite typeOS-module, then p is projective.

Proof. Namely, the morphism associated to the gradedOS-algebra map

Sym∗
OX

(A1) −→ A

is a closed immersion X → P(A1), see Constructions, Lemma 18.5. �

Lemma 30.6. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra. Let
p : X = Proj

S
(A) → S be the relative Proj of A. If Ad is a flat OS-module for d � 0,

then p is flat andOX(d) is flat over S.

Proof. Affine locally flatness ofX over S reduces to the following statement: LetR
be a ring, let A be a graded R-algebra with Ad flat over R for d� 0, let f ∈ Ad for some
d > 0, then A(f) is flat over R. Since A(f) = colimAnd where the transition maps are
given by multiplication by f , this follows from Algebra, Lemma 39.3. Argue similarly to
get flatness ofOX(d) over S. �

Lemma 30.7. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra. Let
p : X = Proj

S
(A)→ S be the relative Proj of A. If A is a finitely presented OS-algebra,

then p is of finite presentation andOX(d) is anOX -module of finite presentation.

Proof. Affine locally this reduces to the following statement: LetR be a ring and let
A be a finitely presented graded R-algebra. Then Proj(A)→ Spec(R) is of finite presen-
tation andOProj(A)(d) is aOProj(A)-module of finite presentation. The finite presentation
condition implies we can choose a presentation

A = R[X1, . . . , Xn]/(F1, . . . , Fm)

whereR[X1, . . . , Xn] is a polynomial ring graded by giving weights di toXi andF1, . . . , Fm
are homogeneous polynomials of degree ej . Let R0 ⊂ R be the subring generated by the
coefficients of the polynomialsF1, . . . , Fm. Then we setA0 = R0[X1, . . . , Xn]/(F1, . . . , Fm).
By construction A = A0 ⊗R0 R. Thus by Constructions, Lemma 11.6 it suffices to prove
the result for X0 = Proj(A0) over R0. By Lemma 30.2 we know X0 is of finite type over
R0 andOX0(d) is a quasi-coherentOX0 -module of finite type. SinceR0 is Noetherian (as a
finitely generated Z-algebra) we see thatX0 is of finite presentation overR0 (Morphisms,
Lemma 21.9) andOX0(d) is of finite presentation by Cohomology of Schemes, Lemma 9.1.
This finishes the proof. �



2690 31. DIVISORS

31. Closed subschemes of relative proj

Some auxiliary lemmas about closed subschemes of relative proj.
Lemma 31.1. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra. Let

p : X = Proj
S

(A) → S be the relative Proj of A. Let i : Z → X be a closed subscheme.
Denote I ⊂ A the kernel of the canonical map

A −→
⊕

d≥0
p∗ ((i∗OZ)(d)) .

If p is quasi-compact, then there is an isomorphism Z = Proj
S

(A/I).

Proof. The morphism p is separated by Constructions, Lemma 16.9. As p is quasi-
compact, p∗ transforms quasi-coherent modules into quasi-coherent modules, see Schemes,
Lemma 24.1. Hence I is a quasi-coherent OS-module. In particular, B = A/I is a quasi-
coherent graded OS-algebra. The functoriality morphism Z ′ = Proj

S
(B) → Proj

S
(A)

is everywhere defined and a closed immersion, see Constructions, Lemma 18.3. Hence it
suffices to prove Z = Z ′ as closed subschemes of X .
Having said this, the question is local on the base and we may assume that S = Spec(R)
and that X = Proj(A) for some graded R-algebra A. Assume I = Ĩ for I ⊂ A a
graded ideal. By Constructions, Lemma 8.9 there exist f0, . . . , fn ∈ A+ such that A+ ⊂√

(f0, . . . , fn) in other words X =
⋃
D+(fi). Therefore, it suffices to check that Z ∩

D+(fi) = Z ′∩D+(fi) for each i. By renumbering we may assume i = 0. SayZ∩D+(f0),
resp. Z ′ ∩D+(f0) is cut out by the ideal J , resp. J ′ of A(f0).
The inclusion J ′ ⊂ J . Let d be the least common multiple of deg(f0), . . . , deg(fn).
Note that each of the twistsOX(nd) is invertible, trivialized by fnd/ deg(fi)

i overD+(fi),
and that for any quasi-coherent module F on X the multiplication maps OX(nd) ⊗OX

F(m)→ F(nd+m) are isomorphisms, see Constructions, Lemma 10.2. Observe that J ′ is
the ideal generated by the elements g/fe0 where g ∈ I is homogeneous of degree e deg(f0)
(see proof of Constructions, Lemma 11.3). Of course, by replacing g by f l0g for suitable
l we may always assume that d|e. Then, since g vanishes as a section of OX(e deg(f0))
restricted to Z we see that g/fd0 is an element of J . Thus J ′ ⊂ J .
Conversely, suppose that g/fe0 ∈ J . Again we may assume d|e. Pick i ∈ {1, . . . , n}. Then
Z ∩D+(fi) is cut out by some ideal Ji ⊂ A(fi). Moreover,

J ·A(f0fi) = Ji ·A(f0fi).

The right hand side is the localization of Ji with respect to fdeg(fi)
0 /f

deg(f0)
i . It follows

that
fei0 g/f

(ei+e) deg(f0)/ deg(fi)
i ∈ Ji

for some ei � 0 sufficiently divisible. This proves that fmax(ei)
0 g is an element of I ,

because its restriction to each affine open D+(fi) vanishes on the closed subscheme Z ∩
D+(fi). Hence g/fe0 ∈ J ′ and we conclude J ⊂ J ′ as desired. �

Example 31.2. LetA be a graded ring. LetX = Proj(A) and S = Spec(A0). Given a
graded ideal I ⊂ Awe obtain a closed subscheme V+(I) = Proj(A/I)→ X by Construc-
tions, Lemma 11.3. Translating the result of Lemma 31.1 we see that ifX is quasi-compact,
then any closed subscheme Z is of the form V+(I(Z)) where the graded ideal I(Z) ⊂ A
is given by the rule

I(Z) = Ker(A −→
⊕

n≥0
Γ(Z,OZ(n)))
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Then we can ask the following two natural questions:
(1) Which ideals I are of the form I(Z)?
(2) Can we describe the operation I 7→ I(V+(I))?

We will answer this when A is Noetherian.

First, assume that A is generated by A1 over A0. In this case, for any ideal I ⊂ A the
kernel of the map A/I →

⊕
Γ(Proj(A/I),O) is the set of torsion elements of A/I , see

Cohomology of Schemes, Proposition 14.4. Hence we conclude that

I(V+(I)) = {x ∈ A | Anx ⊂ I for some n ≥ 0}

The ideal on the right is sometimes called the saturation of I . This answers (2) and the
answer to (1) is that an ideal is of the form I(Z) if and only if it is saturated, i.e., equal to
its own saturation.

IfA is a general Noetherian graded ring, then we use Cohomology of Schemes, Proposition
15.3. Thus we see that for d equal to the lcm of the degrees of generators of A over A0 we
get

I(V+(I)) = {x ∈ A | (Ax)nd ⊂ I for all n� 0}
This can be different from the saturation of I if d 6= 1. For example, suppose that A =
Q[x, y] with deg(x) = 2 and deg(y) = 3. Then d = 6. Let I = (y2). Then we see
y ∈ I(V+(I)) because for any homogeneous f ∈ A such that 6|deg(fy) we have y|f ,
hence fy ∈ I . It follows that I(V+(I)) = (y) but xny 6∈ I for all n hence I(V+(I)) is
not equal to the saturation.

Lemma 31.3. Let R be a UFD. Let Z ⊂ Pn
R be a closed subscheme which has no

embedded points such that every irreducible component of Z has codimension 1 in Pn
R.

Then the ideal I(Z) ⊂ R[T0, . . . , Tn] corresponding to Z is principal.

Proof. Observe that the local rings of X = Pn
R are UFDs because X is covered

by affine pieces isomorphic to An
R and R[x1, . . . , xn] is a UFD (Algebra, Lemma 120.10).

Thus Z is an effective Cartier divisor by Lemma 15.9. Let I ⊂ OX be the quasi-coherent
sheaf of ideals corresponding to Z. Choose an isomorphismO(m)→ I for some m ∈ Z,
see Lemma 28.5. Then the composition

OX(m)→ I → OX
is nonzero. We conclude thatm ≤ 0 and that the corresponding section ofOX(m)⊗−1 =
OX(−m) is given by someF ∈ R[T0, . . . , Tn] of degree−m, see Cohomology of Schemes,
Lemma 8.1. Thus on the ith standard open Ui = D+(Ti) the closed subscheme Z ∩ Ui is
cut out by the ideal

(F (T0/Ti, . . . , Tn/Ti)) ⊂ R[T0/Ti, . . . , Tn/Ti]

Thus the homogeneous elements of the graded ideal I(Z) = Ker(R[T0, . . . , Tn]→
⊕

Γ(OZ(m)))
is the set of homogeneous polynomials G such that

G(T0/Ti, . . . , Tn/Ti) ∈ (F (T0/Ti, . . . , Tn/Ti))

for i = 0, . . . , n. Clearing denominators, we see there exist ei ≥ 0 such that

T eii G ∈ (F )

for i = 0, . . . , n. As R is a UFD, so is R[T0, . . . , Tn]. Then F |T e0
0 G and F |T e1

1 G implies
F |G as T e0

0 and T e1
1 have no factor in common. Thus I(Z) = (F ). �
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In case the closed subscheme is locally cut out by finitely many equations we can define it
by a finite type ideal sheaf ofA.

Lemma 31.4. Let S be a quasi-compact and quasi-separated scheme. LetA be a quasi-
coherent graded OS-algebra. Let p : X = Proj

S
(A) → S be the relative Proj of A. Let

i : Z → X be a closed subscheme. If p is quasi-compact and i of finite presentation, then
there exists a d > 0 and a quasi-coherent finite type OS-submodule F ⊂ Ad such that
Z = Proj

S
(A/FA).

Proof. By Lemma 31.1 we know there exists a quasi-coherent graded sheaf of ideals
I ⊂ A such that Z = Proj(A/I). Since S is quasi-compact we can choose a finite affine
open covering S = U1∪ . . .∪Un. SayUi = Spec(Ri). LetA|Ui correspond to the graded
Ri-algebra Ai and I|Ui to the graded ideal Ii ⊂ Ai. Note that p−1(Ui) = Proj(Ai)
as schemes over Ri. Since p is quasi-compact we can choose finitely many homogeneous
elements fi,j ∈ Ai,+ such that p−1(Ui) = D+(fi,j). The condition on Z → X means
that the ideal sheaf of Z in OX is of finite type, see Morphisms, Lemma 21.7. Hence we
can find finitely many homogeneous elements hi,j,k ∈ Ii ∩ Ai,+ such that the ideal of
Z ∩ D+(fi,j) is generated by the elements hi,j,k/f

ei,j,k
i,j . Choose d > 0 to be a common

multiple of all the integers deg(fi,j) and deg(hi,j,k). By Properties, Lemma 22.3 there
exists a finite type quasi-coherent F ⊂ Id such that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j

are sections of F . By construction F is a solution. �

The following version of Lemma 31.4 will be used in the proof of Lemma 34.2.

Lemma 31.5. Let S be a quasi-compact and quasi-separated scheme. LetA be a quasi-
coherent graded OS-algebra. Let p : X = Proj

S
(A) → S be the relative Proj of A. Let

i : Z → X be a closed subscheme. Let U ⊂ X be an open. Assume that
(1) p is quasi-compact,
(2) i of finite presentation,
(3) U ∩ p(i(Z)) = ∅,
(4) U is quasi-compact,
(5) An is a finite typeOS-module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OS-submodule F ⊂ Ad with
(a) Z = Proj

S
(A/FA) and (b) the support ofAd/F is disjoint from U .

Proof. Let I ⊂ A be the sheaf of quasi-coherent graded ideals constructed in Lemma
31.1. LetUi,Ri,Ai, Ii, fi,j , hi,j,k , and d be as constructed in the proof of Lemma 31.4. Since
U ∩ p(i(Z)) = ∅we see that Id|U = Ad|U (by our construction of I as a kernel). Since U
is quasi-compact we can choose a finite affine open covering U = W1 ∪ . . . ∪Wm. Since
Ad is of finite type we can find finitely many sections gt,s ∈ Ad(Wt) which generate
Ad|Wt

= Id|Wt
as an OWt

-module. To finish the proof, note that by Properties, Lemma
22.3 there exists a finite type F ⊂ Id such that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j and gt,s

are sections of F . By construction F is a solution. �
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Lemma 31.6. Let X be a scheme. Let E be a quasi-coherent OX -module. There is a
bijection {

sections σ of the
morphism P(E)→ X

}
↔
{

surjections E → L where
L is an invertibleOX -module

}
In this case σ is a closed immersion and there is a canonical isomorphism

Ker(E → L)⊗OX
L⊗−1 −→ Cσ(X)/P(E)

Both the bijection and isomorphism are compatible with base change.

Proof. Recall that π : P(E) → X is the relative proj of the symmetric algebra on
E , see Constructions, Definition 21.1. Hence the descriptions of sections σ follows imme-
diately from the description of the functor of points of P(E) in Constructions, Lemma
16.11. Since π is separated, any section is a closed immersion (Constructions, Lemma 16.9
and Schemes, Lemma 21.11). Let U ⊂ X be an affine open and k ∈ E(U) and s ∈ E(U) be
local sections such that kmaps to zero inL and smaps to a generator s ofL. Then f = k/s
is a section ofOP(E) defined in an open neighbourhoodD+(s) of s(U) in π−1(U). More-
over, since k maps to zero in L we see that f is a section of the ideal sheaf of s(U) in
π−1(U). Thus we can take the image f of f in Cσ(X)/P(E)(U). We claim (1) that the im-
age f depends only on the sections k and s and not on the choice of s and (2) that we get an
isomorphism overU in this manner (see below). However, once (1) and (2) are established,
we see that the construction is compatible with base change byU ′ → U whereU ′ is affine,
which proves that these local maps glue and are compatible with arbitrary base change.

To prove (1) and (2) we make explicit what is going on. Namely, sayU = Spec(A) and say
E → L corresponds to the map of A-modules M → N . Then k ∈ K = Ker(M → N)
and s ∈M maps to a generator s of N . Hence M = K ⊕As. Thus

Sym(M) = Sym(K)[s]
Consider the identification Sym(K) → Sym(M)(s) via the rule g 7→ g/sn for g ∈
Symn(K). This gives an isomorphism D+(s) = Spec(Sym(K)) such that σ corresponds
to the ring map Sym(K)→ A mapping K to zero. Via this isomorphism we see that the
quasi-coherent module corresponding to K is identified with Cσ(U)/D+(s) proving (2).
Finally, suppose that s′ = k′ + s for some k′ ∈ K. Then

k/s′ = (k/s)(s/s′) = (k/s)(s′/s)−1 = (k/s)(1 + k′/s)−1

in an open neighbourhood of σ(U) inD+(s). Thus we see that s′/s restricts to 1 on σ(U)
and we see that k/s′ maps to the same element of the conormal sheaf as does k/s thereby
proving (1). �

32. Blowing up

Blowing up is an important tool in algebraic geometry.

Definition 32.1. LetX be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals,
and let Z ⊂ X be the closed subscheme corresponding to I , see Schemes, Definition 10.2.
The blowing up ofX alongZ , or the blowing up ofX in the ideal sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In
)
−→ X

The exceptional divisor of the blowup is the inverse image b−1(Z). Sometimes Z is called
the center of the blowup.
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We will see later that the exceptional divisor is an effective Cartier divisor. Moreover, the
blowing up is characterized as the “smallest” scheme over X such that the inverse image
of Z is an effective Cartier divisor.
If b : X ′ → X is the blowup of X in Z , then we often denote OX′(n) the twists of
the structure sheaf. Note that these are invertible OX′ -modules and that OX′(n) =
OX′(1)⊗n becauseX ′ is the relative Proj of a quasi-coherent gradedOX -algebra which is
generated in degree 1, see Constructions, Lemma 16.11. Note that OX′(1) is b-relatively
very ample, even though b need not be of finite type or even quasi-compact, because X ′

comes equipped with a closed immersion into P(I), see Morphisms, Example 38.3.

Lemma 32.2. LetX be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals. Let
U = Spec(A) be an affine open subscheme ofX and let I ⊂ A be the ideal corresponding
to I|U . If b : X ′ → X is the blowup of X in I , then there is a canonical isomorphism

b−1(U) = Proj(
⊕

d≥0
Id)

of b−1(U) with the homogeneous spectrum of the Rees algebra of I in A. Moreover,
b−1(U) has an affine open covering by spectra of the affine blowup algebras A[ Ia ].

Proof. The first statement is clear from the construction of the relative Proj via glue-
ing, see Constructions, Section 15. For a ∈ I denote a(1) the element a seen as an element
of degree 1 in the Rees algebra

⊕
n≥0 I

n. Since these elements generate the Rees algebra
over A we see that Proj(

⊕
d≥0 I

d) is covered by the affine opens D+(a(1)). The affine
scheme D+(a(1)) is the spectrum of the affine blowup algebra A′ = A[ Ia ], see Algebra,
Definition 70.1. This finishes the proof. �

Lemma 32.3. Let X1 → X2 be a flat morphism of schemes. Let Z2 ⊂ X2 be a closed
subscheme. Let Z1 be the inverse image of Z2 in X1. Let X ′

i be the blowup of Zi in Xi.
Then there exists a cartesian diagram

X ′
1

//

��

X ′
2

��
X1 // X2

of schemes.

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given
morphism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1 (by definition of
the inverse image, see Schemes, Definition 17.7). By Constructions, Lemma 16.10 we see
thatX1×X2X

′
2 is the relative Proj of

⊕
n≥0 g

∗In2 . Because g is flat the map g∗In2 → OX1

is injective with image In1 . Thus we see that X1 ×X2 X
′
2 = X ′

1. �

Lemma 32.4. Let X be a scheme. Let Z ⊂ X be a closed subscheme. The blowing up
b : X ′ → X of Z in X has the following properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,
(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphismOX′(−1) = OX′(E)

Proof. As blowing up commutes with restrictions to open subschemes (Lemma 32.3)
the first statement just means thatX ′ = X if Z = ∅. In this case we are blowing up in the
ideal sheaf I = OX and the result follows from Constructions, Example 8.14.
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The second statement is local on X , hence we may assume X affine. Say X = Spec(A)
and Z = Spec(A/I). By Lemma 32.2 we see that X ′ is covered by the spectra of the
affine blowup algebras A′ = A[ Ia ]. Then IA′ = aA′ and a maps to a nonzerodivisor in
A′ according to Algebra, Lemma 70.2. This proves the lemma as the inverse image of Z in
Spec(A′) corresponds to Spec(A′/IA′) ⊂ Spec(A′).
Consider the canonical map ψuniv,1 : b∗I → OX′(1), see discussion following Con-
structions, Definition 16.7. We claim that this factors through an isomorphism IE →
OX′(1) (which proves the final assertion). Namely, on the affine open corresponding to
the blowup algebra A′ = A[ Ia ] mentioned above ψuniv,1 corresponds to the A′-module
map

I ⊗A A′ −→
((⊕

d≥0
Id
)
a(1)

)
1

where a(1) is as in Algebra, Definition 70.1. We omit the verification that this is the map
I ⊗A A′ → IA′ = aA′. �

Lemma 32.5 (Universal property blowing up). Let X be a scheme. Let Z ⊂ X be a
closed subscheme. Let C be the full subcategory of (Sch/X) consisting of Y → X such
that the inverse image of Z is an effective Cartier divisor on Y . Then the blowing up
b : X ′ → X of Z in X is a final object of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 32.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism Y → X ′

over X . Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and let ID be the ideal
sheaf of D. Then f∗I → ID is a surjection to an invertible OY -module. This extends
to a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras. (We observe that IdD = I⊗d

D as
D is an effective Cartier divisor.) By the material in Constructions, Section 16 the triple
(1, f : Y → X,ψ) defines a morphism Y → X ′ over X . The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z
is unique. The open Y \D is scheme theoretically dense in Y according to Lemma 13.4.
Thus the morphism Y → X ′ is unique by Morphisms, Lemma 7.10 (also b is separated by
Constructions, Lemma 16.9). �

Lemma 32.6. Let b : X ′ → X be the blowing up of the scheme X along a closed
subscheme Z. Let U = Spec(A) be an affine open of X and let I ⊂ A be the ideal
corresponding to Z ∩ U . Let a ∈ I and let x′ ∈ X ′ be a point mapping to a point of U .
Then x′ is a point of the affine open U ′ = Spec(A[ Ia ]) if and only if the image of a in
OX′,x′ cuts out the exceptional divisor.

Proof. Since the exceptional divisor over U ′ is cut out by the image of a in A′ =
A[ Ia ] one direction is clear. Conversely, assume that the image of a in OX′,x′ cuts out
E. Since every element of I maps to an element of the ideal defining E over b−1(U) we
see that elements of I become divisible by a in OX′,x′ . Thus for f ∈ In we can write
f = ψ(f)an for some ψ(f) ∈ OX′,x′ . Observe that since a maps to a nonzerodivisor of
OX′,x′ the element ψ(f) is uniquely characterized by this. Then we define

A′ −→ OX′,x′ , f/an 7−→ ψ(f)
Here we use the description of blowup algebras given following Algebra, Definition 32.1.
The uniqueness mentioned above shows that this is an A-algebra homomorphism. This
gives a morphism Spec(OX′,x”)→ Spec(A′) = U ′. By the universal property of blowing
up (Lemma 32.5) this is a morphism over X ′, which of course implies that x′ ∈ U ′. �
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Lemma 32.7. Let X be a scheme. Let Z ⊂ X be an effective Cartier divisor. The
blowup of X in Z is the identity morphism of X .

Proof. Immediate from the universal property of blowups (Lemma 32.5). �

Lemma 32.8. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals. If
X is reduced, then the blowup X ′ of X in I is reduced.

Proof. Combine Lemma 32.2 with Algebra, Lemma 70.9. �

Lemma 32.9. Let X be a scheme. Let I ⊂ OX be a nonzero quasi-coherent sheaf of
ideals. If X is integral, then the blowup X ′ of X in I is integral.

Proof. Combine Lemma 32.2 with Algebra, Lemma 70.10. �

Lemma 32.10. Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let b : X ′ →
X be the blowing up of X along Z. Then b induces an bijective map from the set of
generic points of irreducible components of X ′ to the set of generic points of irreducible
components of X which are not in Z.

Proof. The exceptional divisorE ⊂ X ′ is an effective Cartier divisor andX ′ \E →
X \ Z is an isomorphism, see Lemma 32.4. Thus it suffices to show the following: given
an effective Cartier divisorD ⊂ S of a scheme S none of the generic points of irreducible
components of S are contained in D. To see this, we may replace S by the members of an
affine open covering. Hence by Lemma 13.2 we may assume S = Spec(A) and D = V (f)
where f ∈ A is a nonzerodivisor. Then we have to show f is not contained in any minimal
prime ideal p ⊂ A. If so, then f would map to a nonzerodivisor contained in the maximal
ideal of Rp which is a contradiction with Algebra, Lemma 25.1. �

Lemma 32.11. Let X be a scheme. Let b : X ′ → X be a blowup of X in a closed
subscheme. The pullback b−1D is defined for all effective Cartier divisors D ⊂ X and
pullbacks of meromorphic functions are defined for b (Definitions 13.12 and 23.4).

Proof. By Lemmas 32.2 and 13.2 this reduces to the following algebra fact: Let A be
a ring, I ⊂ A an ideal, a ∈ I , and x ∈ A a nonzerodivisor. Then the image of x in A[ Ia ]
is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ]. Then amxy = 0 in A
for some m. Hence amy = 0 as x is a nonzerodivisor. Whence y/an is zero in A[ Ia ] as
desired. �

Lemma 32.12. LetX be a scheme. Let I,J ⊂ OX be quasi-coherent sheaves of ideals.
Let b : X ′ → X be the blowing up of X in I . Let b′ : X ′′ → X ′ be the blowing up of X ′

in b−1JOX′ . Then X ′′ → X is canonically isomorphic to the blowing up of X in IJ .

Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 32.4. Then (b′)−1E is an effective Cartier divisor on X ′′ by Lemma
32.11. Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective Cartier divisor).
Consider the effective Cartier divisor E′′ = E′ + (b′)−1E. By construction the ideal of
E′′ is (b ◦ b′)−1I(b ◦ b′)−1JOX′′ . Hence according to Lemma 32.5 there is a canonical
morphism from X ′′ to the blowup c : Y → X of X in IJ . Conversely, as IJ pulls back
to an invertible ideal we see that c−1IOY defines an effective Cartier divisor, see Lemma
13.9. Thus a morphism c′ : Y → X ′ over X by Lemma 32.5. Then (c′)−1b−1JOY =
c−1JOY which also defines an effective Cartier divisor. Thus a morphism c′′ : Y → X ′′

overX ′. We omit the verification that this morphism is inverse to the morphismX ′′ → Y
constructed earlier. �



32. BLOWING UP 2697

Lemma 32.13. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals.
Let b : X ′ → X be the blowing up of X in the ideal sheaf I . If I is of finite type, then

(1) b : X ′ → X is a projective morphism, and
(2) OX′(1) is a b-relatively ample invertible sheaf.

Proof. The surjection of gradedOX -algebras

Sym∗
OX

(I) −→
⊕

d≥0
Id

defines via Constructions, Lemma 18.5 a closed immersion

X ′ = Proj
X

(
⊕

d≥0
Id) −→ P(I).

Hence b is projective, see Morphisms, Definition 43.1. The second statement follows for
example from the characterization of relatively ample invertible sheaves in Morphisms,
Lemma 37.4. Some details omitted. �

Lemma 32.14. LetX be a quasi-compact and quasi-separated scheme. LetZ ⊂ X be a
closed subscheme of finite presentation. Let b : X ′ → X be the blowing up with centerZ.
Let Z ′ ⊂ X ′ be a closed subscheme of finite presentation. Let X ′′ → X ′ be the blowing
up with center Z ′. There exists a closed subscheme Y ⊂ X of finite presentation, such
that

(1) Y = Z ∪ b(Z ′) set theoretically, and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .

Proof. The condition that Z → X is of finite presentation means that Z is cut
out by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms, Lemma 21.7.
Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z is a quasi-compact open

of X by Properties, Lemma 24.1. Since b−1(X \ Z)→ X \ Z is an isomorphism (Lemma
32.4) the same result shows that b−1(X \ Z) \ Z ′ is quasi-compact open in X ′. Hence
U = X \ (Z ∪ b(Z ′)) is quasi-compact open in X . By Lemma 31.5 there exist a d > 0
and a finite type OX -submodule F ⊂ Id such that Z ′ = Proj(A/FA) and such that the
support of Id/F is contained in X \ U .

Since F ⊂ Id is an OX -submodule we may think of F ⊂ Id ⊂ OX as a finite type
quasi-coherent sheaf of ideals on X . Let’s denote this J ⊂ OX to prevent confusion.
Since Id/J and O/Id are supported on X \ U we see that V (J ) is contained in X \ U .
Conversely, as J ⊂ Id we see that Z ⊂ V (J ). Over X \ Z ∼= X ′ \ b−1(Z) the sheaf
of ideals J cuts out Z ′ (see displayed formula below). Hence V (J ) equals Z ∪ b(Z ′). It
follows that also V (IJ ) = Z ∪ b(Z ′) set theoretically. Moreover, IJ is an ideal of finite
type as a product of two such. We claim that X ′′ → X is isomorphic to the blowing up
of X in IJ which finishes the proof of the lemma by setting Y = V (IJ ).

First, recall that the blowup ofX in IJ is the same as the blowup ofX ′ in b−1JOX′ , see
Lemma 32.12. Hence it suffices to show that the blowup of X ′ in b−1JOX′ agrees with
the blowup of X ′ in Z ′. We will show that

b−1JOX′ = IdEIZ′

as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective Cartier
divisor dE and we can use Lemmas 32.7 and 32.12.

To see the displayed equality of the ideals we may work locally. With notation A, I ,
a ∈ I as in Lemma 32.2 we see that F corresponds to an R-submodule M ⊂ Id mapping
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isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA) means that Z ′ ∩
Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad, m ∈ M . Say the
element m ∈ M corresponds to the function f ∈ J . Then in the affine blowup algebra
A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the equality holds. �

33. Strict transform

In this section we briefly discuss strict transform under blowing up. Let S be a scheme and
let Z ⊂ S be a closed subscheme. Let b : S′ → S be the blowing up of S in Z and denote
E ⊂ S′ the exceptional divisor E = b−1Z. In the following we will often consider a
scheme X over S and form the cartesian diagram

pr−1
S′ E //

��

X ×S S′
prX
//

prS′

��

X

f

��
E // S′ // S

Since E is an effective Cartier divisor (Lemma 32.4) we see that pr−1
S′ E ⊂ X ×S S′ is

locally principal (Lemma 13.11). Thus the complement of pr−1
S′ E inX ×S S′ is retrocom-

pact (Lemma 13.3). Consequently, for a quasi-coherentOX×SS′ -module G the subsheaf of
sections supported on pr−1

S′ E is a quasi-coherent submodule, see Properties, Lemma 24.5.
If G is a quasi-coherent sheaf of algebras, e.g., G = OX×SS′ , then this subsheaf is an ideal
of G.

Definition 33.1. With Z ⊂ S and f : X → S as above.
(1) Given a quasi-coherentOX -module F the strict transform of F with respect to

the blowup of S in Z is the quotient F ′ of pr∗
XF by the submodule of sections

supported on pr−1
S′ E.

(2) The strict transform ofX is the closed subschemeX ′ ⊂ X ×S S′ cut out by the
quasi-coherent ideal of sections ofOX×SS′ supported on pr−1

S′ E.

Note that taking the strict transform along a blowup depends on the closed subscheme
used for the blowup (and not just on the morphism S′ → S). This notion is often used
for closed subschemes of S. It turns out that the strict transform of X is a blowup of X .

Lemma 33.2. In the situation of Definition 33.1.
(1) The strict transform X ′ of X is the blowup of X in the closed subscheme f−1Z

of X .
(2) For a quasi-coherent OX -module F the strict transform F ′ is canonically iso-

morphic to the pushforward along X ′ → X ×S S′ of the strict transform of F
relative to the blowing up X ′ → X .

Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 32.5) there exists a commutative diagram

X ′′ //

��

X

��
S′ // S

whence a morphism X ′′ → X ×S S′. Thus the first assertion is that this morphism is a
closed immersion with image X ′. The question is local on X . Thus we may assume X
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and S are affine. Say that S = Spec(A), X = Spec(B), and Z is cut out by the ideal
I ⊂ A. Set J = IB. The map B ⊗A

⊕
n≥0 I

n →
⊕

n≥0 J
n defines a closed immersion

X ′′ → X ×S S′, see Constructions, Lemmas 11.6 and 11.5. We omit the verification that
this morphism is the same as the one constructed above from the universal property. Pick
a ∈ I corresponding to the affine open Spec(A[ Ia ]) ⊂ S′, see Lemma 32.2. The inverse
image of Spec(A[ Ia ]) in the strict transform X ′ of X is the spectrum of

B′ = (B ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 24.5. On the other hand, letting b ∈ J be the image of awe see that
Spec(B[Jb ]) is the inverse image of Spec(A[ Ia ]) in X ′′. By Algebra, Lemma 70.3 the open
Spec(B[Jb ]) maps isomorphically to the open subscheme pr−1

S′ (Spec(A[ Ia ])) of X ′. Thus
X ′′ → X ′ is an isomorphism.

In the notation above, let F correspond to the B-module N . The strict transform of F
corresponds to the B ⊗A A[ Ia ]-module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 24.5. The strict transform of F relative to the blowup of X in
f−1Z corresponds to theB[Jb ]-moduleN ⊗B B[Jb ]/b-power-torsion. In exactly the same
way as above one proves that these two modules are isomorphic. Details omitted. �

Lemma 33.3. In the situation of Definition 33.1.
(1) If X is flat over S at all points lying over Z , then the strict transform of X is

equal to the base change X ×S S′.
(2) LetF be a quasi-coherentOX -module. IfF is flat over S at all points lying over

Z , then the strict transform F ′ of F is equal to the pullback pr∗
XF .

Proof. We will prove part (2) as it implies part (1) by the definition of the strict
transform of a scheme over S. The question is local on X . Thus we may assume that
S = Spec(A), X = Spec(B), and that F corresponds to the B-module N . Then F ′ over
the open Spec(B ⊗A A[ Ia ]) of X ×S S′ corresponds to the module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 24.5. Thus we have to show that the a-power-torsion ofN⊗AA[ Ia ]
is zero. Let y ∈ N ⊗A A[ Ia ] with any = 0. If q ⊂ B is a prime and a 6∈ q, then y maps
to zero in (N ⊗A A[ Ia ])q. on the other hand, if a ∈ q, then Nq is a flat A-module and we
see that Nq ⊗A A[ Ia ] = (N ⊗A A[ Ia ])q has no a-power torsion (as A[ Ia ] doesn’t). Hence
y maps to zero in this localization as well. We conclude that y is zero by Algebra, Lemma
23.1. �

Lemma 33.4. Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let b : S′ → S be
the blowing up of Z in S. Let g : X → Y be an affine morphism of schemes over S. Let
F be a quasi-coherent sheaf on X . Let g′ : X ×S S′ → Y ×S S′ be the base change of g.
LetF ′ be the strict transform ofF relative to b. Then g′

∗F ′ is the strict transform of g∗F .

Proof. Observe that g′
∗pr∗

XF = pr∗
Y g∗F by Cohomology of Schemes, Lemma 5.1.

LetK ⊂ pr∗
XF be the subsheaf of sections supported in the inverse image ofZ inX×SS′.

By Properties, Lemma 24.7 the pushforward g′
∗K is the subsheaf of sections of pr∗

Y g∗F
supported in the inverse image of Z in Y ×S S′. As g′ is affine (Morphisms, Lemma 11.8)
we see that g′

∗ is exact, hence we conclude. �
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Lemma 33.5. Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let D ⊂ S be an
effective Cartier divisor. Let Z ′ ⊂ S be the closed subscheme cut out by the product of
the ideal sheaves of Z and D. Let S′ → S be the blowup of S in Z.

(1) The blowup of S in Z ′ is isomorphic to S′ → S.
(2) Let f : X → S be a morphism of schemes and let F be a quasi-coherent OX -

module. If F has no nonzero local sections supported in f−1D, then the strict
transform of F relative to the blowing up in Z agrees with the strict transform
of F relative to the blowing up of S in Z ′.

Proof. The first statement follows on combining Lemmas 32.12 and 32.7. Using
Lemma 32.2 the second statement translates into the following algebra problem. Let A
be a ring, I ⊂ A an ideal, x ∈ A a nonzerodivisor, and a ∈ I . Let M be an A-module
whose x-torsion is zero. To show: the a-power torsion in M ⊗A A[ Ia ] is equal to the xa-
power torsion. The reason for this is that the kernel and cokernel of the mapA→ A[ Ia ] is
a-power torsion, so this map becomes an isomorphism after inverting a. Hence the kernel
and cokernel of M →M ⊗A A[ Ia ] are a-power torsion too. This implies the result. �

Lemma 33.6. Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let b : S′ → S
be the blowing up with center Z. Let Z ′ ⊂ S′ be a closed subscheme. Let S′′ → S′ be the
blowing up with center Z ′. Let Y ⊂ S be a closed subscheme such that Y = Z ∪ b(Z ′)
set theoretically and the composition S′′ → S is isomorphic to the blowing up of S in Y .
In this situation, given any scheme X over S and F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of S in Y is equal to
the strict transform with respect to the blowup S′′ → S′ in Z ′ of the strict
transform of F with respect to the blowup S′ → S of S in Z , and

(2) the strict transform of X with respect to the blowing up of S in Y is equal to
the strict transform with respect to the blowup S′′ → S′ in Z ′ of the strict
transform of X with respect to the blowup S′ → S of S in Z.

Proof. Let F ′ be the strict transform of F with respect to the blowup S′ → S of S
in Z. Let F ′′ be the strict transform of F ′ with respect to the blowup S′′ → S′ of S′ in
Z ′. Let G be the strict transform of F with respect to the blowup S′′ → S of S in Y . We
also label the morphisms

X ×S S′′
q
//

f ′′

��

X ×S S′
p

//

f ′

��

X

f

��
S′′ // S′ // S

By definition there is a surjection p∗F → F ′ and a surjection q∗F ′ → F ′′ which combine
by right exactness of q∗ to a surjection (p ◦ q)∗F → F ′′. Also we have the surjection
(p ◦ q)∗F → G. Thus it suffices to prove that these two surjections have the same kernel.

The kernel of the surjection p∗F → F ′ is supported on (f ◦ p)−1Z , so this map is an iso-
morphism at points in the complement. Hence the kernel of q∗p∗F → q∗F ′ is supported
on (f ◦ p ◦ q)−1Z. The kernel of q∗F ′ → F ′′ is supported on (f ′ ◦ q)−1Z ′. Combined we
see that the kernel of (p◦q)∗F → F ′′ is supported on (f◦p◦q)−1Z∪(f ′◦q)−1Z ′ = (f◦p◦
q)−1Y . By construction of G we see that we obtain a factorization (p ◦ q)∗F → F ′′ → G.
To finish the proof it suffices to show that F ′′ has no nonzero (local) sections supported
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on (f ◦ p ◦ q)−1(Y ) = (f ◦ p ◦ q)−1Z ∪ (f ′ ◦ q)−1Z ′. This follows from Lemma 33.5 ap-
plied to F ′ onX ×S S′ over S′, the closed subscheme Z ′ and the effective Cartier divisor
b−1Z. �

Lemma 33.7. In the situation of Definition 33.1. Suppose that

0→ F1 → F2 → F3 → 0

is an exact sequence of quasi-coherent sheaves on X which remains exact after any base
change T → S. Then the strict transforms of F ′

i relative to any blowup S′ → S form a
short exact sequence 0→ F ′

1 → F ′
2 → F ′

3 → 0 too.

Proof. We may localize on S and X and assume both are affine. Then we may push
Fi to S , see Lemma 33.4. We may assume that our blowup is the morphism 1 : S → S
associated to an effective Cartier divisor D ⊂ S. Then the translation into algebra is the
following: Suppose thatA is a ring and 0→M1 →M2 →M3 → 0 is a universally exact
sequence of A-modules. Let a ∈ A. Then the sequence

0→M1/a-power torsion→M2/a-power torsion→M3/a-power torsion→ 0

is exact too. Namely, surjectivity of the last map and injectivity of the first map are
immediate. The problem is exactness in the middle. Suppose that x ∈ M2 maps to
zero in M3/a-power torsion. Then y = anx ∈ M1 for some n. Then y maps to zero
in M2/a

nM2. Since M1 → M2 is universally injective we see that y maps to zero in
M1/a

nM1. Thus y = anz for some z ∈ M1. Thus an(x − y) = 0. Hence y maps to the
class of x in M2/a-power torsion as desired. �

34. Admissible blowups

To have a bit more control over our blowups we introduce the following standard termi-
nology.

Definition 34.1. LetX be a scheme. LetU ⊂ X be an open subscheme. A morphism
X ′ → X is called a U -admissible blowup if there exists a closed immersion Z → X of
finite presentation with Z disjoint from U such thatX ′ is isomorphic to the blowup ofX
in Z.

We recall thatZ → X is of finite presentation if and only if the ideal sheaf IZ ⊂ OX is of
finite type, see Morphisms, Lemma 21.7. In particular, a U -admissible blowup is a projec-
tive morphism, see Lemma 32.13. Note that there can be multiple centers which give rise
to the same morphism. Hence the requirement is just the existence of some center disjoint
fromU which producesX ′. Finally, as the morphism b : X ′ → X is an isomorphism over
U (see Lemma 32.4) we will often abuse notation and think of U as an open subscheme of
X ′ as well.

Lemma 34.2. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X be a
quasi-compact open subscheme. Let b : X ′ → X be aU -admissible blowup. LetX ′′ → X ′

be a U -admissible blowup. Then the composition X ′′ → X is a U -admissible blowup.

Proof. Immediate from the more precise Lemma 32.14. �

Lemma 34.3. Let X be a quasi-compact and quasi-separated scheme. Let U, V ⊂ X
be quasi-compact open subschemes. Let b : V ′ → V be a U ∩ V -admissible blowup. Then
there exists a U -admissible blowup X ′ → X whose restriction to V is V ′.
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Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that V (I)
is disjoint from U ∩ V and such that V ′ is isomorphic to the blowup of V in I . Let
I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U isOU and whose
restriction to V is I (see Sheaves, Section 33). By Properties, Lemma 22.2 there exists a
finite type quasi-coherent sheaf of ideals J ⊂ OX whose restriction to U ∪ V is I ′. The
lemma follows. �

Lemma 34.4. LetX be a quasi-compact and quasi-separated scheme. Let U ⊂ X be a
quasi-compact open subscheme. Let bi : Xi → X , i = 1, . . . , n be U -admissible blowups.
There exists a U -admissible blowup b : X ′ → X such that (a) b factors as X ′ → Xi → X
for i = 1, . . . , n and (b) each of the morphisms X ′ → Xi is a U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that V (Ii)
is disjoint from U and such that Xi is isomorphic to the blowup of X in Ii. Set I =
I1 · . . . · In and let X ′ be the blowup of X in I . Then X ′ → X factors through bi by
Lemma 32.12. �

Lemma 34.5. Let X be a quasi-compact and quasi-separated scheme. Let U, V be
quasi-compact disjoint open subschemes ofX . Then there exist aU∪V -admissible blowup
b : X ′ → X such that X ′ is a disjoint union of open subschemes X ′ = X ′

1 q X ′
2 with

b−1(U) ⊂ X ′
1 and b−1(V ) ⊂ X ′

2.

Proof. Choose a finite type quasi-coherent sheaf of ideals I , resp. J such that X \
U = V (I), resp. X \ V = V (J ), see Properties, Lemma 24.1. Then V (IJ ) = X set
theoretically, hence IJ is a locally nilpotent sheaf of ideals. Since I and J are of finite
type and X is quasi-compact there exists an n > 0 such that InJ n = 0. We may and
do replace I by In and J by J n. Whence IJ = 0. Let b : X ′ → X be the blowing
up in I + J . This is U ∪ V -admissible as V (I + J ) = X \ U ∪ V . We will show that
X ′ is a disjoint union of open subschemes X ′ = X ′

1 q X ′
2 such that b−1I|X′

2
= 0 and

b−1J |X′
1

= 0 which will prove the lemma.

We will use the description of the blowing up in Lemma 32.2. Suppose thatU = Spec(A) ⊂
X is an affine open such that I|U , resp. J |U corresponds to the finitely generated ideal
I ⊂ A, resp. J ⊂ A. Then

b−1(U) = Proj(A⊕ (I + J)⊕ (I + J)2 ⊕ . . .)
This is covered by the affine open subsets A[ I+J

x ] and A[ I+J
y ] with x ∈ I and y ∈ J .

Since x ∈ I is a nonzerodivisor in A[ I+J
x ] and IJ = 0 we see that JA[ I+J

x ] = 0. Since
y ∈ J is a nonzerodivisor in A[ I+J

y ] and IJ = 0 we see that IA[ I+J
y ] = 0. Moreover,

Spec(A[ I+J
x ]) ∩ Spec(A[ I+J

y ]) = Spec(A[ I+J
xy ]) = ∅

because xy is both a nonzerodivisor and zero. Thus b−1(U) is the disjoint union of the
open subscheme U1 defined as the union of the standard opens Spec(A[ I+J

x ]) for x ∈ I
and the open subschemeU2 which is the union of the affine opens Spec(A[ I+J

y ]) for y ∈ J .
We have seen that b−1IOX′ restricts to zero on U2 and b−1IOX′ restricts to zero on U1.
We omit the verification that these open subschemes glue to global open subschemes X ′

1
and X ′

2. �

Lemma 34.6. Let X be a locally Noetherian scheme. Let L be an invertible OX -
module. Let s be a regular meromorphic section of L. Let U ⊂ X be the maximal open
subscheme such that s corresponds to a section of L over U . The blowup b : X ′ → X in
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the ideal of denominators of s is U -admissible. There exists an effective Cartier divisor
D ⊂ X ′ and an isomorphism

b∗L = OX′(D − E),

where E ⊂ X ′ is the exceptional divisor such that the meromorphic section b∗s corre-
sponds, via the isomorphism, to the meromorphic section 1D ⊗ (1E)−1.

Proof. From the definition of the ideal of denominators in Definition 23.10 we im-
mediately see that b is a U -admissible blowup. For the notation 1D , 1E , andOX′(D−E)
please see Definition 14.1. The pullback b∗s is defined by Lemmas 32.11 and 23.8. Thus the
statement of the lemma makes sense. We can reinterpret the final assertion as saying that
b∗s is a global regular section of b∗L(E) whose zero scheme isD. This uniquely definesD
hence to prove the lemma we may work affine locally onX andX ′. AssumeX = Spec(A)
is affine and L = OX . Then s is a regular meromorphic function and shrinking further
we may assume s = a′/awith a′, a ∈ A nonzerodivisors. Then the ideal of denominators
of s corresponds to the ideal I = {x ∈ A | xa′ ∈ aA}. Recall that X ′ is covered by
spectra of affine blowup algebras A′ = A[ Ix ] with x ∈ I (Lemma 32.2). Fix x ∈ I and
write xa′ = aa′′ for some a′′ ∈ A. The divisor E ⊂ X ′ is cut out by x ∈ A′ over the
spectrum of A′ and hence 1/x is a generator of OX′(E) over Spec(A′). Finally, in the
total quotient ring of A′ we have a′/a = a′′/x. Hence b∗s = a′/a restricts to a regular
section of OX′(E) which is over Spec(A′) given by a′′/x. This finishes the proof. (The
divisor D ∩ Spec(A′) is cut out by the image of a′′ in A′.) �

35. Blowing up and flatness

We continue the discussion started in More on Algebra, Section 26. We will prove further
results in More on Flatness, Section 30.

Lemma 35.1. Let S be a scheme. Let F be a finite type quasi-coherent OS-module.
Let Zk ⊂ S be the closed subscheme cut out by Fitk(F), see Section 9. Let S′ → S be
the blowup of S in Zk and let F ′ be the strict transform of F . Then F ′ can locally be
generated by ≤ k sections.

Proof. Recall thatF ′ can locally be generated by≤ k sections if and only if Fitk(F ′) =
OS′ , see Lemma 9.4. Hence this lemma is a translation of More on Algebra, Lemma 26.3.

�

Lemma 35.2. Let S be a scheme. Let F be a finite type quasi-coherent OS-module.
Let Zk ⊂ S be the closed subscheme cut out by Fitk(F), see Section 9. Assume that F is
locally free of rank k on S \ Zk. Let S′ → S be the blowup of S in Zk and let F ′ be the
strict transform of F . Then F ′ is locally free of rank k.

Proof. Translation of More on Algebra, Lemma 26.4. �

Lemma 35.3. Let X be a scheme. Let F be a finitely presented OX -module. Let
U ⊂ X be a scheme theoretically dense open such thatF|U is finite locally free of constant
rank r. Then

(1) the blowup b : X ′ → X of X in the rth Fitting ideal of F is U -admissible,
(2) the strict transform F ′ of F with respect to b is locally free of rank r,
(3) the kernel K of the surjection b∗F → F ′ is finitely presented and K|U = 0,
(4) b∗F and K are perfectOX′ -modules of tor dimension ≤ 1.
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Proof. The ideal Fitr(F) is of finite type by Lemma 9.2 and its restriction to U is
equal toOU by Lemma 9.5. Hence b : X ′ → X is U -admissible, see Definition 34.1.
By Lemma 9.5 the restriction of Fitr−1(F) toU is zero, and sinceU is scheme theoretically
dense we conclude that Fitr−1(F) = 0 on all of X . Thus it follows from Lemma 9.5 that
F is locally free of rank r on the complement of subscheme cut out by the rth Fitting ideal
of F (this complement may be bigger than U which is why we had to do this step in the
argument). Hence by Lemma 35.2 the strict transform

b∗F −→ F ′

is locally free of rank r. The kernel K of this map is supported on the exceptional divisor
of the blowup b and hence K|U = 0. Finally, since F ′ is finite locally free and since the
displayed arrow is surjective, we can locally on X ′ write b∗F as the direct sum of K and
F ′. Since b∗F ′ is finitely presented (Modules, Lemma 11.4) the same is true for K.
The statement on tor dimension follows from More on Algebra, Lemma 8.9. �

36. Modifications

In this section we will collect results of the type: after a modification such and such are
true. We will later see that a modification can be dominated by a blowup (More on Flat-
ness, Lemma 31.4).

Lemma 36.1. Let X be an integral scheme. Let E be a finite locally freeOX -module.
There exists a modification f : X ′ → X such that f∗E has a filtration whose successive
quotients are invertibleOX′ -modules.

Proof. We prove this by induction on the rank r of E . If r = 1 or r = 0 the lemma
is obvious. Assume r > 1. Let P = P(E) with structure morphism π : P → X , see
Constructions, Section 21. Then π is proper (Lemma 30.4). There is a canonical surjection

π∗E → OP (1)
whose kernel is finite locally free of rank r − 1. Choose a nonempty open subscheme
U ⊂ X such that E|U ∼= O⊕r

U . Then PU = π−1(U) is isomorphic to Pr−1
U . In particular,

there exists a section s : U → PU of π. Let X ′ ⊂ P be the scheme theoretic image of the
morphism U → PU → P . Then X ′ is integral (Morphisms, Lemma 6.7), the morphism
f = π|X′ : X ′ → X is proper (Morphisms, Lemmas 41.6 and 41.4), and f−1(U)→ U is an
isomorphism. Hence f is a modification (Morphisms, Definition 51.11). By construction
the pullback f∗E has a two step filtration whose quotient is invertible because it is equal
to OP (1)|X′ and whose sub E ′ is locally free of rank r − 1. By induction we can find a
modification g : X ′′ → X ′ such that g∗E ′ has a filtration as in the statement of the lemma.
Thus f ◦ g : X ′′ → X is the required modification. �

Lemma 36.2. LetS be a scheme. LetX , Y be schemes overS. AssumeX is Noetherian
and Y is proper over S. Given an S-rational map f : U → Y from X to Y there exists a
morphism p : X ′ → X and an S-morphism f ′ : X ′ → Y such that

(1) p is proper and p−1(U)→ U is an isomorphism,
(2) f ′|p−1(U) is equal to f ◦ p|p−1(U).

Proof. Denote j : U → X the inclusion morphism. Let X ′ ⊂ Y ×S X be the
scheme theoretic image of (f, j) : U → Y ×S X (Morphisms, Definition 6.2). The
projection g : Y ×S X → X is proper (Morphisms, Lemma 41.5). The composition
p : X ′ → X of X ′ → Y ×S X and g is proper (Morphisms, Lemmas 41.6 and 41.4).
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Since g is separated and U ⊂ X is retrocompact (as X is Noetherian) we conclude that
p−1(U) → U is an isomorphism by Morphisms, Lemma 6.8. On the other hand, the
composition f ′ : X ′ → Y of X ′ → Y ×S X and the projection Y ×S X → Y agrees
with f on p−1(U). �
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CHAPTER 32

Limits of Schemes

1. Introduction

In this chapter we put material related to limits of schemes. We mostly study limits of
inverse systems over directed sets (Categories, Definition 21.1) with affine transition maps.
We discuss absolute Noetherian approximation. We characterize schemes locally of finite
presentation over a base as those whose associated functor of points is limit preserving. As
an application of absolute Noetherian approximation we prove that the image of an affine
under an integral morphism is affine. Moreover, we prove some very general variants of
Chow’s lemma. A basic reference is [?].

2. Directed limits of schemes with affine transition maps

In this section we construct the limit.

Lemma 2.1. Let I be a directed set. Let (Si, fii′) be an inverse system of schemes over
I . If all the schemes Si are affine, then the limit S = limi Si exists in the category of
schemes. In fact S is affine and S = Spec(colimiRi) with Ri = Γ(Si,O).

Proof. Just define S = Spec(colimiRi). It follows from Schemes, Lemma 6.4 that
S is the limit even in the category of locally ringed spaces. �

Lemma 2.2. Let I be a directed set. Let (Si, fii′) be an inverse system of schemes over
I . If all the morphisms fii′ : Si → Si′ are affine, then the limit S = limi Si exists in the
category of schemes. Moreover,

(1) each of the morphisms fi : S → Si is affine,
(2) for an element 0 ∈ I and any open subscheme U0 ⊂ S0 we have

f−1
0 (U0) = limi≥0 f

−1
i0 (U0)

in the category of schemes.

Proof. Choose an element 0 ∈ I . Note that I is nonempty as the limit is directed.
For every i ≥ 0 consider the quasi-coherent sheaf of OS0 -algebras Ai = fi0,∗OSi . Recall
that Si = Spec

S0
(Ai), see Morphisms, Lemma 11.3. Set A = colimi≥0Ai. This is a

quasi-coherent sheaf of OS0 -algebras, see Schemes, Section 24. Set S = Spec
S0

(A). By
Morphisms, Lemma 11.5 we get for i ≥ 0 morphisms fi : S → Si compatible with the
transition morphisms. Note that the morphisms fi are affine by Morphisms, Lemma 11.11
for example. By Lemma 2.1 above we see that for any affine open U0 ⊂ S0 the inverse
image U = f−1

0 (U0) ⊂ S is the limit of the system of opens Ui = f−1
i0 (U0), i ≥ 0 in the

category of schemes.
Let T be a scheme. Let gi : T → Si be a compatible system of morphisms. To show that
S = limi Si we have to prove there is a unique morphism g : T → S with gi = fi ◦ g
for all i ∈ I . For every t ∈ T there exists an affine open U0 ⊂ S0 containing g0(t). Let

2707
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V ⊂ g−1
0 (U0) be an affine open neighbourhood containing t. By the remarks above we

obtain a unique morphism gV : V → U = f−1
0 (U0) such that fi ◦ gV = gi|Ui for all i.

The open sets V ⊂ T so constructed form a basis for the topology of T . The morphisms
gV glue to a morphism g : T → S because of the uniqueness property. This gives the
desired morphism g : T → S.

The final statement is clear from the construction of the limit above. �

Lemma 2.3. Let I be a directed set. Let (Si, fii′) be an inverse system of schemes over
I . Assume all the morphisms fii′ : Si → Si′ are affine, Let S = limi Si. Let 0 ∈ I .
Suppose that T is a scheme over S0. Then

T ×S0 S = limi≥0 T ×S0 Si

Proof. The right hand side is a scheme by Lemma 2.2. The equality is formal, see
Categories, Lemma 14.10. �

3. Infinite products

Infinite products of schemes usually do not exist. For example in Examples, Section 55 it
is shown that an infinite product of copies of P1 is not even an algebraic space.

On the other hand, infinite products of affine schemes do exist and are affine. Using
Schemes, Lemma 6.4 this corresponds to the fact that in the category of rings we have
infinite coproducts: if I is a set and Ri is a ring for each i, then we can consider the ring

R = ⊗Ri = colim{i1,...,in}⊂I Ri1 ⊗Z . . .⊗Z Rin

Given another ringA a mapR→ A is the same thing as a collection of ring mapsRi → A
for all i ∈ I as follows from the corresponding property of finite tensor products.

Lemma 3.1. Let S be a scheme. Let I be a set and for each i ∈ I let fi : Ti → S be an
affine morphism. Then the product T =

∏
Ti exists in the category of schemes over S.

In fact, we have
T = lim{i1,...,in}⊂I Ti1 ×S . . .×S Tin

and the projection morphisms T → Ti1 ×S . . .×S Tin are affine.

Proof. Omitted. Hint: Argue as in the discussion preceding the lemma and use
Lemma 2.2 for existence of the limit. �

Lemma 3.2. Let S be a scheme. Let I be a set and for each i ∈ I let fi : Ti → S be a
surjective affine morphism. Then the product T =

∏
Ti in the category of schemes over

S (Lemma 3.1) maps surjectively to S.

Proof. Let s ∈ S. Choose ti ∈ Ti mapping to s. Choose a huge field extension
K/κ(s) such that κ(si) embeds intoK for each i. Then we get morphisms Spec(K)→ Ti
with image si agreeing as morphisms to S. Whence a morphism Spec(K) → T which
proves there is a point of T mapping to s. �

Lemma 3.3. Let S be a scheme. Let I be a set and for each i ∈ I let fi : Ti → S
be an integral morphism. Then the product T =

∏
Ti in the category of schemes over S

(Lemma 3.1) is integral over S.

Proof. Omitted. Hint: On affine pieces this reduces to the following algebra fact: if
A→ Bi is integral for all i, then A→ ⊗ABi is integral. �



4. DESCENDING PROPERTIES 2709

4. Descending properties

First some basic lemmas describing the topology of a limit.

Lemma 4.1. Let S = limSi be the limit of a directed inverse system of schemes with
affine transition morphisms (Lemma 2.2). Then Sset = limi Si,set where Sset indicates
the underlying set of the scheme S.

Proof. Pick i ∈ I . Take Ui ⊂ Si an affine open. Denote Ui′ = f−1
i′i (Ui) and

U = f−1
i (Ui). Here fi′i : Si′ → Si is the transition morphism and fi : S → Si

is the projection. By Lemma 2.2 we have U = limi′≥i Ui. Suppose we can show that
Uset = limi′≥i Ui′,set. Then the lemma follows by a simple argument using an affine
covering of Si. Hence we may assume all Si and S affine. This reduces us to the algebra
question considered in the next paragraph.

Suppose given a system of rings (Ai, ϕii′) over I . SetA = colimiAi with canonical maps
ϕi : Ai → A. Then

Spec(A) = limi Spec(Ai)
Namely, suppose that we are given primes pi ⊂ Ai such that pi = ϕ−1

ii′ (pi′) for all i′ ≥ i.
Then we simply set

p = {x ∈ A | ∃i, xi ∈ pi with ϕi(xi) = x}

It is clear that this is an ideal and has the property that ϕ−1
i (p) = pi. Then it follows

easily that it is a prime ideal as well. �

Lemma 4.2. Let S = limSi be the limit of a directed inverse system of schemes with
affine transition morphisms (Lemma 2.2). Then Stop = limi Si,top where Stop indicates
the underlying topological space of the scheme S.

Proof. We will use the criterion of Topology, Lemma 14.3. We have seen thatSset =
limi Si,set in Lemma 4.1. The maps fi : S → Si are morphisms of schemes hence continu-
ous. Thus f−1

i (Ui) is open for each openUi ⊂ Si. Finally, let s ∈ S and let s ∈ V ⊂ S be
an open neighbourhood. Choose 0 ∈ I and choose an affine open neighbourhoodU0 ⊂ S0
of the image of s. Then f−1

0 (U0) = limi≥0 f
−1
i0 (U0), see Lemma 2.2. Then f−1

0 (U0) and
f−1
i0 (U0) are affine and

OS(f−1
0 (U0)) = colimi≥0OSi(f−1

i0 (U0))

either by the proof of Lemma 2.2 or by Lemma 2.1. Choose a ∈ OS(f−1
0 (U0)) such that

s ∈ D(a) ⊂ V . This is possible because the principal opens form a basis for the topology
on the affine scheme f−1

0 (U0). Then we can pick an i ≥ 0 and ai ∈ OSi(f−1
i0 (U0))

mapping to a. It follows that D(ai) ⊂ f−1
i0 (U0) ⊂ Si is an open subset whose inverse

image in S is D(a). This finishes the proof. �

Lemma 4.3. Let S = limSi be the limit of a directed inverse system of schemes
with affine transition morphisms (Lemma 2.2). If all the schemes Si are nonempty and
quasi-compact, then the limit S = limi Si is nonempty.

Proof. Choose 0 ∈ I . Note that I is nonempty as the limit is directed. Choose an
affine open covering S0 =

⋃
j=1,...,m Uj . Since I is directed there exists a j ∈ {1, . . . ,m}

such that f−1
i0 (Uj) 6= ∅ for all i ≥ 0. Hence limi≥0 f

−1
i0 (Uj) is not empty since a di-

rected colimit of nonzero rings is nonzero (because 1 6= 0). As limi≥0 f
−1
i0 (Uj) is an open

subscheme of the limit we win. �
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Lemma 4.4. Let S = limSi be the limit of a directed inverse system of schemes with
affine transition morphisms (Lemma 2.2). Let s ∈ S with images si ∈ Si. Then

(1) s = lim si as schemes, i.e., κ(s) = colim κ(si),
(2) {s} = lim {si} as sets, and
(3) {s} = lim {si} as schemes where {s} and {si} are endowed with the reduced

induced scheme structure.

Proof. Choose 0 ∈ I and an affine open covering S0 =
⋃
j∈J U0,j . For i ≥ 0

let Ui,j = f−1
i,0 (U0,j) and set Uj = f−1

0 (U0,j). Here fi′i : Si′ → Si is the transition
morphism and fi : S → Si is the projection. For j ∈ J the following are equivalent: (a)
s ∈ Uj , (b) s0 ∈ U0,j , (c) si ∈ Ui,j for all i ≥ 0. Let J ′ ⊂ J be the set of indices for
which (a), (b), (c) are true. Then {s} =

⋃
j∈J′({s} ∩Uj) and similarly for {si} for i ≥ 0.

Note that {s} ∩ Uj is the closure of the set {s} in the topological space Uj . Similarly for
{si} ∩ Ui,j for i ≥ 0. Hence it suffices to prove the lemma in the case S and Si affine for
all i. This reduces us to the algebra question considered in the next paragraph.

Suppose given a system of rings (Ai, ϕii′) over I . SetA = colimiAi with canonical maps
ϕi : Ai → A. Let p ⊂ A be a prime and set pi = ϕ−1

i (p). Then

V (p) = limi V (pi)

This follows from Lemma 4.1 because A/p = colimAi/pi. This equality of rings also
shows the final statement about reduced induced scheme structures holds true. The equal-
ity κ(p) = colim κ(pi) follows from the statement as well. �

In the rest of this section we work in the following situation.

Situation 4.5. Let S = limi∈I Si be the limit of a directed system of schemes with
affine transition morphisms fi′i : Si′ → Si (Lemma 2.2). We assume that Si is quasi-
compact and quasi-separated for all i ∈ I . We denote fi : S → Si the projection. We also
choose an element 0 ∈ I .

In this situation the morphism S → S0 is affine. It follows that S is quasi-compact and
quasi-separated1. The type of result we are looking for is the following: If we have an
object over S , then for some i there is a similar object over Si.

Lemma 4.6. In Situation 4.5.
(1) We haveSset = limi Si,set whereSset indicates the underlying set of the scheme

S.
(2) We have Stop = limi Si,top where Stop indicates the underlying topological

space of the scheme S.
(3) If s, s′ ∈ S and s′ is not a specialization of s then for some i ∈ I the image

s′
i ∈ Si of s′ is not a specialization of the image si ∈ Si of s.

(4) Add more easy facts on topology of S here. (Requirement: whatever is added
should be easy in the affine case.)

Proof. Part (1) is a special case of Lemma 4.1.

Part (2) is a special case of Lemma 4.2.

Part (3) is a special case of Lemma 4.4. �

1Follows from Morphisms, Lemma 11.2, Topology, Definition 12.1, and Schemes, Lemma 21.12.
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Lemma 4.7. In Situation 4.5. Suppose that F0 is a quasi-coherent sheaf on S0. Set
Fi = f∗

i0F0 for i ≥ 0 and set F = f∗
0F0. Then

Γ(S,F) = colimi≥0 Γ(Si,Fi)

Proof. Write Aj = fi0,∗OSi . This is a quasi-coherent sheaf of OS0 -algebras (see
Morphisms, Lemma 11.5) and Si is the relative spectrum of Ai over S0. In the proof of
Lemma 2.2 we constructed S as the relative spectrum ofA = colimi≥0Ai over S0. Set

Mi = F0 ⊗OS0
Ai

and
M = F0 ⊗OS0

A.
Then we have fi0,∗Fi = Mi and f0,∗F = M. Since A is the colimit of the sheaves
Ai and since tensor product commutes with directed colimits, we conclude that M =
colimi≥0Mi. Since S0 is quasi-compact and quasi-separated we see that

Γ(S,F) = Γ(S0,M)
= Γ(S0, colimi≥0Mi)
= colimi≥0 Γ(S0,Mi)
= colimi≥0 Γ(Si,Fi)

see Sheaves, Lemma 29.1 and Topology, Lemma 27.1 for the middle equality. �

Lemma 4.8. In Situation 4.5. Suppose for each i we are given a nonempty closed
subset Zi ⊂ Si with fi′i(Zi′) ⊂ Zi for all i′ ≥ i. Then there exists a point s ∈ S with
fi(s) ∈ Zi for all i.

Proof. Let Zi ⊂ Si also denote the reduced closed subscheme associated to Zi, see
Schemes, Definition 12.5. A closed immersion is affine, and a composition of affine mor-
phisms is affine (see Morphisms, Lemmas 11.9 and 11.7), and henceZi′ → Si is affine when
i′ ≥ i. We conclude that the morphism fi′i : Zi′ → Zi is affine by Morphisms, Lemma
11.11. Each of the schemes Zi is quasi-compact as a closed subscheme of a quasi-compact
scheme. Hence we may apply Lemma 4.3 to see thatZ = limi Zi is nonempty. Since there
is a canonical morphism Z → S we win. �

Lemma 4.9. In Situation 4.5. Suppose we are given an i and a morphism T → Si
such that

(1) T ×Si S = ∅, and
(2) T is quasi-compact.

Then T ×Si Si′ = ∅ for all sufficiently large i′.

Proof. By Lemma 2.3 we see that T ×Si S = limi′≥i T ×Si Si′ . Hence the result
follows from Lemma 4.3. �

Lemma 4.10. In Situation 4.5. Suppose we are given an i and a locally constructible
subset E ⊂ Si such that fi(S) ⊂ E. Then fi′i(Si′) ⊂ E for all sufficiently large i′.

Proof. Writing Si as a finite union of open affine subschemes reduces the question to
the case that Si is affine and E is constructible, see Lemma 2.2 and Properties, Lemma 2.1.
In this case the complement Si\E is constructible too. Hence there exists an affine scheme
T and a morphism T → Si whose image is Si \ E , see Algebra, Lemma 29.4. By Lemma
4.9 we see that T ×Si Si′ is empty for all sufficiently large i′, and hence fi′i(Si′) ⊂ E for
all sufficiently large i′. �
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Lemma 4.11. In Situation 4.5 we have the following:
(1) Given any quasi-compact open V ⊂ S = limi Si there exists an i ∈ I and a

quasi-compact open Vi ⊂ Si such that f−1
i (Vi) = V .

(2) GivenVi ⊂ Si andVi′ ⊂ Si′ quasi-compact opens such that f−1
i (Vi) = f−1

i′ (Vi′)
there exists an index i′′ ≥ i, i′ such that f−1

i′′i (Vi) = f−1
i′′i′(Vi′).

(3) If V1,i, . . . , Vn,i ⊂ Si are quasi-compact opens and S = f−1
i (V1,i) ∪ . . . ∪

f−1
i (Vn,i) then Si′ = f−1

i′i (V1,i) ∪ . . . ∪ f−1
i′i (Vn,i) for some i′ ≥ i.

Proof. Choose i0 ∈ I . Note that I is nonempty as the limit is directed. For con-
venience we write S0 = Si0 and i0 = 0. Choose an affine open covering S0 = U1,0 ∪
. . . ∪ Um,0. Denote Uj,i ⊂ Si the inverse image of Uj,0 under the transition morphism
for i ≥ 0. Denote Uj the inverse image of Uj,0 in S. Note that Uj = limi Uj,i is a limit of
affine schemes.

We first prove the uniqueness statement: Let Vi ⊂ Si and Vi′ ⊂ Si′ quasi-compact opens
such that f−1

i (Vi) = f−1
i′ (Vi′). It suffices to show that f−1

i′′i (Vi ∩ Uj,i′′) and f−1
i′′i′(Vi′ ∩

Uj,i′′) become equal for i′′ large enough. Hence we reduce to the case of a limit of affine
schemes. In this case write S = Spec(R) and Si = Spec(Ri) for all i ∈ I . We may write
Vi = Si \ V (h1, . . . , hm) and Vi′ = Si′ \ V (g1, . . . , gn). The assumption means that the
ideals

∑
gjR and

∑
hjR have the same radical in R. This means that gNj =

∑
ajj′hj′

and hNj =
∑
bjj′gj′ for someN � 0 and ajj′ and bjj′ inR. SinceR = colimiRi we can

chose an index i′′ ≥ i such that the equations gNj =
∑
ajj′hj′ and hNj =

∑
bjj′gj′ hold

in Ri′′ for some ajj′ and bjj′ in Ri′′ . This implies that the ideals
∑
gjRi′′ and

∑
hjRi′′

have the same radical in Ri′′ as desired.

We prove existence: If S0 is affine, then Si = Spec(Ri) for all i ≥ 0 and S = Spec(R)
with R = colimRi. Then V = S \ V (g1, . . . , gn) for some g1, . . . , gn ∈ R. Choose
any i large enough so that each of the gj comes from an element gj,i ∈ Ri and take
Vi = Si \ V (g1,i, . . . , gn,i). If S0 is general, then the opens V ∩ Uj are quasi-compact
because S is quasi-separated. Hence by the affine case we see that for each j = 1, . . . ,m
there exists an ij ∈ I and a quasi-compact open Vij ⊂ Uj,ij whose inverse image in Uj is
V ∩ Uj . Set i = max(i1, . . . , im) and let Vi =

⋃
f−1
iij

(Vij ).

The statement on coverings follows from the uniqueness statement for the opens V1,i ∪
. . . ∪ Vn,i and Si of Si. �

Lemma 4.12. In Situation 4.5 if S is quasi-affine, then for some i0 ∈ I the schemes
Si for i ≥ i0 are quasi-affine.

Proof. Choose i0 ∈ I . Note that I is nonempty as the limit is directed. For conve-
nience we write S0 = Si0 and i0 = 0. Let s ∈ S. We may choose an affine open U0 ⊂ S0
containing f0(s). Since S is quasi-affine we may choose an element a ∈ Γ(S,OS) such
that s ∈ D(a) ⊂ f−1

0 (U0), and such that D(a) is affine. By Lemma 4.7 there exists an
i ≥ 0 such that a comes from an element ai ∈ Γ(Si,OSi). For any index j ≥ iwe denote
aj the image of ai in the global sections of the structure sheaf of Sj . Consider the opens
D(aj) ⊂ Sj andUj = f−1

j0 (U0). Note thatUj is affine andD(aj) is a quasi-compact open
of Sj , see Properties, Lemma 26.4 for example. Hence we may apply Lemma 4.11 to the
opens Uj and Uj ∪D(aj) to conclude thatD(aj) ⊂ Uj for some j ≥ i. For such an index
j we see that D(aj) ⊂ Sj is an affine open (because D(aj) is a standard affine open of the
affine open Uj) containing the image fj(s).
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We conclude that for every s ∈ S there exist an index i ∈ I , and a global section a ∈
Γ(Si,OSi) such that D(a) ⊂ Si is an affine open containing fi(s). Because S is quasi-
compact we may choose a single index i ∈ I and global sections a1, . . . , am ∈ Γ(Si,OSi)
such that eachD(aj) ⊂ Si is affine open and such that fi : S → Si has image contained in
the unionWi =

⋃
j=1,...,mD(aj). For i′ ≥ i setWi′ = f−1

i′i (Wi). Since f−1
i (Wi) is all of

S we see (by Lemma 4.11 again) that for a suitable i′ ≥ iwe have Si′ = Wi′ . Thus we may
replace i by i′ and assume that Si =

⋃
j=1,...,mD(aj). This implies that OSi is an ample

invertible sheaf on Si (see Properties, Definition 26.1) and hence that Si is quasi-affine, see
Properties, Lemma 27.1. Hence we win. �

Lemma 4.13. In Situation 4.5 if S is affine, then for some i0 ∈ I the schemes Si for
i ≥ i0 are affine.

Proof. By Lemma 4.12 we may assume that S0 is quasi-affine for some 0 ∈ I . Set
R0 = Γ(S0,OS0). ThenS0 is a quasi-compact open of T0 = Spec(R0). Denote j0 : S0 →
T0 the corresponding quasi-compact open immersion. For i ≥ 0 setAi = fi0,∗OSi . Since
fi0 is affine we see that Si = Spec

S0
(Ai). Set Ti = Spec

T0
(j0,∗Ai). Then Ti → T0 is

affine, hence Ti is affine. Thus Ti is the spectrum of

Ri = Γ(T0, j0,∗Ai) = Γ(S0,Ai) = Γ(Si,OSi).

Write S = Spec(R). We have R = colimiRi by Lemma 4.7. Hence also S = limi Ti. As
formation of the relative spectrum commutes with base change, the inverse image of the
open S0 ⊂ T0 in Ti is Si. Let Z0 = T0 \ S0 and let Zi ⊂ Ti be the inverse image of Z0.
As Si = Ti \ Zi, it suffices to show that Zi is empty for some i. Assume Zi is nonempty
for all i to get a contradiction. By Lemma 4.8 there exists a point s of S = limTi which
maps to a point of Zi for every i. But S = limi Si, and hence we arrive at a contradiction
by Lemma 4.6. �

Lemma 4.14. In Situation 4.5 if S is separated, then for some i0 ∈ I the schemes Si
for i ≥ i0 are separated.

Proof. Choose a finite affine open covering S0 = U0,1 ∪ . . . ∪ U0,m. Set Ui,j ⊂ Si
and Uj ⊂ S equal to the inverse image of U0,j . Note that Ui,j and Uj are affine. As S is
separated the intersections Uj1 ∩Uj2 are affine. Since Uj1 ∩Uj2 = limi≥0 Ui,j1 ∩Ui,j2 we
see that Ui,j1 ∩ Ui,j2 is affine for large i by Lemma 4.13. To show that Si is separated for
large i it now suffices to show that

OSi(Ui,j1)⊗OS(S) OSi(Ui,j2) −→ OSi(Ui,j1 ∩ Ui,j2)

is surjective for large i (Schemes, Lemma 21.7).

To get rid of the annoying indices, assume we have affine opens U, V ⊂ S0 such that
U ∩ V is affine too. Let Ui, Vi ⊂ Si, resp. U, V ⊂ S be the inverse images. We have to
show thatO(Ui)⊗O(Vi)→ O(Ui∩Vi) is surjective for i large enough and we know that
O(U) ⊗ O(V ) → O(U ∩ V ) is surjective. Note that O(U0) ⊗ O(V0) → O(U0 ∩ V0) is
of finite type, as the diagonal morphism Si → Si × Si is an immersion (Schemes, Lemma
21.2) hence locally of finite type (Morphisms, Lemmas 15.2 and 15.5). Thus we can choose
elements f0,1, . . . , f0,n ∈ O(U0 ∩ V0) which generateO(U0 ∩ V0) overO(U0)⊗O(V0).
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Observe that for i ≥ 0 the diagram of schemes

Ui ∩ Vi //

��

Ui

��
U0 ∩ V0 // U0

is cartesian. Thus we see that the images fi,1, . . . , fi,n ∈ O(Ui ∩ Vi) generate O(Ui ∩
Vi) over O(Ui) ⊗ O(V0) and a fortiori over O(Ui) ⊗ O(Vi). By assumption the images
f1, . . . , fn ∈ O(U ⊗ V ) are in the image of the mapO(U)⊗O(V )→ O(U ∩ V ). Since
O(U) ⊗ O(V ) = colimO(Ui) ⊗ O(Vi) we see that they are in the image of the map at
some finite level and the lemma is proved. �

Lemma 4.15. In Situation 4.5 let L0 be an invertible sheaf of modules on S0. If the
pullback L to S is ample, then for some i ∈ I the pullback Li to Si is ample.

Proof. The assumption means there are finitely many sections s1, . . . , sm ∈ Γ(S,L)
such that Ssj is affine and such that S =

⋃
Ssj , see Properties, Definition 26.1. By Lemma

4.7 we can find an i ∈ I and sections si,j ∈ Γ(Si,Li) mapping to sj . By Lemma 4.13
we may, after increasing i, assume that (Si)si,j is affine for j = 1, . . . ,m. By Lemma 4.11
we may, after increasing i a last time, assume that Si =

⋃
(Si)si,j . Then Li is ample by

definition. �

Lemma 4.16. Let S be a scheme. Let X = limXi be a directed limit of schemes over
S with affine transition morphisms. Let Y → X be a morphism of schemes over S.

(1) If Y → X is a closed immersion, Xi quasi-compact, and Y locally of finite type
over S , then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → S locally of finite type,
and Y quasi-compact, then Y → Xi is an immersion for i large enough.

(3) If Y → X is an isomorphism, Xi quasi-compact, Xi → S locally of finite type,
the transition morphismsXi′ → Xi are closed immersions, andY → S is locally
of finite presentation, then Y → Xi is an isomorphism for i large enough.

Proof. Proof of (1). Choose 0 ∈ I and a finite affine open covering X0 = U0,1 ∪
. . . ∪ U0,m with the property that U0,j maps into an affine open Wj ⊂ S. Let Vj ⊂ Y ,
resp. Ui,j ⊂ Xi, i ≥ 0, resp. Uj ⊂ X be the inverse image of U0,j . It suffices to prove
that Vj → Ui,j is a closed immersion for i sufficiently large and we know that Vj → Uj
is a closed immersion. Thus we reduce to the following algebra fact: If A = colimAi is
a directed colimit of R-algebras, A → B is a surjection of R-algebras, and B is a finitely
generated R-algebra, then Ai → B is surjective for i sufficiently large.
Proof of (2). Choose 0 ∈ I . Choose a quasi-compact open X ′

0 ⊂ X0 such that Y → X0
factors through X ′

0. After replacing Xi by the inverse image of X ′
0 for i ≥ 0 we may

assume allX ′
i are quasi-compact and quasi-separated. Let U ⊂ X be a quasi-compact open

such that Y → X factors through a closed immersion Y → U (U exists as Y is quasi-
compact). By Lemma 4.11 we may assume that U = limUi with Ui ⊂ Xi quasi-compact
open. By part (1) we see that Y → Ui is a closed immersion for some i. Thus (2) holds.
Proof of (3). Working affine locally onX0 for some 0 ∈ I as in the proof of (1) we reduce to
the following algebra fact: IfA = limAi is a directed colimit ofR-algebras with surjective
transition maps and A of finite presentation over A0, then A = Ai for some i. Namely,
write A = A0/(f1, . . . , fn). Pick i such that f1, . . . , fn map to zero under the surjective
map A0 → Ai. �
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Lemma 4.17. Let S be a scheme. Let X = limXi be a directed limit of schemes over
S with affine transition morphisms. Assume

(1) S quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → S separated.

Then Xi → S is separated for all i large enough.

Proof. Let 0 ∈ I . Note that I is nonempty as the limit is directed. As X0 is quasi-
compact we can find finitely many affine opens U1, . . . , Un ⊂ S such that X0 → S maps
into U1 ∪ . . . ∪ Un. Denote hi : Xi → S the structure morphism. It suffices to check
that for some i ≥ 0 the morphisms h−1

i (Uj) → Uj are separated for j = 1, . . . , n. Since
S is quasi-separated the morphisms Uj → S are quasi-compact. Hence h−1

i (Uj) is quasi-
compact and quasi-separated. In this way we reduce to the case S affine. In this case we
have to show that Xi is separated and we know that X is separated. Thus the lemma
follows from Lemma 4.14. �

Lemma 4.18. Let S be a scheme. Let X = limXi be a directed limit of schemes over
S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → S affine.

Then Xi → S is affine for i large enough.

Proof. Choose a finite affine open covering S =
⋃
j=1,...,n Vj . Denote f : X → S

and fi : Xi → S the structure morphisms. For each j the scheme f−1(Vj) = limi f
−1
i (Vj)

is affine (as a finite morphism is affine by definition). Hence by Lemma 4.13 there exists
an i ∈ I such that each f−1

i (Vj) is affine. In other words, fi : Xi → S is affine for i large
enough, see Morphisms, Lemma 11.3. �

Lemma 4.19. Let S be a scheme. Let X = limXi be a directed limit of schemes over
S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → S locally of finite type
(5) X → S integral.

Then Xi → S is finite for i large enough.

Proof. By Lemma 4.18 we may assume Xi → S is affine for all i. Choose a finite
affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj) is finite

over Vj for j = 1, . . . ,m (Morphisms, Lemma 44.3). Namely, for i′ ≥ i the composition
Xi′ → Xi → S will be finite as a composition of finite morphisms (Morphisms, Lemma
44.5). This reduces us to the affine case: Let R be a ring and A = colimAi with R → A
integral and Ai → Ai′ finite for all i ≤ i′. Moreover R → Ai is of finite type for all i.
Goal: Show that Ai is finite over R for some i. To prove this choose an i ∈ I and pick
generators x1, . . . , xm ∈ Ai of Ai as an R-algebra. Since A is integral over R we can find
monic polynomials Pj ∈ R[T ] such that Pj(xj) = 0 in A. Thus there exists an i′ ≥ i
such that Pj(xj) = 0 in Ai′ for j = 1, . . . ,m. Then the image A′

i of Ai in Ai′ is finite
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overR by Algebra, Lemma 36.5. SinceA′
i ⊂ Ai′ is finite too we conclude thatAi′ is finite

over R by Algebra, Lemma 7.3. �

Lemma 4.20. Let S be a scheme. Let X = limXi be a directed limit of schemes over
S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → S locally of finite type
(5) X → S a closed immersion.

Then Xi → S is a closed immersion for i large enough.

Proof. By Lemma 4.18 we may assume Xi → S is affine for all i. Choose a finite
affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj) is a closed

subscheme of Vj for j = 1, . . . ,m (Morphisms, Lemma 2.1). This reduces us to the affine
case: Let R be a ring and A = colimAi with R → A surjective and Ai → Ai′ surjective
for all i ≤ i′. Moreover R → Ai is of finite type for all i. Goal: Show that R → Ai is
surjective for some i. To prove this choose an i ∈ I and pick generators x1, . . . , xm ∈ Ai
of Ai as an R-algebra. Since R → A is surjective we can find rj ∈ R such that rj maps
to xj in A. Thus there exists an i′ ≥ i such that rj maps to the image of xj in Ai′ for
j = 1, . . . ,m. Since Ai → Ai′ is surjective this implies that R→ Ai′ is surjective. �

Lemma 4.21. Let S be a scheme. Let X = limXi be a directed limit of schemes over
S with affine transition morphisms. Assume

(1) S quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → S locally of finite type, and
(5) X → S an immersion.

Then Xi → S is an immersion for i large enough.

Proof. Choose an open subscheme U ⊂ S such that X → S factors as a closed
immersion X → U composed with the inclusion morphism U → S. Since X is quasi-
compact, we may shrink U and assume U is quasi-compact. Denote Vi ⊂ Xi the inverse
image of U . Since Vi pulls back toX we see that Vi = Xi for all i large enough by Lemma
4.11. Thus we may assume X = limXi in the category of schemes over U . Then we see
that Xi → U is a closed immersion for i large enough by Lemma 4.20. This proves the
lemma. �

5. Absolute Noetherian Approximation

A nice reference for this section is Appendix C of the article by Thomason and Trobaugh
[?]. See Categories, Section 21 for our conventions regarding directed systems. We will use
the existence result and properties of the limit from Section 2 without further mention.

Lemma 5.1. Let W be a quasi-affine scheme of finite type over Z. Suppose W →
Spec(R) is an open immersion into an affine scheme. There exists a finite type Z-algebra
A ⊂ R which induces an open immersion W → Spec(A). Moreover, R is the directed
colimit of such subalgebras.
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Proof. Choose an affine open covering W =
⋃
i=1,...,nWi such that each Wi is

a standard affine open in Spec(R). In other words, if we write Wi = Spec(Ri) then
Ri = Rfi for some fi ∈ R. Choose finitely many xij ∈ Ri which generate Ri over Z.
Pick an N � 0 such that each fNi xij comes from an element of R, say yij ∈ R. Set
A equal to the Z-algebra generated by the fi and the yij and (optionally) finitely many
additional elements of R. Then A works. Details omitted. �

Lemma 5.2. Suppose given a cartesian diagram of rings

B
s
// R

B′

OO

// R′

t

OO

Let W ′ ⊂ Spec(R′) be an open of the form W ′ = D(f1)∪ . . .∪D(fn) such that t(fi) =
s(gi) for some gi ∈ B and Bgi ∼= Rs(gi). Then B′ → R′ induces an open immersion of
W ′ into Spec(B′).

Proof. Set hi = (gi, fi) ∈ B′. More on Algebra, Lemma 5.3 shows that (B′)hi ∼=
(R′)fi as desired. �

The following lemma is a precise statement of Noetherian approximation.

Lemma 5.3. Let S be a quasi-compact and quasi-separated scheme. Let V ⊂ S be
a quasi-compact open. Let I be a directed set and let (Vi, fii′) be an inverse system of
schemes over I with affine transition maps, with each Vi of finite type over Z, and with
V = limVi. Then there exist

(1) a directed set J ,
(2) an inverse system of schemes (Sj , gjj′) over J ,
(3) an order preserving map α : J → I ,
(4) open subschemes V ′

j ⊂ Sj , and
(5) isomorphisms V ′

j → Vα(j)

such that
(1) the transition morphisms gjj′ : Sj → Sj′ are affine,
(2) each Sj is of finite type over Z,
(3) g−1

jj′ (V ′
j′) = V ′

j ,
(4) S = limSj and V = limV ′

j , and
(5) the diagrams

V

�� !!
V ′
j

// Vα(j)

and

V ′
j

//

��

Vα(j)

��
V ′
j′ // Vα(j′)

are commutative.

Proof. Set Z = S \ V . Choose affine opens U1, . . . , Um ⊂ S such that Z ⊂⋃
l=1,...,m Ul. Consider the opens

V ⊂ V ∪ U1 ⊂ V ∪ U1 ∪ U2 ⊂ . . . ⊂ V ∪
⋃

l=1,...,m
Ul = S
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If we can prove the lemma successively for each of the cases

V ∪ U1 ∪ . . . ∪ Ul ⊂ V ∪ U1 ∪ . . . ∪ Ul+1

then the lemma will follow for V ⊂ S. In each case we are adding one affine open. Thus
we may assume

(1) S = U ∪ V ,
(2) U affine open in S ,
(3) V quasi-compact open in S , and
(4) V = limi Vi with (Vi, fii′) an inverse system over a directed set I , each fii′ affine

and each Vi of finite type over Z.
Denote fi : V → Vi the projections. Set W = U ∩ V . As S is quasi-separated, this is
a quasi-compact open of V . By Lemma 4.11 (and after shrinking I) we may assume that
there exist opensWi ⊂ Vi such that f−1

ii′ (Wi′) = Wi and such that f−1
i (Wi) = W . Since

W is a quasi-compact open of U it is quasi-affine. Hence we may assume (after shrinking
I again) that Wi is quasi-affine for all i, see Lemma 4.12.

Write U = Spec(B). Set R = Γ(W,OW ), and Ri = Γ(Wi,OWi
). By Lemma 4.7 we

have R = colimiRi. Now we have the maps of rings

B
s
// R

Ri

ti

OO

We set Bi = {(b, r) ∈ B ×Ri | s(b) = ti(t)} so that we have a cartesian diagram

B
s
// R

Bi

OO

// Ri

ti

OO

for each i. The transition maps Ri → Ri′ induce maps Bi → Bi′ . It is clear that B =
colimiBi. In the next paragraph we show that for all sufficiently large i the composition
Wi → Spec(Ri)→ Spec(Bi) is an open immersion.

As W is a quasi-compact open of U = Spec(B) we can find a finitely many elements
gl ∈ B, l = 1, . . . ,m such that D(gl) ⊂ W and such that W =

⋃
l=1,...,mD(gl). Note

that this implies D(gl) = Ws(gl) as open subsets of U , where Ws(gl) denotes the largest
open subset of W on which s(gl) is invertible. Hence

Bgl = Γ(D(gl),OU ) = Γ(Ws(gl),OW ) = Rs(gl),

where the last equality is Properties, Lemma 17.1. Since Ws(gl) is affine this also implies
that D(s(gl)) = Ws(gl) as open subsets of Spec(R). Since R = colimiRi we can (after
shrinking I) assume there exist gl,i ∈ Ri for all i ∈ I such that s(gl) = ti(gl,i). Of
course we choose the gl,i such that gl,i maps to gl,i′ under the transition maps Ri → Ri′ .
Then, by Lemma 4.11 we can (after shrinking I again) assume the corresponding opens
D(gl,i) ⊂ Spec(Ri) are contained in Wi for l = 1, . . . ,m and cover Wi. We conclude
that the morphism Wi → Spec(Ri)→ Spec(Bi) is an open immersion, see Lemma 5.2.

By Lemma 5.1 we can writeBi as a directed colimit of subalgebrasAi,p ⊂ Bi, p ∈ Pi each
of finite type over Z and such thatWi is identified with an open subscheme of Spec(Ai,p).
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Let Si,p be the scheme obtained by glueing Vi and Spec(Ai,p) along the open Wi, see
Schemes, Section 14. Here is the resulting commutative diagram of schemes:

V

tt ��

Woo

uu ��
Vi

��

Wi
oo

��

S

tt

U

vv

oo

Si,p Spec(Ai,p)oo

The morphism S → Si,p arises because the upper right square is a pushout in the category
of schemes. Note that Si,p is of finite type over Z since it has a finite affine open covering
whose members are spectra of finite type Z-algebras. We define a preorder onJ =

∐
i∈I Pi

by the rule (i′, p′) ≥ (i, p) if and only if i′ ≥ i and the mapBi → Bi′ mapsAi,p intoAi′,p′ .
This is exactly the condition needed to define a morphism Si′,p′ → Si,p: namely make a
commutative diagram as above using the transition morphisms Vi′ → Vi and Wi′ → Wi

and the morphism Spec(Ai′,p′) → Spec(Ai,p) induced by the ring map Ai,p → Ai′,p′ .
The relevant commutativities have been built into the constructions. We claim that S is
the directed limit of the schemes Si,p. Since by construction the schemes Vi have limit V
this boils down to the fact thatB is the limit of the ringsAi,p which is true by construction.
The map α : J → I is given by the rule j = (i, p) 7→ i. The open subscheme V ′

j is just
the image of Vi → Si,p above. The commutativity of the diagrams in (5) is clear from the
construction. This finishes the proof of the lemma. �

Proposition 5.4. Let S be a quasi-compact and quasi-separated scheme. There exist
a directed set I and an inverse system of schemes (Si, fii′) over I such that

(1) the transition morphisms fii′ are affine
(2) each Si is of finite type over Z, and
(3) S = limi Si.

Proof. This is a special case of Lemma 5.3 with V = ∅. �

6. Limits and morphisms of finite presentation

The following is a generalization of Algebra, Lemma 127.3.

Proposition 6.1. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally of finite presentation.
(2) For any directed set I , and any inverse system (Ti, fii′) of S-schemes over I with

each Ti affine, we have
MorS(limi Ti, X) = colimi MorS(Ti, X)

(3) For any directed set I , and any inverse system (Ti, fii′) of S-schemes over I with
each fii′ affine and every Ti quasi-compact and quasi-separated as a scheme, we
have

MorS(limi Ti, X) = colimi MorS(Ti, X)
Proof. It is clear that (3) implies (2).

Let us prove that (2) implies (1). Assume (2). Choose any affine opens U ⊂ X and V ⊂ S
such that f(U) ⊂ V . We have to show that OS(V ) → OX(U) is of finite presentation.
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Let (Ai, ϕii′) be a directed system of OS(V )-algebras. Set A = colimiAi. According to
Algebra, Lemma 127.3 we have to show that

HomOS(V )(OX(U), A) = colimi HomOS(V )(OX(U), Ai)
Consider the schemes Ti = Spec(Ai). They form an inverse system of V -schemes over
I with transition morphisms fii′ : Ti → Ti′ induced by the OS(V )-algebra maps ϕi′i.
Set T := Spec(A) = limi Ti. The formula above becomes in terms of morphism sets of
schemes

MorV (limi Ti, U) = colimi MorV (Ti, U).
We first observe that MorV (Ti, U) = MorS(Ti, U) and MorV (T,U) = MorS(T,U).
Hence we have to show that

MorS(limi Ti, U) = colimi MorS(Ti, U)
and we are given that

MorS(limi Ti, X) = colimi MorS(Ti, X).
Hence it suffices to prove that given a morphism gi : Ti → X over S such that the
compositionT → Ti → X ends up inU there exists some i′ ≥ i such that the composition
gi′ : Ti′ → Ti → X ends up in U . Denote Zi′ = g−1

i′ (X \ U). Assume each Zi′

is nonempty to get a contradiction. By Lemma 4.8 there exists a point t of T which is
mapped into Zi′ for all i′ ≥ i. Such a point is not mapped into U . A contradiction.
Finally, let us prove that (1) implies (3). Assume (1). Let an inverse directed system
(Ti, fii′) of S-schemes be given. Assume the morphisms fii′ are affine and each Ti is
quasi-compact and quasi-separated as a scheme. Let T = limi Ti. Denote fi : T → Ti
the projection morphisms. We have to show:

(a) Given morphisms gi, g′
i : Ti → X over S such that gi ◦ fi = g′

i ◦ fi, then there
exists an i′ ≥ i such that gi ◦ fi′i = g′

i ◦ fi′i.
(b) Given any morphism g : T → X over S there exists an i ∈ I and a morphism

gi : Ti → X such that g = fi ◦ gi.
First let us prove the uniqueness part (a). Let gi, g′

i : Ti → X be morphisms such that
gi ◦ fi = g′

i ◦ fi. For any i′ ≥ i we set gi′ = gi ◦ fi′i and g′
i′ = g′

i ◦ fi′i. We also set
g = gi ◦ fi = g′

i ◦ fi. Consider the morphism (gi, g′
i) : Ti → X ×S X . Set

W =
⋃

U⊂X affine open,V⊂S affine open,f(U)⊂V
U ×V U.

This is an open in X ×S X , with the property that the morphism ∆X/S factors through
a closed immersion into W , see the proof of Schemes, Lemma 21.2. Note that the compo-
sition (gi, g′

i) ◦ fi : T → X ×S X is a morphism into W because it factors through the
diagonal by assumption. Set Zi′ = (gi′ , g′

i′)−1(X ×S X \W ). If each Zi′ is nonempty,
then by Lemma 4.8 there exists a point t ∈ T which maps to Zi′ for all i′ ≥ i. This is
a contradiction with the fact that T maps into W . Hence we may increase i and assume
that (gi, g′

i) : Ti → X ×S X is a morphism into W . By construction of W , and since Ti
is quasi-compact we can find a finite affine open covering Ti = T1,i ∪ . . . ∪ Tn,i such that
(gi, g′

i)|Tj,i is a morphism into U ×V U for some pair (U, V ) as in the definition of W
above. Since it suffices to prove that gi′ and g′

i′ agree on each of the f−1
i′i (Tj,i) this reduces

us to the affine case. The affine case follows from Algebra, Lemma 127.3 and the fact that
the ring mapOS(V )→ OX(U) is of finite presentation (see Morphisms, Lemma 21.2).
Finally, we prove the existence part (b). Let g : T → X be a morphism of schemes over
S. We can find a finite affine open covering T = W1 ∪ . . . ∪ Wn such that for each
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j ∈ {1, . . . , n} there exist affine opens Uj ⊂ X and Vj ⊂ S with f(Uj) ⊂ Vj and
g(Wj) ⊂ Uj . By Lemmas 4.11 and 4.13 (after possibly shrinking I) we may assume that
there exist affine open coverings Ti = W1,i ∪ . . .∪Wn,i compatible with transition maps
such that Wj = limiWj,i. We apply Algebra, Lemma 127.3 to the rings corresponding
to the affine schemes Uj , Vj , Wj,i and Wj using that OS(Vj) → OX(Uj) is of finite
presentation (see Morphisms, Lemma 21.2). Thus we can find for each j an index ij ∈ I
and a morphism gj,ij : Wj,ij → X such that gj,ij ◦fi|Wj

: Wj →Wj,i → X equals g|Wj
.

By part (a) proved above, using the quasi-compactness of Wj1,i ∩Wj2,i which follows as
Ti is quasi-separated, we can find an index i′ ∈ I larger than all ij such that

gj1,ij1
◦ fi′ij1

|Wj1,i′ ∩Wj2,i′
= gj2,ij2

◦ fi′ij2
|Wj1,i′ ∩Wj2,i′

for all j1, j2 ∈ {1, . . . , n}. Hence the morphisms gj,ij ◦fi′ij |Wj,i′ glue to given the desired
morphism Ti′ → X . �

Remark 6.2. Let S be a scheme. Let us say that a functor F : (Sch/S)opp → Sets is
limit preserving if for every directed inverse system {Ti}i∈I of affine schemes with limit T
we haveF (T ) = colimi F (Ti). LetX be a scheme overS , and lethX : (Sch/S)opp → Sets
be its functor of points, see Schemes, Section 15. In this terminology Proposition 6.1 says
that a schemeX is locally of finite presentation overS if and only ifhX is limit preserving.

Lemma 6.3. Let f : X → S be a morphism of schemes. If for every directed limit
T = limi∈I Ti of affine schemes over S the map

colim MorS(Ti, X) −→ MorS(T,X)
is surjective, then f is locally of finite presentation. In other words, in Proposition 6.1
parts (2) and (3) it suffices to check surjectivity of the map.

Proof. The proof is exactly the same as the proof of the implication “(2) implies (1)”
in Proposition 6.1. Choose any affine opens U ⊂ X and V ⊂ S such that f(U) ⊂ V . We
have to show thatOS(V )→ OX(U) is of finite presentation. Let (Ai, ϕii′) be a directed
system of OS(V )-algebras. Set A = colimiAi. According to Algebra, Lemma 127.3 it
suffices to show that

colimi HomOS(V )(OX(U), Ai)→ HomOS(V )(OX(U), A)
is surjective. Consider the schemes Ti = Spec(Ai). They form an inverse system of
V -schemes over I with transition morphisms fii′ : Ti → Ti′ induced by the OS(V )-
algebra maps ϕi′i. Set T := Spec(A) = limi Ti. The formula above becomes in terms of
morphism sets of schemes

colimi MorV (Ti, U)→ MorV (limi Ti, U)
We first observe that MorV (Ti, U) = MorS(Ti, U) and MorV (T,U) = MorS(T,U).
Hence we have to show that

colimi MorS(Ti, U)→ MorS(limi Ti, U)
is surjective and we are given that

colimi MorS(Ti, X)→ MorS(limi Ti, X)
is surjective. Hence it suffices to prove that given a morphism gi : Ti → X over S such
that the composition T → Ti → X ends up in U there exists some i′ ≥ i such that the
composition gi′ : Ti′ → Ti → X ends up in U . Denote Zi′ = g−1

i′ (X \ U). Assume each
Zi′ is nonempty to get a contradiction. By Lemma 4.8 there exists a point t of T which is
mapped into Zi′ for all i′ ≥ i. Such a point is not mapped into U . A contradiction. �
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The following is an example application of Proposition 6.1.

Lemma 6.4. Let S be a scheme. LetX and Y be schemes over S. Assume Y is locally
of finite presentation over S. Let x ∈ X be a closed point such that U = X \ {x} → X
is quasi-compact. With V = Spec(OX,x) \ {x} there is a bijection{

morphisms X → Y over S
}
−→

{
(a, b) where a : U → Y and b : Spec(OX,x)→ Y

are morphisms over S which agree over V

}
Proof. Let W ⊂ X be an open neighbourhood of x. By glueing of schemes, see

Schemes, Section 14 the result holds if we consider pairs of morphisms a : U → Y and
c : W → Y which agree over U ∩W . We have OX,x = colimOW (W ) where W runs
over the affine open neighbourhoods of x in X . Hence Spec(OX,x) = limW where W
runs over the affine open neighbourhoods of s. Thus by Proposition 6.1 any morphism
b : Spec(OX,x) → Y over S comes from a morphism c : W → Y for some W as above
(and c is unique up to further shrinking W ). For every affine open x ∈ W we see that
U∩W is quasi-compact asU → X is quasi-compact. HenceV = limW∩U = limW \{x}
is a limit of quasi-compact and quasi-separated schemes (see Lemma 2.2). Thus if a and b
agree over V , then after shrinking W we see that a and c agree over U ∩W (by the same
proposition). The lemma follows. �

7. Relative approximation

We discuss variants of Proposition 5.4 over a base.

Lemma 7.1. Let f : X → S be a morphism of quasi-compact and quasi-separated
schemes. Then there exists a direct set I and an inverse system (fi : Xi → Si) of mor-
phisms schemes over I , such that the transition morphisms Xi → Xi′ and Si → Si′ are
affine, such thatXi and Si are of finite type over Z, and such that (X → S) = lim(Xi →
Si).

Proof. Write X = lima∈AXa and S = limb∈B Sb as in Proposition 5.4, i.e., with
Xa and Sb of finite type over Z and with affine transition morphisms.

Fix b ∈ B. By Proposition 6.1 applied to Sb and X = limXa over Z we find there exists
an a ∈ A and a morphism fa,b : Xa → Sb making the diagram

X

��

// S

��
Xa

// Sb

commute. Let I be the set of triples (a, b, fa,b) we obtain in this manner.

Let (a, b, fa,b) and (a′, b′, fa′,b′) be in I . Let b′′ ≤ min(b, b′). By Proposition 6.1 again,
there exists an a′′ ≥ max(a, a′) such that the compositionsXa′′ → Xa → Sb → Sb′′ and
Xa′′ → Xa′ → Sb′ → Sb′′ are equal. We endow I with the preorder

(a, b, fa,b) ≥ (a′, b′, fa′,b′)⇔ a ≥ a′, b ≥ b′, and gb,b′ ◦ fa,b = fa′,b′ ◦ ha,a′

where ha,a′ : Xa → Xa′ and gb,b′ : Sb → Sb′ are the transition morphisms. The remarks
above show that I is directed and that the maps I → A, (a, b, fa,b) 7→ a and I → B,
(a, b, fa,b) are cofinal. If for i = (a, b, fa,b) we set Xi = Xa, Si = Sb, and fi = fa,b, then
we get an inverse system of morphisms over I and we have

limi∈I Xi = lima∈AXa = X and limi∈I Si = limb∈B Sb = S
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by Categories, Lemma 17.4 (recall that limits over I are really limits over the opposite
category associated to I and hence cofinal turns into initial). This finishes the proof. �

Lemma 7.2. Let f : X → S be a morphism of schemes. Assume that
(1) X is quasi-compact and quasi-separated, and
(2) S is quasi-separated.

Then X = limXi is a limit of a directed system of schemes Xi of finite presentation over
S with affine transition morphisms over S.

Proof. Since f(X) is quasi-compact we may replace S by a quasi-compact open con-
taining f(X). Hence we may assume S is quasi-compact. By Lemma 7.1 we can write
(X → S) = lim(Xi → Si) for some directed inverse system of morphisms of finite
type schemes over Z with affine transition morphisms. Since limits commute with limits
(Categories, Lemma 14.10) we have X = limXi ×Si S. Let i ≥ i′ in I . The morphism
Xi ×Si S → Xi′ ×Si′ S is affine as the composition

Xi ×Si S → Xi ×Si′ S → Xi′ ×Si′ S
where the first morphism is a closed immersion (by Schemes, Lemma 21.9) and the second
is a base change of an affine morphism (Morphisms, Lemma 11.8) and the composition
of affine morphisms is affine (Morphisms, Lemma 11.7). The morphisms fi are of finite
presentation (Morphisms, Lemmas 21.9 and 21.11) and hence the base changes Xi ×fi,Si
S → S are of finite presentation (Morphisms, Lemma 21.4). �

Lemma 7.3. Let X → S be an integral morphism with S quasi-compact and quasi-
separated. Then X = limXi with Xi → S finite and of finite presentation.

Proof. Consider the sheafA = f∗OX . This is a quasi-coherent sheaf ofOS-algebras,
see Schemes, Lemma 24.1. Combining Properties, Lemma 22.13 we can writeA = colimiAi
as a filtered colimit of finite and finitely presentedOS-algebras. Then

Xi = Spec
S

(Ai) −→ S

is a finite and finitely presented morphism of schemes. By construction X = limiXi

which proves the lemma. �

8. Descending properties of morphisms

This section is the analogue of Section 4 for properties of morphisms over S. We will
work in the following situation.

Situation 8.1. Let S = limSi be a limit of a directed system of schemes with affine
transition morphisms (Lemma 2.2). Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of
schemes overS0. Assume S0,X0, Y0 are quasi-compact and quasi-separated. Let fi : Xi →
Yi be the base change of f0 to Si and let f : X → Y be the base change of f0 to S.

Lemma 8.2. Notation and assumptions as in Situation 8.1. If f is affine, then there
exists an index i ≥ 0 such that fi is affine.

Proof. LetY0 =
⋃
j=1,...,m Vj,0 be a finite affine open covering. SetUj,0 = f−1

0 (Vj,0).
For i ≥ 0 we denote Vj,i the inverse image of Vj,0 in Yi and Uj,i = f−1

i (Vj,i). Similarly
we have Uj = f−1(Vj). Then Uj = limi≥0 Uj,i (see Lemma 2.2). Since Uj is affine by
assumption we see that each Uj,i is affine for i large enough, see Lemma 4.13. As there are
finitely many j we can pick an iwhich works for all j. Thus fi is affine for i large enough,
see Morphisms, Lemma 11.3. �
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Lemma 8.3. Notation and assumptions as in Situation 8.1. If
(1) f is a finite morphism, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is finite.

Proof. A finite morphism is affine, see Morphisms, Definition 44.1. Hence by Lemma
8.2 above after increasing 0 we may assume that f0 is affine. By writing Y0 as a finite
union of affines we reduce to proving the result when X0 and Y0 are affine and map into
a common affine W ⊂ S0. The corresponding algebra statement follows from Algebra,
Lemma 168.3. �

Lemma 8.4. Notation and assumptions as in Situation 8.1. If
(1) f is unramified, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is unramified.

Proof. Choose a finite affine open covering Y0 =
⋃
j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj Xk,0 be a finite

affine open covering. Since the property of being unramified is local we see that it suffices
to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i which are the base
changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the case that X0, Y0, S0 are
affine

In the affine case we reduce to the following algebra result. Suppose thatR = colimi∈I Ri.
For some 0 ∈ I suppose given anR0-algebra mapAi → Bi of finite type. IfR⊗R0 A0 →
R ⊗R0 B0 is unramified, then for some i ≥ 0 the map Ri ⊗R0 A0 → Ri ⊗R0 B0 is
unramified. This follows from Algebra, Lemma 168.5. �

Lemma 8.5. Notation and assumptions as in Situation 8.1. If
(1) f is a closed immersion, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is a closed immersion.

Proof. A closed immersion is affine, see Morphisms, Lemma 11.9. Hence by Lemma
8.2 above after increasing 0 we may assume that f0 is affine. By writing Y0 as a finite
union of affines we reduce to proving the result whenX0 and Y0 are affine and map into a
common affineW ⊂ S0. The corresponding algebra statement is a consequence of Algebra,
Lemma 168.4. �

Lemma 8.6. Notation and assumptions as in Situation 8.1. If f is separated, then fi
is separated for some i ≥ 0.

Proof. Apply Lemma 8.5 to the diagonal morphism ∆X0/S0 : X0 → X0 ×S0 X0.
(This is permissible as diagonal morphisms are locally of finite type and the fibre product
X0 ×S0 X0 is quasi-compact and quasi-separated, see Schemes, Lemma 21.2, Morphisms,
Lemma 15.5, and Schemes, Remark 21.18. �

Lemma 8.7. Notation and assumptions as in Situation 8.1. If
(1) f is flat,
(2) f0 is locally of finite presentation,

then fi is flat for some i ≥ 0.
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Proof. Choose a finite affine open covering Y0 =
⋃
j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj Xk,0 be a finite

affine open covering. Since the property of being flat is local we see that it suffices to prove
the lemma for the morphisms of affinesXk,i → Yj,i → Sj,i which are the base changes of
Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the case that X0, Y0, S0 are affine

In the affine case we reduce to the following algebra result. Suppose thatR = colimi∈I Ri.
For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite presentation. If
R⊗R0 A0 → R⊗R0 B0 is flat, then for some i ≥ 0 the map Ri ⊗R0 A0 → Ri ⊗R0 B0 is
flat. This follows from Algebra, Lemma 168.1 part (3). �

Lemma 8.8. Notation and assumptions as in Situation 8.1. If
(1) f is finite locally free (of degree d),
(2) f0 is locally of finite presentation,

then fi is finite locally free (of degree d) for some i ≥ 0.

Proof. By Lemmas 8.7 and 8.3 we find an i such that fi is flat and finite. On the
other hand, fi is locally of finite presentation. Hence fi is finite locally free by Morphisms,
Lemma 48.2. If moreover f is finite locally free of degree d, then the image of Y → Yi is
contained in the open and closed locus Wd ⊂ Yi over which fi has degree d. By Lemma
4.10 we see that for some i′ ≥ i the image of Yi′ → Yi is contained in Wd. Then fi′ will
be finite locally free of degree d. �

Lemma 8.9. Notation and assumptions as in Situation 8.1. If
(1) f is smooth,
(2) f0 is locally of finite presentation,

then fi is smooth for some i ≥ 0.

Proof. Being smooth is local on the source and the target (Morphisms, Lemma 34.2)
hence we may assume S0, X0, Y0 affine (details omitted). The corresponding algebra fact
is Algebra, Lemma 168.8. �

Lemma 8.10. Notation and assumptions as in Situation 8.1. If
(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Being étale is local on the source and the target (Morphisms, Lemma 36.2)
hence we may assume S0, X0, Y0 affine (details omitted). The corresponding algebra fact
is Algebra, Lemma 168.7. �

Lemma 8.11. Notation and assumptions as in Situation 8.1. If
(1) f is an isomorphism, and
(2) f0 is locally of finite presentation,

then fi is an isomorphism for some i ≥ 0.

Proof. By Lemmas 8.10 and 8.5 we can find an i such that fi is flat and a closed
immersion. Then fi identifiesXi with an open and closed subscheme ofYi, see Morphisms,
Lemma 26.2. By assumption the image of Y → Yi maps into fi(Xi). Thus by Lemma 4.10
we find that Yi′ maps into fi(Xi) for some i′ ≥ i. It follows that Xi′ → Yi′ is surjective
and we win. �
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Lemma 8.12. Notation and assumptions as in Situation 8.1. If
(1) f is an open immersion, and
(2) f0 is locally of finite presentation,

then fi is an open immersion for some i ≥ 0.

Proof. By Lemma 8.10 we can find an i such that fi is étale. Then Vi = fi(Xi) is a
quasi-compact open subscheme of Yi (Morphisms, Lemma 36.13). let V and Vi′ for i′ ≥ i
be the inverse image of Vi in Y and Yi′ . Then f : X → V is an isomorphism (namely
it is a surjective open immersion). Hence by Lemma 8.11 we see that Xi′ → Vi′ is an
isomorphism for some i′ ≥ i as desired. �

Lemma 8.13. Notation and assumptions as in Situation 8.1. If
(1) f is an immersion, and
(2) f0 is locally of finite type,

then fi is an immersion for some i ≥ 0.

Proof. There exists an open V ⊂ Y such that the morphism f factors asX → V →
Y and such thatX → V is a closed immersion, see discussion in Schemes, Section 10. Since
X is quasi-compact, we may and do assume V is a quasi-compact open of Y . By Lemma
4.11 after increasing 0 we can find a quasi-compact open V0 ⊂ Y0 such that V is the inverse
image of V0. Then the inverse image of V0 in X0 is a quasi-compact open whose inverse
image in X is X . Hence by the same lemma applied to X = limXi we may assume after
increasing 0 that we have the factorization X0 → V0 → Y0. Then for large enough i ≥ 0
the morphism Xi → Vi where Vi = Yi ×Y0 V0 is a closed immersion by Lemma 8.5 and
the proof is complete. �

Lemma 8.14. Notation and assumptions as in Situation 8.1. If
(1) f is a monomorphism, and
(2) f0 is locally of finite type,

then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism of schemes V → W is a monomorphism if and only
if the diagonal V → V ×W V is an isomorphism (Schemes, Lemma 23.2). The morphism
X0 → X0 ×Y0 X0 is locally of finite presentation by Morphisms, Lemma 21.12. Since
X0 ×Y0 X0 is quasi-compact and quasi-separated (Schemes, Remark 21.18) we conclude
from Lemma 8.11 that ∆i : Xi → Xi ×Yi Xi is an isomorphism for some i ≥ 0. For this
i the morphism fi is a monomorphism. �

Lemma 8.15. Notation and assumptions as in Situation 8.1. If
(1) f is surjective, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is surjective.

Proof. The morphism f0 is of finite presentation. Hence E = f0(X0) is a con-
structible subset of Y0, see Morphisms, Lemma 22.2. Since fi is the base change of f0 by
Yi → Y0 we see that the image of fi is the inverse image of E in Yi. Moreover, we know
that Y → Y0 maps into E. Hence we win by Lemma 4.10. �

Lemma 8.16. Notation and assumptions as in Situation 8.1. If
(1) f is syntomic, and
(2) f0 is locally of finite presentation,
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then there exists an i ≥ 0 such that fi is syntomic.

Proof. Choose a finite affine open covering Y0 =
⋃
j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj Xk,0 be a finite

affine open covering. Since the property of being syntomic is local we see that it suffices
to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i which are the base
changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the case that X0, Y0, S0 are
affine
In the affine case we reduce to the following algebra result. Suppose thatR = colimi∈I Ri.
For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite presentation. If
R⊗R0A0 → R⊗R0B0 is syntomic, then for some i ≥ 0 the mapRi⊗R0A0 → Ri⊗R0B0
is syntomic. This follows from Algebra, Lemma 168.9. �

9. Finite type closed in finite presentation

A result of this type is [?, Satz 2.10]. Another reference is [?].

Lemma 9.1. Let f : X → S be a morphism of schemes. Assume:
(1) The morphism f is locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → S and an immersion
X → X ′ of schemes over S.

Proof. By Proposition 5.4 we can write X = limiXi with each Xi of finite type
over Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider the commutative
diagram

X //

!!

Xi,S
//

��

Xi

��
S // Spec(Z)

Note that Xi is of finite presentation over Spec(Z), see Morphisms, Lemma 21.9. Hence
the base change Xi,S → S is of finite presentation by Morphisms, Lemma 21.4. Thus it
suffices to show that the arrow X → Xi,S is an immersion for i sufficiently large.
To do this we choose a finite affine open covering X = V1 ∪ . . . ∪ Vn such that f maps
each Vj into an affine open Uj ⊂ S. Let hj,a ∈ OX(Vj) be a finite set of elements which
generate OX(Vj) as an OS(Uj)-algebra, see Morphisms, Lemma 15.2. By Lemmas 4.11
and 4.13 (after possibly shrinking I) we may assume that there exist affine open coverings
Xi = V1,i∪. . .∪Vn,i compatible with transition maps such thatVj = limi Vj,i. By Lemma
4.7 we can choose i so large that each hj,a comes from an element hj,a,i ∈ OXi(Vj,i). Thus
the arrow in

Vj −→ Uj ×Spec(Z) Vj,i = (Vj,i)Uj ⊂ (Vj,i)S ⊂ Xi,S

is a closed immersion. Since
⋃

(Vj,i)Uj forms an open of Xi,S and since the inverse image
of (Vj,i)Uj in X is Vj it follows that X → Xi,S is an immersion. �

Remark 9.2. We cannot do better than this if we do not assume more on S and the
morphism f : X → S. For example, in general it will not be possible to find a closed
immersion X → X ′ as in the lemma. The reason is that this would imply that f is quasi-
compact which may not be the case. An example is to take S to be infinite dimensional
affine space with 0 doubled and X to be one of the two infinite dimensional affine spaces.
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Lemma 9.3. Let f : X → S be a morphism of schemes. Assume:
(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
(3) The scheme S is quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → S and a closed immersion
X → X ′ of schemes over S.

Proof. By Lemma 9.1 above there exists a morphism Y → S of finite presentation
and an immersion i : X → Y of schemes over S. For every point x ∈ X , there exists
an affine open Vx ⊂ Y such that i−1(Vx) → Vx is a closed immersion. Since X is quasi-
compact we can find finitely may affine opens V1, . . . , Vn ⊂ Y such that i(X) ⊂ V1 ∪
. . .∪Vn and i−1(Vj)→ Vj is a closed immersion. In other words such that i : X → X ′ =
V1 ∪ . . . ∪ Vn is a closed immersion of schemes over S. Since S is quasi-separated and Y
is quasi-separated over S we deduce that Y is quasi-separated, see Schemes, Lemma 21.12.
Hence the open immersion X ′ = V1 ∪ . . . ∪ Vn → Y is quasi-compact. This implies that
X ′ → Y is of finite presentation, see Morphisms, Lemma 21.6. We conclude since then
X ′ → Y → S is a composition of morphisms of finite presentation, and hence of finite
presentation (see Morphisms, Lemma 21.3). �

Lemma 9.4. LetX → Y be a closed immersion of schemes. Assume Y quasi-compact
and quasi-separated. Then X can be written as a directed limit X = limXi of schemes
over Y where Xi → Y is a closed immersion of finite presentation.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subscheme of Y . By Properties, Lemma 22.3 we can write I as a directed colimit I =
colimi∈I Ii of its quasi-coherent sheaves of ideals of finite type. LetXi ⊂ Y be the closed
subscheme defined by Ii. These form an inverse system of schemes indexed by I . The
transition morphisms Xi → Xi′ are affine because they are closed immersions. Each Xi

is quasi-compact and quasi-separated since it is a closed subscheme of Y and Y is quasi-
compact and quasi-separated by our assumptions. We have X = limiXi as follows di-
rectly from the fact that I = colimi∈I Ia. Each of the morphisms Xi → Y is of finite
presentation, see Morphisms, Lemma 21.7. �

Lemma 9.5. Let f : X → S be a morphism of schemes. Assume
(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
(3) The scheme S is quasi-separated.

Then X = limXi where the Xi → S are of finite presentation, the Xi are quasi-compact
and quasi-separated, and the transition morphismsXi′ → Xi are closed immersions (which
implies that X → Xi are closed immersions for all i).

Proof. By Lemma 9.3 there is a closed immersionX → Y with Y → S of finite pre-
sentation. Then Y is quasi-separated by Schemes, Lemma 21.12. SinceX is quasi-compact,
we may assume Y is quasi-compact by replacing Y with a quasi-compact open containing
X . We see that X = limXi with Xi → Y a closed immersion of finite presentation by
Lemma 9.4. The morphisms Xi → S are of finite presentation by Morphisms, Lemma
21.3. �

Proposition 9.6. Let f : X → S be a morphism of schemes. Assume
(1) f is of finite type and separated, and
(2) S is quasi-compact and quasi-separated.
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Then there exists a separated morphism of finite presentation f ′ : X ′ → S and a closed
immersion X → X ′ of schemes over S.

Proof. Apply Lemma 9.5 and note that Xi → S is separated for large i by Lemma
4.17 as we have assumed that X → S is separated. �

Lemma 9.7. Let f : X → S be a morphism of schemes. Assume
(1) f is finite, and
(2) S is quasi-compact and quasi-separated.

Then there exists a morphism which is finite and of finite presentation f ′ : X ′ → S and
a closed immersion X → X ′ of schemes over S.

Proof. We may write X = limXi as in Lemma 9.5. Applying Lemma 4.19 we see
that Xi → S is finite for large enough i. �

Lemma 9.8. Let f : X → S be a morphism of schemes. Assume
(1) f is finite, and
(2) S quasi-compact and quasi-separated.

Then X is a directed limit X = limXi where the transition maps are closed immersions
and the objects Xi are finite and of finite presentation over S.

Proof. We may write X = limXi as in Lemma 9.5. Applying Lemma 4.19 we see
that Xi → S is finite for large enough i. �

10. Descending relative objects

The following lemma is typical of the type of results in this section. We write out the
“standard” proof completely. It may be faster to convince yourself that the result is true
than to read this proof.

Lemma 10.1. Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
over I . Assume

(1) the morphisms fii′ : Si → Si′ are affine,
(2) the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:
(1) For any morphism of finite presentationX → S there exists an index i ∈ I and

a morphism of finite presentationXi → Si such thatX ∼= Xi,S as schemes over
S.

(2) Given an index i ∈ I , schemes Xi, Yi of finite presentation over Si, and a mor-
phism ϕ : Xi,S → Yi,S over S , there exists an index i′ ≥ i and a morphism
ϕi′ : Xi,Si′ → Yi,Si′ whose base change to S is ϕ.

(3) Given an index i ∈ I , schemes Xi, Yi of finite presentation over Si and a pair of
morphisms ϕi, ψi : Xi → Yi whose base changes ϕi,S = ψi,S are equal, there
exists an index i′ ≥ i such that ϕi,Si′ = ψi,Si′ .

In other words, the category of schemes of finite presentation over S is the colimit over I
of the categories of schemes of finite presentation over Si.

Proof. In case each of the schemes Si is affine, and we consider only affine schemes
of finite presentation over Si, resp. S this lemma is equivalent to Algebra, Lemma 127.8.
We claim that the affine case implies the lemma in general.
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Let us prove (3). Suppose given an index i ∈ I , schemes Xi, Yi of finite presentation over
Si and a pair of morphisms ϕi, ψi : Xi → Yi. Assume that the base changes are equal:
ϕi,S = ψi,S . We will use the notationXi′ = Xi,Si′ and Yi′ = Yi,Si′ for i′ ≥ i. We also set
X = Xi,S and Y = Yi,S . Note that according to Lemma 2.3 we haveX = limi′≥iXi′ and
similarly for Y . Additionally we denote ϕi′ and ψi′ (resp. ϕ and ψ) the base change of ϕi
and ψi to Si′ (resp. S). So our assumption means that ϕ = ψ. Since Yi andXi are of finite
presentation over Si, and since Si is quasi-compact and quasi-separated, alsoXi and Yi are
quasi-compact and quasi-separated (see Morphisms, Lemma 21.10). Hence we may choose
a finite affine open covering Yi =

⋃
Vj,i such that each Vj,i maps into an affine open of S.

As above, denote Vj,i′ the inverse image of Vj,i in Yi′ and Vj the inverse image in Y . The
immersions Vj,i′ → Yi′ are quasi-compact, and the inverse images Uj,i′ = ϕ−1

i (Vj,i′) and
U ′
j,i′ = ψ−1

i (Vj,i′) are quasi-compact opens ofXi′ . By assumption the inverse images ofVj
under ϕ and ψ inX are equal. Hence by Lemma 4.11 there exists an index i′ ≥ i such that
of Uj,i′ = U ′

j,i′ in Xi′ . Choose an finite affine open covering Uj,i′ = U ′
j,i′ =

⋃
Wj,k,i′

which induce coverings Uj,i′′ = U ′
j,i′′ =

⋃
Wj,k,i′′ for all i′′ ≥ i′. By the affine case there

exists an index i′′ such that ϕi′′ |Wj,k,i′′ = ψi′′ |Wj,k,i′′ for all j, k. Then i′′ is an index such
that ϕi′′ = ψi′′ and (3) is proved.

Let us prove (2). Suppose given an index i ∈ I , schemes Xi, Yi of finite presentation
over Si and a morphism ϕ : Xi,S → Yi,S . We will use the notation Xi′ = Xi,Si′ and
Yi′ = Yi,Si′ for i′ ≥ i. We also set X = Xi,S and Y = Yi,S . Note that according to
Lemma 2.3 we have X = limi′≥iXi′ and similarly for Y . Since Yi and Xi are of finite
presentation over Si, and since Si is quasi-compact and quasi-separated, alsoXi and Yi are
quasi-compact and quasi-separated (see Morphisms, Lemma 21.10). Hence we may choose
a finite affine open covering Yi =

⋃
Vj,i such that each Vj,i maps into an affine open of S.

As above, denote Vj,i′ the inverse image of Vj,i in Yi′ and Vj the inverse image in Y . The
immersions Vj → Y are quasi-compact, and the inverse images Uj = ϕ−1(Vj) are quasi-
compact opens ofX . Hence by Lemma 4.11 there exists an index i′ ≥ i and quasi-compact
opens Uj,i′ of Xi′ whose inverse image in X is Uj . Choose an finite affine open covering
Uj,i′ =

⋃
Wj,k,i′ which induce affine open coverings Uj,i′′ =

⋃
Wj,k,i′′ for all i′′ ≥ i′

and an affine open covering Uj =
⋃
Wj,k. By the affine case there exists an index i′′ and

morphisms ϕj,k,i′′ : Wj,k,i′′ → Vj,i′′ such that ϕ|Wj,k
= ϕj,k,i′′,S for all j, k. By part (3)

proved above, there is a further index i′′′ ≥ i′′ such that

ϕj1,k1,i′′,Si′′′ |Wj1,k1,i′′′ ∩Wj2,k2,i′′′ = ϕj2,k2,i′′,Si′′′ |Wj1,k1,i′′′ ∩Wj2,k2,i′′′

for all j1, j2, k1, k2. Then i′′′ is an index such that there exists a morphism ϕi′′′ : Xi′′′ →
Yi′′′ whose base change to S gives ϕ. Hence (2) holds.

Let us prove (1). Suppose given a scheme X of finite presentation over S. Since X is
of finite presentation over S , and since S is quasi-compact and quasi-separated, also X is
quasi-compact and quasi-separated (see Morphisms, Lemma 21.10). Choose a finite affine
open covering X =

⋃
Uj such that each Uj maps into an affine open Vj ⊂ S. Denote

Uj1j2 = Uj1 ∩ Uj2 and Uj1j2j3 = Uj1 ∩ Uj2 ∩ Uj3 . By Lemmas 4.11 and 4.13 we can
find an index i1 and affine opens Vj,i1 ⊂ Si1 such that each Vj is the inverse of this in S.
Let Vj,i be the inverse image of Vj,i1 in Si for i ≥ i1. By the affine case we may find an
index i2 ≥ i1 and affine schemes Uj,i2 → Vj,i2 such that Uj = S ×Si2 Uj,i2 is the base
change. Denote Uj,i = Si ×Si2 Uj,i2 for i ≥ i2. By Lemma 4.11 there exists an index
i3 ≥ i2 and open subschemes Wj1,j2,i3 ⊂ Uj1,i3 whose base change to S is equal to Uj1j2 .
Denote Wj1,j2,i = Si ×Si3 Wj1,j2,i3 for i ≥ i3. By part (2) shown above there exists
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an index i4 ≥ i3 and morphisms ϕj1,j2,i4 : Wj1,j2,i4 → Wj2,j1,i4 whose base change
to S gives the identity morphism Uj1j2 = Uj2j1 for all j1, j2. For all i ≥ i4 denote
ϕj1,j2,i = idS × ϕj1,j2,i4 the base change. We claim that for some i5 ≥ i4 the system
((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (ϕj1,j2,i5)j1,j2) forms a glueing datum as in Schemes, Section
14. In order to see this we have to verify that for i large enough we have

ϕ−1
j1,j2,i

(Wj1,j2,i ∩Wj1,j3,i) = Wj1,j2,i ∩Wj1,j3,i

and that for large enough i the cocycle condition holds. The first condition follows from
Lemma 4.11 and the fact that Uj2j1j3 = Uj1j2j3 . The second from part (1) of the lemma
proved above and the fact that the cocycle condition holds for the maps id : Uj1j2 →
Uj2j1 . Ok, so now we can use Schemes, Lemma 14.2 to glue the system ((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (ϕj1,j2,i5)j1,j2)
to get a schemeXi5 → Si5 . By construction the base change ofXi5 toS is formed by glue-
ing the open affines Uj along the opens Uj1 ← Uj1j2 → Uj2 . Hence S ×Si5 Xi5

∼= X as
desired. �

Lemma 10.2. Let I be a directed set. Let (Si, fii′) be an inverse system of schemes
over I . Assume

(1) all the morphisms fii′ : Si → Si′ are affine,
(2) all the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:
(1) For any sheaf ofOS-modulesF of finite presentation there exists an index i ∈ I

and a sheaf ofOSi -modules of finite presentation Fi such that F ∼= f∗
i Fi.

(2) Suppose given an index i ∈ I , sheaves of OSi -modules Fi, Gi of finite presenta-
tion and a morphismϕ : f∗

i Fi → f∗
i Gi over S. Then there exists an index i′ ≥ i

and a morphism ϕi′ : f∗
i′iFi → f∗

i′iGi whose base change to S is ϕ.
(3) Suppose given an index i ∈ I , sheaves of OSi -modules Fi, Gi of finite presenta-

tion and a pair of morphismsϕi, ψi : Fi → Gi. Assume that the base changes are
equal: f∗

i ϕi = f∗
i ψi. Then there exists an index i′ ≥ i such that f∗

i′iϕi = f∗
i′iψi.

In other words, the category of modules of finite presentation over S is the colimit over I
of the categories modules of finite presentation over Si.

Proof. We sketch two proofs, but we omit the details.

First proof. IfS andSi are affine schemes, then this lemma is equivalent to Algebra, Lemma
127.6. In the general case, use Zariski glueing to deduce it from the affine case.

Second proof. We use
(1) there is an equivalence of categories between quasi-coherent OS-modules and

vector bundles over S , see Constructions, Section 6, and
(2) a vector bundle V(F)→ S is of finite presentation over S if and only if F is an
OS-module of finite presentation.

Having said this, we can use Lemma 10.1 to show that the category of vector bundles of
finite presentation over S is the colimit over I of the categories of vector bundles over
Si. �

Lemma 10.3. Let S = limSi be the limit of a directed system of quasi-compact and
quasi-separated schemes Si with affine transition morphisms. Then

(1) any finite locally free OS-module is the pullback of a finite locally free OSi -
module for some i,
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(2) any invertibleOS-module is the pullback of an invertibleOSi -module for some
i, and

(3) any finite type quasi-coherent ideal I ⊂ OS is of the form Ii · OS for some i
and some finite type quasi-coherent ideal Ii ⊂ OSi .

Proof. Let E be a finite locally freeOS-module. Since finite locally free modules are
of finite presentation we can find an i and an OSi -module Ei of finite presentation such
that f∗

i Ei ∼= E , see Lemma 10.2. After increasing i we may assume Ei is a flatOSi -module,
see Algebra, Lemma 168.1. (Using this lemma is not necessary, but it is convenient.) Then
Ei is finite locally free by Algebra, Lemma 78.2.

If L is an invertible OS-module, then by the above we can find an i and finite locally
free OSi -modules Li and Ni pulling back to L and L⊗−1. After possible increasing i we
see that the map L ⊗OX

L⊗−1 → OX descends to a map Li ⊗OSi
Ni → OSi . And after

increasing i further, we may assume it is an isomorphism. It follows thatLi is an invertible
module (Modules, Lemma 25.2) and the proof of (2) is complete.

Given I as in (3) we see that OS → OS/I is a map of finitely presented OS-modules.
Hence by Lemma 10.2 this is the pullback of some map OSi → Fi of finitely presented
OSi -modules. After increasing i we may assume this map is surjective (details omitted;
hint: use Algebra, Lemma 127.5 on affine open cover). Then the kernel of OSi → Fi is a
finite type quasi-coherent ideal inOSi whose pullback gives I . �

Lemma 10.4. With notation and assumptions as in Lemma 10.1. Let i ∈ I . Suppose
that ϕi : Xi → Yi is a morphism of schemes of finite presentation over Si and that Fi is a
quasi-coherentOXi -module of finite presentation. If the pullback ofFi toXi×Si S is flat
over Yi×Si S , then there exists an index i′ ≥ i such that the pullback of Fi toXi×Si Si′
is flat over Yi ×Si Si′ .

Proof. (This lemma is the analogue of Lemma 8.7 for modules.) For i′ ≥ i denote
Xi′ = Si′ ×Si Xi, Fi′ = (Xi′ → Xi)∗Fi and similarly for Yi′ . Denote ϕi′ the base
change of ϕi to Si′ . Also set X = S ×Si Xi, Y = S ×Si Xi, F = (X → Xi)∗Fi and ϕ
the base change of ϕi to S. Let Yi =

⋃
j=1,...,m Vj,i be a finite affine open covering such

that each Vj,i maps into some affine open of Si. For each j = 1, . . .m let ϕ−1
i (Vj,i) =⋃

k=1,...,m(j) Uk,j,i be a finite affine open covering. For i′ ≥ i we denote Vj,i′ the inverse
image of Vj,i in Yi′ andUk,j,i′ the inverse image ofUk,j,i inXi′ . Similarly we haveUk,j ⊂
X and Vj ⊂ Y . Then Uk,j = limi′≥i Uk,j,i′ and Vj = limi′≥i Vj (see Lemma 2.2). Since
Xi′ =

⋃
k,j Uk,j,i′ is a finite open covering it suffices to prove the lemma for each of the

morphisms Uk,j,i → Vj,i and the sheaf Fi|Uk,j,i . Hence we see that the lemma reduces
to the case that Xi and Yi are affine and map into an affine open of Si, i.e., we may also
assume that S is affine.

In the affine case we reduce to the following algebra result. Suppose thatR = colimi∈I Ri.
For some i ∈ I suppose given a mapAi → Bi of finitely presentedRi-algebras. LetNi be
a finitely presented Bi-module. Then, if R ⊗Ri Ni is flat over R ⊗Ri Ai, then for some
i′ ≥ i the module Ri′ ⊗Ri Ni is flat over Ri′ ⊗Ri A. This is exactly the result proved in
Algebra, Lemma 168.1 part (3). �

Lemma 10.5. For a scheme T denote CT the full subcategory of schemes W over T
such that W is quasi-compact and quasi-separated and such that the structure morphism
W → T is locally of finite presentation. Let S = limSi be a directed limit of schemes
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with affine transition morphisms. Then there is an equivalence of categories
colim CSi −→ CS

given by the base change functors.

Warning: do not use this lemma if you do not understand the difference between this
lemma and Lemma 10.1.

Proof. Fully faithfulness. Suppose we have i ∈ I and objects Xi, Yi of CSi . Denote
X = Xi×Si S and Y = Yi×Si S. Suppose given a morphism f : X → Y over S. We can
choose a finite affine open covering Yi = Vi,1∪ . . .∪Vi,m such that Vi,j → Yi → Si maps
into an affine openWi,j of Si. Denote Y = V1∪ . . .∪Vm the induced affine open covering
of Y . Since f : X → Y is quasi-compact (Schemes, Lemma 21.14) after increasing i we
may assume that there is a finite open covering Xi = Ui,1 ∪ . . . ∪ Ui,m by quasi-compact
opens such that the inverse image ofUi,j in Y is f−1(Vj), see Lemma 4.11. By Lemma 10.1
applied to f |f−1(Vj) over Wj we may assume, after increasing i, that there is a morphism
fi,j : Vi,j → Ui,j over S whose base change to S is f |f−1(Vj). Increasing i more we may
assume fi,j and fi,j′ agree on the quasi-compact open Ui,j ∩Ui,j′ . Then we can glue these
morphisms to get the desired morphism fi : Xi → Yi. This morphism is unique (up to
increasing i) because this is true for the morphisms fi,j .
To show that the functor is essentially surjective we argue in exactly the same way. Namely,
suppose that X is an object of CS . Pick i ∈ I . We can choose a finite affine open cover-
ing X = U1 ∪ . . . ∪ Um such that Uj → X → S → Si factors through an affine open
Wi,j ⊂ Si. Set Wj = Wi,j ×Si S. This is an affine open of S. By Lemma 10.1, after
increasing i, we may assume there exist Ui,j → Wi,j of finite presentation whose base
change to Wj is Uj . After increasing i we may assume there exist quasi-compact opens
Ui,j,j′ ⊂ Ui,j whose base changes to S are equal to Uj ∩Uj′ . Claim: after increasing i we
may assume the image of the morphism Ui,j,j′ → Ui,j → Wi,j ends up in Wi,j ∩Wi,j′ .
Namely, because the complement of Wi,j ∩Wi,j′ is closed in the affine scheme Wi,j it is
affine. Since Uj ∩ Uj′ = limUi,j,j′ does map into Wi,j ∩Wi,j′ we can apply Lemma 4.9
to get the claim. Thus we can view both

Ui,j,j′ and Ui,j′,j

as schemes overWi,j′ whose base changes toWj′ recoverUj∩Uj′ . Hence after increasing i,
using Lemma 10.1, we may assume there are isomorphismsUi,j,j′ → Ui,j′,j overWi,j′ and
hence over Si. Increasing i further (details omitted) we may assume these isomorphisms
satisfy the cocycle condition mentioned in Schemes, Section 14. Applying Schemes, Lemma
14.1 we obtain an object Xi of CSi whose base change to S is isomorphic to X ; we omit
some of the verifications. �

11. Characterizing affine schemes

If f : X → S is a surjective integral morphism of schemes such thatX is an affine scheme
then S is affine too. See [?, A.2]. Our proof relies on the Noetherian case which we stated
and proved in Cohomology of Schemes, Lemma 13.3. See also [?, II 6.7.1].

Lemma 11.1. Let f : X → S be a morphism of schemes. Assume that f is surjective
and finite, and assume that X is affine. Then S is affine.

Proof. Since f is surjective and X is quasi-compact we see that S is quasi-compact.
Since X is separated and f is surjective and universally closed (Morphisms, Lemma 44.7),
we see that S is separated (Morphisms, Lemma 41.11).
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By Lemma 9.8 we can write X = limaXa with Xa → S finite and of finite presentation.
By Lemma 4.13 we see that Xa is affine for some a ∈ A. Replacing X by Xa we may
assume that X → S is surjective, finite, of finite presentation and that X is affine.
By Proposition 5.4 we may write S = limi∈I Si as a directed limits of schemes of finite
type over Z. By Lemma 10.1 we can after shrinking I assume there exist schemesXi → Si
of finite presentation such that Xi′ = Xi ×S Si′ for i′ ≥ i and such that X = limiXi.
By Lemma 8.3 we may assume that Xi → Si is finite for all i ∈ I as well. By Lemma 4.13
once again we may assume that Xi is affine for all i ∈ I . Hence the result follows from
the Noetherian case, see Cohomology of Schemes, Lemma 13.3. �

Proposition 11.2. Let f : X → S be a morphism of schemes. Assume X is affine
and that f is surjective and universally closed2. Then S is affine.

Proof. By Morphisms, Lemma 41.11 the scheme S is separated. Then by Morphisms,
Lemma 11.11 we find that f is affine. Whereupon by Morphisms, Lemma 44.7 we see that
f is integral.
By the preceding paragraph, we may assume f : X → S is surjective and integral, X is
affine, and S is separated. Since f is surjective andX is quasi-compact we also deduce that
S is quasi-compact.
By Lemma 7.3 we can writeX = limiXi withXi → S finite. By Lemma 4.13 we see that
for i sufficiently large the scheme Xi is affine. Moreover, since X → S factors through
each Xi we see that Xi → S is surjective. Hence we conclude that S is affine by Lemma
11.1. �

Lemma 11.3. LetX be a scheme which is set theoretically the union of finitely many
affine closed subschemes. Then X is affine.

Proof. Let Zi ⊂ X , i = 1, . . . , n be affine closed subschemes such that X =
⋃
Zi

set theoretically. Then
∐
Zi → X is surjective and integral with affine source. Hence X

is affine by Proposition 11.2. �

Lemma 11.4. Let i : Z → X be a closed immersion of schemes inducing a homeo-
morphism of underlying topological spaces. Let L be an invertible sheaf on X . Then i∗L
is ample on Z , if and only if L is ample on X .

Proof. If L is ample, then i∗L is ample for example by Morphisms, Lemma 37.7.
Assume i∗L is ample. ThenZ is quasi-compact (Properties, Definition 26.1) and separated
(Properties, Lemma 26.8). Since i is surjective, we see that X is quasi-compact. Since i is
universally closed and surjective, we see that X is separated (Morphisms, Lemma 41.11).
By Proposition 5.4 we can write X = limXi as a directed limit of finite type schemes
over Z with affine transition morphisms. We can find an i and an invertible sheaf Li on
Xi whose pullback to X is isomorphic to L, see Lemma 10.2.
For each i let Zi ⊂ Xi be the scheme theoretic image of the morphism Z → Xi. If
Spec(Ai) ⊂ Xi is an affine open subscheme with inverse image of Spec(A) in X and if
Z ∩ Spec(A) is defined by the ideal I ⊂ A, then Zi ∩ Spec(Ai) is defined by the ideal
Ii ⊂ Ai which is the inverse image of I inAi under the ring mapAi → A, see Morphisms,
Example 6.4. Since colimAi/Ii = A/I it follows that limZi = Z. By Lemma 4.15 we see
that Li|Zi is ample for some i. Since Z and henceX maps into Zi set theoretically, we see

2An integral morphism is universally closed, see Morphisms, Lemma 44.7.
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that Xi′ → Xi maps into Zi set theoretically for some i′ ≥ i, see Lemma 4.10. (Observe
that since Xi is Noetherian, every closed subset of Xi is constructible.) Let T ⊂ Xi′ be
the scheme theoretic inverse image of Zi in Xi′ . Observe that Li′ |T is the pullback of
Li|Zi and hence ample by Morphisms, Lemma 37.7 and the fact that T → Zi is an affine
morphism. Thus we see thatLi′ is ample onXi′ by Cohomology of Schemes, Lemma 17.5.
Pulling back to X (using the same lemma as above) we find that L is ample. �

Lemma 11.5. Let i : Z → X be a closed immersion of schemes inducing a home-
omorphism of underlying topological spaces. Then X is quasi-affine if and only if Z is
quasi-affine.

Proof. Recall that a scheme is quasi-affine if and only if the structure sheaf is ample,
see Properties, Lemma 27.1. Hence if Z is quasi-affine, then OZ is ample, hence OX is
ample by Lemma 11.4, hence X is quasi-affine. A proof of the converse, which can also be
seen in an elementary way, is gotten by reading the argument just given backwards. �

The following lemma does not really belong in this section.

Lemma 11.6. Let X be a scheme. Let L be an ample invertible sheaf on X . Assume
we have morphisms of schemes

Spec(k)← Spec(A)→W ⊂ X
where k is a field, A is an integral k-algebra, W is open in X . Then there exists an n > 0
and a section s ∈ Γ(X,L⊗n) such that Xs is affine, Xs ⊂W , and Spec(A)→W factors
through Xs

Proof. Since Spec(A) is quasi-compact, we may replaceW by a quasi-compact open
still containing the image of Spec(A) → X . Recall that X is quasi-separated and quasi-
compact by dint of having an ample invertible sheaf, see Properties, Definition 26.1 and
Lemma 26.7. By Proposition 5.4 we can write X = limXi as a limit of a directed system
of schemes of finite type over Z with affine transition morphisms. For some i the ample
invertible sheaf L onX descends to an ample invertible sheaf Li onXi and the openW is
the inverse image of a quasi-compact open Wi ⊂ Xi, see Lemmas 4.15, 10.3, and 4.11. We
may replace X,W,L by Xi,Wi,Li and assume X is of finite presentation over Z. Write
A = colimAj as the colimit of its finite k-subalgebras. Then for some j the morphism
Spec(A) → X factors through a morphism Spec(Aj) → X , see Proposition 6.1. Since
Spec(Aj) is finite this reduces the lemma to Properties, Lemma 29.6. �

12. Variants of Chow’s Lemma

In this section we prove a number of variants of Chow’s lemma. The most interesting
version is probably just the Noetherian case, which we stated and proved in Cohomology
of Schemes, Section 18.

Lemma 12.1. Let S be a quasi-compact and quasi-separated scheme. Let f : X → S
be a separated morphism of finite type. Then there exists an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.
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Proof. By Proposition 9.6 we can find a closed immersion X → Y where Y is sepa-
rated and of finite presentation over S. Clearly, if we prove the assertion for Y , then the
result follows for X . Hence we may assume that X is of finite presentation over S.

Write S = limi Si as a directed limit of Noetherian schemes, see Proposition 5.4. By
Lemma 10.1 we can find an index i ∈ I and a scheme Xi → Si of finite presentation so
that X = S ×Si Xi. By Lemma 8.6 we may assume that Xi → Si is separated. Clearly, if
we prove the assertion for Xi over Si, then the assertion holds for X . The case Xi → Si
is treated by Cohomology of Schemes, Lemma 18.1. �

Remark 12.2. In the situation of Chow’s Lemma 12.1:
(1) The morphismπ is actually H-projective (hence projective, see Morphisms, Lemma

43.3) since the morphismX ′ → Pn
S ×S X = Pn

X is a closed immersion (use the
fact that π is proper, see Morphisms, Lemma 41.7).

(2) We may assume thatX ′ is reduced as we can replaceX ′ by its reduction without
changing the other assertions of the lemma.

(3) We may assume that X ′ → X is of finite presentation without changing the
other assertions of the lemma. This can be deduced from the proof of Lemma 12.1
but we can also prove this directly as follows. By (1) we have a closed immersion
X ′ → Pn

X . By Lemma 9.4 we can write X ′ = limX ′
i where X ′

i → Pn
X is

a closed immersion of finite presentation. In particular X ′
i → X is of finite

presentation, proper, and surjective. For large enough i the morphismX ′
i → Pn

S

is an immersion by Lemma 4.16. Replacing X ′ by X ′
i we get what we want.

Of course in general we can’t simultaneously achieve both (2) and (3).

Here is a variant of Chow’s lemma where we assume the scheme on top has finitely many
irreducible components.

Lemma 12.3. Let S be a quasi-compact and quasi-separated scheme. Let f : X →
S be a separated morphism of finite type. Assume that X has finitely many irreducible
components. Then there exists an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective. Moreover,

there exists an open dense subscheme U ⊂ X such that π−1(U) → U is an isomorphism
of schemes.

Proof. Let X = Z1 ∪ . . . ∪ Zn be the decomposition of X into irreducible compo-
nents. Let ηj ∈ Zj be the generic point.

There are (at least) two ways to proceed with the proof. The first is to redo the proof of
Cohomology of Schemes, Lemma 18.1 using the general Properties, Lemma 29.4 to find
suitable affine opens in X . (This is the “standard” proof.) The second is to use absolute
Noetherian approximation as in the proof of Lemma 12.1 above. This is what we will do
here.

By Proposition 9.6 we can find a closed immersion X → Y where Y is separated and of
finite presentation over S. Write S = limi Si as a directed limit of Noetherian schemes,
see Proposition 5.4. By Lemma 10.1 we can find an index i ∈ I and a scheme Yi → Si of
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finite presentation so that Y = S ×Si Yi. By Lemma 8.6 we may assume that Yi → Si is
separated. We have the following diagram

ηj ∈ Zj // X //

��

Y //

��

Yi

��
S // Si

Denote h : X → Yi the composition.

For i′ ≥ i write Yi′ = Si′ ×Si Yi. Then Y = limi′≥i Yi′ , see Lemma 2.3. Choose j, j′ ∈
{1, . . . , n}, j 6= j′. Note that ηj is not a specialization of ηj′ . By Lemma 4.6 we can replace
i by a bigger index and assume that h(ηj) is not a specialization of h(ηj′) for all pairs (j, j′)
as above. For such an index, let Y ′ ⊂ Yi be the scheme theoretic image of h : X → Yi, see
Morphisms, Definition 6.2. The morphism h is quasi-compact as the composition of the
quasi-compact morphisms X → Y and Y → Yi (which is affine). Hence by Morphisms,
Lemma 6.3 the morphism X → Y ′ is dominant. Thus the generic points of Y ′ are all
contained in the set {h(η1), . . . , h(ηn)}, see Morphisms, Lemma 8.3. Since none of the
h(ηj) is the specialization of another we see that the points h(η1), . . . , h(ηn) are pairwise
distinct and are each a generic point of Y ′.

We apply Cohomology of Schemes, Lemma 18.1 above to the morphism Y ′ → Si. This
gives a diagram

Y ′

  

Y ∗

��

π
oo // Pn

Si

}}
Si

such that π is proper and surjective and an isomorphism over a dense open subscheme
V ⊂ Y ′. By our choice of i above we know that h(η1), . . . , h(ηn) ∈ V . Consider the
commutative diagram

X ′ X ×Y ′ Y ∗ //

��

Y ∗ //

��

Pn
Si

��

X //

��

Y ′

��
S // Si

Note that X ′ → X is an isomorphism over the open subscheme U = h−1(V ) which
contains each of the ηj and hence is dense in X . We conclude X ← X ′ → Pn

S is a
solution to the problem posed in the lemma. �

13. Applications of Chow’s lemma

Here is a first application of Chow’s lemma.

Lemma 13.1. Assumptions and notation as in Situation 8.1. If
(1) f is proper, and
(2) f0 is locally of finite type,

then there exists an i such that fi is proper.
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Proof. By Lemma 8.6 we see that fi is separated for some i ≥ 0. Replacing 0 by iwe
may assume that f0 is separated. Observe that f0 is quasi-compact, see Schemes, Lemma
21.14. By Lemma 12.1 we can choose a diagram

X0

  

X ′
0

��

π
oo // Pn

Y0

}}
Y0

where X ′
0 → Pn

Y0
is an immersion, and π : X ′

0 → X0 is proper and surjective. Introduce
X ′ = X ′

0 ×Y0 Y and X ′
i = X ′

0 ×Y0 Yi. By Morphisms, Lemmas 41.4 and 41.5 we see that
X ′ → Y is proper. HenceX ′ → Pn

Y is a closed immersion (Morphisms, Lemma 41.7). By
Morphisms, Lemma 41.9 it suffices to prove thatX ′

i → Yi is proper for some i. By Lemma
8.5 we find that X ′

i → Pn
Yi

is a closed immersion for i large enough. Then X ′
i → Yi is

proper and we win. �

Lemma 13.2. Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then X = limXi is a directed limit of schemes Xi proper and of finite
presentation over S such that all transition morphisms and the morphisms X → Xi are
closed immersions.

Proof. By Proposition 9.6 we can find a closed immersionX → Y with Y separated
and of finite presentation over S. By Lemma 12.1 we can find a diagram

Y

��

Y ′

��

π
oo // Pn

S

~~
S

where Y ′ → Pn
S is an immersion, and π : Y ′ → Y is proper and surjective. By Lemma

9.4 we can write X = limXi with Xi → Y a closed immersion of finite presentation.
Denote X ′

i ⊂ Y ′, resp. X ′ ⊂ Y ′ the scheme theoretic inverse image of Xi ⊂ Y , resp.
X ⊂ Y . Then limX ′

i = X ′. Since X ′ → S is proper (Morphisms, Lemmas 41.4), we see
thatX ′ → Pn

S is a closed immersion (Morphisms, Lemma 41.7). Hence for i large enough
we find that X ′

i → Pn
S is a closed immersion by Lemma 4.20. Thus X ′

i is proper over S.
For such i the morphism Xi → S is proper by Morphisms, Lemma 41.9. �

Lemma 13.3. Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then there exists a directed set I , an inverse system (fi : Xi → Si) of
morphisms of schemes over I , such that the transition morphisms Xi → Xi′ and Si →
Si′ are affine, such that fi is proper, such that Si is of finite type over Z, and such that
(X → S) = lim(Xi → Si).

Proof. By Lemma 13.2 we can write X = limk∈K Xk with Xk → S proper and
of finite presentation. Next, by absolute Noetherian approximation (Proposition 5.4) we
can write S = limj∈J Sj with Sj of finite type over Z. For each k there exists a j and a
morphismXk,j → Sj of finite presentation withXk

∼= S×Sj Xk,j as schemes over S , see
Lemma 10.1. After increasing j we may assumeXk,j → Sj is proper, see Lemma 13.1. The
set I will be consist of these pairs (k, j) and the corresponding morphism is Xk,j → Sj .
For every k′ ≥ k we can find a j′ ≥ j and a morphism Xj′,k′ → Xj,k over Sj′ → Sj
whose base change to S gives the morphismXk′ → Xk (follows again from Lemma 10.1).
These morphisms form the transition morphisms of the system. Some details omitted. �
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Lemma 13.4. Let S be a scheme. Let X = limXi be a directed limit of schemes over
S with affine transition morphisms. Let Y → X be a morphism of schemes over S. If
Y → X is proper,Xi quasi-compact and quasi-separated, and Y locally of finite type over
S , then Y → Xi is proper for i large enough.

Proof. Choose a closed immersionY → Y ′ withY ′ proper and of finite presentation
over X , see Lemma 13.2. Then choose an i and a proper morphism Y ′

i → Xi such that
Y ′ = X ×Xi Y ′

i . This is possible by Lemmas 10.1 and 13.1. Then after replacing i by a
larger index we have that Y → Y ′

i is a closed immersion, see Lemma 4.16. �

Recall the scheme theoretic support of a finite type quasi-coherent module, see Morphisms,
Definition 5.5.

Lemma 13.5. Assumptions and notation as in Situation 8.1. LetF0 be a quasi-coherent
OX0 -module. Denote F and Fi the pullbacks of F0 to X and Xi. Assume

(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .

Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms,
Lemma 5.3 this guarantees that Xi is the support of Fi and X is the support of F . Then,
if Z ⊂ X denotes the scheme theoretic support of F , we see that Z → X is a universal
homeomorphism. We conclude that X → Y is proper as this is true for Z → Y by
assumption, see Morphisms, Lemma 41.9. By Lemma 13.1 we see that Xi → Y is proper
for some i. Then it follows that the scheme theoretic support Zi of Fi is proper over Y
by Morphisms, Lemmas 41.6 and 41.4. �

14. Universally closed morphisms

In this section we discuss when a quasi-compact (but not necessarily separated) morphism
is universally closed. We first prove a lemma which will allow us to check universal closed-
ness after a base change which is locally of finite presentation.

Lemma 14.1. Let f : X → S be a quasi-compact morphism of schemes. Let g : T → S
be a morphism of schemes. Let t ∈ T be a point and Z ⊂ XT be a closed subscheme such
that Z ∩Xt = ∅. Then there exists an open neighbourhood V ⊂ T of t, a commutative
diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

Moreover, we may assume V and T ′ are affine.

Proof. Let s = g(t). During the proof we may always replace T by an open neigh-
bourhood of t. Hence we may also replace S by an open neighbourhood of s. Thus we
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may and do assume that T and S are affine. Say S = Spec(A), T = Spec(B), g is given
by the ring map A→ B, and t correspond to the prime ideal q ⊂ B.

As X → S is quasi-compact and S is affine we may write X =
⋃
i=1,...,n Ui as a finite

union of affine opens. WriteUi = Spec(Ci). In particular we haveXT =
⋃
i=1,...,n Ui,T =⋃

i=1,...n Spec(Ci⊗AB). Let Ii ⊂ Ci⊗AB be the ideal corresponding to the closed sub-
scheme Z ∩Ui,T . The condition that Z ∩Xt = ∅ signifies that Ii generates the unit ideal
in the ring

Ci ⊗A κ(q) = (B \ q)−1 (Ci ⊗A B/qCi ⊗A B)
Since Ii(B \ q)−1(Ci ⊗A B) = (B \ q)−1Ii this means that 1 = xi/gi for some xi ∈ Ii
and gi ∈ B, gi 6∈ q. Thus, clearing denominators we can find a relation of the form

xi +
∑

j
fi,jci,j = gi

with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B, and gi ∈ B, gi 6∈ q. After replacing B by Bg1...gn ,
i.e., after replacing T by a smaller affine neighbourhood of t, we may assume the equations
read

xi +
∑

j
fi,jci,j = 1

with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B.

To finish the argument write B as a colimit of finitely presented A-algebras Bλ over a
directed set Λ. For each λ set qλ = (Bλ → B)−1(q). For sufficiently large λ ∈ Λ we can
find

(1) an element xi,λ ∈ Ci ⊗A Bλ which maps to xi,
(2) elements fi,j,λ ∈ qi,λ mapping to fi,j , and
(3) elements ci,j,λ ∈ Ci ⊗A Bλ mapping to ci,j .

After increasing λ a bit more the equation

xi,λ +
∑

j
fi,j,λci,j,λ = 1

will hold. Fix such a λ and set T ′ = Spec(Bλ). Then t′ ∈ T ′ is the point corresponding
to the prime qλ. Finally, letZ ′ ⊂ XT ′ be the scheme theoretic image ofZ → XT → XT ′ .
As XT → XT ′ is affine, we can compute Z ′ on the affine open pieces Ui,T ′ as the closed
subscheme associated to Ker(Ci ⊗A Bλ → Ci ⊗A B/Ii), see Morphisms, Example 6.4.
Hence xi,λ is in the ideal definingZ ′. Thus the last displayed equation shows thatZ ′∩Xt′

is empty. �

Lemma 14.2. Let f : X → S be a quasi-compact morphism of schemes. The follow-
ing are equivalent

(1) f is universally closed,
(2) for every morphism S′ → S which is locally of finite presentation the base

change XS′ → S′ is closed, and
(3) for every n the morphism An ×X → An × S is closed.

Proof. It is clear that (1) implies (2). Let us prove that (2) implies (1). Suppose that
the base changeXT → T is not closed for some scheme T overS. By Schemes, Lemma 19.8
this means that there exists some specialization t1  t in T and a point ξ ∈ XT mapping
to t1 such that ξ does not specialize to a point in the fibre over t. Set Z = {ξ} ⊂ XT .
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Then Z ∩ Xt = ∅. Apply Lemma 14.1. We find an open neighbourhood V ⊂ T of t, a
commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

Clearly this means that XT ′ → T ′ maps the closed subset Z ′ to a subset of T ′ which
contains a(t1) but not t′ = a(t). Since a(t1)  a(t) = t′ we conclude that XT ′ → T ′

is not closed. Hence we have shown that X → S not universally closed implies that
XT ′ → T ′ is not closed for some T ′ → S which is locally of finite presentation. In order
words (2) implies (1).

Assume that An × X → An × S is closed for every integer n. We want to prove that
XT → T is closed for every scheme T which is locally of finite presentation over S. We
may of course assume that T is affine and maps into an affine open V of S (sinceXT → T
being a closed is local on T ). In this case there exists a closed immersion T → An × V
because OT (T ) is a finitely presented OS(V )-algebra, see Morphisms, Lemma 21.2. Then
T → An × S is a locally closed immersion. Hence we get a cartesian diagram

XT

fT

��

// An ×X

fn

��
T // An × S

of schemes where the horizontal arrows are locally closed immersions. Hence any closed
subset Z ⊂ XT can be written as XT ∩ Z ′ for some closed subset Z ′ ⊂ An × X . Then
fT (Z) = T ∩ fn(Z ′) and we see that if fn is closed, then also fT is closed. �

Lemma 14.3. Let S be a scheme. Let f : X → S be a separated morphism of finite
type. The following are equivalent:

(1) The morphism f is proper.
(2) For any morphismS′ → S which is locally of finite type the base changeXS′ →

S′ is closed.
(3) For every n ≥ 0 the morphism An ×X → An × S is closed.

First proof. In view of the fact that a proper morphism is the same thing as a sepa-
rated, finite type, and universally closed morphism, this lemma is a special case of Lemma
14.2. �

Second proof. Clearly (1) implies (2), and (2) implies (3), so we just need to show
(3) implies (1). First we reduce to the case when S is affine. Assume that (3) implies (1)
when the base is affine. Now let f : X → S be a separated morphism of finite type. Being
proper is local on the base (see Morphisms, Lemma 41.3), so if S =

⋃
α Sα is an open affine

cover, and if we denote Xα := f−1(Sα), then it is enough to show that f |Xα : Xα → Sα
is proper for all α. Since Sα is affine, if the map f |Xα satisfies (3), then it will satisfy (1)
by assumption, and will be proper. To finish the reduction to the case S is affine, we must
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show that if f : X → S is separated of finite type satisfying (3), then f |Xα : Xα → Sα
is separated of finite type satisfying (3). Separatedness and finite type are clear. To see (3),
notice that An×Xα is the open preimage of An×Sα under the map 1× f . Fix a closed
setZ ⊂ An×Xα. Let Z̄ denote the closure ofZ in An×X . Then for topological reasons,

1× f(Z̄) ∩An × Sα = 1× f(Z).

Hence 1× f(Z) is closed, and we have reduced the proof of (3)⇒ (1) to the affine case.

Assume S affine, and f : X → S separated of finite type. We can apply Chow’s Lemma
12.1 to get π : X ′ → X proper surjective and X ′ → Pn

S an immersion. If X is proper
over S , thenX ′ → S is proper (Morphisms, Lemma 41.4). Since Pn

S → S is separated, we
conclude thatX ′ → Pn

S is proper (Morphisms, Lemma 41.7) and hence a closed immersion
(Schemes, Lemma 10.4). Conversely, assume X ′ → Pn

S is a closed immersion. Consider
the diagram:

(14.3.1) X ′ //

π
����

Pn
S

��
X

f // S

All maps are a priori proper except forX → S. Hence we conclude thatX → S is proper
by Morphisms, Lemma 41.9. Therefore, we have shown that X → S is proper if and only
if X ′ → Pn

S is a closed immersion.

Assume S is affine and (3) holds, and let n,X ′, π be as above. Since being a closed mor-
phism is local on the base, the map X ×Pn → S ×Pn is closed since by (3) X ×An →
S×An is closed and since projective space is covered by copies of affine n-space, see Con-
structions, Lemma 13.3. By Morphisms, Lemma 41.5 the morphism

X ′ ×S Pn
S → X ×S Pn

S = X ×Pn

is proper. Since Pn is separated, the projection

X ′ ×S Pn
S = Pn

X′ → X ′

will be separated as it is just a base change of a separated morphism. Therefore, the map
X ′ → X ′ ×S Pn

S is proper, since it is a section to a separated map (see Schemes, Lemma
21.11). Composing these morphisms

X ′ → X ′ ×S Pn
S → X ×S Pn

S = X ×Pn → S ×Pn = Pn
S

we find that the immersion X ′ → Pn
S is closed, and hence a closed immersion. �

15. Noetherian valuative criterion

If the base is Noetherian we can show that the valuative criterion holds using only discrete
valuation rings.

Many of the results in this section can (and perhaps should) be proved by appealing to the
following lemma, although we have not always done so.

Lemma 15.1. Let f : X → Y be a morphism of schemes. Assume f finite type and
Y locally Noetherian. Let y ∈ Y be a point in the closure of the image of f . Then there
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exists a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

whereA is a discrete valuation ring andK is its field of fractions mapping the closed point
of Spec(A) to y. Moreover, we can assume that the image point of Spec(K) → X is a
generic point η of an irreducible component of X and that K = κ(η).

Proof. By the non-Noetherian version of this lemma (Morphisms, Lemma 6.5) there
exists a point x ∈ X such that f(x) specializes to y. We may replace x by any point spe-
cializing to x, hence we may assume that x is a generic point of an irreducible component
of X . This produces a ring map OY,y → κ(x) (see Schemes, Section 13). Let R ⊂ κ(x) be
the image. Then R is Noetherian as a quotient of the Noetherian local ringOY,y . On the
other hand, the extension κ(x) is a finitely generated extension of the fraction field of R
as f is of finite type. Thus there exists a discrete valuation ring A ⊂ κ(x) with fraction
field κ(x) dominating R by Algebra, Lemma 119.13. Then

Spec(κ(x))

��

// X

��
Spec(A) // Spec(R) // Spec(OY,y) // Y

gives the desired diagram. �

First we state the result concerning separation. We will often use solid commutative dia-
grams of morphisms of schemes having the following shape

(15.1.1)

Spec(K) //

��

X

��
Spec(A) //

;;

S

with A a valuation ring and K its field of fractions.

Lemma 15.2. Let S be a locally Noetherian scheme. Let f : X → S be a morphism
of schemes. Assume f is locally of finite type. The following are equivalent:

(1) The morphism f is separated.
(2) For any diagram (15.1.1) there is at most one dotted arrow.
(3) For all diagrams (15.1.1) with A a discrete valuation ring there is at most one

dotted arrow.
(4) For any irreducible component X0 of X with generic point η ∈ X0, for any

discrete valuation ring A ⊂ K = κ(η) with fraction field K and any diagram
(15.1.1) such that the morphism Spec(K)→ X is the canonical one (see Schemes,
Section 13) there is at most one dotted arrow.

Proof. Clearly (1) implies (2), (2) implies (3), and (3) implies (4). It remains to show
(4) implies (1). Assume (4). We begin by reducing to S affine. Being separated is a local
on the base (see Schemes, Lemma 21.7). Hence, if we can show that whenever X → S has
(4) that the restriction Xα → Sα has (4) where Sα ⊂ S is an (affine) open subset and
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Xα := f−1(Sα), then we will be done. The generic points of the irreducible components
of Xα will be the generic points of irreducible components of X , since Xα is open in X .
Therefore, any two distinct dotted arrows in the diagram

(15.2.1) Spec(K) //

��

Xα

��
Spec(A) //

;;

Sα

would then give two distinct arrows in diagram (15.1.1) via the mapsXα → X and Sα →
S , which is a contradiction. Thus we have reduced to the case S is affine. We remark
that in the course of this reduction, we prove that if X → S has (4) then the restriction
U → V has (4) for opens U ⊂ X and V ⊂ S with f(U) ⊂ V .
We next wish to reduce to the caseX → S is finite type. Assume that we know (4) implies
(1) when X is finite type. Since S is Noetherian and X is locally of finite type over S we
see X is locally Noetherian as well (see Morphisms, Lemma 15.6). Thus, X → S is quasi-
separated (see Properties, Lemma 5.4), and therefore we may apply the valuative criterion
to check whether X is separated (see Schemes, Lemma 22.2). Let X =

⋃
αXα be an affine

open cover of X . Given any two dotted arrows, in a diagram (15.1.1), the image of the
closed points of SpecA will fall in two sets Xα and Xβ . Since Xα ∪ Xβ is open, for
topological reasons it must contain the image of Spec(A) under both maps. Therefore,
the two dotted arrows factor through Xα ∪ Xβ → X , which is a scheme of finite type
over S. Since Xα ∪Xβ is an open subset of X , by our previous remark, Xα ∪Xβ satisfies
(4), so by assumption, is separated. This implies the two given dotted arrows are the same.
Therefore, we have reduced to X → S is finite type.
Assume X → S of finite type and assume (4). Since X → S is finite type, and S is an
affine Noetherian scheme, X is also Noetherian (see Morphisms, Lemma 15.6). Therefore,
X → X ×SX will be a quasi-compact immersion of Noetherian schemes. We proceed by
contradiction. Assume thatX → X×SX is not closed. Then, there is some y ∈ X×SX
in the closure of the image that is not in the image. AsX is Noetherian it has finitely many
irreducible components. Therefore, y is in the closure of the image of one of the irreducible
components X0 ⊂ X . Give X0 the reduced induced structure. The composition X0 →
X → X ×S X factors through the closed subscheme X0 ×S X0 ⊂ X ×S X . Denote
the closure of ∆(X0) in X0 ×S X0 by X̄0 (again as a reduced closed subscheme). Thus
y ∈ X̄0. Since X0 → X0 ×S X0 is an immersion, the image of X0 will be open in X̄0.
HenceX0 and X̄0 are birational. Since X̄0 is a closed subscheme of a Noetherian scheme, it
is Noetherian. Thus, the local ringOX̄0,y

is a local Noetherian domain with fraction field
K equal to the function field of X0. By the Krull-Akizuki theorem (see Algebra, Lemma
119.13), there exists a discrete valuation ring A dominating OX̄0,y

with fraction field K.
This allows to construct a diagram:

(15.2.2) Spec(K) //

��

X0

∆
��

Spec(A) //

88

X0 ×S X0

which sends SpecK to the generic point of ∆(X0) and the closed point of A to y ∈
X0×SX0 (use the material in Schemes, Section 13 to construct the arrows). There cannot
even exist a set theoretic dotted arrow, since y is not in the image of ∆ by our choice of y.
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By categorical means, the existence of the dotted arrow in the above diagram is equivalent
to the uniqueness of the dotted arrow in the following diagram:

(15.2.3) Spec(K) //

��

X0

��
Spec(A) //

;;

S

Therefore, we have non-uniqueness in this latter diagram by the nonexistence in the first.
Therefore, X0 does not satisfy uniqueness for discrete valuation rings, and since X0 is an
irreducible component ofX , we have thatX → S does not satisfy (4). Therefore, we have
shown (4) implies (1). �

Lemma 15.3. Let S be a locally Noetherian scheme. Let f : X → S be a morphism
of finite type. The following are equivalent:

(1) The morphism f is proper.
(2) For any diagram (15.1.1) there exists exactly one dotted arrow.
(3) For all diagrams (15.1.1) withA a discrete valuation ring there exists exactly one

dotted arrow.
(4) For any irreducible component X0 of X with generic point η ∈ X0, for any

discrete valuation ring A ⊂ K = κ(η) with fraction field K and any diagram
(15.1.1) such that the morphism Spec(K)→ X is the canonical one (see Schemes,
Section 13) there exists exactly one dotted arrow.

Proof. (1) implies (2) implies (3) implies (4). We will now show (4) implies (1). As
in the proof of Lemma 15.2, we can reduce to the case S is affine, since properness is local
on the base, and if X → S satisfies (4), then Xα → Sα does as well for open Sα ⊂ S and
Xα = f−1(Sα).

Now S is a Noetherian scheme, and so X is as well, since X → S is of finite type. Now
we may use Chow’s lemma (Cohomology of Schemes, Lemma 18.1) to get a surjective,
proper, birational X ′ → X and an immersion X ′ → Pn

S . We wish to show X → S is
universally closed. As in the proof of Lemma 14.3, it is enough to check that X ′ → Pn

S is
a closed immersion. For the sake of contradiction, assume that X ′ → Pn

S is not a closed
immersion. Then there is some y ∈ Pn

S that is in the closure of the image of X ′, but is
not in the image. So y is in the closure of the image of an irreducible component X ′

0 of
X ′, but not in the image. Let X̄ ′

0 ⊂ Pn
S be the closure of the image of X ′

0. As X ′ → Pn
S

is an immersion of Noetherian schemes, the morphism X ′
0 → X̄ ′

0 is open and dense. By
Algebra, Lemma 119.13 or Properties, Lemma 5.10 we can find a discrete valuation ring A
dominatingOX̄′

0,y
and with identical field of fractions K. It is clear that K is the residue

field at the generic point of X ′
0. Thus the solid commutative diagram

(15.3.1) SpecK //

��

X ′ //

��

Pn
S

��
SpecA //

;; 66

X // S

Note that the closed point of A maps to y ∈ Pn
S . By construction, there does not exist a

set theoretic lift to X ′. As X ′ → X is birational, the image of X ′
0 in X is an irreducible

component X0 of X and K is also identified with the function field of X0. Hence, as
X → S is assumed to satisfy (4), the dotted arrow Spec(A) → X exists. Since X ′ →
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X is proper, the dotted arrow lifts to the dotted arrow Spec(A) → X ′ (use Schemes,
Proposition 20.6). We can compose this with the immersion X ′ → Pn

S to obtain another
morphism (not depicted in the diagram) from Spec(A) → Pn

S . Since Pn
S is proper over

S , it satisfies (2), and so these two morphisms agree. This is a contradiction, for we have
constructed the forbidden lift of our original map Spec(A)→ Pn

S to X ′. �

Lemma 15.4. Let f : X → S be a finite type morphism of schemes. Assume S is
locally Noetherian. Then the following are equivalent

(1) f is universally closed,
(2) for every n the morphism An ×X → An × S is closed,
(3) for any diagram (15.1.1) there exists some dotted arrow,
(4) for all diagrams (15.1.1) withA a discrete valuation ring there exists some dotted

arrow.

Proof. The equivalence of (1) and (2) is a special case of Lemma 14.2. The equivalence
of (1) and (3) is a special case of Schemes, Proposition 20.6. Trivially (3) implies (4). Thus
all we have to do is prove that (4) implies (2). We will prove that An × X → An ×
S is closed by the criterion of Schemes, Lemma 19.8. Pick n and a specialization z  
z′ of points in An × S and a point y ∈ An × X lying over z. Note that κ(y) is a
finitely generated field extension of κ(z) as An ×X → An × S is of finite type. Hence
by Properties, Lemma 5.10 or Algebra, Lemma 119.13 implies that there exists a discrete
valuation ring A ⊂ κ(y) with fraction field κ(z) dominating the image of OAn×S,z′ in
κ(z). This gives a commutative diagram

Spec(κ(y)) //

��

An ×X

��

// X

��
Spec(A) // An × S // S

Now property (4) implies that there exists a morphism Spec(A) → X which fits into
this diagram. Since we already have the morphism Spec(A) → An from the left lower
horizontal arrow we also get a morphism Spec(A)→ An×X fitting into the left square.
Thus the image y′ ∈ An×X of the closed point is a specialization of y lying over z′. This
proves that specializations lift along An ×X → An × S and we win. �

16. Refined Noetherian valuative criteria

One usually does not have to consider all possible diagrams with valuation rings when
checking valuative criteria. An example is given by Morphisms, Lemma 42.2. In the Noe-
therian setting, we have also seen this in Lemmas 15.2 and 15.3. Here is another variant.

Lemma 16.1. Let f : X → S and h : U → X be morphisms of schemes. Assume that
S is locally Noetherian, that f and h are of finite type, that f is separated, and that h(U)
is dense in X . If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a discrete valuation ring with field of fractions K , there exists a dotted arrow
making the diagram commute, then f is proper.
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Proof. There is an immediate reduction to the case where S is affine. Then U is
quasi-compact. Let U = U1 ∪ . . . ∪ Un be an affine open covering. We may replace U
by U1 q . . . q Un without changing the assumptions, hence we may assume U is affine.
Thus we can find an open immersion U → Y over X with Y proper over X . (First put
U inside An

X using Morphisms, Lemma 39.2 and then take the closure inside Pn
X , or you

can directly use Morphisms, Lemma 43.12.) We can assume U is dense in Y (replace Y
by the scheme theoretic closure of U if necessary, see Morphisms, Section 7). Note that
g : Y → X is surjective as the image is closed and contains the dense subset h(U). We
will show that Y → S is proper. This will imply that X → S is proper by Morphisms,
Lemma 41.9 thereby finishing the proof. To show that Y → S is proper we will use part
(4) of Lemma 15.3. To do this consider a diagram

Spec(K)
y

//

��

Y

f◦g
��

Spec(A) //

;;

S

where A is a discrete valuation ring with fraction field K and where y : Spec(K) → Y
is the inclusion of a generic point. We have to show there exists a unique dotted arrow.
Uniqueness holds by the converse to the valuative criterion for separatedness (Schemes,
Lemma 22.1) since Y → S is separated as the composition of the separated morphisms
Y → X and X → S (Schemes, Lemma 21.12). Existence can be seen as follows. As y
is a generic point of Y , it is contained in U . By assumption of the lemma there exists a
morphism a : Spec(A)→ X such that

Spec(K)
y

//

��

U // X

f

��
Spec(A) //

a

66

S

is commutative. Then since Y → X is proper, we can apply the valuative criterion for
properness (Morphisms, Lemma 42.1) to find a morphism b : Spec(A)→ Y such that

Spec(K)
y

//

��

Y

g

��
Spec(A) a //

b

;;

X

is commutative. This finishes the proof since b can serve as the dotted arrow above. �

Lemma 16.2. Let f : X → S and h : U → X be morphisms of schemes. Assume
that S is locally Noetherian, that f is locally of finite type, that h is of finite type, and that
h(U) is dense in X . If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a discrete valuation ring with field of fractions K , there exists at most one
dotted arrow making the diagram commute, then f is separated.
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Proof. We will apply Lemma 16.1 to the morphismsU → X and ∆ : X → X×SX .
We check the conditions. Observe that ∆ is quasi-compact by Properties, Lemma 5.4 (and
Schemes, Lemma 21.13). Of course ∆ is locally of finite type and separated (true for any
diagonal morphism). Finally, suppose given a commutative solid diagram

Spec(K) //

��

U
h // X

∆
��

Spec(A)
(a,b) //

55

X ×S X

where A is a discrete valuation ring with field of fractions K. Then a and b give two
dotted arrows in the diagram of the lemma and have to be equal. Hence as dotted arrow
we can use a = b which gives existence. This finishes the proof. �

Lemma 16.3. Let f : X → S and h : U → X be morphisms of schemes. Assume
that S is locally Noetherian, that f and h are of finite type, and that h(U) is dense in X .
If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

S

where A is a discrete valuation ring with field of fractions K , there exists a unique dotted
arrow making the diagram commute, then f is proper.

Proof. Combine Lemmas 16.2 and 16.1. �

17. Valuative criteria over a Nagata base

When working with schemes locally of finite type over a Nagata base we can reduce to
discrete valuation rings which are essentially of finite type over the base. The following
are just some example results one can get.

Lemma 17.1. Let S be a Nagata scheme (and in particular locally Noetherian). Let
f : X → Y be a quasi-compact morphism of schemes locally of finite type over S. The
following are equivalent

(1) f is universally closed,
(2) for every n the morphism An ×X → An × Y is closed,
(3) for any commutative diagram

U //

��

X

f

��
C //

>>

Y

of schemes over S such that
(a) C is a normal integral scheme of finite type over S ,
(b) U = C \ {c} for some closed point c ∈ C ,
(c) A = OC,c has dimension 13

3It follows thatA is a discrete valuation ring, see Algebra, Lemma 119.7. Moreover, cmaps to a finite type
point s ∈ S and A is essentially of finite type over OS,s.
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then in the commutative diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

Y

where K = Frac(A) some dotted arrow exists4 making the diagram commute.

Proof. We have seen the equivalence of (1) and (2) and the fact that these imply (3)
in Lemma 15.4. Thus it suffices to prove that (3) implies (2). Observe that if condition (3)
holds for f : X → Y , then condition (3) holds for 1 × f : An × X → An × Y (see
argument in the proof of Lemma 15.4). Hence it suffices to show that (3) implies that f is
closed.
Reduction to the case where Y and S are affine; we suggest skipping this paragraph. Let
S′ ⊂ S be an affine open and let Y ′ ⊂ Y be an affine open mapping into S′. Set X ′ =
f−1(Y ′). Then we claim that the restriction f ′ : X ′ → Y ′ of f viewed as a morphism of
schemes over S′ has property (3) also. We omit the details. Now if we can prove that f ′ is
closed for all choices of S′ and Y ′, then it follows that f is closed. This reduces us to the
case discussed in the next paragraph.
Assume S and Y affine. LetZ ⊂ X be a closed subset. We may and do viewZ as a reduced
closed subscheme of X . We have to show that E = f(Z) is closed. Pick y ∈ Y a closed
point contained in the closure of f(Z). It suffices to show y ∈ E. We assume y 6∈ E to get
a contradiction. The image s ∈ S of y is a finite type point of S , see Morphisms, Lemma
16.5. Recall that E is constructible (Morphisms, Lemma 22.2). Consider the intersection
Spec(OY,y)∩E. This is a constructible subset of the spectrum (Morphisms, Lemma 22.1)
which doesn’t contain the closed point. Since the punctured spectrum Spec(OY,y) \ {y}
is Jacobson (Morphisms, Lemma 16.10), we find a closed point t ∈ Spec(OY,y) \ {y} with
t ∈ E (see Topology, Lemma 18.5). In other words, t ∈ E is a point of Y which has an
immediate specialization t  y. As t ∈ E the scheme theoretic fibre Zt is nonempty.
Choose a closed point x ∈ Zt. In particular we have [κ(x) : κ(t)] < ∞ by the Hilbert
Nullstellensatz (Morphisms, Lemma 20.3).

Denote T = {t} ⊂ Y the integral closed subscheme whose underlying topological space
is as indicated (Schemes, Definition 12.5). Then t ∈ T is the generic point. DenoteC → T
the normalization of T in κ(x), see Morphisms, Section 53 (more precisely, C → T is the
normalization of T in x where we view x = Spec(κ(x))→ T as a scheme over T ). Since
S is a Nagata scheme, so is T (Morphisms, Lemma 18.1). Hence we see thatC → T is finite
(Morphisms, Lemma 53.14). As t is in the image we see that C → T is surjective (because
the image is closed and T is the closure of t in Y ). Choose a point c ∈ C mapping to y ∈ T .
Since y is a closed point of T we see that c is a closed point of C. Since dim(OT,y) = 1
we see that dim(OC,c) = 1 (the dimension is at least 1 as c is not the generic point of C
and at most 1 as C → T is finite). As the function field of C is κ(x) and as x is a point of
X , we have a Y -rational map fromC toX (see for example Morphisms, Lemma 49.2). Let
C ⊃ U → X be a representative (in particular U is nonempty). We may assume c 6∈ U
(replace U by U \ {c}). Since c is a closed point of codimension 1 in the integral scheme
C we have C = U q {c} q Σ for some proper closed subset Σ ⊂ C. After replacing C

4By Lemma 6.4 this is equivalent to asking for the existence of dotted arrow making the first commutative
diagram commute.
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by C \Σ we have constructed a commutative diagram as in part (3). By the 2nd footnote
in the statement of the lemma, the existence of the dotted arrow produces an extension of
the rational map to all of C and we get the contradiction because the image of c will be a
point of Z mapping to y. �

Lemma 17.2. Let S be a Nagata scheme (and in particular locally Noetherian). Let
f : X → Y be a morphism of schemes locally of finite type over S. The following are
equivalent

(1) f separated,
(2) for any commutative diagram

U //

��

X

f

��
C //

>>

Y

of schemes over S such that
(a) C is a normal integral scheme of finite type over S ,
(b) U = C \ {c} for some closed point c ∈ C ,
(c) A = OC,c has dimension 15

then in the commutative diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

Y

whereK = Frac(A) there exists at most one dotted arrow6 making the diagram
commute.

Proof. By Lemma 15.2 we see that (1) implies (2). Assume (2). In order to show
that f is separated, we have to show that ∆ : X → X ×Y X is closed. By Morphisms,
Lemma 15.7 the morphism ∆ is quasi-compact. By Lemma 17.1 it suffices to show: for any
commutative diagram

U //

��

X

∆
��

C
(a1,a2) //

66

X ×Y X

of schemes over S such that
(1) C is a normal integral scheme of finite type over S ,
(2) U = C \ {c} for some closed point c ∈ C ,
(3) A = OC,c has dimension 1.

5It follows thatA is a discrete valuation ring, see Algebra, Lemma 119.7. Moreover, cmaps to a finite type
point s ∈ S and A is essentially of finite type over OS,s.

6By Lemma 6.4 this is equivalent to asking there to be at most one dotted arrow making the first commu-
tative diagram commute.
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then in the commutative diagram

Spec(K) //

��

X

∆
��

Spec(A) //

99

X ×Y X

where K = Frac(A) there exists some dotted arrow making the diagram commute. By
Lemma 6.4 the existence of the dotted arrow in the second diagram is equivalent to the
existence of the dotted arrow in the first diagram. Moreover, the existence there is the
same as asking a1 = a2. However a1|U = a2|U , so by the uniqueness assumption (2) we
see that this is true and the proof is complete. �

Lemma 17.3. Let S be a Nagata scheme (and in particular locally Noetherian). Let
f : X → Y be a quasi-compact morphism of schemes locally of finite type over S. The
following are equivalent

(1) f proper,
(2) for any commutative diagram

U //

��

X

f

��
C //

>>

Y

of schemes over S such that
(a) C is a normal integral scheme of finite type over S ,
(b) U = C \ {c} for some closed point c ∈ C ,
(c) A = OC,c has dimension 17

then in the commutative diagram

Spec(K) //

��

X

f

��
Spec(A) //

;;

Y

where K = Frac(A) there exists exactly one dotted arrow8 making the diagram
commute.

Proof. This is formal from Lemmas 17.1 and 17.2 and the definition of proper mor-
phisms as being finite type, separated, and universally closed. �

18. Limits and dimensions of fibres

The following lemma is most often used in the situation of Lemma 10.1 to assure that if the
fibres of the limit have dimension≤ d, then the fibres at some finite stage have dimension
≤ d.

Lemma 18.1. Let I be a directed set. Let (fi : Xi → Si) be an inverse system of
morphisms of schemes over I . Assume

7It follows thatA is a discrete valuation ring, see Algebra, Lemma 119.7. Moreover, cmaps to a finite type
point s ∈ S and A is essentially of finite type over OS,s.

8By Lemma 6.4 this is equivalent to asking for the existence and uniqueness of the dotted arrow making
the first commutative diagram commute.
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(1) all the morphisms Si′ → Si are affine,
(2) all the schemes Si are quasi-compact and quasi-separated,
(3) the morphisms fi are of finite type, and
(4) the morphisms Xi′ → Xi ×Si Si′ are closed immersions.

Let f : X = limiXi → S = limi Si be the limit. Let d ≥ 0. If every fibre of f has
dimension ≤ d, then for some i every fibre of fi has dimension ≤ d.

Proof. For each i let Ui = {x ∈ Xi | dimx((Xi)fi(x)) ≤ d}. This is an open subset
of Xi, see Morphisms, Lemma 28.4. Set Zi = Xi \ Ui (with reduced induced scheme
structure). We have to show that Zi = ∅ for some i. If not, then Z = limZi 6= ∅, see
Lemma 4.3. Say z ∈ Z is a point. Note that Z ⊂ X is a closed subscheme. Set s = f(z).
For each i let si ∈ Si be the image of s. We remark that Zs is the limit of the schemes
(Zi)si and Zs is also the limit of the schemes (Zi)si base changed to κ(s). Moreover, all
the morphisms

Zs −→ (Zi′)si′ ×Spec(κ(si′ )) Spec(κ(s)) −→ (Zi)si ×Spec(κ(si)) Spec(κ(s)) −→ Xs

are closed immersions by assumption (4). Hence Zs is the scheme theoretic intersection
of the closed subschemes (Zi)si ×Spec(κ(si)) Spec(κ(s)) in Xs. Since all the irreducible
components of the schemes (Zi)si ×Spec(κ(si)) Spec(κ(s)) have dimension > d and con-
tain z we conclude that Zs contains an irreducible component of dimension > d passing
through z which contradicts the fact that Zs ⊂ Xs and dim(Xs) ≤ d. �

Lemma 18.2. Notation and assumptions as in Situation 8.1. If
(1) f is a quasi-finite morphism, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is quasi-finite.

Proof. Follows immediately from Lemma 18.1. �

Lemma 18.3. Assumptions and notation as in Situation 8.1. Let d ≥ 0. If
(1) f has relative dimension ≤ d (Morphisms, Definition 29.1), and
(2) f0 is locally of finite type,

then there exists an i such that fi has relative dimension ≤ d.

Proof. Follows immediately from Lemma 18.1. �

Lemma 18.4. Notation and assumptions as in Situation 8.1. If
(1) f has relative dimension d, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi has relative dimension d.

Proof. By Lemma 18.1 we may assume all fibres of f0 have dimension≤ d. By Mor-
phisms, Lemma 28.6 the set U0 ⊂ X0 of points x ∈ X0 such that the dimension of the
fibre of X0 → Y0 at x is≤ d− 1 is open and retrocompact in X0. Hence the complement
E = X0 \U0 is constructible. Moreover the image ofX → X0 is contained inE by Mor-
phisms, Lemma 28.3. Thus for i � 0 we have that the image of Xi → X0 is contained
in E (Lemma 4.10). Then all fibres of Xi → Yi have dimension d by the aforementioned
Morphisms, Lemma 28.3. �
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Lemma 18.5. Let S be a quasi-compact and quasi-separated scheme. Let f : X → S
be a morphism of finite presentation. Let d ≥ 0 be an integer. If Z ⊂ X be a closed
subscheme such that dim(Zs) ≤ d for all s ∈ S , then there exists a closed subscheme
Z ′ ⊂ X such that

(1) Z ⊂ Z ′,
(2) Z ′ → X is of finite presentation, and
(3) dim(Z ′

s) ≤ d for all s ∈ S.

Proof. By Proposition 5.4 we can write S = limSi as the limit of a directed inverse
system of Noetherian schemes with affine transition maps. By Lemma 10.1 we may assume
that there exist a system of morphisms fi : Xi → Si of finite presentation such that
Xi′ = Xi ×Si Si′ for all i′ ≥ i and such that X = Xi ×Si S. Let Zi ⊂ Xi be the scheme
theoretic image of Z → X → Xi. Then for i′ ≥ i the morphismXi′ → Xi maps Zi′ into
Zi and the induced morphism Zi′ → Zi ×Si Si′ is a closed immersion. By Lemma 18.1
we see that the dimension of the fibres of Zi → Si all have dimension ≤ d for a suitable
i ∈ I . Fix such an i and set Z ′ = Zi ×Si S ⊂ X . Since Si is Noetherian, we see that Xi

is Noetherian, and hence the morphism Zi → Xi is of finite presentation. Therefore also
the base change Z ′ → X is of finite presentation. Moreover, the fibres of Z ′ → S are base
changes of the fibres of Zi → Si and hence have dimension ≤ d. �

19. Base change in top degree

For a proper morphism and a finite type quasi-coherent module the base change map is an
isomorphism in top degree.

Lemma 19.1. Let f : X → Y be a morphism of schemes. Let d ≥ 0. Assume
(1) X and Y are quasi-compact and quasi-separated, and
(2) Rif∗F = 0 for i > d and every quasi-coherentOX -module F .

Then we have
(a) for any base change diagram

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

we have Rif ′
∗F ′ = 0 for i > d and any quasi-coherentOX′ -module F ′,

(b) Rdf ′
∗(F ′⊗OX′ (f ′)∗G′) = Rdf ′

∗F ′⊗OY ′ G′ for any quasi-coherentOY ′ -module
G′,

(c) formation of Rdf ′
∗F ′ commutes with arbitrary further base change (see proof

for explanation).

Proof. Before giving the proofs, we explain the meaning of (c). Suppose we have an
additional cartesian square

X ′′

f ′′

��

h′
// X ′

f ′

��

g′
// X

f

��
Y ′′ h // Y ′ g // Y

tacked onto our given diagram. If (a) holds, then there is a canonical map γ : h∗Rdf ′
∗F ′ →

Rdf ′′
∗ (h′)∗F ′. Namely, γ is the map on degree d cohomology sheaves induced by the
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composition
Lh∗Rf ′

∗F ′ −→ Rf ′′
∗ L(h′)∗F ′ −→ Rf ′′

∗ (h′)∗F ′

Here the first arrow is the base change map (Cohomology, Remark 28.3) and the second
arrow complex from the canonical mapL(g′)∗F → (g′)∗F . Similarly, sinceRf ′

∗F has no
nonzero cohomology sheaves in degrees> d by (a) we haveHd(Lh∗Rf∗F ′) = h∗Rdf∗F .
The content of (c) is that γ is an isomorphism.

Having said this, we can check (a), (b), and (c) locally on Y ′ and Y ′′. Suppose that V ⊂
Y is a quasi-compact open subscheme. Then we claim (1) and (2) hold for f |f−1(V ) :
f−1(V )→ V . Namely, (1) is immediate and (2) follows because any quasi-coherent mod-
ule on f−1(V ) is the restriction of a quasi-coherent module onX (Properties, Lemma 22.1)
and formation of higher direct images commutes with restriction to opens. Thus we may
also work locally on Y . In other words, we may assume Y ′′, Y ′, and Y are affine schemes.

Proof of (a) when Y ′ and Y are affine. In this case the morphisms g and g′ are affine. Thus
g∗ = Rg∗ and g′

∗ = Rg′
∗ (Cohomology of Schemes, Lemma 2.3) and g∗ is identified with

the restriction functor on modules (Schemes, Lemma 7.3). Then

g∗(Rif ′
∗F ′) = Hi(Rg∗Rf

′
∗F ′) = Hi(Rf∗Rg

′
∗F ′) = Hi(Rf∗g

′
∗F ′) = Rf i∗g

′
∗F ′

which is zero by assumption (2). Hence (a) by our description of g∗.

Proof of (b) when Y ′ is affine, say Y ′ = Spec(R′). By part (a) we haveHd+1(X ′,F ′) = 0
for any quasi-coherent OX′ -module F ′, see Cohomology of Schemes, Lemma 4.6. Con-
sider the functor F on R′-modules defined by the rule

F (M) = Hd(X ′,F ′ ⊗OX′ (f ′)∗M̃)

By Cohomology, Lemma 19.1 this functor commutes with direct sums (this is where we
use that X and hence X ′ is quasi-compact and quasi-separated). On the other hand, if
M1 →M2 →M3 → 0 is an exact sequence, then

F ′ ⊗OX′ (f ′)∗M̃1 → F ′ ⊗OX′ (f ′)∗M̃2 → F ′ ⊗OX′ (f ′)∗M̃3 → 0

is an exact sequence of quasi-coherent modules on X ′ and by the vanishing of higher
cohomology given above we get an exact sequence

F (M1)→ F (M2)→ F (M3)→ 0

In other words, F is right exact. Any right exact R′-linear functor F : ModR′ →ModR′

which commutes with direct sums is given by tensoring with anR′-module (omitted; left
as exercise for the reader). Thus we obtainF (M) = Hd(X ′,F ′)⊗R′M . SinceRd(f ′)∗F ′

andRd(f ′)∗(F ′⊗OX′ (f ′)∗M̃) are quasi-coherent (Cohomology of Schemes, Lemma 4.5),
the fact that F (M) = Hd(X ′,F ′)⊗R′ M translates into the statement given in (b).

Proof of (c) when Y ′′ → Y ′ → Y are morphisms of affine schemes. Say Y ′′ = Spec(R′′)
and Y ′ = Spec(R′). Then we see that Rdf ′′

∗ (h′)∗F ′ is the quasi-coherent module on
Y ′ associated to the R′′-module Hd(X ′′, (h′)∗F ′). Now h′ : X ′′ → X ′ is affine hence
Hd(X ′′, (h′)∗F ′) = Hd(X,h′

∗(h′)∗F ′) by the already used Cohomology of Schemes,
Lemma 2.4. We have

h′
∗(h′)∗F ′ = F ′ ⊗OX′ (f ′)∗R̃′′

as the reader sees by checking on an affine open covering. Thus Hd(X ′′, (h′)∗F ′) =
Hd(X ′,F ′)⊗R′ R′′ by part (b) applied to f ′ and the proof is complete. �
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Lemma 19.2. Let f : X → Y be a morphism of schemes. Let y ∈ Y . Assume f is
proper and dim(Xy) = d. Then

(1) for F ∈ QCoh(OX) we have (Rif∗F)y = 0 for all i > d,
(2) there is an affine open neighbourhood V ⊂ Y of y such that f−1(V )→ V and

d satisfy the assumptions and conclusions of Lemma 19.1.

Proof. By Morphisms, Lemma 28.4 and the fact that f is closed, we can find an affine
open neighbourhood V of y such that the fibres over points of V all have dimension≤ d.
Thus we may assume X → Y is a proper morphism all of whose fibres have dimension
≤ d with Y affine. We will show that (2) holds, which will immediately imply (1) for all
y ∈ Y .

By Lemma 13.2 we can write X = limXi as a cofiltered limit with Xi → Y proper and
of finite presentation and such that both X → Xi and transition morphisms are closed
immersions. For some i we have that Xi → Y has fibres of dimension ≤ d, see Lemma
18.1. For a quasi-coherent OX -module F we have Rpf∗F = Rpfi,∗(X → Xi)∗F by
Cohomology of Schemes, Lemma 2.3 and Leray (Cohomology, Lemma 13.8). Thus we may
replace X by Xi and reduce to the case discussed in the next paragraph.

Assume Y is affine and f : X → Y is proper and of finite presentation and all fibres
have dimension ≤ d. It suffices to show that Hp(X,F) = 0 for p > d. Namely, by Co-
homology of Schemes, Lemma 4.6 we have Hp(X,F) = H0(Y,Rpf∗F). On the other
hand, Rpf∗F is quasi-coherent on Y by Cohomology of Schemes, Lemma 4.5, hence van-
ishing of global sections implies vanishing. Write Y = limi∈I Yi as a cofiltered limit of
affine schemes with Yi the spectrum of a Noetherian ring (for example a finite type Z-
algebra). We can choose an element 0 ∈ I and a finite type morphismX0 → Y0 such that
X ∼= Y ×Y0 X0, see Lemma 10.1. After increasing 0 we may assume X0 → Y0 is proper
(Lemma 13.1) and that the fibres of X0 → Y0 have dimension ≤ d (Lemma 18.1). Since
X → X0 is affine, we find that Hp(X,F) = Hp(X0, (X → X0)∗F) by Cohomology of
Schemes, Lemma 2.4. This reduces us to the case discussed in the next paragraph.

AssumeY is affine Noetherian and f : X → Y is proper and all fibres have dimension≤ d.
In this case we can write F = colimFi as a filtered colimit of coherent OX -modules, see
Properties, Lemma 22.7. Then Hp(X,F) = colimHp(X,Fi) by Cohomology, Lemma
19.1. Thus we may assume F is coherent. In this case we see that (Rpf∗F)y = 0 for
all y ∈ Y by Cohomology of Schemes, Lemma 20.9. Thus Rpf∗F = 0 and therefore
Hp(X,F) = 0 (see above) and we win. �

Lemma 19.3. Let f : X → Y be a morphism of schemes. Let d ≥ 0. Let F be an
OX -module. Assume

(1) f is a proper morphism all of whose fibres have dimension ≤ d,
(2) F is a quasi-coherentOX -module of finite type.

Then Rdf∗F is a quasi-coherentOX -module of finite type.

Proof. The module Rdf∗F is quasi-coherent by Cohomology of Schemes, Lemma
4.5. The question is local on Y hence we may assume Y is affine. Say Y = Spec(R). Then
it suffices to prove that Hd(X,F) is a finite R-module.

By Lemma 13.2 we can write X = limXi as a cofiltered limit with Xi → Y proper and
of finite presentation and such that both X → Xi and transition morphisms are closed
immersions. For some i we have that Xi → Y has fibres of dimension ≤ d, see Lemma
18.1. We have Rpf∗F = Rpfi,∗(X → Xi)∗F by Cohomology of Schemes, Lemma 2.3
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and Leray (Cohomology, Lemma 13.8). Thus we may replace X by Xi and reduce to the
case discussed in the next paragraph.

Assume Y is affine and f : X → Y is proper and of finite presentation and all fibres
have dimension≤ d. We can writeF as a quotient of a finitely presentedOX -moduleF ′,
see Properties, Lemma 22.8. The map Hd(X,F ′) → Hd(X,F) is surjective, as we have
Hd+1(X,Ker(F ′ → F)) = 0 by the vanishing of higher cohomology seen in Lemma
19.2 (or its proof). Thus we reduce to the case discussed in the next paragraph.

Assume Y = Spec(R) is affine and f : X → Y is proper and of finite presentation
and all fibres have dimension ≤ d and F is an OX -module of finite presentation. Write
Y = limi∈I Yi as a cofiltered limit of affine schemes with Yi = Spec(Ri) the spectrum
of a Noetherian ring (for example a finite type Z-algebra). We can choose an element
0 ∈ I and a finite type morphism X0 → Y0 such that X ∼= Y ×Y0 X0, see Lemma 10.1.
After increasing 0 we may assume X0 → Y0 is proper (Lemma 13.1) and that the fibres of
X0 → Y0 have dimension ≤ d (Lemma 18.1). After increasing 0 we can assume there is a
coherentOX0 -moduleF0 which pulls back toF , see Lemma 10.2. By Lemma 19.1 we have

Hd(X,F) = Hd(X0,F0)⊗R0 R

This finishes the proof because the cohomology module Hd(X0,F0) is finite by Coho-
mology of Schemes, Lemma 19.2. �

Lemma 19.4. Let f : X → Y be a morphism of schemes. Let d ≥ 0. Let F be an
OX -module. Assume

(1) f is a proper morphism of finite presentation all of whose fibres have dimension
≤ d,

(2) F is anOX -module of finite presentation.

Then Rdf∗F is anOX -module of finite presentation.

Proof. The proof is exactly the same as the proof of Lemma 19.3 except that the third
paragraph can be skipped. We omit the details. �

20. Glueing in closed fibres

Applying our theory above to the spectrum of a local ring we obtain the following pleasing
glueing result for relative schemes.

Lemma 20.1. Let S be a scheme. Let s ∈ S be a closed point such thatU = S \{s} →
S is quasi-compact. With V = Spec(OS,s) \ {s} there is an equivalence of categories

{
X → S of finite presentation

}
−→


X ′

��

Y ′

��

oo // Y

��
U Voo // Spec(OS,s)


where on the right hand side we consider commutative diagrams whose squares are carte-
sian and whose vertical arrows are of finite presentation.
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Proof. Let W ⊂ S be an open neighbourhood of s. By glueing of relative schemes,
see Constructions, Section 2, the functor

{
X → S of finite presentation

}
−→


X ′

��

Y ′

��

oo // Y

��
U W \ {s}oo // W


is an equivalence of categories. We have OS,s = colimOW (W ) where W runs over
the affine open neighbourhoods of s. Hence Spec(OS,s) = limW where W runs over
the affine open neighbourhoods of s. Thus the category of schemes of finite presentation
over Spec(OS,s) is the limit of the category of schemes of finite presentation over W
whereW runs over the affine open neighbourhoods of s, see Lemma 10.1. For every affine
open s ∈ W we see that U ∩ W is quasi-compact as U → S is quasi-compact. Hence
V = limW ∩ U = limW \ {s} is a limit of quasi-compact and quasi-separated schemes
(see Lemma 2.2). Thus also the category of schemes of finite presentation over V is the
limit of the categories of schemes of finite presentation over W ∩ U where W runs over
the affine open neighbourhoods of s. The lemma follows formally from a combination of
these results. �

Lemma 20.2. Let S be a scheme. Let s ∈ S be a closed point such thatU = S \{s} →
S is quasi-compact. With V = Spec(OS,s) \ {s} there is an equivalence of categories

{OS-modules F of finite presentation} −→ {(G,H, α)}

where on the right hand side we consider triples consisting of a OU -module G of fi-
nite presentation, a OSpec(OS,s)-module H of finite presentation, and an isomorphism
α : G|V → H|V ofOV -modules.

Proof. You can either prove this by redoing the proof of Lemma 20.1 using Lemma
10.2 or you can deduce it from Lemma 20.1 using the equivalence between quasi-coherent
modules and “vector bundles” from Constructions, Section 6. We omit the details. �

Lemma 20.3. Let S be a scheme. Let U ⊂ S be a retrocompact open. Let s ∈ S be
a point in the complement of U . With V = Spec(OS,s) ∩ U there is an equivalence of
categories

colims∈U ′⊃U open


X

��
U ′

 −→

X ′

��

Y ′

��

oo // Y

��
U Voo // Spec(OS,s)


where on the left hand side the vertical arrow is of finite presentation and on the right hand
side we consider commutative diagrams whose squares are cartesian and whose vertical
arrows are of finite presentation.

Proof. Let W ⊂ S be an open neighbourhood of s. By glueing of relative schemes,
see Constructions, Section 2, the functor

{
X → U ′ = U ∪W of finite presentation

}
−→


X ′

��

Y ′

��

oo // Y

��
U W ∩ Uoo // W
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is an equivalence of categories. We have OS,s = colimOW (W ) where W runs over
the affine open neighbourhoods of s. Hence Spec(OS,s) = limW where W runs over
the affine open neighbourhoods of s. Thus the category of schemes of finite presentation
over Spec(OS,s) is the limit of the category of schemes of finite presentation over W
whereW runs over the affine open neighbourhoods of s, see Lemma 10.1. For every affine
open s ∈ W we see that U ∩ W is quasi-compact as U → S is quasi-compact. Hence
V = limW ∩ U is a limit of quasi-compact and quasi-separated schemes (see Lemma
2.2). Thus also the category of schemes of finite presentation over V is the limit of the
categories of schemes of finite presentation over W ∩ U where W runs over the affine
open neighbourhoods of s. The lemma follows formally from a combination of these
results. �

Lemma 20.4. Notation and assumptions as in Lemma 20.3. Let U ⊂ U ′ ⊂ X be an
open containing s.

(1) Let f ′ : X → U ′ correspond to f : X ′ → U and g : Y → Spec(OS,s) via
the equivalence. If f and g are separated, proper, finite, étale, then after possibly
shrinking U ′ the morphism f ′ has the same property.

(2) Let a : X1 → X2 be a morphism of schemes of finite presentation over U ′ with
base change a′ : X ′

1 → X ′
2 over U and b : Y1 → Y2 over Spec(OS,s). If a′ and b

are separated, proper, finite, étale, then after possibly shrinkingU ′ the morphism
a has the same property.

Proof. Proof of (1). Recall that Spec(OS,s) is the limit of the affine open neighbour-
hoods of s in S. Since g has the property in question, then the restriction of f ′ to one of
these affine open neighbourhoods does too, see Lemmas 8.6, 13.1, 8.3, and 8.10. Since f ′ has
the given property over U as f does, we conclude as one can check the property locally on
the base.

Proof of (2). If we write Spec(OS,s) = limW where W runs over the affine open neigh-
bourhoods of s in S , then we have Yi = limW ×S Xi. Thus we can use exactly the same
arguments as in the proof of (1). �

Lemma 20.5. Let S be a scheme. Let s1, . . . , sn ∈ S be pairwise distinct closed points
such that U = S \ {s1, . . . , sn} → S is quasi-compact. With Si = Spec(OS,si) and
Ui = Si \ {si} there is an equivalence of categories

FPS −→ FPU ×(FPU1 ×...×FPUn ) (FPS1 × . . .× FPSn)

where FPT is the category of schemes of finite presentation over the scheme T .

Proof. For n = 1 this is Lemma 20.1. For n > 1 the lemma can be proved in exactly
the same way or it can be deduced from it. For example, suppose that fi : Xi → Si
are objects of FPSi and f : X → U is an object of FPU and we’re given isomorphisms
Xi ×Si Ui = X ×U Ui. By Lemma 20.1 we can find a morphism f ′ : X ′ → U ′ =
S \ {s1, . . . , sn−1} which is of finite presentation, which is isomorphic to Xi over Si,
which is isomorphic to X over U , and these isomorphisms are compatible with the given
isomorphism Xi ×Sn Un = X ×U Un. Then we can apply induction to fi : Xi → Si,
i ≤ n−1, f ′ : X ′ → U ′, and the induced isomorphismsXi×SiUi = X ′×U ′Ui, i ≤ n−1.
This shows essential surjectivity. We omit the proof of fully faithfulness. �
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21. Application to modifications

Using the results from Section 20 we can describe the category of modifications of a scheme
over a closed point in terms of the local ring.

Lemma 21.1. Let S be a scheme. Let s ∈ S be a closed point such thatU = S \{s} →
S is quasi-compact. With V = Spec(OS,s) \ {s} the base change functor{
f : X → S of finite presentation
f−1(U)→ U is an isomorphism

}
−→

{
g : Y → Spec(OS,s) of finite presentation

g−1(V )→ V is an isomorphism

}
is an equivalence of categories.

Proof. This is a special case of Lemma 20.1. �

Lemma 21.2. Notation and assumptions as in Lemma 21.1. Let f : X → S correspond
to g : Y → Spec(OS,s) via the equivalence. Then f is separated, proper, finite, étale and
add more here if and only if g is so.

Proof. The property of being separated, proper, integral, finite, etc is stable under
base change. See Schemes, Lemma 21.12 and Morphisms, Lemmas 41.5 and 44.6. Hence if
f has the property, then so does g. The converse follows from Lemma 20.4 but we also
give a direct proof here. Namely, if g has to property, then f does in a neighbourhood of
s by Lemmas 8.6, 13.1, 8.3, and 8.10. Since f clearly has the given property over S \ {s}
we conclude as one can check the property locally on the base. �

Remark 21.3. The lemma above can be generalized as follows. Let S be a scheme and
let T ⊂ S be a closed subset. Assume there exists a cofinal system of open neighbourhoods
T ⊂ Wi such that (1) Wi \ T is quasi-compact and (2) Wi ⊂ Wj is an affine morphism.
Then W = limWi is a scheme which contains T as a closed subscheme. Set U = X \ T
and V = W \ T . Then the base change functor{

f : X → S of finite presentation
f−1(U)→ U is an isomorphism

}
−→

{
g : Y →W of finite presentation
g−1(V )→ V is an isomorphism

}
is an equivalence of categories. If we ever need this we will change this remark into a
lemma and provide a detailed proof.

22. Descending finite type schemes

This section continues the theme of Section 9 in the spirit of the results discussed in Section
10.

Situation 22.1. Let S = limi∈I Si be the limit of a directed system of Noetherian
schemes with affine transition morphisms Si′ → Si for i′ ≥ i.

Lemma 22.2. In Situation 22.1. Let X → S be quasi-separated and of finite type.
Then there exists an i ∈ I and a diagram

(22.2.1)

X //

��

W

��
S // Si

such that W → Si is of finite type and such that the induced morphism X → S ×Si W
is a closed immersion.
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Proof. By Lemma 9.3 we can find a closed immersion X → X ′ over S where X ′ is
a scheme of finite presentation over S. By Lemma 10.1 we can find an i and a morphism
of finite presentation X ′

i → Si whose pull back is X ′. Set W = X ′
i . �

Lemma 22.3. In Situation 22.1. Let X → S be quasi-separated and of finite type.
Given i ∈ I and a diagram

X //

��

W

��
S // Si

as in (22.2.1) for i′ ≥ i let Xi′ be the scheme theoretic image of X → Si′ ×Si W . Then
X = limi′≥iXi′ .

Proof. Since X is quasi-compact and quasi-separated formation of the scheme theo-
retic image ofX → Si′×SiW commutes with restriction to open subschemes (Morphisms,
Lemma 6.3). Hence we may and do assume W is affine and maps into an affine open Ui of
Si. LetU ⊂ S ,Ui′ ⊂ Si′ be the inverse image ofUi. ThenU ,Ui′ , Si′×SiW = Ui′×UiW ,
and S ×Si W = U ×Ui W are all affine. This implies X is affine because X → S ×Si W
is a closed immersion. This also shows the ring map

O(U)⊗O(Ui) O(W )→ O(X)

is surjective. Let I be the kernel. Then we see that Xi′ is the spectrum of the ring

O(Xi′) = O(Ui′)⊗O(Ui) O(W )/Ii′

where Ii′ is the inverse image of the ideal I (see Morphisms, Example 6.4). SinceO(U) =
colimO(Ui′) we see that I = colim Ii′ and we conclude that colimO(Xi′) = O(X). �

Lemma 22.4. In Situation 22.1. Let f : X → Y be a morphism of schemes quasi-
separated and of finite type over S. Let

X //

��

W

��
S // Si1

and

Y //

��

V

��
S // Si2

be diagrams as in (22.2.1). Let X = limi≥i1 Xi and Y = limi≥i2 Yi be the corresponding
limit descriptions as in Lemma 22.3. Then there exists an i0 ≥ max(i1, i2) and a morphism

(fi)i≥i0 : (Xi)i≥i0 → (Yi)i≥i0

of inverse systems over (Si)i≥i0 such that such that f = limi≥i0 fi. If (gi)i≥i0 : (Xi)i≥i0 →
(Yi)i≥i0 is a second morphism of inverse systems over (Si)i≥i0 such that such that f =
limi≥i0 gi then fi = gi for all i� i0.

Proof. Since V → Si2 is of finite presentation andX = limi≥i1 Xi we can appeal to
Proposition 6.1 to find an i0 ≥ max(i1, i2) and a morphism h : Xi0 → V over Si2 such
that X → Xi0 → V is equal to X → Y → V . For i ≥ i0 we get a commutative solid
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diagram
X

��

// Xi
//

��

��

Xi0

h

��
Y //

��

Yi //

��

V

��
S // Si // Si0

Since X → Xi has scheme theoretically dense image and since Yi is the scheme theoretic
image of Y → Si ×Si2 V we find that the morphism Xi → Si ×Si2 V induced by the
diagram factors through Yi (Morphisms, Lemma 6.6). This proves existence.

Uniqueness. LetEi ⊂ Xi be the equalizer of fi and gi for i ≥ i0. By Schemes, Lemma 21.5
Ei is a locally closed subscheme of Xi. Since Xi is a closed subscheme of Si ×Si0 Xi0 and
similarly for Yi we see that

Ei = Xi ×(Si×Si0Xi0 ) (Si ×Si0 Ei0)

Thus to finish the proof it suffices to show that Xi → Xi0 factors through Ei0 for some
i ≥ i0. To do this we will use that X → Xi0 factors through Ei0 as both fi0 and gi0 are
compatible with f . Since Xi is Noetherian, we see that the underlying topological space
|Ei0 | is a constructible subset of |Xi0 | (Topology, Lemma 16.1). Hence Xi → Xi0 factors
throughEi0 set theoretically for large enough i by Lemma 4.10. For such an i the scheme
theoretic inverse image (Xi → Xi0)−1(Ei0) is a closed subscheme of Xi through which
X factors and hence equal to Xi since X → Xi has scheme theoretically dense image by
construction. This concludes the proof. �

Remark 22.5. In Situation 22.1 Lemmas 22.2, 22.3, and 22.4 tell us that the category of
schemes quasi-separated and of finite type over S is equivalent to certain types of inverse
systems of schemes over (Si)i∈I , namely the ones produced by applying Lemma 22.3 to a
diagram of the form (22.2.1). For example, given X → S finite type and quasi-separated
if we choose two different diagrams X → V1 → Si1 and X → V2 → Si2 as in (22.2.1),
then applying Lemma 22.4 to idX (in two directions) we see that the corresponding limit
descriptions of X are canonically isomorphic (up to shrinking the directed set I). And so
on and so forth.

Lemma 22.6. Notation and assumptions as in Lemma 22.4. If f is flat and of finite
presentation, then there exists an i3 ≥ i0 such that for i ≥ i3 we have fi is flat, Xi =
Yi ×Yi3 Xi3 , and X = Y ×Yi3 Xi3 .

Proof. By Lemma 10.1 we can choose an i ≥ i2 and a morphism U → Yi of finite
presentation such thatX = Y ×Yi U (this is where we use that f is of finite presentation).
After increasing i we may assume that U → Yi is flat, see Lemma 8.7. As discussed in
Remark 22.5 we may and do replace the initial diagram used to define the system (Xi)i≥i1
by the system corresponding to X → U → Si. Thus Xi′ for i′ ≥ i is defined as the
scheme theoretic image of X → Si′ ×Si U .

Because U → Yi is flat (this is where we use that f is flat), because X = Y ×Yi U , and
because the scheme theoretic image of Y → Yi is Yi, we see that the scheme theoretic
image of X → U is U (Morphisms, Lemma 25.16). Observe that Yi′ → Si′ ×Si Yi is a
closed immersion for i′ ≥ i by construction of the system of Yj . Then the same argument
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as above shows that the scheme theoretic image of X → Si′ ×Si U is equal to the closed
subscheme Yi′×Yi U . Thus we see thatXi′ = Yi′×Yi U for all i′ ≥ i and hence the lemma
holds with i3 = i. �

Lemma 22.7. Notation and assumptions as in Lemma 22.4. If f is smooth, then there
exists an i3 ≥ i0 such that for i ≥ i3 we have fi is smooth.

Proof. Combine Lemmas 22.6 and 8.9. �

Lemma 22.8. Notation and assumptions as in Lemma 22.4. If f is proper, then there
exists an i3 ≥ i0 such that for i ≥ i3 we have fi is proper.

Proof. By the discussion in Remark 22.5 the choice of i1 andW fitting into a diagram
as in (22.2.1) is immaterial for the truth of the lemma. Thus we chooseW as follows. First
we choose a closed immersion X → X ′ with X ′ → S proper and of finite presentation,
see Lemma 13.2. Then we choose an i3 ≥ i2 and a proper morphism W → Yi3 such that
X ′ = Y ×Yi3 W . This is possible because Y = limi≥i2 Yi and Lemmas 10.1 and 13.1. With
this choice of W it is immediate from the construction that for i ≥ i3 the scheme Xi is a
closed subscheme of Yi ×Yi3 W ⊂ Si ×Si3 W and hence proper over Yi. �

Lemma 22.9. In Situation 22.1 suppose that we have a cartesian diagram

X1
p
//

q

��

X3

a

��
X2 b // X4

of schemes quasi-separated and of finite type over S. For each j = 1, 2, 3, 4 choose ij ∈ I
and a diagram

Xj //

��

W j

��
S // Sij

as in (22.2.1). Let Xj = limi≥ij X
j
i be the corresponding limit descriptions as in Lemma

22.4. Let (ai)i≥i5 , (bi)i≥i6 , (pi)i≥i7 , and (qi)i≥i8 be the corresponding morphisms of sys-
tems contructed in Lemma 22.4. Then there exists an i9 ≥ max(i5, i6, i7, i8) such that for
i ≥ i9 we have ai ◦ pi = bi ◦ qi and such that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i
,ai X

3
i

is a closed immersion. Ifa and b are flat and of finite presentation, then there exists an i10 ≥
max(i5, i6, i7, i8, i9) such that for i ≥ i10 the last displayed morphism is an isomorphism.

Proof. According to the discussion in Remark 22.5 the choice of W 1 fitting into
a diagram as in (22.2.1) is immaterial for the truth of the lemma. Thus we may choose
W 1 = W 2×W 4W 3. Then it is immediate from the construction ofX1

i that ai◦pi = bi◦qi
and that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i
,ai X

3
i

is a closed immersion.
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If a and b are flat and of finite presentation, then so are p and q as base changes of a and b.
Thus we can apply Lemma 22.6 to each of a, b, p, q, and a ◦ p = b ◦ q. It follows that there
exists an i9 ∈ I such that

(qi, pi) : X1
i → X2

i ×X4
i
X3
i

is the base change of (qi9 , pi9) by the morphism by the morphismX4
i → X4

i9
for all i ≥ i9.

We conclude that (qi, pi) is an isomorphism for all sufficiently large i by Lemma 8.11. �
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CHAPTER 33

Varieties

1. Introduction

In this chapter we start studying varieties and more generally schemes over a field. A
fundamental reference is [?].

2. Notation

Throughout this chapter we use the letter k to denote the ground field.

3. Varieties

In the Stacks project we will use the following as our definition of a variety.
Definition 3.1. Let k be a field. A variety is a schemeX over k such thatX is integral

and the structure morphism X → Spec(k) is separated and of finite type.
This definition has the following drawback. Suppose that k′/k is an extension of fields.
Suppose thatX is a variety over k. Then the base changeXk′ = X×Spec(k)Spec(k′) is not
necessarily a variety over k′. This phenomenon (in greater generality) will be discussed in
detail in the following sections. The product of two varieties need not be a variety (this is
really the same phenomenon). Here is an example.

Example 3.2. Let k = Q. Let X = Spec(Q(i)) and Y = Spec(Q(i)). Then the
product X ×Spec(k) Y of the varieties X and Y is not a variety, since it is reducible. (It is
isomorphic to the disjoint union of two copies of X .)
If the ground field is algebraically closed however, then the product of varieties is a variety.
This follows from the results in the algebra chapter, but there we treat much more general
situations. There is also a simple direct proof of it which we present here.

Lemma 3.3. Let k be an algebraically closed field. LetX , Y be varieties over k. Then
X ×Spec(k) Y is a variety over k.

Proof. The morphism X ×Spec(k) Y → Spec(k) is of finite type and separated be-
cause it is the composition of the morphismsX×Spec(k)Y → Y → Spec(k) which are sep-
arated and of finite type, see Morphisms, Lemmas 15.4 and 15.3 and Schemes, Lemma 21.12.
To finish the proof it suffices to show thatX×Spec(k)Y is integral. LetX =

⋃
i=1,...,n Ui,

Y =
⋃
j=1,...,m Vj be finite affine open coverings. If we can show that eachUi×Spec(k) Vj

is integral, then we are done by Properties, Lemmas 3.2, 3.3, and 3.4. This reduces us to
the affine case.
The affine case translates into the following algebra statement: Suppose that A, B are
integral domains and finitely generated k-algebras. Then A ⊗k B is an integral domain.
To get a contradiction suppose that

(
∑

i=1,...,n
ai ⊗ bi)(

∑
j=1,...,m

cj ⊗ dj) = 0

2765



2766 33. VARIETIES

in A ⊗k B with both factors nonzero in A ⊗k B. We may assume that b1, . . . , bn are
k-linearly independent in B, and that d1, . . . , dm are k-linearly independent in B. Of
course we may also assume that a1 and c1 are nonzero inA. HenceD(a1c1) ⊂ Spec(A) is
nonempty. By the Hilbert Nullstellensatz (Algebra, Theorem 34.1) we can find a maximal
ideal m ⊂ A contained in D(a1c1) and A/m = k as k is algebraically closed. Denote
ai, cj the residue classes of ai, cj in A/m = k. The equation above becomes

(
∑

i=1,...,n
aibi)(

∑
j=1,...,m

cjdj) = 0

which is a contradiction with m ∈ D(a1c1), the linear independence of b1, . . . , bn and
d1, . . . , dm, and the fact that B is a domain. �

4. Varieties and rational maps

Let k be a field. Let X and Y be varieties over k. We will use the phrase rational map of
varieties from X to Y to mean a Spec(k)-rational map from the scheme X to the scheme
Y as defined in Morphisms, Definition 49.1. As is customary, the phrase “rational map
of varieties” does not refer to the (common) base field of the varieties, even though for
general schemes we make the distinction between rational maps and rational maps over a
given base.

The title of this section refers to the following fundamental theorem.

Theorem 4.1. Let k be a field. The category of varieties and dominant rational maps
is equivalent to the category of finitely generated field extensions K/k.

Proof. Let X and Y be varieties with generic points x ∈ X and y ∈ Y . Recall that
dominant rational maps from X to Y are exactly those rational maps which map x to y
(Morphisms, Definition 49.10 and discussion following). Thus given a dominant rational
map X ⊃ U → Y we obtain a map of function fields

k(Y ) = κ(y) = OY,y −→ OX,x = κ(x) = k(X)

Conversely, such a k-algebra map (which is automatically local as the source and target
are fields) determines (uniquely) a dominant rational map by Morphisms, Lemma 49.2.
In this way we obtain a fully faithful functor. To finish the proof it suffices to show that
every finitely generated field extensionK/k is in the essential image. SinceK/k is finitely
generated, there exists a finite type k-algebra A ⊂ K such that K is the fraction field of
A. Then X = Spec(A) is a variety whose function field is K. �

Let k be a field. Let X and Y be varieties over k. We will use the phrase X and Y are
birational varieties to mean X and Y are Spec(k)-birational as defined in Morphisms,
Definition 50.1. As is customary, the phrase “birational varieties” does not refer to the
(common) base field of the varieties, even though for general irreducible schemes we make
the distinction between being birational and being birational over a given base.

Lemma 4.2. Let X and Y be varieties over a field k. The following are equivalent
(1) X and Y are birational varieties,
(2) the function fields k(X) and k(Y ) are isomorphic,
(3) there exist nonempty opens of X and Y which are isomorphic as varieties,
(4) there exists an open U ⊂ X and a birational morphism U → Y of varieties.

Proof. This is a special case of Morphisms, Lemma 50.6. �
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5. Change of fields and local rings

Some preliminary results on what happens to local rings under an extension of ground
fields.

Lemma 5.1. Let K/k be an extension of fields. Let X be scheme over k and set Y =
XK . If y ∈ Y with image x ∈ X , then

(1) OX,x → OY,y is a faithfully flat local ring homomorphism,
(2) with p0 = Ker(κ(x)⊗k K → κ(y)) we have κ(y) = κ(p0),
(3) OY,y = (OX,x ⊗k K)p where p ⊂ OX,x ⊗k K is the inverse image of p0.
(4) we haveOY,y/mxOY,y = (κ(x)⊗k K)p0

Proof. We may assume X = Spec(A) is affine. Then Y = Spec(A ⊗k K). Since
K is flat over k, we see that A → A ⊗k K is flat. Hence Y → X is flat and we get the
first statement if we also use Algebra, Lemma 39.17. The second statement follows from
Schemes, Lemma 17.5. Now y corresponds to a prime ideal q ⊂ A⊗kK and x to r = A∩q.
Then p0 is the kernel of the induced map κ(r)⊗k K → κ(q). The map on local rings is

Ar −→ (A⊗k K)q
We can factor this map through Ar ⊗k K = (A⊗k K)r to get

Ar −→ Ar ⊗k K −→ (A⊗k K)q
and then the second arrow is a localization at some prime. This prime ideal is the inverse
image of p0 (details omitted) and this proves (3). To see (4) use (3) and that localization
and −⊗k K are exact functors. �

Lemma 5.2. Notation as in Lemma 5.1. Assume X is locally of finite type over k.
Then

dim(OY,y/mxOY,y) = trdegk(κ(x))− trdegK(κ(y)) = dim(OY,y)− dim(OX,x)

Proof. This is a restatement of Algebra, Lemma 116.7. �

Lemma 5.3. Notation as in Lemma 5.1. Assume X is locally of finite type over k,
that dim(OX,x) = dim(OY,y) and that κ(x) ⊗k K is reduced (for example if κ(x)/k is
separable or K/k is separable). Then mxOY,y = my .

Proof. (The parenthetical statement follows from Algebra, Lemma 43.6.) Combin-
ing Lemmas 5.1 and 5.2 we see thatOY,y/mxOY,y has dimension 0 and is reduced. Hence
it is a field. �

6. Geometrically reduced schemes

IfX is a reduced scheme over a field, then it can happen thatX becomes nonreduced after
extending the ground field. This does not happen for geometrically reduced schemes.

Definition 6.1. Let k be a field. Let X be a scheme over k.
(1) Let x ∈ X be a point. We say X is geometrically reduced at x if for any field

extension k′/k and any point x′ ∈ Xk′ lying over x the local ring OXk′ ,x′ is
reduced.

(2) We sayX is geometrically reduced over k ifX is geometrically reduced at every
point of X .

This may seem a little mysterious at first, but it is really the same thing as the notion
discussed in the algebra chapter. Here are some basic results explaining the connection.



2768 33. VARIETIES

Lemma 6.2. Let k be a field. LetX be a scheme over k. Let x ∈ X . The following are
equivalent

(1) X is geometrically reduced at x, and
(2) the ringOX,x is geometrically reduced over k (see Algebra, Definition 43.1).

Proof. Assume (1). This in particular implies that OX,x is reduced. Let k′/k be
a finite purely inseparable field extension. Consider the ring OX,x ⊗k k′. By Algebra,
Lemma 46.7 its spectrum is the same as the spectrum of OX,x. Hence it is a local ring
also (Algebra, Lemma 18.2). Therefore there is a unique point x′ ∈ Xk′ lying over x and
OXk′ ,x′ ∼= OX,x ⊗k k′. By assumption this is a reduced ring. Hence we deduce (2) by
Algebra, Lemma 44.3.

Assume (2). Let k′/k be a field extension. Since Spec(k′) → Spec(k) is surjective, also
Xk′ → X is surjective (Morphisms, Lemma 9.4). Let x′ ∈ Xk′ be any point lying over
x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k′. Hence it is reduced by
assumption and (1) is proved. �

The notion isn’t interesting in characteristic zero.

Lemma 6.3. Let X be a scheme over a perfect field k (e.g. k has characteristic zero).
Let x ∈ X . IfOX,x is reduced, thenX is geometrically reduced at x. IfX is reduced, then
X is geometrically reduced over k.

Proof. The first statement follows from Lemma 6.2 and Algebra, Lemma 43.6 and
the definition of a perfect field (Algebra, Definition 45.1). The second statement follows
from the first. �

Lemma 6.4. Let k be a field of characteristic p > 0. Let X be a scheme over k. The
following are equivalent

(1) X is geometrically reduced,
(2) Xk′ is reduced for every field extension k′/k,
(3) Xk′ is reduced for every finite purely inseparable field extension k′/k,
(4) Xk1/p is reduced,
(5) Xkperf is reduced,
(6) Xk̄ is reduced,
(7) for every affine open U ⊂ X the ring OX(U) is geometrically reduced (see

Algebra, Definition 43.1).

Proof. Assume (1). Then for every field extension k′/k and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is reduced. In other words Xk′ is reduced. Hence (2).

Assume (2). Let U ⊂ X be an affine open. Then for every field extension k′/k the scheme
Xk′ is reduced, hence Uk′ = Spec(O(U)⊗k k′) is reduced, hence O(U)⊗k k′ is reduced
(see Properties, Section 3). In other wordsO(U) is geometrically reduced, so (7) holds.

Assume (7). For any field extension k′/k the base change Xk′ is gotten by gluing the
spectra of the rings OX(U) ⊗k k′ where U is affine open in X (see Schemes, Section 17).
Hence Xk′ is reduced. So (1) holds.

This proves that (1), (2), and (7) are equivalent. These are equivalent to (3), (4), (5), and
(6) because we can apply Algebra, Lemma 44.3 toOX(U) for U ⊂ X affine open. �

Lemma 6.5. Let k be a field of characteristic p > 0. Let X be a scheme over k. Let
x ∈ X . The following are equivalent
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(1) X is geometrically reduced at x,
(2) OXk′ ,x′ is reduced for every finite purely inseparable field extension k′ of k and

x′ ∈ Xk′ the unique point lying over x,
(3) OX

k1/p ,x′ is reduced for x′ ∈ Xk1/p the unique point lying over x, and
(4) OX

kperf
,x′ is reduced for x′ ∈ Xkperf the unique point lying over x.

Proof. Note that if k′/k is purely inseparable, thenXk′ → X induces a homeomor-
phism on underlying topological spaces, see Algebra, Lemma 46.7. Whence the uniqueness
of x′ lying over xmentioned in the statement. Moreover, in this caseOXk′ ,x′ = OX,x⊗k
k′. Hence the lemma follows from Lemma 6.2 above and Algebra, Lemma 44.3. �

Lemma 6.6. Let k be a field. Let X be a scheme over k. Let k′/k be a field extension.
Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The following are
equivalent

(1) X is geometrically reduced at x,
(2) Xk′ is geometrically reduced at x′.

In particular,X is geometrically reduced over k if and only ifXk′ is geometrically reduced
over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k′′/k be a finite purely insepa-
rable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is unique). We
can find a common field extension k′′′/k (i.e. with both k′ ⊂ k′′′ and k′′ ⊂ k′′′) and a
point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map of local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see that the lo-
cal ring on the right is reduced. Thus by Algebra, Lemma 164.2 we conclude thatOXk′′ ,x′′

is reduced. Thus by Lemma 6.5 we conclude that X is geometrically reduced at x. �

Lemma 6.7. Let k be a field. Let X , Y be schemes over k.
(1) If X is geometrically reduced at x, and Y reduced, then X ×k Y is reduced at

every point lying over x.
(2) If X geometrically reduced over k and Y reduced. Then X ×k Y is reduced.

Proof. Combine, Lemmas 6.2 and 6.4 and Algebra, Lemma 43.5. �

Lemma 6.8. Let k be a field. Let X be a scheme over k.
(1) If x′  x is a specialization and X is geometrically reduced at x, then X is

geometrically reduced at x′.
(2) If x ∈ X such that (a) OX,x is reduced, and (b) for each specialization x′  x

where x′ is a generic point of an irreducible component of X the scheme X is
geometrically reduced at x′, then X is geometrically reduced at x.

(3) If X is reduced and geometrically reduced at all generic points of irreducible
components of X , then X is geometrically reduced.

Proof. Part (1) follows from Lemma 6.2 and the fact that if A is a geometrically
reduced k-algebra, then S−1A is a geometrically reduced k-algebra for any multiplicative
subset S of A, see Algebra, Lemma 43.3.

Let A = OX,x. The assumptions (a) and (b) of (2) imply that A is reduced, and that Aq is
geometrically reduced over k for every minimal prime q of A. Hence A is geometrically
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reduced over k, see Algebra, Lemma 43.7. ThusX is geometrically reduced at x, see Lemma
6.2.
Part (3) follows trivially from part (2). �

Lemma 6.9. Let k be a field. LetX be a scheme over k. Let x ∈ X . AssumeX locally
Noetherian and geometrically reduced at x. Then there exists an open neighbourhood
U ⊂ X of x which is geometrically reduced over k.

Proof. Assume X locally Noetherian and geometrically reduced at x. By Prop-
erties, Lemma 29.8 we can find an affine open neighbourhood U ⊂ X of x such that
R = OX(U) → OX,x is injective. By Lemma 6.2 the assumption means that OX,x is ge-
ometrically reduced over k. By Algebra, Lemma 43.2 this implies that R is geometrically
reduced over k, which in turn implies that U is geometrically reduced. �

Example 6.10. Let k = Fp(s, t), i.e., a purely transcendental extension of the prime
field. Consider the varietyX = Spec(k[x, y]/(1+sxp+ typ)). Let k′/k be any extension
such that both s and t have a pth root in k′. Then the base change Xk′ is not reduced.
Namely, the ring k′[x, y]/(1 + sxp + typ) contains the element 1 + s1/px+ t1/py whose
pth power is zero but which is not zero (since the ideal (1 + sxp + typ) certainly does not
contain any nonzero element of degree < p).

Lemma 6.11. Let k be a field. Let X → Spec(k) be locally of finite type. Assume
X has finitely many irreducible components. Then there exists a finite purely inseparable
extension k′/k such that (Xk′)red is geometrically reduced over k′.

Proof. To prove this lemma we may replace X by its reduction Xred. Hence we
may assume thatX is reduced and locally of finite type over k. Let x1, . . . , xn ∈ X be the
generic points of the irreducible components ofX . Note that for every purely inseparable
algebraic extension k′/k the morphism (Xk′)red → X is a homeomorphism, see Algebra,
Lemma 46.7. Hence the points x′

1, . . . , x
′
n lying over x1, . . . , xn are the generic points of

the irreducible components of (Xk′)red. As X is reduced the local rings Ki = OX,xi are
fields, see Algebra, Lemma 25.1. As X is locally of finite type over k the field extensions
Ki/k are finitely generated field extensions. Finally, the local rings O(Xk′ )red,x′

i
are the

fields (Ki ⊗k k′)red. By Algebra, Lemma 45.3 we can find a finite purely inseparable
extension k′/k such that (Ki ⊗k k′)red are separable field extensions of k′. In particular
each (Ki⊗k k′)red is geometrically reduced over k′ by Algebra, Lemma 44.1. At this point
Lemma 6.8 part (3) implies that (Xk′)red is geometrically reduced. �

7. Geometrically connected schemes

IfX is a connected scheme over a field, then it can happen thatX becomes disconnected af-
ter extending the ground field. This does not happen for geometrically connected schemes.

Definition 7.1. Let X be a scheme over the field k. We say X is geometrically
connected over k if the scheme Xk′ is connected for every field extension k′ of k.
By convention a connected topological space is nonempty; hence a fortiori geometrically
connected schemes are nonempty. Here is an example of a variety which is not geometri-
cally connected.

Example 7.2. Let k = Q. The scheme X = Spec(Q(i)) is a variety over Spec(Q).
But the base change XC is the spectrum of C ⊗Q Q(i) ∼= C × C which is the disjoint
union of two copies of Spec(C). So in fact, this is an example of a non-geometrically
connected variety.
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Lemma 7.3. Let X be a scheme over the field k. Let k′/k be a field extension. Then
X is geometrically connected over k if and only ifXk′ is geometrically connected over k′.

Proof. If X is geometrically connected over k, then it is clear that Xk′ is geomet-
rically connected over k′. For the converse, note that for any field extension k′′/k there
exists a common field extension k′′′/k′ and k′′′/k′′. As the morphism Xk′′′ → Xk′′ is
surjective (as a base change of a surjective morphism between spectra of fields) we see that
the connectedness ofXk′′′ implies the connectedness ofXk′′ . Thus ifXk′ is geometrically
connected over k′ then X is geometrically connected over k. �

Lemma 7.4. Let k be a field. LetX , Y be schemes over k. AssumeX is geometrically
connected over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between connected components.

Proof. The scheme theoretic fibres of p are connected, since they are base changes
of the geometrically connected scheme X by field extensions. Moreover the scheme the-
oretic fibres are homeomorphic to the set theoretic fibres, see Schemes, Lemma 18.5. By
Morphisms, Lemma 23.4 the map p is open. Thus we may apply Topology, Lemma 7.6 to
conclude. �

Lemma 7.5. Let k be a field. Let A be a k-algebra. Then X = Spec(A) is geomet-
rically connected over k if and only if A is geometrically connected over k (see Algebra,
Definition 48.3).

Proof. Immediate from the definitions. �

Lemma 7.6. Let k′/k be an extension of fields. Let X be a scheme over k. Assume
k separably algebraically closed. Then the morphism Xk′ → X induces a bijection of
connected components. In particular, X is geometrically connected over k if and only if
X is connected.

Proof. Since k is separably algebraically closed we see that k′ is geometrically con-
nected over k, see Algebra, Lemma 48.4. Hence Z = Spec(k′) is geometrically connected
over k by Lemma 7.5 above. Since Xk′ = Z ×k X the result is a special case of Lemma
7.4. �

Lemma 7.7. Let k be a field. Let X be a scheme over k. Let k be a separable algebraic
closure of k. Then X is geometrically connected if and only if the base change Xk is
connected.

Proof. Assume Xk is connected. Let k′/k be a field extension. There exists a field
extension k′

/k such that k′ embeds into k′ as an extension of k. By Lemma 7.6 we see that
X
k

′ is connected. Since X
k

′ → Xk′ is surjective we conclude that Xk′ is connected as
desired. �

Lemma 7.8. Let k be a field. Let X be a scheme over k. Let A be a k-algebra. Let
V ⊂ XA be a quasi-compact open. Then there exists a finitely generated k-subalgebra
A′ ⊂ A and a quasi-compact open V ′ ⊂ XA′ such that V = V ′

A.

Proof. We remark that if X is also quasi-separated this follows from Limits, Lemma
4.11. Let U1, . . . , Un be finitely many affine opens of X such that V ⊂

⋃
Ui,A. Say

Ui = Spec(Ri). Since V is quasi-compact we can find finitely many fij ∈ Ri ⊗k A, j =
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1, . . . , ni such that V =
⋃
i

⋃
j=1,...,ni D(fij) where D(fij) ⊂ Ui,A is the corresponding

standard open. (We do not claim thatV ∩Ui,A is the union of theD(fij), j = 1, . . . , ni.) It
is clear that we can find a finitely generated k-subalgebraA′ ⊂ A such that fij is the image
of some f ′

ij ∈ Ri⊗kA′. SetV ′ =
⋃
D(f ′

ij) which is a quasi-compact open ofXA′ . Denote
π : XA → XA′ the canonical morphism. We have π(V ) ⊂ V ′ as π(D(fij)) ⊂ D(f ′

ij). If
x ∈ XA with π(x) ∈ V ′, then π(x) ∈ D(f ′

ij) for some i, j and we see that x ∈ D(fij) as
f ′
ij maps to fij . Thus we see that V = π−1(V ′) as desired. �

Let k be a field. Let k/k be a (possibly infinite) Galois extension. For example k could
be the separable algebraic closure of k. For any σ ∈ Gal(k/k) we get a corresponding
automorphism Spec(σ) : Spec(k) −→ Spec(k). Note that Spec(σ)◦Spec(τ) = Spec(τ ◦
σ). Hence we get an action

Gal(k/k)opp × Spec(k) −→ Spec(k)
of the opposite group on the scheme Spec(k). Let X be a scheme over k. Since Xk =
Spec(k)×Spec(k) X by definition we see that the action above induces a canonical action

(7.8.1) Gal(k/k)opp ×Xk −→ Xk.

Lemma 7.9. Let k be a field. Let X be a scheme over k. Let k be a (possibly infinite)
Galois extension of k. Let V ⊂ Xk be a quasi-compact open. Then

(1) there exists a finite subextension k/k′/k and a quasi-compact open V ′ ⊂ Xk′

such that V = (V ′)k ,
(2) there exists an open subgroupH ⊂ Gal(k/k) such that σ(V ) = V for all σ ∈ H .

Proof. By Lemma 7.8 there exists a finite subextension k′/k ⊂ k and an open V ′ ⊂
Xk′ which pulls back to V . This proves (1). Since Gal(k/k′) is open in Gal(k/k) part (2)
is clear as well. �

Lemma 7.10. Let k be a field. Let k/k be a (possibly infinite) Galois extension. LetX
be a scheme over k. Let T ⊂ Xk have the following properties

(1) T is a closed subset of Xk ,
(2) for every σ ∈ Gal(k/k) we have σ(T ) = T .

Then there exists a closed subset T ⊂ X whose inverse image in Xk is T .

Proof. This lemma immediately reduces to the case whereX = Spec(A) is affine. In
this case, let I ⊂ A⊗k k be the radical ideal corresponding to T . Assumption (2) implies
that σ(I) = I for all σ ∈ Gal(k/k). Pick x ∈ I . There exists a finite Galois extension
k′/k contained in k such that x ∈ A⊗k k′. Set G = Gal(k′/k). Set

P (T ) =
∏

σ∈G
(T − σ(x)) ∈ (A⊗k k′)[T ]

It is clear thatP (T ) is monic and is actually an element of (A⊗kk′)G[T ] = A[T ] (by basic
Galois theory). Moreover, if we write P (T ) = T d + a1T

d−1 + . . . + ad the we see that
ai ∈ I := A ∩ I . Combining P (x) = 0 and ai ∈ I we find xd = −a1x

d−1 − . . .− ad ∈
I(A ⊗k k). Thus x is contained in the radical of I(A ⊗k k). Hence I is the radical of
I(A⊗k k) and setting T = V (I) is a solution. �

Lemma 7.11. Let k be a field. LetX be a scheme over k. The following are equivalent
(1) X is geometrically connected,
(2) for every finite separable field extension k′/k the scheme Xk′ is connected.
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Proof. It follows immediately from the definition that (1) implies (2). Assume that
X is not geometrically connected. Let k ⊂ k be a separable algebraic closure of k. By
Lemma 7.7 it follows that Xk is disconnected. Say Xk = U q V with U and V open,
closed, and nonempty.

Suppose thatW ⊂ X is any quasi-compact open. ThenWk ∩U andWk ∩V are open and
closed in Wk. In particular Wk ∩ U and Wk ∩ V are quasi-compact, and by Lemma 7.9
both Wk ∩ U and Wk ∩ V are defined over a finite subextension and invariant under an
open subgroup of Gal(k/k). We will use this without further mention in the following.

PickW0 ⊂ X quasi-compact open such that bothW0,k ∩U andW0,k ∩ V are nonempty.
Choose a finite subextension k/k′/k and a decompositionW0,k′ = U ′

0qV ′
0 into open and

closed subsets such thatW0,k∩U = (U ′
0)k andW0,k∩V = (V ′

0)k. LetH = Gal(k/k′) ⊂
Gal(k/k). In particular σ(W0,k ∩ U) = W0,k ∩ U and similarly for V .

Having chosen W0, k′ as above, for every quasi-compact open W ⊂ X we set

UW =
⋂

σ∈H
σ(Wk ∩ U), VW =

⋃
σ∈H

σ(Wk ∩ V ).

Now, since Wk ∩ U and Wk ∩ V are fixed by an open subgroup of Gal(k/k) we see that
the union and intersection above are finite. Hence UW and VW are both open and closed.
Also, by construction Wk̄ = UW q VW .
We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then Wk ∩ UW ′ = UW and
Wk∩VW ′ = VW . Verification omitted. Hence we see that upon definingU =

⋃
W⊂X UW

and V =
⋃
W⊂X VW we obtainXk = UqV is a disjoint union of open and closed subsets.

It is clear that V is nonempty as it is constructed by taking unions (locally). On the other
hand, U is nonempty since it contains W0 ∩ U by construction. Finally, U, V ⊂ Xk̄ are
closed and H-invariant by construction. Hence by Lemma 7.10 we have U = (U ′)k̄ , and
V = (V ′)k̄ for some closed U ′, V ′ ⊂ Xk′ . Clearly Xk′ = U ′ q V ′ and we see that Xk′ is
disconnected as desired. �

Lemma 7.12. Let k be a field. Let k/k be a (possibly infinite) Galois extension. Let
f : T → X be a morphism of schemes over k. Assume Tk connected andXk disconnected.
Then X is disconnected.

Proof. Write Xk = U q V with U and V open and closed. Denote f : Tk → Xk

the base change of f . Since Tk is connected we see that Tk is contained in either f−1(U)
or f−1(V ). Say Tk ⊂ f

−1(U).

Fix a quasi-compact open W ⊂ X . There exists a finite Galois subextension k/k′/k such
that U ∩ Wk and V ∩ Wk come from quasi-compact opens U ′, V ′ ⊂ Wk′ . Then also
Wk′ = U ′ q V ′. Consider

U ′′ =
⋂

σ∈Gal(k′/k)
σ(U ′), V ′′ =

⋃
σ∈Gal(k′/k)

σ(V ′).

These are Galois invariant, open and closed, and Wk′ = U ′′ q V ′′. By Lemma 7.10 we
get open and closed subsets UW , VW ⊂ W such that U ′′ = (UW )k′ , V ′′ = (VW )k′ and
W = UW q VW .
We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then W ∩ UW ′ = UW and
W ∩VW ′ = VW . Verification omitted. Hence we see that upon definingU =

⋃
W⊂X UW

and V =
⋃
W⊂X VW we obtain X = U q V . It is clear that V is nonempty as it is
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constructed by taking unions (locally). On the other hand,U is nonempty since it contains
f(T ) by construction. �

Lemma 7.13. Let k be a field. Let T → X be a morphism of schemes over k. Assume
T is geometrically connected and X connected. Then X is geometrically connected.

Proof. This is a reformulation of Lemma 7.12. �

Lemma 7.14. Let k be a field. Let X be a scheme over k. Assume X is connected
and has a point x such that k is algebraically closed in κ(x). Then X is geometrically
connected. In particular, if X has a k-rational point and X is connected, then X is geo-
metrically connected.

Proof. Set T = Spec(κ(x)). Let k be a separable algebraic closure of k. The assump-
tion on κ(x)/k implies that Tk is irreducible, see Algebra, Lemma 47.8. Hence by Lemma
7.13 we see that Xk is connected. By Lemma 7.7 we conclude that X is geometrically
connected. �

Lemma 7.15. Let K/k be an extension of fields. Let X be a scheme over k. For
every connected component T of X the inverse image TK ⊂ XK is a union of connected
components of XK .

Proof. This is a purely topological statement. Denote p : XK → X the projection
morphism. Let T ⊂ X be a connected component of X . Let t ∈ TK = p−1(T ). Let
C ⊂ XK be a connected component containing t. Then p(C) is a connected subset of X
which meets T , hence p(C) ⊂ T . Hence C ⊂ TK . �

The following lemma will be superseded by the stronger Lemma 7.17 below.

Lemma 7.16. Let K/k be a finite extension of fields and let X be a scheme over k.
Denote by p : XK → X the projection morphism. For every connected component T of
XK the image p(T ) is a connected component of X .

Proof. The image p(T ) is contained in some connected component X ′ of X . Con-
sider X ′ as a closed subscheme of X in any way. Then T is also a connected component
of X ′

K = p−1(X ′) and we may therefore assume that X is connected. The morphism p
is open (Morphisms, Lemma 23.4), closed (Morphisms, Lemma 44.7) and the fibers of p
are finite sets (Morphisms, Lemma 44.10). Thus we may apply Topology, Lemma 7.7 to
conclude. �

Lemma 7.17 (Gabber). Let K/k be an extension of fields. Let X be a scheme over k.
Denote p : XK → X the projection morphism. Let T ⊂ XK be a connected component.
Then p(T ) is a connected component of X .

Proof. WhenK/k is finite this is Lemma 7.16. In general the proof is more difficult.

Let T ⊂ X be the connected component of X containing the image of T . We may re-
place X by T (with the induced reduced subscheme structure). Thus we may assume X is
connected. Let A = H0(X,OX). Let L ⊂ A be the maximal weakly étale k-subalgebra,
see More on Algebra, Lemma 105.2. SinceA does not have any nontrivial idempotents we
see that L is a field and a separable algebraic extension of k by More on Algebra, Lemma
105.1. Observe that L is also the maximal weakly étale L-subalgebra of A (because any
weakly étale L-algebra is weakly étale over k by More on Algebra, Lemma 104.9). By
Schemes, Lemma 6.4 we obtain a factorizationX → Spec(L)→ Spec(k) of the structure
morphism.
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Let L′/L be a finite separable extension. By Cohomology of Schemes, Lemma 5.3 we have

A⊗L L′ = H0(X ×Spec(L) Spec(L′),OX×Spec(L)Spec(L′))

The maximal weakly étale L′-subalgebra of A ⊗L L′ is L ⊗L L′ = L′ by More on Alge-
bra, Lemma 105.4. In particular A ⊗L L′ does not have nontrivial idempotents (such an
idempotent would generate a weakly étale subalgebra) and we conclude that X ×Spec(L)
Spec(L′) is connected. By Lemma 7.11 we conclude that X is geometrically connected
over L.

Let’s give T the reduced induced scheme structure and consider the composition

T
i−→ XK = X ×Spec(k) Spec(K) π−→ Spec(L⊗k K)

The image is contained in a connected component of Spec(L⊗kK). SinceK → L⊗kK is
integral we see that the connected components of Spec(L⊗kK) are points and all points
are closed, see Algebra, Lemma 36.19. Thus we get a quotient field L⊗kK → E such that
T maps into Spec(E) ⊂ Spec(L⊗k K). Hence i(T ) ⊂ π−1(Spec(E)). But

π−1(Spec(E)) = (X ×Spec(k) Spec(K))×Spec(L⊗kK) Spec(E) = X ×Spec(L) Spec(E)
which is connected becauseX is geometrically connected overL. Then we get the equality
T = X ×Spec(L) Spec(E) (set theoretically) and we conclude that T → X is surjective as
desired. �

Let X be a scheme. We denote π0(X) the set of connected components of X .

Lemma 7.18. Let k be a field, with separable algebraic closure k. Let X be a scheme
over k. There is an action

Gal(k/k)opp × π0(Xk) −→ π0(Xk)
with the following properties:

(1) An element T ∈ π0(Xk) is fixed by the action if and only if there exists a con-
nected component T ⊂ X , which is geometrically connected over k, such that
Tk = T .

(2) For any field extension k′/k with separable algebraic closure k′ the diagram

Gal(k′
/k′)× π0(X

k
′) //

��

π0(X
k

′)

��
Gal(k/k)× π0(Xk) // π0(Xk)

is commutative (where the right vertical arrow is a bijection according to Lemma
7.6).

Proof. The action (7.8.1) of Gal(k/k) onXk induces an action on its connected com-
ponents. Connected components are always closed (Topology, Lemma 7.3). Hence if T is
as in (1), then by Lemma 7.10 there exists a closed subset T ⊂ X such that T = Tk. Note
that T is geometrically connected over k, see Lemma 7.7. To see that T is a connected
component of X , suppose that T ⊂ T ′, T 6= T ′ where T ′ is a connected component of X .
In this case T ′

k′ strictly contains T and hence is disconnected. By Lemma 7.12 this means
that T ′ is disconnected! Contradiction.

We omit the proof of the functoriality in (2). �
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Lemma 7.19. Let k be a field, with separable algebraic closure k. Let X be a scheme
over k. Assume

(1) X is quasi-compact, and
(2) the connected components of Xk are open.

Then
(a) π0(Xk) is finite, and
(b) the action of Gal(k/k) on π0(Xk) is continuous.

Moreover, assumptions (1) and (2) are satisfied when X is of finite type over k.

Proof. Since the connected components are open, cover Xk (Topology, Lemma 7.3)
andXk is quasi-compact, we conclude that there are only finitely many of them. Thus (a)
holds. By Lemma 7.8 these connected components are each defined over a finite subexten-
sion of k/k and we get (b). If X is of finite type over k, then Xk is of finite type over k
(Morphisms, Lemma 15.4). Hence Xk is a Noetherian scheme (Morphisms, Lemma 15.6).
ThusXk has finitely many irreducible components (Properties, Lemma 5.7) and a fortiori
finitely many connected components (which are therefore open). �

8. Geometrically irreducible schemes

IfX is an irreducible scheme over a field, then it can happen thatX becomes reducible after
extending the ground field. This does not happen for geometrically irreducible schemes.

Definition 8.1. Let X be a scheme over the field k. We say X is geometrically
irreducible over k if the scheme Xk′ is irreducible1 for any field extension k′ of k.

Lemma 8.2. Let X be a scheme over the field k. Let k′/k be a field extension. Then
X is geometrically irreducible over k if and only if Xk′ is geometrically irreducible over
k′.

Proof. If X is geometrically irreducible over k, then it is clear that Xk′ is geomet-
rically irreducible over k′. For the converse, note that for any field extension k′′/k there
exists a common field extension k′′′/k′ and k′′′/k′′. As the morphism Xk′′′ → Xk′′ is
surjective (as a base change of a surjective morphism between spectra of fields) we see that
the irreducibility of Xk′′′ implies the irreducibility of Xk′′ . Thus if Xk′ is geometrically
irreducible over k′ then X is geometrically irreducible over k. �

Lemma 8.3. Let X be a scheme over a separably closed field k. If X is irreducible,
then XK is irreducible for any field extension K/k. I.e., X is geometrically irreducible
over k.

Proof. Use Properties, Lemma 3.3 and Algebra, Lemma 47.2. �

Lemma 8.4. Let k be a field. LetX , Y be schemes over k. AssumeX is geometrically
irreducible over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between irreducible components.

1An irreducible space is nonempty.
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Proof. First, note that the scheme theoretic fibres of p are irreducible, since they are
base changes of the geometrically irreducible schemeX by field extensions. Moreover the
scheme theoretic fibres are homeomorphic to the set theoretic fibres, see Schemes, Lemma
18.5. By Morphisms, Lemma 23.4 the map p is open. Thus we may apply Topology, Lemma
8.15 to conclude. �

Lemma 8.5. Let k be a field. Let X be a scheme over k. The following are equivalent
(1) X is geometrically irreducible over k,
(2) for every nonempty affine open U the k-algebra OX(U) is geometrically irre-

ducible over k (see Algebra, Definition 47.4),
(3) X is irreducible and there exists an affine open covering X =

⋃
Ui such that

each k-algebraOX(Ui) is geometrically irreducible, and
(4) there exists an open covering X =

⋃
i∈I Xi with I 6= ∅ such that Xi is geomet-

rically irreducible for each i and such that Xi ∩Xj 6= ∅ for all i, j ∈ I .
Moreover, if X is geometrically irreducible so is every nonempty open subscheme of X .

Proof. An affine scheme Spec(A) over k is geometrically irreducible if and only ifA
is geometrically irreducible over k; this is immediate from the definitions. Recall that if a
scheme is irreducible so is every nonempty open subscheme ofX , any two nonempty open
subsets have a nonempty intersection. Also, if every affine open is irreducible then the
scheme is irreducible, see Properties, Lemma 3.3. Hence the final statement of the lemma
is clear, as well as the implications (1)⇒ (2), (2)⇒ (3), and (3)⇒ (4). If (4) holds, then
for any field extension k′/k the scheme Xk′ has a covering by irreducible opens which
pairwise intersect. Hence Xk′ is irreducible. Hence (4) implies (1). �

Lemma 8.6. LetX be an irreducible scheme over the field k. Let ξ ∈ X be its generic
point. The following are equivalent

(1) X is geometrically irreducible over k, and
(2) κ(ξ) is geometrically irreducible over k.

Proof. Assume (1). Recall that OX,ξ is the filtered colimit of OX(U) where U runs
over the nonempty open affine subschemes of X . Combining Lemma 8.5 and Algebra,
Lemma 47.6 we see that OX,ξ is geometrically irreducible over k. Since OX,ξ → κ(ξ) is
a surjection with locally nilpotent kernel (see Algebra, Lemma 25.1) it follows that κ(ξ) is
geometrically irreducible, see Algebra, Lemma 46.7.

Assume (2). We may assume that X is reduced. Let U ⊂ X be a nonempty affine open.
ThenU = Spec(A) whereA is a domain with fraction field κ(ξ). ThusA is a k-subalgebra
of a geometrically irreducible k-algebra. Hence by Algebra, Lemma 47.6 we see that A
is geometrically irreducible over k. By Lemma 8.5 we conclude that X is geometrically
irreducible over k. �

Lemma 8.7. Let k′/k be an extension of fields. Let X be a scheme over k. Set X ′ =
Xk′ . Assume k separably algebraically closed. Then the morphism X ′ → X induces a
bijection of irreducible components.

Proof. Since k is separably algebraically closed we see that k′ is geometrically irre-
ducible over k, see Algebra, Lemma 47.5. HenceZ = Spec(k′) is geometrically irreducible
over k. by Lemma 8.5 above. Since X ′ = Z ×k X the result is a special case of Lemma
8.4. �

Lemma 8.8. Let k be a field. LetX be a scheme over k. The following are equivalent:
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(1) X is geometrically irreducible over k,
(2) for every finite separable field extension k′/k the schemeXk′ is irreducible, and
(3) Xk is irreducible, where k ⊂ k is a separable algebraic closure of k.

Proof. AssumeXk is irreducible, i.e., assume (3). Let k′/k be a field extension. There
exists a field extension k′

/k such that k′ embeds into k′ as an extension of k. By Lemma
8.7 we see that X

k
′ is irreducible. Since X

k
′ → Xk′ is surjective we conclude that Xk′ is

irreducible. Hence (1) holds.
Let k ⊂ k be a separable algebraic closure of k. Assume not (3), i.e., assumeXk is reducible.
Our goal is to show that also Xk′ is reducible for some finite subextension k/k′/k. Let
X =

⋃
i∈I Ui be an affine open covering with Ui not empty. If for some i the scheme

Ui is reducible, or if for some pair i 6= j the intersection Ui ∩ Uj is empty, then X is
reducible (Properties, Lemma 3.3) and we are done. In particular we may assume that
Ui,k ∩ Uj,k for all i, j ∈ I is nonempty and we conclude that Ui,k has to be reducible
for some i. According to Algebra, Lemma 47.3 this means that Ui,k′ is reducible for some
finite separable field extension k′/k. Hence also Xk′ is reducible. Thus we see that (2)
implies (3).
The implication (1)⇒ (2) is immediate. This proves the lemma. �

Lemma 8.9. Let K/k be an extension of fields. Let X be a scheme over k. For every
irreducible component T of X the inverse image TK ⊂ XK is a union of irreducible
components of XK .

Proof. Let T ⊂ X be an irreducible component of X . The morphism TK → T
is flat, so generalizations lift along TK → T . Hence every ξ ∈ TK which is a generic
point of an irreducible component of TK maps to the generic point η of T . If ξ′  ξ is
a specialization in XK then ξ′ maps to η since there are no points specializing to η in X .
Hence ξ′ ∈ TK and we conclude that ξ = ξ′. In other words ξ is the generic point of an
irreducible component of XK . This means that the irreducible components of TK are all
irreducible components of XK . �

For a scheme X we denote IrredComp(X) the set of irreducible components of X .

Lemma 8.10. LetK/k be an extension of fields. LetX be a scheme over k. For every
irreducible component T ⊂ XK the image of T in X is an irreducible component in X .
This defines a canonical map

IrredComp(XK) −→ IrredComp(X)
which is surjective.

Proof. Consider the diagram

XK

��

XK

��

oo

X Xk
oo

where K is the separable algebraic closure of K , and where k is the separable algebraic
closure of k. By Lemma 8.7 the morphism XK → Xk induces a bijection between irre-
ducible components. Hence it suffices to show the lemma for the morphisms Xk → X

and XK → XK . In other words we may assume that K = k.
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The morphism p : Xk → X is integral, flat and surjective. Flatness implies that gener-
alizations lift along p, see Morphisms, Lemma 25.9. Hence generic points of irreducible
components ofXk map to generic points of irreducible components ofX . Integrality im-
plies that p is universally closed, see Morphisms, Lemma 44.7. Hence we conclude that
the image p(T ) of an irreducible component is a closed irreducible subset which contains
a generic point of an irreducible component of X , hence p(T ) is an irreducible compo-
nent of X . This proves the first assertion. If T ⊂ X is an irreducible component, then
p−1(T ) = TK is a nonempty union of irreducible components, see Lemma 8.9. Each of
these necessarily maps onto T by the first part. Hence the map is surjective. �

Lemma 8.11. Let k be a field. Let X be a scheme over k. If X is irreducible and has a
dense set of k-rational points, then X is geometrically irreducible.

Proof. Let k′/k be a finite extension of fields and let Z,Z ′ ⊂ Xk′ be irreducible
components. It suffices to show Z = Z ′, see Lemma 8.8. By Lemma 8.10 we have p(Z) =
p(Z ′) = X where p : Xk′ → X is the projection. IfZ 6= Z ′ thenZ∩Z ′ is nowhere dense
inXk′ and hence p(Z ∩Z ′) is not dense by Morphisms, Lemma 48.7; here we also use that
p is a finite morphism as the base change of the finite morphism Spec(k′)→ Spec(k), see
Morphisms, Lemma 44.6. Thus we can pick a k-rational point x ∈ X with x 6∈ p(Z∩Z ′).
Since the residue field of x is k we see that p−1({x}) = {x′} where x′ ∈ Xk′ is a point
whose residue field is k′. Since x ∈ p(Z) = p(Z ′) we conclude that x′ ∈ Z ∩ Z ′ which is
the contradiction we were looking for. �

Lemma 8.12. Let k be a field, with separable algebraic closure k. Let X be a scheme
over k. There is an action

Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)
with the following properties:

(1) An element T ∈ IrredComp(Xk) is fixed by the action if and only if there exists
an irreducible component T ⊂ X , which is geometrically irreducible over k,
such that Tk = T .

(2) For any field extension k′/k with separable algebraic closure k′ the diagram

Gal(k′
/k′)× IrredComp(X

k
′) //

��

IrredComp(X
k

′)

��
Gal(k/k)× IrredComp(Xk) // IrredComp(Xk)

is commutative (where the right vertical arrow is a bijection according to Lemma
8.7).

Proof. The action (7.8.1) of Gal(k/k) on Xk induces an action on its irreducible
components. Irreducible components are always closed (Topology, Lemma 7.3). Hence ifT
is as in (1), then by Lemma 7.10 there exists a closed subset T ⊂ X such that T = Tk. Note
that T is geometrically irreducible over k, see Lemma 8.8. To see that T is an irreducible
component of X , suppose that T ⊂ T ′, T 6= T ′ where T ′ is an irreducible component of
X . Let η be the generic point of T . It maps to the generic point η of T . Then the generic
point ξ ∈ T ′ specializes to η. As Xk → X is flat there exists a point ξ ∈ Xk which maps
to ξ and specializes to η. It follows that the closure of the singleton {ξ} is an irreducible
closed subset of Xξ which strictly contains T . This is the desired contradiction.
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We omit the proof of the functoriality in (2). �

Lemma 8.13. Let k be a field, with separable algebraic closure k. Let X be a scheme
over k. The fibres of the map

IrredComp(Xk) −→ IrredComp(X)

of Lemma 8.10 are exactly the orbits of Gal(k/k) under the action of Lemma 8.12.

Proof. Let T ⊂ X be an irreducible component ofX . Let η ∈ T be its generic point.
By Lemmas 8.9 and 8.10 the generic points of irreducible components of T which map
into T map to η. By Algebra, Lemma 47.14 the Galois group acts transitively on all of the
points of Xk mapping to η. Hence the lemma follows. �

Lemma 8.14. Let k be a field. Assume X → Spec(k) locally of finite type. In this
case

(1) the action

Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)

is continuous if we give IrredComp(Xk) the discrete topology,
(2) every irreducible component of Xk can be defined over a finite extension of k,

and
(3) given any irreducible component T ⊂ X the scheme Tk is a finite union of

irreducible components of Xk which are all in the same Gal(k/k)-orbit.

Proof. Let T be an irreducible component of Xk. We may choose an affine open
U ⊂ X such that T ∩ Uk is not empty. Write U = Spec(A), so A is a finite type k-
algebra, see Morphisms, Lemma 15.2. HenceAk is a finite type k-algebra, and in particular
Noetherian. Let p = (f1, . . . , fn) be the prime ideal corresponding to T ∩ Uk. Since
Ak = A⊗kk we see that there exists a finite subextension k/k′/k such that each fi ∈ Ak′ .
It is clear that Gal(k/k′) fixes T , which proves (1).

Part (2) follows by applying Lemma 8.12 (1) to the situation over k′ which implies the
irreducible component T is of the form T ′

k
for some irreducible T ′ ⊂ Xk′ .

To prove (3), let T ⊂ X be an irreducible component. Choose an irreducible component
T ⊂ Xk which maps to T , see Lemma 8.10. By the above the orbit of T is finite, say it is
T 1, . . . , Tn. Then T 1 ∪ . . .∪Tn is a Gal(k/k)-invariant closed subset ofXk hence of the
form Wk for some W ⊂ X closed by Lemma 7.10. Clearly W = T and we win. �

Lemma 8.15. Let k be a field. Let X → Spec(k) be locally of finite type. Assume X
has finitely many irreducible components. Then there exists a finite separable extension
k′/k such that every irreducible component of Xk′ is geometrically irreducible over k′.

Proof. Let k be a separable algebraic closure of k. The assumption thatX has finitely
many irreducible components combined with Lemma 8.14 (3) shows that Xk has finitely
many irreducible components T 1, . . . , Tn. By Lemma 8.14 (2) there exists a finite exten-
sion k/k′/k and irreducible components Ti ⊂ Xk′ such that T i = Ti,k and we win. �

Lemma 8.16. Let X be a scheme over the field k. Assume X has finitely many irre-
ducible components which are all geometrically irreducible. Then X has finitely many
connected components each of which is geometrically connected.
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Proof. This is clear because a connected component is a union of irreducible compo-
nents. Details omitted. �

9. Geometrically integral schemes

If X is an integral scheme over a field, then it can happen that X becomes either nonre-
duced or reducible after extending the ground field. This does not happen for geometri-
cally integral schemes.

Definition 9.1. Let X be a scheme over the field k.
(1) Let x ∈ X . We say X is geometrically pointwise integral at x if for every field

extension k′/k and every x′ ∈ Xk′ lying over x the local ringOXk′ ,x′ is integral.
(2) We say X is geometrically pointwise integral if X is geometrically pointwise

integral at every point.
(3) We sayX is geometrically integral over k if the schemeXk′ is integral for every

field extension k′ of k.

The distinction between notions (2) and (3) is necessary. For example if k = R and
X = Spec(C[x]), then X is geometrically pointwise integral over R but of course not
geometrically integral.

Lemma 9.2. Let k be a field. Let X be a scheme over k. Then X is geometrically in-
tegral over k if and only ifX is both geometrically reduced and geometrically irreducible
over k.

Proof. See Properties, Lemma 3.4. �

Lemma 9.3. Let k be a field. Let X be a proper scheme over k.
(1) A = H0(X,OX) is a finite dimensional k-algebra,
(2) A =

∏
i=1,...,nAi is a product of Artinian local k-algebras, one factor for each

connected component of X ,
(3) if X is reduced, then A =

∏
i=1,...,n ki is a product of fields, each a finite exten-

sion of k,
(4) if X is geometrically reduced, then ki is finite separable over k,
(5) if X is geometrically connected, then A is geometrically irreducible over k,
(6) if X is geometrically irreducible, then A is geometrically irreducible over k,
(7) if X is geometrically reduced and connected, then A = k, and
(8) if X is geometrically integral, then A = k.

Proof. By Cohomology of Schemes, Lemma 19.2 we see that A = H0(X,OX) is a
finite dimensional k-algebra. This proves (1).

Then A is a product of local Artinian k-algebras by Algebra, Lemma 53.2 and Proposition
60.7. If X = Y q Z with Y and Z open in X , then we obtain an idempotent e ∈ A by
taking the section of OX which is 1 on Y and 0 on Z. Conversely, if e ∈ A is an idem-
potent, then we get a corresponding decomposition of X . Finally, as X has a Noetherian
underlying topological space its connected components are open. Hence the connected
components of X correspond 1-to-1 with primitive idempotents of A. This proves (2).

IfX is reduced, thenA is reduced. Hence the local ringsAi = ki are reduced and therefore
fields (for example by Algebra, Lemma 25.1). This proves (3).
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IfX is geometrically reduced, thenA⊗k k = H0(Xk,OXk) (equality by Cohomology of
Schemes, Lemma 5.2) is reduced. This implies that ki⊗k k is a product of fields and hence
ki/k is separable for example by Algebra, Lemmas 44.1 and 44.3. This proves (4).

IfX is geometrically connected, thenA⊗k k = H0(Xk,OXk) is a zero dimensional local
ring by part (2) and hence its spectrum has one point, in particular it is irreducible. Thus
A is geometrically irreducible. This proves (5). Of course (5) implies (6).

If X is geometrically reduced and connected, then A = k1 is a field and the extension
k1/k is finite separable and geometrically irreducible. However, then k1⊗k k is a product
of [k1 : k] copies of k and we conclude that k1 = k. This proves (7). Of course (7) implies
(8). �

Here is a baby version of Stein factorization; actual Stein factorization will be discussed in
More on Morphisms, Section 53.

Lemma 9.4. Let X be a proper scheme over a field k. Set A = H0(X,OX). The
fibres of the canonical morphism X → Spec(A) are geometrically connected.

Proof. Set S = Spec(A). The canonical morphism X → S is the morphism corre-
sponding to Γ(S,OS) = A = Γ(X,OX) via Schemes, Lemma 6.4. The k-algebra A is a
finite productA =

∏
Ai of local Artinian k-algebras finite over k, see Lemma 9.3. Denote

si ∈ S the point corresponding to the maximal ideal of Ai. Choose an algebraic closure
k of k and set A = A ⊗k k. Choose an embedding κ(si) → k over k; this determines a
k-algebra map

σi : A = A⊗k k → κ(si)⊗k k → k

Consider the base change
X //

��

X

��
S // S

of X to S = Spec(A). By Cohomology of Schemes, Lemma 5.2 we have Γ(X,OX) = A.
If si ∈ Spec(A) denotes the k-rational point corresponding to σi, then we see that si maps
to si ∈ S and Xsi is the base change of Xsi by Spec(σi). Thus we see that it suffices to
prove the lemma in case k is algebraically closed.

Assume k is algebraically closed. In this case κ(si) is algebraically closed and we have to
show that Xsi is connected. The product decomposition A =

∏
Ai corresponds to a dis-

joint union decomposition Spec(A) =
∐

Spec(Ai), see Algebra, Lemma 21.2. Denote Xi

the inverse image of Spec(Ai). It follows from Lemma 9.3 part (2) thatAi = Γ(Xi,OXi).
Observe that Xsi → Xi is a closed immersion inducing an isomorphism on underlying
topological spaces (because Spec(Ai) is a singleton). Hence if Xsi isn’t connected, then
neither isXi. So eitherXi is empty andAi = 0 orXi can be written asU qV withU and
V open and nonempty which would imply that Ai has a nontrivial idempotent. Since Ai
is local this is a contradiction and the proof is complete. �

Lemma 9.5. Let k be a field. LetX be a proper geometrically reduced scheme over k.
The following are equivalent

(1) H0(X,OX) = k, and
(2) X is geometrically connected.
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Proof. By Lemma 9.4 we have (1)⇒ (2). By Lemma 9.3 we have (2)⇒ (1). �

10. Geometrically normal schemes

In Properties, Definition 7.1 we have defined the notion of a normal scheme. This no-
tion is defined even for non-Noetherian schemes. Hence, contrary to our discussion of
“geometrically regular” schemes we consider all field extensions of the ground field.

Definition 10.1. Let X be a scheme over the field k.
(1) Let x ∈ X . We say X is geometrically normal at x if for every field extension

k′/k and every x′ ∈ Xk′ lying over x the local ringOXk′ ,x′ is normal.
(2) We say X is geometrically normal over k if X is geometrically normal at every

x ∈ X .

Lemma 10.2. Let k be a field. Let X be a scheme over k. Let x ∈ X . The following
are equivalent

(1) X is geometrically normal at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′ lying

over x the local ringOXk′ ,x′ is normal, and
(3) the ringOX,x is geometrically normal over k (see Algebra, Definition 165.2).

Proof. It is clear that (1) implies (2). Assume (2). Let k′/k be a finite purely insep-
arable field extension (for example k = k′). Consider the ring OX,x ⊗k k′. By Algebra,
Lemma 46.7 its spectrum is the same as the spectrum of OX,x. Hence it is a local ring
also (Algebra, Lemma 18.2). Therefore there is a unique point x′ ∈ Xk′ lying over x and
OXk′ ,x′ ∼= OX,x ⊗k k′. By assumption this is a normal ring. Hence we deduce (3) by
Algebra, Lemma 165.1.

Assume (3). Let k′/k be a field extension. Since Spec(k′) → Spec(k) is surjective, also
Xk′ → X is surjective (Morphisms, Lemma 9.4). Let x′ ∈ Xk′ be any point lying over
x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k′. Hence it is normal by
assumption and (1) is proved. �

Lemma 10.3. Let k be a field. LetX be a scheme over k. The following are equivalent
(1) X is geometrically normal,
(2) Xk′ is a normal scheme for every field extension k′/k,
(3) Xk′ is a normal scheme for every finitely generated field extension k′/k,
(4) Xk′ is a normal scheme for every finite purely inseparable field extension k′/k,
(5) for every affine open U ⊂ X the ring OX(U) is geometrically normal (see Al-

gebra, Definition 165.2), and
(6) Xkperf is a normal scheme.

Proof. Assume (1). Then for every field extension k′/k and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is normal. By definition this means that Xk′ is normal. Hence
(2).

It is clear that (2) implies (3) implies (4).

Assume (4) and let U ⊂ X be an affine open subscheme. Then Uk′ is a normal scheme
for any finite purely inseparable extension k′/k (including k = k′). This means that
k′⊗kO(U) is a normal ring for all finite purely inseparable extensions k′/k. HenceO(U)
is a geometrically normal k-algebra by definition. Hence (4) implies (5).
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Assume (5). For any field extension k′/k the base change Xk′ is gotten by gluing the
spectra of the rings OX(U) ⊗k k′ where U is affine open in X (see Schemes, Section 17).
Hence Xk′ is normal. So (1) holds.

The equivalence of (5) and (6) follows from the definition of geometrically normal algebras
and the equivalence (just proved) of (3) and (4). �

Lemma 10.4. Let k be a field. LetX be a scheme over k. Let k′/k be a field extension.
Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The following are
equivalent

(1) X is geometrically normal at x,
(2) Xk′ is geometrically normal at x′.

In particular,X is geometrically normal over k if and only ifXk′ is geometrically normal
over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k′′/k be a finite purely insepa-
rable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is unique). We
can find a common field extension k′′′/k (i.e. with both k′ ⊂ k′′′ and k′′ ⊂ k′′′) and a
point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map of local rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see that the
local ring on the right is normal. Thus by Algebra, Lemma 164.3 we conclude thatOXk′′ ,x′′

is normal. By Lemma 10.2 we see that X is geometrically normal at x. �

Lemma 10.5. Let k be a field. LetX be a geometrically normal scheme over k and let
Y be a normal scheme over k. Then X ×k Y is a normal scheme.

Proof. This reduces to Algebra, Lemma 165.5 by Lemma 10.3. �

Lemma 10.6. Let k be a field. LetX be a normal scheme over k. LetK/k be a separable
field extension. Then XK is a normal scheme.

Proof. Follows from Lemma 10.5 and Algebra, Lemma 165.4. �

Lemma 10.7. Let k be a field. Let X be a proper geometrically normal scheme over
k. The following are equivalent

(1) H0(X,OX) = k,
(2) X is geometrically connected,
(3) X is geometrically irreducible, and
(4) X is geometrically integral.

Proof. By Lemma 9.5 we have the equivalence of (1) and (2). A locally Noetherian
normal scheme (such as Xk) is a disjoint union of its irreducible components (Properties,
Lemma 7.6). Thus we see that (2) and (3) are equivalent. Since Xk is assumed reduced, we
see that (3) and (4) are equivalent too. �

11. Change of fields and locally Noetherian schemes

Let X a locally Noetherian scheme over a field k. It is not always that case that Xk′

is locally Noetherian too. For example if X = Spec(Q) and k = Q, then XQ is the
spectrum of Q⊗QQ which is not Noetherian. (Hint: It has too many idempotents). But if
we only base change using finitely generated field extensions then the Noetherian property
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is preserved. (Or ifX is locally of finite type over k, since this property is preserved under
base change.)

Lemma 11.1. Let k be a field. LetX be a scheme over k. Let k′/k be a finitely generated
field extension. Then X is locally Noetherian if and only if Xk′ is locally Noetherian.

Proof. Using Properties, Lemma 5.2 we reduce to the case where X is affine, say
X = Spec(A). In this case we have to prove that A is Noetherian if and only if Ak′ is
Noetherian. Since A → Ak′ = k′ ⊗k A is faithfully flat, we see that if Ak′ is Noether-
ian, then so is A, by Algebra, Lemma 164.1. Conversely, if A is Noetherian then Ak′ is
Noetherian by Algebra, Lemma 31.8. �

12. Geometrically regular schemes

A geometrically regular scheme over a field k is a locally Noetherian scheme over k which
remains regular upon suitable changes of base field. A finite type scheme over k is ge-
ometrically regular if and only if it is smooth over k (see Lemma 12.6). The notion of
geometric regularity is most interesting in situations where smoothness cannot be used
such as formal fibres (insert future reference here).
In the following definition we restrict ourselves to locally Noetherian schemes, since the
property of being a regular local ring is only defined for Noetherian local rings. By Lemma
11.1 above, if we restrict ourselves to finitely generated field extensions then this property
is preserved under change of base field. This comment will be used without further refer-
ence in this section. In particular the following definition makes sense.

Definition 12.1. Let k be a field. Let X be a locally Noetherian scheme over k.
(1) Let x ∈ X . We say X is geometrically regular at x over k if for every finitely

generated field extension k′/k and any x′ ∈ Xk′ lying over x the local ring
OXk′ ,x′ is regular.

(2) We say X is geometrically regular over k if X is geometrically regular at all of
its points.

A similar definition works to define geometrically Cohen-Macaulay, (Rk), and (Sk) schemes
over a field. We will add a section for these separately as needed.

Lemma 12.2. Let k be a field. LetX be a locally Noetherian scheme over k. Let x ∈ X .
The following are equivalent

(1) X is geometrically regular at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′ lying

over x the local ringOXk′ ,x′ is regular, and
(3) the ringOX,x is geometrically regular over k (see Algebra, Definition 166.2).

Proof. It is clear that (1) implies (2). Assume (2). This in particular implies thatOX,x
is a regular local ring. Let k′/k be a finite purely inseparable field extension. Consider the
ring OX,x ⊗k k′. By Algebra, Lemma 46.7 its spectrum is the same as the spectrum of
OX,x. Hence it is a local ring also (Algebra, Lemma 18.2). Therefore there is a unique
point x′ ∈ Xk′ lying over x and OXk′ ,x′ ∼= OX,x ⊗k k′. By assumption this is a regular
ring. Hence we deduce (3) from the definition of a geometrically regular ring.
Assume (3). Let k′/k be a field extension. Since Spec(k′) → Spec(k) is surjective, also
Xk′ → X is surjective (Morphisms, Lemma 9.4). Let x′ ∈ Xk′ be any point lying over
x. The local ring OXk′ ,x′ is a localization of the ring OX,x ⊗k k′. Hence it is regular by
assumption and (1) is proved. �
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Lemma 12.3. Let k be a field. Let X be a locally Noetherian scheme over k. The
following are equivalent

(1) X is geometrically regular,
(2) Xk′ is a regular scheme for every finitely generated field extension k′/k,
(3) Xk′ is a regular scheme for every finite purely inseparable field extension k′/k,
(4) for every affine open U ⊂ X the ring OX(U) is geometrically regular (see Al-

gebra, Definition 166.2), and
(5) there exists an affine open covering X =

⋃
Ui such that each OX(Ui) is geo-

metrically regular over k.

Proof. Assume (1). Then for every finitely generated field extension k′/k and every
point x′ ∈ Xk′ the local ring of Xk′ at x′ is regular. By Properties, Lemma 9.2 this means
that Xk′ is regular. Hence (2).

It is clear that (2) implies (3).

Assume (3) and let U ⊂ X be an affine open subscheme. Then Uk′ is a regular scheme
for any finite purely inseparable extension k′/k (including k = k′). This means that
k′⊗kO(U) is a regular ring for all finite purely inseparable extensions k′/k. HenceO(U)
is a geometrically regular k-algebra and we see that (4) holds.

It is clear that (4) implies (5). Let X =
⋃
Ui be an affine open covering as in (5). For

any field extension k′/k the base change Xk′ is gotten by gluing the spectra of the rings
OX(Ui)⊗k k′ (see Schemes, Section 17). Hence Xk′ is regular. So (1) holds. �

Lemma 12.4. Let k be a field. Let X be a scheme over k. Let k′/k be a finitely gener-
ated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The
following are equivalent

(1) X is geometrically regular at x,
(2) Xk′ is geometrically regular at x′.

In particular,X is geometrically regular over k if and only ifXk′ is geometrically regular
over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k′′/k be a finite purely insepa-
rable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is unique). We
can find a common, finitely generated, field extension k′′′/k (i.e. with both k′ ⊂ k′′′ and
k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map of local
rings

OXk′′ ,x′′ −→ OXk′′′ ,x′′′′ .

This is a flat local ring homomorphism of Noetherian local rings and hence faithfully flat.
By (2) we see that the local ring on the right is regular. Thus by Algebra, Lemma 110.9 we
conclude that OXk′′ ,x′′ is regular. By Lemma 12.2 we see that X is geometrically regular
at x. �

The following lemma is a geometric variant of Algebra, Lemma 166.3.

Lemma 12.5. Let k be a field. Let f : X → Y be a morphism of locally Noetherian
schemes over k. Let x ∈ X be a point and set y = f(x). If X is geometrically regular at x
and f is flat at x then Y is geometrically regular at y. In particular, if X is geometrically
regular over k and f is flat and surjective, then Y is geometrically regular over k.
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Proof. Let k′ be finite purely inseparable extension of k. Let f ′ : Xk′ → Yk′ be the
base change of f . Let x′ ∈ Xk′ be the unique point lying over x. If we show that Yk′ is
regular at y′ = f ′(x′), then Y is geometrically regular over k at y′, see Lemma 12.3. By
Morphisms, Lemma 25.7 the morphism Xk′ → Yk′ is flat at x′. Hence the ring map

OYk′ ,y′ −→ OXk′ ,x′

is a flat local homomorphism of local Noetherian rings with right hand side regular by
assumption. Hence the left hand side is a regular local ring by Algebra, Lemma 110.9. �

Lemma 12.6. Let k be a field. Let X be a scheme locally of finite type over k. Let
x ∈ X . Then X is geometrically regular at x if and only if X → Spec(k) is smooth at x
(Morphisms, Definition 34.1).

Proof. The question is local around x, hence we may assume that X = Spec(A) for
some finite type k-algebra. Let x correspond to the prime p.

If A is smooth over k at p, then we may localize A and assume that A is smooth over
k. In this case k′ ⊗k A is smooth over k′ for all extension fields k′/k, and each of these
Noetherian rings is regular by Algebra, Lemma 140.3.

AssumeX is geometrically regular atx. Consider the residue fieldK := κ(x) = κ(p) ofx.
It is a finitely generated extension of k. By Algebra, Lemma 45.3 there exists a finite purely
inseparable extension k′/k such that the compositum k′K is a separable field extension of
k′. Let p′ ⊂ A′ = k′ ⊗k A be a prime ideal lying over p. It is the unique prime lying over
p, see Algebra, Lemma 46.7. Hence the residue field K ′ := κ(p′) is the compositum k′K.
By assumption the local ring (A′)p′ is regular. Hence by Algebra, Lemma 140.5 we see
that k′ → A′ is smooth at p′. This in turn implies that k → A is smooth at p by Algebra,
Lemma 137.19. The lemma is proved. �

Example 12.7. Let k = Fp(t). It is quite easy to give an example of a regular variety
V over k which is not geometrically reduced. For example we can take Spec(k[x]/(xp −
t)). In fact, there exists an example of a regular variety V which is geometrically re-
duced, but not even geometrically normal. Namely, take for p > 2 the scheme V =
Spec(k[x, y]/(y2−xp+ t)). This is a variety as the polynomial y2−xp+ t ∈ k[x, y] is ir-
reducible. The morphism V → Spec(k) is smooth at all points except at the point v0 ∈ V
corresponding to the maximal ideal (y, xp− t) (because 2y is invertible). In particular we
see that V is (geometrically) regular at all points, except possibly v0. The local ring

OV,v0 =
(
k[x, y]/(y2 − xp + t)

)
(y,xp−t)

is a domain of dimension 1. Its maximal ideal is generated by 1 element, namely y. Hence it
is a discrete valuation ring and regular. Let k′ = k[t1/p]. Denote t′ = t1/p ∈ k′, V ′ = Vk′ ,
v′

0 ∈ V ′ the unique point lying over v0. Over k′ we can write xp − t = (x− t′)p, but the
polynomial y2 − (x− t′)p is still irreducible and V ′ is still a variety. But the element

y

x− t′
∈ (fraction field ofOV ′,v′

0
)

is integral overOV ′,v′
0

(just compute its square) and not contained in it, so V ′ is not normal
at v′

0. This concludes the example.
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13. Change of fields and the Cohen-Macaulay property

The following lemma says that it does not make sense to define geometrically Cohen-
Macaulay schemes, since these would be the same as Cohen-Macaulay schemes.

Lemma 13.1. Let X be a locally Noetherian scheme over the field k. Let k′/k be a
finitely generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying
over x. Then we have

OX,x is Cohen-Macaulay⇔ OXk′ ,x′ is Cohen-Macaulay

If X is locally of finite type over k, the same holds for any field extension k′/k.

Proof. The first case of the lemma follows from Algebra, Lemma 167.2. The second
case of the lemma is equivalent to Algebra, Lemma 130.6. �

14. Change of fields and the Jacobson property

A scheme locally of finite type over a field has plenty of closed points, namely it is Jacobson.
Moreover, the residue fields are finite extensions of the ground field.

Lemma 14.1. Let X be a scheme which is locally of finite type over k. Then
(1) for any closed point x ∈ X the extension κ(x)/k is algebraic, and
(2) X is a Jacobson scheme (Properties, Definition 6.1).

Proof. A scheme is Jacobson if and only if it has an affine open covering by Jacobson
schemes, see Properties, Lemma 6.3. The property on residue fields at closed points is also
local onX . Hence we may assume thatX is affine. In this case the result is a consequence of
the Hilbert Nullstellensatz, see Algebra, Theorem 34.1. It also follows from a combination
of Morphisms, Lemmas 16.8, 16.9, and 16.10. �

It turns out that ifX is not locally of finite type, then we can achieve the same result after
making a suitably large base field extension.

Lemma 14.2. Let X be a scheme over a field k. For any field extension K/k whose
cardinality is large enough we have

(1) for any closed point x ∈ XK the extension κ(x)/K is algebraic, and
(2) XK is a Jacobson scheme (Properties, Definition 6.1).

Proof. Choose an affine open covering X =
⋃
Ui. By Algebra, Lemma 35.12 and

Properties, Lemma 6.2 there exist cardinals κi such that Ui,K has the desired properties
over K if #(K) ≥ κi. Set κ = max{κi}. Then if the cardinality of K is larger than
κ we see that each Ui,K satisfies the conclusions of the lemma. Hence XK is Jacobson by
Properties, Lemma 6.3. The statement on residue fields at closed points of XK follows
from the corresponding statements for residue fields of closed points of the Ui,K . �

15. Change of fields and ample invertible sheaves

The following result is typical for the results in this section.

Lemma 15.1. Let k be a field. Let X be a scheme over k. If there exists an ample
invertible sheaf on XK for some field extension K/k, then X has an ample invertible
sheaf.



15. CHANGE OF FIELDS AND AMPLE INVERTIBLE SHEAVES 2789

Proof. Let K/k be a field extension such that XK has an ample invertible sheaf L.
The morphism XK → X is surjective. Hence X is quasi-compact as the image of a quasi-
compact scheme (Properties, Definition 26.1). SinceXK is quasi-separated (by Properties,
Lemma 26.7) we see that X is quasi-separated: If U, V ⊂ X are affine open, then (U ∩
V )K = UK ∩ VK is quasi-compact and (U ∩ V )K → U ∩ V is surjective. Thus Schemes,
Lemma 21.6 applies.
Write K = colimAi as the colimit of the subalgebras of K which are of finite type over
k. DenoteXi = X×Spec(k) Spec(Ai). SinceXK = limXi we find an i and an invertible
sheaf Li on Xi whose pullback to XK is L (Limits, Lemma 10.3; here and below we use
that X is quasi-compact and quasi-separated as just shown). By Limits, Lemma 4.15 we
may assume Li is ample after possibly increasing i. Fix such an i and let m ⊂ Ai be a
maximal ideal. By the Hilbert Nullstellensatz (Algebra, Theorem 34.1) the residue field
k′ = Ai/m is a finite extension of k. Hence Xk′ ⊂ Xi is a closed subscheme hence has an
ample invertible sheaf (Properties, Lemma 26.3). Since Xk′ → X is finite locally free we
conclude that X has an ample invertible sheaf by Divisors, Proposition 17.9. �

Lemma 15.2. Let k be a field. LetX be a scheme over k. IfXK is quasi-affine for some
field extension K/k, then X is quasi-affine.

Proof. Let K/k be a field extension such that XK is quasi-affine. The morphism
XK → X is surjective. HenceX is quasi-compact as the image of a quasi-compact scheme
(Properties, Definition 18.1). Since XK is quasi-separated (as an open subscheme of an
affine scheme) we see that X is quasi-separated: If U, V ⊂ X are affine open, then (U ∩
V )K = UK ∩ VK is quasi-compact and (U ∩ V )K → U ∩ V is surjective. Thus Schemes,
Lemma 21.6 applies.
Write K = colimAi as the colimit of the subalgebras of K which are of finite type over
k. Denote Xi = X ×Spec(k) Spec(Ai). Since XK = limXi we find an i such that Xi is
quasi-affine (Limits, Lemma 4.12; here we use thatX is quasi-compact and quasi-separated
as just shown). By the Hilbert Nullstellensatz (Algebra, Theorem 34.1) the residue field
k′ = Ai/m is a finite extension of k. Hence Xk′ ⊂ Xi is a closed subscheme hence is
quasi-affine (Properties, Lemma 27.2). Since Xk′ → X is finite locally free we conclude
by Divisors, Lemma 17.10. �

Lemma 15.3. Let k be a field. Let X be a scheme over k. If XK is quasi-projective
over K for some field extension K/k, then X is quasi-projective over k.

Proof. By definition a morphism of schemes g : Y → T is quasi-projective if it is
locally of finite type, quasi-compact, and there exists a g-ample invertible sheaf on Y . Let
K/k be a field extension such thatXK is quasi-projective overK. Let Spec(A) ⊂ X be an
affine open. ThenUK is an affine open subscheme ofXK , henceAK is aK-algebra of finite
type. Then A is a k-algebra of finite type by Algebra, Lemma 126.1. Hence X → Spec(k)
is locally of finite type. Since XK → Spec(K) is quasi-compact, we see that XK is quasi-
compact, henceX is quasi-compact, henceX → Spec(k) is of finite type. By Morphisms,
Lemma 39.4 we see thatXK has an ample invertible sheaf. ThenX has an ample invertible
sheaf by Lemma 15.1. Hence X → Spec(k) is quasi-projective by Morphisms, Lemma
39.4. �

The following lemma is a special case of Descent, Lemma 23.14.

Lemma 15.4. Let k be a field. Let X be a scheme over k. If XK is proper over K for
some field extension K/k, then X is proper over k.
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Proof. Let K/k be a field extension such that XK is proper over K. Recall that this
implies XK is separated and quasi-compact (Morphisms, Definition 41.1). The morphism
XK → X is surjective. HenceX is quasi-compact as the image of a quasi-compact scheme
(Properties, Definition 26.1). Since XK is separated we see that X is quasi-separated: If
U, V ⊂ X are affine open, then (U ∩V )K = UK ∩VK is quasi-compact and (U ∩V )K →
U ∩ V is surjective. Thus Schemes, Lemma 21.6 applies.

Write K = colimAi as the colimit of the subalgebras of K which are of finite type over
k. Denote Xi = X ×Spec(k) Spec(Ai). By Limits, Lemma 13.1 there exists an i such that
Xi → Spec(Ai) is proper. Here we use that X is quasi-compact and quasi-separated as
just shown. Choose a maximal ideal m ⊂ Ai. By the Hilbert Nullstellensatz (Algebra,
Theorem 34.1) the residue field k′ = Ai/m is a finite extension of k. The base change
Xk′ → Spec(k′) is proper (Morphisms, Lemma 41.5). Since k′/k is finite both Xk′ → X
and the composition Xk′ → Spec(k) are proper as well (Morphisms, Lemmas 44.11, 41.5,
and 41.4). The first implies that X is separated over k as Xk′ is separated (Morphisms,
Lemma 41.11). The second implies that X → Spec(k) is proper by Morphisms, Lemma
41.9. �

Lemma 15.5. Let k be a field. Let X be a scheme over k. If XK is projective over K
for some field extension K/k, then X is projective over k.

Proof. A scheme over k is projective over k if and only if it is quasi-projective and
proper over k. See Morphisms, Lemma 43.13. Thus the lemma follows from Lemmas 15.3
and 15.4. �

16. Tangent spaces

In this section we define the tangent space of a morphism of schemes at a point of the
source using points with values in dual numbers.

Definition 16.1. For any ring R the dual numbers over R is the R-algebra denoted
R[ε]. As an R-module it is free with basis 1, ε and the R-algebra structure comes from
setting ε2 = 0.

Let f : X → S be a morphism of schemes. Let x ∈ X be a point with image s = f(x) in
S. Consider the solid commutative diagram

(16.1.1)

Spec(κ(x)) //

''

**Spec(κ(x)[ε]) //

��

X

��
Spec(κ(s)) // S

with the curved arrow being the canonical morphism of Spec(κ(x)) into X .

Lemma 16.2. The set of dotted arrows making (16.1.1) commute has a canonical κ(x)-
vector space structure.

Proof. Set κ = κ(x). Observe that we have a pushout in the category of schemes

Spec(κ[ε])qSpec(κ) Spec(κ[ε]) = Spec(κ[ε1, ε2])

where κ[ε1, ε2] is the κ-algebra with basis 1, ε1, ε2 and ε21 = ε1ε2 = ε22 = 0. This follows
immediately from the corresponding result for rings and the description of morphisms



16. TANGENT SPACES 2791

from spectra of local rings to schemes in Schemes, Lemma 13.1. Given two arrows θ1, θ2 :
Spec(κ[ε])→ X we can consider the morphism

θ1 + θ2 : Spec(κ[ε])→ Spec(κ[ε1, ε2]) θ1,θ2−−−→ X

where the first arrow is given by εi 7→ ε. On the other hand, given λ ∈ κ there is a self
map of Spec(κ[ε]) corresponding to the κ-algebra endomorphism of κ[ε] which sends ε to
λε. Precomposing θ : Spec(κ[ε]) → X by this selfmap gives λθ. The reader can verify
the axioms of a vector space by verifying the existence of suitable commutative diagrams
of schemes. We omit the details. (An alternative proof would be to express everything in
terms of local rings and then verify the vector space axioms on the level of ring maps.) �

Definition 16.3. Let f : X → S be a morphism of schemes. Let x ∈ X . The set
of dotted arrows making (16.1.1) commute with its canonical κ(x)-vector space structure
is called the tangent space of X over S at x and we denote it TX/S,x. An element of this
space is called a tangent vector of X/S at x.

Since tangent vectors at x ∈ X live in the scheme theoretic fibre Xs of f : X → S over
s = f(x), we get a canonical identification

(16.3.1) TX/S,x = TXs/s,x

This pleasing definition involving the functor of points has the following algebraic de-
scription, which suggests defining the cotangent space ofX over S at x as the κ(x)-vector
space

T ∗
X/S,x = ΩX/S,x ⊗OX,x

κ(x)
simply because it is canonically κ(x)-dual to the tangent space of X over S at x.

Lemma 16.4. Let f : X → S be a morphism of schemes. Let x ∈ X . There is a
canonical isomorphism

TX/S,x = HomOX,x
(ΩX/S,x, κ(x))

of vector spaces over κ(x).

Proof. Set κ = κ(x). Given θ ∈ TX/S,x we obtain a map

θ∗ΩX/S → ΩSpec(κ[ε])/ Spec(κ(s)) → ΩSpec(κ[ε])/ Spec(κ)

Taking sections we obtain an OX,x-linear map ξθ : ΩX/S,x → κdε, i.e., an element of the
right hand side of the formula of the lemma. To show that θ 7→ ξθ is an isomorphism
we can replace S by s and X by the scheme theoretic fibre Xs. Indeed, both sides of the
formula only depend on the scheme theoretic fibre; this is clear for TX/S,x and for the
RHS see Morphisms, Lemma 32.10. We may also replace X by the spectrum of OX,x as
this does not change TX/S,x (Schemes, Lemma 13.1) nor ΩX/S,x (Modules, Lemma 28.7).

Let (A,m, κ) be a local ring over a field k. To finish the proof we have to show that any
A-linear map ξ : ΩA/k → κ comes from a unique k-algebra map ϕ : A → κ[ε] agreeing
with the canonical map c : A→ κ modulo ε. Write ϕ(a) = c(a) +D(a)ε the reader sees
that a 7→ D(a) is a k-derivation. Using the universal property of ΩA/k we see that each
D corresponds to a unique ξ and vice versa. This finishes the proof. �

Lemma 16.5. Let f : X → S be a morphism of schemes. Let x ∈ X be a point and
let s = f(x) ∈ S. Assume that κ(x) = κ(s). Then there are canonical isomorphisms

mx/(m2
x + msOX,x) = ΩX/S,x ⊗OX,x

κ(x)
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and
TX/S,x = Homκ(x)(mx/(m2

x + msOX,x), κ(x))
This works more generally if κ(x)/κ(s) is a separable algebraic extension.

Proof. The second isomorphism follows from the first by Lemma 16.4. For the first,
we can replace S by s andX byXs, see Morphisms, Lemma 32.10. We may also replaceX
by the spectrum of OX,x, see Modules, Lemma 28.7. Thus we have to show the following
algebra fact: let (A,m, κ) be a local ring over a field k such that κ/k is separable algebraic.
Then the canonical map

m/m2 −→ ΩA/k ⊗ κ

is an isomorphism. Observe that m/m2 = H1(NLκ/A). By Algebra, Lemma 134.4 it
suffices to show that Ωκ/k = 0 and H1(NLκ/k) = 0. Since κ is the union of its finite
separable extensions in k it suffices to prove this when κ is a finite separable extension of
k (Algebra, Lemma 134.9). In this case the ring map k → κ is étale and hence NLκ/k = 0
(more or less by definition, see Algebra, Section 143). �

Lemma 16.6. Let f : X → Y be a morphism of schemes over a base scheme S. Let
x ∈ X be a point. Set y = f(x). If κ(y) = κ(x), then f induces a natural linear map

df : TX/S,x −→ TY/S,y

which is dual to the linear map ΩY/S,y⊗κ(y)→ ΩX/S,x via the identifications of Lemma
16.4.

Proof. Omitted. �

Lemma 16.7. Let X , Y be schemes over a base S. Let x ∈ X and y ∈ Y with the
same image point s ∈ S such that κ(s) = κ(x) and κ(s) = κ(y). There is a canonical
isomorphism

TX×SY/S,(x,y) = TX/S,x ⊕ TY/S,y
The map from left to right is induced by the maps on tangent spaces coming from the
projections X ×S Y → X and X ×S Y → Y . The map from right to left is induced by
the maps 1×y : Xs → Xs×sYs and x×1 : Ys → Xs×sYs via the identification (16.3.1)
of tangent spaces with tangent spaces of fibres.

Proof. The direct sum decomposition follows from Morphisms, Lemma 32.11 via
Lemma 16.5. Compatibility with the maps comes from Lemma 16.6. �

Lemma 16.8. Let f : X → Y be a morphism of schemes locally of finite type over a
base scheme S. Let x ∈ X be a point. Set y = f(x) and assume that κ(y) = κ(x). Then
the following are equivalent

(1) df : TX/S,x −→ TY/S,y is injective, and
(2) f is unramified at x.

Proof. The morphism f is locally of finite type by Morphisms, Lemma 15.8. The
map df is injective, if and only if ΩY/S,y ⊗ κ(y) → ΩX/S,x ⊗ κ(x) is surjective (Lemma
16.6). The exact sequence f∗ΩY/S → ΩX/S → ΩX/Y → 0 (Morphisms, Lemma 32.9)
then shows that this happens if and only if ΩX/Y,x ⊗ κ(x) = 0. Hence the result follows
from Morphisms, Lemma 35.14. �
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17. Generically finite morphisms

In this section we revisit the notion of a generically finite morphism of schemes as studied
in Morphisms, Section 51.

Lemma 17.1. Let f : X → Y be locally of finite type. Let y ∈ Y be a point such that
OY,y is Noetherian of dimension≤ 1. Assume in addition one of the following conditions
is satisfied

(1) for every generic point η of an irreducible component of X the field extension
κ(η)/κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that f(η) y
the field extension κ(η)/κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of an irreducible component of X ,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X ,
(5) add more here.

Then f is quasi-finite at every point of X lying over y.

Proof. Condition (4) implies X is locally Noetherian (Morphisms, Lemma 15.6).
The set of points at which morphism is quasi-finite is open (Morphisms, Lemma 56.2). A
dense open of a locally Noetherian scheme contains all generic point of irreducible com-
ponents, hence (4) implies (3). Condition (3) implies condition (1) by Morphisms, Lemma
20.5. Condition (1) implies condition (2). Thus it suffices to prove the lemma in case (2)
holds.

Assume (2) holds. Recall that Spec(OY,y) is the set of points of Y specializing to y, see
Schemes, Lemma 13.2. Combined with Morphisms, Lemma 20.13 this shows we may re-
place Y by Spec(OY,y). Thus we may assume Y = Spec(B) where B is a Noetherian
local ring of dimension ≤ 1 and y is the closed point.

Let X =
⋃
Xi be the irreducible components of X viewed as reduced closed subschemes.

If we can show each fibreXi,y is a discrete space, thenXy =
⋃
Xi,y is discrete as well and

we conclude that X → Y is quasi-finite at all points of Xy by Morphisms, Lemma 20.6.
Thus we may assume X is an integral scheme.

IfX → Y maps the generic point η ofX to y, thenX is the spectrum of a finite extension
of κ(y) and the result is true. Assume thatX maps η to a point corresponding to a minimal
prime q ofB different frommB . We obtain a factorizationX → Spec(B/q)→ Spec(B).
Let x ∈ X be a point lying over y. By the dimension formula (Morphisms, Lemma 52.1)
we have

dim(OX,x) ≤ dim(B/q) + trdegκ(q)(R(X))− trdegκ(y)κ(x)
We know that dim(B/q) = 1, that the generic point ofX is not equal to x and specializes
to x and that R(X) is algebraic over κ(q). Thus we get

1 ≤ 1− trdegκ(y)κ(x)

Hence every point x ofXy is closed inXy by Morphisms, Lemma 20.2 and henceX → Y
is quasi-finite at every point x of Xy by Morphisms, Lemma 20.6 (which also implies that
Xy is a discrete topological space). �

Lemma 17.2. Let f : X → Y be a proper morphism. Let y ∈ Y be a point such that
OY,y is Noetherian of dimension≤ 1. Assume in addition one of the following conditions
is satisfied
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(1) for every generic point η of an irreducible component of X the field extension
κ(η)/κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that f(η) y
the field extension κ(η)/κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of X ,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X ,
(5) add more here.

Then there exists an open neighbourhood V ⊂ Y of y such that f−1(V )→ V is finite.

Proof. By Lemma 17.1 the morphism f is quasi-finite at every point of the fibre Xy .
Hence Xy is a discrete topological space (Morphisms, Lemma 20.6). As f is proper the
fibreXy is quasi-compact, i.e., finite. Thus we can apply Cohomology of Schemes, Lemma
21.2 to conclude. �

Lemma 17.3. Let X be a Noetherian scheme. Let f : Y → X be a birational proper
morphism of schemes with Y reduced. Let U ⊂ X be the maximal open over which f is
an isomorphism. Then U contains

(1) every point of codimension 0 in X ,
(2) every x ∈ X of codimension 1 on X such thatOX,x is a discrete valuation ring,
(3) every x ∈ X such that the fibre of Y → X over x is finite and such that OX,x

is normal, and
(4) every x ∈ X such that f is quasi-finite at some y ∈ Y lying over x and OX,x is

normal.

Proof. Part (1) follows from Morphisms, Lemma 51.6. Part (2) follows from part (3)
and Lemma 17.2 (and the fact that finite morphisms have finite fibres).

Part (3) follows from part (4) and Morphisms, Lemma 20.7 but we will also give a direct
proof. Let x ∈ X be as in (3). By Cohomology of Schemes, Lemma 21.2 we may assume
f is finite. We may assume X affine. This reduces us to the case of a finite birational
morphism of Noetherian affine schemes Y → X and x ∈ X such that OX,x is a normal
domain. SinceOX,x is a domain andX is Noetherian, we may replaceX by an affine open
of x which is integral. Then, since Y → X is birational and Y is reduced we see that Y is
integral. WritingX = Spec(A) and Y = Spec(B) we see thatA ⊂ B is a finite inclusion
of domains having the same field of fractions. If p ⊂ A is the prime corresponding to x,
then Ap being normal implies that Ap ⊂ Bp is an equality. Since B is a finite A-module,
we see there exists an a ∈ A, a 6∈ p such that Aa → Ba is an isomorphism.

Let x ∈ X and y ∈ Y be as in (4). After replacing X by an affine open neighbourhood
we may assume X = Spec(A) and A ⊂ OX,x, see Properties, Lemma 29.8. Then A is
a domain and hence X is integral. Since f is birational and Y is reduced it follows that
Y is integral too. Consider the ring map OX,x → OY,y . This is a ring map which is
essentially of finite type, the residue field extension is finite, and dim(OY,y/mxOY,y) = 0
(to see this trace through the definitions of quasi-finite maps in Morphisms, Definition
20.1 and Algebra, Definition 122.3). By Algebra, Lemma 124.2 OY,y is the localization of
a finite OX,x-algebra B. Of course we may replace B by the image of B in OY,y and
assume thatB is a domain with the same fraction field asOY,y . ThenOX,x ⊂ B have the
same fraction field as f is birational. Since OX,x is normal, we conclude that OX,x = B
(because finite implies integral), in particular, we see that OX,x = OY,y . By Morphisms,
Lemma 42.4 after shrinking X we may assume there is a section X → Y of f mapping
x to y and inducing the given isomorphism on local rings. Since X → Y is closed (by
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Schemes, Lemma 21.11) necessarily maps the generic point of X to the generic point of Y
it follows that the image ofX → Y is Y . Then Y = X and we’ve proved what we wanted
to show. �

18. Variants of Noether normalization

Noether normalization is the statement that if k is a field andA is a finite type k algebra of
dimension d, then there exists a finite injective k-algebra homomorphism k[x1, . . . , xd]→
A. See Algebra, Lemma 115.4. Geometrically this means there is a finite surjective mor-
phism Spec(A)→ Ad

k over Spec(k).

Lemma 18.1. Let f : X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let V ⊂ S be an affine open neighbourhood of s. If f is locally of finite type and
dimx(Xs) = d, then there exists an affine open U ⊂ X with x ∈ U and f(U) ⊂ V and a
factorization

U
π−→ Ad

V → V

of f |U : U → V such that π is quasi-finite.

Proof. This follows from Algebra, Lemma 125.2. �

Lemma 18.2. Let f : X → S be a finite type morphism of affine schemes. Let s ∈ S.
If dim(Xs) = d, then there exists a factorization

X
π−→ Ad

S → S

of f such that the morphism πs : Xs → Ad
κ(s) of fibres over s is finite.

Proof. Write S = Spec(A) and X = Spec(B) and let A → B be the ring map
corresponding to f . Let p ⊂ A be the prime ideal corresponding to s. We can choose a sur-
jectionA[x1, . . . , xr]→ B. By Algebra, Lemma 115.4 there exist elements y1, . . . , yd ∈ A
in the Z-subalgebra of A generated by x1, . . . , xr such that the A-algebra homomor-
phism A[t1, . . . , td] → B sending ti to yi induces a finite κ(p)-algebra homomorphism
κ(p)[t1, . . . , td]→ B ⊗A κ(p). This proves the lemma. �

Lemma 18.3. Let f : X → S be a morphism of schemes. Let x ∈ X . Let V =
Spec(A) be an affine open neighbourhood of f(x) in S. If f is unramified at x, then
there exist exists an affine open U ⊂ X with x ∈ U and f(U) ⊂ V such that we have a
commutative diagram

X

��

Uoo

&&

j // Spec(A[t]g′/(g))

��

// Spec(A[t]) = A1
V

uu
Y Voo

where j is an immersion, g ∈ A[t] is a monic polynomial, and g′ is the derivative of g
with respect to t. If f is étale at x, then we may choose the diagram such that j is an open
immersion.

Proof. The unramified case is a translation of Algebra, Proposition 152.1. In the étale
case this is a translation of Algebra, Proposition 144.4 or equivalently it follows from
Morphisms, Lemma 36.14 although the statements differ slightly. �
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Lemma 18.4. Let f : X → S be a finite type morphism of affine schemes. Let x ∈ X
with image s ∈ S. Let

r = dimκ(x) ΩX/S,x ⊗OX,x
κ(x) = dimκ(x) ΩXs/s,x ⊗OXs,x

κ(x) = dimκ(x) TX/S,x

Then there exists a factorization

X
π−→ Ar

S → S

of f such that π is unramified at x.

Proof. By Morphisms, Lemma 32.12 the first dimension is finite. The first equality
follows as the restriction of ΩX/S to the fibre is the module of differentials from Mor-
phisms, Lemma 32.10. The last equality follows from Lemma 16.4. Thus we see that the
statement makes sense.

To prove the lemma write S = Spec(A) and X = Spec(B) and let A → B be the ring
map corresponding to f . Let q ⊂ B be the prime ideal corresponding to x. Choose a
surjection ofA-algebrasA[x1, . . . , xt]→ B. Since ΩB/A is generated by dx1, . . . , dxt we
see that their images in ΩX/S,x ⊗OX,x

κ(x) generate this as a κ(x)-vector space. After
renumbering we may assume that dx1, . . . , dxr map to a basis of ΩX/S,x⊗OX,x

κ(x). We
claim that P = A[x1, . . . , xr] → B is unramified at q. To see this it suffices to show
that ΩB/P,q = 0 (Algebra, Lemma 151.3). Note that ΩB/P is the quotient of ΩB/A by
the submodule generated by dx1, . . . , dxr. Hence ΩB/P,q ⊗Bq

κ(q) = 0 by our choice
of x1, . . . , xr. By Nakayama’s lemma, more precisely Algebra, Lemma 20.1 part (2) which
applies as ΩB/P is finite (see reference above), we conclude that ΩB/P,q = 0. �

Lemma 18.5. Let f : X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let V ⊂ S be an affine open neighbourhood of s. If f is locally of finite type and

r = dimκ(x) ΩX/S,x ⊗OX,x
κ(x) = dimκ(x) ΩXs/s,x ⊗OXs,x

κ(x) = dimκ(x) TX/S,x

then there exist
(1) an affine open U ⊂ X with x ∈ U and f(U) ⊂ V and a factorization

U
j−→ Ar+1

V → V

of f |U such that j is an immersion, or
(2) an affine open U ⊂ X with x ∈ U and f(U) ⊂ V and a factorization

U
j−→ D → V

of f |U such that j is a closed immersion and D → V is smooth of relative di-
mension r.

Proof. Pick any affine open U ⊂ X with x ∈ U and f(U) ⊂ V . Apply Lemma 18.4
to U → V to get U → Ar

V → V as in the statement of that lemma. By Lemma 18.3 we
get a factorization

U
j−→ D

j′

−→ Ar+1
V

p−→ Ar
V → V

where j and j′ are immersions, p is the projection, and p ◦ j′ is standard étale. Thus we see
in particular that (1) and (2) hold. �
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19. Dimension of fibres

We have already seen that dimension of fibres of finite type morphisms typically jump up.
In this section we discuss the phenomenon that in codimension 1 this does not happen.
More generally, we discuss how much the dimension of a fibre can jump. Here is a list of
related results:

(1) For a finite type morphism X → S the set of x ∈ X with dimx(Xf(x)) ≤ d is
open, see Algebra, Lemma 125.6 and Morphisms, Lemma 28.4.

(2) We have the dimension formula, see Algebra, Lemma 113.1 and Morphisms, Lemma
52.1.

(3) Constant fibre dimension for an integral finite type scheme dominating a valu-
ation ring, see Algebra, Lemma 125.9.

(4) If X → S is of finite type and is quasi-finite at every generic point of X , then
X → S is quasi-finite in codimension 1, see Algebra, Lemma 113.2 and Lemma
17.1.

The last result mentioned above generalizes as follows.

Lemma 19.1. Let f : X → Y be locally of finite type. Let x ∈ X be a point with
image y ∈ Y such that OY,y is Noetherian of dimension ≤ 1. Let d ≥ 0 be an integer
such that for every generic point η of an irreducible component of X which contains x,
we have dimη(Xf(η)) = d. Then dimx(Xy) = d.

Proof. Recall that Spec(OY,y) is the set of points of Y specializing to y, see Schemes,
Lemma 13.2. Thus we may replace Y by Spec(OY,y) and assume Y = Spec(B) where B
is a Noetherian local ring of dimension≤ 1 and y is the closed point. We may also replace
X by an affine neighbourhood of x.
Let X =

⋃
Xi be the irreducible components of X viewed as reduced closed subschemes.

If we can show each fibre Xi,y has dimension d, then Xy =
⋃
Xi,y has dimension d as

well. Thus we may assume X is an integral scheme.
IfX → Y maps the generic point η ofX to y, thenX is a scheme over κ(y) and the result
is true by assumption. Assume thatX maps η to a point ξ ∈ Y corresponding to a minimal
prime q ofB different frommB . We obtain a factorizationX → Spec(B/q)→ Spec(B).
By the dimension formula (Morphisms, Lemma 52.1) we have

dim(OX,x) + trdegκ(y)κ(x) ≤ dim(B/q) + trdegκ(q)(R(X))

We have dim(B/q) = 1. We have trdegκ(q)(R(X)) = d by our assumption that dimη(Xξ) =
d, see Morphisms, Lemma 28.1. Since OX,x → OXs,x has a kernel (as η 7→ ξ 6= y) and
since OX,x is a Noetherian domain we see that dim(OX,x) > dim(OXy,x). We conclude
that

dimx(Xs) = dim(OXs,x) + trdegκ(y)κ(x) ≤ d
(Morphisms, Lemma 28.1). On the other hand, we have dimx(Xs) ≥ dimη(Xf(η)) = d
by Morphisms, Lemma 28.4. �

Lemma 19.2. Let f : X → Spec(R) be a morphism from an irreducible scheme to the
spectrum of a valuation ring. If f is locally of finite type and surjective, then the special
fibre is equidimensional of dimension equal to the dimension of the generic fibre.

Proof. We may replace X by its reduction because this does not change the dimen-
sion of X or of the special fibre. Then X is integral and the lemma follows from Algebra,
Lemma 125.9. �
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The following lemma generalizes Lemma 19.1.

Lemma 19.3. Let f : X → Y be locally of finite type. Let x ∈ X be a point with
image y ∈ Y such that OY,y is Noetherian. Let d ≥ 0 be an integer such that for every
generic point η of an irreducible component of X which contains x, we have f(η) 6= y
and dimη(Xf(η)) = d. Then dimx(Xy) ≤ d+ dim(OY,y)− 1.

Proof. Exactly as in the proof of Lemma 19.1 we reduce to the case X = Spec(A)
with A a domain and Y = Spec(B) where B is a Noetherian local ring whose maximal
ideal corresponds to y. After replacing B by B/Ker(B → A) we may assume that B is a
domain and that B ⊂ A. Then we use the dimension formula (Morphisms, Lemma 52.1)
to get

dim(OX,x) + trdegκ(y)κ(x) ≤ dim(B) + trdegB(A)
We have trdegB(A) = d by our assumption that dimη(Xξ) = d, see Morphisms, Lemma
28.1. Since OX,x → OXy,x has a kernel (as f(η) 6= y) and since OX,x is a Noetherian
domain we see that dim(OX,x) > dim(OXy,x). We conclude that

dimx(Xy) = dim(OXy,x) + trdegκ(y)κ(x) < dim(B) + d

(equality by Morphisms, Lemma 28.1) which proves what we want. �

20. Algebraic schemes

The following definition is taken from [?, I Definition 6.4.1].

Definition 20.1. Let k be a field. An algebraic k-scheme is a scheme X over k such
that the structure morphism X → Spec(k) is of finite type. A locally algebraic k-scheme
is a scheme X over k such that the structure morphism X → Spec(k) is locally of finite
type.

Note that every (locally) algebraic k-scheme is (locally) Noetherian, see Morphisms, Lemma
15.6. The category of algebraic k-schemes has all products and fibre products (unlike the
category of varieties over k). Similarly for the category of locally algebraic k-schemes.

Lemma 20.2. Let k be a field. Let X be a locally algebraic k-scheme of dimension 0.
ThenX is a disjoint union of spectra of local Artinian k-algebrasAwith dimk(A) <∞. If
X is an algebraic k-scheme of dimension 0, then in additionX is affine and the morphism
X → Spec(k) is finite.

Proof. LetX be a locally algebraic k-scheme of dimension 0. LetU = Spec(A) ⊂ X
be an affine open subscheme. Since dim(X) = 0 we see that dim(A) = 0. By Noether
normalization, see Algebra, Lemma 115.4 we see that there exists a finite injection k → A,
i.e., dimk(A) < ∞. Hence A is Artinian, see Algebra, Lemma 53.2. This implies that
A = A1× . . .×Ar is a product of finitely many Artinian local rings, see Algebra, Lemma
53.6. Of course dimk(Ai) <∞ for each i as the sum of these dimensions equals dimk(A).

The arguments above show thatX has an open covering whose members are finite discrete
topological spaces. HenceX is a discrete topological space. It follows thatX is isomorphic
to the disjoint union of its connected components each of which is a singleton. Since a
singleton scheme is affine we conclude (by the results of the paragraph above) that each of
these singletons is the spectrum of a local Artinian k-algebra A with dimk(A) <∞.

Finally, if X is an algebraic k-scheme of dimension 0, then X is quasi-compact hence
is a finite disjoint union X = Spec(A1) q . . . q Spec(Ar) hence affine (see Schemes,
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Lemma 6.8) and we have seen the finiteness of X → Spec(k) in the first paragraph of the
proof. �

The following lemma collects some statements on dimension theory for locally algebraic
schemes.

Lemma 20.3. Let k be a field. Let X be a locally algebraic k-scheme.
(1) The topological space of X is catenary (Topology, Definition 11.4).
(2) For x ∈ X closed, we have dimx(X) = dim(OX,x).
(3) For X irreducible we have dim(X) = dim(U) for any nonempty open U ⊂ X

and dim(X) = dimx(X) for any x ∈ X .
(4) For X irreducible any chain of irreducible closed subsets can be extended to a

maximal chain and all maximal chains of irreducible closed subsets have length
equal to dim(X).

(5) For x ∈ X we have dimx(X) = max dim(Z) = min dim(OX,x′) where the
maximum is over irreducible components Z ⊂ X containing x and the mini-
mum is over specializations x x′ with x′ closed in X .

(6) If X is irreducible with generic point x, then dim(X) = trdegk(κ(x)).
(7) Ifx x′ is an immediate specialization of points ofX , then we have trdegk(κ(x)) =

trdegk(κ(x′)) + 1.
(8) The dimension ofX is the supremum of the numbers trdegk(κ(x)) where x runs

over the generic points of the irreducible components of X .
(9) If x x′ is a nontrivial specialization of points of X , then

(a) dimx(X) ≤ dimx′(X),
(b) dim(OX,x) < dim(OX,x′),
(c) trdegk(κ(x)) > trdegk(κ(x′)), and
(d) any maximal chain of nontrivial specializations x = x0  x1  . . .  

xn = x has length n = trdegk(κ(x))− trdegk(κ(x′)).
(10) For x ∈ X we have dimx(X) = trdegk(κ(x)) + dim(OX,x).
(11) If x  x′ is an immediate specialization of points of X and X is irreducible or

equidimensional, then dim(OX,x′) = dim(OX,x) + 1.

Proof. Instead on relying on the more general results proved earlier we will reduce
the statements to the corresponding statements for finite type k-algebras and cite results
from the chapter on commutative algebra.

Proof of (1). This is local on X by Topology, Lemma 11.5. Thus we may assume X =
Spec(A) where A is a finite type k-algebra. We have to show that A is catenary (Algebra,
Lemma 105.2). We can reduce to k[x1, . . . , xn] using Algebra, Lemma 105.7 and then apply
Algebra, Lemma 114.3. Alternatively, this holds because k is Cohen-Macaulay (trivially)
and Cohen-Macaulay rings are universally catenary (Algebra, Lemma 105.9).

Proof of (2). Choose an affine neighbourhood U = Spec(A) of x. Then dimx(X) =
dimx(U). Hence we reduce to the affine case, which is Algebra, Lemma 114.6.

Proof of (3). It suffices to show that any two nonempty affine opens U,U ′ ⊂ X have the
same dimension (any finite chain of irreducible subsets meets an affine open). Pick a closed
point x of X with x ∈ U ∩ U ′. This is possible because X is irreducible, hence U ∩ U ′ is
nonempty, hence there is such a closed point because X is Jacobson by Lemma 14.1. Then
dim(U) = dim(OX,x) = dim(U ′) by Algebra, Lemma 114.4 (strictly speaking you have
to replace X by its reduction before applying the lemma).
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Proof of (4). Given a chain of irreducible closed subsets we can find an affine openU ⊂ X
which meets the smallest one. Thus the statement follows from Algebra, Lemma 114.4 and
dim(U) = dim(X) which we have seen in (3).

Proof of (5). Choose an affine neighbourhood U = Spec(A) of x. Then dimx(X) =
dimx(U). The ruleZ 7→ Z∩U is a bijection between irreducible components ofX passing
through x and irreducible components of U passing through x. Also, dim(Z ∩ U) =
dim(Z) for such Z by (3). Hence the statement follows from Algebra, Lemma 114.5.

Proof of (6). By (3) this reduces to the case where X = Spec(A) is affine. In this case it
follows from Algebra, Lemma 116.1 applied to Ared.

Proof of (7). Let Z = {x} ⊃ Z ′ = {x′}. Then it follows from (4) that Z ⊃ Z ′ is the start
of a maximal chain of irreducible closed subschemes in Z and consequently dim(Z) =
dim(Z ′) + 1. We conclude by (6).

Proof of (8). A simple topological argument shows that dim(X) = sup dim(Z) where
the supremum is over the irreducible components of X (hint: use Topology, Lemma 8.3).
Thus this follows from (6).

Proof of (9). Part (a) follows from the fact that any open U ⊂ X containing x′ also
contains x. Part (b) follows because OX,x is a localization of OX,x′ hence any chain of
primes inOX,x corresponds to a chain of primes inOX,x′ which can be extended by adding
mx′ at the end. Both (c) and (d) follow formally from (7).

Proof of (10). Choose an affine neighbourhood U = Spec(A) of x. Then dimx(X) =
dimx(U). Hence we reduce to the affine case, which is Algebra, Lemma 116.3.

Proof of (11). If X is equidimensional (Topology, Definition 10.5) then dim(X) is equal
to the dimension of every irreducible component of X , whence dimx(X) = dim(X) =
dimx′(X) by (5). Thus this follows from (7). �

Lemma 20.4. Let k be a field. Let f : X → Y be a morphism of locally algebraic
k-schemes.

(1) For y ∈ Y , the fibre Xy is a locally algebraic scheme over κ(y) hence all the
results of Lemma 20.3 apply.

(2) Assume X is irreducible. Set Z = f(X) and d = dim(X)− dim(Z). Then
(a) dimx(Xf(x)) ≥ d for all x ∈ X ,
(b) the set of x ∈ X with dimx(Xf(x)) = d is dense open,
(c) if dim(OZ,f(x)) ≥ 1, then dimx(Xf(x)) ≤ d+ dim(OZ,f(x))− 1,
(d) if dim(OZ,f(x)) = 1, then dimx(Xf(x)) = d,

(3) For x ∈ X with y = f(x) we have dimx(Xy) ≥ dimx(X)− dimy(Y ).

Proof. The morphism f is locally of finite type by Morphisms, Lemma 15.8. Hence
the base change Xy → Spec(κ(y)) is locally of finite type. This proves (1). In the rest of
the proof we will freely use the results of Lemma 20.3 for X , Y , and the fibres of f .

Proof of (2). Let η ∈ X be the generic point and set ξ = f(η). Then Z = {ξ}. Hence

d = dim(X)− dim(Z) = trdegkκ(η)− trdegkκ(ξ) = trdegκ(ξ)κ(η) = dimη(Xξ)

Thus parts (2)(a) and (2)(b) follow from Morphisms, Lemma 28.4. Parts (2)(c) and (2)(d)
follow from Lemmas 19.3 and 19.1.
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Proof of (3). Let x ∈ X . Let X ′ ⊂ X be a irreducible component of X passing through
x of dimension dimx(X). Then (2) implies that dimx(Xy) ≥ dim(X ′)− dim(Z ′) where
Z ′ ⊂ Y is the closure of the image of X ′. This proves (3). �

Lemma 20.5. Let k be a field. Let X , Y be locally algebraic k-schemes.
(1) For z ∈ X×Y lying over (x, y) we have dimz(X×Y ) = dimx(X)+dimy(Y ).
(2) We have dim(X × Y ) = dim(X) + dim(Y ).

Proof. Proof of (1). Consider the factorization
X × Y −→ Y −→ Spec(k)

of the structure morphism. The first morphism p : X × Y → Y is flat as a base change
of the flat morphism X → Spec(k) by Morphisms, Lemma 25.8. Moreover, we have
dimz(p−1(y)) = dimx(X) by Morphisms, Lemma 28.3. Hence dimz(X×Y ) = dimx(X)+
dimy(Y ) by Morphisms, Lemma 28.2. Part (2) is a direct consequence of (1). �

21. Complete local rings

Some results on complete local rings of schemes over fields.

Lemma 21.1. Let k be a field. LetX be a locally Noetherian scheme over k. Let x ∈ X
be a point with residue field κ. There is an isomorphism
(21.1.1) κ[[x1, . . . , xn]]/I −→ O∧

X,x

inducing the identity on residue fields. In general we cannot choose (21.1.1) to be a k-
algebra isomorphism. However, if the extension κ/k is separable, then we can choose
(21.1.1) to be an isomorphism of k-algebras.

Proof. The existence of the isomorphism is an immediate consequence of the Cohen
structure theorem2 (Algebra, Theorem 160.8).
Let p be an odd prime number, let k = Fp(t), and A = k[x, y]/(y2 + xp − t). Then the
completion A∧ of A in the maximal ideal m = (y) is isomorphic to k(t1/p)[[z]] as a ring
but not as a k-algebra. The reason is thatA∧ does not contain an element whose pth power
is t (as the reader can see by computing modulo y2). This also shows that any isomorphism
(21.1.1) cannot be a k-algebra isomorphism.
If κ/k is separable, then there is a k-algebra homomorphism κ→ O∧

X,x inducing the iden-
tity on residue fields by More on Algebra, Lemma 38.3. Let f1, . . . , fn ∈ mx be generators.
Consider the map

κ[[x1, . . . , xn]] −→ O∧
X,x, xi 7−→ fi

Since both sides are (x1, . . . , xn)-adically complete (the right hand side by Algebra, Lem-
mas 96.3) this map is surjective by Algebra, Lemma 96.1 as it is surjective modulo (x1, . . . , xn)
by construction. �

Lemma 21.2. LetK/k be an extension of fields. LetX be a locally algebraic k-scheme.
Set Y = XK . Let y ∈ Y be a point with image x ∈ X . Assume that dim(OX,x) =
dim(OY,y) and that κ(x)/k is separable. Choose an isomorphism

κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) −→ O∧
X,x

2Note that ifκ has characteristic p, then the theorem just says we get a surjection Λ[[x1, . . . , xn]] → O∧
X,x

where Λ is a Cohen ring for κ. But of course in this case the map factors through Λ/pΛ[[x1, . . . , xn]] and
Λ/pΛ = κ.
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of k-algebras as in (21.1.1). Then we have an isomorphism
κ(y)[[x1, . . . , xn]]/(g1, . . . , gm) −→ O∧

Y,y

of K-algebras as in (21.1.1). Here we use κ(x) → κ(y) to view gj as a power series over
κ(y).

Proof. The local ring map OX,x → OY,y induces a local ring map O∧
X,x → O∧

Y,y .
The induced map

κ(x)→ κ(x)[[x1, . . . , xn]]/(g1, . . . , gm)→ O∧
X,x → O∧

Y,y

composed with the projection to κ(y) is the canonical homomorphism κ(x) → κ(y).
By Lemma 5.1 the residue field κ(y) is a localization of κ(x) ⊗k K at the kernel p0 of
κ(x) ⊗k K → κ(y). On the other hand, by Lemma 5.3 the local ring (κ(x) ⊗k K)p0 is
equal to κ(y). Hence the map

κ(x)⊗k K → O∧
Y,y

factors canonically through κ(y). We obtain a commutative diagram

κ(y) // O∧
Y,y

κ(x) //

OO

κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) // O∧
X,x

OO

Let fi ∈ m∧
x ⊂ O∧

X,x be the image of xi. Observe that m∧
x = (f1, . . . , fn) as the map is

surjective. Consider the map
κ(y)[[x1, . . . , xn]] −→ O∧

Y,y, xi 7−→ fi

where here fi really means the image of fi in m∧
y . Since mxOY,y = my by Lemma 5.3 we

see that the right hand side is complete with respect to (x1, . . . , xn) (use Algebra, Lemma
96.3 to see that it is a complete local ring). Since both sides are (x1, . . . , xn)-adically com-
plete our map is surjective by Algebra, Lemma 96.1 as it is surjective modulo (x1, . . . , xn).
Of course the power series g1, . . . , gm are mapped to zero under this map, as they already
map to zero inO∧

X,x. Thus we have the commutative diagram

κ(y)[[x1, . . . , xn]]/(g1, . . . , gm) // O∧
Y,y

κ(x)[[x1, . . . , xn]]/(g1, . . . , gm) //

OO

O∧
X,x

OO

We still need to show that the top horizontal arrow is an isomorphism. We already know
that it is surjective. We know that OX,x → OY,y is flat (Lemma 5.1), which implies that
O∧
X,x → O∧

Y,y is flat (More on Algebra, Lemma 43.8). Thus we may apply Algebra, Lemma
99.1 withR = κ(x)[[x1, . . . , xn]]/(g1, . . . , gm), withS = κ(y)[[x1, . . . , xn]]/(g1, . . . , gm),
with M = O∧

Y,y , and with N = S to conclude that the map is injective. �

22. Global generation

Some lemmas related to global generation of quasi-coherent modules.

Lemma 22.1. Let X → Spec(A) be a morphism of schemes. Let A ⊂ A′ be a faith-
fully flat ring map. Let F be a quasi-coherent OX -module. Then F is globally generated
if and only if the base change FA′ is globally generated.
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Proof. More precisely, set XA′ = X ×Spec(A) Spec(A′). Let FA′ = p∗F where p :
XA′ → X is the projection. By Cohomology of Schemes, Lemma 5.2 we haveH0(Xk′ ,FA′) =
H0(X,F) ⊗A A′. Thus if si, i ∈ I are generators for H0(X,F) as an A-module, then
their images in H0(XA′ ,FA′) are generators for H0(XA′ ,FA′) as an A′-module. Thus
we have to show that the map α :

⊕
i∈I OX → F , (fi) 7→

∑
fisi is surjective if and only

if p∗α is surjective. This we may check over an affine openU = Spec(B) ofX . ThenF|U
corresponds to a B-module M and si|U to elements xi ∈ M . Thus we have to show that⊕

i∈I B →M is surjective if and only if the base change
⊕

i∈I B ⊗A A′ →M ⊗A A′ is
surjective. This is true because A→ A′ is faithfully flat. �

Lemma 22.2. Let k be an infinite field. LetX be a scheme of finite type over k. Let L
be a very ample invertible sheaf on X . Let n ≥ 0 and x, x1, . . . , xn ∈ X be points with
x a k-rational point, i.e., κ(x) = k, and x 6= xi for i = 1, . . . , n. Then there exists an
s ∈ H0(X,L) which vanishes at x but not at xi.

Proof. If n = 0 the result is trivial, hence we assume n > 0. By definition of a very
ample invertible sheaf, the lemma immediately reduces to the case where X = Pr

k for
some r > 0 and L = OX(1). Write Pr

k = Proj(k[T0, . . . , Tr]). Set V = H0(X,L) =
kT0 ⊕ . . . ⊕ kTr. Since x is a k-rational point, we see that the set s ∈ V which vanish
at x is a codimension 1 subspace W ⊂ V and that W generates the homogeneous prime
ideal corresponding to x. Since xi 6= x the corresponding homogeneous prime pi ⊂
k[T0, . . . , Tr] does not containW . Since k is infinite, we then see thatW 6=

⋃
W ∩qi and

the proof is complete. �

Lemma 22.3. Let k be an infinite field. Let X be an algebraic k-scheme. Let L be an
invertibleOX -module. Let V → Γ(X,L) be a linear map of k-vector spaces whose image
generates L. Then there exists a subspace W ⊂ V with dimk(W ) ≤ dim(X) + 1 which
generates L.

Proof. Throughout the proof we will use that for every x ∈ X the linear map

ψx : V → Γ(X,L)→ Lx → Lx ⊗OX,x
κ(x)

is nonzero. The proof is by induction on dim(X).

The base case is dim(X) = 0. In this case X has finitely many points X = {x1, . . . , xn}
(see for example Lemma 20.2). Since k is infinite there exists a vector v ∈ V such that
ψxi(v) 6= 0 for all i. Then W = k · v does the job.

Assume dim(X) > 0. Let Xi ⊂ X be the irreducible components of dimension equal to
dim(X). Since X is Noetherian there are only finitely many of these. For each i pick a
point xi ∈ Xi. As above choose v ∈ V such that ψxi(v) 6= 0 for all i. Let Z ⊂ X be the
zero scheme of the image of v in Γ(X,L), see Divisors, Definition 14.8. By construction
dim(Z) < dim(X). By induction we can find W ⊂ V with dim(W ) ≤ dim(X) such
that W generates L|Z . Then W + k · v generates L. �

23. Separating points and tangent vectors

This is just the following result.

Lemma 23.1. Let k be an algebraically closed field. Let X be a proper k-scheme. Let
L be an invertibleOX -module. Let V ⊂ H0(X,L) be a k-subvector space. If

(1) for every pair of distinct closed points x, y ∈ X there is a section s ∈ V which
vanishes at x but not at y, and
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(2) for every closed point x ∈ X and nonzero tangent vector θ ∈ TX/k,x there exists
a section s ∈ V which vanishes at x but whose pullback by θ is nonzero,

then L is very ample and the canonical morphism ϕL,V : X → P(V ) is a closed immer-
sion.

Proof. Condition (1) implies in particular that the elements of V generate L over
X . Hence we get a canonical morphism

ϕ = ϕL,V : X −→ P(V )

by Constructions, Example 21.2. The morphism ϕ is proper by Morphisms, Lemma 41.7.
By (1) the map ϕ is injective on closed points (computation omitted). In particular, the
fibre over any closed point of P(V ) is a singleton (small detail omitted). Thus we see that
ϕ is finite, for example use Cohomology of Schemes, Lemma 21.2. To finish the proof it
suffices to show that the map

ϕ] : OP(V ) −→ ϕ∗OX

is surjective. This we may check on stalks at closed points. Let x ∈ X be a closed point
with image the closed point p = ϕ(x) ∈ P(V ). Since ϕ−1({p}) = {x} by (1) and since ϕ
is proper (hence closed), we see that ϕ−1(U) runs through a fundamental system of open
neighbourhoods of x asU runs through a fundamental system of open neighbourhoods of
p. We conclude that on stalks at p we obtain the map

ϕ]x : OP(V ),p −→ OX,x

In particular,OX,x is a finiteOP(V ),p-module. Moreover, the residue fields of x and p are
equal to k (as k is algebraically closed – use the Hilbert Nullstellensatz). Finally, condition
(2) implies that the map

TX/k,x −→ TP(V )/k,p

is injective since any nonzero θ in the kernel of this map couldn’t possibly satisfy the
conclusion of (2). In terms of the map of local rings above this means that

mp/m
2
p −→ mx/m

2
x

is surjective, see Lemma 16.5. Now the proof is finished by applying Algebra, Lemma 20.3.
�

Lemma 23.2. Let k be an algebraically closed field. Let X be a proper k-scheme.
Let L be an invertible OX -module. Suppose that for every closed subscheme Z ⊂ X of
dimension 0 and degree 2 over k the map

H0(X,L) −→ H0(Z,L|Z)

is surjective. Then L is very ample on X over k.

Proof. This is a reformulation of Lemma 23.1. Namely, given distinct closed points
x, y ∈ X takingZ = x∪y (viewed as closed subscheme) we get condition (1) of the lemma.
And given a nonzero tangent vector θ ∈ TX/k,x the morphism θ : Spec(k[ε]) → X is a
closed immersion. Setting Z = Im(θ) we obtain condition (2) of the lemma. �
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24. Closures of products

Some results on the relation between closure and products.

Lemma 24.1. Let k be a field. Let X , Y be schemes over k, and let A ⊂ X , B ⊂ Y be
subsets. Set

AB = {z ∈ X ×k Y | prX(z) ∈ A, prY (z) ∈ B} ⊂ X ×k Y
Then set theoretically we have

A×k B = AB

Proof. The inclusionAB ⊂ A×k B is immediate. We may replaceX and Y by the
reduced closed subschemes A and B. Let W ⊂ X ×k Y be a nonempty open subset. By
Morphisms, Lemma 23.4 the subset U = prX(W ) is nonempty open in X . Hence A ∩ U
is nonempty. Pick a ∈ A∩U . Denote Yκ(a) = {a}×k Y the fibre of prX : X×k Y → X
over a. By Morphisms, Lemma 23.4 again the morphism Ya → Y is open as Spec(κ(a))→
Spec(k) is universally open. Hence the nonempty open subsetWa = W ×X×kY Ya maps
to a nonempty open subset of Y . We conclude there exists a b ∈ B in the image. Hence
AB ∩W 6= ∅ as desired. �

Lemma 24.2. Let k be a field. Let f : A → X , g : B → Y be morphisms of schemes
over k. Then set theoretically we have

f(A)×k g(B) = (f × g)(A×k B)

Proof. This follows from Lemma 24.1 as the image of f × g is f(A)g(B) in the
notation of that lemma. �

Lemma 24.3. Let k be a field. Let f : A → X , g : B → Y be quasi-compact mor-
phisms of schemes over k. Let Z ⊂ X be the scheme theoretic image of f , see Morphisms,
Definition 6.2. Similarly, let Z ′ ⊂ Y be the scheme theoretic image of g. Then Z ×k Z ′

is the scheme theoretic image of f × g.

Proof. Recall that Z is the smallest closed subscheme ofX through which f factors.
Similarly for Z ′. Let W ⊂ X ×k Y be the scheme theoretic image of f × g. As f × g
factors through Z ×k Z ′ we see that W ⊂ Z ×k Z ′.
To prove the other inclusion let U ⊂ X and V ⊂ Y be affine opens. By Morphisms,
Lemma 6.3 the scheme Z ∩ U is the scheme theoretic image of f |f−1(U) : f−1(U) → U ,
and similarly forZ ′∩V andW∩U×kV . Hence we may assumeX andY affine. As f and g
are quasi-compact this implies thatA =

⋃
Ui is a finite union of affines andB =

⋃
Vj is a

finite union of affines. Then we may replaceA by
∐
Ui andB by

∐
Vj , i.e., we may assume

that A and B are affine as well. In this case Z is cut out by Ker(Γ(X,OX)→ Γ(A,OA))
and similarly for Z ′ and W . Hence the result follows from the equality

Γ(A×k B,OA×kB) = Γ(A,OA)⊗k Γ(B,OB)
which holds as A and B are affine. Details omitted. �

25. Schemes smooth over fields

Here are two lemmas characterizing smooth schemes over fields.

Lemma 25.1. Let k be a field. Let X be a scheme over k. Assume
(1) X is locally of finite type over k,
(2) ΩX/k is locally free, and
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(3) k has characteristic zero.
Then the structure morphism X → Spec(k) is smooth.

Proof. This follows from Algebra, Lemma 140.7. �

In positive characteristic there exist nonreduced schemes of finite type whose sheaf of
differentials is free, for example Spec(Fp[t]/(tp)) over Spec(Fp). If the ground field k is
nonperfect of characteristic p, there exist reduced schemesX/k with free ΩX/k which are
nonsmooth, for example Spec(k[t]/(tp − a) where a ∈ k is not a pth power.

Lemma 25.2. Let k be a field. Let X be a scheme over k. Assume
(1) X is locally of finite type over k,
(2) ΩX/k is locally free,
(3) X is reduced, and
(4) k is perfect.

Then the structure morphism X → Spec(k) is smooth.

Proof. Let x ∈ X be a point. As X is locally Noetherian (see Morphisms, Lemma
15.6) there are finitely many irreducible components X1, . . . , Xn passing through x (see
Properties, Lemma 5.5 and Topology, Lemma 9.2). Let ηi ∈ Xi be the generic point.
As X is reduced we have OX,ηi = κ(ηi), see Algebra, Lemma 25.1. Moreover, κ(ηi)
is a finitely generated field extension of the perfect field k hence separably generated
over k (see Algebra, Section 42). It follows that ΩX/k,ηi = Ωκ(ηi)/k is free of rank
the transcendence degree of κ(ηi) over k. By Morphisms, Lemma 28.1 we conclude that
dimηi(Xi) = rankηi(ΩX/k). Since x ∈ X1 ∩ . . . ∩Xn we see that

rankx(ΩX/k) = rankηi(ΩX/k) = dim(Xi).

Therefore dimx(X) = rankx(ΩX/k), see Algebra, Lemma 114.5. It follows that X →
Spec(k) is smooth at x for example by Algebra, Lemma 140.3. �

Lemma 25.3. Let X → Spec(k) be a smooth morphism where k is a field. ThenX is
a regular scheme.

Proof. (See also Lemma 12.6.) By Algebra, Lemma 140.3 every local ring OX,x is
regular. And because X is locally of finite type over k it is locally Noetherian. Hence X
is regular by Properties, Lemma 9.2. �

Lemma 25.4. LetX → Spec(k) be a smooth morphism where k is a field. ThenX is
geometrically regular, geometrically normal, and geometrically reduced over k.

Proof. (See also Lemma 12.6.) Let k′ be a finite purely inseparable extension of k. It
suffices to prove that Xk′ is regular, normal, reduced, see Lemmas 12.3, 10.3, and 6.5. By
Morphisms, Lemma 34.5 the morphismXk′ → Spec(k′) is smooth too. Hence it suffices to
show that a scheme X smooth over a field is regular, normal, and reduced. We see that X
is regular by Lemma 25.3. Hence Properties, Lemma 9.4 guarantees that X is normal. �

Lemma 25.5. Let k be a field. Let d ≥ 0. Let W ⊂ Ad
k be nonempty open. Then

there exists a closed point w ∈W such that k ⊂ κ(w) is finite separable.

Proof. After possible shrinking W we may assume that W = Ad
k \ V (f) for some

f ∈ k[x1, . . . , xd]. If the lemma is wrong then f(a1, . . . , ad) = 0 for all (a1, . . . , ad) ∈
(ksep)d. This is absurd as ksep is an infinite field. �
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Lemma 25.6. Let k be a field. If X is smooth over Spec(k) then the set
{x ∈ X closed such that k ⊂ κ(x) is finite separable}

is dense in X .

Proof. It suffices to show that given a nonempty smooth X over k there exists at
least one closed point whose residue field is finite separable over k. To see this, choose a
diagram

X Uoo π // Ad
k

with π étale, see Morphisms, Lemma 36.20. The morphism π : U → Ad
k is open, see Mor-

phisms, Lemma 36.13. By Lemma 25.5 we may choose a closed point w ∈ π(U) whose
residue field is finite separable over k. Pick any x ∈ U with π(x) = w. By Morphisms,
Lemma 36.7 the field extension κ(x)/κ(w) is finite separable. Hence κ(x)/k is finite sep-
arable. The point x is a closed point of X by Morphisms, Lemma 20.2. �

Lemma 25.7. Let X be a scheme over a field k. If X is locally of finite type and
geometrically reduced over k then X contains a dense open which is smooth over k.

Proof. The problem is local on X , hence we may assume X is quasi-compact. Let
X = X1 ∪ . . . ∪ Xn be the irreducible components of X . Then Z =

⋃
i 6=j Xi ∩ Xj is

nowhere dense in X . Hence we may replace X by X \ Z. As X \ Z is a disjoint union of
irreducible schemes, this reduces us to the case whereX is irreducible. AsX is irreducible
and reduced, it is integral, see Properties, Lemma 3.4. Let η ∈ X be its generic point. Then
the function field K = k(X) = κ(η) is geometrically reduced over k, hence separable
over k, see Algebra, Lemma 44.1. Let U = Spec(A) ⊂ X be any nonempty affine open so
that K = A(0) is the fraction field of A. Apply Algebra, Lemma 140.5 to conclude that A
is smooth at (0) over k. By definition this means that some principal localization of A is
smooth over k and we win. �

Lemma 25.8. Let k be a perfect field. Let X be a locally algebraic reduced k-scheme,
for example a variety over k. Then we have

{x ∈ X | X → Spec(k) is smooth at x} = {x ∈ X | OX,x is regular}
and this is a dense open subscheme of X .

Proof. The equality of the two sets follows immediately from Algebra, Lemma 140.5
and the definitions (see Algebra, Definition 45.1 for the definition of a perfect field). The
set is open because the set of points where a morphism of schemes is smooth is open, see
Morphisms, Definition 34.1. Finally, we give two arguments to see that it is dense: (1) The
generic points of X are in the set as the local rings at generic points are fields (Algebra,
Lemma 25.1) hence regular. (2) We use thatX is geometrically reduced by Lemma 6.3 and
hence Lemma 25.7 applies. �

Lemma 25.9. Let k be a field. Let f : X → Y be a morphism of schemes locally of
finite type over k. Let x ∈ X be a point and set y = f(x). If X → Spec(k) is smooth at
x and f is flat at x then Y → Spec(k) is smooth at y. In particular, if X is smooth over k
and f is flat and surjective, then Y is smooth over k.

Proof. It suffices to show that Y is geometrically regular at y, see Lemma 12.6. This
follows from Lemma 12.5 (and Lemma 12.6 applied to (X,x)). �

Lemma 25.10. Let k be a field. LetX be a variety over k which has a k-rational point
x such that X is smooth at x. Then X is geometrically integral over k.
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Proof. Let U ⊂ X be the smooth locus of X . By assumption U is nonempty and
hence dense and scheme theoretically dense. Then Uk ⊂ Xk is dense and scheme theoret-
ically dense as well (some details omitted). Thus it suffices to show thatU is geometrically
integral. Because U has a k-rational point it is geometrically connected by Lemma 7.14.
On the other hand, Uk is reduced and normal (Lemma 25.4. Since a connected normal
Noetherian scheme is integral (Properties, Lemma 7.6) the proof is complete. �

Lemma 25.11. Let X be a scheme of finite type over a field k. There exists a finite
purely inseparable extension k′/k, an integer t ≥ 0, and closed subschemes

Xk′ ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Z0 = (Xk′)red and Zi \ Zi+1 is smooth over k′ for all i.

Proof. We may use induction on dim(X). By Lemma 6.11 we can find a finite purely
inseparable extension k′/k such that (Xk′)red is geometrically reduced over k′. By Lemma
25.7 there is a nowhere dense closed subscheme X ′ ⊂ (Xk′)red such that (Xk′)red \X ′ is
smooth over k′. Then dim(X ′) < dim(X). By induction hypothesis there exists a finite
purely inseparable extension k′′/k′, an integer t′ ≥ 0, and closed subschemes

X ′
k′′ ⊃ Y0 ⊃ Y1 ⊃ . . . ⊃ Yt′ = ∅

such that Y0 = (X ′
k′′)red and Yi \ Yi+1 is smooth over k′′ for all i. Then we let t = t′ + 1

and we consider
Xk′′ ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅

given by Z0 = (Xk′′)red and Zi = Yi−1 for i > 0; this makes sense as X ′
k′′ is a closed

subscheme of Xk′′ . We omit the verification that all the stated properties hold. �

26. Types of varieties

Short section discussion some elementary global properties of varieties.

Definition 26.1. Let k be a field. Let X be a variety over k.
(1) We say X is an affine variety if X is an affine scheme. This is equivalent to

requiring X to be isomorphic to a closed subscheme of An
k for some n.

(2) We say X is a projective variety if the structure morphism X → Spec(k) is
projective. By Morphisms, Lemma 43.4 this is true if and only ifX is isomorphic
to a closed subscheme of Pn

k for some n.
(3) We say X is a quasi-projective variety if the structure morphism X → Spec(k)

is quasi-projective. By Morphisms, Lemma 40.6 this is true if and only if X is
isomorphic to a locally closed subscheme of Pn

k for some n.
(4) A proper variety is a variety such that the morphism X → Spec(k) is proper.
(5) A smooth variety is a variety such that the morphism X → Spec(k) is smooth.

Note that a projective variety is a proper variety, see Morphisms, Lemma 43.5. Also, an
affine variety is quasi-projective as An

k is isomorphic to an open subscheme of Pn
k , see

Constructions, Lemma 13.3.

Lemma 26.2. Let X be a proper variety over k. Then
(1) K = H0(X,OX) is a field which is a finite extension of the field k,
(2) if X is geometrically reduced, then K/k is separable,
(3) if X is geometrically irreducible, then K/k is purely inseparable,
(4) if X is geometrically integral, then K = k.

Proof. This is a special case of Lemma 9.3. �
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27. Normalization

Some issues associated to normalization.

Lemma 27.1. Let k be a field. Let X be a locally algebraic scheme over k. Let ν :
Xν → X be the normalization morphism, see Morphisms, Definition 54.1. Then

(1) ν is finite, dominant, and Xν is a disjoint union of normal irreducible locally
algebraic schemes over k,

(2) ν factors as Xν → Xred → X and the first morphism is the normalization
morphism of Xred,

(3) if X is a reduced algebraic scheme, then ν is birational,
(4) if X is a variety, then Xν is a variety and ν is a finite birational morphism of

varieties.

Proof. Since X is locally of finite type over a field, we see that X is locally Noe-
therian (Morphisms, Lemma 15.6) hence every quasi-compact open has finitely many ir-
reducible components (Properties, Lemma 5.7). Thus Morphisms, Definition 54.1 applies.
The normalization Xν is always a disjoint union of normal integral schemes and the nor-
malization morphism ν is always dominant, see Morphisms, Lemma 54.5. Since X is
universally Nagata (Morphisms, Lemma 18.2) we see that ν is finite (Morphisms, Lemma
54.10). Hence Xν is locally algebraic too. At this point we have proved (1).

Part (2) is Morphisms, Lemma 54.2.

Part (3) is Morphisms, Lemma 54.7.

Part (4) follows from (1), (2), (3), and the fact that Xν is separated as a scheme finite over
a separated scheme. �

Lemma 27.2. Let k be a field. Let X be a proper scheme over k. Let ν : Xν → X be
the normalization morphism, see Morphisms, Definition 54.1. Then Xν is proper over k.
If X is projective over k, then Xν is projective over k.

Proof. By Lemma 27.1 the morphism ν is finite. HenceXν is proper over k by Mor-
phisms, Lemmas 44.11 and 41.4. The morphism ν is projective by Morphisms, Lemma
44.16 and hence if X is projective over k, then Xν is projective over k by Morphisms,
Lemma 43.14. �

Lemma 27.3. Let k be a field. Let f : Y → X be a quasi-compact morphism of locally
algebraic schemes over k. Let X ′ be the normalization of X in Y . If Y is reduced, then
X ′ → X is finite.

Proof. Since Y is quasi-separated (by Properties, Lemma 5.4 and Morphisms, Lemma
15.6) the morphism f is quasi-separated (Schemes, Lemma 21.13). Hence Morphisms, Def-
inition 53.3 applies. The result follows from Morphisms, Lemma 53.14. This uses that
locally algebraic schemes are locally Noetherian (hence have locally finitely many irre-
ducible components) and that locally algebraic schemes are Nagata (Morphisms, Lemma
18.2). Some small details omitted. �

Lemma 27.4. Let k be a field. Let X be an algebraic k-scheme. Then there exists a
finite purely inseparable extension k′/k such that the normalization Y of Xk′ is geomet-
rically normal over k′.
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Proof. Let K = kperf be the perfect closure. Let YK be the normalization of XK ,
see Lemma 27.1. By Limits, Lemma 10.1 there exists a finite sub extension K/k′/k and a
morphism ν : Y → Xk′ of finite presentation whose base change to K is the normal-
ization morphism νK : YK → XK . Observe that Y is geometrically normal over k′

(Lemma 10.3). After increasing k′ we may assume Y → Xk′ is finite (Limits, Lemma 8.3).
Since νK : YK → XK is the normalization morphism, it induces a birational morphism
YK → (XK)red. Hence there is a dense open VK ⊂ XK such that ν−1

K (VK) → VK is
a closed immersion (inducing an isomorphism of ν−1

K (VK) with VK,red, see for example
Morphisms, Lemma 51.6). After increasing k′ we find VK is the base change of a dense
open V ⊂ Y and the morphism ν−1(V )→ V is a closed immersion (Limits, Lemmas 4.11
and 8.5). It follows readily from this that ν is the normalization morphism and the proof
is complete. �

Lemma 27.5. Let k be a field. Let X be a locally algebraic k-scheme. Let K/k be an
extension of fields. Let ν : Xν → X be the normalization of X and let Y ν → XK be the
normalization of the base change. Then the canonical morphism

Y ν −→ Xν ×Spec(k) Spec(K)

is an isomorphism if K/k is separable and a universal homeomorphism in general.

Proof. Set Y = XK . Let X(0), resp. Y (0) be the set of generic points of irreducible
components ofX , resp. Y . Then the projection morphism π : Y → X satisfies π(Y (0)) =
X(0). This is true because π is surjective, open, and generizing, see Morphisms, Lemmas
23.4 and 23.5. If we view X(0), resp. Y (0) as (reduced) schemes, then Xν , resp. Y ν is
the normalization ofX , resp. Y inX(0), resp. Y (0). Thus Morphisms, Lemma 53.5 gives a
canonical morphism Y ν → Xν over Y → X which in turn gives the canonical morphism
of the lemma by the universal property of the fibre product.

To prove this morphism has the properties stated in the lemma we may assume X =
Spec(A) is affine. Let Q(Ared) be the total ring of fractions of Ared. Then Xν is the
spectrum of the integral closureA′ ofA inQ(Ared), see Morphisms, Lemmas 54.2 and 54.3.
Similarly, Y ν is the spectrum of the integral closure B′ of A ⊗k K in Q((A ⊗k K)red).
There is a canonical map Q(Ared) → Q((A ⊗k K)red), a canonical map A′ → B′, and
the morphism of the lemma corresponds to the induced map

A′ ⊗k K −→ B′

ofK-algebras. The kernel consists of nilpotent elements as the kernel ofQ(Ared)⊗kK →
Q((A⊗k K)red) is the set of nilpotent elements.

If K/k is separable, then A′ ⊗k K is normal by Lemma 10.6. In particular it is reduced,
whence Q((A⊗k K)red) = Q(A′ ⊗k K) and B′ = A′ ⊗k K by Algebra, Lemma 37.16.

Assume K/k is not separable. Then the characteristic of k is p > 0. We will show that
for every b ∈ B′ there is a power q of p such that bq is in the image of A′ ⊗k K. This will
prove that the displayed map is a universal homeomorphism by Algebra, Lemma 46.7. For
a given b there is a subfield F ⊂ K with F/k finitely generated such that b is contained
in Q((A⊗k F )red) and is integral over A⊗k F . Choose a monic polynomial P = T d +
α1T

d−1 + . . . + αd with P (b) = 0 and αi ∈ A ⊗k F . Choose a transcendence basis
t1, . . . , tr for F over k. Let F/F ′/k(t1, . . . , tr) be the maximal separable subextension
(Fields, Lemma 14.6). SinceF/F ′ is finite purely inseparable, there is a q such that λq ∈ F ′

for all λ ∈ F . Then bq is inQ((A⊗k F ′)red) and satisfies the polynomial T d+αq1T
d−1 +
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. . . + αqd with αqi ∈ A ⊗k F ′. By the separable case we see that bq ∈ A′ ⊗k F ′ and the
proof is complete. �

Lemma 27.6. Let k be a field. Let X be a locally algebraic k-scheme. Let ν : Xν →
X be the normalization of X . Let x ∈ X be a point such that (a) OX,x is reduced, (b)
dim(OX,x) = 1, and (c) for every x′ ∈ Xν with ν(x′) = x the extension κ(x′)/k is
separable. Then X is geometrically reduced at x and Xν is geometrically regular at x′

with ν(x′) = x.

Proof. We will use the results of Lemma 27.1 without further mention. Let x′ ∈ Xν

be a point over x. By dimension theory (Section 20) we have dim(OXν ,x′) = 1. Since
Xν is normal, we see that OXν ,x′ is a discrete valuation ring (Properties, Lemma 12.5).
Thus OXν ,x′ is a regular local k-algebra whose residue field is separable over k. Hence
k → OXν ,x′ is formally smooth in the mx′ -adic topology, see More on Algebra, Lemma
38.5. Then OXν ,x′ is geometrically regular over k by More on Algebra, Theorem 40.1.
Thus Xν is geometrically regular at x′ by Lemma 12.2.

Since OX,x is reduced, the family of maps OX,x → OXν ,x′ is injective. Since OXν ,x′

is a geometrically reduced k-algebra, it follows immediately that OX,x is a geometrically
reduced k-algebra. Hence X is geometrically reduced at x by Lemma 6.2. �

28. Groups of invertible functions

It is often (but not always) the case that O∗(X)/k∗ is a finitely generated abelian group
if X is a variety over k. We show this by a series of lemmas. Everything rests on the
following special case.

Lemma 28.1. Let k be an algebraically closed field. Let X be a proper variety over k.
Let X ⊂ X be an open subscheme. Assume X is normal. Then O∗(X)/k∗ is a finitely
generated abelian group.

Proof. Since the statement only concernsX , we may replaceX by a different proper
variety over k. Let ν : Xν → X be the normalization morphism. By Lemma 27.1 we have
that ν is finite and Xν is a variety. Since X is normal, we see that ν−1(X) → X is an
isomorphism (tiny detail omitted). Finally, we see that Xν is proper over k as a finite
morphism is proper (Morphisms, Lemma 44.11) and compositions of proper morphisms
are proper (Morphisms, Lemma 41.4). Thus we may and do assume X is normal.

We will use without further mention that for any affine open U of X the ring O(U)
is a finitely generated k-algebra, which is Noetherian, a domain and normal, see Algebra,
Lemma 31.1, Properties, Definition 3.1, Properties, Lemmas 5.2 and 7.2, Morphisms, Lemma
15.2.

Let ξ1, . . . , ξr be the generic points of the complement of X in X . There are finitely
many sinceX has a Noetherian underlying topological space (see Morphisms, Lemma 15.6,
Properties, Lemma 5.5, and Topology, Lemma 9.2). For each i the local ring Oi = OX,ξi
is a normal Noetherian local domain (as a localization of a Noetherian normal domain).
Let J ⊂ {1, . . . , r} be the set of indices i such that dim(Oi) = 1. For j ∈ J the local ring
Oj is a discrete valuation ring, see Algebra, Lemma 119.7. Hence we obtain a valuation

vj : k(X)∗ −→ Z

with the property that vj(f) ≥ 0⇔ f ∈ Oj .
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Think ofO(X) as a sub k-algebra of k(X) = k(X). We claim that the kernel of the map

O(X)∗ −→
∏

j∈J
Z, f 7−→

∏
vj(f)

is k∗. It is clear that this claim proves the lemma. Namely, suppose that f ∈ O(X) is an
element of the kernel. Let U = Spec(B) ⊂ X be any affine open. ThenB is a Noetherian
normal domain. For every height one prime q ⊂ B with corresponding point ξ ∈ X we
see that either ξ = ξj for some j ∈ J or that ξ ∈ X . The reason is that codim({ξ}, X) = 1
by Properties, Lemma 10.3 and hence if ξ ∈ X \X it must be a generic point of X \X ,
hence equal to some ξj , j ∈ J . We conclude that f ∈ OX,ξ = Bq in either case as f is in
the kernel of the map. Thus f ∈

⋂
ht(q)=1 Bq = B, see Algebra, Lemma 157.6. In other

words, we see that f ∈ Γ(X,OX). But since k is algebraically closed we conclude that
f ∈ k by Lemma 26.2. �

Next, we generalize the case above by some elementary arguments, still keeping the field
algebraically closed.

Lemma 28.2. Let k be an algebraically closed field. LetX be an integral scheme locally
of finite type over k. ThenO∗(X)/k∗ is a finitely generated abelian group.

Proof. As X is integral the restriction mapping O(X)→ O(U) is injective for any
nonempty open subscheme U ⊂ X . Hence we may assume that X is affine. Choose a
closed immersionX → An

k and denoteX the closure ofX in Pn
k via the usual immersion

An
k → Pn

k . Thus we may assume that X is an affine open of a projective variety X .

Let ν : Xν → X be the normalization morphism, see Morphisms, Definition 54.1. We
know that ν is finite, dominant, and that Xν is a normal irreducible scheme, see Mor-
phisms, Lemmas 54.5, 54.9, and 18.2. It follows that Xν is a proper variety, because
X → Spec(k) is proper as a composition of a finite and a proper morphism (see results in
Morphisms, Sections 41 and 44). It also follows that ν is a surjective morphism, because
the image of ν is closed and contains the generic point ofX . Hence settingXν = ν−1(X)
we see that it suffices to prove the result forXν . In other words, we may assume thatX is
a nonempty open of a normal proper variety X . This case is handled by Lemma 28.1. �

The preceding lemma implies the following slight generalization.

Lemma 28.3. Let k be an algebraically closed field. Let X be a connected reduced
scheme which is locally of finite type over k with finitely many irreducible components.
ThenO∗(X)/k∗ is a finitely generated abelian group.

Proof. Let X =
⋃
Xi be the irreducible components. By Lemma 28.2 we see that

O(Xi)∗/k∗ is a finitely generated abelian group. Let f ∈ O(X)∗ be in the kernel of the
map

O(X)∗ −→
∏
O(Xi)∗/k∗.

Then for each i there exists an element λi ∈ k such that f |Xi = λi. By restricting to
Xi ∩ Xj we conclude that λi = λj if Xi ∩ Xj 6= ∅. Since X is connected we conclude
that all λi agree and hence that f ∈ k∗. This proves that

O(X)∗/k∗ ⊂
∏
O(Xi)∗/k∗

and the lemma follows as on the right we have a product of finitely many finitely generated
abelian groups. �
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Lemma 28.4. Let k be a field. Let X be a scheme over k which is connected and
reduced. Then the integral closure of k in Γ(X,OX) is a field.

Proof. Let k′ ⊂ Γ(X,OX) be the integral closure of k. Then X → Spec(k) factors
through Spec(k′), see Schemes, Lemma 6.4. AsX is reduced we see that k′ has no nonzero
nilpotent elements. As k → k′ is integral we see that every prime ideal of k′ is both
a maximal ideal and a minimal prime, and Spec(k′) is totally disconnected, see Algebra,
Lemmas 36.20 and 26.5. As X is connected the morphism X → Spec(k′) is constant,
say with image the point corresponding to p ⊂ k′. Then any f ∈ k′, f 6∈ p maps to an
invertible element of OX . By definition of k′ this then forces f to be a unit of k′. Hence
we see that k′ is local with maximal ideal p, see Algebra, Lemma 18.2. Since we’ve already
seen that k′ is reduced this implies that k′ is a field, see Algebra, Lemma 25.1. �

Proposition 28.5. Let k be a field. LetX be a scheme over k. Assume thatX is locally
of finite type over k, connected, reduced, and has finitely many irreducible components.
ThenO(X)∗/k∗ is a finitely generated abelian group if in addition to the conditions above
at least one of the following conditions is satisfied:

(1) the integral closure of k in Γ(X,OX) is k,
(2) X has a k-rational point, or
(3) X is geometrically integral.

Proof. Let k be an algebraic closure of k. LetY be a connected component of (Xk)red.
Note that the canonical morphism p : Y → X is open (by Morphisms, Lemma 23.4) and
closed (by Morphisms, Lemma 44.7). Hence p(Y ) = X as X was assumed connected. In
particular, as X is reduced this impliesO(X) ⊂ O(Y ). By Lemma 8.14 we see that Y has
finitely many irreducible components. Thus Lemma 28.3 applies to Y . This implies that if
O(X)∗/k∗ is not a finitely generated abelian group, then there exist elements f ∈ O(X),
f 6∈ k which map to an element of k via the map O(X) → O(Y ). In this case f is alge-
braic over k, hence integral over k. Thus, if condition (1) holds, then this cannot happen.
To finish the proof we show that conditions (2) and (3) imply (1).

Let k ⊂ k′ ⊂ Γ(X,OX) be the integral closure of k in Γ(X,OX). By Lemma 28.4 we see
that k′ is a field. If e : Spec(k) → X is a k-rational point, then e] : Γ(X,OX) → k is a
section to the inclusion map k → Γ(X,OX). In particular the restriction of e] to k′ is a
field map k′ → k over k, which clearly shows that (2) implies (1).

If the integral closure k′ of k in Γ(X,OX) is not trivial, then we see that X is either not
geometrically connected (if k′/k is not purely inseparable) or thatX is not geometrically
reduced (if k′/k is nontrivial purely inseparable). Details omitted. Hence (3) implies
(1). �

Lemma 28.6. Let k be a field. Let X be a variety over k. The group O(X)∗/k∗ is a
finitely generated abelian group provided at least one of the following conditions holds:

(1) k is integrally closed in Γ(X,OX),
(2) k is algebraically closed in k(X),
(3) X is geometrically integral over k, or
(4) k is the “intersection” of the field extensions κ(x)/kwhere x runs over the closed

points of x.

Proof. We see that (1) is enough by Proposition 28.5. We omit the verification that
each of (2), (3), (4) implies (1). �
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29. Künneth formula, I

In this section we prove the Künneth formula when the base is a field and we are con-
sidering cohomology of quasi-coherent modules. For a more general version, please see
Derived Categories of Schemes, Section 23.

Lemma 29.1. Let k be a field. Let X and Y be schemes over k and let F , resp. G be a
quasi-coherentOX -module, resp.OY -module. Then we have a canonical isomorphism

Hn(X ×Spec(k) Y, pr∗
1F ⊗OX×Spec(k)Y

pr∗
2G) =

⊕
p+q=n

Hp(X,F)⊗k Hq(Y,G)

provided X and Y are quasi-compact and have affine diagonal3 (for example if X and Y
are separated).

Proof. In this proof unadorned products and tensor products are over k. As maps

Hp(X,F)⊗Hq(Y,G) −→ Hn(X × Y, pr∗
1F ⊗OX×Y pr∗

2G)

we use functoriality of cohomology to get maps Hp(X,F) → Hp(X × Y, pr∗
1F) and

Hp(Y,G)→ Hp(X × Y, pr∗
2G) and then we use the cup product

∪ : Hp(X × Y, pr∗
1F)⊗Hq(X × Y, pr∗

2G) −→ Hn(X × Y, pr∗
1F ⊗OX×Y pr∗

2G)

The result is true whenX and Y are affine by the vanishing of higher cohomology groups
on affines (Cohomology of Schemes, Lemma 2.2) and the definitions (of pullbacks of quasi-
coherent modules and tensor products of quasi-coherent modules).

Choose finite affine open coverings U : X =
⋃
i∈I Ui and V : Y =

⋃
j∈J Vj . This

determines an affine open coveringW : X × Y =
⋃

(i,j)∈I×J Ui × Vj . Note thatW is a
refinement of pr−1

1 U and of pr−1
2 V . Thus by Cohomology, Lemma 15.1 we obtain maps

Č•(U ,F)→ Č•(W, pr∗
1F) and Č•(V,G)→ Č•(W, pr∗

2G)

compatible with pullback maps on cohomology. In Cohomology, Equation (25.3.2) we
have constructed a map of complexes

Tot(Č•(W, pr∗
1F)⊗ Č•(W, pr∗

2G)) −→ Č•(W, pr∗
1F ⊗OX×Y pr∗

2G)

defining the cup product on cohomology. Combining the above we obtain a map of com-
plexes

(29.1.1) Tot(Č•(U ,F)⊗ Č•(V,G)) −→ Č•(W, pr∗
1F ⊗OX×Y pr∗

2G)

We warn the reader that this map is not an isomorphism of complexes. Recall that we may
compute the cohomologies of our quasi-coherent sheaves using our coverings (Cohomol-
ogy of Schemes, Lemmas 2.5 and 2.6). Thus on cohomology (29.1.1) reproduces the map
of the lemma.

Consider a short exact sequence 0 → F → F ′ → F ′′ → 0 of quasi-coherent modules.
Since the construction of (29.1.1) is functorial inF and since the formation of the relevant
Čech complexes is exact in the variableF (because we are taking sections over affine opens)

3The case where X and Y are quasi-separated will be discussed in Lemma 29.2 below.
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we find a map between short exact sequence of complexes

Tot(Č•(U ,F)⊗ Č•(V,G)) //

��

Tot(Č•(U ,F ′)⊗ Č•(V,G)) //

��

Tot(Č•(U ,F ′′)⊗ Č•(V,G))

��
Č•(W, pr∗

1F ⊗OX×Y pr∗
2G) // Č•(W, pr∗

1F
′ ⊗OX×Y pr∗

2G) // Č•(W, pr∗
1F

′′ ⊗OX×Y pr∗
2G)

(we have dropped the outer zeros). Looking at long exact cohomology sequences we find
that if the result of the lemma holds for 2-out-of-3 of F ,F ′,F ′′, then it holds for the
third.
Observe that X has finite cohomological dimension for quasi-coherent modules, see Co-
homology of Schemes, Lemma 4.2. Using induction on d(F) = max{d | Hd(X,F) 6= 0}
we will reduce to the case d(F) = 0. Assume d(F) > 0. By Cohomology of Schemes,
Lemma 4.3 we have seen that there exists an embeddingF → F ′ such thatHp(X,F ′) = 0
for all p ≥ 1. Setting F ′′ = Coker(F → F ′) we see that d(F ′′) < d(F). Then we can
apply the result from the previous paragraph to see that it suffices to prove the lemma for
F ′ and F ′′ thereby proving the induction step.
Arguing in the same fashion for G we find that we may assume that both F and G have
nonzero cohomology only in degree 0. Let V ⊂ Y be an affine open. Consider the affine
open covering UV : X × V =

⋃
i∈I Ui × V . It is immediate that

Č•(U ,F)⊗ G(V ) = Č•(UV , pr∗
1F ⊗OX×Y pr∗

2G)
(equality of complexes). We conclude that

Rpr2,∗(pr∗
1F ⊗OX×Y pr∗

2G) ∼= Γ(X,F)⊗k G ∼=
⊕

α∈A
G

on Y . Here A is a basis for the k-vector space Γ(X,F). Cohomology on Y commutes
with direct sums (Cohomology, Lemma 19.1). Using the Leray spectral sequence for pr2
(via Cohomology, Lemma 13.6) we conclude that Hn(X × Y, pr∗

1F ⊗OX×Y pr∗
2G) is zero

for n > 0 and isomorphic to H0(X,F) ⊗ H0(Y,G) for n = 0. This finishes the proof
(except that we should check that the isomorphism is indeed given by cup product in
degree 0; we omit the verification). �

Lemma 29.2. Let k be a field. Let X and Y be schemes over k and let F , resp. G be a
quasi-coherentOX -module, resp.OY -module. Then we have a canonical isomorphism

Hn(X ×Spec(k) Y, pr∗
1F ⊗OX×Spec(k)Y

pr∗
2G) =

⊕
p+q=n

Hp(X,F)⊗k Hq(Y,G)

provided X and Y are quasi-compact and quasi-separated.

Proof. If X and Y are separated or more generally have affine diagonal, then please
see Lemma 29.1 for “better” proof (the feature it has over this proof is that it identifies
the maps as pullbacks followed by cup products). Let X ′, resp. Y ′ be the infinitesimal
thickening of X , resp. Y whose structure sheaf is OX′ = OX ⊕ F , resp. OY ′ = OY ⊕ G
where F , resp. G is an ideal of square zero. Then

OX′×Y ′ = OX×Y ⊕ pr∗
1F ⊕ pr∗

2G ⊕ pr∗
1F ⊗OX×Y pr∗

2G
as sheaves on X × Y . In this way we see that it suffices to prove that

Hn(X × Y,OX×Y ) =
⊕

p+q=n
Hp(X,OX)⊗k Hq(Y,OY )

for any pair of quasi-compact and quasi-separated schemes over k. Some details omitted.
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To prove this statement we use cohomology and base change in the form of Cohomology
of Schemes, Lemma 7.3. This lemma tells us there exists a bounded below complex of k-
vector spaces, i.e., a complexK• of quasi-coherent modules on Spec(k), which universally
computes the cohomology of Y over Spec(k). In particular, we see that

Rpr1,∗(OX×Y ) ∼= (X → Spec(k))∗K•

in D(OX). Up to homotopy the complex K• is isomorphic to
⊕

q≥0 H
q(Y,OY )[−q]

because this is true for every complex of vector spaces over a field. We conclude that

Rpr1,∗(OX×Y ) ∼=
⊕

q≥0
Hq(Y,OY )[−q]⊗k OX

in D(OX). Then we have
RΓ(X × Y,OX×Y ) = RΓ(X,Rpr1,∗(OX×Y ))

= RΓ(X,
⊕

q≥0
Hq(Y,OY )[−q]⊗k OX)

=
⊕

q≥0
RΓ(X,Hq(Y,OY )⊗OX)[−q]

=
⊕

q≥0
RΓ(X,OX)⊗k Hq(Y,OY )[−q]

=
⊕

p,q≥0
Hp(X,OX)[−p]⊗k Hq(Y,OY )[−q]

as desired. The first equality by Leray for pr1 (Cohomology, Lemma 13.1). The second by
our decomposition of the total direct image given above. The third because cohomology
always commutes with finite direct sums (and cohomology of Y vanishes in sufficiently
large degree by Cohomology of Schemes, Lemma 4.4). The fourth because cohomology on
X commutes with infinite direct sums by Cohomology, Lemma 19.1. The final equality
by our remark on the derived category of a field above. �

30. Picard groups of varieties

In this section we collect some elementary results on Picard groups of algebraic varieties.

Lemma 30.1. LetA→ B be a faithfully flat ring map. LetX be a quasi-compact and
quasi-separated scheme over A. Let L be an invertibleOX -module whose pullback to XB

is trivial. ThenH0(X,L) andH0(X,L⊗−1) are invertibleH0(X,OX)-modules and the
multiplication map induces an isomorphism

H0(X,L)⊗H0(X,OX) H
0(X,L⊗−1) −→ H0(X,OX)

Proof. Denote LB the pullback of L to XB . Choose an isomorphism LB → OXB .
Set R = H0(X,OX), M = H0(X,L) and think of M as an R-module. For every
quasi-coherentOX -module F with pullback FB onXB there is a canonical isomorphism
H0(XB ,FB) = H0(X,F)⊗AB, see Cohomology of Schemes, Lemma 5.2. Thus we have

M ⊗R (R⊗A B) = M ⊗A B = H0(XB ,LB) ∼= H0(XB ,OXB ) = R⊗A B
SinceR→ R⊗AB is faithfully flat (as the base change of the faithfully flat mapA→ B),
we conclude that M is an invertible R-module by Algebra, Proposition 83.3. Similarly
N = H0(X,L⊗−1) is an invertible R-module. To see that the statement on tensor prod-
ucts is true, use that it is true after pulling back toXB and faithful flatness ofR→ R⊗AB.
Some details omitted. �

Lemma 30.2. Let A → B be a faithfully flat ring map. Let X be a scheme over A
such that
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(1) X is quasi-compact and quasi-separated, and
(2) R = H0(X,OX) is a semi-local ring.

Then the pullback map Pic(X)→ Pic(XB) is injective.

Proof. Let L be an invertible OX -module whose pullback L′ to XB is trivial. Set
M = H0(X,L) and N = H0(X,L⊗−1). By Lemma 30.1 the R-modules M and N are
invertible. Since R is semi-local M ∼= R and N ∼= R, see Algebra, Lemma 78.7. Choose
generators s ∈ M and t ∈ N . Then st ∈ R = H0(X,OX) is a unit by the last part of
Lemma 30.1. We conclude that s and t define trivializations of L and L⊗−1 over X . �

Lemma 30.3. Let k′/k be a field extension. Let X be a scheme over k such that
(1) X is quasi-compact and quasi-separated, and
(2) R = H0(X,OX) is semi-local, e.g., if dimk R <∞.

Then the pullback map Pic(X)→ Pic(Xk′) is injective.

Proof. Special case of Lemma 30.2. If dimk R < ∞, then R is Artinian and hence
semi-local (Algebra, Lemmas 53.2 and 53.3). �

Example 30.4. Lemma 30.3 is not true without some condition on the scheme X
over the field k. Here is an example. Let k be a field. Let t ∈ P1

k be a closed point. Set
X = P1 \ {t}. Then we have a surjection

Z = Pic(P1
k) −→ Pic(X)

The first equality by Divisors, Lemma 28.5 and surjective by Divisors, Lemma 28.3 (as P1
k

is smooth of dimension 1 over k and hence all its local rings are discrete valuation rings).
If L is in the kernel of the displayed map, then L ∼= OP1

k
(nt) for some n ∈ Z. We leave

it to the reader to show thatOP1
k
(t) ∼= OP1

k
(d) where d = [κ(t) : k]. Hence

Pic(X) = Z/dZ

Thus if t is not a k-rational point, then d > 1 and this Picard group is nonzero. On the
other hand, if we extend the ground field k to any field extension k′ such that there exists
a k-embedding κ(t) → k′, then P1

k′ \ Xk′ has a k′-rational point t′. Hence OP1
k′

(1) =
OP1

k′
(t′) will be in the kernel of the map Z → Pic(Xk′) and it will follow in the same

manner as above that Pic(Xk′) = 0.

The following lemma tells us that “rationally equivalence invertible modules” are isomor-
phic on normal varieties.

Lemma 30.5. Let k be a field. Let X be a normal variety over k. Let U ⊂ An
k be an

open subscheme with k-rational points p, q ∈ U(k). For every invertible module L on
X ×Spec(k) U the restrictions L|X×p and L|X×q are isomorphic.

Proof. The fibres of X ×Spec(k) U → X are open subschemes of affine n-space over
fields. Hence these fibres have trivial Picard groups by Divisors, Lemma 28.4. Applying
Divisors, Lemma 28.1 we see that L is the pullback of an invertible moduleN on X . �

31. Uniqueness of base field

The phrase “let X be a scheme over k” means that X is a scheme which comes equipped
with a morphism X → Spec(k). Now we can ask whether the field k is uniquely deter-
mined by the scheme X . Of course this is not the case, since for example A1

C which we
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ordinarily consider as a scheme over the field C of complex numbers, could also be con-
sidered as a scheme over Q. But what if we ask that the morphism X → Spec(k) does
not factor asX → Spec(k′)→ Spec(k) for any nontrivial field extension k′/k? In other
words we ask that k is somehow maximal such that X lives over k.

An example to show that this still does not guarantee uniqueness of k is the scheme

X = Spec
(

Q(x)[y]
[

1
P (y) , P ∈ Q[y], P 6= 0

])
At first sight this seems to be a scheme over Q(x), but on a second look it is clear that
it is also a scheme over Q(y). Moreover, the fields Q(x) and Q(y) are subfields of R =
Γ(X,OX) which are maximal among the subfields of R (details omitted). In particular,
both Q(x) and Q(y) are maximal in the sense above. Note that both morphisms X →
Spec(Q(x)) andX → Spec(Q(y)) are “essentially of finite type” (i.e., the corresponding
ring map is essentially of finite type). HenceX is a Noetherian scheme of finite dimension,
i.e., it is not completely pathological.

Another issue that can prevent uniqueness is that the scheme X may be nonreduced. In
that case there can be many different morphisms from X to the spectrum of a given field.
As an explicit example consider the dual numbers D = C[y]/(y2) = C⊕ εC. Given any
derivation θ : C→ C over Q we get a ring map

C −→ D, c 7−→ c+ εθ(c).

The subfield of C on which all of these maps are the same is the algebraic closure of Q.
This means that taking the intersection of all the fields that X can live over may end up
being a very small field if X is nonreduced.

One observation in this regard is the following: given a field k and two subfields k1, k2
of k such that k is finite over k1 and over k2, then in general it is not the case that k is
finite over k1 ∩ k2. An example is the field k = Q(t) and its subfields k1 = Q(t2) and
Q((t+ 1)2). Namely we have k1 ∩ k2 = Q in this case. So in the following we have to be
careful when taking intersections of fields.

Having said all of this we now show that if X is locally of finite type over a field, then
some uniqueness holds. Here is the precise result.

Proposition 31.1. LetX be a scheme. Let a : X → Spec(k1) and b : X → Spec(k2)
be morphisms from X to spectra of fields. Assume a, b are locally of finite type, and X
is reduced, and connected. Then we have k′

1 = k′
2, where k′

i ⊂ Γ(X,OX) is the integral
closure of ki in Γ(X,OX).

Proof. First, assume the lemma holds in case X is quasi-compact (we will do the
quasi-compact case below). As X is locally of finite type over a field, it is locally Noe-
therian, see Morphisms, Lemma 15.6. In particular this means that it is locally connected,
connected components of open subsets are open, and intersections of quasi-compact opens
are quasi-compact, see Properties, Lemma 5.5, Topology, Lemma 7.11, Topology, Section
9, and Topology, Lemma 16.1. Pick an open covering X =

⋃
i∈I Ui such that each Ui is

quasi-compact and connected. For each i let Ki ⊂ OX(Ui) be the integral closure of k1
and of k2. For each pair i, j ∈ I we decompose

Ui ∩ Uj =
∐

Ui,j,l
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into its finitely many connected components. Write Ki,j,l ⊂ O(Ui,j,l) for the integral
closure of k1 and of k2. By Lemma 28.4 the rings Ki and Ki,j,l are fields. Now we claim
that k′

1 and k′
2 both equal the kernel of the map∏

Ki −→
∏

Ki,j,l, (xi)i 7−→ xi|Ui,j,l − xj |Ui,j,l
which proves what we want. Namely, it is clear that k′

1 is contained in this kernel. On the
other hand, suppose that (xi)i is in the kernel. By the sheaf condition (xi)i corresponds
to f ∈ O(X). Pick some i0 ∈ I and let P (T ) ∈ k1[T ] be a monic polynomial with
P (xi0) = 0. Then we claim that P (f) = 0 which proves that f ∈ k1. To prove this
we have to show that P (xi) = 0 for all i. Pick i ∈ I . As X is connected there exists a
sequence i0, i1, . . . , in = i ∈ I such that Uit ∩Uit+1 6= ∅. Now this means that for each t
there exists an lt such that xit and xit+1 map to the same element of the fieldKi,j,l. Hence
if P (xit) = 0, then P (xit+1) = 0. By induction, starting with P (xi0) = 0 we deduce
that P (xi) = 0 as desired.
To finish the proof of the lemma we prove the lemma under the additional hypothesis
thatX is quasi-compact. By Lemma 28.4 after replacing ki by k′

i we may assume that ki is
integrally closed in Γ(X,OX). This implies thatO(X)∗/k∗

i is a finitely generated abelian
group, see Proposition 28.5. Let k12 = k1 ∩ k2 as a subring of O(X). Note that k12 is a
field. Since

k∗
1/k

∗
12 −→ O(X)∗/k∗

2
we see that k∗

1/k
∗
12 is a finitely generated abelian group as well. Hence there existα1, . . . , αn ∈

k∗
1 such that every element λ ∈ k1 has the form

λ = cαe1
1 . . . αenn

for some ei ∈ Z and c ∈ k12. In particular, the ring map

k12[x1, . . . , xn,
1

x1 . . . xn
] −→ k1, xi 7−→ αi

is surjective. By the Hilbert Nullstellensatz, Algebra, Theorem 34.1 we conclude that k1 is
a finite extension of k12. In the same way we conclude that k2 is a finite extension of k12.
In particular both k1 and k2 are contained in the integral closure k′

12 of k12 in Γ(X,OX).
But since k′

12 is a field by Lemma 28.4 and since we chose ki to be integrally closed in
Γ(X,OX) we conclude that k1 = k12 = k2 as desired. �

32. Automorphisms

A section on automorphisms of schemes over fields. For some information on (infinites-
imal) automorphisms of curves, see Algebraic Curves, Section 25 and Moduli of Curves,
Section 7.

Lemma 32.1. LetX be a reduced scheme of finite type over a field k. Let f : X → X
be an automorphism over k which induces the identity map on the underlying topological
space of X . Then

(1) f∗F ∼= F for every coherentOX -module, and
(2) if dim(Z) > 0 for every irreducible component Z ⊂ X , then f is the identity.

Proof. Part (1) follows from part (2) and the fact that the connected components of
X of dimension 0 are spectra of fields.
Let Z ⊂ X be an irreducible component viewed as an integral closed subscheme. Clearly
f(Z) ⊂ Z and f |Z : Z → Z is an automorphism over k which induces the identity map



2820 33. VARIETIES

on the underlying topological space of Z. Since X is reduced, it suffices to show that the
arrows f |Z : Z → Z are the identity. This reduces us to the case discussed in the next
paragraph.

Assume X is irreducible of dimension > 0. Choose a nonempty affine open U ⊂ X .
Since f(U) ⊂ U and since U ⊂ X is scheme theoretically dense it suffices to prove that
f |U : U → U is the identity.

Assume X = Spec(A) is affine, irreducible, of dimension > 0 and k is an infinite field.
Let g ∈ A be nonconstant. The set

S =
⋃

λ∈k
V (g − λ)

is dense inX because it is the inverse image of the dense subset A1
k(k) by the nonconstant

morphism g : X → A1
k. If x ∈ S , then the image g(x) of g in κ(x) is in the image of

k → κ(x). Hence f ] : κ(x) → κ(x) fixes g(x). Thus the image of f ](g) in κ(x) is equal
to g(x). We conclude that

S ⊂ V (g − f ](g))
and since X is reduced and S is dense we conclude g = f ](g). This proves f ] = idA as A
is generated as a k-algebra by elements g as above (details omitted; hint: the set of constant
functions is a finite dimensional k-subvector space of A). We conclude that f = idX .

Assume X = Spec(A) is affine, irreducible, of dimension > 0 and k is a finite field. If for
every 1-dimensional integral closed subschemeC ⊂ X the restriction f |C : C → C is the
identity, then f is the identity. This reduces us to the case where X is a curve. A curve
over a finite field has a finite automorphism group (details omitted). Hence f has finite
order, say n. Then we pick g : X → A1

k nonconstant as above and we consider

S = {x ∈ X closed such that [κ(g(x)) : k] is prime to n}
Arguing as before we find that S is dense in X . Since for x ∈ X closed the map f ] :
κ(x)→ κ(x) is an automorphism of order dividing nwe see that for x ∈ S this automor-
phism acts trivially on the subfield generated by the image of g in κ(x). Thus we conclude
that S ⊂ V (g − f ](g)) and we win as before. �

33. Euler characteristics

In this section we prove some elementary properties of Euler characteristics of coherent
sheaves on schemes proper over fields.

Definition 33.1. Let k be a field. Let X be a proper scheme over k. Let F be a
coherentOX -module. In this situation the Euler characteristic of F is the integer

χ(X,F) =
∑

i
(−1)i dimkH

i(X,F).

For justification of the formula see below.

In the situation of the definition only a finite number of the vector spaces Hi(X,F) are
nonzero (Cohomology of Schemes, Lemma 4.5) and each of these spaces is finite dimen-
sional (Cohomology of Schemes, Lemma 19.2). Thus χ(X,F) ∈ Z is well defined. Ob-
serve that this definition depends on the field k and not just on the pair (X,F).

Lemma 33.2. Let k be a field. LetX be a proper scheme over k. Let 0→ F1 → F2 →
F3 → 0 be a short exact sequence of coherent modules on X . Then

χ(X,F2) = χ(X,F1) + χ(X,F3)
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Proof. Consider the long exact sequence of cohomology

0→ H0(X,F1)→ H0(X,F2)→ H0(X,F3)→ H1(X,F1)→ . . .

associated to the short exact sequence of the lemma. The rank-nullity theorem in linear
algebra shows that

0 = dimH0(X,F1)− dimH0(X,F2) + dimH0(X,F3)− dimH1(X,F1) + . . .

This immediately implies the lemma. �

Lemma 33.3. Let k be a field. Let X be a proper scheme over k. Let F be a coherent
sheaf with dim(Supp(F)) ≤ 0. Then

(1) F is generated by global sections,
(2) H0(X,F) =

⊕
x∈Supp(F) Fx,

(3) Hi(X,F) = 0 for i > 0,
(4) χ(X,F) = dimkH

0(X,F), and
(5) χ(X,F ⊗ E) = nχ(X,F) for every locally free module E of rank n.

Proof. By Cohomology of Schemes, Lemma 9.7 we see that F = i∗G where i : Z →
X is the inclusion of the scheme theoretic support of F and where G is a coherent OZ -
module. By definition of the scheme theoretic support the underlying topological space
ofZ is Supp(F). Since the dimension ofZ is 0, we seeZ is affine (Properties, Lemma 10.5).
Hence G is globally generated and the higher cohomology groups of G are zero (Cohomol-
ogy of Schemes, Lemma 2.2). In fact, by Lemma 20.2 the schemeZ is a finite disjoint union
of spectra of local Artinian rings. Thus correspondingly H0(Z,G) =

⊕
z∈Z Gz . The co-

homologies ofF andG agree by Cohomology of Schemes, Lemma 2.4. ThusHi(X,F) = 0
for i > 0 and H0(X,F) = H0(Z,G). In particular we have (3) is true. For z ∈ Z corre-
sponding to x ∈ Supp(F) we have Gz = (i∗G)x = Fx. We conclude that (2) holds. Of
course (2) implies (1). We have (4) by definition of the Euler characteristic χ(X,F) and
(3). By the projection formula (Cohomology, Lemma 54.2) we have

i∗(G ⊗ i∗E) = F ⊗ E .
Since Z has dimension 0 the locally free sheaf i∗E is isomorphic to O⊕n

Z and arguing as
above we see that (5) holds. �

Lemma 33.4. Let k′/k be an extension of fields. Let X be a proper scheme over k.
Let F be a coherent sheaf on X . Let F ′ be the pullback of F to Xk′ . Then χ(X,F) =
χ(X ′,F ′).

Proof. This is true because
Hi(Xk′ ,F ′) = Hi(X,F)⊗k k′

by flat base change, see Cohomology of Schemes, Lemma 5.2. �

Lemma 33.5. Let k be a field. Let f : Y → X be a morphism of proper schemes over
k. Let G be a coherentOY -module. Then

χ(Y,G) =
∑

(−1)iχ(X,Rif∗G)

Proof. The formula makes sense: the sheaves Rif∗G are coherent and only a finite
number of them are nonzero, see Cohomology of Schemes, Proposition 19.1 and Lemma
4.5. By Cohomology, Lemma 13.4 there is a spectral sequence with

Ep,q2 = Hp(X,Rqf∗G)
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converging to Hp+q(Y,G). By finiteness of cohomology on X we see that only a finite
number of Ep,q2 are nonzero and each Ep,q2 is a finite dimensional vector space. It follows
that the same is true for Ep,qr for r ≥ 2 and that∑

(−1)p+q dimk E
p,q
r

is independent of r. Since for r large enough we haveEp,qr = Ep,q∞ and since convergence
means there is a filtration onHn(Y,G) whose graded pieces areEp,q∞ with p+ q = n (this
is the meaning of convergence of the spectral sequence), we conclude. Compare also with
the more general Homology, Lemma 24.12. �

34. Projective space

Some results on projective space over a field.

Lemma 34.1. Let k be a field and n ≥ 0. Then Pn
k is a smooth projective variety of

dimension n over k.

Proof. Omitted. �

Lemma 34.2. Let k be a field and n ≥ 0. Let X,Y ⊂ An
k be closed subsets. Assume

thatX and Y are equidimensional, dim(X) = r and dim(Y ) = s. Then every irreducible
component of X ∩ Y has dimension ≥ r + s− n.

Proof. Consider the closed subscheme X × Y ⊂ A2n
k where we use coordinates

x1, . . . , xn, y1, . . . , yn. ThenX∩Y = X×Y ∩V (x1−y1, . . . , xn−yn). Let t ∈ X∩Y ⊂
X × Y be a closed point. By Lemma 20.5 we have dimt(X × Y ) = dim(X) + dim(Y ).
Thus dim(OX×Y,t) = r + s by Lemma 20.3. By Algebra, Lemma 60.13 we conclude that

dim(OX∩Y,t) = dim(OX×Y,t/(x1 − y1, . . . , xn − yn)) ≥ r + s− n
This implies the result by Lemma 20.3. �

Lemma 34.3. Let k be a field and n ≥ 0. LetX,Y ⊂ Pn
k be nonempty closed subsets.

If dim(X) = r and dim(Y ) = s and r+s ≥ n, thenX∩Y is nonempty and dim(X∩Y ) ≥
r + s− n.

Proof. Write An = Spec(k[x0, . . . , xn]) and Pn = Proj(k[T0, . . . , Tn]). Consider
the morphism π : An+1\{0} → Pn which sends (x0, . . . , xn) to the point [x0 : . . . : xn].
More precisely, it is the morphism associated to the pair (OAn+1\{0}, (x0, . . . , xn)), see
Constructions, Lemma 13.1. Over the standard affine open D+(Ti) we get the morphism
associated to the ring map

k

[
T0

Ti
, . . . ,

Tn
Ti

]
−→ k

[
T0, . . . , Tn,

1
Ti

]
∼= k

[
T0

Ti
, . . . ,

Tn
Ti

] [
Ti,

1
Ti

]
which is surjective and smooth of relative dimension 1 with irreducible fibres (details omit-
ted). Henceπ−1(X) and π−1(Y ) are nonempty closed subsets of dimension r+1 and s+1.
Choose an irreducible component V ⊂ π−1(X) of dimension r + 1 and an irreducible
componentW ⊂ π−1(Y ) of dimension s+1. Observe that this implies V andW contain
every fibre of π they meet (since π has irreducible fibres of dimension 1 and since Lemma
20.4 says the fibres of V → π(V ) and W → π(W ) have dimension ≥ 1). Let V and W
be the closure of V and W in An+1. Since 0 ∈ An+1 is in the closure of every fibre of π
we see that 0 ∈ V ∩W . By Lemma 34.2 we have dim(V ∩W ) ≥ r+ s− n+ 1. Arguing
as above using Lemma 20.4 again, we conclude that π(V ∩W ) ⊂ X ∩ Y has dimension
at least r + s− n as desired. �



35. COHERENT SHEAVES ON PROJECTIVE SPACE 2823

Lemma 34.4. Let k be a field. Let Z ⊂ Pn
k be a closed subscheme which has no

embedded points such that every irreducible component of Z has dimension n− 1. Then
the ideal I(Z) ⊂ k[T0, . . . , Tn] corresponding to Z is principal.

Proof. This is a special case of Divisors, Lemma 31.3. �

35. Coherent sheaves on projective space

In this section we prove some results on the cohomology of coherent sheaves on Pn over
a field which can be found in [?]. These will be useful later when discussing Quot and
Hilbert schemes.

35.1. Preliminaries. Let k be a field, n ≥ 1, d ≥ 1, and let s ∈ Γ(Pn
k ,O(d)) be

a nonzero section. In this section we will write O(d) for the dth twist of the structure
sheaf on projective space (Constructions, Definitions 10.1 and 13.2). Since Pn

k is a variety
this section is regular, hence s is a regular section ofO(d) and defines an effective Cartier
divisorH = Z(s) ⊂ Pn

k , see Divisors, Section 13. Such a divisorH is called a hypersurface
and if d = 1 it is called a hyperplane.

Lemma 35.2. Let k be a field. Let n ≥ 1. Let i : H → Pn
k be a hyperplane. Then

there exists an isomorphism
ϕ : Pn−1

k −→ H

such that i∗O(1) pulls back toO(1).

Proof. We have Pn
k = Proj(k[T0, . . . , Tn]). The section s corresponds to a homo-

geneous form in T0, . . . , Tn of degree 1, see Cohomology of Schemes, Section 8. Say s =∑
aiTi. Constructions, Lemma 13.7 gives thatH = Proj(k[T0, . . . , Tn]/I) for the graded

ideal I defined by setting Id equal to the kernel of the map Γ(Pn
k ,O(d))→ Γ(H, i∗O(d)).

By our construction of Z(s) in Divisors, Definition 14.8 we see that on D+(Tj) the ideal
of H is generated by

∑
aiTi/Tj in the polynomial ring k[T0/Tj , . . . , Tn/Tj ]. Thus it is

clear that I is the ideal generated by
∑
aiTi. Note that

k[T0, . . . , Tn]/I = k[T0, . . . , Tn]/(
∑

aiTi) ∼= k[S0, . . . , Sn−1]

as graded rings. For example, if an 6= 0, then mapping Si equal to the class of Ti works.
We obtain the desired isomorphism by functoriality of Proj. Equality of twists of structure
sheaves follows for example from Constructions, Lemma 11.5. �

Lemma 35.3. Let k be an infinite field. Let n ≥ 1. Let F be a coherent module on
Pn
k . Then there exist a nonzero section s ∈ Γ(Pn

k ,O(1)) and a short exact sequence
0→ F(−1)→ F → i∗G → 0

where i : H → Pn
k is the hyperplane H associated to s and G = i∗F .

Proof. The map F(−1) → F comes from Constructions, Equation (10.1.2) with
n = 1, m = −1 and the section s of O(1). Let’s work out what this map looks like if we
restrict it to D+(T0). Write D+(T0) = Spec(k[x1, . . . , xn]) with xi = Ti/T0. Identify
O(1)|D+(T0) with O using the section T0. Hence if s =

∑
aiTi then s|D+(T0) = a0 +∑

aixi with the identification chosen above. Furthermore, supposeF|D+(T0) corresponds
to the finite k[x1, . . . , xn]-module M . Via the identification F(−1) = F ⊗ O(−1) and
our chosen trivialization of O(1) we see that F(−1) corresponds to M as well. Thus
restricting F(−1)→ F to D+(T0) gives the map

M
a0+
∑

aixi
−−−−−−−→M
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To see that the arrow is injective, it suffices to pick a0+
∑
aixi outside any of the associated

primes of M , see Algebra, Lemma 63.9. By Algebra, Lemma 63.5 the set Ass(M) of associ-
ated primes of M is finite. Note that for p ∈ Ass(M) the intersection p ∩ {a0 +

∑
aixi}

is a proper k-subvector space. We conclude that there is a finite family of proper sub
vector spaces V1, . . . , Vm ⊂ Γ(Pn

k ,O(1)) such that if we take s outside of
⋃
Vi, then

multiplication by s is injective over D+(T0). Similarly for the restriction to D+(Tj) for
j = 1, . . . , n. Since k is infinite, a finite union of proper sub vector spaces is never equal
to the whole space, hence we may choose s such that the map is injective. The cokernel
of F(−1) → F is annihilated by Im(s : O(−1) → O) which is the ideal sheaf of H by
Divisors, Definition 14.8. Hence we obtain G onH using Cohomology of Schemes, Lemma
9.8. �

Remark 35.4. Let k be an infinite field. Let n ≥ 1. Given a finite number of coherent
modules Fi on Pn

k we can choose a single s ∈ Γ(Pn
k ,O(1)) such that the statement of

Lemma 35.3 works for each of them. To prove this, just apply the lemma to
⊕
Fi.

Remark 35.5. In the situation of Lemmas 35.2 and 35.3 we have H ∼= Pn−1
k with

Serre twistsOH(d) = i∗OPn
k
(d). For every d ∈ Z we have a short exact sequence

0→ F(d− 1)→ F(d)→ i∗(G(d))→ 0

Namely, tensoring by OPn
k
(d) is an exact functor and by the projection formula (Coho-

mology, Lemma 54.2) we have i∗(G(d)) = i∗G ⊗OPn
k
(d). We obtain corresponding long

exact sequences

Hi(Pn
k ,F(d− 1))→ Hi(Pn

k ,F(d))→ Hi(H,G(d))→ Hi+1(Pn
k ,F(d− 1))

This follows from the above and the fact that we have Hi(Pn
k , i∗G(d)) = Hi(H,G(d))

by Cohomology of Schemes, Lemma 2.4 (closed immersions are affine).

35.6. Regularity. Here is the definition.

Definition 35.7. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . We

say F is m-regular if
Hi(Pn

k ,F(m− i)) = 0
for i = 1, . . . , n.

Note thatF = O(d) ism-regular if and only if d ≥ −m. This follows from the computa-
tion of cohomology groups in Cohomology of Schemes, Equation (8.1.1). Namely, we see
that Hn(Pn

k ,O(d)) = 0 if and only if d ≥ −n.

Lemma 35.8. Let k′/k be an extension of fields. Let n ≥ 0. Let F be a coherent
sheaf on Pn

k . Let F ′ be the pullback of F to Pn
k′ . Then F is m-regular if and only if F ′ is

m-regular.

Proof. This is true because

Hi(Pn
k′ ,F ′) = Hi(Pn

k ,F)⊗k k′

by flat base change, see Cohomology of Schemes, Lemma 5.2. �

Lemma 35.9. In the situation of Lemma 35.3, if F is m-regular, then G is m-regular
on H ∼= Pn−1

k .
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Proof. Recall that Hi(Pn
k , i∗G) = Hi(H,G) by Cohomology of Schemes, Lemma

2.4. Hence we see that for i ≥ 1 we get

Hi(Pn
k ,F(m− i))→ Hi(H,G(m− i))→ Hi+1(Pn

k ,F(m− 1− i))
by Remark 35.5. The lemma follows. �

Lemma 35.10. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If F is

m-regular, then F is (m+ 1)-regular.

Proof. We prove this by induction on n. If n = 0 every sheaf ism-regular for allm
and there is nothing to prove. By Lemma 35.8 we may replace k by an infinite overfield
and assume k is infinite. Thus we may apply Lemma 35.3. By Lemma 35.9 we know that
G ism-regular. By induction on n we see that G is (m+ 1)-regular. Considering the long
exact cohomology sequence associated to the sequence

0→ F(m− i)→ F(m+ 1− i)→ i∗G(m+ 1− i)→ 0
as in Remark 35.5 the reader easily deduces for i ≥ 1 the vanishing ofHi(Pn

k ,F(m+ 1−
i)) from the (known) vanishing of Hi(Pn

k ,F(m− i)) and Hi(Pn
k ,G(m+ 1− i)). �

Lemma 35.11. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If F is

m-regular, then the multiplication map

H0(Pn
k ,F(m))⊗k H0(Pn

k ,O(1)) −→ H0(Pn
k ,F(m+ 1))

is surjective.

Proof. Let k′/k be an extension of fields. Let F ′ be as in Lemma 35.8. By Cohomol-
ogy of Schemes, Lemma 5.2 the base change of the linear map of the lemma to k′ is the
same linear map for the sheaf F ′. Since k → k′ is faithfully flat it suffices to prove the
lemma over k′, i.e., we may assume k is infinite.

Assume k is infinite. We prove the lemma by induction on n. The case n = 0 is trivial as
O(1) ∼= O is generated by T0. For n > 0 apply Lemma 35.3 and tensor the sequence by
O(m+ 1) to get

0→ F(m) s−→ F(m+ 1)→ i∗G(m+ 1)→ 0
see Remark 35.5. Let t ∈ H0(Pn

k ,F(m+ 1)). By induction the image t ∈ H0(H,G(m+
1)) is the image of

∑
gi ⊗ si with si ∈ Γ(H,O(1)) and gi ∈ H0(H,G(m)). Since F

is m-regular we have H1(Pn
k ,F(m − 1)) = 0, hence long exact cohomology sequence

associated to the short exact sequence

0→ F(m− 1) s−→ F(m)→ i∗G(m)→ 0
shows we can lift gi to fi ∈ H0(Pn

k ,F(m)). We can also lift si to si ∈ H0(Pn
k ,O(1))

(see proof of Lemma 35.2 for example). After substracting the image of
∑
fi ⊗ si from t

we see that we may assume t = 0. But this exactly means that t is the image of f ⊗ s for
some f ∈ H0(Pn

k ,F(m)) as desired. �

Lemma 35.12. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If F is

m-regular, then F(m) is globally generated.

Proof. For all d� 0 the sheaf F(d) is globally generated. This follows for example
from the first part of Cohomology of Schemes, Lemma 14.1. Pick d ≥ m such that F(d)
is globally generated. Choose a basis f1, . . . , fr ∈ H0(Pn

k ,F). By Lemma 35.11 every
element f ∈ H0(Pn

k ,F(d)) can be written as f =
∑
Pifi for some Pi ∈ k[T0, . . . , Tn]
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homogeneous of degree d − m. Since the sections f generate F(d) it follows that the
sections fi generate F(m). �

35.13. Hilbert polynomials. The following lemma will be made obsolete by the more
general Lemma 45.1.

Lemma 35.14. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . The

function
d 7−→ χ(Pn

k ,F(d))
is a polynomial.

Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and F(d) =

F . Hence in this case the function is constant, i.e., a polynomial of degree 0. Assume
n > 0. By Lemma 33.4 we may assume k is infinite. Apply Lemma 35.3. Applying Lemma
33.2 to the twisted sequences 0→ F(d− 1)→ F(d)→ i∗G(d)→ 0 we obtain

χ(Pn
k ,F(d))− χ(Pn

k ,F(d− 1)) = χ(H,G(d))

See Remark 35.5. Since H ∼= Pn−1
k by induction the right hand side is a polynomial. The

lemma is finished by noting that any function f : Z→ Z with the property that the map
d 7→ f(d) − f(d − 1) is a polynomial, is itself a polynomial. We omit the proof of this
fact (hint: compare with Algebra, Lemma 58.5). �

Definition 35.15. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . The

function d 7→ χ(Pn
k ,F(d)) is called the Hilbert polynomial of F .

The Hilbert polynomial has coefficients in Q and not in general in Z. For example the
Hilbert polynomial ofOPn

k
is

d 7−→
(
d+ n

n

)
= dn

n! + . . .

This follows from the following lemma and the fact that

H0(Pn
k ,OPn

k
(d)) = k[T0, . . . , Tn]d

(degree d part) whose dimension over k is
(
d+n
n

)
.

Lemma 35.16. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k with

Hilbert polynomial P ∈ Q[t]. Then

P (d) = dimkH
0(Pn

k ,F(d))
for all d� 0.

Proof. This follows from the vanishing of cohomology of high enough twists of F .
See Cohomology of Schemes, Lemma 14.1. �

35.17. Boundedness of quotients. In this subsection we bound the regularity of quo-
tients of a given coherent sheaf on Pn in terms of the Hilbert polynomial.

Lemma 35.18. Let k be a field. Let n ≥ 0. Let r ≥ 1. Let P ∈ Q[t]. There exists an
integer m depending on n, r, and P with the following property: if

0→ K → O⊕r → F → 0
is a short exact sequence of coherent sheaves on Pn

k andF has Hilbert polynomial P , then
K is m-regular.
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Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and any co-

herent module is 0-regular and any surjective map is surjective on global sections. Assume
n > 0. Consider an exact sequence as in the lemma. Let P ′ ∈ Q[t] be the polynomial
P ′(t) = P (t) − P (t − 1). Let m′ be the integer which works for n − 1, r, and P ′. By
Lemmas 35.8 and 33.4 we may replace k by a field extension, hence we may assume k is in-
finite. Apply Lemma 35.3 to the coherent sheaf F . The Hilbert polynomial of F ′ = i∗F
is P ′ (see proof of Lemma 35.14). Since i∗ is right exact we see that F ′ is a quotient of
O⊕r
H = i∗O⊕r. Thus the induction hypothesis applies to F ′ on H ∼= Pn−1

k (Lemma
35.2). Note that the map K(−1) → K is injective as K ⊂ O⊕r and has cokernel i∗H
whereH = i∗K. By the snake lemma (Homology, Lemma 5.17) we obtain a commutative
diagram with exact columns and rows

0

��

0

��

0

��
0 // K(−1) //

��

O⊕r(−1) //

��

F(−1)

��

// 0

0 // K //

��

O⊕r //

��

F

��

// 0

0 // i∗H //

��

i∗O⊕r
H

//

��

i∗F ′ //

��

0

0 0 0

Thus the induction hypothesis applies to the exact sequence 0 → H → O⊕r
H → F ′ → 0

on H ∼= Pn−1
k (Lemma 35.2) and H is m′-regular. Recall that this implies that H is d-

regular for all d ≥ m′ (Lemma 35.10).

Let i ≥ 2 and d ≥ m′. It follows from the long exact cohomology sequence associated to
the left column of the diagram above and the vanishing of Hi−1(H,H(d)) that the map

Hi(Pn
k ,K(d− 1)) −→ Hi(Pn

k ,K(d))
is injective. As these groups are zero for d� 0 (Cohomology of Schemes, Lemma 14.1) we
conclude Hi(Pn

k ,K(d)) are zero for all d ≥ m′ and i ≥ 2.

We still have to control H1. First we observe that all the maps

H1(Pn
k ,K(m′ − 1))→ H1(Pn

k ,K(m′))→ H1(Pn
k ,K(m′ + 1))→ . . .

are surjective by the vanishing of H1(H,H(d)) for d ≥ m′. Suppose d > m′ is such that

H1(Pn
k ,K(d− 1)) −→ H1(Pn

k ,K(d))
is injective. Then H0(Pn

k ,K(d)) → H0(H,H(d)) is surjective. Consider the commuta-
tive diagram

H0(Pn
k ,K(d))⊗k H0(Pn

k ,O(1)) //

��

H0(Pn
k ,K(d+ 1))

��
H0(H,H(d))⊗k H0(H,OH(1)) // H0(H,H(d+ 1))
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By Lemma 35.11 we see that the bottom horizontal arrow is surjective. Hence the right
vertical arrow is surjective. We conclude that

H1(Pn
k ,K(d)) −→ H1(Pn

k ,K(d+ 1))
is injective. By induction we see that

H1(Pn
k ,K(d− 1))→ H1(Pn

k ,K(d))→ H1(Pn
k ,K(d+ 1))→ . . .

are all injective and we conclude that H1(Pn
k ,K(d − 1)) = 0 because of the eventual

vanishing of these groups. Thus the dimensions of the groups H1(Pn
k ,K(d)) for d ≥

m′ are strictly decreasing until they become zero. It follows that the regularity of K is
bounded by m′ + dimkH

1(Pn
k ,K(m′)). On the other hand, by the vanishing of the

higher cohomology groups we have

dimkH
1(Pn

k ,K(m′)) = −χ(Pn
k ,K(m′)) + dimkH

0(Pn
k ,K(m′))

Note that the H0 has dimension bounded by the dimension of H0(Pn
k ,O⊕r(m′)) which

is at most r
(
n+m′

n

)
if m′ > 0 and zero if not. Finally, the term χ(Pn

k ,K(m′)) is equal
to r

(
n+m′

n

)
− P (m′). This gives a bound of the desired type finishing the proof of the

lemma. �

36. Frobenii

Let p be a prime number. If X is a scheme, then we say “X has characteristic p”, or “X is
of characteristic p”, or “X is in characteristic p” if p is zero inOX .

Definition 36.1. Let p be a prime number. Let X be a scheme in characteristic p.
The absolute frobenius of X is the morphism FX : X → X given by the identity on the
underlying topological space and with F ]X : OX → OX given by g 7→ gp.

This makes sense because for any ring A of characteristic p the map FA : A→ A, a 7→ ap

is a ring endomorphism which induces the identity on Spec(A). Moreover, if A is local,
then FA is a local homomorphism. In this way we see that the absolute frobenius of X is
an endomorphism ofX in the category of schemes. It turns out that the absolute frobenius
defines a self map of the identity functor on the category of schemes in characteristic p.

Lemma 36.2. Let p > 0 be a prime number. Let f : X → Y be a morphism of
schemes in characteristic p. Then the diagram

X

f

��

FX

// X

f

��
Y

FY // Y

commutes.

Proof. This follows from the following trivial algebraic fact: if ϕ : A → B is a
homomorphism of rings of characteristic p, then ϕ(ap) = ϕ(a)p. �

Lemma 36.3. Let p > 0 be a prime number. Let X be a scheme in characteristic p.
Then the absolute frobenius FX : X → X is a universal homeomorphism, is integral, and
induces purely inseparable residue field extensions.

Proof. This follows from the corresponding results for the frobenius endomorphism
FA : A→ A of a ringA of characteristic p > 0. See the discussion in Algebra, Section 46,
for example Lemma 46.7. �
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If we are working with schemes over a fixed base, then there is a relative version of the
frobenius morphism.

Definition 36.4. Let p > 0 be a prime number. Let S be a scheme in characteristic
p. Let X be a scheme over S. We define

X(p) = X(p/S) = X ×S,FS S
viewed as a scheme over S. Applying Lemma 36.2 we see there is a unique morphism
FX/S : X −→ X(p) over S fitting into the commutative diagram

X
FX/S

//

''

FX

++X(p) //

��

X

��
S

FS // S

where the right square is cartesian. The morphism FX/S is called the relative Frobenius
morphism of X/S.

Observe that X 7→ X(p) is a functor; it is the base change functor for the absolute frobe-
nius morphism FS : S → S. We have the same lemmas as before regarding the relative
Frobenius morphism.

Lemma 36.5. Let p > 0 be a prime number. Let S be a scheme in characteristic p. Let
f : X → Y be a morphism of schemes over S . Then the diagram

X

f

��

FX/S

// X(p)

f(p)

��
Y

FY/S // Y (p)

commutes.

Proof. This follows from Lemma 36.2 and the definitions. �

Lemma 36.6. Let p > 0 be a prime number. Let S be a scheme in characteristic p.
Let X be a scheme over S. Then the relative frobenius FX/S : X → X(p) is a universal
homeomorphism, is integral, and induces purely inseparable residue field extensions.

Proof. By Lemma 36.3 the morphisms FX : X → X and the base change h :
X(p) → X of FS are universal homeomorphisms. Since h◦FX/S = FX we conclude that
FX/S is a universal homeomorphism (Morphisms, Lemma 45.8). By Morphisms, Lemmas
45.5 and 10.2 we conclude that FX/S has the other properties as well. �

Lemma 36.7. Let p > 0 be a prime number. Let S be a scheme in characteristic p. Let
X be a scheme over S. Then ΩX/S = ΩX/X(p) .

Proof. This translates into the following algebra fact. Let A → B be a homomor-
phism of rings of characteristic p. Set B′ = B ⊗A,FA A and consider the ring map
FB/A : B′ → B, b ⊗ a 7→ bpa. Then our assertion is that ΩB/A = ΩB/B′ . This is
true because d(bpa) = 0 if d : B → ΩB/A is the universal derivation and hence d is a
B′-derivation. �

Lemma 36.8. Let p > 0 be a prime number. Let S be a scheme in characteristic p. Let
X be a scheme over S. If X → S is locally of finite type, then FX/S is finite.
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Proof. This translates into the following algebra fact. Let A → B be a finite type
homomorphism of rings of characteristic p. Set B′ = B ⊗A,FA A and consider the ring
map FB/A : B′ → B, b⊗ a 7→ bpa. Then our assertion is that FB/A is finite. Namely, if
x1, . . . , xn ∈ B are generators overA, then xi is integral overB′ because xpi = FB/A(xi⊗
1). Hence FB/A : B′ → B is finite by Algebra, Lemma 36.5. �

Lemma 36.9. Let k be a field of characteristic p > 0. LetX be a scheme over k. Then
X is geometrically reduced if and only if X(p) is reduced.

Proof. Consider the absolute frobenius Fk : k → k. Then Fk(k) = kp in other
words, Fk : k → k is isomorphic to the embedding of k into k1/p. Thus the lemma
follows from Lemma 6.4. �

Lemma 36.10. Let k be a field of characteristic p > 0. LetX be a variety over k. The
following are equivalent

(1) X(p) is reduced,
(2) X is geometrically reduced,
(3) there is a nonempty open U ⊂ X smooth over k.

In this case X(p) is a variety over k and FX/k : X → X(p) is a finite dominant morphism
of degree pdim(X).

Proof. We have seen the equivalence of (1) and (2) in Lemma 36.9. We have seen
that (2) implies (3) in Lemma 25.7. If (3) holds, then U is geometrically reduced (see for
example Lemma 12.6) and hence X is geometrically reduced by Lemma 6.8. In this way
we see that (1), (2), and (3) are equivalent.

Assume (1), (2), and (3) hold. Since FX/k is a homeomorphism (Lemma 36.6) we see that
X(p) is a variety. Then FX/k is finite by Lemma 36.8. It is dominant as it is surjective.
To compute the degree (Morphisms, Definition 51.8) it suffices to compute the degree of
FU/k : U → U (p) (as FU/k = FX/k|U by Lemma 36.5). After shrinking U a bit we may
assume there exists an étale morphism h : U → An

k , see Morphisms, Lemma 36.20. Of
course n = dim(U) because An

k → Spec(k) is smooth of relative dimension n, the étale
morphism h is smooth of relative dimension 0, and U → Spec(k) is smooth of relative
dimension dim(U) and relative dimensions add up correctly (Morphisms, Lemma 29.3).
Observe that h is a generically finite dominant morphism of varieties, and hence deg(h)
is defined. By Lemma 36.5 we have a commutative diagram

X
FX/k

//

h

��

X(p)

h(p)

��
An
k

FAn
k
/k

// (An
k )(p)

Since h(p) is a base change of h it is étale as well and it follows that h(p) is a generically
finite dominant morphism of varieties as well. The degree ofh(p) is the degree of the exten-
sion k(X(p))/k((An

k )(p)) which is the same as the degree of the extension k(X)/k(An
k )

because h(p) is the base change of h (small detail omitted). By multiplicativity of degrees
(Morphisms, Lemma 51.9) it suffices to show that the degree of FAn

k
/k is pn. To see this

observe that (An
k )(p) = An

k and that FAn
k
/k is given by the map sending the coordinates

to their pth powers. �
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Remark 36.11. Let p > 0 be a prime number. Let S be a scheme in characteristic p.
Let X be a scheme over S. For n ≥ 1

X(pn) = X(pn/S) = X ×S,Fn
S
S

viewed as a scheme over S. Observe that X 7→ X(pn) is a functor. Applying Lemma
36.2 we see FX/S,n = (FnX , idS) : X −→ X(pn) is a morphism over S fitting into the
commutative diagram

X
FX/S,n

//

''

FnX

++X(pn) //

��

X

��
S

FnS // S

where the right square is cartesian. The morphism FX/S,n is sometimes called the n-fold
relative Frobenius morphism of X/S. This makes sense because we have the formula

FX/S,n = FX(pn−1)/S ◦ . . . ◦ FX(p)/S ◦ FX/S
which shows that FX/S,n is the composition of n relative Frobenii. Since we have

FX(pm)/S = F
(p)
X(pm−1)/S

= . . . = F
(pm)
X/S

(details omitted) we get also that

FX/S,n = F
(pn−1)
X/S ◦ . . . ◦ F (p)

X/S ◦ FX/S

37. Glueing dimension one rings

This section contains some algebraic preliminaries to proving that a finite set of codimen-
sion 1 points of a separated scheme is contained in an affine open.

Situation 37.1. Here we are given a commutative diagram of rings

A // K

R

OO

// B

OO

where K is a field and A, B are subrings of K with fraction field K. Finally, R = A×K
B = A ∩B.

Lemma 37.2. In Situation 37.1 assume thatB is a valuation ring. Then for every unit
u of A either u ∈ R or u−1 ∈ R.

Proof. Namely, if the image c of u in K is in B, then u ∈ R. Otherwise, c−1 ∈ B
(Algebra, Lemma 50.4) and u−1 ∈ R. �

The following lemma explains the meaning of the condition “A ⊗ B → K is surjective”
which comes up quite a bit in the following.

Lemma 37.3. In Situation 37.1 assume A is a Noetherian ring of dimension 1. The
following are equivalent

(1) A⊗B → K is not surjective,
(2) there exists a discrete valuation ringO ⊂ K containing both A and B.
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Proof. It is clear that (2) implies (1). On the other hand, if A ⊗ B → K is not
surjective, then the image C ⊂ K is not a field hence C has a nonzero maximal ideal m.
Choose a valuation ring O ⊂ K dominating Cm. By Algebra, Lemma 119.12 applied to
A ⊂ O the ringO is Noetherian. HenceO is a discrete valuation ring by Algebra, Lemma
50.18. �

Lemma 37.4. In Situation 37.1 assume
(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a discrete valuation ring,

Then we have the following two possibilities
(a) IfA∗ is not contained inR, then Spec(A)→ Spec(R) and Spec(B)→ Spec(R)

are open immersions covering Spec(R) and K = A⊗R B.
(b) IfA∗ is contained inR, thenB dominates one of the local rings ofA at a maximal

ideal and A⊗B → K is not surjective.

Proof. Assumption (a) implies there is a unit u of A whose image in K lies in the
maximal ideal of B. Then u is a nonzerodivisor of R and for every a ∈ A there exists an
n such that una ∈ R. It follows that A = Ru.
Let mA be the Jacobson radical ofA. Let x ∈ mA be a nonzero element. Since dim(A) = 1
we see that K = Ax. After replacing x by xnum for some n ≥ 1 and m ∈ Z we may
assume x maps to a unit of B. We see that for every b ∈ B we have that xnb in the image
of R for some n. Thus B = Rx.
Let z ∈ R. If z 6∈ mA and z does not map to an element of mB , then z is invertible.
Thus x+ u is invertible in R. Hence Spec(R) = D(x) ∪D(u). We have seen above that
D(u) = Spec(A) and D(x) = Spec(B).
Case (b). If x ∈ mA, then 1 + x is a unit and hence 1 + x ∈ R, i.e, x ∈ R. Thus
we see that mA ⊂ R ⊂ A. In fact, in this case A is integral over R. Namely, write
A/mA = κ1× . . .×κn as a product of fields. Say x = (c1, . . . , cr, 0, . . . , 0) is an element
with ci 6= 0. Then

x2 − x(c1, . . . , cr, 1, . . . , 1) = 0
SinceR contains all units we see thatA/mA is integral over the image ofR in it, and hence
A is integral over R. It follows that R ⊂ A ⊂ B as B is integrally closed. Moreover, if
x ∈ mA is nonzero, then K = Ax =

⋃
x−nA =

⋃
x−nR. Hence x−1 6∈ B, i.e., x ∈ mB .

We conclude mA ⊂ mB . Thus A ∩ mB is a maximal ideal of A thereby finishing the
proof. �

Lemma 37.5. LetB be a semi-local Noetherian domain of dimension 1. LetB′ be the
integral closure ofB in its fraction field. ThenB′ is a semi-local Dedekind domain. Let x
be a nonzero element of the Jacobson radical of B′. Then for every y ∈ B′ there exists an
n such that xny ∈ B.

Proof. LetmB be the Jacobson radical ofB. The structure ofB′ results from Algebra,
Lemma 120.18. Given x, y ∈ B′ as in the statement of the lemma consider the subring
B ⊂ A ⊂ B′ generated by x and y. Then A is finite over B (Algebra, Lemma 36.5).
Since the fraction fields of B and A are the same we see that the finite module A/B is
supported on the set of closed points of B. Thus mnBA ⊂ B for a suitable n. Moreover,
Spec(B′)→ Spec(A) is surjective (Algebra, Lemma 36.17), hence A is semi-local as well.
It also follows that x is in the Jacobson radical mA of A. Note that mA =

√
mBA. Thus

xmy ∈ mBA for some m. Then xnmy ∈ B. �
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Lemma 37.6. In Situation 37.1 assume
(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a Noetherian semi-local domain of dimension 1,
(3) A⊗B → K is surjective.

Then Spec(A) → Spec(R) and Spec(B) → Spec(R) are open immersions covering
Spec(R) and K = A⊗R B.

Proof. Special case: B is integrally closed inK. This means thatB is a Dedekind do-
main (Algebra, Lemma 120.17) whence all of its localizations at maximal ideals are discrete
valuation rings. Let m1, . . . ,mr be the maximal ideals of B. We set

R1 = A×K Bm1

Observing that A⊗R1 Bm1 → K is surjective we conclude from Lemma 37.4 that A and
Bm1 define open subschemes covering Spec(R1) and thatK = A⊗R1 Bm1 . In particular
R1 is a semi-local Noetherian ring of dimension 1. By induction we define

Ri+1 = Ri ×K Bmi+1

for i = 1, . . . , r − 1. Observe that R = Rn because B = Bm1 ∩ . . . ∩ Bmr (see Algebra,
Lemma 157.6). It follows from the inductive procedure that R → A defines an open
immersion Spec(A) → Spec(R). On the other hand, the maximal ideals ni of R not in
this open correspond to the maximal idealsmi ofB and in fact the ring mapR→ B defines
an isomorphisms Rni → Bmi (details omitted; hint: in each step we added exactly one
maximal ideal to Spec(Ri)). It follows that Spec(B) → Spec(R) is an open immersion
as desired.

General case. Let B′ ⊂ K be the integral closure of B. See Lemma 37.5. Then the special
case applies to R′ = A×K B′. Pick x ∈ R′ which is not contained in the maximal ideals
of A and is contained in the maximal ideals of B′ (see Algebra, Lemma 15.4). By Lemma
37.5 there exists an integer n such that xn ∈ R = A ×K B. Replace x by xn so x ∈ R.
For every y ∈ R′ there exists an integer n such that xny ∈ R. On the other hand, it is
clear thatR′

x = A. ThusRx = A. Exchanging the roles ofA andB we also find an y ∈ R
such that B = Ry . Note that inverting both x and y leaves no primes except (0). Thus
K = Rxy = Rx ⊗R Ry . This finishes the proof. �

Lemma 37.7. LetK be a field. LetA1, . . . , Ar ⊂ K be Noetherian semi-local rings of
dimension 1 with fraction field K. If Ai ⊗ Aj → K is surjective for all i 6= j , then there
exists a Noetherian semi-local domain A ⊂ K of dimension 1 contained in A1, . . . , Ar
such that

(1) A→ Ai induces an open immersion ji : Spec(Ai)→ Spec(A),
(2) Spec(A) is the union of the opens ji(Spec(Ai)),
(3) each closed point of Spec(A) lies in exactly one of these opens.

Proof. Namely, we can take A = A1 ∩ . . . ∩Ar. First we note that (3), once (1) and
(2) have been proven, follows from the assumption that Ai ⊗ Aj → K is surjective since
if m ∈ ji(Spec(Ai)) ∩ jj(Spec(Aj)), then Ai ⊗ Aj → K ends up in Am. To prove (1)
and (2) we argue by induction on r. If r > 1 by induction we have the results (1) and (2)
forB = A2 ∩ . . .∩Ar. Then we apply Lemma 37.6 to see they hold forA = A1 ∩B. �

Lemma 37.8. Let A be a domain with fraction field K. Let B1, . . . , Br ⊂ K be
Noetherian 1-dimensional semi-local domains whose fraction fields areK. IfA⊗Bi → K
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are surjective for i = 1, . . . , r, then there exists an x ∈ A such that x−1 is in the Jacobson
radical of Bi for i = 1, . . . , r.

Proof. Let B′
i be the integral closure of Bi in K. Suppose we find a nonzero x ∈ A

such that x−1 is in the Jacobson radical ofB′
i for i = 1, . . . , r. Then by Lemma 37.5, after

replacing x by a power we get x−1 ∈ Bi. Since Spec(B′
i) → Spec(Bi) is surjective we

see that x−1 is then also in the Jacobson radical of Bi. Thus we may assume that each Bi
is a semi-local Dedekind domain.

If Bi is not local, then remove Bi from the list and add back the finite collection of local
rings (Bi)m. Thus we may assume that Bi is a discrete valuation ring for i = 1, . . . , r.

Let vi : K → Z, i = 1, . . . , r be the corresponding discrete valuations (see Algebra,
Lemma 120.17). We are looking for a nonzero x ∈ A with vi(x) < 0 for i = 1, . . . , r. We
will prove this by induction on r.

If r = 1 and the result is wrong, then A ⊂ B and the map A⊗ B → K is not surjective,
contradiction.

If r > 1, then by induction we can find a nonzero x ∈ A such that vi(x) < 0 for i =
1, . . . , r−1. If vr(x) < 0 then we are done, so we may assume vr(x) ≥ 0. By the base case
we can find y ∈ A nonzero such that vr(y) < 0. After replacing x by a power we may
assume that vi(x) < vi(y) for i = 1, . . . , r− 1. Then x+ y is the element we are looking
for. �

Lemma 37.9. Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap where

the product is over the minimal primes ofA. Let a1, a2 ∈ mA map to the same element of
L. Then an1 = an2 for some n > 0.

Proof. Write a1 = a2 +x. Then xmaps to zero inL. Hence x is a nilpotent element
of A because

⋂
p is the radical of (0) and the annihilator I of x contains a power of the

maximal ideal because p 6∈ V (I) for all minimal primes. Say xk = 0 and mn ⊂ I . Then

ak+n
1 = ak+n

2 +
(
n+ k

1

)
an+k−1

2 x+
(
n+ k

2

)
an+k−2

2 x2+. . .+
(
n+ k

k − 1

)
an+1

2 xk−1 = an+k
2

because a2 ∈ mA. �

Lemma 37.10. Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap and

I =
⋂
p where the product and intersection are over the minimal primes of A. Let f ∈ L

be an element of the form f = i+ a where a ∈ mA and i ∈ IL. Then some power of f is
in the image of A→ L.

Proof. SinceA is Noetherian we have It = 0 for some t > 0. Suppose that we know
that f = a + i with i ∈ IkL. Then fn = an + nan−1i mod Ik+1L. Hence it suffices to
show that nan−1i is in the image of Ik → IkL for some n� 0. To see this, pick a g ∈ A
such that mA =

√
(g) (Algebra, Lemma 60.8). Then L = Ag for example by Algebra,

Proposition 60.7. On the other hand, there is an n such that an ∈ (g). Hence we can clear
denominators for elements of L by multiplying by a high power of a. �

Lemma 37.11. LetA be a Noetherian local ring of dimension 1. Let L =
∏
Ap where

the product is over the minimal primes of A. Let K → L be an integral ring map. Then
there exist a ∈ mA and x ∈ K which map to the same element ofL such thatmA =

√
(a).
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Proof. By Lemma 37.10 we may replaceA byA/(
⋂
p) and assume thatA is a reduced

ring (some details omitted). We may also replace K by the image of K → L. Then K is
a reduced ring. The map Spec(L) → Spec(K) is surjective and closed (details omitted).
Hence Spec(K) is a finite discrete space. It follows that K is a finite product of fields.

Let pj , j = 1, . . . ,m be the minimal primes of A. Set Lj be the fraction field of Aj so
that L =

∏
j=1,...,m Lj . Let Aj be the normalization of A/pj . Then Aj is a semi-local

Dedekind domain with at least one maximal ideal, see Algebra, Lemma 120.18. Let n be the
sum of the numbers of maximal ideals in A1, . . . , Am. For such a maximal ideal m ⊂ Aj
we consider the function

vm : L→ Lj → Z ∪ {∞}

where the second arrow is the discrete valuation corresponding to the discrete valuation
ring (Aj)m extended by mapping 0 to∞. In this way we obtain n functions v1, . . . , vn :
L→ Z ∪ {∞}. We will find an element x ∈ K such that vi(x) < 0 for all i = 1, . . . , n.

First we claim that for each i there exists an element x ∈ K with vi(x) < 0. Namely,
suppose that vi corresponds to m ⊂ Aj . If vi(x) ≥ 0 for all x ∈ K , then K maps into
(Aj)m inside the fraction fieldLj ofAj . The image ofK inLj is a field overLj is algebraic
by Algebra, Lemma 36.18. Combined we get a contradiction with Algebra, Lemma 50.8.

Suppose we have found an element x ∈ K such that v1(x) < 0, . . . , vr(x) < 0 for some
r < n. If vr+1(x) < 0, then x works for r + 1. If not, then choose some y ∈ K with
vr+1(y) < 0 as is possible by the result of the previous paragraph. After replacing x by xn
for some n > 0, we may assume vi(x) < vi(y) for i = 1, . . . , r. Then vj(x+y) = vj(x) <
0 for j = 1, . . . , r by properties of valuations and similarly vr+1(x+ y) = vr+1(y) < 0.
Arguing by induction, we find x ∈ K with vi(x) < 0 for i = 1, . . . , n.

In particular, the element x ∈ K has nonzero projection in each factor of K (recall that
K is a finite product of fields and if some component of x was zero, then one of the values
vi(x) would be∞). Hencex is invertible andx−1 ∈ K is an element with∞ > vi(x−1) >
0 for all i. It follows from Lemma 37.5 that for some e < 0 the element xe ∈ K maps
to an element of mA/pj ⊂ A/pj for all j = 1, . . . ,m. Observe that the cokernel of the
map mA →

∏
mA/pj is annihilated by a power of mA. Hence after replacing e by a more

negative e, we find an element a ∈ mA whose image in mA/pj is equal to the image of xe.
The pair (a, xe) satisfies the conclusions of the lemma. �

Lemma 37.12. Let A be a ring. Let p1, . . . , pr be a finite set of a primes of A. Let
S = A \

⋃
pi. Then S is a multiplicative system and S−1A is a semi-local ring whose

maximal ideals correspond to the maximal elements of the set {pi}.

Proof. If a, b ∈ A and a, b ∈ S , then a, b 6∈ pi hence ab 6∈ pi, hence ab ∈ S. Also 1 ∈
S. Thus S is a multiplicative subset of A. By the description of Spec(S−1A) in Algebra,
Lemma 17.5 and by Algebra, Lemma 15.2 we see that the primes of S−1A correspond to
the primes ofA contained in one of the pi. Hence the maximal ideals of S−1A correspond
one-to-one with the maximal (w.r.t. inclusion) elements of the set {p1, . . . , pr}. �

38. One dimensional Noetherian schemes

The main result of this section is that a Noetherian separated scheme of dimension 1 has
an ample invertible sheaf. See Proposition 38.12.
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Lemma 38.1. LetX be a scheme all of whose local rings are Noetherian of dimension
≤ 1. Let U ⊂ X be a retrocompact open. Denote j : U → X the inclusion morphism.
Then Rpj∗F = 0, p > 0 for every quasi-coherentOU -module F .

Proof. We may check the vanishing of Rpj∗F at stalks. Formation of Rqj∗ com-
mutes with flat base change, see Cohomology of Schemes, Lemma 5.2. Thus we may assume
that X is the spectrum of a Noetherian local ring of dimension ≤ 1. In this case X has
a closed point x and finitely many other points x1, . . . , xn which specialize to x but not
each other (see Algebra, Lemma 31.6). If x ∈ U , then U = X and the result is clear. If
not, then U = {x1, . . . , xr} for some r after possibly renumbering the points. Then U
is affine (Schemes, Lemma 11.8). Thus the result follows from Cohomology of Schemes,
Lemma 2.3. �

Lemma 38.2. Let X be an affine scheme all of whose local rings are Noetherian of
dimension ≤ 1. Then any quasi-compact open U ⊂ X is affine.

Proof. Denote j : U → X the inclusion morphism. Let F be a quasi-coherent OU -
module. By Lemma 38.1 the higher direct imagesRpj∗F are zero. TheOX -module j∗F is
quasi-coherent (Schemes, Lemma 24.1). Hence it has vanishing higher cohomology groups
by Cohomology of Schemes, Lemma 2.2. By the Leray spectral sequence Cohomology,
Lemma 13.6 we have Hp(U,F) = 0 for all p > 0. Thus U is affine, for example by
Cohomology of Schemes, Lemma 3.1. �

Lemma 38.3. Let X be a scheme. Let U ⊂ X be an open. Assume
(1) U is a retrocompact open of X ,
(2) X \ U is discrete, and
(3) for x ∈ X \ U the local ringOX,x is Noetherian of dimension ≤ 1.

Then (1) there exists an invertible OX -module L and a section s such that U = Xs and
(2) the map Pic(X)→ Pic(U) is surjective.

Proof. Let X \ U = {xi; i ∈ I}. Choose affine opens Ui ⊂ X with xi ∈ Ui and
xj 6∈ Ui for j 6= i. This is possible by condition (2). Say Ui = Spec(Ai). Let mi ⊂ Ai
be the maximal ideal corresponding to xi. By our assumption on the local rings there are
only a finite number of prime ideals q ⊂ mi, q 6= mi (see Algebra, Lemma 31.6). Thus
by prime avoidance (Algebra, Lemma 15.2) we can find fi ∈ mi not contained in any of
those primes. Then V (fi) = {mi} q Zi for some closed subset Zi ⊂ Ui because Zi is a
retrocompact open subset of V (fi) closed under specialization, see Algebra, Lemma 41.7.
After shrinking Ui we may assume V (fi) = {xi}. Then

U : X = U ∪
⋃
Ui

is an open covering ofX . Consider the 2-cocycle with values inO∗
X given by fi onU ∩Ui

and by fi/fj on Ui ∩ Uj . This defines a line bundle L such that the section s defined by
1 on U and fi on Ui is as in the statement of the lemma.

Let N be an invertible OU -module. Let Ni be the invertible (Ai)fi module such that
N|U∩Ui is equal to Ñi. Observe that (Ami)fi is an Artinian ring (as a dimension zero
Noetherian ring, see Algebra, Lemma 60.5). Thus it is a product of local rings (Algebra,
Lemma 53.6) and hence has trivial Picard group. Thus, after shrinking Ui (i.e., after re-
placing Ai by (Ai)g for some g ∈ Ai, g 6∈ mi) we can assume that Ni = (Ai)fi , i.e., that
N|U∩Ui is trivial. In this case it is clear how to extend N to an invertible sheaf over X
(by extending it by a trivial invertible module over each Ui). �
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Lemma 38.4. Let X be an integral separated scheme. Let U ⊂ X be a nonempty
affine open such that X \ U is a finite set of points x1, . . . , xr with OX,xi Noetherian of
dimension 1. Then there exists a globally generated invertibleOX -moduleL and a section
s such that U = Xs.

Proof. Say U = Spec(A) and let K be the function field of X . Write Bi = OX,xi
and mi = mxi . Since xi 6∈ U we see that the open U ×X Spec(Bi) of Spec(Bi) has only
one point, i.e., U ×X Spec(Bi) = Spec(K). Since X is separated, we find that Spec(K)
is a closed subscheme of U × Spec(Bi), i.e., the map A ⊗ Bi → K is a surjection. By
Lemma 37.8 we can find a nonzero f ∈ A such that f−1 ∈ mi for i = 1, . . . , r. Pick opens
xi ∈ Ui ⊂ X such that f−1 ∈ O(Ui). Then

U : X = U ∪
⋃
Ui

is an open covering ofX . Consider the 2-cocycle with values inO∗
X given by f on U ∩Ui

and by 1 on Ui ∩ Uj . This defines a line bundle L with two sections:
(1) a section s defined by 1 on U and f−1 on Ui is as in the statement of the lemma,

and
(2) a section t defined by f on U and 1 on Ui.

Note that Xt ⊃ U1 ∪ . . . ∪ Ur. Hence s, t generate L and the lemma is proved. �

Lemma 38.5. LetX be a quasi-compact scheme. If for every x ∈ X there exists a pair
(L, s) consisting of a globally generated invertible sheafL and a global section s such that
x ∈ Xs and Xs is affine, then X has an ample invertible sheaf.

Proof. SinceX is quasi-compact we can find a finite collection (Li, si), i = 1, . . . , n
of pairs such that Li is globally generated, Xsi is affine and X =

⋃
Xsi . Again because

X is quasi-compact we can find, for each i, a finite collection of sections ti,j of Li, j =
1, . . . ,mi such that X =

⋃
Xti,j . Set ti,0 = si. Consider the invertible sheaf

L = L1 ⊗OX
. . .⊗OX

Ln
and the global sections

τJ = t1,j1 ⊗ . . .⊗ tn,jn
By Properties, Lemma 26.4 the openXτJ is affine as soon as ji = 0 for some i. It is a simple
matter to see that these opens cover X . Hence L is ample by definition. �

Lemma 38.6. LetX be a Noetherian integral separated scheme of dimension 1. Then
X has an ample invertible sheaf.

Proof. Choose an affine open covering X = U1 ∪ . . . ∪ Un. Since X is Noetherian,
each of the setsX \Ui is finite. Thus by Lemma 38.4 we can find a pair (Li, si) consisting
of a globally generated invertible sheaf Li and a global section si such that Ui = Xsi . We
conclude that X has an ample invertible sheaf by Lemma 38.5. �

Lemma 38.7. Let f : X → Y be a finite morphism of schemes. Assume there exists
an open V ⊂ Y such that f−1(V )→ V is an isomorphism and Y \ V is a discrete space.
Then every invertibleOX -module is the pullback of an invertibleOY -module.

Proof. We will use that Pic(X) = H1(X,O∗
X), see Cohomology, Lemma 6.1. Con-

sider the Leray spectral sequence for the abelian sheafO∗
X and f , see Cohomology, Lemma

13.4. Consider the induced map

H1(X,O∗
X) −→ H0(Y,R1f∗O∗

X)
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Divisors, Lemma 17.1 says exactly that this map is zero. Hence Leray givesH1(X,O∗
X) =

H1(Y, f∗O∗
X). Next we consider the map

f ] : O∗
Y −→ f∗O∗

X

By assumption the kernel and cokernel of this map are supported on the closed subset
T = Y \V of Y . Since T is a discrete topological space by assumption the higher cohomol-
ogy groups of any abelian sheaf on Y supported on T is zero (follows from Cohomology,
Lemma 20.1, Modules, Lemma 6.1, and the fact that Hi(T,F) = 0 for any i > 0 and any
abelian sheaf F on T ). Breaking the displayed map into short exact sequences

0→ Ker(f ])→ O∗
Y → Im(f ])→ 0, 0→ Im(f ])→ f∗O∗

X → Coker(f ])→ 0

we first conclude thatH1(Y,O∗
Y )→ H1(Y, Im(f ])) is surjective and then thatH1(Y, Im(f ]))→

H1(Y, f∗O∗
X) is surjective. Combining all the above we find thatH1(Y,O∗

Y )→ H1(X,O∗
X)

is surjective as desired. �

Lemma 38.8. Let X be a scheme. Let Z1, . . . , Zn ⊂ X be closed subschemes. Let Li
be an invertible sheaf on Zi. Assume that

(1) X is reduced,
(2) X =

⋃
Zi set theoretically, and

(3) Zi ∩ Zj is a discrete topological space for i 6= j.
Then there exists an invertible sheaf L on X whose restriction to Zi is Li. Moreover, if
we are given sections si ∈ Γ(Zi,Li) which are nonvanishing at the points of Zi ∩ Zj ,
then we can choose L such that there exists a s ∈ Γ(X,L) with s|Zi = si for all i.

Proof. The existence of L can be deduced from Lemma 38.7 but we will also give a
direct proof and we will use the direct proof to see the statement about sections is true.
Set T =

⋃
i 6=j Zi ∩ Zj . As X is reduced we have

X \ T =
⋃

(Zi \ T )

as schemes. Assumption (3) implies T is a discrete subset of X . Thus for each t ∈ T we
can find an open Ut ⊂ X with t ∈ Ut but t′ 6∈ Ut for t′ ∈ T , t′ 6= t. By shrinking Ut
if necessary, we may assume that there exist isomorphisms ϕt,i : Li|Ut∩Zi → OUt∩Zi .
Furthermore, for each i choose an open covering

Zi \ T =
⋃

j
Uij

such that there exist isomorphisms ϕi,j : Li|Uij ∼= OUij . Observe that

U : X =
⋃
Ut ∪

⋃
Uij

is an open covering of X . We claim that we can use the isomorphisms ϕt,i and ϕi,j to
define a 2-cocycle with values in O∗

X for this covering that defines L as in the statement
of the lemma.

Namely, if i 6= i′, then Ui,j ∩ Ui′,j′ = ∅ and there is nothing to do. For Ui,j ∩ Ui,j′ we
have OX(Ui,j ∩ Ui,j′) = OZi(Ui,j ∩ Ui,j′) by the first remark of the proof. Thus the
transition function for Li (more precisely ϕi,j ◦ ϕ−1

i,j′ ) defines the value of our cocycle on
this intersection. For Ut ∩ Ui,j we can do the same thing. Finally, for t 6= t′ we have

Ut ∩ Ut′ =
∐

(Ut ∩ Ut′) ∩ Zi
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and moreover the intersection Ut ∩ Ut′ ∩ Zi is contained in Zi \ T . Hence by the same
reasoning as before we see that

OX(Ut ∩ Ut′) =
∏
OZi(Ut ∩ Ut′ ∩ Zi)

and we can use the transition functions for Li (more precisely ϕt,i ◦ ϕ−1
t′,i) to define the

value of our cocycle on Ut ∩ Ut′ . This finishes the proof of existence of L.

Given sections si as in the last assertion of the lemma, in the argument above, we choose
Ut such that si|Ut∩Zi is nonvanishing and we choose ϕt,i such that ϕt,i(si|Ut∩Zi) = 1.
Then using 1 over Ut and ϕi,j(si|Ui,j ) over Ui,j will define a section of L which restricts
to si over Zi. �

Remark 38.9. Let A be a reduced ring. Let I, J be ideals of A such that V (I) ∪
V (J) = Spec(A). Set B = A/J . Then I → IB is an isomorphism of A-modules.
Namely, we have IB = I + J/J = I/(I ∩ J) and I ∩ J is zero because A is reduced and
Spec(A) = V (I)∪ V (J) = V (I ∩ J). Thus for any projective A-module P we also have
IP = I(P/JP ).

Lemma 38.10. LetX be a Noetherian reduced separated scheme of dimension 1. Then
X has an ample invertible sheaf.

Proof. Let Zi, i = 1, . . . , n be the irreducible components of X . We view these as
reduced closed subschemes of X . By Lemma 38.6 there exist ample invertible sheaves Li
on Zi. Set T =

⋃
i 6=j Zi ∩ Zj . As X is Noetherian of dimension 1, the set T is finite and

consists of closed points of X . For each i we may, possibly after replacing Li by a power,
choose si ∈ Γ(Zi,Li) such that (Zi)si is affine and contains T ∩Zi, see Properties, Lemma
29.6.

By Lemma 38.8 we can find an invertible sheaf L on X and s ∈ Γ(X,L) such that
(L, s)|Zi = (Li, si). Observe thatXs contains T and is set theoretically equal to the affine
closed subschemes (Zi)si . Thus it is affine by Limits, Lemma 11.3. To finish the proof, it
suffices to find for every x ∈ X , x 6∈ T an integer m > 0 and a section t ∈ Γ(X,L⊗m)
such that Xt is affine and x ∈ Xt. Since x 6∈ T we see that x ∈ Zi for some unique i, say
i = 1. Let Z ⊂ X be the reduced closed subscheme whose underlying topological space
is Z2 ∪ . . . ∪ Zn. Let I ⊂ OX be the ideal sheaf of Z. Denote that I1 ⊂ OZ1 the inverse
image of this ideal sheaf under the inclusion morphism Z1 → X . Observe that

Γ(X, IL⊗m) = Γ(Z1, I1L⊗m
1 )

see Remark 38.9. Thus it suffices to find m > 0 and t ∈ Γ(Z1, I1L⊗m
1 ) with x ∈ (Z1)t

affine. Since L1 is ample and since x is not in Z1 ∩ T = V (I1) we can find a section
t1 ∈ Γ(Z1, I1L⊗m1

1 ) with x ∈ (Z1)t1 , see Properties, Proposition 26.13. Since L1 is
ample we can find a section t2 ∈ Γ(Z1,L⊗m2

1 ) with x ∈ (Z1)t2 and (Z1)t2 affine, see
Properties, Definition 26.1. Set m = m1 + m2 and t = t1t2. Then t ∈ Γ(Z1, I1L⊗m

1 )
with x ∈ (Z1)t by construction and (Z1)t is affine by Properties, Lemma 26.4. �

Lemma 38.11. Let i : Z → X be a closed immersion of schemes. If the underly-
ing topological space of X is Noetherian and dim(X) ≤ 1, then Pic(X) → Pic(Z) is
surjective.

Proof. Consider the short exact sequence

0→ (1 + I) ∩ O∗
X → O∗

X → i∗O∗
Z → 0
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of sheaves of abelian groups on X where I is the quasi-coherent sheaf of ideals corre-
sponding to Z. Since dim(X) ≤ 1 we see that H2(X,F) = 0 for any abelian sheaf F ,
see Cohomology, Proposition 20.7. Hence the map H1(X,O∗

X) → H1(X, i∗O∗
Z) is sur-

jective. By Cohomology, Lemma 20.1 we have H1(X, i∗O∗
Z) = H1(Z,O∗

Z). This proves
the lemma by Cohomology, Lemma 6.1. �

Proposition 38.12. Let X be a Noetherian separated scheme of dimension 1. Then
X has an ample invertible sheaf.

Proof. Let Z ⊂ X be the reduction of X . By Lemma 38.10 the scheme Z has an
ample invertible sheaf. Thus by Lemma 38.11 there exists an invertible OX -module L on
X whose restriction to Z is ample. Then L is ample by an application of Cohomology of
Schemes, Lemma 17.5. �

Remark 38.13. In fact, if X is a scheme whose reduction is a Noetherian separated
scheme of dimension 1, thenX has an ample invertible sheaf. The argument to prove this
is the same as the proof of Proposition 38.12 except one uses Limits, Lemma 11.4 instead
of Cohomology of Schemes, Lemma 17.5.

The following lemma actually holds for quasi-finite separated morphisms as the reader can
see by using Zariski’s main theorem (More on Morphisms, Lemma 43.3) and Lemma 38.3.

Lemma 38.14. Let f : X → Y be a morphism of schemes. Assume Y is Noetherian
of dimension≤ 1, f is finite, and there exists a dense open V ⊂ Y such that f−1(V )→ V
is a closed immersion. Then every invertible OX -module is the pullback of an invertible
OY -module.

Proof. We factor f as X → Z → Y where Z is the scheme theoretic image of f .
ThenX → Z is an isomorphism over V ∩Z and Lemma 38.7 applies. On the other hand,
Lemma 38.11 applies to Z → Y . Some details omitted. �

39. The delta invariant

In this section we define the δ-invariant of a singular point on a reduced 1-dimensional
Nagata scheme.

Lemma 39.1. Let (A,m) be a Noetherian 1-dimensional local ring. Let f ∈ m. The
following are equivalent

(1) m =
√

(f),
(2) f is not contained in any minimal prime of A, and
(3) Af =

∏
p minimal Ap as A-algebras.

Such an f ∈ m exists. If depth(A) = 1 (for example A is reduced), then (1) – (3) are also
equivalent to

(4) f is a nonzerodivisor,
(5) Af is the total ring of fractions of A.

If A is reduced, then (1) – (5) are also equivalent to
(6) Af is the product of the residue fields at the minimal primes of A.

Proof. The spectrum of A has finitely many primes p1, . . . , pn besides m and these
are all minimal, see Algebra, Lemma 31.6. Then the equivalence of (1) and (2) follows from
Algebra, Lemma 17.2. Clearly, (3) implies (2). Conversely, if (2) is true, then the spectrum
of Af is the subset {p1, . . . , pn} of Spec(A) with induced topology, see Algebra, Lemma
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17.5. This is a finite discrete topological space. Hence Af =
∏

p minimal Ap by Algebra,
Proposition 60.7. The existence of an f is asserted in Algebra, Lemma 60.8.
Assume A has depth 1. (This is the maximum by Algebra, Lemma 72.3 and holds if A
is reduced by Algebra, Lemma 157.3.) Then m is not an associated prime of A. Every
minimal prime of A is an associated prime (Algebra, Proposition 63.6). Hence the set of
nonzerodivisors of A is exactly the set of elements not contained in any of the minimal
primes by Algebra, Lemma 63.9. Thus (4) is equivalent to (2). Part (5) is equivalent to (3)
by Algebra, Lemma 25.4.
Then Ap is a field for p ⊂ A minimal, see Algebra, Lemma 25.1. Hence (3) is equivalent ot
(6). �

Lemma 39.2. Let (A,m) be a reduced Nagata 1-dimensional local ring. Let A′ be the
integral closure of A in the total ring of fractions of A. Then A′ is a normal Nagata ring,
A→ A′ is finite, and A′/A has finite length as an A-module.

Proof. The total ring of fractions is essentially of finite type over A hence A→ A′

is finite becauseA is Nagata, see Algebra, Lemma 162.2. The ringA′ is normal for example
by Algebra, Lemma 37.16 and 31.6. The ring A′ is Nagata for example by Algebra, Lemma
162.5. Choose f ∈ m as in Lemma 39.1. As A′ ⊂ Af it is clear that Af = A′

f . Hence
the support of the finite A-module A′/A is contained in {m}. It follows that it has finite
length by Algebra, Lemma 62.3. �

Definition 39.3. Let A be a reduced Nagata local ring of dimension 1. The δ-
invariant of A is lengthA(A′/A) where A′ is as in Lemma 39.2.

We prove some lemmas about the behaviour of this invariant.

Lemma 39.4. Let A be a reduced Nagata local ring of dimension 1. The δ-invariant
of A is 0 if and only if A is a discrete valuation ring.

Proof. If A is a discrete valuation ring, then A is normal and the ring A′ is equal to
A. Conversely, if the δ-invariant of A is 0, then A is integrally closed in its total ring of
fractions which implies thatA is normal (Algebra, Lemma 37.16) and this forces A to be a
discrete valuation ring by Algebra, Lemma 119.7. �

Lemma 39.5. Let A be a reduced Nagata local ring of dimension 1. Let A → A′ be
as in Lemma 39.2. Let Ah, Ash, resp. A∧ be the henselization, strict henselization, resp.
completion of A. Then Ah, Ash, resp. A∧ is a reduced Nagata local ring of dimension 1
and A′ ⊗A Ah, A′ ⊗A Ash, resp. A′ ⊗A A∧ is the integral closure of Ah, Ash, resp. A∧ in
its total ring of fractions.

Proof. Observe thatA∧ is reduced, see More on Algebra, Lemma 43.6. The ringsAh
and Ash are reduced by More on Algebra, Lemma 45.4. The dimensions of A, Ah, Ash,
and A∧ are the same by More on Algebra, Lemmas 43.1 and 45.7.
Recall that a Noetherian local ring is Nagata if and only if the formal fibres of A are
geometrically reduced, see More on Algebra, Lemma 52.4. This property is inherited by
Ah and Ash, see the material in More on Algebra, Section 51 and especially Lemma 51.8.
The completion is Nagata by Algebra, Lemma 162.8.
Now we come to the statement on integral closures. Before continuing let us pick f ∈ m
as in Lemma 39.1. Then the image of f inAh,Ash, andA∧ clearly is an element satisfying
properties (1) – (6) in that ring.
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Since A → A′ is finite we see that A′ ⊗A Ah and A′ ⊗A Ash is the product of henselian
local rings finite over Ah and Ash, see Algebra, Lemma 153.4. Each of these local rings is
the henselization ofA′ at a maximal ideal m′ ⊂ A′ lying over m, see Algebra, Lemma 156.1
or 156.3. Hence these local rings are normal domains by More on Algebra, Lemma 45.6.
It follows that A′ ⊗A Ah and A′ ⊗A Ash are normal rings. Since Ah → A′ ⊗A Ah and
Ash → A′ ⊗A Ash are finite (hence integral) and since A′ ⊗A Ah ⊂ (Ah)f = Q(Ah)
and A′ ⊗A Ash ⊂ (Ash)f = Q(Ash) we conclude that A′ ⊗A Ah and A′ ⊗A Ash are the
desired integral closures.

For the completion we argue in entirely the same manner. First, by Algebra, Lemma 97.8
we have

A′ ⊗A A∧ = (A′)∧ =
∏

(A′
m′)∧

The local rings A′
m′ are normal and have dimension 1 (by Algebra, Lemma 113.2 for ex-

ample or the discussion in Algebra, Section 112). Thus A′
m′ is a discrete valuation ring,

see Algebra, Lemma 119.7. Hence (A′
m′)∧ is a discrete valuation ring by More on Algebra,

Lemma 43.5. It follows that A′ ⊗A A∧ is a normal ring and we can conclude in exactly
the same manner as before. �

Lemma 39.6. LetA be a reduced Nagata local ring of dimension 1. The δ-invariant of
A is the same as the δ-invariant of the henselization, strict henselization, or the completion
of A.

Proof. Let us do this in case of the completionB = A∧; the other cases are proved in
exactly the same manner. Let A′, resp. B′ be the integral closure of A, resp. B in its total
ring of fractions. Then B′ = A′ ⊗A B by Lemma 39.5. Hence B′/B = A′/A⊗A B. The
equality now follows from Algebra, Lemma 52.13 and the fact that B ⊗A κA = κB . �

Definition 39.7. Let k be a field. Let X be a locally algebraic k-scheme. Let x ∈ X
be a point such that OX,x is reduced and dim(OX,x) = 1. The δ-invariant of X at x is
the δ-invariant ofOX,x as defined in Definition 39.3.

This makes sense because the local ring of a locally algebraic scheme is Nagata by Algebra,
Proposition 162.16. Of course, more generally we can make this definition whenever x ∈
X is a point of a scheme such that the local ring OX,x is reduced, Nagata of dimension 1.
It follows from Lemma 39.6 that the δ-invariant of X at x is

δ-invariant of X at x = δ-invariant ofOhX,x = δ-invariant ofO∧
X,x

We conclude that the δ-invariant is an invariant of the complete local ring of the point.

Lemma 39.8. Let k be a field. LetX be a locally algebraic k-scheme. LetK/k be a field
extension and set Y = XK . Let y ∈ Y with image x ∈ X . Assume X is geometrically
reduced at x and dim(OX,x) = dim(OY,y) = 1. Then

δ-invariant of X at x ≤ δ-invariant of Y at y

Proof. Set A = OX,x and B = OY,y . By Lemma 6.2 we see that A is geometrically
reduced. Hence B is a localization of A⊗k K. Let A→ A′ be as in Lemma 39.2. Then

B′ = B ⊗(A⊗kK) (A′ ⊗k K)

is finite over B and B → B′ induces an isomorphism on total rings of fractions. Namely,
pick f ∈ mA satisfying (1) – (6) of Lemma 39.1; since dim(B) = 1 we see that f ∈ mB
playes the same role for B and we see that Bf = B′

f because Af = A′
f . Let B′′ be the
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integral closure of B in its total ring of fractions as in Lemma 39.2. Then B′ ⊂ B′′. Thus
the δ-invariant of Y at y is lengthB(B′′/B) and

lengthB(B′′/B) ≥ lengthB(B′/B)
= lengthB((A′/A)⊗A B)
= lengthB(B/mAB)lengthA(A′/A)

by Algebra, Lemma 52.13 since A → B is flat (as a localization of A → A ⊗k K). Since
lengthA(A′/A) is the δ-invariant of X at x and since lengthB(B/mAB) ≥ 1 the lemma
is proved. �

Lemma 39.9. Let k be a field. Let X be a locally algebraic k-scheme. Let K/k be a
field extension and set Y = XK . Let y ∈ Y with image x ∈ X . Assume assumptions (a),
(b), (c) of Lemma 27.6 hold for x ∈ X and that dim(OY,y) = 1. Then the δ-invariant of
X at x is δ-invariant of Y at y.

Proof. SetA = OX,x andB = OY,y . By Lemma 27.6 we see thatA is geometrically
reduced. Hence B is a localization of A ⊗k K. Let A → A′ be as in Lemma 39.2. By
Lemma 27.6 we see that A′ ⊗k K is normal. Hence

B′ = B ⊗(A⊗kK) (A′ ⊗k K)

is normal, finite over B, and B → B′ induces an isomorphism on total rings of fractions.
Namely, pick f ∈ mA satisfying (1) – (6) of Lemma 39.1; since dim(B) = 1 we see that
f ∈ mB playes the same role forB and we see thatBf = B′

f becauseAf = A′
f . It follows

that B → B′ is as in Lemma 39.2 for B. Thus we have to show that lengthA(A′/A) =
lengthB(B′/B) = lengthB((A′/A) ⊗A B). Since A → B is flat (as a localization of
A→ A⊗kK) and sincemB = mAB (becauseB/mAB is zero dimensional by the remarks
above and a localization of K ⊗k κ(x) which is reduced as κ(x) is separable over k) we
conclude by Algebra, Lemma 52.13. �

40. The number of branches

We have defined the number of branches of a scheme at a point in Properties, Section 15.

Lemma 40.1. LetX be a scheme. Assume every quasi-compact open ofX has finitely
many irreducible components. Let ν : Xν → X be the normalization of X . Let x ∈ X .

(1) The number of branches of X at x is the number of inverse images of x in Xν .
(2) The number of geometric branches of X at x is

∑
ν(xν)=x[κ(xν) : κ(x)]s.

Proof. First note that the assumption on X exactly means that the normalization is
defined, see Morphisms, Definition 54.1. Then the stalk A′ = (ν∗OXν )x is the integral
closure of A = OX,x in the total ring of fractions of Ared, see Morphisms, Lemma 54.4.
Since ν is an integral morphism, we see that the points of Xν lying over x correspond
to the primes of A′ lying over the maximal ideal m of A. As A → A′ is integral, this is
the same thing as the maximal ideals of A′ (Algebra, Lemmas 36.20 and 36.22). Thus the
lemma now follows from its algebraic counterpart: More on Algebra, Lemma 106.7. �

Lemma 40.2. Let k be a field. Let X be a locally algebraic k-scheme. Let K/k be
an extension of fields. Let y ∈ XK be a point with image x in X . Then the number of
geometric branches of X at x is the number of geometric branches of XK at y.
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Proof. Write Y = XK and let Xν , resp. Y ν be the normalization of X , resp. Y .
Consider the commutative diagram

Y ν //

��

Xν
K

//

νK

��

Xν

ν

��
Y Y // X

By Lemma 27.5 we see that the left top horizontal arrow is a universal homeomorphism.
Hence it induces purely inseparable residue field extensions, see Morphisms, Lemmas 45.5
and 10.2. Thus the number of geometric branches of Y at y is

∑
νK(y′)=y[κ(y′) : κ(y)]s

by Lemma 40.1. Similarly
∑
ν(x′)=x[κ(x′) : κ(x)]s is the number of geometric branches

of X at x. Using Schemes, Lemma 17.5 our statement follows from the following algebra
fact: given a field extension l/κ and an algebraic field extension m/κ, then∑

m⊗κl→m′
[m′ : l′]s = [m : κ]s

where the sum is over the quotient fields of m⊗κ l. One can prove this in an elementary
way, or one can use Lemma 7.6 applied to

Spec(m⊗κl)×Spec(l)Spec(l) = Spec(m)⊗Spec(κ)Spec(l) −→ Spec(m)×Spec(κ)Spec(κ)

because one can interpret [m : κ]s as the number of connected components of the right
hand side and the sum

∑
m⊗κl→m′ [m′ : l′]s as the number of connected components of

the left hand side. �

Lemma 40.3. Let k be a field. Let X be a locally algebraic k-scheme. Let K/k be an
extension of fields. Let y ∈ XK be a point with image x in X . Then X is geometrically
unibranch at x if and only if XK is geometrically unibranch at y.

Proof. Immediate from Lemma 40.2 and More on Algebra, Lemma 106.7. �

Definition 40.4. Let A and Ai, 1 ≤ i ≤ n be local rings. We say A is a wedge of
A1, . . . , An if there exist isomorphisms

κA1 → κA2 → . . .→ κAn

andA is isomorphic to the ring consisting of n-tuples (a1, . . . , an) ∈ A1×. . .×An which
map to the same element of κAn .

If we are given a base ring Λ and A and Ai are Λ-algebras, then we require κAi → κAi+1

to be a Λ-algebra isomorphisms and A to be isomorphic as a Λ-algebra to the Λ-algebra
consisting of n-tuples (a1, . . . , an) ∈ A1 × . . . × An which map to the same element of
κAn . In particular, if Λ = k is a field and the maps k → κAi are isomorphisms, then there
is a unique choice for the isomorphisms κAi → κAi+1 and we often speak of the wedge of
A1, . . . , An.

Lemma 40.5. Let (A,m) be a strictly henselian 1-dimensional reduced Nagata local
ring. Then

δ-invariant of A ≥ number of geometric branches of A− 1

If equality holds, then A is a wedge of n ≥ 1 strictly henselian discrete valuation rings.
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Proof. The number of geometric branches is equal to the number of branches of A
(immediate from More on Algebra, Definition 106.6). Let A → A′ be as in Lemma 39.2.
Observe that the number of branches ofA is the number of maximal ideals ofA′, see More
on Algebra, Lemma 106.7. There is a surjection

A′/A −→
(∏

m′
κ(m′)

)
/κ(m)

Since dimκ(m)
∏
κ(m′) is ≥ the number of branches, the inequality is obvious.

If equality holds, then κ(m′) = κ(m) for all m′ ⊂ A′ and the displayed arrow above is
an isomorphism. Since A is henselian and A→ A′ is finite, we see that A′ is a product of
local henselian rings, see Algebra, Lemma 153.4. The factors are the local rings A′

m′ and
as A′ is normal, these factors are discrete valuation rings (Algebra, Lemma 119.7). Since
the displayed arrow is an isomorphism we see that A is indeed the wedge of these local
rings. �

Lemma 40.6. Let (A,m) be a 1-dimensional reduced Nagata local ring. Then

δ-invariant of A ≥ number of geometric branches of A− 1

Proof. We may replace A by the strict henselization of A without changing the δ-
invariant (Lemma 39.6) and without changing the number of geometric branches of A
(this is immediate from the definition, see More on Algebra, Definition 106.6). Thus we
may assume A is strictly henselian and we may apply Lemma 40.5. �

41. Normalization of one dimensional schemes

The normalization morphism of a Noetherian scheme of dimension 1 has unexpectedly
good properties by the Krull-Akizuki result.

Lemma 41.1. LetX be a locally Noetherian scheme of dimension 1. Let ν : Xν → X
be the normalization. Then

(1) ν is integral, surjective, and induces a bijection on irreducible components,
(2) there is a factorization Xν → Xred → X and the morphism Xν → Xred is the

normalization of Xred,
(3) Xν → Xred is birational,
(4) for every closed point x ∈ X the stalk (ν∗OXν )x is the integral closure ofOX,x

in the total ring of fractions of (OX,x)red = OXred,x,
(5) the fibres of ν are finite and the residue field extensions are finite,
(6) Xν is a disjoint union of integral normal Noetherian schemes and each affine

open is the spectrum of a finite product of Dedekind domains.

Proof. Many of the results are in fact general properties of the normalization mor-
phism, see Morphisms, Lemmas 54.2, 54.4, 54.5, and 54.7. What is not clear is that the
fibres are finite, that the induced residue field extensions are finite, and that Xν locally
looks like the spectrum of a Dedekind domain (and hence is Noetherian). To see this we
may assume that X = Spec(A) is affine, Noetherian, dimension 1, and that A is reduced.
Then we may use the description in Morphisms, Lemma 54.3 to reduce to the case where
A is a Noetherian domain of dimension 1. In this case the desired properties follow from
Krull-Akizuki in the form stated in Algebra, Lemma 120.18. �

Of course there is a variant of the following lemma in case X is not reduced.
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Lemma 41.2. LetX be a reduced Nagata scheme of dimension 1. Let ν : Xν → X be
the normalization. Let x ∈ X denote a closed point. Then

(1) ν : Xν → X is finite, surjective, and birational,
(2) OX ⊂ ν∗OXν and ν∗OXν/OX is a direct sum of skyscraper sheaves Qx in the

singular points x of X ,
(3) A′ = (ν∗OXν )x is the integral closure ofA = OX,x in its total ring of fractions,
(4) Qx = A′/A has finite length equal to the δ-invariant of X at x,
(5) A′ is a semi-local ring which is a finite product of Dedekind domains,
(6) A∧ is a reduced Noetherian complete local ring of dimension 1,
(7) (A′)∧ is the integral closure of A∧ in its total ring of fractions,
(8) (A′)∧ is a finite product of complete discrete valuation rings, and
(9) A′/A ∼= (A′)∧/A∧.

Proof. We may and will use all the results of Lemma 41.1. Finiteness of ν follows
from Morphisms, Lemma 54.10. Since X is reduced, Nagata, of dimension 1, we see that
the regular locus is a dense open U ⊂ X by More on Algebra, Proposition 48.7. Since a
regular scheme is normal, this shows that ν is an isomorphism over U . Since dim(X) ≤ 1
this implies that ν is not an isomorphism over a discrete set of closed points x ∈ X . In
particular we see that we have a short exact sequence

0→ OX → ν∗OXν →
⊕

x∈X\U
Qx → 0

As we have the description of the stalks of ν∗OXν by Lemma 41.1, we conclude thatQx =
A′/A indeed has length equal to the δ-invariant ofX at x. Note thatQx 6= 0 exactly when
x is a singular point for example by Lemma 39.4. The description of A′ as a product of
semi-local Dedekind domains follows from Lemma 41.1 as well. The relationship between
A, A′, and (A′)∧ we have see in Lemma 39.5 (and its proof). �

42. Finding affine opens

We continue the discussion started in Properties, Section 29. It turns out that we can find
affines containing a finite given set of codimension 1 points on a separated scheme. See
Proposition 42.7.

We will improve on the following lemma in Descent, Lemma 25.4.

Lemma 42.1. Let f : X → Y be a morphism of schemes. Let X0 denote the set of
generic points of irreducible components of X . If

(1) f is separated,
(2) there is an open covering X =

⋃
Ui such that f |Ui : Ui → Y is an open

immersion, and
(3) if ξ, ξ′ ∈ X0, ξ 6= ξ′, then f(ξ) 6= f(ξ′),

then f is an open immersion.

Proof. Suppose that y = f(x) = f(x′). Pick a specialization y0  y where y0
is a generic point of an irreducible component of Y . Since f is locally on the source an
isomorphism we can pick specializations x0  x and x′

0  x′ mapping to y0  y. Note
that x0, x

′
0 ∈ X0. Hence x0 = x′

0 by assumption (3). As f is separated we conclude that
x = x′. Thus f is an open immersion. �

Lemma 42.2. Let X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. If
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(1) OX,x = OS,s,
(2) X is reduced,
(3) X → S is of finite type, and
(4) S has finitely many irreducible components,

then there exists an open neighbourhood U of x such that f |U is an open immersion.

Proof. We may remove the (finitely many) irreducible components of S which do
not contain s. We may replace S by an affine open neighbourhood of s. We may replace
X by an affine open neighbourhood of x. Say S = Spec(A) and X = Spec(B). Let
q ⊂ B, resp. p ⊂ A be the prime ideal corresponding to x, resp. s. As A is a reduced and
all of the minimal primes of A are contained in p we see that A ⊂ Ap. As X → S is of
finite type, B is of finite type over A. Let b1, . . . , bn ∈ B be elements which generate B
over A Since Ap = Bq we can find f ∈ A, f 6∈ p and ai ∈ A such that bi and ai/f have
the same image in Bq. Thus we can find g ∈ B, g 6∈ q such that g(fbi − ai) = 0 in B.
It follows that the image of Af → Bfg contains the images of b1, . . . , bn, in particular
also the image of g. Choose n ≥ 0 and f ′ ∈ A such that f ′/fn maps to the image of g
in Bfg . Since Ap = Bq we see that f ′ 6∈ p. We conclude that Aff ′ → Bfg is surjective.
Finally, as Aff ′ ⊂ Ap = Bq (see above) the map Aff ′ → Bfg is injective, hence an
isomorphism. �

Lemma 42.3. Let f : T → X be a morphism of schemes. Let X0, resp. T 0 denote
the sets of generic points of irreducible components. Let t1, . . . , tm ∈ T be a finite set of
points with images xj = f(tj). If

(1) T is affine,
(2) X is quasi-separated,
(3) X0 is finite
(4) f(T 0) ⊂ X0 and f : T 0 → X0 is injective, and
(5) OX,xj = OT,tj ,

then there exists an affine open of X containing x1, . . . , xr.

Proof. Using Limits, Proposition 11.2 there is an immediate reduction to the case
where X and T are reduced. Details omitted.

AssumeX and T are reduced. We may write T = limi∈I Ti as a directed limit of schemes
of finite presentation overX with affine transition morphisms, see Limits, Lemma 7.2. Pick
i ∈ I such that Ti is affine, see Limits, Lemma 4.13. Say Ti = Spec(Ri) and T = Spec(R).
LetR′ ⊂ R be the image ofRi → R. Then T ′ = Spec(R′) is affine, reduced, of finite type
over X , and T → T ′ dominant. For j = 1, . . . , r let t′j ∈ T ′ be the image of tj . Consider
the local ring maps

OX,xj → OT ′,t′
j
→ OT,tj

Denote (T ′)0 the set of generic points of irreducible components of T ′. Let ξ  t′j be a
specialization with ξ ∈ (T ′)0. As T → T ′ is dominant we can choose η ∈ T 0 mapping to
ξ (warning: a priori we do not know that η specializes to tj). Assumption (3) applied to
η tells us that the image θ of ξ in X corresponds to a minimal prime of OX,xj . Lifting ξ
via the isomorphism of (5) we obtain a specialization η′  tj with η′ ∈ T 0 mapping to
θ  xj . The injectivity of (4) shows that η = η′. Thus every minimal prime of OT ′,t′

j

lies below a minimal prime ofOT,tj . We conclude thatOT ′,t′
j
→ OT,tj is injective, hence

both maps above are isomorphisms.
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By Lemma 42.2 there exists an open U ⊂ T ′ containing all the points t′j such that U →
X is a local isomorphism as in Lemma 42.1. By that lemma we see that U → X is an
open immersion. Finally, by Properties, Lemma 29.5 we can find an open W ⊂ U ⊂ T ′

containing all the t′j . The image of W in X is the desired affine open. �

Lemma 42.4. Let X be an integral separated scheme. Let x1, . . . , xr ∈ X be a finite
set of points such thatOX,xi is Noetherian of dimension ≤ 1. Then there exists an affine
open subscheme of X containing all of x1, . . . , xr.

Proof. LetK be the field of rational functions ofX . SetAi = OX,xi . ThenAi ⊂ K
and K is the fraction field of Ai. Since X is separated, and xi 6= xj there cannot be a
valuation ringO ⊂ K dominating both Ai and Aj . Namely, considering the diagram

Spec(O) //

��

Spec(A1)

��
Spec(A2) // X

and applying the valuative criterion of separatedness (Schemes, Lemma 22.1) we would get
xi = xj . Thus we see by Lemma 37.3 that Ai ⊗ Aj → K is surjective for all i 6= j. By
Lemma 37.7 we see that A = A1 ∩ . . .∩Ar is a Noetherian semi-local ring with exactly r
maximal ideals m1, . . . ,mr such that Ai = Ami . Moreover,

Spec(A) = Spec(A1) ∪ . . . ∪ Spec(Ar)
is an open covering and the intersection of any two pieces of this covering is Spec(K).
Thus the given morphisms Spec(Ai)→ X glue to a morphism of schemes

Spec(A) −→ X

mapping mi to xi and inducing isomorphisms of local rings. Thus the result follows from
Lemma 42.3. �

Lemma 42.5. Let A be a ring, I ⊂ A an ideal, p1, . . . , pr primes of A, and f ∈ A/I
an element. If I 6⊂ pi for all i, then there exists an f ∈ A, f 6∈ pi which maps to f inA/I .

Proof. We may assume there are no inclusion relations among the pi (by removing
the smaller primes). First pick any f ∈ A lifting f . Let S be the set s ∈ {1, . . . , r} such
that f ∈ ps. If S is empty we are done. If not, consider the ideal J = I

∏
i 6∈S pi. Note

that J is not contained in ps for s ∈ S because there are no inclusions among the pi and
because I is not contained in any pi. Hence we can choose g ∈ J , g 6∈ ps for s ∈ S by
Algebra, Lemma 15.2. Then f + g is a solution to the problem posed by the lemma. �

Lemma 42.6. Let X be a scheme. Let T ⊂ X be finite set of points. Assume
(1) X has finitely many irreducible components Z1, . . . , Zt, and
(2) Zi ∩ T is contained in an affine open of the reduced induced subscheme corre-

sponding to Zi.
Then there exists an affine open subscheme of X containing T .

Proof. Using Limits, Proposition 11.2 there is an immediate reduction to the case
where X is reduced. Details omitted. In the rest of the proof we endow every closed
subset of X with the induced reduced closed subscheme structure.
We argue by induction that we can find an affine open U ⊂ Z1 ∪ . . . ∪ Zr containing
T ∩(Z1∪ . . .∪Zr). For r = 1 this holds by assumption. Say r > 1 and letU ⊂ Z1∪ . . .∪
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Zr−1 be an affine open containing T ∩ (Z1 ∪ . . . ∪ Zr−1). Let V ⊂ Xr be an affine open
containing T ∩Zr (exists by assumption). ThenU∩V contains T ∩(Z1∪. . .∪Zr−1)∩Zr.
Hence

∆ = (U ∩ Zr) \ (U ∩ V )
does not contain any element ofT . Note that ∆ is a closed subset ofU . By prime avoidance
(Algebra, Lemma 15.2), we can find a standard openU ′ ofU containing T ∩U and avoiding
∆, i.e., U ′ ∩Zr ⊂ U ∩ V . After replacing U by U ′ we may assume that U ∩ V is closed in
U .

Using that by the same arguments as above also the set ∆′ = (U ∩ (Z1 ∪ . . . ∪ Zr−1)) \
(U ∩ V ) does not contain any element of T we find a h ∈ O(V ) such that D(h) ⊂ V
contains T ∩ V and such that U ∩D(h) ⊂ U ∩ V . Using that U ∩ V is closed in U we
can use Lemma 42.5 to find an element g ∈ O(U) whose restriction to U ∩ V equals the
restriction of h to U ∩ V and such that T ∩ U ⊂ D(g). Then we can replace U by D(g)
and V by D(h) to reach the situation where U ∩ V is closed in both U and V . In this
case the scheme U ∪V is affine by Limits, Lemma 11.3. This proves the induction step and
thereby the lemma. �

Here is a conclusion we can draw from the material above.

Proposition 42.7. Let X be a separated scheme such that every quasi-compact open
has a finite number of irreducible components. Let x1, . . . , xr ∈ X be points such that
OX,xi is Noetherian of dimension ≤ 1. Then there exists an affine open subscheme of X
containing all of x1, . . . , xr.

Proof. We can replace X by a quasi-compact open containing x1, . . . , xr hence we
may assume that X has finitely many irreducible components. By Lemma 42.6 we reduce
to the case where X is integral. This case is Lemma 42.4. �

43. Curves

In the Stacks project we will use the following as our definition of a curve.

Definition 43.1. Let k be a field. A curve is a variety of dimension 1 over k.

Two standard examples of curves over k are the affine line A1
k and the projective line P1

k.
The scheme X = Spec(k[x, y]/(f)) is a curve if and only if f ∈ k[x, y] is irreducible.

Our definition of a curve has the same problems as our definition of a variety, see the
discussion following Definition 3.1. Moreover, it means that every curve comes with a
specified field of definition. For example X = Spec(C[x]) is a curve over C but we can
also view it as a curve over R. The scheme Spec(Z) isn’t a curve, even though the schemes
Spec(Z) and A1

Fp behave similarly in many respects.

Lemma 43.2. Let X be a separated, irreducible scheme of dimension > 0 over a field
k. Let x ∈ X be a closed point. The open subscheme X \ {x} is not proper over k.

Proof. Since X is irreducible, U = X \ {x} is not closed in X . In particular, the
immersionU → X is not proper. By Morphisms, Lemma 41.7 (here we useX is separated),
U → Spec(k) is not proper either. �

Lemma 43.3. Let X be a separated finite type scheme over a field k. If dim(X) ≤ 1
then X is H-quasi-projective over k.
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Proof. By Proposition 38.12 the schemeX has an ample invertible sheafL. By Mor-
phisms, Lemma 39.3 we see thatX is isomorphic to a locally closed subscheme of Pn

k over
Spec(k). This is the definition of being H-quasi-projective over k, see Morphisms, Defi-
nition 40.1. �

Lemma 43.4. Let X be a proper scheme over a field k. If dim(X) ≤ 1 then X is
H-projective over k.

Proof. By Lemma 43.3 we see that X is a locally closed subscheme of Pn
k for some

field k. SinceX is proper over k it follows thatX is a closed subscheme of Pn
k (Morphisms,

Lemma 41.7). �

Lemma 43.5. LetX be a separated scheme of finite type over k. If dim(X) ≤ 1, then
there exists an open immersion j : X → X with the following properties

(1) X is H-projective over k, i.e., X is a closed subscheme of Pd
k for some d,

(2) j(X) ⊂ X is dense and scheme theoretically dense,
(3) X \X = {x1, . . . , xn} for some closed points xi ∈ X .

Proof. By Lemma 43.3 we may assumeX is a locally closed subscheme of Pd
k for some

d. LetX ⊂ Pd
k be the scheme theoretic image ofX → Pd

k , see Morphisms, Definition 6.2.
The description in Morphisms, Lemma 7.7 gives properties (1) and (2). Then dim(X) =
1 ⇒ dim(X) = 1 for example by looking at generic points, see Lemma 20.3. As X is
Noetherian, it then follows thatX \X = {x1, . . . , xn} is a finite set of closed points. �

Lemma 43.6. Let X be a separated scheme of finite type over k. If X is reduced and
dim(X) ≤ 1, then there exists an open immersion j : X → X such that

(1) X is H-projective over k, i.e., X is a closed subscheme of Pd
k for some d,

(2) j(X) ⊂ X is dense and scheme theoretically dense,
(3) X \X = {x1, . . . , xn} for some closed points xi ∈ X ,
(4) the local ringsOX,xi are discrete valuation rings for i = 1, . . . , n.

Proof. Let j : X → X be as in Lemma 43.5. Consider the normalizationX ′ ofX in
X . By Lemma 27.3 the morphism X ′ → X is finite. By Morphisms, Lemma 44.16 X ′ →
X is projective. By Morphisms, Lemma 43.16 we see that X ′ → X is H-projective. By
Morphisms, Lemma 43.7 we see that X ′ → Spec(k) is H-projective. Let {x′

1, . . . , x
′
m} ⊂

X ′ be the inverse image of {x1, . . . , xn} = X \ X . Then dim(OX′,x′
i
) = 1 for all 1 ≤

i ≤ m. Hence the local rings OX′,x′ are discrete valuation rings by Morphisms, Lemma
53.16. Then X → X ′ and {x′

1, . . . , x
′
m} is as desired. �

Lemma 43.7. Let X be a separated scheme of finite type over k with dim(X) ≤ 1.
Then there exists a commutative diagram

Y 1 q . . .q Y n

**

Y1 q . . .q Yn ν
//

��

j
oo Xk′ //

��

X

f

��
Spec(k′

1)q . . .q Spec(k′
n) // Spec(k′) // Spec(k)

of schemes with the following properties:
(1) k′/k is a finite purely inseparable extension of fields,
(2) ν is the normalization of Xk′ ,
(3) j is an open immersion with dense image,
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(4) k′
i/k

′ is a finite separable extension for i = 1, . . . , n,
(5) Y i is smooth, projective, geometrically irreducible dimension ≤ 1 over k′

i.

Proof. As we may replace X by its reduction, we may and do assume X is reduced.
Choose X → X as in Lemma 43.6. If we can show the lemma for X , then the lemma
follows for X (details omitted). Thus we may and do assume X is projective.

Choose k′/k finite purely inseparable such that the normalization ofXk′ is geometrically
normal over k′, see Lemma 27.4. Denote Y = (Xk′)ν the normalization; for properties of
the normalization, see Section 27. Then Y is geometrically regular as normal and regular
are the same in dimension≤ 1, see Properties, Lemma 12.6. Hence Y is smooth over k′ by
Lemma 12.6. LetY = Y1q. . .qYn be the decomposition ofY into irreducible components.
Set k′

i = Γ(Yi,OYi). These are finite separable extensions of k′ by Lemma 9.3. The proof
is finished by Lemma 9.4. �

Lemma 43.8. Let k be a field. Let X be a curve over k. Let x ∈ X be a closed point.
We think of x as a (reduced) closed subscheme ofX with sheaf of ideals I . The following
are equivalent

(1) OX,x is regular,
(2) OX,x is normal,
(3) OX,x is a discrete valuation ring,
(4) I is an invertibleOX -module,
(5) x is an effective Cartier divisor on X .

If k is perfect or if κ(x) is separable over k, these are also equivalent to
(6) X → Spec(k) is smooth at x.

Proof. Since X is a curve, the local ring OX,x is a Noetherian local domain of di-
mension 1 (Lemma 20.3). Parts (4) and (5) are equivalent by definition and are equivalent
to Ix = mx ⊂ OX,x having one generator (Divisors, Lemma 15.2). The equivalence of
(1), (2), (3), (4), and (5) therefore follows from Algebra, Lemma 119.7. The final statement
follows from Lemma 25.8 in case k is perfect. If κ(x)/k is separable, then the equivalence
follows from Algebra, Lemma 140.5. �

Remark 43.9. Let k be a field. Let X be a regular curve over k. By Lemmas 43.8
and 43.6 there exists a nonsingular projective curve X which is a compactification of X ,
i.e., there exists an open immersion j : X → X such that the complement consists of a
finite number of closed points. If k is perfect, then X and X are smooth over k and X is
a smooth projective compactification of X .

Observe that if an affine scheme X over k is proper over k then X is finite over k (Mor-
phisms, Lemma 44.11) and hence has dimension 0 (Algebra, Lemma 53.2 and Proposition
60.7). Hence a scheme of dimension > 0 over k cannot be both affine and proper over k.
Thus the possibilities in the following lemma are mutually exclusive.

Lemma 43.10. Let X be a curve over k. Then either X is an affine scheme or X is
H-projective over k.

Proof. Choose X → X with X \X = {x1, . . . , xr} as in Lemma 43.6. Then X is
a curve as well. If r = 0, then X = X is H-projective over k. Thus we may assume r ≥ 1
and our goal is to show that X is affine. By Lemma 38.2 it suffices to show that X \ {x1}
is affine. This reduces us to the claim stated in the next paragraph.
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Let X be an H-projective curve over k. Let x ∈ X be a closed point such that OX,x is a
discrete valuation ring. Claim: U = X \ {x} is affine. By Lemma 43.8 the point x defines
an effective Cartier divisor of X . For n ≥ 1 denote nx = x + . . . + x the n-fold sum,
see Divisors, Definition 13.6. Denote Onx the structure sheaf of nx viewed as a coherent
module on X . Since every invertible module on the local scheme nx is trivial the first
short exact sequence of Divisors, Remark 14.11 reads

0→ OX
1−→ OX(nx)→ Onx → 0

in our case. Note that dimkH
0(X,Onx) ≥ n. Namely, by Lemma 33.3 we haveH0(X,Onx) =

OX,x/(πn) where π in OX,x is a uniformizer and the powers πi map to k-linearly inde-
pendent elements inOX,x/(πn) for i = 0, 1, . . . , n−1. We have dimkH

1(X,OX) <∞
by Cohomology of Schemes, Lemma 19.2. If n > dimkH

1(X,OX) we conclude from the
long exact cohomology sequence that there exists an s ∈ Γ(X,OX(nx)) which is not a
section of OX . If we take n minimal with this property, then s will map to a generator
of the stalk (OX(nx))x since otherwise it would define a section of OX((n − 1)x) ⊂
OX(nx). For this n we conclude that s0 = 1 and s1 = s generate the invertible module
L = OX(nx).

Consider the corresponding morphism f = ϕL,(s0,s1) : X → P1
k of Constructions,

Section 13. Observe that the inverse image ofD+(T0) is U = X \ {x} as the section s0 of
L only vanishes at x. In particular, f is non-constant, i.e., Im(f) has more than one point.
Hence f must map the generic point η ofX to the generic point of P1

k. Hence if y ∈ P1
k is

a closed point, then f−1({y}) is a closed set ofX not containing η, hence finite. Finally, f
is proper4. By Cohomology of Schemes, Lemma 21.25 we conclude that f is finite. Hence
U = f−1(D+(T0)) is affine. �

The following lemma combined with Lemma 43.2 tells us that given a separated schemeX
of dimension 1 and of finite type over k, then X \ Z is affine, whenever the closed subset
Z meets every irreducible component of X .

Lemma 43.11. Let X be a separated scheme of finite type over k. If dim(X) ≤ 1 and
no irreducible component of X is proper of dimension 1, then X is affine.

Proof. Let X =
⋃
Xi be the decomposition of X into irreducible components.

We think of Xi as an integral scheme (using the reduced induced scheme structure, see
Schemes, Definition 12.5). In particular Xi is a singleton (hence affine) or a curve hence
affine by Lemma 43.10. Then

∐
Xi → X is finite surjective and

∐
Xi is affine. Thus we

see that X is affine by Cohomology of Schemes, Lemma 13.3. �

4Namely, a H-projective variety is a proper variety by Morphisms, Lemma 43.13. A morphism of varieties
whose source is a proper variety is a proper morphism by Morphisms, Lemma 41.7.

5One can avoid using this lemma which relies on the theorem of formal functions. Namely,X is projective
hence it suffices to show a proper morphism f : X → Y with finite fibres between quasi-projective schemes
over k is finite. To do this, one chooses an affine open of X containing the fibre of f over a point y using that
any finite set of points of a quasi-projective scheme over k is contained in an affine. Shrinking Y to a small affine
neighbourhood of y one reduces to the case of a proper morphism between affines. Such a morphism is finite by
Morphisms, Lemma 44.7.
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44. Degrees on curves

We start defining the degree of an invertible sheaf and more generally a locally free sheaf
on a proper scheme of dimension 1 over a field. In Section 33 we defined the Euler char-
acteristic of a coherent sheaf F on a proper scheme X over a field k by the formula

χ(X,F) =
∑

(−1)i dimkH
i(X,F).

Definition 44.1. Let k be a field, letX be a proper scheme of dimension≤ 1 over k,
and let L be an invertibleOX -module. The degree of L is defined by

deg(L) = χ(X,L)− χ(X,OX)

More generally, if E is a locally free sheaf of rank n we define the degree of E by

deg(E) = χ(X, E)− nχ(X,OX)

Observe that this depends on the triple E/X/k. IfX is disconnected and E is finite locally
free (but not of constant rank), then one can modify the definition by summing the degrees
of the restriction of E to the connected components ofX . If E is just a coherent sheaf, there
are several different ways of extending the definition6. In a series of lemmas we show that
this definition has all the properties one expects of the degree.

Lemma 44.2. Let k′/k be an extension of fields. Let X be a proper scheme of dimen-
sion ≤ 1 over k. Let E be a locally free OX -module of constant rank n. Then the degree
of E/X/k is equal to the degree of Ek′/Xk′/k′.

Proof. More precisely, set Xk′ = X ×Spec(k) Spec(k′). Let Ek′ = p∗E where p :
Xk′ → X is the projection. By Cohomology of Schemes, Lemma 5.2 we haveHi(Xk′ , Ek′) =
Hi(X, E) ⊗k k′ and Hi(Xk′ ,OXk′ ) = Hi(X,OX) ⊗k k′. Hence we see that the Euler
characteristics are unchanged, hence the degree is unchanged. �

Lemma 44.3. Let k be a field. Let X be a proper scheme of dimension ≤ 1 over k.
Let 0 → E1 → E2 → E3 → 0 be a short exact sequence of locally free OX -modules each
of finite constant rank. Then

deg(E2) = deg(E1) + deg(E3)

Proof. Follows immediately from additivity of Euler characteristics (Lemma 33.2)
and additivity of ranks. �

Lemma 44.4. Let k be a field. Let f : X ′ → X be a birational morphism of proper
schemes of dimension ≤ 1 over k. Then

deg(f∗E) = deg(E)

for every finite locally free sheaf of constant rank. More generally it suffices if f induces a
bijection between irreducible components of dimension 1 and isomorphisms of local rings
at the corresponding generic points.

Proof. The morphism f is proper (Morphisms, Lemma 41.7) and has fibres of dimen-
sion ≤ 0. Hence f is finite (Cohomology of Schemes, Lemma 21.2). Thus

Rf∗f
∗E = f∗f

∗E = E ⊗OX
f∗OX′

6If X is a proper curve and F is a coherent sheaf on X , then one often defines the degree as χ(X,F) −
rχ(X,OX) where r = dimκ(ξ) Fξ is the rank of F at the generic point ξ of X .
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Since f induces an isomorphism on local rings at generic points of all irreducible compo-
nents of dimension 1 we see that the kernel and cokernel

0→ K → OX → f∗OX′ → Q→ 0

have supports of dimension≤ 0. Note that tensoring this with E is still an exact sequence
as E is locally free. We obtain

χ(X, E)− χ(X ′, f∗E) = χ(X, E)− χ(X, f∗f
∗E)

= χ(X, E)− χ(X, E ⊗ f∗OX′)
= χ(X,K ⊗ E)− χ(X,Q⊗ E)
= nχ(X,K)− nχ(X,Q)
= nχ(X,OX)− nχ(X, f∗OX′)
= nχ(X,OX)− nχ(X ′,OX′)

which proves what we want. The first equality as f is finite, see Cohomology of Schemes,
Lemma 2.4. The second equality by projection formula, see Cohomology, Lemma 54.2.
The third by additivity of Euler characteristics, see Lemma 33.2. The fourth by Lemma
33.3. �

Lemma 44.5. Let k be a field. Let X be a proper curve over k with generic point ξ.
Let E be a locally freeOX -module of rank n and let F be a coherentOX -module. Then

χ(X, E ⊗ F) = r deg(E) + nχ(X,F)

where r = dimκ(ξ) Fξ is the rank of F .

Proof. LetP be the property of coherent sheavesF onX expressing that the formula
of the lemma holds. We claim that the assumptions (1) and (2) of Cohomology of Schemes,
Lemma 12.6 hold for P . Namely, (1) holds because the Euler characteristic and the rank
r are additive in short exact sequences of coherent sheaves. And (2) holds too: If Z = X
then we may take G = OX and P(OX) is true by the definition of degree. If i : Z → X
is the inclusion of a closed point we may take G = i∗OZ and P holds by Lemma 33.3 and
the fact that r = 0 in this case. �

Let k be a field. Let X be a finite type scheme over k of dimension ≤ 1. Let Ci ⊂ X ,
i = 1, . . . , t be the irreducible components of dimension 1. We view Ci as a scheme
by using the induced reduced scheme structure. Let ξi ∈ Ci be the generic point. The
multiplicity of Ci in X is defined as the length

mi = lengthOX,ξi
OX,ξi

This makes sense becauseOX,ξi is a zero dimensional Noetherian local ring and hence has
finite length over itself (Algebra, Proposition 60.7). See Chow Homology, Section 9 for
additional information. It turns out the degree of a locally free sheaf only depends on the
restriction of the irreducible components.

Lemma 44.6. Let k be a field. LetX be a proper scheme of dimension≤ 1 over k. Let
E be a locally freeOX -module of rank n. Then

deg(E) =
∑

mi deg(E|Ci)

where Ci ⊂ X , i = 1, . . . , t are the irreducible components of dimension 1 with reduced
induced scheme structure and mi is the multiplicity of Ci in X .
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Proof. Observe that the statement makes sense because Ci → Spec(k) is proper of
dimension 1 (Morphisms, Lemmas 41.6 and 41.4). Consider the open subschemeUi = X \
(
⋃
j 6=i Cj) and letXi ⊂ X be the scheme theoretic closure of Ui. Note thatXi ∩Ui = Ui

(scheme theoretically) and that Xi ∩ Uj = ∅ (set theoretically) for i 6= j; this follows
from the description of scheme theoretic closure in Morphisms, Lemma 7.7. Thus we may
apply Lemma 44.4 to the morphism X ′ =

⋃
Xi → X . Since it is clear that Ci ⊂ Xi

(scheme theoretically) and that the multiplicity of Ci inXi is equal to the multiplicity of
Ci in X , we see that we reduce to the case discussed in the following paragraph.

Assume X is irreducible with generic point ξ. Let C = Xred have multiplicity m. We
have to show that deg(E) = m deg(E|C). Let I ⊂ OX be the ideal defining the closed
subschemeC. Let e ≥ 0 be minimal such that Ie+1 = 0 (Cohomology of Schemes, Lemma
10.2). We argue by induction on e. If e = 0, then X = C and the result is immediate.
Otherwise we set F = Ie viewed as a coherent OC -module (Cohomology of Schemes,
Lemma 9.8). LetX ′ ⊂ X be the closed subscheme cut out by the coherent ideal Ie and let
m′ be the multiplicity of C in X ′. Taking stalks at ξ of the short exact sequence

0→ F → OX → OX′ → 0

we find (use Algebra, Lemmas 52.3, 52.6, and 52.5) that

m = lengthOX,ξ
OX,ξ = dimκ(ξ) Fξ + lengthOX′,ξ

OX′,ξ = r +m′

where r is the rank of F as a coherent sheaf on C. Tensoring with E we obtain a short
exact sequence

0→ E|C ⊗F → E → E ⊗OX′ → 0

By induction we haveχ(E⊗OX′) = m′ deg(E|C). By Lemma 44.5 we haveχ(E|C⊗F) =
r deg(E|C) + nχ(F). Putting everything together we obtain the result. �

Lemma 44.7. Let k be a field, letX be a proper scheme of dimension≤ 1 over k, and
let E , V be locally freeOX -modules of constant finite rank. Then

deg(E ⊗ V) = rank(E) deg(V) + rank(V) deg(E)

Proof. By Lemma 44.6 and elementary arithmetic, we reduce to the case of a proper
curve. This case follows from Lemma 44.5. �

Lemma 44.8. Let k be a field, letX be a proper scheme of dimension≤ 1 over k, and
let E be a locally freeOX -module of rank n. Then

deg(E) = deg(∧n(E)) = deg(det(E))

Proof. By Lemma 44.6 and elementary arithmetic, we reduce to the case of a proper
curve. Then there exists a modification f : X ′ → X such that f∗E has a filtration whose
successive quotients are invertible modules, see Divisors, Lemma 36.1. By Lemma 44.4 we
may work on X ′. Thus we may assume we have a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ En = E

by locally free OX -modules with Li = Ei/Ei−1 is invertible. By Modules, Lemma 26.1
and induction we find det(E) = L1 ⊗ . . . ⊗ Ln. Thus the equality follows from Lemma
44.7 and additivity (Lemma 44.3). �
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Lemma 44.9. Let k be a field, let X be a proper scheme of dimension≤ 1 over k. Let
D be an effective Cartier divisor onX . ThenD is finite over Spec(k) of degree deg(D) =
dimk Γ(D,OD). For a locally free sheaf E of rank n we have

deg(E(D)) = n deg(D) + deg(E)
where E(D) = E ⊗OX

OX(D).

Proof. SinceD is nowhere dense inX (Divisors, Lemma 13.4) we see that dim(D) ≤
0. HenceD is finite over k by Lemma 20.2. Since k is a field, the morphismD → Spec(k)
is finite locally free and hence has a degree (Morphisms, Definition 48.1), which is clearly
equal to dimk Γ(D,OD) as stated in the lemma. By Divisors, Definition 14.1 there is a
short exact sequence

0→ OX → OX(D)→ i∗i
∗OX(D)→ 0

where i : D → X is the closed immersion. Tensoring with E we obtain a short exact
sequence

0→ E → E(D)→ i∗i
∗E(D)→ 0

The equation of the lemma follows from additivity of the Euler characteristic (Lemma
33.2) and Lemma 33.3. �

Lemma 44.10. Let k be a field. LetX be a proper scheme over k which is reduced and
connected. Let κ = H0(X,OX). Then κ/k is a finite extension of fields and w = [κ : k]
divides

(1) deg(E) for all locally freeOX -modules E ,
(2) [κ(x) : k] for all closed points x ∈ X , and
(3) deg(D) for all closed subschemes D ⊂ X of dimension zero.

Proof. See Lemma 9.3 for the assertions about κ. For every quasi-coherent OX -
module, the k-vector spacesHi(X,F) are κ-vector spaces. The divisibilities easily follow
from this statement and the definitions. �

Lemma 44.11. Let k be a field. Let f : X → Y be a nonconstant morphism of proper
curves over k. Let E be a locally freeOY -module. Then

deg(f∗E) = deg(X/Y ) deg(E)

Proof. The degree ofX overY is defined in Morphisms, Definition 51.8. Thus f∗OX
is a coherent OY -module of rank deg(X/Y ), i.e., deg(X/Y ) = dimκ(ξ)(f∗OX)ξ where
ξ is the generic point of Y . Thus we obtain

χ(X, f∗E) = χ(Y, f∗f
∗E)

= χ(Y, E ⊗ f∗OX)
= deg(X/Y ) deg(E) + nχ(Y, f∗OX)
= deg(X/Y ) deg(E) + nχ(X,OX)

as desired. The first equality as f is finite, see Cohomology of Schemes, Lemma 2.4. The
second equality by projection formula, see Cohomology, Lemma 54.2. The third equality
by Lemma 44.5. �

The following is a trivial but important consequence of the results on degrees above.

Lemma 44.12. Let k be a field. LetX be a proper curve over k. Let L be an invertible
OX -module.
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(1) If L has a nonzero section, then deg(L) ≥ 0.
(2) If L has a nonzero section s which vanishes at a point, then deg(L) > 0.
(3) If L and L−1 have nonzero sections, then L ∼= OX .
(4) If deg(L) ≤ 0 and L has a nonzero section, then L ∼= OX .
(5) IfN → L is a nonzero map of invertible OX -modules, then deg(L) ≥ deg(N )

and if equality holds then it is an isomorphism.

Proof. Let s be a nonzero section of L. Since X is a curve, we see that s is a regular
section. Hence there is an effective Cartier divisor D ⊂ X and an isomorphism L →
OX(D) mapping s the canonical section 1 of OX(D), see Divisors, Lemma 14.10. Then
deg(L) = deg(D) by Lemma 44.9. As deg(D) ≥ 0 and = 0 if and only if D = ∅, this
proves (1) and (2). In case (3) we see that deg(L) = 0 and D = ∅. Similarly for (4). To
see (5) apply (1) and (4) to the invertible sheaf

L ⊗OX
N⊗−1 = HomOX

(N ,L)
which has degree deg(L)− deg(N ) by Lemma 44.7. �

Lemma 44.13. Let k be a field. Let X be a proper scheme over k which is reduced,
connected, and equidimensional of dimension 1. Let L be an invertible OX -module. If
deg(L|C) ≤ 0 for all irreducible components C of X , then either H0(X,L) = 0 or
L ∼= OX .

Proof. Let s ∈ H0(X,L) be nonzero. Since X is reduced there exists an irreducible
component C of X with s|C 6= 0. But if s|C is nonzero, then s is nonwhere vanishing
on C by Lemma 44.12. This in turn implies s is nowhere vanishing on every irreducible
component of X meeting C. Since X is connected, we conclude that s vanishes nowhere
and the lemma follows. �

Lemma 44.14. Let k be a field. LetX be a proper curve over k. Let L be an invertible
OX -module. Then L is ample if and only if deg(L) > 0.

Proof. If L is ample, then there exists an n > 0 and a section s ∈ H0(X,L⊗n) with
Xs affine. SinceX isn’t affine (otherwise by Morphisms, Lemma 44.11X would be finite),
we see that s vanishes at some point. Hence deg(L⊗n) > 0 by Lemma 44.12. By Lemma
44.7 we conclude that deg(L) = 1/n deg(L⊗n) > 0.

Assume deg(L) > 0. Then

dimkH
0(X,L⊗n) ≥ χ(X,Ln) = n deg(L) + χ(X,OX)

grows linearly with n. Hence for any finite collection of closed points x1, . . . , xt of X ,
we can find an n such that dimkH

0(X,L⊗n) >
∑

dimk κ(xi). (Recall that by Hilbert
Nullstellensatz, the extension fields κ(xi)/k are finite, see for example Morphisms, Lemma
20.3). Hence we can find a nonzero s ∈ H0(X,L⊗n) vanishing in x1, . . . , xt. In partic-
ular, if we choose x1, . . . , xt such that X \ {x1, . . . , xt} is affine, then Xs is affine too
(for example by Properties, Lemma 26.4 although if we choose our finite set such that
L|X\{x1,...,xt} is trivial, then it is immediate). The conclusion is that we can find an n > 0
and a nonzero section s ∈ H0(X,L⊗n) such that Xs is affine.

We will show that for every quasi-coherent sheaf of ideals I there exists an m > 0 such
that H1(X, I ⊗ L⊗m) is zero. This will finish the proof by Cohomology of Schemes,
Lemma 17.1. To see this we consider the maps

I s−→ I ⊗ L⊗n s−→ I ⊗ L⊗2n s−→ . . .
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Since I is torsion free, these maps are injective and isomorphisms over Xs, hence the cok-
ernels have vanishing H1 (by Cohomology of Schemes, Lemma 9.10 for example). We
conclude that the maps of vector spaces

H1(X, I)→ H1(X, I ⊗ L⊗n)→ H1(X, I ⊗ L⊗2n)→ . . .

are surjective. On the other hand, the dimension of H1(X, I) is finite, and every element
maps to zero eventually by Cohomology of Schemes, Lemma 17.4. Thus for some e > 0
we see that H1(X, I ⊗ L⊗en) is zero. This finishes the proof. �

Lemma 44.15. Let k be a field. LetX be a proper scheme of dimension≤ 1 over k. Let
L be an invertible OX -module. Let Ci ⊂ X , i = 1, . . . , t be the irreducible components
of dimension 1. The following are equivalent:

(1) L is ample, and
(2) deg(L|Ci) > 0 for i = 1, . . . , t.

Proof. Let x1, . . . , xr ∈ X be the isolated closed points. Think of xi = Spec(κ(xi))
as a scheme. Consider the morphism of schemes

f : C1 q . . .q Ct q x1 q . . .q xr −→ X

This is a finite surjective morphism of schemes proper over k (details omitted). Thus L
is ample if and only if f∗L is ample (Cohomology of Schemes, Lemma 17.2). Thus we
conclude by Lemma 44.14. �

Lemma 44.16. Let k be an algebraically closed field. Let X be a proper curve over k.
Then there exist

(1) an invertibleOX -module L with dimkH
0(X,L) = 1 and H1(X,L) = 0, and

(2) an invertibleOX -moduleN with dimkH
0(X,N ) = 0 and H1(X,N ) = 0.

Proof. Choose a closed immersion i : X → Pn
k (Lemma 43.4). SettingL = i∗OPn(d)

for d� 0 we see that there exists an invertible sheafLwithH0(X,L) 6= 0 andH1(X,L) =
0 (see Cohomology of Schemes, Lemma 17.1 for vanishing and the references therein for
nonvanishing). We will finish the proof of (1) by descending induction on t = dimkH

0(X,L).
The base case t = 1 is trivial. Assume t > 1.
Let U ⊂ X be the nonempty open subset of nonsingular points studied in Lemma 25.8.
Let s ∈ H0(X,L) be nonzero. There exists a closed point x ∈ U such that s does not
vanish in x. Let I be the ideal sheaf of i : x → X as in Lemma 43.8. Look at the short
exact sequence

0→ I ⊗OX
L → L → i∗i

∗L → 0
Observe that H0(X, i∗i∗L) = H0(x, i∗L) has dimension 1 as x is a k-rational point (k is
algebraically closed). Since s does not vanish at x we conclude that

H0(X,L) −→ H0(X, i∗i∗L)
is surjective. Hence dimkH

0(X, I ⊗OX
L) = t − 1. Finally, the long exact sequence

of cohomology also shows that H1(X, I ⊗OX
L) = 0 thereby finishing the proof of the

induction step.
To get an invertible sheaf as in (2) take an invertible sheaf L as in (1) and do the argument
in the previous paragraph one more time. �

Lemma 44.17. Let k be an algebraically closed field. Let X be a proper curve over k.
Set g = dimkH

1(X,OX). For every invertibleOX -module L with deg(L) ≥ 2g− 1 we
have H1(X,L) = 0.
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Proof. LetN be the invertible module we found in Lemma 44.16 part (2). The degree
of N is χ(X,N ) − χ(X,OX) = 0 − (1 − g) = g − 1. Hence the degree of L ⊗ N⊗−1

is deg(L) − (g − 1) ≥ g. Hence χ(X,L ⊗ N⊗−1) ≥ g + 1 − g = 1. Thus there is
a nonzero global section s whose zero scheme is an effective Cartier divisor D of degree
deg(L)− (g − 1). This gives a short exact sequence

0→ N s−→ L → i∗(L|D)→ 0

where i : D → X is the inclusion morphism. We conclude that H0(X,L) maps isomor-
phically to H0(D,L|D) which has dimension deg(L)− (g− 1). The result follows from
the definition of degree. �

45. Numerical intersections

In this section we play around with the Euler characteristic of coherent sheaves on proper
schemes to obtain numerical intersection numbers for invertible modules. Our main tool
will be the following lemma.

Lemma 45.1. Let k be a field. Let X be a proper scheme over k. Let F be a coherent
OX -module. Let L1, . . . ,Lr be invertibleOX -modules. The map

(n1, . . . , nr) 7−→ χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )

is a numerical polynomial in n1, . . . , nr of total degree at most the dimension of the sup-
port of F .

Proof. We prove this by induction on dim(Supp(F)). If this number is zero, then
the function is constant with value dimk Γ(X,F) by Lemma 33.3. Assume dim(Supp(F)) >
0.

If F has embedded associated points, then we can consider the short exact sequence 0 →
K → F → F ′ → 0 constructed in Divisors, Lemma 4.6. Since the dimension of the
support ofK is strictly less, the result holds forK by induction hypothesis and with strictly
smaller total degree. By additivity of the Euler characteristic (Lemma 33.2) it suffices to
prove the result forF ′. Thus we may assumeF does not have embedded associated points.

If i : Z → X is a closed immersion and F = i∗G , then we see that the result for X , F ,
L1, . . . ,Lr is equivalent to the result for Z , G , i∗L1, . . . , i

∗Lr (since the cohomologies
agree, see Cohomology of Schemes, Lemma 2.4). Applying Divisors, Lemma 4.7 we may
assume that X has no embedded components and X = Supp(F).

Pick a regular meromorphic section s ofL1, see Divisors, Lemma 25.4. Let I ⊂ OX be the
ideal of denominators of s and consider the maps

IF → F , IF → F ⊗ L1

of Divisors, Lemma 24.5. These are injective and have cokernels Q, Q′ supported on
nowhere dense closed subschemes ofX = Supp(F). Tensoring with the invertible module
L⊗n1

1 ⊗ . . .⊗ L⊗nr
r is exact, hence using additivity again we see that

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )− χ(X,F ⊗ L⊗n1+1
1 ⊗ . . .⊗ L⊗nr

r )
= χ(Q⊗L⊗n1

1 ⊗ . . .⊗ L⊗nr
r )− χ(Q′ ⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nr
r )

Thus we see that the function P (n1, . . . , nr) of the lemma has the property that

P (n1 + 1, n2, . . . , nr)− P (n1, . . . , nr)
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is a numerical polynomial of total degree< the dimension of the support of F . Of course
by symmetry the same thing is true for

P (n1, . . . , ni−1, ni + 1, ni+1, . . . , nr)− P (n1, . . . , nr)
for any i ∈ {1, . . . , r}. A simple arithmetic argument shows that P is a numerical poly-
nomial of total degree at most dim(Supp(F)). �

The following lemma roughly shows that the leading coefficient only depends on the
length of the coherent module in the generic points of its support.

Lemma 45.2. Let k be a field. Let X be a proper scheme over k. Let F be a coherent
OX -module. Let L1, . . . ,Lr be invertible OX -modules. Let d = dim(Supp(F)). Let
Zi ⊂ X be the irreducible components of Supp(F) of dimension d. Let ξi ∈ Zi be the
generic point and set mi = lengthOX,ξi

(Fξi). Then

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

i
mi χ(Zi,L⊗n1

1 ⊗ . . .⊗ L⊗nr
r |Zi)

is a numerical polynomial in n1, . . . , nr of total degree < d.

Proof. Consider pairs (ξ, Z) whereZ ⊂ X is an integral closed subscheme of dimen-
sion d and ξ is its generic point. Then the finite OX,ξ-module Fξ has support contained
in {ξ} hence the length mZ = lengthOX,ξ

(Fξ) is finite (Algebra, Lemma 62.3) and zero
unless Z = Zi for some i. Thus the expression of the lemma can be written as

E(F) = χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

mZ χ(Z,L⊗n1
1 ⊗ . . .⊗ L⊗nr

r |Z)

where the sum is over integral closed subschemes Z ⊂ X of dimension d. The assignment
F 7→ E(F) is additive in short exact sequences 0 → F → F ′ → F ′′ → 0 of coherent
OX -modules whose support has dimension ≤ d. This follows from additivity of Euler
characteristics (Lemma 33.2) and additivity of lengths (Algebra, Lemma 52.3). Let us apply
Cohomology of Schemes, Lemma 12.3 to find a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that for each j = 1, . . . ,m there exists an integral closed
subscheme Vj ⊂ X and a nonzero sheaf of ideals Ij ⊂ OVj such that

Fj/Fj−1 ∼= (Vj → X)∗Ij
It follows that Vj ⊂ Supp(F) and hence dim(Vj) ≤ d. By the additivity we remarked
upon above it suffices to prove the result for each of the subquotients Fj/Fj−1. Thus
it suffices to prove the result when F = (V → X)∗I where V ⊂ X is an integral
closed subscheme of dimension ≤ d and I ⊂ OV is a nonzero coherent sheaf of ideals.
If dim(V ) < d and more generally for F whose support has dimension < d, then the
first term in E(F) has total degree < d by Lemma 45.1 and the second term is zero. If
dim(V ) = d, then we can use the short exact sequence

0→ (V → X)∗I → (V → X)∗OV → (V → X)∗(OV /I)→ 0
The result holds for the middle sheaf because the only Z occurring in the sum is Z = V
with mZ = 1 and because

Hi(X, ((V → X)∗OV )⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) = Hi(V,L⊗n1
1 ⊗ . . .⊗ L⊗nr

r |V )
by the projection formula (Cohomology, Section 54) and Cohomology of Schemes, Lemma
2.4; so in this case we actually haveE(F) = 0. The result holds for the sheaf on the right
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because its support has dimension < d. Thus the result holds for the sheaf on the left and
the lemma is proved. �

Definition 45.3. Let k be a field. LetX be a proper scheme over k. Let i : Z → X be
a closed subscheme of dimension d. Let L1, . . . ,Ld be invertibleOX -modules. We define
the intersection number (L1 · · · Ld · Z) as the coefficient of n1 . . . nd in the numerical
polynomial

χ(X, i∗OZ ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nd

d ) = χ(Z,L⊗n1
1 ⊗ . . .⊗ L⊗nd

d |Z)
In the special case that L1 = . . . = Ld = L we write (Ld · Z).

The displayed equality in the definition follows from the projection formula (Cohomol-
ogy, Section 54) and Cohomology of Schemes, Lemma 2.4. We prove a few lemmas for
these intersection numbers.

Lemma 45.4. In the situation of Definition 45.3 the intersection number (L1 · · · Ld ·
Z) is an integer.

Proof. Any numerical polynomial of degree e in n1, . . . , nd can be written uniquely
as a Z-linear combination of the functions

(
n1
k1

)(
n2
k2

)
. . .
(
nd
kd

)
with k1+. . .+kd ≤ e. Apply

this with e = d. Left as an exercise. �

Lemma 45.5. In the situation of Definition 45.3 the intersection number (L1 · · · Ld ·
Z) is additive: if Li = L′

i ⊗ L′′
i , then we have

(L1 · · · Li · · · Ld · Z) = (L1 · · · L′
i · · · Ld · Z) + (L1 · · · L′′

i · · · Ld · Z)

Proof. This is true because by Lemma 45.1 the function

(n1, . . . , ni−1, n
′
i, n

′′
i , ni+1, . . . , nd) 7→ χ(Z,L⊗n1

1 ⊗. . .⊗(L′
i)⊗n′

i⊗(L′′
i )⊗n′′

i ⊗. . .⊗L⊗nd
d |Z)

is a numerical polynomial of total degree at most d in d+ 1 variables. �

Lemma 45.6. In the situation of Definition 45.3 let Zi ⊂ Z be the irreducible com-
ponents of dimension d. Letmi = lengthOX,ξi

(OZ,ξi) where ξi ∈ Zi is the generic point.
Then

(L1 · · · Ld · Z) =
∑

mi(L1 · · · Ld · Zi)

Proof. Immediate from Lemma 45.2 and the definitions. �

Lemma 45.7. Let k be a field. Let f : Y → X be a morphism of proper schemes
over k. Let Z ⊂ Y be an integral closed subscheme of dimension d and let L1, . . . ,Ld be
invertibleOX -modules. Then

(f∗L1 · · · f∗Ld · Z) = deg(f |Z : Z → f(Z))(L1 · · · Ld · f(Z))
where deg(Z → f(Z)) is as in Morphisms, Definition 51.8 or 0 if dim(f(Z)) < d.

Proof. The left hand side is computed using the coefficient of n1 . . . nd in the func-
tion
χ(Y,OZ ⊗ f∗L⊗n1

1 ⊗ . . .⊗ f∗L⊗nd
d ) =

∑
(−1)iχ(X,Rif∗OZ ⊗L⊗n1

1 ⊗ . . .⊗L⊗nd
d )

The equality follows from Lemma 33.5 and the projection formula (Cohomology, Lemma
54.2). If f(Z) has dimension < d, then the right hand side is a polynomial of total degree
< d by Lemma 45.1 and the result is true. Assume dim(f(Z)) = d. Let ξ ∈ f(Z) be the
generic point. By dimension theory (see Lemmas 20.3 and 20.4) the generic point of Z
is the unique point of Z mapping to ξ. Then f : Z → f(Z) is finite over a nonempty
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open of f(Z), see Morphisms, Lemma 51.1. Thus deg(f : Z → f(Z)) is defined and in
fact it is equal to the length of the stalk of f∗OZ at ξ over OX,ξ . Moreover, the stalk of
Rif∗OX at ξ is zero for i > 0 because we just saw that f |Z is finite in a neighbourhood
of ξ (so that Cohomology of Schemes, Lemma 9.9 gives the vanishing). Thus the terms
χ(X,Rif∗OZ ⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nd
d ) with i > 0 have total degree < d and

χ(X, f∗OZ⊗L⊗n1
1 ⊗. . .⊗L⊗nd

d ) = deg(f : Z → f(Z))χ(f(Z),L⊗n1
1 ⊗. . .⊗L⊗nd

d |f(Z))

modulo a polynomial of total degree < d by Lemma 45.2. The desired result follows. �

Lemma 45.8. Let k be a field. Let X be proper over k. Let Z ⊂ X be a closed
subscheme of dimension d. LetL1, . . . ,Ld be invertibleOX -modules. Assume there exists
an effective Cartier divisor D ⊂ Z such that L1|Z ∼= OZ(D). Then

(L1 · · · Ld · Z) = (L2 · · · Ld ·D)

Proof. We may replace X by Z and Li by Li|Z . Thus we may assume X = Z and
L1 = OX(D). Then L−1

1 is the ideal sheaf of D and we can consider the short exact
sequence

0→ L⊗−1
1 → OX → OD → 0

Set P (n1, . . . , nd) = χ(X,L⊗n1
1 ⊗ . . .⊗L⊗nd

d ) andQ(n1, . . . , nd) = χ(D,L⊗n1
1 ⊗ . . .⊗

L⊗nd
d |D). We conclude from additivity that

P (n1, . . . , nd)− P (n1 − 1, n2, . . . , nd) = Q(n1, . . . , nd)

Because the total degree of P is at most d, we see that the coefficient of n1 . . . nd in P is
equal to the coefficient of n2 . . . nd in Q. �

Lemma 45.9. Let k be a field. Let X be proper over k. Let Z ⊂ X be a closed
subscheme of dimension d. If L1, . . . ,Ld are ample, then (L1 · · · Ld · Z) is positive.

Proof. We will prove this by induction on d. The case d = 0 follows from Lemma
33.3. Assume d > 0. By Lemma 45.6 we may assume that Z is an integral closed sub-
scheme. In fact, we may replace X by Z and Li by Li|Z to reduce to the case Z = X is
a proper variety of dimension d. By Lemma 45.5 we may replace L1 by a positive tensor
power. Thus we may assume there exists a nonzero section s ∈ Γ(X,L1) such that Xs

is affine (here we use the definition of ample invertible sheaf, see Properties, Definition
26.1). Observe that X is not affine because proper and affine implies finite (Morphisms,
Lemma 44.11) which contradicts d > 0. It follows that shas a nonempty vanishing scheme
Z(s) ⊂ X . SinceX is a variety, s is a regular section of L1, so Z(s) is an effective Cartier
divisor, thus Z(s) has codimension 1 in X , and hence Z(s) has dimension d− 1 (here we
use material from Divisors, Sections 13, 14, and 15 and from dimension theory as in Lemma
20.3). By Lemma 45.8 we have

(L1 · · · Ld ·X) = (L2 · · · Ld · Z(s))

By induction the right hand side is positive and the proof is complete. �

Definition 45.10. Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX -module. For any closed subscheme the degree of Z with respect to
L, denoted degL(Z), is the intersection number (Ld · Z) where d = dim(Z).
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By Lemma 45.9 the degree of a subscheme is always a positive integer. We note that
degL(Z) = d if and only if

χ(Z,L⊗n|Z) = d

dim(Z)!n
dim(Z) + l.o.t

as can be seen using that

(n1 + . . .+ ndim(Z))dim(Z) = dim(Z)! n1 . . . ndim(Z) + other terms

Lemma 45.11. Let k be a field. Let f : Y → X be a finite dominant morphism of
proper varieties over k. Let L be an ample invertibleOX -module. Then

degf∗L(Y ) = deg(f) degL(X)
where deg(f) is as in Morphisms, Definition 51.8.

Proof. The statement makes sense because f∗L is ample by Morphisms, Lemma 37.7.
Having said this the result is a special case of Lemma 45.7. �

Finally we relate the intersection number with a curve to the notion of degrees of invert-
ible modules on curves introduced in Section 44.

Lemma 45.12. Let k be a field. Let X be a proper scheme over k. Let Z ⊂ X be a
closed subscheme of dimension ≤ 1. Let L be an invertibleOX -module. Then

(L · Z) = deg(L|Z)
where deg(L|Z) is as in Definition 44.1. If L is ample, then degL(Z) = deg(L|Z).

Proof. This follows from the fact that the function n 7→ χ(Z,L|⊗nZ ) has degree 1
and hence the leading coefficient is the difference of consecutive values. �

Proposition 45.13 (Asymptotic Riemann-Roch). Let k be a field. Let X be a proper
scheme over k of dimension d. Let L be an ample invertibleOX -module. Then

dimk Γ(X,L⊗n) ∼ cnd + l.o.t.

where c = degL(X)/d! is a positive constant.

Proof. This follows from the definitions, Lemma 45.9, and the vanishing of higher
cohomology in Cohomology of Schemes, Lemma 17.1. �

46. Embedding dimension

There are several ways to define the embedding dimension, but for closed points on alge-
braic schemes over algebraically closed fields all definitions are equivalent to the following.

Definition 46.1. Let k be an algebraically closed field. Let X be a locally alge-
braic k-scheme and let x ∈ X be a closed point. The embedding dimension of X at x
is dimk mx/m

2
x.

Facts about embedding dimension. Let k,X, x be as in Definition 46.1.
(1) The embedding dimension ofX atx is the dimension of the tangent spaceTX/k,x

(Definition 16.3) as a k-vector space.
(2) The embedding dimension ofX at x is the smallest integer d ≥ 0 such that there

exists a surjection
k[[x1, . . . , xd]] −→ O∧

X,x

of k-algebras.
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(3) The embedding dimension ofX at x is the smallest integer d ≥ 0 such that there
exists an open neighbourhood U ⊂ X of x and a closed immersion U → Y
where Y is a smooth variety of dimension d over k.

(4) The embedding dimension of X at x is the smallest integer d ≥ 0 such that
there exists an open neighbourhood U ⊂ X of x and an unramified morphism
U → Ad

k.
(5) If we are given a closed embedding X → Y with Y smooth over k, then the

embedding dimension of X at x is the smallest integer d ≥ 0 such that there
exists a closed subscheme Z ⊂ Y with X ⊂ Z , with Z → Spec(k) smooth at x,
and with dimx(Z) = d.

If we ever need these, we will formulate a precise result and provide a proof.

Non-algebraically closed ground fields or non-closed points. Let k be a field and let X be
a locally algebraic k-scheme. If x ∈ X is a point, then we have several options for the
embedding dimension of X at x. Namely, we could use

(1) dimκ(x)(mx/m2
x),

(2) dimκ(x)(TX/k,x) = dimκ(x)(ΩX/k,x ⊗OX,x
κ(x)) (Lemma 16.4),

(3) the smallest integer d ≥ 0 such that there exists an open neighbourhood U ⊂ X
of x and a closed immersion U → Y where Y is a smooth variety of dimension
d over k.

In characteristic zero (1) = (2) if x is a closed point; more generally this holds if κ(x)
is separable algebraic over k, see Lemma 16.5. It seems that the geometric definition (3)
corresponds most closely to the geometric intuition the phrase “embedding dimension”
invokes. Since one can show that (3) and (2) define the same number (this follows from
Lemma 18.5) this is what we will use. In our terminology we will make clear that we are
taking the embedding dimension relative to the ground field.

Definition 46.2. Let k be a field. Let X be a locally algebraic k-scheme. Let x ∈ X
be a point. The embedding dimension of X/k at x is dimκ(x)(TX/k,x).

If (A,m, κ) is a Noetherian local ring the embedding dimension ofA is sometimes defined
as the dimension of m/m2 over κ. Above we have seen that if A is given as an algebra
over a field k, it may be preferable to use dimκ(ΩA/k ⊗A κ). Let us call this quantity the
embedding dimension of A/k. With this terminology in place we have

embed dim of X/k at x = embed dim ofOX,x/k = embed dim ofO∧
X,x/k

if k,X, x are as in Definition 46.2.

47. Bertini theorems

In this section we prove results of the form: given a smooth projective variety X over a
field k there exists an ample divisor H ⊂ X which is smooth.

Lemma 47.1. Let k be a field. Let X be a proper scheme over k. Let L be an ample
invertibleOX -module. LetZ ⊂ X be a closed subscheme. Then there exists an integer n0
such that for all n ≥ n0 the kernel Vn of Γ(X,L⊗n)→ Γ(Z,L⊗n|Z) generates L⊗n|X\Z
and the canonical morphism

X \ Z −→ P(Vn)
is an immersion of schemes over k.
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Proof. Let I ⊂ OX be the quasi-coherent ideal sheaf of Z. Observe that via the
inclusion I ⊗OX

L⊗n ⊂ L⊗n we have Vn = Γ(X, I ⊗OX
L⊗n). Choose n1 such that

for n ≥ n1 the sheaf I ⊗ L⊗n is globally generated, see Properties, Proposition 26.13. It
follows that Vn gererates L⊗n|X\Z for n ≥ n1.

Forn ≥ n1 denoteψn : Vn → Γ(X\Z,L⊗n|X\Z) the restriction map. We get a canonical
morphism

ϕ = ϕL⊗n|X\Z ,ψn : X \ Z −→ P(Vn)
by Constructions, Example 21.2. Choose n2 such that for all n ≥ n2 the invertible sheaf
L⊗n is very ample on X . We claim that n0 = n1 + n2 works.

Proof of the claim. Say n ≥ n0 and write n = n1 + n′. For x ∈ X \ Z we can choose
s1 ∈ V1 not vanishing at x. Set V ′ = Γ(X,L⊗n′). By our choice of n and n′ we see that
the corresponding morphism ϕ′ : X → P(V ′) is a closed immersion. Thus if we choose
s′ ∈ Γ(X,L⊗n′) not vanishing at x, then Xs′ = (ϕ′)−1(D+(s′)) (see Constructions,
Lemma 14.1) is affine and Xs′ → D+(s′) is a closed immersion. Then s = s1 ⊗ s′ ∈ Vn
does not vanish at x. If D+(s) ⊂ P(Vn) denotes the corresponding open affine space of
our projective space, then ϕ−1(D+(s)) = Xs ⊂ X \ Z (see reference above). The open
Xs = Xs′ ∩Xs1 is affine, see Properties, Lemma 26.4. Consider the ring map

Sym(V )(s) −→ OX(Xs)

defining the morphism Xs → D+(s). Because Xs′ → D+(s′) is a closed immersion, the
images of the elements

s1 ⊗ t′

s1 ⊗ s′

where t′ ∈ V ′ generate the image of OX(Xs′) → OX(Xs). Since Xs → Xs′ is an open
immersion, this implies that Xs → D+(s) is an immersion of affine schemes (see below).
Thus ϕn is an immersion by Morphisms, Lemma 3.5.

Let a : A′ → A and c : B → A be ring maps such that Spec(a) is an immersion and
Im(a) ⊂ Im(c). Set B′ = A′ ×A B with projections b : B′ → B and c′ : B′ →
A′. By assumption c′ is surjective and hence Spec(c′) is a closed immersion. Whence
Spec(c′) ◦ Spec(a) is an immersion (Schemes, Lemma 24.3). Then Spec(c) has to be an
immersion because it factors the immersion Spec(c′) ◦ Spec(a) = Spec(b) ◦ Spec(c), see
Morphisms, Lemma 3.1. �

Situation 47.2. Let k be a field, let X be a scheme over k, let L be an invertible
OX -module, let V be a finite dimensional k-vector space, and let ψ : V → Γ(X,L) be
a k-linear map. Say dim(V ) = r and we have a basis v1, . . . , vr of V . Then we obtain a
“universal divisor”

Huniv = Z(suniv) ⊂ Ar ×k X
as the zero scheme (Divisors, Definition 14.8) of the section

suniv =
∑

i=1,...,r
xiψ(vi) ∈ Γ(Ar ×k X, pr∗

2L)

For a field extension k′/k the k′-points v ∈ Ar
k(k′) correspond to vectors (a1, . . . , ar) of

elements of k′. Thus we may on the one hand think of v as the element v =
∑
i=1,...,r aivi ∈

V ⊗k k′ and on the other hand we may assign to v the section

ψ(v) =
∑

i=1,...,r
aiψ(vi) ∈ Γ(Xk′ ,L|Xk′ )
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With this notation it is clear that the fibre of Huniv over v ∈ V ⊗ k′ is the zero scheme
of ψ(v). In a formula:

Hv = Huniv,v = Z(ψ(v))
We will denote this common value by Hv as indicated. Finally, in this situation let P be
a property of vectors v ∈ V ⊗k k′ for k′/k an arbitrary field extension7. We say P holds
for general v ∈ V ⊗k k′ if there exists a nonempty Zariski open U ⊂ Ar

k such that if v
corresponds to a k′-point of U for any k′/k then P (v) holds.

Lemma 47.3. In Situation 47.2 assume
(1) X is smooth over k,
(2) the image of ψ : V → Γ(X,L) generates L,
(3) the corresponding morphism ϕL,ψ : X → P(V ) is an immersion.

Then for general v ∈ V ⊗k k′ the scheme Hv is smooth over k′.

Proof. (We observe thatX is separated and finite type as a locally closed subscheme
of a projective space.) Let us use the notation introduced above the statement of the lemma.
We consider the projections

Ar
k ×k X

��

Huniv
oo

p

yy

//

q
%%

Ar
k ×k X

��
X Ar

k

Let Σ ⊂ Huniv be the singular locus of the morphsm q : Huniv → Ar
k , i.e., the set

of points where q is not smooth. Then Σ is closed because the smooth locus of a mor-
phism is open by definition. Since the fibre of a smooth morphism is smooth, it suffices to
prove q(Σ) is contained in a proper closed subset of Ar

k. Since Σ (with reduced induced
scheme structure) is a finite type scheme over k it suffices to prove dim(Σ) < r This fol-
lows from Lemma 20.4. Since dimensions aren’t changed by replacing k by a bigger field
(Morphisms, Lemma 28.3), we may and do assume k is algebraically closed. By dimension
theory (Lemma 20.4), it suffices to prove that for x ∈ X \Z closed we have p−1({x})∩Σ
has dimension < r − dim(X ′) where X ′ is the unique irreducible component of X con-
taining x. AsX is smooth over k and x is a closed point we have dim(X ′) = dimmx/m

2
x

(Morphisms, Lemma 34.12 and Algebra, Lemma 140.1). Thus we win if

dim p−1(x) ∩ Σ < r − dimmx/m
2
x

for all x ∈ X closed.
SinceV globally generatedL, for every irreducible componentX ′ ofX there is a nonempty
Zariski open of Ar such that the fibres of q over this open do not contain X ′. (For exam-
ple, if x′ ∈ X ′ is a closed point, then we can take the open corresponding to those vectors
v ∈ V such that ψ(v) does not vanish at x′. This open will be the complement of a hyper-
plane in Ar

k.) Let U ⊂ Ar be the (nonempty) intersection of these opens. Then the fibres
of q−1(U) → U are effective Cartier divisors on the fibres of U ×k X → U (because a
nonvanishing section of an invertible module on an integral scheme is a regular section).
Hence the morphism q−1(U)→ U is flat by Divisors, Lemma 18.9. Thus for x ∈ X closed
and v ∈ V = Ar

k(k), if (x, v) ∈ Huniv , i.e., if x ∈ Hv then q is smooth at (x, v) if and
only if the fibre Hv is smooth at x, see Morphisms, Lemma 34.14.

7For example we could consider the condition thatHv is smooth over k′ , or geometrically irreducible over
k′.
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Consider the image ψ(v)x in the stalkLx of the section corresponding to v ∈ V . We have

x ∈ Hv ⇔ ψ(v)x ∈ mxLx
If this is true, then we have

Hv singular at x⇔ ψ(v)x ∈ m2
xLx

Namely, ψ(v)x is not contained in m2
xLx ⇔ the local equation for Hv ⊂ X at x is not

contained in m2
x⇔OHv,x is regular (Algebra, Lemma 106.3)⇔Hv is smooth at x over k

(Algebra, Lemma 140.5). We conclude that the closed points of p−1(x)∩Σ correspond to
those v ∈ V such that ψ(v)x ∈ m2

xLx. However, as ϕL,ψ is an immersion the map

V −→ Lx/m2
xLx

is surjective (small detail omitted). By the above, the closed points of the locus p−1(x) ∩
Σ viewed as a subspace of V is the kernel of this map and hence has dimension r −
dimmx/m

2
x − 1 as desired. �

48. Enriques-Severi-Zariski

In this section we prove some results of the form: twisting by a “very negative” invertible
module kills low degree cohomology. We also deduce the connectedness of a hypersurface
section of a normal proper scheme of dimension ≥ 2.

Lemma 48.1. Let k be a field. Let X be a proper scheme over k. Let L be an ample
invertible OX -module. Let F be a coherent OX -module. If Ass(F) does not contain any
closed points, then Γ(X,F ⊗OX

L⊗n) = 0 for n� 0.

Proof. For a coherentOX -moduleF letP(F) be the property: there exists an n0 ∈
Z such that for n ≤ n0 every section s of F ⊗OX

L⊗n has support consisting only of
closed points. Since Ass(F) = Ass(F ⊗OX

L⊗n) we see that it suffices to prove P holds
for all coherent modules on X . To do this we will prove that conditions (1), (2), and (3)
of Cohomology of Schemes, Lemma 12.8 are satisfied.

To see condition (1) suppose that

0→ F1 → F → F2 → 0
is a short exact sequence of coherent OX -modules such that we have P for Fi, i = 1, 2.
Let n1, n2 be the cutoffs we find. LetF ′

2 ⊂ F2 be the maximal coherent submodule whose
support is a finite set of closed points. Let I ⊂ OX be the annihilator of F ′

2. Since L
is ample, we can find an e > 0 such that I ⊗OX

L⊗e is globally generated. Set n0 =
min(n2, n1 − e). Let n ≤ n0 and let t be a global section of F ⊗ L⊗n. The image of t in
F2 ⊗ L⊗n falls into F ′

2 ⊗ L⊗n because n ≤ n2. Hence for any s ∈ Γ(X, I ⊗OX
L⊗e)

the product t ⊗ s lies in F1 ⊗ L⊗n+e. Thus t ⊗ s has support contained in the finite set
of closed points in Ass(F1) because n + e ≤ n1. Since by our choice of e we may choose
s invertible in any point not in the support of F ′

2 we conclude that the support of t is
contained in the union of the finite set of closed points in Ass(F1) and the finite set of
closed points in Ass(F2). This finishes the proof of condition (1).

Condition (2) is immediate.

For condition (3) we choose G = OZ . In this case, if Z is a closed point of X , then there
is nothing the show. If dim(Z) > 0, then we will show that Γ(Z,L⊗n|Z) = 0 for n < 0.
Namely, let s be a nonzero section of a negative power of L|Z . Choose a nonzero section t
of a positive power ofL|Z (this is possible asL is ample, see Properties, Proposition 26.13).
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Then sdeg(t) ⊗ tdeg(s) is a nonzero global section ofOZ (because Z is integral) and hence
a unit (Lemma 9.3). This implies that t is a trivializing section of a positive power of L.
Thus the function n 7→ dimk Γ(X,L⊗n) is bounded on an infinite set of positive integers
which contradicts asymptotic Riemann-Roch (Proposition 45.13) since dim(Z) > 0. �

Lemma 48.2 (Enriques-Severi-Zariski). Let k be a field. LetX be a proper scheme over
k. Let L be an ample invertible OX -module. Let F be a coherent OX -module. Assume
that for x ∈ X closed we have depth(Fx) ≥ 2. Then H1(X,F ⊗OX

L⊗m) = 0 for
m� 0.

Proof. Choose a closed immersion i : X → Pn
k such that i∗O(1) ∼= L⊗e for some

e > 0 (see Morphisms, Lemma 39.4). Then it suffices to prove the lemma for
G = i∗(F ⊕ F ⊗ L⊕ . . .⊕F ⊗ L⊗e−1) and O(1)

on Pn
k . Namely, we have

H1(Pn
k ,G(m)) =

⊕
j=0,...,e−1

H1(X,F ⊗ L⊗j+me)

by Cohomology of Schemes, Lemma 2.4. Also, if y ∈ Pn
k is a closed point then depth(Gy) =

∞ if y 6∈ i(X) and depth(Gy) = depth(Fx) if y = i(x) because in this case Gy ∼= F⊕e
x as a

module overOPn
k
,x and we can use for example Algebra, Lemma 72.11 to get the equality.

Assume X = Pn
k and L = O(1) and k is infinite. Choose s ∈ H0(P1

k,O(1)) which
determines an exact sequence

0→ F(−1) s−→ F → G → 0
as in Lemma 35.3. Since the map F(−1) → F is affine locally given by multiplying by a
nonzerodivisor on F we see that for x ∈ Pn

k closed we have depth(Gx) ≥ 1, see Algebra,
Lemma 72.7. Hence by Lemma 48.1 we have H0(G(m)) = 0 for m � 0. Looking at
the long exact sequence of cohomology after twisting (see Remark 35.5) we find that the
sequence of numbers

dimH1(Pn
k ,F(m))

stabilizes for m ≤ m0 for some integer m0. Let N be the common dimension of these
spaces for m ≤ m0. We have to show N = 0.
For d > 0 and m ≤ m0 consider the bilinear map

H0(Pn
k ,O(d))×H1(Pn

k ,F(m− d)) −→ H1(Pn
k ,F(m))

By linear algebra, there is a codimension ≤ N2 subspace Vm ⊂ H0(Pn
k ,O(d)) such that

multiplication by s′ ∈ Vm annihilates H1(Pn
k ,F(m − d)). Observe that for m′ < m ≤

m0 the diagram

H0(Pn
k ,O(d))×H1(Pn

k ,F(m′ − d)) //

1×sm
′−m

��

H1(Pn
k ,F(m′))

sm
′−m

��
H0(Pn

k ,O(d))×H1(Pn
k ,F(m− d)) // H1(Pn

k ,F(m))

commutes with isomorphisms going vertically. Thus Vm = V is independent ofm ≤ m0.
For x ∈ Ass(F) set Z = {x}. For d large enough the linear map

H0(Pn
k ,O(d))→ H0(Z,O(d)|Z)

has rank> N2 because dim(Z) ≥ 1 (for example this follows from asymptotic Riemann-
Roch and ampleness O(1); details omitted). Hence we can find s′ ∈ V such that s′ does
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not vanish in any associated point ofF (use that the set of associated points is finite). Then
we obtain

0→ F(−d) s′

−→ F → G′ → 0
and as before we conclude as before that multiplication by s′ on H1(Pn

k ,F(m − d)) is
injective for m� 0. This contradicts the choice of s′ unless N = 0 as desired.
We still have to treat the case where k is finite. In this case letK/k be any infinite algebraic
field extension. DenoteFK andLK the pullbacks ofF andL toXK = Spec(K)×Spec(k)
X . We have

H1(XK ,FK ⊗ L⊗m
K ) = H1(X,F ⊗ L⊗m)⊗k K

by Cohomology of Schemes, Lemma 5.2. On the other hand, a closed pointxK ofXK maps
to a closed point x of X because K/k is an algebraic extension. The ring map OX,x →
OXK ,xK is flat (Lemma 5.1). Hence we have

depth(FxK ) = depth(Fx ⊗OX,x
OXK ,xK ) ≥ depth(Fx)

by Algebra, Lemma 163.1 (in fact equality holds here but we don’t need it). Therefore the
result over k follows from the result over the infinite fieldK and the proof is complete. �

Lemma 48.3. Let k be a field. Let X be a proper scheme over k. Let L be an ample
invertibleOX -module. Let s ∈ Γ(X,L). Assume

(1) s is a regular section (Divisors, Definition 14.6),
(2) for every closed point x ∈ X we have depth(OX,x) ≥ 2, and
(3) X is connected.

Then the zero scheme Z(s) of s is connected.

Proof. Since s is a regular section, so is sn ∈ Γ(X,L⊗n) for all n > 1. Moreover, the
inclusion morphismZ(s)→ Z(sn) is a bijection on underlying topological spaces. Hence
if Z(s) is disconnected, so is Z(sn). Now consider the canonical short exact sequence

0→ L⊗−n sn−→ OX → OZ(sn) → 0
Consider the k-algebraRn = Γ(X,OZ(sn)). If Z(s) is disconnected, i.e., Z(sn) is discon-
nected, then either Rn is zero in case Z(sn) = ∅ or Rn contains a nontrivial idempotent
in case Z(sn) = U q V with U, V ⊂ Z(sn) open and nonempty (the reader may wish to
consult Lemma 9.3). Thus the map Γ(X,OX) → Rn cannot be an isomorphism. It fol-
lows that either H0(X,L⊗−n) or H1(X,L⊗−n) is nonzero for infinitely many positive
n. This contradicts Lemma 48.1 or 48.2 and the proof is complete. �

49. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra

(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites



2870 33. VARIETIES

(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces

(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks



49. OTHER CHAPTERS 2871

(109) Moduli of Curves

Miscellany

(110) Examples
(111) Exercises
(112) Guide to Literature

(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index





CHAPTER 34

Topologies on Schemes

1. Introduction

In this document we explain what the different topologies on the category of schemes are.
Some references are [?] and [?]. Before doing so we would like to point out that there
are many different choices of sites (as defined in Sites, Definition 6.2) which give rise to
the same notion of sheaf on the underlying category. Hence our choices may be slightly
different from those in the references but ultimately lead to the same cohomology groups,
etc.

2. The general procedure

In this section we explain a general procedure for producing the sites we will be working
with. Suppose we want to study sheaves over schemes with respect to some topology τ .
In order to get a site, as in Sites, Definition 6.2, of schemes with that topology we have
to do some work. Namely, we cannot simply say “consider all schemes with the Zariski
topology” since that would give a “big” category. Instead, in each section of this chapter
we will proceed as follows:

(1) We define a class Covτ of coverings of schemes satisfying the axioms of Sites,
Definition 6.2. It will always be the case that a Zariski open covering of a scheme
is a covering for τ .

(2) We single out a notion of standard τ -covering within the category of affine
schemes.

(3) We define what is an “absolute” big τ -site Schτ . These are the sites one gets by
appropriately choosing a set of schemes and a set of coverings.

(4) For any object S of Schτ we define the big τ -site (Sch/S)τ and for suitable τ
the small1 τ -site Sτ .

(5) In addition there is a site (Aff/S)τ using the notion of standard τ -covering of
affines2 whose category of sheaves is equivalent to the category of sheaves on
(Sch/S)τ .

The above is a little clumsy in that we do not end up with a canonical choice for the big
τ -site of a scheme, or even the small τ -site of a scheme. If you are willing to ignore set
theoretic difficulties, then you can work with classes and end up with canonical big and
small sites...

1The words big and small here do not relate to bigness/smallness of the corresponding categories.
2In the case of the ph topology we deviate very slightly from this approach, see Definition 8.11 and the

surrounding discussion.

2873
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3. The Zariski topology

Definition 3.1. Let T be a scheme. A Zariski covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that each fi is an open immersion and such that
T =

⋃
fi(Ti).

This defines a (proper) class of coverings. Next, we show that this notion satisfies the
conditions of Sites, Definition 6.2.

Lemma 3.2. Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a Zariski covering of T .
(2) If {Ti → T}i∈I is a Zariski covering and for each i we have a Zariski covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a Zariski covering.

(3) If {Ti → T}i∈I is a Zariski covering and T ′ → T is a morphism of schemes then
{T ′ ×T Ti → T ′}i∈I is a Zariski covering.

Proof. Omitted. �

Lemma 3.3. Let T be an affine scheme. Let {Ti → T}i∈I be a Zariski covering of T .
Then there exists a Zariski covering {Uj → T}j=1,...,m which is a refinement of {Ti →
T}i∈I such that each Uj is a standard open of T , see Schemes, Definition 5.2. Moreover,
we may choose each Uj to be an open of one of the Ti.

Proof. Follows as T is quasi-compact and standard opens form a basis for its topol-
ogy. This is also proved in Schemes, Lemma 5.1. �

Thus we define the corresponding standard coverings of affines as follows.
Definition 3.4. Compare Schemes, Definition 5.2. Let T be an affine scheme. A

standard Zariski covering of T is a Zariski covering {Uj → T}j=1,...,m with eachUj → T
inducing an isomorphism with a standard affine open of T .

Definition 3.5. A big Zariski site is any site SchZar as in Sites, Definition 6.2 con-
structed as follows:

(1) Choose any set of schemes S0, and any set of Zariski coverings Cov0 among these
schemes.

(2) As underlying category of SchZar take any category Schα constructed as in Sets,
Lemma 9.2 starting with the set S0.

(3) As coverings of SchZar choose any set of coverings as in Sets, Lemma 11.1 start-
ing with the category Schα and the class of Zariski coverings, and the set Cov0
chosen above.

It is shown in Sites, Lemma 8.8 that, after having chosen the category Schα, the category
of sheaves on Schα does not depend on the choice of coverings chosen in (3) above. In
other words, the topos Sh(SchZar) only depends on the choice of the category Schα. It
is shown in Sets, Lemma 9.9 that these categories are closed under many constructions of
algebraic geometry, e.g., fibre products and taking open and closed subschemes. We can
also show that the exact choice of Schα does not matter too much, see Section 12.
Another approach would be to assume the existence of a strongly inaccessible cardinal and
to define SchZar to be the category of schemes contained in a chosen universe with set of
coverings the Zariski coverings contained in that same universe.
Before we continue with the introduction of the big Zariski site of a scheme S , let us point
out that the topology on a big Zariski site SchZar is in some sense induced from the Zariski
topology on the category of all schemes.
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Lemma 3.6. Let SchZar be a big Zariski site as in Definition 3.5. LetT ∈ Ob(SchZar).
Let {Ti → T}i∈I be an arbitrary Zariski covering of T . There exists a covering {Uj →
T}j∈J of T in the site SchZar which is tautologically equivalent (see Sites, Definition 8.2)
to {Ti → T}i∈I .

Proof. Since each Ti → T is an open immersion, we see by Sets, Lemma 9.9 that each
Ti is isomorphic to an object Vi of SchZar. The covering {Vi → T}i∈I is tautologically
equivalent to {Ti → T}i∈I (using the identity map on I both ways). Moreover, {Vi →
T}i∈I is combinatorially equivalent to a covering {Uj → T}j∈J of T in the site SchZar
by Sets, Lemma 11.1. �

Definition 3.7. Let S be a scheme. Let SchZar be a big Zariski site containing S.
(1) The big Zariski site of S , denoted (Sch/S)Zar , is the site SchZar/S introduced

in Sites, Section 25.
(2) The small Zariski site of S , which we denote SZar , is the full subcategory of

(Sch/S)Zar whose objects are those U/S such that U → S is an open im-
mersion. A covering of SZar is any covering {Ui → U} of (Sch/S)Zar with
U ∈ Ob(SZar).

(3) The big affine Zariski site of S , denoted (Aff/S)Zar , is the full subcategory of
(Sch/S)Zar consisting of objects U/S such that U is an affine scheme. A cov-
ering of (Aff/S)Zar is any covering {Ui → U} of (Sch/S)Zar with U ∈
Ob((Aff/S)Zar) which is a standard Zariski covering.

(4) The small affine Zariski site of S , denoted Saffine,Zar , is the full subcategory of
SZar whose objects are those U/S such that U is an affine scheme. A covering
of Saffine,Zar is any covering {Ui → U} of SZar with U ∈ Ob(Saffine,Zar)
which is a standard Zariski covering.

It is not completely clear that the small Zariski site, the big affine Zariski site, and the small
affine Zariski site are sites. We check this now.

Lemma 3.8. Let S be a scheme. Let SchZar be a big Zariski site containing S. The
structures SZar , (Aff/S)Zar , and Saffine,Zar defined above are sites.

Proof. Let us show that SZar is a site. It is a category with a given set of families
of morphisms with fixed target. Thus we have to show properties (1), (2) and (3) of Sites,
Definition 6.2. Since (Sch/S)Zar is a site, it suffices to prove that given any covering
{Ui → U} of (Sch/S)Zar with U ∈ Ob(SZar) we also have Ui ∈ Ob(SZar). This
follows from the definitions as the composition of open immersions is an open immersion.
Let us show that (Aff/S)Zar is a site. Reasoning as above, it suffices to show that the
collection of standard Zariski coverings of affines satisfies properties (1), (2) and (3) of
Sites, Definition 6.2. Let R be a ring. Let f1, . . . , fn ∈ R generate the unit ideal. For
each i ∈ {1, . . . , n} let gi1, . . . , gini ∈ Rfi be elements generating the unit ideal of Rfi .
Write gij = fij/f

eij
i which is possible. After replacing fij by fifij if necessary, we have

that D(fij) ⊂ D(fi) ∼= Spec(Rfi) is equal to D(gij) ⊂ Spec(Rfi). Hence we see that
the family of morphisms {D(gij) → Spec(R)} is a standard Zariski covering. From
these considerations it follows that (2) holds for standard Zariski coverings. We omit the
verification of (1) and (3).
We omit the proof that Saffine,Zar is a site. �

Lemma 3.9. Let S be a scheme. Let SchZar be a big Zariski site containing S. The un-
derlying categories of the sites SchZar , (Sch/S)Zar , SZar , (Aff/S)Zar , and Saffine,Zar
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have fibre products. In each case the obvious functor into the category Sch of all schemes
commutes with taking fibre products. The categories (Sch/S)Zar , and SZar both have a
final object, namely S/S.

Proof. For SchZar it is true by construction, see Sets, Lemma 9.9. Suppose we have
U → S , V → U , W → U morphisms of schemes with U, V,W ∈ Ob(SchZar). The fibre
product V ×UW in SchZar is a fibre product in Sch and is the fibre product of V/S with
W/S over U/S in the category of all schemes over S , and hence also a fibre product in
(Sch/S)Zar. This proves the result for (Sch/S)Zar. If U → S , V → U and W → U are
open immersions then so is V ×UW → S and hence we get the result for SZar. IfU, V,W
are affine, so is V ×U W and hence the result for (Aff/S)Zar and Saffine,Zar. �

Next, we check that the big, resp. small affine site defines the same topos as the big, resp.
small site.

Lemma 3.10. Let S be a scheme. Let SchZar be a big Zariski site containing S. The
functor (Aff/S)Zar → (Sch/S)Zar is a special cocontinuous functor. Hence it induces
an equivalence of topoi from Sh((Aff/S)Zar) to Sh((Sch/S)Zar).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1. Denote the
inclusion functor u : (Aff/S)Zar → (Sch/S)Zar. Being cocontinuous just means that
any Zariski covering of T/S , T affine, can be refined by a standard Zariski covering of T .
This is the content of Lemma 3.3. Hence (1) holds. We see u is continuous simply because
a standard Zariski covering is a Zariski covering. Hence (2) holds. Parts (3) and (4) follow
immediately from the fact that u is fully faithful. And finally condition (5) follows from
the fact that every scheme has an affine open covering. �

Lemma 3.11. Let S be a scheme. Let SchZar be a big Zariski site containing S. The
functor Saffine,Zar → SZar is a special cocontinuous functor. Hence it induces an equiv-
alence of topoi from Sh(Saffine,Zar) to Sh(SZar).

Proof. Omitted. Hint: compare with the proof of Lemma 3.10. �

Let us check that the notion of a sheaf on the small Zariski site corresponds to notion of a
sheaf on S.

Lemma 3.12. The category of sheaves onSZar is equivalent to the category of sheaves
on the underlying topological space of S.

Proof. We will use repeatedly that for any objectU/S ofSZar the morphismU → S
is an isomorphism onto an open subscheme. Let F be a sheaf on S. Then we define a
sheaf on SZar by the rule F ′(U/S) = F(Im(U → S)). For the converse, we choose
for every open subscheme U ⊂ S an object U ′/S ∈ Ob(SZar) with Im(U ′ → S) =
U (here you have to use Sets, Lemma 9.9). Given a sheaf G on SZar we define a sheaf
on S by setting G′(U) = G(U ′/S). To see that G′ is a sheaf we use that for any open
covering U =

⋃
i∈I Ui the covering {Ui → U}i∈I is combinatorially equivalent to a

covering {U ′
j → U ′}j∈J inSZar by Sets, Lemma 11.1, and we use Sites, Lemma 8.4. Details

omitted. �

From now on we will not make any distinction between a sheaf on SZar or a sheaf on
S. We will always use the procedures of the proof of the lemma to go between the two
notions. Next, we establish some relationships between the topoi associated to these sites.
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Lemma 3.13. Let SchZar be a big Zariski site. Let f : T → S be a morphism in
SchZar. The functor TZar → (Sch/S)Zar is cocontinuous and induces a morphism of
topoi

if : Sh(TZar) −→ Sh((Sch/S)Zar)
For a sheaf G on (Sch/S)Zar we have the formula (i−1

f G)(U/T ) = G(U/S). The functor
i−1
f also has a left adjoint if,! which commutes with fibre products and equalizers.

Proof. Denote the functor u : TZar → (Sch/S)Zar. In other words, given and open
immersion j : U → T corresponding to an object of TZar we set u(U → T ) = (f ◦ j :
U → S). This functor commutes with fibre products, see Lemma 3.9. Moreover, TZar
has equalizers (as any two morphisms with the same source and target are the same) and
u commutes with them. It is clearly cocontinuous. It is also continuous as u transforms
coverings to coverings and commutes with fibre products. Hence the lemma follows from
Sites, Lemmas 21.5 and 21.6. �

Lemma 3.14. Let S be a scheme. Let SchZar be a big Zariski site containing S. The
inclusion functor SZar → (Sch/S)Zar satisfies the hypotheses of Sites, Lemma 21.8 and
hence induces a morphism of sites

πS : (Sch/S)Zar −→ SZar

and a morphism of topoi

iS : Sh(SZar) −→ Sh((Sch/S)Zar)

such that πS ◦ iS = id. Moreover, iS = iidS with iidS as in Lemma 3.13. In particular the
functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functoru : SZar → (Sch/S)Zar , in addition to the properties
seen in the proof of Lemma 3.13 above, also is fully faithful and transforms the final object
into the final object. The lemma follows. �

Definition 3.15. In the situation of Lemma 3.14 the functor i−1
S = πS,∗ is often

called the restriction to the small Zariski site, and for a sheaf F on the big Zariski site we
denote F|SZar this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on the big
site that

MorSh(SZar)(F|SZar ,G) = MorSh((Sch/S)Zar)(F , iS,∗G)
MorSh(SZar)(G,F|SZar ) = MorSh((Sch/S)Zar)(π−1

S G,F)

Moreover, we have (iS,∗G)|SZar = G and we have (π−1
S G)|SZar = G.

Lemma 3.16. Let SchZar be a big Zariski site. Let f : T → S be a morphism in
SchZar. The functor

u : (Sch/T )Zar −→ (Sch/S)Zar, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)Zar −→ (Sch/T )Zar, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )Zar) −→ Sh((Sch/S)Zar)
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We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers (details omitted; compare with proof of Lemma 3.13). Hence Sites,
Lemmas 21.5 and 21.6 apply and we deduce the formula for f−1

big and the existence of
fbig!. Moreover, the functor v is a right adjoint because given U/T and V/S we have
MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may apply Sites, Lemmas 22.1
and 22.2 to get the formula for fbig,∗. �

Lemma 3.17. Let SchZar be a big Zariski site. Let f : T → S be a morphism in
SchZar.

(1) We have if = fbig ◦ iT with if as in Lemma 3.13 and iT as in Lemma 3.14.
(2) The functor SZar → TZar , (U → S) 7→ (U ×S T → T ) is continuous and

induces a morphism of topoi

fsmall : Sh(TZar) −→ Sh(SZar).

The functors f−1
small and fsmall,∗ agree with the usual notions f−1 and f∗ is we

identify sheaves on TZar , resp. SZar with sheaves on T , resp. S via Lemma 3.12.
(3) We have a commutative diagram of morphisms of sites

TZar

fsmall

��

(Sch/T )Zar

fbig

��

πT
oo

SZar (Sch/S)Zar
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

Statement (2): See Sites, Example 14.2.

Part (3) follows because πS and πT are given by the inclusion functors and fsmall and fbig
by the base change functor U 7→ U ×S T .

Statement (4) follows from (3) by precomposing with iT . �

In the situation of the lemma, using the terminology of Definition 3.15 we have: for F a
sheaf on the big Zariski site of T

(fbig,∗F)|SZar = fsmall,∗(F|TZar ),

This equality is clear from the commutativity of the diagram of sites of the lemma, since
restriction to the small Zariski site of T , resp. S is given by πT,∗, resp. πS,∗. A similar
formula involving pullbacks and restrictions is false.

Lemma 3.18. Given schemes X , Y , Z in (Sch/S)Zar and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 3.16. For the functors on the small sites this is
Sheaves, Lemma 21.2 via the identification of Lemma 3.12. �
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Lemma 3.19. Let SchZar be a big Zariski site. Consider a cartesian diagram

T ′
g′
//

f ′

��

T

f

��
S′ g // S

in SchZar. Then i−1
g ◦ fbig,∗ = f ′

small,∗ ◦ (ig′)−1 and g−1
big ◦ fbig,∗ = f ′

big,∗ ◦ (g′
big)−1.

Proof. Since the diagram is cartesian, we have for U ′/S′ that U ′×S′ T ′ = U ′×S T .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Sch/T )Zar to the sheaf

U ′ 7→ F(U ′ ×S′ T ′) on S′
Zar (use Lemmas 3.13 and 3.17). The second equality can be

proved in the same manner or can be deduced from the very general Sites, Lemma 28.1. �

We can think about a sheaf on the big Zariski site of S as a collection of “usual” sheaves
on all schemes over S.

Lemma 3.20. Let S be a scheme contained in a big Zariski site SchZar. A sheaf F on
the big Zariski site (Sch/S)Zar is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)Zar) a sheaf FT on T ,
(2) for every f : T ′ → T in (Sch/S)Zar a map cf : f−1FT → FT ′ .

These data are subject to the following conditions:
(a) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)Zar the composition

cg ◦ g−1cf is equal to cf◦g , and
(b) if f : T ′ → T in (Sch/S)Zar is an open immersion then cf is an isomorphism.

Proof. This lemma follows from a purely sheaf theoretic statement discussed in Sites,
Remark 26.7. We also give a direct proof in this case.
Given a sheafF on Sh((Sch/S)Zar) we setFT = i−1

p F where p : T → S is the structure
morphism. Note that FT (U) = F(U ′/S) for any open U ⊂ T , and U ′ → T an open
immersion in (Sch/T )Zar with image U , see Lemmas 3.12 and 3.13. Hence given f :
T ′ → T over S and U,U ′ → T we get a canonical map FT (U) = F(U ′/S)→ F(U ′ ×T
T ′/S) = FT ′(f−1(U)) where the middle is the restriction map of F with respect to the
morphism U ′ ×T T ′ → U ′ over S. The collection of these maps are compatible with
restrictions, and hence define an f -map cf from FT to FT ′ , see Sheaves, Definition 21.7
and the discussion surrounding it. It is clear that cf◦g is the composition of cf and cg ,
since composition of restriction maps of F gives restriction maps.
Conversely, given a system (FT , cf ) as in the lemma we may define a presheaf F on
Sh((Sch/S)Zar) by simply setting F(T/S) = FT (T ). As restriction mapping, given
f : T ′ → T we set for s ∈ F(T ) the pullback f∗(s) equal to cf (s) (where we think of cf
as an f -map again). The condition on the cf guarantees that pullbacks satisfy the required
functoriality property. We omit the verification that this is a sheaf. It is clear that the
constructions so defined are mutually inverse. �

4. The étale topology

Let S be a scheme. We would like to define the étale-topology on the category of schemes
over S. According to our general principle we first introduce the notion of an étale cov-
ering.

Definition 4.1. Let T be a scheme. An étale covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that each fi is étale and such that T =

⋃
fi(Ti).
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Lemma 4.2. Any Zariski covering is an étale covering.

Proof. This is clear from the definitions and the fact that an open immersion is an
étale morphism, see Morphisms, Lemma 36.9. �

Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.

Lemma 4.3. Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an étale covering of T .
(2) If {Ti → T}i∈I is an étale covering and for each i we have an étale covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an étale covering.

(3) If {Ti → T}i∈I is an étale covering and T ′ → T is a morphism of schemes then
{T ′ ×T Ti → T ′}i∈I is an étale covering.

Proof. Omitted. �

Lemma 4.4. Let T be an affine scheme. Let {Ti → T}i∈I be an étale covering of T .
Then there exists an étale covering {Uj → T}j=1,...,m which is a refinement of {Ti →
T}i∈I such that each Uj is an affine scheme. Moreover, we may choose each Uj to be open
affine in one of the Ti.

Proof. Omitted. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 4.5. Let T be an affine scheme. A standard étale covering of T is a family
{fj : Uj → T}j=1,...,m with each Uj is affine and étale over T and T =

⋃
fj(Uj).

In the definition above we do not assume the morphisms fj are standard étale. The reason
is that if we did then the standard étale coverings would not define a site on Aff/S , for
example because of Algebra, Lemma 144.2 part (4). On the other hand, an étale morphism
of affines is automatically standard smooth, see Algebra, Lemma 143.2. Hence a standard
étale covering is a standard smooth covering and a standard syntomic covering.

Definition 4.6. A big étale site is any site Schétale as in Sites, Definition 6.2 con-
structed as follows:

(1) Choose any set of schemes S0, and any set of étale coverings Cov0 among these
schemes.

(2) As underlying category take any category Schα constructed as in Sets, Lemma
9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category
Schα and the class of étale coverings, and the set Cov0 chosen above.

See the remarks following Definition 3.5 for motivation and explanation regarding the
definition of big sites.

Before we continue with the introduction of the big étale site of a scheme S , let us point
out that the topology on a big étale site Schétale is in some sense induced from the étale
topology on the category of all schemes.

Lemma 4.7. Let Schétale be a big étale site as in Definition 4.6. LetT ∈ Ob(Schétale).
Let {Ti → T}i∈I be an arbitrary étale covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schétale which refines
{Ti → T}i∈I .
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(2) If {Ti → T}i∈I is a standard étale covering, then it is tautologically equivalent
to a covering in Schétale.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to a
covering in Schétale.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 4.3 the refinement {Tij →
T}i∈I,j∈Ji is an étale covering of T as well. Hence we may assume each Ti is affine, and
maps into an affine openWi of T . Applying Sets, Lemma 9.9 we see thatWi is isomorphic
to an object of Schétale. But then Ti as a finite type scheme over Wi is isomorphic to an
object Vi of Schétale by a second application of Sets, Lemma 9.9. The covering {Vi →
T}i∈I refines {Ti → T}i∈I (because they are isomorphic). Moreover, {Vi → T}i∈I is
combinatorially equivalent to a covering {Uj → T}j∈J of T in the site Schétale by Sets,
Lemma 9.9. The covering {Uj → T}j∈J is a refinement as in (1). In the situation of (2),
(3) each of the schemes Ti is isomorphic to an object of Schétale by Sets, Lemma 9.9, and
another application of Sets, Lemma 11.1 gives what we want. �

Definition 4.8. Let S be a scheme. Let Schétale be a big étale site containing S.
(1) The big étale site of S , denoted (Sch/S)étale, is the site Schétale/S introduced

in Sites, Section 25.
(2) The small étale site of S , which we denote Sétale, is the full subcategory of

(Sch/S)étale whose objects are those U/S such that U → S is étale. A covering
of Sétale is any covering {Ui → U} of (Sch/S)étale with U ∈ Ob(Sétale).

(3) The big affine étale site of S , denoted (Aff/S)étale, is the full subcategory of
(Sch/S)étale whose objects are those U/S such that U is an affine scheme. A
covering of (Aff/S)étale is any covering {Ui → U} of (Sch/S)étale with U ∈
Ob((Aff/S)étale) which is a standard étale covering.

(4) The small affine étale site of S , denoted Saffine,étale, is the full subcategory of
Sétale whose objects are those U/S such that U is an affine scheme. A covering
ofSaffine,étale is any covering {Ui → U} ofSétale withU ∈ Ob(Saffine,étale)
which is a standard étale covering.

It is not completely clear that the big affine étale site, the small étale site, and the small
affine étale site are sites. We check this now.

Lemma 4.9. Let S be a scheme. Let Schétale be a big étale site containing S. The
structures Sétale, (Aff/S)étale, and Saffine,étale are sites.

Proof. Let us show that Sétale is a site. It is a category with a given set of families
of morphisms with fixed target. Thus we have to show properties (1), (2) and (3) of Sites,
Definition 6.2. Since (Sch/S)étale is a site, it suffices to prove that given any covering
{Ui → U} of (Sch/S)étale with U ∈ Ob(Sétale) we also have Ui ∈ Ob(Sétale). This
follows from the definitions as the composition of étale morphisms is an étale morphism.

Let us show that (Aff/S)étale is a site. Reasoning as above, it suffices to show that the
collection of standard étale coverings of affines satisfies properties (1), (2) and (3) of Sites,
Definition 6.2. This is clear since for example, given a standard étale covering {Ti →
T}i∈I and for each i we have a standard étale covering {Tij → Ti}j∈Ji , then {Tij →
T}i∈I,j∈Ji is a standard étale covering because

⋃
i∈I Ji is finite and each Tij is affine.

We omit the proof that Saffine,tale is a site. �
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Lemma 4.10. Let S be a scheme. Let Schétale be a big étale site containing S. The un-
derlying categories of the sites Schétale, (Sch/S)étale,Sétale, (Aff/S)étale, andSaffine,étale
have fibre products. In each case the obvious functor into the category Sch of all schemes
commutes with taking fibre products. The categories (Sch/S)étale, and Sétale both have
a final object, namely S/S.

Proof. For Schétale it is true by construction, see Sets, Lemma 9.9. Suppose we have
U → S , V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schétale). The
fibre product V ×UW in Schétale is a fibre product in Sch and is the fibre product of V/S
with W/S over U/S in the category of all schemes over S , and hence also a fibre product
in (Sch/S)étale. This proves the result for (Sch/S)étale. If U → S , V → U andW → U
are étale then so is V ×U W → S and hence we get the result for Sétale. If U, V,W are
affine, so is V ×U W and hence the result for (Aff/S)étale and Saffine,étale. �

Next, we check that the big, resp. small affine site defines the same topos as the big, resp.
small site.

Lemma 4.11. Let S be a scheme. Let Schétale be a big étale site containing S. The
functor (Aff/S)étale → (Sch/S)étale is special cocontinuous and induces an equivalence
of topoi from Sh((Aff/S)étale) to Sh((Sch/S)étale).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1. Denote the
inclusion functor u : (Aff/S)étale → (Sch/S)étale. Being cocontinuous just means that
any étale covering of T/S , T affine, can be refined by a standard étale covering of T . This
is the content of Lemma 4.4. Hence (1) holds. We see u is continuous simply because a
standard étale covering is a étale covering. Hence (2) holds. Parts (3) and (4) follow im-
mediately from the fact that u is fully faithful. And finally condition (5) follows from the
fact that every scheme has an affine open covering. �

Lemma 4.12. Let S be a scheme. Let Schétale be a big étale site containing S. The
functorSaffine,étale → Sétale is special cocontinuous and induces an equivalence of topoi
from Sh(Saffine,étale) to Sh(Sétale).

Proof. Omitted. Hint: compare with the proof of Lemma 4.11. �

Next, we establish some relationships between the topoi associated to these sites.

Lemma 4.13. Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale. The functor Tétale → (Sch/S)étale is cocontinuous and induces a morphism of
topoi

if : Sh(Tétale) −→ Sh((Sch/S)étale)
For a sheafG on (Sch/S)étale we have the formula (i−1

f G)(U/T ) = G(U/S). The functor
i−1
f also has a left adjoint if,! which commutes with fibre products and equalizers.

Proof. Denote the functor u : Tétale → (Sch/S)étale. In other words, given an
étale morphism j : U → T corresponding to an object of Tétale we set u(U → T ) =
(f ◦ j : U → S). This functor commutes with fibre products, see Lemma 4.10. Let
a, b : U → V be two morphisms in Tétale. In this case the equalizer of a and b (in the
category of schemes) is

V ×∆V/T ,V×TV,(a,b) U ×T U
which is a fibre product of schemes étale over T , hence étale over T . Thus Tétale has
equalizers and u commutes with them. It is clearly cocontinuous. It is also continuous as
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u transforms coverings to coverings and commutes with fibre products. Hence the Lemma
follows from Sites, Lemmas 21.5 and 21.6. �

Lemma 4.14. Let S be a scheme. Let Schétale be a big étale site containing S. The
inclusion functor Sétale → (Sch/S)étale satisfies the hypotheses of Sites, Lemma 21.8 and
hence induces a morphism of sites

πS : (Sch/S)étale −→ Sétale

and a morphism of topoi

iS : Sh(Sétale) −→ Sh((Sch/S)étale)
such that πS ◦ iS = id. Moreover, iS = iidS with iidS as in Lemma 4.13. In particular the
functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : Sétale → (Sch/S)étale, in addition to the prop-
erties seen in the proof of Lemma 4.13 above, also is fully faithful and transforms the final
object into the final object. The lemma follows from Sites, Lemma 21.8. �

Definition 4.15. In the situation of Lemma 4.14 the functor i−1
S = πS,∗ is often

called the restriction to the small étale site, and for a sheaf F on the big étale site we
denote F|Sétale this restriction.

With this notation in place we have for a sheafF on the big site and a sheaf G on the small
site that

MorSh(Sétale)(F|Sétale ,G) = MorSh((Sch/S)étale)(F , iS,∗G)
MorSh(Sétale)(G,F|Sétale) = MorSh((Sch/S)étale)(π−1

S G,F)

Moreover, we have (iS,∗G)|Sétale = G and we have (π−1
S G)|Sétale = G.

Lemma 4.16. Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale. The functor

u : (Sch/T )étale −→ (Sch/S)étale, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)étale −→ (Sch/T )étale, (U → S) 7−→ (U ×S T → T ).
They induce the same morphism of topoi

fbig : Sh((Sch/T )étale) −→ Sh((Sch/S)étale)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous and commutes with fibre prod-
ucts and equalizers (details omitted; compare with the proof of Lemma 4.13). Hence Sites,
Lemmas 21.5 and 21.6 apply and we deduce the formula for f−1

big and the existence of
fbig!. Moreover, the functor v is a right adjoint because given U/T and V/S we have
MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may apply Sites, Lemmas 22.1
and 22.2 to get the formula for fbig,∗. �

Lemma 4.17. Let Schétale be a big étale site. Let f : T → S be a morphism in
Schétale.

(1) We have if = fbig ◦ iT with if as in Lemma 4.13 and iT as in Lemma 4.14.
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(2) The functor Sétale → Tétale, (U → S) 7→ (U ×S T → T ) is continuous and
induces a morphism of sites

fsmall : Tétale −→ Sétale

We have fsmall,∗(F)(U/S) = F(U ×S T/T ).
(3) We have a commutative diagram of morphisms of sites

Tétale

fsmall

��

(Sch/T )étale

fbig

��

πT
oo

Sétale (Sch/S)étale
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

The functor u : Sétale → Tétale, u(U → S) = (U ×S T → T ) transforms coverings
into coverings and commutes with fibre products, see Lemma 4.3 (3) and 4.10. Moreover,
both Sétale, Tétale have final objects, namely S/S and T/T and u(S/S) = T/T . Hence by
Sites, Proposition 14.7 the functor u corresponds to a morphism of sites Tétale → Sétale.
This in turn gives rise to the morphism of topoi, see Sites, Lemma 15.2. The description of
the pushforward is clear from these references.

Part (3) follows because πS and πT are given by the inclusion functors and fsmall and fbig
by the base change functors U 7→ U ×S T .

Statement (4) follows from (3) by precomposing with iT . �

In the situation of the lemma, using the terminology of Definition 4.15 we have: for F a
sheaf on the big étale site of T

(fbig,∗F)|Sétale = fsmall,∗(F|Tétale),

This equality is clear from the commutativity of the diagram of sites of the lemma, since
restriction to the small étale site of T , resp.S is given by πT,∗, resp. πS,∗. A similar formula
involving pullbacks and restrictions is false.

Lemma 4.18. Given schemes X , Y , Y in Schétale and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 4.16. For the functors on the small sites this
follows from the description of the pushforward functors in Lemma 4.17. �

Lemma 4.19. Let Schétale be a big étale site. Consider a cartesian diagram

T ′
g′
//

f ′

��

T

f

��
S′ g // S

in Schétale. Then i−1
g ◦ fbig,∗ = f ′

small,∗ ◦ (ig′)−1 and g−1
big ◦ fbig,∗ = f ′

big,∗ ◦ (g′
big)−1.
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Proof. Since the diagram is cartesian, we have for U ′/S′ that U ′×S′ T ′ = U ′×S T .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Sch/T )étale to the sheaf

U ′ 7→ F(U ′ ×S′ T ′) on S′
étale (use Lemmas 4.13 and 4.16). The second equality can be

proved in the same manner or can be deduced from the very general Sites, Lemma 28.1. �

We can think about a sheaf on the big étale site of S as a collection of “usual” sheaves on
all schemes over S.

Lemma 4.20. Let S be a scheme contained in a big étale site Schétale. A sheaf F on
the big étale site (Sch/S)étale is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)étale) a sheaf FT on Tétale,
(2) for every f : T ′ → T in (Sch/S)étale a map cf : f−1

smallFT → FT ′ .
These data are subject to the following conditions:

(a) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)étale the composition
cg ◦ g−1

smallcf is equal to cf◦g , and
(b) if f : T ′ → T in (Sch/S)étale is étale then cf is an isomorphism.

Proof. This lemma follows from a purely sheaf theoretic statement discussed in Sites,
Remark 26.7. We also give a direct proof in this case.

Given a sheafF on Sh((Sch/S)étale) we setFT = i−1
p F where p : T → S is the structure

morphism. Note thatFT (U) = F(U/S) for anyU → T in Tétale see Lemma 4.13. Hence
given f : T ′ → T over S and U → T we get a canonical map FT (U) = F(U/S) →
F(U×T T ′/S) = FT ′(U×T T ′) where the middle is the restriction map ofF with respect
to the morphism U ×T T ′ → U over S. The collection of these maps are compatible with
restrictions, and hence define a map c′

f : FT → fsmall,∗FT ′ where u : Tétale → T ′
étale

is the base change functor associated to f . By adjunction of fsmall,∗ (see Sites, Section
13) with f−1

small this is the same as a map cf : f−1
smallFT → FT ′ . It is clear that c′

f◦g is
the composition of c′

f and fsmall,∗c′
g , since composition of restriction maps of F gives

restriction maps, and this gives the desired relationship among cf , cg and cf◦g .

Conversely, given a system (FT , cf ) as in the lemma we may define a presheaf F on
Sh((Sch/S)étale) by simply setting F(T/S) = FT (T ). As restriction mapping, given
f : T ′ → T we set for s ∈ F(T ) the pullback f∗(s) equal to cf (s) where we think of
cf as a map FT → fsmall,∗FT ′ again. The condition on the cf guarantees that pullbacks
satisfy the required functoriality property. We omit the verification that this is a sheaf. It
is clear that the constructions so defined are mutually inverse. �

5. The smooth topology

In this section we define the smooth topology. This is a bit pointless as it will turn out
later (see More on Morphisms, Section 38) that this topology defines the same topos as the
étale topology. But still it makes sense and it is used occasionally.

Definition 5.1. Let T be a scheme. A smooth covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that each fi is smooth and such that T =

⋃
fi(Ti).

Lemma 5.2. Any étale covering is a smooth covering, and a fortiori, any Zariski cov-
ering is a smooth covering.

Proof. This is clear from the definitions, the fact that an étale morphism is smooth
see Morphisms, Definition 36.1 and Lemma 4.2. �
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Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.

Lemma 5.3. Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a smooth covering of T .
(2) If {Ti → T}i∈I is a smooth covering and for each i we have a smooth covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a smooth covering.

(3) If {Ti → T}i∈I is a smooth covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is a smooth covering.

Proof. Omitted. �

Lemma 5.4. Let T be an affine scheme. Let {Ti → T}i∈I be a smooth covering of
T . Then there exists a smooth covering {Uj → T}j=1,...,m which is a refinement of
{Ti → T}i∈I such that eachUj is an affine scheme, and such that each morphismUj → T
is standard smooth, see Morphisms, Definition 34.1. Moreover, we may choose each Uj to
be open affine in one of the Ti.

Proof. Omitted, but see Algebra, Lemma 137.10. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 5.5. Let T be an affine scheme. A standard smooth covering of T is a
family {fj : Uj → T}j=1,...,m with each Uj is affine, Uj → T standard smooth and
T =

⋃
fj(Uj).

Definition 5.6. A big smooth site is any site Schsmooth as in Sites, Definition 6.2
constructed as follows:

(1) Choose any set of schemes S0, and any set of smooth coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets, Lemma
9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category
Schα and the class of smooth coverings, and the set Cov0 chosen above.

See the remarks following Definition 3.5 for motivation and explanation regarding the
definition of big sites.
Before we continue with the introduction of the big smooth site of a scheme S , let us point
out that the topology on a big smooth site Schsmooth is in some sense induced from the
smooth topology on the category of all schemes.

Lemma 5.7. Let Schsmooth be a big smooth site as in Definition 5.6. LetT ∈ Ob(Schsmooth).
Let {Ti → T}i∈I be an arbitrary smooth covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schsmooth which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard smooth covering, then it is tautologically equiva-
lent to a covering of Schsmooth.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to a
covering of Schsmooth.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each Tij

maps into an affine open subscheme ofT . By Lemma 5.3 the refinement {Tij → T}i∈I,j∈Ji
is a smooth covering of T as well. Hence we may assume each Ti is affine, and maps into an
affine open Wi of T . Applying Sets, Lemma 9.9 we see that Wi is isomorphic to an object
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of Schsmooth. But then Ti as a finite type scheme overWi is isomorphic to an object Vi of
Schsmooth by a second application of Sets, Lemma 9.9. The covering {Vi → T}i∈I refines
{Ti → T}i∈I (because they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially
equivalent to a covering {Uj → T}j∈J of T in the site Schsmooth by Sets, Lemma 9.9.
The covering {Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each of
the schemes Ti is isomorphic to an object of Schsmooth by Sets, Lemma 9.9, and another
application of Sets, Lemma 11.1 gives what we want. �

Definition 5.8. Let S be a scheme. Let Schsmooth be a big smooth site containing S.
(1) The big smooth site of S , denoted (Sch/S)smooth, is the site Schsmooth/S in-

troduced in Sites, Section 25.
(2) The big affine smooth site of S , denoted (Aff/S)smooth, is the full subcategory

of (Sch/S)smooth whose objects are affine U/S. A covering of (Aff/S)smooth is
any covering {Ui → U} of (Sch/S)smooth which is a standard smooth covering.

Next, we check that the big affine site defines the same topos as the big site.

Lemma 5.9. Let S be a scheme. Let Schsmooth be a big smooth site containing S.
The functor (Aff/S)smooth → (Sch/S)smooth is special cocontinuous and induces an
equivalence of topoi from Sh((Aff/S)smooth) to Sh((Sch/S)smooth).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1. Denote the
inclusion functor u : (Aff/S)smooth → (Sch/S)smooth. Being cocontinuous just means
that any smooth covering of T/S , T affine, can be refined by a standard smooth covering
of T . This is the content of Lemma 5.4. Hence (1) holds. We see u is continuous simply
because a standard smooth covering is a smooth covering. Hence (2) holds. Parts (3) and
(4) follow immediately from the fact that u is fully faithful. And finally condition (5)
follows from the fact that every scheme has an affine open covering. �

To be continued...

Lemma 5.10. Let Schsmooth be a big smooth site. Let f : T → S be a morphism in
Schsmooth. The functor

u : (Sch/T )smooth −→ (Sch/S)smooth, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)smooth −→ (Sch/T )smooth, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )smooth) −→ Sh((Sch/S)smooth)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functoru is cocontinuous, continuous, and commutes with fibre products
and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for
f−1
big and the existence of fbig!. Moreover, the functor v is a right adjoint because given
U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may
apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. �
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6. The syntomic topology

In this section we define the syntomic topology. This topology is quite interesting in that
it often has the same cohomology groups as the fppf topology but is technically easier to
deal with.

Definition 6.1. Let T be a scheme. An syntomic covering of T is a family of mor-
phisms {fi : Ti → T}i∈I of schemes such that each fi is syntomic and such that T =⋃
fi(Ti).

Lemma 6.2. Any smooth covering is a syntomic covering, and a fortiori, any étale or
Zariski covering is a syntomic covering.

Proof. This is clear from the definitions and the fact that a smooth morphism is
syntomic, see Morphisms, Lemma 34.7 and Lemma 5.2. �

Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.

Lemma 6.3. Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a syntomic covering of T .
(2) If {Ti → T}i∈I is a syntomic covering and for each i we have a syntomic cov-

ering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a syntomic covering.
(3) If {Ti → T}i∈I is a syntomic covering and T ′ → T is a morphism of schemes

then {T ′ ×T Ti → T ′}i∈I is a syntomic covering.

Proof. Omitted. �

Lemma 6.4. Let T be an affine scheme. Let {Ti → T}i∈I be a syntomic covering of
T . Then there exists a syntomic covering {Uj → T}j=1,...,m which is a refinement of
{Ti → T}i∈I such that eachUj is an affine scheme, and such that each morphismUj → T
is standard syntomic, see Morphisms, Definition 30.1. Moreover, we may choose each Uj
to be open affine in one of the Ti.

Proof. Omitted, but see Algebra, Lemma 136.15. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 6.5. Let T be an affine scheme. A standard syntomic covering of T is a
family {fj : Uj → T}j=1,...,m with each Uj is affine, Uj → T standard syntomic and
T =

⋃
fj(Uj).

Definition 6.6. A big syntomic site is any site Schsyntomic as in Sites, Definition
6.2 constructed as follows:

(1) Choose any set of schemes S0, and any set of syntomic coverings Cov0 among
these schemes.

(2) As underlying category take any category Schα constructed as in Sets, Lemma
9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category
Schα and the class of syntomic coverings, and the set Cov0 chosen above.

See the remarks following Definition 3.5 for motivation and explanation regarding the
definition of big sites.
Before we continue with the introduction of the big syntomic site of a scheme S , let us
point out that the topology on a big syntomic site Schsyntomic is in some sense induced
from the syntomic topology on the category of all schemes.
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Lemma 6.7. Let Schsyntomic be a big syntomic site as in Definition 6.6. Let T ∈
Ob(Schsyntomic). Let {Ti → T}i∈I be an arbitrary syntomic covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schsyntomic which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard syntomic covering, then it is tautologically equiv-
alent to a covering in Schsyntomic.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to a
covering in Schsyntomic.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each

Tij maps into an affine open subscheme of T . By Lemma 6.3 the refinement {Tij →
T}i∈I,j∈Ji is a syntomic covering of T as well. Hence we may assume each Ti is affine, and
maps into an affine openWi of T . Applying Sets, Lemma 9.9 we see thatWi is isomorphic
to an object of Schsyntomic. But then Ti as a finite type scheme overWi is isomorphic to an
object Vi of Schsyntomic by a second application of Sets, Lemma 9.9. The covering {Vi →
T}i∈I refines {Ti → T}i∈I (because they are isomorphic). Moreover, {Vi → T}i∈I is
combinatorially equivalent to a covering {Uj → T}j∈J of T in the site Schsyntomic by
Sets, Lemma 9.9. The covering {Uj → T}j∈J is a covering as in (1). In the situation of
(2), (3) each of the schemes Ti is isomorphic to an object of Schsyntomic by Sets, Lemma
9.9, and another application of Sets, Lemma 11.1 gives what we want. �

Definition 6.8. LetS be a scheme. Let Schsyntomic be a big syntomic site containing
S.

(1) The big syntomic site of S , denoted (Sch/S)syntomic, is the site Schsyntomic/S
introduced in Sites, Section 25.

(2) The big affine syntomic site of S , denoted (Aff/S)syntomic, is the full subcate-
gory of (Sch/S)syntomic whose objects are affineU/S. A covering of (Aff/S)syntomic
is any covering {Ui → U} of (Sch/S)syntomic which is a standard syntomic
covering.

Next, we check that the big affine site defines the same topos as the big site.

Lemma 6.9. Let S be a scheme. Let Schsyntomic be a big syntomic site containing S.
The functor (Aff/S)syntomic → (Sch/S)syntomic is special cocontinuous and induces an
equivalence of topoi from Sh((Aff/S)syntomic) to Sh((Sch/S)syntomic).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1. Denote
the inclusion functor u : (Aff/S)syntomic → (Sch/S)syntomic. Being cocontinuous just
means that any syntomic covering of T/S , T affine, can be refined by a standard syntomic
covering of T . This is the content of Lemma 6.4. Hence (1) holds. We see u is continu-
ous simply because a standard syntomic covering is a syntomic covering. Hence (2) holds.
Parts (3) and (4) follow immediately from the fact that u is fully faithful. And finally
condition (5) follows from the fact that every scheme has an affine open covering. �

To be continued...

Lemma 6.10. Let Schsyntomic be a big syntomic site. Let f : T → S be a morphism
in Schsyntomic. The functor

u : (Sch/T )syntomic −→ (Sch/S)syntomic, V/T 7−→ V/S
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is cocontinuous, and has a continuous right adjoint
v : (Sch/S)syntomic −→ (Sch/T )syntomic, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi
fbig : Sh((Sch/T )syntomic) −→ Sh((Sch/S)syntomic)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functoru is cocontinuous, continuous, and commutes with fibre products
and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for
f−1
big and the existence of fbig!. Moreover, the functor v is a right adjoint because given
U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may
apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. �

7. The fppf topology

Let S be a scheme. We would like to define the fppf-topology3 on the category of schemes
over S. According to our general principle we first introduce the notion of an fppf-
covering.

Definition 7.1. Let T be a scheme. An fppf covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that each fi is flat, locally of finite presentation and
such that T =

⋃
fi(Ti).

Lemma 7.2. Any syntomic covering is an fppf covering, and a fortiori, any smooth,
étale, or Zariski covering is an fppf covering.

Proof. This is clear from the definitions, the fact that a syntomic morphism is flat
and locally of finite presentation, see Morphisms, Lemmas 30.6 and 30.7, and Lemma 6.2.

�

Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.
Lemma 7.3. Let T be a scheme.

(1) If T ′ → T is an isomorphism then {T ′ → T} is an fppf covering of T .
(2) If {Ti → T}i∈I is an fppf covering and for each i we have an fppf covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an fppf covering.

(3) If {Ti → T}i∈I is an fppf covering and T ′ → T is a morphism of schemes then
{T ′ ×T Ti → T ′}i∈I is an fppf covering.

Proof. The first assertion is clear. The second follows as the composition of flat mor-
phisms is flat (see Morphisms, Lemma 25.6) and the composition of morphisms of finite
presentation is of finite presentation (see Morphisms, Lemma 21.3). The third follows as
the base change of a flat morphism is flat (see Morphisms, Lemma 25.8) and the base change
of a morphism of finite presentation is of finite presentation (see Morphisms, Lemma 21.4).
Moreover, the base change of a surjective family of morphisms is surjective (proof omit-
ted). �

Lemma 7.4. Let T be an affine scheme. Let {Ti → T}i∈I be an fppf covering of T .
Then there exists an fppf covering {Uj → T}j=1,...,m which is a refinement of {Ti →
T}i∈I such that each Uj is an affine scheme. Moreover, we may choose each Uj to be open
affine in one of the Ti.

3The letters fppf stand for “fidèlement plat de présentation finie”.
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Proof. This follows directly from the definitions using that a morphism which is
flat and locally of finite presentation is open, see Morphisms, Lemma 25.10. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 7.5. Let T be an affine scheme. A standard fppf covering of T is a family
{fj : Uj → T}j=1,...,m with each Uj is affine, flat and of finite presentation over T and
T =

⋃
fj(Uj).

Definition 7.6. A big fppf site is any site Schfppf as in Sites, Definition 6.2 con-
structed as follows:

(1) Choose any set of schemes S0, and any set of fppf coverings Cov0 among these
schemes.

(2) As underlying category take any category Schα constructed as in Sets, Lemma
9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category
Schα and the class of fppf coverings, and the set Cov0 chosen above.

See the remarks following Definition 3.5 for motivation and explanation regarding the
definition of big sites.

Before we continue with the introduction of the big fppf site of a scheme S , let us point
out that the topology on a big fppf site Schfppf is in some sense induced from the fppf
topology on the category of all schemes.

Lemma 7.7. Let Schfppf be a big fppf site as in Definition 7.6. Let T ∈ Ob(Schfppf ).
Let {Ti → T}i∈I be an arbitrary fppf covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schfppf which refines
{Ti → T}i∈I .

(2) If {Ti → T}i∈I is a standard fppf covering, then it is tautologically equivalent
to a covering of Schfppf .

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to a
covering of Schfppf .

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each Tij

maps into an affine open subscheme ofT . By Lemma 7.3 the refinement {Tij → T}i∈I,j∈Ji
is an fppf covering of T as well. Hence we may assume each Ti is affine, and maps into an
affine open Wi of T . Applying Sets, Lemma 9.9 we see that Wi is isomorphic to an object
of Schfppf . But then Ti as a finite type scheme over Wi is isomorphic to an object Vi of
Schfppf by a second application of Sets, Lemma 9.9. The covering {Vi → T}i∈I refines
{Ti → T}i∈I (because they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially
equivalent to a covering {Uj → T}j∈J of T in the site Schfppf by Sets, Lemma 9.9.
The covering {Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each of
the schemes Ti is isomorphic to an object of Schfppf by Sets, Lemma 9.9, and another
application of Sets, Lemma 11.1 gives what we want. �

Definition 7.8. Let S be a scheme. Let Schfppf be a big fppf site containing S.
(1) The big fppf site of S , denoted (Sch/S)fppf , is the site Schfppf/S introduced

in Sites, Section 25.
(2) The big affine fppf site of S , denoted (Aff/S)fppf , is the full subcategory of

(Sch/S)fppf whose objects are affine U/S. A covering of (Aff/S)fppf is any
covering {Ui → U} of (Sch/S)fppf which is a standard fppf covering.
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It is not completely clear that the big affine fppf site is a site. We check this now.

Lemma 7.9. Let S be a scheme. Let Schfppf be a big fppf site containing S. Then
(Aff/S)fppf is a site.

Proof. Let us show that (Aff/S)fppf is a site. Reasoning as in the proof of Lemma
4.9 it suffices to show that the collection of standard fppf coverings of affines satisfies
properties (1), (2) and (3) of Sites, Definition 6.2. This is clear since for example, given
a standard fppf covering {Ti → T}i∈I and for each i we have a standard fppf covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a standard fppf covering because

⋃
i∈I Ji is

finite and each Tij is affine. �

Lemma 7.10. Let S be a scheme. Let Schfppf be a big fppf site containing S. The
underlying categories of the sites Schfppf , (Sch/S)fppf , and (Aff/S)fppf have fibre prod-
ucts. In each case the obvious functor into the category Sch of all schemes commutes with
taking fibre products. The category (Sch/S)fppf has a final object, namely S/S.

Proof. For Schfppf it is true by construction, see Sets, Lemma 9.9. Suppose we have
U → S , V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schfppf ). The
fibre product V ×U W in Schfppf is a fibre product in Sch and is the fibre product of
V/S with W/S over U/S in the category of all schemes over S , and hence also a fibre
product in (Sch/S)fppf . This proves the result for (Sch/S)fppf . If U, V,W are affine, so
is V ×U W and hence the result for (Aff/S)fppf . �

Next, we check that the big affine site defines the same topos as the big site.

Lemma 7.11. Let S be a scheme. Let Schfppf be a big fppf site containing S. The
functor (Aff/S)fppf → (Sch/S)fppf is cocontinuous and induces an equivalence of topoi
from Sh((Aff/S)fppf ) to Sh((Sch/S)fppf ).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1. Denote the
inclusion functor u : (Aff/S)fppf → (Sch/S)fppf . Being cocontinuous just means that
any fppf covering of T/S , T affine, can be refined by a standard fppf covering of T . This
is the content of Lemma 7.4. Hence (1) holds. We see u is continuous simply because a
standard fppf covering is a fppf covering. Hence (2) holds. Parts (3) and (4) follow imme-
diately from the fact that u is fully faithful. And finally condition (5) follows from the
fact that every scheme has an affine open covering. �

Next, we establish some relationships between the topoi associated to these sites.

Lemma 7.12. Let Schfppf be a big fppf site. Let f : T → S be a morphism in Schfppf .
The functor

u : (Sch/T )fppf −→ (Sch/S)fppf , V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)fppf −→ (Sch/T )fppf , (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )fppf ) −→ Sh((Sch/S)fppf )

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.
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Proof. The functoru is cocontinuous, continuous, and commutes with fibre products
and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for
f−1
big and the existence of fbig!. Moreover, the functor v is a right adjoint because given
U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may
apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. �

Lemma 7.13. Given schemes X , Y , Y in (Sch/S)fppf and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big .

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 7.12. �

8. The ph topology

In this section we define the ph topology. This is the topology generated by Zariski cov-
erings and proper surjective morphisms, see Lemma 8.15.
We borrow our notation/terminology from the paper [?] by Goodwillie and Lichtenbaum.
These authors show that if we restrict to the subcategory of Noetherian schemes, then the
ph topology is the same as the “h topology” as originally defined by Voevodsky: this is
the topology generated by Zariski open coverings and finite type morphisms which are
universally submersive. They also show that the two topologies do not agree on non-
Noetherian schemes, see [?, Example 4.5]. We return to (our version of) the h topology in
More on Flatness, Section 34.
Before we can define the coverings in our topology we need to do a bit of work.

Definition 8.1. Let T be an affine scheme. A standard ph covering is a family {fj :
Uj → T}j=1,...,m constructed from a proper surjective morphism f : U → T and an
affine open covering U =

⋃
j=1,...,m Uj by setting fj = f |Uj .

It follows immediately from Chow’s lemma that we can refine a standard ph covering by
a standard ph covering corresponding to a surjective projective morphism.

Lemma 8.2. Let {fj : Uj → T}j=1,...,m be a standard ph covering. Let T ′ → T be a
morphism of affine schemes. Then {Uj ×T T ′ → T ′}j=1,...,m is a standard ph covering.

Proof. Let f : U → T be proper surjective and let an affine open covering U =⋃
j=1,...,m Uj be given as in Definition 8.1. Then U ×T T ′ → T ′ is proper surjective

(Morphisms, Lemmas 9.4 and 41.5). Also, U ×T T ′ =
⋃
j=1,...,m Uj ×T T ′ is an affine

open covering. This concludes the proof. �

Lemma 8.3. Let T be an affine scheme. Each of the following types of families of
maps with target T has a refinement by a standard ph covering:

(1) any Zariski open covering of T ,
(2) {Wji → T}j=1,...,m,i=1,...nj where {Wji → Uj}i=1,...,nj and {Uj → T}j=1,...,m

are standard ph coverings.

Proof. Part (1) follows from the fact that any Zariski open covering of T can be
refined by a finite affine open covering.
Proof of (3). Choose U → T proper surjective and U =

⋃
j=1,...,m Uj as in Defini-

tion 8.1. Choose Wj → Uj proper surjective and Wj =
⋃
Wji as in Definition 8.1. By

Chow’s lemma (Limits, Lemma 12.1) we can find W ′
j → Wj proper surjective and closed

immersions W ′
j → Pej

Uj
. Thus, after replacing Wj by W ′

j and Wj =
⋃
Wji by a suitable
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affine open covering of W ′
j , we may assume there is a closed immersion Wj ⊂ Pej

Uj
for all

j = 1, . . . ,m.

Let W j ⊂ Pej
U be the scheme theoretic closure of Wj . Then Wj ⊂ W j is an open sub-

scheme; in fact Wj is the inverse image of Uj ⊂ U under the morphism W j → U . (To
see this use thatWj → Pej

U is quasi-compact and hence formation of the scheme theoretic
image commutes with restriction to opens, see Morphisms, Section 6.) Let Zj = U \ Uj
with reduced induced closed subscheme structure. Then

Vj = W j q Zj → U

is proper surjective and the open subscheme Wj ⊂ Vj is the inverse image of Uj . Hence
for v ∈ Vj , v 6∈Wj we can pick an affine open neighbourhood v ∈ Vj,v ⊂ Vj which maps
into Uj′ for some 1 ≤ j′ ≤ m.

To finish the proof we consider the proper surjective morphism

V = V1 ×U V2 ×U . . .×U Vm −→ U −→ T

and the covering of V by the affine opens

V1,v1 ×U . . .×U Vj−1,vj−1 ×U Wji ×U Vj+1,vj+1 ×U . . .×U Vm,vm
These do indeed form a covering, because each point of U is in some Uj and the inverse
image of Uj in V is equal to V1 × . . . × Vj−1 ×Wj × Vj+1 × . . . × Vm. Observe that
the morphism from the affine open displayed above to T factors through Wji thus we
obtain a refinement. Finally, we only need a finite number of these affine opens as V is
quasi-compact (as a scheme proper over the affine scheme T ). �

Definition 8.4. Let T be a scheme. A ph covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that fi is locally of finite type and such that for every
affine open U ⊂ T there exists a standard ph covering {Uj → U}j=1,...,m refining the
family {Ti ×T U → U}i∈I .

A standard ph covering is a ph covering by Lemma 8.2.

Lemma 8.5. A Zariski covering is a ph covering4.

Proof. This is true because a Zariski covering of an affine scheme can be refined by a
standard ph covering by Lemma 8.3. �

Lemma 8.6. Let f : Y → X be a surjective proper morphism of schemes. Then
{Y → X} is a ph covering.

Proof. Omitted. �

Lemma 8.7. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms such
that fi is locally of finite type for all i. The following are equivalent

(1) {Ti → T}i∈I is a ph covering,
(2) there is a ph covering which refines {Ti → T}i∈I , and
(3) {

∐
i∈I Ti → T} is a ph covering.

4We will see in More on Morphisms, Lemma 48.7 that fppf coverings (and hence syntomic, smooth, or étale
coverings) are ph coverings as well.
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Proof. The equivalence of (1) and (2) follows immediately from Definition 8.4 and
the fact that a refinement of a refinement is a refinement. Because of the equivalence of (1)
and (2) and since {Ti → T}i∈I refines {

∐
i∈I Ti → T}we see that (1) implies (3). Finally,

assume (3) holds. Let U ⊂ T be an affine open and let {Uj → U}j=1,...,m be a standard
ph covering which refines {U ×T

∐
i∈I Ti → U}. This means that for each j we have a

morphism
hj : Uj −→ U ×T

∐
i∈I

Ti =
∐

i∈I
U ×T Ti

over U . Since Uj is quasi-compact, we get disjoint union decompositions Uj =
∐
i∈I Uj,i

by open and closed subschemes almost all of which are empty such that hj |Uj,i maps Uj,i
into U ×T Ti. It follows that

{Uj,i → U}j=1,...,m, i∈I, Uj,i 6=∅

is a standard ph covering (small detail omitted) refining {U ×T Ti → U}i∈I . Thus (1)
holds. �

Next, we show that this notion satisfies the conditions of Sites, Definition 6.2.

Lemma 8.8. Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a ph covering of T .
(2) If {Ti → T}i∈I is a ph covering and for each i we have a ph covering {Tij →

Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a ph covering.
(3) If {Ti → T}i∈I is a ph covering and T ′ → T is a morphism of schemes then
{T ′ ×T Ti → T ′}i∈I is a ph covering.

Proof. Assertion (1) is clear.
Proof of (3). The base change Ti ×T T ′ → T ′ is locally of finite type by Morphisms,
Lemma 15.4. hence we only need to check the condition on affine opens. Let U ′ ⊂ T ′

be an affine open subscheme. Since U ′ is quasi-compact we can find a finite affine open
covering U ′ = U ′

1 ∪ . . .∪U ′ such that U ′
j → T maps into an affine open Uj ⊂ T . Choose

a standard ph covering {Ujl → Uj}l=1,...,nj refining {Ti ×T Uj → Uj}. By Lemma 8.2
the base change {Ujl ×Uj U ′

j → U ′
j} is a standard ph covering. Note that {U ′

j → U ′}
is a standard ph covering as well. By Lemma 8.3 the family {Ujl ×Uj U ′

j → U ′} can be
refined by a standard ph covering. Since {Ujl ×Uj U ′

j → U ′} refines {Ti ×T U ′ → U ′}
we conclude.
Proof of (2). Composition preserves being locally of finite type, see Morphisms, Lemma
15.3. Hence we only need to check the condition on affine opens. Let U ⊂ T be affine
open. First we pick a standard ph covering {Uk → U}k=1,...,m refining {Ti×T U → U}.
Say the refinement is given by morphisms Uk → Tik over T . Then

{Tikj ×Tik Uk → Uk}j∈Jik
is a ph covering by part (3). As Uk is affine, we can find a standard ph covering {Uka →
Uk}a=1,...,bk refining this family. Then we apply Lemma 8.3 to see that {Uka → U} can
be refined by a standard ph covering. Since {Uka → U} refines {Tij ×T U → U} this
finishes the proof. �

Definition 8.9. A big ph site is any site Schph as in Sites, Definition 6.2 constructed
as follows:

(1) Choose any set of schemes S0, and any set of ph coverings Cov0 among these
schemes.
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(2) As underlying category take any category Schα constructed as in Sets, Lemma
9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category
Schα and the class of ph coverings, and the set Cov0 chosen above.

See the remarks following Definition 3.5 for motivation and explanation regarding the
definition of big sites.

Before we continue with the introduction of the big ph site of a scheme S , let us point out
that the topology on a big ph site Schph is in some sense induced from the ph topology on
the category of all schemes.

Lemma 8.10. Let Schph be a big ph site as in Definition 8.9. Let T ∈ Ob(Schph). Let
{Ti → T}i∈I be an arbitrary ph covering of T .

(1) There exists a covering {Uj → T}j∈J ofT in the site Schph which refines {Ti →
T}i∈I .

(2) If {Ti → T}i∈I is a standard ph covering, then it is tautologically equivalent to
a covering of Schph.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to a
covering of Schph.

Proof. For each i choose an affine open covering Ti =
⋃
j∈Ji Tij such that each Tij

maps into an affine open subscheme of T . By Lemmas 8.5 and 8.8 the refinement {Tij →
T}i∈I,j∈Ji is a ph covering of T as well. Hence we may assume each Ti is affine, and maps
into an affine openWi of T . Applying Sets, Lemma 9.9 we see thatWi is isomorphic to an
object of Schph. But then Ti as a finite type scheme over Wi is isomorphic to an object Vi
of Schph by a second application of Sets, Lemma 9.9. The covering {Vi → T}i∈I refines
{Ti → T}i∈I (because they are isomorphic). Moreover, {Vi → T}i∈I is combinatorially
equivalent to a covering {Uj → T}j∈J of T in the site Schph by Sets, Lemma 9.9. The
covering {Uj → T}j∈J is a refinement as in (1). In the situation of (2), (3) each of the
schemesTi is isomorphic to an object of Schph by Sets, Lemma 9.9, and another application
of Sets, Lemma 11.1 gives what we want. �

Definition 8.11. Let S be a scheme. Let Schph be a big ph site containing S.
(1) The big ph site of S , denoted (Sch/S)ph, is the site Schph/S introduced in Sites,

Section 25.
(2) The big affine ph site ofS , denoted (Aff/S)ph, is the full subcategory of (Sch/S)ph

whose objects are affine U/S. A covering of (Aff/S)ph is any finite covering
{Ui → U} of (Sch/S)ph with Ui and U affine.

Observe that the coverings in (Aff/S)ph are not given by standard ph coverings. The
reason is simply that this would fail the second axiom of Sites, Definition 6.2. Rather,
the coverings in (Aff/S)ph are those finite families {Ui → U} of finite type morphisms
between affine objects of (Sch/S)ph which can be refined by a standard ph covering. We
explicitly state and prove that the big affine ph site is a site.

Lemma 8.12. Let S be a scheme. Let Schph be a big ph site containing S. Then
(Aff/S)ph is a site.

Proof. Reasoning as in the proof of Lemma 4.9 it suffices to show that the collection
of finite ph coverings {Ui → U} with U , Ui affine satisfies properties (1), (2) and (3) of
Sites, Definition 6.2. This is clear since for example, given a finite ph covering {Ti →
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T}i∈I with Ti, T affine, and for each i a finite ph covering {Tij → Ti}j∈Ji with Tij affine
, then {Tij → T}i∈I,j∈Ji is a ph covering (Lemma 8.8),

⋃
i∈I Ji is finite and each Tij is

affine. �

Lemma 8.13. Let S be a scheme. Let Schph be a big ph site containing S. The un-
derlying categories of the sites Schph, (Sch/S)ph, and (Aff/S)ph have fibre products. In
each case the obvious functor into the category Sch of all schemes commutes with taking
fibre products. The category (Sch/S)ph has a final object, namely S/S.

Proof. For Schph it is true by construction, see Sets, Lemma 9.9. Suppose we have
U → S , V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schph). The fibre
product V ×U W in Schph is a fibre product in Sch and is the fibre product of V/S with
W/S over U/S in the category of all schemes over S , and hence also a fibre product in
(Sch/S)ph. This proves the result for (Sch/S)ph. If U, V,W are affine, so is V ×UW and
hence the result for (Aff/S)ph. �

Next, we check that the big affine site defines the same topos as the big site.

Lemma 8.14. Let S be a scheme. Let Schph be a big ph site containing S. The func-
tor (Aff/S)ph → (Sch/S)ph is cocontinuous and induces an equivalence of topoi from
Sh((Aff/S)ph) to Sh((Sch/S)ph).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1. Denote the
inclusion functor u : (Aff/S)ph → (Sch/S)ph. Being cocontinuous follows because any
ph covering of T/S , T affine, can be refined by a standard ph covering of T by definition.
Hence (1) holds. We see u is continuous simply because a finite ph covering of an affine
by affines is a ph covering. Hence (2) holds. Parts (3) and (4) follow immediately from
the fact that u is fully faithful. And finally condition (5) follows from the fact that every
scheme has an affine open covering (which is a ph covering). �

Lemma 8.15. Let F be a presheaf on (Sch/S)ph. Then F is a sheaf if and only if
(1) F satisfies the sheaf condition for Zariski coverings, and
(2) if f : V → U is proper surjective, then F(U) maps bijectively to the equalizer

of the two maps F(V )→ F(V ×U V ).
Moreover, in the presence of (1) property (2) is equivalent to property

(2’) the sheaf property for {V → U} as in (2) with U affine.

Proof. We will show that if (1) and (2) hold, then F is sheaf. Let {Ti → T} be
a ph covering, i.e., a covering in (Sch/S)ph. We will verify the sheaf condition for this
covering. Let si ∈ F(Ti) be sections which restrict to the same section over Ti×T Ti′ . We
will show that there exists a unique section s ∈ F(T ) restricting to si over Ti. Let T =⋃
Uj be an affine open covering. By property (1) it suffices to produce sections sj ∈ F(Uj)

which agree on Uj ∩ Uj′ in order to produce s. Consider the ph coverings {Ti ×T Uj →
Uj}. Then sji = si|Ti×TUj are sections agreeing over (Ti×T Uj)×Uj (Ti′×T Uj). Choose
a proper surjective morphism Vj → Uj and a finite affine open covering Vj =

⋃
Vjk such

that the standard ph covering {Vjk → Uj} refines {Ti ×T Uj → Uj}. If sjk ∈ F(Vjk)
denotes the pullback of sji to Vjk by the implied morphisms, then we find that sjk glue
to a section s′

j ∈ F(Vj). Using the agreement on overlaps once more, we find that s′
j is

in the equalizer of the two maps F(Vj) → F(Vj ×Uj Vj). Hence by (2) we find that s′
j

comes from a unique section sj ∈ F(Uj). We omit the verification that these sections sj
have all the desired properties.
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Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose V → U is a
morphism of (Sch/S)ph which is proper and surjective. Choose an affine open covering
U =

⋃
Ui and set Vi = V ×U Ui. Then we see that F(U) → F(V ) is injective because

we know F(Ui)→ F(Vi) is injective by (2’) and we know F(U)→
∏
F(Ui) is injective

by (1). Finally, suppose that we are given an t ∈ F(V ) in the equalizer of the two maps
F(V )→ F(V ×UV ). Then t|Vi is in the equalizer of the two mapsF(Vi)→ F(Vi×UiVi)
for all i. Hence we obtain a unique section si ∈ F(Ui) mapping to t|Vi for all i by (2’). We
omit the verification that si|Ui∩Uj = sj |Ui∩Uj for all i, j; this uses the uniqueness prop-
erty just shown. By the sheaf property for the covering U =

⋃
Ui we obtain a section

s ∈ F(U). We omit the proof that s maps to t in F(V ). �

Next, we establish some relationships between the topoi associated to these sites.

Lemma 8.16. Let Schph be a big ph site. Let f : T → S be a morphism in Schph. The
functor

u : (Sch/T )ph −→ (Sch/S)ph, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)ph −→ (Sch/T )ph, (U → S) 7−→ (U ×S T → T ).
They induce the same morphism of topoi

fbig : Sh((Sch/T )ph) −→ Sh((Sch/S)ph)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functoru is cocontinuous, continuous, and commutes with fibre products
and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for
f−1
big and the existence of fbig!. Moreover, the functor v is a right adjoint because given
U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may
apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. �

Lemma 8.17. Given schemes X , Y , Y in (Sch/S)ph and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big .

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 8.16. �

9. The fpqc topology

Definition 9.1. Let T be a scheme. An fpqc covering of T is a family of morphisms
{fi : Ti → T}i∈I of schemes such that each fi is flat and such that for every affine open
U ⊂ T there exists n ≥ 0, a map a : {1, . . . , n} → I and affine opens Vj ⊂ Ta(j),
j = 1, . . . , n with

⋃n
j=1 fa(j)(Vj) = U .

To be sure this condition implies that T =
⋃
fi(Ti). It is slightly harder to recognize an

fpqc covering, hence we provide some lemmas to do so.

Lemma 9.2. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms of
schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is an fpqc covering,
(2) each fi is flat and for every affine open U ⊂ T there exist quasi-compact opens

Ui ⊂ Ti which are almost all empty, such that U =
⋃
fi(Ui),
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(3) each fi is flat and there exists an affine open coveringT =
⋃
α∈A Uα and for each

α ∈ A there exist iα,1, . . . , iα,n(α) ∈ I and quasi-compact opens Uα,j ⊂ Tiα,j
such that Uα =

⋃
j=1,...,n(α) fiα,j (Uα,j).

If T is quasi-separated, these are also equivalent to
(4) each fi is flat, and for every t ∈ T there exist i1, . . . , in ∈ I and quasi-compact

opens Uj ⊂ Tij such that
⋃
j=1,...,n fij (Uj) is a (not necessarily open) neigh-

bourhood of t in T .

Proof. We omit the proof of the equivalence of (1), (2), and (3). From now on assume
T is quasi-separated. We prove (4) implies (2). Let U ⊂ T be an affine open. To prove
(2) it suffices to show that for every t ∈ U there exist finitely many quasi-compact opens
Uj ⊂ Tij such that fij (Uj) ⊂ U and such that

⋃
fij (Uj) is a neighbourhood of t in

U . By assumption there do exist finitely many quasi-compact opens U ′
j ⊂ Tij such that

such that
⋃
fij (U ′

j) is a neighbourhood of t in T . Since T is quasi-separated we see that
Uj = U ′

j ∩ f
−1
j (U) is quasi-compact open as desired. Since it is clear that (2) implies (4)

the proof is finished. �

Lemma 9.3. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms of
schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is an fpqc covering, and
(2) setting T ′ =

∐
i∈I Ti, and f =

∐
i∈I fi the family {f : T ′ → T} is an fpqc

covering.

Proof. Suppose thatU ⊂ T is an affine open. If (1) holds, then we find i1, . . . , in ∈ I
and affine opens Uj ⊂ Tij such that U =

⋃
j=1,...,n fij (Uj). Then U1 q . . . q Un ⊂ T ′

is a quasi-compact open surjecting onto U . Thus {f : T ′ → T} is an fpqc covering by
Lemma 9.2. Conversely, if (2) holds then there exists a quasi-compact open U ′ ⊂ T ′ with
U = f(U ′). Then Uj = U ′ ∩ Tj is quasi-compact open in Tj and empty for almost all j.
By Lemma 9.2 we see that (1) holds. �

Lemma 9.4. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms of
schemes with target T . Assume that

(1) each fi is flat, and
(2) the family {fi : Ti → T}i∈I can be refined by an fpqc covering of T .

Then {fi : Ti → T}i∈I is an fpqc covering of T .

Proof. Let {gj : Xj → T}j∈J be an fpqc covering refining {fi : Ti → T}. Suppose
that U ⊂ T is affine open. Choose j1, . . . , jm ∈ J and Vk ⊂ Xjk affine open such
that U =

⋃
gjk(Vk). For each j pick ij ∈ I and a morphism hj : Xj → Tij such

that gj = fij ◦ hj . Since hjk(Vk) is quasi-compact we can find a quasi-compact open
hjk(Vk) ⊂ Uk ⊂ f−1

ijk
(U). Then U =

⋃
fijk (Uk). We conclude that {fi : Ti → T}i∈I is

an fpqc covering by Lemma 9.2. �

Lemma 9.5. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms of
schemes with target T . Assume that

(1) each fi is flat, and
(2) there exists an fpqc covering {gj : Sj → T}j∈J such that each {Sj ×T Ti →

Sj}i∈I is an fpqc covering.
Then {fi : Ti → T}i∈I is an fpqc covering of T .
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Proof. We will use Lemma 9.2 without further mention. Let U ⊂ T be an affine
open. By (2) we can find quasi-compact opens Vj ⊂ Sj for j ∈ J , almost all empty, such
that U =

⋃
gj(Vj). Then for each j we can choose quasi-compact opens Wij ⊂ Sj ×T Ti

for i ∈ I , almost all empty, with Vj =
⋃
i pr1(Wij). Thus {Sj ×T Ti → T} is an fpqc

covering. Since this covering refines {fi : Ti → T} we conclude by Lemma 9.4. �

Lemma 9.6. Any fppf covering is an fpqc covering, and a fortiori, any syntomic,
smooth, étale or Zariski covering is an fpqc covering.

Proof. We will show that an fppf covering is an fpqc covering, and then the rest
follows from Lemma 7.2. Let {fi : Ui → U}i∈I be an fppf covering. By definition this
means that the fi are flat which checks the first condition of Definition 9.1. To check
the second, let V ⊂ U be an affine open subset. Write f−1

i (V ) =
⋃
j∈Ji Vij for some

affine opens Vij ⊂ Ui. Since each fi is open (Morphisms, Lemma 25.10), we see that
V =

⋃
i∈I
⋃
j∈Ji fi(Vij) is an open covering of V . Since V is quasi-compact, this covering

has a finite refinement. This finishes the proof. �

The fpqc5 topology cannot be treated in the same way as the fppf topology6. Namely,
suppose that R is a nonzero ring. We will see in Lemma 9.14 that there does not exist a
set A of fpqc-coverings of Spec(R) such that every fpqc-covering can be refined by an
element ofA. IfR = k is a field, then the reason for this unboundedness is that there does
not exist a field extension of k such that every field extension of k is contained in it.

If you ignore set theoretic difficulties, then you run into presheaves which do not have a
sheafification, see [?, Theorem 5.5]. A mildly interesting option is to consider only those
faithfully flat ring extensions R → R′ where the cardinality of R′ is suitably bounded.
(And if you consider all schemes in a fixed universe as in SGA4 then you are bounding the
cardinality by a strongly inaccessible cardinal.) However, it is not so clear what happens
if you change the cardinal to a bigger one.

For these reasons we do not introduce fpqc sites and we will not consider cohomology
with respect to the fpqc-topology.

On the other hand, given a contravariant functor F : Schopp → Sets it does make sense
to ask whether F satisfies the sheaf property for the fpqc topology, see below. Moreover,
we can wonder about descent of object in the fpqc topology, etc. Simply put, for certain
results the correct generality is to work with fpqc coverings.

Lemma 9.7. Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an fpqc covering of T .
(2) If {Ti → T}i∈I is an fpqc covering and for each i we have an fpqc covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an fpqc covering.

(3) If {Ti → T}i∈I is an fpqc covering and T ′ → T is a morphism of schemes then
{T ′ ×T Ti → T ′}i∈I is an fpqc covering.

Proof. Part (1) is immediate. Recall that the composition of flat morphisms is flat
and that the base change of a flat morphism is flat (Morphisms, Lemmas 25.8 and 25.6).
Thus we can apply Lemma 9.2 in each case to check that our families of morphisms are
fpqc coverings.

5The letters fpqc stand for “fidèlement plat quasi-compacte”.
6A more precise statement would be that the analogue of Lemma 7.7 for the fpqc topology does not hold.
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Proof of (2). Assume {Ti → T}i∈I is an fpqc covering and for each i we have an fpqc
covering {fij : Tij → Ti}j∈Ji . Let U ⊂ T be an affine open. We can find quasi-compact
opens Ui ⊂ Ti for i ∈ I , almost all empty, such that U =

⋃
fi(Ui). Then for each i

we can choose quasi-compact opens Wij ⊂ Tij for j ∈ Ji, almost all empty, with Ui =⋃
j fij(Uij). Thus {Tij → T} is an fpqc covering.

Proof of (3). Assume {Ti → T}i∈I is an fpqc covering and T ′ → T is a morphism of
schemes. Let U ′ ⊂ T ′ be an affine open which maps into the affine open U ⊂ T . Choose
quasi-compact opens Ui ⊂ Ti, almost all empty, such that U =

⋃
fi(Ui). Then U ′ ×U Ui

is a quasi-compact open of T ′ ×T Ti and U ′ =
⋃

pr1(U ′ ×U Ui). Since T ′ can be covered
by such affine opens U ′ ⊂ T ′ we see that {T ′ ×T Ti → T ′}i∈I is an fpqc covering by
Lemma 9.2. �

Lemma 9.8. Let T be an affine scheme. Let {Ti → T}i∈I be an fpqc covering of T .
Then there exists an fpqc covering {Uj → T}j=1,...,n which is a refinement of {Ti →
T}i∈I such that each Uj is an affine scheme. Moreover, we may choose each Uj to be open
affine in one of the Ti.

Proof. This follows directly from the definition. �

Definition 9.9. Let T be an affine scheme. A standard fpqc covering of T is a family
{fj : Uj → T}j=1,...,n with each Uj is affine, flat over T and T =

⋃
fj(Uj).

Since we do not introduce the affine site we have to show directly that the collection of
all standard fpqc coverings satisfies the axioms.

Lemma 9.10. Let T be an affine scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a standard fpqc covering of T .
(2) If {Ti → T}i∈I is a standard fpqc covering and for each iwe have a standard fpqc

covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a standard fpqc covering.
(3) If {Ti → T}i∈I is a standard fpqc covering and T ′ → T is a morphism of affine

schemes then {T ′ ×T Ti → T ′}i∈I is a standard fpqc covering.

Proof. This follows formally from the fact that compositions and base changes of flat
morphisms are flat (Morphisms, Lemmas 25.8 and 25.6) and that fibre products of affine
schemes are affine (Schemes, Lemma 17.2). �

Lemma 9.11. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms of
schemes with target T . Assume that

(1) each fi is flat, and
(2) every affine scheme Z and morphism h : Z → T there exists a standard fpqc

covering {Zj → Z}j=1,...,n which refines the family {Ti ×T Z → Z}i∈I .
Then {fi : Ti → T}i∈I is an fpqc covering of T .

Proof. Let T =
⋃
Uα be an affine open covering. For each α the pullback family

{Ti ×T Uα → Uα} can be refined by a standard fpqc covering, hence is an fpqc covering
by Lemma 9.4. As {Uα → T} is an fpqc covering we conclude that {Ti → T} is an fpqc
covering by Lemma 9.5. �

Definition 9.12. Let F be a contravariant functor on the category of schemes with
values in sets.
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(1) Let {Ui → T}i∈I be a family of morphisms of schemes with fixed target. We
say that F satisfies the sheaf property for the given family if for any collection
of elements ξi ∈ F (Ui) such that ξi|Ui×TUj = ξj |Ui×TUj there exists a unique
element ξ ∈ F (T ) such that ξi = ξ|Ui in F (Ui).

(2) We say that F satisfies the sheaf property for the fpqc topology if it satisfies the
sheaf property for any fpqc covering.

We try to avoid using the terminology “F is a sheaf” in this situation since we are not
defining a category of fpqc sheaves as we explained above.

Lemma 9.13. LetF be a contravariant functor on the category of schemes with values
in sets. Then F satisfies the sheaf property for the fpqc topology if and only if it satisfies

(1) the sheaf property for every Zariski covering, and
(2) the sheaf property for any standard fpqc covering.

Moreover, in the presence of (1) property (2) is equivalent to property
(2’) the sheaf property for {V → U} with V , U affine and V → U faithfully flat.

Proof. Assume (1) and (2) hold. Let {fi : Ti → T}i∈I be an fpqc covering. Let si ∈
F (Ti) be a family of elements such that si and sj map to the same element ofF (Ti×T Tj).
Let W ⊂ T be the maximal open subset such that there exists a unique s ∈ F (W ) with
s|f−1

i
(W ) = si|f−1

i
(W ) for all i. Such a maximal open exists because F satisfies the sheaf

property for Zariski coverings; in fact W is the union of all opens with this property. Let
t ∈ T . We will show t ∈ W . To do this we pick an affine open t ∈ U ⊂ T and we will
show there is a unique s ∈ F (U) with s|f−1

i
(U) = si|f−1

i
(U) for all i.

By Lemma 9.8 we can find a standard fpqc covering {Uj → U}j=1,...,n refining {U ×T
Ti → U}, say by morphisms hj : Uj → Tij . By (2) we obtain a unique element s ∈ F (U)
such that s|Uj = F (hj)(sij ). Note that for any scheme V → U over U there is a unique
section sV ∈ F (V ) which restricts to F (hj ◦ pr2)(sij ) on V ×U Uj for j = 1, . . . , n.
Namely, this is true if V is affine by (2) as {V ×U Uj → V } is a standard fpqc covering
and in general this follows from (1) and the affine case by choosing an affine open covering
of V . In particular, sV = s|V . Now, taking V = U ×T Ti and using that sij |Tij×TTi =
si|Tij×TTi we conclude that s|U×TTi = sV = si|U×TTi which is what we had to show.

Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose {Ti → T} is a
standard fpqc covering, then

∐
Ti → T is a faithfully flat morphism of affine schemes. In

the presence of (1) we have F (
∐
Ti) =

∏
F (Ti) and similarly F ((

∐
Ti) ×T (

∐
Ti)) =∏

F (Ti×T Ti′). Thus the sheaf condition for {Ti → T} and {
∐
Ti → T} is the same. �

The following lemma is here just to point out set theoretical difficulties do indeed arise
and should be ignored by most readers.

Lemma 9.14. LetR be a nonzero ring. There does not exist a setA of fpqc-coverings
of Spec(R) such that every fpqc-covering can be refined by an element of A.

Proof. Let us first explain this when R = k is a field. For any set I consider the
purely transcendental field extension kI = k({ti}i∈I)/k. Since k → kI is faithfully
flat we see that {Spec(kI) → Spec(k)} is an fpqc covering. Let A be a set and for each
α ∈ A let Uα = {Sα,j → Spec(k)}j∈Jα be an fpqc covering. If Uα refines {Spec(kI)→
Spec(k)} then the morphisms Sα,j → Spec(k) factor through Spec(kI). Since Uα is
a covering, at least some Sα,j is nonempty. Pick a point s ∈ Sα,j . Since we have the
factorization Sα,j → Spec(kI) → Spec(k) we obtain a homomorphism of fields kI →
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κ(s). In particular, we see that the cardinality of κ(s) is at least the cardinality of I . Thus
if we take I to be a set of cardinality bigger than the cardinalities of the residue fields of all
the schemes Sα,j , then such a factorization does not exist and the lemma holds forR = k.

General case. Since R is nonzero it has a maximal prime ideal m with residue field κ. Let
I be a set and consider RI = S−1

I R[{ti}i∈I ] where SI ⊂ R[{ti}i∈I ] is the multiplica-
tive subset of f ∈ R[{ti}i∈I ] such that f maps to a nonzero element of R/p[{ti}i∈I ] for
all primes p of R. Then RI is a faithfully flat R-algebra and {Spec(RI) → Spec(R)}
is an fpqc covering. We leave it as an exercise to the reader to show that RI ⊗R κ ∼=
κ({ti}i∈I) = κI with notation as above (hint: use that R → κ is surjective and that
any f ∈ R[{ti}i∈I ] one of whose monomials occurs with coefficient 1 is an element of
SI ). Let A be a set and for each α ∈ A let Uα = {Sα,j → Spec(R)}j∈Jα be an fpqc
covering. If Uα refines {Spec(RI) → Spec(R)}, then by base change we conclude that
{Sα,j×Spec(R) Spec(κ)→ Spec(κ)} refines {Spec(κI)→ Spec(κ)}. Hence by the result
of the previous paragraph, there exists an I such that this is not the case and the lemma is
proved. �

10. The V topology

The V topology is stronger than all other topologies in this chapter. Roughly speaking
it is generated by Zariski coverings and by quasi-compact morphisms satisfying a lifting
property for specializations (Lemma 10.13). However, the procedure we will use to define
V coverings is a bit different. We will first define standard V coverings of affines and
then use these to define V coverings in general. Typographical point: in the literature
sometimes “v-covering” is used instead of “V covering”.

Definition 10.1. Let T be an affine scheme. A standard V covering is a finite family
{Tj → T}j=1,...,m with Tj affine such that for every morphism g : Spec(V )→ T where
V is a valuation ring, there is an extension V ⊂ W of valuation rings (More on Algebra,
Definition 123.1), an index 1 ≤ j ≤ m, and a commutative diagram

Spec(W ) //

��

Tj

��
Spec(V ) g // T

We first prove a few basic lemmas about this notion.

Lemma 10.2. A standard fpqc covering is a standard V covering.

Proof. Let {Xi → X}i=1,...,n be a standard fpqc covering (Definition 9.9). Let
g : Spec(V ) → X be a morphism where V is a valuation ring. Let x ∈ X be the image
of the closed point of Spec(V ). Choose an i and a point xi ∈ Xi mapping to x. Then
Spec(V )×XXi has a pointx′

i mapping to the closed point of Spec(V ). Since Spec(V )×X
Xi → Spec(V ) is flat we can find a specialization x′′

i  x′
i of points of Spec(V ) ×X

Xi with x′′
i mapping to the generic point of Spec(V ), see Morphisms, Lemma 25.9. By

Schemes, Lemma 20.4 we can choose a valuation ringW and a morphism h : Spec(W )→
Spec(V )×XXi such that hmaps the generic point of Spec(W ) to x′′

i and the closed point
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of Spec(W ) to x′
i. We obtain a commutative diagram

Spec(W ) //

��

Xi

��
Spec(V ) // X

where V →W is an extension of valuation rings. This proves the lemma. �

Lemma 10.3. A standard ph covering is a standard V covering.

Proof. Let T be an affine scheme. Let f : U → T be a proper surjective morphism.
Let U =

⋃
j=1,...,m Uj be a finite affine open covering. We have to show that {Uj → T}

is a standard V covering, see Definition 8.1. Let g : Spec(V ) → T be a morphism where
V is a valuation ring with fraction field K. Since U → T is surjective, we may choose a
field extension L/K and a commutative diagram

Spec(L) //

��

U

��
Spec(K) // Spec(V ) g // T

By Algebra, Lemma 50.2 we can choose a valuation ring W ⊂ L dominating V . By the
valuative criterion of properness (Morphisms, Lemma 42.1) we can then find the morphism
h in the commutative diagram

Spec(L) //

��

Spec(W )
h

//

��

U

��
Spec(K) // Spec(V ) g // X

Since Spec(W ) has a unique closed point, we see that Im(h) is contained in Uj for some
j. Thus h : Spec(W )→ Uj is the desired lift and we conclude {Uj → T} is a standard V
covering. �

Lemma 10.4. Let {Tj → T}j=1,...,m be a standard V covering. Let T ′ → T be a
morphism of affine schemes. Then {Tj ×T T ′ → T ′}j=1,...,m is a standard V covering.

Proof. Let Spec(V ) → T ′ be a morphism where V is a valuation ring. By assump-
tion we can find an extension of valuation rings V ⊂W , an i, and a commutative diagram

Spec(W ) //

��

Ti

��
Spec(V ) // T

By the universal property of fibre products we obtain a morphism Spec(W )→ T ′ ×T Ti
as desired. �

Lemma 10.5. Let T be an affine scheme. Let {Tj → T}j=1,...,m be a standard V
covering. Let {Tji → Tj}i=1,...nj be a standard V covering. Then {Tji → T}i,j is a
standard V covering.
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Proof. This follows formally from the observation that if V ⊂ W and W ⊂ Ω are
extensions of valuation rings, then V ⊂ Ω is an extension of valuation rings. �

Lemma 10.6. Let T be an affine scheme. Let {Tj → T}j=1,...,m be a family of mor-
phisms with Tj affine for all j. The following are equivalent

(1) {Tj → T}j=1,...,m is a standard V covering,
(2) there is a standard V covering which refines {Tj → T}j=1,...,m, and
(3) {

∐
j=1,...,m Tj → T} is a standard V covering.

Proof. Omitted. Hints: This follows almost immediately from the definition. The
only slightly interesting point is that a morphism from the spectrum of a local ring into∐
j=1,...,m Tj must factor through some Tj . �

Definition 10.7. Let T be a scheme. A V covering of T is a family of morphisms
{Ti → T}i∈I of schemes such that for every affine open U ⊂ T there exists a standard V
covering {Uj → U}j=1,...,m refining the family {Ti ×T U → U}i∈I .

The V topology has the same set theoretical problems as the fpqc topology. Thus we
refrain from defining V sites and we will not consider cohomology with respect to the
V topology. On the other hand, given a F : Schopp → Sets it does make sense to ask
whether F satisfies the sheaf property for the V topology, see below. Moreover, we can
wonder about descent of object in the V topology, etc.

Lemma 10.8. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms.
The following are equivalent

(1) {Ti → T}i∈I is a V covering,
(2) there is a V covering which refines {Ti → T}i∈I , and
(3) {

∐
i∈I Ti → T} is a V covering.

Proof. Omitted. Hint: compare with the proof of Lemma 8.7. �

Lemma 10.9. Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a V covering of T .
(2) If {Ti → T}i∈I is a V covering and for each i we have a V covering {Tij →

Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a V covering.
(3) If {Ti → T}i∈I is a V covering and T ′ → T is a morphism of schemes then
{T ′ ×T Ti → T ′}i∈I is a V covering.

Proof. Assertion (1) is clear.

Proof of (3). Let U ′ ⊂ T ′ be an affine open subscheme. Since U ′ is quasi-compact we
can find a finite affine open covering U ′ = U ′

1 ∪ . . . ∪ U ′ such that U ′
j → T maps into

an affine open Uj ⊂ T . Choose a standard V covering {Ujl → Uj}l=1,...,nj refining
{Ti ×T Uj → Uj}. By Lemma 10.4 the base change {Ujl ×Uj U ′

j → U ′
j} is a standard

V covering. Note that {U ′
j → U ′} is a standard V covering (for example by Lemma

10.2). By Lemma 10.5 the family {Ujl ×Uj U ′
j → U ′} is a standard V covering. Since

{Ujl ×Uj U ′
j → U ′} refines {Ti ×T U ′ → U ′} we conclude.

Proof of (2). Let U ⊂ T be affine open. First we pick a standard V covering {Uk →
U}k=1,...,m refining {Ti ×T U → U}. Say the refinement is given by morphisms Uk →
Tik over T . Then

{Tikj ×Tik Uk → Uk}j∈Jik
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is a V covering by part (3). As Uk is affine, we can find a standard V covering {Uka →
Uk}a=1,...,bk refining this family. Then we apply Lemma 10.5 to see that {Uka → U} is a
standard V covering which refines {Tij ×T U → U}. This finishes the proof. �

Lemma 10.10. Any fpqc covering is a V covering. A fortiori, any fppf, syntomic,
smooth, étale or Zariski covering is a V covering. Also, a ph covering is a V covering.

Proof. An fpqc covering can affine locally be refined by a standard fpqc covering, see
Lemmas 9.8. A standard fpqc covering is a standard V covering, see Lemma 10.2. Hence the
first statement follows from our definition of V covers in terms of standard V coverings.
The conclusion for fppf, syntomic, smooth, étale or Zariski coverings follows as these are
fpqc coverings, see Lemma 9.6.
The statement on ph coverings follows from Lemma 10.3 in the same manner. �

Definition 10.11. Let F be a contravariant functor on the category of schemes with
values in sets. We say that F satisfies the sheaf property for the V topology if it satisfies
the sheaf property for any V covering (see Definition 9.12).

We try to avoid using the terminology “F is a sheaf” in this situation since we are not
defining a category of V sheaves as we explained above.

Lemma 10.12. Let F be a contravariant functor on the category of schemes with val-
ues in sets. Then F satisfies the sheaf property for the V topology if and only if it satisfies

(1) the sheaf property for every Zariski covering, and
(2) the sheaf property for any standard V covering.

Moreover, in the presence of (1) property (2) is equivalent to property
(2’) the sheaf property for a standard V covering of the form {V → U}, i.e., consist-

ing of a single arrow.

Proof. Assume (1) and (2) hold. Let {fi : Ti → T}i∈I be a V covering. Let si ∈
F (Ti) be a family of elements such that si and sj map to the same element ofF (Ti×T Tj).
Let W ⊂ T be the maximal open subset such that there exists a unique s ∈ F (W ) with
s|f−1

i
(W ) = si|f−1

i
(W ) for all i. Such a maximal open exists because F satisfies the sheaf

property for Zariski coverings; in fact W is the union of all opens with this property. Let
t ∈ T . We will show t ∈ W . To do this we pick an affine open t ∈ U ⊂ T and we will
show there is a unique s ∈ F (U) with s|f−1

i
(U) = si|f−1

i
(U) for all i.

We can find a standard V covering {Uj → U}j=1,...,n refining {U ×T Ti → U}, say
by morphisms hj : Uj → Tij . By (2) we obtain a unique element s ∈ F (U) such that
s|Uj = F (hj)(sij ). Note that for any scheme V → U over U there is a unique section
sV ∈ F (V ) which restricts to F (hj ◦ pr2)(sij ) on V ×U Uj for j = 1, . . . , n. Namely,
this is true if V is affine by (2) as {V ×U Uj → V } is a standard V covering (Lemma
10.4) and in general this follows from (1) and the affine case by choosing an affine open
covering of V . In particular, sV = s|V . Now, taking V = U ×T Ti and using that
sij |Tij×TTi = si|Tij×TTi we conclude that s|U×TTi = sV = si|U×TTi which is what we
had to show.
Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose {Ti → T}i=1,...,n
is a standard V covering, then

∐
i=1,...,n Ti → T is a morphism of affine schemes which

is clearly also a standard V covering. In the presence of (1) we have F (
∐
Ti) =

∏
F (Ti)

and similarly F ((
∐
Ti) ×T (

∐
Ti)) =

∏
F (Ti ×T Ti′). Thus the sheaf condition for

{Ti → T} and {
∐
Ti → T} is the same. �
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The following lemma shows that being a V covering is related to the possibility of lifting
specializations.

Lemma 10.13. Let X → Y be a quasi-compact morphism of schemes. The following
are equivalent

(1) {X → Y } is a V covering,
(2) for any valuation ring V and morphism g : Spec(V ) → Y there exists an ex-

tension of valuation rings V ⊂W and a commutative diagram

Spec(W ) //

��

X

��
Spec(V ) // Y

(3) for any morphism Z → Y and specialization z′  z of points in Z , there is a
specialization w′  w of points in Z ×Y X mapping to z′  z.

Proof. Assume (1) and let g : Spec(V )→ Y be as in (2). Since V is a local ring there
is an affine open U ⊂ Y such that g factors through U . By Definition 10.7 we can find
a standard V covering {Uj → U} refining {X ×Y U → U}. By Definition 10.1 we can
find a j , an extension of valuation rings V ⊂W and a commutative diagram

Spec(W ) //

��

Uj

��

// X

��
Spec(V ) // Y

We have the dotted arrow making the diagram commute by the refinement property of
the covering and we see that (2) holds.
Assume (2) and let Z → Y and z′  z be as in (3). By Schemes, Lemma 20.4 we can find
a valuation ring V and a morphism Spec(V )→ Z such that the closed point of Spec(V )
maps to z and the generic point of Spec(V ) maps to z′. By (2) we can find an extension
of valuation rings V ⊂W and a commutative diagram

Spec(W ) //

��

X

��
Spec(V ) // Z // Y

The generic and closed points of Spec(W ) map to points w′  w in Z ×Y X via the
induced morphism Spec(W )→ Z ×Y X . This shows that (3) holds.
Assume (3) holds and let U ⊂ Y be an affine open. Choose a finite affine open covering
U ×Y X =

⋃
j=1,...,m Uj . This is possible as X → Y is quasi-compact. We claim that

{Uj → U} is a standard V covering. The claim implies (1) is true and finishes the proof of
the lemma. In order to prove the claim, let V be a valuation ring and let g : Spec(V )→ U
be a morphism. By (3) we find a specialization w′  w of points of

T = Spec(V )×X Y = Spec(V )×U (U ×X Y )
such that w′ maps to the generic point of Spec(V ) and w maps to the closed point of
Spec(V ). By Schemes, Lemma 20.4 we can find a valuation ring W and a morphism
Spec(W ) → T such that the generic point of Spec(W ) maps to w′ and the closed point
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of Spec(W ) maps to w. The composition Spec(W ) → T → Spec(V ) corresponds to
an inclusion V ⊂ W which presents W as an extension of the valuation ring V . Since
T =

⋃
Spec(V ) ×U Uj is an open covering, we see that Spec(W ) → T factors through

Spec(V )×U Uj for some j. Thus we obtain a commutative diagram

Spec(W )

��

// Uj

��
Spec(V ) // U

and the proof of the claim is complete. �

A V covering gives a universally submersive family of maps. The converse of this lemma
is false, see Examples, Section 78.

Lemma 10.14. Let {fi : Xi → X}i∈I be a V covering. Then∐
i∈I

fi :
∐

i∈I
Xi −→ X

is a universally submersive morphism of schemes (Morphisms, Definition 24.1).

Proof. We will use without further mention that the base change of a V covering is
a V covering (Lemma 10.9). In particular it suffices to show that the morphism is submer-
sive. Being submersive is clearly Zariski local on the base. Thus we may assumeX is affine.
Then {Xi → X} can be refined by a standard V covering {Yj → X}. If we can show
that

∐
Yj → X is submersive, then since there is a factorization

∐
Yj →

∐
Xi → X we

conclude that
∐
Xi → X is submersive. Set Y =

∐
Yj and consider the morphism of

affines f : Y → X . By Lemma 10.13 we know that we can lift any specialization x′  x
in X to some specialization y′  y in Y . Thus if T ⊂ X is a subset such that f−1(T )
is closed in Y , then T ⊂ X is closed under specialization. Since f−1(T ) ⊂ Y with the
reduced induced closed subscheme structure is an affine scheme, we conclude that T ⊂ X
is closed by Algebra, Lemma 41.5. Hence f is submersive. �

11. Change of topologies

Let f : X → Y be a morphism of schemes over a base scheme S. In this case we have the
following morphisms of sites7 (with suitable choices of sites as in Remark 11.1 below):

(1) (Sch/X)fppf −→ (Sch/Y )fppf ,
(2) (Sch/X)fppf −→ (Sch/Y )syntomic,
(3) (Sch/X)fppf −→ (Sch/Y )smooth,
(4) (Sch/X)fppf −→ (Sch/Y )étale,
(5) (Sch/X)fppf −→ (Sch/Y )Zar ,
(6) (Sch/X)syntomic −→ (Sch/Y )syntomic,
(7) (Sch/X)syntomic −→ (Sch/Y )smooth,
(8) (Sch/X)syntomic −→ (Sch/Y )étale,
(9) (Sch/X)syntomic −→ (Sch/Y )Zar ,

(10) (Sch/X)smooth −→ (Sch/Y )smooth,
(11) (Sch/X)smooth −→ (Sch/Y )étale,
(12) (Sch/X)smooth −→ (Sch/Y )Zar ,
(13) (Sch/X)étale −→ (Sch/Y )étale,

7We have not included the comparison between the ph topology and the others; for this see More on
Morphisms, Remark 48.8.
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(14) (Sch/X)étale −→ (Sch/Y )Zar ,
(15) (Sch/X)Zar −→ (Sch/Y )Zar ,
(16) (Sch/X)fppf −→ Yétale,
(17) (Sch/X)syntomic −→ Yétale,
(18) (Sch/X)smooth −→ Yétale,
(19) (Sch/X)étale −→ Yétale,
(20) (Sch/X)fppf −→ YZar ,
(21) (Sch/X)syntomic −→ YZar ,
(22) (Sch/X)smooth −→ YZar ,
(23) (Sch/X)étale −→ YZar ,
(24) (Sch/X)Zar −→ YZar ,
(25) Xétale −→ Yétale,
(26) Xétale −→ YZar ,
(27) XZar −→ YZar ,

In each case the underlying continuous functor Sch/Y → Sch/X , or Yτ → Sch/X is the
functor Y ′/Y 7→ X×Y Y ′/X . Namely, in the sections above we have seen the morphisms
fbig : (Sch/X)τ → (Sch/Y )τ and fsmall : Xτ → Yτ for τ as above. We also have seen
the morphisms of sites πY : (Sch/Y )τ → Yτ for τ ∈ {étale, Zariski}. On the other
hand, it is clear that the identity functor (Sch/X)τ → (Sch/X)τ ′ defines a morphism
of sites when τ is a stronger topology than τ ′. Hence composing these gives the list of
possible morphisms above.

Because of the simple description of the underlying functor it is clear that given mor-
phisms of schemes X → Y → Z the composition of two of the morphisms of sites above,
e.g.,

(Sch/X)τ0 −→ (Sch/Y )τ1 −→ (Sch/Z)τ2

is the corresponding morphism of sites associated to the morphism of schemes X → Z.

Remark 11.1. Take any category Schα constructed as in Sets, Lemma 9.2 starting with
the set of schemes {X,Y, S}. Choose any set of coverings Covfppf on Schα as in Sets,
Lemma 11.1 starting with the category Schα and the class of fppf coverings. Let Schfppf
denote the big fppf site so obtained. Next, for τ ∈ {Zariski, étale, smooth, syntomic}
let Schτ have the same underlying category as Schfppf with coverings Covτ ⊂ Covfppf
simply the subset of τ -coverings. It is straightforward to check that this gives rise to a big
site Schτ .

12. Change of big sites

In this section we explain what happens on changing the big Zariski/fppf/étale sites.

Let τ, τ ′ ∈ {Zariski, étale, smooth, syntomic, fppf}. Given two big sites Schτ and
Sch′

τ ′ we say that Schτ is contained in Sch′
τ ′ if Ob(Schτ ) ⊂ Ob(Sch′

τ ′) and Cov(Schτ ) ⊂
Cov(Sch′

τ ′). In this case τ is stronger than τ ′, for example, no fppf site can be contained
in an étale site.

Lemma 12.1. Any set of big Zariski sites is contained in a common big Zariski site.
The same is true, mutatis mutandis, for big fppf and big étale sites.

Proof. This is true because the union of a set of sets is a set, and the constructions
in Sets, Lemmas 9.2 and 11.1 allow one to start with any initially given set of schemes and
coverings. �
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Lemma 12.2. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Suppose given
big sites Schτ and Sch′

τ . Assume that Schτ is contained in Sch′
τ . The inclusion functor

Schτ → Sch′
τ satisfies the assumptions of Sites, Lemma 21.8. There are morphisms of

topoi

g : Sh(Schτ ) −→ Sh(Sch′
τ )

f : Sh(Sch′
τ ) −→ Sh(Schτ )

such that f ◦ g ∼= id. For any object S of Schτ the inclusion functor (Sch/S)τ →
(Sch′/S)τ satisfies the assumptions of Sites, Lemma 21.8 also. Hence similarly we obtain
morphisms

g : Sh((Sch/S)τ ) −→ Sh((Sch′/S)τ )
f : Sh((Sch′/S)τ ) −→ Sh((Sch/S)τ )

with f ◦ g ∼= id.

Proof. Assumptions (b), (c), and (e) of Sites, Lemma 21.8 are immediate for the func-
tors Schτ → Sch′

τ and (Sch/S)τ → (Sch′/S)τ . Property (a) holds by Lemma 3.6, 4.7,
5.7, 6.7, or 7.7. Property (d) holds because fibre products in the categories Schτ , Sch′

τ exist
and are compatible with fibre products in the category of schemes. �

Discussion: The functor g−1 = f∗ is simply the restriction functor which associates to
a sheaf G on Sch′

τ the restriction G|Schτ . Hence this lemma simply says that given any
sheaf of sets F on Schτ there exists a canonical sheaf F ′ on Sch′

τ such that F|Sch′
τ

= F ′.
In fact the sheaf F ′ has the following description: it is the sheafification of the presheaf

Sch′
τ −→ Sets, V 7−→ colimV→U F(U)

where U is an object of Schτ . This is true because F ′ = f−1F = (upF)# according to
Sites, Lemmas 21.5 and 21.8.

13. Extending functors

Let us start with a simple example which explains what we are doing. Let R be a ring.
Suppose F is a functor defined on the category C of R-algebras of the form

A = R[x1, . . . , xn]/(f1, . . . , fm)

for n,m ≥ 0 integers and f1, . . . , fm ∈ R[x1, . . . , xm] elements. Then for any R-algebra
B we can define

F ′(B) = colimA→B, A∈C F (A)
It turns outF ′ is the unique functor on the category of allR-algebras which extendsF and
commutes with filtered colimits. The same procedure works in the category of schemes if
we impose that our functor is a Zariski sheaf.

Lemma 13.1. Let S be a scheme. Let C be a full subcategory of the category Sch/S of
all schemes over S. Assume

(1) if X → S is an object of C and U ⊂ X is an affine open, then U → S is
isomorphic to an object of C ,

(2) if V is an affine scheme lying over an affine open U ⊂ S such that V → U is of
finite presentation, then V → S is isomorphic to an object of C.

Let F : Copp → Sets be a functor. Assume
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(a) for any Zariski covering {fi : Xi → X}i∈I withX,Xi objects of C we have the
sheaf condition for F and this family8,

(b) if X = limXi is a directed limit of affine schemes over S with X,Xi objects of
C , then F (X) = colimF (Xi).

Then there is a unique way to extend F to a functor F ′ : (Sch/S)opp → Sets satisfying
the analogues of (a) and (b), i.e., F ′ satisfies the sheaf condition for any Zariski covering
and F ′(X) = colimF ′(Xi) whenever X = limXi is a directed limit of affine schemes
over S.

Proof. The idea will be to first extend F to a sufficiently large collection of affine
schemes over S and then use the Zariski sheaf property to extend to all schemes.
Suppose that V is an affine scheme over S whose structure morphism V → S factors
through some affine open U ⊂ S. In this case we can write

V = limVi

as a cofiltered limit with Vi → U of finite presentation and Vi affine. See Algebra, Lemma
127.2. By conditions (1) and (2) we may replace our Vi by objects of C. Observe that
Vi → S is locally of finite presentation (if S is quasi-separated, then these morphisms are
actually of finite presentation). Then we set

F ′(V ) = colimF (Vi)
Actually, we can give a more canonical expression, namely

F ′(V ) = colimV→V ′ F (V ′)
where the colimit is over the category of morphisms V → V ′ over S where V ′ is an object
of C whose structure morphism V ′ → S is locally of finite presentation. The reason this
is the same as the first formula is that by Limits, Proposition 6.1 our inverse system Vi is
cofinal in this category! Finally, note that if V were an object of C , then F ′(V ) = F (V )
by assumption (b).
The second formula turnsF ′ into a contravariant functor on the category formed by affine
schemes V over S whose structure morphism factors through an affine open of S. Let V be
such an affine scheme over S and suppose that V =

⋃
k=1,...,n Vk is a finite open covering

by affines. Then it makes sense to ask if the sheaf condition holds for F ′ and this open
covering. This is true and easy to show: write V = limVi as in the previous paragraph. By
Limits, Lemma 4.11 for all sufficiently large iwe can find affine opens Vi,k ⊂ Vi compatible
with transition maps pulling back to Vk in V . Thus

F ′(Vk) = colimF (Vi,k) and F ′(Vk ∩ Vl) = colimF (Vi,k ∩ Vi,l)
Strictly speaking in these formulas we need to replace Vi,k and Vi,k ∩ Vi,l by isomorphic
affine objects of C before applying the functor F . Since I is directed the colimits pass
through equalizers. Hence the sheaf condition (b) forF and the Zariski coverings {Vi,k →
Vi} implies the sheaf condition for F ′ and this covering.
LetX be a general scheme over S. LetBX denote the collection of affine opens ofX whose
structure morphism to S maps into an affine open of S. It is clear that BX is a basis for
the topology of X . By the result of the previous paragraph and Sheaves, Lemma 30.4 we
see that F ′ is a sheaf on BX . Hence F ′ restricted to BX extends uniquely to a sheaf F ′

X on

8As we do not know that Xi ×X Xj is in C this has to be interpreted as follows: by property (1) there
exist Zariski coverings {Uijk → Xi ×X Xj}k∈Kij with Uijk an object of C. Then the sheaf condition says
that F (X) is the equalizer of the two maps from

∏
F (Xi) to

∏
F (Uijk).
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X , see Sheaves, Lemma 30.6. IfX is an object of C then we have a canonical identification
F ′
X(X) = F (X) by the agreement of F ′ and F on the objects for which they are both

defined and the fact that F satisfies the sheaf condition for Zariski coverings.

Let f : X → Y be a morphism of schemes over S. We get a unique f -map from F ′
Y to F ′

X

compatible with the maps F ′(V )→ F ′(U) for all U ∈ BX and V ∈ BY with f(U) ⊂ V ,
see Sheaves, Lemma 30.16. We omit the verification that these maps compose correctly
given morphisms X → Y → Z of schemes over S. We also omit the verification that
if f is a morphism of C , then the induced map F ′

Y (Y ) → F ′
X(X) is the same as the map

F (Y ) → F (X) via the identifications F ′
X(X) = F (X) and F ′

Y (Y ) = F (Y ) above. In
this way we see that the desired extension ofF is the functor which sendsX/S toF ′

X(X).

Property (a) for the functor X 7→ F ′
X(X) is almost immediate from the construction; we

omit the details. Suppose that X = limi∈I Xi is a directed limit of affine schemes over S.
We have to show that

F ′
X(X) = colimi∈I F

′
Xi(Xi)

First assume that there is some i ∈ I such thatXi → S factors through an affine openU ⊂
S. Then F ′ is defined on X and on Xi′ for i′ ≥ i and we see that F ′

Xi′
(Xi′) = F ′(Xi′)

for i′ ≥ i and F ′
X(X) = F ′(X). In this case every arrow X → V with V locally of finite

presentation over S factors as X → Xi′ → V for some i′ ≥ i, see Limits, Proposition 6.1.
Thus we have

F ′
X(X) = F ′(X)

= colimX→V F (V )
= colimi′≥i colimXi′ →V F (V )
= colimi′≥i F

′(Xi′)
= colimi′≥i F

′
Xi′

(Xi′)
= colimi′∈I F

′
Xi′

(Xi′)

as desired. Finally, in general we pick any i ∈ I and we choose a finite affine open covering
Vi = Vi,1∪ . . .∪Vi,n such that Vi,k → S factors through an affine open of S. Let Vk ⊂ V
and Vi′,k for i′ ≥ i be the inverse images of Vi,k. By the previous case we see that

F ′
Vk

(Vk) = colimi′≥i F
′
Vi′,k

(Vi′,k)

and
F ′
Vk∩Vl(Vk ∩ Vl) = colimi′≥i F

′
Vi′,k∩Vi′,l(Vi′,k ∩ Vi′,l)

By the sheaf property and exactness of filtered colimits we find thatF ′
X(X) = colimi∈I F

′
Xi

(Xi)
also in this case. This finishes the proof of property (b) and hence finishes the proof of the
lemma. �

Lemma 13.2. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let T be an affine
scheme which is written as a limit T = limi∈I Ti of a directed inverse system of affine
schemes.

(1) Let V = {Vj → T}j=1,...,m be a standard τ -covering of T , see Definitions 3.4,
4.5, 5.5, 6.5, and 7.5. Then there exists an index i and a standard τ -covering
Vi = {Vi,j → Ti}j=1,...,m whose base change T ×Ti Vi to T is isomorphic to V .

(2) Let Vi, V ′
i be a pair of standard τ -coverings of Ti. If f : T ×Ti Vi → T ×Ti V ′

i is
a morphism of coverings of T , then there exists an index i′ ≥ i and a morphism
fi′ : Ti′ ×Ti V → Ti′ ×Ti V ′

i whose base change to T is f .
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(3) If f, g : V → V ′
i are morphisms of standard τ -coverings of Ti whose base changes

fT , gT to T are equal then there exists an index i′ ≥ i such that fTi′ = gTi′ .

In other words, the category of standard τ -coverings of T is the colimit over I of the
categories of standard τ -coverings of Ti.

Proof. Let us prove this for τ = fppf . By Limits, Lemma 10.1 the category of
schemes of finite presentation over T is the colimit over I of the categories of finite pre-
sentation over Ti. By Limits, Lemmas 8.2 and 8.7 the same is true for category of schemes
which are affine, flat and of finite presentation over T . To finish the proof of the lemma
it suffices to show that if {Vj,i → Ti}j=1,...,m is a finite family of flat finitely presented
morphisms with Vj,i affine, and the base change

∐
j T ×Ti Vj,i → T is surjective, then for

some i′ ≥ i the morphism
∐
Ti′ ×Ti Vj,i → Ti′ is surjective. Denote Wi′ ⊂ Ti′ , resp.

W ⊂ T the image. Of course W = T by assumption. Since the morphisms are flat and of
finite presentation we see that Wi is a quasi-compact open of Ti, see Morphisms, Lemma
25.10. Moreover,W = T×TiWi (formation of image commutes with base change). Hence
by Limits, Lemma 4.11 we conclude that Wi′ = Ti′ for some large enough i′ and we win.

For τ ∈ {Zariski, étale, smooth, syntomic} a standard τ -covering is a standard fppf
covering. Hence the fully faithfulness of the functor holds. The only issue is to show that
given a standard fppf covering Vi for some i such that Vi ×Ti T is a standard τ -covering,
then Vi ×Ti Ti′ is a standard τ -covering for all i′ � i. This follows immediately from
Limits, Lemmas 8.12, 8.10, 8.9, and 8.16. �

Lemma 13.3. Let S , C , F satisfy conditions (1), (2), (a), and (b) of Lemma 13.1 and
denote F ′ : (Sch/S)opp → Sets the unique extension constructed in the lemma. Let
τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Assume

(c) for any standard τ -covering {Vi → V }i=1,...,n of affines in Sch/S such that
V → S factors through an affine open U ⊂ S and V → U is of finite presenta-
tion, the sheaf condition hold for F and {Vi → V }i=1,...,n

9.

Then F ′ satisfies the sheaf condition for all τ -coverings.

Proof. Let X be a scheme over S and let {Xi → X}i∈I be a τ -covering. Let si ∈
F ′(Xi) be elements such that si and sj map to the same element of F ′(Xi ×X Xj) for
all i, j ∈ I . We have to show that there is a unique element s ∈ F ′(X) restricting to
si ∈ F ′(Xi) for all i ∈ I .

Special case: X is an affine such that the structure morphism maps into an affine open U
of S and the covering {Xi → X}i∈I is a standard τ -covering. In this case we can write

X = limVk

as a cofiltered limit with Vk → U of finite presentation and Vk affine. See Algebra, Lemma
127.2. By Lemma 13.2 there exists a k and a standard τ -covering {Vk,i → Vk}i∈I whose
base change to X is the given covering. For k′ ≥ k denote {Vk′,i → Vk′}i∈I the base

9This makes sense as V , Vi , and Vi ×V Vj are isomorphic to objects of C by (2).
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change to Vk′ of our covering. Then we see that
F ′(X) = colimk′≥k F (Vk)

= colimk′≥k Equalizer(
∏
F (Vk′,i)

//
//
∏
F (Vk′,i ×Vk′ Vk′,j)

= Equalizer( colimk′≥k
∏
F (Vk′,i)

//
// colimk′≥k

∏
F (Vk′,i ×Vk′ Vk′,j)

= Equalizer(
∏
F ′(Xi)

//
//
∏
F ′(Xi ×X Xj)

The first equality holds by construction of F ′. The second holds by assumption (c). The
third holds because filtered colimits are exact. The fourth again holds by construction of
F ′. In this way we find that the sheaf property holds forF ′ with respect to {Xi → X}i∈I .
General case. Choose an affine open covering X =

⋃
Uk such that each Uk maps into an

affine open of S. For every k we may choose a standard τ -covering {Vk,j → Uk}j=1,...,mk
which refines {Xi×X Uk → Uk}i∈I . For each j ∈ {1, . . . ,mk} choose an index ik,j ∈ I
and a morphism gk,j : Vk,j → Xik,j over X . Let sk,j be the element of F ′(Vk,j) we
get by restricting sik,j via gk,j . Observe that sk,j and sk′,j′ restrict to the same element
of F ′(Vk,j ×X Vk′,j′) for all k and k′ and all j ∈ {1, . . . ,mk} and j′ ∈ {1, . . . ,mk′};
verification omitted. In particular, by the result of the previous paragraph there is a unique
element sk ∈ F ′(Uk) restricting to sk,j for all j. With this notation we are ready to finish
the proof.
Proof of uniqueness of s: this is true because F ′ satisfies the sheaf property for Zariski
coverings and s|Uk must be equal to sk because both restrict to sk,j for all j. This unique-
ness then shows that sk and sk′ must restrict to the same section of F ′ over (the non-affine
scheme) Uk ∩ Uk′ because these sections restrict to the same section over the τ -covering
{Vk,j ×X Vk′,j′ → Uk ∩ Uk′}. Thus by the sheaf property for Zariski coverings, there is
a unique section s of F ′ over X whose restriction to Uk is sk. We omit the verification
(similar to the above) that s restricts to si over Xi. �

Lemma 13.4. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. LetS be a scheme
contained in a big site Schτ . Let F : (Sch/S)oppτ → Sets be a τ -sheaf satisfying property
(b) of Lemma 13.1 with C = (Sch/S)τ . Then the extension F ′ of F to the category of all
schemes over S satisfies the sheaf condition for all τ -coverings.

Proof. This follows from Lemma 13.3 applied with C = (Sch/S)τ . Conditions (1),
(2), (a), and (b) of Lemma 13.1 hold; we omit the details. Thus we get our unique extension
F ′ to the category of all schemes over S. Finally, observe that any standard τ -covering is
tautologically equivalent to a covering in (Sch/S)τ , see Sets, Lemma 9.9 as well as Lemmas
3.6, 4.7, 5.7, 6.7, and 7.7. By Sites, Lemma 8.4 the sheaf property passes through tautolog-
ical equivalence of coverings. Hence the fact that F is a τ -sheaf implies that property (c)
of Lemma 13.3 holds and we conclude. �
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CHAPTER 35

Descent

1. Introduction

In the chapter on topologies on schemes (see Topologies, Section 1) we introduced Zariski,
étale, fppf, smooth, syntomic and fpqc coverings of schemes. In this chapter we discuss
what kind of structures over schemes can be descended through such coverings. See for
example [?], [?], [?], [?], [?], and [?]. This is also meant to introduce the notions of descent,
descent data, effective descent data, in the less formal setting of descent questions for quasi-
coherent sheaves, schemes, etc. The formal notion, that of a stack over a site, is discussed
in the chapter on stacks (see Stacks, Section 1).

2. Descent data for quasi-coherent sheaves

In this chapter we will use the convention where the projection maps pri : X× . . .×X →
X are labeled starting with i = 0. Hence we have pr0, pr1 : X ×X → X , pr0, pr1, pr2 :
X ×X ×X → X , etc.

Definition 2.1. Let S be a scheme. Let {fi : Si → S}i∈I be a family of morphisms
with target S.

(1) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the given
family is given by a quasi-coherent sheafFi onSi for each i ∈ I , an isomorphism
of quasi-coherent OSi×SSj -modules ϕij : pr∗

0Fi → pr∗
1Fj for each pair (i, j) ∈

I2 such that for every triple of indices (i, j, k) ∈ I3 the diagram

pr∗
0Fi

pr∗
01ϕij ##

pr∗
02ϕik

// pr∗
2Fk

pr∗
1Fj

pr∗
12ϕjk

;;

ofOSi×SSj×SSk -modules commutes. This is called the cocycle condition.
(2) A morphism ψ : (Fi, ϕij) → (F ′

i , ϕ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of OSi -modules ψi : Fi → F ′
i such that all the

diagrams
pr∗

0Fi ϕij
//

pr∗
0ψi

��

pr∗
1Fj

pr∗
1ψj

��
pr∗

0F
′
i

ϕ′
ij // pr∗

1F
′
j

commute.

A good example to keep in mind is the following. Suppose that S =
⋃
Si is an open

covering. In that case we have seen descent data for sheaves of sets in Sheaves, Section 33
where we called them “glueing data for sheaves of sets with respect to the given covering”.

2917
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Moreover, we proved that the category of glueing data is equivalent to the category of
sheaves on S. We will show the analogue in the setting above when {Si → S}i∈I is an
fpqc covering.

In the extreme case where the covering {S → S} is given by idS a descent datum is
necessarily of the form (F , idF ). The cocycle condition guarantees that the identity on
F is the only permitted map in this case. The following lemma shows in particular that
to every quasi-coherent sheaf of OS-modules there is associated a unique descent datum
with respect to any given family.

Lemma 2.2. LetU = {Ui → U}i∈I andV = {Vj → V }j∈J be families of morphisms
of schemes with fixed target. Let (g, α : I → J, (gi)) : U → V be a morphism of families
of maps with fixed target, see Sites, Definition 8.1. Let (Fj , ϕjj′) be a descent datum for
quasi-coherent sheaves with respect to the family {Vj → V }j∈J . Then

(1) The system (
g∗
iFα(i), (gi × gi′)∗ϕα(i)α(i′)

)
is a descent datum with respect to the family {Ui → U}i∈I .

(2) This construction is functorial in the descent datum (Fj , ϕjj′).
(3) Given a second morphism (g′, α′ : I → J, (g′

i)) of families of maps with fixed
target with g = g′ there exists a functorial isomorphism of descent data

(g∗
iFα(i), (gi × gi′)∗ϕα(i)α(i′)) ∼= ((g′

i)∗Fα′(i), (g′
i × g′

i′)∗ϕα′(i)α′(i′)).

Proof. Omitted. Hint: The maps g∗
iFα(i) → (g′

i)∗Fα′(i) which give the isomor-
phism of descent data in part (3) are the pullbacks of the mapsϕα(i)α′(i) by the morphisms
(gi, g′

i) : Ui → Vα(i) ×V Vα′(i). �

Any familyU = {Si → S}i∈I is a refinement of the trivial covering {S → S} in a unique
way. For a quasi-coherent sheaf F on S we denote simply (F|Si , can) the descent datum
with respect to U obtained by the procedure above.

Definition 2.3. Let S be a scheme. Let {Si → S}i∈I be a family of morphisms with
target S.

(1) Let F be a quasi-coherent OS-module. We call the unique descent on F datum
with respect to the covering {S → S} the trivial descent datum.

(2) The pullback of the trivial descent datum to {Si → S} is called the canonical
descent datum. Notation: (F|Si , can).

(3) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the given
covering is said to be effective if there exists a quasi-coherent sheaf F on S such
that (Fi, ϕij) is isomorphic to (F|Si , can).

Lemma 2.4. Let S be a scheme. Let S =
⋃
Ui be an open covering. Any descent

datum on quasi-coherent sheaves for the family U = {Ui → S} is effective. Moreover,
the functor from the category of quasi-coherent OS-modules to the category of descent
data with respect to U is fully faithful.

Proof. This follows immediately from Sheaves, Section 33 and the fact that being
quasi-coherent is a local property, see Modules, Definition 10.1. �

To prove more we first need to study the case of modules over rings.
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3. Descent for modules

Let R → A be a ring map. By Simplicial, Example 5.5 this gives rise to a cosimplicial
R-algebra

A
//
// A⊗R Aoo

//
//
//
A⊗R A⊗R Aoo

oo

Let us denote this (A/R)• so that (A/R)n is the (n+ 1)-fold tensor product ofA overR.
Given a map ϕ : [n]→ [m] the R-algebra map (A/R)•(ϕ) is the map

a0 ⊗ . . .⊗ an 7−→
∏

ϕ(i)=0
ai ⊗

∏
ϕ(i)=1

ai ⊗ . . .⊗
∏

ϕ(i)=m
ai

where we use the convention that the empty product is 1. Thus the first few maps, notation
as in Simplicial, Section 5, are

δ1
0 : a0 7→ 1⊗ a0
δ1

1 : a0 7→ a0 ⊗ 1
σ0

0 : a0 ⊗ a1 7→ a0a1
δ2

0 : a0 ⊗ a1 7→ 1⊗ a0 ⊗ a1
δ2

1 : a0 ⊗ a1 7→ a0 ⊗ 1⊗ a1
δ2

2 : a0 ⊗ a1 7→ a0 ⊗ a1 ⊗ 1
σ1

0 : a0 ⊗ a1 ⊗ a2 7→ a0a1 ⊗ a2
σ1

1 : a0 ⊗ a1 ⊗ a2 7→ a0 ⊗ a1a2

and so on.

An R-module M gives rise to a cosimplicial (A/R)•-module (A/R)• ⊗R M . In other
words Mn = (A/R)n ⊗R M and using the R-algebra maps (A/R)n → (A/R)m to
define the corresponding maps on M ⊗R (A/R)•.

The analogue to a descent datum for quasi-coherent sheaves in the setting of modules is
the following.

Definition 3.1. Let R→ A be a ring map.
(1) A descent datum (N,ϕ) for modules with respect to R → A is given by an

A-module N and an isomorphism of A⊗R A-modules

ϕ : N ⊗R A→ A⊗R N
such that the cocycle condition holds: the diagram of A ⊗R A ⊗R A-module
maps

N ⊗R A⊗R A ϕ02
//

ϕ01 ((

A⊗R A⊗R N

A⊗R N ⊗R A
ϕ12

66

commutes (see below for notation).
(2) A morphism (N,ϕ) → (N ′, ϕ′) of descent data is a morphism of A-modules

ψ : N → N ′ such that the diagram

N ⊗R A ϕ
//

ψ⊗idA
��

A⊗R N

idA⊗ψ
��

N ′ ⊗R A
ϕ′
// A⊗R N ′

is commutative.
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In the definition we use the notation that ϕ01 = ϕ ⊗ idA, ϕ12 = idA ⊗ ϕ, and ϕ02(n ⊗
1 ⊗ 1) =

∑
ai ⊗ 1 ⊗ ni if ϕ(n ⊗ 1) =

∑
ai ⊗ ni. All three are A ⊗R A ⊗R A-module

homomorphisms. Equivalently we have
ϕij = ϕ⊗(A/R)1, (A/R)•(τ2

ij
) (A/R)2

where τ2
ij : [1] → [2] is the map 0 7→ i, 1 7→ j. Namely, (A/R)•(τ2

02)(a0 ⊗ a1) =
a0 ⊗ 1⊗ a1, and similarly for the others1.
We need some more notation to be able to state the next lemma. Let (N,ϕ) be a descent
datum with respect to a ring map R→ A. For n ≥ 0 and i ∈ [n] we set

Nn,i = A⊗R . . .⊗R A⊗R N ⊗R A⊗R . . .⊗R A
with the factor N in the ith spot. It is an (A/R)n-module. If we introduce the maps
τni : [0]→ [n], 0 7→ i then we see that

Nn,i = N ⊗(A/R)0, (A/R)•(τn
i

) (A/R)n
For 0 ≤ i ≤ j ≤ n we let τnij : [1] → [n] be the map such that 0 maps to i and 1 to j.
Similarly to the above the homomorphism ϕ induces isomorphisms

ϕnij = ϕ⊗(A/R)1, (A/R)•(τn
ij

) (A/R)n : Nn,i −→ Nn,j

of (A/R)n-modules when i < j. If i = j we setϕnij = id. Since these are all isomorphisms
they allow us to move the factorN to any spot we like. And the cocycle condition exactly
means that it does not matter how we do this (e.g., as a composition of two of these or at
once). Finally, for any β : [n]→ [m] we define the morphism

Nβ,i : Nn,i → Nm,β(i)

as the unique (A/R)•(β)-semi linear map such that
Nβ,i(1⊗ . . .⊗ n⊗ . . .⊗ 1) = 1⊗ . . .⊗ n⊗ . . .⊗ 1

for all n ∈ N . This hints at the following lemma.
Lemma 3.2. LetR→ A be a ring map. Given a descent datum (N,ϕ) we can associate

to it a cosimplicial (A/R)•-moduleN•
2 by the rulesNn = Nn,n and given β : [n]→ [m]

setting we define
N•(β) = (ϕmβ(n)m) ◦Nβ,n : Nn,n −→ Nm,m.

This procedure is functorial in the descent datum.
Proof. Here are the first few maps where ϕ(n⊗ 1) =

∑
αi ⊗ xi

δ1
0 : N → A⊗N n 7→ 1⊗ n
δ1

1 : N → A⊗N n 7→
∑
αi ⊗ xi

σ0
0 : A⊗N → N a0 ⊗ n 7→ a0n
δ2

0 : A⊗N → A⊗A⊗N a0 ⊗ n 7→ 1⊗ a0 ⊗ n
δ2

1 : A⊗N → A⊗A⊗N a0 ⊗ n 7→ a0 ⊗ 1⊗ n
δ2

2 : A⊗N → A⊗A⊗N a0 ⊗ n 7→
∑
a0 ⊗ αi ⊗ xi

σ1
0 : A⊗A⊗N → A⊗N a0 ⊗ a1 ⊗ n 7→ a0a1 ⊗ n
σ1

1 : A⊗A⊗N → A⊗N a0 ⊗ a1 ⊗ n 7→ a0 ⊗ a1n

with notation as in Simplicial, Section 5. We first verify the two properties σ0
0 ◦ δ1

0 = id
and σ0

0 ◦ δ1
1 = id. The first one, σ0

0 ◦ δ1
0 = id, is clear from the explicit description of

1Note that τ2
ij = δ2

k , if {i, j, k} = [2] = {0, 1, 2}, see Simplicial, Definition 2.1.
2We should really write (N,ϕ)•.
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the morphisms above. To prove the second relation we have to use the cocycle condition
(because it does not hold for an arbitrary isomorphism ϕ : N ⊗R A → A⊗R N ). Write
p = σ0

0 ◦δ1
1 : N → N . By the description of the maps above we deduce that p is also equal

to
p = ϕ⊗ id : N = (N ⊗R A)⊗(A⊗RA) A −→ (A⊗R N)⊗(A⊗RA) A = N

Since ϕ is an isomorphism we see that p is an isomorphism. Write ϕ(n⊗ 1) =
∑
αi⊗ xi

for certainαi ∈ A and xi ∈ N . Then p(n) =
∑
αixi. Next, writeϕ(xi⊗1) =

∑
αij⊗yj

for certain αij ∈ A and yj ∈ N . Then the cocycle condition says that∑
αi ⊗ αij ⊗ yj =

∑
αi ⊗ 1⊗ xi.

This means that p(n) =
∑
αixi =

∑
αiαijyj =

∑
αip(xi) = p(p(n)). Thus p is a

projector, and since it is an isomorphism it is the identity.
To prove fully that N• is a cosimplicial module we have to check all 5 types of relations
of Simplicial, Remark 5.3. The relations on composing σ’s are obvious. The relations on
composing δ’s come down to the cocycle condition for ϕ. In exactly the same way as
above one checks the relations σj ◦ δj = σj ◦ δj+1 = id. Finally, the other relations on
compositions of δ’s and σ’s hold for any ϕ whatsoever. �

Note that to an R-module M we can associate a canonical descent datum, namely (M ⊗R
A, can) where can : (M ⊗RA)⊗RA→ A⊗R (M ⊗RA) is the obvious map: (m⊗a)⊗
a′ 7→ a⊗ (m⊗ a′).

Lemma 3.3. Let R → A be a ring map. Let M be an R-module. The cosimplicial
(A/R)•-module associated to the canonical descent datum is isomorphic to the cosimpli-
cial module (A/R)• ⊗RM .

Proof. Omitted. �

Definition 3.4. LetR→ A be a ring map. We say a descent datum (N,ϕ) is effective
if there exists an R-module M and an isomorphism of descent data from (M ⊗R A, can)
to (N,ϕ).

Let R → A be a ring map. Let (N,ϕ) be a descent datum. We may take the cochain
complex s(N•) associated withN• (see Simplicial, Section 25). It has the following shape:

N → A⊗R N → A⊗R A⊗R N → . . .

We can describe the maps. The first map is the map
n 7−→ 1⊗ n− ϕ(n⊗ 1).

The second map on pure tensors has the values
a⊗ n 7−→ 1⊗ a⊗ n− a⊗ 1⊗ n+ a⊗ ϕ(n⊗ 1).

It is clear how the pattern continues.
In the special case where N = A⊗RM we see that for any m ∈M the element 1⊗m is
in the kernel of the first map of the cochain complex associated to the cosimplicial module
(A/R)• ⊗RM . Hence we get an extended cochain complex
(3.4.1) 0→M → A⊗RM → A⊗R A⊗RM → . . .

Here we think of the 0 as being in degree −2, the module M in degree −1, the module
A⊗RM in degree 0, etc. Note that this complex has the shape

0→ R→ A→ A⊗R A→ A⊗R A⊗R A→ . . .
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when M = R.

Lemma 3.5. Suppose that R → A has a section. Then for any R-module M the
extended cochain complex (3.4.1) is exact.

Proof. By Simplicial, Lemma 28.5 the mapR→ (A/R)• is a homotopy equivalence
of cosimplicial R-algebras (here R denotes the constant cosimplicial R-algebra). Hence
M → (A/R)•⊗RM is a homotopy equivalence in the category of cosimplicialR-modules,
because⊗RM is a functor from the category of R-algebras to the category of R-modules,
see Simplicial, Lemma 28.4. This implies that the induced map of associated complexes is
a homotopy equivalence, see Simplicial, Lemma 28.6. Since the complex associated to the
constant cosimplicial R-module M is the complex

M
0 // M

1 // M
0 // M

1 // M . . .

we win (since the extended version simply puts an extra M at the beginning). �

Lemma 3.6. Suppose thatR→ A is faithfully flat, see Algebra, Definition 39.1. Then
for any R-module M the extended cochain complex (3.4.1) is exact.

Proof. Suppose we can show there exists a faithfully flat ring mapR→ R′ such that
the result holds for the ring mapR′ → A′ = R′⊗RA. Then the result follows forR→ A.
Namely, for anyR-moduleM the cosimplicial module (M⊗RR′)⊗R′ (A′/R′)• is just the
cosimplicial module R′ ⊗R (M ⊗R (A/R)•). Hence the vanishing of cohomology of the
complex associated to (M ⊗RR′)⊗R′ (A′/R′)• implies the vanishing of the cohomology
of the complex associated to M ⊗R (A/R)• by faithful flatness of R→ R′. Similarly for
the vanishing of cohomology groups in degrees−1 and 0 of the extended complex (proof
omitted).
But we have such a faithful flat extension. Namely R′ = A works because the ring map
R′ = A→ A′ = A⊗R A has a section a⊗ a′ 7→ aa′ and Lemma 3.5 applies. �

Here is how the complex relates to the question of effectivity.

Lemma 3.7. Let R→ A be a faithfully flat ring map. Let (N,ϕ) be a descent datum.
Then (N,ϕ) is effective if and only if the canonical map

A⊗R H0(s(N•)) −→ N

is an isomorphism.

Proof. If (N,ϕ) is effective, then we may write N = A ⊗R M with ϕ = can. It
follows that H0(s(N•)) = M by Lemmas 3.3 and 3.6. Conversely, suppose the map of
the lemma is an isomorphism. In this case set M = H0(s(N•)). This is an R-submodule
of N , namely M = {n ∈ N | 1 ⊗ n = ϕ(n ⊗ 1)}. The only thing to check is that via
the isomorphism A ⊗R M → N the canonical descent data agrees with ϕ. We omit the
verification. �

Lemma 3.8. Let R → A be a faithfully flat ring map, and let R → R′ be faithfully
flat. SetA′ = R′⊗RA. If all descent data forR′ → A′ are effective, then so are all descent
data for R→ A.

Proof. Let (N,ϕ) be a descent datum for R → A. Set N ′ = R′ ⊗R N = A′ ⊗A N ,
and denote ϕ′ = idR′ ⊗ ϕ the base change of the descent datum ϕ. Then (N ′, ϕ′) is
a descent datum for R′ → A′ and H0(s(N ′

•)) = R′ ⊗R H0(s(N•)). Moreover, the
map A′ ⊗R′ H0(s(N ′

•)) → N ′ is identified with the base change of the A-module map
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A⊗RH0(s(N))→ N via the faithfully flat mapA→ A′. Hence we conclude by Lemma
3.7. �

Here is the main result of this section. Its proof may seem a little clumsy; for a more
highbrow approach see Remark 3.11 below.

Proposition 3.9. Let R→ A be a faithfully flat ring map. Then
(1) any descent datum on modules with respect to R→ A is effective,
(2) the functor M 7→ (A ⊗R M, can) from R-modules to the category of descent

data is an equivalence, and
(3) the inverse functor is given by (N,ϕ) 7→ H0(s(N•)).

Proof. We only prove (1) and omit the proofs of (2) and (3). AsR→ A is faithfully
flat, there exists a faithfully flat base change R → R′ such that R′ → A′ = R′ ⊗R A has
a section (namely take R′ = A as in the proof of Lemma 3.6). Hence, using Lemma 3.8 we
may assume that R → A has a section, say σ : A → R. Let (N,ϕ) be a descent datum
relative to R→ A. Set

M = H0(s(N•)) = {n ∈ N | 1⊗ n = ϕ(n⊗ 1)} ⊂ N
By Lemma 3.7 it suffices to show that A⊗RM → N is an isomorphism.

Take an element n ∈ N . Write ϕ(n⊗ 1) =
∑
ai⊗xi for certain ai ∈ A and xi ∈ N . By

Lemma 3.2 we have n =
∑
aixi in N (because σ0

0 ◦ δ1
1 = id in any cosimplicial object).

Next, write ϕ(xi ⊗ 1) =
∑
aij ⊗ yj for certain aij ∈ A and yj ∈ N . The cocycle

condition means that ∑
ai ⊗ aij ⊗ yj =

∑
ai ⊗ 1⊗ xi

in A⊗R A⊗R N . We conclude two things from this:
(1) applying σ to the first A we get

∑
σ(ai)ϕ(xi ⊗ 1) =

∑
σ(ai)⊗ xi,

(2) applying σ to the middle A we get
∑
i ai ⊗

∑
j σ(aij)yj =

∑
ai ⊗ xi.

Part (1) shows that
∑
σ(ai)xi ∈ M . Applying this to xi we see that

∑
σ(aij)yi ∈ M

for all i. Multiplying out the equation in (2) we conclude that
∑
i ai(

∑
j σ(aij)yj) =∑

aixi = n. Hence A ⊗R M → N is surjective. Finally, suppose that mi ∈ M and∑
aimi = 0. Then we see by applying ϕ to

∑
aimi ⊗ 1 that

∑
ai ⊗mi = 0. In other

words A⊗RM → N is injective and we win. �

Remark 3.10. Let R be a ring. Let f1, . . . , fn ∈ R generate the unit ideal. The ring
A =

∏
iRfi is a faithfully flat R-algebra. We remark that the cosimplicial ring (A/R)•

has the following ring in degree n:∏
i0,...,in

Rfi0 ...fin

Hence the results above recover Algebra, Lemmas 24.2, 24.1 and 24.5. But the results above
actually say more because of exactness in higher degrees. Namely, it implies that Čech
cohomology of quasi-coherent sheaves on affines is trivial. Thus we get a second proof of
Cohomology of Schemes, Lemma 2.1.

Remark 3.11. Let R be a ring. Let A• be a cosimplicial R-algebra. In this setting a
descent datum corresponds to an cosimplicial A•-module M• with the property that for
every n,m ≥ 0 and every ϕ : [n] → [m] the map M(ϕ) : Mn → Mm induces an
isomorphism

Mn ⊗An,A(ϕ) Am −→Mm.
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Let us call such a cosimplicial module a cartesian module. In this setting, the proof of
Proposition 3.9 can be split in the following steps

(1) IfR→ R′ andR→ A are faithfully flat, then descent data forA/R are effective
if descent data for (R′ ⊗R A)/R′ are effective.

(2) Let A be an R-algebra. Descent data for A/R correspond to cartesian (A/R)•-
modules.

(3) If R→ A has a section then (A/R)• is homotopy equivalent to R, the constant
cosimplicial R-algebra with value R.

(4) IfA• → B• is a homotopy equivalence of cosimplicialR-algebras then the func-
tor M• 7→ M• ⊗A• B• induces an equivalence of categories between cartesian
A•-modules and cartesian B•-modules.

For (1) see Lemma 3.8. Part (2) uses Lemma 3.2. Part (3) we have seen in the proof of
Lemma 3.5 (it relies on Simplicial, Lemma 28.5). Moreover, part (4) is a triviality if you
think about it right!

4. Descent for universally injective morphisms

Numerous constructions in algebraic geometry are made using techniques of descent, such
as constructing objects over a given space by first working over a somewhat larger space
which projects down to the given space, or verifying a property of a space or a morphism
by pulling back along a covering map. The utility of such techniques is of course de-
pendent on identification of a wide class of effective descent morphisms. Early in the
Grothendieckian development of modern algebraic geometry, the class of morphisms which
are quasi-compact and faithfully flat was shown to be effective for descending objects, mor-
phisms, and many properties thereof.

As usual, this statement comes down to a property of rings and modules. For a homomor-
phism f : R→ S to be an effective descent morphism for modules, Grothendieck showed
that it is sufficient for f to be faithfully flat. However, this excludes many natural exam-
ples: for instance, any split ring homomorphism is an effective descent morphism. One
natural example of this even arises in the proof of faithfully flat descent: for f : R → S
any ring homomorphism, 1S⊗f : S → S⊗RS is split by the multiplication map whether
or not it is flat.

One may then ask whether there is a natural ring-theoretic condition implying effective
descent for modules which includes both the case of a faithfully flat morphism and that of
a split ring homomorphism. It may surprise the reader (at least it surprised this author) to
learn that a complete answer to this question has been known since around 1970! Namely,
it is not hard to check that a necessary condition for f : R→ S to be an effective descent
morphism for modules is that f must be universally injective in the category ofR-modules,
that is, for any R-module M , the map 1M ⊗ f : M → M ⊗R S must be injective. This
then turns out to be a sufficient condition as well. For example, if f is split in the category
of R-modules (but not necessarily in the category of rings), then f is an effective descent
morphism for modules.

The history of this result is a bit involved: it was originally asserted by Olivier [?], who
called universally injective morphisms pure, but without a clear indication of proof. One
can extract the result from the work of Joyal and Tierney [?], but to the best of our knowl-
edge, the first free-standing proof to appear in the literature is that of Mesablishvili [?].
The first purpose of this section is to expose Mesablishvili’s proof; this requires little mod-
ification of his original presentation aside from correcting typos, with the one exception
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that we make explicit the relationship between the customary definition of a descent da-
tum in algebraic geometry and the one used in [?]. The proof turns out to be entirely
category-theoretic, and consequently can be put in the language of monads (and thus ap-
plied in other contexts); see [?].
The second purpose of this section is to collect some information about which properties
of modules, algebras, and morphisms can be descended along universally injective ring ho-
momorphisms. The cases of finite modules and flat modules were treated by Mesablishvili
[?].

4.1. Category-theoretic preliminaries. We start by recalling a few basic notions from
category theory which will simplify the exposition. In this subsection, fix an ambient
category.
For two morphisms g1, g2 : B → C , recall that an equalizer of g1 and g2 is a morphism
f : A→ B which satisfies g1 ◦ f = g2 ◦ f and is universal for this property. This second
statement means that any commutative diagram

A′

e

  ����
A

f // B
g1 //

g2
// C

without the dashed arrow can be uniquely completed. We also say in this situation that
the diagram

(4.1.1) A
f // B

g1 //

g2
// C

is an equalizer. Reversing arrows gives the definition of a coequalizer. See Categories,
Sections 10 and 11.
Since it involves a universal property, the property of being an equalizer is typically not
stable under applying a covariant functor. Just as for monomorphisms and epimorphisms,
one can get around this in some cases by exhibiting splittings.

Definition 4.2. A split equalizer is a diagram (4.1.1) with g1 ◦ f = g2 ◦ f for which
there exist auxiliary morphisms h : B → A and i : C → B such that
(4.2.1) h ◦ f = 1A, f ◦ h = i ◦ g1, i ◦ g2 = 1B .

The point is that the equalities among arrows force (4.1.1) to be an equalizer: the map e
factors uniquely through f by writing e = f ◦(h◦e). Consequently, applying a covariant
functor to a split equalizer gives a split equalizer; applying a contravariant functor gives
a split coequalizer, whose definition is apparent.

4.3. Universally injective morphisms. Recall that Rings denotes the category of com-
mutative rings with 1. For an object R of Rings we denote ModR the category of R-
modules.

Remark 4.4. Any functor F : A → B of abelian categories which is exact and takes
nonzero objects to nonzero objects reflects injections and surjections. Namely, exactness
implies that F preserves kernels and cokernels (compare with Homology, Section 7). For
example, if f : R → S is a faithfully flat ring homomorphism, then • ⊗R S : ModR →
ModS has these properties.
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Let R be a ring. Recall that a morphism f : M → N in ModR is universally injective if
for all P ∈ModR, the morphism f ⊗ 1P : M ⊗R P → N ⊗R P is injective. See Algebra,
Definition 82.1.

Definition 4.5. A ring map f : R → S is universally injective if it is universally
injective as a morphism in ModR.

Example 4.6. Any split injection in ModR is universally injective. In particular, any
split injection in Rings is universally injective.

Example 4.7. For a ring R and f1, . . . , fn ∈ R generating the unit ideal, the mor-
phism R → Rf1 ⊕ . . . ⊕ Rfn is universally injective. Although this is immediate from
Lemma 4.8, it is instructive to check it directly: we immediately reduce to the case where
R is local, in which case some fi must be a unit and so the mapR→ Rfi is an isomorphism.

Lemma 4.8. Any faithfully flat ring map is universally injective.

Proof. This is a reformulation of Algebra, Lemma 82.11. �

The key observation from [?] is that universal injectivity can be usefully reformulated in
terms of a splitting, using the usual construction of an injective cogenerator in ModR.

Definition 4.9. Let R be a ring. Define the contravariant functor C : ModR →
ModR by setting

C(M) = HomAb(M,Q/Z),

with the R-action on C(M) given by rf(s) = f(rs).

This functor was denoted M 7→M∨ in More on Algebra, Section 55.

Lemma 4.10. For a ring R, the functor C : ModR → ModR is exact and reflects
injections and surjections.

Proof. Exactness is More on Algebra, Lemma 55.6 and the other properties follow
from this, see Remark 4.4. �

Remark 4.11. We will use frequently the standard adjunction between Hom and
tensor product, in the form of the natural isomorphism of contravariant functors

(4.11.1) C(•1 ⊗R •2) ∼= HomR(•1, C(•2)) : ModR ×ModR →ModR

taking f : M1 ⊗R M2 → Q/Z to the map m1 7→ (m2 7→ f(m1 ⊗m2)). See Algebra,
Lemma 14.5. A corollary of this observation is that if

C(M) //
// C(N) // C(P )

is a split coequalizer diagram in ModR, then so is

C(M ⊗R Q) //
// C(N ⊗R Q) // C(P ⊗R Q)

for any Q ∈ModR.

Lemma 4.12. Let R be a ring. A morphism f : M → N in ModR is universally
injective if and only if C(f) : C(N)→ C(M) is a split surjection.
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Proof. By (4.11.1), for any P ∈ModR we have a commutative diagram

HomR(P,C(N))
HomR(P,C(f))

//

∼=
��

HomR(P,C(M))

∼=
��

C(P ⊗R N)
C(1P⊗f) // C(P ⊗RM).

If f is universally injective, then 1C(M)⊗f : C(M)⊗RM → C(M)⊗RN is injective, so
both rows in the above diagram are surjective for P = C(M). We may thus lift 1C(M) ∈
HomR(C(M), C(M)) to some g ∈ HomR(C(N), C(M)) splitting C(f). Conversely, if
C(f) is a split surjection, then both rows in the above diagram are surjective, so by Lemma
4.10, 1P ⊗ f is injective. �

Remark 4.13. Let f : M → N be a universally injective morphism in ModR. By
choosing a splitting g of C(f), we may construct a functorial splitting of C(1P ⊗ f) for
each P ∈ModR. Namely, by (4.11.1) this amounts to splitting HomR(P,C(f)) functori-
ally in P , and this is achieved by the map g ◦ •.

4.14. Descent for modules and their morphisms. Throughout this subsection, fix a
ring map f : R→ S. As seen in Section 3 we can use the language of cosimplicial algebras
to talk about descent data for modules, but in this subsection we prefer a more down to
earth terminology.

For i = 1, 2, 3, let Si be the i-fold tensor product of S over R. Define the ring homo-
morphisms δ1

0 , δ
1
1 : S1 → S2, δ1

01, δ
1
02, δ

1
12 : S1 → S3, and δ2

0 , δ
2
1 , δ

2
2 : S2 → S3 by the

formulas

δ1
0(a0) = 1⊗ a0

δ1
1(a0) = a0 ⊗ 1

δ2
0(a0 ⊗ a1) = 1⊗ a0 ⊗ a1

δ2
1(a0 ⊗ a1) = a0 ⊗ 1⊗ a1

δ2
2(a0 ⊗ a1) = a0 ⊗ a1 ⊗ 1

δ1
01(a0) = 1⊗ 1⊗ a0

δ1
02(a0) = 1⊗ a0 ⊗ 1
δ1

12(a0) = a0 ⊗ 1⊗ 1.

In other words, the upper index indicates the source ring, while the lower index indicates
where to insert factors of 1. (This notation is compatible with the notation introduced in
Section 3.)

Recall3 from Definition 3.1 that for M ∈ModS , a descent datum on M relative to f is an
isomorphism

θ : M ⊗S,δ1
0
S2 −→M ⊗S,δ1

1
S2

of S2-modules satisfying the cocycle condition

(4.14.1) (θ ⊗ δ2
2) ◦ (θ ⊗ δ0

2) = (θ ⊗ δ1
2) : M ⊗S,δ1

01
S3 →M ⊗S,δ1

12
S3.

Let DDS/R be the category of S-modules equipped with descent data relative to f .

3To be precise, our θ here is the inverse of ϕ from Definition 3.1.
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For example, for M0 ∈ ModR and a choice of isomorphism M ∼= M0 ⊗R S gives rise to
a descent datum by identifying M ⊗S,δ1

0
S2 and M ⊗S,δ1

1
S2 naturally with M0 ⊗R S2.

This construction in particular defines a functor f∗ : ModR → DDS/R.

Definition 4.15. The functor f∗ : ModR → DDS/R is called base extension along
f . We say that f is a descent morphism for modules if f∗ is fully faithful. We say that f
is an effective descent morphism for modules if f∗ is an equivalence of categories.

Our goal is to show that for f universally injective, we can use θ to locate M0 within M .
This process makes crucial use of some equalizer diagrams.

Lemma 4.16. For (M, θ) ∈ DDS/R, the diagram
(4.16.1)

M
θ◦(1M⊗δ1

0) // M ⊗S,δ1
1
S2

(θ⊗δ2
2)◦(1M⊗δ2

0) //

1M⊗S2 ⊗δ2
1

// M ⊗S,δ1
12
S3

is a split equalizer.

Proof. Define the ring homomorphisms σ0
0 : S2 → S1 and σ1

0 , σ
1
1 : S3 → S2 by the

formulas

σ0
0(a0 ⊗ a1) = a0a1

σ1
0(a0 ⊗ a1 ⊗ a2) = a0a1 ⊗ a2

σ1
1(a0 ⊗ a1 ⊗ a2) = a0 ⊗ a1a2.

We then take the auxiliary morphisms to be 1M ⊗ σ0
0 : M ⊗S,δ1

1
S2 →M and 1M ⊗ σ1

0 :
M ⊗S,δ1

12
S3 → M ⊗S,δ1

1
S2. Of the compatibilities required in (4.2.1), the first follows

from tensoring the cocycle condition (4.14.1) with σ1
1 and the others are immediate. �

Lemma 4.17. For (M, θ) ∈ DDS/R, the diagram
(4.17.1)

C(M ⊗S,δ1
12
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2 ⊗δ2
1)

// C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) // C(M).

obtained by applying C to (4.16.1) is a split coequalizer.

Proof. Omitted. �

Lemma 4.18. The diagram

(4.18.1) S1
δ1

1 // S2

δ2
2 //

δ2
1

// S3

is a split equalizer.

Proof. In Lemma 4.16, take (M, θ) = f∗(S). �

This suggests a definition of a potential quasi-inverse functor for f∗.
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Definition 4.19. Define the functor f∗ : DDS/R → ModR by taking f∗(M, θ) to
be the R-submodule of M for which the diagram

(4.19.1) f∗(M, θ) // M
θ◦(1M⊗δ1

0) //

1M⊗δ1
1

// M ⊗S,δ1
1
S2

is an equalizer.

Using Lemma 4.16 and the fact that the restriction functor ModS →ModR is right adjoint
to the base extension functor •⊗R S : ModR →ModS , we deduce that f∗ is right adjoint
to f∗.

We are ready for the key lemma. In the faithfully flat case this is a triviality (see Remark
4.21), but in the general case some argument is needed.

Lemma 4.20. If f is universally injective, then the diagram
(4.20.1)

f∗(M, θ)⊗R S
θ◦(1M⊗δ1

0) // M ⊗S,δ1
1
S2

(θ⊗δ2
2)◦(1M⊗δ2

0) //

1M⊗S2 ⊗δ2
1

// M ⊗S,δ1
12
S3

obtained by tensoring (4.19.1) over R with S is an equalizer.

Proof. By Lemma 4.12 and Remark 4.13, the mapC(1N⊗f) : C(N⊗RS)→ C(N)
can be split functorially in N . This gives the upper vertical arrows in the commutative
diagram

C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

//

��

C(M) //

��

C(f∗(M, θ))

��
C(M ⊗S,δ1

12
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2 ⊗δ2
1)

//

��

C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

��

C(M)

��
C(M ⊗S,δ1

1
S2)

C(θ◦(1M⊗δ1
0)) //

C(1M⊗δ1
1)

// C(M) // C(f∗(M, θ))

in which the compositions along the columns are identity morphisms. The second row
is the coequalizer diagram (4.17.1); this produces the dashed arrow. From the top right
square, we obtain auxiliary morphismsC(f∗(M, θ))→ C(M) andC(M)→ C(M ⊗S,δ1

1
S2) which imply that the first row is a split coequalizer diagram. By Remark 4.11, we may
tensor with S inside C to obtain the split coequalizer diagram

C(M ⊗S,δ2
2◦δ1

1
S3)

C((θ⊗δ2
2)◦(1M⊗δ2

0)) //

C(1M⊗S2 ⊗δ2
1)

// C(M ⊗S,δ1
1
S2)

C(θ◦(1M⊗δ1
0)) // C(f∗(M, θ)⊗R S).

By Lemma 4.10, we conclude (4.20.1) must also be an equalizer. �

Remark 4.21. If f is a split injection in ModR, one can simplify the argument by
splitting f directly, without using C. Things are even simpler if f is faithfully flat; in
this case, the conclusion of Lemma 4.20 is immediate because tensoring over R with S
preserves all equalizers.
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Theorem 4.22. The following conditions are equivalent.
(a) The morphism f is a descent morphism for modules.
(b) The morphism f is an effective descent morphism for modules.
(c) The morphism f is universally injective.

Proof. It is clear that (b) implies (a). We now check that (a) implies (c). If f is not
universally injective, we can findM ∈ModR such that the map 1M ⊗ f : M →M ⊗R S
has nontrivial kernel N . The natural projection M → M/N is not an isomorphism, but
its image in DDS/R is an isomorphism. Hence f∗ is not fully faithful.

We finally check that (c) implies (b). By Lemma 4.20, for (M, θ) ∈ DDS/R, the natural
map f∗f∗(M, θ) → M is an isomorphism of S-modules. On the other hand, for M0 ∈
ModR, we may tensor (4.18.1) with M0 over R to obtain an equalizer sequence, so M0 →
f∗f

∗M is an isomorphism. Consequently, f∗ and f∗ are quasi-inverse functors, proving
the claim. �

4.23. Descent for properties of modules. Throughout this subsection, fix a univer-
sally injective ring map f : R → S , an object M ∈ ModR, and a ring map R → A.
We now investigate the question of which properties ofM orA can be checked after base
extension along f . We start with some results from [?].

Lemma 4.24. If M ∈ModR is flat, then C(M) is an injective R-module.

Proof. Let 0→ N → P → Q→ 0 be an exact sequence in ModR. Since M is flat,
0→ N ⊗RM → P ⊗RM → Q⊗RM → 0

is exact. By Lemma 4.10,
0→ C(Q⊗RM)→ C(P ⊗RM)→ C(N ⊗RM)→ 0

is exact. By (4.11.1), this last sequence can be rewritten as
0→ HomR(Q,C(M))→ HomR(P,C(M))→ HomR(N,C(M))→ 0.

Hence C(M) is an injective object of ModR. �

Theorem 4.25. If M ⊗R S has one of the following properties as an S-module
(a) finitely generated;
(b) finitely presented;
(c) flat;
(d) faithfully flat;
(e) finite projective;

then so does M as an R-module (and conversely).

Proof. To prove (a), choose a finite set {ni} of generators ofM⊗RS in ModS . Write
each ni as

∑
jmij ⊗ sij with mij ∈ M and sij ∈ S. Let F be the finite free R-module

with basis eij and let F →M be theR-module map sending eij tomij . Then F ⊗R S →
M ⊗R S is surjective, so Coker(F →M)⊗R S is zero and hence Coker(F →M) is zero.
This proves (a).
To see (b) assume M ⊗R S is finitely presented. Then M is finitely generated by (a).
Choose a surjection R⊕n → M with kernel K. Then K ⊗R S → S⊕r → M ⊗R S → 0
is exact. By Algebra, Lemma 5.3 the kernel of S⊕r → M ⊗R S is a finite S-module.
Thus we can find finitely many elements k1, . . . , kt ∈ K such that the images of ki ⊗ 1
in S⊕r generate the kernel of S⊕r →M ⊗R S. Let K ′ ⊂ K be the submodule generated
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by k1, . . . , kt. Then M ′ = R⊕r/K ′ is a finitely presented R-module with a morphism
M ′ →M such that M ′ ⊗R S →M ⊗R S is an isomorphism. Thus M ′ ∼= M as desired.

To prove (c), let 0 → M ′ → M ′′ → M → 0 be a short exact sequence in ModR. Since
•⊗R S is a right exact functor,M ′′⊗R S →M ⊗R S is surjective. So by Lemma 4.10 the
mapC(M ⊗R S)→ C(M ′′⊗R S) is injective. IfM ⊗R S is flat, then Lemma 4.24 shows
C(M ⊗R S) is an injective object of ModS , so the injectionC(M ⊗R S)→ C(M ′′⊗R S)
is split in ModS and hence also in ModR. SinceC(M ⊗R S)→ C(M) is a split surjection
by Lemma 4.12, it follows that C(M)→ C(M ′′) is a split injection in ModR. That is, the
sequence

0→ C(M)→ C(M ′′)→ C(M ′)→ 0
is split exact. For N ∈ModR, by (4.11.1) we see that

0→ C(M ⊗R N)→ C(M ′′ ⊗R N)→ C(M ′ ⊗R N)→ 0

is split exact. By Lemma 4.10,

0→M ′ ⊗R N →M ′′ ⊗R N →M ⊗R N → 0

is exact. This implies M is flat over R. Namely, taking M ′ a free module surjecting onto
M we conclude that TorR1 (M,N) = 0 for all modules N and we can use Algebra, Lemma
75.8. This proves (c).

To deduce (d) from (c), note that if N ∈ ModR and M ⊗R N is zero, then M ⊗R S ⊗S
(N ⊗R S) ∼= (M ⊗R N)⊗R S is zero, so N ⊗R S is zero and hence N is zero.

To deduce (e) at this point, it suffices to recall that M is finitely generated and projective
if and only if it is finitely presented and flat. See Algebra, Lemma 78.2. �

There is a variant for R-algebras.

Theorem 4.26. If A⊗R S has one of the following properties as an S-algebra
(a) of finite type;
(b) of finite presentation;
(c) formally unramified;
(d) unramified;
(e) étale;

then so does A as an R-algebra (and of course conversely).

Proof. To prove (a), choose a finite set {xi} of generators of A⊗R S over S. Write
each xi as

∑
j yij ⊗ sij with yij ∈ A and sij ∈ S. Let F be the polynomial R-algebra on

variables eij and let F → M be the R-algebra map sending eij to yij . Then F ⊗R S →
A ⊗R S is surjective, so Coker(F → A) ⊗R S is zero and hence Coker(F → A) is zero.
This proves (a).

To see (b) assume A ⊗R S is a finitely presented S-algebra. Then A is finite type over
R by (a). Choose a surjection R[x1, . . . , xn] → A with kernel I . Then I ⊗R S →
S[x1, . . . , xn]→ A⊗RS → 0 is exact. By Algebra, Lemma 6.3 the kernel ofS[x1, . . . , xn]→
A⊗RS is a finitely generated ideal. Thus we can find finitely many elements y1, . . . , yt ∈
I such that the images of yi ⊗ 1 in S[x1, . . . , xn] generate the kernel of S[x1, . . . , xn]→
A⊗R S. Let I ′ ⊂ I be the ideal generated by y1, . . . , yt. Then A′ = R[x1, . . . , xn]/I ′ is
a finitely presented R-algebra with a morphism A′ → A such that A′⊗R S → A⊗R S is
an isomorphism. Thus A′ ∼= A as desired.
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To prove (c), recall that A is formally unramified over R if and only if the module of
relative differentials ΩA/R vanishes, see Algebra, Lemma 148.2 or [?, Proposition 17.2.1].
Since Ω(A⊗RS)/S = ΩA/R ⊗R S , the vanishing descends by Theorem 4.22.

To deduce (d) from the previous cases, recall that A is unramified over R if and only if A
is formally unramified and of finite type over R, see Algebra, Lemma 151.2.

To prove (e), recall that by Algebra, Lemma 151.8 or [?, Théorème 17.6.1] the algebra A is
étale over R if and only if A is flat, unramified, and of finite presentation over R. �

Remark 4.27. It would make things easier to have a faithfully flat ring homomor-
phism g : R → T for which T → S ⊗R T has some extra structure. For instance, if
one could ensure that T → S ⊗R T is split in Rings, then it would follow that every
property of a module or algebra which is stable under base extension and which descends
along faithfully flat morphisms also descends along universally injective morphisms. An
obvious guess would be to find g for which T is not only faithfully flat but also injective
in ModR, but even for R = Z no such homomorphism can exist.

5. Fpqc descent of quasi-coherent sheaves

The main application of flat descent for modules is the corresponding descent statement
for quasi-coherent sheaves with respect to fpqc-coverings.

Lemma 5.1. Let S be an affine scheme. Let U = {fi : Ui → S}i=1,...,n be a standard
fpqc covering of S , see Topologies, Definition 9.9. Any descent datum on quasi-coherent
sheaves for U = {Ui → S} is effective. Moreover, the functor from the category of quasi-
coherentOS-modules to the category of descent data with respect to U is fully faithful.

Proof. This is a restatement of Proposition 3.9 in terms of schemes. First, note that
a descent datum ξ for quasi-coherent sheaves with respect to U is exactly the same as a de-
scent datum ξ′ for quasi-coherent sheaves with respect to the coveringU ′ = {

∐
i=1,...,n Ui →

S}. Moreover, effectivity for ξ is the same as effectivity for ξ′. Hence we may assume
n = 1, i.e., U = {U → S} where U and S are affine. In this case descent data correspond
to descent data on modules with respect to the ring map

Γ(S,O) −→ Γ(U,O).

Since U → S is surjective and flat, we see that this ring map is faithfully flat. In other
words, Proposition 3.9 applies and we win. �

Proposition 5.2. Let S be a scheme. Let U = {ϕi : Ui → S} be an fpqc covering, see
Topologies, Definition 9.1. Any descent datum on quasi-coherent sheaves for U = {Ui →
S} is effective. Moreover, the functor from the category of quasi-coherent OS-modules
to the category of descent data with respect to U is fully faithful.

Proof. Let S =
⋃
j∈J Vj be an affine open covering. For j, j′ ∈ J we denote Vjj′ =

Vj ∩ Vj′ the intersection (which need not be affine). For V ⊂ S open we denote UV =
{V ×S Ui → V }i∈I which is a fpqc-covering (Topologies, Lemma 9.7). By definition of
an fpqc covering, we can find for each j ∈ J a finite setKj , a map i : Kj → I , affine opens
Ui(k),k ⊂ Ui(k), k ∈ Kj such that Vj = {Ui(k),k → Vj}k∈Kj is a standard fpqc covering
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of Vj . And of course, Vj is a refinement of UVj . Picture

Vj //

��

UVj //

��

U

��
Vj Vj // S

where the top horizontal arrows are morphisms of families of morphisms with fixed target
(see Sites, Definition 8.1).

To prove the proposition you show successively the faithfulness, fullness, and essential
surjectivity of the functor from quasi-coherent sheaves to descent data.

Faithfulness. Let F , G be quasi-coherent sheaves on S and let a, b : F → G be homomor-
phisms ofOS-modules. Suppose ϕ∗

i (a) = ϕ∗
i (b) for all i. Pick s ∈ S. Then s = ϕi(u) for

some i ∈ I and u ∈ Ui. SinceOS,s → OUi,u is flat, hence faithfully flat (Algebra, Lemma
39.17) we see that as = bs : Fs → Gs. Hence a = b.

Fully faithfulness. Let F , G be quasi-coherent sheaves on S and let ai : ϕ∗
iF → ϕ∗

iG be
homomorphisms ofOUi -modules such that pr∗

0ai = pr∗
1aj onUi×U Uj . We can pull back

these morphisms to get morphisms

ak : ϕ∗
i(k)F|Ui(k),k −→ ϕ∗

i(k)G|Ui(k),k

k ∈ Kj with notation as above. Moreover, Lemma 2.2 assures us that these define a mor-
phism between (canonical) descent data on Vj . Hence, by Lemma 5.1, we get correspond-
ingly unique morphisms aj : F|Vj → G|Vj . To see that aj |Vjj′ = aj′ |Vjj′ we use that
both aj and aj′ agree with the pullback of the morphism (ai)i∈I of (canonical) descent
data to any covering refining both Vj,Vjj′ and Vj′,Vjj′ , and using the faithfulness already
shown. For example the covering Vjj′ = {Vk ×S Vk′ → Vjj′}k∈Kj ,k′∈Kj′ will do.

Essential surjectivity. Let ξ = (Fi, ϕii′) be a descent datum for quasi-coherent sheaves
relative to the covering U . Pull back this descent datum to get descent data ξj for quasi-
coherent sheaves relative to the coverings Vj of Vj . By Lemma 5.1 once again there exist
quasi-coherent sheaves Fj on Vj whose associated canonical descent datum is isomorphic
to ξj . By fully faithfulness (proved above) we see there are isomorphisms

φjj′ : Fj |Vjj′ −→ Fj′ |Vjj′

corresponding to the isomorphism of descent data between the pullback of ξj and ξj′ to
Vjj′ . To see that these maps φjj′ satisfy the cocycle condition we use faithfulness (proved
above) over the triple intersections Vjj′j′′ . Hence, by Lemma 2.4 we see that the sheaves
Fj glue to a quasi-coherent sheaf F as desired. We still have to verify that the canonical
descent datum relative to U associated to F is isomorphic to the descent datum we started
out with. This verification is omitted. �

6. Galois descent for quasi-coherent sheaves

Galois descent for quasi-coherent sheaves is just a special case of fpqc descent for quasi-
coherent sheaves. In this section we will explain how to translate from a Galois descent
to an fpqc descent and then apply earlier results to conclude.

Let k′/k be a field extension. Then {Spec(k′)→ Spec(k)} is an fpqc covering. Let X be
a scheme over k. For a k-algebra A we set XA = X ×Spec(k) Spec(A). By Topologies,
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Lemma 9.7 we see that {Xk′ → X} is an fpqc covering. Observe that
Xk′ ×X Xk′ = Xk′⊗kk′ and Xk′ ×X Xk′ ×X Xk′ = Xk′⊗kk′⊗kk′

Thus a descent datum for quasi-coherent sheaves with respect to {Xk′ → X} is given by
a quasi-coherent sheaf F on Xk′ , an isomorphism ϕ : pr∗

0F → pr∗
1F on Xk′⊗kk′ which

satisfies an obvious cocycle condition onXk′⊗kk′⊗kk′ . We will work out what this means
in the case of a Galois extension below.
Let k′/k be a finite Galois extension with Galois group G = Gal(k′/k). Then there are
k-algebra isomorphisms

k′ ⊗k k′ −→
∏

σ∈G
k′, a⊗ b −→

∏
aσ(b)

and
k′ ⊗k k′ ⊗k k′ −→

∏
(σ,τ)∈G×G

k′, a⊗ b⊗ c −→
∏

aσ(b)σ(τ(c))

The reason for choosing here aσ(b)σ(τ(c)) and not aσ(b)τ(c) is that the formulas below
simplify but it isn’t strictly necessary. Given σ ∈ G we denote

fσ = idX × Spec(σ) : Xk′ −→ Xk′

Please keep in mind that because Spec(−) is a contravariant functor we have fστ = fτ ◦fσ
and not the other way around. Using the first isomorphism above we obtain an identifi-
cation

Xk′⊗kk′ =
∐

σ∈G
Xk′

such that pr0 corresponds to the map∐
σ∈G

Xk′

∐
id

−−−→ Xk′

and such that pr1 corresponds to the map∐
σ∈G

Xk′

∐
fσ

−−−→ Xk′

Thus we see that a descent datumϕ onF overXk′ corresponds to a family of isomorphisms
ϕσ : F → f∗

σF . To work out the cocycle condition we use the identification

Xk′⊗kk′⊗kk′ =
∐

(σ,τ)∈G×G
Xk′ .

we get from our isomorphism of algebras above. Via this identification the map pr01 cor-
responds to the map ∐

(σ,τ)∈G×G
Xk′ −→

∐
σ∈G

Xk′

which maps the summand with index (σ, τ) to the summand with index σ via the identity
morphism. The map pr12 corresponds to the map∐

(σ,τ)∈G×G
Xk′ −→

∐
σ∈G

Xk′

which maps the summand with index (σ, τ) to the summand with index τ via the mor-
phism fσ . Finally, the map pr02 corresponds to the map∐

(σ,τ)∈G×G
Xk′ −→

∐
σ∈G

Xk′

which maps the summand with index (σ, τ) to the summand with index στ via the iden-
tity morphism. Thus the cocycle condition

pr∗
02ϕ = pr∗

12ϕ ◦ pr∗
01ϕ
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translates into one condition for each pair (σ, τ), namely

ϕστ = f∗
σϕτ ◦ ϕσ

as maps F → f∗
στF . (Everything works out beautifully; for example the target of ϕσ is

f∗
σF and the source of f∗

σϕτ is f∗
σF as well.)

Lemma 6.1. Let k′/k be a (finite) Galois extension with Galois group G. Let X be a
scheme over k. The category of quasi-coherentOX -modules is equivalent to the category
of systems (F , (ϕσ)σ∈G) where

(1) F is a quasi-coherent module on Xk′ ,
(2) ϕσ : F → f∗

σF is an isomorphism of modules,
(3) ϕστ = f∗

σϕτ ◦ ϕσ for all σ, τ ∈ G.
Here fσ = idX × Spec(σ) : Xk′ → Xk′ .

Proof. As seen above a datum (F , (ϕσ)σ∈G) as in the lemma is the same thing as a
descent datum for the fpqc covering {Xk′ → X}. Thus the lemma follows from Proposi-
tion 5.2. �

A slightly more general case of the above is the following. Suppose we have a surjective
finite étale morphismX → Y and a finite groupG together with a group homomorphism
Gopp → AutY (X), σ 7→ fσ such that the map

G×X −→ X ×Y X, (σ, x) 7−→ (x, fσ(x))
is an isomorphism. Then the same result as above holds.

Lemma 6.2. Let X → Y , G, and fσ : X → X be as above. The category of quasi-
coherentOY -modules is equivalent to the category of systems (F , (ϕσ)σ∈G) where

(1) F is a quasi-coherentOX -module,
(2) ϕσ : F → f∗

σF is an isomorphism of modules,
(3) ϕστ = f∗

σϕτ ◦ ϕσ for all σ, τ ∈ G.

Proof. Since X → Y is surjective finite étale {X → Y } is an fpqc covering. Since
G × X → X ×Y X , (σ, x) 7→ (x, fσ(x)) is an isomorphism, we see that G × G ×
X → X ×Y X ×Y X , (σ, τ, x) 7→ (x, fσ(x), fστ (x)) is an isomorphism too. Using these
identifications, the category of data as in the lemma is the same as the category of descent
data for quasi-coherent sheaves for the covering {x→ Y }. Thus the lemma follows from
Proposition 5.2. �

7. Descent of finiteness properties of modules

In this section we prove that one can check quasi-coherent module has a certain finiteness
conditions by checking on the members of a covering.

Lemma 7.1. Let X be a scheme. Let F be a quasi-coherent OX -module. Let {fi :
Xi → X}i∈I be an fpqc covering such that each f∗

i F is a finite type OXi -module. Then
F is a finite typeOX -module.

Proof. Omitted. For the affine case, see Algebra, Lemma 83.2. �

Lemma 7.2. Let f : (X,OX)→ (Y,OY ) be a morphism of locally ringed spaces. Let
F be a sheaf ofOY -modules. If

(1) f is open as a map of topological spaces,
(2) f is surjective and flat, and
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(3) f∗F is of finite type,
then F is of finite type.

Proof. Let y ∈ Y be a point. Choose a point x ∈ X mapping to y. Choose an
open x ∈ U ⊂ X and elements s1, . . . , sn of f∗F(U) which generate f∗F over U . Since
f∗F = f−1F ⊗f−1OY

OX we can after shrinking U assume si =
∑
tij ⊗ aij with

tij ∈ f−1F(U) and aij ∈ OX(U). After shrinking U further we may assume that tij
comes from a section sij ∈ F(V ) for some V ⊂ Y open with f(U) ⊂ V . Let N be the
number of sections sij and consider the map

σ = (sij) : O⊕N
V → F|V

By our choice of the sections we see that f∗σ|U is surjective. Hence for every u ∈ U the
map

σf(u) ⊗OY,f(u) OX,u : O⊕N
X,u −→ Ff(u) ⊗OY,f(u) OX,u

is surjective. As f is flat, the local ring map OY,f(u) → OX,u is flat, hence faithfully
flat (Algebra, Lemma 39.17). Hence σf(u) is surjective. Since f is open, f(U) is an open
neighbourhood of y and the proof is done. �

Lemma 7.3. Let X be a scheme. Let F be a quasi-coherent OX -module. Let {fi :
Xi → X}i∈I be an fpqc covering such that each f∗

i F is an OXi -module of finite presen-
tation. Then F is anOX -module of finite presentation.

Proof. Omitted. For the affine case, see Algebra, Lemma 83.2. �

Lemma 7.4. Let X be a scheme. Let F be a quasi-coherent OX -module. Let {fi :
Xi → X}i∈I be an fpqc covering such that each f∗

i F is locally generated by r sections as
anOXi -module. Then F is locally generated by r sections as anOX -module.

Proof. By Lemma 7.1 we see that F is of finite type. Hence Nakayama’s lemma (Al-
gebra, Lemma 20.1) implies that F is generated by r sections in the neighbourhood of a
point x ∈ X if and only if dimκ(x) Fx ⊗ κ(x) ≤ r. Choose an i and a point xi ∈ Xi

mapping to x. Then dimκ(x) Fx⊗κ(x) = dimκ(xi)(f∗
i F)xi⊗κ(xi) which is≤ r as f∗

i F
is locally generated by r sections. �

Lemma 7.5. Let X be a scheme. Let F be a quasi-coherent OX -module. Let {fi :
Xi → X}i∈I be an fpqc covering such that each f∗

i F is a flat OXi -module. Then F is a
flatOX -module.

Proof. Omitted. For the affine case, see Algebra, Lemma 83.2. �

Lemma 7.6. Let X be a scheme. Let F be a quasi-coherent OX -module. Let {fi :
Xi → X}i∈I be an fpqc covering such that each f∗

i F is a finite locally freeOXi -module.
Then F is a finite locally freeOX -module.

Proof. This follows from the fact that a quasi-coherent sheaf is finite locally free if
and only if it is of finite presentation and flat, see Algebra, Lemma 78.2. Namely, if each
f∗
i F is flat and of finite presentation, then so is F by Lemmas 7.5 and 7.3. �

The definition of a locally projective quasi-coherent sheaf can be found in Properties, Sec-
tion 21.

Lemma 7.7. Let X be a scheme. Let F be a quasi-coherent OX -module. Let {fi :
Xi → X}i∈I be an fpqc covering such that each f∗

i F is a locally projectiveOXi -module.
Then F is a locally projectiveOX -module.
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Proof. Omitted. For Zariski coverings this is Properties, Lemma 21.2. For the affine
case this is Algebra, Theorem 95.6. �

Remark 7.8. Being locally free is a property of quasi-coherent modules which does
not descend in the fpqc topology. Namely, suppose thatR is a ring and thatM is a projec-
tiveR-module which is a countable direct sumM =

⊕
Ln of rank 1 locally free modules,

but not locally free, see Examples, Lemma 33.4. Then M becomes free on making the
faithfully flat base change

R −→
⊕

m≥1

⊕
(i1,...,im)∈Z⊕m

L⊗i1
1 ⊗R . . .⊗R L⊗im

m

But we don’t know what happens for fppf coverings. In other words, we don’t know the
answer to the following question: Suppose A → B is a faithfully flat ring map of finite
presentation. Let M be an A-module such that M ⊗A B is free. Is M a locally free A-
module? It turns out that if A is Noetherian, then the answer is yes. This follows from
the results of [?]. But in general we don’t know the answer. If you know the answer, or
have a reference, please email stacks.project@gmail.com.

We also add here two results which are related to the results above, but are of a slightly
different nature.

Lemma 7.9. Let f : X → Y be a morphism of schemes. Let F be a quasi-coherent
OX -module. Assume f is a finite morphism. Then F is an OX -module of finite type if
and only if f∗F is anOY -module of finite type.

Proof. As f is finite it is affine. This reduces us to the case where f is the morphism
Spec(B) → Spec(A) given by a finite ring map A → B. Moreover, then F = M̃ is the
sheaf of modules associated to theB-moduleM . Note thatM is finite as aB-module if and
only if M is finite as an A-module, see Algebra, Lemma 7.2. Combined with Properties,
Lemma 16.1 this proves the lemma. �

Lemma 7.10. Let f : X → Y be a morphism of schemes. Let F be a quasi-coherent
OX -module. Assume f is finite and of finite presentation. Then F is an OX -module of
finite presentation if and only if f∗F is anOY -module of finite presentation.

Proof. As f is finite it is affine. This reduces us to the case where f is the morphism
Spec(B)→ Spec(A) given by a finite and finitely presented ring mapA→ B. Moreover,
thenF = M̃ is the sheaf of modules associated to theB-moduleM . Note thatM is finitely
presented as aB-module if and only ifM is finitely presented as anA-module, see Algebra,
Lemma 36.23. Combined with Properties, Lemma 16.2 this proves the lemma. �

8. Quasi-coherent sheaves and topologies, I

The results in this section say there is a natural equivalence between the category quasi-
coherent modules on a scheme S and the category of quasi-coherent modules on many of
the sites associated to S in the chapter on topologies.

Let S be a scheme. Let F be a quasi-coherentOS-module. Consider the functor

(8.0.1) (Sch/S)opp −→ Ab, (f : T → S) 7−→ Γ(T, f∗F).

Lemma 8.1. Let S be a scheme. Let F be a quasi-coherent OS-module. Let τ ∈
{Zariski, étale, smooth, syntomic, fppf, fpqc}. The functor defined in (8.0.1) satisfies
the sheaf condition with respect to any τ -covering {Ti → T}i∈I of any scheme T over S.

mailto:stacks.project@gmail.com
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Proof. For τ ∈ {Zariski, étale, smooth, syntomic, fppf} a τ -covering is also a
fpqc-covering, see the results in Topologies, Lemmas 4.2, 5.2, 6.2, 7.2, and 9.6. Hence it
suffices to prove the theorem for a fpqc covering. Assume that {fi : Ti → T}i∈I is
an fpqc covering where f : T → S is given. Suppose that we have a family of sec-
tions si ∈ Γ(Ti, f∗

i f
∗F) such that si|Ti×TTj = sj |Ti×TTj . We have to find the cor-

respond section s ∈ Γ(T, f∗F). We can reinterpret the si as a family of maps ϕi :
f∗
i OT = OTi → f∗

i f
∗F compatible with the canonical descent data associated to the

quasi-coherent sheaves OT and f∗F on T . Hence by Proposition 5.2 we see that we may
(uniquely) descend these to a mapOT → f∗F which gives us our section s. �

We may in particular make the following definition.

Definition 8.2. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let S be a
scheme. Let Schτ be a big site containing S. Let F be a quasi-coherentOS-module.

(1) The structure sheaf of the big site (Sch/S)τ is the sheaf of ringsT/S 7→ Γ(T,OT )
which is denotedO orOS .

(2) If τ = Zariski or τ = étale the structure sheaf of the small site SZar or Sétale
is the sheaf of rings T/S 7→ Γ(T,OT ) which is denotedO orOS .

(3) The sheaf ofO-modules associated to F on the big site (Sch/S)τ is the sheaf of
O-modules (f : T → S) 7→ Γ(T, f∗F) which is denoted Fa (and often simply
F ).

(4) If τ = Zariski or τ = étale the sheaf of O-modules associated to F on the
small site SZar or Sétale is the sheaf of O-modules (f : T → S) 7→ Γ(T, f∗F)
which is denoted Fa (and often simply F ).

Note how we use the same notation Fa in each case. No confusion can really arise from
this as by definition the rule that defines the sheafFa is independent of the site we choose
to look at.

Remark 8.3. In Topologies, Lemma 3.12 we have seen that the small Zariski site of a
schemeS is equivalent toS as a topological space in the sense that the categories of sheaves
are naturally equivalent. Now that SZar is also endowed with a structure sheaf O we see
that sheaves of modules on the ringed site (SZar,O) agree with sheaves of modules on the
ringed space (S,OS).

Remark 8.4. Let f : T → S be a morphism of schemes. Each of the morphisms of
sites fsites listed in Topologies, Section 11 becomes a morphism of ringed sites. Namely,
each of these morphisms of sites fsites : (Sch/T )τ → (Sch/S)τ ′ , or fsites : (Sch/S)τ →
Sτ ′ is given by the continuous functor S′/S 7→ T ×S S′/S. Hence, given S′/S we let

f ]sites : O(S′/S) −→ fsites,∗O(S′/S) = O(S ×S S′/T )

be the usual map pr]S′ : O(S′) → O(T ×S S′). Similarly, the morphism if : Sh(Tτ ) →
Sh((Sch/S)τ ) for τ ∈ {Zar, étale}, see Topologies, Lemmas 3.13 and 4.13, becomes a
morphism of ringed topoi because i−1

f O = O. Here are some special cases:
(1) The morphism of big sites fbig : (Sch/X)fppf → (Sch/Y )fppf , becomes a

morphism of ringed sites

(fbig, f ]big) : ((Sch/X)fppf ,OX) −→ ((Sch/Y )fppf ,OY )

as in Modules on Sites, Definition 6.1. Similarly for the big syntomic, smooth,
étale and Zariski sites.
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(2) The morphism of small sites fsmall : Xétale → Yétale becomes a morphism of
ringed sites

(fsmall, f ]small) : (Xétale,OX) −→ (Yétale,OY )
as in Modules on Sites, Definition 6.1. Similarly for the small Zariski site.

Let S be a scheme. It is clear that given an O-module on (say) (Sch/S)Zar the pullback
to (say) (Sch/S)fppf is just the fppf-sheafification. To see what happens when comparing
big and small sites we have the following.

Lemma 8.5. Let S be a scheme. Denote
idτ,Zar : (Sch/S)τ → SZar, τ ∈ {Zar, étale, smooth, syntomic, fppf}
idτ,étale : (Sch/S)τ → Sétale, τ ∈ {étale, smooth, syntomic, fppf}

idsmall,étale,Zar : Sétale → SZar,

the morphisms of ringed sites of Remark 8.4. Let F be a sheaf of OS-modules which we
view a sheaf ofO-modules on SZar. Then

(1) (idτ,Zar)∗F is the τ -sheafification of the Zariski sheaf
(f : T → S) 7−→ Γ(T, f∗F)

on (Sch/S)τ , and
(2) (idsmall,étale,Zar)∗F is the étale sheafification of the Zariski sheaf

(f : T → S) 7−→ Γ(T, f∗F)
on Sétale.

Let G be a sheaf ofO-modules on Sétale. Then
(3) (idτ,étale)∗G is the τ -sheafification of the étale sheaf

(f : T → S) 7−→ Γ(T, f∗
smallG)

where fsmall : Tétale → Sétale is the morphism of ringed small étale sites of
Remark 8.4.

Proof. Proof of (1). We first note that the result is true when τ = Zar because in that
case we have the morphism of topoi if : Sh(TZar)→ Sh((Sch/S)Zar) such that idτ,Zar◦
if = fsmall as morphisms TZar → SZar , see Topologies, Lemmas 3.13 and 3.17. Since
pullback is transitive (see Modules on Sites, Lemma 13.3) we see that i∗f (idτ,Zar)∗F =
f∗
smallF as desired. Hence, by the remark preceding this lemma we see that (idτ,Zar)∗F

is the τ -sheafification of the presheaf T 7→ Γ(T, f∗F).
The proof of (3) is exactly the same as the proof of (1), except that it uses Topologies,
Lemmas 4.13 and 4.17. We omit the proof of (2). �

Remark 8.6. Remark 8.4 and Lemma 8.5 have the following applications:
(1) Let S be a scheme. The construction F 7→ Fa is the pullback under the mor-

phism of ringed sites idτ,Zar : ((Sch/S)τ ,O) → (SZar,O) or the morphism
idsmall,étale,Zar : (Sétale,O)→ (SZar,O).

(2) Let f : X → Y be a morphism of schemes. For any of the morphisms fsites of
ringed sites of Remark 8.4 we have

(f∗F)a = f∗
sitesFa.

This follows from (1) and the fact that pullbacks are compatible with composi-
tions of morphisms of ringed sites, see Modules on Sites, Lemma 13.3.



2940 35. DESCENT

Lemma 8.7. Let S be a scheme. Let F be a quasi-coherent OS-module. Let τ ∈
{Zariski, étale, smooth, syntomic, fppf}.

(1) The sheaf Fa is a quasi-coherentO-module on (Sch/S)τ , as defined in Modules
on Sites, Definition 23.1.

(2) If τ = Zariski or τ = étale, then the sheaf Fa is a quasi-coherent O-module
on SZar or Sétale as defined in Modules on Sites, Definition 23.1.

Proof. Let {Si → S} be a Zariski covering such that we have exact sequences⊕
k∈Ki

OSi −→
⊕

j∈Ji
OSi −→ F −→ 0

for some index sets Ki and Ji. This is possible by the definition of a quasi-coherent sheaf
on a ringed space (See Modules, Definition 10.1).

Proof of (1). Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}. It is clear thatFa|(Sch/Si)τ
also sits in an exact sequence⊕

k∈Ki
O|(Sch/Si)τ −→

⊕
j∈Ji
O|(Sch/Si)τ −→ F

a|(Sch/Si)τ −→ 0

Hence Fa is quasi-coherent by Modules on Sites, Lemma 23.3.

Proof of (2). Let τ = étale. It is clear that Fa|(Si)étale also sits in an exact sequence⊕
k∈Ki

O|(Si)étale −→
⊕

j∈Ji
O|(Si)étale −→ F

a|(Si)étale −→ 0

Hence Fa is quasi-coherent by Modules on Sites, Lemma 23.3. The case τ = Zariski is
similar (actually, it is really tautological since the corresponding ringed topoi agree). �

Lemma 8.8. Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}.
Each of the functors F 7→ Fa of Definition 8.2

QCoh(OS)→ QCoh((Sch/S)τ ,O) or QCoh(OS)→ QCoh(Sτ ,O)

is fully faithful.

Proof. (By Lemma 8.7 we do indeed get functors as indicated.) We may and do
identify OS-modules on S with modules on (SZar,OS). The functor F 7→ Fa on quasi-
coherent modulesF is given by pullback by a morphism f of ringed sites, see Remark 8.6.
In each case the functor f∗ is given by restriction along the inclusion functor SZar →
Sτ or SZar → (Sch/S)τ (see discussion of how these morphisms of sites are defined in
Topologies, Section 11). Combining this with the description of f∗F = Fa we see that
f∗f

∗F = F provided that F is quasi-coherent. Then we see that

HomO(Fa,Ga) = HomO(f∗F , f∗G) = HomOS
(F , f∗f

∗G) = HomOS
(F ,G)

as desired. �

Proposition 8.9. Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}.

(1) The functor F 7→ Fa defines an equivalence of categories

QCoh(OS) −→ QCoh((Sch/S)τ ,O)

between the category of quasi-coherent sheaves on S and the category of quasi-
coherentO-modules on the big τ site of S.
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(2) Let τ = Zariski or τ = étale. The functor F 7→ Fa defines an equivalence of
categories

QCoh(OS) −→ QCoh(Sτ ,O)
between the category of quasi-coherent sheaves on S and the category of quasi-
coherentO-modules on the small τ site of S.

Proof. We have seen in Lemma 8.7 that the functor is well defined. By Lemma 8.8
the functor is fully faithful. To finish the proof we will show that a quasi-coherent O-
module on (Sch/S)τ gives rise to a descent datum for quasi-coherent sheaves relative to
a τ -covering of S. Having produced this descent datum we will appeal to Proposition 5.2
to get the corresponding quasi-coherent sheaf on S.
Let G be a quasi-coherent O-modules on the big τ site of S. By Modules on Sites, Defi-
nition 23.1 there exists a τ -covering {Si → S}i∈I of S such that each of the restrictions
G|(Sch/Si)τ has a global presentation⊕

k∈Ki
O|(Sch/Si)τ −→

⊕
j∈Ji
O|(Sch/Si)τ −→ G|(Sch/Si)τ −→ 0

for some index sets Ji and Ki. We claim that this implies that G|(Sch/Si)τ is Fai for some
quasi-coherent sheafFi onSi. Namely, this is clear for the direct sums

⊕
k∈Ki O|(Sch/Si)τ

and
⊕

j∈Ji O|(Sch/Si)τ . Hence we see that G|(Sch/Si)τ is a cokernel of a mapϕ : Kai → Lai
for some quasi-coherent sheavesKi, Li on Si. By the fully faithfulness of ( )a we see that
ϕ = φa for some map of quasi-coherent sheaves φ : Ki → Li on Si. Then it is clear that
G|(Sch/Si)τ

∼= Coker(φ)a as claimed.
Since G lives on all of the category (Sch/S)τ we see that

(pr∗
0Fi)

a ∼= G|(Sch/(Si×SSj))τ
∼= (pr∗

1F)a

asO-modules on (Sch/(Si ×S Sj))τ . Hence, using fully faithfulness again we get canon-
ical isomorphisms

φij : pr∗
0Fi −→ pr∗

1Fj
of quasi-coherent modules over Si ×S Sj . We omit the verification that these satisfy the
cocycle condition. Since they do we see by effectivity of descent for quasi-coherent sheaves
and the covering {Si → S} (Proposition 5.2) that there exists a quasi-coherent sheaf F
on S withF|Si ∼= Fi compatible with the given descent data. In other words we are given
O-module isomorphisms

φi : Fa|(Sch/Si)τ −→ G|(Sch/Si)τ

which agree over Si ×S Sj . Hence, since HomO(Fa,G) is a sheaf (Modules on Sites,
Lemma 27.1), we conclude that there is a morphism ofO-modulesFa → G recovering the
isomorphisms φi above. Hence this is an isomorphism and we win.
The case of the sites Sétale and SZar is proved in the exact same manner. �

Lemma 8.10. LetS be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}.
Let P be one of the properties of modules4 defined in Modules on Sites, Definitions 17.1,
23.1, and 28.1. The equivalences of categories

QCoh(OS) −→ QCoh((Sch/S)τ ,O) and QCoh(OS) −→ QCoh(Sτ ,O)

4The list is: free, finite free, generated by global sections, generated by r global sections, generated by
finitely many global sections, having a global presentation, having a global finite presentation, locally free, finite
locally free, locally generated by sections, locally generated by r sections, finite type, of finite presentation,
coherent, or flat.
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defined by the rule F 7→ Fa seen in Proposition 8.9 have the property

F has P ⇔ Fa has P as anO-module

except (possibly) whenP is “locally free” or “coherent”. IfP =“coherent” the equivalence
holds for QCoh(OS) → QCoh(Sτ ,O) when S is locally Noetherian and τ is Zariski or
étale.

Proof. This is immediate for the global properties, i.e., those defined in Modules
on Sites, Definition 17.1. For the local properties we can use Modules on Sites, Lemma
23.3 to translate “Fa has P” into a property on the members of a covering of X . Hence
the result follows from Lemmas 7.1, 7.3, 7.4, 7.5, and 7.6. Being coherent for a quasi-
coherent module is the same as being of finite type over a locally Noetherian scheme (see
Cohomology of Schemes, Lemma 9.1) hence this reduces to the case of finite type modules
(details omitted). �

9. Cohomology of quasi-coherent modules and topologies

In this section we prove that cohomology of quasi-coherent modules is independent of the
choice of topology.

Lemma 9.1. Let S be a scheme. Let
(a) τ ∈ {Zariski, fppf, étale, smooth, syntomic} and C = (Sch/S)τ , or
(b) let τ = étale and C = Sétale, or
(c) let τ = Zariski and C = SZar.

Let F be an abelian sheaf on C. Let U ∈ Ob(C) be affine. Let U = {Ui → U}i=1,...,n be a
standard affine τ -covering in C. Then

(1) V = {
∐
i=1,...,n Ui → U} is a τ -covering of U ,

(2) U is a refinement of V , and
(3) the induced map on Čech complexes (Cohomology on Sites, Equation (8.2.1))

Č•(V,F) −→ Č•(U ,F)

is an isomorphism of complexes.

Proof. This follows because

(
∐

i0=1,...,n
Ui0)×U . . .×U (

∐
ip=1,...,n

Uip) =
∐

i0,...,ip∈{1,...,n}
Ui0 ×U . . .×U Uip

and the fact that F(
∐
a Va) =

∏
a F(Va) since disjoint unions are τ -coverings. �

Lemma 9.2. Let S be a scheme. Let F be a quasi-coherent sheaf on S. Let τ , C , U , U
be as in Lemma 9.1. Then there is an isomorphism of complexes

Č•(U ,Fa) ∼= s((A/R)• ⊗RM)

(see Section 3) where R = Γ(U,OU ), M = Γ(U,Fa) and R → A is a faithfully flat ring
map. In particular

Ȟp(U ,Fa) = 0
for all p ≥ 1.

Proof. By Lemma 9.1 we see that Č•(U ,Fa) is isomorphic to Č•(V,Fa) where V =
{V → U} with V =

∐
i=1,...n Ui affine also. Set A = Γ(V,OV ). Since {V → U} is a
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τ -covering we see that R → A is faithfully flat. On the other hand, by definition of Fa
we have that the degree p term Čp(V,Fa) is

Γ(V ×U . . .×U V,Fa) = Γ(Spec(A⊗R . . .⊗R A),Fa) = A⊗R . . .⊗R A⊗RM

We omit the verification that the maps of the Čech complex agree with the maps in the
complex s((A/R)• ⊗RM). The vanishing of cohomology is Lemma 3.6. �

Proposition 9.3. Let S be a scheme. Let F be a quasi-coherent sheaf on S. Let
τ ∈ {Zariski, étale, smooth, syntomic, fppf}.

(1) There is a canonical isomorphism

Hq(S,F) = Hq((Sch/S)τ ,Fa).

(2) There are canonical isomorphisms

Hq(S,F) = Hq(SZar,Fa) = Hq(Sétale,Fa).

Proof. The result for q = 0 is clear from the definition of Fa. Let C = (Sch/S)τ ,
or C = Sétale, or C = SZar.

We are going to apply Cohomology on Sites, Lemma 10.9 with F = Fa, B ⊂ Ob(C) the
set of affine schemes in C , and Cov ⊂ CovC the set of standard affine τ -coverings. Assump-
tion (3) of the lemma is satisfied by Lemma 9.2. Hence we conclude that Hp(U,Fa) = 0
for every affine object U of C.

Next, letU ∈ Ob(C) be any separated object. Denote f : U → S the structure morphism.
Let U =

⋃
Ui be an affine open covering. We may also think of this as a τ -covering

U = {Ui → U} of U in C. Note that Ui0 ×U . . .×U Uip = Ui0 ∩ . . . ∩ Uip is affine as we
assumed U separated. By Cohomology on Sites, Lemma 10.7 and the result above we see
that

Hp(U,Fa) = Ȟp(U ,Fa) = Hp(U, f∗F)
the last equality by Cohomology of Schemes, Lemma 2.6. In particular, if S is separated
we can take U = S and f = idS and the proposition is proved. We suggest the reader
skip the rest of the proof (or rewrite it to give a clearer exposition).

Choose an injective resolution F → I• on S. Choose an injective resolution Fa → J •

on C. Denote J n|S the restriction of J n to opens of S; this is a sheaf on the topological
space S as open coverings are τ -coverings. We get a complex

0→ F → J 0|S → J 1|S → . . .

which is exact since its sections over any affine open U ⊂ S is exact (by the vanishing
of Hp(U,Fa), p > 0 seen above). Hence by Derived Categories, Lemma 18.6 there exists
map of complexes J •|S → I• which in particular induces a map

RΓ(C,Fa) = Γ(S,J •) −→ Γ(S, I•) = RΓ(S,F).

Taking cohomology gives the map Hn(C,Fa) → Hn(S,F) which we have to prove is
an isomorphism. Let U : S =

⋃
Ui be an affine open covering which we may think of as

a τ -covering also. By the above we get a map of double complexes

Č•(U ,J ) = Č•(U ,J |S) −→ Č•(U , I).

This map induces a map of spectral sequences
τEp,q2 = Ȟp(U ,Hq(Fa)) −→ Ep,q2 = Ȟp(U ,Hq(F))
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The first spectral sequence converges to Hp+q(C,F) and the second to Hp+q(S,F). On
the other hand, we have seen that the induced maps τEp,q2 → Ep,q2 are bijections (as all the
intersections are separated being opens in affines). Whence also the maps Hn(C,Fa) →
Hn(S,F) are isomorphisms, and we win. �

Proposition 9.4. Let f : T → S be a morphism of schemes.
(1) The equivalences of categories of Proposition 8.9 are compatible with pullback.

More precisely, we have f∗(Ga) = (f∗G)a for any quasi-coherent sheaf G on S.
(2) The equivalences of categories of Proposition 8.9 part (1) are not compatible with

pushforward in general.
(3) If f is quasi-compact and quasi-separated, and τ ∈ {Zariski, étale} then f∗ and

fsmall,∗ preserve quasi-coherent sheaves and the diagram

QCoh(OT )
f∗

//

F7→Fa

��

QCoh(OS)

G7→Ga

��
QCoh(Tτ ,O)

fsmall,∗ // QCoh(Sτ ,O)

is commutative, i.e., fsmall,∗(Fa) = (f∗F)a.

Proof. Part (1) follows from the discussion in Remark 8.6. Part (2) is just a warning,
and can be explained in the following way: First the statement cannot be made precise
since f∗ does not transform quasi-coherent sheaves into quasi-coherent sheaves in general.
Even if this is the case for f (and any base change of f ), then the compatibility over the
big sites would mean that formation of f∗F commutes with any base change, which does
not hold in general. An explicit example is the quasi-compact open immersion j : X =
A2
k \ {0} → A2

k = Y where k is a field. We have j∗OX = OY but after base change to
Spec(k) by the 0 map we see that the pushforward is zero.

Let us prove (3) in case τ = étale. Note that f , and any base change of f , transforms
quasi-coherent sheaves into quasi-coherent sheaves, see Schemes, Lemma 24.1. The equal-
ity fsmall,∗(Fa) = (f∗F)a means that for any étale morphism g : U → S we have
Γ(U, g∗f∗F) = Γ(U ×S T, (g′)∗F) where g′ : U ×S T → T is the projection. This is
true by Cohomology of Schemes, Lemma 5.2. �

Lemma 9.5. Let f : T → S be a quasi-compact and quasi-separated morphism of
schemes. Let F be a quasi-coherent sheaf on T . For either the étale or Zariski topology,
there are canonical isomorphisms Rifsmall,∗(Fa) = (Rif∗F)a.

Proof. We prove this for the étale topology; we omit the proof in the case of the
Zariski topology. By Cohomology of Schemes, Lemma 4.5 the sheaves Rif∗F are quasi-
coherent so that the assertion makes sense. The sheafRifsmall,∗Fa is the sheaf associated
to the presheaf

U 7−→ Hi(U ×S T,Fa)
where g : U → S is an object of Sétale, see Cohomology on Sites, Lemma 7.4. By our
conventions the right hand side is the étale cohomology of the restriction of Fa to the
localizationTétale/U×ST which equals (U×ST )étale. By Proposition 9.3 this is presheaf
the same as the presheaf

U 7−→ Hi(U ×S T, (g′)∗F),
where g′ : U×ST → T is the projection. IfU is affine then this is the same asH0(U,Rif ′

∗(g′)∗F),
see Cohomology of Schemes, Lemma 4.6. By Cohomology of Schemes, Lemma 5.2 this



10. QUASI-COHERENT SHEAVES AND TOPOLOGIES, II 2945

is equal to H0(U, g∗Rif∗F) which is the value of (Rif∗F)a on U . Thus the values of
the sheaves of modules Rifsmall,∗(Fa) and (Rif∗F)a on every affine object of Sétale are
canonically isomorphic which implies they are canonically isomorphic. �

10. Quasi-coherent sheaves and topologies, II

We continue the discussion comparing quasi-coherent modules on a scheme S with quasi-
coherent modules on any of the sites associated to S in the chapter on topologies.

Lemma 10.1. In Lemma 8.5 the morphism of ringed sites idsmall,étale,Zar : Sétale →
SZar is flat.

Proof. Let us denote ε = idsmall,étale,Zar andOétale andOZar the structure sheaves
on Sétale and SZar. We have to show that Oétale is a flat ε−1OZar-module. Recall that
étale morphisms are open, see Morphisms, Lemma 36.13. It follows (from the construction
of pullback on sheaves) that ε−1OZar is the sheafification of the presheaf O′ on Sétale
which sends an étale morphism f : V → S to OS(f(V )). If both V and U = f(V ) ⊂ S
are affine, then V → U is an étale morphism of affines, hence corresponds to an étale ring
map. Since étale ring maps are flat, we see thatOS(U) = O′(V )→ Oétale(V ) = OV (V )
is flat. Finally, for every étale morphism f : V → S , i.e., object of Sétale, there is an affine
open covering V =

⋃
Vi such that f(Vi) is an affine open in S for all i5. Thus the result

by Modules on Sites, Lemma 28.4. �

Lemma 10.2. LetS be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}.
The functors

QCoh(OS) −→Mod((Sch/S)τ ,O) and QCoh(OS) −→Mod(Sτ ,O)
defined by the rule F 7→ Fa seen in Proposition 8.9 are

(1) fully faithful,
(2) compatible with direct sums,
(3) compatible with colimits,
(4) right exact,
(5) exact as a functor QCoh(OS)→Mod(Sétale,O),
(6) not exact as a functor QCoh(OS)→Mod((Sch/S)τ ,O) in general,
(7) given two quasi-coherentOS-modules F , G we have (F ⊗OS

G)a = Fa⊗O Ga,
(8) if τ = étale or τ = Zariski, given two quasi-coherent OS-modules F , G such

that F is of finite presentation we have (HomOS
(F ,G))a = HomO(Fa,Ga) in

Mod(Sτ ,O),
(9) given two quasi-coherentOS-modulesF , G we do not have (HomOS

(F ,G))a =
HomO(Fa,Ga) in Mod((Sch/S)τ ,O) in general even if F is of finite presenta-
tion, and

(10) given a short exact sequence 0 → Fa1 → E → Fa2 → 0 of O-modules then E is
quasi-coherent6, i.e., E is in the essential image of the functor.

Proof. Part (1) we saw in Proposition 8.9.
We have seen in Schemes, Section 24 that a colimit of quasi-coherent sheaves on a scheme
is a quasi-coherent sheaf. Moreover, in Remark 8.6 we saw that F 7→ Fa is the pullback

5Namely, for y ∈ V , we pick an affine open y ∈ V ′ ⊂ V with f(V ′) contained in an affine open U ⊂ S.
Then we pick an affine open f(y) ∈ U ′ ⊂ f(V ′). Then V ′′ = f−1(U ′) ⊂ V ′ is affine as it is equal to
U ′ ×U V ′ and f(V ′′) = U ′ is affine too.

6Warning: This is misleading. See part (6).
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functor for a morphism of ringed sites, hence commutes with all colimits, see Modules on
Sites, Lemma 14.3. Thus (3) and its special case (3) hold.

This also shows that the functor is right exact (i.e., commutes with finite colimits), hence
(4).

The functor QCoh(OS) → QCoh(Sétale,O), F 7→ Fa is left exact because an étale
morphism is flat, see Morphisms, Lemma 36.12. This proves (5).

To see (6), suppose that S = Spec(Z). Then 2 : OS → OS is injective but the associated
map of O-modules on (Sch/S)τ isn’t injective because 2 : F2 → F2 isn’t injective and
Spec(F2) is an object of (Sch/S)τ .

Part (7) holds because, as mentioned above, the functor F 7→ Fa is the pullback functor
for a morphism of ringed sites and such commute with tensor products by Modules on
Sites, Lemma 26.2.

Part (8) is obvious if τ = Zariski because the category of O-modules on SZar is the
same as the category of OS-modules on the topological space S. If τ = étale then (8)
holds because, as mentioned above, the functor F 7→ Fa is the pullback functor for the
flat morphism of ringed sites (Sétale,O)→ (SZar,OS), see Lemma 10.1. Pullback by flat
morphisms of ringed sites commutes with taking internal hom out of a finitely presented
module by Modules on Sites, Lemma 31.4.

To see (9), suppose that S = Spec(Z). Let F = Coker(2 : OS → OS) and G = OS .
Then Fa = Coker(2 : O → O) and Ga = O. Hence HomO(Fa,Ga) = O[2] is equal
to the 2-torsion in O, which is not zero, see proof of (6). On the other hand, the module
HomOS

(F ,G) is zero.

Proof of (10). Let 0→ Fa1 → E → Fa2 → 0 be a short exact sequence ofO-modules with
F1 and F2 quasi-coherent on S. Consider the restriction

0→ F1 → E|SZar → F2

to SZar. By Proposition 9.3 we see that on any affine U ⊂ S we have H1(U,Fa1 ) =
H1(U,F1) = 0. Hence the sequence above is also exact on the right. By Schemes, Sec-
tion 24 we conclude that F = E|SZar is quasi-coherent. Thus we obtain a commutative
diagram

Fa1 //

��

Fa //

��

Fa2 //

��

0

0 // Fa1 // E // Fa2 // 0
To finish the proof it suffices to show that the top row is also right exact. To do this,
denote once more U = Spec(A) ⊂ S an affine open of S. We have seen above that
0→ F1(U)→ E(U)→ F2(U)→ 0 is exact. For any affine scheme V/U , V = Spec(B)
the mapFa1 (V )→ E(V ) is injective. We haveFa1 (V ) = F1(U)⊗AB by definition. The
injection Fa1 (V )→ E(V ) factors as

F1(U)⊗A B → E(U)⊗A B → E(U)

Considering A-algebras B of the form B = A ⊕M we see that F1(U) → E(U) is uni-
versally injective (see Algebra, Definition 82.1). Since E(U) = F(U) we conclude that
F1 → F remains injective after any base change, or equivalently that Fa1 → Fa is injec-
tive. �
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Lemma 10.3. Let S be a scheme. The category QCoh(Sétale,O) of quasi-coherent
modules on Sétale has the following properties:

(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(2) Any colimit of quasi-coherent sheaves is quasi-coherent.
(3) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-coherent.
(4) Given a short exact sequence of O-modules 0 → F1 → F2 → F3 → 0 if two

out of three are quasi-coherent so is the third.
(5) Given two quasi-coherentO-modules the tensor product is quasi-coherent.
(6) Given two quasi-coherentO-modules F , G such that F is of finite presentation.

then the internal homHomO(F ,G) is quasi-coherent.

Proof. The corresponding facts hold for quasi-coherent modules on the scheme S ,
see Schemes, Section 24. The proof will be to use Lemma 10.2 to transfer these truths to
Sétale.

Proof of (1). Let Fi, i ∈ I be a family of objects of QCoh(Sétale,O). Write Fi = Gai for
some quasi-coherent modules Gi on S. Then

⊕
Fi = (

⊕
Gi)a by the lemma cited and we

conclude.

Proof of (2). Let I → QCoh(Sétale,O), i 7→ Fi be a diagram. Write Fi = Gai so we get
a diagram I → QCoh(OS). Then colimFi = (colimGi)a by the lemma cited and we
conclude.

Proof of (3). Let a : F → F ′ be an arrow of QCoh(Sétale,O). Write a = ba for
some map b : G → G′ of quasi-coherent modules on S. By the lemma cited we have
Ker(a) = Ker(b)a and Coker(a) = Coker(b)a and we conclude.

Proof of (4). This follows from (3) except in the case when we knowF1 andF3 are quasi-
coherent. In this case write F1 = Ga1 and F3 = Ga3 with Gi quasi-coherent on S. By
Lemma 10.2 part (10) we conclude.

Proof of (5). Let F and F ′ be in QCoh(Sétale,O). Write F = Ga and F ′ = (G′)a with
G and G′ quasi-coherent on S. By the lemma cited we have F ⊗O F ′ = (G ⊗OS

G′)a and
we conclude.

Proof of (6). Let F and G be in QCoh(Sétale,O) with F of finite presentation. Write
F = Ha andG = (I)a withH and I quasi-coherent onS. By Lemma 8.10 we see thatH is
of finite presentation. By Lemma 10.2 part (8) we haveHomO(F ,G) = (HomOS

(H, I))a
and we conclude. �

Lemma 10.4. LetS be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}.
The category QCoh((Sch/S)τ ,O) of quasi-coherent modules on (Sch/S)τ has the fol-
lowing properties:

(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(2) Any colimit of quasi-coherent sheaves is quasi-coherent.
(3) The cokernel of a morphism of quasi-coherent sheaves is quasi-coherent.
(4) Given a short exact sequence of O-modules 0 → F1 → F2 → F3 → 0 if F1

and F3 are quasi-coherent so is F2.
(5) Given two quasi-coherentO-modules the tensor product is quasi-coherent.
(6) Given two quasi-coherentO-modules F , G such that F is finite locally free, the

internal homHomO(F ,G) is quasi-coherent.
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Proof. The corresponding facts hold for quasi-coherent modules on the scheme S ,
see Schemes, Section 24. The proof will be to use Lemma 10.2 to transfer these truths to
(Sch/S)τ .
Proof of (1). Let Fi, i ∈ I be a family of objects of QCoh((Sch/S)τ ,O). Write Fi = Gai
for some quasi-coherent modules Gi on S. Then

⊕
Fi = (

⊕
Gi)a by the lemma cited and

we conclude.
Proof of (2). Let I → QCoh((Sch/S)τ ,O), i 7→ Fi be a diagram. Write Fi = Gai so we
get a diagram I → QCoh(OS). Then colimFi = (colimGi)a by the lemma cited and we
conclude.
Proof of (3). Let a : F → F ′ be an arrow of QCoh((Sch/S)τ ,O). Write a = ba for
some map b : G → G′ of quasi-coherent modules on S. By the lemma cited we have
Coker(a) = Coker(b)a (because a cokernel is a colimit) and we conclude.
Proof of (4). Write F1 = Ga1 and F3 = Ga3 with Gi quasi-coherent on S. By Lemma 10.2
part (10) we conclude.
Proof of (5). Let F and F ′ be in QCoh((Sch/S)τ ,O). Write F = Ga and F ′ = (G′)a
with G and G′ quasi-coherent on S. By the lemma cited we haveF ⊗OF ′ = (G⊗OS

G′)a
and we conclude.
Proof of (6). Write F = Ha for some quasi-coherent OS-module. By Lemma 8.10 we
see thatH is finite locally free. The problem is Zariski local on S (details omitted) hence
we may assume H = O⊕n

S is finite free. Then F = O⊕n and HomO(F ,G) = G⊕n is
quasi-coherent. �

Example 10.5. LetS be a scheme. LetF andG be quasi-coherent modules on (Sch/S)τ
for one of the topologies τ considered in Lemma 10.4. In general it is not the case that
HomO(F ,G) is quasi-coherent even if F is of finite presentation. Namely, say S =
Spec(Z), F = Coker(2 : O → O), and G = O. Then HomO(F ,G) = O[2] is equal
to the 2-torsion inO, which is not quasi-coherent.

Lemma 10.6. Let S be a scheme.
(1) The category QCoh((Sch/S)fppf ,O) has colimits and they agree with colimits

in the categories Mod((Sch/S)Zar,O), Mod((Sch/S)étale,O), and Mod((Sch/S)fppf ,O).
(2) GivenF ,G in QCoh((Sch/S)fppf ,O) the tensor productsF⊗OG computed in

Mod((Sch/S)Zar,O), Mod((Sch/S)étale,O), or Mod((Sch/S)fppf ,O) agree
and the common value is an object of QCoh((Sch/S)fppf ,O).

(3) Given F ,G in QCoh((Sch/S)fppf ,O) with F finite locally free (in fppf, or
equivalently étale, or equivalently Zariski topology) the internal homsHomO(F ,G)
computed in Mod((Sch/S)Zar,O), Mod((Sch/S)étale,O), or Mod((Sch/S)fppf ,O)
agree and the common value is an object of QCoh((Sch/S)fppf ,O).

Proof. This lemma collects the results shown above in a slightly different manner.
First of all, by Lemma 10.4 we already know the output of the construction in (1), (2),
or (3) ends up in QCoh((Sch/S)τ ,O). It remains to show in each case that the result is
independent of the topology used. The key to this is that the equivalence QCoh(OS)→
QCoh((Sch/S)τ ,O), F 7→ Fa of Proposition 8.9 is given by the same formula indepen-
dent of the choice of the topology τ ∈ {Zariski, étale, fppf}.
Proof of (1). Let I → QCoh((Sch/S)fppf ,O), i 7→ Fi be a diagram. Write Fi = Gai so
we get a diagram I → QCoh(OS). Then colimFi = (colimGi)a in Mod((Sch/S)τ ,O)
for τ ∈ {Zariski, étale, fppf} by Lemma 10.2. This proves (1).
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Proof of (2). Write F = Ha and G = (I)a with H and I quasi-coherent on S. Then
F ⊗O G = (H⊗O I)a in Mod((Sch/S)τ ,O) for τ ∈ {Zariski, étale, fppf} by Lemma
10.2. This proves (2).

Proof of (3). Let F and G be in QCoh((Sch/S)fppf ,O). Write F = Ha with H quasi-
coherent on S. By Lemma 8.10 we have

F finite locally free in fppf topology⇔ H finite locally free on S
⇔ F finite locally free in étale topology
⇔ H finite locally free on S
⇔ F finite locally free in Zariski topology

This explains the parenthetical statement of part (3). Now, if these equivalent conditions
hold, thenH is finite locally free. The construction ofHomO(F ,G) in Modules on Sites,
Section 27 depends only on F and G as presheaves of modules (only whether the output
Hom is a sheaf depends on whether F and G are sheaves). �

11. Quasi-coherent modules and affines

Let S be a scheme7. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Recall that
(Aff/S)τ is the full subcategory of (Sch/S)τ whose objects are affine turned into a site by
declaring the coverings to be the standard τ -coverings. By Topologies, Lemmas 3.10, 4.11,
5.9, 6.9, and 7.11 we have an equivalence of topoi g : Sh((Aff/S)τ ) → Sh((Sch/S)τ )
whose pullback functor is given by restriction. Recalling that O denotes the structure
sheaf on (Sch/S)τ , let us temporarily and pedantically denote OAff the restriction of O
to (Aff/S)τ . Then we obtain an equivalence

(11.0.1) (Sh((Aff/S)τ ),OAff) −→ (Sh((Sch/S)τ ),O)

of ringed topoi. Having said this we can compare quasi-coherent modules as well.

Lemma 11.1. Let S be a scheme. LetF be a presheaf ofOAff-modules on (Aff/S)fppf .
The following are equivalent

(1) for every morphism U → U ′ of (Aff/S)fppf the map F(U ′) ⊗O(U ′) O(U) →
F(U) is an isomorphism,

(2) F is a sheaf on (Aff/S)Zar and a quasi-coherent module on the ringed site ((Aff/S)Zar,OAff)
in the sense of Modules on Sites, Definition 23.1,

(3) same as in (3) for the étale topology,
(4) same as in (3) for the smooth topology,
(5) same as in (3) for the syntomic topology,
(6) same as in (3) for the fppf topology,
(7) F corresponds to a quasi-coherent module on (Sch/S)Zar , (Sch/S)étale, (Sch/S)smooth,

(Sch/S)syntomic, or (Sch/S)fppf via the equivalence (11.0.1),
(8) F comes from a unique quasi-coherentOS-module G by the procedure described

in Section 8.

7In this section, as in Topologies, Section 11, we choose our sites (Sch/S)τ to have the same underlying
category for τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Then also the sites (Aff/S)τ have the same
underlying category.
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Proof. Since the notion of a quasi-coherent module is intrinsic (Modules on Sites,
Lemma 23.2) we see that the equivalence (11.0.1) induces an equivalence between cate-
gories of quasi-coherent modules. Proposition 8.9 says the topology we use to study quasi-
coherent modules on Sch/S does not matter and it also tells us that (8) is the same as (7).
Hence we see that (2) – (8) are all equivalent.

Assume the equivalent conditions (2) – (8) hold and letG be as in (8). Let h : U → U ′ → S
be a morphism of Aff/S. Denote f : U → S and f ′ : U ′ → S the structure mor-
phisms, so that f = f ′ ◦ h. We have F(U ′) = Γ(U ′, (f ′)∗G) and F(U) = Γ(U, f∗G) =
Γ(U, h∗(f ′)∗G). Hence (1) holds by Schemes, Lemma 7.3.

Assume (1) holds. To finish the proof it suffices to prove (2). Let U be an object of
(Aff/S)Zar. Say U = Spec(R). A standard open covering U = U1 ∪ . . .∪Un is given by
Ui = D(fi) for some elements f1, . . . , fn ∈ R generating the unit ideal ofR. By property
(1) we see that

F(Ui) = F(U)⊗R Rfi = F(U)fi
and

F(Ui ∩ Uj) = F(U)⊗R Rfifj = F(U)fifj
Thus we conclude from Algebra, Lemma 24.1 that F is a sheaf on (Aff/S)Zar. Choose a
presentation ⊕

k∈K
R −→

⊕
l∈L

R −→ F(U) −→ 0

by free R-modules. By property (1) and the right exactness of tensor product we see that
for every morphism U ′ → U in (Aff/S)Zar we obtain a presentation⊕

k∈K
OAff (U ′) −→

⊕
l∈L
OAff (U ′) −→ F(U ′) −→ 0

In other words, we see that the restriction of F to the localized category (Aff/S)Zar/U
has a presentation⊕

k∈K
OAff |(Aff/S)Zar/U −→

⊕
l∈L
OAff |(Aff/S)Zar/U −→ F|(Aff/S)Zar/U −→ 0

With apologies for the horrible notation, this finishes the proof. �

We continue the discussion started in the introduction to this section. Let τ ∈ {Zariski, étale}.
Recall that Saffine,τ is the full subcategory of Sτ whose objects are affine turned into a
site by declaring the coverings to be the standard τ coverings. See Topologies, Defini-
tions 3.7 and 4.8. By Topologies, Lemmas 3.11, resp. 4.12 we have an equivalence of topoi
g : Sh(Saffine,τ ) → Sh(Sτ ), whose pullback functor is given by restriction. Recall-
ing that O denotes the structure sheaf on Sτ let us temporarily and pedantically denote
Oaffine the restriction ofO to Saffine,τ . Then we obtain an equivalence

(11.1.1) (Sh(Saffine,τ ),Oaffine) −→ (Sh(Sτ ),O)
of ringed topoi. Having said this we can compare quasi-coherent modules as well.

Lemma 11.2. Let S be a scheme. Let τ ∈ {Zariski, étale}. Let F be a presheaf of
Oaffine-modules on Saffine,τ . The following are equivalent

(1) for every morphismU → U ′ ofSaffine,τ the mapF(U ′)⊗O(U ′)O(U)→ F(U)
is an isomorphism,

(2) F is a sheaf onSaffine,τ and a quasi-coherent module on the ringed site (Saffine,τ ,Oaffine)
in the sense of Modules on Sites, Definition 23.1,

(3) F corresponds to a quasi-coherent module on Sτ via the equivalence (11.1.1),
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(4) F comes from a unique quasi-coherentOS-module G by the procedure described
in Section 8.

Proof. Let us prove this in the case of the étale topology.

Assume (1) holds. To show that F is a sheaf, let U = {Ui → U}i=1,...,n be a covering
of Saffine,étale. The sheaf condition for F and U , by our assumption on F . reduces to
showing that

0→ F(U)→
∏
F(U)⊗O(U) O(Ui)→

∏
F(U)⊗O(U) O(Ui ×U Uj)

is exact. This is true because O(U) →
∏
O(Ui) is faithfully flat (by Lemma 9.1 and

the fact that coverings in Saffine,étale are standard étale coverings) and we may apply
Lemma 3.6. Next, we show that F is quasi-coherent on Saffine,étale. Namely, for U in
Saffine,étale, set R = O(U) and choose a presentation⊕

k∈K
R −→

⊕
l∈L

R −→ F(U) −→ 0

by free R-modules. By property (1) and the right exactness of tensor product we see that
for every morphism U ′ → U in Saffine,étale we obtain a presentation⊕

k∈K
O(U ′) −→

⊕
l∈L
O(U ′) −→ F(U ′) −→ 0

In other words, we see that the restriction of F to the localized category Saffine,etale/U
has a presentation⊕

k∈K
Oaffine|Saffine,étale/U −→

⊕
l∈L
Oaffine|Saffine,étale/U −→ F|Saffine,étale/U −→ 0

as required to show that F is quasi-coherent. With apologies for the horrible notation,
this finishes the proof that (1) implies (2).

Since the notion of a quasi-coherent module is intrinsic (Modules on Sites, Lemma 23.2)
we see that the equivalence (11.1.1) induces an equivalence between categories of quasi-
coherent modules. Thus we have the equivalence of (2) and (3).

The equivalence of (3) and (4) follows from Proposition 8.9.

Let us assume (4) and prove (1). Namely, let G be as in (4). Let h : U → U ′ → S be
a morphism of Saffine,étale. Denote f : U → S and f ′ : U ′ → S the structure mor-
phisms, so that f = f ′ ◦ h. We have F(U ′) = Γ(U ′, (f ′)∗G) and F(U) = Γ(U, f∗G) =
Γ(U, h∗(f ′)∗G). Hence (1) holds by Schemes, Lemma 7.3.

We omit the proof in the case of the Zariski topology. �

12. Parasitic modules

Parasitic modules are those which are zero when restricted to schemes flat over the base
scheme. Here is the formal definition.

Definition 12.1. LetS be a scheme. Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.
Let F be a presheaf ofO-modules on (Sch/S)τ .

(1) F is called parasitic8 if for every flat morphism U → S we have F(U) = 0.
(2) F is called parasitic for the τ -topology if for every τ -covering {Ui → S}i∈I we

have F(Ui) = 0 for all i.

8This may be nonstandard notation.
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If τ = fppf this means that F|UZar = 0 whenever U → S is flat and locally of finite
presentation; similar for the other cases.

Lemma 12.2. Let S be a scheme. Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.
Let G be a presheaf ofO-modules on (Sch/S)τ .

(1) If G is parasitic for the τ -topology, then Hp
τ (U,G) = 0 for every U open in

S , resp. étale over S , resp. smooth over S , resp. syntomic over S , resp. flat and
locally of finite presentation over S.

(2) If G is parasitic then Hp
τ (U,G) = 0 for every U flat over S.

Proof. Proof in case τ = fppf ; the other cases are proved in the exact same way. The
assumption means that G(U) = 0 for any U → S flat and locally of finite presentation.
Apply Cohomology on Sites, Lemma 10.9 to the subset B ⊂ Ob((Sch/S)fppf ) consisting
ofU → S flat and locally of finite presentation and the collection Cov of all fppf coverings
of elements of B. �

Lemma 12.3. Let f : T → S be a morphism of schemes. For any parasiticO-module
on (Sch/T )τ the pushforward f∗F and the higher direct images Rif∗F are parasitic O-
modules on (Sch/S)τ .

Proof. Recall that Rif∗F is the sheaf associated to the presheaf

U 7→ Hi((Sch/U ×S T )τ ,F)

see Cohomology on Sites, Lemma 7.4. If U → S is flat, then U ×S T → T is flat as a base
change. Hence the displayed group is zero by Lemma 12.2. If {Ui → U} is a τ -covering
then Ui ×S T → T is also flat. Hence it is clear that the sheafification of the displayed
presheaf is zero on schemes U flat over S. �

Lemma 12.4. Let S be a scheme. Let τ ∈ {Zar, étale}. Let G be a sheaf ofO-modules
on (Sch/S)fppf such that

(1) G|Sτ is quasi-coherent, and
(2) for every flat, locally finitely presented morphism g : U → S the canonical map

g∗
τ,small(G|Sτ )→ G|Uτ is an isomorphism.

Then Hp(U,G) = Hp(U,G|Uτ ) for every U flat and locally of finite presentation over S.

Proof. Let F be the pullback of G|Sτ to the big fppf site (Sch/S)fppf . Note that F
is quasi-coherent. There is a canonical comparison map ϕ : F → G which by assumptions
(1) and (2) induces an isomorphism F|Uτ → G|Uτ for all g : U → S flat and locally of
finite presentation. Hence in the short exact sequences

0→ Ker(ϕ)→ F → Im(ϕ)→ 0

and

0→ Im(ϕ)→ G → Coker(ϕ)→ 0

the sheaves Ker(ϕ) and Coker(ϕ) are parasitic for the fppf topology. By Lemma 12.2 we
conclude that Hp(U,F) → Hp(U,G) is an isomorphism for g : U → S flat and locally
of finite presentation. Since the result holds for F by Proposition 9.3 we win. �



13. FPQC COVERINGS ARE UNIVERSAL EFFECTIVE EPIMORPHISMS 2953

13. Fpqc coverings are universal effective epimorphisms

We apply the material above to prove an interesting result, namely Lemma 13.7. By
Sites, Section 12 this lemma implies that the representable presheaves on any of the sites
(Sch/S)τ are sheaves for τ ∈ {Zariski, fppf, étale, smooth, syntomic}. First we prove
a helper lemma.

Lemma 13.1. For a scheme X denote |X| the underlying set. Let f : X → S be a
morphism of schemes. Then

|X ×S X| → |X| ×|S| |X|
is surjective.

Proof. Follows immediately from the description of points on the fibre product in
Schemes, Lemma 17.5. �

Lemma 13.2. Let {fi : Xi → X}i∈I be a family of morphisms of affine schemes. The
following are equivalent

(1) for any quasi-coherentOX -module F we have

Γ(X,F) = Equalizer
( ∏

i∈I Γ(Xi, f
∗
i F) //

//
∏
i,j∈I Γ(Xi ×X Xj , (fi × fj)∗F)

)
(2) {fi : Xi → X}i∈I is a universal effective epimorphism (Sites, Definition 12.1)

in the category of affine schemes.

Proof. Assume (2) holds and let F be a quasi-coherent OX -module. Consider the
scheme (Constructions, Section 4)

X ′ = Spec
X

(OX ⊕F)
whereOX ⊕F is anOX -algebra with multiplication (f, s)(f ′, s′) = (ff ′, fs′ + f ′s). If
si ∈ Γ(Xi, f

∗
i F) is a section, then si determines a unique element of

Γ(X ′ ×X Xi,OX′×XXi) = Γ(Xi,OXi)⊕ Γ(Xi, f
∗
i F)

Proof of equality omitted. If (si)i∈I is in the equalizer of (1), then, using the equality

Mor(T,A1
Z) = Γ(T,OT )

which holds for any scheme T , we see that these sections define a family of morphisms
hi : X ′ ×X Xi → A1

Z with hi ◦ pr1 = hj ◦ pr2 as morphisms (X ′ ×X Xi)×X′ (X ′ ×X
Xj) → A1

Z. Since we’ve assume (2) we obtain a morphism h : X ′ → A1
Z compatible

with the morphisms hi which in turn determines an element s ∈ Γ(X,F). We omit the
verification that s maps to si in Γ(Xi, f

∗
i F).

Assume (1). Let T be an affine scheme and let hi : Xi → T be a family of morphisms such
that hi ◦ pr1 = hj ◦ pr2 on Xi ×X Xj for all i, j ∈ I . Then∏

h]i : Γ(T,OT )→
∏

Γ(Xi,OXi)

maps into the equalizer and we find that we get a ring map Γ(T,OT ) → Γ(X,OX) by
the assumption of the lemma for F = OX . This ring map corresponds to a morphism
h : X → T such that hi = h ◦ fi. Hence our family is an effective epimorphism.
Let p : Y → X be a morphism of affines. We will show the base changes gi : Yi → Y of fi
form an effective epimorphism by applying the result of the previous paragraph. Namely,
if G is a quasi-coherentOY -module, then

Γ(Y,G) = Γ(X, p∗G), Γ(Yi, g∗
i G) = Γ(X, f∗

i p∗G),
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and
Γ(Yi ×Y Yj , (gi × gj)∗G) = Γ(X, (fi × fj)∗p∗G)

by the trivial base change formula (Cohomology of Schemes, Lemma 5.1). Thus we see
property (1) lemma holds for the family gi. �

Lemma 13.3. Let {fi : Xi → X}i∈I be a family of morphisms of schemes.
(1) If the family is universal effective epimorphism in the category of schemes, then∐

fi is surjective.
(2) IfX andXi are affine and the family is a universal effective epimorphism in the

category of affine schemes, then
∐
fi is surjective.

Proof. Omitted. Hint: perform base change by Spec(κ(x)) → X to see that any
x ∈ X has to be in the image. �

Lemma 13.4. Let {fi : Xi → X}i∈I be a family of morphisms of schemes. If for
every morphism Y → X with Y affine the family of base changes gi : Yi → Y forms an
effective epimorphism, then the family of fi forms a universal effective epimorphism in
the category of schemes.

Proof. Let Y → X be a morphism of schemes. We have to show that the base
changes gi : Yi → Y form an effective epimorphism. To do this, assume given a scheme
T and morphisms hi : Yi → T with hi ◦ pr1 = hj ◦ pr2 on Yi ×Y Yj . Choose an affine
open covering Y =

⋃
Vα. Set Vα,i equal to the inverse image of Vα in Yi. Then we see

that Vα,i → Vα is the base change of fi by Vα → X . Thus by assumption the family of
restrictions hi|Vα,i come from a morphism of schemes hα : Vα → T . We leave it to the
reader to show that these agree on overlaps and define the desired morphism Y → T . See
discussion in Schemes, Section 14. �

Lemma 13.5. Let {fi : Xi → X}i∈I be a family of morphisms of affine schemes. As-
sume the equivalent assumption of Lemma 13.2 hold and that moreover for any morphism
of affines Y → X the map ∐

Xi ×X Y −→ Y

is a submersive map of topological spaces (Topology, Definition 6.3). Then our family of
morphisms is a universal effective epimorphism in the category of schemes.

Proof. By Lemma 13.4 it suffices to base change our family of morphisms by Y → X
with Y affine. Set Yi = Xi ×X Y . Let T be a scheme and let hi : Yi → Y be a family of
morphisms such that hi◦pr1 = hj ◦pr2 on Yi×Y Yj . Note that Y as a set is the coequalizer
of the two maps from

∐
Yi×Y Yj to

∐
Yi. Namely, surjectivity by the affine case of Lemma

13.3 and injectivity by Lemma 13.1. Hence there is a set map of underlying sets h : Y → T
compatible with the maps hi. By the second condition of the lemma we see that h is
continuous! Thus if y ∈ Y and U ⊂ T is an affine open neighbourhood of h(y), then we
can find an affine open V ⊂ Y such that h(V ) ⊂ U . Setting Vi = Yi ×Y V = Xi ×X V
we can use the result proved in Lemma 13.2 to see that h|V : V → U ⊂ T comes from
a unique morphism of affine schemes hV : V → U agreeing with hi|Vi as morphisms of
schemes for all i. Glueing these hV (see Schemes, Section 14) gives a morphism Y → T as
desired. �

Lemma 13.6. Let {fi : Ti → T}i∈I be a fpqc covering. Suppose that for each i we
have an open subset Wi ⊂ Ti such that for all i, j ∈ I we have pr−1

0 (Wi) = pr−1
1 (Wj)
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as open subsets of Ti ×T Tj . Then there exists a unique open subset W ⊂ T such that
Wi = f−1

i (W ) for each i.

Proof. Apply Lemma 13.1 to the map
∐
i∈I Ti → T . It implies there exists a subset

W ⊂ T such that Wi = f−1
i (W ) for each i, namely W =

⋃
fi(Wi). To see that W is

open we may work Zariski locally on T . Hence we may assume that T is affine. Using
Topologies, Definition 9.1 we may choose a standard fpqc covering {gj : Vj → T}j∈J
which refines {Ti → T}i∈I . Let α : J → I and hj : Vj → Tα(j) be as in Sites, Definition
8.1. Then g−1

j (W ) = h−1
j (Wα(j)). Thus we may assume {fi : Ti → T} is a standard fpqc

covering. In this case we may apply Morphisms, Lemma 25.12 to the morphism
∐
Ti → T

to conclude that W is open. �

Lemma 13.7. Let {Ti → T} be an fpqc covering, see Topologies, Definition 9.1. Then
{Ti → T} is a universal effective epimorphism in the category of schemes, see Sites, Defi-
nition 12.1. In other words, every representable functor on the category of schemes satisfies
the sheaf condition for the fpqc topology, see Topologies, Definition 9.12.

Proof. Let S be a scheme. We have to show the following: Given morphisms ϕi :
Ti → S such that ϕi|Ti×TTj = ϕj |Ti×TTj there exists a unique morphism T → S
which restricts to ϕi on each Ti. In other words, we have to show that the functor hS =
MorSch(−, S) satisfies the sheaf property for the fpqc topology.

If {Ti → T} is a Zariski covering, then this follows from Schemes, Lemma 14.1. Thus
Topologies, Lemma 9.13 reduces us to the case of a covering {X → Y } given by a single
surjective flat morphism of affines.

First proof. By Lemma 8.1 we have the sheaf condition for quasi-coherent modules for
{X → Y }. By Lemma 13.6 the morphism X → Y is universally submersive. Hence we
may apply Lemma 13.5 to see that {X → Y } is a universal effective epimorphism.

Second proof. Let R → A be the faithfully flat ring map corresponding to our surjective
flat morphism π : X → Y . Let f : X → S be a morphism such that f ◦ pr1 = f ◦ pr2 as
morphisms X ×Y X = Spec(A⊗R A)→ S. By Lemma 13.1 we see that as a map on the
underlying sets f is of the form f = g ◦ π for some (set theoretic) map g : Spec(R)→ S.
By Morphisms, Lemma 25.12 and the fact that f is continuous we see that g is continuous.

Pick y ∈ Y = Spec(R). Choose U ⊂ S affine open containing g(y). Say U = Spec(B).
By the above we may choose an r ∈ R such that y ∈ D(r) ⊂ g−1(U). The restriction of
f to π−1(D(r)) into U corresponds to a ring map B → Ar. The two induced ring maps
B → Ar ⊗Rr Ar = (A ⊗R A)r are equal by assumption on f . Note that Rr → Ar is
faithfully flat. By Lemma 3.6 the equalizer of the two arrowsAr → Ar⊗Rr Ar isRr. We
conclude that B → Ar factors uniquely through a map B → Rr. This map in turn gives
a morphism of schemes D(r)→ U → S , see Schemes, Lemma 6.4.

What have we proved so far? We have shown that for any prime p ⊂ R, there exists a stan-
dard affine openD(r) ⊂ Spec(R) such that the morphism f |π−1(D(r)) : π−1(D(r))→ S
factors uniquely through some morphism of schemesD(r)→ S. We omit the verification
that these morphisms glue to the desired morphism Spec(R)→ S. �

Lemma 13.8. Consider schemes X,Y, Z and morphisms a, b : X → Y and a mor-
phism c : Y → Z with c ◦ a = c ◦ b. Set d = c ◦ a = c ◦ b. If there exists an fpqc covering
{Zi → Z} such that
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(1) for all i the morphism Y ×c,ZZi → Zi is the coequalizer of (a, 1) : X×d,ZZi →
Y ×c,Z Zi and (b, 1) : X ×d,Z Zi → Y ×c,Z Zi, and

(2) for all i and i′ the morphism Y ×c,Z (Zi×ZZi′)→ (Zi×ZZi′) is the coequalizer
of (a, 1) : X×d,Z (Zi×ZZi′)→ Y ×c,Z (Zi×ZZi′) and (b, 1) : X×d,Z (Zi×Z
Zi′)→ Y ×c,Z (Zi ×Z Zi′)

then c is the coequalizer of a and b.

Proof. Namely, for a scheme T a morphism Z → T is the same thing as a collection
of morphism Zi → T which agree on overlaps by Lemma 13.7. �

14. Descent of finiteness and smoothness properties of morphisms

In this section we show that several properties of morphisms (being smooth, locally of
finite presentation, and so on) descend under faithfully flat morphisms. We start with
an algebraic version. (The “Noetherian” reader should consult Lemma 14.2 instead of the
next lemma.)

Lemma 14.1. Let R → A → B be ring maps. Assume R → B is of finite presen-
tation and A → B faithfully flat and of finite presentation. Then R → A is of finite
presentation.

Proof. Consider the algebraC = B⊗AB together with the pair of maps p, q : B →
C given by p(b) = b⊗ 1 and q(b) = 1⊗ b. Of course the two compositions A→ B → C
are the same. Note that as p : B → C is flat and of finite presentation (base change of
A→ B), the ring mapR→ C is of finite presentation (as the composite ofR→ B → C).

We are going to use the criterion Algebra, Lemma 127.3 to show that R → A is of finite
presentation. Let S be any R-algebra, and suppose that S = colimλ∈Λ Sλ is written as a
directed colimit of R-algebras. Let A → S be an R-algebra homomorphism. We have to
show that A → S factors through one of the Sλ. Consider the rings B′ = S ⊗A B and
C ′ = S ⊗A C = B′ ⊗S B′. As B is faithfully flat of finite presentation over A, also B′

is faithfully flat of finite presentation over S. By Algebra, Lemma 168.1 part (2) applied
to the pair (S → B′, B′) and the system (Sλ) there exists a λ0 ∈ Λ and a flat, finitely
presentedSλ0 -algebraBλ0 such thatB′ = S⊗Sλ0

Bλ0 . Forλ ≥ λ0 setBλ = Sλ⊗Sλ0
Bλ0

and Cλ = Bλ ⊗Sλ Bλ.

We interrupt the flow of the argument to show that Sλ → Bλ is faithfully flat for λ large
enough. (This should really be a separate lemma somewhere else, maybe in the chapter
on limits.) Since Spec(Bλ0) → Spec(Sλ0) is flat and of finite presentation it is open
(see Morphisms, Lemma 25.10). Let I ⊂ Sλ0 be an ideal such that V (I) ⊂ Spec(Sλ0)
is the complement of the image. Note that formation of the image commutes with base
change. Hence, since Spec(B′) → Spec(S) is surjective, and B′ = Bλ0 ⊗Sλ0

S we see
that IS = S. Thus for some λ ≥ λ0 we have ISλ = Sλ. For this and all greater λ the
morphism Spec(Bλ)→ Spec(Sλ) is surjective.

By analogy with the notation in the first paragraph of the proof denote pλ, qλ : Bλ → Cλ
the two canonical maps. ThenB′ = colimλ≥λ0 Bλ andC ′ = colimλ≥λ0 Cλ. SinceB and
C are finitely presented overR there exist (by Algebra, Lemma 127.3 applied several times)
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a λ ≥ λ0 and an R-algebra maps B → Bλ, C → Cλ such that the diagram

C // Cλ

B //

p

OO

q

OO

Bλ

pλ

OO
qλ

OO

is commutative. OK, and this means thatA→ B → Bλ maps into the equalizer of pλ and
qλ. By Lemma 3.6 we see that Sλ is the equalizer of pλ and qλ. Thus we get the desired
ring map A→ Sλ and we win. �

Here is an easier version of this dealing with the property of being of finite type.

Lemma 14.2. Let R → A → B be ring maps. Assume R → B is of finite type and
A→ B faithfully flat and of finite presentation. Then R→ A is of finite type.

Proof. By Algebra, Lemma 168.2 there exists a commutative diagram

R // A0

��

// B0

��
R // A // B

with R → A0 of finite presentation, A0 → B0 faithfully flat of finite presentation and
B = A⊗A0 B0. SinceR→ B is of finite type by assumption, we may add some elements
to A0 and assume that the map B0 → B is surjective! In this case, since A0 → B0 is
faithfully flat, we see that as

(A0 → A)⊗A0 B0 ∼= (B0 → B)
is surjective, also A0 → A is surjective. Hence we win. �

Lemma 14.3. Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that f is surjective, flat and
locally of finite presentation and assume that p is locally of finite presentation (resp. locally
of finite type). Then q is locally of finite presentation (resp. locally of finite type).

Proof. The problem is local on S and Y . Hence we may assume that S and Y are
affine. Since f is flat and locally of finite presentation, we see that f is open (Morphisms,
Lemma 25.10). Hence, since Y is quasi-compact, there exist finitely many affine opens
Xi ⊂ X such that Y =

⋃
f(Xi). Clearly we may replace X by

∐
Xi, and hence we

may assume X is affine as well. In this case the lemma is equivalent to Lemma 14.1 (resp.
Lemma 14.2) above. �

We use this to improve some of the results on morphisms obtained earlier.

Lemma 14.4. Let
X

f
//

p
��

Y

q
��

S
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be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, and syntomic (resp. smooth, resp. étale),
(2) p is syntomic (resp. smooth, resp. étale).

Then q is syntomic (resp. smooth, resp. étale).

Proof. Combine Morphisms, Lemmas 30.16, 34.19, and 36.19 with Lemma 14.3 above.
�

Actually we can strengthen this result as follows.

Lemma 14.5. Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, flat, and locally of finite presentation,
(2) p is smooth (resp. étale).

Then q is smooth (resp. étale).

Proof. Assume (1) and that p is smooth. By Lemma 14.3 we see that q is locally of
finite presentation. By Morphisms, Lemma 25.13 we see that q is flat. Hence now it suffices
to show that the fibres of q are smooth, see Morphisms, Lemma 34.3. Apply Varieties,
Lemma 25.9 to the flat surjective morphisms Xs → Ys for s ∈ S to conclude. We omit
the proof of the étale case. �

Remark 14.6. With the assumptions (1) and p smooth in Lemma 14.5 it is not au-
tomatically the case that X → Y is smooth. A counter example is S = Spec(k), X =
Spec(k[s]), Y = Spec(k[t]) and f given by t 7→ s2. But see also Lemma 14.7 for some
information on the structure of f .

Lemma 14.7. Let
X

f
//

p
��

Y

q
��

S

be a commutative diagram of morphisms of schemes. Assume that
(1) f is surjective, flat, and locally of finite presentation,
(2) p is syntomic.

Then both q and f are syntomic.

Proof. By Lemma 14.3 we see that q is of finite presentation. By Morphisms, Lemma
25.13 we see that q is flat. By Morphisms, Lemma 30.10 it now suffices to show that the
local rings of the fibres of Y → S and the fibres ofX → Y are local complete intersection
rings. To do this we may take the fibre of X → Y → S at a point s ∈ S , i.e., we may
assume S is the spectrum of a field. Pick a point x ∈ X with image y ∈ Y and consider
the ring map

OY,y −→ OX,x
This is a flat local homomorphism of local Noetherian rings. The local ring OX,x is a
complete intersection. Thus may use Avramov’s result, see Divided Power Algebra, Lemma
8.9, to conclude that bothOY,y andOX,x/myOX,x are complete intersection rings. �
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The following type of lemma is occasionally useful.

Lemma 14.8. LetX → Y → Z be morphism of schemes. Let P be one of the follow-
ing properties of morphisms of schemes: flat, locally finite type, locally finite presentation.
Assume that X → Z has P and that {X → Y } can be refined by an fppf covering of Y .
Then Y → Z is P .

Proof. Let Spec(C) ⊂ Z be an affine open and let Spec(B) ⊂ Y be an affine open
which maps into Spec(C). The assumption on X → Y implies we can find a standard
affine fppf covering {Spec(Bj) → Spec(B)} and lifts xj : Spec(Bj) → X . Since
Spec(Bj) is quasi-compact we can find finitely many affine opens Spec(Ai) ⊂ X ly-
ing over Spec(B) such that the image of each xj is contained in the union

⋃
Spec(Ai).

Hence after replacing each Spec(Bj) by a standard affine Zariski coverings of itself we
may assume we have a standard affine fppf covering {Spec(Bi) → Spec(B)} such that
each Spec(Bi) → Y factors through an affine open Spec(Ai) ⊂ X lying over Spec(B).
In other words, we have ring maps C → B → Ai → Bi for each i. Note that we can also
consider

C → B → A =
∏

Ai → B′ =
∏

Bi

and that the ring map B →
∏
Bi is faithfully flat and of finite presentation.

The case P = flat. In this case we know that C → A is flat and we have to prove that
C → B is flat. Suppose that N → N ′ → N ′′ is an exact sequence of C-modules. We
want to show that N ⊗C B → N ′ ⊗C B → N ′′ ⊗C B is exact. Let H be its cohomology
and letH ′ be the cohomology ofN ⊗C B′ → N ′⊗C B′ → N ′′⊗C B′. AsB → B′ is flat
we know that H ′ = H ⊗B B′. On the other hand N ⊗C A→ N ′ ⊗C A→ N ′′ ⊗C A is
exact hence has zero cohomology. Hence the map H → H ′ is zero (as it factors through
the zero module). Thus H ′ = 0. As B → B′ is faithfully flat we conclude that H = 0 as
desired.
The case P = locally finite type. In this case we know that C → A is of finite type
and we have to prove that C → B is of finite type. Because B → B′ is of finite presen-
tation (hence of finite type) we see that A→ B′ is of finite type, see Algebra, Lemma 6.2.
Therefore C → B′ is of finite type and we conclude by Lemma 14.2.
The case P = locally finite presentation. In this case we know that C → A is of
finite presentation and we have to prove that C → B is of finite presentation. Because
B → B′ is of finite presentation andB → A of finite type we see thatA→ B′ is of finite
presentation, see Algebra, Lemma 6.2. Therefore C → B′ is of finite presentation and we
conclude by Lemma 14.1. �

15. Local properties of schemes

It often happens one can prove the members of a covering of a scheme have a certain
property. In many cases this implies the scheme has the property too. For example, if
S is a scheme, and f : S′ → S is a surjective flat morphism such that S′ is a reduced
scheme, then S is reduced. You can prove this by looking at local rings and using Algebra,
Lemma 164.2. We say that the property of being reduced descends through flat surjective
morphisms. Some results of this type are collected in Algebra, Section 164 and for schemes
in Section 19. Some analogous results on descending properties of morphisms are in Section
14.
On the other hand, there are examples of surjective flat morphisms f : S′ → S with S
reduced and S′ not, for example the morphism Spec(k[x]/(x2)) → Spec(k). Hence the
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property of being reduced does not ascend along flat morphisms. Having infinite residue
fields is a property which does ascend along flat morphisms (but does not descend along
surjective flat morphisms of course). Some results of this type are collected in Algebra,
Section 163.

Finally, we say that a property is local for the flat topology if it ascends along flat mor-
phisms and descends along flat surjective morphisms. A somewhat silly example is the
property of having residue fields of a given characteristic. To be more precise, and to tie
this in with the various topologies on schemes, we make the following formal definition.

Definition 15.1. Let P be a property of schemes. Let τ ∈ {fpqc, fppf, syntomic,
smooth, étale, Zariski}. We sayP is local in the τ -topology if for any τ -covering {Si →
S}i∈I (see Topologies, Section 2) we have

S has P ⇔ each Si has P.

To be sure, since isomorphisms are always coverings we see (or require) that property P
holds for S if and only if it holds for any scheme S′ isomorphic to S. In fact, if τ = fpqc,
fppf, syntomic, smooth, étale, or Zariski, then if S has P and S′ → S is flat, flat and
locally of finite presentation, syntomic, smooth, étale, or an open immersion, then S′ has
P . This is true because we can always extend {S′ → S} to a τ -covering.

We have the following implications: P is local in the fpqc topology⇒ P is local in the
fppf topology⇒P is local in the syntomic topology⇒P is local in the smooth topology
⇒P is local in the étale topology⇒P is local in the Zariski topology. This follows from
Topologies, Lemmas 4.2, 5.2, 6.2, 7.2, and 9.6.

Lemma 15.2. Let P be a property of schemes. Let τ ∈ {fpqc, fppf, étale, smooth,
syntomic}. Assume that

(1) the property is local in the Zariski topology,
(2) for any morphism of affine schemes S′ → S which is flat, flat of finite presen-

tation, étale, smooth or syntomic depending on whether τ is fpqc, fppf, étale,
smooth, or syntomic, property P holds for S′ if property P holds for S , and

(3) for any surjective morphism of affine schemes S′ → S which is flat, flat of finite
presentation, étale, smooth or syntomic depending on whether τ is fpqc, fppf,
étale, smooth, or syntomic, property P holds for S if property P holds for S′.

Then P is τ local on the base.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 9.1 7.1 4.1 5.1, or 6.1 and Topologies, Lemma 9.8, 7.4, 4.4, 5.4, or
6.4. Details omitted. �

Remark 15.3. In Lemma 15.2 above if τ = smooth then in condition (3) we may
assume that the morphism is a (surjective) standard smooth morphism. Similarly, when
τ = syntomic or τ = étale.

16. Properties of schemes local in the fppf topology

In this section we find some properties of schemes which are local on the base in the fppf
topology.

Lemma 16.1. The propertyP(S) =“S is locally Noetherian” is local in the fppf topol-
ogy.
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Proof. We will use Lemma 15.2. First we note that “being locally Noetherian” is
local in the Zariski topology. This is clear from the definition, see Properties, Definition
5.1. Next, we show that if S′ → S is a flat, finitely presented morphism of affines and
S is locally Noetherian, then S′ is locally Noetherian. This is Morphisms, Lemma 15.6.
Finally, we have to show that if S′ → S is a surjective flat, finitely presented morphism
of affines and S′ is locally Noetherian, then S is locally Noetherian. This follows from
Algebra, Lemma 164.1. Thus (1), (2) and (3) of Lemma 15.2 hold and we win. �

Lemma 16.2. The property P(S) =“S is Jacobson” is local in the fppf topology.

Proof. We will use Lemma 15.2. First we note that “being Jacobson” is local in the
Zariski topology. This is Properties, Lemma 6.3. Next, we show that if S′ → S is a
flat, finitely presented morphism of affines and S is Jacobson, then S′ is Jacobson. This
is Morphisms, Lemma 16.9. Finally, we have to show that if f : S′ → S is a surjective
flat, finitely presented morphism of affines and S′ is Jacobson, then S is Jacobson. Say
S = Spec(A) and S′ = Spec(B) and S′ → S given by A→ B. Then A→ B is finitely
presented and faithfully flat. Moreover, the ringB is Jacobson, see Properties, Lemma 6.3.

By Algebra, Lemma 168.10 there exists a diagram

B // B′

A

>>__

with A → B′ finitely presented, faithfully flat and quasi-finite. In particular, B → B′ is
finite type, and we see from Algebra, Proposition 35.19 thatB′ is Jacobson. Hence we may
assume that A→ B is quasi-finite as well as faithfully flat and of finite presentation.

AssumeA is not Jacobson to get a contradiction. According to Algebra, Lemma 35.5 there
exists a nonmaximal prime p ⊂ A and an element f ∈ A, f 6∈ p such that V (p)∩D(f) =
{p}.

This leads to a contradiction as follows. First let p ⊂ m be a maximal ideal of A. Pick a
prime m′ ⊂ B lying over m (exists because A → B is faithfully flat, see Algebra, Lemma
39.16). As A → B is flat, by going down see Algebra, Lemma 39.19, we can find a prime
q ⊂ m′ lying over p. In particular we see that q is not maximal. Hence according to
Algebra, Lemma 35.5 again the set V (q) ∩ D(f) is infinite (here we finally use that B is
Jacobson). All points of V (q)∩D(f) map to V (p)∩D(f) = {p}. Hence the fibre over p
is infinite. This contradicts the fact that A→ B is quasi-finite (see Algebra, Lemma 122.4
or more explicitly Morphisms, Lemma 20.10). Thus the lemma is proved. �

Lemma 16.3. The propertyP(S) =“every quasi-compact open of S has a finite num-
ber of irreducible components” is local in the fppf topology.

Proof. We will use Lemma 15.2. First we note thatP is local in the Zariski topology.
Next, we show that if T → S is a flat, finitely presented morphism of affines and S has a
finite number of irreducible components, then so does T . Namely, since T → S is flat, the
generic points of T map to the generic points of S , see Morphisms, Lemma 25.9. Hence
it suffices to show that for s ∈ S the fibre Ts has a finite number of generic points. Note
that Ts is an affine scheme of finite type over κ(s), see Morphisms, Lemma 15.4. Hence
Ts is Noetherian and has a finite number of irreducible components (Morphisms, Lemma
15.6 and Properties, Lemma 5.7). Finally, we have to show that if T → S is a surjective
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flat, finitely presented morphism of affines and T has a finite number of irreducible com-
ponents, then so does S. This follows from Topology, Lemma 8.5. Thus (1), (2) and (3) of
Lemma 15.2 hold and we win. �

17. Properties of schemes local in the syntomic topology

In this section we find some properties of schemes which are local on the base in the syn-
tomic topology.

Lemma 17.1. The property P(S) =“S is locally Noetherian and (Sk)” is local in the
syntomic topology.

Proof. We will check (1), (2) and (3) of Lemma 15.2. As a syntomic morphism is
flat of finite presentation (Morphisms, Lemmas 30.7 and 30.6) we have already checked
this for “being locally Noetherian” in the proof of Lemma 16.1. We will use this without
further mention in the proof. First we note that P is local in the Zariski topology. This
is clear from the definition, see Cohomology of Schemes, Definition 11.1. Next, we show
that if S′ → S is a syntomic morphism of affines and S has P , then S′ has P . This is
Algebra, Lemma 163.4 (use Morphisms, Lemma 30.2 and Algebra, Definition 136.1 and
Lemma 135.3). Finally, we show that if S′ → S is a surjective syntomic morphism of
affines and S′ has P , then S has P . This is Algebra, Lemma 164.5. Thus (1), (2) and (3) of
Lemma 15.2 hold and we win. �

Lemma 17.2. The property P(S) =“S is Cohen-Macaulay” is local in the syntomic
topology.

Proof. This is clear from Lemma 17.1 above since a scheme is Cohen-Macaulay if and
only if it is locally Noetherian and (Sk) for all k ≥ 0, see Properties, Lemma 12.3. �

18. Properties of schemes local in the smooth topology

In this section we find some properties of schemes which are local on the base in the smooth
topology.

Lemma 18.1. The property P(S) =“S is reduced” is local in the smooth topology.

Proof. We will use Lemma 15.2. First we note that “being reduced” is local in the
Zariski topology. This is clear from the definition, see Schemes, Definition 12.1. Next, we
show that if S′ → S is a smooth morphism of affines and S is reduced, then S′ is reduced.
This is Algebra, Lemma 163.7. Finally, we show that if S′ → S is a surjective smooth
morphism of affines and S′ is reduced, then S is reduced. This is Algebra, Lemma 164.2.
Thus (1), (2) and (3) of Lemma 15.2 hold and we win. �

Lemma 18.2. The property P(S) =“S is normal” is local in the smooth topology.

Proof. We will use Lemma 15.2. First we show “being normal” is local in the Zariski
topology. This is clear from the definition, see Properties, Definition 7.1. Next, we show
that if S′ → S is a smooth morphism of affines and S is normal, then S′ is normal. This is
Algebra, Lemma 163.9. Finally, we show that if S′ → S is a surjective smooth morphism
of affines and S′ is normal, then S is normal. This is Algebra, Lemma 164.3. Thus (1), (2)
and (3) of Lemma 15.2 hold and we win. �

Lemma 18.3. The property P(S) =“S is locally Noetherian and (Rk)” is local in the
smooth topology.
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Proof. We will check (1), (2) and (3) of Lemma 15.2. As a smooth morphism is flat of
finite presentation (Morphisms, Lemmas 34.9 and 34.8) we have already checked this for
“being locally Noetherian” in the proof of Lemma 16.1. We will use this without further
mention in the proof. First we note that P is local in the Zariski topology. This is clear
from the definition, see Properties, Definition 12.1. Next, we show that if S′ → S is a
smooth morphism of affines and S has P , then S′ has P . This is Algebra, Lemmas 163.5
(use Morphisms, Lemma 34.2, Algebra, Lemmas 137.4 and 140.3). Finally, we show that if
S′ → S is a surjective smooth morphism of affines and S′ has P , then S has P . This is
Algebra, Lemma 164.6. Thus (1), (2) and (3) of Lemma 15.2 hold and we win. �

Lemma 18.4. The property P(S) =“S is regular” is local in the smooth topology.

Proof. This is clear from Lemma 18.3 above since a locally Noetherian scheme is
regular if and only if it is locally Noetherian and (Rk) for all k ≥ 0. �

Lemma 18.5. The property P(S) =“S is Nagata” is local in the smooth topology.

Proof. We will check (1), (2) and (3) of Lemma 15.2. First we note that being Nagata
is local in the Zariski topology. This is Properties, Lemma 13.6. Next, we show that if
S′ → S is a smooth morphism of affines and S is Nagata, then S′ is Nagata. This is
Morphisms, Lemma 18.1. Finally, we show that ifS′ → S is a surjective smooth morphism
of affines and S′ is Nagata, then S is Nagata. This is Algebra, Lemma 164.7. Thus (1), (2)
and (3) of Lemma 15.2 hold and we win. �

19. Variants on descending properties

Sometimes one can descend properties, which are not local. We put results of this kind in
this section. See also Section 14 on descending properties of morphisms, such as smooth-
ness.

Lemma 19.1. If f : X → Y is a flat and surjective morphism of schemes and X is
reduced, then Y is reduced.

Proof. The result follows by looking at local rings (Schemes, Definition 12.1) and
Algebra, Lemma 164.2. �

Lemma 19.2. Let f : X → Y be a morphism of algebraic spaces. If f is locally of
finite presentation, flat, and surjective and X is regular, then Y is regular.

Proof. This lemma reduces to the following algebra statement: If A→ B is a faith-
fully flat, finitely presented ring homomorphism with B Noetherian and regular, then
A is Noetherian and regular. We see that A is Noetherian by Algebra, Lemma 164.1 and
regular by Algebra, Lemma 110.9. �

20. Germs of schemes

Definition 20.1. Germs of schemes.
(1) A pair (X,x) consisting of a scheme X and a point x ∈ X is called the germ of

X at x.
(2) A morphism of germs f : (X,x) → (S, s) is an equivalence class of morphisms

of schemes f : U → S with f(x) = s where U ⊂ X is an open neighbourhood
of x. Two such f , f ′ are said to be equivalent if and only if f and f ′ agree in
some open neighbourhood of x.
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(3) We define the composition of morphisms of germs by composing representatives
(this is well defined).

Before we continue we need one more definition.

Definition 20.2. Let f : (X,x)→ (S, s) be a morphism of germs. We say f is étale
(resp. smooth) if there exists a representative f : U → S of f which is an étale morphism
(resp. a smooth morphism) of schemes.

21. Local properties of germs

Definition 21.1. LetP be a property of germs of schemes. We say thatP is étale local
(resp. smooth local) if for any étale (resp. smooth) morphism of germs (U ′, u′) → (U, u)
we have P(U, u)⇔ P(U ′, u′).

Let (X,x) be a germ of a scheme. The dimension of X at x is the minimum of the dimen-
sions of open neighbourhoods of x in X , and any small enough open neighbourhood has
this dimension. Hence this is an invariant of the isomorphism class of the germ. We de-
note this simply dimx(X). The following lemma tells us that the assertion dimx(X) = d
is an étale local property of germs.

Lemma 21.2. Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). Then dimu(U) = dimv(V ).

Proof. In the statement dimu(U) is the dimension of U at u as defined in Topology,
Definition 10.1 as the minimum of the Krull dimensions of open neighbourhoods of u in
U . Similarly for dimv(V ).

Let us show that dimv(V ) ≥ dimu(U). Let V ′ be an open neighbourhood of v in V .
Then there exists an open neighbourhood U ′ of u in U contained in f−1(V ′) such that
dimu(U) = dim(U ′). Suppose that Z0 ⊂ Z1 ⊂ . . . ⊂ Zn is a chain of irreducible
closed subschemes of U ′. If ξi ∈ Zi is the generic point then we have specializations
ξn  ξn−1  . . .  ξ0. This gives specializations f(ξn)  f(ξn−1)  . . .  f(ξ0) in
V ′. Note that f(ξj) 6= f(ξi) if i 6= j as the fibres of f are discrete (see Morphisms, Lemma
36.7). Hence we see that dim(V ′) ≥ n. The inequality dimv(V ) ≥ dimu(U) follows
formally.

Let us show that dimu(U) ≥ dimv(V ). LetU ′ be an open neighbourhood of u inU . Note
that V ′ = f(U ′) is an open neighbourhood of v by Morphisms, Lemma 25.10. Hence
dim(V ′) ≥ dimv(V ). Pick a chainZ0 ⊂ Z1 ⊂ . . . ⊂ Zn of irreducible closed subschemes
of V ′. Let ξi ∈ Zi be the generic point, so we have specializations ξn  ξn−1  . . . ξ0.
Since ξ0 ∈ f(U ′) we can find a point η0 ∈ U ′ with f(η0) = ξ0. Consider the map of local
rings

OV ′,ξ0 −→ OU ′,η0

which is a flat local ring map by Morphisms, Lemma 36.12. Note that the points ξi corre-
spond to primes of the ring on the left by Schemes, Lemma 13.2. Hence by going down (see
Algebra, Section 41) for the displayed ring map we can find a sequence of specializations
ηn  ηn−1  . . . η0 in U ′ mapping to the sequence ξn  ξn−1  . . . ξ0 under f .
This implies that dimu(U) ≥ dimv(V ). �

Let (X,x) be a germ of a scheme. The isomorphism class of the local ring OX,x is an
invariant of the germ. The following lemma says that the property dim(OX,x) = d is an
étale local property of germs.
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Lemma 21.3. Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). Then dim(OU,u) = dim(OV,v).

Proof. The algebraic statement we are asked to prove is the following: If A → B
is an étale ring map and q is a prime of B lying over p ⊂ A, then dim(Ap) = dim(Bq).
This is More on Algebra, Lemma 44.2. �

Let (X,x) be a germ of a scheme. The isomorphism class of the local ring OX,x is an
invariant of the germ. The following lemma says that the property “OX,x is regular” is an
étale local property of germs.

Lemma 21.4. Let f : U → V be an étale morphism of schemes. Let u ∈ U and
v = f(u). ThenOU,u is a regular local ring if and only ifOV,v is a regular local ring.

Proof. The algebraic statement we are asked to prove is the following: If A→ B is
an étale ring map and q is a prime ofB lying over p ⊂ A, thenAp is regular if and only if
Bq is regular. This is More on Algebra, Lemma 44.3. �

22. Properties of morphisms local on the target

Suppose that f : X → Y is a morphism of schemes. Let g : Y ′ → Y be a morphism of
schemes. Let f ′ : X ′ → Y ′ be the base change of f by g:

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

Let P be a property of morphisms of schemes. Then we can wonder if (a) P(f)⇒ P(f ′),
and also whether the converse (b) P(f ′) ⇒ P(f) is true. If (a) holds whenever g is flat,
then we sayP is preserved under flat base change. If (b) holds whenever g is surjective and
flat, then we say P descends through flat surjective base changes. If P is preserved under
flat base changes and descends through flat surjective base changes, then we say P is flat
local on the target. Compare with the discussion in Section 15. This turns out to be a very
important notion which we formalize in the following definition.

Definition 22.1. Let P be a property of morphisms of schemes over a base. Let
τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. We say P is τ local on the base,
or τ local on the target, or local on the base for the τ -topology if for any τ -covering
{Yi → Y }i∈I (see Topologies, Section 2) and any morphism of schemes f : X → Y over
S we have

f has P ⇔ each Yi ×Y X → Yi has P.

To be sure, since isomorphisms are always coverings we see (or require) that property P
holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to X → Y .
If a property is τ -local on the target then it is preserved by base changes by morphisms
which occur in τ -coverings. Here is a formal statement.

Lemma 22.2. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. Let P be a
property of morphisms which is τ local on the target. Let f : X → Y have property P .
For any morphism Y ′ → Y which is flat, resp. flat and locally of finite presentation, resp.
syntomic, resp. étale, resp. an open immersion, the base change f ′ : Y ′ ×Y X → Y ′ of f
has property P .
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Proof. This is true because we can fit Y ′ → Y into a family of morphisms which
forms a τ -covering. �

A simple often used consequence of the above is that if f : X → Y has property P which
is τ -local on the target and f(X) ⊂ V for some open subscheme V ⊂ Y , then also the
induced morphism X → V has P . Proof: The base change f by V → Y gives X → V .

Lemma 22.3. Let τ ∈ {fppf, syntomic, smooth, étale}. Let P be a property of
morphisms which is τ local on the target. For any morphism of schemes f : X → Y
there exists a largest open W (f) ⊂ Y such that the restriction XW (f) → W (f) has P .
Moreover,

(1) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth, or étale
and the base change f ′ : XY ′ → Y ′ has P , then g(Y ′) ⊂W (f),

(2) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth, or
étale, then W (f ′) = g−1(W (f)), and

(3) if {gi : Yi → Y } is a τ -covering, then g−1
i (W (f)) = W (fi), where fi is the

base change of f by Yi → Y .

Proof. Consider the union W of the images g(Y ′) ⊂ Y of morphisms g : Y ′ → Y
with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the base change Y ′ ×g,Y X → Y ′ has property P .

Since such a morphism g is open (see Morphisms, Lemma 25.10) we see that W ⊂ Y is an
open subset of Y . SinceP is local in the τ topology the restrictionXW →W has property
P because we are given a covering {Y ′ →W} ofW such that the pullbacks have P . This
proves the existence and proves thatW (f) has property (1). To see property (2) note that
W (f ′) ⊃ g−1(W (f)) because P is stable under base change by flat and locally of finite
presentation, syntomic, smooth, or étale morphisms, see Lemma 22.2. On the other hand, if
Y ′′ ⊂ Y ′ is an open such thatXY ′′ → Y ′′ has property P , then Y ′′ → Y factors through
W by construction, i.e., Y ′′ ⊂ g−1(W (f)). This proves (2). Assertion (3) follows from
(2) because each morphism Yi → Y is flat and locally of finite presentation, syntomic,
smooth, or étale by our definition of a τ -covering. �

Lemma 22.4. Let P be a property of morphisms of schemes over a base. Let τ ∈
{fpqc, fppf, étale, smooth, syntomic}. Assume that

(1) the property is preserved under flat, flat and locally of finite presentation, étale,
smooth, or syntomic base change depending on whether τ is fpqc, fppf, étale,
smooth, or syntomic (compare with Schemes, Definition 18.3),

(2) the property is Zariski local on the base.
(3) for any surjective morphism of affine schemes S′ → S which is flat, flat of finite

presentation, étale, smooth or syntomic depending on whether τ is fpqc, fppf,
étale, smooth, or syntomic, and any morphism of schemes f : X → S property
P holds for f if property P holds for the base change f ′ : X ′ = S′×SX → S′.

Then P is τ local on the base.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 9.1 7.1 4.1 5.1, or 6.1 and Topologies, Lemma 9.8, 7.4, 4.4, 5.4, or
6.4. Details omitted. �
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Remark 22.5. (This is a repeat of Remark 15.3 above.) In Lemma 22.4 above if τ =
smooth then in condition (3) we may assume that the morphism is a (surjective) standard
smooth morphism. Similarly, when τ = syntomic or τ = étale.

23. Properties of morphisms local in the fpqc topology on the target

In this section we find a large number of properties of morphisms of schemes which are
local on the base in the fpqc topology. By contrast, in Examples, Section 64 we will show
that the properties “projective” and “quasi-projective” are not local on the base even in the
Zariski topology.

Lemma 23.1. The property P(f) =“f is quasi-compact” is fpqc local on the base.

Proof. A base change of a quasi-compact morphism is quasi-compact, see Schemes,
Lemma 19.3. Being quasi-compact is Zariski local on the base, see Schemes, Lemma 19.2.
Finally, let S′ → S be a flat surjective morphism of affine schemes, and let f : X → S
be a morphism. Assume that the base change f ′ : X ′ → S′ is quasi-compact. Then X ′ is
quasi-compact, and X ′ → X is surjective. Hence X is quasi-compact. This implies that f
is quasi-compact. Therefore Lemma 22.4 applies and we win. �

Lemma 23.2. The property P(f) =“f is quasi-separated” is fpqc local on the base.

Proof. Any base change of a quasi-separated morphism is quasi-separated, see Schemes,
Lemma 21.12. Being quasi-separated is Zariski local on the base (from the definition or by
Schemes, Lemma 21.6). Finally, let S′ → S be a flat surjective morphism of affine schemes,
and let f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′ is
quasi-separated. This means that ∆′ : X ′ → X ′ ×S′ X ′ is quasi-compact. Note that ∆′

is the base change of ∆ : X → X ×S X via S′ → S. By Lemma 23.1 this implies ∆
is quasi-compact, and hence f is quasi-separated. Therefore Lemma 22.4 applies and we
win. �

Lemma 23.3. The property P(f) =“f is universally closed” is fpqc local on the base.

Proof. A base change of a universally closed morphism is universally closed by def-
inition. Being universally closed is Zariski local on the base (from the definition or by
Morphisms, Lemma 41.2). Finally, let S′ → S be a flat surjective morphism of affine
schemes, and let f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′ is
universally closed. Let T → S be any morphism. Consider the diagram

X ′

��

S′ ×S T ×S X

��

//oo T ×S X

��
S′ S′ ×S T //oo T

in which both squares are cartesian. Thus the assumption implies that the middle vertical
arrow is closed. The right horizontal arrows are flat, quasi-compact and surjective (as base
changes of S′ → S). Hence a subset of T is closed if and only if its inverse image in
S′ ×S T is closed, see Morphisms, Lemma 25.12. An easy diagram chase shows that the
right vertical arrow is closed too, and we concludeX → S is universally closed. Therefore
Lemma 22.4 applies and we win. �

Lemma 23.4. The property P(f) =“f is universally open” is fpqc local on the base.

Proof. The proof is the same as the proof of Lemma 23.3. �
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Lemma 23.5. The property P(f) =“f is universally submersive” is fpqc local on the
base.

Proof. The proof is the same as the proof of Lemma 23.3 using that a quasi-compact
flat surjective morphism is universally submersive by Morphisms, Lemma 25.12. �

Lemma 23.6. The property P(f) =“f is separated” is fpqc local on the base.

Proof. A base change of a separated morphism is separated, see Schemes, Lemma
21.12. Being separated is Zariski local on the base (from the definition or by Schemes,
Lemma 21.7). Finally, let S′ → S be a flat surjective morphism of affine schemes, and let
f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′ is separated. This
means that ∆′ : X ′ → X ′ ×S′ X ′ is a closed immersion, hence universally closed. Note
that ∆′ is the base change of ∆ : X → X ×S X via S′ → S. By Lemma 23.3 this implies
∆ is universally closed. Since it is an immersion (Schemes, Lemma 21.2) we conclude ∆ is
a closed immersion. Hence f is separated. Therefore Lemma 22.4 applies and we win. �

Lemma 23.7. The property P(f) =“f is surjective” is fpqc local on the base.

Proof. This is clear. �

Lemma 23.8. The property P(f) =“f is universally injective” is fpqc local on the
base.

Proof. A base change of a universally injective morphism is universally injective
(this is formal). Being universally injective is Zariski local on the base; this is clear from
the definition. Finally, let S′ → S be a flat surjective morphism of affine schemes, and let
f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′ is universally
injective. Let K be a field, and let a, b : Spec(K) → X be two morphisms such that
f ◦ a = f ◦ b. As S′ → S is surjective and by the discussion in Schemes, Section 13 there
exists a field extension K ′/K and a morphism Spec(K ′) → S′ such that the following
solid diagram commutes

Spec(K ′)

))
a′,b′

$$

��

X ′ //

��

S′

��
Spec(K) a,b // X // S

As the square is cartesian we get the two dotted arrows a′, b′ making the diagram commute.
SinceX ′ → S′ is universally injective we get a′ = b′, by Morphisms, Lemma 10.2. Clearly
this forces a = b (by the discussion in Schemes, Section 13). Therefore Lemma 22.4 applies
and we win.
An alternative proof would be to use the characterization of a universally injective mor-
phism as one whose diagonal is surjective, see Morphisms, Lemma 10.2. The lemma then
follows from the fact that the property of being surjective is fpqc local on the base, see
Lemma 23.7. (Hint: use that the base change of the diagonal is the diagonal of the base
change.) �

Lemma 23.9. The property P(f) =“f is a universal homeomorphism” is fpqc local
on the base.
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Proof. This can be proved in exactly the same manner as Lemma 23.3. Alternatively,
one can use that a map of topological spaces is a homeomorphism if and only if it is in-
jective, surjective, and open. Thus a universal homeomorphism is the same thing as a
surjective, universally injective, and universally open morphism. Thus the lemma follows
from Lemmas 23.7, 23.8, and 23.4. �

Lemma 23.10. The property P(f) =“f is locally of finite type” is fpqc local on the
base.

Proof. Being locally of finite type is preserved under base change, see Morphisms,
Lemma 15.4. Being locally of finite type is Zariski local on the base, see Morphisms, Lemma
15.2. Finally, letS′ → S be a flat surjective morphism of affine schemes, and let f : X → S
be a morphism. Assume that the base change f ′ : X ′ → S′ is locally of finite type. Let
U ⊂ X be an affine open. Then U ′ = S′ ×S U is affine and of finite type over S′. Write
S = Spec(R), S′ = Spec(R′), U = Spec(A), and U ′ = Spec(A′). We know that
R→ R′ is faithfully flat, A′ = R′ ⊗R A and R′ → A′ is of finite type. We have to show
that R→ A is of finite type. This is the result of Algebra, Lemma 126.1. It follows that f
is locally of finite type. Therefore Lemma 22.4 applies and we win. �

Lemma 23.11. The property P(f) =“f is locally of finite presentation” is fpqc local
on the base.

Proof. Being locally of finite presentation is preserved under base change, see Mor-
phisms, Lemma 21.4. Being locally of finite type is Zariski local on the base, see Morphisms,
Lemma 21.2. Finally, let S′ → S be a flat surjective morphism of affine schemes, and let
f : X → S be a morphism. Assume that the base change f ′ : X ′ → S′ is locally of finite
presentation. Let U ⊂ X be an affine open. Then U ′ = S′ ×S U is affine and of finite
type over S′. Write S = Spec(R), S′ = Spec(R′), U = Spec(A), and U ′ = Spec(A′).
We know thatR→ R′ is faithfully flat,A′ = R′⊗RA andR′ → A′ is of finite presenta-
tion. We have to show that R→ A is of finite presentation. This is the result of Algebra,
Lemma 126.2. It follows that f is locally of finite presentation. Therefore Lemma 22.4
applies and we win. �

Lemma 23.12. The property P(f) =“f is of finite type” is fpqc local on the base.

Proof. Combine Lemmas 23.1 and 23.10. �

Lemma 23.13. The property P(f) =“f is of finite presentation” is fpqc local on the
base.

Proof. Combine Lemmas 23.1, 23.2 and 23.11. �

Lemma 23.14. The property P(f) =“f is proper” is fpqc local on the base.

Proof. The lemma follows by combining Lemmas 23.3, 23.6 and 23.12. �

Lemma 23.15. The property P(f) =“f is flat” is fpqc local on the base.

Proof. Being flat is preserved under arbitrary base change, see Morphisms, Lemma
25.8. Being flat is Zariski local on the base by definition. Finally, let S′ → S be a flat
surjective morphism of affine schemes, and let f : X → S be a morphism. Assume that
the base change f ′ : X ′ → S′ is flat. Let U ⊂ X be an affine open. Then U ′ = S′ ×S U
is affine. Write S = Spec(R), S′ = Spec(R′), U = Spec(A), and U ′ = Spec(A′). We
know that R → R′ is faithfully flat, A′ = R′ ⊗R A and R′ → A′ is flat. Goal: Show
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that R→ A is flat. This follows immediately from Algebra, Lemma 39.8. Hence f is flat.
Therefore Lemma 22.4 applies and we win. �

Lemma 23.16. The property P(f) =“f is an open immersion” is fpqc local on the
base.

Proof. The property of being an open immersion is stable under base change, see
Schemes, Lemma 18.2. The property of being an open immersion is Zariski local on the
base (this is obvious).
Let S′ → S be a flat surjective morphism of affine schemes, and let f : X → S be a
morphism. Assume that the base change f ′ : X ′ → S′ is an open immersion. We claim
that f is an open immersion. Then f ′ is universally open, and universally injective. Hence
we conclude that f is universally open by Lemma 23.4, and universally injective by Lemma
23.8. In particular f(X) ⊂ S is open. If for every affine open U ⊂ f(X) we can prove
that f−1(U) → U is an isomorphism, then f is an open immersion and we’re done. If
U ′ ⊂ S′ denotes the inverse image of U , then U ′ → U is a faithfully flat morphism of
affines and (f ′)−1(U ′) → U ′ is an isomorphism (as f ′(X ′) contains U ′ by our choice of
U ). Thus we reduce to the case discussed in the next paragraph.
Let S′ → S be a flat surjective morphism of affine schemes, let f : X → S be a morphism,
and assume that the base change f ′ : X ′ → S′ is an isomorphism. We have to show
that f is an isomorphism also. It is clear that f is surjective, universally injective, and
universally open (see arguments above for the last two). Hence f is bijective, i.e., f is a
homeomorphism. Thus f is affine by Morphisms, Lemma 45.4. Since

O(S′)→ O(X ′) = O(S′)⊗O(S) O(X)
is an isomorphism and since O(S) → O(S′) is faithfully flat this implies that O(S) →
O(X) is an isomorphism. Thus f is an isomorphism. This finishes the proof of the claim
above. Therefore Lemma 22.4 applies and we win. �

Lemma 23.17. The property P(f) =“f is an isomorphism” is fpqc local on the base.

Proof. Combine Lemmas 23.7 and 23.16. �

Lemma 23.18. The property P(f) =“f is affine” is fpqc local on the base.

Proof. A base change of an affine morphism is affine, see Morphisms, Lemma 11.8.
Being affine is Zariski local on the base, see Morphisms, Lemma 11.3. Finally, let g : S′ →
S be a flat surjective morphism of affine schemes, and let f : X → S be a morphism.
Assume that the base change f ′ : X ′ → S′ is affine. In other words, X ′ is affine, say
X ′ = Spec(A′). Also write S = Spec(R) and S′ = Spec(R′). We have to show that X
is affine.
By Lemmas 23.1 and 23.6 we see thatX → S is separated and quasi-compact. Thus f∗OX
is a quasi-coherent sheaf of OS-algebras, see Schemes, Lemma 24.1. Hence f∗OX = Ã
for some R-algebra A. In fact A = Γ(X,OX) of course. Also, by flat base change (see
for example Cohomology of Schemes, Lemma 5.2) we have g∗f∗OX = f ′

∗OX′ . In other
words, we have A′ = R′ ⊗R A. Consider the canonical morphism

X −→ Spec(A)
over S from Schemes, Lemma 6.4. By the above the base change of this morphism to S′

is an isomorphism. Hence it is an isomorphism by Lemma 23.17. Therefore Lemma 22.4
applies and we win. �
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Lemma 23.19. The property P(f) =“f is a closed immersion” is fpqc local on the
base.

Proof. Let f : X → Y be a morphism of schemes. Let {Yi → Y } be an fpqc
covering. Assume that each fi : Yi ×Y X → Yi is a closed immersion. This implies
that each fi is affine, see Morphisms, Lemma 11.9. By Lemma 23.18 we conclude that f is
affine. It remains to show that OY → f∗OX is surjective. For every y ∈ Y there exists
an i and a point yi ∈ Yi mapping to y. By Cohomology of Schemes, Lemma 5.2 the sheaf
fi,∗(OYi×YX) is the pullback of f∗OX . By assumption it is a quotient of OYi . Hence we
see that (

OY,y −→ (f∗OX)y
)
⊗OY,y

OYi,yi

is surjective. SinceOYi,yi is faithfully flat overOY,y this implies the surjectivity ofOY,y −→
(f∗OX)y as desired. �

Lemma 23.20. The property P(f) =“f is quasi-affine” is fpqc local on the base.

Proof. Let f : X → Y be a morphism of schemes. Let {gi : Yi → Y } be an fpqc
covering. Assume that each fi : Yi×Y X → Yi is quasi-affine. This implies that each fi is
quasi-compact and separated. By Lemmas 23.1 and 23.6 this implies that f is quasi-compact
and separated. Consider the sheaf of OY -algebras A = f∗OX . By Schemes, Lemma 24.1
it is a quasi-coherentOY -algebra. Consider the canonical morphism

j : X −→ Spec
Y

(A)

see Constructions, Lemma 4.7. By flat base change (see for example Cohomology of Schemes,
Lemma 5.2) we have g∗

i f∗OX = fi,∗OX′ where gi : Yi → Y are the given flat maps. Hence
the base change ji of j by gi is the canonical morphism of Constructions, Lemma 4.7 for
the morphism fi. By assumption and Morphisms, Lemma 13.3 all of these morphisms ji
are quasi-compact open immersions. Hence, by Lemmas 23.1 and 23.16 we see that j is a
quasi-compact open immersion. Hence by Morphisms, Lemma 13.3 again we conclude that
f is quasi-affine. �

Lemma 23.21. The property P(f) =“f is a quasi-compact immersion” is fpqc local
on the base.

Proof. Let f : X → Y be a morphism of schemes. Let {Yi → Y } be an fpqc
covering. Write Xi = Yi ×Y X and fi : Xi → Yi the base change of f . Also denote
qi : Yi → Y the given flat morphisms. Assume each fi is a quasi-compact immersion. By
Schemes, Lemma 23.8 each fi is separated. By Lemmas 23.1 and 23.6 this implies that f
is quasi-compact and separated. Let X → Z → Y be the factorization of f through its
scheme theoretic image. By Morphisms, Lemma 6.3 the closed subscheme Z ⊂ Y is cut
out by the quasi-coherent sheaf of ideals I = Ker(OY → f∗OX) as f is quasi-compact.
By flat base change (see for example Cohomology of Schemes, Lemma 5.2; here we use f
is separated) we see fi,∗OXi is the pullback q∗

i f∗OX . Hence Yi ×Y Z is cut out by the
quasi-coherent sheaf of ideals q∗

i I = Ker(OYi → fi,∗OXi). By Morphisms, Lemma 7.7
the morphisms Xi → Yi ×Y Z are open immersions. Hence by Lemma 23.16 we see that
X → Z is an open immersion and hence f is a immersion as desired (we already saw it
was quasi-compact). �

Lemma 23.22. The property P(f) =“f is integral” is fpqc local on the base.
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Proof. An integral morphism is the same thing as an affine, universally closed mor-
phism. See Morphisms, Lemma 44.7. Hence the lemma follows on combining Lemmas
23.3 and 23.18. �

Lemma 23.23. The property P(f) =“f is finite” is fpqc local on the base.

Proof. An finite morphism is the same thing as an integral morphism which is locally
of finite type. See Morphisms, Lemma 44.4. Hence the lemma follows on combining
Lemmas 23.10 and 23.22. �

Lemma 23.24. The properties P(f) =“f is locally quasi-finite” and P(f) =“f is
quasi-finite” are fpqc local on the base.

Proof. Let f : X → S be a morphism of schemes, and let {Si → S} be an fpqc
covering such that each base change fi : Xi → Si is locally quasi-finite. We have already
seen (Lemma 23.10) that “locally of finite type” is fpqc local on the base, and hence we
see that f is locally of finite type. Then it follows from Morphisms, Lemma 20.13 that f
is locally quasi-finite. The quasi-finite case follows as we have already seen that “quasi-
compact” is fpqc local on the base (Lemma 23.1). �

Lemma 23.25. The property P(f) =“f is locally of finite type of relative dimension
d” is fpqc local on the base.

Proof. This follows immediately from the fact that being locally of finite type is
fpqc local on the base and Morphisms, Lemma 28.3. �

Lemma 23.26. The property P(f) =“f is syntomic” is fpqc local on the base.

Proof. A morphism is syntomic if and only if it is locally of finite presentation, flat,
and has locally complete intersections as fibres. We have seen already that being flat and
locally of finite presentation are fpqc local on the base (Lemmas 23.15, and 23.11). Hence
the result follows for syntomic from Morphisms, Lemma 30.12. �

Lemma 23.27. The property P(f) =“f is smooth” is fpqc local on the base.

Proof. A morphism is smooth if and only if it is locally of finite presentation, flat,
and has smooth fibres. We have seen already that being flat and locally of finite presen-
tation are fpqc local on the base (Lemmas 23.15, and 23.11). Hence the result follows for
smooth from Morphisms, Lemma 34.15. �

Lemma 23.28. The property P(f) =“f is unramified” is fpqc local on the base. The
property P(f) =“f is G-unramified” is fpqc local on the base.

Proof. A morphism is unramified (resp. G-unramified) if and only if it is locally of
finite type (resp. finite presentation) and its diagonal morphism is an open immersion (see
Morphisms, Lemma 35.13). We have seen already that being locally of finite type (resp.
locally of finite presentation) and an open immersion is fpqc local on the base (Lemmas
23.11, 23.10, and 23.16). Hence the result follows formally. �

Lemma 23.29. The property P(f) =“f is étale” is fpqc local on the base.

Proof. A morphism is étale if and only if it flat and G-unramified. See Morphisms,
Lemma 36.16. We have seen already that being flat and G-unramified are fpqc local on the
base (Lemmas 23.15, and 23.28). Hence the result follows. �
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Lemma 23.30. The propertyP(f) =“f is finite locally free” is fpqc local on the base.
Let d ≥ 0. The property P(f) =“f is finite locally free of degree d” is fpqc local on the
base.

Proof. Being finite locally free is equivalent to being finite, flat and locally of finite
presentation (Morphisms, Lemma 48.2). Hence this follows from Lemmas 23.23, 23.15,
and 23.11. If f : Z → U is finite locally free, and {Ui → U} is a surjective family
of morphisms such that each pullback Z ×U Ui → Ui has degree d, then Z → U has
degree d, for example because we can read off the degree in a point u ∈ U from the fibre
(f∗OZ)u ⊗OU,u

κ(u). �

Lemma 23.31. The propertyP(f) =“f is a monomorphism” is fpqc local on the base.

Proof. Let f : X → S be a morphism of schemes. Let {Si → S} be an fpqc covering,
and assume each of the base changes fi : Xi → Si of f is a monomorphism. Let a, b : T →
X be two morphisms such that f ◦ a = f ◦ b. We have to show that a = b. Since fi is a
monomorphism we see that ai = bi, where ai, bi : Si ×S T → Xi are the base changes.
In particular the compositions Si ×S T → T → X are equal. Since

∐
Si ×S T → T is

an epimorphism (see e.g. Lemma 13.7) we conclude a = b. �

Lemma 23.32. The properties
P(f) =“f is a Koszul-regular immersion”,
P(f) =“f is an H1-regular immersion”, and
P(f) =“f is a quasi-regular immersion”

are fpqc local on the base.

Proof. We will use the criterion of Lemma 22.4 to prove this. By Divisors, Definition
21.1 being a Koszul-regular (resp. H1-regular, quasi-regular) immersion is Zariski local on
the base. By Divisors, Lemma 21.4 being a Koszul-regular (resp.H1-regular, quasi-regular)
immersion is preserved under flat base change. The final hypothesis (3) of Lemma 22.4
translates into the following algebra statement: Let A → B be a faithfully flat ring map.
Let I ⊂ A be an ideal. If IB is locally on Spec(B) generated by a Koszul-regular (resp.
H1-regular, quasi-regular) sequence in B, then I ⊂ A is locally on Spec(A) generated by
a Koszul-regular (resp.H1-regular, quasi-regular) sequence inA. This is More on Algebra,
Lemma 32.4. �

24. Properties of morphisms local in the fppf topology on the target

In this section we find some properties of morphisms of schemes for which we could not
(yet) show they are local on the base in the fpqc topology which, however, are local on the
base in the fppf topology.

Lemma 24.1. The property P(f) =“f is an immersion” is fppf local on the base.

Proof. The property of being an immersion is stable under base change, see Schemes,
Lemma 18.2. The property of being an immersion is Zariski local on the base. Finally, let
π : S′ → S be a surjective morphism of affine schemes, which is flat and locally of finite
presentation. Note that π : S′ → S is open by Morphisms, Lemma 25.10. Let f : X → S
be a morphism. Assume that the base change f ′ : X ′ → S′ is an immersion. In particular
we see that f ′(X ′) = π−1(f(X)) is locally closed. Hence by Topology, Lemma 6.4 we see
that f(X) ⊂ S is locally closed. Let Z ⊂ S be the closed subset Z = f(X) \ f(X). By
Topology, Lemma 6.4 again we see that f ′(X ′) is closed in S′ \ Z ′. Hence we may apply
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Lemma 23.19 to the fpqc covering {S′ \ Z ′ → S \ Z} and conclude that f : X → S \ Z
is a closed immersion. In other words, f is an immersion. Therefore Lemma 22.4 applies
and we win. �

25. Application of fpqc descent of properties of morphisms

The following lemma may seem a bit frivolous but turns out is a useful tool in studying
étale and unramified morphisms.

Lemma 25.1. Let f : X → Y be a flat, quasi-compact, surjective monomorphism.
Then f is an isomorphism.

Proof. As f is a flat, quasi-compact, surjective morphism we see {X → Y } is an
fpqc covering of Y . The diagonal ∆ : X → X×Y X is an isomorphism (Schemes, Lemma
23.2). This implies that the base change of f by f is an isomorphism. Hence we see f is an
isomorphism by Lemma 23.17. �

We can use this lemma to show the following important result; we also give a proof avoid-
ing fpqc descent. We will discuss this and related results in more detail in Étale Morphisms,
Section 14.

Lemma 25.2. A universally injective étale morphism is an open immersion.

First proof. Let f : X → Y be an étale morphism which is universally injective.
Then f is open (Morphisms, Lemma 36.13) hence we can replace Y by f(X) and we may
assume that f is surjective. Then f is bijective and open hence a homeomorphism. Hence
f is quasi-compact. Thus by Lemma 25.1 it suffices to show that f is a monomorphism.
As X → Y is étale the morphism ∆X/Y : X → X ×Y X is an open immersion by
Morphisms, Lemma 35.13 (and Morphisms, Lemma 36.16). As f is universally injective
∆X/Y is also surjective, see Morphisms, Lemma 10.2. Hence ∆X/Y is an isomorphism, i.e.,
X → Y is a monomorphism. �

Second proof. Let f : X → Y be an étale morphism which is universally injective.
Then f is open (Morphisms, Lemma 36.13) hence we can replace Y by f(X) and we may
assume that f is surjective. Since the hypotheses remain satisfied after any base change, we
conclude that f is a universal homeomorphism. Therefore f is integral, see Morphisms,
Lemma 45.5. It follows that f is finite by Morphisms, Lemma 44.4. It follows that f
is finite locally free by Morphisms, Lemma 48.2. To finish the proof, it suffices that f is
finite locally free of degree 1 (a finite locally free morphism of degree 1 is an isomorphism).
There is decomposition of Y into open and closed subschemes Vd such that f−1(Vd)→ Vd
is finite locally free of degree d, see Morphisms, Lemma 48.5. If Vd is not empty, we can
pick a morphism Spec(k)→ Vd ⊂ Y where k is an algebraically closed field (just take the
algebraic closure of the residue field of some point of Vd). Then Spec(k)×Y X → Spec(k)
is a disjoint union of copies of Spec(k), by Morphisms, Lemma 36.7 and the fact that k is
algebraically closed. However, since f is universally injective, there can only be one copy
and hence d = 1 as desired. �

We can reformulate the hypotheses in the lemma above a bit by using the following char-
acterization of flat universally injective morphisms.

Lemma 25.3. Let f : X → Y be a morphism of schemes. Let X0 denote the set of
generic points of irreducible components of X . If

(1) f is flat and separated,
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(2) for ξ ∈ X0 we have κ(f(ξ)) = κ(ξ), and
(3) if ξ, ξ′ ∈ X0, ξ 6= ξ′, then f(ξ) 6= f(ξ′),

then f is universally injective.

Proof. We have to show that ∆ : X → X×Y X is surjective, see Morphisms, Lemma
10.2. As X → Y is separated, the image of ∆ is closed. Thus if ∆ is not surjective, we can
find a generic point η ∈ X ×S X of an irreducible component of X ×S X which is not
in the image of ∆. The projection pr1 : X ×Y X → X is flat as a base change of the flat
morphism X → Y , see Morphisms, Lemma 25.8. Hence generalizations lift along pr1, see
Morphisms, Lemma 25.9. We conclude that ξ = pr1(η) ∈ X0. However, assumptions (2)
and (3) guarantee that the scheme (X ×Y X)f(ξ) has at most one point for every ξ ∈ X0.
In other words, we have ∆(ξ) = η a contradiction. �

Thus we can reformulate Lemma 25.2 as follows.

Lemma 25.4. Let f : X → Y be a morphism of schemes. Let X0 denote the set of
generic points of irreducible components of X . If

(1) f is étale and separated,
(2) for ξ ∈ X0 we have κ(f(ξ)) = κ(ξ), and
(3) if ξ, ξ′ ∈ X0, ξ 6= ξ′, then f(ξ) 6= f(ξ′),

then f is an open immersion.

Proof. Immediate from Lemmas 25.3 and 25.2. �

Lemma 25.5. Let f : X → Y be a morphism of schemes which is locally of finite
type. Let Z be a closed subset of X . If there exists an fpqc covering {Yi → Y } such that
the inverse image Zi ⊂ Yi ×Y X is proper over Yi (Cohomology of Schemes, Definition
26.2) then Z is proper over Y .

Proof. Endow Z with the reduced induced closed subscheme structure, see Schemes,
Definition 12.5. For every i the base change Yi ×Y Z is a closed subscheme of Yi ×Y X
whose underlying closed subset is Zi. By definition (via Cohomology of Schemes, Lemma
26.1) we conclude that the projectionsYi×Y Z → Yi are proper morphisms. HenceZ → Y
is a proper morphism by Lemma 23.14. Thus Z is proper over Y by definition. �

Lemma 25.6. Let f : X → S be a morphism of schemes. Let L be an invertible OX -
module. Let {gi : Si → S}i∈I be an fpqc covering. Let fi : Xi → Si be the base change
of f and let Li be the pullback of L to Xi. The following are equivalent

(1) L is ample on X/S , and
(2) Li is ample on Xi/Si for every i ∈ I .

Proof. The implication (1)⇒ (2) follows from Morphisms, Lemma 37.9. Assume Li
is ample onXi/Si for every i ∈ I . By Morphisms, Definition 37.1 this implies thatXi →
Si is quasi-compact and by Morphisms, Lemma 37.3 this implies Xi → S is separated.
Hence f is quasi-compact and separated by Lemmas 23.1 and 23.6.

This means that A =
⊕

d≥0 f∗L⊗d is a quasi-coherent graded OS-algebra (Schemes,
Lemma 24.1). Moreover, the formation of A commutes with flat base change by Coho-
mology of Schemes, Lemma 5.2. In particular, if we setAi =

⊕
d≥0 fi,∗L

⊗d
i then we have

Ai = g∗
iA. It follows that the natural maps ψd : f∗Ad → L⊗d of OX pullback to give

the natural maps ψi,d : f∗
i (Ai)d → L⊗d

i of OXi -modules. Since Li is ample on Xi/Si
we see that for any point xi ∈ Xi, there exists a d ≥ 1 such that f∗

i (Ai)d → L⊗d
i is
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surjective on stalks at xi. This follows either directly from the definition of a relatively
ample module or from Morphisms, Lemma 37.4. If x ∈ X , then we can choose an i and an
xi ∈ Xi mapping to x. SinceOX,x → OXi,xi is flat hence faithfully flat, we conclude that
for every x ∈ X there exists a d ≥ 1 such that f∗Ad → L⊗d is surjective on stalks at x.
This implies that the open subsetU(ψ) ⊂ X of Constructions, Lemma 19.1 corresponding
to the map ψ : f∗A →

⊕
d≥0 L⊗d of graded OX -algebras is equal to X . Consider the

corresponding morphism
rL,ψ : X −→ Proj

S
(A)

It is clear from the above that the base change of rL,ψ to Si is the morphism rLi,ψi which
is an open immersion by Morphisms, Lemma 37.4. Hence rL,ψ is an open immersion by
Lemma 23.16 and we conclude L is ample on X/S by Morphisms, Lemma 37.4. �

26. Properties of morphisms local on the source

It often happens one can prove a morphism has a certain property after precomposing
with some other morphism. In many cases this implies the morphism has the property
too. We formalize this in the following definition.

Definition 26.1. Let P be a property of morphisms of schemes. Let τ ∈ {Zariski,
fpqc, fppf, étale, smooth, syntomic}. We say P is τ local on the source, or local on the
source for the τ -topology if for any morphism of schemes f : X → Y over S , and any
τ -covering {Xi → X}i∈I we have

f has P ⇔ each Xi → Y has P.

To be sure, since isomorphisms are always coverings we see (or require) that property P
holds forX → Y if and only if it holds for any arrowX ′ → Y ′ isomorphic toX → Y . If
a property is τ -local on the source then it is preserved by precomposing with morphisms
which occur in τ -coverings. Here is a formal statement.

Lemma 26.2. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale, Zariski}. Let P be a
property of morphisms which is τ local on the source. Let f : X → Y have property P .
For any morphism a : X ′ → X which is flat, resp. flat and locally of finite presentation,
resp. syntomic, resp. étale, resp. an open immersion, the composition f ◦ a : X ′ → Y has
property P .

Proof. This is true because we can fit X ′ → X into a family of morphisms which
forms a τ -covering. �

Lemma 26.3. Let τ ∈ {fppf, syntomic, smooth, étale}. Let P be a property of
morphisms which is τ local on the source. For any morphism of schemes f : X → Y
there exists a largest open W (f) ⊂ X such that the restriction f |W (f) : W (f) → Y has
P . Moreover, if g : X ′ → X is flat and locally of finite presentation, syntomic, smooth,
or étale and f ′ = f ◦ g : X ′ → Y , then g−1(W (f)) = W (f ′).

Proof. Consider the union W of the images g(X ′) ⊂ X of morphisms g : X ′ → X
with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the composition X ′ → X → Y has property P .

Since such a morphism g is open (see Morphisms, Lemma 25.10) we see that W ⊂ X is an
open subset of X . Since P is local in the τ topology the restriction f |W : W → Y has
property P because we are given a τ covering {X ′ → W} of W such that the pullbacks



28. PROPERTIES OF MORPHISMS LOCAL IN THE FPPF TOPOLOGY ON THE SOURCE 2977

have P . This proves the existence of W (f). The compatibility stated in the last sentence
follows immediately from the construction of W (f). �

Lemma 26.4. Let P be a property of morphisms of schemes. Let τ ∈ {fpqc, fppf,
étale, smooth, syntomic}. Assume that

(1) the property is preserved under precomposing with flat, flat locally of finite pre-
sentation, étale, smooth or syntomic morphisms depending on whether τ is fpqc,
fppf, étale, smooth, or syntomic,

(2) the property is Zariski local on the source,
(3) the property is Zariski local on the target,
(4) for any morphism of affine schemes f : X → Y , and any surjective morphism

of affine schemes X ′ → X which is flat, flat of finite presentation, étale, smooth
or syntomic depending on whether τ is fpqc, fppf, étale, smooth, or syntomic,
property P holds for f if property P holds for the composition f ′ : X ′ → Y .

Then P is τ local on the source.

Proof. This follows almost immediately from the definition of a τ -covering, see
Topologies, Definition 9.1 7.1 4.1 5.1, or 6.1 and Topologies, Lemma 9.8, 7.4, 4.4, 5.4, or 6.4.
Details omitted. (Hint: Use locality on the source and target to reduce the verification of
property P to the case of a morphism between affines. Then apply (1) and (4).) �

Remark 26.5. (This is a repeat of Remarks 15.3 and 22.5 above.) In Lemma 26.4 above
if τ = smooth then in condition (4) we may assume that the morphism is a (surjective)
standard smooth morphism. Similarly, when τ = syntomic or τ = étale.

27. Properties of morphisms local in the fpqc topology on the source

Here are some properties of morphisms that are fpqc local on the source.

Lemma 27.1. The property P(f) =“f is flat” is fpqc local on the source.

Proof. Since flatness is defined in terms of the maps of local rings (Morphisms, Def-
inition 25.1) what has to be shown is the following algebraic fact: Suppose A → B → C
are local homomorphisms of local rings, and assume B → C is flat. Then A→ B is flat if
and only if A → C is flat. If A → B is flat, then A → C is flat by Algebra, Lemma 39.4.
Conversely, assumeA→ C is flat. Note thatB → C is faithfully flat, see Algebra, Lemma
39.17. Hence A→ B is flat by Algebra, Lemma 39.10. (Also see Morphisms, Lemma 25.13
for a direct proof.) �

Lemma 27.2. Then property P(f : X → Y ) =“for every x ∈ X the map of local
ringsOY,f(x) → OX,x is injective” is fpqc local on the source.

Proof. Omitted. This is just a (probably misguided) attempt to be playful. �

28. Properties of morphisms local in the fppf topology on the source

Here are some properties of morphisms that are fppf local on the source.

Lemma 28.1. The property P(f) =“f is locally of finite presentation” is fppf local
on the source.

Proof. Being locally of finite presentation is Zariski local on the source and the tar-
get, see Morphisms, Lemma 21.2. It is a property which is preserved under composition, see
Morphisms, Lemma 21.3. This proves (1), (2) and (3) of Lemma 26.4. The final condition
(4) is Lemma 14.1. Hence we win. �
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Lemma 28.2. The property P(f) =“f is locally of finite type” is fppf local on the
source.

Proof. Being locally of finite type is Zariski local on the source and the target, see
Morphisms, Lemma 15.2. It is a property which is preserved under composition, see Mor-
phisms, Lemma 15.3, and a flat morphism locally of finite presentation is locally of finite
type, see Morphisms, Lemma 21.8. This proves (1), (2) and (3) of Lemma 26.4. The final
condition (4) is Lemma 14.2. Hence we win. �

Lemma 28.3. The property P(f) =“f is open” is fppf local on the source.

Proof. Being an open morphism is clearly Zariski local on the source and the target.
It is a property which is preserved under composition, see Morphisms, Lemma 23.3, and a
flat morphism of finite presentation is open, see Morphisms, Lemma 25.10 This proves (1),
(2) and (3) of Lemma 26.4. The final condition (4) follows from Morphisms, Lemma 25.12.
Hence we win. �

Lemma 28.4. The propertyP(f) =“f is universally open” is fppf local on the source.

Proof. Let f : X → Y be a morphism of schemes. Let {Xi → X}i∈I be an fppf
covering. Denote fi : Xi → X the compositions. We have to show that f is universally
open if and only if each fi is universally open. If f is universally open, then also each
fi is universally open since the maps Xi → X are universally open and compositions of
universally open morphisms are universally open (Morphisms, Lemmas 25.10 and 23.3).
Conversely, assume each fi is universally open. Let Y ′ → Y be a morphism of schemes.
DenoteX ′ = Y ′×Y X andX ′

i = Y ′×Y Xi. Note that {X ′
i → X ′}i∈I is an fppf covering

also. The morphisms f ′
i : X ′

i → Y ′ are open by assumption. Hence by the Lemma 28.3
above we conclude that f ′ : X ′ → Y ′ is open as desired. �

29. Properties of morphisms local in the syntomic topology on the source

Here are some properties of morphisms that are syntomic local on the source.

Lemma 29.1. The property P(f) =“f is syntomic” is syntomic local on the source.

Proof. Combine Lemma 26.4 with Morphisms, Lemma 30.2 (local for Zariski on
source and target), Morphisms, Lemma 30.3 (pre-composing), and Lemma 14.4 (part (4)).

�

30. Properties of morphisms local in the smooth topology on the source

Here are some properties of morphisms that are smooth local on the source. Note also the
(in some respects stronger) result on descending smoothness via flat morphisms, Lemma
14.5.

Lemma 30.1. The property P(f) =“f is smooth” is smooth local on the source.

Proof. Combine Lemma 26.4 with Morphisms, Lemma 34.2 (local for Zariski on
source and target), Morphisms, Lemma 34.4 (pre-composing), and Lemma 14.4 (part (4)).

�
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31. Properties of morphisms local in the étale topology on the source

Here are some properties of morphisms that are étale local on the source.

Lemma 31.1. The property P(f) =“f is étale” is étale local on the source.

Proof. Combine Lemma 26.4 with Morphisms, Lemma 36.2 (local for Zariski on
source and target), Morphisms, Lemma 36.3 (pre-composing), and Lemma 14.4 (part (4)).

�

Lemma 31.2. The property P(f) =“f is locally quasi-finite” is étale local on the
source.

Proof. We are going to use Lemma 26.4. By Morphisms, Lemma 20.11 the property
of being locally quasi-finite is local for Zariski on source and target. By Morphisms, Lem-
mas 20.12 and 36.6 we see the precomposition of a locally quasi-finite morphism by an
étale morphism is locally quasi-finite. Finally, suppose that X → Y is a morphism of
affine schemes and that X ′ → X is a surjective étale morphism of affine schemes such
that X ′ → Y is locally quasi-finite. Then X ′ → Y is of finite type, and by Lemma 14.2
we see that X → Y is of finite type also. Moreover, by assumption X ′ → Y has finite
fibres, and hence X → Y has finite fibres also. We conclude that X → Y is quasi-finite
by Morphisms, Lemma 20.10. This proves the last assumption of Lemma 26.4 and finishes
the proof. �

Lemma 31.3. The property P(f) =“f is unramified” is étale local on the source. The
property P(f) =“f is G-unramified” is étale local on the source.

Proof. We are going to use Lemma 26.4. By Morphisms, Lemma 35.3 the property
of being unramified (resp. G-unramified) is local for Zariski on source and target. By
Morphisms, Lemmas 35.4 and 36.5 we see the precomposition of an unramified (resp. G-
unramified) morphism by an étale morphism is unramified (resp. G-unramified). Finally,
suppose that X → Y is a morphism of affine schemes and that f : X ′ → X is a surjective
étale morphism of affine schemes such that X ′ → Y is unramified (resp. G-unramified).
ThenX ′ → Y is of finite type (resp. finite presentation), and by Lemma 14.2 (resp. Lemma
14.1) we see that X → Y is of finite type (resp. finite presentation) also. By Morphisms,
Lemma 34.16 we have a short exact sequence

0→ f∗ΩX/Y → ΩX′/Y → ΩX′/X → 0.

AsX ′ → Y is unramified we see that the middle term is zero. Hence, as f is faithfully flat
we see that ΩX/Y = 0. HenceX → Y is unramified (resp. G-unramified), see Morphisms,
Lemma 35.2. This proves the last assumption of Lemma 26.4 and finishes the proof. �

32. Properties of morphisms étale local on source-and-target

Let P be a property of morphisms of schemes. There is an intuitive meaning to the phrase
“P is étale local on the source and target”. However, it turns out that this notion is not the
same as asking P to be both étale local on the source and étale local on the target. Before
we discuss this further we give two silly examples.

Example 32.1. Consider the propertyP of morphisms of schemes defined by the rule
P(X → Y ) =“Y is locally Noetherian”. The reader can verify that this is étale local on
the source and étale local on the target (omitted, see Lemma 16.1). But it is not true that
if f : X → Y has P and g : Y → Z is étale, then g ◦ f has P . Namely, f could be the
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identity on Y and g could be an open immersion of a locally Noetherian scheme Y into a
non locally Noetherian scheme Z.

The following example is in some sense worse.

Example 32.2. Consider the propertyP of morphisms of schemes defined by the rule
P(f : X → Y ) =“for every y ∈ Y which is a specialization of some f(x), x ∈ X the
local ringOY,y is Noetherian”. Let us verify that this is étale local on the source and étale
local on the target. We will freely use Schemes, Lemma 13.2.
Local on the target: Let {gi : Yi → Y } be an étale covering. Let fi : Xi → Yi be the base
change of f , and denote hi : Xi → X the projection. Assume P(f). Let f(xi)  yi be
a specialization. Then f(hi(xi))  gi(yi) so P(f) implies OY,gi(yi) is Noetherian. Also
OY,gi(yi) → OYi,yi is a localization of an étale ring map. Hence OYi,yi is Noetherian by
Algebra, Lemma 31.1. Conversely, assumeP(fi) for all i. Let f(x) y be a specialization.
Choose an i and yi ∈ Yi mapping to y. Since x can be viewed as a point of Spec(OY,y)×Y
X and OY,y → OYi,yi is faithfully flat, there exists a point xi ∈ Spec(OYi,yi) ×Y X
mapping to x. Then xi ∈ Xi, and fi(xi) specializes to yi. Thus we see that OYi,yi is
Noetherian by P(fi) which implies thatOY,y is Noetherian by Algebra, Lemma 164.1.
Local on the source: Let {hi : Xi → X} be an étale covering. Let fi : Xi → Y be the
composition f ◦hi. AssumeP(f). Let f(xi) y be a specialization. Then f(hi(xi)) y
so P(f) implies OY,y is Noetherian. Thus P(fi) holds. Conversely, assume P(fi) for all
i. Let f(x)  y be a specialization. Choose an i and xi ∈ Xi mapping to x. Then y is a
specialization of fi(xi) = f(x). Hence P(fi) impliesOY,y is Noetherian as desired.
We claim that there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with surjective étale vertical arrows, such that h has P and f does not have P . Namely,
let

Y = Spec
(

C[xn;n ∈ Z]/(xnxm;n 6= m)
)

and let X ⊂ Y be the open subscheme which is the complement of the point all of whose
coordinates xn = 0. Let U = X , let V = X q Y , let a, b the obvious map, and let
h : U → V be the inclusion of U = X into the first summand of V . The claim above
holds because U is locally Noetherian, but Y is not.

What should be the correct notion of a property which is étale local on the source-and-
target? We think that, by analogy with Morphisms, Definition 14.1 it should be the fol-
lowing.

Definition 32.3. Let P be a property of morphisms of schemes. We say P is étale
local on source-and-target if

(1) (stable under precomposing with étale maps) if f : X → Y is étale and g : Y →
Z has P , then g ◦ f has P ,

(2) (stable under étale base change) if f : X → Y has P and Y ′ → Y is étale, then
the base change f ′ : Y ′ ×Y X → Y ′ has P , and

(3) (locality) given a morphism f : X → Y the following are equivalent
(a) f has P ,
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(b) for every x ∈ X there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with étale vertical arrows and u ∈ U with a(u) = x such that h has P .

It turns out this definition excludes the behavior seen in Examples 32.1 and 32.2. We will
compare this to the definition in the paper [?] by Deligne and Mumford in Remark 32.8.
Moreover, a property which is étale local on the source-and-target is étale local on the
source and étale local on the target. Finally, the converse is almost true as we will see in
Lemma 32.6.

Lemma 32.4. Let P be a property of morphisms of schemes which is étale local on
source-and-target. Then

(1) P is étale local on the source,
(2) P is étale local on the target,
(3) P is stable under postcomposing with étale morphisms: if f : X → Y hasP and

g : Y → Z is étale, then g ◦ f has P , and
(4) P has a permanence property: given f : X → Y and g : Y → Z étale such that

g ◦ f has P , then f has P .

Proof. We write everything out completely.

Proof of (1). Let f : X → Y be a morphism of schemes. Let {Xi → X}i∈I be an étale
covering of X . If each composition hi : Xi → Y has P , then for each x ∈ X we can find
an i ∈ I and a point xi ∈ Xi mapping to x. Then (Xi, xi)→ (X,x) is an étale morphism
of germs, and idY : Y → Y is an étale morphism, and hi is as in part (3) of Definition 32.3.
Thus we see that f has P . Conversely, if f has P then each Xi → Y has P by Definition
32.3 part (1).

Proof of (2). Let f : X → Y be a morphism of schemes. Let {Yi → Y }i∈I be an étale
covering of Y . Write Xi = Yi ×Y X and hi : Xi → Yi for the base change of f . If each
hi : Xi → Yi has P , then for each x ∈ X we pick an i ∈ I and a point xi ∈ Xi mapping
to x. Then (Xi, xi)→ (X,x) is an étale morphism of germs, Yi → Y is étale, and hi is as
in part (3) of Definition 32.3. Thus we see that f has P . Conversely, if f has P , then each
Xi → Yi has P by Definition 32.3 part (2).

Proof of (3). Assume f : X → Y has P and g : Y → Z is étale. For every x ∈ X we can
think of (X,x) → (X,x) as an étale morphism of germs, Y → Z is an étale morphism,
and h = f is as in part (3) of Definition 32.3. Thus we see that g ◦ f has P .

Proof of (4). Let f : X → Y be a morphism and g : Y → Z étale such that g ◦ f has P .
Then by Definition 32.3 part (2) we see that prY : Y ×ZX → Y hasP . But the morphism
(f, 1) : X → Y ×Z X is étale as a section to the étale projection prX : Y ×Z X → X , see
Morphisms, Lemma 36.18. Hence f = prY ◦ (f, 1) has P by Definition 32.3 part (1). �

The following lemma is the analogue of Morphisms, Lemma 14.4.

Lemma 32.5. Let P be a property of morphisms of schemes which is étale local on
source-and-target. Let f : X → Y be a morphism of schemes. The following are equiva-
lent:
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(a) f has property P ,
(b) for every x ∈ X there exists an étale morphism of germs a : (U, u)→ (X,x), an

étale morphism b : V → Y , and a morphism h : U → V such that f ◦ a = b ◦ h
and h has P ,

(c) for any commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b étale the morphism h has P ,
(d) for some diagram as in (c) with a : U → X surjective h has P ,
(e) there exists an étale covering {Yi → Y }i∈I such that each base change Yi ×Y

X → Yi has P ,
(f) there exists an étale covering {Xi → X}i∈I such that each compositionXi → Y

has P ,
(g) there exists an étale covering {Yi → Y }i∈I and for each i ∈ I an étale covering
{Xij → Yi ×Y X}j∈Ji such that each morphism Xij → Yi has P .

Proof. The equivalence of (a) and (b) is part of Definition 32.3. The equivalence of
(a) and (e) is Lemma 32.4 part (2). The equivalence of (a) and (f) is Lemma 32.4 part (1).
As (a) is now equivalent to (e) and (f) it follows that (a) equivalent to (g).

It is clear that (c) implies (a). If (a) holds, then for any diagram as in (c) the morphism
f ◦ a has P by Definition 32.3 part (1), whereupon h has P by Lemma 32.4 part (4). Thus
(a) and (c) are equivalent. It is clear that (c) implies (d). To see that (d) implies (a) assume
we have a diagram as in (c) with a : U → X surjective and h having P . Then b ◦ h has P
by Lemma 32.4 part (3). Since {a : U → X} is an étale covering we conclude that f has
P by Lemma 32.4 part (1). �

It seems that the result of the following lemma is not a formality, i.e., it actually uses
something about the geometry of étale morphisms.

Lemma 32.6. Let P be a property of morphisms of schemes. Assume
(1) P is étale local on the source,
(2) P is étale local on the target, and
(3) P is stable under postcomposing with open immersions: if f : X → Y has P

and Y ⊂ Z is an open subscheme then X → Z has P .
Then P is étale local on the source-and-target.

Proof. Let P be a property of morphisms of schemes which satisfies conditions (1),
(2) and (3) of the lemma. By Lemma 26.2 we see that P is stable under precomposing with
étale morphisms. By Lemma 22.2 we see that P is stable under étale base change. Hence it
suffices to prove part (3) of Definition 32.3 holds.

More precisely, suppose that f : X → Y is a morphism of schemes which satisfies Def-
inition 32.3 part (3)(b). In other words, for every x ∈ X there exists an étale morphism
ax : Ux → X , a point ux ∈ Ux mapping to x, an étale morphism bx : Vx → Y , and a
morphism hx : Ux → Vx such that f ◦ax = bx◦hx and hx hasP . The proof of the lemma
is complete once we show that f has P . Set U =

∐
Ux, a =

∐
ax, V =

∐
Vx, b =

∐
bx,
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and h =
∐
hx. We obtain a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b étale, a surjective. Note that h has P as each hx does and P is étale local on the
target. Because a is surjective and P is étale local on the source, it suffices to prove that
b◦h hasP . This reduces the lemma to proving thatP is stable under postcomposing with
an étale morphism.

During the rest of the proof we let f : X → Y be a morphism with property P and
g : Y → Z is an étale morphism. Consider the following statements:

(-) With no additional assumptions g ◦ f has property P .
(A) Whenever Z is affine g ◦ f has property P .

(AA) Whenever X and Z are affine g ◦ f has property P .
(AAA) Whenever X , Y , and Z are affine g ◦ f has property P .

Once we have proved (-) the proof of the lemma will be complete.

Claim 1: (AAA)⇒ (AA). Namely, let f : X → Y , g : Y → Z be as above withX ,Z affine.
As X is affine hence quasi-compact we can find finitely many affine open Yi ⊂ Y , i =
1, . . . , n such thatX =

⋃
i=1,...,n f

−1(Yi). SetXi = f−1(Yi). By Lemma 22.2 each of the
morphisms Xi → Yi has P . Hence

∐
i=1,...,nXi →

∐
i=1,...,n Yi has P as P is étale local

on the target. By (AAA) applied to
∐
i=1,...,nXi →

∐
i=1,...,n Yi and the étale morphism∐

i=1,...,n Yi → Z we see that
∐
i=1,...,nXi → Z has P . Now {

∐
i=1,...,nXi → X} is an

étale covering, hence as P is étale local on the source we conclude that X → Z has P as
desired.

Claim 2: (AAA)⇒ (A). Namely, let f : X → Y , g : Y → Z be as above with Z affine.
Choose an affine open covering X =

⋃
Xi. As P is étale local on the source we see that

each f |Xi : Xi → Y has P . By (AA), which follows from (AAA) according to Claim 1,
we see that Xi → Z has P for each i. Since {Xi → X} is an étale covering and P is étale
local on the source we conclude that X → Z has P .

Claim 3: (AAA) ⇒ (-). Namely, let f : X → Y , g : Y → Z be as above. Choose an
affine open covering Z =

⋃
Zi. Set Yi = g−1(Zi) and Xi = f−1(Yi). By Lemma 22.2

each of the morphisms Xi → Yi has P . By (A), which follows from (AAA) according
to Claim 2, we see that Xi → Zi has P for each i. Since P is local on the target and
Xi = (g ◦ f)−1(Zi) we conclude that X → Z has P .

Thus to prove the lemma it suffices to prove (AAA). Let f : X → Y and g : Y → Z be
as above X,Y, Z affine. Note that an étale morphism of affines has universally bounded
fibres, see Morphisms, Lemma 36.6 and Lemma 57.9. Hence we can do induction on the
integer n bounding the degree of the fibres of Y → Z. See Morphisms, Lemma 57.8 for
a description of this integer in the case of an étale morphism. If n = 1, then Y → Z
is an open immersion, see Lemma 25.2, and the result follows from assumption (3) of the
lemma. Assume n > 1.
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Consider the following commutative diagram

X ×Z Y

��

fY

// Y ×Z Y

��

pr
// Y

��
X

f // Y
g // Z

Note that we have a decomposition into open and closed subschemesY×ZY = ∆Y/Z(Y )q
Y ′, see Morphisms, Lemma 35.13. As a base change the degrees of the fibres of the second
projection pr : Y ×Z Y → Y are bounded by n, see Morphisms, Lemma 57.5. On the
other hand, pr|∆(Y ) : ∆(Y ) → Y is an isomorphism and every fibre has exactly one
point. Thus, on applying Morphisms, Lemma 57.8 we conclude the degrees of the fibres
of the restriction pr|Y ′ : Y ′ → Y are bounded by n− 1. Set X ′ = f−1

Y (Y ′). Picture

X qX ′
fqf ′

// ∆(Y )q Y ′ // Y

X ×Z Y
fY // Y ×Z Y

pr // Y

As P is étale local on the target and hence stable under étale base change (see Lemma
22.2) we see that fY has P . Hence, as P is étale local on the source, f ′ = fY |X′ has P .
By induction hypothesis we see that X ′ → Y has P . As P is local on the source, and
{X → X ×Z Y,X ′ → X ×Y Z} is an étale covering, we conclude that pr ◦ fY has P .
Note that g ◦f can be viewed as a morphism g ◦f : X → g(Y ). As pr◦fY is the pullback
of g ◦ f : X → g(Y ) via the étale covering {Y → g(Y )}, and as P is étale local on the
target, we conclude that g ◦ f : X → g(Y ) has property P . Finally, applying assumption
(3) of the lemma once more we conclude that g ◦ f : X → Z has property P . �

Remark 32.7. Using Lemma 32.6 and the work done in the earlier sections of this
chapter it is easy to make a list of types of morphisms which are étale local on the source-
and-target. In each case we list the lemma which implies the property is étale local on the
source and the lemma which implies the property is étale local on the target. In each case
the third assumption of Lemma 32.6 is trivial to check, and we omit it. Here is the list:

(1) flat, see Lemmas 27.1 and 23.15,
(2) locally of finite presentation, see Lemmas 28.1 and 23.11,
(3) locally finite type, see Lemmas 28.2 and 23.10,
(4) universally open, see Lemmas 28.4 and 23.4,
(5) syntomic, see Lemmas 29.1 and 23.26,
(6) smooth, see Lemmas 30.1 and 23.27,
(7) étale, see Lemmas 31.1 and 23.29,
(8) locally quasi-finite, see Lemmas 31.2 and 23.24,
(9) unramified, see Lemmas 31.3 and 23.28,

(10) G-unramified, see Lemmas 31.3 and 23.28, and
(11) add more here as needed.

Remark 32.8. At this point we have three possible definitions of what it means for a
property P of morphisms to be “étale local on the source and target”:

(ST) P is étale local on the source and P is étale local on the target,
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(DM) (the definition in the paper [?, Page 100] by Deligne and Mumford) for every
diagram

U

a

��

h
// V

b
��

X
f // Y

with surjective étale vertical arrows we have P(h)⇔ P(f), and
(SP) P is étale local on the source-and-target.

In this section we have seen that (SP)⇒ (DM)⇒ (ST). The Examples 32.1 and 32.2 show
that neither implication can be reversed. Finally, Lemma 32.6 shows that the difference
disappears when looking at properties of morphisms which are stable under postcompos-
ing with open immersions, which in practice will always be the case.

Lemma 32.9. Let P be a property of morphisms of schemes which is étale local on
the source-and-target. Given a commutative diagram of schemes

X ′

g′

��

f ′
// Y ′

g

��
X

f // Y

with points

x′

��

// y′

��
x // y

such that g′ is étale at x′ and g is étale at y′, then x ∈W (f)⇔ x′ ∈W (f ′) where W (−)
is as in Lemma 26.3.

Proof. Lemma 26.3 applies since P is étale local on the source by Lemma 32.4.

Assume x ∈W (f). Let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be open neighbourhoods of x′ and y′ such
that f ′(U ′) ⊂ V ′, g′(U ′) ⊂W (f) and g′|U ′ and g|V ′ are étale. Then f ◦g′|U ′ = g ◦f ′|U ′

has P by property (1) of Definition 32.3. Then f ′|U ′ : U ′ → V ′ has property P by (4) of
Lemma 32.4. Then by (3) of Lemma 32.4 we conclude that f ′

U ′ : U ′ → Y ′ has P . Hence
U ′ ⊂W (f ′) by definition. Hence x′ ∈W (f ′).

Assume x′ ∈ W (f ′). Let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be open neighbourhoods of x′ and y′

such that f ′(U ′) ⊂ V ′, U ′ ⊂ W (f ′) and g′|U ′ and g|V ′ are étale. Then U ′ → Y ′ has P
by definition of W (f ′). Then U ′ → V ′ has P by (4) of Lemma 32.4. Then U ′ → Y has
P by (3) of Lemma 32.4. Let U ⊂ X be the image of the étale (hence open) morphism
g′|′U : U ′ → X . Then {U ′ → U} is an étale covering and we conclude that U → Y has
P by (1) of Lemma 32.4. Thus U ⊂W (f) by definition. Hence x ∈W (f). �

Lemma 32.10. Let k be a field. Let n ≥ 2. For 1 ≤ i, j ≤ n with i 6= j and d ≥ 0
denote Ti,j,d the automorphism of An

k given in coordinates by

(x1, . . . , xn) 7−→ (x1, . . . , xi−1, xi + xdj , xi+1, . . . , xn)

Let W ⊂ An
k be a nonempty open subscheme such that Ti,j,d(W ) = W for all i, j, d as

above. Then either W = An
k or the characteristic of k is p > 0 and An

k \W is a finite set
of closed points whose coordinates are algebraic over Fp.

Proof. We may replace k by any extension field in order to prove this. Let Z be an
irreducible component of An

k \W . Assume dim(Z) ≥ 1, to get a contradiction. Then
there exists an extension field k′/k and a k′-valued point ξ = (ξ1, . . . , ξn) ∈ (k′)n of
Zk′ ⊂ An

k′ such that at least one of x1, . . . , xn is transcendental over the prime field.
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Claim: the orbit of ξ under the group generated by the transformations Ti,j,d is Zariski
dense in An

k′ . The claim will give the desired contradiction.

If the characteristic of k′ is zero, then already the operators Ti,j,0 will be enough since
these transform ξ into the points

(ξ1 + a1, . . . , ξn + an)

for arbitrary (a1, . . . , an) ∈ Zn≥0. If the characteristic is p > 0, we may assume after
renumbering that ξn is transcendental over Fp. By successively applying the operators
Ti,n,d for i < n we see the orbit of ξ contains the elements

(ξ1 + P1(ξn), . . . , ξn−1 + Pn−1(ξn), ξn)

for arbitrary (P1, . . . , Pn−1) ∈ Fp[t]. Thus the Zariski closure of the orbit contains the
coordinate hyperplane xn = ξn. Repeating the argument with a different coordinate, we
conclude that the Zariski closure contains xi = ξi + P (ξn) for any P ∈ Fp[t] such that
ξi + P (ξn) is transcendental over Fp. Since there are infinitely many such P the claim
follows.

Of course the argument in the preceding paragraph also applies if Z = {z} has dimension
0 and the coordinates of z in κ(z) are not algebraic over Fp. The lemma follows. �

Lemma 32.11. Let P be a property of morphisms of schemes. Assume

(1) P is étale local on the source,
(2) P is smooth local on the target,
(3) P is stable under postcomposing with open immersions: if f : X → Y has P

and Y ⊂ Z is an open subscheme then X → Z has P .

Given a commutative diagram of schemes

X ′

g′

��

f ′
// Y ′

g

��
X

f // Y

with points

x′

��

// y′

��
x // y

such that g is smooth y′ andX ′ → X×Y Y ′ is étale at x′, then x ∈W (f)⇔ x′ ∈W (f ′)
where W (−) is as in Lemma 26.3.

Proof. Since P is étale local on the source we see that x ∈ W (f) if and only if the
image of x in X ×Y Y ′ is in W (X ×Y Y ′ → Y ′). Hence we may assume the diagram in
the lemma is cartesian.

Assume x ∈ W (f). Since P is smooth local on the target we see that (g′)−1W (f) =
W (f)×Y Y ′ → Y ′ has P . Hence (g′)−1W (f) ⊂W (f ′). We conclude x′ ∈W (f ′).

Assume x′ ∈ W (f ′). For any open neighbourhood V ′ ⊂ Y ′ of y′ we may replace Y ′

by V ′ and X ′ by U ′ = (f ′)−1V ′ because V ′ → Y ′ is smooth and hence the base change
W (f ′) ∩ U ′ → V ′ of W (f ′) → Y ′ has property P . Thus we may assume there exists an
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étale morphism Y ′ → An
Y over Y , see Morphisms, Lemma 36.20. Picture

X ′ //

��

Y ′

��
An
X fn

//

��

An
Y

��
X

f // Y

By Lemma 32.6 (and because étale coverings are smooth coverings) we see that P is étale
local on the source-and-target. By Lemma 32.9 we see that W (f ′) is the inverse image
of the open W (fn) ⊂ An

X . In particular W (fn) contains a point lying over x. After
replacing X by the image of W (fn) (which is open) we may assume W (fn) → X is
surjective. Claim: W (fn) = An

X . The claim implies f has P as P is local in the smooth
topology and {An

Y → Y } is a smooth covering.

Essentially, the claim follows as W (fn) ⊂ An
X is a “translation invariant” open which

meets every fibre of An
X → X . However, to produce an argument along these lines one has

to do étale localization onY to produce enough translations and it becomes a bit annoying.
Instead we use the automorphisms of Lemma 32.10 and étale morphisms of affine spaces.
We may assume n ≥ 2. Namely, if n = 0, then we are done. If n = 1, then we consider
the diagram

A2
X f2

//

p

��

A2
Y

��
A1
X

f1 // A1
Y

We have p−1(W (f1)) ⊂ W (f2) (see first paragraph of the proof). Thus W (f2) → X is
still surjective and we may work with f2. Assume n ≥ 2.

For any 1 ≤ i, j ≤ nwith i 6= j and d ≥ 0 denote Ti,j,d the automorphism of An defined
in Lemma 32.10. Then we get a commutative diagram

An
X fn

//

Ti,j,d

��

An
Y

Ti,j,d

��
An
X

fn // An
Y

whose vertical arrows are isomorphisms. We conclude that Ti,j,d(W (fn)) = W (fn).
Applying Lemma 32.10 we conclude for any x ∈ X the fibre W (fn)x ⊂ An

x is either An
x

(this is what we want) or κ(x) has characteristic p > 0 and W (fn)x is the complement
of a finite set Zx ⊂ An

x of closed points. The second possibility cannot occur. Namely,
consider the morphism Tp : An → An given by

(x1, . . . , xn) 7→ (x1 − xp1, . . . , xn − xpn)
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As above we get a commutative diagram

An
X fn

//

Tp

��

An
Y

Tp

��
An
X

fn // An
Y

The morphism Tp : An
X → An

X is étale at every point lying over x and the morphism
Tp : An

Y → An
Y is étale at every point lying over the image of x in Y . (Details omitted;

hint: compute the derivatives.) We conclude that

T−1
p (W ) ∩An

x = W ∩An
x

by Lemma 32.9 (we’ve already seen P is étale local on the source-and-target). Since Tp :
An
x → An

x is finite étale of degree pn > 1 we see that if Zx is not empty then it contains
T−1
p (Zx) which is bigger. This contradiction finishes the proof. �

33. Properties of morphisms of germs local on source-and-target

In this section we discuss the analogue of the material in Section 32 for morphisms of germs
of schemes.

Definition 33.1. LetQ be a property of morphisms of germs of schemes. We sayQ
is étale local on the source-and-target if for any commutative diagram

(U ′, u′)

a

��

h′
// (V ′, v′)

b

��
(U, u) h // (V, v)

of germs with étale vertical arrows we haveQ(h)⇔ Q(h′).

Lemma 33.2. LetP be a property of morphisms of schemes which is étale local on the
source-and-target. Consider the propertyQ of morphisms of germs defined by the rule

Q((X,x)→ (S, s))⇔ there exists a representative U → S which has P

ThenQ is étale local on the source-and-target as in Definition 33.1.

Proof. If a morphism of germs (X,x) → (S, s) has Q, then there are arbitrarily
small neighbourhoods U ⊂ X of x and V ⊂ S of s such that a representative U → V of
(X,x)→ (S, s) has P . This follows from Lemma 32.4. Let

(U ′, u′)
h′
//

a

��

(V ′, v′)

b

��
(U, u) h // (V, v)

be as in Definition 33.1. Choose U1 ⊂ U and a representative h1 : U1 → V of h. Choose
V ′

1 ⊂ V ′ and an étale representative b1 : V ′
1 → V of b (Definition 20.2). Choose U ′

1 ⊂ U ′

and representatives a1 : U ′
1 → U1 and h′

1 : U ′
1 → V ′

1 of a and h′ with a1 étale. After
shrinking U ′

1 we may assume h1 ◦ a1 = b1 ◦ h′
1. By the initial remark of the proof, we are

trying to show u′ ∈ W (h′
1) ⇔ u ∈ W (h1) where W (−) is as in Lemma 26.3. Thus the

lemma follows from Lemma 32.9. �
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Lemma 33.3. Let P be a property of morphisms of schemes which is étale local on
source-and-target. Let Q be the associated property of morphisms of germs, see Lemma
33.2. Let f : X → Y be a morphism of schemes. The following are equivalent:

(1) f has property P , and
(2) for every x ∈ X the morphism of germs (X,x)→ (Y, f(x)) has propertyQ.

Proof. The implication (1)⇒ (2) is direct from the definitions. The implication (2)
⇒ (1) also follows from part (3) of Definition 32.3. �

A morphism of germs (X,x)→ (S, s) determines a well defined map of local rings. Hence
the following lemma makes sense.

Lemma 33.4. The property of morphisms of germs

P((X,x)→ (S, s)) = OS,s → OX,x is flat

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 33.1 we obtain the following diagram of
local homomorphisms of local rings

OU ′,u′ OV ′,v′oo

OU,u

OO

OV,voo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they are
essentially of finite presentation, flat, and unramified (see Algebra, Section 143). In par-
ticular the vertical maps are faithfully flat, see Algebra, Lemma 39.17. Now, if the upper
horizontal arrow is flat, then the lower horizontal arrow is flat by an application of Alge-
bra, Lemma 39.10 with R = OV,v , S = OU,u and M = OU ′,u′ . If the lower horizontal
arrow is flat, then the ring map

OV ′,v′ ⊗OV,v
OU,u ←− OV ′,v′

is flat by Algebra, Lemma 39.7. And the ring map

OU ′,u′ ←− OV ′,v′ ⊗OV,v
OU,u

is a localization of a map between étale ring extensions of OU,u, hence flat by Algebra,
Lemma 143.8. �

Lemma 33.5. Consider a commutative diagram of morphisms of schemes

U ′ //

��

V ′

��
U // V

with étale vertical arrows and a point v′ ∈ V ′ mapping to v ∈ V . Then the morphism of
fibres U ′

v′ → Uv is étale.

Proof. Note that U ′
v → Uv is étale as a base change of the étale morphism U ′ →

U . The scheme U ′
v is a scheme over V ′

v . By Morphisms, Lemma 36.7 the scheme V ′
v is

a disjoint union of spectra of finite separable field extensions of κ(v). One of these is
v′ = Spec(κ(v′)). Hence U ′

v′ is an open and closed subscheme of U ′
v and it follows that
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U ′
v′ → U ′

v → Uv is étale (as a composition of an open immersion and an étale morphism,
see Morphisms, Section 36). �

Given a morphism of germs of schemes (X,x) → (S, s) we can define the fibre as the
isomorphism class of germs (Us, x) where U → S is any representative. We will often
abuse notation and just write (Xs, x).

Lemma 33.6. Let d ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs
Pd((X,x)→ (S, s)) = the local ringOXs,x of the fibre has dimension d

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 33.1 we obtain an étale morphism of fibres
U ′
v′ → Uv mapping u′ to u, see Lemma 33.5. Hence the result follows from Lemma 21.3.

�

Lemma 33.7. Let r ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs
Pr((X,x)→ (S, s))⇔ trdegκ(s)κ(x) = r

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 33.1 we obtain the following diagram of
local homomorphisms of local rings

OU ′,u′ OV ′,v′oo

OU,u

OO

OV,voo

OO

Note that the vertical arrows are localizations of étale ring maps, in particular they are
unramified (see Algebra, Section 143). Hence κ(u′)/κ(u) and κ(v′)/κ(v) are finite sepa-
rable field extensions. Thus we have trdegκ(v)κ(u) = trdegκ(v′)κ(u) which proves the
lemma. �

Let (X,x) be a germ of a scheme. The dimension of X at x is the minimum of the di-
mensions of open neighbourhoods of x in X , and any small enough open neighbourhood
has this dimension. Hence this is an invariant of the isomorphism class of the germ. We
denote this simply dimx(X).

Lemma 33.8. Let d ∈ {0, 1, 2, . . . ,∞}. The property of morphisms of germs
Pd((X,x)→ (S, s))⇔ dimx(Xs) = d

is étale local on the source-and-target.

Proof. Given a diagram as in Definition 33.1 we obtain an étale morphism of fi-
bres U ′

v′ → Uv mapping u′ to u, see Lemma 33.5. Hence now the equality dimu(Uv) =
dimu′(U ′

v′) follows from Lemma 21.2. �

34. Descent data for schemes over schemes

Most of the arguments in this section are formal relying only on the definition of a descent
datum. In Simplicial Spaces, Section 27 we will examine the relationship with simplicial
schemes which will somewhat clarify the situation.

Definition 34.1. Let f : X → S be a morphism of schemes.
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(1) Let V → X be a scheme overX . A descent datum for V/X/S is an isomorphism
ϕ : V ×SX → X×SV of schemes overX×SX satisfying the cocycle condition
that the diagram

V ×S X ×S X
ϕ01

((

ϕ02
// X ×S X ×S V

X ×S V ×S X

ϕ12

66

commutes (with obvious notation).
(2) We also say that the pair (V/X,ϕ) is a descent datum relative to X → S.
(3) A morphism f : (V/X,ϕ) → (V ′/X,ϕ′) of descent data relative to X → S is

a morphism f : V → V ′ of schemes over X such that the diagram

V ×S X ϕ
//

f×idX
��

X ×S V

idX×f
��

V ′ ×S X
ϕ′
// X ×S V ′

commutes.

There are all kinds of “miraculous” identities which arise out of the definition above. For
example the pullback of ϕ via the diagonal morphism ∆ : X → X ×S X can be seen
as a morphism ∆∗ϕ : V → V . This because X ×∆,X×SX (V ×S X) = V and also
X×∆,X×SX (X×S V ) = V . In fact, ∆∗ϕ is equal to the identity. This is a good exercise
if you are unfamiliar with this material.

Remark 34.2. Let X → S be a morphism of schemes. Let (V/X,ϕ) be a descent
datum relative to X → S. We may think of the isomorphism ϕ as an isomorphism

(X ×S X)×pr0,X
V −→ (X ×S X)×pr1,X

V

of schemes over X ×S X . So loosely speaking one may think of ϕ as a map ϕ : pr∗
0V →

pr∗
1V

9. The cocycle condition then says that pr∗
02ϕ = pr∗

12ϕ◦pr∗
01ϕ. In this way it is very

similar to the case of a descent datum on quasi-coherent sheaves.

Here is the definition in case you have a family of morphisms with fixed target.

Definition 34.3. Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms
with target S.

(1) A descent datum (Vi, ϕij) relative to the family {Xi → S} is given by a scheme
Vi over Xi for each i ∈ I , an isomorphism ϕij : Vi ×S Xj → Xi ×S Vj of
schemes over Xi ×S Xj for each pair (i, j) ∈ I2 such that for every triple of
indices (i, j, k) ∈ I3 the diagram

Vi ×S Xj ×S Xk

pr∗
01ϕij

))

pr∗
02ϕik

// Xi ×S Xj ×S Vk

Xi ×S Vj ×S Xk

pr∗
12ϕjk

55

of schemes over Xi ×S Xj ×S Xk commutes (with obvious notation).

9Unfortunately, we have chosen the “wrong” direction for our arrow here. In Definitions 34.1 and 34.3 we
should have the opposite direction to what was done in Definition 2.1 by the general principle that “functions”
and “spaces” are dual.
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(2) A morphism ψ : (Vi, ϕij)→ (V ′
i , ϕ

′
ij) of descent data is given by a family ψ =

(ψi)i∈I of morphisms of Xi-schemes ψi : Vi → V ′
i such that all the diagrams

Vi ×S Xj ϕij
//

ψi×id
��

Xi ×S Vj

id×ψj
��

V ′
i ×S Xj

ϕ′
ij // Xi ×S V ′

j

commute.

This is the notion that comes up naturally for example when the question arises whether
the fibred category of relative curves is a stack in the fpqc topology (it isn’t – at least not
if you stick to schemes).

Remark 34.4. Let S be a scheme. Let {Xi → S}i∈I be a family of morphisms with
target S. Let (Vi, ϕij) be a descent datum relative to {Xi → S}. We may think of the
isomorphisms ϕij as isomorphisms

(Xi ×S Xj)×pr0,Xi
Vi −→ (Xi ×S Xj)×pr1,Xj

Vj

of schemes over Xi ×S Xj . So loosely speaking one may think of ϕij as an isomorphism
pr∗

0Vi → pr∗
1Vj overXi×SXj . The cocycle condition then says that pr∗

02ϕik = pr∗
12ϕjk◦

pr∗
01ϕij . In this way it is very similar to the case of a descent datum on quasi-coherent

sheaves.

The reason we will usually work with the version of a family consisting of a single mor-
phism is the following lemma.

Lemma 34.5. LetS be a scheme. Let {Xi → S}i∈I be a family of morphisms with tar-
get S. SetX =

∐
i∈I Xi, and consider it as an S-scheme. There is a canonical equivalence

of categories

category of descent data
relative to the family {Xi → S}i∈I

−→ category of descent data
relative to X/S

which maps (Vi, ϕij) to (V, ϕ) with V =
∐
i∈I Vi and ϕ =

∐
ϕij .

Proof. Observe that X ×S X =
∐
ij Xi ×S Xj and similarly for higher fibre prod-

ucts. Giving a morphism V → X is exactly the same as giving a family Vi → Xi. And
giving a descent datum ϕ is exactly the same as giving a family ϕij . �

Lemma 34.6. Pullback of descent data for schemes over schemes.
(1) Let

X ′
f
//

a′

��

X

a

��
S′ h // S

be a commutative diagram of morphisms of schemes. The construction

(V → X,ϕ) 7−→ f∗(V → X,ϕ) = (V ′ → X ′, ϕ′)
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where V ′ = X ′ ×X V and where ϕ′ is defined as the composition

V ′ ×S′ X ′ (X ′ ×X V )×S′ X ′ (X ′ ×S′ X ′)×X×SX (V ×S X)

id×ϕ
��

X ′ ×S′ V ′ X ′ ×S′ (X ′ ×X V ) (X ′ ×S′ X ′)×X×SX (X ×S V )

defines a functor from the category of descent data relative to X → S to the
category of descent data relative to X ′ → S′.

(2) Given two morphisms fi : X ′ → X , i = 0, 1 making the diagram commute the
functors f∗

0 and f∗
1 are canonically isomorphic.

Proof. We omit the proof of (1), but we remark that the morphism ϕ′ is the mor-
phism (f × f)∗ϕ in the notation introduced in Remark 34.2. For (2) we indicate which
morphism f∗

0V → f∗
1V gives the functorial isomorphism. Namely, since f0 and f1 both

fit into the commutative diagram we see there is a unique morphism r : X ′ → X ×S X
with fi = pri ◦ r. Then we take

f∗
0V = X ′ ×f0,X V

= X ′ ×pr0◦r,X V

= X ′ ×r,X×SX (X ×S X)×pr0,X
V

ϕ−→ X ′ ×r,X×SX (X ×S X)×pr1,X
V

= X ′ ×pr1◦r,X V

= X ′ ×f1,X V

= f∗
1V

We omit the verification that this works. �

Definition 34.7. With S, S′, X,X ′, f, a, a′, h as in Lemma 34.6 the functor

(V, ϕ) 7−→ f∗(V, ϕ)

constructed in that lemma is called the pullback functor on descent data.

Lemma 34.8 (Pullback of descent data for schemes over families). Let U = {Ui →
S′}i∈I and V = {Vj → S}j∈J be families of morphisms with fixed target. Let α : I → J ,
h : S′ → S and gi : Ui → Vα(i) be a morphism of families of maps with fixed target, see
Sites, Definition 8.1.

(1) Let (Yj , ϕjj′) be a descent datum relative to the family {Vj → S′}. The system(
g∗
i Yα(i), (gi × gi′)∗ϕα(i)α(i′)

)
(with notation as in Remark 34.4) is a descent datum relative to V .

(2) This construction defines a functor between descent data relative to U and de-
scent data relative to V .

(3) Given a second α′ : I → J , h′ : S′ → S and g′
i : Ui → Vα′(i) morphism

of families of maps with fixed target, then if h = h′ the two resulting functors
between descent data are canonically isomorphic.

(4) These functors agree, via Lemma 34.5, with the pullback functors constructed in
Lemma 34.6.

Proof. This follows from Lemma 34.6 via the correspondence of Lemma 34.5. �
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Definition 34.9. With U = {Ui → S′}i∈I , V = {Vj → S}j∈J , α : I → J ,
h : S′ → S , and gi : Ui → Vα(i) as in Lemma 34.8 the functor

(Yj , ϕjj′) 7−→ (g∗
i Yα(i), (gi × gi′)∗ϕα(i)α(i′))

constructed in that lemma is called the pullback functor on descent data.

If U and V have the same target S , and if U refines V (see Sites, Definition 8.1) but no
explicit pair (α, gi) is given, then we can still talk about the pullback functor since we
have seen in Lemma 34.8 that the choice of the pair does not matter (up to a canonical
isomorphism).

Definition 34.10. Let S be a scheme. Let f : X → S be a morphism of schemes.
(1) Given a scheme U over S we have the trivial descent datum of U relative to

id : S → S , namely the identity morphism on U .
(2) By Lemma 34.6 we get a canonical descent datum onX×S U relative toX → S

by pulling back the trivial descent datum via f . We often denote (X×S U, can)
this descent datum.

(3) A descent datum (V, ϕ) relative toX/S is called effective if (V, ϕ) is isomorphic
to the canonical descent datum (X ×S U, can) for some scheme U over S.

Thus being effective means there exists a scheme U over S and an isomorphism ψ : V →
X ×S U of X-schemes such that ϕ is equal to the composition

V ×S X
ψ×idX−−−−→ X ×S U ×S X = X ×S X ×S U

idX×ψ−1

−−−−−−→ X ×S V

Definition 34.11. Let S be a scheme. Let {Xi → S} be a family of morphisms with
target S.

(1) Given a scheme U over S we have a canonical descent datum on the family of
schemes Xi ×S U by pulling back the trivial descent datum for U relative to
{id : S → S}. We denote this descent datum (Xi ×S U, can).

(2) A descent datum (Vi, ϕij) relative to {Xi → S} is called effective if there exists
a scheme U over S such that (Vi, ϕij) is isomorphic to (Xi ×S U, can).

35. Fully faithfulness of the pullback functors

It turns out that the pullback functor between descent data for fpqc-coverings is fully
faithful. In other words, morphisms of schemes satisfy fpqc descent. The goal of this
section is to prove this. The reader is encouraged instead to prove this him/herself. The
key is to use Lemma 13.7.

Lemma 35.1. A surjective and flat morphism is an epimorphism in the category of
schemes.

Proof. Suppose we have h : X ′ → X surjective and flat and a, b : X → Y mor-
phisms such that a ◦ h = b ◦ h. As h is surjective we see that a and b agree on underlying
topological spaces. Pick x′ ∈ X ′ and set x = h(x′) and y = a(x) = b(x). Consider the
local ring maps

a]x, b
]
x : OY,y → OX,x

These become equal when composed with the flat local homomorphism h]x′ : OX,x →
OX′,x′ . Since a flat local homomorphism is faithfully flat (Algebra, Lemma 39.17) we
conclude that h]x′ is injective. Hence a]x = b]x which implies a = b as desired. �



35. FULLY FAITHFULNESS OF THE PULLBACK FUNCTORS 2995

Lemma 35.2. Let h : S′ → S be a surjective, flat morphism of schemes. The base
change functor

Sch/S −→ Sch/S′, X 7−→ S′ ×S X
is faithful.

Proof. Let X1, X2 be schemes over S. Let α, β : X2 → X1 be morphisms over S. If
α, β base change to the same morphism then we get a commutative diagram as follows

X2

α

��

S′ ×S X2oo

��

// X2

β

��
X1 S′ ×S X1oo // X1

Hence it suffices to show that S′ ×S X2 → X2 is an epimorphism. As the base change
of a surjective and flat morphism it is surjective and flat (see Morphisms, Lemmas 9.4 and
25.8). Hence the lemma follows from Lemma 35.1. �

Lemma 35.3. In the situation of Lemma 34.6 assume that f : X ′ → X is surjective
and flat. Then the pullback functor is faithful.

Proof. Let (Vi, ϕi), i = 1, 2 be descent data for X → S. Let α, β : V1 → V2 be
morphisms of descent data. Suppose that f∗α = f∗β. Our task is to show that α = β.
Note that α, β are morphisms of schemes over X , and that f∗α, f∗β are simply the base
changes of α, β to morphisms over X ′. Hence the lemma follows from Lemma 35.2. �

Here is the key lemma of this section.

Lemma 35.4. In the situation of Lemma 34.6 assume
(1) {f : X ′ → X} is an fpqc covering (for example if f is surjective, flat, and quasi-

compact), and
(2) S = S′.

Then the pullback functor is fully faithful.

Proof. Assumption (1) implies that f is surjective and flat. Hence the pullback func-
tor is faithful by Lemma 35.3. Let (V, ϕ) and (W,ψ) be two descent data relative to
X → S. Set (V ′, ϕ′) = f∗(V, ϕ) and (W ′, ψ′) = f∗(W,ψ). Let α′ : V ′ → W ′ be
a morphism of descent data for X ′ over S. We have to show there exists a morphism
α : V →W of descent data for X over S whose pullback is α′.
Recall that V ′ is the base change of V by f and that ϕ′ is the base change of ϕ by f × f
(see Remark 34.2). By assumption the diagram

V ′ ×S X ′
ϕ′
//

α′×id
��

X ′ ×S V ′

id×α′

��
W ′ ×S X ′ ψ′

// X ′ ×S W ′

commutes. We claim the two compositions

V ′ ×V V ′ pri // V ′ α′
// W ′ // W , i = 0, 1

are the same. The reader is advised to prove this themselves rather than read the rest of
this paragraph. (Please email if you find a nice clean argument.) Let v0, v1 be points of
V ′ which map to the same point v ∈ V . Let xi ∈ X ′ be the image of vi, and let x be the
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point of X which is the image of v in X . In other words, vi = (xi, v) in V ′ = X ′ ×X V .
Write ϕ(v, x) = (x, v′) for some point v′ of V . This is possible because ϕ is a morphism
over X ×S X . Denote v′

i = (xi, v′) which is a point of V ′. Then a calculation (using the
definition of ϕ′) shows that ϕ′(vi, xj) = (xi, v′

j). Denote wi = α′(vi) and w′
i = α′(v′

i).
Now we may write wi = (xi, ui) for some point ui of W , and w′

i = (xi, u′
i) for some

point u′
i of W . The claim is equivalent to the assertion: u0 = u1. A formal calculation

using the definition of ψ′ (see Lemma 34.6) shows that the commutativity of the diagram
displayed above says that

((xi, xj), ψ(ui, x)) = ((xi, xj), (x, u′
j))

as points of (X ′×SX ′)×X×SX (X×SW ) for all i, j ∈ {0, 1}. This shows thatψ(u0, x) =
ψ(u1, x) and hence u0 = u1 by taking ψ−1. This proves the claim because the argument
above was formal and we can take scheme points (in other words, we may take (v0, v1) =
idV ′×V V ′ ).

At this point we can use Lemma 13.7. Namely, {V ′ → V } is a fpqc covering as the base
change of the morphism f : X ′ → X . Hence, by Lemma 13.7 the morphism α′ : V ′ →
W ′ → W factors through a unique morphism α : V → W whose base change is neces-
sarily α′. Finally, we see the diagram

V ×S X ϕ
//

α×id
��

X ×S V

id×α
��

W ×S X
ψ // X ×S W

commutes because its base change toX ′×SX ′ commutes and the morphismX ′×SX ′ →
X ×S X is surjective and flat (use Lemma 35.2). Hence α is a morphism of descent data
(V, ϕ)→ (W,ψ) as desired. �

The following two lemmas have been obsoleted by the improved exposition of the previous
material. But they are still true!

Lemma 35.5. LetX → S be a morphism of schemes. Let f : X → X be a selfmap of
X over S. In this case pullback by f is isomorphic to the identity functor on the category
of descent data relative to X → S.

Proof. This is clear from Lemma 34.6 since it tells us that f∗ ∼= id∗. �

Lemma 35.6. Let f : X ′ → X be a morphism of schemes over a base scheme S.
Assume there exists a morphism g : X → X ′ over S , for example if f has a section.
Then the pullback functor of Lemma 34.6 defines an equivalence of categories between
the category of descent data relative to X/S and X ′/S.

Proof. Let g : X → X ′ be a morphism over S. Lemma 35.5 above shows that the
functors f∗◦g∗ = (g◦f)∗ and g∗◦f∗ = (f ◦g)∗ are isomorphic to the respective identity
functors as desired. �

Lemma 35.7. Let f : X → X ′ be a morphism of schemes over a base scheme S.
Assume X → S is surjective and flat. Then the pullback functor of Lemma 34.6 is a
faithful functor from the category of descent data relative to X ′/S to the category of
descent data relative to X/S.
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Proof. We may factor X → X ′ as X → X ×S X ′ → X ′. The first morphism
has a section, hence induces an equivalence of categories of descent data by Lemma 35.6.
The second morphism is surjective and flat, hence induces a faithful functor by Lemma
35.3. �

Lemma 35.8. Let f : X → X ′ be a morphism of schemes over a base scheme S. As-
sume {X → S} is an fpqc covering (for example if f is surjective, flat and quasi-compact).
Then the pullback functor of Lemma 34.6 is a fully faithful functor from the category of
descent data relative to X ′/S to the category of descent data relative to X/S.

Proof. We may factor X → X ′ as X → X ×S X ′ → X ′. The first morphism has
a section, hence induces an equivalence of categories of descent data by Lemma 35.6. The
second morphism is an fpqc covering hence induces a fully faithful functor by Lemma
35.4. �

Lemma 35.9. Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj → S}j∈J , be
families of morphisms with target S. Let α : I → J , id : S → S and gi : Ui → Vα(i) be a
morphism of families of maps with fixed target, see Sites, Definition 8.1. Assume that for
each j ∈ J the family {gi : Ui → Vj}α(i)=j is an fpqc covering of Vj . Then the pullback
functor

descent data relative to V −→ descent data relative to U
of Lemma 34.8 is fully faithful.

Proof. Consider the morphism of schemes

g : X =
∐

i∈I
Ui −→ Y =

∐
j∈J

Vj

over S which on the ith component maps into the α(i)th component via the morphism
gα(i). We claim that {g : X → Y } is an fpqc covering of schemes. Namely, by Topologies,
Lemma 9.3 for each j the morphism {

∐
α(i)=j Ui → Vj} is an fpqc covering. Thus for ev-

ery affine open V ⊂ Vj (which we may think of as an affine open of Y ) we can find finitely
many affine opens W1, . . . ,Wn ⊂

∐
α(i)=j Ui (which we may think of as affine opens of

X) such that V =
⋃
i=1,...,n g(Wi). This provides enough affine opens of Y which can be

covered by finitely many affine opens ofX so that Topologies, Lemma 9.2 part (3) applies,
and the claim follows. Let us write DD(X/S), resp. DD(U) for the category of descent
data with respect to X/S , resp. U , and similarly for Y/S and V . Consider the diagram

DD(Y/S) // DD(X/S)

DD(V)

Lemma 34.5

OO

// DD(U)

Lemma 34.5

OO

This diagram is commutative, see the proof of Lemma 34.8. The vertical arrows are equiva-
lences. Hence the lemma follows from Lemma 35.4 which shows the top horizontal arrow
of the diagram is fully faithful. �

The next lemma shows that, in order to check effectiveness, we may always Zariski refine
the given family of morphisms with target S.

Lemma 35.10. Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj → S}j∈J ,
be families of morphisms with target S. Let α : I → J , id : S → S and gi : Ui → Vα(i)
be a morphism of families of maps with fixed target, see Sites, Definition 8.1. Assume that
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for each j ∈ J the family {gi : Ui → Vj}α(i)=j is a Zariski covering (see Topologies,
Definition 3.1) of Vj . Then the pullback functor

descent data relative to V −→ descent data relative to U
of Lemma 34.8 is an equivalence of categories. In particular, the category of schemes over
S is equivalent to the category of descent data relative to any Zariski covering of S.

Proof. The functor is faithful and fully faithful by Lemma 35.9. Let us indicate how
to prove that it is essentially surjective. Let (Xi, ϕii′) be a descent datum relative to U .
Fix j ∈ J and set Ij = {i ∈ I | α(i) = j}. For i, i′ ∈ Ij note that there is a canonical
morphism

cii′ : Ui ×gi,Vj ,gi′ Ui′ → Ui ×S Ui′ .
Hence we can pullback ϕii′ by this morphism and set ψii′ = c∗

ii′ϕii′ for i, i′ ∈ Ij . In
this way we obtain a descent datum (Xi, ψii′) relative to the Zariski covering {gi : Ui →
Vj}i∈Ij . Note that ψii′ is an isomorphism from the open Xi,Ui×VjUi′ of Xi to the cor-
responding open of Xi′ . It follows from Schemes, Section 14 that we may glue (Xi, ψii′)
into a scheme Yj over Vj . Moreover, the morphisms ϕii′ for i ∈ Ij and i′ ∈ Ij′ glue to a
morphismϕjj′ : Yj×SVj′ → Vj×SYj′ satisfying the cocycle condition (details omitted).
Hence we obtain the desired descent datum (Yj , ϕjj′) relative to V . �

Lemma 35.11. Let S be a scheme. Let U = {Ui → S}i∈I , and V = {Vj → S}j∈J , be
fpqc-coverings of S. If U is a refinement of V , then the pullback functor

descent data relative to V −→ descent data relative to U
is fully faithful. In particular, the category of schemes over S is identified with a full
subcategory of the category of descent data relative to any fpqc-covering of S.

Proof. Consider the fpqc-covering W = {Ui ×S Vj → S}(i,j)∈I×J of S. It is a
refinement of both U and V . Hence we have a 2-commutative diagram of functors and
categories

DD(V)

%%

// DD(U)

yy
DD(W)

Notation as in the proof of Lemma 35.9 and commutativity by Lemma 34.8 part (3). Hence
clearly it suffices to prove the functors DD(V)→ DD(W) and DD(U)→ DD(W) are
fully faithful. This follows from Lemma 35.9 as desired. �

Remark 35.12. Lemma 35.11 says that morphisms of schemes satisfy fpqc descent. In
other words, given a scheme S and schemes X , Y over S the functor

(Sch/S)opp −→ Sets, T 7−→ MorT (XT , YT )
satisfies the sheaf condition for the fpqc topology. The simplest case of this is the follow-
ing. Suppose that T → S is a surjective flat morphism of affines. Let ψ0 : XT → YT
be a morphism of schemes over T which is compatible with the canonical descent data.
Then there exists a unique morphism ψ : X → Y whose base change to T is ψ0. In fact
this special case follows in a straightforward manner from Lemma 35.4. And, in turn, that
lemma is a formal consequence of the following two facts: (a) the base change functor by
a faithfully flat morphism is faithful, see Lemma 35.2 and (b) a scheme satisfies the sheaf
condition for the fpqc topology, see Lemma 13.7.
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Lemma 35.13. Let X → S be a surjective, quasi-compact, flat morphism of schemes.
Let (V, ϕ) be a descent datum relative to X/S. Suppose that for all v ∈ V there exists an
open subscheme v ∈W ⊂ V such that ϕ(W ×SX) ⊂ X×SW and such that the descent
datum (W,ϕ|W×SX) is effective. Then (V, ϕ) is effective.

Proof. Let V =
⋃
Wi be an open covering with ϕ(Wi ×S X) ⊂ X ×S Wi and

such that the descent datum (Wi, ϕ|Wi×SX) is effective. Let Ui → S be a scheme and let
αi : (X ×S Ui, can) → (Wi, ϕ|Wi×SX) be an isomorphism of descent data. For each
pair of indices (i, j) consider the open α−1

i (Wi ∩Wj) ⊂ X ×S Ui. Because everything
is compatible with descent data and since {X → S} is an fpqc covering, we may apply
Lemma 13.6 to find an open Uij ⊂ Uj such that α−1

i (Wi ∩ Wj) = X ×S Uij . Now
the identity morphism on Wi ∩Wj is compatible with descent data, hence comes from
a unique morphism ϕij : Uij → Uji over S (see Remark 35.12). Then (Ui, Uij , ϕij) is
a glueing data as in Schemes, Section 14 (proof omitted). Thus we may assume there is
a scheme U over S such that Ui ⊂ U is open, Uij = Ui ∩ Uj and ϕij = idUi∩Uj , see
Schemes, Lemma 14.1. Pulling back toX we can use the αi to get the desired isomorphism
α : X ×S U → V . �

36. Descending types of morphisms

In the following we study the question as to whether descent data for schemes relative to a
fpqc-covering are effective. The first remark to make is that this is not always the case. We
will see this in Algebraic Spaces, Example 14.2. Even projective morphisms do not always
satisfy descent for fpqc-coverings, by Examples, Lemma 65.1.

On the other hand, if the schemes we are trying to descend are particularly simple, then
it is sometime the case that for whole classes of schemes descent data are effective. We
will introduce terminology here that describes this phenomenon abstractly, even though
it may lead to confusion if not used correctly later on.

Definition 36.1. Let P be a property of morphisms of schemes over a base. Let τ ∈
{Zariski, fpqc, fppf, étale, smooth, syntomic}. We say morphisms of type P satisfy
descent for τ -coverings if for any τ -covering U : {Ui → S}i∈I (see Topologies, Section
2), any descent datum (Xi, ϕij) relative to U such that each morphism Xi → Ui has
property P is effective.

Note that in each of the cases we have already seen that the functor from schemes overS to
descent data over U is fully faithful (Lemma 35.11 combined with the results in Topologies
that any τ -covering is also a fpqc-covering). We have also seen that descent data are always
effective with respect to Zariski coverings (Lemma 35.10). It may be prudent to only study
the notion just introduced when P is either stable under any base change or at least local
on the base in the τ -topology (see Definition 22.1) in order to avoid erroneous arguments
(relying on P when descending halfway).

Here is the obligatory lemma reducing this question to the case of a covering given by a
single morphism of affines.

Lemma 36.2. Let P be a property of morphisms of schemes over a base. Let τ ∈
{fpqc, fppf, étale, smooth, syntomic}. Suppose that

(1) P is stable under any base change (see Schemes, Definition 18.3),
(2) if Yj → Vj , j = 1, . . . ,m have P , then so does

∐
Yj →

∐
Vj , and
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(3) for any surjective morphism of affines X → S which is flat, flat of finite pre-
sentation, étale, smooth or syntomic depending on whether τ is fpqc, fppf, étale,
smooth, or syntomic, any descent datum (V, ϕ) relative toX over S such that P
holds for V → X is effective.

Then morphisms of type P satisfy descent for τ -coverings.

Proof. Let S be a scheme. Let U = {ϕi : Ui → S}i∈I be a τ -covering of S. Let
(Xi, ϕii′) be a descent datum relative to U and assume that each morphism Xi → Ui
has property P . We have to show there exists a scheme X → S such that (Xi, ϕii′) ∼=
(Ui ×S X, can).
Before we start the proof proper we remark that for any family of morphisms V : {Vj →
S} and any morphism of families V → U , if we pullback the descent datum (Xi, ϕii′) to
a descent datum (Yj , ϕjj′) over V , then each of the morphisms Yj → Vj has property P
also. This is true because of assumption (1) that P is stable under any base change and the
definition of pullback (see Definition 34.9). We will use this without further mention.
First, let us prove the lemma when S is affine. By Topologies, Lemma 9.8, 7.4, 4.4, 5.4,
or 6.4 there exists a standard τ -covering V : {Vj → S}j=1,...,m which refines U . The
pullback functor DD(U) → DD(V) between categories of descent data is fully faithful
by Lemma 35.11. Hence it suffices to prove that the descent datum over the standard τ -
covering V is effective. By assumption (2) we see that

∐
Yj →

∐
Vj has property P .

By Lemma 34.5 this reduces us to the covering {
∐
j=1,...,m Vj → S} for which we have

assumed the result in assumption (3) of the lemma. Hence the lemma holds when S is
affine.
Assume S is general. Let V ⊂ S be an affine open. By the properties of site the family
UV = {V ×S Ui → V }i∈I is a τ -covering of V . Denote (Xi, ϕii′)V the restriction
(or pullback) of the given descent datum to UV . Hence by what we just saw we obtain a
scheme XV over V whose canonical descent datum with respect to UV is isomorphic to
(Xi, ϕii′)V . Suppose that V ′ ⊂ V is an affine open of V . Then both XV ′ and V ′ ×V XV

have canonical descent data isomorphic to (Xi, ϕii′)V ′ . Hence, by Lemma 35.11 again
we obtain a canonical morphism ρVV ′ : XV ′ → XV over S which identifies XV ′ with the
inverse image ofV ′ inXV . We omit the verification that given affine opensV ′′ ⊂ V ′ ⊂ V
of S we have ρVV ′′ = ρVV ′ ◦ ρV

′

V ′′ .
By Constructions, Lemma 2.1 the data (XV , ρ

V
V ′) glue to a scheme X → S. Moreover,

we are given isomorphisms V ×S X → XV which recover the maps ρVV ′ . Unwinding the
construction of the schemes XV we obtain isomorphisms

V ×S Ui ×S X −→ V ×S Xi

compatible with the maps ϕii′ and compatible with restricting to smaller affine opens in
X . This implies that the canonical descent datum on Ui ×S X is isomorphic to the given
descent datum and we win. �

37. Descending affine morphisms

In this section we show that “affine morphisms satisfy descent for fpqc-coverings”. Here
is the formal statement.

Lemma 37.1. Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering, see Topolo-
gies, Definition 9.1. Let (Vi/Xi, ϕij) be a descent datum relative to {Xi → S}. If each
morphism Vi → Xi is affine, then the descent datum is effective.
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Proof. Being affine is a property of morphisms of schemes which is local on the base
and preserved under any base change, see Morphisms, Lemmas 11.3 and 11.8. Hence Lemma
36.2 applies and it suffices to prove the statement of the lemma in case the fpqc-covering
is given by a single {X → S} flat surjective morphism of affines. Say X = Spec(A)
and S = Spec(R) so that R → A is a faithfully flat ring map. Let (V, ϕ) be a descent
datum relative to X over S and assume that V → X is affine. Then V → X being affine
implies that V = Spec(B) for some A-algebra B (see Morphisms, Definition 11.1). The
isomorphism ϕ corresponds to an isomorphism of rings

ϕ] : B ⊗R A←− A⊗R B

as A⊗R A-algebras. The cocycle condition on ϕ says that

B ⊗R A⊗R A A⊗R A⊗R Boo

vv
A⊗R B ⊗R A

hh

is commutative. Inverting these arrows we see that we have a descent datum for modules
with respect toR→ A as in Definition 3.1. Hence we may apply Proposition 3.9 to obtain
an R-module C = Ker(B → A ⊗R B) and an isomorphism A ⊗R C ∼= B respecting
descent data. Given any pair c, c′ ∈ C the product cc′ inB lies in C since the map ϕ is an
algebra homomorphism. Hence C is an R-algebra whose base change to A is isomorphic
to B compatibly with descent data. Applying Spec we obtain a scheme U over S such
that (V, ϕ) ∼= (X ×S U, can) as desired. �

Lemma 37.2. Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering, see Topolo-
gies, Definition 9.1. Let (Vi/Xi, ϕij) be a descent datum relative to {Xi → S}. If each
morphism Vi → Xi is a closed immersion, then the descent datum is effective.

Proof. This is true because a closed immersion is an affine morphism (Morphisms,
Lemma 11.9), and hence Lemma 37.1 applies. �

38. Descending quasi-affine morphisms

In this section we show that “quasi-affine morphisms satisfy descent for fpqc-coverings”.
Here is the formal statement.

Lemma 38.1. Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering, see Topolo-
gies, Definition 9.1. Let (Vi/Xi, ϕij) be a descent datum relative to {Xi → S}. If each
morphism Vi → Xi is quasi-affine, then the descent datum is effective.

Proof. Being quasi-affine is a property of morphisms of schemes which is preserved
under any base change, see Morphisms, Lemmas 13.3 and 13.5. Hence Lemma 36.2 applies
and it suffices to prove the statement of the lemma in case the fpqc-covering is given by a
single {X → S} flat surjective morphism of affines. SayX = Spec(A) and S = Spec(R)
so that R → A is a faithfully flat ring map. Let (V, ϕ) be a descent datum relative to X
over S and assume that π : V → X is quasi-affine.

According to Morphisms, Lemma 13.3 this means that

V −→ Spec
X

(π∗OV ) = W
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is a quasi-compact open immersion of schemes overX . The projections pri : X×SX → X
are flat and hence we have

pr∗
0π∗OV = (π × idX)∗OV×SX , pr∗

1π∗OV = (idX × π)∗OX×SV

by flat base change (Cohomology of Schemes, Lemma 5.2). Thus the isomorphism ϕ :
V ×S X → X ×S V (which is an isomorphism over X ×S X) induces an isomorphism
of quasi-coherent sheaves of algebras

ϕ] : pr∗
0π∗OV −→ pr∗

1π∗OV
on X ×S X . The cocycle condition for ϕ implies the cocycle condition for ϕ]. Another
way to say this is that it produces a descent datum ϕ′ on the affine scheme W relative to
X over S , which moreover has the property that the morphism V → W is a morphism
of descent data. Hence by Lemma 37.1 (or by effectivity of descent for quasi-coherent
algebras) we obtain a scheme U ′ → S with an isomorphism (W,ϕ′) ∼= (X ×S U ′, can) of
descent data. We note in passing that U ′ is affine by Lemma 23.18.

And now we can think of V as a (quasi-compact) open V ⊂ X ×S U ′ with the property
that it is stable under the descent datum

can : X ×S U ′ ×S X → X ×S X ×S U ′, (x0, u
′, x1) 7→ (x0, x1, u

′).

In other words (x0, u
′) ∈ V ⇒ (x1, u

′) ∈ V for any x0, x1, u
′ mapping to the same point

of S. Because X → S is surjective we immediately find that V is the inverse image of a
subset U ⊂ U ′ under the morphism X ×S U ′ → U ′. Because X → S is quasi-compact,
flat and surjective also X ×S U ′ → U ′ is quasi-compact flat and surjective. Hence by
Morphisms, Lemma 25.12 this subset U ⊂ U ′ is open and we win. �

39. Descent data in terms of sheaves

Here is another way to think about descent data in case of a covering on a site.

Lemma 39.1. Let τ ∈ {Zariski, fppf, étale, smooth, syntomic}10. Let Schτ be a
big τ -site. Let S ∈ Ob(Schτ ). Let {Si → S}i∈I be a covering in the site (Sch/S)τ . There
is an equivalence of categories{

descent data (Xi, ϕii′) such that
each Xi ∈ Ob((Sch/S)τ )

}
↔
{

sheaves F on (Sch/S)τ such that
each hSi × F is representable

}
.

Moreover,
(1) the objects representinghSi×F on the right hand side correspond to the schemes

Xi on the left hand side, and
(2) the sheaf F is representable if and only if the corresponding descent datum

(Xi, ϕii′) is effective.

Proof. We have seen in Section 13 that representable presheaves are sheaves on the
site (Sch/S)τ . Moreover, the Yoneda lemma (Categories, Lemma 3.5) guarantees that
maps between representable sheaves correspond one to one with maps between the repre-
senting objects. We will use these remarks without further mention during the proof.

Let us construct the functor from right to left. Let F be a sheaf on (Sch/S)τ such that
each hSi × F is representable. In this case let Xi be a representing object in (Sch/S)τ . It

10The fact that fpqc is missing is not a typo. See discussion in Topologies, Section 9.
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comes equipped with a morphismXi → Si. Then bothXi×S Si′ and Si×SXi′ represent
the sheaf hSi × F × hSi′ and hence we obtain an isomorphism

ϕii′ : Xi ×S Si′ → Si ×S Xi′

It is straightforward to see that the maps ϕii′ are morphisms over Si ×S Si′ and satisfy
the cocycle condition. The functor from right to left is given by this construction F 7→
(Xi, ϕii′).
Let us construct a functor from left to right. For each i denote Fi the sheaf hXi . The
isomorphisms ϕii′ give isomorphisms

ϕii′ : Fi × hSi′ −→ hSi × Fi′
over hSi × hSi′ . Set F equal to the coequalizer in the following diagram

∐
i,i′ Fi × hSi′

pr0 //

pr1◦ϕii′
//
∐
i Fi

// F

The cocycle condition guarantees thathSi×F is isomorphic toFi and hence representable.
The functor from left to right is given by this construction (Xi, ϕii′) 7→ F .
We omit the verification that these constructions are mutually quasi-inverse functors. The
final statements (1) and (2) follow from the constructions. �

Remark 39.2. In the statement of Lemma 39.1 the condition that hSi × F is rep-
resentable is equivalent to the condition that the restriction of F to (Sch/Si)τ is repre-
sentable.
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CHAPTER 36

Derived Categories of Schemes

1. Introduction

In this chapter we discuss derived categories of modules on schemes. Most of the mate-
rial discussed here can be found in [?], [?], [?], and [?]. Of course there are many other
references.

2. Conventions

If A is an abelian category and M is an object of A then we also denote M the object of
K(A) and/or D(A) corresponding to the complex which has M in degree 0 and is zero
in all other degrees.

If we have a ringA, thenK(A) denotes the homotopy category of complexes ofA-modules
and D(A) the associated derived category. Similarly, if we have a ringed space (X,OX)
the symbol K(OX) denotes the homotopy category of complexes of OX -modules and
D(OX) the associated derived category.

3. Derived category of quasi-coherent modules

In this section we discuss the relationship between quasi-coherent modules and all modules
on a schemeX . A reference is [?, Appendix B]. By the discussion in Schemes, Section 24 the
embedding QCoh(OX) ⊂Mod(OX) exhibits QCoh(OX) as a weak Serre subcategory of
the category ofOX -modules. Denote

DQCoh(OX) ⊂ D(OX)

the subcategory of complexes whose cohomology sheaves are quasi-coherent, see Derived
Categories, Section 17. Thus we obtain a canonical functor

(3.0.1) D(QCoh(OX)) −→ DQCoh(OX)

see Derived Categories, Equation (17.1.1).

Lemma 3.1. Let X be a scheme. Then DQCoh(OX) has direct sums.

Proof. By Injectives, Lemma 13.4 the derived category D(OX) has direct sums and
they are computed by taking termwise direct sums of any representatives. Thus it is clear
that the cohomology sheaf of a direct sum is the direct sum of the cohomology sheaves as
taking direct sums is an exact functor (in any Grothendieck abelian category). The lemma
follows as the direct sum of quasi-coherent sheaves is quasi-coherent, see Schemes, Section
24. �

We will need some information on derived limits. We warn the reader that in the lemma
below the derived limit will typically not be an object of DQCoh .

3005
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Lemma 3.2. Let X be a scheme. Let (Kn) be an inverse system of DQCoh(OX) with
derived limit K = R limKn inD(OX). AssumeHq(Kn+1)→ Hq(Kn) is surjective for
all q ∈ Z and n ≥ 1. Then

(1) Hq(K) = limHq(Kn),
(2) R limHq(Kn) = limHq(Kn), and
(3) for every affine open U ⊂ X we have Hp(U, limHq(Kn)) = 0 for p > 0.

Proof. Let B be the set of affine opens of X . Since Hq(Kn) is quasi-coherent we
haveHp(U,Hq(Kn)) = 0 for U ∈ B by Cohomology of Schemes, Lemma 2.2. Moreover,
the maps H0(U,Hq(Kn+1)) → H0(U,Hq(Kn)) are surjective for U ∈ B by Schemes,
Lemma 7.5. Part (1) follows from Cohomology, Lemma 37.11 whose conditions we have
just verified. Parts (2) and (3) follow from Cohomology, Lemma 37.4. �

The following lemma will help us to “compute” a right derived functor on an object of
DQCoh(OX).

Lemma 3.3. LetX be a scheme. LetE be an object ofDQCoh(OX). Then the canon-
ical map E → R lim τ≥−nE is an isomorphism1.

Proof. Denote Hi = Hi(E) the ith cohomology sheaf of E. Let B be the set of
affine open subsets of X . Then Hp(U,Hi) = 0 for all p > 0, all i ∈ Z, and all U ∈ B, see
Cohomology of Schemes, Lemma 2.2. Thus the lemma follows from Cohomology, Lemma
37.9. �

Lemma 3.4. LetX be a scheme. Let F : Mod(OX)→ Ab be an additive functor and
N ≥ 0 an integer. Assume that

(1) F commutes with countable direct products,
(2) RpF (F) = 0 for all p ≥ N and F quasi-coherent.

Then for E ∈ DQCoh(OX)
(1) Hi(RF (τ≤aE))→ Hi(RF (E)) is an isomorphism for i ≤ a,
(2) Hi(RF (E))→ Hi(RF (τ≥b−N+1E)) is an isomorphism for i ≥ b,
(3) if Hi(E) = 0 for i 6∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then Hi(RF (E)) = 0

for i 6∈ [a, b+N − 1].

Proof. Statement (1) is Derived Categories, Lemma 16.1.

Proof of statement (2). Write En = τ≥−nE. We have E = R limEn, see Lemma 3.3.
Thus RF (E) = R limRF (En) in D(Ab) by Injectives, Lemma 13.6. Thus for every
i ∈ Z we have a short exact sequence

0→ R1 limHi−1(RF (En))→ Hi(RF (E))→ limHi(RF (En))→ 0

see More on Algebra, Remark 86.10. To prove (2) we will show that the term on the left
is zero and that the term on the right equals Hi(RF (E−b+N−1) for any b with i ≥ b.

For every n we have a distinguished triangle

H−n(E)[n]→ En → En−1 → H−n(E)[n+ 1]

(Derived Categories, Remark 12.4) in D(OX). Since H−n(E) is quasi-coherent we have

Hi(RF (H−n(E)[n])) = Ri+nF (H−n(E)) = 0

1In particular, E has a K-injective representative as in Cohomology, Lemma 38.1.
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for i+ n ≥ N and

Hi(RF (H−n(E)[n+ 1])) = Ri+n+1F (H−n(E)) = 0
for i+ n+ 1 ≥ N . We conclude that

Hi(RF (En))→ Hi(RF (En−1))
is an isomorphism for n ≥ N − i. Thus the systems Hi(RF (En)) all satisfy the ML
condition and the R1 lim term in our short exact sequence is zero (see discussion in More
on Algebra, Section 86). Moreover, the system Hi(RF (En)) is constant starting with
n = N − i− 1 as desired.

Proof of (3). Under the assumption on E we have τ≤a−1E = 0 and we get the vanishing
of Hi(RF (E)) for i ≤ a− 1 from (1). Similarly, we have τ≥b+1E = 0 and hence we get
the vanishing of Hi(RF (E)) for i ≥ b+ n from part (2). �

The following lemma is the key ingredient to many of the results in this chapter.

Lemma 3.5. Let X = Spec(A) be an affine scheme. All the functors in the diagram

D(QCoh(OX))
(3.0.1)

// DQCoh(OX)

RΓ(X,−)xx
D(A)

˜
ff

are equivalences of triangulated categories. Moreover, for E in DQCoh(OX) we have
H0(X,E) = H0(X,H0(E)).

Proof. The functor RΓ(X,−) gives a functor D(OX) → D(A) and hence by re-
striction a functor

(3.5.1) RΓ(X,−) : DQCoh(OX) −→ D(A).
We will show this functor is quasi-inverse to (3.0.1) via the equivalence between quasi-
coherent modules on X and the category of A-modules.

Elucidation. Denote (Y,OY ) the one point space with sheaf of rings given by A. Denote
π : (X,OX) → (Y,OY ) the obvious morphism of ringed spaces. Then RΓ(X,−) can
be identified with Rπ∗ and the functor (3.0.1) via the equivalence Mod(OY ) = ModA =
QCoh(OX) can be identified with Lπ∗ = π∗ =˜(see Modules, Lemma 10.5 and Schemes,
Lemmas 7.1 and 7.5). Thus the functors

D(A) //
D(OX)oo

are adjoint (by Cohomology, Lemma 28.1). In particular we obtain canonical adjunction
mappings

a : ˜RΓ(X,E) −→ E

for E in D(OX) and
b : M• −→ RΓ(X, M̃•)

for M• a complex of A-modules.

Let E be an object of DQCoh(OX). We may apply Lemma 3.4 to the functor F (−) =
Γ(X,−) with N = 1 by Cohomology of Schemes, Lemma 2.2. Hence

H0(RΓ(X,E)) = H0(RΓ(X, τ≥0E)) = Γ(X,H0(E))
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(the last equality by definition of the canonical truncation). Using this we will show that
the adjunction mappings a and b induce isomorphismsH0(a) andH0(b). Thus a and b are
quasi-isomorphisms (as the statement is invariant under shifts) and the lemma is proved.
In both cases we use that˜is an exact functor (Schemes, Lemma 5.4). Namely, this implies
that

H0
(

˜RΓ(X,E)
)

= ˜H0(RΓ(X,E)) = ˜Γ(X,H0(E))

which is equal toH0(E) becauseH0(E) is quasi-coherent. ThusH0(a) is an isomorphism.
For the other direction we have

H0(RΓ(X, M̃•)) = Γ(X,H0(M̃•)) = Γ(X, H̃0(M•)) = H0(M•)
which proves that H0(b) is an isomorphism. �

Lemma 3.6. Let X = Spec(A) be an affine scheme. If K• is a K-flat complex of
A-modules, then K̃• is a K-flat complex ofOX -modules.

Proof. By More on Algebra, Lemma 59.3 we see that K• ⊗A Ap is a K-flat complex
of Ap-modules for every p ∈ Spec(A). Hence we conclude from Cohomology, Lemma
26.4 (and Schemes, Lemma 5.4) that K̃• is K-flat. �

Lemma 3.7. If f : X → Y is a morphism of affine schemes given by the ring map
A→ B, then the diagram

D(B)

��

// DQCoh(OX)

Rf∗

��
D(A) // DQCoh(OY )

commutes.

Proof. Follows from Lemma 3.5 using that RΓ(Y,Rf∗K) = RΓ(X,K) by Coho-
mology, Lemma 32.5. �

Lemma 3.8. Let f : Y → X be a morphism of schemes.
(1) The functor Lf∗ sends DQCoh(OX) into DQCoh(OY ).
(2) If X and Y are affine and f is given by the ring map A→ B, then the diagram

D(B) // DQCoh(OY )

D(A) //

−⊗L
AB

OO

DQCoh(OX)

Lf∗

OO

commutes.

Proof. We first prove the diagram

D(B) // D(OY )

D(A) //

−⊗L
AB

OO

D(OX)

Lf∗

OO

commutes. This is clear from Lemma 3.6 and the constructions of the functors in question.
To see (1) let E be an object of DQCoh(OX). To see that Lf∗E has quasi-coherent coho-
mology sheaves we may work locally on X . Note that Lf∗ is compatible with restricting



4. TOTAL DIRECT IMAGE 3009

to open subschemes. Hence we can assume that f is a morphism of affine schemes as in (2).
Then we can apply Lemma 3.5 to see that E comes from a complex of A-modules. By the
commutativity of the first diagram of the proof the same holds forLf∗E and we conclude
(1) is true. �

Lemma 3.9. Let X be a scheme.
(1) For objects K,L of DQCoh(OX) the derived tensor product K ⊗L

OX
L is in

DQCoh(OX).
(2) If X = Spec(A) is affine then

M̃• ⊗L
OX

K̃• = ˜M• ⊗L
A K

•

for any pair of complexes of A-modules K•, M•.

Proof. The equality of (2) follows immediately from Lemma 3.6 and the construc-
tion of the derived tensor product. To see (1) let K,L be objects of DQCoh(OX). To
check that K ⊗L L is in DQCoh(OX) we may work locally on X , hence we may assume
X = Spec(A) is affine. By Lemma 3.5 we may represent K and L by complexes of A-
modules. Then part (2) implies the result. �

4. Total direct image

The following lemma is the analogue of Cohomology of Schemes, Lemma 4.5.

Lemma 4.1. Let f : X → S be a morphism of schemes. Assume that f is quasi-
separated and quasi-compact.

(1) The functor Rf∗ sends DQCoh(OX) into DQCoh(OS).
(2) If S is quasi-compact, there exists an integer N = N(X,S, f) such that for an

objectE ofDQCoh(OX) withHm(E) = 0 form > 0 we haveHm(Rf∗E) = 0
for m ≥ N .

(3) In fact, if S is quasi-compact we can find N = N(X,S, f) such that for every
morphism of schemes S′ → S the same conclusion holds for the functorR(f ′)∗
where f ′ : X ′ → S′ is the base change of f .

Proof. LetE be an object ofDQCoh(OX). To prove (1) we have to show thatRf∗E
has quasi-coherent cohomology sheaves. The question is local on S , hence we may assume
S is quasi-compact. Pick N = N(X,S, f) as in Cohomology of Schemes, Lemma 4.5.
Thus Rpf∗F = 0 for all quasi-coherent OX -modules F and all p ≥ N and the same
remains true after base change.

First, assume E is bounded below. We will show (1) and (2) and (3) hold for such E with
our choice of N . In this case we can for example use the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

(Derived Categories, Lemma 21.3), the quasi-coherence ofRpf∗H
q(E), and the vanishing

of Rpf∗H
q(E) for p ≥ N to see that (1), (2), and (3) hold in this case.

Next we prove (2) and (3). Say Hm(E) = 0 for m > 0. Let U ⊂ S be affine open. By
Cohomology of Schemes, Lemma 4.6 and our choice of N we have Hp(f−1(U),F) = 0
for p ≥ N and any quasi-coherentOX -moduleF . Hence we may apply Lemma 3.4 to the
functor Γ(f−1(U),−) to see that

RΓ(U,Rf∗E) = RΓ(f−1(U), E)
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has vanishing cohomology in degrees≥ N . Since this holds for all U ⊂ S affine open we
conclude that Hm(Rf∗E) = 0 for m ≥ N .
Next, we prove (1) in the general case. Recall that there is a distinguished triangle

τ≤−n−1E → E → τ≥−nE → (τ≤−n−1E)[1]
in D(OX), see Derived Categories, Remark 12.4. By (2) we see that Rf∗τ≤−n−1E has
vanishing cohomology sheaves in degrees≥ −n+N . Thus, given an integer q we see that
Rqf∗E is equal to Rqf∗τ≥−nE for some n and the result above applies. �

Lemma 4.2. Let f : X → S be a quasi-separated and quasi-compact morphism of
schemes. LetF• be a complex of quasi-coherentOX -modules each of which is right acyclic
for f∗. Then f∗F• represents Rf∗F• in D(OS).

Proof. There is always a canonical map f∗F• → Rf∗F•. Our task is to show that
this is an isomorphism on cohomology sheaves. As the statement is invariant under shifts
it suffices to show thatH0(f∗(F•))→ R0f∗F• is an isomorphism. The statement is local
on S hence we may assume S affine. By Lemma 4.1 we have R0f∗F• = R0f∗τ≥−nF•

for all sufficiently large n. Thus we may assume F• bounded below. As each Fn is right
f∗-acyclic by assumption we see that f∗F• → Rf∗F• is a quasi-isomorphism by Leray’s
acyclicity lemma (Derived Categories, Lemma 16.7). �

Lemma 4.3. Let X be a quasi-separated and quasi-compact scheme. Let F• be a com-
plex of quasi-coherent OX -modules each of which is right acyclic for Γ(X,−). Then
Γ(X,F•) represents RΓ(X,F•) in D(Γ(X,OX).

Proof. Apply Lemma 4.2 to the canonical morphism X → Spec(Γ(X,OX)). Some
details omitted. �

Lemma 4.4. LetX be a quasi-separated and quasi-compact scheme. For any objectK
of DQCoh(OX) the spectral sequence

Ei,j2 = Hi(X,Hj(K))⇒ Hi+j(X,K)
of Cohomology, Example 29.3 is bounded and converges.

Proof. By the construction of the spectral sequence via Cohomology, Lemma 29.1
using the filtration given by τ≤−pK , we see that suffices to show that given n ∈ Z we
have

Hn(X, τ≤−pK) = 0 for p� 0
and

Hn(X,K) = Hn(X, τ≤−pK) for p� 0
The first follows from Lemma 3.4 applied with F = Γ(X,−) and the bound in Cohomol-
ogy of Schemes, Lemma 4.5. The second holds whenever −p ≤ n for any ringed space
(X,OX) and any K ∈ D(OX). �

Lemma 4.5. Let f : X → S be a quasi-separated and quasi-compact morphism of
schemes. Then Rf∗ : DQCoh(OX)→ DQCoh(OS) commutes with direct sums.

Proof. LetEi be a family of objects ofDQCoh(OX) and setE =
⊕
Ei. We want to

show that the map ⊕
Rf∗Ei −→ Rf∗E

is an isomorphism. We will show it induces an isomorphism on cohomology sheaves
in degree 0 which will imply the lemma. Choose an integer N as in Lemma 4.1. Then
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R0f∗E = R0f∗τ≥−NE and R0f∗Ei = R0f∗τ≥−NEi by the lemma cited. Observe that
τ≥−NE =

⊕
τ≥−NEi. Thus we may assume all of the Ei have vanishing cohomology

sheaves in degrees < −N . Next we use the spectral sequences

Rpf∗H
q(E)⇒ Rp+qf∗E and Rpf∗H

q(Ei)⇒ Rp+qf∗Ei

(Derived Categories, Lemma 21.3) to reduce to the case of a direct sum of quasi-coherent
sheaves. This case is handled by Cohomology of Schemes, Lemma 6.1. �

5. Affine morphisms

In this section we collect some information about pushforward along an affine morphism
of schemes.

Lemma 5.1. Let f : X → S be an affine morphism of schemes. Let F• be a complex
of quasi-coherentOX -modules. Then f∗F• = Rf∗F•.

Proof. Combine Lemma 4.2 with Cohomology of Schemes, Lemma 2.3. An alterna-
tive proof is to work affine locally on S and use Lemma 3.7. �

Lemma 5.2. Let f : X → S be an affine morphism of schemes. ThenRf∗ : DQCoh(OX)→
DQCoh(OS) reflects isomorphisms.

Proof. The statement means that a morphism α : E → F of DQCoh(OX) is an
isomorphism if Rf∗α is an isomorphism. We may check this on cohomology sheaves. In
particular, the question is local on S. Hence we may assume S and thereforeX is affine. In
this case the statement is clear from the description of the derived categoriesDQCoh(OX)
and DQCoh(OS) given in Lemma 3.5. Some details omitted. �

Lemma 5.3. Let f : X → S be an affine morphism of schemes. ForE inDQCoh(OS)
we have Rf∗Lf

∗E = E ⊗L
OS

f∗OX .

Proof. Since f is affine the map f∗OX → Rf∗OX is an isomorphism (Cohomology
of Schemes, Lemma 2.3). There is a canonical map E ⊗L f∗OX = E ⊗L Rf∗OX →
Rf∗Lf

∗E adjoint to the map

Lf∗(E ⊗L Rf∗OX) = Lf∗E ⊗L Lf∗Rf∗OX −→ Lf∗E ⊗L OX = Lf∗E

coming from 1 : Lf∗E → Lf∗E and the canonical map Lf∗Rf∗OX → OX . To check
the map so constructed is an isomorphism we may work locally on S. Hence we may
assume S and thereforeX is affine. In this case the statement is clear from the description
of the derived categories DQCoh(OX) and DQCoh(OS) and the functor Lf∗ given in
Lemmas 3.5 and 3.8. Some details omitted. �

Let Y be a scheme. LetA be a sheaf ofOY -algebras. We will denoteDQCoh(A) the inverse
image of DQCoh(OX) under the restriction functor D(A) → D(OX). In other words,
K ∈ D(A) is in DQCoh(A) if and only if its cohomology sheaves are quasi-coherent
as OX -modules. If A is quasi-coherent itself this is the same as asking the cohomology
sheaves to be quasi-coherent asA-modules, see Morphisms, Lemma 11.6.

Lemma 5.4. Let f : X → Y be an affine morphism of schemes. Then f∗ induces an
equivalence

Φ : DQCoh(OX) −→ DQCoh(f∗OX)
whose composition withDQCoh(f∗OX)→ DQCoh(OY ) isRf∗ : DQCoh(OX)→ DQCoh(OY ).
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Proof. Recall thatRf∗ is computed on an objectK ∈ DQCoh(OX) by choosing a K-
injective complex I• ofOX -modules representingK and taking f∗I•. Thus we let Φ(K)
be the complex f∗I• viewed as a complex of f∗OX -modules. Denote g : (X,OX) →
(Y, f∗OX) the obvious morphism of ringed spaces. Then g is a flat morphism of ringed
spaces (see below for a description of the stalks) and Φ is the restriction ofRg∗ toDQCoh(OX).
We claim that Lg∗ is a quasi-inverse. First, observe that Lg∗ sends DQCoh(f∗OX) into
DQCoh(OX) because g∗ transforms quasi-coherent modules into quasi-coherent modules
(Modules, Lemma 10.4). To finish the proof it suffices to show that the adjunction map-
pings

Lg∗Φ(K) = Lg∗Rg∗K → K and M → Rg∗Lg
∗M = Φ(Lg∗M)

are isomorphisms forK ∈ DQCoh(OX) andM ∈ DQCoh(f∗OX). This is a local question,
hence we may assume Y and therefore X are affine.

Assume Y = Spec(B) andX = Spec(A). Let p = x ∈ Spec(A) = X be a point mapping
to q = y ∈ Spec(B) = Y . Then (f∗OX)y = Aq and OX,x = Ap hence g is flat. Hence
g∗ is exact and Hi(Lg∗M) = g∗Hi(M) for any M in D(f∗OX). For K ∈ DQCoh(OX)
we see that

Hi(Φ(K)) = Hi(Rf∗K) = f∗H
i(K)

by the vanishing of higher direct images (Cohomology of Schemes, Lemma 2.3) and Lemma
3.4 (small detail omitted). Thus it suffice to show that

g∗g∗F → F and G → g∗g
∗F

are isomorphisms whereF is a quasi-coherentOX -module andG is a quasi-coherent f∗OX -
module. This follows from Morphisms, Lemma 11.6. �

6. Cohomology with support in a closed subset

We elaborate on the material in Cohomology, Sections 21 and 34 for schemes and quasi-
coherent modules.

Definition 6.1. Let X be a scheme. Let E be an object of D(OX). Let T ⊂ X be a
closed subset. We sayE is supported on T if the cohomology sheavesHi(E) are supported
on T .

We repeat some of the discussion from Cohomology, Section 34 in the situation of the
definition. Let X be a scheme. Let T ⊂ X be a closed subset. The category of OX -
modules whose support is contained in T is a Serre subcategory of the category of all
OX -modules, see Homology, Definition 10.1 and Modules, Lemma 5.2. In the following
we will denote DT (OX) the strictly full, saturated triangulated subcategory of D(OX)
consisting of objects supported on T , see Derived Categories, Section 17.

In the situation of Definition 6.1 denote i : T → X the inclusion map. Recall from Coho-
mology, Section 34 that in this situation we have a functorRHT : D(OX)→ D(i−1OX)
which is right adjoint to i∗ : D(i−1OX)→ D(OX).

Lemma 6.2. Let X be a scheme. Let T ⊂ X be a closed subset such that X \ T is a
retrocompact open of X . Let i : T → X be the inclusion.

(1) For E in DQCoh(OX) we have i∗RHT (E) in DQCoh,T (OX).
(2) The functor i∗ ◦ RHT : DQCoh(OX) → DQCoh,T (OX) is right adjoint to the

inclusion functor DQCoh,T (OX)→ DQCoh(OX).
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Proof. Set U = X \ T and denote j : U → X the inclusion. By Cohomology,
Lemma 34.6 there is a distinguished triangle

i∗RHT (E)→ E → Rj∗(E|U )→ i∗RHZ(E)[1]

inD(OX). By Lemma 4.1 the complexRj∗(E|U ) has quasi-coherent cohomology sheaves
(this is where we use that U is retrocompact in X). Thus we see that (1) is true. Part (2)
follows from this and the adjointness of functors in Cohomology, Lemma 34.2. �

Lemma 6.3. Let X be a scheme. Let T ⊂ X be a closed subset such that X \ T is a
retrocompact open of X . Then for a family of objects Ei, i ∈ I of DQCoh(OX) we have
RHT (

⊕
Ei) =

⊕
RHT (Ei).

Proof. Set U = X \ T and denote j : U → X the inclusion. By Cohomology,
Lemma 34.6 there is a distinguished triangle

i∗RHT (E)→ E → Rj∗(E|U )→ i∗RHZ(E)[1]

inD(OX) for anyE inD(OX). The functorE 7→ Rj∗(E|U ) commutes with direct sums
on DQCoh(OX) by Lemma 4.5. It follows that the same is true for the functor i∗ ◦RHT
(details omitted). Since i∗ : D(i−1OX) → DT (OX) is an equivalence (Cohomology,
Lemma 34.2) we conclude. �

Remark 6.4. Let X be a scheme. Let f1, . . . , fc ∈ Γ(X,OX). Denote Z ⊂ X the
closed subscheme cut out by f1, . . . , fc. For 0 ≤ p < c and 1 ≤ i0 < . . . < ip ≤ c
we denote Ui0...ip ⊂ X the open subscheme where fi0 . . . fip is invertible. For any OX -
module F we set

Fi0...ip = (Ui0...ip → X)∗(F|Ui0...ip )

In this situation the extended alternating Čech complex is the complex ofOX -modules

(6.4.1) 0→ F →
⊕

i0
Fi0 → . . .→

⊕
i0<...<ip

Fi0...ip → . . .→ F1...c → 0

where F is put in degree 0. The maps are constructed as follows. Given 1 ≤ i0 < . . . <
ip+1 ≤ c and 0 ≤ j ≤ p+ 1 we have the canonical map

Fi0...̂ij ...ip+1
→ Fi0...ip

coming from the inclusion Ui0...ip ⊂ Ui0...̂ij ...ip+1
. The differentials in the extended al-

ternating complex use these canonical maps with sign (−1)j .

Lemma 6.5. With X , f1, . . . , fc ∈ Γ(X,OX), and F as in Remark 6.4 the complex
(6.4.1) restricts to an acyclic complex over X \ Z.

We remark that this lemma holds more generally for any extended alternating Čech com-
plex defined as in Remark 6.4 starting with a finite open coveringX \Z = U1 ∪ . . .∪Uc.

Proof. LetW ⊂ X \Z be an open subset. Evaluating the complex of sheaves (6.4.1)
on W we obtain the complex

F(W )→
⊕

i0
F(Ui0 ∩W )→

⊕
i0<i1

F(Ui0i1 ∩W )→ . . .

In other words, we obtain the extended ordered Čech complex for the covering W =⋃
Ui ∩W and the standard ordering on {1, . . . , c}, see Cohomology, Section 23. By Co-

homology, Lemma 23.7 this complex is homotopic to zero as soon as W is contained in
V (fi) for some 1 ≤ i ≤ c. This finishes the proof. �
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Remark 6.6. LetX , f1, . . . , fc ∈ Γ(X,OX), and F be as in Remark 6.4. Denote F•

the complex (6.4.1). By Lemma 6.5 the cohomology sheaves of F• are supported on Z
hence F• is an object of DZ(OX). On the other hand, the equality F0 = F determines a
canonical mapF• → F inD(OX). As i∗◦RHZ is a right adjoint to the inclusion functor
DZ(OX) → D(OX), see Cohomology, Lemma 34.2, we obtain a canonical commutative
diagram

F•

%%

// F

i∗RHZ(F)

::

in D(OX) functorial in theOX -module F .

Lemma 6.7. WithX , f1, . . . , fc ∈ Γ(X,OX), and F as in Remark 6.4. IfF is quasi-
coherent, then the complex (6.4.1) represents i∗RHZ(F) in DZ(OX).

Proof. Let us denoteF• the complex (6.4.1). The statement of the lemma means that
the map F• → i∗RHZ(F) of Remark 6.6 is an isomorphism. Since F• is in DZ(OX)
(see remark cited), we see that i∗RHZ(F•) = F• by Cohomology, Lemma 34.2. The
morphism Ui0...ip → X is affine as it is given over affine opens of X by inverting the
function fi0 . . . fip . Thus we see that

Fi0...ip = (Ui0...ip → X)∗F|Ui0...ip = R(Ui0...ip → X)∗F|Ui0...ip
by Cohomology of Schemes, Lemma 2.3 and the assumption that F is quasi-coherent. We
conclude that RHZ(Fi0...ip) = 0 by Cohomology, Lemma 34.7. Thus i∗RHZ(Fp) = 0
for p > 0. Putting everything together we obtain

F• = i∗RHZ(F•) = i∗RHZ(F)
as desired. �

Lemma 6.8. Let X be a scheme. Let T ⊂ X be a closed subset which can locally be
cut out by at most c elements of the structure sheaf. ThenHiZ(F) = 0 for i > c and any
quasi-coherentOX -module F .

Proof. This follows immediately from the local description of RHT (F) given in
Lemma 6.7. �

Lemma 6.9. Let X be a scheme. Let T ⊂ X be a closed subset which can locally be
cut out by a Koszul regular sequence having c elements. Then HiZ(F) = 0 for i 6= c for
every flat, quasi-coherentOX -module F .

Proof. By the description of RHZ(F) given in Lemma 6.7 this boils down to the
following algebra statement: given a ring R, a Koszul regular sequence f1, . . . , fc ∈ R,
and a flat R-module M , the extended alternating Čech complex M →

⊕
i0
Mfi0

→⊕
i0<i1

Mfi0fi1
→ . . . → Mf1...fc from More on Algebra, Section 29 only has cohomol-

ogy in degree c. By More on Algebra, Lemma 31.1 we obtain the desired vanishing for the
extended alternating Čech complex ofR. Since the complex forM is obtained by tensor-
ing this with the flat R-module M (More on Algebra, Lemma 29.2) we conclude. �

Remark 6.10. With X , f1, . . . , fc ∈ Γ(X,OX), and F as in Remark 6.4. There is a
canonicalOX |Z -linear map

cf1,...,fc : i∗F −→ HcZ(F)



6. COHOMOLOGY WITH SUPPORT IN A CLOSED SUBSET 3015

functorial in F . Namely, denoting F• the extended alternating Čech complex (6.4.1) we
have the canonical map F• → i∗RHZ(F) of Remark 6.6. This determines a canonical
map

Coker
(⊕

F1...̂i...c → F1...c

)
−→ i∗HcZ(F)

on cohomology sheaves in degree c. Given a local section s ofF we can consider the local
section

s

f1 . . . fc
of F1...c. The class of this section in the cokernel displayed above depends only on s
modulo the image of (f1, . . . , fc) : F⊕c → F . Since i∗i∗F is equal to the cokernel of
(f1, . . . , fc) : F⊕c → F we see that we get an OX -module map i∗i∗F → i∗HcZ(F). As
i∗ is fully faithful we get the map cf1,...,fc .

Example 6.11. Let X = Spec(A) be affine, f1, . . . , fc ∈ A, and let F = M̃ for some
A-module M . The map cf1,...,fc of Remark 6.10 can be described as the map

M/(f1, . . . , fc)M −→ Coker
(⊕

Mf1...f̂i...fc
→Mf1...fc

)
sending the class of s ∈M to the class of s/f1 . . . fc in the cokernel.

Lemma 6.12. With X , f1, . . . , fc ∈ Γ(X,OX), and F as in Remark 6.4. Let aji ∈
Γ(X,OX) for 1 ≤ i, j ≤ c and set gj =

∑
i=1,...,c ajifi. Assume g1, . . . , gc scheme

theoretically cut out Z. If F is quasi-coherent, then

cf1,...,fc = det(aji)cg1,...,gc

where cf1,...,fc and cg1,...,gc are as in Remark 6.10.

Proof. We will prove that cf1,...,fc(s) = det(aij)cg1,...,gc(s) as global sections of
HZ(F) for any s ∈ F(X). This is sufficient since we then obtain the same result for
section over any open subscheme of X . To do this, for 1 ≤ i0 < . . . < ip ≤ c and
1 ≤ j0 < . . . < jq ≤ c we denote Ui0...ip ⊂ X , Vj0...jq ⊂ X , and Wi0...ip,j0...jq ⊂
X the open subscheme where fi0 . . . fip is invertible, gj0 . . . gjq is invertible, and where
fi0 . . . fipgj0 . . . gjq is invertible. We denote Fi0...ip , resp. F ′

j0...jq
F ′′
i0...ip,j0...jq

the push-
forward toX of the restriction ofF to Ui0...ip , resp. Vj0...jq , resp.Wi0...ip,j0...jq . Then we
obtain three extended alternating Čech complexes

F• : F →
⊕

i0
Fi0 →

⊕
i0<i1

Fi0i1 → . . .

and
(F ′)• : F →

⊕
j0
F ′
j0
→
⊕

j0<j1
F ′
j0j1
→ . . .

and

(F ′′)• : F →
⊕

i0
Fi0⊕

⊕
j0
F ′
j0
→
⊕

i0<i1
Fi0i1⊕

⊕
i0,j0
F ′′
i0,j0
⊕
⊕

j0<j1
F ′
j0j1
→ . . .

whose differentials are those used in defining (6.4.1). There are maps of complexes

(F ′′)• → F• and (F ′′)• → (F ′)•

given by the projection maps on the terms (and hence inducing the identity map in degree
0). Observe that by Lemma 6.7 each of these complexes represents i∗RHZ(F) and these
maps represent the identity on this object. Thus it suffices to find an element

σ ∈ Hc((F ′′)•(X))
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mapping to cf1,...,fc(s) and det(aji)cg1,...,gc(s) by these two maps. It turns out we can
explicitly give a cocycle for σ. Namely, we take

σ1...c = s

f1 . . . fc
∈ F1...c(X) and σ′

1...c = det(aji)s
g1 . . . gc

∈ F ′
1...c(X)

and we take

σi0...ip,j0...jc−p−2 = λ(i0 . . . ip, j0 . . . jc−p−2)s
fi0 . . . fipgj0 . . . gjc−p−2

∈ F ′′
i0...ip,j0...jc−p−2

(X)

where λ(i0 . . . ip, j0 . . . jc−p−2) is the coefficient of e1∧ . . .∧ec in the formal expresssion

ei0 ∧ . . . ∧ eip ∧ (aj01e1 + . . .+ aj0cec) ∧ . . . ∧ (ajc−p−21e1 + . . .+ ajc−p−2cec)

To verify that σ is a cocycle, we have to show for 1 ≤ i0 < . . . < ip ≤ c and 1 ≤ j0 <
. . . < jc−p−1 ≤ c that we have

0 =
∑

a=0,...,p
(−1)afiaλ(i0 . . . îa . . . ip, j0 . . . jc−p−1)

+
∑

b=0,...,c−p−1
(−1)p+b+1gjbλ(i0 . . . ip, j0 . . . ĵb . . . jc−p−1)

The easiest way to see this is perhaps to argue that the formal expression

ξ = ei0 ∧ . . . ∧ eip ∧ (aj01e1 + . . .+ aj0cec) ∧ . . . ∧ (ajc−p−11e1 + . . .+ ajc−p−1cec)

is 0 as it is an element of the (c+ 1)st wedge power of the free module on e1, . . . , ec and
that the expression above is the image of ξ under the Koszul differential sending ei → fi.
Some details omitted. �

Lemma 6.13. Let X be a scheme. Let Z → X be a closed immersion of finite pre-
sentation whose conormal sheaf CZ/X is locally free of rank c. Then there is a canonical
map

c : ∧c(CZ/X)∨ ⊗OZ
i∗F −→ HcZ(F)

functorial in the quasi-coherent module F .

Proof. Follows from the construction in Remark 6.10 and the independence of the
choice of generators of the ideal sheaf shown in Lemma 6.12. Some details omitted. �

Remark 6.14. Let g : X ′ → X be a morphism of schemes. Let f1, . . . , fc ∈ Γ(X,OX).
Set f ′

i = g](fi) ∈ Γ(X ′,OX′). Denote Z ⊂ X , resp. Z ′ ⊂ X ′ the closed subscheme cut
out by f1, . . . , fc, resp. f ′

1, . . . , f
′
c. Then Z ′ = Z×X X ′. Denote h : Z ′ → Z the induced

morphism of schemes. Let F be an OX -module. Set F ′ = g∗F . In this setting, if F is
quasi-coherent, then the diagram

(i′)−1OX′ ⊗h−1i−1OX
h−1HcZ(F) // HcZ′(F ′)

h∗i∗F //

cf1,...,fc

OO

(i′)∗F ′

cf′
1,...,f

′
c

OO

is commutative where the top horizonal arrow is the map of Cohomology, Remark 34.12
on cohomology sheaves in degree c. Namely, denote F•, resp. (F ′)• the extended alter-
nating Čech complex constructed in Remark 6.4 using F , f1, . . . , fc, resp. F ′, f ′

1, . . . , f
′
c.
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Note that (F ′)• = g∗F•. Then, without assuming F is quasi-coherent, the diagram

i′∗L(g|Z′)∗RHZ(F) // i′∗RHZ′(Lg∗F)

��
Lg∗i∗RHZ(F) i′∗RHZ′(F ′)

Lg∗(F•)

OO

// (F ′)•

OO

is commutative where g|Z′ : (Z ′, (i′)−1OX′) → (Z, i−1OX) is the induced morphism
of ringed spaces. Here the top horizontal arrow is given in Cohomology, Remark 34.12
as is the explanation for the equal sign. The arrows pointing up are from Remark 6.6.
The lower horizonal arrow is the map Lg∗F• → g∗F• = (F ′)• and the arrow point-
ing down is induced by Lg∗F → g∗F = F ′. The diagram commutes because going
around the diagram both ways we obtain two arrows Lg∗F• → i′∗RHZ′(F ′) whose
composition with i′∗RHZ′(F ′) → F ′ is the canonical map Lg∗F• → F ′. Some de-
tails omitted. Now the commutativity of the first diagram follows by looking at this di-
agram on cohomology sheaves in degree c and using that the construction of the map
i∗F → Coker(

⊕
F1...̂i...c → F1...c) used in Remark 6.10 is compatible with pullbacks.

7. The coherator

Let X be a scheme. The coherator is a functor

QX : Mod(OX) −→ QCoh(OX)

which is right adjoint to the inclusion functor QCoh(OX) → Mod(OX). It exists for
any schemeX and moreover the adjunction mappingQX(F)→ F is an isomorphism for
every quasi-coherent module F , see Properties, Proposition 23.4. Since QX is left exact
(as a right adjoint) we can consider its right derived extension

RQX : D(OX) −→ D(QCoh(OX)).

Since QX is right adjoint to the inclusion functor QCoh(OX) → Mod(OX) we see that
RQX is right adjoint to the canonical functor D(QCoh(OX)) → D(OX) by Derived
Categories, Lemma 30.3.

In this section we will study the functor RQX . In Section 21 we will study the (closely
related) right adjoint to the inclusion functor DQCoh(OX)→ D(OX) (when it exists).

Lemma 7.1. Let f : X → Y be an affine morphism of schemes. Then f∗ defines a
derived functor f∗ : D(QCoh(OX)) → D(QCoh(OY )). This functor has the property
that

D(QCoh(OX))

f∗

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. The functor f∗ : QCoh(OX) → QCoh(OY ) is exact, see Cohomology
of Schemes, Lemma 2.3. Hence f∗ defines a derived functor f∗ : D(QCoh(OX)) →
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D(QCoh(OY )) by simply applying f∗ to any representative complex, see Derived Cate-
gories, Lemma 16.9. The diagram commutes by Lemma 5.1. �

Lemma 7.2. Let f : X → Y be a morphism of schemes. Assume f is quasi-compact,
quasi-separated, and flat. Then, denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))
the right derived functor of f∗ : QCoh(OX) → QCoh(OY ) we have RQY ◦ Rf∗ =
Φ ◦RQX .

Proof. We will prove this by showing thatRQY ◦Rf∗ and Φ◦RQX are right adjoint
to the same functor D(QCoh(OY ))→ D(OX).

Since f is quasi-compact and quasi-separated, we see that f∗ preserves quasi-coherence,
see Schemes, Lemma 24.1. Recall that QCoh(OX) is a Grothendieck abelian category
(Properties, Proposition 23.4). Hence any K in D(QCoh(OX)) can be represented by
a K-injective complex I• of QCoh(OX), see Injectives, Theorem 12.6. Then we can define
Φ(K) = f∗I•.

Since f is flat, the functor f∗ is exact. Hence f∗ defines f∗ : D(OY )→ D(OX) and also
f∗ : D(QCoh(OY )) → D(QCoh(OX)). The functor f∗ = Lf∗ : D(OY ) → D(OX)
is left adjoint to Rf∗ : D(OX) → D(OY ), see Cohomology, Lemma 28.1. Similarly, the
functor f∗ : D(QCoh(OY ))→ D(QCoh(OX)) is left adjoint to Φ : D(QCoh(OX))→
D(QCoh(OY )) by Derived Categories, Lemma 30.3.

Let A be an object of D(QCoh(OY )) and E an object of D(OX). Then

HomD(QCoh(OY ))(A,RQY (Rf∗E)) = HomD(OY )(A,Rf∗E)
= HomD(OX)(f∗A,E)
= HomD(QCoh(OX))(f∗A,RQX(E))
= HomD(QCoh(OY ))(A,Φ(RQX(E)))

This implies what we want. �

Lemma 7.3. Let X = Spec(A) be an affine scheme. Then
(1) QX : Mod(OX) → QCoh(OX) is the functor which sends F to the quasi-

coherentOX -module associated to the A-module Γ(X,F),
(2) RQX : D(OX)→ D(QCoh(OX)) is the functor which sendsE to the complex

of quasi-coherentOX -modules associated to the object RΓ(X,E) of D(A),
(3) restricted to DQCoh(OX) the functor RQX defines a quasi-inverse to (3.0.1).

Proof. The functor QX is the functor

F 7→ ˜Γ(X,F)
by Schemes, Lemma 7.1. This immediately implies (1) and (2). The third assertion follows
from (the proof of) Lemma 3.5. �

At this point we are ready to prove a criterion for when the functor D(QCoh(OX)) →
DQCoh(OX) is an equivalence.

Lemma 7.4. Let X be a quasi-compact and quasi-separated scheme. Suppose that for
every affine open U ⊂ X the right derived functor

Φ : D(QCoh(OU ))→ D(QCoh(OX))
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of the left exact functor j∗ : QCoh(OU )→ QCoh(OX) fits into a commutative diagram

D(QCoh(OU ))

Φ
��

iU
// DQCoh(OU )

Rj∗

��
D(QCoh(OX)) iX // DQCoh(OX)

Then the functor (3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. Let E be an object of DQCoh(OX) and let A be an object of D(QCoh(OX)).
We have to show that the adjunction maps

RQX(iX(A))→ A and E → iX(RQX(E))

are isomorphisms. Consider the hypothesis Hn: the adjunction maps above are isomor-
phisms whenever E and iX(A) are supported (Definition 6.1) on a closed subset of X
which is contained in the union of n affine opens of X . We will prove Hn by induction
on n.

Base case: n = 0. In this case E = 0, hence the map E → iX(RQX(E)) is an isomor-
phism. Similarly iX(A) = 0. Thus the cohomology sheaves of iX(A) are zero. Since
the inclusion functor QCoh(OX) → Mod(OX) is fully faithful and exact, we conclude
that the cohomology objects of A are zero, i.e., A = 0 and RQX(iX(A)) → A is an
isomorphism as well.

Induction step. Suppose that E and iX(A) are supported on a closed subset T of X con-
tained inU1∪ . . .∪Un withUi ⊂ X affine open. SetU = Un. Consider the distinguished
triangles

A→ Φ(A|U )→ A′ → A[1] and E → Rj∗(E|U )→ E′ → E[1]

where Φ is as in the statement of the lemma. Note that E → Rj∗(E|U ) is a quasi-
isomorphism over U = Un. Since iX ◦Φ = Rj∗ ◦ iU by assumption and since iX(A)|U =
iU (A|U ) we see that iX(A)→ iX(Φ(A|U )) is a quasi-isomorphism overU . Hence iX(A′)
andE′ are supported on the closed subset T \U ofX which is contained inU1∪. . .∪Un−1.
By induction hypothesis the statement is true for A′ and E′. By Derived Categories,
Lemma 4.3 it suffices to prove the maps

RQX(iX(Φ(A|U )))→ Φ(A|U ) and Rj∗(E|U )→ iX(RQX(Rj∗E|U ))

are isomorphisms. By assumption and by Lemma 7.2 (the inclusion morphism j : U → X
is flat, quasi-compact, and quasi-separated) we have

RQX(iX(Φ(A|U ))) = RQX(Rj∗(iU (A|U ))) = Φ(RQU (iU (A|U )))

and
iX(RQX(Rj∗(E|U ))) = iX(Φ(RQU (E|U ))) = Rj∗(iU (RQU (E|U )))

Finally, the maps

RQU (iU (A|U ))→ A|U and E|U → iU (RQU (E|U ))

are isomorphisms by Lemma 7.3. The result follows. �
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Proposition 7.5. Let X be a quasi-compact scheme with affine diagonal. Then the
functor (3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)
is an equivalence with quasi-inverse given by RQX .

Proof. Let U ⊂ X be an affine open. Then the morphism U → X is affine by
Morphisms, Lemma 11.11. Thus the assumption of Lemma 7.4 holds by Lemma 7.1 and we
win. �

Lemma 7.6. Let f : X → Y be a morphism of schemes. Assume X and Y are quasi-
compact and have affine diagonal. Then, denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))
the right derived functor of f∗ : QCoh(OX)→ QCoh(OY ) the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

is commutative.

Proof. Observe that the horizontal arrows in the diagram are equivalences of cat-
egories by Proposition 7.5. Hence we can identify these categories (and similarly for
other quasi-compact schemes with affine diagonal). The statement of the lemma is that
the canonical map Φ(K) → Rf∗(K) is an isomorphism for all K in D(QCoh(OX)).
Note that if K1 → K2 → K3 → K1[1] is a distinguished triangle in D(QCoh(OX)) and
the statement is true for two-out-of-three, then it is true for the third.

Let U ⊂ X be an affine open. Since the diagonal of X is affine, the inclusion morphism
j : U → X is affine (Morphisms, Lemma 11.11). Similarly, the composition g = f ◦ j :
U → Y is affine. Let I• be a K-injective complex in QCoh(OU ). Since j∗ : QCoh(OU )→
QCoh(OX) has an exact left adjoint j∗ : QCoh(OX)→ QCoh(OU ) we see that j∗I• is a
K-injective complex in QCoh(OX), see Derived Categories, Lemma 31.9. It follows that

Φ(j∗I•) = f∗j∗I• = g∗I•

By Lemma 7.1 we see that j∗I• representsRj∗I• and g∗I• representsRg∗I•. On the other
hand, we haveRf∗ ◦Rj∗ = Rg∗. Hence f∗j∗I• representsRf∗(j∗I•). We conclude that
the lemma is true for any complex of the form j∗G• with G• a complex of quasi-coherent
modules on U . (Note that if G• → I• is a quasi-isomorphism, then j∗G• → j∗I• is a
quasi-isomorphism as well since j∗ is an exact functor on quasi-coherent modules.)

Let F• be a complex of quasi-coherent OX -modules. Let T ⊂ X be a closed subset such
that the support of Fp is contained in T for all p. We will use induction on the minimal
number n of affine opens U1, . . . , Un such that T ⊂ U1 ∪ . . . ∪ Un. The base case n = 0
is trivial. If n ≥ 1, then set U = U1 and denote j : U → X the open immersion as
above. We consider the map of complexes c : F• → j∗j

∗F•. We obtain two short exact
sequences of complexes:

0→ Ker(c)→ F• → Im(c)→ 0
and

0→ Im(c)→ j∗j
∗F• → Coker(c)→ 0
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The complexes Ker(c) and Coker(c) are supported on T \ U ⊂ U2 ∪ . . . ∪ Un and the
result holds for them by induction. The result holds for j∗j

∗F• by the discussion in the
preceding paragraph. We conclude by looking at the distinguished triangles associated to
the short exact sequences and using the initial remark of the proof. �

Remark 7.7 (Warning). LetX be a quasi-compact scheme with affine diagonal. Even
though we know that D(QCoh(OX)) = DQCoh(OX) by Proposition 7.5 strange things
can happen and it is easy to make mistakes with this material. One pitfall is to carelessly
assume that this equality means derived functors are the same. For example, suppose we
have a quasi-compact open U ⊂ X . Then we can consider the higher right derived func-
tors

Ri(QCoh)Γ(U,−) : QCoh(OX)→ Ab
of the left exact functor Γ(U,−). Since this is a universal δ-functor, and since the functors
Hi(U,−) (defined for all abelian sheaves onX) restricted to QCoh(OX) form a δ-functor,
we obtain canonical tranformations

ti : Ri(QCoh)Γ(U,−)→ Hi(U,−).
These transformations aren’t in general isomorphisms even if X = Spec(A) is affine!
Namely, we have R1(QCoh)Γ(U, Ĩ) = 0 if I an injective A-module by construction
of right derived functors and the equivalence of QCoh(OX) and ModA. But Examples,
Lemma 46.2 shows there exists A, I , and U such that H1(U, Ĩ) 6= 0.

8. The coherator for Noetherian schemes

In the case of Noetherian schemes we can use the following lemma.

Lemma 8.1. LetX be a Noetherian scheme. LetJ be an injective object of QCoh(OX).
Then J is a flasque sheaf ofOX -modules.

Proof. Let U ⊂ X be an open subset and let s ∈ J (U) be a section. Let I ⊂ OX
be the quasi-coherent sheaf of ideals defining the reduced induced scheme structure on
X \U (see Schemes, Definition 12.5). By Cohomology of Schemes, Lemma 10.5 the section
s corresponds to a map σ : In → J for some n. As J is an injective object of QCoh(OX)
we can extend σ to a map s̃ : OX → J . Then s̃ corresponds to a global section of J
restricting to s. �

Lemma 8.2. Let f : X → Y be a morphism of Noetherian schemes. Then f∗ on quasi-
coherent sheaves has a right derived extension Φ : D(QCoh(OX)) → D(QCoh(OY ))
such that the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. Since X and Y are Noetherian schemes the morphism is quasi-compact and
quasi-separated (see Properties, Lemma 5.4 and Schemes, Remark 21.18). Thus f∗ preserve
quasi-coherence, see Schemes, Lemma 24.1. Next, let K be an object of D(QCoh(OX)).
Since QCoh(OX) is a Grothendieck abelian category (Properties, Proposition 23.4), we
can represent K by a K-injective complex I• such that each In is an injective object of
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QCoh(OX), see Injectives, Theorem 12.6. Thus we see that the functor Φ is defined by
setting

Φ(K) = f∗I•

where the right hand side is viewed as an object ofD(QCoh(OY )). To finish the proof of
the lemma it suffices to show that the canonical map

f∗I• −→ Rf∗I•

is an isomorphism in D(OY ). To see this by Lemma 4.2 it suffices to show that In is
right f∗-acyclic for all n ∈ Z. This is true because In is flasque by Lemma 8.1 and flasque
modules are right f∗-acyclic by Cohomology, Lemma 12.5. �

Proposition 8.3. Let X be a Noetherian scheme. Then the functor (3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)
is an equivalence with quasi-inverse given by RQX .

Proof. This follows from Lemma 7.4 and Lemma 8.2. �

9. Koszul complexes

Let A be a ring and let f1, . . . , fr be a sequence of elements of A. We have defined the
Koszul complexK•(f1, . . . , fr) in More on Algebra, Definition 28.2. It is a chain complex
sitting in degrees r, . . . , 0. We turn this into a cochain complexK•(f1, . . . , fr) by setting
K−n(f1, . . . , fr) = Kn(f1, . . . , fr) and using the same differentials. In the rest of this
section all the complexes will be cochain complexes.

We define a complex I•(f1, . . . , fr) such that we have a distinguished triangle

I•(f1, . . . , fr)→ A→ K•(f1, . . . , fr)→ I•(f1, . . . , fr)[1]
in K(A). In other words, we set

Ii(f1, . . . , fr) =
{
Ki−1(f1, . . . , fr) if i ≤ 0

0 else

and we use the negative of the differential on K•(f1, . . . , fr). The maps in the distin-
guished triangle are the obvious ones. Note that I0(f1, . . . , fr) = A⊕r → A is given by
multiplication by fi on the ith factor. Hence I•(f1, . . . , fr)→ A factors as

I•(f1, . . . , fr)→ I → A

where I = (f1, . . . , fr). In fact, there is a short exact sequence

0→ H−1(K•(f1, . . . , fs))→ H0(I•(f1, . . . , fs))→ I → 0
and for every i < 0 we have Hi(I•(f1, . . . , fr)) = Hi−1(K•(f1, . . . , fr). Observe that
given a second sequence g1, . . . , gr of elements of A there are canonical maps

I•(f1g1, . . . , frgr)→ I•(f1, . . . , fr) and K•(f1g1, . . . , frgr)→ K•(f1, . . . , fr)
compatible with the maps described above. The first of these maps is given by multi-
plication by gi on the ith summand of I0(f1g1, . . . , frgr) = A⊕r. In particular, given
f1, . . . , fr we obtain an inverse system of complexes

(9.0.1) I•(f1, . . . , fr)← I•(f2
1 , . . . , f

2
r )← I•(f3

1 , . . . , f
3
r )← . . .

which will play an important role in that which is to follow. To easily formulate the
following lemmas we fix some notation.
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Situation 9.1. HereA is a ring and f1, . . . , fr is a sequence of elements ofA. We set
X = Spec(A) and U = D(f1) ∪ . . . ∪D(fr) ⊂ X . We denote U : U =

⋃
i=1,...,rD(fi)

the given open covering of U .

Our first lemma is that the complexes above can be used to compute the cohomology of
quasi-coherent sheaves onU . Suppose given a complex I• ofA-modules and anA-module
M . Then we define HomA(I•,M) to be the complex with nth term HomA(I−n,M) and
differentials given as the contragredients of the differentials on I•.

Lemma 9.2. In Situation 9.1. Let M be an A-module and denote F the associated
OX -module. Then there is a canonical isomorphism of complexes

colime HomA(I•(fe1 , . . . , fer ),M) −→ Č•
alt(U ,F)

functorial in M .

Proof. Recall that the alternating Čech complex is the subcomplex of the usual
Čech complex given by alternating cochains, see Cohomology, Section 23. As usual we
view a p-cochain in Č•

alt(U ,F) as an alternating function s on {1, . . . , r}p+1 whose value
si0...ip at (i0, . . . , ip) lies in Mfi0 ...fip

= F(Ui0...ip). On the other hand, a p-cochain t in
HomA(I•(fe1 , . . . , fer ),M) is given by a map t : ∧p+1(A⊕r)→ M . Write [i] ∈ A⊕r for
the ith basis element and write

[i0, . . . , ip] = [i0] ∧ . . . ∧ [ip] ∈ ∧p+1(A⊕r)

Then we send t as above to s with

si0...ip = t([i0, . . . , ip])
fei0 . . . f

e
ip

It is clear that s so defined is an alternating cochain. The construction of this map is
compatible with the transition maps of the system as the transition map

I•(fe1 , . . . , fer )← I•(fe+1
1 , . . . , fe+1

r ),

of the (9.0.1) sends [i0, . . . , ip] to fi0 . . . fip [i0, . . . , ip]. It is clear from the description of
the localizations Mfi0 ...fip

in Algebra, Lemma 9.9 that these maps define an isomorphism
of cochain modules in degree p in the limit. To finish the proof we have to show that the
map is compatible with differentials. To see this recall that

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip

=
∑p+1

j=0
(−1)j t([i0, . . . , îj , . . . ip+1])

fei0 . . . f̂
e
ij
. . . feip+1

On the other hand, we have

d(t)([i0, . . . , ip+1])
fei0 . . . f

e
ip+1

= t(d[i0, . . . , ip+1])
fei0 . . . f

e
ip+1

=
∑
j(−1)jfeij t([i0, . . . , îj , . . . ip+1])

fei0 . . . f
e
ip+1

The two formulas agree by inspection. �
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Suppose given a finite complex I• of A-modules and a complex of A-modules M•. We
obtain a double complex H•,• = HomA(I•,M•) where Hp,q = HomA(Ip,Mq). The
first differential comes from the differential on HomA(I•,Mq) and the second from the
differential on M•. Associated to this double complex is the total complex with degree n
term given by ⊕

p+q=n
HomA(Ip,Mq)

and differential as in Homology, Definition 18.3. As our complex I• has only finitely many
nonzero terms, the direct sum displayed above is finite. The conventions for taking the
total complex associated to a Čech complex of a complex are as in Cohomology, Section
25.

Lemma 9.3. In Situation 9.1. Let M• be a complex of A-modules and denote F• the
associated complex ofOX -modules. Then there is a canonical isomorphism of complexes

colime Tot(HomA(I•(fe1 , . . . , fer ),M•)) −→ Tot(Č•
alt(U ,F•))

functorial in M•.

Proof. Immediate from Lemma 9.2 and our conventions for taking associated total
complexes. �

Lemma 9.4. In Situation 9.1. Let F• be a complex of quasi-coherent OX -modules.
Then there is a canonical isomorphism

Tot(Č•
alt(U ,F•)) −→ RΓ(U,F•)

in D(A) functorial in F•.

Proof. Let B be the set of affine opens of U . Since the higher cohomology groups of
a quasi-coherent module on an affine scheme are zero (Cohomology of Schemes, Lemma
2.2) this is a special case of Cohomology, Lemma 40.2. �

In Situation 9.1 denote Ie the object ofD(OX) corresponding to the complex ofA-modules
I•(fe1 , . . . , fer ) via the equivalence of Lemma 3.5. The maps (9.0.1) give a system

I1 ← I2 ← I3 ← . . .

Moreover, there is a compatible system of maps Ie → OX which become isomorphisms
when restricted to U . Thus we see that for every object E of D(OX) there is a canonical
map

(9.4.1) colime HomD(OX)(Ie, E) −→ H0(U,E)
constructed by sending a map Ie → E to its restriction toU and using that HomD(OU )(OU , E|U ) =
H0(U,E).

Proposition 9.5. In Situation 9.1. For every objectE ofDQCoh(OX) the map (9.4.1)
is an isomorphism.

Proof. By Lemma 3.5 we may assume thatE is given by a complex of quasi-coherent
sheaves F•. Let M• = Γ(X,F•) be the corresponding complex of A-modules. By Lem-
mas 9.3 and 9.4 we have quasi-isomorphisms

colime Tot(HomA(I•(fe1 , . . . , fer ),M•)) −→ Tot(Č•
alt(U ,F•)) −→ RΓ(U,F•)

Taking H0 on both sides we obtain

colime HomD(A)(I•(fe1 , . . . , fer ),M•) = H0(U,E)
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Since HomD(A)(I•(fe1 , . . . , fer ),M•) = HomD(OX)(Ie, E) by Lemma 3.5 the lemma fol-
lows. �

In Situation 9.1 denote Ke the object of D(OX) corresponding to the complex of A-
modules K•(fe1 , . . . , fer ) via the equivalence of Lemma 3.5. Thus we have distinguished
triangles

Ie → OX → Ke → Ie[1]
and a system

K1 ← K2 ← K3 ← . . .

compatible with the system (Ie). Moreover, there is a compatible system of maps

Ke → H0(Ke) = OX/(fe1 , . . . , fer )

Lemma 9.6. In Situation 9.1. Let E be an object of DQCoh(OX). Assume that
Hi(E)|U = 0 for i = −r+ 1, . . . , 0. Then given s ∈ H0(X,E) there exists an e ≥ 0 and
a morphism Ke → E such that s is in the image of H0(X,Ke)→ H0(X,E).

Proof. Since U is covered by r affine opens we have Hj(U,F) = 0 for j ≥ r and
any quasi-coherent module (Cohomology of Schemes, Lemma 4.2). By Lemma 3.4 we see
that H0(U,E) is equal to H0(U, τ≥−r+1E). There is a spectral sequence

Hj(U,Hi(τ≥−r+1E))⇒ Hi+j(U, τ≥−NE)
see Derived Categories, Lemma 21.3. Hence H0(U,E) = 0 by our assumed vanishing of
cohomology sheaves ofE. We conclude that s|U = 0. Think of s as a morphismOX → E
in D(OX). By Proposition 9.5 the composition Ie → OX → E is zero for some e. By
the distinguished triangle Ie → OX → Ke → Ie[1] we obtain a morphismKe → E such
that s is the compositionOX → Ke → E. �

10. Pseudo-coherent and perfect complexes

In this section we make the connection between the general notions defined in Cohomol-
ogy, Sections 46, 47, 48, and 49 and the corresponding notions for complexes of modules
in More on Algebra, Sections 64, 66, and 74.

Lemma 10.1. Let X be a scheme. If E is an m-pseudo-coherent object of D(OX),
then Hi(E) is a quasi-coherent OX -module for i > m and Hm(E) is a quotient of a
quasi-coherentOX -module. If E is pseudo-coherent, then E is an object of DQCoh(OX).

Proof. Locally on X there exists a strictly perfect complex E• such that Hi(E) is
isomorphic toHi(E•) for i > m andHm(E) is a quotient ofHm(E•). The sheaves E i are
direct summands of finite free modules, hence quasi-coherent. The lemma follows. �

Lemma 10.2. Let X = Spec(A) be an affine scheme. Let M• be a complex of A-
modules and let E be the corresponding object of D(OX). Then E is an m-pseudo-
coherent (resp. pseudo-coherent) as an object of D(OX) if and only if M• is m-pseudo-
coherent (resp. pseudo-coherent) as a complex of A-modules.

Proof. It is immediate from the definitions that if M• is m-pseudo-coherent, so is
E. To prove the converse, assume E is m-pseudo-coherent. As X = Spec(A) is quasi-
compact with a basis for the topology given by standard opens, we can find a standard
open covering X = D(f1) ∪ . . . ∪ D(fn) and strictly perfect complexes E•

i on D(fi)
and maps αi : E•

i → E|Ui inducing isomorphisms on Hj for j > m and surjections on
Hm. By Cohomology, Lemma 46.8 after refining the open covering we may assume αi
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is given by a map of complexes E•
i → M̃•|Ui for each i. By Modules, Lemma 14.6 the

terms Eni are finite locally free modules. Hence after refining the open covering we may
assume each Eni is a finite free OUi -module. From the definition it follows that M•

fi
is an

m-pseudo-coherent complex ofAfi -modules. We conclude by applying More on Algebra,
Lemma 64.14.

The case “pseudo-coherent” follows from the fact that E is pseudo-coherent if and only if
E ism-pseudo-coherent for all m (by definition) and the same is true forM• by More on
Algebra, Lemma 64.5. �

Lemma 10.3. LetX be a Noetherian scheme. LetE be an object ofDQCoh(OX). For
m ∈ Z the following are equivalent

(1) Hi(E) is coherent for i ≥ m and zero for i� 0, and
(2) E is m-pseudo-coherent.

In particular, E is pseudo-coherent if and only if E is an object of D−
Coh(OX).

Proof. AsX is quasi-compact we see that in both (1) and (2) the objectE is bounded
above. Thus the question is local onX and we may assumeX is affine. SayX = Spec(A)
for some Noetherian ring A. In this case E corresponds to a complex of A-modules M•

by Lemma 3.5. By Lemma 10.2 we see that E is m-pseudo-coherent if and only if M• is
m-pseudo-coherent. On the other hand, Hi(E) is coherent if and only if Hi(M•) is a
finiteA-module (Properties, Lemma 16.1). Thus the result follows from More on Algebra,
Lemma 64.17. �

Lemma 10.4. Let X = Spec(A) be an affine scheme. Let M• be a complex of A-
modules and let E be the corresponding object of D(OX). Then

(1) E has tor amplitude in [a, b] if and only if M• has tor amplitude in [a, b].
(2) E has finite tor dimension if and only if M• has finite tor dimension.

Proof. Part (2) follows trivially from part (1). In the proof of (1) we will use the
equivalenceD(A) = DQCoh(X) of Lemma 3.5 without further mention. AssumeM• has
tor amplitude in [a, b]. ThenK• is isomorphic inD(A) to a complexK• of flatA-modules
with Ki = 0 for i 6∈ [a, b], see More on Algebra, Lemma 66.3. Then E is isomorphic
to K̃•. Since each K̃i is a flat OX -module, we see that E has tor amplitude in [a, b] by
Cohomology, Lemma 48.3.

Assume that E has tor amplitude in [a, b]. Then E is bounded whence M• is in K−(A).
Thus we may replaceM• by a bounded above complex ofA-modules. We may even choose
a projective resolution and assume thatM• is a bounded above complex of freeA-modules.
Then for any A-module N we have

E ⊗L
OX

Ñ ∼= M̃• ⊗L
OX

Ñ ∼= ˜M• ⊗A N

in D(OX). Thus the vanishing of cohomology sheaves of the left hand side implies M•

has tor amplitude in [a, b]. �

Lemma 10.5. Let f : X → S be a morphism of affine schemes corresponding to the
ring map R → A. Let M• be a complex of A-modules and let E be the corresponding
object of D(OX). Then

(1) E as an object ofD(f−1OS) has tor amplitude in [a, b] if and only ifM• has tor
amplitude in [a, b] as an object of D(R).
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(2) E locally has finite tor dimension as an object of D(f−1OS) if and only if M•

has finite tor dimension as an object of D(R).

Proof. Consider a prime q ⊂ A lying over p ⊂ R. Let x ∈ X and s = f(x) ∈ S be
the corresponding points. Then (f−1OS)x = OS,s = Rp andEx = M•

q . Keeping this in
mind we can see the equivalence as follows.
If M• has tor amplitude in [a, b] as a complex of R-modules, then the same is true for the
localization of M• at any prime of A. Then we conclude by Cohomology, Lemma 48.5
thatE has tor amplitude in [a, b] as a complex of sheaves of f−1OS-modules. Conversely,
assume that E has tor amplitude in [a, b] as an object of D(f−1OS). We conclude (using
the last cited lemma) that M•

q has tor amplitude in [a, b] as a complex of Rp-modules for
every prime q ⊂ A lying over p ⊂ R. By More on Algebra, Lemma 66.15 we find thatM•

has tor amplitude in [a, b] as a complex of R-modules. This finishes the proof of (1).
Since X is quasi-compact, if E locally has finite tor dimension as a complex of f−1OS-
modules, then actually E has tor amplitude in [a, b] for some a, b as a complex of f−1OS-
modules. Thus (2) follows from (1). �

Lemma 10.6. Let X be a quasi-separated scheme. Let E be an object of DQCoh(OX).
Let a ≤ b. The following are equivalent

(1) E has tor amplitude in [a, b], and
(2) for all F in QCoh(OX) we have Hi(E ⊗L

OX
F) = 0 for i 6∈ [a, b].

Proof. It is clear that (1) implies (2). Assume (2). Let U ⊂ X be an affine open. As
X is quasi-separated the morphism j : U → X is quasi-compact and separated, hence j∗
transforms quasi-coherent modules into quasi-coherent modules (Schemes, Lemma 24.1).
Thus the functor QCoh(OX)→ QCoh(OU ) is essentially surjective. It follows that con-
dition (2) implies the vanishing of Hi(E|U ⊗L

OU
G) for i 6∈ [a, b] for all quasi-coherent

OU -modules G. Write U = Spec(A) and let M• be the complex of A-modules corre-
sponding to E|U by Lemma 3.5. We have just shown that M• ⊗L

A N has vanishing coho-
mology groups outside the range [a, b], in other words M• has tor amplitude in [a, b]. By
Lemma 10.4 we conclude thatE|U has tor amplitude in [a, b]. This proves the lemma. �

Lemma 10.7. Let X = Spec(A) be an affine scheme. Let M• be a complex of A-
modules and let E be the corresponding object of D(OX). Then E is a perfect object of
D(OX) if and only if M• is perfect as an object of D(A).

Proof. This is a logical consequence of Lemmas 10.2 and 10.4, Cohomology, Lemma
49.5, and More on Algebra, Lemma 74.2. �

As a consequence of our description of pseudo-coherent complexes on schemes we can
prove certain internal homs are quasi-coherent.

Lemma 10.8. Let X be a scheme.
(1) IfL is inD+

QCoh(OX) andK inD(OX) is pseudo-coherent, thenRHom(K,L)
is in DQCoh(OX) and locally bounded below.

(2) If L is in DQCoh(OX) and K in D(OX) is perfect, then RHom(K,L) is in
DQCoh(OX).

(3) If X = Spec(A) is affine and K,L ∈ D(A) then

RHom(K̃, L̃) = ˜RHomA(K,L)
in the following two cases
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(a) K is pseudo-coherent and L is bounded below,
(b) K is perfect and L arbitrary.

(4) If X = Spec(A) and K,L are in D(A), then the nth cohomology sheaf of
RHom(K̃, L̃) is the sheaf associated to the presheaf

X ⊃ D(f) 7−→ ExtnAf (K ⊗A Af , L⊗A Af )

for f ∈ A.

Proof. The construction of the internal hom in the derived category of OX com-
mutes with localization (see Cohomology, Section 42). Hence to prove (1) and (2) we may
replace X by an affine open. By Lemmas 3.5, 10.2, and 10.7 in order to prove (1) and (2) it
suffices to prove (3).

Part (3) follows from the computation of the internal hom of Cohomology, Lemma 46.11
by representingK by a bounded above (resp. finite) complex of finite projectiveA-modules
and L by a bounded below (resp. arbitrary) complex of A-modules.

To prove (4) recall that on any ringed space the nth cohomology sheaf of RHom(A,B)
is the sheaf associated to the presheaf

U 7→ HomD(U)(A|U , B|U [n]) = ExtnD(OU )(A|U , B|U )

See Cohomology, Section 42. On the other hand, the restriction of K̃ to a principal open
D(f) is the image ofK⊗AAf and similarly forL. Hence (4) follows from the equivalence
of categories of Lemma 3.5. �

Lemma 10.9. Let X be a scheme. Let K,L,M be objects of DQCoh(OX). The map

K ⊗L
OX

RHom(M,L) −→ RHom(M,K ⊗L
OX

L)
of Cohomology, Lemma 42.6 is an isomorphism in the following cases

(1) M perfect, or
(2) K is perfect, or
(3) M is pseudo-coherent, L ∈ D+(OX), and K has finite tor dimension.

Proof. Lemma 10.8 reduces cases (1) and (3) to the affine case which is treated in
More on Algebra, Lemma 98.3. (You also have to use Lemmas 10.2, 10.7, and 10.4 to do
the translation into algebra.) If K is perfect but no other assumptions are made, then we
do not know that either side of the arrow is in DQCoh(OX) but the result is still true
because we can work locally and reduce to the case thatK is a finite complex of finite free
modules in which case it is clear. �

11. Derived category of coherent modules

Let X be a locally Noetherian scheme. In this case the category Coh(OX) ⊂ Mod(OX)
of coherent OX -modules is a weak Serre subcategory, see Homology, Section 10 and Co-
homology of Schemes, Lemma 9.2. Denote

DCoh(OX) ⊂ D(OX)
the subcategory of complexes whose cohomology sheaves are coherent, see Derived Cate-
gories, Section 17. Thus we obtain a canonical functor

(11.0.1) D(Coh(OX)) −→ DCoh(OX)
see Derived Categories, Equation (17.1.1).
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Lemma 11.1. Let X be a Noetherian scheme. Then the functor
D−(Coh(OX)) −→ D−

Coh(OX)(QCoh(OX))

is an equivalence.

Proof. Observe that Coh(OX) ⊂ QCoh(OX) is a Serre subcategory, see Homology,
Definition 10.1 and Lemma 10.2 and Cohomology of Schemes, Lemmas 9.2 and 9.3. On the
other hand, if G → F is a surjection from a quasi-coherentOX -module to a coherentOX -
module, then there exists a coherent submodule G′ ⊂ G which surjects onto F . Namely,
we can write G as the filtered union of its coherent submodules by Properties, Lemma 22.3
and then one of these will do the job. Thus the lemma follows from Derived Categories,
Lemma 17.4. �

Proposition 11.2. Let X be a Noetherian scheme. Then the functors
D−(Coh(OX)) −→ D−

Coh(OX) and Db(Coh(OX)) −→ Db
Coh(OX)

are equivalences.

Proof. Consider the commutative diagram

D−(Coh(OX)) //

��

D−
Coh(OX)

��
D−(QCoh(OX)) // D−

QCoh(OX)

By Lemma 11.1 the left vertical arrow is fully faithful. By Proposition 8.3 the bottom
arrow is an equivalence. By construction the right vertical arrow is fully faithful. We
conclude that the top horizontal arrow is fully faithful. If K is an object of D−

Coh(OX)
then the object K ′ of D−(QCoh(OX)) which corresponds to it by Proposition 8.3 will
have coherent cohomology sheaves. Hence K ′ is in the essential image of the left vertical
arrow by Lemma 11.1 and we find that the top horizontal arrow is essentially surjective.
This finishes the proof for the bounded above case. The bounded case follows immediately
from the bounded above case. �

Lemma 11.3. LetS be a Noetherian scheme. Let f : X → S be a morphism of schemes
which is locally of finite type. Let E be an object of Db

Coh(OX) such that the support of
Hi(E) is proper over S for all i. Then Rf∗E is an object of Db

Coh(OS).

Proof. Consider the spectral sequence
Rpf∗H

q(E)⇒ Rp+qf∗E

see Derived Categories, Lemma 21.3. By assumption and Cohomology of Schemes, Lemma
26.10 the sheaves Rpf∗H

q(E) are coherent. Hence Rp+qf∗E is coherent, i.e., Rf∗E ∈
DCoh(OS). Boundedness from below is trivial. Boundedness from above follows from
Cohomology of Schemes, Lemma 4.5 or from Lemma 4.1. �

Lemma 11.4. LetS be a Noetherian scheme. Let f : X → S be a morphism of schemes
which is locally of finite type. Let E be an object of D+

Coh(OX) such that the support of
Hi(E) is proper over S for all i. Then Rf∗E is an object of D+

Coh(OS).

Proof. The proof is the same as the proof of Lemma 11.3. You can also deduce it from
Lemma 11.3 by considering what the exact functorRf∗ does to the distinguished triangles
τ≤aE → E → τ≥a+1E → τ≤aE[1]. �
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Lemma 11.5. Let X be a locally Noetherian scheme. If L is in D+
Coh(OX) and K in

D−
Coh(OX), then RHom(K,L) is in D+

Coh(OX).

Proof. It suffices to prove this when X is the spectrum of a Noetherian ring A. By
Lemma 10.3 we see that K is pseudo-coherent. Then we can use Lemma 10.8 to translate
the problem into the following algebra problem: for L ∈ D+

Coh(A) and K in D−
Coh(A),

then RHomA(K,L) is in D+
Coh(A). Since L is bounded below and K is bounded below

there is a convergent spectral sequence

ExtpA(K,Hq(L))⇒ Extp+q
A (K,L)

and there are convergent spectral sequences

ExtiA(H−j(K),Hq(L))⇒ Exti+jA (K,Hq(L))

See Injectives, Remarks 13.9 and 13.11. This finishes the proof as the modules ExtpA(M,N)
are finite for finite A-modules M , N by Algebra, Lemma 71.9. �

Lemma 11.6. Let X be a Noetherian scheme. Let E in D(OX) be perfect. Then
(1) E is in Db

Coh(OX),
(2) if L is in DCoh(OX) then E ⊗L

OX
L and RHomOX

(E,L) are in DCoh(OX),
(3) if L is in Db

Coh(OX) then E ⊗L
OX

L and RHomOX
(E,L) are in Db

Coh(OX),
(4) if L is in D+

Coh(OX) then E ⊗L
OX

L and RHomOX
(E,L) are in D+

Coh(OX),
(5) if L is in D−

Coh(OX) then E ⊗L
OX

L and RHomOX
(E,L) are in D−

Coh(OX).

Proof. Since X is quasi-compact, each of these statements can be checked over the
members of any open covering ofX . Thus we may assume E is represented by a bounded
complex E• of finite free modules, see Cohomology, Lemma 49.3. In this case each of the
statements is clear as bothRHomOX

(E,L) andE⊗L
OX

L can be computed on the level of
complexes using E•, see Cohomology, Lemmas 46.9 and 26.9. Some details omitted. �

Lemma 11.7. LetA be a Noetherian ring. LetX be a proper scheme overA. For L in
D+

Coh(OX) and K in D−
Coh(OX), the A-modules ExtnOX

(K,L) are finite.

Proof. Recall that

ExtnOX
(K,L) = Hn(X,RHomOX

(K,L)) = Hn(Spec(A), Rf∗RHomOX
(K,L))

see Cohomology, Lemma 42.1 and Cohomology, Section 13. Thus the result follows from
Lemmas 11.5 and 11.4. �

Lemma 11.8. Let X be a locally Noetherian regular scheme. Then every object of
Db

Coh(OX) is perfect. IfX is quasi-compact, i.e., Noetherian regular, then conversely every
perfect object of D(OX) is in Db

Coh(OX).

Proof. Let K be an object of Db
Coh(OX). To check that K is perfect, we may work

affine locally on X (see Cohomology, Section 49). Then K is perfect by Lemma 10.7 and
More on Algebra, Lemma 74.14. The converse is Lemma 11.6. �

12. Descent finiteness properties of complexes

This section is the analogue of Descent, Section 7 for objects of the derived category of a
scheme. The easiest such result is probably the following.
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Lemma 12.1. Let f : X → Y be a surjective flat morphism of schemes (or more
generally locally ringed spaces). LetE ∈ D(OY ). Let a, b ∈ Z. ThenE has tor-amplitude
in [a, b] if and only if Lf∗E has tor-amplitude in [a, b].

Proof. Pullback always preserves tor-amplitude, see Cohomology, Lemma 48.4. We
may check tor-amplitude in [a, b] on stalks, see Cohomology, Lemma 48.5. A flat local
ring homomorphism is faithfully flat by Algebra, Lemma 39.17. Thus the result follows
from More on Algebra, Lemma 66.17. �

Lemma 12.2. Let {fi : Xi → X} be an fpqc covering of schemes. LetE ∈ DQCoh(OX).
Letm ∈ Z. ThenE ism-pseudo-coherent if and only if eachLf∗

i E ism-pseudo-coherent.

Proof. Pullback always preservesm-pseudo-coherence, see Cohomology, Lemma 47.3.
Conversely, assume that Lf∗

i E is m-pseudo-coherent for all i. Let U ⊂ X be an affine
open. It suffices to prove thatE|U ism-pseudo-coherent. Since {fi : Xi → X} is an fpqc
covering, we can find finitely many affine open Vj ⊂ Xa(j) such that fa(j)(Vj) ⊂ U and
U =

⋃
fa(j)(Vj). Set V =

∐
Vi. Thus we may replace X by U and {fi : Xi → X} by

{V → U} and assume that X is affine and our covering is given by a single surjective flat
morphism {f : Y → X} of affine schemes. In this case the result follows from More on
Algebra, Lemma 64.15 via Lemmas 3.5 and 10.2. �

Lemma 12.3. Let {fi : Xi → X} be an fppf covering of schemes. Let E ∈ D(OX).
Letm ∈ Z. ThenE ism-pseudo-coherent if and only if eachLf∗

i E ism-pseudo-coherent.

Proof. Pullback always preservesm-pseudo-coherence, see Cohomology, Lemma 47.3.
Conversely, assume that Lf∗

i E is m-pseudo-coherent for all i. Let U ⊂ X be an affine
open. It suffices to prove that E|U is m-pseudo-coherent. Since {fi : Xi → X} is an fppf
covering, we can find finitely many affine open Vj ⊂ Xa(j) such that fa(j)(Vj) ⊂ U and
U =

⋃
fa(j)(Vj). Set V =

∐
Vi. Thus we may replace X by U and {fi : Xi → X} by

{V → U} and assume that X is affine and our covering is given by a single surjective flat
morphism {f : Y → X} of finite presentation.
Since f is flat the derived functorLf∗ is just given by f∗ and f∗ is exact. HenceHi(Lf∗E) =
f∗Hi(E). Since Lf∗E is m-pseudo-coherent, we see that Lf∗E ∈ D−(OY ). Since f is
surjective and flat, we see that E ∈ D−(OX). Let i ∈ Z be the largest integer such that
Hi(E) is nonzero. If i < m, then we are done. Otherwise, f∗Hi(E) is a finite type
OY -module by Cohomology, Lemma 47.9. Then by Descent, Lemma 7.2 theOX -module
Hi(E) is of finite type. Thus, after replacing X by the members of a finite affine open
covering, we may assume there exists a map

α : O⊕n
X [−i] −→ E

such that Hi(α) is a surjection. Let C be the cone of α in D(OX). Pulling back to Y
and using Cohomology, Lemma 47.4 we find thatLf∗C ism-pseudo-coherent. Moreover
Hj(C) = 0 for j ≥ i. Thus by induction on i we see that C ism-pseudo-coherent. Using
Cohomology, Lemma 47.4 again we conclude. �

Lemma 12.4. Let {fi : Xi → X} be an fpqc covering of schemes. Let E ∈ D(OX).
Then E is perfect if and only if each Lf∗

i E is perfect.

Proof. Pullback always preserves perfect complexes, see Cohomology, Lemma 49.6.
Conversely, assume that Lf∗

i E is perfect for all i. Then the cohomology sheaves of each
Lf∗

i E are quasi-coherent, see Lemma 10.1 and Cohomology, Lemma 49.5. Since the mor-
phisms fi is flat we see that Hp(Lf∗

i E) = f∗
i H

p(E). Thus the cohomology sheaves of
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E are quasi-coherent by Descent, Proposition 5.2. Having said this the lemma follows
formally from Cohomology, Lemma 49.5 and Lemmas 12.1 and 12.2. �

Lemma 12.5. Let i : Z → X be a morphism of ringed spaces such that i is a closed
immersion of underlying topological spaces and such that i∗OZ is pseudo-coherent as an
OX -module. Let E ∈ D(OZ). Then E is m-pseudo-coherent if and only if Ri∗E is
m-pseudo-coherent.

Proof. Throughout this proof we will use that i∗ is an exact functor, and hence that
Ri∗ = i∗, see Modules, Lemma 6.1.

Assume E is m-pseudo-coherent. Let x ∈ X . We will find a neighbourhood of x such
that i∗E is m-pseudo-coherent on it. If x 6∈ Z then this is clear. Thus we may assume
x ∈ Z. We will use that U ∩ Z for x ∈ U ⊂ X open form a fundamental system of
neighbourhoods of x in Z. After shrinking X we may assume E is bounded above. We
will argue by induction on the largest integer p such that Hp(E) is nonzero. If p < m,
then there is nothing to prove. If p ≥ m, then Hp(E) is anOZ -module of finite type, see
Cohomology, Lemma 47.9. Thus we may choose, after shrinkingX , a mapO⊕n

Z [−p]→ E

which induces a surjectionO⊕n
Z → Hp(E). Choose a distinguished triangle

O⊕n
Z [−p]→ E → C → O⊕n

Z [−p+ 1]
We see that Hj(C) = 0 for j ≥ p and that C is m-pseudo-coherent by Cohomology,
Lemma 47.4. By induction we see that i∗C is m-pseudo-coherent on X . Since i∗OZ is
m-pseudo-coherent on X as well, we conclude from the distinguished triangle

i∗O⊕n
Z [−p]→ i∗E → i∗C → i∗O⊕n

Z [−p+ 1]
and Cohomology, Lemma 47.4 that i∗E is m-pseudo-coherent.

Assume that i∗E is m-pseudo-coherent. Let z ∈ Z. We will find a neighbourhood of z
such thatE ism-pseudo-coherent on it. We will use thatU ∩Z for z ∈ U ⊂ X open form
a fundamental system of neighbourhoods of z in Z. After shrinking X we may assume
i∗E and hence E is bounded above. We will argue by induction on the largest integer p
such that Hp(E) is nonzero. If p < m, then there is nothing to prove. If p ≥ m, then
Hp(i∗E) = i∗H

p(E) is an OX -module of finite type, see Cohomology, Lemma 47.9.
Choose a complex E• ofOZ -modules representingE. We may choose, after shrinkingX ,
a mapα : O⊕n

X [−p]→ i∗E• which induces a surjectionO⊕n
X → i∗H

p(E•). By adjunction
we find a map α : O⊕n

Z [−p]→ E• which induces a surjectionO⊕n
Z → Hp(E•). Choose a

distinguished triangle

O⊕n
Z [−p]→ E → C → O⊕n

Z [−p+ 1]
We see that Hj(C) = 0 for j ≥ p. From the distinguished triangle

i∗O⊕n
Z [−p]→ i∗E → i∗C → i∗O⊕n

Z [−p+ 1]
the fact that i∗OZ is pseudo-coherent and Cohomology, Lemma 47.4 we conclude that
i∗C is m-pseudo-coherent. By induction we conclude that C is m-pseudo-coherent. By
Cohomology, Lemma 47.4 again we conclude that E is m-pseudo-coherent. �

Lemma 12.6. Let f : X → Y be a finite morphism of schemes such that f∗OX is
pseudo-coherent as anOY -module2. LetE ∈ DQCoh(OX). ThenE ism-pseudo-coherent
if and only if Rf∗E is m-pseudo-coherent.

2This means that f is pseudo-coherent, see More on Morphisms, Lemma 60.8.
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Proof. This is a translation of More on Algebra, Lemma 64.11 into the language of
schemes. To do the translation, use Lemmas 3.5 and 10.2. �

13. Lifting complexes

Let U ⊂ X be an open subspace of a ringed space and denote j : U → X the inclu-
sion morphism. The functor D(OX) → D(OU ) is essentially surjective as Rj∗ is a right
inverse to restriction. In this section we extend this to complexes with quasi-coherent
cohomology sheaves, etc.

Lemma 13.1. Let X be a scheme and let j : U → X be a quasi-compact open immer-
sion. The functors

DQCoh(OX)→ DQCoh(OU ) and D+
QCoh(OX)→ D+

QCoh(OU )

are essentially surjective. If X is quasi-compact, then the functors

D−
QCoh(OX)→ D−

QCoh(OU ) and Db
QCoh(OX)→ Db

QCoh(OU )

are essentially surjective.

Proof. The argument preceding the lemma applies for the first case becauseRj∗ maps
DQCoh(OU ) intoDQCoh(OX) by Lemma 4.1. It is clear thatRj∗ mapsD+

QCoh(OU ) into
D+

QCoh(OX) which implies the statement on bounded below complexes. Finally, Lemma
4.1 guarantees thatRj∗ mapsD−

QCoh(OU ) intoD−
QCoh(OX) ifX is quasi-compact. Com-

bining these two we obtain the last statement. �

Lemma 13.2. LetX be a Noetherian scheme and let j : U → X be an open immersion.
The functor Db

Coh(OX)→ Db
Coh(OU ) is essentially surjective.

Proof. Let K be an object of Db
Coh(OU ). By Proposition 11.2 we can represent K

by a bounded complex F• of coherent OU -modules. Say F i = 0 for i 6∈ [a, b] for some
a ≤ b. Since j is quasi-compact and separated, the terms of the bounded complex j∗F• are
quasi-coherent modules on X , see Schemes, Lemma 24.1. We inductively pick a coherent
submodule Gi ⊂ j∗F i as follows. For i = a we pick any coherent submodule Ga ⊂ j∗Fa
whose restriction to U is Fa. This is possible by Properties, Lemma 22.2. For i > a we
first pick any coherent submodule Hi ⊂ j∗F i whose restriction to U is F i and then we
set Gi = Im(Hi ⊕ Gi−1 → j∗F i). It is clear that G• ⊂ j∗F• is a bounded complex of
coherentOX -modules whose restriction to U is F• as desired. �

Lemma 13.3. Let X be an affine scheme and let U ⊂ X be a quasi-compact open
subscheme. For any pseudo-coherent object E of D(OU ) there exists a bounded above
complex of finite freeOX -modules whose restriction to U is isomorphic to E.

Proof. By Lemma 10.1 we see that E is an object of DQCoh(OU ). By Lemma 13.1
we may assume E = E′|U for some object E′ of DQCoh(OX). Write X = Spec(A). By
Lemma 3.5 we can find a complex M• of A-modules whose associated complex of OX -
modules is a representative of E′.

Choose f1, . . . , fr ∈ A such thatU = D(f1)∪ . . .∪D(fr). By Lemma 10.2 the complexes
M•
fj

are pseudo-coherent complexes ofAfj -modules. Let n be an integer. Assume we have
a map of complexes α : F • → M• where F • is bounded above, F i = 0 for i < n, each
F i is a finite free R-module, such that

Hi(αfj ) : Hi(F •
fj )→ Hi(M•

fj )



3034 36. DERIVED CATEGORIES OF SCHEMES

is an isomorphism for i > n and surjective for i = n. Picture

Fn //

α

��

Fn+1

α

��

// . . .

Mn−1 // Mn // Mn+1 // . . .

Since each M•
fj

has vanishing cohomology in large degrees we can find such a map for
n � 0. By induction on n we are going to extend this to a map of complexes F • → M•

such that Hi(αfj ) is an isomorphism for all i. The lemma will follow by taking F̃ •.

The induction step will be to extend the diagram above by adding Fn−1. Let C• be
the cone on α (Derived Categories, Definition 9.1). The long exact sequence of coho-
mology shows that Hi(C•

fj
) = 0 for i ≥ n. By More on Algebra, Lemma 64.2 we

see that C•
fj

is (n − 1)-pseudo-coherent. By More on Algebra, Lemma 64.3 we see that
H−1(C•

fj
) is a finite Afj -module. Choose a finite free A-module Fn−1 and an A-module

β : Fn−1 → C−1 such that the composition Fn−1 → Cn−1 → Cn is zero and such
that Fn−1

fj
surjects onto Hn−1(C•

fj
). (Some details omitted; hint: clear denominators.)

Since Cn−1 = Mn−1 ⊕ Fn we can write β = (αn−1,−dn−1). The vanishing of the
composition Fn−1 → Cn−1 → Cn implies these maps fit into a morphism of complexes

Fn−1

αn−1

��

dn−1
// Fn //

α

��

Fn+1

α

��

// . . .

. . . // Mn−1 // Mn // Mn+1 // . . .

Moreover, these maps define a morphism of distinguished triangles

(Fn → . . .) //

��

(Fn−1 → . . .) //

��

Fn−1 //

β

��

(Fn → . . .)[1]

��
(Fn → . . .) // M• // C• // (Fn → . . .)[1]

Hence our choice of β implies that the map of complexes (F−1 → . . .)→M• induces an
isomorphism on cohomology localized at fj in degrees≥ n and a surjection in degree−1.
This finishes the proof of the lemma. �

Lemma 13.4. LetX be a quasi-compact and quasi-separated scheme. LetE ∈ Db
QCoh(OX).

There exists an integer n0 > 0 such that ExtnD(OX)(E , E) = 0 for every finite locally free
OX -module E and every n ≥ n0.

Proof. Recall that ExtnD(OX)(E , E) = HomD(OX)(E , E[n]). We have Mayer-Vietoris
for morphisms in the derived category, see Cohomology, Lemma 33.3. Thus ifX = U ∪V
and the result of the lemma holds for E|U , E|V , and E|U∩V for some bound n0, then the
result holds forE with bound n0 +1. Thus it suffices to prove the lemma whenX is affine,
see Cohomology of Schemes, Lemma 4.1.

Assume X = Spec(A) is affine. Choose a complex of A-modules M• whose associated
complex of quasi-coherent modules represents E , see Lemma 3.5. Write E = P̃ for some
A-module P . Since E is finite locally free, we see that P is a finite projective A-module.
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We have
HomD(OX)(E , E[n]) = HomD(A)(P,M•[n])

= HomK(A)(P,M•[n])
= HomA(P,Hn(M•))

The first equality by Lemma 3.5, the second equality by Derived Categories, Lemma 19.8,
and the final equality because HomA(P,−) is an exact functor. As E and hence M• is
bounded we get zero for all sufficiently large n. �

Lemma 13.5. Let X be an affine scheme. Let U ⊂ X be a quasi-compact open. For
every perfect object E of D(OU ) there exists an integer r and a finite locally free sheaf F
on U such that F [−r]⊕ E is the restriction of a perfect object of D(OX).

Proof. Say X = Spec(A). Recall that a perfect complex is pseudo-coherent, see
Cohomology, Lemma 49.5. By Lemma 13.3 we can find a bounded above complex F• of
finite free A-modules such that E is isomorphic to F•|U in D(OU ). By Cohomology,
Lemma 49.5 and since U is quasi-compact, we see that E has finite tor dimension, say E
has tor amplitude in [a, b]. Pick r < a and set

F = Ker(Fr → Fr+1) = Im(Fr−1 → Fr).
Since E has tor amplitude in [a, b] we see that F|U is flat (Cohomology, Lemma 48.2).
Hence F|U is flat and of finite presentation, thus finite locally free (Properties, Lemma
20.2). It follows that

(F → Fr → Fr+1 → . . .)|U
is a strictly perfect complex on U representing E. We obtain a distinguished triangle

F|U [−r − 1]→ E → (Fr → Fr+1 → . . .)|U → F|U [−r]
Note that (Fr → Fr+1 → . . .) is a perfect complex on X . To finish the proof it suffices
to pick r such that the map F|U [−r − 1]→ E is zero in D(OU ), see Derived Categories,
Lemma 4.11. By Lemma 13.4 this holds if r � 0. �

Lemma 13.6. Let X be an affine scheme. Let U ⊂ X be a quasi-compact open. Let
E,E′ be objects of DQCoh(OX) with E perfect. For every map α : E|U → E′|U there
exist maps

E
β←− E1

γ−→ E′

of perfect complexes on X such that β : E1 → E restricts to an isomorphism on U and
such that α = γ|U ◦ β|−1

U . Moreover we can assume E1 = E ⊗L
OX

I for some perfect
complex I on X .

Proof. Write X = Spec(A). Write U = D(f1) ∪ . . . ∪ D(fr). Choose finite
complex of finite projectiveA-modulesM• representingE (Lemma 10.7). Choose a com-
plex of A-modules (M ′)• representing E′ (Lemma 3.5). In this case the complex H• =
HomA(M•, (M ′)•) is a complex ofA-modules whose associated complex of quasi-coherent
OX -modules represents RHom(E,E′), see Cohomology, Lemma 46.9. Then α deter-
mines an element s ofH0(U,RHom(E,E′)), see Cohomology, Lemma 42.1. There exists
an e and a map

ξ : I•(fe1 , . . . , fer )→ HomA(M•, (M ′)•)
corresponding to s, see Proposition 9.5. LettingE1 be the object corresponding to complex
of quasi-coherentOX -modules associated to

Tot(I•(fe1 , . . . , fer )⊗AM•)
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we obtain E1 → E using the canonical map I•(fe1 , . . . , fer ) → A and E1 → E′ using ξ
and Cohomology, Lemma 42.1. �

Lemma 13.7. Let X be an affine scheme. Let U ⊂ X be a quasi-compact open. For
every perfect object F of D(OU ) the object F ⊕ F [1] is the restriction of a perfect object
of D(OX).

Proof. By Lemma 13.5 we can find a perfect object E of D(OX) such that E|U =
F [r]⊕F for some finite locally freeOU -moduleF . By Lemma 13.6 we can find a morphism
of perfect complexes α : E1 → E such that (E1)|U ∼= E|U and such that α|U is the map(

idF [r] 0
0 0

)
: F [r]⊕ F → F [r]⊕ F

Then the cone on α is a solution. �

Lemma 13.8. LetX be a quasi-compact and quasi-separated scheme. Let f ∈ Γ(X,OX).
For any morphism α : E → E′ in DQCoh(OX) such that

(1) E is perfect, and
(2) E′ is supported on T = V (f)

there exists an n ≥ 0 such that fnα = 0.

Proof. We have Mayer-Vietoris for morphisms in the derived category, see Coho-
mology, Lemma 33.3. Thus if X = U ∪ V and the result of the lemma holds for f |U , f |V ,
and f |U∩V , then the result holds for f . Thus it suffices to prove the lemma when X is
affine, see Cohomology of Schemes, Lemma 4.1.

Let X = Spec(A). Then f ∈ A. We will use the equivalence D(A) = DQCoh(X) of
Lemma 3.5 without further mention. Represent E by a finite complex of finite projective
A-modules P •. This is possible by Lemma 10.7. Let t be the largest integer such that P t is
nonzero. The distinguished triangle

P t[−t]→ P • → σ≤t−1P
• → P t[−t+ 1]

shows that by induction on the length of the complex P • we can reduce to the case where
P • has a single nonzero term. This and the shift functor reduces us to the case where
P • consists of a single finite projective A-module P in degree 0. Represent E′ by a com-
plex M• of A-modules. Then α corresponds to a map P → H0(M•). Since the module
H0(M•) is supported on V (f) by assumption (2) we see that every element ofH0(M•) is
annihilated by a power of f . Since P is a finite A-module the map fnα : P → H0(M•)
is zero for some n as desired. �

Lemma 13.9. Let X be an affine scheme. Let T ⊂ X be a closed subset such that
X \ T is quasi-compact. Let U ⊂ X be a quasi-compact open. For every perfect object F
of D(OU ) supported on T ∩U the object F ⊕ F [1] is the restriction of a perfect object E
of D(OX) supported in T .

Proof. Say T = V (g1, . . . , gs). After replacing gj by a power we may assume mul-
tiplication by gj is zero on F , see Lemma 13.8. Choose E as in Lemma 13.7. Note that
gj : E → E restricts to zero on U . Choose a distinguished triangle

E
g1−→ E → C1 → E[1]
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By Derived Categories, Lemma 4.11 the object C1 restricts to F ⊕ F [1]⊕ F [1]⊕ F [2] on
U . Moreover, g1 : C1 → C1 has square zero by Derived Categories, Lemma 4.5. Namely,
the diagram

E //

0
��

C1

g1

��

// E[1]

0
��

E // C1 // E[1]

is commutative since the compositions E g1−→ E → C1 and C1 → E[1] g1−→ E[1] are zero.
Continuing, setting Ci+1 equal to the cone of the map gi : Ci → Ci we obtain a perfect
complex Cs on X supported on T whose restriction to U gives

F ⊕ F [1]⊕s ⊕ F [2]⊕
(
s
2

)
⊕ . . .⊕ F [s]

Choose morphisms of perfect complexes β : C ′ → Cs and γ : C ′ → Cs as in Lemma 13.6
such that β|U is an isomorphism and such that γ|U ◦ β|−1

U is the morphism

F ⊕ F [1]⊕s ⊕ F [2]⊕
(
s
2

)
⊕ . . .⊕ F [s]→ F ⊕ F [1]⊕s ⊕ F [2]⊕

(
s
2

)
⊕ . . .⊕ F [s]

which is the identity on all summands except for F where it is zero. By Lemma 13.6 we
also have C ′ = Cs ⊗L I for some perfect complex I on X . Hence the nullity of g2

j idCs
implies the same thing for C ′. Thus C ′ is supported on T as well. Then Cone(γ) is a
solution. �

A special case of the following lemma can be found in [?].

Lemma 13.10. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open. Let T ⊂ X be a closed subset with X \ T retro-compact in X .
Let E be an object of DQCoh(OX). Let α : P → E|U be a map where P is a perfect
object of D(OU ) supported on T ∩ U . Then there exists a map β : R → E where R
is a perfect object of D(OX) supported on T such that P is a direct summand of R|U in
D(OU ) compatible α and β|U .

Proof. Since X is quasi-compact there exists an integer m such that X = U ∪ V1 ∪
. . . ∪ Vm for some affine opens Vj of X . Arguing by induction on m we see that we may
assumem = 1. In other words, we may assume thatX = U ∪V with V affine. By Lemma
13.9 we can choose a perfect objectQ inD(OV ) supported on T ∩V and an isomorphism
Q|U∩V → (P ⊕ P [1])|U∩V . By Lemma 13.6 we can replace Q by Q⊗L I (still supported
on T ∩ V ) and assume that the map

Q|U∩V → (P ⊕ P [1])|U∩V −→ P |U∩V −→ E|U∩V

lifts to Q → E|V . By Cohomology, Lemma 45.1 we find an morphism a : R → E of
D(OX) such that a|U is isomorphic toP⊕P [1]→ E|U and a|V isomorphic toQ→ E|V .
Thus R is perfect and supported on T as desired. �

Remark 13.11. The proof of Lemma 13.10 shows that

R|U = P ⊕ P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]
for some m ≥ 0 and nj ≥ 0. Thus the highest degree cohomology sheaf of R|U equals
that of P . By repeating the construction for the map P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]→ R|U ,
taking cones, and using induction we can achieve equality of cohomology sheaves of R|U
and P above any given degree.
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14. Approximation by perfect complexes

In this section we discuss the observation, due to Neeman and Lipman, that a pseudo-
coherent complex can be “approximated” by perfect complexes.

Definition 14.1. Let X be a scheme. Consider triples (T,E,m) where
(1) T ⊂ X is a closed subset,
(2) E is an object of DQCoh(OX), and
(3) m ∈ Z.

We say approximation holds for the triple (T,E,m) if there exists a perfect object P of
D(OX) supported on T and a map α : P → E which induces isomorphisms Hi(P ) →
Hi(E) for i > m and a surjection Hm(P )→ Hm(E).

Approximation cannot hold for every triple. Namely, it is clear that if approximation
holds for the triple (T,E,m), then

(1) E is m-pseudo-coherent, see Cohomology, Definition 47.1, and
(2) the cohomology sheaves Hi(E) are supported on T for i ≥ m.

Moreover, the “support” of a perfect complex is a closed subscheme whose complement
is retrocompact in X (details omitted). Hence we cannot expect approximation to hold
without this assumption on T . This partly explains the conditions in the following defi-
nition.

Definition 14.2. Let X be a scheme. We say approximation by perfect complexes
holds on X if for any closed subset T ⊂ X with X \ T retro-compact in X there exists
an integer r such that for every triple (T,E,m) as in Definition 14.1 with

(1) E is (m− r)-pseudo-coherent, and
(2) Hi(E) is supported on T for i ≥ m− r

approximation holds.

We will prove that approximation by perfect complexes holds for quasi-compact and
quasi-separated schemes. It seems that the second condition is necessary for our method of
proof. It is possible that the first condition may be weakened to “E ism-pseudo-coherent”
by carefuly analyzing the arguments below.

Lemma 14.3. Let X be a scheme. Let U ⊂ X be an open subscheme. Let (T,E,m)
be a triple as in Definition 14.1. If

(1) T ⊂ U ,
(2) approximation holds for (T,E|U ,m), and
(3) the sheaves Hi(E) for i ≥ m are supported on T ,

then approximation holds for (T,E,m).

Proof. Let j : U → X be the inclusion morphism. If P → E|U is an approximation
of the triple (T,E|U ,m) overU , then j!P = Rj∗P → j!(E|U )→ E is an approximation
of (T,E,m) over X . See Cohomology, Lemmas 33.6 and 49.10. �

Lemma 14.4. Let X be an affine scheme. Then approximation holds for every triple
(T,E,m) as in Definition 14.1 such that there exists an integer r ≥ 0 with

(1) E is m-pseudo-coherent,
(2) Hi(E) is supported on T for i ≥ m− r + 1,
(3) X \ T is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.
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Proof. Say X = Spec(A). Write T = V (f1, . . . , fr). (The case r = 0, i.e., T = X
follows immediately from Lemma 10.2 and the definitions.) Let (T,E,m) be a triple as
in the lemma. Let t be the largest integer such that Ht(E) is nonzero. We will proceed
by induction on t. The base case is t < m; in this case the result is trivial. Now suppose
that t ≥ m. By Cohomology, Lemma 47.9 the sheaf Ht(E) is of finite type. Since it
is quasi-coherent it is generated by finitely many sections (Properties, Lemma 16.1). For
every s ∈ Γ(X,Ht(E)) = Ht(X,E) (see proof of Lemma 3.5) we can find an e > 0 and a
morphismKe[−t]→ E such that s is in the image ofH0(Ke) = Ht(Ke[−t])→ Ht(E),
see Lemma 9.6. Taking a finite direct sum of these maps we obtain a map P → E where P
is a perfect complex supported on T , where Hi(P ) = 0 for i > t, and where Ht(P )→ E
is surjective. Choose a distinguished triangle

P → E → E′ → P [1]
Then E′ is m-pseudo-coherent (Cohomology, Lemma 47.4), Hi(E′) = 0 for i ≥ t, and
Hi(E′) is supported on T for i ≥ m − r + 1. By induction we find an approximation
P ′ → E′ of (T,E′,m). Fit the composition P ′ → E′ → P [1] into a distinguished
triangle P → P ′′ → P ′ → P [1] and extend the morphisms P ′ → E′ and P [1] → P [1]
into a morphism of distinguished triangles

P //

��

P ′′

��

// P ′

��

// P [1]

��
P // E // E′ // P [1]

using TR3. Then P ′′ is a perfect complex (Cohomology, Lemma 49.7) supported on T .
An easy diagram chase shows that P ′′ → E is the desired approximation. �

Lemma 14.5. Let X be a scheme. Let X = U ∪ V be an open covering with U quasi-
compact, V affine, andU∩V quasi-compact. If approximation by perfect complexes holds
on U , then approximation holds on X .

Proof. Let T ⊂ X be a closed subset with X \ T retro-compact in X . Let rU be the
integer of Definition 14.2 adapted to the pair (U, T ∩ U). Set T ′ = T \ U . Note that
T ′ ⊂ V and that V \ T ′ = (X \ T ) ∩ U ∩ V is quasi-compact by our assumption on T .
Let r′ be the number of affines needed to cover V \ T ′. We claim that r = max(rU , r′)
works for the pair (X,T ).
To see this choose a triple (T,E,m) such thatE is (m−r)-pseudo-coherent andHi(E) is
supported on T for i ≥ m− r. Let t be the largest integer such that Ht(E)|U is nonzero.
(Such an integer exists as U is quasi-compact and E|U is (m − r)-pseudo-coherent.) We
will prove that E can be approximated by induction on t.
Base case: t ≤ m− r′. This means that Hi(E) is supported on T ′ for i ≥ m− r′. Hence
Lemma 14.4 guarantees the existence of an approximation P → E|V of (T ′, E|V ,m) on
V . Applying Lemma 14.3 we see that (T ′, E,m) can be approximated. Such an approxi-
mation is also an approximation of (T,E,m).
Induction step. Choose an approximationP → E|U of (T∩U,E|U ,m). This in particular
gives a surjectionHt(P )→ Ht(E|U ). By Lemma 13.9 we can choose a perfect objectQ in
D(OV ) supported on T ∩V and an isomorphismQ|U∩V → (P ⊕P [1])|U∩V . By Lemma
13.6 we can replace Q by Q⊗L I and assume that the map

Q|U∩V → (P ⊕ P [1])|U∩V −→ P |U∩V −→ E|U∩V
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lifts to Q → E|V . By Cohomology, Lemma 45.1 we find an morphism a : R → E of
D(OX) such that a|U is isomorphic toP⊕P [1]→ E|U and a|V isomorphic toQ→ E|V .
Thus R is perfect and supported on T and the map Ht(R) → Ht(E) is surjective on
restriction to U . Choose a distinguished triangle

R→ E → E′ → R[1]
ThenE′ is (m−r)-pseudo-coherent (Cohomology, Lemma 47.4),Hi(E′)|U = 0 for i ≥ t,
and Hi(E′) is supported on T for i ≥ m − r. By induction we find an approximation
R′ → E′ of (T,E′,m). Fit the composition R′ → E′ → R[1] into a distinguished
triangle R → R′′ → R′ → R[1] and extend the morphisms R′ → E′ and R[1] → R[1]
into a morphism of distinguished triangles

R //

��

R′′

��

// R′

��

// R[1]

��
R // E // E′ // R[1]

using TR3. Then R′′ is a perfect complex (Cohomology, Lemma 49.7) supported on T .
An easy diagram chase shows that R′′ → E is the desired approximation. �

Theorem 14.6. LetX be a quasi-compact and quasi-separated scheme. Then approx-
imation by perfect complexes holds on X .

Proof. This follows from the induction principle of Cohomology of Schemes, Lemma
4.1 and Lemmas 14.5 and 14.4. �

15. Generating derived categories

In this section we prove that the derived category DQCoh(OX) of a quasi-compact and
quasi-separated scheme can be generated by a single perfect object. We urge the reader to
read the proof of this result in the wonderful paper by Bondal and van den Bergh, see [?].

Lemma 15.1. LetX be a quasi-compact and quasi-separated scheme. Let U be a quasi-
compact open subscheme. LetP be a perfect object ofD(OU ). ThenP is a direct summand
of the restriction of a perfect object of D(OX).

Proof. Special case of Lemma 13.10. �

Lemma 15.2. In Situation 9.1 denote j : U → X the open immersion and let K be
the perfect object of D(OX) corresponding to the Koszul complex on f1, . . . , fr over A.
For E ∈ DQCoh(OX) the following are equivalent

(1) E = Rj∗(E|U ), and
(2) HomD(OX)(K[n], E) = 0 for all n ∈ Z.

Proof. Choose a distinguished triangle E → Rj∗(E|U ) → N → E[1]. Observe
that

HomD(OX)(K[n], Rj∗(E|U )) = HomD(OU )(K|U [n], E) = 0
for all n as K|U = 0. Thus it suffices to prove the result for N . In other words, we may
assume that E restricts to zero on U . Observe that there are distinguished triangles

K•(fe1
1 , . . . , f

e′
i
i , . . . , f

er
r )→ K•(fe1

1 , . . . , f
e′
i+e

′′
i

i , . . . , ferr )→ K•(fe1
1 , . . . , f

e′′
i
i , . . . , ferr )→ . . .

of Koszul complexes, see More on Algebra, Lemma 28.11. Hence if HomD(OX)(K[n], E) =
0 for all n ∈ Z then the same thing is true for the K replaced by Ke as in Lemma 9.6.
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Thus our lemma follows immediately from that one and the fact that E is determined by
the complex of A-modules RΓ(X,E), see Lemma 3.5. �

Theorem 15.3. Let X be a quasi-compact and quasi-separated scheme. The category
DQCoh(OX) can be generated by a single perfect object. More precisely, there exists a
perfect object P of D(OX) such that for E ∈ DQCoh(OX) the following are equivalent

(1) E = 0, and
(2) HomD(OX)(P [n], E) = 0 for all n ∈ Z.

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 4.1.
If X is affine, thenOX is a perfect generator. This follows from Lemma 3.5.
Assume thatX = U ∪V is an open covering withU quasi-compact such that the theorem
holds forU andV is an affine open. LetP be a perfect object ofD(OU ) which is a generator
for DQCoh(OU ). Using Lemma 15.1 we may choose a perfect object Q of D(OX) whose
restriction to U is a direct sum one of whose summands is P . Say V = Spec(A). Let
Z = X \U . This is a closed subset of V with V \Z quasi-compact. Choose f1, . . . , fr ∈ A
such that Z = V (f1, . . . , fr). LetK ∈ D(OV ) be the perfect object corresponding to the
Koszul complex on f1, . . . , fr over A. Note that since K is supported on Z ⊂ V closed,
the pushforward K ′ = R(V → X)∗K is a perfect object of D(OX) whose restriction
to V is K (see Cohomology, Lemma 49.10). We claim that Q ⊕ K ′ is a generator for
DQCoh(OX).
Let E be an object of DQCoh(OX) such that there are no nontrivial maps from any shift
ofQ⊕K ′ intoE. By Cohomology, Lemma 33.6 we haveK ′ = R(V → X)!K and hence

HomD(OX)(K ′[n], E) = HomD(OV )(K[n], E|V )
Thus by Lemma 15.2 the vanishing of these groups implies thatE|V is isomorphic toR(U∩
V → V )∗E|U∩V . This implies that E = R(U → X)∗E|U (small detail omitted). If this
is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )
which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of P the
vanishing of these groups implies that E|U is zero. Whence E is zero. �

The following result is an strengthening of Theorem 15.3 proved using exactly the same
methods. Recall that for a closed subset T of a scheme X we denote DT (OX) the strictly
full, saturated, triangulated subcategory of D(OX) consisting of objects supported on T
(Definition 6.1). We similarly denote DQCoh,T (OX) the strictly full, saturated, triangu-
lated subcategory ofD(OX) consisting of those complexes whose cohomology sheaves are
quasi-coherent and are suppported on T .

Lemma 15.4. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X be
a closed subset such that X \ T is quasi-compact. With notation as above, the category
DQCoh,T (OX) is generated by a single perfect object.

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 4.1.
Assume X = Spec(A) is affine. In this case there exist f1, . . . , fr ∈ A such that T =
V (f1, . . . , fr). Let K be the Koszul complex on f1, . . . , fr as in Lemma 15.2. Then K is a
perfect object with cohomology supported onT and hence a perfect object ofDQCoh,T (OX).
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On the other hand, if E ∈ DQCoh,T (OX) and Hom(K,E[n]) = 0 for all n, then Lemma
15.2 tells us that E = Rj∗(E|X\T ) = 0. Hence K generates DQCoh,T (OX), (by our defi-
nition of generators of triangulated categories in Derived Categories, Definition 36.3).

Assume thatX = U ∪V is an open covering with V affine andU quasi-compact such that
the lemma holds for U . Let P be a perfect object ofD(OU ) supported on T ∩U which is a
generator for DQCoh,T∩U (OU ). Using Lemma 13.10 we may choose a perfect object Q of
D(OX) supported on T whose restriction to U is a direct sum one of whose summands is
P . Write V = Spec(B). LetZ = X \U . ThenZ is a closed subset of V such that V \Z is
quasi-compact. As X is quasi-separated, it follows that Z ∩ T is a closed subset of V such
that W = V \ (Z ∩ T ) is quasi-compact. Thus we can choose g1, . . . , gs ∈ B such that
Z∩T = V (g1, . . . , gr). LetK ∈ D(OV ) be the perfect object corresponding to the Koszul
complex on g1, . . . , gs over B. Note that since K is supported on (Z ∩ T ) ⊂ V closed,
the pushforward K ′ = R(V → X)∗K is a perfect object of D(OX) whose restriction
to V is K (see Cohomology, Lemma 49.10). We claim that Q ⊕ K ′ is a generator for
DQCoh,T (OX).

LetE be an object ofDQCoh,T (OX) such that there are no nontrivial maps from any shift
ofQ⊕K ′ intoE. By Cohomology, Lemma 33.6 we haveK ′ = R(V → X)!K and hence

HomD(OX)(K ′[n], E) = HomD(OV )(K[n], E|V )
Thus by Lemma 15.2 we haveE|V = Rj∗E|W where j : W → V is the inclusion. Picture

W
j
// V Z ∩ Too

��
U ∩ V

j′

OO

j′′

;;

Z

bb

Since E is supported on T we see that E|W is supported on T ∩W = T ∩ U ∩ V which
is closed in W . We conclude that

E|V = Rj∗(E|W ) = Rj∗(Rj′
∗(E|U∩V )) = Rj′′

∗ (E|U∩V )
where the second equality is part (1) of Cohomology, Lemma 33.6. This implies that E =
R(U → X)∗E|U (small detail omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )
which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of P the
vanishing of these groups implies that E|U is zero. Whence E is zero. �

16. An example generator

In this section we prove that the derived category of projective space over a ring is gener-
ated by a vector bundle, in fact a direct sum of shifts of the structure sheaf.

The following lemma says that
⊕

n≥0 L⊗−n is a generator if L is ample.

Lemma 16.1. Let X be a scheme and L an ample invertible OX -module. If K is a
nonzero object of DQCoh(OX), then for some n ≥ 0 and p ∈ Z the cohomology group
Hp(X,K ⊗L

OX
L⊗n) is nonzero.

Proof. Recall that as X has an ample invertible sheaf, it is quasi-compact and sep-
arated (Properties, Definition 26.1 and Lemma 26.7). Thus we may apply Proposition
7.5 and represent K by a complex F• of quasi-coherent modules. Pick any p such that
Hp = Ker(Fp → Fp+1)/ Im(Fp−1 → Fp) is nonzero. Choose a point x ∈ X such that
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the stalk Hpx is nonzero. Choose an n ≥ 0 and s ∈ Γ(X,L⊗n) such that Xs is an affine
open neighbourhood of x. Choose τ ∈ Hp(Xs) which maps to a nonzero element of the
stalk Hpx; this is possible as Hp is quasi-coherent and Xs is affine. Since taking sections
overXs is an exact functor on quasi-coherent modules, we can find a section τ ′ ∈ Fp(Xs)
mapping to zero in Fp+1(Xs) and mapping to τ in Hp(Xs). By Properties, Lemma 17.2
there exists an m such that τ ′ ⊗ s⊗m is the image of a section τ ′′ ∈ Γ(X,Fp ⊗ L⊗mn).
Applying the same lemma once more, we find l ≥ 0 such that τ ′′ ⊗ s⊗l maps to zero
in Fp+1 ⊗ L⊗(m+l)n. Then τ ′′ gives a nonzero class in Hp(X,K ⊗L

OX
L(m+l)n) as de-

sired. �

Lemma 16.2. Let A be a ring. Let X = Pn
A. For every a ∈ Z there exists an exact

complex

0→ OX(a)→ . . .→ OX(a+ i)⊕
(
n+1
i

)
→ . . .→ OX(a+ n+ 1)→ 0

of vector bundles on X .

Proof. Recall that Pn
A is Proj(A[X0, . . . , Xn]), see Constructions, Definition 13.2.

Consider the Koszul complex

K• = K•(A[X0, . . . , Xn], X0, . . . , Xn)
over S = A[X0, . . . , Xn] on X0, . . . , Xn. Since X0, . . . , Xn is clearly a regular sequence
in the polynomial ring S , we see that (More on Algebra, Lemma 30.2) that the Koszul
complex K• is exact, except in degree 0 where the cohomology is S/(X0, . . . , Xn). Note
that K• becomes a complex of graded modules if we put the generators of Ki in degree
+i. In other words an exact complex

0→ S(−n− 1)→ . . .→ S(−n− 1 + i)⊕
(
n
i

)
→ . . .→ S → S/(X0, . . . , Xn)→ 0

Applying the exact functor˜functor of Constructions, Lemma 8.4 and using that the last
term is in the kernel of this functor, we obtain the exact complex

0→ OX(−n− 1)→ . . .→ OX(−n− 1 + i)⊕
(
n+1
i

)
→ . . .→ OX → 0

Twisting by the invertible sheaves OX(n+ a) we get the exact complexes of the lemma.
�

Lemma 16.3. Let A be a ring. Let X = Pn
A. Then

E = OX ⊕OX(−1)⊕ . . .⊕OX(−n)
is a generator (Derived Categories, Definition 36.3) of DQCoh(X).

Proof. Let K ∈ DQCoh(OX). Assume Hom(E,K[p]) = 0 for all p ∈ Z. We have
to show that K = 0. By Derived Categories, Lemma 36.4 we see that Hom(E′,K[p]) is
zero for all E′ ∈ 〈E〉 and p ∈ Z. By Lemma 16.2 applied with a = −n − 1 we see that
OX(−n − 1) ∈ 〈E〉 because it is quasi-isomorphic to a finite complex whose terms are
finite direct sums of summands of E. Repeating the argument with a = −n − 2 we see
that OX(−n − 2) ∈ 〈E〉. Arguing by induction we find that OX(−m) ∈ 〈E〉 for all
m ≥ 0. Since

Hom(OX(−m),K[p]) = Hp(X,K ⊗L
OX
OX(m)) = Hp(X,K ⊗L

OX
OX(1)⊗m)

we conclude thatK = 0 by Lemma 16.1. (This also uses thatOX(1) is an ample invertible
sheaf on X which follows from Properties, Lemma 26.12.) �
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Remark 16.4. Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. LetE ∈ DQCoh(OY ) be a generator (see Theorem 15.3). Then the following are
equivalent

(1) for K ∈ DQCoh(OX) we have Rf∗K = 0 if and only if K = 0,
(2) Rf∗ : DQCoh(OX)→ DQCoh(OY ) reflects isomorphisms, and
(3) Lf∗E is a generator for DQCoh(OX).

The equivalence between (1) and (2) is a formal consequence of the fact thatRf∗ : DQCoh(OX)→
DQCoh(OY ) is an exact functor of triangulated categories. Similarly, the equivalence be-
tween (1) and (3) follows formally from the fact that Lf∗ is the left adjoint toRf∗. These
conditions hold if f is affine (Lemma 5.2) or if f is an open immersion, or if f is a compo-
sition of such. We conclude that

(1) if X is a quasi-affine scheme thenOX is a generator for DQCoh(OX),
(2) if X ⊂ Pn

A is a quasi-compact locally closed subscheme, thenOX ⊕OX(−1)⊕
. . .⊕OX(−n) is a generator for DQCoh(OX) by Lemma 16.3.

17. Compact and perfect objects

LetX be a Noetherian scheme of finite dimension. By Cohomology, Proposition 20.7 and
Cohomology on Sites, Lemma 52.5 the sheaves of modules j!OU are compact objects of
D(OX) for all opens U ⊂ X . These sheaves are typically not quasi-coherent, hence these
do not give perfect objects of the derived category D(OX). However, if we restrict our-
selves to complexes with quasi-coherent cohomology sheaves, then this does not happen.
Here is the precise statement.

Proposition 17.1. Let X be a quasi-compact and quasi-separated scheme. An object
of DQCoh(OX) is compact if and only if it is perfect.

Proof. IfK is a perfect object ofD(OX) with dualK∨ (Cohomology, Lemma 50.5)
we have

HomD(OX)(K,M) = H0(X,K∨ ⊗L
OX

M)
functorially in M . Since K∨ ⊗L

OX
− commutes with direct sums and since H0(X,−)

commutes with direct sums onDQCoh(OX) by Lemma 4.5 we conclude thatK is compact
in DQCoh(OX).
Conversely, let K be a compact object of DQCoh(OX). To show that K is perfect, it
suffices to show that K|U is perfect for every affine open U ⊂ X , see Cohomology,
Lemma 49.2. Observe that j : U → X is a quasi-compact and separated morphism.
Hence Rj∗ : DQCoh(OU ) → DQCoh(OX) commutes with direct sums, see Lemma 4.5.
Thus the adjointness of restriction to U and Rj∗ implies that K|U is a compact object of
DQCoh(OU ). Hence we reduce to the case that X is affine.
Assume X = Spec(A) is affine. By Lemma 3.5 the problem is translated into the same
problem for D(A). For D(A) the result is More on Algebra, Proposition 78.3. �

Remark 17.2. Let X be a quasi-compact and quasi-separated scheme. Let G be a per-
fect object of D(OX) which is a generator for DQCoh(OX). By Theorem 15.3 there is at
least one of these. Combining Lemma 3.1 with Proposition 17.1 and with Derived Cate-
gories, Proposition 37.6 we see that G is a classical generator for Dperf (OX).

The following result is a strengthening of Proposition 17.1. Let T ⊂ X be a closed subset
of a schemeX . As beforeDT (OX) denotes the strictly full, saturated, triangulated subcat-
egory ofD(OX) consisting of objects supported on T (Definition 6.1). Since taking direct
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sums commutes with taking cohomology sheaves, it follows thatDT (OX) has direct sums
and that they are equal to direct sums in D(OX).

Lemma 17.3. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X be a
closed subset such that X \ T is quasi-compact. An object of DQCoh,T (OX) is compact if
and only if it is perfect as an object of D(OX).

Proof. We observe that DQCoh,T (OX) is a triangulated category with direct sums
by the remark preceding the lemma. By Proposition 17.1 the perfect objects define compact
objects ofD(OX) hence a fortiori of any subcategory preserved under taking direct sums.
For the converse we will use there exists a generatorE ∈ DQCoh,T (OX) which is a perfect
complex of OX -modules, see Lemma 15.4. Hence by the above, E is compact. Then it
follows from Derived Categories, Proposition 37.6 that E is a classical generator of the
full subcategory of compact objects of DQCoh,T (OX). Thus any compact object can be
constructed out of E by a finite sequence of operations consisting of (a) taking shifts, (b)
taking finite direct sums, (c) taking cones, and (d) taking direct summands. Each of these
operations preserves the property of being perfect and the result follows. �

Remark 17.4. LetX be a quasi-compact and quasi-separated scheme. Let T ⊂ X be a
closed subset such thatX \T is quasi-compact. LetG be a perfect object ofDQCoh,T (OX)
which is a generator for DQCoh,T (OX). By Lemma 15.4 there is at least one of these.
Combining the fact that DQCoh,T (OX) has direct sums with Lemma 17.3 and with De-
rived Categories, Proposition 37.6 we see thatG is a classical generator forDperf,T (OX).

The following lemma is an application of the ideas that go into the proof of the preceding
lemma.

Lemma 17.5. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X be a
closed subset such that U = X \ T is quasi-compact. Let α : P → E be a morphism of
DQCoh(OX) with either

(1) P is perfect and E supported on T , or
(2) P pseudo-coherent, E supported on T , and E bounded below.

Then there exists a perfect complex of OX -modules I and a map I → OX [0] such that
I ⊗L P → E is zero and such that I|U → OU [0] is an isomorphism.

Proof. SetD = DQCoh,T (OX). In both cases the complexK = RHom(P,E) is an
object of D. See Lemma 10.8 for quasi-coherence. It is clear that K is supported on T as
formation of RHom commutes with restriction to opens. The map α defines an element
of H0(K) = HomD(OX)(OX [0],K). Then it suffices to prove the result for the map
α : OX [0]→ K.

Let E ∈ D be a perfect generator, see Lemma 15.4. Write

K = hocolimKn

as in Derived Categories, Lemma 37.3 using the generator E. Since the functor D →
D(OX) commutes with direct sums, we see thatK = hocolimKn holds inD(OX). Since
OX is a compact object of D(OX) we find an n and a morphism αn : OX → Kn which
gives rise to α, see Derived Categories, Lemma 33.9. By Derived Categories, Lemma 37.4
applied to the morphism OX [0] → Kn in the ambient category D(OX) we see that αn
factors asOX [0]→ Q→ Kn whereQ is an object of 〈E〉. We conclude thatQ is a perfect
complex supported on T .
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Choose a distinguished triangle

I → OX [0]→ Q→ I[1]
By construction I is perfect, the map I → OX [0] restricts to an isomorphism over U , and
the composition I → K is zero as α factors through Q. This proves the lemma. �

18. Derived categories as module categories

In this section we draw some conclusions of what has gone before. Before we do so we
need a couple more lemmas.

Lemma 18.1. Let X be a scheme. Let K• be a complex of OX -modules whose coho-
mology sheaves are quasi-coherent. Let (E, d) = HomCompdg(OX)(K•,K•) be the endo-
morphism differential graded algebra. Then the functor

−⊗L
E K

• : D(E, d) −→ D(OX)
of Differential Graded Algebra, Lemma 35.3 has image contained in DQCoh(OX).

Proof. Let P be a differential graded E-module with property (P) and let F• be a
filtration on P as in Differential Graded Algebra, Section 20. Then we have

P ⊗E K• = hocolim FiP ⊗E K•

Each of the FiP has a finite filtration whose graded pieces are direct sums of E[k]. The
result follows easily. �

The following lemma can be strengthened (there is a uniformity in the vanishing over all
L with nonzero cohomology sheaves only in a fixed range).

Lemma 18.2. LetX be a quasi-compact and quasi-separated scheme. LetK be a perfect
object of D(OX). Then

(1) there exist integers a ≤ b such that HomD(OX)(K,L) = 0 forL ∈ DQCoh(OX)
with Hi(L) = 0 for i ∈ [a, b], and

(2) if L is bounded, then ExtnD(OX)(K,L) is zero for all but finitely many n.

Proof. Part (2) follows from (1) as ExtnD(OX)(K,L) = HomD(OX)(K,L[n]). We
prove (1). Since K is perfect we have

HomD(OX)(K,L) = H0(X,K∨ ⊗L
OX

L)
where K∨ is the “dual” perfect complex to K , see Cohomology, Lemma 50.5. Note that
K∨ ⊗L

OX
L is in DQCoh(X) by Lemmas 3.9 and 10.1 (to see that a perfect complex has

quasi-coherent cohomology sheaves). Say K∨ has tor amplitude in [a, b]. Then the spec-
tral sequence

Ep,q1 = Hp(K∨ ⊗L
OX

Hq(L))⇒ Hp+q(K∨ ⊗L
OX

L)

shows that Hj(K∨ ⊗L
OX

L) is zero if Hq(L) = 0 for q ∈ [j − b, j − a]. Let N be the
integer d of Cohomology of Schemes, Lemma 4.4. Then H0(X,K∨ ⊗L

OX
L) vanishes if

the cohomology sheaves

H−N (K∨ ⊗L
OX

L), H−N+1(K∨ ⊗L
OX

L), . . . , H0(K∨ ⊗L
OX

L)
are zero. Namely, by the lemma cited and Lemma 3.4, we have

H0(X,K∨ ⊗L
OX

L) = H0(X, τ≥−N (K∨ ⊗L
OX

L))
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and by the vanishing of cohomology sheaves, this is equal to H0(X, τ≥1(K∨ ⊗L
OX

L))
which is zero by Derived Categories, Lemma 16.1. It follows that HomD(OX)(K,L) is
zero if Hi(L) = 0 for i ∈ [−b−N,−a]. �

The following result is taken from [?].

Theorem 18.3. Let X be a quasi-compact and quasi-separated scheme. Then there
exist a differential graded algebra (E, d) with only a finite number of nonzero cohomology
groups Hi(E) such that DQCoh(OX) is equivalent to D(E, d).

Proof. Let K• be a K-injective complex of O-modules which is perfect and gener-
ates DQCoh(OX). Such a thing exists by Theorem 15.3 and the existence of K-injective
resolutions. We will show the theorem holds with

(E, d) = HomCompdg(OX)(K•,K•)

where Compdg(OX) is the differential graded category of complexes ofO-modules. Please
see Differential Graded Algebra, Section 35. Since K• is K-injective we have
(18.3.1) Hn(E) = ExtnD(OX)(K•,K•)
for all n ∈ Z. Only a finite number of these Exts are nonzero by Lemma 18.2. Consider
the functor

−⊗L
E K

• : D(E, d) −→ D(OX)
of Differential Graded Algebra, Lemma 35.3. Since K• is perfect, it defines a compact
object of D(OX), see Proposition 17.1. Combined with (18.3.1) the functor above is fully
faithful as follows from Differential Graded Algebra, Lemmas 35.6. It has a right adjoint

RHom(K•,−) : D(OX) −→ D(E, d)
by Differential Graded Algebra, Lemmas 35.5 which is a left quasi-inverse functor by gen-
eralities on adjoint functors. On the other hand, it follows from Lemma 18.1 that we obtain

−⊗L
E K

• : D(E, d) −→ DQCoh(OX)
and by our choice ofK• as a generator ofDQCoh(OX) the kernel of the adjoint restricted
toDQCoh(OX) is zero. A formal argument shows that we obtain the desired equivalence,
see Derived Categories, Lemma 7.2. �

Remark 18.4 (Variant with support). Let X be a quasi-compact and quasi-separated
scheme. Let T ⊂ X be a closed subset such that X \ T is quasi-compact. The analogue of
Theorem 18.3 holds for DQCoh,T (OX). This follows from the exact same argument as in
the proof of the theorem, using Lemmas 15.4 and 17.3 and a variant of Lemma 18.1 with
supports. If we ever need this, we will precisely state the result here and give a detailed
proof.

Remark 18.5 (Uniqueness of dga). Let X be a quasi-compact and quasi-separated
scheme over a ring R. By the construction of the proof of Theorem 18.3 there exists a
differential graded algebra (A, d) overR such thatDQCoh(X) isR-linearly equivalent to
D(A, d) as a triangulated category. One may ask: how unique is (A, d)? The answer is
(only) slightly better than just saying that (A, d) is well defined up to derived equivalence.
Namely, suppose that (B, d) is a second such pair. Then we have

(A, d) = HomCompdg(OX)(K•,K•)
and

(B, d) = HomCompdg(OX)(L•, L•)
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for some K-injective complexesK• and L• ofOX -modules corresponding to perfect gen-
erators of DQCoh(OX). Set

Ω = HomCompdg(OX)(K•, L•) Ω′ = HomCompdg(OX)(L•,K•)
Then Ω is a differential gradedBopp⊗RA-module and Ω′ is a differential gradedAopp⊗R
B-module. Moreover, the equivalence

D(A, d)→ DQCoh(OX)→ D(B, d)
is given by the functor − ⊗L

A Ω′ and similarly for the quasi-inverse. Thus we are in the
situation of Differential Graded Algebra, Remark 37.10. If we ever need this remark we
will provide a precise statement with a detailed proof here.

19. Characterizing pseudo-coherent complexes, I

We can use the methods above to characterize pseudo-coherent objects as derived homo-
topy limits of approximations by perfect objects.

Lemma 19.1. LetX be a quasi-compact and quasi-separated scheme. LetK ∈ D(OX).
The following are equivalent

(1) K is pseudo-coherent, and
(2) K = hocolimKn where Kn is perfect and τ≥−nKn → τ≥−nK is an isomor-

phism for all n.

Proof. The implication (2)⇒ (1) is true on any ringed space. Namely, assume (2)
holds. Recall that a perfect object of the derived category is pseudo-coherent, see Coho-
mology, Lemma 49.5. Then it follows from the definitions that τ≥−nKn is (−n + 1)-
pseudo-coherent and hence τ≥−nK is (−n + 1)-pseudo-coherent, hence K is (−n + 1)-
pseudo-coherent. This is true for all n, hence K is pseudo-coherent, see Cohomology,
Definition 47.1.
Assume (1). We start by choosing an approximation K1 → K of (X,K,−2) by a perfect
complex K1, see Definitions 14.1 and 14.2 and Theorem 14.6. Suppose by induction we
have

K1 → K2 → . . .→ Kn → K

with Ki perfect such that such that τ≥−iKi → τ≥−iK is an isomorphism for all 1 ≤
i ≤ n. Then we pick a ≤ b as in Lemma 18.2 for the perfect object Kn. Choose an
approximation Kn+1 → K of (X,K,min(a − 1,−n − 1)). Choose a distinguished
triangle

Kn+1 → K → C → Kn+1[1]
Then we see that C ∈ DQCoh(OX) has Hi(C) = 0 for i ≥ a. Thus by our choice of
a, b we see that HomD(OX)(Kn, C) = 0. Hence the composition Kn → K → C is zero.
Hence by Derived Categories, Lemma 4.2 we can factor Kn → K through Kn+1 proving
the induction step.
We still have to prove that K = hocolimKn. This follows by an application of Derived
Categories, Lemma 33.8 to the functors Hi(−) : D(OX)→Mod(OX) and our choice of
Kn. �

Lemma 19.2. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X be
a closed subset such that X \ T is quasi-compact. Let K ∈ D(OX) supported on T . The
following are equivalent

(1) K is pseudo-coherent, and
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(2) K = hocolimKn whereKn is perfect, supported on T , and τ≥−nKn → τ≥−nK
is an isomorphism for all n.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 19.1 except
that in the choice of the approximations we use the triples (T,K,m). �

20. An example equivalence

In Section 16 we proved that the derived category of projective space Pn
A over a ring A

is generated by a vector bundle, in fact a direct sum of shifts of the structure sheaf. In
this section we prove this determines an equivalence of DQCoh(OPn

A
) with the derived

category of an A-algebra.
Before we can state the result we need some notation. Let A be a ring. Let X = Pn

A =
Proj(S) where S = A[X0, . . . , Xn]. By Lemma 16.3 we know that
(20.0.1) P = OX ⊕OX(−1)⊕ . . .⊕OX(−n)
is a perfect generator of DQCoh(OX). Consider the (noncommutative) A-algebra

(20.0.2) R = HomOX
(P, P ) =


S0 S1 S2 . . . . . .
0 S0 S1 . . . . . .
0 0 S0 . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . . . . S0


with obvious multiplication and addition. If we view P as a complex of OX -modules in
the usual way (i.e., with P in degree 0 and zero in every other degree), then we have

R = HomCompdg(OX)(P, P )
where on the right hand side we view R as a differential graded algebra over A with zero
differential (i.e., with R in degree 0 and zero in every other degree). According to the
discussion in Differential Graded Algebra, Section 35 we obtain a derived functor

−⊗L
R P : D(R) −→ D(OX),

see especially Differential Graded Algebra, Lemma 35.3. By Lemma 18.1 we see that the
essential image of this functor is contained in DQCoh(OX).

Lemma 20.1. Let A be a ring. Let X = Pn
A = Proj(S) where S = A[X0, . . . , Xn].

With P as in (20.0.1) and R as in (20.0.2) the functor
−⊗L

R P : D(R) −→ DQCoh(OX)
is an A-linear equivalence of triangulated categories sending R to P .

In words: the derived category of quasi-coherent modules on projective space is equivalent
to the derived category of modules over a (noncommutative) algebra. This property of
projective space appears to be quite unusual among all projective schemes over A.

Proof. To prove that our functor is fully faithful it suffices to prove that ExtiX(P, P )
is zero for i 6= 0 and equal to R for i = 0, see Differential Graded Algebra, Lemma 35.6.
As in the proof of Lemma 18.2 we see that

ExtiX(P, P ) = Hi(X,P∧ ⊗ P ) =
⊕

0≤a,b≤n
Hi(X,OX(a− b))

By the computation of cohomology of projective space (Cohomology of Schemes, Lemma
8.1) we find that these Ext-groups are zero unless i = 0. For i = 0 we recover R because
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this is how we defined R in (20.0.2). By Differential Graded Algebra, Lemma 35.5 our
functor has a right adjoint, namely RHom(P,−) : DQCoh(OX) → D(R). Since P
is a generator for DQCoh(OX) by Lemma 16.3 we see that the kernel of RHom(P,−) is
zero. Hence our functor is an equivalence of triangulated categories by Derived Categories,
Lemma 7.2. �

21. The coherator revisited

In Section 7 we constructed and studied the right adjoint RQX to the canonical functor
D(QCoh(OX)) → D(OX). It was constructed as the right derived extension of the
coherator QX : Mod(OX) → QCoh(OX). In this section, we study when the inclusion
functor

DQCoh(OX) −→ D(OX)
has a right adjoint. If this right adjoint exists, we will denote3 it

DQX : D(OX) −→ DQCoh(OX)

It turns out that quasi-compact and quasi-separated schemes have such a right adjoint.

Lemma 21.1. Let X be a quasi-compact and quasi-separated scheme. The inclusion
functor DQCoh(OX)→ D(OX) has a right adjoint DQX .

First proof. We will use the induction principle as in Cohomology of Schemes,
Lemma 4.1 to prove this. If D(QCoh(OX)) → DQCoh(OX) is an equivalence, then
the lemma is true because the functor RQX of Section 7 is a right adjoint to the func-
tor D(QCoh(OX)) → D(OX). In particular, our lemma is true for affine schemes, see
Lemma 7.3. Thus we see that it suffices to show: if X = U ∪ V is a union of two quasi-
compact opens and the lemma holds for U , V , and U ∩ V , then the lemma holds for X .

The adjoint exists if and only if for every object K of D(OX) we can find a distinguished
triangle

E′ → E → K → E′[1]
in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M,K) = 0 for all M in
DQCoh(OX). See Derived Categories, Lemma 40.7. Consider the distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU∩V,∗E|U∩V → E[1]

inD(OX) of Cohomology, Lemma 33.2. By Derived Categories, Lemma 40.5 it suffices to
construct the desired distinguished triangles forRjU,∗E|U ,RjV,∗E|V , andRjU∩V,∗E|U∩V .
This reduces us to the statement discussed in the next paragraph.

Let j : U → X be an open immersion corresponding with U a quasi-compact open for
which the lemma is true. Let L be an object of D(OU ). Then there exists a distinguished
triangle

E′ → Rj∗L→ K → E′[1]
in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M,K) = 0 for all M in
DQCoh(OX). To see this we choose a distinguished triangle

L′ → L→ Q→ L′[1]

3This is probably nonstandard notation. However, we have already usedQX for the coherator andRQX
for its derived extension.
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in D(OU ) such that L′ is in DQCoh(OU ) and such that Hom(N,Q) = 0 for all N in
DQCoh(OU ). This is possible because the statement in Derived Categories, Lemma 40.7 is
an if and only if. We obtain a distinguished triangle

Rj∗L
′ → Rj∗L→ Rj∗Q→ Rj∗L

′[1]
in D(OX). Observe that Rj∗L

′ is in DQCoh(OX) by Lemma 4.1. On the other hand, if
M in DQCoh(OX), then

Hom(M,Rj∗Q) = Hom(Lj∗M,Q) = 0
because Lj∗M is in DQCoh(OU ) by Lemma 3.8. This finishes the proof. �

Second proof. The adjoint exists by Derived Categories, Proposition 38.2. The hy-
potheses are satisfied: First, note that DQCoh(OX) has direct sums and direct sums com-
mute with the inclusion functor (Lemma 3.1). On the other hand, DQCoh(OX) is com-
pactly generated because it has a perfect generator Theorem 15.3 and because perfect ob-
jects are compact by Proposition 17.1. �

Lemma 21.2. Let f : X → Y be a quasi-compact and quasi-separated morphism of
schemes. If the right adjoints DQX and DQY of the inclusion functors DQCoh → D
exist for X and Y , then

Rf∗ ◦DQX = DQY ◦Rf∗

Proof. The statement makes sense becauseRf∗ sendsDQCoh(OX) intoDQCoh(OY )
by Lemma 4.1. The statement is true becauseLf∗ similarly mapsDQCoh(OY ) intoDQCoh(OX)
(Lemma 3.8) and hence both Rf∗ ◦ DQX and DQY ◦ Rf∗ are right adjoint to Lf∗ :
DQCoh(OY )→ D(OX). �

Remark 21.3. Let X be a quasi-compact and quasi-separated scheme. Let X = U ∪
V with U and V quasi-compact open. By Lemma 21.1 the functors DQX , DQU , DQV ,
DQU∩V exist. Moreover, there is a canonical distinguished triangle
DQX(K)→ RjU,∗DQU (K|U )⊕RjV,∗DQV (K|V )→ RjU∩V,∗DQU∩V (K|U∩V )→

for any K ∈ D(OX). This follows by applying the exact functor DQX to the distin-
guished triangle of Cohomology, Lemma 33.2 and using Lemma 21.2 three times.

Lemma 21.4. Let X be a quasi-compact and quasi-separated scheme. The functor
DQX of Lemma 21.1 has the following boundedness property: there exists an integer
N = N(X) such that, if K in D(OX) with Hi(U,K) = 0 for U affine open in X and
i 6∈ [a, b], then the cohomology sheaves Hi(DQX(K)) are zero for i 6∈ [a, b+N ].

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 4.1.
If X is affine, then the lemma is true with N = 0 because then RQX = DQX is given
by taking the complex of quasi-coherent sheaves associated toRΓ(X,K). See Lemmas 3.5
and 7.3.
Asssume U, V are quasi-compact open in X and the lemma holds for U , V , and U ∩ V .
Say with integers N(U), N(V ), and N(U ∩ V ). Now suppose K is in D(OX) with
Hi(W,K) = 0 for all affine openW ⊂ X and all i 6∈ [a, b]. ThenK|U ,K|V ,K|U∩V have
the same property. Hence we see thatRQU (K|U ) andRQV (K|V ) andRQU∩V (K|U∩V )
have vanishing cohomology sheaves outside the inverval [a, b+max(N(U), N(V ), N(U∩
V )). Since the functors RjU,∗, RjV,∗, RjU∩V,∗ have finite cohomological dimension on
DQCoh by Lemma 4.1 we see that there exists anN such thatRjU,∗DQU (K|U ),RjV,∗DQV (K|V ),
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and RjU∩V,∗DQU∩V (K|U∩V ) have vanishing cohomology sheaves outside the interval
[a, b+N ]. Then finally we conclude by the distinguished triangle of Remark 21.3. �

Example 21.5. LetX be a quasi-compact and quasi-separated scheme. Let (Fn) be an
inverse system of quasi-coherent sheaves. Since DQX is a right adjoint it commutes with
products and therefore with derived limits. Hence we see that

DQX(R limFn) = (R lim in DQCoh(OX))(Fn)
where the first R lim is taken in D(OX). In fact, let’s write K = R limFn for this. For
any affine open U ⊂ X we have

Hi(U,K) = Hi(RΓ(U,R limFn)) = Hi(R limRΓ(U,Fn)) = Hi(R lim Γ(U,Fn))
since cohomology commutes with derived limits and since the quasi-coherent sheaves Fn
have no higher cohomology on affines. By the computation of R lim in the category of
abelian groups, we see that Hi(U,K) = 0 unless i ∈ [0, 1]. Then finally we conclude that
the R lim in DQCoh(OX), which is DQX(K) by the above, is in Db

QCoh(OX) by Lemma
21.4.

22. Cohomology and base change, IV

This section continues the discussion of Cohomology of Schemes, Section 22. First, we
have a very general version of the projection formula for quasi-compact and quasi-separated
morphisms of schemes and complexes with quasi-coherent cohomology sheaves.

Lemma 22.1. Let f : X → Y be a quasi-compact and quasi-separated morphism of
schemes. For E in DQCoh(OX) and K in DQCoh(OY ) the map

Rf∗(E)⊗L
OY

K −→ Rf∗(E ⊗L
OX

Lf∗K)
defined in Cohomology, Equation (54.2.1) is an isomorphism.

Proof. To check the map is an isomorphism we may work locally on Y . Hence we
reduce to the case that Y is affine.
Suppose that K =

⊕
Ki is a direct sum of some complexes Ki ∈ DQCoh(OY ). If the

statement holds for each Ki, then it holds for K. Namely, the functors Lf∗ and ⊗L

preserve direct sums by construction and Rf∗ commutes with direct sums (for complexes
with quasi-coherent cohomology sheaves) by Lemma 4.5. Moreover, suppose that K →
L → M → K[1] is a distinguished triangle in DQCoh(Y ). Then if the statement of the
lemma holds for two of K,L,M , then it holds for the third (as the functors involved are
exact functors of triangulated categories).
Assume Y affine, say Y = Spec(A). The functor˜ : D(A) → DQCoh(OY ) is an equiva-
lence (Lemma 3.5). Let T be the property for K ∈ D(A) that the statement of the lemma
holds for K̃. The discussion above and More on Algebra, Remark 59.11 shows that it suf-
fices to prove T holds for A[k]. This finishes the proof, as the statement of the lemma is
clear for shifts of the structure sheaf. �

Definition 22.2. Let S be a scheme. Let X , Y be schemes over S. We say X and Y
are Tor independent over S if for every x ∈ X and y ∈ Y mapping to the same point
s ∈ S the rings OX,x and OY,y are Tor independent over OS,s (see More on Algebra,
Definition 61.1).

Lemma 22.3. Let f : X → S and g : Y → S be morphisms of schemes. The
following are equivalent
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(1) X and Y are tor independent over S , and
(2) for every affine opens U ⊂ X , V ⊂ Y ,W ⊂ S with f(U) ⊂W and g(V ) ⊂W

the ringsOX(U) andOY (V ) are tor independent overOS(W ).
(3) there exists an affine open overingS =

⋃
Wi and for each i affine open coverings

f−1(Wi) =
⋃
Uij and g−1(Wi) =

⋃
Vik such that the rings OX(Uij) and

OY (Vik) are tor independent overOS(Wi) for all i, j, k.

Proof. Omitted. Hint: use More on Algebra, Lemma 61.6. �

Lemma 22.4. Let X → S and Y → S be morphisms of schemes. Let S′ → S be a
morphism of schemes and denote X ′ = X ×S S′ and Y ′ = Y ×S S′. If X and Y are tor
independent over S and S′ → S is flat, then X ′ and Y ′ are tor independent over S′.

Proof. Omitted. Hint: use Lemma 22.3 and on affine opens use More on Algebra,
Lemma 61.4. �

Lemma 22.5. Let g : S′ → S be a morphism of schemes. Let f : X → S be quasi-
compact and quasi-separated. Consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

IfX andS′ are Tor independent overS , then for allE ∈ DQCoh(OX) we haveRf ′
∗L(g′)∗E =

Lg∗Rf∗E.

Proof. For any object E of D(OX) we can use Cohomology, Remark 28.3 to get a
canonical base change map Lg∗Rf∗E → Rf ′

∗L(g′)∗E. To check this is an isomorphism
we may work locally on S′. Hence we may assume g : S′ → S is a morphism of affine
schemes. In particular, g is affine and it suffices to show that

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗L(g′)∗E = Rf∗(Rg′

∗L(g′)∗E)
is an isomorphism, see Lemma 5.2 (and use Lemmas 3.8, 3.9, and 4.1 to see that the objects
Rf ′

∗L(g′)∗E and Lg∗Rf∗E have quasi-coherent cohomology sheaves). Note that g′ is
affine as well (Morphisms, Lemma 11.8). By Lemma 5.3 the map becomes a map

Rf∗E ⊗L
OS

g∗OS′ −→ Rf∗(E ⊗L
OX

g′
∗OX′)

Observe that g′
∗OX′ = f∗g∗OS′ . Thus by Lemma 22.1 it suffices to prove thatLf∗g∗OS′ =

f∗g∗OS′ . This follows from our assumption that X and S′ are Tor independent over
S. Namely, to check it we may work locally on X , hence we may also assume X is
affine. Say X = Spec(A), S = Spec(R) and S′ = Spec(R′). Our assumption im-
plies that A and R′ are Tor independent over R (More on Algebra, Lemma 61.6), i.e.,
TorRi (A,R′) = 0 for i > 0. In other words A ⊗L

R R
′ = A ⊗R R′ which exactly means

that Lf∗g∗OS′ = f∗g∗OS′ (use Lemma 3.8). �

The following lemma will be used in the chapter on dualizing complexes.

Lemma 22.6. Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
S′ g // S
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of quasi-compact and quasi-separated schemes. Assume g and f Tor independent and S =
Spec(R), S′ = Spec(R′) affine. For M,K ∈ D(OX) the canonical map

RHomX(M,K)⊗L
R R

′ −→ RHomX′(L(g′)∗M,L(g′)∗K)
in D(R′) is an isomorphism in the following two cases

(1) M ∈ D(OX) is perfect and K ∈ DQCoh(X), or
(2) M ∈ D(OX) is pseudo-coherent, K ∈ D+

QCoh(X), and R′ has finite tor dimen-
sion over R.

Proof. There is a canonical mapRHomX(M,K)→ RHomX′(L(g′)∗M,L(g′)∗K)
in D(Γ(X,OX)) of global hom complexes, see Cohomology, Section 44. Restricting
scalars we can view this as a map in D(R). Then we can use the adjointness of restric-
tion and − ⊗L

R R′ to get the displayed map of the lemma. Having defined the map it
suffices to prove it is an isomorphism in the derived category of abelian groups.
The right hand side is equal to

RHomX(M,R(g′)∗L(g′)∗K) = RHomX(M,K ⊗L
OX

g′
∗OX′)

by Lemma 5.3. In both cases the complex RHom(M,K) is an object of DQCoh(OX) by
Lemma 10.8. There is a natural map

RHom(M,K)⊗L
OX

g′
∗OX′ −→ RHom(M,K ⊗L

OX
g′

∗OX′)
which is an isomorphism in both cases by Lemma 10.9. To see that this lemma applies in
case (2) we note that g′

∗OX′ = Rg′
∗OX′ = Lf∗g∗OX the second equality by Lemma 22.5.

Using Lemma 10.4 and Cohomology, Lemma 48.4 we conclude that g′
∗OX′ has finite Tor

dimension. Hence, in both cases by replacing K by RHom(M,K) we reduce to proving

RΓ(X,K)⊗L
A A

′ −→ RΓ(X,K ⊗L
OX

g′
∗OX′)

is an isomorphism. Note that the left hand side is equal to RΓ(X ′, L(g′)∗K) by Lemma
5.3. Hence the result follows from Lemma 22.5. �

Remark 22.7. With notation as in Lemma 22.6. The diagram

RHomX(M,Rg′
∗L)⊗L

R R
′ //

µ

��

RHomX′(L(g′)∗M,L(g′)∗Rg′
∗L)

a

��
RHomX(M,R(g′)∗L) RHomX′(L(g′)∗M,L)

is commutative where the top horizontal arrow is the map from the lemma, µ is the mul-
tiplication map, and a comes from the adjunction map L(g′)∗Rg′

∗L → L. The multipli-
cation map is the adjunction map K ′ ⊗L

R R
′ → K ′ for any K ′ ∈ D(R′).

Lemma 22.8. Consider a cartesian square of schemes

X ′
g′
//

f ′

��

X

f

��
S′ g // S

Assume g and f Tor independent.
(1) IfE ∈ D(OX) has tor amplitude in [a, b] as a complex of f−1OS-modules, then

L(g′)∗E has tor amplitude in [a, b] as a complex of f−1OS′ -modules.
(2) If G is anOX -module flat over S , then L(g′)∗G = (g′)∗G.
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Proof. We can compute tor dimension at stalks, see Cohomology, Lemma 48.5. If
x′ ∈ X ′ with image x ∈ X , then

(L(g′)∗E)x′ = Ex ⊗L
OX,x

OX′,x′

Let s′ ∈ S′ and s ∈ S be the image of x′ and x. SinceX and S′ are tor independent over S ,
we can apply More on Algebra, Lemma 61.2 to see that the right hand side of the displayed
formula is equal toEx⊗L

OS,s
OS′,s′ inD(OS′,s′). Thus (1) follows from More on Algebra,

Lemma 66.13. To see (2) observe that flatness of G is equivalent to the condition that G[0]
has tor amplitude in [0, 0]. Applying (1) we conclude. �

Lemma 22.9. Consider a cartesian diagram of schemes

Z ′
i′
//

g

��

X ′

f

��
Z

i // X

where i is a closed immersion. If Z andX ′ are tor independent overX , thenRi′∗ ◦Lg∗ =
Lf∗ ◦Ri∗ as functors D(OZ)→ D(OX′).

Proof. Note that the lemma is supposed to hold for all K ∈ D(OZ). Observe that
i∗ and i′∗ are exact functors and henceRi∗ andRi′∗ are computed by applying i∗ and i′∗ to
any representatives. Thus the base change map

Lf∗(Ri∗(K)) −→ Ri′∗(Lg∗(K))
on stalks at a point z′ ∈ Z ′ with image z ∈ Z is given by

Kz ⊗L
OX,z

OX′,z′ −→ Kz ⊗L
OZ,z

OZ′,z′

This map is an isomorphism by More on Algebra, Lemma 61.2 and the assumed tor inde-
pendence. �

23. Künneth formula, II

For the case where the base is a field, please see Varieties, Section 29. Consider a cartesian
diagram of schemes

X ×S Y

p
{{

q
##

f

��

X

a
$$

Y

b
zz

S

Let K ∈ D(OX) and M ∈ D(OY ). There is a canonical map

(23.0.1) Ra∗K ⊗L
OS

Rb∗M −→ Rf∗(Lp∗K ⊗L
OX×SY

Lq∗M)

Namely, we can use the maps Ra∗K → Ra∗Rp∗Lp
∗K = Rf∗Lp

∗K and Rb∗M →
Rb∗Rq∗Lq

∗M = Rf∗Lq
∗M and then we can use the relative cup product (Cohomology,

Remark 28.7).

Set A = Γ(S,OS). There is a global Künneth map

(23.0.2) RΓ(X,K)⊗L
A RΓ(Y,M) −→ RΓ(X ×S Y, Lp∗K ⊗L

OX×SY
Lq∗M)
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in D(A). This map is constructed using the pullback maps RΓ(X,K) → RΓ(X ×S
Y, Lp∗K) and RΓ(Y,M) → RΓ(X ×S Y, Lq∗M) and the cup product constructed in
Cohomology, Section 31.

Lemma 23.1. In the situation above, if a and b are quasi-compact and quasi-separated
andX andY are tor-independent overS , then (23.0.1) is an isomorphism forK ∈ DQCoh(OX)
and M ∈ DQCoh(OY ). If in addition S = Spec(A) is affine, then the map (23.0.2) is an
isomorphism.

First proof. This follows from the following sequence of isomorphisms

Rf∗(Lp∗K ⊗L
OX×SY

Lq∗M) = Ra∗Rp∗(Lp∗K ⊗L
OX×SY

Lq∗M)

= Ra∗(K ⊗L
OX

Rp∗Lq
∗M)

= Ra∗(K ⊗L
OX

La∗Rb∗M)
= Ra∗K ⊗L

OS
Rb∗M

The first equality holds because f = a ◦ p. The second equality by Lemma 22.1. The third
equality by Lemma 22.5. The fourth equality by Lemma 22.1. We omit the verification
that the composition of these isomorphisms is the same as the map (23.0.1). If S is affine,
then the source and target of the arrow (23.0.2) are the result of applyingRΓ(S,−) to the
source and target of (23.0.1) and we obtain the final statement; details omitted. �

Second proof. The construction of the arrow (23.0.1) is compatible with restricting
to open subschemes of S as is immediate from the construction of the relative cup product.
Thus it suffices to prove that (23.0.1) is an isomorphism when S is affine.

Assume S = Spec(A) is affine. By Leray we have RΓ(S,Rf∗K) = RΓ(X,K) and simi-
larly for the other cases. By Cohomology, Lemma 31.7 the map (23.0.1) induces the map
(23.0.2) on taking RΓ(S,−). On the other hand, by Lemmas 4.1 and 3.9 the source and
target of the map (23.0.1) are inDQCoh(OS). Thus, by Lemma 3.5, it suffices to prove that
(23.0.2) is an isomorphism.

Assume S = Spec(A) and X = Spec(B) and Y = Spec(C) are all affine. We will use
Lemma 3.5 without further mention. In this case we can choose a K-flat complexK• ofB-
modules whose terms are flat such that K is represented by K̃•. Similarly, we can choose
a K-flat complex M• of C-modules whose terms are flat such that M is represented by
M̃•. See More on Algebra, Lemma 59.10. Then K̃• is a K-flat complex of OX -modules
and similarly for M̃•, see Lemma 3.6. Thus La∗K is represented by

a∗K̃• = ˜K• ⊗A C

and similarly for Lb∗M . This in turn is a K-flat complex of OX×SY -modules by the
lemma cited above and More on Algebra, Lemma 59.3. Thus we finally see that the com-
plex ofOX×SY -modules associated to

Tot((K• ⊗A C)⊗B⊗AC (B ⊗AM•)) = Tot(K• ⊗AM•)

represents La∗K ⊗L
OX×SY

Lb∗M in the derived category of X ×S Y . Taking global
sections we obtain Tot(K• ⊗A M•) which of course is also the complex representing
RΓ(X,K)⊗L

ARΓ(Y,M). The fact that the isomorphism is given by cup product follows
from the relationship between the genuine cup product and the naive one in Cohomology,
Section 31 (and in particular Cohomology, Lemma 31.3 and the discussion following it).
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Assume S = Spec(A) and Y are affine. We will use the induction principle of Cohomol-
ogy of Schemes, Lemma 4.1 to prove the statement. To do this we only have to show: if
X = U ∪ V is an open covering with U and V quasi-compact and if the map (23.0.2)

RΓ(U,K)⊗L
A RΓ(Y,M) −→ RΓ(U ×S Y, Lp∗K ⊗L

OX×SY
Lq∗M)

for U and Y over S , the map (23.0.2)

RΓ(V,K)⊗L
A RΓ(Y,M) −→ RΓ(V ×S Y, Lp∗K ⊗L

OX×SY
Lq∗M)

for V and Y over S , and the map (23.0.2)

RΓ(U ∩ V,K)⊗L
A RΓ(Y,M) −→ RΓ((U ∩ V )×S Y, Lp∗K ⊗L

OX×SY
Lq∗M)

forU ∩V and Y over S are isomorphisms, then so is the map (23.0.2) forX and Y over S.
However, by Cohomology, Lemma 33.7 these maps fit into a map of distinguished triangles
with (23.0.2) the final leg and hence we conclude by Derived Categories, Lemma 4.3.

Assume S = Spec(A) is affine. To finish the proof we can use the induction principle of
Cohomology of Schemes, Lemma 4.1 on Y . Namely, by the above we already know that
our map is an isomorphism when Y is affine. The rest of the argument is exactly the same
as in the previous paragraph but with the roles of X and Y switched. �

Lemma 23.2. Let a : X → S be a quasi-compact and quasi-separated morphism of
schemes. Let F• be a locally bounded complex of a−1OS-modules. Assume for all n ∈ Z
the sheaf Fn is a flat a−1OS-module and Fn has the structure of a quasi-coherent OX -
module compatible with the given a−1OS-module structure (but the differentials in the
complex F• need not beOX -linear). Then the following hold

(1) Ra∗F• is locally bounded,
(2) Ra∗F• is in DQCoh(OS),
(3) Ra∗F• locally has finite tor dimension,
(4) G ⊗L

OS
Ra∗F• = Ra∗(a−1G ⊗a−1OS

F•) for G ∈ QCoh(OS), and
(5) K ⊗L

OS
Ra∗F• = Ra∗(a−1K ⊗L

a−1OS
F•) for K ∈ DQCoh(OS).

Proof. Parts (1), (2), (3) are local on S hence we may and do assume S is affine. Since
a is quasi-compact we conclude that X is quasi-compact. Since F• is locally bounded, we
conclude that F• is bounded.

For (1) and (2) we can use the first spectral sequence Rpa∗Fq ⇒ Rp+qa∗F• of Derived
Categories, Lemma 21.3. Combining Cohomology of Schemes, Lemma 4.5 and Homology,
Lemma 24.11 we conclude.

Let us prove (3) by the induction principle of Cohomology of Schemes, Lemma 4.1. Namely,
for a quasi-compact open of U of X consider the condition that R(a|U )∗(F•|U ) has fi-
nite tor dimension. If U, V are quasi-compact open in X , then we have a relative Mayer-
Vietoris distinguished triangle

R(a|U∪V )∗F•|U∪V → R(a|U )∗F•|U ⊕R(a|V )∗F•|V → R(a|U∩V )∗F•|U∩V →

by Cohomology, Lemma 33.5. By the behaviour of tor amplitude in distinguished trian-
gles (see Cohomology, Lemma 48.6) we see that if we know the result for U , V , U ∩ V ,
then the result holds for U ∪ V . This reduces us to the case where X is affine. In this case
we have

Ra∗F• = a∗F•
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by Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) and the vanishing of higher
direct images of quasi-coherent modules under an affine morphism (Cohomology of Schemes,
Lemma 2.3). Since Fn is S-flat by assumption andX affine, the modules a∗Fn are flat for
all n. Hence a∗F• is a bounded complex of flat OS-modules and hence has finite tor di-
mension.

Proof of part (5). Denote a′ : (X, a−1OS) → (S,OS) the obvious flat morphism of
ringed spaces. Part (5) says that

K ⊗L
OS

Ra′
∗F• = Ra′

∗(L(a′)∗K ⊗L
a−1OS

F•)

Thus Cohomology, Equation (54.2.1) gives a functorial map from the left to the right and
we want to show this map is an isomorphism. This question is local onS hence we may and
do assume S is affine. The rest of the proof is exactly the same as the proof of Lemma 22.1
except that we have to show that the functorK 7→ Ra′

∗(L(a′)∗K⊗L
a−1OS

F•) commutes
with direct sums. This is where we will use Fn has the structure of a quasi-coherentOX -
module. Namely, observe thatK 7→ L(a′)∗K⊗L

a−1OS
F• commutes with arbitrary direct

sums. Next, if F• consists of a single quasi-coherent OX -module F• = Fn[−n] then we
have L(a′)∗G⊗L

a−1OS
F• = La∗K ⊗L

OX
Fn[−n], see Cohomology, Lemma 27.4. Hence

in this case the commutation with direct sums follows from Lemma 4.5. Now, in general,
since S is affine (hence X quasi-compact) and F• is locally bounded, we see that

F• = (Fa → . . .→ Fb)
is bounded. Arguing by induction on b− a and considering the distinguished triangle

Fb[−b]→ (Fa → . . .→ Fb)→ (Fa → . . .→ Fb−1)→ Fb[−b+ 1]
the proof of this part is finished. Some details omitted.

Proof of part (4). Let a′ : (X, a−1OS) → (S,OS) be as above. Since F• is a locally
bounded complex of flat a−1OS-modules we see the complex a−1G⊗a−1OS

F• represents
L(a′)∗G ⊗L

a−1OS
F• in D(a−1OS). Hence (4) follows from (5). �

Lemma 23.3. Let f : X → Y be a morphism of schemes with Y = Spec(A) affine.
Let U : X =

⋃
i∈I Ui be a finite affine open covering such that all the finite intersec-

tions Ui0...ip = Ui0 ∩ . . . ∩ Uip are affine. Let F• be a bounded complex of f−1OY -
modules. Assume for all n ∈ Z the sheafFn is a flat f−1OY -module andFn has the struc-
ture of a quasi-coherent OX -module compatible with the given p−1OY -module struc-
ture (but the differentials in the complex F• need not be OX -linear). Then the complex
Tot(Č•(U ,F•)) is K-flat as a complex of A-modules.

Proof. We may write

F• = (Fa → . . .→ Fb)
Arguing by induction on b− a and considering the distinguished triangle

Fb[−b]→ (Fa → . . .→ Fb)→ (Fa → . . .→ Fb−1)→ Fb[−b+ 1]
and using More on Algebra, Lemma 59.5 we reduce to the case whereF• consists of a single
quasi-coherent OX -module F placed in degree 0. In this case the Čech complex for F
and U is homotopy equivalent to the alternating Čech complex, see Cohomology, Lemma
23.6. Since Ui0...ip is always affine, we see that F(Ui0...ip) is A-flat. Hence Č•

alt(U ,F)
is a bounded complex of flat A-modules and hence K-flat by More on Algebra, Lemma
59.7. �
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Let X,Y, S, a, b, p, q, f be as in the introduction to this section. Let F be anOX -module.
Let G be anOY -module. Set A = Γ(S,OS). Consider the map

(23.3.1) RΓ(X,F)⊗L
A RΓ(Y,G) −→ RΓ(X ×S Y, p∗F ⊗OX×SY

q∗G)

in D(A). This map is constructed using the pullback maps RΓ(X,F) → RΓ(X ×S
Y, p∗F) andRΓ(Y,G)→ RΓ(X×SY, q∗G), the cup product constructed in Cohomology,
Section 31, and the canonical map p∗F ⊗L

OX×SY
q∗G → p∗F ⊗OX×SY

q∗G.

Lemma 23.4. In the situation above the map (23.3.1) is an isomorphism ifS is affine,F
and G are S-flat and quasi-coherent and X and Y are quasi-compact with affine diagonal.

Proof. We strongly urge the reader to read the proof of Varieties, Lemma 29.1 first.
Choose finite affine open coverings U : X =

⋃
i∈I Ui and V : Y =

⋃
j∈J Vj . This

determines an affine open coveringW : X ×S Y =
⋃

(i,j)∈I×J Ui ×S Vj . Note thatW is
a refinement of pr−1

1 U and of pr−1
2 V . Thus by the discussion in Cohomology, Section 25

we obtain maps

Č•(U ,F)→ Č•(W, p∗F) and Č•(V,G)→ Č•(W, q∗G)

well defined up to homotopy and compatible with pullback maps on cohomology. In
Cohomology, Equation (25.3.2) we have constructed a map of complexes

Tot(Č•(W, p∗F)⊗A Č•(W, q∗G)) −→ Č•(W, p∗F ⊗OX×SY
q∗G)

which is compatible with the cup product on cohomology by Cohomology, Lemma 31.4.
Combining the above we obtain a map of complexes

(23.4.1) Tot(Č•(U ,F)⊗A Č•(V,G))→ Č•(W, p∗F ⊗OX×SY
q∗G)

We claim this is the map in the statement of the lemma, i.e., the source and target of
this arrow are the same as the source and target of (23.3.1). Namely, by Cohomology of
Schemes, Lemma 2.2 and Cohomology, Lemma 25.2 the canonical maps

Č•(U ,F)→ RΓ(X,F), Č•(V,G)→ RΓ(Y,G)

and
Č•(W, p∗F ⊗OX×SY

q∗G)→ RΓ(X ×S Y, p∗F ⊗OX×SY
q∗G)

are isomorphisms. On the other hand, the complex Č•(U ,F) is K-flat by Lemma 23.3
and we conclude that Tot(Č•(U ,F) ⊗A Č•(V,G)) represents the derived tensor product
RΓ(X,F)⊗L

A RΓ(Y,G) as claimed.

We still have to show that (23.4.1) is a quasi-isomorphism. We will do this using dimension
shifting. Set d(F) = max{d | Hd(X,F) 6= 0}. Assume d(F) > 0. Set U =

∐
i∈I Ui.

This is an affine scheme as I is finite. Denote j : U → X the morphism which is the
inclusion Ui → X on each Ui. Since the diagonal of X is affine, the morphism j is affine,
see Morphisms, Lemma 11.11. It follows thatF ′ = j∗j

∗F is S-flat, see Morphisms, Lemma
25.4. It also follows that d(F ′) = 0 by combining Cohomology of Schemes, Lemmas 2.4
and 2.2. For all x ∈ X we have Fx → F ′

x is the inclusion of a direct summand: if x ∈ Ui,
then F ′ → (Ui → X)∗F|Ui gives a splitting. We conclude that F → F ′ is injective and
F ′′ = F ′/F is S-flat as well. The short exact sequence 0 → F → F ′ → F ′′ → 0 of flat
quasi-coherentOX -modules produces a short exact sequence of complexes

0→ Tot(Č•(U ,F)⊗AČ•(V,G))→ Tot(Č•(U ,F ′)⊗AČ•(V,G))→ Tot(Č•(U ,F ′′)⊗AČ•(V,G))→ 0



3060 36. DERIVED CATEGORIES OF SCHEMES

and a short exact sequence of complexes

0→ Č•(W, p∗F⊗OX×SY
q∗G)→ Č•(W, p∗F ′⊗OX×SY

q∗G)→ Č•(W, p∗F ′′⊗OX×SY
q∗G)→ 0

Moreover, the maps (23.4.1) between these are compatible with these short exact sequences.
Hence it suffices to prove (23.4.1) is an isomorphism for F ′ and F ′′. Finally, we have
d(F ′′) < d(F). In this way we reduce to the case d(F) = 0.

Arguing in the same fashion for G we find that we may assume that both F and G have
nonzero cohomology only in degree 0. Observe that this means that Γ(X,F) is quasi-
isomorphic to theK-flat complex Č•(U ,F) ofA-modules sitting in degrees≥ 0. It follows
that Γ(X,F) is a flatA-module (because we can compute higher Tor’s against this module
by tensoring with the Cech complex). Let V ⊂ Y be an affine open. Consider the affine
open covering UV : X ×S V =

⋃
i∈I Ui ×S V . It is immediate that

Č•(U ,F)⊗A G(V ) = Č•(UV , p∗F ⊗OX×Y q
∗G)

(equality of complexes). By the flatness of G(V ) overAwe see that Γ(X,F)⊗A G(V )→
Č•(U ,F)⊗AG(V ) is a quasi-isomorphism. Since the sheafification ofV 7→ Č•(UV , p∗F⊗OX×Y

q∗G) represents Rq∗(p∗F ⊗OX×Y q
∗G) by Cohomology of Schemes, Lemma 7.1 we con-

clude that
Rq∗(p∗F ⊗OX×Y q

∗G) ∼= Γ(X,F)⊗A G
on Y where the notation on the right hand side indicates the module

b∗ ˜Γ(X,F)⊗OY
G

Using the Leray spectral sequence for q we find

Hn(X ×S Y, p∗F ⊗OX×Y q
∗G) = Hn(Y, b∗ ˜Γ(X,F)⊗OY

G)

Using Lemma 22.1 for the morphism b : Y → S = Spec(A) and using that Γ(X,F) isA-
flat we conclude that Hn(X ×S Y, p∗F ⊗OX×Y q

∗G) is zero for n > 0 and isomorphic to
H0(X,F)⊗AH0(Y,G) forn = 0. Of course, here we also use thatG only has cohomology
in degree 0. This finishes the proof (except that we should check that the isomorphism is
indeed given by cup product in degree 0; we omit the verification). �

Remark 23.5. Let S = Spec(A) be an affine scheme. Let a : X → S and b : Y → S
be morphisms of schemes. Let F , G be quasi-coherent OX -modules and let E be a quasi-
coherent OY -module. Let ξ ∈ Hi(X,G) with pullback p∗ξ ∈ Hi(X ×S Y, p∗G). Then
the following diagram is commutative

RΓ(X,F)[−i]⊗L
A RΓ(Y, E)

��

ξ⊗id
// RΓ(X,G ⊗OX

F)⊗L
A RΓ(Y, E)

��
RΓ(X ×S Y, p∗F ⊗ q∗E)[−i] p∗ξ // RΓ(X ×S Y, p∗(G ⊗OX

F)⊗ q∗E)

where the unadorned tensor products are over OX×SY . The horizontal arrows are from
Cohomology, Remark 31.2 and the vertical arrows are (23.0.2) hence given by pulling
back followed by cup product onX×S Y . The diagram commutes because the global cup
product (onX ×S Y with the sheaves p∗G , p∗F , and q∗E) is associative, see Cohomology,
Lemma 31.5.
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24. Künneth formula, III

Let X,Y, S, a, b, p, q, f be as in the introduction to Section 23. In this section, given an
OX -module F and aOY -module G let us set

F � G = p∗F ⊗OX×SY
q∗G

Note that, contrary to what happens in a future section, we take the nonderived tensor
product here.

On X let F• be a complex of sheaves of abelian groups whose terms are quasi-coherent
OX -modules such that the differentials diF : F i → F i+1 are differential operators on
X/S of finite order, see Morphisms, Section 33. Simlarly, on Y let G• be a complex of
sheaves of abelian groups whose terms are quasi-coherent OY -modules such that the dif-
ferentials djG : Gj → Gj+1 are differential operators on Y/S of finite order. Applying the
construction of Morphisms, Lemma 33.2 we obtain a double complex

. . . . . . . . . . . .

. . . // F i � Gj+1 di,j+1
1 //

OO

F i+1 � Gj+1 //

OO

. . .

. . . // F i � Gj
di,j1 //

di,j2

OO

F i+1 � Gj //

di+1,j
2

OO

. . .

. . . . . .

OO

. . .

OO

. . .

of quasi-coherent modules whose maps are differential operators of finite order on X ×S
Y/S. Please see the discussion in Morphisms, Remark 33.3 and Homology, Example 18.2.
To be explicit, we set

di,j1 = diF � 1 and di,j2 = 1� djG
In the discussion below the notation

Tot(F• � G•)
refers to the total complex associated to this double complex. This complex has terms
which are quasi-coherentOX×SY -modules and whose differentials are differential opera-
tors of finite order on X ×S Y/S.

In the situation above there exists a “relative cup product” map

(24.0.1) Ra∗(F•)⊗L
OS

Rb∗(G•) −→ Rf∗ (Tot(F• � G•))
Namely, we can construct this map by combining

(1) Ra∗(F•)→ Rf∗(p−1F•),
(2) Rb∗(G•)→ Rf∗(q−1G•),
(3) Rf∗(p−1F•)⊗L

OS
Rf∗(q−1G•)→ Rf∗(p−1F• ⊗L

f−1OS
q−1G•),

(4) p−1F• ⊗L
f−1OS

q−1G• → Tot(p−1F• ⊗f−1OS
q−1G•)

(5) Tot(p−1F• ⊗f−1OS
q−1G•)→ Tot(F• � G•).

Maps (1) and (2) are pullback maps, map (3) is the relative cup product, see Cohomology,
Remark 28.7, map (4) compares the derived and nonderived tensor products, and map (5)
is given by the obvious maps p−1F i⊗f−1OS

q−1Gj → F i�Gj on the underlying double
complexes.
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Set A = Γ(S,OS). There exists a “global cup product” map

(24.0.2) RΓ(X,F•)⊗L
A RΓ(Y,G•) −→ RΓ(X ×S Y,Tot(F• � G•))

in D(A). This is constructed similarly to the relative cup product above using
(1) RΓ(X,F•)→ RΓ(X ×S Y, p−1F•)
(2) RΓ(Y,G•)→ RΓ(X ×S Y, q−1G•),
(3) RΓ(X×S Y, p−1F•)⊗L

ARΓ(X×S Y, q−1G•)→ RΓ(X×S Y, p−1F•⊗L
f−1OS

q−1G•),
(4) p−1F• ⊗L

f−1OS
q−1G• → Tot(p−1F• ⊗f−1OS

q−1G•)
(5) Tot(p−1F• ⊗f−1OS

q−1G•)→ Tot(F• � G•).
Here maps (1) and (2) are the pullback maps, map (3) is the cup product constructed in
Cohomology, Section 31. Maps (4) and (5) are as indicated in the previous paragraph.

Lemma 24.1. In the situation above the cup product (24.0.2) is an isomorphism in
D(A) if the following assumptions hold

(1) S = Spec(A) is affine,
(2) X and Y are quasi-compact with affine diagonal,
(3) F• is bounded,
(4) G• is bounded below,
(5) Fn is S-flat, and
(6) Gm is S-flat.

Proof. We will use the notationAX/S andAY/S introduced in Morphisms, Remark
33.3. Suppose that we have maps of complexes

F•
1 → F•

2 → F•
3 → F•

1 [1]
in the category AX/S . Then by the functoriality of the cup product we obtain a commu-
tative diagram

RΓ(X,F•
1 )⊗L

A RΓ(Y,G•) //

��

RΓ(X ×S Y,Tot(F•
1 � G•))

��
RΓ(X,F•

2 )⊗L
A RΓ(Y,G•) //

��

RΓ(X ×S Y,Tot(F•
2 � G•))

��
RΓ(X,F•

3 )⊗L
A RΓ(Y,G•) //

��

RΓ(X ×S Y,Tot(F•
3 � G•))

��
RΓ(X,F•

1 [1])⊗L
A RΓ(Y,G•) // RΓ(X ×S Y,Tot(F•

1 [1]� G•))

If the original maps form a distinguished triangle in the homotopy category ofAX/S , then
the columns of this diagram form distinguished triangles in D(A).
In the situation of the lemma, suppose that Fn = 0 for n < i. Then we may consider the
termwise split short exact sequence of complexes

0→ σ≥i+1F• → F• → F i[−i]→ 0
where the truncation is as in Homology, Section 15. This produces the distinguished tri-
angle

σ≥i+1F• → F• → F i[−i]→ (σ≥i+1F•)[1]
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in the homotopy category of AX/S where the final arrow is given by the boundary map
F i → F i+1. It follows from the discussion above that it suffices to prove the lemma for
F i[−i] and σ≥i+1F•. Since σ≥i+1F• has fewer nonzero terms, by induction, if we can
prove the lemma if F• is nonzero only in single degree, then the lemma follows. Thus we
may assume F• is nonzero only in one degree.

Assume F• is the complex which has an S-flat quasi-coherent OX -module F sitting in
degree 0 and is zero in other degrees. Observe that RΓ(X,F) has finite tor dimension by
Lemma 23.2 for example. Say it has tor amplitude in [i, j]. Pick N � 0 and consider the
distinguished triangle

σ≥N+1G• → G• → σ≤NG• → (σ≥N+1G•)[1]
in the homotopy category ofAY/S . Now observe that both

RΓ(X,F)⊗L
A RΓ(Y, σ≥N+1G•) and RΓ(X ×S Y,Tot(F � σ≥N+1G•))

have vanishing cohomology in degrees ≤ N + i. Thus, using the arguments given above,
if we want to prove our statement in a given degree, then we may assume G• is bounded.
Repeating the arguments above one more time we may also assume G• is nonzero only in
one degree. This case is handled by Lemma 23.4. �

25. Künneth formula for Ext

Consider a cartesian diagram of schemes

X ×S Y

p
{{

q
##

f

��

X

a
$$

Y

b
zz

S

For K ∈ D(OX) and M ∈ D(OY ) in this section let us define

K �M = Lp∗K ⊗L
OX×SY

Lq∗M

We claim there is a canonical map
(25.0.1)
Ra∗RHom(K,K ′)⊗L

OS
Rb∗RHom(M,M ′) −→ Rf∗(RHom(K �M,K ′ �M ′))

for K,K ′ ∈ D(OX) and M,M ′ ∈ D(OY ). Namely, we can take the map adjoint to the
map

Lf∗ (Ra∗RHom(K,K ′)⊗L
OS

Rb∗RHom(M,M ′)
)

=
Lf∗Ra∗RHom(K,K ′)⊗L

OX×SY
Lf∗Rb∗RHom(M,M ′) =

Lp∗La∗Ra∗RHom(K,K ′)⊗L
OX×SY

Lq∗Lb∗Rb∗RHom(M,M ′)→
Lp∗RHom(K,K ′)⊗L

OX×SY
Lq∗RHom(M,M ′)→

RHom(Lp∗K,Lp∗K ′)⊗L
OX×SY

RHom(Lq∗M,Lq∗M ′)→
RHom(K �M,K ′ �M ′)

Here the first equality is compatibility of pullbacks with tensor products, Cohomology,
Lemma 27.3. The second equality is f = a ◦ p = b ◦ q and composition of pullbacks,
Cohomology, Lemma 27.2. The first arrow is given by the adjunction maps La∗Ra∗ → id
and Lb∗Rb∗ → id because pushforward and pullback are adjoint, Cohomology, Lemma
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28.1. The second arrow is given by Cohomology, Remark 42.13. The third and final arrow
is Cohomology, Remark 42.10. A simple special case of this is the following result.

Lemma 25.1. In the situation above, assume a and b are quasi-compact and quasi-
separated and X and Y are tor independent over S. If K is perfect, K ′ ∈ DQCoh(OX),
M is perfect, and M ′ ∈ DQCoh(OY ), then (25.0.1) is an isomorphism.

Proof. In this case we haveRHom(K,K ′) = K ′⊗LK∨,RHom(M,M ′) = M ′⊗L

M∨, and
RHom(K �M,K ′ �M ′) = (K ′ ⊗L K∨)� (M ′ ⊗L M∨)

See Cohomology, Lemma 50.5 and we also use that being perfect is preserved by pullback
and by tensor products. Hence this case follows from Lemma 23.1. (We omit the verifica-
tion that with these identifications we obtain the same map.) �

26. Cohomology and base change, V

In Section 22 we saw a base change theorem holds when the morphisms are tor indepen-
dent. Even in the affine case there cannot be a base change theorem without such a condi-
tion, see More on Algebra, Section 61. In this section we analyze when one can get a base
change result “one complex at a time”.

To make this work, suppose we have a commutative diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of schemes (usually we will assume it is cartesian). LetK ∈ DQCoh(OX) and letL(g′)∗K →
K ′ be a map in DQCoh(OX′). For a point x′ ∈ X ′ set x = g′(x′) ∈ X , s′ = f ′(x′) ∈ S′

and s = f(x) = g(s′). Then we can consider the maps

Kx ⊗L
OS,s
OS′,s′ → Kx ⊗L

OX,x
OX′,x′ → K ′

x′

where the first arrow is More on Algebra, Equation (61.0.1) and the second comes from
(L(g′)∗K)x′ = Kx ⊗L

OX,x
OX′,x′ and the given map L(g′)∗K → K ′. For each i ∈ Z we

obtain aOX,x⊗OS,s
OS′,s′ -module structure onHi(Kx⊗L

OS,s
OS′,s′). Putting everything

together we obtain canonical maps

(26.0.1) Hi(Kx ⊗L
OS,s
OS′,s′)⊗(OX,x⊗OS,sOS′,s′ ) OX′,x′ −→ Hi(K ′

x′)

ofOX′,x′ -modules.

Lemma 26.1. Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. LetK ∈ DQCoh(OX) and letL(g′)∗K → K ′ be a map
in DQCoh(OX′). The following are equivalent

(1) for any x′ ∈ X ′ and i ∈ Z the map (26.0.1) is an isomorphism,
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(2) for U ⊂ X , V ′ ⊂ S′ affine open both mapping into the affine open V ⊂ S with
U ′ = V ′ ×V U the composition

RΓ(U,K)⊗L
OS(U) OS′(V ′)→ RΓ(U,K)⊗L

OX(U) OX′(U ′)→ RΓ(U ′,K ′)

is an isomorphism in D(OS′(V ′)), and
(3) there is a set I of quadruples Ui, V ′

i , Vi, U
′
i , i ∈ I as in (2) with X ′ =

⋃
U ′
i .

Proof. The second arrow in (2) comes from the equality

RΓ(U,K)⊗L
OX(U) OX′(U ′) = RΓ(U ′, L(g′)∗K)

of Lemma 3.8 and the given arrow L(g′)∗K → K ′. The first arrow of (2) is More on
Algebra, Equation (61.0.1). It is clear that (2) implies (3). Observe that (1) is local on X ′.
Therefore it suffices to show that if X , S , S′, X ′ are affine, then (1) is equivalent to the
condition that

RΓ(X,K)⊗L
OS(S) OS′(S′)→ RΓ(X,K)⊗L

OX(X) OX′(X ′)→ RΓ(X ′,K ′)

is an isomorphism in D(OS′(S′)). Say S = Spec(R), X = Spec(A), S′ = Spec(R′),
X ′ = Spec(A′), K corresponds to the complexM• ofA-modules, andK ′ corresponds to
the complex N• of A′-modules. Note that A′ = A ⊗R R′. The condition above is that
the composition

M• ⊗L
R R

′ →M• ⊗L
A A

′ → N•

is an isomorphism in D(R′). Equivalently, it is that for all i ∈ Z the map

Hi(M• ⊗L
R R

′)→ Hi(M• ⊗L
A A

′)→ Hi(N•)

is an isomorphism. Observe that this is a map ofA⊗RR′-modules, i.e., ofA′-modules. On
the other hand, (1) is the requirement that for compatible primes q′ ⊂ A′, q ⊂ A, p′ ⊂ R′,
p ⊂ R the composition

Hi(M•
q ⊗L

Rp
R′

p′)⊗(Aq⊗RpR
′
p′ ) A

′
q′ → Hi(M•

q ⊗L
Aq

A′
q′)→ Hi(N•

q′)

is an isomorphism. Since

Hi(M•
q ⊗L

Rp
R′

p′)⊗(Aq⊗RpR
′
p′ ) A

′
q′ = Hi(M• ⊗L

R R
′)⊗A′ A′

q′

is the localization at q′, we see that these two conditions are equivalent by Algebra, Lemma
23.1. �

Lemma 26.2. Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. LetK ∈ DQCoh(OX) and letL(g′)∗K → K ′ be a map
in DQCoh(OX′). If

(1) the equivalent conditions of Lemma 26.1 hold, and
(2) f is quasi-compact and quasi-separated,

then the composition Lg∗Rf∗K → Rf ′
∗L(g′)∗K → Rf ′

∗K
′ is an isomorphism.
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Proof. We could prove this using the same method as in the proof of Lemma 22.5
but instead we will prove it using the induction principle and relative Mayer-Vietoris.

To check the map is an isomorphism we may work locally on S′. Hence we may assume
g : S′ → S is a morphism of affine schemes. In particular X is a quasi-compact and
quasi-separated scheme. We will use the induction principle of Cohomology of Schemes,
Lemma 4.1 to prove that for any quasi-compact openU ⊂ X the similarly constructed map
Lg∗R(U → S)∗K|U → R(U ′ → S′)∗K

′|U ′ is an isomorphism. Here U ′ = (g′)−1(U).

If U ⊂ X is an affine open, then we find that the result is true by assumption, see Lemma
26.1 part (2) and the translation into algebra afforded to us by Lemmas 3.5 and 3.8.

The induction step. Suppose thatX = U ∪V is an open covering withU , V , U ∩V quasi-
compact such that the result holds for U , V , and U ∩ V . Denote a = f |U , b = f |V and
c = f |U∩V . Let a′ : U ′ → S′, b′ : V ′ → S′ and c′ : U ′ ∩ V ′ → S′ be the base changes of
a, b, and c. Using the distinguished triangles from relative Mayer-Vietoris (Cohomology,
Lemma 33.5) we obtain a commutative diagram

Lg∗Rf∗K //

��

Rf ′
∗K

′

��
Lg∗Ra∗K|U ⊕ Lg∗Rb∗K|V //

��

Ra′
∗K

′|U ′ ⊕Rb′
∗K

′|V ′

��
Lg∗Rc∗K|U∩V //

��

Rc′
∗K

′|U ′∩V ′

��
Lg∗Rf∗K[1] // Rf ′

∗K
′[1]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived Cate-
gories, Lemma 4.3) and the proof of the lemma is finished. �

Lemma 26.3. Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. LetK ∈ DQCoh(OX) and letL(g′)∗K → K ′ be a map
in DQCoh(OX′). If the equivalent conditions of Lemma 26.1 hold, then

(1) forE ∈ DQCoh(OX) the equivalent conditions of Lemma 26.1 hold forL(g′)∗(E⊗L

K)→ L(g′)∗E ⊗L K ′,
(2) if E in D(OX) is perfect the equivalent conditions of Lemma 26.1 hold for

L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,K ′), and
(3) if K is bounded below and E in D(OX) pseudo-coherent the equivalent condi-

tions of Lemma 26.1 hold for L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,K ′).

Proof. The statement makes sense as the complexes involved have quasi-coherent
cohomology sheaves by Lemmas 3.8, 3.9, and 10.8 and Cohomology, Lemmas 47.3 and
49.6. Having said this, we can check the maps (26.0.1) are isomorphisms in case (1) by
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computing the source and target of (26.0.1) using the transitive property of tensor product,
see More on Algebra, Lemma 59.15. The map in (2) and (3) is the composition

L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,L(g′)∗K)→ RHom(L(g′)∗E,K ′)
where the first arrow is Cohomology, Remark 42.13 and the second arrow comes from the
given map L(g′)∗K → K ′. To prove the maps (26.0.1) are isomorphisms one represents
Ex by a bounded complex of finite projective OX.x-modules in case (2) or by a bounded
above complex of finite free modules in case (3) and computes the source and target of the
arrow. Some details omitted. �

Lemma 26.4. Let f : X → S be a quasi-compact and quasi-separated morphism of
schemes. Let E ∈ DQCoh(OX). Let G• be a bounded above complex of quasi-coherent
OX -modules flat over S. Then formation of

Rf∗(E ⊗L
OX
G•)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : S′ → S be a morphism of
schemes and consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

in other words X ′ = S′ ×S X . The lemma asserts that

Lg∗Rf∗(E ⊗L
OX
G•) −→ Rf ′

∗

(
L(g′)∗E ⊗L

OX′ (g′)∗G•
)

is an isomorphism. Observe that on the right hand side we do not use the derived pullback
on G•. To prove this, we apply Lemmas 26.2 and 26.3 to see that it suffices to prove the
canonical map

L(g′)∗G• → (g′)∗G•

satisfies the equivalent conditions of Lemma 26.1. This follows by checking the condition
on stalks, where it immediately follows from the fact that G•

x ⊗OS,s
OS′,s′ computes the

derived tensor product by our assumptions on the complex G•. �

Lemma 26.5. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let E be an object of D(OX). Let G• be a complex of quasi-coherent OX -
modules. If

(1) E is perfect, G• is a bounded above, and Gn is flat over S , or
(2) E is pseudo-coherent, G• is bounded, and Gn is flat over S ,

then formation of
Rf∗RHom(E,G•)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : S′ → S be a morphism of
schemes and consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S



3068 36. DERIVED CATEGORIES OF SCHEMES

in other words X ′ = S′ ×S X . The lemma asserts that
Lg∗Rf∗RHom(E,G•) −→ R(f ′)∗RHom(L(g′)∗E, (g′)∗G•)

is an isomorphism. Observe that on the right hand side we do not use the derived pullback
on G•. To prove this, we apply Lemmas 26.2 and 26.3 to see that it suffices to prove the
canonical map

L(g′)∗G• → (g′)∗G•

satisfies the equivalent conditions of Lemma 26.1. This was shown in the proof of Lemma
26.4. �

27. Producing perfect complexes

The following lemma is our main technical tool for producing perfect complexes. Later
versions of this result will reduce to this by Noetherian approximation, see Section 30.

Lemma 27.1. Let S be a Noetherian scheme. Let f : X → S be a morphism of
schemes which is locally of finite type. Let E ∈ D(OX) such that

(1) E ∈ Db
Coh(OX),

(2) the support of Hi(E) is proper over S for all i, and
(3) E has finite tor dimension as an object of D(f−1OS).

Then Rf∗E is a perfect object of D(OS).
Proof. By Lemma 11.3 we see that Rf∗E is an object of Db

Coh(OS). Hence Rf∗E is
pseudo-coherent (Lemma 10.3). Hence it suffices to show that Rf∗E has finite tor dimen-
sion, see Cohomology, Lemma 49.5. By Lemma 10.6 it suffices to check thatRf∗(E)⊗L

OS
F

has universally bounded cohomology for all quasi-coherent sheaves F on S. Bounded
from above is clear as Rf∗(E) is bounded from above. Let T ⊂ X be the union of the
supports ofHi(E) for all i. Then T is proper over S by assumptions (1) and (2), see Coho-
mology of Schemes, Lemma 26.6. In particular there exists a quasi-compact openX ′ ⊂ X
containing T . Setting f ′ = f |X′ we have Rf∗(E) = Rf ′

∗(E|X′) because E restricts to
zero on X \ T . Thus we may replace X by X ′ and assume f is quasi-compact. Moreover,
f is quasi-separated by Morphisms, Lemma 15.7. Now

Rf∗(E)⊗L
OS
F = Rf∗

(
E ⊗L

OX
Lf∗F

)
= Rf∗

(
E ⊗L

f−1OS
f−1F

)
by Lemma 22.1 and Cohomology, Lemma 27.4. By assumption (3) the complexE⊗L

f−1OS

f−1F has cohomology sheaves in a given finite range, say [a, b]. ThenRf∗ of it has coho-
mology in the range [a,∞) and we win. �

Lemma 27.2. LetS be a Noetherian scheme. Let f : X → S be a morphism of schemes
which is locally of finite type. LetE ∈ D(OX) be perfect. LetG• be a bounded complex of
coherentOX -modules flat overS with support proper overS. ThenK = Rf∗(E⊗L

OX
G•)

is a perfect object of D(OS).
Proof. The objectK is perfect by Lemma 27.1. We check the lemma applies: Locally

E is isomorphic to a finite complex of finite free OX -modules. Hence locally E ⊗L
OX
G•

is isomorphic to a finite complex whose terms are of the form⊕
i=a,...,b

(Gi)⊕ri

for some integersa, b, ra, . . . , rb. This immediately implies the cohomology sheavesHi(E⊗L
OX

G) are coherent. The hypothesis on the tor dimension also follows as Gi is flat over
f−1OS . �
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Lemma 27.3. Let S be a Noetherian scheme. Let f : X → S be a morphism of
schemes which is locally of finite type. Let E ∈ D(OX) be perfect. Let G• be a bounded
complex of coherent OX -modules flat over S with support proper over S. Then K =
Rf∗RHom(E,G•) is a perfect object of D(OS).

Proof. SinceE is a perfect complex there exists a dual perfect complexE∨, see Coho-
mology, Lemma 50.5. Observe that RHom(E,G•) = E∨ ⊗L

OX
G•. Thus the perfectness

of K follows from Lemma 27.2. �

We will generalize the following lemma to flat and proper morphisms over general bases
in Lemma 30.4 and to perfect proper morphisms in More on Morphisms, Lemma 61.13.

Lemma 27.4. LetS be a Noetherian scheme. Let f : X → S be a flat proper morphism
of schemes. Let E ∈ D(OX) be perfect. Then Rf∗E is a perfect object of D(OS).

Proof. We claim that Lemma 27.1 applies. Conditions (1) and (2) are immediate.
Condition (3) is local on X . Thus we may assume X and S affine and E represented by
a strictly perfect complex of OX -modules. Since OX is flat as a sheaf of f−1OS-modules
we find that condition (3) is satisfied. �

28. A projection formula for Ext

Lemma 28.3 (or similar results in the literature) is sometimes used to verify one of Artin’s
criteria for Quot functors, Hilbert schemes, and other moduli problems. Suppose that
f : X → S is a proper, flat, finitely presented morphism of schemes and E ∈ D(OX) is
perfect. Here the lemma says

ExtiX(E, f∗F) = ExtiS((Rf∗E
∨)∨,F)

forF quasi-coherent on S. Writing it this way makes it look like a projection formula for
Ext and indeed the result follows rather easily from Lemma 22.1.

Lemma 28.1. Assumptions and notation as in Lemma 27.2. Then there are functorial
isomorphisms

Hi(S,K ⊗L
OS
F) −→ Hi(X,E ⊗L

OX
(G• ⊗OX

f∗F))

for F quasi-coherent on S compatible with boundary maps (see proof).

Proof. We have

G• ⊗L
OX

Lf∗F = G• ⊗L
f−1OS

f−1F = G• ⊗f−1OS
f−1F = G• ⊗OX

f∗F

the first equality by Cohomology, Lemma 27.4, the second as Gn is a flat f−1OS-module,
and the third by definition of pullbacks. Hence we obtain

Hi(X,E ⊗L
OX

(G• ⊗OX
f∗F)) = Hi(X,E ⊗L

OX
G• ⊗L

OX
Lf∗F)

= Hi(S,Rf∗(E ⊗L
OX
G• ⊗L

OX
Lf∗F))

= Hi(S,Rf∗(E ⊗L
OX
G•)⊗L

OS
F)

= Hi(S,K ⊗L
OS
F)

The first equality by the above, the second by Leray (Cohomology, Lemma 13.1), and the
third equality by Lemma 22.1. The statement on boundary maps means the following:
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Given a short exact sequence 0 → F1 → F2 → F3 → 0 of quasi-coherent OS-modules,
the isomorphisms fit into commutative diagrams

Hi(S,K ⊗L
OS
F3) //

δ

��

Hi(X,E ⊗L
OX

(G• ⊗OX
f∗F3))

δ

��
Hi+1(S,K ⊗L

OS
F1) // Hi+1(X,E ⊗L

OX
(G• ⊗OX

f∗F1))

where the boundary maps come from the distinguished triangle

K ⊗L
OS
F1 → K ⊗L

OS
F2 → K ⊗L

OS
F3 → K ⊗L

OS
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence
0→ G• ⊗OX

f∗F1 → G• ⊗OX
f∗F2 → G• ⊗OX

f∗F3 → 0
of complexes of OX -modules. This sequence is exact because Gn is flat over S. We omit
the verification of the commutativity of the displayed diagram. �

Lemma 28.2. Assumptions and notation as in Lemma 27.3. Then there are functorial
isomorphisms

Hi(S,K ⊗L
OS
F) −→ ExtiOX

(E,G• ⊗OX
f∗F)

for F quasi-coherent on S compatible with boundary maps (see proof).

Proof. As in the proof of Lemma 27.3 let E∨ be the dual perfect complex and recall
that K = Rf∗(E∨ ⊗L

OX
G•). Since we also have

ExtiOX
(E,G• ⊗OX

f∗F) = Hi(X,E∨ ⊗L
OX

(G• ⊗OX
f∗F))

by construction ofE∨, the existence of the isomorphisms follows from Lemma 28.1 applied
toE∨ and G•. The statement on boundary maps means the following: Given a short exact
sequence 0→ F1 → F2 → F3 → 0 then the isomorphisms fit into commutative diagrams

Hi(S,K ⊗L
OS
F3) //

δ

��

ExtiOX
(E,G• ⊗OX

f∗F3)

δ

��
Hi+1(S,K ⊗L

OS
F1) // Exti+1

OX
(E,G• ⊗OX

f∗F1)

where the boundary maps come from the distinguished triangle

K ⊗L
OS
F1 → K ⊗L

OS
F2 → K ⊗L

OS
F3 → K ⊗L

OS
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence
0→ G• ⊗OX

f∗F1 → G• ⊗OX
f∗F2 → G• ⊗OX

f∗F3 → 0
of complexes. This sequence is exact because G is flat over S. We omit the verification of
the commutativity of the displayed diagram. �

Lemma 28.3. Let f : X → S be a morphism of schemes, E ∈ D(OX) and G• a
complex ofOX -modules. Assume

(1) S is Noetherian,
(2) f is locally of finite type,
(3) E ∈ D−

Coh(OX),
(4) G• is a bounded complex of coherent OX -modules flat over S with support

proper over S.
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Then the following two statements are true
(A) for every m ∈ Z there exists a perfect object K of D(OS) and functorial maps

αiF : ExtiOX
(E,G• ⊗OX

f∗F) −→ Hi(S,K ⊗L
OS
F)

forF quasi-coherent on S compatible with boundary maps (see proof) such that
αiF is an isomorphism for i ≤ m

(B) there exists a pseudo-coherent L ∈ D(OS) and functorial isomorphisms

ExtiOS
(L,F) −→ ExtiOX

(E,G• ⊗OX
f∗F)

for F quasi-coherent on S compatible with boundary maps.

Proof. Proof of (A). Suppose Gi is nonzero only for i ∈ [a, b]. We may replace X
by a quasi-compact open neighbourhood of the union of the supports of Gi. Hence we
may assumeX is Noetherian. In this caseX and f are quasi-compact and quasi-separated.
Choose an approximationP → E by a perfect complexP of (X,E,−m−1+a) (possible
by Theorem 14.6). Then the induced map

ExtiOX
(E,G• ⊗OX

f∗F) −→ ExtiOX
(P,G• ⊗OX

f∗F)
is an isomorphism for i ≤ m. Namely, the kernel, resp. cokernel of this map is a quotient,
resp. submodule of

ExtiOX
(C,G• ⊗OX

f∗F) resp. Exti+1
OX

(C,G• ⊗OX
f∗F)

where C is the cone of P → E. Since C has vanishing cohomology sheaves in degrees
≥ −m − 1 + a these Ext-groups are zero for i ≤ m + 1 by Derived Categories, Lemma
27.3. This reduces us to the case that E is a perfect complex which is Lemma 28.2. The
statement on boundaries is explained in the proof of Lemma 28.2.
Proof of (B). As in the proof of (A) we may assume X is Noetherian. Observe that E is
pseudo-coherent by Lemma 10.3. By Lemma 19.1 we can write E = hocolimEn with En
perfect and En → E inducing an isomorphism on truncations τ≥−n. Let E∨

n be the dual
perfect complex (Cohomology, Lemma 50.5). We obtain an inverse system . . .→ E∨

3 →
E∨

2 → E∨
1 of perfect objects. This in turn gives rise to an inverse system

. . .→ K3 → K2 → K1 with Kn = Rf∗(E∨
n ⊗L

OX
G•)

perfect on S , see Lemma 27.2. By Lemma 28.2 and its proof and by the arguments in the
previous paragraph (with P = En) for any quasi-coherent F on S we have functorial
canonical maps

ExtiOX
(E,G• ⊗OX

f∗F)

tt ))
Hi(S,Kn+1 ⊗L

OS
F) // Hi(S,Kn ⊗L

OS
F)

which are isomorphisms for i ≤ n+ a. Let Ln = K∨
n be the dual perfect complex. Then

we see that L1 → L2 → L3 → . . . is a system of perfect objects in D(OS) such that for
any quasi-coherent F on S the maps

ExtiOS
(Ln+1,F) −→ ExtiOS

(Ln,F)
are isomorphisms for i ≤ n+a−1. This implies thatLn → Ln+1 induces an isomorphism
on truncations τ≥−n−a+2 (hint: take cone of Ln → Ln+1 and look at its last nonvanish-
ing cohomology sheaf). Thus L = hocolimLn is pseudo-coherent, see Lemma 19.1. The



3072 36. DERIVED CATEGORIES OF SCHEMES

mapping property of homotopy colimits gives that ExtiOS
(L,F) = ExtiOS

(Ln,F) for
i ≤ n+ a− 3 which finishes the proof. �

Remark 28.4. The pseudo-coherent complex L of part (B) of Lemma 28.3 is canoni-
cally associated to the situation. For example, formation of L as in (B) is compatible with
base change. In other words, given a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of schemes we have canonical functorial isomorphisms

ExtiOS′ (Lg
∗L,F ′) −→ ExtiOX

(L(g′)∗E, (g′)∗G• ⊗OX′ (f ′)∗F ′)

for F ′ quasi-coherent on S′. Obsere that we do not use derived pullback on G• on the
right hand side. If we ever need this, we will formulate a precise result here and give a
detailed proof.

29. Limits and derived categories

In this section we collect some results about the derived category of a scheme which is
the limit of an inverse system of schemes. More precisely, we will work in the following
setting.

Situation 29.1. Let S = limi∈I Si be a limit of a directed system of schemes with
affine transition morphisms fi′i : Si′ → Si. We assume that Si is quasi-compact and
quasi-separated for all i ∈ I . We denote fi : S → Si the projection. We also fix an
element 0 ∈ I .

Lemma 29.2. In Situation 29.1. Let E0 and K0 be objects of D(OS0). Set Ei =
Lf∗

i0E0 and Ki = Lf∗
i0K0 for i ≥ 0 and set E = Lf∗

0E0 and K = Lf∗
0K0. Then the

map
colimi≥0 HomD(OSi

)(Ei,Ki) −→ HomD(OS)(E,K)

is an isomorphism if either
(1) E0 is perfect and K0 ∈ DQCoh(OS0), or
(2) E0 is pseudo-coherent and K0 ∈ DQCoh(OS0) has finite tor dimension.

Proof. For every open U0 ⊂ S0 consider the condition P that the canonical map

colimi≥0 HomD(OUi
)(Ei|Ui ,Ki|Ui) −→ HomD(OU )(E|U ,K|U )

is an isomorphism, whereU = f−1
0 (U0) andUi = f−1

i0 (U0). We will proveP holds for all
quasi-compact opens U0 by the induction principle of Cohomology of Schemes, Lemma
4.1. Condition (2) of this lemma follows immediately from Mayer-Vietoris for hom in
the derived category, see Cohomology, Lemma 33.3. Thus it suffices to prove the lemma
when S0 is affine.

Assume S0 is affine. Say S0 = Spec(A0), Si = Spec(Ai), and S = Spec(A). We will use
Lemma 3.5 without further mention.



29. LIMITS AND DERIVED CATEGORIES 3073

In case (1) the object E•
0 corresponds to a finite complex of finite projective A0-modules,

see Lemma 10.7. We may represent the object K0 by a K-flat complex K•
0 of A0-modules.

In this situation we are trying to prove

colimi≥0 HomD(Ai)(E
•
0 ⊗A0 Ai,K

•
0 ⊗A0 Ai) −→ HomD(A)(E•

0 ⊗A0 A,K
•
0 ⊗A0 A)

Because E•
0 is a bounded above complex of projective modules we can rewrite this as

colimi≥0 HomK(A0)(E•
0 ,K

•
0 ⊗A0 Ai) −→ HomK(A0)(E•

0 ,K
•
0 ⊗A0 A)

Since there are only a finite number of nonzero modulesEn0 and since these are all finitely
presented modules, this map is an isomorphism.

In case (2) the object E0 corresponds to a bounded above complex E•
0 of finite free A0-

modules, see Lemma 10.2. We may representK0 by a finite complexK•
0 of flatA0-modules,

see Lemma 10.4 and More on Algebra, Lemma 66.3. In particular K•
0 is K-flat and we can

argue as before to arrive at the map

colimi≥0 HomK(A0)(E•
0 ,K

•
0 ⊗A0 Ai) −→ HomK(A0)(E•

0 ,K
•
0 ⊗A0 A)

It is clear that this map is an isomorphism (only a finite number of terms are involved
since K•

0 is bounded). �

Lemma 29.3. In Situation 29.1 the category of perfect objects ofD(OS) is the colimit
of the categories of perfect objects of D(OSi).

Proof. For every open U0 ⊂ S0 consider the condition P that the functor

colimi≥0 Dperf (OUi) −→ Dperf (OU )

is an equivalence where perf indicates the full subcategory of perfect objects and where
U = f−1

0 (U0) and Ui = f−1
i0 (U0). We will prove P holds for all quasi-compact opens U0

by the induction principle of Cohomology of Schemes, Lemma 4.1. First, we observe that
we already know the functor is fully faithful by Lemma 29.2. Thus it suffices to prove
essential surjectivity.

We first check condition (2) of the induction principle. Thus suppose that we have S0 =
U0 ∪V0 and that P holds for U0, V0, and U0 ∩V0. LetE be a perfect object ofD(OS). We
can find i ≥ 0 and EU,i perfect on Ui and EV,i perfect on Vi whose pullback to U and V
are isomorphic to E|U and E|V . Denote

a : EU,i → (Rfi,∗E)|Ui and b : EV,i → (Rfi,∗E)|Vi
the maps adjoint to the isomorphisms Lf∗

i EU,i → E|U and Lf∗
i EV,i → E|V . By fully

faithfulness, after increasing i, we can find an isomorphism c : EU,i|Ui∩Vi → EV,i|Ui∩Vi
which pulls back to the identifications

Lf∗
i EU,i|U∩V → E|U∩V → Lf∗

i EV,i|U∩V .

Apply Cohomology, Lemma 45.1 to get an object Ei on Si and a map d : Ei → Rfi,∗E
which restricts to the maps a and b over Ui and Vi. Then it is clear that Ei is perfect and
that d is adjoint to an isomorphism Lf∗

i Ei → E.

Finally, we check condition (1) of the induction principle, in other words, we check the
lemma holds when S0 is affine. Say S0 = Spec(A0), Si = Spec(Ai), and S = Spec(A).
Using Lemmas 3.5 and 10.7 we see that we have to show that

Dperf (A) = colimDperf (Ai)
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This is clear from the fact that perfect complexes over rings are given by finite complexes
of finite projective (hence finitely presented) modules. See More on Algebra, Lemma 74.17
for details. �

30. Cohomology and base change, VI

A final section on cohomology and base change continuing the discussion of Sections 22,
26, and 27. An easy to grok special case is given in Remark 30.2.

Lemma 30.1. Let f : X → S be a morphism of finite presentation. Let E ∈ D(OX)
be a perfect object. Let G• be a bounded complex of finitely presented OX -modules, flat
over S , with support proper over S. Then

K = Rf∗(E ⊗L
OX
G•)

is a perfect object of D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 26.4. Thus it suffices to show thatK
is a perfect object. If S is Noetherian, then this follows from Lemma 27.2. We will reduce
to this case by Noetherian approximation. We encourage the reader to skip the rest of this
proof.
The question is local on S , hence we may assume S is affine. Say S = Spec(R). We write
R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits, Lemma 10.1 there
exists an i and a schemeXi of finite presentation overRi whose base change toR isX . By
Limits, Lemma 10.2 we may assume after increasing i, that there exists a bounded complex
of finitely presented OXi -modules G•

i whose pullback to X is G•. After increasing i we
may assume Gni is flat over Ri, see Limits, Lemma 10.4. After increasing i we may assume
the support of Gni is proper over Ri, see Limits, Lemma 13.5 and Cohomology of Schemes,
Lemma 26.7. Finally, by Lemma 29.3 we may, after increasing i, assume there exists a
perfect object Ei of D(OXi) whose pullback to X is E. Applying Lemma 27.2 to Xi →
Spec(Ri), Ei, G•

i and using the base change property already shown we obtain the result.
�

Remark 30.2. Let R be a ring. Let X be a scheme of finite presentation over R. Let
G be a finitely presented OX -module flat over R with support proper over R. By Lemma
30.1 there exists a finite complex of finite projective R-modules M• such that we have

RΓ(XR′ ,GR′) = M• ⊗R R′

functorially in the R-algebra R′.

Lemma 30.3. Let f : X → S be a morphism of finite presentation. Let E ∈ D(OX)
be a pseudo-coherent object. Let G• be a bounded above complex of finitely presented
OX -modules, flat over S , with support proper over S. Then

K = Rf∗(E ⊗L
OX
G•)

is a pseudo-coherent object of D(OS) and its formation commutes with arbitrary base
change.

Proof. The statement on base change is Lemma 26.4. Thus it suffices to show that
K is a pseudo-coherent object. This will follow from Lemma 30.1 by approximation by
perfect complexes. We encourage the reader to skip the rest of the proof.
The question is local on S , hence we may assume S is affine. Then X is quasi-compact
and quasi-separated. Moreover, there exists an integer N such that total direct image
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Rf∗ : DQCoh(OX) → DQCoh(OS) has cohomological dimension N as explained in
Lemma 4.1. Choose an integer b such that Gi = 0 for i > b. It suffices to show that K is
m-pseudo-coherent for every m. Choose an approximation P → E by a perfect complex
P of (X,E,m − N − 1 − b). This is possible by Theorem 14.6. Choose a distinguished
triangle

P → E → C → P [1]
in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m − N − 1 − b.
Hence the cohomology sheaves of C ⊗L G• are zero in degrees ≥ m − N − 1. Thus the
cohomology sheaves of Rf∗(C ⊗L G•) are zero in degrees ≥ m− 1. Hence

Rf∗(P ⊗L G•)→ Rf∗(E ⊗L G•)

is an isomorphism on cohomology sheaves in degrees≥ m. Next, suppose thatHi(P ) = 0
for i > a. Then P ⊗L σ≥m−N−1−aG• −→ P ⊗L G• is an isomorphism on cohomology
sheaves in degrees ≥ m−N − 1. Thus again we find that

Rf∗(P ⊗L σ≥m−N−1−aG•)→ Rf∗(P ⊗L G•)

is an isomorphism on cohomology sheaves in degrees ≥ m. By Lemma 30.1 the source is
a perfect complex. We conclude that K is m-pseudo-coherent as desired. �

Lemma 30.4. Let S be a scheme. Let f : X → S be a proper morphism of finite
presentation.

(1) Let E ∈ D(OX) be perfect and f flat. Then Rf∗E is a perfect object of D(OS)
and its formation commutes with arbitrary base change.

(2) LetG be anOX -module of finite presentation, flat overS. ThenRf∗G is a perfect
object of D(OS) and its formation commutes with arbitrary base change.

Proof. Special cases of Lemma 30.1 applied with (1) G• equal toOX in degree 0 and
(2) E = OX and G• consisting of G sitting in degree 0. �

Lemma 30.5. Let S be a scheme. Let f : X → S be a flat proper morphism of finite
presentation. Let E ∈ D(OX) be pseudo-coherent. Then Rf∗E is a pseudo-coherent
object of D(OS) and its formation commutes with arbitrary base change.

More generally, if f : X → S is proper andE onX is pseudo-coherent relative toS (More
on Morphisms, Definition 59.2), then Rf∗E is pseudo-coherent (but formation does not
commute with base change in this generality). See [?].

Proof. Special case of Lemma 30.3 applied with G• equal toOX in degree 0. �

Lemma 30.6. Let R be a ring. Let X be a scheme and let f : X → Spec(R) be
proper, flat, and of finite presentation. Let (Mn) be an inverse system of R-modules with
surjective transition maps. Then the canonical map

OX ⊗R (limMn) −→ limOX ⊗RMn

induces an isomorphism from the source to DQX applied to the target.

Proof. The statement means that for any object E of DQCoh(OX) the induced map

Hom(E,OX ⊗R (limMn)) −→ Hom(E, limOX ⊗RMn)

is an isomorphism. Since DQCoh(OX) has a perfect generator (Theorem 15.3) it suffices
to check this for perfect E. By Lemma 3.2 we have limOX ⊗RMn = R limOX ⊗RMn.
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The exact functor RHomX(E,−) : DQCoh(OX) → D(R) of Cohomology, Section 44
commutes with products and hence with derived limits, whence

RHomX(E, limOX ⊗RMn) = R limRHomX(E,OX ⊗RMn)

Let E∨ be the dual perfect complex, see Cohomology, Lemma 50.5. We have

RHomX(E,OX ⊗RMn) = RΓ(X,E∨ ⊗L
OX

Lf∗Mn) = RΓ(X,E∨)⊗L
RMn

by Lemma 22.1. From Lemma 30.4 we see RΓ(X,E∨) is a perfect complex of R-modules.
In particular it is a pseudo-coherent complex and by More on Algebra, Lemma 102.3 we
obtain

R limRΓ(X,E∨)⊗L
RMn = RΓ(X,E∨)⊗L

R limMn

as desired. �

Lemma 30.7. Let f : X → S be a morphism of finite presentation. Let E ∈ D(OX)
be a perfect object. Let G• be a bounded complex of finitely presented OX -modules, flat
over S , with support proper over S. Then

K = Rf∗RHom(E,G•)

is a perfect object of D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 26.5. Thus it suffices to show thatK
is a perfect object. If S is Noetherian, then this follows from Lemma 27.3. We will reduce
to this case by Noetherian approximation. We encourage the reader to skip the rest of this
proof.

The question is local on S , hence we may assume S is affine. Say S = Spec(R). We write
R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits, Lemma 10.1 there
exists an i and a schemeXi of finite presentation overRi whose base change toR isX . By
Limits, Lemma 10.2 we may assume after increasing i, that there exists a bounded complex
of finitely presented OXi -modules G•

i whose pullback to X is G•. After increasing i we
may assume Gni is flat over Ri, see Limits, Lemma 10.4. After increasing i we may assume
the support of Gni is proper over Ri, see Limits, Lemma 13.5 and Cohomology of Schemes,
Lemma 26.7. Finally, by Lemma 29.3 we may, after increasing i, assume there exists a
perfect object Ei of D(OXi) whose pullback to X is E. Applying Lemma 27.3 to Xi →
Spec(Ri), Ei, G•

i and using the base change property already shown we obtain the result.
�

31. Perfect complexes

We first talk about jumping loci for betti numbers of perfect complexes. Given a complex
E on a scheme X and a point x of X we often write E ⊗L

OX
κ(x) instead of the more

correct Li∗xE , where ix : x→ X is the canonical morphism.

Lemma 31.1. Let X be a scheme. Let E ∈ D(OX) be pseudo-coherent (for example
perfect). For any i ∈ Z consider the function

βi : X −→ {0, 1, 2, . . .}, x 7−→ dimκ(x) H
i(E ⊗L

OX
κ(x))

Then we have
(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are locally constructible in X .
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Proof. Consider a morphism of schemes f : Y → X and a point y ∈ Y . Let x be
the image of y and consider the commutative diagram

y
j
//

g

��

Y

f

��
x

i // X

Then we see that Lg∗ ◦ Li∗ = Lj∗ ◦ Lf∗. This implies that the function β′
i associated

to the pseudo-coherent complex Lf∗E is the pullback of the function βi, in a formula:
β′
i = βi ◦ f . This is the meaning of (1).

Fix i and let x ∈ X . It is enough to prove (2) and (3) holds in an open neighbourhood of x,
hence we may assumeX affine. Then we can representE by a bounded above complexF•

of finite free modules (Lemma 13.3). Then P = σ≥i−1F• is a perfect object and P → E
induces an isomorphism

Hi(P ⊗L
OX

κ(x′))→ Hi(E ⊗L
OX

κ(x′))
for all x′ ∈ X . Thus we may assume E is perfect. In this case by More on Algebra,
Lemma 75.6 there exists an affine open neighbourhood U of x and a ≤ b such that E|U is
represented by a complex

. . .→ 0→ O⊕βa(x)
U → O⊕βa+1(x)

U → . . .→ O⊕βb−1(x)
U → O⊕βb(x)

U → 0→ . . .

(This also uses earlier results to turn the problem into algebra, for example Lemmas 3.5
and 10.7.) It follows immediately that βi(x′) ≤ βi(x) for all x′ ∈ U . This proves that βi
is upper semi-continuous.

To prove (3) we may assume thatX is affine andE is given by a complex of finite freeOX -
modules (for example by arguing as in the previous paragraph, or by using Cohomology,
Lemma 49.3). Thus we have to show that given a complex

O⊕a
X → O⊕b

X → O
⊕c
X

the function associated to a point x ∈ X the dimension of the cohomology of κ⊕a
x →

κ⊕b
x → κ⊕c

x in the middle has constructible level sets. Let A ∈ Mat(a× b,Γ(X,OX)) be
the matrix of the first arrow. The rank of the image ofA in Mat(a× b, κ(x)) is equal to r
if all (r+ 1)× (r+ 1)-minors of A vanish at x and there is some r× r-minor of A which
does not vanish at x. Thus the set of points where the rank is r is a constructible locally
closed set. Arguing similarly for the second arrow and putting everything together we
obtain the desired result. �

Lemma 31.2. Let X be a scheme. Let E ∈ D(OX) be perfect. The function

χE : X −→ Z, x 7−→
∑

(−1)i dimκ(x) H
i(E ⊗L

OX
κ(x))

is locally constant on X .

Proof. By Cohomology, Lemma 49.3 we see that we can, locally on X , represent E
by a finite complex E• of finite free OX -modules. On such an open the function χE is
constant with value

∑
(−1)irank(E i). �

Lemma 31.3. Let X be a scheme. Let E ∈ D(OX) be perfect. Given i, r ∈ Z, there
exists an open subscheme U ⊂ X characterized by the following

(1) E|U ∼= Hi(E|U )[−i] and Hi(E|U ) is a locally freeOU -module of rank r,
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(2) a morphism f : Y → X factors through U if and only if Lf∗E is isomorphic to
a locally free module of rank r placed in degree i.

Proof. Let βj : X → {0, 1, 2, . . .} for j ∈ Z be the functions of Lemma 31.1. Then
the set

W = {x ∈ X | βj(x) ≤ 0 for all j 6= i}
is open in X and its formation commutes with pullback to any Y over X . This follows
from the lemma using that apriori in a neighbourhood of any point only a finite number
of the βj are nonzero. Thus we may replace X by W and assume that βj(x) = 0 for all
x ∈ X and all j 6= i. In this caseHi(E) is a finite locally free module andE ∼= Hi(E)[−i],
see for example More on Algebra, Lemma 75.6. Thus X is the disjoint union of the open
subschemes where the rank of Hi(E) is fixed and we win. �

Lemma 31.4. LetX be a scheme. LetE ∈ D(OX) be perfect of tor-amplitude in [a, b]
for some a, b ∈ Z. Let r ≥ 0. Then there exists a locally closed subscheme j : Z → X
characterized by the following

(1) Ha(Lj∗E) is a locally freeOZ -module of rank r, and
(2) a morphism f : Y → X factors through Z if and only if for all morphisms

g : Y ′ → Y theOY ′ -module Ha(L(f ◦ g)∗E) is locally free of rank r.
Moreover, j : Z → X is of finite presentation and we have

(3) if f : Y → X factors as Y g−→ Z → X , then Ha(Lf∗E) = g∗Ha(Lj∗E),
(4) if βa(x) ≤ r for all x ∈ X , then j is a closed immersion and given f : Y → X

the following are equivalent
(a) f : Y → X factors through Z ,
(b) H0(Lf∗E) is a locally freeOY -module of rank r,

and if r = 1 these are also equivalent to
(c) OY → HomOY

(H0(Lf∗E),H0(Lf∗E)) is injective.

Proof. First, letU ⊂ X be the locally constructible open subscheme where the func-
tion βa of Lemma 31.1 has values ≤ r. Let f : Y → X be as in (2). Then for any y ∈ Y
we have βa(Lf∗E) = r hence y maps into U by Lemma 31.1. Hence f as in (2) factors
through U . Thus we may replace X by U and assume that βa(x) ∈ {0, 1, . . . , r} for all
x ∈ X . We will show that in this case there is a closed subscheme Z ⊂ X cut out by a
finite type quasi-coherent ideal characterized by the equivalence of (4) (a), (b) and (4)(c)
if r = 1 and that (3) holds. This will finish the proof because it will a fortiori show that
morphisms as in (2) factor through Z.

If x ∈ X and βa(x) < r, then there is an open neighbourhood of xwhere βa < r (Lemma
31.1). In this way we see that set theoretically at least Z is a closed subset.

To get a scheme theoretic structure, consider a point x ∈ X with βa(x) = r. Set β =
βa+1(x). By More on Algebra, Lemma 75.6 there exists an affine open neighbourhood U
of x such that K|U is represented by a complex

. . .→ 0→ O⊕r
U

(fij)−−−→ O⊕β
U → . . .→ O⊕βb−1(x)

U → O⊕βb(x)
U → 0→ . . .

(This also uses earlier results to turn the problem into algebra, for example Lemmas 3.5
and 10.7.) Now, if g : Y → U is any morphism of schemes such that g](fij) is nonzero
for some pair i, j , thenH0(Lg∗E) is not a locally freeOY -module of rank r. See More on
Algebra, Lemma 15.7. Trivially H0(Lg∗E) is a locally freeOY -module if g](fij) = 0 for
all i, j. Thus we see that over U the closed subscheme cut out by all fij satisfies (3) and we
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have the equivalence of (4)(a) and (b). The characterization of Z shows that the locally
constructed patches glue (details omitted). Finally, if r = 1 then (4)(c) is equivalent
to (4)(b) because in this case locally H0(Lg∗E) ⊂ OY is the annihilator of the ideal
generated by the elements g](fij). �

32. Applications

Mostly applications of cohomology and base change. In the future we may generalize
these results to the situation discussed in Lemma 30.1.

Lemma 32.1. Let f : X → S be a flat, proper morphism of finite presentation. Let F
be anOX -module of finite presentation, flat over S. For fixed i ∈ Z consider the function

βi : S → {0, 1, 2, . . .}, s 7−→ dimκ(s) H
i(Xs,Fs)

Then we have
(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are locally constructible in S.

Proof. By cohomology and base change (more precisely by Lemma 30.4) the object
K = Rf∗F is a perfect object of the derived category of S whose formation commutes
with arbitrary base change. In particular we have

Hi(Xs,Fs) = Hi(K ⊗L
OS

κ(s))
Thus the lemma follows from Lemma 31.1. �

Lemma 32.2. Let f : X → S be a flat, proper morphism of finite presentation. Let F
be anOX -module of finite presentation, flat over S. The function

s 7−→ χ(Xs,Fs)
is locally constant on S. Formation of this function commutes with base change.

Proof. By cohomology and base change (more precisely by Lemma 30.4) the object
K = Rf∗F is a perfect object of the derived category of S whose formation commutes
with arbitrary base change. Thus we have to show the map

s 7−→
∑

(−1)i dimκ(s) H
i(K ⊗L

OS
κ(s))

is locally constant on S. This is Lemma 31.2. �

Lemma 32.3. Let f : X → S be a proper morphism of finite presentation. Let F be
anOX -module of finite presentation, flat over S. Fix i, r ∈ Z. Then there exists an open
subscheme U ⊂ S with the following property: A morphism T → S factors through U
if and only if RfT,∗FT is isomorphic to a finite locally free module of rank r placed in
degree i.

Proof. By cohomology and base change (more precisely by Lemma 30.4) the object
K = Rf∗F is a perfect object of the derived category of S whose formation commutes
with arbitrary base change. Thus this lemma follows immediately from Lemma 31.3. �

Lemma 32.4. Let f : X → S be a morphism of finite presentation. Let F be an
OX -module of finite presentation, flat over S with support proper over S. If Rif∗F = 0
for i > 0, then f∗F is locally free and its formation commutes with arbitrary base change
(see proof for explanation).
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Proof. By Lemma 30.1 the object E = Rf∗F of D(OS) is perfect and its forma-
tion commutes with arbitrary base change, in the sense that Rf ′

∗(g′)∗F = Lg∗E for any
cartesian diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of schemes. Since there is never any cohomology in degrees < 0, we see that E (locally)
has tor-amplitude in [0, b] for some b. If Hi(E) = Rif∗F = 0 for i > 0, then E has tor
amplitude in [0, 0]. Whence E = H0(E)[0]. We conclude H0(E) = f∗F is finite locally
free by More on Algebra, Lemma 74.2 (and the characterization of finite projective modules
in Algebra, Lemma 78.2). Commutation with base change means that g∗f∗F = f ′

∗(g′)∗F
for a diagram as above and it follows from the already established commutation of base
change for E. �

Lemma 32.5. Let f : X → S be a morphism of schemes. Assume
(1) f is proper, flat, and of finite presentation, and
(2) for all s ∈ S we have κ(s) = H0(Xs,OXs).

Then we have
(a) f∗OX = OS and this holds after any base change,
(b) locally on S we have

Rf∗OX = OS ⊕ P

in D(OS) where P is perfect of tor amplitude in [1,∞).

Proof. By cohomology and base change (Lemma 30.4) the complex E = Rf∗OX is
perfect and its formation commutes with arbitrary base change. This first implies that E
has tor aplitude in [0,∞). Second, it implies that for s ∈ S we have H0(E ⊗L κ(s)) =
H0(Xs,OXs) = κ(s). It follows that the map OS → Rf∗OX = E induces an isomor-
phismOS⊗κ(s)→ H0(E⊗Lκ(s)). HenceH0(E)⊗κ(s)→ H0(E⊗Lκ(s)) is surjective
and we may apply More on Algebra, Lemma 76.2 to see that, after replacing S by an affine
open neighbourhood of s, we have a decomposition E = H0(E)⊕ τ≥1E with τ≥1E per-
fect of tor amplitude in [1,∞). Since E has tor amplitude in [0,∞) we find that H0(E)
is a flat OS-module. It follows that H0(E) is a flat, perfect OS-module, hence finite lo-
cally free, see More on Algebra, Lemma 74.2 (and the fact that finite projective modules
are finite locally free by Algebra, Lemma 78.2). It follows that the map OS → H0(E) is
an isomorphism as we can check this after tensoring with residue fields (Algebra, Lemma
79.4). �

Lemma 32.6. Let f : X → S be a morphism of schemes. Assume
(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced and connected.

Then f∗OX = OS and this holds after any base change.

Proof. By Lemma 32.5 it suffices to show that κ(s) = H0(Xs,OXs) for all s ∈ S.
This follows from Varieties, Lemma 9.3 and the fact that Xs is geometrically connected
and geometrically reduced. �
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Lemma 32.7. Let f : X → S be a proper morphism of schemes. Let s ∈ S and
let e ∈ H0(Xs,OXs) be an idempotent. Then e is in the image of the map (f∗OX)s →
H0(Xs,OXs).

Proof. Let Xs = T1 q T2 be the disjoint union decomposition with T1 and T2
nonempty and open and closed in Xs corresponding to e, i.e., such that e is identitically
1 on T1 and identically 0 on T2.
Assume S is Noetherian. We will use the theorem on formal functions in the form of
Cohomology of Schemes, Lemma 20.7. It tells us that

(f∗OX)∧
s = limnH

0(Xn,OXn)
where Xn is the nth infinitesimal neighbourhood of Xs. Since the underlying topolog-
ical space of Xn is equal to that of Xs we obtain for all n a disjoint union decomposi-
tion of schemes Xn = T1,n q T2,n where the underlying topological space of Ti,n is Ti
for i = 1, 2. This means H0(Xn,OXn) contains a nontrivial idempotent en, namely
the function which is identically 1 on T1,n and identically 0 on T2,n. It is clear that
en+1 restricts to en on Xn. Hence e∞ = lim en is a nontrivial idempotent of the limit.
Thus e∞ is an element of the completion of (f∗OX)s mapping to e in H0(Xs,OXs).
Since the map (f∗OX)∧

s → H0(Xs,OXs) factors through (f∗OX)∧
s /ms(f∗OX)∧

s =
(f∗OX)s/ms(f∗OX)s (Algebra, Lemma 96.3) we conclude that e is in the image of the
map (f∗OX)s → H0(Xs,OXs) as desired.
General case: we reduce the general case to the Noetherian case by limit arguments. We
urge the reader to skip the proof. We may replace S by an affine open neighbourhood of s.
Thus we may and do assume thatS is affine. By Limits, Lemma 13.3 we can write (f : X →
S) = lim(fi : Xi → Si) with fi proper andSi Noetherian. Denote si ∈ Si the image of s.
Then s = lim si, see Limits, Lemma 4.4. ThenXs = X×S s = limXi×Si si = limXi,si

because limits commute with limits (Categories, Lemma 14.10). Hence e is the image of
some idempotent ei ∈ H0(Xi,si ,OXi,si ) by Limits, Lemma 4.7. By the Noetherian case
there is an element ẽi in the stalk (fi,∗OXi)si mapping to ei. Taking the pullback of ẽi
we get an element ẽ of (f∗OX)s mapping to e and the proof is complete. �

Lemma 32.8. Let f : X → S be a morphism of schemes. Let s ∈ S. Assume
(1) f is proper, flat, and of finite presentation, and
(2) the fibre Xs is geometrically reduced.

Then, after replacing S by an open neighbourhood of s, there exists a direct sum decom-
position Rf∗OX = f∗OX ⊕ P in D(OS) where f∗OX is a finite étaleOS-algebra and P
is a perfect of tor amplitude in [1,∞).

Proof. The proof of this lemma is similar to the proof of Lemma 32.5 which we
suggest the reader read first. By cohomology and base change (Lemma 30.4) the complex
E = Rf∗OX is perfect and its formation commutes with arbitrary base change. This first
implies that E has tor aplitude in [0,∞).
We claim that after replacing S by an open neighbourhood of s we can find a direct sum
decomposition E = H0(E) ⊕ τ≥1E in D(OS) with τ≥1E of tor amplitude in [1,∞).
Assume the claim is true for now and assume we’ve made the replacement so we have the
direct sum decomposition. SinceE has tor amplitude in [0,∞) we find thatH0(E) is a flat
OS-module. HenceH0(E) is a flat, perfectOS-module, hence finite locally free, see More
on Algebra, Lemma 74.2 (and the fact that finite projective modules are finite locally free
by Algebra, Lemma 78.2). Of course H0(E) = f∗OX is an OS-algebra. By cohomology
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and base change we obtain H0(E) ⊗ κ(s) = H0(Xs,OXs). By Varieties, Lemma 9.3
and the assumption that Xs is geometrically reduced, we see that κ(s)→ H0(E)⊗ κ(s)
is finite étale. By Morphisms, Lemma 36.17 applied to the finite locally free morphism
Spec

S
(H0(E))→ S , we conclude that after shrinking S the OS-algebra H0(E) is finite

étale.

It remains to prove the claim. For this it suffices to prove that the map

(f∗OX)s −→ H0(Xs,OXs) = H0(E ⊗L κ(s))
is surjective, see More on Algebra, Lemma 76.2. Choose a flat local ring homomorphism
OS,s → A such that the residue field k of A is algebraically closed, see Algebra, Lemma
159.1. By flat base change (Cohomology of Schemes, Lemma 5.2) we getH0(XA,OXA) =
(f∗OX)s⊗OS,s

A andH0(Xk,OXk) = H0(Xs,OXs)⊗κ(s) k. Hence it suffices to prove
that H0(XA,OXA) → H0(Xk,OXk) is surjective. Since Xk is a reduced proper scheme
over k and since k is algebraically closed, we see that H0(Xk,OXk) is a finite product of
copies of k by the already used Varieties, Lemma 9.3. Since by Lemma 32.7 the idempotents
of this k-algebra are in the image of H0(XA,OXA)→ H0(Xk,OXk) we conclude. �

33. Other applications

In this section we state and prove some results that can be deduced from the theory worked
out above.

Lemma 33.1. Let R be a coherent ring. Let X be a scheme of finite presentation over
R. Let G be an OX -module of finite presentation, flat over R, with support proper over
R. Then Hi(X,G) is a coherent R-module.

Proof. Combine Lemma 30.1 with More on Algebra, Lemmas 64.18 and 74.2. �

Lemma 33.2. Let X be a quasi-compact and quasi-separated scheme. Let K be an
object of DQCoh(OX) such that the cohomology sheaves Hi(K) have countable sets of
sections over affine opens. Then for any quasi-compact open U ⊂ X and any perfect
object E in D(OX) the sets

Hi(U,K ⊗L E), Exti(E|U ,K|U )
are countable.

Proof. Using Cohomology, Lemma 50.5 we see that it suffices to prove the result for
the groups Hi(U,K ⊗L E). We will use the induction principle to prove the lemma, see
Cohomology of Schemes, Lemma 4.1.

First we show that it holds when U = Spec(A) is affine. Namely, we can represent K by
a complex ofA-modulesK• andE by a finite complex of finite projectiveA-modules P •.
See Lemmas 3.5 and 10.7 and our definition of perfect complexes of A-modules (More on
Algebra, Definition 74.1). Then (E⊗LK)|U is represented by the total complex associated
to the double complex P • ⊗A K• (Lemma 3.9). Using induction on the length of the
complex P • (or using a suitable spectral sequence) we see that it suffices to show that
Hi(P a ⊗AK•) is countable for each a. Since P a is a direct summand of A⊕n for some n
this follows from the assumption that the cohomology group Hi(K•) is countable.

To finish the proof it suffices to show: if U = V ∪W and the result holds for V , W , and
V ∩W , then the result holds forU . This is an immediate consquence of the Mayer-Vietoris
sequence, see Cohomology, Lemma 33.4. �
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Lemma 33.3. LetX be a quasi-compact and quasi-separated scheme such that the sets
of sections ofOX over affine opens are countable. LetK be an object ofDQCoh(OX). The
following are equivalent

(1) K = hocolimEn with En a perfect object of D(OX), and
(2) the cohomology sheavesHi(K) have countable sets of sections over affine opens.

Proof. If (1) is true, then (2) is true because homotopy colimits commutes with taking
cohomology sheaves (by Derived Categories, Lemma 33.8) and because a perfect complex
is locally isomorphic to a finite complex of finite freeOX -modules and therefore satisfies
(2) by assumption on X .

Assume (2). Choose a K-injective complexK• representingK. Choose a perfect generator
E of DQCoh(OX) and represent it by a K-injective complex I•. According to Theorem
18.3 and its proof there is an equivalence of triangulated categories F : DQCoh(OX) →
D(A, d) where (A, d) is the differential graded algebra

(A, d) = HomCompdg(OX)(I•, I•)

which maps K to the differential graded module

M = HomCompdg(OX)(I•,K•)

Note that Hi(A) = Exti(E,E) and Hi(M) = Exti(E,K). Moreover, since F is an
equivalence it and its quasi-inverse commute with homotopy colimits. Therefore, it suf-
fices to write M as a homotopy colimit of compact objects of D(A, d). By Differential
Graded Algebra, Lemma 38.3 it suffices show that Exti(E,E) and Exti(E,K) are count-
able for each i. This follows from Lemma 33.2. �

Lemma 33.4. Let A be a ring. Let X be a scheme of finite presentation over A. Let
f : U → X be a flat morphism of finite presentation. Then

(1) there exists an inverse system of perfect objects Ln of D(OX) such that

RΓ(U,Lf∗K) = hocolim RHomX(Ln,K)

in D(A) functorially in K in DQCoh(OX), and
(2) there exists a system of perfect objects En of D(OX) such that

RΓ(U,Lf∗K) = hocolim RΓ(X,En ⊗L K)

in D(A) functorially in K in DQCoh(OX).

Proof. By Lemma 22.1 we have

RΓ(U,Lf∗K) = RΓ(X,Rf∗OU ⊗L K)

functorially in K. Observe that RΓ(X,−) commutes with homotopy colimits because it
commutes with direct sums by Lemma 4.5. Similarly, − ⊗L K commutes with derived
colimits because −⊗L K commutes with direct sums (because direct sums in D(OX) are
given by direct sums of representing complexes). Hence to prove (2) it suffices to write
Rf∗OU = hocolimEn for a system of perfect objectsEn ofD(OX). Once this is done we
obtain (1) by setting Ln = E∨

n , see Cohomology, Lemma 50.5.

Write A = colimAi with Ai of finite type over Z. By Limits, Lemma 10.1 we can find
an i and morphisms Ui → Xi → Spec(Ai) of finite presentation whose base change to
Spec(A) recovers U → X → Spec(A). After increasing i we may assume that fi : Ui →
Xi is flat, see Limits, Lemma 8.7. By Lemma 22.5 the derived pullback of Rfi,∗OUi by
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g : X → Xi is equal to Rf∗OU . Since Lg∗ commutes with derived colimits, it suffices to
prove what we want for fi. Hence we may assume that U andX are of finite type over Z.
Assume f : U → X is a morphism of schemes of finite type over Z. To finish the proof
we will show that Rf∗OU is a homotopy colimit of perfect complexes. To see this we
apply Lemma 33.3. Thus it suffices to show that Rif∗OU has countable sets of sections
over affine opens. This follows from Lemma 33.2 applied to the structure sheaf. �

34. Characterizing pseudo-coherent complexes, II

This section is a continuation of Section 19. In this section we discuss characterizations
of pseudo-coherent complexes in terms of cohomology. More results of this nature can be
found in More on Morphisms, Section 69.

Lemma 34.1. LetA be a ring. LetR be a (possibly noncommutative)A-algebra which
is finite free as an A-module. Then any object M of D(R) which is pseudo-coherent in
D(A) can be represented by a bounded above complex of finite free (right) R-modules.

Proof. Choose a complexM• of rightR-modules representingM . SinceM is pseudo-
coherent we have Hi(M) = 0 for large enough i. Let m be the smallest index such that
Hm(M) is nonzero. Then Hm(M) is a finite A-module by More on Algebra, Lemma
64.3. Thus we can choose a finite free R-module Fm and a map Fm → Mm such that
Fm →Mm →Mm+1 is zero and such that Fm → Hm(M) is surjective. Picture:

Fm

α

��

// 0

��

// . . .

Mm−1 // Mm // Mm+1 // . . .

By descending induction on n ≤ m we are going to construct finite free R-modules F i
for i ≥ n, differentials di : F i → F i+1 for i ≥ n, maps α : F i → Ki compatible with
differentials, such that (1) Hi(α) is an isomorphism for i > n and surjective for i = n,
and (2) F i = 0 for i > m. Picture

Fn //

α

��

Fn+1

α

��

// . . . // F i

α

��

// 0

��

// . . .

Mn−1 // Mn // Mn+1 // . . . // M i // M i+1 // . . .

The base case is n = m which we’ve done above. Induction step. Let C• be the cone on α
(Derived Categories, Definition 9.1). The long exact sequence of cohomology shows that
Hi(C•) = 0 for i ≥ n. Observe that F • is pseudo-coherent as a complex of A-modules
because R is finite free as an A-module. Hence by More on Algebra, Lemma 64.2 we see
that C• is (n − 1)-pseudo-coherent as a complex of A-modules. By More on Algebra,
Lemma 64.3 we see that Hn−1(C•) is a finite A-module. Choose a finite free R-module
Fn−1 and a map β : Fn−1 → Cn−1 such that the composition Fn−1 → Cn−1 → Cn

is zero and such that Fn−1 surjects onto Hn−1(C•). Since Cn−1 = Mn−1 ⊕ Fn we can
write β = (αn−1,−dn−1). The vanishing of the composition Fn−1 → Cn−1 → Cn

implies these maps fit into a morphism of complexes

Fn−1

αn−1

��

dn−1
// Fn //

α

��

Fn+1

α

��

// . . .

. . . // Mn−1 // Mn // Mn+1 // . . .
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Moreover, these maps define a morphism of distinguished triangles

(Fn → . . .) //

��

(Fn−1 → . . .) //

��

Fn−1 //

β

��

(Fn → . . .)[1]

��
(Fn → . . .) // M• // C• // (Fn → . . .)[1]

Hence our choice of β implies that the map of complexes (Fn−1 → . . .) → M• induces
an isomorphism on cohomology in degrees ≥ n and a surjection in degree n − 1. This
finishes the proof of the lemma. �

Lemma 34.2. Let A be a ring. Let n ≥ 0. Let K ∈ DQCoh(OPn
A

). The following are
equivalent

(1) K is pseudo-coherent,
(2) RΓ(Pn

A, E⊗LK) is a pseudo-coherent object ofD(A) for each pseudo-coherent
object E of D(OPn

A
),

(3) RΓ(Pn
A, E⊗LK) is a pseudo-coherent object ofD(A) for each perfect objectE

of D(OPn
A

),
(4) RHomPn

A
(E,K) is a pseudo-coherent object of D(A) for each perfect object E

of D(OPn
A

),
(5) RΓ(Pn

A,K ⊗LOPn
A

(d)) is pseudo-coherent object of D(A) for d = 0, 1, . . . , n.

Proof. Recall that
RHomPn

A
(E,K) = RΓ(Pn

A, RHomOPn
A

(E,K))

by definition, see Cohomology, Section 44. Thus parts (4) and (3) are equivalent by Co-
homology, Lemma 50.5.
Since every perfect complex is pseudo-coherent, it is clear that (2) implies (3).
Assume (1) holds. Then E ⊗L K is pseudo-coherent for every pseudo-coherent E , see
Cohomology, Lemma 47.5. By Lemma 30.5 the direct image of such a pseudo-coherent
complex is pseudo-coherent and we see that (2) is true.
Part (3) implies (5) because we can take E = OPn

A
(d) for d = 0, 1, . . . , n.

To finish the proof we have to show that (5) implies (1). Let P be as in (20.0.1) and R as
in (20.0.2). By Lemma 20.1 we have an equivalence

−⊗L
R P : D(R) −→ DQCoh(OPn

A
)

Let M ∈ D(R) be an object such that M ⊗L P = K. By Differential Graded Algebra,
Lemma 35.4 there is an isomorphism

RHom(R,M) = RHomPn
A

(P,K)
in D(A). Arguing as above we obtain

RHomPn
A

(P,K) = RΓ(Pn
A, RHomOPn

A

(E,K)) = RΓ(Pn
A, P

∨ ⊗L
OPn

A

K).

Using that P∨ is the direct sum of OPn
A

(d) for d = 0, 1, . . . , n and (5) we conclude
RHom(R,M) is pseudo-coherent as a complex ofA-modules. Of courseM = RHom(R,M)
in D(A). Thus M is pseudo-coherent as a complex of A-modules. By Lemma 34.1 we
may represent M by a bounded above complex F • of finite free R-modules. Then F • =⋃
p≥0 σ≥pF

• is a filtration which shows that F • is a differential graded R-module with
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property (P), see Differential Graded Algebra, Section 20. Hence K = M ⊗L
R P is rep-

resented by F • ⊗R P (follows from the construction of the derived tensor functor, see
for example the proof of Differential Graded Algebra, Lemma 35.3). Since F • ⊗R P is a
bounded above complex whose terms are direct sums of copies of P we conclude that the
lemma is true. �

Lemma 34.3. Let A be a ring. Let X be a scheme over A which is quasi-compact and
quasi-separated. Let K ∈ D−

QCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent in D(A)
for every perfect E in D(OX), then RΓ(X,E ⊗L K) is pseudo-coherent in D(A) for
every pseudo-coherent E in D(OX).

Proof. There exists an integer N such that RΓ(X,−) : DQCoh(OX) → D(A) has
cohomological dimensionN as explained in Lemma 4.1. Let b ∈ Z be such thatHi(K) =
0 for i > b. Let E be pseudo-coherent on X . It suffices to show that RΓ(X,E ⊗L K) is
m-pseudo-coherent for every m. Choose an approximation P → E by a perfect complex
P of (X,E,m − N − 1 − b). This is possible by Theorem 14.6. Choose a distinguished
triangle

P → E → C → P [1]
in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m − N − 1 − b.
Hence the cohomology sheaves of C ⊗L K are zero in degrees ≥ m − N − 1. Thus the
cohomology of RΓ(X,C ⊗L K) are zero in degrees ≥ m− 1. Hence

RΓ(X,P ⊗L K)→ RΓ(X,E ⊗L K)
is an isomorphism on cohomology in degrees ≥ m. By assumption the source is pseudo-
coherent. We conclude that RΓ(X,E ⊗L K) is m-pseudo-coherent as desired. �

35. Relatively perfect objects

In this section we introduce a notion from [?].

Definition 35.1. Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. An object E of D(OX) is perfect relative to S or S-perfect if E is
pseudo-coherent (Cohomology, Definition 47.1) andE locally has finite tor dimension as
an object of D(f−1OS) (Cohomology, Definition 48.1).

Please see Remark 35.14 for a discussion.

Example 35.2. Let k be a field. Let X be a scheme of finite presentation over k (in
particular X is quasi-compact). Then an object E of D(OX) is k-perfect if and only if it
is bounded and pseudo-coherent (by definition), i.e., if and only if it is in Db

Coh(X) (by
Lemma 10.3). Thus being relatively perfect does not mean “perfect on the fibres”.

The corresponding algebra concept is studied in More on Algebra, Section 83. We can link
the notion for schemes with the algebraic notion as follows.

Lemma 35.3. Let f : X → S be a morphism of schemes which is flat and locally of
finite presentation. Let E be an object of DQCoh(OX). The following are equivalent

(1) E is S-perfect,
(2) for any affine open U ⊂ X mapping into an affine open V ⊂ S the complex

RΓ(U,E) isOS(V )-perfect.
(3) there exists an affine open covering S =

⋃
Vi and for each i an affine open

covering f−1(Vi) =
⋃
Uij such that the complexRΓ(Uij , E) isOS(Vi)-perfect.
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Proof. Being pseudo-coherent is a local property and “locally having finite tor di-
mension” is a local property. Hence this lemma immediately reduces to the statement: if
X and S are affine, then E is S-perfect if and only if K = RΓ(X,E) is OS(S)-perfect.
Say X = Spec(A), S = Spec(R) and E corresponds to K ∈ D(A), i.e., K = RΓ(X,E),
see Lemma 3.5.

Observe that K is R-perfect if and only if K is pseudo-coherent and has finite tor dimen-
sion as a complex of R-modules (More on Algebra, Definition 83.1). By Lemma 10.2 we
see that E is pseudo-coherent if and only if K is pseudo-coherent. By Lemma 10.5 we see
that E has finite tor dimension over f−1OS if and only if K has finite tor dimension as a
complex of R-modules. �

Lemma 35.4. Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. The full subcategory of D(OX) consisting of S-perfect objects is a
saturated4 triangulated subcategory.

Proof. This follows from Cohomology, Lemmas 47.4, 47.6, 48.6, and 48.8. �

Lemma 35.5. Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. A perfect object of D(OX) is S-perfect. If K,M ∈ D(OX), then
K ⊗L

OX
M is S-perfect if K is perfect and M is S-perfect.

Proof. First proof: reduce to the affine case using Lemma 35.3 and then apply More
on Algebra, Lemma 83.3. �

Lemma 35.6. Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Let g : S′ → S be a morphism of schemes. Set X ′ = S′ ×S X
and denote g′ : X ′ → X the projection. If K ∈ D(OX) is S-perfect, then L(g′)∗K is
S′-perfect.

Proof. First proof: reduce to the affine case using Lemma 35.3 and then apply More
on Algebra, Lemma 83.5.

Second proof: L(g′)∗K is pseudo-coherent by Cohomology, Lemma 47.3 and the bounded
tor dimension property follows from Lemma 22.8. �

Situation 35.7. Let S = limi∈I Si be a limit of a directed system of schemes with
affine transition morphisms gi′i : Si′ → Si. We assume that Si is quasi-compact and
quasi-separated for all i ∈ I . We denote gi : S → Si the projection. We fix an element
0 ∈ I and a flat morphism of finite presentation X0 → S0. We set Xi = Si ×S0 X0 and
X = S×S0X0 and we denote the transition morphisms fi′i : Xi′ → Xi and fi : X → Xi

the projections.

Lemma 35.8. In Situation 35.7. Let K0 and L0 be objects of D(OX0). Set Ki =
Lf∗

i0K0 and Li = Lf∗
i0L0 for i ≥ 0 and set K = Lf∗

0K0 and L = Lf∗
0L0. Then the map

colimi≥0 HomD(OXi
)(Ki, Li) −→ HomD(OX)(K,L)

is an isomorphism if K0 is pseudo-coherent and L0 ∈ DQCoh(OX0) has (locally) finite
tor dimension as an object of D((X0 → S0)−1OS0)

4Derived Categories, Definition 6.1.
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Proof. For every quasi-compact open U0 ⊂ X0 consider the condition P that

colimi≥0 HomD(OUi
)(Ki|Ui , Li|Ui) −→ HomD(OU )(K|U , L|U )

is an isomorphism where U = f−1
0 (U0) and Ui = f−1

i0 (U0). If P holds for U0, V0 and
U0 ∩ V0, then it holds for U0 ∪ V0 by Mayer-Vietoris for hom in the derived category, see
Cohomology, Lemma 33.3.

Denote π0 : X0 → S0 the given morphism. Then we can first consider U0 = π−1
0 (W0)

withW0 ⊂ S0 quasi-compact open. By the induction principle of Cohomology of Schemes,
Lemma 4.1 applied to quasi-compact opens of S0 and the remark above, we find that it is
enough to prove P for U0 = π−1

0 (W0) with W0 affine. In other words, we have reduced
to the case where S0 is affine. Next, we apply the induction principle again, this time to
all quasi-compact and quasi-separated opens ofX0, to reduce to the case whereX0 is affine
as well.

IfX0 and S0 are affine, the result follows from More on Algebra, Lemma 83.7. Namely, by
Lemmas 10.1 and 3.5 the statement is translated into computations of homs in the derived
categories of modules. Then Lemma 10.2 shows that the complex of modules correspond-
ing toK0 is pseudo-coherent. And Lemma 10.5 shows that the complex of modules corre-
sponding to L0 has finite tor dimension overOS0(S0). Thus the assumptions of More on
Algebra, Lemma 83.7 are satisfied and we win. �

Lemma 35.9. In Situation 35.7 the category of S-perfect objects of D(OX) is the
colimit of the categories of Si-perfect objects of D(OXi).

Proof. For every quasi-compact open U0 ⊂ X0 consider the condition P that the
functor

colimi≥0 DSi-perfect(OUi) −→ DS-perfect(OU )

is an equivalence where U = f−1
0 (U0) and Ui = f−1

i0 (U0). We observe that we already
know this functor is fully faithful by Lemma 35.8. Thus it suffices to prove essential sur-
jectivity.

Suppose that P holds for quasi-compact opens U0, V0 of X0. We claim that P holds for
U0∪V0. We will use the notationUi = f−1

i0 U0,U = f−1
0 U0, Vi = f−1

i0 V0, andV = f−1
0 V0

and we will abusively use the symbol fi for all the morphismsU → Ui, V → Vi,U ∩V →
Ui∩Vi, andU ∪V → Ui∪Vi. SupposeE is an S-perfect object ofD(OU∪V ). Goal: show
E is in the essential image of the functor. By assumption, we can find i ≥ 0, an Si-perfect
objectEU,i onUi, an Si-perfect objectEV,i on Vi, and isomorphismsLf∗

i EU,i → E|U and
Lf∗

i EV,i → E|V . Let

a : EU,i → (Rfi,∗E)|Ui and b : EV,i → (Rfi,∗E)|Vi
the maps adjoint to the isomorphisms Lf∗

i EU,i → E|U and Lf∗
i EV,i → E|V . By fully

faithfulness, after increasing i, we can find an isomorphism c : EU,i|Ui∩Vi → EV,i|Ui∩Vi
which pulls back to the identifications

Lf∗
i EU,i|U∩V → E|U∩V → Lf∗

i EV,i|U∩V .

Apply Cohomology, Lemma 45.1 to get an objectEi onUi∪Vi and a map d : Ei → Rfi,∗E
which restricts to the maps a and b over Ui and Vi. Then it is clear that Ei is Si-perfect
(because being relatively perfect is a local property) and that d is adjoint to an isomorphism
Lf∗

i Ei → E.
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By exactly the same argument as used in the proof of Lemma 35.8 using the induction
principle (Cohomology of Schemes, Lemma 4.1) we reduce to the case where both X0 and
S0 are affine. (First work with opens in S0 to reduce to S0 affine, then work with opens
in X0 to reduce to X0 affine.) In the affine case the result follows from More on Algebra,
Lemma 83.7. The translation into algebra is done by Lemma 35.3. �

Lemma 35.10. Let f : X → S be a morphism of schemes which is flat, proper, and
of finite presentation. Let E ∈ D(OX) be S-perfect. Then Rf∗E is a perfect object of
D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 22.5. Thus it suffices to show that
Rf∗E is a perfect object. We will reduce to the case where S is Noetherian affine by a
limit argument.

The question is local on S , hence we may assume S is affine. Say S = Spec(R). We write
R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits, Lemma 10.1 there
exists an i and a scheme Xi of finite presentation over Ri whose base change to R is X .
By Limits, Lemmas 13.1 and 8.7 we may assume Xi is proper and flat over Ri. By Lemma
35.9 we may assume there exists aRi-perfect objectEi ofD(OXi) whose pullback toX is
E. Applying Lemma 27.1 to Xi → Spec(Ri) and Ei and using the base change property
already shown we obtain the result. �

Lemma 35.11. Let f : X → S be a morphism of schemes. Let E,K ∈ D(OX).
Assume

(1) S is quasi-compact and quasi-separated,
(2) f is proper, flat, and of finite presentation,
(3) E is S-perfect,
(4) K is pseudo-coherent.

Then there exists a pseudo-coherent L ∈ D(OS) such that

Rf∗RHom(K,E) = RHom(L,OS)

and the same is true after arbitrary base change: given

X ′
g′
//

f ′

��

X

f

��
S′ g // S

cartesian, then we have
Rf ′

∗RHom(L(g′)∗K,L(g′)∗E)
= RHom(Lg∗L,OS′)

Proof. Since S is quasi-compact and quasi-separated, the same is true for X . By
Lemma 19.1 we can write K = hocolimKn with Kn perfect and Kn → K inducing an
isomorphism on truncations τ≥−n. Let K∨

n be the dual perfect complex (Cohomology,
Lemma 50.5). We obtain an inverse system . . . → K∨

3 → K∨
2 → K∨

1 of perfect objects.
By Lemma 35.5 we see that K∨

n ⊗OX
E is S-perfect. Thus we may apply Lemma 35.10 to

K∨
n ⊗OX

E and we obtain an inverse system

. . .→M3 →M2 →M1

of perfect complexes on S with

Mn = Rf∗(K∨
n ⊗L

OX
E) = Rf∗RHom(Kn, E)

Moreover, the formation of these complexes commutes with any base change, namely
Lg∗Mn = Rf ′

∗((L(g′)∗Kn)∨ ⊗L
OX′ L(g′)∗E) = Rf ′

∗RHom(L(g′)∗Kn, L(g′)∗E).
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As Kn → K induces an isomorphism on τ≥−n, we see that Kn → Kn+1 induces an
isomorphism on τ≥−n. It follows that K∨

n+1 → K∨
n induces an isomorphism on τ≤n

as K∨
n = RHom(Kn,OX). Suppose that E has tor amplitude in [a, b] as a complex of

f−1OY -modules. Then the same is true after any base change, see Lemma 22.8. We find
that K∨

n+1 ⊗OX
E → K∨

n ⊗OX
E induces an isomorphism on τ≤n+a and the same is

true after any base change. Applying the right derived functorRf∗ we conclude the maps
Mn+1 →Mn induce isomorphisms on τ≤n+a and the same is true after any base change.
Choose a distinguished triangle

Mn+1 →Mn → Cn →Mn+1[1]
Take S′ equal to the spectrum of the residue field at a point s ∈ S and pull back to see
thatCn⊗L

OS
κ(s) has nonzero cohomology only in degrees≥ n+a. By More on Algebra,

Lemma 75.6 we see that the perfect complexCn has tor amplitude in [n+a,mn] for some
integermn. In particular, the dual perfect complex C∨

n has tor amplitude in [−mn,−n−
a].
Let Ln = M∨

n be the dual perfect complex. The conclusion from the discussion in the
previous paragraph is that Ln → Ln+1 induces isomorphisms on τ≥−n−a. Thus L =
hocolimLn is pseudo-coherent, see Lemma 19.1. Since we have
RHom(K,E) = RHom(hocolimKn, E) = R limRHom(Kn, E) = R limK∨

n ⊗OX
E

(Cohomology, Lemma 51.1) and since R lim commutes with Rf∗ we find that
Rf∗RHom(K,E) = R limMn = R limRHom(Ln,OS) = RHom(L,OS)

This proves the formula over S. Since the construction of Mn is compatible with base
chance, the formula continues to hold after any base change. �

Remark 35.12. The reader may have noticed the similarity between Lemma 35.11 and
Lemma 28.3. Indeed, the pseudo-coherent complexL of Lemma 35.11 may be characterized
as the unique pseudo-coherent complex on S such that there are functorial isomorphisms

ExtiOS
(L,F) −→ ExtiOX

(K,E ⊗L
OX

Lf∗F)
compatible with boundary maps for F ranging over QCoh(OS). If we ever need this we
will formulate a precise result here and give a detailed proof.

Lemma 35.13. Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Let E be a pseudo-coherent object of D(OX). The following are
equivalent

(1) E is S-perfect, and
(2) E is locally bounded below and for every point s ∈ S the objectL(Xs → X)∗E

of D(OXs) is locally bounded below.
Proof. Since everything is local we immediately reduce to the case that X and S

are affine, see Lemma 35.3. Say X → S corresponds to Spec(A) → Spec(R) and E
corresponds to K in D(A). If s corresponds to the prime p ⊂ R, then L(Xs → X)∗E
corresponds toK⊗L

R κ(p) asR→ A is flat, see for example Lemma 22.5. Thus we see that
our lemma follows from the corresponding algebra result, see More on Algebra, Lemma
83.10. �

Remark 35.14. Our Definition 35.1 of a relatively perfect complex is equivalent to
the one given in [?] whenever our definition applies5. Next, suppose that f : X → S is

5To see this, use Lemma 35.3 and More on Algebra, Lemma 83.4.
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only assumed to be locally of finite type (not necessarily flat, nor locally of finite presen-
tation). The definition in the paper cited above is that E ∈ D(OX) is relatively perfect
if

(A) locally on X the object E should be quasi-isomorphic to a finite complex of S-
flat, finitely presentedOX -modules.

On the other hand, the natural generalization of our Definition 35.1 is
(B) E is pseudo-coherent relative to S (More on Morphisms, Definition 59.2) andE

locally has finite tor dimension as an object of D(f−1OS) (Cohomology, Defi-
nition 48.1).

The advantage of condition (B) is that it clearly defines a triangulated subcategory of
D(OX), whereas we suspect this is not the case for condition (A). The advantage of con-
dition (A) is that it is easier to work with in particular in regards to limits.

36. The resolution property

This notion is discussed in the paper [?]; the discussion is continued in [?], [?], and [?]. It is
currently not known if a proper scheme over a field always has the resolution property or if
this is false. If you know the answer to this question, please email stacks.project@gmail.com.
We can make the following definition although it scarcely makes sense to consider it for
general schemes.

Definition 36.1. Let X be a scheme. We say X has the resolution property if ev-
ery quasi-coherent OX -module of finite type is the quotient of a finite locally free OX -
module.

If X is a quasi-compact and quasi-separated scheme, then it suffices to check every OX -
module module of finite presentation (automatically quasi-coherent) is the quotient of a
finite locally free OX -module, see Properties, Lemma 22.8. If X is a Noetherian scheme,
then finite type quasi-coherent modules are exactly the coherentOX -modules, see Coho-
mology of Schemes, Lemma 9.1.

Lemma 36.2. Let X be a scheme. If X has an ample invertible OX -module, then X
has the resolution property.

Proof. Immediate consquence of Properties, Proposition 26.13. �

Lemma 36.3. Let f : X → Y be a morphism of schemes. Assume
(1) Y is quasi-compact and quasi-separated and has the resolution property,
(2) there exists an f -ample invertible module on X .

Then X has the resolution property.

Proof. Let F be a finite type quasi-coherent OX -module. Let L be an f -ample in-
vertible module. Choose an affine open covering Y = V1 ∪ . . . ∪ Vm. Set Uj = f−1(Vj).
By Properties, Proposition 26.13 for each j we know there exists finitely many maps
sj,i : L⊗nj,i |Uj → F|Uj which are jointly surjective. Consider the quasi-coherent OY -
modules

Hn = f∗(F ⊗OX
L⊗n)

We may think of sj,i as a section over Vj of the sheafH−nj,i . Suppose we can find finite
locally freeOY -modules Ei,j and maps Ei,j → H−nj,i such that sj,i is in the image. Then
the corresponding maps

f∗Ei,j ⊗OX
L⊗ni,j −→ F

mailto:stacks.project@gmail.com
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are going to be jointly surjective and the lemma is proved. By Properties, Lemma 22.3
for each i, j we can find a finite type quasi-coherent submodule H′

i,j ⊂ H−nj,i which
contains the section si,j over Vj . Thus the resolution property of Y produces surjections
Ei,j → H′

j,i and we conclude. �

Lemma 36.4. Let f : X → Y be an affine or quasi-affine morphism of schemes with
Y quasi-compact and quasi-separated. If Y has the resolution property, so does X .

Proof. By Morphisms, Lemma 37.6 this is a special case of Lemma 36.3. �

Here is a case where one can prove the resolution property goes down.

Lemma 36.5. Let f : X → Y be a surjective finite locally free morphism of schemes.
If X has the resolution property, so does Y .

Proof. The condition means that f is affine and that f∗OX is a finite locally free
OY -module of positive rank. Let G be a quasi-coherent OY -module of finite type. By
assumption there exists a surjection E → f∗G for some finite locally free OX -module E .
Since f∗ is exact on quasi-coherent modules (Cohomology of Schemes, Lemma 2.3) we get
a surjection

f∗E −→ f∗f
∗G = G ⊗OY

f∗OX
Taking duals we get a surjection

f∗E ⊗OY
HomOY

(f∗OX ,OY ) −→ G
Since f∗E is finite locally free6, we conclude. �

Lemma 36.6. Let X be a scheme. Suppose given
(1) a finite affine open covering X = U1 ∪ . . . ∪ Um
(2) finite type quasi-coherent ideals Ij with V (Ij) = X \ Uj

ThenX has the resolution property if and only if Ij is the quotient of a finite locally free
OX -module for j = 1, . . . ,m.

Proof. One direction of the lemma is trivial. For the other, say Ej → Ij is a surjec-
tion with Ej finite locally free. In the next paragraph, we reduce to the Noetherian case;
we suggest the reader skip it.

The first observation is that Uj ∩ Uj′ is quasi-compact as the complement of the zero
scheme of the quasi-coherent finite type ideal Ij′ |Uj on the affine scheme Uj , see Prop-
erties, Lemma 24.1. Hence X is quasi-compact and quasi-separated, see Schemes, Lemma
21.6. By Limits, Proposition 5.4 we can write X = limXi as the limit of a direct system
of Noetherian schemes with affine transition morphisms. For each j we can find an i and
a finite locally free OXi -module Ei,j pulling back to Ej , see Limits, Lemma 10.3. After
increasing i we may assume that the composition Ej → Ij → OX is the pullback of a
map Ei,j → OXi , see Limits, Lemma 10.2. Denote Ii,j ⊂ OXi the image of this map; this
is a quasi-coherent ideal sheaf on the Noetherian scheme Xi whose pullback to X is Ij .
Denoting Ui,j ⊂ Xi the complementary opens, we may assume these are affine for all i, j ,
see Limits, Lemma 4.13. If we can prove the lemma for the opensUi,j and the ideal sheaves

6Namely, if A → B is a finite locally free ring map and N is a finite locally free B-module, then N is a
finite locally freeA-module. To see this, first note thatN finite locally free overB impliesN is flat and finitely
presented as a B-module, see Algebra, Lemma 78.2. Then N is an A-module of finite presentation by Algebra,
Lemma 36.23 and a flat A-module by Algebra, Lemma 39.4. Then conclude by using Algebra, Lemma 78.2 over
A.



36. THE RESOLUTION PROPERTY 3093

Ii,j onXi thenX , being affine overXi, will have the resolution property by Lemma 36.4.
In this way we reduce to the case of a Noetherian scheme.

Assume X is Noetherian. For every coherent module F we can choose a finite list of
sections sjk ∈ F(Uj), k = 1, . . . , ej which generate the restriction of F to Uj . By
Cohomology of Schemes, Lemma 10.5 we can extend sjk to a map s′

jk : Injki → F for
some njk ≥ 1. Then we can consider the compositions

E⊗njk
j → Injkj → F

to conclude. �

Lemma 36.7. Let X be a scheme. If X has an ample family of invertible modules
(Morphisms, Definition 12.1), then X has the resolution property.

Proof. SinceX is quasi-compact, there existsn and pairs (Li, si), i = 1, . . . , nwhere
Li is an invertible OX -module and si ∈ Γ(X,Li) is a section such that the set of points
Ui ⊂ X where si is nonvanishing is affine and X = U1 ∪ . . . ∪ Un. Let Ii ⊂ OX be
the image of si : L⊗−1

i → OX . Applying Lemma 36.6 we find that X has the resolution
property. �

Lemma 36.8. Let X be a quasi-compact, regular scheme with affine diagonal. Then
X has the resolution property.

Proof. Combine Divisors, Lemma 16.8 and the above Lemma 36.7. �

Lemma 36.9. LetX = limXi be a limit of a direct system of quasi-compact and quasi-
separated schemes with affine transition morphisms. Then X has the resolution property
if and only if Xi has the resolution properties for some i.

Proof. If Xi has the resolution property, then X does by Lemma 36.4. Assume X
has the resolution property. Choose i ∈ I . Choose a finite affine open covering Xi =
Ui,1∪ . . .∪Ui,m. For each j choose a finite type quasi-coherent sheaf of ideals Ii,j ⊂ OXi
such that Xi \ V (Ii,j) = Ui,j , see Properties, Lemma 24.1. Denote Uj ⊂ X the inverse
image of Ui,j and denote Ij ⊂ OX the pullback of Ii,j . Since X has the resolution
property, we may choose finite locally free OX -modules Ej and surjections Ej → Ij .
By Limits, Lemmas 10.3 and 10.2 after increasing i we can find finite locally free OXi -
modules Ei,j and maps Ei,j → OXi whose base changes to X recover the compositions
Ej → Ij → OX , j = 1, . . . ,m. The pullbacks of the finitely presented OXi -modules
Coker(Ei,j → OXi) and OXi/Ii,j to X agree as quotients of OX . Hence by Limits,
Lemma 10.2 we may assume that these agree, in other words that the image of Ei,j → OXi
is equal to Ii,j . Then we conclude thatXi has the resolution property by Lemma 36.6. �

Lemma 36.10. Let X be a quasi-compact and quasi-separated scheme with the reso-
lution property. Then X has affine diagonal.

Proof. Combining Limits, Proposition 5.4 and Lemma 36.9 this reduces to the case
whereX is Noetherian (small detail omitted). AssumeX is Noetherian. Recall thatX×X
is covered by the affine opens U × V for affine opens U , V of X , see Schemes, Section 17.
Hence to show that the diagonal ∆ : X → X × X is affine, it suffices to show that
U ∩ V = ∆−1(U × V ) is affine for all affine opens U , V of X , see Morphisms, Lemma
11.3. In particular, it suffices to show that the inclusion morphism j : U → X is affine if
U is an affine open of X . By Cohomology of Schemes, Lemma 3.4 it suffices to show that
R1j∗G = 0 for any quasi-coherent OU -module G. By Proposition 8.3 (this is where we
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use that we’ve reduced to the Noetherian case) we can represent Rj∗G by a complex H•

of quasi-coherentOX -modules. Assume

H1(H•) = Ker(H1 → H2)/ Im(H0 → H1)

is nonzero in order to get a contradiction. Then we can find a coherentOX -moduleF and
a map

F −→ Ker(H1 → H2)
such that the composition with the projection onto H1(H•) is nonzero. Namely, we can
write Ker(H1 → H2) as the filtered union of its coherent submodules by Properties,
Lemma 22.3 and then one of these will do the job. Next, we choose a finite locally free
OX -module E and a surjection E → F using the resolution property ofX . This produces
a map in the derived category

E [−1] −→ Rj∗G
which is nonzero on cohomology sheaves and hence nonzero in D(OX). By adjunction,
this is the same thing as a map

j∗E [−1]→ G
nonzero inD(OU ). Since E is finite locally free this is the same thing as a nonzero element
of

H1(U, j∗E∨ ⊗OU
G)

where E∨ = HomOX
(E ,OX) is the dual finite locally free module. However, this group

is zero by Cohomology of Schemes, Lemma 2.2 which is the desired contradiction. (If
in doubt about the step using duals, please see the more general Cohomology, Lemma
50.5.) �

37. The resolution property and perfect complexes

In this section we discuss the relationship between perfect complexes and strictly perfect
complexes on schemes which have the resolution property.

Lemma 37.1. Let X be a quasi-compact and quasi-separated scheme with the resolu-
tion property. Let F• be a bounded below complex of quasi-coherent OX -modules rep-
resenting a perfect object of D(OX). Then there exists a bounded complex E• of finite
locally freeOX -modules and a quasi-isomorphism E• → F•.

Proof. Let a, b ∈ Z be integers such thatF• has tor amplitude in [a, b] and such that
Fn = 0 for n < a. The existence of such a pair of integers follows from Cohomology,
Lemma 49.5 and the fact that X is quasi-compact. If b < a, then F• is zero in the derived
category and the lemma holds. We will prove by induction on b− a ≥ 0 that there exists
a complex Ea → . . .→ Eb with E i finite locally free and a quasi-isomorphism E• → F•.

The base case is the case b− a = 0. In this case Hb(F•) = Ha(F•) = Ker(Fa → Fa+1)
is finite locally free. Namely, it is a finitely presentedOX -module of tor dimension 0 and
hence finite locally free. See Cohomology, Lemmas 49.5 and 47.9 and Properties, Lemma
20.2. Thus we can take E• to be Hb(F•) sitting in degree b. The rest of the proof is
dedicated to the induction step.

Assume b > a. Observe that

Hb(F•) = Ker(Fb → Fb+1)/ Im(Fb−1 → Fb)
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is a finite type quasi-coherentOX -module, see Cohomology, Lemmas 49.5 and 47.9. Then
we can find a finite type quasi-coherentOX -module F and a map

F −→ Ker(Fb → Fb+1)

such that the composition with the projection ontoHb(F•) is surjective. Namely, we can
write Ker(Fb → Fb+1) as the filtered union of its finite type quasi-coherent submodules
by Properties, Lemma 22.3 and then one of these will do the job. Next, we choose a finite
locally free OX -module Eb and a surjection Eb → F using the resolution property of X .
Consider the map of complexes

α : Eb[−b]→ F•

and its cone C(α)•, see Derived Categories, Definition 9.1. We observe that C(α)• is
nonzero only in degrees≥ a, has tor amplitude in [a, b] by Cohomology, Lemma 48.6, and
hasHb(C(α)•) = 0 by construction. Thus we actually find thatC(α)• has tor amplitude
in [a, b − 1]. Hence the induction hypothesis applies to C(α)• and we find a map of
complexes

(Ea → . . .→ Eb−1) −→ C(α)•

with properties as stated in the induction hypothesis. Unwinding the definition of the
cone this gives a commutative diagram

. . . // Eb−2 //

��

Eb−1 //

��

0 //

��

. . .

. . . // Fb−2 // Fb−1 ⊕ Eb // Fb // . . .

It is clear that we obtain a map of complexes (Ea → . . . → Eb) → F•. We omit the
verification that this map is a quasi-isomorphism. �

Lemma 37.2. Let X be a quasi-compact and quasi-separated scheme with the reso-
lution property. Then every perfect object of D(OX) can be represented by a bounded
complex of finite locally freeOX -modules.

Proof. LetE be a perfect object ofD(OX). By Lemma 36.10 we see thatX has affine
diagonal. Hence by Proposition 7.5 we can representE by a complexF• of quasi-coherent
OX -modules. Observe thatE is inDb(OX) becauseX is quasi-compact. Hence τ≥nF• is
a bounded below complex of quasi-coherent OX -modules which represents E if n � 0.
Thus we may apply Lemma 37.1 to conclude. �

Lemma 37.3. Let X be a quasi-compact and quasi-separated scheme with the resolu-
tion property. Let E• andF• be finite complexes of finite locally freeOX -modules. Then
any α ∈ HomD(OX)(E•,F•) can be represented by a diagram

E• ← G• → F•

where G• is a bounded complex of finite locally free OX -modules and where G• → E• is
a quasi-isomorphism.

Proof. By Lemma 36.10 we see thatX has affine diagonal. Hence by Proposition 7.5
we can represent α by a diagram

E• ← H• → F•
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where H• is a complex of quasi-coherent OX -modules and where H• → E• is a quasi-
isomorphism. For n � 0 the maps H• → E• and H• → F• factor through the quasi-
isomorphismH• → τ≥nH• simply because E• and F• are bounded complexes. Thus we
may replace H• by τ≥nH• and assume that H• is bounded below. Then we may apply
Lemma 37.1 to conclude. �

Lemma 37.4. Let X be a quasi-compact and quasi-separated scheme with the resolu-
tion property. Let E• and F• be finite complexes of finite locally free OX -modules. Let
α•, β• : E• → F• be two maps of complexes defining the same map in D(OX). Then
there exists a quasi-isomorphism γ• : G• → E• where G• is a bounded complex of finite
locally freeOX -modules such that α• ◦ γ• and β• ◦ γ• are homotopic maps of complexes.

Proof. By Lemma 36.10 we see thatX has affine diagonal. Hence by Proposition 7.5
(and the definition of the derived category) there exists a quasi-isomorphism γ• : G• → E•

where G• is a complex of quasi-coherent OX -modules such that α• ◦ γ• and β• ◦ γ•

are homotopic maps of complexes. Choose a homotopy hi : Gi → F i−1 witnessing
this fact. Choose n � 0. Then the map γ• factors canonically over the quotient map
G• → τ≥nG• as E• is bounded below. For the exact same reason the maps hi will factor
over the surjections Gi → (τ≥nG)i. Hence we see that we may replace G• by τ≥nG•. Then
we may apply Lemma 37.1 to conclude. �

Proposition 37.5. Let X be a quasi-compact and quasi-separated scheme with the
resolution property. Denote

(1) A the additive category of finite locally freeOX -modules,
(2) Kb(A) the homotopy category of bounded complexes in A, see Derived Cate-

gories, Section 8, and
(3) Dperf (OX) the strictly full, saturated, triangulated subcategory ofD(OX) con-

sisting of perfect objects.
With this notation the obvious functor

Kb(A) −→ Dperf (OX)

is an exact functor of trianglated categories which factors through an equivalenceS−1Kb(A)→
Dperf (OX) of triangulated categories where S is the saturated multiplicative system of
quasi-isomorphisms in Kb(A).

Proof. If you can parse the statement of the proposition, then please skip this first
paragraph. For some of the definitions used, please see Derived Categories, Definition
3.4 (triangulated subcategory), Derived Categories, Definition 6.1 (saturated triangulated
subcategory), Derived Categories, Definition 5.1 (multiplicative system compatible with
the triangulated structure), and Categories, Definition 27.20 (saturated multiplicative sys-
tem). Observe that Dperf (OX) is a saturated triangulated subcategory of D(OX) by Co-
homology, Lemmas 49.7 and 49.9. Also, note that Kb(A) is a triangulated category, see
Derived Categories, Lemma 10.5.

It is clear that the functor sends distinguished triangles to distinguished triangles, i.e., is
exact. Then S is a saturated multiplicative system compatible with the triangulated struc-
ture on Kb(A) by Derived Categories, Lemma 5.4. Hence the localization S−1Kb(A)
exists and is a triangulated category by Derived Categories, Proposition 5.6. We get an
exact factorization S−1Kb(A) → Dperf (OX) by Derived Categories, Lemma 5.7. By
Lemmas 37.2, 37.3, and 37.4 this functor is an equivalence. Then finally the functor
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S−1Kb(A) → Dperf (OX) is an equivalence of triangulated categories (in the sense that
distinguished triangles correspond) by Derived Categories, Lemma 4.18. �

38. K-groups

A tiny bit about K0 of various categories associated to schemes. Previous material can be
found in Algebra, Section 55, Homology, Section 11, Derived Categories, Section 28, and
More on Algebra, Lemma 119.2.
Analogous to Algebra, Section 55 we will define twoK-groupsK ′

0(X) andK0(X) for any
Noetherian scheme X . The first will use coherent OX -modules and the second will use
finite locally freeOX -modules.

Lemma 38.1. Let X be a Noetherian scheme. Then
K0(Coh(OX)) = K0(Db(Coh(OX)) = K0(Db

Coh(OX))
Proof. The first equality is Derived Categories, Lemma 28.2. We haveK0(Coh(OX)) =

K0(Db
Coh(OX)) by Derived Categories, Lemma 28.5. This proves the lemma. (We can also

use thatDb(Coh(OX)) = Db
Coh(OX) by Proposition 11.2 to see the second equality.) �

Here is the definition.
Definition 38.2. Let X be a scheme.

(1) We denoteK0(X) the Grothendieck group ofX . It is the zeroth K-group of the
strictly full, saturated, triangulated subcategory Dperf (OX) of D(OX) consist-
ing of perfect objects. In a formula

K0(X) = K0(Dperf (OX))
(2) If X is locally Noetherian, then we denote K ′

0(X) the Grothendieck group of
coherent sheaves on X . It is the is the zeroth K-group of the abelian category
of coherentOX -modules. In a formula

K ′
0(X) = K0(Coh(OX))

We will show that our definition ofK0(X) agrees with the often used definition in terms
of finite locally free modules if X has the resolution property (for example if X has an
ample invertible module). See Lemma 38.5.

Lemma 38.3. Let X = Spec(R) be an affine scheme. Then K0(X) = K0(R) and if
R is Noetherian then K ′

0(X) = K ′
0(R).

Proof. Recall that K ′
0(R) and K0(R) have been defined in Algebra, Section 55.

By More on Algebra, Lemma 119.2 we have K0(R) = K0(Dperf (R)). By Lemmas 10.7
and 3.5 we have Dperf (R) = Dperf (OX). This proves the equality K0(R) = K0(X).
The equality K ′

0(R) = K ′
0(X) holds because Coh(OX) is equivalent to the category of

finiteR-modules by Cohomology of Schemes, Lemma 9.1. Moreover it is clear thatK ′
0(R)

is the zeroth K-group of the category of finite R-modules from the definitions. �

Let X be a Noetherian scheme. Then both K ′
0(X) and K0(X) are defined. In this case

there is a canonical map

K0(X) = K0(Dperf (OX)) −→ K0(Db
Coh(OX)) = K ′

0(X)
Namely, perfect complexes are inDb

Coh(OX) (by Lemma 10.3), the inclusion functorDperf (OX)→
Db

Coh(OX) induces a map on zeroth K-groups (Derived Categories, Lemma 28.3), and we
have the equality on the right by Lemma 38.1.
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Lemma 38.4. Let X be a Noetherian regular scheme. Then the map K0(X) →
K ′

0(X) is an isomorphism.

Proof. Follows immediately from Lemma 11.8 and our construction of the mapK0(X)→
K ′

0(X) above. �

LetX be a scheme. Let us denote Vect(X) the category of finite locally freeOX -modules.
Although Vect(X) isn’t an abelian category in general, it is clear what a short exact se-
quence of Vect(X) is. Denote K0(Vect(X)) the unique abelian group with the following
properties7:

(1) For every finite locally freeOX -moduleE there is given an element [E ] inK0(Vect(X)),
(2) for every short exact sequence 0 → E ′ → E → E ′′ → 0 of finite locally free
OX -modules we have the relation [E ] = [E ′] + [E ′′] in K0(Vect(X)),

(3) the group K0(Vect(X)) is generated by the elements [E ], and
(4) all relations inK0(Vect(X)) among the generators [E ] are Z-linear combinations

of the relations coming from exact sequences as above.
We omit the detailed construction of K0(Vect(X)). There is a natural map

K0(Vect(X)) −→ K0(X)

Namely, given a finite locally freeOX -module E let us denote E [0] the perfect complex on
X which has E sitting in degree 0 and zero in other degrees. Given a short exact sequence
0 → E → E ′ → E ′′ → 0 of finite locally free OX -modules we obtain a distinguished
triangle E [0] → E ′[0] → E ′′[0] → E [1], see Derived Categories, Section 12. This shows
that we obtain a map K0(Vect(X)) → K0(Dperf (OX)) = K0(X) by sending [E ] to
[E [0]] with apologies for the horrendous notation.

Lemma 38.5. Let X be a quasi-compact and quasi-separated scheme with the resolu-
tion property. Then the map K0(Vect(X))→ K0(X) is an isomorphism.

Proof. This lemma will follow in a straightforward manner from Lemmas 37.2, 37.3,
and 37.4 whose results we will use without further mention. Let us construct an inverse
map

c : K0(X) = K0(Dperf (OX)) −→ K0(Vect(X))
Namely, any object of Dperf (OX) can be represented by a bounded complex E• of finite
locally freeOX -modules. Then we set

c([E•]) =
∑

(−1)i[E i]

Of course we have to show that this is well defined. For the moment we view c as a map
defined on bounded complexes of finite locally freeOX -modules.

Suppose that E• → F• is a surjective map of bounded complexes of finite locally free
OX -modules. LetK• be the kernel. Then we obtain short exact sequences ofOX -modules

0→ Kn → En → Fn → 0

which are locally split because Fn is finite locally free. Hence K• is also a bounded
complex of finite locally free OX -modules and we have c(E•) = c(K•) + c(F•) in
K0(Vect(X)).

7The correct generality here would be to define K0 for any exact category, see Injectives, Remark 9.6.
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Suppose given a bounded complex E• of finite locally free OX -modules which is acyclic.
Say En = 0 for n 6∈ [a, b]. Then we can break E• into short exact sequences

0→ Ea → Ea+1 → Fa+1 → 0,
0→ Fa+1 → Ea+2 → Fa+3 → 0,

. . .
0→ Fb−3 → Eb−2 → Fb−2 → 0,

0→ Fb−2 → Eb−1 → Eb → 0

Arguing by descending induction we see that Fb−2, . . . ,Fa+1 are finite locally freeOX -
modules, and

c(E•) =
∑

(−1)[En] =
∑

(−1)n([Fn−1] + [Fn]) = 0

Thus our construction gives zero on acyclic complexes.

It follows from the results of the preceding two paragraphs that c is well defined. Namely,
suppose the bounded complexes E• and F• of finite locally free OX -modules represent
the same object of D(OX). Then we can find quasi-isomorphisms a : G• → E• and
b : G• → F• with G• bounded complex of finite locally free OX -modules. We obtain a
short exact sequence of complexes

0→ E• → C(a)• → G•[1]→ 0
see Derived Categories, Definition 9.1. Since a is a quasi-isomorphism, the cone C(a)• is
acyclic (this follows for example from the discussion in Derived Categories, Section 12).
Hence

0 = c(C(f)•) = c(E•) + c(G•[1]) = c(E•)− c(G•)
as desired. The same argument using b shows that 0 = c(F•)− c(G•). Hence we find that
c(E•) = c(F•) and c is well defined.

A similar argument using the cone on a map E• → F• of bounded complexes of finite
locally free OX -modules shows that c(Y ) = c(X) + c(Z) if X → Y → Z is a distin-
guished triangle inDperf (OX). Details omitted. Thus we get the desired homomorphism
of abelian groups c : K0(X)→ K0(Vect(X)).

It is clear that the composition K0(Vect(X))→ K0(X)→ K0(Vect(X)) is the identity.
On the other hand, let E• be a bounded complex of finite locally freeOX -modules. Then
the the existence of the distinguished triangles of “stupid truncations” (see Homology,
Section 15)

σ≥nE• → σ≥n−1E• → En−1[−n+ 1]→ (σ≥nE•)[1]
and induction show that

[E•] =
∑

(−1)i[E i[0]]
inK0(X) = K0(Dperf (OX)) with apologies for the notation. Hence the mapK0(Vect(X))→
K0(Dperf (OX)) = K0(X) is surjective which finishes the proof. �

Remark 38.6. LetX be a scheme. The K-groupK0(X) is canonically a commutative
ring. Namely, using the derived tensor product

⊗ = ⊗L
OX

: Dperf (OX)×Dperf (OX) −→ Dperf (OX)
and Derived Categories, Lemma 28.6 we obtain a bilinear multiplication. Since K ⊗ L ∼=
L⊗K we see that this product is commutative. Since (K ⊗L)⊗M = K ⊗ (L⊗M) we
see that this product is associative. Finally, the unit of K0(X) is the element 1 = [OX ].
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If Vect(X) and K0(Vect(X)) are as above, then it is clearly the case that K0(Vect(X))
also has a ring structure: if E and F are finite locally freeOX -modules, then we set

[E ] · [F ] = [E ⊗OX
F ]

The reader easily verifies that this indeed defines a bilinear commutative, associative prod-
uct. Details omitted. The map

K0(Vect(X)) −→ K0(X)

constructed above is a ring map with these definitions.

Now assume X is Noetherian. The derived tensor product also produces a map

⊗ = ⊗L
OX

: Dperf (OX)×Db
Coh(OX) −→ Db

Coh(OX)

Again using Derived Categories, Lemma 28.6 we obtain a bilinear multiplicationK0(X)×
K ′

0(X) → K ′
0(X) since K ′

0(X) = K0(Db
Coh(OX)) by Lemma 38.1. The reader easily

shows that this gives K ′
0(X) the structure of a module over the ring K0(X).

Remark 38.7. Let f : X → Y be a proper morphism of locally Noetherian schemes.
There is a map

f∗ : K ′
0(X) −→ K ′

0(Y )

which sends [F ] to

[
⊕

i≥0
R2if∗F ]− [

⊕
i≥0

R2i+1f∗F ]

This is well defined because the sheaves Rif∗F are coherent (Cohomology of Schemes,
Proposition 19.1), because locally only a finite number are nonzero, and because a short
exact sequence of coherent sheaves on X produces a long exact sequence of Rif∗ on Y .
If Y is quasi-compact (the only case most often used in practice), then we can rewrite the
above as

f∗[F ] =
∑

(−1)i[Rif∗F ] = [Rf∗F ]

where we have used the equality K ′
0(Y ) = K0(Db

Coh(Y )) from Lemma 38.1.

Lemma 38.8. Let f : X → Y be a proper morphism of locally Noetherian schemes.
Then we have f∗(α · f∗β) = f∗α · β for α ∈ K ′

0(X) and β ∈ K0(Y ).

Proof. Follows from Lemma 22.1, the discussion in Remark 38.7, and the definition
of the product K ′

0(X)×K0(X)→ K ′
0(X) in Remark 38.6. �

Remark 38.9. Let X be a scheme. Let Z ⊂ X be a closed subscheme. Consider the
strictly full, saturated, triangulated subcategory

DZ,perf (OX) ⊂ D(OX)

consisting of perfect complexes of OX -modules whose cohomology sheaves are setthe-
oretically supported on Z. The zeroth K-group K0(DZ,perf (OX)) of this triangulated
category is sometimes denotedKZ(X) orK0,Z(X). Using derived tensor product exactly
as in Remark 38.6 we see thatK0(DZ,perf (OX)) has a multiplication which is associative
and commutative, but in general K0(DZ,perf (OX)) doesn’t have a unit.
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39. Determinants of complexes

This section is the continuation of More on Algebra, Section 122. For any ringed space
(X,OX) there is a functor

det :
{

category of perfect complexes
morphisms are isomorphisms

}
−→

{
category of invertible modules
morphisms are isomorphisms

}
Moreover, given an object (L,F ) of the filtered derived category DF (OX) whose filtra-
tion is finite and whose graded parts are perfect complexes, there is a canonical isomor-
phism det(grL) → det(L). See [?] for the original exposition. We will add this material
later (insert future reference).

For the moment we will present an ad hoc construction in the case where X is a scheme
and where we consider perfect objects L in D(OX) of tor-amplitude in [−1, 0].

Lemma 39.1. Let X be a scheme. There is a functor

det :

category of perfect complexes
with tor amplitude in [−1, 0]
morphisms are isomorphisms

 −→
{

category of invertible modules
morphisms are isomorphisms

}
In addition, given a rank 0 perfect object L ofD(OX) with tor-amplitude in [−1, 0] there
is a canonical element δ(L) ∈ Γ(X, det(L)) such that for any isomorphism a : L→ K in
D(OX) we have det(a)(δ(L)) = δ(K). Moreover, the construction is affine locally given
by the construction of More on Algebra, Section 122.

Proof. LetL be an object of the left hand side. If Spec(A) = U ⊂ X is an affine open,
thenL|U corresponds to a perfect complexL• ofA-modules with tor-amplitude in [−1, 0],
see Lemmas 3.5, 10.4, and 10.7. Then we can consider the invertible A-module det(L•)
constructed in More on Algebra, Lemma 122.4. If Spec(B) = V ⊂ U is another affine
open contained in U , then det(L•) ⊗A B = det(L• ⊗A B) and hence this construction
is compatible with restriction mappings (see Lemma 3.8 and note A → B is flat). Thus
we can glue these invertible modules to obtain an invertible module det(L) on X . The
functoriality and canonical sections are constructed in exactly the same manner. Details
omitted. �

Remark 39.2. The construction of Lemma 39.1 is compatible with pullbacks. More
precisely, given a morphism f : X → Y of schemes and a perfect object K of D(OY ) of
tor-amplitude in [−1, 0] then Lf∗K is a perfect object K of D(OX) of tor-amplitude in
[−1, 0] and we have a canonical identification

f∗ det(K) −→ det(Lf∗K)
Moreover, if K has rank 0, then δ(K) pulls back to δ(Lf∗K) via this map. This is clear
from the affine local construction of the determinant.

40. Detecting Boundedness

In this section, we show that compact generators of DQCoh of a quasi-compact, quasi-
separated scheme, as constructed in Section 15, have a special property. We recommend
reading that section first as it is very similar to this one.

Lemma 40.1. In Situation 9.1 denote j : U → X the open immersion and let K be
the perfect object of D(OX) corresponding to the Koszul complex on f1, . . . , fr over A.
Let E ∈ DQCoh(OX) and a ∈ Z. Consider the following conditions
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(1) The canonical map τ≥aE → τ≥aRj∗(E|U ) is an isomorphism.
(2) We have HomD(OX)(K[−n], E) = 0 for all n ≥ a.

Then (2) implies (1) and (1) implies (2) with a replaced by a+ 1.

Proof. Choose a distinguished triangle N → E → Rj∗(E|U ) → N [1]. Then (1)
implies τ≥a+1N = 0 and (1) is implied by τ≥aN = 0. Observe that

HomD(OX)(K[−n], Rj∗(E|U )) = HomD(OU )(K|U [−n], E) = 0
for all n as K|U = 0. Thus (2) is equivalent to HomD(OX)(K[−n], N) = 0 for all n ≥ a.
Observe that there are distinguished triangles

K•(fe1
1 , . . . , f

e′
i
i , . . . , f

er
r )→ K•(fe1

1 , . . . , f
e′
i+e

′′
i

i , . . . , ferr )→ K•(fe1
1 , . . . , f

e′′
i
i , . . . , ferr )→ . . .

of Koszul complexes, see More on Algebra, Lemma 28.11. Hence HomD(OX)(K[−n], N) =
0 for all n ≥ a is equivalent to HomD(OX)(Ke[−n], N) = 0 for all n ≥ a and all e ≥ 1
withKe as in Lemma 9.6. SinceN |U = 0, that lemma implies that this in turn is equivalent
to Hn(X,N) = 0 for n ≥ a. We conclude that (2) is equivalent to τ≥aN = 0 since N is
determined by the complex of A-modules RΓ(X,N), see Lemma 3.5. Thus we find that
our lemma is true. �

Lemma 40.2. In Situation 9.1 denote j : U → X the open immersion and let K be
the perfect object of D(OX) corresponding to the Koszul complex on f1, . . . , fr over A.
Let E ∈ DQCoh(OX) and a ∈ Z. Consider the following conditions

(1) The canonical map τ≤aE → τ≤aRj∗(E|U ) is an isomorphism, and
(2) HomD(OX)(K[−n], E) = 0 for all n ≤ a.

Then (2) implies (1) and (1) implies (2) with a replaced by a− 1.

Proof. Choose a distinguished triangle E → Rj∗(E|U ) → N → E[1]. Then (1)
implies τ≤a−1N = 0 and (1) is implied by τ≤aN = 0. Observe that

HomD(OX)(K[−n], Rj∗(E|U )) = HomD(OU )(K|U [−n], E) = 0
for all n as K|U = 0. Thus (2) is equivalent to HomD(OX)(K[−n], N) = 0 for all n ≤ a.
Observe that there are distinguished triangles

K•(fe1
1 , . . . , f

e′
i
i , . . . , f

er
r )→ K•(fe1

1 , . . . , f
e′
i+e

′′
i

i , . . . , ferr )→ K•(fe1
1 , . . . , f

e′′
i
i , . . . , ferr )→ . . .

of Koszul complexes, see More on Algebra, Lemma 28.11. Hence HomD(OX)(K[−n], N) =
0 for all n ≤ a is equivalent to HomD(OX)(Ke[−n], N) = 0 for all n ≤ a and all e ≥ 1
withKe as in Lemma 9.6. SinceN |U = 0, that lemma implies that this in turn is equivalent
to Hn(X,N) = 0 for n ≤ a. We conclude that (2) is equivalent to τ≤aN = 0 since N is
determined by the complex of A-modules RΓ(X,N), see Lemma 3.5. Thus we find that
our lemma is true. �

Lemma 40.3. LetX be a quasi-compact and quasi-separated scheme. LetP ∈ Dperf (OX)
and E ∈ DQCoh(OX). Let a ∈ Z. The following are equivalent

(1) HomD(OX)(P [−i], E) = 0 for i� 0, and
(2) HomD(OX)(P [−i], τ≥aE) = 0 for i� 0.

Proof. Using the triangle τ<aE → E → τ≥aE → we see that the equivalence
follows if we can show

HomD(OX)(P [−i], τ<aE) = HomD(OX)(P, (τ<aE)[i]) = 0
for i� 0. As P is perfect this is true by Lemma 18.2. �
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Lemma 40.4. LetX be a quasi-compact and quasi-separated scheme. LetP ∈ Dperf (OX)
and E ∈ DQCoh(OX). Let a ∈ Z. The following are equivalent

(1) HomD(OX)(P [−i], E) = 0 for i� 0, and
(2) HomD(OX)(P [−i], τ≤aE) = 0 for i� 0.

Proof. Using the triangle τ≤aE → E → τ>aE → we see that the equivalence
follows if we can show

HomD(OX)(P [−i], τ>aE) = HomD(OX)(P, (τ>aE)[i]) = 0
for i� 0. As P is perfect this is true by Lemma 18.2. �

Proposition 40.5. Let X be a quasi-compact and quasi-separated scheme. Let G ∈
Dperf (OX) be a perfect complex which generates DQCoh(OX). Let E ∈ DQCoh(OX).
The following are equivalent

(1) E ∈ D−
QCoh(OX),

(2) HomD(OX)(G[−i], E) = 0 for i� 0,
(3) ExtiX(G,E) = 0 for i� 0,
(4) RHomX(G,E) is in D−(Z),
(5) Hi(X,G∨ ⊗L

OX
E) = 0 for i� 0,

(6) RΓ(X,G∨ ⊗L
OX

E) is in D−(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X,P ⊗L

OX
E) = 0 for i� 0,

(c) RΓ(X,P ⊗L
OX

E) is in D−(Z).

Proof. Assume (1). Since HomD(OX)(G[−i], E) = HomD(OX)(G,E[i]) we see that
this is zero for i� 0 by Lemma 18.2. This proves that (1) implies (2).

Parts (2), (3), (4) are equivalent by the discussion in Cohomology, Section 44. Part (5)
and (6) are equivalent as Hi(X,−) = Hi(RΓ(X,−)) by definition. The equivalent con-
ditions (2), (3), (4) are equivalent to the equivalent conditions (5), (6) by Cohomology,
Lemma 50.5 and the fact that (G[−i])∨ = G∨[i].
It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions (2)
– (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark 17.2. For
P ∈ Dperf (OX) let T (P ) be the assertion thatRHomX(P,E) is inD−(Z). Clearly, T is
inherited by direct sums, satisfies the 2-out-of-three property for distinguished triangles,
is inherited by direct summands, and is perserved by shifts. Hence by Derived Categories,
Remark 36.7 we see that (4) implies T holds on all of Dperf (OX). The same argument
works for all other properties, except that for property (7)(b) and (7)(c) we also use that
P 7→ P∨ is a self equivalence of Dperf (OX). Small detail omitted.

We will prove the equivalent conditions (2) – (7) imply (1) using the induction principle
of Cohomology of Schemes, Lemma 4.1.

First, we prove (2) – (7) ⇒ (1) if X is affine. Set P = OX [0]. From (7) we obtain
Hi(X,E) = 0 for i � 0. Hence (1) follows since E is determined by RΓ(X,E), see
Lemma 3.5.

Now assume X = U ∪ V with U a quasi-compact open of X and V an affine open, and
assume the implication (2) – (7)⇒ (1) is known for the schemesU , V , andU ∩V . Suppose
E ∈ DQCoh(OX) satisfies (2) – (7). By Lemma 15.1 and Theorem 15.3 there exists a perfect
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complex Q on X such that Q|U generates DQCoh(OU ). Let f1, . . . , fr ∈ Γ(V,OV ) be
such that V \ U = V (f1, . . . , fr) as subsets of V . Let K ∈ Dperf (OV ) be the object
corresponding to the Koszul complex on f1, . . . , fr. Let K ′ ∈ Dperf (OX) be

(40.5.1) K ′ = R(V → X)∗K = R(V → X)!K,

see Cohomology, Lemmas 33.6 and 49.10. This is a perfect complex on X supported
on the closed set X \ U ⊂ V and isomorphic to K on V . By assumption, we know
RHomOX

(Q,E) and RHomOX
(K ′, E) are bounded above.

By the second description of K ′ in (40.5.1) we have

HomD(OV )(K[−i], E|V ) = HomD(OX)(K ′[−i], E) = 0

for i � 0. Therefore, we may apply Lemma 40.1 to E|V to obtain an integer a such that
τ≥a(E|V ) = τ≥aR(U ∩ V → V )∗(E|U∩V ). Then τ≥aE = τ≥aR(U → X)∗(E|U )
(check that the canonical map is an isomorphism after restricting to U and to V ). Hence
using Lemma 40.3 twice we see that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX)(Q[−i], R(U → X)∗(E|U )) = 0

for i � 0. Since the Proposition holds for U and the generator Q|U , we have E|U ∈
D−

QCoh(OU ). But then since the functor R(U → X)∗ preserves D−
QCoh (by Lemma 4.1),

we get τ≥aE ∈ D−
QCoh(OX). Thus E ∈ D−

QCoh(OX). �

Proposition 40.6. Let X be a quasi-compact and quasi-separated scheme. Let G ∈
Dperf (OX) be a perfect complex which generates DQCoh(OX). Let E ∈ DQCoh(OX).
The following are equivalent

(1) E ∈ D+
QCoh(OX),

(2) HomD(OX)(G[−i], E) = 0 for i� 0,
(3) ExtiX(G,E) = 0 for i� 0,
(4) RHomX(G,E) is in D+(Z),
(5) Hi(X,G∨ ⊗L

OX
E) = 0 for i� 0,

(6) RΓ(X,G∨ ⊗L
OX

E) is in D+(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X,P ⊗L

OX
E) = 0 for i� 0,

(c) RΓ(X,P ⊗L
OX

E) is in D+(Z).

Proof. Assume (1). Since HomD(OX)(G[−i], E) = HomD(OX)(G,E[i]) we see that
this is zero for i� 0 by Lemma 18.2. This proves that (1) implies (2).

Parts (2), (3), (4) are equivalent by the discussion in Cohomology, Section 44. Part (5)
and (6) are equivalent as Hi(X,−) = Hi(RΓ(X,−)) by definition. The equivalent con-
ditions (2), (3), (4) are equivalent to the equivalent conditions (5), (6) by Cohomology,
Lemma 50.5 and the fact that (G[−i])∨ = G∨[i].

It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions (2)
– (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark 17.2. For
P ∈ Dperf (OX) let T (P ) be the assertion thatRHomX(P,E) is inD+(Z). Clearly, T is
inherited by direct sums, satisfies the 2-out-of-three property for distinguished triangles,
is inherited by direct summands, and is perserved by shifts. Hence by Derived Categories,
Remark 36.7 we see that (4) implies T holds on all of Dperf (OX). The same argument
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works for all other properties, except that for property (7)(b) and (7)(c) we also use that
P 7→ P∨ is a self equivalence of Dperf (OX). Small detail omitted.
We will prove the equivalent conditions (2) – (7) imply (1) using the induction principle
of Cohomology of Schemes, Lemma 4.1.
First, we prove (2) – (7) ⇒ (1) if X is affine. Let P = OX [0]. From (7) we obtain
Hi(X,E) = 0 for i � 0. Hence (1) follows since E is determined by RΓ(X,E), see
Lemma 3.5.
Now assume X = U ∪ V with U a quasi-compact open of X and V an affine open, and
assume the implication (2) – (7)⇒ (1) is known for the schemesU , V , andU ∩V . Suppose
E ∈ DQCoh(OX) satisfies (2) – (7). By Lemma 15.1 and Theorem 15.3 there exists a perfect
complex Q on X such that Q|U generates DQCoh(OU ). Let f1, . . . , fr ∈ Γ(V,OV ) be
such that V \ U = V (f1, . . . , fr) as subsets of V . Let K ∈ Dperf (OV ) be the object
corresponding to the Koszul complex on f1, . . . , fr. Let K ′ ∈ Dperf (OX) be
(40.6.1) K ′ = R(V → X)∗K = R(V → X)!K,

see Cohomology, Lemmas 33.6 and 49.10. This is a perfect complex on X supported
on the closed set X \ U ⊂ V and isomorphic to K on V . By assumption, we know
RHomOX

(Q,E) and RHomOX
(K ′, E) are bounded below.

By the second description of K ′ in (40.6.1) we have
HomD(OV )(K[−i], E|V ) = HomD(OX)(K ′[−i], E) = 0

for i � 0. Therefore, we may apply Lemma 40.2 to E|V to obtain an integer a such that
τ≤a(E|V ) = τ≤aR(U ∩ V → V )∗(E|U∩V ). Then τ≤aE = τ≤aR(U → X)∗(E|U )
(check that the canonical map is an isomorphism after restricting to U and to V ). Hence
using Lemma 40.4 twice we see that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX)(Q[−i], R(U → X)∗(E|U )) = 0
for i � 0. Since the Proposition holds for U and the generator Q|U , we have E|U ∈
D+

QCoh(OU ). But then since the functor R(U → X)∗ preserves bounded below objects
(see Cohomology, Section 3) we get τ≤aE ∈ D+

QCoh(OX). Thus E ∈ D+
QCoh(OX). �

41. Quasi-coherent objects in the derived category

LetX be a scheme. Recall thatXaffine,Zar denotes the category of affine opens ofX with
topology given by standard Zariski coverings, see Topologies, Definition 3.7. We remind
the reader that the topos of Xaffine,Zar is the small Zariski topos of X , see Topologies,
Lemma 3.11. The site Xaffine,Zar comes with a structure sheaf O and there is an equiva-
lence of ringed topoi

(Sh(Xaffine,Zar),O) −→ (Sh(XZar),O)
See Descent, Equation (11.1.1) and the discussion in Descent, Section 11 surrounding it
where a slightly different notation is used.
In this section we denote Xaffine the underlying category of Xaffine,Zar endowed with
the chaotic topology, i.e., such that sheaves agree with presheaves. In particular, the struc-
ture sheafO becomes a sheaf on Xaffine as well. We obtain a morphisms of ringed sites

ε : (Xaffine,Zar,O) −→ (Xaffine,O)
as in Cohomology on Sites, Section 27. In this section we will identify DQCoh(OX) with
the category QC (Xaffine,O) introduced in Cohomology on Sites, Section 43.
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Lemma 41.1. In the sitation above there are canonical exact equivalences between the
following triangulated categories

(1) DQCoh(OX),
(2) DQCoh(XZar,O),
(3) DQCoh(Xaffine,Zar,O),
(4) DQCoh(Xaffine,OX), and
(5) QC (Xaffine,O).

Proof. If U ⊂ V ⊂ X are affine open, then the ring map O(V ) → O(U) is flat.
Hence the equivalence between (4) and (5) is a special case of Cohomology on Sites, Lemma
43.11 (the proof also clarifies the statement).
The ringed site (XZar,O) and the ringed space (X,OX) have the same categories of mod-
ules by Descent, Remark 8.3. Via this equivalence the quasi-coherent modules correspond
by Descent, Proposition 8.9. Hence we get a canonical exact equivalence between the tri-
angulated categories in (1) and (2).
The discussion preceding the lemma shows that we have an equivalence of ringed topoi
(Sh(Xaffine,Zar),O) → (Sh(XZar),O) and hence an equivalence between abelian cat-
egories of modules. Since the notion of quasi-coherent modules is intrinsic (Modules
on Sites, Lemma 23.2) we see that this equivalence preserves the subcategories of quasi-
coherent modules. Thus we get a canonical exact equivalence between the triangulated
categories in (2) and (3).
To get an exact equivalence between the triangulated categories in (3) and (4) we will apply
Cohomology on Sites, Lemma 29.1 to the morphism ε : (Xaffine,Zar,O)→ (Xaffine,O)
above. We take B = Ob(Xaffine) and we take A ⊂ PMod(Xaffine,O) to be the full
subcategory of those presheaves F such that F(V ) ⊗O(V ) O(U) → F(U) is an isomor-
phism. Observe that by Descent, Lemma 11.2 objects ofA are exactly those sheaves in the
Zariski topology which are quasi-coherent modules on (Xaffine,Zar,O). On the other
hand, by Modules on Sites, Lemma 24.2, the objects of A are exactly the quasi-coherent
modules on (Xaffine,O), i.e., in the chaotic topology. Thus if we show that Cohomol-
ogy on Sites, Lemma 29.1 applies, then we do indeed get the canonical equivalence between
the categories of (3) and (4) using ε∗ and Rε∗.
We have to verify 4 conditions:

(1) Every object ofA is a sheaf for the Zariski topology. This we have seen above.
(2) A is a weak Serre subcategory of Mod(Xaffine,Zar,O). Above we have seen

that A = QCoh(Xaffine,Zar,O) and we have seen above that these, via the
equivalence Mod(Xaffine,Zar,O) = Mod(X,OX), correspond to the quasi-
coherent modules on X . Thus the result by the discussion in Schemes, Section
24.

(3) Every object of Xaffine has a covering in the chaotic topology whose members
are elements of B. This holds because B contains all objects.

(4) For every object U of Xaffine and F inA we have Hp
Zar(U,F) = 0 for p > 0.

This holds by the vanishing of cohomology of quasi-coherent modules on affines,
see Cohomology of Schemes, Lemma 2.2.

This finishes the proof. �

Remark 41.2. Let S be a scheme. We will later show that also QC ((Aff/S),O) is
canonically equivalent to DQCoh(OS). See Sheaves on Stacks, Proposition 26.4.
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CHAPTER 37

More on Morphisms

1. Introduction

In this chapter we continue our study of properties of morphisms of schemes. A funda-
mental reference is [?].

2. Thickenings

The following terminology may not be completely standard, but it is convenient.

Definition 2.1. Thickenings.
(1) We say a scheme X ′ is a thickening of a scheme X if X is a closed subscheme of

X ′ and the underlying topological spaces are equal.
(2) We say a scheme X ′ is a first order thickening of a scheme X if X is a closed

subscheme ofX ′ and the quasi-coherent sheaf of ideals I ⊂ OX′ definingX has
square zero.

(3) Given two thickenings X ⊂ X ′ and Y ⊂ Y ′ a morphism of thickenings is a
morphism f ′ : X ′ → Y ′ such that f ′(X) ⊂ Y , i.e., such that f ′|X factors
through the closed subscheme Y . In this situation we set f = f ′|X : X → Y
and we say that (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of thickenings.

(4) Let S be a scheme. We similarly define thickenings over S , and morphisms of
thickenings over S. This means that the schemesX,X ′, Y, Y ′ above are schemes
over S , and that the morphisms X → X ′, Y → Y ′ and f ′ : X ′ → Y ′ are
morphisms over S.

Finite order thickenings. Let iX : X → X ′ be a thickening. Any local section of the ker-
nel I = Ker(i]X) is locally nilpotent. Let us say that X ⊂ X ′ is a finite order thickening
if the ideal sheaf I is “globally” nilpotent, i.e., if there exists an n ≥ 0 such that In+1 = 0.
Technically the class of finite order thickenings X ⊂ X ′ is much easier to handle than
the general case. Namely, in this case we have a filtration

0 = In+1 ⊂ In ⊂ In−1 ⊂ . . . ⊂ I ⊂ OX′

and we see that X ′ is filtered by closed subspaces

X = X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ Xn+1 = X ′

such that each pair Xi ⊂ Xi+1 is a first order thickening over S. Using simple induction
arguments many results proved for first order thickenings can be rephrased as results on
finite order thickenings.

First order thickening are described as follows (see Modules, Lemma 28.11).

Lemma 2.2. Let X be a scheme over a base S. Consider a short exact sequence

0→ I → A → OX → 0

3109
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of sheaves onX whereA is a sheaf of f−1OS-algebras,A → OX is a surjection of sheaves
of f−1OS-algebras, and I is its kernel. If

(1) I is an ideal of square zero inA, and
(2) I is quasi-coherent as anOX -module

then X ′ = (X,A) is a scheme and X → X ′ is a first order thickening over S. Moreover,
any first order thickening over S is of this form.

Proof. It is clear that X ′ is a locally ringed space. Let U = Spec(B) be an affine
open ofX . SetA = Γ(U,A). Note that sinceH1(U, I) = 0 (see Cohomology of Schemes,
Lemma 2.2) the map A→ B is surjective. By assumption the kernel I = I(U) is an ideal
of square zero in the ring A. By Schemes, Lemma 6.4 there is a canonical morphism of
locally ringed spaces

(U,A|U ) −→ Spec(A)
coming from the map B → Γ(U,A). Since this morphism fits into the commutative
diagram

(U,OX |U )

��

// Spec(B)

��
(U,A|U ) // Spec(A)

we see that it is a homeomorphism on underlying topological spaces. Thus to see that it
is an isomorphism, it suffices to check it induces an isomorphism on the local rings. For
u ∈ U corresponding to the prime p ⊂ Awe obtain a commutative diagram of short exact
sequences

0 // Ip //

��

Ap
//

��

Bp
//

��

0

0 // Iu // Au // OX,u // 0.

The left and right vertical arrows are isomorphisms because I andOX are quasi-coherent
sheaves. Hence also the middle map is an isomorphism. Hence every point ofX ′ = (X,A)
has an affine neighbourhood and X ′ is a scheme as desired. �

Lemma 2.3. Any thickening of an affine scheme is affine.

Proof. This is a special case of Limits, Proposition 11.2. �

Proof for a finite order thickening. Suppose that X ⊂ X ′ is a finite order
thickening with X affine. Then we may use Serre’s criterion to prove X ′ is affine. More
precisely, we will use Cohomology of Schemes, Lemma 3.1. LetF be a quasi-coherentOX′ -
module. It suffices to show that H1(X ′,F) = 0. Denote i : X → X ′ the given closed
immersion and denote I = Ker(i] : OX′ → i∗OX). By our discussion of finite order
thickenings (following Definition 2.1) there exists an n ≥ 0 and a filtration

0 = Fn+1 ⊂ Fn ⊂ Fn−1 ⊂ . . . ⊂ F0 = F

by quasi-coherent submodules such that Fa/Fa+1 is annihilated by I . Namely, we can
take Fa = IaF . Then Fa/Fa+1 = i∗Ga for some quasi-coherent OX -module Ga, see
Morphisms, Lemma 4.1. We obtain

H1(X ′,Fa/Fa+1) = H1(X ′, i∗Ga) = H1(X,Ga) = 0
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The second equality comes from Cohomology of Schemes, Lemma 2.4 and the last equality
from Cohomology of Schemes, Lemma 2.2. Thus F has a finite filtration whose successive
quotients have vanishing first cohomology and it follows by a simple induction argument
that H1(X ′,F) = 0. �

Lemma 2.4. Let S ⊂ S′ be a thickening of schemes. Let X ′ → S′ be a morphism
and set X = S ×S′ X ′. Then (X ⊂ X ′) → (S ⊂ S′) is a morphism of thickenings. If
S ⊂ S′ is a first (resp. finite order) thickening, then X ⊂ X ′ is a first (resp. finite order)
thickening.

Proof. Omitted. �

Lemma 2.5. If S ⊂ S′ and S′ ⊂ S′′ are thickenings, then so is S ⊂ S′′.

Proof. Omitted. �

Lemma 2.6. The property of being a thickening is fpqc local. Similarly for first order
thickenings.

Proof. The statement means the following: Let X → X ′ be a morphism of schemes
and let {gi : X ′

i → X ′} be an fpqc covering such that the base change Xi → X ′
i is a

thickening for all i. Then X → X ′ is a thickening. Since the morphisms gi are jointly
surjective we conclude that X → X ′ is surjective. By Descent, Lemma 23.19 we conclude
thatX → X ′ is a closed immersion. ThusX → X ′ is a thickening. We omit the proof in
the case of first order thickenings. �

3. Morphisms of thickenings

If (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) is a morphism of thickenings of schemes, then often
properties of the morphism f are inherited by f ′. There are several variants.

Lemma 3.1. Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of thickenings.
Then

(1) f is an affine morphism if and only if f ′ is an affine morphism,
(2) f is a surjective morphism if and only if f ′ is a surjective morphism,
(3) f is quasi-compact if and only if f ′ quasi-compact,
(4) f is universally closed if and only if f ′ is universally closed,
(5) f is integral if and only if f ′ is integral,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is universally injective if and only if f ′ is universally injective,
(8) f is universally open if and only if f ′ is universally open,
(9) f is quasi-affine if and only if f ′ is quasi-affine, and

(10) add more here.

Proof. Observe that S → S′ and X → X ′ are universal homeomorphisms (see for
example Morphisms, Lemma 45.6). This immediately implies parts (2), (3), (4), (7), and
(8). Part (1) follows from Lemma 2.3 which tells us that there is a 1-to-1 correspondence
between affine opens of S and S′ and between affine opens of X and X ′. Part (9) follows
from Limits, Lemma 11.5 and the remark just made about affine opens of S and S′. Part
(5) follows from (1) and (4) by Morphisms, Lemma 44.7. Finally, note that

S ×X S = S ×X′ S → S ×X′ S′ → S′ ×X′ S′

is a thickening (the two arrows are thickenings by Lemma 2.4). Hence applying (3) and
(4) to the morphism (S ⊂ S′)→ (S ×X S → S′ ×X′ S′) we obtain (6). �
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Lemma 3.2. Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of thickenings. Let
L′ be an invertible sheaf on X ′ and denote L the restriction to X . Then L′ is f ′-ample if
and only if L is f -ample.

Proof. Recall that being relatively ample is a condition for each affine open in the
base, see Morphisms, Definition 37.1. By Lemma 2.3 there is a 1-to-1 correspondence be-
tween affine opens of S and S′. Thus we may assume S and S′ are affine and we reduce to
proving that L′ is ample if and only if L is ample. This is Limits, Lemma 11.4. �

Lemma 3.3. Let (f, f ′) : (X ⊂ X ′)→ (S ⊂ S′) be a morphism of thickenings such
that X = S ×S′ X ′. If S ⊂ S′ is a finite order thickening, then

(1) f is a closed immersion if and only if f ′ is a closed immersion,
(2) f is locally of finite type if and only if f ′ is locally of finite type,
(3) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(4) f is locally of finite type of relative dimension d if and only if f ′ is locally of

finite type of relative dimension d,
(5) ΩX/S = 0 if and only if ΩX′/S′ = 0,
(6) f is unramified if and only if f ′ is unramified,
(7) f is proper if and only if f ′ is proper,
(8) f is finite if and only if f ′ is finite,
(9) f is a monomorphism if and only if f ′ is a monomorphism,

(10) f is an immersion if and only if f ′ is an immersion, and
(11) add more here.

Proof. The properties P listed in the lemma are all stable under base change, hence
if f ′ has property P , then so does f . See Schemes, Lemmas 18.2 and 23.5 and Morphisms,
Lemmas 15.4, 20.13, 29.2, 32.10, 35.5, 41.5, and 44.6.

The interesting direction in each case is therefore to assume that f has the property and
deduce that f ′ has it too. By induction on the order of the thickening we may assume that
S ⊂ S′ is a first order thickening, see discussion immediately following Definition 2.1.

Most of the proofs will use a reduction to the affine case. Let U ′ ⊂ S′ be an affine open
and let V ′ ⊂ X ′ be an affine open lying over U ′. Let U ′ = Spec(A′) and denote I ⊂ A′

be the ideal defining the closed subscheme U ′ ∩ S. Say V ′ = Spec(B′). Then V ′ ∩X =
Spec(B′/IB′). Setting A = A′/I and B = B′/IB′ we get a commutative diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0

with exact rows and I2 = 0.

The translation of (1) into algebra: If A → B is surjective, then A′ → B′ is surjective.
This follows from Nakayama’s lemma (Algebra, Lemma 20.1).

The translation of (2) into algebra: If A→ B is a finite type ring map, then A′ → B′ is a
finite type ring map. This follows from Nakayama’s lemma (Algebra, Lemma 20.1) applied
to a map A′[x1, . . . , xn]→ B′ such that A[x1, . . . , xn]→ B is surjective.

Proof of (3). Follows from (2) and that quasi-finiteness of a morphism which is locally of
finite type can be checked on fibres, see Morphisms, Lemma 20.6.
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Proof of (4). Follows from (2) and that the additional property of “being of relative di-
mension d” can be checked on fibres (by definition, see Morphisms, Definition 29.1.

The translation of (5) into algebra: If ΩB/A = 0, then ΩB′/A′ = 0. By Algebra, Lemma
131.12 we have 0 = ΩB/A = ΩB′/A′/IΩB′/A′ . Hence ΩB′/A′ = 0 by Nakayama’s lemma
(Algebra, Lemma 20.1).

The translation of (6) into algebra: IfA→ B is unramified map, thenA′ → B′ is unram-
ified. Since A → B is of finite type we see that A′ → B′ is of finite type by (2) above.
Since A → B is unramified we have ΩB/A = 0. By part (5) we have ΩB′/A′ = 0. Thus
A′ → B′ is unramified.

Proof of (7). Follows by combining (2) with results of Lemma 3.1 and the fact that proper
equals quasi-compact + separated + locally of finite type + universally closed.

Proof of (8). Follows by combining (2) with results of Lemma 3.1 and using the fact that
finite equals integral + locally of finite type (Morphisms, Lemma 44.4).

Proof of (9). As f is a monomorphism we have X = X ×S X . We may apply the results
proved so far to the morphism of thickenings (X ⊂ X ′)→ (X×SX ⊂ X ′×S′ X ′). We
concludeX ′ → X ′×S′X ′ is a closed immersion by (1). In fact, it is a first order thickening
as the ideal defining the closed immersion X ′ → X ′ ×S′ X ′ is contained in the pullback
of the ideal I ⊂ OS′ cutting out S in S′. Indeed, X = X ×S X = (X ′ ×S′ X ′) ×S′ S
is contained in X ′. Hence by Morphisms, Lemma 32.7 it suffices to show that ΩX′/S′ = 0
which follows from (5) and the corresponding statement for X/S.

Proof of (10). If f : X → S is an immersion, then it factors as X → U → S where
U → S is an open immersion andX → U is a closed immersion. Let U ′ ⊂ S′ be the open
subscheme whose underlying topological space is the same as U . Then X ′ → S′ factors
throughU ′ and we conclude thatX ′ → U ′ is a closed immersion by part (1). This finishes
the proof. �

The following lemma is a variant on the preceding one. Rather than assume that the
thickenings involved are finite order (which allows us to transfer the property of being
locally of finite type from f to f ′), we instead take as given that each of f and f ′ is locally
of finite type.

Lemma 3.4. Let (f, f ′) : (X ⊂ X ′) → (Y → Y ′) be a morphism of thickenings.
Assume f and f ′ are locally of finite type and X = Y ×Y ′ X ′. Then

(1) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(2) f is finite if and only if f ′ is finite,
(3) f is a closed immersion if and only if f ′ is a closed immersion,
(4) ΩX/Y = 0 if and only if ΩX′/Y ′ = 0,
(5) f is unramified if and only if f ′ is unramified,
(6) f is a monomorphism if and only if f ′ is a monomorphism,
(7) f is an immersion if and only if f ′ is an immersion,
(8) f is proper if and only if f ′ is proper, and
(9) add more here.

Proof. The properties P listed in the lemma are all stable under base change, hence
if f ′ has property P , then so does f . See Schemes, Lemmas 18.2 and 23.5 and Morphisms,
Lemmas 20.13, 29.2, 32.10, 35.5, 41.5, and 44.6. Hence in each case we need only to prove
that if f has the desired property, so does f ′.
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A morphism is locally quasi-finite if and only if it is locally of finite type and the scheme
theoretic fibres are discrete spaces, see Morphisms, Lemma 20.8. Since the underlying topo-
logical space is unchanged by passing to a thickening, we see that f ′ is locally quasi-finite
if (and only if) f is. This proves (1).

Case (2) follows from case (5) of Lemma 3.1 and the fact that the finite morphisms are
precisely the integral morphisms that are locally of finite type (Morphisms, Lemma 44.4).

Case (3). This follows immediately from Morphisms, Lemma 45.7.

Case (4) follows from the following algebra statement: Let A be a ring and let I ⊂ A be
a locally nilpotent ideal. Let B be a finite type A-algebra. If Ω(B/IB)/(A/I) = 0, then
ΩB/A = 0. Namely, the assumption means that IΩB/A = 0, see Algebra, Lemma 131.12.
On the other hand ΩB/A is a finite B-module, see Algebra, Lemma 131.16. Hence the
vanishing of ΩB/A follows from Nakayama’s lemma (Algebra, Lemma 20.1) and the fact
that IB is contained in the Jacobson radical of B.

Case (5) follows immediately from (4) and Morphisms, Lemma 35.2.

Proof of (6). As f is a monomorphism we have X = X ×Y X . We may apply the results
proved so far to the morphism of thickenings (X ⊂ X ′) → (X ×Y X ⊂ X ′ ×Y ′ X ′).
We conclude ∆X′/Y ′ : X ′ → X ′×Y ′ X ′ is a closed immersion by (3). In fact ∆X′/Y ′ is a
bijection on underlying sets, hence ∆X′/Y ′ is a thickening. On the other hand ∆X′/Y ′ is
locally of finite presentation by Morphisms, Lemma 21.12. In other words, ∆X′/Y ′(X ′) is
cut out by a quasi-coherent sheaf of ideals J ⊂ OX′×Y ′X′ of finite type. Since ΩX′/Y ′ =
0 by (5) we see that the conormal sheaf ofX ′ → X ′×Y ′ X ′ is zero by Morphisms, Lemma
32.7. In other words, J /J 2 = 0. This implies ∆X′/Y ′ is an isomorphism, for example by
Algebra, Lemma 21.5.

Proof of (7). If f : X → Y is an immersion, then it factors as X → V → Y where
V → Y is an open immersion andX → V is a closed immersion. Let V ′ ⊂ Y ′ be the open
subscheme whose underlying topological space is the same as V . Then X ′ → V ′ factors
through V ′ and we conclude that X ′ → V ′ is a closed immersion by part (3).

Case (8) follows from Lemma 3.1 and the definition of proper morphisms as being the
quasi-compact, universally closed, and separated morphisms that are locally of finite type.

�

4. Picard groups of thickenings

Some material on Picard groups of thickenings.

Lemma 4.1. LetX ⊂ X ′ be a first order thickening with ideal sheaf I . Then there is
a canonical exact sequence

0 // H0(X, I) // H0(X ′,O∗
X′) // H0(X,O∗

X)

// H1(X, I) // Pic(X ′) // Pic(X)

// H2(X, I) // . . . // . . .

of abelian groups.
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Proof. This is the long exact cohomology sequence associated to the short exact se-
quence of sheaves of abelian groups

0→ I → O∗
X′ → O∗

X → 0

where the first map sends a local section f of I to the invertible section 1 + f ofOX′ . We
also use the identification of the Picard group of a ringed space with the first cohomology
group of the sheaf of invertible functions, see Cohomology, Lemma 6.1. �

Lemma 4.2. LetX ⊂ X ′ be a thickening. Let n be an integer invertible inOX . Then
the map Pic(X ′)[n]→ Pic(X)[n] is bijective.

Proof for a finite order thickening. By the general principle explained follow-
ing Definition 2.1 this reduces to the case of a first order thickening. Then may use Lemma
4.1 to see that it suffices to show thatH1(X, I)[n],H1(X, I)/n, andH2(X, I)[n] are zero.
This follows as multiplication by n on I is an isomorphism as it is anOX -module. �

Proof in general. Let I ⊂ OX′ be the quasi-coherent ideal sheaf cutting out X .
Then we have a short exact sequence of abelian groups

0→ (1 + I)∗ → O∗
X′ → O∗

X → 0

We obtain a long exact cohomology sequence as in the statement of Lemma 4.1 with
Hi(X, I) replaced by Hi(X, (1 + I)∗). Thus it suffices to show that raising to the nth
power is an isomorphism (1 + I)∗ → (1 + I)∗. Taking sections over affine opens this
follows from Algebra, Lemma 32.8. �

5. First order infinitesimal neighbourhood

A natural construction of first order thickenings is the following. Suppose that i : Z → X
be an immersion of schemes. Choose an open subscheme U ⊂ X such that i identifies Z
with a closed subschemeZ ⊂ U . Let I ⊂ OU be the quasi-coherent sheaf of ideals defining
Z inU . Then we can consider the closed subschemeZ ′ ⊂ U defined by the quasi-coherent
sheaf of ideals I2.

Definition 5.1. Let i : Z → X be an immersion of schemes. The first order infini-
tesimal neighbourhood of Z in X is the first order thickening Z ⊂ Z ′ over X described
above.

This thickening has the following universal property (which will assuage any fears that
the construction above depends on the choice of the open U ).

Lemma 5.2. Let i : Z → X be an immersion of schemes. The first order infini-
tesimal neighbourhood Z ′ of Z in X has the following universal property: Given any
commutative diagram

Z

i

��

T
a

oo

��
X T ′boo

where T ⊂ T ′ is a first order thickening over X , there exists a unique morphism (a′, a) :
(T ⊂ T ′)→ (Z ⊂ Z ′) of thickenings over X .
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Proof. Let U ⊂ X be the open used in the construction of Z ′, i.e., an open such that
Z is identified with a closed subscheme of U cut out by the quasi-coherent sheaf of ideals
I . Since |T | = |T ′| we see that b(T ′) ⊂ U . Hence we can think of b as a morphism into
U . Let J ⊂ OT ′ be the ideal cutting out T . Since b(T ) ⊂ Z by the diagram above we
see that b](b−1I) ⊂ J . As T ′ is a first order thickening of T we see that J 2 = 0 hence
b](b−1(I2)) = 0. By Schemes, Lemma 4.6 this implies that b factors through Z ′. Denote
a′ : T ′ → Z ′ this factorization and everything is clear. �

Lemma 5.3. Let i : Z → X be an immersion of schemes. Let Z ⊂ Z ′ be the first
order infinitesimal neighbourhood of Z in X . Then the diagram

Z //

��

Z ′

��
Z // X

induces a map of conormal sheaves CZ/X → CZ/Z′ by Morphisms, Lemma 31.3. This map
is an isomorphism.

Proof. This is clear from the construction of Z ′ above. �

6. Formally unramified morphisms

Recall that a ring mapR→ A is called formally unramified (see Algebra, Definition 148.1)
if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, at most one dotted arrow exists which makes the
diagram commute. This motivates the following analogue for morphisms of schemes.

Definition 6.1. Let f : X → S be a morphism of schemes. We say f is formally
unramified if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists at most one
dotted arrow making the diagram commute.

We first prove some formal lemmas, i.e., lemmas which can be proved by drawing the
corresponding diagrams.

Lemma 6.2. If f : X → S is a formally unramified morphism, then given any solid
commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``
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where T ⊂ T ′ is a first order thickening of schemes over S there exists at most one dotted
arrow making the diagram commute. In other words, in Definition 6.1 the condition that
T be affine may be dropped.

Proof. This is true because a morphism is determined by its restrictions to affine
opens. �

Lemma 6.3. A composition of formally unramified morphisms is formally unrami-
fied.

Proof. This is formal. �

Lemma 6.4. A base change of a formally unramified morphism is formally unrami-
fied.

Proof. This is formal. �

Lemma 6.5. Let f : X → S be a morphism of schemes. Let U ⊂ X and V ⊂ S be
open such that f(U) ⊂ V . If f is formally unramified, so is f |U : U → V .

Proof. Consider a solid diagram

U

f |U
��

T

i
��

a
oo

V T ′oo

``

as in Definition 6.1. If f is formally ramified, then there exists at most one S-morphism
a′ : T ′ → X such that a′|T = a. Hence clearly there exists at most one such morphism
into U . �

Lemma 6.6. Let f : X → S be a morphism of schemes. Assume X and S are affine.
Then f is formally unramified if and only if OS(S) → OX(X) is a formally unramified
ring map.

Proof. This is immediate from the definitions (Definition 6.1 and Algebra, Defini-
tion 148.1) by the equivalence of categories of rings and affine schemes, see Schemes, Lemma
6.5. �

Here is a characterization in terms of the sheaf of differentials.

Lemma 6.7. Let f : X → S be a morphism of schemes. Then f is formally unramified
if and only if ΩX/S = 0.

Proof. We recall some of the arguments of the proof of Morphisms, Lemma 32.5. Let
W ⊂ X ×S X be an open such that ∆ : X → X ×S X induces a closed immersion into
W . Let J ⊂ OW be the ideal sheaf of this closed immersion. Let X ′ ⊂ W be the closed
subscheme defined by the quasi-coherent sheaf of ideals J 2. Consider the two morphisms
p1, p2 : X ′ → X induced by the two projections X ×S X → X . Note that p1 and p2
agree when composed with ∆ : X → X ′ and that X → X ′ is a closed immersion defined
by a an ideal whose square is zero. Moreover there is a short exact sequence

0→ J /J 2 → OX′ → OX → 0

and ΩX/S = J /J 2. Moreover, J /J 2 is generated by the local sections p]1(f) − p]2(f)
for f a local section ofOX .
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Suppose that f : X → S is formally unramified. By assumption this means that p1 = p2
when restricted to any affine open T ′ ⊂ X ′. Hence p1 = p2. By what was said above we
conclude that ΩX/S = J /J 2 = 0.

Conversely, suppose that ΩX/S = 0. Then X ′ = X . Take any pair of morphisms f ′
1, f

′
2 :

T ′ → X fitting as dotted arrows in the diagram of Definition 6.1. This gives a morphism
(f ′

1, f
′
2) : T ′ → X ×S X . Since f ′

1|T = f ′
2|T and |T | = |T ′| we see that the image of T ′

under (f ′
1, f

′
2) is contained in the open W chosen above. Since (f ′

1, f
′
2)(T ) ⊂ ∆(X) and

since T is defined by an ideal of square zero in T ′ we see that (f ′
1, f

′
2) factors through X ′.

As X ′ = X we conclude f ′
1 = f ′

2 as desired. �

Lemma 6.8. Let f : X → S be a morphism of schemes. The following are equivalent:
(1) The morphism f is unramified (resp. G-unramified), and
(2) the morphism f is locally of finite type (resp. locally of finite presentation) and

formally unramified.

Proof. Use Lemma 6.7 and Morphisms, Lemma 35.2. �

7. Universal first order thickenings

Let h : Z → X be a morphism of schemes. A universal first order thickening of Z over
X is a first order thickening Z ⊂ Z ′ over X such that given any first order thickening
T ⊂ T ′ over X and a solid commutative diagram

Z

~~

T

  

a
oo

Z ′

''

T ′a′
oo

b
ww

X

there exists a unique dotted arrow making the diagram commute. Note that in this sit-
uation (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′) is a morphism of thickenings over X . Thus if
a universal first order thickening exists, then it is unique up to unique isomorphism. In
general a universal first order thickening does not exist, but if h is formally unramified
then it does.

Lemma 7.1. Let h : Z → X be a formally unramified morphism of schemes. There
exists a universal first order thickening Z ⊂ Z ′ of Z over X .

Proof. During this proof we will say Z ⊂ Z ′ is a universal first order thickening of
Z over X if it satisfies the condition of the lemma. We will construct the universal first
order thickeningZ ⊂ Z ′ overX by glueing, starting with the affine case which is Algebra,
Lemma 149.1. We begin with some general remarks.

If a universal first order thickening of Z over X exists, then it is unique up to unique
isomorphism. Moreover, suppose that V ⊂ Z and U ⊂ X are open subschemes such that
h(V ) ⊂ U . Let Z ⊂ Z ′ be a universal first order thickening of Z over X . Let V ′ ⊂ Z ′ be
the open subscheme such that V = Z ∩ V ′. Then we claim that V ⊂ V ′ is the universal
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first order thickening of V over U . Namely, suppose given any diagram

V

h

��

T
a

oo

��
U T ′boo

where T ⊂ T ′ is a first order thickening overU . By the universal property ofZ ′ we obtain
(a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′). But since we have equality |T | = |T ′| of underlying
topological spaces we see that a′(T ′) ⊂ V ′. Hence we may think of (a, a′) as a morphism
of thickenings (a, a′) : (T ⊂ T ′) → (V ⊂ V ′) over U . Uniqueness is clear also. In a
completely similar manner one proves that if h(Z) ⊂ U and Z ⊂ Z ′ is a universal first
order thickening over U , then Z ⊂ Z ′ is a universal first order thickening over X .

Before we glue affine pieces let us show that the lemma holds if Z and X are affine. Say
X = Spec(R) and Z = Spec(S). By Algebra, Lemma 149.1 there exists a first order
thickening Z ⊂ Z ′ over X which has the universal property of the lemma for diagrams

Z

h

��

T
a

oo

��
X T ′boo

where T, T ′ are affine. Given a general diagram we can choose an affine open covering
T ′ =

⋃
T ′
i and we obtain morphisms a′

i : T ′
i → Z ′ over X such that a′

i|Ti = a|Ti . By
uniqueness we see that a′

i and a′
j agree on any affine open of T ′

i ∩T ′
j . Hence the morphisms

a′
i glue to a global morphism a′ : T ′ → Z ′ over X as desired. Thus the lemma holds if X

and Z are affine.

Choose an affine open coveringZ =
⋃
Zi such that eachZi maps into an affine openUi of

X . By Lemma 6.5 the morphisms Zi → Ui are formally unramified. Hence by the affine
case we obtain universal first order thickenings Zi ⊂ Z ′

i over Ui. By the general remarks
above Zi ⊂ Z ′

i is also a universal first order thickening of Zi overX . Let Z ′
i,j ⊂ Z ′

i be the
open subscheme such thatZi∩Zj = Z ′

i,j∩Zi. By the general remarks we see that bothZ ′
i,j

and Z ′
j,i are universal first order thickenings of Zi ∩ Zj over X . Thus, by the first of our

general remarks, we see that there is a canonical isomorphism ϕij : Z ′
i,j → Z ′

j,i inducing
the identity on Zi ∩ Zj . We claim that these morphisms satisfy the cocycle condition of
Schemes, Section 14. (Verification omitted. Hint: Use that Z ′

i,j ∩Z ′
i,k is the universal first

order thickening of Zi ∩Zj ∩Zk which determines it up to unique isomorphism by what
was said above.) Hence we can use the results of Schemes, Section 14 to get a first order
thickening Z ⊂ Z ′ over X which the property that the open subscheme Z ′

i ⊂ Z ′ with
Zi = Z ′

i ∩ Z is a universal first order thickening of Zi over X .

It turns out that this implies formally that Z ′ is a universal first order thickening of Z
over X . Namely, we have the universal property for any diagram

Z

h

��

T
a

oo

��
X T ′boo

where a(T ) is contained in some Zi. Given a general diagram we can choose an open
covering T ′ =

⋃
T ′
i such that a(Ti) ⊂ Zi. We obtain morphisms a′

i : T ′
i → Z ′ over
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X such that a′
i|Ti = a|Ti . We see that a′

i and a′
j necessarily agree on T ′

i ∩ T ′
j since both

a′
i|T ′

i
∩T ′

j
and a′

j |T ′
i
∩T ′

j
are solutions of the problem of mapping into the universal first

order thickening Z ′
i ∩ Z ′

j of Zi ∩ Zj over X . Hence the morphisms a′
i glue to a global

morphism a′ : T ′ → Z ′ over X as desired. This finishes the proof. �

Definition 7.2. Let h : Z → X be a formally unramified morphism of schemes.
(1) The universal first order thickening of Z over X is the thickening Z ⊂ Z ′

constructed in Lemma 7.1.
(2) The conormal sheaf of Z over X is the conormal sheaf of Z in its universal first

order thickening Z ′ over X .
We often denote the conormal sheaf CZ/X in this situation.

Thus we see that there is a short exact sequence of sheaves

0→ CZ/X → OZ′ → OZ → 0

on Z. The following lemma proves that there is no conflict between this definition and
the definition in case Z → X is an immersion.

Lemma 7.3. Let i : Z → X be an immersion of schemes. Then
(1) i is formally unramified,
(2) the universal first order thickening of Z over X is the first order infinitesimal

neighbourhood of Z in X of Definition 5.1, and
(3) the conormal sheaf of i in the sense of Morphisms, Definition 31.1 agrees with

the conormal sheaf of i in the sense of Definition 7.2.

Proof. By Morphisms, Lemmas 35.7 and 35.8 an immersion is unramified, hence for-
mally unramified by Lemma 6.8. The other assertions follow by combining Lemmas 5.2
and 5.3 and the definitions. �

Lemma 7.4. Let Z → X be a formally unramified morphism of schemes. Then the
universal first order thickening Z ′ is formally unramified over X .

Proof. There are two proofs. The first is to show that ΩZ′/X = 0 by working affine
locally and applying Algebra, Lemma 149.5. Then Lemma 6.7 implies what we want. The
second is a direct argument as follows.

Let T ⊂ T ′ be a first order thickening. Let

Z ′

��

T
c

oo

��
X T ′oo

a,b

``

be a commutative diagram. Consider two morphisms a, b : T ′ → Z ′ fitting into the
diagram. Set T0 = c−1(Z) ⊂ T and T ′

a = a−1(Z) (scheme theoretically). Since Z ′ is
a first order thickening of Z , we see that T ′ is a first order thickening of T ′

a. Moreover,
since c = a|T we see that T0 = T ∩ T ′

a (scheme theoretically). As T ′ is a first order
thickening of T it follows that T ′

a is a first order thickening of T0. Now a|T ′
a

and b|T ′
a

are morphisms of T ′
a into Z ′ over X which agree on T0 as morphisms into Z. Hence by

the universal property of Z ′ we conclude that a|T ′
a

= b|T ′
a

. Thus a and b are morphism
from the first order thickening T ′ of T ′

a whose restrictions to T ′
a agree as morphisms into

Z. Thus using the universal property of Z ′ once more we conclude that a = b. In other
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words, the defining property of a formally unramified morphism holds for Z ′ → X as
desired. �

Lemma 7.5. Consider a commutative diagram of schemes

Z
h
//

f

��

X

g

��
W

h′
// Y

with h and h′ formally unramified. Let Z ⊂ Z ′ be the universal first order thickening of
Z overX . LetW ⊂W ′ be the universal first order thickening ofW over Y . There exists
a canonical morphism (f, f ′) : (Z,Z ′)→ (W,W ′) of thickenings over Y which fits into
the following commutative diagram

Z ′

~~
f ′

��
Z //

f

��

44

X

��

W ′

}}
W

44

// Y

In particular the morphism (f, f ′) of thickenings induces a morphism of conormal sheaves
f∗CW/Y → CZ/X .

Proof. The first assertion is clear from the universal property of W ′. The induced
map on conormal sheaves is the map of Morphisms, Lemma 31.3 applied to (Z ⊂ Z ′) →
(W ⊂W ′). �

Lemma 7.6. Let
Z

h
//

f

��

X

g

��
W

h′
// Y

be a fibre product diagram in the category of schemes with h′ formally unramified. Then
h is formally unramified and ifW ⊂W ′ is the universal first order thickening ofW over
Y , then Z = X ×Y W ⊂ X ×Y W ′ is the universal first order thickening of Z over X .
In particular the canonical map f∗CW/Y → CZ/X of Lemma 7.5 is surjective.

Proof. The morphism h is formally unramified by Lemma 6.4. It is clear thatX×Y
W ′ is a first order thickening. It is straightforward to check that it has the universal
property becauseW ′ has the universal property (by mapping properties of fibre products).
See Morphisms, Lemma 31.4 for why this implies that the map of conormal sheaves is
surjective. �

Lemma 7.7. Let
Z

h
//

f

��

X

g

��
W

h′
// Y
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be a fibre product diagram in the category of schemes with h′ formally unramified and g
flat. In this case the corresponding map Z ′ → W ′ of universal first order thickenings is
flat, and f∗CW/Y → CZ/X is an isomorphism.

Proof. Flatness is preserved under base change, see Morphisms, Lemma 25.8. Hence
the first statement follows from the description ofW ′ in Lemma 7.6. It is clear thatX×Y
W ′ is a first order thickening. It is straightforward to check that it has the universal
property becauseW ′ has the universal property (by mapping properties of fibre products).
See Morphisms, Lemma 31.4 for why this implies that the map of conormal sheaves is an
isomorphism. �

Lemma 7.8. Taking the universal first order thickenings commutes with taking opens.
More precisely, leth : Z → X be a formally unramified morphism of schemes. LetV ⊂ Z ,
U ⊂ X be opens such that h(V ) ⊂ U . Let Z ′ be the universal first order thickening of
Z over X . Then h|V : V → U is formally unramified and the universal first order thick-
ening of V over U is the open subscheme V ′ ⊂ Z ′ such that V = Z ∩ V ′. In particular,
CZ/X |V = CV/U .

Proof. The first statement is Lemma 6.5. The compatibility of universal thickenings
can be deduced from the proof of Lemma 7.1, or from Algebra, Lemma 149.4 or deduced
from Lemma 7.7. �

Lemma 7.9. Let h : Z → X be a formally unramified morphism of schemes over S.
Let Z ⊂ Z ′ be the universal first order thickening of Z over X with structure morphism
h′ : Z ′ → X . The canonical map

ch′ : (h′)∗ΩX/S −→ ΩZ′/S

induces an isomorphism h∗ΩX/S → ΩZ′/S ⊗OZ .

Proof. The map ch′ is the map defined in Morphisms, Lemma 32.8. If i : Z → Z ′ is
the given closed immersion, then i∗ch′ is a map h∗ΩX/S → ΩZ′/S⊗OZ . Checking that it
is an isomorphism reduces to the affine case by localization, see Lemma 7.8 and Morphisms,
Lemma 32.3. In this case the result is Algebra, Lemma 149.5. �

Lemma 7.10. Let h : Z → X be a formally unramified morphism of schemes over S.
There is a canonical exact sequence

CZ/X → h∗ΩX/S → ΩZ/S → 0.

The first arrow is induced by dZ′/S where Z ′ is the universal first order neighbourhood
of Z over X .

Proof. We know that there is a canonical exact sequence

CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.

see Morphisms, Lemma 32.15. Hence the result follows on applying Lemma 7.9. �

Lemma 7.11. Let
Z

i
//

j   

X

��
Y
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be a commutative diagram of schemes where i and j are formally unramified. Then there
is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0

where the first arrow comes from Lemma 7.5 and the second from Lemma 7.10.

Proof. Denote Z → Z ′ the universal first order thickening of Z over X . Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 7.10 here is a
canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′ //

��

X

��
Z ′′ // Y

Apply Morphisms, Lemma 32.18 to the left triangle to get an exact sequence

CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

As Z ′′ is formally unramified over Y (see Lemma 7.4) we have ΩZ′/Z′′ = ΩZ/Y (by com-
bining Lemma 6.7 and Morphisms, Lemma 32.9). Then we have (i′)∗ΩZ′/Y = i∗ΩX/Y
by Lemma 7.9. �

Lemma 7.12. Let Z → Y → X be formally unramified morphisms of schemes.
(1) If Z ⊂ Z ′ is the universal first order thickening of Z over X and Y ⊂ Y ′ is the

universal first order thickening of Y overX , then there is a morphism Z ′ → Y ′

and Y ×Y ′ Z ′ is the universal first order thickening of Z over Y .
(2) There is a canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0

where the maps come from Lemma 7.5 and i : Z → Y is the first morphism.

Proof. The map h : Z ′ → Y ′ in (1) comes from Lemma 7.5. The assertion that
Y ×Y ′ Z ′ is the universal first order thickening of Z over Y is clear from the universal
properties of Z ′ and Y ′. By Morphisms, Lemma 31.5 we have an exact sequence

(i′)∗CY×Y ′Z′/Z′ → CZ/Z′ → CZ/Y×Y ′Z′ → 0

where i′ : Z → Y ×Y ′ Z ′ is the given morphism. By Morphisms, Lemma 31.4 there exists
a surjection h∗CY/Y ′ → CY×Y ′Z′/Z′ . Combined with the equalities CY/Y ′ = CY/X ,
CZ/Z′ = CZ/X , and CZ/Y×Y ′Z′ = CZ/Y this proves the lemma. �

8. Formally étale morphisms

Recall that a ring mapR→ A is called formally étale (see Algebra, Definition 150.1) if for
every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, there exists exactly one dotted arrow which makes
the diagram commute. This motivates the following analogue for morphisms of schemes.
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Definition 8.1. Let f : X → S be a morphism of schemes. We say f is formally
étale if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists exactly one
dotted arrow making the diagram commute.

It is clear that a formally étale morphism is formally unramified. Hence if f : X → S is
formally étale, then ΩX/S is zero, see Lemma 6.7.

Lemma 8.2. If f : X → S is a formally étale morphism, then given any solid com-
mutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of schemes over S there exists exactly one dotted
arrow making the diagram commute. In other words, in Definition 8.1 the condition that
T be affine may be dropped.

Proof. Let T ′ =
⋃
T ′
i be an affine open covering, and let Ti = T ∩ T ′

i . Then we get
morphisms a′

i : T ′
i → X fitting into the diagram. By uniqueness we see that a′

i and a′
j

agree on any affine open subscheme of T ′
i ∩ T ′

j . Hence a′
i and a′

j agree on T ′
i ∩ T ′

j . Thus
we see that the morphisms a′

i glue to a global morphism a′ : T ′ → X . The uniqueness of
a′ we have seen in Lemma 6.2. �

Lemma 8.3. A composition of formally étale morphisms is formally étale.

Proof. This is formal. �

Lemma 8.4. A base change of a formally étale morphism is formally étale.

Proof. This is formal. �

Lemma 8.5. Let f : X → S be a morphism of schemes. Let U ⊂ X and V ⊂ S be
open subschemes such that f(U) ⊂ V . If f is formally étale, so is f |U : U → V .

Proof. Consider a solid diagram

U

f |U
��

T

i
��

a
oo

V T ′oo

``

as in Definition 8.1. If f is formally ramified, then there exists exactly one S-morphism
a′ : T ′ → X such that a′|T = a. Since |T ′| = |T | we conclude that a′(T ′) ⊂ U which
gives our unique morphism from T ′ into U . �

Lemma 8.6. Let f : X → S be a morphism of schemes. The following are equivalent:
(1) f is formally étale,
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(2) f is formally unramified and the universal first order thickening of X over S is
equal to X ,

(3) f is formally unramified and CX/S = 0, and
(4) ΩX/S = 0 and CX/S = 0.

Proof. Actually, the last assertion only make sense because ΩX/S = 0 implies that
CX/S is defined via Lemma 6.7 and Definition 7.2. This also makes it clear that (3) and (4)
are equivalent.

Either of the assumptions (1), (2), and (3) imply that f is formally unramified. Hence we
may assume f is formally unramified. The equivalence of (1), (2), and (3) follow from the
universal property of the universal first order thickeningX ′ ofX over S and the fact that
X = X ′ ⇔ CX/S = 0 since after all by definition CX/S = CX/X′ is the ideal sheaf of X
in X ′. �

Lemma 8.7. An unramified flat morphism is formally étale.

Proof. Say X → S is unramified and flat. Then ∆ : X → X ×S X is an open im-
mersion, see Morphisms, Lemma 35.13. We have to show that CX/S is zero. Consider
the two projections p, q : X ×S X → X . As f is formally unramified (see Lemma
6.8), q is formally unramified (see Lemma 6.4). As f is flat, p is flat, see Morphisms,
Lemma 25.8. Hence p∗CX/S = Cq by Lemma 7.7 where Cq denotes the conormal sheaf
of the formally unramified morphism q : X ×S X → X . But ∆(X) ⊂ X ×S X is
an open subscheme which maps isomorphically to X via q. Hence by Lemma 7.8 we see
that Cq|∆(X) = CX/X = 0. In other words, the pullback of CX/S to X via the identity
morphism is zero, i.e., CX/S = 0. �

Lemma 8.8. Let f : X → S be a morphism of schemes. Assume X and S are affine.
Then f is formally étale if and only ifOS(S)→ OX(X) is a formally étale ring map.

Proof. This is immediate from the definitions (Definition 8.1 and Algebra, Defi-
nition 150.1) by the equivalence of categories of rings and affine schemes, see Schemes,
Lemma 6.5. �

Lemma 8.9. Let f : X → S be a morphism of schemes. The following are equivalent:

(1) The morphism f is étale, and
(2) the morphism f is locally of finite presentation and formally étale.

Proof. Assume f is étale. An étale morphism is locally of finite presentation, flat
and unramified, see Morphisms, Section 36. Hence f is locally of finite presentation and
formally étale, see Lemma 8.7.

Conversely, suppose that f is locally of finite presentation and formally étale. Being étale
is local in the Zariski topology on X and S , see Morphisms, Lemma 36.2. By Lemma 8.5
we can cover X by affine opens U which map into affine opens V such that U → V is
formally étale (and of finite presentation, see Morphisms, Lemma 21.2). By Lemma 8.8 we
see that the ring maps O(V )→ O(U) are formally étale (and of finite presentation). We
win by Algebra, Lemma 150.2. (We will give another proof of this implication when we
discuss formally smooth morphisms.) �
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9. Infinitesimal deformations of maps

In this section we explain how a derivation can be used to infinitesimally move a map.
Throughout this section we use that a sheaf on a thickeningX ′ ofX can be seen as a sheaf
on X .

Lemma 9.1. Let S be a scheme. Let X ⊂ X ′ and Y ⊂ Y ′ be two first order thicken-
ings over S. Let (a, a′), (b, b′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be two morphisms of thickenings
over S. Assume that

(1) a = b, and
(2) the two maps a∗CY/Y ′ → CX/X′ (Morphisms, Lemma 31.3) are equal.

Then the map (a′)] − (b′)] factors as

OY ′ → OY
D−→ a∗CX/X′ → a∗OX′

where D is anOS-derivation.

Proof. Instead of working on Y we work on X . The advantage is that the pullback
functor a−1 is exact. Using (1) and (2) we obtain a commutative diagram with exact rows

0 // CX/X′ // OX′ // OX // 0

0 // a−1CY/Y ′ //

OO

a−1OY ′ //

(a′)]

OO

(b′)]

OO

a−1OY //

OO

0

Now it is a general fact that in such a situation the difference of theOS-algebra maps (a′)]
and (b′)] is an OS-derivation from a−1OY to CX/X′ . By adjointness of the functors a−1

and a∗ this is the same thing as an OS-derivation from OY into a∗CX/X′ . Some details
omitted. �

Note that in the situation of the lemma above we may write D as
(9.1.1) D = dY/S ◦ θ
where θ is an OY -linear map θ : ΩY/S → a∗CX/X′ . Of course, then by adjunction again
we may view θ as anOX -linear map θ : a∗ΩY/S → CX/X′ .

Lemma 9.2. Let S be a scheme. Let (a, a′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be a morphism
of first order thickenings over S. Let

θ : a∗ΩY/S → CX/X′

be anOX -linear map. Then there exists a unique morphism of pairs (b, b′) : (X ⊂ X ′)→
(Y ⊂ Y ′) such that (1) and (2) of Lemma 9.1 hold and the derivation D and θ are related
by Equation (9.1.1).

Proof. We simply set b = a and we define (b′)] to be the map

(a′)] +D : a−1OY ′ → OX′

whereD is as in Equation (9.1.1). We omit the verification that (b′)] is a map of sheaves of
OS-algebras and that (1) and (2) of Lemma 9.1 hold. Equation (9.1.1) holds by construction.

�

Remark 9.3. Assumptions and notation as in Lemma 9.2. The action of a local section
θ on a′ is sometimes indicated by θ · a′. Note that this means nothing else than the fact
that (a′)] and (θ · a′)] differ by a derivation D which is related to θ by Equation (9.1.1).
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Lemma 9.4. Let S be a scheme. Let X ⊂ X ′ and Y ⊂ Y ′ be first order thickenings
over S. Assume given a morphism a : X → Y and a map A : a∗CY/Y ′ → CX/X′ of
OX -modules. For an open subscheme U ′ ⊂ X ′ consider morphisms a′ : U ′ → Y ′ such
that

(1) a′ is a morphism over S ,
(2) a′|U = a|U , and
(3) the induced map a∗CY/Y ′ |U → CX/X′ |U is the restriction of A to U .

Here U = X ∩ U ′. Then the rule

(9.4.1) U ′ 7→ {a′ : U ′ → Y ′ such that (1), (2), (3) hold.}

defines a sheaf of sets on X ′.

Proof. Denote F the rule of the lemma. The restriction mapping F(U ′) → F(V ′)
for V ′ ⊂ U ′ ⊂ X ′ of F is really the restriction map a′ 7→ a′|V ′ . With this definition in
place it is clear that F is a sheaf since morphisms are defined locally. �

In the following lemma we identify sheaves on X and any thickening of X .

Lemma 9.5. Same notation and assumptions as in Lemma 9.4. There is an action of
the sheaf

HomOX
(a∗ΩY/S , CX/X′)

on the sheaf (9.4.1). Moreover, the action is simply transitive for any open U ′ ⊂ X ′ over
which the sheaf (9.4.1) has a section.

Proof. This is a combination of Lemmas 9.1, 9.2, and 9.4. �

Remark 9.6. A special case of Lemmas 9.1, 9.2, 9.4, and 9.5 is where Y = Y ′. In this
case the map A is always zero. The sheaf of Lemma 9.4 is just given by the rule

U ′ 7→ {a′ : U ′ → Y over S with a′|U = a|U}

and we act on this by the sheafHomOX
(a∗ΩY/S , CX/X′).

Remark 9.7. Another special case of Lemmas 9.1, 9.2, 9.4, and 9.5 is where S itself is
a thickening Z ⊂ Z ′ = S and Y = Z ×Z′ Y ′. Picture

(X ⊂ X ′)
(a,?)

//

(g,g′) &&

(Y ⊂ Y ′)

(h,h′)xx
(Z ⊂ Z ′)

In this case the map A : a∗CY/Y ′ → CX/X′ is determined by a: the map h∗CZ/Z′ →
CY/Y ′ is surjective (because we assumed Y = Z ×Z′ Y ′), hence the pullback g∗CZ/Z′ =
a∗h∗CZ/Z′ → a∗CY/Y ′ is surjective, and the composition g∗CZ/Z′ → a∗CY/Y ′ → CX/X′

has to be the canonical map induced by g′. Thus the sheaf of Lemma 9.4 is just given by
the rule

U ′ 7→ {a′ : U ′ → Y ′ over Z ′ with a′|U = a|U}

and we act on this by the sheafHomOX
(a∗ΩY/Z , CX/X′).
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Lemma 9.8. Let S be a scheme. LetX ⊂ X ′ be a first order thickening over S. Let Y
be a scheme over S. Let a′, b′ : X ′ → Y be two morphisms over S with a = a′|X = b′|X .
This gives rise to a commutative diagram

X //

a

��

X ′

(b′,a′)
��

Y
∆Y/S // Y ×S Y

Since the horizontal arrows are immersions with conormal sheaves CX/X′ and ΩY/S , by
Morphisms, Lemma 31.3, we obtain a map θ : a∗ΩY/S → CX/X′ . Then this θ and the
derivation D of Lemma 9.1 are related by Equation (9.1.1).

Proof. Omitted. Hint: The equality may be checked on affine opens where it comes
from the following computation. If f is a local section of OY , then 1 ⊗ f − f ⊗ 1 is a
local section of CY/(Y×SY ) corresponding to dY/S(f). It is mapped to the local section
(a′)](f)− (b′)](f) = D(f) of CX/X′ . In other words, θ(dY/S(f)) = D(f). �

For later purposes we need a result that roughly states that the construction of Lemma 9.2
is compatible with étale localization.

Lemma 9.9. Let
X1

��

X2
f
oo

��
S1 S2oo

be a commutative diagram of schemes with X2 → X1 and S2 → S1 étale. Then the map
cf : f∗ΩX1/S1 → ΩX2/S2 of Morphisms, Lemma 32.8 is an isomorphism.

Proof. We recall that an étale morphismU → V is a smooth morphism with ΩU/V =
0. Using this we see that Morphisms, Lemma 32.9 implies ΩX2/S2 = ΩX2/S1 and Mor-
phisms, Lemma 34.16 implies that the map f∗ΩX1/S1 → ΩX2/S1 (for the morphism f

seen as a morphism over S1) is an isomorphism. Hence the lemma follows. �

Lemma 9.10. Consider a commutative diagram of first order thickenings

(T2 ⊂ T ′
2)

(h,h′)
��

(a2,a
′
2)

// (X2 ⊂ X ′
2)

(f,f ′)
��

(T1 ⊂ T ′
1)

(a1,a
′
1) // (X1 ⊂ X ′

1)

and a commutative
diagram of schemes

X ′
2

//

��

S2

��
X ′

1
// S1

with X2 → X1 and S2 → S1 étale. For anyOT1 -linear map θ1 : a∗
1ΩX1/S1 → CT1/T ′

1
let

θ2 be the composition

a∗
2ΩX2/S2 h∗a∗

1ΩX1/S1

h∗θ1 // h∗CT1/T ′
1

// CT2/T ′
2

(equality sign is explained in the proof). Then the diagram

T ′
2

θ2·a′
2

//

��

X ′
2

��
T ′

1
θ1·a′

1 // X ′
1
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commutes where the actions θ2 · a′
2 and θ1 · a′

1 are as in Remark 9.3.

Proof. The equality sign comes from the identification f∗ΩX1/S1 = ΩX2/S2 of
Lemma 9.9. Namely, using this we have a∗

2ΩX2/S2 = a∗
2f

∗ΩX1/S1 = h∗a∗
1ΩX1/S1 be-

cause f ◦a2 = a1 ◦h. Having said this, the commutativity of the diagram may be checked
on affine opens. Hence we may assume the schemes in the initial big diagram are affine.
Thus we obtain commutative diagrams

(B′
2, I2) (A′

2, J2)
a′

2

oo

(B′
1, I1)

h′

OO

(A′
1, J1)

a′
1oo

f ′

OO

and

A′
2 R2oo

A′
1

OO

R1oo

OO

The notation signifies that I1, I2, J1, J2 are ideals of square zero and maps of pairs are
ring maps sending ideals into ideals. Set A1 = A′

1/J1, A2 = A′
2/J2, B1 = B′

1/I1, and
B2 = B′

2/I2. We are given that

A2 ⊗A1 ΩA1/R1 −→ ΩA2/R2

is an isomorphism. Then θ1 : B1 ⊗A1 ΩA1/R1 → I1 is B1-linear. This gives an R1-
derivation D1 = θ1 ◦ dA1/R1 : A1 → I1. In a similar way we see that θ2 : B2 ⊗A2

ΩA2/R2 → I2 gives rise to aR2-derivationD2 = θ2◦dA2/R2 : A2 → I2. The construction
of θ2 implies the following compatibility between θ1 and θ2: for every x ∈ A1 we have

h′(D1(x)) = D2(f ′(x))

as elements of I2. We may view D1 as a map A′
1 → B′

1 using A′
1 → A1

D1−−→ I1 → B1
similarly we may view D2 as a map A′

2 → B′
2. Then the displayed equality holds for

x ∈ A′
1. By the construction of the action in Lemma 9.2 and Remark 9.3 we know that

θ1 · a′
1 corresponds to the ring map a′

1 + D1 : A′
1 → B′

1 and θ2 · a′
2 corresponds to the

ring map a′
2 +D2 : A′

2 → B′
2. By the displayed equality we obtain that h′ ◦ (a′

1 +D1) =
(a′

2 +D2) ◦ f ′ as desired. �

Remark 9.11. Lemma 9.10 can be improved in the following way. Suppose that we
have commutative diagrams as in Lemma 9.10 but we do not assume that X2 → X1 and
S2 → S1 are étale. Next, suppose we have θ1 : a∗

1ΩX1/S1 → CT1/T ′
1

and θ2 : a∗
2ΩX2/S2 →

CT2/T ′
2

such that
f∗OX2 f∗D2

// f∗a2,∗CT2/T ′
2

OX1

D1 //

f]

OO

a1,∗CT1/T ′
1

induced by (h′)]
OO

is commutative where Di corresponds to θi as in Equation (9.1.1). Then we have the con-
clusion of Lemma 9.10. The importance of the condition that bothX2 → X1 andS2 → S1
are étale is that it allows us to construct a θ2 from θ1.

10. Infinitesimal deformations of schemes

The following simple lemma is often a convenient tool to check whether an infinitesimal
deformation of a map is flat.

Lemma 10.1. Let (f, f ′) : (X ⊂ X ′) → (S ⊂ S′) be a morphism of first order
thickenings. Assume that f is flat. Then the following are equivalent
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(1) f ′ is flat and X = S ×S′ X ′, and
(2) the canonical map f∗CS/S′ → CX/X′ is an isomorphism.

Proof. As the problem is local on X ′ we may assume that X,X ′, S, S′ are affine
schemes. Say S′ = Spec(A′), X ′ = Spec(B′), S = Spec(A), X = Spec(B) with
A = A′/I and B = B′/J for some square zero ideals. Then we obtain the following
commutative diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0
with exact rows. The canonical map of the lemma is the map

I ⊗A B = I ⊗A′ B′ −→ J.

The assumption that f is flat signifies that A→ B is flat.

Assume (1). Then A′ → B′ is flat and J = IB′. Flatness implies TorA
′

1 (B′, A) = 0 (see
Algebra, Lemma 75.8). This means I⊗A′ B′ → B′ is injective (see Algebra, Remark 75.9).
Hence we see that I ⊗A B → J is an isomorphism.

Assume (2). Then it follows that J = IB′, so that X = S ×S′ X ′. Moreover, we get
TorA

′

1 (B′, A′/I) = 0 by reversing the implications in the previous paragraph. Hence B′

is flat over A′ by Algebra, Lemma 99.8. �

The following lemma is the “nilpotent” version of the “critère de platitude par fibres”, see
Section 16.

Lemma 10.2. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume
(1) X ′ is flat over S′,
(2) f is flat,
(3) S ⊂ S′ is a finite order thickening, and
(4) X = S ×S′ X ′ and Y = S ×S′ Y ′.

Then f ′ is flat and Y ′ is flat over S′ at all points in the image of f ′.

Proof. Immediate consequence of Algebra, Lemma 101.8. �

Many properties of morphisms of schemes are preserved under flat deformations.

Lemma 10.3. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)
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of thickenings. Assume S ⊂ S′ is a finite order thickening,X ′ flat over S′,X = S×S′X ′,
and Y = S ×S′ Y ′. Then

(1) f is flat if and only if f ′ is flat,
(2) f is an isomorphism if and only if f ′ is an isomorphism,
(3) f is an open immersion if and only if f ′ is an open immersion,
(4) f is quasi-compact if and only if f ′ is quasi-compact,
(5) f is universally closed if and only if f ′ is universally closed,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is a monomorphism if and only if f ′ is a monomorphism,
(8) f is surjective if and only if f ′ is surjective,
(9) f is universally injective if and only if f ′ is universally injective,

(10) f is affine if and only if f ′ is affine,
(11) f is locally of finite type if and only if f ′ is locally of finite type,
(12) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(13) f is locally of finite presentation if and only if f ′ is locally of finite presentation,
(14) f is locally of finite type of relative dimension d if and only if f ′ is locally of

finite type of relative dimension d,
(15) f is universally open if and only if f ′ is universally open,
(16) f is syntomic if and only if f ′ is syntomic,
(17) f is smooth if and only if f ′ is smooth,
(18) f is unramified if and only if f ′ is unramified,
(19) f is étale if and only if f ′ is étale,
(20) f is proper if and only if f ′ is proper,
(21) f is integral if and only if f ′ is integral,
(22) f is finite if and only if f ′ is finite,
(23) f is finite locally free (of rank d) if and only if f ′ is finite locally free (of rank

d), and
(24) add more here.

Proof. The assumptions on X and Y mean that f is the base change of f ′ by X →
X ′. The properties P listed in (1) – (23) above are all stable under base change, hence if
f ′ has property P , then so does f . See Schemes, Lemmas 18.2, 19.3, 21.12, and 23.5 and
Morphisms, Lemmas 9.4, 10.4, 11.8, 15.4, 20.13, 21.4, 29.2, 30.4, 34.5, 35.5, 36.4, 41.5, 44.6,
and 48.4.

The interesting direction in each case is therefore to assume that f has the property and
deduce that f ′ has it too. By induction on the order of the thickening we may assume
that S ⊂ S′ is a first order thickening, see discussion immediately following Definition
2.1. We make a couple of general remarks which we will use without further mention in
the arguments below. (I) Let W ′ ⊂ S′ be an affine open and let U ′ ⊂ X ′ and V ′ ⊂ Y ′ be
affine opens lying over W ′ with f ′(U ′) ⊂ V ′. Let W ′ = Spec(R′) and denote I ⊂ R′ be
the ideal defining the closed subschemeW ′ ∩S. Say U ′ = Spec(B′) and V ′ = Spec(A′).
Then we get a commutative diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0
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with exact rows. Moreover IB′ ∼= I ⊗R B, see proof of Lemma 10.1. (II) The morphisms
X → X ′ and Y → Y ′ are universal homeomorphisms. Hence the topology of the maps
f and f ′ (after any base change) is identical. (III) If f is flat, then f ′ is flat and Y ′ → S′

is flat at every point in the image of f ′, see Lemma 10.2.

Ad (1). This is general remark (III).

Ad (2). Assume f is an isomorphism. By (III) we see that Y ′ → S′ is flat. Choose an affine
open V ′ ⊂ Y ′ and set U ′ = (f ′)−1(V ′). Then V = Y ∩ V ′ is affine which implies that
V ∼= f−1(V ) = U = Y ×Y ′ U ′ is affine. By Lemma 2.3 we see that U ′ is affine. Thus we
have a diagram as in the general remark (I) and moreover IA ∼= I ⊗RA becauseR′ → A′

is flat. Then IB′ ∼= I ⊗R B ∼= I ⊗R A ∼= IA′ and A ∼= B. By the exactness of the rows
in the diagram above we see that A′ ∼= B′, i.e., U ′ ∼= V ′. Thus f ′ is an isomorphism.

Ad (3). Assume f is an open immersion. Then f is an isomorphism of X with an open
subscheme V ⊂ Y . Let V ′ ⊂ Y ′ be the open subscheme whose underlying topological
space is V . Then f ′ is a map from X ′ to V ′ which is an isomorphism by (2). Hence f ′ is
an open immersion.

Ad (4). Immediate from remark (II). See also Lemma 3.1 for a more general statement.

Ad (5). Immediate from remark (II). See also Lemma 3.1 for a more general statement.

Ad (6). Note that X ×Y X = Y ×Y ′ (X ′ ×Y ′ X ′) so that X ′ ×Y ′ X ′ is a thickening of
X ×Y X . Hence the topology of the maps ∆X/Y and ∆X′/Y ′ matches and we win. See
also Lemma 3.1 for a more general statement.

Ad (7). Assume f is a monomorphism. Consider the diagonal morphism ∆X′/Y ′ : X ′ →
X ′×Y ′ X ′. The base change of ∆X′/Y ′ by S → S′ is ∆X/Y which is an isomorphism by
assumption. By (2) we conclude that ∆X′/Y ′ is an isomorphism.

Ad (8). This is clear. See also Lemma 3.1 for a more general statement.

Ad (9). Immediate from remark (II). See also Lemma 3.1 for a more general statement.

Ad (10). Assume f is affine. Choose an affine open V ′ ⊂ Y ′ and set U ′ = (f ′)−1(V ′).
Then V = Y ∩ V ′ is affine which implies that U = Y ×Y ′ U ′ is affine. By Lemma 2.3 we
see that U ′ is affine. Hence f ′ is affine. See also Lemma 3.1 for a more general statement.

Ad (11). Via remark (I) comes down to proving A′ → B′ is of finite type if A → B is
of finite type. Suppose that x1, . . . , xn ∈ B′ are elements whose images in B generate B
as an A-algebra. Then A′[x1, . . . , xn] → B is surjective as both A′[x1, . . . , xn] → B is
surjective and I ⊗R A[x1, . . . , xn]→ I ⊗R B is surjective. See also Lemma 3.3 for a more
general statement.

Ad (12). Follows from (11) and that quasi-finiteness of a morphism of finite type can be
checked on fibres, see Morphisms, Lemma 20.6. See also Lemma 3.3 for a more general
statement.

Ad (13). Via remark (I) comes down to provingA′ → B′ is of finite presentation ifA→ B
is of finite presentation. We may assume that B′ = A′[x1, . . . , xn]/K ′ for some ideal K ′

by (11). We get a short exact sequence

0→ K ′ → A′[x1, . . . , xn]→ B′ → 0

AsB′ is flat overR′ we see thatK ′⊗R′ R is the kernel of the surjectionA[x1, . . . , xn]→
B. By assumption on A → B there exist finitely many f ′

1, . . . , f
′
m ∈ K ′ whose images
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inA[x1, . . . , xn] generate this kernel. Since I is nilpotent we see that f ′
1, . . . , f

′
m generate

K ′ by Nakayama’s lemma, see Algebra, Lemma 20.1.
Ad (14). Follows from (11) and general remark (II). See also Lemma 3.3 for a more general
statement.
Ad (15). Immediate from general remark (II). See also Lemma 3.1 for a more general state-
ment.
Ad (16). Assume f is syntomic. By (13) f ′ is locally of finite presentation, by general
remark (III) f ′ is flat and the fibres of f ′ are the fibres of f . Hence f ′ is syntomic by
Morphisms, Lemma 30.11.
Ad (17). Assume f is smooth. By (13) f ′ is locally of finite presentation, by general remark
(III) f ′ is flat, and the fibres of f ′ are the fibres of f . Hence f ′ is smooth by Morphisms,
Lemma 34.3.
Ad (18). Assume f unramified. By (11) f ′ is locally of finite type and the fibres of f ′ are
the fibres of f . Hence f ′ is unramified by Morphisms, Lemma 35.12. See also Lemma 3.3
for a more general statement.
Ad (19). Assume f étale. By (13) f ′ is locally of finite presentation, by general remark (III)
f ′ is flat, and the fibres of f ′ are the fibres of f . Hence f ′ is étale by Morphisms, Lemma
36.8.
Ad (20). This follows from a combination of (6), (11), (4), and (5). See also Lemma 3.3 for
a more general statement.
Ad (21). Combine (5) and (10) with Morphisms, Lemma 44.7. See also Lemma 3.1 for a
more general statement.
Ad (22). Combine (21), and (11) with Morphisms, Lemma 44.4. See also Lemma 3.3 for a
more general statement.
Ad (23). Assume f finite locally free. By (22) we see that f ′ is finite, by general remark
(III) f ′ is flat, and by (13) f ′ is locally of finite presentation. Hence f ′ is finite locally free
by Morphisms, Lemma 48.2. �

The following lemma is the “locally nilpotent” version of the “critère de platitude par
fibres”, see Section 16.

Lemma 10.4. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume
(1) Y ′ → S′ is locally of finite type,
(2) X ′ → S′ is flat and locally of finite presentation,
(3) f is flat, and
(4) X = S ×S′ X ′ and Y = S ×S′ Y ′.

Then f ′ is flat and for all y′ ∈ Y ′ in the image of f ′ the local ring OY ′,y′ is flat and
essentially of finite presentation overOS′,s′ .

Proof. Immediate consequence of Algebra, Lemma 128.10. �
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Many properties of morphisms of schemes are preserved under flat deformations as in the
lemma above.

Lemma 10.5. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(S ⊂ S′)

of thickenings. Assume Y ′ → S′ locally of finite type, X ′ → S′ flat and locally of finite
presentation, X = S ×S′ X ′, and Y = S ×S′ Y ′. Then

(1) f is flat if and only if f ′ is flat,
(2) f is an isomorphism if and only if f ′ is an isomorphism,
(3) f is an open immersion if and only if f ′ is an open immersion,
(4) f is quasi-compact if and only if f ′ is quasi-compact,
(5) f is universally closed if and only if f ′ is universally closed,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is a monomorphism if and only if f ′ is a monomorphism,
(8) f is surjective if and only if f ′ is surjective,
(9) f is universally injective if and only if f ′ is universally injective,

(10) f is affine if and only if f ′ is affine,
(11) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(12) f is locally of finite type of relative dimension d if and only if f ′ is locally of

finite type of relative dimension d,
(13) f is universally open if and only if f ′ is universally open,
(14) f is syntomic if and only if f ′ is syntomic,
(15) f is smooth if and only if f ′ is smooth,
(16) f is unramified if and only if f ′ is unramified,
(17) f is étale if and only if f ′ is étale,
(18) f is proper if and only if f ′ is proper,
(19) f is finite if and only if f ′ is finite,
(20) f is finite locally free (of rank d) if and only if f ′ is finite locally free (of rank

d), and
(21) add more here.

Proof. The assumptions on X and Y mean that f is the base change of f ′ by X →
X ′. The properties P listed in (1) – (20) above are all stable under base change, hence if
f ′ has property P , then so does f . See Schemes, Lemmas 18.2, 19.3, 21.12, and 23.5 and
Morphisms, Lemmas 9.4, 10.4, 11.8, 20.13, 29.2, 30.4, 34.5, 35.5, 36.4, 41.5, 44.6, and 48.4.

The interesting direction in each case is therefore to assume that f has the property and
deduce that f ′ has it too. We make a couple of general remarks which we will use without
further mention in the arguments below. (I) Let W ′ ⊂ S′ be an affine open and let U ′ ⊂
X ′ and V ′ ⊂ Y ′ be affine opens lying over W ′ with f ′(U ′) ⊂ V ′. Let W ′ = Spec(R′)
and denote I ⊂ R′ be the ideal defining the closed subschemeW ′∩S. SayU ′ = Spec(B′)
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and V ′ = Spec(A′). Then we get a commutative diagram

0 // IB′ // B′ // B // 0

0 // IA′ //

OO

A′ //

OO

A //

OO

0

with exact rows. (II) The morphisms X → X ′ and Y → Y ′ are universal homeomor-
phisms. Hence the topology of the maps f and f ′ (after any base change) is identical. (III)
If f is flat, then f ′ is flat and Y ′ → S′ is flat at every point in the image of f ′, see Lemma
10.2.

Ad (1). This is general remark (III).

Ad (2). Assume f is an isomorphism. Choose an affine open V ′ ⊂ Y ′ and set U ′ =
(f ′)−1(V ′). Then V = Y ∩V ′ is affine which implies that V ∼= f−1(V ) = U = Y ×Y ′U ′

is affine. By Lemma 2.3 we see that U ′ is affine. Thus we have a diagram as in the general
remark (I). By Algebra, Lemma 126.11 we see that A′ → B′ is an isomorphism, i.e., U ′ ∼=
V ′. Thus f ′ is an isomorphism.

Ad (3). Assume f is an open immersion. Then f is an isomorphism of X with an open
subscheme V ⊂ Y . Let V ′ ⊂ Y ′ be the open subscheme whose underlying topological
space is V . Then f ′ is a map from X ′ to V ′ which is an isomorphism by (2). Hence f ′ is
an open immersion.

Ad (4). Immediate from remark (II). See also Lemma 3.1 for a more general statement.

Ad (5). Immediate from remark (II). See also Lemma 3.1 for a more general statement.

Ad (6). Note that X ×Y X = Y ×Y ′ (X ′ ×Y ′ X ′) so that X ′ ×Y ′ X ′ is a thickening of
X ×Y X . Hence the topology of the maps ∆X/Y and ∆X′/Y ′ matches and we win. See
also Lemma 3.1 for a more general statement.

Ad (7). Assume f is a monomorphism. Consider the diagonal morphism ∆X′/Y ′ : X ′ →
X ′ ×Y ′ X ′. Observe that X ′ ×Y ′ X ′ → S′ is locally of finite type. The base change of
∆X′/Y ′ by S → S′ is ∆X/Y which is an isomorphism by assumption. By (2) we conclude
that ∆X′/Y ′ is an isomorphism.

Ad (8). This is clear. See also Lemma 3.1 for a more general statement.

Ad (9). Immediate from remark (II). See also Lemma 3.1 for a more general statement.

Ad (10). Assume f is affine. Choose an affine open V ′ ⊂ Y ′ and set U ′ = (f ′)−1(V ′).
Then V = Y ∩ V ′ is affine which implies that U = Y ×Y ′ U ′ is affine. By Lemma 2.3 we
see that U ′ is affine. Hence f ′ is affine. See also Lemma 3.1 for a more general statement.

Ad (11). Follows from the fact that f ′ is locally of finite type (by Morphisms, Lemma
15.8) and that quasi-finiteness of a morphism of finite type can be checked on fibres, see
Morphisms, Lemma 20.6.

Ad (12). Follows from general remark (II) and the fact that f ′ is locally of finite type
(Morphisms, Lemma 15.8).

Ad (13). Immediate from general remark (II). See also Lemma 3.1 for a more general state-
ment.
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Ad (14). Assume f is syntomic. By Morphisms, Lemma 21.11 f ′ is locally of finite presen-
tation. By general remark (III) f ′ is flat. The fibres of f ′ are the fibres of f . Hence f ′ is
syntomic by Morphisms, Lemma 30.11.

Ad (15). Assume f is smooth. By Morphisms, Lemma 21.11 f ′ is locally of finite presen-
tation. By general remark (III) f ′ is flat. The fibres of f ′ are the fibres of f . Hence f ′ is
smooth by Morphisms, Lemma 34.3.

Ad (16). Assume f unramified. By Morphisms, Lemma 15.8 f ′ is locally of finite type.
The fibres of f ′ are the fibres of f . Hence f ′ is unramified by Morphisms, Lemma 35.12.

Ad (17). Assume f étale. By Morphisms, Lemma 21.11 f ′ is locally of finite presentation.
By general remark (III) f ′ is flat. The fibres of f ′ are the fibres of f . Hence f ′ is étale by
Morphisms, Lemma 36.8.

Ad (18). This follows from a combination of (6), the fact that f is locally of finite type
(Morphisms, Lemma 15.8), (4), and (5).

Ad (19). Combine (5), (10), Morphisms, Lemma 44.7, the fact that f is locally of finite
type (Morphisms, Lemma 15.8), and Morphisms, Lemma 44.4.

Ad (20). Assume f finite locally free. By (19) we see that f ′ is finite. By general remark
(III) f ′ is flat. By Morphisms, Lemma 21.11 f ′ is locally of finite presentation. Hence f ′ is
finite locally free by Morphisms, Lemma 48.2. �

Lemma 10.6 (Deformations of projective schemes). Let f : X → S be a morphism
of schemes which is proper, flat, and of finite presentation. Let L be f -ample. Assume S
is quasi-compact. There exists a d0 ≥ 0 such that for every cartesian diagram

X
i′
//

f

��

X ′

f ′

��
S

i // S′

and invertibleOX′ -module
L′ with L ∼= (i′)∗L′

where S ⊂ S′ is a thickening and f ′ is proper, flat, of finite presentation we have
(1) Rp(f ′)∗(L′)⊗d = 0 for all p > 0 and d ≥ d0,
(2) A′

d = (f ′)∗(L′)⊗d is finite locally free for d ≥ d0,
(3) A′ = OS′ ⊕

⊕
d≥d0

A′
d is a quasi-coherentOS′ -algebra of finite presentation,

(4) there is a canonical isomorphism r′ : X ′ → Proj
S′(A′), and

(5) there is a canonical isomorphism θ′ : (r′)∗OProj
S′ (A′)(1)→ L′.

The construction ofA′, r′, θ′ is functorial in the data (X ′, S′, i, i′, f ′,L′).

Proof. We first describe the maps r′ and θ′. Observe that L′ is f ′-ample, see Lemma
3.2. There is a canonical map of quasi-coherent gradedOS′ -algebrasA′ →

⊕
d≥0(f ′)∗(L′)⊗d

which is an isomorphism in degrees≥ d0. Hence this induces an isomorphism on relative
Proj compatible with the Serre twists of the structure sheaf, see Constructions, Lemma
18.4. Hence we get the morphism r′ by Morphisms, Lemma 37.4 (which in turn appeals to
the construction given in Constructions, Lemma 19.1) and it is an isomorphism by Mor-
phisms, Lemma 43.17. We get the map θ′ from Constructions, Lemma 19.1. By Properties,
Lemma 28.2 we find that θ′ is an isomorphism (this also uses that the morphism r′ over
affine opens of S′ is the same as the morphism from Properties, Lemma 26.9 as is explained
in the proof of Morphisms, Lemma 43.17).
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Assuming the vanishing and local freeness stated in parts (1) and (2), the functoriality of
the construction can be seen as follows. Suppose thath : T → S′ is a morphism of schemes,
denote fT : X ′

T → T the base change of f ′ and LT the pullback of L to X ′
T . By coho-

mology and base change (as formulated in Derived Categories of Schemes, Lemma 22.5 for
example) we have the corresponding vanishing over T and moreover h∗A′

d = fT,∗L⊗d
T

(and thus the local freeness of pushforwards as well as the finite generation of the corre-
sponding graded OT -algebra AT ). Hence the morphism rT : XT → Proj

T
(
⊕
fT,∗L⊗d

T )
is simply the base change of r′ to T and the pullback of θ′ is the map θT .

Having said all of the above, we see that it suffices to prove (1), (2), and (3). Pick d0 such
that Rpf∗L⊗d = 0 for all d ≥ d0 and p > 0, see Cohomology of Schemes, Lemma 16.1.
We claim that d0 works.

By cohomology and base change (Derived Categories of Schemes, Lemma 30.4) we see
that E′

d = Rf ′
∗(L′)⊗d is a perfect object of D(OS′) and its formation commutes with

arbitrary base change. In particular, Ed = Li∗E′
d = Rf∗L⊗d. By Derived Categories

of Schemes, Lemma 32.4 we see that for d ≥ d0 the complex Ed is isomorphic to the
finite locally freeOS-module f∗L⊗d placed in cohomological degree 0. Then by Derived
Categories of Schemes, Lemma 31.3 we conclude that E′

d is isomorphic to a finite locally
free module placed in cohomological degree 0. Of course this means that E′

d = A′
d[0],

that Rpf ′
∗(L′)⊗d = 0 for p > 0, and thatA′

d is finite locally free. This proves (1) and (2).

The last thing we have to show is finite presentation ofA′ as a sheaf ofOS′ -algebras (this
notion was introduced in Properties, Section 22). Let U ′ = Spec(R′) ⊂ S′ be an affine
open. Then A′ = A′(U ′) is a graded R′-algebra whose graded parts are finite projective
R′-modules. We have to show that A′ is a finitely presented R′-algebra. We will prove
this by reduction to the Noetherian case. Namely, we can find a finite type Z-subalgebra
R′

0 ⊂ R′ and a pair1 (X ′
0,L′

0) over R′
0 whose base change is (X ′

U ′ ,L′|X′
U′

), see Limits,
Lemmas 10.2, 10.3, 13.1, 8.7, and 4.15. Cohomology of Schemes, Lemma 16.1 implies A′

0 =⊕
d≥0 H

0(X ′
0, (L′

0)⊗d) is a finitely generated graded R′
0-algebra and implies there exists

a d′
0 such that Hp(X ′

0, (L′
0)⊗d) = 0, p > 0 for d ≥ d′

0. By the arguments given above
applied toX ′

0 → Spec(R′
0) and L′

0 we see that (A′
0)d is a finite projectiveR′

0-module and
that

A′
d = A′

d(U ′) = H0(X ′
U ′ , (L′)⊗d|X′

U′
) = H0(X ′

0, (L′
0)⊗d)⊗R′

0
R′ = (A′

0)d ⊗R′
0
R′

for d ≥ d′
0. Now a small twist in the argument is that we don’t know that we can choose

d′
0 equal to d0

2. To get around this we use the following sequence of arguments to finish
the proof:

(a) The algebra B = R′
0 ⊕

⊕
d≥max(d0,d′

0)(A′
0)d is an R′

0-algebra of finite type:
apply the Artin-Tate lemma to B ⊂ A′

0, see Algebra, Lemma 51.7.
(b) As R′

0 is Noetherian we see that B is an R′
0-algebra of finite presentation.

(c) By right exactness of tensor product we see that B ⊗R′
0
R′ is an R′-algebra of

finite presentation.
(d) By the displayed equalities this exactly says that C = R′ ⊕

⊕
d≥max(d0,d′

0) A
′
d

is an R′-algebra of finite presentation.

1With the same properties as those enjoyed by X′ → S′ and L′ , i.e., X′
0 → Spec(R′

0) is flat and proper
and L′

0 is ample.
2Actually, one can reduce to this case by doing more limit arguments.
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(e) The quotientA′/C is the direct sum of the finite projectiveR′-modulesA′
d, d0 ≤

d ≤ max(d0, d
′
0), hence finitely presented as R′-module.

(f) The quotient A′/C is finitely presented as a C-module by Algebra, Lemma 6.4.
(g) Thus A′ is finitely presented as a C-module by Algebra, Lemma 5.3.
(h) By Algebra, Lemma 7.4 this implies A′ is finitely presented as a C-algebra.
(i) Finally, by Algebra, Lemma 6.2 applied to R′ → C → A′ this implies A′ is

finitely presented as an R′-algebra.
This finishes the proof. �

11. Formally smooth morphisms

Michael Artin’s position on differential criteria of smoothness (e.g., Morphisms, Lemma
34.14) is that they are basically useless (in practice). In this section we introduce the no-
tion of a formally smooth morphism X → S. Such a morphism is characterized by the
property that T -valued points of X lift to infinitesimal thickenings of T provided T is
affine. The main result is that a morphism which is formally smooth and locally of finite
presentation is smooth, see Lemma 11.7. It turns out that this criterion is often easier to
use than the differential criteria mentioned above.

Recall that a ring map R→ A is called formally smooth (see Algebra, Definition 138.1) if
for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, a dotted arrow exists which makes the diagram
commute. This motivates the following analogue for morphisms of schemes.

Definition 11.1. Let f : X → S be a morphism of schemes. We say f is formally
smooth if given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of affine schemes over S there exists a dotted
arrow making the diagram commute.

In the cases of formally unramified and formally étale morphisms the condition that T ′

be affine could be dropped, see Lemmas 6.2 and 8.2. This is no longer true in the case of
formally smooth morphisms. In fact, a slightly more natural condition would be that we
should be able to fill in the dotted arrow Zariski locally on T ′. In fact, analyzing the proof
of Lemma 11.10 shows that this would be equivalent to the definition as it currently stands.
In particular, being formally smooth is Zariski local on the source (and in fact it is smooth
local on the source, insert future reference here).

Lemma 11.2. A composition of formally smooth morphisms is formally smooth.

Proof. Omitted. �

Lemma 11.3. A base change of a formally smooth morphism is formally smooth.
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Proof. Omitted, but see Algebra, Lemma 138.2 for the algebraic version. �

Lemma 11.4. Let f : X → S be a morphism of schemes. Then f is formally étale if
and only if f is formally smooth and formally unramified.

Proof. Omitted. �

Lemma 11.5. Let f : X → S be a morphism of schemes. Let U ⊂ X and V ⊂ S be
open subschemes such that f(U) ⊂ V . If f is formally smooth, so is f |U : U → V .

Proof. Consider a solid diagram

U

f |U
��

T

i
��

a
oo

V T ′oo

``

as in Definition 11.1. If f is formally smooth, then there exists an S-morphism a′ : T ′ →
X such that a′|T = a. Since the underlying sets of T and T ′ are the same we see that a′

is a morphism into U (see Schemes, Section 3). And it clearly is a V -morphism as well.
Hence the dotted arrow above as desired. �

Lemma 11.6. Let f : X → S be a morphism of schemes. Assume X and S are affine.
Then f is formally smooth if and only if OS(S) → OX(X) is a formally smooth ring
map.

Proof. This is immediate from the definitions (Definition 11.1 and Algebra, Defi-
nition 138.1) by the equivalence of categories of rings and affine schemes, see Schemes,
Lemma 6.5. �

The following lemma is the main result of this section. It is a victory of the functorial point
of view in that it implies (combined with Limits, Proposition 6.1) that we can recognize
whether a morphism f : X → S is smooth in terms of “simple” properties of the functor
hX : Sch/S → Sets.

Lemma 11.7 (Infinitesimal lifting criterion). Let f : X → S be a morphism of
schemes. The following are equivalent:

(1) The morphism f is smooth, and
(2) the morphism f is locally of finite presentation and formally smooth.

Proof. Assume f : X → S is locally of finite presentation and formally smooth.
Consider a pair of affine opens Spec(A) = U ⊂ X and Spec(R) = V ⊂ S such that
f(U) ⊂ V . By Lemma 11.5 we see that U → V is formally smooth. By Lemma 11.6 we
see that R→ A is formally smooth. By Morphisms, Lemma 21.2 we see that R→ A is of
finite presentation. By Algebra, Proposition 138.13 we see that R → A is smooth. Hence
by the definition of a smooth morphism we see that X → S is smooth.
Conversely, assume that f : X → S is smooth. Consider a solid commutative diagram

X

f

��

T

i
��

a
oo

S T ′oo

``

as in Definition 11.1. We will show the dotted arrow exists thereby proving that f is
formally smooth.
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Let F be the sheaf of sets on T ′ of Lemma 9.4 in the special case discussed in Remark 9.6.
Let

H = HomOT
(a∗ΩX/S , CT/T ′)

be the sheaf ofOT -modules with actionH×F → F as in Lemma 9.5. Our goal is simply
to show that F(T ) 6= ∅. In other words we are trying to show that F is a trivialH-torsor
on T (see Cohomology, Section 4). There are two steps: (I) To show that F is a torsor
we have to show that Ft 6= ∅ for all t ∈ T (see Cohomology, Definition 4.1). (II) To
show that F is the trivial torsor it suffices to show that H1(T,H) = 0 (see Cohomology,
Lemma 4.3 – we may use either cohomology ofH as an abelian sheaf or as anOT -module,
see Cohomology, Lemma 13.3).

First we prove (I). To see this, for every t ∈ T we can choose an affine open U ⊂ T
neighbourhood of t such that a(U) is contained in an affine open Spec(A) = W ⊂ X
which maps to an affine open Spec(R) = V ⊂ S. By Morphisms, Lemma 34.2 the ring
map R → A is smooth. Hence by Algebra, Proposition 138.13 the ring map R → A is
formally smooth. Lemma 11.6 in turn implies thatW → V is formally smooth. Hence we
can lift a|U : U →W to a V -morphism a′ : U ′ →W ⊂ X showing that F(U) 6= ∅.
Finally we prove (II). By Morphisms, Lemma 32.13 we see that ΩX/S is of finite presenta-
tion (it is even finite locally free by Morphisms, Lemma 34.12). Hence a∗ΩX/S is of finite
presentation (see Modules, Lemma 11.4). Hence the sheafH = HomOT

(a∗ΩX/S , CT/T ′) is
quasi-coherent by the discussion in Schemes, Section 24. Thus by Cohomology of Schemes,
Lemma 2.2 we have H1(T,H) = 0 as desired. �

Locally projective quasi-coherent modules are defined in Properties, Section 21.

Lemma 11.8. Let f : X → Y be a formally smooth morphism of schemes. Then
ΩX/Y is locally projective on X .

Proof. Choose U ⊂ X and V ⊂ Y affine open such that f(U) ⊂ V . By Lemma
11.5 f |U : U → V is formally smooth. Hence Γ(V,OV ) → Γ(U,OU ) is a formally
smooth ring map, see Lemma 11.6. Hence by Algebra, Lemma 138.7 the Γ(U,OU )-module
ΩΓ(U,OU )/Γ(V,OV ) is projective. Hence ΩU/V is locally projective, see Properties, Section
21. �

Lemma 11.9. Let T be an affine scheme. Let F , G be quasi-coherent OT -modules.
ConsiderH = HomOT

(F ,G). If F is locally projective, then H1(T,H) = 0.

Proof. By the definition of a locally projective sheaf on a scheme (see Properties,
Definition 21.1) we see that F is a direct summand of a free OT -module. Hence we may
assume that F =

⊕
i∈I OT is a free module. In this case H =

∏
i∈I G is a product of

quasi-coherent modules. By Cohomology, Lemma 11.12 we conclude thatH1 = 0 because
the cohomology of a quasi-coherent sheaf on an affine scheme is zero, see Cohomology of
Schemes, Lemma 2.2. �

Lemma 11.10. Let f : X → Y be a morphism of schemes. The following are equiva-
lent:

(1) f is formally smooth,
(2) for every x ∈ X there exist opens x ∈ U ⊂ X and f(x) ∈ V ⊂ Y with

f(U) ⊂ V such that f |U : U → V is formally smooth,
(3) for every pair of affine opens U ⊂ X and V ⊂ Y with f(U) ⊂ V the ring map
OY (V )→ OX(U) is formally smooth, and
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(4) there exists an affine open covering Y =
⋃
Vj and for each j an affine open

covering f−1(Vj) =
⋃
Uji such that OY (V ) → OX(U) is a formally smooth

ring map for all j and i.

Proof. The implications (1)⇒ (2), (1)⇒ (3), and (2)⇒ (4) follow from Lemma 11.5.
The implication (3)⇒ (4) is immediate.
Assume (4). The proof that f is formally smooth is the same as the second part of the
proof of Lemma 11.7. Consider a solid commutative diagram

X

f

��

T

i
��

a
oo

Y T ′oo

``

as in Definition 11.1. We will show the dotted arrow exists thereby proving that f is
formally smooth. Let F be the sheaf of sets on T ′ of Lemma 9.4 as in the special case
discussed in Remark 9.6. Let

H = HomOT
(a∗ΩX/Y , CT/T ′)

be the sheaf of OT -modules on T with action H × F → F as in Lemma 9.5. The action
H × F → F turns F into a pseudo H-torsor, see Cohomology, Definition 4.1. Our goal
is to show that F is a trivialH-torsor. There are two steps: (I) To show that F is a torsor
we have to show that F locally has a section. (II) To show that F is the trivial torsor it
suffices to show that H1(T,H) = 0, see Cohomology, Lemma 4.3.
First we prove (I). To see this, for every t ∈ T we can choose an affine open W ⊂ T
neighbourhood of t such that a(W ) is contained in Uji for some i, j. Let W ′ ⊂ T ′ be
the corresponding open subscheme. By assumption (4) we can lift a|W : W → Uji to a
Vj-morphism a′ : W ′ → Uji showing that F(W ′) is nonempty.
Finally we prove (II). By Lemma 11.8 we see that ΩUji/Vj locally projective. Hence ΩX/Y
is locally projective, see Properties, Lemma 21.2. Hence a∗ΩX/Y is locally projective, see
Properties, Lemma 21.3. Hence

H1(T,H) = H1(T,HomOT
(a∗ΩX/Y , CT/T ′) = 0

by Lemma 11.9 as desired. �

Lemma 11.11. Let f : X → Y , g : Y → S be morphisms of schemes. Assume f is
formally smooth. Then

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0
(see Morphisms, Lemma 32.9) is short exact.

Proof. The algebraic version of this lemma is the following: Given ring maps A→
B → C with B → C formally smooth, then the sequence

0→ C ⊗B ΩB/A → ΩC/A → ΩC/B → 0
of Algebra, Lemma 131.7 is exact. This is Algebra, Lemma 138.9. �

Lemma 11.12. Let h : Z → X be a formally unramified morphism of schemes over
S. Assume that Z is formally smooth over S. Then the canonical exact sequence

0→ CZ/X → h∗ΩX/S → ΩZ/S → 0
of Lemma 7.10 is short exact.
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Proof. Let Z → Z ′ be the universal first order thickening of Z over X . From the
proof of Lemma 7.10 we see that our sequence is identified with the sequence

CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.
Since Z → S is formally smooth we can locally on Z ′ find a left inverse Z ′ → Z over S
to the inclusion map Z → Z ′. Thus the sequence is locally split, see Morphisms, Lemma
32.16. �

Lemma 11.13. Let
Z

i
//

j   

X

f

��
Y

be a commutative diagram of schemes where i and j are formally unramified and f is
formally smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0
of Lemma 7.11 is exact and locally split.

Proof. Denote Z → Z ′ the universal first order thickening of Z over X . Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 7.10 here is a
canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′
a
//

k
��

X

f

��
Z ′′ b // Y

In the proof of Lemma 7.11 we identified the sequence above with the sequence

CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0
Let U ′′ ⊂ Z ′′ be an affine open. Denote U ⊂ Z and U ′ ⊂ Z ′ the corresponding affine
open subschemes. As f is formally smooth there exists a morphism h : U ′′ → X which
agrees with i on U and such that f ◦ h equals b|U ′′ . Since Z ′ is the universal first order
thickening we obtain a unique morphism g : U ′′ → Z ′ such that g = a◦h. The universal
property of Z ′′ implies that k ◦ g is the inclusion map U ′′ → Z ′′. Hence g is a left inverse
to k. Picture

U

��

// Z ′

k
��

U ′′ //

g

==

Z ′′

Thus g induces a map CZ/Z′ |U → CZ/Z′′ |U which is a left inverse to the map CZ/Z′′ →
CZ/Z′ over U . �

12. Smoothness over a Noetherian base

It turns out that if the base is Noetherian then we can get away with less in the formu-
lation of formal smoothness. In some sense the following lemmas are the beginning of
deformation theory.

Lemma 12.1. Let f : X → S be a morphism of schemes. Let x ∈ X . Assume that S
is locally Noetherian and f locally of finite type. The following are equivalent:
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(1) f is smooth at x,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

S Spec(B′)βoo

cc

where B′ → B is a surjection of local rings with Ker(B′ → B) of square zero,
and α mapping the closed point of Spec(B) to x there exists a dotted arrow
making the diagram commute,

(3) same as in (2) but with B′ → B ranging over small extensions (see Algebra,
Definition 141.1), and

(4) same as in (2) but with B′ → B ranging over small extensions such that α in-
duces an isomorphism κ(x)→ κ(m) where m ⊂ B is the maximal ideal.

Proof. Choose an affine neighbourhood V ⊂ S of f(x) and choose an affine neigh-
bourhoodU ⊂ X of x such that f(U) ⊂ V . For any “test” diagram as in (2) the morphism
α will map Spec(B) into U and the morphism β will map Spec(B′) into V (see Schemes,
Section 13). Hence the lemma reduces to the morphism f |U : U → V of affines. (In-
deed, V is Noetherian and f |U is of finite type, see Properties, Lemma 5.2 and Morphisms,
Lemma 15.2.) In this affine case the lemma is identical to Algebra, Lemma 141.2. �

Sometimes it is useful to know that one only needs to check the lifting criterion for small
extensions “centered” at points of finite type (see Morphisms, Section 16).

Lemma 12.2. Let f : X → S be a morphism of schemes. Assume that S is locally
Noetherian and f locally of finite type. The following are equivalent:

(1) f is smooth,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

S Spec(B′)βoo

cc

where B′ → B is a small extension of Artinian local rings and β of finite type
(!) there exists a dotted arrow making the diagram commute.

Proof. If f is smooth, then the infinitesimal lifting criterion (Lemma 11.7) says f is
formally smooth and (2) holds.
Assume (2). The set of points x ∈ X where f is not smooth forms a closed subset T of X .
By the discussion in Morphisms, Section 16, if T 6= ∅ there exists a point x ∈ T ⊂ X such
that the morphism

Spec(κ(x))→ X → S

is of finite type (namely, pick any point x of T which is closed in an affine open of X).
By Morphisms, Lemma 16.2 given any local Artinian ring B′ with residue field κ(x) then
any morphism β : Spec(B′)→ S is of finite type. Thus we see that all the diagrams used
in Lemma 12.1 (4) correspond to diagrams as in the current lemma (2). WhenceX → S is
smooth a x a contradiction. �

Here is a useful application.
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Lemma 12.3. Let f : X → S be a finite type morphism of locally Noetherian schemes.
Let Z ⊂ S be a closed subscheme with nth infinitesimal neighbourhood Zn ⊂ S. Set
Xn = Zn ×S X .

(1) If Xn → Zn is smooth for all n, then f is smooth at every point of f−1(Z).
(2) If Xn → Zn is étale for all n, then f is étale at every point of f−1(Z).

Proof. Assume Xn → Zn is smooth for all n. Let x ∈ X be a point lying over a
point of Z. Given a small extension B′ → B and morphisms α, β as in Lemma 12.1 part
(3) the maximal ideal of B′ is nilpotent (as B′ is Artinian) and hence the morphism β
factors through Zn and α factors through Xn for a suitable n. Thus the lifting property
for Xn → Zn kicks in to get the desired dotted arrow in the diagram. This proves (1).
Part (2) follows from (1) and the fact that a morphism is étale if and only if it is smooth
of relative dimension 0. �

Lemma 12.4. Let f : X → S be a morphism of locally Noetherian schemes. Let
Z ⊂ S be a closed subscheme with nth infinitesimal neighbourhood Zn ⊂ S. Set Xn =
Zn ×S X . If Xn → Zn is flat for all n, then f is flat at every point of f−1(Z).

Proof. This is a translation of Algebra, Lemma 99.11 into the language of schemes.
�

13. The naive cotangent complex

This section is the continuation of Modules, Section 31 which in turn continues the dis-
cussion in Algebra, Section 134.

Definition 13.1. Let f : X → Y be a morphism of schemes. The naive cotan-
gent complex of f is the complex defined in Modules, Definition 31.6. Notation: NLf or
NLX/Y .

Lemma 13.2. Let f : X → Y be a morphism of schemes. Let Spec(A) = U ⊂ X and
Spec(R) = V ⊂ S be affine opens with f(U) ⊂ V . There is a canonical map

ÑLA/R −→ NLX/Y |U

of complexes which is an isomorphism in D(OU ).

Proof. From the construction of NLX/Y in Modules, Section 31 we see there is
a canonical map of complexes NLOX(U)/f−1OY (U) → NLX/Y (U) of A = OX(U)-
modules, which is compatible with further restrictions. Using the canonical map R →
f−1OY (U) we obtain a canonical map NLA/R → NLOX(U)/f−1OY (U) of complexes of
A-modules. Using the universal property of the˜ functor (see Schemes, Lemma 7.1) we
obtain a map as in the statement of the lemma. We may check this map is an isomorphism
on cohomology sheaves by checking it induces isomorphisms on stalks. This follows from
Algebra, Lemma 134.11 and 134.13 and Modules, Lemma 31.4 (and the description of the
stalks ofOX and f−1OY at a point p ∈ Spec(A) asAp andRq where q = R∩p; references
used are Schemes, Lemma 5.4 and Sheaves, Lemma 21.5). �

Lemma 13.3. Let f : X → Y be a morphism of schemes. The cohomology sheaves
of the complex NLX/Y are quasi-coherent, zero outside degrees−1, 0 and equal to ΩX/Y
in degree 0.
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Proof. By construction of the naive cotangent complex in Modules, Section 31 we
have that NLX/Y is a complex sitting in degrees−1, 0 and that its cohomology in degree
0 is ΩX/Y . The sheaf of differentials is quasi-coherent (by Morphisms, Lemma 32.7). To
finish the proof it suffices to show that H−1(NLX/Y ) is quasi-coherent. This follows by
checking over affines using Lemma 13.2. �

Lemma 13.4. Let f : X → Y be a morphism of schemes. If f is locally of finite
presentation, then NLX/Y is locally on X quasi-isomorphic to a complex

. . .→ 0→ F−1 → F0 → 0→ . . .

of quasi-coherentOX -modules with F0 of finite presentation and F−1 of finite type.

Proof. By Lemma 13.2 it suffices to show that NLA/R has this shape if R → A is a
finitely presented ring map. Write A = R[x1, . . . , xn]/I with I finitely generated. Then
I/I2 is a finite A-module and NLA/R is quasi-isomorphic to

. . .→ 0→ I/I2 →
⊕

i=1,...,n
Adxi → 0→ . . .

by Algebra, Section 134 and in particular Algebra, Lemma 134.2. �

Lemma 13.5. Let f : X → Y be a morphism of schemes. The following are equivalent
(1) f is formally smooth,
(2) H−1(NLX/Y ) = 0 and H0(NLX/Y ) = ΩX/Y is locally projective.

Proof. This follows from Algebra, Proposition 138.8 and Lemma 11.10. �

Lemma 13.6. Let f : X → Y be a morphism of schemes. The following are equiva-
lent

(1) f is formally étale,
(2) H−1(NLX/Y ) = H0(NLX/Y ) = 0.

Proof. A formally étale morphism is formally smooth and hence we haveH−1(NLX/Y ) =
0 by Lemma 13.5. On the other hand, we have ΩX/Y = 0 by Lemma 8.6. Conversely, if
(2) holds, then f is formally smooth by Lemma 13.5 and formally unramified by Lemma
6.7 and hence formally étale by Lemmas 11.4. �

Lemma 13.7. Let f : X → Y be a morphism of schemes. The following are equivalent
(1) f is smooth, and
(2) f is locally of finite presentation, H−1(NLX/Y ) = 0, and H0(NLX/Y ) =

ΩX/Y is finite locally free.

Proof. This follows from the definition of a smooth ring homomorphism (Algebra,
Definition 137.1), Lemma 13.2, and the definition of a smooth morphism of schemes (Mor-
phisms, Definition 34.1). We also use that finite locally free is the same as finite projective
for modules over rings (Algebra, Lemma 78.2). �

Lemma 13.8. Let f : X → Y be a morphism of schemes. The following are equivalent
(1) f is étale, and
(2) f is locally of finite presentation and H−1(NLX/Y ) = H0(NLX/Y ) = 0.

Proof. This follows from the definition of an étale ring homomorphism (Algebra,
Definition 143.1), Lemma 13.2, and the definition of an étale morphism of schemes (Mor-
phisms, Definition 36.1). �
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Lemma 13.9. Let i : Z → X be an immersion of schemes. ThenNLZ/X is isomorphic
to CZ/X [1] in D(OZ) where CZ/X is the conormal sheaf of Z in X .

Proof. This follows from Algebra, Lemma 134.6, Morphisms, Lemma 31.2, and Lemma
13.2. �

Lemma 13.10. Let f : X → Y and g : Y → Z be morphisms of schemes. There is a
canonical six term exact sequence

H−1(f∗ NLY/Z)→ H−1(NLX/Z)→ H−1(NLX/Y )→ f∗ΩY/Z → ΩX/Z → ΩX/Y → 0

of cohomology sheaves.

Proof. Special case of Modules, Lemma 31.7. �

Lemma 13.11. Let f : X → Y and Y → Z be morphisms of schemes. Assume
X → Y is a complete intersection morphism. Then there is a canonical distinguished
triangle

f∗ NLY/Z → NLX/Z → NLX/Y → f∗ NLY/Z [1]
in D(OX) which recovers the 6-term exact sequence of Lemma 13.10.

Proof. It suffices to show the canonical map

f∗ NLY/Z → Cone(NLX/Y → NLX/Z)[−1]

of Modules, Lemma 31.7 is an isomorphism in D(OX). In order to show this, it suffices
to show that the 6-term sequence has a zero on the left, i.e., that H−1(f∗ NLY/Z) →
H−1(NLX/Z) is injective. Affine locally this follows from the corresponding algebra re-
sult in More on Algebra, Lemma 33.6. To translate into algebra use Lemma 13.2. �

Lemma 13.12. Let X → Y → Z be morphisms of schemes. Assume X → Z smooth
and Y → Z étale. Then X → Y is smooth.

Proof. The morphismX → Y is locally of finite presentation by Morphisms, Lemma
21.11. By Lemma 13.7 we have H−1(NLX/Z) = 0 and the module ΩX/Z is finite locally
free. By Lemma 13.8 we have H−1(NLY/Z) = H0(NLY/Z) = 0. By Lemma 13.10 we
get H−1(NLX/Y ) = 0 and ΩX/Y ∼= ΩX/Z is finite locally free. By Lemma 13.7 the
morphism X → Y is smooth. �

Lemma 13.13. Let f : X → Y be a morphism of schemes which factors as f = g ◦ i
with i an immersion and g : P → Y formally smooth (for example smooth). Then there
is a canonical isomorphism

NLX/Y ∼=
(
CX/P → i∗ΩP/Y

)
in D(OX) where the conormal sheaf CX/P is placed in degree −1.

Proof. (For the parenthetical statement see Lemma 11.7.) By Lemmas 13.9 and 13.5
we have NLX/P = CX/P [1] and NLP/Y = ΩP/Y with ΩP/Y locally projective. This
implies that i∗ NLP/Y → i∗ΩP/Y is a quasi-isomorphism too (small detail omitted; the
reason is that i∗ NLP/Y is the same thing as τ≥−1Li

∗ NLP/Y , see More on Algebra, Lemma
85.1). Thus the canonical map

i∗ NLP/Y → Cone(NLX/Y → NLX/P )[−1]
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of Modules, Lemma 31.7 is an isomorphism in D(OX) because the cohomology group
H−1(i∗ NLP/Y ) is zero by what we said above. In other words, we have a distinguished
triangle

i∗ NLP/Y → NLX/Y → NLX/P → i∗ NLP/Y [1]
Clearly, this means that NLX/Y is the cone on the map NLX/P [−1]→ i∗ NLP/Y which
is equivalent to the statement of the lemma by our computation of the cohomology sheaves
of these objects in the derived category given above. �

Lemma 13.14. Consider a cartesian diagram of schemes

X ′
g′
//

��

X

��
Y ′ // Y

The canonical map (g′)∗ NLX/Y → NLX′/Y ′ induces an isomorphism on H0 and a sur-
jection on H−1.

Proof. Translated into algebra this is More on Algebra, Lemma 85.2. To do the trans-
lation use Lemma 13.2. �

Lemma 13.15. Consider a cartesian diagram of schemes

X ′

��

g′
// X

��
Y ′ // Y

IfY ′ → Y is flat, then the canonical map (g′)∗ NLX/Y → NLX′/Y ′ is a quasi-isomorphism.

Proof. By Lemma 13.2 this follows from Algebra, Lemma 134.8. �

Lemma 13.16. Consider a cartesian diagram of schemes

X ′
g′
//

��

X

��
Y ′ // Y

IfX → Y is flat, then the canonical map (g′)∗ NLX/Y → NLX′/Y ′ is a quasi-isomorphism.
If in addition NLX/Y has tor-amplitude in [−1, 0] then L(g′)∗ NLX/Y → NLX′/Y ′ is a
quasi-isomorphism too.

Proof. Translated into algebra this is More on Algebra, Lemma 85.3. To do the trans-
lation use Lemma 13.2 and Derived Categories of Schemes, Lemmas 3.5 and 10.4. �

14. Pushouts in the category of schemes, I

In this section we construct pushouts of Y ← X → X ′ where X → Y is affine and
X → X ′ is a thickening. This will actually be an important case for us, hence a detailed
discussion is merited. In Section 67 we discuss a more interesting and more difficult case.
See Categories, Section 9 for a general discussion of pushouts in any category.
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Lemma 14.1. Let A′ → A be a surjection of rings and let B → A be a ring map.
Let B′ = B ×A A′ be the fibre product of rings. Set S = Spec(A), S′ = Spec(A′),
T = Spec(B), and T ′ = Spec(B′). Then

S
i
//

f

��

S′

f ′

��
T

i′ // T ′

corresponding to

A A′oo

B

OO

B′oo

OO

is a pushout of schemes.

Proof. By More on Algebra, Lemma 6.2 we have T ′ = T qS S′ as topological spaces,
i.e., the diagram is a pushout in the category of topological spaces. Next, consider the map

((i′)], (f ′)]) : OT ′ −→ i′∗OT ×g∗OS
f ′

∗OS′

where g = i′ ◦ f = f ′ ◦ i. We claim this map is an isomorphism of sheaves of rings.
Namely, we can view both sides as quasi-coherent OT ′ -modules (use Schemes, Lemmas
24.1 for the right hand side) and the map isOT ′ -linear. Thus it suffices to show the map is
an isomorphism on the level of global sections (Schemes, Lemma 7.5). On global sections
we recover the identification B′ → B ×A A′ from statement of the lemma (this is how
we chose B′).

Let X be a scheme. Suppose we are given morphisms of schemes m′ : S′ → X and
n : T → X such thatm′◦i = n◦f (call thism). We get a unique map of topological spaces
n′ : T ′ → X compatible with m′ and n as T ′ = T qS S′ (see above). By the description
ofOT ′ in the previous paragraph we obtain a unique homomorphism of sheaves of rings

(n′)] : OX −→ (n′)∗OT ′ = m′
∗OT ×m∗OT

n∗OS

given by (m′)] and n]. Thus (n′, (n′)]) is the unque morphism of ringed spaces T ′ → X
compatible with m′ and n. To finish the proof it suffices to show that n′ is a morphism of
schemes, i.e., a morphism of locally ringed spaces.

Let t′ ∈ T ′ with image x ∈ X . We have to show that OX,x → OT ′,t′ is local. If t′ 6∈ T ,
then t′ is the image of a unique point s′ ∈ S′ and OT ′,t′ = OS′,s′ . Namely, S′ \ S →
T ′ \ T is an isomorphism of schemes as B′ → A′ induces an isomorphism Ker(B′ →
B) = Ker(A′ → A). If t′ is the image of t ∈ T , then we know that the composition
OX,x → OT ′,t′ → OT,t is local and we conclude also. �

Lemma 14.2. Let I → (Sch/S)fppf , i 7→ Xi be a diagram of schemes. Let (W,Xi →
W ) be a cocone for the diagram in the category of schemes (Categories, Remark 14.5). If
there exists a fpqc covering {Wa →W}a∈A of schemes such that

(1) for all a ∈ A we have Wa = colimXi ×W Wa in the category of schemes, and
(2) for all a, b ∈ Awe haveWa×WWb = colimXi×WWa×WWb in the category

of schemes,
then W = colimXi in the category of schemes.

Proof. Namely, for a scheme T a morphism W → T is the same thing as collection
of morphism Wa → T , a ∈ A which agree on the overlaps Wa ×W Wb, see Descent,
Lemma 13.7. �
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Lemma 14.3. Let X → X ′ be a thickening of schemes and let X → Y be an affine
morphism of schemes. Then there exists a pushout

X //

f

��

X ′

f ′

��
Y // Y ′

in the category of schemes. Moreover, Y ⊂ Y ′ is a thickening, X = Y ×Y ′ X ′, and
OY ′ = OY ×f∗OX

f ′
∗OX′

as sheaves on |Y | = |Y ′|.

Proof. We first construct Y ′ as a ringed space. Namely, as topological space we take
Y ′ = Y . Denote f ′ : X ′ → Y ′ the map of topological spaces which equals f . As
structure sheaf OY ′ we take the right hand side of the equation of the lemma. To see
that Y ′ is a scheme, we have to show that any point has an affine neighbourhood. Since
the formation of the fibre product of sheaves commutes with restricting to opens, we may
assume Y is affine. Then X is affine (as f is affine) and X ′ is affine as well (see Lemma
2.3). Say Y ← X → X ′ corresponds to B → A ← A′. Set B′ = B ×A A′; this is
the global sections of OY ′ . As A′ → A is surjective with locally nilpotent kernel we see
that B′ → B is surjective with locally nilpotent kernel. Hence Spec(B′) = Spec(B) (as
topological spaces). We claim that Y ′ = Spec(B′). To see this we will show for g′ ∈ B′

with image g ∈ B that OY ′(D(g)) = B′
g′ . Namely, by More on Algebra, Lemma 5.3 we

see that
(B′)g′ = Bg ×Ah A′

h′

where h ∈ A, h′ ∈ A′ are the images of g′. Since Bg , resp. Ah, resp. A′
h′ is equal to

OY (D(g)), resp. f∗OX(D(g)), resp. f ′
∗OX′(D(g)) the claim follows.

It remains to show that Y ′ is the pushout. The discussion above shows the scheme Y ′ has
an affine open covering Y ′ =

⋃
W ′
i such that the corresponding opensU ′

i ⊂ X ′,Wi ⊂ Y ,
and Ui ⊂ X are affine open. Moreover, if A′

i, Bi, Ai are the rings corresponding to U ′
i ,

Wi, Ui, then W ′
i corresponds to Bi ×Ai A′

i. Thus we can apply Lemmas 14.1 and 14.2 to
conclude our construction is a pushout in the category of schemes. �

In the following lemma we use the fibre product of categories as defined in Categories,
Example 31.3.

Lemma 14.4. Let X → X ′ be a thickening of schemes and let X → Y be an affine
morphism of schemes. Let Y ′ = Y qX X ′ be the pushout (see Lemma 14.3). Base change
gives a functor

F : (Sch/Y ′) −→ (Sch/Y )×(Sch/Y ′) (Sch/X ′)
given by V ′ 7−→ (V ′ ×Y ′ Y, V ′ ×Y ′ X ′, 1) which has a left adjoint

G : (Sch/Y )×(Sch/Y ′) (Sch/X ′) −→ (Sch/Y ′)
which sends the triple (V,U ′, ϕ) to the pushout V q(V×YX)U

′. Finally, F ◦G is isomor-
phic to the identity functor.

Proof. Let (V,U ′, ϕ) be an object of the fibre product category. Set U = U ′×X′ X .
Note thatU → U ′ is a thickening. Sinceϕ : V ×Y X → U ′×X′X = U is an isomorphism
we have a morphism U → V over X → Y which identifies U with the fibre product
X ×Y V . In particular U → V is affine, see Morphisms, Lemma 11.8. Hence we can apply
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Lemma 14.3 to get a pushout V ′ = V qU U ′. Denote V ′ → Y ′ the morphism we obtain
in virtue of the fact that V ′ is a pushout and because we are given morphisms V → Y
and U ′ → X ′ agreeing on U as morphisms into Y ′. Setting G(V,U ′, ϕ) = V ′ gives the
functor G.

Let us prove that G is a left adjoint to F . Let Z be a scheme over Y ′. We have to show
that

Mor(V ′, Z) = Mor((V,U ′, ϕ), F (Z))
where the morphism sets are taking in their respective categories. Let g′ : V ′ → Z be a
morphism. Denote g̃, resp. f̃ ′ the composition of g′ with the morphism V → V ′, resp.
U ′ → V ′. Base change g̃, resp. f̃ ′ by Y → Y ′, resp. X ′ → Y ′ to get a morphism g : V →
Z×Y ′Y , resp. f ′ : U ′ → Z×Y ′X ′. Then (g, f ′) is an element of the right hand side of the
equation above (details omitted). Conversely, suppose that (g, f ′) : (V,U ′, ϕ) → F (Z)
is an element of the right hand side. We may consider the composition g̃ : V → Z , resp.
f̃ ′ : U ′ → Z of g, resp. f by Z ×Y ′ X ′ → Z , resp. Z ×Y ′ Y → Z. Then g̃ and f̃ ′ agree
as morphism from U to Z. By the universal property of pushout, we obtain a morphism
g′ : V ′ → Z , i.e., an element of the left hand side. We omit the verification that these
constructions are mutually inverse.

To prove that F ◦ G is isomorphic to the identity we have to show that the adjunction
mapping (V,U ′, ϕ)→ F (G(V,U ′, ϕ)) is an isomorphism. To do this we may work affine
locally. Say X = Spec(A), X ′ = Spec(A′), and Y = Spec(B). Then A′ → A and
B → A are ring maps as in More on Algebra, Lemma 6.4 and Y ′ = Spec(B′) with
B′ = B ×A A′. Next, suppose that V = Spec(D), U ′ = Spec(C ′) and ϕ is given by an
A-algebra isomorphism D ⊗B A → C ′ ⊗A′ A = C ′/IC ′. Set D′ = D ×C′/IC′ C ′. In
this case the statement we have to prove is thatD′⊗B′ B ∼= D andD′⊗B′ A′ ∼= C ′. This
is a special case of More on Algebra, Lemma 6.4. �

Lemma 14.5. Let X → X ′ be a thickening of schemes and let X → Y be an affine
morphism of schemes. Let Y ′ = Y qX X ′ be the pushout (see Lemma 14.3). Let V ′ → Y ′

be a morphism of schemes. Set V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′, and U = X ×Y ′ V ′.
There is an equivalence of categories between

(1) quasi-coherentOV ′ -modules flat over Y ′, and
(2) the category of triples (G,F ′, ϕ) where

(a) G is a quasi-coherentOV -module flat over Y ,
(b) F ′ is a quasi-coherentOU ′ -module flat over X ′, and
(c) ϕ : (U → V )∗G → (U → U ′)∗F ′ is an isomorphism ofOU -modules.

The equivalence maps G′ to ((V → V ′)∗G′, (U ′ → V ′)∗G′, can). Suppose G′ corresponds
to the triple (G,F ′, ϕ). Then

(a) G′ is a finite type OV ′ -module if and only if G and F ′ are finite type OY and
OU ′ -modules.

(b) if V ′ → Y ′ is locally of finite presentation, then G′ is an OV ′ -module of finite
presentation if and only if G and F ′ are OY and OU ′ -modules of finite presen-
tation.

Proof. A quasi-inverse functor assigns to the triple (G,F ′, ϕ) the fibre product

(V → V ′)∗G ×(U→V ′)∗F (U ′ → V ′)∗F ′

where F = (U → U ′)∗F ′. This works, because on affines we recover the equivalence of
More on Algebra, Lemma 7.5. Some details omitted.
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Parts (a) and (b) follow from More on Algebra, Lemmas 7.4 and 7.6. �

Lemma 14.6. In the situation of Lemma 14.4. If V ′ = G(V,U ′, ϕ) for some triple
(V,U ′, ϕ), then

(1) V ′ → Y ′ is locally of finite type if and only if V → Y and U ′ → X ′ are locally
of finite type,

(2) V ′ → Y ′ is flat if and only if V → Y and U ′ → X ′ are flat,
(3) V ′ → Y ′ is flat and locally of finite presentation if and only if V → Y and

U ′ → X ′ are flat and locally of finite presentation,
(4) V ′ → Y ′ is smooth if and only if V → Y and U ′ → X ′ are smooth,
(5) V ′ → Y ′ is étale if and only if V → Y and U ′ → X ′ are étale, and
(6) add more here as needed.

If W ′ is flat over Y ′, then the adjunction mapping G(F (W ′)) → W ′ is an isomorphism.
Hence F and G define mutually quasi-inverse functors between the category of schemes
flat over Y ′ and the category of triples (V,U ′, ϕ) with V → Y and U ′ → X ′ flat.

Proof. Looking over affine pieces the assertions of this lemma are equivalent to the
corresponding assertions of More on Algebra, Lemma 7.7. �

15. Openness of the flat locus

This result takes some work to prove, and (perhaps) deserves its own section. Here it is.

Theorem 15.1. Let S be a scheme. Let f : X → S be a morphism which is locally
of finite presentation. Let F be a quasi-coherent OX -module which is locally of finite
presentation. Then

U = {x ∈ X | F is flat over S at x}
is open in X .

Proof. We may test for openness locally on X hence we may assume that f is a
morphism of affine schemes. In this case the theorem is exactly Algebra, Theorem 129.4.

�

Lemma 15.2. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let F be a quasi-coherent OX -module. Let x′ ∈ X ′

with images x = g′(x′) and s′ = f ′(x′).
(1) If F is flat over S at x, then (g′)∗F is flat over S′ at x′.
(2) If g is flat at s′ and (g′)∗F is flat over S′ at x′, then F is flat over S at x.

In particular, if g is flat, f is locally of finite presentation, andF is locally of finite presen-
tation, then formation of the open subset of Theorem 15.1 commutes with base change.

Proof. Consider the commutative diagram of local rings

OX′,x′ OX,xoo

OS′,s′

OO

OS,soo

OO
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Note that OX′,x′ is a localization of OX,x ⊗OS,s
OS′,s′ , and that ((g′)∗F)x′ is equal to

Fx ⊗OX,x
OX′,x′ . Hence the lemma follows from Algebra, Lemma 100.1. �

16. Critère de platitude par fibres

Consider a commutative diagram of schemes (left hand diagram)

X
f

//

��

Y

��
S

Xs
fs

//

$$

Ys

zz
Spec(κ(s))

and a quasi-coherent OX -module F . Given a point x ∈ X lying over s ∈ S with image
y = f(x) we consider the question: Is F flat over Y at x? If F is flat over S at x, then the
theorem states this question is intimately related to the question of whether the restriction
of F to the fibre

Fs = (Xs → X)∗F

is flat over Ys at x. Below you will find a “Noetherian” version, a “finitely presented”
version, and earlier we treated a “nilpotent” version, see Lemma 10.2.

Theorem 16.1. Let S be a scheme. Let f : X → Y be a morphism of schemes over S.
Let F be a quasi-coherent OX -module. Let x ∈ X . Set y = f(x) and s ∈ S the image of
x in S. Assume S ,X , Y locally Noetherian, F coherent, and Fx 6= 0. Then the following
are equivalent:

(1) F is flat over S at x, and Fs is flat over Ys at x, and
(2) Y is flat over S at y and F is flat over Y at x.

Proof. Consider the ring maps

OS,s −→ OY,y −→ OX,x

and the module Fx. The stalk of Fs at x is the module Fx/msFx and the local ring of Ys
at y isOY,y/msOY,y . Thus the implication (1)⇒ (2) is Algebra, Lemma 99.15. If (2) holds,
then the first ring map is faithfully flat andFx is flat overOY,y so by Algebra, Lemma 39.4
we see thatFx is flat overOS,s. Moreover,Fx/msFx is the base change of the flat module
Fx byOY,y → OY,y/msOY,y , hence flat by Algebra, Lemma 39.7. �

Here is the non-Noetherian version.

Theorem 16.2. Let S be a scheme. Let f : X → Y be a morphism of schemes over
S. Let F be a quasi-coherentOX -module. Assume

(1) X is locally of finite presentation over S ,
(2) F anOX -module of finite presentation, and
(3) Y is locally of finite type over S.

Let x ∈ X . Set y = f(x) and let s ∈ S be the image of x in S. If Fx 6= 0, then the
following are equivalent:

(1) F is flat over S at x, and Fs is flat over Ys at x, and
(2) Y is flat over S at y and F is flat over Y at x.

Moreover, the set of points x where (1) and (2) hold is open in Supp(F).
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Proof. Consider the ring maps
OS,s −→ OY,y −→ OX,x

and the module Fx. The stalk of Fs at x is the module Fx/msFx and the local ring of Ys
at y isOY,y/msOY,y . Thus the implication (1)⇒ (2) is Algebra, Lemma 128.9. If (2) holds,
then the first ring map is faithfully flat and Fx is flat over OY,y so by Algebra, Lemma
39.4 we see that Fx is flat over OS,s. Moreover, Fx/msFx is the base change of the flat
module Fx byOY,y → OY,y/msOY,y , hence flat by Algebra, Lemma 39.7.
By Morphisms, Lemma 21.11 the morphism f is locally of finite presentation. Consider
the set
(16.2.1) U = {x ∈ X | F flat at x over both Y and S}.
This set is open in X by Theorem 15.1. Note that if x ∈ U , then Fs is flat at x over Ys
as a base change of a flat module under the morphism Ys → Y , see Morphisms, Lemma
25.7. Hence at every point of U ∩ Supp(F) condition (1) is satisfied. On the other hand,
it is clear that if x ∈ Supp(F) satisfies (1) and (2), then x ∈ U . Thus the open set we are
looking for is U ∩ Supp(F). �

These theorems are often used in the following simplified forms. We give only the global
statements – of course there are also pointwise versions.

Lemma 16.3. Let S be a scheme. Let f : X → Y be a morphism of schemes over S.
Assume

(1) S , X , Y are locally Noetherian,
(2) X is flat over S ,
(3) for every s ∈ S the morphism fs : Xs → Ys is flat.

Then f is flat. If f is also surjective, then Y is flat over S.

Proof. This is a special case of Theorem 16.1. �

Lemma 16.4. Let S be a scheme. Let f : X → Y be a morphism of schemes over S.
Assume

(1) X is locally of finite presentation over S ,
(2) X is flat over S ,
(3) for every s ∈ S the morphism fs : Xs → Ys is flat, and
(4) Y is locally of finite type over S.

Then f is flat. If f is also surjective, then Y is flat over S.

Proof. This is a special case of Theorem 16.2. �

Lemma 16.5. Let S be a scheme. Let f : X → Y be a morphism of schemes over S.
Let F be a quasi-coherentOX -module. Assume

(1) X is locally of finite presentation over S ,
(2) F anOX -module of finite presentation,
(3) F is flat over S , and
(4) Y is locally of finite type over S.

Then the set
U = {x ∈ X | F flat at x over Y }.

is open in X and its formation commutes with arbitrary base change: If S′ → S is a
morphism of schemes, and U ′ is the set of points of X ′ = X ×S S′ where F ′ = F ×S S′

is flat over Y ′ = Y ×S S′, then U ′ = U ×S S′.
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Proof. By Morphisms, Lemma 21.11 the morphism f is locally of finite presentation.
Hence U is open by Theorem 15.1. Because we have assumed that F is flat over S we see
that Theorem 16.2 implies

U = {x ∈ X | Fs flat at x over Ys}.

where s always denotes the image of x in S. (This description also works trivially when
Fx = 0.) Moreover, the assumptions of the lemma remain in force for the morphism
f ′ : X ′ → Y ′ and the sheaf F ′. Hence U ′ has a similar description. In other words, it
suffices to prove that given s′ ∈ S′ mapping to s ∈ S we have

{x′ ∈ X ′
s′ | F ′

s′ flat at x′ over Y ′
s′}

is the inverse image of the corresponding locus in Xs. This is true by Lemma 15.2 because
in the cartesian diagram

X ′
s′

��

// Xs

��
Y ′
s′ // Ys

the horizontal morphisms are flat as they are base changes by the flat morphism Spec(κ(s′))→
Spec(κ(s)). �

Lemma 16.6. Let S be a scheme. Let f : X → Y be a morphism of schemes over S.
Assume

(1) X is locally of finite presentation over S ,
(2) X is flat over S , and
(3) Y is locally of finite type over S.

Then the set
U = {x ∈ X | X flat at x over Y }.

is open in X and its formation commutes with arbitrary base change.

Proof. This is a special case of Lemma 16.5. �

The following lemma is a variant of Algebra, Lemma 99.4. Note that the hypothesis that
(Fs)x is a flat OXs,x-module means that (Fs)x is a free OXs,x-module which is always
the case if x ∈ Xs is a generic point of an irreducible component ofXs andXs is reduced
(namely, in this caseOXs,x is a field, see Algebra, Lemma 25.1).

Lemma 16.7. Let f : X → S be a morphism of schemes of finite presentation. Let F
be a finitely presented OX -module. Let x ∈ X with image s ∈ S. If F is flat at x over S
and (Fs)x is a flatOXs,x-module, then F is finite free in a neighbourhood of x.

Proof. If Fx ⊗ κ(x) is zero, then Fx = 0 by Nakayama’s lemma (Algebra, Lemma
20.1) and hence F is zero in a neighbourhood of x (Modules, Lemma 9.5) and the lemma
holds. Thus we may assume Fx ⊗ κ(x) is not zero and we see that Theorem 16.2 applies
with f = id : X → X . We conclude that Fx is flat over OX,x. Hence Fx is free,
see Algebra, Lemma 78.5 for example. Choose an open neighbourhood x ∈ U ⊂ X
and sections s1, . . . , sr ∈ F(U) which map to a basis in Fx. The corresponding map
ψ : O⊕r

U → F|U is surjective after shrinking U (Modules, Lemma 9.5). Then Ker(ψ) is of
finite type (see Modules, Lemma 11.3) and Ker(ψ)x = 0. Whence after shrinking U once
more ψ is an isomorphism. �
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Lemma 16.8. Let f : X → S be a morphism of schemes which is locally of finite
presentation. Let F be a finitely presentedOX -module flat over S. Then the set

{x ∈ X : F free in a neighbourhood of x}

is open in X and its formation commutes with arbitrary base change S′ → S.

Proof. Openness holds trivially. Let x ∈ X mapping to s ∈ S. By Lemma 16.7 we
see that x is in our set if and only ifF|Xs is flat at x overXs. Clearly this is also equivalent
toF being flat at x overX (because this statement is implied by freeness ofFx and implies
flatness of F|Xs at x over Xs). Thus the base change statement follows from Lemma 16.5
applied to id : X → X over S. �

17. Closed immersions between smooth schemes

Some results that do not fit elsewhere very well.

Lemma 17.1. LetS be a scheme. LetY → X be a closed immersion of schemes smooth
over S. For every y ∈ Y there exist integers 0 ≤ m,n and a commutative diagram

Y

��

Voo

��

// Am
S

(a1,...,am) 7→(a1,...,am,0...,0)
��

X Uoo π // Am+n
S

where U ⊂ X is open, V = Y ∩ U , π is étale, V = π−1(Am
S ), and y ∈ V .

Proof. The question is local on X hence we may replace X by an open neighbour-
hood of y. Since Y → X is a regular immersion by Divisors, Lemma 22.11 we may assume
X = Spec(A) is affine and there exists a regular sequence f1, . . . , fn ∈ A such that
Y = V (f1, . . . , fn). After shrinkingX (and hence Y ) further we may assume there exists
an étale morphism Y → Am

S , see Morphisms, Lemma 36.20. Let g1, . . . , gm in OY (Y )
be the coordinate functions of this étale morphism. Choose lifts g1, . . . , gm ∈ A of these
functions and consider the morphism

(g1, . . . , gm, f1, . . . , fn) : X −→ Am+n
S

over S. This is a morphism of schemes locally of finite presentation over S and hence is
locally of finite presentation (Morphisms, Lemma 21.11). The restriction of this morphism
to Am

S ⊂ Am+n
S is étale by construction. Thus, in order to show thatX → Am+n

S is étale
at y it suffices to show that X → Am+n

S is flat at y, see Morphisms, Lemma 36.15. Let
s ∈ S be the image of y. It suffices to check that Xs → Am+n

s is flat at y, see Theorem
16.2. Let z ∈ Am+n

s be the image of y. The local ring map

OAm+n
s ,z −→ OXs,y

is flat by Algebra, Lemma 128.1. Namely, schemes smooth over fields are regular and
regular rings are Cohen-Macaulay, see Varieties, Lemma 25.3 and Algebra, Lemma 106.3.
Thus both source and target are regular local rings (and hence CM). The source and tar-
get have the same dimension: namely, we have dim(OYs,y) = dim(OAm

s ,z
) by More

on Algebra, Lemma 44.2, we have dim(OAm+n
s ,z) = n + dim(OAm

s ,z
), and we have

dim(OXs,y) = n + dim(OYs,y) because OYs,y is the quotient of OXs,y by the regular
sequence f1, . . . , fn of length n (see Divisors, Remark 22.5). Finally, the fibre ring of the
displayed arrow is finite overκ(z) sinceYs → Am

s is étale at y. This finishes the proof. �
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Remark 17.2. We fix a ring R and we set S = Spec(R). Fix integers 0 ≤ m and
1 ≤ n. Consider the closed immersion

Z = Am
S −→ Am+n

S = X, (a1, . . . , am) 7→ (a1, . . . , am, 0, . . . 0).

We are going to consider the blowing up X ′ of X along the closed subscheme Z. Write

X = Spec(A) with A = R[x1, . . . , xm, y1, . . . , yn]

Then X ′ is the Proj of the Rees algebra of A with respect ot the ideal (y1, . . . , yn). This
Rees algebra is equal to B = A[T1, . . . , Tn]/(yiTj − yjTi); details omitted. Hence X ′ =
Proj(B) is smooth over S as it is covered by the affine opens

D+(Ti) = Spec(B(Ti))
= Spec(A[t1, . . . , t̂i, . . . tn]/(yj − yitj))
= Spec(R[x1, . . . , xm, yi, t1, . . . , t̂i, . . . , tn])

which are isomorphic to An+m
S . In this chart the exceptional divisor is cut out by setting

yi = 0 hence the exceptional divisor is smooth over S as well.

Lemma 17.3. LetS be a scheme. LetZ → X be a closed immersion of schemes smooth
over S. Let b : X ′ → X be the blowing up of Z with exceptional divisor E ⊂ X ′. Then
X ′ and E are smooth over S. The morphism p : E → Z is canonically isomorphic to the
projective space bundle

P(I/I2) −→ Z

where I ⊂ OX is the ideal sheaf of Z. The relative OE(1) coming from the projective
space bundle structure is isomorphic to the restriction ofOX′(−E) to E.

Proof. By Divisors, Lemma 22.11 the immersion Z → X is a regular immmersion,
hence the ideal sheaf I is of finite type, hence b is a projective morphism with relatively
ample invertible sheaf OX′(1) = OX′(−E), see Divisors, Lemmas 32.4 and 32.13. The
canonical map I → b∗OX′(1) gives a closed immersion

X ′ −→ P
(⊕

n≥0
Symn

OX
(I)
)

by the very construction of the blowup. The restriction of this morphism to E gives a
canonical map

E −→ P
(⊕

n≥0
Symn

OZ
(I/I2)

)
over Z. Since I/I2 is finite locally free if this canonical map is an isomorphism, then the
final part of the lemma holds. Having said all of this, now the question is étale local onX .
Namely, blowing up commutes with flat base change by Divisors, Lemma 32.3 and we can
check smoothness after precomposing with a surjective étale morphism. Thus by the étale
local structure of a closed immersion of schemes over S given in Lemma 17.1 this reduces
us to the case discussed in Remark 17.2. �

18. Flat modules and relative assassins

In this section we will prove that the support of a flat module is (in some sense) equidimen-
sional over the base in geometric situations. For the Noetherian case we refer the reader
to [?, IV Proposition 12.1.1.5]. First, we prove two helper lemmas.
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Lemma 18.1. LetA be a valuation ring. LetA→ B is a local homomorphism of local
rings which is essentially of finite type. Let u : N → M be a map of finite B-modules.
Assume M is flat over A and u : N/mAN → M/mAM is injective. Then u is injective
and M/u(N) is flat over A.

Proof. We will deduce this lemma from Algebra, Lemma 128.4 (please note that we
exchanged the roles of M and N ). To do the reduction we will use More on Algebra,
Lemma 25.7 to reduce to the finitely presented case.

By assumption we can write B as a quotient of the localization of a polynomial algebra
P = A[x1, . . . , xn] at a prime ideal q. Then we can think of u : N →M as a map of finite
Pq-modules. Hence we may and do assume thatB is essentially of finite presentation over
A.

Next, theB-moduleN is finite but perhaps not of finite presentation. WriteN = colimNλ
as a filtered colimit of finitely presented B-modules with surjective transition maps. For
example choose a presentation 0 → K → B⊕r → N → 0, write K as the union of
its finite submodules Kλ, and set Nλ = Coker(Kλ → B⊕r). The module N/mAN
is of finite presentation over the Noetherian ring B/mAB. Hence for λ large enough
we have Nλ/mANλ = N/mAN . Now, if we can show the lemma for the composition
uλ : Nλ →M , then we conclude that Nλ = N and the result holds for u. Hence we may
and do assume N is of finite presentation over B.

By More on Algebra, Lemma 25.7 the moduleM is of finite presentation overB. Thus all
the assumptions of Algebra, Lemma 128.4 hold and we conclude. �

Lemma 18.2. Let f : X → S be a morphism of schemes. Let y ∈ X be a point with
image t ∈ S. Denote Y ⊂ X the closure of {y} viewed as an integral closed subscheme of
X . Let s ∈ S and let x ∈ Ys be a generic point of an irreducible component of Ys. There
exists a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
S′ g // S

with the following properties:
(1) S′ is the spectrum of a valuation ring with generic point t′ and closed point s′,
(2) g(t′) = t and g(s′) = s,
(3) there exists a point y′ ∈ X ′

t′ which is a generic point of an irreducible component
of (S′ ×S Y )t′ = Yt ×t t′ and satisfies g′(y′) = y,

(4) denoting Y ′ ⊂ X ′ the closure of {y′} viewed as an integral closed subscheme
of X ′ there exists a point x′ ∈ Y ′

s′ which is a generic point of an irreducible
component of Y ′

s′ with g′(x′) = x.

Proof. We choose a valuation ring R, we set S′ = Spec(R) with generic point t′
and closed point s′, and we choose a morphism h : S′ → X with h(t′) = y and h(s′) = x.
See Schemes, Lemma 20.4. Set g = f ◦ h so that g(t′) = t and g(s′) = s. Consider the
base change

X ′
g′
//

��

X

��
S′

σ

CC

g // S



3158 37. MORE ON MORPHISMS

We obtain a section σ of the base change such that h = g′ ◦ σ.

Of course σ factors through the base change S′ ×S Y of Y as h factors through Y . Let
y′ ∈ X ′

t′ ⊂ X ′ be the generic point of an irreducible component of the fibre

(S′ ×S Y )t′ = Yt ×t t′

containing the point σ(t′), i.e., such that y′  σ(t′). Since g′(y′) ∈ Yt and g(y′)  
g(σ(t′)) = y we find that g′(y′) = y because y is the generic point of the fibre Yt. Denote
Y ′ ⊂ X ′ the closure of {y′} inX ′ viewed as an integral closed subscheme. Then σ factors
through Y ′ as σ(t′) ∈ Y ′. Choose a generic point x′ ∈ Y ′

s′ of an irreducible component
of Y ′

s′ which contains σ(s′), i.e., we get x′  σ(s′) and hence g′(x′)  g′(σ(s′)) = x.
Again as x is a generic point of an irreducible component of Ys by assumption and as
g′(Y ′) ⊂ Y we conclude that g′(x′) = x. �

Lemma 18.3. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent finite type OX -module. Let y ∈ AssX/S(F) with image
t ∈ S. Denote Y ⊂ X the closure of {y} in X viewed as an integral closed subscheme.
Let s ∈ S and let x ∈ Ys be a generic point of an irreducible component of Ys. If F is flat
over S at x, then x ∈ AssX/S(F) and dimx(Ys) = dim(Yt).

Proof. Choose a diagram as in Lemma 18.2. Set F ′ = (g′)∗F . Divisors, Lemma
7.3 implies that y′ ∈ AssX′/S′(F ′). By our choice of y′ we also see that dim(Y ′

t′) =
dim(Yt), see for example Algebra, Lemma 116.7. By Algebra, Lemma 125.9 we see that Y ′

s′

is equidimensional of dimension equal to dim(Yt). Since F is flat at x over S we see that
F ′ is flat at x′ over S′, see Morphisms, Lemma 25.7.

Suppose that we can show x′ ∈ AssX′/S(F ′). Then Divisors, Lemma 7.3 implies that x ∈
AssX/S(F) and that the irreducible component C ′ of Y ′

s′ containing x′ is an irreducible
component ofC×s s′ whereC ⊂ Ys is the irreducible component containing x. Whence
dim(C) = dim(C ′) = dim(Yt) (see above) and the proof is complete. This reduces us to
the case discussed in the next paragraph.

Assume S = Spec(A) where A is a valuation ring and t and s are the generic and closed
points of S. We will assume x 6∈ AssX/S(F) in order to get a contradiction. In other
words, we assume x 6∈ AssXs(Fs) where Fs is the pullback of F toXs. Consider the ring
map

A −→ OX,x = B

and the module N = Fx over B = OX,x. Then B/mAB = OXs,x and N/mAN is the
stalk ofFs at the point x. Denote q ⊂ B the prime ideal corresponding to the point y, see
Schemes, Lemma 13.2. Since x is a generic point of Ys we see that the radical of q + mAB
is mB . Then AssB/mAB(N/mAN) is a finite set of prime ideals (Algebra, Lemma 63.5)
which doesn’t contain the maximal ideal of B/mAB since x 6∈ AssX/S(F). Thus the
image of of q in B/mAB is not contained in any of those prime ideals. Hence by prime
avoidance (Algebra, Lemma 15.2) we can find an element g ∈ q whose image inB/mAB is
a nonzerodivisor onN/mAN (this uses the description of zerodivisors in Algebra, Lemma
63.9). Since N = Fx is A-flat by Lemma 18.1 we see that

g : N −→ N

is injective. In particular, if K = Frac(A) is the fraction field of A, then we see that

g : N ⊗A K −→ N ⊗A K
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is injective. Observe that q corresponds to a prime ideal of B ⊗A K. Denote Ft the
restriction of F to the generic fibreXt. We have (B⊗AK)q = OXt,y and (N ⊗AK)q is
the stalk at y of Ft. Hence we find that g ∈ my ⊂ OXt,y is a nonzerodivisor on the stalk
(Ft)y which contradicts our assumption that y ∈ AssX/S(F). �

Lemma 18.4. Let f : X → S be a morphism of schemes which is locally of finite type.
LetF be a finite type, quasi-coherentOX -module flat overS. AssumeS is irreducible with
generic point η. If dim(Supp(Fη)) ≤ r then for all s ∈ S we have dim(Supp(Fs)) ≤ r.

Proof. Letx ∈ Supp(Fs) be a generic point of an irreducible component of Supp(Fs).
By Algebra, Lemma 41.12 we can find a specialization y  x in Supp(F) with f(y) = η.
Of course we may assume y is a generic point of an irreducible component of Supp(Fη).
We conclude from Lemma 18.3 that the dimension of {x} is at most r. �

Lemma 18.5. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX -module of finite type. Let y ∈ AssX/S(F). Denote
Y ⊂ X the closure of {y} in X viewed as an integral closed subscheme. Denote T ⊂ S
the closure of {f(y)} viewed as an integral closed subscheme. We obtain a commutative
diagram

Y //

��

X

��
T // S

where Y → T is dominant. Assume F is flat over S at all generic points of irreducible
components of fibres of Y → T (for example if F is flat over S). Then

(1) if s ∈ S and x ∈ Ys is the generic point of an irreducible component of Ys, then
x ∈ AssX/S(F), and

(2) there is an integer d ≥ 0 such that Y → T is of relative dimension d, see Mor-
phisms, Definition 29.1.

Proof. This follows immediately from the pointwise version Lemma 18.3. Note that
to compute the dimension of the locally algebraic schemes Ys it suffices to look near the
generic points, see Varieties, Section 20. �

Remark 18.6. Here are some cases where the material above, especially Lemma 18.5,
allows one to conclude that a morphism f : X → S of schemes has relative dimension d
as defined in Morphisms, Definition 29.1. For example, this is true if

(1) X is integral with generic point ξ,
(2) the transcendence degree of κ(ξ) over κ(f(ξ)) is d,
(3) f is locally of finite type, and
(4) there exists a quasi-coherent OX -module F of finite type which is flat over S

with Supp(F) = X .
Another set of hypotheses that work are the following:

(1) S is irreducible with generic point η,
(2) Xη is dense in X ,
(3) every irreducible component of Xη has dimension d,
(4) f is locally of finite type, and
(5) there exists a quasi-coherent OX -module F of finite type which is flat over S

with Supp(F) = X .
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Of course, we can relax the flatness condition on F and require only that F is flat over S
in codimension 0, i.e., thatF is flat over S at every generic point of every fibre. If we ever
need these results, we will carefully state and prove them here.

19. Normalization revisited

Normalization commutes with smooth base change.

Lemma 19.1. Let f : Y → X be a smooth morphism of schemes. Let A be a quasi-
coherent sheaf ofOX -algebras. The integral closure ofOY in f∗A is equal to f∗A′ where
A′ ⊂ A is the integral closure ofOX inA.

Proof. This is a translation of Algebra, Lemma 147.4 into the language of schemes.
Details omitted. �

Lemma 19.2 (Normalization commutes with smooth base change). Let

Y2 //

f2

��

Y1

f1

��
X2

ϕ // X1

be a fibre square in the category of schemes. Assume f1 is quasi-compact and quasi-separated,
and ϕ is smooth. Let Yi → X ′

i → Xi be the normalization of Xi in Yi. Then X ′
2
∼=

X2 ×X1 X
′
1.

Proof. The base change of the factorization Y1 → X ′
1 → X1 toX2 is a factorization

Y2 → X2 ×X1 X
′
1 → X2 and X2 ×X1 X

′
1 → X2 is integral (Morphisms, Lemma 44.6).

Hence we get a morphism h : X ′
2 → X2×X1 X

′
1 by the universal property of Morphisms,

Lemma 53.4. Observe that X ′
2 is the relative spectrum of the integral closure of OX2 in

f2,∗OY2 . If A′ ⊂ f1,∗OY1 denotes the integral closure of OX1 , then X2 ×X1 X
′
1 is the

relative spectrum of ϕ∗A′, see Constructions, Lemma 4.6. By Cohomology of Schemes,
Lemma 5.2 we know that f2,∗OY2 = ϕ∗f1,∗OY1 . Hence the result follows from Lemma
19.1. �

Lemma 19.3 (Normalization and smooth morphisms). Let X → Y be a smooth
morphism of schemes. Assume every quasi-compact open of Y has finitely many irre-
ducible components. Then the same is true for X and there is a unique isomorphism
Xν = X ×Y Y ν over X where Xν , Y ν are the normalizations of X , Y .

Proof. By Descent, Lemma 16.3 every quasi-compact open of X has finitely many
irreducible components. Note thatXred = X×Y Yred as a scheme smooth over a reduced
scheme is reduced, see Descent, Lemma 18.1. Hence we may assume that X and Y are re-
duced (as the normalization of a scheme is equal to the normalization of its reduction by
definition). Next, note that X ′ = X ×Y Y ν is a normal scheme by Descent, Lemma 18.2.
The morphismX ′ → Y ν is smooth (hence flat) thus the generic points of irreducible com-
ponents of X ′ lie over generic points of irreducible components of Y ν . Since Y ν → Y
is birational we conclude that X ′ → X is birational too (because X ′ → Y ν induces an
isomorphism on fibres over generic points of Y ). We conclude that there exists a factor-
ization Xν → X ′ → X , see Morphisms, Lemma 54.5 which is an isomorphism as X ′ is
normal and integral over X . �
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Lemma 19.4 (Normalization and henselization). LetX be a locally Noetherian scheme.
Let ν : Xν → X be the normalization morphism. Then for any point x ∈ X the base
change

Xν ×X Spec(OhX,x)→ Spec(OhX,x), resp. Xν ×X Spec(OshX,x)→ Spec(OshX,x)

is the normalization of Spec(OhX,x), resp. Spec(OshX,x).

Proof. Let η1, . . . , ηr be the generic points of the irreducible components ofX pass-
ing through x. The base change of the normalization to Spec(OX,x) is the spectrum of
the integral closure of OX,x in

∏
κ(ηi). This follows from our construction of the nor-

malization ofX in Morphisms, Definition 54.1 and Morphisms, Lemma 53.1; you can also
use the description of the normalization in Morphisms, Lemma 54.3. Thus we reduce to
the following algebra problem. Let A be a Noetherian local ring; recall that this implies
the henselization Ah and strict henselization Ash are Noetherian too (More on Algebra,
Lemma 45.3). Let p1, . . . , pr be its minimal primes. Let A′ be the integral closure of A
in
∏
κ(pi). Problem: show that A′ ⊗A Ah, resp. A′ ⊗A Ash is constructed from the

Noetherian local ring Ah, resp. Ash in the same manner.

Since Ah, resp. Ash are colimits of étale A-algebras, we see that the minimal primes of A
and Ash are exactly the primes of Ah, resp. Ash lying over the minimal primes of A (by
going down, see Algebra, Lemmas 39.19 and 30.7). Thus More on Algebra, Lemma 45.13
tells us that Ah ⊗A

∏
κ(pi), resp. Ash ⊗A

∏
κ(pi) is the product of the residue fields

at the minimal primes of Ah, resp. Ash. We know that taking the integral closure in an
overring commutes with étale base change, see Algebra, Lemma 147.2. Writing Ah and
Ash as a limit of étale A-algebras we see that the same thing is true for the base change to
Ah and Ash (you can also use the more general Algebra, Lemma 147.5). �

20. Normal morphisms

In the article [?] of Deligne and Mumford the notion of a normal morphism is mentioned.
This is just one in a series of types3 of morphisms that can all be defined similarly. Over
time we will add these in their own sections as needed.

Definition 20.1. Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X , and y = f(x). We say that f is normal at x if f is flat at x, and
the scheme Xy is geometrically normal at x over κ(y) (see Varieties, Definition
10.1).

(2) We say f is a normal morphism if f is normal at every point of X .

So the condition that the morphism X → Y is normal is stronger than just requiring all
the fibres to be normal locally Noetherian schemes.

Lemma 20.2. Let f : X → Y be a morphism of schemes. Assume all fibres of f are
locally Noetherian. The following are equivalent

(1) f is normal, and
(2) f is flat and its fibres are geometrically normal schemes.

Proof. This follows directly from the definitions. �

3The other types are coprof ≤ k, Cohen-Macaulay, (Sk), regular, (Rk), and reduced. See [?, IV Definition
6.8.1.]. Gorenstein morphisms will be defined in Duality for Schemes, Section 24.
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Lemma 20.3. A smooth morphism is normal.

Proof. Let f : X → Y be a smooth morphism. As f is locally of finite presentation,
see Morphisms, Lemma 34.8 the fibres Xy are locally of finite type over a field, hence
locally Noetherian. Moreover, f is flat, see Morphisms, Lemma 34.9. Finally, the fibres
Xy are smooth over a field (by Morphisms, Lemma 34.5) and hence geometrically normal
by Varieties, Lemma 25.4. Thus f is normal by Lemma 20.2. �

We want to show that this notion is local on the source and target for the smooth topology.
First we deal with the property of having locally Noetherian fibres.

Lemma 20.4. The propertyP(f) =“the fibres of f are locally Noetherian” is local in
the fppf topology on the source and the target.

Proof. Let f : X → Y be a morphism of schemes. Let {ϕi : Yi → Y }i∈I be an fppf
covering of Y . Denote fi : Xi → Yi the base change of f by ϕi. Let i ∈ I and let yi ∈ Yi
be a point. Set y = ϕi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Moreover, as ϕi is of finite presentation the field extension κ(yi)/κ(y) is finitely gener-
ated. Hence in this situation we have that Xy is locally Noetherian if and only if Xi,yi is
locally Noetherian, see Varieties, Lemma 11.1. This fact implies locality on the target.

Let {Xi → X} be an fppf covering of X . Let y ∈ Y . In this case {Xi,y → Xy} is an
fppf covering of the fibre. Hence the locality on the source follows from Descent, Lemma
16.1. �

Lemma 20.5. The property P(f) =“the fibres of f are locally Noetherian and f is
normal” is local in the fppf topology on the target and local in the smooth topology on
the source.

Proof. We have P(f) = P1(f) ∧ P2(f) ∧ P3(f) where P1(f) =“the fibres of f
are locally Noetherian”, P2(f) =“f is flat”, and P3(f) =“the fibres of f are geometrically
normal”. We have already seen thatP1 andP2 are local in the fppf topology on the source
and the target, see Lemma 20.4, and Descent, Lemmas 23.15 and 27.1. Thus we have to deal
with P3.

Let f : X → Y be a morphism of schemes. Let {ϕi : Yi → Y }i∈I be an fpqc covering of
Y . Denote fi : Xi → Yi the base change of f by ϕi. Let i ∈ I and let yi ∈ Yi be a point.
Set y = ϕi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Hence in this situation we have that Xy is geometrically normal if and only if Xi,yi is
geometrically normal, see Varieties, Lemma 10.4. This fact implies P3 is fpqc local on the
target.

Let {Xi → X} be a smooth covering of X . Let y ∈ Y . In this case {Xi,y → Xy} is a
smooth covering of the fibre. Hence the locality of P3 for the smooth topology on the
source follows from Descent, Lemma 18.2. Combining the above the lemma follows. �
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21. Regular morphisms

Compare with Section 20. The algebraic version of this notion is discussed in More on
Algebra, Section 41.

Definition 21.1. Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X , and y = f(x). We say that f is regular at x if f is flat at x, and
the scheme Xy is geometrically regular at x over κ(y) (see Varieties, Definition
12.1).

(2) We say f is a regular morphism if f is regular at every point of X .

The condition that the morphismX → Y is regular is stronger than just requiring all the
fibres to be regular locally Noetherian schemes.

Lemma 21.2. Let f : X → Y be a morphism of schemes. Assume all fibres of f are
locally Noetherian. The following are equivalent

(1) f is regular,
(2) f is flat and its fibres are geometrically regular schemes,
(3) for every pair of affine opens U ⊂ X , V ⊂ Y with f(U) ⊂ V the ring map
O(V )→ O(U) is regular,

(4) there exists an open covering Y =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj is regular, and
(5) there exists an affine open covering Y =

⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring mapsO(Vj)→ O(Ui) are regular.

Proof. The equivalence of (1) and (2) is immediate from the definitions. Let x ∈ X
with y = f(x). By definition f is flat at x if and only if OY,y → OX,x is a flat ring map,
andXy is geometrically regular at x over κ(y) if and only ifOXy,x = OX,x/myOX,x is a
geometrically regular algebra over κ(y). Hence Whether or not f is regular at x depends
only on the local homomorphism of local rings OY,y → OX,x. Thus the equivalence of
(1) and (4) is clear.

Recall (More on Algebra, Definition 41.1) that a ring map A → B is regular if and only
if it is flat and the fibre rings B ⊗A κ(p) are Noetherian and geometrically regular for all
primes p ⊂ A. By Varieties, Lemma 12.3 this is equivalent to Spec(B ⊗A κ(p)) being a
geometrically regular scheme over κ(p). Thus we see that (2) implies (3). It is clear that
(3) implies (5). Finally, assume (5). This implies that f is flat (see Morphisms, Lemma
25.3). Moreover, if y ∈ Y , then y ∈ Vj for some j and we see that Xy =

⋃
i∈Ij Ui,y with

each Ui,y geometrically regular over κ(y) by Varieties, Lemma 12.3. Another application
of Varieties, Lemma 12.3 shows that Xy is geometrically regular. Hence (2) holds and the
proof of the lemma is finished. �

Lemma 21.3. A smooth morphism is regular.

Proof. Let f : X → Y be a smooth morphism. As f is locally of finite presentation,
see Morphisms, Lemma 34.8 the fibres Xy are locally of finite type over a field, hence
locally Noetherian. Moreover, f is flat, see Morphisms, Lemma 34.9. Finally, the fibres
Xy are smooth over a field (by Morphisms, Lemma 34.5) and hence geometrically regular
by Varieties, Lemma 25.4. Thus f is regular by Lemma 21.2. �
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Lemma 21.4. The property P(f) =“the fibres of f are locally Noetherian and f is
regular” is local in the fppf topology on the target and local in the smooth topology on
the source.

Proof. We have P(f) = P1(f) ∧ P2(f) ∧ P3(f) where P1(f) =“the fibres of f
are locally Noetherian”, P2(f) =“f is flat”, and P3(f) =“the fibres of f are geometrically
regular”. We have already seen thatP1 andP2 are local in the fppf topology on the source
and the target, see Lemma 20.4, and Descent, Lemmas 23.15 and 27.1. Thus we have to deal
with P3.

Let f : X → Y be a morphism of schemes. Let {ϕi : Yi → Y }i∈I be an fpqc covering of
Y . Denote fi : Xi → Yi the base change of f by ϕi. Let i ∈ I and let yi ∈ Yi be a point.
Set y = ϕi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

Hence in this situation we have that Xy is geometrically regular if and only if Xi,yi is
geometrically regular, see Varieties, Lemma 12.4. This fact implies P3 is fpqc local on the
target.

Let {Xi → X} be a smooth covering of X . Let y ∈ Y . In this case {Xi,y → Xy} is a
smooth covering of the fibre. Hence the locality of P3 for the smooth topology on the
source follows from Descent, Lemma 18.4. Combining the above the lemma follows. �

22. Cohen-Macaulay morphisms

Compare with Section 20. Note that, as pointed out in Algebra, Section 167 and Varieties,
Section 13 “geometrically Cohen-Macaulay” is the same as plain Cohen-Macaulay.

Definition 22.1. Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X , and y = f(x). We say that f is Cohen-Macaulay at x if f is flat at x,
and the local ring of the scheme Xy at x is Cohen-Macaulay.

(2) We say f is a Cohen-Macaulay morphism if f is Cohen-Macaulay at every point
of X .

Here is a translation.

Lemma 22.2. Let f : X → Y be a morphism of schemes. Assume all fibres of f are
locally Noetherian. The following are equivalent

(1) f is Cohen-Macaulay, and
(2) f is flat and its fibres are Cohen-Macaulay schemes.

Proof. This follows directly from the definitions. �

Lemma 22.3. Let f : X → Y be a morphism of locally Noetherian schemes which is
locally of finite type and Cohen-Macaulay. For every point x in X with image y in Y ,

dimx(X) = dimy(Y ) + dimx(Xy),
where Xy denotes the fiber over y.

Proof. After replacing X by an open neighborhood of x, there is a natural number
d such that all fibers of X → Y have dimension d at every point, see Morphisms, Lemma
29.4. Then f is flat, locally of finite type and of relative dimension d. Hence the result
follows from Morphisms, Lemma 29.6. �
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Lemma 22.4. Let f : X → Y and g : Y → Z be morphisms of schemes. Assume
that the fibres of f , g, and g ◦ f are locally Noetherian. Let x ∈ X with images y ∈ Y and
z ∈ Z.

(1) If f is Cohen-Macaulay at x and g is Cohen-Macaulay at f(x), then g ◦ f is
Cohen-Macaulay at x.

(2) If f and g are Cohen-Macaulay, then g ◦ f is Cohen-Macaulay.
(3) If g ◦ f is Cohen-Macaulay at x and f is flat at x, then f is Cohen-Macaulay at

x and g is Cohen-Macaulay at f(x).
(4) If g ◦ f is Cohen-Macaulay and f is flat, then f is Cohen-Macaulay and g is

Cohen-Macaulay at every point in the image of f .

Proof. Consider the map of Noetherian local rings

OYz,y → OXz,x
and observe that its fibre is

OXz,x/mYz,yOXz,x = OXy,x
Thus the lemma this follows from Algebra, Lemma 163.3. �

Lemma 22.5. Let f : X → Y be a flat morphism of locally Noetherian schemes. If
X is Cohen-Macaulay, then f is Cohen-Macaulay andOY,f(x) is Cohen-Macaulay for all
x ∈ X .

Proof. After translating into algebra this follows from Algebra, Lemma 163.3. �

Lemma 22.6. Let f : X → Y be a morphism of schemes. Assume that all the fibresXy

are locally Noetherian schemes. Let Y ′ → Y be locally of finite type. Let f ′ : X ′ → Y ′

be the base change of f . Let x′ ∈ X ′ be a point with image x ∈ X .
(1) If f is Cohen-Macaulay at x, then f ′ : X ′ → Y ′ is Cohen-Macaulay at x′.
(2) If f is flat at x and f ′ is Cohen-Macaulay at x′, then f is Cohen-Macaulay at x.
(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Cohen-Macaulay at x′, then f is Cohen-

Macaulay at x.

Proof. Note that the assumption on Y ′ → Y implies that for y′ ∈ Y ′ mapping
to y ∈ Y the field extension κ(y′)/κ(y) is finitely generated. Hence also all the fibres
X ′
y′ = (Xy)κ(y′) are locally Noetherian, see Varieties, Lemma 11.1. Thus the lemma makes

sense. Set y′ = f ′(x′) and y = f(x). Hence we get the following commutative diagram
of local rings

OX′,x′ OX,xoo

OY ′,y′

OO

OY,yoo

OO

where the upper left corner is a localization of the tensor product of the upper right and
lower left corners over the lower right corner.

Assume f is Cohen-Macaulay at x. The flatness of OY,y → OX,x implies the flatness
of OY ′,y′ → OX′,x′ , see Algebra, Lemma 100.1. The fact that OX,x/myOX,x is Cohen-
Macaulay implies that OX′,x′/my′OX′,x′ is Cohen-Macaulay, see Varieties, Lemma 13.1.
Hence we see that f ′ is Cohen-Macaulay at x′.
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Assume f is flat at x and f ′ is Cohen-Macaulay at x′. The fact that OX′,x′/my′OX′,x′

is Cohen-Macaulay implies thatOX,x/myOX,x is Cohen-Macaulay, see Varieties, Lemma
13.1. Hence we see that f is Cohen-Macaulay at x.

Assume Y ′ → Y is flat at y′ and f ′ is Cohen-Macaulay at x′. The flatness of OY ′,y′ →
OX′,x′ and OY,y → OY ′,y′ implies the flatness of OY,y → OX,x, see Algebra, Lemma
100.1. The fact that OX′,x′/my′OX′,x′ is Cohen-Macaulay implies that OX,x/myOX,x
is Cohen-Macaulay, see Varieties, Lemma 13.1. Hence we see that f is Cohen-Macaulay at
x. �

Lemma 22.7. Let f : X → S be a morphism of schemes which is flat and locally of
finite presentation. Let

W = {x ∈ X | f is Cohen-Macaulay at x}
Then

(1) W = {x ∈ X | OXf(x),x is Cohen-Macaulay},
(2) W is open in X ,
(3) W dense in every fibre of X → S ,
(4) the formation of W commutes with arbitrary base change of f : For any mor-

phism g : S′ → S , consider the base change f ′ : X ′ → S′ of f and the projection
g′ : X ′ → X . Then the corresponding set W ′ for the morphism f ′ is equal to
W ′ = (g′)−1(W ).

Proof. As f is flat with locally Noetherian fibres the equality in (1) holds by defi-
nition. Parts (2) and (3) follow from Algebra, Lemma 130.5. Part (4) follows either from
Algebra, Lemma 130.7 or Varieties, Lemma 13.1. �

Lemma 22.8. Let f : X → S be a morphism of schemes which is flat and locally of
finite presentation. Let x ∈ X with image s ∈ S. Set d = dimx(Xs). The following are
equivalent

(1) f is Cohen-Macaulay at x,
(2) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite mor-

phism U → Ad
S over S which is flat at x,

(3) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite flat
morphism U → Ad

S over S ,
(4) for any S-morphism g : U → Ad

S of an open neighbourhood U ⊂ X of x we
have: g is quasi-finite at x⇒ g is flat at x.

Proof. Openness of flatness shows (2) and (3) are equivalent, see Theorem 15.1.

Choose affine open U = Spec(A) ⊂ X with x ∈ U and V = Spec(R) ⊂ S with
f(U) ⊂ V . Then R→ A is a flat ring map of finite presentation. Let p ⊂ A be the prime
ideal corresponding to x. After replacing A by a principal localization we may assume
there exists a quasi-finite map R[x1, . . . , xd] → A, see Algebra, Lemma 125.2. Thus there
exists at least one pair (U, g) consisting of an open neighbourhood U ⊂ X of x and a
locally4 quasi-finite morphism g : U → Ad

S .

Claim: GivenR→ Aflat and of finite presentation, a prime p ⊂ A andϕ : R[x1, . . . , xd]→
A quasi-finite at p we have: Spec(ϕ) is flat at p if and only if Spec(A) → Spec(R) is
Cohen-Macaulay at p. Namely, by Theorem 16.2 flatness may be checked on fibres. The

4If S is quasi-separated, then g will be quasi-finite.
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same is true for being Cohen-Macaulay (as A is already assumed flat over R). Thus the
claim follows from Algebra, Lemma 130.1.

The claim shows that (1) is equivalent to (4) and combined with the fact that we have con-
structed a suitable (U, g) in the second paragraph, the claim also shows that (1) is equiva-
lent to (2). �

Lemma 22.9. Let f : X → S be a morphism of schemes which is flat and locally of
finite presentation. For d ≥ 0 there exist opens Ud ⊂ X with the following properties

(1) W =
⋃
d≥0 Ud is dense in every fibre of f , and

(2) Ud → S is of relative dimension d (see Morphisms, Definition 29.1).

Proof. This follows by combining Lemma 22.7 with Morphisms, Lemma 29.4. �

Lemma 22.10. Let f : X → S be a morphism of schemes which is flat and locally of
finite presentation. Suppose x′  x is a specialization of points ofX with image s′  s in
S. Ifx is a generic point of an irreducible component ofXs then dimx′(Xs′) = dimx(Xs).

Proof. The point x is contained in Ud for some d, where Ud as in Lemma 22.9. �

Lemma 22.11. The property P(f) =“the fibres of f are locally Noetherian and f is
Cohen-Macaulay” is local in the fppf topology on the target and local in the syntomic
topology on the source.

Proof. We have P(f) = P1(f)∧P2(f) where P1(f) =“f is flat”, and P2(f) =“the
fibres of f are locally Noetherian and Cohen-Macaulay”. We know that P1 is local in the
fppf topology on the source and the target, see Descent, Lemmas 23.15 and 27.1. Thus we
have to deal with P2.

Let f : X → Y be a morphism of schemes. Let {ϕi : Yi → Y }i∈I be an fppf covering of
Y . Denote fi : Xi → Yi the base change of f by ϕi. Let i ∈ I and let yi ∈ Yi be a point.
Set y = ϕi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

and that κ(yi)/κ(y) is a finitely generated field extension. Hence if Xy is locally Noe-
therian, thenXi,yi is locally Noetherian, see Varieties, Lemma 11.1. And if in additionXy

is Cohen-Macaulay, then Xi,yi is Cohen-Macaulay, see Varieties, Lemma 13.1. Thus P2 is
fppf local on the target.

Let {Xi → X} be a syntomic covering of X . Let y ∈ Y . In this case {Xi,y → Xy} is a
syntomic covering of the fibre. Hence the locality of P2 for the syntomic topology on the
source follows from Descent, Lemma 17.2. Combining the above the lemma follows. �

23. Slicing Cohen-Macaulay morphisms

The results in this section eventually lead to the assertion that the fppf topology is the
same as the “finitely presented, flat, quasi-finite” topology. The following lemma is very
closely related to Divisors, Lemma 18.9.

Lemma 23.1. Let f : X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. Let h ∈ mx ⊂ OX,x. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) the image h of h inOXs,x = OX,x/msOX,x is a nonzerodivisor.
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Then there exists an affine open neighbourhood U ⊂ X of x such that h comes from
h ∈ Γ(U,OU ) and such that D = V (h) is an effective Cartier divisor in U with x ∈ D
and D → S flat and locally of finite presentation.

Proof. We are going to prove this by reducing to the Noetherian case. By openness of
flatness (see Theorem 15.1) we may assume, after replacing X by an open neighbourhood
of x, that X → S is flat. We may also assume that X and S are affine. After possible
shrinking X a bit we may assume that there exists an h ∈ Γ(X,OX) which maps to our
given h.

We may write S = Spec(A) and we may write A = colimiAi as a directed colimit of
finite type Z algebras. Then by Algebra, Lemma 168.1 or Limits, Lemmas 10.1, 8.2, and 10.1
we can find a cartesian diagram

X //

f

��

X0

f0

��
S // S0

with f0 flat and of finite presentation, X0 affine, and S0 affine and Noetherian. Let x0 ∈
X0, resp. s0 ∈ S0 be the image of x, resp. s. We may also assume there exists an element
h0 ∈ Γ(X0,OX0) which restricts to h on X . (If you used the algebra reference above
then this is clear; if you used the references to the chapter on limits then this follows
from Limits, Lemma 10.1 by thinking of h as a morphism X → A1

S .) Note that OXs,x
is a localization of O(X0)s0 ,x0 ⊗κ(s0) κ(s), so that O(X0)s0 ,x0 → OXs,x is a flat local
ring map, in particular faithfully flat. Hence the image h0 ∈ O(X0)s0 ,x0 is contained in
m(X0)s0 ,x0 and is a nonzerodivisor. We claim that after replacing X0 by a principal open
neighbourhood of x0 the element h0 is a nonzerodivisor in B0 = Γ(X0,OX0) such that
B0/h0B0 is flat over A0 = Γ(S0,OS0). If so then

0→ B0
h0−→ B0 → B0/h0B0 → 0

is a short exact sequence of flat A0-modules. Hence this remains exact on tensoring with
A (by Algebra, Lemma 39.12) and the lemma follows.

It remains to prove the claim above. The corresponding algebra statement is the following
(we drop the subscript 0 here): Let A → B be a flat, finite type ring map of Noetherian
rings. Let q ⊂ B be a prime lying over p ⊂ A. Assume h ∈ q maps to a nonzerodivisor
in Bq/pBq. Goal: show that after possible replacing B by Bg for some g ∈ B, g 6∈ q the
element h becomes a nonzerodivisor and B/hB becomes flat over A. By Algebra, Lemma
99.2 we see that h is a nonzerodivisor in Bq and that Bq/hBq is flat over A. By openness
of flatness, see Algebra, Theorem 129.4 or Theorem 15.1 we see that B/hB is flat over A
after replacing B by Bg for some g ∈ B, g 6∈ q. Finally, let I = {b ∈ B | hb = 0} be the
annihilator of h. Then IBq = 0 as h is a nonzerodivisor inBq. Also I is finitely generated
as B is Noetherian. Hence there exists a g ∈ B, g 6∈ q such that IBg = 0. After replacing
B by Bg we see that h is a nonzerodivisor. �

Lemma 23.2. Let f : X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. Let h1, . . . , hr ∈ OX,x. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) the images of h1, . . . , hr inOXs,x = OX,x/msOX,x form a regular sequence.
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Then there exists an affine open neighbourhood U ⊂ X of x such that h1, . . . , hr come
from h1, . . . , hr ∈ Γ(U,OU ) and such that Z = V (h1, . . . , hr)→ U is a regular immer-
sion with x ∈ Z and Z → S flat and locally of finite presentation. Moreover, the base
change ZS′ → US′ is a regular immersion for any scheme S′ over S.

Proof. (Our conventions on regular sequences imply that hi ∈ mx for each i.) The
case r = 1 follows from Lemma 23.1 combined with Divisors, Lemma 18.1 to see that
V (h1) remains an effective Cartier divisor after base change. The case r > 1 follows from
a straightforward induction on r (applying the result for r = 1 exactly r times; details
omitted).

Another way to prove the lemma is using the material from Divisors, Section 22. Namely,
first by openness of flatness (see Theorem 15.1) we may assume, after replacing X by an
open neighbourhood of x, thatX → S is flat. We may also assume thatX andS are affine.
After possible shrinking X a bit we may assume that we have h1, . . . , hr ∈ Γ(X,OX).
Set Z = V (h1, . . . , hr). Note that Xs is a Noetherian scheme (because it is an algebraic
κ(s)-scheme, see Varieties, Section 20) and that the topology on Xs is induced from the
topology on X (see Schemes, Lemma 18.5). Hence after shrinking X a bit more we may
assume that Zs ⊂ Xs is a regular immersion cut out by the r elements hi|Xs , see Divisors,
Lemma 20.8 and its proof. It is also clear that r = dimx(Xs)− dimx(Zs) because

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)),
dimx(Zs) = dim(OZs,x) + trdegκ(s)(κ(x)),

dim(OXs,x) = dim(OZs,x) + r

the first two equalities by Algebra, Lemma 116.3 and the second by r times applying Alge-
bra, Lemma 60.13. Hence Divisors, Lemma 22.7 part (3) applies to show that (after Zariski
shrinking X) the morphism Z → X is a regular immersion to which Divisors, Lemma
22.4 applies (which gives the flatness and the statement on base change). �

Lemma 23.3. Let f : X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. Assume

(1) f is locally of finite presentation,
(2) f is flat at x, and
(3) OXs,x has depth ≥ 1.

Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is flat and of finite presentation.

Proof. Pick any h ∈ mx ⊂ OX,x which maps to a nonzerodivisor in OXs,x and
apply Lemma 23.1. �

Lemma 23.4. Let f : X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. Assume

(1) f is locally of finite presentation,
(2) f is Cohen-Macaulay at x, and
(3) x is a closed point of Xs.

Then there exists a regular immersion Z → X containing x such that
(a) Z → S is flat and locally of finite presentation,
(b) Z → S is locally quasi-finite, and
(c) Zs = {x} set theoretically.
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Proof. We may and do replace S by an affine open neighbourhood of s. We will
prove the lemma for affine S by induction on d = dimx(Xs).

The case d = 0. In this case we show that we may take Z to be an open neighbourhood
of x. (Note that an open immersion is a regular immersion.) Namely, if d = 0, then
X → S is quasi-finite at x, see Morphisms, Lemma 29.5. Hence there exists an affine open
neighbourhood U ⊂ X such that U → S is quasi-finite, see Morphisms, Lemma 56.2.
Thus after replacing X by U we see that the fibre Xs is a finite discrete set. Hence after
replacing X by a further affine open neighbourhood of X we see that f−1({s}) = {x}
(because the topology on Xs is induced from the topology on X , see Schemes, Lemma
18.5). This proves the lemma in this case.

Next, assume d > 0. Note that because x is a closed point of its fibre the extension
κ(x)/κ(s) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma 20.3). Thus
we see

depth(OXs,x) = dim(OXs,x) = d > 0
the first equality asOXs,x is Cohen-Macaulay and the second by Morphisms, Lemma 28.1.
Thus we may apply Lemma 23.3 to find a diagram

D //

''

U //

  

X

��
S

with x ∈ D. Note that ODs,x = OXs,x/(h) for some nonzerodivisor h, see Divisors,
Lemma 18.1. HenceODs,x is Cohen-Macaulay of dimension one less than the dimension of
OXs,x, see Algebra, Lemma 104.2 for example. Thus the morphism D → S is flat, locally
of finite presentation, and Cohen-Macaulay at xwith dimx(Ds) = dimx(Xs)−1 = d−1.
By induction hypothesis we can find a regular immersion Z → D having properties (a),
(b), (c). As Z → D → U are both regular immersions, we see that also Z → U is a regular
immersion by Divisors, Lemma 21.7. This finishes the proof. �

Lemma 23.5. Let f : X → S be a flat morphism of schemes which is locally of finite
presentation. Let s ∈ S be a point in the image of f . Then there exists a commutative
diagram

S′ //

g
��

X

f��
S

where g : S′ → S is flat, locally of finite presentation, locally quasi-finite, and s ∈ g(S′).

Proof. The fibre Xs is not empty by assumption. Hence there exists a closed point
x ∈ Xs where f is Cohen-Macaulay, see Lemma 22.7. Apply Lemma 23.4 and set S′ =
S. �

The following lemma shows that sheaves for the fppf topology are the same thing as
sheaves for the “quasi-finite, flat, finite presentation” topology.

Lemma 23.6. Let S be a scheme. Let U = {Si → S}i∈I be an fppf covering of S , see
Topologies, Definition 7.1. Then there exists an fppf covering V = {Tj → S}j∈J which
refines (see Sites, Definition 8.1) U such that each Tj → S is locally quasi-finite.
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Proof. For every s ∈ S there exists an i ∈ I such that s is in the image of Si → S.
By Lemma 23.5 we can find a morphism gs : Ts → S such that s ∈ gs(Ts) which is
flat, locally of finite presentation and locally quasi-finite and such that gs factors through
Si → S. Hence {Ts → S} is the desired covering of S that refines U . �

24. Generic fibres

Some results on the relationship between generic fibres and nearby fibres.

Lemma 24.1. Let f : X → Y be a finite type morphism of schemes. Assume Y
irreducible with generic point η. If Xη = ∅ then there exists a nonempty open V ⊂ Y
such that XV = V ×Y X = ∅.

Proof. Follows immediately from the more general Morphisms, Lemma 8.5. �

Lemma 24.2. Let f : X → Y be a finite type morphism of schemes. Assume Y
irreducible with generic point η. If Xη 6= ∅ then there exists a nonempty open V ⊂ Y
such that XV = V ×Y X → V is surjective.

Proof. This follows, upon taking affine opens, from Algebra, Lemma 30.2. (Of course
it also follows from generic flatness.) �

Lemma 24.3. Let f : X → Y be a finite type morphism of schemes. Assume Y
irreducible with generic point η. If Z ⊂ X is a closed subset with Zη nowhere dense in
Xη , then there exists a nonempty open V ⊂ Y such that Zy is nowhere dense in Xy for
all y ∈ V .

Proof. Let Y ′ ⊂ Y be the reduction of Y . Set X ′ = Y ′ ×Y X and Z ′ = Y ′ ×Y Z.
As Y ′ → Y is a universal homeomorphism by Morphisms, Lemma 45.6 we see that it
suffices to prove the lemma for Z ′ ⊂ X ′ → Y ′. Thus we may assume that Y is integral,
see Properties, Lemma 3.4. By Morphisms, Proposition 27.1 there exists a nonempty affine
open V ⊂ Y such that XV → V and ZV → V are flat and of finite presentation. We
claim that V works. Pick y ∈ V . IfZy has a nonempty interior, thenZy contains a generic
point ξ of an irreducible component ofXy . Note that η  f(ξ). SinceZV → V is flat we
can choose a specialization ξ′  ξ, ξ′ ∈ Z with f(ξ′) = η, see Morphisms, Lemma 25.9.
By Lemma 22.10 we see that

dimξ′(Zη) = dimξ(Zy) = dimξ(Xy) = dimξ′(Xη).
Hence some irreducible component of Zη passing through ξ′ has dimension dimξ′(Xη)
which contradicts the assumption that Zη is nowhere dense in Xη and we win. �

Lemma 24.4. Let f : X → Y be a finite type morphism of schemes. Assume Y
irreducible with generic point η. LetU ⊂ X be an open subscheme such thatUη is scheme
theoretically dense in Xη . Then there exists a nonempty open V ⊂ Y such that Uy is
scheme theoretically dense in Xy for all y ∈ V .

Proof. Let Y ′ ⊂ Y be the reduction of Y . LetX ′ = Y ′×Y X andU ′ = Y ′×Y U . As
Y ′ → Y induces a bijection on points, and as U ′ → U andX ′ → X induce isomorphisms
of scheme theoretic fibres, we may replace Y by Y ′ and X by X ′. Thus we may assume
that Y is integral, see Properties, Lemma 3.4. We may also replace Y by a nonempty affine
open. In other words we may assume thatY = Spec(A) whereA is a domain with fraction
field K.
As f is of finite type we see that X is quasi-compact. Write X = X1 ∪ . . . ∪ Xn for
some affine opens Xi. By Morphisms, Definition 7.1 we see that Ui = Xi ∩ U is an open
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subscheme of Xi such that Ui,η is scheme theoretically dense in Xi,η . Thus it suffices to
prove the result for the pairs (Xi, Ui), in other words we may assume that X is affine.

Write X = Spec(B). Note that BK is Noetherian as it is a finite type K-algebra. Hence
Uη is quasi-compact. Thus we can find finitely many g1, . . . , gm ∈ B such thatD(gj) ⊂ U
and such that Uη = D(g1)η ∪ . . . ∪ D(gm)η . The fact that Uη is scheme theoretically
dense in Xη means that BK →

⊕
j(BK)gj is injective, see Morphisms, Example 7.4.

By Algebra, Lemma 24.4 this is equivalent to the injectivity of BK →
⊕

j=1,...,mBK ,
b 7→ (g1b, . . . , gmb). Let M be the cokernel of this map over A, i.e., such that we have an
exact sequence

0→ I → B
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

B →M → 0

After replacing A by Ah for some nonzero h we may assume that B is a flat, finitely pre-
sented A-algebra, and that M is flat over A, see Algebra, Lemma 118.3. The flatness of B
over A implies that B is torsion free as an A-module, see More on Algebra, Lemma 22.9.
Hence B ⊂ BK . By assumption IK = 0 which implies that I = 0 (as I ⊂ B ⊂ BK is a
subset of IK ). Hence now we have a short exact sequence

0→ B
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

B →M → 0

with M flat over A. Hence for every homomorphism A→ κ where κ is a field, we obtain
a short exact sequence

0→ B ⊗A κ
(g1⊗1,...,gm⊗1)−−−−−−−−−−→

⊕
j=1,...,m

B ⊗A κ→M ⊗A κ→ 0

see Algebra, Lemma 39.12. Reversing the arguments above this means that
⋃
D(gj ⊗ 1)

is scheme theoretically dense in Spec(B ⊗A κ). As
⋃
D(gj ⊗ 1) =

⋃
D(gj)κ ⊂ Uκ we

obtain thatUκ is scheme theoretically dense inXκ which is what we wanted to prove. �

Suppose given a morphism of schemes f : X → Y and a point y ∈ Y . Recall that the fibre
Xy is homeomorphic to the subset f−1({y}) of X with induced topology, see Schemes,
Lemma 18.5. Suppose given a closed subset T (y) ⊂ Xy . Let T be the closure of T (y) in
X . Endow T with the induced reduced scheme structure. Then T is a closed subscheme
of X with the property that Ty = T (y) set-theoretically. In fact T is the smallest closed
subscheme of X with this property. Thus it is “harmless” to denote a closed subset of Xy

by Ty if we so desire. In the following lemma we apply this to the generic fibre of f .

Lemma 24.5. Let f : X → Y be a finite type morphism of schemes. Assume Y
irreducible with generic point η. Let Xη = Z1,η ∪ . . . ∪Zn,η be a covering of the generic
fibre by closed subsets of Xη . Let Zi be the closure of Zi,η in X (see discussion above).
Then there exists a nonempty open V ⊂ Y such that Xy = Z1,y ∪ . . . ∪ Zn,y for all
y ∈ V .

Proof. If Y is Noetherian then U = X \ (Z1 ∪ . . . ∪ Zn) is of finite type over Y
and we can directly apply Lemma 24.1 to get that UV = ∅ for a nonempty open V ⊂ Y .
In general we argue as follows. As the question is topological we may replace Y by its
reduction. Thus Y is integral, see Properties, Lemma 3.4. After shrinking Y we may
assume that X → Y is flat, see Morphisms, Proposition 27.1. In this case every point x in
Xy is a specialization of a point x′ ∈ Xη by Morphisms, Lemma 25.9. As the Zi are closed
in X and cover the generic fibre this implies that Xy =

⋃
Zi,y for y ∈ Y as desired. �
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The following lemma says that generic fibres of morphisms whose source is reduced are
reduced.

Lemma 24.6. Let f : X → Y be a morphism of schemes. Let η ∈ Y be a generic
point of an irreducible component of Y . Then (Xη)red = (Xred)η .

Proof. Choose an affine neighbourhood Spec(A) ⊂ Y of η. Choose an affine open
Spec(B) ⊂ X mapping into Spec(A) via the morphism f . Let p ⊂ A be the minimal
prime corresponding to η. Let Bred be the quotient of B by the nilradical

√
(0). The

algebraic content of the lemma is that C = Bred ⊗A κ(p) is reduced. Denote I ⊂ A the
nilradical so thatAred = A/I . Denote pred = p/I which is a minimal prime ofAred with
κ(p) = κ(pred). Since A→ Bred and A→ κ(p) both factor through A→ Ared we have
C = Bred⊗Ared κ(pred). Now κ(pred) = (Ared)pred is a localization by Algebra, Lemma
25.1. Hence C is a localization of Bred (Algebra, Lemma 12.15) and hence reduced. �

Lemma 24.7. Let f : X → Y be a morphism of schemes. Assume thatY is irreducible
and f is of finite type. There exists a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

where

(1) V is a nonempty open of Y ,
(2) XV = V ×Y X ,
(3) g : Y ′ → V is a finite universal homeomorphism,
(4) X ′ = (Y ′ ×Y X)red = (Y ′ ×V XV )red,
(5) g′ is a finite universal homeomorphism,
(6) Y ′ is an integral affine scheme,
(7) f ′ is flat and of finite presentation, and
(8) the generic fibre of f ′ is geometrically reduced.

Proof. Let V = Spec(A) be a nonempty affine open of Y . By assumption the Jacob-
son radical ofA is a prime ideal p. LetK = κ(p). Let p be the characteristic ofK if positive
and 1 if the characteristic is zero. By Varieties, Lemma 6.11 there exists a finite purely in-
separable field extension K ′/K such that XK′ is geometrically reduced over K ′. Choose
elements x1, . . . , xn ∈ K ′ which generateK ′ overK and such that some p-power of xi is
in A/p. Let A′ ⊂ K ′ be the finite A-subalgebra of K ′ generated by x1, . . . , xn. Note that
A′ is a domain with fraction fieldK ′. By Algebra, Lemma 46.7 we see thatA→ A′ induces
a universal homeomorphism on spectra. Set Y ′ = Spec(A′). Set X ′ = (Y ′ ×Y X)red.
The generic fibre of X ′ → Y ′ is (XK)red by Lemma 24.6 which is geometrically reduced
by construction. Note that X ′ → XV is a finite universal homeomorphism as the com-
position of the reduction morphism X ′ → Y ′ ×Y X (see Morphisms, Lemma 45.6) and
the base change of g. At this point all of the properties of the lemma hold except for pos-
sibly (7). This can be achieved by shrinking Y ′ and hence V , see Morphisms, Proposition
27.1. �
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Lemma 24.8. Let f : X → Y be a morphism of schemes. Assume thatY is irreducible
and f is of finite type. There exists a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

where
(1) V is a nonempty open of Y ,
(2) XV = V ×Y X ,
(3) g : Y ′ → V is surjective finite étale,
(4) X ′ = Y ′ ×Y X = Y ′ ×V XV ,
(5) g′ is surjective finite étale,
(6) Y ′ is an irreducible affine scheme, and
(7) all irreducible components of the generic fibre of f ′ are geometrically irreducible.

Proof. Let V = Spec(A) be a nonempty affine open of Y . By assumption the Jacob-
son radical of A is a prime ideal p. Let K = κ(p). By Varieties, Lemma 8.15 there exists
a finite separable field extension K ′/K such that all irreducible components of XK′ are
geometrically irreducible over K ′. Choose an element α ∈ K ′ which generates K ′ over
K , see Fields, Lemma 19.1. Let P (T ) ∈ K[T ] be the minimal polynomial for α over K.
After replacing α by fα for some f ∈ A, f 6∈ p we may assume that there exists a monic
polynomial T d+a1T

d−1 + . . .+ad ∈ A[T ] which maps to P (T ) ∈ K[T ] under the map
A[T ]→ K[T ]. SetA′ = A[T ]/(P ). ThenA→ A′ is a finite free ring map such that there
exists a unique prime q lying over p, such that K = κ(p) ⊂ κ(q) = K ′ is finite separable,
and such that pA′

q is the maximal ideal ofA′
q. Hence g : Y ′ = Spec(A′)→ V = Spec(A)

is étale at q, see Algebra, Lemma 143.7. This means that there exists an openW ⊂ Spec(A′)
such that g|W : W → Spec(A) is étale. Since g is finite and since q is the only point lying
over p we see that Z = g(Y ′ \W ) is a closed subset of V not containing p. Hence after
replacing V by a principal affine open of V which does not meet Z we obtain that g is
finite étale. �

25. Relative assassins

Lemma 25.1. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. Let ξ ∈ AssX/S(F) and set Z = {ξ} ⊂ X . If f is locally of finite type and
F is a finite type OX -module, then there exists a nonempty open V ⊂ Z such that for
every s ∈ f(V ) the generic points of Vs are elements of AssX/S(F).

Proof. We may replace S by an affine open neighbourhood of f(ξ) and X by an
affine open neighbourhood of ξ. Hence we may assume S = Spec(A), X = Spec(B) and
that f is given by the finite type ring mapA→ B, see Morphisms, Lemma 15.2. Moreover,
we may writeF = M̃ for some finiteB-moduleM , see Properties, Lemma 16.1. Let q ⊂ B
be the prime corresponding to ξ and let p ⊂ A be the corresponding prime of A. By
assumption q ∈ AssB(M ⊗A κ(p)), see Algebra, Remark 65.6 and Divisors, Lemma 2.2.
With this notation Z = V (q) ⊂ Spec(B). In particular f(Z) ⊂ V (p). Hence clearly it
suffices to prove the lemma after replacing A, B, and M by A/pA, B/pB, and M/pM .
In other words we may assume that A is a domain with fraction field K and q ⊂ B is an
associated prime of M ⊗A K.
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At this point we can use generic flatness. Namely, by Algebra, Lemma 118.3 there exists
a nonzero g ∈ A such that Mg is flat as an Ag-module. After replacing A by Ag we may
assume that M is flat as an A-module.

In this case, by Algebra, Lemma 65.4 we see that q is also an associated prime ofM . Hence
we obtain an injectiveB-module mapB/q→M . LetQ be the cokernel so that we obtain
a short exact sequence

0→ B/q→M → Q→ 0
of finiteB-modules. After applying generic flatness Algebra, Lemma 118.3 once more, this
time to the B-module Q, we may assume that Q is a flat A-module. In particular we may
assume the short exact sequence above is universally injective, see Algebra, Lemma 39.12.
In this situation (B/q) ⊗A κ(p′) ⊂ M ⊗A κ(p′) for any prime p′ of A. The lemma
follows as a minimal prime q′ of the support of (B/q)⊗A κ(p′) is an associated prime of
(B/q)⊗A κ(p′) by Divisors, Lemma 2.9. �

Lemma 25.2. Let f : X → Y be a morphism of schemes. Let F be a quasi-coherent
OX -module. Let U ⊂ X be an open subscheme. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) Y is irreducible with generic point η, and
(4) AssXη (Fη) is not contained in Uη .

Then there exists a nonempty open subscheme V ⊂ Y such that for all y ∈ V the set
AssXy (Fy) is not contained in Uy .

Proof. Let Z ⊂ X be the scheme theoretic support of F , see Morphisms, Definition
5.5. ThenZη is the scheme theoretic support ofFη (Morphisms, Lemma 25.14). Hence the
generic points of irreducible components of Zη are contained in AssXη (Fη) by Divisors,
Lemma 2.9. Hence we see that Zη ∩ Uη = ∅. Thus T = Z \ U is a closed subset of Z
with Tη = ∅. If we endow T with the induced reduced scheme structure then T → Y is a
morphism of finite type. By Lemma 24.1 there is a nonempty open V ⊂ Y with TV = ∅.
Then V works. �

Lemma 25.3. Let f : X → Y be a morphism of schemes. Let F be a quasi-coherent
OX -module. Let U ⊂ X be an open subscheme. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) Y is irreducible with generic point η, and
(4) AssXη (Fη) ⊂ Uη .

Then there exists a nonempty open subscheme V ⊂ Y such that for all y ∈ V we have
AssXy (Fy) ⊂ Uy .

Proof. (This proof is the same as the proof of Lemma 24.4. We urge the reader to
read that proof first.) Since the statement is about fibres it is clear that we may replace Y
by its reduction. Hence we may assume that Y is integral, see Properties, Lemma 3.4. We
may also assume that Y = Spec(A) is affine. Then A is a domain with fraction field K.

As f is of finite type we see that X is quasi-compact. Write X = X1 ∪ . . .∪Xn for some
affine opens Xi and set Fi = F|Xi . By assumption the generic fibre of Ui = Xi ∩ U
contains AssXi,η (Fi,η). Thus it suffices to prove the result for the triples (Xi,Fi, Ui), in
other words we may assume that X is affine.



3176 37. MORE ON MORPHISMS

Write X = Spec(B). Let N be a finite B-module such that F = Ñ . Note that BK
is Noetherian as it is a finite type K-algebra. Hence Uη is quasi-compact. Thus we can
find finitely many g1, . . . , gm ∈ B such that D(gj) ⊂ U and such that Uη = D(g1)η ∪
. . . ∪ D(gm)η . Since AssXη (Fη) ⊂ Uη we see that NK →

⊕
j(NK)gj is injective. By

Algebra, Lemma 24.4 this is equivalent to the injectivity of NK →
⊕

j=1,...,mNK , n 7→
(g1n, . . . , gmn). Let I andM be the kernel and cokernel of this map overA, i.e., such that
we have an exact sequence

0→ I → N
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

N →M → 0

After replacing A by Ah for some nonzero h we may assume that B is a flat, finitely pre-
sented A-algebra and that both M and N are flat over A, see Algebra, Lemma 118.3. The
flatness of N over A implies that N is torsion free as an A-module, see More on Algebra,
Lemma 22.9. Hence N ⊂ NK . By construction IK = 0 which implies that I = 0 (as
I ⊂ N ⊂ NK is a subset of IK ). Hence now we have a short exact sequence

0→ N
(g1,...,gm)−−−−−−→

⊕
j=1,...,m

N →M → 0

with M flat over A. Hence for every homomorphism A→ κ where κ is a field, we obtain
a short exact sequence

0→ N ⊗A κ
(g1⊗1,...,gm⊗1)−−−−−−−−−−→

⊕
j=1,...,m

N ⊗A κ→M ⊗A κ→ 0

see Algebra, Lemma 39.12. Reversing the arguments above this means that
⋃
D(gj ⊗ 1)

contains AssB⊗Aκ(N ⊗A κ). As
⋃
D(gj ⊗ 1) =

⋃
D(gj)κ ⊂ Uκ we obtain that Uκ

contains AssX⊗κ(F ⊗ κ) which is what we wanted to prove. �

Lemma 25.4. Let f : X → S be a morphism which is locally of finite type. Let F
be a quasi-coherent OX -module of finite type. Let U ⊂ X be an open subscheme. Let
g : S′ → S be a morphism of schemes, let f ′ : X ′ = XS′ → S′ be the base change of f ,
let g′ : X ′ → X be the projection, set F ′ = (g′)∗F , and set U ′ = (g′)−1(U). Finally, let
s′ ∈ S′ with image s = g(s′). In this case

AssXs(Fs) ⊂ Us ⇔ AssX′
s′

(F ′
s′) ⊂ U ′

s′ .

Proof. This follows immediately from Divisors, Lemma 7.3. See also Divisors, Re-
mark 7.4. �

Lemma 25.5. Let f : X → Y be a morphism of finite presentation. Let F be a quasi-
coherent OX -module of finite presentation. Let U ⊂ X be an open subscheme such that
U → Y is quasi-compact. Then the set

E = {y ∈ Y | AssXy (Fy) ⊂ Uy}
is locally constructible in Y .

Proof. Let y ∈ Y . We have to show that there exists an open neighbourhood V of
y in Y such thatE ∩V is constructible in V . Thus we may assume that Y is affine. Write
Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras. By Limits,
Lemma 10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite presentation
whose base change to Y recovers f . After possibly increasing iwe may assume there exists
a quasi-coherentOXi -moduleFi of finite presentation whose pullback toX is isomorphic
to F , see Limits, Lemma 10.2. After possibly increasing i one more time we may assume
there exists an open subschemeUi ⊂ Xi whose inverse image inX isU , see Limits, Lemma
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4.11. By Lemma 25.4 it suffices to prove the lemma for fi. Thus we reduce to the case where
Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 16.3 to prove thatE is constructible in case
Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed subscheme. We
have to show that E ∩ Z either contains a nonempty open subset or is not dense in Z.
This follows from Lemmas 25.2 and 25.3 applied to the base change (X,F , U)×Y Z over
Z. �

26. Reduced fibres

Lemma 26.1. Let f : X → Y be a morphism of schemes. Assume Y irreducible with
generic point η and f of finite type. If Xη is nonreduced, then there exists a nonempty
open V ⊂ Y such that for all y ∈ V the fibre Xy is nonreduced.

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → Y ′ be the base change of f .
Note that Y ′ → Y induces a bijection on points and thatX ′ → X identifies fibres. Hence
we may assume that Y ′ is reduced, i.e., integral, see Properties, Lemma 3.4. We may also
replace Y by an affine open. Hence we may assume that Y = Spec(A) with A a domain.
Denote K the fraction field of A. Pick an affine open Spec(B) = U ⊂ X and a section
hη ∈ Γ(Uη,OUη ) = BK which is nonzero and nilpotent. After shrinking Y we may
assume that h comes from h ∈ Γ(U,OU ) = B. After shrinking Y a bit more we may
assume that h is nilpotent. Let I = {b ∈ B | hb = 0} be the annihilator of h. Then
C = B/I is a finite type A-algebra whose generic fiber (B/I)K is nonzero (as hη 6= 0).
We apply generic flatness to A → C and A → B/hB, see Algebra, Lemma 118.3, and we
obtain a g ∈ A, g 6= 0 such that Cg is free as an Ag-module and (B/hB)g is flat as an
Ag-module. Replace Y by D(g) ⊂ Y . Now we have the short exact sequence

0→ C → B → B/hB → 0.

with B/hB flat over A and with C nonzero free as an A-module. It follows that for any
homomorphism A→ κ to a field the ring C ⊗A κ is nonzero and the sequence

0→ C ⊗A κ→ B ⊗A κ→ B/hB ⊗A κ→ 0

is exact, see Algebra, Lemma 39.12. Note that B/hB ⊗A κ = (B ⊗A κ)/h(B ⊗A κ) by
right exactness of tensor product. Thus we conclude that multiplication by h is not zero
on B ⊗A κ. This clearly means that for any point y ∈ Y the element h restricts to a
nonzero element of Uy , whence Xy is nonreduced. �

Lemma 26.2. Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be any
morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′
y′ is geometrically reduced}

= g−1({y ∈ Y | Xy is geometrically reduced}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y the
fibreX ′

y′ = Xy×yy′ is geometrically reduced over κ(y′) if and only ifXy is geometrically
reduced over κ(y). This follows from Varieties, Lemma 6.6. �

Lemma 26.3. Let f : X → Y be a morphism of schemes. Assume Y irreducible with
generic point η and f of finite type. IfXη is not geometrically reduced, then there exists a
nonempty open V ⊂ Y such that for all y ∈ V the fibreXy is not geometrically reduced.



3178 37. MORE ON MORPHISMS

Proof. Apply Lemma 24.7 to get

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

with all the properties mentioned in that lemma. Let η′ be the generic point of Y ′. Con-
sider the morphism X ′ → XY ′ (which is the reduction morphism) and the resulting
morphism of generic fibres X ′

η′ → Xη′ . Since X ′
η′ is geometrically reduced, and Xη is

not this cannot be an isomorphism, see Varieties, Lemma 6.6. Hence Xη′ is nonreduced.
Hence by Lemma 26.1 the fibres of XY ′ → Y ′ are nonreduced at all points y′ ∈ V ′ of a
nonempty open V ′ ⊂ Y ′. Since g : Y ′ → V is a homeomorphism Lemma 26.2 proves
that g(V ′) is the open we are looking for. �

Lemma 26.4. Let f : X → Y be a morphism of schemes. Assume
(1) Y is irreducible with generic point η,
(2) Xη is geometrically reduced, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has geometri-
cally reduced fibres.

Proof. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → Y ′ be the base change of f .
Note that Y ′ → Y induces a bijection on points and thatX ′ → X identifies fibres. Hence
we may assume that Y ′ is reduced, i.e., integral, see Properties, Lemma 3.4. We may also
replace Y by an affine open. Hence we may assume that Y = Spec(A) with A a domain.
DenoteK the fraction field ofA. After shrinking Y a bit we may also assume thatX → Y
is flat and of finite presentation, see Morphisms, Proposition 27.1.

As Xη is geometrically reduced there exists an open dense subset V ⊂ Xη such that
V → Spec(K) is smooth, see Varieties, Lemma 25.7. Let U ⊂ X be the set of points
where f is smooth. By Morphisms, Lemma 34.15 we see that V ⊂ Uη . Thus the generic
fibre of U is dense in the generic fibre of X . Since Xη is reduced, it follows that Uη is
scheme theoretically dense in Xη , see Morphisms, Lemma 7.8. We note that as U → Y is
smooth all the fibres of U → Y are geometrically reduced. Thus it suffices to show that,
after shrinking Y , for all y ∈ Y the scheme Uy is scheme theoretically dense in Xy , see
Morphisms, Lemma 7.9. This follows from Lemma 24.4. �

Lemma 26.5. Let f : X → Y be a morphism which is quasi-compact and locally of
finite presentation. Then the set

E = {y ∈ Y | Xy is geometrically reduced}

is locally constructible in Y .

Proof. Let y ∈ Y . We have to show that there exists an open neighbourhood V
of y in Y such that E ∩ V is constructible in V . Thus we may assume that Y is affine.
Then X is quasi-compact. Choose a finite affine open covering X = U1 ∪ . . .∪Un. Then
the fibres of Ui → Y at y form an affine open covering of the fibre of X → Y at y.
Hence we may assume X is affine as well. Write Y = Spec(A). Write A = colimAi as
a directed limit of finite type Z-algebras. By Limits, Lemma 10.1 we can find an i and a
morphism fi : Xi → Spec(Ai) of finite presentation whose base change to Y recovers f .
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By Lemma 26.2 it suffices to prove the lemma for fi. Thus we reduce to the case where Y
is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 16.3 to prove thatE is constructible in case
Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed subscheme. We
have to show thatE∩Z either contains a nonempty open subset or is not dense inZ. IfXξ

is geometrically reduced, then Lemma 26.4 (applied to the morphism XZ → Z) implies
that all fibres Xy are geometrically reduced for a nonempty open V ⊂ Z. If Xξ is not
geometrically reduced, then Lemma 26.3 (applied to the morphismXZ → Z) implies that
all fibres Xy are geometrically reduced for a nonempty open V ⊂ Z. Thus we win. �

Lemma 26.6. Let X → Spec(R) be a proper flat morphism where R is a discrete
valuation ring. If the special fibre is reduced, then both X and the generic fibre Xη are
reduced.

Proof. Assume the special fibre Xs is reduced. Let x ∈ X be any point, and let us
show that OX,x is reduced; this will prove that X and Xη are reduced. Let x  x′ be a
specialization with x′ in the special fibre; such a specialization exists as a proper morphism
is closed. Consider the local ring A = OX,x′ . Then OX,x is a localization of A, so it
suffices to show that A is reduced. Let π ∈ R be a uniformizer. If a ∈ A then there
exists an n ≥ 0 and an element a′ ∈ A such that a = πna′ and a′ 6∈ πA. This follows
from Krull intersection theorem (Algebra, Lemma 51.4). If a is nilpotent, so is a′, because
π is a nonzerodivisor by flatness of A over R. But a′ maps to a nonzero element of the
reduced ring A/πA = OXs,x′ . This is a contradiction unless A is reduced, which is what
we wanted to show. �

Lemma 26.7. Let f : X → Y be a flat proper morphism of finite presentation. Then
the set {y ∈ Y | Xy is geometrically reduced} is open in Y .

Proof. We may assume Y is affine. Then Y is a cofiltered limit of affine schemes of
finite type over Z. Hence we can assume X → Y is the base change of X0 → Y0 where
Y0 is the spectrum of a finite type Z-algebra and X0 → Y0 is flat and proper. See Limits,
Lemma 10.1, 8.7, and 13.1. Since the formation of the set of points where the fibres are
geometrically reduced commutes with base change (Lemma 26.2), we may assume the base
is Noetherian.

Assume Y is Noetherian. The set is constructible by Lemma 26.5. Hence it suffices to show
the set is stable under generalization (Topology, Lemma 19.10). By Properties, Lemma 5.10
we reduce to the case where Y = Spec(R), R is a discrete valuation ring, and the closed
fibreXy is geometrically reduced. To show: the generic fibreXη is geometrically reduced.

If not then there exists a finite extension L of the fraction field of R such that XL is not
reduced, see Varieties, Lemma 6.4. There exists a discrete valuation ring R′ ⊂ L with
fraction field L dominating R, see Algebra, Lemma 120.18. After replacing R by R′ we
reduce to Lemma 26.6. �

27. Irreducible components of fibres

Lemma 27.1. Let f : X → Y be a morphism of schemes. Assume Y irreducible with
generic point η and f of finite type. IfXη has n irreducible components, then there exists
a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has at least n irreducible
components.
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Proof. As the question is purely topological we may replace X and Y by their re-
ductions. In particular this implies that Y is integral, see Properties, Lemma 3.4. LetXη =
X1,η ∪ . . . ∪Xn,η be the decomposition of Xη into irreducible components. Let Xi ⊂ X
be the reduced closed subscheme whose generic fibre is Xi,η . Note that Zi,j = Xi ∩ Xj

is a closed subset of Xi whose generic fibre Zi,j,η is nowhere dense in Xi,η . Hence after
shrinking Y we may assume that Zi,j,y is nowhere dense in Xi,y for every y ∈ Y , see
Lemma 24.3. After shrinking Y some more we may assume that Xy =

⋃
Xi,y for y ∈ Y ,

see Lemma 24.5. Moreover, after shrinking Y we may assume that each Xi → Y is flat
and of finite presentation, see Morphisms, Proposition 27.1. The morphisms Xi → Y
are open, see Morphisms, Lemma 25.10. Thus there exists an open neighbourhood V of η
which is contained in f(Xi) for each i. For each y ∈ V the schemes Xi,y are nonempty
closed subsets ofXy , we haveXy =

⋃
Xi,y and the intersections Zi,j,y = Xi,y ∩Xj,y are

not dense inXi,y . Clearly this implies thatXy has at least n irreducible components. �

Lemma 27.2. Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be any
morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′
y′ is geometrically irreducible}

= g−1({y ∈ Y | Xy is geometrically irreducible}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y the fibre
X ′
y′ = Xy ×y y′ is geometrically irreducible over κ(y′) if and only ifXy is geometrically

irreducible over κ(y). This follows from Varieties, Lemma 8.2. �

Lemma 27.3. Let f : X → Y be a morphism of schemes. Let

nX/Y : Y → {0, 1, 2, 3, . . . ,∞}

be the function which associates to y ∈ Y the number of irreducible components of (Xy)K
whereK is a separably closed extension of κ(y). This is well defined and if g : Y ′ → Y is
a morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .

Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Suppose K ⊃ κ(y) and K ′ ⊃ κ(y′)
are separably closed extensions. Then we may choose a commutative diagram

K // K ′′ K ′oo

κ(y)

OO

// κ(y′)

OO

of fields. The result follows as the morphisms of schemes

(X ′
y′)K′ (X ′

y′)K′′ = (Xy)K′′oo // (Xy)K

induce bijections between irreducible components, see Varieties, Lemma 8.7. �

Lemma 27.4. Let A be a domain with fraction field K. Let P ∈ A[x1, . . . , xn].
Denote K the algebraic closure of K. Assume P is irreducible in K[x1, . . . , xn]. Then
there exists a f ∈ A such that Pϕ ∈ κ[x1, . . . , xn] is irreducible for all homomorphisms
ϕ : Af → κ into fields.
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Proof. There exists an automorphism Ψ of A[x1, . . . , xn] over A such that Ψ(P ) =
axdn+ lower order terms in xn with a 6= 0, see Algebra, Lemma 115.2. We may replace
P by Ψ(P ) and we may replace A by Aa. Thus we may assume that P is monic in xn of
degree d > 0. For i = 1, . . . , n− 1 let di be the degree of P in xi. Note that this implies
that Pϕ is monic of degree d in xn and has degree ≤ di in xi for every homomorphism
ϕ : A→ κ where κ is a field. Thus if Pϕ is reducible, then we can write

Pϕ = Q1Q2

with Q1, Q2 monic of degree e1, e2 ≥ 0 in xn with e1 + e2 = d and having degree ≤ di
in xi for i = 1, . . . , n− 1. In other words we can write

(27.4.1) Qj = xejn +
∑

0≤l<ej

(∑
L∈L

aj,l,Lx
L
)
xln

where the sum is over the set L of multi-indices L of the form L = (l1, . . . , ln−1) with
0 ≤ li ≤ di. For any e1, e2 ≥ 0 with e1 + e2 = d we consider the A-algebra

Be1,e2 = A[{a1,l,L}0≤l<e1,L∈L, {a2,l,L}0≤l<e2,L∈L]/(relations)
where the (relations) is the ideal generated by the coefficients of the polynomial

P −Q1Q2 ∈ A[{a1,l,L}0≤l<e1,L∈L, {a2,l,L}0≤l<e2,L∈L][x1, . . . , xn]
with Q1 and Q2 defined as in (27.4.1). OK, and the assumption that P is irreducible over
K implies that there does not exist any A-algebra homomorphism Be1,e2 → K. By the
Hilbert Nullstellensatz, see Algebra, Theorem 34.1 this means that Be1,e2 ⊗A K = 0.
As Be1,e2 is a finitely generated A-algebra this signifies that we can find an fe1,e2 ∈ A
such that (Be1,e2)fe1,e2

= 0. By construction this means that if ϕ : Afe1,e2
→ κ is a

homomorphism to a field, then Pϕ does not have a factorization Pϕ = Q1Q2 with Q1 of
degree e1 in xn and Q2 of degree e2 in xn. Thus taking f =

∏
e1,e2≥0,e1+e2=d fe1,e2 we

win. �

Lemma 27.5. Let f : X → Y be a morphism of schemes. Assume
(1) Y is irreducible with generic point η,
(2) Xη is geometrically irreducible, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has geometri-
cally irreducible fibres.

First proof of Lemma 27.5. We give two proofs of the lemma. These are essentially
equivalent; the second is more self contained but a bit longer. Choose a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

as in Lemma 24.7. Note that the generic fibre of f ′ is the reduction of the generic fibre of f
(see Lemma 24.6) and hence is geometrically irreducible. Suppose that the lemma holds for
the morphism f ′. Then after shrinking V all the fibres of f ′ are geometrically irreducible.
As X ′ = (Y ′ ×V XV )red this implies that all the fibres of Y ′ ×V XV are geometrically
irreducible. Hence by Lemma 27.2 all the fibres of XV → V are geometrically irreducible
and we win. In this way we see that we may assume that the generic fibre is geometrically
reduced as well as geometrically irreducible and we may assume Y = Spec(A) with A a
domain.
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Let x ∈ Xη be the generic point. As Xη is geometrically irreducible and reduced we
see that L = κ(x) is a finitely generated extension of K = κ(η) which is geometri-
cally reduced and geometrically irreducible, see Varieties, Lemmas 6.2 and 8.6. In partic-
ular the field extension L/K is separable, see Algebra, Lemma 44.1. Hence we can find
x1, . . . , xr+1 ∈ L which generate L over K and such that x1, . . . , xr is a transcendence
basis for L over K , see Algebra, Lemma 42.3. Let P ∈ K(x1, . . . , xr)[T ] be the minimal
polynomial for xr+1. Clearing denominators we may assume that P has coefficients in
A[x1, . . . , xr]. Note that as L is geometrically reduced and geometrically irreducible over
K , the polynomial P is irreducible in K[x1, . . . , xr, T ] where K is the algebraic closure
of K. Denote

B′ = A[x1, . . . , xr+1]/(P (xr+1))
and set X ′ = Spec(B′). By construction the fraction field of B′ is isomorphic to L =
κ(x) as K-extensions. Hence there exists an open U ⊂ X , and open U ′ ⊂ X ′ and a
Y -isomorphism U → U ′, see Morphisms, Lemma 50.7. Here is a diagram:

X

��

Uoo

��

U ′ //

��

X ′

~~

Spec(B′)

Y Y

Note that Uη ⊂ Xη and U ′
η ⊂ X ′

η are dense opens. Thus after shrinking Y by applying
Lemma 24.3 we obtain that Uy is dense in Xy and U ′

y is dense in X ′
y for all y ∈ Y . Thus

it suffices to prove the lemma for X ′ → Y which is the content of Lemma 27.4. �

Second proof of Lemma 27.5. Let Y ′ ⊂ Y be the reduction of Y . Let X ′ → X be
the reduction ofX . Note thatX ′ → X → Y factors throughY ′, see Schemes, Lemma 12.7.
As Y ′ → Y and X ′ → X are universal homeomorphisms by Morphisms, Lemma 45.6 we
see that it suffices to prove the lemma for X ′ → Y ′. Thus we may assume that X and Y
are reduced. In particular Y is integral, see Properties, Lemma 3.4. Thus by Morphisms,
Proposition 27.1 there exists a nonempty affine open V ⊂ Y such thatXV → V is flat and
of finite presentation. After replacing Y by V we may assume, in addition to (1), (2), (3)
that Y is integral affine,X is reduced, and f is flat and of finite presentation. In particular
f is universally open, see Morphisms, Lemma 25.10.

Pick a nonempty affine open U ⊂ X . Then U → Y is flat and of finite presentation with
geometrically irreducible generic fibre. The complementXη \Uη is nowhere dense. Thus
after shrinking Y we may assume Uy ⊂ Xy is open dense for all y ∈ Y , see Lemma 24.3.
Thus we may replace X by U and we reduce to the case where Y is integral affine and
X is reduced affine, flat and of finite presentation over Y with geometrically irreducible
generic fibre Xη .

Write X = Spec(B) and Y = Spec(A). Then A is a domain, B is reduced, A → B
is flat of finite presentation, and BK is geometrically irreducible over the fraction field
K of A. In particular we see that BK is a domain. Let L be the fraction field of BK .
Note that L is a finitely generated field extension of K as B is an A-algebra of finite
presentation. LetK ′/K be a finite purely inseparable extension such that (L⊗KK ′)red is
a separably generated field extension, see Algebra, Lemma 45.3. Choose x1, . . . , xn ∈ K ′

which generate the field extension K ′ over K , and such that xqii ∈ A for some prime
power qi (proof existence xi omitted). Let A′ be the A-subalgebra of K ′ generated by
x1, . . . , xn. ThenA′ is a finiteA-subalgebraA′ ⊂ K ′ whose fraction field isK ′. Note that
Spec(A′)→ Spec(A) is a universal homeomorphism, see Algebra, Lemma 46.7. Hence it
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suffices to prove the result after base changing to Spec(A′). We are going to replace A
by A′ and B by (B ⊗A A′)red to arrive at the situation where L is a separably generated
field extension of K. Of course it may happen that (B ⊗A A′)red is no longer flat, or of
finite presentation over A′, but this can be remedied by replacing A′ by A′

f for a suitable
f ∈ A′, see Algebra, Lemma 118.3.

At this point we know thatA is a domain,B is reduced,A→ B is flat and of finite presen-
tation,BK is a domain whose fraction fieldL is a separably generated field extension of the
fraction fieldK ofA. By Algebra, Lemma 42.3 we may writeL = K(x1, . . . , xr+1) where
x1, . . . , xr are algebraically independent overK , andxr+1 is separable overK(x1, . . . , xr).
After clearing denominators we may assume that the minimal polynomialP ∈ K(x1, . . . , xr)[T ]
of xr+1 overK(x1, . . . , xr) has coefficients inA[x1, . . . , xr]. Note that since L/K is sep-
arable and since L is geometrically irreducible over K , the polynomial P is irreducible
over the algebraic closure K of K. Denote

B′ = A[x1, . . . , xr+1]/(P (xr+1)).

By construction the fraction fields of B and B′ are isomorphic as K-extensions. Hence
there exists an isomorphism of A-algebras Bh ∼= B′

h′ for suitable h ∈ B and h′ ∈ B′, see
Morphisms, Lemma 50.7. In other words X and X ′ = Spec(B′) have a common affine
open U . Here is a diagram:

X = Spec(B)

((

Uoo //

��

Spec(B′) = X ′

vv
Y = Spec(A)

After shrinkingY once more (by applying Lemma 24.3 toZ = X\U inX andZ ′ = X ′\U
in X ′) we see that Uy is dense in Xy and Uy is dense in X ′

y for all y ∈ Y . Thus it suffices
to prove the lemma for X ′ → Y which is the content of Lemma 27.4. �

Lemma 27.6. Let f : X → Y be a morphism of schemes. LetnX/Y be the function on
Y counting the numbers of geometrically irreducible components of fibres of f introduced
in Lemma 27.3. Assume f of finite type. Let y ∈ Y be a point. Then there exists a
nonempty open V ⊂ {y} such that nX/Y |V is constant.

Proof. Let Z be the reduced induced scheme structure on {y}. Let fZ : XZ → Z be
the base change of f . Clearly it suffices to prove the lemma for fZ and the generic point
of Z. Hence we may assume that Y is an integral scheme, see Properties, Lemma 3.4. Our
goal in this case is to produce a nonempty open V ⊂ Y such that nX/Y |V is constant.

We apply Lemma 24.8 to f : X → Y and we get g : Y ′ → V ⊂ Y . As g : Y ′ → V
is surjective finite étale, in particular open (see Morphisms, Lemma 36.13), it suffices to
prove that there exists an open V ′ ⊂ Y ′ such that nX′/Y ′ |V ′ is constant, see Lemma 27.3.
Thus we see that we may assume that all irreducible components of the generic fibre Xη

are geometrically irreducible over κ(η).

At this point suppose that Xη = X1,η
⋃
. . .
⋃
Xn,η is the decomposition of the generic

fibre into (geometrically) irreducible components. In particular nX/Y (η) = n. Let Xi be
the closure of Xi,η in X . After shrinking Y we may assume that X =

⋃
Xi, see Lemma

24.5. After shrinking Y some more we see that each fibre of f has at least n irreducible
components, see Lemma 27.1. Hence nX/Y (y) ≥ n for all y ∈ Y . After shrinking Y some
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more we obtain that Xi,y is geometrically irreducible for each i and all y ∈ Y , see Lemma
27.5. Since Xy =

⋃
Xi,y this shows that nX/Y (y) ≤ n and finishes the proof. �

Lemma 27.7. Let f : X → Y be a morphism of schemes. LetnX/Y be the function on
Y counting the numbers of geometrically irreducible components of fibres of f introduced
in Lemma 27.3. Assume f of finite presentation. Then the level sets

En = {y ∈ Y | nX/Y (y) = n}
of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbourhood
V of y in Y such that En ∩ V is constructible in V . Thus we may assume that Y is affine.
Write Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras.
By Limits, Lemma 10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite
presentation whose base change to Y recovers f . By Lemma 27.3 it suffices to prove the
lemma for fi. Thus we reduce to the case where Y is the spectrum of a Noetherian ring.
We will use the criterion of Topology, Lemma 16.3 to prove that En is constructible in
case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed subscheme.
We have to show that En ∩ Z either contains a nonempty open subset or is not dense in
Z. Let ξ ∈ Z be the generic point. Then Lemma 27.6 shows that nX/Y is constant in a
neighbourhood of ξ in Z. This clearly implies what we want. �

28. Connected components of fibres

Lemma 28.1. Let f : X → Y be a morphism of schemes. Assume Y irreducible with
generic point η and f of finite type. If Xη has n connected components, then there exists
a nonempty open V ⊂ Y such that for all y ∈ V the fibre Xy has at least n connected
components.

Proof. As the question is purely topological we may replace X and Y by their re-
ductions. In particular this implies that Y is integral, see Properties, Lemma 3.4. LetXη =
X1,η ∪ . . . ∪Xn,η be the decomposition of Xη into connected components. Let Xi ⊂ X
be the reduced closed subscheme whose generic fibre is Xi,η . Note that Zi,j = Xi ∩ Xj

is a closed subset of X whose generic fibre Zi,j,η is empty. Hence after shrinking Y we
may assume that Zi,j = ∅, see Lemma 24.1. After shrinking Y some more we may assume
that Xy =

⋃
Xi,y for y ∈ Y , see Lemma 24.5. Moreover, after shrinking Y we may

assume that each Xi → Y is flat and of finite presentation, see Morphisms, Proposition
27.1. The morphisms Xi → Y are open, see Morphisms, Lemma 25.10. Thus there exists
an open neighbourhood V of η which is contained in f(Xi) for each i. For each y ∈ V
the schemes Xi,y are nonempty closed subsets of Xy , we have Xy =

⋃
Xi,y and the in-

tersections Zi,j,y = Xi,y ∩ Xj,y are empty! Clearly this implies that Xy has at least n
connected components. �

Lemma 28.2. Let f : X → Y be a morphism of schemes. Let g : Y ′ → Y be any
morphism, and denote f ′ : X ′ → Y ′ the base change of f . Then

{y′ ∈ Y ′ | X ′
y′ is geometrically connected}

= g−1({y ∈ Y | Xy is geometrically connected}).

Proof. This comes down to the statement that for y′ ∈ Y ′ with image y ∈ Y the fibre
X ′
y′ = Xy ×y y′ is geometrically connected over κ(y′) if and only if Xy is geometrically

connected over κ(y). This follows from Varieties, Lemma 7.3. �
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Lemma 28.3. Let f : X → Y be a morphism of schemes. Let

nX/Y : Y → {0, 1, 2, 3, . . . ,∞}
be the function which associates to y ∈ Y the number of connected components of (Xy)K
whereK is a separably closed extension of κ(y). This is well defined and if g : Y ′ → Y is
a morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .

Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Suppose K ⊃ κ(y) and K ′ ⊃ κ(y′)
are separably closed extensions. Then we may choose a commutative diagram

K // K ′′ K ′oo

κ(y)

OO

// κ(y′)

OO

of fields. The result follows as the morphisms of schemes

(X ′
y′)K′ (X ′

y′)K′′ = (Xy)K′′oo // (Xy)K

induce bijections between connected components, see Varieties, Lemma 7.6. �

Lemma 28.4. Let f : X → Y be a morphism of schemes. Assume
(1) Y is irreducible with generic point η,
(2) Xη is geometrically connected, and
(3) f is of finite type.

Then there exists a nonempty open subscheme V ⊂ Y such that XV → V has geometri-
cally connected fibres.

Proof. Choose a diagram

X ′

f ′

��

g′
// XV

//

��

X

f

��
Y ′ g // V // Y

as in Lemma 24.8. Note that the generic fibre of f ′ is geometrically connected (for example
by Lemma 28.3). Suppose that the lemma holds for the morphism f ′. This means that
there exists a nonempty open W ⊂ Y ′ such that every fibre of X ′ → Y ′ over W is
geometrically connected. Then, as g is an open morphism by Morphisms, Lemma 36.13 all
the fibres of f at points of the nonempty open V = g(W ) are geometrically connected,
see Lemma 28.3. In this way we see that we may assume that the irreducible components
of the generic fibre Xη are geometrically irreducible.

Let Y ′ be the reduction of Y , and setX ′ = Y ′×Y X . Then it suffices to prove the lemma
for the morphism X ′ → Y ′ (for example by Lemma 28.3 once again). Since the generic
fibre of X ′ → Y ′ is the same as the generic fibre of X → Y we see that we may assume
that Y is irreducible and reduced (i.e., integral, see Properties, Lemma 3.4) and that the
irreducible components of the generic fibre Xη are geometrically irreducible.

At this point suppose that Xη = X1,η
⋃
. . .
⋃
Xn,η is the decomposition of the generic

fibre into (geometrically) irreducible components. Let Xi be the closure of Xi,η in X .
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After shrinking Y we may assume that X =
⋃
Xi, see Lemma 24.5. Let Zi,j = Xi ∩Xj .

Let
{1, . . . , n} × {1, . . . , n} = I q J

where (i, j) ∈ I if Zi,j,η = ∅ and (i, j) ∈ J if Zi,j,η 6= ∅. After shrinking Y we may
assume that Zi,j = ∅ for all (i, j) ∈ I , see Lemma 24.1. After shrinking Y we obtain
that Xi,y is geometrically irreducible for each i and all y ∈ Y , see Lemma 27.5. After
shrinking Y some more we achieve the situation where each Zi,j → Y is flat and of
finite presentation for all (i, j) ∈ J , see Morphisms, Proposition 27.1. This means that
f(Zi,j) ⊂ Y is open, see Morphisms, Lemma 25.10. We claim that

V =
⋂

(i,j)∈J
f(Zi,j)

works, i.e., that Xy is geometrically connected for each y ∈ V . Namely, the fact that Xη

is connected implies that the equivalence relation generated by the pairs in J has only
one equivalence class. Now if y ∈ V and K ⊃ κ(y) is a separably closed extension,
then the irreducible components of (Xy)K are the fibres (Xi,y)K . Moreover, we see by
construction and y ∈ V that (Xi,y)K meets (Xj,y)K if and only if (i, j) ∈ J . Hence the
remark on equivalence classes shows that (Xy)K is connected and we win. �

Lemma 28.5. Let f : X → Y be a morphism of schemes. LetnX/Y be the function on
Y counting the numbers of geometrically connected components of fibres of f introduced
in Lemma 28.3. Assume f of finite type. Let y ∈ Y be a point. Then there exists a
nonempty open V ⊂ {y} such that nX/Y |V is constant.

Proof. Let Z be the reduced induced scheme structure on {y}. Let fZ : XZ → Z be
the base change of f . Clearly it suffices to prove the lemma for fZ and the generic point
of Z. Hence we may assume that Y is an integral scheme, see Properties, Lemma 3.4. Our
goal in this case is to produce a nonempty open V ⊂ Y such that nX/Y |V is constant.

We apply Lemma 24.8 to f : X → Y and we get g : Y ′ → V ⊂ Y . As g : Y ′ → V
is surjective finite étale, in particular open (see Morphisms, Lemma 36.13), it suffices to
prove that there exists an open V ′ ⊂ Y ′ such that nX′/Y ′ |V ′ is constant, see Lemma 27.3.
Thus we see that we may assume that all irreducible components of the generic fibre Xη

are geometrically irreducible over κ(η). By Varieties, Lemma 8.16 this implies that also
the connected components of Xη are geometrically connected.

At this point suppose that Xη = X1,η
⋃
. . .
⋃
Xn,η is the decomposition of the generic

fibre into (geometrically) connected components. In particular nX/Y (η) = n. Let Xi be
the closure of Xi,η in X . After shrinking Y we may assume that X =

⋃
Xi, see Lemma

24.5. After shrinking Y some more we see that each fibre of f has at least n connected
components, see Lemma 28.1. Hence nX/Y (y) ≥ n for all y ∈ Y . After shrinking Y some
more we obtain that Xi,y is geometrically connected for each i and all y ∈ Y , see Lemma
28.4. Since Xy =

⋃
Xi,y this shows that nX/Y (y) ≤ n and finishes the proof. �

Lemma 28.6. Let f : X → Y be a morphism of schemes. Let nX/Y be the function
on Y counting the numbers of geometric connected components of fibres of f introduced
in Lemma 28.3. Assume f of finite presentation. Then the level sets

En = {y ∈ Y | nX/Y (y) = n}

of nX/Y are locally constructible in Y .
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Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbourhood
V of y in Y such that En ∩ V is constructible in V . Thus we may assume that Y is affine.
Write Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras.
By Limits, Lemma 10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite
presentation whose base change to Y recovers f . By Lemma 28.3 it suffices to prove the
lemma for fi. Thus we reduce to the case where Y is the spectrum of a Noetherian ring.
We will use the criterion of Topology, Lemma 16.3 to prove that En is constructible in
case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed subscheme.
We have to show that En ∩ Z either contains a nonempty open subset or is not dense in
Z. Let ξ ∈ Z be the generic point. Then Lemma 28.5 shows that nX/Y is constant in a
neighbourhood of ξ in Z. This clearly implies what we want. �

Lemma 28.7. Let f : X → S be a morphism of schemes. Assume that
(1) S is the spectrum of a discrete valuation ring,
(2) f is flat,
(3) X is connected,
(4) the closed fibre Xs is reduced.

Then the generic fibre Xη is connected.

Proof. Write S = Spec(R) and let π ∈ R be a uniformizer. To get a contradic-
tion assume that Xη is disconnected. This means there exists a nontrivial idempotent
e ∈ Γ(Xη,OXη ). Let U = Spec(A) be any affine open in X . Note that π is a nonze-
rodivisor on A as A is flat over R, see More on Algebra, Lemma 22.9 for example. Then
e|Uη corresponds to an element e ∈ A[1/π]. Let z ∈ A be an element such that e = z/πn

with n ≥ 0 minimal. Note that z2 = πnz. This means that z mod πA is nilpotent if
n > 0. By assumption A/πA is reduced, and hence minimality of n implies n = 0. Thus
we conclude that e ∈ A! In other words e ∈ Γ(X,OX). AsX is connected it follows that
e is a trivial idempotent which is a contradiction. �

29. Connected components meeting a section

The results in this section are in particular applicable to a group scheme G → S and its
neutral section e : S → G.

Situation 29.1. Here f : X → Y be a morphism of schemes, and s : Y → X is a
section of f . For every y ∈ Y we denote X0

y the connected component of Xy containing
s(y). Finally, we set X0 =

⋃
y∈Y X

0
y .

Lemma 29.2. Let f : X → Y , s : Y → X be as in Situation 29.1. If g : Y ′ → Y is
any morphism, consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′

s′

AA

g // Y

s

]]

so that we obtain (X ′)0 ⊂ X ′. Then (X ′)0 = (g′)−1(X0).

Proof. Let y′ ∈ Y ′ with image y ∈ Y . We may think of X0
y as a closed subscheme

of Xy , see for example Morphisms, Definition 26.3. As s(y) ∈ X0
y we conclude from

Varieties, Lemma 7.14 that X0
y is a geometrically connected scheme over κ(y). Hence

X0
y×y y′ → X ′

y′ is a connected closed subscheme which contains s′(y′). ThusX0
y×y y′ ⊂
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(X ′
y′)0. The other inclusion X0

y ×y y′ ⊃ (X ′
y′)0 is clear as the image of (X ′

y′)0 in Xy is a
connected subset of Xy which contains s(y). �

Lemma 29.3. Let f : X → Y , s : Y → X be as in Situation 29.1. Assume f of finite
type. Let y ∈ Y be a point. Then there exists a nonempty open V ⊂ {y} such that the
inverse image of X0 in the base change XV is open and closed in XV .

Proof. Let Z ⊂ Y be the induced reduced closed subscheme structure on {y}. Let
fZ : XZ → Z and sZ : Z → XZ be the base changes of f and s. By Lemma 29.2 we have
(XZ)0 = (X0)Z . Hence it suffices to prove the lemma for the morphism XZ → Z and
the point x ∈ XZ which maps to the generic point of Z. In other words we have reduced
the problem to the case where Y is an integral scheme (see Properties, Lemma 3.4) with
generic point η. Our goal is to show that after shrinking Y the subsetX0 becomes an open
and closed subset of X .

Note that the schemeXη is of finite type over a field, hence Noetherian. Thus its connected
components are open as well as closed. Hence we may writeXη = X0

η qTη for some open
and closed subset Tη ofXη . Next, let T ⊂ X be the closure of Tη and let X00 ⊂ X be the
closure of X0

η . Note that Tη , resp. X0
η is the generic fibre of T , resp. X00, see discussion

preceding Lemma 24.5. Moreover, that lemma implies that after shrinking Y we may
assume that X = X00 ∪ T (set theoretically). Note that (T ∩ X00)η = Tη ∩ X0

η = ∅.
Hence after shrinking Y we may assume that T ∩X00 = ∅, see Lemma 24.1. In particular
X00 is open inX . Note thatX0

η is connected and has a rational point, namely s(η), hence
it is geometrically connected, see Varieties, Lemma 7.14. Thus after shrinking Y we may
assume that all fibres of X00 → Y are geometrically connected, see Lemma 28.4. At
this point it follows that the fibres X00

y are open, closed, and connected subsets of Xy

containing σ(y). It follows that X0 = X00 and we win. �

Lemma 29.4. Let f : X → Y , s : Y → X be as in Situation 29.1. If f is of finite
presentation then X0 is locally constructible in X .

Proof. Let x ∈ X . We have to show that there exists an open neighbourhoodU of x
such thatX0∩U is constructible inU . This reduces us to the case where Y is affine. Write
Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras. By Limits,
Lemma 10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite presentation,
endowed with a section si : Spec(Ai) → Xi whose base change to Y recovers f and the
section s. By Lemma 29.2 it suffices to prove the lemma for fi, si. Thus we reduce to the
case where Y is the spectrum of a Noetherian ring.

Assume Y is a Noetherian affine scheme. Since f is of finite presentation, i.e., of finite type,
we see that X is a Noetherian scheme too, see Morphisms, Lemma 15.6. In order to prove
the lemma in this case it suffices to show that for every irreducible closed subset Z ⊂ X
the intersection Z ∩ X0 either contains a nonempty open of Z or is not dense in Z , see
Topology, Lemma 16.3. Let x ∈ Z be the generic point, and let y = f(x). By Lemma 29.3
there exists a nonempty open subset V ⊂ {y} such that X0 ∩ XV is open and closed in
XV . Since f(Z) ⊂ {y} and f(x) = y ∈ V we see that W = f−1(V ) ∩ Z is a nonempty
open subset of Z. It follows thatX0 ∩W is open and closed inW . SinceW is irreducible
we see that X0 ∩W is either empty or equal to W . This proves the lemma. �

Lemma 29.5. Let f : X → Y , s : Y → X be as in Situation 29.1. Let y ∈ Y be a
point. Assume
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(1) f is of finite presentation and flat, and
(2) the fibre Xy is geometrically reduced.

Then X0 is a neighbourhood of X0
y in X .

Proof. We may replace Y with an affine open neighbourhood of y. Write Y =
Spec(A) andA = colimAi as a directed limit of finite type Z-algebras. By Limits, Lemma
10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite presentation, endowed
with a section si : Spec(Ai) → Xi whose base change to Y recovers f and the section s.
After possibly increasing i we may also assume that fi is flat, see Limits, Lemma 8.7. Let
yi be the image of y in Yi. Note that Xy = (Xi,yi) ×yi y. Hence Xi,yi is geometrically
reduced, see Varieties, Lemma 6.6. By Lemma 29.2 it suffices to prove the lemma for the
system fi, si, yi ∈ Yi. Thus we reduce to the case where Y is the spectrum of a Noetherian
ring.
Assume Y is the spectrum of a Noetherian ring. Since f is of finite presentation, i.e., of
finite type, we see that X is a Noetherian scheme too, see Morphisms, Lemma 15.6. Let
x ∈ X0 be a point lying over y. By Topology, Lemma 16.4 it suffices to prove that for any
irreducible closed Z ⊂ X passing through x the intersection X0 ∩ Z is dense in Z. In
particular it suffices to prove that the generic point x′ ∈ Z is inX0. By Properties, Lemma
5.10 we can find a discrete valuation ring R and a morphism Spec(R) → X which maps
the special point to x and the generic point to x′. We are going to think of Spec(R) as
a scheme over Y via the composition Spec(R) → X → Y . By Lemma 29.2 we have
that (XR)0 is the inverse image of X0. By construction we have a second section t :
Spec(R) → XR (besides the base change sR of s) of the structure morphism XR →
Spec(R) such that t(ηR) is a point of XR which maps to x′ and t(0R) is a point of XR

which maps to x. Note that t(0R) is in (XR)0 and that t(ηR) t(0R). Thus it suffices to
prove that this implies that t(ηR) ∈ (XR)0. Hence it suffices to prove the lemma in the
case where Y is the spectrum of a discrete valuation ring and y its closed point.
Assume Y is the spectrum of a discrete valuation ring and y is its closed point. Our goal is
to prove thatX0 is a neighbourhood ofX0

y . Note thatX0
y is open and closed inXy asXy

has finitely many irreducible components. Hence the complement C = Xy \X0
y is closed

in X . Thus U = X \ C is an open neighbourhood of X0
y and U0 = X0. Hence it suffices

to prove the result for the morphism U → Y . In other words, we may assume that Xy is
connected. Suppose that X is disconnected, say X = X1 q . . . qXn is a decomposition
into connected components. Then s(Y ) is completely contained in one of the Xi. Say
s(Y ) ⊂ X1. Then X0 ⊂ X1. Hence we may replace X by X1 and assume that X is
connected. At this point Lemma 28.7 implies that Xη is connected, i.e., X0 = X and we
win. �

Lemma 29.6. Let f : X → Y , s : Y → X be as in Situation 29.1. Assume
(1) f is of finite presentation and flat, and
(2) all fibres of f are geometrically reduced.

Then X0 is open in X .
Proof. This is an immediate consequence of Lemma 29.5. �

30. Dimension of fibres

Lemma 30.1. Let f : X → Y be a morphism of schemes. Assume Y irreducible with
generic point η and f of finite type. If Xη has dimension n, then there exists a nonempty
open V ⊂ Y such that for all y ∈ V the fibre Xy has dimension n.
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Proof. Let Z = {x ∈ X | dimx(Xf(x)) > n}. By Morphisms, Lemma 28.4 this
is a closed subset of X . By assumption Zη = ∅. Hence by Lemma 24.1 we may shrink
Y and assume that Z = ∅. Let Z ′ = {x ∈ X | dimx(Xf(x)) > n − 1} = {x ∈ X |
dimx(Xf(x)) = n}. As before this is a closed subset ofX . By assumption we haveZ ′

η 6= ∅.
Hence after shrinking Y we may assume thatZ ′ → Y is surjective, see Lemma 24.2. Hence
we win. �

Lemma 30.2. Let f : X → Y be a morphism of finite type. Let

nX/Y : Y → {0, 1, 2, 3, . . . ,∞}
be the function which associates to y ∈ Y the dimension of Xy . If g : Y ′ → Y is a
morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .

Proof. This follows from Morphisms, Lemma 28.3. �

Lemma 30.3. Let f : X → Y be a morphism of schemes. Let nX/Y be the function
on Y giving the dimension of fibres of f introduced in Lemma 30.2. Assume f of finite
presentation. Then the level sets

En = {y ∈ Y | nX/Y (y) = n}
of nX/Y are locally constructible in Y .

Proof. Fix n. Let y ∈ Y . We have to show that there exists an open neighbourhood
V of y in Y such that En ∩ V is constructible in V . Thus we may assume that Y is affine.
Write Y = Spec(A) and A = colimAi as a directed limit of finite type Z-algebras.
By Limits, Lemma 10.1 we can find an i and a morphism fi : Xi → Spec(Ai) of finite
presentation whose base change to Y recovers f . By Lemma 30.2 it suffices to prove the
lemma for fi. Thus we reduce to the case where Y is the spectrum of a Noetherian ring.

We will use the criterion of Topology, Lemma 16.3 to prove that En is constructible in
case Y is a Noetherian scheme. To see this let Z ⊂ Y be an irreducible closed subscheme.
We have to show that En ∩ Z either contains a nonempty open subset or is not dense in
Z. Let ξ ∈ Z be the generic point. Then Lemma 30.1 shows that nX/Y is constant in a
neighbourhood of ξ in Z. This implies what we want. �

Lemma 30.4. Let f : X → Y be a flat morphism of schemes of finite presentation.
Let nX/Y be the function on Y giving the dimension of fibres of f introduced in Lemma
30.2. Then nX/Y is lower semi-continuous.

Proof. Let W ⊂ X , W =
∐
d≥0 Ud be the open constructed in Lemmas 22.7 and

22.9. Let y ∈ Y be a point. If nX/Y (y) = dim(Xy) = n, then y is in the image of
Un → Y . By Morphisms, Lemma 25.10 we see that f(Un) is open in Y . Hence there is an
open neighbourhoof of y where nX/Y is ≥ n. �

Lemma 30.5. Let f : X → Y be a proper morphism of schemes. Let nX/Y be the
function on Y giving the dimension of fibres of f introduced in Lemma 30.2. Then nX/Y
is upper semi-continuous.

Proof. Let Zd = {x ∈ X | dimx(Xf(x)) > d}. Then Zd is a closed subset of
X by Morphisms, Lemma 28.4. Since f is proper f(Zd) is closed. Since y ∈ f(Zd) ⇔
nX/Y (y) > d we see that the lemma is true. �
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Lemma 30.6. Let f : X → Y be a proper, flat morphism of schemes of finite presen-
tation. Let nX/Y be the function on Y giving the dimension of fibres of f introduced in
Lemma 30.2. Then nX/Y is locally constant.

Proof. Immediate consequence of Lemmas 30.4 and 30.5. �

31. Weak relative Noether normalization

The goal of this section is to prove Lemma 31.3.

Lemma 31.1. Let R be a ring. Let p1, . . . , pr be prime ideals of R with pi 6⊂ pj if
i 6= j. Let ki ⊂ κ(pi) be subfields such that the extensions κ(pi)/ki are not algebraic. Let
J ⊂ R be an ideal not contained in any of the pi. Then there exists an element x ∈ J
such that the image of x in κ(pi) is transcendental over ki for i = 1, . . . , r.

Proof. The ideal Ji = Jp1 . . . p̂i . . . pr is not contained in pi, see Algebra, Lemma
15.1. It follows that every element ξ of κ(pi) = Frac(B/pi) is of the form ξ = a/b with
a, b ∈ Ji and b 6∈ pi. Choosing ξ transcendental over ki we see that either a or b maps
to an element of κ(pi) transcendental over ki. We conclude that for every i = 1, . . . , r
we can find an element xi ∈ Ji = Jp1 . . . p̂i . . . pr which maps to an element of κ(pi)
transcendental over ki. Then x = x1 + . . .+ xr works. �

Lemma 31.2. Let R → S be a finite type ring map. Let d ≥ 0. Let a, b ∈ S. Assume
that the fibres of

fa : Spec(S) −→ A1
R

given by the R-algebra map R[x] → S sending x to a have dimension ≤ d. Then there
exists an n0 such that for n ≥ n0 the fibres of

fan+b : Spec(S) −→ A1
R

given by the R-algebra map R[x]→ S sending x to an + b have dimension ≤ d.

Proof. In this paragraph we reduce to the case whereR→ S is of finite presentation.
Namely, writeS = R[A,B, x1, . . . , xn]/J for some ideal J ⊂ R[x1, . . . , xn] whereA and
B map to a and b in S. Then J is the union of its finitely generated ideals Jλ ⊂ J . Set
Sλ = R[A,B, x1, . . . , xn]/Jλ and denote aλ, bλ ∈ Sλ the images of A and B. Then for
some λ the fibres of

faλ : Spec(Sλ) −→ A1
R

have dimension ≤ d, see Limits, Lemma 18.1. Fix such a λ. If we can find n0 which
works for R → Sλ, aλ, bλ, then n0 works for R → S. Namely, the fibres of fan

λ
+bλ :

Spec(Sλ) → A1
R contain the fibres of fan+b : Spec(S) → A1

R. This reduces us to the
case discussed in the next paragraph.

AssumeR→ S is of finite presentation. In this paragraph we reduce to the case whereR is
of finite type over Z. By Algebra, Lemma 127.18 we can find a directed set Λ and a system
of ring maps Rλ → Sλ over Λ whose colimit is R → S such that Sµ = Sλ ⊗Rλ Rµ
for µ ≥ λ and such that each Rλ and Sλ is of finite type over Z. Choose λ0 ∈ Λ and
elements aλ0 , bλ0 ∈ Sλ0 mapping to a, b ∈ S. For λ ≥ λ0 denote aλ, bλ ∈ Sλ the image
of aλ0 , bλ0 . Then for λ ≥ λ0 large enough the fibres of

faλ : Spec(Sλ) −→ A1
Rλ

have dimension≤ d, see Limits, Lemma 18.4. Fix such a λ. If we can find n0 which works
forRλ → Sλ, aλ, bλ, then n0 works forR→ S. Namely, any fibre of fan+b : Spec(S)→
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A1
R has the same dimension as a fibre of fan

λ
+bλ : Spec(Sλ) → A1

Rλ
by Morphisms,

Lemma 28.3. This reduces us the the case discussed in the next paragraph.

AssumeR andS are of finite type over Z. In particular the dimension ofR is finite, and we
may use induction on dim(R). Thus we may assume the result holds for all situations with
R′ → S′, a, b as in the lemma with R′ and S′ of finite type over Z but with dim(R′) <
dim(R).

Since the statement is about the topology of the spectrum ofS we may assumeS is reduced.
Let Sν be the normalization of S. Then S ⊂ Sν is a finite extension as S is excellent, see
Algebra, Proposition 162.16 and Morphisms, Lemma 54.10. Thus Spec(Sν)→ Spec(S) is
surjective and finite (Algebra, Lemma 36.17). It follows that if the result holds forR→ Sν

and the images of a, b in Sν , then the result holds for R→ S , a, b. (Small detail omitted.)
This reduces us to the case discussed in the next paragraph.

Assume R and S are of finite type over Z and S normal. Then S = S1 × . . . × Sr for
some normal domains Si. If the result holds for each R→ Si and the images of a, b in Si,
then the result holds for R → S , a, b. (Small detail omitted.) This reduces us to the case
discussed in the next paragraph.

Assume R and S are of finite type over Z and S a normal domain. We may replace R by
the image of R in S (this does not increase the dimension of R). This reduces us to the
case discussed in the next paragraph.

Assume R ⊂ S are of finite type over Z and S a normal domain. Consider the morphism

fa : Spec(S)→ A1
R

The assumption tells us that fa has fibres of dimension ≤ d. Hence the fibres of f :
Spec(S) → Spec(R) have dimension ≤ d + 1 (Morphisms, Lemma 28.2). Consider the
morphism of integral schemes

φ : Spec(S)→ A2
R = Spec(R[x, y])

corresponding to theR-algebra mapR[x, y]→ S sending x to a and y to b. There are two
cases to consider

(1) φ is dominant, and
(2) φ is not dominant.

We claim that in both cases there exists an integer n0 and a nonempty open V ⊂ Spec(R)
such that for n ≥ n0 the fibres of fan+b at points q ∈ A1

V have dimension ≤ d.

Proof of the claim in case (1). We have fan+b = πn ◦ φ where

πn : A2
R → A1

R

is the flat morphism corresponding to the R-algebra map R[x] → R[x, y] sending x to
xn + y. Since φ is dominant there is a dense open U ⊂ Spec(S) such that φ|U : U → A2

R

is flat (this follows for example from generic flatness, see Morphisms, Proposition 27.1).
Then the composition

fan+b|U : U φ|U−−→ A2
R

πn−−→ A1
R

is flat as well. Hence the fibres of this morphism have at least codimension 1 in the fibres
of f |U : U → Spec(R) by Morphisms, Lemma 28.2. In other words, the fibres of fan+b|U
have dimension ≤ d. On the other hand, since U is dense in Spec(S), we can find a
nonempty open V ⊂ Spec(R) such that U ∩ f−1(p) ⊂ f−1(p) is dense for all p ∈ V (see
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for example Lemma 24.3). Thus dim(f−1(p) \ U ∩ f−1(p)) ≤ d and we conclude that
our claim is true (as any fibres of fan+b : Spec(S)→ A1

R is contained in a fibre of f ).

Case (2). In this case we can find a nonzero g =
∑
cijx

iyj in R[x, y] such that Im(φ) ⊂
V (g). In fact, we may assume g is irreducible over Frac(R). If g ∈ R[x], say with leading
coefficient c, then over V = D(c) ⊂ Spec(R) the fibres of f already have dimension≤ d
(because the image of fa is contained in V (g) ⊂ A1

R which has finite fibres over V ). Hence
we may assume g is not contained inR[x]. Let s ≥ 1 be the degree of g as a polynomial in
y and let t be the degree of

∑
cisx

i as a polynomial in x. Then cts is nonzero and

g(x,−xn) = (−1)sctsxt+sn + l.o.t.

provided that n is bigger than the degree of g as a polynomial in x (small detail omitted).
For such n the polynomial g(x,−xn) is a nonzero polynomial in x and maps to a nonzero
polynomial in κ(p)[x] for all p ⊂ R, cst 6∈ p. We conclude that our claim is true for V
equal to the principal open D(cts) of Spec(R).

OK, and now we can use induction on dim(R). Namely, let I ⊂ R be an ideal such that
V (I) = Spec(R) \ V . Observe that dim(R/I) < dim(R) as R is a domain. Let n′

0 be the
integer we have by induction on dim(R) for R/I → S/IS and the images of a and b in
S/IS. Then max(n0, n

′
0) works. �

Lemma 31.3. Let R → S be a finite type ring map. Let d be the maximum of the
dimensions of fibres of Spec(S) → Spec(R). Then there exists a quasi-finite ring map
R[t1, . . . , td]→ S.

Proof. In this paragraph we reduce to the case where R → S is of finite presenta-
tion. Namely, write S = R[x1, . . . , xn]/J for some ideal J ⊂ R[x1, . . . , xn]. Then J
is the union of its finitely generated ideals Jλ ⊂ J . Set Sλ = R[x1, . . . , xn]/Jλ. Then
for some λ the fibres of Spec(Sλ) → Spec(R) have dimension ≤ d, see Limits, Lemma
18.1. Fix such a λ. If we can find a quasi-finite R[t1, . . . , td] → Sλ, then of course the
composition R[t1, . . . , td]→ S is quasi-finite. This reduces us to the case discussed in the
next paragraph.

Assume R → S is of finite presentation. In this paragraph we reduce to the case where
R is of finite type over Z. By Algebra, Lemma 127.18 we can find a directed set Λ and a
system of ring mapsRλ → Sλ over Λ whose colimit isR→ S such that Sµ = Sλ⊗RλRµ
for µ ≥ λ and such that each Rλ and Sλ is of finite type over Z. Then for λ large enough
the fibres of Spec(Sλ) → Spec(Rλ) have dimension ≤ d, see Limits, Lemma 18.4. Fix
such a λ. If we can find a quasi-finite ring mapRλ[t1, . . . , td]→ Sλ, then the base change
R[t1, . . . , td]→ S is quasi-finite too (Algebra, Lemma 122.8). This reduces us the the case
discussed in the next paragraph.

Assume R and S are of finite type over Z. If d = 0, then the ring map is quasi-finite and
we are done. Assume d > 0. We will find an element a ∈ S such that the fibres of the
R-algebra map R[x] → S , x 7→ a have dimension < d. This will finish the proof by
induction.

We will prove the existence of a by induction on dim(R).

Let q1, . . . , qr ⊂ S be those among the minimal primes of S such that dimqi(S/R) = d.
For notation, see Algebra, Definition 125.1. Say qi lies over the prime pi ⊂ R. We have
trdegκ(pi)(κ(qi)) = d as qi is a generic point of its fibre; for example apply Algebra, Lemma
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116.3 to S ⊗R κ(pi). Hence by Lemma 31.1 we can find an element a ∈ S such that the
image of a in κ(qi) is transcendental over κ(pi) for i = 1, . . . , r. Consider the morphism

fa : Spec(S) −→ A1
R

corresponding the R-algebra homomorphism R[x] → S to mapping x to a. Let U ⊂
Spec(S) be the open subset where the fibres have dimension ≤ d − 1, see Morphisms,
Lemma 28.4. By construction U contains all the generic points of Spec(S). In particular
we see that U contains all generic points of all the generic fibres of Spec(S) → Spec(R)
as such points are necessarily generic points of Spec(S). Set T = Spec(S) \ U viewed
as a reduced closed subscheme of Spec(S). It follows from what we just said and the
assumption that dim(S/R) ≤ d that the generic fibres of T → Spec(R) have dimension
≤ d− 1. Hence by Lemma 30.1, applied several times to produce open neighbourhoods of
the generic points of Spec(R), we can find a dense open V ⊂ Spec(R) such that TV → V
has fibres of dimension ≤ d− 1. We conclude that for q ∈ A1

V the fibre of fa over q has
dimension≤ d−1 (as we have bounded the dimension of the fibre of fa|U and of the fibre
of fa|T ).

By prime avoidance, we may assume that V = D(f) for some f ∈ R. Then we see that
the ring map Rf [x] → Sf , x 7→ a has fibres of dimension ≤ d − 1. We may replace a
by fa and assume a ∈ (f). By induction on dim(R) we can find an element b ∈ S/fS
such that the fibres of Spec(S/fS) → Spec(R/fR[x]), x 7→ b have dimension ≤ d − 1.
Let b ∈ S be a lift of b. By Lemma 31.2 there exists an n > 0 such that an + b still works
for Rf → Sf . On the other hand, the image of an + b in S/fS is b and the proof is
complete. �

32. Bertini theorems

We continue the discussion started in Varieties, Section 47. In this section we prove that
general hyperplane sections of geometrically irreducible varieties are geometrically irre-
ducible following the remarkable argument given in [?].

Lemma 32.1. Let K/k be a geometrically irreducible and finitely generated field ex-
tension. Let n ≥ 1. Let g1, . . . , gn ∈ K be elements such that there exist c1, . . . , cn ∈ k
such that the elements

x1, . . . , xn,
∑

gixi,
∑

cigi ∈ K(x1, . . . , xn)

are algebraically independent over k. Then K(x1, . . . , xn) is geometrically irreducible
over k(x1, . . . , xn,

∑
gixi).

Proof. Let c1, . . . , cn ∈ k be as in the statement of the lemma. Write ξ =
∑
gixi

and δ =
∑
cigi. For a ∈ k consider the automorphism σa ofK(x1, . . . , xn) given by the

identity on K and the rules
σa(xi) = xi + aci

Observe that σa(ξ) = ξ + aδ and σa(δ) = δ. Consider the tower of fields

K0 = k(x1, . . . , xn) ⊂ K1 = K0(ξ) ⊂ K2 = K0(ξ, δ) ⊂ K(x1, . . . , xn) = Ω

Observe that σa(K0) = K0 and σa(K2) = K2. Let θ ∈ Ω be separable algebraic overK1.
We have to show θ ∈ K1, see Algebra, Lemma 47.12.

Denote K ′
2 the separable algebraic closure of K2 in Ω. Since K ′

2/K2 is finite (Algebra,
Lemma 47.13) and separable there are only a finite number of fields in betweenK ′

2 andK2
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(Fields, Lemma 19.1). If k is infinite5, then we can find distinct elements a1, a2 of k such
that

K2(σa1(θ)) = K2(σa2(θ))
as subfields of Ω. Write θi = σai(θ) and ξi = σai(ξ) = ξ + aiδ. Observe that

K2 = K0(ξ1, ξ2)
as we have ξi = ξ + aiδ, ξ = (a2ξ1 − a1ξ2)/(a2 − a1), and δ = (ξ1 − ξ2)/(a1 −
a2). Since K2/K0 is purely transcendental of degree 2 we conclude that ξ1 and ξ2 are
algebraically indepedent over K0. Since θ1 is algebraic over K0(ξ1) we conclude that ξ2
is transcendental over K0(ξ1, θ1).

By assumption K/k is geometrically irreducible. This implies that K(x1, . . . , xn)/K0 is
geometrically irreducible (Algebra, Lemma 47.10). This in turn implies thatK0(ξ1, θ1)/K0
is geometrically irreducible as a subextension (Algebra, Lemma 47.6). Since ξ2 is tran-
scendental over K0(ξ1, θ1) we conclude that K0(ξ1, ξ2, θ1)/K0(ξ2) is geometrically irre-
ducible (Algebra, Lemma 47.11). By our choice of a1, a2 above we have

K0(ξ1, ξ2, θ1) = K2(σa1(θ)) = K2(σa2(θ)) = K0(ξ1, ξ2, θ2)
Since θ2 is separably algebraic over K0(ξ2) we conclude by Algebra, Lemma 47.12 again
that θ2 ∈ K0(ξ2). Taking σ−1

a2
of this relation givens θ ∈ K0(ξ) = K1 as desired.

This finishes the proof in case k is infinite. If k is finite, then we can choose a variable t and
consider the extension K(t)/k(t) which is geometrically irreducible by Algebra, Lemma
47.10. Since it is still be true that x1, . . . , xn,

∑
gixi,

∑
cigi inK(t, x1, . . . , xn) are alge-

braically independent over k(t) we conclude that K(t, x1, . . . , xn) is geometrically irre-
ducible over k(t, x1, . . . , xn,

∑
gixi) by the argument already given. Then using Algebra,

Lemma 47.10 once more finishes the job. �

Lemma 32.2. LetA be a domain of finite type over a field k. Letn ≥ 2. Let g1, . . . , gn ∈
A be elements such that V (g1, g2) has an irreducible component of dimension dim(A)−2.
Then there exist c1, . . . , cn ∈ k such that the elements

x1, . . . , xn,
∑

gixi,
∑

cigi ∈ Frac(A)(x1, . . . , xn)

are algebraically independent over k.

Proof. The algebraic independence over k means that the morphism

T = Spec(A[x1, . . . , xn]) −→ Spec(k[x1, . . . , xn, y, z]) = S

given by y =
∑
gixi and z =

∑
cigi is dominant. Set d = dim(A). If T → S is not

dominant, then the image has dimension< n+ 2 and hence every irreducible component
of every fibre has dimension> d+n−(n+2) = d−2, see Varieties, Lemma 20.4. Choose
a closed point u ∈ V (g1, g2) contained in an irreducible component of dimension d − 2
and in no other component of V (g1, g2). Consider the closed point t = (u, 1, 0, . . . 0) of T
lying overu. Set (c1, . . . , cn) = (0, 1, 0, . . . , 0). Then tmaps to the point s = (1, 0, . . . , 0)
of S. The fibre of T → S over s is cut out by

x1 − 1, x2, . . . , xn,
∑

xigi, g2

and hence equivalently is cut out by

x1 − 1, x2, . . . , xn, g1, g2

5We will deal with the finite field case in the last paragraph of the proof.
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By our condition on g1, g2 this subscheme has an irreducible component of dimension
d− 2. �

Lemma 32.3. In Varieties, Situation 47.2 assume
(1) X is of finite type over k,
(2) X is geometrically irreducible over k,
(3) there exist v1, v2, v3 ∈ V and an irreducible component Z of Hv2 ∩ Hv3 such

that Z 6⊂ Hv1 and codim(Z,X) = 2, and
(4) every irreducible component Y of

⋂
v∈V Hv has codim(Y,X) ≥ 2.

Then for general v ∈ V ⊗k k′ the scheme Hv is geometrically irreducible over k′.

Proof. In order for assumption (3) to hold, the elements v1, v2, v3 must be k-linearly
independent in V (small detail omitted). Thus we may choose a basis v1, . . . , vr of V
incorporating these elements as the first 3. Recall thatHuniv ⊂ Ar

k×kX is the “universal
divisor”. Consider the projection q : Huniv → Ar

k whose scheme theoretic fibres are the
divisors Hv . By Lemma 27.5 it suffices to show that the generic fibre of q is geometrically
irreducible. To prove this we may replace X by its reduction, hence we may assume X is
an integral scheme of finite type over k.

LetU ⊂ X be a nonempty affine open such thatL|U ∼= OU . WriteU = Spec(A). Denote
fi ∈ A the element corresponding to section ψ(vi)|U via the isomorphism L|U ∼= OU .
Then Huniv ∩ (Ar

k ×k U) is given by

HU = Spec(A[x1, . . . , xr]/(x1f1 + . . .+ xrfr))

By our choice of basis we see that f1 cannot be zero because this would mean v1 = 0 and
hence Hv1 = X which contradicts assumption (3). Hence

∑
xifi is a nonzerodivisor in

A[x1, . . . , xr]. It follows that every irreducible component ofHU has dimension d+r−1
where d = dim(X) = dim(A). If U ′ = U ∩D(f1) then we see that

HU ′ = Spec(Af1 [x1, . . . , xr]/(x1f1+. . .+xrfr)) ∼= Spec(Af1 [x2, . . . xr]) = Ar−1
k ×kU ′

is irreducible. On the other hand, we have

HU \HU ′ = Spec(A/(f1)[x1, . . . , xr]/(x2f2 + . . .+ xrfr))

which has dimension at most d+r−2. Namely, for i 6= 1 the scheme (HU \HU ′)×UD(fi)
is either empty (if fi = 0) or by the same argument as above isomorphic to an r − 1
dimensional affine space over an open of Spec(A/(f1)) and hence has dimension at most
d + r − 2. On the other hand, (HU \HU ′) ×U V (f2, . . . , fr) is an r dimensional affine
space over Spec(A/(f1, . . . , fr)) and hence assumption (4) tells us this has dimension at
most d+ r − 2. We conclude that HU is irreducible for every U as above. It follows that
Huniv is irreducible.

Thus it suffices to show that the generic point of Huniv is geometrically irreducible over
the generic point of Ar

k , see Varieties, Lemma 8.6. Choose a nonempty affine open U =
Spec(A) of X contained in X \Hv1 which meets the irreducible component Z of Hv2 ∩
Hv3 whose existence is asserted in assumption (3). With notation as above we have to
prove that the field extension

Frac(A[x1, . . . , xr]/(x1f1 + . . .+ xrfr))/k(x1, . . . , xr)

is geometrically irreducible. Observe that f1 is invertible in A by our choice of U . Set
K = Frac(A) equal to the fraction field of A. Eliminating the variable x1 as above, we
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find that we have to show that the field extension

K(x2, . . . , xr)/k(x2, . . . , xr,−
∑

i=2,...,r
f−1

1 fixi)

is geometrically irreducible. By Lemma 32.1 it suffices to show that for some c2, . . . , cr ∈ k
the elements

x2, . . . , xr,
∑

i=2,...,r
f−1

1 fixi,
∑

i=2,...,r
cif

−1
1 fi

are algebraically independent over k in the fraction field of A[x2, . . . , xr]. This follows
from Lemma 32.2 and the fact thatZ∩U is an irreducible component ofV (f−1

1 f2, f
−1
1 f3) ⊂

U . �

Remark 32.4. Let us sketch a “geometric” proof of a special case of Lemma 32.3.
Namely, say k is an algebraically closed field and X ⊂ Pn

k is smooth and irreducible of
dimension≥ 2. Then we claim there is a hyperplaneH ⊂ Pn

k such thatX ∩H is smooth
and irreducible. Namely, by Varieties, Lemma 47.3 for a general v ∈ V = kT0⊕ . . .⊕kTn
the corresponding hyperplane sectionX∩Hv is smooth. On the other hand, by Enriques-
Severi-Zariski the schemeX ∩Hv is connected, see Varieties, Lemma 48.3. HenceX ∩Hv

is smooth and irreducible.

33. Theorem of the cube

The following lemma tells us that the diagonal of the Picard functor is representable by
locally closed immersions under the assumptions made in the lemma.

Lemma 33.1. Let f : X → S be a flat, proper morphism of finite presentation. Let E
be a finite locally free OX -module. For a morphism g : T → S consider the base change
diagram

XT

p

��

q
// X

f

��
T

g // S

Assume OT → p∗OXT is an isomorphism for all g : T → S. Then there exists an
immersion j : Z → S of finite presentation such that a morphism g : T → S factors
through Z if and only if there exists a finite locally freeOT -moduleN with p∗N ∼= q∗E .

Proof. Observe that the fibresXs of f are connected by our assumption thatH0(Xs,OXs) =
κ(s). Thus the rank of E is constant on the fibres. Since f is open (Morphisms, Lemma
25.10) and closed we conclude that there is a decomposition S =

∐
Sr of S into open and

closed subschemes such that E has constant rank r on the inverse image of Sr. Thus we
may assume E has constant rank r. We will denote E∨ = Hom(E ,OX) the dual rank r
module.

By cohomology and base change (more precisely by Derived Categories of Schemes, Lemma
30.4) we see thatE = Rf∗E is a perfect object of the derived category ofS and that its for-
mation commutes with arbitrary change of base. Similarly for E′ = Rf∗E∨. Since there
is never any cohomology in degrees< 0, we see thatE andE′ have (locally) tor-amplitude
in [0, b] for some b. Observe that for any g : T → S we have p∗(q∗E) = H0(Lg∗E) and
p∗(q∗E∨) = H0(Lg∗E′). Let j : Z → S and j′ : Z ′ → S be immersions of finite presen-
tation constructed in Derived Categories of Schemes, Lemma 31.4 forE andE′ with a = 0
and r = r; these are roughly speaking characterized by the property that H0(Lj∗E) and
H0((j′)∗E′) are finite locally free modules compatible with pullback.
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Let g : T → S be a morphism. If there exists an N as in the lemma, then, using the
projection formula Cohomology, Lemma 54.2, we see that the modules

p∗(q∗L) ∼= p∗(p∗N ) ∼= N ⊗OT
p∗OXT ∼= N and similarly p∗(q∗E∨) ∼= N∨

are finite locally free modules of rank r and remain so after any further base change T ′ →
T . Hence in this case T → S factors through j and through j′. Thus we may replace S
by Z ×S Z ′ and assume that f∗E and f∗E∨ are finite locally free OS-modules of rank r
whose formation commutes with arbitrary change of base (small detail omitted).
In this sitation if g : T → S be a morphism and there exists an N as in the lemma, then
the map (cup product in degree 0)

p∗(q∗E)⊗OT
p∗(q∗E∨) −→ OT

is a perfect pairing. Conversely, if this cup product map is a perfect pairing, then we see
that locally on T we may choose a basis of sections σ1, . . . , σr in p∗(q∗E) and τ1, . . . , τr
in p∗(q∗E∨) whose products satisfy σiτj = δij . Thinking of σi as a section of q∗E on XT

and τj as a section of q∗E∨ on XT , we conclude that

σ1, . . . , σr : O⊕r
XT
−→ q∗E

is an isomorphism with inverse given by

τ1, . . . , τr : q∗E −→ O⊕r
XT

In other words, we see that p∗p∗q
∗E ∼= q∗E . But the condition that the cupproduct is non-

degenerate picks out a retrocompact open subscheme (namely, the locus where a suitable
determinant is nonzero) and the proof is complete. �

The lemma above in particular tells us, that if a vector bundle is trivial on fibres for a
proper flat family of proper spaces, then it is the pull back of a vector bundle. Let’s spell
this out a bit.

Lemma 33.2. Let f : X → S be a flat, proper morphism of finite presentation such
that f∗OX = OS and this remains true after arbitrary base change. Let E be a finite locally
freeOX -module. Assume

(1) E|Xs is isomorphic toO⊕rs
Xs

for all s ∈ S , and
(2) S is reduced.

Then E = f∗N for some finite locally freeOS-moduleN .

Proof. Namely, in this case the locally closed immersion j : Z → S of Lemma 33.1
is bijective and hence a closed immersion. But since S is reduced, j is an isomorphism. �

Lemma 33.3. Let f : X → S be a proper flat morphism of finite presentation. Let L
be an invertibleOX -module. Assume

(1) S is the spectrum of a valuation ring,
(2) L is trivial on the generic fibre Xη of f ,
(3) the closed fibre X0 of f is integral,
(4) H0(Xη,OXη ) is equal to the function field of S.

Then L is trivial.

Proof. Write S = Spec(A). We will first prove the lemma when A is a discrete
valuation ring (as this is the case most often used in practice). Let π ∈ A be a uniformizer.
Take a trivializing section s ∈ Γ(Xη,Lη). After replacing s by πns if necessary we can
assume that s ∈ Γ(X,L). If s|X0 = 0, then we see that s is divisible by π (because X0 is



33. THEOREM OF THE CUBE 3199

the scheme theoretic fibre andX is flat overA). Thus we may assume that s|X0 is nonzero.
Then the zero locus Z(s) of s is contained inX0 but does not contain the generic point of
X0 (because X0 is integral). This means that the Z(s) has codimension ≥ 2 in X which
contradicts Divisors, Lemma 15.3 unless Z(s) = ∅ as desired.

Proof in the general case. Since the valuation ring A is coherent (Algebra, Example 90.2)
we see thatH0(X,L) is a coherent A-module, see Derived Categories of Schemes, Lemma
33.1. Equivalently, H0(X,L) is a finitely presented A-module (Algebra, Lemma 90.4).
Since H0(X,L) is torsion free (by flatness of X over A), we see from More on Algebra,
Lemma 124.3 that H0(X,L) = A⊕n for some n. By flat base change (Cohomology of
Schemes, Lemma 5.2) we have

K = H0(Xη,OXη ) ∼= H0(Xη,Lη) = H0(X,L)⊗A K

where K is the fraction field of A. Thus n = 1. Pick a generator s ∈ H0(X,L). Let m ⊂
A be the maximal ideal. Then κ = A/m = colimA/π where this is a filtered colimit over
nonzero π ∈ m (here we use thatA is a valuation ring). ThusX0 = limX×S Spec(A/π).
If s|X0 is zero, then for someπwe see that s restricts to zero onX×SSpec(A/π), see Limits,
Lemma 4.7. But if this happens, then π−1s is a global section of L which contradicts the
fact that s is a generator of H0(X,L). Thus s|X0 is not zero. Let Z(s) ⊂ X be the zero
scheme of s. Since s|X0 is not zero and since X0 is integral, we see that Z(s)0 ⊂ X0 is an
effective Cartier divisor. Since f is proper and S is local, every point of Z(s) specializes
to a point of Z(s)0. Thus by Divisors, Lemma 18.9 part (3) we see that Z(s) is a relative
effective Cartier divisor, in particular Z(s) → S is flat. Hence if Z(s) were nonemtpy,
then Z(s)η would be nonempty which contradicts the fact that s|Xη is a trivialization of
Lη . Thus Z(s) = ∅ as desired. �

Lemma 33.4. Let f : X → S and E be as in Lemma 33.1 and in addition assume E
is an invertible OX -module. If moreover the geometric fibres of f are integral, then Z is
closed in S.

Proof. Since j : Z → S is of finite presentation, it suffices to show: for any mor-
phism g : Spec(A) → S where A is a valuation ring with fraction field K such that
g(Spec(K)) ∈ j(Z) we have g(Spec(A)) ⊂ j(Z). See Morphisms, Lemma 6.5. This
follows from Lemma 33.3 and the characterization of j : Z → S in Lemma 33.1. �

Lemma 33.5. Consider a commutative diagram of schemes

X ′ //

f ′
  

X

f��
S

with f ′ : X ′ → S and f : X → S satisfying the hypotheses of Lemma 33.1. Let L be
an invertible OX -module and let L′ be the pullback to X ′. Let Z ⊂ S , resp. Z ′ ⊂ S be
the locally closed subscheme constructed in Lemma 33.1 for (f,L), resp. (f ′,L′) so that
Z ⊂ Z ′. If s ∈ Z and

H1(Xs,O) −→ H1(X ′
s,O)

is injective, then Z ∩ U = Z ′ ∩ U for some open neighbourhood U of s.

Proof. We may replace S byZ ′. After shrinking S to an affine open neighbourhood
of s we may assume that L′ = OX′ . Let E = Rf∗L and E′ = Rf ′

∗L′ = Rf ′
∗OX′ . These
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are perfect complexes whose formation commutes with arbitrary change of base (Derived
Categories of Schemes, Lemma 30.4). In particular we see that

E ⊗L
OS

κ(s) = RΓ(Xs,Ls) = RΓ(Xs,OXs)

The second equality because s ∈ Z. Set hi = dimκ(s) H
i(Xs,OXs). After shrinking S

we can represent E by a complex

OS → O⊕h1
S → O⊕h2

S → . . .

see More on Algebra, Lemma 75.6 (strictly speaking this also uses Derived Categories of
Schemes, Lemmas 3.5 and 10.7). Similarly, we may assume E′ is represented by a complex

OS → O
⊕h′

1
S → O⊕h′

2
S → . . .

where h′
i = dimκ(s) H

i(X ′
s,OX′

s
). By functoriality of cohomology we have a map

E −→ E′

in D(OS) whose formation commutes with change of base. Since the complex represent-
ing E is a finite complex of finite free modules and since S is affine, we can choose a map
of complexes

OS
d
//

a

��

O⊕h1
S

//

b
��

O⊕h2
S

//

c
��

. . .

OS
d′
// O⊕h′

1
S

// O⊕h′
2

S
// . . .

representing the given map E → E′. Since s ∈ Z we see that the trivializing section of
Ls pulls back to a trivializing section of L′

s = OX′
s
. Thus a ⊗ κ(s) is an isomorphism,

hence after shrinking S we see that a is an isomorphism. Finally, we use the hypothesis
thatH1(Xs,O)→ H1(X ′

s,O) is injective, to see that there exists a h1× h1 minor of the
matrix defining b which maps to a nonzero element in κ(s). Hence after shrinking S we
may assume that b is injective. However, since L′ = OX′ we see that d′ = 0. It follows
that d = 0. In this way we see that the trivializing section of Ls lifts to a section of L
over X . A straightforward topological argument (omitted) shows that this means that L
is trivial after possibly shrinking S a bit further. �

Lemma 33.6. Consider n commutative diagrams of schemes

Xi
//

fi   

X

f��
S

with fi : Xi → S and f : X → S satisfying the hypotheses of Lemma 33.1. Let L be
an invertible OX -module and let Li be the pullback to Xi. Let Z ⊂ S , resp. Zi ⊂ S be
the locally closed subscheme constructed in Lemma 33.1 for (f,L), resp. (fi,Li) so that
Z ⊂

⋂
i=1,...,n Zi. If s ∈ Z and

H1(Xs,O) −→
⊕

i=1,...,n
H1(Xi,s,O)

is injective, then Z ∩ U = (
⋂
i=1,...,n Zi) ∩ U (scheme theoretic intersection) for some

open neighbourhood U of s.
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Proof. This lemma is a variant of Lemma 33.5 and we strongly urge the reader to
read that proof first; this proof is basically a copy of that proof with minor modifica-
tions. It follows from the description of (scheme valued) points of Z and the Zi that
Z ⊂

⋂
i=1,...,n Zi where we take the scheme theoretic intersection. Thus we may replace

S by the scheme theoretic intersection
⋂
i=1,...,n Zi. After shrinking S to an affine open

neighbourhood of s we may assume that Li = OXi for i = 1, . . . , n. Let E = Rf∗L
andEi = Rfi,∗Li = Rfi,∗OXi . These are perfect complexes whose formation commutes
with arbitrary change of base (Derived Categories of Schemes, Lemma 30.4). In particular
we see that

E ⊗L
OS

κ(s) = RΓ(Xs,Ls) = RΓ(Xs,OXs)
The second equality because s ∈ Z. Set hj = dimκ(s) H

j(Xs,OXs). After shrinking S
we can represent E by a complex

OS → O⊕h1
S → O⊕h2

S → . . .

see More on Algebra, Lemma 75.6 (strictly speaking this also uses Derived Categories of
Schemes, Lemmas 3.5 and 10.7). Similarly, we may assume Ei is represented by a complex

OS → O
⊕hi,1
S → O⊕hi,2

S → . . .

where hi,j = dimκ(s) H
j(Xi,s,OXi,s). By functoriality of cohomology we have a map

E −→ Ei

in D(OS) whose formation commutes with change of base. Since the complex represent-
ing E is a finite complex of finite free modules and since S is affine, we can choose a map
of complexes

OS
d
//

ai

��

O⊕h1
S

//

bi
��

O⊕h2
S

//

ci
��

. . .

OS
di // O⊕hi,1

S
// O⊕hi,2

S
// . . .

representing the given map E → Ei. Since s ∈ Z we see that the trivializing section of
Ls pulls back to a trivializing section of Li,s = OXi,s . Thus ai⊗ κ(s) is an isomorphism,
hence after shrinking S we see that ai is an isomorphism. Finally, we use the hypothesis
that H1(Xs,O) →

⊕
i=1,...,nH

1(Xi,s,O) is injective, to see that there exists a h1 ×
h1 minor of the matrix defining ⊕bi which maps to a nonzero element in κ(s). Hence
after shrinking S we may assume that (b1, . . . , bn) : Oh1

S →
⊕

i=1,...,nO
hi,1
S is injective.

However, sinceLi = OXi we see that di = 0 for i = 1, . . . n. It follows that d = 0 because
(b1, . . . , bn) ◦ d = (⊕di) ◦ (a1, . . . , an). In this way we see that the trivializing section
of Ls lifts to a section of L over X . A straightforward topological argument (omitted)
shows that this means that L is trivial after possibly shrinking S a bit further. �

Lemma 33.7. Let f : X → S and g : Y → S be morphisms of schemes satisfying the
hypotheses of Lemma 33.1. Let σ : S → X and τ : S → Y be sections of f and g. Let
s ∈ S. Let L be an invertible sheaf on X ×S Y . If (1× τ)∗L on X , (σ × 1)∗L on Y , and
L|(X×SY )s are trivial, then there is an open neighbourhood U of s such that L is trivial
over (X ×S Y )U .

Proof. By Künneth (Varieties, Lemma 29.1) the map

H1(Xs ×Spec(κ(s)) Ys,O)→ H1(Xs,O)⊕H1(Ys,O)
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is injective. Thus we may apply Lemma 33.6 to the two morphisms

1× τ : X → X ×S Y and σ × 1 : Y → X ×S Y

to conclude. �

Theorem 33.8 (Theorem of the cube). Let S be a scheme. LetX , Y , andZ be schemes
over S. Let x : S → X and y : S → Y be sections of the structure morphisms. Let L be
an invertible module on X ×S Y ×S Z. If

(1) X → S and Y → S are flat, proper morphisms of finite presentation with
geometrically integral fibres,

(2) the pullbacks of L by x× idY × idZ and idX × y× idZ are trivial over Y ×S Z
and X ×S Z ,

(3) there is a point z ∈ Z such that L restricted to X ×S Y ×S z is trivial, and
(4) Z is connected,

then L is trivial.

An often used special case is the following. Let k be a field. Let X,Y, Z be varieties with
k-rational points x, y, z. Let L be an invertible module on X × Y × Z. If

(1) L is trivial over x× Y × Z , X × y × Z , and X × Y × z, and
(2) X and Y are geometrically integral and proper over k,

then L is trivial.

Proof. Observe that the morphismX×S Y → S is a flat, proper morphism of finite
presentation whose geometrically integral fibres (see Varieties, Lemmas 9.2, 8.4, and 6.7
for the statement about the fibres). By Derived Categories of Schemes, Lemma 32.6 we see
that the pushforward of the structure sheaf by X → S , Y → S , or X ×S Y → S is the
structure sheaf of S and the same remains true after any base change. Thus we may apply
Lemma 33.1 to the morphism

p : X ×S Y ×S Z −→ Z

and the invertible module L to get a “universal” locally closed subscheme Z ′ ⊂ Z such
that L|X×SY×SZ′ is the pullback of an invertible module N on Z ′. The existence of z
shows that Z ′ is nonempty. By Lemma 33.4 we see that Z ′ ⊂ Z is a closed subscheme. Let
z′ ∈ Z ′ be a point. Observe that we may write p as the product morphism

(X ×S Z)×Z (Y ×S Z) −→ Z

Hence we may apply Lemma 33.7 to the morphism p, the point z′, and the sections σ :
Z → X ×S Z and τ : Z → Y ×S Z given by x and y. We conclude that Z ′ is open.
Hence Z ′ = Z and L = p∗N for some invertible module N on Z. Pulling back via
x× y × idZ : Z → X ×S Y ×S Z we obtain on the one hand N and on the other hand
we obtain the trivial invertible module by assumption (2). Thus N = OZ and the proof
is complete. �

34. Limit arguments

Some lemmas involving limits of schemes, and Noetherian approximation. We stick mostly
to the affine case. Some of these lemmas are special cases of lemmas in the chapter on limits.
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Lemma 34.1. Let f : X → S be a morphism of affine schemes, which is of finite
presentation. Then there exists a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 Soo

such that
(1) X0, S0 are affine schemes,
(2) S0 of finite type over Z,
(3) f0 is of finite type.

Proof. Write S = Spec(A) and X = Spec(B). As f is of finite presentation we
see that B is of finite presentation as an A-algebra, see Morphisms, Lemma 21.2. Thus the
lemma follows from Algebra, Lemma 127.18. �

Lemma 34.2. Let f : X → S be a morphism of affine schemes, which is of finite
presentation. Let F be a quasi-coherent OX -module of finite presentation. Then there
exists a diagram as in Lemma 34.1 such that there exists a coherent OX0 -module F0 with
g∗F0 = F .

Proof. Write S = Spec(A), X = Spec(B), and F = M̃ . As f is of finite presenta-
tion we see thatB is of finite presentation as anA-algebra, see Morphisms, Lemma 21.2. As
F is of finite presentation overOX we see that M is of finite presentation as a B-module,
see Properties, Lemma 16.2. Thus the lemma follows from Algebra, Lemma 127.18. �

Lemma 34.3. Let f : X → S be a morphism of affine schemes, which is of finite
presentation. LetF be a quasi-coherentOX -module of finite presentation and flat over S.
Then we may choose a diagram as in Lemma 34.2 and sheaf F0 such that in addition F0 is
flat over S0.

Proof. Write S = Spec(A), X = Spec(B), and F = M̃ . As f is of finite pre-
sentation we see that B is of finite presentation as an A-algebra, see Morphisms, Lemma
21.2. As F is of finite presentation over OX we see that M is of finite presentation as a
B-module, see Properties, Lemma 16.2. AsF is flat over S we see thatM is flat overA, see
Morphisms, Lemma 25.2. Thus the lemma follows from Algebra, Lemma 168.1. �

Lemma 34.4. Let f : X → S be a morphism of affine schemes, which is of finite
presentation and flat. Then there exists a diagram as in Lemma 34.1 such that in addition
f0 is flat.

Proof. This is a special case of Lemma 34.3. �

Lemma 34.5. Let f : X → S be a morphism of affine schemes, which is smooth.
Then there exists a diagram as in Lemma 34.1 such that in addition f0 is smooth.

Proof. Write S = Spec(A), X = Spec(B), and as f is smooth we see that B is
smooth as an A-algebra, see Morphisms, Lemma 34.2. Hence the lemma follows from Al-
gebra, Lemma 138.14. �

Lemma 34.6. Let f : X → S be a morphism of affine schemes, which is of finite
presentation with geometrically reduced fibres. Then there exists a diagram as in Lemma
34.1 such that in addition f0 has geometrically reduced fibres.
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Proof. Apply Lemma 34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over Z.
By Lemma 26.5 the set E ⊂ S0 of points where the fibre of f0 is geometrically reduced
is a constructible subset. By Lemma 26.2 we have h(S) ⊂ E. Write S0 = Spec(A0) and
S = Spec(A). Write A = colimiAi as a direct colimit of finite type A0-algebras. By
Limits, Lemma 4.10 we see that Spec(Ai) → S0 has image contained in E for some i.
After replacing S0 by Spec(Ai) and X0 by X0 ×S0 Spec(Ai) we see that all fibres of f0
are geometrically reduced. �

Lemma 34.7. Let f : X → S be a morphism of affine schemes, which is of finite pre-
sentation with geometrically irreducible fibres. Then there exists a diagram as in Lemma
34.1 such that in addition f0 has geometrically irreducible fibres.

Proof. Apply Lemma 34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over Z.
By Lemma 27.7 the setE ⊂ S0 of points where the fibre of f0 is geometrically irreducible
is a constructible subset. By Lemma 27.2 we have h(S) ⊂ E. Write S0 = Spec(A0) and
S = Spec(A). Write A = colimiAi as a direct colimit of finite type A0-algebras. By
Limits, Lemma 4.10 we see that Spec(Ai) → S0 has image contained in E for some i.
After replacing S0 by Spec(Ai) and X0 by X0 ×S0 Spec(Ai) we see that all fibres of f0
are geometrically irreducible. �

Lemma 34.8. Let f : X → S be a morphism of affine schemes, which is of finite
presentation with geometrically connected fibres. Then there exists a diagram as in Lemma
34.1 such that in addition f0 has geometrically connected fibres.

Proof. Apply Lemma 34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over Z.
By Lemma 28.6 the set E ⊂ S0 of points where the fibre of f0 is geometrically connected
is a constructible subset. By Lemma 28.2 we have h(S) ⊂ E. Write S0 = Spec(A0) and
S = Spec(A). Write A = colimiAi as a direct colimit of finite type A0-algebras. By
Limits, Lemma 4.10 we see that Spec(Ai) → S0 has image contained in E for some i.
After replacing S0 by Spec(Ai) and X0 by X0 ×S0 Spec(Ai) we see that all fibres of f0
are geometrically connected. �



34. LIMIT ARGUMENTS 3205

Lemma 34.9. Let d ≥ 0 be an integer. Let f : X → S be a morphism of affine
schemes, which is of finite presentation all of whose fibres have dimension d. Then there
exists a diagram as in Lemma 34.1 such that in addition all fibres of f0 have dimension d.

Proof. Apply Lemma 34.1 to get a cartesian diagram

X0

f0

��

X
g
oo

f

��
S0 S

hoo

of affine schemes with X0 → S0 a finite type morphism of schemes of finite type over
Z. By Lemma 30.3 the set E ⊂ S0 of points where the fibre of f0 has dimension d is a
constructible subset. By Lemma 30.2 we have h(S) ⊂ E. Write S0 = Spec(A0) and
S = Spec(A). Write A = colimiAi as a direct colimit of finite type A0-algebras. By
Limits, Lemma 4.10 we see that Spec(Ai) → S0 has image contained in E for some i.
After replacing S0 by Spec(Ai) and X0 by X0 ×S0 Spec(Ai) we see that all fibres of f0
have dimension d. �

Lemma 34.10. Let f : X → S be a morphism of affine schemes, which is standard
syntomic (see Morphisms, Definition 30.1). Then there exists a diagram as in Lemma 34.1
such that in addition f0 is standard syntomic.

Proof. This lemma is a copy of Algebra, Lemma 136.11. �

Lemma 34.11. (Noetherian approximation and combining properties.) Let P , Q be
properties of morphisms of schemes which are stable under base change. Let f : X → S be
a morphism of finite presentation of affine schemes. Assume we can find cartesian diagrams

X1

f1

��

Xoo

f

��
S1 Soo

and

X2

f2

��

Xoo

f

��
S2 Soo

of affine schemes, with S1, S2 of finite type over Z and f1, f2 of finite type such that f1
has property P and f2 has property Q. Then we can find a cartesian diagram

X0

f0

��

Xoo

f

��
S0 Soo

of affine schemes with S0 of finite type over Z and f0 of finite type such that f0 has both
property P and property Q.

Proof. The given pair of diagrams correspond to cocartesian diagrams of rings

B1 // B

A1

OO

// A

OO

and

B2 // B

A2

OO

// A

OO

Let A0 ⊂ A be a finite type Z-subalgebra of A containing the image of both A1 → A and
A2 → A. Such a subalgebra exists because by assumption both A1 and A2 are of finite
type over Z. Note that the ringsB0,1 = B1⊗A1 A0 andB0,2 = B2⊗A2 A0 are finite type
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A0-algebras with the property that B0,1 ⊗A0 A
∼= B ∼= B0,2 ⊗A0 A as A-algebras. As

A is the directed colimit of its finite type A0-subalgebras, by Limits, Lemma 10.1 we may
assume after enlarging A0 that there exists an isomorphism B0,1 ∼= B0,2 as A0-algebras.
Since properties P and Q are assumed stable under base change we conclude that setting
S0 = Spec(A0) and

X0 = X1 ×S1 S0 = Spec(B0,1) ∼= Spec(B0,2) = X2 ×S2 S0

works. �

35. Étale neighbourhoods

It turns out that some properties of morphisms are easier to study after doing an étale base
change. It is convenient to introduce the following terminology.

Definition 35.1. Let S be a scheme. Let s ∈ S be a point.
(1) An étale neighbourhood of (S, s) is a pair (U, u) together with an étale morphism

of schemes ϕ : U → S such that ϕ(u) = s.
(2) A morphism of étale neighbourhoods f : (V, v) → (U, u) of (S, s) is simply a

morphism of S-schemes f : V → U such that f(v) = u.
(3) An elementary étale neighbourhood is an étale neighbourhood ϕ : (U, u) →

(S, s) such that κ(s) = κ(u).
The notion of an elementary étale neighbourhood has many different names in the lit-
erature, for example these are sometimes called “étale neighbourhoods” ([?, Page 36] or
“strongly étale” ([?, Page 108]). Here we follow the convention of the paper [?] by calling
them elementary étale neighbourhoods.
If f : (V, v) → (U, u) is a morphism of étale neighbourhoods, then f is automatically
étale, see Morphisms, Lemma 36.18. Hence it turns (V, v) into an étale neighbourhood of
(U, u). Of course, since the composition of étale morphisms is étale (Morphisms, Lemma
36.3) we see that conversely any étale neighbourhood (V, v) of (U, u) is an étale neigh-
bourhood of (S, s) as well. We also remark that if U ⊂ S is an open neighbourhood of s,
then (U, s) → (S, s) is an étale neighbourhood. This follows from the fact that an open
immersion is étale (Morphisms, Lemma 36.9). We will use these remarks without further
mention throughout this section.
Note that κ(u)/κ(s) is a finite separable extension if (U, u) → (S, s) is an étale neigh-
bourhood, see Morphisms, Lemma 36.15.

Lemma 35.2. Let S be a scheme. Let s ∈ S. Let k/κ(s) be a finite separable field
extension. Then there exists an étale neighbourhood (U, u) → (S, s) such that the field
extension κ(u)/κ(s) is isomorphic to k/κ(s).

Proof. We may assume S is affine. In this case the lemma follows from Algebra,
Lemma 144.3. �

Lemma 35.3. Let S be a scheme, and let s be a point of S. The category of étale
neighborhoods has the following properties:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of s in S. Then there exists a third
étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neighborhoods
of s. Assume h1, h2 induce the same map κ(u′) → κ(u) of residue fields. Then
there exist an étale neighborhood (U ′′, u′′) and a morphism h : (U ′′, u′′) →
(U, u) which equalizes h1 and h2, i.e., such that h1 ◦ h = h2 ◦ h.
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Proof. For part (1), consider the fibre productU = U1×SU2. It is étale over bothU1
and U2 because étale morphisms are preserved under base change, see Morphisms, Lemma
36.4. There is a point of U mapping to both u1 and u2 for example by the description
of points of a fibre product in Schemes, Lemma 17.5. For part (2), define U ′′ as the fibre
product

U ′′ //

��

U

(h1,h2)
��

U ′ ∆ // U ′ ×S U ′.

Since h1 and h2 induce the same map of residue fields κ(u′) → κ(u) there exists a point
u′′ ∈ U ′′ lying over u′ with κ(u′′) = κ(u′). In particular U ′′ 6= ∅. Moreover, since U ′

is étale over S , so is the fibre product U ′ ×S U ′ (see Morphisms, Lemmas 36.4 and 36.3).
Hence the vertical arrow (h1, h2) is étale by Morphisms, Lemma 36.18. Therefore U ′′ is
étale over U ′ by base change, and hence also étale over S (because compositions of étale
morphisms are étale). Thus (U ′′, u′′) is a solution to the problem. �

Lemma 35.4. Let S be a scheme, and let s be a point of S. The category of elementary
étale neighborhoods of (S, s) is cofiltered (see Categories, Definition 20.1).

Proof. This is immediate from the definitions and Lemma 35.3. �

Lemma 35.5. Let S be a scheme. Let s ∈ S. Then we have

OhS,s = colim(U,u)O(U)

where the colimit is over the filtered category which is opposite to the category of elemen-
tary étale neighbourhoods (U, u) of (S, s).

Proof. Let Spec(A) ⊂ S be an affine neighbourhood of s. Let p ⊂ A be the prime
ideal corresponding to s. With these choices we have canonical isomorphismsOS,s = Ap

and κ(s) = κ(p). A cofinal system of elementary étale neighbourhoods is given by those
elementary étale neighbourhoods (U, u) such that U is affine and U → S factors through
Spec(A). In other words, we see that the right hand side is equal to colim(B,q) B where the
colimit is over étaleA-algebrasB endowed with a prime q lying over p with κ(p) = κ(q).
Thus the lemma follows from Algebra, Lemma 155.7. �

We can lift étale neighbourhoods of points on fibres to the total space.

Lemma 35.6. Let X → S be a morphism of schemes. Let x ∈ X with image s ∈ S.
Let (V, v) → (Xs, x) be an étale neighbourhood. Then there exists an étale neighbour-
hood (U, u)→ (X,x) such that there exists a morphism (Us, u)→ (V, v) of étale neigh-
bourhoods of (Xs, x) which is an open immersion.

Proof. We may assume X , V , and S affine. Say the morphism X → S is given by
A → B the point x by a prime q ⊂ B, the point s by p = A ∩ q, and the morphism
V → Xs by B ⊗A κ(p) → C. Since κ(p) is a localization of A/p there exists an f ∈ A,
f 6∈ p and an étale ring map B ⊗A (A/p)f → D such that

C = (B ⊗A κ(p))⊗B⊗A(A/p)f D

See Algebra, Lemma 143.3 part (9). After replacing A by Af and B by Bf we may assume
D is étale over B ⊗A A/p = B/pB. Then we can apply Algebra, Lemma 143.10. This
proves the lemma. �
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36. Étale neighbourhoods and branches

The number of (geometric) branches of a scheme at a point was defined in Properties, Sec-
tion 15. In Varieties, Section 40 we related this to fibres of the normalization morphism. In
this section we discuss a characterization of this number in terms of étale neighbourhoods.

Lemma 36.1. LetR = colimRi be colimit of a directed system of rings whose transi-
tion maps are faithfully flat. Then the number of minimal primes ofR taken as an element
of {0, 1, 2, . . . ,∞} is the supremum of the numbers of minimal primes of the Ri.

Proof. IfA→ B is a flat ring map, then Spec(B)→ Spec(A) maps minimal primes
to minimal primes by going down (Algebra, Lemma 39.19). If A → B is faithfully flat,
then every minimal prime is the image of a minimal prime (by Algebra, Lemma 39.16 and
30.7). Hence the number of minimal primes of Ri is ≥ the number of minimal primes of
Ri′ if i ≤ i′. By Algebra, Lemma 39.20 each of the maps Ri → R is faithfully flat and
we also see that the number of minimal primes of R is ≥ the number of minimal primes
of Ri. Finally, suppose that q1, . . . , qn are pairwise distinct minimal primes of R. Then
we can find an i such that Ri ∩ q1, . . . , Ri ∩ qn are pairwise distinct (as sets and hence as
prime ideals). This implies the lemma. �

Lemma 36.2. Let X be a scheme and x ∈ X a point. Then
(1) the number of branches ofX at x is equal to the supremum of the number of irre-

ducible components of U passing through u taken over elementary étale neigh-
bourhoods (U, u)→ (X,x),

(2) the number of geometric branches ofX atx is equal to the supremum of the num-
ber of irreducible components of U passing through u taken over étale neigh-
bourhoods (U, u)→ (X,x),

(3) X is unibranch at x if and only if for every elementary étale neighbourhood
(U, u)→ (X,x) there is exactly one irreducible component ofU passing through
u, and

(4) X is geometrically unibranch at x if and only if for every étale neighbourhood
(U, u)→ (X,x) there is exactly one irreducible component ofU passing through
u.

Proof. Parts (3) and (4) follow from parts (1) and (2) via Properties, Lemma 15.6.

Proof of (1). Let Spec(A) be an affine open neighbourhood of x and let p ⊂ A be the prime
ideal corresponding to x. We may replace X by Spec(A) and it suffices to consider affine
elementary étale neighbourhoods (U, u) in the supremum as they form a cofinal subsys-
tem. Recall that the henselization Ahp is the colimit of the rings Bq over the category of
pairs (B, q) whereB is an étaleA-algebra and q is a prime lying over p with κ(q) = κ(p),
see Algebra, Lemma 155.7. These pairs (B, q) correspond exactly to the affine elementary
étale neighbourhoods (U, u) by the correspondence between rings and affine schemes. Ob-
serve that irreducible components of Spec(B) passing through q are exactly the minimal
prime ideals of Bq. The number of minimal primes of Ahp is the number of branches of
X at x by Properties, Definition 15.4. Observe that the transition maps Bq → B′

q′ in the
system are all flat. Since a flat local ring map is faithfully flat (Algebra, Lemma 39.17) we
see that the lemma follows from Lemma 36.1.

Proof of (2). The proof is the same as the proof of (1), except that we use Algebra, Lemma
155.11. There is a tiny difference: given a separable algebraic closure κsep of κ(x) for ev-
ery étale neighbourhood (U, u) we can choose a κ(x)-embedding φ : κ(u)→ κsep because
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κ(u)/κ(x) is finite separable (Morphisms, Lemma 36.15). Hence we can look at the supre-
mum over all triples (U, u, φ) where (U, u)→ (X,x) is an affine étale neighbourhood and
φ : κ(u) → κsep is a κ(x)-embedding. These triples correspond exactly to the triples in
Algebra, Lemma 155.11 and the rest of the proof is exactly the same. �

We will need a relative variant of the lemma above.

Lemma 36.3. Let X → S be a morphism of schemes and x ∈ X a point with image
s. Then

(1) the number of branches of the fibre Xs at x is equal to the supremum of the
number of irreducible components of the fibre Us passing through u taken over
elementary étale neighbourhoods (U, u)→ (X,x),

(2) the number of geometric branches of the fibre Xs at x is equal to the supremum
of the number of irreducible components of the fibreUs passing through u taken
over étale neighbourhoods (U, u)→ (X,x),

(3) the fibre Xs is unibranch at x if and only if for every elementary étale neigh-
bourhood (U, u) → (X,x) there is exactly one irreducible component of the
fibre Us passing through u, and

(4) X is geometrically unibranch at x if and only if for every étale neighbourhood
(U, u)→ (X,x) there is exactly one irreducible component ofUs passing through
u.

Proof. Combine Lemmas 36.2 and 35.6. �

Lemma 36.4. Let X → S be a smooth morphism of schemes. Let x ∈ X with image
s ∈ S. Then

(1) The number of geometric branches ofX at x is equal to the number of geometric
branches of S at s.

(2) Ifκ(x)/κ(s) is a purely inseparable6 extension of fields, then number of branches
of X at x is equal to the number of branches of S at s.

Proof. Follows immediately from More on Algebra, Lemma 106.8 and the defini-
tions. �

37. Unramified and étale morphisms

Sometimes unramified morphisms are automatically étale.

Lemma 37.1. Let f : X → Y be a morphism of schemes. Let x ∈ X with image
y ∈ Y . Assume

(1) Y is integral and geometrically unibranch at y,
(2) f is locally of finite type,
(3) there is a specialization x′  x such that f(x′) is the generic point of Y ,
(4) f is unramified at x.

Then f is étale at x.

Proof. We may replaceX and Y by suitable affine open neighbourhoods of x and y.
Then Y is the spectrum of a domainA andX is the spectrum of a finite typeA-algebraB.
Let q ⊂ B be the prime ideal corresponding to x and p ⊂ A the prime ideal corresponding
to y. The local ring Ap = OY,y is geometrically unibranch. The ring map A → B is

6In fact, it would suffice if κ(x) is geometrically irreducible over κ(s). If we ever need this we will add a
detailed proof.
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unramified at q. Also, the point x′ in (3) corresponds to a prime ideal q′ ⊂ q such that
A ∩ q′ = (0). It follows that Ap → Bq is injective. We conclude by More on Algebra,
Lemma 107.2. �

Lemma 37.2. Let f : X → Y be a morphism of schemes. Assume
(1) Y is integral and geometrically unibranch,
(2) at least one irreducible component of X dominates Y ,
(3) f is unramified, and
(4) X is connected.

Then f is étale and X is irreducible.

Proof. Let X ′ ⊂ X be the irreducible component which dominates Y . This means
that the generic point of X ′ maps to the generic point of Y (see for example Morphisms,
Lemma 8.6). By Lemma 37.1 we see that f is étale at every point of X ′. In particular,
the open subscheme U ⊂ X where f is étale contains X ′. Note that every quasi-compact
open of U has finitely many irreducible components, see Descent, Lemma 16.3. On the
other hand since Y is geometrically unibranch and U is étale over Y , the scheme U is
geometrically unibranch. In particular, through every point of U there passes at most one
irreducible component. A simple topological argument now shows that X ′ ⊂ U is both
open and closed. Then of courseX ′ is open and closed inX and by connectedness we find
X = U = X ′ as desired. �

Lemma 37.3. Let f : X → Y and g : Y → Z be morphisms of schemes. Let x ∈ X
with image y ∈ Y . Assume

(1) Y is integral and geometrically unibranch at y,
(2) f is locally of finite type,
(3) g ◦ f is étale at x,
(4) there is a specialization x′  x such that f(x′) is the generic point of Y .

Then f is étale at x and g is étale at y.

Proof. The morphism f is unramified at x by Morphisms, Lemmas 35.16 and 36.5.
Hence f is étale at x by Lemma 37.1. Then by étale descent we see that g is étale at y, see
for example Descent, Lemma 14.4. �

Lemma 37.4. Let f : X → Y and g : Y → Z be morphisms of schemes. Assume
(1) Y is integral and geometrically unibranch,
(2) f is locally of finite type,
(3) g ◦ f is étale,
(4) every irreducible component of X dominates Y .

Then f is étale and g is étale at every point in the image of f .

Proof. Immediate from the pointwise version Lemma 37.3. �

38. Slicing smooth morphisms

In this section we explain a result that roughly states that smooth coverings of a scheme S
can be refined by étale coverings. The technique to prove this relies on a slicing argument.

Lemma 38.1. Let f : X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. Let h ∈ mx ⊂ OX,x. Assume

(1) f is smooth at x, and
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(2) the image dh of dh in
ΩXs/s,x ⊗OXs,x

κ(x) = ΩX/S,x ⊗OX,x
κ(x)

is nonzero.
Then there exists an affine open neighbourhood U ⊂ X of x such that h comes from
h ∈ Γ(U,OU ) and such that D = V (h) is an effective Cartier divisor in U with x ∈ D
and D → S smooth.

Proof. As f is smooth at xwe may assume, after replacingX by an open neighbour-
hood of x that f is smooth. In particular we see that f is flat and locally of finite presen-
tation. By Lemma 23.1 we already know there exists an open neighbourhood U ⊂ X of x
such that h comes from h ∈ Γ(U,OU ) and such that D = V (h) is an effective Cartier di-
visor in U with x ∈ D andD → S flat and of finite presentation. By Morphisms, Lemma
32.15 we have a short exact sequence

CD/U → i∗ΩU/S → ΩD/S → 0
where i : D → U is the closed immersion and CD/U is the conormal sheaf ofD inU . AsD
is an effective Cartier divisor cut out by h ∈ Γ(U,OU ) we see that CD/U = h · OS . Since
U → S is smooth the sheaf ΩU/S is finite locally free, hence its pullback i∗ΩU/S is finite
locally free also. The first arrow of the sequence maps the free generator h to the section
dh|D of i∗ΩU/S which has nonzero value in the fibre ΩU/S,x ⊗ κ(x) by assumption. By
right exactness of ⊗κ(x) we conclude that

dimκ(x)
(
ΩD/S,x ⊗ κ(x)

)
= dimκ(x)

(
ΩU/S,x ⊗ κ(x)

)
− 1.

By Morphisms, Lemma 34.14 we see that ΩU/S,x ⊗ κ(x) can be generated by at most
dimx(Us) elements. By the displayed formula we see that ΩD/S,x ⊗ κ(x) can be gener-
ated by at most dimx(Us)−1 elements. Note that dimx(Ds) = dimx(Us)−1 for example
because dim(ODs,x) = dim(OUs,x) − 1 by Algebra, Lemma 60.13 (also Ds ⊂ Us is ef-
fective Cartier, see Divisors, Lemma 18.1) and then using Morphisms, Lemma 28.1. Thus
we conclude that ΩD/S,x ⊗ κ(x) can be generated by at most dimx(Ds) elements and we
conclude that D → S is smooth at x by Morphisms, Lemma 34.14 again. After shrinking
U we get that D → S is smooth and we win. �

Lemma 38.2. Let f : X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. Assume

(1) f is smooth at x, and
(2) the map

ΩXs/s,x ⊗OXs,x
κ(x) −→ Ωκ(x)/κ(s)

has a nonzero kernel.
Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is smooth.

Proof. Write k = κ(s) and R = OXs,x. Denote m the maximal ideal of R and
κ = R/m so that κ = κ(x). As formation of modules of differentials commutes with
localization (see Algebra, Lemma 131.8) we have ΩXs/s,x = ΩR/k. By Algebra, Lemma
131.9 there is an exact sequence

m/m2 d−→ ΩR/k ⊗R κ→ Ωκ/k → 0.

Hence if (2) holds, there exists an element h ∈ m such that dh is nonzero. Choose a lift
h ∈ OX,x of h and apply Lemma 38.1. �
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Remark 38.3. The second condition in Lemma 38.2 is necessary even if x is a closed
point of a positive dimensional fibre. An example is the following: Let k be a field of
characteristic p > 0 which is imperfect. Let a ∈ k be an element which is not a pth power.
Let m = (x, yp − a) ⊂ k[x, y]. This corresponds to a closed point w of X = A2

k. Set
S = A1

k and let f : X → S be the morphism corresponding to k[x] → k[x, y]. Then
there does not exist any commutative diagram

S′
h

//

g
��

X

f��
S

with g étale andw in the image ofh. This is clear as the residue field extensionκ(w)/κ(f(w))
is purely inseparable, but for any s′ ∈ S′ with g(s′) = f(w) the extension κ(s′)/κ(f(w))
would be separable.

If you assume the residue field extension is separable then the phenomenon of Remark
38.3 does not happen. Here is the precise result.

Lemma 38.4. Let f : X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. Assume

(1) f is smooth at x,
(2) the residue field extension κ(x)/κ(s) is separable, and
(3) x is not a generic point of Xs.

Then there exists an affine open neighbourhood U ⊂ X of x and an effective Cartier
divisor D ⊂ U containing x such that D → S is smooth.

Proof. Write k = κ(s) and R = OXs,x. Denote m the maximal ideal of R and
κ = R/m so that κ = κ(x). As formation of modules of differentials commutes with
localization (see Algebra, Lemma 131.8) we have ΩXs/s,x = ΩR/k. By assumption (2) and
Algebra, Lemma 140.4 the map

d : m/m2 −→ ΩR/k ⊗R κ(m)

is injective. Assumption (3) implies that m/m2 6= 0. Thus there exists an element h ∈ m

such that dh is nonzero. Choose a lift h ∈ OX,x of h and apply Lemma 38.1. �

The subscheme Z constructed in the following lemma is really a complete intersection in
an affine open neighbourhood of x. If we ever need this we will explicitly formulate a
separate lemma stating this fact.

Lemma 38.5. Let f : X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. Assume

(1) f is smooth at x, and
(2) x is a closed point of Xs and κ(s) ⊂ κ(x) is separable.

Then there exists an immersion Z → X containing x such that
(1) Z → S is étale, and
(2) Zs = {x} set theoretically.

Proof. We may and do replace S by an affine open neighbourhood of s. We may
and do replace X by an affine open neighbourhood of x such that X → S is smooth. We
will prove the lemma for smooth morphisms of affines by induction on d = dimx(Xs).
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The case d = 0. In this case we show that we may take Z to be an open neighbourhood
of x. Namely, if d = 0, then X → S is quasi-finite at x, see Morphisms, Lemma 29.5.
Hence there exists an affine open neighbourhood U ⊂ X such that U → S is quasi-finite,
see Morphisms, Lemma 56.2. Thus after replacing X by U we see that X is quasi-finite
and smooth over S , hence smooth of relative dimension 0 over S , hence étale over S.
Moreover, the fibre Xs is a finite discrete set. Hence after replacing X by a further affine
open neighbourhood of X we see that f−1({s}) = {x} (because the topology on Xs is
induced from the topology on X , see Schemes, Lemma 18.5). This proves the lemma in
this case.

Next, assume d > 0. Note that because x is a closed point of its fibre the extension
κ(x)/κ(s) is finite (by the Hilbert Nullstellensatz, see Morphisms, Lemma 20.3). Thus
we see Ωκ(x)/κ(s) = 0 as this holds for algebraic separable field extensions. Thus we may
apply Lemma 38.2 to find a diagram

D //

''

U //

  

X

��
S

with x ∈ D. Note that dimx(Ds) = dimx(Xs) − 1 for example because dim(ODs,x) =
dim(OXs,x)−1 by Algebra, Lemma 60.13 (alsoDs ⊂ Xs is effective Cartier, see Divisors,
Lemma 18.1) and then using Morphisms, Lemma 28.1. Thus the morphism D → S is
smooth with dimx(Ds) = dimx(Xs)− 1 = d− 1. By induction hypothesis we can find
an immersion Z → D as desired, which finishes the proof. �

Lemma 38.6. Let f : X → S be a smooth morphism of schemes. Let s ∈ S be a
point in the image of f . Then there exists an étale neighbourhood (S′, s′)→ (S, s) and a
S-morphism S′ → X .

First proof of Lemma 38.6. By assumption Xs 6= ∅. By Varieties, Lemma 25.6
there exists a closed point x ∈ Xs such that κ(x) is a finite separable field extension
of κ(s). Hence by Lemma 38.5 there exists an immersion Z → X such that Z → S is
étale and such that x ∈ Z. Take (S′, s′) = (Z, x). �

Second proof of Lemma 38.6. Pick a point x ∈ X with f(x) = s. Choose a dia-
gram

X

��

Uoo

��

π
// Ad

V

~~
S Voo

with π étale, x ∈ U and V = Spec(R) affine, see Morphisms, Lemma 36.20. In particular
s ∈ V . The morphism π : U → Ad

V is open, see Morphisms, Lemma 36.13. Thus W =
π(U) ∩Ad

s is a nonempty open subset of Ad
s . Let w ∈ W be a point with κ(s) ⊂ κ(w)

finite separable, see Varieties, Lemma 25.5. By Algebra, Lemma 114.1 there exist d elements
f1, . . . , fd ∈ κ(s)[x1, . . . , xd] which generate the maximal ideal corresponding to w in
κ(s)[x1, . . . , xd]. After replacing R by a principal localization we may assume there are
f1, . . . , fd ∈ R[x1, . . . , xd] which map to f1, . . . , fd ∈ κ(s)[x1, . . . , xd]. Consider the
R-algebra

R′ = R[x1, . . . , xd]/(f1, . . . , fd)
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and set S′ = Spec(R′). By construction we have a closed immersion j : S′ → Ad
V

over V . By construction the fibre of S′ → V over s is a single point s′ whose residue
field is finite separable over κ(s). Let q′ ⊂ R′ be the corresponding prime. By Algebra,
Lemma 136.10 we see that (R′)g is a relative global complete intersection overR for some
g ∈ R′, g 6∈ q. Thus S′ → V is flat and of finite presentation in a neighbourhood of s′,
see Algebra, Lemma 136.13. By construction the scheme theoretic fibre of S′ → V over s
is Spec(κ(s′)). Hence it follows from Morphisms, Lemma 36.15 that S′ → S is étale at s′.
Set

S′′ = U ×π,Ad
V
,j S

′.

By construction there exists a point s′′ ∈ S′′ which maps to s′ via the projection p :
S′′ → S′. Note that p is étale as the base change of the étale morphism π, see Morphisms,
Lemma 36.4. Choose a small affine neighbourhood S′′′ ⊂ S′′ of s′′ which maps into the
nonempty open neighbourhood of s′ ∈ S′ where the morphism S′ → S is étale. Then
the étale neighbourhood (S′′′, s′′) → (S, s) is a solution to the problem posed by the
lemma. �

The following lemma shows that sheaves for the smooth topology are the same thing as
sheaves for the étale topology.

Lemma 38.7. Let S be a scheme. Let U = {Si → S}i∈I be a smooth covering of S ,
see Topologies, Definition 5.1. Then there exists an étale covering V = {Tj → S}j∈J (see
Topologies, Definition 4.1) which refines (see Sites, Definition 8.1) U .

Proof. For every s ∈ S there exists an i ∈ I such that s is in the image of Si → S.
By Lemma 38.6 we can find an étale morphism gs : Ts → S such that s ∈ gs(Ts) and such
that gs factors through Si → S. Hence {Ts → S} is an étale covering of S that refines
U . �

Lemma 38.8. Let f : X → S be a smooth morphism of schemes. Then there exists
an étale covering {Ui → X}i∈I such thatUi → S factors asUi → Vi → S where Vi → S
is étale and Ui → Vi is a smooth morphism of affine schemes, which has a section, and has
geometrically connected fibres.

Proof. Let s ∈ S. By Varieties, Lemma 25.6 the set of closed points x ∈ Xs such
that κ(x)/κ(s) is separable is dense inXs. Thus it suffices to construct an étale morphism
U → X with x in the image such that U → S factors in the manner described in the
lemma. To do this, choose an immersion Z → X passing through x such that Z → S
is étale (Lemma 38.5). After replacing S by Z and X by Z ×S X we see that we may
assume X → S has a section σ : S → X with σ(s) = x. Then we can first replace S by
an affine open neighbourhood of s and next replace X by an affine open neighbourhood
of x. Then finally, we consider the subset X0 ⊂ X of Section 29. By Lemmas 29.6 and
29.4 this is a retrocompact open subscheme containing σ such that the fibres X0 → S
are geometrically connected. If X0 is not affine, then we choose an affine open U ⊂ X0

containing x. Since X0 → S is smooth, the image of U is open. Choose an affine open
neighbourhood V ⊂ S of s contained in σ−1(U) and in the image ofU → S. Finally, the
reader sees thatU ∩f−1(V )→ V has all the desired properties. For exampleU ∩f−1(V )
is equal to U ×S V is affine as a fibre product of affine schemes. Also, the geometric fibres
of U ∩ f−1(V )→ V are nonempty open subschemes of the irreducible fibres of X0 → S
and hence connected. Some details omitted. �
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39. Étale neighbourhoods and Artin approximation

In this section we prove results of the form: if two pointed schemes have isomorphic
complete local rings, then they have isomorphic étale neighbourhoods. We will rely on
Popescu’s theorem, see Smoothing Ring Maps, Theorem 12.1.

Lemma 39.1. Let S be a locally Noetherian scheme. Let X , Y be schemes locally of
finite type over S. Let x ∈ X and y ∈ Y be points lying over the same point s ∈ S.
AssumeOS,s is a G-ring. Assume further we are given a localOS,s-algebra map

ϕ : OY,y −→ O∧
X,x

For everyN ≥ 1 there exists an elementary étale neighbourhood (U, u)→ (X,x) and an
S-morphism f : U → Y mapping u to y such that the diagram

O∧
X,x

// O∧
U,u

OY,y
f]u //

ϕ

OO

OU,u

OO

commutes modulo mNu .

Proof. The question is local on X hence we may assume X , Y , S are affine. Say
S = Spec(R), X = Spec(A), Y = Spec(B). Write B = R[x1, . . . , xn]/(f1, . . . , fm).
Let p ⊂ A be the prime ideal corresponding to x. The local ring OX,x = Ap is a G-ring
by More on Algebra, Proposition 50.10. The map ϕ is a map

B∧
q −→ A∧

p

where q ⊂ B is the prime corresponding to y. Let a1, . . . , an ∈ A∧
p be the images of

x1, . . . , xn via R[x1, . . . , xn] → B → B∧
q → A∧

p . Then we can apply Smoothing Ring
Maps, Lemma 13.4 to get an étale ring map A → A′ and a prime ideal p′ ⊂ A′ and
b1, . . . , bn ∈ A′ such that κ(p) = κ(p′), ai − bi ∈ (p′)N (A′

p′)∧, and fj(b1, . . . , bn) = 0
for j = 1, . . . , n. This determines anR-algebra mapB → A′ by sending the class of xi to
bi ∈ A′. This finishes the proof by taking U = Spec(A′)→ Spec(B) as the morphism f
and u = p′. �

Lemma 39.2. Let S be a locally Noetherian scheme. Let X , Y be schemes locally of
finite type over S. Let x ∈ X and y ∈ Y be points lying over the same point s ∈ S.
AssumeOS,s is a G-ring. Assume we have anOS,s-algebra isomorphism

ϕ : O∧
Y,y −→ O∧

X,x

between the complete local rings. Then for every N ≥ 1 there exists morphisms

(X,x)← (U, u)→ (Y, y)
of pointed schemes over S such that both arrows define elementary étale neighbourhoods
and such that the diagram

O∧
U,u

O∧
Y,y

ϕ //

<<

O∧
X,x

bb

commutes modulo mNu .
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Proof. We may assume N ≥ 2. Apply Lemma 39.1 to get (U, u) → (X,x) and
f : (U, u) → (Y, y). We claim that f is étale at u which will finish the proof. In fact,
we will show that the induced map O∧

Y,y → O∧
U,u is an isomorphism. Having proved

this, Lemma 12.1 will show that f is smooth at u and of course f is unramified at u as
well, so Morphisms, Lemma 36.5 tells us f is étale at u. For a local ring (R,m) we set
Grm(R) =

⊕
n≥0 m

n/mn+1. To prove the claim we look at the induced diagram of
graded rings

Grmu(OU,u)

Grmy (OY,y)
ϕ //

77

Grmx(OX,x)

gg

Since N ≥ 2 this diagram is actually commutative as the displayed graded algebras are
generated in degree 1! By assumption the lower arrow is an isomorphism. By More on Al-
gebra, Lemma 43.9 (for example) the mapO∧

X,x → O∧
U,u is an isomorphism and hence the

north-west arrow in the diagram is an isomorphism. We conclude that f induces an iso-
morphism Grmx(OX,x)→ Grmy (OU,u). Using induction and the short exact sequences

0→ Grnm(R)→ R/mn+1 → R/mn → 0
for both local rings we conclude (from the snake lemma) that f induces isomorphisms
OY,y/mny → OU,u/mnu for all n which is what we wanted to show. �

Lemma 39.3. LetX → S , Y → T , x, s, y, t, σ, yσ , and ϕ be given as follows: we have
morphisms of schemes

X

��

Y

��
S T

with points

x

��

y

��
s t

Here S is locally Noetherian and T is of finite type over Z. The morphisms X → S and
Y → T are locally of finite type. The local ringOS,s is a G-ring. The map

σ : OT,t −→ O∧
S,s

is a local homomorphism. Set Yσ = Y ×T,σSpec(O∧
S,s). Next, yσ is a point of Yσ mapping

to y and the closed point of Spec(O∧
S,s). Finally

ϕ : O∧
X,x −→ O∧

Yσ,yσ

is an isomorphism ofO∧
S,s-algebras. In this situation there exists a commutative diagram

X

��

Woo

��

// Y ×T,τ V //

zz

Y

��
S Voo τ // T

of schemes and points w ∈W , v ∈ V such that
(1) (V, v)→ (S, s) is an elementary étale neighbourhood,
(2) (W,w)→ (X,x) is an elementary étale neighbourhood, and
(3) τ(v) = t.

Let yτ ∈ Y ×T V correspond to yσ via the identification (Yσ)s = (Y ×T V )v . Then
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(4) (W,w)→ (Y ×T,τ V, yτ ) is an elementary étale neighbourhood.

Proof. Denote Xσ = X ×S Spec(O∧
S,s) and xσ ∈ Xσ the unique point lying over

x. Observe that O∧
S,s is a G-ring by More on Algebra, Proposition 50.6. By Lemma 39.2

we can choose
(Xσ, xσ)← (U, u)→ (Yσ, yσ)

where both arrows are elementary étale neighbourhoods.

After replacing S by an open neighbourhood of s, we may assume S = Spec(R) is affine.
Since OS,s is a G-ring by Smoothing Ring Maps, Theorem 12.1 the ring O∧

S,s is a filtered
colimit of smooth R-algebras. Thus we can write

Spec(O∧
S,s) = limSi

as a directed limit of affine schemes Si smooth over S. Denote si ∈ Si the image of the
closed point of Spec(O∧

S,s). Observe that κ(s) = κ(si). Set Xi = X ×S Si and denote
xi ∈ Xi the unique point mapping to x. Note that κ(x) = κ(xi). Since T is of finite
type over Z by Limits, Proposition 6.1 we can choose an i and a morphism σi : (Si, si)→
(T, t) of pointed schemes whose composition with Spec(O∧

S,s) → Si is equal to σ. Set
Yi = Y ×T Si and denote yi the image of yσ . Note that κ(yi) = κ(yσ). By Limits, Lemma
10.1 we can choose an i and a diagram

Xi

  

Uioo

��

// Yi

~~
Si

whose base change to Spec(O∧
S,s) recovers Xσ ← U → Yσ . By Limits, Lemma 8.10 after

increasing i we may assume the morphisms Xi ← Ui → Yi are étale. Let ui ∈ Ui be the
image of u. Then ui 7→ xi hence κ(x) = κ(xσ) = κ(u) ⊃ κ(ui) ⊃ κ(xi) = κ(x) and we
see that κ(ui) = κ(xi). Hence (Xi, xi)← (Ui, ui) is an elementary étale neighbourhood.
Since also κ(yi) = κ(yσ) = κ(u) we see that also (Ui, ui) → (Yi, yi) is an elementary
étale neighbourhood.

At this point we have constructed a diagram

X

��

X ×S Sioo

$$

Uioo //

��

Y ×T Si //

{{

Y

��
S Sioo // T

as in the statement of the lemma, except that Si → S is smooth. By Lemma 38.5 and after
shrinking Si we can assume there exists a closed subscheme V ⊂ Si passing through si
such that V → S is étale. Setting W equal to the scheme theoretic inverse image of V in
Ui we conclude. �

We strongly encourage the reader to skip the rest of this section.

Lemma 39.4. Consider a diagram

X

��

Y

��
S Too

with points

x

��

y

��
s too
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where S be a locally Noetherian scheme and the morphisms are locally of finite type.
AssumeOS,s is a G-ring. Assume further we are given a localOS,s-algebra map

σ : OT,t −→ O∧
S,s

and a localOS,s-algebra map

ϕ : OX,x −→ O∧
Yσ,yσ

where Yσ = Y ×T,σ Spec(O∧
S,s) and yσ is the unique point of Yσ lying over y. For every

N ≥ 1 there exists a commutative diagram

X

��

X ×S Voo

##

W
f
oo //

��

Y ×T,τ V //

zz

Y

��
S Voo τ // T

of schemes over S and points w ∈W , v ∈ V such that
(1) v 7→ s, τ(v) = t, f(w) = (x, v), and w 7→ (y, v),
(2) (V, v)→ (S, s) is an elementary étale neighbourhood,
(3) the diagram

O∧
S,s

// O∧
V,v

OT,t
τ]v //

σ

OO

OV,v

OO

commutes module mNv ,
(4) (W,w)→ (Y ×T,τ V, (y, v)) is an elementary étale neighbourhood,
(5) the diagram

OX,x ϕ
// O∧

Yσ,yσ
// OYσ,yσ/mNyσ OY×T,τV,(y,v)/m

N
(y,v)

∼=
��

OX,x // OX×SV,(x,v)
f]w // OW,w // OW,w/mNw

commutes. The equality comes from the fact that Yσ and Y ×T,τ V are canoni-
cally isomorphic overOV,v/mNv = OS,s/mNs by parts (2) and (3).

Proof. After replacing X , S , T , Y by affine open subschemes we may assume the
diagram in the statement of the lemma comes from applying Spec to a diagram

A B

R

OO

// C

OO

with primes

pA pB

pR pC

of Noetherian rings and finite type ring maps. In this proof every ring E will be a Noe-
therian R-algebra endowed with a prime ideal pE lying over pR and all ring maps will be
R-algebra maps compatible with the given primes. Moreover, if we write E∧ we mean
the completion of the localization of E at pE . We will also use without further mention
that an étale ring map E1 → E2 such that κ(pE1) = κ(pE2) induces an isomorphism
E∧

1 = E∧
2 by More on Algebra, Lemma 43.9.
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With this notation σ and ϕ correspond to ring maps

σ : C → R∧ and ϕ : A −→ (B ⊗C,σ R∧)∧

Here is a picture

A

ϕ
--

B // B ⊗C,σ R∧ // (B ⊗C,σ R∧)∧

R //

OO

C
σ //

OO

R∧

OO 66

Observe that R∧ is a G-ring by More on Algebra, Proposition 50.6. Thus B ⊗C,σ R∧ is a
G-ring by More on Algebra, Proposition 50.10. By Lemma 39.1 (translated into algebra)
there exists an étale ring mapB⊗C,σR∧ → B′ inducing an isomorphismκ(pB⊗C,σR∧)→
κ(pB′) and an R-algebra map A→ B′ such that the composition

A→ B′ → (B′)∧ = (B ⊗C,σ R∧)∧

is the same as ϕ modulo (p(B⊗C,σR∧)∧)N . Thus we may replace ϕ by this composition
because the only way ϕ enters the conclusion is via the commutativity requirement in
part (5) of the statement of the lemma. Picture:

B′ // (B′)∧

A

66

B // B ⊗C,σ R∧ //

OO

(B ⊗C,σ R∧)∧

R //

OO

C
σ //

OO

R∧

OO 66

Next, we use that R∧ is a filtered colimit of smooth R-algebras (Smoothing Ring Maps,
Theorem 12.1) because RpR is a G-ring by assumption. Since C is of finite presentation
over R we get a factorization

C → R′ → R∧

for some R → R′ smooth, see Algebra, Lemma 127.3. After increasing R′ we may assume
there exists an étaleB⊗CR′-algebraB′′ whose base change toB⊗C,σR∧ isB′, see Algebra,
Lemma 143.3. Then B′ is the filtered colimit of these B′′ and we conclude that after
increasingR′ we may assume there is anR-algebra mapA→ B′′ such thatA→ B′′ → B′

is the previously constructed map (same reference as above). Picture

B′′ // B′ // (B′)∧

A

66

B // B ⊗C R′ //

OO

B ⊗C,σ R∧ //

OO

(B ⊗C,σ R∧)∧

R //

OO

C //

OO

R′ //

OO

R∧

OO 66

and
B′ = B′′ ⊗(B⊗CR′) (B ⊗C,σ R∧)
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This means that we may replace C byR′, σ : C → R∧ byR′ → R∧, andB byB′′ so that
we simplify to the diagram

A // B // B ⊗C,σ R∧

R //

OO

C
σ //

OO

R∧

OO

with ϕ equal to the composition of the horizontal arrows followed by the canonical map
fromB⊗C,σR∧ to its completion. The final step in the proof is to apply Lemma 39.1 (or its
proof) one more time to Spec(C) and Spec(R) over Spec(R) and the map C → R∧. The
lemma produces a ring map C → D such that R→ D is étale, such that κ(pR) = κ(pD),
and such that

C → D → D∧ = R∧

is equal to σ : C → R∧ modulo (pR∧)N . Then we can take

V = Spec(D) and W = Spec(B ⊗C D)
as our solution to the problem posed by the lemma. Namely the diagram

A // B ⊗C,σ R∧ // B ⊗C,σ R∧/(pR∧)N B ⊗C D/(pD)N

A // A⊗R D // B ⊗R D // B ⊗C D/(pD)N

commutes because C → D → D∧ = R∧ is equal to σ modulo (pR∧)N . This proves part
(5) and the other properties are immediate from the construction. �

Lemma 39.5. Let T → S be finite type morphisms of Noetherian schemes. Let t ∈ T
map to s ∈ S and let σ : OT,t → O∧

S,s be a localOS,s-algebra map. For everyN ≥ 1 there
exists a finite type morphism (T ′, t′)→ (T, t) such that σ factors throughOT,t → OT ′,t′

and such that for every local OS,s-algebra map σ′ : OT,t → O∧
S,s which factors through

OT,t → OT ′,t′ the maps σ and σ′ agree modulo mNs .

Proof. We may assume S and T are affine. Say S = Spec(R) and T = Spec(C).
Let c1, . . . , cn ∈ C be generators of C as an R-algebra. Let p ⊂ R be the prime ideal
corresponding to s. Say p = (f1, . . . , fm). After replacing R by a principal localization
(to clear denominators in Rp) we may assume there exist r1, . . . , rn ∈ R and ai,I ∈ O∧

S,s

where I = (i1, . . . , im) with
∑
ij = N such that

σ(ci) = ri +
∑

I
ai,If

i1
1 . . . f imm

inO∧
S,s. Then we consider

C ′ = C[ti,I ]/
(
ci − ri −

∑
I
ti,If

i1
1 . . . f imm

)
with p′ = pC ′ + (ti,I) and factorization of σ : C → O∧

S,s through C ′ given by sending
ti,I to ai,I . Taking T ′ = Spec(C ′) works because any σ′ as in the statement of the lemma
will send ci to ri modulo the maximal ideal to the power N . �

Lemma 39.6. Let Y → T → S be finite type morphisms of Noetherian schemes.
Let t ∈ T map to s ∈ S and let σ : OT,t → O∧

S,s be a local OS,s-algebra map. There
exists a finite type morphism (T ′, t′)→ (T, t) such that σ factors throughOT,t → OT ′,t′
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and such that for every local OS,s-algebra map σ′ : OT,t → O∧
S,s which factors through

OT,t → OT ′,t′ the closed immersions

Y ×T,σ Spec(O∧
S,s) = Yσ ←− Yt −→ Yσ′ = Y ×T,σ′ Spec(O∧

S,s)

have isomorphic conormal algebras.

Proof. A useful observation is that κ(s) = κ(t) by the existence of σ. Observe that
the statement makes sense as the fibres of Yσ and Yσ′ over s ∈ Spec(O∧

S,s) are both canon-
ically isomorphic to Yt. We will think of the property “σ′ factors throughOT,t → OT ′,t′ ”
as a constraint on σ′. If we have several such constraints, say given by (T ′

i , t
′
i) → (T, t),

i = 1, . . . , n then we can combined them by considering (T ′
1×T . . .×T T ′

n, (t′1, . . . , t′n))→
(T, t). We will use this without further mention in the following.

By Lemma 39.5 we can assume that any σ′ as in the statement of the lemma is the same as
σ modulo m2

s. Note that the conormal algebra of Yt in Yσ is just the quasi-coherent graded
OYt -algebra ⊕

n≥0
mnsOYσ/mn+1

s OYσ

and similarly for Yσ′ . Since σ and σ′ agree modulo m2
s we see that these two algebras are

the same in degrees 0 and 1. On the other hand, these conormal algebras are generated in
degree 1 over degree 0. Hence if there is an isomorphism extending the isomorphism just
constructed in degrees 0 and 1, then it is unique.

We may assume S and T are affine. Let Y = Y1 ∪ . . . ∪ Yn be an affine open covering.
If we can construct (T ′

i , t
′
i) → (T, t) as in the lemma such that the desired isomorphism

(see previous paragraph) exists for Yi → T → S and σ, then these glue by uniqueness to
prove the result for Y → T . Thus we may assume Y is affine.

Write S = Spec(R), T = Spec(C), and Y = Spec(B). Choose a presentation B =
C[x1, . . . , xn]/(f1, . . . , fm). Denote R∧ = O∧

S,s. Let akj ∈ R∧[x1, . . . , xn] be polyno-
mials such that ∑

j=1,...,m
akjσ(fj) = 0, for k = 1, . . . ,K

is a set of generators for the module of relations among the σ(fj) ∈ R∧[x1, . . . , xn]. Thus
we have an exact sequence
(39.6.1)

R∧[x1, . . . , xn]⊕K → R∧[x1, . . . , xn]⊕m → R∧[x1, . . . , xn]→ B ⊗C,σ R∧ → 0

Let c be an integer which works in the Artin-Rees lemma for both the first and the second
map in this sequence and the ideal mR∧R∧[x1, . . . , xn] as defined in More on Algebra,
Section 4. Write

akj =
∑

I∈Ω
akj,Ix

I and fj =
∑

I∈Ω
fj,Ix

I

in multiindex notation where akj,I ∈ R∧, fj,I ∈ C , and Ω a finite set of multiindices.
Then we see that∑

j=1,...,m, I,I′∈Ω, I+I′=I′′
akj,Iσ(fj,I′) = 0, I ′′ a multiindex

in R∧. Thus we take

C ′ = C[tjk,I ]/
(∑

j=1,...,m, I,I′∈Ω, I+I′=I′′
tkj,Ifj,I′ , I ′′ a multiindex

)
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Then σ factors through a map σ̃ : C ′ → R∧ sending tkj,I to ajk,I . Thus T ′ = Spec(C ′)
comes with a point t′ ∈ T ′ such that σ factors through OT,t → OT ′,t′ . Let tkj =∑
tkj,Ix

I in C ′[x1, . . . , xn]. Then we see that we have a complex

(39.6.2) C ′[x1, . . . , xn]⊕K → C ′[x1, . . . , xn]⊕m → C ′[x1, . . . , xn]→ B ⊗C C ′ → 0

which is exact at C ′[x1, . . . , xn] and whose base change by σ̃ gives (39.6.1).

By Lemma 39.5 we can find a further morphism (T ′′, t′′) → (T ′, t′) such that σ̃ factors
throughOT ′,t′ → OT ′′,t′′ and such that if σ′ : C → R∧ factors throughOT ′′,t′′ , then the
induced map σ̃′ : C ′ → R∧ agrees modulo mc+1

s with σ̃. Thus if σ′ is such a map, then
we obtain a complex

R∧[x1, . . . , xn]⊕K → R∧[x1, . . . , xn]⊕m → R∧[x1, . . . , xn]→ B ⊗C,σ′ R∧ → 0

over R∧[x1, . . . , xn] by applying σ̃′ to the polynomials tkj and fj . In other words, this
is the base change of the complex (39.6.2) by σ̃′. The matrices defining this complex are
congruent modulomc+1

s to the matrices defining the complex (39.6.1) because σ̃ and σ̃′ are
congruent modulo mc+1

s . Since (39.6.1) is exact, we can apply More on Algebra, Lemma
4.2 to conclude that

Grms(B ⊗C,σ′ R∧) ∼= Grms(B ⊗C,σ R∧)

as desired. �

Lemma 39.7. With notation an assumptions as in Lemma 39.4 assume that ϕ induces
an isomorphism on completions. Then we can choose our diagram such that f is étale.

Proof. We may assume N ≥ 2 and we may replace (T, t) with (T ′, t′) as in Lemma
39.6. Since (V, v)→ (S, s) is an elementary étale neighbourhood, so is (X×SV, (x, v))→
(X,x). Thus OX,x → OX×SV,(x,v) induces an isomorphism on completions by More on
Algebra, Lemma 43.9. We claimOX,x → OW,w induces an isomorphism on completions.
Having proved this, Lemma 12.1 will show that f is smooth atw and of course f is unram-
ified at u as well, so Morphisms, Lemma 36.5 tells us f is étale at w.

First we use the commutativity in part (5) of Lemma 39.4 to see that for i ≤ N there is a
commutative diagram

Grimx(OX,x)
ϕ

// Grimyσ (O∧
Yσ,yσ

) Grim(y,v)
(OY×T,τV,(y,v))

∼=
��

Grimx(OX,x)
∼= // Grim(x,v)

(OX×SV,(x,v))
f]w // Grimw(OW,w)

This implies that f ]w defines an isomorphism κ(x) → κ(w) on residue fields and an
isomorphism mx/m

2
x → mw/m

2
w on cotangent spaces. Hence f ]w defines a surjection

O∧
X,x → O∧

W,w on complete local rings.

By Lemma 39.6 there is an isomorphism of Grms(O(Y×T,τV,(y,v)) with Grms(OYσ,yσ ).
This follows by taking stalks of the isomorphism of conormal sheaves at the point y. Since
our local rings are Noetherian taking associated graded with respect to ms commutes with
completion because completion with respect to an ideal is an exact functor on finite mod-
ules over Noetherian rings. This produces the right vertical isomorphism in the diagram



40. FINITE FREE LOCALLY DOMINATES ÉTALE 3223

of graded rings
Grms(O∧

W,w) Grms(O∧
(Y×T,τV,(y,v))oo

Grms(O∧
X,x) ϕ //

OO

Grms(O∧
Yσ,yσ

)

∼=

OO

We do not claim the diagram commutes. By the result of the previous paragraph the left
arrow is surjective. The other three arrows are isomorphisms. It follows that the left arrow
is a surjective map between isomorphic Noetherian rings. Hence it is an isomorphism
by Algebra, Lemma 31.10 (you can argue this directly using Hilbert functions as well).
In particular O∧

X,x → O∧
W,w must be injective as well as surjective which finishes the

proof. �

40. Finite free locally dominates étale

In this section we explain a result that roughly states that étale coverings of a scheme S
can be refined by Zariski coverings of finite locally free covers of S.

Lemma 40.1. Let S be a scheme. Let s ∈ S. Let f : (U, u) → (S, s) be an étale
neighbourhood. There exists an affine open neighbourhood s ∈ V ⊂ S and a surjective,
finite locally free morphism π : T → V such that for every t ∈ π−1(s) there exists an
open neighbourhood t ∈Wt ⊂ T and a commutative diagram

T

π

��

Wt
oo

ht

//

  

U

��
V // S

with ht(t) = u.

Proof. The problem is local on S hence we may replace S by any open neighbour-
hood of s. We may also replace U by an open neighbourhood of u. Hence, by Morphisms,
Lemma 36.14 we may assume that U → S is a standard étale morphism of affine schemes.
In this case the lemma (with V = S) follows from Algebra, Lemma 144.5. �

Lemma 40.2. Let f : U → S be a surjective étale morphism of affine schemes. There
exists a surjective, finite locally free morphism π : T → S and a finite open covering
T = T1 ∪ . . . ∪ Tn such that each Ti → S factors through U → S. Diagram:∐

Ti

!!}}
T

π

""

U
f

||
S

where the south-west arrow is a Zariski-covering.

Proof. This is a restatement of Algebra, Lemma 144.6. �

Remark 40.3. In terms of topologies Lemmas 40.1 and 40.2 mean the following. Let
S be any scheme. Let {fi : Ui → S} be an étale covering of S. There exists a Zariski
open covering S =

⋃
Vj , for each j a finite locally free, surjective morphism Wj → Vj ,
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and for each j a Zariski open covering {Wj,k → Wj} such that the family {Wj,k → S}
refines the given étale covering {fi : Ui → S}. What does this mean in practice? Well,
for example, suppose we have a descent problem which we know how to solve for Zariski
coverings and for fppf coverings of the form {π : T → S} with π finite locally free and
surjective. Then this descent problem has an affirmative answer for étale coverings as well.
This trick was used by Gabber in his proof that Br(X) = Br′(X) for an affine scheme X ,
see [?].

41. Étale localization of quasi-finite morphisms

Now we come to a series of lemmas around the theme “quasi-finite morphisms become fi-
nite after étale localization”. The general idea is the following. Suppose given a morphism
of schemes f : X → S and a point s ∈ S. Let ϕ : (U, u)→ (S, s) be an étale neighbour-
hood of s in S. Consider the fibre product XU = U ×S X and the basic diagram

(41.0.1)

V //

!!

XU

��

// X

f

��
U

ϕ // S

where V ⊂ XU is open. Is there some standard model for the morphism fU : XU → U ,
or for the morphism V → U for suitable opens V ? Of course the answer is no in general.
But for quasi-finite morphisms we can say something.

Lemma 41.1. Let f : X → S be a morphism of schemes. Let x ∈ X . Set s = f(x).
Assume that

(1) f is locally of finite type, and
(2) x ∈ Xs is isolated7.

Then there exist
(a) an elementary étale neighbourhood (U, u)→ (S, s),
(b) an open subscheme V ⊂ XU (see 41.0.1)

such that
(i) V → U is a finite morphism,

(ii) there is a unique point v of V mapping to u in U , and
(iii) the point v maps to x under the morphism XU → X , inducing κ(x) = κ(v).

Moreover, for any elementary étale neighbourhood (U ′, u′)→ (U, u) setting V ′ = U ′×U
V ⊂ XU ′ the triple (U ′, u′, V ′) satisfies the properties (i), (ii), and (iii) as well.

Proof. Let Y ⊂ X , W ⊂ S be affine opens such that f(Y ) ⊂ W and such that
x ∈ Y . Note that x is also an isolated point of the fibre of the morphism f |Y : Y → W .
If we can prove the theorem for f |Y : Y →W , then the theorem follows for f . Hence we
reduce to the case where f is a morphism of affine schemes. This case is Algebra, Lemma
145.2. �

In the preceding and following lemma we do not assume that the morphism f is sepa-
rated. This means that the opens V , Vi created in them are not necessarily closed in XU .
Moreover, if we choose the neighbourhood U to be affine, then each Vi is affine, but the
intersections Vi ∩ Vj need not be affine (in the nonseparated case).

7In the presence of (1) this means that f is quasi-finite at x, see Morphisms, Lemma 20.6.
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Lemma 41.2. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume that

(1) f is locally of finite type, and
(2) xi ∈ Xs is isolated for i = 1, . . . , n.

Then there exist
(a) an elementary étale neighbourhood (U, u)→ (S, s),
(b) for each i an open subscheme Vi ⊂ XU ,

such that for each i we have
(i) Vi → U is a finite morphism,

(ii) there is a unique point vi of Vi mapping to u in U , and
(iii) the point vi maps to xi in X and κ(xi) = κ(vi).

Proof. We will use induction on n. Namely, suppose (U, u)→ (S, s) and Vi ⊂ XU ,
i = 1, . . . , n − 1 work for x1, . . . , xn−1. Since κ(s) = κ(u) the fibre (XU )u = Xs.
Hence there exists a unique point x′

n ∈ Xu ⊂ XU corresponding to xn ∈ Xs. Also x′
n

is isolated in Xu. Hence by Lemma 41.1 there exists an elementary étale neighbourhood
(U ′, u′) → (U, u) and an open Vn ⊂ XU ′ which works for x′

n and hence for xn. By the
final assertion of Lemma 41.1 the open subschemes V ′

i = U ′ ×U Vi for i = 1, . . . , n − 1
still work with respect to x1, . . . , xn−1. Hence we win. �

If we allow a nontrivial field extension κ(u)/κ(s), i.e., general étale neighbourhoods, then
we can split the points as follows.

Lemma 41.3. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume that

(1) f is locally of finite type, and
(2) xi ∈ Xs is isolated for i = 1, . . . , n.

Then there exist
(a) an étale neighbourhood (U, u)→ (S, s),
(b) for each i an integer mi and open subschemes Vi,j ⊂ XU , j = 1, . . . ,mi

such that we have
(i) each Vi,j → U is a finite morphism,

(ii) there is a unique point vi,j of Vi,j mapping to u in U with κ(u) ⊂ κ(vi,j) finite
purely inseparable,

(iv) if vi,j = vi′,j′ , then i = i′ and j = j′, and
(iii) the points vi,j map to xi in X and no other points of (XU )u map to xi.

Proof. This proof is a variant of the proof of Algebra, Lemma 145.4 in the language
of schemes. By Morphisms, Lemma 20.6 the morphism f is quasi-finite at each of the
points xi. Hence κ(s) ⊂ κ(xi) is finite for each i (Morphisms, Lemma 20.5). For each
i, let κ(s) ⊂ Li ⊂ κ(xi) be the subfield such that Li/κ(s) is separable, and κ(xi)/Li is
purely inseparable. Choose a finite Galois extension L/κ(s) such that there exist κ(s)-
embeddings Li → L for i = 1, . . . , n. Choose an étale neighbourhood (U, u) → (S, s)
such that L ∼= κ(u) as κ(s)-extensions (Lemma 35.2).

Let yi,j , j = 1, . . . ,mi be the points of XU lying over xi ∈ X and u ∈ U . By Schemes,
Lemma 17.5 these points yi,j correspond exactly to the primes in the ringsκ(u)⊗κ(s)κ(xi).
This also explains why there are finitely many; in fact mi = [Li : κ(s)] but we do not
need this. By our choice of L (and elementary field theory) we see that κ(u) ⊂ κ(yi,j) is
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finite purely inseparable for each pair i, j. Also, by Morphisms, Lemma 20.13 for example,
the morphism XU → U is quasi-finite at the points yi,j for all i, j.

Apply Lemma 41.2 to the morphism XU → U , the point u ∈ U and the points yi,j ∈
(XU )u. This gives an étale neighbourhood (U ′, u′) → (U, u) with κ(u) = κ(u′) and
opens Vi,j ⊂ XU ′ with the properties (i), (ii), and (iii) of that lemma. We claim that the
étale neighbourhood (U ′, u′) → (S, s) and the opens Vi,j ⊂ XU ′ are a solution to the
problem posed by the lemma. We omit the verifications. �

Lemma 41.4. Let f : X → S be a morphism of schemes. Let s ∈ S. Let x1, . . . , xn ∈
Xs. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) x1, . . . , xn are pairwise distinct isolated points of Xs.

Then there exists an elementary étale neighbourhood (U, u)→ (S, s) and a decomposition

U ×S X = W q V1 q . . .q Vn
into open and closed subschemes such that the morphisms Vi → U are finite, the fibres of
Vi → U over u are singletons {vi}, each vi maps to xi with κ(xi) = κ(vi), and the fibre
of W → U over u contains no points mapping to any of the xi.

Proof. Choose (U, u) → (S, s) and Vi ⊂ XU as in Lemma 41.2. Since XU → U is
separated (Schemes, Lemma 21.12) and Vi → U is finite hence proper (Morphisms, Lemma
44.11) we see that Vi ⊂ XU is closed by Morphisms, Lemma 41.7. Hence Vi∩Vj is a closed
subset of Vi which does not contain vi. Hence the image of Vi ∩ Vj in U is a closed set
(because Vi → U proper) not containing u. After shrinking U we may therefore assume
that Vi ∩ Vj = ∅ for all i, j. This gives the decomposition as in the lemma. �

Here is the variant where we reduce to purely inseparable field extensions.

Lemma 41.5. Let f : X → S be a morphism of schemes. Let s ∈ S. Let x1, . . . , xn ∈
Xs. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) x1, . . . , xn are pairwise distinct isolated points of Xs.

Then there exists an étale neighbourhood (U, u)→ (S, s) and a decomposition

U ×S X = W q
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

into open and closed subschemes such that the morphisms Vi,j → U are finite, the fibres
of Vi,j → U over u are singletons {vi,j}, each vi,j maps to xi, κ(u) ⊂ κ(vi,j) is purely
inseparable, and the fibre of W → U over u contains no points mapping to any of the xi.

Proof. This is proved in exactly the same way as the proof of Lemma 41.4 except
that it uses Lemma 41.3 instead of Lemma 41.2. �

The following version may be a little easier to parse.

Lemma 41.6. Let f : X → S be a morphism of schemes. Let s ∈ S. Assume that
(1) f is locally of finite type,
(2) f is separated, and
(3) Xs has at most finitely many isolated points.
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Then there exists an elementary étale neighbourhood (U, u)→ (S, s) and a decomposition

U ×S X = W q V
into open and closed subschemes such that the morphism V → U is finite, and the fibre
Wu of the morphism W → U contains no isolated points. In particular, if f−1(s) is a
finite set, then Wu = ∅.

Proof. This is clear from Lemma 41.4 by choosing x1, . . . , xn the complete set of
isolated points of Xs and setting V =

⋃
Vi. �

42. Étale localization of integral morphisms

Some variants of the results of Section 41 for the case of integral morphisms.

Lemma 42.1. LetR→ S be an integral ring map. Let p ⊂ R be a prime ideal. Assume
(1) there are finitely many primes q1, . . . , qn lying over p, and
(2) for each i the maximal separable subextensionκ(q)/κ(qi)sep/κ(p) (Fields, Lemma

14.6) is finite over κ(p).
Then there exists an étale ring map R→ R′ and a prime p′ lying over p such that

S ⊗R R′ = A1 × . . .×Am
with R′ → Aj integral having a unique prime rj over p′ such that κ(rj)/κ(p′) is purely
inseparable.

First proof. This proof uses Algebra, Lemma 145.4. Namely, choose a generator
θi ∈ κ(qi)sep of this field over κ(p) (Fields, Lemma 19.1). The spectrum of the fibre
ring S ⊗R κ(p) is finite discrete with points corresponding to q1, . . . , qn. By the Chi-
nese remainder theorem (Algebra, Lemma 15.4) we see that S ⊗R κ(p) →

∏
κ(qi) is

surjective. Hence after replacing R by Rg for some g ∈ R, g 6∈ p we may assume that
(0, . . . , 0, θi, 0, . . . , 0) ∈

∏
κ(qi) is the image of some xi ∈ S. Let S′ ⊂ S be the R-

subalgebra generated by our xi. Since Spec(S)→ Spec(S′) is surjective (Algebra, Lemma
36.17) we conclude that q′

i = S′ ∩ qi are the primes of S′ over p. By our choice of xi we
conclude these primes are distinct that and κ(q′

i)sep = κ(qi)sep. In particular the field ex-
tensions κ(qi)/κ(q′

i) are purely inseparable. SinceR→ S′ is finite we may apply Algebra,
Lemma 145.4. and we get R→ R′ and p′ and a decomposition

S′ ⊗R R′ = A′
1 × . . .×A′

m ×B′

with R′ → A′
j integral having a unique prime r′

j over p′ such that κ(r′
j)/κ(p′) is purely

inseparable and such that B′ does not have a prime lying over p′. Since R′ → B′ is finite
(as R → S′ is finite) we can after localizing R′ at some g′ ∈ R′, g′ 6∈ p′ assume that
B′ = 0. Via the map S′ ⊗R R′ → S ⊗R R′ we get the corresponding decomposition for
S. �

Second proof. This proof uses strict henselization. First, assumeR is strictly henseliza-
tion with maximal ideal p. ThenS/pS has finitely many primes corresponding to q1, . . . , qn,
each maximal, each with purely inseparable residue field over κ(p). Hence S/pS is equal
to
∏

(S/pS)pi . By More on Algebra, Lemma 11.6 we can lift this product decomposition
to a product composition of S as in the statement.

In the general case, letRsh be the strict henselization ofRp. Then we can apply the result
of the first paragraph to Rsh → S ⊗R Rsh. Consider the m mutually orthogonal idem-
potents in S ⊗R Rsh corresponding to the product decomposition. Since Rsh is a filtered
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colimit of étale ring maps (R, p) → (R′, p′) by Algebra, Lemma 155.11 we see that these
idempotents descend to some R′ as desired. �

43. Zariski’s Main Theorem

In this section we prove Zariski’s main theorem as reformulated by Grothendieck. Of-
ten when we say “Zariski’s main theorem” in this content we mean either of Lemma 43.1,
Lemma 43.2, or Lemma 43.3. In most texts people refer to the last of these as Zariski’s main
theorem.

We have already proved the algebraic version in Algebra, Theorem 123.12 and we have
already restated this algebraic version in the language of schemes, see Morphisms, Theorem
56.1. The version in this section is more subtle; to get the full result we use the étale
localization techniques of Section 41 to reduce to the algebraic case.

Lemma 43.1. Let f : X → S be a morphism of schemes. Assume f is of finite type
and separated. Let S′ be the normalization of S in X , see Morphisms, Definition 53.3.
Picture:

X

f ��

f ′
// S′

ν
��

S

Then there exists an open subscheme U ′ ⊂ S′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. By Morphisms, Lemma 56.2 the subset U ⊂ X of points where f is quasi-
finite is open. The lemma is equivalent to

(a) U ′ = f ′(U) ⊂ S′ is open,
(b) U = (f ′)−1(U ′), and
(c) U → U ′ is an isomorphism.

Let x ∈ U be arbitrary. We claim there exists an open neighbourhood f ′(x) ∈ V ⊂ S′

such that (f ′)−1V → V is an isomorphism. We first prove the claim implies the lemma.
Namely, then (f ′)−1V ∼= V is both locally of finite type over S (as an open subscheme
of X) and for v ∈ V the residue field extension κ(v)/κ(ν(v)) is algebraic (as V ⊂ S′

and S′ is integral over S). Hence the fibres of V → S are discrete (Morphisms, Lemma
20.2) and (f ′)−1V → S is locally quasi-finite (Morphisms, Lemma 20.8). This implies
(f ′)−1V ⊂ U and V ⊂ U ′. Since x was arbitrary we see that (a), (b), and (c) are true.

Let s = f(x). Let (T, t) → (S, s) be an elementary étale neighbourhood. Denote by a
subscript T the base change to T . Let y = (x, t) ∈ XT be the unique point in the fibre
Xt lying over x. Note that UT ⊂ XT is the set of points where fT is quasi-finite, see
Morphisms, Lemma 20.13. Note that

XT
f ′
T−−→ S′

T
νT−−→ T

is the normalization of T in XT , see Lemma 19.2. Suppose that the claim holds for y ∈
UT ⊂ XT → S′

T → T , i.e., suppose that we can find an open neighbourhood f ′
T (y) ∈

V ′ ⊂ S′
T such that (f ′

T )−1V ′ → V ′ is an isomorphism. The morphism S′
T → S′ is étale
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hence the image V ⊂ S′ of V ′ is open. Observe that f ′(x) ∈ V as f ′
T (y) ∈ V ′. Observe

that
(f ′
T )−1V ′ //

��

(f ′)−1(V )

��
V ′ // V

is a fibre square (as S′
T ×S′ X = XT ). Since the left vertical arrow is an isomorphism and

{V ′ → V } is a étale covering, we conclude that the right vertical arrow is an isomorphism
by Descent, Lemma 23.17. In other words, the claim holds for x ∈ U ⊂ X → S′ → S.
By the result of the previous paragraph we may replace S by an elementary étale neigh-
bourhood of s = f(x) in order to prove the claim. Thus we may assume there is a decom-
position

X = V qW
into open and closed subschemes where V → S is finite and x ∈ V , see Lemma 41.4.
Since X is a disjoint union of V and W over S and since V → S is finite we see that the
normalization of S in X is the morphism

X = V qW −→ V qW ′ −→ S

where W ′ is the normalization of S in W , see Morphisms, Lemmas 53.10, 44.4, and 53.12.
The claim follows and we win. �

Lemma 43.2. Let f : X → S be a morphism of schemes. Assume f is quasi-finite and
separated. Let S′ be the normalization of S inX , see Morphisms, Definition 53.3. Picture:

X

f ��

f ′
// S′

ν
��

S

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is quasi-affine.

Proof. This follows from Lemma 43.1. Namely, by that lemma there exists an open
subscheme U ′ ⊂ S′ such that (f ′)−1(U ′) = X and X → U ′ is an isomorphism. In
other words, f ′ is an open immersion. Note that f ′ is quasi-compact as f is quasi-compact
and ν : S′ → S is separated (Schemes, Lemma 21.14). It follows that f is quasi-affine by
Morphisms, Lemma 13.3. �

Lemma 43.3 (Zariski’s Main Theorem). Let f : X → S be a morphism of schemes.
Assume f is quasi-finite and separated and assume that S is quasi-compact and quasi-
separated. Then there exists a factorization

X

f ��

j
// T

π
��

S

where j is a quasi-compact open immersion and π is finite.

Proof. Let X → S′ → S be as in the conclusion of Lemma 43.2. By Properties,
Lemma 22.13 we can write ν∗OS′ = colimi∈I Ai as a directed colimit of finite quasi-
coherentOX -algebrasAi ⊂ ν∗OS′ . Then πi : Ti = Spec

S
(Ai)→ S is a finite morphism

for each i. Note that the transition morphisms Ti′ → Ti are affine and that S′ = limTi.



3230 37. MORE ON MORPHISMS

By Limits, Lemma 4.11 there exists an i and a quasi-compact open Ui ⊂ Ti whose inverse
image in S′ equals f ′(X). For i′ ≥ i let Ui′ be the inverse image of Ui in Ti′ . Then
X ∼= f ′(X) = limi′≥i Ui′ , see Limits, Lemma 2.2. By Limits, Lemma 4.16 we see that
X → Ui′ is a closed immersion for some i′ ≥ i. (In fact X ∼= Ui′ for sufficiently large
i′ but we don’t need this.) Hence X → Ti′ is an immersion. By Morphisms, Lemma 3.2
we can factor this as X → T → Ti′ where the first arrow is an open immersion and the
second a closed immersion. Thus we win. �

Lemma 43.4. With notation and hypotheses as in Lemma 43.3. Assume moreover
that f is locally of finite presentation. Then we can choose the factorization such that T
is finite and of finite presentation over S.

Proof. By Limits, Lemma 9.8 we can write T = limTi where all Ti are finite and of
finite presentation over Y and the transition morphisms Ti′ → Ti are closed immersions.
By Limits, Lemma 4.11 there exists an i and an open subscheme Ui ⊂ Ti whose inverse
image in T isX . By Limits, Lemma 4.16 we see thatX ∼= Ui for large enough i. Replacing
T by Ti finishes the proof. �

44. Applications of Zariski’s Main Theorem, I

A first application is the characterization of finite morphisms as proper morphisms with
finite fibres.

Lemma 44.1. Let f : X → S be a morphism of schemes. The following are equiva-
lent:

(1) f is finite,
(2) f is proper with finite fibres,
(3) f is proper and locally quasi-finite,
(4) f is universally closed, separated, locally of finite type and has finite fibres.

Proof. We have (1) implies (2) by Morphisms, Lemmas 44.11, 20.10, and 44.10. We
have (2) implies (3) by Morphisms, Lemma 20.7. We have (3) implies (4) by the definition
of proper morphisms and Morphisms, Lemmas 20.9 and 20.10.

Assume (4). Pick s ∈ S. By Morphisms, Lemma 20.7 we see that all the finitely many
points of Xs are isolated in Xs. Choose an elementary étale neighbourhood (U, u) →
(S, s) and decomposition XU = V qW as in Lemma 41.6. Note that Wu = ∅ because all
points ofXs are isolated. Since f is universally closed we see that the image ofW inU is a
closed set not containing u. After shrinkingU we may assume thatW = ∅. In other words
we see that XU = V is finite over U . Since s ∈ S was arbitrary this means there exists
a family {Ui → S} of étale morphisms whose images cover S such that the base changes
XUi → Ui are finite. Note that {Ui → S} is an étale covering, see Topologies, Definition
4.1. Hence it is an fpqc covering, see Topologies, Lemma 9.6. Hence we conclude f is finite
by Descent, Lemma 23.23. �

As a consequence we have the following useful results.

Lemma 44.2. Let f : X → S be a morphism of schemes. Let s ∈ S. Assume that f is
proper and f−1({s}) is a finite set. Then there exists an open neighbourhood V ⊂ S of s
such that f |f−1(V ) : f−1(V )→ V is finite.

Proof. The morphism f is quasi-finite at all the points of f−1({s}) by Morphisms,
Lemma 20.7. By Morphisms, Lemma 56.2 the set of points at which f is quasi-finite is an
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openU ⊂ X . LetZ = X\U . Then s 6∈ f(Z). Since f is proper the set f(Z) ⊂ S is closed.
Choose any open neighbourhood V ⊂ S of s with f(Z) ∩ V = ∅. Then f−1(V )→ V is
locally quasi-finite and proper. Hence it is quasi-finite (Morphisms, Lemma 20.9), hence
has finite fibres (Morphisms, Lemma 20.10), hence is finite by Lemma 44.1. �

Lemma 44.3. Consider a commutative diagram of schemes

X
h

//

f ��

Y

g
��

S

Let s ∈ S. Assume
(1) X → S is a proper morphism,
(2) Y → S is separated and locally of finite type, and
(3) the image of Xs → Ys is finite.

Then there is an open subspace U ⊂ S containing s such that XU → YU factors through
a closed subscheme Z ⊂ YU finite over U .

Proof. Let Z ⊂ Y be the scheme theoretic image of h, see Morphisms, Section 6. By
Morphisms, Lemma 41.10 the morphism X → Z is surjective and Z → S is proper. Thus
Xs → Zs is surjective. We see that either (3) implies Zs is finite. Hence Z → S is finite
in an open neighbourhood of s by Lemma 44.2. �

45. Applications of Zariski’s Main Theorem, II

In this section we give a few more consequences of Zariski’s main theorem to the structure
of quasi-finite morphisms.

Lemma 45.1. Let f : X → Y be a separated, locally quasi-finite morphism with Y
affine. Then every finite set of points of X is contained in an open affine of X .

Proof. Let x1, . . . , xn ∈ X . Choose a quasi-compact open U ⊂ X with xi ∈ U .
Then U → Y is quasi-affine by Lemma 43.2. Hence there exists an affine open V ⊂ U
containing x1, . . . , xn by Properties, Lemma 29.5. �

Lemma 45.2. Let f : Y → X be a quasi-finite morphism. There exists a dense open
U ⊂ X such that f |f−1(U) : f−1(U)→ U is finite.

Proof. If Ui ⊂ X , i ∈ I is a collection of opens such that the restrictions f |f−1(Ui) :
f−1(Ui)→ Ui are finite, then with U =

⋃
Ui the restriction f |f−1(U) : f−1(U)→ U is

finite, see Morphisms, Lemma 44.3. Thus the problem is local on X and we may assume
that X is affine.
Assume X is affine. Write Y =

⋃
j=1,...,m Vj with Vj affine. This is possible since f

is quasi-finite and hence in particular quasi-compact. Each Vj → X is quasi-finite and
separated. Let η ∈ X be a generic point of an irreducible component of X . We see from
Morphisms, Lemmas 20.10 and 51.1 that there exists an open neighbourhood η ∈ Uη such
that f−1(Uη) ∩ Vj → Uη is finite. We may choose Uη such that it works for each j =
1, . . . ,m. Note that the collection of generic points ofX is dense inX . Thus we see there
exists a dense open W =

⋃
η Uη such that each f−1(W )∩ Vj →W is finite. It suffices to

show that there exists a dense open U ⊂ W such that f |f−1(U) : f−1(U) → U is finite.
Thus we may replace X by an affine open subscheme of W and assume that each Vj → X
is finite.
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Assume X is affine, Y =
⋃
j=1,...,m Vj with Vj affine, and the restrictions f |Vj : Vj → X

are finite. Set
∆ij =

(
Vi ∩ Vj \ Vi ∩ Vj

)
∩ Vj .

This is a nowhere dense closed subset of Vj because it is the boundary of the open subset
Vi ∩ Vj in Vj . By Morphisms, Lemma 48.7 the image f(∆ij) is a nowhere dense closed
subset of X . By Topology, Lemma 21.2 the union T =

⋃
f(∆ij) is a nowhere dense

closed subset ofX . ThusU = X \T is a dense open subset ofX . We claim that f |f−1(U) :
f−1(U) → U is finite. To see this let U ′ ⊂ U be an affine open. Set Y ′ = f−1(U ′) =
U ′ ×X Y , V ′

j = Y ′ ∩ Vj = U ′ ×X Vj . Consider the restriction

f ′ = f |Y ′ : Y ′ −→ U ′

of f . This morphism now has the property that Y ′ =
⋃
j=1,...,m V

′
j is an affine open

covering, each V ′
j → U ′ is finite, and V ′

i ∩ V ′
j is (open and) closed both in V ′

i and V ′
j .

Hence V ′
i ∩ V ′

j is affine, and the map

O(V ′
i )⊗Z O(V ′

j ) −→ O(V ′
i ∩ V ′

j )
is surjective. This implies that Y ′ is separated, see Schemes, Lemma 21.7. Finally, consider
the commutative diagram ∐

j=1,...,m V
′
j

%%

// Y ′

��
U ′

The south-east arrow is finite, hence proper, the horizontal arrow is surjective, and the
south-west arrow is separated. Hence by Morphisms, Lemma 41.9 we conclude that Y ′ →
U ′ is proper. Since it is also quasi-finite, we see that it is finite by Lemma 44.1, and we
win. �

Lemma 45.3. Let f : X → S be flat, locally of finite presentation, separated, locally
quasi-finite with universally bounded fibres. Then there exist closed subsets

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = S

such that with Sr = Zr \ Zr−1 the stratification S =
∐
r=0,...,n Sr is characterized by

the following universal property: Given g : T → S the projection X ×S T → T is finite
locally free of degree r if and only if g(T ) ⊂ Sr (set theoretically).

Proof. Let n be an integer bounding the degree of the fibres of X → S. By Mor-
phisms, Lemma 57.5 we see that any base change has degrees of fibres bounded by n also.
In particular, all the integers r that occur in the statement of the lemma will be ≤ n. We
will prove the lemma by induction on n. The base case is n = 0 which is obvious.
We claim the set of points s ∈ S with degκ(s)(Xs) = n is an open subset Sn ⊂ S and
that X ×S Sn → Sn is finite locally free of degree n. Namely, suppose that s ∈ S is
such a point. Choose an elementary étale morphism (U, u)→ (S, s) and a decomposition
U ×S X = W q V as in Lemma 41.6. Since V → U is finite, flat, and locally of finite
presentation, we see that V → U is finite locally free, see Morphisms, Lemma 48.2. After
shrinking U to a smaller neighbourhood of u we may assume V → U is finite locally
free of some degree d, see Morphisms, Lemma 48.5. As u 7→ s and Wu = ∅ we see that
d = n. Since n is the maximum degree of a fibre we see that W = ∅! Thus U ×S X → U
is finite locally free of degree n. By Descent, Lemma 23.30 we conclude that X → S is
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finite locally free of degree n over Im(U → S) which is an open neighbourhood of s
(Morphisms, Lemma 36.13). This proves the claim.

Let S′ = S \ Sn endowed with the reduced induced scheme structure and set X ′ =
X×S S′. Note that the degrees of fibres ofX ′ → S′ are universally bounded by n−1. By
induction we find a stratificationS′ = S0q. . .qSn−1 adapted to the morphismX ′ → S′.
We claim that S =

∐
r=0,...,n Sr works for the morphism X → S. Let g : T → S be

a morphism of schemes and assume that X ×S T → T is finite locally free of degree r.
As remarked above this implies that r ≤ n. If r = n, then it is clear that T → S factors
through Sn. If r < n, then g(T ) ⊂ S′ = S \ Sd (set theoretically) hence Tred → S
factors through S′, see Schemes, Lemma 12.7. Note that X ×S Tred → Tred is also finite
locally free of degree r as a base change. By the universal property of the stratification
S′ =

∐
r=0,...,n−1 Sr we see that g(T ) = g(Tred) is contained in Sr. Conversely, suppose

that we have g : T → S such that g(T ) ⊂ Sr (set theoretically). If r = n, then g factors
through Sn and it is clear that X ×S T → T is finite locally free of degree n as a base
change. If r < n, thenX ×S T → T is a morphism which is separated, flat, and locally of
finite presentation, such that the restriction to Tred is finite locally free of degree r. Since
Tred → T is a universal homeomorphism, we conclude that X ×S Tred → X ×S T is
a universal homeomorphism too and hence X ×S T → T is universally closed (as this
is true for the finite morphism X ×S Tred → Tred). It follows that X ×S T → T is
finite, for example by Lemma 44.1. Then we can use Morphisms, Lemma 48.2 to see that
X ×S T → T is finite locally free. Finally, the degree is r as all the fibres have degree
r. �

Lemma 45.4. Let f : X → S be a morphism of schemes which is flat, locally of finite
presentation, separated, and quasi-finite. Then there exist closed subsets

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ S

such that with Sr = Zr \ Zr−1 the stratification S =
∐
Sr is characterized by the fol-

lowing universal property: Given a morphism g : T → S the projection X ×S T → T is
finite locally free of degree r if and only if g(T ) ⊂ Sr (set theoretically). Moreover, the
inclusion maps Sr → S are quasi-compact.

Proof. The question is local on S , hence we may assume that S is affine. By Mor-
phisms, Lemma 57.9 the fibres of f are universally bounded in this case. Hence the exis-
tence of the stratification follows from Lemma 45.3.

We will show that Ur = S \ Zr → S is quasi-compact for each r ≥ 0. This will prove
the final statement by elementary topology. Since a composition of quasi-compact maps is
quasi-compact it suffices to prove thatUr → Ur−1 is quasi-compact. Choose an affine open
W ⊂ Ur−1. WriteW = Spec(A). ThenZr∩W = V (I) for some ideal I ⊂ A andX×S
Spec(A/I) → Spec(A/I) is finite locally free of degree r. Note that A/I = colimA/Ii
where Ii ⊂ I runs through the finitely generated ideals. By Limits, Lemma 8.8 we see that
X ×S Spec(A/Ii) → Spec(A/Ii) is finite locally free of degree r for some i. (This uses
that X → S is of finite presentation, as it is locally of finite presentation, separated, and
quasi-compact.) Hence Spec(A/Ii) → Spec(A) = W factors (set theoretically) through
Zr ∩W . It follows that Zr ∩W = V (Ii) is the zero set of a finite subset of elements of
A. This means that W \ Zr is a finite union of standard opens, hence quasi-compact, as
desired. �
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Lemma 45.5. Let f : X → S be a flat, locally of finite presentation, separated, and
locally quasi-finite morphism of schemes. Then there exist open subschemes

S = U0 ⊃ U1 ⊃ U2 ⊃ . . .
such that a morphism Spec(k) → S where k is a field factors through Ud if and only if
X ×S Spec(k) has degree ≥ d over k.

Proof. The statement simply means that the collection of points where the degree
of the fibre is ≥ d is open. Thus we can work locally on S and assume S is affine. In this
case, for every W ⊂ X quasi-compact open, the set of points Ud(W ) where the fibres of
W → S have degree ≥ d is open by Lemma 45.4. Since Ud =

⋃
W Ud(W ) the result

follows. �

Lemma 45.6. Let f : X → S be a morphism of schemes which is flat, locally of finite
presentation, and locally quasi-finite. Let g ∈ Γ(X,OX) nonzero. Then there exist an
open V ⊂ X such that g|V 6= 0, an open U ⊂ S fitting into a commutative diagram

V //

π

��

X

f

��
U // S,

a quasi-coherent subsheaf F ⊂ OU , an integer r > 0, and an injective OU -module map
F⊕r → π∗OV whose image contains g|V .

Proof. We may assume X and S affine. We obtain a filtration ∅ = Z−1 ⊂ Z0 ⊂
Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = S as in Lemmas 45.3 and 45.4. LetT ⊂ X be the scheme theoretic
support of the finiteOX -module Im(g : OX → OX). Note that T is the support of g as a
section ofOX (Modules, Definition 5.1) and for any open V ⊂ X we have g|V 6= 0 if and
only if V ∩ T 6= ∅. Let r be the smallest integer such that f(T ) ⊂ Zr set theoretically.
Let ξ ∈ T be a generic point of an irreducible component of T such that f(ξ) 6∈ Zr−1
(and hence f(ξ) ∈ Zr). We may replace S by an affine neighbourhood of f(ξ) contained
in S \ Zr−1. Write S = Spec(A) and let I = (a1, . . . , am) ⊂ A be a finitely generated
ideal such that V (I) = Zr (set theoretically, see Algebra, Lemma 29.1). Since the support
of g is contained in f−1V (I) by our choice of r we see that there exists an integerN such
that aNj g = 0 for j = 1, . . . ,m. Replacing aj by arj we may assume that Ig = 0. For any
A-moduleM writeM [I] for the I-torsion ofM , i.e.,M [I] = {m ∈M | Im = 0}. Write
X = Spec(B), so g ∈ B[I]. Since A→ B is flat we see that

B[I] = A[I]⊗A B ∼= A[I]⊗A/I B/IB
By our choice of Zr , the A/I-module B/IB is finite locally free of rank r. Hence after
replacing S by a smaller affine open neighbourhood of f(ξ) we may assume thatB/IB ∼=
(A/IA)⊕r as A/I-modules. Choose a map ψ : A⊕r → B which reduces modulo I to the
isomorphism of the previous sentence. Then we see that the induced map

A[I]⊕r −→ B[I]
is an isomorphism. The lemma follows by taking F the quasi-coherent sheaf associated
to the A-module A[I] and the map F⊕r → π∗OV the one corresponding to A[I]⊕r ⊂
A⊕r → B. �

Lemma 45.7. Let U → X be a surjective étale morphism of schemes. Assume X is
quasi-compact and quasi-separated. Then there exists a surjective integral morphism Y →
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X , such that for every y ∈ Y there is an open neighbourhood V ⊂ Y such that V → X
factors through U . In fact, we may assume Y → X is finite and of finite presentation.

Proof. SinceX is quasi-compact, there exist finitely many affine opens Ui ⊂ U such
thatU ′ =

∐
Ui → X is surjective. After replacingU byU ′, we see that we may assumeU

is affine. In particular U → X is separated (Schemes, Lemma 21.15). Then there exists an
integer d bounding the degree of the geometric fibres of U → X (see Morphisms, Lemma
57.9). We will prove the lemma by induction on d for all quasi-compact and separated
schemes U mapping surjective and étale onto X . If d = 1, then U = X and the result
holds with Y = U . Assume d > 1.

We apply Lemma 43.2 and we obtain a factorization

U
j

//

  

Y

π~~
X

with π integral and j a quasi-compact open immersion. We may and do assume that j(U)
is scheme theoretically dense in Y . Note that

U ×X Y = U qW

where the first summand is the image of U → U ×X Y (which is closed by Schemes,
Lemma 21.10 and open because it is étale as a morphism between schemes étale over Y )
and the second summand is the (open and closed) complement. The image V ⊂ Y of W
is an open subscheme containing Y \ U .

The étale morphism W → Y has geometric fibres of cardinality < d. Namely, this is
clear for geometric points of U ⊂ Y by inspection. Since U ⊂ Y is dense, it holds
for all geometric points of Y for example by Lemma 45.3 (the degree of the fibres of a
quasi-compact separated étale morphism does not go up under specialization). Thus we
may apply the induction hypothesis to W → V and find a surjective integral morphism
Z → V withZ a scheme, which Zariski locally factors throughW . Choose a factorization
Z → Z ′ → Y with Z ′ → Y integral and Z → Z ′ open immersion (Lemma 43.2). After
replacing Z ′ by the scheme theoretic closure of Z in Z ′ we may assume that Z is scheme
theoretically dense in Z ′. After doing this we have Z ′ ×Y V = Z. Finally, let T ⊂ Y be
the induced reduced closed subscheme structure on Y \ V . Consider the morphism

Z ′ q T −→ X

This is a surjective integral morphism by construction. Since T ⊂ U it is clear that the
morphism T → X factors through U . On the other hand, let z ∈ Z ′ be a point. If z 6∈ Z ,
then z maps to a point of Y \ V ⊂ U and we find a neighbourhood of z on which the
morphism factors through U . If z ∈ Z , then we have a neighbourhood Ω ⊂ Z which
factors through W ⊂ U ×X Y and hence through U . This proves existence.

Assume we have found Y → X integral and surjective which Zariski locally factors
through U . Choose a finite affine open covering Y =

⋃
Vj such that Vj → X factors

through U . We can write Y = lim Yi with Yi → X finite and of finite presentation, see
Limits, Lemma 7.3. For large enough i we can find affine opens Vi,j ⊂ Yi whose inverse
image in Y recovers Vj , see Limits, Lemma 4.11. For even larger i the morphisms Vj → U
overX come from morphisms Vi,j → U overX , see Limits, Proposition 6.1. This finishes
the proof. �
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46. Application to morphisms with connected fibres

In this section we prove some lemmas that produce morphisms all of whose fibres are
geometrically connected or geometrically integral. This will be useful in our study of the
local structure of morphisms of finite type later.

Lemma 46.1. Consider a diagram of morphisms of schemes

Z
σ
//

  

X

��
Y

an a point y ∈ Y . Assume
(1) X → Y is of finite presentation and flat,
(2) Z → Y is finite locally free,
(3) Zy 6= ∅,
(4) all fibres of X → Y are geometrically reduced, and
(5) Xy is geometrically connected over κ(y).

Then there exists a quasi-compact open X0 ⊂ X such that X0
y = Xy and such that all

nonempty fibres of X0 → Y are geometrically connected.

Proof. In this proof we will use that flat, finite presentation, finite locally free are
properties that are preserved under base change and composition. We will also use that
a finite locally free morphism is both open and closed. You can find these facts as Mor-
phisms, Lemmas 25.8, 21.4, 48.4, 25.6, 21.3, 48.3, 25.10, and 44.11.

Note that XZ → Z is flat morphism of finite presentation which has a section s coming
from σ. LetX0

Z denote the subset ofXZ defined in Situation 29.1. By Lemma 29.6 it is an
open subset of XZ .

The pullback XZ×Y Z of X to Z ×Y Z comes equipped with two sections s0, s1, namely
the base changes of s by pr0, pr1 : Z×Y Z → Z. The construction of Situation 29.1 gives
two subsets (XZ×Y Z)0

s0
and (XZ×Y Z)0

s1
. By Lemma 29.2 these are the inverse images of

X0
Z under the morphisms 1X×pr0, 1X×pr1 : XZ×Y Z → XZ . In particular these subsets

are open.

Let (Z×Y Z)y = {z1, . . . , zn}. AsXy is geometrically connected, we see that the fibres of
(XZ×Y Z)0

s0
and (XZ×Y Z)0

s1
over each zi agree (being equal to the whole fibre). Another

way to say this is that

s0(zi) ∈ (XZ×Y Z)0
s1

and s1(zi) ∈ (XZ×Y Z)0
s0
.

Since the sets (XZ×Y Z)0
s0

and (XZ×Y Z)0
s1

are open inXZ×Y Z there exists an open neigh-
bourhood W ⊂ Z ×Y Z of (Z ×Y Z)y such that

s0(W ) ⊂ (XZ×Y Z)0
s1

and s1(W ) ⊂ (XZ×Y Z)0
s0
.

Then it follows directly from the construction in Situation 29.1 that

p−1(W ) ∩ (XZ×Y Z)0
s0

= p−1(W ) ∩ (XZ×Y Z)0
s1

where p : XZ×Y Z → Z ×W Z is the projection. Because Z ×Y Z → Y is finite locally
free, hence open and closed, there exists an affine open neighbourhood V ⊂ Y of y such
that q−1(V ) ⊂ W , where q : Z ×Y Z → Y is the structure morphism. To prove the
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lemma we may replace Y by V . After we do this we see that X0
Z ⊂ YZ is an open such

that
(1X × pr0)−1(X0

Z) = (1X × pr1)−1(X0
Z).

This means that the image X0 ⊂ X of X0
Z is an open such that (XZ → X)−1(X0) =

X0
Z , see Descent, Lemma 13.6. Finally, X0 is quasi-compact because X0

Z is quasi-compact
by Lemma 29.4 (use that at this point Y is affine, hence X is quasi-compact and quasi-
separated, hence locally constructible is the same as constructible and in particular quasi-
compact; details omitted). In this way we see that X0 has all the desired properties. �

Lemma 46.2. Let h : Y → S be a morphism of schemes. Let s ∈ S be a point. Let
T ⊂ Ys be an open subscheme. Assume

(1) h is flat and of finite presentation,
(2) all fibres of h are geometrically reduced, and
(3) T is geometrically connected over κ(s).

Then we can find an affine elementary étale neighbourhood (S′, s′)→ (S, s) and a quasi-
compact open V ⊂ YS′ such that

(a) all fibres of V → S′ are geometrically connected,
(b) Vs′ = T ×s s′.

Proof. The problem is clearly local on S , hence we may replace S by an affine open
neighbourhood of s. The topology on Ys is induced from the topology on Y , see Schemes,
Lemma 18.5. Hence we can find a quasi-compact open V ⊂ Y such that Vs = T . The
restriction of h to V is quasi-compact (as S affine and V quasi-compact), quasi-separated,
locally of finite presentation, and flat hence flat of finite presentation. Thus after replacing
Y by V we may assume, in addition to (1) and (2) that Ys = T and S affine.

Pick a closed point y ∈ Ys such that h is Cohen-Macaulay at y, see Lemma 22.7. By Lemma
23.4 there exists a diagram

Z //

��

Y

��
S

such that Z → S is flat, locally of finite presentation, locally quasi-finite with Zs = {y}.
Apply Lemma 41.1 to find an elementary neighbourhood (S′, s′) → (S, s) and an open
Z ′ ⊂ ZS′ = S′ ×S Z with Z ′ → S′ finite with a unique point z′ ∈ Z ′ lying over s.
Note that Z ′ → S′ is also locally of finite presentation and flat (as an open of the base
change of Z → S), hence Z ′ → S′ is finite locally free, see Morphisms, Lemma 48.2. Note
that YS′ → S′ is flat and of finite presentation with geometrically reduced fibres as a base
change of h. Also Ys′ = Ys is geometrically connected. Apply Lemma 46.1 to Z ′ → YS′

over S′ to get V ⊂ YS′ quasi-compact open satisfying (2) whose fibres over S′ are either
empty or geometrically connected. As V → S′ is open (Morphisms, Lemma 25.10), after
replacing S′ by an affine open neighbourhood of s′ we may assume V → S′ is surjective,
whence (1) holds. �

Lemma 46.3. Let f : X → S be a morphism of schemes which is locally of finite
presentation and flat with geometrically reduced fibres. Then there exists an étale covering
{Xi → X}i∈I such that Xi → S factors as Xi → Si → S where Si → S is étale and
Xi → Si is flat of finite presentation with geometrically connected and geometrically
reduced fibres.
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Proof. Pick a point x ∈ X with image s ∈ S. We will produce a diagram

X ′ //

$$

S′ ×S X //

��

X

��
S′ // S

and points s′ ∈ S′, x′ ∈ X ′, y ∈ S′ ×S X such that x′ maps to x, (S′, s′) → (S, s) is an
étale neighbourhood, (X ′, x′)→ (S′ ×S X, y) is an étale neighbourhood8, and X ′ → S′

has geometrically connected fibres. If we can do this for every x ∈ X , then the lemma
follows (with members of the covering given by the collection of étale morphisms X ′ →
X so produced). The first step is the replace X and S by affine open neighbourhoods
of x and s which reduces us to the case that X and S are affine (and hence f of finite
presentation).

Choose a separable algebraic extension k of κ(s). Denote Xk the base change of Xs.
Choose a point x in Xk mapping to x ∈ Xs. Choose a connected quasi-compact open
neighbourhood V ⊂ Xk of x. (This is possible because any scheme locally of finite type
over a field is locally connected as a locally Noetherian topological space.) By Varieties,
Lemma 7.9 we can find a finite separable extension k′/κ(s) and a quasi-compact open
V ′ ⊂ Xk′ whose base change is V . In particular V ′ is geometrically connected over k′, see
Varieties, Lemma 7.7. By Lemma 35.2 we can find an étale neighbourhood (S′, s′)→ (S, s)
such thatκ(s′) is isomorphic to k′ as an extension ofκ(s). Denotex′ ∈ (S′×SX)s′ = Xk′

the image of x. Thus after replacing (S, s) by (S′, s′) and (X,x) by (S′ ×S X,x′) we re-
duce to the case handled in the next paragrah.

Assume there is a quasi-compact open V ⊂ Xs which contains x and is geometrically irre-
ducible. Then we can apply Lemma 46.2 to find an affine étale neighbourhood (S′, s′)→
(S, s) and a quasi-compact openX ′ ⊂ S′×SX such thatX ′ → S′ has geometrically con-
nected fibres and such thatX ′ contains a point mapping to x. This finishes the proof. �

Lemma 46.4. Let h : Y → S be a morphism of schemes. Let s ∈ S be a point. Let
T ⊂ Ys be an open subscheme. Assume

(1) h is of finite presentation,
(2) h is normal, and
(3) T is geometrically irreducible over κ(s).

Then we can find an affine elementary étale neighbourhood (S′, s′)→ (S, s) and a quasi-
compact open V ⊂ YS′ such that

(a) all fibres of V → S′ are geometrically integral,
(b) Vs′ = T ×s s′.

Proof. Apply Lemma 46.2 to find an affine elementary étale neighbourhood (S′, s′)→
(S, s) and a quasi-compact open V ⊂ YS′ such that all fibres of V → S′ are geometrically
connected and Vs′ = T ×s s′. As V is an open of the base change of h all fibres of V → S′

are geometrically normal, see Lemma 20.2. In particular, they are geometrically reduced.
To finish the proof we have to show they are geometrically irreducible. But, if t ∈ S′ then
Vt is of finite type over κ(t) and hence Vt×κ(t) κ(t) is of finite type over κ(t) hence Noe-
therian. By choice of S′ → S the scheme Vt ×κ(t) κ(t) is connected. Hence Vt ×κ(t) κ(t)
is irreducible by Properties, Lemma 7.6 and we win. �

8The proof actually gives an open X′ ⊂ S′ ×S X .
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47. Application to the structure of finite type morphisms

The result in this section can be found in [?]. Loosely stated it says that a finite type
morphism is étale locally on the source and target the composition of a finite morphism
by a smooth morphism with geometrically connected fibres of relative dimension equal to
the fibre dimension of the original morphism.

Lemma 47.1. Let f : X → S be a morphism. Let x ∈ X and set s = f(x). Assume
that f is locally of finite type and that n = dimx(Xs). Then there exists a commutative
diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

and a point x′ ∈ X ′ with g(x′) = x such that with y = π(x′) we have
(1) h : Y → S is smooth of relative dimension n,
(2) g : (X ′, x′)→ (X,x) is an elementary étale neighbourhood,
(3) π is finite, and π−1({y}) = {x′}, and
(4) κ(y) is a purely transcendental extension of κ(s).

Moreover, if f is locally of finite presentation then π is of finite presentation.

Proof. The problem is local on X and S , hence we may assume that X and S are
affine. By Algebra, Lemma 125.3 after replacing X by a standard open neighbourhood of
x in X we may assume there is a factorization

X
π // An

S
// S

such that π is quasi-finite and such that κ(π(x)) is purely transcendental over κ(s). By
Lemma 41.1 there exists an elementary étale neighbourhood

(Y, y)→ (An
S , π(x))

and an open X ′ ⊂ X ×An
S
Y which contains a unique point x′ lying over y such that

X ′ → Y is finite. This proves (1) – (4) hold. For the final assertion, use Morphisms,
Lemma 21.11. �

Lemma 47.2. Let f : X → S be a morphism. Let x ∈ X and set s = f(x). Assume
that f is locally of finite type and that n = dimx(Xs). Then there exists a commutative
diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y ′

h

��

y′
_

��
S S′eoo s s′�oo

and a point x′ ∈ X ′ with g(x′) = x such that with y′ = π(x′), s′ = h(y′) we have
(1) h : Y ′ → S′ is smooth of relative dimension n,
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(2) all fibres of Y ′ → S′ are geometrically integral,
(3) g : (X ′, x′)→ (X,x) is an elementary étale neighbourhood,
(4) π is finite, and π−1({y′}) = {x′},
(5) κ(y′) is a purely transcendental extension of κ(s′), and
(6) e : (S′, s′)→ (S, s) is an elementary étale neighbourhood.

Moreover, if f is locally of finite presentation, then π is of finite presentation.

Proof. The question is local on S , hence we may replace S by an affine open neigh-
bourhood of s. Next, we apply Lemma 47.1 to get a commutative diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

where h is smooth of relative dimension n and κ(y) is a purely transcendental extension of
κ(s). Since the question is local on X also, we may replace Y by an affine neighbourhood
of y (and X ′ by the inverse image of this under π). As S is affine this guarantees that
Y → S is quasi-compact, separated and smooth, in particular of finite presentation. Let
T be the connected component of Ys containing y. As Ys is Noetherian we see that T is
open. We also see that T is geometrically connected over κ(s) by Varieties, Lemma 7.14.
Since T is also smooth over κ(s) it is geometrically normal, see Varieties, Lemma 25.4. We
conclude that T is geometrically irreducible over κ(s) (as a connected Noetherian normal
scheme is irreducible, see Properties, Lemma 7.6). Finally, note that the smooth morphism
h is normal by Lemma 20.3. At this point we have verified all assumption of Lemma 46.4
hold for the morphism h : Y → S and open T ⊂ Ys. As a result of applying Lemma 46.4
we obtain e : S′ → S , s′ ∈ S′, Y ′ as in the commutative diagram

X

��

X ′
g

oo

π

��

X ′ ×Y Y ′oo

��

x_

��

x′�oo
_

��

(x′, s′)�oo
_

��
Y

h

��

Y ′

��

oo y_

��

(y, s′)�oo
_

��
S S S′eoo s s s′�oo

where e : (S′, s′)→ (S, s) is an elementary étale neighbourhood, and where Y ′ ⊂ YS′ is
an open neighbourhood all of whose fibres over S′ are geometrically irreducible, such that
Y ′
s′ = T via the identification Ys = YS′,s′ . Let (y, s′) ∈ Y ′ be the point corresponding

to y ∈ T ; this is also the unique point of Y ×S S′ lying over y with residue field equal to
κ(y) which maps to s′ in S′. Similarly, let (x′, s′) ∈ X ′×Y Y ′ ⊂ X ′×S S′ be the unique
point over x′ with residue field equal to κ(x′) lying over s′. Then the outer part of this
diagram is a solution to the problem posed in the lemma. Some minor details omitted. �

Lemma 47.3. Assumption and notation as in Lemma 47.2. In addition to properties
(1) – (6) we may also arrange it so that

(7) S′, Y ′, X ′ are affine.
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Proof. Note that if Y ′ is affine, thenX ′ is affine as π is finite. Choose an affine open
neighbourhood U ′ ⊂ S′ of s′. Choose an affine open neighbourhood V ′ ⊂ h−1(U ′) of
y′. Let W ′ = h(V ′). This is an open neighbourhood of s′ in S′, see Morphisms, Lemma
34.10, contained in U ′. Choose an affine open neighbourhood U ′′ ⊂ W ′ of s′. Then
h−1(U ′′) ∩ V ′ is affine because it is equal to U ′′ ×U ′ V ′. By construction h−1(U ′′) ∩
V ′ → U ′′ is a surjective smooth morphism whose fibres are (nonempty) open subschemes
of geometrically integral fibres of Y ′ → S′, and hence geometrically integral. Thus we
may replace S′ by U ′′ and Y ′ by h−1(U ′′) ∩ V ′. �

The significance of the property π−1({y′}) = {x′} is partially explained by the following
lemma.

Lemma 47.4. Let π : X → Y be a finite morphism. Let x ∈ X with y = π(x) such
that π−1({y}) = {x}. Then

(1) For every neighbourhood U ⊂ X of x in X , there exists a neighbourhood V ⊂
Y of y such that π−1(V ) ⊂ U .

(2) The ring mapOY,y → OX,x is finite.
(3) If π is of finite presentation, thenOY,y → OX,x is of finite presentation.
(4) For any quasi-coherentOX -module F we have Fx = π∗Fy asOY,y-modules.

Proof. The first assertion is purely topological; use that π is a continuous and closed
map such that π−1({y}) = {x}. To prove the second and third parts we may assume
X = Spec(B) and Y = Spec(A). Then A→ B is a finite ring map and y corresponds to
a prime p of A such that there exists a unique prime q of B lying over p. Then Bq = Bp,
see Algebra, Lemma 41.11. In other words, the mapAp → Bq is equal to the mapAp → Bp

you get from localizing A → B at p. Thus (2) and (3) follow from simple properties of
localization (some details omitted). For the final statement, suppose thatF = M̃ for some
B-module M . Then F = Mq and π∗Fy = Mp. By the above these localizations agree.
Alternatively you can use part (1) and the definition of stalks to see that Fx = π∗Fy
directly. �

48. Application to the fppf topology

We can use the above étale localization techniques to prove the following result describing
the fppf topology as being equal to the topology “generated by” Zariski coverings and by
coverings of the form {f : T → S} where f is surjective finite locally free.

Lemma 48.1. Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then there
exist

(1) an étale covering {S′
a → S},

(2) surjective finite locally free morphisms Va → S′
a,

such that the fppf covering {Va → S} refines the given covering {Si → S}.

Proof. We may assume that each Si → S is locally quasi-finite, see Lemma 23.6.

Fix a point s ∈ S. Pick an i ∈ I and a point si ∈ Si mapping to s. Choose an elementary
étale neighbourhood (S′, s)→ (S, s) such that there exists an open

Si ×S S′ ⊃ V
which contains a unique point v ∈ V mapping to s ∈ S′ and such that V → S′ is
finite, see Lemma 41.1. Then V → S′ is finite locally free, because it is finite and because
Si ×S S′ → S′ is flat and locally of finite presentation as a base change of the morphism
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Si → S , see Morphisms, Lemmas 21.4, 25.8, and 48.2. Hence V → S′ is open, and after
shrinking S′ we may assume that V → S′ is surjective finite locally free. Since we can do
this for every point of S we conclude that {Si → S} can be refined by a covering of the
form {Va → S}a∈A where each Va → S factors as Va → S′

a → S with S′
a → S étale and

Va → S′
a surjective finite locally free. �

Lemma 48.2. Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then there
exist

(1) a Zariski open covering S =
⋃
Uj ,

(2) surjective finite locally free morphisms Wj → Uj ,
(3) Zariski open coverings Wj =

⋃
kWj,k ,

(4) surjective finite locally free morphisms Tj,k →Wj,k

such that the fppf covering {Tj,k → S} refines the given covering {Si → S}.

Proof. Let {Va → S}a∈A be the fppf covering found in Lemma 48.1. In other words,
this covering refines {Si → S} and each Va → S factors as Va → S′

a → S with S′
a → S

étale and Va → S′
a surjective finite locally free.

By Remark 40.3 there exists a Zariski open covering S =
⋃
Uj , for each j a finite locally

free, surjective morphismWj → Uj , and for each j a Zariski open covering {Wj,k →Wj}
such that the family {Wj,k → S} refines the étale covering {S′

a → S}, i.e., for each
pair j, k there exists an a(j, k) and a factorization Wj,k → S′

a → S of the morphism
Wj,k → S. Set Tj,k = Wj,k ×S′

a
Va and everything is clear. �

Lemma 48.3. Let S be a scheme. If U ⊂ S is open and V → U is a surjective
integral morphism, then there exists a surjective integral morphism V → S with V ×S U
isomorphic to V as schemes over U .

Proof. Let V ′ → S be the normalization of S in U , see Morphisms, Section 53. By
construction V ′ → S is integral. By Morphisms, Lemmas 53.6 and 53.12 we see that the
inverse image of U in V ′ is V . Let Z be the reduced induced scheme structure on S \ U .
Then V = V ′ q Z works. �

Lemma 48.4. Let S be a quasi-compact and quasi-separated scheme. If U ⊂ S is
a quasi-compact open and V → U is a surjective finite morphism, then there exists a
surjective finite morphism V → S with V ×S U isomorphic to V as schemes over U .

Proof. By Zariski’s Main Theorem (Lemma 43.3) we can assumeV is a quasi-compact
open in a scheme V ′ finite over S. After replacing V ′ by the scheme theoretic image of V
we may assume that V is dense in V ′. It follows that V ′×S U = V because V → V ′×S U
is closed as V is finite over U . Let Z be the reduced induced scheme structure on S \ U .
Then V = V ′ q Z works. �

Lemma 48.5. Let S be a scheme. Let {Si → S}i∈I be an fppf covering. Then there
exists a surjective integral morphism S′ → S and an open covering S′ =

⋃
U ′
α such that

for each α the morphism U ′
α → S factors through Si → S for some i.

Proof. Choose S =
⋃
Uj , Wj → Uj , Wj =

⋃
Wj,k , and Tj,k → Wj,k as in Lemma

48.2. By Lemma 48.3 we can extendWj → Uj to a surjective integral morphismW j → S.
After this we can extend Tj,k →Wj,k to a surjective integral morphism T j,k →W j . We
set T j equal to the product of all the schemes T j,k overW j (Limits, Lemma 3.1). Then we
set S′ equal to the product of all the schemes T j over S. If x ∈ S′, then there is a j such



49. QUASI-PROJECTIVE SCHEMES 3243

that the image of x in S lies in Uj . Hence there is a k such that the image of x under the
projection S′ →W j lies in Wj,k. Hence under the projection S′ → T j → T j,k the point
x ends up in Tj,k. And Tj,k → S factors through Si for some i. Finally, the morphism
S′ → S is integral and surjective by Limits, Lemmas 3.3 and 3.2. �

Lemma 48.6. LetS be a quasi-compact and quasi-separated scheme. Let {Si → S}i∈I
be an fppf covering. Then there exists a surjective finite morphism S′ → S of finite
presentation and an open coveringS′ =

⋃
U ′
α such that for eachα the morphismU ′

α → S
factors through Si → S for some i.

Proof. LetY → X be the integral surjective morphism found in Lemma 48.5. Choose
a finite affine open covering Y =

⋃
Vj such that Vj → X factors through Si(j). We can

write Y = lim Yλ with Yλ → X finite and of finite presentation, see Limits, Lemma 7.3.
For large enough λwe can find affine opens Vλ,j ⊂ Yλ whose inverse image in Y recovers
Vj , see Limits, Lemma 4.11. For even larger λ the morphisms Vj → Si(j) over X come
from morphisms Vλ,j → Si(j) over X , see Limits, Proposition 6.1. Setting S′ = Yλ for
this λ finishes the proof. �

Lemma 48.7. An fppf covering of schemes is a ph covering.

Proof. Let {Ti → T} be an fppf covering of schemes, see Topologies, Definition 7.1.
Observe that Ti → T is locally of finite type. Let U ⊂ T be an affine open. It suffices to
show that {Ti×T U → U} can be refined by a standard ph covering, see Topologies, Defi-
nition 8.4. This follows immediately from Lemma 48.6 and the fact that a finite morphism
is proper (Morphisms, Lemma 44.11). �

Remark 48.8. As a consequence of Lemma 48.7 we obtain a comparison morphism

ε : (Sch/S)ph −→ (Sch/S)fppf
This is the morphism of sites given by the identity functor on underlying categories (with
suitable choices of sites as in Topologies, Remark 11.1). The functor ε∗ is the identity on
underlying presheaves and the functor ε−1 associated to an fppf sheaf its ph sheafification.
By composition we can in addition compare the ph topology with the syntomic, smooth,
étale, and Zariski topologies.

49. Quasi-projective schemes

The term “quasi-projective scheme” has not yet been defined. A possible definition could
be a scheme which has an ample invertible sheaf. However, if X is a scheme over a base
scheme S , then we say that X is quasi-projective over S if the morphism X → S is quasi-
projective (Morphisms, Definition 40.1). Since the identity morphism of any scheme is
quasi-projective, we see that a scheme quasi-projective over S doesn’t necessarily have an
ample invertible sheaf. For this reason it seems better to leave the term “quasi-projective
scheme” undefined.

Lemma 49.1. Let S be a scheme which has an ample invertible sheaf. Let f : X → S
be a morphism of schemes. The following are equivalent

(1) X → S is quasi-projective,
(2) X → S is H-quasi-projective,
(3) there exists a quasi-compact open immersion X → X ′ of schemes over S with

X ′ → S projective,
(4) X → S is of finite type and X has an ample invertible sheaf, and
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(5) X → S is of finite type and there exists an f -very ample invertible sheaf.

Proof. The implication (2)⇒ (1) is Morphisms, Lemma 40.5. The implication (1)⇒
(2) is Morphisms, Lemma 43.16. The implication (2)⇒ (3) is Morphisms, Lemma 43.11
AssumeX ⊂ X ′ is as in (3). In particularX → S is of finite type. By Morphisms, Lemma
43.11 the morphismX → S is H-projective. Thus there exists a quasi-compact immersion
i : X → Pn

S . Hence L = i∗OPn
S
(1) is f -very ample. As X → S is quasi-compact we

conclude from Morphisms, Lemma 38.2 thatL is f -ample. ThusX → S is quasi-projective
by definition.
The implication (4)⇒ (2) is Morphisms, Lemma 39.3.
Assume the equivalent conditions (1), (2), (3) hold. Choose an immersion i : X → Pn

S

over S. Let L be an ample invertible sheaf on S. To finish the proof we will show that
N = f∗L⊗OX

i∗OPn
S
(1) is ample onX . By Properties, Lemma 26.14 we reduce to the case

X = Pn
S . Let s ∈ Γ(S,L⊗d) be a section such that the corresponding openSs is affine. Say

Ss = Spec(A). Recall that Pn
S is the projective bundle associated toOST0⊕ . . .⊕OSTn,

see Constructions, Lemma 21.5 and its proof. Let si ∈ Γ(Pn
S ,O(1)) be the global section

corresponding to the section Ti of OST0 ⊕ . . . ⊕ OSTn. Then we see that Xf∗s⊗s⊗n
i

is
affine because it is equal to Spec(A[T0/Ti, . . . , Tn/Ti]). This proves that N is ample by
definition.
The equivalence of (1) and (5) follows from Morphisms, Lemmas 38.2 and 39.5. �

Lemma 49.2. Let S be a scheme which has an ample invertible sheaf. Let QPS be the
full subcategory of the category of schemes over S satisfying the equivalent conditions of
Lemma 49.1.

(1) if S′ → S is a morphism of schemes and S′ has an ample invertible sheaf, then
base change determines a functor QPS → QPS′ ,

(2) if X ∈ QPS and Y ∈ QPX , then Y ∈ QPS ,
(3) the category QPS is closed under fibre products,
(4) the category QPS is closed under finite disjoint unions,
(5) if X → S is projective, then X ∈ QPS ,
(6) if X → S is quasi-affine of finite type, then X is in QPS ,
(7) if X → S is quasi-finite and separated, then X ∈ QPS ,
(8) if X → S is a quasi-compact immersion, then X ∈ QPS ,
(9) add more here.

Proof. Part (1) follows from Morphisms, Lemma 40.2.
Part (2) follows from the fourth characterization of Lemma 49.1.
If X → S and Y → S are quasi-projective, then X ×S Y → Y is quasi-projective by
Morphisms, Lemma 40.2. Hence (3) follows from (2).
If X = Y q Z is a disjoint union of schemes and L is an invertibleOX -module such that
L|Y and L|Z are ample, then L is ample (details omitted). Thus part (4) follows from the
fourth characterization of Lemma 49.1.
Part (5) follows from Morphisms, Lemma 43.10.
Part (6) follows from Morphisms, Lemma 40.7.
Part (7) follows from part (6) and Lemma 43.2.
Part (8) follows from part (7) and Morphisms, Lemma 20.16. �
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The following lemma doesn’t really belong in this section, but there does not seem to be a
good spot for it anywhere else.

Lemma 49.3. Let X be a quasi-affine scheme. Let f : U → X be an integral mor-
phism. Then U is quasi-affine and the diagram

U //

��

Spec(Γ(U,OU ))

��
X // Spec(Γ(X,OX))

is cartesian.

Proof. The scheme U is quasi-affine because integral morphisms are affine, affine
morphisms are quasi-affine, a scheme is quasi-affine if and only if the structure morphism to
Spec(Z) is quasi-affine, and compositions of quasi-affine morphisms are quasi-affine. The
first two statements follow immediately from the definition and the third is Morphisms,
Lemma 13.4. Set U ′ = X ×Spec(Γ(X,OX)) Spec(Γ(U,OU )) and consider the extended
diagram

U
j
//

��

U ′

��

// Spec(Γ(U,OU ))

��
X // Spec(Γ(X,OX))

The morphism j is closed by Morphisms, Lemma 41.7 combined with the fact that an
integral morphism is universally closed (Morphisms, Lemma 44.7) and the fact that the
vertical arrows are in the diagram are separated. On the other hand, j is open because the
horizontal arrows in the diagram of the lemma are open by Properties, Lemma 18.4. Thus
j identifies U with an open and closed subscheme of U ′. If U 6= U ′ then U isn’t dense in
U ′ and a fortiori not dense in the spectrum of Γ(U,OU ). However, the scheme theoretic
image of U in Spec(Γ(U,OU )) is Spec(Γ(U,OU )) because any ideal in Γ(U,OU ) cutting
out a closed subscheme through whichU factors would have to be zero. HenceU is dense in
Spec(Γ(U,OU )) for example by Morphisms, Lemma 6.3. Thus U = U ′ and we win. �

50. Projective schemes

This section is the analogue of Section 49 for projective morphisms.

Lemma 50.1. Let S be a scheme which has an ample invertible sheaf. Let f : X → S
be a morphism of schemes. The following are equivalent

(1) X → S is projective,
(2) X → S is H-projective,
(3) X → S is quasi-projective and proper,
(4) X → S is H-quasi-projective and proper,
(5) X → S is proper and X has an ample invertible sheaf,
(6) X → S is proper and there exists an f -ample invertible sheaf,
(7) X → S is proper and there exists an f -very ample invertible sheaf,
(8) there is a quasi-coherent graded OS-algebra A generated by A1 over A0 with
A1 a finite typeOS-module such that X = Proj

S
(A).
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Proof. Observe first that in each case the morphism f is proper, see Morphisms, Lem-
mas 43.3 and 43.5. Hence it suffices to prove the equivalence of the notions in case f is a
proper morphism. We will use this without further mention in the following.

The equivalences (1)⇔ (3) and (2)⇔ (4) are Morphisms, Lemma 43.13.

The implication (2)⇒ (1) is Morphisms, Lemma 43.3.

The implications (1)⇒ (2) and (3)⇒ (4) are Morphisms, Lemma 43.16.

The implication (1)⇒ (7) is immediate from Morphisms, Definitions 43.1 and 38.1.

The conditions (3) and (6) are equivalent by Morphisms, Definition 40.1.

Thus (1) – (4), (6) are equivalent and imply (7). By Lemma 49.1 conditions (3), (5), and (7)
are equivalent. Thus we see that (1) – (7) are equivalent.

By Divisors, Lemma 30.5 we see that (8) implies (1). Conversely, if (2) holds, then we can
choose a closed immersion

i : X −→ Pn
S = Proj

S
(OS [T0, . . . , Tn]).

See Constructions, Lemma 21.5 for the equality. By Divisors, Lemma 31.1 we see thatX is
the relative Proj of a quasi-coherent graded quotient algebra A of OS [T0, . . . , Tn]. Then
A satisfies the conditions of (8). �

Lemma 50.2. Let S be a scheme which has an ample invertible sheaf. Let PS be the
full subcategory of the category of schemes over S satisfying the equivalent conditions of
Lemma 50.1.

(1) if S′ → S is a morphism of schemes and S′ has an ample invertible sheaf, then
base change determines a functor PS → PS′ ,

(2) if X ∈ PS and Y ∈ PX , then Y ∈ PS ,
(3) the category PS is closed under fibre products,
(4) the category PS is closed under finite disjoint unions,
(5) if X → S is finite, then X is in PS ,
(6) add more here.

Proof. Part (1) follows from Morphisms, Lemma 43.9.

Part (2) follows from the fifth characterization of Lemma 50.1 and the fact that composi-
tions of proper morphisms are proper (Morphisms, Lemma 41.4).

If X → S and Y → S are projective, then X ×S Y → Y is projective by Morphisms,
Lemma 43.9. Hence (3) follows from (2).

If X = Y q Z is a disjoint union of schemes and L is an invertibleOX -module such that
L|Y and L|Z are ample, then L is ample (details omitted). Thus part (4) follows from the
fifth characterization of Lemma 50.1.

Part (5) follows from Morphisms, Lemma 44.16. �

Here is a slightly different type of result.

Lemma 50.3. Let f : X → Y be a proper morphism of schemes. LetL be an invertible
OX -module. Let y ∈ Y be a point such that Ly is ample on Xy . Then there is an open
neighbourhood V ⊂ Y of y such that L|f−1(V ) is ample on f−1(V )/V .
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Proof. We may assume Y is affine. Then we find a directed set I and an inverse
system of morphisms Xi → Yi of schemes with Yi of finite type over Z, with affine tran-
sition morphisms Xi → Xi′ and Yi → Yi′ , with Xi → Yi proper, such that X → Y =
lim(Xi → Yi). See Limits, Lemma 13.3. After shrinking I we can assume we have a com-
patible system of invertible OXi -modules Li pulling back to L, see Limits, Lemma 10.3.
Let yi ∈ Yi be the image of y. Then κ(y) = colim κ(yi). Hence for some iwe haveLi,yi is
ample on Xi,yi by Limits, Lemma 4.15. By Cohomology of Schemes, Lemma 21.4 we find
an open neigbourhood Vi ⊂ Yi of yi such that Li restricted to f−1

i (Vi) is ample relative
to Vi. Letting V ⊂ Y be the inverse image of Vi finishes the proof (hints: use Morphisms,
Lemma 37.9 and the fact thatX → Y ×Yi Xi is affine and the fact that the pullback of an
ample invertible sheaf by an affine morphism is ample by Morphisms, Lemma 37.7). �

51. Proj and Spec

In this section we clarify the relationship between the Proj and the spectrum of a graded
ring.

LetR be a ring. LetA be a gradedR-algebra, see Algebra, Section 56. Form ≥ 0 we denote
A≥m =

⊕
d≥mAd. Consider the graded ring

B =
⊕

d≥0
A≥d

For d′ ≥ d and a ∈ Ad′ let us denote a(d) ∈ B the element in Bd corresponding to a.
Let us denote σ : A → B and ψ : A → B the two obvious ring maps: if a ∈ Ad, then
σ(a) = a(0) and ψ(a) = a(d). Then ψ is a graded ring map and σ turns B into a graded
algebra over A. There is also a surjective graded ring map τ : B → A which for d′ ≥ d

and a ∈ Ad′ sends a(d) to 0 if d′ > d and to a if d′ = d.

Affine schemes and spectra. We set X = Spec(A). The irrelevant ideal A+ cuts out a
closed subscheme Z = V (A+) = Spec(A/A+) = Spec(A0). Set U = X \ Z.

U −→ X −→ Z

Projective schemes and Proj. Set P = Proj(A). We may and do view P as a scheme over
Spec(A0) = Z. Set L = Proj(B). We may and do view L as a scheme over Spec(B0) =
Spec(A) = X ; observe that the identification of B0 with A is given by σ. The surjection
τ defines a closed immersion 0 : P → L. Since A σ−→ B → A is equal to the map
A→ A0 → A we conclude that

P

��

0
// L

��
Z // X

is commutative.

We claim that ψ defines a morphism L → P . To see this, by Constructions, Lemma 11.1,
it suffices to check ψ(A+) 6⊂ p for every homogeneous prime ideal p ⊂ B with B+ 6⊂ p.
First, pick g ∈ B+ homogeneous g 6∈ p. Then we can write g as a finite sum g =

∑
a

(d)
i

with ai ∈ Adi for some di ≥ d. We conclude that there exist d′ ≥ d and a ∈ Ad′ such
that a(d) 6∈ p. Then

(a(d))d
′

= (ad
′
)(d′d) = a(d)(ad

′−1)(d(d′−1)) = ψ(a)(ad
′−1)(d(d′−1))
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(the notation leaves something to be desired) is not in p. Hence ψ(a) 6∈ p, proving the
claim. Thus we can extend our diagram above to a commutative diagram

P

��

0
// L

��

π
// P

��
Z // X // Z

where X → Z is given by A0 → A. Since τ ◦ ψ = idA we see π ◦ 0 = idP .

Observe that π is an affine morphism. This is clear from the construction in Construc-
tions, Lemma 11.1. In fact, if f ∈ Ad for some d > 0, then setting g = ψ(f) we have
π−1(D+(f)) = D+(g). In this case we have the following equality of homogeneous
parts

(B[1/g])m′ =
⊕

m≥m′
(A[1/f ])m

This isomorphism is compatible with further localization. Taking m′ = 0 we see that
π∗OL is the direct sum of OP (m) for m ≥ 09. We conclude L is idendified with the
relative spectrum:

L = Spec
P

(⊕
m≥0
OP (m)

)
In particular L → P is a cone10, see Constructions, Section 7. Moreover, it is clear that
0 : P → L is the vertex of the cone.

Let f ∈ Ad for some d > 0 and g = ψ(f) ∈ Bd as in the previous paragraph. Looking at
the structure of the ring maps

A0 //

��

A

σ

��

// A0

��
(A[1/f ])0

ψ // (B[1/g])0 =
⊕

m≥0(A[1/f ])m
τ // (A[1/f ])0

some compuations11 in graded rings will show that
(1) σ(A+)(B[1/g])0 ⊂ Ker(τ : (B[1/g])0 → (A[1/f ])0),
(2) σ(f) ∈ (B[1/g])0 is a nonzerodivisor,
(3) σ(f)(B[1/g])0 = σ(Ad)(B[1/g])0 as ideals,
(4) σ(f)(B[1/g])0 and Ker(τ : (B[1/g])0 → (A[1/f ])0) have the same radical,
(5) if d = 1, then σ(f)(B[1/g])0 = Ker(τ : (B[1/g])0 → (A[1/f ])0).

We see in particular that

0(D+(f)) = V (σ(f)) ⊂ D+(g) = Spec((B[1/g])0)

9It similarly follows that π∗OL(i) =
⊕

m≥−i OP (m).
10Often L is a line bundle over P , see below.
11Parts (1) and (2) are clear. To see (3), note that if a ∈ Ad , then σ(a) = σ(f)ψ(a/f). For (4) note

that b/gm is in the kernel of τ if and only if b ∈ A≥md maps to zero in Amd. Thus it suffices to show if
m′ > md and a ∈ Am′ , then some power of a(md)/gm is in the ideal generated by σ(f). Take e such that
em′ − emd ≥ d. Then

(a(md)/gm)e = (ae)(emd)/gem = (fae)(emd+d)/gem+1 = σ(f) · (ae)(emd+d)/gem+1

as desired (apologies for the terrible notation). To see (5) argue as before and note that a(md)/gm = σ(f) ·
a(md+1)/gm+1 if d = 1.
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set theoretically. In other words, the ideal generated by σ(Ad) cuts out an effective Cartier
divisor on D+(g) which is set theoretically equal to the image of the closed immersion
0 : P → L.

We claim thatL→ X is an isomorphism overU . Namely, if f ∈ Ad for some d > 0, then

Spec(Af )×X L = Proj(Af ⊗A B) = Proj(Bσ(f))
For each ewe have (Bσ(f))e = Af⊗BBe = Af⊗AA≥e = Af , the final equality induced
by the injection A≥e ⊂ A. Hence Bσ(f) ∼= Af [T ] with T in degree 1. This proves the
claim as Proj(Af [T ]) → Spec(Af ) is an isomorphism. From now on we identify U with
the corresponding open of L.

The identification made in the previous paragraph lets us consider the restriction π|U :
U → P . Pick f ∈ Ad for some d > 0 and g = ψ(f) ∈ Bd as we have done above several
times. Then

U ∩ π−1(D+(f)) = U ∩D+(g)
is the complement of the zero locus of σ(f) ∈ (B[1/g])0 via the identification of D+(g)
with the spectrum of (B[1/g])0. This is assertion (4) above. ThereforeU ∩D+(g) is affine
and

OL(U ∩D+(g)) = (B[1/g])0[1/σ(f)] =
⊕

m∈Z
(A[1/f ])m

where the last equal sign is the natural extension of the identification (B[1/g])0 =
⊕

m≥0(A[1/f ])m
made above. Exactly as we did before with π : L→ P we conclude that π|U : U → P is
affine and

U = Spec
P

(⊕
m∈Z

OP (m)
)

as schemes over P .

Summarising the above, our constructions produce a commutative diagram

(51.0.1)

Spec
P

(⊕
m∈ZOP (m)

)
// L = Spec

P

(⊕
m≥0OP (m)

)
σ

��

π
// P

��
U // X // Z

of schemes where π is a cone whose zero section 0 : P → L maps set theoretically onto
the inverse image of Z in L.

Let W ⊂ P be the largest open such that OP (1)|W is invertible and the natural maps
induce isomorphisms OP (m)|W ∼= OP (1)⊗m|W for all m ∈ Z, i.e., the open of Con-
structions, Lemma 10.4 for d = 1. Then we see that L|W = π−1(W ) → W is a vector
bundle (Constructions, Section 6) of rank 1, namely,

L|W = V(OP (1)|W )
in Grothendieckian notation. This is immediate from the above showing thatL|W is equal
to the relative spectrum of the symmetric algebra overOW onOP (1)|W . Then clearly the
morphism 0|W : W → L|W is the zero section of this vector bundle. In particular 0(W )
is an effective Cartier divisor on L|W . Moreover, the open U |W = (π|U )−1(W ) is the
complement of the zero section.

If A is generated by f1, . . . , fr ∈ A1 over A0, then (f1, . . . , fr)m = A≥m for all m ≥ 0
and hence ourB above is the Rees algebra forA+ = (f1, . . . , fr). Thus in this caseL→ X
is the blowup of Z and W = P where W is as in the preceding paragraph.



3250 37. MORE ON MORPHISMS

IfP is quasi-compact, then for d sufficiently divisible, the closed subschemeD ⊂ L cut out
by σ(Ad)OL is an effective Cartier divisor, 0 : P → L factors through D, and 0(P ) = D
set theoretically. This follows from Constructions, Lemma 8.9 and (1), (2), (3), and (4)
proved above. (Take any d divisible by the lcm of the degrees of the elements found in the
lemma.)
We continue to assume P is quasi-compact. Let F be a quasi-coherentOP -module. Let us
set FU = π∗F|U . Then we have

(51.0.2) RΓ(U,FU ) =
⊕

m∈Z
RΓ(P,F ⊗OP

OP (m))

Moreover, this direct sum decomposition is functorial in F and the induced A-module
structure on the right is the same as theA-module structure on the left coming from U ⊂
X . To prove the formula, since π|U is affine and (π|U )∗OU =

⊕
m∈ZOP (m) we get

R(π|U )∗FU = (π|U )∗FU
= (π|U )∗(π|U )∗F

= F ⊗OP

⊕
m∈Z

OP (m)

=
⊕

m∈Z
F ⊗OP

OP (m)

By Leray we find that RΓ(U,FU ) = RΓ(P,R(π|U )∗FU ), see Cohomology, Lemma 13.6.
The proof is finished because taking cohomology commutes with direct sums in this case,
see Derived Categories of Schemes, Lemma 4.5. This is where we use that P is quasi-
compact; P is separated by Constructions, Lemma 8.8.

Lemma 51.1. LetR be a ring. Let P be a proper scheme overR and let L be an ample
invertible OP -module. Set A =

⊕
m≥0 Γ(P,L⊗m). Then P = Proj(A) and diagram

(51.0.1) becomes the diagram

Spec
P

(⊕
m∈Z L⊗m) // L = Spec

P

(⊕
m≥0 L⊗m

)
σ

��

π
// P

��
U // X // Z

having the properties explained above.

Proof. We have P = Proj(A) by Morphisms, Lemma 43.17. Moreover, by Proper-
ties, Lemma 28.2 via this identification we haveOP (m) = L⊗m for all m ∈ Z. �

52. Closed points in fibres

Some of the material in this section is taken from the preprint [?].

Lemma 52.1. Let f : X → S be a morphism of schemes. Let Z ⊂ X be a closed
subscheme. Let s ∈ S. Assume

(1) S is irreducible with generic point η,
(2) X is irreducible,
(3) f is dominant,
(4) f is locally of finite type,
(5) dim(Xs) ≤ dim(Xη),
(6) Z is locally principal in X , and
(7) Zη = ∅.
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Then the fibre Zs is (set theoretically) a union of irreducible components of Xs.

Proof. Let Xred denote the reduction of X . Then Z ∩ Xred is a locally principal
closed subscheme of Xred, see Divisors, Lemma 13.11. Hence we may assume that X is
reduced. In other wordsX is integral, see Properties, Lemma 3.4. In this case the morphism
X → S factors through Sred, see Schemes, Lemma 12.7. Thus we may replace S by Sred
and assume that S is integral too.

The assertion that f is dominant signifies that the generic point of X is mapped to η, see
Morphisms, Lemma 8.6. Moreover, the scheme Xη is an integral scheme which is locally
of finite type over the field κ(η). Hence d = dim(Xη) ≥ 0 is equal to dimξ(Xη) for every
point ξ of Xη , see Algebra, Lemmas 114.4 and 114.5. In view of Morphisms, Lemma 28.4
and condition (5) we conclude that dimx(Xs) = d for every x ∈ Xs.

In the Noetherian case the assertion can be proved as follows. If the lemma does not holds
there exists x ∈ Zs which is a generic point of an irreducible component of Zs but not a
generic point of any irreducible component of Xs. Then we see that dimx(Zs) ≤ d − 1,
because dimx(Xs) = d and in a neighbourhood of x in Xs the closed subscheme Zs does
not contain any of the irreducible components of Xs. Hence after replacing X by an
open neighbourhood of x we may assume that dimz(Zf(z)) ≤ d − 1 for all z ∈ Z , see
Morphisms, Lemma 28.4. Let ξ′ ∈ Z be a generic point of an irreducible component of Z
and set s′ = f(ξ). As Z 6= X is locally principal we see that dim(OX,ξ) = 1, see Algebra,
Lemma 60.11 (this is where we use X is Noetherian). Let ξ ∈ X be the generic point of
X and let ξ1 be a generic point of any irreducible component of Xs′ which contains ξ′.
Then we see that we have the specializations

ξ  ξ1  ξ′.

As dim(OX,ξ) = 1 one of the two specializations has to be an equality. By assumption
s′ 6= η, hence the first specialization is not an equality. Hence ξ′ = ξ1 is a generic point of
an irreducible component of Xs′ . Applying Morphisms, Lemma 28.4 one more time this
implies dimξ′(Zs′) = dimξ′(Xs′) ≥ dim(Xη) = dwhich gives the desired contradiction.

In the general case we reduce to the Noetherian case as follows. If the lemma is false then
there exists a point x ∈ X lying over s such that x is a generic point of an irreducible
component of Zs, but not a generic point of any of the irreducible components ofXs. Let
U ⊂ S be an affine neighbourhood of s and let V ⊂ X be an affine neighbourhood of x
with f(V ) ⊂ U . Write U = Spec(A) and V = Spec(B) so that f |V is given by a ring
map A → B. Let q ⊂ B, resp. p ⊂ A be the prime corresponding to x, resp. s. After
possibly shrinking V we may assume Z ∩V is cut out by some element g ∈ B. DenoteK
the fraction field of A. What we know at this point is the following:

(1) A ⊂ B is a finitely generated extension of domains,
(2) the element g ⊗ 1 is invertible in B ⊗A K ,
(3) d = dim(B ⊗A K) = dim(B ⊗A κ(p)),
(4) g ⊗ 1 is not a unit of B ⊗A κ(p), and
(5) g ⊗ 1 is not in any of the minimal primes of B ⊗A κ(p).

We are seeking a contradiction.

Pick elements x1, . . . , xn ∈ B which generate B over A. For a finitely generated Z-
algebraA0 ⊂ A letB0 ⊂ B be theA0-subalgebra generated by x1, . . . , xn, denoteK0 the
fraction field ofA0, and set p0 = A0 ∩ p. We claim that whenA0 is large enough then (1)
– (5) also hold for the system (A0 ⊂ B0, g, p0).
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We prove each of the conditions in turn. Part (1) holds by construction. For part (2) write
(g⊗1)h = 1 for some h⊗1/a ∈ B⊗AK. Write g =

∑
aIx

I , h =
∑
a′
Ix
I (multi-index

notation) for some coefficients aI , a′
I ∈ A. As soon as A0 contains a and the aI , a′

I then
(2) holds because B0 ⊗A0 K0 ⊂ B ⊗A K (as localizations of the injective map B0 → B).
To achieve (3) consider the exact sequence

0→ I → A[X1, . . . , Xn]→ B → 0
which defines I where the second map sends Xi to xi. Since ⊗ is right exact we see that
I ⊗A K , respectively I ⊗A κ(p) is the kernel of the surjection K[X1, . . . , Xn] → B ⊗A
K , respectively κ(p)[X1, . . . , Xn] → B ⊗A κ(p). As a polynomial ring over a field is
Noetherian there exist finitely many elements hj ∈ I , j = 1, . . . ,m which generate
I ⊗A K and I ⊗A κ(p). Write hj =

∑
aj,IX

I . As soon as A0 contains all aj,I we get to
the situation where
B0 ⊗A0 K0 ⊗K0 K = B ⊗A K and B0 ⊗A0 κ(p0)⊗κ(p0) κ(p) = B ⊗A κ(p).

By either Morphisms, Lemma 28.3 or Algebra, Lemma 116.5 we see that the dimension
equalities of (3) are satisfied. Part (4) is immediate. As B0 ⊗A0 κ(p0) ⊂ B ⊗A κ(p)
each minimal prime of B0 ⊗A0 κ(p0) lies under a minimal prime of B ⊗A κ(p) by Alge-
bra, Lemma 30.6. This implies that (5) holds. In this way we reduce the problem to the
Noetherian case which we have dealt with above. �

Here is an algebraic application of the lemma above. The fourth assumption of the lemma
holds if A→ B is flat, see Lemma 52.3.

Lemma 52.2. Let A → B be a local homomorphism of local rings, and g ∈ mB .
Assume

(1) A and B are domains and A ⊂ B,
(2) B is essentially of finite type over A,
(3) g is not contained in any minimal prime over mAB, and
(4) dim(B/mAB) + trdegκ(mA)(κ(mB)) = trdegA(B).

Then A ⊂ B/gB, i.e., the generic point of Spec(A) is in the image of the morphism
Spec(B/gB)→ Spec(A).

Proof. Note that the two assertions are equivalent by Algebra, Lemma 30.6. To start
the proof let C be an A-algebra of finite type and q a prime of C such that B = Cq. Of
course we may assume thatC is a domain and that g ∈ C. After replacingC by a localiza-
tion we see that dim(C/mAC) = dim(B/mAB) + trdegκ(mA)(κ(mB)), see Morphisms,
Lemma 28.1. Setting K equal to the fraction field of A we see by the same reference that
dim(C ⊗A K) = trdegA(B). Hence assumption (4) means that the generic and closed
fibres of the morphism Spec(C)→ Spec(A) have the same dimension.
Suppose that the lemma is false. Then (B/gB) ⊗A K = 0. This means that g ⊗ 1 is
invertible inB⊗AK = Cq⊗AK. AsCq is a limit of principal localizations we conclude
that g⊗ 1 is invertible in Ch⊗AK for some h ∈ C , h 6∈ q. Thus after replacing C by Ch
we may assume that (C/gC)⊗AK = 0. We do one more replacement of C to make sure
that the minimal primes of C/mAC correspond one-to-one with the minimal primes of
B/mAB. At this point we apply Lemma 52.1 to X = Spec(C)→ Spec(A) = S and the
locally closed subscheme Z = Spec(C/gC). Since ZK = ∅ we see that Z ⊗ κ(mA) has to
contain an irreducible component of X ⊗ κ(mA) = Spec(C/mAC). But this contradicts
the assumption that g is not contained in any prime minimal over mAB. The lemma
follows. �
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Lemma 52.3. Let A→ B be a local homomorphism of local rings. Assume
(1) A and B are domains and A ⊂ B,
(2) B is essentially of finite type over A, and
(3) B is flat over A.

Then we have

dim(B/mAB) + trdegκ(mA)(κ(mB)) = trdegA(B).

Proof. LetC be anA-algebra of finite type and q a prime ofC such thatB = Cq. We
may assumeC is a domain. We have dimq(C/mAC) = dim(B/mAB)+trdegκ(mA)(κ(mB)),
see Morphisms, Lemma 28.1. Setting K equal to the fraction field of A we see by the same
reference that dim(C ⊗A K) = trdegA(B). Thus we are really trying to prove that
dimq(C/mAC) = dim(C ⊗A K). Choose a valuation ring A′ in K dominating A, see
Algebra, Lemma 50.2. Set C ′ = C ⊗A A′. Choose a prime q′ of C ′ lying over q; such a
prime exists because

C ′/mA′C ′ = C/mAC ⊗κ(mA) κ(mA′)
which proves thatC/mAC → C ′/mA′C ′ is faithfully flat. This also proves that dimq(C/mAC) =
dimq′(C ′/mA′C ′), see Algebra, Lemma 116.6. Note that B′ = C ′

q′ is a localization of
B ⊗A A′. Hence B′ is flat over A′. The generic fibre B′ ⊗A′ K is a localization of
B ⊗A K. Hence B′ is a domain. If we prove the lemma for A′ ⊂ B′, then we get
the equality dimq′(C ′/mA′C ′) = dim(C ′ ⊗A′ K) which implies the desired equality
dimq(C/mAC) = dim(C ⊗AK) by what was said above. This reduces the lemma to the
case where A is a valuation ring.

Let A ⊂ B be as in the lemma with A a valuation ring. As before write B = Cq for some
domain C of finite type over A. By Algebra, Lemma 125.9 we obtain dim(C/mAC) =
dim(C ⊗A K) and we win. �

Lemma 52.4. Let f : X → S be a morphism of schemes. Let x x′ be a specializa-
tion of points in X . Set s = f(x) and s′ = f(x′). Assume

(1) x′ is a closed point of Xs′ , and
(2) f is locally of finite type.

Then the set

{x1 ∈ X such that f(x1) = s and x1 is closed in Xs and x x1  x′}
is dense in the closure of x in Xs.

Proof. We apply Schemes, Lemma 20.4 to the specialization x x′. This produces
a morphism ϕ : Spec(B)→ X where B is a valuation ring such that ϕ maps the generic
point to x and the closed point to x′. We may also assume that κ(x) is the fraction field of
B. Let A = B ∩ κ(s). Note that this is a valuation ring (see Algebra, Lemma 50.7) which
dominates the image ofOS,s′ → κ(s). Consider the commutative diagram

Spec(B)

%%

// XA

��

// X

��
Spec(A) // S

The generic (resp. closed) point of B maps to a point xA (resp. x′
A) of XA lying over the

generic (resp. closed) point of Spec(A). Note that x′
A is a closed point of the special fibre
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of XA by Morphisms, Lemma 20.4. Note that the generic fibre of XA → Spec(A) is
isomorphic to Xs. Thus we have reduced the lemma to the case where S is the spectrum
of a valuation ring, s = η ∈ S is the generic point, and s′ ∈ S is the closed point.

We will prove the lemma by induction on dimx(Xη). If dimx(Xη) = 0, then there are
no other points of Xη specializing to x and x is closed in its fibre, see Morphisms, Lemma
20.6, and the result holds. Assume dimx(Xη) > 0.

LetX ′ ⊂ X be the reduced induced scheme structure on the irreducible closed subscheme
{x} of X , see Schemes, Definition 12.5. To prove the lemma we may replace X by X ′ as
this only decreases dimx(Xη). Hence we may also assume thatX is an integral scheme and
that x is its generic point. In addition, we may replaceX by an affine neighbourhood of x′.
Thus we haveX = Spec(B) whereA ⊂ B is a finite type extension of domains. Note that
in this case dimx(Xη) = dim(Xη) = dim(Xs′), and that in fact Xs′ is equidimensional,
see Algebra, Lemma 125.9.

Let W ⊂ Xη be a proper closed subset (this is the subset we want to “avoid”). As Xs

is of finite type over a field we see that W has finitely many irreducible components
W = W1 ∪ . . . ∪ Wn. Let qj ⊂ B, j = 1, . . . , r be the corresponding prime ideals.
Let q ⊂ B be the maximal ideal corresponding to the point x′. Let p1, . . . , ps ⊂ B
be the minimal primes lying over mAB. There are finitely many as these correspond to
the irreducible components of the Noetherian scheme Xs′ . Moreover, each of these ir-
reducible components has dimension > 0 (see above) hence we see that pi 6= q for all i.
Now, pick an element g ∈ q such that g 6∈ qj for all j and g 6∈ pi for all i, see Algebra,
Lemma 15.2. Denote Z ⊂ X the locally principal closed subscheme defined by g. Let
Zη = Z1,η ∪ . . . ∪ Zn,η , n ≥ 0 be the decomposition of the generic fibre of Z into irre-
ducible components (finitely many as the generic fibre is Noetherian). Denote Zi ⊂ X
the closure of Zi,η . After replacing X by a smaller affine neighbourhood we may assume
that x′ ∈ Zi for each i = 1, . . . , n. By construction Z ∩ Xs′ does not contain any ir-
reducible component of Xs′ . Hence by Lemma 52.1 we conclude that Zη 6= ∅! In other
words n ≥ 1. Letting x1 ∈ Z1 be the generic point we see that x1  x′ and f(x1) = η.
Also, by construction Z1,η ∩Wj ⊂Wj is a proper closed subset. Hence every irreducible
component of Z1,η ∩Wj has codimension ≥ 2 in Xη whereas codim(Z1,η, Xη) = 1 by
Algebra, Lemma 60.11. Thus W ∩ Z1,η is a proper closed subset. At this point we see
that the induction hypothesis applies to Z1 → S and the specialization x1  x′. This
produces a closed point x2 of Z1,η not contained in W which specializes to x′. Thus we
obtain x x2  x′, the point x2 is closed in Xη , and x2 6∈W as desired. �

Remark 52.5. The proof of Lemma 52.4 actually shows that there exists a sequence
of specializations

x x1  x2  . . . xd  x′

where all xi are in the fibre Xs, each specialization is immediate, and xd is a closed point
of Xs. The integer d = trdegκ(s)(κ(x)) = dim({x}) where the closure is taken in Xs.
Moreover, the points xi can be chosen to avoid any closed subset of Xs which does not
contain the point x.

Examples, Section 38 shows that the following lemma is false ifA is not assumed Noether-
ian.

Lemma 52.6. Let ϕ : A → B be a local ring map of local rings. Let V ⊂ Spec(B)
be an open subscheme which contains at least one prime not lying over mA. Assume A is
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Noetherian, ϕ essentially of finite type, and A/mA ⊂ B/mB is finite. Then there exists a
q ∈ V , mA 6= q ∩A such that A→ B/q is the localization of a quasi-finite ring map.

Proof. Since A is Noetherian and A→ B is essentially of finite type, we know that
B is Noetherian too. By Properties, Lemma 6.4 the topological space Spec(B) \ {mB} is
Jacobson. Hence we can choose a closed point q which is contained in the nonempty open

V \ {q ⊂ B | mA = q ∩A}.

(Nonempty by assumption, open because {mA} is a closed subset of Spec(A).) Then
Spec(B/q) has two points, namelymB and q and q does not lie overmA. WriteB/q = Cm

for some finite type A-algebra C and prime ideal m. Then A → C is quasi-finite at m by
Algebra, Lemma 122.2 (2). Hence by Algebra, Lemma 123.13 we see that after replacing C
by a principal localization the ring map A→ C is quasi-finite. �

Lemma 52.7. Let f : X → S be a morphism of schemes. Let x ∈ X with image
s ∈ S. Let U ⊂ X be an open subscheme. Assume f locally of finite type, S locally
Noetherian, x a closed point of Xs, and assume there exists a point x′ ∈ U with x′  x
and f(x′) 6= s. Then there exists a closed subscheme Z ⊂ X such that (a) x ∈ Z , (b)
f |Z : Z → S is quasi-finite at x, and (c) there exists a z ∈ Z , z ∈ U , z  x and f(z) 6= s.

Proof. This is a reformulation of Lemma 52.6. Namely, set A = OS,s and B =
OX,x. Denote V ⊂ Spec(B) the inverse image of U . The ring map f ] : A → B is
essentially of finite type. By assumption there exists at least one point of V which does
not map to the closed point of Spec(A). Hence all the assumptions of Lemma 52.6 hold
and we obtain a prime q ⊂ B which does not lie over mA and such that A → B/q is
the localization of a quasi-finite ring map. Let z ∈ X be the image of the point q under
the canonical morphism Spec(B) → X . Set Z = {z} with the induced reduced scheme
structure. As z  x we see that x ∈ Z and OZ,x = B/q. By construction Z → S is
quasi-finite at x. �

Remark 52.8. We can use Lemma 52.6 or its variant Lemma 52.7 to give an alternative
proof of Lemma 52.4 in case S is locally Noetherian. Here is a rough sketch. Namely, first
replace S by the spectrum of the local ring at s′. Then we may use induction on dim(S).
The case dim(S) = 0 is trivial because then s′ = s. Replace X by the reduced induced
scheme structure on {x}. Apply Lemma 52.7 to X → S and x′ 7→ s′ and any nonempty
open U ⊂ X containing x. This gives us a closed subscheme x′ ∈ Z ⊂ X a point z ∈ Z
such that Z → S is quasi-finite at x′ and such that f(z) 6= s′. Then z is a closed point of
Xf(z), and z  x′. As f(z) 6= s′ we see dim(OS,f(z)) < dim(S). Since x is the generic
point of X we see x  z, hence s = f(x)  f(z). Apply the induction hypothesis to
s f(z) and z 7→ f(z) to win.

Lemma 52.9. Suppose that f : X → S is locally of finite type, S locally Noetherian,
x ∈ X a closed point of its fibreXs, andU ⊂ X an open subscheme such thatU ∩Xs = ∅
and x ∈ U , then the conclusions of Lemma 52.7 hold.

Proof. Namely, we can reduce this to the cited lemma as follows: First we replace
X and S by affine neighbourhoods of x and s. Then X is Noetherian, in particular U is
quasi-compact (see Morphisms, Lemma 15.6 and Topology, Lemmas 9.2 and 12.13). Hence
there exists a specialization x′  x with x′ ∈ U (see Morphisms, Lemma 6.5). Note that
f(x′) 6= s. Thus we see all hypotheses of the lemma are satisfied and we win. �
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53. Stein factorization

Stein factorization is the statement that a proper morphism f : X → S with f∗OX = OS
has connected fibres.

Lemma 53.1. Let S be a scheme. Let f : X → S be a universally closed and quasi-
separated morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:
(1) the morphism f ′ is universally closed, quasi-compact, quasi-separated, and sur-

jective,
(2) the morphism π : S′ → S is integral,
(3) we have f ′

∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X , see Morphisms, Definition 53.3.
Formation of the factorization f = π ◦ f ′ commutes with flat base change.

Proof. By Morphisms, Lemma 41.8 the morphism f is quasi-compact. Hence the
normalization S′ of S in X is defined (Morphisms, Definition 53.3) and we have the fac-
torization X → S′ → S. By Morphisms, Lemma 53.11 we have (2), (4), and (5). The
morphism f ′ is universally closed by Morphisms, Lemma 41.7. It is quasi-compact by
Schemes, Lemma 21.14 and quasi-separated by Schemes, Lemma 21.13.

To show the remaining statements we may assume the base scheme S is affine, say S =
Spec(R). Then S′ = Spec(A) with A = Γ(X,OX) an integral R-algebra. Thus it is
clear that f ′

∗OX is OS′ (because f ′
∗OX is quasi-coherent, by Schemes, Lemma 24.1, and

hence equal to Ã). This proves (3).

Let us show that f ′ is surjective. As f ′ is universally closed (see above) the image of f ′ is a
closed subset V (I) ⊂ S′ = Spec(A). Pick h ∈ I . Then h|X = f ](h) is a global section of
the structure sheaf ofX which vanishes at every point. AsX is quasi-compact this means
that h|X is a nilpotent section, i.e., hn|X = 0 for some n > 0. But A = Γ(X,OX), hence
hn = 0. In other words I is contained in the Jacobson radical ideal of A and we conclude
that V (I) = S′ as desired. �

Lemma 53.2. In Lemma 53.1 assume in addition that f is locally of finite type. Then
for s ∈ S the fibre π−1({s}) = {s1, . . . , sn} is finite and the field extensions κ(si)/κ(s)
are finite.

Proof. Recall that there are no specializations among the points of π−1({s}), see
Algebra, Lemma 36.20. As f ′ is surjective, we find that |Xs| → π−1({s}) is surjective.
Observe that Xs is a quasi-separated scheme of finite type over a field (quasi-compactness
was shown in the proof of the referenced lemma). Thus Xs is Noetherian (Morphisms,
Lemma 15.6). A topological argument (omitted) now shows that π−1({s}) is finite. For
each i we can pick a finite type point xi ∈ Xs mapping to si (Morphisms, Lemma 16.7).
We conclude that κ(si)/κ(s) is finite: xi can be represented by a morphism Spec(ki) →
Xs of finite type (by our definition of finite type points) and hence Spec(ki) → s =
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Spec(κ(s)) is of finite type (as a composition of finite type morphisms), hence ki/κ(s) is
finite (Morphisms, Lemma 16.1). �

Lemma 53.3. Let f : X → S be a morphism of schemes. Let s ∈ S. Then Xs is
geometrically connected, if and only if for every étale neighbourhood (U, u)→ (S, s) the
base change XU → U has connected fibre Xu.

Proof. IfXs is geometrically connected, then any base change of it is connected. On
the other hand, suppose thatXs is not geometrically connected. Then by Varieties, Lemma
7.11 we see that Xs ×Spec(κ(s)) Spec(k) is disconnected for some finite separable field
extension k/κ(s). By Lemma 35.2 there exists an affine étale neighbourhood (U, u) →
(S, s) such that κ(u)/κ(s) is identified with k/κ(s). In this case Xu is disconnected. �

Theorem 53.4 (Stein factorization; Noetherian case). Let S be a locally Noetherian
scheme. Let f : X → S be a proper morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:
(1) the morphism f ′ is proper with geometrically connected fibres,
(2) the morphism π : S′ → S is finite,
(3) we have f ′

∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X , see Morphisms, Definition 53.3.

Proof. Let f = π ◦ f ′ be the factorization of Lemma 53.1. Note that besides the
conclusions of Lemma 53.1 we also have that f ′ is separated (Schemes, Lemma 21.13) and
finite type (Morphisms, Lemma 15.8). Hence f ′ is proper. By Cohomology of Schemes,
Proposition 19.1 we see that f∗OX is a coherentOS-module. Hence we see that π is finite,
i.e., (2) holds.
This proves all but the most interesting assertion, namely that all the fibres of f ′ are ge-
ometrically connected. It is clear from the discussion above that we may replace S by
S′, and we may therefore assume that S is Noetherian, affine, f : X → S is proper, and
f∗OX = OS . Let s ∈ S be a point of S. We have to show that Xs is geometrically
connected. By Lemma 53.3 we see that it suffices to show Xu is connected for every étale
neighbourhood (U, u)→ (S, s). We may assume U is affine. Thus U is Noetherian (Mor-
phisms, Lemma 15.6), the base change fU : XU → U is proper (Morphisms, Lemma 41.5),
and that also (fU )∗OXU = OU (Cohomology of Schemes, Lemma 5.2). Hence after re-
placing (f : X → S, s) by the base change (fU : XU → U, u) it suffices to prove that the
fibreXs is connected when f∗OX = OS . We can deduce this from Derived Categories of
Schemes, Lemma 32.7 (by looking at idempotents in the structure sheaf ofXs) but we will
also give a direct argument below.
Namely, we apply the theorem on formal functions, more precisely Cohomology of Schemes,
Lemma 20.7. It tells us that

O∧
S,s = (f∗OX)∧

s = limnH
0(Xn,OXn)

whereXn is the nth infinitesimal neighbourhood ofXs. Since the underlying topological
space of Xn is equal to that of Xs we see that if Xs = T1 q T2 is a disjoint union of



3258 37. MORE ON MORPHISMS

nonempty open and closed subschemes, then similarlyXn = T1,nqT2,n for alln. And this
in turn means H0(Xn,OXn) contains a nontrivial idempotent e1,n, namely the function
which is identically 1 on T1,n and identically 0 on T2,n. It is clear that e1,n+1 restricts to
e1,n on Xn. Hence e1 = lim e1,n is a nontrivial idempotent of the limit. This contradicts
the fact that O∧

S,s is a local ring. Thus the assumption was wrong, i.e., Xs is connected,
and we win. �

Theorem 53.5 (Stein factorization; general case). Let S be a scheme. Let f : X → S
be a proper morphism. There exists a factorization

X
f ′

//

f ��

S′

π
��

S

with the following properties:
(1) the morphism f ′ is proper with geometrically connected fibres,
(2) the morphism π : S′ → S is integral,
(3) we have f ′

∗OX = OS′ ,
(4) we have S′ = Spec

S
(f∗OX), and

(5) S′ is the normalization of S in X , see Morphisms, Definition 53.3.

Proof. We may apply Lemma 53.1 to get the morphism f ′ : X → S′. Note that
besides the conclusions of Lemma 53.1 we also have that f ′ is separated (Schemes, Lemma
21.13) and finite type (Morphisms, Lemma 15.8). Hence f ′ is proper. At this point we have
proved all of the statements except for the statement that f ′ has geometrically connected
fibres.

We may assume that S = Spec(R) is affine. Set R′ = Γ(X,OX). Then S′ = Spec(R′).
Thus we may replace S by S′ and assume that S = Spec(R) is affine R = Γ(X,OX).
Next, let s ∈ S be a point. Let U → S be an étale morphism of affine schemes and let
u ∈ U be a point mapping to s. Let XU → U be the base change of X . By Lemma
53.3 it suffices to show that the fibre of XU → U over u is connected. By Cohomology
of Schemes, Lemma 5.2 we see that Γ(XU ,OXU ) = Γ(U,OU ). Hence we have to show:
Given S = Spec(R) affine, X → S proper with Γ(X,OX) = R and s ∈ S is a point, the
fibre Xs is connected.

To do this it suffices to show that the only idempotents e ∈ H0(Xs,OXs) are 0 and 1 (we
already know that Xs is nonempty by Lemma 53.1). By Derived Categories of Schemes,
Lemma 32.7 after replacing R by a principal localization we may assume e is the image of
an element of R. Since R→ H0(Xs,OXs) factors through κ(s) we conclude. �

Here is an application.

Lemma 53.6. Let f : X → S be a morphism of schemes. Assume
(1) f is proper,
(2) S is integral with generic point ξ,
(3) S is normal,
(4) X is reduced,
(5) every generic point of an irreducible component of X maps to ξ,
(6) we have H0(Xξ,O) = κ(ξ).

Then f∗OX = OS and f has geometrically connected fibres.
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Proof. Apply Theorem 53.5 to get a factorization X → S′ → S. It is enough to
show that S′ = S. This will follow from Morphisms, Lemma 54.8. Namely, S′ is reduced
because X is reduced (Morphisms, Lemma 53.8). The morphism S′ → S is integral by
the theorem cited above. Every generic point of S′ lies over ξ by Morphisms, Lemma 53.9
and assumption (5). On the other hand, since S′ is the relative spectrum of f∗OX we see
that the scheme theoretic fibre S′

ξ is the spectrum ofH0(Xξ,O) which is equal to κ(ξ) by
assumption. Hence S′ is an integral scheme with function field equal to the function field
of S. This finishes the proof. �

Here is another application.

Lemma 53.7. Let X → S be a flat proper morphism of finite presentation. Let nX/S
be the function on S counting the numbers of geometric connected components of fibres
of f introduced in Lemma 28.3. Then nX/S is lower semi-continuous.

Proof. Let s ∈ S. Set n = nX/S(s). Note that n < ∞ as the geometric fibre of
X → S at s is a proper scheme over a field, hence Noetherian, hence has a finite num-
ber of connected components. We have to find an open neighbourhood V of s such that
nX/S |V ≥ n. Let X → S′ → S be the Stein factorization as in Theorem 53.5. By
Lemma 53.2 there are finitely many points s′

1, . . . , s
′
m ∈ S′ lying over s and the exten-

sions κ(s′
i)/κ(s) are finite. Then Lemma 42.1 tells us that after replacing S by an étale

neighbourhood of s we may assume S′ = V1 q . . . q Vm as a scheme with s′
i ∈ Vi and

κ(s′
i)/κ(s) purely inseparable. Then the schemes Xs′

i
are geometrically connected over

κ(s), hence m = n. The schemes Xi = (f ′)−1(Vi), i = 1, . . . , n are flat and of finite
presentation over S. Hence the image of Xi → S is open (Morphisms, Lemma 25.10).
Thus in a neighbourhood of s we see that nX/S is at least n. �

Lemma 53.8. Let f : X → S be a morphism of schemes. Assume
(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced.

Then the function nX/S : S → Z counting the numbers of geometric connected compo-
nents of fibres of f is locally constant.

Proof. By Lemma 53.7 the function nX/S is lower semincontinuous. For s ∈ S
consider the κ(s)-algebra

A = H0(Xs,OXs)
By Varieties, Lemma 9.3 and the fact that Xs is geometrically reduced A is finite prod-
uct of finite separable extensions of κ(s). Hence A ⊗κ(s) κ(s) is a product of β0(s) =
dimκ(s) H

0(E ⊗L κ(s)) copies of κ(s). Thus Xs has β0(s) = dimκ(s) A connected com-
ponents. In other words, we have nX/S = β0 as functions on S. Thus nX/S is upper semi-
continuous by Derived Categories of Schemes, Lemma 32.1. This finishes the proof. �

A final application.

Lemma 53.9. Let (A, I) be a henselian pair. Let X → Spec(A) be separated and
of finite type. Set X0 = X ×Spec(A) Spec(A/I). Let Y ⊂ X0 be an open and closed
subscheme such that Y → Spec(A/I) is proper. Then there exists an open and closed
subscheme W ⊂ X which is proper over A with W ×Spec(A) Spec(A/I) = Y .

Proof. We will denote T 7→ T0 the base change by Spec(A/I) → Spec(A). By
Chow’s lemma (in the form of Limits, Lemma 12.1) there exists a surjective proper mor-
phism ϕ : X ′ → X such that X ′ admits an immersion into Pn

A. Set Y ′ = ϕ−1(Y ).
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This is an open and closed subscheme of X ′
0. Suppose the lemma holds for (X ′, Y ′). Let

W ′ ⊂ X ′ be the open and closed subscheme proper over A such that Y ′ = W ′
0. By Mor-

phisms, Lemma 41.7 W = ϕ(W ′) ⊂ X and Q = ϕ(X ′ \W ′) ⊂ X are closed subsets
and by Morphisms, Lemma 41.9 W is proper over A. The image of W ∩ Q in Spec(A)
is closed. Since (A, I) is henselian, if W ∩ Q is nonempty, then we find that W ∩ Q has
a point lying over Spec(A/I). This is impossible as W ′

0 = Y ′ = ϕ−1(Y ). We conclude
that W is an open and closed subscheme of X proper over A with W0 = Y . Thus we
reduce to the case described in the next paragraph.

Assume there exists an immersion j : X → Pn
A over A. Let X be the scheme theoretic

image of j. Since j is a quasi-compact morphism (Schemes, Lemma 21.14) we see that
j : X → X is an open immersion (Morphisms, Lemma 7.7). Hence the base change
j0 : X0 → X0 is an open immersion as well. Thus j0(Y ) ⊂ X0 is open. It is also closed
by Morphisms, Lemma 41.7. Suppose that the lemma holds for (X, j0(Y )). Let W ⊂ X

be the corresponding open and closed subscheme proper over A such that j0(Y ) = W 0.
Then T = W \ j(X) is closed in W , hence has closed image in Spec(A) by properness of
W over A. Since (A, I) is henselian, we find that if T is nonempty, then there is a point
of T mapping into Spec(A/I). This is impossible because j0(Y ) = W 0 is contained in
j(X). Hence W is contained in j(X) and we can set W ⊂ X equal to the unique open
and closed subscheme mapping isomorphically to W via j. Thus we reduce to the case
described in the next paragraph.
Assume X ⊂ Pn

A is a closed subscheme. Then X → Spec(A) is a proper morphism.
Let Z = X0 \ Y . This is an open and closed subscheme of X0 and X0 = Y q Z. Let
X → X ′ → Spec(A) be the Stein factorization as in Theorem 53.5. Let Y ′ ⊂ X ′

0
and Z ′ ⊂ X ′

0 be the images of Y and Z. Since the fibres of X → Z are geometrically
connected, we see that Y ′ ∩ Z ′ = ∅. Hence X ′

0 = Y ′ q Z ′ as X → X ′ is surjective. Since
X ′ → Spec(A) is integral, we see thatX ′ is the spectrum of anA-algebra integral overA.
Recall that open and closed subsets of spectra correspond 1-to-1 with idempotents in the
corresponding ring, see Algebra, Lemma 21.3. Hence by More on Algebra, Lemma 11.6 we
see that we may writeX ′ = W ′qV ′ withW ′ and V ′ open and closed and with Y ′ = W ′

0
and Z ′ = V ′

0 . Let W be the inverse image in X to finish the proof. �

54. Generic flatness stratification

We can use generic flatness to construct a stratification of the base such that a given module
becomes flat over the strata.

Lemma 54.1 (Generic flatness stratification). Let f : X → S be a morphism of
finite presentation between quasi-compact and quasi-separated schemes. Let F be anOX -
module of finite presentation. Then there exists a t ≥ 0 and closed subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
such that Si → S is defined by a finite type ideal sheaf, S0 ⊂ S is a thickening, and F
pulled back to X ×S (Si \ Si+1) is flat over Si \ Si+1.

Proof. We can find a cartesian diagram

X

��

// X0

��
S // S0
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and a finitely presented OX0 -module F0 which pulls back to F such that X0 and S0 are
of finite type over Z. See Limits, Proposition 5.4 and Lemmas 10.1 and 10.2. Thus we may
assume X and S are of finite type over Z and F is a coherentOX -module.

Assume X and S are of finite type over Z and F is a coherent OX -module. In this case
every quasi-coherent ideal is of finite type, hence we do not have to check the condition
that Si is cut out by a finite type ideal. Set S0 = Sred equal to the reduction of S. By
generic flatness as stated in Morphisms, Proposition 27.2 there is a dense open U0 ⊂ S0
such that F pulled back to X ×S U0 is flat over U0. Let S1 ⊂ S0 be the reduced closed
subscheme whose underlying closed subset is S \ U0. We continue in this way, provided
S1 6= ∅, to find S0 ⊃ S1 ⊃ . . .. Because S is Noetherian any descending chain of closed
subsets stabilizes hence we see that St = ∅ for some t ≥ 0. �

Lemma 54.2. Let f : X → S be a morphism of finite presentation between quasi-
compact and quasi-separated schemes. Then there exists a t ≥ 0 and closed subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅

such that Si → S is defined by a finite type ideal sheaf, S0 ⊂ S is a thickening, and
X ×S (Si \ Si+1) is flat over Si \ Si+1.

Proof. Apply Lemma 54.1 with F = OX . �

Lemma 54.3. Let R be a Noetherian domain. Let R → A → B be finite type ring
maps. Let M be a finite A-module and let N a finite B-module. Let M → N be an A-
linear map. There exists an nonzero f ∈ R such that the cokernel of Mf → Nf is a flat
Rf -module.

Proof. By replacing M by the image of M → N , we may assume M ⊂ N . Choose
a filtration 0 = N0 ⊂ N1 ⊂ . . . ⊂ Nt = N such that Ni/Ni−1 = B/qi for some prime
ideal qi ⊂ B, see Algebra, Lemma 62.1. SetMi = M∩Ni. ThenQ = N/M has a filtration
by the submodulesQi = Ni/Mi. It suffices to proveQi/Qi−1 becomes flat after localizing
at a nonzero element of f (since extensions of flat modules are flat by Algebra, Lemma
39.13). Since Qi/Qi−1 is isomorphic to the cokernel of the map Mi/Mi−1 → Ni/Ni−1,
we reduce to the case discussed in the next paragraph.

Assume B is a domain and M ⊂ N = B. After replacing A by the image of A in B
we may assume A ⊂ B. By generic flatness, we may assume A and B are flat over R
(Algebra, Lemma 118.1). It now suffices to show M → B becomes R-universally injective
after replacing R by a principal localization (Algebra, Lemma 82.7). By generic freeness,
we can find a nonzero g ∈ A such that Bg is a free Ag-module (Algebra, Lemma 118.1).
Thus we may choose a direct summand M ′ ⊂ Bg as an Ag-module, which is finite free
as an Ag-module, and such that M → B → Bg factors through M ′. Clearly, it suffices
to show that M → M ′ becomes R-universally injective after replacing R by a principal
localization.

Say M ′ = A⊕n
g . Since M ⊂ M ′ is a finite A-module, we see that M is contained in

(1/gm)A⊕n for some m ≥ 0. After changing our basis for M ′ we may assume M ⊂
A⊕n. Then it suffices to show that A⊕n/M and Ag/A become R-flat after replacing R
by a principal localization. Namely, then M ′ → A⊕n and A⊕n → A⊕n

g are universally
injective by Algebra, Lemma 39.12 and consequently so is the composition M → M ′ =
A⊕n
g .
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By generic flatness (see reference above), we may assume the module A⊕n/M is R-flat.
For the quotient Ag/A we use the fact that

Ag/A = colim(1/gm)A/A ∼= colimA/gmA

and the moduleA/gmA has a filtration of lengthmwhose succesive quotients are isomor-
phic to A/gA. Again by generic flatness we may assume A/gA is R-flat and hence each
A/gmA is R-flat, and hence so is Ag/A. �

Let f : X → Y be a morphism of schemes over a base scheme S. LetZ ⊂ Y be the scheme
theoretic image of f , see Morphisms, Section 6. Let g : S′ → S be a morphism of schemes
and let f ′ : X ×S S′ → Y ×S S′ be the base change of f by g. It is not always true that
Z ×S S′ ⊂ Y ×S S′ is the scheme theoretic image of f ′. Let us say that formation of
the scheme theoretic image of f/S commutes with arbitrary base change if for every g as
above the scheme theoretic image of f ′ is equal to Z ×S S′.

Lemma 54.4. Let S be a quasi-compact and quasi-separated scheme. Let f : X → Y
be a morphism of schemes over S with both X and Y of finite presentation over S. Then
there exists a t ≥ 0 and closed subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
with the following properties:

(1) Si → S is defined by a finite type ideal sheaf,
(2) S0 ⊂ S is a thickening, and
(3) with Ti = Si \ Si+1 and fi the base change of f to Ti we have: formation of

the scheme theoretic image of fi/Ti commutes with arbitrary base change (see
discussion above the lemma).

Proof. We can find a commutative diagram

X

��

// Y

��

// S

��
U // V // W

with cartesian squares such that U , V , W are of finite type over Z. Namely, first write S
as a cofiltered limit of finite type schemes over Z with affine transition morphisms using
Limits, Proposition 5.4 and then descend the morphism X → Y using Limits, Lemma
10.1. This reduces us to the case discussed in the next paragraph.
Assume S is Noetherian. In this case every quasi-coherent ideal is of finite type, hence we
do not have to check the condition that Si is cut out by a finite type ideal. Set S0 = Sred
equal to the reduction of S. Let η ∈ S0 be a generic point of an irreducible component of
S0. By Noetherian induction on the underlying topological space of S0, we may assume
the result holds for any closed subscheme of S0 not containing η. Thus it suffices to show
that there exists an open neighbourhood U0 ⊂ S0 such that the base change f0 of f to U0
has property (3).
LetR be a Noetherian domain. Let f : X → Y be a morphism of finite type schemes over
R. By the discussion in the previous paragraph it suffices to show that after replacing R
by Rg for some g ∈ R nonzero and X , Y by their base changes to Rg , formation of the
scheme theoretic image of f/R commutes with arbitrary base change.
Let Y = V1 ∪ . . . Vn be an affine open covering. Let Ui = f−1(Vi). If the statement is
true for each of the morphisms Ui → Vi over R, then it holds for f . Namely, the scheme
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theoretic image of Ui → Vi is the intersection of Vi with the scheme theoretic image of
f : X → Y by Morphisms, Lemma 6.3. Thus we may assume Y is affine.
Let X = U1 ∪ . . . Un be an affine open covering. Then the scheme theoretic image of
X → Y is the same as the scheme theoretic imge of

∐
Ui → Y . Thus we may assume X

is affine.
SayX = Spec(A) andY = Spec(B) and f corresponds to theR-algebra mapϕ : A→ B.
Then the scheme theoretic image of f is Spec(A/Ker(ϕ)) and similarly after base change
(by an affine morphism, but it is enough to check for those). Thus formation of the scheme
theoretic image commutes with base change if Ker(ϕ⊗RR′) = Ker(ϕ)⊗RR′ for all ring
maps R→ R′.
After replacing R, A, B by Rg , Ag , Bg for a suitable nonzero g in R, we may assume A
and B are flat over R. By Lemma 54.3 we may also assume B/A is a flat R-module. Then
0 → Ker(ϕ) → A → B → B/A → 0 is an exact sequence of flat R-modules, which
implies the desired base change statement. �

55. Stratifying a morphism

Let f : X → S be a finitely presented morphism of quasi-compact and quasi-separated
schemes. In Section 54 we have seen that we can stratify S such that X is flat over the
strata. In this section look for stratifications of both S andX such that we obtain smooth
strata; this won’t quite work and we’ll need a base change by finite locally free morphisms
as well.

Lemma 55.1. Let f : X → S be a morphism of schemes of finite presentation. Let
η ∈ S be a generic point of an irreducible component of S. Assume S is reduced. Then
there exist

(1) an open subscheme U ⊂ S containing η,
(2) a surjective, universally injective, finite locally free morphism V → U ,
(3) a t ≥ 0 and closed subschemes

X ×S V ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Zi → X ×S V is defined by a finite type ideal sheaf, Z0 ⊂ X ×S V is
a thickening, and such that the morphism Zi \ Zi+1 → V is smooth.

Proof. It is clear that we may replace S by an open neighbourhood of η and X by
the restriction to this open. Thus we may assume S = Spec(A) whereA is a reduced ring
and η corresponds to a minimal prime ideal p. Recall that the local ring OS,η = Ap is
equal to κ(p) in this case, see Algebra, Lemma 25.1.
Apply Varieties, Lemma 25.11 to the scheme Xη over k = κ(η). Denote k′/k the purely
inseparable field extension this produces. In the next paragraph we reduce to the case
k′ = k. (This step corresponds to finding the morphism V → U in the statement of the
lemma; in particular we can take V = U if the characteristic of κ(p) is zero.)
If the characteristic of k = κ(p) is zero, then k′ = k. If the characteristic of k = κ(p)
is p > 0, then p maps to zero in Ap = κ(p). Hence after replacing A by a principal
localization (i.e., shrinking S) we may assume p = 0 in A. If k′ 6= k, then there exists
an β ∈ k′, β 6∈ k such that βp ∈ k. After replacing A by a principal localization we
may assume there exists an a ∈ A such that βp = a. Set A′ = A[x]/(xp − a). Then
S′ = Spec(A′)→ Spec(A) = S is finite locally free, surjective, and universally injective.
Moreover, if p′ ⊂ A′ denotes the unique prime ideal lying over p, then A′

p′ = k(β) and
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k′/k(β) has smaller degree. Thus after replacingS byS′ and η by the point η′ correspond-
ing to p′ we see that the degree of k′ over the residue field of η has decreased. Continuing
like this, by induction we reduce to the case k′ = κ(p) = κ(η).
Thus we may assume S is affine, reduced, and that we have a t ≥ 0 and closed subschemes

Xη ⊃ Zη,0 ⊃ Zη,1 ⊃ . . . ⊃ Zη,t = ∅
such that Zη,0 = (Xη)red and Zη,i \ Zη,i+1 is smooth over η for all i. Recall that κ(η) =
κ(p) = Ap is the filtered colimit of Aa for a ∈ A, a 6∈ p. See Algebra, Lemma 9.9. Thus
we can descend the diagram above to a corresponding diagram over Spec(Aa) for some
a ∈ A, a 6∈ p. More precisely, after replacing S by Spec(Aa) we may assume we have a
t ≥ 0 and closed subschemes

X ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
such that Zi → X is a closed immersion of finite presentation, such that Z0 → X is a
thickening, and such that Zi \ Zi+1 is smooth over S. In other words, the lemma holds.
More precisely, we first use Limits, Lemma 10.1 to obtain morphisms

Zt → Zt−1 → . . .→ Z0 → X

over S , each of finite presentation, and whose base change to η produces the inclusions
between the given closed subschemes above. After shrinking S further we may assume
each of the morphisms is a closed immersion, see Limits, Lemma 8.5. After shrinking S we
may assume Z0 → X is surjective and hence a thickening, see Limits, Lemma 8.15. After
shrinking S once more we may assume Zi \ Zi+1 → S is smooth, see Limits, Lemma 8.9.
This finishes the proof. �

Lemma 55.2. Let f : X → S be a morphism of finite presentation between quasi-
compact and quasi-separated schemes. Then there exists a t ≥ 0 and closed subschemes

S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
such that

(1) Si → S is defined by a finite type ideal sheaf,
(2) S0 ⊂ S is a thickening,
(3) for each i there exists a surjective finite locally free morphism Ti → Si \ Si+1,
(4) for each i there exists a ti ≥ 0 and closed subschemes

Xi = X ×S Ti ⊃ Zi,0 ⊃ Zi,1 ⊃ . . . ⊃ Zi,ti = ∅
such that Zi,j → Xi is defined by a finite type ideal sheaf, Zi,0 ⊂ Xi is a thick-
ening, and such that the morphism Zi,j \ Zi,j+1 → Ti is smooth.

Proof. We can find a cartesian diagram

X

��

// X0

��
S // S0

such thatX0 and S0 are of finite type over Z. See Limits, Proposition 5.4 and Lemma 10.1.
Thus we may assumeX and S are of finite type over Z. Namely, a solution of the problem
posed by the lemma for X0 → S0 will base change to a solution over S; details omitted.
Assume X and S are of finite type over Z. In this case every quasi-coherent ideal is of
finite type, hence we do not have to check the condition that Si is cut out by a finite
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type ideal. Set S0 = Sred equal to the reduction of S. Let η ∈ S0 be a generic point
of an irreducible component. By Lemma 55.1 we can find an open subscheme U ⊂ S0, a
surjective, universally injective, finite locally free morphism V → U , a t0 ≥ 0 and closed
subschemes

X ×S V ⊃ Z0,0 ⊃ Z0,1 ⊃ . . . ⊃ Z0,t0 = ∅
such that Z0,i → X ×S V is defined by a finite type ideal sheaf, Z0,0 ⊂ X ×S V is a
thickening, and such that the morphismZ0,i\Z0,i+1 → V is smooth. Then we letS1 ⊂ S0
be the reduced induced subscheme structure on S0 \ U . By Noetherian induction on the
underlying topological space of S , we may assume that the lemma holds for X ×S S1 →
S1. This produces t ≥ 1 and

S1 = S1 ⊃ S2 ⊃ . . . ⊃ St = ∅
and ti and Zi,j as in the statement of the lemma. This proves the lemma. �

56. Improving morphisms of relative dimension one

We can make any curve be smooth and projective after extending the ground field, com-
pactifying, and normalizing. This also implies results about finite type morphisms whose
generic fibres have dimension 1.

Lemma 56.1. Let f : X → S be a morphism of schemes. Let η ∈ S be a generic
point of an irreducible component of S. Assume f is separated, of finite presentation, and
dim(Xη) ≤ 1. Then there exists a commutative diagram

Y 1 q . . .q Y n

((

Y1 q . . .q Yn ν
//

��

j
oo XV

//

��

XU
//

��

X

f

��
T1 q . . .q Tn // V // U // S

of schemes with the following properties:
(1) U ⊂ X is an open neighbourhood of η,
(2) V → U is a finite, surjective, universally injective morphism,
(3) XU = U ×S X and XV = V ×S X are the base changes,
(4) ν is finite, surjective, and there is an open W ⊂ XV such that

(a) W is dense in all fibres of XV → V ,
(b) ν−1(W ) ∩ Yi is dense in all fibres of Yi → Ti, and
(c) ν−1(W )→W is a thickening,

(5) j is an open immersion,
(6) Ti → V is finite étale,
(7) Yi → Ti is surjective and smooth,
(8) Y i → Ti is smooth, proper, with geometrically connected fibres of dimension
≤ 1.

Proof. It is clear that we may replace S by an open neighbourhood of η and X by
the restriction to this open. Moreover, we may replace S by its reduction and X by the
base change to this reduction. Thus we may assume S = Spec(A) where A is a reduced
ring and η corresponds to a minimal prime ideal p. Recall that the local ring OS,η = Ap

is equal to κ(p) in this case, see Algebra, Lemma 25.1.

Apply Varieties, Lemma 43.7 to the scheme Xη over k = κ(η). Denote k′/k the purely
inseparable field extension this produces. In the next paragraph we reduce to the case
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k′ = k. (This step corresponds to finding the morphism V → U in the statement of the
lemma; in particular we can take V = U if the characteristic of κ(p) is zero.)

If the characteristic of k = κ(p) is zero, then k′ = k. If the characteristic of k = κ(p)
is p > 0, then p maps to zero in Ap = κ(p). Hence after replacing A by a principal
localization (i.e., shrinking S) we may assume p = 0 in A. If k′ 6= k, then there exists
an β ∈ k′, β 6∈ k such that βp ∈ k. After replacing A by a principal localization we
may assume there exists an a ∈ A such that βp = a. Set A′ = A[x]/(xp − a). Then
S′ = Spec(A′)→ Spec(A) = S is finite, surjective, and universally injective. Moreover,
if p′ ⊂ A′ denotes the unique prime ideal lying over p, then A′

p′ = k(β) and k′/k(β) has
smaller degree. Thus after replacing S by S′ and η by the point η′ corresponding to p′ we
see that the degree of k′ over the residue field of η has decreased. Continuing like this, by
induction we reduce to the case k′ = κ(p) = κ(η).

Thus we may assume S is affine, reduced, and that we have a diagram

Y 1,η q . . .q Y n,η

**

Y1,η q . . .q Yn,η ν
//

��

j
oo Xη

��
Spec(k1)q . . .q Spec(kn) // η

of schemes with the following properties:
(1) ν is the normalization of Xη ,
(2) j is an open immersion with dense image,
(3) ki/κ(η) is a finite separable extension for i = 1, . . . , n,
(4) Y i,η is smooth, projective, and geometrically irreducible of dimension ≤ 1 over

ki.
Recall that κ(η) = κ(p) = Ap is the filtered colimit of Aa for a ∈ A, a 6∈ p. See Algebra,
Lemma 9.9. Thus we can descend the diagram above to a corresponding diagram over
Spec(Aa) for some a ∈ A, a 6∈ p. More precisely, after replacing S by Spec(Aa) we may
assume we have a commutative diagram

Y 1 q . . .q Y n

((

Y1 q . . .q Yn ν
//

��

j
oo X

��
T1 q . . .q Tn // S

of schemes whose base change to η is the diagram above with the following properties
(1) ν is a finite, surjective morphism,
(2) j is an open immersion,
(3) Ti → S is finite étale for i = 1, . . . , n,
(4) Yi → Ti is smooth and surjective,
(5) Y i → Ti is smooth and proper and has geometrically connected fibres of dimen-

sion ≤ 1.
For this we first use Limits, Lemma 10.1 to obtain the diagram base changing to the previ-
ous diagram. Then we use Limits, Lemmas 8.10, 8.9, 8.3, 4.13, 8.12, 13.1, and 8.15 to obtain
ν finite, surjective, j open immersion, Ti → S finite étale, Yi → T smooth, Y i → Ti
proper and smooth. Since Yi cannot be empty, since smooth morphisms are open, and
since Ti → S is finite étale, after shrinking S we may assume Yi → Ti is surjective. Fi-
nally, the fibre of Y i → Ti over the unique point ηi = Spec(ki) of Ti lying over η is
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geometrically connected. Hence by another shrinking we may assume the same thing is
true for all fibres, see Lemma 53.8.

It remains to prove the existence of an open W ⊂ X satisfying (a), (b), and (c). Since
νη :

∐
Yi,η → Xη is the normalization morphism, we know by Varieties, Lemma 27.1

there exists a dense open Wη ⊂ Xη such that ν−1(Wη) → Wη is equal to the inclusion
of the reduction of Wη into Wη . Let W ⊂ X be a quasi-compact open whose fibre over η
is the open Wη we just found. After replacing A = Γ(S,OS) by another localization we
may assume ν−1(W ) → W is a closed immersion, see Limits, Lemma 8.5. Since ν is also
surjective we conclude ν−1(W )→W is a thickening. SetWi = ν−1(W )∩Yi. Shrinking
S once more we can assume Wi → Ti is surjective for all i (same argument as above).
Then we find that Wi ⊂ Yi is dense in all fibres of Yi → Ti as Yi → Ti has geometrically
irreducible fibres. Since ν is finite and surjective, it then follows that W = ν(ν−1(W )) is
dense in all fibres of X → S too. �

57. Descending separated locally quasi-finite morphisms

In this section we show that “separated locally quasi-finite morphisms satisfy descent for
fppf-coverings”. See Descent, Definition 36.1 for terminology. This is in the marvellous
(for many reasons) paper by Raynaud and Gruson hidden in the proof of [?, Lemma 5.7.1].
It can also be found in [?], and [?, Exposé X, Lemma 5.4] under the additional hypothesis
that the morphism is locally of finite presentation. Here is the formal statement.

Lemma 57.1. Let S be a scheme. Let {Xi → S}i∈I be an fppf covering, see Topolo-
gies, Definition 7.1. Let (Vi/Xi, ϕij) be a descent datum relative to {Xi → S}. If each
morphism Vi → Xi is separated and locally quasi-finite, then the descent datum is effec-
tive.

Proof. Being separated and being locally quasi-finite are properties of morphisms
of schemes which are preserved under any base change, see Schemes, Lemma 21.12 and
Morphisms, Lemma 20.13. Hence Descent, Lemma 36.2 applies and it suffices to prove
the statement of the lemma in case the fppf-covering is given by a single {X → S} flat
surjective morphism of finite presentation of affines. SayX = Spec(A) andS = Spec(R)
so that R → A is a faithfully flat ring map. Let (V, ϕ) be a descent datum relative to X
over S and assume that π : V → X is separated and locally quasi-finite.

LetW 1 ⊂ V be any affine open. ConsiderW = pr1(ϕ(W 1×SX)) ⊂ V . Here is a picture

W 1 ×S X //

��

&&

ϕ(W 1 ×S X)

��

ww
V ×S X

ϕ //

&&

��

X ×S V

xx

��

X ×S X
1 //

pr0

��

X ×S X
pr1

��
W 1 // V // X X Voo Woo

Ok, and now since X → S is flat and of finite presentation it is universally open (Mor-
phisms, Lemma 25.10). Hence we conclude that W is open. Moreover, it is also clearly
the case that W is quasi-compact, and W 1 ⊂W . Moreover, we note that ϕ(W ×S X) =
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X×SW by the cocycle condition forϕ. Hence we obtain a new descent datum (W,ϕ′) by
restricting ϕ to W ×S X . Note that the morphism W → X is quasi-compact, separated
and locally quasi-finite. This implies that it is separated and quasi-finite by definition.
Hence it is quasi-affine by Lemma 43.2. Thus by Descent, Lemma 38.1 we see that the
descent datum (W,ϕ′) is effective.
In other words, we find that there exists an open covering V =

⋃
Wi by quasi-compact

opens Wi which are stable for the descent morphism ϕ. Moreover, for each such quasi-
compact openW ⊂ V the corresponding descent data (W,ϕ′) is effective. This means the
original descent datum is effective by glueing the schemes obtained from descending the
opens Wi, see Descent, Lemma 35.13. �

58. Relative finite presentation

Let R → A be a finite type ring map. Let M be an A-module. In More on Algebra,
Section 80 we defined what it means for M to be finitely presented relative to R. We also
proved this notion has good localization properties and glues. Hence we can define the
corresponding global notion as follows.

Definition 58.1. Let f : X → S be a morphism of schemes which is locally of finite
type. LetF be a quasi-coherentOX -module. We sayF is finitely presented relative toS or
of finite presentation relative to S if there exists an affine open covering S =

⋃
Vi and for

every i an affine open covering f−1(Vi) =
⋃
j Uij such thatF(Uij) is aOX(Uij)-module

of finite presentation relative toOS(Vi).

Note that this implies thatF is a finite typeOX -module. IfX → S is just locally of finite
type, then F may be of finite presentation relative to S , without X → S being locally of
finite presentation. We will see that X → S is locally of finite presentation if and only if
OX is of finite presentation relative to S.

Lemma 58.2. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherentOX -module. The following are equivalent

(1) F is of finite presentation relative to S ,
(2) for every affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the OX(U)-module
F(U) is finitely presented relative toOS(V ).

Moreover, if this is true, then for every open subschemesU ⊂ X and V ⊂ S with f(U) ⊂
V the restriction F|U is of finite presentation relative to V .

Proof. The final statement is clear from the equivalence of (1) and (2). It is also clear
that (2) implies (1). Assume (1) holds. Let S =

⋃
Vi and f−1(Vi) =

⋃
Uij be affine

open coverings as in Definition 58.1. Let U ⊂ X and V ⊂ S be as in (2). By More on
Algebra, Lemma 80.8 it suffices to find a standard open covering U =

⋃
Uk of U such

that F(Uk) is finitely presented relative to OS(V ). In other words, for every u ∈ U it
suffices to find a standard affine open u ∈ U ′ ⊂ U such that F(U ′) is finitely presented
relative to OS(V ). Pick i such that f(u) ∈ Vi and then pick j such that u ∈ Uij . By
Schemes, Lemma 11.5 we can find v ∈ V ′ ⊂ V ∩ Vi which is standard affine open in V ′

and Vi. Then f−1V ′ ∩ U , resp. f−1V ′ ∩ Uij are standard affine opens of U , resp. Uij .
Applying the lemma again we can find u ∈ U ′ ⊂ f−1V ′ ∩ U ∩ Uij which is standard
affine open in both f−1V ′ ∩ U and f−1V ′ ∩ Uij . Thus U ′ is also a standard affine open
of U and Uij . By More on Algebra, Lemma 80.4 the assumption that F(Uij) is finitely
presented relative to OS(Vi) implies that F(U ′) is finitely presented relative to OS(Vi).
Since OX(U ′) = OX(U ′) ⊗OS(Vi) OS(V ′) we see from More on Algebra, Lemma 80.5
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that F(U ′) is finitely presented relative to OS(V ′). Applying More on Algebra, Lemma
80.4 again we conclude that F(U ′) is finitely presented relative to OS(V ). This finishes
the proof. �

Lemma 58.3. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherentOX -module.

(1) If f is locally of finite presentation, then F is of finite presentation relative to S
if and only if F is of finite presentation.

(2) The morphism f is locally of finite presentation if and only if OX is of finite
presentation relative to S.

Proof. Follows immediately from the definitions, see discussion following More on
Algebra, Definition 80.2. �

Lemma 58.4. Let π : X → Y be a finite morphism of schemes locally of finite
type over a base scheme S. Let F be a quasi-coherent OX -module. Then F is of finite
presentation relative to S if and only if π∗F is of finite presentation relative to S.

Proof. Translation of the result of More on Algebra, Lemma 80.3 into the language
of schemes. �

Lemma 58.5. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX -module. Let S′ → S be a morphism of schemes, set
X ′ = X ×S S′ and denote F ′ the pullback of F to X ′. If F is of finite presentation
relative to S , then F ′ is of finite presentation relative to S′.

Proof. Translation of the result of More on Algebra, Lemma 80.5 into the language
of schemes. �

Lemma 58.6. Let X → Y → S be morphisms of schemes which are locally of finite
type. Let G be a quasi-coherentOY -module. If f : X → Y is locally of finite presentation
and G of finite presentation relative to S , then f∗G is of finite presentation relative to S.

Proof. Translation of the result of More on Algebra, Lemma 80.6 into the language
of schemes. �

Lemma 58.7. Let X → Y → S be morphisms of schemes which are locally of finite
type. Let F be a quasi-coherent OX -module. If Y → S is locally of finite presentation
and F is of finite presentation relative to Y , then F is of finite presentation relative to S.

Proof. Translation of the result of More on Algebra, Lemma 80.7 into the language
of schemes. �

Lemma 58.8. Let X → S be a morphism of schemes which is locally of finite type.
Let 0→ F ′ → F → F ′′ → 0 be a short exact sequence of quasi-coherentOX -modules.

(1) If F ′,F ′′ are finitely presented relative to S , then so is F .
(2) If F ′ is a finite type OX -module and F is finitely presented relative to S , then
F ′′ is finitely presented relative to S.

Proof. Translation of the result of More on Algebra, Lemma 80.9 into the language
of schemes. �

Lemma 58.9. Let X → S be a morphism of schemes which is locally of finite type.
Let F ,F ′ be quasi-coherent OX -modules. If F ⊕ F ′ is finitely presented relative to S ,
then so are F and F ′.
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Proof. Translation of the result of More on Algebra, Lemma 80.10 into the language
of schemes. �

59. Relative pseudo-coherence

This section is the analogue of More on Algebra, Section 81 for schemes. We strongly urge
the reader to take a look at that section first. Although we have developed the material
in this section and the material on pseudo-coherent complexes in Cohomology, Sections
46, 47, 48, and 49 for arbitrary complexes of OX -modules, if X is a scheme then work-
ing exclusively with objects in DQCoh(OX) greatly simplifies many of the lemmmas and
arguments, often reducing the problem at hand immediately to the algebraic counterpart.
Moreover, one of the first thing we do is to show that being relatively pseudo-coherent
implies the cohomology sheaves are quasi-coherent, see Lemma 59.3. Hence, on a first
reading we suggest the reader work exclusively with objects in DQCoh(OX).

Lemma 59.1. Let X → S be a finite type morphism of affine schemes. Let E be an
object of D(OX). Let m ∈ Z. The following are equivalent

(1) for some closed immersion i : X → An
S the object Ri∗E of D(OAn

S
) is m-

pseudo-coherent, and
(2) for all closed immersions i : X → An

S the objectRi∗E ofD(OAn
S
) ism-pseudo-

coherent.

Proof. Say S = Spec(R) and X = Spec(A). Let i correspond to the surjection
α : R[x1, . . . , xn]→ A and let X → Am

S correspond to β : R[y1, . . . , ym]→ A. Choose
fj ∈ R[x1, . . . , xn] with α(fj) = β(yj) and gi ∈ R[y1, . . . , ym] with β(gi) = α(xi).
Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

corresponding to the commutative diagram of closed immersions

An+m
S An

S
oo

Am
S

OO

X

OO

oo

Thus it suffices to show that under a closed immersion
f : Am

S → An+m
S

an objectE ofD(OAm
S

) ism-pseudo-coherent if and only ifRf∗E ism-pseudo-coherent.
This follows from Derived Categories of Schemes, Lemma 12.5 and the fact that f∗OAm

S
is

a pseudo-coherent OAn+m
S

-module. The pseudo-coherence of f∗OAm
S

is straightforward
to prove directly, but it also follows from Derived Categories of Schemes, Lemma 10.2 and
More on Algebra, Lemma 81.3. �

Recall that if f : X → S is a morphism of scheme which is locally of finite type, then
for every pair of affine opens U ⊂ X and V ⊂ S such that f(U) ⊂ V , the ring map
OS(V ) → OX(U) is of finite type (Morphisms, Lemma 15.2). Hence there always exist
closed immersions U → An

V and the following definition makes sense.
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Definition 59.2. Let f : X → S be a morphism of schemes which is locally of finite
type. Let E be an object of D(OX). Let F be anOX -module. Fix m ∈ Z.

(1) We say E is m-pseudo-coherent relative to S if there exists an affine open cov-
ering S =

⋃
Vi and for each i an affine open covering f−1(Vi) =

⋃
Uij such

that the equivalent conditions of Lemma 59.1 are satisfied for each of the pairs
(Uij → Vi, E|Uij ).

(2) We say E is pseudo-coherent relative to S if E is m-pseudo-coherent relative to
S for all m ∈ Z.

(3) We sayF ism-pseudo-coherent relative to S ifF viewed as an object ofD(OX)
is m-pseudo-coherent relative to S.

(4) We say F is pseudo-coherent relative to S if F viewed as an object of D(OX) is
pseudo-coherent relative to S.

If X is quasi-compact and E is m-pseudo-coherent relative to S for some m, then E is
bounded above. If E is pseudo-coherent relative to S , then E has quasi-coherent coho-
mology sheaves.

Lemma 59.3. Let f : X → S be a morphism of schemes which is locally of finite
type. If E in D(OX) is m-pseudo-coherent relative to S , then Hi(E) is a quasi-coherent
OX -module for i > m. If E is pseudo-coherent relative to S , then E is an object of
DQCoh(OX).

Proof. Choose an affine open covering S =
⋃
Vi and for each i an affine open

covering f−1(Vi) =
⋃
Uij such that the equivalent conditions of Lemma 59.1 are sat-

isfied for each of the pairs (Uij → Vi, E|Uij ). Since being quasi-coherent is local on X ,
we may assume that there exists an closed immersion i : X → An

S such that Ri∗E is
m-pseudo-coherent on An

S . By Derived Categories of Schemes, Lemma 10.1 this means
that Hq(Ri∗E) is quasi-coherent for q > m. Since i∗ is an exact functor, we have
i∗H

q(E) = Hq(Ri∗E) is quasi-coherent on An
S . By Morphisms, Lemma 4.1 this im-

plies thatHq(E) is quasi-coherent as desired (strictly speaking it implies there exists some
quasi-coherent OX -module F such that i∗F = i∗H

q(E) and then Modules, Lemma 13.4
tells us that F ∼= Hq(E) hence the result). �

Next, we prove the condition of relative pseudo-coherence localizes well.

Lemma 59.4. Let S be an affine scheme. Let V ⊂ S be a standard open. Let X → V
be a finite type morphism of affine schemes. Let U ⊂ X be an affine open. Let E be
an object of D(OX). If the equivalent conditions of Lemma 59.1 are satisfied for the pair
(X → V,E), then the equivalent conditions of Lemma 59.1 are satisfied for the pair (U →
S,E|U ).

Proof. Write S = Spec(R), V = D(f),X = Spec(A), and U = D(g). Assume the
equivalent conditions of Lemma 59.1 are satisfied for the pair (X → V,E).

ChooseRf [x1, . . . , xn]→ A surjective. WriteRf = R[x0]/(fx0−1). ThenR[x0, x1, . . . , xn]→
A is surjective, and Rf [x1, . . . , xn] is pseudo-coherent as an R[x0, . . . , xn]-module. Thus
we have

X → An
V → An+1

S

and we can apply Derived Categories of Schemes, Lemma 12.5 to conclude that the push-
forward E′ of E to An+1

S is m-pseudo-coherent.
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Choose an element g′ ∈ R[x0, x1, . . . , xn] which maps to g ∈ A. Consider the surjection
R[x0, . . . , xn+1]→ R[x0, . . . , xn, 1/g′]. We obtain

X

��

U

��

oo

##
An+1
S D(g′)oo // An+2

S

where the lower left arrow is an open immersion and the lower right arrow is a closed
immersion. We conclude as before that the pushforward ofE′|D(g′) to An+2

S ism-pseudo-
coherent. Since this is also the pushforward of E|U to An+2

S we conclude the lemma is
true. �

Lemma 59.5. Let X → S be a finite type morphism of affine schemes. Let E be an
object of D(OX). Let m ∈ Z. Let X =

⋃
Ui be a standard affine open covering. The

following are equivalent
(1) the equivalent conditions of Lemma 59.1 hold for the pairs (Ui → S,E|Ui),
(2) the equivalent conditions of Lemma 59.1 hold for the pair (X → S,E).

Proof. The implication (2)⇒ (1) is Lemma 59.4. Assume (1). Say S = Spec(R) and
X = Spec(A) and Ui = D(fi). Write 1 =

∑
figi in A. Consider the surjections

R[xi, yi, zi]→ R[xi, yi, zi]/(
∑

yizi − 1)→ A.

which sends yi to fi and zi to gi. Note that R[xi, yi, zi]/(
∑
yizi − 1) is pseudo-coherent

as an R[xi, yi, zi]-module. Thus it suffices to prove that the pushforward of E to T =
Spec(R[xi, yi, zi]/(

∑
yizi−1)) ism-pseudo-coherent, see Derived Categories of Schemes,

Lemma 12.5. For each i0 it suffices to prove the restriction of this pushforward to Wi0 =
Spec(R[xi, yi, zi, 1/yi0 ]/(

∑
yizi − 1)) is m-pseudo-coherent. Note that there is a com-

mutative diagram
X

��

Ui0oo

��
T Wi0
oo

which implies that the pushforward of E to T restricted to Wi0 is the pushforward of
E|Ui0 to Wi0 . Since R[xi, yi, zi, 1/yi0 ]/(

∑
yizi − 1) is isomorphic to a polynomial ring

over R this proves what we want. �

Lemma 59.6. Let f : X → S be a morphism of schemes which is locally of finite
type. Let E be an object of D(OX). Fix m ∈ Z. The following are equivalent

(1) E is m-pseudo-coherent relative to S ,
(2) for every affine opens U ⊂ X and V ⊂ S with f(U) ⊂ V the equivalent

conditions of Lemma 59.1 are satisfied for the pair (U → V,E|U ).
Moreover, if this is true, then for every open subschemesU ⊂ X and V ⊂ S with f(U) ⊂
V the restriction E|U is m-pseudo-coherent relative to V .

Proof. The final statement is clear from the equivalence of (1) and (2). It is also clear
that (2) implies (1). Assume (1) holds. Let S =

⋃
Vi and f−1(Vi) =

⋃
Uij be affine

open coverings as in Definition 59.2. Let U ⊂ X and V ⊂ S be as in (2). By Lemma
59.5 it suffices to find a standard open covering U =

⋃
Uk of U such that the equivalent

conditions of Lemma 59.1 are satisfied for the pairs (Uk → V,E|Uk). In other words,
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for every u ∈ U it suffices to find a standard affine open u ∈ U ′ ⊂ U such that the
equivalent conditions of Lemma 59.1 are satisfied for the pair (U ′ → V,E|U ′). Pick i
such that f(u) ∈ Vi and then pick j such that u ∈ Uij . By Schemes, Lemma 11.5 we can
find v ∈ V ′ ⊂ V ∩ Vi which is standard affine open in V ′ and Vi. Then f−1V ′ ∩ U ,
resp. f−1V ′ ∩Uij are standard affine opens of U , resp. Uij . Applying the lemma again we
can find u ∈ U ′ ⊂ f−1V ′ ∩ U ∩ Uij which is standard affine open in both f−1V ′ ∩ U
and f−1V ′ ∩ Uij . Thus U ′ is also a standard affine open of U and Uij . By Lemma 59.4
the assumption that the equivalent conditions of Lemma 59.1 are satisfied for the pair
(Uij → Vi, E|Uij ) implies that the equivalent conditions of Lemma 59.1 are satisfied for
the pair (U ′ → V,E|U ′). �

For objects of the derived category whose cohomology sheaves are quasi-coherent, we
can relate relative m-pseudo-coherence to the notion defined in More on Algebra, Def-
inition 81.4. We will use the fact that for an affine scheme U = Spec(A) the functor
RΓ(U,−) induces an equivalence betweenDQCoh(OU ) andD(A), see Derived Categories
of Schemes, Lemma 3.5. This functor is compatible with pullbacks: if E is an object of
DQCoh(OU ) and A → B is a ring map corresponding to a morphism of affine schemes
g : V = Spec(B)→ Spec(A) = U , then RΓ(V, Lg∗E) = RΓ(U,E)⊗L

A B. See Derived
Categories of Schemes, Lemma 3.8.

Lemma 59.7. Let f : X → S be a morphism of schemes which is locally of finite
type. Let E be an object of DQCoh(OX). Fix m ∈ Z. The following are equivalent

(1) E is m-pseudo-coherent relative to S ,
(2) there exists an affine open covering S =

⋃
Vi and for each i an affine open cov-

ering f−1(Vi) =
⋃
Uij such that the complex ofOX(Uij)-modulesRΓ(Uij , E)

is m-pseudo-coherent relative toOS(Vi), and
(3) for every affine opens U ⊂ X and V ⊂ S with f(U) ⊂ V the complex of
OX(U)-modules RΓ(U,E) is m-pseudo-coherent relative toOS(V ).

Proof. Let U and V be as in (2) and choose a closed immersion i : U → An
V .

A formal argument, using Lemma 59.6, shows it suffices to prove that Ri∗(E|U ) is m-
pseudo-coherent if and only if RΓ(U,E) is m-pseudo-coherent relative to OS(V ). Say
U = Spec(A), V = Spec(R), and An

V = Spec(R[x1, . . . , xn]. By the remarks preceding
the lemma,E|U is quasi-isomorphic to the complex of quasi-coherent sheaves onU associ-
ated to the objectRΓ(U,E) ofD(A). Note thatRΓ(U,E) = RΓ(An

V , Ri∗(E|U )) as i is a
closed immersion (and hence i∗ is exact). Thus Ri∗E is associated to RΓ(U,E) viewed as
an object ofD(R[x1, . . . , xn]). We conclude asm-pseudo-coherence ofRi∗(E|U ) is equiv-
alent tom-pseudo-coherence ofRΓ(U,E) inD(R[x1, . . . , xn]) by Derived Categories of
Schemes, Lemma 10.2 which is equivalent to RΓ(U,E) is m-pseudo-coherent relative to
R = OS(V ) by definition. �

Lemma 59.8. Let i : X → Y morphism of schemes locally of finite type over a base
scheme S. Assume that i induces a homeomorphism of X with a closed subset of Y . Let
E be an object ofD(OX). ThenE ism-pseudo-coherent relative to S if and only ifRi∗E
is m-pseudo-coherent relative to S.

Proof. By Morphisms, Lemma 45.4 the morphism i is affine. Thus we may assume S ,
Y , and X are affine. Say S = Spec(R), Y = Spec(A), and X = Spec(B). The condition
means that A/rad(A) → B/rad(B) is surjective; here rad(A) and rad(B) denote the
Jacobson radical ofA andB. AsB is of finite type overA, we can find b1, . . . , bm ∈ rad(B)



3274 37. MORE ON MORPHISMS

which generate B as an A-algebra. Say bNj = 0 for all j. Consider the diagram of rings

B R[xi, yj ]/(yNj )oo R[xi, yj ]oo

A

OO

R[xi]oo

OO 77

which translates into a diagram

X

��

// T

��

// An+m
S

||
Y // An

S

of affine schemes. By Lemma 59.6 we see that E is m-pseudo-coherent relative to S if
and only if its pushforward to An+m

S is m-pseudo-coherent. By Derived Categories of
Schemes, Lemma 12.5 we see that this is true if and only if its pushforward to T is m-
pseudo-coherent. The same lemma shows that this holds if and only if the pushforward
to An

S is m-pseudo-coherent. Again by Lemma 59.6 this holds if and only if Ri∗E is
m-pseudo-coherent relative to S. �

Lemma 59.9. Let π : X → Y be a finite morphism of schemes locally of finite type
over a base scheme S. Let E be an object of DQCoh(OX). Then E is m-pseudo-coherent
relative to S if and only if Rπ∗E is m-pseudo-coherent relative to S.

Proof. Translation of the result of More on Algebra, Lemma 81.5 into the language
of schemes. Observe that Rπ∗ indeed maps DQCoh(OX) into DQCoh(OY ) by Derived
Categories of Schemes, Lemma 4.1. To do the translation use Lemma 59.6. �

Lemma 59.10. Let f : X → S be a morphism of schemes which is locally of finite
type. Let (E,E′, E′′) be a distinguished triangle of D(OX). Let m ∈ Z.

(1) If E is (m+ 1)-pseudo-coherent relative to S and E′ is m-pseudo-coherent rel-
ative to S then E′′ is m-pseudo-coherent relative to S.

(2) IfE,E′′ arem-pseudo-coherent relative to S , thenE′ ism-pseudo-coherent rel-
ative to S.

(3) If E′ is (m + 1)-pseudo-coherent relative to S and E′′ is m-pseudo-coherent
relative to S , then E is (m+ 1)-pseudo-coherent relative to S.

Moreover, if two out of three of E,E′, E′′ are pseudo-coherent relative to S , the so is the
third.

Proof. Immediate from Lemma 59.6 and Cohomology, Lemma 47.4. �

Lemma 59.11. Let X → S be a morphism of schemes which is locally of finite type.
Let F be anOX -module. Then

(1) F is m-pseudo-coherent relative to S for all m > 0,
(2) F is 0-pseudo-coherent relative to S if and only ifF is a finite typeOX -module,
(3) F is (−1)-pseudo-coherent relative to S if and only if F is quasi-coherent and

finitely presented relative to S.

Proof. Part (1) is immediate from the definition. To see part (3) we may work locally
onX (both properties are local). Thus we may assumeX and S are affine. Choose a closed
immersion i : X → An

S . Then we see that F is (−1)-pseudo-coherent relative to S if and
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only if i∗F is (−1)-pseudo-coherent, which is true if and only if i∗F is an OAn
S

-module
of finite presentation, see Cohomology, Lemma 47.9. A module of finite presentation is
quasi-coherent, see Modules, Lemma 11.2. By Morphisms, Lemma 4.1 we see that F is
quasi-coherent if and only if i∗F is quasi-coherent. Having said this part (3) follows. The
proof of (2) is similar but less involved. �

Lemma 59.12. Let X → S be a morphism of schemes which is locally of finite type.
Let m ∈ Z. Let E,K be objects of D(OX). If E ⊕K is m-pseudo-coherent relative to S
so are E and K.

Proof. Follows from Cohomology, Lemma 47.6 and the definitions. �

Lemma 59.13. Let X → S be a morphism of schemes which is locally of finite type.
Let m ∈ Z. Let F• be a (locally) bounded above complex of OX -modules such that F i is
(m− i)-pseudo-coherent relative to S for all i. ThenF• ism-pseudo-coherent relative to
S.

Proof. Follows from Cohomology, Lemma 47.7 and the definitions. �

Lemma 59.14. Let X → S be a morphism of schemes which is locally of finite type.
Let m ∈ Z. Let E be an object of D(OX). If E is (locally) bounded above and Hi(E) is
(m − i)-pseudo-coherent relative to S for all i, then E is m-pseudo-coherent relative to
S.

Proof. Follows from Cohomology, Lemma 47.8 and the definitions. �

Lemma 59.15. Let X → S be a morphism of schemes which is locally of finite type.
Let m ∈ Z. Let E be an object of D(OX) which is m-pseudo-coherent relative to S. Let
S′ → S be a morphism of schemes. SetX ′ = X×S S′ and denoteE′ the derived pullback
ofE toX ′. IfS′ andX are Tor independent overS , thenE′ ism-pseudo-coherent relative
to S′.

Proof. The problem is local on X and X ′ hence we may assume X , S , S′, and X ′

are affine. Choose a closed immersion i : X → An
S and denote i′ : X ′ → An

S′ the base
change to S′. Denote g : X ′ → X and g′ : An

S′ → An
S the projections, so E′ = Lg∗E.

Since X and S′ are tor-independent over S , the base change map (Cohomology, Remark
28.3) induces an isomorphism

Ri′∗(Lg∗E) = L(g′)∗Ri∗E

Namely, for a point x′ ∈ X ′ lying over x ∈ X the base change map on stalks at x′ is the
map

Ex ⊗L
OAn

S
,x
OAn

S′ ,x
′ −→ Ex ⊗L

OX,x
OX′,x′

coming from the closed immersions i and i′. Note that the source is quasi-isomorphic to a
localization of Ex ⊗L

OS,s
OS′,s′ which is isomorphic to the target asOX′,x′ is isomorphic

to (the same) localization of OX,x ⊗L
OS,s
OS′,s′ by assumption. We conclude the lemma

holds by an application of Cohomology, Lemma 47.3. �

Lemma 59.16. Let f : X → Y be a morphism of schemes locally of finite type over
a base S. Let m ∈ Z. Let E be an object of D(OY ). Assume

(1) OX is pseudo-coherent relative to Y 12, and
(2) E is m-pseudo-coherent relative to S.

12This means f is pseudo-coherent, see Definition 60.2.
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Then Lf∗E is m-pseudo-coherent relative to S.

Proof. The problem is local on X . Thus we may assume X , Y , and S are affine.
Arguing as in the proof of More on Algebra, Lemma 81.13 we can find a commutative
diagram

X
i
//

f

��

Ad
Y j

//

p
~~

An+d
S

||
Y // An

S

Observe that
Ri∗Lf

∗E = Ri∗Li
∗Lp∗E = Lp∗E ⊗L

OAn
Y

Ri∗OX
by Cohomology, Lemma 54.4. By assumption and the fact thatY is affine, we can represent
Ri∗OX = i∗OX by a complexes of finite free OAn

Y
-modules F•, with Fq = 0 for q > 0

(details omitted; use Derived Categories of Schemes, Lemma 10.2 and More on Algebra,
Lemma 81.7). By assumptionE is bounded above, sayHq(E) = 0 for q > a. RepresentE
by a complex E• ofOY -modules with Eq = 0 for q > a. Then the derived tensor product
above is represented by Tot(p∗E• ⊗OAn

Y

F•).

Since j is a closed immersion, the functor j∗ is exact and Rj∗ is computed by applying j∗
to any representating complex of sheaves. Thus we have to show that j∗Tot(p∗E• ⊗OAn

Y

F•) is m-pseudo-coherent as a complex of OAn+m
S

-modules. Note that Tot(p∗E• ⊗OAn
Y

F•) has a filtration by subcomplexes with successive quotients the complexes p∗E•⊗OAn
Y

Fq[−q]. Note that for q � 0 the complexes p∗E• ⊗OAn
Y

Fq[−q] have zero cohomology
in degrees ≤ m and hence are m-pseudo-coherent. Hence, applying Lemma 59.10 and
induction, it suffices to show that p∗E•⊗OAn

Y

Fq[−q] is pseudo-coherent relative to S for
all q. Note that Fq = 0 for q > 0. Since also Fq is finite free this reduces to proving that
p∗E• is m-pseudo-coherent relative to S which follows from Lemma 59.15 for instance.

�

Lemma 59.17. Let f : X → Y be a morphism of schemes locally of finite type over a
base S. Letm ∈ Z. LetE be an object ofD(OX). AssumeOY is pseudo-coherent relative
to S13. Then the following are equivalent

(1) E is m-pseudo-coherent relative to Y , and
(2) E is m-pseudo-coherent relative to S.

Proof. The question is local on X , hence we may assume X , Y , and S are affine.
Arguing as in the proof of More on Algebra, Lemma 81.13 we can find a commutative
diagram

X
i
//

f

��

Am
Y j

//

p
~~

An+m
S

||
Y // An

S

The assumption that OY is pseudo-coherent relative to S implies that OAm
Y

is pseudo-
coherent relative to Am

S (by flat base change; this can be seen by using for example Lemma
59.15). This in turn implies that j∗OAn

Y
is pseudo-coherent as an OAn+m

S
-module. Then

13This means Y → S is pseudo-coherent, see Definition 60.2.
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the equivalence of the lemma follows from Derived Categories of Schemes, Lemma 12.5.
�

Lemma 59.18. Let
X

��

i
// P

��
S

be a commutative diagram of schemes. Assume i is a closed immersion and P → S flat
and locally of finite presentation. Let E be an object of D(OX). Then the following are
equivalent

(1) E is m-pseudo-coherent relative to S ,
(2) Ri∗E is m-pseudo-coherent relative to S , and
(3) Ri∗E is m-pseudo-coherent on P .

Proof. The equivalence of (1) and (2) is Lemma 59.9. The equivalence of (2) and
(3) follows from Lemma 59.17 applied to id : P → P provided we can show that OP is
pseudo-coherent relative to S. This follows from More on Algebra, Lemma 82.4 and the
definitions. �

60. Pseudo-coherent morphisms

Avoid reading this section at all cost. If you need some of this material, first take a look at
the corresponding algebra sections, see More on Algebra, Sections 64, 81, and 82. For now
the only thing you need to know is that a ring mapA→ B is pseudo-coherent if and only
if B = A[x1, . . . , xn]/I and B as an A[x1, . . . , xn]-module has a resolution by finite free
A[x1, . . . , xn]-modules.

Lemma 60.1. Let f : X → S be a morphism of schemes. The following are equivalent
(1) there exist an affine open covering S =

⋃
Vj and for each j an affine open cover-

ing f−1(Vj) =
⋃
Uji such that OS(Vj) → OX(Uij) is a pseudo-coherent ring

map,
(2) for every pair of affine opens U ⊂ X , V ⊂ S such that f(U) ⊂ V the ring map
OS(V )→ OX(U) is pseudo-coherent, and

(3) f is locally of finite type andOX is pseudo-coherent relative to S.

Proof. To see the equivalence of (1) and (2) it suffices to check conditions (1)(a), (b),
(c) of Morphisms, Definition 14.1 for the property of being a pseudo-coherent ring map.
These properties follow (using localization is flat) from More on Algebra, Lemmas 81.12,
81.11, and 81.16.

If (1) holds, then f is locally of finite type as a pseudo-coherent ring map is of finite type by
definition. Moreover, (1) implies via Lemma 59.7 and the definitions that OX is pseudo-
coherent relative toS. Conversely, if (3) holds, then we see that for everyU and V as in (2)
the ringOX(U) is of finite type overOS(V ) andOX(U) is as a module pseudo-coherent
relative to OS(V ), see Lemmas 59.6 and 59.7. This is the definition of a pseudo-coherent
ring map, hence (2) and (1) hold. �

Definition 60.2. A morphism of schemes f : X → S is called pseudo-coherent if
the equivalent conditions of Lemma 60.1 are satisfied. In this case we also say that X is
pseudo-coherent over S.
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Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent in gen-
eral.

Lemma 60.3. A flat base change of a pseudo-coherent morphism is pseudo-coherent.

Proof. This translates into the following algebra result: Let A → B be a pseudo-
coherent ring map. Let A → A′ be flat. Then A′ → B ⊗A A′ is pseudo-coherent. This
follows from the more general More on Algebra, Lemma 81.12. �

Lemma 60.4. A composition of pseudo-coherent morphisms of schemes is pseudo-
coherent.

Proof. This translates into the following algebra result: If A → B → C are com-
posable pseudo-coherent ring maps then A → C is pseudo-coherent. This follows from
either More on Algebra, Lemma 81.13 or More on Algebra, Lemma 81.15. �

Lemma 60.5. A pseudo-coherent morphism is locally of finite presentation.

Proof. Immediate from the definitions. �

Lemma 60.6. A flat morphism which is locally of finite presentation is pseudo-coherent.

Proof. This follows from the fact that a flat ring map of finite presentation is pseudo-
coherent (and even perfect), see More on Algebra, Lemma 82.4. �

Lemma 60.7. Let f : X → Y be a morphism of schemes pseudo-coherent over a base
scheme S. Then f is pseudo-coherent.

Proof. This translates into the following algebra result: IfR→ A→ B are compos-
able ring maps and R → A, R → B pseudo-coherent, then R → B is pseudo-coherent.
This follows from More on Algebra, Lemma 81.15. �

Lemma 60.8. Let f : X → S be a finite morphism of schemes. Then f is pseudo-
coherent if and only if f∗OX is pseudo-coherent as anOS-module.

Proof. Translated into algebra this lemma says the following: If R → A is a finite
ring map, then R→ A is pseudo-coherent as a ring map (which means by definition that
A as an A-module is pseudo-coherent relative to R) if and only if A is pseudo-coherent as
an R-module. This follows from the more general More on Algebra, Lemma 81.5. �

Lemma 60.9. Let f : X → S be a morphism of schemes. If S is locally Noetherian,
then f is pseudo-coherent if and only if f is locally of finite type.

Proof. This translates into the following algebra result: If R → A is a finite type
ring map with R Noetherian, then R→ A is pseudo-coherent if and only if R→ A is of
finite type. To see this, note that a pseudo-coherent ring map is of finite type by definition.
Conversely, ifR→ A is of finite type, then we can writeA = R[x1, . . . , xn]/I and it fol-
lows from More on Algebra, Lemma 64.17 that A is pseudo-coherent as an R[x1, . . . , xn]-
module, i.e., R→ A is a pseudo-coherent ring map. �

Lemma 60.10. The property P(f) =“f is pseudo-coherent” is fpqc local on the base.

Proof. We will use the criterion of Descent, Lemma 22.4 to prove this. By Def-
inition 60.2 being pseudo-coherent is Zariski local on the base. By Lemma 60.3 being
pseudo-coherent is preserved under flat base change. The final hypothesis (3) of Descent,
Lemma 22.4 translates into the following algebra statement: Let A → B be a faithfully
flat ring map. Let C = A[x1, . . . , xn]/I be an A-algebra. If C ⊗A B is pseudo-coherent
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as an B[x1, . . . , xn]-module, then C is pseudo-coherent as a A[x1, . . . , xn]-module. This
is More on Algebra, Lemma 64.15. �

Lemma 60.11. Let A → B be a flat ring map of finite presentation. Let I ⊂ B
be an ideal. Then A → B/I is pseudo-coherent if and only if I is pseudo-coherent as a
B-module.

Proof. Choose a presentationB = A[x1, . . . , xn]/J . Note thatB is pseudo-coherent
as an A[x1, . . . , xn]-module because A → B is a pseudo-coherent ring map by Lemma
60.6. Note that A → B/I is pseudo-coherent if and only if B/I is pseudo-coherent as
an A[x1, . . . , xn]-module. By More on Algebra, Lemma 64.11 we see this is equivalent to
the condition thatB/I is pseudo-coherent as anB-module. This proves the lemma as the
short exact sequence 0 → I → B → B/I → 0 shows that I is pseudo-coherent if and
only if B/I is (see More on Algebra, Lemma 64.6). �

The following lemma will be obsoleted by the stronger Lemma 60.13.

Lemma 60.12. The property P(f) =“f is pseudo-coherent” is syntomic local on the
source.

Proof. We will use the criterion of Descent, Lemma 26.4 to prove this. It follows
from Lemmas 60.6 and 60.4 that being pseudo-coherent is preserved under precomposing
with flat morphisms locally of finite presentation, in particular under precomposing with
syntomic morphisms (see Morphisms, Lemmas 30.7 and 30.6). It is clear from Definition
60.2 that being pseudo-coherent is Zariski local on the source and target. Hence, according
to the aforementioned Descent, Lemma 26.4 it suffices to prove the following: Suppose
X ′ → X → Y are morphisms of affine schemes with X ′ → X syntomic and X ′ → Y
pseudo-coherent. ThenX → Y is pseudo-coherent. To see this, note that in any caseX →
Y is of finite presentation by Descent, Lemma 14.1. Choose a closed immersionX → An

Y .
By Algebra, Lemma 136.18 we can find an affine open covering X ′ =

⋃
i=1,...,nX

′
i and

syntomic morphisms Wi → An
Y lifting the morphisms X ′

i → X , i.e., such that there are
fibre product diagrams

X ′
i

��

// Wi

��
X // An

Y

After replacing X ′ by
∐
X ′
i and setting W =

∐
Wi we obtain a fibre product diagram

X ′

��

// W

h

��
X // An

Y

with W → An
Y flat and of finite presentation and X ′ → Y still pseudo-coherent. Since

W → An
Y is open (see Morphisms, Lemma 25.10) and X ′ → X is surjective we can find

f ∈ Γ(An
Y ,O) such that X ⊂ D(f) ⊂ Im(h). Write Y = Spec(R), X = Spec(A),

X ′ = Spec(A′) and W = Spec(B), A = R[x1, . . . , xn]/I and A′ = B/IB. Then
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R→ A′ is pseudo-coherent. Picture

A′ = B/IB Boo

A = R[x1, . . . , xn]/I

OO

R[x1, . . . , xn]oo

OO

By Lemma 60.11 we see that IB is pseudo-coherent as aB-module. The ring mapR[x1, . . . , xn]f →
Bf is faithfully flat by our choice of f above. This implies that If ⊂ R[x1, . . . , xn]f is
pseudo-coherent, see More on Algebra, Lemma 64.15. Applying Lemma 60.11 one more
time we see that R→ A is pseudo-coherent. �

Lemma 60.13. The propertyP(f) =“f is pseudo-coherent” is fppf local on the source.

Proof. Let f : X → S be a morphism of schemes. Let {gi : Xi → X} be an fppf
covering such that each composition f ◦ gi is pseudo-coherent. According to Lemma 48.2
there exist

(1) a Zariski open covering X =
⋃
Uj ,

(2) surjective finite locally free morphisms Wj → Uj ,
(3) Zariski open coverings Wj =

⋃
kWj,k ,

(4) surjective finite locally free morphisms Tj,k →Wj,k

such that the fppf covering {hj,k : Tj,k → X} refines the given covering {Xi → X}.
Denote ψj,k : Tj,k → Xα(j,k) the morphisms that witness the fact that {Tj,k → X}
refines the given covering {Xi → X}. Note that Tj,k → X is a flat, locally finitely
presented morphism, so both Xi and Tj,k are pseudo-coherent over X by Lemma 60.6.
Hence ψj,k : Tj,k → Xi is pseudo-coherent, see Lemma 60.7. Hence Tj,k → S is pseudo
coherent as the composition of ψj,k and f ◦ gα(j,k), see Lemma 60.4. Thus we see we have
reduced the lemma to the case of a Zariski open covering (which is OK) and the case of a
covering given by a single surjective finite locally free morphism which we deal with in
the following paragraph.

Assume that X ′ → X → S is a sequence of morphisms of schemes with X ′ → X surjec-
tive finite locally free and X ′ → Y pseudo-coherent. Our goal is to show that X → S is
pseudo-coherent. Note that by Descent, Lemma 14.3 the morphism X → S is locally of
finite presentation. It is clear that the problem reduces to the case that X ′, X and S are
affine and X ′ → X is free of some rank r > 0. The corresponding algebra problem is the
following: Suppose R → A → A′ are ring maps such that R → A′ is pseudo-coherent,
R → A is of finite presentation, and A′ ∼= A⊕r as an A-module. Goal: Show R → A
is pseudo-coherent. The assumption that R → A′ is pseudo-coherent means that A′ as
an A′-module is pseudo-coherent relative to R. By More on Algebra, Lemma 81.5 this
implies that A′ as an A-module is pseudo-coherent relative to R. Since A′ ∼= A⊕r as an
A-module we see that A as an A-module is pseudo-coherent relative to R, see More on
Algebra, Lemma 81.8. This by definition means that R → A is pseudo-coherent and we
win. �

61. Perfect morphisms

In order to understand the material in this section you have to understand the material of
the section on pseudo-coherent morphisms just a little bit. For now the only thing you
need to know is that a ring map A→ B is perfect if and only if it is pseudo-coherent and
B has finite tor dimension as an A-module.
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Lemma 61.1. Let f : X → S be a morphism of schemes which is locally of finite
type. The following are equivalent

(1) there exist an affine open covering S =
⋃
Vj and for each j an affine open cov-

ering f−1(Vj) =
⋃
Uji such that OS(Vj) → OX(Uij) is a perfect ring map,

and
(2) for every pair of affine opens U ⊂ X , V ⊂ S such that f(U) ⊂ V the ring map
OS(V )→ OX(U) is perfect.

Proof. Assume (1) and letU, V be as in (2). It follows from Lemma 60.1 thatOS(V )→
OX(U) is pseudo-coherent. Hence it suffices to prove that the property of a ring map being
”of finite tor dimension” satisfies conditions (1)(a), (b), (c) of Morphisms, Definition 14.1.
These properties follow from More on Algebra, Lemmas 66.11, 66.14, and 66.16. Some
details omitted. �

Definition 61.2. A morphism of schemes f : X → S is called perfect if the equiva-
lent conditions of Lemma 61.1 are satisfied. In this case we also say that X is perfect over
S.

Note that a perfect morphism is in particular pseudo-coherent, hence locally of finite pre-
sentation. Beware that a base change of a perfect morphism is not perfect in general.

Lemma 61.3. A flat base change of a perfect morphism is perfect.

Proof. This translates into the following algebra result: LetA→ B be a perfect ring
map. LetA→ A′ be flat. ThenA′ → B⊗AA′ is perfect. This result for pseudo-coherent
ring maps we have seen in Lemma 60.3. The corresponding fact for finite tor dimension
follows from More on Algebra, Lemma 66.14. �

Lemma 61.4. A composition of perfect morphisms of schemes is perfect.

Proof. This translates into the following algebra result: If A → B → C are com-
posable perfect ring maps thenA→ C is perfect. We have seen this is the case for pseudo-
coherent in Lemma 60.4 and its proof. By assumption there exist integers n, m such that
B has tor dimension ≤ n over A and C has tor dimension ≤ m over B. Then for any
A-module M we have

M ⊗L
A C = (M ⊗L

A B)⊗L
B C

and the spectral sequence of More on Algebra, Example 62.4 shows that TorAp (M,C) = 0
for p > n+m as desired. �

Lemma 61.5. Let f : X → S be a morphism of schemes. The following are equivalent
(1) f is flat and perfect, and
(2) f is flat and locally of finite presentation.

Proof. The implication (2) ⇒ (1) is More on Algebra, Lemma 82.4. The converse
follows from the fact that a pseudo-coherent morphism is locally of finite presentation,
see Lemma 60.5. �

Lemma 61.6. Let f : X → S be a morphism of schemes. Assume S is regular and f
is locally of finite type. Then f is perfect.

Proof. See More on Algebra, Lemma 82.5. �

Lemma 61.7. A regular immersion of schemes is perfect. A Koszul-regular immersion
of schemes is perfect.
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Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors, Lemma
21.2, it suffices to prove the second statement. This translates into the following alge-
braic statement: Suppose that I ⊂ A is an ideal generated by a Koszul-regular sequence
f1, . . . , fr ofA. ThenA→ A/I is a perfect ring map. SinceA→ A/I is surjective this is
a presentation of A/I by a polynomial algebra over A. Hence it suffices to see that A/I is
pseudo-coherent as an A-module and has finite tor dimension. By definition of a Koszul
sequence the Koszul complex K(A, f1, . . . , fr) is a finite free resolution of A/I . Hence
A/I is a perfect complex of A-modules and we win. �

Lemma 61.8. Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume Y → S smooth andX → S
perfect. Then f : X → Y is perfect.

Proof. We can factor f as the composition
X −→ X ×S Y −→ Y

where the first morphism is the map i = (1, f) and the second morphism is the projection.
Since Y → S is flat, see Morphisms, Lemma 34.9, we see that X ×S Y → Y is perfect by
Lemma 61.3. As Y → S is smooth, also X ×S Y → X is smooth, see Morphisms, Lemma
34.5. Hence i is a section of a smooth morphism, therefore i is a regular immersion, see
Divisors, Lemma 22.8. This implies that i is perfect, see Lemma 61.7. We conclude that f
is perfect because the composition of perfect morphisms is perfect, see Lemma 61.4. �

Remark 61.9. It is not true that a morphism between schemes X,Y perfect over a
base S is perfect. An example is S = Spec(k), X = Spec(k), Y = Spec(k[x]/(x2) and
X → Y the unique S-morphism.

Lemma 61.10. The property P(f) =“f is perfect” is fpqc local on the base.

Proof. We will use the criterion of Descent, Lemma 22.4 to prove this. By Definition
61.2 being perfect is Zariski local on the base. By Lemma 61.3 being perfect is preserved
under flat base change. The final hypothesis (3) of Descent, Lemma 22.4 translates into
the following algebra statement: Let A → B be a faithfully flat ring map. Let C =
A[x1, . . . , xn]/I be an A-algebra. If C ⊗A B is perfect as an B[x1, . . . , xn]-module, then
C is perfect as a A[x1, . . . , xn]-module. This is More on Algebra, Lemma 74.13. �

Lemma 61.11. Let f : X → S be a pseudo-coherent morphism of schemes. The
following are equivalent

(1) f is perfect,
(2) OX locally has finite tor dimension as a sheaf of f−1OS-modules, and
(3) for all x ∈ X the ringOX,x has finite tor dimension as anOS,f(x)-module.

Proof. The problem is local onX and S. Hence we may assume thatX = Spec(B),
S = Spec(A) and f corresponds to a pseudo-coherent ring map A→ B.
If (1) holds, then B has finite tor dimension d as A-module. Then Bq has tor dimension d
as anAp-module for all primes q ⊂ B with p = A∩q, see More on Algebra, Lemma 66.15.
ThenOX has tor dimension d as a sheaf of f−1OS-modules by Cohomology, Lemma 48.5.
Thus (1) implies (2).
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By Cohomology, Lemma 48.5 (2) implies (3).

Assume (3). We cannot use More on Algebra, Lemma 66.15 to conclude as we are not
given that the tor dimension of Bq over Ap is bounded independent of q. Choose a pre-
sentation A[x1, . . . , xn] → B. Then B is pseudo-coherent as a A[x1, . . . , xn]-module.
Let q ⊂ A[x1, . . . , xn] be a prime ideal lying over p ⊂ A. Then either Bq is zero or
by assumption it has finite tor dimension as an Ap-module. Since the fibres of A →
A[x1, . . . , xn] have finite global dimension, we can apply More on Algebra, Lemma 77.5
to Ap → A[x1, . . . , xn]q to see that Bq is a perfect A[x1, . . . , xn]q-module. Hence B is a
perfectA[x1, . . . , xn]-module by More on Algebra, Lemma 77.3. ThusA→ B is a perfect
ring map by definition. �

Lemma 61.12. Let i : Z → X be a perfect closed immersion of schemes. Then i∗OZ
is a perfectOX -module, i.e., it is a perfect object of D(OX).

Proof. This is more or less immediate from the definition. Namely, letU = Spec(A)
be an affine open of X . Then i−1(U) = Spec(A/I) for some ideal I ⊂ A and A/I has a
finite resolution by finite projective A-modules by More on Algebra, Lemma 82.2. Hence
i∗OZ |U can be represented by a finite length complex of finite locally free OU -modules.
This is what we had to show, see Cohomology, Section 49. �

Lemma 61.13. Let S be a Noetherian scheme. Let f : X → S be a perfect proper
morphism of schemes. Let E ∈ D(OX) be perfect. Then Rf∗E is a perfect object of
D(OS).

Proof. We claim that Derived Categories of Schemes, Lemma 27.1 applies. Condi-
tions (1) and (2) are immediate. Condition (3) is local on X . Thus we may assume X and
S affine and E represented by a strictly perfect complex of OX -modules. Thus it suffices
to show thatOX has finite tor dimension as a sheaf of f−1OS-modules. This is equivalent
to being perfect by Lemma 61.11. �

Lemma 61.14. The property P(f) =“f is perfect” is fppf local on the source.

Proof. Let {gi : Xi → X}i∈I be an fppf covering of schemes and let f : X → S be
a morphism such that each f ◦gi is perfect. By Lemma 60.13 we conclude that f is pseudo-
coherent. Hence by Lemma 61.11 it suffices to check that OX,x is an OS,f(x)-module of
finite tor dimension for all x ∈ X . Pick i ∈ I and xi ∈ Xi mapping to x. Then we see
that OXi,xi has finite tor dimension over OS,f(x) and that OX,x → OXi,xi is faithfully
flat. The desired conclusion follows from More on Algebra, Lemma 66.17. �

Lemma 61.15. Let i : Z → Y and j : Y → X be immersions of schemes. Assume
(1) X is locally Noetherian,
(2) j ◦ i is a regular immersion, and
(3) i is perfect.

Then i and j are regular immersions.

Proof. SinceX (and hence Y ) is locally Noetherian all 4 types of regular immersions
agree, and moreover we may check whether a morphism is a regular immersion on the level
of local rings, see Divisors, Lemma 20.8. Thus the result follows from Divided Power
Algebra, Lemma 7.5. �
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62. Local complete intersection morphisms

In Divisors, Section 21 we have defined 4 different types of regular immersions: regular,
Koszul-regular, H1-regular, and quasi-regular. In this section we consider morphisms f :
X → S which locally on X factor as

X
i

//

��

An
S

~~
S

where i is a ∗-regular immersion for ∗ ∈ {∅,Koszul,H1, quasi}. However, we don’t
know how to prove that this condition is independent of the factorization if ∗ = ∅, i.e.,
when we require i to be a regular immersion. On the other hand, we want a local complete
intersection morphism to be perfect, which is only going to be true if ∗ = Koszul or
∗ = ∅. Hence we will define a local complete intersection morphism or Koszul morphism
to be a morphism of schemes f : X → S that locally onX has a factorization as above with
i a Koszul-regular immersion. To see that this works we first prove this is independent of
the chosen factorizations.

Lemma 62.1. Let S be a scheme. Let U , P , P ′ be schemes over S. Let u ∈ U . Let
i : U → P , i′ : U → P ′ be immersions over S. Assume P and P ′ smooth over S. Then
the following are equivalent

(1) i is a Koszul-regular immersion in a neighbourhood of x, and
(2) i′ is a Koszul-regular immersion in a neighbourhood of x.

Proof. Assume i is a Koszul-regular immersion in a neighbourhood of x. Consider
the morphism j = (i, i′) : U → P ×S P ′ = P ′′. Since P ′′ = P ×S P ′ → P is smooth,
it follows from Divisors, Lemma 22.9 that j is a Koszul-regular immersion, whereupon it
follows from Divisors, Lemma 22.12 that i′ is a Koszul-regular immersion. �

Before we state the definition, let us make the following simple remark. Let f : X → S be a
morphism of schemes which is locally of finite type. Let x ∈ X . Then there exist an open
neighbourhood U ⊂ X and a factorization of f |U as the composition of an immersion
i : U → An

S followed by the projection An
S → S which is smooth. Picture

X

��

Uoo

��

i
// An

S = P

π
{{

S

In fact you can do this with any affine open neighbourhood U of x in X , see Morphisms,
Lemma 39.2.

Definition 62.2. Let f : X → S be a morphism of schemes.
(1) Let x ∈ X . We say that f is Koszul at x if f is of finite type at x and there exists

an open neighbourhood and a factorization of f |U as π ◦ i where i : U → P is a
Koszul-regular immersion and π : P → S is smooth.

(2) We say f is a Koszul morphism, or that f is a local complete intersection mor-
phism if f is Koszul at every point.

We have seen above that the choice of the factorization f |U = π◦ i is irrelevant, i.e., given
a factorization of f |U as an immersion i followed by a smooth morphism π, whether or
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not i is Koszul regular in a neighbourhood of x is an intrinsic property of f at x. Let us
record this here explicitly as a lemma so that we can refer to it

Lemma 62.3. Let f : X → S be a local complete intersection morphism. Let P be a
scheme smooth over S. Let U ⊂ X be an open subscheme and i : U → P an immersion
of schemes over S. Then i is a Koszul-regular immersion.

Proof. This is the defining property of a local complete intersection morphism. See
discussion above. �

It seems like a good idea to collect here some properties in common with all Koszul mor-
phisms.

Lemma 62.4. Let f : X → S be a local complete intersection morphism. Then
(1) f is locally of finite presentation,
(2) f is pseudo-coherent, and
(3) f is perfect.

Proof. Since a perfect morphism is pseudo-coherent (because a perfect ring map is
pseudo-coherent) and a pseudo-coherent morphism is locally of finite presentation (be-
cause a pseudo-coherent ring map is of finite presentation) it suffices to prove the last
statement. Being perfect is a local property, hence we may assume that f factors as π ◦ i
where π is smooth and i is a Koszul-regular immersion. A Koszul-regular immersion is
perfect, see Lemma 61.7. A smooth morphism is perfect as it is flat and locally of finite
presentation, see Lemma 61.5. Finally a composition of perfect morphisms is perfect, see
Lemma 61.4. �

Lemma 62.5. Let f : X = Spec(B) → S = Spec(A) be a morphism of affine
schemes. Then f is a local complete intersection morphism if and only ifA→ B is a local
complete intersection homomorphism, see More on Algebra, Definition 33.2.

Proof. Follows immediately from the definitions. �

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 62.6. A flat base change of a local complete intersection morphism is a local
complete intersection morphism.

Proof. Omitted. Hint: This is true because a base change of a smooth morphism is
smooth and a flat base change of a Koszul-regular immersion is a Koszul-regular immer-
sion, see Divisors, Lemma 21.3. �

Lemma 62.7. A composition of local complete intersection morphisms is a local com-
plete intersection morphism.

Proof. Let g : Y → S and f : X → Y be local complete intersection morphisms. Let
x ∈ X and set y = f(x). Choose an open neighbourhood V ⊂ Y of y and a factorization
g|V = π ◦ i for some Koszul-regular immersion i : V → P and smooth morphism
π : P → S. Next choose an open neighbourhood U of x ∈ X and a factorization
f |U = π′ ◦ i′ for some Koszul-regular immersion i′ : U → P ′ and smooth morphism
π′ : P ′ → Y . In fact, we may assume that P ′ = An

V , see discussion preceding and
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following Definition 62.2. Picture:

X

��

Uoo
i′
// P ′ = An

V

��
Y

��

Voo
i

// P

��
S Soo

Set P ′′ = An
P . Then U → P ′ → P ′′ is a Koszul-regular immersion as a composition

of Koszul-regular immersions, namely i′ and the flat base change of i via P ′′ → P , see
Divisors, Lemma 21.3 and Divisors, Lemma 21.7. Also P ′′ → P → S is smooth as a
composition of smooth morphisms, see Morphisms, Lemma 34.4. Hence we conclude that
X → S is Koszul at x as desired. �

Lemma 62.8. Let f : X → S be a morphism of schemes. The following are equivalent
(1) f is flat and a local complete intersection morphism, and
(2) f is syntomic.

Proof. Working affine locally this is More on Algebra, Lemma 33.5. We also give a
more geometric proof.

Assume (2). By Morphisms, Lemma 30.10 for every point x of X there exist affine open
neighbourhoods U of x and V of f(x) such that f |U : U → V is standard syntomic. This
means thatU = Spec(R[x1, . . . , xn]/(f1, . . . , fc))→ V = Spec(R) whereR[x1, . . . , xn]/(f1, . . . , fc)
is a relative global complete intersection over R. By Algebra, Lemma 136.12 the sequence
f1, . . . , fc is a regular sequence in each local ring R[x1, . . . , xn]q for every prime q ⊃
(f1, . . . , fc). Consider the Koszul complexK• = K•(R[x1, . . . , xn], f1, . . . , fc) with ho-
mology groups Hi = Hi(K•). By More on Algebra, Lemma 30.2 we see that (Hi)q = 0,
i > 0 for every q as above. On the other hand, by More on Algebra, Lemma 28.6 we see
thatHi is annihilated by (f1, . . . , fc). Hence we see thatHi = 0, i > 0 and f1, . . . , fc is a
Koszul-regular sequence. This proves that U → V factors as a Koszul-regular immersion
U → An

V followed by a smooth morphism as desired.

Assume (1). Then f is a flat and locally of finite presentation (Lemma 62.4). Hence, ac-
cording to Morphisms, Lemma 30.10 it suffices to show that the local rings OXs,x are
local complete intersection rings. Choose, locally onX , a factorization f = π ◦ i for some
Koszul-regular immersion i : X → P and smooth morphism π : P → S. Note that
X → P is a relative quasi-regular immersion over S , see Divisors, Definition 22.2. Hence
according to Divisors, Lemma 22.4 we see that X → P is a regular immersion and the
same remains true after any base change. Thus each fibre is a regular immersion, whence
all the local rings of all the fibres of X are local complete intersections. �

Lemma 62.9. A regular immersion of schemes is a local complete intersection mor-
phism. A Koszul-regular immersion of schemes is a local complete intersection morphism.

Proof. Since a regular immersion is a Koszul-regular immersion, see Divisors, Lemma
21.2, it suffices to prove the second statement. The second statement follows immediately
from the definition. �
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Lemma 62.10. Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume Y → S smooth andX → S
is a local complete intersection morphism. Then f : X → Y is a local complete intersec-
tion morphism.

Proof. Immediate from the definitions. �

Lemma 62.11. Let f : X → Y be a morphism of schemes. If f is locally of finite type
and X and Y are regular, then f is a local complete intersection morphism.

Proof. We may assume there is a factorizationX → An
Y → Y where the first arrow

is an immersion. As Y is regular also An
Y is regular by Algebra, Lemma 163.10. Hence

X → An
Y is a regular immersion by Divisors, Lemma 21.12. �

The following lemma is of a different nature.

Lemma 62.12. Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume
(1) S is locally Noetherian,
(2) Y → S is locally of finite type,
(3) f : X → Y is perfect,
(4) X → S is a local complete intersection morphism.

ThenX → Y is a local complete intersection morphism and Y → S is Koszul at f(x) for
all x ∈ X .

Proof. In the course of this proof all schemes will be locally Noetherian and all
rings will be Noetherian. We will use without further mention that regular sequences and
Koszul regular sequences agree in this setting, see More on Algebra, Lemma 30.7. More-
over, whether an ideal (resp. ideal sheaf) is regular may be checked on local rings (resp.
stalks), see Algebra, Lemma 68.6 (resp. Divisors, Lemma 20.8)

The question is local. Hence we may assume S , X , Y are affine. In this situation we may
choose a commutative diagram

An+m
S

��

Xoo

��
An
S

��

Yoo

||
S
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whose horizontal arrows are closed immersions. Let x ∈ X be a point and consider the
corresponding commutative diagram of local rings

J // OAn+m
S

,x
// OX,x

I //

OO

OAn
S
,f(x) //

OO

OY,f(x)

OO

where J and I are the kernels of the horizontal arrows. Since X → S is a local complete
intersection morphism, the ideal J is generated by a regular sequence. Since X → Y is
perfect the ringOX,x has finite tor dimension overOY,f(x). Hence we may apply Divided
Power Algebra, Lemma 7.6 to conclude that I and J/I are generated by regular sequences.
By our initial remarks, this finishes the proof. �

Lemma 62.13. Let
X

f
//

��

Y

��
S

be a commutative diagram of morphisms of schemes. Assume S is locally Noetherian,
Y → S is locally of finite type, Y is regular, and X → S is a local complete intersection
morphism. Then f : X → Y is a local complete intersection morphism and Y → S is
Koszul at f(x) for all x ∈ X .

Proof. This is a special case of Lemma 62.12 in view of Lemma 61.6 (and Morphisms,
Lemma 15.8). �

Lemma 62.14. Let i : X → Y be an immersion. If
(1) i is perfect,
(2) Y is locally Noetherian, and
(3) the conormal sheaf CX/Y is finite locally free,

then i is a regular immersion.

Proof. Translated into algebra, this is Divided Power Algebra, Proposition 11.3. �

Lemma 62.15. Let f : X → Y be a local complete intersection homomorphism.
Then the naive cotangent complexNLX/Y is a perfect object ofD(OX) of tor-amplitude
in [−1, 0].

Proof. Translated into algebra this is More on Algebra, Lemma 85.4. To do the trans-
lation use Lemmas 62.5 and 13.2 as well as Derived Categories of Schemes, Lemmas 3.5, 10.4
and 10.7. �

Lemma 62.16. Let f : X → Y be a perfect morphism of locally Noetherian schemes.
The following are equivalent

(1) f is a local complete intersection morphism,
(2) NLX/Y has tor-amplitude in [−1, 0], and
(3) NLX/Y is perfect with tor-amplitude in [−1, 0].

Proof. Translated into algebra this is Divided Power Algebra, Lemma 11.4. To do the
translation use Lemmas 62.5 and 13.2 as well as Derived Categories of Schemes, Lemmas
3.5, 10.4 and 10.7. �
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Lemma 62.17. Let f : X → Y be a flat morphism of finite presentation. The follow-
ing are equivalent

(1) f is a local complete intersection morphism,
(2) f is syntomic,
(3) NLX/Y has tor-amplitude in [−1, 0], and
(4) NLX/Y is perfect with tor-amplitude in [−1, 0].

Proof. Translated into algebra this is Divided Power Algebra, Lemma 11.5. To do the
translation use Lemmas 62.5 and 13.2 as well as Derived Categories of Schemes, Lemmas
3.5, 10.4 and 10.7. �

The following lemma gives a characterization of smooth morphisms as flat morphisms
whose diagonal is perfect.

Lemma 62.18. Let f : X → Y be a finite type morphism of locally Noetherian
schemes. Denote ∆ : X → X×Y X the diagonal morphism. The following are equivalent

(1) f is smooth,
(2) f is flat and ∆ : X → X ×Y X is a regular immersion,
(3) f is flat and ∆ : X → X ×Y X is a local complete intersection morphism,
(4) f is flat and ∆ : X → X ×Y X is perfect.

Proof. Assume (1). Then f is flat by Morphisms, Lemma 34.9. The projectionsX×Y
X → X are smooth by Morphisms, Lemma 34.5. Hence the diagonal is a section to a
smooth morphism and hence a regular immersion, see Divisors, Lemma 22.8. Hence (1)⇒
(2). The implication (2)⇒ (3) is Lemma 62.9. The implication (3)⇒ (4) is Lemma 62.4.
The interesting implication (4)⇒ (1) follows immediately from Divided Power Algebra,
Lemma 10.2. �

Lemma 62.19. The property P(f) =“f is a local complete intersection morphism” is
fpqc local on the base.

Proof. Let f : X → S be a morphism of schemes. Let {Si → S} be an fpqc covering
of S. Assume that each base change fi : Xi → Si of f is a local complete intersection
morphism. Note that this implies in particular that f is locally of finite type, see Lemma
62.4 and Descent, Lemma 23.10. Let x ∈ X . Choose an open neighbourhood U of x and
an immersion j : U → An

S over S (see discussion preceding Definition 62.2). We have
to show that j is a Koszul-regular immersion. Since fi is a local complete intersection
morphism, we see that the base change ji : U×S Si → An

Si
is a Koszul-regular immersion,

see Lemma 62.3. Because {An
Si
→ An

S} is a fpqc covering we see from Descent, Lemma
23.32 that j is a Koszul-regular immersion as desired. �

Lemma 62.20. The property P(f) =“f is a local complete intersection morphism” is
syntomic local on the source.

Proof. We will use the criterion of Descent, Lemma 26.4 to prove this. It follows
from Lemmas 62.8 and 62.7 that being a local complete intersection morphism is preserved
under precomposing with syntomic morphisms. It is clear from Definition 62.2 that being
a local complete intersection morphism is Zariski local on the source and target. Hence,
according to the aforementioned Descent, Lemma 26.4 it suffices to prove the following:
Suppose X ′ → X → Y are morphisms of affine schemes with X ′ → X syntomic and
X ′ → Y a local complete intersection morphism. Then X → Y is a local complete
intersection morphism. To see this, note that in any case X → Y is of finite presentation
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by Descent, Lemma 14.1. Choose a closed immersion X → An
Y . By Algebra, Lemma

136.18 we can find an affine open covering X ′ =
⋃
i=1,...,nX

′
i and syntomic morphisms

Wi → An
Y lifting the morphismsX ′

i → X , i.e., such that there are fibre product diagrams

X ′
i

��

// Wi

��
X // An

Y

After replacing X ′ by
∐
X ′
i and setting W =

∐
Wi we obtain a fibre product diagram of

affine schemes
X ′

��

// W

h

��
X // An

Y

with h : W → An
Y syntomic and X ′ → Y still a local complete intersection morphism.

Since W → An
Y is open (see Morphisms, Lemma 25.10) and X ′ → X is surjective we see

that X is contained in the image of W → An
Y . Choose a closed immersion W → An+m

Y

over An
Y . Now the diagram looks like

X ′

��

// W

h

��

// An+m
Y

||
X // An

Y

Because h is syntomic and hence a local complete intersection morphism (see above) the
morphism W → An+m

Y is a Koszul-regular immersion. Because X ′ → Y is a local com-
plete intersection morphism the morphism X ′ → An+m

Y is a Koszul-regular immersion.
We conclude from Divisors, Lemma 21.8 that X ′ → W is a Koszul-regular immersion.
Hence, since being a Koszul-regular immersion is fpqc local on the target (see Descent,
Lemma 23.32) we conclude that X → An

Y is a Koszul-regular immersion which is what
we had to show. �

Lemma 62.21. Let S be a scheme. Let f : X → Y be a morphism of schemes over S.
Assume both X and Y are flat and locally of finite presentation over S. Then the set

{x ∈ X | f Koszul at x}.
is open in X and its formation commutes with arbitrary base change S′ → S.

Proof. The set is open by definition (see Definition 62.2). LetS′ → S be a morphism
of schemes. Set X ′ = S′ ×S X , Y ′ = S′ ×S Y , and denote f ′ : X ′ → Y ′ the base change
of f . Let x′ ∈ X ′ be a point such that f ′ is Koszul at x′. Denote s′ ∈ S′, x ∈ X ,
y′ ∈ Y ′ , y ∈ Y , s ∈ S the image of x′. Note that f is locally of finite presentation,
see Morphisms, Lemma 21.11. Hence we may choose an affine neighbourhood U ⊂ X
of x and an immersion i : U → An

Y . Denote U ′ = S′ ×S U and i′ : U ′ → An
Y ′

the base change of i. The assumption that f ′ is Koszul at x′ implies that i′ is a Koszul-
regular immersion in a neighbourhood of x′, see Lemma 62.3. The scheme X ′ is flat and
locally of finite presentation over S′ as a base change of X (see Morphisms, Lemmas 25.8
and 21.4). Hence i′ is a relative H1-regular immersion over S′ in a neighbourhood of x′

(see Divisors, Definition 22.2). Thus the base change i′s′ : U ′
s′ → An

Y ′
s′

is a H1-regular
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immersion in an open neighbourhood of x′, see Divisors, Lemma 22.1 and the discussion
following Divisors, Definition 22.2. Since s′ = Spec(κ(s′)) → Spec(κ(s)) = s is a
surjective flat universally open morphism (see Morphisms, Lemma 23.4) we conclude that
the base change is : Us → An

Ys
is an H1-regular immersion in a neighbourhood of x,

see Descent, Lemma 23.32. Finally, note that An
Y is flat and locally of finite presentation

over S , hence Divisors, Lemma 22.7 implies that i is a (Koszul-)regular immersion in a
neighbourhood of x as desired. �

Lemma 62.22. Let f : X → Y be a local complete intersection morphism of schemes.
Then f is unramified if and only if f is formally unramified and in this case the conormal
sheaf CX/Y is finite locally free on X .

Proof. The first assertion follows immediately from Lemma 6.8 and the fact that a
local complete intersection morphism is locally of finite type. To compute the conormal
sheaf of f we choose, locally on X , a factorization of f as f = p ◦ i where i : X → V is a
Koszul-regular immersion and V → Y is smooth. By Lemma 11.13 we see that CX/Y is a
locally direct summand of CX/V which is finite locally free as i is a Koszul-regular (hence
quasi-regular) immersion, see Divisors, Lemma 21.5. �

Lemma 62.23. Let Z → Y → X be formally unramified morphisms of schemes.
Assume that Z → Y is a local complete intersection morphism. The exact sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
of Lemma 7.12 is short exact.

Proof. The question is local on Z hence we may assume there exists a factorization
Z → An

Y → Y of the morphism Z → Y . Then we get a commutative diagram

Z
i′
// An

Y
//

��

An
X

��
Z

i // Y // X

As Z → Y is a local complete intersection morphism, we see that Z → An
Y is a Koszul-

regular immersion. Hence by Divisors, Lemma 21.6 the sequence

0→ (i′)∗CAn
Y
/An

X
→ CZ/An

X
→ CZ/An

Y
→ 0

is exact and locally split. Note that i∗CY/X = (i′)∗CAn
Y
/An

X
by Lemma 7.7 and note that

the diagram
(i′)∗CAn

Y
/An

X

// CZ/An
X

i∗CY/X

∼=

OO

// CZ/X

OO

is commutative. Hence the lower horizontal arrow is a locally split injection. This proves
the lemma. �

63. Exact sequences of differentials and conormal sheaves

In this section we collect some results on exact sequences of conormal sheaves and sheaves
of differentials. In some sense these are all realizations of the triangle of cotangent com-
plexes associated to a pair of composable morphisms of schemes.
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Let g : Z → Y and f : Y → X be morphisms of schemes.
(1) There is a canonical exact sequence

g∗ΩY/X → ΩZ/X → ΩZ/Y → 0,

see Morphisms, Lemma 32.9. If g : Z → Y is smooth or more generally formally
smooth, then this sequence is a short exact sequence, see Morphisms, Lemma
34.16 or see Lemma 11.11.

(2) If g is an immersion or more generally formally unramified, then there is a canon-
ical exact sequence

CZ/Y → g∗ΩY/X → ΩZ/X → 0,

see Morphisms, Lemma 32.15 or see Lemma 7.10. If f ◦ g : Z → X is smooth
or more generally formally smooth, then this sequence is a short exact sequence,
see Morphisms, Lemma 34.17 or see Lemma 11.12.

(3) If g and f ◦ g are immersions or more generally formally unramified, then there
is a canonical exact sequence

CZ/X → CZ/Y → g∗ΩY/X → 0,

see Morphisms, Lemma 32.18 or see Lemma 7.11. If f : Y → X is smooth or
more generally formally smooth, then this sequence is a short exact sequence,
see Morphisms, Lemma 34.18 or see Lemma 11.13.

(4) If g and f are immersions or more generally formally unramified, then there is
a canonical exact sequence

g∗CY/X → CZ/X → CZ/Y → 0.

see Morphisms, Lemma 31.5 or see Lemma 7.12. If g : Z → Y is a regular
immersion14 or more generally a local complete intersection morphism, then this
sequence is a short exact sequence, see Divisors, Lemma 21.6 or see Lemma 62.23.

64. Weakly étale morphisms

A ring homomorphism A→ B is weakly étale if both A→ B and B⊗A B → B are flat,
see More on Algebra, Definition 104.1. The analogous notion for morphisms of schemes
is the following.

Definition 64.1. A morphism of schemes X → Y is weakly étale or absolutely flat
if both X → Y and the diagonal morphism X → X ×Y X are flat.

An étale morphism is weakly étale and conversely it turns out that a weakly étale mor-
phism is indeed somewhat like an étale morphism. For example, ifX → Y is weakly étale,
then LX/Y = 0, as follows from Cotangent, Lemma 8.4. We will prove a very precise re-
sult relating weakly étale morphisms to étale morphisms later (see Pro-étale Cohomology,
Section 9). In this section we stick with the basics.

Lemma 64.2. Let f : X → Y be a morphism of schemes. The following are equiva-
lent

(1) X → Y is weakly étale, and
(2) for every x ∈ X the ring mapOY,f(x) → OX,x is weakly étale.

14It suffices for g to be a H1-regular immersion. Observe that an immersion which is a local complete
intersection morphism is Koszul regular.
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Proof. Observe that under both assumptions (1) and (2) the morphism f is flat. Thus
we may assume f is flat. Let x ∈ X with image y = f(x) in Y . There are canonical maps
of rings

OX,x ⊗OY,y
OX,x −→ OX×YX,∆X/Y (x) −→ OX,x

where the first map is a localization (hence flat) and the second map is a surjection (hence
an epimorphism of rings). Condition (1) means that for all x the second arrow is flat.
Condition (2) is that for all x the composition is flat. These conditions are equivalent by
Algebra, Lemma 39.4 and More on Algebra, Lemma 104.2. �

Lemma 64.3. LetX → Y be a morphism of schemes such thatX → X ×Y X is flat.
Let F be anOX -module. If F is flat over Y , then F is flat over X .

Proof. Let x ∈ X with image y = f(x) in Y . Since X → X ×Y X is flat, we see
that OX,x ⊗OY,y

OX,x → OX,x is flat. Hence the result follows from More on Algebra,
Lemma 104.2 and the definitions. �

Lemma 64.4. Let f : X → S be a morphism of schemes. The following are equiva-
lent

(1) The morphism f is weakly étale.
(2) For every affine opens U ⊂ X , V ⊂ S with f(U) ⊂ V the ring map OS(V )→
OX(U) is weakly étale.

(3) There exists an open covering S =
⋃
j∈J Vj and open coverings f−1(Vj) =⋃

i∈Ij Ui such that each of the morphisms Ui → Vj , j ∈ J, i ∈ Ij is weakly
étale.

(4) There exists an affine open covering S =
⋃
j∈J Vj and affine open coverings

f−1(Vj) =
⋃
i∈Ij Ui such that the ring map OS(Vj) → OX(Ui) is of weakly

étale, for all j ∈ J, i ∈ Ij .
Moreover, if f is weakly étale then for any open subschemesU ⊂ X , V ⊂ S with f(U) ⊂
V the restriction f |U : U → V is weakly-étale.

Proof. Suppose given open subschemes U ⊂ X , V ⊂ S with f(U) ⊂ V . Then
U×V U ⊂ X×YX is open (Schemes, Lemma 17.3) and the diagonal ∆U/V of f |U : U → V
is the restriction ∆X/Y |U : U → U ×V U . Since flatness is a local property of morphisms
of schemes (Morphisms, Lemma 25.3) the final statement of the lemma is follows as well
as the equivalence of (1) and (3). IfX and Y are affine, thenX → Y is weakly étale if and
only if OY (Y ) → OX(X) is weakly étale (use again Morphisms, Lemma 25.3). Thus (1)
and (3) are also equivalent to (2) and (4). �

Lemma 64.5. Let X → Y → Z be morphisms of schemes.
(1) If X → X ×Y X and Y → Y ×Z Y are flat, then X → X ×Z X is flat.
(2) If X → Y and Y → Z are weakly étale, then X → Z is weakly étale.

Proof. Part (1) follows from the factorization
X → X ×Y X → X ×Z X

of the diagonal of X over Z , the fact that
X ×Y X = (X ×Z X)×(Y×ZY ) Y,

the fact that a base change of a flat morphism is flat, and the fact that the composition of
flat morphisms is flat (Morphisms, Lemmas 25.8 and 25.6). Part (2) follows from part (1)
and the fact (just used) that the composition of flat morphisms is flat. �
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Lemma 64.6. Let X → Y and Y ′ → Y be morphisms of schemes and let X ′ =
Y ′ ×Y X be the base change of X .

(1) If X → X ×Y X is flat, then X ′ → X ′ ×Y ′ X ′ is flat.
(2) If X → Y is weakly étale, then X ′ → Y ′ is weakly étale.

Proof. Assume X → X ×Y X is flat. The morphism X ′ → X ′ ×Y ′ X ′ is the base
change of X → X ×Y X by Y ′ → Y . Hence it is flat by Morphisms, Lemmas 25.8. This
proves (1). Part (2) follows from (1) and the fact (just used) that the base change of a flat
morphism is flat. �

Lemma 64.7. Let X → Y → Z be morphisms of schemes. Assume that X → Y is
flat and surjective and that X → X ×Z X is flat. Then Y → Y ×Z Y is flat.

Proof. Consider the commutative diagram

X //

��

X ×Z X

��
Y // Y ×Z Y

The top horizontal arrow is flat and the vertical arrows are flat. Hence X is flat over
Y ×Z Y . By Morphisms, Lemma 25.13 we see that Y is flat over Y ×Z Y . �

Lemma 64.8. Let f : X → Y be a weakly étale morphism of schemes. Then f is
formally unramified, i.e., ΩX/Y = 0.

Proof. Recall that f is formally unramified if and only if ΩX/Y = 0 by Lemma 6.7.
Via Lemma 64.4 and Morphisms, Lemma 32.5 this follows from the case of rings which is
More on Algebra, Lemma 104.12. �

Lemma 64.9. Let f : X → Y be a morphism of schemes. Then X → Y is weakly
étale in each of the following cases

(1) X → Y is a flat monomorphism,
(2) X → Y is an open immersion,
(3) X → Y is flat and unramified,
(4) X → Y is étale.

Proof. If (1) holds, then ∆X/Y is an isomorphism (Schemes, Lemma 23.2), hence cer-
tainly f is weakly étale. Case (2) is a special case of (1). The diagonal of an unramified
morphism is an open immersion (Morphisms, Lemma 35.13), hence flat. Thus a flat un-
ramified morphism is weakly étale. An étale morphism is flat and unramified (Morphisms,
Lemma 36.5), hence (4) follows from (3). �

Lemma 64.10. Let f : X → Y be a morphism of schemes. If Y is reduced and f
weakly étale, then X is reduced.

Proof. Via Lemma 64.4 this follows from the case of rings which is More on Algebra,
Lemma 104.8. �

The following lemma uses a nontrivial result about weakly étale ring maps.

Lemma 64.11. Let f : X → Y be a morphism of schemes. The following are equiva-
lent

(1) f is weakly étale, and
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(2) for x ∈ X the local ring mapOY,f(x) → OX,x induces an isomorphism on strict
henselizations.

Proof. Let x ∈ X be a point with image y = f(x) in Y . Choose a separable algebraic
closure κsep of κ(x). LetOshX,x be the strict henselization corresponding to κsep andOshY,y
the strict henselization relative to the separable algebraic closure of κ(y) in κsep. Consider
the commutative diagram

OX,x // OshX,x

OY,y

OO

// OshY,y

OO

local homomorphisms of local rings, see Algebra, Lemma 155.10. Since the strict henseliza-
tion is a filtered colimit of étale ring maps, More on Algebra, Lemma 104.14 shows the
horizontal maps are weakly étale. Moreover, the horizontal maps are faithfully flat by
More on Algebra, Lemma 45.1.
Assume f weakly étale. By Lemma 64.2 the left vertical arrow is weakly étale. By More
on Algebra, Lemmas 104.9 and 104.11 the right vertical arrow is weakly étale. By More
on Algebra, Theorem 104.24 we conclude the right vertical map is an isomorphism.
Assume OshY,y → OshX,x is an isomorphism. Then OY,y → OshX,x is weakly étale. Since
OX,x → OshX,x is faithfully flat we conclude that OY,y → OX,x is weakly étale by More
on Algebra, Lemma 104.10. Thus (2) implies (1) by Lemma 64.2. �

Lemma 64.12. Let f : X → Y be a morphism of schemes. If Y is a normal scheme
and f weakly étale, then X is a normal scheme.

Proof. By More on Algebra, Lemma 45.6 a scheme S is normal if and only if for all
s ∈ S the strict henselization ofOS,s is a normal domain. Hence the lemma follows from
Lemma 64.11. �

Lemma 64.13. Let S be a scheme. Let f : X → Y be a morphism of schemes over S.
If X , Y are weakly étale over S , then f is weakly étale.

Proof. We will use Morphisms, Lemmas 25.8 and 25.6 without further mention.
Write X → Y as the composition X → X ×S Y → Y . The second morphism is flat
as the base change of the flat morphism X → S. The first is the base change of the flat
morphism Y → Y ×S Y by the morphismX ×S Y → Y ×S Y , hence flat. ThusX → Y
is flat. The morphism X ×Y X → X ×S X is an immersion. Thus Lemma 64.3 implies,
that since X is flat over X ×S X it follows that X is flat over X ×Y X . �

The following is a scheme theoretic generalization of the observation that a field extension
that is simultaneously separable and purely inseparable must be an isomorphism.

Lemma 64.14. Let f : X → Y be a morphism of schemes. If f is weakly étale and a
universal homeomorphism, it is an isomorphism.

Proof. Since f is a universal homeomorphism, the diagonal ∆ : X → X ×Y X is
a surjective closed immersion by Morphisms, Lemmas 45.4 and 10.2. Since ∆ is also flat,
we see that ∆ must be an isomorphism by Morphisms, Lemma 26.1. In other words, f
is a monomorphism (Schemes, Lemma 23.2). Since f is a universal homeomorphism it is
certainly quasi-compact. Hence by Descent, Lemma 25.1 we find that f is an isomorphism.

�
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The following is a weakly étale generalization of Étale Morphisms, Lemma 14.3.

Lemma 64.15. Let U → X be a weakly étale morphism of schemes where X is a
scheme in characteristic p. Then the relative Frobenius FU/X : U → U ×X,FX X is an
isomorphism.

Proof. The morphism FU/X is a universal homeomorphism by Varieties, Lemma
36.6. The morphism FU/X is weakly étale as a morphism between schemes weakly étale
over X by Lemma 64.13. Hence FU/X is an isomorphism by Lemma 64.14. �

65. Reduced fibre theorem

In this section we discuss the simplest kind of theorem of the kind advertised by the title.
Although the proof of the result is kind of laborious, in essence it follows in a straightfor-
ward manner from Epp’s result on eliminating ramification, see More on Algebra, Theorem
115.18.

Let A be a Dedekind domain with fraction field K. Let X be a scheme flat and of finite
type overA. LetL be a finite extension ofK. LetB be the integral closure ofA inL. Then
B is a Dedekind domain (Algebra, Lemma 120.18). LetXB = X ×Spec(A) Spec(B) be the
base change. ThenXB → Spec(B) is of finite type (Morphisms, Lemma 15.4). HenceXB

is Noetherian (Morphisms, Lemma 15.6). Thus the normalization ν : Y → XB exists (see
Morphisms, Definition 54.1 and the discussion following). Picture

(65.0.1) Y

##

ν
// XB

//

��

X

��
Spec(B) // Spec(A)

We sometimes call Y the normalized base change of X . In general the morphism ν may
not be finite. But if A is a Nagata ring (a condition that is virtually always satisfied in
practice) then ν is finite and Y is of finite type over B, see Morphisms, Lemmas 54.10 and
18.1.

Taking the normalized base change commutes with composition. More precisely, ifM/L/K
are finite extensions of fields with integral closuresA ⊂ B ⊂ C then the normalized base
change Z of Y → Spec(B) relative to M/L is equal to the normalized base change of
X → Spec(A) relative to M/K.

Theorem 65.1. Let A be a Dedekind ring with fraction field K. Let X be a scheme
flat and of finite type over A. Assume A is a Nagata ring. There exists a finite extension
L/K such that the normalized base change Y is smooth over Spec(B) at all generic points
of all fibres.

Proof. During the proof we will repeatedly use that formation of the set of points
where a (flat, finitely presented) morphism like X → Spec(A) is smooth commutes with
base change, see Morphisms, Lemma 34.15.

We first choose a finite extension L/K such that (XL)red is geometrically reduced over
L, see Varieties, Lemma 6.11. Since Y → (XB)red is birational we see applying Varieties,
Lemma 6.8 that YL is geometrically reduced over L as well. Hence YL → Spec(L) is
smooth on a dense open V ⊂ YL by Varieties, Lemma 25.7. Thus the smooth locus U ⊂ Y
of the morphism Y → Spec(B) is open (by Morphisms, Definition 34.1) and is dense in
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the generic fibre. Replacing A by B and X by Y we reduce to the case treated in the next
paragraph.

AssumeX is normal and the smooth locusU ⊂ X ofX → Spec(A) is dense in the generic
fibre. This implies that U is dense in all but finitely many fibres, see Lemma 24.3. Let
x1, . . . , xr ∈ X\U be the finitely many generic points of irreducible components ofX\U
which are moreover generic points of irreducible components of fibres of X → Spec(A).
Set Oi = OX,xi . Let Ai be the localization of A at the maximal ideal corresponding to
the image of xi in Spec(A). By More on Algebra, Proposition 116.8 there exist finite
extensions Ki/K which are solutions for the extension of discrete valuation rings Ai →
Oi. Let L/K be a finite extension dominating all of the extensions Ki/K. Then L/K is
still a solution for Ai → Oi by More on Algebra, Lemma 116.1.

Consider the diagram (65.0.1) with the extensionL/K we just produced. Note thatUB ⊂
XB is smooth over B, hence normal (for example use Algebra, Lemma 163.9). Thus Y →
XB is an isomorphism overUB . Let y ∈ Y be a generic point of an irreducible component
of a fibre of Y → Spec(B) lying over the maximal ideal m ⊂ B. Assume that y 6∈
UB . Then y maps to one of the points xi. It follows that OY,y is a local ring of the
integral closure of Oi in R(X)⊗K L (details omitted). Hence because L/K is a solution
for Ai → Oi we see that Bm → OY,y is formally smooth in the my-adic topology (this
is the definition of being a ”solution”). In other words, mOY,y = my and the residue field
extension is separable, see More on Algebra, Lemma 111.5. Hence the local ring of the fibre
at y is κ(y). This implies the fibre is smooth over κ(m) at y for example by Algebra, Lemma
140.5. This finishes the proof. �

Lemma 65.2 (Variant over curves). Let f : X → S be a flat, finite type morphism of
schemes. Assume S is Nagata, integral with function field K , and regular of dimension 1.
Then there exists a finite extension L/K such that in the diagram

Y

g
##

ν
// X ×S T

��

// X

f

��
T // S

the morphism g is smooth at all generic points of fibres. Here T is the normalization of S
in Spec(L) and ν : Y → X ×S T is the normalization.

Proof. Choose a finite affine open covering S =
⋃

Spec(Ai). Then K is equal to
the fraction field of Ai for all i. Let Xi = X ×S Spec(Ai). Choose Li/K as in Theorem
65.1 for the morphism Xi → Spec(Ai). Let Bi ⊂ Li be the integral closure of Ai and let
Yi be the normalized base change of X to Bi. Let L/K be a finite extension dominating
each Li. Let Ti ⊂ T be the inverse image of Spec(Ai). For each i we get a commutative
diagram

g−1(Ti) //

��

Yi //

��

X ×S Spec(Ai)

��
Ti // Spec(Bi) // Spec(Ai)

and in fact the left hand square is a normalized base change as discussed at the beginning
of the section. In the proof of Theorem 65.1 we have seen that the smooth locus of Y → T
contains the inverse image in g−1(Ti) of the set of points where Yi is smooth overBi. This
proves the lemma. �
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Lemma 65.3 (Variant with separable extension). LetA be a Dedekind ring with frac-
tion field K. Let X be a scheme flat and of finite type over A. Assume A is a Nagata ring
and that for every generic point η of an irreducible component of X the field extension
κ(η)/K is separable. Then there exists a finite separable extension L/K such that the
normalized base change Y is smooth over Spec(B) at all generic points of all fibres.

Proof. This is proved in exactly the same manner as Theorem 65.1 with a few minor
modifications. The most important change is to use More on Algebra, Lemma 116.9 instead
of More on Algebra, Proposition 116.8. During the proof we will repeatedly use that for-
mation of the set of points where a (flat, finitely presented) morphism likeX → Spec(A)
is smooth commutes with base change, see Morphisms, Lemma 34.15.

Since X is flat over A every generic point η of X maps to the generic point of Spec(A).
After replacing X by its reduction we may assume X is reduced. In this case XK is geo-
metrically reduced overK by Varieties, Lemma 6.8. HenceXK → Spec(K) is smooth on
a dense open by Varieties, Lemma 25.7. Thus the smooth locus U ⊂ X of the morphism
X → Spec(A) is open (by Morphisms, Definition 34.1) and is dense in the generic fibre.
This reduces us to the situation of the following paragraph.

Assume X is normal and the smooth locus U ⊂ X of X → Spec(A) is dense in the
generic fibre. This implies that U is dense in all but finitely many fibres, see Lemma 24.3.
Let x1, . . . , xr ∈ X \ U be the finitely many generic points of irreducible components
of X \ U which are moreover generic points of irreducible components of fibres of X →
Spec(A). Set Oi = OX,xi . Observe that the fraction field of Oi is the residue field of a
generic point of X . Let Ai be the localization of A at the maximal ideal corresponding to
the image of xi in Spec(A). We may apply More on Algebra, Lemma 116.9 and we find
finite separable extensions Ki/K which are solutions for Ai → Oi. Let L/K be a finite
separable extension dominating all of the extensions Ki/K. Then L/K is still a solution
for Ai → Oi by More on Algebra, Lemma 116.1.

Consider the diagram (65.0.1) with the extensionL/K we just produced. Note thatUB ⊂
XB is smooth over B, hence normal (for example use Algebra, Lemma 163.9). Thus Y →
XB is an isomorphism overUB . Let y ∈ Y be a generic point of an irreducible component
of a fibre of Y → Spec(B) lying over the maximal ideal m ⊂ B. Assume that y 6∈ UB .
Then y maps to one of the points xi. It follows that OY,y is a local ring of the integral
closure ofOi inR(X)⊗K L (details omitted). Hence because L/K is a solution forAi →
Oi we see thatBm → OY,y is formally smooth (this is the definition of being a ”solution”).
In other words, mOY,y = my and the residue field extension is separable. Hence the local
ring of the fibre at y is κ(y). This implies the fibre is smooth over κ(m) at y for example
by Algebra, Lemma 140.5. This finishes the proof. �

Lemma 65.4 (Variant with separable extensions over curves). Let f : X → S be a
flat, finite type morphism of schemes. Assume S is Nagata, integral with function fieldK ,
and regular of dimension 1. Assume the field extensions κ(η)/K are separable for every
generic point η of an irreducible component of X . Then there exists a finite separable
extension L/K such that in the diagram

Y

g
##

ν
// X ×S T

��

// X

f

��
T // S
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the morphism g is smooth at all generic points of fibres. Here T is the normalization of S
in Spec(L) and ν : Y → X ×S T is the normalization.

Proof. This follows from Lemma 65.3 in exactly the same manner that Lemma 65.2
follows from Theorem 65.1. �

66. Ind-quasi-affine morphisms

A bit of theory to be used later.

Definition 66.1. A scheme X is ind-quasi-affine if every quasi-compact open of X
is quasi-affine. Similarly, a morphism of schemes X → Y is ind-quasi-affine if f−1(V ) is
ind-quasi-affine for each affine open V in Y .

An example of an ind-quasi-affine scheme is an open of an affine scheme. If X =
⋃
i∈I Ui

is a union of quasi-affine opens such that any two Ui are contained in a third, then X is
ind-quasi-affine. An ind-quasi-affine scheme X is separated because any two affine opens
U, V are contained in a separated open subscheme of X , namely U ∪ V . Similarly an
ind-quasi-affine morphism is separated.

Lemma 66.2. For a morphism of schemes f : X → Y , the following are equivalent:
(1) f is ind-quasi-affine,
(2) for every affine open subscheme V ⊂ Y and every quasi-compact open sub-

scheme U ⊂ f−1(V ), the induced morphism U → V is quasi-affine.
(3) for some cover {Vj}j∈J of Y by quasi-compact and quasi-separated open sub-

schemes Vj ⊂ Y , every j ∈ J , and every quasi-compact open subscheme U ⊂
f−1(Vj), the induced morphism U → Vj is quasi-affine.

(4) for every quasi-compact and quasi-separated open subscheme V ⊂ Y and every
quasi-compact open subscheme U ⊂ f−1(V ), the induced morphism U → V is
quasi-affine.

In particular, the property of being an ind-quasi-affine morphism is Zariski local on the
base.

Proof. The equivalence (1)⇔ (2) follows from the definitions and Morphisms, Lemma
13.3. For (2)⇒ (4), let U and V be as in (4). By Schemes, Lemma 21.14, the induced mor-
phism U → V is quasi-compact. Thus, for every affine open V ′ ⊂ V , the fiber product
V ′ ×V U is quasi-compact, so, by (2), the induced map V ′ ×V U → V ′ is quasi-affine.
Thus, U → V is also quasi-affine by Morphisms, Lemma 13.3. This argument also gives
(3)⇒ (4): indeed, keeping the same notation, those affine opens V ′ ⊂ V that lie in one
of the Vj cover V , so one needs to argue that the quasi-compact map V ′ ×V U → V ′ is
quasi-affine. However, by (3), the composition V ′ ×V U → V ′ → Vj is quasi-affine and,
by Schemes, Lemma 21.13, the map V ′ → Vj is quasi-separated. Thus, V ′ ×V U → V ′ is
quasi-affine by Morphisms, Lemma 13.8. The final implications (4)⇒ (2) and (4)⇒ (3)
are evident. �

Lemma 66.3. The property of being an ind-quasi-affine morphism is stable under
composition.

Proof. Let f : X → Y and g : Y → Z be ind-quasi-affine morphisms. Let V ⊂ Z
and U ⊂ f−1(g−1(V )) be quasi-compact opens such that V is also quasi-separated. The
image f(U) is a quasi-compact subset of g−1(V ), so it is contained in some quasi-compact
open W ⊂ g−1(V ) (a union of finitely many affines). We obtain a factorization U →
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W → V . The map W → V is quasi-affine by Lemma 66.2, so, in particular, W is quasi-
separated. Then, by Lemma 66.2 again, U → W is quasi-affine as well. Consequently, by
Morphisms, Lemma 13.4, the composition U → V is also quasi-affine, and it remains to
apply Lemma 66.2 once more. �

Lemma 66.4. Any quasi-affine morphism is ind-quasi-affine. Any immersion is ind-
quasi-affine.

Proof. The first assertion is immediate from the definitions. In particular, affine
morphisms, such as closed immersions, are ind-quasi-affine. Thus, by Lemma 66.3, it re-
mains to show that an open immersion is ind-quasi-affine. This, however, is immediate
from the definitions. �

Lemma 66.5. If f : X → Y and g : Y → Z are morphisms of schemes such that
g ◦ f is ind-quasi-affine, then f is ind-quasi-affine.

Proof. By Lemma 66.2, we may work Zariski locally on Z and then on Y , so we lose
no generality by assuming thatZ , and then also Y , is affine. Then any quasi-compact open
of X is quasi-affine, so Lemma 66.2 gives the claim. �

Lemma 66.6. The property of being ind-quasi-affine is stable under base change.

Proof. Let f : X → Y be an ind-quasi-affine morphism. For checking that every
base change of f is ind-quasi-affine, by Lemma 66.2, we may work Zariski locally on Y ,
so we assume that Y is affine. Furthermore, we may also assume that in the base change
morphism Z → Y the scheme Z is affine, too. The base changeX ×Y Z → X is an affine
morphism, so, by Lemmas 66.3 and 66.4, the mapX ×Y Z → Y is ind-quasi-affine. Then,
by Lemma 66.5, the base change X ×Y Z → Z is ind-quasi-affine, as desired. �

Lemma 66.7. The property of being ind-quasi-affine is fpqc local on the base.

Proof. The stability of ind-quasi-affineness under base change supplied by Lemma
66.6 gives one direction. For the other, let f : X → Y be a morphism of schemes and let
{gi : Yi → Y } be an fpqc covering such that the base change fi : Xi → Yi is ind-quasi-
affine for all i. We need to show f is ind-quasi-affine.
By Lemma 66.2, we may work Zariski locally on Y , so we assume that Y is affine. Then we
use stability under base change ensured by Lemma 66.6 to refine the cover and assume that
it is given by a single affine, faithfully flat morphism g : Y ′ → Y . For any quasi-compact
open U ⊂ X , its Y ′-base change U ×Y Y ′ ⊂ X ×Y Y ′ is also quasi-compact. It remains
to observe that, by Descent, Lemma 23.20, the map U → Y is quasi-affine if and only if so
is U ×Y Y ′ → Y ′. �

Lemma 66.8. A separated locally quasi-finite morphism of schemes is ind-quasi-affine.

Proof. Let f : X → Y be a separated locally quasi-finite morphism of schemes. Let
V ⊂ Y be affine andU ⊂ f−1(V ) quasi-compact open. We have to showU is quasi-affine.
Since U → V is a separated quasi-finite morphism of schemes, this follows from Zariski’s
Main Theorem. See Lemma 43.2. �

67. Pushouts in the category of schemes, II

This section is a continuation of Section 14. In this section we construct pushouts of Y ←
Z → X where Z → X is a closed immersion and Z → Y is integral and an additional
condition is satisfied. Please see the detailed discussion in [?].
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Situation 67.1. Here S is a scheme and i : Z → X and j : Z → Y are morphisms
of schemes over S. We assume

(1) i is a closed immersion,
(2) j is an integral morphism of schemes,
(3) for y ∈ Y there exists an affine open U ⊂ X with j−1({y}) ⊂ i−1(U).

Lemma 67.2. In Situation 67.1 then for y ∈ Y there exist affine opens U ⊂ X and
V ⊂ Y with i−1(U) = j−1(V ) and y ∈ V .

Proof. Let y ∈ Y . Choose an affine open U ⊂ X such that j−1({y}) ⊂ i−1(U)
(possible by assumption). Choose an affine open V ⊂ Y neighbourhood of y such that
j−1(V ) ⊂ i−1(U). This is possible because j : Z → Y is a closed morphism (Morphisms,
Lemma 44.7) and i−1(U) contains the fibre over y. Since j is integral, the scheme theoretic
fibre Zy is the spectrum of an algebra integral over a field. By Limits, Lemma 11.6 we can
find an f ∈ Γ(i−1(U),Oi−1(U)) such that Zy ⊂ D(f) ⊂ j−1(V ). Since i|i−1(U) :
i−1(U) → U is a closed immersion of affines, we can choose an f ∈ Γ(U,OU ) whose
restriction to i−1(U) is f . After replacing U by the principal open D(f) ⊂ U we find
affine opens y ∈ V ⊂ Y and U ⊂ X with

j−1({y}) ⊂ i−1(U) ⊂ j−1(V )

Now we (in some sense) repeat the argument. Namely, we choose g ∈ Γ(V,OV ) such that
y ∈ D(g) and j−1(D(g)) ⊂ i−1(U) (possible by the same argument as above). Then we
can pick f ∈ Γ(U,OU ) whose restriction to i−1(U) is the pullback of g by i−1(U)→ V
(again possible by the same reason as above). Then we finally have affine opens y ∈ V ′ =
D(g) ⊂ V ⊂ Y and U ′ = D(f) ⊂ U ⊂ X with j−1(V ′) = i−1(V ′). �

Proposition 67.3. In Situation 67.1 the pushout Y qZ X exists in the category of
schemes. Picture

Z
i
//

j

��

X

a

��
Y

b // Y qZ X
The diagram is a fibre square, the morphism a is integral, the morphism b is a closed im-
mersion, and

OYqZX = b∗OY ×c∗OZ
a∗OX

as sheaves of rings where c = a ◦ i = b ◦ j.

Proof. As a topological space we set Y qZ X equal to the pushout of the diagram
in the category of topological spaces (Topology, Section 29). This is just the pushout of
the underlying sets (Topology, Lemma 29.1) endowed with the quotient topology. On
Y qZ X we have the maps of sheaves of rings

b∗OY −→ c∗OZ ←− a∗OX
and we can define

OYqZX = b∗OY ×c∗OZ
a∗OX

as the fibre product in the category of sheaves of rings. To prove that we obtain a scheme
we have to show that every point has an affine open neighbourhood. This is clear for points
not in the image of c as the image of c is a closed subset whose complement is isomorphic
as a ringed space to (Y \ j(Z))q (X \ i(Z)).
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A point in the image of c corresponds to a unique y ∈ Y in the image of j. By Lemma
67.2 we find affine opens U ⊂ X and V ⊂ Y with y ∈ V and i−1(U) = j−1(V ). Since
the construction of the first paragraph is clearly compatible with restriction to compatible
open subschemes, to prove that it produces a scheme we may assumeX , Y , andZ are affine.
If X = Spec(A), Y = Spec(B), and Z = Spec(C) are affine, then More on Algebra,
Lemma 6.2 shows that Y qZ X = Spec(B ×C A) as topological spaces. To finish the
proof that Y ×Z X is a scheme, it suffices to show that on Spec(B ×C A) the structure
sheaf is the fibre product of the pushforwards. This follows by applying More on Algebra,
Lemma 5.3 to principal affine opens of Spec(B ×C A).
The discussion above shows the scheme Y qX Z has an affine open covering Y qX Z =⋃
Wi such that Ui = a−1(Wi), Vi = b−1(Wi), and Ωi = c−1(Wi) are affine open in X ,

Y , and Z. Thus a and b are affine. Moreover, if Ai, Bi, Ci are the rings corresponding to
Ui, Vi, Ωi, then Ai → Ci is surjective and Wi corresponds to Ai ×Ci Bi which surjects
onto Bi. Hence b is a closed immersion. The ring map Ai ×Ci Bi → Ai is integral by
More on Algebra, Lemma 6.3 hence a is integral. The diagram is cartesian because

Ci ∼= Bi ⊗Bi×CiAi Ai
This follows as Bi ×Ci Ai → Bi and Ai → Ci are surjective maps whose kernels are the
same.
Finally, we can apply Lemmas 14.1 and 14.2 to conclude our construction is a pushout in
the category of schemes. �

Lemma 67.4. In Situation 67.1. If X and Y are separated, then the pushout Y qZ
X (Proposition 67.3) is separated. Same with “separated over S”, “quasi-separated”, and
“quasi-separated over S”.

Proof. The morphism Y qX → Y qZ X is surjective and universall closed. Thus
we may apply Morphisms, Lemma 41.11. �

Lemma 67.5. In Situation 67.1 assume S is a locally Noetherian scheme and X , Y ,
and Z are locally of finite type over S. Then the pushout Y qZ X (Proposition 67.3) is
locally of finite type over S.

Proof. Looking on affine opens we recover the result of More on Algebra, Lemma
5.1. �

Lemma 67.6. In Situation 67.1 suppose given a commutative diagram

Y ′

g

��

Z ′
j′
oo

i′
//

h

��

X ′

f

��
Y Zoo // X

with cartesian squares and f, g, h separated and locally quasi-finite. Then
(1) the pushouts Y qZ X and Y ′ qZ′ X ′ exist,
(2) Y ′ qZ′ X ′ → Y qZ X is separated and locally quasi-finite, and
(3) the squares

Y ′ //

��

Y ′ qZ′ X ′

��

X ′oo

��
Y // Y qZ X Xoo
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are cartesian.

Proof. The pushout Y qZ X exists by Proposition 67.3. To see that the pushout
Y ′ qZ′ X ′ exists, we check condition (3) of Situation 67.1 holds for (X ′, Y ′, Z ′, i′, j′).
Namely, let y′ ∈ Y ′ and denote y ∈ Y the image. Choose U ⊂ X affine open with
i(j−1(y)) ⊂ U . Choose a quasi-compact open U ′ ⊂ X ′ contained in f−1(U) containing
the quasi-compact subset i′((j′)−1({y′})). By Lemma 66.8 we see that U ′ is quasi-affine.
Since Z ′

y′ is the spectrum of an algebra integral over a field, we can apply Limits, Lemma
11.6 and we find there exists an affine open subscheme of U ′ containing i′((j′)−1({y′}))
as desired.

Having verified existence we check the other assertions. Affine locally we are exactly in
the situation of More on Algebra, Lemma 7.7 with B → D and A′ → C ′ locally quasi-
finite15. In particular, the morphism Y ′ qZ′ X ′ → Y qZ X is locally of finite type.
The squares in of the diagram are cartesian by More on Algebra, Lemma 6.4. Since being
locally quasi-finite can be checked on fibres (Morphisms, Lemma 20.6) we conclude that
Y ′ qZ′ X ′ → Y qZ X is locally quasi-finite.

We still have to check Y ′ qZ′ X ′ → Y qZ X is separated. Observe that Y ′ q X ′ →
Y ′qZ′X ′ is universally closed and surjective by Proposition 67.3. Since also the morphism
Y ′ q X ′ → Y qZ X is separated (as it factors as Y ′ q X ′ → Y q X → Y qZ X) we
conclude by Morphisms, Lemma 41.11. �

Lemma 67.7. In Situation 67.1 the category of schemes flat, separated, and locally
quasi-finite over the pushoutYqZX is equivalent to the category of (X ′, Y ′, Z ′, i′, j′, f, g, h)
as in Lemma 67.6 with f, g, h flat. Similarly with “flat” replaced with “étale”.

Proof. If we start with (X ′, Y ′, Z ′, i′, j′, f, g, h) as in Lemma 67.6 with f, g, h flat
or étale, then Y ′ qZ′ X ′ → Y qZ X is flat or étale by More on Algebra, Lemma 7.7.

For the converse, let W → Y qZ X be a separated and locally quasi-finite morphism. Set
X ′ = W×YqZXX , Y ′ = W×YqZXY , andZ ′ = W×YqZXZ with obvious morphisms
i′, j′, f, g, h. Form the pushout Y ′ qZ′ X ′. We obtain a morphism

Y ′ qZ′ X ′ −→W

of schemes over Y qX Z by the universal property of the pushout. If we do not assume
that W → Y qZ X is flat, then in general this morphism won’t be an isomorphism. (In
fact, More on Algebra, Lemma 6.5 shows the displayed arrow is a closed immersion but not
an isomorphism in general.) However, if W → Y ×Z X is flat, then it is an isomorphism
by More on Algebra, Lemma 7.7. �

Next, we discuss existence in the case where both morphisms are closed immersions.

Lemma 67.8. Let i : Z → X and j : Z → Y be closed immersions of schemes. Then
the pushout Y qZ X exists in the category of schemes. Picture

Z
i
//

j

��

X

a

��
Y

b // Y qZ X

15To be precise X,Y, Z, Y qZ X,X′, Y ′, Z′, Y ′ qZ′ X′ correspond to A′, B,A,B′, C′, D,C,D′.
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The diagram is a fibre square, the morphisms a and b are closed immersions, and there is a
short exact sequence

0→ OYqZX → a∗OX ⊕ b∗OY → c∗OZ → 0
where c = a ◦ i = b ◦ j.

Proof. This is a special case of Proposition 67.3. Observe that hypothesis (3) in Sit-
uation 67.1 is immediate because the fibres of j are singletons. Finally, reverse the roles of
the arrows to conclude that both a and b are closed immersions. �

Lemma 67.9. Let i : Z → X and j : Z → Y be closed immersions of schemes. Let
f : X ′ → X and g : Y ′ → Y be morphisms of schemes and letϕ : X ′×X,iZ → Y ′×Y,jZ
be an isomorphism of schemes over Z. Consider the morphism

h : X ′ qX′×X,iZ,ϕ Y
′ −→ X qZ Y

Then we have
(1) h is locally of finite type if and only if f and g are locally of finite type,
(2) h is flat if and only if f and g are flat,
(3) h is flat and locally of finite presentation if and only if f and g are flat and locally

of finite presentation,
(4) h is smooth if and only if f and g are smooth,
(5) h is étale if and only if f and g are étale, and
(6) add more here as needed.

Proof. We know that the pushouts exist by Lemma 67.8. In particular we get the
morphism h. Hence we may replace all schemes in sight by affine schemes. In this case the
assertions of the lemma are equivalent to the corresponding assertions of More on Algebra,
Lemma 7.7. �

68. Relative morphisms

In this section we prove a representability result which we will use in Fundamental Groups,
Section 5 to prove a result on the category of finite étale coverings of a scheme. The ma-
terial in this section is discussed in the correct generality in Criteria for Representability,
Section 10.

Let S be a scheme. Let Z and X be schemes over S. Given a scheme T over S we can
consider morphisms b : T ×S Z → T ×S X over S. Picture

(68.0.1)

T ×S Z

##

b
// T ×S X

{{

Z

��

X

��
T // S

Of course, we can also think of b as a morphism b : T ×S Z → X such that

T ×S Z //

��

b **
Z

��

X

��
T // S

commutes. In this situation we can define a functor

(68.0.2) MorS(Z,X) : (Sch/S)opp −→ Sets, T 7−→ {b as above}
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Here is a basic representability result.

Lemma 68.1. Let Z → S and X → S be morphisms of affine schemes. Assume
Γ(Z,OZ) is a finite free Γ(S,OS)-module. Then MorS(Z,X) is representable by an affine
scheme over S.

Proof. Write S = Spec(R). Choose a basis {e1, . . . , em} for Γ(Z,OZ) over R.
Choose a presentation

Γ(X,OX) = R[{xi}i∈I ]/({fk}k∈K).

We will denote xi the image of xi in this quotient. Write

P = R[{aij}i∈I,1≤j≤m].

Consider the R-algebra map

Ψ : R[{xi}i∈I ] −→ P ⊗R Γ(Z,OZ), xi 7−→
∑

j
aij ⊗ ej .

Write Ψ(fk) =
∑
ckj ⊗ ej with ckj ∈ P . Finally, denote J ⊂ P the ideal generated by

the elements ckj , k ∈ K , 1 ≤ j ≤ m. We claim that W = Spec(P/J) represents the
functor MorS(Z,X).

First, note that by construction P/J is an R-algebra, hence a morphism W → S. Second,
by construction the map Ψ factors through Γ(X,OX), hence we obtain an P/J -algebra
homomorphism

P/J ⊗R Γ(X,OX) −→ P/J ⊗R Γ(Z,OZ)
which determines a morphism buniv : W ×S Z → W ×S X . By the Yoneda lemma
buniv determines a transformation of functors W → MorS(Z,X) which we claim is
an isomorphism. To show that it is an isomorphism it suffices to show that it induces a
bijection of sets W (T )→ MorS(Z,X)(T ) over any affine scheme T .

SupposeT = Spec(R′) is an affine scheme overS and b ∈ MorS(Z,X)(T ). The structure
morphism T → S defines an R-algebra structure on R′ and b defines an R′-algebra map

b] : R′ ⊗R Γ(X,OX) −→ R′ ⊗R Γ(Z,OZ).

In particular we can write b](1⊗xi) =
∑
αij⊗ej for someαij ∈ R′. This corresponds to

an R-algebra map P → R′ determined by the rule aij 7→ αij . This map factors through
the quotient P/J by the construction of the ideal J to give a map P/J → R′. This in
turn corresponds to a morphism T →W such that b is the pullback of buniv . Some details
omitted. �

Lemma 68.2. Let Z → S and X → S be morphisms of schemes. If Z → S is finite
locally free and X → S is affine, then MorS(Z,X) is representable by a scheme affine
over S.

Proof. Choose an affine open covering S =
⋃
Ui such that Γ(Z ×S Ui,OZ×SUi) is

finite free over OS(Ui). Let Fi ⊂ MorS(Z,X) be the subfunctor which assigns to T/S
the empty set if T → S does not factor through Ui and MorS(Z,X)(T ) otherwise. Then
the collection of these subfunctors satisfy the conditions (2)(a), (2)(b), (2)(c) of Schemes,
Lemma 15.4 which proves the lemma. Condition (2)(a) follows from Lemma 68.1 and the
other two follow from straightforward arguments. �
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The condition on the morphism f : X → S in the lemma below is very useful to prove
statements like it. It holds if one of the following is true: X is quasi-affine, f is quasi-affine,
f is quasi-projective, f is locally projective, there exists an ample invertible sheaf on X ,
there exists an f -ample invertible sheaf on X , or there exists an f -very ample invertible
sheaf on X .

Lemma 68.3. Let Z → S and X → S be morphisms of schemes. Assume
(1) Z → S is finite locally free, and
(2) for all (s, x1, . . . , xd) where s ∈ S and x1, . . . , xd ∈ Xs there exists an affine

open U ⊂ X with x1, . . . , xd ∈ U .
Then MorS(Z,X) is representable by a scheme.

Proof. Consider the set I of pairs (U, V ) where U ⊂ X and V ⊂ S are affine open
and U → S factors through V . For i ∈ I denote (Ui, Vi) the corresponding pair. Set
Fi = MorVi(ZVi , Ui). It is immediate that Fi is a subfunctor of MorS(Z,X). Then we
claim that conditions (2)(a), (2)(b), (2)(c) of Schemes, Lemma 15.4 which proves the lemma.

Condition (2)(a) follows from Lemma 68.2.

To check condition (2)(b) consider T/S and b ∈ MorS(Z,X). Thinking of b as a mor-
phism T ×S Z → X we find an open b−1(Ui) ⊂ T ×S Z. Clearly, b ∈ Fi(T ) if and only
if b−1(Ui) = T ×S Z. Since the projection p : T ×S Z → T is finite hence closed, the
set Ui,b ⊂ T of points t ∈ T with p−1({t}) ⊂ b−1(Ui) is open. Then f : T ′ → T factors
through Ui,b if and only if b ◦ f ∈ Fi(T ′) and we are done checking (2)(b).

Finally, we check condition (2)(c) and this is where our condition on X → S is used.
Namely, consider T/S and b ∈ MorS(Z,X). It suffices to prove that every t ∈ T is
contained in one of the opensUi,b defined in the previous paragraph. This is equivalent to
the condition that b(p−1({t})) ⊂ Ui for some i where p : T ×S Z → T is the projection
and b : T ×S Z → X is the given morphism. Since p is finite, the set b(p−1({t})) ⊂ X is
finite and contained in the fibre ofX → S over the image s of t in S. Thus our condition
on X → S exactly shows a suitable pair exists. �

Lemma 68.4. Let Z → S and X → S be morphisms of schemes. Assume Z → S is
finite locally free and X → S is separated and locally quasi-finite. Then MorS(Z,X) is
representable by a scheme.

Proof. This follows from Lemmas 68.3 and 45.1. �

69. Characterizing pseudo-coherent complexes, III

In this section we discuss characterizations of pseudo-coherent complexes in terms of co-
homology. This is a continuation of Derived Categories of Schemes, Section 34. A basic
tool will be to reduce to the case of projective space using a derived version of Chow’s
lemma, see Lemma 69.2.

Lemma 69.1. Consider a commutative diagram of schemes

Z ′

��

// Y ′

��
X ′ // S′
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Let S → S′ be a morphism. Denote by X and Y the base changes of X ′ and Y ′ to S.
Assume Y ′ → S′ and Z ′ → X ′ are flat. Then X ×S Y and Z ′ are Tor independent over
X ′ ×S′ Y ′.

Proof. The question is local, hence we may assume all schemes are affine (some details
omitted). Observe that

X ×S Y //

��

X ′ ×S′ Y ′

��
X // X ′

is cartesian with flat vertical arrows. Write X = Spec(A), X ′ = Spec(A′), X ′ ×S′ Y ′ =
Spec(B′). Then X ×S Y = Spec(A⊗A′ B′). Write Z ′ = Spec(C ′). We have to show

TorB
′

p (A⊗A′ B′, C ′) = 0, for p > 0

Since A′ → B′ is flat we have A⊗A′ B′ = A⊗L
A′ B′. Hence

(A⊗A′ B′)⊗L
B′ C ′ = (A⊗L

A′ B′)⊗L
B′ C ′ = A⊗L

A′ C ′ = A⊗A′ C ′

The second equality by More on Algebra, Lemma 60.5. The last equality becauseA′ → C ′

is flat. This proves the lemma. �

Lemma 69.2 (Derived Chow’s lemma). Let A be a ring. Let X be a separated scheme
of finite presentation overA. Let x ∈ X . Then there exist an open neighbourhoodU ⊂ X
of x, an n ≥ 0, an open V ⊂ Pn

A, a closed subscheme Z ⊂ X ×A Pn
A, a point z ∈ Z , and

an object E in D(OX×APn
A

) such that
(1) Z → X ×A Pn

A is of finite presentation,
(2) b : Z → X is an isomorphism over U and b(z) = x,
(3) c : Z → Pn

A is a closed immersion over V ,
(4) b−1(U) = c−1(V ), in particular c(z) ∈ V ,
(5) E|X×AV

∼= (b, c)∗OZ |X×AV ,
(6) E is pseudo-coherent and supported on Z.

Proof. We can find a finite type Z-subalgebra A′ ⊂ A and a scheme X ′ separated
and of finite presentation over A′ whose base change to A is X . See Limits, Lemmas 10.1
and 8.6. Let x′ ∈ X ′ be the image of x. If we can prove the lemma for x′ ∈ X ′/A′, then
the lemma follows for x ∈ X/A. Namely, if U ′, n′, V ′, Z ′, z′, E′ provide the solution for
x′ ∈ X ′/A′, then we can let U ⊂ X be the inverse image of U ′, let n = n′, let V ⊂ Pn

A be
the inverse image of V ′, let Z ⊂ X ×Pn be the scheme theoretic inverse image of Z ′, let
z ∈ Z be the unique point mapping to x, and letE be the derived pullback ofE′. Observe
that E is pseudo-coherent by Cohomology, Lemma 47.3. It only remains to check (5). To
see this set W = b−1(U) = c−1(V ) and W ′ = (b′)−1(U) = (c′)−1(V ′) and consider the
cartesian square

W

(b,c)
��

// W ′

(b′,c′)
��

X ×A V // X ′ ×A′ V ′

By Lemma 69.1 the schemesX×A V andW ′ are Tor independent overX ′×A′ V ′. Hence
the derived pullback of (b′, c′)∗OW ′ to X ×A V is (b, c)∗OW by Derived Categories of
Schemes, Lemma 22.5. This also uses thatR(b′, c′)∗OZ′ = (b′, c′)∗OZ′ because (b′, c′) is a
closed immersion and simiarly for (b, c)∗OZ . SinceE′|U ′×A′V ′ = (b′, c′)∗OW ′ we obtain
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E|U×AV = (b, c)∗OW and (5) holds. This reduces us to the situation described in the
next paragraph.

Assume A is of finite type over Z. Choose an affine open neighbourhood U ⊂ X of
x. Then U is of finite type over A. Choose a closed immersion U → An

A and denote
j : U → Pn

A the immersion we get by composing with the open immersion An
A → Pn

A.
Let Z be the scheme theoretic closure of

(idU , j) : U −→ X ×A Pn
A

Since the projectionX×Pn → X is separated, we conclude from Morphisms, Lemma 6.8
that b : Z → X is an isomorphism over U . Let z ∈ Z be the unique point lying over x.

Let Y ⊂ Pn
A be the scheme theoretic closure of j. Then it is clear that Z ⊂ X×A Y is the

scheme theoretic closure of (idU , j) : U → X ×A Y . As X is separated, the morphism
X ×A Y → Y is separated as well. Hence we see that Z → Y is an isomorphism over
the open subscheme j(U) ⊂ Y by the same lemma we used above. Choose V ⊂ Pn

A open
with V ∩ Y = j(U). Then we see that (3) and (4) hold.

Because A is Noetherian we see that X and X ×A Pn
A are Noetherian schemes. Hence we

can takeE = (b, c)∗OZ in this case, see Derived Categories of Schemes, Lemma 10.3. This
finishes the proof. �

Lemma 69.3. Let A, x ∈ X , and U, n, V, Z, z, E be as in Lemma 69.2. For any K ∈
DQCoh(OX) we have

Rq∗(Lp∗K ⊗L E)|V = R(U → V )∗K|U
where p : X ×A Pn

A → X and q : X ×A Pn
A → Pn

A are the projections and where the
morphism U → V is the finitely presented closed immersion c ◦ (b|U )−1.

Proof. Since b−1(U) = c−1(V ) and since c is a closed immersion over V , we see that
c ◦ (b|U )−1 is a closed immersion. It is of finite presentation because U and V are of finite
presentation over A, see Morphisms, Lemma 21.11. First we have

Rq∗(Lp∗K ⊗L E)|V = Rq′
∗
(
(Lp∗K ⊗L E)|X×AV

)
where q′ : X ×A V → V is the projection because formation of total direct image com-
mutes with localization. Set W = b−1(U) = c−1(V ) and denote i : W → X ×A V the
closed immersion i = (b, c)|W . Then

Rq′
∗
(
(Lp∗K ⊗L E)|X×AV

)
= Rq′

∗(Lp∗K|X×AV ⊗L i∗OW )

by property (5). Since i is a closed immersion we have i∗OW = Ri∗OW . Using Derived
Categories of Schemes, Lemma 22.1 we can rewrite this as

Rq′
∗Ri∗Li

∗Lp∗K|X×AV = R(q′ ◦ i)∗Lb
∗K|W = R(U → V )∗K|U

which is what we want. �

Lemma 69.4. LetA be a ring. LetX be a scheme separated and of finite presentation
over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent in D(A) for every
pseudo-coherent E in D(OX), then K is pseudo-coherent relative to A.

Proof. AssumeK ∈ DQCoh(OX) andRΓ(X,E⊗LK) is pseudo-coherent inD(A)
for every pseudo-coherent E in D(OX). Let x ∈ X . We will show that K is pseudo-
coherent relative to A in a neighbourhood of x and this will prove the lemma.
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ChooseU, n, V, Z, z, E as in Lemma 69.2. Denote p : X×Pn → X and q : X×Pn → Pn
A

the projections. Then for any i ∈ Z we have

RΓ(Pn
A, Rq∗(Lp∗K ⊗L E)⊗L OPn

A
(i))

= RΓ(X ×Pn, Lp∗K ⊗L E ⊗L Lq∗OPn
A

(i))
= RΓ(X,K ⊗L Rq∗(E ⊗L Lq∗OPn

A
(i)))

by Derived Categories of Schemes, Lemma 22.1. By Derived Categories of Schemes, Lemma
30.5 the complexRq∗(E⊗LLq∗OPn

A
(i)) is pseudo-coherent onX . Hence the assumption

tells us the expression in the displayed formula is a pseudo-coherent object of D(A). By
Derived Categories of Schemes, Lemma 34.2 we conclude thatRq∗(Lp∗K⊗LE) is pseudo-
coherent on Pn

A. By Lemma 69.3 we have

Rq∗(Lp∗K ⊗L E)|X×AV = R(U → V )∗K|U
Since U → V is a closed immersion into an open subscheme of Pn

A this means K|U is
pseudo-coherent relative to A by Lemma 59.18. �

Lemma 69.5. Let A be a ring. Let X be a scheme separated and of finite presentation
over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent in D(A) for every
perfect E ∈ D(OX), then K is pseudo-coherent relative to A.

Proof. In view of Lemma 69.4, it suffices to showRΓ(X,E⊗LK) is pseudo-coherent
in D(A) for every pseudo-coherent E ∈ D(OX). By Derived Categories of Schemes,
Proposition 40.5 it follows that K ∈ D−

QCoh(OX). Now the result follows by Derived
Categories of Schemes, Lemma 34.3. �

Lemma 69.6. Let A be a ring. Let X be a scheme separated, of finite presentation,
and flat over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is perfect in D(A) for every
perfect E ∈ D(OX), then K is Spec(A)-perfect.

Proof. By Lemma 69.5, K is pseudo-coherent relative to A. By Lemma 59.18, K is
pseudo-coherent in D(OX). By Derived Categories of Schemes, Proposition 40.6 we see
that K is in D−(OX). Let p be a prime ideal of A and denote i : Y → X the inclusion of
the scheme theoretic fibre over p, i.e., Y is a scheme over κ(p). By Derived Categories of
Schemes, Lemma 35.13, we will be done if we can showLi∗(K) is bounded below. LetG ∈
Dperf (OX) be a perfect complex which generates DQCoh(OX), see Derived Categories
of Schemes, Theorem 15.3. We have

RHomOY
(Li∗(G), Li∗(K)) = RΓ(Y, Li∗(G∨ ⊗L K))

= RΓ(X,G∨ ⊗L K)⊗L
A κ(p)

The first equality uses thatLi∗ preserves perfect objects and duals and Cohomology, Lemma
50.5; we omit some details. The second equality follows from Derived Categories of
Schemes, Lemma 22.5 as X is flat over A. It follows from our hypothesis that this is
a perfect object of D(κ(p)). The object Li∗(G) ∈ Dperf (OY ) generates DQCoh(OY )
by Derived Categories of Schemes, Remark 16.4. Hence Derived Categories of Schemes,
Proposition 40.6 now implies that Li∗(K) is bounded below and we win. �

70. Descent finiteness properties of complexes

This section is the continuation of Derived Categories of Schemes, Section 12.
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Lemma 70.1. Let X → S be locally of finite type. Let {fi : Xi → X} be an fppf
covering of schemes. Let E ∈ DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-coherent
relative to S if and only if each Lf∗

i E is m-pseudo-coherent relative to S.

Proof. AssumeE ism-pseudo-coherent relative to S. The morphisms fi are pseudo-
coherent by Lemma 60.6. Hence Lf∗

i E is m-pseudo-coherent relative to S by Lemma
59.16.

Conversely, assume that Lf∗
i E is m-pseudo-coherent relative to S for each i. Pick S =⋃

Uj , Wj → Uj , Wj =
⋃
Wj,k , Tj,k → Wj,k , and morphisms αj,k : Tj,k → Xi(j,k) over

S as in Lemma 48.2. Since the morphism Tj,K → S is flat and of finite presentation, we
see that αj,k is pseudo-coherent by Lemma 60.7. Hence

Lα∗
j,kLf

∗
i(j,k)E = L(Ti,k → S)∗E

is m-pseudo-coherent relative to S by Lemma 59.16. Now we want to descend this prop-
erty through the coverings {Tj,k → Wj,k}, Wj =

⋃
Wj,k , {Wj → Uj}, and S =

⋃
Uj .

Since for Zariski coverings the result is true (by the definition ofm-pseudo-coherence rel-
ative to S), this means we may assume we have a single surjective finite locally free mor-
phismπ : Y → X such thatLπ∗E is pseudo-coherent relative toS. In this caseRπ∗Lπ

∗E
is pseudo-coherent relative to S by Lemma 59.9 (this is the first time we use that E has
quasi-coherent cohomology sheaves). We have Rπ∗Lπ

∗E = E ⊗L
OX

π∗OY for example
by Derived Categories of Schemes, Lemma 22.1 and locally on X the map OX → π∗OY
is the inclusion of a direct summand. Hence we conclude by Lemma 59.12. �

Lemma 70.2. Let X → T → S be morphisms of schemes. Assume T → S is flat
and locally of finite presentation and X → T locally of finite type. Let E ∈ D(OX). Let
m ∈ Z. ThenE ism-pseudo-coherent relative to S if and only ifE ism-pseudo-coherent
relative to T .

Proof. Locally on X we can choose a closed immersion i : X → An
T . Then An

T →
S is flat and locally of finite presentation. Thus we may apply Lemma 59.17 to see the
equivalence holds. �

Lemma 70.3. Let f : X → S be locally of finite type. Let {Si → S} be an fppf
covering of schemes. Denote fi : Xi → Si the base change of f and gi : Xi → X the
projection. Let E ∈ DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-coherent relative to
S if and only if each Lg∗

iE is m-pseudo-coherent relative to Si.

Proof. This follows formally from Lemmas 70.1 and 70.2. Namely, ifE ism-pseudo-
coherent relative to S , thenLg∗

iE ism-pseudo-coherent relative to S (by the first lemma),
hence Lg∗

iE is m-pseudo-coherent relative to Si (by the second). Conversely, if Lg∗
iE is

m-pseudo-coherent relative to Si, then Lg∗
iE is m-pseudo-coherent relative to S (by the

second lemma), hence E is m-pseudo-coherent relative to S (by the first lemma). �

71. Relatively perfect objects

This section is a continuation of the discussion in Derived Categories of Schemes, Section
35.

Lemma 71.1. Let i : X → X ′ be a finite order thickening of schemes. Let K ′ ∈
D(OX′) be an object such that K = Li∗K ′ is pseudo-coherent. Then K ′ is pseudo-
coherent.
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Proof. We first prove K ′ has quasi-coherent cohomology sheaves. To do this, we
may reduce to the case of a first order thickening, see Section 2. Let I ⊂ OX′ be the
quasi-coherent sheaf of ideals cutting out X . Tensoring the short exact sequence

0→ I → OX′ → i∗OX → 0
with K ′ we obtain a distinguished triangle

K ′ ⊗L
OX′ I → K ′ → K ′ ⊗L

OX′ i∗OX → (K ′ ⊗L
OX′ I)[1]

Since i∗ = Ri∗ and since we may view I as a quasi-coherent OX -module (as we have a
first order thickening) we may rewrite this as

i∗(K ⊗L
OX
I)→ K ′ → i∗K → i∗(K ⊗L

OX
I)[1]

Please use Cohomology, Lemma 54.4 to identify the terms. SinceK is inDQCoh(OX) we
conclude that K ′ is in DQCoh(OX′); this uses Derived Categories of Schemes, Lemmas
10.1, 3.9, and 4.1.

Assume K ′ is in DQCoh(OX′). The question is local on X ′ hence we may assume X ′ is
affine. Say X ′ = Spec(A′) and X = Spec(A) with A = A′/I and I nilpotent. Then K ′

comes from an object M ′ ∈ D(A′), see Derived Categories of Schemes, Lemma 3.5. Thus
M = M ′ ⊗L

A′ A is a pseudo-coherent object of D(A) by Derived Categories of Schemes,
Lemma 10.2 and our assumption on K. Hence we can represent M by a bounded above
complex of finite free A-modules E•, see More on Algebra, Lemma 64.5. By More on
Algebra, Lemma 75.3 we conclude that M ′ is pseudo-coherent as desired. �

Lemma 71.2. Consider a cartesian diagram

X
i
//

f

��

X ′

f ′

��
Y

j // Y ′

of schemes. Assume X ′ → Y ′ is flat and locally of finite presentation and Y → Y ′ is
a finite order thickening. Let E′ ∈ D(OX′). If E = Li∗(E′) is Y -perfect, then E′ is
Y ′-perfect.

Proof. Recall that being Y -perfect for E means E is pseudo-coherent and locally
has finite tor dimension as a complex of f−1OY -modules (Derived Categories of Schemes,
Definition 35.1). By Lemma 71.1 we find thatE′ is pseudo-coherent. In particular,E′ is in
DQCoh(OX′), see Derived Categories of Schemes, Lemma 10.1. To prove that E′ locally
has finite tor dimension we may work locally on X ′. Hence we may assume X ′, S′, X , S
are affine, say given by rings A′, R′, A, R. Then we reduce to the commutative algebra
version by Derived Categories of Schemes, Lemma 35.3. The commutative algebra version
in More on Algebra, Lemma 83.8. �

Lemma 71.3. Let (R, I) be a pair consisting of a ring and an ideal I contained in the
Jacobson radical. Set S = Spec(R) and S0 = Spec(R/I). Let f : X → S be proper, flat,
and of finite presentation. Denote X0 = S0 ×S X . Let E ∈ D(OX) be pseudo-coherent.
If the derived restriction E0 of E to X0 is S0-perfect, then E is S-perfect.

Proof. Choose a finite affine open covering X = U1 ∪ . . . ∪ Un. For each i we can
choose a closed immersion Ui → Adi

S . Set Ui,0 = S0 ×S Ui. For each i the complex
E0|Ui,0 has tor amplitude in [ai, bi] for some ai, bi ∈ Z. Let x ∈ X be a point. We will
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show that the tor amplitude ofEx overR is in [ai− di, bi] for some i. This will finish the
proof as the tor amplitude can be read off from the stalks by Cohomology, Lemma 48.5.

Since f is proper f({x}) is a closed subset ofS. Since I is contained in the Jacobson radical,
we see that f({x}) meeting the closed subset S0 ⊂ S. Hence there is a specialization
x  x0 with x0 ∈ X0. Pick an i with x0 ∈ Ui, so x0 ∈ Ui,0. We will fix i for the rest
of the proof. Write Ui = Spec(A). Then A is a flat, finitely presented R-algebra which
is a quotient of a polynomial R-algebra in di-variables. The restriction E|Ui corresponds
(by Derived Categories of Schemes, Lemma 3.5 and 10.2) to a pseudo-coherent object K
of D(A). Observe that E0 corresponds to K ⊗L

A A/IA. Let q ⊂ q0 ⊂ A be the prime
ideals corresponding to x  x0. Then Ex = Kq and Kq is a localization of Kq0 . Hence
it suffices to show that Kq0 has tor amplitude in [ai − di, bi] as a complex of R-modules.
Let I ⊂ p0 ⊂ R be the prime ideal corresponding to f(x0). Then we have

K ⊗L
R κ(p0) = (K ⊗L

R R/I)⊗L
R/I κ(p0)

= (K ⊗L
A A/IA)⊗L

R/I κ(p0)

the second equality because R → A is flat. By our choice of ai, bi this complex has co-
homology only in degrees in the interval [ai, bi]. Thus we may finally apply More on
Algebra, Lemma 83.9 to R→ A, q0, p0 and K to conclude. �

72. Contracting rational curves

In this section we study proper morphisms f : X → Y whose fibres have dimension
≤ 1 having R1f∗OX = 0. To understand the title of this section, please take a look at
Algebraic Curves, Sections 22, 23, and 24.

Lemma 72.1. Let f : X → Y be a proper morphism of schemes. Let y ∈ Y be a point
with dim(Xy) ≤ 1. If

(1) R1f∗OX = 0, or more generally
(2) there is a morphism g : Y ′ → Y such that y is in the image of g and such that

R′f ′
∗OX′ = 0 where f ′ : X ′ → Y ′ is the base change of f by g.

Then H1(Xy,OXy ) = 0.

Proof. To prove the lemma we may replace Y by an open neighbourhood of y. Thus
we may assume Y is affine and that all fibres of f have dimension ≤ 1, see Morphisms,
Lemma 28.4. In this case R1f∗OX is a quasi-coherent OY -module of finite type and its
formation commutes with arbitrary base change, see Limits, Lemmas 19.3 and 19.2. The
lemma follows immediately. �

Lemma 72.2. Let f : X → Y be a proper morphism of schemes. Let y ∈ Y be a point
with dim(Xy) ≤ 1 andH1(Xy,OXy ) = 0. Then there is an open neighbourhood V ⊂ Y
of y such that R1f∗OX |V = 0 and the same is true after base change by any Y ′ → V .

Proof. To prove the lemma we may replace Y by an open neighbourhood of y. Thus
we may assume Y is affine and that all fibres of f have dimension ≤ 1, see Morphisms,
Lemma 28.4. In this case R1f∗OX is a quasi-coherent OY -module of finite type and its
formation commutes with arbitrary base change, see Limits, Lemmas 19.3 and 19.2. Say
Y = Spec(A), y corresponds to the prime p ⊂ A, and R1f∗OX corresponds to the finite
A-module M . Then H1(Xy,OXy ) = 0 means that pMp = Mp by the statement on base
change. By Nakayama’s lemma we concludeMp = 0. SinceM is finite, we find an f ∈ A,
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f 6∈ p such that Mf = 0. Thus taking V the principal open D(f) we obtain the desired
result. �

Lemma 72.3. Let f : X → Y be a proper morphism of schemes such that dim(Xy) ≤
1 and H1(Xy,OXy ) = 0 for all y ∈ Y . Let F be quasi-coherent on X . Then

(1) Rpf∗F = 0 for p > 1, and
(2) R1f∗F = 0 if there is a surjection f∗G → F with G quasi-coherent on Y .

If Y is affine, then we also have
(3) Hp(X,F) = 0 for p 6∈ {0, 1}, and
(4) H1(X,F) = 0 if F is globally generated.

Proof. The vanishing in (1) is Limits, Lemma 19.2. To prove (2) we may work lo-
cally on Y and assume Y is affine. Then R1f∗F is the quasi-coherent module on Y asso-
ciated to the module H1(X,F). Here we use that Y is affine, quasi-coherence of higher
direct images (Cohomology of Schemes, Lemma 4.5), and Cohomology of Schemes, Lemma
4.6. Since Y is affine, the quasi-coherent module G is globally generated, and hence so is
f∗G and F . In this way we see that (4) implies (2). Part (3) follows from (1) as well as
the remarks on quasi-coherence of direct images just made. Thus all that remains is the
prove (4). If F is globally generated, then there is a surjection

⊕
i∈I OX → F . By part

(1) and the long exact sequence of cohomology this induces a surjection on H1. Since
H1(X,OX) = 0 because R1f∗OX = 0 by Lemma 72.2, and since H1(X,−) commutes
with direct sums (Cohomology, Lemma 19.1) we conclude. �

Lemma 72.4. Let f : X → Y be a proper morphism of schemes. Assume
(1) for all y ∈ Y we have dim(Xy) ≤ 1 and H1(Xy,OXy ) = 0, and
(2) OY → f∗OX is surjective.

ThenOY ′ → f ′
∗OX′ is surjective for any base change f ′ : X ′ → Y ′ of f .

Proof. We may assume Y and Y ′ affine. Then we can choose a closed immersion
Y ′ → Y ′′ with Y ′′ → Y a flat morphism of affines. By flat base change (Cohomology of
Schemes, Lemma 5.2) we see that the result holds for X ′′ → Y ′′. Thus we may assume Y ′

is a closed subscheme of Y . Let I ⊂ OY be the ideal cutting out Y ′. Then there is a short
exact sequence

0→ IOX → OX → OX′ → 0
where we viewOX′ as a quasi-coherent module onX . By Lemma 72.3 we haveH1(X, IOX) =
0. It follows that

H0(Y,OY )→ H0(Y, f∗OX) = H0(X,OX)→ H0(X,OX′)
is surjective as desired. The first arrow is surjective as Y is affine and since we assumed
OY → f∗OX is surjective and the second by the long exact sequence of cohomology
associated to the short exact sequence above and the vanishing just proved. �

Lemma 72.5. Consider a commutative diagram

X
f

//

��

Y

��
S

of morphisms of schemes. Let s ∈ S be a point. Assume
(1) X → S is locally of finite presentation and flat at points of Xs,
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(2) f is proper,
(3) the fibres of fs : Xs → Ys have dimension ≤ 1 and R1fs,∗OXs = 0,
(4) OYs → fs,∗OXs is surjective.

Then there is an open Ys ⊂ V ⊂ Y such that (a) f−1(V ) is flat over S , (b) dim(Xy) ≤ 1
for y ∈ V , (c) R1f∗OX |V = 0, (d) OV → f∗OX |V is surjective, and (b), (c), and (d)
remain true after base change by any Y ′ → V .

Proof. Let y ∈ Y be a point over s. It suffices to find an open neighbourhood of y
with the desired properties. As a first step, we replace Y by the open V found in Lemma
72.2 so that R1f∗OX is zero universally (the hypothesis of the lemma holds by Lemma
72.1). We also shrink Y so that all fibres of f have dimension≤ 1 (use Morphisms, Lemma
28.4 and properness of f ). Thus we may assume we have (b) and (c) with V = Y and after
any base change Y ′ → Y . Thus by Lemma 72.4 it now suffices to show (d) over Y . We
may still shrink Y further; for example, we may and do assume Y and S are affine.
By Theorem 15.1 there is an open subset U ⊂ X where X → S is flat which contains Xs

by hypothesis. Then f(X \ U) is a closed subset not containing y. Thus after shrinking
Y we may assume X is flat over S.
Say S = Spec(R). Choose a closed immersion Y → Y ′ where Y ′ is the spectrum of a
polynomial ringR[xe; e ∈ E] on a setE. Denote f ′ : X → Y ′ the composition of f with
Y → Y ′. Then the hypotheses (1) – (4) as well as (b) and (c) hold for f ′ and s. If we we
showOY ′ → f ′

∗OX is surjective in an open neighbourhood of y, then the same is true for
OY → f∗OX . Thus we may assume Y is the spectrum of R[xe; e ∈ E].
At this point X and Y are flat over S. Then Ys and X are tor independent over Y . We
urge the reader to find their own proof, but it also follows from Lemma 69.1 applied to
the square with corners X,Y, S, S and its base change by s→ S. Hence

Rfs,∗OXs = L(Ys → Y )∗Rf∗OX
by Derived Categories of Schemes, Lemma 22.5. Because of the vanishing already estab-
lished this implies fs,∗OXs = (Ys → Y )∗f∗OX . We conclude that OY → f∗OX is a
map of quasi-coherent OY -modules whose pullback to Ys is surjective. We claim f∗OX
is a finite type OY -module. If true, then the cokernel F of OY → f∗OX is a finite type
quasi-coherent OY -module such that Fy ⊗ κ(y) = 0. By Nakayama’s lemma (Algebra,
Lemma 20.1) we have Fy = 0. Thus F is zero in an open neighbourhood of y (Modules,
Lemma 9.5) and the proof is complete.
Proof of the claim. For a finite subset E′ ⊂ E set Y ′ = Spec(R[xe; e ∈ E′]). For large
enough E′ the morphism f ′ : X → Y → Y ′ is proper, see Limits, Lemma 13.4. We
fix E′ and Y ′ in the following. Write R = colimRi as the colimit of its finite type Z-
subalgebras. Set Si = Spec(Ri) and Y ′

i = Spec(Ri[xe; e ∈ E′]). For i large enough we
can find a diagram

X

��

f ′
// Y ′

��

// S

��
Xi

f ′
i // Y ′

i
// Si

with cartesian squares such thatXi is flat over Si andXi → Y ′
i is proper. See Limits, Lem-

mas 10.1, 8.7, and 13.1. The same argument as above shows Y ′ andXi are tor independent
over Y ′

i and hence

RΓ(X,OX) = RΓ(Xi,OXi)⊗L
Ri[xe;e∈E′] R[xe; e ∈ E′]
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by the same reference as above. By Cohomology of Schemes, Lemma 19.2 the complex
RΓ(Xi,OXi) is pseudo-coherent in the derived category of the Noetherian ringRi[xe; e ∈
E′] (see More on Algebra, Lemma 64.17). Hence RΓ(X,OX) is pseudo-coherent in the
derived category of R[xe; e ∈ E′], see More on Algebra, Lemma 64.12. Since the only
nonvanishing cohomology module isH0(X,OX) we conclude it is a finiteR[xe; e ∈ E′]-
module, see More on Algebra, Lemma 64.4. This concludes the proof. �

Lemma 72.6. Consider a commutative diagram

X
f

//

��

Y

��
S

of morphisms of schemes. Assume X → S is flat, f is proper, dim(Xy) ≤ 1 for y ∈ Y ,
andR1f∗OX = 0. Then f∗OX is S-flat and formation of f∗OX commutes with arbitrary
base change S′ → S.

Proof. We may assume Y and S are affine, say S = Spec(A). To show the quasi-
coherentOY -module f∗OX is flat relative to S it suffices to show that H0(X,OX) is flat
overA (some details omitted). By Lemma 72.3 we haveH1(X,OX ⊗AM) = 0 for every
A-moduleM . Since alsoOX is flat overAwe deduce the functorM 7→ H0(X,OX⊗AM)
is exact. Moreover, this functor commutes with direct sums by Cohomology, Lemma 19.1.
Then it is an exercise to see that H0(X,OX ⊗A M) = M ⊗A H0(X,OX) functorially
in M and this gives the desired flatness. Finally, if S′ → S is a morphism of affines given
by the ring map A→ A′, then in the affine case just discussed we see that

H0(X ×S S′,OX×SS′) = H0(X,OX ⊗A A′) = H0(X,OX)⊗A A′

This shows that formation of f∗OX commutes with any base changeS′ → S. Some details
omitted. �

Lemma 72.7. Consider a commutative diagram

X
f

//

��

Y

��
S

of morphisms of schemes. Let s ∈ S be a point. Assume
(1) X → S is locally of finite presentation and flat at points of Xs,
(2) Y → S is locally of finite presentation,
(3) f is proper,
(4) the fibres of fs : Xs → Ys have dimension ≤ 1 and R1fs,∗OXs = 0,
(5) OYs → fs,∗OXs is an isomorphism.

Then there is an open Ys ⊂ V ⊂ Y such that (a) V is flat over S , (b) f−1(V ) is flat over S ,
(c) dim(Xy) ≤ 1 for y ∈ V , (d) R1f∗OX |V = 0, (e) OV → f∗OX |V is an isomorphism,
and (a) – (e) remain true after base change of f−1(V )→ V by any S′ → S.

Proof. Let y ∈ Ys. We may always replace Y by an open neighbourhood of y. Thus
we may assume Y and S affine. We may also assume that X is flat over S , dim(Xy) ≤ 1
for y ∈ Y ,R1f∗OX = 0 universally, and thatOY → f∗OX is surjective, see Lemma 72.5.
(We won’t use all of this.)
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Assume S and Y affine. Write S = limSi as a cofiltered of affine Noetherian schemes Si.
By Limits, Lemma 10.1 there exists an element 0 ∈ I and a diagram

X0
f0

//

  

Y0

~~
S0

of finite type morphisms of schemes whose base change to S is the diagram of the lemma.
After increasing 0 we may assume Y0 is affine and X0 → S0 proper, see Limits, Lemmas
13.1 and 4.13. Let s0 ∈ S0 be the image of s. As Ys is affine, we see that R1fs,∗OXs = 0
is equivalent toH1(Xs,OXs) = 0. Since Xs is the base change ofX0,s0 by the faithfully
flat map κ(s0)→ κ(s) we see that H1(X0,s0 ,OX0,s0

) = 0 and hence R1f0,∗OX0,s0
= 0.

Similarly, as OYs → fs,∗OXs is an isomorphism, so is OY0,s0
→ f0,∗OX0,s0

. Since the
dimensions of the fibres of Xs → Ys are at most 1, the same is true for the morphism
X0,s0 → Y0,s0 . Finally, since X → S is flat, after increasing 0 we may assume X0 is flat
over S0, see Limits, Lemma 8.7. Thus it suffices to prove the lemma for X0 → Y0 → S0
and the point s0.

Combining the reduction arguments above we reduce to the case where S and Y affine, S
Noetherian, the fibres of f have dimension≤ 1, andR1f∗OX = 0 universally. Let y ∈ Ys
be a point. Claim:

OY,y −→ (f∗OX)y
is an isomorphism. The claim implies the lemma. Namely, since f∗OX is coherent (Co-
homology of Schemes, Proposition 19.1) the claim means we can replace Y by an open
neighbourhood of y and obtain an isomorphismOY → f∗OX . Then we conclude that Y
is flat over S by Lemma 72.6. Finally, the isomorphismOY → f∗OX remains an isomor-
phism after any base change S′ → S by the final statement of Lemma 72.6.

Proof of the claim. We already know that OY,y −→ (f∗OX)y is surjective (Lemma 72.5)
and that (f∗OX)y isOS,s-flat (Lemma 72.6) and that the induced map

OYs,y = OY,y/msOY,y −→ (f∗OX)y/ms(f∗OX)y → (fs,∗OXs)y
is injective by the assumption in the lemma. Then it follows from Algebra, Lemma 99.1
thatOY,y −→ (f∗OX)y is injective as desired. �

Lemma 72.8. Let f : X → Y be a proper morphism of Noetherian schemes such that
f∗OX = OY , such that the fibres of f have dimension≤ 1, and such thatH1(Xy,OXy ) =
0 for y ∈ Y . Then f∗ : Pic(Y )→ Pic(X) is a bijection onto the subgroup ofL ∈ Pic(X)
with L|Xy ∼= OXy for all y ∈ Y .

Proof. By the projection formula (Cohomology, Lemma 54.2) we see that f∗f
∗N ∼=

N for N ∈ Pic(Y ). We claim that for L ∈ Pic(X) with L|Xy ∼= OXy for all y ∈ Y we
haveN = f∗L is invertible and L ∼= f∗N . This will finish the proof.

The OY -module N = f∗L is coherent by Cohomology of Schemes, Proposition 19.1.
Thus to see that it is an invertible OY -module, it suffices to check on stalks (Algebra,
Lemma 78.2). Since the map from a Noetherian local ring to its completion is faithfully
flat, it suffices to check the completion (f∗L)∧

y is free (see Algebra, Section 97 and Lemma
78.6). For this we will use the theorem of formal functions as formulated in Cohomology
of Schemes, Lemma 20.7. Since f∗OX = OY and hence (f∗OX)∧

y
∼= O∧

Y,y , it suffices to
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show that L|Xn ∼= OXn for each n (compatibly for varying n. By Lemma 4.1 we have an
exact sequence

H1(Xy,m
n
yOX/mn+1

y OX)→ Pic(Xn+1)→ Pic(Xn)
with notation as in the theorem on formal functions. Observe that we have a surjection

O⊕rn
Xy
∼= mny/m

n+1
y ⊗κ(y) OXy −→ mnyOX/mn+1

y OX
for some integers rn ≥ 0. Since dim(Xy) ≤ 1 this surjection induces a surjection on
first cohomology groups (by the vanishing of cohomology in degrees ≥ 2 coming from
Cohomology, Proposition 20.7). Hence the H1 in the sequence is zero and the transition
maps Pic(Xn+1)→ Pic(Xn) are injective as desired.

We still have to show that f∗N ∼= L. This is proved by the same method and we omit the
details. �

73. Affine stratifications

This material is taken from [?]. Please read a little bit about stratifications in Topology,
Section 28 before reading this section.

IfX is a scheme, then a stratification ofX usually means a stratification of the underlying
topological space of X . The strata are locally closed subsets. We will view these strata as
reduced locally closed subschemes of X using Schemes, Remark 12.6.

Definition 73.1. Let X be a scheme. An affine stratification is a locally finite strati-
fication X =

∐
i∈I Xi whose strata Xi are affine and such that the inclusion morphisms

Xi → X are affine.

The condition that a stratification X =
∐
Xi is locally finite is, in the presence of the

condition that the inclusion morphisms Xi → X are quasi-compact, equivalent to the
condition that the strata are locally constructible subsets of X , see Properties, Lemma 2.7.

The condition thatXi → X is an affine morphism is independent on the scheme structure
we put on the locally closed subsetXi, see Lemma 3.1. Moreover, ifX is separated (or more
generally has affine diagonal) and X =

∐
Xi is a locally finite stratification with affine

strata, then the morphisms Xi → X are affine. See Morphisms, Lemma 11.11. This allows
us to disregard the condition of affineness of the inclusion morphisms Xi → X in most
cases of interest.

We are often interested in the case where the partially ordered index set I of the stratifi-
cation is finite. Recall that the length of a partially ordered set I is the supremum of the
lengths p of chains i0 < i1 < . . . < ip of elements of I .

Lemma 73.2. Let X be a scheme. Let X =
∐
i∈I Xi be a finite affine stratification.

There exists an affine stratification with index set {0, . . . , n} where n is the length of I .

Proof. Recall that we have a partial ordering on I such that the closure of Xi is
contained in

⋃
j≤iXj for all i ∈ I . Let I ′ ⊂ I be the set of maximal indices of I . If i ∈ I ′,

thenXi is open inX because the union of the closures of the other strata is the complement
of Xi. Let U =

⋃
i∈I′ Xi viewed as an open subscheme of X so that Ured =

∐
i∈I′ Xi

as schemes. Then U is an affine scheme by Schemes, Lemma 6.8 and Lemma 2.3. The
morphism U → X is affine as each Xi → X , i ∈ I ′ is affine by the same reasoning using
Lemma 3.1. The complement Z = X \ U endowed with the reduced induced scheme
structure has the affine stratification Z =

⋃
i∈I\I′ Xi. Here we use that a morphism of
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schemes T → Z is affine if and only if the composition T → X is affine; this follows from
Morphisms, Lemmas 11.9, 11.7, and 11.11. Observe that the partially ordered set I \ I ′ has
length exactly one less than the length of I . Hence by induction we find that Z has an
affine stratification Z = Z0 q . . . q Zn−1 with index set {1, . . . , n}. Setting Zn = U we
obtain the desired stratification of X . �

If a scheme X has a finite affine stratification, then of course X is quasi-compact. A bit
less obvious is the fact that it forces X to be quasi-separated as well.

Lemma 73.3. Let X be a scheme. The following are equivalent
(1) X has a finite affine stratification, and
(2) X is quasi-compact and quasi-separated.

Proof. Let X =
⋃
Xi be a finite affine stratification. Since each Xi is affine hence

quasi-compact, we conclude that X is quasi-compact. Let U, V ⊂ X be affine open. Then
U ∩ Xi and V ∩ Xi are affine open in Xi since Xi → X is an affine morphism. Hence
U∩V ∩Xi is an affine open of the affine schemeXi (see Schemes, Lemma 21.7 for example).
Therefore U ∩ V =

∐
U ∩ V ∩Xi is quasi-compact as a finite union of affine strata. We

conclude that X is quasi-separated by Schemes, Lemma 21.6.
Assume X is quasi-compact and quasi-separated. We may use the induction principle of
Cohomology of Schemes, Lemma 4.1 to prove the assertion thatX has a finite affine strat-
ification. If X is empty, then it has an empty affine stratification. If X is nonempty
affine then it has an affine stratification with one stratum. Next, asssume X = U ∪ V
where U is quasi-compact open, V is affine open, and we have a finite affine stratifications
U =

⋃
i∈I Ui and U ∩ V =

∐
j∈JWj . Denote Z = X \ V and Z ′ = X \U . Note that Z

is closed in U and Z ′ is closed in V . Observe that Ui ∩ Z and Ui ∩Wj = Ui ×U Wj are
affine schemes affine over U . (Hints: use that Ui ×U Wj → Wj is affine as a base change
of Ui → U , hence Ui ∩Wj is affine, hence Ui ∩Wj → Ui is affine, hence Ui ∩Wj → U
is affine.) It follows that

U =
∐

i∈I
(Ui ∩ Z)q

∐
(i,j)∈I×J

(Ui ∩Wj)

is a finite affine stratification with partial ordering on I q I × J given by i′ ≤ (i, j) ⇔
i′ ≤ i and (i′, j′) ≤ (i, j) ⇔ i′ ≤ i and j′ ≤ j. Observe that (Ui ∩ Z) ×X V = ∅
and (Ui ∩ Wj) ×X V = Ui ∩ Wj are affine. Hence the morphisms Ui ∩ Z → X and
Ui ∩Wj → X are affine because we can check affineness of a morphism locally on the
target (Morphisms, Lemma 11.3) and we have affineness over both U and V . To finish
the proof we take the stratification above and we add one additional stratum, namely Z ′,
whose index we add as a minimal element to the partially ordered set. �

Definition 73.4. Let X be a nonempty quasi-compact and quasi-separated scheme.
The affine stratification number is the smallest integer n ≥ 0 such that the following
equivalent conditions are satisfied

(1) there exists a finite affine stratification X =
∐
i∈I Xi where I has length n,

(2) there exists an affine stratification X = X0 q X1 q . . . q Xn with index set
{0, . . . , n}.

The equivalence of the conditions holds by Lemma 73.2. The existence of a finite affine
stratification is proven in Lemma 73.3.

Lemma 73.5. Let X be a separated scheme which has an open covering by n + 1
affines. Then the affine stratification number of X is at most n.
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Proof. Say X = U0 ∪ . . . ∪ Un is an affine open covering. Set
Xi = (Ui ∪ . . . ∪ Un) \ (Ui+1 ∪ . . . ∪ Un)

Then Xi is affine as a closed subscheme of Ui. The morphism Xi → X is affine by Mor-
phisms, Lemma 11.11. Finally, we have Xi ⊂ Xi ∪Xi−1 ∪ . . . X0. �

Lemma 73.6. Let X be a Noetherian scheme of dimension∞ > d ≥ 0. Then the
affine stratification number of X is at most d.

Proof. By induction on d. If d = 0, then X is affine, see Properties, Lemma 10.5.
Assume d > 0. Let η1, . . . , ηn be the generic points of the irreducible components of
X (Properties, Lemma 5.7). We can cover X by affine opens containing η1, . . . , ηn, see
Properties, Lemma 29.4. SinceX is quasi-compact we can find a finite affine open covering
X =

⋃
j=1,...,m Uj with η1, . . . , ηn ∈ Uj for all j = 1, . . . ,m. Choose an affine open

U ⊂ U1 ∩ . . . ∩ Um containing η1, . . . , ηn (possible by the lemma already quoted). Then
the morphism U → X is affine because U → Uj is affine for all j , see Morphisms, Lemma
11.3. Let Z = X \ U . By construction dim(Z) < dim(X). By induction hypothesis
we can find an affine stratification Z =

⋃
i∈{0,...,n} Zi of Z with n ≤ dim(Z). Setting

U = Xn+1 and Xi = Zi for i ≤ n we conclude. �

Proposition 73.7. Let X be a nonempty quasi-compact and quasi-separated scheme
with affine stratification number n. Then Hp(X,F) = 0, p > n for every quasi-coherent
OX -module F .

Proof. We will prove this by induction on the affine stratification number n. If
n = 0, then X is affine and the result is Cohomology of Schemes, Lemma 2.2. Assume
n > 0. By Definition 73.4 there is an affine scheme U and an affine open immersion
j : U → X such that the complement Z has affine stratification number n− 1. As U and
j are affine we haveHp(X, j∗(F|U )) = 0 for p > 0, see Cohomology of Schemes, Lemmas
2.4 and 2.3. DenoteK andQ the kernel and cokernel of the map F → j∗(F|U ). Thus we
obtain an exact sequence

0→ K → F → j∗(F|U )→ Q→ 0
of quasi-coherent OX -modules (see Schemes, Section 24). A standard argument, breaking
our exact sequence into short exact sequences and using the long exact cohomology se-
quence, shows it suffices to prove Hp(X,K) = 0 and Hp(X,Q) = 0 for p ≥ n. Since
F → j∗(F|U ) restricts to an isomorphism over U , we see that K andQ are supported on
Z. By Properties, Lemma 22.3 we can write these modules as the filtered colimits of their
finite type quasi-coherent submodules. Using the fact that cohomology of sheaves on X
commutes with filtered colimits, see Cohomology, Lemma 19.1, we conclude it suffices to
show that if G is a finite type quasi-coherent module whose support is contained inZ , then
Hp(X,G) = 0 for p ≥ n. Let Z ′ ⊂ X be the scheme theoretic support of G ⊕ OZ ; we
may and do think of G as a quasi-coherent module on Z ′, see Morphisms, Section 5. Then
Z ′ and Z have the same underlying topological space and hence the same affine stratifica-
tion number, namely n− 1. Hence Hp(X,G) = Hp(Z ′,G) (equality by Cohomology of
Schemes, Lemma 2.4) vanishes for p ≥ n by induction hypothesis. �

Example 73.8. Let k be a field and letX = Pn
k ben-dimensional projective space over

k. Lemma 73.5 applies to this by Constructions, Lemma 13.3. Hence the affine stratification
number of Pn

k is at most n. On the other hand, we have nonzero cohomology in degree n
for some quasi-coherent modules on Pn

k , see Cohomology of Schemes, Lemma 8.1. Using
Proposition 73.7 we conclude that the affine stratification number of Pn

k is equal to n.



3320 37. MORE ON MORPHISMS

74. Universally open morphisms

Some material on universally open morphisms.

Lemma 74.1. Let f : X → S be a morphism of schemes. The following are equivalent
(1) f is universally open,
(2) for every morphism S′ → S which is locally of finite presentation the base

change XS′ → S′ is open, and
(3) for every n the morphism An ×X → An × S is open.

Proof. It is clear that (1) implies (2) and (2) implies (3). Let us prove that (3) implies
(1). Suppose that the base change XT → T is not open for some morphism of schemes
g : T → S. Then we can find some affine opens V ⊂ S , U ⊂ X , W ⊂ T with f(U) ⊂ V
and g(W ) ⊂ V such that U ×V W → W is not open. If we can show that this implies
An × U → An × V is not open, then An ×X → An × S is not open and the proof is
complete. This reduces us to the result proved in the next paragraph.

Let A → B be a ring map such that A′ → B′ = A′ ⊗A B does not induce an open map
of spectra for some A-algebra A′. As the principal opens give a basis for the topology of
Spec(B′) we conclude that the image of D(g) in Spec(A′) is not open for some g ∈ B′.
Write g =

∑
i=1,...,n a

′
i ⊗ bi for some n, a′

i ∈ A′, and bi ∈ B. Consider the element
h =

∑
i=1,...,n xibi in B[x1, . . . , xn]. Assume that D(h) maps to an open subset under

the morphism

Spec(B[x1, . . . , xn]) −→ Spec(A[x1, . . . , xn])

in order to get a contradiction. Then D(h) would map surjectively onto a quasi-compact
open U ⊂ Spec(A[x1, . . . , xn]). Let A[x1, . . . , xn] → A′ be the A-algebra homomor-
phism sending xi to a′

i. This also induces a B-algebra homomorphism B[x1, . . . , xn] →
B′ sending h to g. Since

Spec(B[x1, . . . , xn])

��

Spec(B′)oo

��
Spec(A[x1, . . . , xn]) Spec(A′)oo

is cartesian the image of D(g) in Spec(A′) is equal to the inverse image of U in Spec(A′)
and hence open which is the desired contradiction. �

Lemma 74.2. Let f : X → Y be a morphism of schemes. If
(1) f is locally quasi-finite,
(2) Y is geometrically unibranch and locally Noetherian, and
(3) every irreducible component of X dominates an irreducible component of Y ,

then f is universally open.

Proof. For any n the scheme An × Y is geometrically unibranch by Lemma 36.4
and Properties, Lemma 15.6. Hence the hypotheses of the lemma hold for the morphisms
An×X → An×Y for all n. By Lemma 74.1 it suffices to prove f is open. By Morphisms,
Lemma 23.2 it suffices to show that generalizations lift along f . Suppose that y′  y is a
specialization of points in Y and x ∈ X is a point mapping to y. As in Lemma 41.1 choose
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a diagram

u

��

U

��

// X

��
v V // Y

where (V, v) → (Y, y) is an elementary étale neighbourhood, U → V is finite, u is the
unique point of U mapping to v, U ⊂ V ×Y X is open, and v 7→ y and u 7→ x. Let E
be an irreducible component of U passing through u (there is at least one of these). Since
U → X is étale, E maps to an irreducible component of X , which in turn dominates an
irreducible component of Y (by assumption). Since U → V is finite hence closed, we
conclude that the image E′ ⊂ V of E is an irreducible closed subset passing through v
which dominates an irreducible component of Y . Since V → Y is étale E′ must be an
irreducible component of V passing through v. Since Y is geometrically unibranch we
see that E′ is the unique irreducible component of V passing through v (Lemma 36.2).
Since V is locally Noetherian we may after shrinking V assume that E′ = V (equality of
sets).

Since V → Y is étale we can find a specialization v′  v whose image is y′  y. By
the above we can find u′ ∈ U mapping to v′. Then u′  u because u is the only point
of U mapping to v and U → V is closed. Then finally the image x′ ∈ X of u′ is a point
specializing to x and mapping to y′ and the proof is complete. �

Lemma 74.3. Let A → B be a ring map. Say B is generated as an A-module by
b1, . . . , bd ∈ B. Set h =

∑
xibi ∈ B[x1, . . . , xd]. Then Spec(B) → Spec(A) is univer-

sally open if and only if the image of D(h) in Spec(A[x1, . . . , xd]) is open.

Proof. If Spec(B)→ Spec(A) is universally open, then of course the image ofD(h)
is open. Conversely, assume the image U of D(h) is open. Let A → A′ be a ring map. It
suffices to show that the image of any principal openD(g) ⊂ Spec(A′⊗AB) in Spec(A′)
is open. We may write g =

∑
i=1,...,d a

′
i ⊗ bi for some a′

i ∈ A′. Let A[x1, . . . , xn] → A′

be the A-algebra homomorphism sending xi to a′
i. This also induces a B-algebra homo-

morphism B[x1, . . . , xn]→ A′ ⊗A B sending h to g. Since

Spec(B[x1, . . . , xn])

��

Spec(B′)oo

��
Spec(A[x1, . . . , xn]) Spec(A′)oo

is cartesian the image of D(g) in Spec(A′) is equal to the inverse image of U in Spec(A′)
and hence open. �

Lemma 74.4. Let S = limSi be a limit of a directed system of schemes with affine
transition morphisms. Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of schemes over S0.
Assume S0, X0, Y0 are quasi-compact and quasi-separated. Let fi : Xi → Yi be the base
change of f0 to Si and let f : X → Y be the base change of f0 to S. If

(1) f is locally quasi-finite and universally open, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is locally quasi-finite and universally open.
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Proof. By Limits, Lemma 18.2 after increasing 0 we may assume f0 is locally quasi-
finite. Let x ∈ X . By étale localization of quasi-finite morphisms we can find a diagram

X

��

Uoo

��
Y Voo

where V → Y is étale, U ⊂ XV is open, U → V is finite, and x is in the image of U → X ,
see Lemma 41.1. After shrinking V we may assume V and U are affine. Since X is quasi-
compact, it follows, by taking a finite disjoint union of such V and U , that we can make a
diagram as above such that U → X is surjective. By Limits, Lemmas 10.1, 4.11, 8.15, 8.3,
8.10, and 4.13 after possibly increasing 0 we may assume we have a diagram

X0

��

U0oo

��
Y0 V0oo

where V0 is affine, V0 → Y0 is étale,U0 ⊂ (X0)V0 is open,U0 → V0 is finite, andU0 → X0
is surjective. Since Vi → Yi is étale and hence universally open, follows that it suffices to
prove that Ui → Vi is universally open for large enough i. This reduces us to the case
discussed in the next paragraph.
Let A = colimAi be a filtered colimit of rings. Let A0 → B0 be a ring map. Set B =
A ⊗A0 B0 and Bi = Ai ⊗A0 B0. Assume A0 → B0 is finite, of finite presentation, and
A → B is universally open. We have to show that Ai → Bi is universally open for i
large enough. Pick b0,1, . . . , b0,d ∈ B0 which generate B0 as an A0-module. Set h0 =∑
j=1,...,d xjb0,j in B0[x1, . . . , xd]. Denote h, resp. hi the image of h0 in B[x1, . . . , xd],

resp. Bi[x1, . . . , xd]. The image U of D(h) in Spec(A[x1, . . . , xd]) is open as A → B
is universally open. Of course U is quasi-compact as the image of an affine scheme. For
i large enough there is a quasi-compact open Ui ⊂ Spec(Ai[x1, . . . , xd]) whose inverse
image in Spec(A[x1, . . . , xd]) is U , see Limits, Lemma 4.11. After increasing i we may
assume that D(hi) maps into Ui; this follows from the same lemma by considering the
pullback of Ui in D(hi). Finally, for i even larger the morphism of schemes D(hi)→ Ui
will be surjective by an application of the already used Limits, Lemma 8.15. We conclude
Ai → Bi is universally open by Lemma 74.3. �

Lemma 74.5. Let f : X → Y be a locally quasi-finite morphism. Then
(1) the functions nX/Y of Lemmas 27.3 and 28.3 agree,
(2) if X is quasi-compact, then nX/Y attains a maximum d <∞.

Proof. Agreement of the functions is immediate from the fact that the (geometric)
fibres of a locally quasi-finite morphism are discrete, see Morphisms, Lemma 20.8. Bound-
edness follows from Morphisms, Lemmas 57.2 and 57.9. �

Lemma 74.6. Let f : X → Y be a separated, locally quasi-finite, and universally
open morphism of schemes. Let nX/Y be as in Lemma 74.5. If nX/Y (y) ≥ d for some
y ∈ Y and d ≥ 0, then nX/Y ≥ d in an open neighbourhood of y.

Proof. The question is local on Y hence we may assume Y affine. Let K be an alge-
braic closure of the residue field κ(y). Our assumption is that (Xy)K has ≥ d connected
components. Then for a suitable quasi-compact open X ′ ⊂ X the scheme (X ′

y)K has
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≥ d connected components; details omitted. After replacing X by X ′ we may assume X
is quasi-compact. Then f is quasi-finite. Let x1, . . . , xn be the points of X lying over y.
Apply Lemma 41.5 to get an étale neighbourhood (U, u)→ (Y, y) and a decomposition

U ×Y X = W q
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that nX/Y (y) =
∑
imi in this situation; some details omit-

ted. Since f is universally open, we see that Vi,j → U is open for all i, j. Hence af-
ter shrinking U we may assume Vi,j → U is surjective for all i, j. This proves that
nU×YX/U ≥

∑
imi = nX/Y (y) ≥ d. Since the construction of nX/Y is compatible

with base change the proof is complete. �

Lemma 74.7. Let f : X → Y be a separated, locally quasi-finite, and universally
open morphism of schemes. Let nX/Y be as in Lemma 74.5. If nX/Y attains a maximum
d <∞, then the set

Yd = {y ∈ Y | nX/Y (y) = d}
is open in Y and the morphism f−1(Yd)→ Yd is finite.

Proof. The openness of Yd is immediate from Lemma 74.6. To prove finiteness over
Yd we redo the argument of the proof of that lemma. Namely, let y ∈ Yd. Then there
are at most d points of X lying over y. Say x1, . . . , xn are the points of X lying over y.
Apply Lemma 41.5 to get an étale neighbourhood (U, u)→ (Y, y) and a decomposition

U ×Y X = W q
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that d = nX/Y (y) =
∑
imi in this situation; some details

omitted. Since f is universally open, we see that Vi,j → U is open for all i, j. Hence after
shrinking U we may assume Vi,j → U is surjective for all i, j and we may assume U maps
into W . This proves that nU×YX/U ≥

∑
imi = d. Since the construction of nX/Y is

compatible with base change we know that nU×YX/U = d. This means that W has to be
empty and we conclude thatU×Y X → U is finite. By Descent, Lemma 23.23 this implies
that X → Y is finite over the image of the open morphism U → Y . In other words, we
see that f is finite over an open neighbourhood of y as desired. �

75. Weightings

The material in this section is taken from [?, Exposee XVII, 6.2.4].
Let π : U → V be a locally quasi-finite morphism of schemes with finite fibres. Given a
function w : U → Z we define a function∫

π
w : V −→ Z, v 7−→

∑
u∈U, π(u)=v w(u)[κ(u) : κ(v)]s

Note that the field extensions are finite (Morphisms, Lemma 20.5), [κ′ : κ]s is the separable
degree (Fields, Definition 14.7), and the sum is finite as the fibres of π are assumed finite.
Another way to compute the value of

∫
π
w at a point v ∈ V is as follows. Choose an

algebraically closed field k and a morphism v : Spec(k)→ V whose image is v. Then we
have

(
∫
π
w)(v) =

∑
u∈Uv w(u)

where of course w(u) denotes the value of w at the image u of the point u under the
morphism Uv → U . Note that we may view u ∈ Uv as morphisms u : Spec(k)→ U such
that π ◦ u = v. Namely, since U → V is locally quasi-finite with finite fibres, the scheme
Uv is the spectrum of a finite dimension algebra over k and all of whose prime ideals are



3324 37. MORE ON MORPHISMS

maximal ideals with residue field k. To see that the equality holds, note that the number
of morphisms u lying over a given u is equal to [κ(u) : κ(v)]s by Fields, Lemma 14.8.

Lemma 75.1. Given a cartesian square

U

π

��

U ′
h

oo

π′

��
V V ′goo

with π locally quasi-finite with finite fibres and a function w : U → Z we have (
∫
π
w) ◦

g =
∫
π′(w ◦ h).

Proof. This follows immediately from the second description of
∫
π
w given above.

To prove it from the definition, you use that ifE/F is a finite extension of fields andF ′/F
is another field extension, then writing (E ⊗F F ′)red =

∏
E′
i as a product of fields finite

over F ′, we have
[E : F ]s =

∑
[E′
i : F ′]s

To prove this equality pick an algebraically closed field extension Ω/F ′ and observe that
[E : F ]s = |MorF (E,Ω)|

= |MorF ′(E ⊗F F ′,Ω)|
= |MorF ′((E ⊗F F ′)red,Ω)|

=
∑
|MorF ′(E′

i,Ω)|

=
∑

[E′
i : F ′]s

where we have used Fields, Lemma 14.8. �

Definition 75.2. Let f : X → Y be a locally quasi-finite morphism. A weighting
or a pondération of f is a map w : X → Z such that for any diagram

X

f

��

U
h
oo

π

��
Y V

goo

where V → Y is étale, U ⊂ XV is open, and U → V finite, the function
∫
π
(w ◦ h) is

locally constant.

Of course taking w = 0 we obtain a weighting of any locally quasi-finite morphism f ,
albeit not a very interesting one. It will turn out that positive weightings, i.e., w : X →
Z>0 are the most interesting ones for various purposes.

Lemma 75.3. Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z be
a weighting. Let f ′ : X ′ → Y ′ be the base change of f by a morphism Y ′ → Y . Then the
composition w′ : X ′ → Z of w and the projection X ′ → X is a weighting of f ′.

Proof. Consider a diagram

X ′

f ′

��

U ′
h′
oo

π′

��
Y ′ V ′g′
oo
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as in Definition 75.2 for the morphism f ′. For any v′ ∈ V ′ we have to show that
∫
π′(w′ ◦

h′) is constant in an open neighbourhood of v′. By Lemma 75.1 (and the fact that étale
morphisms are open) we may replace V ′ by any étale neighbourhood of v′. After replacing
V ′ by an étale neighbourhood of v′ we may assume thatU ′ = U ′

1q. . .qU ′
n where eachU ′

i

has a unique point u′
i lying over v′ such that κ(u′

i)/κ(v′) is purely inseparable, see Lemma
41.5. Clearly, it suffices to prove that

∫
U ′
i
→V ′ w

′|U ′
i

is constant in a neighbourhood of v′.
This reduces us to the case discussed in the next paragraph.

We have v′ ∈ V ′ and there is a unique point u′ of U ′ lying over v′ with κ(u′)/κ(v′)
purely inseparable. Denote x ∈ X and y ∈ Y the image of u′ and v′. We can find an
étale neighbourhood (V, v) → (Y, y) and an open U ⊂ XV such that π : U → V is
finite and such that there is a unique point u ∈ U lying over v which maps to x ∈ X via
the projection h : U → X such that moreover κ(u)/κ(v) is purely inseparable. This is
possible by the lemma used above. Consider the morphism

U ′′ = U ×X U ′ −→ V ×Y V ′ = V ′′

Since u and u′ both map to x ∈ X there is a point u′′ ∈ U ′′ mapping to (u, u′). Denote
v′′ ∈ V ′′ the image of u′′. After replacing V ′, v′ by V ′′, v′′ we may assume that the
composition V ′ → Y ′ → Y factors through a map of étale neighbourhoods (V ′, v′) →
(V, v) such that the induced morphism X ′

V ′ = XV ′ → XV sends u′ to u. Inside the base
change X ′

V ′ = XV ′ we have two open subschemes, namely U ′ and the inverse image UV ′

of U ⊂ XV . By construction both contain a unique point lying over v′, namely u′ for
both of them. Thus after shrinking V ′ we may assume these open subsets are the same;
namely, U ′ \ (U ′ ∩UV ′) and UV ′ \ (U ′ ∩UV ′) have a closed image in V ′ and these images
do not contain v′. ThusU ′ = UV ′ and we find a cartesian diagram as in Lemma 75.1. Since∫
π
(w ◦ h) is locally constant by assumption we conclude. �

Lemma 75.4. Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z be
a weighting of f . If X ′ ⊂ X is open, then w|X′ is a weighting of f |X′ : X ′ → Y .

Proof. Immediate from the definition. �

Lemma 75.5. Let f : X → Y and g : Y → Z be locally quasi-finite morphisms. Let
wf : X → Z be a weighting of f and let wg : Y → Z be a weighting of g. Then the
function

X −→ Z, x 7−→ wf (x)wg(f(x))
is a weighting of g ◦ f .

Proof. Let us set wg◦f (x) = wf (x)wg(f(x)) for x ∈ X . Consider a diagram

X

g◦f
��

Uoo

π

��
Z Woo

where W → Z is étale, U ⊂ XW is open, and U → W finite. We have to show that∫
π
wg◦f |U is locally constant. Choose a point w ∈ W . By Lemma 75.1 (and the fact that

étale morphisms are open) it suffices to show that
∫
π
wg◦f |U is constant after replacing

(W,w) by an étale neighbourhood. After replacing (W,w) by an étale neighbourhood we
may assume U = U1 q . . . q Un where each Ui has a unique point ui lying over w such
that κ(ui)/κ(w) is purely inseparable, see Lemma 41.5. Clearly, it suffices to show that
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wg◦f |Ui is constant in an étale neighbourhood of w. This reduces us to the case
discussed in the next paragraph.
We have w ∈ W and there is a unique point u ∈ U lying over w with κ(u)/κ(w) purely
inseparable. Consider the point v = f(u) ∈ Y . After replacing (W,w) by an elementary
étale neighbourhood we may assume there is an open neighbourhood V ⊂ YW of v such
that V →W is finite, see Lemma 41.1. Then f−1

W (V ) ∩ U is an open neighbourhood of u
where fW : XW → YW is the base change of f to W . Hence after Zariski shrinking W ,
we may assume fW (U) ⊂ V . Thus we obtain morphisms

U
a−→ V

b−→W

and U → V is finite as V →W is separated (because finite). Since wf and wg are weight-
ings of f and g we see that

∫
a
wf |U is locally constant on V and

∫
b
wg|V is locally constant

on W . Thus after shrinking W one more time we may assume these functions are con-
stant say with values n and m. It follows immediately that

∫
π
wg◦f |U =

∫
b◦a wg◦f |U is

constant with value nm as desired. �

Lemma 75.6. Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z be
a weighting. If w(x) > 0 for all x ∈ X , then f is universally open.

Proof. Since the property is preserved by base change, see Lemma 75.3, it suffices to
prove that f is open. Since we may also replace X by any open of X , it suffices to prove
that f(X) is open. Let y ∈ f(X). Choose x ∈ X with f(x) = y. It suffices to prove that
f(X) contains an open neighbourhood of y and it suffices to do so after replacing Y by an
étale neighbourhood of y. By étale localization of quasi-finite morphisms, see Section 41,
we may assume there is an open neighbourhood U ⊂ X of x such that π = f |U : U → Y
is finite. Then

∫
π
w|U is locally constant and has positive value at y. Hence π(U) contains

an open neighbourhood of y and the proof is complete. �

Lemma 75.7. Let f : X → Y be a morphism of schemes. Assume f is locally quasi-
finite, locally of finite presentation, and flat. Then there is a positive weighting w : X →
Z>0 of f given by the rule that sends x ∈ X lying over y ∈ Y to

w(x) = lengthOX,x
(OX,x/myOX,x)[κ(x) : κ(y)]i

where [κ′ : κ]i is the inseparable degree (Fields, Definition 14.7).

Proof. Consider a diagram as in Definition 75.2. Let u ∈ U with images x, y, v in
X,Y, V . Then we claim that

lengthOX,x
(OX,x/myOX,x) = lengthOU,u

(OU,u/mvOU,u)

and
[κ(x) : κ(y)]i = [κ(u) : κ(v)]i

The first equality follows asOX,x → OU,u is a flat local homomorphism such thatmyOU,u =
mvOU,u and mxOU,u = mu (because OY,y → OV,v and OX,x → OU,u are unramified)
and hence the equality by Algebra, Lemma 52.13. The second equality follows because
κ(v)/κ(y) is a finite separable extension and κ(u) is a factor of κ(x)⊗κ(y) κ(v) and hence
the inseparable degree is unchanged. Having said this, we see that formation of the func-
tion in the lemma commutes with étale base change. This reduces the problem to the
discussion of the next paragraph.
Assume that f is a finite, flat morphism of finite presentation. We have to show that

∫
f
w

is locally constant on Y . In fact, f is finite locally free (Morphisms, Lemma 48.2) and we
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will show that
∫
f
w is equal to the degree of f (which is a locally constant function on Y ).

Namely, for y ∈ Y we see that

(
∫
f
w)(y) =

∑
f(x)=y

lengthOX,x
(OX,x/myOX,x)[κ(x) : κ(y)]i[κ(x) : κ(y)]s

=
∑

f(x)=y
lengthOX,x

(OX,x/myOX,x)[κ(x) : κ(y)]

= lengthOY,y
((f∗OX)y/my(f∗OX)y)

Last equality by Algebra, Lemma 52.12. The final number is the rank of f∗OX at y as
desired. �

Lemma 75.8. Let f : X → Y be a morphism of schemes. Assume
(1) f is locally quasi-finite, and
(2) Y is geometrically unibranch and locally Noetherian.

Then there is a weighting w : X → Z≥0 given by the rule that sends x ∈ X lying over
y ∈ Y to the “generic separable degree” ofOshX,x overOshY,y .

Proof. It follows from Algebra, Lemma 156.3 thatOshY,y → OshX,x is finite. Since Y is
geometrically unibranch there is a unique minimal prime p inOshY,y , see More on Algebra,
Lemma 106.5. Write

(κ(p)⊗Osh
Y,y
OshX,x)red =

∏
Ki

as a finite product of fields. We set w(x) =
∑

[Ki : κ(p)]s.
Since this definition is clearly insensitive to étale localization, in order to show that w
is a weighting we reduce to showing that if f is a finite morphism, then

∫
f
w is locally

constant. Observe that the value of
∫
f
w in a generic point η of Y is just the number

of points of the geometric fibre Xη of X → Y over η. Moreover, since Y is unibranch a
point y of Y is the specialization of a unique generic point η. Hence it suffices to show that
(
∫
f
w)(y) is equal to the number of points ofXη . After passing to an affine neighbourhood

of y we may assume X → Y is given by a finite ring map A → B. Suppose OshY,y is
constructed using a map κ(y)→ k into an algebraically closed field k. Then

OshY,y ⊗A B =
∏

f(x)=y

∏
ϕ∈Morκ(y)(κ(x),k)

OshX,x

by Algebra, Lemma 153.4 and the lemma used above. Observe that the minimal prime
p of OshY,y maps to the prime of A corresponding to η. Hence we see that the desired
equality holds because the number of points of a geometric fibre is unchanged by a field
extension. �

76. More on weightings

We prove a few more basic properties of weightings. Allthough at first it appears that
weightings can be very wild, it actually turns out the condition imposed in Definition
75.2 is rather strong.

Lemma 76.1. Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z be
a weighting of f . Then the level sets of the function w are locally constructible in X .

Proof. In the proof below we will use Lemmas 75.4 and 75.3 without further men-
tion. We will also use elementary properties of constructible subsets of schemes and topo-
logical spaces, see Topology, Section 15 and Properties, Section 2. Using this the reader sees
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question is local on X and Y ; details omitted. Hence we may assume X and Y are affine.
If we can find a surjective morphism Y ′ → Y of finite presentation such that the level sets
of w pull back to locally constructible subsets of X ′ = Y ′ ×Y X , then we conclude by
Morphisms, Theorem 22.3.

Assume X and Y affine. We may choose an immersion X → T where T → Y is finite,
see Lemma 43.3. By Morphisms, Lemma 48.6 after replacing Y by Y ′ surjective finite
locally free over Y , replacingX by Y ′×Y X and T by a scheme finite locally free over Y ′

containing Y ′ ×Y T as a closed subscheme, we may assume T is finite locally free over Y ,
contains closed subschemes Ti mapping isomorphically to Y such that T =

⋃
i=1,...,n Ti

(set theoretically). Since Ti ⊂ T is a constructible closed subset (as the image of a finitely
presented morphism Y → T of schemes), we see that for I ⊂ {1, . . . , n} the intersection⋂
i∈I Ti is a constructible closed subset ofT and hence maps to a constructible closed subset

of Y .

For a disjoint union decomposition {1, . . . , n} = I1 q . . . q Ir with nonempty parts
consider the subset YI1,...,Ir ⊂ Y consisting of points y ∈ Y such that Ty = {x1, . . . , xr}
consists of exactly r points with xj ∈ Ti ⇔ i ∈ Ij . By our remarks above this is a
constructible partition of Y . There exists an affine scheme Y ′ of finite presentation over
Y such that the image of Y ′ → Y is exactly YI1,...,Ir , see Algebra, Lemma 29.4. Hence
we may assume that Y = YI1,...,Ir for some disjoint union decomposition {1, . . . , n} =
I1q . . .qIr. In this case T = T (1)q . . .qT (r) with T (j) =

⋂
i∈Ij Ti is a decomposition

of T into disjoint closed (and hence open) subsets. Intersecting with the locally closed
subscheme X we obtain an analogous decomposition X = X(1) q . . . qX(r) into open
and closed parts. The morphism X(j) → Y an immersion. Since w is a weighting, it
follows that w|X(j) is locally constant16 and we conclude. �

Lemma 76.2. Let f : X → Y be a locally quasi-finite morphism of finite presentation.
Let w : X → Z be a weighting of f . Then the level sets of the function

∫
f
w are locally

constructible in Y .

Proof. By Lemma 75.1 formation of the function
∫
f
w commutes with arbitrary base

change and by Lemma 75.3 after base change we still have a weighthing. This means that
if we can find Y ′ → Y surjective and of finite presentation, then it suffices to prove the
result after base change to Y ′, see Morphisms, Theorem 22.3.

The question is local on Y hence we may assume Y is affine. ThenX is quasi-compact and
quasi-separated (as f is of finite presentation). Suppose thatX = U∪V are quasi-compact
open. Then we have ∫

f
w =

∫
f |Uw|U +

∫
f |V w|V −

∫
f |U∩V

w|U∩V

Thus if we know the result for w|U , w|V , w|U∩V then we know the result for w. By the
induction principle (Cohomology of Schemes, Lemma 4.1) it suffices to prove the lemma
when X is affine.

Assume X and Y are affine. We may choose an open immersion X → T where T → Y
is finite, see Lemma 43.3. Because we may still base change with a suitable Y ′ → Y we
can use Morphisms, Lemma 48.6 to reduce to the case where all residue field extensions
induced by the morphism T → Y (and a foriori induced by X → Y ) are trivial. In this

16In fact, if f : X → Y is an immersion and w is a weighting of f , then f restricts to an open map on the
locus where w is nonzero.
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situation
∫
f
w is just taking the sums of the values of w in fibres. The level sets of w are

locally constructible in X (Lemma 76.1). The function w only takes a finite number of
values by Properties, Lemma 2.7. Hence we conclude by Morphisms, Theorem 22.3 and
some elementary arguments on sums of integers. �

Lemma 76.3. Let f : X → Y be a locally quasi-finite morphism. Let w : X → Z>0
be a positive weighting of f . Then w is upper semi-continuous.

Proof. Let x ∈ X with image y ∈ Y . Choose an étale neighbourhood (V, v) →
(Y, y) and an open U ⊂ XV such that π : U → V is finite and there is a unique point u ∈
U mapping to vwith κ(u)/κ(v) purely inseparable. See Lemma 41.3. Then (

∫
π
w|U )(v) =

w(u). It follows from Definition 75.2 that after replacing V by a neighbourhood of v we
we havew|U (u′) ≤ w|U (u) = w(x) for all u′ ∈ U . Namely,w|U (u′) occurs as a summand
in the expression for (

∫
π
w|U )(π(u′)). This proves the lemma because the étale morphism

U → X is open. �

Lemma 76.4. Let f : X → Y be a separated, locally quasi-finite morphism with
finite fibres. Let w : X → Z>0 be a positive weighting of f . Then

∫
f
w is lower semi-

continuous.

Proof. Let y ∈ Y . Let x1, . . . , xr ∈ X be the points lying over y. Apply Lemma
41.5 to get an étale neighbourhood (U, u)→ (Y, y) and a decomposition

U ×Y X = W q
∐

i=1,...,n

∐
j=1,...,mi

Vi,j

as in locus citatus. Observe that (
∫
f
w)(y) =

∑
w(vi,j) where w(vi,j) = w(xi). Since∫

Vi,j→U
w|Vi,j is locally constant by definition, we may after shrinking U assume these

functions are constant with value w(vi,j). We conclude that∫
U×YX→U

w|U×YX =
∫
W→U

w|W +
∑∫

Vi,j→U
w|Vi,j =

∫
W→U

w|W + (
∫
f
w)(y)

This is≥ (
∫
f
w)(y) and we conclude becauseU → Y is open and formation of the integral

commutes with base change (Lemma 75.1). �

Lemma 76.5. Let f : X → Y be a locally quasi-finite morphism with X quasi-
compact. Let w : X → Z be a weighting of f . Then

∫
f
w attains its maximum.

Proof. It follows from Lemma 76.1 and Properties, Lemma 2.7 that w only takes a
finite number of values on X . It follows from Morphisms, Lemma 57.9 that X → Y has
bounded geometric fibres. This shows that

∫
f
w is bounded. �

Lemma 76.6. Let f : X → Y be a separated, locally quasi-finite morphism. Let
w : X → Z>0 be a positive weighting of f . Assume

∫
w
f attains its maximum d and let

Yd ⊂ Y be the open set of points y with (
∫
f
w)(y) = d. Then the morphism f−1(Yd)→

Yd is finite.

Proof. Observe that Yd is open by Lemma 76.4. Let y ∈ Yd. Say x1, . . . , xn are the
points of X lying over y. Apply Lemma 41.5 to get an étale neighbourhood (U, u) →
(Y, y) and a decomposition

U ×Y X = W q
∐

i=1,...,n

∐
j=1,...,mi

Vi,j
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as in locus citatus. Observe that d =
∑
w(vi,j) wherew(vi,j) = w(xi). Since

∫
Vi,j→U

w|Vi,j
is locally constant by definition, we may after shrinkingU assume these functions are con-
stant with value w(vi,j). We conclude that∫

U×YX→U
w|U×YX =

∫
W→U

w|W +
∑∫

Vi,j→U
w|Vi,j =

∫
W→U

w|W + (
∫
f
w)(y)

This is≥ (
∫
f
w)(y) = d and we conclude thatW must be the emptyset. ThusU ×Y X →

U is finite. By Descent, Lemma 23.23 this implies that X → Y is finite over the image
of the open morphism U → Y . In other words, we see that f is finite over an open
neighbourhood of y as desired. �

Lemma 76.7. Let A → B be a ring map which is finite and of finite presentation.
There exists a finitely presented ring map A→ Auniv and an idempotent euniv ∈ B ⊗A
Auniv such that for any ring map A → A′ and idempotent e ∈ B ⊗A A′ there is a ring
map Auniv → A′ mapping euniv to e.

Proof. Choose b1, . . . , bn ∈ B generating B as an A-module. For each i choose a
monicPi ∈ A[x] such thatPi(bi) = 0 inB, see Algebra, Lemma 36.3. ThusB is a quotient
of the finite free A-algebra B′ = A[x1, . . . , xn]/(P1(x1), . . . , Pn(xn)). Let J ⊂ B′ be
the kernel of the surjection B′ → B. Then J = (f1, . . . , fm) is finitely generated as B is
a finitely generated A-algebra, see Algebra, Lemma 6.2. Choose an A-basis b′

1, . . . , b
′
N of

B′. Consider the algebra

Auniv = A[z1, . . . , zN , y1, . . . , ym]/I

where I is the ideal generated by the coefficients in A[z1, . . . , zn, y1, . . . , ym] of the basis
elements b′

1, . . . , b
′
N of the expresssion

(
∑

zjb
′
j)2 −

∑
zjb

′
j +

∑
ykfk

inB′[z1, . . . , zN , y1, . . . , ym]. By construction the element
∑
zjb

′
j maps to an idempotent

euniv in the algebra B ⊗A Auniv . Moreover, if e ∈ B ⊗A A′ is an idempotent, then we
can lift e to an element of the form

∑
b′
j ⊗ a′

j in B′ ⊗A A′ and we can find a′′
k ∈ A′ such

that
(
∑

b′
j ⊗ a′

j)2 −
∑

b′
j ⊗ a′

j +
∑

fk ⊗ a′′
k

is zero in B′ ⊗A A′. Hence we get an A-algebra map Auniv → A sending zj to a′
j and yk

to a′′
k mapping euniv to e. This finishes the proof. �

Lemma 76.8. Let X → Y be a morphism of affine schemes which is quasi-finite
and of finite presentation. There exists a morphism Yuniv → Y of finite presentation
and an open subscheme Uuniv ⊂ Yuniv ×Y X such that Uuniv → Yuniv is finite with
the following property: given any morphism Y ′ → Y of affine schemes and an open
subschemeU ′ ⊂ Y ′×YX such thatU ′ → Y ′ is finite, there exists a morphismY ′ → Yuniv
such that the inverse image of Uuniv is U ′.

Proof. Recall that a finite type morphism is quasi-finite if and only if it has relative
dimension 0, see Morphisms, Lemma 29.5. By Lemma 34.9 applied with d = 0 we reduce
to the case where X and Y are Noetherian. We may choose an open immersion X → X ′

such that X ′ → Y is finite, see Algebra, Lemma 123.14. Note that if we have Y ′ → Y and
U ′ as in (2), then

U ′ → Y ′ ×Y X → Y ′ ×Y X ′
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is open immersion between schemes finite overY ′ and hence is closed as well. We conclude
that U ′ corresponds to an idempotent in

Γ(Y ′,OY ′)⊗Γ(Y,OY ) Γ(X ′,OX′)

whose corresponding open and closed subset is contained in the open Y ′ ×Y X . Let
Y ′
univ → Y and idempotent

e′
univ ∈ Γ(Yuniv,OYuniv )⊗Γ(Y,OY ) Γ(X ′,OX′)

be the pair constructed in Lemma 76.7 for the ring map Γ(Y,OY ) → Γ(X ′,OX′) (here
we use that Y is Noetherian to see that X ′ is of finite presentation over Y ). Let U ′

univ ⊂
Y ′
univ ×Y X ′ be the corresponding open and closed subscheme. Then we see that

U ′
univ \ Y ′

univ ×Y X

is a closed subset of U ′
univ and hence has closed image T ⊂ Y ′

univ . If we set Yuniv =
Y ′
univ \ T and Uuniv the restriction of U ′

univ to Yuniv ×Y X , then we see that the lemma
is true. �

Lemma 76.9. Let Y = lim Yi be a directed limit of affine schemes. Let 0 ∈ I and
let f0 : X0 → Y0 be a morphism of affine schemes which is quasi-finite and of finite
presentation. Let f : X → Y and fi : Xi → Yi for i ≥ 0 be the base changes of f0.
If w : X → Z is a weighting of f , then for sufficiently large i there exists a weighting
wi : Xi → Z of fi whose pullback to X is w.

Proof. By Lemma 76.1 the level sets of w are constructible subsets Ek of X . This
implies the function w only takes a finite number of values by Properties, Lemma 2.7.
Thus there exists an i such that Ek descends to a construcible subset Ei,k in Xi for all k;
moreover, we may assume Xi =

∐
Ei,k. This follows as the topological space of X is the

limit in the category of topological spaces of the spectral spacesXi along a directed system
with spectral transition maps. See Limits, Section 4 and Topology, Section 24. We define
wi : Xi → Z such that its level sets are the constructible sets Ei,k.

Choose Yi,univ → Yi and Ui,univ ⊂ Yi,univ ×Yi Xi as in Lemma 76.8. By the universal
property of the construction, in order to show that wi is a weighting, it would suffice to
show that

τi =
∫
Ui,univ→Yi,univ

wi|Ui,univ

is locally constant on Yi,univ . By Lemma 76.2 this function has constructible level sets but
it may not (yet) be locally constant. SetYuniv = Yi,univ×YiY and letUuniv ⊂ Yuniv×YX
be the inverse image ofUi,univ . Then, since the pullback ofw toYuniv×Y X is a weighting
for Yuniv ×Y X → Yuniv (Lemma 75.3) we do have that

τ =
∫
Uuniv→Yuniv

wi|Uuniv

is locally constant on Yuniv . Thus the level sets of τ are open and closed. Finally, we have
Yuniv = limi′≥i Yi′,univ and the level sets of τ are the inverse limits of the level sets of
τi′ (similarly defined). Hence the references above imply that for sufficiently large i′ the
level sets of τi′ are open as well. For such an index i′ we conclude that wi′ is a weighting
of fi′ as desired. �
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77. Weightings and affine stratification numbers

In this section we give a bound for the affine stratification number of a scheme which has
a certain kind of cover by an affine scheme.

Lemma 77.1. Let f : X → Y be a morphism of affine schemes which is quasi-finite
and of finite presentation. Let w : X → Z>0 be a postive weighting of f . Let d < ∞ be
the maximum value of

∫
f
w. The open

Yd = {y ∈ Y | (
∫
f
w)(y) = d}

of Y is affine.

Proof. Observe that
∫
f
w attains its maximum by Lemma 76.5. The set Yd is open

by Lemma 76.4. Thus the statement of the lemma makes sense.

Reduction to the Noetherian case; please skip this paragraph. Recall that a finite type
morphism is quasi-finite if and only if it has relative dimension 0, see Morphisms, Lemma
29.5. By Lemma 34.9 applied with d = 0 we can find a quasi-finite morphism f0 : X0 →
Y0 of affine Noetherian schemes and a morphism Y → Y0 such that f is the base change of
f0. Then we can write Y = lim Yi as a directed limit of affine schemes of finite type over
Y0, see Algebra, Lemma 127.2. By Lemma 76.9 we can find an i such that our weighting
w descends to a weighting wi of the base change fi : Xi → Yi of f0. Now if the lemma
holds for fi, wi, then it implies the lemma for f as formation of

∫
f
w commutes with base

change, see Lemma 75.1.

Assume X and Y Noetherian. Let X ′ → Y ′ be the base change of f by a morphism
g : Y ′ → Y . The formation of

∫
f
w and hence the open Yd commute with base change.

If g is finite and surjective, then Y ′
d → Yd is finite and surjective. In this case proving that

Yd is affine is equivalent to showing that Y ′
d is affine, see Cohomology of Schemes, Lemma

13.3.

We may choose an immersion X → T with T finite over Y , see Lemma 43.3. We are
going to apply Morphisms, Lemma 48.6 to the finite morphism T → Y . This lemma
tells us that there is a finite surjective morphism Y ′ → Y such that Y ′ ×Y T is a closed
subscheme of a scheme T ′ finite over Y ′ which has a special form. By the discussion in
the first paragraph, we may replace Y by Y ′, T by T ′, and X by Y ′ ×Y X . Thus we
may assume there is an immersion X → T (not necessarily open or closed) and closed
subschemes Ti ⊂ T , i = 1, . . . , n where

(1) T → Y is finite (and locally free),
(2) Ti → Y is an isomorphism, and
(3) T =

⋃
i=1,...,n Ti set theoretically.

Let Y ′ =
∐
Yk be the disjoint union of the irreducible components of Y (viewed as in-

tegral closed subschemes of Y ). Then we may base change once more by Y ′ → Y ; here
we are using that Y is Noetherian. Thus we may in addition assume Y is integral and
Noetherian.

We also may and do assume that Ti 6= Tj if i 6= j by removing repeats. Since Y and hence
all Ti are integral, this means that if Ti and Tj intersect, then they intersect in a closed
subset which maps to a proper closed subset of Y .

Observe that Vi = X∩Ti is a locally closed subset which is in addition a closed subscheme
of X hence affine. Let η ∈ Y and ηi ∈ Ti be the generic points. If η 6∈ Yd, then Yd = ∅
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and we’re done. Assume η ∈ Yd. Denote I ∈ {1, . . . , n} the subset of indices i such that
ηi ∈ Vi. For i ∈ I the locally closed subset Vi ⊂ Ti contains the generic point of the
irreducible space Ti and hence is open. On the other hand, since f is open (Lemma 75.6),
for any x ∈ X we can find an i ∈ I and a specialization ηi  x. It follows that x ∈ Ti
and hence x ∈ Vi. In other words, we see that X =

⋃
i∈I Vi set theoretically. We claim

that Yd =
⋂
i∈I Im(Vi → Y ); this will finish the proof as the intersection of affine opens

Im(Vi → Y ) of Y is affine.

For y ∈ Y let f−1({y}) = {x1, . . . , xr} in X . For each i ∈ I there is at most one
j(i) ∈ {1, . . . , xr} such that ηi  xj(i). In fact, j(i) exists and is equal to j if and only
if xj ∈ Vi. If i ∈ I is such that j = j(i) exists, then Vi → Y is an isomorphism in a
neighbourhood of xj 7→ y. Hence

⋃
i∈I, j(i)=j Vi → Y is finite after replacing source

and target by neighbourhoods of xj 7→ y. Thus the definition of a weighting tells us that
w(xj) =

∑
i∈I, j(i)=j w(ηi). Thus we see that

(
∫
f
w)(η) =

∑
i∈I w(ηi) ≥

∑
j(i) exists w(ηi) =

∑
j w(xj) = (

∫
f
w)(y)

Thus equality holds if and only if y is contained in
⋂
i∈I Im(Vi → Y ) which is what we

wanted to show. �

Proposition 77.2. Let f : X → Y be a surjective quasi-finite morphism of schemes.
Let w : X → Z>0 be a positive weighting of f . AssumeX affine and Y separated17. Then
the affine stratification number of Y is at most the number of distinct values of

∫
f
w.

Proof. Note that since Y is separated, the morphism X → Y is affine (Morphisms,
Lemma 11.11). The function

∫
f
w attains its maximum d by Lemma 76.5. We will use

induction on d. Consider the open subscheme Yd = {y ∈ Y | (
∫
f
w)(y) = d} of Y and

recall that f−1(Yd)→ Yd is finite, see Lemma 76.6. By Lemma 77.1 for every affine open
W ⊂ Y we have that Yd∩W is affine (this uses thatW×Y X is affine, being affine overX).
Hence Yd → Y is an affine morphism of schemes. We conclude that f−1(Yd) = Yd×Y X
is an affine scheme being affine over X . Then f−1(Yd)→ Yd is surjective and hence Yd is
affine by Limits, Lemma 11.1. Set X ′ = X \ f−1(Yd) and Y ′ = Y \ Yd viewed as closed
subschemes of X and Y . Since X ′ is closed in X it is affine. Since Y ′ is closed in Y it is
separated. The morphism f ′ : X ′ → Y ′ is surjective and w induces a weighting w′ of f ′,
see Lemma 75.3. By induction Y ′ has an affine stratification of length ≤ the number of
distinct values of

∫
f ′ w

′ and the proof is complete. �

78. Completely decomposed morphisms

Nishnevich studied the notion of a completely decomposed family of étale morphisms, in
order to define what is now called the Nishnevich topology, see for example [?].

Definition 78.1. A morphism f : X → Y of schemes is said to be completely
decomposed18 if for all points y ∈ Y there is a point x ∈ X with f(x) = y such that the
field extension κ(x)/κ(y) is trivial. A family of morphisms {fi : Xi → Y }i∈I of schemes
with fixed target is said to be completely decomposed if

∐
fi :

∐
Yi → X is completely

decomposed.

We start with some basic lemmas.

17It suffices if the diagonal of Y is affine.
18This may be nonstandard terminology.
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Lemma 78.2. The composition of two completely decomposed morphisms of schemes
is completely decomposed. If {fi : Xi → Y }i∈I is completely decomposed and for each
i we have a family {Xij → Xi}j∈Ji which is completely decomposed, then the family
{Xij → Y }i∈I,j∈Ji is completely decomposed.

Proof. Omitted. �

Lemma 78.3. The base change of a completely decomposed morphism of schemes is
completely decomposed. If {fi : Xi → Y }i∈I is completely decomposed and Y ′ → Y is
a morphism of schemes, then {Xi ×Y Y ′ → Y ′}i∈I is completely decomposed.

Proof. Let f : X → Y and g : Y ′ → Y be morphisms of schemes. Let y′ ∈ Y ′ be a
point with image y = g(y′) in Y . If x ∈ X is a point such that f(x) = y and κ(x) = κ(y),
then there exists a unique point x′ ∈ X ′ = X ×Y Y ′ which maps to y′ in Y ′ and to x
in X and moreover κ(x′) = κ(y′), see Schemes, Lemma 17.5. From this fact the lemma
follows easily; we omit the details. �

Lemma 78.4. Let f : X → Y be a morphism of schemes. Assume f is completely de-
composed, f is locally of finite presentation, and Y is quasi-compact and quasi-separated.
Then there exist n ≥ 0 and morphisms Zi → Y , i = 1, . . . , n with the following proper-
ties

(1)
∐
Zi → Y is surjective,

(2) Zi → Y is an immersion for all i,
(3) Zi → Y is of finite presentation for all i, and
(4) the base change X ×Y Zi → Zi has a section for all i.

Proof. Let y ∈ Y . By assumption there is a morphism σ : Spec(κ(y))→ X over Y .
We can write Spec(κ(y)) as a directed limit of affine schemes Z over Y such that Z → Y
is an immersion of finite presentation. Namely, choose an affine open y ∈ Spec(A) ⊂ Y
and say y corresponds to the prime ideal p of A. Then κ(p) is the filtered colimit of the
rings (A/I)f where I ⊂ p is a finitely generated ideal and f ∈ A, f 6∈ p. The morphisms
Z = Spec((A/I)f ) → Y are immersions of finite presentation; quasi-compactness of
Z → Y follows as Y is quasi-separated, see Schemes, Lemma 21.14. By Limits, Proposition
6.1 for some such Z there is a morphism σ′ : Z → X over Y agreeing with σ on the
spectrum of κ(p). Since σ′ is a morphism over Y , we obtain a section of the projection
X ×Y Z → Z

We conclude thatY is the union of the images of immersionsZ → Y of finite presentation
such that X ×Y Z → Z has a section. Since the image of Z → Y is constructible (Mor-
phisms, Lemma 22.2) and since Y is compact in the constructible topology (Properties,
Lemma 2.4 and Topology, Lemma 23.2), we see that a finite number of these suffice. �

Lemma 78.5. Let S = limλ∈Λ Sλ be a limit of a directed system of schemes with
affine transition morphisms. Let 0 ∈ Λ and let f0 : X0 → Y0 be a morphism of schemes
over S0. For λ ≥ 0 let fλ : Xλ → Yλ be the base change of f0 to Sλ and let f : X → Y
be the base change of f0 to S. If

(1) f is completely decomposed,
(2) Y0 is quasi-compact and quasi-separated, and
(3) f0 is locally of finite presentation,

then there exists an λ ≥ 0 such that fλ is completely decomposed.
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Proof. Since Y0 is quasi-compact and quasi-separated, the scheme Y , which is affine
over Y0, is quasi-compact and quasi-separated. Choose n ≥ 0 and Zi → Y , i = 1, . . . , n
as in Lemma 78.4. Denote σi : Zi → X morphisms over Y which exist by our choice
of Zi. After increasing 0 ∈ Λ we may assume there exist morphisms Zi,0 → Y0 of finite
presentation whose base changes to S are the morphisms Zi → Y , see Limits, Lemma 10.1.
By Limits, Lemma 8.13 we may assume, after possibly increasing 0, that Zi,0 → Y0 is an
immersion. Since

∐
Zi → Y is surjective, we may assume, after possibly increasing 0, that∐

Zi,0 → Y0 is surjective, see Limits, Lemma 8.15. Observe that Zi = limλ≥0 Zi,λ where
Zi,λ = Yλ ×Y0 Zi,0. Let us view the compositions

Zi
σi−→ X → X0

as morphisms over Y0. Since f0 is locally of finite presentation by Limits, Proposition 6.1
we can find a λ ≥ 0 such that there exist morphisms σ′

i,λ : Zi,λ → X0 over Y0 whose
precomposition withZi → Zi,λ are the displayed arrows. Of course, then σ′

i,λ determines
a morphism σi,λ : Zi,λ → Xλ = X0 ×Y0 Yλ over Yλ. Since

∐
Zi,λ → Yλ is surjective we

conclude that Xλ → Yλ is completely decomposed. �

79. Families of ample invertible modules

We continue the discussion from Morphisms, Section 12.

Lemma 79.1. Let f : X → Y be a morphism of schemes. Assume
(1) Y has an ample family of invertible modules,
(2) there exists an f -ample invertible module on X .

Then X has an ample family of invertible modules.

Proof. Let L be an f -ample invertible module on X . This in particular implies that
f is quasi-compact, see Morphisms, Definition 37.1. Since Y is quasi-compact by Mor-
phisms, Definition 12.1 we see that X is quasi-compact (and hence X itself satisfies the
first condition of Morphisms, Definition 12.1). Let x ∈ X with image y ∈ Y . By as-
sumption (2) we can find an invertible OY -module N and a section t ∈ Γ(Y,N ) such
that the locus Yt where t does not vanish is affine. Then L is ample over f−1(Yt) = Xf∗t

and hence we can find a section s ∈ Γ(Xf∗t,L) such that (Xf∗t)s is affine and contains
x. By Properties, Lemma 17.2 for some n ≥ 0 the product (f∗t)ns extends to a section
s′ ∈ Γ(X, f∗N⊗n ⊗ L). Then finally the section s′′ = f∗ts′ of f∗N⊗n+1 ⊗ L vanishes
at every point of X \Xf∗t hence we see that Xs′′ = (Xf∗t)s is affine as desired. �

Lemma 79.2. Let f : X → Y be an affine or quasi-affine morphism of schemes. If Y
has an ample family of invertible modules, so does X .

Proof. By Morphisms, Lemma 37.6 this is a special case of Lemma 79.1. �

80. Blowing up and ample families of invertible modules

We prove a result from [?].

Lemma 80.1. LetX be a scheme. Suppose given effective Cartier divisorsD1, . . . , Dm

onX and invertible modulesL1, . . . ,Lm such that
⋂
Di = ∅ andLi|X\Di is ample. Then

X has an ample family of invertible modules.

Proof. Let x ∈ X . Choose an index i ∈ {1, . . . ,m} such that x 6∈ Di. Set Ui =
X \Di. SinceLi|Ui we can find an n ≥ 1 and a section s ∈ Γ(Ui,L⊗n

i ) such that the locus
(Ui)s where s doesn’t vanish is affine (Properties, Definition 26.1). Since Ui is the locus
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where the canonical section 1 ∈ OX(Di) doesn’t vanish, we see from Properties, Lemma
17.2 there exists an N ≥ 0 such that s extends to a section

s′ ∈ Γ(X,L⊗n
i ⊗OX

OX(NDi))

After replacing N by N + 1 we see that s′ vanishes at every point of Di and hence that
Xs′ = (Ui)s is affine. This proves that X has an ample family of invertible modules, see
Morphisms, Definition 12.1. �

Lemma 80.2. Let X be a quasi-compact and quasi-separated scheme with finitely
many irreducible components. There exists a quasi-compact dense open U ⊂ X and a
U -admissible blowing up X ′ → X such that the scheme X ′ has an ample family of in-
vertible modules.

Proof. Let η1, . . . , ηn ∈ X be the generic points of the irreducible components ofX .
By Properties, Lemma 29.4 and the fact thatX is quasi-compact we can find a finite affine
open covering X = U1 ∪ . . . ∪ Um such that each Ui contains η1, . . . , ηn. In particular
the quasi-compact open subset U = U1 ∩ . . . ∩Um is dense in X . Let Ii ⊂ OX be a finite
type quasi-coherent ideal sheaf such that Ui = X \ Zi where Zi = V (Ii), see Properties,
Lemma 24.1. Let

f : X ′ −→ X

be the blowing up of X in the ideal sheaf I = I1 · · · Im. Note that f is a U -admissible
blowing up as V (I) is (set theoretically) the union of the Zi which are disjoint from U .
Also, f is a projective morphism and OX′(1) is f -relatively ample, see Divisors, Lemma
32.13. By Divisors, Lemma 32.12 for each i the morphism f ′ factors as X ′ → X ′

i → X
where X ′

i → X is the blowing up in Ii and X ′ → X ′
i is another blowing up (namely

in the pullback of the products of the ideals Ij omitting Ii). It follows from this that
Di = f−1(Zi) ⊂ X ′ is an effective Cartier divisor, see Divisors, Lemmas 32.11 and 32.4.
We haveX ′\Di = f−1(Ui). AsOX′(1) is f -ample, the restriction ofOX′(1) toX ′\Di is
ample. It follows from Lemma 80.1 thatX ′ has an ample family of invertible modules. �

Proposition 80.3. Let X be a quasi-compact and quasi-separated scheme. There ex-
ists a morphism f : Y → X which is of finite presentation, proper, and completely
decomposed (Definition 78.1) such that the scheme Y has an ample family of invertible
modules.

Proof. By Limits, Proposition 5.4 there exists an affine morphism X → X0 where
X0 is a scheme of finite type over Z. Below we produce a morphism Y0 → X0 with all the
desired properties. Then setting Y = X×X0 Y0 and f equal to the projection f : Y → X
we conclude. To see this observe that f is of finite presentation (Morphisms, Lemma 21.4),
f is proper (Morphisms, Lemma 41.5), f is completely decomposed (Lemma 78.3). Finally,
since Y → Y0 is affine (as the base change ofX → X0) we see that Y has an ample family
of invertible modules by Lemma 79.2. This reduces us to the case discussed in the next
paragraph.

Assume X is of finite type over Z. In particular dim(X) < ∞. We will argue by induc-
tion on dim(X). If dim(X) = 0, then X is affine and has the resolution property. In
general, there exists a dense open U ⊂ X and a U -admissible blowing up X ′ → X such
that X ′ has an ample family of invertible modules, see Lemma 80.2. Since f : X ′ → X
is an isomorphism over U we see that every point of U lifts to a point of X ′ with the
same residue field. Let Z = X \ U with the reduced induced scheme structure. Then
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dim(Z) < dim(X) as U is dense in X (see above). By induction we find a proper, com-
pletely decomposed morphism W → Z such that W has an ample family of invertible
modules. Then it follows that Y = X ′ qW → X is the desired morphism. �

81. The extensive criterion for closed immersions

In this section, we give a criterion for a morphism of schemes to be a closed immersion.

Lemma 81.1. A morphism f : X → Y of affine schemes is a closed immersion if and
only if for every injective ring map A→ B and commutative square

Spec(B)

��

// X

f

��
Spec(A) //

;;

Y

there exists a lift Spec(A)→ X making the two triangles commute.

Proof. Let the morphism f be given by the ring map φ : R→ S. Then f is a closed
immersion if and only if φ is surjective.

First, we assume that φ is surjective. Let ψ : A→ B be an injective ring map, and suppose
we are given a commutative diagram

R
α //

φ

��

A

ψ

��
S

β //

??

B

Then we define a liftS → A by s 7→ α(r), where r ∈ R is such thatφ(r) = s. This is well-
defined because ψ is injective and the square commutes. Since taking the ring spectrum
defines an anti-equivalence between commutative rings and affine schemes, the desired
lifting property for f holds.

Next, we assume that φ has lifts against all injective ring maps ψ : A → B. Note that
φ(R) is a subring of S , so we obtain a commutative square

R //

φ

��

φ(R)

��
S

==

S

in which a lift S → φ(R) exists. Hence, the inclusion φ(R)→ S must be an isomorphism,
which shows that φ is surjective, and we win. �

Lemma 81.2. Let X be a scheme. If the canonical morphism X → Spec(Γ(X,OX))
of Schemes, Lemma 6.4 has a retraction, then X is an affine scheme.

Proof. Write S = Spec(Γ(X,OX)) and f : X → S the morphism given in the
lemma. Let s : S → X be a retraction; so idX = sf . Then fsf = idSf . Since f induces
an isomorphism Γ(S,OS)→ Γ(X,OX) this means that fs and idS induce the same map
on Γ(S,OS). Whence fs = idS as S is affine. Hence f is an isomorphism and X is an
affine scheme, as was to be shown. �
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Lemma 81.3. LetX be a scheme. Let f : X → S = Spec(Γ(X,OX)) be the canonical
morphism of Schemes, Lemma 6.4. The largest quasi-coherent OS-module contained in
the kernel of f ] : OS → f∗OX is zero. If X is quasi-compact, then f ] is injective. In
particular, if X is quasi-compact, then f is a dominant morphism.

Proof. Let M ⊂ Γ(S,OS) be the submodule corresponding to the largest quasi-
coherent OS-module contained in the kernel of f ]. Then any element a ∈ M is mapped
to zero by f ]. However, f ](a) is the element of

Γ(S, f∗OX) = Γ(X,OX) = Γ(S,OS)

corresponding to a itself! Thus a = 0. Hence M = 0 which proves the first assertion.
Note that this is equivalent to the morphism f : X → S being scheme-theoretically
surjective.

If X is quasi-compact, then Ker(f ]) is quasi-coherent by Morphisms, Lemma 6.3. Hence
Ker(f ]) = 0 and f ] is injective. In this case, f is a dominant morphism by part (4) of
Morphisms, Lemma 6.3. �

Lemma 81.4. Let f : X → Y be a quasi-compact morphism of schemes. Then f is
a closed immersion if and only if for every injective ring map A → B and commutative
square

Spec(B)

��

// X

f

��
Spec(A) //

;;

Y

there exists a lift SpecA→ X making the diagram commute.

Proof. Assume that f is a closed immersion. Let A → B be an injective ring map
and consider a commutative square

Spec(B)

��

// X

f

��
Spec(A) //

;;

Y

Then Spec(A)×Y X → Spec(A) is a closed immersion and hence we get an ideal I ⊂ A
and a commutative diagram

Spec(B)

��

// Spec(A/I) //

��

X

f

��
Spec(A) //

88

Spec(A) // Y

We obtain a lift by Lemma 81.1.

Assume that f has the lifting property stated in the lemma. To prove that f is a closed
immersion is local on Y , hence we may and do assume Y is affine. In particular, Y is quasi-
compact and thereforeX is quasi-compact. Hence there exists a finite affine open covering
X = U1 ∪ . . . ∪ Un. The source of the morphism

π : U =
∐

Ui −→ X
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is affine and the induced ring map Γ(X,OX) → Γ(U,OU ) is injective. By assumption,
there exists a lift in the diagram

U
π //

��

X

f

��
Spec(Γ(X,OX)) f ′

//

h

88

Y

where f ′ is the morphism of affine schemes corresponding to the ring map Γ(Y,OY ) →
Γ(X,OX). It follows from the fact that π is an epimorphism that the morphism h is a
retraction of the canonical morphism X → Spec(Γ(X,OX)); details omitted. Hence X
is affine by Lemma 81.2. By Lemma 81.1 we conclude that f is a closed immersion. �
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CHAPTER 38

More on Flatness

1. Introduction

In this chapter, we discuss some advanced results on flat modules and flat morphisms of
schemes and applications. Most of the results on flatness can be found in the paper [?] by
Raynaud and Gruson.

Before reading this chapter we advise the reader to take a look at the following results
(this list also serves as a pointer to previous results):

(1) General discussion on flat modules in Algebra, Section 39.
(2) The relationship between Tor-groups and flatness, see Algebra, Section 75.
(3) Criteria for flatness, see Algebra, Section 99 (Noetherian case), Algebra, Section

101 (Artinian case), Algebra, Section 128 (non-Noetherian case), and finally More
on Morphisms, Section 16.

(4) Generic flatness, see Algebra, Section 118 and Morphisms, Section 27.
(5) Openness of the flat locus, see Algebra, Section 129 and More on Morphisms,

Section 15.
(6) Flattening, see More on Algebra, Sections 16, 17, 18, 19, and 20.
(7) Additional results in More on Algebra, Sections 21, 22, 25, and 26.

As applications of the material on flatness we discuss the following topics: a non-Noetherian
version of Grothendieck’s existence theorem, blowing up and flatness, Nagata’s theorem
on compactifications, the h topology, blow up squares and descent, weak normalization,
descent of vector bundles in positive characteristic, and the local structure of perfect com-
plexes in the h topology.

2. Lemmas on étale localization

In this section we list some lemmas on étale localization which will be useful later in this
chapter. Please skip this section on a first reading.

Lemma 2.1. Let i : Z → X be a closed immersion of affine schemes. Let Z ′ → Z be
an étale morphism with Z ′ affine. Then there exists an étale morphism X ′ → X with X ′

affine such that Z ′ ∼= Z ×X X ′ as schemes over Z.

Proof. See Algebra, Lemma 143.10. �

Lemma 2.2. Let
X

��

X ′oo

��
S S′oo

3341
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be a commutative diagram of schemes with X ′ → X and S′ → S étale. Let s′ ∈ S′ be a
point. Then

X ′ ×S′ Spec(OS′,s′) −→ X ×S Spec(OS′,s′)
is étale.

Proof. This is true because X ′ → XS′ is étale as a morphism of schemes étale over
X , see Morphisms, Lemma 36.18 and the base change of an étale morphism is étale, see
Morphisms, Lemma 36.4. �

Lemma 2.3. Let X → T → S be morphisms of schemes with T → S étale. Let F be
a quasi-coherentOX -module. Let x ∈ X be a point. Then

F flat over S at x⇔ F flat over T at x

In particular F is flat over S if and only if F is flat over T .

Proof. As an étale morphism is a flat morphism (see Morphisms, Lemma 36.12) the
implication “⇐” follows from Algebra, Lemma 39.4. For the converse assume that F is
flat at x over S. Denote x̃ ∈ X ×S T the point lying over x in X and over the image
of x in T in T . Then (X ×S T → X)∗F is flat at x̃ over T via pr2 : X ×S T → T ,
see Morphisms, Lemma 25.7. The diagonal ∆T/S : T → T ×S T is an open immersion;
combine Morphisms, Lemmas 35.13 and 36.5. So X is identified with open subscheme of
X ×S T , the restriction of pr2 to this open is the given morphism X → T , the point x̃
corresponds to the point x in this open, and (X ×S T → X)∗F restricted to this open is
F . Whence we see that F is flat at x over T . �

Lemma 2.4. Let T → S be an étale morphism. Let t ∈ T with image s ∈ S. Let M
be aOT,t-module. Then

M flat overOS,s ⇔M flat overOT,t.

Proof. We may replace S by an affine neighbourhood of s and after that T by an
affine neighbourhood of t. SetF = (Spec(OT,t)→ T )∗M̃ . This is a quasi-coherent sheaf
(see Schemes, Lemma 24.1 or argue directly) on T whose stalk at t is M (details omitted).
Apply Lemma 2.3. �

Lemma 2.5. Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s) the
henselization (resp. strict henselization), see Algebra, Definition 155.3. LetMsh be aOshS,s-
module. The following are equivalent

(1) Msh is flat overOS,s,
(2) Msh is flat overOhS,s, and
(3) Msh is flat overOshS,s.

If Msh = Mh ⊗Oh
S,s
OshS,s this is also equivalent to

(4) Mh is flat overOS,s, and
(5) Mh is flat overOhS,s.

If Mh = M ⊗OS,s
OhS,s this is also equivalent to

(6) M is flat overOS,s.

Proof. By More on Algebra, Lemma 45.1 the local ring maps OS,s → OhS,s → OshS,s
are faithfully flat. Hence (3)⇒ (2)⇒ (1) and (5)⇒ (4) follow from Algebra, Lemma 39.4.
By faithful flatness the equivalences (6)⇔ (5) and (5)⇔ (3) follow from Algebra, Lemma
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39.8. Thus it suffices to show that (1)⇒ (2)⇒ (3) and (4)⇒ (5). To prove these we may
assume S is an affine scheme.

Assume (1). By Lemma 2.4 we see that Msh is flat overOT,t for any étale neighbourhood
(T, t)→ (S, s). Since OhS,s andOshS,s are directed colimits of local rings of the form OT,t
(see Algebra, Lemmas 155.7 and 155.11) we conclude that Msh is flat over OhS,s and OshS,s
by Algebra, Lemma 39.6. Thus (1) implies (2) and (3). Of course this implies also (2)⇒
(3) by replacingOS,s byOhS,s. The same argument applies to prove (4)⇒ (5). �

Lemma 2.6. Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s) the
henselization (resp. strict henselization), see Algebra, Definition 155.3. Let Msh be an
object of D(OshS,s). Let a, b ∈ Z. The following are equivalent

(1) Msh has tor amplitude in [a, b] overOS,s,
(2) Msh has tor amplitude in [a, b] overOhS,s, and
(3) Msh has tor amplitude in [a, b] overOshS,s.

If Msh = Mh ⊗L
Oh
S,s

OshS,s for Mh ∈ D(OhS,s) this is also equivalent to

(4) Mh has tor amplitude in [a, b] overOS,s, and
(5) Mh has tor amplitude in [a, b] overOhS,s.

If Mh = M ⊗L
OS,s
OhS,s for M ∈ D(OS,s) this is also equivalent to

(6) M has tor amplitude in [a, b] overOS,s.

Proof. By More on Algebra, Lemma 45.1 the local ring maps OS,s → OhS,s → OshS,s
are faithfully flat. Hence (3) ⇒ (2) ⇒ (1) and (5) ⇒ (4) follow from More on Algebra,
Lemma 66.11. By faithful flatness the equivalences (6)⇔ (5) and (5)⇔ (3) follow from
More on Algebra, Lemma 66.17. Thus it suffices to show that (1)⇒ (3), (2)⇒ (3), and (4)
⇒ (5).

Assume (1). In particular Msh has vanishing cohomology in degrees < a and > b. Hence
we can represent Msh by a complex P • of free OshX,x-modules with P i = 0 for i > b

(see for example the very general Derived Categories, Lemma 15.4). Note that Pn is flat
overOS,s for all n. Consider Coker(da−1

P ). By More on Algebra, Lemma 66.2 this is a flat
OS,s-module. Hence by Lemma 2.5 this is a flatOshS,s-module. Thus τ≥aP

• is a complex of
flat OshS,s-modules representing Msh in D(OshS,s and we find that Msh has tor amplitude
in [a, b], see More on Algebra, Lemma 66.3. Thus (1) implies (3). Of course this implies also
(2)⇒ (3) by replacingOS,s byOhS,s. The same argument applies to prove (4)⇒ (5). �

Lemma 2.7. Let g : T → S be a finite flat morphism of schemes. Let G be a quasi-
coherentOS-module. Let t ∈ T be a point with image s ∈ S. Then

t ∈WeakAss(g∗G)⇔ s ∈WeakAss(G)

Proof. The implication “⇐” follows immediately from Divisors, Lemma 6.4. As-
sume t ∈ WeakAss(g∗G). Let Spec(A) ⊂ S be an affine open neighbourhood of s. Let G
be the quasi-coherent sheaf associated to the A-module M . Let p ⊂ A be the prime ideal
corresponding to s. As g is finite flat we have g−1(Spec(A)) = Spec(B) for some finite
flat A-algebra B. Note that g∗G is the quasi-coherent OSpec(B)-module associated to the
B-module M ⊗A B and g∗g

∗G is the quasi-coherent OSpec(A)-module associated to the
A-moduleM ⊗AB. By Algebra, Lemma 78.5 we haveBp

∼= A⊕n
p for some integer n ≥ 0.
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Note that n ≥ 1 as we assumed there exists at least one point of T lying over s. Hence we
see by looking at stalks that

s ∈WeakAss(G)⇔ s ∈WeakAss(g∗g
∗G)

Now the assumption that t ∈WeakAss(g∗G) implies that s ∈WeakAss(g∗g
∗G) by Divi-

sors, Lemma 6.3 and hence by the above s ∈WeakAss(G). �

Lemma 2.8. Let h : U → S be an étale morphism of schemes. Let G be a quasi-
coherentOS-module. Let u ∈ U be a point with image s ∈ S. Then

u ∈WeakAss(h∗G)⇔ s ∈WeakAss(G)

Proof. After replacing S and U by affine neighbourhoods of s and uwe may assume
that g is a standard étale morphism of affines, see Morphisms, Lemma 36.14. Thus we may
assumeS = Spec(A) andX = Spec(A[x, 1/g]/(f)), where f is monic and f ′ is invertible
in A[x, 1/g]. Note that A[x, 1/g]/(f) = (A[x]/(f))g is also the localization of the finite
free A-algebra A[x]/(f). Hence we may think of U as an open subscheme of the scheme
T = Spec(A[x]/(f)) which is finite locally free over S. This reduces us to Lemma 2.7
above. �

Lemma 2.9. Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s) the
henselization (resp. strict henselization), see Algebra, Definition 155.3. Let F be a quasi-
coherentOS-module. The following are equivalent

(1) s is a weakly associated point of F ,
(2) ms is a weakly associated prime of Fs,
(3) mhs is a weakly associated prime of Fs ⊗OS,s

OhS,s, and
(4) mshs is a weakly associated prime of Fs ⊗OS,s

OshS,s.

Proof. The equivalence of (1) and (2) is the definition, see Divisors, Definition 5.1.
The implications (2) ⇒ (3) ⇒ (4) follows from Divisors, Lemma 6.4 applied to the flat
(More on Algebra, Lemma 45.1) morphisms

Spec(OshS,s)→ Spec(OhS,s)→ Spec(OS,s)

and the closed points. To prove (4)⇒ (2) we may replace S by an affine neighbourhood.
Suppose that x ∈ Fs⊗OS,s

OshS,s is an element whose annihilator has radical equal to mshs .
(See Algebra, Lemma 66.2.) Since OshS,s is equal to the limit of OU,u over étale neighbour-
hoods f : (U, u)→ (S, s) by Algebra, Lemma 155.11 we may assume that x is the image of
some x′ ∈ Fs ⊗OS,s

OU,u. The local ring map OU,u → OshS,s is faithfully flat (as it is the
strict henselization), hence universally injective (Algebra, Lemma 82.11). It follows that
the annihilator of x′ is the inverse image of the annihilator of x. Hence the radical of this
annihilator is equal to mu. Thus u is a weakly associated point of f∗F . By Lemma 2.8 we
see that s is a weakly associated point of F . �

3. The local structure of a finite type module

The key technical lemma that makes a lot of the arguments in this chapter work is the
geometric Lemma 3.2.

Lemma 3.1. Let f : X → S be a finite type morphism of affine schemes. Let F
be a finite type quasi-coherent OX -module. Let x ∈ X with image s = f(x) in S. Set
Fs = F|Xs . Then there exist a closed immersion i : Z → X of finite presentation, and a
quasi-coherent finite typeOZ -module G such that i∗G = F and Zs = Supp(Fs).
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Proof. Say the morphism f : X → S is given by the ring mapA→ B and thatF is
the quasi-coherent sheaf associated to the B-module M . By Morphisms, Lemma 15.2 we
know that A→ B is a finite type ring map, and by Properties, Lemma 16.1 we know that
M is a finiteB-module. In particular the support ofF is the closed subscheme of Spec(B)
cut out by the annihilator I = {x ∈ B | xm = 0 ∀m ∈ M} of M , see Algebra, Lemma
40.5. Let q ⊂ B be the prime ideal corresponding to x and let p ⊂ A be the prime ideal
corresponding to s. Note that Xs = Spec(B ⊗A κ(p)) and that Fs is the quasi-coherent
sheaf associated to the B ⊗A κ(p) module M ⊗A κ(p). By Morphisms, Lemma 5.3 the
support of Fs is equal to V (I(B ⊗A κ(p))). Since B ⊗A κ(p) is of finite type over κ(p)
there exist finitely many elements f1, . . . , fm ∈ I such that

I(B ⊗A κ(p)) = (f1, . . . , fn)(B ⊗A κ(p)).

Denote i : Z → X the closed subscheme cut out by (f1, . . . , fm), in a formula Z =
Spec(B/(f1, . . . , fm)). SinceM is annihilated by I we can think ofM as anB/(f1, . . . , fm)-
module. In other words, F is the pushforward of a finite type module on Z. As Zs =
Supp(Fs) by construction, this proves the lemma. �

Lemma 3.2. Let f : X → S be morphism of schemes which is locally of finite type.
Let F be a finite type quasi-coherent OX -module. Let x ∈ X with image s = f(x) in S.
Set Fs = F|Xs and n = dimx(Supp(Fs)). Then we can construct

(1) elementary étale neighbourhoods g : (X ′, x′)→ (X,x), e : (S′, s′)→ (S, s),
(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherentOZ′ -module G ,

such that the following properties hold

(1) X ′, Z ′, Y ′, S′ are affine schemes,
(2) i is a closed immersion of finite presentation,
(3) i∗(G) ∼= g∗F ,
(4) π is finite and π−1({y′}) = {z′},
(5) the extension κ(y′)/κ(s′) is purely transcendental,
(6) h is smooth of relative dimension n with geometrically integral fibres.

Proof. Let V ⊂ S be an affine neighbourhood of s. Let U ⊂ f−1(V ) be an affine
neighbourhood of x. Then it suffices to prove the lemma for f |U : U → V and F|U .
Hence in the rest of the proof we assume that X and S are affine.
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First, suppose that Xs = Supp(Fs), in particular n = dimx(Xs). Apply More on Mor-
phisms, Lemmas 47.2 and 47.3. This gives us a commutative diagram

X

��

X ′
g

oo

π

��
Y ′

h
��

S S′eoo

and point x′ ∈ X ′. We set Z ′ = X ′, i = id, and G = g∗F to obtain a solution in this case.

In general choose a closed immersion Z → X and a sheaf G on Z as in Lemma 3.1. Apply-
ing the result of the previous paragraph to Z → S and G we obtain a diagram

X

f

��

Zoo

f |Z

��

Z ′
g

oo

π

��
Y ′

h
��

S S S′eoo

and point z′ ∈ Z ′ satisfying all the required properties. We will use Lemma 2.1 to embed
Z ′ into a scheme étale over X . We cannot apply the lemma directly as we want X ′ to be
a scheme over S′. Instead we consider the morphisms

Z ′ // Z ×S S′ // X ×S S′

The first morphism is étale by Morphisms, Lemma 36.18. The second is a closed immersion
as a base change of a closed immersion. Finally, as X , S , S′, Z , Z ′ are all affine we may
apply Lemma 2.1 to get an étale morphism of affine schemes X ′ → X ×S S′ such that

Z ′ = (Z ×S S′)×(X×SS′) X
′ = Z ×X X ′.

As Z → X is a closed immersion of finite presentation, so is Z ′ → X ′. Let x′ ∈ X ′ be the
point corresponding to z′ ∈ Z ′. Then the completed diagram

X

��

X ′

��

oo Z ′
i

oo

π

��
Y ′

h
��

S S′eoo S′

is a solution of the original problem. �

Lemma 3.3. Assumptions and notation as in Lemma 3.2. If f is locally of finite pre-
sentation then π is of finite presentation. In this case the following are equivalent

(1) F is anOX -module of finite presentation in a neighbourhood of x,
(2) G is anOZ′ -module of finite presentation in a neighbourhood of z′, and
(3) π∗G is anOY ′ -module of finite presentation in a neighbourhood of y′.
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Still assuming f locally of finite presentation the following are equivalent to each other
(a) Fx is anOX,x-module of finite presentation,
(b) Gz′ is anOZ′,z′ -module of finite presentation, and
(c) (π∗G)y′ is anOY ′,y′ -module of finite presentation.

Proof. Assume f locally of finite presentation. Then Z ′ → S is locally of finite
presentation as a composition of such, see Morphisms, Lemma 21.3. Note that Y ′ → S
is also locally of finite presentation as a composition of a smooth and an étale morphism.
Hence Morphisms, Lemma 21.11 implies π is locally of finite presentation. Since π is fi-
nite we conclude that it is also separated and quasi-compact, hence π is actually of finite
presentation.

To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is a OX′ -module
of finite presentation in a neighbourhood of x′. The pullback of a module of finite pre-
sentation is of finite presentation, see Modules, Lemma 11.4. Hence (1)⇒ (4). The étale
morphism g is open, see Morphisms, Lemma 36.13. Hence for any open neighbourhood
U ′ ⊂ X ′ of x′, the image g(U ′) is an open neighbourhood of x and the map {U ′ → g(U ′)}
is an étale covering. Thus (4)⇒ (1) by Descent, Lemma 7.3. Using Descent, Lemma 7.10
and some easy topological arguments (see More on Morphisms, Lemma 47.4) we see that
(4)⇔ (2)⇔ (3).

To prove the equivalence of (a), (b), (c) consider the ring maps

OX,x → OX′,x′ → OZ′,z′ ← OY ′,y′

The first ring map is faithfully flat. Hence Fx is of finite presentation over OX,x if and
only if g∗Fx′ is of finite presentation over OX′,x′ , see Algebra, Lemma 83.2. The second
ring map is surjective (hence finite) and finitely presented by assumption, hence g∗Fx′ is
of finite presentation overOX′,x′ if and only if Gz′ is of finite presentation overOZ′,z′ , see
Algebra, Lemma 36.23. Because π is finite, of finite presentation, and π−1({y′}) = {x′}
the ring homomorphism OY ′,y′ ← OZ′,z′ is finite and of finite presentation, see More
on Morphisms, Lemma 47.4. Hence Gz′ is of finite presentation overOZ′,z′ if and only if
π∗Gy′ is of finite presentation overOY ′,y′ , see Algebra, Lemma 36.23. �

Lemma 3.4. Assumptions and notation as in Lemma 3.2. The following are equivalent
(1) F is flat over S in a neighbourhood of x,
(2) G is flat over S′ in a neighbourhood of z′, and
(3) π∗G is flat over S′ in a neighbourhood of y′.

The following are equivalent also
(a) Fx is flat overOS,s,
(b) Gz′ is flat overOS′,s′ , and
(c) (π∗G)y′ is flat overOS′,s′ .

Proof. To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is flat
over S in a neighbourhood of x′. We will use Lemma 2.3 to equate flatness over S and S′

without further mention. The étale morphism g is flat and open, see Morphisms, Lemma
36.13. Hence for any open neighbourhood U ′ ⊂ X ′ of x′, the image g(U ′) is an open
neighbourhood of x and the map U ′ → g(U ′) is surjective and flat. Thus (4)⇔ (1) by
Morphisms, Lemma 25.13. Note that

Γ(X ′, g∗F) = Γ(Z ′,G) = Γ(Y ′, π∗G)
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Hence the flatness of g∗F , G and π∗G over S′ are all equivalent (this uses that X ′, Z ′, Y ′,
and S′ are all affine). Some omitted topological arguments (compare More on Morphisms,
Lemma 47.4) regarding affine neighbourhoods now show that (4)⇔ (2)⇔ (3).
To prove the equivalence of (a), (b), (c) consider the commutative diagram of local ring
maps

OX′,x′
ι
// OZ′,z′ OY ′,y′

α
oo OS′,s′

β
oo

OX,x

γ

OO

OS,s
ϕoo

ε

OO

We will use Lemma 2.4 to equate flatness over OS,s and OS′,s′ without further mention.
The map γ is faithfully flat. Hence Fx is flat over OS,s if and only if g∗Fx′ is flat over
OS′,s′ , see Algebra, Lemma 39.9. As OS′,s′ -modules the modules g∗Fx′ , Gz′ , and π∗Gy′

are all isomorphic, see More on Morphisms, Lemma 47.4. This finishes the proof. �

4. One step dévissage

In this section we explain what is a one step dévissage of a module. A one step dévissage
exist étale locally on base and target. We discuss base change, Zariski shrinking and étale
localization of a one step dévissage.

Definition 4.1. Let S be a scheme. Let X be locally of finite type over S. Let F be
a quasi-coherent OX -module of finite type. Let s ∈ S be a point. A one step dévissage of
F/X/S over s is given by morphisms of schemes over S

X Z
ioo π // Y

and a quasi-coherentOZ -module G of finite type such that
(1) X , S , Z and Y are affine,
(2) i is a closed immersion of finite presentation,
(3) F ∼= i∗G ,
(4) π is finite, and
(5) the structure morphism Y → S is smooth with geometrically irreducible fibres

of dimension dim(Supp(Fs)).
In this case we say (Z, Y, i, π,G) is a one step dévissage of F/X/S over s.
Note that such a one step dévissage can only exist if X and S are affine. In the definition
above we only require X to be (locally) of finite type over S and we continue working in
this setting below. In [?] the authors use consistently the setup whereX → S is locally of
finite presentation andF quasi-coherentOX -module of finite type. The advantage of this
choice is that it “makes sense” to ask for F to be of finite presentation as an OX -module,
whereas in our setting it “does not make sense”. Please see More on Morphisms, Section
58 for a discussion; the observations made there show that in our setup we may consider
the condition of F being “locally of finite presentation relative to S”, and we could work
consistently with this notion. Instead however, we will rely on the results of Lemma 3.3
and the observations in Remark 6.3 to deal with this issue in an ad hoc fashion whenever
it comes up.

Definition 4.2. Let S be a scheme. LetX be locally of finite type over S. LetF be a
quasi-coherentOX -module of finite type. Let x ∈ X be a point with image s in S. A one
step dévissage of F/X/S at x is a system (Z, Y, i, π,G, z, y), where (Z, Y, i, π,G) is a one
step dévissage of F/X/S over s and
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(1) dimx(Supp(Fs)) = dim(Supp(Fs)),
(2) z ∈ Z is a point with i(z) = x and π(z) = y,
(3) we have π−1({y}) = {z},
(4) the extension κ(y)/κ(s) is purely transcendental.

A one step dévissage of F/X/S at x can only exist if X and S are affine. Condition (1)
assures us that Y → S has relative dimension equal to dimx(Supp(Fs)) via condition (5)
of Definition 4.1.

Lemma 4.3. Let f : X → S be morphism of schemes which is locally of finite type.
Let F be a finite type quasi-coherent OX -module. Let x ∈ X with image s = f(x) in S.
Then there exists a commutative diagram of pointed schemes

(X,x)

f

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

such that (S′, s′) → (S, s) and (X ′, x′) → (X,x) are elementary étale neighbourhoods,
and such that g∗F/X ′/S′ has a one step dévissage at x′.

Proof. This is immediate from Definition 4.2 and Lemma 3.2. �

Lemma 4.4. Let S , X , F , s be as in Definition 4.1. Let (Z, Y, i, π,G) be a one step
dévissage of F/X/S over s. Let (S′, s′) → (S, s) be any morphism of pointed schemes.
Given this data let X ′, Z ′, Y ′, i′, π′ be the base changes of X,Z, Y, i, π via S′ → S. Let
F ′ be the pullback of F to X ′ and let G′ be the pullback of G to Z ′. If S′ is affine, then
(Z ′, Y ′, i′, π′,G′) is a one step dévissage of F ′/X ′/S′ over s′.

Proof. Fibre products of affines are affine, see Schemes, Lemma 17.2. Base change
preserves closed immersions, morphisms of finite presentation, finite morphisms, smooth
morphisms, morphisms with geometrically irreducible fibres, and morphisms of relative
dimension n, see Morphisms, Lemmas 2.4, 21.4, 44.6, 34.5, 29.2, and More on Morphisms,
Lemma 27.2. We have i′∗G′ ∼= F ′ because pushforward along the finite morphism i com-
mutes with base change, see Cohomology of Schemes, Lemma 5.1. We have dim(Supp(Fs)) =
dim(Supp(F ′

s′)) by Morphisms, Lemma 28.3 because

Supp(Fs)×s s′ = Supp(F ′
s′).

This proves the lemma. �

Lemma 4.5. Let S , X , F , x, s be as in Definition 4.2. Let (Z, Y, i, π,G, z, y) be a one
step dévissage of F/X/S at x. Let (S′, s′) → (S, s) be a morphism of pointed schemes
which induces an isomorphism κ(s) = κ(s′). Let (Z ′, Y ′, i′, π′,G′) be as constructed in
Lemma 4.4 and let x′ ∈ X ′ (resp. z′ ∈ Z ′, y′ ∈ Y ′) be the unique point mapping to both
x ∈ X (resp. z ∈ Z , y ∈ Y ) and s′ ∈ S′. If S′ is affine, then (Z ′, Y ′, i′, π′,G′, z′, y′) is a
one step dévissage of F ′/X ′/S′ at x′.

Proof. By Lemma 4.4 (Z ′, Y ′, i′, π′,G′) is a one step dévissage ofF ′/X ′/S′ over s′.
Properties (1) – (4) of Definition 4.2 hold for (Z ′, Y ′, i′, π′,G′, z′, y′) as the assumption
that κ(s) = κ(s′) insures that the fibres X ′

s′ , Z ′
s′ , and Y ′

s′ are isomorphic to Xs, Zs, and
Ys. �
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Definition 4.6. Let S , X , F , x, s be as in Definition 4.2. Let (Z, Y, i, π,G, z, y) be
a one step dévissage of F/X/S at x. Let us define a standard shrinking of this situation
to be given by standard opens S′ ⊂ S , X ′ ⊂ X , Z ′ ⊂ Z , and Y ′ ⊂ Y such that s ∈ S′,
x ∈ X ′, z ∈ Z ′, and y ∈ Y ′ and such that

(Z ′, Y ′, i|Z′ , π|Z′ ,G|Z′ , z, y)

is a one step dévissage of F|X′/X ′/S′ at x.

Lemma 4.7. With assumption and notation as in Definition 4.6 we have:

(1) If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ , Z ′ =
ZS′ and Y ′ = YS′ we obtain a standard shrinking.

(2) LetW ⊂ Y be a standard open neighbourhood of y. Then there exists a standard
shrinking with Y ′ = W ×S S′.

(3) LetU ⊂ X be an open neighbourhood of x. Then there exists a standard shrink-
ing with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemma 4.5 and the fact that the inverse image of a
standard open under a morphism of affine schemes is a standard open, see Algebra, Lemma
17.4.

Let W ⊂ Y as in (2). Because Y → S is smooth it is open, see Morphisms, Lemma 34.10.
Hence we can find a standard open neighbourhood S′ of s contained in the image of W .
Then the fibres of WS′ → S′ are nonempty open subschemes of the fibres of Y → S over
S′ and hence geometrically irreducible too. Setting Y ′ = WS′ and Z ′ = π−1(Y ′) we see
that Z ′ ⊂ Z is a standard open neighbourhood of z. Let h ∈ Γ(Z,OZ) be a function
such that Z ′ = D(h). As i : Z → X is a closed immersion, we can find a function
h ∈ Γ(X,OX) such that i](h) = h. Take X ′ = D(h) ⊂ X . In this way we obtain a
standard shrinking as in (2).

Let U ⊂ X be as in (3). We may after shrinking U assume that U is a standard open. By
More on Morphisms, Lemma 47.4 there exists a standard open W ⊂ Y neighbourhood
of y such that π−1(W ) ⊂ i−1(U). Apply (2) to get a standard shrinking X ′, S′, Z ′, Y ′

with Y ′ = WS′ . Since Z ′ ⊂ π−1(W ) ⊂ i−1(U) we may replace X ′ by X ′ ∩ U (still a
standard open asU is also standard open) without violating any of the conditions defining
a standard shrinking. Hence we win. �

Lemma 4.8. Let S , X , F , x, s be as in Definition 4.2. Let (Z, Y, i, π,G, z, y) be a one
step dévissage of F/X/S at x. Let

(Y, y)

��

(Y ′, y′)oo

��
(S, s) (S′, s′)oo
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be a commutative diagram of pointed schemes such that the horizontal arrows are elemen-
tary étale neighbourhoods. Then there exists a commutative diagram

(X ′′, x′′)

uu ��

(Z ′′, z′′)oo

tt ��
(X,x)

��

(Z, z)oo

��

(S′′, s′′)

uu

(Y ′′, y′′)

tt

oo

(S, s) (Y, y)oo

of pointed schemes with the following properties:
(1) (S′′, s′′) → (S′, s′) is an elementary étale neighbourhood and the morphism

S′′ → S is the composition S′′ → S′ → S ,
(2) Y ′′ is an open subscheme of Y ′ ×S′ S′′,
(3) Z ′′ = Z ×Y Y ′′,
(4) (X ′′, x′′)→ (X,x) is an elementary étale neighbourhood, and
(5) (Z ′′, Y ′′, i′′, π′′,G′′, z′′, y′′) is a one step dévissage at x′′ of the sheaf F ′′.

HereF ′′ (resp. G′′) is the pullback ofF (resp. G) via the morphismX ′′ → X (resp. Z ′′ →
Z) and i′′ : Z ′′ → X ′′ and π′′ : Z ′′ → Y ′′ are as in the diagram.

Proof. Let (S′′, s′′) → (S′, s′) be any elementary étale neighbourhood with S′′

affine. Let Y ′′ ⊂ Y ′ ×S′ S′′ be any affine open neighbourhood containing the point
y′′ = (y′, s′′). Then we obtain an affine (Z ′′, z′′) by (3). Moreover ZS′′ → XS′′ is a
closed immersion and Z ′′ → ZS′′ is an étale morphism. Hence Lemma 2.1 applies and we
can find an étale morphism X ′′ → XS′ of affines such that Z ′′ ∼= X ′′ ×XS′ ZS′ . Denote
i′′ : Z ′′ → X ′′ the corresponding closed immersion. Setting x′′ = i′′(z′′) we obtain a
commutative diagram as in the lemma. Properties (1), (2), (3), and (4) hold by construc-
tion. Thus it suffices to show that (5) holds for a suitable choice of (S′′, s′′) → (S′, s′)
and Y ′′.
We first list those properties which hold for any choice of (S′′, s′′)→ (S′, s′) and Y ′′ as
in the first paragraph. As we haveZ ′′ = X ′′×XZ by construction we see that i′′∗G′′ = F ′′

(with notation as in the statement of the lemma), see Cohomology of Schemes, Lemma 5.1.
Set n = dim(Supp(Fs)) = dimx(Supp(Fs)). The morphism Y ′′ → S′′ is smooth of rela-
tive dimension n (because Y ′ → S′ is smooth of relative dimension n as the composition
Y ′ → YS′ → S′ of an étale and smooth morphism of relative dimension n and because
base change preserves smooth morphisms of relative dimensionn). We have κ(y′′) = κ(y)
and κ(s) = κ(s′′) hence κ(y′′) is a purely transcendental extension of κ(s′′). The mor-
phism of fibres X ′′

s′′ → Xs is an étale morphism of affine schemes over κ(s) = κ(s′′)
mapping the point x′′ to the point x and pulling back Fs to F ′′

s′′ . Hence
dim(Supp(F ′′

s′′)) = dim(Supp(Fs)) = n = dimx(Supp(Fs)) = dimx′′(Supp(F ′′
s′′))

because dimension is invariant under étale localization, see Descent, Lemma 21.2. As π′′ :
Z ′′ → Y ′′ is the base change of π we see that π′′ is finite and as κ(y) = κ(y′′) we see that
π−1({y′′}) = {z′′}.
At this point we have verified all the conditions of Definition 4.1 except we have not ver-
ified that Y ′′ → S′′ has geometrically irreducible fibres. Of course in general this is not
going to be true, and it is at this point that we will use that κ(s) ⊂ κ(y) is purely transcen-
dental. Namely, let T ⊂ Y ′

s′ be the irreducible component of Y ′
s′ containing y′ = (y, s′).
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Note that T is an open subscheme of Y ′
s′ as this is a smooth scheme over κ(s′). By Varieties,

Lemma 7.14 we see that T is geometrically connected because κ(s′) = κ(s) is algebraically
closed in κ(y′) = κ(y). As T is smooth we see that T is geometrically irreducible. Hence
More on Morphisms, Lemma 46.4 applies and we can find an elementary étale morphism
(S′′, s′′) → (S′, s′) and an affine open Y ′′ ⊂ Y ′

S′′ such that all fibres of Y ′′ → S′′ are
geometrically irreducible and such that T = Y ′′

s′′ . After shrinking (first Y ′′ and then S′′)
we may assume that both Y ′′ and S′′ are affine. This finishes the proof of the lemma. �

Lemma 4.9. Let S , X , F , s be as in Definition 4.1. Let (Z, Y, i, π,G) be a one step
dévissage of F/X/S over s. Let ξ ∈ Ys be the (unique) generic point. Then there exists
an integer r > 0 and anOY -module map

α : O⊕r
Y −→ π∗G

such that

α : κ(ξ)⊕r −→ (π∗G)ξ ⊗OY,ξ
κ(ξ)

is an isomorphism. Moreover, in this case we have

dim(Supp(Coker(α)s)) < dim(Supp(Fs)).

Proof. By assumption the schemes S and Y are affine. Write S = Spec(A) and
Y = Spec(B). As π is finite the OY -module π∗G is a finite type quasi-coherent OY -
module. Hence π∗G = Ñ for some finite B-module N . Let p ⊂ B be the prime ideal
corresponding to ξ. To obtain α set r = dimκ(p) N ⊗B κ(p) and pick x1, . . . , xr ∈ N
which form a basis ofN ⊗B κ(p). Take α : B⊕r → N to be the map given by the formula
α(b1, . . . , br) =

∑
bixi. It is clear that α : κ(p)⊕r → N ⊗B κ(p) is an isomorphism

as desired. Finally, suppose α is any map with this property. Then N ′ = Coker(α) is a
finite B-module such that N ′ ⊗ κ(p) = 0. By Nakayama’s lemma (Algebra, Lemma 20.1)
we see that N ′

p = 0. Since the fibre Ys is geometrically irreducible of dimension n with
generic point ξ and since we have just seen that ξ is not in the support of Coker(α) the
last assertion of the lemma holds. �

5. Complete dévissage

In this section we explain what is a complete dévissage of a module and prove that such
exist. The material in this section is mainly bookkeeping.

Definition 5.1. Let S be a scheme. Let X be locally of finite type over S. Let F be
a quasi-coherentOX -module of finite type. Let s ∈ S be a point. A complete dévissage of
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F/X/S over s is given by a diagram

X Z1
i1
oo

π1

��
Y1 Z2

i2
oo

π2

��
Y2 Z3oo

��... ...oo

��
Yn

of schemes over S , finite type quasi-coherentOZk -modules Gk , andOYk -module maps

αk : O⊕rk
Yk
−→ πk,∗Gk, k = 1, . . . , n

satisfying the following properties:
(1) (Z1, Y1, i1, π1,G1) is a one step dévissage of F/X/S over s,
(2) the map αk induces an isomorphism

κ(ξk)⊕rk −→ (πk,∗Gk)ξk ⊗OYk,ξk
κ(ξk)

where ξk ∈ (Yk)s is the unique generic point,
(3) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk) is a one step dévissage of Coker(αk−1)/Yk−1/S

over s,
(4) Coker(αn) = 0.

In this case we say that (Zk, Yk, ik, πk,Gk, αk)k=1,...,n is a complete dévissage of F/X/S
over s.

Definition 5.2. Let S be a scheme. Let X be locally of finite type over S. Let F be
a quasi-coherent OX -module of finite type. Let x ∈ X be a point with image s ∈ S. A
complete dévissage of F/X/S at x is given by a system

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n

such that (Zk, Yk, ik, πk,Gk, αk) is a complete dévissage of F/X/S over s, and such that
(1) (Z1, Y1, i1, π1,G1, z1, y1) is a one step dévissage of F/X/S at x,
(2) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk, zk, yk) is a one step dévissage of

Coker(αk−1)/Yk−1/S at yk−1.

Again we remark that a complete dévissage can only exist if X and S are affine.

Lemma 5.3. Let S , X , F , s be as in Definition 5.1. Let (S′, s′)→ (S, s) be any mor-
phism of pointed schemes. Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete dévissage of
F/X/S over s. Given this data letX ′, Z ′

k, Y
′
k, i

′
k, π

′
k be the base changes ofX,Zk, Yk, ik, πk

via S′ → S. Let F ′ be the pullback of F to X ′ and let G′
k be the pullback of Gk to Z ′

k.
Let α′

k be the pullback of αk to Y ′
k . If S′ is affine, then (Z ′

k, Y
′
k, i

′
k, π

′
k,G′

k, α
′
k)k=1,...,n is a

complete dévissage of F ′/X ′/S′ over s′.
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Proof. By Lemma 4.4 we know that the base change of a one step dévissage is a one
step dévissage. Hence it suffices to prove that formation of Coker(αk) commutes with
base change and that condition (2) of Definition 5.1 is preserved by base change. The first
is true as π′

k,∗G′
k is the pullback of πk,∗Gk (by Cohomology of Schemes, Lemma 5.1) and

because ⊗ is right exact. The second because by the same token we have
(πk,∗Gk)ξk ⊗OYk,ξk

κ(ξk)⊗κ(ξk) κ(ξ′
k) ∼= (π′

k,∗G′
k)ξ′

k
⊗OY ′

k
,ξ′
k

κ(ξ′
k)

with obvious notation. �

Lemma 5.4. Let S , X , F , x, s be as in Definition 5.2. Let (S′, s′)→ (S, s) be a mor-
phism of pointed schemes which induces an isomorphismκ(s) = κ(s′). Let (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n
be a complete dévissage of F/X/S at x. Let (Z ′

k, Y
′
k, i

′
k, π

′
k,G′

k, α
′
k)k=1,...,n be as con-

structed in Lemma 5.3 and let x′ ∈ X ′ (resp. z′
k ∈ Z ′, y′

k ∈ Y ′) be the unique point
mapping to both x ∈ X (resp. zk ∈ Zk , yk ∈ Yk) and s′ ∈ S′. If S′ is affine, then
(Z ′

k, Y
′
k, i

′
k, π

′
k,G′

k, α
′
k, z

′
k, y

′
k)k=1,...,n is a complete dévissage of F ′/X ′/S′ at x′.

Proof. Combine Lemma 5.3 and Lemma 4.5. �

Definition 5.5. Let S , X , F , x, s be as in Definition 5.2. Consider a complete
dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n of F/X/S at x. Let us define a standard
shrinking of this situation to be given by standard opens S′ ⊂ S , X ′ ⊂ X , Z ′

k ⊂ Zk , and
Y ′
k ⊂ Yk such that sk ∈ S′, xk ∈ X ′, zk ∈ Z ′, and yk ∈ Y ′ and such that

(Z ′
k, Y

′
k, i

′
k, π

′
k,G′

k, α
′
k, zk, yk)k=1,...,n

is a one step dévissage of F ′/X ′/S′ at x where G′
k = Gk|Z′

k
and F ′ = F|X′ .

Lemma 5.6. With assumption and notation as in Definition 5.5 we have:
(1) If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ , Z ′

k =
ZS′ and Y ′

k = YS′ we obtain a standard shrinking.
(2) LetW ⊂ Yn be a standard open neighbourhood of y. Then there exists a standard

shrinking with Y ′
n = W ×S S′.

(3) LetU ⊂ X be an open neighbourhood of x. Then there exists a standard shrink-
ing with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemmas 5.4 and 4.7.
Proof of (2). For convenience denote X = Y0. We apply Lemma 4.7 (2) to find a stan-
dard shrinking S′, Y ′

n−1, Z
′
n, Y

′
n of the one step dévissage of Coker(αn−1)/Yn−1/S at

yn−1 with Y ′
n = W ×S S′. We may repeat this procedure and find a standard shrinking

S′′, Y ′′
n−2, Z

′′
n−1, Y

′′
n−1 of the one step dévissage of Coker(αn−2)/Yn−2/S at yn−2 with

Y ′′
n−1 = Y ′

n−1×SS′′. We may continue in this manner until we obtainS(n), Y
(n)

0 , Z
(n)
1 , Y

(n)
1 .

At this point it is clear that we obtain our desired standard shrinking by taking S(n),X(n),
Z

(n−k)
k ×S S(n), and Y (n−k)

k ×S S(n) with the desired property.
Proof of (3). We use induction on the length of the complete dévissage. First we ap-
ply Lemma 4.7 (3) to find a standard shrinking S′, X ′, Z ′

1, Y
′

1 of the one step dévissage
of F/X/S at x with X ′ ⊂ U . If n = 1, then we are done. If n > 1, then by in-
duction we can find a standard shrinking S′′, Y ′′

1 , Z ′′
k , and Y ′′

k of the complete dévissage
(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n of Coker(α1)/Y1/S at x such that Y ′′

1 ⊂ Y ′
1 . Us-

ing Lemma 4.7 (2) we can find S′′′ ⊂ S′, X ′′′ ⊂ X ′, Z ′′′
1 and Y ′′′

1 = Y ′′
1 ×S S′′′ which is

a standard shrinking. The solution to our problem is to take
S′′′, X ′′′, Z ′′′

1 , Y
′′′

1 , Z ′′
2 ×S S′′′, Y ′′

2 ×S S′′′, . . . , Z ′′
n ×S S′′′, Y ′′

n ×S S′′′
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This ends the proof of the lemma. �

Proposition 5.7. LetS be a scheme. LetX be locally of finite type overS. Let x ∈ X
be a point with image s ∈ S. There exists a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods
and such that g∗F/X ′/S′ has a complete dévissage at x.

Proof. We prove this by induction on the integer d = dimx(Supp(Fs)). By Lemma
4.3 there exists a diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods
and such that g∗F/X ′/S′ has a one step dévissage at x′. The local nature of the problem
implies that we may replace (X,x) → (S, s) by (X ′, x′) → (S′, s′). Thus after doing so
we may assume that there exists a one step dévissage (Z1, Y1, i1, π1,G1) of F/X/S at x.

We apply Lemma 4.9 to find a map

α1 : O⊕r1
Y1
−→ π1,∗G1

which induces an isomorphism of vector spaces over κ(ξ1) where ξ1 ∈ Y1 is the unique
generic point of the fibre of Y1 over s. Moreover dimy1(Supp(Coker(α1)s)) < d. It may
happen that the stalk of Coker(α1)s at y1 is zero. In this case we may shrink Y1 by Lemma
4.7 (2) and assume that Coker(α1) = 0 so we obtain a complete dévissage of length zero.

Assume now that the stalk of Coker(α1)s at y1 is not zero. In this case, by induction, there
exists a commutative diagram

(5.7.1)

(Y1, y1)

��

(Y ′
1 , y

′
1)

h
oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods
and such that h∗ Coker(α1)/Y ′

1/S
′ has a complete dévissage

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n

at y′
1. (In particular i2 : Z2 → Y ′

1 is a closed immersion into Y ′
2 .) At this point we apply

Lemma 4.8 to S,X,F , x, s, the system (Z1, Y1, i1, π1,G1) and diagram (5.7.1). We obtain
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a diagram
(X ′′, x′′)

tt ��

(Z ′′
1 , z

′′
1 )oo

tt ��
(X,x)

��

(Z1, z1)oo

��

(S′′, s′′)

tt

(Y ′′
1 , y

′′
1 )

tt

oo

(S, s) (Y1, y1)oo

with all the properties as listed in the referenced lemma. In particular Y ′′
1 ⊂ Y ′

1 ×S′ S′′.
Set X1 = Y ′

1 ×S′ S′′ and let F1 denote the pullback of Coker(α1). By Lemma 5.4 the
system

(5.7.2) (Zk ×S′ S′′, Yk ×S′ S′′, i′′k , π
′′
k ,G′′

k , α
′′
k , z

′′
k , y

′′
k )k=2,...,n

is a complete dévissage of F1 toX1. Again, the nature of the problem allows us to replace
(X,x)→ (S, s) by (X ′′, x′′)→ (S′′, s′′). In this we see that we may assume:

(a) There exists a one step dévissage (Z1, Y1, i1, π1,G1) of F/X/S at x,
(b) there exists an α1 : O⊕r1

Y1
→ π1,∗G1 such that α⊗ κ(ξ1) is an isomorphism,

(c) Y1 ⊂ X1 is open, y1 = x1, and F1|Y1
∼= Coker(α1), and

(d) there exists a complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n ofF1/X1/S
at x1.

To finish the proof all we have to do is shrink the one step dévissage and the complete
dévissage such that they fit together to a complete dévissage. (We suggest the reader do
this on their own using Lemmas 4.7 and 5.6 instead of reading the proof that follows.)
Since Y1 ⊂ X1 is an open neighbourhood of x1 we may apply Lemma 5.6 (3) to find a
standard shrinking S′, X ′

1, Z
′
2, Y

′
2 , . . . , Y

′
n of the datum (d) so that X ′

1 ⊂ Y1. Note that
X ′

1 is also a standard open of the affine schemeY1. Next, we shrink the datum (a) as follows:
first we shrink the base S to S′, see Lemma 4.7 (1) and then we shrink the result to S′′,X ′′,
Z ′′

1 , Y ′′
1 using Lemma 4.7 (2) such that eventually Y ′′

1 = X ′
1 ×S S′′ and S′′ ⊂ S′. Then

we see that
Z ′′

1 , Y
′′

1 , Z
′
2 ×S′ S′′, Y ′

2 ×S′ S′′, . . . , Y ′
n ×S′ S′′

gives the complete dévissage we were looking for. �

Some more bookkeeping gives the following consequence.

Lemma 5.8. Let X → S be a finite type morphism of schemes. Let F be a finite
type quasi-coherent OX -module. Let s ∈ S be a point. There exists an elementary étale
neighbourhood (S′, s′) → (S, s) and étale morphisms hi : Yi → XS′ , i = 1, . . . , n
such that for each i there exists a complete dévissage of Fi/Yi/S′ over s′, where Fi is the
pullback of F to Yi and such that Xs = (XS′)s′ ⊂

⋃
hi(Yi).

Proof. For every point x ∈ Xs we can find a diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods
and such that g∗F/X ′/S′ has a complete dévissage at x′. As X → S is of finite type the
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fibre Xs is quasi-compact, and since each g : X ′ → X as above is open we can cover Xs

by a finite union of g(X ′
s′). Thus we can find a finite family of such diagrams

(X,x)

��

(X ′
i, x

′
i)gi

oo

��
(S, s) (S′

i, s
′
i)oo

i = 1, . . . , n

such that Xs =
⋃
gi(X ′

i). Set S′ = S′
1 ×S . . . ×S S′

n and let Yi = Xi ×S′
i
S′ be the

base change ofX ′
i to S′. By Lemma 5.3 we see that the pullback of F to Yi has a complete

dévissage over s and we win. �

6. Translation into algebra

It may be useful to spell out algebraically what it means to have a complete dévissage. We
introduce the following notion (which is not that useful so we give it an impossibly long
name).

Definition 6.1. Let R → S be a ring map. Let q be a prime of S lying over the
prime p of R. A elementary étale localization of the ring map R → S at q is given by a
commutative diagram of rings and accompanying primes

S // S′

R

OO

// R′

OO q q′

p p′

such that R→ R′ and S → S′ are étale ring maps and κ(p) = κ(p′) and κ(q) = κ(q′).

Definition 6.2. Let R → S be a finite type ring map. Let r be a prime of R. Let N
be a finite S-module. A complete dévissage of N/S/R over r is given by R-algebra maps

A1 A2 ... An

S

??

B1

`` >>

...

`` ??

...

__ >>

Bn

aa

finite Ai-modules Mi and Bi-module maps αi : B⊕ri
i →Mi such that

(1) S → A1 is surjective and of finite presentation,
(2) Bi → Ai+1 is surjective and of finite presentation,
(3) Bi → Ai is finite,
(4) R→ Bi is smooth with geometrically irreducible fibres,
(5) N ∼= M1 as S-modules,
(6) Coker(αi) ∼= Mi+1 as Bi-modules,
(7) αi : κ(pi)⊕ri →Mi ⊗Bi κ(pi) is an isomorphism where pi = rBi, and
(8) Coker(αn) = 0.

In this situation we say that (Ai, Bi,Mi, αi)i=1,...,n is a complete dévissage of N/S/R
over r.

Remark 6.3. Note that the R-algebras Bi for all i and Ai for i ≥ 2 are of finite
presentation over R. If S is of finite presentation over R, then it is also the case that A1
is of finite presentation over R. In this case all the ring maps in the complete dévissage
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are of finite presentation. See Algebra, Lemma 6.2. Still assuming S of finite presentation
over R the following are equivalent

(1) M is of finite presentation over S ,
(2) M1 is of finite presentation over A1,
(3) M1 is of finite presentation over B1,
(4) each Mi is of finite presentation both as an Ai-module and as a Bi-module.

The equivalences (1) ⇔ (2) and (2) ⇔ (3) follow from Algebra, Lemma 36.23. If M1 is
finitely presented, so is Coker(α1) (see Algebra, Lemma 5.3) and hence M2, etc.

Definition 6.4. Let R → S be a finite type ring map. Let q be a prime of S lying
over the prime r ofR. LetN be a finite S-module. A complete dévissage ofN/S/R at q is
given by a complete dévissage (Ai, Bi,Mi, αi)i=1,...,n of N/S/R over r and prime ideals
qi ⊂ Bi lying over r such that

(1) κ(r) ⊂ κ(qi) is purely transcendental,
(2) there is a unique prime q′

i ⊂ Ai lying over qi ⊂ Bi,
(3) q = q′

1 ∩ S and qi = q′
i+1 ∩Ai,

(4) R→ Bi has relative dimension dimqi(Supp(Mi ⊗R κ(r))).

Remark 6.5. Let A → B be a finite type ring map and let N be a finite B-module.
Let q be a prime of B lying over the prime r of A. Set X = Spec(B), S = Spec(A)
and F = Ñ on X . Let x be the point corresponding to q and let s ∈ S be the point
corresponding to p. Then

(1) if there exists a complete dévissage ofF/X/S over s then there exists a complete
dévissage of N/B/A over p, and

(2) there exists a complete dévissage of F/X/S at x if and only if there exists a
complete dévissage of N/B/A at q.

There is just a small twist in that we omitted the condition on the relative dimension in
the formulation of “a complete dévissage ofN/B/A over p” which is why the implication
in (1) only goes in one direction. The notion of a complete dévissage at q does have this
condition built in. In any case we will only use that existence for F/X/S implies the
existence for N/B/A.

Lemma 6.6. Let R→ S be a finite type ring map. Let M be a finite S-module. Let q
be a prime ideal of S. There exists an elementary étale localization R′ → S′, q′, p′ of the
ring map R→ S at q such that there exists a complete dévissage of (M ⊗S S′)/S′/R′ at
q′.

Proof. This is a reformulation of Proposition 5.7 via Remark 6.5 �

7. Localization and universally injective maps

Lemma 7.1. Let R→ S be a ring map. Let N be a S-module. Assume
(1) R is a local ring with maximal ideal m,
(2) S = S/mS is Noetherian, and
(3) N = N/mRN is a finite S-module.

Let Σ ⊂ S be the multiplicative subset of elements which are not a zerodivisor on N .
Then Σ−1S is a semi-local ring whose spectrum consists of primes q ⊂ S contained in an
element of AssS(N). Moreover, any maximal ideal of Σ−1S corresponds to an associated
prime of N over S.
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Proof. Note that AssS(N) = AssS(N), see Algebra, Lemma 63.14. This is a finite
set by Algebra, Lemma 63.5. Say {q1, . . . , qr} = AssS(N). We have Σ = S \ (

⋃
qi)

by Algebra, Lemma 63.9. By the description of Spec(Σ−1S) in Algebra, Lemma 17.5 and
by Algebra, Lemma 15.2 we see that the primes of Σ−1S correspond to the primes of S
contained in one of the qi. Hence the maximal ideals of Σ−1S correspond one-to-one with
the maximal (w.r.t. inclusion) elements of the set {q1, . . . , qr}. This proves the lemma.

�

Lemma 7.2. Assumption and notation as in Lemma 7.1. Assume moreover that
(1) S is local and R→ S is a local homomorphism,
(2) S is essentially of finite presentation over R,
(3) N is finitely presented over S , and
(4) N is flat over R.

Then each s ∈ Σ defines a universally injective R-module map s : N → N , and the map
N → Σ−1N is R-universally injective.

Proof. By Algebra, Lemma 128.4 the sequence 0 → N → N → N/sN → 0 is
exact and N/sN is flat over R. This implies that s : N → N is universally injective,
see Algebra, Lemma 39.12. The map N → Σ−1N is universally injective as the directed
colimit of the maps s : N → N . �

Lemma 7.3. Let R→ S be a ring map. Let N be an S-module. Let S → S′ be a ring
map. Assume

(1) R→ S is a local homomorphism of local rings
(2) S is essentially of finite presentation over R,
(3) N is of finite presentation over S ,
(4) N is flat over R,
(5) S → S′ is flat, and
(6) the image of Spec(S′)→ Spec(S) contains all primes q of S lying over mR such

that q is an associated prime of N/mRN .
Then N → N ⊗S S′ is R-universally injective.

Proof. Set N ′ = N ⊗R S′. Consider the commutative diagram

N

��

// N ′

��
Σ−1N // Σ−1N ′

where Σ ⊂ S is the set of elements which are not a zerodivisor on N/mRN . If we can
show that the mapN → Σ−1N ′ is universally injective, thenN → N ′ is too (see Algebra,
Lemma 82.10).

By Lemma 7.1 the ring Σ−1S is a semi-local ring whose maximal ideals correspond to
associated primes ofN/mRN . Hence the image of Spec(Σ−1S′)→ Spec(Σ−1S) contains
all these maximal ideals by assumption. By Algebra, Lemma 39.16 the ring map Σ−1S →
Σ−1S′ is faithfully flat. Hence Σ−1N → Σ−1N ′, which is the map

N ⊗S Σ−1S −→ N ⊗S Σ−1S′

is universally injective, see Algebra, Lemmas 82.11 and 82.8. Finally, we apply Lemma
7.2 to see that N → Σ−1N is universally injective. As the composition of universally
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injective module maps is universally injective (see Algebra, Lemma 82.9) we conclude that
N → Σ−1N ′ is universally injective and we win. �

Lemma 7.4. Let R→ S be a ring map. Let N be an S-module. Let S → S′ be a ring
map. Assume

(1) R→ S is of finite presentation and N is of finite presentation over S ,
(2) N is flat over R,
(3) S → S′ is flat, and
(4) the image of Spec(S′)→ Spec(S) contains all primes q such that q is an associ-

ated prime of N ⊗R κ(p) where p is the inverse image of q in R.
Then N → N ⊗S S′ is R-universally injective.

Proof. By Algebra, Lemma 82.12 it suffices to show that Nq → (N ⊗R S′)q is a Rp-
universally injective for any prime q of S lying over p in R. Thus we may apply Lemma
7.3 to the ring maps Rp → Sq → S′

q and the module Nq. �

The reader may want to compare the following lemma to Algebra, Lemmas 99.1 and 128.4
and the results of Section 25. In each case the conclusion is that the map u : M → N is
universally injective with flat cokernel.

Lemma 7.5. Let (R,m) be a local ring. Let u : M → N be anR-module map. IfM is
a projective R-module, N is a flat R-module, and u : M/mM → N/mN is injective then
u is universally injective.

Proof. By Algebra, Theorem 85.4 the module M is free. If we show the result holds
for every finitely generated direct summand of M , then the lemma follows. Hence we
may assume that M is finite free. Write N = colimiNi as a directed colimit of finite
free modules, see Algebra, Theorem 81.4. Note that u : M → N factors through Ni for
some i (as M is finite free). Denote ui : M → Ni the corresponding R-module map. As
u is injective we see that ui : M/mM → Ni/mNi is injective and remains injective on
composing with the maps Ni/mNi → Ni′/mNi′ for all i′ ≥ i. As M and Ni′ are finite
free over the local ring R this implies that M → Ni′ is a split injection for all i′ ≥ i.
Hence for any R-module Q we see that M ⊗R Q → Ni′ ⊗R Q is injective for all i′ ≥ i.
As −⊗R Q commutes with colimits we conclude that M ⊗R Q→ Ni′ ⊗R Q is injective
as desired. �

Lemma 7.6. Assumption and notation as in Lemma 7.1. Assume moreover that N is
projective as anR-module. Then each s ∈ Σ defines a universally injectiveR-module map
s : N → N , and the map N → Σ−1N is R-universally injective.

Proof. Pick s ∈ Σ. By Lemma 7.5 the map s : N → N is universally injective. The
map N → Σ−1N is universally injective as the directed colimit of the maps s : N →
N . �

8. Completion and Mittag-Leffler modules

Lemma 8.1. Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume R
is Noetherian and complete with respect to I . The completion (

⊕
α∈AR)∧ is flat and

Mittag-Leffler.

Proof. By More on Algebra, Lemma 27.1 the map (
⊕

α∈AR)∧ →
∏
α∈AR is uni-

versally injective. Thus, by Algebra, Lemmas 82.7 and 89.7 it suffices to show that
∏
α∈AR

is flat and Mittag-Leffler. By Algebra, Proposition 90.6 (and Algebra, Lemma 90.5) we see
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that
∏
α∈AR is flat. Thus we conclude because a product of copies of R is Mittag-Leffler,

see Algebra, Lemma 91.3. �

Lemma 8.2. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module. Assume
(1) R is Noetherian and I-adically complete,
(2) M is flat over R, and
(3) M/IM is a projective R/I-module.

Then the I-adic completion M∧ is a flat Mittag-Leffler R-module.

Proof. Choose a surjectionF →M whereF is a freeR-module. By Algebra, Lemma
97.9 the moduleM∧ is a direct summand of the module F∧. Hence it suffices to prove the
lemma for F . In this case the lemma follows from Lemma 8.1. �

In Lemmas 8.3 and 8.4 the assumption that S be Noetherian holds if R → S is of finite
type, see Algebra, Lemma 31.1.

Lemma 8.3. Let R be a ring. Let I ⊂ R be an ideal. Let R→ S be a ring map, and N
an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) N is a finite S-module, and
(4) for any finite R-module Q, any q ∈ AssS(Q⊗R N) satisfies IS + q 6= S.

Then the map N → N∧ of N into the I-adic completion of N is universally injective as
a map of R-modules.

Proof. We have to show that for any finiteR-moduleQ the mapQ⊗RN → Q⊗R
N∧ is injective, see Algebra, Theorem 82.3. As there is a canonical map Q ⊗R N∧ →
(Q⊗RN)∧ it suffices to prove that the canonical mapQ⊗RN → (Q⊗RN)∧ is injective.
Hence we may replace N by Q ⊗R N and it suffices to prove the injectivity for the map
N → N∧.

Let K = Ker(N → N∧). It suffices to show that Kq = 0 for q ∈ Ass(N) as N is a
submodule of

∏
q∈Ass(N) Nq, see Algebra, Lemma 63.19. Pick q ∈ Ass(N). By the last

assumption we see that there exists a prime q′ ⊃ IS + q. SinceKq is a localization ofKq′

it suffices to prove the vanishing of Kq′ . Note that K =
⋂
InN , hence Kq′ ⊂

⋂
InNq′ .

Hence Kq′ = 0 by Algebra, Lemma 51.4. �

Lemma 8.4. LetR be a ring. Let I ⊂ R be an ideal. LetR→ S be a ring map, andN
an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) N is a finite S-module,
(4) N is flat over R, and
(5) for any prime q ⊂ S which is an associated prime ofN⊗Rκ(p) where p = R∩q

we have IS + q 6= S.
Then the map N → N∧ of N into the I-adic completion of N is universally injective as
a map of R-modules.

Proof. This follows from Lemma 8.3 because Algebra, Lemma 65.5 and Remark 65.6
guarantee that the set of associated primes of tensor products N ⊗R Q are contained in
the set of associated primes of the modules N ⊗R κ(p). �
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9. Projective modules

The following lemma can be used to prove projectivity by Noetherian induction on the
base, see Lemma 9.2.

Lemma 9.1. Let R be a ring. Let I ⊂ R be an ideal. Let R→ S be a ring map, and N
an S-module. Assume

(1) R is Noetherian and I-adically complete,
(2) R→ S is of finite type,
(3) N is a finite S-module,
(4) N is flat over R,
(5) N/IN is projective as a R/I-module, and
(6) for any prime q ⊂ S which is an associated prime ofN⊗Rκ(p) where p = R∩q

we have IS + q 6= S.
Then N is projective as an R-module.

Proof. By Lemma 8.4 the map N → N∧ is universally injective. By Lemma 8.2
the module N∧ is Mittag-Leffler. By Algebra, Lemma 89.7 we conclude that N is Mittag-
Leffler. Hence N is countably generated, flat and Mittag-Leffler as an R-module, whence
projective by Algebra, Lemma 93.1. �

Lemma 9.2. Let R be a ring. Let R→ S be a ring map. Assume
(1) R is Noetherian,
(2) R→ S is of finite type and flat, and
(3) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. Consider the set
{I ⊂ R | S/IS not projective as R/I-module}

We have to show this set is empty. To get a contradiction assume it is nonempty. Then
it contains a maximal element I . Let J =

√
I be its radical. If I 6= J , then S/JS is

projective as a R/J -module, and S/IS is flat over R/I and J/I is a nilpotent ideal in
R/I . Applying Algebra, Lemma 77.7 we see that S/IS is a projectiveR/I-module, which
is a contradiction. Hence we may assume that I is a radical ideal. In other words we are
reduced to proving the lemma in case R is a reduced ring and S/IS is a projective R/I-
module for every nonzero ideal I of R.
Assume R is a reduced ring and S/IS is a projective R/I-module for every nonzero ideal
I of R. By generic flatness, Algebra, Lemma 118.1 (applied to a localization Rg which is
a domain) or the more general Algebra, Lemma 118.7 there exists a nonzero f ∈ R such
that Sf is free as anRf -module. DenoteR∧ = limR/(fn) the (f)-adic completion ofR.
Note that the ring map

R −→ Rf ×R∧

is a faithfully flat ring map, see Algebra, Lemma 97.2. Hence by faithfully flat descent of
projectivity, see Algebra, Theorem 95.6 it suffices to prove thatS⊗RR∧ is a projectiveR∧-
module. To see this we will use the criterion of Lemma 9.1. First of all, note that S/fS =
(S ⊗R R∧)/f(S ⊗R R∧) is a projective R/(f)-module and that S ⊗R R∧ is flat and of
finite type overR∧ as a base change of such. Next, suppose that p∧ is a prime ideal ofR∧.
Let p ⊂ R be the corresponding prime of R. As R → S has geometrically integral fibre
rings, the same is true for the fibre rings of any base change. Hence q∧ = p∧(S ⊗R R∧),
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is a prime ideals lying over p∧ and it is the unique associated prime of S ⊗R κ(p∧). Thus
we win if f(S ⊗R R∧) + q∧ 6= S ⊗R R∧. This is true because p∧ + fR∧ 6= R∧ as f lies
in the Jacobson radical of the f -adically complete ring R∧ and because R∧ → S ⊗R R∧

is surjective on spectra as its fibres are nonempty (irreducible spaces are nonempty). �

Lemma 9.3. Let R be a ring. Let R→ S be a ring map. Assume
(1) R→ S is of finite presentation and flat, and
(2) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. We can find a cocartesian diagram of rings

S0 // S

R0

OO

// R

OO

such that R0 is of finite type over Z, the map R0 → S0 is of finite type and flat with
geometrically integral fibres, see More on Morphisms, Lemmas 34.4, 34.6, 34.7, and 34.11.
By Lemma 9.2 we see thatS0 is a projectiveR0-module. HenceS = S0⊗R0R is a projective
R-module, see Algebra, Lemma 94.1. �

Remark 9.4. Lemma 9.3 is a key step in the development of results in this chapter.
The analogue of this lemma in [?] is [?, I Proposition 3.3.1]: If R → S is smooth with
geometrically integral fibres, then S is projective as an R-module. This is a special case of
Lemma 9.3, but as we will later improve on this lemma anyway, we do not gain much from
having a stronger result at this point. We briefly sketch the proof of this as it is given in
[?].

(1) First reduce to the case where R is Noetherian as above.
(2) Since projectivity descends through faithfully flat ring maps, see Algebra, Theo-

rem 95.6 we may work locally in the fppf topology on R, hence we may assume
that R → S has a section σ : S → R. (Just by the usual trick of base changing
to S.) Set I = Ker(S → R).

(3) Localizing a bit more onRwe may assume that I/I2 is a freeR-module and that
the completion S∧ of S with respect to I is isomorphic to R[[t1, . . . , tn]], see
Morphisms, Lemma 34.20. Here we are using that R→ S is smooth.

(4) To prove that S is projective as an R-module, it suffices to prove that S is flat,
countably generated and Mittag-Leffler as an R-module, see Algebra, Lemma
93.1. The first two properties are evident. Thus it suffices to prove that S is
Mittag-Leffler as anR-module. By Algebra, Lemma 91.4 the moduleR[[t1, . . . , tn]]
is Mittag-Leffler over R. Hence Algebra, Lemma 89.7 shows that it suffices to
show that the S → S∧ is universally injective as a map of R-modules.

(5) Apply Lemma 7.4 to see that S → S∧ is R-universally injective. Namely, as
R → S has geometrically integral fibres, any associated point of any fibre ring
is just the generic point of the fibre ring which is in the image of Spec(S∧) →
Spec(S).

There is an analogy between the proof as sketched just now, and the development of the
arguments leading to the proof of Lemma 9.3. In both a completion plays an essential role,
and both times the assumption of having geometrically integral fibres assures one that the
map from S to the completion of S is R-universally injective.
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10. Flat finite type modules, Part I

In some cases given a ring map R→ S of finite presentation and a finite S-module N the
flatness of N over R implies that N is of finite presentation. In this section we prove this
is true “pointwise”. We remark that the first proof of Proposition 10.3 uses the geometric
results of Section 3 but not the existence of a complete dévissage.

Lemma 10.1. Let (R,m) be a local ring. Let R → S be a finitely presented flat ring
map with geometrically integral fibres. Write p = mS. Let q ⊂ S be a prime ideal lying
over m. Let N be a finite S-module. There exist r ≥ 0 and an S-module map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following are
equivalent:

(1) Nq is R-flat,
(2) α is R-universally injective and Coker(α)q is R-flat,
(3) α is injective and Coker(α)q is R-flat,
(4) αp is an isomorphism and Coker(α)q is R-flat, and
(5) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p) N ⊗S κ(p) and pick x1, . . . , xr ∈ N which
form a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

Fix an α. The most interesting implication is (1)⇒ (2) which we prove first. Assume (1).
Because S/mS is a domain with fraction field κ(p) we see that (S/mS)⊕r → Np/mNp =
N⊗Sκ(p) is injective. Hence by Lemmas 7.5 and 9.3. the mapS⊕r → Np isR-universally
injective. It follows that S⊕r → N is R-universally injective, see Algebra, Lemma 82.10.
Then also the localization αq is R-universally injective, see Algebra, Lemma 82.13. We
conclude that Coker(α)q is R-flat by Algebra, Lemma 82.7.

The implication (2)⇒ (3) is immediate. If (3) holds, then αp is injective as a localization
of an injective module map. By Nakayama’s lemma (Algebra, Lemma 20.1) αp is surjective
too. Hence (3)⇒ (4). If (4) holds, thenαp is an isomorphism, soα is injective asSq → Sp is
injective. Namely, elements of S\p are nonzerodivisors on S by a combination of Lemmas
7.6 and 9.3. Hence (4)⇒ (5). Finally, if (5) holds, thenNq isR-flat as an extension of flat
modules, see Algebra, Lemma 39.13. Hence (5)⇒ (1) and the proof is finished. �

Lemma 10.2. Let (R,m) be a local ring. Let R → S be a ring map of finite presen-
tation. Let N be a finite S-module. Let q be a prime of S lying over m. Assume that Nq

is flat over R, and assume there exists a complete dévissage of N/S/R at q. Then N is a
finitely presented S-module, free as an R-module, and there exists an isomorphism

N ∼= B⊕r1
1 ⊕ . . .⊕B⊕rn

n

as R-modules where each Bi is a smooth R-algebra with geometrically irreducible fibres.

Proof. Let (Ai, Bi,Mi, αi, qi)i=1,...,n be the given complete dévissage. We prove
the lemma by induction on n. Note thatN is finitely presented as anS-module if and only
if M1 is finitely presented as an B1-module, see Remark 6.3. Note that Nq

∼= (M1)q1 as
R-modules because (a)Nq

∼= (M1)q′
1

where q′
1 is the unique prime inA1 lying over q1 and

(b) (A1)q′
1

= (A1)q1 by Algebra, Lemma 41.11, so (c) (M1)q′
1
∼= (M1)q1 . Hence (M1)q1 is

a flat R-module. Thus we may replace (S,N) by (B1,M1) in order to prove the lemma.
By Lemma 10.1 the map α1 : B⊕r1

1 → M1 is R-universally injective and Coker(α1)q is
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R-flat. Note that (Ai, Bi,Mi, αi, qi)i=2,...,n is a complete dévissage of Coker(α1)/B1/R
at q1. Hence the induction hypothesis implies that Coker(α1) is finitely presented as aB1-
module, free as an R-module, and has a decomposition as in the lemma. This implies that
M1 is finitely presented as a B1-module, see Algebra, Lemma 5.3. It further implies that
M1 ∼= B⊕r1

1 ⊕Coker(α1) asR-modules, hence a decomposition as in the lemma. Finally,
B1 is projective as an R-module by Lemma 9.3 hence free as an R-module by Algebra,
Theorem 85.4. This finishes the proof. �

Proposition 10.3. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X . Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open sub-
scheme

V ⊂ X ×S Spec(OS′,s′)

which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the pull-
back of F to V is anOV -module of finite presentation and flat overOS′,s′ .

First proof. This proof is longer but does not use the existence of a complete dévis-
sage. The problem is local around x and s, hence we may assume that X and S are
affine. During the proof we will finitely many times replace S by an elementary étale
neighbourhood of (S, s). The goal is then to find (after such a replacement) an open
V ⊂ X ×S Spec(OS,s) containing x such that F|V is flat over S and finitely presented.
Of course we may also replace S by Spec(OS,s) at any point of the proof, i.e., we may
assume S is a local scheme. We will prove the proposition by induction on the integer
n = dimx(Supp(Fs)).

We can choose

(1) elementary étale neighbourhoods g : (X ′, x′)→ (X,x), e : (S′, s′)→ (S, s),
(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherentOZ′ -module G ,
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as in Lemma 3.2. We are going to replace S by Spec(OS′,s′), see remarks in first paragraph
of the proof. Consider the diagram

XOS′,s′

f

��

X ′
OS′,s′

��

g
oo Z ′

OS′,s′i
oo

π

��
Y ′

OS′,s′

hxx
Spec(OS′,s′)

Here we have base changed the schemes X ′, Z ′, Y ′ over S′ via Spec(OS′,s′) → S′ and
the scheme X over S via Spec(OS′,s′) → S. It is still the case that g is étale, see Lemma
2.2. After replacing X by XOS′,s′ , X ′ by X ′

OS′,s′ , Z ′ by Z ′
OS′,s′ , and Y ′ by Y ′

OS′,s′ we
may assume we have a diagram as Lemma 3.2 where in addition S = S′ is a local scheme
with closed point s. By Lemmas 3.3 and 3.4 the result for Y ′ → S , the sheaf π∗G , and
the point y′ implies the result for X → S , F and x. Hence we may assume that S is
local andX → S is a smooth morphism of affines with geometrically irreducible fibres of
dimension n.

The base case of the induction: n = 0. AsX → S is smooth with geometrically irreducible
fibres of dimension 0 we see that X → S is an open immersion, see Descent, Lemma 25.2.
As S is local and the closed point is in the image of X → S we conclude that X = S.
Thus we see thatF corresponds to a finite flatOS,s module. In this case the result follows
from Algebra, Lemma 78.5 which tells us that F is in fact finite free.

The induction step. Assume the result holds whenever the dimension of the support in the
closed fibre is < n. Write S = Spec(A), X = Spec(B) and F = Ñ for some B-module
N . Note that A is a local ring; denote its maximal ideal m. Then p = mB is the unique
minimal prime lying over m as X → S has geometrically irreducible fibres. Finally, let
q ⊂ B be the prime corresponding to x. By Lemma 10.1 we can choose a map

α : B⊕r → N

such that κ(p)⊕r → N ⊗B κ(p) is an isomorphism. Moreover, as Nq is A-flat the
lemma also shows that α is injective and that Coker(α)q is A-flat. Set Q = Coker(α).
Note that the support of Q/mQ does not contain p. Hence it is certainly the case that
dimq(Supp(Q/mQ)) < n. Combining everything we know about Q we see that the
induction hypothesis applies to Q. It follows that there exists an elementary étale mor-
phism (S′, s)→ (S, s) such that the conclusion holds for Q⊗A A′ over B ⊗A A′ where
A′ = OS′,s′ . After replacing A by A′ we have an exact sequence

0→ B⊕r → N → Q→ 0
(here we use that α is injective as mentioned above) of finite B-modules and we also get
an element g ∈ B, g 6∈ q such that Qg is finitely presented over Bg and flat over A. Since
localization is exact we see that

0→ B⊕r
g → Ng → Qg → 0

is still exact. AsBg andQg are flat overAwe conclude thatNg is flat overA, see Algebra,
Lemma 39.13, and as Bg and Qg are finitely presented over Bg the same holds for Ng , see
Algebra, Lemma 5.3. �
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Second proof. We apply Proposition 5.7 to find a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbourhoods
and such that g∗F/X ′/S′ has a complete dévissage at x. (In particular S′ and X ′ are
affine.) By Morphisms, Lemma 25.13 we see that g∗F is flat at x′ over S and by Lemma
2.3 we see that it is flat at x′ over S′. Via Remark 6.5 we deduce that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)
has a complete dévissage at the prime of Γ(X ′,OX′) corresponding to x′. We may base
change this complete dévissage to the local ring OS′,s′ of Γ(S′,OS′) at the prime corre-
sponding to s′. Thus Lemma 10.2 implies that

Γ(X ′,F ′)⊗Γ(S′,OS′ ) OS′,s′

is flat over OS′,s′ and of finite presentation over Γ(X ′,OX′)⊗Γ(S′,OS′ ) OS′,s′ . In other
words, the restriction of F to X ′ ×S′ Spec(OS′,s′) is of finite presentation and flat over
OS′,s′ . Since the morphism X ′ ×S′ Spec(OS′,s′)→ X ×S Spec(OS′,s′) is étale (Lemma
2.2) its image V ⊂ X ×S Spec(OS′,s′) is an open subscheme, and by étale descent the re-
striction ofF to V is of finite presentation and flat overOS′,s′ . (Results used: Morphisms,
Lemma 36.13, Descent, Lemma 7.3, and Morphisms, Lemma 25.13.) �

Lemma 10.4. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherentOX -module of finite type. Let s ∈ S. Then the set

{x ∈ Xs | F flat over S at x}
is open in the fibre Xs.

Proof. Suppose x ∈ U . Choose an elementary étale neighbourhood (S′, s′) →
(S, s) and open V ⊂ X ×S Spec(OS′,s′) as in Proposition 10.3. Note that Xs′ = Xs

as κ(s) = κ(s′). If x′ ∈ V ∩Xs′ , then the pullback of F to X ×S S′ is flat over S′ at x′.
Hence F is flat at x′ over S , see Morphisms, Lemma 25.13. In other words Xs ∩ V ⊂ U is
an open neighbourhood of x in U . �

Lemma 10.5. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X . Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open sub-
scheme

V ⊂ X ×S Spec(OS′,s′)
which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the pull-
back of F to V is flat overOS′,s′ .

Proof. (The only difference between this and Proposition 10.3 is that we do not
assume f is of finite presentation.) The question is local onX and S , hence we may assume
X and S are affine. Write X = Spec(B), S = Spec(A) and write B = A[x1, . . . , xn]/I .



3368 38. MORE ON FLATNESS

In other words we obtain a closed immersion i : X → An
S . Denote t = i(x) ∈ An

S . We
may apply Proposition 10.3 to An

S → S , the sheaf i∗F and the point t. We obtain an
elementary étale neighbourhood (S′, s′)→ (S, s) and an open subscheme

W ⊂ An
OS′,s′

such that the pullback of i∗F toW is flat overOS′,s′ . This means that V := W ∩
(
X ×S

Spec(OS′,s′)
)

is the desired open subscheme. �

Lemma 10.6. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X . Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open sub-
scheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibreXs = X×S s′ such that the pullback ofF to V is anOV -module
of finite presentation and flat overOS′,s′ .

Proof. For every point x ∈ Xs we can use Proposition 10.3 to find an elementary
étale neighbourhood (Sx, sx) → (S, s) and an open Vx ⊂ X ×S Spec(OSx,sx) such
that x ∈ Xs = X ×S sx is contained in Vx and such that the pullback of F to Vx is an
OVx -module of finite presentation and flat over OSx,sx . In particular we may view the
fibre (Vx)sx as an open neighbourhood of x in Xs. Because Xs is quasi-compact we can
find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the union of the (Vxi)sxi .
Choose an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each of the
neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 35.4. Set V =

⋃
Vi where Vi

is the inverse images of the open Vxi via the morphism
X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi ,sxi )

By construction V contains Xs and by construction the pullback of F to V is an OV -
module of finite presentation and flat overOS′,s′ . �

Lemma 10.7. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X . Let s ∈ S. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open sub-
scheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibreXs = X×S s′ such that the pullback ofF to V is flat overOS′,s′ .

Proof. (The only difference between this and Lemma 10.6 is that we do not assume
f is of finite presentation.) For every point x ∈ Xs we can use Lemma 10.5 to find an
elementary étale neighbourhood (Sx, sx)→ (S, s) and an open Vx ⊂ X×SSpec(OSx,sx)
such thatx ∈ Xs = X×Ssx is contained inVx and such that the pullback ofF toVx is flat
overOSx,sx . In particular we may view the fibre (Vx)sx as an open neighbourhood of x in
Xs. Because Xs is quasi-compact we can find a finite number of points x1, . . . , xn ∈ Xs

such that Xs is the union of the (Vxi)sxi . Choose an elementary étale neighbourhood
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(S′, s′) → (S, s) which dominates each of the neighbourhoods (Sxi , sxi), see More on
Morphisms, Lemma 35.4. Set V =

⋃
Vi where Vi is the inverse images of the open Vxi via

the morphism
X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi ,sxi )

By construction V contains Xs and by construction the pullback of F to V is flat over
OS′,s′ . �

Lemma 10.8. LetS be a scheme. LetX be locally of finite type overS. Letx ∈ X with
image s ∈ S. IfX is flat at x over S , then there exists an elementary étale neighbourhood
(S′, s′)→ (S, s) and an open subscheme

V ⊂ X ×S Spec(OS′,s′)

which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that V →
Spec(OS′,s′) is flat and of finite presentation.

Proof. The question is local on X and S , hence we may assume X and S are affine.
Write X = Spec(B), S = Spec(A) and write B = A[x1, . . . , xn]/I . In other words we
obtain a closed immersion i : X → An

S . Denote t = i(x) ∈ An
S . We may apply Propo-

sition 10.3 to An
S → S , the sheaf F = i∗OX and the point t. We obtain an elementary

étale neighbourhood (S′, s′)→ (S, s) and an open subscheme

W ⊂ An
OS′,s′

such that the pullback of i∗OX is flat and of finite presentation. This means that V :=
W ∩

(
X ×S Spec(OS′,s′)

)
is the desired open subscheme. �

Lemma 10.9. Let f : X → S be a morphism which is locally of finite presentation.
Let F be a quasi-coherent OX -module of finite type. If x ∈ X and F is flat at x over S ,
then Fx is anOX,x-module of finite presentation.

Proof. Let s = f(x). By Proposition 10.3 there exists an elementary étale neigh-
bourhood (S′, s′)→ (S, s) such that the pullback of F to X ×S Spec(OS′,s′) is of finite
presentation in a neighbourhood of the point x′ ∈ Xs′ = Xs corresponding to x. The
ring map

OX,x −→ OX×SSpec(OS′,s′ ),x′ = OX×SS′,x′

is flat and local as a localization of an étale ring map. HenceFx is of finite presentation over
OX,x by descent, see Algebra, Lemma 83.2 (and also that a flat local ring map is faithfully
flat, see Algebra, Lemma 39.17). �

Lemma 10.10. Let f : X → S be a morphism which is locally of finite type. Let
x ∈ X with image s ∈ S. If f is flat at x over S , then OX,x is essentially of finite
presentation overOS,s.

Proof. We may assume X and S affine. Write X = Spec(B), S = Spec(A) and
write B = A[x1, . . . , xn]/I . In other words we obtain a closed immersion i : X → An

S .
Denote t = i(x) ∈ An

S . We may apply Lemma 10.9 to An
S → S , the sheaf F = i∗OX

and the point t. We conclude thatOX,x is of finite presentation overOAn
S
,t which implies

what we want. �
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11. Extending properties from an open

In this section we collect a number of results of the form: If f : X → S is a flat morphism
of schemes and f satisfies some property over a dense open of S , then f satisfies the same
property over all of S.

Lemma 11.1. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. Let U ⊂ S be open. Assume

(1) f is locally of finite presentation,
(2) F is of finite type and flat over S ,
(3) U ⊂ S is retrocompact and scheme theoretically dense,
(4) F|f−1U is of finite presentation.

Then F is of finite presentation.

Proof. The problem is local onX andS , hence we may assumeX andS affine. Write
S = Spec(A) and X = Spec(B). Let N be a finite B-module such that F is the quasi-
coherent sheaf associated to N . We have U = D(f1) ∪ . . . ∪ D(fn) for some fi ∈ A,
see Algebra, Lemma 29.1. As U is schematically dense the map A → Af1 × . . . × Afn is
injective. Pick a prime q ⊂ B lying over p ⊂ A corresponding to x ∈ X mapping to s ∈
S. By Lemma 10.9 the module Nq is of finite presentation over Bq. Choose a surjection
ϕ : B⊕m → N of B-modules. Choose k1, . . . , kt ∈ Ker(ϕ) and set N ′ = B⊕m/

∑
Bkj .

There is a canonical surjection N ′ → N and N is the filtered colimit of the B-modules
N ′ constructed in this manner. Thus we see that we can choose k1, . . . , kt such that (a)
N ′
fi
∼= Nfi , i = 1, . . . , n and (b) N ′

q
∼= Nq. This in particular implies that N ′

q is flat over
A. By openness of flatness, see Algebra, Theorem 129.4 we conclude that there exists a
g ∈ B, g 6∈ q such that N ′

g is flat over A. Consider the commutative diagram

N ′
g

//

��

Ng

��∏
N ′
gfi

// ∏Ngfi

The bottom arrow is an isomorphism by choice of k1, . . . , kt. The left vertical arrow is an
injective map as A →

∏
Afi is injective and N ′

g is flat over A. Hence the top horizontal
arrow is injective, hence an isomorphism. This proves that Ng is of finite presentation
over Bg . We conclude by applying Algebra, Lemma 23.2. �

Lemma 11.2. Let f : X → S be a morphism of schemes. Let U ⊂ S be open. Assume
(1) f is locally of finite type and flat,
(2) U ⊂ S is retrocompact and scheme theoretically dense,
(3) f |f−1U : f−1U → U is locally of finite presentation.

Then f is of locally of finite presentation.

Proof. The question is local on X and S , hence we may assume X and S affine.
Choose a closed immersion i : X → An

S and apply Lemma 11.1 to i∗OX . Some details
omitted. �

Lemma 11.3. Let f : X → S be a morphism of schemes which is flat and locally of
finite type. Let U ⊂ S be a dense open such thatXU → U has relative dimension≤ e, see
Morphisms, Definition 29.1. If also either

(1) f is locally of finite presentation, or
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(2) U ⊂ S is retrocompact,
then f has relative dimension ≤ e.

Proof. Proof in case (1). LetW ⊂ X be the open subscheme constructed and studied
in More on Morphisms, Lemmas 22.7 and 22.9. Note that every generic point of every
fibre is contained in W , hence it suffices to prove the result for W . Since W =

⋃
d≥0 Ud,

it suffices to prove that Ud = ∅ for d > e. Since f is flat and locally of finite presentation
it is open hence f(Ud) is open (Morphisms, Lemma 25.10). Thus if Ud is not empty, then
f(Ud) ∩ U 6= ∅ as desired.
Proof in case (2). We may replace S by its reduction. Then U is scheme theoretically
dense. Hence f is locally of finite presentation by Lemma 11.2. In this way we reduce to
case (1). �

Lemma 11.4. Let f : X → S be a morphism of schemes which is flat and proper. Let
U ⊂ S be a dense open such that XU → U is finite. If also either f is locally of finite
presentation or U ⊂ S is retrocompact, then f is finite.

Proof. By Lemma 11.3 the fibres of f have dimension zero. Hence f is quasi-finite
(Morphisms, Lemma 29.5) whence has finite fibres (Morphisms, Lemma 20.10). Hence f
is finite by More on Morphisms, Lemma 44.1. �

Lemma 11.5. Let f : X → S be a morphism of schemes and U ⊂ S an open. If
(1) f is separated, locally of finite type, and flat,
(2) f−1(U)→ U is an isomorphism, and
(3) U ⊂ S is retrocompact and scheme theoretically dense,

then f is an open immersion.

Proof. By Lemma 11.2 the morphism f is locally of finite presentation. The image
f(X) ⊂ S is open (Morphisms, Lemma 25.10) hence we may replace S by f(X). Thus
we have to prove that f is an isomorphism. We may assume S is affine. We can reduce to
the case that X is quasi-compact because it suffices to show that any quasi-compact open
X ′ ⊂ X whose image is S maps isomorphically to S. Thus we may assume f is quasi-
compact. All the fibers of f have dimension 0, see Lemma 11.3. Hence f is quasi-finite,
see Morphisms, Lemma 29.5. Let s ∈ S. Choose an elementary étale neighbourhood
g : (T, t)→ (S, s) such thatX×S T = V qW with V → T finite andWt = ∅, see More
on Morphisms, Lemma 41.6. Denote π : V qW → T the given morphism. Since π is
flat and locally of finite presentation, we see that π(V ) is open in T (Morphisms, Lemma
25.10). After shrinking T we may assume that T = π(V ). Since f is an isomorphism over
U we see that π is an isomorphism over g−1U . Since π(V ) = T this implies that π−1g−1U
is contained in V . By Morphisms, Lemma 25.15 we see that π−1g−1U ⊂ V qW is scheme
theoretically dense. Hence we deduce that W = ∅. Thus X ×S T = V is finite over
T . This implies that f is finite (after replacing S by an open neighbourhood of s), for
example by Descent, Lemma 23.23. Then f is finite locally free (Morphisms, Lemma 48.2)
and after shrinking S to a smaller open neighbourhood of s we see that f is finite locally
free of some degree d (Morphisms, Lemma 48.5). But d = 1 as is clear from the fact that
the degree is 1 over the dense open U . Hence f is an isomorphism. �

12. Flat finitely presented modules

In some cases given a ring map R → S of finite presentation and a finitely presented S-
module N the flatness of N over R implies that N is projective as an R-module, at least
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after replacing S by an étale extension. In this section we collect a some results of this
nature.

Lemma 12.1. Let R be a ring. Let R → S be a finitely presented flat ring map with
geometrically integral fibres. Let q ⊂ S be a prime ideal lying over the prime r ⊂ R. Set
p = rS. LetN be a finitely presented S-module. There exists r ≥ 0 and an S-module map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following are
equivalent:

(1) Nq is R-flat,
(2) there exists an f ∈ R, f 6∈ r such that αf : S⊕r

f → Nf is Rf -universally
injective and a g ∈ S , g 6∈ q such that Coker(α)g is R-flat,

(3) αr is Rr-universally injective and Coker(α)q is R-flat
(4) αr is injective and Coker(α)q is R-flat,
(5) αp is an isomorphism and Coker(α)q is R-flat, and
(6) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p) N ⊗S κ(p) and pick x1, . . . , xr ∈ N which
form a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

Fix a choice of α. We may apply Lemma 10.1 to the map αr : S⊕r
r → Nr. Hence we see

that (1), (3), (4), (5), and (6) are all equivalent. Since it is also clear that (2) implies (3) we
see that all we have to do is show that (1) implies (2).

Assume (1). By openness of flatness, see Algebra, Theorem 129.4, the set

U1 = {q′ ⊂ S | Nq′ is flat over R}

is open in Spec(S). It contains q by assumption and hence p. Because S⊕r and N are
finitely presented S-modules the set

U2 = {q′ ⊂ S | αq′ is an isomorphism}

is open in Spec(S), see Algebra, Lemma 79.2. It contains p by (5). As R → S is finitely
presented and flat the map Φ : Spec(S) → Spec(R) is open, see Algebra, Proposition
41.8. For any prime r′ ∈ Φ(U1 ∩U2) we see that there exists a prime q′ lying over r′ such
that Nq′ is flat and such that αq′ is an isomorphism, which implies that α ⊗ κ(p′) is an
isomorphism where p′ = r′S. Thus αr′ is Rr′ -universally injective by the implication (1)
⇒ (3). Hence if we pick f ∈ R, f 6∈ r such that D(f) ⊂ Φ(U1 ∩ U2) then we conclude
that αf is Rf -universally injective, see Algebra, Lemma 82.12. The same reasoning also
shows that for any q′ ∈ U1 ∩ Φ−1(Φ(U1 ∩ U2)) the module Coker(α)q′ is R-flat. Note
that q ∈ U1 ∩ Φ−1(Φ(U1 ∩ U2)). Hence we can find a g ∈ S , g 6∈ q such that D(g) ⊂
U1 ∩ Φ−1(Φ(U1 ∩ U2)) and we win. �

Lemma 12.2. Let R → S be a ring map of finite presentation. Let N be a finitely
presentedS-module flat overR. Let r ⊂ R be a prime ideal. Assume there exists a complete
dévissage of N/S/R over r. Then there exists an f ∈ R, f 6∈ r such that

Nf ∼= B⊕r1
1 ⊕ . . .⊕B⊕rn

n

asR-modules where eachBi is a smoothRf -algebra with geometrically irreducible fibres.
Moreover, Nf is projective as an Rf -module.
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Proof. Let (Ai, Bi,Mi, αi)i=1,...,n be the given complete dévissage. We prove the
lemma by induction on n. Note that the assertions of the lemma are entirely about the
structure ofN as anR-module. Hence we may replaceN byM1, and we may think ofM1
as a B1-module. See Remark 6.3 in order to see why M1 is of finite presentation as a B1-
module. By Lemma 12.1 we may, after replacing R by Rf for some f ∈ R, f 6∈ r, assume
the map α1 : B⊕r1

1 → M1 is R-universally injective. Since M1 and B⊕r1
1 are R-flat and

finitely presented as B1-modules we see that Coker(α1) is R-flat (Algebra, Lemma 82.7)
and finitely presented as a B1-module. Note that (Ai, Bi,Mi, αi)i=2,...,n is a complete
dévissage of Coker(α1). Hence the induction hypothesis implies that, after replacing R
by Rf for some f ∈ R, f 6∈ r, we may assume that Coker(α1) has a decomposition as
in the lemma and is projective. In particular M1 = B⊕r1

1 ⊕ Coker(α1). This proves the
statement regarding the decomposition. The statement on projectivity follows as B1 is
projective as an R-module by Lemma 9.3. �

Remark 12.3. There is a variant of Lemma 12.2 where we weaken the flatness con-
dition by assuming only that N is flat at some given prime q lying over r but where we
strengthen the dévissage condition by assuming the existence of a complete dévissage at
q. Compare with Lemma 10.2.

The following is the main result of this section.

Proposition 12.4. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X . Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite presentation, and
(3) F is flat at x over S.

Then there exists a commutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are affine
and such that Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module.

Proof. By openness of flatness, see More on Morphisms, Theorem 15.1 we may re-
place X by an open neighbourhood of x and assume that F is flat over S. Next, we ap-
ply Proposition 5.7 to find a diagram as in the statement of the proposition such that
g∗F/X ′/S′ has a complete dévissage over s′. (In particular S′ and X ′ are affine.) By
Morphisms, Lemma 25.13 we see that g∗F is flat over S and by Lemma 2.3 we see that it
is flat over S′. Via Remark 6.5 we deduce that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)

has a complete dévissage over the prime of Γ(S′,OS′) corresponding to s′. Thus Lemma
12.2 implies that the result of the proposition holds after replacing S′ by a standard open
neighbourhood of s′. �

In the rest of this section we prove a number of variants on this result. The first is a “global”
version.
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Lemma 12.5. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X . Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite presentation, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′)→ (S, s) and a commutative
diagram of schemes

X

��

X ′
g

oo

��
S S′oo

such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that Γ(X ′, g∗F)
is a projective Γ(S′,OS′)-module.

Proof. For every point x ∈ Xs we can use Proposition 12.4 to find a commutative
diagram

(X,x)

��

(Yx, yx)
gx
oo

��
(S, s) (Sx, sx)oo

whose horizontal arrows are elementary étale neighbourhoods such that Yx, Sx are affine
and such that Γ(Yx, g∗

xF) is a projective Γ(Sx,OSx)-module. In particular gx(Yx) ∩Xs

is an open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such thatXs is the union of the gxi(Yxi)∩Xs. Choose
an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each of the neigh-
bourhoods (Sxi , sxi), see More on Morphisms, Lemma 35.4. We may also assume that S′

is affine. Set X ′ =
∐
Yxi ×Sxi S

′ and endow it with the obvious morphism g : X ′ → X .
By construction g(X ′) contains Xs and

Γ(X ′, g∗F) =
⊕

Γ(Yxi , g∗
xiF)⊗Γ(Sxi ,OSxi

) Γ(S′,OS′).

This is a projective Γ(S′,OS′)-module, see Algebra, Lemma 94.1. �

The following two lemmas are reformulations of the results above in case F = OX .

Lemma 12.6. Let f : X → S be locally of finite presentation. Let x ∈ X with image
s ∈ S. If f is flat at x over S , then there exists a commutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are affine
and such that Γ(X ′,OX′) is a projective Γ(S′,OS′)-module.

Proof. This is a special case of Proposition 12.4. �
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Lemma 12.7. Let f : X → S be of finite presentation. Let s ∈ S. If X is flat over S
at all points of Xs, then there exists an elementary étale neighbourhood (S′, s′)→ (S, s)
and a commutative diagram of schemes

X

��

X ′
g

oo

��
S S′oo

with g étale, Xs ⊂ g(X ′), such that X ′, S′ are affine, and such that Γ(X ′,OX′) is a
projective Γ(S′,OS′)-module.

Proof. This is a special case of Lemma 12.5. �

The following lemmas explain consequences of Proposition 12.4 in case we only assume
the morphism and the sheaf are of finite type (and not necessarily of finite presentation).

Lemma 12.8. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X . Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′)→ (S, s) and a commutative
diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such thatX ′ → X×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the schemeX ′ is affine of finite
presentation over OS′,s′ , the sheaf g∗F is of finite presentation over OX′ , and such that
Γ(X ′, g∗F) is a freeOS′,s′ -module.

Proof. To prove the lemma we may replace (S, s) by any elementary étale neigh-
bourhood, and we may also replace S by Spec(OS,s). Hence by Proposition 10.3 we may
assume that F is finitely presented and flat over S in a neighbourhood of x. In this case
the result follows from Proposition 12.4 because Algebra, Theorem 85.4 assures us that
projective = free over a local ring. �

Lemma 12.9. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X . Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′)→ (S, s) and a commutative
diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo
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such that X ′ → X ×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the scheme X ′ is affine, and
such that Γ(X ′, g∗F) is a freeOS′,s′ -module.

Proof. (The only difference with Lemma 12.8 is that we do not assume f is of finite
presentation.) The problem is local on X and S. Hence we may assume X and S are
affine, say X = Spec(B) and S = Spec(A). Since B is a finite type A-algebra we can
find a surjection A[x1, . . . , xn] → B. In other words, we can choose a closed immersion
i : X → An

S . Set t = i(x) and G = i∗F . Note that Gt ∼= Fx are OS,s-modules. Hence
G is flat over S at t. We apply Lemma 12.8 to the morphism An

S → S , the point t, and
the sheaf G. Thus we can find an elementary étale neighbourhood (S′, s′)→ (S, s) and a
commutative diagram of pointed schemes

(An
S , t)

��

(Y, y)
h

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that Y → An
OS′,s′ is étale, κ(t) = κ(y), the scheme Y is affine, and such that

Γ(Y, h∗G) is a projectiveOS′,s′ -module. Then a solution to the original problem is given
by the closed subscheme X ′ = Y ×An

S
X of Y . �

Lemma 12.10. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X . Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.

Then there exists an elementary étale neighbourhood (S′, s′)→ (S, s) and a commutative
diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine of
finite presentation overOS′,s′ , the sheaf g∗F is of finite presentation overOX′ , and such
that Γ(X ′, g∗F) is a freeOS′,s′ -module.

Proof. For every point x ∈ Xs we can use Lemma 12.8 to find an elementary étale
neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx), sx)oo

such that Yx → X ×S Spec(OSx,sx) is étale, κ(x) = κ(yx), the scheme Yx is affine
of finite presentation over OSx,sx , the sheaf g∗

xF is of finite presentation over OYx , and
such that Γ(Yx, g∗

xF) is a freeOSx,sx -module. In particular gx((Yx)sx) is an open neigh-
bourhood of x in Xs. Because Xs is quasi-compact we can find a finite number of points
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x1, . . . , xn ∈ Xs such that Xs is the union of the gxi((Yxi)sxi ). Choose an elemen-
tary étale neighbourhood (S′, s′)→ (S, s) which dominates each of the neighbourhoods
(Sxi , sxi), see More on Morphisms, Lemma 35.4. Set

X ′ =
∐

Yxi ×Spec(OSxi
,sxi

) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X . By construction Xs = g(X ′
s′)

and
Γ(X ′, g∗F) =

⊕
Γ(Yxi , g∗

xiF)⊗OSxi
,sxi
OS′,s′ .

This is a free OS′,s′ -module as a direct sum of base changes of free modules. Some minor
details omitted. �

Lemma 12.11. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X . Let s ∈ S. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.

Then there exists an elementary étale neighbourhood (S′, s′)→ (S, s) and a commutative
diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such thatX ′ → X ×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the schemeX ′ is affine, and
such that Γ(X ′, g∗F) is a freeOS′,s′ -module.

Proof. (The only difference with Lemma 12.10 is that we do not assume f is of finite
presentation.) For every point x ∈ Xs we can use Lemma 12.9 to find an elementary étale
neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx), sx)oo

such that Yx → X ×S Spec(OSx,sx) is étale, κ(x) = κ(yx), the scheme Yx is affine,
and such that Γ(Yx, g∗

xF) is a free OSx,sx -module. In particular gx((Yx)sx) is an open
neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite number of
points x1, . . . , xn ∈ Xs such thatXs is the union of the gxi((Yxi)sxi ). Choose an elemen-
tary étale neighbourhood (S′, s′)→ (S, s) which dominates each of the neighbourhoods
(Sxi , sxi), see More on Morphisms, Lemma 35.4. Set

X ′ =
∐

Yxi ×Spec(OSxi
,sxi

) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X . By construction Xs = g(X ′
s′)

and
Γ(X ′, g∗F) =

⊕
Γ(Yxi , g∗

xiF)⊗OSxi
,sxi
OS′,s′ .

This is a freeOS′,s′ -module as a direct sum of base changes of free modules. �
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13. Flat finite type modules, Part II

We will need the following lemma.

Lemma 13.1. Let R → S be a ring map of finite presentation. Let N be a finitely
presented S-module. Let q ⊂ S be a prime ideal lying over p ⊂ R. Set S = S ⊗R κ(p),
q = qS , and N = N ⊗R κ(p). Then we can find a g ∈ S with g 6∈ q such that g ∈ r for
all r ∈ AssS(N) such that r 6⊂ q.

Proof. Namely, if AssS(N) = {r1, . . . , rn} (finiteness by Algebra, Lemma 63.5),
then after renumbering we may assume that

r1 ⊂ q, . . . , rr ⊂ q, rr+1 6⊂ q, . . . , rn 6⊂ q

Since q is a prime ideal we see that the product rr+1 . . . rn is not contained in q and hence
we can pick an element a of S contained in rr+1, . . . , rn but not in q. If there exists g ∈ S
mapping to a, then g works. In general we can find a nonzero element λ ∈ κ(p) such that
λa is the image of a g ∈ S. �

The following lemma has a sligthly stronger variant Lemma 13.4 below.

Lemma 13.2. Let R → S be a ring map of finite presentation. Let N be a finitely
presented S-module which is flat as an R-module. Let M be an R-module. Let q be a
prime of S lying over p ⊂ R. Then

q ∈WeakAssS(M ⊗R N)⇔
(
p ∈WeakAssR(M) and q ∈ AssS(N)

)
Here S = S ⊗R κ(p), q = qS , and N = N ⊗R κ(p).

Proof. Pick g ∈ S as in Lemma 13.1. Apply Proposition 12.4 to the morphism
of schemes Spec(Sg) → Spec(R), the quasi-coherent module associated to Ng , and the
points corresponding to the primes qSg and p. Translating into algebra we obtain a com-
mutative diagram of rings

S // Sg // S′

R

__ OO

// R′

OO q qSg q′

p p′

endowed with primes as shown, the horizontal arrows are étale, andN ⊗S S′ is projective
as an R′-module. Set N ′ = N ⊗S S′, M ′ = M ⊗R R′, S′ = S′ ⊗R′ κ(q′), q′ = q′S

′, and

N
′ = N ′ ⊗R′ κ(p′) = N ⊗S S

′

By Lemma 2.8 we have
WeakAssS′(M ′ ⊗R′ N ′) = (Spec(S′)→ Spec(S))−1WeakAssS(M ⊗R N)

WeakAssR′(M ′) = (Spec(R′)→ Spec(R))−1WeakAssR(M)

Ass
S

′(N ′) = (Spec(S′)→ Spec(S))−1AssS(N)

Use Algebra, Lemma 66.9 for N and N ′. In particular we have
q ∈WeakAssS(M ⊗R N)⇔ q′ ∈WeakAssS′(M ′ ⊗R′ N ′)

p ∈WeakAssR(M)⇔ p′ ∈WeakAssR′(M ′)

q ∈ AssS(N)⇔ q′ ∈WeakAss
S

′(N ′)
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Our careful choice of g and the formula for Ass
S

′(N ′) above shows that

(13.2.1) if r′ ∈ Ass
S

′(N ′) lies over r ⊂ S then r ⊂ q

This will be a key observation later in the proof. We will use the characterization of
weakly associated primes given in Algebra, Lemma 66.2 without further mention.

Suppose that q 6∈ AssS(N). Then q′ 6∈ Ass
S

′(N ′). By Algebra, Lemmas 63.9, 63.5, and
15.2 there exists an element a′ ∈ q′ which is not a zerodivisor onN ′. After replacing a′ by
λa′ for some nonzero λ ∈ κ(p) we can find a′ ∈ q′ mapping to a′. By Lemma 7.6 the map
a′ : N ′

p′ → N ′
p′ is R′

p′ -universally injective. In particular we see that a′ : M ′ ⊗R′ N ′ →
M ′ ⊗R′ N ′ is injective after localizing at p′ and hence after localizing at q′. Clearly this
implies that q′ 6∈ WeakAssS′(M ′ ⊗R′ N ′). We conclude that q ∈ WeakAssS(M ⊗R N)
implies q ∈ AssS(N).

Assume q ∈WeakAssS(M⊗RN). We want to show p ∈WeakAssS(M). Let z ∈M⊗RN
be an element such that q is minimal over J = AnnS(z). Let fi ∈ p, i ∈ I be a set of
generators of the ideal p. Since q lies over p, for every i we can choose an ni ≥ 1 and
gi ∈ S , gi 6∈ q with gifnii ∈ J , i.e., gifnii z = 0. Let z′ ∈ (M ′ ⊗R′ N ′)p′ be the image
of z. Observe that z′ is nonzero because z has nonzero image in (M ⊗R N)q and because
Sq → S′

q′ is faithfully flat. We claim that fnii z′ = 0.

Proof of the claim: Let g′
i ∈ S′ be the image of gi. By the key observation (13.2.1) we find

that the image g′
i ∈ S

′ is not contained in r′ for any r′ ∈ Ass
S

′(N). Hence by Lemma
7.6 we see that g′

i : N ′
p′ → N ′

p′ is R′
p′ -universally injective. In particular we see that

g′
i : M ′ ⊗R′ N ′ → M ′ ⊗R′ N ′ is injective after localizating at p′. The claim follows

because gifnii z′ = 0.

Our claim shows that the annihilator of z′ in R′
p′ contains the elements fnii . As R→ R′

is étale we have p′R′
p′ = pR′

p′ by Algebra, Lemma 143.5. Hence the annihilator of z′ in
R′

p′ has radical equal to p′Rp′ (here we use z′ is not zero). On the other hand

z′ ∈ (M ′ ⊗R′ N ′)p′ = M ′
p′ ⊗R′

p′
N ′

p′

The module N ′
p′ is projective over the local ring R′

p′ and hence free (Algebra, Theorem
85.4). Thus we can find a finite free direct summandF ′ ⊂ N ′

p′ such that z′ ∈M ′
p′⊗R′

p′
F ′.

IfF ′ has rank n, then we deduce that p′R′
p′ ∈WeakAssR′

p′
(M ′

p′
⊕n). This implies p′R′

p′ ∈
WeakAss(M ′

p′) for example by Algebra, Lemma 66.4. Then p′ ∈WeakAssR′(M ′) which
in turn gives p ∈ WeakAssR(M). This finishes the proof of the implication “⇒” of the
equivalence of the lemma.

Assume that p ∈WeakAssR(M) and q ∈ AssS(N). We want to show that q is weakly as-
sociated toM⊗RN . Note that q′ is a maximal element of Ass

S
′(N ′). This is a consequence

of (13.2.1) and the fact that there are no inclusions among the primes of S′ lying over q
(as fibres of étale morphisms are discrete Morphisms, Lemma 36.7). Thus, after replacing
R,S, p, q,M,N by R′, S′, p′, q′,M ′, N ′ we may assume, in addition to the assumptions
of the lemma, that

(1) p ∈WeakAssR(M),
(2) q ∈ AssS(N),
(3) N is projective as an R-module, and
(4) q is maximal in AssS(N).
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There is one more reduction, namely, we may replaceR,S,M,N by their localizations at
p. This leads to one more condition, namely,

(5) R is a local ring with maximal ideal p.
We will finish by showing that (1) – (5) imply q ∈WeakAss(M ⊗R N).

Since R is local and p ∈ WeakAssR(M) we can pick a y ∈ M whose annihilator I has
radical equal to p. Write q = (g1, . . . , gn) for some gi ∈ S. Choose gi ∈ S mapping to
gi. Then q = pS + g1S + . . .+ gnS. Consider the map

Ψ : N/IN −→ (N/IN)⊕n, z 7−→ (g1z, . . . , gnz).
This is a homomorphism of projectiveR/I-modules. The local ringR/I is auto-associated
(More on Algebra, Definition 15.1) as p/I is locally nilpotent. The map Ψ ⊗ κ(p) is not
injective, because q ∈ AssS(N). Hence More on Algebra, Lemma 15.4 implies Ψ is not
injective. Pick z ∈ N/IN nonzero in the kernel of Ψ. The annihilator J = AnnS(z)
contains IS and gi by construction. Thus

√
J ⊂ S contains q. Let s ⊂ S be a prime

minimal over J . Then q ⊂ s, s lies over p, and s ∈ WeakAssS(N/IN). The last fact by
definition of weakly associated primes. Apply the “⇒” part of the lemma (which we’ve
already proven) to the ring map R → S and the modules R/I and N to conclude that
s ∈ AssS(N). Since q ⊂ s the maximality of q, see condition (4) above, implies that q = s.
This shows that q = s and we conlude what we want. �

Lemma 13.3. Let S be a scheme. Let f : X → S be locally of finite type. Let x ∈ X
with image s ∈ S. Let F be a finite type quasi-coherent sheaf on X . Let G be a quasi-
coherent sheaf on S. If F is flat at x over S , then

x ∈WeakAssX(F ⊗OX
f∗G)⇔ s ∈WeakAssS(G) and x ∈ AssXs(Fs).

Proof. In this paragraph we reduce to f being of finite presentation. The question
is local on X and S , hence we may assume X and S are affine. Write X = Spec(B), S =
Spec(A) and write B = A[x1, . . . , xn]/I . In other words we obtain a closed immersion
i : X → An

S over S. Denote t = i(x) ∈ An
S . Note that i∗F is a finite type quasi-coherent

sheaf on An
S which is flat at t over S and note that

i∗(F ⊗OX
f∗G) = i∗F ⊗OAn

S

p∗G

where p : An
S → S is the projection. Note that t is a weakly associated point of i∗(F⊗OX

f∗G) if and only if x is a weakly associated point ofF ⊗OX
f∗G , see Divisors, Lemma 6.3.

Similarly x ∈ AssXs(Fs) if and only if t ∈ AssAn
s
((i∗F)s) (see Algebra, Lemma 63.14).

Hence it suffices to prove the lemma in case X = An
S . Thus we may assume that X → S

is of finite presentation.

In this paragraph we reduce toF being of finite presentation and flat overS. Choose an el-
ementary étale neighbourhood e : (S′, s′)→ (S, s) and an open V ⊂ X×S Spec(OS′,s′)
as in Proposition 10.3. Let x′ ∈ X ′ = X ×S S′ be the unique point mapping to x and
s′. Then it suffices to prove the statement for X ′ → S′, x′, s′, (X ′ → X)∗F , and e∗G ,
see Lemma 2.8. Let v ∈ V the unique point mapping to x′ and let s′ ∈ Spec(OS′,s′) be
the closed point. ThenOV,v = OX′,x′ andOSpec(OS′,s′ ),s′ = OS′,s′ and similarly for the
stalks of pullbacks of F and G. Also Vs′ ⊂ X ′

s′ is an open subscheme. Since the condition
of being a weakly associated point depend only on the stalk of the sheaf, we may replace
X ′ → S′, x′, s′, (X ′ → X)∗F , and e∗G by V → Spec(OS′,s′), v, s′, (V → X)∗F , and
(Spec(OS′,s′) → S)∗G. Thus we may assume that f is of finite presentation and F of
finite presentation and flat over S.
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Assume f is of finite presentation and F of finite presentation and flat over S. After
shrinking X and S to affine neighbourhoods of x and s, this case is handled by Lemma
13.2. �

Lemma 13.4. Let R → S be a ring map which is essentially of finite type. Let N be
a localization of a finite S-module flat over R. Let M be an R-module. Then

WeakAssS(M ⊗R N) =
⋃

p∈WeakAssR(M)
AssS⊗Rκ(p)(N ⊗R κ(p))

Proof. This lemma is a translation of Lemma 13.3 into algebra. Details of translation
omitted. �

Lemma 13.5. Let f : X → S be a morphism which is locally of finite type. Let F
be a finite type quasi-coherent sheaf on X which is flat over S. Let G be a quasi-coherent
sheaf on S. Then we have

WeakAssX(F ⊗OX
f∗G) =

⋃
s∈WeakAssS(G)

AssXs(Fs)

Proof. Immediate consequence of Lemma 13.3. �

Theorem 13.6. Let f : X → S be a morphism of schemes. LetF be a quasi-coherent
OX -module. Assume

(1) X → S is locally of finite presentation,
(2) F is anOX -module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is an OU -module of finite
presentation and flat over S.

Proof. Let x ∈ X be such that F is flat at x over S. We have to find an open
neighbourhood of x such that F restricts to a S-flat finitely presented module on this
neighbourhood. The problem is local onX and S , hence we may assume thatX and S are
affine. As Fx is a finitely presentedOX,x-module by Lemma 10.9 we conclude from Alge-
bra, Lemma 126.5 there exists a finitely presented OX -module F ′ and a map ϕ : F ′ → F
which induces an isomorphism ϕx : F ′

x → Fx. In particular we see that F ′ is flat over
S at x, hence by openness of flatness More on Morphisms, Theorem 15.1 we see that after
shrinking X we may assume that F ′ is flat over S. As F is of finite type after shrink-
ing X we may assume that ϕ is surjective, see Modules, Lemma 9.4 or alternatively use
Nakayama’s lemma (Algebra, Lemma 20.1). By Lemma 13.5 we have

WeakAssX(F ′) ⊂
⋃

s∈WeakAss(S)
AssXs(F ′

s)

As WeakAss(S) is finite by assumption and since AssXs(F ′
s) is finite by Divisors, Lemma

2.5 we conclude that WeakAssX(F ′) is finite. Using Algebra, Lemma 15.2 we may, after
shrinking X once more, assume that WeakAssX(F ′) is contained in the generalization of
x. Now consider K = Ker(ϕ). We have WeakAssX(K) ⊂ WeakAssX(F ′) (by Divisors,
Lemma 5.4) but on the other hand, ϕx is an isomorphism, also ϕx′ is an isomorphism for
all x′  x. We conclude that WeakAssX(K) = ∅ whence K = 0 by Divisors, Lemma
5.5. �

Lemma 13.7. Let R → S be a ring map of finite presentation. Let M be a finite
S-module. Assume WeakAssS(S) is finite. Then

U = {q ⊂ S |Mq flat over R}
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is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is a
finitely presented Sg-module flat over R.

Proof. Follows immediately from Theorem 13.6. �

Lemma 13.8. Let f : X → S be a morphism of schemes which is locally of finite
type. Assume the set of weakly associated points of S is locally finite in S. Then the set of
points x ∈ X where f is flat is an open subscheme U ⊂ X and U → S is flat and locally
of finite presentation.

Proof. The problem is local on X and S , hence we may assume that X and S are
affine. Then X → S corresponds to a finite type ring map A → B. Choose a surjec-
tion A[x1, . . . , xn] → B and consider B as an A[x1, . . . , xn]-module. An application of
Lemma 13.7 finishes the proof. �

Lemma 13.9. Let f : X → S be a morphism of schemes which is locally of finite
type and flat. If S is integral, then f is locally of finite presentation.

Proof. Special case of Lemma 13.8. �

Proposition 13.10. Let R be a domain. Let R → S be a ring map of finite type. Let
M be a finite S-module.

(1) If S is flat over R, then S is a finitely presented R-algebra.
(2) If M is flat as an R-module, then M is finitely presented as an S-module.

Proof. Part (1) is a special case of Lemma 13.9. For Part (2) choose a surjection
R[x1, . . . , xn]→ S. By Lemma 13.7 we find thatM is finitely presented as anR[x1, . . . , xn]-
module. We conclude by Algebra, Lemma 6.4. �

Lemma 13.11 (Finite type version of Theorem 13.6). Let f : X → S be a morphism
of schemes. Let F be a quasi-coherentOX -module. Assume

(1) X → S is locally of finite type,
(2) F is anOX -module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is flat over S and locally
finitely presented relative to S (see More on Morphisms, Definition 58.1).

Proof. The question is local on X and S. Thus we may assume X and S are affine.
Then we may choose a closed immersion i : X → An

S . We apply Theorem 13.6 to X ′ =
An
S → S and the quasi-coherent module F ′ = i∗F of finite type and we find that

U ′ = {x′ ∈ X ′ | F ′ flat at x′ over S}
is open inX ′ and thatF ′|U ′ is of finite presentation. SinceF ′ restricts to zero onX ′\i(X)
and since F ′

i(x)
∼= Fx for all x ∈ X we see that

U ′ = i(U)q (X ′ \ i(X))
Hence U = i−1(U ′) is open. Moreover, it is clear that F ′|U ′ = (i|U )∗(F|U ). Hence we
conclude thatF|U is finitely presented relative to S by More on Morphisms, Lemmas 58.3
and 58.4. �

Lemma 13.12. Let R → S be a ring map of finite type. Let M be a finite S-module.
Assume WeakAssR(R) is finite. Then

U = {q ⊂ S |Mq flat over R}
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is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is flat
overR and an Sg-module finitely presented relative toR (see More on Algebra, Definition
80.2).

Proof. This is Lemma 13.11 translated into algebra. �

14. Examples of relatively pure modules

In the short section we discuss some examples of results that will serve as motivation for
the notion of a relatively pure module and the concept of an impurity which we will
introduce later. Each of the examples is stated as a lemma. Note the similarity with the
condition on associated primes to the conditions appearing in Lemmas 7.4, 8.3, 8.4, and
9.1. See also Algebra, Lemma 65.1 for a discussion.

Lemma 14.1. Let R be a local ring with maximal ideal m. Let R→ S be a ring map.
Let N be an S-module. Assume

(1) N is projective as an R-module, and
(2) S/mS is Noetherian and N/mN is a finite S/mS-module.

Then for any prime q ⊂ S which is an associated prime of N ⊗R κ(p) where p = R ∩ q
we have q + mS 6= S.

Proof. Note that the hypotheses of Lemmas 7.1 and 7.6 are satisfied. We will use the
conclusions of these lemmas without further mention. Let Σ ⊂ S be the multiplicative set
of elements which are not zerodivisors onN/mN . The mapN → Σ−1N isR-universally
injective. Hence we see that any q ⊂ S which is an associated prime of N ⊗R κ(p) is also
an associated prime of Σ−1N ⊗R κ(p). Clearly this implies that q corresponds to a prime
of Σ−1S. Thus q ⊂ q′ where q′ corresponds to an associated prime of N/mN and we
win. �

The following lemma gives another (slightly silly) example of this phenomenon.

Lemma 14.2. Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring map. Let
N be an S-module. If N is I-adically complete, then for any R-module M and for any
prime q ⊂ S which is an associated prime of N ⊗RM we have q + IS 6= S.

Proof. Let S∧ denote the I-adic completion of S. Note that N is an S∧-module,
hence also N ⊗R M is an S∧-module. Let z ∈ N ⊗R M be an element such that q =
AnnS(z). Since z 6= 0 we see that AnnS∧(z) 6= S∧. Hence qS∧ 6= S∧. Hence there exists
a maximal ideal m ⊂ S∧ with qS∧ ⊂ m. Since IS∧ ⊂ m by Algebra, Lemma 96.6 we
win. �

Note that the following lemma gives an alternative proof of Lemma 14.1 as a projective
module over a local ring is free, see Algebra, Theorem 85.4.

Lemma 14.3. Let R be a local ring with maximal ideal m. Let R→ S be a ring map.
Let N be an S-module. Assume N is isomorphic as an R-module to a direct sum of finite
R-modules. Then for any R-module M and for any prime q ⊂ S which is an associated
prime of N ⊗RM we have q + mS 6= S.

Proof. Write N =
⊕

i∈IMi with each Mi a finite R-module. Let M be an R-
module and let q ⊂ S be an associated prime of N ⊗RM such that q + mS = S. Let z ∈
N⊗RM be an element with q = AnnS(z). After modifying the direct sum decomposition
a little bit we may assume that z ∈ M1 ⊗R M for some element 1 ∈ I . Write 1 =
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f +
∑
xjgj for some f ∈ q, xj ∈ m, and gj ∈ S. For any g ∈ S denote g′ the R-linear

map
M1 → N

g−→ N →M1

where the first arrow is the inclusion map, the second arrow is multiplication by g and the
third arrow is the projection map. Because each xj ∈ R we obtain the equality

f ′ +
∑

xjg
′
j = idM1 ∈ EndR(M1)

By Nakayama’s lemma (Algebra, Lemma 20.1) we see that f ′ is surjective, hence by Algebra,
Lemma 16.4 we see that f ′ is an isomorphism. In particular the map

M1 ⊗RM → N ⊗RM
f−→ N ⊗RM →M1 ⊗RM

is an isomorphism. This contradicts the assumption that fz = 0. �

Lemma 14.4. Let R be a henselian local ring with maximal ideal m. Let R→ S be a
ring map. Let N be an S-module. Assume N is countably generated and Mittag-Leffler as
anR-module. Then for anyR-moduleM and for any prime q ⊂ S which is an associated
prime of N ⊗RM we have q + mS 6= S.

Proof. This lemma reduces to Lemma 14.3 by Algebra, Lemma 153.13. �

Suppose f : X → S is a morphism of schemes and F is a quasi-coherent module on X .
Let ξ ∈ AssX/S(F) and let Z = {ξ}. Picture

ξ_

��

Z //

��

X

f

��
f(ξ) S

Note that f(Z) ⊂ {f(ξ)} and that f(Z) is closed if and only if equality holds, i.e., f(Z) =
{f(ξ)}. It follows from Lemma 14.1 that if S , X are affine, the fibres Xs are Noetherian,
F is of finite type, and Γ(X,F) is a projective Γ(S,OS)-module, then f(Z) = {f(ξ)}
is a closed subset. Slightly different analogous statements holds for the cases described in
Lemmas 14.2, 14.3, and 14.4.

15. Impurities

We want to formalize the phenomenon of which we gave examples in Section 14 in terms
of specializations of points of AssX/S(F). We also want to work locally around a point
s ∈ S. In order to do so we make the following definitions.

Situation 15.1. Here S , X are schemes and f : X → S is a finite type morphism.
Also, F is a finite type quasi-coherentOX -module. Finally s is a point of S.

In this situation consider a morphism g : T → S , a point t ∈ T with g(t) = s, a special-
ization t′  t, and a point ξ ∈ XT in the base change of X lying over t′. Picture

(15.1.1)

ξ_

��
t′ // t � // s

XT

��

// X

��
T

g // S

Moreover, denote FT the pullback of F to XT .
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Definition 15.2. In Situation 15.1 we say a diagram (15.1.1) defines an impurity of
F above s if ξ ∈ AssXT /T (FT ) and {ξ} ∩ Xt = ∅. We will indicate this by saying “let
(g : T → S, t′  t, ξ) be an impurity of F above s”.

Lemma 15.3. In Situation 15.1. If there exists an impurity of F above s, then there
exists an impurity (g : T → S, t′  t, ξ) of F above s such that g is locally of finite
presentation and t a closed point of the fibre of g above s.

Proof. Let (g : T → S, t′  t, ξ) be any impurity of F above s. We apply Limits,
Lemma 14.1 to t ∈ T and Z = {ξ} to obtain an open neighbourhood V ⊂ T of t, a
commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

As t′ specializes to t we may replace T by the open neighbourhood V of t. Thus we have
a commutative diagram

XT

��

// XT ′

��

// X

��
T

a // T ′ b // S

where b ◦ a = g. Let ξ′ ∈ XT ′ denote the image of ξ. By Divisors, Lemma 7.3 we see that
ξ′ ∈ AssXT ′/T ′(FT ′). Moreover, by construction the closure of {ξ′} is contained in the
closed subset Z ′ which avoids the fibre Xa(t). In this way we see that (T ′ → S, a(t′)  
a(t), ξ′) is an impurity of F above s.

Thus we may assume that g : T → S is locally of finite presentation. Let Z = {ξ}.
By assumption Zt = ∅. By More on Morphisms, Lemma 24.1 this means that Zt′′ = ∅
for t′′ in an open subset of {t}. Since the fibre of T → S over s is a Jacobson scheme,
see Morphisms, Lemma 16.10 we find that there exist a closed point t′′ ∈ {t} such that
Zt′′ = ∅. Then (g : T → S, t′  t′′, ξ) is the desired impurity. �

Lemma 15.4. In Situation 15.1. Let (g : T → S, t′  t, ξ) be an impurity ofF above
s. Assume T = limi∈I Ti is a directed limit of affine schemes over S. Then for some i the
triple (Ti → S, t′i  ti, ξi) is an impurity of F above s.

Proof. The notation in the statement means this: Let pi : T → Ti be the projection
morphisms, let ti = pi(t) and t′i = pi(t′). Finally ξi ∈ XTi is the image of ξ. By Divisors,
Lemma 7.3 it is true that ξi is a point of the relative assassin ofFTi over Ti. Thus the only
point is to show that {ξi} ∩Xti = ∅ for some i.

First proof. Let Zi = {ξi} ⊂ XTi and Z = {ξ} ⊂ XT endowed with the reduced
induced scheme structure. Then Z = limZi by Limits, Lemma 4.4. Choose a field k and
a morphism Spec(k)→ T whose image is t. Then

∅ = Z ×T Spec(k) = (limZi)×(limTi) Spec(k) = limZi ×Ti Spec(k)
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because limits commute with fibred products (limits commute with limits). Each Zi ×Ti
Spec(k) is quasi-compact becauseXTi → Ti is of finite type and henceZi → Ti is of finite
type. Hence Zi ×Ti Spec(k) is empty for some i by Limits, Lemma 4.3. Since the image
of the composition Spec(k)→ T → Ti is ti we obtain what we want.

Second proof. Set Z = {ξ}. Apply Limits, Lemma 14.1 to this situation to obtain an open
neighbourhood V ⊂ T of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that
(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

We may assume V is an affine open of T , hence by Limits, Lemmas 4.11 and 4.13 we can
find an i and an affine open Vi ⊂ Ti with V = f−1

i (Vi). By Limits, Proposition 6.1 after
possibly increasing i a bit we can find a morphism ai : Vi → T ′ such that a = ai ◦ fi|V .
The induced morphismXVi → XT ′ maps ξi into Z ′. As Z ′ ∩Xa(t) = ∅we conclude that
(Ti → S, t′i  ti, ξi) is an impurity of F above s. �

Lemma 15.5. In Situation 15.1. If there exists an impurity (g : T → S, t′  t, ξ) of
F above s with g quasi-finite at t, then there exists an impurity (g : T → S, t′  t, ξ)
such that (T, t)→ (S, s) is an elementary étale neighbourhood.

Proof. Let (g : T → S, t′  t, ξ) be an impurity of F above s such that g is quasi-
finite at t. After shrinking T we may assume that g is locally of finite type. Apply More
on Morphisms, Lemma 41.1 to T → S and t 7→ s. This gives us a diagram

T

��

T ×S Uoo

��

Voo

{{
S Uoo

where (U, u) → (S, s) is an elementary étale neighbourhood and V ⊂ T ×S U is an
open neighbourhood of v = (t, u) such that V → U is finite and such that v is the
unique point of V lying over u. Since the morphism V → T is étale hence flat we see
that there exists a specialization v′  v such that v′ 7→ t′. Note that κ(t′) ⊂ κ(v′) is
finite separable. Pick any point ζ ∈ Xv′ mapping to ξ ∈ Xt′ . By Divisors, Lemma 7.3 we
see that ζ ∈ AssXV /V (FV ). Moreover, the closure {ζ} does not meet the fibre Xv as by
assumption the closure {ξ} does not meet Xt. In other words (V → S, v′  v, ζ) is an
impurity of F above S.

Next, let u′ ∈ U ′ be the image of v′ and let θ ∈ XU be the image of ζ . Then θ 7→ u′ and
u′  u. By Divisors, Lemma 7.3 we see that θ ∈ AssXU/U (F). Moreover, as π : XV →
XU is finite we see that π

(
{ζ}
)

= {π(ζ)}. Since v is the unique point of V lying over
u we see that Xu ∩ {π(ζ)} = ∅ because Xv ∩ {ζ} = ∅. In this way we conclude that
(U → S, u′  u, θ) is an impurity of F above s and we win. �
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Lemma 15.6. In Situation 15.1. Assume that S is locally Noetherian. If there exists
an impurity ofF above s, then there exists an impurity (g : T → S, t′  t, ξ) ofF above
s such that g is quasi-finite at t.

Proof. We may replace S by an affine neighbourhood of s. By Lemma 15.3 we may
assume that we have an impurity (g : T → S, t′  t, ξ) of such that g is locally of finite
type and t a closed point of the fibre of g above s. We may replace T by the reduced
induced scheme structure on {t′}. Let Z = {ξ} ⊂ XT . By assumption Zt = ∅ and
the image of Z → T contains t′. By More on Morphisms, Lemma 25.1 there exists a
nonempty open V ⊂ Z such that for any w ∈ f(V ) any generic point ξ′ of Vw is in
AssXT /T (FT ). By More on Morphisms, Lemma 24.2 there exists a nonempty openW ⊂ T
with W ⊂ f(V ). By More on Morphisms, Lemma 52.7 there exists a closed subscheme
T ′ ⊂ T such that t ∈ T ′, T ′ → S is quasi-finite at t, and there exists a point z ∈ T ′ ∩W ,
z  t which does not map to s. Choose any generic point ξ′ of the nonempty scheme Vz .
Then (T ′ → S, z  t, ξ′) is the desired impurity. �

In the following we will use the henselization Sh = Spec(OhS,s) of S at s, see Étale Co-
homology, Definition 33.2. Since Sh → S maps to closed point of Sh to s and induces
an isomorphism of residue fields, we will indicate s ∈ Sh this closed point also. Thus
(Sh, s)→ (S, s) is a morphism of pointed schemes.

Lemma 15.7. In Situation 15.1. If there exists an impurity (Sh → S, s′  s, ξ) of
F above s then there exists an impurity (T → S, t′  t, ξ) of F above s where (T, t)→
(S, s) is an elementary étale neighbourhood.

Proof. We may replace S by an affine neighbourhood of s. Say S = Spec(A) and
s corresponds to the prime p ⊂ A. Then OhS,s = colim(T,t) Γ(T,OT ) where the limit
is over the opposite of the cofiltered category of affine elementary étale neighbourhoods
(T, t) of (S, s), see More on Morphisms, Lemma 35.5 and its proof. Hence Sh = limi Ti
and we win by Lemma 15.4. �

Lemma 15.8. In Situation 15.1 the following are equivalent
(1) there exists an impurity (Sh → S, s′  s, ξ) of F above s where Sh is the

henselization of S at s,
(2) there exists an impurity (T → S, t′  t, ξ) of F above s such that (T, t) →

(S, s) is an elementary étale neighbourhood, and
(3) there exists an impurity (T → S, t′  t, ξ) of F above s such that T → S is

quasi-finite at t.

Proof. As an étale morphism is locally quasi-finite it is clear that (2) implies (3). We
have seen that (3) implies (2) in Lemma 15.5. We have seen that (1) implies (2) in Lemma
15.7. Finally, if (T → S, t′  t, ξ) is an impurity of F above s such that (T, t)→ (S, s)
is an elementary étale neighbourhood, then we can choose a factorization Sh → T → S
of the structure morphism Sh → S. Choose any point s′ ∈ Sh mapping to t′ and choose
any ξ′ ∈ Xs′ mapping to ξ ∈ Xt′ . Then (Sh → S, s′  s, ξ′) is an impurity of F above
s. We omit the details. �

16. Relatively pure modules

The notion of a module pure relative to a base was introduced in [?].

Definition 16.1. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherentOX -module.
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(1) Let s ∈ S. We say F is pure along Xs if there is no impurity (g : T → S, t′  
t, ξ) of F above s with (T, t)→ (S, s) an elementary étale neighbourhood.

(2) We say F is universally pure alongXs if there does not exist any impurity of F
above s.

(3) We say that X is pure along Xs ifOX is pure along Xs.
(4) We say F is universally S-pure, or universally pure relative to S if F is univer-

sally pure along Xs for every s ∈ S.
(5) We say F is S-pure, or pure relative to S if F is pure along Xs for every s ∈ S.
(6) We say that X is S-pure or pure relative to S ifOX is pure relative to S.

We intentionally restrict ourselves here to morphisms which are of finite type and not
just morphisms which are locally of finite type, see Remark 16.2 for a discussion. In the
situation of the definition Lemma 15.8 tells us that the following are equivalent

(1) F is pure along Xs,
(2) there is no impurity (g : T → S, t′  t, ξ) with g quasi-finite at t,
(3) there does not exist any impurity of the form (Sh → S, s′  s, ξ), where Sh is

the henselization of S at s.
If we denoteXh = X ×S Sh and Fh the pullback of F toXh, then we can formulate the
last condition in the following more positive way:

(4) All points of AssXh/Sh(Fh) specialize to points of Xs.
In particular, it is clear that F is pure along Xs if and only if the pullback of F to X ×S
Spec(OS,s) is pure along Xs.

Remark 16.2. Let f : X → S be a morphism which is locally of finite type and F a
quasi-coherent finite typeOX -module. In this case it is still true that (1) and (2) above are
equivalent because the proof of Lemma 15.5 does not use that f is quasi-compact. It is also
clear that (3) and (4) are equivalent. However, we don’t know if (1) and (3) are equivalent.
In this case it may sometimes be more convenient to define purity using the equivalent
conditions (3) and (4) as is done in [?]. On the other hand, for many applications it seems
that the correct notion is really that of being universally pure.

A natural question to ask is if the property of being pure relative to the base is preserved
by base change, i.e., if being pure is the same thing as being universally pure. It turns out
that this is true over Noetherian base schemes (see Lemma 16.5), or if the sheaf is flat (see
Lemmas 18.3 and 18.4). It is not true in general, even if the morphism and the sheaf are
of finite presentation, see Examples, Section 39 for a counter example. First we match our
usage of “universally” to the usual notion.

Lemma 16.3. Let f : X → S be a morphism of schemes which is of finite type. Let
F be a finite type quasi-coherentOX -module. Let s ∈ S. The following are equivalent

(1) F is universally pure along Xs, and
(2) for every morphism of pointed schemes (S′, s′) → (S, s) the pullback FS′ is

pure along Xs′ .
In particular, F is universally pure relative to S if and only if every base change FS′ of F
is pure relative to S′.

Proof. This is formal. �

Lemma 16.4. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX -module. Let s ∈ S. Let (S′, s′) → (S, s) be a
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morphism of pointed schemes. If S′ → S is quasi-finite at s′ andF is pure alongXs, then
FS′ is pure along Xs′ .

Proof. It (T → S′, t′  t, ξ) is an impurity of FS′ above s′ with T → S′ quasi-
finite at t, then (T → S, t′ → t, ξ) is an impurity of F above s with T → S quasi-
finite at t, see Morphisms, Lemma 20.12. Hence the lemma follows immediately from the
characterization (2) of purity given following Definition 16.1. �

Lemma 16.5. Let f : X → S be a morphism of schemes which is of finite type. Let
F be a finite type quasi-coherent OX -module. Let s ∈ S. IfOS,s is Noetherian then F is
pure along Xs if and only if F is universally pure along Xs.

Proof. First we may replace S by Spec(OS,s), i.e., we may assume that S is Noether-
ian. Next, use Lemma 15.6 and characterization (2) of purity given in discussion following
Definition 16.1 to conclude. �

Purity satisfies flat descent.

Lemma 16.6. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX -module. Let s ∈ S. Let (S′, s′) → (S, s) be a
morphism of pointed schemes. Assume S′ → S is flat at s′.

(1) If FS′ is pure along Xs′ , then F is pure along Xs.
(2) If FS′ is universally pure along Xs′ , then F is universally pure along Xs.

Proof. Let (T → S, t′  t, ξ) be an impurity ofF above s. SetT1 = T×SS′, and let
t1 be the unique point of T1 mapping to t and s′. Since T1 → T is flat at t1, see Morphisms,
Lemma 25.8, there exists a specialization t′1  t1 lying over t′  t, see Algebra, Section 41.
Choose a point ξ1 ∈ Xt′1

which corresponds to a generic point of Spec(κ(t′1)⊗κ(t′) κ(ξ)),
see Schemes, Lemma 17.5. By Divisors, Lemma 7.3 we see that ξ1 ∈ AssXT1/T1(FT1). As
the Zariski closure of {ξ1} inXT1 maps into the Zariski closure of {ξ} inXT we conclude
that this closure is disjoint from Xt1 . Hence (T1 → S′, t′1  t1, ξ1) is an impurity of
FS′ above s′. In other words we have proved the contrapositive to part (2) of the lemma.
Finally, if (T, t)→ (S, s) is an elementary étale neighbourhood, then (T1, t1)→ (S′, s′)
is an elementary étale neighbourhood too, and in this way we see that (1) holds. �

Lemma 16.7. Let i : Z → X be a closed immersion of schemes of finite type over
a scheme S. Let s ∈ S. Let F be a finite type, quasi-coherent sheaf on Z. Then F is
(universally) pure along Zs if and only if i∗F is (universally) pure along Xs.

Proof. This follows from Divisors, Lemma 8.3. �

17. Examples of relatively pure sheaves

Here are some example cases where it is possible to see what purity means.

Lemma 17.1. Let f : X → S be a morphism of schemes which is of finite type. Let
F be a finite type quasi-coherentOX -module.

(1) If the support of F is proper over S , then F is universally pure relative to S.
(2) If f is proper, then F is universally pure relative to S.
(3) If f is proper, then X is universally pure relative to S.

Proof. First we reduce (1) to (2). Namely, letZ ⊂ X be the scheme theoretic support
of F . Let i : Z → X be the corresponding closed immersion and write F = i∗G for some
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finite type quasi-coherent OZ -module G , see Morphisms, Section 5. In case (1) Z → S is
proper by assumption. Thus by Lemma 16.7 case (1) reduces to case (2).

Assume f is proper. Let (g : T → S, t′  t, ξ) be an impurity of F above s ∈ S. Since
f is proper, it is universally closed. Hence fT : XT → T is closed. Since fT (ξ) = t′ this
implies that t ∈ f({ξ}) which is a contradiction. �

Lemma 17.2. Let f : X → S be a separated, finite type morphism of schemes. Let
F be a finite type, quasi-coherent OX -module. Assume that Supp(Fs) is finite for every
s ∈ S. Then the following are equivalent

(1) F is pure relative to S ,
(2) the scheme theoretic support of F is finite over S , and
(3) F is universally pure relative to S.

In particular, given a quasi-finite separated morphism X → S we see that X is pure rela-
tive to S if and only if X → S is finite.

Proof. Let Z ⊂ X be the scheme theoretic support of F , see Morphisms, Definition
5.5. Then Z → S is a separated, finite type morphism of schemes with finite fibres. Hence
it is separated and quasi-finite, see Morphisms, Lemma 20.10. By Lemma 16.7 it suffices
to prove the lemma for Z → S and the sheaf F viewed as a finite type quasi-coherent
module on Z. Hence we may assume that X → S is separated and quasi-finite and that
Supp(F) = X .

It follows from Lemma 17.1 and Morphisms, Lemma 44.11 that (2) implies (3). Trivially
(3) implies (1). Assume (1) holds. We will prove that (2) holds. It is clear that we may
assume S is affine. By More on Morphisms, Lemma 43.3 we can find a diagram

X

f ��

j
// T

π
��

S

with π finite and j a quasi-compact open immersion. If we show that j is closed, then j is
a closed immersion and we conclude that f = π ◦ j is finite. To show that j is closed it
suffices to show that specializations lift along j , see Schemes, Lemma 19.8. Let x ∈ X , set
t′ = j(x) and let t′  t be a specialization. We have to show t ∈ j(X). Set s′ = f(x)
and s = π(t) so s′  s. By More on Morphisms, Lemma 41.4 we can find an elementary
étale neighbourhood (U, u)→ (S, s) and a decomposition

TU = T ×S U = V qW

into open and closed subschemes, such that V → U is finite and there exists a unique
point v of V mapping to u, and such that v maps to t in T . As V → T is étale, we can lift
generalizations, see Morphisms, Lemmas 25.9 and 36.12. Hence there exists a specialization
v′  v such that v′ maps to t′ ∈ T . In particular we see that v′ ∈ XU ⊂ TU . Denote
u′ ∈ U the image of t′. Note that v′ ∈ AssXU/U (F) because Xu′ is a finite discrete set
and Xu′ = Supp(Fu′). As F is pure relative to S we see that v′ must specialize to a point
in Xu. Since v is the only point of V lying over u (and since no point of W can be a
specialization of v′) we see that v ∈ Xu. Hence t ∈ X . �

Lemma 17.3. Let f : X → S be a finite type, flat morphism of schemes with geomet-
rically integral fibres. Then X is universally pure over S.
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Proof. Let ξ ∈ X with s′ = f(ξ) and s′  s a specialization of S. If ξ is an asso-
ciated point of Xs′ , then ξ is the unique generic point because Xs′ is an integral scheme.
Let ξ0 be the unique generic point of Xs. As X → S is flat we can lift s′  s to a special-
ization ξ′  ξ0 in X , see Morphisms, Lemma 25.9. The ξ  ξ′ because ξ is the generic
point of Xs′ hence ξ  ξ0. This means that (idS , s′ → s, ξ) is not an impurity of OX
above s. Since the assumption that f is finite type, flat with geometrically integral fibres
is preserved under base change, we see that there doesn’t exist an impurity after any base
change. In this way we see that X is universally S-pure. �

Lemma 17.4. Let f : X → S be a finite type, affine morphism of schemes. Let F
be a finite type quasi-coherent OX -module such that f∗F is locally projective on S , see
Properties, Definition 21.1. Then F is universally pure over S.

Proof. After reducing to the case where S is the spectrum of a henselian local ring
this follows from Lemma 14.1. �

18. A criterion for purity

We first prove that given a flat family of finite type quasi-coherent sheaves the points in
the relative assassin specialize to points in the relative assassins of nearby fibres (if they
specialize at all).

Lemma 18.1. Let f : X → S be a morphism of schemes of finite type. Let F be a
quasi-coherent OX -module of finite type. Let s ∈ S. Assume that F is flat over S at all
points of Xs. Let x′ ∈ AssX/S(F) with f(x′) = s′ such that s′  s is a specialization in
S. If x′ specializes to a point of Xs, then x′  x with x ∈ AssXs(Fs).

Proof. Say x′  t with t ∈ Xs. Then we can find specializations x′  x  t

with x corresponding to a generic point of an irreducible component of {x′}∩ f−1({s}).
By assumption F is flat over S at x. By More on Morphisms, Lemma 18.3 we see that
x ∈ AssX/S(F) as desired. �

Lemma 18.2. Let f : X → S be a morphism of schemes of finite type. Let F be a
quasi-coherent OX -module of finite type. Let s ∈ S. Let (S′, s′) → (S, s) be an elemen-
tary étale neighbourhood and let

X

��

X ′
g

oo

��
S S′oo

be a commutative diagram of morphisms of schemes. Assume
(1) F is flat over S at all points of Xs,
(2) X ′ → S′ is of finite type,
(3) g∗F is pure along X ′

s′ ,
(4) g : X ′ → X is étale, and
(5) g(X ′) contains AssXs(Fs).

In this situation F is pure along Xs if and only if the image of X ′ → X ×S S′ contains
the points of AssX×SS′/S′(F ×S S′) lying over points in S′ which specialize to s′.

Proof. Since the morphism S′ → S is étale, we see that if F is pure along Xs, then
F ×S S′ is pure along Xs, see Lemma 16.4. Since purity satisfies flat descent, see Lemma
16.6, we see that if F ×S S′ is pure along Xs′ , then F is pure along Xs. Hence we may
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replace S by S′ and assume that S = S′ so that g : X ′ → X is an étale morphism between
schemes of finite type over S. Moreover, we may replace S by Spec(OS,s) and assume
that S is local.

First, assume that F is pure along Xs. In this case every point of AssX/S(F) specializes
to a point of Xs by purity. Hence by Lemma 18.1 we see that every point of AssX/S(F)
specializes to a point of AssXs(Fs). Thus every point of AssX/S(F) is in the image of g
(as the image is open and contains AssXs(Fs)).

Conversely, assume that g(X ′) contains AssX/S(F). LetSh = Spec(OhS,s) be the henseliza-
tion of S at s. Denote gh : (X ′)h → Xh the base change of g by Sh → S , and denote
Fh the pullback of F to Xh. By Divisors, Lemma 7.3 and Remark 7.4 the relative as-
sassin AssXh/Sh(Fh) is the inverse image of AssX/S(F) via the projection Xh → X .
As we have assumed that g(X ′) contains AssX/S(F) we conclude that the base change
gh((X ′)h) = g(X ′) ×S Sh contains AssXh/Sh(Fh). In this way we reduce to the case
where S is the spectrum of a henselian local ring. Let x ∈ AssX/S(F). To finish the proof
of the lemma we have to show that x specializes to a point of Xs, see criterion (4) for
purity in discussion following Definition 16.1. By assumption there exists a x′ ∈ X ′ such
that g(x′) = x. As g : X ′ → X is étale, we see that x′ ∈ AssX′/S(g∗F), see Lemma 2.8
(applied to the morphism of fibres X ′

w → Xw where w ∈ S is the image of x′). Since
g∗F is pure along X ′

s we see that x′  y for some y ∈ X ′
s. Hence x = g(x′) g(y) and

g(y) ∈ Xs as desired. �

Lemma 18.3. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. Let s ∈ S. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) F is flat over S at all points of Xs, and
(4) F is pure along Xs.

Then F is universally pure along Xs.

Proof. We first make a preliminary remark. Suppose that (S′, s′) → (S, s) is an
elementary étale neighbourhood. Denote F ′ the pullback of F to X ′ = X ×S S′. By the
discussion following Definition 16.1 we see thatF ′ is pure alongX ′

s′ . Moreover,F ′ is flat
over S′ alongX ′

s′ . Then it suffices to prove thatF ′ is universally pure alongX ′
s′ . Namely,

given any morphism (T, t)→ (S, s) of pointed schemes the fibre product (T ′, t′) = (T×S
S′, (t, s′)) is flat over (T, t) and hence if FT ′ is pure along Xt′ then FT is pure along Xt

by Lemma 16.6. Thus during the proof we may always replace (s, S) by an elementary
étale neighbourhood. We may also replace S by Spec(OS,s) due to the local nature of the
problem.

Choose an elementary étale neighbourhood (S′, s′)→ (S, s) and a commutative diagram

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′ -module, see Lemma 12.11. Note that X ′ →
Spec(OS′,s′) is of finite type (as a quasi-compact morphism which is the composition of
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an étale morphism and the base change of a finite type morphism). By our preliminary
remarks in the first paragraph of the proof we may replace S by Spec(OS′,s′). Hence we
may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite type over S , where g is étale, Xs ⊂ g(X ′), with S local with closed
point s, with X ′ affine, and with Γ(X ′, g∗F) a free Γ(S,OS)-module. Note that in this
case g∗F is universally pure over S , see Lemma 17.4.

In this situation we apply Lemma 18.2 to deduce that AssX/S(F) ⊂ g(X ′) from our as-
sumption that F is pure along Xs and flat over S along Xs. By Divisors, Lemma 7.3 and
Remark 7.4 we see that for any morphism of pointed schemes (T, t)→ (S, s) we have

AssXT /T (FT ) ⊂ (XT → X)−1(AssX/S(F)) ⊂ g(X ′)×S T = gT (X ′
T ).

Hence by Lemma 18.2 applied to the base change of our displayed diagram to (T, t) we
conclude that FT is pure along Xt as desired. �

Lemma 18.4. Let f : X → S be a finite type morphism of schemes. Let F be a finite
type quasi-coherent OX -module. Assume F is flat over S. In this case F is pure relative
to S if and only if F is universally pure relative to S.

Proof. Immediate consequence of Lemma 18.3 and the definitions. �

Lemma 18.5. Let I be a directed set. Let (Si, gii′) be an inverse system of affine
schemes over I . Set S = limi Si and s ∈ S. Denote gi : S → Si the projections and
set si = gi(s). Suppose that f : X → S is a morphism of finite presentation, F a quasi-
coherent OX -module of finite presentation which is pure along Xs and flat over S at all
points of Xs. Then there exists an i ∈ I , a morphism of finite presentation Xi → Si, a
quasi-coherent OXi -module Fi of finite presentation which is pure along (Xi)si and flat
over Si at all points of (Xi)si such that X ∼= Xi ×Si S and such that the pullback of Fi
to X is isomorphic to F .

Proof. Let U ⊂ X be the set of points where F is flat over S. By More on Mor-
phisms, Theorem 15.1 this is an open subscheme of X . By assumption Xs ⊂ U . As Xs

is quasi-compact, we can find a quasi-compact open U ′ ⊂ U with Xs ⊂ U ′. By Limits,
Lemma 10.1 we can find an i ∈ I and a morphism of finite presentation fi : Xi → Si
whose base change to S is isomorphic to fi. Fix such a choice and set Xi′ = Xi ×Si Si′ .
Then X = limi′ Xi′ with affine transition morphisms. By Limits, Lemma 10.2 we can,
after possible increasing i assume there exists a quasi-coherent OXi -module Fi of finite
presentation whose base change to S is isomorphic toF . By Limits, Lemma 4.11 after pos-
sibly increasing i we may assume there exists an open U ′

i ⊂ Xi whose inverse image in
X is U ′. Note that in particular (Xi)si ⊂ U ′

i . By Limits, Lemma 10.4 (after increasing i
once more) we may assume that Fi is flat on U ′

i . In particular we see that Fi is flat along
(Xi)si .
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Next, we use Lemma 12.5 to choose an elementary étale neighbourhood (S′
i, s

′
i)→ (Si, si)

and a commutative diagram of schemes

Xi

��

X ′
igi

oo

��
Si S′

i
oo

such that gi is étale, (Xi)si ⊂ gi(X ′
i), the schemesX ′

i ,S′
i are affine, and such that Γ(X ′

i, g
∗
iFi)

is a projective Γ(S′
i,OS′

i
)-module. Note that g∗

iFi is universally pure over S′
i, see Lemma

17.4. We may base change the diagram above to a diagram with morphisms (S′
i′ , s

′
i′) →

(Si′ , si′) and gi′ : X ′
i′ → Xi′ over Si′ for any i′ ≥ i and we may base change the diagram

to a diagram with morphisms (S′, s′)→ (S, s) and g : X ′ → X over S.

At this point we can use our criterion for purity. Set W ′
i ⊂ Xi ×Si S′

i equal to the image
of the étale morphism X ′

i → Xi ×Si S′
i. For every i′ ≥ i we have similarly the image

W ′
i′ ⊂ Xi′ ×Si′ S

′
i′ and we have the image W ′ ⊂ X ×S S′. Taking images commutes

with base change, henceW ′
i′ = W ′

i ×S′
i
S′
i′ andW ′ = Wi×S′

i
S′. BecauseF is pure along

Xs the Lemma 18.2 implies that

(18.5.1) f−1(Spec(OS′,s′)) ∩ AssX×SS′/S′(F ×S S′) ⊂W ′

By More on Morphisms, Lemma 25.5 we see that

E = {t ∈ S′ | AssXt(Ft) ⊂W ′} and Ei′ = {t ∈ S′
i′ | AssXt(Fi′,t) ⊂W ′

i′}

are locally constructible subsets of S′ and S′
i′ . By More on Morphisms, Lemma 25.4 we

see that Ei′ is the inverse image of Ei under the morphism S′
i′ → S′

i and that E is the
inverse image of Ei under the morphism S′ → S′

i. Thus Equation (18.5.1) is equivalent
to the assertion that Spec(OS′,s′) maps into Ei. As OS′,s′ = colimi′≥iOS′

i′
,s′
i′

we see
that Spec(OS′

i′
,s′
i′

) maps into Ei for some i′ ≥ i, see Limits, Lemma 4.10. Then, applying
Lemma 18.2 to the situation over Si′ , we conclude that Fi′ is pure along (Xi′)si′ . �

Lemma 18.6. Let f : X → S be a morphism of finite presentation. Let F be a quasi-
coherentOX -module of finite presentation flat over S. Then the set

U = {s ∈ S | F is pure along Xs}

is open in S.

Proof. Let s ∈ U . Using Lemma 12.5 we can find an elementary étale neighbourhood
(S′, s′)→ (S, s) and a commutative diagram

X

��

X ′
g

oo

��
S S′oo

such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that Γ(X ′, g∗F)
is a projective Γ(S′,OS′)-module. Note that g∗F is universally pure over S′, see Lemma
17.4. Set W ′ ⊂ X ×S S′ equal to the image of the étale morphism X ′ → X ×S S′. Note
that W is open and quasi-compact over S′. Set

E = {t ∈ S′ | AssXt(Ft) ⊂W ′}.
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By More on Morphisms, Lemma 25.5 E is a constructible subset of S′. By Lemma 18.2 we
see that Spec(OS′,s′) ⊂ E. By Morphisms, Lemma 22.4 we see that E contains an open
neighbourhood V ′ of s′. Applying Lemma 18.2 once more we see that for any point s1 in
the image of V ′ in S the sheaf F is pure along Xs1 . Since S′ → S is étale the image of V ′

in S is open and we win. �

19. How purity is used

Here are some examples of how purity can be used. The first lemma actually uses a slightly
weaker form of purity.

Lemma 19.1. Let f : X → S be a morphism of finite type. Let F be a quasi-coherent
sheaf of finite type on X . Assume S is local with closed point s. Assume F is pure along
Xs and that F is flat over S. Let ϕ : F → G of quasi-coherent OX -modules. Then the
following are equivalent

(1) the map on stalks ϕx is injective for all x ∈ AssXs(Fs), and
(2) ϕ is injective.

Proof. Let K = Ker(ϕ). Our goal is to prove that K = 0. In order to do this it suf-
fices to prove that WeakAssX(K) = ∅, see Divisors, Lemma 5.5. We have WeakAssX(K) ⊂
WeakAssX(F), see Divisors, Lemma 5.4. AsF is flat we see from Lemma 13.5 that WeakAssX(F) ⊂
AssX/S(F). By purity any point x′ of AssX/S(F) is a generalization of a point ofXs, and
hence is the specialization of a point x ∈ AssXs(Fs), by Lemma 18.1. Hence the injectivity
of ϕx implies the injectivity of ϕx′ , whence Kx′ = 0. �

Proposition 19.2. Let f : X → S be an affine, finitely presented morphism of
schemes. Let F be a quasi-coherent OX -module of finite presentation, flat over S. Then
the following are equivalent

(1) f∗F is locally projective on S , and
(2) F is pure relative to S.

In particular, given a ring map A → B of finite presentation and a finitely presented
B-module N flat over A we have: N is projective as an A-module if and only if Ñ on
Spec(B) is pure relative to Spec(A).

Proof. The implication (1) ⇒ (2) is Lemma 17.4. Assume F is pure relative to S.
Note that by Lemma 18.3 this implies F remains pure after any base change. By Descent,
Lemma 7.7 it suffices to prove f∗F is fpqc locally projective on S. Pick s ∈ S. We will
prove that the restriction of f∗F to an étale neighbourhood of s is locally projective.
Namely, by Lemma 12.5, after replacing S by an affine elementary étale neighbourhood of
s, we may assume there exists a diagram

X

��

X ′
g

oo

~~
S

of schemes affine and of finite presentation over S , where g is étale,Xs ⊂ g(X ′), and with
Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is universally pure
over S , see Lemma 17.4. Hence by Lemma 18.2 we see that the open g(X ′) contains the
points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt(Ft) ⊂ g(X ′)}.
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By More on Morphisms, Lemma 25.5 E is a constructible subset of S. We have seen that
Spec(OS,s) ⊂ E. By Morphisms, Lemma 22.4 we see thatE contains an open neighbour-
hood of s. Hence after replacing S by an affine neighbourhood of s we may assume that
AssX/S(F) ⊂ g(X ′). By Lemma 7.4 this means that

Γ(X,F) −→ Γ(X ′, g∗F)
is Γ(S,OS)-universally injective. By Algebra, Lemma 89.7 we conclude that Γ(X,F) is
Mittag-Leffler as an Γ(S,OS)-module. Since Γ(X,F) is countably generated and flat as a
Γ(S,OS)-module, we conclude it is projective by Algebra, Lemma 93.1. �

We can use the proposition to improve some of our earlier results. The following lemma
is an improvement of Proposition 12.4.

Lemma 19.3. Let f : X → S be a morphism which is locally of finite presentation.
Let F be a quasi-coherent OX -module which is of finite presentation. Let x ∈ X with
s = f(x) ∈ S. IfF is flat atx overS there exists an affine elementary étale neighbourhood
(S′, s′)→ (S, s) and an affine open U ′ ⊂ X ×S S′ which contains x′ = (x, s′) such that
Γ(U ′,F|U ′) is a projective Γ(S′,OS′)-module.

Proof. During the proof we may replace X by an open neighbourhood of x and we
may replace S by an elementary étale neighbourhood of s. Hence, by openness of flatness
(see More on Morphisms, Theorem 15.1) we may assume that F is flat over S. We may
assume S and X are affine. After shrinking X some more we may assume that any point
of AssXs(Fs) is a generalization of x. This property is preserved on replacing (S, s) by
an elementary étale neighbourhood. Hence we may apply Lemma 12.5 to arrive at the
situation where there exists a diagram

X

��

X ′
g

oo

~~
S

of schemes affine and of finite presentation over S , where g is étale,Xs ⊂ g(X ′), and with
Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is universally pure
over S , see Lemma 17.4.
Let U ⊂ g(X ′) be an affine open neighbourhood of x. We claim that F|U is pure along
Us. If we prove this, then the lemma follows because F|U will be pure relative to S after
shrinking S , see Lemma 18.6, whereupon the projectivity follows from Proposition 19.2.
To prove the claim we have to show, after replacing (S, s) by an arbitrary elementary
étale neighbourhood, that any point ξ of AssU/S(F|U ) lying over some s′ ∈ S , s′  s
specializes to a point of Us. Since U ⊂ g(X ′) we can find a ξ′ ∈ X ′ with g(ξ′) = ξ.
Because g∗F is pure over S , using Lemma 18.1, we see there exists a specialization ξ′  x′

with x′ ∈ AssX′
s
(g∗Fs). Then g(x′) ∈ AssXs(Fs) (see for example Lemma 2.8 applied to

the étale morphismX ′
s → Xs of Noetherian schemes) and hence g(x′) x by our choice

of X above! Since x ∈ U we conclude that g(x′) ∈ U . Thus ξ = g(ξ′)  g(x′) ∈ Us as
desired. �

The following lemma is an improvement of Lemma 12.9.

Lemma 19.4. Let f : X → S be a morphism which is locally of finite type. LetF be a
quasi-coherentOX -module which is of finite type. Let x ∈ X with s = f(x) ∈ S. If F is
flat at x overS there exists an affine elementary étale neighbourhood (S′, s′)→ (S, s) and
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an affine openU ′ ⊂ X×SSpec(OS′,s′) which contains x′ = (x, s′) such that Γ(U ′,F|U ′)
is a freeOS′,s′ -module.

Proof. The question is Zariski local on X and S. Hence we may assume that X
and S are affine. Then we can find a closed immersion i : X → An

S over S. It is clear
that it suffices to prove the lemma for the sheaf i∗F on An

S and the point i(x). In this
way we reduce to the case where X → S is of finite presentation. After replacing S by
Spec(OS′,s′) and X by an open of X ×S Spec(OS′,s′) we may assume that F is of finite
presentation, see Proposition 10.3. In this case we may appeal to Lemma 19.3 and Algebra,
Theorem 85.4 to conclude. �

Lemma 19.5. Let A → B be a local ring map of local rings which is essentially of
finite type. Let N be a finite B-module which is flat as an A-module. If A is henselian,
then N is a filtered colimit

N = colimi Fi

of free A-modules Fi such that all transition maps ui : Fi → Fi′ of the system induce
injective maps ui : Fi/mAFi → Fi′/mAFi′ . Also, N is a Mittag-Leffler A-module.

Proof. We can find a morphism of finite typeX → S = Spec(A) and a point x ∈ X
lying over the closed point s of S and a finite type quasi-coherentOX -moduleF such that
Fx ∼= N as anA-module. After shrinkingX we may assume that each point of AssXs(Fs)
specializes to x. By Lemma 19.4 we see that there exists a fundamental system of affine
open neighbourhoods Ui ⊂ X of x such that Γ(Ui,F) is a free A-module Fi. Note that
if Ui′ ⊂ Ui, then

Fi/mAFi = Γ(Ui,s,Fs) −→ Γ(Ui′,s,Fs) = Fi′/mAFi′

is injective because a section of the kernel would be supported at a closed subset ofXs not
meeting xwhich is a contradiction to our choice ofX above. Since the maps Fi → Fi′ are
A-universally injective (Lemma 7.5) it follows thatN is Mittag-Leffler by Algebra, Lemma
89.9. �

The following lemma should be skipped if reading through for the first time.

Lemma 19.6. Let A → B be a local ring map of local rings which is essentially of
finite type. Let N be a finite B-module which is flat as an A-module. If A is a valuation
ring, then any element ofN has a content ideal I ⊂ A (More on Algebra, Definition 24.1).
Also, I is a principal ideal.

Proof. The final statement follows from the fact that I is a finitely generated ideal
by More on Algebra, Lemma 24.2 and Algebra, Lemma 50.15.

Proof of existence of I . Let A ⊂ Ah be the henselization. Let B′ be the localization of
B⊗AAh at the maximal ideal mB⊗Ah+B⊗mAh . ThenB → B′ is flat, hence faithfully
flat. Let N ′ = N ⊗B B′. Let x ∈ N and let x′ ∈ N ′ be the image. We claim that for
an ideal I ⊂ A we have x ∈ IN ⇔ x′ ∈ IN ′. Namely, N/IN → N ′/IN ′ is the tensor
product of B → B′ with N/IN and B → B′ is universally injective by Algebra, Lemma
82.11. By More on Algebra, Lemma 123.6 and Algebra, Lemma 50.17 the map A → Ah

defines an inclusion preserving bijection I 7→ IAh on sets of ideals. We conclude that
x has a content ideal in A if and only if x′ has a content ideal in Ah. The assertion for
x′ ∈ N ′ follows from Lemma 19.5 and Algebra, Lemma 89.6. �

An application is the following.
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Lemma 19.7. Let X → Spec(R) be a proper flat morphism where R is a valuation
ring. If the special fibre is reduced, then X and every fibre of X → Spec(R) is reduced.

Proof. Assume the special fibre Xs is reduced. Let x ∈ X be any point, and let us
show thatOX,x is reduced; this will prove thatX is reduced. Letx x′ be a specialization
with x′ in the special fibre; such a specialization exists as a proper morphism is closed.
Consider the local ringA = OX,x′ . ThenOX,x is a localization ofA, so it suffices to show
that A is reduced. Let a ∈ A and let I = (π) ⊂ R be its content ideal, see Lemma 19.6.
Then a = πa′ and a′ maps to a nonzero element of A/mA where m ⊂ R is the maximal
ideal. If a is nilpotent, so is a′, because π is a nonzerodivisor by flatness ofA overR. But a′

maps to a nonzero element of the reduced ring A/mA = OXs,x′ . This is a contradiction
unless A is reduced, which is what we wanted to show.
Of course, if X is reduced, so is the generic fibre of X over R. If p ⊂ R is a prime ideal,
then R/p is a valuation ring by Algebra, Lemma 50.9. Hence redoing the argument with
the base change of X to R/p proves the fibre over p is reduced. �

20. Flattening functors

LetS be a scheme. Recall that a functorF : (Sch/S)opp → Sets is called limit preserving if
for every directed inverse system {Ti}i∈I of affine schemes with limit T we have F (T ) =
colimi F (Ti).

Situation 20.1. Let f : X → S be a morphism of schemes. Let u : F → G be a
homomorphism of quasi-coherentOX -modules. For any scheme T over S we will denote
uT : FT → GT the base change of u to T , in other words, uT is the pullback of u via the
projection morphism XT = X ×S T → X . In this situation we can consider the functor

(20.1.1) Fiso : (Sch/S)opp −→ Sets, T −→
{
{∗} if uT is an isomorphism,
∅ else.

There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective, or zero.

Lemma 20.2. In Situation 20.1.
(1) Each of the functors Fiso, Finj , Fsurj , Fzero satisfies the sheaf property for the

fpqc topology.
(2) If f is quasi-compact and G is of finite type, then Fsurj is limit preserving.
(3) If f is quasi-compact and F of finite type, then Fzero is limit preserving.
(4) If f is quasi-compact,F is of finite type, and G is of finite presentation, then Fiso

is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and ui = uTi . Note that {Xi → XT }i∈I is an fpqc covering of XT , see Topolo-
gies, Lemma 9.7. In particular, for every x ∈ XT there exists an i ∈ I and an xi ∈ Xi

mapping to x. Since OXT ,x → OXi,xi is flat, hence faithfully flat (see Algebra, Lemma
39.17) we conclude that (ui)xi is injective, surjective, bijective, or zero if and only if (uT )x
is injective, surjective, bijective, or zero. Whence part (1) of the lemma.
Proof of (2). Assume f quasi-compact and G of finite type. Let T = limi∈I Ti be a directed
limit of affine S-schemes and assume that uT is surjective. Set Xi = XTi = X ×S Ti and
ui = uTi : Fi = FTi → Gi = GTi . To prove part (2) we have to show that ui is surjective
for some i. Pick i0 ∈ I and replace I by {i | i ≥ i0}. Since f is quasi-compact the scheme
Xi0 is quasi-compact. Hence we may choose affine opens W1, . . . ,Wm ⊂ X and an affine
open coveringXi0 = U1,i0∪. . .∪Um,i0 such thatUj,i0 maps intoWj under the projection
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morphism Xi0 → X . For any i ∈ I let Uj,i be the inverse image of Uj,i0 . Setting Uj =
limi Uj,i we see thatXT = U1∪ . . .∪Um is an affine open covering ofXT . Now it suffices
to show, for a given j ∈ {1, . . . ,m} that ui|Uj,i is surjective for some i = i(j) ∈ I . Using
Properties, Lemma 16.1 this translates into the following algebra problem: LetA be a ring
and let u : M → N be an A-module map. Suppose that R = colimi∈I Ri is a directed
colimit of A-algebras. If N is a finite A-module and if u ⊗ 1 : M ⊗A R → N ⊗A R is
surjective, then for some i the map u ⊗ 1 : M ⊗A Ri → N ⊗A Ri is surjective. This is
Algebra, Lemma 127.5 part (2).

Proof of (3). Exactly the same arguments as given in the proof of (2) reduces this to the
following algebra problem: Let A be a ring and let u : M → N be an A-module map.
Suppose that R = colimi∈I Ri is a directed colimit of A-algebras. If M is a finite A-
module and if u ⊗ 1 : M ⊗A R → N ⊗A R is zero, then for some i the map u ⊗ 1 :
M ⊗A Ri → N ⊗A Ri is zero. This is Algebra, Lemma 127.5 part (1).

Proof of (4). Assume f quasi-compact and F ,G of finite presentation. Arguing in exactly
the same manner as in the previous paragraph (using in addition also Properties, Lemma
16.2) part (3) translates into the following algebra statement: Let A be a ring and let u :
M → N be an A-module map. Suppose that R = colimi∈I Ri is a directed colimit
of A-algebras. Assume M is a finite A-module, N is a finitely presented A-module, and
u ⊗ 1 : M ⊗A R → N ⊗A R is an isomorphism. Then for some i the map u ⊗ 1 :
M ⊗A Ri → N ⊗A Ri is an isomorphism. This is Algebra, Lemma 127.5 part (3). �

Situation 20.3. Let (A,mA) be a local ring. Denote C the category whose objects
are A-algebras A′ which are local rings such that the algebra structure A → A′ is a local
homomorphism of local rings. A morphism between objects A′, A′′ of C is a local homo-
morphism A′ → A′′ of A-algebras. Let A → B be a local ring map of local rings and let
M be aB-module. IfA′ is an object of C we setB′ = B⊗AA′ and we setM ′ = M ⊗AA′

as a B′-module. Given A′ ∈ Ob(C), consider the condition

(20.3.1) ∀q ∈ V (mA′B′ + mBB
′) ⊂ Spec(B′) : M ′

q is flat over A′.

Note the similarity with More on Algebra, Equation (19.1.1). In particular, if A′ → A′′

is a morphism of C and (20.3.1) holds for A′, then it holds for A′′, see More on Algebra,
Lemma 19.2. Hence we obtain a functor

(20.3.2) Flf : C −→ Sets, A′ −→
{
{∗} if (20.3.1) holds,
∅ else.

Lemma 20.4. In Situation 20.3.
(1) If A′ → A′′ is a flat morphism in C then Flf (A′) = Flf (A′′).
(2) If A → B is essentially of finite presentation and M is a B-module of finite

presentation, then Flf is limit preserving: If {Ai}i∈I is a directed system of
objects of C , then Flf (colimiAi) = colimi Flf (Ai).

Proof. Part (1) is a special case of More on Algebra, Lemma 19.3. Part (2) is a special
case of More on Algebra, Lemma 19.4. �

Lemma 20.5. In Situation 20.3. Let B → C is a local map of local A-algebras and N
a C-module. Denote F ′

lf : C → Sets the functor associated to the pair (C,N). If M ∼= N

as B-modules and B → C is finite, then Flf = F ′
lf .

Proof. Let A′ be an object of C. Set C ′ = C ⊗A A′ and N ′ = N ⊗A A′ similarly
to the definitions of B′, M ′ in Situation 20.3. Note that M ′ ∼= N ′ as B′-modules. The
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assumption that B → C is finite has two consequences: (a) mC =
√
mBC and (b) B′ →

C ′ is finite. Consequence (a) implies that

V (mA′C ′ + mCC
′) = (Spec(C ′)→ Spec(B′))−1

V (mA′B′ + mBB
′).

Suppose q ⊂ V (mA′B′ + mBB
′). Then M ′

q is flat over A′ if and only if the C ′
q-module

N ′
q is flat over A′ (because these are isomorphic as A′-modules) if and only if for every

maximal ideal r ofC ′
q the moduleN ′

r is flat overA′ (see Algebra, Lemma 39.18). AsB′
q →

C ′
q is finite by (b), the maximal ideals of C ′

q correspond exactly to the primes of C ′ lying
over q (see Algebra, Lemma 36.22) and these primes are all contained in V (mA′C ′+mCC

′)
by the displayed equation above. Thus the result of the lemma holds. �

Lemma 20.6. In Situation 20.3 suppose thatB → C is a flat local homomorphism of
local rings. Set N = M ⊗B C. Denote F ′

lf : C → Sets the functor associated to the pair
(C,N). Then Flf = F ′

lf .

Proof. LetA′ be an object of C. SetC ′ = C⊗AA′ andN ′ = N⊗AA′ = M ′⊗B′ C ′

similarly to the definitions of B′, M ′ in Situation 20.3. Note that
V (mA′B′ + mBB

′) = Spec(κ(mB)⊗A κ(mA′))
and similarly for V (mA′C ′ + mCC

′). The ring map
κ(mB)⊗A κ(mA′) −→ κ(mC)⊗A κ(mA′)

is faithfully flat, hence V (mA′C ′ + mCC
′) → V (mA′B′ + mBB

′) is surjective. Finally,
if r ∈ V (mA′C ′ +mCC

′) maps to q ∈ V (mA′B′ +mBB
′), then M ′

q is flat over A′ if and
only if N ′

r is flat over A′ because B′ → C ′ is flat, see Algebra, Lemma 39.9. The lemma
follows formally from these remarks. �

Situation 20.7. Let f : X → S be a smooth morphism with geometrically irre-
ducible fibres. Let F be a quasi-coherent OX -module of finite type. For any scheme T
over S we will denoteFT the base change ofF to T , in other words,FT is the pullback of
F via the projection morphism XT = X ×S T → X . Note that XT → T is smooth with
geometrically irreducible fibres, see Morphisms, Lemma 34.5 and More on Morphisms,
Lemma 27.2. Let p ≥ 0 be an integer. Given a point t ∈ T consider the condition
(20.7.1) FT is free of rank p in a neighbourhood of ξt
where ξt is the generic point of the fibre Xt. This condition for all t ∈ T is stable under
base change, and hence we obtain a functor

(20.7.2) Hp : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT satisfies (20.7.1) ∀t ∈ T,
∅ else.

Lemma 20.8. In Situation 20.7.
(1) The functor Hp satisfies the sheaf property for the fpqc topology.
(2) If F is of finite presentation, then functor Hp is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc1 covering of schemes over S. Set Xi = XTi =
X ×S Ti and denote Fi the pullback of F toXi. Assume that Fi satisfies (20.7.1) for all i.
Pick t ∈ T and let ξt ∈ XT denote the generic point ofXt. We have to show thatF is free
in a neighbourhood of ξt. For some i ∈ I we can find a ti ∈ Ti mapping to t. Let ξi ∈ Xi

1It is quite easy to show thatHp is a sheaf for the fppf topology using that flat morphisms of finite presen-
tation are open. This is all we really need later on. But it is kind of fun to prove directly that it also satisfies the
sheaf condition for the fpqc topology.
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denote the generic point of Xti , so that ξi maps to ξt. The fact that Fi is free of rank p in
a neighbourhood of ξi implies that (Fi)xi ∼= O

⊕p
Xi,xi

which implies that FT,ξt ∼= O
⊕p
XT ,ξt

as OXT ,ξt → OXi,xi is flat, see for example Algebra, Lemma 78.6. Thus there exists an
affine neighbourhood U of ξt in XT and a surjection O⊕p

U → FU = FT |U , see Modules,
Lemma 9.4. After shrinking T we may assume that U → T is surjective. Hence U → T is
a smooth morphism of affines with geometrically irreducible fibres. Moreover, for every
t′ ∈ T we see that the induced map

α : O⊕p
U,ξt′

−→ FU,ξt′

is an isomorphism (since by the same argument as before the module on the right is free
of rank p). It follows from Lemma 10.1 that

Γ(U,O⊕p
U )⊗Γ(T,OT ) OT,t′ −→ Γ(U,FU )⊗Γ(T,OT ) OT,t′

is injective for every t′ ∈ T . Hence we see the surjectionα is an isomorphism. This finishes
the proof of (1).

Assume that F is of finite presentation. Let T = limi∈I Ti be a directed limit of affine
S-schemes and assume that FT satisfies (20.7.1). SetXi = XTi = X ×S Ti and denote Fi
the pullback of F to Xi. Let U ⊂ XT denote the open subscheme of points where FT is
flat over T , see More on Morphisms, Theorem 15.1. By assumption every generic point of
every fibre is a point ofU , i.e.,U → T is a smooth surjective morphism with geometrically
irreducible fibres. We may shrink U a bit and assume that U is quasi-compact. Using
Limits, Lemma 4.11 we can find an i ∈ I and a quasi-compact openUi ⊂ Xi whose inverse
image in XT is U . After increasing i we may assume that Fi|Ui is flat over Ti, see Limits,
Lemma 10.4. In particular, Fi|Ui is finite locally free hence defines a locally constant rank
function ρ : Ui → {0, 1, 2, . . .}. Let (Ui)p ⊂ Ui denote the open and closed subset where
ρ has value p. Let Vi ⊂ Ti be the image of (Ui)p; note that Vi is open and quasi-compact.
By assumption the image of T → Ti is contained in Vi. Hence there exists an i′ ≥ i such
that Ti′ → Ti factors through Vi by Limits, Lemma 4.11. Then Fi′ satisfies (20.7.1) as
desired. Some details omitted. �

Lemma 20.9. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX -module of finite type. Let n ≥ 0. The following are
equivalent

(1) for s ∈ S the closed subset Z ⊂ Xs of points where F is not flat over S (see
Lemma 10.4) satisfies dim(Z) < n, and

(2) for x ∈ X such that F is not flat at x over S we have trdegκ(f(x))(κ(x)) < n.

If this is true, then it remains true after any base change.

Proof. Let x ∈ X be a point over s ∈ S. Then the dimension of the closure of {x} in
Xs is trdegκ(s)(κ(x)) by Varieties, Lemma 20.3. Conversely, if Z ⊂ Xs is a closed subset
of dimension d, then there exists a point x ∈ Z with trdegκ(s)(κ(x)) = d (same reference).
Therefore the equivalence of (1) and (2) holds (even fibre by fibre). The statement on base
change follows from Morphisms, Lemmas 25.7 and 28.3. �

Definition 20.10. Let f : X → S be a morphism of schemes which is locally of
finite type. Let F be a quasi-coherent OX -module of finite type. Let n ≥ 0. We say F is
flat over S in dimensions ≥ n if the equivalent conditions of Lemma 20.9 are satisfied.
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Situation 20.11. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX -module of finite type. For any scheme T over S we
will denote FT the base change of F to T , in other words, FT is the pullback of F via the
projection morphism XT = X ×S T → X . Note that XT → T is of finite type and that
FT is an OXT -module of finite type (Morphisms, Lemma 15.4 and Modules, Lemma 9.2).
Let n ≥ 0. By Definition 20.10 and Lemma 20.9 we obtain a functor

(20.11.1) Fn : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T in dim ≥ n,
∅ else.

Lemma 20.12. In Situation 20.11.
(1) The functor Fn satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite presen-

tation, then the functor Fn is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and denote Fi the pullback of F to Xi. Assume that Fi is flat over Ti in di-
mensions ≥ n for all i. Let t ∈ T . Choose an index i and a point ti ∈ Ti mapping to t.
Consider the cartesian diagram

XSpec(OT,t)

��

XSpec(OTi,ti
)

��

oo

Spec(OT,t) Spec(OTi,ti)oo

As the lower horizontal morphism is flat we see from More on Morphisms, Lemma 15.2
that the set Zi ⊂ Xti where Fi is not flat over Ti and the set Z ⊂ Xt where FT is not
flat over T are related by the rule Zi = Zκ(ti). Hence we see that FT is flat over T in
dimensions ≥ n by Morphisms, Lemma 28.3.
Assume that f is quasi-compact and locally of finite presentation and that F is of finite
presentation. In this paragraph we first reduce the proof of (2) to the case where f is of
finite presentation. Let T = limi∈I Ti be a directed limit of affine S-schemes and assume
that FT is flat in dimensions ≥ n. Set Xi = XTi = X ×S Ti and denote Fi the pullback
ofF toXi. We have to show thatFi is flat in dimensions≥ n for some i. Pick i0 ∈ I and
replace I by {i | i ≥ i0}. SinceTi0 is affine (hence quasi-compact) there exist finitely many
affine opensWj ⊂ S , j = 1, . . . ,m and an affine open overing Ti0 =

⋃
j=1,...,m Vj,i0 such

that Ti0 → S maps Vj,i0 into Wj . For i ≥ i0 denote Vj,i the inverse image of Vj,i0 in
Ti. If we can show, for each j , that there exists an i such that FVj,i0 is flat in dimensions
≥ n, then we win. In this way we reduce to the case that S is affine. In this case X is
quasi-compact and we can choose a finite affine open covering X = W1 ∪ . . . ∪Wm. In
this case the result for (X → S,F) is equivalent to the result for (

∐
Wj ,

∐
F|Wj ). Hence

we may assume that f is of finite presentation.
Assume f is of finite presentation and F is of finite presentation. Let U ⊂ XT denote the
open subscheme of points whereFT is flat over T , see More on Morphisms, Theorem 15.1.
By assumption the dimension of every fibre ofZ = XT \U over T has dimension< n. By
Limits, Lemma 18.5 we can find a closed subscheme Z ⊂ Z ′ ⊂ XT such that dim(Z ′

t) < n
for all t ∈ T and such that Z ′ → XT is of finite presentation. By Limits, Lemmas 10.1
and 8.5 there exists an i ∈ I and a closed subscheme Z ′

i ⊂ Xi of finite presentation whose
base change to T is Z ′. By Limits, Lemma 18.1 we may assume all fibres of Z ′

i → Ti
have dimension < n. By Limits, Lemma 10.4 we may assume that Fi|Xi\T ′

i
is flat over
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Ti. This implies that Fi is flat in dimensions ≥ n; here we use that Z ′ → XT is of finite
presentation, and hence the complementXT \Z ′ is quasi-compact! Thus part (2) is proved
and the proof of the lemma is complete. �

Situation 20.13. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. For any scheme T over S we will denote FT the base change of
F to T , in other words, FT is the pullback of F via the projection morphism XT =
X ×S T → X . Since the base change of a flat module is flat we obtain a functor

(20.13.1) Fflat : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T,
∅ else.

Lemma 20.14. In Situation 20.13.
(1) The functor Fflat satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite presen-

tation, then the functor Fflat is limit preserving.

Proof. Part (1) follows from the following statement: If T ′ → T is a surjective flat
morphism of schemes over S , then FT ′ is flat over T ′ if and only if FT is flat over T , see
More on Morphisms, Lemma 15.2. Part (2) follows from Limits, Lemma 10.4 after reducing
to the case where X and S are affine (compare with the proof of Lemma 20.12). �

21. Flattening stratifications

Just the definitions. The reader looking for a “generic flatness stratification”, should con-
sult More on Morphisms, Section 54.

Definition 21.1. Let X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. We say that the universal flattening ofF exists if the functorFflat defined in
Situation 20.13 is representable by a schemeS′ overS. We say that the universal flattening
of X exists if the universal flattening ofOX exists.

Note that if the universal flattening S′2 of F exists, then the morphism S′ → S is a sur-
jective monomorphism of schemes such that FS′ is flat over S′ and such that a morphism
T → S factors through S′ if and only if FT is flat over T .

Example 21.2. Let X = S = Spec(k[x, y]) where k is a field. Let F = M̃ where
M = k[x, x−1, y]/(y). For a k[x, y]-algebra A set Fflat(A) = Fflat(Spec(A)). Then
Fflat(k[x, y]/(x, y)n) = {∗} for all n, while Fflat(k[[x, y]]) = ∅. This means that Fflat
isn’t representable (even by an algebraic space, see Formal Spaces, Lemma 33.3). Thus the
universal flattening does not exist in this case.

We define (compare with Topology, Remark 28.5) a (locally finite, scheme theoretic) strat-
ification of a scheme S to be given by closed subschemes Zi ⊂ S indexed by a partially
ordered set I such that S =

⋃
Zi (set theoretically), such that every point of S has a

neighbourhood meeting only a finite number of Zi, and such that

Zi ∩ Zj =
⋃

k≤i,j
Zk.

2The scheme S′ is sometimes called the universal flatificator. In [?] it is called the platificateur universel.
Existence of the universal flattening should not be confused with the type of results discussed in More on Algebra,
Section 26.
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Setting Si = Zi \
⋃
j<i Zj the actual stratification is the decomposition S =

∐
Si into lo-

cally closed subschemes. We often only indicate the strata Si and leave the construction of
the closed subschemes Zi to the reader. Given a stratification we obtain a monomorphism

S′ =
∐

i∈I
Si −→ S.

We will call this the monomorphism associated to the stratification. With this terminol-
ogy we can define what it means to have a flattening stratification.

Definition 21.3. Let X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. We say that F has a flattening stratification if the functor Fflat defined in
Situation 20.13 is representable by a monomorphism S′ → S associated to a stratification
of S by locally closed subschemes. We say that X has a flattening stratification ifOX has
a flattening stratification.

When a flattening stratification exists, it is often important to understand the index set
labeling the strata and its partial ordering. This often has to do with ranks of modules.
For example if X = S and F is a finitely presentedOS-module, then the flattening strat-
ification exists and is given by the Fitting ideals of F , see Divisors, Lemma 9.7.

22. Flattening stratification over an Artinian ring

A flatting stratification exists when the base scheme is the spectrum of an Artinian ring.

Lemma 22.1. LetS be the spectrum of an Artinian ring. For any schemeX overS , and
any quasi-coherent OX -module there exists a universal flattening. In fact the universal
flattening is given by a closed immersion S′ → S , and hence is a flattening stratification
for F as well.

Proof. Choose an affine open covering X =
⋃
Ui. Then Fflat is the product of the

functors associated to each of the pairs (Ui,F|Ui). Hence it suffices to prove the result for
each (Ui,F|Ui). In the affine case the lemma follows immediately from More on Algebra,
Lemma 17.2. �

23. Flattening a map

Theorem 23.3 is the key to further flattening statements.

Lemma 23.1. Let S be a scheme. Let g : X ′ → X be a flat morphism of schemes over
S with X locally of finite type over S. Let F be a finite type quasi-coherent OX -module
which is flat over S. If AssX/S(F) ⊂ g(X ′) then the canonical map

F −→ g∗g
∗F

is injective, and remains injective after any base change.

Proof. The final assertion means that FT → (gT )∗g
∗
TFT is injective for any mor-

phismT → S. The assumption AssX/S(F) ⊂ g(X ′) is preserved by base change, see Divi-
sors, Lemma 7.3 and Remark 7.4. The same holds for the assumption of flatness and finite
type. Hence it suffices to prove the injectivity of the displayed arrow. LetK = Ker(F →
g∗g

∗F). Our goal is to prove that K = 0. In order to do this it suffices to prove that
WeakAssX(K) = ∅, see Divisors, Lemma 5.5. We have WeakAssX(K) ⊂WeakAssX(F),
see Divisors, Lemma 5.4. As F is flat we see from Lemma 13.5 that WeakAssX(F) ⊂
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AssX/S(F). By assumption any point x of AssX/S(F) is the image of some x′ ∈ X ′.
Since g is flat the local ring mapOX,x → OX′,x′ is faithfully flat, hence the map

Fx −→ g∗Fx′ = Fx ⊗OX,x
OX′,x′

is injective (see Algebra, Lemma 82.11). This implies that Kx = 0 as desired. �

Lemma 23.2. Let A be a ring. Let u : M → N be a surjective map of A-modules. If
M is projective as an A-module, then there exists an ideal I ⊂ A such that for any ring
map ϕ : A→ B the following are equivalent

(1) u⊗ 1 : M ⊗A B → N ⊗A B is an isomorphism, and
(2) ϕ(I) = 0.

Proof. AsM is projective we can find a projectiveA-moduleC such thatF = M⊕C
is a free A-module. By replacing u by u⊕ 1 : F = M ⊕C → N ⊕C we see that we may
assume M is free. In this case let I be the ideal of A generated by coefficients of all the
elements of Ker(u) with respect to some (fixed) basis ofM . The reason this works is that,
since u is surjective and ⊗AB is right exact, Ker(u ⊗ 1) is the image of Ker(u) ⊗A B in
M ⊗A B. �

Theorem 23.3. In Situation 20.1 assume
(1) f is of finite presentation,
(2) F is of finite presentation, flat over S , and pure relative to S , and
(3) u is surjective.

Then Fiso is representable by a closed immersion Z → S. Moreover Z → S is of finite
presentation if G is of finite presentation.

Proof. We will use without further mention that F is universally pure over S , see
Lemma 18.3. By Lemma 20.2 and Descent, Lemmas 37.2 and 39.1 the question is local for
the étale topology on S. Hence it suffices to prove, given s ∈ S , that there exists an étale
neighbourhood of (S, s) so that the theorem holds.
Using Lemma 12.5 and after replacing S by an elementary étale neighbourhood of s we
may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite presentation over S , where g is étale, Xs ⊂ g(X ′), the schemes X ′

and S are affine, Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that g∗F is universally
pure over S , see Lemma 17.4. Hence by Lemma 18.2 we see that the open g(X ′) contains
the points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt(Ft) ⊂ g(X ′)}.
By More on Morphisms, Lemma 25.5 E is a constructible subset of S. We have seen that
Spec(OS,s) ⊂ E. By Morphisms, Lemma 22.4 we see thatE contains an open neighbour-
hood of s. Hence after replacing S by a smaller affine neighbourhood of s we may assume
that AssX/S(F) ⊂ g(X ′).
Since we have assumed that u is surjective we have Fiso = Finj . From Lemma 23.1 it
follows that u : F → G is injective if and only if g∗u : g∗F → g∗G is injective, and
the same remains true after any base change. Hence we have reduced to the case where, in
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addition to the assumptions in the theorem, X → S is a morphism of affine schemes and
Γ(X,F) is a projective Γ(S,OS)-module. This case follows immediately from Lemma
23.2.
To see that Z is of finite presentation if G is of finite presentation, combine Lemma 20.2
part (4) with Limits, Remark 6.2. �

Lemma 23.4. Let f : X → S be a morphism of schemes which is of finite presenta-
tion, flat, and pure. Let Y be a closed subscheme ofX . LetF = f∗Y be the Weil restriction
functor of Y along f , defined by

F : (Sch/S)opp → Sets, T 7→
{
{∗} if YT → XT is an isomorphism,
∅ else.

Then F is representable by a closed immersion Z → S. Moreover Z → S is of finite
presentation if Y → S is.

Proof. Let I be the ideal sheaf defining Y in X and let u : OX → OX/I be the
surjection. Then for an S-scheme T , the closed immersion YT → XT is an isomorphism
if and only if uT is an isomorphism. Hence the result follows from Theorem 23.3. �

24. Flattening in the local case

In this section we start applying the earlier material to obtain a shadow of the flattening
stratification.

Theorem 24.1. In Situation 20.3 assumeA is henselian,B is essentially of finite type
over A, and M is a finite B-module. Then there exists an ideal I ⊂ A such that A/I
corepresents the functor Flf on the category C. In other words given a local homomor-
phism of local rings ϕ : A→ A′ with B′ = B ⊗A A′ and M ′ = M ⊗A A′ the following
are equivalent:

(1) ∀q ∈ V (mA′B′ + mBB
′) ⊂ Spec(B′) : M ′

q is flat over A′, and
(2) ϕ(I) = 0.

If B is essentially of finite presentation over A and M of finite presentation over B, then
I is a finitely generated ideal.

Proof. Choose a finite type ring map A→ C and a finite C-module N and a prime
q ofC such thatB = Cq andM = Nq. In the following, when we say “the theorem holds
for (N/C/A, q) we mean that it holds for (A → B,M) where B = Cq and M = Nq.
By Lemma 20.6 the functor Flf is unchanged if we replace B by a local ring flat over
B. Hence, since A is henselian, we may apply Lemma 6.6 and assume that there exists a
complete dévissage of N/C/A at q.
Let (Ai, Bi,Mi, αi, qi)i=1,...,n be such a complete dévissage of N/C/A at q. Let q′

i ⊂ Ai
be the unique prime lying over qi ⊂ Bi as in Definition 6.4. Since C → A1 is surjective
and N ∼= M1 as C-modules, we see by Lemma 20.5 it suffices to prove the theorem holds
for (M1/A1/A, q

′
1). SinceB1 → A1 is finite and q1 is the only prime ofB1 over q′

1 we see
that (A1)q′

1
→ (B1)q1 is finite (see Algebra, Lemma 41.11 or More on Morphisms, Lemma

47.4). Hence by Lemma 20.5 it suffices to prove the theorem holds for (M1/B1/A, q1).
At this point we may assume, by induction on the length n of the dévissage, that the theo-
rem holds for (M2/B2/A, q2). (Ifn = 1, thenM2 = 0 which is flat overA.) Reversing the
last couple of steps of the previous paragraph, using thatM2 ∼= Coker(α2) asB1-modules,
we see that the theorem holds for (Coker(α1)/B1/A, q1).
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LetA′ be an object of C. At this point we use Lemma 10.1 to see that if (M1⊗AA′)q′ is flat
overA′ for a prime q′ ofB1⊗AA′ lying over mA′ , then (Coker(α1)⊗AA′)q′ is flat over
A′. Hence we conclude thatFlf is a subfunctor of the functorF ′

lf associated to the module
Coker(α1)q1 over (B1)q1 . By the previous paragraph we know F ′

lf is corepresented by
A/J for some ideal J ⊂ A. Hence we may replaceA byA/J and assume that Coker(α1)q1

is flat over A.

Since Coker(α1) is a B1-module for which there exist a complete dévissage of N1/B1/A
at q1 and since Coker(α1)q1 is flat over A by Lemma 10.2 we see that Coker(α1) is free
as an A-module, in particular flat as an A-module. Hence Lemma 10.1 implies Flf (A′) is
nonempty if and only if α ⊗ 1A′ is injective. Let N1 = Im(α1) ⊂ M1 so that we have
exact sequences

0→ N1 →M1 → Coker(α1)→ 0 and B⊕r1
1 → N1 → 0

The flatness of Coker(α1) implies the first sequence is universally exact (see Algebra,
Lemma 82.5). Hence α ⊗ 1A′ is injective if and only if B⊕r1

1 ⊗A A′ → N1 ⊗A A′ is
an isomorphism. Finally, Theorem 23.3 applies to show this functor is corepresentable by
A/I for some ideal I and we conclude Flf is corepresentable by A/I also.

To prove the final statement, suppose that A→ B is essentially of finite presentation and
M of finite presentation over B. Let I ⊂ A be the ideal such that Flf is corepresented by
A/I . Write I =

⋃
Iλ where Iλ ranges over the finitely generated ideals contained in I .

Then, since Flf (A/I) = {∗} we see that Flf (A/Iλ) = {∗} for some λ, see Lemma 20.4
part (2). Clearly this implies that I = Iλ. �

Remark 24.2. Here is a scheme theoretic reformulation of Theorem 24.1. Let (X,x)→
(S, s) be a morphism of pointed schemes which is locally of finite type. Let F be a finite
type quasi-coherentOX -module. Assume S henselian local with closed point s. There ex-
ists a closed subscheme Z ⊂ S with the following property: for any morphism of pointed
schemes (T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of the fibre Xt which map to x ∈ Xs, and
(2) Spec(OT,t)→ S factors through Z.

Moreover, ifX → S is of finite presentation at x andFx of finite presentation overOX,x,
then Z → S is of finite presentation.

At this point we can obtain some very general results completely for free from the result
above. Note that perhaps the most interesting case is when E = Xs!

Lemma 24.3. Let S be the spectrum of a henselian local ring with closed point s.
Let X → S be a morphism of schemes which is locally of finite type. Let F be a finite
type quasi-coherentOX -module. LetE ⊂ Xs be a subset. There exists a closed subscheme
Z ⊂ S with the following property: for any morphism of pointed schemes (T, t)→ (S, s)
the following are equivalent

(1) FT is flat over T at all points of the fibre Xt which map to a point of E ⊂ Xs,
and

(2) Spec(OT,t)→ S factors through Z.
Moreover, if X → S is locally of finite presentation, F is of finite presentation, and
E ⊂ Xs is closed and quasi-compact, then Z → S is of finite presentation.

Proof. For x ∈ Xs denote Zx ⊂ S the closed subscheme we found in Remark 24.2.
Then it is clear that Z =

⋂
x∈E Zx works!
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To prove the final statement assume X locally of finite presentation, F of finite presenta-
tion and Z closed and quasi-compact. First, choose finitely many affine opens Wj ⊂ X
such that E ⊂

⋃
Wj . It clearly suffices to prove the result for each morphism Wj → S

with sheafF|Xj and closed subsetE ∩Wj . Hence we may assumeX is affine. In this case,
More on Algebra, Lemma 19.4 shows that the functor defined by (1) is “limit preserving”.
Hence we can show that Z → S is of finite presentation exactly as in the last part of the
proof of Theorem 24.1. �

Remark 24.4. Tracing the proof of Lemma 24.3 to its origins we find a long and
winding road. But if we assume that

(1) f is of finite type,
(2) F is a finite typeOX -module,
(3) E = Xs, and
(4) S is the spectrum of a Noetherian complete local ring.

then there is a proof relying completely on more elementary algebra as follows: first we
reduce to the case where X is affine by taking a finite affine open cover. In this case Z
exists by More on Algebra, Lemma 20.3. The key step in this proof is constructing the
closed subschemeZ step by step inside the truncations Spec(OS,s/mns ). This relies on the
fact that flattening stratifications always exist when the base is Artinian, and the fact that
OS,s = limOS,s/mns .

25. Variants of a lemma

In this section we discuss variants of Algebra, Lemmas 128.4 and 99.1. The most general
version is Proposition 25.13; this was stated as [?, Lemma 4.2.2] but the proof in loc.cit.
only gives the weaker result as stated in Lemma 25.5. The intricate proof of Proposition
25.13 is due to Ofer Gabber. As we currently have no application for the proposition we
encourage the reader to skip to the next section after reading the proof of Lemma 25.5;
this lemma will be used in the next section to prove Theorem 26.1.

Situation 25.1. Letϕ : A→ B be a local ring homomorphism of local rings which is
essentially of finite type. LetM be a flatA-module,N a finiteB-module and u : N →M
an A-module map such that u : N/mAN →M/mAM is injective.

In this situation it is our goal to show that u is A-universally injective, N is of finite
presentation over B, and N is flat as an A-module. If this is true, we will say the lemma
holds in the given situation.

Lemma 25.2. If in Situation 25.1 the ring A is Noetherian then the lemma holds.

Proof. Applying Algebra, Lemma 99.1 we see that u is injective and that N/u(M)
is flat over A. Then u is A-universally injective (Algebra, Lemma 39.12) and N is A-flat
(Algebra, Lemma 39.13). Since B is Noetherian in this case we see that N is of finite
presentation. �

Lemma 25.3. LetA0 be a local ring. If the lemma holds for every Situation 25.1 with
A = A0, withB a localization of a polynomial algebra overA, andN of finite presentation
over B, then the lemma holds for every Situation 25.1 with A = A0.

Proof. Let A → B, u : N → M be as in Situation 25.1. Write B = C/I where
C is the localization of a polynomial algebra over A at a prime. If we can show that N is
finitely presented as a C-module, then a fortiori this shows that N is finitely presented as
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a B-module (see Algebra, Lemma 6.4). Hence we may assume that B is the localization of
a polynomial algebra. Next, write N = B⊕n/K for some submodule K ⊂ B⊕n. Since
B/mAB is Noetherian (as it is essentially of finite type over a field), there exist finitely
many elements k1, . . . , ks ∈ K such that for K ′ =

∑
Bki and N ′ = B⊕n/K ′ the

canonical surjection N ′ → N induces an isomorphism N ′/mAN
′ ∼= N/mAN . Now, if

the lemma holds for the composition u′ : N ′ → M , then u′ is injective, hence N ′ = N
and u′ = u. Thus the lemma holds for the original situation. �

Lemma 25.4. If in Situation 25.1 the ring A is henselian then the lemma holds.

Proof. It suffices to prove this whenB is essentially of finite presentation overA and
N is of finite presentation overB, see Lemma 25.3. Let us temporarily make the additional
assumption that N is flat over A. Then N is a filtered colimit N = colimi Fi of free A-
modules Fi such that the transition maps uii′ : Fi → Fi′ are injective modulo mA, see
Lemma 19.5. Each of the compositions ui : Fi →M is A-universally injective by Lemma
7.5 wherefore u = colim ui is A-universally injective as desired.

Assume A is a henselian local ring, B is essentially of finite presentation over A, N of
finite presentation over B. By Theorem 24.1 there exists a finitely generated ideal I ⊂ A
such thatN/IN is flat overA/I and such thatN/I2N is not flat overA/I2 unless I = 0.
The result of the previous paragraph shows that the lemma holds for u mod I : N/IN →
M/IM over A/I . Consider the commutative diagram

0 // M ⊗A I/I2 // M/I2M // M/IM // 0

N ⊗A I/I2 //

u

OO

N/I2N //

u

OO

N/IN //

u

OO

0

whose rows are exact by right exactness of⊗ and the fact thatM is flat overA. Note that
the left vertical arrow is the mapN/IN ⊗A/I I/I2 →M/IM ⊗A/I I/I2, hence is injec-
tive. A diagram chase shows that the lower left arrow is injective, i.e., Tor1

A/I2(I/I2,M/I2) =
0 see Algebra, Remark 75.9. Hence N/I2N is flat over A/I2 by Algebra, Lemma 99.8 a
contradiction unless I = 0. �

The following lemma discusses the special case of Situation 25.1 whereM has aB-module
structure and u is B-linear. This is the case most often used in practice and it is signifi-
cantly easier to prove than the general case.

Lemma 25.5. Let A → B be a local ring homomorphism of local rings which is
essentially of finite type. Let u : N → M be a B-module map. If N is a finite B-module,
M is flat over A, and u : N/mAN → M/mAM is injective, then u is A-universally
injective, N is of finite presentation over B, and N is flat over A.

Proof. LetA→ Ah be the henselization ofA. LetB′ be the localization ofB⊗AAh
at the maximal ideal mB ⊗ Ah + B ⊗ mAh . Since B → B′ is flat (hence faithfully flat,
see Algebra, Lemma 39.17), we may replace A → B with Ah → B′, the module M by
M ⊗B B′, the module N by N ⊗B B′, and u by u⊗ idB′ , see Algebra, Lemmas 83.2 and
39.9. Thus we may assume thatA is a henselian local ring. In this case our lemma follows
from the more general Lemma 25.4. �

Lemma 25.6. If in Situation 25.1 the ringA is a valuation ring then the lemma holds.
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Proof. Recall that an A-module is flat if and only if it is torsion free, see More on
Algebra, Lemma 22.10. Let T ⊂ N be the A-torsion. Then u(T ) = 0 and N/T is A-flat.
Hence N/T is finitely presented over B, see More on Algebra, Lemma 25.6. Thus T is
a finite B-module, see Algebra, Lemma 5.3. Since N/T is A-flat we see that T/mAT ⊂
N/mAN , see Algebra, Lemma 39.12. As u is injective but u(T ) = 0, we conclude that
T/mAT = 0. Hence T = 0 by Nakayama’s lemma, see Algebra, Lemma 20.1. At this point
we have proved two out of the three assertions (N isA-flat and of finite presentation over
B) and what is left is to show that u is universally injective.

By Algebra, Theorem 82.3 it suffices to show that N ⊗A Q → M ⊗A Q is injective for
every finitely presented A-module Q. By More on Algebra, Lemma 124.3 we may assume
Q = A/(a) with a ∈ mA nonzero. Thus it suffices to show that N/aN → M/aM is
injective. Let x ∈ N with u(x) ∈ aM . By Lemma 19.6 we know that x has a content ideal
I ⊂ A. Since I is finitely generated (More on Algebra, Lemma 24.2) and A is a valuation
ring, we have I = (b) for some b (by Algebra, Lemma 50.15). By More on Algebra, Lemma
24.3 the element u(x) has content ideal I as well. Since u(x) ∈ aM we see that (b) ⊂ (a)
by More on Algebra, Definition 24.1. Since x ∈ bN we conclude x ∈ aN as desired. �

Consider the following situation

(25.6.1) A→ B of finite presentation, S ⊂ B a multiplicative subset, and
N a finitely presented S−1B-module

In this situation a pure spreadout is an affine open U ⊂ Spec(B) with Spec(S−1B) ⊂ U
and a finitely presented O(U)-module N ′ extending N such that N ′ is A-projective and
N ′ → N = S−1N ′ is A-universally injective.

In (25.6.1) if A → A1 is a ring map, then we can base change: take B1 = B ⊗A A1, let
S1 ⊂ B1 be the image of S , and let N1 = N ⊗A A1. This works because S−1

1 B1 =
S−1B ⊗A A1. We will use this without further mention in the following.

Lemma 25.7. In (25.6.1) if there exists a pure spreadout, then
(1) elements of N have content ideals in A, and
(2) if u : N →M is a morphism to a flatA-moduleM such thatN/mN →M/mM

is injective for all maximal ideals m of A, then u is A-universally injective.

Proof. Choose U , N ′ as in the definition of a pure spreadout. Any element x′ ∈ N ′

has a content ideal in A because N ′ is A-projective (this can easily be seen directly, but
it also follows from More on Algebra, Lemma 24.4 and Algebra, Example 91.1). Since
N ′ → N is A-universally injective, we see that the image x ∈ N of any x′ ∈ N ′ has a
content ideal inA (it is the same as the content ideal of x′). For a general x ∈ N we choose
s ∈ S such that sx is in the image of N ′ → N and we use that x and sx have the same
content ideal.

Let u : N → M be as in (2). To show that u is A-universally injective, we may replace A
by a localization at a maximal ideal (small detail omitted). AssumeA is local with maximal
ideal m. Pick s ∈ S and consider the composition

N ′ → N
1/s−−→ N

u−→M

Each of these maps is injective modulo m, hence the composition isA-universally injective
by Lemma 7.5. Since N = colims∈S(1/s)N ′ we conclude that u is A-inversally injective
as a colimit of universally injective maps. �
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Lemma 25.8. In (25.6.1) for every p ∈ Spec(A) there is a finitely generated ideal
I ⊂ pAp such that over Ap/I we have a pure spreadout.

Proof. We may replaceA byAp. Thus we may assumeA is local and p is the maximal
ideal m of A. We may write N = S−1N ′ for some finitely presented B-module N ′ by
clearing denominators in a presentation ofN over S−1B. SinceB/mB is Noetherian, the
kernel K of N ′/mN ′ → N/mN is finitely generated. Thus we can pick s ∈ S such that
K is annihilated by s. After replacing B by Bs which is allowed as it just means passing
to an affine open subscheme of Spec(B), we find that the elements of S are injective on
N ′/mN ′. At this point we choose a local subring A0 ⊂ A essentially of finite type over
Z, a finite type ring map A0 → B0 such that B = A⊗A0 B0, and a finite B0-module N ′

0
such that N ′ = B ⊗B0 N

′
0 = A ⊗A0 N

′
0. We claim that I = mA0A works. Namely, we

have
N ′/IN ′ = N ′

0/mA0N
′
0 ⊗κA0

A/I

which is free overA/I . Multiplication by the elements of S is injective after dividing out
by the maximal ideal, hence N ′/IN ′ → N/IN is universally injective for example by
Lemma 7.6. �

Lemma 25.9. In (25.6.1) assume N is A-flat, M is a flat A-module, and u : N → M
is an A-module map such that u ⊗ idκ(p) is injective for all p ∈ Spec(A). Then u is
A-universally injective.

Proof. By Algebra, Lemma 82.14 it suffices to check that N/IN →M/IM is injec-
tive for every ideal I ⊂ A. After replacing A by A/I we see that it suffices to prove that
u is injective.

Proof that u is injective. Let x ∈ N be a nonzero element of the kernel of u. Then there
exists a weakly associated prime p of the module Ax, see Algebra, Lemma 66.5. Replacing
A by Ap we may assume A is local and we find a nonzero element y ∈ Ax whose anni-
hilator has radical equal to mA, see Algebra, Lemma 66.2. Thus Supp(y) ⊂ Spec(S−1B)
is nonempty and contained in the closed fibre of Spec(S−1B) → Spec(A). Let I ⊂ mA
be a finitely generated ideal so that we have a pure spreadout over A/I , see Lemma 25.8.
Then Iny = 0 for some n. Now y ∈ AnnM (In) = AnnA(In)⊗R N by flatness. Thus, to
get the desired contradiction, it suffices to show that

AnnA(In)⊗R N −→ AnnA(In)⊗RM

is injective. SinceN andM are flat and since AnnA(In) is annihilated by In, it suffices to
show that Q⊗AN → Q⊗AM is injective for every A-module Q annihilated by I . This
holds by our choice of I and Lemma 25.7 part (2). �

Lemma 25.10. Let A be a local domain which is not a field. Let S be a set of finitely
generated ideals of A. Assume that S is closed under products and such that

⋃
I∈S V (I)

is the complement of the generic point of Spec(A). Then
⋂
I∈S I = (0).

Proof. Since mA ⊂ A is not the generic point of Spec(A) we see that I ⊂ mA for at
least one I ∈ S. Hence

⋂
I∈S I ⊂ mA. Let f ∈ mA be nonzero. ThenV (f) ⊂

⋃
I∈S V (I).

Since the constructible topology on V (f) is quasi-compact (Topology, Lemma 23.2 and
Algebra, Lemma 26.2) we find that V (f) ⊂ V (I1)∪ . . .∪V (In) for some Ij ∈ S. Because
I1 . . . In ∈ S we see that V (f) ⊂ V (I) for some I . As I is finitely generated this implies
that Im ⊂ (f) for some m and since S is closed under products we see that I ⊂ (f2) for
some I ∈ S. Then it is not possible to have f ∈ I . �
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Lemma 25.11. Let A be a local ring. Let I, J ⊂ A be ideals. If J is finitely generated
and I ⊂ Jn for all n ≥ 1, then V (I) contains the closed points of Spec(A) \ V (J).

Proof. Let p ⊂ A be a closed point of Spec(A)\V (J). We want to show that I ⊂ p.
If not, then some f ∈ I maps to a nonzero element of A/p. Note that V (J) ∩ Spec(A/p)
is the set of non-generic points. Hence by Lemma 25.10 applied to the collection of ideals
JnA/p we conclude that the image of f is zero in A/p. �

Lemma 25.12. Let A be a local ring. Let I ⊂ A be an ideal. Let U ⊂ Spec(A) be
quasi-compact open. Let M be an A-module. Assume that

(1) M/IM is flat over A/I ,
(2) M is flat over U ,

Then M/I2M is flat over A/I2 where I2 = Ker(I → Γ(U, I/I2)).

Proof. It suffices to show that M ⊗A I/I2 → IM/I2M is injective, see Algebra,
Lemma 99.9. This is true over U by assumption (2). Thus it suffices to show that M ⊗A
I/I2 injects into its sections overU . We haveM⊗A I/I2 = M/IM⊗A I/I2 andM/IM
is a filtered colimit of finite free A/I-modules (Algebra, Theorem 81.4). Hence it suffices
to show that I/I2 injects into its sections over U , which follows from the construction of
I2. �

Proposition 25.13. Let A→ B be a local ring homomorphism of local rings which
is essentially of finite type. Let M be a flat A-module, N a finite B-module and u : N →
M an A-module map such that u : N/mAN → M/mAM is injective. Then u is A-
universally injective, N is of finite presentation over B, and N is flat over A.

Proof. We may assume thatB is the localization of a finitely presentedA-algebraB0
and that N is the localization of a finitely presented B0-module M0, see Lemma 25.3. By
More on Morphisms, Lemma 54.1 there exists a “generic flatness stratification” for M̃0 on
Spec(B0) over Spec(A). Translating back to N we find a sequence of closed subschemes

S = Spec(A) ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅

with Si ⊂ S cut out by a finitely generated ideal of A such that the pullback of Ñ to
Spec(B)×S (Si \Si+1) is flat over Si \Si+1. We will prove the proposition by induction
on t (the base case t = 1 will be proved in parallel with the other steps). Let Spec(A/Ji)
be the scheme theoretic closure of Si \ Si+1.

Claim 1. N/JiN is flat over A/Ji. This is immediate for i = t − 1 and follows from the
induction hypothesis for i > 0. Thus we may assume t > 1, St−1 6= ∅, and J0 = 0 and we
have to prove that N is flat. Let J ⊂ A be the ideal defining S1. By induction on t again,
we also have flatness modulo powers of J . Let Ah be the henselization of A and let B′ be
the localization of B ⊗A Ah at the maximal ideal mB ⊗ Ah + B ⊗ mAh . Then B → B′

is faithfully flat. Set N ′ = N ⊗B B′. Note that N ′ is Ah-flat if and only if N is A-flat.
By Theorem 24.1 there is a smallest ideal I ⊂ Ah such thatN ′/IN ′ is flat overAh/I , and
I is finitely generated. By the above I ⊂ JnAh for all n ≥ 1. Let Shi ⊂ Spec(Ah) be
the inverse image of Si ⊂ Spec(A). By Lemma 25.11 we see that V (I) contains the closed
points of U = Spec(Ah) − Sh1 . By construction N ′ is Ah-flat over U . By Lemma 25.12
we see that N ′/I2N

′ is flat over A/I2, where I2 = Ker(I → Γ(U, I/I2)). Hence I = I2
by minimality of I . This implies that I = I2 locally on U , i.e., we have IOU,u = (0) or
IOU,u = (1) for all u ∈ U . Since V (I) contains the closed points of U we see that I = 0
on U . Since U ⊂ Spec(Ah) is scheme theoretically dense (because replacedA byA/J0 in
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the beginning of this paragraph), we see that I = 0. Thus N ′ is Ah-flat and hence Claim
1 holds.

We return to the situation as laid out before Claim 1. With Ah the henselization of A,
withB′ the localization ofB⊗AAh at the maximal ideal mB⊗Ah+B⊗mAh , and with
N ′ = N ⊗B B′ we now see that the flattening ideal I ⊂ Ah of Theorem 24.1 is nilpotent.
If nil(Ah) denotes the ideal of nilpotent elements, then nil(Ah) = nil(A)Ah (More on
Algebra, Lemma 45.5). Hence there exists a finitely generated nilpotent ideal I0 ⊂ A such
that N/I0N is flat over A/I0.

Claim 2. For every prime ideal p ⊂ A the map κ(p) ⊗A N → κ(p) ⊗A M is injective.
We say p is bad it this is false. Suppose that C is a nonempty chain of bad primes and set
p∗ =

⋃
p∈C p. By Lemma 25.8 there is a finitely generated ideal a ⊂ p∗Ap∗ such that

there is a pure spreadout over V (a). If p∗ were good, then it would follow from Lemma
25.7 that the points of V (a) are good. However, since a is finitely generated and since
p∗Ap∗ =

⋃
p∈C Ap∗ we see thatV (a) contains a p ∈ C , contradiction. Hence p∗ is bad. By

Zorn’s lemma, if there exists a bad prime, there exists a maximal one, say p. In other words,
we may assume every p′ ⊃ p, p′ 6= p is good. In this case we see that for every f ∈ A,
f 6∈ p the map u ⊗ idA/(p+f) is universally injective, see Lemma 25.9. Thus it suffices
to show that N/pN is separated for the topology defined by the submodules f(N/pN).
SinceB → B′ is faithfully flat, it is enough to prove the same for the moduleN ′/pN ′. By
Lemma 19.5 and More on Algebra, Lemma 24.4 elements of N ′/pN ′ have content ideals
in Ah/pAh. Thus it suffices to show that

⋂
f∈A,f 6∈p f(Ah/pAh) = 0. Then it suffices to

show the same for Ah/qAh for every prime q ⊂ Ah minimal over pAh. BecauseA→ Ah

is the henselization, every q contracts to p and every q′ ⊃ q, q′ 6= q contracts to a prime
p′ which strictly contains p. Thus we get the vanishing of the intersections from Lemma
25.10.

At this point we can put everything together. Namely, using Claim 1 and Claim 2 we see
thatN/I0N →M/I0M isA/I0-universally injective by Lemma 25.9. Then the diagrams

N ⊗A (In0 /In+1
0 ) //

��

M ⊗A (In0 /In+1
0 )

In0 N/I
n+1
0 N // In0 M/In+1

0 M

show that the left vertical arrows are injective. Hence by Algebra, Lemma 99.9 we see
thatN is flat. In a similar way the universal injectivity of u can be reduced (even without
proving flatness of N first) to the one modulo I0. This finishes the proof. �

26. Flat finite type modules, Part III

The following result is one of the main results of this chapter.

Theorem 26.1. Let f : X → S be locally of finite type. Let F be a quasi-coherent
OX -module of finite type. Let x ∈ X with image s ∈ S. The following are equivalent

(1) F is flat at x over S , and
(2) for every x′ ∈ AssXs(Fs) which specializes to xwe have thatF is flat at x′ over

S.
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Proof. It is clear that (1) implies (2) as Fx′ is a localization of Fx for every point
which specializes to x. Set A = OS,s, B = OX,x and N = Fx. Let Σ ⊂ B be the multi-
plicative subset of B of elements which act as nonzerodivisors on N/mAN . Assumption
(2) implies that Σ−1N is A-flat by the description of Spec(Σ−1N) in Lemma 7.1. On the
other hand, the mapN → Σ−1N is injective modulomA by construction. Hence applying
Lemma 25.5 we win. �

Now we apply this directly to obtain the following useful results.

Lemma 26.2. Let S be a local scheme with closed point s. Let f : X → S be locally
of finite type. Let F be a finite type quasi-coherentOX -module. Assume that

(1) every point of AssX/S(F) specializes to a point of the closed fibre Xs
3,

(2) F is flat over S at every point of Xs.
Then F is flat over S.

Proof. This is immediate from the fact that it suffices to check for flatness at points
of the relative assassin of F over S by Theorem 26.1. �

27. Universal flattening

If f : X → S is a proper, finitely presented morphism of schemes then one can find a
universal flattening of f . In this section we discuss this and some of its variants.

Lemma 27.1. In Situation 20.7. For each p ≥ 0 the functor Hp (20.7.2) is repre-
sentable by a locally closed immersionSp → S. IfF is of finite presentation, thenSp → S
is of finite presentation.

Proof. For each S we will prove the statement for all p ≥ 0 concurrently. The
functor Hp is a sheaf for the fppf topology by Lemma 20.8. Hence combining Descent,
Lemma 39.1, More on Morphisms, Lemma 57.1 , and Descent, Lemma 24.1 we see that the
question is local for the étale topology on S. In particular, the question is Zariski local on
S.

For s ∈ S denote ξs the unique generic point of the fibre Xs. Note that for every s ∈ S
the restriction Fs of F is locally free of some rank p(s) ≥ 0 in some neighbourhood of
ξs. (AsXs is irreducible and smooth this follows from generic flatness forFs overXs, see
Algebra, Lemma 118.1 although this is overkill.) For future reference we note that

p(s) = dimκ(ξs)(Fξs ⊗OX,ξs
κ(ξs)).

In particular Hp(s)(s) is nonempty and Hq(s) is empty if q 6= p(s).

Let U ⊂ X be an open subscheme. As f : X → S is smooth, it is open. It is immediate
from (20.7.2) that the functor Hp for the pair (f |U : U → f(U),F|U ) and the functor
Hp for the pair (f |f−1(f(U)),F|f−1(f(U))) are the same. Hence to prove the existence of
Sp over f(U) we may always replace X by U .

Pick s ∈ S. There exists an affine open neighbourhood U of ξs such that F|U can be
generated by at most p(s) elements. By the arguments above we see that in order to prove
the statement for Hp(s) in an neighbourhood of s we may assume that F is generated by
p(s) elements, i.e., that there exists a surjection

u : O⊕p(s)
X −→ F

3For example this holds if f is finite type and F is pure along Xs , or if f is proper.
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In this case it is clear that Hp(s) is equal to Fiso (20.1.1) for the map u (this follows imme-
diately from Lemma 19.1 but also from Lemma 12.1 after shrinking a bit more so that both
S and X are affine.) Thus we may apply Theorem 23.3 to see that Hp(s) is representable
by a closed immersion in a neighbourhood of s.

The result follows formally from the above. Namely, the arguments above show that
locally on S the function s 7→ p(s) is bounded. Hence we may use induction on p =
maxs∈S p(s). The functor Hp is representable by a closed immersion Sp → S by the
above. Replace S by S \ Sp which drops the maximum by at least one and we win by
induction hypothesis.

Assume F is of finite presentation. Then Sp → S is locally of finite presentation by
Lemma 20.8 part (2) combined with Limits, Remark 6.2. Then we redo the induction
argument in the paragraph to see that eachSp is quasi-compact whenS is affine: first if p =
maxs∈S p(s), then Sp ⊂ S is closed (see above) hence quasi-compact. Then U = S \Sp is
quasi-compact open in S because Sp → S is a closed immersion of finite presentation (see
discussion in Morphisms, Section 22 for example). Then Sp−1 → U is a closed immersion
of finite presentation, and so Sp−1 is quasi-compact and U ′ = S \ (Sp ∪ Sp−1) is quasi-
compact. And so on. �

Lemma 27.2. In Situation 20.11. Let h : X ′ → X be an étale morphism. Set F ′ =
h∗F and f ′ = f ◦ h. Let F ′

n be (20.11.1) associated to (f ′ : X ′ → S,F ′). Then Fn is a
subfunctor of F ′

n and if h(X ′) ⊃ AssX/S(F), then Fn = F ′
n.

Proof. Let T → S be any morphism. Then hT : X ′
T → XT is étale as a base change

of the étale morphism g. For t ∈ T denote Z ⊂ Xt the set of points where FT is not flat
over T , and similarly denote Z ′ ⊂ X ′

t the set of points where F ′
T is not flat over T . As

F ′
T = h∗

TFT we see that Z ′ = h−1
t (Z), see Morphisms, Lemma 25.13. Hence Z ′ → Z is

an étale morphism, so dim(Z ′) ≤ dim(Z) (for example by Descent, Lemma 21.2 or just
because an étale morphism is smooth of relative dimension 0). This implies that Fn ⊂ F ′

n.

Finally, suppose that h(X ′) ⊃ AssX/S(F) and that T → S is a morphism such that
F ′
n(T ) is nonempty, i.e., such that F ′

T is flat in dimensions ≥ n over T . Pick a point
t ∈ T and let Z ⊂ Xt and Z ′ ⊂ X ′

t be as above. To get a contradiction assume that
dim(Z) ≥ n. Pick a generic point ξ ∈ Z corresponding to a component of dimension
≥ n. Let x ∈ AssXt(Ft) be a generalization of ξ. Then x maps to a point of AssX/S(F)
by Divisors, Lemma 7.3 and Remark 7.4. Thus we see that x is in the image of hT , say
x = hT (x′) for some x′ ∈ X ′

T . But x′ 6∈ Z ′ as x  ξ and dim(Z ′) < n. Hence F ′
T is

flat over T at x′ which implies that FT is flat at x over T (by Morphisms, Lemma 25.13).
Since this holds for every such x we conclude that FT is flat over T at ξ by Theorem 26.1
which is the desired contradiction. �

Lemma 27.3. Assume that X → S is a smooth morphism of affine schemes with
geometrically irreducible fibres of dimension d and thatF is a quasi-coherentOX -module
of finite presentation. Then Fd =

∐
p=0,...,cHp for some c ≥ 0 with Fd as in (20.11.1)

and Hp as in (20.7.2).

Proof. As X is affine and F is quasi-coherent of finite presentation we know that
F can be generated by c ≥ 0 elements. Then dimκ(x)(Fx ⊗ κ(x)) in any point x ∈ X
never exceeds c. In particularHp = ∅ for p > c. Moreover, note that there certainly is an
inclusion

∐
Hp → Fd. Having said this the content of the lemma is that, if a base change

FT is flat in dimensions≥ d over T and if t ∈ T , thenFT is free of some rank r in an open
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neighbourhood U ⊂ XT of the unique generic point ξ of Xt. Namely, then Hr contains
the image of U which is an open neighbourhood of t. The existence of U follows from
More on Morphisms, Lemma 16.7. �

Lemma 27.4. In Situation 20.11. Let s ∈ S let d ≥ 0. Assume
(1) there exists a complete dévissage of F/X/S over some point s ∈ S ,
(2) X is of finite presentation over S ,
(3) F is anOX -module of finite presentation, and
(4) F is flat in dimensions ≥ d+ 1 over S.

Then after possibly replacing S by an open neighbourhood of s the functor Fd (20.11.1)
is representable by a monomorphism Zd → S of finite presentation.

Proof. A preliminary remark is that X , S are affine schemes and that it suffices to
prove Fd is representable by a monomorphism of finite presentation Zd → S on the
category of affine schemes over S. (Of course we do not require Zd to be affine.) Hence
throughout the proof of the lemma we work in the category of affine schemes over S.

Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete dévissage of F/X/S over s, see Defini-
tion 5.1. We will use induction on the length n of the dévissage. Recall that Yk → S is
smooth with geometrically irreducible fibres, see Definition 4.1. Let dk be the relative di-
mension of Yk over S. Recall that ik,∗Gk = Coker(αk) and that ik is a closed immersion.
By the definitions referenced above we have d1 = dim(Supp(Fs)) and

dk = dim(Supp(Coker(αk−1)s)) = dim(Supp(Gk,s))

for k = 2, . . . , n. It follows that d1 > d2 > . . . > dn ≥ 0 because αk is an isomorphism
in the generic point of (Yk)s.

Note that i1 is a closed immersion and F = i1,∗G1. Hence for any morphism of schemes
T → S with T affine, we have FT = i1,T,∗G1,T and i1,T is still a closed immersion of
schemes over T . Thus FT is flat in dimensions ≥ d over T if and only if G1,T is flat in
dimensions ≥ d over T . Because π1 : Z1 → Y1 is finite we see in the same manner that
G1,T is flat in dimensions ≥ d over T if and only if π1,T,∗G1,T is flat in dimensions ≥ d
over T . The same arguments work for “flat in dimensions ≥ d + 1” and we conclude in
particular that π1,∗G1 is flat over S in dimensions ≥ d+ 1 by our assumption on F .

Suppose that d1 > d. It follows from the discussion above that in particular π1,∗G1 is flat
over S at the generic point of (Y1)s. By Lemma 12.1 we may replace S by an affine neigh-
bourhood of s and assume that α1 is S-universally injective. Because α1 is S-universally
injective, for any morphism T → S with T affine, we have a short exact sequence

0→ O⊕r1
Y1,T
→ π1,T,∗G1,T → Coker(α1)T → 0

and still the first arrow is T -universally injective. Hence the set of points of (Y1)T where
π1,T,∗G1,T is flat over T is the same as the set of points of (Y1)T where Coker(α1)T is flat
over S. In this way the question reduces to the sheaf Coker(α1) which has a complete
dévissage of length n− 1 and we win by induction.

If d1 < d then Fd is represented by S and we win.

The last case is the case d1 = d. This case follows from a combination of Lemma 27.3 and
Lemma 27.1. �
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Theorem 27.5. In Situation 20.11. Assume moreover that f is of finite presentation,
that F is an OX -module of finite presentation, and that F is pure relative to S. Then Fn
is representable by a monomorphism Zn → S of finite presentation.

Proof. The functorFn is a sheaf for the fppf topology by Lemma 20.12. Observe that
a monomorphism of finite presentation is separated and quasi-finite (Morphisms, Lemma
20.15). Hence combining Descent, Lemma 39.1, More on Morphisms, Lemma 57.1 , and
Descent, Lemmas 23.31 and 23.13 we see that the question is local for the étale topology
on S.
In particular the situation is local for the Zariski topology on S and we may assume that
S is affine. In this case the dimension of the fibres of f is bounded above, hence we see
that Fn is representable for n large enough. Thus we may use descending induction on
n. Suppose that we know Fn+1 is representable by a monomorphism Zn+1 → S of finite
presentation. Consider the base change Xn+1 = Zn+1 ×S X and the pullback Fn+1 of
F to Xn+1. The morphism Zn+1 → S is quasi-finite as it is a monomorphism of finite
presentation, hence Lemma 16.4 implies that Fn+1 is pure relative to Zn+1. Since Fn is a
subfunctor ofFn+1 we conclude that in order to prove the result forFn it suffices to prove
the result for the corresponding functor for the situationFn+1/Xn+1/Zn+1. In this way
we reduce to proving the result for Fn in case Sn+1 = S , i.e., we may assume thatF is flat
in dimensions ≥ n+ 1 over S.
Fix n and assume F is flat in dimensions ≥ n+ 1 over S. To finish the proof we have to
show that Fn is representable by a monomorphism Zn → S of finite presentation. Since
the question is local in the étale topology on S it suffices to show that for every s ∈ S
there exists an elementary étale neighbourhood (S′, s′)→ (S, s) such that the result holds
after base change to S′. Thus by Lemma 5.8 we may assume there exist étale morphisms
hj : Yj → X , j = 1, . . . ,m such that for each j there exists a complete dévissage of
Fj/Yj/S over s, whereFj is the pullback ofF to Yj and such thatXs ⊂

⋃
hj(Yj). Note

that by Lemma 27.2 the sheaves Fj are still flat over in dimensions ≥ n + 1 over S. Set
W =

⋃
hj(Yj), which is a quasi-compact open of X . As F is pure along Xs we see that

E = {t ∈ S | AssXt(Ft) ⊂W}.
contains all generalizations of s. By More on Morphisms, Lemma 25.5E is a constructible
subset of S. We have seen that Spec(OS,s) ⊂ E. By Morphisms, Lemma 22.4 we see that
E contains an open neighbourhood of s. Hence after shrinking S we may assume that
E = S. It follows from Lemma 27.2 that it suffices to prove the lemma for the functor Fn
associated to X =

∐
Yj and F =

∐
Fj . If Fj,n denotes the functor for Yj → S and the

sheaf Fi we see that Fn =
∏
Fj,n. Hence it suffices to prove each Fj,n is representable by

some monomorphism Zj,n → S of finite presentation, since then
Zn = Z1,n ×S . . .×S Zm,n

Thus we have reduced the theorem to the special case handled in Lemma 27.4. �

We make explicit what the theorem means in terms of universal flattenings in the follow-
ing lemma.

Lemma 27.6. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module.

(1) If f is of finite presentation, F is anOX -module of finite presentation, and F is
pure relative to S , then there exists a universal flattening S′ → S of F . More-
over S′ → S is a monomorphism of finite presentation.
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(2) If f is of finite presentation and X is pure relative to S , then there exists a uni-
versal flattening S′ → S of X . Moreover S′ → S is a monomorphism of finite
presentation.

(3) If f is proper and of finite presentation andF is anOX -module of finite presen-
tation, then there exists a universal flattening S′ → S of F . Moreover S′ → S
is a monomorphism of finite presentation.

(4) If f is proper and of finite presentation then there exists a universal flattening
S′ → S of X .

Proof. These statements follow immediately from Theorem 27.5 applied to F0 =
Fflat and the fact that if f is proper thenF is automatically pure over the base, see Lemma
17.1. �

28. Grothendieck’s Existence Theorem, IV

This section continues the discussion in Cohomology of Schemes, Sections 24, 25, and 27.
We will work in the following situation.

Situation 28.1. Here we have an inverse system of rings (An) with surjective tran-
sition maps whose kernels are locally nilpotent. Set A = limAn. We have a scheme X
separated and of finite presentation over A. We set Xn = X ×Spec(A) Spec(An) and we
view it as a closed subscheme ofX . We assume further given a system (Fn, ϕn) whereFn
is a finitely presentedOXn -module, flat over An, with support proper over An, and

ϕn : Fn ⊗OXn
OXn−1 −→ Fn−1

is an isomorphism (notation using the equivalence of Morphisms, Lemma 4.1).

Our goal is to see if we can find a quasi-coherent sheafF onX such thatFn = F⊗OX
OXn

for all n.

Lemma 28.2. In Situation 28.1 consider

K = R limDQCoh(OX)(Fn) = DQX(R limD(OX) Fn)

ThenK is inDb
QCoh(OX) and in factK has nonzero cohomology sheaves only in degrees

≥ 0.

Proof. Special case of Derived Categories of Schemes, Example 21.5. �

Lemma 28.3. In Situation 28.1 let K be as in Lemma 28.2. For any perfect object E
of D(OX) we have

(1) M = RΓ(X,K ⊗L E) is a perfect object of D(A) and there is a canonical iso-
morphism RΓ(Xn,Fn ⊗L E|Xn) = M ⊗L

A An in D(An),
(2) N = RHomX(E,K) is a perfect object of D(A) and there is a canonical iso-

morphism RHomXn(E|Xn ,Fn) = N ⊗L
A An in D(An).

In both statements E|Xn denotes the derived pullback of E to Xn.

Proof. Proof of (2). Write En = E|Xn and Nn = RHomXn(En,Fn). Recall
that RHomXn(−,−) is equal to RΓ(Xn, RHom(−,−)), see Cohomology, Section 44.
Hence by Derived Categories of Schemes, Lemma 30.7 we see thatNn is a perfect object of
D(An) whose formation commutes with base change. Thus the maps Nn ⊗L

An
An−1 →

Nn−1 coming from ϕn are isomorphisms. By More on Algebra, Lemma 97.3 we find that
R limNn is perfect and that its base change back to An recovers Nn. On the other hand,



28. GROTHENDIECK’S EXISTENCE THEOREM, IV 3419

the exact functor RHomX(E,−) : DQCoh(OX) → D(A) of triangulated categories
commutes with products and hence with derived limits, whence

RHomX(E,K) = R limRHomX(E,Fn) = R limRHomX(En,Fn) = R limNn

This proves (2). To see that (1) holds, translate it into (2) using Cohomology, Lemma
50.5. �

Lemma 28.4. In Situation 28.1 letK be as in Lemma 28.2. ThenK is pseudo-coherent
relative to A.

Proof. Combinging Lemma 28.3 and Derived Categories of Schemes, Lemma 34.3
we see that RΓ(X,K ⊗L E) is pseudo-coherent in D(A) for all pseudo-coherent E in
D(OX). Thus the lemma follows from More on Morphisms, Lemma 69.4. �

Lemma 28.5. In Situation 28.1 let K be as in Lemma 28.2. For any quasi-compact
open U ⊂ X we have

RΓ(U,K)⊗L
A An = RΓ(Un,Fn)

in D(An) where Un = U ∩Xn.

Proof. Fix n. By Derived Categories of Schemes, Lemma 33.4 there exists a system
of perfect complexesEm onX such thatRΓ(U,K) = hocolimRΓ(X,K⊗LEm). In fact,
this formula holds not just for K but for every object of DQCoh(OX). Applying this to
Fn we obtain

RΓ(Un,Fn) = RΓ(U,Fn)
= hocolimmRΓ(X,Fn ⊗L Em)
= hocolimmRΓ(Xn,Fn ⊗L Em|Xn)

Using Lemma 28.3 and the fact that−⊗L
AAn commutes with homotopy colimits we obtain

the result. �

Lemma 28.6. In Situation 28.1 letK be as in Lemma 28.2. DenoteX0 ⊂ X the closed
subset consisting of points lying over the closed subset Spec(A1) = Spec(A2) = . . . of
Spec(A). There exists an open W ⊂ X containing X0 such that

(1) Hi(K)|W is zero unless i = 0,
(2) F = H0(K)|W is of finite presentation, and
(3) Fn = F ⊗OX

OXn .

Proof. Fixn ≥ 1. By construction there is a canonical mapK → Fn inDQCoh(OX)
and hence a canonical map H0(K) → Fn of quasi-coherent sheaves. This explains the
meaning of part (3).

Let x ∈ X0 be a point. We will find an open neighbourhood W of x such that (1), (2),
and (3) are true. Since X0 is quasi-compact this will prove the lemma. Let U ⊂ X be an
affine open neighbourhood of x. Say U = Spec(B). Choose a surjection P → B with
P smooth over A. By Lemma 28.4 and the definition of relative pseudo-coherence there
exists a bounded above complex F • of finite free P -modules representing Ri∗K where
i : U → Spec(P ) is the closed immersion induced by the presentation. Let Mn be the
B-module corresponding to Fn|U . By Lemma 28.5

Hi(F • ⊗A An) =
{

0 if i 6= 0
Mn if i = 0
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Let i be the maximal index such that F i is nonzero. If i ≤ 0, then (1), (2), and (3) are true.
If not, then i > 0 and we see that the rank of the map

F i−1 → F i

in the point x is maximal. Hence in an open neighbourhood of x inside Spec(P ) the
rank is maximal. Thus after replacing P by a principal localization we may assume that
the displayed map is surjective. Since F i is finite free we may choose a splitting F i−1 =
F ′ ⊕ F i. Then we may replace F • by the complex

. . .→ F i−2 → F ′ → 0→ . . .

and we win by induction on i. �

Lemma 28.7. In Situation 28.1 letK be as in Lemma 28.2. LetW ⊂ X be as in Lemma
28.6. Set F = H0(K)|W . Then, after possibly shrinking the open W , the support of F is
proper over A.

Proof. Fix n ≥ 1. Let In = Ker(A → An). By More on Algebra, Lemma 11.3 the
pair (A, In) is henselian. Let Z ⊂W be the support ofF . This is a closed subset asF is of
finite presentation. By part (3) of Lemma 28.6 we see that Z ×Spec(A) Spec(An) is equal
to the support of Fn and hence proper over Spec(A/I). By More on Morphisms, Lemma
53.9 we can write Z = Z1 q Z2 with Z1, Z2 open and closed in Z , with Z1 proper over
A, and with Z1×Spec(A) Spec(A/In) equal to the support ofFn. In other words, Z2 does
not meet X0. Hence after replacing W by W \ Z2 we obtain the lemma. �

Lemma 28.8. Let A = limAn be a limit of a system of rings whose transition maps
are surjective and with locally nilpotent kernels. Let S = Spec(A). Let T → S be a
monomorphism which is locally of finite type. If Spec(An) → S factors through T for
all n, then T = S.

Proof. Set Sn = Spec(An). Let T0 ⊂ T be the common image of the factorizations
Sn → T . Then T0 is quasi-compact. Let T ′ ⊂ T be a quasi-compact open containing T0.
Then Sn → T factors through T ′. If we can show that T ′ = S , then T ′ = T = S. Hence
we may assume T is quasi-compact.

Assume T is quasi-compact. In this case T → S is separated and quasi-finite (Morphisms,
Lemma 20.15). Using Zariski’s Main Theorem (in the form of More on Morphisms, Lemma
43.3) we choose a factorization T → W → S with W → S finite and T → W an open
immersion. WriteW = Spec(B). The (unique) factorizations Sn → T may be viewed as
morphisms into W and we obtain

A −→ B −→ limAn = A

Consider the morphism h : S = Spec(A) → Spec(B) = W coming from the arrow on
the right. Then

T ×W,h S
is an open subscheme of S containing the image of Sn → S for all n. To finish the proof it
suffices to show that any open U ⊂ S containing the image of Sn → S for some n ≥ 1 is
equal to S. This is true because (A,Ker(A→ An)) is a henselian pair (More on Algebra,
Lemma 11.3) and hence every closed point of S is contained in the image of Sn → S. �

Theorem 28.9 (Grothendieck Existence Theorem). In Situation 28.1 there exists a
finitely presentedOX -moduleF , flat overA, with support proper overA, such thatFn =
F ⊗OX

OXn for all n compatibly with the maps ϕn.
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Proof. Apply Lemmas 28.2, 28.3, 28.4, 28.5, 28.6, and 28.7 to get an open subscheme
W ⊂ X containing all points lying over Spec(An) and a finitely presentedOW -moduleF
whose support is proper overA with Fn = F ⊗OW

OXn for all n ≥ 1. (This makes sense
as Xn ⊂ W .) By Lemma 17.1 we see that F is universally pure relative to Spec(A). By
Theorem 27.5 (for explanation, see Lemma 27.6) there exists a universal flattening S′ →
Spec(A) of F and moreover the morphism S′ → Spec(A) is a monomorphism of finite
presentation. Since the base change of F to Spec(An) is Fn we find that Spec(An) →
Spec(A) factors (uniquely) through S′ for each n. By Lemma 28.8 we see that S′ =
Spec(A). This means that F is flat over A. Finally, since the scheme theoretic support
Z of F is proper over Spec(A), the morphism Z → X is closed. Hence the pushforward
(W → X)∗F is supported on W and has all the desired properties. �

29. Grothendieck’s Existence Theorem, V

In this section we prove an analogue for Grothendieck’s existence theorem in the derived
category, following the method used in Section 28 for quasi-coherent modules. The clas-
sical case is discussed in Cohomology of Schemes, Sections 24, 25, and 27. We will work in
the following situation.

Situation 29.1. Here we have an inverse system of rings (An) with surjective tran-
sition maps whose kernels are locally nilpotent. Set A = limAn. We have a scheme X
proper, flat, and of finite presentation over A. We set Xn = X ×Spec(A) Spec(An) and
we view it as a closed subscheme ofX . We assume further given a system (Kn, ϕn) where
Kn is a pseudo-coherent object of D(OXn) and

ϕn : Kn −→ Kn−1

is a map in D(OXn) which induces an isomorphism Kn ⊗L
OXn

OXn−1 → Kn−1 in
D(OXn−1).

More precisely, we should write ϕn : Kn → Rin−1,∗Kn−1 where in−1 : Xn−1 →
Xn is the inclusion morphism and in this notation the condition is that the adjoint map
Li∗n−1Kn → Kn−1 is an isomorphism. Our goal is to find a pseudo-coherentK ∈ D(OX)
such that Kn = K ⊗L

OX
OXn for all n (with the same abuse of notation).

Lemma 29.2. In Situation 29.1 consider
K = R limDQCoh(OX)(Kn) = DQX(R limD(OX) Kn)

Then K is in D−
QCoh(OX).

Proof. The functorDQX exists becauseX is quasi-compact and quasi-separated, see
Derived Categories of Schemes, Lemma 21.1. Since DQX is a right adjoint it commutes
with products and therefore with derived limits. Hence the equality in the statement of
the lemma.
By Derived Categories of Schemes, Lemma 21.4 the functor DQX has bounded cohomo-
logical dimension. Hence it suffices to show that R limKn ∈ D−(OX). To see this, let
U ⊂ X be an affine open. Then there is a canonical exact sequence

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0
by Cohomology, Lemma 37.1. Since U is affine andKn is pseudo-coherent (and hence has
quasi-coherent cohomology sheaves by Derived Categories of Schemes, Lemma 10.1) we
see thatHm(U,Kn) = Hm(Kn)(U) by Derived Categories of Schemes, Lemma 3.5. Thus
we conclude that it suffices to show that Kn is bounded above independent of n.
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Since Kn is pseudo-coherent we have Kn ∈ D−(OXn). Suppose that an is maximal such
that Han(Kn) is nonzero. Of course a1 ≤ a2 ≤ a3 ≤ . . .. Note that Han(Kn) is an
OXn -module of finite presentation (Cohomology, Lemma 47.9). We haveHan(Kn−1) =
Han(Kn)⊗OXn

OXn−1 . Since Xn−1 → Xn is a thickening, it follows from Nakayama’s
lemma (Algebra, Lemma 20.1) that if Han(Kn) ⊗OXn

OXn−1 is zero, then Han(Kn) is
zero too. Thus an = an−1 for all n and we conclude. �

Lemma 29.3. In Situation 29.1 let K be as in Lemma 29.2. For any perfect object E
of D(OX) the cohomology

M = RΓ(X,K ⊗L E)
is a pseudo-coherent object of D(A) and there is a canonical isomorphism

RΓ(Xn,Kn ⊗L E|Xn) = M ⊗L
A An

in D(An). Here E|Xn denotes the derived pullback of E to Xn.

Proof. Write En = E|Xn and Mn = RΓ(Xn,Kn ⊗L E|Xn). By Derived Cate-
gories of Schemes, Lemma 30.5 we see thatMn is a pseudo-coherent object ofD(An) whose
formation commutes with base change. Thus the maps Mn ⊗L

An
An−1 → Mn−1 coming

from ϕn are isomorphisms. By More on Algebra, Lemma 97.1 we find that R limMn is
pseudo-coherent and that its base change back toAn recoversMn. On the other hand, the
exact functor RΓ(X,−) : DQCoh(OX) → D(A) of triangulated categories commutes
with products and hence with derived limits, whence

RΓ(X,E ⊗L K) = R limRΓ(X,E ⊗L Kn) = R limRΓ(Xn, En ⊗L Kn) = R limMn

as desired. �

Lemma 29.4. In Situation 29.1 letK be as in Lemma 29.2. ThenK is pseudo-coherent
on X .

Proof. Combinging Lemma 29.3 and Derived Categories of Schemes, Lemma 34.3 we
see thatRΓ(X,K⊗LE) is pseudo-coherent inD(A) for all pseudo-coherentE inD(OX).
Thus it follows from More on Morphisms, Lemma 69.4 thatK is pseudo-coherent relative
to A. Since X is of flat and of finite presentation over A, this is the same as being pseudo-
coherent on X , see More on Morphisms, Lemma 59.18. �

Lemma 29.5. In Situation 29.1 let K be as in Lemma 29.2. For any quasi-compact
open U ⊂ X we have

RΓ(U,K)⊗L
A An = RΓ(Un,Kn)

in D(An) where Un = U ∩Xn.

Proof. Fix n. By Derived Categories of Schemes, Lemma 33.4 there exists a system
of perfect complexesEm onX such thatRΓ(U,K) = hocolimRΓ(X,K⊗LEm). In fact,
this formula holds not just for K but for every object of DQCoh(OX). Applying this to
Kn we obtain

RΓ(Un,Kn) = RΓ(U,Kn)
= hocolimmRΓ(X,Kn ⊗L Em)
= hocolimmRΓ(Xn,Kn ⊗L Em|Xn)

Using Lemma 29.3 and the fact that−⊗L
AAn commutes with homotopy colimits we obtain

the result. �



30. BLOWING UP AND FLATNESS 3423

Theorem 29.6 (Derived Grothendieck Existence Theorem). In Situation 29.1 there
exists a pseudo-coherentK inD(OX) such thatKn = K ⊗L

OX
OXn for all n compatibly

with the maps ϕn.

Proof. Apply Lemmas 29.2, 29.3, 29.4 to get a pseudo-coherent objectK ofD(OX).
Choosing affine opens in Lemma 29.5 it follows immediately that K restricts to Kn over
Xn. �

Remark 29.7. The result in this section can be generalized. It is probably correct if
we only assume X → Spec(A) to be separated, of finite presentation, and Kn pseudo-
coherent relative toAn supported on a closed subset ofXn proper overAn. The outcome
will be a K which is pseudo-coherent relative to A supported on a closed subset proper
over A. If we ever need this, we will formulate a precise statement and prove it here.

30. Blowing up and flatness

In this section we continue our discussion of results of the form: “After a blowup the strict
transform becomes flat”, see More on Algebra, Section 26 and Divisors, Section 35. We will
use the following (more or less standard) notation in this section. IfX → S is a morphism
of schemes, F is a quasi-coherent module on X , and T → S is a morphism of schemes,
then we denote FT the pullback of F to the base change XT = X ×S T .

Remark 30.1. Let S be a quasi-compact and quasi-separated scheme. Let f : X → S
be a morphism of schemes. Let F be a quasi-coherent module on X . Let U ⊂ S be a
quasi-compact open subscheme. Given a U -admissible blowup S′ → S we denote X ′

the strict transform of X and F ′ the strict transform of F which we think of as a quasi-
coherent module onX ′ (via Divisors, Lemma 33.2). Let P be a property ofF/X/S which
is stable under strict transform (as above) for U -admissible blowups. The general problem
in this section is: Show (under auxiliary conditions onF/X/S) there exists aU -admissible
blowup S′ → S such that the strict transform F ′/X ′/S′ has P .
The general strategy will be to use that a composition of U -admissible blowups is a U -
admissible blowup, see Divisors, Lemma 34.2. In fact, we will make use of the more precise
Divisors, Lemma 32.14 and combine it with Divisors, Lemma 33.6. The result is that it
suffices to find a sequence of U -admissible blowups

S = S0 ← S1 ← . . .← Sn

such that, setting F0 = F and X0 = X and setting Fi/Xi equal to the strict transform
of Fi−1/Xi−1, we arrive at Fn/Xn/Sn with property P .
In particular, choose a finite type quasi-coherent sheaf of ideals I ⊂ OS such that V (I) =
S \ U , see Properties, Lemma 24.1. Let S′ → S be the blowup in I and let E ⊂ S′ be the
exceptional divisor (Divisors, Lemma 32.4). Then we see that we’ve reduced the problem
to the case where there exists an effective Cartier divisor D ⊂ S whose support is X \U .
In particular we may assume U is scheme theoretically dense in S (Divisors, Lemma 13.4).
Suppose that P is local on S: If S =

⋃
Si is a finite open covering by quasi-compact

opens and P holds for FSi/XSi/Si then P holds for F/X/S. In this case the general
problem above is local on S as well, i.e., if given s ∈ S we can find a quasi-compact
open neighbourhood W of s such that the problem for FW /XW /W is solvable, then the
problem is solvable for F/X/S. This follows from Divisors, Lemmas 34.3 and 34.4.

Lemma 30.2. Let R be a ring and let f ∈ R. Let r ≥ 0 be an integer. Let R → S be
a ring map and let M be an S-module. Assume



3424 38. MORE ON FLATNESS

(1) R→ S is of finite presentation and flat,
(2) every fibre ring S ⊗R κ(p) is geometrically integral over R,
(3) M is a finite S-module,
(4) Mf is a finitely presented Sf -module,
(5) for all p ∈ R, f 6∈ p with q = pS the module Mq is free of rank r over Sq.

Then there exists a finitely generated ideal I ⊂ R with V (f) = V (I) such that for all
a ∈ I with R′ = R[ Ia ] the quotient

M ′ = (M ⊗R R′)/a-power torsion
over S′ = S ⊗R R′ satisfies the following: for every prime p′ ⊂ R′ there exists a g ∈ S′,
g 6∈ p′S′ such that M ′

g is a free S′
g-module of rank r.

Proof. This lemma is a generalization of More on Algebra, Lemma 26.5; we urge the
reader to read that proof first. Choose a surjection S⊕n → M , which is possible by (1).
Choose a finite submodule K ⊂ Ker(S⊕n → M) such that S⊕n/K → M becomes an
isomorphism after inverting f . This is possible by (4). SetM1 = S⊕n/K and suppose we
can prove the lemma for M1. Say I ⊂ R is the corresponding ideal. Then for a ∈ I the
map

M ′
1 = (M1 ⊗R R′)/a-power torsion −→M ′ = (M ⊗R R′)/a-power torsion

is surjective. It is also an isomorphism after inverting a in R′ as R′
a = Rf , see Algebra,

Lemma 70.7. But a is a nonzerodivisor on M ′
1, whence the displayed map is an isomor-

phism. Thus it suffices to prove the lemma in case M is a finitely presented S-module.
Assume M is a finitely presented S-module satisfying (3). Then J = Fitr(M) ⊂ S is
a finitely generated ideal. By Lemma 9.3 we can write S as a direct summand of a free
R-module:

⊕
α∈AR = S ⊕ C. For any element h ∈ S writing h =

∑
aα in the

decomposition above, we say that the aα are the coefficients of h. Let I ′ ⊂ R be the ideal
of coefficients of elements of J . Multiplication by an element of S defines an R-linear
map S → S , hence I ′ is generated by the coefficients of the generators of J , i.e., I ′ is a
finitely generated ideal. We claim that I = fI ′ works.
We first check that V (f) = V (I). The inclusion V (f) ⊂ V (I) is clear. Conversely, if
f 6∈ p, then q = pS is not an element of V (J) by property (5) and More on Algebra,
Lemma 8.6. Hence there is an element of J which does not map to zero in S ⊗R κ(p).
Thus there exists an element of I ′ which is not contained in p, so p 6∈ V (fI ′) = V (I).
Let a ∈ I and set R′ = R[ Ia ]. We may write a = fa′ for some a′ ∈ I ′. By Algebra,
Lemmas 70.2 and 70.8 we see that I ′R′ = a′R′ and a′ is a nonzerodivisor in R′. Set
S′ = S ⊗S R′. Every element g of JS′ = Fitr(M ⊗S S′) can be written as g =

∑
α cα

for some cα ∈ I ′R′. Since I ′R′ = a′R′ we can write cα = a′c′
α for some c′

α ∈ R′ and
g = (

∑
c′
α)a′ = g′a′ in S′. Moreover, there is an g0 ∈ J such that a′ = cα for some α.

For this element we have g0 = g′
0a

′ in S′ where g′
0 is a unit in S′. Let p′ ⊂ R′ be a prime

ideal and q′ = p′S′. By the above we see that JS′
q′ is the principal ideal generated by the

nonzerodivisor a′. It follows from More on Algebra, Lemma 8.8 thatM ′
q′ can be generated

by r elements. Since M ′ is finite, there exist m1, . . . ,mr ∈ M ′ and g ∈ S′, g 6∈ q′ such
that the corresponding map (S′)⊕r →M ′ becomes surjective after inverting g.
Finally, consider the ideal J ′ = Fitk−1(M ′). Note that J ′S′

g is generated by the coeffi-
cients of relations between m1, . . . ,mr (compatibility of Fitting ideal with base change).
Thus it suffices to show that J ′ = 0, see More on Algebra, Lemma 8.7. Since R′

a = Rf
(Algebra, Lemma 70.7) andM ′

a = Mf we see from (5) that J ′
a maps to zero in Sq′′ for any
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prime q′′ ⊂ S′ of the form q′′ = p′′S′ where p′′ ⊂ R′
a. Since S′

a ⊂
∏

q′′ as above S
′
q′′ (as

(S′
a)p′′ ⊂ S′

q′′ by Lemma 7.4) we see that J ′R′
a = 0. Since a is a nonzerodivisor in R′ we

conclude that J ′ = 0 and we win. �

Lemma 30.3. Let S be a quasi-compact and quasi-separated scheme. Let X → S
be a morphism of schemes. Let F be a quasi-coherent module on X . Let U ⊂ S be a
quasi-compact open. Assume

(1) X → S is affine, of finite presentation, flat, geometrically integral fibres,
(2) F is a module of finite type,
(3) FU is of finite presentation,
(4) F is flat over S at all generic points of fibres lying over points of U .

Then there exists a U -admissible blowup S′ → S and an open subscheme V ⊂ XS′ such
that (a) the strict transform F ′ of F restricts to a finitely locally freeOV -module and (b)
V → S′ is surjective.

Proof. Given F/X/S and U ⊂ S with hypotheses as in the lemma, denote P the
property “F is flat over S at all generic points of fibres”. It is clear that P is preserved
under strict transform, see Divisors, Lemma 33.3 and Morphisms, Lemma 25.7. It is also
clear that P is local on S. Hence any and all observations of Remark 30.1 apply to the
problem posed by the lemma.

Consider the function r : U → Z≥0 which assigns to u ∈ U the integer

r(u) = dimκ(ξu)(Fξu ⊗ κ(ξu))

where ξu is the generic point of the fibre Xu. By More on Morphisms, Lemma 16.7 and
the fact that the image of an open in XS in S is open, we see that r(u) is locally constant.
AccordinglyU = U0qU1q. . .qUc is a finite disjoint union of open and closed subschemes
where r is constant with value i onUi. By Divisors, Lemma 34.5 we can find aU -admissible
blowup to decomposeS into the disjoint union of two schemes, the first containingU0 and
the secondU1∪. . .∪Uc. Repeating this c−1 more times we may assume thatS is a disjoint
union S = S0qS1q . . .qSc with Ui ⊂ Si. Thus we may assume the function r defined
above is constant, say with value r.

By Remark 30.1 we see that we may assume that we have an effective Cartier divisorD ⊂ S
whose support is S \ U . Another application of Remark 30.1 combined with Divisors,
Lemma 13.2 tells us we may assume that S = Spec(R) and D = Spec(R/(f)) for some
nonzerodivisor f ∈ R. This case is handled by Lemma 30.2. �

Lemma 30.4. Let A→ C be a finite locally free ring map of rank d. Let h ∈ C be an
element such that Ch is étale over A. Let J ⊂ C be an ideal. Set I = Fit0(C/J) where
we think of C/J as a finite A-module. Then ICh = JJ ′ for some ideal J ′ ⊂ Ch. If J is
finitely generated so are I and J ′.

Proof. We will use basic properties of Fitting ideals, see More on Algebra, Lemma
8.4. Then IC is the Fitting ideal of C/J ⊗A C. Note that C → C ⊗A C , c 7→ 1⊗ c has a
section (the multiplication map). By assumption C → C ⊗A C is étale at every prime in
the image of Spec(Ch) under this section. Hence the multiplication mapC⊗ACh → Ch
is étale in particular flat, see Algebra, Lemma 143.8. Hence there exists a Ch-algebra such
that C ⊗A Ch ∼= Ch ⊕ C ′ as Ch-algebras, see Algebra, Lemma 143.9. Thus (C/J) ⊗A
Ch ∼= (Ch/Jh) ⊕ C ′/I ′ as Ch-modules for some ideal I ′ ⊂ C ′. Hence ICh = JJ ′ with
J ′ = Fit0(C ′/I ′) where we view C ′/J ′ as a Ch-module. �



3426 38. MORE ON FLATNESS

Lemma 30.5. Let A → B be an étale ring map. Let a ∈ A be a nonzerodivisor. Let
J ⊂ B be a finite type ideal with V (J) ⊂ V (aB). For every q ⊂ B there exists a finite
type ideal I ⊂ A with V (I) ⊂ V (a) and g ∈ B, g 6∈ q such that IBg = JJ ′ for some
finite type ideal J ′ ⊂ Bg .

Proof. We may replace B by a principal localization at an element g ∈ B, g 6∈ q.
Thus we may assume that B is standard étale, see Algebra, Proposition 144.4. Thus we
may assumeB is a localization of C = A[x]/(f) for some monic f ∈ A[x] of some degree
d. Say B = Ch for some h ∈ C. Choose elements h1, . . . , hn ∈ C which generate J
over B. The condition V (J) ⊂ V (aB) signifies that am =

∑
bihi in B for some large

m. Set hn+1 = am. As in Lemma 30.4 we take I = Fit0(C/(h1, . . . , hr+1)). Since the
module C/(h1, . . . , hr+1) is annihilated by am we see that adm ∈ I which implies that
V (I) ⊂ V (a). �

Lemma 30.6. Let S be a quasi-compact and quasi-separated scheme. Let X → S
be a morphism of schemes. Let F be a quasi-coherent module on X . Let U ⊂ S be a
quasi-compact open. Assume there exist finitely many commutative diagrams

Xi
ji
//

��

X

��
S∗
i

// Si
ei // S

where

(1) ei : Si → S are quasi-compact étale morphisms and S =
⋃
ei(Si),

(2) ji : Xi → X are étale morphisms and X =
⋃
ji(Xi),

(3) S∗
i → Si is an e−1

i (U)-admissible blowup such that the strict transform F∗
i of

j∗
i F is flat over S∗

i .

Then there exists a U -admissible blowup S′ → S such that the strict transform of F is
flat over S′.

Proof. We claim that the hypotheses of the lemma are preserved underU -admissible
blowups. Namely, suppose b : S′ → S is a U -admissible blowup in the quasi-coherent
sheaf of ideals I . Moreover, let S∗

i → Si be the blowup in the quasi-coherent sheaf of
ideals Ji. Then the collection of morphisms e′

i : S′
i = Si ×S S′ → S′ and j′

i : X ′
i =

Xi×SS′ → X×SS′ satisfy conditions (1), (2), (3) for the strict transformF ′ ofF relative
to the blowup S′ → S. First, observe that S′

i is the blowup of Si in the pullback of I , see
Divisors, Lemma 32.3. Second, consider the blowup S′∗

i → S′
i of S′

i in the pullback of the
ideal Ji. By Divisors, Lemma 32.12 we get a commutative diagram

S′∗
i

//

  ��

S′
i

��
S∗
i

// Si
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and all the morphisms in the diagram above are blowups. Hence by Divisors, Lemmas 33.3
and 33.6 we see

the strict transform of (j′
i)∗F ′ under S′∗

i → S′
i

= the strict transform of j∗
i F under S′∗

i → Si

= the strict transform of F ′
i under S′∗

i → S′
i

= the pullback of F∗
i via Xi ×Si S′∗

i → Xi

which is therefore flat over S′∗
i (Morphisms, Lemma 25.7). Having said this, we see that

all observations of Remark 30.1 apply to the problem of finding a U -admissible blowup
such that the strict transform of F becomes flat over the base under assumptions as in the
lemma. In particular, we may assume that S \ U is the support of an effective Cartier
divisorD ⊂ S. Another application of Remark 30.1 combined with Divisors, Lemma 13.2
shows we may assume that S = Spec(A) andD = Spec(A/(a)) for some nonzerodivisor
a ∈ A.

Pick an i and s ∈ Si. Lemma 30.5 implies we can find an open neighbourhood s ∈ Wi ⊂
Si and a finite type quasi-coherent ideal I ⊂ OS such that I · OWi

= JiJ ′
i for some

finite type quasi-coherent ideal J ′
i ⊂ OWi

and such that V (I) ⊂ V (a) = S \ U . Since
Si is quasi-compact we can replace Si by a finite collection W1, . . . ,Wn of these opens
and assume that for each i there exists a quasi-coherent sheaf of ideals Ii ⊂ OS such that
Ii · OSi = JiJ ′

i for some finite type quasi-coherent ideal J ′
i ⊂ OSi . As in the discussion

of the first paragraph of the proof, consider the blowup S′ of S in the product I1 . . . In
(this blowup is U -admissible by construction). The base change of S′ → S to Si is the
blowup in

Ji · J ′
i I1 . . . Îi . . . In

which factors through the given blowup S∗
i → Si (Divisors, Lemma 32.12). In the nota-

tion of the diagram above this means that S′∗
i = S′

i. Hence after replacing S by S′ we
arrive in the situation that j∗

i F is flat over Si. Hence j∗
i F is flat over S , see Lemma 2.3.

By Morphisms, Lemma 25.13 we see that F is flat over S. �

Theorem 30.7. Let S be a quasi-compact and quasi-separated scheme. Let X be a
scheme over S. Let F be a quasi-coherent module on X . Let U ⊂ S be a quasi-compact
open. Assume

(1) X is quasi-compact,
(2) X is locally of finite presentation over S ,
(3) F is a module of finite type,
(4) FU is of finite presentation, and
(5) FU is flat over U .

Then there exists a U -admissible blowup S′ → S such that the strict transform F ′ of F
is anOX×SS′ -module of finite presentation and flat over S′.

Proof. We first prove that we can find a U -admissible blowup such that the strict
transform is flat. The question is étale local on the source and the target, see Lemma 30.6
for a precise statement. In particular, we may assume thatS = Spec(R) andX = Spec(A)
are affine. For s ∈ S write Fs = F|Xs (pullback of F to the fibre). As X → S is of finite
type d = maxs∈S dim(Supp(Fs)) is an integer. We will do induction on d.

Let x ∈ X be a point of X lying over s ∈ S with dimx(Supp(Fs)) = d. Apply Lemma
3.2 to get g : X ′ → X , e : S′ → S , i : Z ′ → X ′, and π : Z ′ → Y ′. Observe that
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Y ′ → S′ is a smooth morphism of affines with geometrically irreducible fibres of dimen-
sion d. Because the problem is étale local it suffices to prove the theorem for g∗F/X ′/S′.
Because i : Z ′ → X ′ is a closed immersion of finite presentation (and since strict trans-
form commutes with affine pushforward, see Divisors, Lemma 33.4) it suffices to prove the
flattening result for G. Since π is finite (hence also affine) it suffices to prove the flattening
result for π∗G/Y ′/S′. Thus we may assume that X → S is a smooth morphism of affines
with geometrically irreducible fibres of dimension d.
Next, we apply a blowup as in Lemma 30.3. Doing so we reach the situation where there
exists an open V ⊂ X surjecting onto S such that F|V is finite locally free. Let ξ ∈ X be
the generic point of Xs. Let r = dimκ(ξ) Fξ ⊗ κ(ξ). Choose a map α : O⊕r

X → F which
induces an isomorphism κ(ξ)⊕r → Fξ ⊗ κ(ξ). Because F is locally free over V we find
an open neighbourhood W of ξ where α is an isomorphism. Shrink S to an affine open
neighbourhood of s such that W → S is surjective. Say F is the quasi-coherent module
associated to the A-module N . Since F is flat over S at all generic points of fibres (in fact
at all points of W ), we see that

αp : A⊕r
p → Np

is universally injective for all primes p ofR, see Lemma 10.1. Hence α is universally injec-
tive, see Algebra, Lemma 82.12. SetH = Coker(α). By Divisors, Lemma 33.7 we see that,
given a U -admissible blowup S′ → S the strict transforms of F ′ andH′ fit into an exact
sequence

0→ O⊕r
X×SS′ → F ′ → H′ → 0

Hence Lemma 10.1 also shows that F ′ is flat at a point x′ if and only if H′ is flat at that
point. In particularHU is flat over U andHU is a module of finite presentation. We may
apply the induction hypothesis to H to see that there exists a U -admissible blowup such
that the strict transformH′ is flat as desired.
To finish the proof of the theorem we still have to show that F ′ is a module of finite
presentation (after possibly anotherU -admissible blowup). This follows from Lemma 11.1
as we can assume U ⊂ S is scheme theoretically dense (see third paragraph of Remark
30.1). This finishes the proof of the theorem. �

31. Applications

In this section we apply some of the results above.

Lemma 31.1. LetS be a quasi-compact and quasi-separated scheme. LetX be a scheme
over S. Let U ⊂ S be a quasi-compact open. Assume

(1) X → S is of finite type and quasi-separated, and
(2) XU → U is flat and locally of finite presentation.

Then there exists a U -admissible blowup S′ → S such that the strict transform of X is
flat and of finite presentation over S′.

Proof. Since X → S is quasi-compact and quasi-separated by assumption, the strict
transform of X with respect to a blowing up S′ → S is also quasi-compact and quasi-
separated. Hence to prove the lemma it suffices to find a U -admissible blowup such that
the strict transform is flat and locally of finite presentation. Let X = W1 ∪ . . . ∪ Wn

be a finite affine open covering. If we can find a U -admissible blowup Si → S such that
the strict transform of Wi is flat and locally of finite presentation, then there exists a U -
admissible blowing up S′ → S dominating all Si → S which does the job (see Divisors,
Lemma 34.4; see also Remark 30.1). Hence we may assume X is affine.
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AssumeX is affine. By Morphisms, Lemma 39.2 we can choose an immersion j : X → An
S

over S. Let V ⊂ An
S be a quasi-compact open subscheme such that j induces a closed

immersion i : X → V over S. Apply Theorem 30.7 to V → S and the quasi-coherent
module i∗OX to obtain a U -admissible blowup S′ → S such that the strict transform of
i∗OX is flat over S′ and of finite presentation overOV×SS′ . LetX ′ be the strict transform
of X with respect to S′ → S. Let i′ : X ′ → V ×S S′ be the induced morphism. Since
taking strict transform commutes with pushforward along affine morphisms (Divisors,
Lemma 33.4), we see that i′∗OX′ is flat over S and of finite presentation as a OV×SS′ -
module. This implies the lemma. �

Lemma 31.2. LetS be a quasi-compact and quasi-separated scheme. LetX be a scheme
over S. Let U ⊂ S be a quasi-compact open. Assume

(1) X → S is proper, and
(2) XU → U is finite locally free.

Then there exists a U -admissible blowup S′ → S such that the strict transform of X is
finite locally free over S′.

Proof. By Lemma 31.1 we may assume thatX → S is flat and of finite presentation.
After replacing S by a U -admissible blowup if necessary, we may assume that U ⊂ S is
scheme theoretically dense. Then f is finite by Lemma 11.4. Hence f is finite locally free
by Morphisms, Lemma 48.2. �

Lemma 31.3. Let ϕ : X → S be a separated morphism of finite type with S quasi-
compact and quasi-separated. Let U ⊂ S be a quasi-compact open such that ϕ−1U → U
is an isomorphism. Then there exists a U -admissible blowup S′ → S such that the strict
transform X ′ of X is isomorphic to an open subscheme of S′.

Proof. The discussion in Remark 30.1 applies. Thus we may do a first U -admissible
blowup and assume the complement S \ U is the support of an effective Cartier divisor
D. In particular U is scheme theoretically dense in S. Next, we do another U -admissible
blowup to get to the situation where X → S is flat and of finite presentation, see Lemma
31.1. In this case the result follows from Lemma 11.5. �

The following lemma says that a proper modification can be dominated by a blowup.

Lemma 31.4. Let ϕ : X → S be a proper morphism with S quasi-compact and quasi-
separated. Let U ⊂ S be a quasi-compact open such that ϕ−1U → U is an isomorphism.
Then there exists a U -admissible blowup S′ → S which dominatesX , i.e., such that there
exists a factorization S′ → X → S of the blowup morphism.

Proof. The discussion in Remark 30.1 applies. Thus we may do a first U -admissible
blowup and assume the complement S \U is the support of an effective Cartier divisorD.
In particular U is scheme theoretically dense in S. Choose another U -admissible blowup
S′ → S such that the strict transform X ′ of X is an open subscheme of S′, see Lemma
31.3. Since X ′ → S′ is proper, and U ⊂ S′ is dense, we see that X ′ = S′. Some details
omitted. �

Lemma 31.5. Let S be a scheme. Let U ⊂ W ⊂ S be open subschemes. Let f : X →
W be a morphism and let s : U → X be a morphism such that f ◦ s = idU . Assume

(1) f is proper,
(2) S is quasi-compact and quasi-separated, and
(3) U and W are quasi-compact.
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Then there exists a U -admissible blowup b : S′ → S and a morphism s′ : b−1(W ) → X
extending s with f ◦ s′ = b|b−1(W ).

Proof. We may and do replaceX by the scheme theoretic image of s. ThenX →W
is an isomorphism over U , see Morphisms, Lemma 6.8. By Lemma 31.4 there exists a U -
admissible blowup W ′ → W and an extension W ′ → X of s. We finish the proof by
applying Divisors, Lemma 34.3 to extend W ′ →W to a U -admissible blowup of S. �

32. Compactifications

Let S be a quasi-compact and quasi-separated scheme. We will say a scheme X over S has
a compactification over S or is compactifyable over S if there exists a quasi-compact open
immersion X → X into a scheme X proper over S. If X has a compactification over
S , then X → S is separated and of finite type. It is a theorem of Nagata, see [?], [?], [?],
[?], [?], and [?], that the converse is true as well. We will prove this theorem in the next
section, see Theorem 33.8.

Let S be a quasi-compact and quasi-separated scheme. Let X → S be a separated finite
type morphism of schemes. The category of compactifications ofX over S is the category
defined as follows:

(1) Objects are open immersions j : X → X over S with X → S proper.
(2) Morphisms (j′ : X → X

′) → (j : X → X) are morphisms f : X ′ → X of
schemes over S such that f ◦ j′ = j.

If j : X → X is a compactification, then j is a quasi-compact open immersion, see Schemes,
Remark 21.18.

Warning. We do not assume compactifications j : X → X to have dense image. Conse-
quently, if f : X ′ → X is a morphism of compactifications, it may not be the case that
f−1(j(X)) = j′(X).

Lemma 32.1. Let S be a quasi-compact and quasi-separated scheme. Let X be a com-
pactifyable scheme over S.

(a) The category of compactifications of X over S is cofiltered.
(b) The full subcategory consisting of compactifications j : X → X such that j(X)

is dense and scheme theoretically dense in X is initial (Categories, Definition
17.3).

(c) If f : X ′ → X is a morphism of compactifications ofX such that j′(X) is dense
in X ′, then f−1(j(X)) = j′(X).

Proof. To prove part (a) we have to check conditions (1), (2), (3) of Categories, Def-
inition 20.1. Condition (1) holds exactly because we assumed that X is compactifyable.
Let ji : X → Xi, i = 1, 2 be two compactifications. Then we can consider the scheme
theoretic imageX of (j1, j2) : X → X1×SX2. This determines a third compactification
j : X → X which dominates both ji:

(X,X1) (X,X)oo // (X,X2)

Thus (2) holds. Let f1, f2 : X1 → X2 be two morphisms between compactifications
ji : X → Xi, i = 1, 2. Let X ⊂ X1 be the equalizer of f1 and f2. As X2 → S is
separated, we see thatX is a closed subscheme ofX1 and hence proper over S. Moreover,
we obtain an open immersion X → X because f1|X = f2|X = idX . The morphism
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(X → X) → (j1 : X → X1) given by the closed immersion X → X1 equalizes f1 and
f2 which proves condition (3).

Proof of (b). Let j : X → X be a compactification. If X ′ denotes the scheme theoretic
closure of X in X , then X is dense and scheme theoretically dense in X ′ by Morphisms,
Lemma 7.7. This proves the first condition of Categories, Definition 17.3. Since we have
already shown the category of compactifications ofX is cofiltered, the second condition of
Categories, Definition 17.3 follows from the first (we omit the solution to this categorical
exercise).

Proof of (c). After replacingX ′ with the scheme theoretic closure of j′(X) (which doesn’t
change the underlying topological space) this follows from Morphisms, Lemma 6.8. �

We can also consider the category of all compactifications (for varying X). It turns out
that this category, localized at the set of morphisms which induce an isomorphism on the
interior is equivalent to the category of compactifyable schemes over S.

Lemma 32.2. Let S be a quasi-compact and quasi-separated scheme. Let f : X →
Y be a morphism of schemes over S with Y separated and of finite type over S and X
compactifyable over S. Then X has a compactification over Y .

Proof. Let j : X → X be a compactification of X over S. Then we let X ′ be the
scheme theoretic image of (j, f) : X → X ×S Y . The morphism X

′ → Y is proper
because X ×S Y → Y is proper as a base change of X → S. On the other hand, since Y
is separated over S , the morphism (1, f) : X → X ×S Y is a closed immersion (Schemes,
Lemma 21.10) and henceX → X

′ is an open immersion by Morphisms, Lemma 6.8 applied
to the “partial section” s = (j, f) to the projection X ×S Y → X . �

Let S be a quasi-compact and quasi-separated scheme. We define the category of compacti-
fications to be the category whose objects are pairs (X,X) whereX is a scheme proper over
S and X ⊂ X is a quasi-compact open and whose morphisms are commutative diagrams

X

��

f
// Y

��
X

f // Y

of morphisms of schemes over S.

Lemma 32.3. Let S be a quasi-compact and quasi-separated scheme. The collection
of morphisms (u, u) : (X ′, X

′) → (X,X) such that u is an isomorphism forms a right
multiplicative system (Categories, Definition 27.1) of arrows in the category of compact-
ifications.

Proof. Axiom RMS1 is trivial to verify. Let us check RMS2 holds. Suppose given a
diagram

(X ′, X
′)

(u,u)
��

(Y, Y )
(f,f) // (X,X)
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with u : X ′ → X an isomorphism. Then we let Y ′ = Y ×X X ′ with the projection
map v : Y ′ → Y (an isomorphism). We also set Y ′ = Y ×X X

′ with the projection map
v : Y ′ → Y It is clear that Y ′ → Y

′ is an open immersion. The diagram

(Y ′, Y
′)

(g,g)
//

(v,v)
��

(X ′, X
′)

(u,u)
��

(Y, Y )
(f,f) // (X,X)

shows that axiom RMS2 holds.

Let us check RMS3 holds. Suppose given a pair of morphisms (f, f), (g, g) : (X,X) →
(Y, Y ) of compactifications and a morphism (v, v) : (Y, Y ) → (Y ′, Y

′) such that v is
an isomorphism and such that (v, v) ◦ (f, f) = (v, v) ◦ (g, g). Then f = g. Hence if
we let X ′ ⊂ X be the equalizer of f and g, then (u, u) : (X,X ′) → (X,X) will be a
morphism of the category of compactifications such that (f, f) ◦ (u, u) = (g, g) ◦ (u, u)
as desired. �

Lemma 32.4. Let S be a quasi-compact and quasi-separated scheme. The functor
(X,X) 7→ X defines an equivalence from the category of compactifications localized
(Categories, Lemma 27.11) at the right multiplicative system of Lemma 32.3 to the category
of compactifyable schemes over S.

Proof. Denote C the category of compactifications and denote Q : C → C′ the
localization functor of Categories, Lemma 27.16. DenoteD the category of compactifyable
schemes over S. It is clear from the lemma just cited and our choice of multiplicative
system that we obtain a functor C′ → D. This functor is clearly essentially surjective. If
f : X → Y is a morphism of compactifyable schemes, then we choose an open immersion
Y → Y into a scheme proper over S , and then we choose an embedding X → X into
a scheme X proper over Y (possible by Lemma 32.2 applied to X → Y ). This gives a
morphism (X,X) → (Y, Y ) of compactifications which produces our given morphism
X → Y . Finally, suppose given a pair of morphisms in the localized category with the
same source and target: say

a = ((f, f) : (X ′, X
′)→ (Y, Y ), (u, u) : (X ′, X

′)→ (X,X))
and

b = ((g, g) : (X ′′, X
′′)→ (Y, Y ), (v, v) : (X ′′, X

′′)→ (X,X))
which produce the same morphismX → Y over S , in other words f ◦u−1 = g ◦ v−1. By
Categories, Lemma 27.13 we may assume that (X ′, X

′) = (X ′′, X
′′) and (u, u) = (v, v).

In this case we can consider the equalizer X ′′′ ⊂ X
′ of f and g. The morphism (w,w) :

(X ′, X
′′′)→ (X ′, X

′) is in the multiplicative subset and we see that a = b in the localized
category by precomposing with (w,w). �

33. Nagata compactification

In this section we prove the theorem announced in Section 32.

Lemma 33.1. Let X → S be a morphism of schemes. If X = U ∪ V is an open cover
such that U → S and V → S are separated and U ∩ V → U ×S V is closed, thenX → S
is separated.
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Proof. Omitted. Hint: check that ∆ : X → X ×S X is closed by using the open
covering of X ×S X given by U ×S U , U ×S V , V ×S U , and V ×S V . �

Lemma 33.2. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X be a
quasi-compact open.

(1) If Z1, Z2 ⊂ X are closed subschemes of finite presentation such that Z1 ∩ Z2 ∩
U = ∅, then there exists aU -admissible blowing upX ′ → X such that the strict
transforms of Z1 and Z2 are disjoint.

(2) IfT1, T2 ⊂ U are disjoint constructible closed subsets, then there is aU -admissible
blowing up X ′ → X such that the closures of T1 and T2 are disjoint.

Proof. Proof of (1). The assumption that Zi → X is of finite presentation signifies
that the quasi-coherent ideal sheaf Ii of Zi is of finite type, see Morphisms, Lemma 21.7.
Denote Z ⊂ X the closed subscheme cut out by the product I1I2. Observe that Z ∩ U
is the disjoint union of Z1 ∩ U and Z2 ∩ U . By Divisors, Lemma 34.5 there is a U ∩ Z-
admissible blowup Z ′ → Z such that the strict transforms of Z1 and Z2 are disjoint.
Denote Y ⊂ Z the center of this blowing up. Then Y → X is a closed immersion of
finite presentation as the composition of Y → Z and Z → X (Divisors, Definition 34.1
and Morphisms, Lemma 21.3). Thus the blowing up X ′ → X of Y is a U -admissible
blowing up. By general properties of strict transforms, the strict transform ofZ1, Z2 with
respect to X ′ → X is the same as the strict transform of Z1, Z2 with respect to Z ′ → Z ,
see Divisors, Lemma 33.2. Thus (1) is proved.

Proof of (2). By Properties, Lemma 24.1 there exists a finite type quasi-coherent sheaf of
idealsJi ⊂ OU such that Ti = V (Ji) (set theoretically). By Properties, Lemma 22.2 there
exists a finite type quasi-coherent sheaf of ideals Ii ⊂ OX whose restriction to U is Ji.
Apply the result of part (1) to the closed subschemes Zi = V (Ii) to conclude. �

Lemma 33.3. Let f : X → Y be a proper morphism of quasi-compact and quasi-
separated schemes. Let V ⊂ Y be a quasi-compact open andU = f−1(V ). Let T ⊂ V be a
closed subset such that f |U : U → V is an isomorphism over an open neighbourhood of T
in V . Then there exists a V -admissible blowing up Y ′ → Y such that the strict transform
f ′ : X ′ → Y ′ of f is an isomorphism over an open neighbourhood of the closure of T in
Y ′.

Proof. Let T ′ ⊂ V be the complement of the maximal open over which f |U is an
isomorphism. Then T ′, T are closed in V and T ∩T ′ = ∅. Since V is a spectral topological
space, we can find constructible closed subsets Tc, T ′

c with T ⊂ Tc, T ′ ⊂ T ′
c such that

Tc ∩ T ′
c = ∅ (choose a quasi-compact open W of V containing T ′ not meeting T and

set Tc = V \W , then choose a quasi-compact open W ′ of V containing Tc not meeting
T ′ and set T ′

c = V \W ′). By Lemma 33.2 we may, after replacing Y by a V -admissible
blowing up, assume that Tc and T ′

c have disjoint closures in Y . Set Y0 = Y \ T ′
c, V0 =

V \ T ′
c , U0 = U ×V V0, and X0 = X ×Y Y0. Since U0 → V0 is an isomorphism, we can

find a V0-admissible blowing up Y ′
0 → Y0 such that the strict transform X ′

0 of X0 maps
isomorphically toY ′

0 , see Lemma 31.3. By Divisors, Lemma 34.3 there exists aV -admissible
blow up Y ′ → Y whose restriction to Y0 is Y ′

0 → Y0. If f ′ : X ′ → Y ′ denotes the strict
transform of f , then we see what we want is true because f ′ restricts to an isomorphism
over Y ′

0 . �

Lemma 33.4. Let S be a quasi-compact and quasi-separated scheme. LetU → X1 and
U → X2 be open immersions of schemes over S and assume U , X1, X2 of finite type and
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separated over S. Then there exists a commutative diagram

X ′
1

��

// X X ′
2

oo

��
X1 Uoo

`` OO >>

// X2

of schemes over S where X ′
i → Xi is a U -admissible blowup, X ′

i → X is an open immer-
sion, and X is separated and finite type over S.

Proof. Throughout the proof all schemes will be separated of finite type over S.
This in particular implies these schemes are quasi-compact and quasi-separated and the
morphisms between them are quasi-compact and separated. See Schemes, Sections 19 and
21. We will use that if U → W is an immersion of such schemes over S , then the scheme
theoretic imageZ ofU inW is a closed subscheme ofW andU → Z is an open immersion,
U ⊂ Z is scheme theoretically dense, and U ⊂ Z is dense topologically. See Morphisms,
Lemma 7.7.

Let X12 ⊂ X1 ×S X2 be the scheme theoretic image of U → X1 ×S X2. The projections
pi : X12 → Xi induce isomorphisms p−1

i (U)→ U by Morphisms, Lemma 6.8. Choose a
U -admissible blowupXi

i → Xi such that the strict transformXi
12 ofX12 is isomorphic to

an open subscheme of Xi
i , see Lemma 31.3. Let Ii ⊂ OXi be the corresponding finite type

quasi-coherent sheaf of ideals. Recall that Xi
12 → X12 is the blowup in p−1

i IiOX12 , see
Divisors, Lemma 33.2. Let X ′

12 be the blowup of X12 in p−1
1 I1p

−1
2 I2OX12 , see Divisors,

Lemma 32.12 for what this entails. We obtain in particular a commutative diagram

X ′
12

��

// X2
12

��
X1

12
// X12

where all the morphisms are U -admissible blowing ups. Since Xi
12 ⊂ Xi

i is an open we
may choose a U -admissible blowup X ′

i → Xi
i restricting to X ′

12 → Xi
12, see Divisors,

Lemma 34.3. Then X ′
12 ⊂ X ′

i is an open subscheme and the diagram

X ′
12

��

// X ′
i

��
Xi

12
// Xi

i

is commutative with vertical arrows blowing ups and horizontal arrows open immersions.
Note that X ′

12 → X ′
1 ×S X ′

2 is an immersion and proper (use that X ′
12 → X12 is proper

and X12 → X1 ×S X2 is closed and X ′
1 ×S X ′

2 → X1 ×S X2 is separated and apply
Morphisms, Lemma 41.7). Thus X ′

12 → X ′
1 ×S X ′

2 is a closed immersion. It follows
that if we define X by glueing X ′

1 and X ′
2 along the common open subscheme X ′

12, then
X → S is of finite type and separated (Lemma 33.1). As compositions of U -admissible
blowups are U -admissible blowups (Divisors, Lemma 34.2) the lemma is proved. �

Lemma 33.5. Let X → S and Y → S be morphisms of schemes. Let U ⊂ X be
an open subscheme. Let V → X ×S Y be a quasi-compact morphism whose composition
with the first projection maps into U . Let Z ⊂ X ×S Y be the scheme theoretic image of



33. NAGATA COMPACTIFICATION 3435

V → X ×S Y . Let X ′ → X be a U -admissible blowup. Then the scheme theoretic image
of V → X ′ ×S Y is the strict transform of Z with respect to the blowing up.

Proof. Denote Z ′ → Z the strict transform. The morphism Z ′ → X ′ induces a
morphism Z ′ → X ′ ×S Y which is a closed immersion (as Z ′ is a closed subscheme of
X ′ ×X Z by definition). Thus to finish the proof it suffices to show that the scheme
theoretic image Z ′′ of V → Z ′ is Z ′. Observe that Z ′′ ⊂ Z ′ is a closed subscheme such
that V → Z ′ factors through Z ′′. Since both V → X×S Y and V → X ′×S Y are quasi-
compact (for the latter this follows from Schemes, Lemma 21.14 and the fact that X ′ ×S
Y → X×S Y is separated as a base change of a proper morphism), by Morphisms, Lemma
6.3 we see thatZ∩(U×SY ) = Z ′′∩(U×SY ). Thus the inclusion morphismZ ′′ → Z ′ is
an isomorphism away from the exceptional divisorE of Z ′ → Z. However, the structure
sheaf of Z ′ does not have any nonzero sections supported on E (by definition of strict
transforms) and we conclude that the surjection OZ′ → OZ′′ must be an isomorphism.

�

Lemma 33.6. LetS be a quasi-compact and quasi-separated scheme. LetU be a scheme
of finite type and separated over S. Let V ⊂ U be a quasi-compact open. If V has a
compactification V ⊂ Y over S , then there exists a V -admissible blowing up Y ′ → Y
and an open V ⊂ V ′ ⊂ Y ′ such that V → U extends to a proper morphism V ′ → U .

Proof. Consider the scheme theoretic image Z ⊂ Y ×S U of the “diagonal” mor-
phism V → Y ×S U . If we replace Y by a V -admissible blowing up, then Z is replaced
by the strict transform with respect to this blowing up, see Lemma 33.5. Hence by Lemma
31.3 we may assume Z → Y is an open immersion. If V ′ ⊂ Y denotes the image, then we
see that the induced morphism V ′ → U is proper because the projection Y ×S U → U is
proper and V ′ ∼= Z is a closed subscheme of Y ×S U . �

The following lemma is formulated in the Noetherian case only. The version for quasi-
compact and quasi-separated schemes is true as well, but will be trivially implied by the
main theorem in this section.

Lemma 33.7. Let S be a Noetherian scheme. Let U be a scheme of finite type and
separated over S. Let U = U1 ∪ U2 be opens such that U1 and U2 have compactifications
over S and such that U1 ∩ U2 is dense in U . Then U has a compactification over S.

Proof. Choose a compactification Ui ⊂ Xi for i = 1, 2. We may assume Ui is
scheme theoretically dense in Xi. We may assume there is an open Vi ⊂ Xi and a proper
morphism ψi : Vi → U extending id : Ui → Ui, see Lemma 33.6. Picture

Ui //

��

Vi //

ψi~~

Xi

U

If {i, j} = {1, 2} denoteZi = U \Uj = Ui\(U1∩U2) andZj = U \Ui = Uj \(U1∩U2).
Thus we have

U = U1 q Z2 = Z1 q U2 = Z1 q (U1 ∩ U2)q Z2

Denote Zi,i ⊂ Vi the inverse image of Zi under ψi. Observe that ψi is an isomorphism
over an open neighbourhood of Zi. Denote Zi,j ⊂ Vi the inverse image of Zj under ψi.
Observe that ψi : Zi,j → Zj is a proper morphism. Since Zi and Zj are disjoint closed
subsets of U , we see that Zi,i and Zi,j are disjoint closed subsets of Vi.
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Denote Zi,i and Zi,j the closures of Zi,i and Zi,j in Xi. After replacing Xi by a Vi-
admissible blowup we may assume that Zi,i and Zi,j are disjoint, see Lemma 33.2. We
assume this holds for both X1 and X2. Observe that this property is preserved if we
replace Xi by a further Vi-admissible blowup.

Set V12 = V1 ×U V2. We have an immersion V12 → X1 ×S X2 which is the composition
of the closed immersion V12 = V1 ×U V2 → V1 ×S V2 (Schemes, Lemma 21.9) and the
open immersion V1 ×S V2 → X1 ×S X2. Let X12 ⊂ X1 ×S X2 be the scheme theoretic
image of V12 → X1 ×S X2. The projection morphisms

p1 : X12 → X1 and p2 : X12 → X2

are proper as X1 and X2 are proper over S. If we replace X1 by a V1-admissible blowing
up, thenX12 is replaced by the strict transform with respect to this blowing up, see Lemma
33.5.

Denote ψ : V12 → U the compositions ψ = ψ1 ◦ p1|V12 = ψ2 ◦ p2|V12 . Consider the
closed subscheme

Z12,2 = (p1|V12)−1(Z1,2) = (p2|V12)−1(Z2,2) = ψ−1(Z2) ⊂ V12

The morphism p1|V12 : V12 → V1 is an isomorphism over an open neighbourhood of
Z1,2 because ψ2 : V2 → U is an isomorphism over an open neighbourhood of Z2 and
V12 = V1 ×U V2. By Lemma 33.3 there exists a V1-admissible blowing up X ′

1 → X1
such that the strict tranform p′

1 : X ′
12 → X ′

1 of p1 is an isomorphism over an open
neighbourhood of the closure of Z1,2 in X ′

1. After replacing X1 by X ′
1 and X12 by X ′

12
we may assume that p1 is an isomorphism over an open neighbourhood of Z1,2.

The reduction of the previous paragraph tells us that

X12 ∩ (Z1,2 ×S Z2,1) = ∅

where the intersection taken in X1 ×S X2. Namely, the inverse image p−1
1 (Z1,2) in X12

maps isomorphically to Z1,2. In particular, we see that Z12,2 is dense in p−1
1 (Z1,2). Thus

p2 maps p−1
1 (Z1,2) into Z2,2. Since Z2,2 ∩ Z2,1 = ∅ we conclude.

Consider the schemes

Wi = U
∐

Ui
(Xi \ Zi,j), i = 1, 2

obtained by glueing. Let us apply Lemma 33.1 to see that Wi → S is separated. First,
U → S and Xi → S are separated. The immersion Ui → U ×S (Xi \ Zi,j) is closed
because any specialization ui  u with ui ∈ Ui and u ∈ U \ Ui can be lifted uniquely to
a specialization ui  vi in Vi along the proper morphism ψi : Vi → U and then vi must
be in Zi,j . Thus the image of the immersion is closed, whence the immersion is a closed
immersion.

On the other hand, for any valuation ring A over S with fraction field K and any mor-
phism γ : Spec(K)→ (U1∩U2) over S , there is an i and an extension of γ to a morphism
hi : Spec(A) → Wi. Namely, for both i = 1, 2 there is a morphism gi : Spec(A) → Xi

extending γ by the valuative criterion of properness forXi overS , see Morphisms, Lemma
42.1. Thus we only are in trouble if gi(mA) ∈ Zi,j for i = 1, 2. This is impossible by the
emptyness of the intersection of X12 and Z1,2 ×S Z2,1 we proved above.
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Consider a diagram
W ′

1

��

// W W ′
2

oo

��
W1 Uoo

`` OO >>

// W2

as in Lemma 33.4. By the previous paragraph for every solid diagram

Spec(K)
γ

//

��

W

��
Spec(A)

;;

// S

where Im(γ) ⊂ U1∩U2 there is an i and an extension hi : Spec(A)→Wi of γ. Using the
valuative criterion of properness forW ′

i →Wi, we can then lifthi toh′
i : Spec(A)→W ′

i .
Hence the dotted arrow in the diagram exists. SinceW is separated over S , we see that the
arrow is unique as well. This implies that W → S is universally closed by Morphisms,
Lemma 42.2. As W → S is already of finite type and separated, we win. �

Theorem 33.8. Let S be a quasi-compact and quasi-separated scheme. LetX → S be
a separated, finite type morphism. Then X has a compactification over S.

Proof. We first reduce to the Noetherian case. We strongly urge the reader to skip
this paragraph. There exists a closed immersion X → X ′ with X ′ → S of finite pre-
sentation and separated. See Limits, Proposition 9.6. If we find a compactification of X ′

over S , then taking the scheme theoretic image of X in this will give a compactification
of X over S. Thus we may assume X → S is separated and of finite presentation. We
may write S = limSi as a directed limit of a system of Noetherian schemes with affine
transition morphisms. See Limits, Proposition 5.4. We can choose an i and a morphism
Xi → Si of finite presentation whose base change to S is X → S , see Limits, Lemma
10.1. After increasing i we may assume Xi → Si is separated, see Limits, Lemma 8.6. If
we can find a compactification of Xi over Si, then the base change of this to S will be a
compactification ofX over S. This reduces us to the case discussed in the next paragraph.

Assume S is Noetherian. We can choose a finite affine open covering X =
⋃
i=1,...,n Ui

such that U1 ∩ . . . ∩Un is dense in X . This follows from Properties, Lemma 29.4 and the
fact that X is quasi-compact with finitely many irreducible components. For each i we
can choose an ni ≥ 0 and an immersion Ui → Ani

S by Morphisms, Lemma 39.2. Hence
Ui has a compactification over S for i = 1, . . . , n by taking the scheme theoretic image in
Pni
S . Applying Lemma 33.7 (n− 1) times we conclude that the theorem is true. �

34. The h topology

For us, loosely speaking, an h sheaf is a sheaf for the Zariski topology which satisfies the
sheaf property for surjective proper morphisms of finite presentation, see Lemma 34.17.
However, it may be worth pointing out that the definition of the h topology on the cate-
gory of schemes depends on the reference.

Voevodsky initially defined an h covering to be a finite collection of finite type morphisms
which are jointly universally submersive (Morphisms, Definition 24.1). See [?, Definition
3.1.2]. This definition works best if the underlying category of schemes is restricted to
all schemes of finite type over a fixed Noetherian base scheme. In this setting, Voevodsky
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relates h coverings to ph coverings. The ph topology is generated by Zariski coverings and
proper surjective morphisms. See Topologies, Section 8 for more information.
In Topologies, Section 10 we study the V topology. A quasi-compact morphism X → Y
defines a V covering, if any specialization of points of Y is the image of a specialization of
points in X and the same is true after any base change (Topologies, Lemma 10.13). In this
caseX → Y is universally submersive (Topologies, Lemma 10.14). It turns out the notion
of a V covering is a good replacement for “families of morphisms with fixed target which
are jointly universally submersive” when working with non-Noetherian schemes.
Our approach will be to first prove the equivalence between ph covers and V coverings for
(possibly infinite) families of morphisms which are locally of finite presentation. We will
then use these families as our notion of h coverings in the Stacks project. For Noether-
ian schemes and finite families these coverings match those in Voevodsky’s definition, see
Lemma 34.3. On the category of schemes of finite presentation over a fixed quasi-compact
and quasi-separated scheme S these coverings determine the same topology as the one in
[?, Definition 2.7].

Lemma 34.1. Let {fi : Xi → X}i∈I be a family of morphisms of schemes with fixed
target with fi locally of finite presentation for all i. The following are equivalent

(1) {Xi → X} is a ph covering, and
(2) {Xi → X} is a V covering.

Proof. Let U ⊂ X be affine open. Looking at Topologies, Definitions 8.4 and 10.7
it suffices to show that the base change {Xi ×X U → U} can be refined by a standard ph
covering if and only if it can be refined by a standard V covering. Thus we may assume
X is affine and we have to show {Xi → X} can be refined by a standard ph covering if
and only if it can be refined by a standard V covering. Since a standard ph covering is a
standard V covering, see Topologies, Lemma 10.3 it suffices to prove the other implication.
AssumeX is affine and assume {fi : Xi → X}i∈I can be refined by a standard V covering
{gj : Yj → X}j=1,...,m. For each j choose an ij and a morphism hj : Yj → Xij such
that gj = fij ◦ hj . Since Yj is affine hence quasi-compact, for each j we can find finitely
many affine opens Uj,k ⊂ Xij such that Im(hj) ⊂

⋃
Uj,k. Then {Uj,k → X}j,k refines

{Xi → X} and is a standard V covering (as it is a finite family of morphisms of affines
and it inherits the lifting property for valuation rings from the corresponding property
of {Yj → X}). Thus we reduce to the case discussed in the next paragraph.
Assume {fi : Xi → X}i=1,...,n is a standard V covering with fi of finite presentation.
We have to show that {Xi → X} can be refined by a standard ph covering. Choose a
generic flatness stratification

X = S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅
as in More on Morphisms, Lemma 54.2 for the finitely presented morphism∐

i=1,...,n
fi :

∐
i=1,...,n

Xi −→ X

of affines. We are going to use all the properties of the stratification without further men-
tion. By construction the base change of each fi to Uk = Sk \ Sk+1 is flat. Denote Yk
the scheme theoretic closure of Uk in Sk. Since Uk → Sk is a quasi-compact open im-
mersion (see Properties, Lemma 24.1), we see that Uk ⊂ Yk is a quasi-compact dense (and
scheme theoretically dense) open immersion, see Morphisms, Lemma 6.3. The morphism∐
k=0,...,t−1 Yk → X is finite surjective, hence {Yk → X} is a standard ph covering
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and hence a standard V covering (see above). By the transitivity property of standard V
coverings (Topologies, Lemma 10.5) it suffices to show that the pullback of the covering
{Xi → X} to each Yk can be refined by a standard V covering. This reduces us to the case
described in the next paragraph.

Assume {fi : Xi → X}i=1,...,n is a standard V covering with fi of finite presentation and
there is a dense quasi-compact open U ⊂ X such that Xi ×X U → U is flat. By Theorem
30.7 there is a U -admissible blowupX ′ → X such that the strict transform f ′

i : X ′
i → X ′

of fi is flat. Observe that the projective (hence closed) morphism X ′ → X is surjective as
U ⊂ X is dense and as U is identified with an open ofX ′. After replacingX ′ by a further
U -admissible blowup if necessary, we may also assume U ⊂ X ′ is scheme theoretically
dense (see Remark 30.1). Hence for every point x ∈ X ′ there is a valuation ring V and a
morphism g : Spec(V ) → X ′ such that the generic point of Spec(V ) maps into U and
the closed point of Spec(V ) maps to x, see Morphisms, Lemma 6.5. Since {Xi → X} is a
standard V covering, we can choose an extension of valuation rings V ⊂ W , an index i,
and a morphism Spec(W )→ Xi such that the diagram

Spec(W )

��

// Xi

��
Spec(V ) // X ′ // X

is commutative. SinceX ′
i ⊂ X ′×XXi is a closed subscheme containing the openU×XXi,

since Spec(W ) is an integral scheme, and since the induced morphism h : Spec(W ) →
X ′ ×X Xi maps the generic point of Spec(W ) into U ×X Xi, we conclude that h factors
through the closed subschemeX ′

i ⊂ X ′×X Xi. We conclude that {f ′
i : X ′

i → X ′} is a V
covering. In particular,

∐
f ′
i is surjective. In particular {X ′

i → X ′} is an fppf covering.
Since an fppf covering is a ph covering (More on Morphisms, Lemma 48.7), we can find
a standard ph covering {Yj → X ′} refining {X ′

i → X}. Say this covering is given by a
proper surjective morphism Y → X ′ and a finite affine open covering Y =

⋃
Yj . Then

the compositionY → X is proper surjective and we conclude that {Yj → X} is a standard
ph covering. This finishes the proof. �

Here is our definition.

Definition 34.2. Let T be a scheme. A h covering of T is a family of morphisms {fi :
Ti → T}i∈I such that each fi is locally of finite presentation and one of the equivalent
conditions of Lemma 34.1 is satisfied.

For Noetherian schemes this is the same thing as a ph covering (we record this in Lemma
34.4 below) and we recover Voevodsky’s notion.

Lemma 34.3. Let X be a Noetherian scheme. Let {Xi → X}i∈I be a finite family of
finite type morphisms. The following are equivalent

(1)
∐
i∈I Xi → X is universally submersive (Morphisms, Definition 24.1), and

(2) {Xi → X}i∈I is an h covering.

Proof. The implication (2)⇒ (1) follows from the more general Topologies, Lemma
10.14 and our definition of h covers. Assume

∐
Xi → X is universally submersive. We

will show that {Xi → X} can be refined by a ph covering; this will suffice by Topologies,
Lemma 8.7 and our definition of h coverings. The argument will be the same as the one
used in the proof of Lemma 34.1.
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Choose a generic flatness stratification

X = S ⊃ S0 ⊃ S1 ⊃ . . . ⊃ St = ∅

as in More on Morphisms, Lemma 54.2 for the finitely presented morphism∐
i=1,...,n

fi :
∐

i=1,...,n
Xi −→ X

We are going to use all the properties of the stratification without further mention. By
construction the base change of each fi to Uk = Sk \ Sk+1 is flat. Denote Yk the scheme
theoretic closure of Uk in Sk. Since Uk → Sk is a quasi-compact open immersion (all
schemes in this paragraph are Noetherian), we see that Uk ⊂ Yk is a quasi-compact dense
(and scheme theoretically dense) open immersion, see Morphisms, Lemma 6.3. The mor-
phism

∐
k=0,...,t−1 Yk → X is finite surjective, hence {Yk → X} is a ph covering. By

the transitivity property of ph coverings (Topologies, Lemma 8.8) it suffices to show that
the pullback of the covering {Xi → X} to each Yk can be refined by a ph covering. This
reduces us to the case described in the next paragraph.

Assume
∐
Xi → X is universally submersive and there is a dense open U ⊂ X such

that Xi ×X U → U is flat for all i. By Theorem 30.7 there is a U -admissible blowup
X ′ → X such that the strict transform f ′

i : X ′
i → X ′ of fi is flat for all i. Observe that

the projective (hence closed) morphism X ′ → X is surjective as U ⊂ X is dense and as U
is identified with an open of X ′. After replacing X ′ by a further U -admissible blowup if
necessary, we may also assume U ⊂ X ′ is dense (see Remark 30.1). Hence for every point
x ∈ X ′ there is a discrete valuation ring A and a morphism g : Spec(A)→ X ′ such that
the generic point of Spec(A) maps into U and the closed point of Spec(A) maps to x, see
Limits, Lemma 15.1. Set

W = Spec(A)×X
∐

Xi =
∐

Spec(A)×X Xi

Since
∐
Xi → X is universally submersive, there is a specialization w′  w in W such

that w′ maps to the generic point of Spec(A) and w maps to the closed point of Spec(A).
(If not, then the closed fibre ofW → Spec(A) is stable under generalizations, hence open,
which contradicts the fact thatW → Spec(A) is submersive.) Sayw′ ∈ Spec(A)×XXi so
of coursew ∈ Spec(A)×XXi as well. Let x′

i  xi be the image ofw′  w inX ′×XXi.
Since x′

i ∈ X ′
i and sinceX ′

i ⊂ X ′×XXi is a closed subscheme we see that xi ∈ X ′
i . Since

xi maps to x ∈ X ′ we conclude that
∐
X ′
i → X ′ is surjective! In particular {X ′

i → X ′}
is an fppf covering. But an fppf covering is a ph covering (More on Morphisms, Lemma
48.7). Since X ′ → X is proper surjective, we conclude that {X ′

i → X} is a ph covering
and the proof is complete. �

Lemma 34.4. Let X be a locally Noetherian scheme. A family of morphisms {fi :
Xi → X}i∈I with target X is an h covering if and only if it is a ph covering.

Proof. By Definition 34.2 a h covering is a ph covering. Conversely, if {fi : Xi →
X} is a ph covering, then the morphisms fi are locally of finite type (Topologies, Defini-
tion 8.4). SinceX is locally Noetherian, each fi is locally of finite presentation and we see
that we have a h covering by definition. �

The following lemma and [?, Theorem 8.4] shows our definition agrees with (or at least is
closely related to) the definition in the paper [?] by David Rydh. We restrict to affine base
for simplicity.
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Lemma 34.5. Let X be an affine scheme. Let {Xi → X}i∈I be an h covering. Then
there exists a surjective proper morphism

Y −→ X

of finite presentation (!) and a finite affine open covering Y =
⋃
j=1,...,m Yj such that

{Yj → X}j=1,...,m refines {Xi → X}i∈I .

Proof. By assumption there exists a proper surjective morphism Y → X and a finite
affine open covering Y =

⋃
j=1,...,m Yj such that {Yj → X}j=1,...,m refines {Xi →

X}i∈I . This means that for each j there is an index ij ∈ I and a morphism hj : Yj → Xij

over X . See Definition 34.2 and Topologies, Definition 8.4. The problem is that we don’t
know that Y → X is of finite presentation. By Limits, Lemma 13.2 we can write

Y = lim Yλ

as a directed limit of schemes Yλ proper and of finite presentation over X such that the
morphisms Y → Yλ and the the transition morphisms are closed immersions. Observe
that each Yλ → X is surjective. By Limits, Lemma 4.11 we can find a λ and quasi-compact
opens Yλ,j ⊂ Yλ, j = 1, . . . ,m covering Yλ and restricting to Yj in Y . Then Yj =
limYλ,j . After increasing λ we may assume Yλ,j is affine for all j , see Limits, Lemma
4.13. Finally, since Xi → X is locally of finite presentation we can use the functorial
characterization of morphisms which are locally of finite presentation (Limits, Proposition
6.1) to find aλ such that for each j there is a morphismhλ,j : Yλ,j → Xij whose restriction
to Yj is the morphism hj chosen above. Thus {Yλ,j → X} refines {Xi → X} and the
proof is complete. �

We return to the development of the general theory of h coverings.

Lemma 34.6. An fppf covering is a h covering. Hence syntomic, smooth, étale, and
Zariski coverings are h coverings as well.

Proof. This is true because in an fppf covering the morphisms are required to be
locally of finite presentation and because fppf coverings are ph covering, see More on
Morphisms, Lemma 48.7. The second statement follows from the first and Topologies,
Lemma 7.2. �

Lemma 34.7. Let f : Y → X be a surjective proper morphism of schemes which is
of finite presentation. Then {Y → X} is an h covering.

Proof. Combine Topologies, Lemmas 10.10 and 8.6. �

Lemma 34.8. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms
such that fi is locally of finite presentation for all i. The following are equivalent

(1) {Ti → T}i∈I is an h covering,
(2) there is an h covering which refines {Ti → T}i∈I , and
(3) {

∐
i∈I Ti → T} is an h covering.

Proof. This follows from the analogous statement for ph coverings (Topologies, Lemma
8.7) or from the analogous statement for V coverings (Topologies, Lemma 10.8). �

Next, we show that our notion of an h covering satisfies the conditions of Sites, Definition
6.2.

Lemma 34.9. Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is an h covering of T .
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(2) If {Ti → T}i∈I is an h covering and for each i we have an h covering {Tij →
Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is an h covering.

(3) If {Ti → T}i∈I is an h covering and T ′ → T is a morphism of schemes then
{T ′ ×T Ti → T ′}i∈I is an h covering.

Proof. Follows immediately from the corresponding statement for either ph or V
coverings (Topologies, Lemma 8.8 or 10.9) and the fact that the class of morphisms which
are locally of finite presentation is preserved under base change and composition. �

Next, we define the big h sites we will work with in the Stacks project. It makes sense to
read the general discussion in Topologies, Section 2 before proceeding.

Definition 34.10. A big h site is any site Schh as in Sites, Definition 6.2 constructed
as follows:

(1) Choose any set of schemes S0, and any set of h coverings Cov0 among these
schemes.

(2) As underlying category take any category Schα constructed as in Sets, Lemma
9.2 starting with the set S0.

(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category
Schα and the class of h coverings, and the set Cov0 chosen above.

See the remarks following Topologies, Definition 3.5 for motivation and explanation re-
garding the definition of big sites.

Definition 34.11. Let T be an affine scheme. A standard h covering of T is a family
{fi : Ti → T}i=1,...,n with each Ti affine, with fi of finite presentation satisfying either
of the following equivalent conditions: (1) {Ui → U} can be refined by a standard ph
covering or (2) {Ui → U} is a V covering.

The equivalence of the conditions follows from Lemma 34.1, Topologies, Definition 8.4,
and Lemma 8.7.
Before we continue with the introduction of the big h site of a scheme S , let us point out
that the topology on a big h site Schh is in some sense induced from the h topology on the
category of all schemes.

Lemma 34.12. Let Schh be a big h site as in Definition 34.10. Let T ∈ Ob(Schh). Let
{Ti → T}i∈I be an arbitrary h covering of T .

(1) There exists a covering {Uj → T}j∈J of T in the site Schh which refines {Ti →
T}i∈I .

(2) If {Ti → T}i∈I is a standard h covering, then it is tautologically equivalent to a
covering of Schh.

(3) If {Ti → T}i∈I is a Zariski covering, then it is tautologically equivalent to a
covering of Schh.

Proof. Omitted. Hint: this is exactly the same as the proof of Topologies, Lemma
8.10. �

Definition 34.13. Let S be a scheme. Let Schh be a big h site containing S.
(1) The big h site of S , denoted (Sch/S)h, is the site Schh/S introduced in Sites,

Section 25.
(2) The big affine h site of S , denoted (Aff/S)h, is the full subcategory of (Sch/S)h

whose objects are affineU/S. A covering of (Aff/S)h is any covering {Ui → U}
of (Sch/S)h which is a standard h covering.
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We explicitly state that the big affine h site is a site.

Lemma 34.14. Let S be a scheme. Let Schh be a big h site containing S. Then
(Aff/S)h is a site.

Proof. Reasoning as in the proof of Topologies, Lemma 4.9 it suffices to show that
the collection of standard h coverings satisfies properties (1), (2) and (3) of Sites, Definition
6.2. This is clear since for example, given a standard h covering {Ti → T}i∈I and for each
i a standard h covering {Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a h covering (Lemma
34.9),

⋃
i∈I Ji is finite and each Tij is affine. Thus {Tij → T}i∈I,j∈Ji is a standard h

covering. �

Lemma 34.15. Let S be a scheme. Let Schh be a big h site containing S. The under-
lying categories of the sites Schh, (Sch/S)h, and (Aff/S)h have fibre products. In each
case the obvious functor into the category Sch of all schemes commutes with taking fibre
products. The category (Sch/S)h has a final object, namely S/S.

Proof. For Schh it is true by construction, see Sets, Lemma 9.9. Suppose we have
U → S , V → U , W → U morphisms of schemes with U, V,W ∈ Ob(Schh). The fibre
product V ×U W in Schh is a fibre product in Sch and is the fibre product of V/S with
W/S over U/S in the category of all schemes over S , and hence also a fibre product in
(Sch/S)h. This proves the result for (Sch/S)h. If U, V,W are affine, so is V ×U W and
hence the result for (Aff/S)h. �

Next, we check that the big affine site defines the same topos as the big site.

Lemma 34.16. Let S be a scheme. Let Schh be a big h site containing S. The func-
tor (Aff/S)h → (Sch/S)h is cocontinuous and induces an equivalence of topoi from
Sh((Aff/S)h) to Sh((Sch/S)h).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1. Denote the
inclusion functor u : (Aff/S)h → (Sch/S)h. Being cocontinuous follows because any h
covering of T/S , T affine, can be refined by a standard h covering for example by Lemma
34.5. Hence (1) holds. We see u is continuous simply because a standard h covering is a
h covering. Hence (2) holds. Parts (3) and (4) follow immediately from the fact that u is
fully faithful. And finally condition (5) follows from the fact that every scheme has an
affine open covering (which is a h covering). �

Lemma 34.17. Let F be a presheaf on (Sch/S)h. Then F is a sheaf if and only if
(1) F satisfies the sheaf condition for Zariski coverings, and
(2) if f : V → U is proper, surjective, and of finite presentation, then F(U) maps

bijectively to the equalizer of the two maps F(V )→ F(V ×U V ).
Moreover, in the presence of (1) property (2) is equivalent to property

(2’) the sheaf property for {V → U} as in (2) with U affine.

Proof. We will show that if (1) and (2) hold, then F is sheaf. Let {Ti → T} be
a covering in (Sch/S)h. We will verify the sheaf condition for this covering. Let si ∈
F(Ti) be sections which restrict to the same section over Ti ×T Ti′ . We will show that
there exists a unique section s ∈ F(T ) restricting to si over Ti. Let T =

⋃
Uj be an

affine open covering. By property (1) it suffices to produce sections sj ∈ F(Uj) which
agree on Uj ∩ Uj′ in order to produce s. Consider the coverings {Ti ×T Uj → Uj}.
Then sji = si|Ti×TUj are sections agreeing over (Ti ×T Uj) ×Uj (Ti′ ×T Uj). Choose
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a proper surjective morphism Vj → Uj of finite presentation and a finite affine open
covering Vj =

⋃
Vjk such that {Vjk → Uj} refines {Ti ×T Uj → Uj}. See Lemma 34.5.

If sjk ∈ F(Vjk) denotes the pullback of sji to Vjk by the implied morphisms, then we
find that sjk glue to a section s′

j ∈ F(Vj). Using the agreement on overlaps once more,
we find that s′

j is in the equalizer of the two maps F(Vj)→ F(Vj ×Uj Vj). Hence by (2)
we find that s′

j comes from a unique section sj ∈ F(Uj). We omit the verification that
these sections sj have all the desired properties.

Proof of the equivalence of (2) and (2’) in the presence of (1). Suppose V → U is a mor-
phism of (Sch/S)h which is proper, surjective, and of finite presentation. Choose an affine
open coveringU =

⋃
Ui and set Vi = V ×U Ui. Then we see thatF(U)→ F(V ) is injec-

tive because we knowF(Ui)→ F(Vi) is injective by (2’) and we knowF(U)→
∏
F(Ui)

is injective by (1). Finally, suppose that we are given an t ∈ F(V ) in the equalizer of
the two maps F(V ) → F(V ×U V ). Then t|Vi is in the equalizer of the two maps
F(Vi) → F(Vi ×Ui Vi) for all i. Hence we obtain a unique section si ∈ F(Ui) map-
ping to t|Vi for all i by (2’). We omit the verification that si|Ui∩Uj = sj |Ui∩Uj for all
i, j; this uses the uniqueness property just shown. By the sheaf property for the covering
U =

⋃
Ui we obtain a section s ∈ F(U). We omit the proof that smaps to t inF(V ). �

Next, we establish some relationships between the topoi associated to these sites.

Lemma 34.18. Let Schh be a big h site. Let f : T → S be a morphism in Schh. The
functor

u : (Sch/T )h −→ (Sch/S)h, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)h −→ (Sch/T )h, (U → S) 7−→ (U ×S T → T ).
They induce the same morphism of topoi

fbig : Sh((Sch/T )h) −→ Sh((Sch/S)h)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functoru is cocontinuous, continuous, and commutes with fibre products
and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for
f−1
big and the existence of fbig!. Moreover, the functor v is a right adjoint because given
U/T and V/S we have MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may
apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. �

Lemma 34.19. Given schemes X , Y , Y in (Sch/S)h and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big .

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 34.18. �

35. More on the h topology

In this section we prove a few more results on the h topology. First, some non-examples.

Example 35.1. The “structure sheaf”O is not a sheaf in the h topology. For example,
consider a surjective closed immersion of finite presentation X → Y . Then {X → Y } is
an h covering for example by Lemma 34.7. Moreover, note thatX×Y X = X . Thus ifO
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where a sheaf in the h topology, then OY (Y ) → OX(X) would be bijective. This is not
the case as soon as X , Y are affine and the morphism X → Y is not an isomorphism.

Example 35.2. On any of the sites (Sch/S)h the topology is not subcanonical, in
other words, representable sheaves are not sheaves. Namely, the “structure sheaf” O is
representable because O(X) = MorS(X,A1

S) in (Sch/S)h and we saw in Example 35.1
thatO is not a sheaf.

Lemma 35.3. Let T be an affine scheme which is written as a limit T = limi∈I Ti of
a directed inverse system of affine schemes.

(1) Let V = {Vj → T}j=1,...,m be a standard h covering of T , see Definition 34.11.
Then there exists an index i and a standard h coveringVi = {Vi,j → Ti}j=1,...,m
whose base change T ×Ti Vi to T is isomorphic to V .

(2) Let Vi, V ′
i be a pair of standard h coverings of Ti. If f : T ×Ti Vi → T ×Ti V ′

i is
a morphism of coverings of T , then there exists an index i′ ≥ i and a morphism
fi′ : Ti′ ×Ti V → Ti′ ×Ti V ′

i whose base change to T is f .
(3) If f, g : V → V ′

i are morphisms of standard h coverings of Ti whose base changes
fT , gT to T are equal then there exists an index i′ ≥ i such that fTi′ = gTi′ .

In other words, the category of standard h coverings of T is the colimit over I of the
categories of standard h coverings of Ti.

Proof. By Limits, Lemma 10.1 the category of schemes of finite presentation over T
is the colimit over I of the categories of finite presentation over Ti. By Limits, Lemma 8.2
the same is true for category of schemes which are affine and of finite presentation over
T . To finish the proof of the lemma it suffices to show that if {Vj,i → Ti}j=1,...,m is a
finite family of finitely presented morphisms with Vj,i affine, and the base change family
{T ×Ti Vj,i → T} is an h covering, then for some i′ ≥ i the family {Ti′ ×Ti Vj,i → Ti′}
is an h covering. To see this we use Lemma 34.5 to choose a finitely presented, proper,
surjective morphism Y → T and a finite affine open covering Y =

⋃
k=1,...,n Yk such

that {Yk → T}k=1,...,n refines {T ×Ti Vj,i → T}. Using the arguments above and Limits,
Lemmas 13.1, 8.15, and 4.11 we can find an i′ ≥ i and a finitely presented, surjective, proper
morphismYi′ → Ti′ and an affine open coveringYi′ =

⋃
k=1,...,n Yi′,k such that moreover

{Yi′,k → Yi′} refines {Ti′ ×Ti Vj,i → Ti′}. It follows that this last mentioned family is a
h covering and the proof is complete. �

Lemma 35.4. Let S be a scheme contained in a big site Schh. Let F : (Sch/S)opph →
Sets be an h sheaf satisfying property (b) of Topologies, Lemma 13.1 with C = (Sch/S)h.
Then the extension F ′ of F to the category of all schemes over S satisfies the sheaf con-
dition for all h coverings and is limit preserving (Limits, Remark 6.2).

Proof. This is proven by the arguments given in the proofs of Topologies, Lemmas
13.3 and 13.4 using Lemmas 35.3 and 34.12. Details omitted. �

36. Blow up squares and the ph topology

LetX be a scheme. Let Z ⊂ X be a closed subscheme such that the inclusion morphism is
of finite presentation, i.e., the quasi-coherent sheaf of ideals corresponding toZ is of finite
type. Let b : X ′ → X be the blowup of X in Z and let E = b−1(Z) be the exceptional



3446 38. MORE ON FLATNESS

divisor. See Divisors, Section 32. In this situation and in this section, let us say

(36.0.1)

E

��

// X ′

b

��
Z // X

is a blow up square.

Lemma 36.1. Let F be a sheaf on a site (Sch/S)ph, see Topologies, Definition 8.11.
Then for any blow up square (36.0.1) in the category (Sch/S)ph the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets.

Proof. Since Z qX ′ → X is a surjective proper morphism we see that {Z qX ′ →
X} is a ph covering (Topologies, Lemma 8.6). We have

(Z qX ′)×X (Z qX ′) = Z q E q E qX ′ ×X X ′

Since F is a Zariski sheaf we see that F sends disjoint unions to products. Thus the sheaf
condition for the covering {ZqX ′ → X} says thatF(X)→ F(Z)×F(X ′) is injective
with image the set of pairs (t, s′) such that (a) t|E = s′|E and (b) s′ is in the equalizer of
the two maps F(X ′)→ F(X ′ ×X X ′). Next, observe that the obvious morphism

E ×Z E qX ′ −→ X ′ ×X X ′

is a surjective proper morphism as b induces an isomorphismX ′\E → X\Z. We conclude
that F(X ′ ×X X ′)→ F(E ×Z E)×F(X ′) is injective. It follows that (a)⇒ (b) which
means that the lemma is true. �

Lemma 36.2. Let F be a sheaf on a site (Sch/S)ph as in Topologies, Definition 8.11.
Let X → X ′ be a morphism of (Sch/S)ph which is a thickening. Then F(X ′)→ F(X)
is bijective.

Proof. Observe that X → X ′ is a proper surjective morphism of and X ×X′ X =
X . By the sheaf property for the ph covering {X → X ′} (Topologies, Lemma 8.6) we
conclude. �

37. Almost blow up squares and the h topology

Consider a blow up square (36.0.1). Although the morphism b : X ′ → X is projective
(Divisors, Lemma 32.13) in general there is no simple way to guarantee that b is of finite
presentation. Since h coverings are constructed using morphisms of finite presentation,
we need a variant. Namely, we will say a commutative diagram

(37.0.1)

E

��

// X ′

b

��
Z // X

of schemes is an almost blow up square if the following conditions are satisfied
(1) Z → X is a closed immersion of finite presentation,
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(2) E = b−1(Z) is a locally principal closed subscheme of X ′,
(3) b is proper and of finite presentation,
(4) the closed subscheme X ′′ ⊂ X ′ cut out by the quasi-coherent ideal of sections

ofOX′ supported on E (Properties, Lemma 24.5) is the blow up of X in Z.
It follows that the morphism b induces an isomorphism X ′ \E → X \Z. For some very
simple examples of almost blow up squares, see Examples 37.10 and 37.11.

The base change of a blow up usually isn’t a blow up, but almost blow ups are compatible
with base change.

Lemma 37.1. Consider an almost blow up square (37.0.1). Let Y → X be any mor-
phism. Then the base change

Y ×X E

��

// Y ×X X ′

��
Y ×X Z // Y

is an almost blow up square too.

Proof. The morphism Y ×X X ′ → Y is proper and of finite presentation by Mor-
phisms, Lemmas 41.5 and 21.4. The morphism Y ×X Z → Y is a closed immersion (Mor-
phisms, Lemma 2.4) of finite presentation. The inverse image of Y ×X Z in Y ×X X ′

is equal to the inverse image of E in Y ×X X ′ and hence is locally principal (Divisors,
Lemma 13.11). Let X ′′ ⊂ X ′, resp. Y ′′ ⊂ Y ×X X ′ be the closed subscheme correspond-
ing to the quasi-coherent ideal of sections of OX′ , resp. OY×YX′ supported on E , resp.
Y ×X E. Clearly, Y ′′ ⊂ Y ×X X ′′ is the closed subscheme corresponding to the quasi-
coherent ideal of sections of OY×YX′′ supported on Y ×X (E ∩ X ′′). Thus Y ′′ is the
strict transform of Y relative to the blowing up X ′′ → X , see Divisors, Definition 33.1.
Thus by Divisors, Lemma 33.2 we see that Y ′′ is the blow up of Y ×X Z on Y . �

One can shrink almost blow up squares.

Lemma 37.2. Consider an almost blow up square (37.0.1). Let W → X ′ be a closed
immersion of finite presentation. The following are equivalent

(1) X ′ \ E is scheme theoretically contained in W ,
(2) the blowup X ′′ of X in Z is scheme theoretically contained in W ,
(3) the diagram

E ∩W

��

// W

��
Z // X

is an almost blow up square. Here E ∩W is the scheme theoretic intersection.

Proof. Assume (1). Then the surjection OX′ → OW is an isomorphism over the
open X ′ ⊂ E. Since the ideal sheaf of X ′′ ⊂ X ′ is the sections of OX′ supported on E
(by our definition of almost blow up squares) we conclude (2) is true. If (2) is true, then
(3) holds. If (3) holds, then (1) holds becauseX ′′ ∩ (X ′ \E) is isomorphic toX \Z which
in turn is isomorphic to X ′ \ E. �

The actual blowup is the limit of shrinkings of any given almost blowup.
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Lemma 37.3. Consider an almost blow up square (37.0.1) withX quasi-compact and
quasi-separated. Then the blowup X ′′ of X in Z can be written as

X ′′ = limX ′
i

where the limit is over the directed system of closed subschemes X ′
i ⊂ X ′ of finite pre-

sentation satisfying the equivalent conditions of Lemma 37.2.

Proof. Let I ⊂ OX′ be the quasi-coherent sheaf of ideals corresponding to X ′′. By
Properties, Lemma 22.3 we can write I as the filtered colimit I = colim Ii of its quasi-
coherent submodules of finite type. Since these modules correspond 1-to-1 to the closed
subschemes X ′

i the proof is complete. �

Almost blow up squares exist.

Lemma 37.4. Let X be a quasi-compact and quasi-separated scheme. Let Z ⊂ X be a
closed subscheme cut out by a finite type quasi-coherent sheaf of ideals. Then there exists
an almost blow up square as in (37.0.1).

Proof. We may write X = limXi as a directed limit of an inverse system of Noe-
therian schemes with affine transition morphisms, see Limits, Proposition 5.4. We can
find an index i and a closed immersion Zi → Xi whose base change to X is the closed
immersion Z → X . See Limits, Lemmas 10.1 and 8.5. Let bi : X ′

i → Xi be the blowing
up with center Zi. This produces a blow up square

Ei //

��

X ′
i

bi

��
Zi // Xi

where all the morphisms are finite type morphisms of Noetherian schemes and hence of
finite presentation. Thus this is an almost blow up square. By Lemma 37.1 the base change
of this diagram to X produces the desired almost blow up square. �

Almost blow up squares are unique up to shrinking as in Lemma 37.2.

Lemma 37.5. LetX be a quasi-compact and quasi-separated scheme and letZ ⊂ X be
a closed subscheme cut out by a finite type quasi-coherent sheaf of ideals. Suppose given
almost blow up squares (37.0.1)

Ek //

��

X ′
k

��
Z // X

for k = 1, 2, then there exists an almost blow up square

E //

��

X ′

��
Z // X

and closed immersions ik : X ′ → X ′
k over X with E = i−1

k (Ek).
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Proof. Denote X ′′ → X the blowing up of Z in X . We view X ′′ as a closed sub-
scheme of both X ′

1 and X ′
2. Write X ′′ = limX ′

1,i as in Lemma 37.3. By Limits, Propo-
sition 6.1 there exists an i and a morphism h : X ′

1,i → X ′
2 agreeing with the inclusions

X ′′ ⊂ X ′
1,i and X ′′ ⊂ X ′

2. By Limits, Lemma 4.20 the restriction of h to X ′
1,i′ is a closed

immersion for some i′ ≥ i. This finishes the proof. �

Our flattening techniques for blowing up are inherited by almost blowups in favorable
situations.

Lemma 37.6. Let Y be a quasi-compact and quasi-separated scheme. Let X be a
scheme of finite presentation over Y . Let V ⊂ Y be a quasi-compact open such that
XV → V is flat. Then there exist a commutative diagram

E

��

  

Doo

��

~~
Y ′

��

X ′oo

��
Y Xoo

Z

>>

Too

``

whose right and left hand squares are almost blow up squares, whose lower and top squares
are cartesian, such that Z ∩ V = ∅, and such that X ′ → Y ′ is flat (and of finite presenta-
tion).

Proof. IfY is a Noetherian scheme, then this lemma follows immediately from Lemma
31.1 because in this case blow up squares are almost blow up squares (we also use that strict
transforms are blow ups). The general case is reduced to the Noetherian case by absolute
Noetherian approximation.
We may write Y = lim Yi as a directed limit of an inverse system of Noetherian schemes
with affine transition morphisms, see Limits, Proposition 5.4. We can find an index i
and a morphism Xi → Yi of finite presentation whose base change to Y is X → Y .
See Limits, Lemmas 10.1. After increasing i we may assume V is the inverse image of
an open subscheme Vi ⊂ Yi, see Limits, Lemma 4.11. Finally, after increasing i we may
assume that Xi,Vi → Vi is flat, see Limits, Lemma 8.7. By the Noetherian case, we may
construct a diagram as in the lemma for Xi → Yi ⊃ Vi. The base change of this diagram
by Y → Yi provides the solution. Use that base change preserves properties of morphisms,
see Morphisms, Lemmas 41.5, 21.4, 2.4, and 25.8 and that base change of an almost blow
up square is an almost blow up square, see Lemma 37.1. �

Lemma 37.7. LetF be a sheaf on one of the sites (Sch/S)h constructed in Definition
34.13. Then for any almost blow up square (37.0.1) in the category (Sch/S)h the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets.
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Proof. Since Z qX ′ → X is a surjective proper morphism of finite presentation we
see that {Z qX ′ → X} is an h covering (Lemma 34.7). We have

(Z qX ′)×X (Z qX ′) = Z q E q E qX ′ ×X X ′

Since F is a Zariski sheaf we see that F sends disjoint unions to products. Thus the sheaf
condition for the covering {ZqX ′ → X} says thatF(X)→ F(Z)×F(X ′) is injective
with image the set of pairs (t, s′) such that (a) t|E = s′|E and (b) s′ is in the equalizer of
the two maps F(X ′)→ F(X ′ ×X X ′). Next, observe that the obvious morphism

E ×Z E qX ′ −→ X ′ ×X X ′

is a surjective proper morphism of finite presentation as b induces an isomorphism X ′ \
E → X \ Z. We conclude that F(X ′ ×X X ′) → F(E ×Z E) × F(X ′) is injective. It
follows that (a)⇒ (b) which means that the lemma is true. �

Lemma 37.8. LetF be a sheaf on one of the sites (Sch/S)h constructed in Definition
34.13. Let X → X ′ be a morphism of (Sch/S)h which is a thickening and of finite
presentation. Then F(X ′)→ F(X) is bijective.

Proof. First proof. Observe that X → X ′ is a proper surjective morphism of finite
presentation and X ×X′ X = X . By the sheaf property for the h covering {X → X ′}
(Lemma 34.7) we conclude.
Second proof (silly). The blow up of X ′ in X is the empty scheme. The reason is that the
affine blowup algebra A[ Ia ] (Algebra, Section 70) is zero if a is a nilpotent element of A.
Details omitted. Hence we get an almost blow up square of the form

∅ //

��

∅

��
X // X ′

Since F is a sheaf we have that F(∅) is a singleton. Applying Lemma 37.7 we get the
conclusion. �

Proposition 37.9. Let F be a presheaf on one of the sites (Sch/S)h constructed in
Definition 34.13. Then F is a sheaf if and only if the following conditions are satisfied

(1) F is a sheaf for the Zariski topology,
(2) given a morphism f : X → Y of (Sch/S)h with Y affine and f surjective, flat,

proper, and of finite presentation, then F(Y ) is the equalizer of the two maps
F(X)→ F(X ×Y X),

(3) given an almost blow up square (37.0.1) withX affine in the category (Sch/S)h
the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets.

Proof. Assume F is a sheaf. Condition (1) holds because a Zariski covering is a h
covering, see Lemma 34.6. Condition (2) holds because for f as in (2) we have that {X →
Y } is an fppf covering (this is clear) and hence an h covering, see Lemma 34.6. Condition
(3) holds by Lemma 37.7.
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Conversely, assume F satisfies (1), (2), and (3). We will prove F is a sheaf by applying
Lemma 34.17. Consider a surjective, finitely presented, proper morphism f : X → Y in
(Sch/S)h with Y affine. It suffices to show that F(Y ) is the equalizer of the two maps
F(X)→ F(X ×Y X).

First, assume that f : X → Y is in addition a closed immersion (in other words, f is a
thickening). Then the blow up of Y inX is the empty scheme and this produces an almost
blow up square consisting with ∅, ∅, X, Y at the vertices (compare with the second proof
of Lemma 37.8). Hence we see that condition (3) tells us that

F(∅) F(∅)oo

F(X)

OO

F(Y )

OO

oo

is cartesian in the category of sets. Since F is a sheaf for the Zariski topology, we see that
F(∅) is a singleton. Hence we see that F(X) = F(Y ).

Interlude A: let T → T ′ be a morphism of (Sch/S)h which is a thickening and of finite
presentation. Then F(T ′) → F(T ) is bijective. Namely, choose an affine open covering
T ′ =

⋃
T ′
i and let Ti = T ×T ′ T ′

i be the corresponding affine opens of T . Then we have
F(T ′

i ) → F(Ti) is bijective for all i by the result of the previous paragraph. Using the
Zariski sheaf property we see that F(T ′) → F(T ) is injective. Repeating the argument
we find that it is bijective. Minor details omitted.

Interlude B: consider an almost blow up square (37.0.1) in the category (Sch/S)h. Then
we claim the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets. This is a consequence of condition (3) as follows by
choosing an affine open covering ofX and arguing as in Interlude A. We omit the details.

Next, let f : X → Y be a surjective, finitely presented, proper morphism in (Sch/S)h
with Y affine. Choose a generic flatness stratification

Y ⊃ Y0 ⊃ Y1 ⊃ . . . ⊃ Yt = ∅

as in More on Morphisms, Lemma 54.2 for f : X → Y . We are going to use all the
properties of the stratification without further mention. Set X0 = X ×Y Y0. By the
Interlude B we haveF(Y0) = F(Y ),F(X0) = F(X), andF(X0×Y0X0) = F(X×Y X).

We are going to prove the result by induction on t. If t = 1 then X0 → Y0 is surjective,
proper, flat, and of finite presentation and we see that the result holds by property (2). For
t > 1 we may replace Y by Y0 and X by X0 (see above) and assume Y = Y0.
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Consider the quasi-compact open subscheme V = Y \ Y1 = Y0 \ Y1. Choose a diagram

E

��

  

Doo

��

~~
Y ′

��

X ′oo

��
Y Xoo

Z

>>

Too

``

as in Lemma 37.6 for f : X → Y ⊃ V . Then f ′ : X ′ → Y ′ is flat and of finite
presentation. Also f ′ is proper (use Morphisms, Lemmas 41.4 and 41.7 to see this). Thus
the imageW = f ′(X ′) ⊂ Y ′ is an open (Morphisms, Lemma 25.10) and closed subscheme
of Y ′. Observe that Y ′ \E is contained in W . By Lemma 37.2 this means we may replace
Y ′ byW in the above diagram. In other words, we may and do assume f ′ is surjective. At
this point we know that

F(E) F(Y ′)oo

F(Z)

OO

F(Y )

OO

oo

and

F(D) F(X ′)oo

F(T )

OO

F(X)

OO

oo

are cartesian by Interlude B. Note that Z ∩ Y1 → Z is a thickening of finite presentation
(asZ is set theoretically contained in Y1 as a closed subscheme of Y disjoint from V ). Thus
we obtain a filtration

Z ⊃ Z ∩ Y1 ⊃ Z ∩ Y2 ⊂ . . . ⊂ Z ∩ Yt = ∅

as above for the restriction T = Z ×Y X → Z of f to T . Thus by induction hypothesis
we find that F(Z)→ F(T ) is an injective map of sets whose image is the equalizer of the
two maps F(T )→ F(T ×Z T ).

Let s ∈ F(X) be in the equalizer of the two maps F(X) → F(X ×Y X). By the above
we see that the restriction s|T comes from a unique element t ∈ F(Z) and similarly that
the restriction s|X′ comes from a unique element t′ ∈ F(Y ′). Chasing sections using
the restriction maps forF corresponding to the arrows in the huge commutative diagram
above the reader finds that t and t′ restrict to the same element of F(E) because they
restrict to the same element ofF(D) and we have (2); here we use thatD → E is surjective,
flat, proper, and of finite presentation as the restriction of X ′ → Y ′. Thus by the first of
the two cartesian squares displayed above we get a unique section u ∈ F(Y ) restricting
to t and t′ on Z and Y ′. To see that u restrict to s on X use the second diagram. �

Example 37.10. Let A be a ring. Let f ∈ A be an element. Let J ⊂ A be a finitely
generated ideal annihilated by a power of f . Then

E = Spec(A/fA+ J) //

��

Spec(A/J) = X ′

��
Z = Spec(A/fA) // Spec(A) = X
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is an almost blowup square.

Example 37.11. Let A be a ring. Let f1, f2 ∈ A be elements.

E = Proj(A/(f1, f2)[T0, T1]) //

��

Proj(A[T0, T1]/(f2T0 − f1T1) = X ′

��
Z = Spec(A/(f1, f2)) // Spec(A) = X

is an almost blowup square.

Lemma 37.12. Let F be a presheaf on one of the sites (Sch/S)h constructed in Defi-
nition 34.13. Then F is a sheaf if and only if the following conditions are satisfied

(1) F is a sheaf for the Zariski topology,
(2) given a morphism f : X → Y of (Sch/S)h with Y affine and f surjective, flat,

proper, and of finite presentation, then F(Y ) is the equalizer of the two maps
F(X)→ F(X ×Y X),

(3) F turns an almost blow up square as in Example 37.10 in the category (Sch/S)h
into a cartesian diagram of sets, and

(4) F turns an almost blow up square as in Example 37.11 in the category (Sch/S)h
into a cartesian diagram of sets.

Proof. By Proposition 37.9 it suffices to show that given an almost blow up square
(37.0.1) with X affine in the category (Sch/S)h the diagram

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

is cartesian in the category of sets. The rough idea of the proof is to dominate the mor-
phism by other almost blowup squares to which we can apply assumptions (3) and (4)
locally.
Suppose we have an almost blow up square (37.0.1) in the category (Sch/S)h, an open
covering X =

⋃
Ui, and open coverings Ui ∩ Uj =

⋃
Uijk such that the diagrams

F(E ∩ b−1(Ui)) F(b−1(Ui))oo

F(Z ∩ Ui)

OO

F(Ui)

OO

oo

and

F(E ∩ b−1(Uijk)) F(b−1(Uijk))oo

F(Z ∩ Uijk)

OO

F(Uijk)

OO

oo

are cartesian, then the same is true for

F(E) F(X ′)oo

F(Z)

OO

F(X)

OO

oo

This follows as F is a sheaf in the Zariski topology.
In particular, if we have a blow up square (37.0.1) such that b : X ′ → X is a closed immer-
sion andZ is a locally principal closed subscheme, then we see thatF(X) = F(X ′)×F(E)
F(Z). Namely, affine locally on X we obtain an almost blow up square as in (3).



3454 38. MORE ON FLATNESS

Let Z ⊂ X , Ek ⊂ X ′
k → X , E ⊂ X ′ → X , and ik : X ′ → X ′

k be as in the statement of
Lemma 37.5. Then

E

��

// X ′

��
Ek // X ′

k

is an almost blow up square of the kind discussed in the previous paragraph. Thus

F(X ′
k) = F(X ′)×F(E) F(Ek)

for k = 1, 2 by the result of the previous paragraph. It follows that

F(X) −→ F(X ′
k)×F(Ek) F(Z)

is bijective for k = 1 if and only if it is bijective for k = 2. Thus given a closed immersion
Z → X of finite presentation with X quasi-compact and quasi-separated, whether or not
F(X) = F(X ′) ×F(E) F(Z) is independent of the choice of the almost blow up square
(37.0.1) one chooses. (Moreover, by Lemma 37.4 there does indeed exist an almost blow
up square for Z ⊂ X .)

Finally, consider an affine objectX of (Sch/S)h and a closed immersion Z → X of finite
presentation. We will prove the desired property for the pair (X,Z) by induction on the
number of generators r for the ideal defining Z in X . If the number of generators is ≤ 2,
then we can choose our almost blow up square as in Example 37.11 and we conclude by
assumption (4).

Induction step. Suppose X = Spec(A) and Z = Spec(A/(f1, . . . , fr)) with r > 2.
Choose a blow up square (37.0.1) for the pair (X,Z). Set Z1 = Spec(A/(f1, f2)) and let

E1

��

// Y

��
Z1 // X

be the almost blow up square constructed in Example 37.11. By Lemma 37.1 the base
changes

(I)

Y ×X E //

��

Y ×X X ′

��
Y ×X Z // Y

and (II)

E //

��

Z1 ×X X ′

��
Z // Z1

are almost blow up squares. The ideal of Z in Z1 is generated by r − 2 elements. The
ideal of Y ×X Z is generated by the pullbacks of f1, . . . , fr to Y . Locally on Y the ideal
generated by f1, f2 can be generated by one element, thus Y ×X Z is affine locally on Y
cut out by at most r − 1 elements. By induction hypotheses and the discussion above

F(Y ) = F(Y ×X X ′)×F(Y×XE) F(Y ×X Z)
and

F(Z1) = F(Z1 ×X X ′)×F(E) F(Z)
By assumption (4) we have

F(X) = F(Y )×F(E1) F(Z1)
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Now suppose we have a pair (s′, t) with s′ ∈ F(X ′) and t ∈ F(Z) with same restriction in
F(E). Then (s′|Z1 ×X X ′, t) are the image of a unique element t1 ∈ F(Z1). Similarly,
(s′|Y×XX′ , t|Y×XZ) are the image of a unique element sY ∈ F(Y ). We claim that sY and
t1 restrict to the same element of F(E1). This is true because the almost blow up square

E1 ×X E //

��

E1 ×X X ′

��
E1 ×X Z // E1

is the base change of almost blow up square (I) viaE1 → Y and the base change of almost
blow up square (II) viaE1 → Z1 and because the pairs of sections used to construct sY and
t1 match. Thus by the third fibre product equality we see that there is a unique s ∈ F(X)
mapping to sY in F(Y ) and to t1 in F(Z). We omit the verification that s maps to s′

in F(X ′) and to t in F(Z); hint: use uniqueness of s just constructed and work affine
locally. �

Lemma 37.13. Let p : S → (Sch/S)h be a category fibred in groupoids. Then S is a
stack in groupoids if and only if the following conditions are satisfied

(1) S is a stack in groupoids for the Zariski topology,
(2) given a morphism f : X → Y of (Sch/S)h with Y affine and f surjective, flat,

proper, and of finite presentation, then

SY −→ SX ×SX×Y X
SX

is an equivalence of categories,
(3) for an almost blow up square as in Example 37.10 or 37.11 in the category (Sch/S)h

the functor
SX −→ SZ ×SE SX′

is an equivalence of categories.

Proof. This lemma is a formal consequence of Lemma 37.12 and our defnition of
stacks in groupoids. For example, assume (1), (2), (3). To show that S is a stack, we have
to prove descent for morphisms and objects, see Stacks, Definition 5.1.

Ifx, y are objects ofS over an objectU of (Sch/S)h, then our assumptions imply Isom(x, y)
is a presheaf on (Sch/U)h which satisfies (1), (2), (3), and (4) of Lemma 37.12 and therefore
is a sheaf. Some details omitted.

Let {Ui → U}i∈I be a covering of (Sch/S)h. Let (xi, ϕij) be a descent datum inS relative
to the family {Ui → U}i∈I , see Stacks, Definition 3.1. Consider the rule F which to
V/U in (Sch/U)h associates the set of pairs (y, ψi) where y is an object of SV and ψi :
y|Ui×UV → xi|Ui×UV is a morphism of S over Ui ×U V such that

ϕij |Ui×UUj×UV ◦ ψi|Ui×UUj×UV = ψj |Ui×UUj×UV

up to isomorphism. Since we already have descent for morphisms, it is clear that F (V/U)
is either empty or a singleton set. On the other hand, we have F (Ui0/U) is nonempty
because it contains (xi0 , ϕi0i). Since our goal is to prove that F (U/U) is nonempty, it
suffices to show that F is a sheaf on (Sch/U)h. To do this we may use the criterion of
Lemma 37.12. However, our assumptions (1), (2), (3) imply (by drawing some commutative
diagrams which we omit), that properties (1), (2), (3), and (4) of Lemma 37.12 hold for F .
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We omit the verification that if S is a stack in groupoids, then (1), (2), and (3) are satisfied.
�

38. Absolute weak normalization and h coverings

In this section we use the criteria found in Section 37 to exhibit some h sheaves and we
relate h sheafification of the structure sheaf to absolute weak normalization. We will need
the following elementary lemma to do this.

Lemma 38.1. LetZ,X,X ′, E be an almost blow up square as in Example 37.11. Then
Hp(X ′,OX′) = 0 for p > 0 and Γ(X,OX) → Γ(X ′,OX′) is a surjective map of rings
whose kernel is an ideal of square zero.

Proof. First assume that A = Z[f1, f2] is the polynomial ring. In this case our
almost blow up square is the blowing up of X = Spec(A) in the closed subscheme Z and
in fact X ′ ⊂ P1

X is an effective Cartier divisor cut out by the global section f2T0 − f1T1
ofOP1

X
(1). Thus we have a resolution

0→ OP1
X

(−1)→ OP1
X
→ OX′ → 0

Using the description of the cohomology given in Cohomology of Schemes, Section 8 it
follows that in this case Γ(X,OX)→ Γ(X ′,OX′) is an isomorphism andH1(X ′,OX′) =
0.

Next, we observe that any diagram as in Example 37.11 is the base change of the diagram
in the previous paragraph by the ring map Z[f1, f2]→ A. Hence by More on Morphisms,
Lemmas 72.1, 72.2, and 72.4 we conclude that H1(X ′,OX′) is zero in general and the
surjectivity of the map H0(X,OX)→ H0(X ′,OX′) in general.

Next, in the general case, let us study the kernel. If a ∈ A maps to zero, then looking on
affine charts we see that

a = (f1x− f2)(a0 + a1x+ . . .+ arx
r) in A[x]

for some r ≥ 0 and a0, . . . , ar ∈ A and similarly

a = (f1 − f2y)(b0 + b1y + . . .+ bsy
s) in A[y]

for some s ≥ 0 and b0, . . . , bs ∈ A. This means we have

a = f2a0, f1a0 = f2a1, . . . , f1ar = 0, a = f1b0, f2b0 = f1b1, . . . , f2bs = 0
If (a′, r′, a′

i, s
′, b′

j) is a second such system, then we have

aa′ = f1f2a0b
′
0 = f1f2a1b

′
1 = f1f2a2b

′
2 = . . . = 0

as desired. �

For an Fp-algebra A we set colimF A equal to the colimit of the system

A
F−→ A

F−→ A
F−→ . . .

where F : A→ A, a 7→ ap is the Frobenius endomorphism.

Lemma 38.2. Let p be a prime number. Let S be a scheme over Fp. Let (Sch/S)h be
a site as in Definition 34.13. There is a unique sheaf F on (Sch/S)h such that

F(X) = colimF Γ(X,OX)
for any quasi-compact and quasi-separated object X of (Sch/S)h.
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Proof. Denote F the Zariski sheafification of the functor
X −→ colimF Γ(X,OX)

For quasi-compact and quasi-separated schemes X we have F(X) = colimF Γ(X,OX).
by Sheaves, Lemma 29.1 and the fact that O is a sheaf for the Zariski topology. Thus it
suffices to show that F is a h sheaf. To prove this we check conditions (1), (2), (3), and
(4) of Lemma 37.12. Condition (1) holds because we performed an (almost unnecessary)
Zariski sheafification. Condition (2) holds because O is an fppf sheaf (Descent, Lemma
8.1) and if A is the equalizer of two maps B → C of Fp-algebras, then colimF A is the
equalizer of the two maps colimF B → colimF C.
We check condition (3). Let A, f, J be as in Example 37.10. We have to show that

colimF A = colimF A/J ×colimF A/fA+J colimF A/fA

This reduces to the following algebra question: suppose a′, a′′ ∈ A are such that Fn(a′ −
a′′) ∈ fA+ J . Find a ∈ A andm ≥ 0 such that a−Fm(a′) ∈ J and a−Fm(a′′) ∈ fA
and show that the pair (a,m) is uniquely determined up to a replacement of the form
(a,m) 7→ (F (a),m + 1). To do this just write Fn(a′ − a′′) = fh + g with h ∈ A and
g ∈ J and set a = Fn(a′)− g = Fn(a′′) + fh and setm = n. To see uniqueness, suppose
(a1,m1) is a second solution. By a replacement of the form given above we may assume
m = m1. Then we see that a − a1 ∈ J and a − a1 ∈ fA. Since J is annihilated by a
power of f we see that a− a1 is a nilpotent element. Hence F k(a− a1) is zero for some
large k. Thus after doing more replacements we get a = a1.
We check condition (4). Let X,X ′, Z,E be as in Example 37.11. By Lemma 38.1 we see
that

F(X) = colimF Γ(X,OX) −→ colimF Γ(X ′,OX′) = F(X ′)
is bijective. Since E = P1

Z in this case we also see that F(Z) → F(E) is bijective. Thus
the conclusion holds in this case as well. �

Let p be a prime number. For an Fp-algebra A we set limF A equal to the limit of the
inverse system

. . .
F−→ A

F−→ A
F−→ A

where F : A→ A, a 7→ ap is the Frobenius endomorphism.

Lemma 38.3. Let p be a prime number. Let S be a scheme over Fp. Let (Sch/S)h be
a site as in Definition 34.13. The rule

F(X) = limF Γ(X,OX)
defines a sheaf on (Sch/S)h.

Proof. To prove F is a sheaf, let’s check conditions (1), (2), (3), and (4) of Lemma
37.12. Condition (1) holds because limits of sheaves are sheaves and O is a Zariski sheaf.
Condition (2) holds becauseO is an fppf sheaf (Descent, Lemma 8.1) and ifA is the equal-
izer of two maps B → C of Fp-algebras, then limF A is the equalizer of the two maps
limF B → limF C.
We check condition (3). Let A, f, J be as in Example 37.10. We have to show that

limF A→ limF A/J ×limF A/fA+J limF A/fA

= limF (A/J ×A/fA+J A/fA)
= limF A/(fA ∩ J)
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is bijective. Since J is annihilated by a power of f we see that a = fA ∩ J is a nilpotent
ideal, i.e., there exists an n such that an = 0. It is straightforward to verify that in this
case limF A→ limF A/a is bijective.

We check condition (4). Let X,X ′, Z,E be as in Example 37.11. By Lemma 38.1 and the
same argument as above we see that

F(X) = limF Γ(X,OX) −→ limF Γ(X ′,OX′) = F(X ′)

is bijective. Since E = P1
Z in this case we also see that F(Z) → F(E) is bijective. Thus

the conclusion holds in this case as well. �

In the following lemma we use the absolute weak normalizationXawn of a schemeX , see
Morphisms, Section 47.

Lemma 38.4. Let (Sch/S)ph be a site as in Topologies, Definition 8.11. The rule

X 7−→ Γ(Xawn,OXawn)

is a sheaf on (Sch/S)ph.

Proof. To proveF is a sheaf, let’s check conditions (1) and (2) of Topologies, Lemma
8.15. Condition (1) holds because formation of Xawn commutes with open coverings, see
Morphisms, Lemma 47.7 and its proof.

Let π : Y → X be a surjective proper morphism. We have to show that the equalizer of
the two maps

Γ(Y awn,OY awn)→ Γ((Y ×X Y )awn,O(Y×XY )awn)

is equal to Γ(Xawn,OXawn). Let f be an element of this equalizer. Then we consider the
morphism

f : Y awn −→ A1
X

Since Y awn → X is universally closed, the scheme theoretic image Z of f is a closed
subscheme of A1

X proper overX and f : Y awn → Z is surjective. See Morphisms, Lemma
41.10. Thus Z → X is finite (Morphisms, Lemma 44.11) and surjective.

Let k be a field and let z1, z2 : Spec(k)→ Z be two morphisms equalized by Z → X . We
claim that z1 = z2. It suffices to show the images λi = z∗

i f ∈ k agree (as the structure
sheaf of Z is generated by f over the structure sheaf of X). To see this we choose a field
extension K/k and morphisms y1, y2 : Spec(K) → Y awn such that zi ◦ (Spec(K) →
Spec(k)) = f ◦ yi. This is possible by the surjectivity of the map Y awn → Z. Choose
an algebraically closed extension Ω/k of very large cardinality. For any k-algebra maps
σi : K → Ω we obtain

Spec(Ω) σ1,σ2−−−→ Spec(K ⊗k K) y1,y2−−−→ Y awn ×X Y awn

Since the canonical morphism (Y ×XY )awn → Y awn×XY awn is a universal homeomor-
phism and since Ω is algebraically closed, we can lift the composition above uniquely to a
morphism Spec(Ω) → (Y ×X Y )awn. Since f is in the equalizer above, this proves that
σ1(λ1) = σ2(λ2). An easy lemma about field extensions shows that this implies λ1 = λ2;
details omitted.

We conclude that Z → X is universally injective, i.e., Z → X is injective on points and
induces purely inseparated residue field extensions (Morphisms, Lemma 10.2). All in all
we conclude that Z → X is a universal homeomorphism, see Morphisms, Lemma 45.5.
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Let g : Xawn → Z be the map obtained from the universal property of Xawn. Then
Y awn → Xawn → Z and f : Y awn → Z are two morphisms over X . By the universal
property of Y awn → Y the two corresponding morphisms Y awn → Y ×X Z over Y
have to be equal. This implies that g ◦ πwan = f as morphisms into A1

X and we conclude
that g ∈ Γ(Xawn,OXawn) is the element we were looking for. �

Lemma 38.5. Let S be a scheme. Choose a site (Sch/S)h as in Definition 34.13. The
rule

X 7−→ Γ(Xawn,OXawn)
is the sheafification of the “structure sheaf”O on (Sch/S)h. Similarly for the ph topology.

Proof. In Lemma 38.4 we have seen that the rule F of the lemma defines a sheaf
in the ph topology and hence a fortiori a sheaf for the h topology. Clearly, there is a
canonical map of presheaves of ringsO → F . To finish the proof, it suffices to show

(1) if f ∈ O(X) maps to zero in F(X), then there is a h covering {Xi → X} such
that f |Xi = 0, and

(2) given f ∈ F(X) there is a h covering {Xi → X} such that f |Xi is the image of
fi ∈ O(Xi).

Let f be as in (1). Then f |Xawn = 0. This means that f is locally nilpotent. Thus if X ′ ⊂
X is the closed subscheme cut out by f , then X ′ → X is a surjective closed immersion of
finite presentation. Hence {X ′ → X} is the desired h covering. Let f be as in (2). After
replacing X by the members of an affine open covering we may assume X = Spec(A) is
affine. Then f ∈ Aawn, see Morphisms, Lemma 47.6. By Morphisms, Lemma 46.11 we can
find a ring mapA→ B of finite presentation such that Spec(B)→ Spec(A) is a universal
homeomorphism and such that f is the image of an element b ∈ B under the canonical
map B → Aawn. Then {Spec(B) → Spec(A)} is an h covering and we conclude. The
statement about the ph topology follows in the same manner (or it can be deduced from
the statement for the h topology). �

Let p be a prime number. An Fp-algebraA is called perfect if the mapF : A→ A, x 7→ xp

is an automorphism of A.

Lemma 38.6. Let p be a prime number. An Fp-algebraA is absolutely weakly normal
if and only if it is perfect.

Proof. It is immediate from condition (2)(b) in Morphisms, Definition 47.1 that if
A is absolutely weakly normal, then it is perfect.
Assume A is perfect. Suppose x, y ∈ A with x3 = y2. If p > 3 then we can write
p = 2n + 3m for some n,m > 0. Choose a, b ∈ A with ap = x and bp = y. Setting
c = anbm we have

c2p = x2ny2m = x2n+3m = xp

and hence c2 = x. Similarly c3 = y. If p = 2, then write x = a2 to get a6 = y2 which
implies a3 = y. If p = 3, then write y = a3 to get x3 = a6 which implies x = a2.

Suppose x, y ∈ Awith ``x = y` for some prime number `. If ` 6= p, then a = y/` satsifies
a` = x and `a = y. If ` = p, then y = 0 and x = ap for some a. �

Lemma 38.7. Let p be a prime number.
(1) If A is an Fp-algebra, then colimF A = Aawn.
(2) If S is a scheme over Fp, then the h sheafification of O sends a quasi-compact

and quasi-separated X to colimF Γ(X,OX).
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Proof. Proof of (1). Observe that A → colimF A induces a universal homeomor-
phism on spectra by Algebra, Lemma 46.7. Thus it suffices to show that B = colimF A is
absolutely weakly normal, see Morphisms, Lemma 47.6. Note that the ring map F : B →
B is an automorphism, in other words, B is a perfect ring. Hence Lemma 38.6 applies.

Proof of (2). This follows from (1) and Lemmas 38.2 and 38.5 by looking affine locally. �

39. Descent vector bundles in positive characteristic

A reference for this section is [?].

For a scheme S let us denote Vect(S) the category of finite locally freeOS-modules. Let p
be a prime number. Let S be a quasi-compact and quasi-separated scheme over Fp. In this
section we will work with the category

colimF Vect(S) = colim
(

Vect(S) F∗

−−→ Vect(S) F∗

−−→ Vect(S) F∗

−−→ . . .
)

where F : S → S is the absolute Frobenius morphism. In down to earth terms an object
of this category is a pair (E , n) where E is a finite locally freeOS-module and n ≥ 0 is an
integer. For morphisms we take

HomcolimF Vect(S)((E , n), (G,m)) = colimN HomS(FN−n,∗E , FN−m,∗G)

where F : S → S is the absolute Frobenius morphism of S. Thus the object (E , n) is
isomorphic to the object (F ∗E , n+ 1).

Lemma 39.1. Let p be a prime number. Let S be a quasi-compact and quasi-separated
scheme over Fp. The category colimF Vect(S) is equivalent to the category of finite lo-
cally free modules over the sheaf of rings colimF OS on S.

Proof. Omitted. �

Lemma 39.2. Let p be a prime number. Consider an almost blowup squareX,X ′, Z,E
in characteristic p as in Example 37.10. Then the functor

colimF Vect(X) −→ colimF Vect(Z)×colimF Vect(E) colimF Vect(X ′)

is an equivalence.

Proof. Let A, f, J be as in Example 37.10. Since all our schemes are affine and since
we have internal Hom in the category of vector bundles, the fully faithfulness of the func-
tor follows if we can show that

colimP ⊗A,FN A = colimP ⊗A,FN A/J ×colimP⊗A,FNA/fA+J colimP ⊗A,FN A/fA

for a finite projective A-module P . After writing P as a summand of a finite free module,
this follows from the case where P is finite free. This case immediately reduces to the case
P = A. The case P = A follows from Lemma 38.2 (in fact we proved this case directly in
the proof of this lemma).

Essential surjectivity. Here we obtain the following algebra problem. Suppose P1 is a
finite projective A/J -module, P2 is a finite projective A/fA-module, and

ϕ : P1 ⊗A/J A/fA+ J −→ P2 ⊗A/fA A/fA+ J

is an isomorphism. Goal: show that there exists an N , a finite projective A-module P ,
an isomorphism ϕ1 : P ⊗A A/J → P1 ⊗A/J,FN A/J , and an isomorphism ϕ2 : P ⊗A
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A/fA→ P2⊗A/fA,FN A/fA compatible with ϕ in an obvious manner. This can be seen
as follows. First, observe that

A/(J ∩ fA) = A/J ×A/fA+J A/fA

Hence by More on Algebra, Lemma 6.9 there is a finite projective module P ′ overA/(J ∩
fA) which comes with isomorphismsϕ′

1 : P ′⊗AA/J → P1 andϕ2 : P ′⊗AA/fA→ P2
compatible with ϕ. Since J is a finitely generated ideal and f -power torsion we see that
J ∩ fA is a nilpotent ideal. Hence for some N there is a factorization

A
α−→ A/(J ∩ fA) β−→ A

of FN . Setting P = P ′ ⊗A/(J∩fA),β A we conclude. �

Lemma 39.3. Let p be a prime number. Consider an almost blowup squareX,X ′, Z,E
in characteristic p as in Example 37.11. Then the functor

G : colimF Vect(X) −→ colimF Vect(Z)×colimF Vect(E) colimF Vect(X ′)
is an equivalence.

Proof. Fully faithfulness. Suppose that (E , n) and (F ,m) are objects of colimF Vect(X).
Let (a, b) : G(E , n) → G(F ,m) be a morphism in the RHS. We may choose N � 0 and
think of a as a map a : FN−n,∗E|Z → FN−m,∗F|Z and b as a map b : FN−n,∗E|X′ →
FN−m,∗F|X′ agreeing over E. Choose a finite affine open covering X = X1 ∪ . . . ∪Xn

such that E|Xi and F|Xi are finite freeOXi -modules. For each i the base change

Ei //

��

X ′
i

��
Zi // Xi

is another almost blow up square as in Example 37.11. For these squares we know that

colimF H
0(Xi,OXi) = colimF H

0(Zi,OZi)×colimF H0(Ei,OEi
) colimF H

0(X ′
i,OX′

i
)

by Lemma 38.2 (see proof of the lemma). Hence after increasing N we may assume the
maps a|Zi and b|X′

i
come from maps ci : FN−n,∗E|Xi → FN−m,∗F|Xi . After possibly

increasing N we may assume ci and cj agree on Xi ∩ Xj . Thus these maps glue to give
the desired morphism (E , n)→ (F ,m) in the LHS.

Essential surjectivity. Let (F ,G, ϕ) be a triple consisting of a finite locally freeOZ -module
F , a finite locally free OX′ -module G , and an isomorphism ϕ : F|E → G|E . We have to
show that after replacing this triple by a Frobenius power pullback, it comes from a finite
locally freeOX -module.

Noetherian reduction; we urge the reader to skip this paragraph. Recall thatX = Spec(A)
and Z = Spec(A/(f1, f2)), X ′ = Proj(A[T0, T1]/(f2T0 − f1T1)), and E = P1

Z . By
Limits, Lemma 10.3 we can find a finitely generated Fp-subalgebra A0 ⊂ A contain-
ing f1 and f2 such that the triple (F ,G, ϕ) descends to X0 = Spec(A0) and Z0 =
Spec(A0/(f1, f2)), X ′

0 = Proj(A0[T0, T1]/(f2T0 − f1T1)), and E0 = P1
Z0

. Thus we
may assume our schemes are Noetherian.

AssumeX is Noetherian. We may choose a finite affine open coveringX = X1∪ . . .∪Xn

such that F|Z∩Xi is free. Since we can glue objects of colimF Vect(X) in the Zariski
topology (Lemma 39.1), and since we already know fully faithfulness overXi andXi∩Xj
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(see first paragraph of the proof), it suffices to prove the existence over each Xi. This
reduces us to the case discussed in the next paragraph.

Assume X is Noetherian and F = O⊕r
Z . Using ϕ we get an isomorphism O⊕r

E → G|E .
Let I = (f1, f2) ⊂ A. Let I ⊂ OX′ be the ideal sheaf of E; it is globally generated by f1
and f2. For any n there is a surjection

(In/In+1)⊕r = In/In+1 ⊗OE
G|E −→ InG/In+1G

Hence the first cohomology group of this module is zero. Here we use that E = P1
Z and

hence its structure sheaf and in fact any globally generated quasi-coherent module has
vanishing H1. Compare with More on Morphisms, Lemma 72.3. Then using the short
exact sequences

0→ InG/In+1G → G/In+1G → G/InG → 0
and induction, we see that

limH0(X ′,G/InG)→ H0(E,G|E) = H0(E,O⊕r
E ) = A/I⊕r

is surjective. By the theorem on formal functions (Cohomology of Schemes, Theorem
20.5) this implies that

H0(X ′,G)→ H0(E,G|E) = H0(E,O⊕r
E ) = A/I⊕r

is surjective. Thus we can choose a map α : O⊕r
X′ → G which is compatible with the given

trivialization of G|E . Thus α is an isomorphism over an open neighbourhood of E in X ′.
Thus every point of Z has an affine open neighbourhood where we can solve the problem.
Since X ′ \E → X \Z is an isomorphism, the same holds for points of X not in Z. Thus
another Zariski glueing argument finishes the proof. �

Proposition 39.4. Let p be a prime number. Let S be a scheme in characteristic p.
Then the category fibred in groupoids

p : S −→ (Sch/S)h
whose fibre category over U is the category of finite locally free colimF OU -modules over
U is a stack in groupoids. Moreover, if U is quasi-compact and quasi-separated, then SU
is colimF Vect(U).

Proof. The final assertion is the content of Lemma 39.1. To prove the proposition
we will check conditions (1), (2), and (3) of Lemma 37.13.

Condition (1) holds because by definition we have glueing for the Zariski topology.

To see condition (2), suppose that f : X → Y is a surjective, flat, proper morphism of
finite presentation over S with Y affine. Since Y,X,X ×Y X are quasi-compact and
quasi-separated, we can use the description of fibre categories given in the statement of
the proposition. Then it is clearly enough to show that

Vect(Y ) −→ Vect(X)×Vect(X×YX) Vect(X)

is an equivalence (as this will imply the same for the colimits). This follows immediately
from fppf descent of finite locally free modules, see Descent, Proposition 5.2 and Lemma
7.6.

Condition (3) is the content of Lemmas 39.2 and 39.3. �
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Lemma 39.5. Let f : X → S be a proper morphism with geometrically connected
fibres where S is the spectrum of a discrete valuation ring. Denote η ∈ S the generic point
and denote Xn ⊂ X the closed subscheme cutout by the nth power of a uniformizer on
S. Then there exists an integer n such that the following is true: any finite locally free
OX -module E such that E|Xη and E|Xn are free, is free.

Proof. We first reduce to the case where X → S has a section. Say S = Spec(A).
Choose a closed point ξ of Xη . Choose an extension of discrete valuation rings A ⊂
B such that the fraction field of B is κ(ξ). This is possible by Krull-Akizuki (Algebra,
Lemma 120.18) and the fact that κ(ξ) is a finite extension of the fraction field ofA. By the
valuative criterion of properness (Morphisms, Lemma 42.1) we get a B-valued point τ :
Spec(B)→ X which induces a section σ : Spec(B)→ XB . For a finite locally freeOX -
module E let EB be the pullback to the base changeXB . By flat base change (Cohomology
of Schemes, Lemma 5.2) we see that H0(XB , EB) = H0(X, E) ⊗A B. Thus if EB is free
of rank r, then the sections in H0(X, E) generate the free B-module τ∗E = σ∗EB . In
particular, we can find r global sections s1, . . . , sr of E which generate τ∗E . Then

s1, . . . , sr : O⊕r
X −→ E

is a map of finite locally free OX -modules of rank r and the pullback to XB is a map of
free OXB -modules which restricts to an isomorphism in one point of each fibre. Taking
the determinant we get a function g ∈ Γ(Xη,OXB ) which is invertible in one point of
each fibre. As the fibres are proper and connected, we see that g must be invertible (details
omitted; hint: use Varieties, Lemma 9.3). Thus it suffices to prove the lemma for the base
change XB → Spec(B).

Assume we have a section σ : S → X . Let E be a finite locally free OX -module which is
assumed free on the generic fibre and on Xn (we will choose n later). Choose an isomor-
phism σ∗E = O⊕r

S . Consider the map

K = RΓ(X, E) −→ RΓ(S, σ∗E) = A⊕r

in D(A). Arguing as above, we see E is free if (and only if) the induced map H0(K) =
H0(X, E)→ A⊕r is surjective.

Set L = RΓ(X,O⊕r
X ) and observe that the corresponding map L→ A⊕r has the desired

property. Observe thatK⊗AQ(A) ∼= L⊗AQ(A) by flat base change and the assumption
that E is free on the generic fibre. Let π ∈ A be a uniformizer. Observe that

K ⊗L
A A/π

mA = RΓ(X, E πm−−→ E)

and similarly for L. Denote Etors ⊂ E the coherent subsheaf of sections supported on the
special fibre and similarly for other OX -modules. Choose k > 0 such that (OX)tors →
OX/πkOX is injective (Cohomology of Schemes, Lemma 10.3). Since E is locally free, we
see that Etors ⊂ E/πkE . Then for n ≥ m+ k we have isomorphisms

(E πm−−→ E) ∼= (E/πkE πm−−→ E/πk+mE)
∼= (O⊕r

X /πkO⊕r
X

πm−−→ O⊕r
X /πk+mO⊕r

X )
∼= (O⊕r

X
πm−−→ O⊕r

X )

in D(OX). This determines an isomorphism

K ⊗L
A A/π

mA ∼= L⊗L
A A/π

mA
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in D(A) (holds when n ≥ m+ k). Observe that these isomorphisms are compatible with
pulling back by σ hence in particular we conclude that K ⊗L

A A/π
mA → (A/πmA)⊕r

defines an surjection on degree 0 cohomology modules (as this is true for L). Since A is a
discrete valuation ring, we have

K ∼=
⊕

Hi(K)[−i] and L ∼=
⊕

Hi(L)[−i]

inD(A). See More on Algebra, Example 69.3. The cohomology groupsHi(K) = Hi(X, E)
and Hi(L) = Hi(X,OX)⊕r are finite A-modules by Cohomology of Schemes, Lemma
19.2. By More on Algebra, Lemma 124.3 these modules are direct sums of cyclic modules.
We have seen above that the rank βi of the free part of Hi(K) and Hi(L) are the same.
Next, observe that

Hi(L⊗L
A A/π

mA) = Hi(L)/πmHi(L)⊕Hi+1(L)[πm]

and similarly for K. Let e be the largest integer such that A/πeA occurs as a summand
of Hi(X,OX), or equivalently Hi(L), for some i. Then taking m = e + 1 we see
that Hi(L ⊗L

A A/πmA) is a direct sum of βi copies of A/πmA and some other cyclic
modules each annihilated by πe. By the same reasoning for K and the isomorphism
K ⊗L

A A/πmA ∼= L ⊗L
A A/πmA it follows that Hi(K) cannot have any cyclic sum-

mands of the form A/πlA with l > e. (It also follows that K is isomorphic to L as an
object of D(A), but we won’t need this.) Then the only way the map

H0(K ⊗L
A A/π

e+1A) = H0(K)/πe+1H0(K)⊕H1(K)[πe+1] −→ (A/πe+1A)⊕r

is surjective, is if it is surjective on the first summand. This is what we wanted to show.
(To be precise, the integer n in the statement of the lemma, if there is a section σ, should
be equal to k + e+ 1 where k and e are as above and depend only on X .) �

Lemma 39.6. Let f : X → S be a morphism of schemes. Let E be a finite locally free
OX -module. Assume

(1) f is flat and proper andOS = f∗OX ,
(2) S is a normal Noetherian scheme,
(3) the pullback of E to X ×S Spec(OS,s) is free for every codimension 1 point

s ∈ S.
Then E is isomorphic to the pullback of a finite locally freeOS-module.

Proof. We will prove the canonical map

Φ : f∗f∗E −→ E

is an isomorphism. By flat base change (Cohomology of Schemes, Lemma 5.2) and assump-
tions (1) and (3) we see that the pullback of this to X ×S Spec(OS,s) is an isomorphism
for every codimension 1 point s ∈ S. By Divisors, Lemma 2.11 it suffices to prove that
depth((f∗f∗E)x) ≥ 2 for any point x ∈ X mapping to a point s ∈ S of codimen-
sion ≥ 2. Since f is flat and (f∗f∗E)x = (f∗E)s ⊗OS,s

OX,x, it suffices to prove that
depth((f∗E)s) ≥ 2, see Algebra, Lemma 163.2. Since S is a normal Noetherian scheme
and dim(OS,s) ≥ 2 we have depth(OS,s) ≥ 2, see Properties, Lemma 12.5. Thus we get
what we want from Divisors, Lemma 6.6. �

We can use the results above to prove the following miraculous statement.
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Theorem 39.7. Let p be a prime number. Let Y be a quasi-compact and quasi-
separated scheme over Fp. Let f : X → Y be a proper, surjective morphism of finite
presentation with geometrically connected fibres. Then the functor

colimF Vect(Y ) −→ colimF Vect(X)
is fully faithful with essential image described as follows. Let E be a finite locally free
OX -module. Assume for all y ∈ Y there exists integers ny, ry ≥ 0 such that

Fny,∗E|Xy,red ∼= O
⊕ry
Xy,red

Then for some n ≥ 0 the nth Frobenius power pullback Fn,∗E is the pullback of a finite
locally freeOY -module.

Proof. Proof of fully faithfulness. Since vectorbundles on Y are locally trivial, this
reduces to the statement that

colimF Γ(Y,OY ) −→ colimF Γ(X,OX)
is bijective. Since {X → Y } is an h covering, this will follow from Lemma 38.2 if we can
show that the two maps

colimF Γ(X,OX) −→ colimF Γ(X ×Y X,OX×YX)
are equal. Let g ∈ Γ(X,OX) and denote g1 and g2 the two pullbacks of g toX×YX . Since
Xy,red is geometrically connected, we see thatH0(Xy,red,OXy,red) is a purely inseparable
extension of κ(y), see Varieties, Lemma 9.3. Thus gq|Xy,red comes from an element of κ(y)
for some p-power q (which may depend on y). It follows that gq1 and gq2 map to the same
element of the residue field at any point of (X ×Y X)y = Xy ×y Xy . Hence g1 − g2
restricts to zero on (X ×Y X)red. Hence (g1 − g2)n = 0 for some n which we may take
to be a p-power as desired.

Description of essential image. Let E be as in the statement of the proposition. We first
reduce to the Noetherian case.

Let y ∈ Y be a point and view it as a morphism y → Y from the spectrum of the residue
field into Y . We can write y → Y as a filtered limit of morphisms Yi → Y of finite
presentation with Yi affine. (It is best to prove this yourself, but it also follows formally
from Limits, Lemma 7.2 and 4.13.) For each i set Zi = Yi ×Y X . Then Xy = limZi and
Xy,red = limZi,red. By Limits, Lemma 10.2 we can find an i such that Fny,∗E|Zi,red ∼=
O⊕ry
Zi,red

. Fix i. We have Zi,red = limZi,j where Zi,j → Zi is a thickening of finite
presentation (Limits, Lemma 9.4). Using the same lemma as before we can find a j such that
Fny,∗E|Zi,j ∼= O

⊕ry
Zi,j

. We conclude that for each y ∈ Y there exists a morphism Yy → Y

of finite presentation whose image contains y and a thickening Zy → Yy ×Y X such that
Fny,∗E|Zy ∼= O

⊕ry
Zy

. Observe that the image of Yy → Y is constructible (Morphisms,
Lemma 22.2). Since Y is quasi-compact in the constructible topology (Topology, Lemma
23.2 and Properties, Lemma 2.4) we conclude that there are a finite number of morphisms

Y1 → Y, Y2 → Y, . . . , YN → Y

of finite presentation such that Y =
⋃

Im(Ya → Y ) set theoretically and such that for
each a ∈ {1, . . . , N} there exist integers na, ra ≥ 0 and there is a thickening Za ⊂
Ya ×Y X of finite presentation such that Fna,∗E|Za ∼= O

⊕ra
Za

.

Formulated in this way, the condition descends to an absolute Noetherian approximation.
We stronly urge the reader to skip this paragraph. First write Y = limi∈I Yi as a cofiltered
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limit of schemes of finite type over Fp with affine transition morphisms (Limits, Lemma
7.2). Next, we can assume we have proper morphisms fi : Xi → Yi whose base change
to Y recovers f : X → Y , see Limits, Lemma 10.1. After increasing i we may assume
there exists a finite locally free OXi -module Ei whose pullback to X is isomorphic to E ,
see Limits, Lemma 10.3. Pick 0 ∈ I and denoteE ⊂ Y0 the constructible subset where the
geometric fibres of f0 are connected, see More on Morphisms, Lemma 28.6. Then Y → Y0
maps intoE , see More on Morphisms, Lemma 28.2. Thus Yi → Y0 maps intoE for i� 0,
see Limits, Lemma 4.10. Hence we see that the fibres of fi are geometrically connected for
i � 0. By Limits, Lemma 10.1 for large enough i we can find morphisms Yi,a → Yi of
finite type whose base change to Y recovers Ya → Y , a ∈ {1, . . . , N}. After possibly
increasing i we can find thickenings Zi,a ⊂ Yi,a ×Yi Xi whose base change to Ya ×Y X
recovers Za (same reference as before combined with Limits, Lemmas 8.5 and 8.15). Since
Za = limZi,a we find that after increasing i we may assume Fna,∗Ei|Zi,a ∼= O

⊕ra
Zi,a

, see
Limits, Lemma 10.2. Finally, after increasing i one more time we may assume

∐
Yi,a → Yi

is surjective by Limits, Lemma 8.15. At this point all the assumptions hold for Xi → Yi
and Ei and we see that it suffices to prove result for Xi → Yi and Ei.

Assume Y is of finite type over Fp. To prove the result we will use induction on dim(Y ).
We are trying to find an object of colimF Vect(Y ) which pulls back to the object of colimF Vect(X)
determined by E . By the fully faithfulness already proven and because of Proposition 39.4
it suffices to construct a descent of E after replacing Y by the members of a h covering
and X by the corresponding base change. This means that we may replace Y by a scheme
proper and surjective overY provided this does not increase the dimension ofY . IfT ⊂ T ′

is a thickening of schemes of finite type over Fp then colimF Vect(T ) = colimF Vect(T ′)
as {T → T ′} is a h covering such that T ×T ′ T = T . If T ′ → T is a universal homeo-
morphism of schemes of finite type over Fp, then colimF Vect(T ) = colimF Vect(T ′) as
{T → T ′} is a h covering such that the diagonal T ⊂ T ×T ′ T is a thickening.

Using the general remarks made above, we may and do replace X by its reduction and
we may assume X is reduced. Consider the Stein factorization X → Y ′ → Y , see More
on Morphisms, Theorem 53.4. Then Y ′ → Y is a universal homeomorphism of schemes
of finite type over Fp. By the above we may replace Y by Y ′. Thus we may assume
f∗OX = OY and that Y is reduced. This reduces us to the case discussed in the next
paragraph.

Assume Y is reduced and f∗OX = OY over a dense open subscheme of Y . Then X → Y
is flat over a dense open subscheme V ⊂ Y , see Morphisms, Proposition 27.2. By Lemma
31.1 there is a V -admissible blowing up Y ′ → Y such that the strict transform X ′ of X
is flat over Y ′. Observe that dim(Y ′) = dim(Y ) as Y and Y ′ have a common dense open
subscheme. By More on Morphisms, Lemma 53.7 and the fact that V ⊂ Y ′ is dense all
fibres of f ′ : X ′ → Y ′ are geometrically connected. We still have (f ′

∗OX′)|V = OV .
Write

Y ′ ×Y X = X ′ ∪ E ×Y X

whereE ⊂ Y ′ is the exceptional divisor of the blowing up. By the general remarks above,
it suffices to prove existence for Y ′ ×Y X → Y ′ and the restriction of E to Y ′ ×Y X .
Suppose that we find some object ξ′ in colimF Vect(Y ′) pulling back to the restriction of
E to X ′ (viewed as an object of the colimit category). By induction on dim(Y ) we can
find an object ξ′′ in colimF Vect(E) pulling back to the restriction of E toE×Y X . Then
the fully faithfullness determines a unique isomorphism ξ′|E → ξ′′ compatible with the
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given identifications with the restriction of E to E ×Y ′ X ′. Since

{E ×Y X → Y ′ ×Y X,X ′ → Y ′ ×Y X}
is a h covering given by a pair of closed immersions with

(E ×Y X)×(Y ′×YX) X
′ = E ×Y ′ X ′

we conclude that ξ′ pulls back to the restriction of E to Y ′ ×Y X . Thus it suffices to find
ξ′ and we reduce to the case discussed in the next paragraph.

Assume Y is reduced, f is flat, and f∗OX = OY over a dense open subscheme of Y . In
this case we consider the normalization Y ν → Y (Morphisms, Section 54). This is a finite
surjective morphism (Morphisms, Lemma 54.10 and 18.2) which is an isomorphism over a
dense open. Hence by our general remarks we may replace Y by Y ν and X by Y ν ×Y X .
After this replacement we see thatOY = f∗OX (because the Stein factorization has to be
an isomorphism in this case; small detail omitted).

Assume Y is a normal Noetherian scheme, that f is flat, and that f∗OX = OY . After re-
placing E by a suitable Frobenius power pullback, we may assume E is trivial on the scheme
theoretic fibres of f at the generic points of the irreducible components of Y (because
colimF Vect(−) is an equivalence on universal homeomorphisms, see above). Similarly to
the arguments above (in the reduction to the Noetherian case) we conclude there is a dense
open subscheme V ⊂ Y such that E|f−1(V ) is free. Let Z ⊂ Y be a closed subscheme such
that Y = V q Z set theoretically. Let z1, . . . , zt ∈ Z be the generic points of the irre-
ducible components of Z of codimension 1. ThenAi = OY,zi is a discrete valuation ring.
Let ni be the integer found in Lemma 39.5 for the scheme XAi over Ai. After replacing
E by a suitable Frobenius power pullback, we may assume E is free over XAi/m

ni
i

(again
because the colimit category is invariant under universal homeomorphisms, see above).
Then Lemma 39.5 tells us that E is free on XAi . Thus finally we conclude by applying
Lemma 39.6. �

40. Blowing up complexes

This section finds normal forms for perfect objects of the derived category after blowups.

Lemma 40.1. Let X be a scheme. Let E ∈ D(OX) be pseudo-coherent. For every
p, k ∈ Z there is an finite type quasi-coherent sheaf of ideals Fitp,k(E) ⊂ OX with the
following property: for U ⊂ X open such that E|U is isomorphic to

. . .→ O⊕nb−2
U

db−2−−−→ O⊕nb−1
U

db−1−−−→ O⊕nb
U → 0→ . . .

the restriction Fitp,k(E)|U is generated by the minors of the matrix of dp of size

−k + np+1 − np+2 + . . .+ (−1)b−p+1nb

Convention: the ideal generated by r × r-minors is OU if r ≤ 0 and the ideal generated
by r × r-minors where r > min(np, np+1) is zero.

Proof. Observe that E locally on X has the shape as stated in the lemma, see More
on Algebra, Section 64, Cohomology, Section 47, and Derived Categories of Schemes, Sec-
tion 10. Thus it suffices to prove that the ideal of minors is independent of the chosen
representative. To do this, it suffices to check in local rings. Over a local ring (R,m, κ)
consider a bounded above complex

F • : . . .→ R⊕nb−2
db−2−−−→ R⊕nb−1

db−1−−−→ R⊕nb → 0→ . . .
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Denote Fitk,p(F •) ⊂ R the ideal generated by the minors of size k − np+1 + np+2 −
. . .+ (−1)b−pnb in the matrix of dp. Suppose some matrix coefficient of some differential
of F • is invertible. Then we pick a largest integer i such that di has an invertible matrix
coefficient. By Algebra, Lemma 102.2 the complex F • is isomorphic to a direct sum of a
trivial complex . . .→ 0→ R→ R→ 0→ . . . with nonzero terms in degrees i and i+ 1
and a complex (F ′)•. We leave it to the reader to see that Fitp,k(F •) = Fitp,k((F ′)•);
this is where the formula for the size of the minors is used. If (F ′)• has another differ-
ential with an invertible matrix coefficient, we do it again, etc. Continuing in this man-
ner, we eventually reach a complex (F∞)• all of whose differentials have matrices with
coefficients in m. Here you may have to do an infinite number of steps, but for any cut-
off only a finite number of these steps affect the complex in degrees ≥ the cutoff. Thus
the “limit” (F∞)• is a well defined bounded above complex of finite free modules, comes
equipped with a quasi-isomorphism (F∞)• → F • into the complex we started with, and
Fitp,k(F •) = Fitp,k((F∞)•). Since the complex (F∞)• is unique up to isomorphism by
More on Algebra, Lemma 75.5 the proof is complete. �

Lemma 40.2. Let X be a scheme. Let E ∈ D(OX) be perfect. Let U ⊂ X be a
scheme theoretically dense open subscheme such that Hi(E|U ) is finite locally free of
constant rank ri for all i ∈ Z. Then there exists a U -admissible blowup b : X ′ → X such
that Hi(Lb∗E) is a perfectOX′ -module of tor dimension ≤ 1 for all i ∈ Z.

Proof. We will construct and study the blowup affine locally. Namely, suppose that
V ⊂ X is an affine open subscheme such that E|V can be represented by the complex

O⊕na
V

da−→ . . .
db−1−−−→ O⊕nb

V

Set ki = ri+1− ri+2 + . . .+ (−1)b−i+1rb. A computation which we omit show that over
U ∩ V the rank of di is

ρi = −ki + ni+1 − ni+2 + . . .+ (−1)b−i+1nb

in the sense that the cokernel of di is finite locally free of rank ni+1− ρi. Let Ii ⊂ OV be
the ideal generated by the minors of size ρi × ρi in the matrix of di.
On the one hand, comparing with Lemma 40.1 we see the ideal Ii corresponds to the
global ideal Fiti,ki(E) which was shown to be independent of the choice of the complex
representing E|V . On the other hand, Ii is the (ni+1 − ρi)th Fitting ideal of Coker(di).
Please keep this in mind.
We let b : X ′ → X be the blowing up in the product of the ideals Fiti,ki(E); this makes
sense as locally on X almost all of these ideals are equal to the unit ideal (see above). This
blowup dominates the blowups bi : X ′

i → X in the ideals Fiti,ki(E), see Divisors, Lemma
32.12. By Divisors, Lemma 35.3 each bi is a U -admissible blowup. It follows that b is a
U -admissible blowup (tiny detail omitted; compare with the proof of Divisors, Lemma
34.4). Finally, U is still a scheme theoretically dense open subscheme of X ′. Thus after
replacing X by X ′ we end up in the situation discussed in the next paragraph.
Assume Fiti,ki(E) is an invertible ideal for all i. Choose an affine open V and a complex
of finite free modules representing E|V as above. It follows from Divisors, Lemma 35.3
that Coker(di) has tor dimension ≤ 1. Thus Im(di) is finite locally free as the kernel of
a map from a finite locally free module to a finitely presented module of tor dimension
≤ 1. Hence Ker(di) is finite locally free as well (same argument). Thus the short exact
sequence

0→ Im(di−1)→ Ker(di)→ Hi(E)|V → 0
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shows what we want and the proof is complete. �

Lemma 40.3. Let X be an integral scheme. Let E ∈ D(OX) be perfect. Then there
exists a nonempty open U ⊂ X such that Hi(E|U ) is finite locally free of constant rank
ri for all i ∈ Z and there exists a U -admissible blowup b : X ′ → X such that Hi(Lb∗E)
is a perfectOX′ -module of tor dimension ≤ 1 for all i ∈ Z.

Proof. We strongly urge the reader to find their own proof of the existence of U .
Let η ∈ X be the generic point. The restriction of E to η is isomorphic in D(κ(η))
to a finite complex V • of finite dimensional vector spaces with zero differentials. Set
ri = dimκ(η) V

i. Then the perfect object E′ in D(OX) represented by the complex with
termsO⊕ri

X and zero differentials becomes isomorphic toE after pulling back to η. Hence
by Derived Categories of Schemes, Lemma 35.9 there is an open neighbourhood U of η
such thatE|U andE′|U are isomorphic. This proves the first assertion. The second follows
from the first and Lemma 40.2 as any nonempty open is scheme theoretically dense in the
integral scheme X . �

Remark 40.4. Let X be a scheme. Let E ∈ D(OX) be a perfect object such that
Hi(E) is a perfect OX -module of tor dimension ≤ 1 for all i ∈ Z. This property some-
times allows one to reduce questions about E to questions about Hi(E). For example,
suppose

Ea da−→ . . .
db−2

−−−→ Eb−1 db−1

−−−→ Eb

is a bounded complex of finite locally freeOX -modules representingE. Then Im(di) and
Ker(di) are finite locally free OX -modules for all i. Namely, suppose by induction we
know this for all indices bigger than i. Then we can first use the short exact sequence

0→ Im(di)→ Ker(di+1)→ Hi+1(E)→ 0

and the assumption thatHi+1(E) is perfect of tor dimension≤ 1 to conclude that Im(di)
is finite locally free. The same argument used again for the short exact sequence

0→ Ker(di)→ E i → Im(di)→ 0

then gives that Ker(di) is finite locally free. It follows that the distinguished triangles

τ≤k−1E → τ≤kE → Hk(E)[−k]→ (τ≤k−1E)[1]

are represented by the following short exact sequences of bounded complexes of finite
locally free modules

0
↓

Ea → . . . → Ek−2 → Ker(dk−1)
↓ ↓ ↓
Ea → . . . → Ek−2 → Ek−1 → Ker(dk)

↓ ↓
Im(dk−1) → Ker(dk)
↓
0

Here the complexes are the rows and the “obvious” zeros are omitted from the display.
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41. Blowing up perfect modules

This section tries to find normal forms for perfect modules of tor dimension ≤ 1 after
blowups. We are only partially successful.

Lemma 41.1. Let X be a scheme. Let F be a perfect OX -module of tor dimension
≤ 1. For any blowup b : X ′ → X we have Lb∗F = b∗F and b∗F is a perfectOX -module
of tor dimension ≤ 1.

Proof. We may assumeX = Spec(A) is affine and we may assume theA-moduleM
corresponding to F has a presentation

0→ A⊕m → A⊕n →M → 0
Suppose I ⊂ A is an ideal and a ∈ I . Recall that the affine blowup algebra A[ Ia ] is a
subring of Aa. Since localization is exact we see that A⊕m

a → A⊕n
a is injective. Hence

A[ Ia ]⊕m → A[ Ia ]⊕n is injective too. This proves the lemma. �

Lemma 41.2. Let X be a scheme. Let F be a perfect OX -module of tor dimension
≤ 1. Let U ⊂ X be a scheme theoretically dense open such that F|U is finite locally free
of constant rank r. Then there exists a U -admissible blowup b : X ′ → X such that there
is a canonical short exact sequence

0→ K → b∗F → Q → 0
where Q is finite locally free of rank r and K is a perfect OX -module of tor dimension
≤ 1 whose restriction to U is zero.

Proof. Combine Divisors, Lemma 35.3 and Lemma 41.1. �

Lemma 41.3. Let X be a scheme. Let F be a perfect OX -module of tor dimension
≤ 1. Let U ⊂ X be an open such that F|U = 0. Then there is a U -admissible blowup

b : X ′ → X

such that F ′ = b∗F is equipped with two canonical locally finite filtrations

0 = F 0 ⊂ F 1 ⊂ F 2 ⊂ . . . ⊂ F ′ and F ′ = F1 ⊃ F2 ⊃ F3 ⊃ . . . ⊃ 0
such that for each n ≥ 1 there is an effective Cartier divisor Dn ⊂ X ′ with the property
that

F i/F i−1 and Fi/Fi+1

are finite locally free of rank i on Di.

Proof. Choose an affine open V ⊂ X such that there exists a presentation

0→ O⊕n
V

A−→ O⊕n
V → F → 0

for some n and some matrix A. The ideal we are going to blowup in is the product of the
Fitting ideals Fitk(F) for k ≥ 0. This makes sense because in the affine situation above
we see that Fitk(F)|V = OV for k > n. It is clear that this is a U -admissible blowing up.
By Divisors, Lemma 32.12 we see that on X ′ the ideals Fitk(F) are invertible. Thus we
reduce to the case discussed in the next paragraph.
Assume Fitk(F) is an invertible ideal for k ≥ 0. IfEk ⊂ X is the effective Cartier divisor
defined by Fitk(F) for k ≥ 0, then the effective Cartier divisors Dk in the statement of
the lemma will satisfy

Ek = Dk+1 + 2Dk+2 + 3Dk+3 + . . .
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This makes sense as the collection Dk will be locally finite. Moreover, it uniquely deter-
mines the effective Cartier divisors Dk hence it suffices to construct Dk locally.

Choose an affine open V ⊂ X and presentation of F|V as above. We will construct
the divisors and filtrations by induction on the integer n in the presentation. We set
Dk|V = ∅ for k > n and we setDn|V = En−1|V . After shrinking V we may assume that
Fitn−1(F)|V is generated by a single nonzerodivisor f ∈ Γ(V,OV ). Since Fitn−1(F)|V
is the ideal generated by the entries ofA, we see that there is a matrixA′ in Γ(V,OV ) such
that A = fA′. Define F ′ on V by the short exact sequence

0→ O⊕n
V

A′

−→ O⊕n
V → F ′ → 0

Since the entries of A′ generate the unit ideal in Γ(V,OV ) we see that F ′ locally on V
has a presentation with n decreased by 1, see Algebra, Lemma 102.2. Further note that
fn−kFitk(F ′) = Fitk(F)|V for k = 0, . . . , n. Hence Fitk(F ′) is an invertible ideal for all
k. We conclude by induction that there exist effective Cartier divisors D′

k ⊂ V such that
F ′ has two canonical filtrations as in the statement of the lemma. Then we set Dk|V =
D′
k for k = 1, . . . , n − 1. Observe that the equalities between effective Cartier divisors

displayed above hold with these choices. Finally, we come to the construction of the
filtrations. Namely, we have short exact sequences

0→ O⊕n
Dn∩V → F → F

′ → 0 and 0→ F ′ → F → O⊕n
Dn∩V → 0

coming from the two factorizations A = A′f = fA′ of A. These sequences are canonical
because in the first one the submodule is Ker(f : F → F) and in the second one the
quotient module is Coker(f : F → F). �

Lemma 41.4. Let X be a scheme. Let ϕ : F → G be a homorphism of perfect OX -
modules of tor dimension≤ 1. Let U ⊂ X be a scheme theoretically dense open such that
F|U = 0 and G|U = 0. Then there is a U -admissible blowup b : X ′ → X such that the
kernel, image, and cokernel of b∗ϕ are perfectOX′ -modules of tor dimension ≤ 1.

Proof. The assumptions tell us that the object (F → G) of D(OX) is perfect. Thus
we get aU -admissible blowup that works for the cokernel and kernel by Lemmas 40.2 and
41.1 (to see what the complex looks like after pullback). The image is the kernel of the
cokernel and hence is going to be perfect of tor dimension ≤ 1 as well. �

42. An operator introduced by Berthelot and Ogus

Please read Cohomology, Section 55 first.

Let X be a scheme. Let D ⊂ X be an effective Cartier divisor. Let I = ID ⊂ OX
be the ideal sheaf of D, see Divisors, Section 14. Clearly we can apply the discussion in
Cohomology, Section 55 to X and I .

Lemma 42.1. LetX be a scheme. LetD ⊂ X be an effective Cartier divisor with ideal
sheaf I ⊂ OX . Let F• be a complex of quasi-coherent OX -modules such that F i is I-
torsion free for all i. Then ηIF• is a complex of quasi-coherentOX -modules. Moreover,
if U = Spec(A) ⊂ X is affine open and D ∩ U = V (f), then ηf (F•(U)) is canonically
isomorphic to (ηIF•)(U).

Proof. Omitted. �
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Lemma 42.2. Let X be a scheme. Let D ⊂ X be an effective Cartier divisor with
ideal sheaf I ⊂ OX . The functor LηI : D(OX)→ D(OX) of Cohomology, Lemma 55.7
sends DQCoh(OX) into itself. Moreover, if X = Spec(A) is affine and D = V (f), then
the functor Lηf on D(A) defined in More on Algebra, Lemma 95.4 and the functor LηI
onDQCoh(OX) correspond via the equivalence of Derived Categories of Schemes, Lemma
3.5.

Proof. Omitted. �

43. Blowing up complexes, II

The material in this section will be used to construct a version of Macpherson’s graph
construction in Section 44.

Situation 43.1. HereX is a scheme,D ⊂ X is an effective Cartier divisor with ideal
sheaf I ⊂ OX , and M is a perfect object of D(OX).

Let (X,D,M) be a triple as in Situation 43.1. Consider an affine openU = Spec(A) ⊂ X
such that

(1) D ∩ U = V (f) for some nonzerodivisor f ∈ A, and
(2) there exists a bounded complex M• of finite free A-modules representing M |U

(via the equivalence of Derived Categories of Schemes, Lemma 3.5).
We will say that (U,A, f,M•) is an affine chart for (X,D,M). Consider the ideals
Ii(M•, f) ⊂ A defined in More on Algebra, Section 96. Let us say (X,S,M) is a good
triple if for every x ∈ D there exists an affine chart (U,A, f,M•) with x ∈ U and
Ii(M•, f) principal ideals for all i ∈ Z.

Lemma 43.2. In Situation 43.1 let h : Y → X be a morphism of schemes such that
the pullback E = h−1D of D is defined (Divisors, Definition 13.12). Let (U,A, f,M•) is
an affine chart for (X,D,M). Let V = Spec(B) ⊂ Y is an affine open with h(V ) ⊂ U .
Denote g ∈ B the image of f ∈ A. Then

(1) (V,B, g,M• ⊗A B) is an affine chart for (Y,E, Lh∗M),
(2) Ii(M•, f)B = Ii(M• ⊗A B, g) in B, and
(3) if (X,D,M) is a good triple, then (Y,E, Lh∗M) is a good triple.

Proof. The first statement follows from the folowing observations: g is a nonzero-
divisor in B which defines E ∩ V ⊂ V and M• ⊗A B represents M• ⊗L

A B and hence
represents the pullback of M to V by Derived Categories of Schemes, Lemma 3.8. Part
(2) follows from part (1) and More on Algebra, Lemma 96.3. Combined with More on
Algebra, Lemma 96.3 we conclude that the second statement of the lemma holds. �

Lemma 43.3. Let X,D, I,M be as in Situation 43.1. If (X,D,M) is a good triple,
then LηIM is a perfect object of D(OX).

Proof. Translation of More on Algebra, Lemma 96.5. To do the translation use
Lemma 42.2. �

Lemma 43.4. Let X,D, I,M be as in Situation 43.1. Assume (X,D,M) is a good
triple. If there exists a locally bounded complexM• of finite locally free OX -modules
representingM , then there exists a locally bounded complexQ• of finite locally freeOX′ -
modules representing LηIM .
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Proof. By Cohomology, Lemma 55.7 the complex Q• = ηIM• represents LηIM .
To check that this complex is locally bounded and consists of finite locally free, we may
work affine locally. Then the boundedness is clear. Choose an affine chart (U,A, f,M•)
for (X,D,M) such that the ideals Ii(M•, f) are principal and such thatMi|U is finite
free for each i. By our assumption that (X,D,M) is a good triple we can do this. Writing
N i = Γ(U,Mi|U ) we get a bounded complex N• of finite free A-modules representing
the same object in D(A) as the complex M• (by Derived Categories of Schemes, Lemma
3.5). Then Ii(N•, f) is a principal ideal for all i by More on Algebra, Lemma 96.1. Hence
the complex ηfN• is a bounded complex of finite locally free A-modules. Since Qi|U is
the quasi-coherentOU -module corresponding to ηfN i by Lemma 42.1 we conclude. �

Lemma 43.5. In Situation 43.1 let h : Y → X be a morphism of schemes such that
the pullback E = h−1D is defined. If (X,D,M) is a good triple, then

Lh∗(LηIM) = LηJ (Lh∗M)
in D(OY ) where J is the ideal sheaf of E.

Proof. Translation of More on Algebra, Lemma 96.6. Use Lemmas 42.1 and 42.2 to
do the translation. �

Lemma 43.6. In Situation 43.1 there is a unique morphism b : X ′ → X such that
(1) the pullback D′ = b−1D is defined and (X ′, D′,M ′) is a good triple where

M ′ = Lb∗M , and
(2) for any morphism of schemes h : Y → X such that the pullback E = h−1D is

defined and (Y,E, Lh∗M) is a good triple, there is a unique factorization of h
through b.

Moreover, for any affine chart (U,A, f,M•) the restriction b−1(U) → U is the blowing
up in the product of the ideals Ii(M•, f) and for any quasi-compact open W ⊂ X the
restriction b|b−1(W ) : b−1(W )→W is a W \D-admissible blowing up.

Proof. The proof is just that we will locally blow upX in the product ideals Ii(M•, f)
for any affine chart (U,A, f,M•). The first few lemmas in More on Algebra, Section 96
show that this is well defined. The universal property (2) then follows from the universal
property of blowing up. The details can be found below.

Let U,A, f,M• be an affine chart for (X,D,M). All but a finite number of the ideals
Ii(M•, f) are equal to A hence it makes sense to look at

I =
∏

i
Ii(M•, f)

and this is a finitely generated ideal of A. Denote

bU : U ′ → U

the blowing up of U in I . Then b−1
U (U ∩D) is defined by Divisors, Lemma 32.11. Recall

that fri ∈ Ii(M•, f) and hence bU is a (U \ D)-admissible blowing up. By Divisors,
Lemma 32.12 for each i the morphism bU factors as U ′ → U ′

i → U where U ′
i → U

is the blowing up in Ii(M•, f) and U ′ → U ′
i is another blowing up. It follows that

the pullback Ii(M•, f)OU ′ of Ii(M•, f) to U ′ is an invertible ideal sheaf, see Divisors,
Lemmas 32.11 and 32.4. It follows that (U ′, b−1D,Lb∗M |U ) is a good triple, see Lemma
43.2 for the behaviour of the ideals Ii(−,−) under pullback. Finally, we claim that bU :
U ′ → U has the universal property mentioned in part (2) of the statement of the lemma.
Namely, suppose h : Y → U is a morphism of schemes such that the pullback E =



3474 38. MORE ON FLATNESS

h−1(D ∩ U) is defined and (Y,E, Lh∗M) is a good triple. Then Y is covered by affine
charts (V,B, g,N•) such that Ii(N•, g) is an invertible ideal for each i. Then g and the
image of f in B differ by a unit as they both cut out the effective Cartier divisor E ∩ V .
Hence we may assume g is the image of f by More on Algebra, Lemma 96.2. Then Ii(N•, g)
is isomorphic to Ii(M• ⊗A B, g) as a B-module by More on Algebra, Lemma 96.1. Thus
Ii(M•⊗AB, g) = Ii(M•, f)B (Lemma 43.2) is an invertibleB-module. Hence the ideal
IB is invertible. It follows that IOY is invertible. Hence we obtain a unique factorization
of h through bU by Divisors, Lemma 32.5.

Let B be the set of affine opens U ⊂ X such that there exists an affine chart (U,A, f,M•)
for (X,D,M). Then B is a basis for the topology on X ; details omitted. For U ∈ B we
have the morphism bU : U ′ → U constructed above which satisfies the universal property
over U . If U1 ⊂ U2 ⊂ X are both in B, then bU1 : U ′

1 → U1 is canonically isomorphic to

bU2 |b−1
U2

(U1) : b−1
U2

(U1) −→ U1

by the universal propery. In other words, we get an isomorphism U ′
1 → b−1

U2
(U1) over

U1. These isomorphisms satisfy the cocycle condition (again by the universal property)
and hence by Constructions, Lemma 2.1 we get a morphism b : X ′ → X whose restriction
to each U in B is isomorphic to U ′ → U . Then the morphism b : X ′ → X satisfies
properties (1) and (2) of the statement of the lemma as these properties may be checked
locally (details omitted).

We still have to prove the final assertion of the lemma. Let W ⊂ X be a quasi-compact
open. Choose a finite covering W = U1 ∪ . . . ∪ UT such that for each 1 ≤ t ≤ T
there exists an affine chart (Ut, At, ft,M•

t ). We will use below that for any affine open
V = Spec(B) ⊂ Ut ∩ Ut′ we have (a) the images of ft and ft′ in B differ by a unit, and
(b) the complexesM•

t ⊗AB andMt′⊗AB define isomorphic objects ofD(B). For i ∈ Z,
set

Ni = maxt=1,...,T

(∑
j≥i

(−1)j−irk(M j
t )
)

Then Nt −
∑
j≥i(−1)j−irk(M j

t ) ≥ 0 and we can consider the ideals

It,i = f
Ni−
∑

j≥i
(−1)j−irk(Mj

t )
t Ii(M•

t , ft) ⊂ At
It follows from More on Algebra, Lemmas 96.2 and 96.1 that the ideals It,i glue to a quasi-
coherent, finite type ideal Ii ⊂ OW . Moreover, all but a finite number of these ideals are
equal toOW . Clearly, the morphism X ′ → X constructed above restricts to the blowing
up of W in the product of the ideals Ii. This finishes the proof. �

Lemma 43.7. In Situation 43.1 let b : X ′ → X be the morphism of Lemma 43.6.
Consider the effective Cartier divisor D′ = b−1D with ideal sheaf I ′ ⊂ OX′ . Then
Q = LηI′Lb∗M is a perfect object of D(OX′).

Proof. Follows from Lemmas 43.6 and 43.3. �

Lemma 43.8. In Situation 43.1 let h : Y → X be a morphism of schemes such that
the pullbackE = h−1D is defined. Let b : X ′ → X , resp. c : Y ′ → Y be as constructed in
Lemma 43.6 for D ⊂ X and M , resp. E ⊂ Y and Lh∗M . Then Y ′ is the strict transform
of Y with respect to b : X ′ → X (see proof for a precise formulation of this) and

LηJ ′L(h ◦ c)∗M = L(Y ′ → X ′)∗Q
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where Q = LηI′Lb∗M as in Lemma 43.7. In particular, if (Y,E, Lh∗M) is a good triple
and k : Y → X ′ is the unique morphism such that h = b ◦ k, then LηJLh

∗M = Lk∗Q.

Proof. Denote E′ = c−1E. Then (Y ′, E′, L(h ◦ c)∗M) is a good triple. Hence by
the universal property of Lemma 43.6 there is a unique morphism

h′ : Y ′ −→ X ′

such that b ◦ h′ = h ◦ c. In particular, there is a morphism (h′, c) : Y ′ → X ′ ×X Y . We
claim that given W ⊂ X quasi-compact open, such that b−1(W ) → W is a blowing up,
this morphism identifies Y ′|W with the strict transform of YW with respect to b−1(W )→
W . In turn, to see this is true is a local question on W , and we may therefore prove the
statement over an affine chart. We do this in the next paragraph.

Let (U,A, f,M•) be an affine chart for (X,D,M). Recall from the proof of Lemma 43.7
that the restriction of b : X ′ → X to U is the blowing up of U = Spec(A) in the product
of the ideals Ii(M•, f). Now if V = Spec(B) ⊂ Y is any affine open with h(V ) ⊂ U ,
then (V,B, g,M• ⊗A B) is an affine chart for (Y,E, Lh∗M) where g ∈ B is the image
of f , see Lemma 43.2. Hence the restriction of c : Y ′ → Y to V is the blowing up in
the product of the ideals Ii(M•, f)B, i.e., the morphism c : Y ′ → Y over h−1(U) is the
blowing up of h−1(U) in the ideal

∏
Ii(M•, f)Oh−1(U). Since this is also true for the

strict transform, we see that our claim on strict transforms is true.

Having said this the equality LηJ ′L(h ◦ c)∗M = L(Y ′ → X ′)∗Q follows from Lemma
43.5. The final statement is a special case of this (namely, the case where c = idY and
k = h′). �

Lemma 43.9. In Situation 43.1 let W ⊂ X be the maximal open subscheme over
which the cohomology sheaves of M are locally free. Then the morphism b : X ′ → X of
Lemma 43.6 is an isomorphism over W .

Proof. This is true because for any affine chart (U,A, f,M•) with U ⊂W we have
that Ii(M•, f) are locally generated by a power of f by More on Algebra, Lemma 96.4.
Since f is a nonzerodivisor, the blowing up b−1(U)→ U is an isomorphism. �

Lemma 43.10. Let X,D, I,M be as in Situation 43.1. If (X,D,M) is a good triple,
then there exists a closed immersion

i : T −→ D

of finite presentation with the following properties
(1) T scheme theoretically contains D ∩ W where W ⊂ X is the maximal open

over which the cohomology sheaves of M are locally free,
(2) the cohomology sheaves of Li∗LηIM are locally free, and
(3) for any point t ∈ T with image x = i(t) ∈ W the rank of Hi(M)x over OX,x

and the rank of Hi(Li∗LηIM)t overOT,t agree.

Proof. Let (U,A, f,M•) be an affine chart for (X,D,M) such that Ii(M•, f) is a
principal ideal for all i ∈ Z. Then we define T ∩ U ⊂ D ∩ U as the closed subscheme
defined by the ideal

J(M•, f) =
∑

Ji(M•, f) ⊂ A/fA
studied in More on Algebra, Lemmas 96.8 and 96.9; in terms of the second lemma we see
that T ∩U → D∩U is given by the ring mapA/fA→ C studied there. Since (X,D,M)
is a good triple we can cover X by affine charts of this form and by the first of the two
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lemmas, this construction glues. Hence we obtain a closed subscheme T ⊂ D which on
good affine charts as above is given by the ideal J(M•, f). Then properties (1) and (2)
follow from the second lemma. Details omitted. Small observation to help the reader:
since ηfM• is a complex of locally free modules by More on Algebra, Lemma 96.5 we
see that Li∗LηIM |T∩U is represented by the complex ηfM• ⊗A C of C-modules. The
statement (3) on ranks follows from Cohomology, Lemma 55.10. �

Lemma 43.11. In Situation 43.1. Let b : X ′ → X and D′ be as in Lemma 43.6. Let
Q = LηI′Lb∗M be as in Lemma 43.7. Let W ⊂ X be the maximal open where M has
locally free cohomology modules. Then there exists a closed immersion i : T → D′ of
finite presentation such that

(1) D′ ∩ b−1(W ) ⊂ T scheme theoretically,
(2) Li∗Q has locally free cohomology sheaves, and
(3) for t ∈ T mapping to w ∈ W the rank of Hi(Li∗Q)t over OT,t is equal to the

rank of Hi(M)x overOX,x.

Proof. Lemma 43.9 tells us that b is an isomorphism over W . Hence b−1(W ) ⊂ X ′

is contained in the maximal open W ′ ⊂ X ′ where Lb∗M has locally free cohomology
sheaves. Then the actual statements in the lemma are an immediate consequence of Lemma
43.10 applied to (X ′, D′, Lb∗M) and the other lemmas mentioned in the statement. �

Lemma 43.12. In Situation 43.1. Let b : X ′ → X , D′ ⊂ X ′, and Q be as in Lemma
43.7. Let ρ = (ρi)i∈Z be integers. Let W (ρ) ⊂ X be the maximal open subscheme where
Hi(M) is locally free of rank ρi for all i. Let i : T → D′ be as in Lemma 43.11. Then
there exists an open and closed subscheme T (ρ) ⊂ T containingD′ ∩ b−1(W (ρ)) scheme
theoretically such that Hi(Li∗Q|T (ρ)) is locally free of rank ρi for all i.

Proof. Let T (ρ) ⊂ T be the open and closed subscheme where Hi(Li∗Q) has rank
ρi for all i. Then the statement is immediate from the assertion in Lemma 43.11 on ranks
of the cohomology modules. �

Lemma 43.13. In Situation 43.1. Let b : X ′ → X , D′ ⊂ X ′, and Q be as in Lemma
43.7. If there exists a locally bounded complex M• of finite locally free OX -modules
representingM , then there exists a locally bounded complexQ• of finite locally freeOX′ -
modules representing Q.

Proof. Recall thatQ = LηI′Lb∗M where I ′ is the ideal sheaf of the effective Cartier
divisor D′. The locally bounded complex (M′)• = b∗M• of finite locally free OX′ -
modules represents Lb∗M . Thus the lemma follows from Lemma 43.4. �

Lemma 43.14. Let X be a scheme and let D ⊂ X be an effective Cartier divisor.
Let M ∈ D(OX) be a perfect object. Let W ⊂ X be the maximal open over which the
cohomology sheaves Hi(M) are locally free. There exists a proper morphism b : X ′ −→
X and an object Q in D(OX′) with the following properties

(1) b : X ′ → X is an isomorphism over X \D,
(2) b : X ′ → X is an isomorphism over W ,
(3) D′ = b−1D is an effective Cartier divisor,
(4) Q = LηI′Lb∗M where I ′ is the ideal sheaf of D′,
(5) Q is a perfect object of D(OX′),
(6) there exists a closed immersion i : T → D′ of finite presentation such that

(a) D′ ∩ b−1(W ) ⊂ T scheme theoretically,
(b) Li∗Q has finite locally free cohomology sheaves,
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(c) for t ∈ T with image w ∈ W the rank of Hi(Li∗Q)t over OT,t is equal to
the rank of Hi(M)x overOX,x,

(7) for any affine chart (U,A, f,M•) for (X,D,M) the restriction of b to U is the
blowing up of U = Spec(A) in the ideal I =

∏
Ii(M•, f), and

(8) for any affine chart (V,B, g,N•) for (X ′, D′, Lb∗N) such that Ii(N•, g) is prin-
cipal, we have
(a) Q|V corresponds to ηgN•,
(b) T ⊂ V ∩ D′ corresponds to the ideal J(N•, g) =

∑
Ji(N•, g) ⊂ B/gB

studied in More on Algebra, Lemma 96.9.
(9) IfM can be represented by a locally bounded complex of finite locally freeOX -

modules, then Q can be represented by a bounded complex of finite locally free
OX′ -modules.

Proof. This statement collects the information obtained in Lemmas 43.2, 43.3, 43.5,
43.6, 43.7, 43.8, 43.9, 43.10, 43.11, and 43.13. �

44. Blowing up complexes, III

In this section we give an “algebra version” of the version of Macpherson’s graph construc-
tion given in [?, Section 18.1].

Let X be a scheme. Let E be a perfect object of D(OX). Let U ⊂ X be the maximal open
subscheme such that E|U has locally free cohomology sheaves.

Consider the commutative diagram

A1
X

//

!!

P1
X

p

��

(P1
X)∞oo

{{
X

∞

FF

Here we recall that A1 = D+(T0) is the first standard affine open of P1 and that∞ =
V+(T0) is the complementary effective Cartier divisor and the diagram above is the pull-
back of these schemes to X . Observe that∞ : X → (P1

X)∞ is an isomorphism. Then

(P1
X , (P1

X)∞, Lp
∗E)

is a triple as in Situation 43.1 in Section 43. Let

b : W −→ P1
X and W∞ = b−1((P1

X)∞)

be the blowing up and effective Cartier divisor constructed starting with this triple in
Lemma 43.6. We also denote

Q = LηILb
∗M = LηIL(p ◦ b)∗E

the perfect object of D(OW ) considered in Lemma 43.7. Here I ⊂ OW is the ideal sheaf
of W∞.

Lemma 44.1. The construction above has the following properties:
(1) b is an isomorphism over P1

U ∪A1
X ,

(2) the restriction of Q to A1
X is equal to the pullback of E ,

(3) there exists a closed immersion i : T → W∞ of finite presentation such that
(W∞ → X)−1U ⊂ T scheme theoretically and such that Li∗Q has locally free
cohomology sheaves,
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(4) for t ∈ T with image u ∈ U we have that the rankHi(Li∗Q)t overOT,t is equal
to the rank of Hi(M)u overOU,u,

(5) if E can be represented by a locally bounded complex of finite locally free OX -
modules, then Q can be represented by a locally bounded complex of finite lo-
cally freeOW -modules.

Proof. This follows immediately from the results in Section 43; for a statement col-
lecting everything needed, see Lemma 43.14. �
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CHAPTER 39

Groupoid Schemes

1. Introduction

This chapter is devoted to generalities concerning groupoid schemes. See for example the
beautiful paper [?] by Keel and Mori.

2. Notation

Let S be a scheme. If U , T are schemes over S we denote U(T ) for the set of T -valued
points of U over S. In a formula: U(T ) = MorS(T,U). We try to reserve the letter T
to denote a “test scheme” over S , as in the discussion that follows. Suppose we are given
schemes X , Y over S and a morphism of schemes f : X → Y over S. For any scheme T
over S we get an induced map of sets

f : X(T ) −→ Y (T )
which as indicated we denote by f also. In fact this construction is functorial in the scheme
T/S. Yoneda’s Lemma, see Categories, Lemma 3.5, says that f determines and is deter-
mined by this transformation of functors f : hX → hY . More generally, we use the same
notation for maps between fibre products. For example, if X , Y , Z are schemes over S ,
and if m : X ×S Y → Z ×S Z is a morphism of schemes over S , then we think of m as
corresponding to a collection of maps between T -valued points

X(T )× Y (T ) −→ Z(T )× Z(T ).
And so on and so forth.

We continue our convention to label projection maps starting with index 0, so we have
pr0 : X ×S Y → X and pr1 : X ×S Y → Y .

3. Equivalence relations

Recall that a relation R on a set A is just a subset of R ⊂ A × A. We usually write aRb
to indicate (a, b) ∈ R. We say the relation is transitive if aRb, bRc ⇒ aRc. We say the
relation is reflexive if aRa for all a ∈ A. We say the relation is symmetric if aRb⇒ bRa.
A relation is called an equivalence relation if it is transitive, reflexive and symmetric.

In the setting of schemes we are going to relax the notion of a relation a little bit and just
require R→ A×A to be a map. Here is the definition.

Definition 3.1. Let S be a scheme. Let U be a scheme over S.
(1) A pre-relation on U over S is any morphism of schemes j : R → U ×S U . In

this case we set t = pr0 ◦ j and s = pr1 ◦ j , so that j = (t, s).
(2) A relation on U over S is a monomorphism of schemes j : R→ U ×S U .
(3) A pre-equivalence relation is a pre-relation j : R→ U×SU such that the image

of j : R(T )→ U(T )× U(T ) is an equivalence relation for all T/S.

3481



3482 39. GROUPOID SCHEMES

(4) We say a morphism R → U ×S U of schemes is an equivalence relation on U
over S if and only if for every scheme T over S the T -valued points of R define
an equivalence relation on the set of T -valued points of U .

In other words, an equivalence relation is a pre-equivalence relation such that j is a rela-
tion.

Lemma 3.2. Let S be a scheme. Let U be a scheme over S. Let j : R→ U ×S U be a
pre-relation. Let g : U ′ → U be a morphism of schemes. Finally, set

R′ = (U ′ ×S U ′)×U×SU R
j′

−→ U ′ ×S U ′

Then j′ is a pre-relation on U ′ over S. If j is a relation, then j′ is a relation. If j is a pre-
equivalence relation, then j′ is a pre-equivalence relation. If j is an equivalence relation,
then j′ is an equivalence relation.

Proof. Omitted. �

Definition 3.3. Let S be a scheme. Let U be a scheme over S. Let j : R→ U ×S U
be a pre-relation. Let g : U ′ → U be a morphism of schemes. The pre-relation j′ : R′ →
U ′ ×S U ′ is called the restriction, or pullback of the pre-relation j to U ′. In this situation
we sometimes write R′ = R|U ′ .

Lemma 3.4. Let j : R→ U ×S U be a pre-relation. Consider the relation on points
of the scheme U defined by the rule

x ∼ y ⇔ ∃ r ∈ R : t(r) = x, s(r) = y.

If j is a pre-equivalence relation then this is an equivalence relation.

Proof. Suppose that x ∼ y and y ∼ z. Pick r ∈ R with t(r) = x, s(r) = y and pick
r′ ∈ R with t(r′) = y, s(r′) = z. Pick a field K fitting into the following commutative
diagram

κ(r) // K

κ(y)

OO

// κ(r′)

OO

Denote xK , yK , zK : Spec(K)→ U the morphisms

Spec(K)→ Spec(κ(r))→ Spec(κ(x))→ U
Spec(K)→ Spec(κ(r))→ Spec(κ(y))→ U
Spec(K)→ Spec(κ(r′))→ Spec(κ(z))→ U

By construction (xK , yK) ∈ j(R(K)) and (yK , zK) ∈ j(R(K)). Since j is a pre-
equivalence relation we see that also (xK , zK) ∈ j(R(K)). This clearly implies that
x ∼ z.

The proof that ∼ is reflexive and symmetric is omitted. �

Lemma 3.5. Let j : R→ U ×S U be a pre-relation. Assume
(1) s, t are unramified,
(2) for any algebraically closed field k over S the map R(k) → U(k) × U(k) is an

equivalence relation,
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(3) there are morphisms e : U → R, i : R→ R, c : R×s,U,t R→ R such that

U
e

//

∆
��

R

j

��

R

j

��

i
// R

j

��

R×s,U,t R

j×j
��

c
// R

j

��
U ×S U // U ×S U U ×S U

flip // U ×S U U ×S U ×S U
pr02 // U ×S U

are commutative.
Then j is an equivalence relation.

Proof. By condition (1) and Morphisms, Lemma 35.16 we see that j is a unramified.
Then ∆j : R→ R×U×SUR is an open immersion by Morphisms, Lemma 35.13. However,
then condition (2) says ∆j is bijective on k-valued points, hence ∆j is an isomorphism,
hence j is a monomorphism. Then it easily follows from the commutative diagrams that
R(T ) ⊂ U(T )× U(T ) is an equivalence relation for all schemes T over S. �

4. Group schemes

Let us recall that a group is a pair (G,m) where G is a set, and m : G×G → G is a map
of sets with the following properties:

(1) (associativity) m(g,m(g′, g′′)) = m(m(g, g′), g′′) for all g, g′, g′′ ∈ G,
(2) (identity) there exists a unique element e ∈ G (called the identity, unit, or 1 of

G) such that m(g, e) = m(e, g) = g for all g ∈ G, and
(3) (inverse) for all g ∈ G there exists a i(g) ∈ G such thatm(g, i(g)) = m(i(g), g) =

e, where e is the identity.
Thus we obtain a map e : {∗} → G and a map i : G→ G so that the quadruple (G,m, e, i)
satisfies the axioms listed above.
A homomorphism of groups ψ : (G,m) → (G′,m′) is a map of sets ψ : G → G′ such
that m′(ψ(g), ψ(g′)) = ψ(m(g, g′)). This automatically insures that ψ(e) = e′ and
i′(ψ(g)) = ψ(i(g)). (Obvious notation.) We will use this below.

Definition 4.1. Let S be a scheme.
(1) A group scheme over S is a pair (G,m), where G is a scheme over S and m :

G ×S G → G is a morphism of schemes over S with the following property:
For every scheme T over S the pair (G(T ),m) is a group.

(2) A morphism ψ : (G,m) → (G′,m′) of group schemes over S is a morphism
ψ : G → G′ of schemes over S such that for every T/S the induced map ψ :
G(T )→ G′(T ) is a homomorphism of groups.

Let (G,m) be a group scheme over the scheme S. By the discussion above (and the dis-
cussion in Section 2) we obtain morphisms of schemes over S: (identity) e : S → G and
(inverse) i : G → G such that for every T the quadruple (G(T ),m, e, i) satisfies the
axioms of a group listed above.
Let (G,m), (G′,m′) be group schemes over S. Let f : G→ G′ be a morphism of schemes
over S. It follows from the definition that f is a morphism of group schemes over S if
and only if the following diagram is commutative:

G×S G
f×f
//

m

��

G′ ×S G′

m′

��
G

f // G′
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Lemma 4.2. Let (G,m) be a group scheme over S. Let S′ → S be a morphism of
schemes. The pullback (GS′ ,mS′) is a group scheme over S′.

Proof. Omitted. �

Definition 4.3. Let S be a scheme. Let (G,m) be a group scheme over S.
(1) A closed subgroup scheme ofG is a closed subschemeH ⊂ G such thatm|H×SH

factors through H and induces a group scheme structure on H over S.
(2) An open subgroup scheme ofG is an open subschemeG′ ⊂ G such thatm|G′×SG′

factors through G′ and induces a group scheme structure on G′ over S.

Alternatively, we could say thatH is a closed subgroup scheme ofG if it is a group scheme
over S endowed with a morphism of group schemes i : H → G over S which identifies
H with a closed subscheme of G.

Lemma 4.4. Let S be a scheme. Let (G,m, e, i) be a group scheme over S.
(1) A closed subschemeH ⊂ G is a closed subgroup scheme if and only if e : S → G,

m|H×SH : H ×S H → G, and i|H : H → G factor through H .
(2) An open subschemeH ⊂ G is an open subgroup scheme if and only if e : S → G,

m|H×SH : H ×S H → G, and i|H : H → G factor through H .

Proof. Looking at T -valued points this translates into the well known conditions
characterizing subsets of groups as subgroups. �

Definition 4.5. Let S be a scheme. Let (G,m) be a group scheme over S.
(1) We sayG is a smooth group scheme if the structure morphismG→ S is smooth.
(2) We say G is a flat group scheme if the structure morphism G→ S is flat.
(3) We say G is a separated group scheme if the structure morphism G → S is

separated.
Add more as needed.

5. Examples of group schemes

Example 5.1 (Multiplicative group scheme). Consider the functor which associates
to any scheme T the group Γ(T,O∗

T ) of units in the global sections of the structure sheaf.
This is representable by the scheme

Gm = Spec(Z[x, x−1])

The morphism giving the group structure is the morphism

Gm ×Gm → Gm

Spec(Z[x, x−1]⊗Z Z[x, x−1]) → Spec(Z[x, x−1])
Z[x, x−1]⊗Z Z[x, x−1] ← Z[x, x−1]

x⊗ x ← x

Hence we see that Gm is a group scheme over Z. For any scheme S the base change Gm,S

is a group scheme over S whose functor of points is

T/S 7−→ Gm,S(T ) = Gm(T ) = Γ(T,O∗
T )

as before.
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Example 5.2 (Roots of unity). Let n ∈ N. Consider the functor which associates to
any scheme T the subgroup of Γ(T,O∗

T ) consisting of nth roots of unity. This is repre-
sentable by the scheme

µn = Spec(Z[x]/(xn − 1)).
The morphism giving the group structure is the morphism

µn × µn → µn

Spec(Z[x]/(xn − 1)⊗Z Z[x]/(xn − 1)) → Spec(Z[x]/(xn − 1))
Z[x]/(xn − 1)⊗Z Z[x]/(xn − 1) ← Z[x]/(xn − 1)

x⊗ x ← x

Hence we see that µn is a group scheme over Z. For any scheme S the base change µn,S is
a group scheme over S whose functor of points is

T/S 7−→ µn,S(T ) = µn(T ) = {f ∈ Γ(T,O∗
T ) | fn = 1}

as before.

Example 5.3 (Additive group scheme). Consider the functor which associates to any
scheme T the group Γ(T,OT ) of global sections of the structure sheaf. This is repre-
sentable by the scheme

Ga = Spec(Z[x])
The morphism giving the group structure is the morphism

Ga ×Ga → Ga

Spec(Z[x]⊗Z Z[x]) → Spec(Z[x])
Z[x]⊗Z Z[x] ← Z[x]
x⊗ 1 + 1⊗ x ← x

Hence we see that Ga is a group scheme over Z. For any scheme S the base change Ga,S

is a group scheme over S whose functor of points is

T/S 7−→ Ga,S(T ) = Ga(T ) = Γ(T,OT )

as before.

Example 5.4 (General linear group scheme). Let n ≥ 1. Consider the functor which
associates to any scheme T the group

GLn(Γ(T,OT ))

of invertible n× n matrices over the global sections of the structure sheaf. This is repre-
sentable by the scheme

GLn = Spec(Z[{xij}1≤i,j≤n][1/d])

where d = det((xij)) with (xij) the n × n matrix with entry xij in the (i, j)-spot. The
morphism giving the group structure is the morphism

GLn ×GLn → GLn
Spec(Z[xij , 1/d]⊗Z Z[xij , 1/d]) → Spec(Z[xij , 1/d])

Z[xij , 1/d]⊗Z Z[xij , 1/d] ← Z[xij , 1/d]∑
xik ⊗ xkj ← xij
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Hence we see that GLn is a group scheme over Z. For any schemeS the base change GLn,S
is a group scheme over S whose functor of points is

T/S 7−→ GLn,S(T ) = GLn(T ) = GLn(Γ(T,OT ))
as before.

Example 5.5. The determinant defines a morphism of group schemes
det : GLn −→ Gm

over Z. By base change it gives a morphism of group schemes GLn,S → Gm,S over any
base scheme S.

Example 5.6 (Constant group). Let G be an abstract group. Consider the functor
which associates to any scheme T the group of locally constant maps T → G (where T
has the Zariski topology andG the discrete topology). This is representable by the scheme

GSpec(Z) =
∐

g∈G
Spec(Z).

The morphism giving the group structure is the morphism
GSpec(Z) ×Spec(Z) GSpec(Z) −→ GSpec(Z)

which maps the component corresponding to the pair (g, g′) to the component corre-
sponding to gg′. For any scheme S the base change GS is a group scheme over S whose
functor of points is

T/S 7−→ GS(T ) = {f : T → G locally constant}
as before.

6. Properties of group schemes

In this section we collect some simple properties of group schemes which hold over any
base.

Lemma 6.1. Let S be a scheme. Let G be a group scheme over S. Then G → S is
separated (resp. quasi-separated) if and only if the identity morphism e : S → G is a
closed immersion (resp. quasi-compact).

Proof. We recall that by Schemes, Lemma 21.11 we have that e is an immersion which
is a closed immersion (resp. quasi-compact) if G→ S is separated (resp. quasi-separated).
For the converse, consider the diagram

G
∆G/S

//

��

G×S G

(g,g′) 7→m(i(g),g′)
��

S
e // G

It is an exercise in the functorial point of view in algebraic geometry to show that this
diagram is cartesian. In other words, we see that ∆G/S is a base change of e. Hence if
e is a closed immersion (resp. quasi-compact) so is ∆G/S , see Schemes, Lemma 18.2 (resp.
Schemes, Lemma 19.3). �

Lemma 6.2. Let S be a scheme. Let G be a group scheme over S. Let T be a scheme
over S and let ψ : T → G be a morphism over S. If T is flat over S , then the morphism

T ×S G −→ G, (t, g) 7−→ m(ψ(t), g)
is flat. In particular, if G is flat over S , then m : G×S G→ G is flat.
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Proof. Consider the diagram

T ×S G (t,g)7→(t,m(ψ(t),g))
// T ×S G pr

//

��

G

��
T // S

The left top horizontal arrow is an isomorphism and the square is cartesian. Hence the
lemma follows from Morphisms, Lemma 25.8. �

Lemma 6.3. Let (G,m, e, i) be a group scheme over the schemeS. Denote f : G→ S
the structure morphism. Then there exist canonical isomorphisms

ΩG/S ∼= f∗CS/G ∼= f∗e∗ΩG/S

where CS/G denotes the conormal sheaf of the immersion e. In particular, if S is the
spectrum of a field, then ΩG/S is a freeOG-module.

Proof. By Morphisms, Lemma 32.10 we have

ΩG×SG/G = pr∗
0ΩG/S

where on the left hand side we view G ×S G as a scheme over G using pr1. Let τ :
G×SG→ G×SG be the “shearing map” given by (g, h) 7→ (m(g, h), h) on points. This
map is an automorphism of G ×S G viewed as a scheme over G via the projection pr1.
Combining these two remarks we obtain an isomorphism

τ∗pr∗
0ΩG/S → pr∗

0ΩG/S

Since pr0 ◦ τ = m this can be rewritten as an isomorphism

m∗ΩG/S → pr∗
0ΩG/S

Pulling back this isomorphism by (e ◦ f, idG) : G → G ×S G and using that m ◦ (e ◦
f, idG) = idG and pr0 ◦ (e ◦ f, idG) = e ◦ f we obtain an isomorphism

ΩG/S → f∗e∗ΩG/S

as desired. By Morphisms, Lemma 32.16 we have CS/G ∼= e∗ΩG/S . If S is the spectrum of
a field, then anyOS-module on S is free and the final statement follows. �

Lemma 6.4. Let S be a scheme. Let G be a group scheme over S. Let s ∈ S. Then
the composition

TG/S,e(s) ⊕ TG/S,e(s) = TG×SG/S,(e(s),e(s)) → TG/S,e(s)

is addition of tangent vectors. Here the = comes from Varieties, Lemma 16.7 and the right
arrow is induced from m : G×S G→ G via Varieties, Lemma 16.6.

Proof. We will use Varieties, Equation (16.3.1) and work with tangent vectors in
fibres. An element θ in the first factor TGs/s,e(s) is the image of θ via the map TGs/s,e(s) →
TGs×Gs/s,(e(s),e(s)) coming from (1, e) : Gs → Gs × Gs. Since m ◦ (1, e) = 1 we see
that θ maps to θ by functoriality. Since the map is linear we see that (θ1, θ2) maps to
θ1 + θ2. �
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7. Properties of group schemes over a field

In this section we collect some properties of group schemes over a field. In the case of
group schemes which are (locally) algebraic over a field we can say a lot more, see Section
8.

Lemma 7.1. If (G,m) is a group scheme over a field k, then the multiplication map
m : G×k G→ G is open.

Proof. The multiplication map is isomorphic to the projection map pr0 : G×kG→
G because the diagram

G×k G

m

��

(g,g′)7→(m(g,g′),g′)
// G×k G

(g,g′) 7→g

��
G

id // G

is commutative with isomorphisms as horizontal arrows. The projection is open by Mor-
phisms, Lemma 23.4. �

Lemma 7.2. If (G,m) is a group scheme over a field k. Let U ⊂ G open and T → G
a morphism of schemes. Then the image of the composition T ×k U → G×k G → G is
open.

Proof. For any field extension K/k the morphism GK → G is open (Morphisms,
Lemma 23.4). Every point ξ of T ×k U is the image of a morphism (t, u) : Spec(K) →
T ×k U for some K. Then the image of TK ×K UK = (T ×k U)K → GK contains the
translate t·UK which is open. Combining these facts we see that the image of T×kU → G
contains an open neighbourhood of the image of ξ. Since ξ was arbitrary we win. �

Lemma 7.3. Let G be a group scheme over a field. Then G is a separated scheme.

Proof. Say S = Spec(k) with k a field, and let G be a group scheme over S. By
Lemma 6.1 we have to show that e : S → G is a closed immersion. By Morphisms, Lemma
20.2 the image of e : S → G is a closed point of G. It is clear that OG → e∗OS is
surjective, since e∗OS is a skyscraper sheaf supported at the neutral element of G with
value k. We conclude that e is a closed immersion by Schemes, Lemma 24.2. �

Lemma 7.4. Let G be a group scheme over a field k. Then
(1) every local ringOG,g of G has a unique minimal prime ideal,
(2) there is exactly one irreducible component Z of G passing through e, and
(3) Z is geometrically irreducible over k.

Proof. For any point g ∈ G there exists a field extensionK/k and aK-valued point
g′ ∈ G(K) mapping to g. If we think of g′ as a K-rational point of the group scheme
GK , then we see that OG,g → OGK ,g′ is a faithfully flat local ring map (as GK → G is
flat, and a local flat ring map is faithfully flat, see Algebra, Lemma 39.17). The result for
OGK ,g′ implies the result for OG,g , see Algebra, Lemma 30.5. Hence in order to prove (1)
it suffices to prove it for k-rational points g of G. In this case translation by g defines an
automorphism G → G which maps e to g. Hence OG,g ∼= OG,e. In this way we see that
(2) implies (1), since irreducible components passing through e correspond one to one with
minimal prime ideals ofOG,e.
In order to prove (2) and (3) it suffices to prove (2) when k is algebraically closed. In
this case, let Z1, Z2 be two irreducible components of G passing through e. Since k is
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algebraically closed the closed subscheme Z1 ×k Z2 ⊂ G ×k G is irreducible too, see
Varieties, Lemma 8.4. Hence m(Z1 ×k Z2) is contained in an irreducible component of
G. On the other hand it contains Z1 and Z2 since m|e×G = idG and m|G×e = idG. We
conclude Z1 = Z2 as desired. �

Remark 7.5. Warning: The result of Lemma 7.4 does not mean that every irre-
ducible component of G/k is geometrically irreducible. For example the group scheme
µ3,Q = Spec(Q[x]/(x3 − 1)) over Q has two irreducible components corresponding to
the factorization x3 − 1 = (x− 1)(x2 + x+ 1). The first factor corresponds to the irre-
ducible component passing through the identity, and the second irreducible component
is not geometrically irreducible over Spec(Q).

Lemma 7.6. LetG be a group scheme over a perfect field k. Then the reductionGred
of G is a closed subgroup scheme of G.

Proof. Omitted. Hint: Use that Gred ×k Gred is reduced by Varieties, Lemmas 6.3
and 6.7. �

Lemma 7.7. Let k be a field. Let ψ : G′ → G be a morphism of group schemes over
k. If ψ(G′) is open in G, then ψ(G′) is closed in G.

Proof. Let U = ψ(G′) ⊂ G. Let Z = G \ψ(G′) = G \U with the reduced induced
closed subscheme structure. By Lemma 7.2 the image of

Z ×k G′ −→ Z ×k U −→ G

is open (the first arrow is surjective). On the other hand, since ψ is a homomorphism of
group schemes, the image ofZ×kG′ → G is contained inZ (because translation by ψ(g′)
preserves U for all points g′ of G′; small detail omitted). Hence Z ⊂ G is an open subset
(although not necessarily an open subscheme). Thus U = ψ(G′) is closed. �

Lemma 7.8. Let i : G′ → G be an immersion of group schemes over a field k. Then
i is a closed immersion, i.e., i(G′) is a closed subgroup scheme of G.

Proof. To show that i is a closed immersion it suffices to show that i(G′) is a closed
subset of G. Let k ⊂ k′ be a perfect extension of k. If i(G′

k′) ⊂ Gk′ is closed, then
i(G′) ⊂ G is closed by Morphisms, Lemma 25.12 (as Gk′ → G is flat, quasi-compact
and surjective). Hence we may and do assume k is perfect. We will use without further
mention that products of reduced schemes over k are reduced. We may replace G′ and G
by their reductions, see Lemma 7.6. LetG′ ⊂ G be the closure of i(G′) viewed as a reduced
closed subscheme. By Varieties, Lemma 24.1 we conclude that G′ ×k G′ is the closure of
the image of G′ ×k G′ → G×k G. Hence

m
(
G′ ×k G′

)
⊂ G′

as m is continuous. It follows that G′ ⊂ G is a (reduced) closed subgroup scheme. By
Lemma 7.7 we see that i(G′) ⊂ G′ is also closed which implies that i(G′) = G′ as desired.

�

Lemma 7.9. Let G be a group scheme over a field k. If G is irreducible, then G is
quasi-compact.

Proof. Suppose that K/k is a field extension. If GK is quasi-compact, then G is too
as GK → G is surjective. By Lemma 7.4 we see that GK is irreducible. Hence it suffices
to prove the lemma after replacing k by some extension. Choose K to be an algebraically
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closed field extension of very large cardinality. Then by Varieties, Lemma 14.2, we see that
GK is a Jacobson scheme all of whose closed points have residue field equal toK. In other
words we may assumeG is a Jacobson scheme all of whose closed points have residue field
k.

Let U ⊂ G be a nonempty affine open. Let g ∈ G(k). Then gU ∩ U 6= ∅. Hence we see
that g is in the image of the morphism

U ×Spec(k) U −→ G, (u1, u2) 7−→ u1u
−1
2

Since the image of this morphism is open (Lemma 7.1) we see that the image is all of G
(becauseG is Jacobson and closed points are k-rational). Since U is affine, so is U ×Spec(k)
U . Hence G is the image of a quasi-compact scheme, hence quasi-compact. �

Lemma 7.10. Let G be a group scheme over a field k. If G is connected, then G is
irreducible.

Proof. By Varieties, Lemma 7.14 we see that G is geometrically connected. If we
show thatGK is irreducible for some field extensionK/k, then the lemma follows. Hence
we may apply Varieties, Lemma 14.2 to reduce to the case where k is algebraically closed,
G is a Jacobson scheme, and all the closed points are k-rational.

LetZ ⊂ G be the unique irreducible component ofG passing through the neutral element,
see Lemma 7.4. Endowing Z with the reduced induced closed subscheme structure, we see
that Z ×k Z is reduced and irreducible (Varieties, Lemmas 6.7 and 8.4). We conclude that
m|Z×kZ : Z ×k Z → G factors through Z. Hence Z becomes a closed subgroup scheme
of G.

To get a contradiction, assume there exists another irreducible component Z ′ ⊂ G. Then
Z ∩ Z ′ = ∅ by Lemma 7.4. By Lemma 7.9 we see that Z is quasi-compact. Thus we may
choose a quasi-compact open U ⊂ G with Z ⊂ U and U ∩ Z ′ = ∅. The image W of
Z ×k U → G is open in G by Lemma 7.2. On the other hand, W is quasi-compact as the
image of a quasi-compact space. We claim that W is closed.

Proof of the claim. Since W is quasi-compact, we see that points in the closure of W are
specializations of points of W (Morphisms, Lemma 6.5). Thus we have to show that any
irreducible component Z ′′ ⊂ G ofGwhich meetsW is contained inW . AsG is Jacobson
and closed points are rational, Z ′′ ∩W has a rational point g ∈ Z ′′(k)∩W (k) and hence
Z ′′ = Zg. But W = m(Z ×k W ) by construction, so Z ′′ ∩W 6= ∅ implies Z ′′ ⊂W .

By the claimW ⊂ G is an open and closed subset ofG. NowW ∩Z ′ = ∅ since otherwise
by the argument given in the precending paragraph we would get Z ′ = Zg for some
g ∈W (k). Then asZ is a subgroup we could even pick g ∈ U(k) which would contradict
Z ′ ∩ U = ∅. Hence W ⊂ G is a proper open and closed subset which contradicts the
assumption that G is connected. �

Proposition 7.11. Let G be a group scheme over a field k. There exists a canonical
closed subgroup scheme G0 ⊂ G with the following properties

(1) G0 → G is a flat closed immersion,
(2) G0 ⊂ G is the connected component of the identity,
(3) G0 is geometrically irreducible, and
(4) G0 is quasi-compact.
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Proof. LetG0 be the connected component of the identity with its canonical scheme
structure (Morphisms, Definition 26.3). To show thatG0 is a closed subsgroup scheme we
will use the criterion of Lemma 4.4. The morphism e : Spec(k) → G factors through
G0 as we chose G0 to be the connected component of G containing e. Since i : G → G
is an automorphism fixing e, we see that i sends G0 into itself. By Varieties, Lemma 7.13
the schemeG0 is geometrically connected over k. ThusG0×kG0 is connected (Varieties,
Lemma 7.4). Thusm(G0×kG0) ⊂ G0 set theoretically. Thusm|G0×kG0 : G0×kG0 → G
factors through G0 by Morphisms, Lemma 26.1. Hence G0 is a closed subgroup scheme
of G. By Lemma 7.10 we see that G0 is irreducible. By Lemma 7.4 we see that G0 is
geometrically irreducible. By Lemma 7.9 we see that G0 is quasi-compact. �

Lemma 7.12. Let k be a field. Let T = Spec(A) where A is a directed colimit of
algebras which are finite products of copies of k. For any schemeX over k we have |T ×k
X| = |T | × |X| as topological spaces.

Proof. By taking an affine open covering we reduce to the case of an affine X . Say
X = Spec(B). Write A = colimAi with Ai =

∏
t∈Ti k and Ti finite. Then Ti =

| Spec(Ai)| with the discrete topology and the transition morphisms Ai → Ai′ are given
by set maps Ti′ → Ti. Thus |T | = limTi as a topological space, see Limits, Lemma 4.6.
Similarly we have

|T ×k X| = | Spec(A⊗k B)|
= | Spec(colimAi ⊗k B)|
= lim | Spec(Ai ⊗k B)|

= lim | Spec(
∏

t∈Ti
B)|

= limTi × |X|
= (limTi)× |X|
= |T | × |X|

by the lemma above and the fact that limits commute with limits. �

The following lemma says that in fact we can put a “algebraic profinite family of points”
in an affine open. We urge the reader to read Lemma 8.6 first.

Lemma 7.13. Let k be an algebraically closed field. Let G be a group scheme over k.
Assume that G is Jacobson and that all closed points are k-rational. Let T = Spec(A)
where A is a directed colimit of algebras which are finite products of copies of k. For any
morphism f : T → G there exists an affine open U ⊂ G containing f(T ).

Proof. Let G0 ⊂ G be the closed subgroup scheme found in Proposition 7.11. The
first two paragraphs serve to reduce to the case G = G0.
Observe that T is a directed inverse limit of finite topological spaces (Limits, Lemma 4.6),
hence profinite as a topological space (Topology, Definition 22.1). Let W ⊂ G be a quasi-
compact open containing the image of T → G. After replacing W by the image of G0 ×
W → G×G→ Gwe may assume thatW is invariant under the action of left translation
by G0, see Lemma 7.2. Consider the composition

ψ = π ◦ f : T f−→W
π−→ π0(W )

The space π0(W ) is profinite (Topology, Lemma 23.9 and Properties, Lemma 2.4). Let
Fξ ⊂ T be the fibre of T → π0(W ) over ξ ∈ π0(W ). Assume that for all ξ we can find
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an affine open Uξ ⊂ W with F ⊂ U . Since ψ : T → π0(W ) is universally closed as
a map of topological spaces (Topology, Lemma 17.7), we can find a quasi-compact open
Vξ ⊂ π0(W ) such that ψ−1(Vξ) ⊂ f−1(Uξ) (easy topological argument omitted). After
replacing Uξ by Uξ ∩ π−1(Vξ), which is open and closed in Uξ hence affine, we see that
Uξ ⊂ π−1(Vξ) and Uξ ∩ T = ψ−1(Vξ). By Topology, Lemma 22.4 we can find a finite
disjoint union decomposition π0(W ) =

⋃
i=1,...,n Vi by quasi-compact opens such that

Vi ⊂ Vξi for some i. Then we see that

f(T ) ⊂
⋃

i=1,...,n
Uξi ∩ π−1(Vi)

the right hand side of which is a finite disjoint union of affines, therefore affine.

Let Z be a connected component of G which meets f(T ). Then Z has a k-rational point
z (because all residue fields of the scheme T are isomorphic to k). Hence Z = G0z. By
our choice of W , we see that Z ⊂ W . The argument in the preceding paragraph reduces
us to the problem of finding an affine open neighbourhood of f(T ) ∩ Z in W . After
translation by a rational point we may assume that Z = G0 (details omitted). Observe
that the scheme theoretic inverse image T ′ = f−1(G0) ⊂ T is a closed subscheme, which
has the same type. After replacing T by T ′ we may assume that f(T ) ⊂ G0. Choose an
affine open neighbourhood U ⊂ G of e ∈ G, so that in particular U ∩ G0 is nonempty.
We will show there exists a g ∈ G0(k) such that f(T ) ⊂ g−1U . This will finish the proof
as g−1U ⊂W by the left G0-invariance of W .

The arguments in the preceding two paragraphs allow us to pass to G0 and reduce the
problem to the following: Assume G is irreducible and U ⊂ G an affine open neighbour-
hood of e. Show that f(T ) ⊂ g−1U for some g ∈ G(k). Consider the morphism

U ×k T −→ G×k T, (t, u) −→ (uf(t)−1, t)

which is an open immersion (because the extension of this morphism toG×kT → G×kT
is an isomorphism). By our assumption on T we see that we have |U ×k T | = |U | ×
|T | and similarly for G ×k T , see Lemma 7.12. Hence the image of the displayed open
immersion is a finite union of boxes

⋃
i=1,...,n Ui × Vi with Vi ⊂ T and Ui ⊂ G quasi-

compact open. This means that the possible opens Uf(t)−1, t ∈ T are finite in number,
say Uf(t1)−1, . . . , Uf(tr)−1. Since G is irreducible the intersection

Uf(t1)−1 ∩ . . . ∩ Uf(tr)−1

is nonempty and since G is Jacobson with closed points k-rational, we can choose a k-
valued point g ∈ G(k) of this intersection. Then we see that g ∈ Uf(t)−1 for all t ∈ T
which means that f(t) ∈ g−1U as desired. �

Remark 7.14. If G is a group scheme over a field, is there always a quasi-compact
open and closed subgroup scheme? By Proposition 7.11 this question is only interesting if
G has infinitely many connected components (geometrically).

Lemma 7.15. Let G be a group scheme over a field. There exists an open and closed
subscheme G′ ⊂ G which is a countable union of affines.

Proof. Let e ∈ U(k) be a quasi-compact open neighbourhood of the identity ele-
ment. By replacing U by U ∩ i(U) we may assume that U is invariant under the inverse
map. As G is separated this is still a quasi-compact set. Set

G′ =
⋃

n≥1
mn(U ×k . . .×k U)
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where mn : G ×k . . . ×k G → G is the n-slot multiplication map (g1, . . . , gn) 7→
m(m(. . . (m(g1, g2), g3), . . .), gn). Each of these maps are open (see Lemma 7.1) hence
G′ is an open subgroup scheme. By Lemma 7.7 it is also a closed subgroup scheme. �

8. Properties of algebraic group schemes

Recall that a scheme over a field k is (locally) algebraic if it is (locally) of finite type over
Spec(k), see Varieties, Definition 20.1. This is the sense of algebraic we are using in the
title of this section.

Lemma 8.1. Let k be a field. Let G be a locally algebraic group scheme over k. Then
G is equidimensional and dim(G) = dimg(G) for all g ∈ G. For any closed point g ∈ G
we have dim(G) = dim(OG,g).

Proof. Let us first prove that dimg(G) = dimg′(G) for any pair of points g, g′ ∈
G. By Morphisms, Lemma 28.3 we may extend the ground field at will. Hence we may
assume that both g and g′ are defined over k. Hence there exists an automorphism of G
mapping g to g′, whence the equality. By Morphisms, Lemma 28.1 we have dimg(G) =
dim(OG,g) + trdegk(κ(g)). On the other hand, the dimension of G (or any open subset
of G) is the supremum of the dimensions of the local rings of G, see Properties, Lemma
10.3. Clearly this is maximal for closed points g in which case trdegk(κ(g)) = 0 (by the
Hilbert Nullstellensatz, see Morphisms, Section 16). Hence the lemma follows. �

The following result is sometimes referred to as Cartier’s theorem.

Lemma 8.2. Let k be a field of characteristic 0. Let G be a locally algebraic group
scheme over k. Then the structure morphism G→ Spec(k) is smooth, i.e., G is a smooth
group scheme.

Proof. By Lemma 6.3 the module of differentials ofG over k is free. Hence smooth-
ness follows from Varieties, Lemma 25.1. �

Remark 8.3. Any group scheme over a field of characteristic 0 is reduced, see [?, I,
Theorem 1.1 and I, Corollary 3.9, and II, Theorem 2.4] and also [?, Proposition 4.2.8]. This
was a question raised in [?, page 80]. We have seen in Lemma 8.2 that this holds when the
group scheme is locally of finite type.

Lemma 8.4. Let k be a perfect field of characteristic p > 0 (see Lemma 8.2 for the
characteristic zero case). LetG be a locally algebraic group scheme over k. IfG is reduced
then the structure morphism G→ Spec(k) is smooth, i.e., G is a smooth group scheme.

Proof. By Lemma 6.3 the sheaf ΩG/k is free. Hence the lemma follows from Vari-
eties, Lemma 25.2. �

Remark 8.5. Let k be a field of characteristic p > 0. Let α ∈ k be an element which
is not a pth power. The closed subgroup scheme

G = V (xp + αyp) ⊂ G2
a,k

is reduced and irreducible but not smooth (not even normal).

The following lemma is a special case of Lemma 7.13 with a somewhat easier proof.

Lemma 8.6. Let k be an algebraically closed field. Let G be a locally algebraic group
scheme over k. Let g1, . . . , gn ∈ G(k) be k-rational points. Then there exists an affine
open U ⊂ G containing g1, . . . , gn.
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Proof. We first argue by induction on n that we may assume all gi are on the same
connected component of G. Namely, if not, then we can find a decomposition G =
W1 q W2 with Wi open in G and (after possibly renumbering) g1, . . . , gr ∈ W1 and
gr+1, . . . , gn ∈W2 for some 0 < r < n. By induction we can find affine opens U1 and U2
of G with g1, . . . , gr ∈ U1 and gr+1, . . . , gn ∈ U2. Then

g1, . . . , gn ∈ (U1 ∩W1) ∪ (U2 ∩W2)

is a solution to the problem. Thus we may assume g1, . . . , gn are all on the same connected
component of G. Translating by g−1

1 we may assume g1, . . . , gn ∈ G0 where G0 ⊂ G is
as in Proposition 7.11. Choose an affine open neighbourhood U of e, in particular U ∩G0

is nonempty. Since G0 is irreducible we see that

G0 ∩ (Ug−1
1 ∩ . . . ∩ Ug−1

n )

is nonempty. SinceG→ Spec(k) is locally of finite type, alsoG0 → Spec(k) is locally of
finite type, hence any nonempty open has a k-rational point. Thus we can pick g ∈ G0(k)
with g ∈ Ug−1

i for all i. Then gi ∈ g−1U for all i and g−1U is the affine open we were
looking for. �

Lemma 8.7. Let k be a field. Let G be an algebraic group scheme over k. Then G is
quasi-projective over k.

Proof. By Varieties, Lemma 15.1 we may assume that k is algebraically closed. Let
G0 ⊂ G be the connected component of G as in Proposition 7.11. Then every other con-
nected component of G has a k-rational point and hence is isomorphic to G0 as a scheme.
SinceG is quasi-compact and Noetherian, there are finitely many of these connected com-
ponents. Thus we reduce to the case discussed in the next paragraph.

Let G be a connected algebraic group scheme over an algebraically closed field k. If the
characteristic of k is zero, then G is smooth over k by Lemma 8.2. If the characteristic of
k is p > 0, then we let H = Gred be the reduction of G. By Divisors, Proposition 17.9
it suffices to show that H has an ample invertible sheaf. (For an algebraic scheme over
k having an ample invertible sheaf is equivalent to being quasi-projective over k, see for
example the very general More on Morphisms, Lemma 49.1.) By Lemma 7.6 we see that
H is a group scheme over k. By Lemma 8.4 we see that H is smooth over k. This reduces
us to the situation discussed in the next paragraph.

Let G be a quasi-compact irreducible smooth group scheme over an algebraically closed
field k. Observe that the local rings of G are regular and hence UFDs (Varieties, Lemma
25.3 and More on Algebra, Lemma 121.2). The complement of a nonempty affine open of
G is the support of an effective Cartier divisor D. This follows from Divisors, Lemma
16.6. (Observe that G is separated by Lemma 7.3.) We conclude there exists an effective
Cartier divisor D ⊂ G such that G \ D is affine. We will use below that for any n ≥ 1
and g1, . . . , gn ∈ G(k) the complementG \

⋃
Dgi is affine. Namely, it is the intersection

of the affine opens G \Dgi ∼= G \D in the separated scheme G.

We may choose the top row of the diagram

G U
joo π // Ad

k

W
π′
//

OO

V

OO
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such that U 6= ∅, j : U → G is an open immersion, and π is étale, see Morphisms,
Lemma 36.20. There is a nonempty affine open V ⊂ Ad

k such that withW = π−1(V ) the
morphism π′ = π|W : W → V is finite étale. In particular π′ is finite locally free, say of
degree n. Consider the effective Cartier divisor

D = {(g, w) | m(g, j(w)) ∈ D} ⊂ G×W
(This is the restriction to G × W of the pullback of D ⊂ G under the flat morphism
m : G × G → G.) Consider the closed subset1 T = (1 × π′)(D) ⊂ G × V . Since
π′ is finite locally free, every irreducible component of T has codimension 1 in G × V .
SinceG×V is smooth over k we conclude these components are effective Cartier divisors
(Divisors, Lemma 15.7 and lemmas cited above) and hence T is the support of an effective
Cartier divisor E in G × V . If v ∈ V (k), then (π′)−1(v) = {w1, . . . , wn} ⊂ W (k) and
we see that

Ev =
⋃

i=1,...,n
Dj(wi)−1

inG set theoretically. In particular we see thatG\Ev is affine open (see above). Moreover,
if g ∈ G(k), then there exists a v ∈ V such that g 6∈ Ev . Namely, the set W ′ of w ∈ W
such that g 6∈ Dj(w)−1 is nonempty open and it suffices to pick v such that the fibre of
W ′ → V over v has n elements.
Consider the invertible sheafM = OG×V (E) on G × V . By Varieties, Lemma 30.5 the
isomorphism class L of the restrictionMv = OG(Ev) is independent of v ∈ V (k). On
the other hand, for every g ∈ G(k) we can find a v such that g 6∈ Ev and such thatG\Ev
is affine. Thus the canonical section (Divisors, Definition 14.1) ofOG(Ev) corresponds to
a section sv of L which does not vanish at g and such that Gsv is affine. This means that
L is ample by definition (Properties, Definition 26.1). �

Lemma 8.8. Let k be a field. Let G be a locally algebraic group scheme over k. Then
the center of G is a closed subgroup scheme of G.

Proof. Let Aut(G) denote the contravariant functor on the category of schemes over
k which associates to S/k the set of automorphisms of the base change GS as a group
scheme over S. There is a natural transformation

G −→ Aut(G), g 7−→ inng
sending an S-valued point g of G to the inner automorphism of G determined by g. The
centerC ofG is by definition the kernel of this transformation, i.e., the functor which toS
associates those g ∈ G(S) whose associated inner automorphism is trivial. The statement
of the lemma is that this functor is representable by a closed subgroup scheme of G.
Choose an integer n ≥ 1. Let Gn ⊂ G be the nth infinitesimal neighbourhood of the
identity element e of G. For every scheme S/k the base change Gn,S is the nth infinites-
imal neighbourhood of eS : S → GS . Thus we see that there is a natural transformation
Aut(G) → Aut(Gn) where the right hand side is the functor of automorphisms of Gn
as a scheme (Gn isn’t in general a group scheme). Observe that Gn is the spectrum of
an artinian local ring An with residue field k which has finite dimension as a k-vector
space (Varieties, Lemma 20.2). Since every automorphism of Gn induces in particular an
invertible linear map An → An, we obtain transformations of functors

G→ Aut(G)→ Aut(Gn)→ GL(An)

1Using the material in Divisors, Section 17 we could take as effective Cartier divisor E the norm of the
effective Cartier divisor D along the finite locally free morphism 1 × π′ bypassing some of the arguments.
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The final group valued functor is representable, see Example 5.4, and the last arrow is
visibly injective. Thus for every n we obtain a closed subgroup scheme

Hn = Ker(G→ Aut(Gn)) = Ker(G→ GL(An)).

As a first approximation we set H =
⋂
n≥1 Hn (scheme theoretic intersection). This is a

closed subgroup scheme which contains the center C.

Let h be an S-valued point of H with S locally Noetherian. Then the automorphism
innh induces the identity on all the closed subschemes Gn,S . Consider the kernel K =
Ker(innh : GS → GS). This is a closed subgroup scheme of GS over S containing the
closed subschemes Gn,S for n ≥ 1. This implies that K contains an open neighbourhood
of e(S) ⊂ GS , see Algebra, Remark 51.6. Let G0 ⊂ G be as in Proposition 7.11. Since
G0 is geometrically irreducible, we conclude thatK containsG0

S (for any nonempty open
U ⊂ G0

k′ and any field extension k′/k we have U · U−1 = G0
k′ , see proof of Lemma 7.9).

Applying this with S = H we find that G0 and H are subgroup schemes of G whose
points commute: for any scheme S and any S-valued points g ∈ G0(S), h ∈ H(S) we
have gh = hg in G(S).

Assume that k is algebraically closed. Then we can pick a k-valued point gi in each irre-
ducible componentGi ofG. Observe that in this case the connected components ofG are
the irreducible components of G are the translates of G0 by our gi. We claim that

C = H ∩
⋂

i
Ker(inngi : G→ G) (scheme theoretic intersection)

Namely, C is contained in the right hand side. On the other hand, every S-valued point
h of the right hand side commutes with G0 and with gi hence with everything in G =⋃
G0gi.

The case of a general base field k follows from the result for the algebraic closure k by
descent. Namely, let A ⊂ Gk the closed subgroup scheme representing the center of Gk.
Then we have

A×Spec(k) Spec(k) = Spec(k)×Spec(k) A

as closed subschemes of Gk⊗kk by the functorial nature of the center. Hence we see that
A descends to a closed subgroup scheme Z ⊂ G by Descent, Lemma 37.2 (and Descent,
Lemma 23.19). Then Z represents C (small argument omitted) and the proof is complete.

�

9. Abelian varieties

An excellent reference for this material is Mumford’s book on abelian varieties, see [?]. We
encourage the reader to look there. There are many equivalent definitions; here is one.

Definition 9.1. Let k be a field. An abelian variety is a group scheme over k which
is also a proper, geometrically integral variety over k2.

We prove a few lemmas about this notion and then we collect all the results together in
Proposition 9.11.

Lemma 9.2. Let k be a field. LetA be an abelian variety over k. ThenA is projective.

Proof. This follows from Lemma 8.7 and More on Morphisms, Lemma 50.1. �

2For equivalent definitions see Remark 9.12.
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Lemma 9.3. Let k be a field. LetA be an abelian variety over k. For any field extension
K/k the base change AK is an abelian variety over K.

Proof. Omitted. Note that this is why we insisted onA being geometrically integral;
without that condition this lemma (and many others below) would be wrong. �

Lemma 9.4. Let k be a field. Let A be an abelian variety over k. Then A is smooth
over k.

Proof. If k is perfect then this follows from Lemma 8.2 (characteristic zero) and
Lemma 8.4 (positive characteristic). We can reduce the general case to this case by descent
for smoothness (Descent, Lemma 23.27) and going to the perfect closure using Lemma
9.3. �

Lemma 9.5. An abelian variety is an abelian group scheme, i.e., the group law is com-
mutative.

Proof. Let k be a field. Let A be an abelian variety over k. By Lemma 9.3 we may
replace k by its algebraic closure. Consider the morphism

h : A×k A −→ A×k A, (x, y) 7−→ (x, xyx−1y−1)

This is a morphism overA via the first projection on either side. Let e ∈ A(k) be the unit.
Then we see that h|e×A is constant with value (e, e). By More on Morphisms, Lemma
44.3 there exists an open neighbourhood U ⊂ A of e such that h|U×A factors through
some Z ⊂ U × A finite over U . This means that for x ∈ U(k) the morphism A → A,
y 7→ xyx−1y−1 takes finitely many values. Of course this means it is constant with value
e. Thus (x, y) 7→ xyx−1y−1 is constant with value e on U × A which implies that the
group law on A is abelian. �

Lemma 9.6. Let k be a field. LetA be an abelian variety over k. LetL be an invertible
OA-module. Then there is an isomorphism

m∗
1,2,3L ⊗m∗

1L ⊗m∗
2L ⊗m∗

3L ∼= m∗
1,2L ⊗m∗

1,3L ⊗m∗
2,3L

of invertible modules onA×kA×kAwheremi1,...,it : A×kA×kA→ A is the morphism
(x1, x2, x3) 7→

∑
xij .

Proof. Apply the theorem of the cube (More on Morphisms, Theorem 33.8) to the
difference

M = m∗
1,2,3L ⊗m∗

1L ⊗m∗
2L ⊗m∗

3L ⊗m∗
1,2L⊗−1 ⊗m∗

1,3L⊗−1 ⊗m∗
2,3L⊗−1

This works because the restriction ofM to A×A× e = A×A is equal to

n∗
1,2L ⊗ n∗

1L ⊗ n∗
2L ⊗ n∗

1,2L⊗−1 ⊗ n∗
1L⊗−1 ⊗ n∗

2L⊗−1 ∼= OA×kA

where ni1,...,it : A×kA→ A is the morphism (x1, x2) 7→
∑
xij . Similarly forA×e×A

and e×A×A. �

Lemma 9.7. Let k be a field. LetA be an abelian variety over k. LetL be an invertible
OA-module. Then

[n]∗L ∼= L⊗n(n+1)/2 ⊗ ([−1]∗L)⊗n(n−1)/2

where [n] : A→ A sends x to x+x+ . . .+xwith n summands and where [−1] : A→ A
is the inverse of A.
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Proof. Consider the morphism A → A ×k A ×k A, x 7→ (x, x,−x) where −x =
[−1](x). Pulling back the relation of Lemma 9.6 we obtain

L ⊗ L⊗ L⊗ [−1]∗L ∼= [2]∗L

which proves the result for n = 2. By induction assume the result holds for 1, 2, . . . , n.
Then consider the morphism A→ A×k A×k A, x 7→ (x, x, [n− 1]x). Pulling back the
relation of Lemma 9.6 we obtain

[n+ 1]∗L ⊗ L⊗ L⊗ [n− 1]∗L ∼= [2]∗L ⊗ [n]∗L ⊗ [n]∗L

and the result follows by elementary arithmetic. �

Lemma 9.8. Let k be a field. Let A be an abelian variety over k. Let [d] : A → A be
the multiplication by d. Then [d] is finite locally free of degree d2 dim(A).

Proof. By Lemma 9.2 (and More on Morphisms, Lemma 50.1) we see that A has an
ample invertible module L. Since [−1] : A→ A is an automorphism, we see that [−1]∗L
is an ample invertibleOX -module as well. ThusN = L⊗ [−1]∗L is ample, see Properties,
Lemma 26.5. SinceN ∼= [−1]∗N we see that [d]∗N ∼= N⊗d2

by Lemma 9.7.

To get a contradiction, let C ⊂ X be a proper curve contained in a fibre of [d]. Then
N⊗d2 |C ∼= OC is an ample invertibleOC -module of degree 0 which contradicts Varieties,
Lemma 44.14 for example. (You can also use Varieties, Lemma 45.9.) Thus every fibre of
[d] has dimension 0 and hence [d] is finite for example by Cohomology of Schemes, Lemma
21.1. Moreover, since A is smooth over k by Lemma 9.4 we see that [d] : A → A is flat
by Algebra, Lemma 128.1 (we also use that schemes smooth over fields are regular and that
regular rings are Cohen-Macaulay, see Varieties, Lemma 25.3 and Algebra, Lemma 106.3).
Thus [d] is finite flat hence finite locally free by Morphisms, Lemma 48.2.

Finally, we come to the formula for the degree. By Varieties, Lemma 45.11 we see that

degN ⊗d2 (A) = deg([d]) degN (A)

Since the degree of A with respect to N⊗d2
, respectively N is the coefficient of ndim(A)

in the polynomial

n 7−→ χ(A,N⊗nd2
), respectively n 7−→ χ(A,N⊗n)

we see that deg([d]) = d2 dim(A). �

Lemma 9.9. Let k be a field. Let A be a nonzero abelian variety over k. Then [d] :
A→ A is étale if and only if d is invertible in k.

Proof. Observe that [d](x + y) = [d](x) + [d](y). Since translation by a point is
an automorphism of A, we see that the set of points where [d] : A → A is étale is either
empty or equal toA (some details omitted). Thus it suffices to check whether [d] is étale at
the unit e ∈ A(k). Since we know that [d] is finite locally free (Lemma 9.8) to see that it
is étale at e is equivalent to proving that d[d] : TA/k,e → TA/k,e is injective. See Varieties,
Lemma 16.8 and Morphisms, Lemma 36.16. By Lemma 6.4 we see that d[d] is given by
multiplication by d on TA/k,e. �

Lemma 9.10. Let k be a field of characteristic p > 0. Let A be an abelian variety of
dimension g over k. The fibre of [p] : A→ A over 0 has at most pg distinct points.
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Proof. To prove this, we may and do replace k by the algebraic closure. By Lemma
6.4 the derivative of [p] is multiplication by p as a map TA/k,e → TA/k,e and hence is zero
(compare with proof of Lemma 9.9). Since [p] commutes with translation we conclude that
the derivative of [p] is everywhere zero, i.e., that the induced map [p]∗ΩA/k → ΩA/k is
zero. Looking at generic points, we find that the corresponding map [p]∗ : k(A)→ k(A)
of function fields induces the zero map on Ωk(A)/k. Let t1, . . . , tg be a p-basis of k(A)
over k (More on Algebra, Definition 46.1 and Lemma 46.2). Then [p]∗(ti) has a pth root
by Algebra, Lemma 158.2. We conclude that k(A)[x1, . . . , xg]/(xp1 − t1, . . . , xpg − tg) is a
subextension of [p]∗ : k(A) → k(A). Thus we can find an affine open U ⊂ A such that
ti ∈ OA(U) and xi ∈ OA([p]−1(U)). We obtain a factorization

[p]−1(U) π1−→ Spec(O(U)[x1, . . . , xg]/(xp1 − t1, . . . , xpg − tg))
π2−→ U

of [p] over U . After shrinking U we may assume that π1 is finite locally free (for example
by generic flatness – actually it is already finite locally free in our case). By Lemma 9.8
we see that [p] has degree p2g . Since π2 has degree pg we see that π1 has degree pg as
well. The morphism π2 is a universal homeomorphism hence the fibres are singletons.
We conclude that the (set theoretic) fibres of [p]−1(U) → U are the fibres of π1. Hence
they have at most pg elements. Since [p] is a homomorphism of group schemes over k, the
fibre of [p] : A(k) → A(k) has the same cardinality for every a ∈ A(k) and the proof is
complete. �

Proposition 9.11. Let A be an abelian variety over a field k. Then
(1) A is projective over k,
(2) A is a commutative group scheme,
(3) the morphism [n] : A→ A is surjective for all n ≥ 1,
(4) if k is algebraically closed, then A(k) is a divisible abelian group,
(5) A[n] = Ker([n] : A→ A) is a finite group scheme of degree n2 dimA over k,
(6) A[n] is étale over k if and only if n ∈ k∗,
(7) if n ∈ k∗ and k is algebraically closed, then A(k)[n] ∼= (Z/nZ)⊕2 dim(A),
(8) if k is algebraically closed of characteristic p > 0, then there exists an integer

0 ≤ f ≤ dim(A) such that A(k)[pm] ∼= (Z/pmZ)⊕f for all m ≥ 1.

Proof. Part (1) follows from Lemma 9.2. Part (2) follows from Lemma 9.5. Part (3)
follows from Lemma 9.8. If k is algebraically closed then surjective morphisms of varieties
over k induce surjective maps on k-rational points, hence (4) follows from (3). Part (5)
follows from Lemma 9.8 and the fact that a base change of a finite locally free morphism
of degree N is a finite locally free morphism of degree N . Part (6) follows from Lemma
9.9. Namely, if n is invertible in k, then [n] is étale and henceA[n] is étale over k. On the
other hand, if n is not invertible in k, then [n] is not étale at e and it follows that A[n] is
not étale over k at e (use Morphisms, Lemmas 36.16 and 35.15).

Assume k is algebraically closed. Set g = dim(A). Proof of (7). Let ` be a prime number
which is invertible in k. Then we see that

A[`](k) = A(k)[`]

is a finite abelian group, annihilated by `, of order `2g . It follows that it is isomorphic to
(Z/`Z)2g by the structure theory for finite abelian groups. Next, we consider the short
exact sequence

0→ A(k)[`]→ A(k)[`2] `−→ A(k)[`]→ 0
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Arguing similarly as above we conclude thatA(k)[`2] ∼= (Z/`2Z)2g . By induction on the
exponent we find that A(k)[`m] ∼= (Z/`mZ)2g . For composite integers n prime to the
characteristic of k we take primary parts and we find the correct shape of the n-torsion
in A(k). The proof of (8) proceeds in exactly the same way, using that Lemma 9.10 gives
A(k)[p] ∼= (Z/pZ)⊕f for some 0 ≤ f ≤ g. �

Remark 9.12. Let k be a field. There are 2 × 4 × 2 = 16 equivalent definitions of
abelian varieties. Let

• projective, proper,
• geometrically irreducible, irreducible, geometrically connected, connected,
• smooth, geometrically reduced

be three sets of properties, pick one from each of them, and let A be a group scheme over
k with the chosen properties over k. Then A is an abelian variety. If we pick the options
“proper, geometrically irreducible, geometrically reduced”, then we recover Definition 9.1
(use Varieties, Lemma 9.2). The weakest possible options would be “proper, connected, and
geometrically reduced”, see for example Morphisms, Lemma 43.5 and Varieties, Lemma
25.4. So say A is a proper, connected, and geometrically reduced group scheme over k.
ThenA is geometrically irreducible by Lemmas 7.10 and 7.4 and hence an abelian variety.
Finally, if A/k is an abelian variety, then it is projective and smooth over k (Proposition
9.11), whence satisfies the strongest possible options ”projective, geometrically irreducible,
smooth”.

10. Actions of group schemes

Let (G,m) be a group and let V be a set. Recall that a (left) action of G on V is given by
a map a : G× V → V such that

(1) (associativity) a(m(g, g′), v) = a(g, a(g′, v)) for all g, g′ ∈ G and v ∈ V , and
(2) (identity) a(e, v) = v for all v ∈ V .

We also say that V is aG-set (this usually means we drop the a from the notation – which
is abuse of notation). A map of G-sets ψ : V → V ′ is any set map such that ψ(a(g, v)) =
a(g, ψ(v)) for all v ∈ V .

Definition 10.1. Let S be a scheme. Let (G,m) be a group scheme over S.
(1) An action ofG on the schemeX/S is a morphism a : G×SX → X over S such

that for every T/S the map a : G(T )×X(T )→ X(T ) defines the structure of
a G(T )-set on X(T ).

(2) Suppose that X , Y are schemes over S each endowed with an action of G. An
equivariant or more precisely a G-equivariant morphism ψ : X → Y is a mor-
phism of schemes over S such that for every T/S the map ψ : X(T ) → Y (T )
is a morphism of G(T )-sets.

In situation (1) this means that the diagrams

(10.1.1)

G×S G×S X 1G×a
//

m×1X
��

G×S X

a

��
G×S X

a // X

G×S X a
// X

X

e×1X

OO

1X

;;
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are commutative. In situation (2) this just means that the diagram

G×S X id×ψ
//

a

��

G×S Y

a

��
X

ψ // Y

commutes.

Definition 10.2. LetS ,G→ S , andX → S as in Definition 10.1. Let a : G×SX →
X be an action of G on X/S. We say the action is free if for every scheme T over S the
action a : G(T )×X(T )→ X(T ) is a free action of the group G(T ) on the set X(T ).

Lemma 10.3. Situation as in Definition 10.2, The action a is free if and only if

G×S X → X ×S X, (g, x) 7→ (a(g, x), x)

is a monomorphism.

Proof. Immediate from the definitions. �

11. Principal homogeneous spaces

In Cohomology on Sites, Definition 4.1 we have defined a torsor for a sheaf of groups on
a site. Suppose τ ∈ {Zariski, étale, smooth, syntomic, fppf} is a topology and (G,m)
is a group scheme over S. Since τ is stronger than the canonical topology (see Descent,
Lemma 13.7) we see that G (see Sites, Definition 12.3) is a sheaf of groups on (Sch/S)τ .
Hence we already know what it means to have a torsor for G on (Sch/S)τ . A special
situation arises if this sheaf is representable. In the following definitions we define directly
what it means for the representing scheme to be a G-torsor.

Definition 11.1. Let S be a scheme. Let (G,m) be a group scheme over S. Let X be
a scheme over S , and let a : G×S X → X be an action of G on X .

(1) We say X is a pseudo G-torsor or that X is formally principally homogeneous
under G if the induced morphism of schemes G ×S X → X ×S X , (g, x) 7→
(a(g, x), x) is an isomorphism of schemes over S.

(2) A pseudo G-torsor X is called trivial if there exists an G-equivariant isomor-
phism G→ X over S where G acts on G by left multiplication.

It is clear that if S′ → S is a morphism of schemes then the pullback XS′ of a pseudo
G-torsor over S is a pseudo GS′ -torsor over S′.

Lemma 11.2. In the situation of Definition 11.1.
(1) The schemeX is a pseudoG-torsor if and only if for every scheme T over S the

set X(T ) is either empty or the action of the group G(T ) on X(T ) is simply
transitive.

(2) A pseudoG-torsorX is trivial if and only if the morphismX → S has a section.

Proof. Omitted. �

Definition 11.3. Let S be a scheme. Let (G,m) be a group scheme over S. Let X be
a pseudo G-torsor over S.
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(1) We say X is a principal homogeneous space or a G-torsor if there exists a fpqc
covering3 {Si → S}i∈I such that each XSi → Si has a section (i.e., is a trivial
pseudo GSi -torsor).

(2) Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We say X is a G-torsor in
the τ topology, or a τ G-torsor, or simply a τ torsor if there exists a τ covering
{Si → S}i∈I such that each XSi → Si has a section.

(3) If X is a G-torsor, then we say that it is quasi-isotrivial if it is a torsor for the
étale topology.

(4) If X is a G-torsor, then we say that it is locally trivial if it is a torsor for the
Zariski topology.

We sometimes say “let X be a G-torsor over S” to indicate that X is a scheme over S
equipped with an action of G which turns it into a principal homogeneous space over S.
Next we show that this agrees with the notation introduced earlier when both apply.

Lemma 11.4. Let S be a scheme. Let (G,m) be a group scheme over S. Let X
be a scheme over S , and let a : G ×S X → X be an action of G on X . Let τ ∈
{Zariski, étale, smooth, syntomic, fppf}. Then X is a G-torsor in the τ -topology if
and only if X is a G-torsor on (Sch/S)τ .

Proof. Omitted. �

Remark 11.5. Let (G,m) be a group scheme over the scheme S. In this situation we
have the following natural types of questions:

(1) If X → S is a pseudo G-torsor and X → S is surjective, then is X necessarily a
G-torsor?

(2) Is every G-torsor on (Sch/S)fppf representable? In other words, does every
G-torsor come from a fppf G-torsor?

(3) Is every G-torsor an fppf (resp. smooth, resp. étale, resp. Zariski) torsor?
In general the answers to these questions is no. To get a positive answer we need to impose
additional conditions on G → S. For example: If S is the spectrum of a field, then the
answer to (1) is yes because then {X → S} is a fpqc covering trivializing X . If G→ S is
affine, then the answer to (2) is yes (this follows from Descent, Lemma 37.1). IfG = GLn,S
then the answer to (3) is yes and in fact any GLn,S-torsor is locally trivial (this follows
from Descent, Lemma 7.6).

12. Equivariant quasi-coherent sheaves

We think of “functions” as dual to “space”. Thus for a morphism of spaces the map on
functions goes the other way. Moreover, we think of the sections of a sheaf of modules as
“functions”. This leads us naturally to the direction of the arrows chosen in the following
definition.

Definition 12.1. Let S be a scheme, let (G,m) be a group scheme over S , and let
a : G ×S X → X be an action of the group scheme G on X/S. A G-equivariant
quasi-coherentOX -module, or simply an equivariant quasi-coherentOX -module, is a pair
(F , α), where F is a quasi-coherentOX -module, and α is aOG×SX -module map

α : a∗F −→ pr∗
1F

3This means that the default type of torsor is a pseudo torsor which is trivial on an fpqc covering. This
is the definition in [?, Exposé IV, 6.5]. It is a little bit inconvenient for us as we most often work in the fppf
topology.
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where pr1 : G×S X → X is the projection such that
(1) the diagram

(1G × a)∗pr∗
1F pr∗

12α
// pr∗

2F

(1G × a)∗a∗F

(1G×a)∗α

OO

(m× 1X)∗a∗F

(m×1X)∗α

OO

is a commutative in the category ofOG×SG×SX -modules, and
(2) the pullback

(e× 1X)∗α : F −→ F
is the identity map.

For explanation compare with the relevant diagrams of Equation (10.1.1).

Note that the commutativity of the first diagram guarantees that (e×1X)∗α is an idempo-
tent operator onF , and hence condition (2) is just the condition that it is an isomorphism.

Lemma 12.2. Let S be a scheme. Let G be a group scheme over S. Let f : Y → X be
a G-equivariant morphism between S-schemes endowed with G-actions. Then pullback
f∗ given by (F , α) 7→ (f∗F , (1G × f)∗α) defines a functor from the category of G-
equivariant quasi-coherent OX -modules to the category of G-equivariant quasi-coherent
OY -modules.

Proof. Omitted. �

Let us give an example.

Example 12.3. Let A be a Z-graded ring, i.e., A comes with a direct sum decompo-
sition A =

⊕
n∈Z An and An · Am ⊂ An+m. Set X = Spec(A). Then we obtain a

Gm-action
a : Gm ×X −→ X

by the ring map µ : A→ A⊗Z[x, x−1], f 7→ f ⊗xdeg(f). Namely, to check this we have
to verify that

A
µ

//

µ

��

A⊗ Z[x, x−1]

µ⊗1
��

A⊗ Z[x, x−1] 1⊗m // A⊗ Z[x, x−1]⊗ Z[x, x−1]

where m(x) = x ⊗ x, see Example 5.1. This is immediately clear when evaluating on a
homogeneous element. Suppose that M is a graded A-module. Then we obtain a Gm-
equivariant quasi-coherent OX -module F = M̃ by using α as in Definition 12.1 corre-
sponding to the A⊗ Z[x, x−1]-module map

M ⊗A,µ (A⊗ Z[x, x−1]) −→M ⊗A,idA⊗1 (A⊗ Z[x, x−1])

sending m⊗ 1⊗ 1 to m⊗ 1⊗ xdeg(m) for m ∈M homogeneous.

Lemma 12.4. Let a : Gm ×X → X be an action on an affine scheme. Then X is the
spectrum of a Z-graded ring and the action is as in Example 12.3.
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Proof. Let f ∈ A = Γ(X,OX). Then we can write

a](f) =
∑

n∈Z
fn ⊗ xn in A⊗ Z[x, x−1] = Γ(Gm ×X,OGm×X)

as a finite sum with fn inA uniquely determined. Thus we obtain mapsA→ A, f 7→ fn.
Since a is an action, if we evaluate at x = 1, we see f =

∑
fn. Since a is an action we find

that ∑
(fn)m ⊗ xm ⊗ xn =

∑
fnx

n ⊗ xn

(compare with computation in Example 12.3). Thus (fn)m = 0 if n 6= m and (fn)n = fn.
Thus if we set

An = {f ∈ A | fn = f}
then we get A =

∑
An. On the other hand, the sum has to be direct since f = 0 implies

fn = 0 in the situation above. �

Lemma 12.5. Let A be a graded ring. Let X = Spec(A) with action a : Gm ×X →
X as in Example 12.3. Let F be a Gm-equivariant quasi-coherent OX -module. Then
M = Γ(X,F) has a canonical grading such that it is a graded A-module and such that
the isomorphism M̃ → F (Schemes, Lemma 7.4) is an isomorphism of Gm-equivariant
modules where the Gm-equivariant structure on M̃ is the one from Example 12.3.

Proof. You can either prove this by repeating the arguments of Lemma 12.4 for the
moduleM . Alternatively, you can consider the scheme (X ′,OX′) = (X,OX⊕F) where
F is viewed as an ideal of square zero. There is a natural action a′ : Gm × X ′ → X ′

defined using the action on X and on F . Then apply Lemma 12.4 to X ′ and conclude.
(The nice thing about this argument is that it immediately shows that the grading on A
and M are compatible, i.e., that M is a graded A-module.) Details omitted. �

13. Groupoids

Recall that a groupoid is a category in which every morphism is an isomorphism, see Cat-
egories, Definition 2.5. Hence a groupoid has a set of objects Ob, a set of arrows Arrows,
a source and target map s, t : Arrows → Ob, and a composition law c : Arrows ×s,Ob,t
Arrows→ Arrows. These maps satisfy exactly the following axioms

(1) (associativity) c ◦ (1, c) = c ◦ (c, 1) as maps Arrows ×s,Ob,t Arrows ×s,Ob,t
Arrows→ Arrows,

(2) (identity) there exists a map e : Ob→ Arrows such that
(a) s ◦ e = t ◦ e = id as maps Ob→ Ob,
(b) c ◦ (1, e ◦ s) = c ◦ (e ◦ t, 1) = 1 as maps Arrows→ Arrows,

(3) (inverse) there exists a map i : Arrows→ Arrows such that
(a) s ◦ i = t, t ◦ i = s as maps Arrows→ Ob, and
(b) c ◦ (1, i) = e ◦ t and c ◦ (i, 1) = e ◦ s as maps Arrows→ Arrows.

If this is the case the maps e and i are uniquely determined and i is a bijection. Note that if
(Ob′,Arrows′, s′, t′, c′) is a second groupoid category, then a functor f : (Ob,Arrows, s, t, c)→
(Ob′,Arrows′, s′, t′, c′) is given by a pair of set maps f : Ob → Ob′ and f : Arrows →
Arrows′ such that s′◦f = f ◦s, t′◦f = f ◦t, and c′◦(f, f) = f ◦c. The compatibility with
identity and inverse is automatic. We will use this below. (Warning: The compatibility
with identity has to be imposed in the case of general categories.)

Definition 13.1. Let S be a scheme.
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(1) A groupoid scheme overS , or simply a groupoid overS is a quintuple (U,R, s, t, c)
where U and R are schemes over S , and s, t : R → U and c : R ×s,U,t R → R
are morphisms of schemes over S with the following property: For any scheme
T over S the quintuple

(U(T ), R(T ), s, t, c)

is a groupoid category in the sense described above.
(2) A morphism f : (U,R, s, t, c) → (U ′, R′, s′, t′, c′) of groupoid schemes over

S is given by morphisms of schemes f : U → U ′ and f : R → R′ with
the following property: For any scheme T over S the maps f define a func-
tor from the groupoid category (U(T ), R(T ), s, t, c) to the groupoid category
(U ′(T ), R′(T ), s′, t′, c′).

Let (U,R, s, t, c) be a groupoid over S. Note that, by the remarks preceding the definition
and the Yoneda lemma, there are unique morphisms of schemes e : U → R and i : R→ R
over S such that for every scheme T over S the induced map e : U(T ) → R(T ) is the
identity, and i : R(T ) → R(T ) is the inverse of the groupoid category. The septuple
(U,R, s, t, c, e, i) satisfies commutative diagrams corresponding to each of the axioms (1),
(2)(a), (2)(b), (3)(a) and (3)(b) above, and conversely given a septuple with this property
the quintuple (U,R, s, t, c) is a groupoid scheme. Note that i is an isomorphism, and e is
a section of both s and t. Moreover, given a groupoid scheme over S we denote

j = (t, s) : R −→ U ×S U

which is compatible with our conventions in Section 3 above. We sometimes say “let
(U,R, s, t, c, e, i) be a groupoid over S” to stress the existence of identity and inverse.

Lemma 13.2. Given a groupoid scheme (U,R, s, t, c) over S the morphism j : R →
U ×S U is a pre-equivalence relation.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 13.3. Given an equivalence relation j : R→ U×SU over S there is a unique
way to extend it to a groupoid (U,R, s, t, c) over S.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 13.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. In the
commutative diagram

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top (which is
really a square) is also cartesian.

Proof. Omitted. Exercise in the definitions and the functorial point of view in al-
gebraic geometry. �
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Lemma 13.5. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid over S. The
diagram

(13.5.1) R×t,U,t R
pr1 //

pr0
//

(pr0,c◦(i,1))
��

R
t //

idR
��

U

idU
��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The two
lower left squares are cartesian.

Proof. The commutativity of the diagram follows from the axioms of a groupoid.
Note that, in terms of groupoids, the top left vertical arrow assigns to a pair of morphisms
(α, β) with the same target, the pair of morphisms (α, α−1 ◦ β). In any groupoid this
defines a bijection between Arrows×t,Ob,t Arrows and Arrows×s,Ob,t Arrows. Hence the
second assertion of the lemma. The last assertion follows from Lemma 13.4. �

Lemma 13.6. Let (U,R, s, t, c) be a groupoid over a scheme S. Let S′ → S be a
morphism. Then the base changes U ′ = S′ ×S U , R′ = S′ ×S R endowed with the base
changes s′, t′, c′ of the morphisms s, t, c form a groupoid scheme (U ′, R′, s′, t′, c′) over S′

and the projections determine a morphism (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) of groupoid
schemes over S.

Proof. Omitted. Hint: R′ ×s′,U ′,t′ R
′ = S′ ×S (R×s,U,t R). �

14. Quasi-coherent sheaves on groupoids

See the introduction of Section 12 for our choices in direction of arrows.

Definition 14.1. Let S be a scheme, let (U,R, s, t, c) be a groupoid scheme over S.
A quasi-coherent module on (U,R, s, t, c) is a pair (F , α), where F is a quasi-coherent
OU -module, and α is aOR-module map

α : t∗F −→ s∗F

such that
(1) the diagram

pr∗
1t

∗F
pr∗

1α
// pr∗

1s
∗F

pr∗
0s

∗F c∗s∗F

pr∗
0t

∗F
pr∗

0α

dd

c∗t∗F
c∗α

::

is a commutative in the category ofOR×s,U,tR-modules, and
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(2) the pullback
e∗α : F −→ F

is the identity map.
Compare with the commutative diagrams of Lemma 13.4.

The commutativity of the first diagram forces the operator e∗α to be idempotent. Hence
the second condition can be reformulated as saying that e∗α is an isomorphism. In fact,
the condition implies that α is an isomorphism.

Lemma 14.2. Let S be a scheme, let (U,R, s, t, c) be a groupoid scheme over S. If
(F , α) is a quasi-coherent module on (U,R, s, t, c) then α is an isomorphism.

Proof. Pull back the commutative diagram of Definition 14.1 by the morphism (i, 1) :
R→ R×s,U,tR. Then we see that i∗α ◦α = s∗e∗α. Pulling back by the morphism (1, i)
we obtain the relation α ◦ i∗α = t∗e∗α. By the second assumption these morphisms are
the identity. Hence i∗α is an inverse of α. �

Lemma 14.3. LetS be a scheme. Consider a morphism f : (U,R, s, t, c)→ (U ′, R′, s′, t′, c′)
of groupoid schemes over S. Then pullback f∗ given by

(F , α) 7→ (f∗F , f∗α)

defines a functor from the category of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) to the
category of quasi-coherent sheaves on (U,R, s, t, c).

Proof. Omitted. �

Lemma 14.4. LetS be a scheme. Consider a morphism f : (U,R, s, t, c)→ (U ′, R′, s′, t′, c′)
of groupoid schemes over S. Assume that

(1) f : U → U ′ is quasi-compact and quasi-separated,
(2) the square

R

t

��

f
// R′

t′

��
U

f // U ′

is cartesian, and
(3) s′ and t′ are flat.

Then pushforward f∗ given by

(F , α) 7→ (f∗F , f∗α)

defines a functor from the category of quasi-coherent sheaves on (U,R, s, t, c) to the cat-
egory of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) which is right adjoint to pullback as
defined in Lemma 14.3.

Proof. SinceU → U ′ is quasi-compact and quasi-separated we see that f∗ transforms
quasi-coherent sheaves into quasi-coherent sheaves (Schemes, Lemma 24.1). Moreover,
since the squares

R

t

��

f
// R′

t′

��
U

f // U ′

and

R

s

��

f
// R′

s′

��
U

f // U ′
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are cartesian we find that (t′)∗f∗F = f∗t
∗F and (s′)∗f∗F = f∗s

∗F , see Cohomology of
Schemes, Lemma 5.2. Thus it makes sense to think of f∗α as a map (t′)∗f∗F → (s′)∗f∗F .
A similar argument shows that f∗α satisfies the cocycle condition. The functor is adjoint
to the pullback functor since pullback and pushforward on modules on ringed spaces are
adjoint. Some details omitted. �

Lemma 14.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. The
category of quasi-coherent modules on (U,R, s, t, c) has colimits.

Proof. Let i 7→ (Fi, αi) be a diagram over the index category I . We can form the
colimitF = colimFi which is a quasi-coherent sheaf onU , see Schemes, Section 24. Since
colimits commute with pullback we see that s∗F = colim s∗Fi and similarly t∗F =
colim t∗Fi. Hence we can set α = colimαi. We omit the proof that (F , α) is the colimit
of the diagram in the category of quasi-coherent modules on (U,R, s, t, c). �

Lemma 14.6. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. If s,
t are flat, then the category of quasi-coherent modules on (U,R, s, t, c) is abelian.

Proof. Let ϕ : (F , α) → (G, β) be a homomorphism of quasi-coherent modules on
(U,R, s, t, c). Since s is flat we see that

0→ s∗ Ker(ϕ)→ s∗F → s∗G → s∗ Coker(ϕ)→ 0
is exact and similarly for pullback by t. Henceα andβ induce isomorphismsκ : t∗ Ker(ϕ)→
s∗ Ker(ϕ) and λ : t∗ Coker(ϕ)→ s∗ Coker(ϕ) which satisfy the cocycle condition. Then
it is straightforward to verify that (Ker(ϕ), κ) and (Coker(ϕ), λ) are a kernel and coker-
nel in the category of quasi-coherent modules on (U,R, s, t, c). Moreover, the condition
Coim(ϕ) = Im(ϕ) follows because it holds over U . �

15. Colimits of quasi-coherent modules

In this section we prove some technical results saying that under suitable assumptions
every quasi-coherent module on a groupoid is a filtered colimit of “small” quasi-coherent
modules.

Lemma 15.1. Let (U,R, s, t, c) be a groupoid scheme over S. Assume s, t are flat,
quasi-compact, and quasi-separated. For any quasi-coherent module G on U , there exists
a canonical isomorphism α : t∗s∗t

∗G → s∗s∗t
∗G which turns (s∗t

∗G, α) into a quasi-
coherent module on (U,R, s, t, c). This construction defines a functor

QCoh(OU ) −→ QCoh(U,R, s, t, c)
which is a right adjoint to the forgetful functor (F , β) 7→ F .

Proof. The pushforward of a quasi-coherent module along a quasi-compact and quasi-
separated morphism is quasi-coherent, see Schemes, Lemma 24.1. Hence s∗t

∗G is quasi-
coherent. With notation as in Lemma 13.4 we have

t∗s∗t
∗G = pr1,∗pr∗

0t
∗G = pr1,∗c

∗t∗G = s∗s∗t
∗G

The middle equality because t ◦ c = t ◦ pr0 as morphisms R ×s,U,t R → U , and the
first and the last equality because we know that base change and pushforward commute
in these steps by Cohomology of Schemes, Lemma 5.2.

To verify the cocycle condition of Definition 14.1 for α and the adjointness property we
describe the construction G 7→ (s∗t

∗G, α) in another way. Consider the groupoid scheme
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(R,R×t,U,t R, pr0, pr1, pr02) associated to the equivalence relation R×t,U,t R on R, see
Lemma 13.3. There is a morphism

f : (R,R×t,U,t R, pr1, pr0, pr02) −→ (U,R, s, t, c)

of groupoid schemes given by s : R → U and R ×t,U,t R → R given by (r0, r1) 7→
r−1

0 ◦ r1; we omit the verification of the commutativity of the required diagrams. Since
t, s : R → U are quasi-compact, quasi-separated, and flat, and since we have a cartesian
square

R×t,U,t R
pr0

��

(r0,r1)7→r−1
0 ◦r1

// R

t

��
R

s // U

by Lemma 13.5 it follows that Lemma 14.4 applies to f . Thus pushforward and pullback of
quasi-coherent modules along f are adjoint functors. To finish the proof we will identify
these functors with the functors described above. To do this, note that

t∗ : QCoh(OU ) −→ QCoh(R,R×t,U,t R, pr1, pr0, pr02)

is an equivalence by the theory of descent of quasi-coherent sheaves as {t : R→ U} is an
fpqc covering, see Descent, Proposition 5.2.

Pushforward along f precomposed with the equivalence t∗ sends G to (s∗t
∗G, α); we omit

the verification that the isomorphism α obtained in this fashion is the same as the one
constructed above.

Pullback along f postcomposed with the inverse of the equivalence t∗ sends (F , β) to the
descent relative to {t : R→ U} of the module s∗F endowed with the descent datum γ on
R×t,U,t R which is the pullback of β by (r0, r1) 7→ r−1

0 ◦ r1. Consider the isomorphism
β : t∗F → s∗F . The canonical descent datum (Descent, Definition 2.3) on t∗F relative
to {t : R→ U} translates via β into the map

pr∗
0s

∗F
pr∗

0β
−1

−−−−→ pr∗
0t

∗F can−−→ pr∗
1t

∗F
pr∗

1β−−−→ pr∗
1s

∗F

Since β satisfies the cocycle condition, this is equal to the pullback of β by (r0, r1) 7→
r−1

0 ◦ r1. To see this take the actual cocycle relation in Definition 14.1 and pull it back
by the morphism (pr0, c ◦ (i, 1)) : R ×t,U,t R → R ×s,U,t R which also plays a role
in the commutative diagram of Lemma 13.5. It follows that (s∗F , γ) is isomorphic to
(t∗F , can). All in all, we conclude that pullback by f postcomposed with the inverse of
the equivalence t∗ is isomorphic to the forgetful functor (F , β) 7→ F . �

Remark 15.2. In the situation of Lemma 15.1 denote

F : QCoh(U,R, s, t, c)→ QCoh(OU ), (F , β) 7→ F

the forgetful functor and denote

G : QCoh(OU )→ QCoh(U,R, s, t, c), G 7→ (s∗t
∗G, α)

the right adjoint constructed in the lemma. Then the unit η : id→ G◦F of the adjunction
evaluated on (F , β) is given by the map

F → s∗s
∗F β−1

−−→ s∗t
∗F

We omit the verification.
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Lemma 15.3. Let f : Y → X be a morphism of schemes. Let F be a quasi-coherent
OX -module, let G be a quasi-coherent OY -module, and let ϕ : G → f∗F be a module
map. Assume

(1) ϕ is injective,
(2) f is quasi-compact, quasi-separated, flat, and surjective,
(3) X , Y are locally Noetherian, and
(4) G is a coherentOY -module.

Then F ∩ f∗G defined as the pullback

F // f∗f
∗F

F ∩ f∗G

OO

// f∗G

OO

is a coherentOX -module.

Proof. We will freely use the characterization of coherent modules of Cohomology
of Schemes, Lemma 9.1 as well as the fact that coherent modules form a Serre subcategory
of QCoh(OX), see Cohomology of Schemes, Lemma 9.3. If f has a section σ, then we see
thatF∩f∗G is contained in the image of σ∗G → σ∗f∗F = F , hence coherent. In general,
to show that F ∩ f∗G is coherent, it suffices the show that f∗(F ∩ f∗G) is coherent (see
Descent, Lemma 7.1). Since f is flat this is equal to f∗F ∩ f∗f∗G. Since f is flat, quasi-
compact, and quasi-separated we see f∗f∗G = p∗q

∗G where p, q : Y ×X Y → Y are the
projections, see Cohomology of Schemes, Lemma 5.2. Since p has a section we win. �

Let S be a scheme. Let (U,R, s, t, c) be a groupoid in schemes over S. Assume that U
is locally Noetherian. In the lemma below we say that a quasi-coherent sheaf (F , α) on
(U,R, s, t, c) is coherent if F is a coherentOU -module.

Lemma 15.4. Let (U,R, s, t, c) be a groupoid scheme over S. Assume that
(1) U , R are Noetherian,
(2) s, t are flat, quasi-compact, and quasi-separated.

Then every quasi-coherent module (F , β) on (U,R, s, t, c) is a filtered colimit of coherent
modules.

Proof. We will use the characterization of Cohomology of Schemes, Lemma 9.1 of
coherent modules on locally Noetherian scheme without further mention. We can write
F = colimHi as the filtered colimit of coherent submodules Hi ⊂ F , see Cohomology
of Schemes, Lemma 10.4. Given a quasi-coherent sheaf H on U we denote (s∗t

∗H, α)
the quasi-coherent sheaf on (U,R, s, t, c) of Lemma 15.1. Consider the adjunction map
(F , β)→ (s∗t

∗F , α) in QCoh(U,R, s, t, c), see Remark 15.2. Set

(Fi, βi) = (F , β)×(s∗t∗F,α) (s∗t
∗Hi, α)

in QCoh(U,R, s, t, c). Since restriction to U is an exact functor on QCoh(U,R, s, t, c)
by the proof of Lemma 14.6 we obtain a pullback diagram

F // s∗t
∗F

Fi //

OO

s∗t
∗Hi

OO
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in other words Fi = F ∩ s∗t
∗Hi. By the description of the adjunction map in Remark

15.2 this diagram is isomorphic to the diagram

F // s∗s
∗F

Fi //

OO

s∗t
∗Hi

OO

where the right vertical arrow is the result of appplying s∗ to the map

t∗Hi → t∗F β−→ s∗F

This arrow is injective as t is a flat morphism. It follows that Fi is coherent by Lemma
15.3. Finally, because s is quasi-compact and quasi-separated we see that s∗ commutes
with colimits (see Cohomology of Schemes, Lemma 6.1). Hence s∗t

∗F = colim s∗t
∗Hi

and hence (F , β) = colim(Fi, βi) as desired. �

Here is a curious lemma that is useful when working with groupoids on fields. In fact,
this is the standard argument to prove that any representation of an algebraic group is a
colimit of finite dimensional representations.

Lemma 15.5. Let (U,R, s, t, c) be a groupoid scheme over S. Assume that
(1) U , R are affine,
(2) there exist ei ∈ OR(R) such that every element g ∈ OR(R) can be uniquely

written as
∑
s∗(fi)ei for some fi ∈ OU (U).

Then every quasi-coherent module (F , α) on (U,R, s, t, c) is a filtered colimit of finite
type quasi-coherent modules.

Proof. The assumption means that OR(R) is a free OU (U)-module via s with basis
ei. Hence for any quasi-coherent OU -module G we see that s∗G(R) =

⊕
i G(U)ei. We

will write s(−) to indicate pullback of sections by s and similarly for other morphisms.
Let (F , α) be a quasi-coherent module on (U,R, s, t, c). Let σ ∈ F(U). By the above we
can write

α(t(σ)) =
∑

s(σi)ei
for some unique σi ∈ F(U) (all but finitely many are zero of course). We can also write

c(ei) =
∑

pr1(fij)pr0(ej)

as functions on R ×s,U,t R. Then the commutativity of the diagram in Definition 14.1
means that ∑

pr1(α(t(σi)))pr0(ei) =
∑

pr1(s(σi)fij)pr0(ej)

(calculation omitted). Picking off the coefficients of pr0(el) we see thatα(t(σl)) =
∑
s(σi)fil.

Hence the submodule G ⊂ F generated by the elements σi defines a finite type quasi-
coherent module preserved by α. Hence it is a subobject of F in QCoh(U,R, s, t, c).
This submodule contains σ (as one sees by pulling back the first relation by e). Hence
we win. �

We suggest the reader skip the rest of this section. Let S be a scheme. Let (U,R, s, t, c) be a
groupoid in schemes over S. Let κ be a cardinal. In the following we will say that a quasi-
coherent sheaf (F , α) on (U,R, s, t, c) is κ-generated if F is a κ-generated OU -module,
see Properties, Definition 23.1.
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Lemma 15.6. Let (U,R, s, t, c) be a groupoid scheme over S. Let κ be a cardinal.
There exists a set T and a family (Ft, αt)t∈T of κ-generated quasi-coherent modules on
(U,R, s, t, c) such that every κ-generated quasi-coherent module on (U,R, s, t, c) is iso-
morphic to one of the (Ft, αt).

Proof. For each quasi-coherent module F on U there is a (possibly empty) set of
maps α : t∗F → s∗F such that (F , α) is a quasi-coherent modules on (U,R, s, t, c).
By Properties, Lemma 23.2 there exists a set of isomorphism classes of κ-generated quasi-
coherentOU -modules. �

Lemma 15.7. Let (U,R, s, t, c) be a groupoid scheme over S. Assume that s, t are flat.
There exists a cardinal κ such that every quasi-coherent module (F , α) on (U,R, s, t, c)
is the directed colimit of its κ-generated quasi-coherent submodules.

Proof. In the statement of the lemma and in this proof a submodule of a quasi-
coherent module (F , α) is a quasi-coherent submodule G ⊂ F such that α(t∗G) = s∗G
as subsheaves of s∗F . This makes sense because since s, t are flat the pullbacks s∗ and t∗
are exact, i.e., preserve subsheaves. The proof will be a repeat of the proof of Properties,
Lemma 23.3. We urge the reader to read that proof first.

Choose an affine open covering U =
⋃
i∈I Ui. For each pair i, j choose affine open cover-

ings
Ui ∩ Uj =

⋃
k∈Iij

Uijk and s−1(Ui) ∩ t−1(Uj) =
⋃

k∈Jij
Wijk.

Write Ui = Spec(Ai), Uijk = Spec(Aijk), Wijk = Spec(Bijk). Let κ be any infinite
cardinal ≥ than the cardinality of any of the sets I , Iij , Jij .

Let (F , α) be a quasi-coherent module on (U,R, s, t, c). SetMi = F(Ui),Mijk = F(Uijk).
Note that

Mi ⊗Ai Aijk = Mijk = Mj ⊗Aj Aijk
and that α gives isomorphisms

α|Wijk
: Mi ⊗Ai,t Bijk −→Mj ⊗Aj ,s Bijk

see Schemes, Lemma 7.3. Using the axiom of choice we choose a map

(i, j, k,m) 7→ S(i, j, k,m)

which associates to every i, j ∈ I , k ∈ Iij or k ∈ Jij and m ∈ Mi a finite subset
S(i, j, k,m) ⊂Mj such that we have

m⊗ 1 =
∑

m′∈S(i,j,k,m)
m′ ⊗ am′ or α(m⊗ 1) =

∑
m′∈S(i,j,k,m)

m′ ⊗ bm′

in Mijk for some am′ ∈ Aijk or bm′ ∈ Bijk. Moreover, let’s agree that S(i, i, k,m) =
{m} for all i, j = i, k,m when k ∈ Iij . Fix such a collection S(i, j, k,m)

Given a family S = (Si)i∈I of subsets Si ⊂Mi of cardinality at most κ we set S ′ = (S′
i)

where
S′
j =

⋃
(i,j,k,m) such thatm∈Si

S(i, j, k,m)

Note that Si ⊂ S′
i. Note that S′

i has cardinality at most κ because it is a union over a
set of cardinality at most κ of finite sets. Set S(0) = S , S(1) = S ′ and by induction
S(n+1) = (S(n))′. Then set S(∞) =

⋃
n≥0 S(n). Writing S(∞) = (S(∞)

i ) we see that for
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any elementm ∈ S(∞)
i the image ofm inMijk can be written as a finite sum

∑
m′⊗am′

with m′ ∈ S(∞)
j . In this way we see that setting

Ni = Ai-submodule of Mi generated by S(∞)
i

we have

Ni ⊗Ai Aijk = Nj ⊗Aj Aijk and α(Ni ⊗Ai,t Bijk) = Nj ⊗Aj ,s Bijk

as submodules of Mijk or Mj ⊗Aj ,s Bijk. Thus there exists a quasi-coherent submodule
G ⊂ F with G(Ui) = Ni such that α(t∗G) = s∗G as submodules of s∗F . In other words,
(G, α|t∗G) is a submodule of (F , α). Moreover, by construction G is κ-generated.

Let {(Gt, αt)}t∈T be the set of κ-generated quasi-coherent submodules of (F , α). If t, t′ ∈
T then Gt + Gt′ is also a κ-generated quasi-coherent submodule as it is the image of the
map Gt ⊕ Gt′ → F . Hence the system (ordered by inclusion) is directed. The arguments
above show that every section of F over Ui is in one of the Gt (because we can start with
S such that the given section is an element of Si). Hence colimt Gt → F is both injective
and surjective as desired. �

16. Groupoids and group schemes

There are many ways to construct a groupoid out of an action a of a group G on a set V .
We choose the one where we think of an element g ∈ G as an arrow with source v and
target a(g, v). This leads to the following construction for group actions of schemes.

Lemma 16.1. Let S be a scheme. Let Y be a scheme over S. Let (G,m) be a group
scheme over Y with identity eG and inverse iG. Let X/Y be a scheme over Y and let a :
G×YX → X be an action ofG onX/Y . Then we get a groupoid scheme (U,R, s, t, c, e, i)
over S in the following manner:

(1) We set U = X , and R = G×Y X .
(2) We set s : R→ U equal to (g, x) 7→ x.
(3) We set t : R→ U equal to (g, x) 7→ a(g, x).
(4) We set c : R×s,U,t R→ R equal to ((g, x), (g′, x′)) 7→ (m(g, g′), x′).
(5) We set e : U → R equal to x 7→ (eG(x), x).
(6) We set i : R→ R equal to (g, x) 7→ (iG(g), a(g, x)).

Proof. Omitted. Hint: It is enough to show that this works on the set level. For this
use the description above the lemma describing g as an arrow from v to a(g, v). �

Lemma 16.2. Let S be a scheme. Let Y be a scheme over S. Let (G,m) be a group
scheme over Y . Let X be a scheme over Y and let a : G ×Y X → X be an action of
G on X over Y . Let (U,R, s, t, c) be the groupoid scheme constructed in Lemma 16.1.
The rule (F , α) 7→ (F , α) defines an equivalence of categories between G-equivariant
OX -modules and the category of quasi-coherent modules on (U,R, s, t, c).

Proof. The assertion makes sense because t = a and s = pr1 as morphisms R =
G ×Y X → X , see Definitions 12.1 and 14.1. Using the translation in Lemma 16.1 the
commutativity requirements of the two definitions match up exactly. �
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17. The stabilizer group scheme

Given a groupoid scheme we get a group scheme as follows.

Lemma 17.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. The scheme
G defined by the cartesian square

G //

��

R

j=(t,s)
��

U
∆ // U ×S U

is a group scheme over U with composition law m induced by the composition law c.

Proof. This is true because in a groupoid category the set of self maps of any object
forms a group. �

Since ∆ is an immersion we see that G = j−1(∆U/S) is a locally closed subscheme of R.
Thinking of it in this way, the structure morphism j−1(∆U/S)→ U is induced by either
s or t (it is the same), and m is induced by c.

Definition 17.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. The
group scheme j−1(∆U/S)→ U is called the stabilizer of the groupoid scheme (U,R, s, t, c).

In the literature the stabilizer group scheme is often denotedS (because the word stabilizer
starts with an “s” presumably); we cannot do this since we have already used S for the base
scheme.

Lemma 17.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S , and letG/U
be its stabilizer. Denote Rt/U the scheme R seen as a scheme over U via the morphism
t : R→ U . There is a canonical left action

a : G×U Rt −→ Rt

induced by the composition law c.

Proof. In terms of points over T/S we define a(g, r) = c(g, r). �

Lemma 17.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let
G be the stabilizer group scheme of R. Let

G0 = G×U,pr0
(U ×S U) = G×S U

as a group scheme over U ×S U . The action of G on R of Lemma 17.3 induces an action
of G0 on R over U ×S U which turns R into a pseudo G0-torsor over U ×S U .

Proof. This is true because in a groupoid category C the set MorC(x, y) is a principal
homogeneous set under the group MorC(y, y). �

Lemma 17.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let
p ∈ U×SU be a point. DenoteRp the scheme theoretic fibre of j = (t, s) : R→ U×SU .
If Rp 6= ∅, then the action

G0,κ(p) ×κ(p) Rp −→ Rp

(see Lemma 17.4) which turns Rp into a Gκ(p)-torsor over κ(p).

Proof. The action is a pseudo-torsor by the lemma cited in the statement. And if
Rp is not the empty scheme, then {Rp → p} is an fpqc covering which trivializes the
pseudo-torsor. �
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18. Restricting groupoids

Consider a (usual) groupoid C = (Ob,Arrows, s, t, c). Suppose we have a map of sets g :
Ob′ → Ob. Then we can construct a groupoid C′ = (Ob′,Arrows′, s′, t′, c′) by thinking
of a morphism between elements x′, y′ of Ob′ as a morphism in C between g(x′), g(y′). In
other words we set

Arrows′ = Ob′ ×g,Ob,t Arrows×s,Ob,g Ob′.

with obvious choices for s′, t′, and c′. There is a canonical functor C′ → C which is fully
faithful, but not necessarily essentially surjective. This groupoid C′ endowed with the
functor C′ → C is called the restriction of the groupoid C to Ob′.

Lemma 18.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let
g : U ′ → U be a morphism of schemes. Consider the following diagram

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

where all the squares are fibre product squares. Then there is a canonical composition law
c′ : R′×s′,U ′,t′ R

′ → R′ such that (U ′, R′, s′, t′, c′) is a groupoid scheme over S and such
that U ′ → U , R′ → R defines a morphism (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) of groupoid
schemes over S. Moreover, for any scheme T over S the functor of groupoids

(U ′(T ), R′(T ), s′, t′, c′)→ (U(T ), R(T ), s, t, c)
is the restriction (see above) of (U(T ), R(T ), s, t, c) via the map U ′(T )→ U(T ).

Proof. Omitted. �

Definition 18.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. The morphism of groupoids (U ′, R′, s′, t′, c′)→
(U,R, s, t, c) constructed in Lemma 18.1 is called the restriction of (U,R, s, t, c) toU ′. We
sometime use the notation R′ = R|U ′ in this case.

Lemma 18.3. The notions of restricting groupoids and (pre-)equivalence relations
defined in Definitions 18.2 and 3.3 agree via the constructions of Lemmas 13.2 and 13.3.

Proof. What we are saying here is that R′ of Lemma 18.1 is also equal to
R′ = (U ′ ×S U ′)×U×SU R −→ U ′ ×S U ′

In fact this might have been a clearer way to state that lemma. �

Lemma 18.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction of
(U,R, s, t, c) via g. Let G be the stabilizer of (U,R, s, t, c) and let G′ be the stabilizer of
(U ′, R′, s′, t′, c′). Then G′ is the base change of G by g, i.e., there is a canonical identifi-
cation G′ = U ′ ×g,U G.

Proof. Omitted. �
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19. Invariant subschemes

In this section we discuss briefly the notion of an invariant subscheme.

Definition 19.1. Let (U,R, s, t, c) be a groupoid scheme over the base scheme S.
(1) A subset W ⊂ U is set-theoretically R-invariant if t(s−1(W )) ⊂W .
(2) An open W ⊂ U is R-invariant if t(s−1(W )) ⊂W .
(3) A closed subscheme Z ⊂ U is called R-invariant if t−1(Z) = s−1(Z). Here we

use the scheme theoretic inverse image, see Schemes, Definition 17.7.
(4) A monomorphism of schemes T → U isR-invariant if T ×U,tR = R×s,U T as

schemes over R.

For subsets and open subschemes W ⊂ U the R-invariance is also equivalent to requiring
that s−1(W ) = t−1(W ) as subsets of R. If W ⊂ U is an R-equivariant open subscheme
then the restriction of R to W is just RW = s−1(W ) = t−1(W ). Similarly, if Z ⊂ U is
an R-invariant closed subscheme, then the restriction of R to Z is just RZ = s−1(Z) =
t−1(Z).

Lemma 19.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
(1) For any subset W ⊂ U the subset t(s−1(W )) is set-theoretically R-invariant.
(2) If s and t are open, then for every open W ⊂ U the open t(s−1(W )) is an R-

invariant open subscheme.
(3) If s and t are open and quasi-compact, then U has an open covering consisting

of R-invariant quasi-compact open subschemes.

Proof. Part (1) follows from Lemmas 3.4 and 13.2, namely, t(s−1(W )) is the set of
points of U equivalent to a point of W . Next, assume s and t open and W ⊂ U open.
Since s is open the set W ′ = t(s−1(W )) is an open subset of U . Finally, assume that s,
t are both open and quasi-compact. Then, if W ⊂ U is a quasi-compact open, then also
W ′ = t(s−1(W )) is a quasi-compact open, and invariant by the discussion above. Letting
W range over all affine opens of U we see (3). �

Lemma 19.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume s and t quasi-compact and flat and U quasi-separated. Let W ⊂ U be quasi-
compact open. Then t(s−1(W )) is an intersection of a nonempty family of quasi-compact
open subsets of U .

Proof. Note that s−1(W ) is quasi-compact open in R. As a continuous map t maps
the quasi-compact subset s−1(W ) to a quasi-compact subset t(s−1(W )). As t is flat and
s−1(W ) is closed under generalization, so is t(s−1(W )), see (Morphisms, Lemma 25.9 and
Topology, Lemma 19.6). Pick a quasi-compact open W ′ ⊂ U containing t(s−1(W )). By
Properties, Lemma 2.4 we see that W ′ is a spectral space (here we use that U is quasi-
separated). Then the lemma follows from Topology, Lemma 24.7 applied to t(s−1(W )) ⊂
W ′. �

Lemma 19.4. Assumptions and notation as in Lemma 19.3. There exists anR-invariant
open V ⊂ U and a quasi-compact open W ′ such that W ⊂ V ⊂W ′ ⊂ U .

Proof. Set E = t(s−1(W )). Recall that E is set-theoretically R-invariant (Lemma
19.2). By Lemma 19.3 there exists a quasi-compact openW ′ containingE. LetZ = U \W ′

and consider T = t(s−1(Z)). Observe thatZ ⊂ T and thatE∩T = ∅ because s−1(E) =
t−1(E) is disjoint from s−1(Z). Since T is the image of the closed subset s−1(Z) ⊂ R

under the quasi-compact morphism t : R → U we see that any point ξ in the closure T
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is the specialization of a point of T , see Morphisms, Lemma 6.5 (and Morphisms, Lemma
6.3 to see that the scheme theoretic image is the closure of the image). Say ξ′  ξ with
ξ′ ∈ T . Suppose that r ∈ R and s(r) = ξ. Since s is flat we can find a specialization
r′  r in R such that s(r′) = ξ′ (Morphisms, Lemma 25.9). Then t(r′)  t(r). We
conclude that t(r′) ∈ T as T is set-theoretically invariant by Lemma 19.2. Thus T is a
set-theoretically R-invariant closed subset and V = U \ T is the open we are looking for.
It is contained in W ′ which finishes the proof. �

20. Quotient sheaves

Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. Let S be a scheme. Let j : R →
U ×S U be a pre-relation over S. Say U,R, S are objects of a τ -site Schτ (see Topologies,
Section 2). Then we can consider the functors

hU , hR : (Sch/S)oppτ −→ Sets.

These are sheaves, see Descent, Lemma 13.7. The morphism j induces a map j : hR →
hU × hU . For each object T ∈ Ob((Sch/S)τ ) we can take the equivalence relation ∼T
generated by j(T ) : R(T ) → U(T ) × U(T ) and consider the quotient. Hence we get a
presheaf

(20.0.1) (Sch/S)oppτ −→ Sets, T 7−→ U(T )/ ∼T
Definition 20.1. Let τ , S , and the pre-relation j : R→ U ×S U be as above. In this

setting the quotient sheaf U/R associated to j is the sheafification of the presheaf (20.0.1)
in the τ -topology. If j : R→ U ×S U comes from the action of a group scheme G/S on
U as in Lemma 16.1 then we sometimes denote the quotient sheaf U/G.

This means exactly that the diagram

hR
//
// hU // U/R

is a coequalizer diagram in the category of sheaves of sets on (Sch/S)τ . Using the Yoneda
embedding we may view (Sch/S)τ as a full subcategory of sheaves on (Sch/S)τ and hence
identify schemes with representable functors. Using this abuse of notation we will often
depict the diagram above simply

R
s //

t
// U // U/R

We will mostly work with the fppf topology when considering quotient sheaves of groupoids/equiv-
alence relations.

Definition 20.2. In the situation of Definition 20.1. We say that the pre-relation
j has a representable quotient if the sheaf U/R is representable. We will say a groupoid
(U,R, s, t, c) has a representable quotient if the quotient U/R with j = (t, s) is repre-
sentable.

The following lemma characterizes schemes M representing the quotient. It applies for
example if τ = fppf , U → M is flat, of finite presentation and surjective, and R ∼=
U ×M U .

Lemma 20.3. In the situation of Definition 20.1. Assume there is a scheme M , and a
morphism U →M such that

(1) the morphism U →M equalizes s, t,
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(2) the morphism U → M induces a surjection of sheaves hU → hM in the τ -
topology, and

(3) the induced map (t, s) : R → U ×M U induces a surjection of sheaves hR →
hU×MU in the τ -topology.

In this case M represents the quotient sheaf U/R.

Proof. Condition (1) says that hU → hM factors through U/R. Condition (2) says
that U/R→ hM is surjective as a map of sheaves. Condition (3) says that U/R→ hM is
injective as a map of sheaves. Hence the lemma follows. �

The following lemma is wrong if we do not require j to be a pre-equivalence relation (but
just a pre-relation say).

Lemma 20.4. Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. LetS be a scheme.
Let j : R → U ×S U be a pre-equivalence relation over S. Assume U,R, S are objects of
a τ -site Schτ . For T ∈ Ob((Sch/S)τ ) and a, b ∈ U(T ) the following are equivalent:

(1) a and b map to the same element of (U/R)(T ), and
(2) there exists a τ -covering {fi : Ti → T} of T and morphisms ri : Ti → R such

that a ◦ fi = s ◦ ri and b ◦ fi = t ◦ ri.
In other words, in this case the map of τ -sheaves

hR −→ hU ×U/R hU
is surjective.

Proof. Omitted. Hint: The reason this works is that the presheaf (20.0.1) in this
case is really given by T 7→ U(T )/j(R(T )) as j(R(T )) ⊂ U(T )×U(T ) is an equivalence
relation, see Definition 3.1. �

Lemma 20.5. Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. LetS be a scheme.
Let j : R→ U ×S U be a pre-equivalence relation over S and g : U ′ → U a morphism of
schemes over S. Let j′ : R′ → U ′ ×S U ′ be the restriction of j to U ′. Assume U,U ′, R, S
are objects of a τ -site Schτ . The map of quotient sheaves

U ′/R′ −→ U/R

is injective. If g defines a surjection hU ′ → hU of sheaves in the τ -topology (for example
if {g : U ′ → U} is a τ -covering), then U ′/R′ → U/R is an isomorphism.

Proof. Suppose ξ, ξ′ ∈ (U ′/R′)(T ) are sections which map to the same section of
U/R. Then we can find a τ -covering T = {Ti → T} of T such that ξ|Ti , ξ′|Ti are given
by ai, a′

i ∈ U ′(Ti). By Lemma 20.4 and the axioms of a site we may after refining T
assume there exist morphisms ri : Ti → R such that g ◦ ai = s ◦ ri, g ◦ a′

i = t ◦ ri. Since
by construction R′ = R ×U×SU (U ′ ×S U ′) we see that (ri, (ai, a′

i)) ∈ R′(Ti) and this
shows that ai and a′

i define the same section of U ′/R′ over Ti. By the sheaf condition this
implies ξ = ξ′.

If hU ′ → hU is a surjection of sheaves, then of course U ′/R′ → U/R is surjective also. If
{g : U ′ → U} is a τ -covering, then the map of sheaves hU ′ → hU is surjective, see Sites,
Lemma 12.4. Hence U ′/R′ → U/R is surjective also in this case. �

Lemma 20.6. Let τ ∈ {Zariski, étale, fppf, smooth, syntomic}. LetS be a scheme.
Let (U,R, s, t, c) be a groupoid scheme over S. Let g : U ′ → U a morphism of schemes
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over S. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) to U ′. Assume U,U ′, R, S
are objects of a τ -site Schτ . The map of quotient sheaves

U ′/R′ −→ U/R

is injective. If the composition

U ′ ×g,U,t R pr1
//

h

((
R

s
// U

defines a surjection of sheaves in the τ -topology then the map is bijective. This holds for
example if {h : U ′ ×g,U,t R → U} is a τ -covering, or if U ′ → U defines a surjection of
sheaves in the τ -topology, or if {g : U ′ → U} is a covering in the τ -topology.

Proof. Injectivity follows on combining Lemmas 13.2 and 20.5. To see surjectivity
(see Sites, Section 11 for a characterization of surjective maps of sheaves) we argue as fol-
lows. Suppose that T is a scheme and σ ∈ U/R(T ). There exists a covering {Ti → T}
such that σ|Ti is the image of some element fi ∈ U(Ti). Hence we may assume that σ is
the image of f ∈ U(T ). By the assumption that h is a surjection of sheaves, we can find a
τ -covering {ϕi : Ti → T} and morphisms fi : Ti → U ′×g,U,tR such that f ◦ϕi = h◦fi.
Denote f ′

i = pr0 ◦ fi : Ti → U ′. Then we see that f ′
i ∈ U ′(Ti) maps to g ◦ f ′

i ∈ U(Ti)
and that g ◦ f ′

i ∼Ti h ◦ fi = f ◦ ϕi notation as in (20.0.1). Namely, the element of R(Ti)
giving the relation is pr1 ◦ fi. This means that the restriction of σ to Ti is in the image of
U ′/R′(Ti)→ U/R(Ti) as desired.

If {h} is a τ -covering, then it induces a surjection of sheaves, see Sites, Lemma 12.4. If
U ′ → U is surjective, then also h is surjective as s has a section (namely the neutral element
e of the groupoid scheme). �

Lemma 20.7. Let S be a scheme. Let f : (U,R, j) → (U ′, R′, j′) be a morphism
between equivalence relations over S. Assume that

R

s

��

f
// R′

s′

��
U

f // U ′

is cartesian. For any τ ∈ {Zariski, étale, fppf, smooth, syntomic} the diagram

U

��

// U/R

f

��
U ′ // U ′/R′

is a fibre product square of τ -sheaves.

Proof. By Lemma 20.4 the quotient sheaves have a simple description which we will
use below without further mention. We first show that

U −→ U ′ ×U ′/R′ U/R

is injective. Namely, assume a, b ∈ U(T ) map to the same element on the right hand side.
Then f(a) = f(b). After replacing T by the members of a τ -covering we may assume that
there exists an r ∈ R(T ) such that a = s(r) and b = t(r). Then r′ = f(r) is a T -valued
point of R′ with s′(r′) = t′(r′). Hence r′ = e′(f(a)) (where e′ is the identity of the
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groupoid scheme associated to j′, see Lemma 13.3). Because the first diagram of the lemma
is cartesian this implies that r has to equal e(a). Thus a = b.

Finally, we show that the displayed arrow is surjective. Let T be a scheme over S and let
(a′, b) be a section of the sheaf U ′×U ′/R′ U/R over T . After replacing T by the members
of a τ -covering we may assume that b is the class of an element b ∈ U(T ). After replacing
T by the members of a τ -covering we may assume that there exists an r′ ∈ R′(T ) such that
a′ = t(r′) and s′(r′) = f(b). Because the first diagram of the lemma is cartesian we can
find r ∈ R(T ) such that s(r) = b and f(r) = r′. Then it is clear that a = t(r) ∈ U(T ) is
a section which maps to (a′, b). �

21. Descent in terms of groupoids

Cartesian morphisms are defined as follows.

Definition 21.1. Let S be a scheme. Let f : (U ′, R′, s′, t′, c′) → (U,R, s, t, c) be a
morphism of groupoid schemes over S. We say f is cartesian, or that (U ′, R′, s′, t′, c′) is
cartesian over (U,R, s, t, c), if the diagram

R′
f
//

s′

��

R

s

��
U ′ f // U

is a fibre square in the category of schemes. A morphism of groupoid schemes cartesian
over (U,R, s, t, c) is a morphism of groupoid schemes compatible with the structure mor-
phisms towards (U,R, s, t, c).

Cartesian morphisms are related to descent data. First we prove a general lemma describ-
ing the category of cartesian groupoid schemes over a fixed groupoid scheme.

Lemma 21.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. The
category of groupoid schemes cartesian over (U,R, s, t, c) is equivalent to the category of
pairs (V, ϕ) where V is a scheme over U and

ϕ : V ×U,t R −→ R×s,U V

is an isomorphism over R such that e∗ϕ = idV and such that

c∗ϕ = pr∗
1ϕ ◦ pr∗

0ϕ

as morphisms of schemes over R×s,U,t R.

Proof. The pullback notation in the lemma signifies base change. The displayed
formula makes sense because

(R×s,U,t R)×pr1,R,pr1
(V ×U,t R) = (R×s,U,t R)×pr0,R,pr0

(R×s,U V )

as schemes over R×s,U,t R.

Given (V, ϕ) we set U ′ = V and R′ = V ×U,t R. We set t′ : R′ → U ′ equal to the
projection V ×U,tR→ V . We set s′ equal toϕ followed by the projectionR×s,U V → V .
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We set c′ equal to the composition

R′ ×s′,U ′,t′ R
′ ϕ,1−−→ (R×s,U V )×V (V ×U,t R)
−→ R×s,U V ×U,t R
ϕ−1,1−−−−→ V ×U,t (R×s,U,t R)
1,c−−→ V ×U,t R = R′

A computation, which we omit shows that we obtain a groupoid scheme over (U,R, s, t, c).
It is clear that this groupoid scheme is cartesian over (U,R, s, t, c).
Conversely, given f : (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) cartesian then the morphisms

U ′ ×U,t R
t′,f←−− R′ f,s′

−−→ R×s,U U ′

are isomorphisms and we can set V = U ′ andϕ equal to the composition (f, s′)◦(t′, f)−1.
We omit the proof that ϕ satisfies the conditions in the lemma. We omit the proof that
these constructions are mutually inverse. �

Let S be a scheme. Let f : X → Y be a morphism of schemes over S. Then we obtain a
groupoid scheme (X,X ×Y X, pr1, pr0, c) over S. Namely, j : X ×Y X → X ×S X is
an equivalence relation and we can take the associated groupoid, see Lemma 13.3.

Lemma 21.3. Let S be a scheme. Let f : X → Y be a morphism of schemes over S.
The construction of Lemma 21.2 determines an equivalence

category of groupoid schemes
cartesian over (X,X ×Y X, . . .)

−→ category of descent data
relative to X/Y

Proof. This is clear from Lemma 21.2 and the definition of descent data on schemes
in Descent, Definition 34.1. �

22. Separation conditions

This really means conditions on the morphism j : R → U ×S U when given a groupoid
(U,R, s, t, c) over S. As in the previous section we first formulate the corresponding
diagram.

Lemma 22.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let G→ U
be the stabilizer group scheme. The commutative diagram

R

∆R/U×SU

��

f 7→(f,s(f))
// R×s,U U

��

// U

��
R×(U×SU) R

(f,g) 7→(f,f−1◦g) // R×s,U G // G

the two left horizontal arrows are isomorphisms and the right square is a fibre product
square.

Proof. Omitted. Exercise in the definitions and the functorial point of view in al-
gebraic geometry. �

Lemma 22.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let G→ U
be the stabilizer group scheme.

(1) The following are equivalent
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(a) j : R→ U ×S U is separated,
(b) G→ U is separated, and
(c) e : U → G is a closed immersion.

(2) The following are equivalent
(a) j : R→ U ×S U is quasi-separated,
(b) G→ U is quasi-separated, and
(c) e : U → G is quasi-compact.

Proof. The group schemeG→ U is the base change ofR→ U×SU by the diagonal
morphism U → U ×S U , see Lemma 17.1. Hence if j is separated (resp. quasi-separated),
thenG→ U is separated (resp. quasi-separated). (See Schemes, Lemma 21.12). Thus (a)⇒
(b) in both (1) and (2).

If G → U is separated (resp. quasi-separated), then the morphism U → G, as a section of
the structure morphism G→ U is a closed immersion (resp. quasi-compact), see Schemes,
Lemma 21.11. Thus (b)⇒ (a) in both (1) and (2).

By the result of Lemma 22.1 (and Schemes, Lemmas 18.2 and 19.3) we see that if e is a closed
immersion (resp. quasi-compact) ∆R/U×SU is a closed immersion (resp. quasi-compact).
Thus (c)⇒ (a) in both (1) and (2). �

23. Finite flat groupoids, affine case

Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Assume U = Spec(A),
and R = Spec(B) are affine. In this case we get two ring maps s], t] : A −→ B. Let C be
the equalizer of s] and t]. In a formula

(23.0.1) C = {a ∈ A | t](a) = s](a)}.

We will sometimes call this the ring ofR-invariant functions on U . What properties does
M = Spec(C) have? The first observation is that the diagram

R
s
//

t

��

U

��
U // M

is commutative, i.e., the morphism U → M equalizes s, t. Moreover, if T is any affine
scheme, and if U → T is a morphism which equalizes s, t, then U → T factors through
U →M . In other words, U →M is a coequalizer in the category of affine schemes.

We would like to find conditions that guarantee the morphism U → M is really a “quo-
tient” in the category of schemes. We will discuss this at length elsewhere (insert future
reference here); here we just discuss some special cases. Namely, we will focus on the case
where s, t are finite locally free.

Example 23.1. Let k be a field. Let U = GL2,k. LetB ⊂ GL2 be the closed subgroup
scheme of upper triangular matrices. Then the quotient sheaf GL2,k/B (in the Zariski,
étale or fppf topology, see Definition 20.1) is representable by the projective line: P1 =
GL2,k/B. (Details omitted.) On the other hand, the ring of invariant functions in this
case is just k. Note that in this case the morphisms s, t : R = GL2,k ×k B → GL2,k = U
are smooth of relative dimension 3.
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Recall that in Exercises, Exercises 22.6 and 22.7 we have defined the determinant and the
norm for finitely locally free modules and finite locally free ring extensions. Ifϕ : A→ B
is a finite locally free ring map, then we will denote Normϕ(b) ∈ A the norm of b ∈ B. In
the case of a finite locally free morphism of schemes, the norm was constructed in Divisors,
Lemma 17.6.

Lemma 23.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(A) and R = Spec(B) are affine and s, t : R → U finite locally free.
Let C be as in (23.0.1). Let f ∈ A. Then Norms](t](f)) ∈ C.

Proof. Consider the commutative diagram

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

of Lemma 13.4. Think of f ∈ Γ(U,OU ). The commutativity of the top part of the diagram
shows that pr]0(t](f)) = c](t](f)) as elements of Γ(R×S,U,t R,O). Looking at the right
lower cartesian square the compatibility of the norm construction with base change shows
that s](Norms](t](f))) = Normpr]1

(c](t](f))). Similarly we get t](Norms](t](f))) =
Normpr]1

(pr]0(t](f))). Hence by the first equality of this proof we see that s](Norms](t](f))) =
t](Norms](t](f))) as desired. �

Lemma 23.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume s, t : R→ U finite locally free. Then

U =
∐

r≥1
Ur

is a disjoint union of R-invariant opens such that the restriction Rr of R to Ur has the
property that s, t : Rr → Ur are finite locally free of rank r.

Proof. By Morphisms, Lemma 48.5 there exists a decompositionU =
∐
r≥0 Ur such

that s : s−1(Ur)→ Ur is finite locally free of rank r. As s is surjective we see thatU0 = ∅.
Note that u ∈ Ur ⇔ if and only if the scheme theoretic fibre s−1(u) has degree r over
κ(u). Now, if z ∈ R with s(z) = u and t(z) = u′ then using notation as in Lemma 13.4

pr−1
1 (z)→ Spec(κ(z))

is the base change of both s−1(u) → Spec(κ(u)) and s−1(u′) → Spec(κ(u′)) by the
lemma cited. Hence u ∈ Ur ⇔ u′ ∈ Ur , in other words, the open subsets Ur are R-
invariant. In particular the restriction of R to Ur is just s−1(Ur) and s : Rr → Ur is
finite locally free of rank r. As t : Rr → Ur is isomorphic to s by the inverse of Rr we
see that it has also rank r. �

Lemma 23.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(A) and R = Spec(B) are affine and s, t : R → U finite locally free.
Let C ⊂ A be as in (23.0.1). Then A is integral over C.
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Proof. First, by Lemma 23.3 we know that (U,R, s, t, c) is a disjoint union of groupoid
schemes (Ur, Rr, s, t, c) such that each s, t : Rr → Ur has constant rank r. As U is
quasi-compact, we have Ur = ∅ for almost all r. It suffices to prove the lemma for each
(Ur, Rr, s, t, c) and hence we may assume that s, t are finite locally free of rank r.

Assume that s, t are finite locally free of rank r. Let f ∈ A. Consider the element x− f ∈
A[x], where we think of x as the coordinate on A1. Since

(U ×A1, R×A1, s× idA1 , t× idA1 , c× idA1)

is also a groupoid scheme with finite source and target, we may apply Lemma 23.2 to it
and we see that P (x) = Norms](t](x − f)) is an element of C[x]. Because s] : A → B
is finite locally free of rank r we see that P is monic of degree r. Moreover P (f) = 0 by
Cayley-Hamilton (Algebra, Lemma 16.1). �

Lemma 23.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(A) and R = Spec(B) are affine and s, t : R → U finite locally free.
Let C ⊂ A be as in (23.0.1). Let C → C ′ be a ring map, and set U ′ = Spec(A ⊗C C ′),
R′ = Spec(B ⊗C C ′). Then

(1) The maps s, t, c induce maps s′, t′, c′ such that (U ′, R′, s′, t′, c′) is a groupoid
scheme. Let C1 ⊂ A′ be the R′-invariant functions on U ′.

(2) The canonical map ϕ : C ′ → C1 satisfies
(a) for every f ∈ C1 there exists an n > 0 and a polynomial P ∈ C ′[x] whose

image in C1[x] is (x− f)n, and
(b) for every f ∈ Ker(ϕ) there exists an n > 0 such that fn = 0.

(3) If C → C ′ is flat then ϕ is an isomorphism.

Proof. The proof of part (1) is omitted. Let us denote A′ = A ⊗C C ′ and B′ =
B ⊗C C ′. Then we have

C1 = {a ∈ A′ | (t′)](a) = (s′)](a)} = {a ∈ A⊗C C ′ | t] ⊗ 1(a) = s] ⊗ 1(a)}.

In other words, C1 is the kernel of the difference map (t] − s])⊗ 1 which is just the base
change of the C-linear map t] − s] : A→ B by C → C ′. Hence (3) follows.

Proof of part (2)(b). Since C → A is integral (Lemma 23.4) and injective we see that
Spec(A) → Spec(C) is surjective, see Algebra, Lemma 36.17. Thus also Spec(A′) →
Spec(C ′) is surjective as a base change of a surjective morphism (Morphisms, Lemma 9.4).
Hence Spec(C1) → Spec(C ′) is surjective also. This implies (2)(b) holds for example by
Algebra, Lemma 30.6.

Proof of part (2)(a). By Lemma 23.3 our groupoid scheme (U,R, s, t, c) decomposes as a
finite disjoint union of groupoid schemes (Ur, Rr, s, t, c) such that s, t : Rr → Ur are
finite locally free of rank r. Pulling back by U ′ = Spec(C ′) → U we obtain a similar
decomposition ofU ′ andU1 = Spec(C1). We will show in the next paragraph that (2)(a)
holds for the corresponding system of rings Ar, Br, Cr, C ′

r, C
1
r with n = r. Then given

f ∈ C1 let Pr ∈ Cr[x] be the polynomial whose image in C1
r [x] is the image of (x− f)r.

Choosing a sufficiently divisible integer n we see that there is a polynomial P ∈ C ′[x]
whose image in C1[x] is (x − f)n; namely, we take P to be the unique element of C ′[x]
whose image in C ′

r[x] is Pn/rr .

In this paragraph we prove (2)(a) in case the ring maps s], t] : A → B are finite locally
free of a fixed rank r. Let f ∈ C1 ⊂ A′ = A ⊗C C ′. Choose a flat C-algebra D and a
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surjection D → C ′. Choose a lift g ∈ A⊗C D of f . Consider the polynomial

P = Norms]⊗1(t] ⊗ 1(x− g))
in (A ⊗C D)[x]. By Lemma 23.2 and part (3) of the current lemma the coefficients of P
are in D (compare with the proof of Lemma 23.4). On the other hand, the image of P in
(A ⊗C C ′)[x] is (x − f)r because t] ⊗ 1(x − f) = s](x − f) and s] is finite locally free
of rank r. This proves what we want with P as in the statement (2)(a) given by the image
of our P under the map D[x]→ C ′[x]. �

Lemma 23.6. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(A) and R = Spec(B) are affine and s, t : R → U finite locally free.
Let C ⊂ A be as in (23.0.1). Then U →M = Spec(C) has the following properties:

(1) the map on points |U | → |M | is surjective and u0, u1 ∈ |U | map to the same
point if and only if there exists a r ∈ |R| with t(r) = u0 and s(r) = u1, in a
formula

|M | = |U |/|R|
(2) for any algebraically closed field k we have

M(k) = U(k)/R(k)

Proof. Since C → A is integral (Lemma 23.4) and injective we see that Spec(A)→
Spec(C) is surjective, see Algebra, Lemma 36.17. Thus |U | → |M | is surjective.

Let k be an algebraically closed field and let C → k be a ring map. Since surjective mor-
phisms are preserved under base change (Morphisms, Lemma 9.4) we see that A ⊗C k is
not zero. Now k ⊂ A ⊗C k is a nonzero integral extension. Hence any residue field of
A⊗C k is an algebraic extension of k, hence equal to k. Thus we see that U(k)→ M(k)
is surjective.

Let a0, a1 : A → k be two ring maps. If there exists a ring map b : B → k such that
a0 = b ◦ t] and a1 = b ◦ s] then we see that a0|C = a1|C by definition. Thus the
map U(k) → M(k) equalizes the two maps R(k) → U(k). Conversely, suppose that
a0|C = a1|C . Let us name this algebra map c : C → k. Consider the diagram

B

xx
k A

a0
oo

a1oo

OO OO

C

OO

c

ff

If we can construct a dotted arrow making the diagram commute, then the proof of part
(2) of the lemma is complete. Since s : A→ B is finite there exist finitely many ring maps
b1, . . . , bn : B → k such that bi ◦ s] = a1. If the dotted arrow does not exist, then we see
that none of the a′

i = bi ◦ t], i = 1, . . . , n is equal to a0. Hence the maximal ideals

m′
i = Ker(a′

i ⊗ 1 : A⊗C k → k)
of A ⊗C k are distinct from m = Ker(a0 ⊗ 1 : A ⊗C k → k). By Algebra, Lemma 15.2
we would get an element f ∈ A⊗C k with f ∈ m, but f 6∈ m′

i for i = 1, . . . , n. Consider
the norm

g = Norms]⊗1(t] ⊗ 1(f)) ∈ A⊗C k
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By Lemma 23.2 this lies in the invariants C1 ⊂ A⊗C k of the base change groupoid (base
change via the map c : C → k). On the one hand, a1(g) ∈ k∗ since the value of t](f)
at all the points (which correspond to b1, . . . , bn) lying over a1 is invertible (insert future
reference on property determinant here). On the other hand, since f ∈ m, we see that f is
not a unit, hence t](f) is not a unit (as t]⊗1 is faithfully flat), hence its norm is not a unit
(insert future reference on property determinant here). We conclude that C1 contains
an element which is not nilpotent and not a unit. We will now show that this leads to
a contradiction. Namely, apply Lemma 23.5 to the map c : C → C ′ = k, then we see
that the map of k into the invariants C1 is injective and moreover, that for any element
x ∈ C1 there exists an integer n > 0 such that xn ∈ k. Hence every element of C1 is
either a unit or nilpotent.

We still have to finish the proof of (1). We already know that |U | → |M | is surjective. It is
clear that |U | → |M | is |R|-invariant. Finally, suppose u0, u1 ∈ U maps to the same point
m ∈ M . Then the induced field extensions κ(u0)/κ(m) and κ(u1)/κ(m) are algebraic
(as A is integral over C as used above). Hence if k is an algebraic closure of κ(m) then
we can find κ(m)-embeddings u0 : κ(u0) → k and u1 : κ(u1) → k. These determine
k-valued points u0, u1 ∈ U(k) mapping to the same point of M(k). By part (2) we see
that there exists a point r ∈ R(k) with s(r) = u0 and t(r) = u1. The image r ∈ R of r
is a point with s(r) = u0 and t(r) = u1 as desired. �

Lemma 23.7. Let S be a scheme. Let f : (U ′, R′, s′, t′) → (U,R, s, t, c) be a mor-
phism of groupoid schemes over S.

(1) U , R, U ′, R′ are affine,
(2) s, t, s′, t′ are finite locally free,
(3) the diagrams

R′

s′

��

f
// R

s

��
U ′ f // U

R′

t′

��

f
// R

t

��
U ′ f // U

G′

��

f
// G

��
U ′ f // U

are cartesian where G and G′ are the stabilizer group schemes, and
(4) f : U ′ → U is étale.

Then the mapC → C ′ from theR-invariant functions onU to theR′-invariant functions
on U ′ is étale and U ′ = Spec(C ′)×Spec(C) U .

Proof. Set M = Spec(C) and M ′ = Spec(C ′). Write U = Spec(A), U ′ =
Spec(A′), R = Spec(B), and R′ = Spec(B′). We will use the results of Lemmas 23.4,
23.5, and 23.6 without further mention.

Assume C is a strictly henselian local ring. Let p ∈M be the closed point and let p′ ∈M ′

map to p. Claim: in this case there is a disjoint union decomposition (U ′, R′, s′, t′, c′) =
(U,R, s, t, c) q (U ′′, R′′, s′′, t′′, c′′) over (U,R, s, t, c) such that for the corresponding
disjoint union decompositionM ′ = M qM ′′ overM the point p′ corresponds to p ∈M .

The claim implies the lemma. Suppose thatM1 →M is a flat morphism of affine schemes.
Then we can base change everything to M1 without affecting the hypotheses (1) – (4).
From Lemma 23.5 we see M1, resp. M ′

1 is the spectrum of the R1-invariant functions on
U1, resp. theR′

1-invariant functions onU ′
1. Suppose that p′ ∈M ′ maps to p ∈M . LetM1

be the spectrum of the strict henselization of OM,p with closed point p1 ∈M1. Choose a
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point p′
1 ∈M ′

1 mapping to p1 and p′. From the claim we get

(U ′
1, R

′
1, s

′
1, t

′
1, c

′
1) = (U1, R1, s1, t1, c1)q (U ′′

1 , R
′′
1 , s

′′
1 , t

′′
1 , c

′′
1)

and correspondingly M ′
1 = M1 qM ′′

1 as a scheme over M1. Write M1 = Spec(C1) and
write C1 = colimCi as a filtered colimit of étale C-algebras. Set Mi = Spec(Ci). The
M1 = limMi and similarly for the other schemes. By Limits, Lemmas 4.11 and 8.11 we
can find an i such that

(U ′
i , R

′
i, s

′
i, t

′
i, c

′
i) = (Ui, Ri, si, ti, ci)q (U ′′

i , R
′′
i , s

′′
i , t

′′
i , c

′′
i )

We conclude that M ′
i = Mi qM ′′

i . In particular M ′ →M becomes étale at a point over
p′ after an étale base change. This implies that M ′ → M is étale at p′ (for example by
Morphisms, Lemma 36.17). We will prove U ′ ∼= M ′ ×M U after we prove the claim.

Proof of the claim. Observe that Up and U ′
p′ have finitely many points. For u ∈ Up

we have κ(u)/κ(p) is algebraic, hence κ(u) is separably closed. As U ′ → U is étale, we
conclude the morphism U ′

p′ → Up induces isomorphisms on residue field extensions. Let
u′ ∈ U ′

p′ with image u ∈ Up. By assumption (3) the morphism of scheme theoretic fibres
(s′)−1(u′)→ s−1(u), (t′)−1(u′)→ t−1(u), andG′

u′ → Gu are isomorphisms. Observing
that Up = t(s−1(u)) (set theoretically) we conclude that the points of U ′

p′ surject onto
the points of Up. Suppose that u′

1 and u′
2 are points of U ′

p′ mapping to the same point u
of Up. Then there exists a point r′ ∈ R′

p′ with s′(r′) = u′
1 and t′(r′) = u′

2. Consider the
two towers of fields

κ(r′)/κ(u′
1)/κ(u)/κ(p) κ(r′)/κ(u′

2)/κ(u)/κ(p)

whose “ends” are the same as the two “ends” of the two towers

κ(r′)/κ(u′
1)/κ(p′)/κ(p) κ(r′)/κ(u′

2)/κ(p′)/κ(p)

These two induce the same maps κ(p′) → κ(r′) as (U ′
p′ , R′

p′ , s′, t′, c′) is a groupoid over
p′. Since κ(u)/κ(p) is purely inseparable, we conclude that the two induced maps κ(u)→
κ(r′) are the same. Therefore r′ maps to a point of the fibre Gu. By assumption (3) we
conclude that r′ ∈ (G′)u′

1
. Namely, we may think ofG as a closed subscheme ofR viewed

as a scheme over U via s and use that the base change to U ′ gives G′ ⊂ R′. In particular
we have u′

1 = u′
2. We conclude that U ′

p′ → Up is a bijective map on points inducing
isomorphisms on residue fields. It follows that U ′

p′ is a finite set of closed points (Algebra,
Lemma 35.9) and hence U ′

p′ is closed in U ′. Let J ′ ⊂ A′ be the radical ideal cutting out
U ′
p′ set theoretically.

Second part proof of the claim. Let m ⊂ C be the maximal ideal. Observe that (A,mA)
is a henselian pair by More on Algebra, Lemma 11.8. Let J =

√
mA. Then (A, J) is a

henselian pair (More on Algebra, Lemma 11.7) and the étale ring map A→ A′ induces an
isomorphism A/J → A′/J ′ by our deliberations above. We conclude that A′ = A×A′′

by More on Algebra, Lemma 11.6. Consider the corresponding disjoint union decompo-
sition U ′ = U q U ′′. The open (s′)−1(U) is the set of points of R′ specializing to a
point of R′

p′ . Similarly for (t′)−1(U). Similarly we have (s′)−1(U ′′) = (t′)−1(U ′′) as
this is the set of points which do not specialize to R′

p′ . Hence we obtain a disjoint union
decomposition

(U ′, R′, s′, t′, c′) = (U,R, s, t, c)q (U ′′, R′′, s′′, t′′, c′′)

This immediately gives M ′ = M qM ′′ and the proof of the claim is complete.
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We still have to prove that the canonical map U ′ → M ′ ×M U is an isomorphism. It
is an étale morphism (Morphisms, Lemma 36.18). On the other hand, by base changing
to strictly henselian local rings (as in the third paragraph of the proof) and using the
bijectivity U ′

p′ → Up established in the course of the proof of the claim, we see that U ′ →
M ′×M U is universally bijective (some details omitted). However, a universally bijective
étale morphism is an isomorphism (Descent, Lemma 25.2) and the proof is complete. �

Lemma 23.8. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume

(1) U = Spec(A), and R = Spec(B) are affine, and
(2) there exist elements xi ∈ A, i ∈ I such that B =

⊕
i∈I s

](A)t](xi).
Then A =

⊕
i∈I Cxi, and B ∼= A⊗C A where C ⊂ A is the R-invariant functions on U

as in (23.0.1).

Proof. During this proof we will write s, t : A → B instead of s], t], and similarly
c : B → B⊗s,A,tB. We write p0 : B → B⊗s,A,tB, b 7→ b⊗1 and p1 : B → B⊗s,A,tB,
b 7→ 1 ⊗ b. By Lemma 13.5 and the definition of C we have the following commutative
diagram

B ⊗s,A,t B B
coo

p0
oo A

t
oo

B

p1

OO

A
soo

t
oo

s

OO

C

OO

oo

Moreover the tow left squares are cocartesian in the category of rings, and the top row is
isomorphic to the diagram

B ⊗t,A,t B B
p1oo

p0
oo A

t
oo

which is an equalizer diagram according to Descent, Lemma 3.6 because condition (2) im-
plies in particular that s (and hence also then isomorphic arrow t) is faithfully flat. The
lower row is an equalizer diagram by definition of C. We can use the xi and get a com-
mutative diagram

B ⊗s,A,t B B
coo

p0
oo A

t
oo

⊕
i∈I Bxi

p1

OO

⊕
i∈I Axi

soo

t
oo

s

OO

⊕
i∈I Cxi

OO

oo

where in the right vertical arrow we map xi to xi, in the middle vertical arrow we map
xi to t(xi) and in the left vertical arrow we map xi to c(t(xi)) = t(xi) ⊗ 1 = p0(t(xi))
(equality by the commutativity of the top part of the diagram in Lemma 13.4). Then the
diagram commutes. Moreover the middle vertical arrow is an isomorphism by assumption.
Since the left two squares are cocartesian we conclude that also the left vertical arrow is an
isomorphism. On the other hand, the horizontal rows are exact (i.e., they are equalizers).
Hence we conclude that also the right vertical arrow is an isomorphism. �

Proposition 23.9. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Assume
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(1) U = Spec(A), and R = Spec(B) are affine,
(2) s, t : R→ U finite locally free, and
(3) j = (t, s) is an equivalence.

In this case, let C ⊂ A be as in (23.0.1). Then U → M = Spec(C) is finite locally free
and R = U ×M U . Moreover, M represents the quotient sheaf U/R in the fppf topology
(see Definition 20.1).

Proof. During this proof we use the notation s, t : A → B instead of the notation
s], t]. By Lemma 20.3 it suffices to show that C → A is finite locally free and that the
map

t⊗ s : A⊗C A −→ B

is an isomorphism. First, note that j is a monomorphism, and also finite (since already s
and t are finite). Hence we see that j is a closed immersion by Morphisms, Lemma 44.15.
Hence A⊗C A→ B is surjective.
We will perform base change by flat ring maps C → C ′ as in Lemma 23.5, and we will
use that formation of invariants commutes with flat base change, see part (3) of the lemma
cited. We will show below that for every prime p ⊂ C , there exists a local flat ring map
Cp → C ′

p such that the result holds after a base change to C ′
p. This implies immediately

that A ⊗C A → B is injective (use Algebra, Lemma 23.1). It also implies that C → A is
flat, by combining Algebra, Lemmas 39.17, 39.18, and 39.8. Then since U → Spec(C) is
surjective also (Lemma 23.6) we conclude that C → A is faithfully flat. Then the isomor-
phism B ∼= A⊗C A implies that A is a finitely presented C-module, see Algebra, Lemma
83.2. Hence A is finite locally free over C , see Algebra, Lemma 78.2.
By Lemma 23.3 we know thatA is a finite product of ringsAr andB is a finite product of
rings Br such that the groupoid scheme decomposes accordingly (see the proof of Lemma
23.4). Then alsoC is a product of ringsCr and correspondinglyC ′ decomposes as a prod-
uct. Hence we may and do assume that the ring maps s, t : A → B are finite locally free
of a fixed rank r.
The local ring maps Cp → C ′

p we are going to use are any local flat ring maps such that
the residue field of C ′

p is infinite. By Algebra, Lemma 159.1 such local ring maps exist.
Assume C is a local ring with maximal ideal m and infinite residue field, and assume that
s, t : A → B is finite locally free of constant rank r > 0. Since C ⊂ A is integral
(Lemma 23.4) all primes lying over m are maximal, and all maximal ideals of A lie over
m. Similarly for C ⊂ B. Pick a maximal ideal m′ of A lying over m (exists by Lemma
23.6). Since t : A → B is finite locally free there exist at most finitely many maximal
ideals of B lying over m′. Hence we conclude (by Lemma 23.6 again) that A has finitely
many maximal ideals, i.e.,A is semi-local. This in turn implies thatB is semi-local as well.
OK, and now, because t ⊗ s : A ⊗C A → B is surjective, we can apply Algebra, Lemma
78.8 to the ring map C → A, the A-module M = B (seen as an A-module via t) and the
C-submodule s(A) ⊂ B. This lemma implies that there exist x1, . . . , xr ∈ A such that
M is free over A on the basis s(x1), . . . , s(xr). Hence we conclude that C → A is finite
free and B ∼= A⊗C A by applying Lemma 23.8. �

24. Finite flat groupoids

In this section we prove a lemma that will help to show that the quotient of a scheme
by a finite flat equivalence relation is a scheme, provided that each equivalence class is
contained in an affine. See Properties of Spaces, Proposition 14.1.
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Lemma 24.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume s, t are finite locally free. Let u ∈ U be a point such that t(s−1({u})) is contained
in an affine open of U . Then there exists an R-invariant affine open neighbourhood of u
in U .

Proof. Since s is finite locally free it has finite fibres. Hence t(s−1({u})) = {u1, . . . , un}
is a finite set. Note that u ∈ {u1, . . . , un}. Let W ⊂ U be an affine open containing
{u1, . . . , un}, in particular u ∈W . ConsiderZ = R\s−1(W )∩ t−1(W ). This is a closed
subset of R. The image t(Z) is a closed subset of U which can be loosely described as the
set of points of U which are R-equivalent to a point of U \W . Hence W ′ = U \ t(Z) is
an R-invariant, open subscheme of U contained in W , and {u1, . . . , un} ⊂W ′. Picture

{u1, . . . , un} ⊂W ′ ⊂W ⊂ U.
Let f ∈ Γ(W,OW ) be an element such that {u1, . . . , un} ⊂ D(f) ⊂W ′. Such an f exists
by Algebra, Lemma 15.2. By our choice ofW ′ we have s−1(W ′) ⊂ t−1(W ), and hence we
get a diagram

s−1(W ′)

s

��

t
// W

W ′

The vertical arrow is finite locally free by assumption. Set

g = Norms(t]f) ∈ Γ(W ′,OW ′)
By construction g is a function on W ′ which is nonzero in u, as t](f) is nonzero in each
of the points of R lying over u, since f is nonzero in u1, . . . , un. Similarly, D(g) ⊂ W ′

is equal to the set of points w such that f is not zero in any of the points equivalent to w.
This means that D(g) is an R-invariant affine open of W ′. The final picture is

{u1, . . . , un} ⊂ D(g) ⊂ D(f) ⊂W ′ ⊂W ⊂ U
and hence we win. �

25. Descending quasi-projective schemes

We can use Lemma 24.1 to show that a certain type of descent datum is effective.

Lemma 25.1. Let X → Y be a surjective finite locally free morphism. Let V be a
scheme over X such that for all (y, v1, . . . , vd) where y ∈ Y and v1, . . . , vd ∈ Vy there
exists an affine open U ⊂ V with v1, . . . , vd ∈ U . Then any descent datum on V/X/Y is
effective.

Proof. Let ϕ be a descent datum as in Descent, Definition 34.1. Recall that the func-
tor from schemes over Y to descent data relative to {X → Y } is fully faithful, see Descent,
Lemma 35.11. Thus using Constructions, Lemma 2.1 it suffices to prove the lemma in the
case that Y is affine. Some details omitted (this argument can be avoided if Y is separated
or has affine diagonal, because then every morphism from an affine scheme toX is affine).
Assume Y is affine. If V is also affine, then we have effectivity by Descent, Lemma 37.1.
Hence by Descent, Lemma 35.13 it suffices to prove that every point v of V has a ϕ-
invariant affine open neighbourhood. Consider the groupoid (X,X×Y X, pr1, pr0, pr02).
By Lemma 21.3 the descent datumϕ determines and is determined by a cartesian morphism
of groupoid schemes

(V,R, s, t, c) −→ (X,X ×Y X, pr1, pr0, pr02)
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over Spec(Z). Since X → Y is finite locally free, we see that pri : X ×Y X → X and
hence s and t are finite locally free. In particular the R-orbit t(s−1({v})) of our point
v ∈ V is finite. Using the equivalence of categories of Lemma 21.3 once more we see that
ϕ-invariant opens of V are the same thing as R-invariant opens of V . Our assumption
shows there exists an affine open of V containing the orbit t(s−1({v})) as all the points
in this orbit map to the same point of Y . Thus Lemma 24.1 provides anR-invariant affine
open containing v. �

Lemma 25.2. Let X → Y be a surjective finite locally free morphism. Let V be a
scheme over X such that one of the following holds

(1) V → X is projective,
(2) V → X is quasi-projective,
(3) there exists an ample invertible sheaf on V ,
(4) there exists an X-ample invertible sheaf on V ,
(5) there exists an X-very ample invertible sheaf on V .

Then any descent datum on V/X/Y is effective.

Proof. We check the condition in Lemma 25.1. Let y ∈ Y and v1, . . . , vd ∈ V points
over y. Case (1) is a special case of (2), see Morphisms, Lemma 43.10. Case (2) is a special
case of (4), see Morphisms, Definition 40.1. If there exists an ample invertible sheaf on V ,
then there exists an affine open containing v1, . . . , vd by Properties, Lemma 29.5. Thus
(3) is true. In cases (4) and (5) it is harmless to replace Y by an affine open neighbourhood
of y. Then X is affine too. In case (4) we see that V has an ample invertible sheaf by
Morphisms, Definition 37.1 and the result follows from case (3). In case (5) we can replace
V by a quasi-compact open containing v1, . . . , vd and we reduce to case (4) by Morphisms,
Lemma 38.2. �
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CHAPTER 40

More on Groupoid Schemes

1. Introduction

This chapter is devoted to advanced topics on groupoid schemes. Even though the results
are stated in terms of groupoid schemes, the reader should keep in mind the 2-cartesian
diagram

(1.0.1)

R //

��

U

��
U // [U/R]

where [U/R] is the quotient stack, see Groupoids in Spaces, Remark 20.4. Many of the
results are motivated by thinking about this diagram. See for example the beautiful paper
[?] by Keel and Mori.

2. Notation

We continue to abide by the conventions and notation introduced in Groupoids, Section
2.

3. Useful diagrams

We briefly restate the results of Groupoids, Lemmas 13.4 and 13.5 for easy reference in
this chapter. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. In the
commutative diagram

(3.0.1)

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top (which is
really a square) is also cartesian.

3533
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The diagram

(3.0.2)

R×t,U,t R
pr1 //

pr0
//

pr0×c◦(i,1)
��

R
t //

idR
��

U

idU
��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The two
lower left squares are cartesian.

4. Sheaf of differentials

The following lemma is the analogue of Groupoids, Lemma 6.3.

Lemma 4.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. The
sheaf of differentials of R seen as a scheme over U via t is a quotient of the pullback via
t of the conormal sheaf of the immersion e : U → R. In a formula: there is a canonical
surjection t∗CU/R → ΩR/U . If s is flat, then this map is an isomorphism.

Proof. Note that e : U → R is an immersion as it is a section of the morphism s, see
Schemes, Lemma 21.11. Consider the following diagram

R
(1,i)
//

t

��

R×s,U,t R

c

��

(pr0,i◦pr1)
// R×t,U,t R

U
e // R

The square on the left is cartesian, because if a ◦ b = e, then b = i(a). The composition
of the horizontal maps is the diagonal morphism of t : R→ U . The right top horizontal
arrow is an isomorphism. Hence since ΩR/U is the conormal sheaf of the composition
it is isomorphic to the conormal sheaf of (1, i). By Morphisms, Lemma 31.4 we get the
surjection t∗CU/R → ΩR/U and if c is flat, then this is an isomorphism. Since c is a base
change of s by the properties of Diagram (3.0.2) we conclude that if s is flat, then c is flat,
see Morphisms, Lemma 25.8. �

5. Local structure

Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme over S. Let u ∈ U be a
point. In this section we explain what kind of structure we obtain on the local rings

A = OU,u and B = OR,e(u)

The convention we will use is to denote the local ring homomorphisms induced by the
morphisms s, t, c, e, i by the corresponding letters. In particular we have a commutative
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diagram
A

t ��

1

''
B

e // A

A

s

??

1

77

of local rings. Thus if I ⊂ B denotes the kernel of e : B → A, then B = s(A) ⊕ I =
t(A)⊕ I . Let us denote

C = OR×s,U,tR,(e(u),e(u))

Then we have
C = (B ⊗s,A,t B)mB⊗B+B⊗mB

Let J ⊂ C be the ideal of C generated by I ⊗B+B⊗ I . Then J is also the kernel of the
local ring homomorphism

(e, e) : C −→ A

The composition law c : R×s,U,t R→ R corresponds to a ring map

c : B −→ C

sending I into J .

Lemma 5.1. The map I/I2 → J/J2 induced by c is the composition

I/I2 (1,1)−−−→ I/I2 ⊕ I/I2 → J/J2

where the second arrow comes from the equality J = (I ⊗ B + B ⊗ I)C. The map
i : B → B induces the map −1 : I/I2 → I/I2.

Proof. To describe a local homomorphism from C to another local ring it is enough
to say what happens to elements of the form b1 ⊗ b2. Keeping this in mind we have the
two canonical maps

e2 : C → B, b1 ⊗ b2 7→ b1s(e(b2)), e1 : C → B, b1 ⊗ b2 7→ t(e(b1))b2

corresponding to the embeddings R → R ×s,U,t R given by r 7→ (r, e(s(r))) and r 7→
(e(t(r)), r). These maps define maps J/J2 → I/I2 which jointly give an inverse to the
map I/I2 ⊕ I/I2 → J/J2 of the lemma. Thus to prove statement we only have to show
that e1 ◦ c : B → B and e2 ◦ c : B → B are the identity maps. This follows from the fact
that both compositions R→ R×s,U,t R→ R are identities.

The statement on i follows from the statement on c and the fact that c ◦ (1, i) = e ◦ t.
Some details omitted. �

6. Properties of groupoids

Let (U,R, s, t, c) be a groupoid scheme. The idea behind the results in this section is that
s : R→ U is a base change of the morphism U → [U/R] (see Diagram (1.0.1). Hence the
local properties of s : R→ U should reflect local properties of the morphismU → [U/R].
This doesn’t work, because [U/R] is not always an algebraic stack, and hence we cannot
speak of geometric or algebraic properties of U → [U/R]. But it turns out that we can
make some of it work without even referring to the quotient stack at all.
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Here is a first example of such a result. The open W ⊂ U ′ found in the lemma is roughly
speaking the locus where the morphism U ′ → [U/R] has property P .

Lemma 6.1. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid over S. Let g :
U ′ → U be a morphism of schemes. Denote h the composition

h : U ′ ×g,U,t R pr1
// R

s
// U.

Let P,Q,R be properties of morphisms of schemes. Assume
(1) R⇒ Q,
(2) Q is preserved under base change and composition,
(3) for any morphism f : X → Y which hasQ there exists a largest openW (P, f) ⊂

X such that f |W (P,f) has P , and
(4) for any morphism f : X → Y which hasQ, and any morphism Y ′ → Y which

hasR we have Y ′ ×Y W (P, f) = W (P, f ′), where f ′ : XY ′ → Y ′ is the base
change of f .

If s, t haveR and g hasQ, then there exists an open subschemeW ⊂ U ′ such thatW×g,U,t
R = W (P, h).

Proof. Note that the following diagram is commutative

U ′ ×g,U,t R×t,U,t R pr12
//

pr02

��
pr01

��

R×t,U,t R

pr1

��
pr0

��
U ′ ×g,U,t R

pr1 // R

with both squares cartesian (this uses that the two maps t◦pri : R×t,U,tR→ U are equal).
Combining this with the properties of diagram (3.0.2) we get a commutative diagram

U ′ ×g,U,t R×t,U,t R
c◦(i,1)

//

pr02

��
pr01

��

R

s

��
t

��
U ′ ×g,U,t R

h // U

where both squares are cartesian.

Assume s, t haveR and g hasQ. Then h hasQ as a composition of s (which hasR hence
Q) and a base change of g (which has Q). Thus W (P, h) ⊂ U ′ ×g,U,t R exists. By our
assumptions we have pr−1

01 (W (P, h)) = pr−1
02 (W (P, h)) since both are the largest open

on which c◦(i, 1) hasP . Note that the projectionU ′×g,U,tR→ U ′ has a section, namely
σ : U ′ → U ′ ×g,U,t R, u′ 7→ (u′, e(g(u′))). Also via the isomorphism

(U ′ ×g,U,t R)×U ′ (U ′ ×g,U,t R) = U ′ ×g,U,t R×t,U,t R
the two projections of the left hand side to U ′ ×g,U,t R agree with the morphisms pr01
and pr02 on the right hand side. Since pr−1

01 (W (P, h)) = pr−1
02 (W (P, h)) we conclude

that W (P, h) is the inverse image of a subset of U , which is necessarily the open set W =
σ−1(W (P, h)). �

Remark 6.2. Warning: Lemma 6.1 should be used with care. For example, it applies
to P =“flat”, Q =“empty”, and R =“flat and locally of finite presentation”. But given a
morphism of schemes f : X → Y the largest openW ⊂ X such that f |W is flat is not the
set of points where f is flat!
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Remark 6.3. Notwithstanding the warning in Remark 6.2 there are some cases where
Lemma 6.1 can be used without causing too much ambiguity. We give a list. In each case
we omit the verification of assumptions (1) and (2) and we give references which imply (3)
and (4). Here is the list:

(1) Q = R =“locally of finite type”, and P =“relative dimension ≤ d”. See Mor-
phisms, Definition 29.1 and Morphisms, Lemmas 28.4 and 28.3.

(2) Q = R =“locally of finite type”, and P =“locally quasi-finite”. This is the case
d = 0 of the previous item, see Morphisms, Lemma 29.5.

(3) Q = R =“locally of finite type”, andP =“unramified”. See Morphisms, Lemmas
35.3 and 35.15.

What is interesting about the cases listed above is that we do not need to assume that s, t
are flat to get a conclusion about the locus where the morphism h has property P . We
continue the list:

(4) Q =“locally of finite presentation”,R =“flat and locally of finite presentation”,
and P =“flat”. See More on Morphisms, Theorem 15.1 and Lemma 15.2.

(5) Q =“locally of finite presentation”,R =“flat and locally of finite presentation”,
andP =“Cohen-Macaulay”. See More on Morphisms, Definition 22.1 and More
on Morphisms, Lemmas 22.6 and 22.7.

(6) Q =“locally of finite presentation”,R =“flat and locally of finite presentation”,
and P =“syntomic” use Morphisms, Lemma 30.12 (the locus is automatically
open).

(7) Q =“locally of finite presentation”,R =“flat and locally of finite presentation”,
and P =“smooth”. See Morphisms, Lemma 34.15 (the locus is automatically
open).

(8) Q =“locally of finite presentation”,R =“flat and locally of finite presentation”,
and P =“étale”. See Morphisms, Lemma 36.17 (the locus is automatically open).

Here is the second result. The R-invariant open W ⊂ U should be thought of as the
inverse image of the largest open of [U/R] over which the morphism U → [U/R] has
property P .

Lemma 6.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let τ ∈
{Zariski, fppf, étale, smooth, syntomic}1. LetP be a property of morphisms of schemes
which is τ -local on the target (Descent, Definition 22.1). Assume {s : R → U} and
{t : R → U} are coverings for the τ -topology. Let W ⊂ U be the maximal open sub-
scheme such that s|s−1(W ) : s−1(W ) → W has property P . Then W is R-invariant, see
Groupoids, Definition 19.1.

Proof. The existence and properties of the open W ⊂ U are described in Descent,
Lemma 22.3. In Diagram (3.0.1) let W1 ⊂ R be the maximal open subscheme over which
the morphism pr1 : R×s,U,tR→ R has property P . It follows from the aforementioned
Descent, Lemma 22.3 and the assumption that {s : R → U} and {t : R → U} are
coverings for the τ -topology that t−1(W ) = W1 = s−1(W ) as desired. �

Lemma 6.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let G → U
be its stabilizer group scheme. Let τ ∈ {fppf, étale, smooth, syntomic}. Let P be a
property of morphisms which is τ -local on the target. Assume {s : R → U} and {t :
R → U} are coverings for the τ -topology. Let W ⊂ U be the maximal open subscheme

1The fact that fpqc is missing is not a typo.
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such that GW → W has property P . Then W is R-invariant (see Groupoids, Definition
19.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent,
Lemma 22.3. The morphism

G×U,t R −→ R×s,U G, (g, r) 7−→ (r, r−1 ◦ g ◦ r)

is an isomorphism overR (where ◦ denotes composition in the groupoid). Hence s−1(W ) =
t−1(W ) by the properties of W proved in the aforementioned Descent, Lemma 22.3. �

7. Comparing fibres

Let (U,R, s, t, c, e, i) be a groupoid scheme over S. Diagram (3.0.1) gives us a way to
compare the fibres of the map s : R → U in a groupoid. For a point u ∈ U we will
denote Fu = s−1(u) the scheme theoretic fibre of s : R → U over u. For example the
diagram implies that if u, u′ ∈ U are points such that s(r) = u and t(r) = u′, then
(Fu)κ(r) ∼= (Fu′)κ(r). This is a special case of the more general and more precise Lemma
7.1 below. To see this take r′ = i(r).

A pair (X,x) consisting of a scheme X and a point x ∈ X is sometimes called the germ
of X at x. A morphism of germs f : (X,x) → (S, s) is a morphism f : U → S de-
fined on an open neighbourhood of x with f(x) = s. Two such f , f ′ are said to give
the same morphism of germs if and only if f and f ′ agree in some open neighbourhood
of x. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We temporarily introduce
the following concept: We say that two morphisms of germs f : (X,x) → (S, s) and
f ′ : (X ′, x′) → (S′, s′) are isomorphic locally on the base in the τ -topology, if there
exists a pointed scheme (S′′, s′′) and morphisms of germs g : (S′′, s′′) → (S, s), and
g′ : (S′′, s′′)→ (S′, s′) such that

(1) g and g′ are an open immersion (resp. étale, smooth, syntomic, flat and locally of
finite presentation) at s′′,

(2) there exists an isomorphism

(S′′ ×g,S,f X, x̃) ∼= (S′′ ×g′,S′,f ′ X ′, x̃′)

of germs over the germ (S′′, s′′) for some choice of points x̃ and x̃′ lying over
(s′′, x) and (s′′, x′).

Finally, we simply say that the maps of germs f : (X,x) → (S, s) and f ′ : (X ′, x′) →
(S′, s′) are flat locally on the base isomorphic if there exist S′′, s′′, g, g′ as above but with
(1) replaced by the condition that g and g′ are flat at s′′ (this is much weaker than any of
the τ conditions above as a flat morphism need not be open).

Lemma 7.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Let r, r′ ∈ R
with t(r) = t(r′) inU . Set u = s(r), u′ = s(r′). DenoteFu = s−1(u) andFu′ = s−1(u′)
the scheme theoretic fibres.

(1) There exists a common field extension κ(u) ⊂ k, κ(u′) ⊂ k and an isomorphism
(Fu)k ∼= (Fu′)k.

(2) We may choose the isomorphism of (1) such that a point lying over r maps to a
point lying over r′.

(3) If the morphisms s, t are flat then the morphisms of germs s : (R, r) → (U, u)
and s : (R, r′)→ (U, u′) are flat locally on the base isomorphic.
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(4) If the morphisms s, t are étale (resp. smooth, syntomic, or flat and locally of
finite presentation) then the morphisms of germs s : (R, r) → (U, u) and s :
(R, r′) → (U, u′) are locally on the base isomorphic in the étale (resp. smooth,
syntomic, or fppf) topology.

Proof. We repeatedly use the properties and the existence of diagram (3.0.1). By the
properties of the diagram (and Schemes, Lemma 17.5) there exists a point ξ of R×s,U,t R
with pr0(ξ) = r and c(ξ) = r′. Let r̃ = pr1(ξ) ∈ R.

Proof of (1). Set k = κ(r̃). Since t(r̃) = u and s(r̃) = u′ we see that k is a common
extension of both κ(u) and κ(u′) and in fact that both (Fu)k and (Fu′)k are isomorphic
to the fibre of pr1 : R×s,U,t R→ R over r̃. Hence (1) is proved.

Part (2) follows since the point ξ maps to r, resp. r′.

Part (3) is clear from the above (using the point ξ for ũ and ũ′) and the definitions.

If s and t are flat and of finite presentation, then they are open morphisms (Morphisms,
Lemma 25.10). Hence the image of some affine open neighbourhood V ′′ of r̃ will cover an
open neighbourhood V of u, resp. V ′ of u′. These can be used to show that properties (1)
and (2) of the definition of “locally on the base isomorphic in the τ -topology”. �

8. Cohen-Macaulay presentations

Given any groupoid (U,R, s, t, c) with s, t flat and locally of finite presentation there
exists an “equivalent” groupoid (U ′, R′, s′, t′, c′) such that s′ and t′ are Cohen-Macaulay
morphisms (and locally of finite presentation). See More on Morphisms, Section 22 for
more information on Cohen-Macaulay morphisms. Here “equivalent” can be taken to
mean that the quotient stacks [U/R] and [U ′/R′] are equivalent stacks, see Groupoids in
Spaces, Section 20 and Section 25.

Lemma 8.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid over S. Assume s and
t are flat and locally of finite presentation. Then there exists an open U ′ ⊂ U such that

(1) t−1(U ′) ⊂ R is the largest open subscheme of R on which the morphism s is
Cohen-Macaulay,

(2) s−1(U ′) ⊂ R is the largest open subscheme of R on which the morphism t is
Cohen-Macaulay,

(3) the morphism t|s−1(U ′) : s−1(U ′)→ U is surjective,
(4) the morphism s|t−1(U ′) : t−1(U ′)→ U is surjective, and
(5) the restrictionR′ = s−1(U ′)∩t−1(U ′) ofR toU ′ defines a groupoid (U ′, R′, s′, t′, c′)

which has the property that the morphisms s′ and t′ are Cohen-Macaulay and
locally of finite presentation.

Proof. Apply Lemma 6.1 with g = id and Q =“locally of finite presentation”,
R =“flat and locally of finite presentation”, and P =“Cohen-Macaulay”, see Remark 6.3.
This gives us an open U ′ ⊂ U such that Let t−1(U ′) ⊂ R is the largest open subscheme
of R on which the morphism s is Cohen-Macaulay. This proves (1). Let i : R → R be
the inverse of the groupoid. Since i is an isomorphism, and s ◦ i = t and t ◦ i = s we
see that s−1(U ′) is also the largest open of R on which t is Cohen-Macaulay. This proves
(2). By More on Morphisms, Lemma 22.7 the open subset t−1(U ′) is dense in every fibre
of s : R → U . This proves (3). Same argument for (4). Part (5) is a formal consequence
of (1) and (2) and the discussion of restrictions in Groupoids, Section 18. �
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9. Restricting groupoids

In this section we collect a bunch of lemmas on properties of groupoids which are inher-
ited by restrictions. Most of these lemmas can be proved by contemplating the defining
diagram

(9.0.1)

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

of a restriction. See Groupoids, Lemma 18.1.

Lemma 9.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let g :
U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c)
via g.

(1) If s, t are locally of finite type and g is locally of finite type, then s′, t′ are locally
of finite type.

(2) If s, t are locally of finite presentation and g is locally of finite presentation, then
s′, t′ are locally of finite presentation.

(3) If s, t are flat and g is flat, then s′, t′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition and
arbitrary base change, see Morphisms, Lemmas 15.3 and 15.4. Hence (1) is clear from Dia-
gram (9.0.1). For the other cases, see Morphisms, Lemmas 21.3, 21.4, 25.6, and 25.8. �

The following lemma could have been used to prove the results of the preceding lemma
in a more uniform way.

Lemma 9.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let g :
U ′ → U be a morphism of schemes. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c)
via g, and let h = s ◦ pr1 : U ′ ×g,U,t R→ U . If P is a property of morphisms of schemes
such that

(1) h has property P , and
(2) P is preserved under base change,

then s′, t′ have property P .

Proof. This is clear as s′ is the base change of h by Diagram (9.0.1) and t′ is isomor-
phic to s′ as a morphism of schemes. �

Lemma 9.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let g :
U ′ → U and g′ : U ′′ → U ′ be morphisms of schemes. Set g′′ = g◦g′. Let (U ′, R′, s′, t′, c′)
be the restriction of R to U ′. Let h = s ◦ pr1 : U ′ ×g,U,t R → U , let h′ = s′ ◦ pr1 :
U ′′ ×g′,U ′,t R → U ′, and let h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R → U . The following diagram
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is commutative

U ′′ ×g′,U ′,t R
′

h′

��

(U ′ ×g,U,t R)×U (U ′′ ×g′′,U,t R)oo //

��

U ′′ ×g′′,U,t R

h′′

��
U ′ U ′ ×g,U,t R

pr0oo h // U

with both squares cartesian where the left upper horizontal arrow is given by the rule

(U ′ ×g,U,t R)×U (U ′′ ×g′′,U,t R) −→ U ′′ ×g′,U ′,t R
′

((u′, r0), (u′′, r1)) 7−→ (u′′, (c(r1, i(r0)), (g′(u′′), u′)))
with notation as explained in the proof.

Proof. We work this out by exploiting the functorial point of view and reducing the
lemma to a statement on arrows in restrictions of a groupoid category. In the last formula
of the lemma the notation ((u′, r0), (u′′, r1)) indicates a T -valued point of (U ′ ×g,U,t
R)×U (U ′′×g′′,U,tR). This means that u′, u′′, r0, r1 are T -valued points of U ′, U ′′, R,R
and that g(u′) = t(r0), g(g′(u′′)) = g′′(u′′) = t(r1), and s(r0) = s(r1). It would be
more correct here to write g ◦ u′ = t ◦ r0 and so on but this makes the notation even
more unreadable. If we think of r1 and r0 as arrows in a groupoid category then we can
represent this by the picture

t(r0) = g(u′) s(r0) = s(r1)r0oo r1 // t(r1) = g(g′(u′′))

This diagram in particular demonstrates that the composition c(r1, i(r0)) makes sense.
Recall that

R′ = R×(t,s),U×SU,g×g U
′ ×S U ′

hence a T -valued point ofR′ looks like (r, (u′
0, u

′
1)) with t(r) = g(u′

0) and s(r) = g(u′
1).

In particular given ((u′, r0), (u′′, r1)) as above we get theT -valued point (c(r1, i(r0)), (g′(u′′), u′))
ofR′ because we have t(c(r1, i(r0))) = t(r1) = g(g′(u′′)) and s(c(r1, i(r0))) = s(i(r0)) =
t(r0) = g(u′). We leave it to the reader to show that the left square commutes with this
definition.

To show that the left square is cartesian, suppose we are given (v′′, p′) and (v′, p) which
are T -valued points of U ′′ ×g′,U ′,t R

′ and U ′ ×g,U,t R with v′ = s′(p′). This also means
that g′(v′′) = t′(p′) and g(v′) = t(p). By the discussion above we know that we can write
p′ = (r, (u′

0, u
′
1)) with t(r) = g(u′

0) and s(r) = g(u′
1). Using this notation we see that

v′ = s′(p′) = u′
1 and g′(v′′) = t′(p′) = u′

0. Here is a picture

s(p) p // g(v′) = g(u′
1) r // g(u′

0) = g(g′(v′′))

What we have to show is that there exists a unique T -valued point ((u′, r0), (u′′, r1)) as
above such that v′ = u′, p = r0, v′′ = u′′ and p′ = (c(r1, i(r0)), (g′(u′′), u′)). Comparing
the two diagrams above it is clear that we have no choice but to take

((u′, r0), (u′′, r1)) = ((v′, p), (v′′, c(r, p))
Some details omitted. �

Lemma 9.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let g :
U ′ → U and g′ : U ′′ → U ′ be morphisms of schemes. Set g′′ = g◦g′. Let (U ′, R′, s′, t′, c′)
be the restriction of R to U ′. Let h = s ◦ pr1 : U ′ ×g,U,t R → U , let h′ = s′ ◦ pr1 :
U ′′×g′,U ′,tR→ U ′, and let h′′ = s ◦ pr1 : U ′′×g′′,U,tR→ U . Let τ ∈ {Zariski, étale,
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smooth, syntomic, fppf, fpqc}. Let P be a property of morphisms of schemes which is
preserved under base change, and which is local on the target for the τ -topology. If

(1) h(U ′ ×U R) is open in U ,
(2) {h : U ′ ×U R→ h(U ′ ×U R)} is a τ -covering,
(3) h′ has property P ,

then h′′ has property P . Conversely, if
(a) {t : R→ U} is a τ -covering,
(d) h′′ has property P ,

then h′ has property P .

Proof. This follows formally from the properties of the diagram of Lemma 9.3. In
the first case, note that the image of the morphism h′′ is contained in the image of h, as
g′′ = g ◦ g′. Hence we may replace the U in the lower right corner of the diagram by
h(U ′ ×U R). This explains the significance of conditions (1) and (2) in the lemma. In the
second case, note that {pr0 : U ′ ×g,U,t R→ U ′} is a τ -covering as a base change of τ and
condition (a). �

10. Properties of groupoids on fields

A “groupoid on a field” indicates a groupoid scheme (U,R, s, t, c) whereU is the spectrum
of a field. It does not mean that (U,R, s, t, c) is defined over a field, more precisely, it does
not mean that the morphisms s, t : R → U are equal. Given any field k, an abstract
group G and a group homomorphism ϕ : G → Aut(k) we obtain a groupoid scheme
(U,R, s, t, c) over Z by setting

U = Spec(k)

R =
∐

g∈G
Spec(k)

s =
∐

g∈G
Spec(idk)

t =
∐

g∈G
Spec(ϕ(g))

c = composition in G

This example still is a groupoid scheme over Spec(kG). Hence, if G is finite, then U =
Spec(k) is finite over Spec(kG). In some sense our goal in this section is to show that
suitable finiteness conditions on s, t force any groupoid on a field to be defined over a
finite index subfield k′ ⊂ k.

If k is a field and (G,m) is a group scheme over k with structure morphism p : G →
Spec(k), then (Spec(k), G, p, p,m) is an example of a groupoid on a field (and in this case
of course the whole structure is defined over a field). Hence this section can be viewed as
the analogue of Groupoids, Section 7.

Lemma 10.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. If U
is the spectrum of a field, then the composition morphism c : R×s,U,t R→ R is open.

Proof. The composition is isomorphic to the projection map pr1 : R ×t,U,t R→ R
by Diagram (3.0.2). The projection is open by Morphisms, Lemma 23.4. �

Lemma 10.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. If U
is the spectrum of a field, then R is a separated scheme.
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Proof. By Groupoids, Lemma 7.3 the stabilizer group scheme G → U is separated.
By Groupoids, Lemma 22.2 the morphism j = (t, s) : R→ U ×S U is separated. As U is
the spectrum of a field the scheme U ×S U is affine (by the construction of fibre products
in Schemes, Section 17). Hence R is a separated scheme, see Schemes, Lemma 21.12. �

Lemma 10.3. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
AssumeU = Spec(k) with k a field. For any points r, r′ ∈ R there exists a field extension
k′/k and points r1, r2 ∈ R×s,Spec(k) Spec(k′) and a diagram

R R×s,Spec(k) Spec(k′)
pr0oo ϕ // R×s,Spec(k) Spec(k′)

pr0 // R

such thatϕ is an isomorphism of schemes over Spec(k′), we haveϕ(r1) = r2, pr0(r1) = r,
and pr0(r2) = r′.

Proof. This is a special case of Lemma 7.1 parts (1) and (2). �

Lemma 10.4. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. Let k′/k be a field extension, U ′ = Spec(k′) and let
(U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via U ′ → U . In the defining diagram

R′

��

//

t′

%%

s′

**

&&

R×s,U U ′ //

��

U ′

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ // U

all the morphisms are surjective, flat, and universally open. The dotted arrow R′ → R is
in addition affine.

Proof. The morphism U ′ → U equals Spec(k′) → Spec(k), hence is affine, surjec-
tive and flat. The morphisms s, t : R → U and the morphism U ′ → U are universally
open by Morphisms, Lemma 23.4. SinceR is not empty andU is the spectrum of a field the
morphisms s, t : R→ U are surjective and flat. Then you conclude by using Morphisms,
Lemmas 9.4, 9.2, 23.3, 11.8, 11.7, 25.8, and 25.6. �

Lemma 10.5. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. For any point r ∈ R there exist

(1) a field extension k′/k with k′ algebraically closed,
(2) a point r′ ∈ R′ where (U ′, R′, s′, t′, c′) is the restriction of (U,R, s, t, c) via

Spec(k′)→ Spec(k)
such that

(1) the point r′ maps to r under the morphism R′ → R, and
(2) the maps s′, t′ : R′ → Spec(k′) induce isomorphisms k′ → κ(r′).
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Proof. Translating the geometric statement into a statement on fields, this means
that we can find a diagram

k′ k′
1

oo

k′

τ

OO

κ(r)
σ

aa

k
s

oo

i

``

k

i

aa

t

OO

where i : k → k′ is the embedding of k into k′, the maps s, t : k → κ(r) are induced by
s, t : R → U , and the map τ : k′ → k′ is an automorphism. To produce such a diagram
we may proceed in the following way:

(1) Pick i : k → k′ a field map with k′ algebraically closed of very large transcen-
dence degree over k.

(2) Pick an embedding σ : κ(r)→ k′ such that σ ◦s = i. Such a σ exists because we
can just choose a transcendence basis {xα}α∈A of κ(r) over k and find yα ∈ k′,
α ∈ A which are algebraically independent over i(k), and map s(k)({xα}) into
k′ by the rules s(λ) 7→ i(λ) for λ ∈ k and xα 7→ yα for α ∈ A. Then extend to
τ : κ(α)→ k′ using that k′ is algebraically closed.

(3) Pick an automorphism τ : k′ → k′ such that τ ◦ i = σ ◦ t. To do this pick
a transcendence basis {xα}α∈A of k over its prime field. On the one hand,
extend {i(xα)} to a transcendence basis of k′ by adding {yβ}β∈B and extend
{σ(t(xα))} to a transcendence basis of k′ by adding {zγ}γ∈C . As k′ is alge-
braically closed we can extend the isomorphism σ ◦ t ◦ i−1 : i(k) → σ(t(k))
to an isomorphism τ ′ : i(k) → σ(t(k)) of their algebraic closures in k′. As
k′ has large transcendence degree we see that the sets B and C have the same
cardinality. Thus we can use a bijectionB → C to extend τ ′ to an isomorphism

i(k)({yβ}) −→ σ(t(k))({zγ})

and then since k′ is the algebraic closure of both sides we see that this extends to
an automorphism τ : k′ → k′ as desired.

This proves the lemma. �

Lemma 10.6. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
AssumeU = Spec(k) with k a field. If r ∈ R is a point such that s, t induce isomorphisms
k → κ(r), then the map

R −→ R, x 7−→ c(r, x)
(see proof for precise notation) is an automorphism R→ R which maps e to r.

Proof. This is completely obvious if you think about groupoids in a functorial way.
But we will also spell it out completely. Denote a : U → R the morphism with image r
such that s◦a = idU which exists by the hypothesis that s : k → κ(r) is an isomorphism.
Similarly, denote b : U → R the morphism with image r such that t ◦ b = idU . Note that
b = a ◦ (t ◦ a)−1, in particular a ◦ s ◦ b = b.

Consider the morphism Ψ : R→ R given on T -valued points by

(f : T → R) 7−→ (c(a ◦ t ◦ f, f) : T → R)
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To see this is defined we have to check that s◦a◦t◦f = t◦f which is obvious as s◦a = 1.
Note that Φ(e) = a, so that in order to prove the lemma it suffices to show that Φ is an
automorphism of R. Let Φ : R→ R be the morphism given on T -valued points by

(g : T → R) 7−→ (c(i ◦ b ◦ t ◦ g, g) : T → R).

This is defined because s ◦ i ◦ b ◦ t ◦ g = t ◦ b ◦ t ◦ g = t ◦ g. We claim that Φ and Ψ are
inverse to each other. To see this we compute

c(a ◦ t ◦ c(i ◦ b ◦ t ◦ g, g), c(i ◦ b ◦ t ◦ g, g))
= c(a ◦ t ◦ i ◦ b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))
= c(a ◦ s ◦ b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))
= c(b ◦ t ◦ g, c(i ◦ b ◦ t ◦ g, g))
= c(c(b ◦ t ◦ g, i ◦ b ◦ t ◦ g), g))
= c(e, g)
= g

where we have used the relation a◦ s◦ b = b shown above. In the other direction we have

c(i ◦ b ◦ t ◦ c(a ◦ t ◦ f, f), c(a ◦ t ◦ f, f))
= c(i ◦ b ◦ t ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))
= c(i ◦ a ◦ (t ◦ a)−1 ◦ t ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))
= c(i ◦ a ◦ t ◦ f, c(a ◦ t ◦ f, f))
= c(c(i ◦ a ◦ t ◦ f, a ◦ t ◦ f), f)
= c(e, f)
= f

The lemma is proved. �

Lemma 10.7. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. If U
is the spectrum of a field, W ⊂ R is open, and Z → R is a morphism of schemes, then the
image of the composition Z ×s,U,tW → R×s,U,t R→ R is open.

Proof. WriteU = Spec(k). Consider a field extension k′/k. DenoteU ′ = Spec(k′).
Let R′ be the restriction of R via U ′ → U . Set Z ′ = Z ×R R′ and W ′ = R′ ×RW . Con-
sider a point ξ = (z, w) of Z ×s,U,t W . Let r ∈ R be the image of z under Z → R.
Pick k′ ⊃ k and r′ ∈ R′ as in Lemma 10.5. We can choose z′ ∈ Z ′ mapping to z and r′.
Then we can find ξ′ ∈ Z ′ ×s′,U ′,t′ W

′ mapping to z′ and ξ. The open c(r′,W ′) (Lemma
10.6) is contained in the image of Z ′ ×s′,U ′,t′ W

′ → R′. Observe that Z ′ ×s′,U ′,t′ W
′ =

(Z×s,U,tW )×R×s,U,tR (R′×s′,U ′,t′ R
′). Hence the image of Z ′×s′,U ′,t′ W

′ → R′ → R

is contained in the image of Z ×s,U,t W → R. As R′ → R is open (Lemma 10.4) we
conclude the image contains an open neighbourhood of the image of ξ as desired. �

Lemma 10.8. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. By abuse of notation denote e ∈ R the image of the
identity morphism e : U → R. Then

(1) every local ringOR,r of R has a unique minimal prime ideal,
(2) there is exactly one irreducible component Z of R passing through e, and
(3) Z is geometrically irreducible over k via either s or t.
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Proof. Let r ∈ R be a point. In this proof we will use the correspondence between
irreducible components of R passing through a point r and minimal primes of the local
ring OR,r without further mention. Choose k ⊂ k′ and r′ ∈ R′ as in Lemma 10.5. Note
that OR,r → OR′,r′ is faithfully flat and local, see Lemma 10.4. Hence the result for
r′ ∈ R′ implies the result for r ∈ R. In other words we may assume that s, t : k → κ(r)
are isomorphisms. By Lemma 10.6 there exists an automorphism moving e to r. Hence we
may assume r = e, i.e., part (1) follows from part (2).

We first prove (2) in case k is separably algebraically closed. Namely, let X,Y ⊂ R be
irreducible components passing through e. Then by Varieties, Lemma 8.4 and 8.3 the
schemeX×s,U,tY is irreducible as well. Hence c(X×s,U,tY ) ⊂ R is an irreducible subset.
We claim it contains both X and Y (as subsets of R). Namely, let T be the spectrum of
a field. If x : T → X is a T -valued point of X , then c(x, e ◦ s ◦ x) = x and e ◦ s ◦ x
factors through Y as e ∈ Y . Similarly for points of Y . This clearly implies that X = Y ,
i.e., there is a unique irreducible component of R passing through e.

Proof of (2) and (3) in general. Let k ⊂ k′ be a separable algebraic closure, and let
(U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via Spec(k′)→ Spec(k). By the pre-
vious paragraph there is exactly one irreducible component Z ′ of R′ passing through e′.
Denote e′′ ∈ R ×s,U U ′ the base change of e. As R′ → R ×s,U U ′ is faithfully flat, see
Lemma 10.4, and e′ 7→ e′′ we see that there is exactly one irreducible component Z ′′ of
R ×s,k k′ passing through e′′. This implies, as R ×k k′ → R is faithfully flat, that there
is exactly one irreducible component Z of R passing through e. This proves (2).

To prove (3) let Z ′′′ ⊂ R ×k k′ be an arbitrary irreducible component of Z ×k k′. By
Varieties, Lemma 8.13 we see thatZ ′′′ = σ(Z ′′) for someσ ∈ Gal(k′/k). Sinceσ(e′′) = e′′

we see that e′′ ∈ Z ′′′ and hence Z ′′′ = Z ′′. This means that Z is geometrically irreducible
over Spec(k) via the morphism s. The same argument implies that Z is geometrically
irreducible over Spec(k) via the morphism t. �

Lemma 10.9. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume U = Spec(k) with k a field. Assume s, t are locally of finite type. Then

(1) R is equidimensional,
(2) dim(R) = dimr(R) for all r ∈ R,
(3) for any r ∈ R we have trdegs(k)(κ(r)) = trdegt(k)(κ(r)), and
(4) for any closed point r ∈ R we have dim(R) = dim(OR,r).

Proof. Let r, r′ ∈ R. Then dimr(R) = dimr′(R) by Lemma 10.3 and Morphisms,
Lemma 28.3. By Morphisms, Lemma 28.1 we have

dimr(R) = dim(OR,r) + trdegs(k)(κ(r)) = dim(OR,r) + trdegt(k)(κ(r)).

On the other hand, the dimension of R (or any open subset of R) is the supremum of the
dimensions of the local rings of R, see Properties, Lemma 10.3. Clearly this is maximal
for closed points r in which case trdegk(κ(r)) = 0 (by the Hilbert Nullstellensatz, see
Morphisms, Section 16). Hence the lemma follows. �

Lemma 10.10. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
AssumeU = Spec(k) with k a field. Assume s, t are locally of finite type. Then dim(R) =
dim(G) where G is the stabilizer group scheme of R.

Proof. Let Z ⊂ R be the irreducible component passing through e (see Lemma 10.8)
thought of as an integral closed subscheme of R. Let k′

s, resp. k′
t be the integral closure of
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s(k), resp. t(k) in Γ(Z,OZ). Recall that k′
s and k′

t are fields, see Varieties, Lemma 28.4. By
Varieties, Proposition 31.1 we have k′

s = k′
t as subrings of Γ(Z,OZ). As e factors through

Z we obtain a commutative diagram

k

t ##

1

))Γ(Z,OZ) e // k

k

s
;;

1

55

This on the one hand shows that k′
s = s(k), k′

t = t(k), so s(k) = t(k), which combined
with the diagram above implies that s = t! In other words, we conclude that Z is a
closed subscheme of G = R ×(t,s),U×SU,∆ U . The lemma follows as both G and R are
equidimensional, see Lemma 10.9 and Groupoids, Lemma 8.1. �

Remark 10.11. Warning: Lemma 10.10 is wrong without the condition that s and t
are locally of finite type. An easy example is to start with the action

Gm,Q ×Q A1
Q → A1

Q

and restrict the corresponding groupoid scheme to the generic point of A1
Q. In other

words restrict via the morphism Spec(Q(x)) → Spec(Q[x]) = A1
Q. Then you get a

groupoid scheme (U,R, s, t, c) with U = Spec(Q(x)) and

R = Spec
(

Q(x)[y]
[

1
P (xy) , P ∈ Q[T ], P 6= 0

])
In this case dim(R) = 1 and dim(G) = 0.

Lemma 10.12. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume

(1) U = Spec(k) with k a field,
(2) s, t are locally of finite type, and
(3) the characteristic of k is zero.

Then s, t : R→ U are smooth.

Proof. By Lemma 4.1 the sheaf of differentials of R→ U is free. Hence smoothness
follows from Varieties, Lemma 25.1. �

Lemma 10.13. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume

(1) U = Spec(k) with k a field,
(2) s, t are locally of finite type,
(3) R is reduced, and
(4) k is perfect.

Then s, t : R→ U are smooth.

Proof. By Lemma 4.1 the sheaf ΩR/U is free. Hence the lemma follows from Vari-
eties, Lemma 25.2. �
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11. Morphisms of groupoids on fields

This section studies morphisms between groupoids on fields. This is slightly more general,
but very akin to, studying morphisms of groupschemes over a field.

Situation 11.1. Let S be a scheme. Let U = Spec(k) be a scheme over S with k a
field. Let (U,R1, s1, t1, c1), (U,R2, s2, t2, c2) be groupoid schemes over S with identical
first component. Let a : R1 → R2 be a morphism such that (idU , a) defines a morphism
of groupoid schemes over S , see Groupoids, Definition 13.1. In particular, the following
diagrams commute

R1
t1

((
s1

��

a
  
R2

t2

��

s2
// U

U

R1 ×s1,U,t1 R1 c1
//

a×a
��

R1

a

��
R2 ×s2,U,t2 R2

c2 // R2

The following lemma is a generalization of Groupoids, Lemma 7.7.

Lemma 11.2. Notation and assumptions as in Situation 11.1. If a(R1) is open in R2,
then a(R1) is closed in R2.

Proof. Let r2 ∈ R2 be a point in the closure of a(R1). We want to show r2 ∈ a(R1).
Pick k ⊂ k′ and r′

2 ∈ R′
2 adapted to (U,R2, s2, t2, c2) and r2 as in Lemma 10.5. Let R′

i be
the restriction ofRi via the morphismU ′ = Spec(k′)→ U = Spec(k). Let a′ : R′

1 → R′
2

be the base change of a. The diagram

R′
1

a′
//

p1

��

R′
2

p2

��
R1

a // R2

is a fibre square. Hence the image of a′ is the inverse image of the image of a via the
morphism p2 : R′

2 → R2. By Lemma 10.4 the map p2 is surjective and open. Hence by
Topology, Lemma 6.4 we see that r′

2 is in the closure of a′(R′
1). This means that we may

assume that r2 ∈ R2 has the property that the maps k → κ(r2) induced by s2 and t2 are
isomorphisms.

In this case we can use Lemma 10.6. This lemma implies c(r2, a(R1)) is an open neigh-
bourhood of r2. Hence a(R1) ∩ c(r2, a(R1)) 6= ∅ as we assumed that r2 was a point of
the closure of a(R1). Using the inverse ofR2 andR1 we see this means c2(a(R1), a(R1))
contains r2. As c2(a(R1), a(R1)) ⊂ a(c1(R1, R1)) = a(R1) we conclude r2 ∈ a(R1) as
desired. �

Lemma 11.3. Notation and assumptions as in Situation 11.1. Let Z ⊂ R2 be the
reduced closed subscheme (see Schemes, Definition 12.5) whose underlying topological
space is the closure of the image of a : R1 → R2. Then c2(Z ×s2,U,t2 Z) ⊂ Z set
theoretically.



11. MORPHISMS OF GROUPOIDS ON FIELDS 3549

Proof. Consider the commutative diagram

R1 ×s1,U,t1 R1 //

��

R1

��
R2 ×s2,U,t2 R2 // R2

By Varieties, Lemma 24.2 the closure of the image of the left vertical arrow is (set theoret-
ically) Z ×s2,U,t2 Z. Hence the result follows. �

Lemma 11.4. Notation and assumptions as in Situation 11.1. Assume that k is per-
fect. Let Z ⊂ R2 be the reduced closed subscheme (see Schemes, Definition 12.5) whose
underlying topological space is the closure of the image of a : R1 → R2. Then

(U,Z, s2|Z , t2|Z , c2|Z)
is a groupoid scheme over S.

Proof. We first explain why the statement makes sense. Since U is the spectrum of
a perfect field k, the scheme Z is geometrically reduced over k (via either projection), see
Varieties, Lemma 6.3. Hence the schemeZ×s2,U,t2Z ⊂ Z is reduced, see Varieties, Lemma
6.7. Hence by Lemma 11.3 we see that c induces a morphism Z ×s2,U,t2 Z → Z. Finally,
it is clear that e2 factors through Z and that the map i2 : R2 → R2 preserves Z. Since
the morphisms of the septuple (U,R2, s2, t2, c2, e2, i2) satisfies the axioms of a groupoid,
it follows that after restricting to Z they satisfy the axioms. �

Lemma 11.5. Notation and assumptions as in Situation 11.1. If the image a(R1) is a
locally closed subset of R2 then it is a closed subset.

Proof. Let k ⊂ k′ be a perfect closure of the field k. Let R′
i be the restriction of Ri

via the morphism U ′ = Spec(k′) → Spec(k). Note that the morphisms R′
i → Ri are

universal homeomorphisms as compositions of base changes of the universal homeomor-
phism U ′ → U (see diagram in statement of Lemma 10.4). Hence it suffices to prove that
a′(R′

1) is closed in R′
2. In other words, we may assume that k is perfect.

If k is perfect, then the closure of the image is a groupoid scheme Z ⊂ R2, by Lemma 11.4.
By the same lemma applied to idR1 : R1 → R1 we see that (R2)red is a groupoid scheme.
Thus we may apply Lemma 11.2 to the morphism a|(R2)red : (R2)red → Z to conclude
that Z equals the image of a. �

Lemma 11.6. Notation and assumptions as in Situation 11.1. Assume that a : R1 →
R2 is a quasi-compact morphism. Let Z ⊂ R2 be the scheme theoretic image (see Mor-
phisms, Definition 6.2) of a : R1 → R2. Then

(U,Z, s2|Z , t2|Z , c2|Z)
is a groupoid scheme over S.

Proof. The main difficulty is to show that c2|Z×s2,U,t2Z
maps into Z. Consider the

commutative diagram
R1 ×s1,U,t1 R1 //

a×a
��

R1

��
R2 ×s2,U,t2 R2 // R2
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By Varieties, Lemma 24.3 we see that the scheme theoretic image of a× a is Z ×s2,U,t2 Z.
By the commutativity of the diagram we conclude that Z ×s2,U,t2 Z maps into Z by the
bottom horizontal arrow. As in the proof of Lemma 11.4 it is also true that i2(Z) ⊂ Z
and that e2 factors through Z. Hence we conclude as in the proof of that lemma. �

Lemma 11.7. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. As-
sume U is the spectrum of a field. Let Z ⊂ U ×S U be the reduced closed subscheme (see
Schemes, Definition 12.5) whose underlying topological space is the closure of the image
of j = (t, s) : R→ U ×S U . Then pr02(Z ×pr1,U,pr0

Z) ⊂ Z set theoretically.

Proof. As (U,U ×S U, pr1, pr0, pr02) is a groupoid scheme over S this is a special
case of Lemma 11.3. But we can also prove it directly as follows.

Write U = Spec(k). DenoteRs (resp. Zs, resp. U2
s ) the schemeR (resp. Z , resp. U ×S U )

viewed as a scheme over k via s (resp. pr1|Z , resp. pr1). Similarly, denote tR (resp. tZ ,
resp. tU2) the scheme R (resp. Z , resp. U ×S U ) viewed as a scheme over k via t (resp.
pr0|Z , resp. pr0). The morphism j induces morphisms of schemes js : Rs → U2

s and
tj : tR→ tU

2 over k. Consider the commutative diagram

Rs ×k tR
c //

js×tj
��

R

j

��
U2
s ×k tU2 // U ×S U

By Varieties, Lemma 24.2 we see that the closure of the image of js × tj is Zs ×k tZ. By
the commutativity of the diagram we conclude that Zs×k tZ maps into Z by the bottom
horizontal arrow. �

Lemma 11.8. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. As-
sumeU is the spectrum of a perfect field. LetZ ⊂ U×SU be the reduced closed subscheme
(see Schemes, Definition 12.5) whose underlying topological space is the closure of the im-
age of j = (t, s) : R→ U ×S U . Then

(U,Z, pr0|Z , pr1|Z , pr02|Z×pr1,U,pr0Z
)

is a groupoid scheme over S.

Proof. As (U,U ×S U, pr1, pr0, pr02) is a groupoid scheme over S this is a special
case of Lemma 11.4. But we can also prove it directly as follows.

We first explain why the statement makes sense. SinceU is the spectrum of a perfect field k,
the scheme Z is geometrically reduced over k (via either projection), see Varieties, Lemma
6.3. Hence the scheme Z ×pr1,U,pr0

Z ⊂ Z is reduced, see Varieties, Lemma 6.7. Hence by
Lemma 11.7 we see that pr02 induces a morphism Z ×pr1,U,pr0

Z → Z. Finally, it is clear
that ∆U/S factors through Z and that the map σ : U ×S U → U ×S U , (x, y) 7→ (y, x)
preserves Z. Since (U,U ×S U, pr0, pr1, pr02,∆U/S , σ) satisfies the axioms of a groupoid,
it follows that after restricting to Z they satisfy the axioms. �

Lemma 11.9. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. As-
sume U is the spectrum of a field and assume R is quasi-compact (equivalently s, t are
quasi-compact). Let Z ⊂ U ×S U be the scheme theoretic image (see Morphisms, Defini-
tion 6.2) of j = (t, s) : R→ U ×S U . Then

(U,Z, pr0|Z , pr1|Z , pr02|Z×pr1,U,pr0Z
)
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is a groupoid scheme over S.

Proof. As (U,U ×S U, pr1, pr0, pr02) is a groupoid scheme over S this is a special
case of Lemma 11.6. But we can also prove it directly as follows.
The main difficulty is to show that pr02|Z×pr1,U,pr0Z

maps into Z. Write U = Spec(k).
Denote Rs (resp. Zs, resp. U2

s ) the scheme R (resp. Z , resp. U ×S U ) viewed as a scheme
over k via s (resp. pr1|Z , resp. pr1). Similarly, denote tR (resp. tZ , resp. tU2) the scheme
R (resp. Z , resp. U ×S U ) viewed as a scheme over k via t (resp. pr0|Z , resp. pr0). The
morphism j induces morphisms of schemes js : Rs → U2

s and tj : tR → tU
2 over k.

Consider the commutative diagram

Rs ×k tR
c //

js×tj
��

R

j

��
U2
s ×k tU2 // U ×S U

By Varieties, Lemma 24.3 we see that the scheme theoretic image of js× tj isZs×k tZ. By
the commutativity of the diagram we conclude that Zs×k tZ maps into Z by the bottom
horizontal arrow. As in the proof of Lemma 11.8 it is also true that σ(Z) ⊂ Z and that
∆U/S factors through Z. Hence we conclude as in the proof of that lemma. �

12. Slicing groupoids

The following lemma shows that we may slice a Cohen-Macaulay groupoid scheme in
order to reduce the dimension of the fibres, provided that the dimension of the stabilizer
is small. This is an essential step in the process of improving a given presentation of a
quotient stack.

Situation 12.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism of schemes. Let u ∈ U be a point, and let u′ ∈ U ′ be
a point such that g(u′) = u. Given these data, denote (U ′, R′, s′, t′, c′) the restriction
of (U,R, s, t, c) via the morphism g. Denote G → U the stabilizer group scheme of R,
which is a locally closed subscheme of R. Denote h the composition

h = s ◦ pr1 : U ′ ×g,U,t R −→ U.

Denote Fu = s−1(u) (scheme theoretic fibre), and Gu the scheme theoretic fibre of G
over u. Similarly for R′ we denote F ′

u′ = (s′)−1(u′). Because g(u′) = u we have
F ′
u′ = h−1(u)×Spec(κ(u)) Spec(κ(u′)).

The point e(u) ∈ R may be viewed as a point on Gu and Fu also, and e′(u′) is a point of
R′ (resp. G′

u′ , resp. F ′
u′ ) which maps to e(u) in R (resp. Gu, resp. Fu).

Lemma 12.2. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme over
S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-Macaulay
and locally of finite presentation. Let u ∈ U be a finite type point of the scheme U , see
Morphisms, Definition 16.3. With notation as in Situation 12.1, set

d1 = dim(Gu), d2 = dime(u)(Fu).
If d2 > d1, then there exist an affine scheme U ′ and a morphism g : U ′ → U such that
(with notation as in Situation 12.1)

(1) g is an immersion
(2) u ∈ U ′,
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(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is Cohen-Macaulay at (u, e(u)), and
(5) we have dime′(u)(F ′

u) = d2 − 1.

Proof. Let Spec(A) ⊂ U be an affine neighbourhood of u such that u corresponds to
a closed point ofU , see Morphisms, Lemma 16.4. Let Spec(B) ⊂ R be an affine neighbour-
hood of e(u) which maps via j into the open Spec(A)×S Spec(A) ⊂ U×SU . Let m ⊂ A
be the maximal ideal corresponding to u. Let q ⊂ B be the prime ideal corresponding to
e(u). Pictures:

B A
s
oo

A

t

OO

and

Bq Ams
oo

Am

t

OO

Note that the two induced maps s, t : κ(m) → κ(q) are equal and isomorphisms as s ◦
e = t ◦ e = idU . In particular we see that q is a maximal ideal as well. The ring maps
s, t : A→ B are of finite presentation and flat. By assumption the ring

OFu,e(u) = Bq/s(m)Bq

is Cohen-Macaulay of dimension d2. The equality of dimension holds by Morphisms,
Lemma 28.1.

Let R′′ be the restriction of R to u = Spec(κ(u)) via the morphism Spec(κ(u)) → U .
As u → U is locally of finite type, we see that (Spec(κ(u)), R′′, s′′, t′′, c′′) is a groupoid
scheme with s′′, t′′ locally of finite type, see Lemma 9.1. By Lemma 10.10 this implies
that dim(G′′) = dim(R′′). We also have dim(R′′) = dime′′(R′′) = dim(OR′′,e′′), see
Lemma 10.9. By Groupoids, Lemma 18.4 we have G′′ = Gu. Hence we conclude that
dim(OR′′,e′′) = d1.

As a scheme R′′ is

R′′ = R×(U×SU)

(
Spec(κ(m))×S Spec(κ(m))

)
Hence an affine open neighbourhood of e′′ is the spectrum of the ring

B ⊗(A⊗A) (κ(m)⊗ κ(m)) = B/s(m)B + t(m)B

We conclude that
OR′′,e′′ = Bq/s(m)Bq + t(m)Bq

and so now we know that this ring has dimension d1.

We claim this implies we can find an element f ∈ m such that

dim(Bq/(s(m)Bq + fBq) < d2

Namely, suppose nj ⊃ s(m)Bq, j = 1, . . . ,m correspond to the minimal primes of the
local ringBq/s(m)Bq. There are finitely many as this ring is Noetherian (since it is essen-
tially of finite type over a field – but also because a Cohen-Macaulay ring is Noetherian).
By the Cohen-Macaulay condition we have dim(Bq/nj) = d2, for example by Algebra,
Lemma 104.4. Note that dim(Bq/(nj + t(m)Bq)) ≤ d1 as it is a quotient of the ring
OR′′,e′′ = Bq/s(m)Bq + t(m)Bq which has dimension d1. As d1 < d2 this implies that
m 6⊂ t−1(ni). By prime avoidance, see Algebra, Lemma 15.2, we can find f ∈ m with
t(f) 6∈ nj for j = 1, . . . ,m. For this choice of f we have the displayed inequality above,
see Algebra, Lemma 60.13.
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Set A′ = A/fA and U ′ = Spec(A′). Then it is clear that U ′ → U is an immersion,
locally of finite presentation and that u ∈ U ′. Thus (1), (2) and (3) of the lemma hold.
The morphism

U ′ ×g,U,t R −→ U

factors through Spec(A) and corresponds to the ring map

B/t(f)B A/(f)⊗A,t B A
soo

Now, we see t(f) is not a zerodivisor on Bq/s(m)Bq as this is a Cohen-Macaulay ring of
positive dimension and f is not contained in any minimal prime, see for example Algebra,
Lemma 104.2. Hence by Algebra, Lemma 128.5 we conclude that s : Am → Bq/t(f)Bq

is flat with fibre ring Bq/(s(m)Bq + t(f)Bq) which is Cohen-Macaulay by Algebra,
Lemma 104.2 again. This implies part (4) of the lemma. To see part (5) note that by
Diagram (9.0.1) the fibre F ′

u is equal to the fibre of h over u. Hence dime′(u)(F ′
u) =

dim(Bq/(s(m)Bq + t(f)Bq)) by Morphisms, Lemma 28.1 and the dimension of this ring
is d2−1 by Algebra, Lemma 104.2 once more. This proves the final assertion of the lemma
and we win. �

Now that we know how to slice we can combine it with the preceding material to get
the following “optimal” result. It is optimal in the sense that since Gu is a locally closed
subscheme of Fu one always has the inequality dim(Gu) = dime(u)(Gu) ≤ dime(u)(Fu)
so it is not possible to slice more than in the lemma.

Lemma 12.3. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme over
S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-Macaulay
and locally of finite presentation. Let u ∈ U be a finite type point of the scheme U , see
Morphisms, Definition 16.3. With notation as in Situation 12.1 there exist an affine scheme
U ′ and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is Cohen-Macaulay and locally of finite

presentation,
(5) the morphisms s′, t′ : R′ → U ′ are Cohen-Macaulay and locally of finite pre-

sentation, and
(6) dime(u)(F ′

u) = dim(G′
u).

Proof. As s is locally of finite presentation the scheme Fu is locally of finite type
over κ(u). Hence dime(u)(Fu) <∞ and we may argue by induction on dime(u)(Fu).

If dime(u)(Fu) = dim(Gu) there is nothing to prove. Assume dime(u)(Fu) > dim(Gu).
This means that Lemma 12.2 applies and we find a morphism g : U ′ → U which has
properties (1), (2), (3), instead of (6) we have dime(u)(F ′

u) < dime(u)(Fu), and instead of
(4) and (5) we have that the composition

h = s ◦ pr1 : U ′ ×g,U,t R −→ U

is Cohen-Macaulay at the point (u, e(u)). We apply Remark 6.3 and we obtain an open
subscheme U ′′ ⊂ U ′ such that U ′′ ×g,U,t R ⊂ U ′ ×g,U,t R is the largest open subscheme
on which h is Cohen-Macaulay. Since (u, e(u)) ∈ U ′′×g,U,tRwe see that u ∈ U ′′. Hence
we may replace U ′ by U ′′ and assume that in fact h is Cohen-Macaulay everywhere! By
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Lemma 9.2 we conclude that s′, t′ are locally of finite presentation and Cohen-Macaulay
(use Morphisms, Lemma 21.4 and More on Morphisms, Lemma 22.6).

By construction dime′(u)(F ′
u) < dime(u)(Fu), so we may apply the induction hypothesis

to (U ′, R′, s′, t′, c′) and the point u ∈ U ′. Note that u is also a finite type point of U ′

(for example you can see this using the characterization of finite type points from Mor-
phisms, Lemma 16.4). Let g′ : U ′′ → U ′ and (U ′′, R′′, s′′, t′′, c′′) be the solution of the
corresponding problem starting with (U ′, R′, s′, t′, c′) and the point u ∈ U ′. We claim
that the composition

g′′ = g ◦ g′ : U ′′ −→ U

is a solution for the original problem. Properties (1), (2), (3), (5), and (6) are immediate.
To see (4) note that the morphism

h′′ = s ◦ pr1 : U ′′ ×g′′,U,t R −→ U

is locally of finite presentation and Cohen-Macaulay by an application of Lemma 9.4 (use
More on Morphisms, Lemma 22.11 to see that Cohen-Macaulay morphisms are fppf local
on the target). �

In case the stabilizer group scheme has fibres of dimension 0 this leads to the following
slicing lemma.

Lemma 12.4. Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid scheme over
S. Let G → U be the stabilizer group scheme. Assume s and t are Cohen-Macaulay
and locally of finite presentation. Let u ∈ U be a finite type point of the scheme U , see
Morphisms, Definition 16.3. Assume that G → U is locally quasi-finite. With notation
as in Situation 12.1 there exist an affine scheme U ′ and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) the morphism h : U ′ ×g,U,t R −→ U is flat, locally of finite presentation, and

locally quasi-finite, and
(5) the morphisms s′, t′ : R′ → U ′ are flat, locally of finite presentation, and locally

quasi-finite.

Proof. Take g : U ′ → U as in Lemma 12.3. Since h−1(u) = F ′
u we see that h has

relative dimension ≤ 0 at (u, e(u)). Hence, by Remark 6.3, we obtain an open subscheme
U ′′ ⊂ U ′ such that u ∈ U ′′ andU ′′×g,U,tR is the maximal open subscheme ofU ′×g,U,tR
on which h has relative dimension≤ 0. After replacingU ′ byU ′′ we see that h has relative
dimension ≤ 0. This implies that h is locally quasi-finite by Morphisms, Lemma 29.5.
Since it is still locally of finite presentation and Cohen-Macaulay we see that it is flat,
locally of finite presentation and locally quasi-finite, i.e., (4) above holds. This implies
that s′ is flat, locally of finite presentation and locally quasi-finite as a base change of h,
see Lemma 9.2. �

13. Étale localization of groupoids

In this section we begin applying the étale localization techniques of More on Morphisms,
Section 41 to groupoid schemes. More advanced material of this kind can be found in More
on Groupoids in Spaces, Section 15. Lemma 13.2 will be used to prove results on algebraic
spaces separated and quasi-finite over a scheme, namely Morphisms of Spaces, Proposition
50.2 and its corollary Morphisms of Spaces, Lemma 51.1.
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Lemma 13.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let
p ∈ S be a point, and let u ∈ U be a point lying over p. Assume that

(1) U → S is locally of finite type,
(2) U → S is quasi-finite at u,
(3) U → S is separated,
(4) R→ S is separated,
(5) s, t are flat and locally of finite presentation, and
(6) s−1({u}) is finite.

Then there exists an étale neighbourhood (S′, p′)→ (S, p) with κ(p) = κ(p′) and a base
change diagram

R′ qW ′ S′ ×S R //

s′

��
t′

��

R

s

��
t

��
U ′ qW S′ ×S U //

��

U

��
S′ // S

where the equal signs are decompositions into open and closed subschemes such that
(a) there exists a point u′ of U ′ mapping to u in U ,
(b) the fibre (U ′)p′ equals t′

(
(s′)−1({u′})

)
set theoretically,

(c) the fibre (R′)p′ equals (s′)−1((U ′)p′
)

set theoretically,
(d) the schemes U ′ and R′ are finite over S′,
(e) we have s′(R′) ⊂ U ′ and t′(R′) ⊂ U ′,
(f) we have c′(R′ ×s′,U ′,t′ R

′) ⊂ R′ where c′ is the base change of c, and
(g) the morphisms s′, t′, c′ determine a groupoid structure by taking the system

(U ′, R′, s′|R′ , t′|R′ , c′|R′×s′,U′,t′R
′).

Proof. Let us denote f : U → S the structure morphism ofU . By assumption (6) we
can write s−1({u}) = {r1, . . . , rn}. Since this set is finite, we see that s is quasi-finite at
each of these finitely many inverse images, see Morphisms, Lemma 20.7. Hence we see that
f ◦ s : R→ S is quasi-finite at each ri (Morphisms, Lemma 20.12). Hence ri is isolated in
the fibre Rp, see Morphisms, Lemma 20.6. Write t({r1, . . . , rn}) = {u1, . . . , um}. Note
that it may happen thatm < n and note that u ∈ {u1, . . . , um}. Since t is flat and locally
of finite presentation, the morphism of fibres tp : Rp → Up is flat and locally of finite
presentation (Morphisms, Lemmas 25.8 and 21.4), hence open (Morphisms, Lemma 25.10).
The fact that each ri is isolated inRp implies that each uj = t(ri) is isolated in Up. Using
Morphisms, Lemma 20.6 again, we see that f is quasi-finite at u1, . . . , um.

Denote Fu = s−1(u) and Fuj = s−1(uj) the scheme theoretic fibres. Note that Fu
is finite over κ(u) as it is locally of finite type over κ(u) with finitely many points (for
example it follows from the much more general Morphisms, Lemma 57.9). By Lemma 7.1
we see that Fu and Fuj become isomorphic over a common field extension of κ(u) and
κ(uj). Hence we see that Fuj is finite over κ(uj). In particular we see s−1({uj}) is a
finite set for each j = 1, . . . ,m. Thus we see that assumptions (2) and (6) hold for each
uj also (above we saw that U → S is quasi-finite at uj). Hence the argument of the first
paragraph applies to each uj and we see that R → U is quasi-finite at each of the points
of

{r1, . . . , rN} = s−1({u1, . . . , um})
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Note that t({r1, . . . , rN}) = {u1, . . . , um} and t−1({u1, . . . , um}) = {r1, . . . , rN} since
R is a groupoid2. Moreover, we have pr0(c−1({r1, . . . , rN})) = {r1, . . . , rN} and pr1(c−1({r1, . . . , rN})) =
{r1, . . . , rN}. Similarly we get e({u1, . . . , um}) ⊂ {r1, . . . , rN} and i({r1, . . . , rN}) =
{r1, . . . , rN}.

We may apply More on Morphisms, Lemma 41.4 to the pairs (U → S, {u1, . . . , um}) and
(R→ S, {r1, . . . , rN}) to get an étale neighbourhood (S′, p′)→ (S, p) which induces an
identification κ(p) = κ(p′) such that S′ ×S U and S′ ×S R decompose as

S′ ×S U = U ′ qW, S′ ×S R = R′ qW ′

with U ′ → S′ finite and (U ′)p′ mapping bijectively to {u1, . . . , um}, and R′ → S′ finite
and (R′)p′ mapping bijectively to {r1, . . . , rN}. Moreover, no point ofWp′ (resp. (W ′)p′ )
maps to any of the points uj (resp. ri). At this point (a), (b), (c), and (d) of the lemma are
satisfied. Moreover, the inclusions of (e) and (f) hold on fibres over p′, i.e., s′((R′)p′) ⊂
(U ′)p′ , t′((R′)p′) ⊂ (U ′)p′ , and c′((R′ ×s′,U ′,t′ R

′)p′) ⊂ (R′)p′ .

We claim that we can replace S′ by a Zariski open neighbourhood of p′ so that the inclu-
sions of (e) and (f) hold. For example, consider the set E = (s′|R′)−1(W ). This is open
and closed in R′ and does not contain any points of R′ lying over p′. Since R′ → S′ is
closed, after replacing S′ by S′ \ (R′ → S′)(E) we reach a situation where E is empty.
In other words s′ maps R′ into U ′. Note that this property is preserved under further
shrinking S′. Similarly, we can arrange it so that t′ maps R′ into U ′. At this point (e)
holds. In the same manner, consider the set E = (c′|R′×s′,U′,t′R

′)−1(W ′). It is open
and closed in the scheme R′ ×s′,U ′,t′ R

′ which is finite over S′, and does not contain any
points lying over p′. Hence after replacing S′ by S′ \ (R′×s′,U ′,t′ R

′ → S′)(E) we reach
a situation where E is empty. In other words we obtain the inclusion in (f). We may
repeat the argument also with the identity e′ : S′ ×S U → S′ ×S R and the inverse
i′ : S′ ×S R → S′ ×S R so that we may assume (after shrinking S′ some more) that
(e′|U ′)−1(W ′) = ∅ and (i′|R′)−1(W ′) = ∅.

At this point we see that we may consider the structure

(U ′, R′, s′|R′ , t′|R′ , c′|R′×t′,U′,s′R′ , e′|U ′ , i′|R′).

The axioms of a groupoid scheme over S′ hold because they hold for the groupoid scheme
(S′ ×S U, S′ ×S R, s′, t′, c′, e′, i′). �

Lemma 13.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let
p ∈ S be a point, and let u ∈ U be a point lying over p. Assume assumptions (1) – (6) of
Lemma 13.1 hold as well as

(7) j : R→ U ×S U is universally closed3.
Then we can choose (S′, p′) → (S, p) and decompositions S′ ×S U = U ′ q W and
S′ ×S R = R′ qW ′ and u′ ∈ U ′ such that (a) – (g) of Lemma 13.1 hold as well as

(h) R′ is the restriction of S′ ×S R to U ′.

2Explanation in groupoid language: The original set {r1, . . . , rn} was the set of arrows with source u.
The set {u1, . . . , um} was the set of objects isomorphic to u. And {r1, . . . , rN} is the set of all arrows between
all the objects equivalent to u.

3In view of the other conditions this is equivalent to requiring j to be proper.
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Proof. We apply Lemma 13.1 for the groupoid (U,R, s, t, c) over the scheme S with
points p and u. Hence we get an étale neighbourhood (S′, p′)→ (S, p) and disjoint union
decompositions

S′ ×S U = U ′ qW, S′ ×S R = R′ qW ′

and u′ ∈ U ′ satisfying conclusions (a), (b), (c), (d), (e), (f), and (g). We may shrink S′ to
a smaller neighbourhood of p′ without affecting the conclusions (a) – (g). We will show
that for a suitable shrinking conclusion (h) holds as well. Let us denote j′ the base change
of j to S′. By conclusion (e) it is clear that

j′−1(U ′ ×S′ U ′) = R′ qRest
for some open and closedRest piece. SinceU ′ → S′ is finite by conclusion (d) we see that
U ′ ×S′ U ′ is finite over S′. Since j is universally closed, also j′ is universally closed, and
hence j′|Rest is universally closed too. By conclusions (b) and (c) we see that the fibre of

(U ′ ×S′ U ′ → S′) ◦ j′|Rest : Rest −→ S′

over p′ is empty. Hence, since Rest→ S′ is closed as a composition of closed morphisms,
after replacing S′ by S′ \ Im(Rest → S′), we may assume that Rest = ∅. And this is
exactly the condition that R′ is the restriction of S′ ×S R to the open subscheme U ′ ⊂
S′ ×S U , see Groupoids, Lemma 18.3 and its proof. �

14. Finite groupoids

A groupoid scheme (U,R, s, t, c) is sometimes called finite if the morphisms s and t are
finite. This is potentially confusing as it doesn’t imply that U or R or the quotient sheaf
U/R are finite over anything.

Lemma 14.1. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume s, t
are finite. There exists a sequence of R-invariant closed subschemes

U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . .
such that

⋂
Zr = ∅ and such that s−1(Zr−1)\ s−1(Zr)→ Zr−1 \Zr is finite locally free

of rank r.

Proof. Let {Zr} be the stratification ofU given by the Fitting ideals of the finite type
quasi-coherent modules s∗OR. See Divisors, Lemma 9.6. Since the identity e : U → R is
a section to s we see that s∗OR containsOS as a direct summand. Hence U = Z−1 = Z0
(details omitted). Since formation of Fitting ideals commutes with base change (More
on Algebra, Lemma 8.4) we find that s−1(Zr) corresponds to the rth Fitting ideal of
pr1,∗OR×s,U,tR because the lower right square of diagram (3.0.1) is cartesian. Using the
fact that the lower left square is also cartesian we conclude that s−1(Zr) = t−1(Zr), in
other wordsZr isR-invariant. The morphism s−1(Zr−1)\s−1(Zr)→ Zr−1\Zr is finite
locally free of rank r because the module s∗OR pulls back to a finite locally free module
of rank r on Zr−1 \ Zr by Divisors, Lemma 9.6. �

Lemma 14.2. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume s, t
are finite. There exists an open subschemeW ⊂ U and a closed subschemeW ′ ⊂W such
that

(1) W and W ′ are R-invariant,
(2) U = t(s−1(W )) set theoretically,
(3) W is a thickening of W ′, and
(4) the maps s′, t′ of the restriction (W ′, R′, s′, t′, c′) are finite locally free.
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Proof. Consider the stratification U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . . of Lemma 14.1.
We will construct disjoint unions W =

∐
r≥1 Wr and W ′ =

∐
r≥1 W

′
r with each W ′

r →
Wr a thickening of R-invariant subschemes of U such that the morphisms s′

r, t
′
r of the

restrictions (W ′
r, R

′
r, s

′
r, t

′
r, c

′
r) are finite locally free of rank r. To begin we set W1 =

W ′
1 = U\Z1. This is anR-invariant open subscheme ofU , it is true thatW0 is a thickening

of W ′
0, and the maps s′

1, t′1 of the restriction (W ′
1, R

′
1, s

′
1, t

′
1, c

′
1) are isomorphisms, i.e.,

finite locally free of rank 1. Moreover, every point of U \ Z1 is in t(s−1(W1)).
Assume we have found subschemes W ′

r ⊂Wr ⊂ U for r ≤ n such that
(1) W1, . . . ,Wn are disjoint,
(2) Wr and W ′

r are R-invariant,
(3) U \ Zn ⊂

⋃
r≤n t(s−1(Wr)) set theoretically,

(4) Wr is a thickening of W ′
r ,

(5) the maps s′
r , t′r of the restriction (W ′

r, R
′
r, s

′
r, t

′
r, c

′
r) are finite locally free of rank

r.
Then we set

Wn+1 = Zn \
(
Zn+1 ∪

⋃
r≤n

t(s−1(Wr))
)

set theoretically and

W ′
n+1 = Zn \

(
Zn+1 ∪

⋃
r≤n

t(s−1(Wr))
)

scheme theoretically. ThenWn+1 is anR-invariant open subscheme of U because Zn+1 \
U \ Zn+1 is open in U and U \ Zn+1 is contained in the closed subset

⋃
r≤n t(s−1(Wr))

we are removing by property (3) and the fact that t is a closed morphism. It is clear that
W ′
n+1 is a closed subscheme ofWn+1 with the same underlying topological space. Finally,

properties (1), (2) and (3) are clear and property (5) follows from Lemma 14.1.
By Lemma 14.1 we have

⋂
Zr = ∅. Hence every point of U is contained in U \ Zn for

some n. Thus we see that U =
⋃
r≥1 t(s−1(Wr)) set theoretically and we see that (2)

holds. Thus W ′ ⊂W satisfy (1), (2), (3), and (4). �

Let (U,R, s, t, c) be a groupoid scheme. Given a point u ∈ U theR-orbit of u is the subset
t(s−1({u})) of U .

Lemma 14.3. In Lemma 14.2 assume in addition that s and t are of finite presentation.
Then

(1) the morphism W ′ →W is of finite presentation, and
(2) if u ∈ U is a point whose R-orbit consists of generic points of irreducible com-

ponents of U , then u ∈W .

Proof. In this case the stratification U = Z0 ⊃ Z1 ⊃ Z2 ⊃ . . . of Lemma 14.1 is
given by closed immersions Zk → U of finite presentation, see Divisors, Lemma 9.6. Part
(1) follows immediately from this as W ′ → W is locally given by intersecting the open
W by Zr. To see part (2) let {u1, . . . , un} be the orbit of u. Since the closed subschemes
Zk are R-invariant and

⋂
Zk = ∅, we find an k such that ui ∈ Zk and ui 6∈ Zk+1 for all

i. The image of Zk → U and Zk+1 → U is locally constructible (Morphisms, Theorem
22.3). Since ui ∈ U is a generic point of an irreducible component of U , there exists an
open neighbourhoodUi of ui which is contained inZk\Zk+1 set theoretically (Properties,
Lemma 2.2). In the proof of Lemma 14.2 we have constructedW as a disjoint union

∐
Wr

with Wr ⊂ Zr−1 \ Zr such that U =
⋃
t(s−1(Wr)). As {u1, . . . , un} is an R-orbit we
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see that u ∈ t(s−1(Wr)) implies ui ∈ Wr for some i which implies Ui ∩Wr 6= ∅ which
implies r = k. Thus we conclude that u is in

Wk+1 = Zk \
(
Zk+1 ∪

⋃
r≤k

t(s−1(Wr))
)

as desired. �

Lemma 14.4. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume s, t
are finite and of finite presentation and U quasi-separated. Let u1, . . . , um ∈ U be points
whose orbits consist of generic points of irreducible components of U . Then there exist
R-invariant subschemes V ′ ⊂ V ⊂ U such that

(1) u1, . . . , um ∈ V ′,
(2) V is open in U ,
(3) V ′ and V are affine,
(4) V ′ ⊂ V is a thickening of finite presentation,
(5) the morphisms s′, t′ of the restriction (V ′, R′, s′, t′, c′) are finite locally free.

Proof. Let W ′ ⊂ W ⊂ U be as in Lemma 14.2. By Lemma 14.3 we get uj ∈ W
and thatW ′ →W is a thickening of finite presentation. By Limits, Lemma 11.3 it suffices
to find an R-invariant affine open subscheme V ′ of W ′ containing uj (because then we
can let V ⊂ W be the corresponding open subscheme which will be affine). Thus we
may replace (U,R, s, t, c) by the restriction (W ′, R′, s′, t′, c′) to W ′. In other words, we
may assume we have a groupoid scheme (U,R, s, t, c) whose morphisms s and t are finite
locally free. By Properties, Lemma 29.1 we can find an affine open containing the union of
the orbits of u1, . . . , um. Finally, we can apply Groupoids, Lemma 24.1 to conclude. �

The following lemma is a special case of Lemma 14.4 but we redo the argument as it is
slightly easier in this case (it avoids using Lemma 14.3).

Lemma 14.5. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Assume s, t
finite, U is locally Noetherian, and u1, . . . , um ∈ U points whose orbits consist of generic
points of irreducible components of U . Then there exist R-invariant subschemes V ′ ⊂
V ⊂ U such that

(1) u1, . . . , um ∈ V ′,
(2) V is open in U ,
(3) V ′ and V are affine,
(4) V ′ ⊂ V is a thickening,
(5) the morphisms s′, t′ of the restriction (V ′, R′, s′, t′, c′) are finite locally free.

Proof. Let {uj1, . . . , ujnj} be the orbit of uj . Let W ′ ⊂ W ⊂ U be as in Lemma
14.2. Since U = t(s−1(W )) we see that at least one uji ∈ W . Since uji is a generic
point of an irreducible component and U locally Noetherian, this implies that uji ∈ W .
SinceW isR-invariant, we conclude that uj ∈W and in fact the whole orbit is contained
in W . By Cohomology of Schemes, Lemma 13.3 it suffices to find an R-invariant affine
open subscheme V ′ of W ′ containing u1, . . . , um (because then we can let V ⊂W be the
corresponding open subscheme which will be affine). Thus we may replace (U,R, s, t, c)
by the restriction (W ′, R′, s′, t′, c′) to W ′. In other words, we may assume we have a
groupoid scheme (U,R, s, t, c) whose morphisms s and t are finite locally free. By Proper-
ties, Lemma 29.1 we can find an affine open containing {uij} (a locally Noetherian scheme
is quasi-separated by Properties, Lemma 5.4). Finally, we can apply Groupoids, Lemma
24.1 to conclude. �
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Lemma 14.6. Let (U,R, s, t, c) be a groupoid scheme over a scheme S with s, t in-
tegral. Let g : U ′ → U be an integral morphism such that every R-orbit in U meets
g(U ′). Let (U ′, R′, s′, t′, c′) be the restriction of R to U ′. If u′ ∈ U ′ is contained in an
R′-invariant affine open, then the image u ∈ U is contained in anR-invariant affine open
of U .

Proof. LetW ′ ⊂ U ′ be anR′-invariant affine open. Set R̃ = U ′×g,U,tR with maps
pr0 : R̃ → U ′ and h = s ◦ pr1 : R̃ → U . Observe that pr0 and h are integral. It fol-
lows that W̃ = pr−1

0 (W ′) is affine. Since W ′ is R′-invariant, the image W = h(W̃ ) is
set theoretically R-invariant and W̃ = h−1(W ) set theoretically (details omitted). Thus,
if we can show that W is open, then W is a scheme and the morphism W̃ → W is inte-
gral surjective which implies that W is affine by Limits, Proposition 11.2. However, our
assumption on orbits meeting U ′ implies that h : R̃ → U is surjective. Since an integral
surjective morphism is submersive (Topology, Lemma 6.5 and Morphisms, Lemma 44.7) it
follows that W is open. �

The following technical lemma produces “almost” invariant functions in the situation of
a finite groupoid on a quasi-affine scheme.

Lemma 14.7. Let (U,R, s, t, c) be a groupoid scheme with s, t finite and of finite
presentation. Let u1, . . . , um ∈ U be points whose R-orbits consist of generic points of
irreducible components of U . Let j : U → Spec(A) be an immersion. Let I ⊂ A be an
ideal such that j(U)∩V (I) = ∅ and V (I)∪ j(U) is closed in Spec(A). Then there exists
an h ∈ I such that j−1D(h) is an R-invariant affine open subscheme of U containing
u1, . . . , um.

Proof. Let u1, . . . , um ∈ V ′ ⊂ V ⊂ U be as in Lemma 14.4. Since U \ V is closed
in U , j an immersion, and V (I) ∪ j(U) is closed in Spec(A), we can find an ideal J ⊂ I
such that V (J) = V (I) ∪ j(U \ V ). For example we can take the ideal of elements of I
which vanish on j(U \ V ). Thus we can replace (U,R, s, t, c), j : U → Spec(A), and I
by (V ′, R′, s′, t′, c′), j|V ′ : V ′ → Spec(A), and J . In other words, we may assume that U
is affine and that s and t are finite locally free. Take any f ∈ I which does not vanish at
all the points in the R-orbits of u1, . . . , um (Algebra, Lemma 15.2). Consider

g = Norms(t](j](f))) ∈ Γ(U,OU )

Since f ∈ I and since V (I) ∪ j(U) is closed we see that U ∩ D(f) → D(f) is a closed
immersion. Hence fng is the image of an element h ∈ I for some n > 0. We claim
that h works. Namely, we have seen in Groupoids, Lemma 23.2 that g is an R-invariant
function, hence D(g) ⊂ U is R-invariant. Since f does not vanish on the orbit of uj ,
the function g does not vanish at uj . Moreover, we have V (g) ⊃ V (j](f)) and hence
j−1D(h) = D(g). �

Lemma 14.8. Let (U,R, s, t, c) be a groupoid scheme. If s, t are finite, and u, u′ ∈ R
are distinct points in the same orbit, then u′ is not a specialization of u.

Proof. Let r ∈ R with s(r) = u and t(r) = u′. If u  u′ then we can find a
nontrivial specialization r  r′ with s(r′) = u′, see Schemes, Lemma 19.8. Set u′′ =
t(r′). Note that u′′ 6= u′ as there are no specializations in the fibres of a finite morphism.
Hence we can continue and find a nontrivial specialization r′  r′′ with s(r′′) = u′′,
etc. This shows that the orbit of u contains an infinite sequence u  u′  u′′  . . . of
specializations which is nonsense as the orbit t(s−1({u})) is finite. �
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Lemma 14.9. Let j : V → Spec(A) be a quasi-compact immersion of schemes. Let
f ∈ A be such that j−1D(f) is affine and j(V ) ∩ V (f) is closed. Then V is affine.

Proof. This follows from Morphisms, Lemma 11.14 but we will also give a direct
proof. Let A′ = Γ(V,OV ). Then j′ : V → Spec(A′) is a quasi-compact open immersion,
see Properties, Lemma 18.4. Let f ′ ∈ A′ be the image of f . Then (j′)−1D(f ′) = j−1D(f)
is affine. On the other hand, j′(V )∩V (f ′) is a subscheme of Spec(A′) which maps isomor-
phically to the closed subscheme j(V )∩V (f) of Spec(A). Hence it is closed in Spec(A′)
for example by Schemes, Lemma 21.11. Thus we may replace A by A′ and assume that j is
an open immersion and A = Γ(V,OV ).

In this case we claim that j(V ) = Spec(A) which finishes the proof. If not, then we can
find a principal affine open D(g) ⊂ Spec(A) which meets the complement and avoids
the closed subset j(V ) ∩ V (f). Note that j maps j−1D(f) isomorphically onto D(f),
see Properties, Lemma 18.3. Hence D(g) meets V (f). On the other hand, j−1D(g) is
a principal open of the affine open j−1D(f) hence affine. Hence by Properties, Lemma
18.3 again we see that D(g) is isomorphic to j−1D(g) ⊂ j−1D(f) which implies that
D(g) ⊂ D(f). This contradiction finishes the proof. �

Lemma 14.10. Let (U,R, s, t, c) be a groupoid scheme. Let u ∈ U . Assume
(1) s, t are finite morphisms,
(2) U is separated and locally Noetherian,
(3) dim(OU,u′) ≤ 1 for every point u′ in the orbit of u.

Then u is contained in an R-invariant affine open of U .

Proof. TheR-orbit of u is finite. By conditions (2) and (3) it is contained in an affine
openU ′ ofU , see Varieties, Proposition 42.7. Then t(s−1(U \U ′)) is anR-invariant closed
subset of U which does not contain u. Thus U \ t(s−1(U \U ′)) is anR-invariant open of
U ′ containing u. Replacing U by this open we may assume U is quasi-affine.

By Lemma 14.6 we may replace U by its reduction and assume U is reduced. This means
R-invariant subschemes W ′ ⊂ W ⊂ U of Lemma 14.2 are equal W ′ = W . As U =
t(s−1(W )) some point u′ of theR-orbit of u is contained inW and by Lemma 14.6 we may
replace U byW and u by u′. Hence we may assume there is a dense openR-invariant sub-
schemeW ⊂ U such that the morphisms sW , tW of the restriction (W,RW , sW , tW , cW )
are finite locally free.

If u ∈ W then we are done by Groupoids, Lemma 24.1 (because W is quasi-affine so any
finite set of points of W is contained in an affine open, see Properties, Lemma 29.5). Thus
we assume u 6∈ W and hence none of the points of the orbit of u is in W . Let ξ ∈ U be
a point with a nontrivial specialization to a point u′ in the orbit of u. Since there are no
specializations among the points in the orbit of u (Lemma 14.8) we see that ξ is not in the
orbit. By assumption (3) we see that ξ is a generic point of U and hence ξ ∈ W . As U is
Noetherian there are finitely many of these points ξ1, . . . , ξm ∈ W . Because sW , tW are
flat the orbit of each ξj consists of generic points of irreducible components of W (and
hence U ).

Let j : U → Spec(A) be an immersion of U into an affine scheme (this is possible as U is
quasi-affine). Let J ⊂ A be an ideal such thatV (J)∩j(W ) = ∅ andV (J)∪j(W ) is closed.
Apply Lemma 14.7 to the groupoid scheme (W,RW , sW , tW , cW ), the morphism j|W :
W → Spec(A), the points ξj , and the ideal J to find an f ∈ J such that (j|W )−1D(f) is
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an RW -invariant affine open containing ξj for all j. Since f ∈ J we see that j−1D(f) ⊂
W , i.e., j−1D(f) is an R-invariant affine open of U contained in W containing all ξj .

Let Z be the reduced induced closed subscheme structure on

U \ j−1D(f) = j−1V (f).

ThenZ is set theoreticallyR-invariant (but it may not be scheme theoreticallyR-invariant).
Let (Z,RZ , sZ , tZ , cZ) be the restriction of R to Z. Since Z → U is finite, it follows that
sZ and tZ are finite. Since u ∈ Z the orbit of u is in Z and agrees with the RZ -orbit of
u viewed as a point of Z. Since dim(OU,u′) ≤ 1 and since ξj 6∈ Z for all j , we see that
dim(OZ,u′) ≤ 0 for all u′ in the orbit of u. In other words, the RZ -orbit of u consists of
generic points of irreducible components of Z.

Let I ⊂ A be an ideal such that V (I) ∩ j(U) = ∅ and V (I) ∪ j(U) is closed. Apply
Lemma 14.7 to the groupoid scheme (Z,RZ , sZ , tZ , cZ), the restriction j|Z , the ideal I ,
and the point u ∈ Z to obtain h ∈ I such that j−1D(h) ∩ Z is an RZ -invariant open
affine containing u.

Consider the RW -invariant (Groupoids, Lemma 23.2) function

g = NormsW (t]W (j](h)|W )) ∈ Γ(W,OW )

(In the following we only need the restriction of g to j−1D(f) and in this case the norm
is along a finite locally free morphism of affines.) We claim that

V = (Wg ∩ j−1D(f)) ∪ (j−1D(h) ∩ Z)

is anR-invariant affine open ofU which finishes the proof of the lemma. It is set theoreti-
callyR-invariant by construction. As V is a constuctible set, to see that it is open it suffices
to show it is closed under generalization inU (Topology, Lemma 19.10 or the more general
Topology, Lemma 23.6). Since Wg ∩ j−1D(f) is open in U , it suffices to consider a spe-
cialization u1  u2 of U with u2 ∈ j−1D(h)∩Z. This means that h is nonzero in j(u2)
and u2 ∈ Z. If u1 ∈ Z , then j(u1) j(u2) and since h is nonzero in j(u2) it is nonzero
in j(u1) which implies u1 ∈ V . If u1 6∈ Z and also not in Wg ∩ j−1D(f), then u1 ∈ W ,
u1 6∈Wg because the complement of Z = j−1V (f) is contained inW ∩ j−1D(f). Hence
there exists a point r1 ∈ R with s(r1) = u1 such that h is zero in t(r1). Since s is finite
we can find a specialization r1  r2 with s(r2) = u2. However, then we conclude that h
is zero in u′

2 = t(r2) which contradicts the fact that j−1D(h) ∩ Z is R-invariant and u2
is in it. Thus V is open.

Observe that V ⊂ j−1D(h) for our function h ∈ I . Thus we obtain an immersion

j′ : V −→ Spec(Ah)

Let f ′ ∈ Ah be the image of f . Then (j′)−1D(f ′) is the principal open determined by g
in the affine open j−1D(f) of U . Hence (j′)−1D(f) is affine. Finally, j′(V ) ∩ V (f ′) =
j′(j−1D(h) ∩ Z) is closed in Spec(Ah/(f ′)) = Spec((A/f)h) = D(h) ∩ V (f) by our
choice of h ∈ I and the ideal I . Hence we can apply Lemma 14.9 to conclude that V is
affine as claimed above. �

15. Descending ind-quasi-affine morphisms

Ind-quasi-affine morphisms were defined in More on Morphisms, Section 66. This section
is the analogue of Descent, Section 38 for ind-quasi-affine-morphisms.
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Let X be a quasi-separated scheme. Let E ⊂ X be a subset which is an intersection of a
nonempty family of quasi-compact opens of X . Say E =

⋂
i∈I Ui with Ui ⊂ X quasi-

compact open and I nonempty. By adding finite intersections we may assume that for
i, j ∈ I there exists a k ∈ I with Uk ⊂ Ui ∩ Uj . In this situation we have

(15.0.1) Γ(E,F|E) = colim Γ(Ui,F|Ui)

for any sheaf F defined on X . Namely, fix i0 ∈ I and replace X by Ui0 and I by {i ∈
I | Ui ⊂ Ui0}. Then X is quasi-compact and quasi-separated, hence a spectral space, see
Properties, Lemma 2.4. Then we see the equality holds by Topology, Lemma 24.7 and
Sheaves, Lemma 29.4. (In fact, the formula holds for higher cohomology groups as well if
F is abelian, see Cohomology, Lemma 19.2.)

Lemma 15.1. LetX be an ind-quasi-affine scheme. LetE ⊂ X be an intersection of a
nonempty family of quasi-compact opens of X . SetA = Γ(E,OX |E) and Y = Spec(A).
Then the canonical morphism

j : (E,OX |E) −→ (Y,OY )

of Schemes, Lemma 6.4 determines an isomorphism (E,OX |E) → (E′,OY |E′) where
E′ ⊂ Y is an intersection of quasi-compact opens. If W ⊂ E is open in X , then j(W ) is
open in Y .

Proof. Note that (E,OX |E) is a locally ringed space so that Schemes, Lemma 6.4
applies toA→ Γ(E,OX |E). WriteE =

⋂
i∈I Ui with I 6= ∅ and Ui ⊂ X quasi-compact

open. We may and do assume that for i, j ∈ I there exists a k ∈ I with Uk ⊂ Ui ∩ Uj .
Set Ai = Γ(Ui,OUi). We obtain commutative diagrams

(E,OX |E) //

��

(Spec(A),OSpec(A))

��
(Ui,OUi) // (Spec(Ai),OSpec(Ai))

Since Ui is quasi-affine, we see that Ui → Spec(Ai) is a quasi-compact open immersion.
On the other hand A = colimAi. Hence Spec(A) = lim Spec(Ai) as topological spaces
(Limits, Lemma 4.6). Since E = limUi (by Topology, Lemma 24.7) we see that E →
Spec(A) is a homeomorphism onto its image E′ and that E′ is the intersection of the
inverse images of the opens Ui ⊂ Spec(Ai) in Spec(A). For any e ∈ E the local ring
OX,e is the value ofOUi,e which is the same as the value on Spec(A).

To prove the final assertion of the lemma we argue as follows. Pick i, j ∈ I with Ui ⊂ Uj .
Consider the following commutative diagrams

Ui //

��

Spec(Ai)

��
Ui // Spec(Aj)

W //

��

Spec(Ai)

��
W // Spec(Aj)

W //

��

Spec(A)

��
W // Spec(Aj)

By Properties, Lemma 18.5 the first diagram is cartesian. Hence the second is cartesian as
well. Passing to the limit we find that the third diagram is cartesian, so the top horizontal
arrow of this diagram is an open immersion. �
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Lemma 15.2. Suppose given a cartesian diagram

X

f

��

// Spec(B)

��
Y // Spec(A)

of schemes. Let E ⊂ Y be an intersection of a nonempty family of quasi-compact opens
of Y . Then

Γ(f−1(E),OX |f−1(E)) = Γ(E,OY |E)⊗A B
provided Y is quasi-separated and A→ B is flat.

Proof. Write E =
⋂
i∈I Vi with Vi ⊂ Y quasi-compact open. We may and do

assume that for i, j ∈ I there exists a k ∈ I with Vk ⊂ Vi ∩ Vj . Then we have similarly
that f−1(E) =

⋂
i∈I f

−1(Vi) in X . Thus the result follows from equation (15.0.1) and
the corresponding result for Vi and f−1(Vi) which is Cohomology of Schemes, Lemma
5.2. �

Lemma 15.3 (Gabber). Let S be a scheme. Let {Xi → S}i∈I be an fpqc covering. Let
(Vi/Xi, ϕij) be a descent datum relative to {Xi → S}, see Descent, Definition 34.3. If
each morphism Vi → Xi is ind-quasi-affine, then the descent datum is effective.

Proof. Being ind-quasi-affine is a property of morphisms of schemes which is pre-
served under any base change, see More on Morphisms, Lemma 66.6. Hence Descent,
Lemma 36.2 applies and it suffices to prove the statement of the lemma in case the fpqc-
covering is given by a single {X → S} flat surjective morphism of affines. Say X =
Spec(A) and S = Spec(R) so that R → A is a faithfully flat ring map. Let (V, ϕ) be a
descent datum relative to X over S and assume that V → X is ind-quasi-affine, in other
words, V is ind-quasi-affine.

Let (U,R, s, t, c) be the groupoid scheme over S withU = X andR = X×SX and s, t, c
as usual. By Groupoids, Lemma 21.3 the pair (V, ϕ) corresponds to a cartesian morphism
(U ′, R′, s′, t′, c′) → (U,R, s, t, c) of groupoid schemes. Let u′ ∈ U ′ be any point. By
Groupoids, Lemmas 19.2, 19.3, and 19.4 we can choose u′ ∈ W ⊂ E ⊂ U ′ where W
is open and R′-invariant, and E is set-theoretically R′-invariant and an intersection of a
nonempty family of quasi-compact opens.

Translating back to (V, ϕ), for any v ∈ V we can find v ∈W ⊂ E ⊂ V with the following
properties: (a)W is open and ϕ(W ×SX) = X×SW and (b)E an intersection of quasi-
compact opens and ϕ(E ×S X) = X ×S E set-theoretically. Here we use the notation
E ×S X to mean the inverse image of E in V ×S X by the projection morphism and
similarly for X ×S E. By Lemma 15.2 this implies that ϕ defines an isomorphism

Γ(E,OV |E)⊗R A = Γ(E ×S X,OV×SX |E×SX)
→ Γ(X ×S E,OX×SV |X×SE)
= A⊗R Γ(E,OV |E)

of A ⊗R A-algebras which we will call ψ. The cocycle condition for ϕ translates into
the cocycle condition for ψ as in Descent, Definition 3.1 (details omitted). By Descent,
Proposition 3.9 we find anR-algebraR′ and an isomorphism χ : R′⊗RA→ Γ(E,OV |E)
of A-algebras, compatible with ψ and the canonical descent datum on R′ ⊗R A.
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By Lemma 15.1 we obtain a canonical “embedding”
j : (E,OV |E) −→ Spec(Γ(E,OV |E)) = Spec(R′ ⊗R A)

of locally ringed spaces. The construction of this map is canonical and we get a commu-
tative diagram

E ×S X ϕ
//

xx

j′

))

X ×S E

&&

j′′

uu
E

j

%%

Spec(R′ ⊗R A⊗R A)

uu ))

E

j

yy
Spec(R′ ⊗R A)

))

Spec(R′ ⊗R A)

uu
Spec(R′)

where j′ and j′′ come from the same construction applied to E ×S X ⊂ V ×S X and
X×SE ⊂ X×S V via χ and the identifications used to constructψ. It follows that j(W )
is an open subscheme of Spec(R′ ⊗R A) whose inverse image under the two projections
Spec(R′ ⊗R A⊗R A)→ Spec(R′ ⊗R A) are equal. By Descent, Lemma 13.6 we find an
openW0 ⊂ Spec(R′) whose base change to Spec(A) is j(W ). Contemplating the diagram
above we see that the descent datum (W,ϕ|W×SX) is effective. By Descent, Lemma 35.13
we see that our descent datum is effective. �
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CHAPTER 41

Étale Morphisms of Schemes

1. Introduction

In this Chapter, we discuss étale morphisms of schemes. We illustrate some of the more
important concepts by working with the Noetherian case. Our principal goal is to collect
for the reader enough commutative algebra results to start reading a treatise on étale co-
homology. An auxiliary goal is to provide enough evidence to ensure that the reader stops
calling the phrase “the étale topology of schemes” an exercise in general nonsense, if (s)he
does indulge in such blasphemy.

We will refer to the other chapters of the Stacks project for standard results in algebraic
geometry (on schemes and commutative algebra). We will provide detailed proofs of the
new results that we state here.

2. Conventions

In this chapter, frequently schemes will be assumed locally Noetherian and frequently
rings will be assumed Noetherian. But in all the statements we will reiterate this when
necessary, and make sure we list all the hypotheses! On the other hand, here are some
general facts that we will use often and are useful to keep in mind:

(1) A ring homomorphism A → B of finite type with A Noetherian is of finite
presentation. See Algebra, Lemma 31.4.

(2) A morphism (locally) of finite type between locally Noetherian schemes is auto-
matically (locally) of finite presentation. See Morphisms, Lemma 21.9.

(3) Add more like this here.

3. Unramified morphisms

We first define “unramified homomorphisms of local rings” for Noetherian local rings. We
cannot use the term “unramified” as there already is a notion of an unramified ring map
(Algebra, Section 151) and it is different. After discussing the notion a bit we globalize it
to describe unramified morphisms of locally Noetherian schemes.

Definition 3.1. LetA,B be Noetherian local rings. A local homomorphismA→ B
is said to be unramified homomorphism of local rings if

(1) mAB = mB ,
(2) κ(mB) is a finite separable extension of κ(mA), and
(3) B is essentially of finite type over A (this means that B is the localization of a

finite type A-algebra at a prime).

This is the local version of the definition in Algebra, Section 151. In that section a ring
map R → S is defined to be unramified if and only if it is of finite type, and ΩS/R = 0.
We say R → S is unramified at a prime q ⊂ S if there exists a g ∈ S , g 6∈ q such that

3567
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R → Sg is an unramified ring map. It is shown in Algebra, Lemmas 151.5 and 151.7 that
given a ring mapR→ S of finite type, and a prime q of S lying over p ⊂ R, then we have

R→ S is unramified at q⇔ pSq = qSq and κ(p) ⊂ κ(q) finite separable

Thus we see that for a local homomorphism of local rings the properties of our definition
above are closely related to the question of being unramified. In fact, we have proved the
following lemma.

Lemma 3.2. Let A→ B be of finite type with A a Noetherian ring. Let q be a prime
of B lying over p ⊂ A. Then A → B is unramified at q if and only if Ap → Bq is an
unramified homomorphism of local rings.

Proof. See discussion above. �

We will characterize the property of being unramified in terms of completions. For a
Noetherian local ring A we denote A∧ the completion of A with respect to the maximal
ideal. It is also a Noetherian local ring, see Algebra, Lemma 97.6.

Lemma 3.3. Let A, B be Noetherian local rings. Let A → B be a local homomor-
phism.

(1) ifA→ B is an unramified homomorphism of local rings, thenB∧ is a finiteA∧

module,
(2) if A→ B is an unramified homomorphism of local rings and κ(mA) = κ(mB),

then A∧ → B∧ is surjective,
(3) ifA→ B is an unramified homomorphism of local rings and κ(mA) is separably

closed, then A∧ → B∧ is surjective,
(4) if A and B are complete discrete valuation rings, then A → B is an unramified

homomorphism of local rings if and only if the uniformizer for A maps to a
uniformizer for B, and the residue field extension is finite separable (and B is
essentially of finite type over A).

Proof. Part (1) is a special case of Algebra, Lemma 97.7. For part (2), note that the
κ(mA)-vector space B∧/mA∧B∧ is generated by 1. Hence by Nakayama’s lemma (Alge-
bra, Lemma 20.1) the mapA∧ → B∧ is surjective. Part (3) is a special case of part (2). Part
(4) is immediate from the definitions. �

Lemma 3.4. LetA,B be Noetherian local rings. LetA→ B be a local homomorphism
such that B is essentially of finite type over A. The following are equivalent

(1) A→ B is an unramified homomorphism of local rings
(2) A∧ → B∧ is an unramified homomorphism of local rings, and
(3) A∧ → B∧ is unramified.

Proof. The equivalence of (1) and (2) follows from the fact that mAA∧ is the max-
imal ideal of A∧ (and similarly for B) and faithful flatness of B → B∧. For example if
A∧ → B∧ is unramified, then mAB

∧ = (mAB)B∧ = mBB
∧ and hence mAB = mB .

Assume the equivalent conditions (1) and (2). By Lemma 3.3 we see that A∧ → B∧ is
finite. HenceA∧ → B∧ is of finite presentation, and by Algebra, Lemma 151.7 we conclude
that A∧ → B∧ is unramified at mB∧ . Since B∧ is local we conclude that A∧ → B∧ is
unramified.

Assume (3). By Algebra, Lemma 151.5 we conclude that A∧ → B∧ is an unramified ho-
momorphism of local rings, i.e., (2) holds. �
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Definition 3.5. (See Morphisms, Definition 35.1 for the definition in the general
case.) Let Y be a locally Noetherian scheme. Let f : X → Y be locally of finite type. Let
x ∈ X .

(1) We say f is unramified at x ifOY,f(x) → OX,x is an unramified homomorphism
of local rings.

(2) The morphism f : X → Y is said to be unramified if it is unramified at all points
of X .

Let us prove that this definition agrees with the definition in the chapter on morphisms
of schemes. This in particular guarantees that the set of points where a morphism is un-
ramified is open.

Lemma 3.6. Let Y be a locally Noetherian scheme. Let f : X → Y be locally of
finite type. Let x ∈ X . The morphism f is unramified at x in the sense of Definition 3.5
if and only if it is unramified in the sense of Morphisms, Definition 35.1.

Proof. This follows from Lemma 3.2 and the definitions. �

Here are some results on unramified morphisms. The formulations as given in this list
apply only to morphisms locally of finite type between locally Noetherian schemes. In
each case we give a reference to the general result as proved earlier in the project, but in
some cases one can prove the result more easily in the Noetherian case. Here is the list:

(1) Unramifiedness is local on the source and the target in the Zariski topology.
(2) Unramified morphisms are stable under base change and composition. See Mor-

phisms, Lemmas 35.5 and 35.4.
(3) Unramified morphisms of schemes are locally quasi-finite and quasi-compact un-

ramified morphisms are quasi-finite. See Morphisms, Lemma 35.10
(4) Unramified morphisms have relative dimension 0. See Morphisms, Definition

29.1 and Morphisms, Lemma 29.5.
(5) A morphism is unramified if and only if all its fibres are unramified. That is,

unramifiedness can be checked on the scheme theoretic fibres. See Morphisms,
Lemma 35.12.

(6) Let X and Y be unramified over a base scheme S. Any S-morphism from X to
Y is unramified. See Morphisms, Lemma 35.16.

4. Three other characterizations of unramified morphisms

The following theorem gives three equivalent notions of being unramified at a point. See
Morphisms, Lemma 35.14 for (part of) the statement for general schemes.

Theorem 4.1. Let Y be a locally Noetherian scheme. Let f : X → Y be a mor-
phism of schemes which is locally of finite type. Let x be a point of X . The following are
equivalent

(1) f is unramified at x,
(2) the stalk ΩX/Y,x of the module of relative differentials at x is trivial,
(3) there exist open neighbourhoods U of x and V of f(x), and a commutative dia-

gram
U

i
//

��

An
V

~~
V
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where i is a closed immersion defined by a quasi-coherent sheaf of ideals I such
that the differentials dg for g ∈ Ii(x) generate ΩAn

V
/V,i(x), and

(4) the diagonal ∆X/Y : X → X ×Y X is a local isomorphism at x.

Proof. The equivalence of (1) and (2) is proved in Morphisms, Lemma 35.14.

If f is unramified at x, then f is unramified in an open neighbourhood of x; this does not
follow immediately from Definition 3.5 of this chapter but it does follow from Morphisms,
Definition 35.1 which we proved to be equivalent in Lemma 3.6. Choose affine opens
V ⊂ Y , U ⊂ X with f(U) ⊂ V and x ∈ U , such that f is unramified on U , i.e.,
f |U : U → V is unramified. By Morphisms, Lemma 35.13 the morphism U → U ×V U is
an open immersion. This proves that (1) implies (4).

If ∆X/Y is a local isomorphism at x, then ΩX/Y,x = 0 by Morphisms, Lemma 32.7. Hence
we see that (4) implies (2). At this point we know that (1), (2) and (4) are all equivalent.

Assume (3). The assumption on the diagram combined with Morphisms, Lemma 32.15
show that ΩU/V,x = 0. Since ΩU/V,x = ΩX/Y,x we conclude (2) holds.

Finally, assume that (2) holds. To prove (3) we may localize on X and Y and assume that
X and Y are affine. Say X = Spec(B) and Y = Spec(A). The point x ∈ X corresponds
to a prime q ⊂ B. Our assumption is that ΩB/A,q = 0 (see Morphisms, Lemma 32.5 for
the relationship between differentials on schemes and modules of differentials in commu-
tative algebra). Since Y is locally Noetherian and f locally of finite type we see that A
is Noetherian and B ∼= A[x1, . . . , xn]/(f1, . . . , fm), see Properties, Lemma 5.2 and Mor-
phisms, Lemma 15.2. In particular, ΩB/A is a finite B-module. Hence we can find a single
g ∈ B, g 6∈ q such that the principal localization (ΩB/A)g is zero. Hence after replacing
B by Bg we see that ΩB/A = 0 (formation of modules of differentials commutes with
localization, see Algebra, Lemma 131.8). This means that d(fj) generate the kernel of the
canonical map ΩA[x1,...,xn]/A⊗A B → ΩB/A. Thus the surjectionA[x1, . . . , xn]→ B of
A-algebras gives the commutative diagram of (3), and the theorem is proved. �

How can we use this theorem? Well, here are a few remarks:

(1) Suppose that f : X → Y and g : Y → Z are two morphisms locally of fi-
nite type between locally Noetherian schemes. There is a canonical short exact
sequence

f∗(ΩY/Z)→ ΩX/Z → ΩX/Y → 0

see Morphisms, Lemma 32.9. The theorem therefore implies that if g ◦ f is un-
ramified, then so is f . This is Morphisms, Lemma 35.16.

(2) Since ΩX/Y is isomorphic to the conormal sheaf of the diagonal morphism (Mor-
phisms, Lemma 32.7) we see that if X → Y is a monomorphism of locally Noe-
therian schemes and locally of finite type, thenX → Y is unramified. In partic-
ular, open and closed immersions of locally Noetherian schemes are unramified.
See Morphisms, Lemmas 35.7 and 35.8.

(3) The theorem also implies that the set of points where a morphism f : X → Y
(locally of finite type of locally Noetherian schemes) is not unramified is the
support of the coherent sheaf ΩX/Y . This allows one to give a scheme theoretic
definition to the “ramification locus”.
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5. The functorial characterization of unramified morphisms

In basic algebraic geometry we learn that some classes of morphisms can be characterized
functorially, and that such descriptions are quite useful. Unramified morphisms too have
such a characterization.

Theorem 5.1. Let f : X → S be a morphism of schemes. Assume S is a locally
Noetherian scheme, and f is locally of finite type. Then the following are equivalent:

(1) f is unramified,
(2) the morphism f is formally unramified: for any affine S-scheme T and sub-

scheme T0 of T defined by a square-zero ideal, the natural map

HomS(T,X) −→ HomS(T0, X)
is injective.

Proof. See More on Morphisms, Lemma 6.8 for a more general statement and proof.
What follows is a sketch of the proof in the current case.

Firstly, one checks both properties are local on the source and the target. This we may
assume that S andX are affine. SayX = Spec(B) and S = Spec(R). Say T = Spec(C).
Let J be the square-zero ideal of C with T0 = Spec(C/J). Assume that we are given the
diagram

B

φ

��

φ̄

!!
R //

??

C // C/J

Secondly, one checks that the association φ′ 7→ φ′ − φ gives a bijection between the set of
liftings of φ̄ and the module DerR(B, J). Thus, we obtain the implication (1)⇒ (2) via the
description of unramified morphisms having trivial module of differentials, see Theorem
4.1.

To obtain the reverse implication, consider the surjection q : C = (B ⊗R B)/I2 → B =
C/J defined by the square zero ideal J = I/I2 where I is the kernel of the multiplication
map B ⊗R B → B. We already have a lifting B → C defined by, say, b 7→ b ⊗ 1. Thus,
by the same reasoning as above, we obtain a bijective correspondence between liftings of
id : B → C/J and DerR(B, J). The hypothesis therefore implies that the latter module
is trivial. But we know that J ∼= ΩB/R. Thus, B/R is unramified. �

6. Topological properties of unramified morphisms

The first topological result that will be of utility to us is one which says that unramified
and separated morphisms have “nice” sections. The material in this section does not require
any Noetherian hypotheses.

Proposition 6.1. Sections of unramified morphisms.
(1) Any section of an unramified morphism is an open immersion.
(2) Any section of a separated morphism is a closed immersion.
(3) Any section of an unramified separated morphism is open and closed.

Proof. Fix a base scheme S. If f : X ′ → X is any S-morphism, then the graph
Γf : X ′ → X ′×SX is obtained as the base change of the diagonal ∆X/S : X → X×SX
via the projection X ′ ×S X → X ×S X . If g : X → S is separated (resp. unramified)
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then the diagonal is a closed immersion (resp. open immersion) by Schemes, Definition
21.3 (resp. Morphisms, Lemma 35.13). Hence so is the graph as a base change (by Schemes,
Lemma 18.2). In the special case X ′ = S , we obtain (1), resp. (2). Part (3) follows on
combining (1) and (2). �

We can now explicitly describe the sections of unramified morphisms.

Theorem 6.2. Let Y be a connected scheme. Let f : X → Y be unramified and
separated. Every section of f is an isomorphism onto a connected component. There
exists a bijective correspondence

sections of f ↔
{

connected components X ′ of X such that
the induced map X ′ → Y is an isomorphism

}
In particular, given x ∈ X there is at most one section passing through x.

Proof. Direct from Proposition 6.1 part (3). �

The preceding theorem gives us some idea of the “rigidity” of unramified morphisms. Fur-
ther indication is provided by the following proposition which, besides being intrinsically
interesting, is also useful in the theory of the algebraic fundamental group (see [?, Exposé
V]). See also the more general Morphisms, Lemma 35.17.

Proposition 6.3. Let S is be a scheme. Let π : X → S be unramified and separated.
Let Y be an S-scheme and y ∈ Y a point. Let f, g : Y → X be two S-morphisms. Assume

(1) Y is connected
(2) x = f(y) = g(y), and
(3) the induced maps f ], g] : κ(x)→ κ(y) on residue fields are equal.

Then f = g.

Proof. The maps f, g : Y → X define maps f ′, g′ : Y → XY = Y ×S X which
are sections of the structure map XY → Y . Note that f = g if and only if f ′ = g′. The
structure map XY → Y is the base change of π and hence unramified and separated also
(see Morphisms, Lemmas 35.5 and Schemes, Lemma 21.12). Thus according to Theorem 6.2
it suffices to prove that f ′ and g′ pass through the same point of XY . And this is exactly
what the hypotheses (2) and (3) guarantee, namely f ′(y) = g′(y) ∈ XY . �

Lemma 6.4. LetS be a Noetherian scheme. LetX → S be a quasi-compact unramified
morphism. Let Y → S be a morphism with Y Noetherian. Then MorS(Y,X) is a finite
set.

Proof. Assume first X → S is separated (which is often the case in practice). Since
Y is Noetherian it has finitely many connected components. Thus we may assume Y is
connected. Choose a point y ∈ Y with image s ∈ S. Since X → S is unramified and
quasi-compact then fibre Xs is finite, say Xs = {x1, . . . , xn} and κ(xi)/κ(s) is a finite
field extension. See Morphisms, Lemma 35.10, 20.5, and 20.10. For each i there are at
most finitely many κ(s)-algebra maps κ(xi) → κ(y) (by elementary field theory). Thus
MorS(Y,X) is finite by Proposition 6.3.

General case. There exists a nonempty open U ⊂ S such that XU → U is finite (in
particular separated), see Morphisms, Lemma 51.1 (the lemma applies since we’ve already
seen above that a quasi-compact unramified morphism is quasi-finite and since X → S is
quasi-separated by Morphisms, Lemma 15.7). Let Z ⊂ S be the reduced closed subscheme
supported on the complement ofU . By Noetherian induction, we see that MorZ(YZ , XZ)
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is finite (details omitted). By the result of the first paragraph the set MorU (YU , XU ) is
finite. Thus it suffices to show that

MorS(Y,X) −→ MorZ(YZ , XZ)×MorU (YU , XU )

is injective. This follows from the fact that the set of points where two morphisms a, b :
Y → X agree is open in Y , due to the fact that ∆ : X → X×SX is open, see Morphisms,
Lemma 35.13. �

7. Universally injective, unramified morphisms

Recall that a morphism of schemes f : X → Y is universally injective if any base change
of f is injective (on underlying topological spaces), see Morphisms, Definition 10.1. Uni-
versally injective and unramified morphisms can be characterized as follows.

Lemma 7.1. Let f : X → S be a morphism of schemes. The following are equivalent:
(1) f is unramified and a monomorphism,
(2) f is unramified and universally injective,
(3) f is locally of finite type and a monomorphism,
(4) f is universally injective, locally of finite type, and formally unramified,
(5) f is locally of finite type and Xs is either empty or Xs → s is an isomorphism

for all s ∈ S.

Proof. We have seen in More on Morphisms, Lemma 6.8 that being formally unrami-
fied and locally of finite type is the same thing as being unramified. Hence (4) is equivalent
to (2). A monomorphism is certainly universally injective and formally unramified hence
(3) implies (4). It is clear that (1) implies (3). Finally, if (2) holds, then ∆ : X → X ×S X
is both an open immersion (Morphisms, Lemma 35.13) and surjective (Morphisms, Lemma
10.2) hence an isomorphism, i.e., f is a monomorphism. In this way we see that (2) implies
(1).

Condition (3) implies (5) because monomorphisms are preserved under base change (Schemes,
Lemma 23.5) and because of the description of monomorphisms towards the spectra of
fields in Schemes, Lemma 23.11. Condition (5) implies (4) by Morphisms, Lemmas 10.2
and 35.12. �

This leads to the following useful characterization of closed immersions.

Lemma 7.2. Let f : X → S be a morphism of schemes. The following are equivalent:
(1) f is a closed immersion,
(2) f is a proper monomorphism,
(3) f is proper, unramified, and universally injective,
(4) f is universally closed, unramified, and a monomorphism,
(5) f is universally closed, unramified, and universally injective,
(6) f is universally closed, locally of finite type, and a monomorphism,
(7) f is universally closed, universally injective, locally of finite type, and formally

unramified.

Proof. The equivalence of (4) – (7) follows immediately from Lemma 7.1.

Let f : X → S satisfy (6). Then f is separated, see Schemes, Lemma 23.3 and has finite
fibres. Hence More on Morphisms, Lemma 44.1 shows f is finite. Then Morphisms, Lemma
44.15 implies f is a closed immersion, i.e., (1) holds.
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Note that (1) ⇒ (2) because a closed immersion is proper and a monomorphism (Mor-
phisms, Lemma 41.6 and Schemes, Lemma 23.8). By Lemma 7.1 we see that (2) implies (3).
It is clear that (3) implies (5). �

Here is another result of a similar flavor.
Lemma 7.3. Let π : X → S be a morphism of schemes. Let s ∈ S. Assume that

(1) π is finite,
(2) π is unramified,
(3) π−1({s}) = {x}, and
(4) κ(s) ⊂ κ(x) is purely inseparable1.

Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U) → U is a
closed immersion.

Proof. The question is local on S. Hence we may assume that S = Spec(A). By
definition of a finite morphism this implies X = Spec(B). Note that the ring map ϕ :
A→ B defining π is a finite unramified ring map. Let p ⊂ A be the prime corresponding
to s. Let q ⊂ B be the prime corresponding to x. Conditions (2), (3) and (4) imply
that Bq/pBq = κ(p). By Algebra, Lemma 41.11 we have Bq = Bp (note that a finite
ring map satisfies going up, see Algebra, Section 41.) Hence we see that Bp/pBp = κ(p).
As B is a finite A-module we see from Nakayama’s lemma (see Algebra, Lemma 20.1) that
Bp = ϕ(Ap). Hence (using the finiteness ofB as anA-module again) there exists a f ∈ A,
f 6∈ p such that Bf = ϕ(Af ) as desired. �

The topological results presented above will be used to give a functorial characterization
of étale morphisms similar to Theorem 5.1.

8. Examples of unramified morphisms

Here are a few examples.
Example 8.1. Let k be a field. Unramified quasi-compact morphisms X → Spec(k)

are affine. This is true because X has dimension 0 and is Noetherian, hence is a finite
discrete set, and each point gives an affine open, so X is a finite disjoint union of affines
hence affine. Noether normalization forces X to be the spectrum of a finite k-algebra A.
This algebra is a product of finite separable field extensions of k. Thus, an unramified
quasi-compact morphism to Spec(k) corresponds to a finite number of finite separable
field extensions of k. In particular, an unramified morphism with a connected source and
a one point target is forced to be a finite separable field extension. As we will see later,
X → Spec(k) is étale if and only if it is unramified. Thus, in this case at least, we obtain
a very easy description of the étale topology of a scheme. Of course, the cohomology of
this topology is another story.

Example 8.2. Property (3) in Theorem 4.1 gives us a canonical source of examples
for unramified morphisms. Fix a ring R and an integer n. Let I = (g1, . . . , gm) be an
ideal in R[x1, . . . , xn]. Let q ⊂ R[x1, . . . , xn] be a prime. Assume I ⊂ q and that the
matrix (

∂gi
∂xj

)
mod q ∈ Mat(n×m,κ(q))

has rank n. Then the morphism f : Z = Spec(R[x1, . . . , xn]/I) → Spec(R) is unram-
ified at the point x ∈ Z ⊂ An

R corresponding to q. Clearly we must have m ≥ n. In

1In view of condition (2) this is equivalent to κ(s) = κ(x).
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the extreme case m = n, i.e., the differential of the map An
R → An

R defined by the gi’s is
an isomorphism of the tangent spaces, then f is also flat x and, hence, is an étale map (see
Algebra, Definition 137.6, Lemma 137.7 and Example 137.8).

Example 8.3. Fix an extension of number fields L/K with rings of integersOL and
OK . The injectionK → L defines a morphism f : Spec(OL)→ Spec(OK). As discussed
above, the points where f is unramified in our sense correspond to the set of points where
f is unramified in the conventional sense. In the conventional sense, the locus of ramifi-
cation in Spec(OL) can be defined by vanishing set of the different; this is an ideal inOL.
In fact, the different is nothing but the annihilator of the module ΩOL/OK

. Similarly, the
discriminant is an ideal inOK , namely it is the norm of the different. The vanishing set of
the discriminant is precisely the set of points of K which ramify in L. Thus, denoting by
X the complement of the closed subset defined by the different in Spec(OL), we obtain a
morphismX → Spec(OK) which is unramified. Furthermore, this morphism is also flat,
as any local homomorphism of discrete valuation rings is flat, and hence this morphism is
actually étale. If L/K is finite Galois, then denoting by Y the complement of the closed
subset defined by the discriminant in Spec(OK), we see that we get even a finite étale
morphism X → Y . Thus, this is an example of a finite étale covering.

9. Flat morphisms

This section simply exists to summarize the properties of flatness that will be useful to us.
Thus, we will be content with stating the theorems precisely and giving references for the
proofs.

After briefly recalling the necessary facts about flat modules over Noetherian rings, we
state a theorem of Grothendieck which gives sufficient conditions for “hyperplane sec-
tions” of certain modules to be flat.

Definition 9.1. Flatness of modules and rings.
(1) A moduleN over a ringA is said to be flat if the functorM 7→M⊗AN is exact.
(2) If this functor is also faithful, we say that N is faithfully flat over A.
(3) A morphism of rings f : A → B is said to be flat (resp. faithfully flat) if the

functor M 7→M ⊗A B is exact (resp. faithful and exact).

Here is a list of facts with references to the algebra chapter.
(1) Free and projective modules are flat. This is clear for free modules and follows for

projective modules as they are direct summands of free modules and⊗ commutes
with direct sums.

(2) Flatness is a local property, that is, M is flat overA if and only ifMp is flat over
Ap for all p ∈ Spec(A). See Algebra, Lemma 39.18.

(3) If M is a flat A-module and A → B is a ring map, then M ⊗A B is a flat B-
module. See Algebra, Lemma 39.7.

(4) Finite flat modules over local rings are free. See Algebra, Lemma 78.5.
(5) If f : A→ B is a morphism of arbitrary rings, f is flat if and only if the induced

maps Af−1(q) → Bq are flat for all q ∈ Spec(B). See Algebra, Lemma 39.18
(6) If f : A→ B is a local homomorphism of local rings, f is flat if and only if it is

faithfully flat. See Algebra, Lemma 39.17.
(7) A map A → B of rings is faithfully flat if and only if it is flat and the induced

map on spectra is surjective. See Algebra, Lemma 39.16.
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(8) If A is a Noetherian local ring, the completion A∧ is faithfully flat over A. See
Algebra, Lemma 97.3.

(9) Let A be a Noetherian local ring and M an A-module. Then M is flat over A if
and only if M ⊗A A∧ is flat over A∧. (Combine the previous statement with
Algebra, Lemma 39.8.)

Before we move on to the geometric category, we present Grothendieck’s theorem, which
provides a convenient recipe for producing flat modules.

Theorem 9.2. Let A, B be Noetherian local rings. Let f : A → B be a local homo-
morphism. IfM is a finiteB-module that is flat as anA-module, and t ∈ mB is an element
such that multiplication by t is injective on M/mAM , then M/tM is also A-flat.

Proof. See Algebra, Lemma 99.1. See also [?, Section 20]. �

Definition 9.3. (See Morphisms, Definition 25.1). Let f : X → Y be a morphism
of schemes. Let F be a quasi-coherentOX -module.

(1) Let x ∈ X . We sayF is flat over Y at x ∈ X ifFx is a flatOY,f(x)-module. This
uses the mapOY,f(x) → OX,x to think of Fx as aOY,f(x)-module.

(2) Let x ∈ X . We say f is flat at x ∈ X ifOY,f(x) → OX,x is flat.
(3) We say f is flat if it is flat at all points of X .
(4) A morphism f : X → Y that is flat and surjective is sometimes said to be faith-

fully flat.

Once again, here is a list of results:
(1) The property (of a morphism) of being flat is, by fiat, local in the Zariski topology

on the source and the target.
(2) Open immersions are flat. (This is clear because it induces isomorphisms on local

rings.)
(3) Flat morphisms are stable under base change and composition. Morphisms, Lem-

mas 25.8 and 25.6.
(4) If f : X → Y is flat, then the pullback functor QCoh(OY ) → QCoh(OX) is

exact. This is immediate by looking at stalks.
(5) Let f : X → Y be a morphism of schemes, and assume Y is quasi-compact

and quasi-separated. In this case if the functor f∗ is exact then f is flat. (Proof
omitted. Hint: Use Properties, Lemma 22.1 to see that Y has “enough” ideal
sheaves and use the characterization of flatness in Algebra, Lemma 39.5.)

10. Topological properties of flat morphisms

We “recall” below some openness properties that flat morphisms enjoy.

Theorem 10.1. Let Y be a locally Noetherian scheme. Let f : X → Y be a morphism
which is locally of finite type. Let F be a coherent OX -module. The set of points in X
where F is flat over Y is an open set. In particular the set of points where f is flat is open
in X .

Proof. See More on Morphisms, Theorem 15.1. �

Theorem 10.2. Let Y be a locally Noetherian scheme. Let f : X → Y be a morphism
which is flat and locally of finite type. Then f is (universally) open.

Proof. See Morphisms, Lemma 25.10. �
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Theorem 10.3. A faithfully flat quasi-compact morphism is a quotient map for the
Zariski topology.

Proof. See Morphisms, Lemma 25.12. �

An important reason to study flat morphisms is that they provide the adequate framework
for capturing the notion of a family of schemes parametrized by the points of another
scheme. Naively one may think that any morphism f : X → S should be thought of as
a family parametrized by the points of S. However, without a flatness restriction on f ,
really bizarre things can happen in this so-called family. For instance, we aren’t guaranteed
that relative dimension (dimension of the fibres) is constant in a family. Other numerical
invariants, such as the Hilbert polynomial, too may change from fibre to fibre. Flatness
prevents such things from happening and, therefore, provides some “continuity” to the
fibres.

11. Étale morphisms

In this section, we will define étale morphisms and prove a number of important prop-
erties about them. The most important one, no doubt, is the functorial characterization
presented in Theorem 16.1. Following this, we will also discuss a few properties of rings
which are insensitive to an étale extension (properties which hold for a ring if and only
if they hold for all its étale extensions) to motivate the basic tenet of étale cohomology –
étale morphisms are the algebraic analogue of local isomorphisms.

As the title suggests, we will define the class of étale morphisms – the class of morphisms
(whose surjective families) we shall deem to be coverings in the category of schemes over
a base scheme S in order to define the étale site Sétale. Intuitively, an étale morphism is
supposed to capture the idea of a covering space and, therefore, should be close to a lo-
cal isomorphism. If we’re working with varieties over algebraically closed fields, this last
statement can be made into a definition provided we replace “local isomorphism” with
“formal local isomorphism” (isomorphism after completion). One can then give a defini-
tion over any base field by asking that the base change to the algebraic closure be étale (in
the aforementioned sense). But, rather than proceeding via such aesthetically displeasing
constructions, we will adopt a cleaner, albeit slightly more abstract, algebraic approach.

We first define “étale homomorphisms of local rings” for Noetherian local rings. We can-
not use the term “étale”, as there already is a notion of an étale ring map (Algebra, Section
143) and it is different.

Definition 11.1. Let A, B be Noetherian local rings. A local homomorphism f :
A → B is said to be an étale homomorphism of local rings if it is flat and an unramified
homomorphism of local rings (please see Definition 3.1).

This is the local version of the definition of an étale ring map in Algebra, Section 143. The
exact definition given in that section is that it is a smooth ring map of relative dimension 0.
It is shown (in Algebra, Lemma 143.2) that an étale R-algebra S always has a presentation

S = R[x1, . . . , xn]/(f1, . . . , fn)
such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2
. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn
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maps to an invertible element in S. The following two lemmas link the two notions.

Lemma 11.2. LetA→ B be of finite type withA a Noetherian ring. Let q be a prime
of B lying over p ⊂ A. Then A → B is étale at q if and only if Ap → Bq is an étale
homomorphism of local rings.

Proof. See Algebra, Lemmas 143.3 (flatness of étale maps), 143.5 (étale maps are un-
ramified) and 143.7 (flat and unramified maps are étale). �

Lemma 11.3. Let A, B be Noetherian local rings. Let A → B be a local homomor-
phism such that B is essentially of finite type over A. The following are equivalent

(1) A→ B is an étale homomorphism of local rings
(2) A∧ → B∧ is an étale homomorphism of local rings, and
(3) A∧ → B∧ is étale.

Moreover, in this case B∧ ∼= (A∧)⊕n as A∧-modules for some n ≥ 1.

Proof. To see the equivalences of (1), (2) and (3), as we have the corresponding results
for unramified ring maps (Lemma 3.4) it suffices to prove thatA→ B is flat if and only if
A∧ → B∧ is flat. This is clear from our lists of properties of flat maps since the ring maps
A → A∧ and B → B∧ are faithfully flat. For the final statement, by Lemma 3.3 we see
that B∧ is a finite flat A∧ module. Hence it is finite free by our list of properties on flat
modules in Section 9. �

The integer nwhich occurs in the lemma above is nothing other than the degree [κ(mB) :
κ(mA)] of the residue field extension. In particular, if κ(mA) is separably closed, we see
that A∧ → B∧ is an isomorphism, which vindicates our earlier claims.

Definition 11.4. (See Morphisms, Definition 36.1.) Let Y be a locally Noetherian
scheme. Let f : X → Y be a morphism of schemes which is locally of finite type.

(1) Let x ∈ X . We say f is étale at x ∈ X ifOY,f(x) → OX,x is an étale homomor-
phism of local rings.

(2) The morphism is said to be étale if it is étale at all its points.

Let us prove that this definition agrees with the definition in the chapter on morphisms
of schemes. This in particular guarantees that the set of points where a morphism is étale
is open.

Lemma 11.5. Let Y be a locally Noetherian scheme. Let f : X → Y be locally of
finite type. Let x ∈ X . The morphism f is étale at x in the sense of Definition 11.4 if and
only if it is étale at x in the sense of Morphisms, Definition 36.1.

Proof. This follows from Lemma 11.2 and the definitions. �

Here are some results on étale morphisms. The formulations as given in this list apply
only to morphisms locally of finite type between locally Noetherian schemes. In each case
we give a reference to the general result as proved earlier in the project, but in some cases
one can prove the result more easily in the Noetherian case. Here is the list:

(1) An étale morphism is unramified. (Clear from our definitions.)
(2) Étaleness is local on the source and the target in the Zariski topology.
(3) Étale morphisms are stable under base change and composition. See Morphisms,

Lemmas 36.4 and 36.3.
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(4) Étale morphisms of schemes are locally quasi-finite and quasi-compact étale mor-
phisms are quasi-finite. (This is true because it holds for unramified morphisms
as seen earlier.)

(5) Étale morphisms have relative dimension 0. See Morphisms, Definition 29.1 and
Morphisms, Lemma 29.5.

(6) A morphism is étale if and only if it is flat and all its fibres are étale. See Mor-
phisms, Lemma 36.8.

(7) Étale morphisms are open. This is true because an étale morphism is flat, and
Theorem 10.2.

(8) Let X and Y be étale over a base scheme S. Any S-morphism from X to Y is
étale. See Morphisms, Lemma 36.18.

12. The structure theorem

We present a theorem which describes the local structure of étale and unramified mor-
phisms. Besides its obvious independent importance, this theorem also allows us to make
the transition to another definition of étale morphisms that captures the geometric intu-
ition better than the one we’ve used so far.

To state it we need the notion of a standard étale ring map, see Algebra, Definition 144.1.
Namely, suppose that R is a ring and f, g ∈ R[t] are polynomials such that

(a) f is a monic polynomial, and
(b) f ′ = df/dt is invertible in the localization R[t]g/(f).

Then the map
R −→ R[t]g/(f) = R[t, 1/g]/(f)

is a standard étale algebra, and any standard étale algebra is isomorphic to one of these. It
is a pleasant exercise to prove that such a ring map is flat, and unramified and hence étale
(as expected of course). A special case of a standard étale ring map is any ring map

R −→ R[t]f ′/(f) = R[t, 1/f ′]/(f)

with f a monic polynomial, and any standard étale algebra is (isomorphic to) a principal
localization of one of these.

Theorem 12.1. Let f : A→ B be an étale homomorphism of local rings. Then there
exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a localization of B′ at a prime.

Proof. Write B = B′
q for some finite type A-algebra B′ (we can do this because

B is essentially of finite type over A). By Lemma 11.2 we see that A → B′ is étale at q.
Hence we may apply Algebra, Proposition 144.4 to see that a principal localization of B′

is standard étale. �

Here is the version for unramified homomorphisms of local rings.

Theorem 12.2. Let f : A → B be an unramified morphism of local rings. Then
there exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a quotient of a localization of B′ at a prime.
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Proof. Write B = B′
q for some finite type A-algebra B′ (we can do this because B

is essentially of finite type over A). By Lemma 3.2 we see that A→ B′ is unramified at q.
Hence we may apply Algebra, Proposition 152.1 to see that a principal localization of B′

is a quotient of a standard étale A-algebra. �

Via standard lifting arguments, one then obtains the following geometric statement which
will be of essential use to us.

Theorem 12.3. Let ϕ : X → Y be a morphism of schemes. Let x ∈ X . Let V ⊂ Y
be an affine open neighbourhood of ϕ(x). If ϕ is étale at x, then there exist exists an affine
open U ⊂ X with x ∈ U and ϕ(U) ⊂ V such that we have the following diagram

X

��

Uoo

��

j
// Spec(R[t]f ′/(f))

��
Y Voo Spec(R)

where j is an open immersion, and f ∈ R[t] is monic.

Proof. This is equivalent to Morphisms, Lemma 36.14 although the statements differ
slightly. See also, Varieties, Lemma 18.3 for a variant for unramified morphisms. �

13. Étale and smooth morphisms

An étale morphism is smooth of relative dimension zero. The projection An
S → S is a

standard example of a smooth morphism of relative dimension n. It turns out that any
smooth morphism is étale locally of this form. Here is the precise statement.

Theorem 13.1. Letϕ : X → Y be a morphism of schemes. Let x ∈ X . Ifϕ is smooth
at x, then there exist an integer n ≥ 0 and affine opens V ⊂ Y and U ⊂ X with x ∈ U
and ϕ(U) ⊂ V such that there exists a commutative diagram

X

��

Uoo

��

π
// An

R

��

Spec(R[x1, . . . , xn])

vv
Y Voo Spec(R)

where π is étale.

Proof. See Morphisms, Lemma 36.20. �

14. Topological properties of étale morphisms

We present a few of the topological properties of étale and unramified morphisms. First,
we give what Grothendieck calls the fundamental property of étale morphisms, see [?,
Exposé I.5].

Theorem 14.1. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is an open immersion,
(2) f is universally injective and étale, and
(3) f is a flat monomorphism, locally of finite presentation.
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Proof. An open immersion is universally injective since any base change of an open
immersion is an open immersion. Moreover, it is étale by Morphisms, Lemma 36.9. Hence
(1) implies (2).

Assume f is universally injective and étale. Since f is étale it is flat and locally of finite
presentation, see Morphisms, Lemmas 36.12 and 36.11. By Lemma 7.1 we see that f is a
monomorphism. Hence (2) implies (3).

Assume f is flat, locally of finite presentation, and a monomorphism. Then f is open,
see Morphisms, Lemma 25.10. Thus we may replace Y by f(X) and we may assume f
is surjective. Then f is open and bijective hence a homeomorphism. Hence f is quasi-
compact. Hence Descent, Lemma 25.1 shows that f is an isomorphism and we win. �

Here is another result of a similar flavor.

Lemma 14.2. Let π : X → S be a morphism of schemes. Let s ∈ S. Assume that
(1) π is finite,
(2) π is étale,
(3) π−1({s}) = {x}, and
(4) κ(s) ⊂ κ(x) is purely inseparable2.

Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U)→ U is an
isomorphism.

Proof. By Lemma 7.3 there exists an open neighbourhoodU of s such thatπ|π−1(U) :
π−1(U)→ U is a closed immersion. But a morphism which is étale and a closed immersion
is an open immersion (for example by Theorem 14.1). Hence after shrinking U we obtain
an isomorphism. �

Lemma 14.3. Let U → X be an étale morphism of schemes where X is a scheme in
characteristic p. Then the relative FrobeniusFU/X : U → U×X,FXX is an isomorphism.

Proof. The morphism FU/X is a universal homeomorphism by Varieties, Lemma
36.6. The morphism FU/X is étale as a morphism between schemes étale over X (Mor-
phisms, Lemma 36.18). Hence FU/X is an isomorphism by Theorem 14.1. �

15. Topological invariance of the étale topology

Next, we present an extremely crucial theorem which, roughly speaking, says that étale-
ness is a topological property.

Theorem 15.1. LetX and Y be two schemes over a base scheme S. Let S0 be a closed
subscheme of S with the same underlying topological space (for example if the ideal sheaf
of S0 in S has square zero). DenoteX0 (resp. Y0) the base change S0×SX (resp. S0×SY ).
If X is étale over S , then the map

MorS(Y,X) −→ MorS0(Y0, X0)

is bijective.

Proof. After base changing via Y → S , we may assume that Y = S. In this case the
theorem states that any S-morphism σ0 : S0 → X actually factors uniquely through a
section S → X of the étale structure morphism f : X → S.

2In view of condition (2) this is equivalent to κ(s) = κ(x).
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Uniqueness. Suppose we have two sections σ, σ′ through which σ0 factors. Because X →
S is étale we see that ∆ : X → X×SX is an open immersion (Morphisms, Lemma 35.13).
The morphism (σ, σ′) : S → X ×S X factors through this open because for any s ∈ S
we have (σ, σ′)(s) = (σ0(s), σ0(s)). Thus σ = σ′.

To prove existence we first reduce to the affine case (we suggest the reader skip this step).
Let X =

⋃
Xi be an affine open covering such that each Xi maps into an affine open Si

of S. For every s ∈ S we can choose an i such that σ0(s) ∈ Xi. Choose an affine open
neighbourhood U ⊂ Si of s such that σ0(U0) ⊂ Xi,0. Note that X ′ = Xi ×S U =
Xi ×Si U is affine. If we can lift σ0|U0 : U0 → X ′

0 to U → X ′, then by uniqueness these
local lifts will glue to a global morphism S → X . Thus we may assume S andX are affine.

Existence when S and X are affine. Write S = Spec(A) and X = Spec(B). Then
A → B is étale and in particular smooth (of relative dimension 0). As |S0| = |S| we see
that S0 = Spec(A/I) with I ⊂ A locally nilpotent. Thus existence follows from Algebra,
Lemma 138.17. �

From the proof of preceeding theorem, we also obtain one direction of the promised func-
torial characterization of étale morphisms. The following theorem will be strengthened
in Étale Cohomology, Theorem 45.2.

Theorem 15.2 (Une equivalence remarquable de catégories). Let S be a scheme. Let
S0 ⊂ S be a closed subscheme with the same underlying topological space (for example if
the ideal sheaf of S0 in S has square zero). The functor

X 7−→ X0 = S0 ×S X

defines an equivalence of categories

{schemes X étale over S} ↔ {schemes X0 étale over S0}

Proof. By Theorem 15.1 we see that this functor is fully faithful. It remains to show
that the functor is essentially surjective. Let Y → S0 be an étale morphism of schemes.

Suppose that the result holds if S and Y are affine. In that case, we choose an affine open
covering Y =

⋃
Vj such that each Vj maps into an affine open of S. By assumption (affine

case) we can find étale morphisms Wj → S such that Wj,0 ∼= Vj (as schemes over S0).
Let Wj,j′ ⊂ Wj be the open subscheme whose underlying topological space corresponds
to Vj ∩ Vj′ . Because we have isomorphisms

Wj,j′,0 ∼= Vj ∩ Vj′ ∼= Wj′,j,0

as schemes overS0 we see by fully faithfulness that we obtain isomorphisms θj,j′ : Wj,j′ →
Wj′,j of schemes over S. We omit the verification that these isomorphisms satisfy the co-
cycle condition of Schemes, Section 14. Applying Schemes, Lemma 14.2 we obtain a scheme
X → S by glueing the schemes Wj along the identifications θj,j′ . It is clear that X → S
is étale and X0 ∼= Y by construction.

Thus it suffices to show the lemma in case S and Y are affine. Say S = Spec(R) and
S0 = Spec(R/I) with I locally nilpotent. By Algebra, Lemma 143.2 we know that Y is
the spectrum of a ring A with

A = (R/I)[x1, . . . , xn]/(f1, . . . , fn)
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such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1
∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2
. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


maps to an invertible element in A. Choose any lifts fi ∈ R[x1, . . . , xn]. Set

A = R[x1, . . . , xn]/(f1, . . . , fn)

Since I is locally nilpotent the ideal IA is locally nilpotent (Algebra, Lemma 32.3). Ob-
serve thatA = A/IA. It follows that the determinant of the matrix of partials of the fi is
invertible in the algebra A by Algebra, Lemma 32.4. Hence R → A is étale and the proof
is complete. �

16. The functorial characterization

We finally present the promised functorial characterization. Thus there are four ways to
think about étale morphisms of schemes:

(1) as a smooth morphism of relative dimension 0,
(2) as locally finitely presented, flat, and unramified morphisms,
(3) using the structure theorem, and
(4) using the functorial characterization.

Theorem 16.1. Let f : X → S be a morphism that is locally of finite presentation.
The following are equivalent

(1) f is étale,
(2) for all affine S-schemes Y , and closed subschemes Y0 ⊂ Y defined by square-zero

ideals, the natural map

MorS(Y,X) −→ MorS(Y0, X)

is bijective.

Proof. This is More on Morphisms, Lemma 8.9. �

This characterization says that solutions to the equations definingX can be lifted uniquely
through nilpotent thickenings.

17. Étale local structure of unramified morphisms

In the chapter More on Morphisms, Section 41 the reader can find some results on the étale
local structure of quasi-finite morphisms. In this section we want to combine this with the
topological properties of unramified morphisms we have seen in this chapter. The basic
overall picture to keep in mind is

V //

!!

XU

��

// X

f

��
U // S

see More on Morphisms, Equation (41.0.1). We start with a very general case.
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Lemma 17.1. Let f : X → S be a morphism of schemes. Letx1, . . . , xn ∈ X be points
having the same image s in S. Assume f is unramified at each xi. Then there exists an
étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n, j = 1, . . . ,mi

such that
(1) Vi,j → U is a closed immersion passing through u,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j .

Proof. By Morphisms, Definition 35.1 there exists an open neighbourhood of each
xi which is locally of finite type over S. Replacing X by an open neighbourhood of
{x1, . . . , xn} we may assume f is locally of finite type. Apply More on Morphisms,
Lemma 41.3 to get the étale neighbourhood (U, u) and the opens Vi,j finite over U . By
Lemma 7.3 after possibly shrinking U we get that Vi,j → U is a closed immersion. �

Lemma 17.2. Let f : X → S be a morphism of schemes. Letx1, . . . , xn ∈ X be points
having the same image s in S. Assume f is separated and f is unramified at each xi. Then
there exists an étale neighbourhood (U, u)→ (S, s) and a disjoint union decomposition

XU = W q
∐

i,j
Vi,j

such that
(1) Vi,j → U is a closed immersion passing through u,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.

Proof. Apply Lemma 17.1. We may assume U is affine, so XU is separated. Then
Vi,j → XU is a closed map, see Morphisms, Lemma 41.7. Suppose (i, j) 6= (i′, j′). Then
Vi,j ∩ Vi′,j′ is closed in Vi,j and its image in U does not contain u. Hence after shrinking
U we may assume that Vi,j ∩ Vi′,j′ = ∅. Moreover,

⋃
Vi,j is a closed and open subscheme

of XU and hence has an open and closed complement W . This finishes the proof. �

The following lemma is in some sense much weaker than the preceding one but it may be
useful to state it explicitly here. It says that a finite unramified morphism is étale locally
on the base a closed immersion.

Lemma 17.3. Let f : X → S be a finite unramified morphism of schemes. Let s ∈ S.
There exists an étale neighbourhood (U, u)→ (S, s) and a finite disjoint union decompo-
sition

XU =
∐

j
Vj

such that each Vj → U is a closed immersion.

Proof. Since X → S is finite the fibre over s is a finite set {x1, . . . , xn} of points of
X . Apply Lemma 17.2 to this set (a finite morphism is separated, see Morphisms, Section
44). The image of W in U is a closed subset (as XU → U is finite, hence proper) which
does not contain u. After removing this from U we see that W = ∅ as desired. �

18. Étale local structure of étale morphisms

This is a bit silly, but perhaps helps form intuition about étale morphisms. We simply
copy over the results of Section 17 and change “closed immersion” into “isomorphism”.
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Lemma 18.1. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is étale at each xi. Then there exists an
étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n, j = 1, . . . ,mi

such that
(1) Vi,j → U is an isomorphism,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j .

Proof. An étale morphism is unramified, hence we may apply Lemma 17.1. Now
Vi,j → U is a closed immersion and étale. Hence it is an open immersion, for example
by Theorem 14.1. Replace U by the intersection of the images of Vi,j → U to get the
lemma. �

Lemma 18.2. Let f : X → S be a morphism of schemes. Letx1, . . . , xn ∈ X be points
having the same image s in S. Assume f is separated and f is étale at each xi. Then there
exists an étale neighbourhood (U, u)→ (S, s) and a finite disjoint union decomposition

XU = W q
∐

i,j
Vi,j

of schemes such that
(1) Vi,j → U is an isomorphism,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.

Proof. An étale morphism is unramified, hence we may apply Lemma 17.2. As in
the proof of Lemma 18.1 the morphisms Vi,j → U are open immersions and we win after
replacing U by the intersection of their images. �

The following lemma is in some sense much weaker than the preceding one but it may be
useful to state it explicitly here. It says that a finite étale morphism is étale locally on the
base a “topological covering space”, i.e., a finite product of copies of the base.

Lemma 18.3. Let f : X → S be a finite étale morphism of schemes. Let s ∈ S. There
exists an étale neighbourhood (U, u)→ (S, s) and a finite disjoint union decomposition

XU =
∐

j
Vj

of schemes such that each Vj → U is an isomorphism.

Proof. An étale morphism is unramified, hence we may apply Lemma 17.3. As in
the proof of Lemma 18.1 we see that Vi,j → U is an open immersion and we win after
replacing U by the intersection of their images. �

19. Permanence properties

In what follows, we present a few “permanence” properties of étale homomorphisms of
Noetherian local rings (as defined in Definition 11.1). See More on Algebra, Sections 43 and
45 for the analogue of this material for the completion and henselization of a Noetherian
local ring.

Lemma 19.1. Let A, B be Noetherian local rings. Let A → B be a étale homomor-
phism of local rings. Then dim(A) = dim(B).

Proof. See for example Algebra, Lemma 112.7. �
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Proposition 19.2. Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then depth(A) = depth(B)

Proof. See Algebra, Lemma 163.2. �

Proposition 19.3. Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then A is Cohen-Macaulay if and only if B is so.

Proof. A local ring A is Cohen-Macaulay if and only if dim(A) = depth(A). As
both of these invariants is preserved under an étale extension, the claim follows. �

Proposition 19.4. Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then A is regular if and only if B is so.

Proof. If B is regular, then A is regular by Algebra, Lemma 110.9. Assume A is
regular. Let m be the maximal ideal of A. Then dimκ(m) m/m

2 = dim(A) = dim(B)
(see Lemma 19.1). On the other hand, mB is the maximal ideal ofB and hence mB/mB =
mB/m2B is generated by at most dim(B) elements. Thus B is regular. (You can also use
the slightly more general Algebra, Lemma 112.8.) �

Proposition 19.5. Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then A is reduced if and only if B is so.

Proof. It is clear from the faithful flatness of A → B that if B is reduced, so is
A. See also Algebra, Lemma 164.2. Conversely, assume A is reduced. By assumption B
is a localization of a finite type A-algebra B′ at some prime q. After replacing B′ by a
localization we may assume that B′ is étale over A, see Lemma 11.2. Then we see that
Algebra, Lemma 163.7 applies to A→ B′ and B′ is reduced. Hence B is reduced. �

Remark 19.6. The result on “reducedness” does not hold with a weaker definition of
étale local ring mapsA→ B where one drops the assumption thatB is essentially of finite
type over A. Namely, it can happen that a Noetherian local domain A has nonreduced
completion A∧, see Examples, Section 16. But the ring map A → A∧ is flat, and mAA

∧

is the maximal ideal of A∧ and of course A and A∧ have the same residue fields. This is
why it is important to consider this notion only for ring extensions which are essentially
of finite type (or essentially of finite presentation if A is not Noetherian).

Proposition 19.7. Let A, B be Noetherian local rings. Let f : A → B be an étale
homomorphism of local rings. Then A is a normal domain if and only if B is so.

Proof. See Algebra, Lemma 164.3 for descending normality. Conversely, assume A
is normal. By assumption B is a localization of a finite type A-algebra B′ at some prime
q. After replacing B′ by a localization we may assume that B′ is étale over A, see Lemma
11.2. Then we see that Algebra, Lemma 163.9 applies to A→ B′ and we conclude that B′

is normal. Hence B is a normal domain. �

The preceeding propositions give some indication as to why we’d like to think of étale
maps as “local isomorphisms”. Another property that gives an excellent indication that we
have the “right” definition is the fact that for C-schemes of finite type, a morphism is étale
if and only if the associated morphism on analytic spaces (the C-valued points given the
complex topology) is a local isomorphism in the analytic sense (open embedding locally
on the source). This fact can be proven with the aid of the structure theorem and the fact
that the analytification commutes with the formation of the completed local rings – the
details are left to the reader.



20. DESCENDING ÉTALE MORPHISMS 3587

20. Descending étale morphisms

In order to understand the language used in this section we encourage the reader to take
a look at Descent, Section 34. Let f : X → S be a morphism of schemes. Consider the
pullback functor

(20.0.1) schemes U étale over S −→ descent data (V, ϕ) relative to X/S
with V étale over X

sending U to the canonical descent datum (X ×S U, can).

Lemma 20.1. If f : X → S is surjective, then the functor (20.0.1) is faithful.

Proof. Let a, b : U1 → U2 be two morphisms between schemes étale over S. Assume
the base changes of a and b to X agree. We have to show that a = b. By Proposition 6.3
it suffices to show that a and b agree on points and residue fields. This is clear because for
every u ∈ U1 we can find a point v ∈ X ×S U1 mapping to u. �

Lemma 20.2. Assume f : X → S is submersive and any étale base change of f is
submersive. Then the functor (20.0.1) is fully faithful.

Proof. By Lemma 20.1 the functor is faithful. Let U1 → S and U2 → S be étale
morphisms and let a : X ×S U1 → X ×S U2 be a morphism compatible with canonical
descent data. We will prove that a is the base change of a morphism U1 → U2.

Let U ′
2 ⊂ U2 be an open subscheme. Consider W = a−1(X ×S U ′

2). This is an open
subscheme of X ×S U1 which is compatible with the canonical descent datum on V1 =
X×SU1. This means that the two inverse images ofW by the projections V1×U1V1 → V1
agree. Since V1 → U1 is surjective (as the base change of X → S) we conclude that W is
the inverse image of some subset U ′

1 ⊂ U1. Since W is open, our assumption on f implies
that U ′

1 ⊂ U1 is open.

Let U2 =
⋃
U2,i be an affine open covering. By the result of the preceding paragraph

we obtain an open covering U1 =
⋃
U1,i such that X ×S U1,i = a−1(X ×S U2,i). If

we can prove there exists a morphism U1,i → U2,i whose base change is the morphism
ai : X ×S U1,i → X ×S U2,i then we can glue these morphisms to a morphism U1 → U2
(using faithfulness). In this way we reduce to the case that U2 is affine. In particular
U2 → S is separated (Schemes, Lemma 21.13).

Assume U2 → S is separated. Then the graph Γa of a is a closed subscheme of

V = (X ×S U1)×X (X ×S U2) = X ×S U1 ×S U2

by Schemes, Lemma 21.10. On the other hand the graph is open for example because it
is a section of an étale morphism (Proposition 6.1). Since a is a morphism of descent
data, the two inverse images of Γa ⊂ V under the projections V ×U1×SU2 V → V are
the same. Hence arguing as in the second paragraph of the proof we find an open and
closed subscheme Γ ⊂ U1 ×S U2 whose base change to X gives Γa. Then Γ → U1 is an
étale morphism whose base change to X is an isomorphism. This means that Γ → U1 is
universally bijective, hence an isomorphism by Theorem 14.1. Thus Γ is the graph of a
morphism U1 → U2 and the base change of this morphism is a as desired. �

Lemma 20.3. Let f : X → S be a morphism of schemes. In the following cases the
functor (20.0.1) is fully faithful:

(1) f is surjective and universally closed (e.g., finite, integral, or proper),
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(2) f is surjective and universally open (e.g., locally of finite presentation and flat,
smooth, or etale),

(3) f is surjective, quasi-compact, and flat.

Proof. This follows from Lemma 20.2. For example a closed surjective map of topo-
logical spaces is submersive (Topology, Lemma 6.5). Finite, integral, and proper mor-
phisms are universally closed, see Morphisms, Lemmas 44.7 and 44.11 and Definition 41.1.
On the other hand an open surjective map of topological spaces is submersive (Topol-
ogy, Lemma 6.4). Flat locally finitely presented, smooth, and étale morphisms are univer-
sally open, see Morphisms, Lemmas 25.10, 34.10, and 36.13. The case of surjective, quasi-
compact, flat morphisms follows from Morphisms, Lemma 25.12. �

Lemma 20.4. Let f : X → S be a morphism of schemes. Let (V, ϕ) be a descent
datum relative to X/S with V → X étale. Let S =

⋃
Si be an open covering. Assume

that
(1) the pullback of the descent datum (V, ϕ) to X ×S Si/Si is effective,
(2) the functor (20.0.1) for X ×S (Si ∩ Sj)→ (Si ∩ Sj) is fully faithful, and
(3) the functor (20.0.1) for X ×S (Si ∩ Sj ∩ Sk)→ (Si ∩ Sj ∩ Sk) is faithful.

Then (V, ϕ) is effective.

Proof. (Recall that pullbacks of descent data are defined in Descent, Definition 34.7.)
SetXi = X×S Si. Denote (Vi, ϕi) the pullback of (V, ϕ) toXi/Si. By assumption (1) we
can find an étale morphism Ui → Si which comes with an isomorphism Xi ×Si Ui → Vi
compatible with can and ϕi. By assumption (2) we obtain isomorphisms ψij : Ui ×Si
(Si ∩ Sj)→ Uj ×Sj (Si ∩ Sj). By assumption (3) these isomorphisms satisfy the cocycle
condition so that (Ui, ψij) is a descend datum for the Zariski covering {Si → S}. Then
Descent, Lemma 35.10 (which is essentially just a reformulation of Schemes, Section 14)
tells us that there exists a morphism of schemes U → S and isomorphisms U ×S Si →
Ui compatible with ψij . The isomorphisms U ×S Si → Ui determine corresponding
isomorphisms Xi ×S U → Vi which glue to a morphism X ×S U → V compatible with
the canonical descent datum and ϕ. �

Lemma 20.5. Let (A, I) be a henselian pair. Let U → Spec(A) be a quasi-compact,
separated, étale morphism such that U ×Spec(A) Spec(A/I)→ Spec(A/I) is finite. Then

U = Ufin q Uaway
where Ufin → Spec(A) is finite and Uaway has no points lying over Z.

Proof. By Zariski’s main theorem, the schemeU is quasi-affine. In fact, we can find an
open immersion U → T with T affine and T → Spec(A) finite, see More on Morphisms,
Lemma 43.3. Write Z = Spec(A/I) and denote UZ → TZ the base change. Since UZ →
Z is finite, we see that UZ → TZ is closed as well as open. Hence by More on Algebra,
Lemma 11.6 we obtain a unique decomposition T = T ′ q T ′′ with T ′

Z = UZ . Set Ufin =
U ∩ T ′ and Uaway = U ∩ T ′′. Since T ′

Z ⊂ UZ we see that all closed points of T ′ are in U
hence T ′ ⊂ U , hence Ufin = T ′, hence Ufin → Spec(A) is finite. We omit the proof of
uniqueness of the decomposition. �

Proposition 20.6. Let f : X → S be a surjective integral morphism. The functor
(20.0.1) induces an equivalence

schemes quasi-compact,
separated, étale over S −→

descent data (V, ϕ) relative to X/S with
V quasi-compact, separated, étale over X
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Proof. By Lemma 20.3 the functor (20.0.1) is fully faithful and the same remains
the case after any base change S → S′. Let (V, ϕ) be a descent data relative to X/S with
V → X quasi-compact, separated, and étale. We can use Lemma 20.4 to see that it suffices
to prove the effectivity Zariski locally on S. In particular we may and do assume that S is
affine.

If S is affine we can find a directed set Λ and an inverse system Xλ → Sλ of finite mor-
phisms of affine schemes of finite type over Spec(Z) such that (X → S) = lim(Xλ →
Sλ). See Algebra, Lemma 127.15. Since limits commute with limits we deduce that X ×S
X = limXλ ×Sλ Xλ and X ×S X ×S X = limXλ ×Sλ Xλ ×Sλ Xλ. Observe that
V → X is a morphism of finite presentation. Using Limits, Lemmas 10.1 we can find an
λ and a descent datum (Vλ, ϕλ) relative to Xλ/Sλ whose pullback to X/S is (V, ϕ). Of
course it is enough to show that (Vλ, ϕλ) is effective. Note that Vλ is quasi-compact by
construction. After possibly increasing λ we may assume that Vλ → Xλ is separated and
étale, see Limits, Lemma 8.6 and 8.10. Thus we may assume that f is finite surjective and
S affine of finite type over Z.

Consider an open S′ ⊂ S such that the pullback (V ′, ϕ′) of (V, ϕ) to X ′ = X ×S S′ is
effective. Below we will prove, that S′ 6= S implies there is a strictly larger open over
which the descent datum is effective. Since S is Noetherian (and hence has a Noetherian
underlying topological space) this will finish the proof. Let ξ ∈ S be a generic point of an
irreducible component of the closed subset Z = S \ S′. If ξ ∈ S′′ ⊂ S is an open over
which the descent datum is effective, then the descent datum is effective over S′ ∪ S′′ by
the glueing argument of the first paragraph. Thus in the rest of the proof we may replace
S by an affine open neighbourhood of ξ.

After a first such replacement we may assume that Z is irreducible with generic point
Z. Let us endow Z with the reduced induced closed subscheme structure. After another
shrinking we may assume XZ = X ×S Z = f−1(Z)→ Z is flat, see Morphisms, Propo-
sition 27.1. Let (VZ , ϕZ) be the pullback of the descent datum to XZ/Z. By More on
Morphisms, Lemma 57.1 this descent datum is effective and we obtain an étale morphism
UZ → Z whose base change is isomorphic to VZ in a manner compatible with descent
data. Of course UZ → Z is quasi-compact and separated (Descent, Lemmas 23.1 and 23.6).
Thus after shrinking once more we may assume that UZ → Z is finite, see Morphisms,
Lemma 51.1.

LetS = Spec(A) and let I ⊂ A be the prime ideal corresponding toZ ⊂ S. Let (Ah, IAh)
be the henselization of the pair (A, I). Denote Sh = Spec(Ah) and Zh = V (IAh) ∼= Z.
We claim that it suffices to show effectivity after base change to Sh. Namely, {Sh →
S, S′ → S} is an fpqc covering (A → Ah is flat by More on Algebra, Lemma 12.2) and
by More on Morphisms, Lemma 57.1 we have fpqc descent for separated étale morphisms.
Namely, ifUh → Sh andU ′ → S′ are the objects corresponding to the pullbacks (V h, ϕh)
and (V ′, ϕ′), then the required isomorphisms

Uh ×S Sh → Sh ×S V h and Uh ×S S′ → Sh ×S U ′

are obtained by the fully faithfulness pointed out in the first paragraph. In this way we
reduce to the situation described in the next paragraph.

Here S = Spec(A), Z = V (I), S′ = S \ Z where (A, I) is a henselian pair, we have
U ′ → S′ corresponding to the descent datum (V ′, ϕ′) and we have a finite étale morphism
UZ → Z corresponding to the descent datum (VZ , ϕZ). We no longer have that A is of
finite type over Z; but the rest of the argument will not even use that A is Noetherian.



3590 41. ÉTALE MORPHISMS OF SCHEMES

By More on Algebra, Lemma 13.2 we can find a finite étale morphism Ufin → S whose
restriction to Z is isomorphic to UZ → Z. Write X = Spec(B) and Y = V (IB).
Since (B, IB) is a henselian pair (More on Algebra, Lemma 11.8) and since the restriction
V → X to Y is finite (as base change of UZ → Z) we see that there is a canonical disjoint
union decomposition

V = Vfin q Vaway
were Vfin → X is finite and where Vaway has no points lying over Y . See Lemma 20.5.
Using the uniqueness of this decomposition over X ×S X we see that ϕ preserves it and
we obtain

(V, ϕ) = (Vfin, ϕfin)q (Vaway, ϕaway)
in the category of descent data. By More on Algebra, Lemma 13.2 there is a unique iso-
morphism

X ×S Ufin −→ Vfin

compatible with the given isomorphism Y ×Z UZ → V ×X Y over Y . By the uniqueness
we see that this isomorphism is compatible with descent data, i.e., (X ×S Ufin, can) ∼=
(Vfin, ϕfin). Denote U ′

fin = Ufin ×S S′. By fully faithfulness we obtain a morphism
U ′
fin → U ′ which is the inclusion of an open (and closed) subscheme. Then we set U =

Ufin qU ′
fin

U ′ (glueing of schemes as in Schemes, Section 14). The morphisms X ×S
Ufin → V and X ×S U ′ → V glue to a morphism X ×S U → V which is the desired
isomorphism. �

21. Normal crossings divisors

Here is the definition.

Definition 21.1. Let X be a locally Noetherian scheme. A strict normal crossings
divisor on X is an effective Cartier divisor D ⊂ X such that for every p ∈ D the local
ring OX,p is regular and there exists a regular system of parameters x1, . . . , xd ∈ mp and
1 ≤ r ≤ d such that D is cut out by x1 . . . xr inOX,p.

We often encounter effective Cartier divisors E on locally Noetherian schemes X such
that there exists a strict normal crossings divisor D with E ⊂ D set theoretically. In this
case we have E =

∑
aiDi with ai ≥ 0 where D =

⋃
i∈I Di is the decomposition of D

into its irreducible components. Observe that D′ =
⋃
ai>0 Di is a strict normal crossings

divisor with E = D′ set theoretically. When the above happens we will say that E is
supported on a strict normal crossings divisor.

Lemma 21.2. Let X be a locally Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor. LetDi ⊂ D, i ∈ I be its irreducible components viewed as reduced closed
subschemes of X . The following are equivalent

(1) D is a strict normal crossings divisor, and
(2) D is reduced, each Di is an effective Cartier divisor, and for J ⊂ I finite the

scheme theoretic intersection DJ =
⋂
j∈J Dj is a regular scheme each of whose

irreducible components has codimension |J | in X .

Proof. Assume D is a strict normal crossings divisor. Pick p ∈ D and choose a
regular system of parameters x1, . . . , xd ∈ mp and 1 ≤ r ≤ d as in Definition 21.1.
Since OX,p/(xi) is a regular local ring (and in particular a domain) we see that the irre-
ducible components D1, . . . , Dr of D passing through p correspond 1-to-1 to the height
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one primes (x1), . . . , (xr) of OX,p. By Algebra, Lemma 106.3 we find that the intersec-
tions Di1 ∩ . . . ∩ Dis have codimension s in an open neighbourhood of p and that this
intersection has a regular local ring at p. Since this holds for all p ∈ D we conclude that
(2) holds.
Assume (2). Let p ∈ D. Since OX,p is finite dimensional we see that p can be contained
in at most dim(OX,p) of the components Di. Say p ∈ D1, . . . , Dr for some r ≥ 1.
Let x1, . . . , xr ∈ mp be local equations for D1, . . . , Dr. Then x1 is a nonzerodivisor in
OX,p and OX,p/(x1) = OD1,p is regular. Hence OX,p is regular, see Algebra, Lemma
106.7. Since D1 ∩ . . . ∩Dr is a regular (hence normal) scheme it is a disjoint union of its
irreducible components (Properties, Lemma 7.6). LetZ ⊂ D1∩ . . .∩Dr be the irreducible
component containing p. Then OZ,p = OX,p/(x1, . . . , xr) is regular of codimension r
(note that since we already know that OX,p is regular and hence Cohen-Macaulay, there
is no ambiguity about codimension as the ring is catenary, see Algebra, Lemmas 106.3
and 104.4). Hence dim(OZ,p) = dim(OX,p) − r. Choose additional xr+1, . . . , xn ∈
mp which map to a minimal system of generators of mZ,p. Then mp = (x1, . . . , xn) by
Nakayama’s lemma and we see that D is a normal crossings divisor. �

Lemma 21.3. Let X be a locally Noetherian scheme. Let D ⊂ X be a strict normal
crossings divisor. If f : Y → X is a smooth morphism of schemes, then the pullback f∗D
is a strict normal crossings divisor on Y .

Proof. As f is flat the pullback is defined by Divisors, Lemma 13.13 hence the state-
ment makes sense. Let q ∈ f∗D map to p ∈ D. Choose a regular system of parameters
x1, . . . , xd ∈ mp and 1 ≤ r ≤ d as in Definition 21.1. Since f is smooth the local ring
homomorphismOX,p → OY,q is flat and the fibre ring

OY,q/mpOY,q = OYp,q
is a regular local ring (see for example Algebra, Lemma 140.3). Pick y1, . . . , yn ∈ mq which
map to a regular system of parameters inOYp,q . Then x1, . . . , xd, y1, . . . , yn generate the
maximal ideal mq . Hence OY,q is a regular local ring of dimension d + n by Algebra,
Lemma 112.7 and x1, . . . , xd, y1, . . . , yn is a regular system of parameters. Since f∗D is
cut out by x1 . . . xr inOY,q we conclude that the lemma is true. �

Here is the definition of a normal crossings divisor.

Definition 21.4. Let X be a locally Noetherian scheme. A normal crossings divisor
onX is an effective Cartier divisorD ⊂ X such that for every p ∈ D there exists an étale
morphism U → X with p in the image and D ×X U a strict normal crossings divisor on
U .

For example D = V (x2 + y2) is a normal crossings divisor (but not a strict one) on
Spec(R[x, y]) because after pulling back to the étale cover Spec(C[x, y]) we obtain (x−
iy)(x+ iy) = 0.

Lemma 21.5. LetX be a locally Noetherian scheme. LetD ⊂ X be a normal crossings
divisor. If f : Y → X is a smooth morphism of schemes, then the pullback f∗D is a
normal crossings divisor on Y .

Proof. As f is flat the pullback is defined by Divisors, Lemma 13.13 hence the state-
ment makes sense. Let q ∈ f∗D map to p ∈ D. Choose an étale morphism U → X
whose image contains p such that D ×X U ⊂ U is a strict normal crossings divisor as in
Definition 21.4. Set V = Y ×X U . Then V → Y is étale as a base change of U → X
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(Morphisms, Lemma 36.4) and the pullback D ×X V is a strict normal crossings divisor
on V by Lemma 21.3. Thus we have checked the condition of Definition 21.4 for q ∈ f∗D
and we conclude. �

Lemma 21.6. Let X be a locally Noetherian scheme. Let D ⊂ X be a closed sub-
scheme. The following are equivalent

(1) D is a normal crossings divisor in X ,
(2) D is reduced, the normalization ν : Dν → D is unramified, and for any n ≥ 1

the scheme
Zn = Dν ×D . . .×D Dν \ {(p1, . . . , pn) | pi = pj for some i 6= j}

is regular, the morphism Zn → X is a local complete intersection morphism
whose conormal sheaf is locally free of rank n.

Proof. First we explain how to think about condition (2). The diagonal of an un-
ramified morphism is open (Morphisms, Lemma 35.13). On the other hand Dν → D is
separated, hence the diagonal Dν → Dν ×D Dν is closed. Thus Zn is an open and closed
subscheme of Dν ×D . . . ×D Dν . On the other hand, Zn → X is unramified as it is the
composition

Zn → Dν ×D . . .×D Dν → . . .→ Dν ×D Dν → Dν → D → X

and each of the arrows is unramified. Since an unramified morphism is formally unrami-
fied (More on Morphisms, Lemma 6.8) we have a conormal sheaf Cn = CZn/X ofZn → X ,
see More on Morphisms, Definition 7.2.
Formation of normalization commutes with étale localization by More on Morphisms,
Lemma 19.3. Checking that local rings are regular, or that a morphism is unramified, or
that a morphism is a local complete intersection or that a morphism is unramified and has
a conormal sheaf which is locally free of a given rank, may be done étale locally (see More
on Algebra, Lemma 44.3, Descent, Lemma 23.28, More on Morphisms, Lemma 62.19 and
Descent, Lemma 7.6).
By the remark of the preceding paragraph and the definition of normal crossings divisor
it suffices to prove that a strict normal crossings divisor D =

⋃
i∈I Di satisfies (2). In this

case Dν =
∐
Di and Dν → D is unramified (being unramified is local on the source and

Di → D is a closed immersion which is unramified). Similarly, Z1 = Dν → X is a local
complete intersection morphism because we may check this locally on the source and each
morphism Di → X is a regular immersion as it is the inclusion of a Cartier divisor (see
Lemma 21.2 and More on Morphisms, Lemma 62.9). Since an effective Cartier divisor has
an invertible conormal sheaf, we conclude that the requirement on the conormal sheaf is
satisfied. Similarly, the scheme Zn for n ≥ 2 is the disjoint union of the schemes DJ =⋂
j∈J Dj where J ⊂ I runs over the subsets of order n. Since DJ → X is a regular

immersion of codimension n (by the definition of strict normal crossings and the fact that
we may check this on stalks by Divisors, Lemma 20.8) it follows in the same manner that
Zn → X has the required properties. Some details omitted.
Assume (2). Let p ∈ D. Since Dν → D is unramified, it is finite (by Morphisms, Lemma
44.4). Hence Dν → X is finite unramified. By Lemma 17.3 and étale localization (per-
missible by the discussion in the second paragraph and the definition of normal crossings
divisors) we reduce to the case where Dν =

∐
i∈I Di with I finite and Di → U a closed

immersion. After shrinkingX if necessary, we may assume p ∈ Di for all i ∈ I . The con-
dition that Z1 = Dν → X is an unramified local complete intersection morphism with
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conormal sheaf locally free of rank 1 implies that Di ⊂ X is an effective Cartier divisor,
see More on Morphisms, Lemma 62.3 and Divisors, Lemma 21.3. To finish the proof we
may assume X = Spec(A) is affine and Di = V (fi) with fi ∈ A a nonzerodivisor. If
I = {1, . . . , r}, then p ∈ Zr = V (f1, . . . , fr). The same reference as above implies that
(f1, . . . , fr) is a Koszul regular ideal inA. Since the conormal sheaf has rank r, we see that
f1, . . . , fr is a minimal set of generators of the ideal definingZr inOX,p. This implies that
f1, . . . , fr is a regular sequence in OX,p such that OX,p/(f1, . . . , fr) is regular. Thus we
conclude by Algebra, Lemma 106.7 that f1, . . . , fr can be extended to a regular system of
parameters inOX,p and this finishes the proof. �

Lemma 21.7. Let X be a locally Noetherian scheme. Let D ⊂ X be a closed sub-
scheme. If X is J-2 or Nagata, then following are equivalent

(1) D is a normal crossings divisor in X ,
(2) for every p ∈ D the pullback of D to the spectrum of the strict henselization
OshX,p is a strict normal crossings divisor.

Proof. The implication (1)⇒ (2) is straightforward and does not need the assump-
tion that X is J-2 or Nagata. Namely, let p ∈ D and choose an étale neighbourhood
(U, u) → (X, p) such that the pullback of D is a strict normal crossings divisor on U .
Then OshX,p = OshU,u and we see that the trace of D on Spec(OshU,u) is cut out by part of a
regular system of parameters as this is already the case inOU,u.
To prove the implication in the other direction we will use the criterion of Lemma 21.6.
Observe that formation of the normalization Dν → D commutes with strict henseliza-
tion, see More on Morphisms, Lemma 19.4. If we can show that Dν → D is finite, then
we see that Dν → D and the schemes Zn satisfy all desired properties because these can
all be checked on the level of local rings (but the finiteness of the morphism Dν → D is
not something we can check on local rings). We omit the detailed verifications.
If X is Nagata, then Dν → D is finite by Morphisms, Lemma 54.10.
Assume X is J-2. Choose a point p ∈ D. We will show that Dν → D is finite over a
neighbourhood of p. By assumption there exists a regular system of parameters f1, . . . , fd
of OshX,p and 1 ≤ r ≤ d such that the trace of D on Spec(OshX,p) is cut out by f1 . . . fr.
Then

Dν ×X Spec(OshX,p) =
∐

i=1,...,r
V (fi)

Choose an affine étale neighbourhood (U, u) → (X, p) such that fi comes from fi ∈
OU (U). Set Di = V (fi) ⊂ U . The strict henselization of ODi,u is OshX,p/(fi) which is
regular. HenceODi,u is regular (for example by More on Algebra, Lemma 45.10). Because
X is J-2 the regular locus is open in Di. Thus after replacing U by a Zariski open we may
assume that Di is regular for each i. It follows that∐

i=1,...,r
Di = Dν ×X U −→ D ×X U

is the normalization morphism and it is clearly finite. In other words, we have found
an étale neighbourhood (U, u) of (X, p) such that the base change of Dν → D to this
neighbourhood is finite. This implies Dν → D is finite by descent (Descent, Lemma
23.23) and the proof is complete. �
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CHAPTER 42

Chow Homology and Chern Classes

1. Introduction

In this chapter we discuss Chow homology groups and the construction of Chern classes
of vector bundles as elements of operational Chow cohomology groups (everything with
Z-coefficients).

We start this chapter by giving the shortest possible algebraic proof of the Key Lemma 6.3.
We first define the Herbrand quotient (Section 2) and we compute it in some cases (Section
3). Next, we prove some simple algebra lemmas on existence of suitable factorizations after
modifications (Section 4). Using these we construct/define the tame symbol in Section 5.
Only the most basic properties of the tame symbol are needed to prove the Key Lemma,
which we do in Section 6.

Next, we introduce the basic setup we work with in the rest of this chapter in Section
7. To make the material a little bit more challenging we decided to treat a somewhat
more general case than is usually done. Namely we assume our schemes X are locally of
finite type over a fixed locally Noetherian base scheme which is universally catenary and
is endowed with a dimension function. These assumptions suffice to be able to define the
Chow homology groups CH∗(X) and the action of capping with Chern classes on them.
This is an indication that we should be able to define these also for algebraic stacks locally
of finite type over such a base.

Next, we follow the first few chapters of [?] in order to define cycles, flat pullback, proper
pushforward, and rational equivalence, except that we have been less precise about the
supports of the cycles involved.

We diverge from the presentation given in [?] by using the Key lemma mentioned above
to prove a basic commutativity relation in Section 27. Using this we prove that the op-
eration of intersecting with an invertible sheaf passes through rational equivalence and
is commutative, see Section 28. One more application of the Key lemma proves that the
Gysin map of an effective Cartier divisor passes through rational equivalence, see Section
30. Having proved this, it is straightforward to define Chern classes of vector bundles,
prove additivity, prove the splitting principle, introduce Chern characters, Todd classes,
and state the Grothendieck-Riemann-Roch theorem.

There are two appendices. In Appendix A (Section 68) we discuss an alternative (longer)
construction of the tame symbol and corresponding proof of the Key Lemma. Finally, in
Appendix B (Section 69) we briefly discuss the relationship with K-theory of coherent
sheaves and we discuss some blowup lemmas. We suggest the reader look at their intro-
ductions for more information.

We will return to the Chow groups CH∗(X) for smooth projective varieties over alge-
braically closed fields in the next chapter. Using a moving lemma as in [?], [?], and [?]
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and Serre’s Tor-formula (see [?] or [?]) we will define a ring structure on CH∗(X). See
Intersection Theory, Section 1 ff.

2. Periodic complexes and Herbrand quotients

Of course there is a very general notion of periodic complexes. We can require periodicity
of the maps, or periodicity of the objects. We will add these here as needed. For the
moment we only need the following cases.

Definition 2.1. Let R be a ring.
(1) A 2-periodic complex overR is given by a quadruple (M,N,ϕ, ψ) consisting of

R-modules M , N and R-module maps ϕ : M → N , ψ : N →M such that

. . . // M
ϕ // N

ψ // M
ϕ // N // . . .

is a complex. In this setting we define the cohomology modules of the complex
to be the R-modules

H0(M,N,ϕ, ψ) = Ker(ϕ)/ Im(ψ) and H1(M,N,ϕ, ψ) = Ker(ψ)/ Im(ϕ).

We say the 2-periodic complex is exact if the cohomology groups are zero.
(2) A (2, 1)-periodic complex over R is given by a triple (M,ϕ,ψ) consisting of an

R-module M and R-module maps ϕ : M →M , ψ : M →M such that

. . . // M
ϕ // M

ψ // M
ϕ // M // . . .

is a complex. Since this is a special case of a 2-periodic complex we have its
cohomology modules H0(M,ϕ,ψ), H1(M,ϕ,ψ) and a notion of exactness.

In the following we will use any result proved for 2-periodic complexes without further
mention for (2, 1)-periodic complexes. It is clear that the collection of 2-periodic com-
plexes forms a category with morphisms (f, g) : (M,N,ϕ, ψ) → (M ′, N ′, ϕ′, ψ′) pairs
of morphisms f : M →M ′ and g : N → N ′ such that ϕ′ ◦ f = g ◦ϕ and ψ′ ◦ g = f ◦ψ.
We obtain an abelian category, with kernels and cokernels as in Homology, Lemma 13.3.

Definition 2.2. Let (M,N,ϕ, ψ) be a 2-periodic complex over a ringRwhose coho-
mology modules have finite length. In this case we define the multiplicity of (M,N,ϕ, ψ)
to be the integer

eR(M,N,ϕ, ψ) = lengthR(H0(M,N,ϕ, ψ))− lengthR(H1(M,N,ϕ, ψ))

In the case of a (2, 1)-periodic complex (M,ϕ,ψ), we denote this by eR(M,ϕ,ψ) and we
will sometimes call this the (additive) Herbrand quotient.

If the cohomology groups of (M,ϕ,ψ) are finite abelian groups, then it is customary to
call the (multiplicative) Herbrand quotient

q(M,ϕ,ψ) = #H0(M,ϕ,ψ)
#H1(M,ϕ,ψ)

In words: the multiplicative Herbrand quotient is the number of elements of H0 divided
by the number of elements of H1. If R is local and if the residue field of R is finite with q
elements, then we see that

q(M,ϕ,ψ) = qeR(M,ϕ,ψ)
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An example of a (2, 1)-periodic complex over a ring R is any triple of the form (M, 0, ψ)
where M is an R-module and ψ is an R-linear map. If the kernel and cokernel of ψ have
finite length, then we obtain

(2.2.1) eR(M, 0, ψ) = lengthR(Coker(ψ))− lengthR(Ker(ψ))
We state and prove the obligatory lemmas on these notations.

Lemma 2.3. LetR be a ring. Suppose that we have a short exact sequence of 2-periodic
complexes

0→ (M1, N1, ϕ1, ψ1)→ (M2, N2, ϕ2, ψ2)→ (M3, N3, ϕ3, ψ3)→ 0
If two out of three have cohomology modules of finite length so does the third and we
have

eR(M2, N2, ϕ2, ψ2) = eR(M1, N1, ϕ1, ψ1) + eR(M3, N3, ϕ3, ψ3).

Proof. We abbreviate A = (M1, N1, ϕ1, ψ1), B = (M2, N2, ϕ2, ψ2) and C =
(M3, N3, ϕ3, ψ3). We have a long exact cohomology sequence

. . .→ H1(C)→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ H1(C)→ . . .

This gives a finite exact sequence

0→ I → H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ K → 0
with 0 → K → H1(C) → I → 0 a filtration. By additivity of the length function
(Algebra, Lemma 52.3) we see the result. �

Lemma 2.4. LetR be a ring. If (M,N,ϕ, ψ) is a 2-periodic complex such that M , N
have finite length, then eR(M,N,ϕ, ψ) = lengthR(M) − lengthR(N). In particular, if
(M,ϕ,ψ) is a (2, 1)-periodic complex such thatM has finite length, then eR(M,ϕ,ψ) =
0.

Proof. This follows from the additity of Lemma 2.3 and the short exact sequence
0→ (M, 0, 0, 0)→ (M,N,ϕ, ψ)→ (0, N, 0, 0)→ 0. �

Lemma 2.5. Let R be a ring. Let f : (M,ϕ,ψ) → (M ′, ϕ′, ψ′) be a map of (2, 1)-
periodic complexes whose cohomology modules have finite length. If Ker(f) and Coker(f)
have finite length, then eR(M,ϕ,ψ) = eR(M ′, ϕ′, ψ′).

Proof. Apply the additivity of Lemma 2.3 and observe that (Ker(f), ϕ, ψ) and (Coker(f), ϕ′, ψ′)
have vanishing multiplicity by Lemma 2.4. �

3. Calculation of some multiplicities

To prove equality of certain cycles later on we need to compute some multiplicities. Our
main tool, besides the elementary lemmas on multiplicities given in the previous section,
will be Algebra, Lemma 121.7.

Lemma 3.1. LetR be a Noetherian local ring. LetM be a finiteR-module. Let x ∈ R.
Assume that

(1) dim(Supp(M)) ≤ 1, and
(2) dim(Supp(M/xM)) ≤ 0.

Write Supp(M) = {m, q1, . . . , qt}. Then

eR(M, 0, x) =
∑

i=1,...,t
ordR/qi(x)lengthRqi

(Mqi).
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Proof. We first make some preparatory remarks. The result of the lemma holds ifM
has finite length, i.e., if t = 0, because both the left hand side and the right hand side are
zero in this case, see Lemma 2.4. Also, if we have a short exact sequence 0→M →M ′ →
M ′′ → 0 of modules satisfying (1) and (2), then lemma for 2 out of 3 of these implies the
lemma for the third by the additivity of length (Algebra, Lemma 52.3) and additivty of
multiplicities (Lemma 2.3).
Denote Mi the image of M in Mqi , so Supp(Mi) = {m, qi}. The kernel and cokernel of
the mapM →

⊕
Mi have support {m} and hence have finite length. By our preparatory

remarks, it follows that it suffices to prove the lemma for each Mi. Thus we may assume
that Supp(M) = {m, q}. In this case we have a finite filtration M ⊃ qM ⊃ q2M ⊃
. . . ⊃ qnM = 0 by Algebra, Lemma 62.4. Again additivity shows that it suffices to prove
the lemma in the caseM is annihilated by q. In this case we can viewM as aR/q-module,
i.e., we may assume thatR is a Noetherian local domain of dimension 1 with fraction field
K. Dividing by the torsion submodule, i.e., by the kernel of M → M ⊗R K = V (the
torsion has finite length hence is handled by our preliminary remarks) we may assume
that M ⊂ V is a lattice (Algebra, Definition 121.3). Then x : M → M is injective
and lengthR(M/xM) = d(M,xM) (Algebra, Definition 121.5). Since lengthK(V ) =
dimK(V ) we see that det(x : V → V ) = xdimK(V ) and ordR(det(x : V → V )) =
dimK(V )ordR(x). Thus the desired equality follows from Algebra, Lemma 121.7 in this
case. �

Lemma 3.2. Let R be a Noetherian local ring. Let x ∈ R. If M is a finite Cohen-
Macaulay module over R with dim(Supp(M)) = 1 and dim(Supp(M/xM)) = 0, then

lengthR(M/xM) =
∑

i
lengthR(R/(x, qi))lengthRqi

(Mqi).

where q1, . . . , qt are the minimal primes of the support of M . If I ⊂ R is an ideal such
that x is a nonzerodivisor on R/I and dim(R/I) = 1, then

lengthR(R/(x, I)) =
∑

i
lengthR(R/(x, qi))lengthRqi

((R/I)qi)

where q1, . . . , qn are the minimal primes over I .

Proof. These are special cases of Lemma 3.1. �

Here is another case where we can determine the value of a multiplicity.

Lemma 3.3. Let R be a ring. Let M be an R-module. Let ϕ : M → M be an
endomorphism and n > 0 such that ϕn = 0 and such that Ker(ϕ)/ Im(ϕn−1) has finite
length as an R-module. Then

eR(M,ϕi, ϕn−i) = 0
for i = 0, . . . , n.

Proof. The cases i = 0, n are trivial as ϕ0 = idM by convention. Let us think of M
as an R[t]-module where multiplication by t is given by ϕ. Let us write Ki = Ker(ti :
M →M) and
ai = lengthR(Ki/t

n−iM), bi = lengthR(Ki/tKi+1), ci = lengthR(K1/t
iKi+1)

Boundary values are a0 = an = b0 = c0 = 0. The ci are integers for i < n as K1/t
iKi+1

is a quotient ofK1/t
n−1M which is assumed to have finite length. We will use frequently

that Ki ∩ tjM = tjKi+j . For 0 < i < n− 1 we have an exact sequence

0→ K1/t
n−i−1Kn−i → Ki+1/t

n−i−1M
t−→ Ki/t

n−iM → Ki/tKi+1 → 0
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By induction on i we conclude that ai and bi are integers for i < n and that

cn−i−1 − ai+1 + ai − bi = 0

For 0 < i < n− 1 there is a short exact sequence

0→ Ki/tKi+1 → Ki+1/tKi+2
ti−→ K1/t

i+1Ki+2 → K1/t
iKi+1 → 0

which gives
bi − bi+1 + ci+1 − ci = 0

Since b0 = c0 we conclude that bi = ci for i < n. Then we see that

a2 = a1 + bn−2 − b1, a3 = a2 + bn−3 − b2, . . .

It is straighforward to see that this implies ai = an−i as desired. �

Lemma 3.4. Let (R,m) be a Noetherian local ring. Let (M,ϕ,ψ) be a (2, 1)-periodic
complex over R with M finite and with cohomology groups of finite length over R. Let
x ∈ R be such that dim(Supp(M/xM)) ≤ 0. Then

eR(M,xϕ, ψ) = eR(M,ϕ,ψ)− eR(Im(ϕ), 0, x)

and
eR(M,ϕ, xψ) = eR(M,ϕ,ψ) + eR(Im(ψ), 0, x)

Proof. We will only prove the first formula as the second is proved in exactly the
same manner. Let M ′ = M [x∞] be the x-power torsion submodule of M . Consider the
short exact sequence 0→M ′ →M →M ′′ → 0. ThenM ′′ is x-power torsion free (More
on Algebra, Lemma 88.4). Since ϕ, ψ map M ′ into M ′ we obtain a short exact sequence

0→ (M ′, ϕ′, ψ′)→ (M,ϕ,ψ)→ (M ′′, ϕ′′, ψ′′)→ 0

of (2, 1)-periodic complexes. Also, we get a short exact sequence 0 → M ′ ∩ Im(ϕ) →
Im(ϕ)→ Im(ϕ′′)→ 0. We have eR(M ′, ϕ, ψ) = eR(M ′, xϕ, ψ) = eR(M ′∩Im(ϕ), 0, x) =
0 by Lemma 2.5. By additivity (Lemma 2.3) we see that it suffices to prove the lemma for
(M ′′, ϕ′′, ψ′′). This reduces us to the case discussed in the next paragraph.

Assume x : M → M is injective. In this case Ker(xϕ) = Ker(ϕ). On the other hand we
have a short exact sequence

0→ Im(ϕ)/x Im(ϕ)→ Ker(ψ)/ Im(xϕ)→ Ker(ψ)/ Im(ϕ)→ 0

This together with (2.2.1) proves the formula. �

4. Preparation for tame symbols

In this section we put some lemma that will help us define the tame symbol in the next
section.

Lemma 4.1. LetA be a Noetherian ring. Let m1, . . . ,mr be pairwise distinct maximal
ideals of A. For i = 1, . . . , r let ϕi : Ami → Bi be a ring map whose kernel and cokernel
are annihilated by a power of mi. Then there exists a ring map ϕ : A→ B such that

(1) the localization of ϕ at mi is isomorphic to ϕi, and
(2) Ker(ϕ) and Coker(ϕ) are annihilated by a power of m1 ∩ . . . ∩mr.

Moreover, if each ϕi is finite, injective, or surjective then so is ϕ.
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Proof. Set I = m1 ∩ . . . ∩mr. Set Ai = Ami and A′ =
∏
Ai. Then IA′ =

∏
miAi

and A → A′ is a flat ring map such that A/I ∼= A′/IA′. Thus we may use More on
Algebra, Lemma 89.16 to see that there exists an A-module map ϕ : A → B with ϕi
isomorphic to the localization of ϕ at mi. Then we can use the discussion in More on
Algebra, Remark 89.19 to endow B with an A-algebra structure matching the given A-
algebra structure on Bi. The final statement of the lemma follows easily from the fact
that Ker(ϕ)mi ∼= Ker(ϕi) and Coker(ϕ)mi ∼= Coker(ϕi). �

The following lemma is very similar to Algebra, Lemma 119.3.

Lemma 4.2. Let (R,m) be a Noetherian local ring of dimension 1. Let a, b ∈ R
be nonzerodivisors. There exists a finite ring extension R ⊂ R′ with R′/R annihilated
by a power of m and nonzerodivisors t, a′, b′ ∈ R′ such that a = ta′ and b = tb′ and
R′ = a′R′ + b′R′.

Proof. If a or b is a unit, then the lemma is true with R = R′. Thus we may assume
a, b ∈ m. Set I = (a, b). The idea is to blow up R in I . Instead of doing the algebraic
argument we work geometrically. LetX = Proj(

⊕
d≥0 I

d). By Divisors, Lemma 32.4 the
morphismX → Spec(R) is an isomorphism over the punctured spectrumU = Spec(R)\
{m}. Thus we may and do view U as an open subscheme of X . The morphism X →
Spec(R) is projective by Divisors, Lemma 32.13. Also, every generic point of X lies in
U , for example by Divisors, Lemma 32.10. It follows from Varieties, Lemma 17.2 that
X → Spec(R) is finite. Thus X = Spec(R′) is affine and R → R′ is finite. We have
Ra ∼= R′

a as U = D(a). Hence a power of a annihilates the finite R-module R′/R. As
m =

√
(a) we see that R′/R is annihilated by a power of m. By Divisors, Lemma 32.4 we

see that IR′ is a locally principal ideal. Since R′ is semi-local we see that IR′ is principal,
see Algebra, Lemma 78.7, say IR′ = (t). Then we have a = a′t and b = b′t and everything
is clear. �

Lemma 4.3. Let (R,m) be a Noetherian local ring of dimension 1. Let a, b ∈ R be
nonzerodivisors with a ∈ m. There exists an integer n = n(R, a, b) such that for a finite
ring extension R ⊂ R′ if b = amc for some c ∈ R′, then m ≤ n.

Proof. Choose a minimal prime q ⊂ R. Observe that dim(R/q) = 1, in particular
R/q is not a field. We can choose a discrete valuation ring A dominating R/q with the
same fraction field, see Algebra, Lemma 119.1. Observe that a and b map to nonzero ele-
ments of A as nonzerodivisors in R are not contained in q. Let v be the discrete valuation
on A. Then v(a) > 0 as a ∈ m. We claim n = v(b)/v(a) works.
Let R ⊂ R′ be given. Set A′ = A ⊗R R′. Since Spec(R′) → Spec(R) is surjective
(Algebra, Lemma 36.17) also Spec(A′) → Spec(A) is surjective (Algebra, Lemma 30.3).
Pick a prime q′ ⊂ A′ lying over (0) ⊂ A. Then A ⊂ A′′ = A′/q′ is a finite extension of
rings (again inducing a surjection on spectra). Pick a maximal ideal m′′ ⊂ A′′ lying over
the maximal ideal ofA and a discrete valuation ringA′′′ dominatingA′′

m′′ (see lemma cited
above). ThenA→ A′′′ is an extension of discrete valuation rings and we have b = amc in
A′′′. Thus v′′′(b) ≥ mv′′′(a). Since v′′′ = ev where e is the ramification index of A′′′/A,
we find that m ≤ n as desired. �

Lemma 4.4. Let (A,m) be a Noetherian local ring of dimension 1. Let r ≥ 2 and let
a1, . . . , ar ∈ A be nonzerodivisors not all units. Then there exist

(1) a finite ring extension A ⊂ B with B/A annihilated by a power of m,
(2) for each maximal ideal mj ⊂ B a nonzerodivisor πj ∈ Bj = Bmj , and
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(3) factorizations ai = ui,jπ
ei,j
j in Bj with ui,j ∈ Bj units and ei,j ≥ 0.

Proof. Since at least one ai is not a unit we find that m is not an associated prime of
A. Moreover, for any A ⊂ B as in the statement m is not an associated prime of B and
mj is not an associate prime of Bj . Keeping this in mind will help check the arguments
below.

First, we claim that it suffices to prove the lemma for r = 2. We will argue this by induc-
tion on r; we suggest the reader skip the proof. Suppose we are given A ⊂ B and πj in
Bj = Bmj and factorizations ai = ui,jπ

ei,j
j for i = 1, . . . , r − 1 in Bj with ui,j ∈ Bj

units and ei,j ≥ 0. Then by the case r = 2 for πj and ar in Bj we can find extensions
Bj ⊂ Cj and for every maximal ideal mj,k ofCj a nonzerodivisor πj,k ∈ Cj,k = (Cj)mj,k
and factorizations

πj = vj,kπ
fj,k
j,k and ar = wj,kπ

gj,k
j,k

as in the lemma. There exists a unique finite extension B ⊂ C with C/B annihilated
by a power of m such that Cj ∼= Cmj for all j , see Lemma 4.1. The maximal ideals of C
correspond 1-to-1 to the maximal ideals mj,k in the localizations and in these localizations
we have

ai = ui,jπ
ei,j
j = ui,jv

ei,j
j,k π

ei,jfj,k
j,k

for i ≤ r − 1. Since ar factors correctly too the proof of the induction step is complete.

Proof of the case r = 2. We will use induction on

` = min(lengthA(A/a1A), lengthA(A/a2A)).

If ` = 0, then either a1 or a2 is a unit and the lemma holds with A = B. Thus we may
and do assume ` > 0.

Suppose we have a finite extension of rings A ⊂ A′ such that A′/A is annihilated by a
power of m and such that m is not an associated prime of A′. Let m1, . . . ,mr ⊂ A′ be
the maximal ideals and set A′

i = A′
mi . If we can solve the problem for a1, a2 in each A′

i,
then we can apply Lemma 4.1 to produce a solution for a1, a2 in A. Choose x ∈ {a1, a2}
such that ` = lengthA(A/xA). By Lemma 2.5 and (2.2.1) we have lengthA(A/xA) =
lengthA(A′/xA′). On the other hand, we have

lengthA(A′/xA′) =
∑

[κ(mi) : κ(m)]lengthA′
i
(A′

i/xA
′
i)

by Algebra, Lemma 52.12. Since x ∈ m we see that each term on the right hand side is
positive. We conclude that the induction hypothesis applies to a1, a2 in each A′

i if r > 1
or if r = 1 and [κ(m1) : κ(m)] > 1. We conclude that we may assume each A′ as above is
local with the same residue field as A.

Applying the discussion of the previous paragraph, we may replace A by the ring con-
structed in Lemma 4.2 for a1, a2 ∈ A. Then sinceA is local we find, after possibly switch-
ing a1 and a2, that a2 ∈ (a1). Write a2 = am1 c with m > 0 maximal. In fact, by Lemma
4.3 we may assumem is maximal even after replacingA by any finite extensionA ⊂ A′ as
in the previous paragraph. If c is a unit, then we are done. If not, then we replaceA by the
ring constructed in Lemma 4.2 for a1, c ∈ A. Then either (1) c = a1c

′ or (2) a1 = ca′
1. The

first case cannot happen since it would give a2 = am+1
1 c′ contradicting the maximality

of m. In the second case we get a1 = ca′
1 and a2 = cm+1(a′

1)m. Then it suffices to prove
the lemma for A and c, a′

1. If a′
1 is a unit we’re done and if not, then lengthA(A/cA) < `

because cA is a strictly bigger ideal than a1A. Thus we win by induction hypothesis. �
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5. Tame symbols

Consider a Noetherian local ring (A,m) of dimension 1. We denote Q(A) the total ring
of fractions of A, see Algebra, Example 9.8. The tame symbol will be a map

∂A(−,−) : Q(A)∗ ×Q(A)∗ −→ κ(m)∗

satisfying the following properties:
(1) ∂A(f, gh) = ∂A(f, g)∂A(f, h) for f, g, h ∈ Q(A)∗,
(2) ∂A(f, g)∂A(g, f) = 1 for f, g ∈ Q(A)∗,
(3) ∂A(f, 1− f) = 1 for f ∈ Q(A)∗ such that 1− f ∈ Q(A)∗,
(4) ∂A(aa′, b) = ∂A(a, b)∂A(a′, b) and∂A(a, bb′) = ∂A(a, b)∂A(a, b′) fora, a′, b, b′ ∈

A nonzerodivisors,
(5) ∂A(b, b) = (−1)m with m = lengthA(A/bA) for b ∈ A a nonzerodivisor,
(6) ∂A(u, b) = um mod m with m = lengthA(A/bA) for u ∈ A a unit and b ∈ A

a nonzerodivisor, and
(7) ∂A(a, b − a)∂A(b, b) = ∂A(b, b − a)∂A(a, b) for a, b ∈ A such that a, b, b − a

are nonzerodivisors.
Since it is easier to work with elements ofAwe will often think of ∂A as a map defined on
pairs of nonzerodivisors of A satisfying (4), (5), (6), (7). It is an exercise to see that setting

∂A(a
b
,
c

d
) = ∂A(a, c)∂A(a, d)−1∂A(b, c)−1∂A(b, d)

we get a well defined map Q(A)∗ × Q(A)∗ → κ(m)∗ satisfying (1), (2), (3) as well as the
other properties.
We do not claim there is a unique map with these properties. Instead, we will give a recipe
for constructing such a map. Namely, given a1, a2 ∈ A nonzerodivisors, we choose a ring
extension A ⊂ B and local factorizations as in Lemma 4.4. Then we define

(5.0.1) ∂A(a1, a2) =
∏

j
Normκ(mj)/κ(m)((−1)e1,je2,ju

e2,j
1,j u

−e1,j
2,j mod mj)mj

wheremj = lengthBj (Bj/πjBj) and the product is taken over the maximal idealsm1, . . . ,mr
of B.

Lemma 5.1. The formula (5.0.1) determines a well defined element of κ(m)∗. In other
words, the right hand side does not depend on the choice of the local factorizations or the
choice of B.

Proof. Independence of choice of factorizations. Suppose we have a Noetherian 1-
dimensional local ring B, elements a1, a2 ∈ B, and nonzerodivisors π, θ such that we can
write

a1 = u1π
e1 = v1θ

f1 , a2 = u2π
e2 = v2θ

f2

with ei, fi ≥ 0 integers and ui, vi units in B. Observe that this implies

ae2
1 = ue2

1 u
−e1
2 ae1

2 , af2
1 = vf2

1 v−f1
2 af1

2

On the other hand, setting m = lengthB(B/πB) and k = lengthB(B/θB) we find
e2m = lengthB(B/a2B) = f2k. Expanding ae2m

1 = af2k
1 using the above we find

(ue2
1 u

−e1
2 )m = (vf2

1 v−f1
2 )k

This proves the desired equality up to signs. To see the signs work out we have to show
me1e2 is even if and only if kf1f2 is even. This follows as bothme2 = kf2 andme1 = kf1
(same argument as above).
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Independence of choice of B. Suppose given two extensions A ⊂ B and A ⊂ B′ as in
Lemma 4.4. Then

C = (B ⊗A B′)/(m-power torsion)
will be a third one. Thus we may assume we have A ⊂ B ⊂ C and factorizations over
the local rings of B and we have to show that using the same factorizations over the local
rings of C gives the same element of κ(m). By transitivity of norms (Fields, Lemma 20.5)
this comes down to the following problem: if B is a Noetherian local ring of dimension 1
and π ∈ B is a nonzerodivisor, then

λm =
∏

Normκk/κ(λ)mk

Here we have used the following notation: (1) κ is the residue field ofB, (2) λ is an element
of κ, (3) mk ⊂ C are the maximal ideals of C , (4) κk = κ(mk) is the residue field of
Ck = Cmk , (5) m = lengthB(B/πB), and (6) mk = lengthCk(Ck/πCk). The displayed
equality holds because Normκk/κ(λ) = λ[κk:κ] as λ ∈ κ and because m =

∑
mk[κk :

κ]. First, we have m = lengthB(B/xB) = lengthB(C/πC) by Lemma 2.5 and (2.2.1).
Finally, we have lengthB(C/πC) =

∑
mk[κk : κ] by Algebra, Lemma 52.12. �

Lemma 5.2. The tame symbol (5.0.1) satisfies (4), (5), (6), (7) and hence gives a map
∂A : Q(A)∗ ×Q(A)∗ → κ(m)∗ satisfying (1), (2), (3).

Proof. Let us prove (4). Let a1, a2, a3 ∈ A be nonzerodivisors. Choose A ⊂ B as in
Lemma 4.4 for a1, a2, a3. Then the equality

∂A(a1a2, a3) = ∂A(a1, a3)∂A(a2, a3)

follows from the equality

(−1)(e1,j+e2,j)e3,j (u1,ju2,j)e3,ju
−e1,j−e2,j
3,j = (−1)e1,je3,ju

e3,j
1,j u

−e1,j
3,j (−1)e2,je3,ju

e3,j
2,j u

−e2,j
3,j

in Bj . Properties (5) and (6) are equally immediate.

Let us prove (7). Let a1, a2, a1−a2 ∈ A be nonzerodivisors and set a3 = a1−a2. Choose
A ⊂ B as in Lemma 4.4 for a1, a2, a3. Then it suffices to show

(−1)e1,je2,j+e1,je3,j+e2,je3,j+e2,ju
e2,j−e3,j
1,j u

e3,j−e1,j
2,j u

e1,j−e2,j
3,j mod mj = 1

This is clear if e1,j = e2,j = e3,j . Say e1,j > e2,j . Then we see that e3,j = e2,j because
a3 = a1−a2 and we see that u3,j has the same residue class as−u2,j . Hence the formula is
true – the signs work out as well and this verification is the reason for the choice of signs
in (5.0.1). The other cases are handled in exactly the same manner. �

Lemma 5.3. Let (A,m) be a Noetherian local ring of dimension 1. Let A ⊂ B be a
finite ring extension withB/A annihilated by a power of m and m not an associated prime
of B. For a, b ∈ A nonzerodivisors we have

∂A(a, b) =
∏

Normκ(mj)/κ(m)(∂Bj (a, b))

where the product is over the maximal ideals mj of B and Bj = Bmj .

Proof. Choose Bj ⊂ Cj as in Lemma 4.4 for a, b. By Lemma 4.1 we can choose a
finite ring extensionB ⊂ C withCj ∼= Cmj for all j. Let mj,k ⊂ C be the maximal ideals
of C lying over mj . Let

a = uj,kπ
fj,k
j,k , b = vj,kπ

gj,k
j,k
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be the local factorizations which exist by our choice of Cj ∼= Cmj . By definition we have

∂A(a, b) =
∏

j,k
Normκ(mj,k)/κ(m)((−1)fj,kgj,kugj,kj,k v

−fj,k
j,k mod mj,k)mj,k

and

∂Bj (a, b) =
∏

k
Normκ(mj,k)/κ(mj)((−1)fj,kgj,kugj,kj,k v

−fj,k
j,k mod mj,k)mj,k

The result follows by transitivity of norms for κ(mj,k)/κ(mj)/κ(m), see Fields, Lemma
20.5. �

Lemma 5.4. Let (A,m, κ)→ (A′,m′, κ′) be a local homomorphism of Noetherian lo-
cal rings. AssumeA→ A′ is flat and dim(A) = dim(A′) = 1. Setm = lengthA′(A′/mA′).
For a1, a2 ∈ A nonzerodivisors ∂A(a1, a2)m maps to ∂A′(a1, a2) via κ→ κ′.

Proof. If a1, a2 are both units, then ∂A(a1, a2) = 1 and ∂A′(a1, a2) = 1 and the
result is true. If not, then we can choose a ring extension A ⊂ B and local factorizations
as in Lemma 4.4. Denote m1, . . . ,mm be the maximal ideals of B. Let m1, . . . ,mm be
the maximal ideals of B with residue fields κ1, . . . , κm. For each j ∈ {1, . . . ,m} denote
πj ∈ Bj = Bmj a nonzerodivisor such that we have factorizations ai = ui,jπ

ei,j
j as in the

lemma. By definition we have

∂A(a1, a2) =
∏

j
Normκj/κ((−1)e1,je2,ju

e2,j
1,j u

−e1,j
2,j mod mj)mj

where mj = lengthBj (Bj/πjBj).

Set B′ = A′ ⊗A B. Since A′ is flat over A we see that A′ ⊂ B′ is a ring extension with
B′/A′ annihilated by a power of m′. Let

m′
j,l, l = 1, . . . , nj

be the maximal ideals of B′ lying over mj . Denote κ′
j,l the residue field of m′

j,l. Denote
B′
j,l the localization of B′ at m′

j,l. As factorizations of a1 and a2 in B′
j,l we use the image

of the factorizations ai = ui,jπ
ei,j
j given to us in Bj . By definition we have

∂A′(a1, a2) =
∏

j,l
Normκ′

j,l
/κ′((−1)e1,je2,ju

e2,j
1,j u

−e1,j
2,j mod m′

j,l)m
′
j,l

where m′
j,l = lengthB′

j,l
(B′

j,l/πjB
′
j,l).

Comparing the formulae above we see that it suffices to show that for each j and for any
unit u ∈ Bj we have

(5.4.1)
(
Normκj/κ(u mod mj)mj

)m =
∏

l
Normκ′

j,l
/κ′(u mod m′

j,l)m
′
j,l

in κ′. We are going to use the construction of determinants of endomorphisms of finite
length modules in More on Algebra, Section 120 to prove this. Set M = Bj/πjBj . By
More on Algebra, Lemma 120.2 we have

Normκj/κ(u mod mj)mj = detκ(u : M →M)

Thus, by More on Algebra, Lemma 120.3, the left hand side of (5.4.1) is equal to detκ′(u :
M ⊗A A′ →M ⊗A A′). We have an isomorphism

M ⊗A A′ = (Bj/πjBj)⊗A A′ =
⊕

l
B′
j,l/πjB

′
j,l



6. A KEY LEMMA 3609

of A′-modules. Setting M ′
l = B′

j,l/πjB
′
j,l we see that Normκ′

j,l
/κ′(u mod m′

j,l)
m′
j,l =

detκ′(uj : M ′
l → M ′

l ) by More on Algebra, Lemma 120.2 again. Hence (5.4.1) holds by
multiplicativity of the determinant construction, see More on Algebra, Lemma 120.1. �

6. A key lemma

In this section we apply the results above to prove Lemma 6.3. This lemma is a low degree
case of the statement that there is a complex for Milnor K-theory similar to the Gersten-
Quillen complex in Quillen’s K-theory. See Remark 6.4.

Lemma 6.1. Let (A,m) be a 2-dimensional Noetherian local ring. Let t ∈ m be a
nonzerodivisor. Say V (t) = {m, q1, . . . , qr}. Let Aqi ⊂ Bi be a finite ring extension
with Bi/Aqi annihilated by a power of t. Then there exists a finite extension A ⊂ B of
local rings identifying residue fields withBi ∼= Bqi andB/A annihilated by a power of t.

Proof. Choose n > 0 such thatBi ⊂ t−nAqi . LetM ⊂ t−nA, resp.M ′ ⊂ t−2nA be
the A-submodule consisting of elements mapping to Bi in t−nAqi , resp. t−2nAqi . Then
M ⊂M ′ are finite A-modules as A is Noetherian and Mqi = M ′

qi = Bi as localization is
exact. ThusM ′/M is annihilated by mc for some c > 0. Observe thatM ·M ⊂M ′ under
the multiplication t−nA× t−nA→ t−2nA. HenceB = A+mc+1M is a finiteA-algebra
with the correct localizations. We omit the verification thatB is local with maximal ideal
m + mc+1M . �

Lemma 6.2. Let (A,m) be a 2-dimensional Noetherian local ring. Let a, b ∈ A be
nonzerodivisors. Then we have∑

ordA/q(∂Aq
(a, b)) = 0

where the sum is over the height 1 primes q of A.

Proof. If q is a height 1 prime ofA such thata, bmap to a unit ofAq, then∂Aq
(a, b) =

1. Thus the sum is finite. In fact, if V (ab) = {m, q1, . . . , qr} then the sum is over
i = 1, . . . , r. For each i we pick an extension Aqi ⊂ Bi as in Lemma 4.4 for a, b. By
Lemma 6.1 with t = ab and the given list of primes we may assume we have a finite local
extension A ⊂ B with B/A annihilated by a power of ab and such that for each i the
Bqi
∼= Bi. Observe that if qi,j are the primes of B lying over qi then we have

ordA/qi(∂Aqi
(a, b)) =

∑
j

ordB/qi,j (∂Bqi,j
(a, b))

by Lemma 5.3 and Algebra, Lemma 121.8. Thus we may replace A by B and reduce to the
case discussed in the next paragraph.

Assume for each i there is a nonzerodivisor πi ∈ Aqi and units ui, vi ∈ Aqi such that for
some integers ei, fi ≥ 0 we have

a = uiπ
ei
i , b = viπ

fi
i

in Aqi . Setting mi = lengthAqi
(Aqi/πi) we have ∂Aqi

(a, b) = ((−1)eifiufii v
−ei
i )mi by

definition. Since a, b are nonzerodivisors the (2, 1)-periodic complex (A/(ab), a, b) has
vanishing cohomology. Denote Mi the image of A/(ab) in Aqi/(ab). Then we have a
map

A/(ab) −→
⊕

Mi
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whose kernel and cokernel are supported in {m} and hence have finite length. Thus we
see that ∑

eA(Mi, a, b) = 0

by Lemma 2.5. Hence it suffices to show eA(Mi, a, b) = −ordA/qi(∂Aqi
(a, b)).

Let us prove this first, in case πi, ui, vi are the images of elements πi, ui, vi ∈ A (using the
same symbols should not cause any confusion). In this case we get

eA(Mi, a, b) = eA(Mi, uiπ
ei
i , viπ

fi
i )

= eA(Mi, π
ei
i , π

fi
i )− eA(πeii Mi, 0, ui) + eA(πfii Mi, 0, vi)

= 0− fimiordA/qi(ui) + eimiordA/qi(vi)

= −miordA/qi(u
fi
i v

−ei
i ) = −ordA/qi(∂Aqi

(a, b))

The second equality holds by Lemma 3.4. Observe that Mi ⊂ (Mi)qi = Aqi/(π
ei+fi
i )

and (πeii Mi)qi ∼= Aqi/π
fi
i and (πfii Mi)qi ∼= Aqi/π

ei
i . The 0 in the third equality comes

from Lemma 3.3 and the other two terms come from Lemma 3.1. The last two equalities
follow from multiplicativity of the order function and from the definition of our tame
symbol.

In general, we may first choose c ∈ A, c 6∈ qi such that cπi ∈ A. After replacing πi by
cπi and ui by c−eiui and vi by c−fivi we may and do assume πi is in A. Next, choose an
c ∈ A, c 6∈ qi with cui, cvi ∈ A. Then we observe that

eA(Mi, ca, cb) = eA(Mi, a, b)− eA(aMi, 0, c) + eA(bMi, 0, c)

by Lemma 3.1. On the other hand, we have

∂Aqi
(ca, cb) = cmi(fi−ei)∂Aqi

(a, b)

in κ(qi)∗ because c is a unit in Aqi . The arguments in the previous paragraph show that
eA(Mi, ca, cb) = −ordA/qi(∂Aqi

(ca, cb)). Thus it suffices to prove

eA(aMi, 0, c) = ordA/qi(c
mifi) and eA(bMi, 0, c) = ordA/qi(c

miei)

and this follows from Lemma 3.1 by the description (see above) of what happens when we
localize at qi. �

Lemma 6.3 (Key Lemma). Let A be a 2-dimensional Noetherian local domain with
fraction field K. Let f, g ∈ K∗. Let q1, . . . , qt be the height 1 primes q of A such that
either f or g is not an element of A∗

q. Then we have∑
i=1,...,t

ordA/qi(∂Aqi
(f, g)) = 0

We can also write this as ∑
height(q)=1

ordA/q(∂Aq
(f, g)) = 0

since at any height 1 prime q of A where f, g ∈ A∗
q we have ∂Aq

(f, g) = 1.

Proof. Since the tame symbols ∂Aq
(f, g) are bilinear and the order functions ordA/q

are additive it suffices to prove the formula when f and g are elements of A. This case is
proven in Lemma 6.2. �
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Remark 6.4 (Milnor K-theory). For a field k let us denote KM
∗ (k) the quotient of

the tensor algebra on k∗ divided by the two-sided ideal generated by the elements x⊗1−x
for x ∈ k \ {0, 1}. Thus KM

0 (k) = Z, KM
1 (k) = k∗, and

KM
2 (k) = k∗ ⊗Z k

∗/〈x⊗ 1− x〉
If A is a discrete valuation ring with fraction field F = Frac(A) and residue field κ, there
is a tame symbol

∂A : KM
i+1(F )→ KM

i (κ)
defined as in Section 5; see [?]. More generally, this map can be extended to the case where
A is an excellent local domain of dimension 1 using normalization and norm maps onKM

i ,
see [?]; presumably the method in Section 5 can be used to extend the construction of the
tame symbol ∂A to arbitrary Noetherian local domains A of dimension 1. Next, let X be
a Noetherian scheme with a dimension function δ. Then we can use these tame symbols
to get the arrows in the following:⊕

δ(x)=j+1
KM
i+1(κ(x)) −→

⊕
δ(x)=j

KM
i (κ(x)) −→

⊕
δ(x)=j−1

KM
i−1(κ(x))

However, it is not clear, that the composition is zero, i.e., that we obtain a complex of
abelian groups. For excellent X this is shown in [?]. When i = 1 and j arbitrary, this
follows from Lemma 6.3.

7. Setup

We will throughout work over a locally Noetherian universally catenary base S endowed
with a dimension function δ. Although it is likely possible to generalize (parts of) the
discussion in the chapter, it seems that this is a good first approximation. It is exactly the
generality discussed in [?]. We usually do not assume our schemes are separated or quasi-
compact. Many interesting algebraic stacks are non-separated and/or non-quasi-compact
and this is a good case study to see how to develop a reasonable theory for those as well.
In order to reference these hypotheses we give it a number.

Situation 7.1. Here S is a locally Noetherian, and universally catenary scheme.
Moreover, we assume S is endowed with a dimension function δ : S −→ Z.

See Morphisms, Definition 17.1 for the notion of a universally catenary scheme, and see
Topology, Definition 20.1 for the notion of a dimension function. Recall that any locally
Noetherian catenary scheme locally has a dimension function, see Properties, Lemma 11.3.
Moreover, there are lots of schemes which are universally catenary, see Morphisms, Lemma
17.5.

Let (S, δ) be as in Situation 7.1. Any scheme X locally of finite type over S is locally
Noetherian and catenary. In fact, X has a canonical dimension function

δ = δX/S : X −→ Z
associated to (f : X → S, δ) given by the rule δX/S(x) = δ(f(x)) + trdegκ(f(x))κ(x).
See Morphisms, Lemma 52.3. Moreover, if h : X → Y is a morphism of schemes locally
of finite type over S , and x ∈ X , y = h(x), then obviously δX/S(x) = δY/S(y) +
trdegκ(y)κ(x). We will freely use this function and its properties in the following.

Here are the basic examples of setups as above. In fact, the main interest lies in the case
where the base is the spectrum of a field, or the case where the base is the spectrum of a
Dedekind ring (e.g. Z, or a discrete valuation ring).



3612 42. CHOW HOMOLOGY AND CHERN CLASSES

Example 7.2. Here S = Spec(k) and k is a field. We set δ(pt) = 0 where pt indicates
the unique point of S. The pair (S, δ) is an example of a situation as in Situation 7.1 by
Morphisms, Lemma 17.5.

Example 7.3. Here S = Spec(A), where A is a Noetherian domain of dimension
1. For example we could consider A = Z. We set δ(p) = 0 if p is a maximal ideal and
δ(p) = 1 if p = (0) corresponds to the generic point. This is an example of Situation 7.1
by Morphisms, Lemma 17.5.

Example 7.4. Here S is a Cohen-Macaulay scheme. Then S is universally catenary
by Morphisms, Lemma 17.5. We set δ(s) = −dim(OS,s). If s′  s is a nontrivial special-
ization of points of S , then OS,s′ is the localization of OS,s at a nonmaximal prime ideal
p ⊂ OS,s, see Schemes, Lemma 13.2. Thus dim(OS,s) = dim(OS,s′) + dim(OS,s/p) >
dim(OS,s′) by Algebra, Lemma 104.4. Hence δ(s′) > δ(s). If s′  s is an immedi-
ate specialization, then there is no prime ideal strictly between p and ms and we find
δ(s′) = δ(s) + 1. Thus δ is a dimension function. In other words, the pair (S, δ) is
an example of Situation 7.1.

If S is Jacobson and δ sends closed points to zero, then δ is the function sending a point to
the dimension of its closure.

Lemma 7.5. Let (S, δ) be as in Situation 7.1. Assume in addition S is a Jacobson
scheme, and δ(s) = 0 for every closed point s of S. Let X be locally of finite type over
S. Let Z ⊂ X be an integral closed subscheme and let ξ ∈ Z be its generic point. The
following integers are the same:

(1) δX/S(ξ),
(2) dim(Z), and
(3) dim(OZ,z) where z is a closed point of Z.

Proof. Let X → S , ξ ∈ Z ⊂ X be as in the lemma. Since X is locally of finite
type over S we see that X is Jacobson, see Morphisms, Lemma 16.9. Hence closed points
ofX are dense in every closed subset of Z and map to closed points of S. Hence given any
chain of irreducible closed subsets of Z we can end it with a closed point of Z. It follows
that dim(Z) = supz(dim(OZ,z) (see Properties, Lemma 10.3) where z ∈ Z runs over the
closed points of Z. Note that dim(OZ,z) = δ(ξ)− δ(z) by the properties of a dimension
function. For each closed z ∈ Z the field extension κ(z)/κ(f(z)) is finite, see Morphisms,
Lemma 16.8. Hence δX/S(z) = δ(f(z)) = 0 for z ∈ Z closed. It follows that all three
integers are equal. �

In the situation of the lemma above the value of δ at the generic point of a closed ir-
reducible subset is the dimension of the irreducible closed subset. However, in general
we cannot expect the equality to hold. For example if S = Spec(C[[t]]) and X =
Spec(C((t))) then we would get δ(x) = 1 for the unique point of X , but dim(X) = 0.
Still we want to think of δX/S as giving the dimension of the irreducible closed sub-
schemes. Thus we introduce the following terminology.

Definition 7.6. Let (S, δ) as in Situation 7.1. For any scheme X locally of finite
type over S and any irreducible closed subset Z ⊂ X we define

dimδ(Z) = δ(ξ)
where ξ ∈ Z is the generic point of Z. We will call this the δ-dimension of Z. If Z is a
closed subscheme of X , then we define dimδ(Z) as the supremum of the δ-dimensions of
its irreducible components.
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8. Cycles

Since we are not assuming our schemes are quasi-compact we have to be a little careful
when defining cycles. We have to allow infinite sums because a rational function may
have infinitely many poles for example. In any case, if X is quasi-compact then a cycle is
a finite sum as usual.

Definition 8.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let k ∈ Z.

(1) A cycle on X is a formal sum

α =
∑

nZ [Z]

where the sum is over integral closed subschemes Z ⊂ X , each nZ ∈ Z, and the
collection {Z;nZ 6= 0} is locally finite (Topology, Definition 28.4).

(2) A k-cycle on X is a cycle

α =
∑

nZ [Z]

where nZ 6= 0⇒ dimδ(Z) = k.
(3) The abelian group of all k-cycles on X is denoted Zk(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of in-
tegral closed subschemes of δ-dimension k. Addition of k-cycles α =

∑
nZ [Z] and

β =
∑
mZ [Z] is given by

α+ β =
∑

(nZ +mZ)[Z],

i.e., by adding the coefficients.

Remark 8.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let k ∈ Z. Then we can write

Zk(X) =
⊕′

δ(x)=k
KM

0 (κ(x)) ⊂
⊕

δ(x)=k
KM

0 (κ(x))

with the following notation and conventions:
(1) KM

0 (κ(x)) = Z is the degree 0 part of the Milnor K-theory of the residue field
κ(x) of the point x ∈ X (see Remark 6.4), and

(2) the direct sum on the right is over all points x ∈ X with δ(x) = k,
(3) the notation

⊕′
x signifies that we consider the subgroup consisting of locally

finite elements; namely, elements
∑
x nx such that for every quasi-compact open

U ⊂ X the set of x ∈ U with nx 6= 0 is finite.

Definition 8.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. The support of a cycle α =

∑
nZ [Z] on X is

Supp(α) =
⋃

nZ 6=0
Z ⊂ X

Since the collection {Z;nZ 6= 0} is locally finite we see that Supp(α) is a closed subset of
X . If α is a k-cycle, then every irreducible component Z of Supp(α) has δ-dimension k.

Definition 8.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. A cycle α on X is effective if it can be written as α =

∑
nZ [Z] with nZ ≥ 0 for all Z.

The set of all effective cycles is a monoid because the sum of two effective cycles is effective,
but it is not a group (unless X = ∅).
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9. Cycle associated to a closed subscheme

Lemma 9.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let Z ⊂ X be a closed subscheme.

(1) Let Z ′ ⊂ Z be an irreducible component and let ξ ∈ Z ′ be its generic point.
Then

lengthOX,ξ
OZ,ξ <∞

(2) If dimδ(Z) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point of an
irreducible component of Z.

Proof. Let Z ′ ⊂ Z , ξ ∈ Z ′ be as in (1). Then dim(OZ,ξ) = 0 (for example by
Properties, Lemma 10.3). Hence OZ,ξ is Noetherian local ring of dimension zero, and
hence has finite length over itself (see Algebra, Proposition 60.7). Hence, it also has finite
length overOX,ξ , see Algebra, Lemma 52.5.

Assume ξ ∈ Z and δ(ξ) = k. Consider the closure Z ′ = {ξ}. It is an irreducible closed
subscheme with dimδ(Z ′) = k by definition. Since dimδ(Z) = k it must be an irreducible
component of Z. Hence we see (2) holds. �

Definition 9.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z ⊂ X be a closed subscheme.

(1) For any irreducible componentZ ′ ⊂ Z with generic point ξ the integermZ′,Z =
lengthOX,ξ

OZ,ξ (Lemma 9.1) is called the multiplicity of Z ′ in Z.
(2) Assume dimδ(Z) ≤ k. The k-cycle associated to Z is

[Z]k =
∑

mZ′,Z [Z ′]

where the sum is over the irreducible components of Z of δ-dimension k. (This
is a k-cycle by Divisors, Lemma 26.1.)

It is important to note that we only define [Z]k if the δ-dimension of Z does not exceed
k. In other words, by convention, if we write [Z]k then this implies that dimδ(Z) ≤ k.

10. Cycle associated to a coherent sheaf

Lemma 10.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let F be a coherentOX -module.

(1) The collection of irreducible components of the support of F is locally finite.
(2) Let Z ′ ⊂ Supp(F) be an irreducible component and let ξ ∈ Z ′ be its generic

point. Then
lengthOX,ξ

Fξ <∞
(3) If dimδ(Supp(F)) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point of an

irreducible component of Supp(F).

Proof. By Cohomology of Schemes, Lemma 9.7 the supportZ ofF is a closed subset
of X . We may think of Z as a reduced closed subscheme of X (Schemes, Lemma 12.4).
Hence (1) follows from Divisors, Lemma 26.1 applied to Z and (3) follows from Lemma
9.1 applied to Z.
Let ξ ∈ Z ′ be as in (2). In this case for any specialization ξ′  ξ in X we have Fξ′ = 0.
Recall that the non-maximal primes ofOX,ξ correspond to the points ofX specializing to
ξ (Schemes, Lemma 13.2). HenceFξ is a finiteOX,ξ-module whose support is {mξ}. Hence
it has finite length by Algebra, Lemma 62.3. �
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Definition 10.2. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Let F be a coherentOX -module.

(1) For any irreducible component Z ′ ⊂ Supp(F) with generic point ξ the integer
mZ′,F = lengthOX,ξ

Fξ (Lemma 10.1) is called the multiplicity of Z ′ in F .
(2) Assume dimδ(Supp(F)) ≤ k. The k-cycle associated to F is

[F ]k =
∑

mZ′,F [Z ′]

where the sum is over the irreducible components of Supp(F) of δ-dimension k.
(This is a k-cycle by Lemma 10.1.)

It is important to note that we only define [F ]k if F is coherent and the δ-dimension of
Supp(F) does not exceed k. In other words, by convention, if we write [F ]k then this
implies that F is coherent on X and dimδ(Supp(F)) ≤ k.

Lemma 10.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let Z ⊂ X be a closed subscheme. If dimδ(Z) ≤ k, then [Z]k = [OZ ]k.

Proof. This is because in this case the multiplicities mZ′,Z and mZ′,OZ
agree by

definition. �

Lemma 10.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let 0 → F → G → H → 0 be a short exact sequence of coherent sheaves on X . Assume
that the δ-dimension of the supports of F , G , andH is ≤ k. Then [G]k = [F ]k + [H]k.

Proof. Follows immediately from additivity of lengths, see Algebra, Lemma 52.3.
�

11. Preparation for proper pushforward

Lemma 11.1. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let f : X → Y be a morphism. Assume X , Y integral and dimδ(X) = dimδ(Y ).
Then either f(X) is contained in a proper closed subscheme of Y , or f is dominant and
the extension of function fields R(X)/R(Y ) is finite.

Proof. The closure f(X) ⊂ Y is irreducible as X is irreducible (Topology, Lemmas
8.2 and 8.3). If f(X) 6= Y , then we are done. If f(X) = Y , then f is dominant and by
Morphisms, Lemma 8.6 we see that the generic point ηY ofY is in the image of f . Of course
this implies that f(ηX) = ηY , where ηX ∈ X is the generic point of X . Since δ(ηX) =
δ(ηY ) we see that R(Y ) = κ(ηY ) ⊂ κ(ηX) = R(X) is an extension of transcendence
degree 0. Hence R(Y ) ⊂ R(X) is a finite extension by Morphisms, Lemma 51.7 (which
applies by Morphisms, Lemma 15.8). �

Lemma 11.2. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let f : X → Y be a morphism. Assume f is quasi-compact, and {Zi}i∈I is a locally
finite collection of closed subsets of X . Then {f(Zi)}i∈I is a locally finite collection of
closed subsets of Y .

Proof. Let V ⊂ Y be a quasi-compact open subset. Since f is quasi-compact the open
f−1(V ) is quasi-compact. Hence the set {i ∈ I | Zi ∩ f−1(V ) 6= ∅} is finite by a simple
topological argument which we omit. Since this is the same as the set

{i ∈ I | f(Zi) ∩ V 6= ∅} = {i ∈ I | f(Zi) ∩ V 6= ∅}
the lemma is proved. �
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12. Proper pushforward

Definition 12.1. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type
over S. Let f : X → Y be a morphism. Assume f is proper.

(1) Let Z ⊂ X be an integral closed subscheme with dimδ(Z) = k. We define

f∗[Z] =
{

0 if dimδ(f(Z)) < k,
deg(Z/f(Z))[f(Z)] if dimδ(f(Z)) = k.

Here we think of f(Z) ⊂ Y as an integral closed subscheme. The degree of Z
over f(Z) is finite if dimδ(f(Z)) = dimδ(Z) by Lemma 11.1.

(2) Let α =
∑
nZ [Z] be a k-cycle on X . The pushforward of α as the sum

f∗α =
∑

nZf∗[Z]

where each f∗[Z] is defined as above. The sum is locally finite by Lemma 11.2
above.

By definition the proper pushforward of cycles

f∗ : Zk(X) −→ Zk(Y )

is a homomorphism of abelian groups. It turns X 7→ Zk(X) into a covariant functor
on the category of schemes locally of finite type over S with morphisms equal to proper
morphisms.

Lemma 12.2. Let (S, δ) be as in Situation 7.1. LetX , Y , andZ be locally of finite type
over S. Let f : X → Y and g : Y → Z be proper morphisms. Then g∗ ◦ f∗ = (g ◦ f)∗ as
maps Zk(X)→ Zk(Z).

Proof. LetW ⊂ X be an integral closed subscheme of dimension k. ConsiderW ′ =
f(W ) ⊂ Y and W ′′ = g(f(W )) ⊂ Z. Since f , g are proper we see that W ′ (resp.
W ′′) is an integral closed subscheme of Y (resp. Z). We have to show that g∗(f∗[W ]) =
(g ◦ f)∗[W ]. If dimδ(W ′′) < k, then both sides are zero. If dimδ(W ′′) = k, then we see
the induced morphisms

W −→W ′ −→W ′′

both satisfy the hypotheses of Lemma 11.1. Hence

g∗(f∗[W ]) = deg(W/W ′) deg(W ′/W ′′)[W ′′], (g ◦ f)∗[W ] = deg(W/W ′′)[W ′′].

Then we can apply Morphisms, Lemma 51.9 to conclude. �

A closed immersion is proper. If i : Z → X is a closed immersion then the maps

i∗ : Zk(Z) −→ Zk(X)

are all injective.

Lemma 12.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let X1, X2 ⊂ X be closed subschemes such that X = X1 ∪ X2 set theoretically. For
every k ∈ Z the sequence of abelian groups

Zk(X1 ∩X2) // Zk(X1)⊕ Zk(X2) // Zk(X) // 0

is exact. Here X1 ∩X2 is the scheme theoretic intersection and the maps are the pushfor-
ward maps with one multiplied by −1.
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Proof. First assume X is quasi-compact. Then Zk(X) is a free Z-module with basis
given by the elements [Z] where Z ⊂ X is integral closed of δ-dimension k. The groups
Zk(X1), Zk(X2), Zk(X1 ∩ X2) are free on the subset of these Z such that Z ⊂ X1,
Z ⊂ X2, Z ⊂ X1∩X2. This immediately proves the lemma in this case. The general case
is similar and the proof is omitted. �

Lemma 12.4. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a proper morphism
of schemes which are locally of finite type over S.

(1) Let Z ⊂ X be a closed subscheme with dimδ(Z) ≤ k. Then

f∗[Z]k = [f∗OZ ]k.
(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k. Then

f∗[F ]k = [f∗F ]k.
Note that the statement makes sense since f∗F and f∗OZ are coherent OY -modules by
Cohomology of Schemes, Proposition 19.1.

Proof. Part (1) follows from (2) and Lemma 10.3. Let F be a coherent sheaf on X .
Assume that dimδ(Supp(F)) ≤ k. By Cohomology of Schemes, Lemma 9.7 there exists a
closed subscheme i : Z → X and a coherent OZ -module G such that i∗G ∼= F and such
that the support of F is Z. Let Z ′ ⊂ Y be the scheme theoretic image of f |Z : Z → Y .
Consider the commutative diagram of schemes

Z
i
//

f |Z
��

X

f

��
Z ′ i′ // Y

We have f∗F = f∗i∗G = i′∗(f |Z)∗G by going around the diagram in two ways. Suppose
we know the result holds for closed immersions and for f |Z . Then we see that

f∗[F ]k = f∗i∗[G]k = (i′)∗(f |Z)∗[G]k = (i′)∗[(f |Z)∗G]k = [(i′)∗(f |Z)∗G]k = [f∗F ]k
as desired. The case of a closed immersion is straightforward (omitted). Note that f |Z :
Z → Z ′ is a dominant morphism (see Morphisms, Lemma 6.3). Thus we have reduced to
the case where dimδ(X) ≤ k and f : X → Y is proper and dominant.

Assume dimδ(X) ≤ k and f : X → Y is proper and dominant. Since f is dominant, for
every irreducible component Z ⊂ Y with generic point η there exists a point ξ ∈ X such
that f(ξ) = η. Hence δ(η) ≤ δ(ξ) ≤ k. Thus we see that in the expressions

f∗[F ]k =
∑

nZ [Z], and [f∗F ]k =
∑

mZ [Z].

whenever nZ 6= 0, or mZ 6= 0 the integral closed subscheme Z is actually an irreducible
component of Y of δ-dimension k. Pick such an integral closed subscheme Z ⊂ Y and
denote η its generic point. Note that for any ξ ∈ X with f(ξ) = η we have δ(ξ) ≥ k
and hence ξ is a generic point of an irreducible component of X of δ-dimension k as well
(see Lemma 9.1). Since f is quasi-compact and X is locally Noetherian, there can be only
finitely many of these and hence f−1({η}) is finite. By Morphisms, Lemma 51.1 there
exists an open neighbourhood η ∈ V ⊂ Y such that f−1(V )→ V is finite. Replacing Y
by V and X by f−1(V ) we reduce to the case where Y is affine, and f is finite.

Write Y = Spec(R) and X = Spec(A) (possible as a finite morphism is affine). Then
R and A are Noetherian rings and A is finite over R. Moreover F = M̃ for some finite
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A-module M . Note that f∗F corresponds to M viewed as an R-module. Let p ⊂ R be
the minimal prime corresponding to η ∈ Y . The coefficient of Z in [f∗F ]k is clearly
lengthRp

(Mp). Let qi, i = 1, . . . , t be the primes of A lying over p. Then Ap =
∏
Aqi

since Ap is an Artinian ring being finite over the dimension zero local Noetherian ring
Rp. Clearly the coefficient of Z in f∗[F ]k is∑

i=1,...,t
[κ(qi) : κ(p)]lengthAqi

(Mqi)

Hence the desired equality follows from Algebra, Lemma 52.12. �

13. Preparation for flat pullback

Recall that a morphism f : X → Y which is locally of finite type is said to have relative
dimension r if every nonempty fibre is equidimensional of dimension r. See Morphisms,
Definition 29.1.

Lemma 13.1. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let f : X → Y be a morphism. Assume f is flat of relative dimension r. For any closed
subset Z ⊂ Y we have

dimδ(f−1(Z)) = dimδ(Z) + r.

provided f−1(Z) is nonempty. If Z is irreducible and Z ′ ⊂ f−1(Z) is an irreducible
component, then Z ′ dominates Z and dimδ(Z ′) = dimδ(Z) + r.

Proof. It suffices to prove the final statement. We may replace Y by the integral
closed subscheme Z and X by the scheme theoretic inverse image f−1(Z) = Z ×Y X .
Hence we may assume Z = Y is integral and f is a flat morphism of relative dimension r.
Since Y is locally Noetherian the morphism f which is locally of finite type, is actually
locally of finite presentation. Hence Morphisms, Lemma 25.10 applies and we see that f
is open. Let ξ ∈ X be a generic point of an irreducible component of X . By the openness
of f we see that f(ξ) is the generic point η of Z = Y . Note that dimξ(Xη) = r by
assumption that f has relative dimension r. On the other hand, since ξ is a generic point
of X we see that OX,ξ = OXη,ξ has only one prime ideal and hence has dimension 0.
Thus by Morphisms, Lemma 28.1 we conclude that the transcendence degree of κ(ξ) over
κ(η) is r. In other words, δ(ξ) = δ(η) + r as desired. �

Here is the lemma that we will use to prove that the flat pullback of a locally finite collec-
tion of closed subschemes is locally finite.

Lemma 13.2. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let f : X → Y be a morphism. Assume {Zi}i∈I is a locally finite collection of closed
subsets of Y . Then {f−1(Zi)}i∈I is a locally finite collection of closed subsets of X .

Proof. Let U ⊂ X be a quasi-compact open subset. Since the image f(U) ⊂ Y is
a quasi-compact subset there exists a quasi-compact open V ⊂ Y such that f(U) ⊂ V .
Note that

{i ∈ I | f−1(Zi) ∩ U 6= ∅} ⊂ {i ∈ I | Zi ∩ V 6= ∅}.

Since the right hand side is finite by assumption we win. �



14. FLAT PULLBACK 3619

14. Flat pullback

In the following we use f−1(Z) to denote the scheme theoretic inverse image of a closed
subscheme Z ⊂ Y for a morphism of schemes f : X → Y . We recall that the scheme
theoretic inverse image is the fibre product

f−1(Z) //

��

X

��
Z // Y

and it is also the closed subscheme of X cut out by the quasi-coherent sheaf of ideals
f−1(I)OX , if I ⊂ OY is the quasi-coherent sheaf of ideals corresponding to Z in Y .
(This is discussed in Schemes, Section 4 and Lemma 17.6 and Definition 17.7.)

Definition 14.1. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type
over S. Let f : X → Y be a morphism. Assume f is flat of relative dimension r.

(1) Let Z ⊂ Y be an integral closed subscheme of δ-dimension k. We define f∗[Z]
to be the (k + r)-cycle on X to the scheme theoretic inverse image

f∗[Z] = [f−1(Z)]k+r.

This makes sense since dimδ(f−1(Z)) = k + r by Lemma 13.1.
(2) Let α =

∑
ni[Zi] be a k-cycle on Y . The flat pullback of α by f is the sum

f∗α =
∑

nif
∗[Zi]

where each f∗[Zi] is defined as above. The sum is locally finite by Lemma 13.2.
(3) We denote f∗ : Zk(Y )→ Zk+r(X) the map of abelian groups so obtained.

An open immersion is flat. This is an important though trivial special case of a flat mor-
phism. If U ⊂ X is open then sometimes the pullback by j : U → X of a cycle is called
the restriction of the cycle to U . Note that in this case the maps

j∗ : Zk(X) −→ Zk(U)

are all surjective. The reason is that given any integral closed subscheme Z ′ ⊂ U , we can
take the closure of Z of Z ′ in X and think of it as a reduced closed subscheme of X (see
Schemes, Lemma 12.4). And clearly Z ∩U = Z ′, in other words j∗[Z] = [Z ′] whence the
surjectivity. In fact a little bit more is true.

Lemma 14.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let U ⊂ X be an open subscheme, and denote i : Y = X \ U → X as a reduced closed
subscheme of X . For every k ∈ Z the sequence

Zk(Y ) i∗ // Zk(X) j∗
// Zk(U) // 0

is an exact complex of abelian groups.

Proof. First assume X is quasi-compact. Then Zk(X) is a free Z-module with basis
given by the elements [Z] where Z ⊂ X is integral closed of δ-dimension k. Such a basis
element maps either to the basis element [Z ∩ U ] or to zero if Z ⊂ Y . Hence the lemma
is clear in this case. The general case is similar and the proof is omitted. �
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Lemma 14.3. Let (S, δ) be as in Situation 7.1. Let X,Y, Z be locally of finite type
over S. Let f : X → Y and g : Y → Z be flat morphisms of relative dimensions r and s.
Then g ◦ f is flat of relative dimension r + s and

f∗ ◦ g∗ = (g ◦ f)∗

as maps Zk(Z)→ Zk+r+s(X).

Proof. The composition is flat of relative dimension r + s by Morphisms, Lemma
29.3. Suppose that

(1) W ⊂ Z is a closed integral subscheme of δ-dimension k,
(2) W ′ ⊂ Y is a closed integral subscheme of δ-dimension k+swithW ′ ⊂ g−1(W ),

and
(3) W ′′ ⊂ Y is a closed integral subscheme of δ-dimension k + s + r with W ′′ ⊂

f−1(W ′).
We have to show that the coefficient n of [W ′′] in (g ◦ f)∗[W ] agrees with the coefficient
m of [W ′′] in f∗(g∗[W ]). That it suffices to check the lemma in these cases follows from
Lemma 13.1. Let ξ′′ ∈ W ′′, ξ′ ∈ W ′ and ξ ∈ W be the generic points. Consider the local
rings A = OZ,ξ , B = OY,ξ′ and C = OX,ξ′′ . Then we have local flat ring maps A→ B,
B → C and moreover

n = lengthC(C/mAC), and m = lengthC(C/mBC)lengthB(B/mAB)

Hence the equality follows from Algebra, Lemma 52.14. �

Lemma 14.4. Let (S, δ) be as in Situation 7.1. Let X,Y be locally of finite type over
S. Let f : X → Y be a flat morphism of relative dimension r.

(1) LetZ ⊂ Y be a closed subscheme with dimδ(Z) ≤ k. Then we have dimδ(f−1(Z)) ≤
k + r and [f−1(Z)]k+r = f∗[Z]k in Zk+r(X).

(2) Let F be a coherent sheaf on Y with dimδ(Supp(F)) ≤ k. Then we have
dimδ(Supp(f∗F)) ≤ k + r and

f∗[F ]k = [f∗F ]k+r

in Zk+r(X).

Proof. The statements on dimensions follow immediately from Lemma 13.1. Part
(1) follows from part (2) by Lemma 10.3 and the fact that f∗OZ = Of−1(Z).

Proof of (2). As X , Y are locally Noetherian we may apply Cohomology of Schemes,
Lemma 9.1 to see that F is of finite type, hence f∗F is of finite type (Modules, Lemma
9.2), hence f∗F is coherent (Cohomology of Schemes, Lemma 9.1 again). Thus the lemma
makes sense. Let W ⊂ Y be an integral closed subscheme of δ-dimension k, and let
W ′ ⊂ X be an integral closed subscheme of dimension k + r mapping into W under
f . We have to show that the coefficient n of [W ′] in f∗[F ]k agrees with the coefficient
m of [W ′] in [f∗F ]k+r. Let ξ ∈ W and ξ′ ∈ W ′ be the generic points. Let A = OY,ξ ,
B = OX,ξ′ and set M = Fξ as an A-module. (Note that M has finite length by our
dimension assumptions, but we actually do not need to verify this. See Lemma 10.1.) We
have f∗Fξ′ = B ⊗AM . Thus we see that

n = lengthB(B ⊗AM) and m = lengthA(M)lengthB(B/mAB)

Thus the equality follows from Algebra, Lemma 52.13. �
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15. Push and pull

In this section we verify that proper pushforward and flat pullback are compatible when
this makes sense. By the work we did above this is a consequence of cohomology and base
change.

Lemma 15.1. Let (S, δ) be as in Situation 7.1. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a fibre product diagram of schemes locally of finite type over S. Assume f : X → Y
proper and g : Y ′ → Y flat of relative dimension r. Then also f ′ is proper and g′ is flat
of relative dimension r. For any k-cycle α on X we have

g∗f∗α = f ′
∗(g′)∗α

in Zk+r(Y ′).

Proof. The assertion that f ′ is proper follows from Morphisms, Lemma 41.5. The
assertion that g′ is flat of relative dimension r follows from Morphisms, Lemmas 29.2 and
25.8. It suffices to prove the equality of cycles when α = [W ] for some integral closed
subscheme W ⊂ X of δ-dimension k. Note that in this case we have α = [OW ]k , see
Lemma 10.3. By Lemmas 12.4 and 14.4 it therefore suffices to show that f ′

∗(g′)∗OW is
isomorphic to g∗f∗OW . This follows from cohomology and base change, see Cohomology
of Schemes, Lemma 5.2. �

Lemma 15.2. Let (S, δ) be as in Situation 7.1. LetX , Y be locally of finite type overS.
Let f : X → Y be a finite locally free morphism of degree d (see Morphisms, Definition
48.1). Then f is both proper and flat of relative dimension 0, and

f∗f
∗α = dα

for every α ∈ Zk(Y ).

Proof. A finite locally free morphism is flat and finite by Morphisms, Lemma 48.2,
and a finite morphism is proper by Morphisms, Lemma 44.11. We omit showing that a
finite morphism has relative dimension 0. Thus the formula makes sense. To prove it, let
Z ⊂ Y be an integral closed subscheme of δ-dimension k. It suffices to prove the formula
for α = [Z]. Since the base change of a finite locally free morphism is finite locally free
(Morphisms, Lemma 48.4) we see that f∗f

∗OZ is a finite locally free sheaf of rank d on Z.
Hence

f∗f
∗[Z] = f∗f

∗[OZ ]k = [f∗f
∗OZ ]k = d[Z]

where we have used Lemmas 14.4 and 12.4. �

16. Preparation for principal divisors

Some of the material in this section partially overlaps with the discussion in Divisors,
Section 26.

Lemma 16.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Assume X is integral.

(1) If Z ⊂ X is an integral closed subscheme, then the following are equivalent:
(a) Z is a prime divisor,
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(b) Z has codimension 1 in X , and
(c) dimδ(Z) = dimδ(X)− 1.

(2) IfZ is an irreducible component of an effective Cartier divisor onX , then dimδ(Z) =
dimδ(X)− 1.

Proof. Part (1) follows from the definition of a prime divisor (Divisors, Definition
26.2) and the definition of a dimension function (Topology, Definition 20.1). Let ξ ∈ Z
be the generic point of an irreducible component Z of an effective Cartier divisor D ⊂
X . Then dim(OD,ξ) = 0 and OD,ξ = OX,ξ/(f) for some nonzerodivisor f ∈ OX,ξ
(Divisors, Lemma 15.2). Then dim(OX,ξ) = 1 by Algebra, Lemma 60.13. Hence Z is as in
(1) by Properties, Lemma 10.3 and the proof is complete. �

Lemma 16.2. Let f : X → Y be a morphism of schemes. Let ξ ∈ Y be a point.
Assume that

(1) X , Y are integral,
(2) Y is locally Noetherian
(3) f is proper, dominant and R(Y ) ⊂ R(X) is finite, and
(4) dim(OY,ξ) = 1.

Then there exists an open neighbourhood V ⊂ Y of ξ such that f |f−1(V ) : f−1(V )→ V
is finite.

Proof. This lemma is a special case of Varieties, Lemma 17.2. Here is a direct ar-
gument in this case. By Cohomology of Schemes, Lemma 21.2 it suffices to prove that
f−1({ξ}) is finite. We replace Y by an affine open, say Y = Spec(R). Note thatR is Noe-
therian, as Y is assumed locally Noetherian. Since f is proper it is quasi-compact. Hence
we can find a finite affine open covering X = U1 ∪ . . . ∪ Un with each Ui = Spec(Ai).
Note that R → Ai is a finite type injective homomorphism of domains such that the in-
duced extension of fraction fields is finite. Thus the lemma follows from Algebra, Lemma
113.2. �

17. Principal divisors

The following definition is the analogue of Divisors, Definition 26.5 in our current setup.

Definition 17.1. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Assume X is integral with dimδ(X) = n. Let f ∈ R(X)∗. The principal divisor
associated to f is the (n− 1)-cycle

div(f) = divX(f) =
∑

ordZ(f)[Z]

defined in Divisors, Definition 26.5. This makes sense because prime divisors have δ-
dimension n− 1 by Lemma 16.1.

In the situation of the definition for f, g ∈ R(X)∗ we have
divX(fg) = divX(f) + divX(g)

in Zn−1(X). See Divisors, Lemma 26.6. The following lemma will be superseded by the
more general Lemma 20.2.

Lemma 17.2. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Assume X , Y are integral and n = dimδ(Y ). Let f : X → Y be a flat morphism of
relative dimension r. Let g ∈ R(Y )∗. Then

f∗(divY (g)) = divX(g)



18. PRINCIPAL DIVISORS AND PUSHFORWARD 3623

in Zn+r−1(X).

Proof. Note that since f is flat it is dominant so that f induces an embeddingR(Y ) ⊂
R(X), and hence we may think of g as an element of R(X)∗. Let Z ⊂ X be an in-
tegral closed subscheme of δ-dimension n + r − 1. Let ξ ∈ Z be its generic point. If
dimδ(f(Z)) > n − 1, then we see that the coefficient of [Z] in the left and right hand
side of the equation is zero. Hence we may assume that Z ′ = f(Z) is an integral closed
subscheme of Y of δ-dimension n − 1. Let ξ′ = f(ξ). It is the generic point of Z ′. Set
A = OY,ξ′ ,B = OX,ξ . The ring mapA→ B is a flat local homomorphism of Noetherian
local domains of dimension 1. We have g in the fraction field ofA. What we have to show
is that

ordA(g)lengthB(B/mAB) = ordB(g).
This follows from Algebra, Lemma 52.13 (details omitted). �

18. Principal divisors and pushforward

The first lemma implies that the pushforward of a principal divisor along a generically
finite morphism is a principal divisor.

Lemma 18.1. Let (S, δ) be as in Situation 7.1. LetX , Y be locally of finite type overS.
Assume X , Y are integral and n = dimδ(X) = dimδ(Y ). Let p : X → Y be a dominant
proper morphism. Let f ∈ R(X)∗. Set

g = NmR(X)/R(Y )(f).
Then we have p∗div(f) = div(g).

Proof. Let Z ⊂ Y be an integral closed subscheme of δ-dimension n − 1. We want
to show that the coefficient of [Z] in p∗div(f) and div(g) are equal. We may apply Lemma
16.2 to the morphism p : X → Y and the generic point ξ ∈ Z. Hence we may replace
Y by an affine open neighbourhood of ξ and assume that p : X → Y is finite. Write
Y = Spec(R) and X = Spec(A) with p induced by a finite homomorphism R → A of
Noetherian domains which induces an finite field extension L/K of fraction fields. Now
we have f ∈ L, g = Nm(f) ∈ K , and a prime p ⊂ R with dim(Rp) = 1. The coefficient
of [Z] in divY (g) is ordRp

(g). The coefficient of [Z] in p∗divX(f) is∑
q lying over p

[κ(q) : κ(p)]ordAq
(f)

The desired equality therefore follows from Algebra, Lemma 121.8. �

An important role in the discussion of principal divisors is played by the “universal” prin-
cipal divisor [0]− [∞] on P1

S . To make this more precise, let us denote

(18.1.1) D0, D∞ ⊂ P1
S = Proj

S
(OS [T0, T1])

the closed subscheme cut out by the sectionT1, resp.T0 ofO(1). These are effective Cartier
divisors, see Divisors, Definition 13.1 and Lemma 14.10. The following lemma says that
loosely speaking we have “div(T1/T0) = [D0]− [D1]” and that this is the universal prin-
cipal divisor.

Lemma 18.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
AssumeX is integral and n = dimδ(X). Let f ∈ R(X)∗. LetU ⊂ X be a nonempty open
such that f corresponds to a section f ∈ Γ(U,O∗

X). Let Y ⊂ X ×S P1
S be the closure of

the graph of f : U → P1
S . Then
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(1) the projection morphism p : Y → X is proper,
(2) p|p−1(U) : p−1(U)→ U is an isomorphism,
(3) the pullbacks Y0 = q−1D0 and Y∞ = q−1D∞ via the morphism q : Y → P1

S

are defined (Divisors, Definition 13.12),
(4) we have

divY (f) = [Y0]n−1 − [Y∞]n−1

(5) we have
divX(f) = p∗divY (f)

(6) if we view Y0 and Y∞ as closed subschemes of X via the morphism p then we
have

divX(f) = [Y0]n−1 − [Y∞]n−1

Proof. SinceX is integral, we see thatU is integral. HenceY is integral, and (1, f)(U) ⊂
Y is an open dense subscheme. Also, note that the closed subscheme Y ⊂ X ×S P1

S does
not depend on the choice of the open U , since after all it is the closure of the one point set
{η′} = {(1, f)(η)} where η ∈ X is the generic point. Having said this let us prove the
assertions of the lemma.

For (1) note that p is the composition of the closed immersion Y → X ×S P1
S = P1

X

with the proper morphism P1
X → X . As a composition of proper morphisms is proper

(Morphisms, Lemma 41.4) we conclude.

It is clear that Y ∩U×SP1
S = (1, f)(U). Thus (2) follows. It also follows that dimδ(Y ) =

n.

Note that q(η′) = f(η) is not contained in D0 or D∞ since f ∈ R(X)∗. Hence (3) by
Divisors, Lemma 13.13. We obtain dimδ(Y0) = n−1 and dimδ(Y∞) = n−1 from Lemma
16.1.

Consider the effective Cartier divisor Y0. At every point ξ ∈ Y0 we have f ∈ OY,ξ and the
local equation for Y0 is given by f . In particular, if δ(ξ) = n− 1 so ξ is the generic point
of a integral closed subscheme Z of δ-dimension n− 1, then we see that the coefficient of
[Z] in divY (f) is

ordZ(f) = lengthOY,ξ
(OY,ξ/fOY,ξ) = lengthOY,ξ

(OY0,ξ)

which is the coefficient of [Z] in [Y0]n−1. A similar argument using the rational function
1/f shows that −[Y∞] agrees with the terms with negative coefficients in the expression
for divY (f). Hence (4) follows.

Note thatD0 → S is an isomorphism. Hence we see thatX×SD0 → X is an isomorphism
as well. Clearly we have Y0 = Y ∩ X ×S D0 (scheme theoretic intersection) inside
X ×S P1

S . Hence it is really the case that Y0 → X is a closed immersion. It follows that

p∗OY0 = OY ′
0

where Y ′
0 ⊂ X is the image of Y0 → X . By Lemma 12.4 we have p∗[Y0]n−1 = [Y ′

0 ]n−1.
The same is true for D∞ and Y∞. Hence (6) is a consequence of (5). Finally, (5) follows
immediately from Lemma 18.1. �

The following lemma says that the degree of a principal divisor on a proper curve is zero.
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Lemma 18.3. Let K be any field. Let X be a 1-dimensional integral scheme endowed
with a proper morphism c : X → Spec(K). Let f ∈ K(X)∗ be an invertible rational
function. Then ∑

x∈X closed
[κ(x) : K]ordOX,x

(f) = 0

where ord is as in Algebra, Definition 121.2. In other words, c∗div(f) = 0.

Proof. Consider the diagram

Y
p

//

q

��

X

c

��
P1
K

c′
// Spec(K)

that we constructed in Lemma 18.2 starting with X and the rational function f over
S = Spec(K). We will use all the results of this lemma without further mention. We
have to show that c∗divX(f) = c∗p∗divY (f) = 0. This is the same as proving that
c′

∗q∗divY (f) = 0. If q(Y ) is a closed point of P1
K then we see that divX(f) = 0 and

the lemma holds. Thus we may assume that q is dominant. Suppose we can show that
q : Y → P1

K is finite locally free of degree d (see Morphisms, Definition 48.1). Since
divY (f) = [q−1D0]0 − [q−1D∞]0 we see (by definition of flat pullback) that divY (f) =
q∗([D0]0 − [D∞]0). Then by Lemma 15.2 we get q∗divY (f) = d([D0]0 − [D∞]0). Since
clearly c′

∗[D0]0 = c′
∗[D∞]0 we win.

It remains to show that q is finite locally free. (It will automatically have some given
degree as P1

K is connected.) Since dim(P1
K) = 1 we see that q is finite for example by

Lemma 16.2. All local rings of P1
K at closed points are regular local rings of dimension 1

(in other words discrete valuation rings), since they are localizations ofK[T ] (see Algebra,
Lemma 114.1). Hence for y ∈ Y closed the local ring OY,y will be flat over OP1

K
,q(y) as

soon as it is torsion free (More on Algebra, Lemma 22.11). This is obviously the case asOY,y
is a domain and q is dominant. Thus q is flat. Hence q is finite locally free by Morphisms,
Lemma 48.2. �

19. Rational equivalence

In this section we define rational equivalence on k-cycles. We will allow locally finite
sums of images of principal divisors (under closed immersions). This leads to some pretty
strange phenomena, see Example 19.5. However, if we do not allow these then we do
not know how to prove that capping with Chern classes of line bundles factors through
rational equivalence.

Definition 19.1. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite
type over S. Let k ∈ Z.

(1) Given any locally finite collection {Wj ⊂ X} of integral closed subschemes
with dimδ(Wj) = k + 1, and any fj ∈ R(Wj)∗ we may consider∑

(ij)∗div(fj) ∈ Zk(X)

where ij : Wj → X is the inclusion morphism. This makes sense as the mor-
phism

∐
ij :

∐
Wj → X is proper.

(2) We say that α ∈ Zk(X) is rationally equivalent to zero if α is a cycle of the form
displayed above.
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(3) We say α, β ∈ Zk(X) are rationally equivalent and we write α ∼rat β if α− β
is rationally equivalent to zero.

(4) We define
CHk(X) = Zk(X)/ ∼rat

to be the Chow group of k-cycles onX . This is sometimes called the Chow group
of k-cycles modulo rational equivalence on X .

There are many other interesting (adequate) equivalence relations. Rational equivalence
is the coarsest one of them all.

Remark 19.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let k ∈ Z. Let us show that we have a presentation⊕′

δ(x)=k+1
KM

1 (κ(x)) ∂−→
⊕′

δ(x)=k
KM

0 (κ(x))→ CHk(X)→ 0

Here we use the notation and conventions introduced in Remark 8.2 and in addition
(1) KM

1 (κ(x)) = κ(x)∗ is the degree 1 part of the Milnor K-theory of the residue
field κ(x) of the point x ∈ X (see Remark 6.4), and

(2) the differential ∂ is defined as follows: given an element ξ =
∑
x fx we denote

Wx = x the integral closed subscheme of X with generic point x and we set

∂(ξ) =
∑

(Wx → X)∗div(fx)

inZk(X) which makes sense as we have seen that the second term of the complex
is equal to Zk(X) by Remark 8.2.

The fact that we obtain a presentation of CHk(X) follows immediately by comparing
with Definition 19.1.

A very simple but important lemma is the following.

Lemma 19.3. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let U ⊂ X be an open subscheme, and denote i : Y = X \ U → X as a reduced
closed subscheme of X . Let k ∈ Z. Suppose α, β ∈ Zk(X). If α|U ∼rat β|U then there
exist a cycle γ ∈ Zk(Y ) such that

α ∼rat β + i∗γ.

In other words, the sequence

CHk(Y ) i∗ // CHk(X) j∗
// CHk(U) // 0

is an exact complex of abelian groups.

Proof. Let {Wj}j∈J be a locally finite collection of integral closed subschemes of
U of δ-dimension k + 1, and let fj ∈ R(Wj)∗ be elements such that (α − β)|U =∑

(ij)∗div(fj) as in the definition. Set W ′
j ⊂ X equal to the closure of Wj . Suppose

that V ⊂ X is a quasi-compact open. Then also V ∩ U is quasi-compact open in U as V
is Noetherian. Hence the set {j ∈ J | Wj ∩ V 6= ∅} = {j ∈ J | W ′

j ∩ V 6= ∅} is finite
since {Wj} is locally finite. In other words we see that {W ′

j} is also locally finite. Since
R(Wj) = R(W ′

j) we see that

α− β −
∑

(i′j)∗div(fj)

is a cycle supported on Y and the lemma follows (see Lemma 14.2). �
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Lemma 19.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let X1, X2 ⊂ X be closed subschemes such that X = X1 ∪X2 set theoretically. For
every k ∈ Z the sequence of abelian groups

CHk(X1 ∩X2) // CHk(X1)⊕ CHk(X2) // CHk(X) // 0

is exact. Here X1 ∩X2 is the scheme theoretic intersection and the maps are the pushfor-
ward maps with one multiplied by −1.

Proof. By Lemma 12.3 the arrow CHk(X1) ⊕ CHk(X2) → CHk(X) is surjec-
tive. Suppose that (α1, α2) maps to zero under this map. Write α1 =

∑
n1,i[W1,i] and

α2 =
∑
n2,i[W2,i]. Then we obtain a locally finite collection {Wj}j∈J of integral closed

subschemes of X of δ-dimension k + 1 and fj ∈ R(Wj)∗ such that∑
n1,i[W1,i] +

∑
n2,i[W2,i] =

∑
(ij)∗div(fj)

as cycles on X where ij : Wj → X is the inclusion morphism. Choose a disjoint union
decomposition J = J1 q J2 such that Wj ⊂ X1 if j ∈ J1 and Wj ⊂ X2 if j ∈ J2. (This
is possible because the Wj are integral.) Then we can write the equation above as∑

n1,i[W1,i]−
∑

j∈J1
(ij)∗div(fj) = −

∑
n2,i[W2,i] +

∑
j∈J2

(ij)∗div(fj)

Hence this expression is a cycle (!) on X1 ∩X2. In other words the element (α1, α2) is in
the image of the first arrow and the proof is complete. �

Example 19.5. Here is a “strange” example. Suppose that S is the spectrum of a field
k with δ as in Example 7.2. Suppose thatX = C1 ∪C2 ∪ . . . is an infinite union of curves
Cj ∼= P1

k glued together in the following way: The point∞ ∈ Cj is glued transversally
to the point 0 ∈ Cj+1 for j = 1, 2, 3, . . .. Take the point 0 ∈ C1. This gives a zero
cycle [0] ∈ Z0(X). The “strangeness” in this situation is that actually [0] ∼rat 0! Namely
we can choose the rational function fj ∈ R(Cj) to be the function which has a simple
zero at 0 and a simple pole at∞ and no other zeros or poles. Then we see that the sum∑

(ij)∗div(fj) is exactly the 0-cycle [0]. In fact it turns out that CH0(X) = 0 in this
example. If you find this too bizarre, then you can just make sure your spaces are always
quasi-compact (so X does not even exist for you).

Remark 19.6. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Suppose we have infinite collections αi, βi ∈ Zk(X), i ∈ I of k-cycles on
X . Suppose that the supports of αi and βi form locally finite collections of closed subsets
of X so that

∑
αi and

∑
βi are defined as cycles. Moreover, assume that αi ∼rat βi for

each i. Then it is not clear that
∑
αi ∼rat

∑
βi. Namely, the problem is that the rational

equivalences may be given by locally finite families {Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji but the
union {Wi,j}i∈I,j∈Ji may not be locally finite.

In many cases in practice, one has a locally finite family of closed subsets {Ti}i∈I such that
αi, βi are supported on Ti and such that αi = βi in CHk(Ti), in other words, the families
{Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji consist of subschemes Wi,j ⊂ Ti. In this case it is true that∑
αi ∼rat

∑
βi onX , simply because the family {Wi,j}i∈I,j∈Ji is automatically locally

finite in this case.

20. Rational equivalence and push and pull

In this section we show that flat pullback and proper pushforward commute with rational
equivalence.



3628 42. CHOW HOMOLOGY AND CHERN CLASSES

Lemma 20.1. Let (S, δ) be as in Situation 7.1. Let X , Y be schemes locally of finite
type over S. Assume Y integral with dimδ(Y ) = k. Let f : X → Y be a flat morphism
of relative dimension r. Then for g ∈ R(Y )∗ we have

f∗divY (g) =
∑

njij,∗divXj (g ◦ f |Xj )

as (k+ r−1)-cycles onX where the sum is over the irreducible componentsXj ofX and
nj is the multiplicity of Xj in X .

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension k + r − 1. We
have to show that the coefficient n of [Z] in f∗div(g) is equal to the coefficientm of [Z] in∑
ij,∗div(g ◦ f |Xj ). Let Z ′ be the closure of f(Z) which is an integral closed subscheme

of Y . By Lemma 13.1 we have dimδ(Z ′) ≥ k − 1. Thus either Z ′ = Y or Z ′ is a prime
divisor on Y . If Z ′ = Y , then the coefficients n andm are both zero: this is clear for n by
definition of f∗ and follows for m because g ◦ f |Xj is a unit in any point of Xj mapping
to the generic point of Y . Hence we may assume that Z ′ ⊂ Y is a prime divisor.

We are going to translate the equality of n and m into algebra. Namely, let ξ′ ∈ Z ′ and
ξ ∈ Z be the generic points. SetA = OY,ξ′ andB = OX,ξ . Note thatA,B are Noetherian,
A→ B is flat, local, A is a domain, and mAB is an ideal of definition of the local ring B.
The rational function g is an element of the fraction field Q(A) of A. By construction,
the closed subschemes Xj which meet ξ correspond 1-to-1 with minimal primes

q1, . . . , qs ⊂ B

The integers nj are the corresponding lengths

ni = lengthBqi
(Bqi)

The rational functions g◦f |Xj correspond to the image gi ∈ κ(qi)∗ of g ∈ Q(A). Putting
everything together we see that

n = ordA(g)lengthB(B/mAB)

and that
m =

∑
ordB/qi(gi)lengthBqi

(Bqi)

Writing g = x/y for some nonzero x, y ∈ A we see that it suffices to prove

lengthA(A/(x))lengthB(B/mAB) = lengthB(B/xB)

(equality uses Algebra, Lemma 52.13) equals∑
i=1,...,s

lengthB/qi(B/(x, qi))lengthBqi
(Bqi)

and similarly for y. AsA→ B is flat it follows that x is a nonzerodivisor inB. Hence the
desired equality follows from Lemma 3.2. �

Lemma 20.2. Let (S, δ) be as in Situation 7.1. Let X , Y be schemes locally of finite
type over S. Let f : X → Y be a flat morphism of relative dimension r. Let α ∼rat β be
rationally equivalent k-cycles on Y . Then f∗α ∼rat f∗β as (k + r)-cycles on X .

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ Y



20. RATIONAL EQUIVALENCE AND PUSH AND PULL 3629

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational functions
gj ∈ R(Wj)∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally finite on Y .
Then we have to show that

f∗(
∑

ij,∗div(gj)) =
∑

f∗ij,∗div(gj)

is rationally equivalent to zero onX . The sum on the right makes sense as {Wj} is locally
finite in X by Lemma 13.2.

Consider the fibre products

i′j : W ′
j = Wj ×Y X −→ X.

and denote fj : W ′
j →Wj the first projection. By Lemma 15.1 we can write the sum above

as ∑
i′j,∗(f∗

j div(gj))
By Lemma 20.1 we see that each f∗

j div(gj) is rationally equivalent to zero on W ′
j . Hence

each i′j,∗(f∗
j div(gj)) is rationally equivalent to zero. Then the same is true for the dis-

played sum by the discussion in Remark 19.6. �

Lemma 20.3. Let (S, δ) be as in Situation 7.1. Let X , Y be schemes locally of finite
type over S. Let p : X → Y be a proper morphism. Suppose α, β ∈ Zk(X) are rationally
equivalent. Then p∗α is rationally equivalent to p∗β.

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ X

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational functions
fj ∈ R(Wj)∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally finite on X .
Then we have to show that

p∗

(∑
ij,∗div(fj)

)
is rationally equivalent to zero on X .

Note that the sum is equal to ∑
p∗ij,∗div(fj).

Let W ′
j ⊂ Y be the integral closed subscheme which is the image of p ◦ ij . The collection

{W ′
j} is locally finite in Y by Lemma 11.2. Hence it suffices to show, for a given j , that

either p∗ij,∗div(fj) = 0 or that it is equal to i′j,∗div(gj) for some gj ∈ R(W ′
j)∗.

The arguments above therefore reduce us to the case of a single integral closed subscheme
W ⊂ X of δ-dimension k + 1. Let f ∈ R(W )∗. Let W ′ = p(W ) as above. We get a
commutative diagram of morphisms

W
i
//

p′

��

X

p

��
W ′ i′ // Y

Note that p∗i∗div(f) = i′∗(p′)∗div(f) by Lemma 12.2. As explained above we have to
show that (p′)∗div(f) is the divisor of a rational function on W ′ or zero. There are three
cases to distinguish.

The case dimδ(W ′) < k. In this case automatically (p′)∗div(f) = 0 and there is nothing
to prove.
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The case dimδ(W ′) = k. Let us show that (p′)∗div(f) = 0 in this case. Let η ∈W ′ be the
generic point. Note that c : Wη → Spec(K) is a proper integral curve over K = κ(η)
whose function field K(Wη) is identified with R(W ). Here is a diagram

Wη
//

c

��

W

p′

��
Spec(K) // W ′

Let us denote fη ∈ K(Wη)∗ the rational function corresponding to f ∈ R(W )∗. More-
over, the closed points ξ of Wη correspond 1 − 1 to the closed integral subschemes Z =
Zξ ⊂ W of δ-dimension k with p′(Z) = W ′. Note that the multiplicity of Zξ in div(f)
is equal to ordOWη,ξ

(fη) simply because the local ringsOWη,ξ andOW,ξ are identified (as
subrings of their fraction fields). Hence we see that the multiplicity of [W ′] in (p′)∗div(f)
is equal to the multiplicity of [Spec(K)] in c∗div(fη). By Lemma 18.3 this is zero.

The case dimδ(W ′) = k + 1. In this case Lemma 18.1 applies, and we see that indeed
p′

∗div(f) = div(g) for some g ∈ R(W ′)∗ as desired. �

21. Rational equivalence and the projective line

Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S. Given
any closed subscheme Z ⊂ X ×S P1

S = X × P1 we let Z0, resp. Z∞ be the scheme
theoretic closed subscheme Z0 = pr−1

2 (D0), resp. Z∞ = pr−1
2 (D∞). Here D0, D∞ are as

in (18.1.1).

Lemma 21.1. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. LetW ⊂ X×S P1

S be an integral closed subscheme of δ-dimension k+1. Assume
W 6= W0, and W 6= W∞. Then

(1) W0, W∞ are effective Cartier divisors of W ,
(2) W0, W∞ can be viewed as closed subschemes of X and

[W0]k ∼rat [W∞]k,

(3) for any locally finite family of integral closed subschemes Wi ⊂ X ×S P1
S of

δ-dimension k+ 1 with Wi 6= (Wi)0 and Wi 6= (Wi)∞ we have
∑

([(Wi)0]k −
[(Wi)∞]k) ∼rat 0 on X , and

(4) for any α ∈ Zk(X) with α ∼rat 0 there exists a locally finite family of integral
closed subschemes Wi ⊂ X ×S P1

S as above such that α =
∑

([(Wi)0]k −
[(Wi)∞]k).

Proof. Part (1) follows from Divisors, Lemma 13.13 since the generic point of W is
not mapped into D0 or D∞ under the projection X ×S P1

S → P1
S by assumption.

Since X ×S D0 → X is a closed immersion, we see that W0 is isomorphic to a closed
subscheme ofX . Similarly forW∞. The morphism p : W → X is proper as a composition
of the closed immersion W → X ×S P1

S and the proper morphism X ×S P1
S → X . By

Lemma 18.2 we have [W0]k ∼rat [W∞]k as cycles on W . Hence part (2) follows from
Lemma 20.3 as clearly p∗[W0]k = [W0]k and similarly for W∞.

The only content of statement (3) is, given parts (1) and (2), that the collection {(Wi)0, (Wi)∞}
is a locally finite collection of closed subschemes of X . This is clear.
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Suppose that α ∼rat 0. By definition this means there exist integral closed subschemes
Vi ⊂ X of δ-dimension k + 1 and rational functions fi ∈ R(Vi)∗ such that the family
{Vi}i∈I is locally finite in X and such that α =

∑
(Vi → X)∗div(fi). Let

Wi ⊂ Vi ×S P1
S ⊂ X ×S P1

S

be the closure of the graph of the rational map fi as in Lemma 18.2. Then we have that
(Vi → X)∗div(fi) is equal to [(Wi)0]k− [(Wi)∞]k by that same lemma. Hence the result
is clear. �

Lemma 21.2. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let Z be a closed subscheme of X ×P1. Assume

(1) dimδ(Z) ≤ k + 1,
(2) dimδ(Z0) ≤ k, dimδ(Z∞) ≤ k, and
(3) for any embedded point ξ (Divisors, Definition 4.1) of Z either ξ 6∈ Z0 ∪Z∞ or

δ(ξ) < k.
Then [Z0]k ∼rat [Z∞]k as k-cycles on X .

Proof. Let {Wi}i∈I be the collection of irreducible components of Z which have
δ-dimension k + 1. Write

[Z]k+1 =
∑

ni[Wi]

with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed subsets
of X ×S P1

S by Divisors, Lemma 26.1. We claim that

[Z0]k =
∑

ni[(Wi)0]k

and similarly for [Z∞]k. If we prove this then the lemma follows from Lemma 21.1.

Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the equality
above it suffices to show that the coefficient n of [Z ′] in [Z0]k is the same as the coefficient
m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point. Set ξ = (ξ′, 0) ∈ X ×S P1

S .
Consider the local ring A = OX×SP1

S
,ξ . Let I ⊂ A be the ideal cutting out Z , in other

words so that A/I = OZ,ξ . Let t ∈ A be the element cutting out X ×S D0 (i.e., the
coordinate of P1 at zero pulled back). By our choice of ξ′ ∈ Z ′ we have δ(ξ) = k and
hence dim(A/I) = 1. Since ξ is not an embedded point by assumption (3) we see that
A/I is Cohen-Macaulay. Since dimδ(Z0) = k we see that dim(A/(t, I)) = 0 which
implies that t is a nonzerodivisor on A/I . Finally, the irreducible closed subschemes Wi

passing through ξ correspond to the minimal primes I ⊂ qi over I . The multiplicities ni
correspond to the lengths lengthAqi

(A/I)qi . Hence we see that

n = lengthA(A/(t, I))

and
m =

∑
lengthA(A/(t, qi))lengthAqi

(A/I)qi
Thus the result follows from Lemma 3.2. �

Lemma 21.3. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let F be a coherent sheaf on X × P1. Let i0, i∞ : X → X × P1 be the closed
immersion such that it(x) = (x, t). Denote F0 = i∗0F and F∞ = i∗∞F . Assume

(1) dimδ(Supp(F)) ≤ k + 1,
(2) dimδ(Supp(F0)) ≤ k, dimδ(Supp(F∞)) ≤ k, and
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(3) for any embedded associated point ξ of F either ξ 6∈ (X ×P1)0 ∪ (X ×P1)∞
or δ(ξ) < k.

Then [F0]k ∼rat [F∞]k as k-cycles on X .

Proof. Let {Wi}i∈I be the collection of irreducible components of Supp(F) which
have δ-dimension k + 1. Write

[F ]k+1 =
∑

ni[Wi]

with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed subsets
of X ×S P1

S by Lemma 10.1. We claim that

[F0]k =
∑

ni[(Wi)0]k

and similarly for [F∞]k. If we prove this then the lemma follows from Lemma 21.1.

Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the equality
above it suffices to show that the coefficient n of [Z ′] in [F0]k is the same as the coefficient
m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point. Set ξ = (ξ′, 0) ∈ X ×S P1

S .
Consider the local ring A = OX×SP1

S
,ξ . Let M = Fξ as an A-module. Let t ∈ A be

the element cutting out X ×S D0 (i.e., the coordinate of P1 at zero pulled back). By
our choice of ξ′ ∈ Z ′ we have δ(ξ) = k and hence dim(Supp(M)) = 1. Since ξ is not
an associated point of F by assumption (3) we see that M is a Cohen-Macaulay module.
Since dimδ(Supp(F0)) = k we see that dim(Supp(M/tM)) = 0 which implies that t is
a nonzerodivisor on M . Finally, the irreducible closed subschemes Wi passing through ξ
correspond to the minimal primes qi of Ass(M). The multiplicities ni correspond to the
lengths lengthAqi

Mqi . Hence we see that

n = lengthA(M/tM)
and

m =
∑

lengthA(A/(t, qi)A)lengthAqi
Mqi

Thus the result follows from Lemma 3.2. �

22. Chow groups and envelopes

Here is the definition.

Definition 22.1. LetX be a scheme. An envelope is a proper morphism f : Y → X
which is completely decomposed (More on Morphisms, Definition 78.1).

The exact sequence of Lemma 22.4 is the main motivation for the definition.

Lemma 22.2. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. If f : Y → X and g : Z → Y are envelopes, then f ◦ g is an envelope.

Proof. Follows from Morphisms, Lemma 41.4 and More on Morphisms, Lemma 78.2.
�

Lemma 22.3. Let (S, δ) be as in Situation 7.1. LetX ′ → X be a morphism of schemes
locally of finite type over S. If f : Y → X is an envelope, then the base change f ′ : Y ′ →
X ′ of f is an envelope too.

Proof. Follows from Morphisms, Lemma 41.5 and More on Morphisms, Lemma 78.3.
�
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Lemma 22.4. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let f : Y → X be an envelope. Then we have an exact sequence

CHk(Y ×X Y ) p∗−q∗−−−−→ CHk(Y ) f∗−→ CHk(X)→ 0
for all k ∈ Z. Here p, q : Y ×X Y → Y are the projections.

Proof. Since f is an envelope, f is proper and hence pushforward on cycles and cycle
classes is defined, see Sections 12 and 15. Similarly, the morphisms p and q are proper as base
changes of f . The composition of the arrows is zero as f∗◦p∗ = (p◦f)∗ = (q◦f)∗ = f∗◦q∗,
see Lemma 12.2.

Let us show that f∗ : Zk(Y ) → Zk(X) is surjective. Namely, suppose that we have α =∑
ni[Zi] ∈ Zk(X) where Zi ⊂ X is a locally finite family of integral closed subschemes.

Let xi ∈ Zi be the generic point. Since f is an envelope and hence completely decomposed,
there exists a point yi ∈ Y with f(yi) = xi and with κ(yi)/κ(xi) trivial. Let Wi ⊂ Y
be the integral closed subscheme with generic point yi. Since f is closed, we see that
f(Wi) = Zi. It follows that the family of closed subschemes Wi is locally finite on Y .
Since κ(yi)/κ(xi) is trivial we see that dimδ(Wi) = dimδ(Zi) = k. Hence β =

∑
ni[Wi]

is in Zk(Y ). Finally, since κ(yi)/κ(xi) is trivial, the degree of the dominant morphism
f |Wi

: Wi → Zi is 1 and we conclude that f∗β = α.

Since f∗ : Zk(Y ) → Zk(X) is surjective, a fortiori the map f∗ : CHk(Y ) → CHk(X) is
surjective.

Let β ∈ Zk(Y ) be an element such that f∗β is zero in CHk(X). This means we can find a
locally finite family of integral closed subschemes Zj ⊂ X with dimδ(Zj) = k + 1 and
fj ∈ R(Zj)∗ such that

f∗β =
∑

(Zj → X)∗div(fj)
as cycles where ij : Zj → X is the given closed immersion. Arguing exactly as above, we
can find a locally finite family of integral closed subschemes Wj ⊂ Y with f(Wj) = Zj
and such that Wj → Zj is birational, i.e., induces an isomorphism R(Zj) = R(Wj).
Denote gj ∈ R(Wj)∗ the element corresponding to fj . Observe that Wj → Zj is proper
and that (Wj → Zj)∗div(gj) = div(fj) as cycles on Zj . It follows from this that if we
replace β by the rationally equivalent cycle

β′ = β −
∑

(Wj → Y )∗div(gj)

then we find that f∗β
′ = 0. (This uses Lemma 12.2.) Thus to finish the proof of the lemma

it suffices to show the claim in the following paragraph.

Claim: if β ∈ Zk(Y ) and f∗β = 0, then β = δ + p∗γ − q∗γ in Zk(Y ) for some γ ∈
Zk(Y ×X Y ). Namely, write β =

∑
j∈J nj [Wj ] with {Wj}j∈J a locally finite family of

integral closed subschemes of Y with dimδ(Wj) = k. Fix an integral closed subscheme
Z ⊂ X . Consider the subset JZ = {j ∈ J : f(Wj) = Z}. This is a finite set. There are
three cases:

(1) JZ = ∅. In this case we set γZ = 0.
(2) JZ 6= ∅ and dimδ(Z) = k. The condition f∗β = 0 implies by looking at

the coefficient of Z that
∑
j∈JZ nj deg(Wj/Z) = 0. In this case we choose

an integral closed subscheme W ⊂ Y which maps birationally onto Z (see
above). Looking at generic points, we see that Wj ×Z W has a unique irre-
ducible component W ′

j ⊂ Wj ×Z W ⊂ Y ×X Y mapping birationally to
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Wj . Then W ′
j → W is dominant and deg(W ′

j/W ) = deg(Wj/W ). Thus
if we set γZ =

∑
j∈JZ nj [W

′
j ] then we see that p∗γZ =

∑
j∈JZ nj [Wj ] and

q∗γZ =
∑
j∈JZ nj deg(W ′

j/W )[W ] = 0.
(3) JZ 6= ∅ and dimδ(Z) < k. In this case we choose an integral closed subscheme

W ⊂ Y which maps birationally onto Z (see above). Looking at generic points,
we see that Wj ×Z W has a unique irreducible component W ′

j ⊂ Wj ×Z W ⊂
Y ×X Y mapping birationally to Wj . Then W ′

j → W is dominant and k =
dimδ(W ′

j) > dimδ(W ) = dimδ(Z). Thus if we set γZ =
∑
j∈JZ nj [W

′
j ] then

we see that p∗γZ =
∑
j∈JZ nj [Wj ] and q∗γZ = 0.

Since the family of integral closed subschemes {f(Wj)} is locally finite on X (Lemma
11.2) we see that the k-cycle

γ =
∑

Z⊂X integral closed
γZ

on Y ×X Y is well defined. By our computations above it follows that p∗γZ = β and
q∗γZ = 0 which implies what we wanted to prove. �

23. Chow groups and K-groups

In this section we are going to compareK0 of the category of coherent sheaves to the chow
groups.

Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type over S. We denote
Coh(X) = Coh(OX) the category of coherent sheaves on X . It is an abelian category,
see Cohomology of Schemes, Lemma 9.2. For any k ∈ Z we let Coh≤k(X) be the full
subcategory of Coh(X) consisting of those coherent sheavesF having dimδ(Supp(F)) ≤
k.

Lemma 23.1. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
overS. The categories Coh≤k(X) are Serre subcategories of the abelian category Coh(X).

Proof. The definition of a Serre subcategory is Homology, Definition 10.1. The proof
of the lemma is straightforward and omitted. �

Lemma 23.2. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. The maps

Zk(X) −→ K0(Coh≤k(X)/Coh≤k−1(X)),
∑

nZ [Z] 7→
[⊕

nZ>0
O⊕nZ
Z

]
−
[⊕

nZ<0
O⊕−nZ
Z

]
and

K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X), F 7−→ [F ]k
are mutually inverse isomorphisms.

Proof. Note that if
∑
nZ [Z] is in Zk(X), then the direct sums

⊕
nZ>0O

⊕nZ
Z and⊕

nZ<0O
⊕−nZ
Z are coherent sheaves onX since the family {Z | nZ > 0} is locally finite

on X . The map F → [F ]k is additive on Coh≤k(X), see Lemma 10.4. And [F ]k = 0
if F ∈ Coh≤k−1(X). By part (1) of Homology, Lemma 11.3 this implies that the second
map is well defined too. It is clear that the composition of the first map with the second
map is the identity.
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Conversely, say we start with a coherent sheaf F on X . Write [F ]k =
∑
i∈I ni[Zi] with

ni > 0 and Zi ⊂ X , i ∈ I pairwise distinct integral closed subschemes of δ-dimension k.
We have to show that

[F ] = [
⊕

i∈I
O⊕ni
Zi

]

in K0(Coh≤k(X)/Coh≤k−1(X)). Denote ξi ∈ Zi the generic point. If we set

F ′ = Ker(F →
⊕

ξi,∗Fξi)

then F ′ is the maximal coherent submodule of F whose support has dimension ≤ k − 1.
In particular F and F/F ′ have the same class in K0(Coh≤k(X)/Coh≤k−1(X)). Thus
after replacing F by F/F ′ we may and do assume that the kernel F ′ displayed above is
zero.

For each i ∈ I we choose a filtration

Fξi = F0
i ⊃ F1

i ⊃ . . . ⊃ F
ni
i = 0

such that the successive quotients are of dimension 1 over the residue field at ξi. This is
possible as the length of Fξi over OX,ξi is ni. For p > ni set Fpi = 0. For p ≥ 0 we
denote

Fp = Ker
(
F −→

⊕
ξi,∗(Fξi/F

p
i )
)

Then Fp is coherent, F0 = F , and Fp/Fp+1 is isomorphic to a freeOZi -module of rank
1 (if ni > p) or 0 (if ni ≤ p) in an open neighbourhood of ξi. Moreover, F ′ =

⋂
Fp = 0.

Since every quasi-compact open U ⊂ X contains only a finite number of ξi we conclude
that Fp|U is zero for p � 0. Hence

⊕
p≥0 Fp is a coherent OX -module. Consider the

short exact sequences

0→
⊕

p>0
Fp →

⊕
p≥0
Fp →

⊕
p>0
Fp/Fp+1 → 0

and
0→

⊕
p>0
Fp →

⊕
p≥0
Fp → F → 0

of coherentOX -modules. This already shows that

[F ] = [
⊕
Fp/Fp+1]

in K0(Coh≤k(X)/Coh≤k−1(X)). Next, for every p ≥ 0 and i ∈ I such that ni > p
we choose a nonzero ideal sheaf Ii,p ⊂ OZi and a map Ii,p → Fp/Fp+1 on X which is
an isomorphism over the open neighbourhood of ξi mentioned above. This is possible by
Cohomology of Schemes, Lemma 10.6. Then we consider the short exact sequence

0→
⊕

p≥0,i∈I,ni>p
Ii,p →

⊕
Fp/Fp+1 → Q→ 0

and the short exact sequence

0→
⊕

p≥0,i∈I,ni>p
Ii,p →

⊕
p≥0,i∈I,ni>p

OZi → Q′ → 0

Observe that both Q and Q′ are zero in a neighbourhood of the points ξi and that they
are supported on

⋃
Zi. HenceQ andQ′ are in Coh≤k−1(X). Since⊕

i∈I
O⊕ni
Zi
∼=
⊕

p≥0,i∈I,ni>p
OZi

this concludes the proof. �
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Lemma 23.3. Let π : X → Y be a finite morphism of schemes locally of finite type
over (S, δ) as in Situation 7.1. Then π∗ : Coh(X) → Coh(Y ) is an exact functor which
sends Coh≤k(X) into Coh≤k(Y ) and induces homomorphisms on K0 of these categories
and their quotients. The maps of Lemma 23.2 fit into a commutative diagram

Zk(X)

π∗

��

// K0(Coh≤k(X)/Coh≤k−1(X))

π∗

��

// Zk(X)

π∗

��
Zk(Y ) // K0(Coh≤k(Y )/Coh≤k−1(Y )) // Zk(Y )

Proof. A finite morphism is affine, hence pushforward of quasi-coherent modules
along π is an exact functor by Cohomology of Schemes, Lemma 2.3. A finite morphism is
proper, hence π∗ sends coherent sheaves to coherent sheaves, see Cohomology of Schemes,
Proposition 19.1. The statement on dimensions of supports is clear. Commutativity on the
right follows immediately from Lemma 12.4. Since the horizontal arrows are bijections,
we find that we have commutativity on the left as well. �

Lemma 23.4. Let X be a scheme locally of finite type over (S, δ) as in Situation 7.1.
There is a canonical map

CHk(X) −→ K0(Coh≤k+1(X)/Coh≤k−1(X))

induced by the map Zk(X)→ K0(Coh≤k(X)/Coh≤k−1(X)) from Lemma 23.2.

Proof. We have to show that an element α of Zk(X) which is rationally equivalent
to zero, is mapped to zero inK0(Coh≤k+1(X)/Coh≤k−1(X)). Writeα =

∑
(ij)∗div(fj)

as in Definition 19.1. Observe that

π =
∐

ij : W =
∐

Wj −→ X

is a finite morphism as each ij : Wj → X is a closed immersion and the family of Wj is
locally finite in X . Hence we may use Lemma 23.3 to reduce to the case of W . Since W is
a disjoint union of integral scheme, we reduce to the case discussed in the next paragraph.

AssumeX is integral of δ-dimension k+1. Let f be a nonzero rational function onX . Let
α = div(f). We have to show thatα is mapped to zero inK0(Coh≤k+1(X)/Coh≤k−1(X)).
Let I ⊂ OX be the ideal of denominators of f , see Divisors, Definition 23.10. Then we
have short exact sequences

0→ I → OX → OX/I → 0

and
0→ I f−→ OX → OX/fI → 0

See Divisors, Lemma 23.9. We claim that

[OX/I]k − [OX/fI]k = div(f)

The claim implies the element α = div(f) is represented by [OX/I] − [OX/fI] in
K0(Coh≤k(X)/Coh≤k−1(X)). Then the short exact sequences show that this element
maps to zero in K0(Coh≤k+1(X)/Coh≤k−1(X)).

To prove the claim, let Z ⊂ X be an integral closed subscheme of δ-dimension k and
let ξ ∈ Z be its generic point. Then I = Iξ ⊂ A = OX,ξ is an ideal such that fI ⊂
A. Now the coefficient of [Z] in div(f) is ordA(f). (Of course as usual we identify the
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function field ofX with the fraction field ofA.) On the other hand, the coefficient of [Z]
in [OX/I]− [OX/fI] is

lengthA(A/I)− lengthA(A/fI)
Using the distance fuction of Algebra, Definition 121.5 we can rewrite this as

d(A, I)− d(A, fI) = d(I, fI) = ordA(f)
The equalities hold by Algebra, Lemmas 121.6 and 121.7. (Using these lemmas isn’t neces-
sary, but convenient.) �

Remark 23.5. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. We will see later (in Lemma 69.3) that the map

CHk(X) −→ K0(Cohk+1(X)/Coh≤k−1(X))
of Lemma 23.4 is injective. Composing with the canonical map

K0(Cohk+1(X)/Coh≤k−1(X)) −→ K0(Coh(X)/Coh≤k−1(X))
we obtain a canonical map

CHk(X) −→ K0(Coh(X)/Coh≤k−1(X)).
We have not been able to find a statement or conjecture in the literature as to whether this
map should be injective or not. It seems reasonable to expect the kernel of this map to be
torsion. We will return to this question (insert future reference).

Lemma 23.6. Let X be a locally Noetherian scheme. Let Z ⊂ X be a closed sub-
scheme. Denote CohZ(X) ⊂ Coh(X) the Serre subcategory of coherent OX -modules
whose set theoretic support is contained inZ. Then the exact inclusion functor Coh(Z)→
CohZ(X) induces an isomorphism

K ′
0(Z) = K0(Coh(Z)) −→ K0(CohZ(X))

Proof. Let F be an object of CohZ(X). Let I ⊂ OX be the quasi-coherent ideal
sheaf of Z. Consider the descending filtration

. . . ⊂ Fp = IpF ⊂ Fp−1 ⊂ . . . ⊂ F0 = F
Exactly as in the proof of Lemma 23.4 this filtration is locally finite and hence

⊕
p≥0 Fp,⊕

p≥1 Fp, and
⊕

p≥0 Fp/Fp+1 are coherentOX -modules supported on Z. Hence we get

[F ] = [
⊕

p≥0
Fp/Fp+1]

in K0(CohZ(X)) exactly as in the proof of Lemma 23.4. Since the coherent module⊕
p≥0 Fp/Fp+1 is annihilated by I we conclude that [F ] is in the image. Actually, we

claim that the map
F 7−→ c(F) = [

⊕
p≥0
Fp/Fp+1]

factors throughK0(CohZ(X)) and is an inverse to the map in the statement of the lemma.
To see this all we have to show is that if

0→ F → G → H → 0
is a short exact sequence in CohZ(X), then we get c(G) = c(F) + c(H). Observe that for
all q ≥ 0 we have a short exact sequence

0→ (F ∩ IqG)/(F ∩ Iq+1G)→ Gq/Gq+1 → Hq/Hq+1 → 0
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For p, q ≥ 0 consider the coherent submodule

Fp,q = IpF ∩ IqG

Arguing exactly as above and using that the filtrationsFp = IpF andF∩IqG are locally
finite, we find that

[
⊕

p≥0
Fp/Fp+1] = [

⊕
p,q≥0

Fp,q/(Fp+1,q+Fp,q+1)] = [
⊕

q≥0
(F∩IqG)/(F∩Iq+1G)]

in K0(Coh(Z)). Combined with the exact sequences above we obtain the desired result.
Some details omitted. �

24. The divisor associated to an invertible sheaf

The following definition is the analogue of Divisors, Definition 27.4 in our current setup.

Definition 24.1. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Assume X is integral and n = dimδ(X). Let L be an invertibleOX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor associ-
ated to s is the (n− 1)-cycle

divL(s) =
∑

ordZ,L(s)[Z]

defined in Divisors, Definition 27.4. This makes sense because Weil divisors have
δ-dimension n− 1 by Lemma 16.1.

(2) We define Weil divisor associated to L as

c1(L) ∩ [X] = class of divL(s) ∈ CHn−1(X)

where s is any nonzero meromorphic section of L over X . This is well defined
by Divisors, Lemma 27.3.

Let X and S be as in Definition 24.1 above. Set n = dimδ(X). It is clear from the def-
initions that Cl(X) = CHn−1(X) where Cl(X) is the Weil divisor class group of X as
defined in Divisors, Definition 26.7. The map

Pic(X) −→ CHn−1(X), L 7−→ c1(L) ∩ [X]

is the same as the map Pic(X) → Cl(X) constructed in Divisors, Equation (27.5.1) for
arbitrary locally Noetherian integral schemes. In particular, this map is a homomorphism
of abelian groups, it is injective if X is a normal scheme, and an isomorphism if all local
rings of X are UFDs. See Divisors, Lemmas 27.6 and 27.7. There are some cases where it
is easy to compute the Weil divisor associated to an invertible sheaf.

Lemma 24.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral and n = dimδ(X). Let L be an invertible OX -module. Let
s ∈ Γ(X,L) be a nonzero global section. Then

divL(s) = [Z(s)]n−1

in Zn−1(X) and
c1(L) ∩ [X] = [Z(s)]n−1

in CHn−1(X).
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Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension n− 1. Let ξ ∈ Z
be its generic point. Choose a generator sξ ∈ Lξ . Write s = fsξ for some f ∈ OX,ξ .
By definition of Z(s), see Divisors, Definition 14.8 we see that Z(s) is cut out by a quasi-
coherent sheaf of ideals I ⊂ OX such that Iξ = (f). Hence lengthOX,x

(OZ(s),ξ) =
lengthOX,x

(OX,ξ/(f)) = ordOX,x
(f) as desired. �

The following lemma will be superseded by the more general Lemma 26.2.

Lemma 24.3. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Assume X , Y are integral and n = dimδ(Y ). Let L be an invertible OY -module. Let
f : X → Y be a flat morphism of relative dimension r. Then

f∗(c1(L) ∩ [Y ]) = c1(f∗L) ∩ [X]
in CHn+r−1(X).

Proof. Let s be a nonzero meromorphic section of L. We will show that actually
f∗divL(s) = divf∗L(f∗s) and hence the lemma holds. To see this let ξ ∈ Y be a point
and let sξ ∈ Lξ be a generator. Write s = gsξ with g ∈ R(Y )∗. Then there is an open
neighbourhood V ⊂ Y of ξ such that sξ ∈ L(V ) and such that sξ generates L|V . Hence
we see that

divL(s)|V = divY (g)|V .
In exactly the same way, since f∗sξ generates f∗L over f−1(V ) and since f∗s = gf∗sξ
we also have

divL(f∗s)|f−1(V ) = divX(g)|f−1(V ).

Thus the desired equality of cycles over f−1(V ) follows from the corresponding result
for pullbacks of principal divisors, see Lemma 17.2. �

25. Intersecting with an invertible sheaf

In this section we study the following construction.

Definition 25.1. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Let L be an invertibleOX -module. We define, for every integer k, an operation

c1(L) ∩ − : Zk+1(X)→ CHk(X)
called intersection with the first Chern class of L.

(1) Given an integral closed subscheme i : W → X with dimδ(W ) = k + 1 we
define

c1(L) ∩ [W ] = i∗(c1(i∗L) ∩ [W ])
where the right hand side is defined in Definition 24.1.

(2) For a general (k + 1)-cycle α =
∑
ni[Wi] we set

c1(L) ∩ α =
∑

nic1(L) ∩ [Wi]

Write each c1(L)∩Wi =
∑
j ni,j [Zi,j ] with {Zi,j}j a locally finite sum of integral closed

subschemes of Wi. Since {Wi} is a locally finite collection of integral closed subschemes
on X , it follows easily that {Zi,j}i,j is a locally finite collection of closed subschemes of
X . Hence c1(L)∩α =

∑
nini,j [Zi,j ] is a cycle. Another, more convenient, way to think

about this is to observe that the morphism
∐
Wi → X is proper. Hence c1(L)∩α can be

viewed as the pushforward of a class in CHk(
∐
Wi) =

∏
CHk(Wi). This also explains

why the result is well defined up to rational equivalence on X .
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The main goal for the next few sections is to show that intersecting with c1(L) factors
through rational equivalence. This is not a triviality.

Lemma 25.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let L,N be an invertible sheaves on X . Then

c1(L) ∩ α+ c1(N ) ∩ α = c1(L ⊗OX
N ) ∩ α

in CHk(X) for every α ∈ Zk+1(X). Moreover, c1(OX) ∩ α = 0 for all α.

Proof. The additivity follows directly from Divisors, Lemma 27.5 and the defini-
tions. To see that c1(OX) ∩ α = 0 consider the section 1 ∈ Γ(X,OX). This restricts
to an everywhere nonzero section on any integral closed subscheme W ⊂ X . Hence
c1(OX) ∩ [W ] = 0 as desired. �

Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible sheaf
on a scheme X , see Divisors, Definition 14.8.

Lemma 25.3. Let (S, δ) be as in Situation 7.1. Let Y be locally of finite type over S.
Let L be an invertibleOY -module. Let s ∈ Γ(Y,L). Assume

(1) dimδ(Y ) ≤ k + 1,
(2) dimδ(Z(s)) ≤ k, and
(3) for every generic point ξ of an irreducible component of Z(s) of δ-dimension k

the multiplication by s induces an injectionOY,ξ → Lξ .
Write [Y ]k+1 =

∑
ni[Yi] where Yi ⊂ Y are the irreducible components of Y of δ-

dimension k + 1. Set si = s|Yi ∈ Γ(Yi,L|Yi). Then

(25.3.1) [Z(s)]k =
∑

ni[Z(si)]k

as k-cycles on Y .

Proof. LetZ ⊂ Y be an integral closed subscheme of δ-dimension k. Let ξ ∈ Z be its
generic point. We want to compare the coefficient n of [Z] in the expression

∑
ni[Z(si)]k

with the coefficientm of [Z] in the expression [Z(s)]k. Choose a generator sξ ∈ Lξ . Write
A = OY,ξ , L = Lξ . Then L = Asξ . Write s = fsξ for some (unique) f ∈ A. Hypothesis
(3) means that f : A→ A is injective. Since dimδ(Y ) ≤ k+ 1 and dimδ(Z) = k we have
dim(A) = 0 or 1. We have

m = lengthA(A/(f))
which is finite in either case.

If dim(A) = 0, then f : A→ A being injective implies that f ∈ A∗. Hence in this casem
is zero. Moreover, the condition dim(A) = 0 means that ξ does not lie on any irreducible
component of δ-dimension k + 1, i.e., n = 0 as well.

Now, let dim(A) = 1. Since A is a Noetherian local ring it has finitely many minimal
primes q1, . . . , qt. These correspond 1-1 with the Yi passing through ξ′. Moreover ni =
lengthAqi

(Aqi). Also, the multiplicity of [Z] in [Z(si)]k is lengthA(A/(f, qi)). Hence
the equation to prove in this case is

lengthA(A/(f)) =
∑

lengthAqi
(Aqi)lengthA(A/(f, qi))

which follows from Lemma 3.2. �
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The following lemma is a useful result in order to compute the intersection product of
the c1 of an invertible sheaf and the cycle associated to a closed subscheme. Recall that
Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible sheaf on a scheme
X , see Divisors, Definition 14.8.

Lemma 25.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let L be an invertibleOX -module. Let Y ⊂ X be a closed subscheme. Let s ∈ Γ(Y,L|Y ).
Assume

(1) dimδ(Y ) ≤ k + 1,
(2) dimδ(Z(s)) ≤ k, and
(3) for every generic point ξ of an irreducible component of Z(s) of δ-dimension k

the multiplication by s induces an injectionOY,ξ → (L|Y )ξ1.
Then

c1(L) ∩ [Y ]k+1 = [Z(s)]k
in CHk(X).

Proof. Write
[Y ]k+1 =

∑
ni[Yi]

where Yi ⊂ Y are the irreducible components of Y of δ-dimension k + 1 and ni > 0.
By assumption the restriction si = s|Yi ∈ Γ(Yi,L|Yi) is not zero, and hence is a regular
section. By Lemma 24.2 we see that [Z(si)]k represents c1(L|Yi). Hence by definition

c1(L) ∩ [Y ]k+1 =
∑

ni[Z(si)]k
Thus the result follows from Lemma 25.3. �

26. Intersecting with an invertible sheaf and push and pull

In this section we prove that the operation c1(L) ∩ − commutes with flat pullback and
proper pushforward.

Lemma 26.1. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let f : X → Y be a flat morphism of relative dimension r. Let L be an invertible sheaf
on Y . Assume Y is integral and n = dimδ(Y ). Let s be a nonzero meromorphic section
of L. Then we have

f∗divL(s) =
∑

nidivf∗L|Xi (si)
in Zn+r−1(X). Here the sum is over the irreducible componentsXi ⊂ X of δ-dimension
n + r, the section si = f |∗Xi(s) is the pullback of s, and ni = mXi,X is the multiplicity
of Xi in X .

Proof. To prove this equality of cycles, we may work locally on Y . Hence we may
assume Y is affine and s = p/q for some nonzero sections p ∈ Γ(Y,L) and q ∈ Γ(Y,O).
If we can show both

f∗divL(p) =
∑

nidivf∗L|Xi (pi) and f∗divO(q) =
∑

nidivOXi
(qi)

(with obvious notations) then we win by the additivity, see Divisors, Lemma 27.5. Thus
we may assume that s ∈ Γ(Y,L). In this case we may apply the equality (25.3.1) to see
that

[Z(f∗(s))]k+r−1 =
∑

nidivf∗L|Xi (si)

1For example, this holds if s is a regular section of L|Y .
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where f∗(s) ∈ f∗L denotes the pullback of s to X . On the other hand we have

f∗divL(s) = f∗[Z(s)]k−1 = [f−1(Z(s))]k+r−1,

by Lemmas 24.2 and 14.4. Since Z(f∗(s)) = f−1(Z(s)) we win. �

Lemma 26.2. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let f : X → Y be a flat morphism of relative dimension r. Let L be an invertible sheaf
on Y . Let α be a k-cycle on Y . Then

f∗(c1(L) ∩ α) = c1(f∗L) ∩ f∗α

in CHk+r−1(X).

Proof. Write α =
∑
ni[Wi]. We will show that

f∗(c1(L) ∩ [Wi]) = c1(f∗L) ∩ f∗[Wi]

in CHk+r−1(X) by producing a rational equivalence on the closed subscheme f−1(Wi)
of X . By the discussion in Remark 19.6 this will prove the equality of the lemma is true.

Let W ⊂ Y be an integral closed subscheme of δ-dimension k. Consider the closed sub-
scheme W ′ = f−1(W ) = W ×Y X so that we have the fibre product diagram

W ′ //

h

��

X

f

��
W // Y

We have to show that f∗(c1(L) ∩ [W ]) = c1(f∗L) ∩ f∗[W ]. Choose a nonzero mero-
morphic section s of L|W . Let W ′

i ⊂ W ′ be the irreducible components of δ-dimension
k + r. Write [W ′]k+r =

∑
ni[W ′

i ] with ni the multiplicity of W ′
i in W ′ as per defi-

nition. So f∗[W ] =
∑
ni[W ′

i ] in Zk+r(X). Since each W ′
i → W is dominant we see

that si = s|W ′
i

is a nonzero meromorphic section for each i. By Lemma 26.1 we have the
following equality of cycles

h∗divL|W (s) =
∑

nidivf∗L|W ′
i

(si)

in Zk+r−1(W ′). This finishes the proof since the left hand side is a cycle on W ′ which
pushes to f∗(c1(L)∩[W ]) in CHk+r−1(X) and the right hand side is a cycle onW ′ which
pushes to c1(f∗L) ∩ f∗[W ] in CHk+r−1(X). �

Lemma 26.3. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let f : X → Y be a proper morphism. Let L be an invertible sheaf on Y . Let s be
a nonzero meromorphic section s of L on Y . Assume X , Y integral, f dominant, and
dimδ(X) = dimδ(Y ). Then

f∗ (divf∗L(f∗s)) = [R(X) : R(Y )]divL(s).

as cycles on Y . In particular

f∗(c1(f∗L) ∩ [X]) = [R(X) : R(Y )]c1(L) ∩ [Y ] = c1(L) ∩ f∗[X]

Proof. The last equation follows from the first since f∗[X] = [R(X) : R(Y )][Y ] by
definition. It turns out that we can re-use Lemma 18.1 to prove this. Namely, since we are
trying to prove an equality of cycles, we may work locally on Y . Hence we may assume
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that L = OY . In this case s corresponds to a rational function g ∈ R(Y ), and we are
simply trying to prove

f∗ (divX(g)) = [R(X) : R(Y )]divY (g).

Comparing with the result of the aforementioned Lemma 18.1 we see this true since NmR(X)/R(Y )(g) =
g[R(X):R(Y )] as g ∈ R(Y )∗. �

Lemma 26.4. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let p : X → Y be a proper morphism. Let α ∈ Zk+1(X). Let L be an invertible sheaf
on Y . Then

p∗(c1(p∗L) ∩ α) = c1(L) ∩ p∗α

in CHk(Y ).

Proof. Suppose that p has the property that for every integral closed subscheme
W ⊂ X the map p|W : W → Y is a closed immersion. Then, by definition of capping
with c1(L) the lemma holds.

We will use this remark to reduce to a special case. Namely, write α =
∑
ni[Wi] with

ni 6= 0 and Wi pairwise distinct. Let W ′
i ⊂ Y be the image of Wi (as an integral closed

subscheme). Consider the diagram

X ′ =
∐
Wi q

//

p′

��

X

p

��
Y ′ =

∐
W ′
i

q′
// Y.

Since {Wi} is locally finite on X , and p is proper we see that {W ′
i} is locally finite on Y

and that q, q′, p′ are also proper morphisms. We may think of
∑
ni[Wi] also as a k-cycle

α′ ∈ Zk(X ′). Clearly q∗α
′ = α. We have q∗(c1(q∗p∗L) ∩ α′) = c1(p∗L) ∩ q∗α

′ and
(q′)∗(c1((q′)∗L) ∩ p′

∗α
′) = c1(L) ∩ q′

∗p
′
∗α

′ by the initial remark of the proof. Hence it
suffices to prove the lemma for the morphism p′ and the cycle

∑
ni[Wi]. Clearly, this

means we may assume X , Y integral, f : X → Y dominant and α = [X]. In this case the
result follows from Lemma 26.3. �

27. The key formula

Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Assume X is
integral and dimδ(X) = n. Let L and N be invertible sheaves on X . Let s be a nonzero
meromorphic section of L and let t be a nonzero meromorphic section of N . Let Zi ⊂
X , i ∈ I be a locally finite set of irreducible closed subsets of codimension 1 with the
following property: If Z 6∈ {Zi} with generic point ξ, then s is a generator for Lξ and t
is a generator forNξ . Such a set exists by Divisors, Lemma 27.2. Then

divL(s) =
∑

ordZi,L(s)[Zi]

and similarly
divN (t) =

∑
ordZi,N (t)[Zi]

Unwinding the definitions more, we pick for each i generators si ∈ Lξi and ti ∈ Nξi
where ξi is the generic point of Zi. Then we can write

s = fisi and t = giti
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Set Bi = OX,ξi . Then by definition
ordZi,L(s) = ordBi(fi) and ordZi,N (t) = ordBi(gi)

Since ti is a generator of Nξi we see that its image in the fibre Nξi ⊗ κ(ξi) is a nonzero
meromorphic section of N|Zi . We will denote this image ti|Zi . From our definitions it
follows that

c1(N ) ∩ divL(s) =
∑

ordBi(fi)(Zi → X)∗divN |Zi (ti|Zi)

and similarly

c1(L) ∩ divN (t) =
∑

ordBi(gi)(Zi → X)∗divL|Zi (si|Zi)

in CHn−2(X). We are going to find a rational equivalence between these two cycles. To
do this we consider the tame symbol

∂Bi(fi, gi) ∈ κ(ξi)∗

see Section 5.

Lemma 27.1 (Key formula). In the situation above the cycle∑
(Zi → X)∗

(
ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)

)
is equal to the cycle ∑

(Zi → X)∗div(∂Bi(fi, gi))

Proof. First, let us examine what happens if we replace si by usi for some unit u
in Bi. Then fi gets replaced by u−1fi. Thus the first part of the first expression of the
lemma is unchanged and in the second part we add

−ordBi(gi)div(u|Zi)
(where u|Zi is the image of u in the residue field) by Divisors, Lemma 27.3 and in the
second expression we add

div(∂Bi(u−1, gi))
by bi-linearity of the tame symbol. These terms agree by property (6) of the tame symbol.
Let Z ⊂ X be an irreducible closed with dimδ(Z) = n− 2. To show that the coefficients
of Z of the two cycles of the lemma is the same, we may do a replacement si 7→ usi as in
the previous paragraph. In exactly the same way one shows that we may do a replacement
ti 7→ vti for some unit v of Bi.
Since we are proving the equality of cycles we may argue one coefficient at a time. Thus
we choose an irreducible closed Z ⊂ X with dimδ(Z) = n− 2 and compare coefficients.
Let ξ ∈ Z be the generic point and set A = OX,ξ . This is a Noetherian local domain of
dimension 2. Choose generators σ and τ for Lξ and Nξ . After shrinking X , we may and
do assume σ and τ define trivializations of the invertible sheaves L and N over all of X .
BecauseZi is locally finite after shrinkingX we may assumeZ ⊂ Zi for all i ∈ I and that
I is finite. Then ξi corresponds to a prime qi ⊂ A of height 1. We may write si = aiσ
and ti = biτ for some ai and bi units inAqi . By the remarks above, it suffices to prove the
lemma when ai = bi = 1 for all i.
Assume ai = bi = 1 for all i. Then the first expression of the lemma is zero, because we
choose σ and τ to be trivializing sections. Write s = fσ and t = gτ with f and g in the
fraction field of A. By the previous paragraph we have reduced to the case fi = f and
gi = g for all i. Moreover, for a height 1 prime q of A which is not in {qi} we have that
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both f and g are units inAq (by our choice of the family {Zi} in the discussion preceding
the lemma). Thus the coefficient of Z in the second expression of the lemma is∑

i
ordA/qi(∂Bi(f, g))

which is zero by the key Lemma 6.3. �

Remark 27.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let k ∈ Z. We claim that there is a complex⊕′

δ(x)=k+2
KM

2 (κ(x)) ∂−→
⊕′

δ(x)=k+1
KM

1 (κ(x)) ∂−→
⊕′

δ(x)=k
KM

0 (κ(x))

Here we use notation and conventions introduced in Remark 19.2 and in addition
(1) KM

2 (κ(x)) is the degree 2 part of the Milnor K-theory of the residue field κ(x)
of the point x ∈ X (see Remark 6.4) which is the quotient of κ(x)∗⊗Z κ(x)∗ by
the subgroup generated by elements of the form λ⊗(1−λ) for λ ∈ κ(x)\{0, 1},
and

(2) the first differential ∂ is defined as follows: given an element ξ =
∑
x αx in the

first term we set

∂(ξ) =
∑

x x′, δ(x′)=k+1
∂OWx,x′ (αx)

where ∂OWx,x′ : KM
2 (κ(x)) → KM

1 (κ(x)) is the tame symbol constructed in
Section 5.

We claim that we get a complex, i.e., that ∂◦∂ = 0. To see this it suffices to take an element
ξ as above and a point x′′ ∈ X with δ(x′′) = k and check that the coefficient of x′′ in the
element ∂(∂(ξ)) is zero. Because ξ =

∑
αx is a locally finite sum, we may in fact assume

by additivity that ξ = αx for some x ∈ X with δ(x) = k + 2 and αx ∈ KM
2 (κ(x)). By

linearity again we may assume thatαx = f⊗g for some f, g ∈ κ(x)∗. DenoteW ⊂ X the
integral closed subscheme with generic point x. If x′′ 6∈ W , then it is immediately clear
that the coefficient of x in ∂(∂(ξ)) is zero. If x′′ ∈ W , then we see that the coefficient of
x′′ in ∂(∂(x)) is equal to∑

x x′ x′′, δ(x′)=k+1
ordO

{x′},x′′
(∂OW,x′ (f, g))

The key algebraic Lemma 6.3 says exactly that this is zero.

Remark 27.3. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over S.
Let k ∈ Z. The complex in Remark 27.2 and the presentation of CHk(X) in Remark 19.2
suggests that we can define a first higher Chow group

CHM
k (X, 1) = H1(the complex of Remark 27.2)

We use the supscript M to distinguish our notation from the higher chow groups defined
in the literature, e.g., in the papers by Spencer Bloch ([?] and [?]). Let U ⊂ X be open
with complement Y ⊂ X (viewed as reduced closed subscheme). Then we find a split
short exact sequence

0→
⊕′

y∈Y,δ(y)=k+i
KM
i (κ(y))→

⊕′

x∈X,δ(x)=k+i
KM
i (κ(x))→

⊕′

u∈U,δ(u)=k+i
KM
i (κ(u))→ 0

for i = 2, 1, 0 compatible with the boundary maps in the complexes of Remark 27.2. Ap-
plying the snake lemma (see Homology, Lemma 13.6) we obtain a six term exact sequence

CHM
k (Y, 1)→ CHM

k (X, 1)→ CHM
k (U, 1)→ CHk(Y )→ CHk(X)→ CHk(U)→ 0
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extending the canonical exact sequence of Lemma 19.3. With some work, one may also
define flat pullback and proper pushforward for the first higher chow group CHM

k (X, 1).
We will return to this later (insert future reference here).

28. Intersecting with an invertible sheaf and rational equivalence

Applying the key lemma we obtain the fundamental properties of intersecting with invert-
ible sheaves. In particular, we will see that c1(L)∩− factors through rational equivalence
and that these operations for different invertible sheaves commute.

Lemma 28.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Assume X integral and dimδ(X) = n. Let L, N be invertible on X . Choose a nonzero
meromorphic section s of L and a nonzero meromorphic section t ofN . Set α = divL(s)
and β = divN (t). Then

c1(N ) ∩ α = c1(L) ∩ β
in CHn−2(X).

Proof. Immediate from the key Lemma 27.1 and the discussion preceding it. �

Lemma 28.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L be invertible on X . The operation α 7→ c1(L) ∩ α factors through rational
equivalence to give an operation

c1(L) ∩ − : CHk+1(X)→ CHk(X)

Proof. Let α ∈ Zk+1(X), and α ∼rat 0. We have to show that c1(L)∩α as defined
in Definition 25.1 is zero. By Definition 19.1 there exists a locally finite family {Wj} of
integral closed subschemes with dimδ(Wj) = k + 2 and rational functions fj ∈ R(Wj)∗

such that
α =

∑
(ij)∗divWj

(fj)

Note that p :
∐
Wj → X is a proper morphism, and hence α = p∗α

′ where α′ ∈
Zk+1(

∐
Wj) is the sum of the principal divisors divWj

(fj). By Lemma 26.4 we have
c1(L)∩α = p∗(c1(p∗L)∩α′). Hence it suffices to show that each c1(L|Wj

)∩ divWj
(fj)

is zero. In other words we may assume that X is integral and α = divX(f) for some
f ∈ R(X)∗.

Assume X is integral and α = divX(f) for some f ∈ R(X)∗. We can think of f as a
regular meromorphic section of the invertible sheaf N = OX . Choose a meromorphic
section s of L and denote β = divL(s). By Lemma 28.1 we conclude that

c1(L) ∩ α = c1(OX) ∩ β.

However, by Lemma 25.2 we see that the right hand side is zero in CHk(X) as desired. �

Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Let L be invertible
on X . We will denote

c1(L) ∩ − : CHk+1(X)→ CHk(X)

the operation c1(L) ∩ −. This makes sense by Lemma 28.2. We will denote c1(L)s ∩ −
the s-fold iterate of this operation for all s ≥ 0.
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Lemma 28.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let L,N be invertible on X . For any α ∈ CHk+2(X) we have

c1(L) ∩ c1(N ) ∩ α = c1(N ) ∩ c1(L) ∩ α

as elements of CHk(X).

Proof. Write α =
∑
mj [Zj ] for some locally finite collection of integral closed

subschemesZj ⊂ X with dimδ(Zj) = k+2. Consider the proper morphism p :
∐
Zj →

X . Set α′ =
∑
mj [Zj ] as a (k+2)-cycle on

∐
Zj . By several applications of Lemma 26.4

we see that c1(L)∩ c1(N )∩α = p∗(c1(p∗L)∩ c1(p∗N )∩α′) and c1(N )∩ c1(L)∩α =
p∗(c1(p∗N ) ∩ c1(p∗L) ∩ α′). Hence it suffices to prove the formula in case X is integral
and α = [X]. In this case the result follows from Lemma 28.1 and the definitions. �

29. Gysin homomorphisms

In this section we define the gysin map for the zero locus D of a section of an invertible
sheaf. An interesting case occurs when D is an effective Cartier divisor, but the gener-
alization to arbitrary D allows us a flexibility to formulate various compatibilities, see
Remark 29.7 and Lemmas 29.8, 29.9, and 30.5. These results can be generalized to locally
principal closed subschemes endowed with a virtual normal bundle (Remark 29.2) or to
pseudo-divisors (Remark 29.3).

Recall that effective Cartier divisors correspond 1-to-1 to isomorphism classes of pairs
(L, s) where L is an invertible sheaf and s is a regular global section, see Divisors, Lemma
14.10. If D corresponds to (L, s), then L = OX(D). Please keep this in mind while
reading this section.

Definition 29.1. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Let (L, s) be a pair consisting of an invertible sheaf and a global section s ∈ Γ(X,L).
Let D = Z(s) be the zero scheme of s, and denote i : D → X the closed immersion. We
define, for every integer k, a Gysin homomorphism

i∗ : Zk+1(X)→ CHk(D).

by the following rules:
(1) Given a integral closed subscheme W ⊂ X with dimδ(W ) = k + 1 we define

(a) if W 6⊂ D, then i∗[W ] = [D ∩W ]k as a k-cycle on D, and
(b) if W ⊂ D, then i∗[W ] = i′∗(c1(L|W ) ∩ [W ]), where i′ : W → D is the

induced closed immersion.
(2) For a general (k + 1)-cycle α =

∑
nj [Wj ] we set

i∗α =
∑

nji
∗[Wj ]

(3) IfD is an effective Cartier divisor, then we denoteD·α = i∗i
∗α the pushforward

of the class i∗α to a class on X .

In fact, as we will see later, this Gysin homomorphism i∗ can be viewed as an example of
a non-flat pullback. Thus we will sometimes informally call the class i∗α the pullback of
the class α.

Remark 29.2. Let X be a scheme locally of finite type over S as in Situation 7.1.
Let (D,N , σ) be a triple consisting of a locally principal (Divisors, Definition 13.1) closed
subscheme i : D → X , an invertible OD-module N , and a surjection σ : N⊗−1 → i∗ID
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ofOD-modules2. HereN should be thought of as a virtual normal bundle ofD inX . The
construction of i∗ : Zk+1(X) → CHk(D) in Definition 29.1 generalizes to such triples,
see Section 54.

Remark 29.3. Let X be a scheme locally of finite type over S as in Situation 7.1. In
[?] a pseudo-divisor on X is defined as a triple D = (L, Z, s) where L is an invertible
OX -module, Z ⊂ X is a closed subset, and s ∈ Γ(X \ Z,L) is a nowhere vanishing
section. Similarly to the above, one can define for every α in CHk+1(X) a product D · α
in CHk(Z ∩ |α|) where |α| is the support of α.

Lemma 29.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let (L, s, i : D → X) be as in Definition 29.1. Let α be a (k + 1)-cycle on X . Then
i∗i

∗α = c1(L) ∩ α in CHk(X). In particular, if D is an effective Cartier divisor, then
D · α = c1(OX(D)) ∩ α.

Proof. Write α =
∑
nj [Wj ] where ij : Wj → X are integral closed subschemes

with dimδ(Wj) = k. SinceD is the zero scheme of swe see thatD∩Wj is the zero scheme
of the restriction s|Wj

. Hence for each j such that Wj 6⊂ D we have c1(L) ∩ [Wj ] =
[D ∩Wj ]k by Lemma 25.4. So we have

c1(L) ∩ α =
∑

Wj 6⊂D
nj [D ∩Wj ]k +

∑
Wj⊂D

njij,∗(c1(L)|Wj
) ∩ [Wj ])

in CHk(X) by Definition 25.1. The right hand side matches (termwise) the pushforward
of the class i∗α on D from Definition 29.1. Hence we win. �

Lemma 29.5. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let (L, s, i : D → X) be as in Definition 29.1.

(1) Let Z ⊂ X be a closed subscheme such that dimδ(Z) ≤ k + 1 and such that
D ∩ Z is an effective Cartier divisor on Z. Then i∗[Z]k+1 = [D ∩ Z]k.

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k+ 1 and s : F →
F ⊗OX

L is injective. Then
i∗[F ]k+1 = [i∗F ]k

in CHk(D).

Proof. Assume Z ⊂ X as in (1). Then set F = OZ . The assumption that D ∩ Z
is an effective Cartier divisor is equivalent to the assumption that s : F → F ⊗OX

L is
injective. Moreover [Z]k+1 = [F ]k+1] and [D ∩ Z]k = [OD∩Z ]k = [i∗F ]k. See Lemma
10.3. Hence part (1) follows from part (2).
Write [F ]k+1 =

∑
mj [Wj ] withmj > 0 and pairwise distinct integral closed subschemes

Wj ⊂ X of δ-dimension k+1. The assumption that s : F → F⊗OX
L is injective implies

that Wj 6⊂ D for all j. By definition we see that

i∗[F ]k+1 =
∑

mj [D ∩Wj ]k.

We claim that ∑
[D ∩Wj ]k = [i∗F ]k

as cycles. Let Z ⊂ D be an integral closed subscheme of δ-dimension k. Let ξ ∈ Z be
its generic point. Let A = OX,ξ . Let M = Fξ . Let f ∈ A be an element generating the
ideal of D, i.e., such that OD,ξ = A/fA. By assumption dim(Supp(M)) = 1, the map
f : M →M is injective, and lengthA(M/fM) <∞. Moreover, lengthA(M/fM) is the

2This condition assures us that if D is an effective Cartier divisor, then N = OX(D)|D .
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coefficient of [Z] in [i∗F ]k. On the other hand, let q1, . . . , qt be the minimal primes in
the support of M . Then ∑

lengthAqi
(Mqi)ordA/qi(f)

is the coefficient of [Z] in
∑

[D ∩Wj ]k. Hence we see the equality by Lemma 3.2. �

Remark 29.6. Let X → S , L, s, i : D → X be as in Definition 29.1 and assume
that L|D ∼= OD. In this case we can define a canonical map i∗ : Zk+1(X) → Zk(D) on
cycles, by requiring that i∗[W ] = 0 whenever W ⊂ D is an integral closed subscheme.
The possibility to do this will be useful later on.

Remark 29.7. Let f : X ′ → X be a morphism of schemes locally of finite type over
S as in Situation 7.1. Let (L, s, i : D → X) be a triple as in Definition 29.1. Then we can
set L′ = f∗L, s′ = f∗s, and D′ = X ′ ×X D = Z(s′). This gives a commutative diagram

D′

g

��

i′
// X ′

f

��
D

i // X

and we can ask for various compatibilities between i∗ and (i′)∗.

Lemma 29.8. Let (S, δ) be as in Situation 7.1. Let f : X ′ → X be a proper morphism
of schemes locally of finite type over S. Let (L, s, i : D → X) be as in Definition 29.1.
Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 29.7. For any (k+1)-cycleα′ onX ′ we have i∗f∗α
′ = g∗(i′)∗α′ in CHk(D)

(this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ′] for some integral closed subscheme W ′ ⊂ X ′. Let W =
f(W ′) ⊂ X . In case W ′ 6⊂ D′, then W 6⊂ D and we see that

[W ′ ∩D′]k = divL′|W ′ (s′|W ′) and [W ∩D]k = divL|W (s|W )
and hence f∗ of the first cycle equals the second cycle by Lemma 26.3. Hence the equality
holds as cycles. In case W ′ ⊂ D′, then W ⊂ D and f∗(c1(L|W ′) ∩ [W ′]) is equal to
c1(L|W ) ∩ [W ] in CHk(W ) by the second assertion of Lemma 26.3. By Remark 19.6 the
result follows for general α′. �

Lemma 29.9. Let (S, δ) be as in Situation 7.1. Let f : X ′ → X be a flat morphism of
relative dimension r of schemes locally of finite type over S. Let (L, s, i : D → X) be as
in Definition 29.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 29.7. For any (k+1)-cycleα onX we have (i′)∗f∗α = g∗i∗α in CHk+r(D′)
(this makes sense as f∗ is defined on the level of cycles).
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Proof. Suppose α = [W ] for some integral closed subscheme W ⊂ X . Let W ′ =
f−1(W ) ⊂ X ′. In case W 6⊂ D, then W ′ 6⊂ D′ and we see that

W ′ ∩D′ = g−1(W ∩D)

as closed subschemes of D′. Hence the equality holds as cycles, see Lemma 14.4. In case
W ⊂ D, thenW ′ ⊂ D′ andW ′ = g−1(W ) with [W ′]k+1+r = g∗[W ] and equality holds
in CHk+r(D′) by Lemma 26.2. By Remark 19.6 the result follows for general α′. �

30. Gysin homomorphisms and rational equivalence

In this section we use the key formula to show the Gysin homomorphism factor through
rational equivalence. We also prove an important commutativity property.

Lemma 30.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let X be integral and n = dimδ(X). Let i : D → X be an effective Cartier divisor. Let
N be an invertible OX -module and let t be a nonzero meromorphic section of N . Then
i∗divN (t) = c1(N|D) ∩ [D]n−1 in CHn−2(D).

Proof. Write divN (t) =
∑

ordZi,N (t)[Zi] for some integral closed subschemes
Zi ⊂ X of δ-dimension n − 1. We may assume that the family {Zi} is locally finite,
that t ∈ Γ(U,N|U ) is a generator where U = X \

⋃
Zi, and that every irreducible com-

ponent of D is one of the Zi, see Divisors, Lemmas 26.1, 26.4, and 27.2.

Set L = OX(D). Denote s ∈ Γ(X,OX(D)) = Γ(X,L) the canonical section. We will
apply the discussion of Section 27 to our current situation. For each i let ξi ∈ Zi be its
generic point. Let Bi = OX,ξi . For each i we pick generators si ∈ Lξi and ti ∈ Nξi
over Bi but we insist that we pick si = s if Zi 6⊂ D. Write s = fisi and t = giti with
fi, gi ∈ Bi. Then ordZi,N (t) = ordBi(gi). On the other hand, we have fi ∈ Bi and

[D]n−1 =
∑

ordBi(fi)[Zi]

because of our choices of si. We claim that

i∗divN (t) =
∑

ordBi(gi)divL|Zi (si|Zi)

as cycles. More precisely, the right hand side is a cycle representing the left hand side.
Namely, this is clear by our formula for divN (t) and the fact that divL|Zi (si|Zi) = [Z(si|Zi)]n−2 =
[Zi∩D]n−2 whenZi 6⊂ D because in that case si|Zi = s|Zi is a regular section, see Lemma
24.2. Similarly,

c1(N ) ∩ [D]n−1 =
∑

ordBi(fi)divN |Zi (ti|Zi)

The key formula (Lemma 27.1) gives the equality∑(
ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)

)
=
∑

divZi(∂Bi(fi, gi))

of cycles. IfZi 6⊂ D, then fi = 1 and hence divZi(∂Bi(fi, gi)) = 0. Thus we get a rational
equivalence between our specific cycles representing i∗divN (t) and c1(N ) ∩ [D]n−1 on
D. This finishes the proof. �

Lemma 30.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let (L, s, i : D → X) be as in Definition 29.1. The Gysin homomorphism factors
through rational equivalence to give a map i∗ : CHk+1(X)→ CHk(D).
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Proof. Let α ∈ Zk+1(X) and assume that α ∼rat 0. This means there exists a
locally finite collection of integral closed subschemes Wj ⊂ X of δ-dimension k + 2 and
fj ∈ R(Wj)∗ such that α =

∑
ij,∗divWj (fj). Set X ′ =

∐
Wi and consider the diagram

D′

q

��

i′
// X ′

p

��
D

i // X

of Remark 29.7. Since X ′ → X is proper we see that i∗p∗ = q∗(i′)∗ by Lemma 29.8. As
we know that q∗ factors through rational equivalence (Lemma 20.3), it suffices to prove
the result for α′ =

∑
divWj (fj) on X ′. Clearly this reduces us to the case where X is

integral and α = div(f) for some f ∈ R(X)∗.

Assume X is integral and α = div(f) for some f ∈ R(X)∗. If X = D, then we see that
i∗α is equal to c1(L)∩ α. This is rationally equivalent to zero by Lemma 28.2. If D 6= X ,
then we see that i∗divX(f) is equal to c1(OD) ∩ [D]n−1 in CHn−2(D) by Lemma 30.1.
Of course capping with c1(OD) is the zero map (Lemma 25.2). �

Lemma 30.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let (L, s, i : D → X) be as in Definition 29.1. Then i∗i∗ : CHk(D)→ CHk−1(D) sends
α to c1(L|D) ∩ α.

Proof. This is immediate from the definition of i∗ on cycles and the definition of i∗
given in Definition 29.1. �

Lemma 30.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let (L, s, i : D → X) be a triple as in Definition 29.1. LetN be an invertibleOX -module.
Then i∗(c1(N ) ∩ α) = c1(i∗N ) ∩ i∗α in CHk−2(D) for all α ∈ CHk(X).

Proof. With exactly the same proof as in Lemma 30.2 this follows from Lemmas
26.4, 28.3, and 30.1. �

Lemma 30.5. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let (L, s, i : D → X) and (L′, s′, i′ : D′ → X) be two triples as in Definition 29.1. Then
the diagram

CHk(X)
i∗

//

(i′)∗

��

CHk−1(D)

j∗

��
CHk−1(D′)

(j′)∗
// CHk−2(D ∩D′)

commutes where each of the maps is a gysin map.

Proof. Denote j : D ∩ D′ → D and j′ : D ∩ D′ → D′ the closed immersions
corresponding to (L|D′ , s|D′ and (L′

D, s|D). We have to show that (j′)∗i∗α = j∗(i′)∗α
for all α ∈ CHk(X). Let W ⊂ X be an integral closed subscheme of dimension k. Let us
prove the equality in case α = [W ]. We will deduce it from the key formula.

We let σ be a nonzero meromorphic section of L|W which we require to be equal to s|W
if W 6⊂ D. We let σ′ be a nonzero meromorphic section of L′|W which we require to be
equal to s′|W if W 6⊂ D′. Write

divL|W (σ) =
∑

ordZi,L|W (σ)[Zi] =
∑

ni[Zi]
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and similarly

divL′|W (σ′) =
∑

ordZi,L′|W (σ′)[Zi] =
∑

n′
i[Zi]

as in the discussion in Section 27. Then we see that Zi ⊂ D if ni 6= 0 and Z ′
i ⊂ D′ if

n′
i 6= 0. For each i, let ξi ∈ Zi be the generic point. As in Section 27 we choose for each i

an element σi ∈ Lξi , resp. σ′
i ∈ L′

ξi
which generates over Bi = OW,ξi and which is equal

to the image of s, resp. s′ if Zi 6⊂ D, resp. Zi 6⊂ D′. Write σ = fiσi and σ′ = f ′
iσ

′
i so that

ni = ordBi(fi) and n′
i = ordBi(f ′

i). From our definitions it follows that

(j′)∗i∗[W ] =
∑

ordBi(fi)divL′|Zi (σ
′
i|Zi)

as cycles and

j∗(i′)∗[W ] =
∑

ordBi(f ′
i)divL|Zi (σi|Zi)

The key formula (Lemma 27.1) now gives the equality∑(
ordBi(fi)divL′|Zi (σ

′
i|Zi)− ordBi(f ′

i)divL|Zi (σi|Zi)
)

=
∑

divZi(∂Bi(fi, f ′
i))

of cycles. Note that divZi(∂Bi(fi, f ′
i)) = 0 ifZi 6⊂ D∩D′ because in this case either fi =

1 or f ′
i = 1. Thus we get a rational equivalence between our specific cycles representing

(j′)∗i∗[W ] and j∗(i′)∗[W ] onD∩D′∩W . By Remark 19.6 the result follows for general
α. �

31. Relative effective Cartier divisors

Relative effective Cartier divisors are defined and studied in Divisors, Section 18. To de-
velop the basic results on Chern classes of vector bundles we only need the case where
both the ambient scheme and the effective Cartier divisor are flat over the base.

Lemma 31.1. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let p : X → Y be a flat morphism of relative dimension r. Let i : D → X be a
relative effective Cartier divisor (Divisors, Definition 18.2). Let L = OX(D). For any
α ∈ CHk+1(Y ) we have

i∗p∗α = (p|D)∗α

in CHk+r(D) and
c1(L) ∩ p∗α = i∗((p|D)∗α)

in CHk+r(X).

Proof. Let W ⊂ Y be an integral closed subscheme of δ-dimension k + 1. By Di-
visors, Lemma 18.1 we see that D ∩ p−1W is an effective Cartier divisor on p−1W . By
Lemma 29.5 we get the first equality in

i∗[p−1W ]k+r+1 = [D ∩ p−1W ]k+r = [(p|D)−1(W )]k+r.

and the second because D ∩ p−1(W ) = (p|D)−1(W ) as schemes. Since by definition
p∗[W ] = [p−1W ]k+r+1 we see that i∗p∗[W ] = (p|D)∗[W ] as cycles. If α =

∑
mj [Wj ]

is a general k + 1 cycle, then we get i∗α =
∑
mji

∗p∗[Wj ] =
∑
mj(p|D)∗[Wj ] as cycles.

This proves then first equality. To deduce the second from the first apply Lemma 29.4. �
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32. Affine bundles

For an affine bundle the pullback map is surjective on Chow groups.
Lemma 32.1. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over

S. Let f : X → Y be a flat morphism of relative dimension r. Assume that for every
y ∈ Y , there exists an open neighbourhood U ⊂ Y such that f |f−1(U) : f−1(U) → U
is identified with the morphism U × Ar → U . Then f∗ : CHk(Y ) → CHk+r(X) is
surjective for all k ∈ Z.

Proof. Let α ∈ CHk+r(X). Write α =
∑
mj [Wj ] with mj 6= 0 and Wj pairwise

distinct integral closed subschemes of δ-dimension k+r. Then the family {Wj} is locally
finite in X . For any quasi-compact open V ⊂ Y we see that f−1(V ) ∩Wj is nonempty
only for finitely many j. Hence the collection Zj = f(Wj) of closures of images is a
locally finite collection of integral closed subschemes of Y .
Consider the fibre product diagrams

f−1(Zj) //

fj

��

X

f

��
Zj // Y

Suppose that [Wj ] ∈ Zk+r(f−1(Zj)) is rationally equivalent to f∗
j βj for some k-cycle

βj ∈ CHk(Zj). Then β =
∑
mjβj will be a k-cycle on Y and f∗β =

∑
mjf

∗
j βj will be

rationally equivalent to α (see Remark 19.6). This reduces us to the case Y integral, and
α = [W ] for some integral closed subscheme of X dominating Y . In particular we may
assume that d = dimδ(Y ) <∞.
Hence we can use induction on d = dimδ(Y ). If d < k, then CHk+r(X) = 0 and the
lemma holds. By assumption there exists a dense openV ⊂ Y such that f−1(V ) ∼= V ×Ar

as schemes over V . Suppose that we can show that α|f−1(V ) = f∗β for some β ∈ Zk(V ).
By Lemma 14.2 we see that β = β′|V for some β′ ∈ Zk(Y ). By the exact sequence
CHk(f−1(Y \ V )) → CHk(X) → CHk(f−1(V )) of Lemma 19.3 we see that α − f∗β′

comes from a cycle α′ ∈ CHk+r(f−1(Y \ V )). Since dimδ(Y \ V ) < d we win by
induction on d.
Thus we may assume that X = Y ×Ar. In this case we can factor f as

X = Y ×Ar → Y ×Ar−1 → . . .→ Y ×A1 → Y.

Hence it suffices to do the case r = 1. By the argument in the second paragraph of the proof
we are reduced to the case α = [W ], Y integral, and W → Y dominant. Again we can do
induction on d = dimδ(Y ). IfW = Y ×A1, then [W ] = f∗[Y ]. Lastly,W ⊂ Y ×A1 is a
proper inclusion, thenW → Y induces a finite field extensionR(W )/R(Y ). Let P (T ) ∈
R(Y )[T ] be the monic irreducible polynomial such that the generic fibre of W → Y is
cut out by P in A1

R(Y ). Let V ⊂ Y be a nonempty open such that P ∈ Γ(V,OY )[T ],
and such that W ∩ f−1(V ) is still cut out by P . Then we see that α|f−1(V ) ∼rat 0 and
hence α ∼rat α′ for some cycle α′ on (Y \ V )×A1. By induction on the dimension we
win. �

Lemma 32.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let L be an invertibleOX -module. Let

p : L = Spec(Sym∗(L)) −→ X
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be the associated vector bundle over X . Then p∗ : CHk(X) → CHk+1(L) is an isomor-
phism for all k.

Proof. For surjectivity see Lemma 32.1. Let o : X → L be the zero section ofL→ X ,
i.e., the morphism corresponding to the surjection Sym∗(L) → OX which maps L⊗n to
zero for all n > 0. Then p ◦ o = idX and o(X) is an effective Cartier divisor on L. Hence
by Lemma 31.1 we see that o∗ ◦ p∗ = id and we conclude that p∗ is injective too. �

Remark 32.3. We will see later (Lemma 36.3) that if X is a vector bundle of rank r
over Y then the pullback map CHk(Y ) → CHk+r(X) is an isomorphism. This is true
whenever X → Y satisfies the assumptions of Lemma 32.1, see [?, Lemma 2.2]. We will
sketch a proof in Remark 32.8 using higher chow groups.

Lemma 32.4. In the situation of Lemma 32.2 denote o : X → L the zero section (see
proof of the lemma). Then we have

(1) o(X) is the zero scheme of a regular global section of p∗L⊗−1,
(2) o∗ : CHk(X)→ CHk(L) as o is a closed immersion,
(3) o∗ : CHk+1(L)→ CHk(X) as o(X) is an effective Cartier divisor,
(4) o∗p∗ : CHk(X)→ CHk(X) is the identity map,
(5) o∗α = −p∗(c1(L) ∩ α) for any α ∈ CHk(X), and
(6) o∗o∗ : CHk(X)→ CHk−1(X) is equal to the map α 7→ −c1(L) ∩ α.

Proof. Since p∗OL = Sym∗(L) we have p∗(p∗L⊗−1) = Sym∗(L) ⊗OX
L⊗−1 by

the projection formula (Cohomology, Lemma 54.2) and the section mentioned in (1) is the
canonical trivializationOX → L⊗OX

L⊗−1. We omit the proof that the vanishing locus
of this section is precisely o(X). This proves (1).

Parts (2), (3), and (4) we’ve seen in the course of the proof of Lemma 32.2. Of course (4) is
the first formula in Lemma 31.1.

Part (5) follows from the second formula in Lemma 31.1, additivity of capping with c1
(Lemma 25.2), and the fact that capping with c1 commutes with flat pullback (Lemma
26.2).

Part (6) follows from Lemma 30.3 and the fact that o∗p∗L = L. �

Lemma 32.5. Let Y be a scheme. Let Li, i = 1, 2 be invertible OY -modules. Let s
be a global section of L1 ⊗OX

L2. Denote i : D → X the zero scheme of s. Then there
exists a commutative diagram

D1
i1
//

p1

��

L

p

��

D2
i2

oo

p2

��
D

i // Y D
ioo

and sections si of p∗Li such that the following hold:
(1) p∗s = s1 ⊗ s2,
(2) p is of finite type and flat of relative dimension 1,
(3) Di is the zero scheme of si,
(4) Di

∼= Spec(Sym∗(L⊗−1
1−i )|D)) over D for i = 1, 2,

(5) p−1D = D1 ∪D2 (scheme theoretic union),
(6) D1 ∩D2 (scheme theoretic intersection) maps isomorphically to D, and
(7) D1 ∩D2 → Di is the zero section of the line bundle Di → D for i = 1, 2.
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Moreover, the formation of this diagram and the sections si commutes with arbitrary base
change.

Proof. Let p : X → Y be the relative spectrum of the quasi-coherent sheaf of OY -
algebras

A =
(⊕

a1,a2≥0
L⊗−a1

1 ⊗OY
L⊗−a2

2

)
/J

whereJ is the ideal generated by local sections of the form st−t for t a local section of any
summand L⊗−a1

1 ⊗ L⊗−a2
2 with a1, a2 > 0. The sections si viewed as maps p∗L⊗−1

i →
OX are defined as the adjoints of the maps L⊗−1

i → A = p∗OX . For any y ∈ Y we
can choose an affine open V ⊂ Y , say V = Spec(B), containing y and trivializations
zi : OV → L⊗−1

i |V . Observe that f = s(z1z2) ∈ A cuts out the closed subscheme D.
Then clearly

p−1(V ) = Spec(B[z1, z2]/(z1z2 − f))
Since Di is cut out by zi everything is clear. �

Lemma 32.6. In the situation of Lemma 32.5 assume Y is locally of finite type over
(S, δ) as in Situation 7.1. Then we have i∗1p∗α = p∗

1i
∗α in CHk(D1) for all α ∈ CHk(Y ).

Proof. LetW ⊂ Y be an integral closed subscheme of δ-dimension k. We distinguish
two cases.

Assume W ⊂ D. Then i∗[W ] = c1(L1) ∩ [W ] + c1(L2) ∩ [W ] in CHk−1(D) by our
definition of gysin homomorphisms and the additivity of Lemma 25.2. Hence p∗

1i
∗[W ] =

p∗
1(c1(L1)∩[W ])+p∗

1(c1(L2)∩[W ]). On the other hand, we have p∗[W ] = [p−1(W )]k+1
by construction of flat pullback. And p−1(W ) = W1 ∪W2 (scheme theoretically) where
Wi = p−1

i (W ) is a line bundle over W by the lemma (since formation of the diagram
commutes with base change). Then [p−1(W )]k+1 = [W1]+[W2] asWi are integral closed
subschemes of L of δ-dimension k + 1. Hence

i∗1p
∗[W ] = i∗1[p−1(W )]k+1

= i∗1([W1] + [W2])
= c1(p∗

1L1) ∩ [W1] + [W1 ∩W2]k
= c1(p∗

1L1) ∩ p∗
1[W ] + [W1 ∩W2]k

= p∗
1(c1(L1) ∩ [W ]) + [W1 ∩W2]k

by construction of gysin homomorphisms, the definition of flat pullback (for the second
equality), and compatibility of c1 ∩− with flat pullback (Lemma 26.2). Since W1 ∩W2 is
the zero section of the line bundleW1 →W we see from Lemma 32.4 that [W1 ∩W2]k =
p∗

1(c1(L2) ∩ [W ]). Note that here we use the fact that D1 is the line bundle which is the
relative spectrum of the inverse of L2. Thus we get the same thing as before.

Assume W 6⊂ D. In this case, both i∗1p∗[W ] and p∗
1i

∗[W ] are represented by the k − 1
cycle associated to the scheme theoretic inverse image of W in D1. �

Lemma 32.7. In Situation 7.1 let X be a scheme locally of finite type over S. Let
(L, s, i : D → X) be a triple as in Definition 29.1. There exists a commutative diagram

D′
i′
//

p

��

X ′

g

��
D

i // X
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such that
(1) p and g are of finite type and flat of relative dimension 1,
(2) p∗ : CHk(D)→ CHk+1(D′) is injective for all k,
(3) D′ ⊂ X ′ is the zero scheme of a global section s′ ∈ Γ(X ′,OX′),
(4) p∗i∗ = (i′)∗g∗ as maps CHk(X)→ CHk(D′).

Moreover, these properties remain true after arbitrary base change by morphisms Y → X
which are locally of finite type.

Proof. Observe that (i′)∗ is defined because we have the triple (OX′ , s′, i′ : D′ →
X ′) as in Definition 29.1. Thus the statement makes sense.
SetL1 = OX , L2 = L and apply Lemma 32.5 with the section s ofL = L1⊗OX

L2. Take
D′ = D1. The results now follow from the lemma, from Lemma 32.6 and injectivity by
Lemma 32.2. �

Remark 32.8. Let (S, δ) be as in Situation 7.1. Let Y be locally of finite type over S.
Let r ≥ 0. Let f : X → Y be a morphism of schemes. Assume every y ∈ Y is contained
in an open V ⊂ Y such that f−1(V ) ∼= V ×Ar as schemes over V . In this remark we
sketch a proof of the fact that f∗ : CHk(Y ) → CHk+r(X) is an isomorphism. First, by
Lemma 32.1 the map is surjective. Let α ∈ CHk(Y ) with f∗α = 0. We will prove that
α = 0.
Step 1. We may assume that dimδ(Y ) <∞. (This is immediate in all cases in practice so we
suggest the reader skip this step.) Namely, any rational equivalence witnessing that f∗α =
0 on X , will use a locally finite collection of integral closed subschemes of dimension
k + r + 1. Taking the union of the closures of the images of these in Y we get a closed
subschemeY ′ ⊂ Y of dimδ(Y ′) ≤ k+r+1 such thatα is the image of someα′ ∈ CHk(Y ′)
and such that (f ′)∗α = 0 where f ′ is the base change of f to Y ′.
Step 2. Assume d = dimδ(Y ) <∞. Then we can use induction on d. If d < k, thenα = 0
and we are done; this is the base case of the induction. In general, our assumption on f
shows we can choose a dense open V ⊂ Y such thatU = f−1(V ) = Ar

V . Denote Y ′ ⊂ Y
the complement of V as a reduced closed subscheme and set X ′ = f−1(Y ′). Consider

CHM
k+r(U, 1) // CHk+r(X ′) // CHk+r(X) // CHk+r(U) // 0

CHM
k (V, 1) //

OO

CHk(Y ′) //

OO

CHk(Y ) //

OO

CHk(V ) //

OO

0

Here we use the first higher Chow groups of V and U and the six term exact sequences
constructed in Remark 27.3, as well as flat pullback for these higher chow groups and com-
patibility of flat pullback with these six term exact sequences. Since U = Ar

V the vertical
map on the right is an isomorphism. The map CHk(Y ′) → CHk+r(X ′) is bijective by
induction on d. Hence to finish the argument is suffices to show that

CHM
k (V, 1) −→ CHM

k+r(U, 1)
is surjective. Arguing as in the proof of Lemma 32.1 this reduces to Step 3 below.

Step 3. Let F be a field. Then CHM
0 (A1

F , 1) = 0. (In the proof of the lemma cited above
we proved analogously that CH0(A1

F ) = 0.) We have

CHM
0 (A1

F , 1) = Coker
(
∂ : KM

2 (F (T )) −→
⊕

p⊂F [T ] maximal
κ(p)∗

)
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The classical argument for the vanishing of the cokernel is to show by induction on the
degree of κ(p)/F that the summand corresponding to p is in the image. If p is generated
by the irreducible monic polynomial P (T ) ∈ F [T ] and if u ∈ κ(x)∗ is the residue class
of some Q(T ) ∈ F [T ] with deg(Q) < deg(P ) then one shows that ∂(Q,P ) produces
the element u at p and perhaps some other units at primes dividing Q which have lower
degree. This finishes the sketch of the proof.

33. Bivariant intersection theory

In order to intelligently talk about higher Chern classes of vector bundles we introduce
bivariant chow classes as in [?]. Our definition differs from [?] in two respects: (1) we work
in a different setting, and (2) we only require our bivariant classes commute with the gysin
homomorphisms for zero schemes of sections of invertible modules (Section 29). We will
see later, in Lemma 54.8, that our bivariant classes commute with all higher codimension
gysin homomorphisms and hence satisfy all properties required of them in [?]; see also [?,
Theorem 17.1].

Definition 33.1. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Let p ∈ Z. A bivariant class c of degree p for f is
given by a rule which assigns to every locally of finite type morphism Y ′ → Y and every
k a map

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)
where X ′ = Y ′ ×Y X , satisfying the following conditions

(1) if Y ′′ → Y ′ is a proper, then c ∩ (Y ′′ → Y ′)∗α
′′ = (X ′′ → X ′)∗(c ∩ α′′) for

all α′′ on Y ′′ where X ′′ = Y ′′ ×Y X ,
(2) if Y ′′ → Y ′ is flat locally of finite type of fixed relative dimension, then c ∩

(Y ′′ → Y ′)∗α′ = (X ′′ → X ′)∗(c ∩ α′) for all α′ on Y ′, and
(3) if (L′, s′, i′ : D′ → Y ′) is as in Definition 29.1 with pullback (N ′, t′, j′ : E′ →

X ′) to X ′, then we have c ∩ (i′)∗α′ = (j′)∗(c ∩ α′) for all α′ on Y ′.
The collection of all bivariant classes of degree p for f is denoted Ap(X → Y ).

Let (S, δ) be as in Situation 7.1. Let X → Y and Y → Z be morphisms of schemes
locally of finite type over S. Let p ∈ Z. It is clear that Ap(X → Y ) is an abelian group.
Moreover, it is clear that we have a bilinear composition

Ap(X → Y )×Aq(Y → Z)→ Ap+q(X → Z)

which is associative.

Lemma 33.2. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a flat morphism of
relative dimension r between schemes locally of finite type over S. Then the rule that to
Y ′ → Y assigns (f ′)∗ : CHk(Y ′) → CHk+r(X ′) where X ′ = X ×Y Y ′ is a bivariant
class of degree −r.

Proof. This follows from Lemmas 20.2, 14.3, 15.1, and 29.9. �

Lemma 33.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let (L, s, i : D → X) be a triple as in Definition 29.1. Then the rule that to f : X ′ → X
assigns (i′)∗ : CHk(X ′) → CHk−1(D′) where D′ = D ×X X ′ is a bivariant class of
degree 1.

Proof. This follows from Lemmas 30.2, 29.8, 29.9, and 30.5. �
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Lemma 33.4. Let (S, δ) be as in Situation 7.1. Let f : X → Y and g : Y → Z be
morphisms of schemes locally of finite type over S. Let c ∈ Ap(X → Z) and assume f is
proper. Then the rule that to Z ′ → Z assigns α 7−→ f ′

∗(c∩α) is a bivariant class denoted
f∗ ◦ c ∈ Ap(Y → Z).

Proof. This follows from Lemmas 12.2, 15.1, and 29.8. �

Remark 33.5. Let (S, δ) be as in Situation 7.1. Let X → Y and Y ′ → Y be mor-
phisms of schemes locally of finite type over S. Let X ′ = Y ′ ×Y X . Then there is an
obvious restriction map

Ap(X → Y ) −→ Ap(X ′ → Y ′), c 7−→ res(c)
obtained by viewing a scheme Y ′′ locally of finite type over Y ′ as a scheme locally of finite
type over Y and settting res(c) ∩ α′′ = c ∩ α′′ for any α′′ ∈ CHk(Y ′′). This restriction
operation is compatible with compositions in an obvious manner.

Remark 33.6. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. For i = 1, 2 let Zi → X be a morphism of schemes locally of finite type. Let ci ∈
Api(Zi → X), i = 1, 2 be bivariant classes. For any α ∈ CHk(X) we can ask whether

c1 ∩ c2 ∩ α = c2 ∩ c1 ∩ α
in CHk−p1−p2(Z1×X Z2). If this is true and if it holds after any base change byX ′ → X
locally of finite type, then we say c1 and c2 commute. Of course this is the same thing as
saying that

res(c1) ◦ c2 = res(c2) ◦ c1

in Ap1+p2(Z1 ×X Z2 → X). Here res(c1) ∈ Ap1(Z1 ×X Z2 → Z2) is the restriction of
c1 as in Remark 33.5; similarly for res(c2).

Example 33.7. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over S.
Let (L, s, i : D → X) a triple as in Definition 29.1. LetZ → X be a morphism of schemes
locally of finite type and let c ∈ Ap(Z → X) be a bivariant class. Then the bivariant
gysin class c′ ∈ A1(D → X) of Lemma 33.3 commutes with c in the sense of Remark
33.6. Namely, this is a restatement of condition (3) of Definition 33.1.

Remark 33.8. There is a more general type of bivariant class that doesn’t seem to be
considered in the literature. Namely, suppose we are given a diagram

X −→ Z ←− Y
of schemes locally of finite type over (S, δ) as in Situation 7.1. Let p ∈ Z. Then we can
consider a rule c which assigns to every Z ′ → Z locally of finite type maps

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)
for all k ∈ Z where X ′ = X ×Z Z ′ and Y ′ = Z ′ ×Z Y compatible with

(1) proper pushforward if given Z ′′ → Z ′ proper,
(2) flat pullback if given Z ′′ → Z ′ flat of fixed relative dimension, and
(3) gysin maps if given D′ ⊂ Z ′ as in Definition 29.1.

We omit the detailed formulations. Suppose we denote the collection of all such operations
Ap(X → Z ← Y ). A simple example of the utility of this concept is when we have a
proper morphism f : X2 → X1. Then f∗ isn’t a bivariant operation in the sense of
Definition 33.1 but it is in the above generalized sense, namely, f∗ ∈ A0(X1 → X1 ←
X2).
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34. Chow cohomology and the first Chern class

We will be most interested inAp(X) = Ap(X → X), which will always mean the bivari-
ant cohomology classes for idX . Namely, that is where Chern classes will live.

Definition 34.1. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. The Chow cohomology ofX is the graded Z-algebraA∗(X) whose degree p component
is Ap(X → X).

Warning: It is not clear that the Z-algebra structure on A∗(X) is commutative, but we
will see that Chern classes live in its center.

Remark 34.2. Let (S, δ) be as in Situation 7.1. Let f : Y ′ → Y be a morphism of
schemes locally of finite type over S. As a special case of Remark 33.5 there is a canonical
Z-algebra map res : A∗(Y )→ A∗(Y ′). This map is often denoted f∗ in the literature.

Lemma 34.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
LetL be an invertibleOX -module. Then the rule that to f : X ′ → X assigns c1(f∗L)∩− :
CHk(X ′)→ CHk−1(X ′) is a bivariant class of degree 1.

Proof. This follows from Lemmas 28.2, 26.4, 26.2, and 30.4. �

The lemma above finally allows us to make the following definition.

Definition 34.4. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Let L be an invertible OX -module. The first Chern class c1(L) ∈ A1(X) of L is the
bivariant class of Lemma 34.3.

For finite locally free modules we construct the Chern classes in Section 38. Let us prove
that c1(L) is in the center of A∗(X).

Lemma 34.5. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let L be an invertibleOX -module. Then

(1) c1(L) ∈ A1(X) is in the center of A∗(X) and
(2) if f : X ′ → X is locally of finite type and c ∈ A∗(X ′ → X), then c ◦ c1(L) =

c1(f∗L) ◦ c.

Proof. Of course (2) implies (1). Let p : L→ X be as in Lemma 32.2 and let o : X →
L be the zero section. Denote p′ : L′ → X ′ and o′ : X ′ → L′ their base changes. By
Lemma 32.4 we have

p∗(c1(L) ∩ α) = −o∗α and (p′)∗(c1(f∗L) ∩ α′) = −o′
∗α

′

Since c is a bivariant class we have

(p′)∗(c ∩ c1(L) ∩ α) = c ∩ p∗(c1(L) ∩ α)
= −c ∩ o∗α

= −o′
∗(c ∩ α)

= (p′)∗(c1(f∗L) ∩ c ∩ α)

Since (p′)∗ is injective by one of the lemmas cited above we obtain c ∩ c1(L) ∩ α =
c1(f∗L) ∩ c ∩ α. The same is true after any base change by Y → X locally of finite type
and hence we have the equality of bivariant classes stated in (2). �
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Lemma 34.6. Let (S, δ) be as in Situation 7.1. Let X be a finite type scheme over S
which has an ample invertible sheaf. Assume d = dim(X) < ∞ (here we really mean
dimension and not δ-dimension). Then for any invertible sheaves L1, . . . ,Ld+1 on X we
have c1(L1) ◦ . . . ◦ c1(Ld+1) = 0 in Ad+1(X).

Proof. We prove this by induction on d. The base case d = 0 is true because in this
case X is a finite set of closed points and hence every invertible module is trivial. Assume
d > 0. By Divisors, Lemma 15.12 we can write Ld+1 ∼= OX(D)⊗OX(D′)⊗−1 for some
effective Cartier divisors D,D′ ⊂ X . Then c1(Ld+1) is the difference of c1(OX(D))
and c1(OX(D′)) and hence we may assume Ld+1 = OX(D) for some effective Cartier
divisor.

Denote i : D → X the inclusion morphism and denote i∗ ∈ A1(D → X) the bivariant
class given by the gysin hommomorphism as in Lemma 33.3. We have i∗ ◦ i∗ = c1(Ld+1)
in A1(X) by Lemma 29.4 (and Lemma 33.4 to make sense of the left hand side). Since
c1(Li) commutes with both i∗ and i∗ (by definition of bivariant classes) we conclude that

c1(L1)◦ . . .◦c1(Ld+1) = i∗◦c1(L1)◦ . . .◦c1(Ld)◦i∗ = i∗◦c1(L1|D)◦ . . .◦c1(Ld|D)◦i∗

Thus we conclude by induction on d. Namely, we have dim(D) < d as none of the generic
points of X are in D. �

Remark 34.7. Let (S, δ) be as in Situation 7.1. Let Z → X be a closed immersion of
schemes locally of finite type over S and let p ≥ 0. In this setting we define

A(p)(Z → X) =
∏

i≤p−1
Ai(X)×

∏
i≥p

Ai(Z → X).

Then A(p)(Z → X) canonically comes equipped with the structure of a graded algebra.
In fact, more generally there is a multiplication

A(p)(Z → X)×A(q)(Z → X) −→ A(max(p,q))(Z → X)

In order to define these we define maps

Ai(Z → X)×Aj(X)→ Ai+j(Z → X)
Ai(X)×Aj(Z → X)→ Ai+j(Z → X)

Ai(Z → X)×Aj(Z → X)→ Ai+j(Z → X)

For the first we use composition of bivariant classes. For the second we use restriction
Ai(X) → Ai(Z) (Remark 33.5) and composition Ai(Z) × Aj(Z → X) → Ai+j(Z →
X). For the third, we send (c, c′) to res(c) ◦ c′ where res : Ai(Z → X)→ Ai(Z) is the
restriction map (see Remark 33.5). We omit the verification that these multiplications are
associative in a suitable sense.

Remark 34.8. Let (S, δ) be as in Situation 7.1. Let Z → X be a closed immersion of
schemes locally of finite type over S. Denote res : Ap(Z → X)→ Ap(Z) the restriction
map of Remark 33.5. For c ∈ Ap(Z → X) we have res(c)∩α = c∩i∗α forα ∈ CH∗(Z).
Namely res(c) ∩ α = c ∩ α and compatibility of c with proper pushforward gives (Z →
Z)∗(c ∩ α) = c ∩ (Z → X)∗α.

35. Lemmas on bivariant classes

In this section we prove some elementary results on bivariant classes. Here is a criterion
to see that an operation passes through rational equivalence.
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Lemma 35.1. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Let p ∈ Z. Suppose given a rule which assigns to
every locally of finite type morphism Y ′ → Y and every k a map

c ∩ − : Zk(Y ′) −→ CHk−p(X ′)

where Y ′ = X ′×X Y , satisfying condition (3) of Definition 33.1 wheneverL′|D′ ∼= OD′ .
Then c ∩ − factors through rational equivalence.

Proof. The statement makes sense because given a triple (L, s, i : D → X) as in
Definition 29.1 such thatL|D ∼= OD , then the operation i∗ is defined on the level of cycles,
see Remark 29.6. Let α ∈ Zk(X ′) be a cycle which is rationally equivalent to zero. We
have to show that c∩α = 0. By Lemma 21.1 there exists a cycle β ∈ Zk+1(X ′×P1) such
that α = i∗0β − i∗∞β where i0, i∞ : X ′ → X ′ ×P1 are the closed immersions of X ′ over
0,∞. Since these are examples of effective Cartier divisors with trivial normal bundles,
we see that c ∩ i∗0β = j∗

0 (c ∩ β) and c ∩ i∗∞β = j∗
∞(c ∩ β) where j0, j∞ : Y ′ → Y ′ ×P1

are closed immersions as before. Since j∗
0 (c ∩ β) ∼rat j∗

∞(c ∩ β) (follows from Lemma
21.1) we conclude. �

Lemma 35.2. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Let p ∈ Z. Suppose given a rule which assigns to
every locally of finite type morphism Y ′ → Y and every k a map

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)

where Y ′ = X ′ ×X Y , satisfying conditions (1), (2) of Definition 33.1 and condition (3)
whenever L′|D′ ∼= OD′ . Then c ∩ − is a bivariant class.

Proof. Let Y ′ → Y be a morphism of schemes which is locally of finite type. Let
(L′, s′, i′ : D′ → Y ′) be as in Definition 29.1 with pullback (N ′, t′, j′ : E′ → X ′) to X ′.
We have to show that c ∩ (i′)∗α′ = (j′)∗(c ∩ α′) for all α′ ∈ CHk(Y ′).

Denote g : Y ′′ → Y ′ the smooth morphism of relative dimension 1 with i′′ : D′′ → Y ′′

and p : D′′ → D′ constructed in Lemma 32.7. (Warning: D′′ isn’t the full inverse image
of D′.) Denote f : X ′′ → X ′ and E′′ ⊂ X ′′ their base changes by X ′ → Y ′. Picture

X ′′ //

h
��

Y ′′

g

��

E′′ //

q

��

j′′
==

D′′

p

��

i′′
==

X ′ // Y ′

E′ //

j′
==

D′

i′
==

By the properties given in the lemma we know that β′ = (i′)∗α′ is the unique element of
CHk−1(D′) such that p∗β′ = (i′′)∗g∗α′. Similarly, we know that γ′ = (j′)∗(c ∩ α′) is
the unique element of CHk−1−p(E′) such that q∗γ′ = (j′′)∗h∗(c ∩ α′). Since we know
that

(j′′)∗h∗(c ∩ α′) = (j′′)∗(c ∩ g∗α′) = c ∩ (i′′)∗g∗α′
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by our assuptions on c; note that the modified version of (3) assumed in the statement of
the lemma applies to i′′ and its base change j′′. We similarly know that

q∗(c ∩ β′) = c ∩ p∗β′

We conclude that γ′ = c ∩ β′ by the uniqueness pointed out above. �

Here a criterion for when a bivariant class is zero.

Lemma 35.3. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Let c ∈ Ap(X → Y ). For Y ′′ → Y ′ → Y set
X ′′ = Y ′′ ×Y X and X ′ = Y ′ ×Y X . The following are equivalent

(1) c is zero,
(2) c∩ [Y ′] = 0 in CH∗(X ′) for every integral scheme Y ′ locally of finite type over

Y , and
(3) for every integral scheme Y ′ locally of finite type over Y , there exists a proper

birational morphism Y ′′ → Y ′ such that c ∩ [Y ′′] = 0 in CH∗(X ′′).

Proof. The implications (1)⇒ (2)⇒ (3) are clear. Assumption (3) implies (2) because
(Y ′′ → Y ′)∗[Y ′′] = [Y ′] and hence c ∩ [Y ′] = (X ′′ → X ′)∗(c ∩ [Y ′′]) as c is a bivari-
ant class. Assume (2). Let Y ′ → Y be locally of finite type. Let α ∈ CHk(Y ′). Write
α =

∑
ni[Y ′

i ] with Y ′
i ⊂ Y ′ a locally finite collection of integral closed subschemes

of δ-dimension k. Then we see that α is pushforward of the cycle α′ =
∑
ni[Y ′

i ] on
Y ′′ =

∐
Y ′
i under the proper morphismY ′′ → Y ′. By the properties of bivariant classes it

suffices to prove that c∩α′ = 0 in CHk−p(X ′′). We have CHk−p(X ′′) =
∏

CHk−p(X ′
i)

where X ′
i = Y ′

i ×Y X . This follows immediately from the definitions. The projection
maps CHk−p(X ′′) → CHk−p(X ′

i) are given by flat pullback. Since capping with c com-
mutes with flat pullback, we see that it suffices to show that c∩ [Y ′

i ] is zero in CHk−p(X ′
i)

which is true by assumption. �

Lemma 35.4. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Assume we have disjoint union decompositions
X =

∐
i∈I Xi and Y =

∐
j∈J Yj by open and closed subschemes and a map a : I → J of

sets such that f(Xi) ⊂ Ya(i). Then

Ap(X → Y ) =
∏

i∈I
Ap(Xi → Ya(i))

Proof. Suppose given an element (ci) ∈
∏
iA

p(Xi → Ya(i)). Then given β ∈
CHk(Y ) we can map this to the element of CHk−p(X) whose restriction to Xi is ci ∩
β|Ya(i) . This works because CHk−p(X) =

∏
i CHk−p(Xi). The same construction works

after base change by any Y ′ → Y locally of finite type and we get c ∈ Ap(X → Y ). Thus
we obtain a map Ψ from the right hand side of the formula to the left hand side of the
formula. Conversely, given c ∈ Ap(X → Y ) and an element βi ∈ CHk(Ya(i)) we can
consider the element (c∩(Ya(i) → Y )∗βi)|Xi in CHk−p(Xi). The same thing works after
base change by any Y ′ → Y locally of finite type and we get ci ∈ Ap(Xi → Ya(i)). Thus
we obtain a map Φ from the left hand side of the formula to the right hand side of the
formula. It is immediate that Φ◦Ψ = id. For the converse, suppose that c ∈ Ap(X → Y )
and β ∈ CHk(Y ). Say Φ(c) = (ci). Let j ∈ J . Because c commutes with flat pullback we
get

(c ∩ β)|∐
a(i)=j

Xi
= c ∩ β|Yj
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Because c commutes with proper pushforward we get

(
∐

a(i)=j
Xi → X)∗((c ∩ β)|∐

a(i)=j
Xi

) = c ∩ (Yj → Y )∗β|Yj

The left hand side is the cycle onX restricting to (c∩β)|Xi onXi for i ∈ I with a(i) = j
and 0 else. The right hand side is a cycle on X whose restriction to Xi is ci ∩ β|Yj for
i ∈ I with a(i) = j. Thus c ∩ β = Ψ((ci)) as desired. �

Remark 35.5. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism
of schemes locally of finite type over S. Let X =

∐
i∈I Xi and Y =

∐
j∈J Yj be the

decomposition of X and Y into their connected components (the connected components
are open as X and Y are locally Noetherian, see Topology, Lemma 9.6 and Properties,
Lemma 5.5). Let a(i) ∈ J be the index such that f(Xi) ⊂ Ya(i). Then Ap(X → Y ) =∏
Ap(Xi → Ya(i)) by Lemma 35.4. In this setting it is convenient to set

A∗(X → Y )∧ =
∏

i
A∗(Xi → Ya(i))

This “completed” bivariant group is the subset

A∗(X → Y )∧ ⊂
∏

p≥0
Ap(X)

consisting of elements c = (c0, c1, c2, . . .) such that for each connected componentXi the
image of cp in Ap(Xi → Ya(i)) is zero for almost all p. If Y → Z is a second morphism,
then the composition A∗(X → Y ) × A∗(Y → Z) → A∗(X → Z) extends to a compo-
sition A∗(X → Y )∧ × A∗(Y → Z)∧ → A∗(X → Z)∧ of completions. We sometimes
call A∗(X)∧ = A∗(X → X)∧ the completed bivariant cohomology ring of X .

Lemma 35.6. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S. Let g : Y ′ → Y be an envelope (Definition 22.1)
and denote X ′ = Y ′ ×Y X . Let p ∈ Z and let c′ ∈ Ap(X ′ → Y ′). If the two restrictions

res1(c′) = res2(c′) ∈ Ap(X ′ ×X X ′ → Y ′ ×Y Y ′)
are equal (see proof), then there exists a unique c ∈ Ap(X → Y ) whose restriction
res(c) = c′ in Ap(X ′ → Y ′).

Proof. We have a commutative diagram

X ′ ×X X ′

f ′′

��

a //

b
// X ′

f ′

��

h
// X

f

��
Y ′ ×Y Y ′

p //

q
// Y ′ g // Y

The element res1(c′) is the restriction (see Remark 33.5) of c′ for the cartesian square with
morphisms a, f ′, p, f ′′ and the element res2(c′) is the restriction of c′ for the cartesian
square with morphisms b, f ′, q, f ′′. Assume res1(c′) = res2(c′) and let β ∈ CHk(Y ). By
Lemma 22.4 we can find a β′ ∈ CHk(Y ′) with g∗β

′ = β. Then we set
c ∩ β = h∗(c′ ∩ β′)

To see that this is independent of the choice of β′ it suffices to show that h∗(c′ ∩ (p∗γ −
q∗γ)) is zero for γ ∈ CHk(Y ′ ×Y Y ′). Since c′ is a bivariant class we have

h∗(c′ ∩ (p∗γ − q∗γ)) = h∗(a∗(c′ ∩ γ)− b∗(c′ ∩ γ)) = 0
the last equality since h∗ ◦ a∗ = h∗ ◦ b∗ as h ◦ a = h ◦ b.
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Observe that our choice for c ∩ β is forced by the requirement that res(c) = c′ and the
compatibility of bivariant classes with proper pushforward.

Of course, in order to define the bivariant class c we need to construct maps c ∩ − :
CHk(Y1) → CHk+p(Y1 ×Y X) for any morphism Y1 → Y locally of finite type sat-
isfying the conditions listed in Definition 33.1. Denote Y ′

1 = Y ′ ×Y Y1, X1 = X ×Y Y1.
The morphism Y ′

1 → Y1 is an envelope by Lemma 22.3. Hence we can use the base changed
diagram

X ′
1 ×X1 X

′
1

f ′′
1
��

a1 //

b1

// X ′
1

f ′
1
��

h1

// X1

f1

��
Y ′

1 ×Y1 Y
′

1

p1 //

q1
// Y ′

1
g1 // Y1

and the same arguments to get a well defined map c ∩ − : CHk(Y1) → CHk+p(X1) as
before.

Next, we have to check conditions (1), (2), and (3) of Definition 33.1 for c. For example,
suppose that t : Y2 → Y1 is a proper morphism of schemes locally of finite type over Y .
Denote as above the base changes of the first diagram to Y1, resp. Y2, by subscripts 1, resp.
2. Denote t′ : Y ′

2 → Y ′
1 , s : X2 → X1, and s′ : X ′

2 → X ′
1 the base changes of t to Y ′, X ,

and X ′. We have to show that

s∗(c ∩ β2) = c ∩ t∗β2

for β2 ∈ CHk(Y2). Choose β′
2 ∈ CHk(Y ′

2) with g2,∗β
′
2 = β2. Since c′ is a bivariant class

and the diagrams

X ′
2

s′

��

h2

// X2

s

��
X ′

1
h1 // X1

and

X ′
2

s′

��

f ′
2

// Y ′
2

t′

��
X ′

2
f ′

1 // Y ′
1

are cartesian we have

s∗(c ∩ β2) = s∗(h2,∗(c′ ∩ β′
2)) = h1,∗s

′
∗(c′ ∩ β′

2) = h1,∗(c′ ∩ (t′∗β′
2))

and the final expression computes c ∩ t∗β2 by construction: t′∗β′
2 ∈ CHk(Y ′

1) is a class
whose image by g1,∗ is t∗β2. This proves condition (1). The other conditions are proved
in the same manner and we omit the detailed arguments. �

36. Projective space bundle formula

Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over S. Consider a finite lo-
cally freeOX -module E of rank r. Our convention is that the projective bundle associated
to E is the morphism

P(E) = Proj
X

(Sym∗(E)) π // X

over X with OP(E)(1) normalized so that π∗(OP(E)(1)) = E . In particular there is a
surjection π∗E → OP(E)(1). We will say informally “let (π : P → X,OP (1)) be the
projective bundle associated to E” to denote the situation where P = P(E) andOP (1) =
OP(E)(1).
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Lemma 36.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E be a finite locally free OX -module E of rank r. Let (π : P → X,OP (1)) be the
projective bundle associated to E . For any α ∈ CHk(X) the element

π∗ (c1(OP (1))s ∩ π∗α) ∈ CHk+r−1−s(X)

is 0 if s < r − 1 and is equal to α when s = r − 1.

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension k. Note that
π∗[Z] = [π−1(Z)] as π−1(Z) is integral of δ-dimension r − 1. If s < r − 1, then by
construction c1(OP (1))s ∩ π∗[Z] is represented by a (k + r − 1− s)-cycle supported on
π−1(Z). Hence the pushforward of this cycle is zero for dimension reasons.

Let s = r − 1. By the argument given above we see that π∗(c1(OP (1))s ∩ π∗α) = n[Z]
for some n ∈ Z. We want to show that n = 1. For the same dimension reasons as above
it suffices to prove this result after replacing X by X \ T where T ⊂ Z is a proper closed
subset. Let ξ be the generic point of Z. We can choose elements e1, . . . , er−1 ∈ Eξ which
form part of a basis of Eξ . These give rational sections s1, . . . , sr−1 ofOP (1)|π−1(Z) whose
common zero set is the closure of the image a rational section of P(E|Z) → Z union a
closed subset whose support maps to a proper closed subset T of Z. After removing T
from X (and correspondingly π−1(T ) from P ), we see that s1, . . . , sn form a sequence
of global sections si ∈ Γ(π−1(Z),Oπ−1(Z)(1)) whose common zero set is the image of a
section Z → π−1(Z). Hence we see successively that

π∗[Z] = [π−1(Z)]
c1(OP (1)) ∩ π∗[Z] = [Z(s1)]
c1(OP (1))2 ∩ π∗[Z] = [Z(s1) ∩ Z(s2)]

. . . = . . .

c1(OP (1))r−1 ∩ π∗[Z] = [Z(s1) ∩ . . . ∩ Z(sr−1)]

by repeated applications of Lemma 25.4. Since the pushforward by π of the image of a
section of π overZ is clearly [Z] we see the result when α = [Z]. We omit the verification
that these arguments imply the result for a general cycle α =

∑
nj [Zj ]. �

Lemma 36.2 (Projective space bundle formula). Let (S, δ) be as in Situation 7.1. Let
X be locally of finite type over S. Let E be a finite locally free OX -module E of rank r.
Let (π : P → X,OP (1)) be the projective bundle associated to E . The map⊕r−1

i=0
CHk+i(X) −→ CHk+r−1(P ),

(α0, . . . , αr−1) 7−→ π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1

is an isomorphism.

Proof. Fix k ∈ Z. We first show the map is injective. Suppose that (α0, . . . , αr−1)
is an element of the left hand side that maps to zero. By Lemma 36.1 we see that

0 = π∗(π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1) = αr−1

Next, we see that

0 = π∗(c1(OP (1))∩(π∗α0+c1(OP (1))∩π∗α1+. . .+c1(OP (1))r−2∩π∗αr−2)) = αr−2

and so on. Hence the map is injective.
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It remains to show the map is surjective. Let Xi, i ∈ I be the irreducible components
of X . Then Pi = P(E|Xi), i ∈ I are the irreducible components of P . Consider the
commutative diagram ∐

Pi∐
πi

��

p
// P

π

��∐
Xi

q // X

Observe that p∗ is surjective. If β ∈ CHk(
∐
Xi) then π∗q∗β = p∗(

∐
πi)∗β, see Lemma

15.1. Similarly for capping with c1(O(1)) by Lemma 26.4. Hence, if the map of the lemma
is surjective for each of the morphisms πi : Pi → Xi, then the map is surjective for
π : P → X . Hence we may assume X is irreducible. Thus dimδ(X) < ∞ and in
particular we may use induction on dimδ(X).

The result is clear if dimδ(X) < k. Let α ∈ CHk+r−1(P ). For any locally closed sub-
scheme T ⊂ X denote γT :

⊕
CHk+i(T )→ CHk+r−1(π−1(T )) the map

γT (α0, . . . , αr−1) = π∗α0 + . . .+ c1(Oπ−1(T )(1))r−1 ∩ π∗αr−1.

Suppose for some nonempty open U ⊂ X we have α|π−1(U) = γU (α0, . . . , αr−1). Then
we may choose lifts α′

i ∈ CHk+i(X) and we see that α− γX(α′
0, . . . , α

′
r−1) is by Lemma

19.3 rationally equivalent to a k-cycle on PY = P(E|Y ) where Y = X \ U as a reduced
closed subscheme. Note that dimδ(Y ) < dimδ(X). By induction the result holds for
PY → Y and hence the result holds for α. Hence we may replace X by any nonempty
open of X .

In particular we may assume that E ∼= O⊕r
X . In this case P(E) = X × Pr−1. Let us use

the stratification
Pr−1 = Ar−1 qAr−2 q . . .qA0

The closure of each stratum is a Pr−1−i which is a representative of c1(O(1))i ∩ [Pr−1].
Hence P has a similar stratification

P = Ur−1 q Ur−2 q . . .q U0

Let P i be the closure of U i. Let πi : P i → X be the restriction of π to P i. Let α ∈
CHk+r−1(P ). By Lemma 32.1 we can writeα|Ur−1 = π∗α0|Ur−1 for someα0 ∈ CHk(X).
Hence the difference α − π∗α0 is the image of some α′ ∈ CHk+r−1(P r−2). By Lemma
32.1 again we can writeα′|Ur−2 = (πr−2)∗α1|Ur−2 for someα1 ∈ CHk+1(X). By Lemma
31.1 we see that the image of (πr−2)∗α1 represents c1(OP (1)) ∩ π∗α1. We also see that
α − π∗α0 − c1(OP (1)) ∩ π∗α1 is the image of some α′′ ∈ CHk+r−1(P r−3). And so
on. �

Lemma 36.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E be a finite locally free sheaf of rank r on X . Let

p : E = Spec(Sym∗(E)) −→ X

be the associated vector bundle over X . Then p∗ : CHk(X) → CHk+r(E) is an isomor-
phism for all k.

Proof. (For the case of linebundles, see Lemma 32.2.) For surjectivity see Lemma
32.1. Let (π : P → X,OP (1)) be the projective space bundle associated to the finite
locally free sheaf E ⊕OX . Let s ∈ Γ(P,OP (1)) correspond to the global section (0, 1) ∈
Γ(X, E ⊕OX). LetD = Z(s) ⊂ P . Note that (π|D : D → X,OP (1)|D) is the projective
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space bundle associated to E . We denote πD = π|D andOD(1) = OP (1)|D. Moreover,D
is an effective Cartier divisor on P . HenceOP (D) = OP (1) (see Divisors, Lemma 14.10).
Also there is an isomorphism E ∼= P \ D. Denote j : E → P the corresponding open
immersion. For injectivity we use that the kernel of

j∗ : CHk+r(P ) −→ CHk+r(E)
are the cycles supported in the effective Cartier divisorD, see Lemma 19.3. So if p∗α = 0,
then π∗α = i∗β for some β ∈ CHk+r(D). By Lemma 36.2 we may write

β = π∗
Dβ0 + . . .+ c1(OD(1))r−1 ∩ π∗

Dβr−1.

for some βi ∈ CHk+i(X). By Lemmas 31.1 and 26.4 this implies
π∗α = i∗β = c1(OP (1)) ∩ π∗β0 + . . .+ c1(OD(1))r ∩ π∗βr−1.

Since the rank of E ⊕ OX is r + 1 this contradicts Lemma 26.4 unless all α and all βi are
zero. �

37. The Chern classes of a vector bundle

We can use the projective space bundle formula to define the Chern classes of a rank r
vector bundle in terms of the expansion of c1(O(1))r in terms of the lower powers, see
formula (37.1.1). The reason for the signs will be explained later.

Definition 37.1. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Assume X is integral and n = dimδ(X). Let E be a finite locally free sheaf of rank r
on X . Let (π : P → X,OP (1)) be the projective space bundle associated to E .

(1) By Lemma 36.2 there are elements ci ∈ CHn−i(X), i = 0, . . . , r such that
c0 = [X], and

(37.1.1)
∑r

i=0
(−1)ic1(OP (1))i ∩ π∗cr−i = 0.

(2) With notation as above we set ci(E) ∩ [X] = ci as an element of CHn−i(X).
We call these the Chern classes of E on X .

(3) The total Chern class of E on X is the combination
c(E) ∩ [X] = c0(E) ∩ [X] + c1(E) ∩ [X] + . . .+ cr(E) ∩ [X]

which is an element of CH∗(X) =
⊕

k∈Z CHk(X).

Let us check that this does not give a new notion in case the vector bundle has rank 1.

Lemma 37.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Assume X is integral and n = dimδ(X). Let L be an invertible OX -module. The first
Chern class of L on X of Definition 37.1 is equal to the Weil divisor associated to L by
Definition 24.1.

Proof. In this proof we use c1(L) ∩ [X] to denote the construction of Definition
24.1. Since L has rank 1 we have P(L) = X and OP(L)(1) = L by our normalizations.
Hence (37.1.1) reads

(−1)1c1(L) ∩ c0 + (−1)0c1 = 0
Since c0 = [X], we conclude c1 = c1(L) ∩ [X] as desired. �

Remark 37.3. We could also rewrite equation 37.1.1 as

(37.3.1)
∑r

i=0
c1(OP (−1))i ∩ π∗cr−i = 0.

but we find it easier to work with the tautological quotient sheafOP (1) instead of its dual.
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38. Intersecting with Chern classes

In this section we define Chern classes of vector bundles on X as bivariant classes on X ,
see Lemma 38.7 and the discussion following this lemma. Our construction follows the
familiar pattern of first defining the operation on prime cycles and then summing. In
Lemma 38.2 we show that the result is determined by the usual formula on the associated
projective bundle. Next, we show that capping with Chern classes passes through ratio-
nal equivalence, commutes with proper pushforward, commutes with flat pullback, and
commutes with the gysin maps for inclusions of effective Cartier divisors. These lemmas
could have been avoided by directly using the characterization in Lemma 38.2 and using
Lemma 33.4; the reader who wishes to see this worked out should consult Chow Groups
of Spaces, Lemma 28.1.

Definition 38.1. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on X . We define, for every integer k and
any 0 ≤ j ≤ r, an operation

cj(E) ∩ − : Zk(X)→ CHk−j(X)

called intersection with the jth Chern class of E .
(1) Given an integral closed subscheme i : W → X of δ-dimension k we define

cj(E) ∩ [W ] = i∗(cj(i∗E) ∩ [W ]) ∈ CHk−j(X)

where cj(i∗E) ∩ [W ] is as defined in Definition 37.1.
(2) For a general k-cycle α =

∑
ni[Wi] we set

cj(E) ∩ α =
∑

nicj(E) ∩ [Wi]

If E has rank 1 then this agrees with our previous definition (Definition 25.1) by Lemma
37.2.

Lemma 38.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on X . Let (π : P → X,OP (1)) be the
projective bundle associated to E . For α ∈ Zk(X) the elements cj(E) ∩ α are the unique
elements αj of CHk−j(X) such that α0 = α and∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

holds in the Chow group of P .

Proof. The uniqueness of α0, . . . , αr such that α0 = α and such that the displayed
equation holds follows from the projective space bundle formula Lemma 36.2. The iden-
tity holds by definition for α = [W ] where W is an integral closed subscheme of X . For
a general k-cycle α on X write α =

∑
na[Wa] with na 6= 0, and ia : Wa → X pair-

wise distinct integral closed subschemes. Then the family {Wa} is locally finite onX . Set
Pa = π−1(Wa) = P(E|Wa

). Denote i′a : Pa → P the corresponding closed immersions.
Consider the fibre product diagram

P ′

π′

��

∐
Pa∐

πa

��

∐
i′a

// P

π

��
X ′ ∐

Wa

∐
ia // X
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The morphism p : X ′ → X is proper. Moreover π′ : P ′ → X ′ together with the
invertible sheafOP ′(1) =

∐
OPa(1) which is also the pullback ofOP (1) is the projective

bundle associated to E ′ = p∗E . By definition

cj(E) ∩ [α] =
∑

ia,∗(cj(E|Wa
) ∩ [Wa]).

Write βa,j = cj(E|Wa
) ∩ [Wa] which is an element of CHk−j(Wa). We have∑r

i=0
(−1)ic1(OPa(1))i ∩ π∗

a(βa,r−i) = 0

for each a by definition. Thus clearly we have∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(βr−i) = 0

with βj =
∑
naβa,j ∈ CHk−j(X ′). Denote p′ : P ′ → P the morphism

∐
i′a. We

have π∗p∗βj = p′
∗(π′)∗βj by Lemma 15.1. By the projection formula of Lemma 26.4 we

conclude that ∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗βj) = 0

Since p∗βj is a representative of cj(E) ∩ α we win. �

We will consistently use this characterization of Chern classes to prove many more prop-
erties.

Lemma 38.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E be a finite locally free sheaf of rank r on X . If α ∼rat β are rationally equivalent
k-cycles on X then cj(E) ∩ α = cj(E) ∩ β in CHk−j(X).

Proof. By Lemma 38.2 the elements αj = cj(E) ∩ α, j ≥ 1 and βj = cj(E) ∩ β,
j ≥ 1 are uniquely determined by the same equation in the chow group of the projective
bundle associated to E . (This of course relies on the fact that flat pullback is compatible
with rational equivalence, see Lemma 20.2.) Hence they are equal. �

In other words capping with Chern classes of finite locally free sheaves factors through
rational equivalence to give maps

cj(E) ∩ − : CHk(X)→ CHk−j(X).
Our next task is to show that Chern classes are bivariant classes, see Definition 33.1.

Lemma 38.4. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let E be a finite locally free sheaf of rank r onX . Let p : X → Y be a proper morphism.
Let α be a k-cycle on X . Let E be a finite locally free sheaf on Y . Then

p∗(cj(p∗E) ∩ α) = cj(E) ∩ p∗α

Proof. Let (π : P → Y,OP (1)) be the projective bundle associated to E . Then
PX = X ×Y P is the projective bundle associated to p∗E and OPX (1) is the pullback of
OP (1). Write αj = cj(p∗E) ∩ α, so α0 = α. By Lemma 38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗

X(αr−i) = 0

in the chow group of PX . Consider the fibre product diagram

PX
p′
//

πX

��

P

π

��
X

p // Y
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Apply proper pushforward p′
∗ (Lemma 20.3) to the displayed equality above. Using Lem-

mas 26.4 and 15.1 we obtain∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗αr−i) = 0

in the chow group of P . By the characterization of Lemma 38.2 we conclude. �

Lemma 38.5. Let (S, δ) be as in Situation 7.1. Let X , Y be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on Y . Let f : X → Y be a flat morphism
of relative dimension r. Let α be a k-cycle on Y . Then

f∗(cj(E) ∩ α) = cj(f∗E) ∩ f∗α

Proof. Write αj = cj(E) ∩ α, so α0 = α. By Lemma 38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → Y,OP (1)) associated to E . Consider
the fibre product diagram

PX = P(f∗E)
f ′
//

πX

��

P

π

��
X

f // Y

Note that OPX (1) is the pullback of OP (1). Apply flat pullback (f ′)∗ (Lemma 20.2) to
the displayed equation above. By Lemmas 26.2 and 14.3 we see that∑r

i=0
(−1)ic1(OPX (1))i ∩ π∗

X(f∗αr−i) = 0

holds in the chow group of PX . By the characterization of Lemma 38.2 we conclude. �

Lemma 38.6. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E be a finite locally free sheaf of rank r onX . Let (L, s, i : D → X) be as in Definition
29.1. Then cj(E|D) ∩ i∗α = i∗(cj(E) ∩ α) for all α ∈ CHk(X).

Proof. Write αj = cj(E) ∩ α, so α0 = α. By Lemma 38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → X,OP (1)) associated to E . Consider
the fibre product diagram

PD = P(E|D)
i′
//

πD

��

P

π

��
D

i // X

Note that OPD (1) is the pullback of OP (1). Apply the gysin map (i′)∗ (Lemma 30.2) to
the displayed equation above. Applying Lemmas 30.4 and 29.9 we obtain∑r

i=0
(−1)ic1(OPD (1))i ∩ π∗

D(i∗αr−i) = 0

in the chow group of PD. By the characterization of Lemma 38.2 we conclude. �

At this point we have enough material to be able to prove that capping with Chern classes
defines a bivariant class.
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Lemma 38.7. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a locally free OX -module of rank r. Let 0 ≤ p ≤ r. Then the rule that to
f : X ′ → X assigns cp(f∗E)∩− : CHk(X ′)→ CHk−p(X ′) is a bivariant class of degree
p.

Proof. Immediate from Lemmas 38.3, 38.4, 38.5, and 38.6 and Definition 33.1. �

This lemma allows us to define the Chern classes of a finite locally free module as follows.

Definition 38.8. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Let E be a locally free OX -module of rank r. For i = 0, . . . , r the ith Chern class of
E is the bivariant class ci(E) ∈ Ai(X) of degree i constructed in Lemma 38.7. The total
Chern class of E is the formal sum

c(E) = c0(E) + c1(E) + . . .+ cr(E)
which is viewed as a nonhomogeneous bivariant class on X .

By the remark following Definition 38.1 if E is invertible, then this definition agrees with
Definition 34.4. Next we see that Chern classes are in the center of the bivariant Chow
cohomology ring A∗(X).

Lemma 38.9. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E be a locally freeOX -module of rank r. Then

(1) cj(E) ∈ Aj(X) is in the center of A∗(X) and
(2) if f : X ′ → X is locally of finite type and c ∈ A∗(X ′ → X), then c ◦ cj(E) =

cj(f∗E) ◦ c.
In particular, if F is a second locally freeOX -module on X of rank s, then

ci(E) ∩ cj(F) ∩ α = cj(F) ∩ ci(E) ∩ α
as elements of CHk−i−j(X) for all α ∈ CHk(X).

Proof. It is immediate that (2) implies (1). Let α ∈ CHk(X). Write αj = cj(E)∩α,
so α0 = α. By Lemma 38.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → Y,OP (1)) associated to E . Denote
π′ : P ′ → X ′ the base change of π by f . Using Lemma 34.5 and the properties of bivariant
classes we obtain

0 = c ∩
(∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i)

)
=
∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(c ∩ αr−i)

in the Chow group of P ′ (calculation omitted). Hence we see that c ∩ αj is equal to
cj(f∗E) ∩ (c ∩ α) by the characterization of Lemma 38.2. This proves the lemma. �

Remark 38.10. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free OX -module. If the rank of E is not constant then we can
still define the Chern classes of E . Namely, in this case we can write

X = X0 qX1 qX2 q . . .
where Xr ⊂ X is the open and closed subspace where the rank of E is r. By Lemma 35.4
we have Ap(X) =

∏
Ap(Xr). Hence we can define cp(E) to be the product of the classes
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cp(E|Xr ) in Ap(Xr). Explicitly, if X ′ → X is a morphism locally of finite type, then we
obtain by pullback a corresponding decomposition of X ′ and we find that

CH∗(X ′) =
∏

r≥0
CH∗(X ′

r)

by our definitions. Then cp(E) ∈ Ap(X) is the bivariant class which preserves these direct
product decompositions and acts by the already defined operations ci(E|Xr ) ∩ − on the
factors. Observe that in this setting it may happen that cp(E) is nonzero for infinitely
many p. It follows that the total chern class is an element

c(E) = c0(E) + c1(E) + c2(E) + . . . ∈ A∗(X)∧

of the completed bivariant cohomology ring, see Remark 35.5. In this setting we define
the “rank” of E to be the element r(E) ∈ A0(X) as the bivariant operation which sends
(αr) ∈

∏
CH∗(X ′

r) to (rαr) ∈
∏

CH∗(X ′
r). Note that it is still true that cp(E) and r(E)

are in the center of A∗(X).

Remark 38.11. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally freeOX -module. In general we write X =

∐
Xr as in Remark

38.10. If only a finite number of the Xr are nonempty, then we can set

ctop(E) =
∑

r
cr(E|Xr ) ∈ A∗(X) =

⊕
A∗(Xr)

where the equality is Lemma 35.4. If infinitely many Xr are nonempty, we will use the
same notation to denote

ctop(E) =
∏

cr(E|Xr ) ∈
∏

Ar(Xr) ⊂ A∗(X)∧

see Remark 35.5 for notation.

39. Polynomial relations among Chern classes

Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Let Ei be a finite
collection of finite locally free sheaves onX . By Lemma 38.9 we see that the Chern classes

cj(Ei) ∈ A∗(X)

generate a commutative (and even central) Z-subalgebra of the Chow cohomology alge-
bra A∗(X). Thus we can say what it means for a polynomial in these Chern classes to
be zero, or for two polynomials to be the same. As an example, saying that c1(E1)5 +
c2(E2)c3(E3) = 0 means that the operations

CHk(Y ) −→ CHk−5(Y ), α 7−→ c1(E1)5 ∩ α+ c2(E2) ∩ c3(E3) ∩ α

are zero for all morphisms f : Y → X which are locally of finite type. By Lemma 35.3
this is equivalent to the requirement that given any morphism f : Y → X where Y is an
integral scheme locally of finite type over S the cycle

c1(E1)5 ∩ [Y ] + c2(E2) ∩ c3(E3) ∩ [Y ]

is zero in CHdim(Y )−5(Y ).

A specific example is the relation

c1(L ⊗OX
N ) = c1(L) + c1(N )

proved in Lemma 25.2. More generally, here is what happens when we tensor an arbitrary
locally free sheaf by an invertible sheaf.
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Lemma 39.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E be a finite locally free sheaf of rank r onX . Let L be an invertible sheaf onX . Then
we have

(39.1.1) ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

in A∗(X).

Proof. This should hold for any triple (X, E ,L). In particular it should hold when
X is integral and by Lemma 35.3 it is enough to prove it holds when capping with [X]
for such X . Thus assume that X is integral. Let (π : P → X,OP (1)), resp. (π′ : P ′ →
X,OP ′(1)) be the projective space bundle associated to E , resp. E ⊗ L. Consider the
canonical morphism

P

π   

g
// P ′

π′
~~

X

see Constructions, Lemma 20.1. It has the property that g∗OP ′(1) = OP (1)⊗ π∗L. This
means that we have∑r

i=0
(−1)i(ξ + x)i ∩ π∗(cr−i(E ⊗ L) ∩ [X]) = 0

in CH∗(P ), where ξ represents c1(OP (1)) and x represents c1(π∗L). By simple algebra
this is equivalent to∑r

i=0
(−1)iξi

(∑r

j=i
(−1)j−i

(
j

i

)
xj−i ∩ π∗(cr−j(E ⊗ L) ∩ [X])

)
= 0

Comparing with Equation (37.1.1) it follows from this that

cr−i(E) ∩ [X] =
∑r

j=i

(
j

i

)
(−c1(L))j−i ∩ cr−j(E ⊗ L) ∩ [X]

Reworking this (getting rid of minus signs, and renumbering) we get the desired relation.
�

Some example cases of (39.1.1) are
c1(E ⊗ L) = c1(E) + rc1(L)

c2(E ⊗ L) = c2(E) + (r − 1)c1(E)c1(L) +
(
r

2

)
c1(L)2

c3(E ⊗ L) = c3(E) + (r − 2)c2(E)c1(L) +
(
r − 1

2

)
c1(E)c1(L)2 +

(
r

3

)
c1(L)3

40. Additivity of Chern classes

All of the preliminary lemmas follow trivially from the final result.

Lemma 40.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E , F be finite locally free sheaves on X of ranks r, r − 1 which fit into a short exact
sequence

0→ OX → E → F → 0
Then we have

cr(E) = 0, cj(E) = cj(F), j = 0, . . . , r − 1
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in A∗(X).

Proof. By Lemma 35.3 it suffices to show that if X is integral then cj(E) ∩ [X] =
cj(F) ∩ [X]. Let (π : P → X,OP (1)), resp. (π′ : P ′ → X,OP ′(1)) denote the pro-
jective space bundle associated to E , resp. F . The surjection E → F gives rise to a closed
immersion

i : P ′ −→ P

over X . Moreover, the element 1 ∈ Γ(X,OX) ⊂ Γ(X, E) gives rise to a global section
s ∈ Γ(P,OP (1)) whose zero set is exactly P ′. Hence P ′ is an effective Cartier divisor on
P such thatOP (P ′) ∼= OP (1). Hence we see that

c1(OP (1)) ∩ π∗α = i∗((π′)∗α)

for any cycle class α on X by Lemma 31.1. By Lemma 38.2 we see that αj = cj(F) ∩ [X],
j = 0, . . . , r − 1 satisfy∑r−1

j=0
(−1)jc1(OP ′(1))j ∩ (π′)∗αj = 0

Pushing this to P and using the remark above as well as Lemma 26.4 we get∑r−1

j=0
(−1)jc1(OP (1))j+1 ∩ π∗αj = 0

By the uniqueness of Lemma 38.2 we conclude that cr(E) ∩ [X] = 0 and cj(E) ∩ [X] =
αj = cj(F) ∩ [X] for j = 0, . . . , r − 1. Hence the lemma holds. �

Lemma 40.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E , F be finite locally free sheaves on X of ranks r, r − 1 which fit into a short exact
sequence

0→ L → E → F → 0
where L is an invertible sheaf. Then

c(E) = c(L)c(F)

in A∗(X).

Proof. This relation really just says that ci(E) = ci(F)+ c1(L)ci−1(F). By Lemma
40.1 we have cj(E⊗L⊗−1) = cj(F⊗L⊗−1) for j = 0, . . . , rwere we set cr(F⊗L−1) = 0
by convention. Applying Lemma 39.1 we deduce

i∑
j=0

(
r − i+ j

j

)
(−1)jci−j(E)c1(L)j =

i∑
j=0

(
r − 1− i+ j

j

)
(−1)jci−j(F)c1(L)j

Setting ci(E) = ci(F) + c1(L)ci−1(F) gives a “solution” of this equation. The lemma
follows if we show that this is the only possible solution. We omit the verification. �

Lemma 40.3. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Suppose that E sits in an exact sequence

0→ E1 → E → E2 → 0

of finite locally free sheaves Ei of rank ri. The total Chern classes satisfy

c(E) = c(E1)c(E2)

in A∗(X).
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Proof. By Lemma 35.3 we may assume that X is integral and we have to show the
identity when capping against [X]. By induction on r1. The case r1 = 1 is Lemma 40.2.
Assume r1 > 1. Let (π : P → X,OP (1)) denote the projective space bundle associated
to E1. Note that

(1) π∗ : CH∗(X)→ CH∗(P ) is injective, and
(2) π∗E1 sits in a short exact sequence 0 → F → π∗E1 → L → 0 where L is

invertible.
The first assertion follows from the projective space bundle formula and the second follows
from the definition of a projective space bundle. (In fact L = OP (1).) Let Q = π∗E/F ,
which sits in an exact sequence 0→ L → Q→ π∗E2 → 0. By induction we have

c(π∗E) ∩ [P ] = c(F) ∩ c(π∗E/F) ∩ [P ]
= c(F) ∩ c(L) ∩ c(π∗E2) ∩ [P ]
= c(π∗E1) ∩ c(π∗E2) ∩ [P ]

Since [P ] = π∗[X] we win by Lemma 38.5. �

Lemma 40.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Li, i = 1, . . . , r be invertible OX -modules on X . Let E be a locally free rank
OX -module endowed with a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E
such that Ei/Ei−1 ∼= Li. Set c1(Li) = xi. Then

c(E) =
∏r

i=1
(1 + xi)

in A∗(X).

Proof. Apply Lemma 40.2 and induction. �

41. Degrees of zero cycles

We start defining the degree of a zero cycle on a proper scheme over a field. One approach
is to define it directly as in Lemma 41.2 and then show it is well defined by Lemma 18.3.
Instead we define it as follows.

Definition 41.1. Let k be a field (Example 7.2). Let p : X → Spec(k) be proper.
The degree of a zero cycle on X is given by proper pushforward

p∗ : CH0(X)→ CH0(Spec(k))
(Lemma 20.3) combined with the natural isomorphism CH0(Spec(k)) = Z which maps
[Spec(k)] to 1. Notation: deg(α).

Let us spell this out further.

Lemma 41.2. Let k be a field. LetX be proper over k. Let α =
∑
ni[Zi] be inZ0(X).

Then
deg(α) =

∑
ni deg(Zi)

where deg(Zi) is the degree of Zi → Spec(k), i.e., deg(Zi) = dimk Γ(Zi,OZi).

Proof. This is the definition of proper pushforward (Definition 12.1). �

Next, we make the connection with degrees of vector bundles over 1-dimensional proper
schemes over fields as defined in Varieties, Section 44.
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Lemma 41.3. Let k be a field. LetX be a proper scheme over k of dimension≤ 1. Let
E be a finite locally freeOX -module of constant rank. Then

deg(E) = deg(c1(E) ∩ [X]1)
where the left hand side is defined in Varieties, Definition 44.1.

Proof. Let Ci ⊂ X , i = 1, . . . , t be the irreducible components of dimension 1 with
reduced induced scheme structure and letmi be the multiplicity ofCi inX . Then [X]1 =∑
mi[Ci] and c1(E)∩[X]1 is the sum of the pushforwards of the cyclesmic1(E|Ci)∩[Ci].

Since we have a similar decomposition of the degree of E by Varieties, Lemma 44.6 it
suffices to prove the lemma in case X is a proper curve over k.

Assume X is a proper curve over k. By Divisors, Lemma 36.1 there exists a modification
f : X ′ → X such that f∗E has a filtration whose successive quotients are invertible
OX′ -modules. Since f∗[X ′]1 = [X]1 we conclude from Lemma 38.4 that

deg(c1(E) ∩ [X]1) = deg(c1(f∗E) ∩ [X ′]1)
Since we have a similar relationship for the degree by Varieties, Lemma 44.4 we reduce to
the case where E has a filtration whose successive quotients are invertibleOX -modules. In
this case, we may use additivity of the degree (Varieties, Lemma 44.3) and of first Chern
classes (Lemma 40.3) to reduce to the case discussed in the next paragraph.

AssumeX is a proper curve over k and E is an invertibleOX -module. By Divisors, Lemma
15.12 we see that E is isomorphic to OX(D) ⊗ OX(D′)⊗−1 for some effective Cartier
divisors D,D′ on X (this also uses that X is projective, see Varieties, Lemma 43.4 for
example). By additivity of degree under tensor product of invertible sheaves (Varieties,
Lemma 44.7) and additivity of c1 under tensor product of invertible sheaves (Lemma 25.2
or 39.1) we reduce to the case E = OX(D). In this case the left hand side gives deg(D)
(Varieties, Lemma 44.9) and the right hand side gives deg([D]0) by Lemma 25.4. Since

[D]0 =
∑

x∈D
lengthOX,x

(OD,x)[x] =
∑

x∈D
lengthOD,x

(OD,x)[x]

by definition, we see

deg([D]0) =
∑

x∈D
lengthOD,x

(OD,x)[κ(x) : k] = dimk Γ(D,OD) = deg(D)

The penultimate equality by Algebra, Lemma 52.12 using that D is affine. �

Finally, we can tie everything up with the numerical intersections defined in Varieties,
Section 45.

Lemma 41.4. Let k be a field. Let X be a proper scheme over k. Let Z ⊂ X be a
closed subscheme of dimension d. Let L1, . . . ,Ld be invertibleOX -modules. Then

(L1 · · · Ld · Z) = deg(c1(L1) ∩ . . . ∩ c1(Ld) ∩ [Z]d)
where the left hand side is defined in Varieties, Definition 45.3. In particular,

degL(Z) = deg(c1(L)d ∩ [Z]d)
if L is an ample invertibleOX -module.

Proof. We will prove this by induction on d. If d = 0, then the result is true by
Varieties, Lemma 33.3. Assume d > 0.

Let Zi ⊂ Z , i = 1, . . . , t be the irreducible components of dimension d with reduced in-
duced scheme structure and letmi be the multiplicity of Zi in Z. Then [Z]d =

∑
mi[Zi]
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and c1(L1)∩ . . .∩ c1(Ld)∩ [Z]d is the sum of the cycles mic1(L1)∩ . . .∩ c1(Ld)∩ [Zi].
Since we have a similar decomposition for (L1 · · · Ld · Z) by Varieties, Lemma 45.2 it
suffices to prove the lemma in case Z = X is a proper variety of dimension d over k.

By Chow’s lemma there exists a birational proper morphism f : Y → X with Y H-
projective over k. See Cohomology of Schemes, Lemma 18.1 and Remark 18.2. Then

(f∗L1 · · · f∗Ld · Y ) = (L1 · · · Ld ·X)
by Varieties, Lemma 45.7 and we have

f∗(c1(f∗L1) ∩ . . . ∩ c1(f∗Ld) ∩ [Y ]) = c1(L1) ∩ . . . ∩ c1(Ld) ∩ [X]
by Lemma 26.4. Thus we may replace X by Y and assume that X is projective over k.

If X is a proper d-dimensional projective variety, then we can write L1 = OX(D) ⊗
OX(D′)⊗−1 for some effective Cartier divisors D,D′ ⊂ X by Divisors, Lemma 15.12.
By additivity for both sides of the equation (Varieties, Lemma 45.5 and Lemma 25.2) we
reduce to the caseL1 = OX(D) for some effective Cartier divisorD. By Varieties, Lemma
45.8 we have

(L1 · · · Ld ·X) = (L2 · · · Ld ·D)
and by Lemma 25.4 we have

c1(L1) ∩ . . . ∩ c1(Ld) ∩ [X] = c1(L2) ∩ . . . ∩ c1(Ld) ∩ [D]d−1

Thus we obtain the result from our induction hypothesis. �

42. Cycles of given codimension

In some cases there is a second grading on the abelian group of all cycles given by codi-
mension.

Lemma 42.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Write δ = δX/S as in Section 7. The following are equivalent

(1) There exists a decomposition X =
∐
n∈Z Xn into open and closed subschemes

such that δ(ξ) = n whenever ξ ∈ Xn is a generic point of an irreducible com-
ponent of Xn.

(2) For all x ∈ X there exists an open neighbourhood U ⊂ X of x and an inte-
ger n such that δ(ξ) = n whenever ξ ∈ U is a generic point of an irreducible
component of U .

(3) For all x ∈ X there exists an integer nx such that δ(ξ) = nx for any generic
point ξ of an irreducible component of X containing x.

The conditions are satisfied if X is either normal or Cohen-Macaulay3.

Proof. It is clear that (1)⇒ (2)⇒ (3). Conversely, if (3) holds, then we set Xn =
{x ∈ X | nx = n} and we get a decomposition as in (1). Namely, Xn is open because
given x the union of the irreducible components ofX passing through xminus the union
of the irreducible components ofX not passing through x is an open neighbourhood of x.
IfX is normal, thenX is a disjoint union of integral schemes (Properties, Lemma 7.7) and
hence the properties hold. IfX is Cohen-Macaulay, then δ′ : X → Z, x 7→ − dim(OX,x)
is a dimension function onX (see Example 7.4). Since δ−δ′ is locally constant (Topology,
Lemma 20.3) and since δ′(ξ) = 0 for every generic point ξ ofX we see that (2) holds. �

3In fact, it suffices if X is (S2). Compare with Local Cohomology, Lemma 3.2.
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Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over S satisfying the equiv-
alent conditions of Lemma 42.1. For an integral closed subscheme Z ⊂ X we have the
codimension codim(Z,X) ofZ inX , see Topology, Definition 11.1. We define a codimen-
sion p-cycle to be a cycleα =

∑
nZ [Z] onX such that nZ 6= 0⇒ codim(Z,X) = p. The

abelian group of all codimension p-cycles is denoted Zp(X). Let X =
∐
Xn be the de-

composition given in Lemma 42.1 part (1). Recalling that our cycles are defined as locally
finite sums, it is clear that

Zp(X) =
∏

n
Zn−p(Xn)

Moreover, we see that
∏
p Z

p(X) =
∏
k Zk(X). We could now define rational equiva-

lence of codimension p cycles on X in exactly the same manner as before and in fact we
could redevelop the whole theory from scratch for cycles of a given codimension for X
as in Lemma 42.1. However, instead we simply define the Chow group of codimension
p-cycles as

CHp(X) =
∏

n
CHn−p(Xn)

As before we have
∏
p CHp(X) =

∏
k CHk(X). If X is quasi-compact, then the prod-

uct in the formula is finite (and hence is a direct sum) and we have
⊕

p CHp(X) =⊕
k CHk(X). If X is quasi-compact and finite dimensional, then only a finite number

of these groups is nonzero.

Many of the constructions and results for Chow groups proved above have natural coun-
terparts for the Chow groups CH∗(X). Each of these is shown by decomposing the rel-
evant schemes into “equidimensional” pieces as in Lemma 42.1 and applying the results
already proved for the factors in the product decomposition given above. Let us list some
of them.

(1) If f : X → Y is a flat morphism of schemes locally of finite type over S and X
and Y satisfy the equivalent conditions of Lemma 42.1 then flat pullback deter-
mines a map

f∗ : CHp(Y )→ CHp(X)
(2) If f : X → Y is a morphism of schemes locally of finite type over S and X and

Y satisfy the equivalent conditions of Lemma 42.1 let us say f has codimension
r ∈ Z if for all pairs of irreducible componentsZ ⊂ X ,W ⊂ Y with f(Z) ⊂W
we have dimδ(W )− dimδ(Z) = r.

(3) If f : X → Y is a proper morphism of schemes locally of finite type over S and
X and Y satisfy the equivalent conditions of Lemma 42.1 and f has codimension
r, then proper pushforward is a map

f∗ : CHp(X)→ CHp+r(Y )

(4) If f : X → Y is a morphism of schemes locally of finite type over S and X and
Y satisfy the equivalent conditions of Lemma 42.1 and f has codimension r and
c ∈ Aq(X → Y ), then c induces maps

c ∩ − : CHp(Y )→ CHp+q−r(X)

(5) IfX is a scheme locally of finite type over S satisfying the equivalent conditions
of Lemma 42.1 and L is an invertibleOX -module, then

c1(L) ∩ − : CHp(X)→ CHp+1(X)
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(6) IfX is a scheme locally of finite type over S satisfying the equivalent conditions
of Lemma 42.1 and E is a finite locally freeOX -module, then

ci(E) ∩ − : CHp(X)→ CHp+i(X)

Warning: the property for a morphism to have codimension r is not preserved by base
change.

Remark 42.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S satisfying the equivalent conditions of Lemma 42.1. Let X =

∐
Xn be the decompo-

sition into open and closed subschemes such that every irreducible component of Xn has
δ-dimension n. In this situation we sometimes set

[X] =
∑

n
[Xn]n ∈ CH0(X)

This class is a kind of “fundamental class” of X in Chow theory.

43. The splitting principle

In our setting it is not so easy to say what the splitting principle exactly says/is. Here is a
possible formulation.

Lemma 43.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let Ei be a finite collection of locally freeOX -modules of rank ri. There exists a projective
flat morphism π : P → X of relative dimension d such that

(1) for any morphism f : Y → X the map π∗
Y : CH∗(Y ) → CH∗+d(Y ×X P ) is

injective, and
(2) eachπ∗Ei has a filtration whose successive quotientsLi,1, . . . ,Li,ri are invertible
OP -modules.

Moreover, when (1) holds the restriction mapA∗(X)→ A∗(P ) (Remark 34.2) is injective.

Proof. We may assume ri ≥ 1 for all i. We will prove the lemma by induction on∑
(ri − 1). If this integer is 0, then Ei is invertible for all i and we conclude by taking

π = idX . If not, then we can pick an i such that ri > 1 and consider the morphism
πi : Pi = P(Ei)→ X . We have a short exact sequence

0→ F → π∗
i Ei → OPi(1)→ 0

of finite locally free OPi -modules of ranks ri − 1, ri, and 1. Observe that π∗
i is injective

on chow groups after any base change by the projective bundle formula (Lemma 36.2). By
the induction hypothesis applied to the finite locally free OPi -modules F and π∗

i′Ei′ for
i′ 6= i, we find a morphism π : P → Pi with properties stated as in the lemma. Then the
composition πi ◦ π : P → X does the job. Some details omitted. �

Remark 43.2. The proof of Lemma 43.1 shows that the morphism π : P → X has
the following additional properties:

(1) π is a finite composition of projective space bundles associated to locally free
modules of finite constant rank, and

(2) for every α ∈ CHk(X) we have α = π∗(ξ1 ∩ . . . ∩ ξd ∩ π∗α) where ξi is the
first Chern class of some invertibleOP -module.

The second observation follows from the first and Lemma 36.1. We will add more obser-
vations here as needed.
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Let (S, δ), X , and Ei be as in Lemma 43.1. The splitting principle refers to the practice of
symbolically writing

c(Ei) =
∏

(1 + xi,j)

The symbols xi,1, . . . , xi,ri are called the Chern roots of Ei. In other words, the pth Chern
class of Ei is the pth elementary symmetric function in the Chern roots. The usefulness
of the splitting principle comes from the assertion that in order to prove a polynomial
relation among Chern classes of the Ei it is enough to prove the corresponding relation
among the Chern roots.

Namely, let π : P → X be as in Lemma 43.1. Recall that there is a canonical Z-algebra
map π∗ : A∗(X) → A∗(P ), see Remark 34.2. The injectivity of π∗

Y on Chow groups for
every Y overX , implies that the map π∗ : A∗(X)→ A∗(P ) is injective (details omitted).
We have

π∗c(Ei) =
∏

(1 + c1(Li,j))

by Lemma 40.4. Thus we may think of the Chern roots xi,j as the elements c1(Li,j) ∈
A∗(P ) and the displayed equation as taking place in A∗(P ) after applying the injective
map π∗ : A∗(X)→ A∗(P ) to the left hand side of the equation.

To see how this works, it is best to give some examples.

Lemma 43.3. In Situation 7.1 let X be locally of finite type over S. Let E be a finite
locally freeOX -module with dual E∨. Then

ci(E∨) = (−1)ici(E)

in Ai(X).

Proof. Choose a morphism π : P → X as in Lemma 43.1. By the injectivity of π∗

(after any base change) it suffices to prove the relation between the Chern classes of E and
E∨ after pulling back to P . Thus we may assume there exist invertible OX -modules Li,
i = 1, . . . , r and a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E

such that Ei/Ei−1 ∼= Li. Then we obtain the dual filtration

0 = E⊥
r ⊂ E⊥

1 ⊂ E⊥
2 ⊂ . . . ⊂ E⊥

0 = E∨

such that E⊥
i−1/E⊥

i
∼= L⊗−1

i . Set xi = c1(Li). Then c1(L⊗−1
i ) = −xi by Lemma 25.2.

By Lemma 40.4 we have

c(E) =
∏r

i=1
(1 + xi) and c(E∨) =

∏r

i=1
(1− xi)

in A∗(X). The result follows from a formal computation which we omit. �

Lemma 43.4. In Situation 7.1 let X be locally of finite type over S. Let E and F be
a finite locally freeOX -modules of ranks r and s. Then we have

c1(E ⊗ F) = rc1(F) + sc1(E)

c2(E ⊗ F) = rc2(F) + sc2(E) +
(
r

2

)
c1(F)2 + (rs− 1)c1(F)c1(E) +

(
s

2

)
c1(E)2

and so on in A∗(X).
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Proof. Arguing exactly as in the proof of Lemma 43.3 we may assume we have in-
vertibleOX -modules Li, i = 1, . . . , r Ni, i = 1, . . . , s filtrations

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E and 0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fs = F

such that Ei/Ei−1 ∼= Li and such that Fj/Fj−1 ∼= Nj . Ordering pairs (i, j) lexicograph-
ically we obtain a filtration

0 ⊂ . . . ⊂ Ei ⊗Fj + Ei−1 ⊗F ⊂ . . . ⊂ E ⊗ F

with successive quotients

L1 ⊗N1,L1 ⊗N2, . . . ,L1 ⊗Ns,L2 ⊗N1, . . . ,Lr ⊗Ns
By Lemma 40.4 we have

c(E) =
∏

(1 + xi), c(F) =
∏

(1 + yj), and c(E ⊗ F) =
∏

(1 + xi + yj),

in A∗(X). The result follows from a formal computation which we omit. �

Remark 43.5. The equalities proven above remain true even when we work with
finite locally free OX -modules whose rank is allowed to be nonconstant. In fact, we can
work with polynomials in the rank and the Chern classes as follows. Consider the graded
polynomial ring Z[r, c1, c2, c3, . . .] where r has degree 0 and ci has degree i. Let

P ∈ Z[r, c1, c2, c3, . . .]

be a homogeneous polynomial of degree p. Then for any finite locally freeOX -module E
on X we can consider

P (E) = P (r(E), c1(E), c2(E), c3(E), . . .) ∈ Ap(X)

see Remark 38.10 for notation and conventions. To prove relations among these poly-
nomials (for multiple finite locally free modules) we can work locally on X and use the
splitting principle as above. For example, we claim that

c2(HomOX
(E , E)) = P (E)

where P = 2rc2 − (r − 1)c2
1. Namely, sinceHomOX

(E , E) = E ⊗ E∨ this follows easily
from Lemmas 43.3 and 43.4 above by decomposing X into parts where the rank of E is
constant as in Remark 38.10.

Example 43.6. For every p ≥ 1 there is a unique homogeneous polynomial Pp ∈
Z[c1, c2, c3, . . .] of degree p such that, for any n ≥ p we have

Pp(s1, s2, . . . , sp) =
∑

xpi

in Z[x1, . . . , xn] where s1, . . . , sp are the elementary symmetric polynomials inx1, . . . , xn,
so

si =
∑

1≤j1<...<ji≤n
xj1xj2 . . . xji

The existence of Pp comes from the well known fact that the elementary symmetric func-
tions generate the ring of all symmetric functions over the integers. Another way to char-
acterize Pp ∈ Z[c1, c2, c3, . . .] is that we have

log(1 + c1 + c2 + c3 + . . .) =
∑

p≥1
(−1)p−1Pp

p
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as formal power series. This is clear by writing 1+c1 +c2 + . . . =
∏

(1+xi) and applying
the power series for the logarithm function. Expanding the left hand side we get

(c1 + c2 + . . .)− (1/2)(c1 + c2 + . . .)2 + (1/3)(c1 + c2 + . . .)3 − . . .
= c1 + (c2 − (1/2)c2

1) + (c3 − c1c2 + (1/3)c3
1) + . . .

In this way we find that

P1 = c1,

P2 = c2
1 − 2c2,

P3 = c3
1 − 3c1c2 + 3c3,

P4 = c4
1 − 4c2

1c2 + 4c1c3 + 2c2
2 − 4c4,

and so on. Since the Chern classes of a finite locally freeOX -module E are the elementary
symmetric polynomials in the Chern roots xi, we see that

Pp(E) =
∑

xpi

For convenience we set P0 = r in Z[r, c1, c2, c3, . . .] so that P0(E) = r(E) as a bivariant
class (as in Remarks 38.10 and 43.5).

44. Chern classes and sections

A brief section whose main result is that we may compute the top Chern class of a finite
locally free module using the vanishing locus of a “regular section.

Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S. Let E be
a finite locally freeOX -module. Let f : X ′ → X be locally of finite type. Let

s ∈ Γ(X ′, f∗E)

be a global section of the pullback of E to X ′. Let Z(s) ⊂ X ′ be the zero scheme of s.
More precisely, we define Z(s) to be the closed subscheme whose quasi-coherent sheaf of
ideals is the image of the map s : f∗E∨ → OX′ .

Lemma 44.1. In the situation described just above assume dimδ(X ′) = n, that f∗E
has constant rank r, that dimδ(Z(s)) ≤ n− r, and that for every generic point ξ ∈ Z(s)
with δ(ξ) = n− r the ideal of Z(s) inOX′,ξ is generated by a regular sequence of length
r. Then

cr(E) ∩ [X ′]n = [Z(s)]n−r

in CH∗(X ′).

Proof. Since cr(E) is a bivariant class (Lemma 38.7) we may assumeX = X ′ and we
have to show that cr(E)∩ [X]n = [Z(s)]n−r in CHn−r(X). We will prove the lemma by
induction on r ≥ 0. (The case r = 0 is trivial.) The case r = 1 is handled by Lemma 25.4.
Assume r > 1.

Let π : P → X be the projective space bundle associated to E and consider the short exact
sequence

0→ E ′ → π∗E → OP (1)→ 0
By the projective space bundle formula (Lemma 36.2) it suffices to prove the equality after
pulling back by π. Observe that π−1Z(s) = Z(π∗s) has δ-dimension ≤ n − 1 and that
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the assumption on regular sequences at generic points of δ-dimension n− 1 holds by flat
pullback, see Algebra, Lemma 68.5. Let t ∈ Γ(P,OP (1)) be the image of π∗s. We claim

[Z(t)]n+r−2 = c1(OP (1)) ∩ [P ]n+r−1

Assuming the claim we finish the proof as follows. The restriction π∗s|Z(t) maps to zero in
OP (1)|Z(t) hence comes from a unique element s′ ∈ Γ(Z(t), E ′|Z(t)). Note that Z(s′) =
Z(π∗s) as closed subschemes of P . If ξ ∈ Z(s′) is a generic point with δ(ξ) = n− 1, then
the ideal of Z(s′) in OZ(t),ξ can be generated by a regular sequence of length r − 1: it is
generated by r−1 elements which are the images of r−1 elements inOP,ξ which together
with a generator of the ideal of Z(t) inOP,ξ form a regular sequence of length r inOP,ξ .
Hence we can apply the induction hypothesis to s′ onZ(t) to get cr−1(E ′)∩[Z(t)]n+r−2 =
[Z(s′)]n−1. Combining all of the above we obtain

cr(π∗E) ∩ [P ]n+r−1 = cr−1(E ′) ∩ c1(OP (1)) ∩ [P ]n+r−1

= cr−1(E ′) ∩ [Z(t)]n+r−2

= [Z(s′)]n−1

= [Z(π∗s)]n−1

which is what we had to show.
Proof of the claim. This will follow from an application of the already used Lemma 25.4.
We have π−1(Z(s)) = Z(π∗s) ⊂ Z(t). On the other hand, for x ∈ X if Px ⊂ Z(t), then
t|Px = 0 which implies that s is zero in the fibre E ⊗ κ(x), which implies x ∈ Z(s). It
follows that dimδ(Z(t)) ≤ n+ (r− 1)− 1. Finally, let ξ ∈ Z(t) be a generic point with
δ(ξ) = n+ r−2. If ξ is not the generic point of the fibre of P → X it is immediate that a
local equation of Z(t) is a nonzerodivisor in OP,ξ (because we can check this on the fibre
by Algebra, Lemma 99.2). If ξ is the generic point of a fibre, then x = π(ξ) ∈ Z(s) and
δ(x) = n + r − 2− (r − 1) = n− 1. This is a contradiction with dimδ(Z(s)) ≤ n− r
because r > 1 so this case doesn’t happen. �

Lemma 44.2. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let

0→ N ′ → N → E → 0
be a short exact sequence of finite locally free OX -modules. Consider the closed embed-
ding

i : N ′ = Spec
X

(Sym((N ′)∨)) −→ N = Spec
X

(Sym(N∨))
For α ∈ CHk(X) we have

i∗(p′)∗α = p∗(ctop(E) ∩ α)
where p′ : N ′ → X and p : N → X are the structure morphisms.

Proof. Here ctop(E) is the bivariant class defined in Remark 38.11. By its very defi-
nition, in order to verify the formula, we may assume that E has constant rank. We may
similarly assume N ′ and N have constant ranks, say r′ and r, so E has rank r − r′ and
ctop(E) = cr−r′(E). Observe that p∗E has a canonical section

s ∈ Γ(N, p∗E) = Γ(X, p∗p
∗E) = Γ(X, E ⊗OX

Sym(N∨) ⊃ Γ(X,Hom(N , E))
corresponding to the surjectionN → E given in the statement of the lemma. The vanish-
ing scheme of this section is exactlyN ′ ⊂ N . Let Y ⊂ X be an integral closed subscheme
of δ-dimension n. Then we have

(1) p∗[Y ] = [p−1(Y )] since p−1(Y ) is integral of δ-dimension n+ r,
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(2) (p′)∗[Y ] = [(p′)−1(Y )] since (p′)−1(Y ) is integral of δ-dimension n+ r′,
(3) the restriction of s to p−1Y has vanishing scheme (p′)−1Y and the closed im-

mersion (p′)−1Y → p−1Y is a regular immersion (locally cut out by a regular
sequence).

We conclude that

(p′)∗[Y ] = cr−r′(p∗E) ∩ p∗[Y ] in CH∗(N)

by Lemma 44.1. This proves the lemma. �

45. The Chern character and tensor products

Let (S, δ) be as in Situation 7.1. LetX be locally of finite type overS. We define the Chern
character of a finite locally freeOX -module to be the formal expression

ch(E) =
∑r

i=1
exi

if the xi are the Chern roots of E . Writing this as a polynomial in the Chern classes we
obtain

ch(E) = r(E) + c1(E) + 1
2(c1(E)2 − 2c2(E)) + 1

6(c1(E)3 − 3c1(E)c2(E) + 3c3(E))

+ 1
24(c1(E)4 − 4c1(E)2c2(E) + 4c1(E)c3(E) + 2c2(E)2 − 4c4(E)) + . . .

=
∑

p=0,1,2,...

Pp(E)
p!

with Pp polynomials in the Chern classes as in Example 43.6. The degree p component of
the above is

chp(E) = Pp(E)
p! ∈ Ap(X)⊗Q

What does it mean that the coefficients are rational numbers? Well this simply means that
we think of chp(E) as an element of Ap(X)⊗Q.

Remark 45.1. In the discussion above we have defined the components of the Chern
character chp(E) ∈ Ap(X) ⊗Q of E even if the rank of E is not constant. See Remarks
38.10 and 43.5. Thus the full Chern character of E is an element of

∏
p≥0(Ap(X)⊗Q). If

X is quasi-compact and dim(X) <∞ (usual dimension), then one can show using Lemma
34.6 and the splitting principle that ch(E) ∈ A∗(X)⊗Q.

Lemma 45.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let 0 → E1 → E → E2 → 0 be a short exact sequence of finite locally free OX -modules.
Then we have the equality

ch(E) = ch(E1) + ch(E2)

More precisely, we have Pp(E) = Pp(E1) + Pp(E2) in Ap(X) where Pp is as in Example
43.6.

Proof. It suffices to prove the more precise statement. By Section 43 this follows
because if x1,i, i = 1, . . . , r1 and x2,i, i = 1, . . . , r2 are the Chern roots of E1 and E2, then
x1,1, . . . , x1,r1 , x2,1, . . . , x2,r2 are the Chern roots of E . Hence we get the result from our
choice of Pp in Example 43.6. �
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Lemma 45.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E1 and E2 be finite locally freeOX -modules. Then we have the equality

ch(E1 ⊗OX
E2) = ch(E1)ch(E2)

More precisely, we have

Pp(E1 ⊗OX
E2) =

∑
p1+p2=p

(
p

p1

)
Pp1(E1)Pp2(E2)

in Ap(X) where Pp is as in Example 43.6.

Proof. It suffices to prove the more precise statement. By Section 43 this follows
because if x1,i, i = 1, . . . , r1 and x2,i, i = 1, . . . , r2 are the Chern roots of E1 and E2, then
x1,i + x2,j , 1 ≤ i ≤ r1, 1 ≤ j ≤ r2 are the Chern roots of E1 ⊗ E2. Hence we get the
result from the binomial formula for (x1,i + x2,j)p and the shape of our polynomials Pp
in Example 43.6. �

Lemma 45.4. In Situation 7.1 let X be locally of finite type over S. Let E be a finite
locally freeOX -module with dual E∨. Then chi(E∨) = (−1)ichi(E) in Ai(X)⊗Q.

Proof. Follows from the corresponding result for Chern classes (Lemma 43.3). �

46. Chern classes and the derived category

In this section we define the total Chern class of a perfect objectE of the derived category
of a scheme X , under the assumption that E may be represented by a finite complex of
finite locally free modules on an envelope of X .

Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Let

Ea → Ea+1 → . . .→ Eb

be a bounded complex of finite locally freeOX -modules of constant rank. Then we define
the total Chern class of the complex by the formula

c(E•) =
∏

n=a,...,b
c(En)(−1)n ∈

∏
p≥0

Ap(X)

Here the inverse is the formal inverse, so

(1 + c1 + c2 + c3 + . . .)−1 = 1− c1 + c2
1 − c2 − c3

1 + 2c1c2 − c3 + . . .

We will denote cp(E•) ∈ Ap(X) the degree p part of c(E•). We similarly define the Chern
character of the complex by the formula

ch(E•) =
∑

n=a,...,b
(−1)nch(En) ∈

∏
p≥0

(Ap(X)⊗Q)

We will denote chp(E•) ∈ Ap(X) ⊗ Q the degree p part of ch(E•). Finally, for Pp ∈
Z[r, c1, c2, c3, . . .] as in Example 43.6 we define

Pp(E•) =
∑

n=a,...,b
(−1)nPp(En)

in Ap(X). Then we have chp(E•) = (1/p!)Pp(E•) as usual. The next lemma shows that
these constructions only depends on the image of the complex in the derived category.



3686 42. CHOW HOMOLOGY AND CHERN CLASSES

Lemma 46.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E ∈ D(OX) be an object such that there exists a locally bounded complex E• of
finite locally free OX -modules representing E. Then a slight generalization of the above
constructions

c(E•) ∈
∏

p≥0
Ap(X), ch(E•) ∈

∏
p≥0

Ap(X)⊗Q, Pp(E•) ∈ Ap(X)

are independent of the choice of the complex E•.

Proof. We prove this for the total Chern class; the other two cases follow by the
same arguments using Lemma 45.2 instead of Lemma 40.3.

As in Remark 38.10 in order to define the total chern class c(E•) we decompose X into
open and closed subschemes

X =
∐

i∈I
Xi

such that the rank En is constant on Xi for all n and i. (Since these ranks are locally
constant functions on X we can do this.) Since E• is locally bounded, we see that only a
finite number of the sheaves En|Xi are nonzero for a fixed i. Hence we can define

c(E•|Xi) =
∏

n
c(En|Xi)(−1)n ∈

∏
p≥0

Ap(Xi)

as above. By Lemma 35.4 we have Ap(X) =
∏
iA

p(Xi). Hence for each p ∈ Z we have
a unique element cp(E•) ∈ Ap(X) restricting to cp(E•|Xi) on Xi for all i.

Suppose we have a second locally bounded complex F• of finite locally freeOX -modules
representing E. Let g : Y → X be a morphism locally of finite type with Y integral. By
Lemma 35.3 it suffices to show that with c(g∗E•)∩ [Y ] is the same as c(g∗F•)∩ [Y ] and it
even suffices to prove this after replacing Y by an integral scheme proper and birational
over Y . Then first we conclude that g∗E• and g∗F• are bounded complexes of finite
locally free OY -modules of constant rank. Next, by More on Flatness, Lemma 40.3 we
may assume that Hi(Lg∗E) is perfect of tor dimension≤ 1 for all i ∈ Z. This reduces us
to the case discussed in the next paragraph.

Assume X is integral, E• and F• are bounded complexes of finite locally free modules of
constant rank, andHi(E) is a perfectOX -module of tor dimension≤ 1 for all i ∈ Z. We
have to show that c(E•) ∩ [X] is the same as c(F•) ∩ [X]. Denote diE : E i → E i+1 and
diF : F i → F i+1 the differentials of our complexes. By More on Flatness, Remark 40.4
we know that Im(diE), Ker(diE), Im(diF ), and Ker(diF ) are finite locally freeOX -modules
for all i. By additivity (Lemma 40.3) we see that

c(E•) =
∏

i
c(Ker(diE))(−1)ic(Im(diE))(−1)i

and similarly for F•. Since we have the short exact sequences

0→ Im(diE)→ Ker(diE)→ Hi(E)→ 0 and 0→ Im(diF )→ Ker(diF )→ Hi(E)→ 0
we reduce to the problem stated and solved in the next paragraph.

Assume X is integral and we have two short exact sequences

0→ E ′ → E → Q → 0 and 0→ F ′ → F → Q→ 0
withE , E ′,F ,F ′ finite locally free. Problem: show that c(E)c(E ′)−1∩[X] = c(F)c(F ′)−1∩
[X]. To do this, consider the short exact sequence

0→ G → E ⊕ F → Q → 0
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defining G. Since Q has tor dimension ≤ 1 we see that G is finite locally free. A diagram
chase shows that the kernel of the surjection G → F maps isomorphically to E ′ in E and
the kernel of the surjection G → E maps isomorphically to F ′ in F . (Working affine
locally this follows from or is equivalent to Schanuel’s lemma, see Algebra, Lemma 109.1.)
We conclude that

c(E)c(F ′) = c(G) = c(F)c(E ′)
as desired. �

Lemma 46.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E ∈ D(OX) be a perfect object. Assume there exists an envelope f : Y → X
(Definition 22.1) such that Lf∗E is isomorphic in D(OY ) to a locally bounded complex
E• of finite locally free OY -modules. Then there exists unique bivariant classes c(E) ∈∏
p≥0 A

p(X), ch(E) ∈
∏
p≥0 A

p(X) ⊗ Q, and Pp(E) ∈ Ap(X), independent of the
choice of f : Y → X and E•, such that the restriction of these classes to Y are equal to
c(E•), ch(E•), and Pp(E•).

Proof. Fix p ∈ Z. We will prove the lemma for the chern class cp(E) ∈ Ap(X) and
omit the arguments for the other cases.

Let g : T → X be a morphism locally of finite type such that there exists a locally bounded
complex E• of finite locally freeOT -modules representingLg∗E inD(OT ). The bivariant
class cp(E•) ∈ Ap(T ) is independent of the choice of E• by Lemma 46.1. Let us write
cp(Lg∗E) ∈ Ap(T ) for this class. For any further morphism h : T ′ → T which is
locally of finite type, setting g′ = g ◦ h we see that L(g′)∗E = L(g ◦ h)∗E = Lh∗Lg∗E
is represented by h∗E• in D(OT ′). We conclude that cp(L(g′)∗E) makes sense and is
equal to the restriction (Remark 33.5) of cp(Lg∗E) to T ′ (strictly speaking this requires
an application of Lemma 38.7).

Let f : Y → X and E• be as in the statement of the lemma. We obtain a bivari-
ant class cp(E) ∈ Ap(X) from an application of Lemma 35.6 to f : Y → X and
the class c′ = cp(Lf∗E) we constructed in the previous paragraph. The assumption
in the lemma is satisfied because by the discussion in the previous paragraph we have
res1(c′) = cp(Lg∗E) = res2(c′) where g = f ◦ p = f ◦ q : Y ×X Y → X .

Finally, suppose that f ′ : Y ′ → X is a second envelope such that L(f ′)∗E is represented
by a bounded complex of finite locally freeOY ′ -modules. Then it follows that the restric-
tions of cp(Lf∗E) and cp(L(f ′)∗E) to Y ×X Y ′ are equal. Since Y ×X Y ′ → X is an
envelope (Lemmas 22.3 and 22.2), we see that our two candidates for cp(E) agree by the
unicity in Lemma 35.6. �

Definition 46.3. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over
S. Let E ∈ D(OX) be a perfect object.

(1) We say the Chern classes ofE are defined4 if there exists an envelope f : Y → X
such that Lf∗E is isomorphic in D(OY ) to a locally bounded complex of finite
locally freeOY -modules.

(2) If the Chern classes of E are defined, then we define

c(E) ∈
∏

p≥0
Ap(X), ch(E) ∈

∏
p≥0

Ap(X)⊗Q, Pp(E) ∈ Ap(X)

by an application of Lemma 46.2.

4See Lemma 46.4 for some criteria.
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This definition applies in many but not all situations envisioned in this chapter, see Lemma
46.4. Perhaps an elementary construction of these bivariant classes for generalE/X/(S, δ)
as in the definition exists; we don’t know.

Lemma 46.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E ∈ D(OX) be a perfect object. If one of the following conditions hold, then the
Chern classes of E are defined:

(1) there exists an envelope f : Y → X such that Lf∗E is isomorphic in D(OY )
to a locally bounded complex of finite locally freeOY -modules,

(2) E can be represented by a bounded complex of finite locally freeOX -modules,
(3) the irreducible components of X are quasi-compact,
(4) X is quasi-compact,
(5) there exists a morphism X → X ′ of schemes locally of finite type over S such

thatE is the pullback of a perfect objectE′ onX ′ whose chern classes are defined,
or

(6) add more here.

Proof. Condition (1) is just Definition 46.3 part (1). Condition (2) implies (1).

As in (3) assume the irreducible components Xi of X are quasi-compact. We view Xi as a
reduced integral closed subscheme overX . The morphism

∐
Xi → X is an envelope. For

each i there exists an envelope X ′
i → Xi such that X ′

i has an ample family of invertible
modules, see More on Morphisms, Proposition 80.3. Observe that f : Y =

∐
X ′
i → X

is an envelope; small detail omitted. By Derived Categories of Schemes, Lemma 36.7 each
X ′
i has the resolution property. Thus the perfect objectL(f |X′

i
)∗E ofD(OX′

i
) can be rep-

resented by a bounded complex of finite locally freeOX′
i
-modules, see Derived Categories

of Schemes, Lemma 37.2. This proves (3) implies (1).

Part (4) implies (3).

Let g : X → X ′ and E′ be as in part (5). Then there exists an envelope f ′ : Y ′ → X ′

such that L(f ′)∗E′ is represented by a locally bounded complex (E ′)• of OY ′ -modules.
Then the base change f : Y → X is an envelope by Lemma 22.3. Moreover, the pulllback
E• = g∗(E ′)• represents Lf∗E and we see that the chern classes of E are defined. �

Lemma 46.5. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E ∈ D(OX) be a perfect object. Assume the Chern classes of E are defined. For
g : W → X locally of finite type with W integral, there exists a commutative diagram

W ′

g′
!!

b
// W

g
~~

X

with W ′ integral and b : W ′ → W proper birational such that L(g′)∗E is represented
by a bounded complex E• of locally free OW ′ -modules of constant rank and we have
res(cp(E)) = cp(E•) in Ap(W ′).

Proof. Choose an envelope f : Y → X such that Lf∗E is isomorphic in D(OY ) to
a locally bounded complex E• of finite locally free OY -modules. The base change Y ×X
W →W of f is an envelope by Lemma 22.3. Choose a point ξ ∈ Y ×XW mapping to the
generic point of W with the same residue field. Consider the integral closed subscheme
W ′ ⊂ Y ×X W with generic point ξ. The restriction of the projection Y ×X W → W
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to W ′ is a proper birational morphism b : W ′ →W . Set g′ = g ◦ b. Finally, consider the
pullback (W ′ → Y )∗E•. This is a locally bounded complex of finite locally free modules
onW ′. SinceW ′ is integral it follows that it is bounded and that the terms have constant
rank. Finally, by construction (W ′ → Y )∗E• represents L(g′)∗E and by construction its
pth chern class gives the restriction of cp(E) by W ′ → X . This finishes the proof. �

Lemma 46.6. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let E ∈ D(OX) be perfect. If the Chern classes of E are defined then

(1) cp(E) is in the center of the algebra A∗(X), and
(2) if g : X ′ → X is locally of finite type and c ∈ A∗(X ′ → X), then c ◦ cp(E) =

cp(Lg∗E) ◦ c.

Proof. Part (1) follows immediately from part (2). Let g : X ′ → X and c ∈
A∗(X ′ → X) be as in (2). To show that c ◦ cp(E) − cp(Lg∗E) ◦ c = 0 we use the
criterion of Lemma 35.3. Thus we may assume that X is integral and by Lemma 46.5 we
may even assume that E is represented by a bounded complex E• of finite locally free
OX -modules of constant rank. Then we have to show that

c ∩ cp(E•) ∩ [X] = cp(E•) ∩ c ∩ [X]
in CH∗(X ′). This is immediate from Lemma 38.9 and the construction of cp(E•) as a
polynomial in the chern classes of the locally free modules En. �

Lemma 46.7. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let

E1 → E2 → E3 → E1[1]
be a distinguished triangle of perfect objects inD(OX). If one of the following conditions
holds

(1) there exists an envelope f : Y → X such that Lf∗E1 → Lf∗E2 can be repre-
sented by a map of locally bounded complexes of finite locally freeOY -modules,

(2) E1 → E2 can be represented be a map of locally bounded complexes of finite
locally freeOX -modules,

(3) the irreducible components of X are quasi-compact,
(4) X is quasi-compact, or
(5) add more here,

then the Chern classes of E1, E2, E3 are defined and we have c(E2) = c(E1)c(E3),
ch(E2) = ch(E1) + ch(E3), and Pp(E2) = Pp(E1) + Pp(E3).

Proof. Let f : Y → X be an envelope and let α• : E•
1 → E•

2 be a map of locally
bounded complexes of finite locally free OY -modules representing Lf∗E1 → Lf∗E2.
Then the cone C(α)• represents Lf∗E3. Since C(α)n = En2 ⊕ En+1

1 we see that C(α)•

is a locally bounded complex of finite locally free OY -modules. We conclude that the
Chern classes of E1, E2, E3 are defined. Moreover, recall that cp(E1) is defined as the
unique element of Ap(X) which restricts to cp(E•

1 ) in Ap(Y ). Similarly for E2 and E3.
Hence it suffices to prove c(E•

2 ) = c(E•
1 )c(C(α)•) in

∏
p≥0 A

p(Y ). In turn, it suffices to
prove this after restricting to a connected component of Y . Hence we may assume the
complexes E•

1 and E•
2 are bounded complexes of finite locally free OY -modules of fixed

rank. In this case the desired equality follows from the multiplicativity of Lemma 40.3.
In the case of ch or Pp we use Lemmas 45.2.
In the previous paragraph we have seen that the lemma holds if condition (1) is satisfied.
Since (2) implies (1) this deals with the second case. Assume (3). Arguing exactly as in
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the proof of Lemma 46.4 we find an envelope f : Y → X such that Y is a disjoint union
Y =

∐
Yi of quasi-compact (and quasi-separated) schemes each having the resolution

property. Then we may represent the restriction of Lf∗E1 → Lf∗E2 to Yi by a map
of bounded complexes of finite locally free modules, see Derived Categories of Schemes,
Proposition 37.5. In this way we see that condition (3) implies condition (1). Of course
condition (4) implies condition (3) and the proof is complete. �

Remark 46.8. The Chern classes of a perfect complex, when defined, satisfy a kind of
splitting principle. Namely, suppose that (S, δ), X,E are as in Definition 46.3 such that
the Chern classes of E are defined. Say we want to prove a relation between the bivariant
classes cp(E), Pp(E), and chp(E). To do this, we may choose an envelope f : Y → X and
a locally bounded complex E• of finite locally free OX -modules representing E. By the
uniqueness in Lemma 46.2 it suffices to prove the desired relation between the bivariant
classes cp(E•),Pp(E•), and chp(E•). Thus we may replaceX by a connected component of
Y and assume thatE is represented by a bounded complex E• of finite locally free modules
of fixed rank. Using the splitting principle (Lemma 43.1) we may assume each E i has a
filtration whose successive quotients Li,j are invertible modules. Settting xi,j = c1(Li,j)
we see that

c(E) =
∏

i even
(1 + xi,j)

∏
i odd

(1 + xi,j)−1

and
Pp(E) =

∑
i even

(xi,j)p −
∑

i odd
(xi,j)p

Formally taking the logarithm for the expression for c(E) above we find that

log(c(E)) =
∑

(−1)p−1Pp(E)
p

Looking at the construction of the polynomials Pp in Example 43.6 it follows that Pp(E)
is the exact same expression in the Chern classes of E as in the case of vector bundles, in
other words, we have

P1(E) = c1(E),
P2(E) = c1(E)2 − 2c2(E),
P3(E) = c1(E)3 − 3c1(E)c2(E) + 3c3(E),
P4(E) = c1(E)4 − 4c1(E)2c2(E) + 4c1(E)c3(E) + 2c2(E)2 − 4c4(E),

and so on. On the other hand, the bivariant class P0(E) = r(E) = ch0(E) cannot be
recovered from the Chern class c(E) ofE; the chern class doesn’t know about the rank of
the complex.

Lemma 46.9. In Situation 7.1 letX be locally of finite type over S. LetE ∈ D(OX)
be a perfect object whose Chern classes are defined. Then ci(E∨) = (−1)ici(E),Pi(E∨) =
(−1)iPi(E), and chi(E∨) = (−1)ichi(E) in Ai(X).

Proof. First proof: argue as in the proof of Lemma 46.6 to reduce to the case where
E is represented by a bounded complex of finite locally free modules of fixed rank and
apply Lemma 43.3. Second proof: use the splitting principle discussed in Remark 46.8
and use that the chern roots of E∨ are the negatives of the chern roots of E. �
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Lemma 46.10. In Situation 7.1 let X be locally of finite type over S. Let E be a
perfect object of D(OX) whose Chern classes are defined. Let L be an invertible OX -
module. Then

ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

provided E has constant rank r ∈ Z.

Proof. In the case where E is locally free of rank r this is Lemma 39.1. The reader
can deduce the lemma from this special case by a formal computation. An alternative is
to use the splitting principle of Remark 46.8. In this case one ends up having to prove the
following algebra fact: if we write formally∏

a=1,...,n(1 + xa)∏
n=1,...,m(1 + yb)

= 1 + c1 + c2 + c3 + . . .

with ci homogeneous of degree i in Z[xi, yj ] then we have∏
a=1,...,n(1 + xa + t)∏
b=1,...,m(1 + yb + t) =

∑
i≥0

∑i

j=0

(
r − i+ j

j

)
ci−jt

j

where r = n−m. We omit the details. �

Lemma 46.11. In Situation 7.1 let X be locally of finite type over S. Let E and F be
perfect objects of D(OX) whose Chern classes are defined. Then we have

c1(E ⊗L
OX

F ) = r(E)c1(F) + r(F )c1(E)

and for c2(E ⊗L
OX

F ) we have the expression

r(E)c2(F )+r(F )c2(E)+
(
r(E)

2

)
c1(F )2+(r(E)r(F )−1)c1(F )c1(E)+

(
r(F )

2

)
c1(E)2

and so on for higher Chern classes in A∗(X). Similarly, we have ch(E ⊗L
OX

F ) =
ch(E)ch(F ) in A∗(X)⊗Q. More precisely, we have

Pp(E ⊗L
OX

F ) =
∑

p1+p2=p

(
p

p1

)
Pp1(E)Pp2(F )

in Ap(X).

Proof. After choosing an envelope f : Y → X such that Lf∗E and Lf∗F can be
represented by locally bounded complexes of finite locally free OX -modules this follows
by a compuation from the corresponding result for vector bundles in Lemmas 43.4 and
45.3. A better proof is probably to use the splitting principle as in Remark 46.8 and reduce
the lemma to computations in polynomial rings which we describe in the next paragraph.

Let A be a commutative ring (for us this will be the subring of the bivariant chow ring of
X generated by Chern classes). Let S be a finite set together with maps ε : S → {±1} and
f : S → A. Define

Pp(S, f, ε) =
∑

s∈S
ε(s)f(s)p

in A. Given a second triple (S′, ε′, f ′) the equality that has to be shown for Pp is the
equality

Pp(S × S′, f + f ′, εε′) =
∑

p1+p2=p

(
p

p1

)
Pp1(S, f, ε)Pp2(S′, f ′, ε′)
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To see this is true, one reduces to the polynomial ring on variables S q S′ and one shows
that each term f(s)if ′(s′)j occurs on the left and right hand side with the same coefficient.
To verify the formulas for c1(E⊗L

OX
F ) and c2(E⊗L

OX
F ) we use the splitting principle

to reduce to checking these formulae in a torsion free ring. Then we use the relationship
between Pj(E) and ci(E) proved in Remark 46.8. For example

c1(E ⊗ F ) = P1(E ⊗ F ) = r(F )P1(E) + r(E)P1(F ) = r(F )c1(E) + r(E)c1(F )

the middle equation because r(E) = P0(E) by definition. Similarly, we have

2c2(E ⊗ F )
= c1(E ⊗ F )2 − P2(E ⊗ F )
= (r(F )c1(E) + r(E)c1(F ))2 − r(F )P2(E)− P1(E)P1(F )− r(E)P2(F )
= (r(F )c1(E) + r(E)c1(F ))2 − r(F )(c1(E)2 − 2c2(E))− c1(E)c1(F )−
r(E)(c1(F )2 − 2c2(F ))

which the reader can verify agrees with the formula in the statement of the lemma up to
a factor of 2. �

47. A baby case of localized Chern classes

In this section we discuss some properties of the bivariant classes constructed in the follow-
ing lemma; most of these properties follow immediately from the characterization given
in the lemma. We urge the reader to skip the rest of the section.

Lemma 47.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let ij : Xj → X , j = 1, 2 be closed immersions such thatX = X1 ∪X2 set theoretically.
Let E2 ∈ D(OX2) be a perfect object. Assume

(1) Chern classes of E2 are defined,
(2) the restrictionE2|X1∩X2 is zero, resp. isomorphic to a finite locally freeOX1∩X2 -

module of rank < p sitting in cohomological degree 0.
Then there is a canonical bivariant class

P ′
p(E2), resp. c′

p(E2) ∈ Ap(X2 → X)

characterized by the property

P ′
p(E2) ∩ i2,∗α2 = Pp(E2) ∩ α2 and P ′

p(E2) ∩ i1,∗α1 = 0,

respectively

c′
p(E2) ∩ i2,∗α2 = cp(E2) ∩ α2 and c′

p(E2) ∩ i1,∗α1 = 0

for αi ∈ CHk(Xi) and similarly after any base change X ′ → X locally of finite type.

Proof. We are going to use the material of Section 46 without further mention.

Assume E2|X1∩X2 is zero. Consider a morphism of schemes X ′ → X which is locally
of finite type and denote i′j : X ′

j → X ′ the base change of ij . By Lemma 19.4 we can
write any element α′ ∈ CHk(X ′) as i′1,∗α′

1 + i′2,∗α
′
2 where α′

2 ∈ CHk(X ′
2) is well defined

up to an element in the image of pushforward by X ′
1 ∩ X ′

2 → X ′
2. Then we can set

P ′
p(E2) ∩ α′ = Pp(E2) ∩ α′

2 ∈ CHk−p(X ′
2). This is well defined by our assumption that

E2 restricts to zero on X1 ∩X2.
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If E2|X1∩X2 is isomorphic to a finite locally free OX1∩X2 -module of rank < p sitting in
cohomological degree 0, then cp(E2|X1∩X2) = 0 by rank considerations and we can argue
in exactly the same manner. �

Lemma 47.2. In Lemma 47.1 the bivariant classP ′
p(E2), resp. c′

p(E2) inAp(X2 → X)
does not depend on the choice of X1.

Proof. Suppose thatX ′
1 ⊂ X is another closed subscheme such thatX = X ′

1∪X2 set
theoretically and the restriction E2|X′

1∩X2 is zero, resp. isomorphic to a finite locally free
OX′

1∩X2 -module of rank < p sitting in cohomological degree 0. Then X = (X1 ∩X ′
1) ∪

X2. Hence we can write any element α ∈ CHk(X) as i∗β + i2,∗α2 with α2 ∈ CHk(X ′
2)

and β ∈ CHk(X1 ∩X ′
1). Thus it is clear that P ′

p(E2)∩α = Pp(E2)∩α2 ∈ CHk−p(X2),
resp. c′

p(E2) ∩ α = cp(E2) ∩ α2 ∈ CHk−p(X2), is independent of whether we use X1 or
X ′

1. Similarly after any base change. �

Lemma 47.3. In Lemma 47.1 let X ′ → X be a morphism which is locally of finite
type. Denote X ′ = X ′

1 ∪ X ′
2 and E′

2 ∈ D(OX′
2
) the pullbacks to X ′. Then the class

P ′
p(E′

2), resp. c′
p(E′

2) in Ap(X ′
2 → X ′) constructed in Lemma 47.1 using X ′ = X ′

1 ∪X ′
2

andE′
2 is the restriction (Remark 33.5) of the class P ′

p(E2), resp. c′
p(E2) inAp(X2 → X).

Proof. Immediate from the characterization of these classes in Lemma 47.1. �

Lemma 47.4. In Lemma 47.1 say E2 is the restriction of a perfect E ∈ D(OX) such
thatE|X1 is zero, resp. isomorphic to a finite locally freeOX1 -module of rank< p sitting
in cohomological degree 0. If Chern classes ofE are defined, then i2,∗ ◦P ′

p(E2) = Pp(E),
resp. i2,∗ ◦ c′

p(E2) = cp(E) (with ◦ as in Lemma 33.4).

Proof. First, assumeE|X1 is zero. With notations as in the proof of Lemma 47.1 the
lemma in this case follows from

Pp(E) ∩ α′ = i′1,∗(Pp(E) ∩ α′
1) + i′2,∗(Pp(E) ∩ α′

2)
= i′1,∗(Pp(E|X1) ∩ α′

1) + i′2,∗(P ′
p(E2) ∩ α′)

= i′2,∗(P ′
p(E2) ∩ α′)

The case whereE|X1 is isomorphic to a finite locally freeOX1 -module of rank< p sitting
in cohomological degree 0 is similar. �

Lemma 47.5. In Lemma 47.1 suppose we have closed subschemesX ′
2 ⊂ X2 andX1 ⊂

X ′
1 ⊂ X such that X = X ′

1 ∪ X ′
2 set theoretically. Assume E2|X′

1∩X2 is zero, resp.
isomorphic to a finite locally free module of rank < p placed in degree 0. Then we have
(X ′

2 → X2)∗ ◦ P ′
p(E2|X′

2
) = P ′

p(E2), resp. (X ′
2 → X2)∗ ◦ c′

p(E2|X′
2
) = cp(E2) (with ◦

as in Lemma 33.4).

Proof. This follows immediately from the characterization of these classes in Lemma
47.1. �

Lemma 47.6. In Lemma 47.1 let f : Y → X be locally of finite type and say c ∈
A∗(Y → X). Then

c ◦ P ′
p(E2) = P ′

p(Lf∗
2E2) ◦ c resp. c ◦ c′

p(E2) = c′
p(Lf∗

2E2) ◦ c

in A∗(Y2 → Y ) where f2 : Y2 → X2 is the base change of f .
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Proof. Let α ∈ CHk(X). We may write
α = α1 + α2

with αi ∈ CHk(Xi); we are omitting the pushforwards by the closed immersions Xi →
X . The reader then checks that c′

p(E2)∩α = cp(E2)∩α2, c∩c′
p(E2)∩α = c∩cp(E2)∩α2,

c ∩ α = c ∩ α1 + c ∩ α2, and c′
p(Lf∗

2E2) ∩ c ∩ α = cp(Lf∗
2E2) ∩ c ∩ α2. We conclude

by Lemma 46.6. �

Lemma 47.7. In Lemma 47.1 assume E2|X1∩X2 is zero. Then
P ′

1(E2) = c′
1(E2),

P ′
2(E2) = c′

1(E2)2 − 2c′
2(E2),

P ′
3(E2) = c′

1(E2)3 − 3c′
1(E2)c′

2(E2) + 3c′
3(E2),

P ′
4(E2) = c′

1(E2)4 − 4c′
1(E2)2c′

2(E2) + 4c′
1(E2)c′

3(E2) + 2c′
2(E2)2 − 4c′

4(E2),
and so on with multiplication as in Remark 34.7.

Proof. The statement makes sense because the zero sheaf has rank < 1 and hence
the classes c′

p(E2) are defined for all p ≥ 1. The equalities follow immediately from the
characterization of the classes produced by Lemma 47.1 and the corresponding result for
capping with the Chern classes of E2 given in Remark 46.8. �

Lemma 47.8. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let ij : Xj → X , j = 1, 2 be closed immersions such thatX = X1 ∪X2 set theoretically.
Let E,F ∈ D(OX) be perfect objects. Assume

(1) Chern classes of E and F are defined,
(2) the restrictions E|X1∩X2 and F |X1∩X2 are isomorphic to a finite locally free
OX1 -modules of rank < p and < q sitting in cohomological degree 0.

With notation as in Remark 34.7 set
c(p)(E) = 1 + c1(E) + . . .+ cp−1(E) + c′

p(E|X2) + c′
p+1(E|X2) + . . . ∈ A(p)(X2 → X)

with c′
p(E|X2) as in Lemma 47.1. Similarly for c(q)(F ) and c(p+q)(E⊕F ). Then c(p+q)(E⊕

F ) = c(p)(E)c(q)(F ) in A(p+q)(X2 → X).

Proof. Immediate from the characterization of the classes in Lemma 47.1 and the
additivity in Lemma 46.7. �

Lemma 47.9. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let ij : Xj → X , j = 1, 2 be closed immersions such thatX = X1 ∪X2 set theoretically.
Let E,F ∈ D(OX2) be perfect objects. Assume

(1) Chern classes of E and F are defined,
(2) the restrictions E|X1∩X2 and F |X1∩X2 are zero,

Denote P ′
p(E), P ′

p(F ), P ′
p(E ⊕ F ) ∈ Ap(X2 → X) for p ≥ 0 the classes constructed in

Lemma 47.1. Then P ′
p(E ⊕ F ) = P ′

p(E) + P ′
p(F ).

Proof. Immediate from the characterization of the classes in Lemma 47.1 and the
additivity in Lemma 46.7. �

Lemma 47.10. In Lemma 47.1 assume E2 has constant rank 0. Let L be an invertible
OX -module. Then

c′
i(E2 ⊗ L) =

∑i

j=0

(
−i+ j

j

)
c′
i−j(E2)c1(L)j
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Proof. The assumption on rank implies that E2|X1∩X2 is zero. Hence c′
i(E2) is de-

fined for all i ≥ 1 and the statement makes sense. The actual equality follows immediately
from Lemma 46.10 and the characterization of c′

i in Lemma 47.1. �

Lemma 47.11. In Situation 7.1 let X be locally of finite type over S. Let
X = X1 ∪X2 = X ′

1 ∪X ′
2

be two ways of writing X as a set theoretic union of closed subschemes. Let E , E′ be
perfect objects of D(OX) whose Chern classes are defined. Assume that E|X1 and E′|X′

1
are zero5 for i = 1, 2. Denote

(1) r = P ′
0(E) ∈ A0(X2 → X) and r′ = P ′

0(E′) ∈ A0(X ′
2 → X),

(2) γp = c′
p(E|X2) ∈ Ap(X2 → X) and γ′

p = c′
p(E′|X′

2
) ∈ Ap(X ′

2 → X),
(3) χp = P ′

p(E|X2) ∈ Ap(X2 → X) and χ′
p = P ′

p(E′|X′
2
) ∈ Ap(X ′

2 → X)
the classes constructed in Lemma 47.1. Then we have

c′
1((E ⊗L

OX
E′)|X2∩X′

2
) = rγ′

1 + r′γ1

in A1(X2 ∩X ′
2 → X) and

c′
2((E ⊗L

OX
E′)|X2∩X′

2
) = rγ′

2 + r′γ2 +
(
r

2

)
(γ′

1)2 + (rr′ − 1)γ′
1γ1 +

(
r′

2

)
γ2

1

in A2(X2 ∩X ′
2 → X) and so on for higher Chern classes. Similarly, we have

P ′
p((E ⊗L

OX
E′)|X2∩X′

2
) =

∑
p1+p2=p

(
p

p1

)
χp1χ

′
p2

in Ap(X2 ∩X ′
2 → X).

Proof. First we observe that the statement makes sense. Namely, we have X =
(X2∩X ′

2)∪Y where Y = (X1∩X ′
1)∪ (X1∩X ′

2)∪ (X2∩X ′
1) and the objectE⊗L

OX
E′

restricts to zero on Y . The actual equalities follow from the characterization of our classes
in Lemma 47.1 and the equalities of Lemma 46.11. We omit the details. �

48. Gysin at infinity

This section is about the bivariant class constructed in the next lemma. We urge the reader
to skip the rest of the section.

Lemma 48.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let b : W → P1

X be a proper morphism of schemes which is an isomorphism over A1
X .

Denote i∞ : W∞ → W the inverse image of the divisor D∞ ⊂ P1
X with complement

A1
X . Then there is a canonical bivariant class

C ∈ A0(W∞ → X)
with the property that i∞,∗(C∩α) = i0,∗α for α ∈ CHk(X) and similarly after any base
change by X ′ → X locally of finite type.

Proof. Given α ∈ CHk(X) there exists a β ∈ CHk+1(W ) restricting to the flat
pullback of α on b−1(A1

X), see Lemma 14.2. A second choice of β differs from β by a
cycle supported onW∞, see Lemma 19.3. Since the normal bundle of the effective Cartier
divisor D∞ ⊂ P1

X of (18.1.1) is trivial, the gysin homomorphism i∗∞ kills cycle classes
supported on W∞, see Remark 29.6. Hence setting C ∩ α = i∗∞β is well defined.

5Presumably there is a variant of this lemma where we only assume these restrictions are isomorphic to a
finite locally free modules of rank < p and < p′.
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Since W∞ and W0 = X × {0} are the pullbacks of the rationally equivalent effective
Cartier divisors D0, D∞ in P1

X , we see that i∗∞β and i∗0β map to the same cycle class on
W ; namely, both represent the class c1(OP1

X
(1)) ∩ β by Lemma 29.4. By our choice of β

we have i∗0β = α as cycles on W0 = X × {0}, see for example Lemma 31.1. Thus we see
that i∞,∗(C ∩ α) = i0,∗α as stated in the lemma.

Observe that the assumptions on b are preserved by any base change by X ′ → X locally
of finite type. Hence we get an operation C ∩ − : CHk(X ′) → CHk(W ′

∞) by the same
construction as above. To see that this family of operations defines a bivariant class, we
consider the diagram

CH∗(X)

flat pullback
��

CH∗+1(W∞) //

0

''

CH∗+1(W )

i∗∞
��

flat pullback // CH∗+1(A1
X) //

C∩−uu

0

CH∗(W∞)

for X as indicated and the base change of this diagram for any X ′ → X . We know that
flat pullback and i∗∞ are bivariant operations, see Lemmas 33.2 and 33.3. Then a formal
argument (involving huge diagrams of schemes and their chow groups) shows that the
dotted arrow is a bivariant operation. �

Lemma 48.2. In Lemma 48.1 let X ′ → X be a morphism which is locally of finite
type. Denote b′ : W ′ → P1

X′ and i′∞ : W ′
∞ → W ′ the base changes of b and i∞. Then

the class C ′ ∈ A0(W ′
∞ → X ′) constructed as in Lemma 48.1 using b′ is the restriction

(Remark 33.5) of C.

Proof. Immediate from the construction and the fact that a similar statement holds
for flat pullback and i∗∞. �

Lemma 48.3. In Lemma 48.1 let g : W ′ → W be a proper morphism which is an
isomorphism over A1

X . Let C ′ ∈ A0(W ′
∞ → X) and C ∈ A0(W∞ → X) be the classes

constructed in Lemma 48.1. Then g∞,∗ ◦ C ′ = C in A0(W∞ → X).

Proof. Set b′ = b ◦ g : W ′ → P1
X . Denote i′∞ : W ′

∞ → W ′ the inclusion mor-
phism. Denote g∞ : W ′

∞ → W∞ the restriction of g. Given α ∈ CHk(X) choose
β′ ∈ CHk+1(W ′) restricting to the flat pullback of α on (b′)−1A1

X . Then β = g∗β
′ ∈

CHk+1(W ) restricts to the flat pullback of α on b−1A1
X . Then i∗∞β = g∞,∗(i′∞)∗β′ by

Lemma 29.8. This and the corresponding fact after base change by morphisms X ′ → X
locally of finite type, corresponds to the assertion made in the lemma. �

Lemma 48.4. In Lemma 48.1 we have C ◦ (W∞ → X)∗ ◦ i∗∞ = i∗∞.

Proof. Let β ∈ CHk+1(W ). Denote i0 : X = X ×{0} →W the closed immersion
of the fibre over 0 in P1. Then (W∞ → X)∗i

∗
∞β = i∗0β in CHk(X) because i∞,∗i

∗
∞β and

i0,∗i
∗
0β represent the same class on W (for example by Lemma 29.4) and hence pushfor-

ward to the same class onX . The restriction of β to b−1(A1
X) restricts to the flat pullback

of i∗0β = (W∞ → X)∗i
∗
∞β because we can check this after pullback by i0, see Lemmas

32.2 and 32.4. Hence we may use β when computing the image of (W∞ → X)∗i
∗
∞β under

C and we get the desired result. �
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Lemma 48.5. In Lemma 48.1 let f : Y → X be a morphism locally of finite type and
c ∈ A∗(Y → X). Then C ◦ c = c ◦ C in A∗(W∞ ×X Y → X).

Proof. Consider the commutative diagram

W∞ ×X Y WY,∞
iY,∞

//

��

WY
bY

//

��

P1
Y pY

//

��

Y

f

��
W∞

i∞ // W
b // P1

X

p // X

with cartesian squares. For an elemnent α ∈ CHk(X) choose β ∈ CHk+1(W ) whose
restriction to b−1(A1

X) is the flat pullback of α. Then c∩ β is a class in CH∗(WY ) whose
restriction to b−1

Y (A1
Y ) is the flat pullback of c ∩ α. Next, we have

i∗Y,∞(c ∩ β) = c ∩ i∗∞β

because c is a bivariant class. This exactly says that C ∩ c ∩ α = c ∩ C ∩ α. The same
argument works after any base change by X ′ → X locally of finite type. This proves the
lemma. �

49. Preparation for localized Chern classes

In this section we discuss some properties of the bivariant classes constructed in the fol-
lowing lemma. We urge the reader to skip the rest of the section.

Lemma 49.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let Z ⊂ X be a closed subscheme. Let

b : W −→ P1
X

be a proper morphism of schemes. LetQ ∈ D(OW ) be a perfect object. DenoteW∞ ⊂W
the inverse image of the divisor D∞ ⊂ P1

X with complement A1
X . We assume

(A0) Chern classes of Q are defined (Section 46),
(A1) b is an isomorphism over A1

X ,
(A2) there exists a closed subscheme T ⊂W∞ containing all points ofW∞ lying over

X \Z such that Q|T is zero, resp. isomorphic to a finite locally freeOT -module
of rank < p sitting in cohomological degree 0.

Then there exists a canonical bivariant class

P ′
p(Q), resp. c′

p(Q) ∈ Ap(Z → X)

with (Z → X)∗ ◦ P ′
p(Q) = Pp(Q|X×{0}), resp. (Z → X)∗ ◦ c′

p(Q) = cp(Q|X×{0}).

Proof. Denote E ⊂W∞ the inverse image of Z. Then W∞ = T ∪E and b induces
a proper morphism E → Z. Denote C ∈ A0(W∞ → X) the bivariant class constructed
in Lemma 48.1. Denote P ′

p(Q|E), resp. c′
p(Q|E) in Ap(E → W∞) the bivariant class

constructed in Lemma 47.1. This makes sense because (Q|E)|T∩E is zero, resp. isomorphic
to a finite locally free OE∩T -module of rank < p sitting in cohomological degree 0 by
assumption (A2). Then we define

P ′
p(Q) = (E → Z)∗ ◦ P ′

p(Q|E) ◦ C, resp. c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C
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This is a bivariant class, see Lemma 33.4. Since E → Z → X is equal to E → W∞ →
W → X we see that

(Z → X)∗ ◦ c′
p(Q) = (W → X)∗ ◦ i∞,∗ ◦ (E →W∞)∗ ◦ c′

p(Q|E) ◦ C
= (W → X)∗ ◦ i∞,∗ ◦ cp(Q|W∞) ◦ C
= (W → X)∗ ◦ cp(Q) ◦ i∞,∗ ◦ C
= (W → X)∗ ◦ cp(Q) ◦ i0,∗
= (W → X)∗ ◦ i0,∗ ◦ cp(Q|X×{0})
= cp(Q|X×{0})

The second equality holds by Lemma 47.4. The third equality because cp(Q) is a bivariant
class. The fourth equality by Lemma 48.1. The fifth equality because cp(Q) is a bivariant
class. The final equality because (W0 → W ) ◦ (W → X) is the identity on X if we
identify W0 with X as we’ve done above. The exact same sequence of equations works to
prove the property for P ′

p(Q). �

Lemma 49.2. In Lemma 49.1 let X ′ → X be a morphism which is locally of finite
type. DenoteZ ′, b′ : W ′ → P1

X′ , and T ′ ⊂W ′
∞ the base changes ofZ , b : W → P1

X , and
T ⊂W∞. SetQ′ = (W ′ →W )∗Q. Then the class P ′

p(Q′), resp. c′
p(Q′) inAp(Z ′ → X ′)

constructed as in Lemma 49.1 using b′, Q′, and T ′ is the restriction (Remark 33.5) of the
class P ′

p(Q), resp. c′
p(Q) in Ap(Z → X).

Proof. Recall that the construction is as follows

P ′
p(Q) = (E → Z)∗ ◦ P ′

p(Q|E) ◦ C, resp. c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C

Thus the lemma follows from the corresponding base change property forC (Lemma 48.2)
and the fact that the same base change property holds for the classes constructed in Lemma
47.1 (small detail omitted). �

Lemma 49.3. In Lemma 49.1 the bivariant class P ′
p(Q), resp. c′

p(Q) is independent of
the choice of the closed subscheme T . Moreover, given a proper morphism g : W ′ → W
which is an isomorphism over A1

X , then setting Q′ = g∗Q we have P ′
p(Q) = P ′

p(Q′),
resp. c′

p(Q) = c′
p(Q′).

Proof. The independence of T follows immediately from Lemma 47.2.

Let g : W ′ → W be a proper morphism which is an isomorphism over A1
X . Observe

that taking T ′ = g−1(T ) ⊂W ′
∞ is a closed subscheme satisfying (A2) hence the operator

P ′
p(Q′), resp. c′

p(Q′) in Ap(Z → X) corresponding to b′ = b ◦ g : W ′ → P1
X and Q′ is

defined. Denote E′ ⊂W ′
∞ the inverse image of Z in W ′

∞. Recall that

c′
p(Q′) = (E′ → Z)∗ ◦ c′

p(Q′|E′) ◦ C ′

with C ′ ∈ A0(W ′
∞ → X) and c′

p(Q′|E′) ∈ Ap(E′ → W ′
∞). By Lemma 48.3 we have

g∞,∗ ◦ C ′ = C. Observe that E′ is also the inverse image of E in W ′
∞ by g∞. Since

moreoverQ′ = g∗Qwe find that c′
p(Q′|E′) is simply the restriction of c′

p(Q|E) to schemes



49. PREPARATION FOR LOCALIZED CHERN CLASSES 3699

lying over W ′
∞, see Remark 33.5. Thus we obtain

c′
p(Q′) = (E′ → Z)∗ ◦ c′

p(Q′|E′) ◦ C ′

= (E → Z)∗ ◦ (E′ → E)∗ ◦ c′
p(Q|E) ◦ C ′

= (E → Z)∗ ◦ c′
p(Q|E) ◦ g∞,∗ ◦ C ′

= (E → Z)∗ ◦ c′
p(Q|E) ◦ C

= c′
p(Q)

In the third equality we used that c′
p(Q|E) commutes with proper pushforward as it is a

bivariant class. The equality P ′
p(Q) = P ′

p(Q′) is proved in exactly the same way. �

Lemma 49.4. In Lemma 49.1 assume Q|T is isomorphic to a finite locally free OT -
module of rank < p. Denote C ∈ A0(W∞ → X) the class of Lemma 48.1. Then

C ◦ cp(Q|X×{0}) = C ◦ (Z → X)∗ ◦ c′
p(Q) = cp(Q|W∞) ◦ C

Proof. The first equality holds because cp(Q|X×{0}) = (Z → X)∗ ◦ c′
p(Q) by

Lemma 49.1. We may prove the second equality one cycle class at a time (see Lemma
35.3). Since the construction of the bivariant classes in the lemma is compatible with base
change, we may assume we have some α ∈ CHk(X) and we have to show that C ∩ (Z →
X)∗(c′

p(Q) ∩ α) = cp(Q|W∞) ∩ C ∩ α. Observe that

C ∩ (Z → X)∗(c′
p(Q) ∩ α) = C ∩ (Z → X)∗(E → Z)∗(c′

p(Q|E) ∩ C ∩ α)
= C ∩ (W∞ → X)∗(E →W∞)∗(c′

p(Q|E) ∩ C ∩ α)
= C ∩ (W∞ → X)∗(E →W∞)∗(c′

p(Q|E) ∩ i∗∞β)
= C ∩ (W∞ → X)∗(cp(Q|W∞) ∩ i∗∞β)
= C ∩ (W∞ → X)∗i

∗
∞(cp(Q) ∩ β)

= i∗∞(cp(Q) ∩ β)
= cp(Q|W∞) ∩ i∗∞β
= cp(Q|W∞) ∩ C ∩ α

as desired. For the first equality we used that c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C where
E ⊂ W∞ is the inverse image of Z and c′

p(Q|E) is the class constructed in Lemma 47.1.
The second equality is just the statement that E → Z → X is equal to E → W∞ → X .
For the third equality we choose β ∈ CHk+1(W ) whose restriction to b−1(A1

X) is the flat
pullback of α so that C ∩ α = i∗∞β by construction. The fourth equality is Lemma 47.4.
The fifth equality is the fact that cp(Q) is a bivariant class and hence commutes with i∗∞.
The sixth equality is Lemma 48.4. The seventh uses again that cp(Q) is a bivariant class.
The final holds as C ∩ α = i∗∞β. �

Lemma 49.5. In Lemma 49.1 let Y → X be a morphism locally of finite type and let
c ∈ A∗(Y → X) be a bivariant class. Then

P ′
p(Q) ◦ c = c ◦ P ′

p(Q) resp. c′
p(Q) ◦ c = c ◦ c′

p(Q)
in A∗(Y ×X Z → X).

Proof. Let E ⊂ W∞ be the inverse image of Z. Recall that P ′
p(Q) = (E → Z)∗ ◦

P ′
p(Q|E) ◦ C , resp. c′

p(Q) = (E → Z)∗ ◦ c′
p(Q|E) ◦ C where C is as in Lemma 48.1 and

P ′
p(Q|E), resp. c′

p(Q|E) are as in Lemma 47.1. By Lemma 48.5 we see that C commutes
with c and by Lemma 47.6 we see that P ′

p(Q|E), resp. c′
p(Q|E) commutes with c. Since c
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is a bivariant class it commutes with proper pushforward by E → Z by definition. This
finishes the proof. �

Lemma 49.6. In Lemma 49.1 assume Q|T is zero. In A∗(Z → X) we have

P ′
1(Q) = c′

1(Q),
P ′

2(Q) = c′
1(Q)2 − 2c′

2(Q),
P ′

3(Q) = c′
1(Q)3 − 3c′

1(Q)c′
2(Q) + 3c′

3(Q),
P ′

4(Q) = c′
1(Q)4 − 4c′

1(Q)2c′
2(Q) + 4c′

1(Q)c′
3(Q) + 2c′

2(Q)2 − 4c′
4(Q),

and so on with multiplication as in Remark 34.7.

Proof. The statement makes sense because the zero sheaf has rank< 1 and hence the
classes c′

p(Q) are defined for all p ≥ 1. In the proof of Lemma 49.1 we have constructed
the classes P ′

p(Q) and c′
p(Q) using the bivariant class C ∈ A0(W∞ → X) of Lemma 48.1

and the bivariant classes P ′
p(Q|E) and c′

p(Q|E) of Lemma 47.1 for the restriction Q|E of
Q to the inverse image E of Z in W∞. Observe that by Lemma 47.7 we have the desired
relationship between P ′

p(Q|E) and c′
p(Q|E). Recall that

P ′
p(Q) = (E → Z)∗ ◦ P ′

p(Q|E) ◦ C and c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C

To finish the proof it suffices to show the multiplications defined in Remark 34.7 on the
classes ap = c′

p(Q) and on the classes bp = c′
p(Q|E) agree:

ap1ap2 . . . apr = (E → Z)∗ ◦ bp1bp2 . . . bpr ◦ C

Some details omitted. If r = 1, then this is true. For r > 1 note that by Remark 34.8 the
multiplication in Remark 34.7 proceeds by inserting (Z → X)∗, resp. (E → W∞)∗ in
between the factors of the product ap1ap2 . . . apr , resp. bp1bp2 . . . bpr and taking compo-
sitions as bivariant classes. Now by Lemma 47.1 we have

(E →W∞)∗ ◦ bpi = cpi(Q|W∞)

and by Lemma 49.4 we have

C ◦ (Z → X)∗ ◦ api = cpi(Q|W∞) ◦ C

for i = 2, . . . , r. A calculation shows that the left and right hand side of the desired
equality both simplify to

(E → Z)∗ ◦ c′
p1

(Q|E) ◦ cp2(Q|W∞) ◦ . . . ◦ cpr (Q|W∞) ◦ C

and the proof is complete. �

Lemma 49.7. In Lemma 49.1 assume Q|T is isomorphic to a finite locally free OT -
module of rank < p. Assume we have another perfect object Q′ ∈ D(OW ) whose Chern
classes are defined with Q′|T isomorphic to a finite locally free OT -module of rank < p′

placed in cohomological degree 0. With notation as in Remark 34.7 set

c(p)(Q) = 1 + c1(Q|X×{0}) + . . .+ cp−1(Q|X×{0}) + c′
p(Q) + c′

p+1(Q) + . . .

in A(p)(Z → X) with c′
i(Q) for i ≥ p as in Lemma 49.1. Similarly for c(p′)(Q′) and

c(p+p′)(Q⊕Q′). Then c(p+p′)(Q⊕Q′) = c(p)(Q)c(p′)(Q′) in A(p+p′)(Z → X).
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Proof. Recall that the image of c′
i(Q) in Ap(X) is equal to ci(Q|X×{0}) for i ≥ p

and similarly for Q′ and Q⊕Q′, see Lemma 49.1. Hence the equality in degrees < p+ p′

follows from the additivity of Lemma 46.7.

Let’s take n ≥ p + p′. As in the proof of Lemma 49.1 let E ⊂ W∞ denote the inverse
image of Z. Observe that we have the equality

c(p+p′)(Q|E ⊕Q′|E) = c(p)(Q|E)c(p′)(Q′|E)

in A(p+p′)(E →W∞) by Lemma 47.8. Since by construction

c′
p(Q⊕Q′) = (E → Z)∗ ◦ c′

p(Q|E ⊕Q′|E) ◦ C

we conclude that suffices to show for all i+ j = n we have

(E → Z)∗ ◦ c(p)
i (Q|E)c(p′)

j (Q′|E) ◦ C = c
(p)
i (Q)c(p′)

j (Q′)

in An(Z → X) where the multiplication is the one from Remark 34.7 on both sides.
There are three cases, depending on whether i ≥ p, j ≥ p′, or both.

Assume i ≥ p and j ≥ p′. In this case the products are defined by inserting (E →W∞)∗,
resp. (Z → X)∗ in between the two factors and taking compositions as bivariant classes,
see Remark 34.8. In other words, we have to show

(E → Z)∗ ◦ c′
i(Q|E) ◦ (E →W∞)∗ ◦ c′

j(Q′|E) ◦ C = c′
i(Q) ◦ (Z → X)∗ ◦ c′

j(Q′)

By Lemma 47.1 the left hand side is equal to

(E → Z)∗ ◦ c′
i(Q|E) ◦ cj(Q′|W∞) ◦ C

Since c′
i(Q) = (E → Z)∗ ◦ c′

i(Q|E) ◦ C the right hand side is equal to

(E → Z)∗ ◦ c′
i(Q|E) ◦ C ◦ (Z → X)∗ ◦ c′

j(Q′)

which is immediately seen to be equal to the above by Lemma 49.4.

Assume i ≥ p and j < p. Unwinding the products in this case we have to show

(E → Z)∗ ◦ c′
i(Q|E) ◦ cj(Q′|W∞) ◦ C = c′

i(Q) ◦ cj(Q′|X×{0})

Again using that c′
i(Q) = (E → Z)∗ ◦ c′

i(Q|E) ◦ C we see that it suffices to show
cj(Q′|W∞) ◦ C = C ◦ cj(Q′|X×{0}) which is part of Lemma 49.4.

Assume i < p and j ≥ p′. Unwinding the products in this case we have to show

(E → Z)∗ ◦ ci(Q|E) ◦ c′
j(Q′|E) ◦ C = ci(Q|Z×{0}) ◦ c′

j(Q′)

However, since c′
j(Q|E) and c′

j(Q′) are bivariant classes, they commute with capping with
Chern classes (Lemma 38.9). Hence it suffices to prove

(E → Z)∗ ◦ c′
j(Q′|E) ◦ ci(Q|W∞) ◦ C = c′

j(Q′) ◦ ci(Q|X×{0})

which we reduces us to the case discussed in the preceding paragraph. �

Lemma 49.8. In Lemma 49.1 assume Q|T is zero. Assume we have another perfect
objectQ′ ∈ D(OW ) whose Chern classes are defined such that the restrictionQ′|T is zero.
In this case the classes P ′

p(Q), P ′
p(Q′), P ′

p(Q⊕Q′) ∈ Ap(Z → X) constructed in Lemma
49.1 satisfy P ′

p(Q⊕Q′) = P ′
p(Q) + P ′

p(Q′).

Proof. This follows immediately from the construction of these classes and Lemma
47.9. �
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50. Localized Chern classes

Outline of the construction. Let F be a field, let X be a variety over F , let E be a perfect
object of D(OX), and let Z ⊂ X be a closed subscheme such that E|X\Z = 0. Then we
want to construct elements

cp(Z → X,E) ∈ Ap(Z → X)
We will do this by constructing a diagram

W

f

��

q
// X

P1
F

and a perfect object Q of D(OW ) such that
(1) f is flat, and f , q are proper; for t ∈ P1

F denote Wt the fibre of f , qt : Wt → X
the restriction of q, and Qt = Q|Wt ,

(2) qt : Wt → X is an isomorphism and Qt = q∗
tE for t ∈ A1

F ,
(3) q∞ : W∞ → X is an isomorphism over X \ Z ,
(4) if T ⊂W∞ is the closure of q−1

∞ (X \ Z) then Q∞|T is zero.
The idea is to think of this as a family {(Wt, Qt)} parametrized by t ∈ P1. For t 6=∞we
see that cp(Qt) is just cp(E) on the chow groups of Qt = X . But for t = ∞ we see that
cp(Q∞) sends classes on Q∞ to classes supported on E = q−1

∞ (Z) since Q∞|T = 0. We
think of E as the exceptional locus of q∞ : W∞ → X . Since any α ∈ CH∗(X) gives rise
to a “family” of cycles αt ∈ CH∗(Wt) it makes sense to define cp(Z → X,E) ∩ α as the
pushforward (E → Z)∗(cp(Q∞) ∩ α∞).

To make this work there are two main ingredients: (1) the construction of W and Q is a
sort of algebraic Macpherson’s graph construction; it is done in More on Flatness, Section
44. (2) the construction of the actual class given W and Q is done in Section 49 relying
on Sections 48 and 47.

Situation 50.1. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let i : Z → X be a closed immersion. Let E ∈ D(OX) be an object. Let
p ≥ 0. Assume

(1) E is a perfect object of D(OX),
(2) the restriction E|X\Z is zero, resp. isomorphic to a finite locally free OX\Z -

module of rank < p sitting in cohomological degree 0, and
(3) at least one6 of the following is true: (a) X is quasi-compact, (b) X has quasi-

compact irreducible components, (c) there exists a locally bounded complex of
finite locally free OX -modules representing E , or (d) there exists a morphism
X → X ′ of schemes locally of finite type over S such that E is the pullback of
a perfect object on X ′ and the irreducible components of X ′ are quasi-compact.

Lemma 50.2. In Situation 50.1 there exists a canonical bivariant class

Pp(Z → X,E) ∈ Ap(Z → X), resp. cp(Z → X,E) ∈ Ap(Z → X)
with the property that

(50.2.1) i∗ ◦ Pp(Z → X,E) = Pp(E), resp. i∗ ◦ cp(Z → X,E) = cp(E)

6Please ignore this technical condition on a first reading; see discussion in Remark 50.5.
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as bivariant classes on X (with ◦ as in Lemma 33.4).

Proof. The construction of these bivariant classes is as follows. Let

b : W −→ P1
X and T −→W∞ and Q

be the blowing up, the perfect object Q in D(OW ), and the closed immersion constructed
in More on Flatness, Section 44 and Lemma 44.1. Let T ′ ⊂ T be the open and closed
subscheme such that Q|T ′ is zero, resp. isomorphic to a finite locally free OT ′ -module
of rank < p sitting in cohomological degree 0. By condition (2) of Situation 50.1 the
morphisms

T ′ → T →W∞ → X

are all isomorphisms of schemes over the open subschemeX \Z ofX . Below we check the
chern classes ofQ are defined. Recalling thatQ|X×{0} ∼= E by construction, we conclude
that the bivariant class constructed in Lemma 49.1 using W, b,Q, T ′ gives us classes

Pp(Z → X,E) = P ′
p(Q) ∈ Ap(Z → X)

and
cp(Z → X,E) = c′

p(Q) ∈ Ap(Z → X)
satisfying (50.2.1).

In this paragraph we prove that the chern classes of Q are defined (Definition 46.3); we
suggest the reader skip this. If assumption (3)(a) or (3)(b) of Situation 50.1 holds, i.e.,
if X has quasi-compact irreducible components, then the same is true for W (because
W → X is proper). Hence we conclude that the chern classes of any perfect object of
D(OW ) are defined by Lemma 46.4. If (3)(c) hold, i.e., if E can be represented by a lo-
cally bounded complex of finite locally free modules, then the objectQ can be represented
by a locally bounded complex of finite locally free OW -modules by part (5) of More on
Flatness, Lemma 44.1. Hence the chern classes of Q are defined. Finally, assume (3)(d)
holds, i.e., assume we have a morphism X → X ′ of schemes locally of finite type over
S such that E is the pullback of a perfect object E′ on X ′ and the irreducible compo-
nents of X ′ are quasi-compact. Let b′ : W ′ → P1

X′ and Q′ ∈ D(OW ′) be the morphism
and perfect object constructed as in More on Flatness, Section 44 starting with the triple
(P1

X′ , (P1
X′)∞, L(p′)∗E′). By the discussion above we see that the chern classes ofQ′ are

defined. Since b and b′ were constructed via an application of More on Flatness, Lemma
43.6 it follows from More on Flatness, Lemma 43.8 that there exists a morphismW →W ′

such thatQ = L(W →W ′)∗Q′. Then it follows from Lemma 46.4 that the chern classes
of Q are defined. �

Definition 50.3. With (S, δ), X , E ∈ D(OX), and i : Z → X as in Situation 50.1.
(1) If the restriction E|X\Z is zero, then for all p ≥ 0 we define

Pp(Z → X,E) ∈ Ap(Z → X)
by the construction in Lemma 50.2 and we define the localized Chern character
by the formula

ch(Z → X,E) =
∑

p=0,1,2,...

Pp(Z → X,E)
p! in

∏
p≥0

Ap(Z → X)⊗Q

(2) If the restriction E|X\Z is isomorphic to a finite locally free OX\Z -module of
rank < p sitting in cohomological degree 0, then we define the localized pth
Chern class cp(Z → X,E) by the construction in Lemma 50.2.
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In the situation of the definition assume E|X\Z is zero. Then, to be sure, we have the
equality

i∗ ◦ ch(Z → X,E) = ch(E)
in A∗(X)⊗Q because we have shown the equality (50.2.1) above.

Here is an important sanity check.

Lemma 50.4. In Situation 50.1 let f : X ′ → X be a morphism of schemes which is
locally of finite type. Denote E′ = f∗E and Z ′ = f−1(Z). Then the bivariant class of
Definition 50.3

Pp(Z ′ → X ′, E′) ∈ Ap(Z ′ → X ′), resp. cp(Z ′ → X ′, E′) ∈ Ap(Z ′ → X ′)

constructed as in Lemma 50.2 using X ′, Z ′, E′ is the restriction (Remark 33.5) of the bi-
variant class Pp(Z → X,E) ∈ Ap(Z → X), resp. cp(Z → X,E) ∈ Ap(Z → X).

Proof. Denote p : P1
X → X and p′ : P1

X′ → X ′ the structure morphisms. Recall
that b : W → P1

X and b′ : W ′ → P1
X′ are the morphism constructed from the triples

(P1
X , (P1

X)∞, p∗E) and (P1
X′ , (P1

X′)∞, (p′)∗E′) in More on Flatness, Lemma 43.6. Fur-
thermore Q = LηI∞p

∗E and Q = LηI′
∞

(p′)∗E′ where I∞ ⊂ OW is the ideal sheaf of
W∞ and I ′

∞ ⊂ OW ′ is the ideal sheaf of W ′
∞. Next, h : P1

X′ → P1
X is a morphism

of schemes such that the pullback of the effective Cartier divisor (P1
X)∞ is the effective

Cartier divisor (P1
X′)∞ and such that h∗p∗E = (p′)∗E′. By More on Flatness, Lemma

43.8 we obtain a commutative diagram

W ′

b′
%%

g
// P1

X′ ×P1
X
W

r

��

q
// W

b

��
P1
X′ // P1

X

such that W ′ is the “strict transform” of P1
X′ with respect to b and such that Q′ = (q ◦

g)∗Q. Now recall that Pp(Z → X,E) = P ′
p(Q), resp. cp(Z → X,E) = c′

p(Q) where
P ′
p(Q), resp. c′

p(Q) are constructed in Lemma 49.1 using b,Q, T ′ where T ′ is a closed
subscheme T ′ ⊂W∞ with the following two properties: (a) T ′ contains all points ofW∞
lying over X \ Z , and (b) Q|T ′ is zero, resp. isomorphic to a finite locally free module
of rank < p placed in degree 0. In the construction of Lemma 49.1 we chose a particular
closed subscheme T ′ with properties (a) and (b) but the precise choice of T ′ is immaterial,
see Lemma 49.3.

Next, by Lemma 49.2 the restriction of the bivariant class Pp(Z → X,E) = P ′
p(Q),

resp. cp(Z → X,E) = cp(Q′) to X ′ corresponds to the class P ′
p(q∗Q), resp. c′

p(q∗Q)
constructed as in Lemma 49.1 using r : P1

X′ ×P1
X
W → P1

X′ , the complex q∗Q, and the
inverse image q−1(T ′).

Now by the second statement of Lemma 49.3 we haveP ′
p(Q′) = P ′

p(q∗Q), resp. c′
p(q∗Q) =

c′
p(Q′). Since Pp(Z ′ → X ′, E′) = P ′

p(Q′), resp. cp(Z ′ → X ′, E′) = c′
p(Q′) we conclude

that the lemma is true. �

Remark 50.5. In Situation 50.1 it would have been more natural to replace assump-
tion (3) with the assumption: “the chern classes of E are defined”. In fact, combining
Lemmas 50.2 and 50.4 with Lemma 35.6 it is easy to extend the definition to this (slightly)
more general case. If we ever need this we will do so here.
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Lemma 50.6. In Situation 50.1 we have

Pp(Z → X,E) ∩ i∗α = Pp(E|Z) ∩ α, resp. cp(Z → X,E) ∩ i∗α = cp(E|Z) ∩ α

in CH∗(Z) for any α ∈ CH∗(Z).

Proof. We only prove the second equality and we omit the proof of the first. Since
cp(Z → X,E) is a bivariant class and since the base change of Z → X by Z → X is
id : Z → Z we have cp(Z → X,E) ∩ i∗α = cp(Z → X,E) ∩ α. By Lemma 50.4 the
restriction of cp(Z → X,E) to Z (!) is the localized Chern class for id : Z → Z andE|Z .
Thus the result follows from (50.2.1) with X = Z. �

Lemma 50.7. In Situation 50.1 if α ∈ CHk(X) has support disjoint from Z , then
Pp(Z → X,E) ∩ α = 0, resp. cp(Z → X,E) ∩ α = 0.

Proof. This is immediate from the construction of the localized Chern classes. It
also follows from the fact that we can compute cp(Z → X,E) ∩ α by first restricting
cp(Z → X,E) to the support of α, and then using Lemma 50.4 to see that this restriction
is zero. �

Lemma 50.8. In Situation 50.1 assume Z ⊂ Z ′ ⊂ X where Z ′ is a closed subscheme
of X . Then Pp(Z ′ → X,E) = (Z → Z ′)∗ ◦ Pp(Z → X,E), resp. cp(Z ′ → X,E) =
(Z → Z ′)∗ ◦ cp(Z → X,E) (with ◦ as in Lemma 33.4).

Proof. The construction of Pp(Z ′ → X,E), resp. cp(Z ′ → X,E) in Lemma 50.2
uses the exact same morphism b : W → P1

X and perfect object Q of D(OW ). Then we
can use Lemma 47.5 to conclude. Some details omitted. �

Lemma 50.9. In Lemma 47.1 sayE2 is the restriction of a perfectE ∈ D(OX) whose
restriction to X1 is zero, resp. isomorphic to a finite locally freeOX1 -module of rank < p
sitting in cohomological degree 0. Then the class P ′

p(E2), resp. c′
p(E2) of Lemma 47.1

agrees withPp(X2 → X,E), resp. cp(X2 → X,E) of Definition 50.3 providedE satisfies
assumption (3) of Situation 50.1.

Proof. The assumptions on E imply that there is an open U ⊂ X containing X1
such that E|U is zero, resp. isomorphic to a finite locally free OU -module of rank < p.
See More on Algebra, Lemma 75.6. Let Z ⊂ X be the complement of U in X endowed
with the reduced induced closed subscheme structure. Then Pp(X2 → X,E) = (Z →
X2)∗ ◦ Pp(Z → X,E), resp. cp(X2 → X,E) = (Z → X2)∗ ◦ cp(Z → X,E) by
Lemma 50.8. Now we can prove that Pp(X2 → X,E), resp. cp(X2 → X,E) satisfies the
characterization of P ′

p(E2), resp. c′
p(E2) given in Lemma 47.1. Namely, by the relation

Pp(X2 → X,E) = (Z → X2)∗ ◦ Pp(Z → X,E), resp. cp(X2 → X,E) = (Z →
X2)∗◦cp(Z → X,E) just proven and the fact thatX1∩Z = ∅, the compositionPp(X2 →
X,E) ◦ i1,∗, resp. cp(X2 → X,E) ◦ i1,∗ is zero by Lemma 50.7. On the other hand,
Pp(X2 → X,E) ◦ i2,∗ = Pp(E2), resp. cp(X2 → X,E) ◦ i2,∗ = cp(E2) by Lemma
50.6. �

51. Two technical lemmas

In this section we develop some additional tools to allow us to work more comfortably
with localized Chern classes. The following lemma is a more precise version of something
we’ve already encountered in the proofs of Lemmas 49.6 and 49.7.
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Lemma 51.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let b : W −→ P1

X be a proper morphism of schemes. Let n ≥ 1. For i = 1, . . . , n let
Zi ⊂ X be a closed subscheme, let Qi ∈ D(OW ) be a perfect object, let pi ≥ 0 be an
integer, and let Ti ⊂W∞, i = 1, . . . , n be closed. Denote Wi = b−1(P1

Zi
). Assume

(1) for i = 1, . . . , n the assumption of Lemma 49.1 hold for b, Zi, Qi, Ti, pi,
(2) Qi|W\Wi

is zero, resp. isomorphic to a finite locally free module of rank < pi
placed in cohomological degree 0,

(3) Qi on W satisfies assumption (3) of Situation 50.1.
Then P ′

pn(Qn) ◦ . . . ◦ P ′
p1

(Q1) is equal to

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ P ′
pn(Qn|Wn,∞) ◦ . . . ◦ P ′

p1
(Q1|W1,∞) ◦ C

in Apn+...+p1(Zn ∩ . . . ∩ Z1 → X), resp. c′
pn(Qn) ◦ . . . ◦ c′

p1
(Q1) is equal to

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|Wn,∞) ◦ . . . ◦ c′

p1
(Q1|W1,∞) ◦ C

in Apn+...+p1(Zn ∩ . . . ∩ Z1 → X).

Proof. Let us prove the statement on Chern classes by induction on n; the statement
on Pp(−) is proved in the exact same manner. The case n = 1 is the construction of
c′
p1

(Q1) becauseW1,∞ is the inverse image ofZ1 inW∞. For n > 1 we have by induction
that c′

pn(Qn) ◦ . . . ◦ c′
p1

(Q1) is equal to

c′
pn(Qn)◦(Wn−1,∞∩. . .∩W1,∞ → Zn−1∩. . .∩Z1)∗◦c′

pn−1
(Qn−1|Wn−1,∞)◦. . .◦c′

p1
(Q1|W1,∞)◦C

By Lemma 49.2 the restriction of c′
pn(Qn) to Zn−1 ∩ . . . ∩ Z1 is computed by the closed

subset Zn ∩ . . . ∩ Z1, the morphism b′ : Wn−1 ∩ . . . ∩ W1 → P1
Zn−1∩...∩Z1

and the
restriction ofQn toWn−1∩ . . .∩W1. Observe that (b′)−1(Zn) = Wn∩ . . .∩W1 and that
(Wn∩ . . .∩W1)∞ = Wn,∞∩ . . .∩W1,∞. DenoteCn−1 ∈ A0(Wn−1,∞∩ . . .∩W1,∞ →
Zn−1 ∩ . . . ∩ Z1) the class of Lemma 48.1. We conclude the restriction of c′

pn(Qn) to
Zn−1 ∩ . . . ∩ Z1 is

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|(Wn∩...∩W1)∞) ◦ Cn−1

= (Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|Wn,∞) ◦ Cn−1

where the equality follows from Lemma 47.3 (we omit writing the restriction on the right).
Hence the above becomes

(Wn,∞ ∩ . . . ∩W1,∞ → Zn ∩ . . . ∩ Z1)∗ ◦ c′
pn(Qn|Wn,∞)◦

Cn−1 ◦ (Wn−1,∞ ∩ . . . ∩W1,∞ → Zn−1 ∩ . . . ∩ Z1)∗

◦c′
pn−1

(Qn−1|Wn−1,∞) ◦ . . . ◦ c′
p1

(Q1|W1,∞) ◦ C

By Lemma 48.4 we know that the compositionCn−1 ◦ (Wn−1,∞∩ . . .∩W1,∞ → Zn−1∩
. . . ∩ Z1)∗ is the identity on elements in the image of the gysin map

(Wn−1,∞ ∩ . . . ∩W1,∞ →Wn−1 ∩ . . . ∩W1)∗

Thus it suffices to show that any element in the image of c′
pn−1

(Qn−1|Wn−1,∞) ◦ . . . ◦
c′
p1

(Q1|W1,∞) ◦ C is in the image of the gysin map. We may write

c′
pi(Qi|Wi,∞) = restriction of cpi(Wi →W,Qi) to Wi,∞
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by Lemma 50.9 and assumptions (2) and (3) onQi in the statement of the lemma. Thus, if
β ∈ CHk+1(W ) restricts to the flat pullback of α on b−1(A1

X), then

c′
pn−1

(Qn−1|Wn−1,∞) ∩ . . . ∩ c′
p1

(Q1|W1,∞) ∩ C ∩ α
= c′

pn−1
(Qn−1|Wn−1,∞) ∩ . . . ∩ c′

p1
(Q1|W1,∞) ∩ i∗∞β

= cpn−1(Wn−1 →W,Qn−1) ∩ . . . ∩ cpn−1(W1 →W,Q1) ∩ i∗∞β
= (Wn−1,∞ ∩ . . . ∩W1,∞ →Wn−1 ∩ . . . ∩W1)∗ (cpn−1(Wn−1 →W,Qn−1) ∩ . . . ∩ cp1(W1 →W,Q1) ∩ β

)
as desired. Namely, for the last equality we use that cpi(Wi → W,Qi) is a bivariant class
and hence commutes with i∗∞ by definition. �

The following lemma gives us a tremendous amount of flexibility if we want to compute
the localized Chern classes of a complex.

Lemma 51.2. Assume (S, δ), X, Z, b : W → P1
X , Q, T, p satisfy the assumptions of

Lemma 49.1. Let F ∈ D(OX) be a perfect object such that
(1) the restriction of Q to b−1(A1

X) is isomorphic to the pullback of F ,
(2) F |X\Z is zero, resp. isomorphic to a finite locally freeOX\Z -module of rank< p

sitting in cohomological degree 0, and
(3) Q on W and F on X satisfy assumption (3) of Situation 50.1.

Then the class P ′
p(Q), resp. c′

p(Q) in Ap(Z → X) constructed in Lemma 49.1 is equal to
Pp(Z → X,F ), resp. cp(Z → X,F ) from Definition 50.3.

Proof. The assumptions are preserved by base change with a morphism X ′ → X
locally of finite type. Hence it suffices to show that Pp(Z → X,F ) ∩ α = P ′

p(Q) ∩ α,
resp. cp(Z → X,F ) ∩ α = c′

p(Q) ∩ α for any α ∈ CHk(X). Choose β ∈ CHk+1(W )
whose restriction to b−1(A1

X) is equal to the flat pullback of α as in the construction ofC
in Lemma 48.1. Denote W ′ = b−1(Z) and denote E = W ′

∞ ⊂ W∞ the inverse image of
Z by W∞ → X . The lemma follows from the following sequence of equalities (the case
of Pp is similar)

c′
p(Q) ∩ α = (E → Z)∗(c′

p(Q|E) ∩ i∗∞β)
= (E → Z)∗(cp(E →W∞, Q|W∞) ∩ i∗∞β)
= (W ′

∞ → Z)∗(cp(W ′ →W,Q) ∩ i∗∞β)
= (W ′

∞ → Z)∗((i′∞)∗(cp(W ′ →W,Q) ∩ β))
= (W ′

∞ → Z)∗((i′∞)∗(cp(Z ′ → X,F ) ∩ β))
= (W ′

0 → Z)∗((i′0)∗(cp(Z ′ → X,F ) ∩ β))
= (W ′

0 → Z)∗(cp(Z ′ → X,F ) ∩ i∗0β))
= cp(Z → X,F ) ∩ α

The first equality is the construction of c′
p(Q) in Lemma 49.1. The second is Lemma 50.9.

The base change ofW ′ →W byW∞ →W is the morphismE = W ′
∞ →W∞. Hence the

third equality holds by Lemma 50.4. The fourth equality, in which i′∞ : W ′
∞ →W ′ is the

inclusion morphism, follows from the fact that cp(W ′ → W,Q) is a bivariant class. For
the fith equality, observe that cp(W ′ → W,Q) and cp(Z ′ → X,F ) restrict to the same
bivariant class in Ap((b′)−1 → b−1(A1

X)) by assumption (1) of the lemma which says
that Q and F restrict to the same object of D(Ob−1(A1

X
)); use Lemma 50.4. Since (i′∞)∗

annihilates cycles supported on W ′
∞ (see Remark 29.6) we conclude the fifth equality is
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true. The sixth equality holds because W ′
∞ and W ′

0 are the pullbacks of the rationally
equivalent effective Cartier divisors D0, D∞ in P1

Z and hence i∗∞β and i∗0β map to the
same cycle class onW ′; namely, both represent the class c1(OP1

Z
(1))∩ cp(Z → X,F)∩β

by Lemma 29.4. The seventh equality holds because cp(Z → X,F ) is a bivariant class.
By construction W ′

0 = Z and i∗0β = α which explains why the final equality holds. �

52. Properties of localized Chern classes

The main results in this section are additivity and multiplicativity for localized Chern
classes.

Lemma 52.1. In Situation 50.1 assume E|X\Z is zero. Then

P1(Z → X,E) = c1(Z → X,E),
P2(Z → X,E) = c1(Z → X,E)2 − 2c2(Z → X,E),
P3(Z → X,E) = c1(Z → X,E)3 − 3c1(Z → X,E)c2(Z → X,E) + 3c3(Z → X,E),

and so on where the products are taken in the algebra A(1)(Z → X) of Remark 34.7.

Proof. The statement makes sense because the zero sheaf has rank < 1 and hence
the classes cp(Z → X,E) are defined for all p ≥ 1. The result itself follows immediately
from the more general Lemma 49.6 as the localized Chern classes where defined using the
procedure of Lemma 49.1 in Section 50. �

Lemma 52.2. In Situation 50.1 let Y → X be locally of finite type and c ∈ A∗(Y →
X). Then

Pp(Z → X,E) ◦ c = c ◦ Pp(Z → X,E),
respectively

cp(Z → X,E) ◦ c = c ◦ cp(Z → X,E)
in A∗(Y ×X Z → X).

Proof. This follows from Lemma 49.5. More precisely, let

b : W → P1
X and Q and T ′ ⊂ T ⊂W∞

be as in the proof of Lemma 50.2. By definition cp(Z → X,E) = c′
p(Q) as bivariant

operations where the right hand side is the bivariant class constructed in Lemma 49.1 using
W, b,Q, T ′. By Lemma 49.5 we have P ′

p(Q) ◦ c = c ◦ P ′
p(Q), resp. c′

p(Q) ◦ c = c ◦ c′
p(Q)

in A∗(Y ×X Z → X) and we conclude. �

Remark 52.3. In Situation 50.1 it is convenient to define

c(p)(Z → X,E) = 1+c1(E)+ . . .+cp−1(E)+cp(Z → X,E)+cp+1(Z → X,E)+ . . .

as an element of the algebra A(p)(Z → X) considered in Remark 34.7.

Lemma 52.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let Z → X be a closed immersion. Let

E1 → E2 → E3 → E1[1]

be a distinguished triangle of perfect objects in D(OX). Assume
(1) the restrictionsE1|X\Z andE3|X\Z are isomorphic to finite locally freeOX\Z -

modules of rank < p1 and < p3 placed in degree 0, and
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(2) at least one of the following is true: (a) X is quasi-compact, (b) X has quasi-
compact irreducible components, (c)E3 → E1[1] can be represented by a map of
locally bounded complexes of finite locally freeOX -modules, or (d) there exists
an envelope f : Y → X such that Lf∗E3 → Lf∗E1[1] can be represented by a
map of locally bounded complexes of finite locally freeOY -modules.

With notation as in Remark 52.3 we have

c(p1+p3)(Z → X,E2) = c(p1)(Z → X,E1)c(p3)(Z → X,E3)

in A(p1+p3)(Z → X).

Proof. Observe that the assumptions imply thatE2|X\Z is zero, resp. isomorphic to
a finite locally freeOX\Z -module of rank < p1 + p3. Thus the statement makes sense.

Let f : Y → X be an envelope. Expanding the left and right hand sides of the formula
in the statement of the lemma we see that we have to prove some equalities of classes in
A∗(X) and in A∗(Z → X). By the uniqueness in Lemma 35.6 it suffices to prove the
corresponding relations in A∗(Y ) and A∗(Z → Y ). Since moreover the construction of
the classes involved is compatible with base change (Lemma 50.4) we may replaceX by Y
and the distinguished triangle by its pullback.

In the proof of Lemma 46.7 we have seen that conditions (2)(a), (2)(b), and (2)(c) imply
condition (2)(d). Combined with the discussion in the previous paragraph we reduce to
the case discussed in the next paragraph.

Let ϕ• : E•
3 [−1] → E•

1 be a map of locally bounded complexes of finite locally free
OX -modules representing the map E3[−1] → E1 in the derived category. Consider the
schemeX ′ = A1×X with projection g : X ′ → X . LetZ ′ = g−1(Z) = A1×Z. Denote
t the coordinate on A1. Consider the cone C• of the map of complexes

tg∗ϕ• : g∗E•
3 [−1] −→ g∗E•

1

over X ′. We obtain a distinguished triangle

g∗E•
1 → C• → g∗E•

3 → g∗E•
1 [1]

where the first three terms form a termwise split short exact sequence of complexes. Clearly
C• is a bounded complex of finite locally free OX′ -modules whose restriction to X ′ \ Z ′

is isomorphic to a finite locally freeOX′\Z′ -module of rank< p1 + p3 placed in degree 0.
Thus we have the localized Chern classes

cp(Z ′ → X ′, C•) ∈ Ap(Z ′ → X ′)

for p ≥ p1 + p3. For any α ∈ CHk(X) consider

cp(Z ′ → X ′, C•) ∩ g∗α ∈ CHk+1−p(A1 ×X)

If we restrict to t = 0, then the map tg∗ϕ• restricts to zero and C•|t=0 is the direct sum
of E•

1 and E•
3 . By compatibility of localized Chern classes with base change (Lemma 50.4)

we conclude that

i∗0 ◦ c(p1+p3)(Z ′ → X ′, C•) ◦ g∗ = c(p1+p2)(Z → X,E1 ⊕ E3)

in A(p1+p3)(Z → X). On the other hand, if we restrict to t = 1, then the map tg∗ϕ•

restricts to ϕ and C•|t=1 is a bounded complex of finite locally free modules representing
E2. We conclude that

i∗1 ◦ c(p1+p3)(Z ′ → X ′, C•) ◦ g∗ = c(p1+p2)(Z → X,E2)
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in A(p1+p3)(Z → X). Since i∗0 = i∗1 by definition of rational equivalence (more precisely
this follows from the formulae in Lemma 32.4) we conclude that

c(p1+p2)(Z → X,E2) = c(p1+p2)(Z → X,E1 ⊕ E3)

This reduces us to the case discussed in the next paragraph.

Assume E2 = E1 ⊕E3 and the triples (X,Z,Ei) are as in Situation 50.1. For i = 1, 3 let

bi : Wi → P1
X and Qi and T ′

i ⊂ Ti ⊂Wi,∞

be as in the proof of Lemma 50.2. By definition

cp(Z → X,Ei) = c′
p(Qi)

where the right hand side is the bivariant class constructed in Lemma 49.1 usingWi, bi, Qi, T
′
i .

Set W = W1 ×b1,P1
X
,b2 W2 and consider the cartesian diagram

W

g1

��

b

!!

g3
// W3

b3
��

W1
b1 // P1

X

Of course b−1(A1) maps isomorphically to A1
X . Observe that T ′ = g−1

1 (T ′
1) ∩ g−1

2 (T ′
2)

still contains all the points of W∞ lying over X \ Z. By Lemma 49.3 we may use W , b,
g∗
iQi, and T ′ to construct cp(Z → X,Ei) for i = 1, 3. Also, by the stronger independence

given in Lemma 51.2 we may useW , b, g∗
1Q1⊕g∗

3Q3, andT ′ to compute the classes cp(Z →
X,E2). Thus the desired equality follows from Lemma 49.7. �

Lemma 52.5. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
Let Z → X be a closed immersion. Let

E1 → E2 → E3 → E1[1]

be a distinguished triangle of perfect objects in D(OX). Assume
(1) the restrictions E1|X\Z and E3|X\Z are zero, and
(2) at least one of the following is true: (a) X is quasi-compact, (b) X has quasi-

compact irreducible components, (c)E3 → E1[1] can be represented by a map of
locally bounded complexes of finite locally freeOX -modules, or (d) there exists
an envelope f : Y → X such that Lf∗E3 → Lf∗E1[1] can be represented by a
map of locally bounded complexes of finite locally freeOY -modules.

Then we have

Pp(Z → X,E2) = Pp(Z → X,E1) + Pp(Z → X,E3)

for all p ∈ Z and consequently ch(Z → X,E2) = ch(Z → X,E1) + ch(Z → X,E3).

Proof. The proof is exactly the same as the proof of Lemma 52.4 except it uses Lemma
49.8 at the very end. For p > 0 we can deduce this lemma from Lemma 52.4 with p1 =
p3 = 1 and the relationship between Pp(Z → X,E) and cp(Z → X,E) given in Lemma
52.1. The case p = 0 can be shown directly (it is only interesting if X has a connected
component entirely contained in Z). �

Lemma 52.6. In Situation 7.1 let X be locally of finite type over S. Let Zi ⊂ X ,
i = 1, 2 be closed subschemes. Let Fi, i = 1, 2 be perfect objects of D(OX). Assume for
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i = 1, 2 that Fi|X\Zi is zero7 and that Fi on X satisfies assumption (3) of Situation 50.1.
Denote ri = P0(Zi → X,Fi) ∈ A0(Zi → X). Then we have

c1(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = r1c1(Z2 → X,F2) + r2c1(Z1 → X,F1)

in A1(Z1 ∩ Z2 → X) and

c2(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = r1c2(Z2 → X,F2) + r2c2(Z1 → X,F1)+(
r1

2

)
c1(Z2 → X,F2)2+

(r1r2 − 1)c1(Z2 → X,F2)c1(Z1 → X,F1)+(
r2

2

)
c1(Z1 → X,F1)2

in A2(Z1 ∩ Z2 → X) and so on for higher Chern classes. Similarly, we have

ch(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = ch(Z1 → X,F1)ch(Z2 → X,F2)

in
∏
p≥0 A

p(Z1 ∩ Z2 → X)⊗Q. More precisely, we have

Pp(Z1 ∩Z2 → X,F1⊗L
OX

F2) =
∑

p1+p2=p

(
p

p1

)
Pp1(Z1 → X,F1)Pp2(Z2 → X,F2)

in Ap(Z1 ∩ Z2 → X).

Proof. Choose proper morphisms bi : Wi → P1
X and Qi ∈ D(OWi) as well as

closed subschemes Ti ⊂ Wi,∞ as in the construction of the localized Chern classes for Fi
or more generally as in Lemma 51.2. Choose a commutative diagram

W

g1

��

b

!!

g2
// W2

b2
��

W1
b1 // P1

X

where all morphisms are proper and isomorphisms over A1
X . For example, we can take

W to be the closure of the graph of the isomorphism between b−1
1 (A1

X) and b−1
2 (A1

X).
By Lemma 51.2 we may work with W , b = bi ◦ gi, Lg∗

iQi, and g−1
i (Ti) to construct the

localized Chern classes cp(Zi → X,Fi). Thus we reduce to the situation described in the
next paragraph.

Assume we have
(1) a proper morphism b : W → P1

X which is an isomorphism over A1
X ,

(2) Ei ⊂W∞ is the inverse image of Zi,
(3) perfect objects Qi ∈ D(OW ) whose Chern classes are defined, such that

(a) the restriction of Qi to b−1(A1
X) is the pullback of Fi, and

(b) there exists a closed subschemeTi ⊂W∞ containing all points ofW∞ lying
over X \ Zi such that Qi|Ti is zero.

By Lemma 51.2 we have

cp(Zi → X,Fi) = c′
p(Qi) = (Ei → Zi)∗ ◦ c′

p(Qi|Ei) ◦ C

7Presumably there is a variant of this lemma where we only assume Fi|X\Zi is isomorphic to a finite
locally free OX\Zi -module of rank < pi.
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and
Pp(Zi → X,Fi) = P ′

p(Qi) = (Ei → Zi)∗ ◦ P ′
p(Qi|Ei) ◦ C

for i = 1, 2. Next, we observe thatQ = Q1⊗L
OW

Q2 satisfies (3)(a) and (3)(b) for F1⊗L
OX

F2 and T1 ∪ T2. Hence we see that

cp(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = (E1 ∩ E2 → Z1 ∩ Z2)∗ ◦ c′
p(Q|E1∩E2) ◦ C

and

Pp(Z1 ∩ Z2 → X,F1 ⊗L
OX

F2) = (E1 ∩ E2 → Z1 ∩ Z2)∗ ◦ P ′
p(Q|E1∩E2) ◦ C

by the same lemma. By Lemma 47.11 the classes c′
p(Q|E1∩E2) and P ′

p(Q|E1∩E2) can be
expanded in the correct manner in terms of the classes c′

p(Qi|Ei) and P ′
p(Qi|Ei). Then

finally Lemma 51.1 tells us that polynomials in c′
p(Qi|Ei) and P ′

p(Qi|Ei) agree with the
corresponding polynomials in c′

p(Qi) and P ′
p(Qi) as desired. �

53. Blowing up at infinity

LetX be a scheme. LetZ ⊂ X be a closed subscheme cut out by a finite type quasi-coherent
sheaf of ideals. Denote X ′ → X the blowing up with center Z. Let b : W → P1

X be
the blowing up with center∞(Z). Denote E ⊂ W the exceptional divisor. There is a
commutative diagram

X ′ //

��

W

b
��

X
∞ // P1

X

whose horizontal arrows are closed immersion (Divisors, Lemma 33.2). Denote E ⊂ W
the exceptional divisor and W∞ ⊂ W the inverse image of (P1

X)∞. Then the following
are true

(1) b is an isomorphism over A1
X ∪P1

X\Z ,
(2) X ′ is an effective Cartier divisor on W ,
(3) X ′ ∩ E is the exceptional divisor of X ′ → X ,
(4) W∞ = X ′ + E as effective Cartier divisors on W ,
(5) E = Proj

Z
(CZ/X,∗[S]) where S is a variable placed in degree 1,

(6) X ′ ∩ E = Proj
Z

(CZ/X,∗),
(7) E \X ′ = E \ (X ′ ∩ E) = Spec

Z
(CZ/X,∗) = CZX ,

(8) there is a closed immersion P1
Z →W whose composition with b is the inclusion

morphism P1
Z → P1

X and whose base change by ∞ is the composition Z →
CZX → E →W∞ where the first arrow is the vertex of the cone.

We recall that CZ/X,∗ is the conormal algebra of Z inX , see Divisors, Definition 19.1 and
that CZX is the normal cone of Z in X , see Divisors, Definition 19.5.

We now give the proof of the numbered assertions above. We strongly urge the reader to
work through some examples instead of reading the proofs.

Part (1) follows from the corresponding assertion of Divisors, Lemma 32.4. Observe that
E ⊂W is an effective Cartier divisor by the same lemma.

Observe thatW∞ is an effective Cartier divisor by Divisors, Lemma 32.11. SinceE ⊂W∞
we can writeW∞ = D+E for some effective Cartier divisorD, see Divisors, Lemma 13.8.
We will see below that D = X ′ which will prove (2) and (4).
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Since X ′ is the strict transform of the closed immersion ∞ : X → P1
X (see above) it

follows that the exceptional divisor of X ′ → X is equal to the intersection X ′ ∩ E (for
example because both are cut out by the pullback of the ideal sheaf of Z to X ′). This
proves (3).

The intersection of∞(Z) with P1
Z is the effective Cartier divisor (P1

Z)∞ hence the strict
transform of P1

Z by the blowing up b maps isomorphically to P1
Z (see Divisors, Lemmas

33.2 and 32.7). This gives us the morphism P1
Z → W mentioned in (8). It is a closed

immersion as b is separated, see Schemes, Lemma 21.11.

Suppose that Spec(A) ⊂ X is an affine open and that Z ∩ Spec(A) corresponds to the
finitely generated ideal I ⊂ A. An affine neighbourhood of∞(Z ∩Spec(A)) is the affine
space over A with coordinate s = T0/T1. Denote J = (I, s) ⊂ A[s] the ideal generated
by I and s. Let B = A[s]⊕ J ⊕ J2 ⊕ . . . be the Rees algebra of (A[s], J). Observe that

Jn = In ⊕ sIn−1 ⊕ s2In−2 . . .⊕ snA⊕ sn+1A⊕ . . .
as an A-submodule of A[s] for all n ≥ 0. Consider the open subscheme

Proj(B) = Proj(A[s]⊕ J ⊕ J2 ⊕ . . .) ⊂W
Finally, denote S the element s ∈ J viewed as a degree 1 element of B.

Since formation of Proj commutes with base change (Constructions, Lemma 11.6) we see
that

E = Proj(B ⊗A[s] A/I) = Proj((A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .)[S])
The verification that B ⊗A[s] A/I =

⊕
Jn/Jn+1 is as given follows immediately from

our description of the powers Jn above. This proves (5) because the conormal algebra of
Z ∩ Spec(A) in Spec(A) corresponds to the gradedA-algebraA/I ⊕ I/I2⊕ I2/I3⊕ . . .
by Divisors, Lemma 19.2.

Recall that Proj(B) is covered by the affine opens D+(S) and D+(f (1)) for f ∈ I which
are the spectra of affine blowup algebrasA[s][Js ] andA[s][Jf ], see Divisors, Lemma 32.2 and
Algebra, Definition 70.1. We will describe each of these affine opens and this will finish
the proof.

The open D+(S), i.e., the spectrum of A[s][Js ]. It follows from the description of the
powers of J above that

A[s][Js ] =
∑
s−nIn[s] ⊂ A[s, s−1]

The element s is a nonzerodivisor in this ring, defines the exceptional divisor E as well
as W∞. Hence D ∩ D+(S) = ∅. Finally, the quotient of A[s][Js ] by s is the conormal
algebra

A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .
This proves (7).

The open D+(f (1)), i.e., the spectrum of A[s][Jf ]. It follows from the description of the
powers of J above that

A[s][Jf ] = A[ If ][ sf ]
where s

f is a variable. The element f is a nonzerodivisor in this ring whose zero scheme
defines the exceptional divisor E. Since s defines W∞ and s = f · sf we conclude that s

f

defines the divisor D constructed above. Then we see that

D ∩D+(f (1)) = Spec(A[ If ])
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which is the corresponding open of the blowup X ′ over Spec(A). Namely, the surjective
graded A[s]-algebra map B → A⊕ I ⊕ I2⊕ . . . to the Rees algebra of (A, I) corresponds
to the closed immersion X ′ →W over Spec(A[s]). This proves D = X ′ as desired.

Let us prove (6). Observe that the zero scheme of s
f in the previous paragraph is the

restriction of the zero scheme of S on the affine open D+(f (1)). Hence we see that S = 0
defines X ′ ∩ E on E. Thus (6) follows from (5).

Finally, we have to prove the last part of (8). This is clear because the map P1
Z → W is

affine locally given by the surjection

B → B ⊗A[s] A/I = (A/I ⊕ I/I2 ⊕ I2/I3 ⊕ . . .)[S]→ A/I[S]
and the identification Proj(A/I[S]) = Spec(A/I). Some details omitted.

54. Higher codimension gysin homomorphisms

Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S. In this
section we are going to consider triples

(Z → X,N , σ : N∨ → CZ/X)
consisting of a closed immersionZ → X and a locally freeOZ -moduleN and a surjection
σ : N∨ → CZ/X from the dual of N to the conormal sheaf of Z in X , see Morphisms,
Section 31. We will sayN is a virtual normal sheaf for Z in X .

Lemma 54.1. Let (S, δ) be as in Situation 7.1. Let

Z ′ //

g

��

X ′

f

��
Z // X

be a cartesian diagram of schemes locally of finite type over S whose horizontal arrows are
closed immersions. IfN is a virtual normal sheaf for Z in X , thenN ′ = g∗N is a virtual
normal sheaf for Z ′ in X ′.

Proof. This follows from the surjectivity of the map g∗CZ/X → CZ′/X′ proved in
Morphisms, Lemma 31.4. �

Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S. LetN be
a virtual normal bundle for a closed immersion Z → X . In this situation we set

p : N = Spec
Z

(Sym(N∨)) −→ Z

equal to the vector bundle over Z whose sections correspond to sections of N . In this
situation we have canonical closed immersions

CZX −→ NZX −→ N

The first closed immersion is Divisors, Equation (19.5.1) and the second closed immersion
corresponds to the surjection Sym(N∨)→ Sym(CZ/X) induced by σ. Let

b : W −→ P1
X

be the blowing up in∞(Z) constructed in Section 53. By Lemma 48.1 we have a canonical
bivariant class in

C ∈ A0(W∞ → X)
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Consider the open immersion j : CZX → W∞ of (7) and the closed immersion i :
CZX → N constructed above. By Lemma 36.3 for every α ∈ CHk(X) there exists a
unique β ∈ CH∗(Z) such that

i∗j
∗(C ∩ α) = p∗β

We set c(Z → X,N ) ∩ α = β.

Lemma 54.2. The construction above defines a bivariant class8

c(Z → X,N ) ∈ A∗(Z → X)∧

and moreover the construction is compatible with base change as in Lemma 54.1. IfN has
constant rank r, then c(Z → X,N ) ∈ Ar(Z → X).

Proof. Since both i∗ ◦ j∗ ◦C and p∗ are bivariant classes (see Lemmas 33.2 and 33.4)
we can use the equation

i∗ ◦ j∗ ◦ C = p∗ ◦ c(Z → X,N )
(suitably interpreted) to define c(Z → X,N ) as a bivariant class. This works because p∗

is always bijective on chow groups by Lemma 36.3.
Let X ′ → X , Z ′ → X ′, and N ′ be as in Lemma 54.1. Write c = c(Z → X,N ) and
c′ = c(Z ′ → X ′,N ′). The second statement of the lemma means that c′ is the restriction
of c as in Remark 33.5. Since we claim this is true for all X ′/X locally of finite type, a
formal argument shows that it suffices to check that c′ ∩ α′ = c ∩ α′ for α′ ∈ CHk(X ′).
To see this, note that we have a commutative diagram

CZ′X ′

��

// W ′
∞

��

// W ′

��

// P1
X′

��
CZX // W∞ // W // P1

X

which induces closed immersions:
W ′ →W ×P1

X
P1
X′ , W ′

∞ →W∞ ×X X ′, CZ′X ′ → CZX ×Z Z ′

To get c ∩ α′ we use the class C ∩ α′ defined using the morphism W ×P1
X

P1
X′ → P1

X′

in Lemma 48.1. To get c′ ∩ α′ on the other hand, we use the class C ′ ∩ α′ defined using
the morphism W ′ → P1

X′ . By Lemma 48.3 the pushforward of C ′ ∩ α′ by the closed
immersion W ′

∞ → (W ×P1
X

P1
X′)∞, is equal to C ∩ α′. Hence the same is true for the

pullbacks to the opens

CZ′X ′ ⊂W ′
∞, CZX ×Z Z ′ ⊂ (W ×P1

X
P1
X′)∞

by Lemma 15.1. Since we have a commutative diagram

CZ′X ′

��

// N ′

CZX ×Z Z ′ // N ×Z Z ′

these classes pushforward to the same class on N ′ which proves that we obtain the same
element c ∩ α′ = c′ ∩ α′ in CH∗(Z ′). �

8The notation A∗(Z → X)∧ is discussed in Remark 35.5. If X is quasi-compact, then A∗(Z → X)∧ =
A∗(Z → X).
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Lemma 54.3. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let N be a virtual normal sheaf for a closed subscheme Z of X . Suppose that we
have a short exact sequence 0 → N ′ → N → E → 0 of finite locally free OZ -modules
such that the given surjection σ : N∨ → CZ/X factors through a map σ′ : (N ′)∨ →
CZ/X . Then

c(Z → X,N ) = ctop(E) ◦ c(Z → X,N ′)
as bivariant classes.

Proof. Denote N ′ → N the closed immersion of vector bundles corresponding to
the surjectionN∨ → (N ′)∨. Then we have closed immersions

CZX → N ′ → N

Thus the desired relationship between the bivariant classes follows immediately from
Lemma 44.2. �

Lemma 54.4. Let (S, δ) be as in Situation 7.1. Consider a cartesian diagram

Z ′ //

g

��

X ′

f

��
Z // X

of schemes locally of finite type over S whose horizontal arrows are closed immersions.
Let N , resp. N ′ be a virtual normal sheaf for Z ⊂ X , resp. Z ′ → X ′. Assume given a
short exact sequence 0→ N ′ → g∗N → E → 0 of finite locally free modules on Z ′ such
that the diagram

g∗N∨ //

��

(N ′)∨

��
g∗CZ/X // CZ′/X′

commutes. Then we have
res(c(Z → X,N )) = ctop(E) ◦ c(Z ′ → X ′,N ′)

in A∗(Z ′ → X ′)∧.

Proof. By Lemma 54.2 we have res(c(Z → X,N )) = c(Z ′ → X ′, g∗N ) and the
equality follows from Lemma 54.3. �

Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S. Let N
be a virtual normal sheaf for a closed subscheme Z of X . Let Y → X be a morphism
which is locally of finite type. Assume Z ×X Y → Y is a regular closed immersion,
see Divisors, Section 21. In this case the conormal sheaf CZ×XY/Y is a finite locally free
OZ×XY -module and we obtain a short exact sequence

0→ E∨ → N∨|Z×XY → CZ×XY/Y → 0
The quotientN|Y×XZ → E is called the excess normal sheaf of the situation.

Lemma 54.5. In the situation described just above assume dimδ(Y ) = n and that
CY×XZ/Z has constant rank r. Then

c(Z → X,N ) ∩ [Y ]n = ctop(E) ∩ [Z ×X Y ]n−r

in CH∗(Z ×X Y ).
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Proof. The bivariant class ctop(E) ∈ A∗(Z ×X Y ) was defined in Remark 38.11.
By Lemma 54.2 we may replace X by Y . Thus we may assume Z → X is a regular
closed immersion of codimension r, we have dimδ(X) = n, and we have to show that
c(Z → X,N )∩[X]n = ctop(E)∩[Z]n−r in CH∗(Z). By Lemma 54.3 we may even assume
N∨ → CZ/X is an isomorphism. In other words, we have to show c(Z → X, C∨

Z/X) ∩
[X]n = [Z]n−r in CH∗(Z).

Let us trace through the steps in the definition of c(Z → X, C∨
Z/X) ∩ [X]n. Let b :

W → P1
X be the blowing up of∞(Z). We first have to compute C ∩ [X]n where C ∈

A0(W∞ → X) is the class of Lemma 48.1. To do this, note that [W ]n+1 is a cycle on W
whose restriction to A1

X is equal to the flat pullback of [X]n. Hence C ∩ [X]n is equal to
i∗∞[W ]n+1. SinceW∞ is an effective Cartier divisor onW we have i∗∞[W ]n+1 = [W∞]n,
see Lemma 29.5. The restriction of this class to the open CZX ⊂ W∞ is of course just
[CZX]n. Because Z ⊂ X is regularly embedded we have

CZ/X,∗ = Sym(CZ/X)

as graded OZ -algebras, see Divisors, Lemma 21.5. Hence p : N = CZX → Z is the
structure morphism of the vector bundle associated to the finite locally free module CZ/X
of rank r. Then it is clear that p∗[Z]n−r = [CZX]n and the proof is complete. �

Lemma 54.6. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. LetN be a virtual normal sheaf for a closed subscheme Z of X . Let Y → X be a
morphism which is locally of finite type. Given integers r, n assume

(1) N is locally free of rank r,
(2) every irreducible component of Y has δ-dimension n,
(3) dimδ(Z ×X Y ) ≤ n− r, and
(4) for ξ ∈ Z ×X Y with δ(ξ) = n− r the local ringOY,ξ is Cohen-Macaulay.

Then c(Z → X,N ) ∩ [Y ]n = [Z ×X Y ]n−r in CHn−r(Z ×X Y ).

Proof. The statement makes sense asZ×X Y is a closed subscheme of Y . BecauseN
has rank rwe know that c(Z → X,N )∩[Y ]n is in CHn−r(Z×XY ). Since dimδ(Z∩Y ) ≤
n − r the chow group CHn−r(Z ×X Y ) is freely generated by the cycle classes of the
irreducible components W ⊂ Z ×X Y of δ-dimension n − r. Let ξ ∈ W be the generic
point. By assumption (2) we see that dim(OY,ξ) = r. On the other hand, since N has
rank r and since N∨ → CZ/X is surjective, we see that the ideal sheaf of Z is locally
cut out by r equations. Hence the quasi-coherent ideal sheaf I ⊂ OY of Z ×X Y in Y
is locally generated by r elements. Since OY,ξ is Cohen-Macaulay of dimension r and
since Iξ is an ideal of definition (as ξ is a generic point of Z ×X Y ) it follows that Iξ
is generated by a regular sequence (Algebra, Lemma 104.2). By Divisors, Lemma 20.8 we
see that I is generated by a regular sequence over an open neighbourhood V ⊂ Y of ξ.
By our description of CHn−r(Z ×X Y ) it suffices to show that c(Z → X,N ) ∩ [V ]n =
[Z ×X V ]n−r in CHn−r(Z ×X V ). This follows from Lemma 54.5 because the excess
normal sheaf is 0 over V . �

Lemma 54.7. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let (L, s, i : D → X) be a triple as in Definition 29.1. The gysin homomorphism
i∗ viewed as an element ofA1(D → X) (see Lemma 33.3) is the same as the bivariant class
c(D → X,N ) ∈ A1(D → X) constructed using N = i∗L viewed as a virtual normal
sheaf for D in X .
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Proof. We will use the criterion of Lemma 35.3. Thus we may assume that X is an
integral scheme and we have to show that i∗[X] is equal to c∩ [X]. Let n = dimδ(X). As
usual, there are two cases.

IfX = D, then we see that both classes are represented by c1(N )∩ [X]n. See Lemma 54.5
and Definition 29.1.

If D 6= X , then D → X is an effective Cartier divisor and in particular a regular closed
immersion of codimension 1. Again by Lemma 54.5 we conclude c(D → X,N )∩ [X]n =
[D]n−1. The same is true by definition for the gysin homomorphism and we conclude
once again. �

Lemma 54.8. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let Z ⊂ X be a closed subscheme with virtual normal sheaf N . Let Y → X be
locally of finite type and c ∈ A∗(Y → X). Then c and c(Z → X,N ) commute (Remark
33.6).

Proof. To check this we may use Lemma 35.3. Thus we may assumeX is an integral
scheme and we have to show c ∩ c(Z → X,N ) ∩ [X] = c(Z → X,N ) ∩ c ∩ [X] in
CH∗(Z ×X Y ).

If Z = X , then c(Z → X,N ) = ctop(N ) by Lemma 54.5 which commutes with the
bivariant class c, see Lemma 38.9.

Assume that Z is not equal to X . By Lemma 35.3 it even suffices to prove the result after
blowing up X (in a nonzero ideal). Let us blowup X in the ideal sheaf of Z. This reduces
us to the case where Z is an effective Cartier divisor, see Divisors, Lemma 32.4,

If Z is an effective Cartier divisor, then we have

c(Z → X,N ) = ctop(E) ◦ i∗

where i∗ ∈ A1(Z → X) is the gysin homomorphism associated to i : Z → X (Lemma
33.3) and E is the dual of the kernel of N∨ → CZ/X , see Lemmas 54.3 and 54.7. Then
we conclude because Chern classes are in the center of the bivariant ring (in the strong
sense formulated in Lemma 38.9) and c commutes with the gysin homomorphism i∗ by
definition of bivariant classes. �

Let (S, δ) be as in Situation 7.1. Let X be an integral scheme locally of finite type over S
of δ-dimension n. Let Z ⊂ Y ⊂ X be closed subschemes which are both effective Cartier
divisors in X . Denote o : Y → CYX the zero section of the normal line cone of Y in
X . As CYX is a line bundle over Y we obtain a bivariant class o∗ ∈ A1(Y → CYX), see
Lemma 33.3.

Lemma 54.9. With notation as above we have

o∗[CZX]n = [CZY ]n−1

in CHn−1(Y ×o,CYX CZX).

Proof. DenoteW → P1
X the blowing up of∞(Z) as in Section 53. Similarly, denote

W ′ → P1
X the blowing up of∞(Y ). Since∞(Z) ⊂ ∞(Y ) we get an opposite inclusion

of ideal sheaves and hence a map of the graded algebras defining these blowups. This
produces a rational morphism fromW toW ′ which in fact has a canonical representative

W ⊃ U −→W ′
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See Constructions, Lemma 18.1. A local calculation (omitted) shows that U contains at
least all points of W not lying over∞ and the open subscheme CZX of the special fibre.
After shrinking U we may assume U∞ = CZX and A1

X ⊂ U . Another local calculation
(omitted) shows that the morphismU∞ →W ′

∞ induces the canonical morphismCZX →
CYX ⊂ W ′

∞ of normal cones induced by the inclusion of ideals sheaves coming from
Z ⊂ Y . Denote W ′′ ⊂ W the strict transform of P1

Y ⊂ P1
X in W . Then W ′′ is the

blowing up of P1
Y in∞(Z) by Divisors, Lemma 33.2 and hence (W ′′ ∩ U)∞ = CZY .

Consider the effective Cartier divisor i : P1
Y → W ′ from (8) and its associated bivariant

class i∗ ∈ A1(P1
Y → W ′) from Lemma 33.3. We similarly denote (i′∞)∗ ∈ A1(W ′

∞ →
W ′) the gysin map at infinity. Observe that the restriction of i′∞ (Remark 33.5) to U is
the restriction of i∗∞ ∈ A1(W∞ →W ) to U . On the one hand we have

(i′∞)∗i∗[U ]n+1 = i∗∞i
∗[U ]n+1 = i∗∞[(W ′′ ∩ U)∞]n+1 = [CZY ]n

because i∗∞ kills all classes supported over∞, because i∗[U ] and [W ′′] agree as cycles over
A1, and because CZY is the fibre of W ′′ ∩ U over∞. On the other hand, we have

(i′∞)∗i∗[U ]n+1 = i∗i∗∞[U ]n+1 = i∗[U∞] = o∗[CYX]n
because (i′∞)∗ and i∗ commute (Lemma 30.5) and because the fibre of i : P1

Y → W ′

over∞ factors as o : Y → CYX and the open immersion CYX → W ′
∞. The lemma

follows. �

Lemma 54.10. Let (S, δ) be as in Situation 7.1. LetZ ⊂ Y ⊂ X be closed subschemes
of a scheme locally of finite type over S. LetN be a virtual normal sheaf for Z ⊂ X . Let
N ′ be a virtual normal sheaf for Z ⊂ Y . Let N ′′ be a virtual normal sheaf for Y ⊂ X .
Assume there is a commutative diagram

(N ′′)∨|Z //

��

N∨ //

��

(N ′)∨

��
CY/X |Z // CZ/X // CZ/Y

where the sequence at the bottom is from More on Morphisms, Lemma 7.12 and the top
sequence is a short exact sequence. Then

c(Z → X,N ) = c(Z → Y,N ′) ◦ c(Y → X,N ′′)
in A∗(Z → X)∧.

Proof. Observe that the assumptions remain satisfied after any base change by a mor-
phism X ′ → X which is locally of finite type (the short exact sequence of virtual nor-
mal sheaves is locally split hence remains exact after any base change). Thus to check the
equality of bivariant classes we may use Lemma 35.3. Thus we may assumeX is an integral
scheme and we have to show c(Z → X,N )∩[X] = c(Z → Y,N ′)∩c(Y → X,N ′′)∩[X].
If Y = X , then we have

c(Z → Y,N ′) ∩ c(Y → X,N ′′) ∩ [X] = c(Z → Y,N ′) ∩ ctop(N ′′) ∩ [Y ]
= ctop(N ′′|Z) ∩ c(Z → Y,N ′) ∩ [Y ]
= c(Z → X,N ) ∩ [X]

The first equality by Lemma 54.3. The second because Chern classes commute with bi-
variant classes (Lemma 38.9). The third equality by Lemma 54.3.
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Assume Y 6= X . By Lemma 35.3 it even suffices to prove the result after blowing up X
in a nonzero ideal. Let us blowup X in the product of the ideal sheaf of Y and the ideal
sheaf of Z. This reduces us to the case where both Y and Z are effective Cartier divisors
on X , see Divisors, Lemmas 32.4 and 32.12.

Denote N ′′ → E the surjection of finite locally free OZ -modules such that 0 → E∨ →
(N ′′)∨ → CY/X → 0 is a short exact sequence. Then N → E|Z is a surjection as well.
DenoteN1 the finite locally free kernel of this map and observe thatN∨ → CZ/X factors
throughN1. By Lemma 54.3 we have

c(Y → X,N ′′) = ctop(E) ◦ c(Y → X, C∨
Y/X)

and
c(Z → X,N ) = ctop(E|Z) ◦ c(Z → X,N1)

Since Chern classes of bundles commute with bivariant classes (Lemma 38.9) it suffices to
prove

c(Z → X,N1) = c(Z → Y,N ′) ◦ c(Y → X, C∨
Y/X)

in A∗(Z → X). This we may assume that N ′′ = CY/X . This reduces us to the case
discussed in the next paragraph.

In this paragraph Z and Y are effective Cartier divisors onX integral of dimension n, we
have N ′′ = CY/X . In this case c(Y → X, C∨

Y/X) ∩ [X] = [Y ]n−1 by Lemma 54.5. Thus
we have to prove that c(Z → X,N )∩ [X] = c(Z → Y,N ′)∩ [Y ]n−1. DenoteN andN ′

the vector bundles over Z associated toN andN ′. Consider the commutative diagram

N ′
i
// N // (CYX)×Y Z

CZY //

OO

CZX

OO

of cones and vector bundles over Z. Observe that N ′ is a relative effective Cartier divisor
in N over Z and that

N ′

��

i
// N

��
Z

o // (CYX)×Y Z
is cartesian where o is the zero section of the line bundle CYX over Y . By Lemma 54.9
we have o∗[CZX]n = [CZY ]n−1 in

CHn−1(Y ×o,CYX CZX) = CHn−1(Z ×o,(CYX)×Y Z CZX)
By the cartesian property of the square above this implies that

i∗[CZX]n = [CZY ]n−1

in CHn−1(N ′). Now observe that γ = c(Z → X,N ) ∩ [X] and γ′ = c(Z → Y,N ′) ∩
[Y ]n−1 are characterized by p∗γ = [CZX]n in CHn(N) and by (p′)∗γ′ = [CZY ]n−1 in
CHn−1(N ′). Hence the proof is finished as i∗ ◦ p∗ = (p′)∗ by Lemma 31.1. �

Remark 54.11 (Variant for immersions). Let (S, δ) be as in Situation 7.1. Let X be a
scheme locally of finite type over S. Let i : Z → X be an immersion of schemes. In this
situation

(1) the conormal sheaf CZ/X of Z in X is defined (Morphisms, Definition 31.1),
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(2) we say a pair consisting of a finite locally free OZ -module N and a surjection
σ : N∨ → CZ/X is a virtual normal bundle for the immersion Z → X ,

(3) choose an open subscheme U ⊂ X such that Z → X factors through a closed
immersion Z → U and set c(Z → X,N ) = c(Z → U,N ) ◦ (U → X)∗.

The bivariant class c(Z → X,N ) does not depend on the choice of the open subschemeU .
All of the lemmas have immediate counterparts for this slightly more general construction.
We omit the details.

55. Calculating some classes

To get further we need to compute the values of some of the classes we’ve constructed
above.

Lemma 55.1. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let E be a locally freeOX -module of rank r. Then∏

n=0,...,r
c(∧nE)(−1)n = 1− (r − 1)!cr(E) + . . .

Proof. By the splitting principle we can turn this into a calculation in the polyno-
mial ring on the Chern roots x1, . . . , xr of E . See Section 43. Observe that

c(∧nE) =
∏

1≤i1<...<in≤r
(1 + xi1 + . . .+ xin)

Thus the logarithm of the left hand side of the equation in the lemma is

−
∑

p≥1

∑r

n=0

∑
1≤i1<...<in≤r

(−1)p+n

p
(xi1 + . . .+ xin)p

Please notice the minus sign in front. However, we have∑
p≥0

∑r

n=0

∑
1≤i1<...<in≤r

(−1)p+n

p! (xi1 + . . .+ xin)p =
∏

(1− e−xi)

Hence we see that the first nonzero term in our Chern class is in degree r and equal to the
predicted value. �

Lemma 55.2. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let C be a locally freeOX -module of rank r. Consider the morphisms

X = Proj
X

(OX [T ]) i−→ E = Proj
X

(Sym∗(C)[T ]) π−→ X

Then ct(i∗OX) = 0 for t = 1, . . . , r − 1 and in A0(C → E) we have

p∗ ◦ π∗ ◦ cr(i∗OX) = (−1)r−1(r − 1)!j∗

where j : C → E and p : C → X are the inclusion and structure morphism of the vector
bundle C = Spec(Sym∗(C)).

Proof. The canonical map π∗C → OE(1) vanishes exactly along i(X). Hence the
Koszul complex on the map

π∗C ⊗ OE(−1)→ OE
is a resolution of i∗OX . In particular we see that i∗OX is a perfect object ofD(OE) whose
Chern classes are defined. The vanishing of ct(i∗OX) for t = 1, . . . , t − 1 follows from
Lemma 55.1. This lemma also gives

cr(i∗OX) = −(r − 1)!cr(π∗C ⊗ OE(−1))
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On the other hand, by Lemma 43.3 we have

cr(π∗C ⊗ OE(−1)) = (−1)rcr(π∗C∨ ⊗OE(1))

and π∗C∨ ⊗OE(1) has a section s vanishing exactly along i(X).

After replacing X by a scheme locally of finite type over X , it suffices to prove that both
sides of the equality have the same effect on an element α ∈ CH∗(E). Since C → X is a
vector bundle, every cycle class on C is of the form p∗β for some β ∈ CH∗(X) (Lemma
36.3). Hence by Lemma 19.3 we can write α = π∗β + γ where γ is supported on E \ C.
Using the equalities above it suffices to show that

p∗(π∗(cr(π∗C∨ ⊗OE(1)) ∩ [W ])) = j∗[W ]

when W ⊂ E is an integral closed subscheme which is either (a) disjoint from C or (b) is
of the form W = π−1Y for some integral closed subscheme Y ⊂ X . Using the section s
and Lemma 44.1 we find in case (a) cr(π∗C∨⊗OE(1))∩[W ] = 0 and in case (b) cr(π∗C∨⊗
OE(1)) ∩ [W ] = [i(Y )]. The result follows easily from this; details omitted. �

Lemma 55.3. Let (S, δ) be as in Situation 7.1. Let i : Z → X be a regular closed
immersion of codimension r between schemes locally of finite type over S. LetN = C∨

Z/X

be the normal sheaf. IfX is quasi-compact (or has quasi-compact irreducible components),
then ct(Z → X, i∗OZ) = 0 for t = 1, . . . , r − 1 and

cr(Z → X, i∗OZ) = (−1)r−1(r − 1)!c(Z → X,N ) in Ar(Z → X)

where ct(Z → X, i∗OZ) is the localized Chern class of Definition 50.3.

Proof. For any x ∈ Z we can choose an affine open neighbourhood Spec(A) ⊂ X
such that Z ∩ Spec(A) = V (f1, . . . , fr) where f1, . . . , fr ∈ A is a regular sequence.
See Divisors, Definition 21.1 and Lemma 20.8. Then we see that the Koszul complex on
f1, . . . , fr is a resolution ofA/(f1, . . . , fr) for example by More on Algebra, Lemma 30.2.
Hence A/(f1, . . . , fr) is perfect as an A-module. It follows that F = i∗OZ is a perfect
object of D(OX) whose restriction to X \ Z is zero. The assumption that X is quasi-
compact (or has quasi-compact irreducible components) means that the localized Chern
classes ct(Z → X, i∗OZ) are defined, see Situation 50.1 and Definition 50.3. All in all we
conclude that the statement makes sense.

Denote b : W → P1
X the blowing up in∞(Z) as in Section 53. By (8) we have a closed

immersion
i′ : P1

Z −→W

We claim that Q = i′∗OP1
Z

is a perfect object of D(OW ) and that F and Q satisfy the
assumptions of Lemma 51.2.

Assume the claim. The output of Lemma 51.2 is that we have

cp(Z → X,F ) = c′
p(Q) = (E → Z)∗ ◦ c′

p(Q|E) ◦ C

for all p ≥ 1. Observe that Q|E is equal to the pushforward of the structure sheaf of Z
via the morphism Z → E which is the base change of i′ by∞. Thus the vanishing of
ct(Z → X,F ) for 1 ≤ t ≤ r−1 by Lemma 55.2 applied toE → Z. Because CZ/X = N∨

is locally free the bivariant class c(Z → X,N ) is characterized by the relation

j∗ ◦ C = p∗ ◦ c(Z → X,N )
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where j : CZX → W∞ and p : CZX → Z are the given maps. (Recall C ∈ A0(W∞ →
X) is the class of Lemma 48.1.) Thus the displayed equation in the statement of the lemma
follows from the corresponding equation in Lemma 55.2.
Proof of the claim. LetA and f1, . . . , fr be as above. Consider the affine open Spec(A[s]) ⊂
P1
X as in Section 53. Recall that s = 0 defines (P1

X)∞ over this open. Hence over
Spec(A[s]) we are blowing up in the ideal generated by the regular sequence s, f1, . . . , fr.
By More on Algebra, Lemma 31.2 the r+ 1 affine charts are global complete intersections
over A[s]. The chart corresponding to the affine blowup algebra

A[s][f1/s, . . . , fr/s] = A[s, y1, . . . , yr]/(syi − fi)
contains i′(Z∩Spec(A)) as the closed subscheme cut out by y1, . . . , yr. Since y1, . . . , yr, sy1−
f1, . . . , syr− fr is a regular sequence in the polynomial ringA[s, y1, . . . , yr] we find that
i′ is a regular immersion. Some details omitted. As above we conclude that Q = i′∗OP1

Z

is a perfect object of D(OW ). All the other assumptions on F and Q in Lemma 51.2 (and
Lemma 49.1) are immediately verified. �

Lemma 55.4. In the situation of Lemma 55.3 say dimδ(X) = n. Then we have
(1) ct(Z → X, i∗OZ) ∩ [X]n = 0 for t = 1, . . . , r − 1,
(2) cr(Z → X, i∗OZ) ∩ [X]n = (−1)r−1(r − 1)![Z]n−r ,
(3) cht(Z → X, i∗OZ) ∩ [X]n = 0 for t = 0, . . . , r − 1, and
(4) chr(Z → X, i∗OZ) ∩ [X]n = [Z]n−r.

Proof. Parts (1) and (2) follow immediately from Lemma 55.3 combined with Lemma
54.5. Then we deduce parts (3) and (4) using the relationship between chp = (1/p!)Pp
and cp given in Lemma 52.1. (Namely, (−1)r−1(r − 1)!chr = cr provided c1 = c2 =
. . . = cr−1 = 0.) �

56. An Adams operator

We do the minimal amount of work to define the second adams operator. Let X be a
scheme. Recall that Vect(X) denotes the category of finite locally free OX -modules.
Moreover, recall that we have constructed a zeroth K-group K0(Vect(X)) associated to
this category in Derived Categories of Schemes, Section 38. Finally, K0(Vect(X)) is a
ring, see Derived Categories of Schemes, Remark 38.6.

Lemma 56.1. Let X be a scheme. There is a ring map
ψ2 : K0(Vect(X)) −→ K0(Vect(X))

which sends [L] to [L⊗2] when L is invertible and is compatible with pullbacks.

Proof. LetX be a scheme. Let E be a finite locally freeOX -module. We will consider
the element

ψ2(E) = [Sym2(E)]− [∧2(E)]
of K0(Vect(X)).
Let X be a scheme and consider a short exact sequence

0→ E → F → G → 0
of finite locally free OX -modules. Let us think of this as a filtration on F with 2 steps.
The induced filtration on Sym2(F) has 3 steps with graded pieces Sym2(E), E ⊗ F , and
Sym2(G). Hence

[Sym2(F)] = [Sym2(E)] + [E ⊗ F ] + [Sym2(G)]
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In exactly the same manner one shows that

[∧2(F)] = [∧2(E)] + [E ⊗ F ] + [∧2(G)]
Thus we see that ψ2(F) = ψ2(E) + ψ2(G). We conclude that we obtain a well defined
additive map ψ2 : K0(Vect(X))→ K0(Vect(X)).

It is clear that this map commutes with pullbacks.

We still have to show that ψ2 is a ring map. Let X be a scheme and let E and F be finite
locally freeOX -modules. Observe that there is a short exact sequence

0→ ∧2(E)⊗ ∧2(F)→ Sym2(E ⊗ F)→ Sym2(E)⊗ Sym2(F)→ 0
where the first map sends (e∧ e′)⊗ (f ∧ f ′) to (e⊗ f)(e′⊗ f ′)− (e′⊗ f)(e⊗ f ′) and the
second map sends (e⊗ f)(e′ ⊗ f ′) to ee′ ⊗ ff ′. Similarly, there is a short exact sequence

0→ Sym2(E)⊗ ∧2(F)→ ∧2(E ⊗ F)→ ∧2(E)⊗ Sym2(F)→ 0
where the first map sends ee′⊗ f ∧ f ′ to (e⊗ f)∧ (e′⊗ f ′) + (e′⊗ f)∧ (e⊗ f ′) and the
second map sends (e ⊗ f) ∧ (e′ ⊗ f ′) to (e ∧ e′) ⊗ (ff ′). As above this proves the map
ψ2 is multiplicative. Since it is clear that ψ2(1) = 1 this concludes the proof. �

Remark 56.2. Let X be a scheme such that 2 is invertible on X . Then the Adams
operator ψ2 can be defined on the K-group K0(X) = K0(Dperf (OX)) (Derived Cate-
gories of Schemes, Definition 38.2) in a straightforward manner. Namely, given a perfect
complex L onX we get an action of the group {±1} on L⊗L L by switching the factors.
Then we can set

ψ2(L) = [(L⊗L L)+]− [(L⊗L L)−]
where (−)+ denotes taking invariants and (−)− denotes taking anti-invariants (suitably
defined). Using exactness of taking invariants and anti-invariants one can argue similarly
to the proof of Lemma 56.1 to show that this is well defined. When 2 is not invertible on
X the situation is a good deal more complicated and another approach has to be used.

Lemma 56.3. Let X be a scheme. There is a ring map ψ−1 : K0(Vect(X)) →
K0(Vect(X)) which sends [E ] to [E∨] when E is finite locally free and is compatible with
pullbacks.

Proof. The only thing to check is that taking duals is compatible with short exact
sequences and with pullbacks. This is clear. �

Remark 56.4. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over S.
The Chern class map defines a canonical map

c : K0(Vect(X)) −→
∏

i≥0
Ai(X)

by sending a generator [E ] on the left hand side to c(E) = 1 + c1(E) + c2(E) + . . . and
extending multiplicatively. Thus −[E ] is sent to the formal inverse c(E)−1 which is why
we have the infinite product on the right hand side. This is well defined by Lemma 40.3.

Remark 56.5. Let (S, δ) be as in Situation 7.1. LetX be locally of finite type over S.
The Chern character map defines a canonical ring map

ch : K0(Vect(X)) −→
∏

i≥0
Ai(X)⊗Q

by sending a generator [E ] on the left hand side to ch(E) and extending additively. This
is well defined by Lemma 45.2 and a ring homomorphism by Lemma 45.3.
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Lemma 56.6. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. If ψ2 is as in Lemma 56.1 and c and ch are as in Remarks 56.4 and 56.5 then we have
ci(ψ2(α)) = 2ici(α) and chi(ψ2(α)) = 2ichi(α) for all α ∈ K0(Vect(X)).

Proof. Observe that the map
∏
i≥0 A

i(X) →
∏
i≥0 A

i(X) multiplying by 2i on
Ai(X) is a ring map. Hence, since ψ2 is also a ring map, it suffices to prove the formulas
for additive generators of K0(Vect(X)). Thus we may assume α = [E ] for some finite
locally free OX -module E . By construction of the Chern classes of E we immediately
reduce to the case where E has constant rank r, see Remark 38.10. In this case, we can
choose a projective smooth morphism p : P → X such that restriction A∗(X)→ A∗(P )
is injective and such that p∗E has a finite filtration whose graded parts are invertibleOP -
modules Lj , see Lemma 43.1. Then [p∗E ] =

∑
[Lj ] and hence ψ2([pE ]) =

∑
[L⊗2
j ] by

definition of ψ2. Setting xj = c1(Lj) we have

c(α) =
∏

(1 + xj) and c(ψ2(α)) =
∏

(1 + 2xj)

in
∏
Ai(P ) and we have

ch(α) =
∑

exp(xj) and ch(ψ2(α)) =
∑

exp(2xj)

in
∏
Ai(P ). From these formulas the desired result follows. �

Remark 56.7. Let X be a locally Noetherian scheme. Let Z ⊂ X be a closed sub-
scheme. Consider the strictly full, saturated, triangulated subcategory

DZ,perf (OX) ⊂ D(OX)

consisting of perfect complexes of OX -modules whose cohomology sheaves are setthe-
oretically supported on Z. Denote CohZ(X) ⊂ Coh(X) the Serre subcategory of co-
herent OX -modules whose set theoretic support is contained in Z. Observe that given
E ∈ DZ,perf (OX) Zariski locally on X only a finite number of the cohomology sheaves
Hi(E) are nonzero (and they are all settheoretically supported onZ). Hence we can define

K0(DZ,perf (OX)) −→ K0(CohZ(X)) = K ′
0(Z)

(equality by Lemma 23.6) by the rule

E 7−→ [
⊕

i∈Z
H2i(E)]− [

⊕
i∈Z

H2i+1(E)]

This works because given a distinguished triangle in DZ,perf (OX) we have a long exact
sequence of cohomology sheaves.

Remark 56.8. Let X , Z , DZ,perf (OX) be as in Remark 56.7. Assume X is regular.
Then there is a canonical map

K0(Coh(Z)) −→ K0(DZ,perf (OX))

defined as follows. For any coherent OZ -module F denote F [0] the object of D(OX)
which hasF in degree 0 and is zero in other degrees. ThenF [0] is a perfect complex onX
by Derived Categories of Schemes, Lemma 11.8. Hence F [0] is an object of DZ,perf (OX).
On the other hand, given a short exact sequence 0 → F → F ′ → F ′′ → 0 of coher-
ent OZ -modules we obtain a distinguished triangle F [0] → F ′[0] → F ′′[0] → F [1],
see Derived Categories, Section 12. This shows that we obtain a map K0(Coh(Z)) →
K0(DZ,perf (OX)) by sending [F ] to [F [0]] with apologies for the horrendous notation.
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Lemma 56.9. Let X be a Noetherian regular scheme. Let Z ⊂ X be a closed sub-
scheme. The maps constructed in Remarks 56.7 and 56.8 are mutually inverse and we get
K ′

0(Z) = K0(DZ,perf (OX)).

Proof. Clearly the composition

K0(Coh(Z)) −→ K0(DZ,perf (OX)) −→ K0(Coh(Z))

is the identity map. Thus it suffices to show the first arrow is surjective. Let E be an
object of DZ,perf (OX). Recall that Dperf (OX) = Db

Coh(OX) by Derived Categories
of Schemes, Lemma 11.8. Hence the cohomologies Hi(E) are coherent, can be viewed as
objects of DZ,perf (OX), and only a finite number are nonzero. Using the distinguished
triangles of canonical truncations the reader sees that

[E] =
∑

(−1)i[Hi(E)[0]]

in K0(DZ,perf (OX)). Then it suffices to show that [F [0]] is in the image of the map
for any coherent OX -module set theoretically supported on Z. Since we can find a finite
filtration on F whose subquotients areOZ -modules, the proof is complete. �

Remark 56.10. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z ⊂ X be a closed subscheme and let DZ,perf (OX) be as in Remark 56.7. If X
is quasi-compact (or more generally the irreducible components of X are quasi-compact),
then the localized Chern classes define a canonical map

c(Z → X,−) : K0(DZ,perf (OX)) −→ A0(X)×
∏

i≥1
Ai(Z → X)

by sending a generator [E] on the left hand side to

c(Z → X,E) = 1 + c1(Z → X,E) + c2(Z → X,E) + . . .

and extending multiplicatively (with product on the right hand side as in Remark 34.7).
The quasi-compactness condition on X guarantees that the localized chern classes are de-
fined (Situation 50.1 and Definition 50.3) and that these localized chern classes convert dis-
tinguished triangles into the corresponding products in the bivariant chow rings (Lemma
52.4).

Remark 56.11. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z ⊂ X be a closed subscheme and let DZ,perf (OX) be as in Remark 56.7. If
the irreducible components of X are quasi-compact, then the localized Chern character
defines a canonical additive and multiplicative map

ch(Z → X,−) : K0(DZ,perf (OX)) −→
∏

i≥0
Ai(Z → X)⊗Q

by sending a generator [E] on the left hand side to ch(Z → X,E) and extending addi-
tively. Namely, the condition on the irreducible components of X guarantees that the
localized chern character is defined (Situation 50.1 and Definition 50.3) and that these
localized chern characters convert distinguished triangles into the corresponding sums in
the bivariant chow rings (Lemma 52.5). The multiplication on K0(DZ,perf (X)) is de-
fined using derived tensor product (Derived Categories of Schemes, Remark 38.9) hence
ch(Z → X,αβ) = ch(Z → X,α)ch(Z → X,β) by Lemma 52.6. If X is quasi-compact,
then the map ch(Z → X,−) has image contained in A∗(Z → X) ⊗ Q; we omit the
details.
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Remark 56.12. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S and assume X is quasi-compact (or more generally the irreducible components of X
are quasi-compact). With Z = X and notation as in Remarks 56.10 and 56.11 we have
DZ,perf (OX) = Dperf (OX) and we see that

K0(DZ,perf (OX)) = K0(Dperf (OX)) = K0(X)
see Derived Categories of Schemes, Definition 38.2. Hence we get

c : K0(X)→
∏

Ai(X) and ch : K0(X)→
∏

Ai(X)⊗Q

as a special case of Remarks 56.10 and 56.11. Of course, instead we could have just directly
used Definition 46.3 and Lemmas 46.7 and 46.11 to construct these maps (as this immedi-
ately seen to produce the same classes). Recall that there is a canonical mapK0(Vect(X))→
K0(X) which sends a finite locally free module to itself viewed as a perfect complex
(placed in degree 0), see Derived Categories of Schemes, Section 38. Then the diagram

K0((Vect(X))

c
''

// K0(Dperf (OX)) = K0(X)

c
uu∏

Ai(X)

commutes where the south-east arrow is the one constructed in Remark 56.4. Similarly,
the diagram

K0((Vect(X))

ch ((

// K0(Dperf (OX)) = K0(X)

chuu∏
Ai(X)⊗Q

commutes where the south-east arrow is the one constructed in Remark 56.5.

57. Chow groups and K-groups revisited

This section is the continuation of Section 23. Let (S, δ) be as in Situation 7.1. Let X be
locally of finite type over S. The K-group K ′

0(X) = K0(Coh(X)) of coherent sheaves
on X has a canonical increasing filtration

FkK
′
0(X) = Im

(
K0(Coh≤k(X))→ K0(Coh(X)

)
This is called the filtration by dimension of supports. Observe that

grkK
′
0(X) ⊂ K ′

0(X)/Fk−1K
′
0(X) = K0(Coh(X)/Coh≤k−1(X))

where the equality holds by Homology, Lemma 11.3. The discussion in Remark 23.5 shows
that there are canonical maps

CHk(X) −→ grkK
′
0(X)

defined by sending the class of an integral closed subscheme Z ⊂ X of δ-dimension k to
the class of [OZ ] on the right hand side.

Proposition 57.1. Let (S, δ) be as in Situation 7.1. Assume given a closed immersion
X → Y of schemes locally of finite type over S with Y regular and quasi-compact. Then
the composition

K ′
0(X)→ K0(DX,perf (OY ))→ A∗(X → Y )⊗Q→ CH∗(X)⊗Q
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of the mapF 7→ F [0] from Remark 56.8, the map ch(X → Y,−) from Remark 56.11, and
the map c 7→ c ∩ [Y ] induces an isomorphism

K ′
0(X)⊗Q −→ CH∗(X)⊗Q

which depends on the choice of Y . Moreover, the canonical map

CHk(X)⊗Q −→ grkK
′
0(X)⊗Q

(see above) is an isomorphism of Q-vector spaces for all k ∈ Z.

Proof. Since Y is regular, the construction in Remark 56.8 applies. Since Y is quasi-
compact, the construction in Remark 56.11 applies. We have that Y is locally equidi-
mensional (Lemma 42.1) and thus the “fundamental cycle” [Y ] is defined as an element of
CH∗(Y ), see Remark 42.2. Combining this with the map CHk(X) → grkK

′
0(X) con-

structed above we see that it suffices to prove
(1) If F is a coherent OX -module whose support has δ-dimension ≤ k, then the

composition above sends [F ] into
⊕

k′≤k CHk′(X)⊗Q.
(2) If Z ⊂ X is an integral closed subscheme of δ-dimension k, then the composi-

tion above sends [OZ ] to an element whose degree k part is the class of [Z] in
CHk(X)⊗Q.

Namely, if this holds, then our maps induce maps grkK
′
0(X) ⊗ Q → CHk(X) ⊗ Q

which are inverse to the canonical maps CHk(X) ⊗ Q → grkK
′
0(X) ⊗ Q given above

the proposition.

Given a coherentOX -module F the composition above sends [F ] to

ch(X → Y,F [0]) ∩ [Y ] ∈ CH∗(X)⊗Q

If F is (set theoretically) supported on a closed subscheme Z ⊂ X , then we have

ch(X → Y,F [0]) = (Z → X)∗ ◦ ch(Z → Y,F [0])

by Lemma 50.8. We conclude that in this case we end up in the image of CH∗(Z) →
CH∗(X). Hence we get condition (1).

Let Z ⊂ X be an integral closed subscheme of δ-dimension k. The composition above
sends [OZ ] to the element

ch(X → Y,OZ [0]) ∩ [Y ] = (Z → X)∗ch(Z → Y,OZ [0]) ∩ [Y ]

by the same argument as above. Thus it suffices to prove that the degree k part of ch(Z →
Y,OZ [0])∩ [Y ] ∈ CH∗(Z)⊗Q is [Z]. Since CHk(Z) = Z, in order to prove this we may
replace Y by an open neighbourhood of the generic point ξ of Z. Since the maximal ideal
of the regular local ring OX,ξ is generated by a regular sequence (Algebra, Lemma 106.3)
we may assume the ideal ofZ is generated by a regular sequence, see Divisors, Lemma 20.8.
Thus we deduce the result from Lemma 55.4. �

58. Rational intersection products on regular schemes

We will show that CH∗(X)⊗Q has an intersection product if X is Noetherian, regular,
finite dimensional, with affine diagonal. The basis for the construction is the following
result (which is a corollary of the proposition in the previous section).
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Lemma 58.1. Let (S, δ) be as in Situation 7.1. LetX be a quasi-compact regular scheme
of finite type over S with affine diagonal and δX/S : X → Z bounded. Then the compo-
sition

K0(Vect(X))⊗Q −→ A∗(X)⊗Q −→ CH∗(X)⊗Q
of the map ch from Remark 56.5 and the map c 7→ c ∩ [X] is an isomorphism.

Proof. We haveK ′
0(X) = K0(X) = K0(Vect(X)) by Derived Categories of Schemes,

Lemmas 38.4, 36.8, and 38.5. By Remark 56.12 the composition given agrees with the map
of Proposition 57.1 for X = Y . Thus the result follows from the proposition. �

LetX,S, δ be as in Lemma 58.1. For simplicity let us work with cycles of a given codimen-
sion, see Section 42. Let [X] be the fundamental cycle of X , see Remark 42.2. Pick α ∈
CHi(X) and β ∈ CHj(X). By the lemma we can find a unique α′ ∈ K0(Vect(X))⊗Q
with ch(α′) ∩ [X] = α. Of course this means that chi′(α′) ∩ [X] = 0 if i′ 6= i and
chi(α′) ∩ [X] = α. By Lemma 56.6 we see that α′′ = 2−iψ2(α′) is another solution. By
uniqueness we get α′′ = α′ and we conclude that chi′(α) = 0 in Ai

′(X) ⊗Q for i′ 6= i.
Then we can define

α · β = ch(α′) ∩ β = chi(α′) ∩ β
in CHi+j(X)⊗Q by the property of α′ we observed above. This is a symmetric pairing:
namely, if we pick β′ ∈ K0(Vect(X))⊗Q lifting β, then we get

α · β = ch(α′) ∩ β = ch(α′) ∩ ch(β′) ∩ [X]

and we know that Chern classes commute. The intersection product is associative for the
same reason

(α · β) · γ = ch(α′) ∩ ch(β′) ∩ ch(γ′) ∩ [X]
because we know composition of bivariant classes is associative. Perhaps a better way to
formulate this is as follows: there is a unique commutative, associative intersection prod-
uct on CH∗(X)⊗Q compatible with grading such that the isomorphismK0(Vect(X))⊗
Q→ CH∗(X)⊗Q is an isomorphism of rings.

59. Gysin maps for local complete intersection morphisms

Before reading this section, we suggest the reader read up on regular immersions (Divisors,
Section 21) and local complete intersection morphisms (More on Morphisms, Section 62).

Let (S, δ) be as in Situation 7.1. Let i : X → Y be a regular immersion9 of schemes locally
of finite type over S. In particular, the conormal sheaf CX/Y is finite locally free (see
Divisors, Lemma 21.5). Hence the normal sheaf

NX/Y = HomOX
(CX/Y ,OX)

is finite locally free as well and we have a surjection N∨
X/Y → CX/Y (because an isomor-

phism is also a surjection). The construction in Section 54 gives us a canonical bivariant
class

i! = c(X → Y,NX/Y ) ∈ A∗(X → Y )∧

We need a couple of lemmas about this notion.

9See Divisors, Definition 21.1. Observe that regular immersions are the same thing as Koszul-regular im-
mersions or quasi-regular immersions for locally Noetherian schemes, see Divisors, Lemma 21.3. We will use this
without further mention in this section.
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Lemma 59.1. Let (S, δ) be as in Situation 7.1. Let i : X → Y and j : Y → Z
be regular immersions of schemes locally of finite type over S. Then j ◦ i is a regular
immersion and (j ◦ i)! = i! ◦ j!.

Proof. The first statement is Divisors, Lemma 21.7. By Divisors, Lemma 21.6 there
is a short exact sequence

0→ i∗(CY/Z)→ CX/Z → CX/Y → 0

Thus the result by the more general Lemma 54.10. �

Lemma 59.2. Let (S, δ) be as in Situation 7.1. Let p : P → X be a smooth morphism
of schemes locally of finite type over S and let s : X → P be a section. Then s is a regular
immersion and 1 = s! ◦ p∗ in A∗(X)∧ where p∗ ∈ A∗(P → X)∧ is the bivariant class of
Lemma 33.2.

Proof. The first statement is Divisors, Lemma 22.8. It suffices to show that s! ∩
p∗[Z] = [Z] in CH∗(X) for any integral closed subscheme Z ⊂ X as the assumptions are
preserved by base change byX ′ → X locally of finite type. After replacing P by an open
neighbourhood of s(Z) we may assume P → X is smooth of fixed relative dimension r.
Say dimδ(Z) = n. Then every irreducible component of p−1(Z) has dimension r+n and
p∗[Z] is given by [p−1(Z)]n+r. Observe that s(X)∩p−1(Z) = s(Z) scheme theoretically.
Hence by the same reference as used above s(X)∩p−1(Z) is a closed subscheme regularly
embedded in p−1(Z) of codimension r. We conclude by Lemma 54.5. �

Let (S, δ) be as in Situation 7.1. Consider a commutative diagram

X

f   

i
// P

g
��

Y

of schemes locally of finite type over S such that g is smooth and i is a regular immersion.
Combining the bivariant class i! discussed above with the bivariant class g∗ ∈ A∗(P →
Y )∧ of Lemma 33.2 we obtain

f ! = i! ◦ g∗ ∈ A∗(X → Y )

Observe that the morphism f is a local complete intersection morphism, see More on Mor-
phisms, Definition 62.2. Conversely, if f : X → Y is a local complete intersection mor-
phism of locally Noetherian schemes and f = g ◦ i with g smooth, then i is a regular
immersion. We claim that our construction of f ! only depends on the morphism f and
not on the choice of factorization f = g ◦ i.

Lemma 59.3. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a local complete
intersection morphism of schemes locally of finite type over S. The bivariant class f ! is
independent of the choice of the factorization f = g ◦ i with g smooth (provided one
exists).

Proof. Given a second such factorization f = g′ ◦ i′ we can consider the smooth
morphism g′′ : P ×Y P ′ → Y , the immersion i′′ : X → P ×Y P ′ and the factorization
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f = g′′ ◦ i′′. Thus we may assume that we have a diagram

P ′

p

��

g′

  
X

i //

i′
>>

P
g // Y

where p is a smooth morphism. Then (g′)∗ = p∗ ◦ g∗ (Lemma 14.3) and hence it suffices
to show that i! = (i′)! ◦ p∗ in A∗(X → P ). Consider the commutative diagram

X ×P P ′

p

��

j
// P ′

p

��
X

s

::

1 // X
i // P

where s = (1, i′). Then s and j are regular immersions (by Divisors, Lemma 22.8 and
Divisors, Lemma 21.4) and i′ = j ◦ s. By Lemma 59.1 we have (i′)! = s! ◦ j!. Since the
square is cartesian, the bivariant class j! is the restriction (Remark 33.5) of i! to P ′, see
Lemma 54.2. Since bivariant classes commute with flat pullbacks we find j! ◦ p∗ = p∗ ◦ i!.
Thus it suffices to show that s! ◦ p∗ = id which is done in Lemma 59.2. �

Definition 59.4. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a local complete
intersection morphism of schemes locally of finite type over S. We say the gysin map for
f exists if we can write f = g ◦ iwith g smooth and i an immersion. In this case we define
the gysin map f ! = i! ◦ g∗ ∈ A∗(X → Y ) as above.

It follows from the definition that for a regular immersion this agrees with the construc-
tion earlier and for a smooth morphism this agrees with flat pullback. In fact, this agree-
ment holds for all syntomic morphisms.

Lemma 59.5. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a local complete
intersection morphism of schemes locally of finite type over S. If the gysin map exists for
f and f is flat, then f ! is equal to the bivariant class of Lemma 33.2.

Proof. Choose a factorization f = g ◦ i with i : X → P an immersion and g : P →
Y smooth. Observe that for any morphismY ′ → Y which is locally of finite type, the base
changes of f ′, g′, i′ satisfy the same assumptions (see Morphisms, Lemmas 34.5 and 30.4
and More on Morphisms, Lemma 62.8). Thus we reduce to proving that f∗[Y ] = i!(g∗[Y ])
in case Y is integral, see Lemma 35.3. Set n = dimδ(Y ). After decomposingX and P into
connected components we may assume f is flat of relative dimension r and g is smooth of
relative dimension t. Then f∗[Y ] = [X]n+s and g∗[Y ] = [P ]n+t. On the other hand i
is a regular immersion of codimension t− s. Thus i![P ]n+t = [X]n+s (Lemma 54.5) and
the proof is complete. �

Lemma 59.6. Let (S, δ) be as in Situation 7.1. Let f : X → Y and g : Y → Z be
local complete intersection morphisms of schemes locally of finite type over S. Assume
the gysin map exists for g ◦f and g. Then the gysin map exists for f and (g ◦f)! = f ! ◦g!.

Proof. Observe that g ◦ f is a local complete intersection morphism by More on
Morphisms, Lemma 62.7 and hence the statement of the lemma makes sense. If X → P is
an immersion ofX into a scheme P smooth overZ thenX → P ×Z Y is an immersion of
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X into a scheme smooth over Y . This prove the first assertion of the lemma. Let Y → P ′

be an immersion ofY into a schemeP ′ smooth overZ. Consider the commutative diagram

X //

��

P ×Z Y a
//

p
{{

P ×Z P ′

q
xx

Y
b
//

��

P ′

zz
Z

Here the horizontal arrows are regular immersions, the south-west arrows are smooth, and
the square is cartesian. Whence a! ◦ q∗ = p∗ ◦ b! as bivariant classes commute with flat
pullback. Combining this fact with Lemmas 59.1 and 14.3 the reader finds the statement
of the lemma holds true. Small detail omitted. �

Lemma 59.7. Let (S, δ) be as in Situation 7.1. Consider a commutative diagram

X ′′

��

// X ′

��

// X

f

��
Y ′′ // Y ′ // Y

of schemes locally of finite type over S with both square cartesian. Assume f : X → Y
is a local complete intersection morphism such that the gysin map exists for f . Let c ∈
A∗(Y ′′ → Y ′). Denote res(f !) ∈ A∗(X ′ → Y ′) the restriction of f ! to Y ′ (Remark
33.5). Then c and res(f !) commute (Remark 33.6).

Proof. Choose a factorization f = g ◦ i with g smooth and i an immersion. Since
f ! = i! ◦ g! it suffices to prove the lemma for g! (which is given by flat pullback) and for
i!. The result for flat pullback is part of the definition of a bivariant class. The case of i!
follows immediately from Lemma 54.8. �

Lemma 59.8. Let (S, δ) be as in Situation 7.1. Consider a cartesian diagram

X ′

f ′

��

// X

f

��
Y ′ // Y

of schemes locally of finite type over S. Assume
(1) f is a local complete intersection morphism and the gysin map exists for f ,
(2) X , X ′, Y , Y ′ satisfy the equivalent conditions of Lemma 42.1,
(3) for x′ ∈ X ′ with images x, y′, and y inX , Y ′, and Y we havenx′−ny′ = nx−ny

where nx′ , nx, ny′ , and ny are as in the lemma, and
(4) for every generic point ξ ∈ X ′ the local ringOY ′,f ′(ξ) is Cohen-Macaulay.

Then f ![Y ′] = [X ′] where [Y ′] and [X ′] are as in Remark 42.2.

Proof. Recall that nx′ is the common value of δ(ξ) where ξ is the generic point of an
irreducible component passing through x′. Moreover, the functions x′ 7→ nx′ , x 7→ nx,
y′ 7→ ny′ , and y 7→ ny are locally constant. Let X ′

n, Xn, Y ′
n, and Yn be the open and

closed subscheme of X ′, X , Y ′, and Y where the function has value n. Recall that [X ′] =∑
[X ′

n]n and [Y ′] =
∑

[Y ′
n]n. Having said this, it is clear that to prove the lemma we may



59. GYSIN MAPS FOR LOCAL COMPLETE INTERSECTION MORPHISMS 3733

replaceX ′ by one of its connected components andX , Y ′, Y by the connected component
that it maps into. Then we know thatX ′,X , Y ′, and Y are δ-equidimensional in the sense
that each irreducible component has the same δ-dimension. Say n′, n, m′, and m is this
common value for X ′, X , Y ′, and Y . The last assumption means that n′ −m′ = n−m.
Choose a factorization f = g ◦ i where i : X → P is an immersion and g : P → Y
is smooth. As X is connected, we see that the relative dimension of P → Y at points
of i(X) is constant. Hence after replacing P by an open neighbourhood of i(X), we may
assume thatP → Y has constant relative dimension and i : X → P is a closed immersion.
Denote g′ : Y ′ ×Y P → Y ′ the base change of g and denote i′ : X ′ → Y ′ ×Y P the base
change of i. It is clear that g∗[Y ] = [P ] and (g′)∗[Y ′] = [Y ′ ×Y P ]. Finally, if ξ′ ∈ X ′

is a generic point, then OY ′×Y P,i′(ξ) is Cohen-Macaulay. Namely, the local ring map
OY ′,f ′(ξ) → OY ′×Y P,i′(ξ) is flat with regular fibre (see Algebra, Section 142), a regular
local ring is Cohen-Macaulay (Algebra, Lemma 106.3), OY ′,f ′(ξ) is Cohen-Macaulay by
assumption (4) and we get what we want from Algebra, Lemma 163.3. Thus we reduce to
the case discussed in the next paragraph.
Assume f is a regular closed immersion and X ′, X , Y ′, and Y are δ-equidimensional of
δ-dimensions n′, n, m′, and m and m′ − n′ = m − n. In this case we obtain the result
immediately from Lemma 54.6. �

Remark 59.9. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a local com-
plete intersection morphism of schemes locally of finite type over S. Assume the gysin
map exists for f . Then f ! ◦ ci(E) = ci(f∗E) ◦ f ! and similarly for the Chern character,
see Lemma 59.7. If X and Y satisfy the equivalent conditions of Lemma 42.1 and Y is
Cohen-Macaulay (for example), then f ![Y ] = [X] by Lemma 59.8. In this case we also get
f !(ci(E) ∩ [Y ]) = ci(f∗E) ∩ [X] and similarly for the Chern character.

Lemma 59.10. Let (S, δ) be as in Situation 7.1. Consider a cartesian square

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

of schemes locally of finite type over S. Assume
(1) both f and f ′ are local complete intersection morphisms, and
(2) the gysin map exists for f

Then C = Ker(H−1((g′)∗ NLX/Y ) → H−1(NLX′/Y ′)) is a finite locally free OX′ -
module, the gysin map exists for f ′, and we have

res(f !) = ctop(C∨) ◦ (f ′)!

in A∗(X ′ → Y ′).

Proof. The fact that C is finite locally free follows immediately from More on Al-
gebra, Lemma 85.5. Choose a factorization f = g ◦ i with g : P → Y smooth and i an
immersion. Then we can factor f ′ = g′ ◦ i′ where g′ : P ′ → Y ′ and i′ : X ′ → P ′ the
base changes. Picture

X ′ //

��

P ′ //

��

Y ′

��
X // P // Y
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In particular, we see that the gysin map exists for f ′. By More on Morphisms, Lemmas
13.13 we have

NLX/Y =
(
CX/P → i∗ΩP/Y

)
where CX/P is the conormal sheaf of the embedding i. Similarly for the primed version.
We have (g′)∗i∗ΩP/Y = (i′)∗ΩP ′/Y ′ because ΩP/Y pulls back to ΩP ′/Y ′ by Morphisms,
Lemma 32.10. Also, recall that (g′)∗CX/P → CX′/P ′ is surjective, see Morphisms, Lemma
31.4. We deduce that the sheaf C is canonicallly isomorphic to the kernel of the map
(g′)∗CX/P → CX′/P ′ of finite locally free modules. Recall that i! is defined using N =
C∨
Z/X and similarly for (i′)!. Thus we have

res(i!) = ctop(C∨) ◦ (i′)!

in A∗(X ′ → P ′) by an application of Lemma 54.4. Since finally we have f ! = i! ◦ g∗,
(f ′)! = (i′)! ◦ (g′)∗, and (g′)∗ = res(g∗) we conclude. �

Lemma 59.11 (Blow up formula). Let (S, δ) be as in Situation 7.1. Let i : Z → X be
a regular closed immersion of schemes locally of finite type over S. Let b : X ′ → X be
the blowing up with center Z. Picture

E
j
//

π

��

X ′

b

��
Z

i // X

Assume that the gysin map exists for b. Then we have

res(b!) = ctop(F∨) ◦ π∗

in A∗(E → Z) where F is the kernel of the canonical map π∗CZ/X → CE/X′ .

Proof. Observe that the morphism b is a local complete intersection morphism by
More on Algebra, Lemma 31.2 and hence the statement makes sense. Since Z → X is a
regular immersion (and hence a fortiori quasi-regular) we see that CZ/X is finite locally
free and the map Sym∗(CZ/X) → CZ/X,∗ is an isomorphism, see Divisors, Lemma 21.5.
SinceE = Proj(CZ/X,∗) we conclude thatE = P(CZ/X) is a projective space bundle over
Z. Thus E → Z is smooth and certainly a local complete intersection morphism. Thus
Lemma 59.10 applies and we see that

res(b!) = ctop(C∨) ◦ π!

with C as in the statement there. Of course π∗ = π! by Lemma 59.5. It remains to show
that F is equal to the kernel C of the map H−1(j∗ NLX′/X)→ H−1(NLE/Z).

Since E → Z is smooth we have H−1(NLE/Z) = 0, see More on Morphisms, Lemma
13.7. Hence it suffices to show that F can be identified with H−1(j∗ NLX′/X). By More
on Morphisms, Lemmas 13.11 and 13.9 we have an exact sequence

0→ H−1(j∗ NLX′/X)→ H−1(NLE/X)→ CE/X′ → . . .

By the same lemmas applied to E → Z → X we obtain an isomorphism π∗CZ/X =
H−1(π∗ NLZ/X)→ H−1(NLE/X). Thus we conclude. �
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Lemma 59.12. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S such that both X and Y are quasi-compact, regu-
lar, have affine diagonal, and finite dimension. Then f is a local complete intersection
morphism. Assume moreover the gysin map exists for f . Then

f !(α · β) = f !α · f !β

in CH∗(X)⊗Q where the intersection product is as in Section 58.

Proof. The first statement follows from More on Morphisms, Lemma 62.11. Observe
that f ![Y ] = [X], see Lemma 59.8. Write α = ch(α′) ∩ [Y ] and β = ch(β′) ∩ [Y ] where
α′, β′ ∈ K0(Vect(X))⊗Q as in Section 58. Setting c = ch(α′) and c′ = ch(β′) we find
α · β = c ∩ c′ ∩ [Y ] by construction. By Lemma 59.7 we know that f ! commutes with
both c and c′. Hence

f !(α · β) = f !(c ∩ c′ ∩ [Y ])
= c ∩ c′ ∩ f ![Y ]
= c ∩ c′ ∩ [X]
= (c ∩ [X]) · (c′ ∩ [X])
= (c ∩ f ![Y ]) · (c′ ∩ f ![Y ])
= f !(α) · f !(β)

as desired. �

Lemma 59.13. Let (S, δ) be as in Situation 7.1. Let f : X → Y be a morphism of
schemes locally of finite type over S such that both X and Y are quasi-compact, regu-
lar, have affine diagonal, and finite dimension. Then f is a local complete intersection
morphism. Assume moreover the gysin map exists for f and that f is proper. Then

f∗(α · f !β) = f∗α · β

in CH∗(Y )⊗Q where the intersection product is as in Section 58.

Proof. The first statement follows from More on Morphisms, Lemma 62.11. Observe
that f ![Y ] = [X], see Lemma 59.8. Write α = ch(α′) ∩ [X] and β = ch(β′) ∩ [Y ]
α′ ∈ K0(Vect(X))⊗Q and β′ ∈ K0(Vect(Y ))⊗Q as in Section 58. Set c = ch(α′) and
c′ = ch(β′). We have

f∗(α · f !β) = f∗(c ∩ f !(c′ ∩ [Y ]e))
= f∗(c ∩ c′ ∩ f ![Y ]e)
= f∗(c ∩ c′ ∩ [X]d)
= f∗(c′ ∩ c ∩ [X]d)
= c′ ∩ f∗(c ∩ [X]d)
= β · f∗(α)

The first equality by the construction of the intersection product. By Lemma 59.7 we
know that f ! commutes with c′. The fact that Chern classes are in the center of the bivari-
ant ring justifies switching the order of capping [X] with c and c′. Commuting c′ with
f∗ is allowed as c′ is a bivariant class. The final equality is again the construction of the
intersection product. �
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60. Gysin maps for diagonals

Let (S, δ) be as in Situation 7.1. Let f : X → Y be a smooth morphism of schemes locally
of finite type over S. Then the diagonal morphism ∆ : X −→ X ×Y X is a regular
immersion, see More on Morphisms, Lemma 62.18. Thus we have the gysin map

∆! ∈ A∗(X → X ×Y X)∧

constructed in Section 59. If X → Y has constant relative dimension d, then ∆! ∈
Ad(X → X ×Y X).

Lemma 60.1. In the situation above we have ∆! ◦ pr!
i = 1 in A0(X).

Proof. Observe that the projections pri : X ×Y X → X are smooth and hence we
have gysin maps for these projections as well. Thus the lemma makes sense and is a special
case of Lemma 59.6. �

Proposition 60.2. Let (S, δ) be as in Situation 7.1. Let f : X → Y and g : Y → Z
be morphisms of schemes locally of finite type over S. If g is smooth of relative dimension
d, then Ap(X → Y ) = Ap−d(X → Z).

Proof. We will use that smooth morphisms are local complete intersection mor-
phisms whose gysin maps exist (see Section 59). In particular we have g! ∈ A−d(Y → Z).
Then we can send c ∈ Ap(X → Y ) to c ◦ g! ∈ Ap−d(X → Z).

Conversely, let c′ ∈ Ap−d(X → Z). Denote res(c′) the restriction (Remark 33.5) of c′

by the morphism Y → Z. Since the diagram

X ×Z Y pr2
//

pr1

��

Y

g

��
X

f // Z

is cartesian we find res(c′) ∈ Ap−d(X×Z Y → Y ). Let ∆ : Y → Y ×Z Y be the diagonal
and denote res(∆!) the restriction of ∆! toX×ZY by the morphismX×ZY → Y ×ZY .
Since the diagram

X //

��

X ×Z Y

��
Y

∆ // Y ×Z Y

is cartesian we see that res(∆!) ∈ Ad(X → X ×Z Y ). Combining these two restrictions
we obtain

res(∆!) ◦ res(c′) ∈ Ap(X → Y )

Thus we have produced maps Ap(X → Y ) → Ap−d(X → Z) and Ap−d(X → Z) →
Ap(X → Y ). To finish the proof we will show these maps are mutually inverse.
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Let us start with c ∈ Ap(X → Y ). Consider the diagram

X

��

// Y

��
X ×Z Y //

pr1

��

Y ×Z Y p2
//

p1

��

Y

g

��
X

f // Y
g // Z

whose squares are carteisan. The lower two square of this diagram show that res(c◦g!) =
res(c)∩ p!

2 where in this formula res(c) means the restriction of c via p1. Looking at the
upper square of the diagram and using Lemma 59.7 we get c ◦∆! = res(∆!) ◦ res(c). We
compute

res(∆!) ◦ res(c ◦ g!) = res(∆!) ◦ res(c) ◦ p!
2

= c ◦∆! ◦ p!
2

= c

The final equality by Lemma 60.1.

Conversely, let us start with c′ ∈ Ap−d(X → Z). Looking at the lower rectangle of the
diagram above we find res(c′) ◦ g! = pr!

1 ◦ c
′. We compute

res(∆!) ◦ res(c′) ◦ g! = res(∆!) ◦ pr!
1 ◦ c

′

= c′

The final equality holds because the left two squares of the diagram show that id =
res(∆! ◦ p!

1) = res(∆!) ◦ pr!
1. This finishes the proof. �

61. Exterior product

Let k be a field. In this section we work over S = Spec(k) with δ : S → Z defined by
sending the unique point to 0, see Example 7.2.

Consider a cartesian square

X ×k Y //

��

Y

��
X // Spec(k) = S

of schemes locally of finite type over k. Then there is a canonical map

× : CHn(X)⊗Z CHm(Y ) −→ CHn+m(X ×k Y )

which is uniquely determined by the following rule: given integral closed subschemes
X ′ ⊂ X and Y ′ ⊂ Y of dimensions n and m we have

[X ′]× [Y ′] = [X ′ ×k Y ′]n+m

in CHn+m(X ×k Y ).

Lemma 61.1. The map × : CHn(X) ⊗Z CHm(Y ) → CHn+m(X ×k Y ) is well
defined.
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Proof. A first remark is that if α =
∑
ni[Xi] and β =

∑
mj [Yj ] withXi ⊂ X and

Yj ⊂ Y locally finite families of integral closed subschemes of dimensions n and m, then
Xi×kYj is a locally finite collection of closed subschemes ofX×kY of dimensions n+m
and we can indeed consider

α× β =
∑

nimj [Xi ×k Yj ]n+m

as a (n + m)-cycle on X ×k Y . In this way we obtain an additive map × : Zn(X) ⊗Z
Zm(Y ) → Zn+m(X ×k Y ). The problem is to show that this procedure is compatible
with rational equivalence.

Let i : X ′ → X be the inclusion morphism of an integral closed subscheme of dimension
n. Then flat pullback along the morphism p′ : X ′ → Spec(k) is an element (p′)∗ ∈
A−n(X ′ → Spec(k)) by Lemma 33.2 and hence c′ = i∗ ◦ (p′)∗ ∈ A−n(X → Spec(k))
by Lemma 33.4. This produces maps

c′ ∩ − : CHm(Y ) −→ CHm+n(X ×k Y )
which the reader easily sends [Y ′] to [X ′ ×k Y ′]n+m for any integral closed subscheme
Y ′ ⊂ Y of dimension m. Hence the construction ([X ′], [Y ′]) 7→ [X ′ ×k Y ′]n+m fac-
tors through rational equivalence in the second variable, i.e., gives a well defined map
Zn(X) ⊗Z CHm(Y ) → CHn+m(X ×k Y ). By symmetry the same is true for the other
variable and we conclude. �

Lemma 61.2. Let k be a field. Let X be a scheme locally of finite type over k. Then
we have a canonical identification

Ap(X → Spec(k)) = CH−p(X)
for all p ∈ Z.

Proof. Consider the element [Spec(k)] ∈ CH0(Spec(k)). We get a map Ap(X →
Spec(k))→ CH−p(X) by sending c to c ∩ [Spec(k)].
Conversely, suppose we have α ∈ CH−p(X). Then we can define cα ∈ Ap(X →
Spec(k)) as follows: given X ′ → Spec(k) and α′ ∈ CHn(X ′) we let

cα ∩ α′ = α× α′

in CHn−p(X ×k X ′). To show that this is a bivariant class we write α =
∑
ni[Xi] as in

Definition 8.1. Consider the composition∐
Xi

g−→ X → Spec(k)

and denote f :
∐
Xi → Spec(k) the composition. Then g is proper and f is flat of

relative dimension −p. Pullback along f is a bivariant class f∗ ∈ Ap(
∐
Xi → Spec(k))

by Lemma 33.2. Denote ν ∈ A0(
∐
Xi) the bivariant class which multiplies a cycle by ni

on the ith component. Thus ν ◦ f∗ ∈ Ap(
∐
Xi → X). Finally, we have a bivariant class

g∗ ◦ ν ◦ f∗

by Lemma 33.4. The reader easily verifies that cα is equal to this class and hence is itself a
bivariant class.

To finish the proof we have to show that the two constructions are mutually inverse.
Since cα ∩ [Spec(k)] = α this is clear for one of the two directions. For the other, let
c ∈ Ap(X → Spec(k)) and set α = c ∩ [Spec(k)]. It suffices to prove that

c ∩ [X ′] = cα ∩ [X ′]
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when X ′ is an integral scheme locally of finite type over Spec(k), see Lemma 35.3. How-
ever, then p′ : X ′ → Spec(k) is flat of relative dimension dim(X ′) and hence [X ′] =
(p′)∗[Spec(k)]. Thus the fact that the bivariant classes c and cα agree on [Spec(k)] im-
plies they agree when capped against [X ′] and the proof is complete. �

Lemma 61.3. Let k be a field. Let X be a scheme locally of finite type over k. Let
c ∈ Ap(X → Spec(k)). Let Y → Z be a morphism of schemes locally of finite type over
k. Let c′ ∈ Aq(Y → Z). Then c ◦ c′ = c′ ◦ c in Ap+q(X ×k Y → Z).

Proof. In the proof of Lemma 61.2 we have seen that c is given by a combination of
proper pushforward, multiplying by integers over connected components, and flat pull-
back. Since c′ commutes with each of these operations by definition of bivariant classes,
we conclude. Some details omitted. �

Remark 61.4. The upshot of Lemmas 61.2 and 61.3 is the following. Let k be a field.
Let X be a scheme locally of finite type over k. Let α ∈ CH∗(X). Let Y → Z be a
morphism of schemes locally of finite type over k. Let c′ ∈ Aq(Y → Z). Then

α× (c′ ∩ β) = c′ ∩ (α× β)
in CH∗(X×kY ) for anyβ ∈ CH∗(Z). Namely, this follows by taking c = cα ∈ A∗(X →
Spec(k)) the bivariant class corresponding to α, see proof of Lemma 61.2.

Lemma 61.5. Exterior product is associative. More precisely, let k be a field, let
X,Y, Z be schemes locally of finite type over k, let α ∈ CH∗(X), β ∈ CH∗(Y ), γ ∈
CH∗(Z). Then (α× β)× γ = α× (β × γ) in CH∗(X ×k Y ×k Z).

Proof. Omitted. Hint: associativity of fibre product of schemes. �

62. Intersection products

Let k be a field. In this section we work over S = Spec(k) with δ : S → Z defined by
sending the unique point to 0, see Example 7.2.
Let X be a smooth scheme over k. The bivariant class ∆! of Section 60 allows us to define
a kind of intersection product on chow groups of schemes locally of finite type over X .
Namely, suppose that Y → X and Z → X are morphisms of schemes which are locally
of finite type. Then observe that

Y ×X Z = (Y ×k Z)×X×kX,∆ X

Hence we can consider the following sequence of maps

CHn(Y )⊗Z CHm(Z) ×−→ CHn+m(Y ×k Z) ∆!

−→ CHn+m−∗(Y ×X Z)
Here the first arrow is the exterior product constructed in Section 61 and the second arrow
is the gysin map for the diagonal studied in Section 60. IfX is equidimensional of dimen-
sion d, then we end up in CHn+m−d(Y ×X Z) and in general we can decompose into the
parts lying over the open and closed subschemes of X where X has a given dimension.
Given α ∈ CH∗(Y ) and β ∈ CH∗(Z) we will denote

α · β = ∆!(α× β) ∈ CH∗(Y ×X Z)
In the special case where X = Y = Z we obtain a multiplication

CH∗(X)× CH∗(X)→ CH∗(X), (α, β) 7→ α · β
which is called the intersection product. We observe that this product is clearly symmet-
ric. Associativity follows from the next lemma.
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Lemma 62.1. The product defined above is associative. More precisely, let k be a
field, letX be smooth over k, let Y, Z,W be schemes locally of finite type overX , let α ∈
CH∗(Y ), β ∈ CH∗(Z), γ ∈ CH∗(W ). Then (α·β)·γ = α·(β ·γ) in CH∗(Y ×XZ×XW ).

Proof. By Lemma 61.5 we have (α×β)× γ = α× (β× γ) in CH∗(Y ×k Z×kW ).
Consider the closed immersions

∆12 : X ×k X −→ X ×k X ×k X, (x, x′) 7→ (x, x, x′)
and

∆23 : X ×k X −→ X ×k X ×k X, (x, x′) 7→ (x, x′, x′)
Denote ∆!

12 and ∆!
23 the corresponding bivariant classes; observe that ∆!

12 is the restric-
tion (Remark 33.5) of ∆! toX×kX×kX by the map pr12 and that ∆!

23 is the restriction
of ∆! toX ×kX ×kX by the map pr23. Thus clearly the restriction of ∆!

12 by ∆23 is ∆!

and the restriction of ∆!
23 by ∆12 is ∆! too. Thus by Lemma 54.8 we have

∆! ◦∆!
12 = ∆! ◦∆!

23

Now we can prove the lemma by the following sequence of equalities:

(α · β) · γ = ∆!(∆!(α× β)× γ)
= ∆!(∆!

12((α× β)× γ))
= ∆!(∆!

23((α× β)× γ))
= ∆!(∆!

23(α× (β × γ))
= ∆!(α×∆!(β × γ))
= α · (β · γ)

All equalities are clear from the above except perhaps for the second and penultimate one.
The equation ∆!

23(α × (β × γ)) = α ×∆!(β × γ) holds by Remark 61.4. Similarly for
the second equation. �

Lemma 62.2. Let k be a field. Let X be a smooth scheme over k, equidimensional of
dimension d. The map

Ap(X) −→ CHd−p(X), c 7−→ c ∩ [X]d
is an isomorphism. Via this isomorphism composition of bivariant classes turns into the
intersection product defined above.

Proof. Denote g : X → Spec(k) the structure morphism. The map is the composi-
tion of the isomorphisms

Ap(X)→ Ap−d(X → Spec(k))→ CHd−p(X)
The first is the isomorphism c 7→ c ◦ g∗ of Proposition 60.2 and the second is the isomor-
phism c 7→ c ∩ [Spec(k)] of Lemma 61.2. From the proof of Lemma 61.2 we see that the
inverse to the second arrow sends α ∈ CHd−p(X) to the bivariant class cα which sends
β ∈ CH∗(Y ) for Y locally of finite type over k toα×β in CH∗(X×kY ). From the proof
of Proposition 60.2 we see the inverse to the first arrow in turn sends cα to the bivariant
class which sends β ∈ CH∗(Y ) for Y → X locally of finite type to ∆!(α × β) = α · β.
From this the final result of the lemma follows. �

Lemma 62.3. Let k be a field. Let f : X → Y be a morphism of schemes smooth over
k. Then the gysin map exists for f and f !(α · β) = f !α · f !β.
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Proof. Observe thatX → X×k Y is an immersion ofX into a scheme smooth over
Y . Hence the gysin map exists for f (Definition 59.4). To prove the formula we may
decomposeX and Y into their connected components, hence we may assumeX is smooth
over k and equidimensional of dimension d and Y is smooth over k and equidimensional
of dimension e. Observe that f ![Y ]e = [X]d (see for example Lemma 59.8). Write α =
c ∩ [Y ]e and β = c′ ∩ [Y ]e and hence α · β = c ∩ c′ ∩ [Y ]e, see Lemma 62.2. By Lemma
59.7 we know that f ! commutes with both c and c′. Hence

f !(α · β) = f !(c ∩ c′ ∩ [Y ]e)
= c ∩ c′ ∩ f ![Y ]e
= c ∩ c′ ∩ [X]d
= (c ∩ [X]d) · (c′ ∩ [X]d)
= (c ∩ f ![Y ]e) · (c′ ∩ f ![Y ]e)
= f !(α) · f !(β)

as desired where we have used Lemma 62.2 for X as well.

An alternative proof can be given by proving that (f ×f)!(α×β) = f !α×f !β and using
Lemma 59.6. �

Lemma 62.4. Let k be a field. Let f : X → Y be a proper morphism of schemes
smooth over k. Then the gysin map exists for f and f∗(α · f !β) = f∗α · β.

Proof. Observe thatX → X×k Y is an immersion ofX into a scheme smooth over
Y . Hence the gysin map exists for f (Definition 59.4). To prove the formula we may
decomposeX and Y into their connected components, hence we may assumeX is smooth
over k and equidimensional of dimension d and Y is smooth over k and equidimensional
of dimension e. Observe that f ![Y ]e = [X]d (see for example Lemma 59.8). Write α =
c ∩ [X]d and β = c′ ∩ [Y ]e, see Lemma 62.2. We have

f∗(α · f !β) = f∗(c ∩ f !(c′ ∩ [Y ]e))
= f∗(c ∩ c′ ∩ f ![Y ]e)
= f∗(c ∩ c′ ∩ [X]d)
= f∗(c′ ∩ c ∩ [X]d)
= c′ ∩ f∗(c ∩ [X]d)
= β · f∗(α)

The first equality by the result of Lemma 62.2 for X . By Lemma 59.7 we know that f !

commutes with c′. The commutativity of the intersection product justifies switching the
order of capping [X]d with c and c′ (via the lemma). Commuting c′ with f∗ is allowed as
c′ is a bivariant class. The final equality is again the lemma. �

Lemma 62.5. Let k be a field. LetX be an integral scheme smooth over k. Let Y, Z ⊂
X be integral closed subschemes. Set d = dim(Y ) + dim(Z)− dim(X). Assume

(1) dim(Y ∩ Z) ≤ d, and
(2) OY,ξ andOZ,ξ are Cohen-Macaulay for every ξ ∈ Y ∩ Z with δ(ξ) = d.

Then [Y ] · [Z] = [Y ∩ Z]d in CHd(X).



3742 42. CHOW HOMOLOGY AND CHERN CLASSES

Proof. Recall that [Y ] · [Z] = ∆!([Y ×Z]) where ∆! = c(∆ : X → X×X, TX/k) is
a higher codimension gysin map (Section 54) with TX/k = Hom(ΩX/k,OX) locally free
of rank dim(X). We have the equality of schemes

Y ∩ Z = X ×∆,(X×X) (Y × Z)

and dim(Y × Z) = dim(Y ) + dim(Z) and hence conditions (1), (2), and (3) of Lemma
54.6 hold. Finally, if ξ ∈ Y ∩ Z , then we have a flat local homomorphism

OY,ξ −→ OY×Z,ξ

whose “fibre” isOZ,ξ . It follows that if bothOY,ξ andOZ,ξ are Cohen-Macaulay, then so
isOY×Z,ξ , see Algebra, Lemma 163.3. In this way we see that all the hypotheses of Lemma
54.6 are satisfied and we conclude. �

Lemma 62.6. Let k be a field. Let X be a scheme smooth over k. Let i : Y → X be a
regular closed immersion. Let α ∈ CH∗(X). If Y is equidimensional of dimension e, then
α · [Y ]e = i∗(i!(α)) in CH∗(X).

Proof. After decomposing X into connected components we may and do assume X
is equidimensional of dimension d. Write α = c∩ [X]n with x ∈ A∗(X), see Lemma 62.2.
Then

i∗(i!(α)) = i∗(i!(c ∩ [X]n)) = i∗(c ∩ i![X]n) = i∗(c ∩ [Y ]e) = c ∩ i∗[Y ]e = α · [Y ]e
The first equality by choice of c. Then second equality by Lemma 59.7. The third because
i![X]d = [Y ]e in CH∗(Y ) (Lemma 59.8). The fourth because bivariant classes commute
with proper pushforward. The last equality by Lemma 62.2. �

Lemma 62.7. Let k be a field. Let X be a smooth scheme over k which is quasi-
compact and has affine diagonal. Then the intersection product on CH∗(X) constructed
in this section agrees after tensoring with Q with the intersection product constructed in
Section 58.

Proof. Let α ∈ CHi(X) and β ∈ CHj(X). Write α = ch(α′) ∩ [X] and β =
ch(β′)∩ [X] α′, β′ ∈ K0(Vect(X))⊗Q as in Section 58. Set c = ch(α′) and c′ = ch(β′).
Then the intersection product in Section 58 produces c∩ c′∩ [X]. This is the same as α ·β
by Lemma 62.2 (or rather the generalization that Ai(X) → CHi(X), c 7→ c ∩ [X] is an
isomorphism for any smooth scheme X over k). �

63. Exterior product over Dedekind domains

Let S be a locally Noetherian scheme which has an open covering by spectra of Dedekind
domains. Set δ(s) = 0 for s ∈ S closed and δ(s) = 1 otherwise. Then (S, δ) is a special
case of our general Situation 7.1; see Example 7.3. Observe that S is normal (Algebra,
Lemma 120.17) and hence a disjoint union of normal integral schemes (Properties, Lemma
7.7). Thus all of the arguments below reduce to the case where S is irreducible. On the
other hand, we allow S to be nonseparated (so S could be the affine line with 0 doubled
for example).

Consider a cartesian square
X ×S Y //

��

Y

��
X // S
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of schemes locally of finite type over S. We claim there is a canonical map

× : CHn(X)⊗Z CHm(Y ) −→ CHn+m−1(X ×S Y )

which is uniquely determined by the following rule: given integral closed subschemes
X ′ ⊂ X and Y ′ ⊂ Y of δ-dimensions n and m we set

(1) [X ′]×[Y ′] = [X ′×SY ′]n+m−1 ifX ′ or Y ′ dominates an irreducible component
of S ,

(2) [X ′]× [Y ′] = 0 if neither X ′ nor Y ′ dominates an irreducible component of S.

Lemma 63.1. The map × : CHn(X) ⊗Z CHm(Y ) → CHn+m−1(X ×S Y ) is well
defined.

Proof. Consider n and m cycles α =
∑
i∈I ni[Xi] and β =

∑
j∈J mj [Yj ] with

Xi ⊂ X and Yj ⊂ Y locally finite families of integral closed subschemes of δ-dimensions
n andm. LetK ⊂ I×J be the set of pairs (i, j) ∈ I×J such thatXi or Yj dominates an
irreducible component of S. Then {Xi×SYj}(i,j)∈K is a locally finite collection of closed
subschemes of X ×S Y of δ-dimension n+m− 1. This means we can indeed consider

α× β =
∑

(i,j)∈K
nimj [Xi ×S Yj ]n+m−1

as a (n+m− 1)-cycle onX ×S Y . In this way we obtain an additive map× : Zn(X)⊗Z
Zm(Y ) → Zn+m(X ×S Y ). The problem is to show that this procedure is compatible
with rational equivalence.

Let i : X ′ → X be the inclusion morphism of an integral closed subscheme of δ-dimension
n which dominates an irreducible component of S. Then p′ : X ′ → S is flat of relative
dimension n−1, see More on Algebra, Lemma 22.11. Hence flat pullback along p′ is an ele-
ment (p′)∗ ∈ A−n+1(X ′ → S) by Lemma 33.2 and hence c′ = i∗ ◦ (p′)∗ ∈ A−n+1(X →
S) by Lemma 33.4. This produces maps

c′ ∩ − : CHm(Y ) −→ CHm+n−1(X ×S Y )

which sends [Y ′] to [X ′ ×S Y ′]n+m−1 for any integral closed subscheme Y ′ ⊂ Y of δ-
dimension m.

Let i : X ′ → X be the inclusion morphism of an integral closed subscheme of δ-dimension
n such that the composition X ′ → X → S factors through a closed point s ∈ S. Since
s is a closed point of the spectrum of a Dedekind domain, we see that s is an effective
Cartier divisor on S whose normal bundle is trivial. Denote c ∈ A1(s → S) the gysin
homomorphism, see Lemma 33.3. The morphism p′ : X ′ → s is flat of relative dimension
n. Hence flat pullback along p′ is an element (p′)∗ ∈ A−n(X ′ → S) by Lemma 33.2. Thus

c′ = i∗ ◦ (p′)∗ ◦ c ∈ A−n(X → S)

by Lemma 33.4. This produces maps

c′ ∩ − : CHm(Y ) −→ CHm+n−1(X ×S Y )

which for any integral closed subscheme Y ′ ⊂ Y of δ-dimension m sends [Y ′] to either
[X ′ ×S Y ′]n+m−1 if Y ′ dominates an irreducible component of S or to 0 if not.

From the previous two paragraphs we conclude the construction ([X ′], [Y ′]) 7→ [X ′ ×S
Y ′]n+m−1 factors through rational equivalence in the second variable, i.e., gives a well
defined map Zn(X)⊗Z CHm(Y )→ CHn+m−1(X×S Y ). By symmetry the same is true
for the other variable and we conclude. �
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Lemma 63.2. Let (S, δ) be as above. Let X be a scheme locally of finite type over S.
Then we have a canonical identification

Ap(X → S) = CH1−p(X)
for all p ∈ Z.

Proof. Consider the element [S]1 ∈ CH1(S). We get a map Ap(X → S) →
CH1−p(X) by sending c to c ∩ [S]1.
Conversely, suppose we have α ∈ CH1−p(X). Then we can define cα ∈ Ap(X → S) as
follows: given X ′ → S and α′ ∈ CHn(X ′) we let

cα ∩ α′ = α× α′

in CHn−p(X ×S X ′). To show that this is a bivariant class we write α =
∑
i∈I ni[Xi] as

in Definition 8.1. In particular the morphism

g :
∐

i∈I
Xi −→ X

is proper. Pick i ∈ I . If Xi dominates an irreducible component of S , then the structure
morphism pi : Xi → S is flat and we have ξi = p∗

i ∈ Ap(Xi → S). On the other hand,
if pi factors as p′

i : Xi → si followed by the inclusion si → S of a closed point, then we
have ξi = (p′

i)∗ ◦ ci ∈ Ap(Xi → S) where ci ∈ A1(si → S) is the gysin homomorphism
and (p′

i)∗ is flat pullback. Observe that

Ap(
∐

i∈I
Xi → S) =

∏
i∈I

Ap(Xi → S)

Thus we have
ξ =

∑
niξi ∈ Ap(

∐
i∈I

Xi → S)
Finally, since g is proper we have a bivariant class

g∗ ◦ ξ ∈ Ap(X → S)
by Lemma 33.4. The reader easily verifies that cα is equal to this class (please compare
with the proof of Lemma 63.1) and hence is itself a bivariant class.
To finish the proof we have to show that the two constructions are mutually inverse. Since
cα∩ [S]1 = α this is clear for one of the two directions. For the other, let c ∈ Ap(X → S)
and set α = c ∩ [S]1. It suffices to prove that

c ∩ [X ′] = cα ∩ [X ′]
when X ′ is an integral scheme locally of finite type over S , see Lemma 35.3. However,
either p′ : X ′ → S is flat of relative dimension dimδ(X ′)− 1 and hence [X ′] = (p′)∗[S]1
or X ′ → S factors as X ′ → s → S and hence [X ′] = (p′)∗(s → S)∗[S]1. Thus the fact
that the bivariant classes c and cα agree on [S]1 implies they agree when capped against
[X ′] (since bivariant classes commute with flat pullback and gysin maps) and the proof is
complete. �

Lemma 63.3. Let (S, δ) be as above. Let X be a scheme locally of finite type over S.
Let c ∈ Ap(X → S). Let Y → Z be a morphism of schemes locally of finite type over S.
Let c′ ∈ Aq(Y → Z). Then c ◦ c′ = c′ ◦ c in Ap+q(X ×S Y → X ×S Z).

Proof. In the proof of Lemma 63.2 we have seen that c is given by a combination of
proper pushforward, multiplying by integers over connected components, flat pullback,
and gysin maps. Since c′ commutes with each of these operations by definition of bivariant
classes, we conclude. Some details omitted. �
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Remark 63.4. The upshot of Lemmas 63.2 and 63.3 is the following. Let (S, δ) be as
above. Let X be a scheme locally of finite type over S. Let α ∈ CH∗(X). Let Y → Z be
a morphism of schemes locally of finite type over S. Let c′ ∈ Aq(Y → Z). Then

α× (c′ ∩ β) = c′ ∩ (α× β)

in CH∗(X×SY ) for anyβ ∈ CH∗(Z). Namely, this follows by taking c = cα ∈ A∗(X →
S) the bivariant class corresponding to α, see proof of Lemma 63.2.

Lemma 63.5. Exterior product is associative. More precisely, let (S, δ) be as above,
let X,Y, Z be schemes locally of finite type over S , let α ∈ CH∗(X), β ∈ CH∗(Y ),
γ ∈ CH∗(Z). Then (α× β)× γ = α× (β × γ) in CH∗(X ×S Y ×S Z).

Proof. Omitted. Hint: associativity of fibre product of schemes. �

64. Intersection products over Dedekind domains

Let S be a locally Noetherian scheme which has an open covering by spectra of Dedekind
domains. Set δ(s) = 0 for s ∈ S closed and δ(s) = 1 otherwise. Then (S, δ) is a special
case of our general Situation 7.1; see Example 7.3 and discussion in Section 63.

LetX be a smooth scheme over S. The bivariant class ∆! of Section 60 allows us to define
a kind of intersection product on chow groups of schemes locally of finite type over X .
Namely, suppose that Y → X and Z → X are morphisms of schemes which are locally
of finite type. Then observe that

Y ×X Z = (Y ×S Z)×X×SX,∆ X

Hence we can consider the following sequence of maps

CHn(Y )⊗Z CHm(Y ) ×−→ CHn+m−1(Y ×S Z) ∆!

−→ CHn+m−∗(Y ×X Z)

Here the first arrow is the exterior product constructed in Section 63 and the second ar-
row is the gysin map for the diagonal studied in Section 60. If X is equidimensional of
dimension d, then X → S is smooth of relative dimension d − 1 and hence we end up
in CHn+m−d(Y ×X Z). In general we can decompose into the parts lying over the open
and closed subschemes of X where X has a given dimension. Given α ∈ CH∗(Y ) and
β ∈ CH∗(Z) we will denote

α · β = ∆!(α× β) ∈ CH∗(Y ×X Z)

In the special case where X = Y = Z we obtain a multiplication

CH∗(X)× CH∗(X)→ CH∗(X), (α, β) 7→ α · β

which is called the intersection product. We observe that this product is clearly symmet-
ric. Associativity follows from the next lemma.

Lemma 64.1. The product defined above is associative. More precisely, with (S, δ)
as above, let X be smooth over S , let Y, Z,W be schemes locally of finite type over X ,
let α ∈ CH∗(Y ), β ∈ CH∗(Z), γ ∈ CH∗(W ). Then (α · β) · γ = α · (β · γ) in
CH∗(Y ×X Z ×X W ).

Proof. By Lemma 63.5 we have (α×β)×γ = α× (β×γ) in CH∗(Y ×S Z×SW ).
Consider the closed immersions

∆12 : X ×S X −→ X ×S X ×S X, (x, x′) 7→ (x, x, x′)
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and
∆23 : X ×S X −→ X ×S X ×S X, (x, x′) 7→ (x, x′, x′)

Denote ∆!
12 and ∆!

23 the corresponding bivariant classes; observe that ∆!
12 is the restric-

tion (Remark 33.5) of ∆! toX×SX×SX by the map pr12 and that ∆!
23 is the restriction

of ∆! toX ×SX ×SX by the map pr23. Thus clearly the restriction of ∆!
12 by ∆23 is ∆!

and the restriction of ∆!
23 by ∆12 is ∆! too. Thus by Lemma 54.8 we have

∆! ◦∆!
12 = ∆! ◦∆!

23

Now we can prove the lemma by the following sequence of equalities:

(α · β) · γ = ∆!(∆!(α× β)× γ)
= ∆!(∆!

12((α× β)× γ))
= ∆!(∆!

23((α× β)× γ))
= ∆!(∆!

23(α× (β × γ))
= ∆!(α×∆!(β × γ))
= α · (β · γ)

All equalities are clear from the above except perhaps for the second and penultimate one.
The equation ∆!

23(α × (β × γ)) = α ×∆!(β × γ) holds by Remark 61.4. Similarly for
the second equation. �

Lemma 64.2. Let (S, δ) be as above. Let X be a smooth scheme over S , equidimen-
sional of dimension d. The map

Ap(X) −→ CHd−p(X), c 7−→ c ∩ [X]d
is an isomorphism. Via this isomorphism composition of bivariant classes turns into the
intersection product defined above.

Proof. Denote g : X → S the structure morphism. The map is the composition of
the isomorphisms

Ap(X)→ Ap−d+1(X → S)→ CHd−p(X)
The first is the isomorphism c 7→ c ◦ g∗ of Proposition 60.2 and the second is the iso-
morphism c 7→ c ∩ [S]1 of Lemma 63.2. From the proof of Lemma 63.2 we see that the
inverse to the second arrow sends α ∈ CHd−p(X) to the bivariant class cα which sends
β ∈ CH∗(Y ) for Y locally of finite type over k toα×β in CH∗(X×kY ). From the proof
of Proposition 60.2 we see the inverse to the first arrow in turn sends cα to the bivariant
class which sends β ∈ CH∗(Y ) for Y → X locally of finite type to ∆!(α × β) = α · β.
From this the final result of the lemma follows. �

65. Todd classes

A final class associated to a vector bundle E of rank r is its Todd class Todd(E). In terms
of the Chern roots x1, . . . , xr it is defined as

Todd(E) =
∏r

i=1

xi
1− e−xi

In terms of the Chern classes ci = ci(E) we have

Todd(E) = 1+ 1
2c1 + 1

12(c2
1 + c2)+ 1

24c1c2 + 1
720(−c4

1 +4c2
1c2 +3c2

2 + c1c3− c4)+ . . .
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We have made the appropriate remarks about denominators in the previous section. It is
the case that given an exact sequence

0→ E1 → E → E2 → 0

we have
Todd(E) = Todd(E1)Todd(E2).

66. Grothendieck-Riemann-Roch

Let (S, δ) be as in Situation 7.1. Let X,Y be locally of finite type over S. Let E be a finite
locally free sheaf E onX of rank r. Let f : X → Y be a proper smooth morphism. Assume
thatRif∗E are locally free sheaves on Y of finite rank. The Grothendieck-Riemann-Roch
theorem say in this case that

f∗(Todd(TX/Y )ch(E)) =
∑

(−1)ich(Rif∗E)

Here
TX/Y = HomOX

(ΩX/Y ,OX)
is the relative tangent bundle ofX over Y . If Y = Spec(k) where k is a field, then we can
restate this as

χ(X, E) = deg(Todd(TX/k)ch(E))
The theorem is more general and becomes easier to prove when formulated in correct
generality. We will return to this elsewhere (insert future reference here).

67. Change of base scheme

In this section we explain how to compare theories for different base schemes.

Situation 67.1. Here (S, δ) and (S′, δ′) are as in Situation 7.1. Furthermore g :
S′ → S is a flat morphism of schemes and c ∈ Z is an integer such that: for all s ∈ S and
s′ ∈ S′ a generic point of an irreducible component of g−1({s}) we have δ(s′) = δ(s)+c.

We will see that for a scheme X locally of finite type over S there is a well defined map
CHk(X)→ CHk+c(X ×S S′) of Chow groups which (by and large) commutes with the
operations we have defined in this chapter.

Lemma 67.2. In Situation 67.1 let X → S be locally of finite type. Denote X ′ → S′

the base change by S′ → S. If X is integral with dimδ(X) = k, then every irreducible
component Z ′ of X ′ has dimδ′(Z ′) = k + c,

Proof. The projectionX ′ → X is flat as a base change of the flat morphism S′ → S
(Morphisms, Lemma 25.8). Hence every generic point x′ of an irreducible component
of X ′ maps to the generic point x ∈ X (because generalizations lift along X ′ → X by
Morphisms, Lemma 25.9). Let s ∈ S be the image ofx. Recall that the schemeS′

s = S′×Ss
has the same underlying topological space as g−1({s}) (Schemes, Lemma 18.5). We may
view x′ as a point of the scheme S′

s ×s x which comes equipped with a monomorphism
S′
s×sx→ S′×SX . Of course, x′ is a generic point of an irreducible component ofS′

s×sx
as well. Using the flatness of Spec(κ(x))→ Spec(κ(s)) = s and arguing as above, we see
thatx′ maps to a generic point s′ of an irreducible component of g−1({s}). Hence δ′(s′) =
δ(s) + c by assumption. We have dimx(Xs) = dimx′(Xs′) by Morphisms, Lemma 28.3.
Since x is a generic point of an irreducible component Xs (this is an irreducible scheme
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but we don’t need this) and x′ is a generic point of an irreducible component of X ′
s′ we

conclude that trdegκ(s)(κ(x)) = trdegκ(s′)(κ(x′)) by Morphisms, Lemma 28.1. Then

δX′/S′(x′) = δ(s′) + trdegκ(s′)(κ(x′)) = δ(s) + c+ trdegκ(s)(κ(x)) = δX/S(x) + c

This proves what we want by Definition 7.6. �

In Situation 67.1 letX → S be locally of finite type. DenoteX ′ → S′ the base change by
g : S′ → S. There is a unique homomorphism

g∗ : Zk(X) −→ Zk+c(X ′)
which given an integral closed subscheme Z ⊂ X of δ-dimension k sends [Z] to [Z ×S
S′]k+c. This makes sense by Lemma 67.2.

Lemma 67.3. In Situation 67.1 let X → S locally of finite type and let X ′ → S be
the base change by S′ → S.

(1) Let Z ⊂ X be a closed subscheme with dimδ(Z) ≤ k and base change Z ′ ⊂ X ′.
Then we have dimδ′(Z ′)) ≤ k + c and [Z ′]k+c = g∗[Z]k in Zk+c(X ′).

(2) LetF be a coherent sheaf onX with dimδ(Supp(F)) ≤ k and base changeF ′ on
X ′. Then we have dimδ(Supp(F ′)) ≤ k+c and g∗[F ]k = [F ′]k+c inZk+c(X ′).

Proof. The proof is exactly the same is the proof of Lemma 14.4 and we suggest the
reader skip it.
The statements on dimensions follow from Lemma 67.2. Part (1) follows from part (2) by
Lemma 10.3 and the fact that the base change of the coherent moduleOZ isOZ′ .
Proof of (2). As X , X ′ are locally Noetherian we may apply Cohomology of Schemes,
Lemma 9.1 to see that F is of finite type, hence F ′ is of finite type (Modules, Lemma 9.2),
henceF ′ is coherent (Cohomology of Schemes, Lemma 9.1 again). Thus the lemma makes
sense. Let W ⊂ X be an integral closed subscheme of δ-dimension k, and let W ′ ⊂ X ′

be an integral closed subscheme of δ′-dimension k + c mapping into W under X ′ → X .
We have to show that the coefficient n of [W ′] in g∗[F ]k agrees with the coefficient m
of [W ′] in [F ′]k+c. Let ξ ∈ W and ξ′ ∈ W ′ be the generic points. Let A = OX,ξ ,
B = OX′,ξ′ and set M = Fξ as an A-module. (Note that M has finite length by our
dimension assumptions, but we actually do not need to verify this. See Lemma 10.1.) We
have F ′

ξ′ = B ⊗AM . Thus we see that

n = lengthB(B ⊗AM) and m = lengthA(M)lengthB(B/mAB)
Thus the equality follows from Algebra, Lemma 52.13. �

Lemma 67.4. In Situation 67.1 let X → S be locally of finite type and let X ′ → S′

be the base change by S′ → S. The map g∗ : Zk(X)→ Zk+c(X ′) above factors through
rational equivalence to give a map

g∗ : CHk(X) −→ CHk+c(X ′)
of chow groups.

Proof. Suppose that α ∈ Zk(X) is a k-cycle which is rationally equivalent to zero.
By Lemma 21.1 there exists a locally finite family of integral closed subschemes Wi ⊂
X × P1 of δ-dimension k not contained in the divisors (X × P1)0 or (X × P1)∞ of
X×P1 such thatα =

∑
([(Wi)0]k−[(Wi)∞]k). Thus it suffices to prove forW ⊂ X×P1

integral closed of δ-dimension k not contained in the divisors (X ×P1)0 or (X ×P1)∞
of X ×P1 we have



67. CHANGE OF BASE SCHEME 3749

(1) the base change W ′ ⊂ X ′ ×P1 satisfies the assumptions of Lemma 21.2 with k
replaced by k + c, and

(2) g∗[W0]k = [(W ′)0]k+c and g∗[W∞]k = [(W ′)∞]k+c.
Part (2) follows immediately from Lemma 67.3 and the fact that (W ′)0 is the base change
of W0 (by associativity of fibre products). For part (1), first the statement on dimensions
follows from Lemma 67.2. Then letw′ ∈ (W ′)0 with imagew ∈W0 and z ∈ P1

S . Denote
t ∈ OP1

S
,z the usual equation for 0 : S → P1

S . Since OW,w → OW ′,w′ is flat and since
t is a nonzerodivisor on OW,w (as W is integral and W 6= W0) we see that also t is a
nonzerodivisor inOW ′,w′ . Hence W ′ has no associated points lying on W ′

0. �

Lemma 67.5. In Situation 67.1 let Y → X → S be locally of finite type and let
Y ′ → X ′ → S′ be the base change by S′ → S. Assume f : Y → X is flat of relative
dimension r. Then f ′ : Y ′ → X ′ is flat of relative dimension r and the diagrams

Zk+r(Y )
g∗
// Zk+c+r(Y ′)

Zk(X) g∗
//

(f ′)∗

OO

Zk+c(X ′)

f∗

OO

and

CHk+r(Y )
g∗
// CHk+c+r(Y ′)

CHk(X) g∗
//

(f ′)∗

OO

CHk+c(X ′)

f∗

OO

of cycle and chow groups commutes.

Proof. It suffices to show the first diagram commutes. To see this, let Z ⊂ X be
an integral closed subscheme of δ-dimension k and denote Z ′ ⊂ X ′ its base change. By
construction we have g∗[Z] = [Z ′]k+c. By Lemma 14.4 we have (f ′)∗g∗[Z] = [Z ′ ×X′

Y ′]k+c+r. Conversely, we have f∗[Z] = [Z×X Y ]k+r by Definition 14.1. By Lemma 67.3
we have g∗f∗[Z] = [(Z ×X Y )′]k+r+c. Since (Z ×X Y )′ = Z ′ ×X′ Y ′ by associativity
of fibre product we conclude. �

Lemma 67.6. In Situation 67.1 let Y → X → S be locally of finite type and let
Y ′ → X ′ → S′ be the base change by S′ → S. Assume f : Y → X is proper. Then
f ′ : Y ′ → X ′ is proper and the diagram

Zk(Y )
g∗
//

f∗

��

Zk+c(Y ′)

f ′
∗
��

Zk(X) g∗
// Zk+c(X ′)

and

CHk(Y )
g∗
//

f∗

��

CHk+c(Y ′)

f ′
∗
��

CHk(X) g∗
// CHk+c(X ′)

of cycle and chow groups commutes.

Proof. It suffices to show the first diagram commutes. To see this, let Z ⊂ Y be an
integral closed subscheme of δ-dimension k and denote Z ′ ⊂ X ′ its base change. By con-
struction we have g∗[Z] = [Z ′]k+c. By Lemma 12.4 we have (f ′)∗g

∗[Z] = [f ′
∗OZ′ ]k+c.

By the same lemma we have f∗[Z] = [f∗OZ ]k. By Lemma 67.3 we have g∗f∗[Z] =
[(X ′ → X)∗f∗OZ ]k+r. Thus it suffices to show that

(X ′ → X)∗f∗OZ ∼= f ′
∗OZ′

as coherent modules on X ′. As X ′ → X is flat and asOZ′ = (Y ′ → Y )∗OZ , this follows
from flat base change, see Cohomology of Schemes, Lemma 5.2. �
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Lemma 67.7. In Situation 67.1 let X → S be locally of finite type and let X ′ → S′

be the base change by S′ → S. Let L be an invertibleOX -module with base change L′ on
X ′. Then the diagram

CHk(X)
g∗
//

c1(L)∩−
��

CHk+c(X ′)

c1(L′)∩−
��

CHk−1(X) g∗
// CHk+c−1(X ′)

of chow groups commutes.

Proof. Let p : L→ X be the line bundle associated to L with zero section o : X →
L. For α ∈ CHk(X) we know that β = c1(L) ∩ α is the unique element of CHk−1(X)
such that o∗α = −p∗β, see Lemmas 32.2 and 32.4. The same characterization holds after
pullback. Hence the lemma follows from Lemmas 67.5 and 67.6. �

Lemma 67.8. In Situation 67.1 let X → S be locally of finite type and let X ′ → S′

be the base change by S′ → S. Let E be a finite locally free OX -module of rank r with
base change E ′ on X ′. Then the diagram

CHk(X)
g∗
//

ci(E)∩−
��

CHk+c(X ′)

ci(E′)∩−
��

CHk−i(X) g∗
// CHk+c−i(X ′)

of chow groups commutes for all i.

Proof. Set P = P(E). The base change P ′ of P is equal to P(E ′). Since we already
know that flat pullback and cupping with c1 of an invertible module commute with base
change (Lemmas 67.5 and 67.7) the lemma follows from the characterization of capping
with ci(E) given in Lemma 38.2. �

Lemma 67.9. Let (S, δ), (S′, δ′), (S′′, δ′′) be as in Situation 7.1. Let g : S′ → S
and g′ : S′′ → S′ be flat morphisms of schemes and let c, c′ ∈ Z be integers such that
S, δ, S′, δ′, g, c and S′, δ′, S′′, g′, c′ are as in Situation 67.1. LetX → S be locally of finite
type and denoteX ′ → S′ andX ′′ → S′′ the base changes by S′ → S and S′′ → S. Then

(1) S, δ, S′′, δ′′, g ◦ g′, c+ c′ is as in Situation 67.1,
(2) the maps g∗ : Zk(X) → Zk+c(X ′) and (g′)∗ : Zk+c(X ′) → Zk+c+c′(X ′′) of

compose to give the map (g ◦ g′)∗ : Zk(X)→ Zk+c+c′(X ′′), and
(3) the maps g∗ : CHk(X)→ CHk+c(X ′) and (g′)∗ : CHk+c(X ′)→ CHk+c+c′(X ′′)

of Lemma 67.4 compose to give the map (g ◦ g′)∗ : CHk(X)→ CHk+c+c′(X ′′)
of Lemma 67.4.

Proof. Let s ∈ S and let s′′ ∈ S′′ be a generic point of an irreducible component
of (g ◦ g′)−1({s}). Set s′ = g′(s′′). Clearly, s′′ is a generic point of an irreducible com-
ponent of (g′)−1({s′}). Moreover, since g′ is flat and hence generalizations lift along g′

(Morphisms, Lemma 25.8) we see that also s′ is a generic point of an irreducible compo-
nent of g−1({s}). Thus by assumption δ′(s′) = δ(s) + c and δ′′(s′′) = δ′(s′) + c′. We
conclude δ′′(s′′) = δ(s) + c+ c′ and the first part of the statement is true.
For the second part, let Z ⊂ X be an integral closed subscheme of δ-dimension k. Denote
Z ′ ⊂ X ′ and Z ′′ ⊂ X ′′ the base changes. By definition we have g∗[Z] = [Z ′]k+c. By
Lemma 67.3 we have (g′)∗[Z ′]k+c = [Z ′′]k+c+c′ . This proves the final statement. �
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Lemma 67.10. In Situation 67.1 assume c = 0 and assume that S′ = limi∈I Si is a
filtered limit of schemes Si affine over S such that

(1) with δi equal to Si → S
δ−→ Z the pair (Si, δi) is as in Situation 7.1,

(2) Si, δi, S, δ, S → Si, c = 0 is as in Situation 67.1,
(3) Si, δi, Si′ , δi′ , Si → Si′ , c = 0 for i ≥ i′ is as in Situation 67.1.

Then for a quasi-compact scheme X of finite type over S with base change X ′ and Xi by
S′ → S and Si → S we have Zk(X ′) = colimZk(Xi) and CHk(X ′) = colim CHk(Xi).

Proof. By the result of Lemma 67.9 we obtain a system of cycle groups Zk(Xi)
and a system of chow groups CHk(Xi) as well as maps colimZk(Xi) → Zk(X ′) and
colim CHi(Xi)→ CHk(X ′). We may replace S by a quasi-compact open through which
X → S factors, hence we may and do assume all the schemes occuring in this proof are
Noetherian (and hence quasi-compact and quasi-separated).

Let us show that the map colimZk(Xi)→ Zk(X ′) is surjective. Namely, let Z ′ ⊂ X ′ be
an integral closed subscheme of δ′-dimension k. By Limits, Lemma 10.1 we can find an i
and a morphism Zi → Xi of finite presentation whose base change is Z ′. Afer increasing
i we may assume Zi is a closed subscheme of Xi, see Limits, Lemma 8.5. Then Z ′ → Xi

factors through Zi and we may replace Zi by the scheme theoretic image of Z ′ → Xi. In
this way we see that we may assume Zi is an integral closed subscheme of Xi. By Lemma
67.2 we conclude that dimδi(Zi) = dimδ′(Z ′) = k. Thus Zk(Xi) → Zk(X ′) maps [Zi]
to [Z ′] and we conclude surjectivity holds.

Let us show that the map colimZk(Xi) → Zk(X ′) is injective. Let αi =
∑
nj [Zj ] ∈

Zk(Xi) be a cycle whose image in Zk(X ′) is zero. We may and do assume Zj 6= Zj′ if
j 6= j′ and nj 6= 0 for all j. Denote Z ′

j ⊂ X ′ the base change of Zj . By Lemma 67.2
each irreducible component of Z ′

j has δ′-dimension k. Moreover, as Zj is irreducible and
Z ′
j → Zj is flat (as the base change of S′ → S) we see thatZ ′

j → Zj is dominant. Hence if
Z ′
j is nonempty, then some irreducible component, say Z ′, of Z ′

j dominates Zj . It follows
that Z ′ cannot be an irreducible component of Z ′

j′ for j′ 6= j. Hence if Z ′
j is nonempty,

then we see that (S′ → Si)∗αi =
∑

[Z ′
j ]r is nonzero (as the coefficient of Z ′ would be

nonzero). Thus we see that Z ′
j = ∅ for all j. However, this means that the base change of

Zj by some transition map Si′ → Si is empty by Limits, Lemma 4.3. Thus αi dies in the
colimit as desired.

The surjectivity of colimZk(Xi)→ Zk(X ′) implies that colim CHk(Xi)→ CHk(X ′) is
surjective. To finish the proof we show that this map is injective. Let αi ∈ CHk(Xi) be
a cycle whose image α′ ∈ CHk(X ′) is zero. Then there exist integral closed subschemes
W ′
l ⊂ X ′, l = 1, . . . , r of δ”-dimension k + 1 and nonzero rational functions f ′

l on W ′
l

such thatα′ =
∑
l=1,...,r divW ′

l
(f ′
l ). Arguing as above we can find an i and integral closed

subschemes Wi,l ⊂ Xi of δi-dimension k + 1 whose base change is W ′
l . After increasin i

we may assume we have rational functions fi,l on Wi,l. Namely, we may think of f ′
l as a

section of the structure sheaf over a nonempty openU ′
l ⊂W ′

l , we can descend these opens
by Limits, Lemma 4.11 and after increasing iwe may descend f ′

l by Limits, Lemma 4.7. We
claim that

αi =
∑

l=1,...,r
divWi,l

(fi,l)

after possibly increasing i.

To prove the claim, letZ ′
l,j ⊂W ′

l be a finite collection of integral closed subschemes of δ′-
dimension k such that f ′

l is an invertible regular function outside
⋃
j Y

′
l,j . After increasing
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i (by the arguments above) we may assume there exist integral closed subschemes Zi,l,j ⊂
Wi of δi-dimension k such that fi,l is an invertible regular function outside

⋃
j Zi,l,j .

Then we may write

divW ′
l
(f ′
l ) =

∑
nl,j [Z ′

l,j ]

and

divWi,l
(fi,l) =

∑
ni,l,j [Zi,l,j ]

To prove the claim it suffices to show that nl,i = ni,l,j . Namely, this will imply that
βi = αi −

∑
l=1,...,r divWi,l

(fi,l) is a cycle on Xi whose pullback to X ′ is zero as a cycle!
It follows that βi pulls back to zero as a cycle on Xi′ for some i′ ≥ i by an easy argument
we omit.

To prove the equality nl,i = ni,l,j we choose a generic point ξ′ ∈ Z ′
l,j and we denote

ξ ∈ Zi,l,j the image which is a generic point also. Then the local ring map

OWi,l,ξ −→ OW ′
l
,ξ′

is flat as W ′
l → Wi,l is the base change of the flat morphism S′ → Si. We also have

mξOW ′
l
,ξ′ = mξ′ because Zi,l,j pulls back to Z ′

l,j ! Thus the equality of

nl,j = ordZ′
l,j

(f ′
l ) = ordOW ′

l
,ξ′ (f ′

l ) and ni,l,j = ordZi,l,j (fi,l) = ordOWi,l,ξ
(fi,l)

follows from Algebra, Lemma 52.13 and the construction of ord in Algebra, Section 121.
�

68. Appendix A: Alternative approach to key lemma

In this appendix we first define determinants detκ(M) of finite length modules M over
local rings (R,m, κ), see Subsection 68.1. The determinant detκ(M) is a 1-dimensional κ-
vector space. We use this in Subsection 68.12 to define the determinant detκ(M,ϕ,ψ) ∈
κ∗ of an exact (2, 1)-periodic complex (M,ϕ,ψ) with M of finite length. In Subsection
68.26 we use these determinants to construct a tame symbol dR(a, b) = detκ(R/ab, a, b)
for a pair of nonzerodivisors a, b ∈ R when R is Noetherian of dimension 1. Although
there is no doubt that

dR(a, b) = ∂R(a, b)

where ∂R is as in Section 5, we have not (yet) added the verification. The advantage
of the tame symbol as constructed in this appendix is that it extends (for example) to
pairs of injective endomorphisms ϕ,ψ of a finite R-module M of dimension 1 such that
ϕ(ψ(M)) = ψ(ϕ(M)). In Subsection 68.40 we relate Herbrand quotients and determi-
nants. An easy to state version of the main result (Proposition 68.43) is the formula

−eR(M,ϕ,ψ) = ordR(detK(MK , ϕ, ψ))

when (M,ϕ,ψ) is a (2, 1)-periodic complex whose Herbrand quotient eR (Definition 2.2)
is defined over a 1-dimensonal Noetherian local domain R with fraction field K. We use
this proposition to give an alternative proof of the key lemma (Lemma 6.3) for the tame
symbol constructed in this appendix, see Lemma 68.46.
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68.1. Determinants of finite length modules. The material in this section is related
to the material in the paper [?] and to the material in the thesis [?].
Let (R,m, κ) be a local ring. Let ϕ : M → M be an R-linear endomorphism of a finite
length R-module M . In More on Algebra, Section 120 we have already defined the de-
terminant detκ(ϕ) (and the trace and the characteristic polynomial) of ϕ relative to κ.
In this section, we will construct a canonical 1-dimensional κ-vector space detκ(M) such
that detκ(ϕ : M →M) : detκ(M)→ detκ(M) is equal to multiplication by detκ(ϕ). If
M is annihilated bym, thenM can be viewed as a finite dimension κ-vector space and then
we have detκ(M) = ∧nκ(M) where n = dimκ(M). Our construction will generalize this
to all finite length modules overR and ifR contains its residue field, then the determinant
detκ(M) will be given by the usual determinant in a suitable sense, see Remark 68.9.

Definition 68.2. LetR be a local ring with maximal ideal m and residue field κ. Let
M be a finite length R-module. Say l = lengthR(M).

(1) Given elements x1, . . . , xr ∈ M we denote 〈x1, . . . , xr〉 = Rx1 + . . . + Rxr
the R-submodule of M generated by x1, . . . , xr.

(2) We will say an l-tuple of elements (e1, . . . , el) of M is admissible if mei ⊂
〈e1, . . . , ei−1〉 for i = 1, . . . , l.

(3) A symbol [e1, . . . , el] will mean (e1, . . . , el) is an admissible l-tuple.
(4) An admissible relation between symbols is one of the following:

(a) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we have
ea ∈ 〈e1, . . . , ea−1〉, then [e1, . . . , el] = 0,

(b) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we have
ea = λe′

a + x with λ ∈ R∗, and x ∈ 〈e1, . . . , ea−1〉, then

[e1, . . . , el] = λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , el]

where λ ∈ κ∗ is the image of λ in the residue field, and
(c) if (e1, . . . , el) is an admissible sequence and mea ⊂ 〈e1, . . . , ea−2〉 then

[e1, . . . , el] = −[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el].
(5) We define the determinant of the finite length R-module M to be

detκ(M) =
{

κ-vector space generated by symbols
κ-linear combinations of admissible relations

}
We stress that always l = lengthR(M). We also stress that it does not follow that the
symbol [e1, . . . , el] is additive in the entries (this will typically not be the case). Before we
can show that the determinant detκ(M) actually has dimension 1 we have to show that
it has dimension at most 1.

Lemma 68.3. With notations as above we have dimκ(detκ(M)) ≤ 1.

Proof. Fix an admissible sequence (f1, . . . , fl) of M such that
lengthR(〈f1, . . . , fi〉) = i

for i = 1, . . . , l. Such an admissible sequence exists exactly because M has length l. We
will show that any element of detκ(M) is a κ-multiple of the symbol [f1, . . . , fl]. This
will prove the lemma.
Let (e1, . . . , el) be an admissible sequence of M . It suffices to show that [e1, . . . , el] is a
multiple of [f1, . . . , fl]. First assume that 〈e1, . . . , el〉 6= M . Then there exists an i ∈
[1, . . . , l] such that ei ∈ 〈e1, . . . , ei−1〉. It immediately follows from the first admissible
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relation that [e1, . . . , en] = 0 in detκ(M). Hence we may assume that 〈e1, . . . , el〉 = M .
In particular there exists a smallest index i ∈ {1, . . . , l} such that f1 ∈ 〈e1, . . . , ei〉.
This means that ei = λf1 + x with x ∈ 〈e1, . . . , ei−1〉 and λ ∈ R∗. By the second
admissible relation this means that [e1, . . . , el] = λ[e1, . . . , ei−1, f1, ei+1, . . . , el]. Note
that mf1 = 0. Hence by applying the third admissible relation i− 1 times we see that

[e1, . . . , el] = (−1)i−1λ[f1, e1, . . . , ei−1, ei+1, . . . , el].

Note that it is also the case that 〈f1, e1, . . . , ei−1, ei+1, . . . , el〉 = M . By induction sup-
pose we have proven that our original symbol is equal to a scalar times

[f1, . . . , fj , ej+1, . . . , el]

for some admissible sequence (f1, . . . , fj , ej+1, . . . , el) whose elements generate M , i.e.,
with 〈f1, . . . , fj , ej+1, . . . , el〉 = M . Then we find the smallest i such that fj+1 ∈
〈f1, . . . , fj , ej+1, . . . , ei〉 and we go through the same process as above to see that

[f1, . . . , fj , ej+1, . . . , el] = (scalar)[f1, . . . , fj , fj+1, ej+1, . . . , êi, . . . , el]

Continuing in this vein we obtain the desired result. �

Before we show that detκ(M) always has dimension 1, let us show that it agrees with the
usual top exterior power in the case the module is a vector space over κ.

Lemma 68.4. Let R be a local ring with maximal ideal m and residue field κ. Let M
be a finite length R-module which is annihilated by m. Let l = dimκ(M). Then the map

detκ(M) −→ ∧lκ(M), [e1, . . . , el] 7−→ e1 ∧ . . . ∧ el
is an isomorphism.

Proof. It is clear that the rule described in the lemma gives a κ-linear map since all
of the admissible relations are satisfied by the usual symbols e1 ∧ . . .∧ el. It is also clearly
a surjective map. Since by Lemma 68.3 the left hand side has dimension at most one we
see that the map is an isomorphism. �

Lemma 68.5. Let R be a local ring with maximal ideal m and residue field κ. Let M
be a finite length R-module. The determinant detκ(M) defined above is a κ-vector space
of dimension 1. It is generated by the symbol [f1, . . . , fl] for any admissible sequence such
that 〈f1, . . . fl〉 = M .

Proof. We know detκ(M) has dimension at most 1, and in fact that it is generated by
[f1, . . . , fl], by Lemma 68.3 and its proof. We will show by induction on l = length(M)
that it is nonzero. For l = 1 it follows from Lemma 68.4. Choose a nonzero element
f ∈ M with mf = 0. Set M = M/〈f〉, and denote the quotient map x 7→ x. We will
define a surjective map

ψ : detk(M)→ detκ(M)
which will prove the lemma since by induction the determinant of M is nonzero.

We define ψ on symbols as follows. Let (e1, . . . , el) be an admissible sequence. If f 6∈
〈e1, . . . , el〉 then we simply set ψ([e1, . . . , el]) = 0. If f ∈ 〈e1, . . . , el〉 then we choose an
i minimal such that f ∈ 〈e1, . . . , ei〉. We may write ei = λf + x for some unit λ ∈ R
and x ∈ 〈e1, . . . , ei−1〉. In this case we set

ψ([e1, . . . , el]) = (−1)iλ[e1, . . . , ei−1, ei+1, . . . , el].
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Note that it is indeed the case that (e1, . . . , ei−1, ei+1, . . . , el) is an admissible sequence in
M , so this makes sense. Let us show that extending this rule κ-linearly to linear combina-
tions of symbols does indeed lead to a map on determinants. To do this we have to show
that the admissible relations are mapped to zero.

Type (a) relations. Suppose we have (e1, . . . , el) an admissible sequence and for some
1 ≤ a ≤ l we have ea ∈ 〈e1, . . . , ea−1〉. Suppose that f ∈ 〈e1, . . . , ei〉 with i minimal.
Then i 6= a and ea ∈ 〈e1, . . . , êi, . . . , ea−1〉 if i < a or ea ∈ 〈e1, . . . , ea−1〉 if i > a. Thus
the same admissible relation for detκ(M) forces the symbol [e1, . . . , ei−1, ei+1, . . . , el] to
be zero as desired.

Type (b) relations. Suppose we have (e1, . . . , el) an admissible sequence and for some
1 ≤ a ≤ l we have ea = λe′

a + x with λ ∈ R∗, and x ∈ 〈e1, . . . , ea−1〉. Suppose that
f ∈ 〈e1, . . . , ei〉 with i minimal. Say ei = µf + y with y ∈ 〈e1, . . . , ei−1〉. If i < a then
the desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el] = (−1)iλ[e1, . . . , ei−1, ei+1, . . . , ea−1, e
′
a, ea+1, . . . , el]

which follows from ea = λe′
a+x and the corresponding admissible relation for detκ(M).

If i > a then the desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el] = (−1)iλ[e1, . . . , ea−1, e
′
a, ea+1, . . . , ei−1, ei+1, . . . , el]

which follows from ea = λe′
a+x and the corresponding admissible relation for detκ(M).

The interesting case is when i = a. In this case we have ea = λe′
a + x = µf + y. Hence

also e′
a = λ−1(µf + y − x). Thus we see that

ψ([e1, . . . , el]) = (−1)iµ[e1, . . . , ei−1, ei+1, . . . , el] = ψ(λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , el])

as desired.

Type (c) relations. Suppose that (e1, . . . , el) is an admissible sequence andmea ⊂ 〈e1, . . . , ea−2〉.
Suppose that f ∈ 〈e1, . . . , ei〉 with i minimal. Say ei = λf + x with x ∈ 〈e1, . . . , ei−1〉.
We distinguish 4 cases:

Case 1: i < a− 1. The desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el]
= (−1)i+1λ[e1, . . . , ei−1, ei+1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M).

Case 2: i > a. The desired equality is

(−1)iλ[e1, . . . , ei−1, ei+1, . . . , el]
= (−1)i+1λ[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , ei−1, ei+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M).

Case 3: i = a. We write ea = λf + µea−1 + y with y ∈ 〈e1, . . . , ea−2〉. Then

ψ([e1, . . . , el]) = (−1)aλ[e1, . . . , ea−1, ea+1, . . . , el]

by definition. If µ is nonzero, then we have ea−1 = −µ−1λf + µ−1ea − µ−1y and we
obtain

ψ(−[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]) = (−1)aµ−1λ[e1, . . . , ea−2, ea, ea+1, . . . , el]
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by definition. Since in M we have ea = µea−1 + y we see the two outcomes are equal by
relation (a) for detκ(M). If on the other hand µ is zero, then we can write ea = λf + y
with y ∈ 〈e1, . . . , ea−2〉 and we have

ψ(−[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]) = (−1)aλ[e1, . . . , ea−1, ea+1, . . . , el]

which is equal to ψ([e1, . . . , el]).

Case 4: i = a− 1. Here we have

ψ([e1, . . . , el]) = (−1)a−1λ[e1, . . . , ea−2, ea, . . . , el]

by definition. If f 6∈ 〈e1, . . . , ea−2, ea〉 then

ψ(−[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]) = (−1)a+1λ[e1, . . . , ea−2, ea, . . . , el]

Since (−1)a−1 = (−1)a+1 the two expressions are the same. Finally, assume f ∈ 〈e1, . . . , ea−2, ea〉.
In this case we see that ea−1 = λf + x with x ∈ 〈e1, . . . , ea−2〉 and ea = µf + y with
y ∈ 〈e1, . . . , ea−2〉 for units λ, µ ∈ R. We conclude that both ea ∈ 〈e1, . . . , ea−1〉 and
ea−1 ∈ 〈e1, . . . , ea−2, ea〉. In this case a relation of type (a) applies to both [e1, . . . , el] and
[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el] and the compatibility of ψ with these shown above
to see that both

ψ([e1, . . . , el]) and ψ([e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el])

are zero, as desired.

At this point we have shown that ψ is well defined, and all that remains is to show that
it is surjective. To see this let (f2, . . . , f l) be an admissible sequence in M . We can
choose lifts f2, . . . , fl ∈M , and then (f, f2, . . . , fl) is an admissible sequence inM . Since
ψ([f, f2, . . . , fl]) = [f2, . . . , fl] we win. �

Let R be a local ring with maximal ideal m and residue field κ. Note that if ϕ : M → N
is an isomorphism of finite length R-modules, then we get an isomorphism

detκ(ϕ) : detκ(M)→ detκ(N)

simply by the rule

detκ(ϕ)([e1, . . . , el]) = [ϕ(e1), . . . , ϕ(el)]

for any symbol [e1, . . . , el] for M . Hence we see that detκ is a functor

(68.5.1)
{

finite length R-modules
with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
This is typical for a “determinant functor” (see [?]), as is the following additivity property.

Lemma 68.6. Let (R,m, κ) be a local ring. For every short exact sequence

0→ K → L→M → 0

of finite length R-modules there exists a canonical isomorphism

γK→L→M : detκ(K)⊗κ detκ(M) −→ detκ(L)

defined by the rule on nonzero symbols

[e1, . . . , ek]⊗ [f1, . . . , fm] −→ [e1, . . . , ek, f1, . . . , fm]

with the following properties:
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(1) For every isomorphism of short exact sequences, i.e., for every commutative di-
agram

0 // K //

u

��

L //

v

��

M //

w

��

0

0 // K ′ // L′ // M ′ // 0
with short exact rows and isomorphisms u, v, w we have

γK′→L′→M ′ ◦ (detκ(u)⊗ detκ(w)) = detκ(v) ◦ γK→L→M ,

(2) for every commutative square of finite length R-modules with exact rows and
columns

0

��

0

��

0

��
0 // A //

��

B //

��

C //

��

0

0 // D //

��

E //

��

F //

��

0

0 // G //

��

H //

��

I //

��

0

0 0 0
the following diagram is commutative

detκ(A)⊗ detκ(C)⊗ detκ(G)⊗ detκ(I)

ε

��

γA→B→C⊗γG→H→I

// detκ(B)⊗ detκ(H)

γB→E→H

��
detκ(E)

detκ(A)⊗ detκ(G)⊗ detκ(C)⊗ detκ(I) γA→D→G⊗γC→F→I // detκ(D)⊗ detκ(F )

γD→E→F

OO

where ε is the switch of the factors in the tensor product times (−1)cg with
c = lengthR(C) and g = lengthR(G), and

(3) the map γK→L→M agrees with the usual isomorphism if 0→ K → L→M →
0 is actually a short exact sequence of κ-vector spaces.

Proof. The significance of taking nonzero symbols in the explicit description of the
map γK→L→M is simply that if (e1, . . . , el) is an admissible sequence inK , and (f1, . . . , fm)
is an admissible sequence in M , then it is not guaranteed that (e1, . . . , el, f1, . . . , fm) is
an admissible sequence in L (where of course fi ∈ L signifies a lift of f i). However, if the
symbol [e1, . . . , el] is nonzero in detκ(K), then necessarily K = 〈e1, . . . , ek〉 (see proof
of Lemma 68.3), and in this case it is true that (e1, . . . , ek, f1, . . . , fm) is an admissible
sequence. Moreover, by the admissible relations of type (b) for detκ(L) we see that the
value of [e1, . . . , ek, f1, . . . , fm] in detκ(L) is independent of the choice of the lifts fi in
this case also. Given this remark, it is clear that an admissible relation for e1, . . . , ek in
K translates into an admissible relation among e1, . . . , ek, f1, . . . , fm in L, and similarly
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for an admissible relation among the f1, . . . , fm. Thus γ defines a linear map of vector
spaces as claimed in the lemma.

By Lemma 68.5 we know detκ(L) is generated by any single symbol [x1, . . . , xk+m] such
that (x1, . . . , xk+m) is an admissible sequence withL = 〈x1, . . . , xk+m〉. Hence it is clear
that the map γK→L→M is surjective and hence an isomorphism.

Property (1) holds because

detκ(v)([e1, . . . , ek, f1, . . . , fm])
= [v(e1), . . . , v(ek), v(f1), . . . , v(fm)]
= γK′→L′→M ′([u(e1), . . . , u(ek)]⊗ [w(f1), . . . , w(fm)]).

Property (2) means that given a symbol [α1, . . . , αa] generating detκ(A), a symbol [γ1, . . . , γc]
generating detκ(C), a symbol [ζ1, . . . , ζg] generating detκ(G), and a symbol [ι1, . . . , ιi]
generating detκ(I) we have

[α1, . . . , αa, γ̃1, . . . , γ̃c, ζ̃1, . . . , ζ̃g, ι̃1, . . . , ι̃i]
= (−1)cg[α1, . . . , αa, ζ̃1, . . . , ζ̃g, γ̃1, . . . , γ̃c, ι̃1, . . . , ι̃i]

(for suitable lifts x̃ in E) in detκ(E). This holds because we may use the admissible rela-
tions of type (c) cg times in the following order: move the ζ̃1 past the elements γ̃c, . . . , γ̃1
(allowed since mζ̃1 ⊂ A), then move ζ̃2 past the elements γ̃c, . . . , γ̃1 (allowed since mζ̃2 ⊂
A+Rζ̃1), and so on.

Part (3) of the lemma is obvious. This finishes the proof. �

We can use the maps γ of the lemma to define more general maps γ as follows. Suppose
that (R,m, κ) is a local ring. LetM be a finite lengthR-module and suppose we are given
a finite filtration (see Homology, Definition 19.1)

0 = Fm ⊂ Fm−1 ⊂ . . . ⊂ Fn+1 ⊂ Fn = M

then there is a well defined and canonical isomorphism

γ(M,F ) : detκ(Fm−1/Fm)⊗κ . . .⊗k detκ(Fn/Fn+1) −→ detκ(M)

To construct it we use isomorphisms of Lemma 68.6 coming from the short exact sequences
0 → F i−1/F i → M/F i → M/F i−1 → 0. Part (2) of Lemma 68.6 with G = 0 shows
we obtain the same isomorphism if we use the short exact sequences 0→ F i → F i−1 →
F i−1/F i → 0.

Here is another typical result for determinant functors. It is not hard to show. The tricky
part is usually to show the existence of a determinant functor.

Lemma 68.7. Let (R,m, κ) be any local ring. The functor

detκ :
{

finite length R-modules
with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
endowed with the maps γK→L→M is characterized by the following properties

(1) its restriction to the subcategory of modules annihilated by m is isomorphic to
the usual determinant functor (see Lemma 68.4), and

(2) (1), (2) and (3) of Lemma 68.6 hold.

Proof. Omitted. �
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Lemma 68.8. Let (R′,m′) → (R,m) be a local ring homomorphism which induces
an isomorphism on residue fields κ. Then for every finite lengthR-module the restriction
MR′ is a finite length R′-module and there is a canonical isomorphism

detR,κ(M) −→ detR′,κ(MR′)
This isomorphism is functorial in M and compatible with the isomorphisms γK→L→M

of Lemma 68.6 defined for detR,κ and detR′,κ.

Proof. If the length of M as an R-module is l, then the length of M as an R′-
module (i.e.,MR′ ) is l as well, see Algebra, Lemma 52.12. Note that an admissible sequence
x1, . . . , xl of M over R is an admissible sequence of M over R′ as m′ maps into m. The
isomorphism is obtained by mapping the symbol [x1, . . . , xl] ∈ detR,κ(M) to the corre-
sponding symbol [x1, . . . , xl] ∈ detR′,κ(M). It is immediate to verify that this is functo-
rial for isomorphisms and compatible with the isomorphisms γ of Lemma 68.6. �

Remark 68.9. Let (R,m, κ) be a local ring and assume either the characteristic of κ
is zero or it is p and pR = 0. Let M1, . . . ,Mn be finite length R-modules. We will show
below that there exists an ideal I ⊂ m annihilating Mi for i = 1, . . . , n and a section
σ : κ→ R/I of the canonical surjection R/I → κ. The restriction Mi,κ of Mi via σ is a
κ-vector space of dimension li = lengthR(Mi) and using Lemma 68.8 we see that

detκ(Mi) = ∧liκ (Mi,κ)
These isomorphisms are compatible with the isomorphisms γK→M→L of Lemma 68.6 for
short exact sequences of finite length R-modules annihilated by I . The conclusion is that
verifying a property of detκ often reduces to verifying corresponding properties of the
usual determinant on the category finite dimensional vector spaces.

For I we can take the annihilator (Algebra, Definition 40.3) of the module M =
⊕
Mi.

In this case we see thatR/I ⊂ EndR(M) hence has finite length. ThusR/I is an Artinian
local ring with residue field κ. Since an Artinian local ring is complete we see that R/I
has a coefficient ring by the Cohen structure theorem (Algebra, Theorem 160.8) which is
a field by our assumption on R.

Here is a case where we can compute the determinant of a linear map. In fact there is
nothing mysterious about this in any case, see Example 68.11 for a random example.

Lemma 68.10. LetR be a local ring with residue field κ. Let u ∈ R∗ be a unit. LetM
be a module of finite length over R. Denote uM : M →M the map multiplication by u.
Then

detκ(uM ) : detκ(M) −→ detκ(M)
is multiplication by ul where l = lengthR(M) and u ∈ κ∗ is the image of u.

Proof. Denote fM ∈ κ∗ the element such that detκ(uM ) = fM iddetκ(M). Suppose
that 0 → K → L → M → 0 is a short exact sequence of finite R-modules. Then we see
that uk , uL, uM give an isomorphism of short exact sequences. Hence by Lemma 68.6 (1)
we conclude that fKfM = fL. This means that by induction on length it suffices to prove
the lemma in the case of length 1 where it is trivial. �

Example 68.11. Consider the local ring R = Zp. Set M = Zp/(p2)⊕ Zp/(p3). Let
u : M →M be the map given by the matrix

u =
(
a b
pc d

)
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where a, b, c, d ∈ Zp, and a, d ∈ Z∗
p. In this case detκ(u) equals multiplication by

a2d3 mod p ∈ F∗
p. This can easily be seen by consider the effect of u on the symbol

[p2e, pe, pf, e, f ] where e = (0, 1) ∈M and f = (1, 0) ∈M .

68.12. Periodic complexes and determinants. Let R be a local ring with residue field
κ. Let (M,ϕ,ψ) be a (2, 1)-periodic complex over R. Assume that M has finite length
and that (M,ϕ,ψ) is exact. We are going to use the determinant construction to define
an invariant of this situation. See Subsection 68.1. Let us abbreviate Kϕ = Ker(ϕ), Iϕ =
Im(ϕ), Kψ = Ker(ψ), and Iψ = Im(ψ). The short exact sequences

0→ Kϕ →M → Iϕ → 0, 0→ Kψ →M → Iψ → 0

give isomorphisms

γϕ : detκ(Kϕ)⊗ detκ(Iϕ) −→ detκ(M), γψ : detκ(Kψ)⊗ detκ(Iψ) −→ detκ(M),

see Lemma 68.6. On the other hand the exactness of the complex gives equalitiesKϕ = Iψ ,
and Kψ = Iϕ and hence an isomorphism

σ : detκ(Kϕ)⊗ detκ(Iϕ) −→ detκ(Kψ)⊗ detκ(Iψ)

by switching the factors. Using this notation we can define our invariant.

Definition 68.13. LetR be a local ring with residue field κ. Let (M,ϕ,ψ) be a (2, 1)-
periodic complex over R. Assume that M has finite length and that (M,ϕ,ψ) is exact.
The determinant of (M,ϕ,ψ) is the element

detκ(M,ϕ,ψ) ∈ κ∗

such that the composition

detκ(M)
γψ◦σ◦γ−1

ϕ−−−−−−→ detκ(M)

is multiplication by (−1)lengthR(Iϕ)lengthR(Iψ) detκ(M,ϕ,ψ).

Remark 68.14. Here is a more down to earth description of the determinant intro-
duced above. Let R be a local ring with residue field κ. Let (M,ϕ,ψ) be a (2, 1)-periodic
complex over R. Assume that M has finite length and that (M,ϕ,ψ) is exact. Let us
abbreviate Iϕ = Im(ϕ), Iψ = Im(ψ) as above. Assume that lengthR(Iϕ) = a and
lengthR(Iψ) = b, so that a + b = lengthR(M) by exactness. Choose admissible se-
quences x1, . . . , xa ∈ Iϕ and y1, . . . , yb ∈ Iψ such that the symbol [x1, . . . , xa] generates
detκ(Iϕ) and the symbol [x1, . . . , xb] generates detκ(Iψ). Choose x̃i ∈ M such that
ϕ(x̃i) = xi. Choose ỹj ∈ M such that ψ(ỹj) = yj . Then detκ(M,ϕ,ψ) is characterized
by the equality

[x1, . . . , xa, ỹ1, . . . , ỹb] = (−1)ab detκ(M,ϕ,ψ)[y1, . . . , yb, x̃1, . . . , x̃a]

in detκ(M). This also explains the sign.

Lemma 68.15. Let R be a local ring with residue field κ. Let (M,ϕ,ψ) be a (2, 1)-
periodic complex over R. Assume that M has finite length and that (M,ϕ,ψ) is exact.
Then

detκ(M,ϕ,ψ) detκ(M,ψ,ϕ) = 1.

Proof. Omitted. �
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Lemma 68.16. Let R be a local ring with residue field κ. Let (M,ϕ,ϕ) be a (2, 1)-
periodic complex over R. Assume that M has finite length and that (M,ϕ,ϕ) is exact.
Then lengthR(M) = 2lengthR(Im(ϕ)) and

detκ(M,ϕ,ϕ) = (−1)lengthR(Im(ϕ)) = (−1) 1
2 lengthR(M)

Proof. Follows directly from the sign rule in the definitions. �

Lemma 68.17. Let R be a local ring with residue field κ. Let M be a finite length
R-module.

(1) if ϕ : M →M is an isomorphism then detκ(M,ϕ, 0) = detκ(ϕ).
(2) if ψ : M →M is an isomorphism then detκ(M, 0, ψ) = detκ(ψ)−1.

Proof. Let us prove (1). Set ψ = 0. Then we may, with notation as above Definition
68.13, identify Kϕ = Iψ = 0, Iϕ = Kψ = M . With these identifications, the map

γϕ : κ⊗ detκ(M) = detκ(Kϕ)⊗ detκ(Iϕ) −→ detκ(M)

is identified with detκ(ϕ−1). On the other hand the map γψ is identified with the identity
map. Hence γψ ◦σ ◦ γ−1

ϕ is equal to detκ(ϕ) in this case. Whence the result. We omit the
proof of (2). �

Lemma 68.18. LetR be a local ring with residue field κ. Suppose that we have a short
exact sequence of (2, 1)-periodic complexes

0→ (M1, ϕ1, ψ1)→ (M2, ϕ2, ψ2)→ (M3, ϕ3, ψ3)→ 0

with all Mi of finite length, and each (M1, ϕ1, ψ1) exact. Then

detκ(M2, ϕ2, ψ2) = detκ(M1, ϕ1, ψ1) detκ(M3, ϕ3, ψ3).

in κ∗.

Proof. Let us abbreviate Iϕ,i = Im(ϕi), Kϕ,i = Ker(ϕi), Iψ,i = Im(ψi), and
Kψ,i = Ker(ψi). Observe that we have a commutative square

0

��

0

��

0

��
0 // Kϕ,1 //

��

Kϕ,2 //

��

Kϕ,3 //

��

0

0 // M1 //

��

M2 //

��

M3 //

��

0

0 // Iϕ,1 //

��

Iϕ,2 //

��

Iϕ,3 //

��

0

0 0 0

of finite length R-modules with exact rows and columns. The top row is exact since it
can be identified with the sequence Iψ,1 → Iψ,2 → Iψ,3 → 0 of images, and similarly
for the bottom row. There is a similar diagram involving the modules Iψ,i and Kψ,i.
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By definition detκ(M2, ϕ2, ψ2) corresponds, up to a sign, to the composition of the left
vertical maps in the following diagram

detκ(M1)⊗ detκ(M3) γ //

γ−1⊗γ−1

��

detκ(M2)

γ−1

��
detκ(Kϕ,1)⊗ detκ(Iϕ,1)⊗ detκ(Kϕ,3)⊗ detκ(Iϕ,3)

σ⊗σ
��

γ⊗γ // detκ(Kϕ,2)⊗ detκ(Iϕ,2)

σ

��
detκ(Kψ,1)⊗ detκ(Iψ,1)⊗ detκ(Kψ,3)⊗ detκ(Iψ,3)

γ⊗γ
��

γ⊗γ // detκ(Kψ,2)⊗ detκ(Iψ,2)

γ

��
detκ(M1)⊗ detκ(M3) γ // detκ(M2)

The top and bottom squares are commutative up to sign by applying Lemma 68.6 (2). The
middle square is trivially commutative (we are just switching factors). Hence we see that
detκ(M2, ϕ2, ψ2) = εdetκ(M1, ϕ1, ψ1) detκ(M3, ϕ3, ψ3) for some sign ε. And the sign
can be worked out, namely the outer rectangle in the diagram above commutes up to

ε = (−1)length(Iϕ,1)length(Kϕ,3)+length(Iψ,1)length(Kψ,3)

= (−1)length(Iϕ,1)length(Iψ,3)+length(Iψ,1)length(Iϕ,3)

(proof omitted). It follows easily from this that the signs work out as well. �

Example 68.19. Let k be a field. Consider the ring R = k[T ]/(T 2) of dual numbers
over k. Denote t the class of T in R. Let M = R and ϕ = ut, ψ = vt with u, v ∈ k∗.
In this case detk(M) has generator e = [t, 1]. We identify Iϕ = Kϕ = Iψ = Kψ = (t).
Then γϕ(t⊗ t) = u−1[t, 1] (since u−1 ∈ M is a lift of t ∈ Iϕ) and γψ(t⊗ t) = v−1[t, 1]
(same reason). Hence we see that detk(M,ϕ,ψ) = −u/v ∈ k∗.

Example 68.20. Let R = Zp and let M = Zp/(pl). Let ϕ = pbu and ϕ = pav with
a, b ≥ 0, a+ b = l and u, v ∈ Z∗

p. Then a computation as in Example 68.19 shows that

detFp(Zp/(pl), pbu, pav) = (−1)abua/vb mod p

= (−1)ordp(α)ordp(β)α
ordp(β)

βordp(α) mod p

with α = pbu, β = pav ∈ Zp. See Lemma 68.37 for a more general case (and a proof).

Example 68.21. LetR = k be a field. LetM = k⊕a⊕ k⊕b be l = a+ b dimensional.
Let ϕ and ψ be the following diagonal matrices

ϕ = diag(u1, . . . , ua, 0, . . . , 0), ψ = diag(0, . . . , 0, v1, . . . , vb)

with ui, vj ∈ k∗. In this case we have

detk(M,ϕ,ψ) = u1 . . . ua
v1 . . . vb

.

This can be seen by a direct computation or by computing in case l = 1 and using the
additivity of Lemma 68.18.
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Example 68.22. Let R = k be a field. Let M = k⊕a ⊕ k⊕a be l = 2a dimensional.
Let ϕ and ψ be the following block matrices

ϕ =
(

0 U
0 0

)
, ψ =

(
0 V
0 0

)
,

with U, V ∈Mat(a× a, k) invertible. In this case we have

detk(M,ϕ,ψ) = (−1)a det(U)
det(V ) .

This can be seen by a direct computation. The case a = 1 is similar to the computation in
Example 68.19.

Example 68.23. Let R = k be a field. Let M = k⊕4. Let

ϕ =


0 0 0 0
u1 0 0 0
0 0 0 0
0 0 u2 0

 ϕ =


0 0 0 0
0 0 v2 0
0 0 0 0
v1 0 0 0


with u1, u2, v1, v2 ∈ k∗. Then we have

detk(M,ϕ,ψ) = −u1u2

v1v2
.

Next we come to the analogue of the fact that the determinant of a composition of linear
endomorphisms is the product of the determinants. To avoid very long formulae we write
Iϕ = Im(ϕ), and Kϕ = Ker(ϕ) for any R-module map ϕ : M → M . We also denote
ϕψ = ϕ ◦ ψ for a pair of morphisms ϕ,ψ : M →M .

Lemma 68.24. Let R be a local ring with residue field κ. Let M be a finite length
R-module. Let α, β, γ be endomorphisms of M . Assume that

(1) Iα = Kβγ , and similarly for any permutation of α, β, γ ,
(2) Kα = Iβγ , and similarly for any permutation of α, β, γ.

Then
(1) The triple (M,α, βγ) is an exact (2, 1)-periodic complex.
(2) The triple (Iγ , α, β) is an exact (2, 1)-periodic complex.
(3) The triple (M/Kβ , α, γ) is an exact (2, 1)-periodic complex.
(4) We have

detκ(M,α, βγ) = detκ(Iγ , α, β) detκ(M/Kβ , α, γ).

Proof. It is clear that the assumptions imply part (1) of the lemma.

To see part (1) note that the assumptions imply that Iγα = Iαγ , and similarly for kernels
and any other pair of morphisms. Moreover, we see that Iγβ = Iβγ = Kα ⊂ Iγ and
similarly for any other pair. In particular we get a short exact sequence

0→ Iβγ → Iγ
α−→ Iαγ → 0

and similarly we get a short exact sequence

0→ Iαγ → Iγ
β−→ Iβγ → 0.

This proves (Iγ , α, β) is an exact (2, 1)-periodic complex. Hence part (2) of the lemma
holds.
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To see thatα, γ give well defined endomorphisms ofM/Kβ we have to check thatα(Kβ) ⊂
Kβ and γ(Kβ) ⊂ Kβ . This is true because α(Kβ) = α(Iγα) = Iαγα ⊂ Iαγ = Kβ , and
similarly in the other case. The kernel of the map α : M/Kβ → M/Kβ is Kβα/Kβ =
Iγ/Kβ . Similarly, the kernel of γ : M/Kβ → M/Kβ is equal to Iα/Kβ . Hence we
conclude that (3) holds.

We introduce r = lengthR(Kα), s = lengthR(Kβ) and t = lengthR(Kγ). By the exact
sequences above and our hypotheses we have lengthR(Iα) = s+ t, lengthR(Iβ) = r + t,
lengthR(Iγ) = r + s, and length(M) = r + s+ t. Choose

(1) an admissible sequence x1, . . . , xr ∈ Kα generating Kα

(2) an admissible sequence y1, . . . , ys ∈ Kβ generating Kβ ,
(3) an admissible sequence z1, . . . , zt ∈ Kγ generating Kγ ,
(4) elements x̃i ∈M such that βγx̃i = xi,
(5) elements ỹi ∈M such that αγỹi = yi,
(6) elements z̃i ∈M such that βαz̃i = zi.

With these choices the sequence y1, . . . , ys, αz̃1, . . . , αz̃t is an admissible sequence in Iα
generating it. Hence, by Remark 68.14 the determinantD = detκ(M,α, βγ) is the unique
element of κ∗ such that

[y1, . . . , ys, αz̃1, . . . , αz̃s, x̃1, . . . , x̃r]

= (−1)r(s+t)D[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]

By the same remark, we see that D1 = detκ(M/Kβ , α, γ) is characterized by

[y1, . . . , ys, αz̃1, . . . , αz̃t, x̃1, . . . , x̃r] = (−1)rtD1[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t]

By the same remark, we see that D2 = detκ(Iγ , α, β) is characterized by

[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t] = (−1)rsD2[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]

Combining the formulas above we see that D = D1D2 as desired. �

Lemma 68.25. Let R be a local ring with residue field κ. Let α : (M,ϕ,ψ) →
(M ′, ϕ′, ψ′) be a morphism of (2, 1)-periodic complexes over R. Assume

(1) M , M ′ have finite length,
(2) (M,ϕ,ψ), (M ′, ϕ′, ψ′) are exact,
(3) the maps ϕ, ψ induce the zero map on K = Ker(α), and
(4) the maps ϕ, ψ induce the zero map on Q = Coker(α).

Denote N = α(M) ⊂ M ′. We obtain two short exact sequences of (2, 1)-periodic com-
plexes

0→ (N,ϕ′, ψ′)→ (M ′, ϕ′, ψ′)→ (Q, 0, 0)→ 0
0→ (K, 0, 0)→ (M,ϕ,ψ)→ (N,ϕ′, ψ′)→ 0

which induce two isomorphisms αi : Q→ K , i = 0, 1. Then

detκ(M,ϕ,ψ) = detκ(α−1
0 ◦ α1) detκ(M ′, ϕ′, ψ′)

In particular, if α0 = α1, then detκ(M,ϕ,ψ) = detκ(M ′, ϕ′, ψ′).

Proof. There are (at least) two ways to prove this lemma. One is to produce an
enormous commutative diagram using the properties of the determinants. The other is to
use the characterization of the determinants in terms of admissible sequences of elements.
It is the second approach that we will use.
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First let us explain precisely what the maps αi are. Namely, α0 is the composition

α0 : Q = H0(Q, 0, 0)→ H1(N,ϕ′, ψ′)→ H2(K, 0, 0) = K

and α1 is the composition

α1 : Q = H1(Q, 0, 0)→ H2(N,ϕ′, ψ′)→ H3(K, 0, 0) = K

coming from the boundary maps of the short exact sequences of complexes displayed in
the lemma. The fact that the complexes (M,ϕ,ψ), (M ′, ϕ′, ψ′) are exact implies these
maps are isomorphisms.

We will use the notation Iϕ = Im(ϕ), Kϕ = Ker(ϕ) and similarly for the other maps.
Exactness for M and M ′ means that Kϕ = Iψ and three similar equalities. We introduce
k = lengthR(K), a = lengthR(Iϕ), b = lengthR(Iψ). Then we see that lengthR(M) =
a + b, and lengthR(N) = a + b − k, lengthR(Q) = k and lengthR(M ′) = a + b. The
exact sequences below will show that also lengthR(Iϕ′) = a and lengthR(Iψ′) = b.

The assumption that K ⊂ Kϕ = Iψ means that ϕ factors through N to give an exact
sequence

0→ α(Iψ)→ N
ϕα−1

−−−→ Iψ → 0.
Here ϕα−1(x′) = y means x′ = α(x) and y = ϕ(x). Similarly, we have

0→ α(Iϕ)→ N
ψα−1

−−−→ Iϕ → 0.
The assumption that ψ′ induces the zero map on Q means that Iψ′ = Kϕ′ ⊂ N . This
means the quotient ϕ′(N) ⊂ Iϕ′ is identified with Q. Note that ϕ′(N) = α(Iϕ). Hence
we conclude there is an isomorphism

ϕ′ : Q→ Iϕ′/α(Iϕ)
simply described by ϕ′(x′ mod N) = ϕ′(x′) mod α(Iϕ). In exactly the same way we get

ψ′ : Q→ Iψ′/α(Iψ)
Finally, note that α0 is the composition

Q
ϕ′
// Iϕ′/α(Iϕ)

ψα−1|I
ϕ′/α(Iϕ)

// K

and similarly α1 = ϕα−1|Iψ′/α(Iψ) ◦ ψ′.

To shorten the formulas below we are going to write αx instead of α(x) in the following.
No confusion should result since all maps are indicated by Greek letters and elements by
Roman letters. We are going to choose

(1) an admissible sequence z1, . . . , zk ∈ K generating K ,
(2) elements z′

i ∈M such that ϕz′
i = zi,

(3) elements z′′
i ∈M such that ψz′′

i = zi,
(4) elements xk+1, . . . , xa ∈ Iϕ such that z1, . . . , zk, xk+1, . . . , xa is an admissible

sequence generating Iϕ,
(5) elements x̃i ∈M such that ϕx̃i = xi,
(6) elements yk+1, . . . , yb ∈ Iψ such that z1, . . . , zk, yk+1, . . . , yb is an admissible

sequence generating Iψ ,
(7) elements ỹi ∈M such that ψỹi = yi, and
(8) elements w1, . . . , wk ∈M ′ such that w1 mod N, . . . , wk mod N are an admis-

sible sequence in Q generating Q.
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By Remark 68.14 the element D = detκ(M,ϕ,ψ) ∈ κ∗ is characterized by

[z1, . . . , zk, xk+1, . . . , xa, z
′′
1 , . . . , z

′′
k , ỹk+1, . . . , ỹb]

= (−1)abD[z1, . . . , zk, yk+1, . . . , yb, z
′
1, . . . , z

′
k, x̃k+1, . . . , x̃a]

Note that by the discussion above αxk+1, . . . , αxa, ϕw1, . . . , ϕwk is an admissible se-
quence generating Iϕ′ and αyk+1, . . . , αyb, ψw1, . . . , ψwk is an admissible sequence gen-
erating Iψ′ . Hence by Remark 68.14 the element D′ = detκ(M ′, ϕ′, ψ′) ∈ κ∗ is charac-
terized by

[αxk+1, . . . , αxa, ϕ
′w1, . . . , ϕ

′wk, αỹk+1, . . . , αỹb, w1, . . . , wk]
= (−1)abD′[αyk+1, . . . , αyb, ψ

′w1, . . . , ψ
′wk, αx̃k+1, . . . , αx̃a, w1, . . . , wk]

Note how in the first, resp. second displayed formula the first, resp. last k entries of the
symbols on both sides are the same. Hence these formulas are really equivalent to the
equalities

[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= (−1)abD[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

and

[αxk+1, . . . , αxa, ϕ
′w1, . . . , ϕ

′wk, αỹk+1, . . . , αỹb]
= (−1)abD′[αyk+1, . . . , αyb, ψ

′w1, . . . , ψ
′wk, αx̃k+1, . . . , αx̃a]

in detκ(N). Note that ϕ′w1, . . . , ϕ
′wk and αz′′

1 , . . . , z
′′
k are admissible sequences gener-

ating the module Iϕ′/α(Iϕ). Write

[ϕ′w1, . . . , ϕ
′wk] = λ0[αz′′

1 , . . . , αz
′′
k ]

in detκ(Iϕ′/α(Iϕ)) for some λ0 ∈ κ∗. Similarly, write

[ψ′w1, . . . , ψ
′wk] = λ1[αz′

1, . . . , αz
′
k]

in detκ(Iψ′/α(Iψ)) for some λ1 ∈ κ∗. On the one hand it is clear that

αi([w1, . . . , wk]) = λi[z1, . . . , zk]

for i = 0, 1 by our description of αi above, which means that

detκ(α−1
0 ◦ α1) = λ1/λ0

and on the other hand it is clear that

λ0[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= [αxk+1, . . . , αxa, ϕ
′w1, . . . , ϕ

′wk, αỹk+1, . . . , αỹb]

and

λ1[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

= [αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a]

which imply λ0D = λ1D
′. The lemma follows. �
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68.26. Symbols. The correct generality for this construction is perhaps the situation
of the following lemma.

Lemma 68.27. Let A be a Noetherian local ring. Let M be a finite A-module of
dimension 1. Assume ϕ,ψ : M → M are two injective A-module maps, and assume
ϕ(ψ(M)) = ψ(ϕ(M)), for example if ϕ and ψ commute. Then lengthR(M/ϕψM) <∞
and (M/ϕψM,ϕ, ψ) is an exact (2, 1)-periodic complex.

Proof. Let q be a minimal prime of the support ofM . ThenMq is a finite lengthAq-
module, see Algebra, Lemma 62.3. Hence both ϕ and ψ induce isomorphisms Mq → Mq.
Thus the support of M/ϕψM is {mA} and hence it has finite length (see lemma cited
above). Finally, the kernel of ϕ on M/ϕψM is clearly ψM/ϕψM , and hence the kernel
of ϕ is the image of ψ on M/ϕψM . Similarly the other way since M/ϕψM = M/ψϕM
by assumption. �

Lemma 68.28. Let A be a Noetherian local ring. Let a, b ∈ A.
(1) If M is a finite A-module of dimension 1 such that a, b are nonzerodivisors on

M , then lengthA(M/abM) < ∞ and (M/abM, a, b) is a (2, 1)-periodic exact
complex.

(2) If a, b are nonzerodivisors and dim(A) = 1 then lengthA(A/(ab)) < ∞ and
(A/(ab), a, b) is a (2, 1)-periodic exact complex.

In particular, in these cases detκ(M/abM, a, b) ∈ κ∗, resp. detκ(A/(ab), a, b) ∈ κ∗ are
defined.

Proof. Follows from Lemma 68.27. �

Definition 68.29. LetA be a Noetherian local ring with residue field κ. Let a, b ∈ A.
Let M be a finite A-module of dimension 1 such that a, b are nonzerodivisors on M . We
define the symbol associated to M,a, b to be the element

dM (a, b) = detκ(M/abM, a, b) ∈ κ∗

Lemma 68.30. Let A be a Noetherian local ring. Let a, b, c ∈ A. Let M be a finite
A-module with dim(Supp(M)) = 1. Assume a, b, c are nonzerodivisors on M . Then

dM (a, bc) = dM (a, b)dM (a, c)
and dM (a, b)dM (b, a) = 1.

Proof. The first statement follows from Lemma 68.24 applied to M/abcM and en-
domorphisms α, β, γ given by multiplication by a, b, c. The second comes from Lemma
68.15. �

Definition 68.31. Let A be a Noetherian local domain of dimension 1 with residue
field κ. Let K be the fraction field of A. We define the tame symbol of A to be the map

K∗ ×K∗ −→ κ∗, (x, y) 7−→ dA(x, y)
where dA(x, y) is extended to K∗ ×K∗ by the multiplicativity of Lemma 68.30.

It is clear that we may extend more generally dM (−,−) to certain rings of fractions of A
(even if A is not a domain).

Lemma 68.32. LetA be a Noetherian local ring andM a finiteA-module of dimension
1. Let a ∈ A be a nonzerodivisor on M . Then dM (a, a) = (−1)lengthA(M/aM).

Proof. Immediate from Lemma 68.16. �
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Lemma 68.33. Let A be a Noetherian local ring. Let M be a finite A-module of di-
mension 1. Let b ∈ A be a nonzerodivisor on M , and let u ∈ A∗. Then

dM (u, b) = ulengthA(M/bM) mod mA.

In particular, if M = A, then dA(u, b) = uordA(b) mod mA.

Proof. Note that in this case M/ubM = M/bM on which multiplication by b is
zero. Hence dM (u, b) = detκ(u|M/bM ) by Lemma 68.17. The lemma then follows from
Lemma 68.10. �

Lemma 68.34. Let A be a Noetherian local ring. Let a, b ∈ A. Let
0→M →M ′ →M ′′ → 0

be a short exact sequence of A-modules of dimension 1 such that a, b are nonzerodivisors
on all three A-modules. Then

dM ′(a, b) = dM (a, b)dM ′′(a, b)
in κ∗.

Proof. It is easy to see that this leads to a short exact sequence of exact (2, 1)-periodic
complexes

0→ (M/abM, a, b)→ (M ′/abM ′, a, b)→ (M ′′/abM ′′, a, b)→ 0
Hence the lemma follows from Lemma 68.18. �

Lemma 68.35. Let A be a Noetherian local ring. Let α : M → M ′ be a homomor-
phism of finite A-modules of dimension 1. Let a, b ∈ A. Assume

(1) a, b are nonzerodivisors on both M and M ′, and
(2) dim(Ker(α)),dim(Coker(α)) ≤ 0.

Then dM (a, b) = dM ′(a, b).

Proof. If a ∈ A∗, then the equality follows from the equality length(M/bM) =
length(M ′/bM ′) and Lemma 68.33. Similarly if b is a unit the lemma holds as well (by
the symmetry of Lemma 68.30). Hence we may assume that a, b ∈ mA. This in particular
implies that m is not an associated prime of M , and hence α : M → M ′ is injective.
This permits us to think of M as a submodule of M ′. By assumption M ′/M is a finite A-
module with support {mA} and hence has finite length. Note that for any third module
M ′′ with M ⊂ M ′′ ⊂ M ′ the maps M → M ′′ and M ′′ → M ′ satisfy the assumptions
of the lemma as well. This reduces us, by induction on the length of M ′/M , to the case
where lengthA(M ′/M) = 1. Finally, in this case consider the map

α : M/abM −→M ′/abM ′.

By construction the cokernelQ ofα has length 1. Since a, b ∈ mA, they act trivially onQ.
It also follows that the kernel K of α has length 1 and hence also a, b act trivially on K.
Hence we may apply Lemma 68.25. Thus it suffices to see that the two maps αi : Q→ K
are the same. In fact, both maps are equal to the map q = x′ mod Im(α) 7→ abx′ ∈ K.
We omit the verification. �

Lemma 68.36. Let A be a Noetherian local ring. Let M be a finite A-module with
dim(Supp(M)) = 1. Let a, b ∈ A nonzerodivisors on M . Let q1, . . . , qt be the minimal
primes in the support of M . Then

dM (a, b) =
∏

i=1,...,t
dA/qi(a, b)

lengthAqi
(Mqi

)
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as elements of κ∗.

Proof. Choose a filtration by A-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mj/Mj−1 is isomorphic to A/pj for some prime ideal pj of A.
See Algebra, Lemma 62.1. For each j we have either pj = qi for some i, or pj = mA.
Moreover, for a fixed i, the number of j such that pj = qi is equal to lengthAqi

(Mqi) by
Algebra, Lemma 62.5. Hence dMj (a, b) is defined for each j and

dMj (a, b) =
{
dMj−1(a, b)dA/qi(a, b) if pj = qi

dMj−1(a, b) if pj = mA

by Lemma 68.34 in the first instance and Lemma 68.35 in the second. Hence the lemma.
�

Lemma 68.37. Let A be a discrete valuation ring with fraction field K. For nonzero
x, y ∈ K we have

dA(x, y) = (−1)ordA(x)ordA(y)x
ordA(y)

yordA(x) mod mA,

in other words the symbol is equal to the usual tame symbol.

Proof. By multiplicativity it suffices to prove this when x, y ∈ A. Let t ∈ A be a
uniformizer. Write x = tbu and y = tbv for some a, b ≥ 0 and u, v ∈ A∗. Set l = a+ b.
Then tl−1, . . . , tb is an admissible sequence in (x)/(xy) and tl−1, . . . , ta is an admissible
sequence in (y)/(xy). Hence by Remark 68.14 we see that dA(x, y) is characterized by the
equation

[tl−1, . . . , tb, v−1tb−1, . . . , v−1] = (−1)abdA(x, y)[tl−1, . . . , ta, u−1ta−1, . . . , u−1].

Hence by the admissible relations for the symbols [x1, . . . , xl] we see that

dA(x, y) = (−1)abua/vb mod mA

as desired. �

Lemma 68.38. Let A be a Noetherian local ring. Let a, b ∈ A. Let M be a finite
A-module of dimension 1 on which each of a, b, b− a are nonzerodivisors. Then

dM (a, b− a)dM (b, b) = dM (b, b− a)dM (a, b)

in κ∗.

Proof. By Lemma 68.36 it suffices to show the relation when M = A/q for some
prime q ⊂ A with dim(A/q) = 1.

In case M = A/q we may replace A by A/q and a, b by their images in A/q. Hence we
may assume A = M and A a local Noetherian domain of dimension 1. The reason is
that the residue field κ of A and A/q are the same and that for any A/q-module M the
determinant taken over A or over A/q are canonically identified. See Lemma 68.8.

It suffices to show the relation when both a, b are in the maximal ideal. Namely, the case
where one or both are units follows from Lemmas 68.33 and 68.32.

Choose an extension A ⊂ A′ and factorizations a = ta′, b = tb′ as in Lemma 4.2. Note
that also b−a = t(b′−a′) and thatA′ = (a′, b′) = (a′, b′−a′) = (b′−a′, b′). Here and in
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the following we think ofA′ as anA-module and a, b, a′, b′, t asA-module endomorphisms
of A′. We will use the notation dAA′(a′, b′) and so on to indicate

dAA′(a′, b′) = detκ(A′/a′b′A′, a′, b′)
which is defined by Lemma 68.27. The upper index A is used to distinguish this from the
already defined symbol dA′(a′, b′) which is different (for example because it has values
in the residue field of A′ which may be different from κ). By Lemma 68.35 we see that
dA(a, b) = dAA′(a, b), and similarly for the other combinations. Using this and multiplica-
tivity we see that it suffices to prove

dAA′(a′, b′ − a′)dAA′(b′, b′) = dAA′(b′, b′ − a′)dAA′(a′, b′)
Now, since (a′, b′) = A′ and so on we have

A′/(a′(b′ − a′)) ∼= A′/(a′)⊕A′/(b′ − a′)
A′/(b′(b′ − a′)) ∼= A′/(b′)⊕A′/(b′ − a′)

A′/(a′b′) ∼= A′/(a′)⊕A′/(b′)
Moreover, note that multiplication by b′ − a′ on A/(a′) is equal to multiplication by b′,
and that multiplication by b′ − a′ on A/(b′) is equal to multiplication by −a′. Using
Lemmas 68.17 and 68.18 we conclude

dAA′(a′, b′ − a′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′−a′))
dAA′(b′, b′ − a′) = detκ(−a′|A′/(b′))−1 detκ(b′|A′/(b′−a′))
dAA′(a′, b′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′))

Hence we conclude that
(−1)lengthA(A′/(b′))dAA′(a′, b′ − a′) = dAA′(b′, b′ − a′)dAA′(a′, b′)

the sign coming from the−a′ in the second equality above. On the other hand, by Lemma
68.16 we have dAA′(b′, b′) = (−1)lengthA(A′/(b′)) and the lemma is proved. �

The tame symbol is a Steinberg symbol.

Lemma 68.39. LetA be a Noetherian local domain of dimension 1 with fraction field
K. For x ∈ K \ {0, 1} we have

dA(x, 1− x) = 1

Proof. Writex = a/bwith a, b ∈ A. The hypothesis implies, since 1−x = (b−a)/b,
that also b− a 6= 0. Hence we compute

dA(x, 1− x) = dA(a, b− a)dA(a, b)−1dA(b, b− a)−1dA(b, b)
Thus we have to show that dA(a, b − a)dA(b, b) = dA(b, b − a)dA(a, b). This is Lemma
68.38. �

68.40. Lengths and determinants. In this section we use the determinant to compare
lattices. The key lemma is the following.

Lemma 68.41. LetR be a Noetherian local ring. Let q ⊂ R be a prime with dim(R/q) =
1. Let ϕ : M → N be a homomorphism of finite R-modules. Assume there exist
x1, . . . , xl ∈M and y1, . . . , yl ∈M with the following properties

(1) M = 〈x1, . . . , xl〉,
(2) 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 ∼= R/q for i = 1, . . . , l,
(3) N = 〈y1, . . . , yl〉, and
(4) 〈y1, . . . , yi〉/〈y1, . . . , yi−1〉 ∼= R/q for i = 1, . . . , l.
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Then ϕ is injective if and only if ϕq is an isomorphism, and in this case we have

lengthR(Coker(ϕ)) = ordR/q(f)

where f ∈ κ(q) is the element such that

[ϕ(x1), . . . , ϕ(xl)] = f [y1, . . . , yl]

in detκ(q)(Nq).

Proof. First, note that the lemma holds in case l = 1. Namely, in this case x1 is a
basis of M over R/q and y1 is a basis of N over R/q and we have ϕ(x1) = fy1 for some
f ∈ R. Thus ϕ is injective if and only if f 6∈ q. Moreover, Coker(ϕ) = R/(f, q) and
hence the lemma holds by definition of ordR/q(f) (see Algebra, Definition 121.2).

In fact, suppose more generally that ϕ(xi) = fiyi for some fi ∈ R, fi 6∈ q. Then the
induced maps

〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 −→ 〈y1, . . . , yi〉/〈y1, . . . , yi−1〉

are all injective and have cokernels isomorphic to R/(fi, q). Hence we see that

lengthR(Coker(ϕ)) =
∑

ordR/q(fi).

On the other hand it is clear that

[ϕ(x1), . . . , ϕ(xl)] = f1 . . . fl[y1, . . . , yl]

in this case from the admissible relation (b) for symbols. Hence we see the result holds in
this case also.

We prove the general case by induction on l. Assume l > 1. Let i ∈ {1, . . . , l} be minimal
such that ϕ(x1) ∈ 〈y1, . . . , yi〉. We will argue by induction on i. If i = 1, then we get a
commutative diagram

0 // 〈x1〉 //

��

〈x1, . . . , xl〉 //

��

〈x1, . . . , xl〉/〈x1〉 //

��

0

0 // 〈y1〉 // 〈y1, . . . , yl〉 // 〈y1, . . . , yl〉/〈y1〉 // 0

and the lemma follows from the snake lemma and induction on l. Assume now that i > 1.
Write ϕ(x1) = a1y1 + . . .+ ai−1yi−1 + ayi with aj , a ∈ R and a 6∈ q (since otherwise i
was not minimal). Set

x′
j =

{
xj if j = 1
axj if j ≥ 2 and y′

j =
{
yj if j < i
ayj if j ≥ i

LetM ′ = 〈x′
1, . . . , x

′
l〉 andN ′ = 〈y′

1, . . . , y
′
l〉. Since ϕ(x′

1) = a1y
′
1 + . . .+ ai−1y

′
i−1 + y′

i

by construction and since for j > 1 we have ϕ(x′
j) = aϕ(xi) ∈ 〈y′

1, . . . , y
′
l〉 we get a

commutative diagram of R-modules and maps

M ′

��

ϕ′
// N ′

��
M

ϕ // N
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By the result of the second paragraph of the proof we know that lengthR(M/M ′) =
(l − 1)ordR/q(a) and similarly lengthR(M/M ′) = (l − i + 1)ordR/q(a). By a diagram
chase this implies that

lengthR(Coker(ϕ′)) = lengthR(Coker(ϕ)) + i ordR/q(a).
On the other hand, it is clear that writing

[ϕ(x1), . . . , ϕ(xl)] = f [y1, . . . , yl], [ϕ′(x′
1), . . . , ϕ(x′

l)] = f ′[y′
1, . . . , y

′
l]

we have f ′ = aif . Hence it suffices to prove the lemma for the case that ϕ(x1) = a1y1 +
. . . ai−1yi−1 + yi, i.e., in the case that a = 1. Next, recall that

[y1, . . . , yl] = [y1, . . . , yi−1, a1y1 + . . . ai−1yi−1 + yi, yi+1, . . . , yl]
by the admissible relations for symbols. The sequence y1, . . . , yi−1, a1y1+. . .+ai−1yi−1+
yi, yi+1, . . . , yl satisfies the conditions (3), (4) of the lemma also. Hence, we may actually
assume that ϕ(x1) = yi. In this case, note that we have qx1 = 0 which implies also
qyi = 0. We have

[y1, . . . , yl] = −[y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl]
by the third of the admissible relations defining detκ(q)(Nq). Hence we may replace
y1, . . . , yl by the sequence y′

1, . . . , y
′
l = y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl (which also

satisfies conditions (3) and (4) of the lemma). Clearly this decreases the invariant i by 1
and we win by induction on i. �

To use the previous lemma we show that often sequences of elements with the required
properties exist.

Lemma 68.42. Let R be a local Noetherian ring. Let q ⊂ R be a prime ideal. Let M
be a finite R-module such that q is one of the minimal primes of the support of M . Then
there exist x1, . . . , xl ∈M such that

(1) the support of M/〈x1, . . . , xl〉 does not contain q, and
(2) 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 ∼= R/q for i = 1, . . . , l.

Moreover, in this case l = lengthRq
(Mq).

Proof. The condition that q is a minimal prime in the support of M implies that
l = lengthRq

(Mq) is finite (see Algebra, Lemma 62.3). Hence we can find y1, . . . , yl ∈Mq

such that 〈y1, . . . , yi〉/〈y1, . . . , yi−1〉 ∼= κ(q) for i = 1, . . . , l. We can find fi ∈ R, fi 6∈ q
such that fiyi is the image of some element zi ∈M . Moreover, asR is Noetherian we can
write q = (g1, . . . , gt) for some gj ∈ R. By assumption gjyi ∈ 〈y1, . . . , yi−1〉 inside the
module Mq. By our choice of zi we can find some further elements fji ∈ R, fij 6∈ q such
that fijgjzi ∈ 〈z1, . . . , zi−1〉 (equality in the module M ). The lemma follows by taking

x1 = f11f12 . . . f1tz1, x2 = f11f12 . . . f1tf21f22 . . . f2tz2,

and so on. Namely, since all the elements fi, fij are invertible in Rq we still have that
Rqx1 + . . . + Rqxi/Rqx1 + . . . + Rqxi−1 ∼= κ(q) for i = 1, . . . , l. By construction,
qxi ∈ 〈x1, . . . , xi−1〉. Thus 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 is an R-module generated by
one element, annihilated q such that localizing at q gives a q-dimensional vector space
over κ(q). Hence it is isomorphic to R/q. �

Here is the main result of this section. We will see below the various different conse-
quences of this proposition. The reader is encouraged to first prove the easier Lemma
68.44 his/herself.
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Proposition 68.43. Let R be a local Noetherian ring with residue field κ. Suppose
that (M,ϕ,ψ) is a (2, 1)-periodic complex over R. Assume

(1) M is a finite R-module,
(2) the cohomology modules of (M,ϕ,ψ) are of finite length, and
(3) dim(Supp(M)) = 1.

Let qi, i = 1, . . . , t be the minimal primes of the support of M . Then we have10

−eR(M,ϕ,ψ) =
∑

i=1,...,t
ordR/qi

(
detκ(qi)(Mqi , ϕqi , ψqi)

)
Proof. We first reduce to the case t = 1 in the following way. Note that Supp(M) =

{m, q1, . . . , qt}, where m ⊂ R is the maximal ideal. Let Mi denote the image of M →
Mqi , so Supp(Mi) = {m, qi}. The map ϕ (resp. ψ) induces an R-module map ϕi : Mi →
Mi (resp. ψi : Mi →Mi). Thus we get a morphism of (2, 1)-periodic complexes

(M,ϕ,ψ) −→
⊕

i=1,...,t
(Mi, ϕi, ψi).

The kernel and cokernel of this map have support contained in {m}. Hence by Lemma 2.5
we have

eR(M,ϕ,ψ) =
∑

i=1,...,t
eR(Mi, ϕi, ψi)

On the other hand we clearly have Mqi = Mi,qi , and hence the terms of the right hand
side of the formula of the lemma are equal to the expressions

ordR/qi
(
detκ(qi)(Mi,qi , ϕi,qi , ψi,qi)

)
In other words, if we can prove the lemma for each of the modules Mi, then the lemma
holds. This reduces us to the case t = 1.
Assume we have a (2, 1)-periodic complex (M,ϕ,ψ) over a Noetherian local ring withM
a finiteR-module, Supp(M) = {m, q}, and finite length cohomology modules. The proof
in this case follows from Lemma 68.41 and careful bookkeeping. Denote Kϕ = Ker(ϕ),
Iϕ = Im(ϕ), Kψ = Ker(ψ), and Iψ = Im(ψ). Since R is Noetherian these are all finite
R-modules. Set
a = lengthRq

(Iϕ,q) = lengthRq
(Kψ,q), b = lengthRq

(Iψ,q) = lengthRq
(Kϕ,q).

Equalities because the complex becomes exact after localizing at q. Note that l = lengthRq
(Mq)

is equal to l = a+ b.
We are going to use Lemma 68.42 to choose sequences of elements in finite R-modules
N with support contained in {m, q}. In this case Nq has finite length, say n ∈ N. Let
us call a sequence w1, . . . , wn ∈ N with properties (1) and (2) of Lemma 68.42 a “good
sequence”. Note that the quotientN/〈w1, . . . , wn〉 ofN by the submodule generated by a
good sequence has support (contained in) {m} and hence has finite length (Algebra, Lemma
62.3). Moreover, the symbol [w1, . . . , wn] ∈ detκ(q)(Nq) is a generator, see Lemma 68.5.
Having said this we choose good sequences

x1, . . . , xb in Kϕ, t1, . . . , ta in Kψ,
y1, . . . , ya in Iϕ ∩ 〈t1, . . . ta〉, s1, . . . , sb in Iψ ∩ 〈x1, . . . , xb〉.

We will adjust our choices a little bit as follows. Choose lifts ỹi ∈ M of yi ∈ Iϕ and
s̃i ∈ M of si ∈ Iψ . It may not be the case that qỹ1 ⊂ 〈x1, . . . , xb〉 and it may not be

10Obviously we could get rid of the minus sign by redefining detκ(M,ϕ, ψ) as the inverse of its current
value, see Definition 68.13.
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the case that qs̃1 ⊂ 〈t1, . . . , ta〉. However, using that q is finitely generated (as in the
proof of Lemma 68.42) we can find a d ∈ R, d 6∈ q such that qdỹ1 ⊂ 〈x1, . . . , xb〉 and
qds̃1 ⊂ 〈t1, . . . , ta〉. Thus after replacing yi by dyi, ỹi by dỹi, si by dsi and s̃i by ds̃i we
see that we may assume also that x1, . . . , xb, ỹ1, . . . , ỹb and t1, . . . , ta, s̃1, . . . , s̃b are good
sequences in M .

Finally, we choose a good sequence z1, . . . , zl in the finite R-module

〈x1, . . . , xb, ỹ1, . . . , ỹa〉 ∩ 〈t1, . . . , ta, s̃1, . . . , s̃b〉.

Note that this is also a good sequence in M .

Since Iϕ,q = Kψ,q there is a unique elementh ∈ κ(q) such that [y1, . . . , ya] = h[t1, . . . , ta]
inside detκ(q)(Kψ,q). Similarly, as Iψ,q = Kϕ,q there is a unique element h ∈ κ(q) such
that [s1, . . . , sb] = g[x1, . . . , xb] inside detκ(q)(Kϕ,q). We can also do this with the three
good sequences we have in M . All in all we get the following identities

[y1, . . . , ya] = h[t1, . . . , ta]
[s1, . . . , sb] = g[x1, . . . , xb]
[z1, . . . , zl] = fϕ[x1, . . . , xb, ỹ1, . . . , ỹa]
[z1, . . . , zl] = fψ[t1, . . . , ta, s̃1, . . . , s̃b]

for some g, h, fϕ, fψ ∈ κ(q).

Having set up all this notation let us compute detκ(q)(M,ϕ,ψ). Namely, consider the
element [z1, . . . , zl]. Under the map γψ ◦ σ ◦ γ−1

ϕ of Definition 68.13 we have

[z1, . . . , zl] = fϕ[x1, . . . , xb, ỹ1, . . . , ỹa]
7→ fϕ[x1, . . . , xb]⊗ [y1, . . . , ya]
7→ fϕh/g[t1, . . . , ta]⊗ [s1, . . . , sb]
7→ fϕh/g[t1, . . . , ta, s̃1, . . . , s̃b]
= fϕh/fψg[z1, . . . , zl]

This means that detκ(q)(Mq, ϕq, ψq) is equal to fϕh/fψg up to a sign.

We abbreviate the following quantities

kϕ = lengthR(Kϕ/〈x1, . . . , xb〉)
kψ = lengthR(Kψ/〈t1, . . . , ta〉)
iϕ = lengthR(Iϕ/〈y1, . . . , ya〉)
iψ = lengthR(Iψ/〈s1, . . . , sa〉)
mϕ = lengthR(M/〈x1, . . . , xb, ỹ1, . . . , ỹa〉)
mψ = lengthR(M/〈t1, . . . , ta, s̃1, . . . , s̃b〉)
δϕ = lengthR(〈x1, . . . , xb, ỹ1, . . . , ỹa〉〈z1, . . . , zl〉)
δψ = lengthR(〈t1, . . . , ta, s̃1, . . . , s̃b〉〈z1, . . . , zl〉)

Using the exact sequences 0→ Kϕ →M → Iϕ → 0 we getmϕ = kϕ + iϕ. Similarly we
have mψ = kψ + iψ . We have δϕ +mϕ = δψ +mψ since this is equal to the colength of
〈z1, . . . , zl〉 in M . Finally, we have

δϕ = ordR/q(fϕ), δψ = ordR/q(fψ)
by our first application of the key Lemma 68.41.
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Next, let us compute the multiplicity of the periodic complex

eR(M,ϕ,ψ) = lengthR(Kϕ/Iψ)− lengthR(Kψ/Iϕ)
= lengthR(〈x1, . . . , xb〉/〈s1, . . . , sb〉) + kϕ − iψ
−lengthR(〈t1, . . . , ta〉/〈y1, . . . , ya〉)− kψ + iϕ

= ordR/q(g/h) + kϕ − iψ − kψ + iϕ

= ordR/q(g/h) +mϕ −mψ

= ordR/q(g/h) + δψ − δϕ
= ordR/q(fψg/fϕh)

where we used the key Lemma 68.41 twice in the third equality. By our computation of
detκ(q)(Mq, ϕq, ψq) this proves the proposition. �

In most applications the following lemma suffices.

Lemma 68.44. Let R be a Noetherian local ring with maximal ideal m. Let M be a
finite R-module, and let ψ : M →M be an R-module map. Assume that

(1) Ker(ψ) and Coker(ψ) have finite length, and
(2) dim(Supp(M)) ≤ 1.

Write Supp(M) = {m, q1, . . . , qt} and denote fi ∈ κ(qi)∗ the element such that detκ(qi)(ψqi) :
detκ(qi)(Mqi)→ detκ(qi)(Mqi) is multiplication by fi. Then we have

lengthR(Coker(ψ))− lengthR(Ker(ψ)) =
∑

i=1,...,t
ordR/qi(fi).

Proof. Recall that H0(M, 0, ψ) = Coker(ψ) and H1(M, 0, ψ) = Ker(ψ), see re-
marks above Definition 2.2. The lemma follows by combining Proposition 68.43 with
Lemma 68.17.

Alternative proof. Reduce to the case Supp(M) = {m, q} as in the proof of Proposition
68.43. Then directly combine Lemmas 68.41 and 68.42 to prove this specific case of Propo-
sition 68.43. There is much less bookkeeping in this case, and the reader is encouraged to
work this out. Details omitted. �

68.45. Application to the key lemma. In this section we apply the results above to
show the analogue of the key lemma (Lemma 6.3) with the tame symbol dA constructed
above. Please see Remark 6.4 for the relationship with Milnor K-theory.

Lemma 68.46 (Key Lemma). LetA be a 2-dimensional Noetherian local domain with
fraction field K. Let f, g ∈ K∗. Let q1, . . . , qt be the height 1 primes q of A such that
either f or g is not an element of A∗

q. Then we have∑
i=1,...,t

ordA/qi(dAqi
(f, g)) = 0

We can also write this as ∑
height(q)=1

ordA/q(dAq
(f, g)) = 0

since at any height one prime q of A where f, g ∈ A∗
q we have dAq

(f, g) = 1 by Lemma
68.33.
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Proof. Since the tame symbols dAq
(f, g) are additive (Lemma 68.30) and the order

functions ordA/q are additive (Algebra, Lemma 121.1) it suffices to prove the formula when
f = a ∈ A and g = b ∈ A. In this case we see that we have to show∑

height(q)=1
ordA/q(detκ(Aq/(ab), a, b)) = 0

By Proposition 68.43 this is equivalent to showing that

eA(A/(ab), a, b) = 0.

Since the complex A/(ab) a−→ A/(ab) b−→ A/(ab) a−→ A/(ab) is exact we win. �

69. Appendix B: Alternative approaches

In this appendix we first briefly try to connect the material in the main text with K-
theory of coherent sheaves. In particular we describe how cupping with c1 of an invertible
module is related to tensoring by this invertible module, see Lemma 69.7. This material is
obviously very interesting and deserves a much more detailed and expansive exposition.

69.1. Rational equivalence and K-groups. This section is a continuation of Section
23. The motivation for the following lemma is Homology, Lemma 11.3.

Lemma 69.2. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. Let F be a coherent sheaf on X . Let

. . . // F
ϕ // F

ψ // F
ϕ // F // . . .

be a complex as in Homology, Equation (11.2.1). Assume that
(1) dimδ(Supp(F)) ≤ k + 1.
(2) dimδ(Supp(Hi(F , ϕ, ψ))) ≤ k for i = 0, 1.

Then we have
[H0(F , ϕ, ψ)]k ∼rat [H1(F , ϕ, ψ)]k

as k-cycles on X .

Proof. Let {Wj}j∈J be the collection of irreducible components of Supp(F) which
have δ-dimension k + 1. Note that {Wj} is a locally finite collection of closed subsets of
X by Lemma 10.1. For every j , let ξj ∈Wj be the generic point. Set

fj = detκ(ξj)(Fξj , ϕξj , ψξj ) ∈ R(Wj)∗.

See Definition 68.13 for notation. We claim that

−[H0(F , ϕ, ψ)]k + [H1(F , ϕ, ψ)]k =
∑

(Wj → X)∗div(fj)

If we prove this then the lemma follows.

Let Z ⊂ X be an integral closed subscheme of δ-dimension k. To prove the equality
above it suffices to show that the coefficient n of [Z] in [H0(F , ϕ, ψ)]k − [H1(F , ϕ, ψ)]k
is the same as the coefficient m of [Z] in

∑
(Wj → X)∗div(fj). Let ξ ∈ Z be the generic

point. Consider the local ring A = OX,ξ . Let M = Fξ as an A-module. Denote ϕ,ψ :
M → M the action of ϕ,ψ on the stalk. By our choice of ξ ∈ Z we have δ(ξ) = k and
hence dim(Supp(M)) = 1. Finally, the integral closed subschemesWj passing through ξ
correspond to the minimal primes qi of Supp(M). In each case the element fj ∈ R(Wj)∗

corresponds to the element detκ(qi)(Mqi , ϕ, ψ) in κ(qi)∗. Hence we see that

n = −eA(M,ϕ,ψ)
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and
m =

∑
ordA/qi(detκ(qi)(Mqi , ϕ, ψ))

Thus the result follows from Proposition 68.43. �

Lemma 69.3. Let (S, δ) be as in Situation 7.1. LetX be a scheme locally of finite type
over S. The map

CHk(X) −→ K0(Coh≤k+1(X)/Coh≤k−1(X))

from Lemma 23.4 induces a bijection from CHk(X) onto the image Bk(X) of the map

K0(Coh≤k(X)/Coh≤k−1(X)) −→ K0(Coh≤k+1(X)/Coh≤k−1(X)).

Proof. By Lemma 23.2 we have Zk(X) = K0(Coh≤k(X)/Coh≤k−1(X)) compati-
ble with the map of Lemma 23.4. Thus, suppose we have an element [A]−[B] ofK0(Coh≤k(X)/Coh≤k−1(X))
which maps to zero in Bk(X), i.e., maps to zero in K0(Coh≤k+1(X)/Coh≤k−1(X)).
We have to show that [A] − [B] corresponds to a cycle rationally equivalent to zero
on X . Suppose [A] = [A] and [B] = [B] for some coherent sheaves A,B on X sup-
ported in δ-dimension ≤ k. The assumption that [A] − [B] maps to zero in the group
K0(Coh≤k+1(X)/Coh≤k−1(X)) means that there exists coherent sheaves A′,B′ on X
supported in δ-dimension≤ k−1 such that [A⊕A′]−[B⊕B′] is zero inK0(Cohk+1(X))
(use part (1) of Homology, Lemma 11.3). By part (2) of Homology, Lemma 11.3 this means
there exists a (2, 1)-periodic complex (F , ϕ, ψ) in the category Coh≤k+1(X) such that
A⊕A′ = H0(F , ϕ, ψ) and B ⊕ B′ = H1(F , ϕ, ψ). By Lemma 69.2 this implies that

[A⊕A′]k ∼rat [B ⊕ B′]k

This proves that [A]− [B] maps to a cycle rationally equivalent to zero by the map

K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X)

of Lemma 23.2. This is what we had to prove and the proof is complete. �

69.4. Cartier divisors and K-groups. In this section we describe how the intersection
with the first Chern class of an invertible sheaf L corresponds to tensoring with L−O in
K-groups.

Lemma 69.5. Let A be a Noetherian local ring. Let M be a finite A-module. Let
a, b ∈ A. Assume

(1) dim(A) = 1,
(2) both a and b are nonzerodivisors in A,
(3) A has no embedded primes,
(4) M has no embedded associated primes,
(5) Supp(M) = Spec(A).

Let I = {x ∈ A | x(a/b) ∈ A}. Let q1, . . . , qt be the minimal primes of A. Then
(a/b)IM ⊂M and

lengthA(M/(a/b)IM)− lengthA(M/IM) =
∑

i
lengthAqi

(Mqi)ordA/qi(a/b)

Proof. Since M has no embedded associated primes, and since the support of M is
Spec(A) we see that Ass(M) = {q1, . . . , qt}. Hence a, b are nonzerodivisors on M . Note
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that

lengthA(M/(a/b)IM)
= lengthA(bM/aIM)
= lengthA(M/aIM)− lengthA(M/bM)
= lengthA(M/aM) + lengthA(aM/aIM)− lengthA(M/bM)
= lengthA(M/aM) + lengthA(M/IM)− lengthA(M/bM)

as the injective map b : M → bM maps (a/b)IM to aIM and the injective map a : M →
aM maps IM to aIM . Hence the left hand side of the equation of the lemma is equal to

lengthA(M/aM)− lengthA(M/bM).

Applying the second formula of Lemma 3.2 with x = a, b respectively and using Algebra,
Definition 121.2 of the ord-functions we get the result. �

Lemma 69.6. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
LetL be an invertibleOX -module. LetF be a coherentOX -module. Let s ∈ Γ(X,KX(L))
be a meromorphic section of L. Assume

(1) dimδ(X) ≤ k + 1,
(2) X has no embedded points,
(3) F has no embedded associated points,
(4) the support of F is X , and
(5) the section s is regular meromorphic.

In this situation let I ⊂ OX be the ideal of denominators of s, see Divisors, Definition
23.10. Then we have the following:

(1) there are short exact sequences

0 → IF 1−→ F → Q1 → 0
0 → IF s−→ F ⊗OX

L → Q2 → 0

(2) the coherent sheavesQ1,Q2 are supported in δ-dimension ≤ k,
(3) the section s restricts to a regular meromorphic section si on every irreducible

component Xi of X of δ-dimension k + 1, and
(4) writing [F ]k+1 =

∑
mi[Xi] we have

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)

in Zk(X), in particular

[Q2]k − [Q1]k = c1(L) ∩ [F ]k+1

in CHk(X).

Proof. Recall from Divisors, Lemma 24.5 the existence of injective maps 1 : IF →
F and s : IF → F⊗OX

Lwhose cokernels are supported on a closed nowhere dense sub-
sets T . DenoteQi there cokernels as in the lemma. We conclude that dimδ(Supp(Qi)) ≤
k. By Divisors, Lemmas 23.5 and 23.8 the pullbacks si are defined and are regular mero-
morphic sections forL|Xi . The equality of cycles in (4) implies the equality of cycle classes
in (4). Hence the only remaining thing to show is that

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)
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holds in Zk(X). To see this, let Z ⊂ X be an integral closed subscheme of δ-dimension
k. Let ξ ∈ Z be the generic point. Let A = OX,ξ and M = Fξ . Moreover, choose a
generator sξ ∈ Lξ . Then we can write s = (a/b)sξ where a, b ∈ A are nonzerodivisors.
In this case I = Iξ = {x ∈ A | x(a/b) ∈ A}. In this case the coefficient of [Z] in the left
hand side is

lengthA(M/(a/b)IM)− lengthA(M/IM)
and the coefficient of [Z] in the right hand side is∑

lengthAqi
(Mqi)ordA/qi(a/b)

where q1, . . . , qt are the minimal primes of the 1-dimensional local ring A. Hence the
result follows from Lemma 69.5. �

Lemma 69.7. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S.
LetL be an invertibleOX -module. LetF be a coherentOX -module. Assume dimδ(Supp(F)) ≤
k + 1. Then the element

[F ⊗OX
L]− [F ] ∈ K0(Coh≤k+1(X)/Coh≤k−1(X))

lies in the subgroup Bk(X) of Lemma 69.3 and maps to the element c1(L) ∩ [F ]k+1 via
the map Bk(X)→ CHk(X).

Proof. Let
0→ K → F → F ′ → 0

be the short exact sequence constructed in Divisors, Lemma 4.6. This in particular means
that F ′ has no embedded associated points. Since the support of K is nowhere dense in
the support of F we see that dimδ(Supp(K)) ≤ k. We may re-apply Divisors, Lemma 4.6
starting with K to get a short exact sequence

0→ K′′ → K → K′ → 0
where now dimδ(Supp(K′′)) < k andK′ has no embedded associated points. Suppose we
can prove the lemma for the coherent sheaves F ′ andK′. Then we see from the equations

[F ]k+1 = [F ′]k+1 + [K′]k+1 + [K′′]k+1

(use Lemma 10.4),
[F ⊗OX

L]− [F ] = [F ′ ⊗OX
L]− [F ′] + [K′ ⊗OX

L]− [K′] + [K′′ ⊗OX
L]− [K′′]

(use the ⊗L is exact) and the trivial vanishing of [K′′]k+1 and [K′′ ⊗OX
L] − [K′′] in

K0(Coh≤k+1(X)/Coh≤k−1(X)) that the result holds forF . What this means is that we
may assume that the sheaf F has no embedded associated points.
Assume X , F as in the lemma, and assume in addition that F has no embedded associated
points. Consider the sheaf of ideals I ⊂ OX , the corresponding closed subscheme i :
Z → X and the coherent OZ -module G constructed in Divisors, Lemma 4.7. Recall that
Z is a locally Noetherian scheme without embedded points, G is a coherent sheaf without
embedded associated points, with Supp(G) = Z and such that i∗G = F . Moreover, set
N = L|Z .
By Divisors, Lemma 25.4 the invertible sheafN has a regular meromorphic section s over
Z. Let us denote J ⊂ OZ the sheaf of denominators of s. By Lemma 69.6 there exist
short exact sequences

0 → JG 1−→ G → Q1 → 0
0 → JG s−→ G ⊗OZ

N → Q2 → 0
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such that dimδ(Supp(Qi)) ≤ k and such that the cycle [Q2]k − [Q1]k is a representative
of c1(N ) ∩ [G]k+1. We see (using the fact that i∗(G ⊗ N ) = F ⊗ L by the projection
formula, see Cohomology, Lemma 54.2) that

[F ⊗OX
L]− [F ] = [i∗Q2]− [i∗Q1]

in K0(Coh≤k+1(X)/Coh≤k−1(X)). This already shows that [F ⊗OX
L] − [F ] is an

element of Bk(X). Moreover we have
[i∗Q2]k − [i∗Q1]k = i∗ ([Q2]k − [Q1]k)

= i∗ (c1(N ) ∩ [G]k+1)
= c1(L) ∩ i∗[G]k+1

= c1(L) ∩ [F ]k+1

by the above and Lemmas 26.4 and 12.4. And this agree with the image of the element
under Bk(X)→ CHk(X) by definition. Hence the lemma is proved. �
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CHAPTER 43

Intersection Theory

1. Introduction

In this chapter we construct the intersection product on the Chow groups modulo rational
equivalence on a nonsingular projective variety over an algebraically closed field. Our
tools are Serre’s Tor formula (see [?, Chapter V]), reduction to the diagonal, and the moving
lemma.

We first recall cycles and how to construct proper pushforward and flat pullback of cy-
cles. Next, we introduce rational equivalence of cycles which gives us the Chow groups
CH∗(X). Proper pushforward and flat pullback factor through rational equivalence to
give operations on Chow groups. This takes up Sections 3, 4, 5, 6, 7, 8, 9, 10, and 11. For
proofs we mostly refer to the chapter on Chow homology where these results have been
proven in the setting of schemes locally of finite type over a universally catenary Noe-
therian base, see Chow Homology, Section 7 ff.

Since we work on a nonsingular projective X any irreducible component of the inter-
section V ∩ W of two irreducible closed subvarieties has dimension at least dim(V ) +
dim(W )− dim(X). We say V and W intersect properly if equality holds for every irre-
ducible component Z. In this case we define the intersection multiplicity eZ = e(X,V ·
W,Z) by the formula

eZ =
∑

i
(−1)ilengthOX,Z

TorOX,Z

i (OW,Z ,OV,Z)

We need to do a little bit of commutative algebra to show that these intersection multi-
plicities agree with intuition in simple cases, namely, that sometimes

eZ = lengthOX,Z
OV ∩W,Z ,

in other words, only Tor0 contributes. This happens when V andW are Cohen-Macaulay
in the generic point of Z or when W is cut out by a regular sequence in OX,Z which
also defines a regular sequence on OV,Z . However, Example 14.4 shows that higher tors
are necessary in general. Moreover, there is a relationship with the Samuel multiplicity.
These matters are discussed in Sections 13, 14, 15, 16, and 17.

Reduction to the diagonal is the statement that we can intersect V and W by intersecting
V × W with the diagonal in X × X . This innocuous statement, which is clear on the
level of scheme theoretic intersections, reduces an intersection of a general pair of closed
subschemes, to the case where one of the two is locally cut out by a regular sequence.
We use this, following Serre, to obtain positivity of intersection multiplicities. Moreover,
reduction to the diagonal leads to additivity of intersection multiplicities, associativity,
and a projection formula. This can be found in Sections 18, 19, 20, 21, and 22.

3783
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Finally, we come to the moving lemmas and applications. There are two parts to the
moving lemma. The first is that given closed subvarieties

Z ⊂ X ⊂ PN

withX nonsingular, we can find a subvariety C ⊂ PN intersectingX properly such that

C ·X = [Z] +
∑

mj [Zj ]

and such that the other components Zj are “more general” than Z. The second part is
that one can move C ⊂ PN over a rational curve to a subvariety in general position with
respect to any given list of subvarieties. Combined these results imply that it suffices to
define the intersection product of cycles on X which intersect properly which was done
above. Of course this only leads to an intersection product on CH∗(X) if one can show,
as we do in the text, that these products pass through rational equivalence. This and some
applications are discussed in Sections 23, 24, 25, 26, 27, and 28.

2. Conventions

We fix an algebraically closed ground field C of any characteristic. All schemes and va-
rieties are over C and all morphisms are over C. A variety X is nonsingular if X is a
regular scheme (see Properties, Definition 9.1). In our case this means that the morphism
X → Spec(C) is smooth (see Varieties, Lemma 12.6).

3. Cycles

Let X be a variety. A closed subvariety of X is an integral closed subscheme Z ⊂ X .
A k-cycle on X is a finite formal sum

∑
ni[Zi] where each Zi is a closed subvariety of

dimension k. Whenever we use the notationα =
∑
ni[Zi] for a k-cycle we always assume

the subvarieties Zi are pairwise distinct and ni 6= 0 for all i. In this case the support of α
is the closed subset

Supp(α) =
⋃
Zi ⊂ X

of dimension k. The group of k-cycles is denoted Zk(X). See Chow Homology, Section
8.

4. Cycle associated to closed subscheme

Suppose thatX is a variety and that Z ⊂ X be a closed subscheme with dim(Z) ≤ k. Let
Zi be the irreducible components of Z of dimension k and let ni be the multiplicity of Zi
in Z defined as

ni = lengthOX,Zi
OZ,Zi

where OX,Zi , resp. OZ,Zi is the local ring of X , resp. Z at the generic point of Zi. We
define the k-cycle associated to Z to be the k-cycle

[Z]k =
∑

ni[Zi].

See Chow Homology, Section 9.



7. FLAT PULLBACK 3785

5. Cycle associated to a coherent sheaf

Suppose that X is a variety and that F is a coherent OX -module with dim(Supp(F)) ≤
k. Let Zi be the irreducible components of Supp(F) of dimension k and let ni be the
multiplicity of Zi in F defined as

ni = lengthOX,Zi
Fξi

where OX,Zi is the local ring of X at the generic point ξi of Zi and Fξi is the stalk of F
at this point. We define the k-cycle associated to F to be the k-cycle

[F ]k =
∑

ni[Zi].

See Chow Homology, Section 10. Note that, ifZ ⊂ X is a closed subscheme with dim(Z) ≤
k, then [Z]k = [OZ ]k by definition.

6. Proper pushforward

Suppose that f : X → Y is a proper morphism of varieties. LetZ ⊂ X be a k-dimensional
closed subvariety. We define f∗[Z] to be 0 if dim(f(Z)) < k and d·[f(Z)] if dim(f(Z)) =
k where

d = [C(Z) : C(f(Z))] = deg(Z/f(Z))
is the degree of the dominant morphism Z → f(Z), see Morphisms, Definition 51.8. Let
α =

∑
ni[Zi] be a k-cycle on X . The pushforward of α is the sum f∗α =

∑
nif∗[Zi]

where each f∗[Zi] is defined as above. This defines a homomorphism

f∗ : Zk(X) −→ Zk(Y )
See Chow Homology, Section 12.

Lemma 6.1. Suppose that f : X → Y is a proper morphism of varieties. Let F be a
coherent sheaf with dim(Supp(F)) ≤ k, then f∗[F ]k = [f∗F ]k. In particular, if Z ⊂ X
is a closed subscheme of dimension ≤ k, then f∗[Z]k = [f∗OZ ]k.

Proof. See Chow Homology, Lemma 12.4. �

Lemma 6.2. Let f : X → Y and g : Y → Z be proper morphisms of varieties. Then
g∗ ◦ f∗ = (g ◦ f)∗ as maps Zk(X)→ Zk(Z).

Proof. Special case of Chow Homology, Lemma 12.2. �

7. Flat pullback

Suppose that f : X → Y is a flat morphism of varieties. By Morphisms, Lemma 28.2 every
fibre of f has dimension r = dim(X) − dim(Y )1. Let Z ⊂ X be a k-dimensional closed
subvariety. We define f∗[Z] to be the (k + r)-cycle associated to the scheme theoretic
inverse image: f∗[Z] = [f−1(Z)]k+r. Let α =

∑
ni[Zi] be a k-cycle on Y . The pullback

of α is the sum f∗α =
∑
nif

∗[Zi] where each f∗[Zi] is defined as above. This defines a
homomorphism

f∗ : Zk(Y ) −→ Zk+r(X)
See Chow Homology, Section 14.

1Conversely, if f : X → Y is a dominant morphism of varieties,X is Cohen-Macaulay, Y is nonsingular,
and all fibres have the same dimension r, then f is flat. This follows from Algebra, Lemma 128.1 and Varieties,
Lemma 20.4 showing dim(X) = dim(Y ) + r.



3786 43. INTERSECTION THEORY

Lemma 7.1. Let f : X → Y be a flat morphism of varieties. Set r = dim(X) −
dim(Y ). Then f∗[F ]k = [f∗F ]k+r if F is a coherent sheaf on Y and the dimension of
the support of F is at most k.

Proof. See Chow Homology, Lemma 14.4. �

Lemma 7.2. Let f : X → Y and g : Y → Z be flat morphisms of varieties. Then
g ◦ f is flat and f∗ ◦ g∗ = (g ◦ f)∗ as maps Zk(Z)→ Zk+dim(X)−dim(Z)(X).

Proof. Special case of Chow Homology, Lemma 14.3. �

8. Rational Equivalence

We are going to define rational equivalence in a way which at first glance may seem dif-
ferent from what you are used to, or from what is in [?, Chapter I] or Chow Homology,
Section 19. However, in Section 9 we will show that the two notions agree.

Let X be a variety. Let W ⊂ X ×P1 be a closed subvariety of dimension k + 1. Let a, b
be distinct closed points of P1. Assume that X × a, X × b and W intersect properly:

dim(W ∩X × a) ≤ k, dim(W ∩X × b) ≤ k.

This is true as soon as W → P1 is dominant or if W is contained in a fibre of the pro-
jection over a closed point different from a or b (this is an uninteresting case which we
will discard). In this situation the scheme theoretic fibre Wa of the morphism W → P1

is equal to the scheme theoretic intersection W ∩X × a in X × P1. Identifying X × a
and X × b with X we may think of the fibres Wa and Wb as closed subschemes of X of
dimension ≤ k2. A basic example of a rational equivalence is

[Wa]k ∼rat [Wb]k
The cycles [Wa]k and [Wb]k are easy to compute in practice (given W ) because they are
obtained by proper intersection with a Cartier divisor (we will see this in Section 17). Since
the automorphism group of P1 is 2-transitive we may move the pair of closed points a, b
to any pair we like. A traditional choice is to choose a = 0 and b =∞.

More generally, let α =
∑
ni[Wi] be a (k + 1)-cycle on X × P1. Let ai, bi be pairs

of distinct closed points of P1. Assume that X × ai, X × bi and Wi intersect properly,
in other words, each Wi, ai, bi satisfies the condition discussed above. A cycle rationally
equivalent to zero is any cycle of the form∑

ni([Wi,ai ]k − [Wi,bi ]k).

This is indeed a k-cycle. The collection of k-cycles rationally equivalent to zero is an
additive subgroup of the group of k-cycles. We say two k-cycles are rationally equivalent,
notation α ∼rat α′, if α− α′ is a cycle rationally equivalent to zero.

We define
CHk(X) = Zk(X)/ ∼rat

to be the Chow group of k-cycles on X . We will see in Lemma 9.1 that this agrees with
the Chow group as defined in Chow Homology, Definition 19.1.

2We will sometimes think of Wa as a closed subscheme of X × P1 and sometimes as a closed subscheme
of X . It should always be clear from context which point of view is taken.
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9. Rational equivalence and rational functions

Let X be a variety. Let W ⊂ X be a subvariety of dimension k + 1. Let f ∈ C(W )∗

be a nonzero rational function on W . For every subvariety Z ⊂ W of dimension k one
can define the order of vanishing ordW,Z(f) of f at Z. If f is an element of the local ring
OW,Z , then one has

ordW,Z(f) = lengthOX,Z
OW,Z/fOW,Z

where OX,Z , resp. OW,Z is the local ring of X , resp. W at the generic point of Z. In
general one extends the definition by multiplicativity. The principal divisor associated to
f is

divW (f) =
∑

ordW,Z(f)[Z]
in Zk(W ). Since W ⊂ X is a closed subvariety we may think of divW (f) as a cycle on
X . See Chow Homology, Section 17.

Lemma 9.1. Let X be a variety. Let W ⊂ X be a subvariety of dimension k + 1. Let
f ∈ C(W )∗ be a nonzero rational function onW . Then divW (f) is rationally equivalent
to zero on X . Conversely, these principal divisors generate the abelian group of cycles
rationally equivalent to zero on X .

Proof. The first assertion follows from Chow Homology, Lemma 18.2. More pre-
cisely, letW ′ ⊂ X×P1 be the closure of the graph of f . Then divW (f) = [W ′

0]k− [W ′
∞]

in Zk(W ) ⊂ Zk(X), see part (6) of Chow Homology, Lemma 18.2.
For the second, let W ′ ⊂ X × P1 be a closed subvariety of dimension k + 1 which
dominates P1. We will show that [W ′

0]k − [W ′
∞]k is a principal divisor which will finish

the proof. Let W ⊂ X be the image of W ′ under the projection to X . Then W ⊂ X is a
closed subvariety and W ′ → W is proper and dominant with fibres of dimension 0 or 1.
If dim(W ) = k, then W ′ = W ×P1 and we see that [W ′

0]k − [W ′
∞]k = [W ]− [W ] = 0.

If dim(W ) = k + 1, then W ′ → W is generically finite3. Let f denote the projection
W ′ → P1 viewed as an element of C(W ′)∗. Let g = Nm(f) ∈ C(W )∗ be the norm. By
Chow Homology, Lemma 18.1 we have

divW (g) = prX,∗divW ′(f)

Since divW ′(f) = [W ′
0]k−[W ′

∞]k by Chow Homology, Lemma 18.2 the proof is complete.
�

10. Proper pushforward and rational equivalence

Suppose that f : X → Y is a proper morphism of varieties. Let α ∼rat 0 be a k-cycle on
X rationally equivalent to 0. Then the pushforward of α is rationally equivalent to zero:
f∗α ∼rat 0. See Chapter I of [?] or Chow Homology, Lemma 20.3.
Therefore we obtain a commutative diagram

Zk(X) //

f∗

��

CHk(X)

f∗

��
Zk(Y ) // CHk(Y )

3If W ′ → W is birational, then the result follows from Chow Homology, Lemma 18.2. Our task is to
show that even if W ′ → W has degree > 1 the basic rational equivalence [W ′

0]k ∼rat [W ′
∞]k comes from a

principal divisor on a subvariety of X .
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of groups of k-cycles.

11. Flat pullback and rational equivalence

Suppose that f : X → Y is a flat morphism of varieties. Set r = dim(X)− dim(Y ). Let
α ∼rat 0 be a k-cycle on Y rationally equivalent to 0. Then the pullback of α is rationally
equivalent to zero: f∗α ∼rat 0. See Chapter I of [?] or Chow Homology, Lemma 20.2.
Therefore we obtain a commutative diagram

Zk+r(X) // CHk+r(X)

Zk(Y ) //

f∗

OO

CHk(Y )

f∗

OO

of groups of k-cycles.

12. The short exact sequence for an open

LetX be a variety and let U ⊂ X be an open subvariety. LetX \U =
⋃
Zi be the decom-

position into irreducible components4. Then for each k ≥ 0 there exists a commutative
diagram ⊕

Zk(Zi) //

��

Zk(X) //

��

Zk(U)

��

// 0

⊕
CHk(Zi) // CHk(X) // CHk(U) // 0

with exact rows. Here the vertical arrows are the canonical quotient maps. The left hori-
zontal arrows are given by proper pushforward along the closed immersionsZi → X . The
right horizontal arrows are given by flat pullback along the open immersion j : U → X .
Since we have seen that these maps factor through rational equivalence we obtain the com-
mutativity of the squares. The top row is exact simply because every subvariety of X is
either contained in some Zi or has irreducible intersection with U . The bottom row is
exact because every principal divisor divW (f) on U is the restriction of a principal di-
visor on X . More precisely, if W ⊂ U is a (k + 1)-dimensional closed subvariety and
f ∈ C(W )∗, then denoteW the closure ofW inX . ThenW ⊂W is an open immersion,
so C(W ) = C(W ) and we may think of f as a nonconstant rational function onW . Then
clearly

j∗divW (f) = divW (f)
in Zk(X). The exactness of the lower row follows easily from this. For details see Chow
Homology, Lemma 19.3.

13. Proper intersections

First a few lemmas to get dimension estimates.

Lemma 13.1. LetX and Y be varieties. ThenX ×Y is a variety and dim(X ×Y ) =
dim(X) + dim(Y ).

Proof. The scheme X × Y = X ×Spec(C) Y is a variety by Varieties, Lemma 3.3.
The statement on dimension is Varieties, Lemma 20.5. �

4Since in this chapter we only consider Chow groups of varieties, we are prohibited from takingZk(X\U)
and CHk(X \ U), hence the approach using the varieties Zi.
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Recall that a regular immersion i : X → Y of schemes is a closed immersion whose cor-
responding sheaf of ideals is locally generated by a regular sequence, see Divisors, Section
21. Moreover, the conormal sheaf CX/Y is finite locally free of rank equal to the length
of the regular sequence. Let us say i is a regular immersion of codimension c if CX/Y is
locally free of rank c.

More generally, recall (More on Morphisms, Section 62) that f : X → Y is a local com-
plete intersection morphism if we can cover X by opens U such that we can factor f |U
as

U
i

//

��

An
Y

~~
Y

where i is a Koszul regular immersion (if Y is locally Noetherian this is the same as asking
i to be a regular immersion, see Divisors, Lemma 21.3). Let us say that f is a local complete
intersection morphism of relative dimension r if for any factorization as above, the closed
immersion i has conormal sheaf of rank n − r (in other words if i is a Koszul-regular
immersion of codimension n − r which in the Noetherian case just means it is regular
immersion of codimension n− r).

Lemma 13.2. Let f : X → Y be a morphism of varieties.
(1) If Z ⊂ Y is a subvariety dimension d and f is a regular immersion of codimen-

sion c, then every irreducible component of f−1(Z) has dimension ≥ d− c.
(2) If Z ⊂ Y is a subvariety of dimension d and f is a local complete intersection

morphism of relative dimension r, then every irreducible component of f−1(Z)
has dimension ≥ d+ r.

Proof. Proof of (1). We may work locally, hence we may assume that Y = Spec(A)
and X = V (f1, . . . , fc) where f1, . . . , fc is a regular sequence in A. If Z = Spec(A/p),
then we see that f−1(Z) = Spec(A/p+(f1, . . . , fc)). If V is an irreducible component of
f−1(Z), then we can choose a closed point v ∈ V not contained in any other irreducible
component of f−1(Z). Then

dim(Z) = dimOZ,v and dim(V ) = dimOV,v = dimOZ,v/(f1, . . . , fc)
The first equality for example by Algebra, Lemma 116.1 and the second equality by our
choice of closed point. The result now follows from the fact that dividing by one element
in the maximal ideal decreases the dimension by at most 1, see Algebra, Lemma 60.13.

Proof of (2). Choose a factorization as in the definition of a local complete intersection
and apply (1). Some details omitted. �

Lemma 13.3. LetX be a nonsingular variety. Then the diagonal ∆ : X → X ×X is
a regular immersion of codimension dim(X).

Proof. In fact, any closed immersion between nonsingular projective varieties is a
regular immersion, see Divisors, Lemma 22.11. �

The following lemma demonstrates how reduction to the diagonal works.

Lemma 13.4. LetX be a nonsingular variety and letW,V ⊂ X be closed subvarieties
with dim(W ) = s and dim(V ) = r. Then every irreducible component Z of V ∩W has
dimension ≥ r + s− dim(X).
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Proof. Since V ∩W = ∆−1(V ×W ) (scheme theoretically) we conclude by Lemmas
13.3 and 13.2. �

This lemma suggests the following definition.

Definition 13.5. Let X be a nonsingular variety.
(1) Let W,V ⊂ X be closed subvarieties with dim(W ) = s and dim(V ) = r. We

say that W and V intersect properly if dim(V ∩W ) ≤ r + s− dim(X).
(2) Let α =

∑
ni[Wi] be an s-cycle, and β =

∑
jmj [Vj ] be an r-cycle on X . We

say that α and β intersect properly if Wi and Vj intersect properly for all i and
j.

14. Intersection multiplicities using Tor formula

A basic fact we will use frequently is that given sheaves of modulesF , G on a ringed space
(X,OX) and a point x ∈ X we have

TorOX
p (F ,G)x = TorOX,x

p (Fx,Gx)
as OX,x-modules. This can be seen in several ways from our construction of derived
tensor products in Cohomology, Section 26, for example it follows from Cohomology,
Lemma 26.4. Moreover, if X is a scheme and F and G are quasi-coherent, then the mod-
ules TorOX

p (F ,G) are quasi-coherent too, see Derived Categories of Schemes, Lemma 3.9.
More important for our purposes is the following result.

Lemma 14.1. Let X be a locally Noetherian scheme.
(1) If F and G are coherentOX -modules, then TorOX

p (F ,G) is too.
(2) If L and K are in D−

Coh(OX), then so is L⊗L
OX

K.

Proof. Let us explain how to prove (1) in a more elementary way and part (2) using
previously developed general theory.
Proof of (1). Since formation of Tor commutes with localization we may assume X is
affine. Hence X = Spec(A) for some Noetherian ring A and F , G correspond to finite
A-modules M and N (Cohomology of Schemes, Lemma 9.1). By Derived Categories of
Schemes, Lemma 3.9 we may compute the Tor’s by first computing the Tor’s of M and N
over A, and then taking the associated OX -module. Since the modules TorAp (M,N) are
finite by Algebra, Lemma 75.7 we conclude.
By Derived Categories of Schemes, Lemma 10.3 the assumption is equivalent to asking L
and K to be (locally) pseudo-coherent. Then L⊗L

OX
K is pseudo-coherent by Cohomol-

ogy, Lemma 47.5. �

Lemma 14.2. Let X be a nonsingular variety. Let F , G be coherent OX -modules.
The OX -module TorOX

p (F ,G) is coherent, has stalk at x equal to TorOX,x
p (Fx,Gx), is

supported on Supp(F) ∩ Supp(G), and is nonzero only for p ∈ {0, . . . , dim(X)}.

Proof. The result on stalks was discussed above and it implies the support condi-
tion. The Tor’s are coherent by Lemma 14.1. The vanishing of negative Tor’s is immediate
from the construction. The vanishing of Torp for p > dim(X) can be seen as follows:
the local rings OX,x are regular (as X is nonsingular) of dimension ≤ dim(X) (Alge-
bra, Lemma 116.1), hence OX,x has finite global dimension ≤ dim(X) (Algebra, Lemma
110.8) which implies that Tor-groups of modules vanish beyond the dimension (More on
Algebra, Lemma 66.19). �
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Let X be a nonsingular variety and W,V ⊂ X be closed subvarieties with dim(W ) = s
and dim(V ) = r. Assume V andW intersect properly. In this case Lemma 13.4 tells us all
irreducible components of V ∩W have dimension equal to r+ s− dim(X). The sheaves
TorOX

j (OW ,OV ) are coherent, supported on V ∩W , and zero if j < 0 or j > dim(X)
(Lemma 14.2). We define the intersection product as

W · V =
∑

i
(−1)i[TorOX

i (OW ,OV )]r+s−dim(X).

We stress that this makes sense only because of our assumption that V and W intersect
properly. This fact will necessitate a moving lemma in order to define the intersection
product in general.
With this notation, the cycle V ·W is a formal linear combination

∑
eZZ of the irre-

ducible components Z of the intersection V ∩W . The integers eZ are called the intersec-
tion multiplicities

eZ = e(X,V ·W,Z) =
∑

i
(−1)ilengthOX,Z

TorOX,Z

i (OW,Z ,OV,Z)

where OX,Z , resp. OW,Z , resp. OV,Z denotes the local ring of X , resp. W , resp. V at the
generic point of Z. These alternating sums of lengths of Tor’s satisfy many good proper-
ties, as we will see later on.
In the case of transversal intersections, the intersection number is 1.

Lemma 14.3. Let X be a nonsingular variety. Let V,W ⊂ X be closed subvarieties
which intersect properly. Let Z be an irreducible component of V ∩W and assume that
the multiplicity (in the sense of Section 4) of Z in the closed subscheme V ∩W is 1. Then
e(X,V ·W,Z) = 1 and V and W are smooth in a general point of Z.

Proof. Let (A,m, κ) = (OX,ξ,mξ, κ(ξ)) where ξ ∈ Z is the generic point. Then
dim(A) = dim(X) − dim(Z), see Varieties, Lemma 20.3. Let I, J ⊂ A cut out the trace
of V and W in Spec(A). Set I = I + m2/m2. Then dimκ I ≤ dim(X) − dim(V ) with
equality if and only if A/I is regular (this follows from the lemma cited above and the
definition of regular rings, see Algebra, Definition 60.10 and the discussion preceding it).
Similarly for J . If the multiplicity is 1, then lengthA(A/I + J) = 1, hence I + J = m,
hence I + J = m/m2. Then we get equality everywhere (because the intersection is
proper). Hence we find f1, . . . , fa ∈ I and g1, . . . gb ∈ J such that f1, . . . , gb is a basis for
m/m2. Then f1, . . . , gb is a regular system of parameters and a regular sequence (Algebra,
Lemma 106.3). The same lemma showsA/(f1, . . . , fa) is a regular local ring of dimension
dim(X) − dim(V ), hence A/(f1, . . . , fa) → A/I is an isomorphism (if the kernel is
nonzero, then the dimension of A/I is strictly less, see Algebra, Lemmas 106.2 and 60.13).
We conclude I = (f1, . . . , fa) and J = (g1, . . . , gb) by symmetry. Thus the Koszul
complex K•(A, f1, . . . , fa) on f1, . . . , fa is a resolution of A/I , see More on Algebra,
Lemma 30.2. Hence

TorAp (A/I,A/J) = Hp(K•(A, f1, . . . , fa)⊗A A/J)
= Hp(K•(A/J, f1 mod J, . . . , fa mod J))

Since we’ve seen above that f1 mod J, . . . , fa mod J is a regular system of parameters in
the regular local ringA/J we conclude that there is only one cohomology group, namely
H0 = A/(I + J) = κ. This finishes the proof. �

Example 14.4. In this example we show that it is necessary to use the higher tors in
the formula for the intersection multiplicities above. Let X be a nonsingular variety of
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dimension 4. Let p ∈ X be a closed point. Let V,W ⊂ X be closed subvarieties in X .
Assume that there is an isomorphism

O∧
X,p
∼= C[[x, y, z, w]]

such that the ideal of V is (xz, xw, yz, yw) and the ideal of W is (x− z, y − w). Then a
computation shows that

length C[[x, y, z, w]]/(xz, xw, yz, yw, x− z, y − w) = 3
On the other hand, the multiplicity e(X,V ·W,p) = 2 as can be seen from the fact that
formal locally V is the union of two smooth planes x = y = 0 and z = w = 0 at p, each of
which has intersection multiplicity 1 with the plane x−z = y−w = 0 (Lemma 14.3). To
make an actual example, take a general morphism f : P2 → P4 given by 5 homogeneous
polynomials of degree > 1. The image V ⊂ P4 = X will have singularities of the type
described above, because there will be p1, p2 ∈ P2 with f(p1) = f(p2). To find W take a
general plane passing through such a point.

15. Algebraic multiplicities

Let (A,m, κ) be a Noetherian local ring. Let M be a finite A-module and let I ⊂ A be an
ideal of definition (Algebra, Definition 59.1). Recall that the function

χI,M (n) = lengthA(M/InM) =
∑

p=0,...,n−1
lengthA(IpM/Ip+1M)

is a numerical polynomial (Algebra, Proposition 59.5). The degree of this polynomial is
equal to dim(Supp(M)) by Algebra, Lemma 62.6.

Definition 15.1. In the situation above, if d ≥ dim(Supp(M)), then we set eI(M,d)
equal to 0 if d > dim(Supp(M)) and equal to d! times the leading coefficient of the nu-
merical polynomial χI,M so that

χI,M (n) ∼ eI(M,d)n
d

d! + lower order terms

The multiplicity of M for the ideal of definition I is eI(M) = eI(M, dim(Supp(M))).

We have the following properties of these multiplicities.

Lemma 15.2. Let A be a Noetherian local ring. Let I ⊂ A be an ideal of definition.
Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of finite A-modules. Let
d ≥ dim(Supp(M)). Then

eI(M,d) = eI(M ′, d) + eI(M ′′, d)

Proof. Immediate from the definitions and Algebra, Lemma 59.10. �

Lemma 15.3. Let A be a Noetherian local ring. Let I ⊂ A be an ideal of definition.
Let M be a finite A-module. Let d ≥ dim(Supp(M)). Then

eI(M,d) =
∑

lengthAp
(Mp)eI(A/p, d)

where the sum is over primes p ⊂ A with dim(A/p) = d.

Proof. Both the left and side and the right hand side are additive in short exact
sequences of modules of dimension ≤ d, see Lemma 15.2 and Algebra, Lemma 52.3. Hence
by Algebra, Lemma 62.1 it suffices to prove this when M = A/q for some prime q of A
with dim(A/q) ≤ d. This case is obvious. �



15. ALGEBRAIC MULTIPLICITIES 3793

Lemma 15.4. Let P be a polynomial of degree r with leading coefficient a. Then

r!a =
∑

i=0,...,r
(−1)i

(
r

i

)
P (t− i)

for any t.

Proof. Let us write ∆ the operator which to a polynomial P associates the polyno-
mial ∆(P ) = P (t)− P (t− 1). We claim that

∆r(P ) =
∑

i=0,...,r
(−1)i

(
r

i

)
P (t− i)

This is true for r = 0, 1 by inspection. Assume it is true for r. Then we compute

∆r+1(P ) =
∑

i=0,...,r
(−1)i

(
r

i

)
∆(P )(t− i)

=
∑

n=−r,...,0
(−1)i

(
r

i

)
(P (t− i)− P (t− i− 1))

Thus the claim follows from the equality(
r + 1
i

)
=
(
r

i

)
+
(

r

i− 1

)
The lemma follows from the fact that ∆(P ) is of degree r− 1 with leading coefficient ra
if the degree of P is r. �

An important fact is that one can compute the multiplicity in terms of the Koszul complex.
Recall that if R is a ring and f1, . . . , fr ∈ R, then K•(f1, . . . , fr) denotes the Koszul
complex, see More on Algebra, Section 28.

Theorem 15.5. Let A be a Noetherian local ring. Let I = (f1, . . . , fr) ⊂ A be an
ideal of definition. Let M be a finite A-module. Then

eI(M, r) =
∑

(−1)ilengthAHi(K•(f1, . . . , fr)⊗AM)

Proof. Let us change the Koszul complex K•(f1, . . . , fr) into a cochain complex
K• by setting Kn = K−n(f1, . . . , fr). Then K• is sitting in degrees −r, . . . , 0 and
Hi(K• ⊗A M) = H−i(K•(f1, . . . , fr) ⊗A M). The statement of the theorem makes
sense as the modulesHi(K•⊗M) are annihilated by f1, . . . , fr (More on Algebra, Lemma
28.6) hence have finite length. Define a filtration on the complex K• by setting

F p(Kn ⊗AM) = Imax(0,p+n)(Kn ⊗AM), p ∈ Z
Since fiIp ⊂ Ip+1 this is a filtration by subcomplexes. Thus we have a filtered complex
and we obtain a spectral sequence, see Homology, Section 24. We have

E0 =
⊕

p,q
Ep,q0 =

⊕
p,q

grp(Kp+q ⊗AM) = GrI(K• ⊗AM)

Since Kn is finite free we have
GrI(K• ⊗AM) = GrI(K•)⊗GrI(A) GrI(M)

Note that GrI(K•) is the Koszul complex over GrI(A) on the elements f1, . . . , fr ∈
I/I2. A simple calculation (omitted) shows that the differential d0 on E0 agrees with the
differential coming from the Koszul complex. Since GrI(M) is a finite GrI(A)-module
and since GrI(A) is Noetherian (as a quotient of A/I[x1, . . . , xr] with xi 7→ f i), the
cohomology module E1 =

⊕
Ep,q1 is a finite GrI(A)-module. However, as above E1 is
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annihilated by f1, . . . , fr. We conclude E1 has finite length. In particular we find that
GrpF (K• ⊗M) is acyclic for p� 0.

Next, we check that the spectral sequence above converges using Homology, Lemma 24.10.
The required equalities follow easily from the Artin-Rees lemma in the form stated in
Algebra, Lemma 51.3. Thus we see that∑

(−1)ilengthA(Hi(K• ⊗AM)) =
∑

(−1)p+qlengthA(Ep,q∞ )

=
∑

(−1)p+qlengthA(Ep,q1 )

because as we’ve seen above the length of E1 is finite (of course this uses additivity of
lengths). Pick t so large that GrpF (K• ⊗ M) is acyclic for p ≥ t (see above). Using
additivity again we see that∑

(−1)p+qlengthA(Ep,q1 ) =
∑

n

∑
p≤t

(−1)nlengthA(grp(Kn ⊗AM))

This is equal to ∑
n=−r,...,0

(−1)n
(
r

|n|

)
χI,M (t+ n)

by our choice of filtration above and the definition of χI,M in Algebra, Section 59. The
lemma follows from Lemma 15.4 and the definition of eI(M, r). �

Remark 15.6 (Trivial generalization). Let (A,m, κ) be a Noetherian local ring. Let
M be a finite A-module. Let I ⊂ A be an ideal. The following are equivalent

(1) I ′ = I + Ann(M) is an ideal of definition (Algebra, Definition 59.1),
(2) the image I of I in A = A/Ann(M) is an ideal of definition,
(3) Supp(M/IM) ⊂ {m},
(4) dim(Supp(M/IM)) ≤ 0, and
(5) lengthA(M/IM) <∞.

This follows from Algebra, Lemma 62.3 (details omitted). If this is the case we have
M/InM = M/(I ′)nM for all n and M/InM = M/I

n
M for all n if M is viewed as

an A-module. Thus we can define

χI,M (n) = lengthA(M/InM) =
∑

p=0,...,n−1
lengthA(IpM/Ip+1M)

and we get
χI,M (n) = χI′,M (n) = χI,M (n)

for all n by the equalities above. All the results of Algebra, Section 59 and all the results
in this section, have analogues in this setting. In particular we can define multiplicities
eI(M,d) for d ≥ dim(Supp(M)) and we have

χI,M (n) ∼ eI(M,d)n
d

d! + lower order terms

as in the case where I is an ideal of definition.

16. Computing intersection multiplicities

In this section we discuss some cases where the intersection multiplicities can be computed
by different means. Here is a first example.
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Lemma 16.1. LetX be a nonsingular variety andW,V ⊂ X closed subvarieties which
intersect properly. Let Z be an irreducible component of V ∩W with generic point ξ.
Assume thatOW,ξ andOV,ξ are Cohen-Macaulay. Then

e(X,V ·W,Z) = lengthOX,ξ
(OV ∩W,ξ)

where V ∩ W is the scheme theoretic intersection. In particular, if both V and W are
Cohen-Macaulay, then V ·W = [V ∩W ]dim(V )+dim(W )−dim(X).

Proof. Set A = OX,ξ , B = OV,ξ , and C = OW,ξ . By Auslander-Buchsbaum (Alge-
bra, Proposition 111.1) we can find a finite free resolution F• → B of length

depth(A)− depth(B) = dim(A)− dim(B) = dim(C)
First equality asA andB are Cohen-Macaulay and the second as V andW intersect prop-
erly. Then F• ⊗A C is a complex of finite free modules representing B ⊗L

A C hence has
cohomology modules with support in {mA}. By the Acyclicity lemma (Algebra, Lemma
102.8) which applies as C is Cohen-Macaulay we conclude that F• ⊗A C has nonzero
cohomology only in degree 0. This finishes the proof. �

Lemma 16.2. LetA be a Noetherian local ring. Let I = (f1, . . . , fr) be an ideal gener-
ated by a regular sequence. LetM be a finiteA-module. Assume that dim(Supp(M/IM)) =
0. Then

eI(M, r) =
∑

(−1)ilengthA(TorAi (A/I,M))
Here eI(M, r) is as in Remark 15.6.

Proof. Since f1, . . . , fr is a regular sequence the Koszul complex K•(f1, . . . , fr) is
a resolution of A/I over A, see More on Algebra, Lemma 30.7. Thus the right hand side
is equal to ∑

(−1)ilengthAHi(K•(f1, . . . , fr)⊗AM)
Now the result follows immediately from Theorem 15.5 if I is an ideal of definition. In
general, we replace A by A = A/Ann(M) and f1, . . . , fr by f1, . . . , fr which is allowed
because

K•(f1, . . . , fr)⊗AM = K•(f1, . . . , fr)⊗AM
Since eI(M, r) = eI(M, r) where I = (f1, . . . , fr) ⊂ A is an ideal of definition the
result follows from Theorem 15.5 in this case as well. �

Lemma 16.3. Let X be a nonsingular variety. Let W,V ⊂ X be closed subvarieties
which intersect properly. LetZ be an irreducible component of V ∩W with generic point
ξ. Suppose the ideal of V inOX,ξ is cut out by a regular sequence f1, . . . , fc ∈ OX,ξ . Then
e(X,V ·W,Z) is equal to c! times the leading coefficient in the Hilbert polynomial

t 7→ lengthOX,ξ
OW,ξ/(f1, . . . , fc)t, t� 0.

In particular, this coefficient is > 0.

Proof. The equality
e(X,V ·W,Z) = e(f1,...,fc)(OW,ξ, c)

follows from the more general Lemma 16.2. To see that e(f1,...,fc)(OW,ξ, c) is> 0 or equiv-
alently that e(f1,...,fc)(OW,ξ, c) is the leading coefficient of the Hilbert polynomial it suf-
fices to show that the dimension ofOW,ξ is c, because the degree of the Hilbert polynomial
is equal to the dimension by Algebra, Proposition 60.9. Say dim(V ) = r, dim(W ) = s,
and dim(X) = n. Then dim(Z) = r + s − n as the intersection is proper. Thus the
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transcendence degree of κ(ξ) over C is r + s − n, see Algebra, Lemma 116.1. We have
r+c = n because V is cut out by a regular sequence in a neighbourhood of ξ, see Divisors,
Lemma 20.8 and then Lemma 13.2 applies (for example). Thus

dim(OW,ξ) = s− (r + s− n) = s− ((n− c) + s− n) = c

the first equality by Algebra, Lemma 116.3. �

Lemma 16.4. In Lemma 16.3 assume that c = 1, i.e., V is an effective Cartier divisor.
Then

e(X,V ·W,Z) = lengthOX,ξ
(OW,ξ/f1OW,ξ).

Proof. In this case the image of f1 inOW,ξ is nonzero by properness of intersection,
hence a nonzerodivisor divisor. Moreover, OW,ξ is a Noetherian local domain of dimen-
sion 1. Thus

lengthOX,ξ
(OW,ξ/f t1OW,ξ) = tlengthOX,ξ

(OW,ξ/f1OW,ξ)

for all t ≥ 1, see Algebra, Lemma 121.1. This proves the lemma. �

Lemma 16.5. In Lemma 16.3 assume that the local ring OW,ξ is Cohen-Macaulay.
Then we have

e(X,V ·W,Z) = lengthOX,ξ
(OW,ξ/f1OW,ξ + . . .+ fcOW,ξ).

Proof. This follows immediately from Lemma 16.1. Alternatively, we can deduce it
from Lemma 16.3. Namely, by Algebra, Lemma 104.2 we see that f1, . . . , fc is a regular
sequence in OW,ξ . Then Algebra, Lemma 69.2 shows that f1, . . . , fc is a quasi-regular
sequence. This easily implies the length ofOW,ξ/(f1, . . . , fc)t is(

c+ t

c

)
lengthOX,ξ

(OW,ξ/f1OW,ξ + . . .+ fcOW,ξ).

Looking at the leading coefficient we conclude. �

17. Intersection product using Tor formula

Let X be a nonsingular variety. Let α =
∑
ni[Wi] be an r-cycle and β =

∑
jmj [Vj ] be

an s-cycle on X . Assume that α and β intersect properly, see Definition 13.5. In this case
we define

α · β =
∑

i,j
nimjWi · Vj .

where Wi · Vj is as defined in Section 14. If β = [V ] where V is a closed subvariety of
dimension s, then we sometimes write α · β = α · V .

Lemma 17.1. Let X be a nonsingular variety. Let a, b ∈ P1 be distinct closed points.
Let k ≥ 0.

(1) IfW ⊂ X×P1 is a closed subvariety of dimension k+1 which intersectsX×a
properly, then
(a) [Wa]k = W ·X × a as cycles on X ×P1, and
(b) [Wa]k = prX,∗(W ·X × a) as cycles on X .

(2) Let α be a (k+ 1)-cycle onX ×P1 which intersectsX × a andX × b properly.
Then prX,∗(α ·X × a− α ·X × b) is rationally equivalent to zero.

(3) Conversely, any k-cycle which is rationally equivalent to 0 is of this form.
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Proof. First we observe thatX×a is an effective Cartier divisor inX×P1 and that
Wa is the scheme theoretic intersection of W with X × a. Hence the equality in (1)(a) is
immediate from the definitions and the calculation of intersection multiplicity in case of a
Cartier divisor given in Lemma 16.4. Part (1)(b) holds becauseWa → X×P1 → X maps
isomorphically onto its image which is how we viewed Wa as a closed subscheme of X in
Section 8. Parts (2) and (3) are formal consequences of part (1) and the definitions. �

For transversal intersections of closed subschemes the intersection multiplicity is 1.

Lemma 17.2. Let X be a nonsingular variety. Let r, s ≥ 0 and let Y, Z ⊂ X be
closed subschemes with dim(Y ) ≤ r and dim(Z) ≤ s. Assume [Y ]r =

∑
ni[Yi] and

[Z]s =
∑
mj [Zj ] intersect properly. Let T be an irreducible component of Yi0 ∩ Zj0

for some i0 and j0 and assume that the multiplicity (in the sense of Section 4) of T in the
closed subscheme Y ∩ Z is 1. Then

(1) the coefficient of T in [Y ]r · [Z]s is 1,
(2) Y and Z are nonsingular at the generic point of Z ,
(3) ni0 = 1, mj0 = 1, and
(4) T is not contained in Yi or Zj for i 6= i0 and j 6= j0.

Proof. Set n = dim(X), a = n − r, b = n − s. Observe that dim(T ) = r + s −
n = n − a − b by the assumption that the intersections are transversal. Let (A,m, κ) =
(OX,ξ,mξ, κ(ξ)) where ξ ∈ T is the generic point. Then dim(A) = a + b, see Varieties,
Lemma 20.3. Let I0, I, J0, J ⊂ A cut out the trace of Yi0 , Y , Zj0 , Z in Spec(A). Then
dim(A/I) = dim(A/I0) = b and dim(A/J) = dim(A/J0) = a by the same reference.
Set I = I + m2/m2. Then I ⊂ I0 ⊂ m and J ⊂ J0 ⊂ m and I + J = m. By Lemma
14.3 and its proof we see that I0 = (f1, . . . , fa) and J0 = (g1, . . . , gb) where f1, . . . , gb is
a regular system of parameters for the regular local ring A. Since I + J = m, the map

I ⊕ J → m/m2 = κf1 ⊕ . . .⊕ κfa ⊕ κg1 ⊕ . . .⊕ κgb
is surjective. We conclude that we can find f ′

1, . . . , f
′
a ∈ I and g′

1, . . . , g
′
b ∈ J whose

residue classes in m/m2 are equal to the residue classes of f1, . . . , fa and g1, . . . , gb. Then
f ′

1, . . . , g
′
b is a regular system of parameters of A. By Algebra, Lemma 106.3 we find that

A/(f ′
1, . . . , f

′
a) is a regular local ring of dimension b. Thus any nontrivial quotient of

A/(f ′
1, . . . , f

′
a) has strictly smaller dimension (Algebra, Lemmas 106.2 and 60.13). Hence

I = (f ′
1, . . . , f

′
a) = I0. By symmetry J = J0. This proves (2), (3), and (4). Finally,

the coefficient of T in [Y ]r · [Z]s is the coefficient of T in Yi0 · Zj0 which is 1 by Lemma
14.3. �

18. Exterior product

LetX and Y be varieties. Let V , resp.W be a closed subvariety ofX , resp. Y . The product
V ×W is a closed subvariety of X × Y (Lemma 13.1). For a k-cycle α =

∑
ni[Vi] and

a l-cycle β =
∑
mj [Vj ] on Y we define the exterior product of α and β to be the cycle

α× β =
∑
nimj [Vi ×Wj ]. Exterior product defines a Z-linear map

Zr(X)⊗Z Zs(Y ) −→ Zr+s(X × Y )

Let us prove that exterior product factors through rational equivalence.

Lemma 18.1. Let X and Y be varieties. Let α ∈ Zr(X) and β ∈ Zs(Y ). If α ∼rat 0
or β ∼rat 0, then α× β ∼rat 0.
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Proof. By linearity and symmetry inX and Y , it suffices to prove this whenα = [V ]
for some subvariety V ⊂ X of dimension s and β = [Wa]s − [Wb]s for some closed
subvariety W ⊂ Y ×P1 of dimension s+ 1 which intersects Y × a and Y × b properly.
In this case the lemma follows if we can prove

[(V ×W )a]r+s = [V ]× [Wa]s

and similarly with a replaced by b. Namely, then we see that α× β = [(V ×W )a]r+s −
[(V ×W )b]r+s as desired. To see the displayed equality we note the equality

V ×Wa = (V ×W )a

of schemes. The projection V ×Wa →Wa induces a bijection of irreducible components
(see for example Varieties, Lemma 8.4). Let W ′ ⊂ Wa be an irreducible component with
generic point ζ . Then V ×W ′ is the corresponding irreducible component of V ×Wa

(see Lemma 13.1). Let ξ be the generic point of V ×W ′. We have to show that

lengthOY,ζ
(OWa,ζ) = lengthOX×Y,ξ

(OV×Wa,ξ)

In this formula we may replaceOY,ζ byOWa,ζ and we may replaceOX×Y,ζ byOV×Wa,ζ

(see Algebra, Lemma 52.5). As OWa,ζ → OV×Wa,ξ is flat, by Algebra, Lemma 52.13 it
suffices to show that

lengthOV×Wa,ξ
(OV×Wa,ξ/mζOV×Wa,ξ) = 1

This is true because the quotient on the right is the local ring OV×W ′,ξ of a variety at a
generic point hence equal to κ(ξ). �

We conclude that exterior product defines a commutative diagram

Zr(X)⊗Z Zs(Y ) //

��

Zr+s(X × Y )

��
CHr(X)⊗Z CHs(Y ) // CHr+s(X × Y )

for any pair of varieties X and Y . For nonsingular varieties we can think of the exterior
product as an intersection product of pullbacks.

Lemma 18.2. Let X and Y be nonsingular varieties. Let α ∈ Zr(X) and β ∈ Zs(Y ).
Then

(1) pr∗
Y (β) = [X]× β and pr∗

X(α) = α× [Y ],
(2) α× [Y ] and [X]× β intersect properly on X × Y , and
(3) we have α× β = (α× [Y ]) · ([X]× β) = pr∗

Y (α) · pr∗
X(β) in Zr+s(X × Y ).

Proof. By linearity we may assume α = [V ] and β = [W ]. Then (1) says that
pr−1
Y (W ) = X ×W and pr−1

X (V ) = V × Y . This is clear. Part (2) holds because X ×
W ∩ V × Y = V ×W and dim(V ×W ) = r + s by Lemma 13.1.

Proof of (3). Let ξ be the generic point of V ×W . Since the projections X ×W → W
is smooth as a base change of X → Spec(C), we see that X ×W is nonsingular at every
point lying over the generic point of W , in particular at ξ. Similarly for V × Y . Hence
OX×W,ξ andOV×Y,ξ are Cohen-Macaulay local rings and Lemma 16.1 applies. Since V ×
Y ∩X ×W = V ×W scheme theoretically the proof is complete. �
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19. Reduction to the diagonal

Let X be a nonsingular variety. We will use ∆ to denote either the diagonal morphism
∆ : X → X×X or the image ∆ ⊂ X×X . Reduction to the diagonal is the statement that
intersection products on X can be reduced to intersection products of exterior products
with the diagonal on X ×X .

Lemma 19.1. Let X be a nonsingular variety.
(1) If F and G are coherentOX -modules, then there are canonical isomorphisms

TorOX×X
i (O∆, pr∗

1F ⊗OX×X pr∗
2G) = ∆∗TorOX

i (F ,G)
(2) If K and M are in DQCoh(OX), then there is a canonical isomorphism

L∆∗
(
Lpr∗

1K ⊗
L
OX×X

Lpr∗
2M
)

= K ⊗L
OX

M

in DQCoh(OX) and a canonical isomorphism

O∆ ⊗L
OX×X

Lpr∗
1K ⊗

L
OX×X

Lpr∗
2M = ∆∗(K ⊗L

OX
M)

in DQCoh(X ×X).

Proof. Let us explain how to prove (1) in a more elementary way and part (2) using
more general theory. As (2) implies (1) the reader can skip the proof of (1).
Proof of (1). Choose an affine open Spec(A) ⊂ X . ThenA is a Noetherian C-algebra and
F , G correspond to finite A-modules M and N (Cohomology of Schemes, Lemma 9.1).
By Derived Categories of Schemes, Lemma 3.9 we may compute Tori over OX by first
computing the Tor’s ofM andN overA, and then taking the associatedOX -module. For
the Tori overOX×X we compute the tor of A and M ⊗C N over A⊗C A and then take
the associatedOX×X -module. Hence on this affine patch we have to prove that

TorA⊗CA
i (A,M ⊗C N) = TorAi (M,N)

To see this choose resolutions F• → M and G• → M by finite free A-modules (Algebra,
Lemma 71.1). Note that Tot(F• ⊗C G•) is a resolution of M ⊗C N as it computes Tor
groups over C! Of course the terms of F• ⊗C G• are finite free A⊗C A-modules. Hence
the left hand side of the displayed equation is the module

Hi(A⊗A⊗CA Tot(F• ⊗C G•))
and the right hand side is the module

Hi(Tot(F• ⊗A G•))
Since A ⊗A⊗CA (Fp ⊗C Gq) = Fp ⊗A Gq we see that these modules are equal. This
defines an isomorphism over the affine open Spec(A)× Spec(A) (which is good enough
for the application to equality of intersection numbers). We omit the proof that these
isomorphisms glue.
Proof of (2). The second statement follows from the first by the projection formula as
stated in Derived Categories of Schemes, Lemma 22.1. To see the first, represent K and
M by K-flat complexes K• andM•. Since pullback and tensor product preserve K-flat
complexes (Cohomology, Lemmas 26.5 and 26.8) we see that it suffices to show

∆∗Tot(pr∗
1K

• ⊗OX×X pr∗
2M

•) = Tot(K• ⊗OX
M•)

Thus it suffices to see that there are canonical isomorphisms
∆∗(pr∗

1K ⊗OX×X pr∗
2M) −→ K⊗OX

M
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wheneverK andM areOX -modules (not necessarily quasi-coherent or flat). We omit the
details. �

Lemma 19.2. LetX be a nonsingular variety. Letα, resp. β be an r-cycle, resp. s-cycle
on X . Assume α and β intersect properly. Then

(1) α× β and [∆] intersect properly
(2) we have ∆∗(α · β) = [∆] · α× β as cycles on X ×X ,
(3) if X is proper, then pr1,∗([∆] · α× β) = α · β, where pr1 : X ×X → X is the

projection.

Proof. By linearity it suffices to prove this when α = [V ] and β = [W ] for some
closed subvarieties V ⊂ X and W ⊂ Y which intersect properly. Recall that V ×W
is a closed subvariety of dimension r + s. Observe that scheme theoretically we have
V ∩W = ∆−1(V ×W ) as well as ∆(V ∩W ) = ∆ ∩ V ×W . This proves (1).

Proof of (2). Let Z ⊂ V ∩W be an irreducible component with generic point ξ. We have
to show that the coefficient ofZ inα·β is the same as the coefficient of ∆(Z) in [∆]·α×β.
The first is given by the integer∑

(−1)ilengthOX,ξ
TorOX

i (OV ,OW )ξ

and the second by the integer∑
(−1)ilengthOX×Y,∆(ξ)

TorOX×Y
i (O∆,OV×W )∆(ξ)

However, by Lemma 19.1 we have

TorOX
i (OV ,OW )ξ ∼= TorOX×Y

i (O∆,OV×W )∆(ξ)

asOX×X,∆(ξ)-modules. Thus equality of lengths (by Algebra, Lemma 52.5 to be precise).

Part (2) implies (3) because pr1,∗ ◦∆∗ = id by Lemma 6.2. �

Proposition 19.3. LetX be a nonsingular variety. Let V ⊂ X andW ⊂ Y be closed
subvarieties which intersect properly. LetZ ⊂ V ∩W be an irreducible component. Then
e(X,V ·W,Z) > 0.

Proof. By Lemma 19.2 we have

e(X,V ·W,Z) = e(X ×X,∆ · V ×W,∆(Z))

Since ∆ : X → X ×X is a regular immersion (see Lemma 13.3), we see that e(X ×X,∆ ·
V ×W,∆(Z)) is a positive integer by Lemma 16.3. �

The following is a key lemma in the development of the theory as is done in this chapter.
Essentially, this lemma tells us that the intersection numbers have a suitable additivity
property.

Lemma 19.4. LetX be a nonsingular variety. Let F and G be coherent sheaves onX
with dim(Supp(F)) ≤ r, dim(Supp(G)) ≤ s, and dim(Supp(F) ∩ Supp(G)) ≤ r + s −
dimX . In this case [F ]r and [G]s intersect properly and

[F ]r · [G]s =
∑

(−1)p[TorOX
p (F ,G)]r+s−dim(X).
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Proof. The statement that [F ]r and [G]s intersect properly is immediate. Since we
are proving an equality of cycles we may work locally onX . (Observe that the formation
of the intersection product of cycles, the formation of Tor-sheaves, and forming the cycle
associated to a coherent sheaf, each commute with restriction to open subschemes.) Thus
we may and do assume that X is affine.

Denote

RHS(F ,G) = [F ]r · [G]s and LHS(F ,G) =
∑

(−1)p[TorOX
p (F ,G)]r+s−dim(X)

Consider a short exact sequence

0→ F1 → F2 → F3 → 0

of coherent sheaves onX with Supp(Fi) ⊂ Supp(F), then bothLHS(Fi,G) andRHS(Fi,G)
are defined for i = 1, 2, 3 and we have

RHS(F2,G) = RHS(F1,G) +RHS(F3,G)

and similarly for LHS. Namely, the support condition guarantees that everything is de-
fined, the short exact sequence and additivity of lengths gives

[F2]r = [F1]r + [F3]r
(Chow Homology, Lemma 10.4) which implies additivity for RHS. The long exact se-
quence of Tors

. . .→ Tor1(F3,G)→ Tor0(F1,G)→ Tor0(F2,G)→ Tor0(F3,G)→ 0

and additivity of lengths as before implies additivity for LHS.

By Algebra, Lemma 62.1 and the fact that X is affine, we can find a filtration of F whose
graded pieces are structure sheaves of closed subvarieties of Supp(F). The additivity
shown in the previous paragraph, implies that it suffices to prove LHS = RHS with
F replaced by OV where V ⊂ Supp(F). By symmetry we can do the same for G. This
reduces us to proving that

LHS(OV ,OW ) = RHS(OV ,OW )

where W ⊂ Supp(G) is a closed subvariety. If dim(V ) = r and dim(W ) = s, then this
equality is the definition of V ·W . On the other hand, if dim(V ) < r or dim(W ) < s,
i.e., [V ]r = 0 or [W ]s = 0, then we have to prove that RHS(OV ,OW ) = 0 5.

Let Z ⊂ V ∩ W be an irreducible component of dimension r + s − dim(X). This is
the maximal dimension of a component and it suffices to show that the coefficient of Z in
RHS is zero. Let ξ ∈ Z be the generic point. Write A = OX,ξ , B = OX×X,∆(ξ), and
C = OV×W,∆(ξ). By Lemma 19.1 we have

coeff of Z in RHS(OV ,OW ) =
∑

(−1)ilengthBTorBi (A,C)

Since dim(V ) < r or dim(W ) < swe have dim(V ×W ) < r+swhich implies dim(C) <
dim(X) (small detail omitted). Moreover, the kernel I ofB → A is generated by a regular
sequence of length dim(X) (Lemma 13.3). Hence vanishing by Lemma 16.2 because the
Hilbert function of C with respect to I has degree dim(C) < n by Algebra, Proposition
60.9. �

5The reader can see that this is not a triviality by taking r = s = 1 and X a nonsingular surface and
V = W a closed point x of X . In this case there are 3 nonzero Tors of lengths 1, 2, 1 at x.
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Remark 19.5. Let (A,m, κ) be a regular local ring. Let M and N be nonzero finite
A-modules such that M ⊗A N is supported in {m}. Then

χ(M,N) =
∑

(−1)ilengthATorAi (M,N)

is finite. Let r = dim(Supp(M)) and s = dim(Supp(N)). In [?] it is shown that r + s ≤
dim(A) and the following conjectures are made:

(1) if r + s < dim(A), then χ(M,N) = 0, and
(2) if r + s = dim(A), then χ(M,N) > 0.

The arguments that prove Lemma 19.4 and Proposition 19.3 can be leveraged (as is done
in Serre’s text) to show that (1) and (2) are true ifA contains a field. Currently, conjecture
(1) is known in general and it is known that χ(M,N) ≥ 0 in general (Gabber). Positivity
is, as far as we know, still an open problem.

20. Associativity of intersections

It is clear that proper intersections as defined above are commutative. Using the key
Lemma 19.4 we can prove that (proper) intersection products are associative.

Lemma 20.1. Let X be a nonsingular variety. Let U, V,W be closed subvarieties.
Assume that U, V,W intersect properly pairwise and that dim(U ∩V ∩W ) ≤ dim(U) +
dim(V ) + dim(W )− 2 dim(X). Then

U · (V ·W ) = (U · V ) ·W
as cycles on X .

Proof. We are going to use Lemma 19.4 without further mention. This implies that

V ·W =
∑

(−1)i[Tori(OV ,OW )]b+c−n

U · (V ·W ) =
∑

(−1)i+j [Torj(OU ,Tori(OV ,OW ))]a+b+c−2n

U · V =
∑

(−1)i[Tori(OU ,OV )]a+b−n

(U · V ) ·W =
∑

(−1)i+j [Torj(Tori(OU ,OV ),OW ))]a+b+c−2n

where dim(U) = a, dim(V ) = b, dim(W ) = c, dim(X) = n. The assumptions in
the lemma guarantee that the coherent sheaves in the formulae above satisfy the required
bounds on dimensions of supports in order to make sense of these. Now consider the object

K = OU ⊗L
OX
OV ⊗L

OX
OW

of the derived category DCoh(OX). We claim that the expressions obtained above for
U · (V ·W ) and (U · V ) ·W are equal to∑

(−1)k[Hk(K)]a+b+c−2n

This will prove the lemma. By symmetry it suffices to prove one of these equalities. To
do this we represent OU and OV ⊗L

OX
OW by K-flat complexes M• and L• and use the

spectral sequence associated to the double complexM•⊗OX
L• in Homology, Section 25.

This is a spectral sequence with E2 page

Ep,q2 = Tor−p(OU ,Tor−q(OV ,OW ))
converging toHp+q(K) (details omitted; compare with More on Algebra, Example 62.4).
Since lengths are additive in short exact sequences we see that the result is true. �
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21. Flat pullback and intersection products

Short discussion of the interaction between intersections and flat pullback.

Lemma 21.1. Let f : X → Y be a flat morphism of nonsingular varieties. Set e =
dim(X) − dim(Y ). Let F and G be coherent sheaves on Y with dim(Supp(F)) ≤ r,
dim(Supp(G)) ≤ s, and dim(Supp(F) ∩ Supp(G)) ≤ r + s − dim(Y ). In this case the
cycles [f∗F ]r+e and [f∗G]s+e intersect properly and

f∗([F ]r · [G]s) = [f∗F ]r+e · [f∗G]s+e

Proof. The statement that [f∗F ]r+e and [f∗G]s+e intersect properly is immediate
from the assumption that f has relative dimension e. By Lemmas 19.4 and 7.1 it suffices
to show that

f∗TorOY
i (F ,G) = TorOX

i (f∗F , f∗G)
asOX -modules. This follows from Cohomology, Lemma 27.3 and the fact that f∗ is exact,
so Lf∗F = f∗F and similarly for G. �

Lemma 21.2. Let f : X → Y be a flat morphism of nonsingular varieties. Let α be a
r-cycle on Y and β an s-cycle on Y . Assume that α and β intersect properly. Then f∗α
and f∗β intersect properly and f∗(α · β) = f∗α · f∗β.

Proof. By linearity we may assume that α = [V ] and β = [W ] for some closed
subvarieties V,W ⊂ Y of dimension r, s. Say f has relative dimension e. Then the
lemma is a special case of Lemma 21.1 because [V ] = [OV ]r , [W ] = [OW ]r , f∗[V ] =
[f−1(V )]r+e = [f∗OV ]r+e, and f∗[W ] = [f−1(W )]s+e = [f∗OW ]s+e. �

22. Projection formula for flat proper morphisms

Short discussion of the projection formula for flat proper morphisms.

Lemma 22.1. Let f : X → Y be a flat proper morphism of nonsingular varieties. Set
e = dim(X) − dim(Y ). Let α be an r-cycle on X and let β be a s-cycle on Y . Assume
that α and f∗(β) intersect properly. Then f∗(α) and β intersect properly and

f∗(α) · β = f∗(α · f∗β)

Proof. By linearity we reduce to the case where α = [V ] and β = [W ] for some
closed subvariety V ⊂ X and W ⊂ Y of dimension r and s. Then f−1(W ) has pure
dimension s + e. We assume the cycles [V ] and f∗[W ] intersect properly. We will use
without further mention the fact that V ∩ f−1(W )→ f(V ) ∩W is surjective.

Let a be the dimension of the generic fibre of V → f(V ). If a > 0, then f∗[V ] = 0. In
particular f∗α and β intersect properly. To finish this case we have to show that f∗([V ] ·
f∗[W ]) = 0. However, since every fibre ofV → f(V ) has dimension≥ a (see Morphisms,
Lemma 28.4) we conclude that every irreducible component Z of V ∩ f−1(W ) has fibres
of dimension ≥ a over f(Z). This certainly implies what we want.

Assume that V → f(V ) is generically finite. Let Z ⊂ f(V ) ∩ W be an irreducible
component. Let Zi ⊂ V ∩ f−1(W ), i = 1, . . . , t be the irreducible components of V ∩
f−1(W ) dominating Z. By assumption each Zi has dimension r + s + e − dim(X) =
r+s−dim(Y ). Hence dim(Z) ≤ r+s−dim(Y ). Thus we see that f(V ) andW intersect
properly, dim(Z) = r+ s−dim(Y ), and each Zi → Z is generically finite. In particular,
it follows that V → f(V ) has finite fibre over the generic point ξ of Z. Thus V → Y is
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finite in an open neighbourhood of ξ, see Cohomology of Schemes, Lemma 21.2. Using a
very general projection formula for derived tensor products, we get

Rf∗(OV ⊗L
OX

Lf∗OW ) = Rf∗OV ⊗L
OY
OW

see Derived Categories of Schemes, Lemma 22.1. Since f is flat, we see that Lf∗OW =
f∗OW . Since f |V is finite in an open neighbourhood of ξ we have

(Rf∗F)ξ = (f∗F)ξ
for any coherent sheaf onX whose support is contained inV (see Cohomology of Schemes,
Lemma 20.8). Thus we conclude that

(22.1.1)
(
f∗TorOX

i (OV , f∗OW )
)
ξ

=
(

TorOY
i (f∗OV ,OW )

)
ξ

for all i. Since f∗[W ] = [f∗OW ]s+e by Lemma 7.1 we have

[V ] · f∗[W ] =
∑

(−1)i[TorOX
i (OV , f∗OW )]r+s−dim(Y )

by Lemma 19.4. Applying Lemma 6.1 we find

f∗([V ] · f∗[W ]) =
∑

(−1)i[f∗TorOX
i (OV , f∗OW )]r+s−dim(Y )

Since f∗[V ] = [f∗OV ]r by Lemma 6.1 we have

[f∗V ] · [W ] =
∑

(−1)i[TorOX
i (f∗OV ,OW )]r+s−dim(Y )

again by Lemma 19.4. Comparing the formula for f∗([V ] · f∗[W ]) with the formula for
f∗[V ] · [W ] and looking at the coefficient of Z by taking lengths of stalks at ξ, we see that
(22.1.1) finishes the proof. �

Lemma 22.2. Let X → P be a closed immersion of nonsingular varieties. Let C ′ ⊂
P ×P1 be a closed subvariety of dimension r + 1. Assume

(1) the fibre C = C ′
0 has dimension r, i.e., C ′ → P1 is dominant,

(2) C ′ intersects X ×P1 properly,
(3) [C]r intersects X properly.

Then setting α = [C]r ·X viewed as cycle on X and β = C ′ ·X ×P1 viewed as cycle on
X ×P1, we have

α = prX,∗(β ·X × 0)
as cycles on X where prX : X ×P1 → X is the projection.

Proof. Let pr : P ×P1 → P be the projection. Since we are proving an equality of
cycles it suffices to think of α, resp. β as a cycle on P , resp. P × P1 and prove the result
for pushing forward by pr. Because pr∗X = X × P1 and pr defines an isomorphism of
C ′

0 onto C the projection formula (Lemma 22.1) gives

pr∗([C ′
0]r ·X ×P1) = [C]r ·X = α

On the other hand, we have [C ′
0]r = C ′ ·P ×0 as cycles on P ×P1 by Lemma 17.1. Hence

[C ′
0]r ·X ×P1 = (C ′ · P × 0) ·X ×P1 = (C ′ ·X ×P1) · P × 0

by associativity (Lemma 20.1) and commutativity of the intersection product. It remains
to show that the intersection product of C ′ ·X ×P1 with P × 0 on P ×P1 is equal (as
a cycle) to the intersection product of β with X × 0 on X × P1. Write C ′ ·X × P1 =∑
nk[Ek] and hence β =

∑
nk[Ek] for some subvarietiesEk ⊂ X×P1 ⊂ P×P1. Then
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both intersections are equal to
∑
mk[Ek,0] by Lemma 17.1 applied twice. This finishes the

proof. �

23. Projections

Recall that we are working over a fixed algebraically closed ground field C. If V is a finite
dimensional vector space over C then we set

P(V ) = Proj(Sym(V ))
where Sym(V ) is the symmetric algebra on V over C. See Constructions, Example 21.2.
The normalization is chosen such that V = Γ(P(V ),OP(V )(1)). Of course we have
P(V ) ∼= Pn

C if dim(V ) = n+ 1. We note that P(V ) is a nonsingular projective variety.
Let p ∈ P(V ) be a closed point. The point p corresponds to a surjection V → Lp of
vector spaces where dim(Lp) = 1, see Constructions, Lemma 12.3. Let us denote Wp =
Ker(V → Lp). Projection from p is the morphism

rp : P(V ) \ {p} −→ P(Wp)
of Constructions, Lemma 11.1. Here is a lemma to warm up.

Lemma 23.1. Let V be a vector space of dimension n+ 1. Let X ⊂ P(V ) be a closed
subscheme. If X 6= P(V ), then there is a nonempty Zariski open U ⊂ P(V ) such that
for all closed points p ∈ U the restriction of the projection rp defines a finite morphism
rp|X : X → P(Wp).

Proof. We claim the lemma holds with U = P(V ) \ X . For a closed point p of U
we indeed obtain a morphism rp|X : X → P(Wp). This morphism is proper becauseX is
a proper scheme (Morphisms, Lemmas 43.5 and 41.7). On the other hand, the fibres of rp
are affine lines as can be seen by a direct calculation. Hence the fibres of rp|X are proper
and affine, whence finite (Morphisms, Lemma 44.11). Finally, a proper morphism with
finite fibres is finite (Cohomology of Schemes, Lemma 21.1). �

Lemma 23.2. Let V be a vector space of dimension n+ 1. Let X ⊂ P(V ) be a closed
subvariety. Let x ∈ X be a nonsingular point.

(1) If dim(X) < n− 1, then there is a nonempty Zariski open U ⊂ P(V ) such that
for all closed points p ∈ U the morphism rp|X : X → rp(X) is an isomorphism
over an open neighbourhood of rp(x).

(2) If dim(X) = n− 1, then there is a nonempty Zariski open U ⊂ P(V ) such that
for all closed points p ∈ U the morphism rp|X : X → P(Wp) is étale at x.

Proof. Proof of (1). Note that if x, y ∈ X have the same image under rp then p is
on the line xy. Consider the finite type scheme

T = {(y, p) | y ∈ X \ {x}, p ∈ P(V ), p ∈ xy}
and the morphisms T → X and T → P(V ) given by (y, p) 7→ y and (y, p) 7→ p. Since
each fibre of T → X is a line, we see that the dimension of T is dim(X)+1 < dim(P(V )).
Hence T → P(V ) is not surjective. On the other hand, consider the finite type scheme

T ′ = {p | p ∈ P(V ) \ {x}, xp tangent to X at x}
Then the dimension of T ′ is dim(X) < dim(P(V )). Thus the morphism T ′ → P(V ) is
not surjective either. LetU ⊂ P(V )\X be nonempty open and disjoint from these images;
such a U exists because the images of T and T ′ in P(V ) are constructible by Morphisms,
Lemma 22.2. Then for p ∈ U closed the projection rp|X : X → P(Wp) is injective
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on the tangent space at x and r−1
p ({rp(x)}) = {x}. This means that rp is unramified

at x (Varieties, Lemma 16.8), finite by Lemma 23.1, and r−1
p ({rp(x)}) = {x} thus Étale

Morphisms, Lemma 7.3 applies and there is an open neighbourhood R of rp(x) in P(Wp)
such that (rp|X)−1(R)→ R is a closed immersion which proves (1).

Proof of (2). In this case we still conclude that the morphism T ′ → P(V ) is not surjective.
Arguing as above we conclude that for U ⊂ P(V ) avoiding X and the image of T ′, the
projection rp|X : X → P(Wp) is étale at x and finite. �

Lemma 23.3. Let V be a vector space of dimension n+ 1. Let Y, Z ⊂ P(V ) be closed
subvarieties. There is a nonempty Zariski open U ⊂ P(V ) such that for all closed points
p ∈ U we have

Y ∩ r−1
p (rp(Z)) = (Y ∩ Z) ∪ E

with E ⊂ Y closed and dim(E) ≤ dim(Y ) + dim(Z) + 1− n.

Proof. Set Y ′ = Y \ Y ∩Z. Let y ∈ Y ′, z ∈ Z be closed points with rp(y) = rp(z).
Then p is on the line yz passing through y and z. Consider the finite type scheme

T = {(y, z, p) | y ∈ Y ′, z ∈ Z, p ∈ yz}

and the morphism T → P(V ) given by (y, z, p) 7→ p. Observe that T is irreducible
and that dim(T ) = dim(Y ) + dim(Z) + 1. Hence the general fibre of T → P(V ) has
dimension at most dim(Y )+dim(Z)+1−n, more precisely, there exists a nonempty open
U ⊂ P(V )\(Y ∪Z) over which the fibre has dimension at most dim(Y )+dim(Z)+1−n
(Varieties, Lemma 20.4). Let p ∈ U be a closed point and let F ⊂ T be the fibre of
T → P(V ) over p. Then

(Y ∩ r−1
p (rp(Z))) \ (Y ∩ Z)

is the image of F → Y , (y, z, p) 7→ y. Again by Varieties, Lemma 20.4 the closure of the
image of F → Y has dimension at most dim(Y ) + dim(Z) + 1− n. �

Lemma 23.4. Let V be a vector space. Let B ⊂ P(V ) be a closed subvariety of
codimension ≥ 2. Let p ∈ P(V ) be a closed point, p 6∈ B. Then there exists a line
` ⊂ P(V ) with ` ∩B = ∅. Moreover, these lines sweep out an open subset of P(V ).

Proof. Consider the image of B under the projection rp : P(V ) → P(Wp). Since
dim(Wp) = dim(V ) − 1, we see that rp(B) has codimension ≥ 1 in P(Wp). For any
q ∈ P(V ) with rp(q) 6∈ rp(B) we see that the line ` = pq connecting p and q works. �

Lemma 23.5. Let V be a vector space. Let G = PGL(V ). Then G×P(V )→ P(V )
is doubly transitive.

Proof. Omitted. Hint: This follows from the fact that GL(V ) acts doubly transitive
on pairs of linearly independent vectors. �

Lemma 23.6. Let k be a field. Let n ≥ 1 be an integer and let xij , 1 ≤ i, j ≤ n be
variables. Then

det


x11 x12 . . . x1n
x21 . . . . . . . . .
. . . . . . . . . . . .
xn1 . . . . . . xnn


is an irreducible element of the polynomial ring k[xij ].
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Proof. LetV be ann dimensional vector space. Translating into geometry the lemma
signifies that the variety C of non-invertible linear maps V → V is irreducible. Let W be
a vector space of dimension n− 1. By elementary linear algebra, the morphism

Hom(W,V )×Hom(V,W ) −→ Hom(V, V ), (ψ,ϕ) 7−→ ψ ◦ ϕ

has image C. Since the source is irreducible, so is the image. �

Let V be a vector space of dimension n + 1. Set E = End(V ). Let E∨ = Hom(E,C) be
the dual vector space. Write P = P(E∨). There is a canonical linear map

V −→ V ⊗C E∨ = Hom(E, V )

sending v ∈ V to the map g 7→ g(v) in Hom(E, V ). Recall that we have a canonical map
E∨ → Γ(P,OP(1)) which is an isomorphism. Hence we obtain a canonical map

ψ : V ⊗OP → V ⊗OP(1)

of sheaves of modules on P which on global sections recovers the given map. Recall
that a projective bundle P(E) is defined as the relative Proj of the symmetric algebra on
E , see Constructions, Definition 21.1. We are going to study the rational map between
P(V ⊗OP(1)) and P(V ⊗OP) associated to ψ. By Constructions, Lemma 16.10 we have
a canonical isomorphism

P(V ⊗OP) = P×P(V )

By Constructions, Lemma 20.1 we see that

P(V ⊗OP(1)) = P(V ⊗OP) = P×P(V )

Combining this with Constructions, Lemma 18.1 we obtain

(23.6.1) P×P(V ) ⊃ U(ψ) rψ−→ P×P(V )

To understand this better we work out what happens on fibres over P. Let g ∈ E be
nonzero. This defines a nonzero mapE∨ → C, hence a point [g] ∈ P. On the other hand,
g defines a C-linear map g : V → V . Hence we obtain, by Constructions, Lemma 11.1 a
map

P(V ) ⊃ U(g) rg−→ P(V )

What we will use below is that U(g) is the fibre U(ψ)[g] and that rg is the fibre of rψ over
the point [g]. Another observation we will use is that the complement of U(g) in P(V ) is
the image of the closed immersion

P(Coker(g)) −→ P(V )

and the image of rg is the image of the closed immersion

P(Im(g)) −→ P(V )

Lemma 23.7. With notation as above. LetX,Y be closed subvarieties of P(V ) which
intersect properly such that X 6= P(V ) and X ∩ Y 6= ∅. For a general line ` ⊂ P with
[idV ] ∈ ` we have

(1) X ⊂ Ug for all [g] ∈ `,
(2) g(X) intersects Y properly for all [g] ∈ `.
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Proof. Let B ⊂ P be the set of “bad” points, i.e., those points [g] that violate either
(1) or (2). Note that [idV ] 6∈ B by assumption. Moreover, B is closed. Hence it suffices to
prove that dim(B) ≤ dim(P)− 2 (Lemma 23.4).

First, consider the open G = PGL(V ) ⊂ P consisting of points [g] such that g : V → V
is invertible. Since G acts doubly transitively on P(V ) (Lemma 23.5) we see that

T = {(x, y, [g]) | x ∈ X, y ∈ Y, [g] ∈ G, rg(x) = y}

is a locally trivial fibration over X × Y with fibre equal to the stabilizer of a point in G.
HenceT is a variety. Observe that the fibre ofT → G over [g] is rg(X)∩Y . The morphism
T → G is surjective, because any translate ofX intersects Y (note that by the assumption
that X and Y intersect properly and that X ∩ Y 6= ∅ we see that dim(X) + dim(Y ) ≥
dim(P(V )) and then Varieties, Lemma 34.3 implies all translates ofX intersect Y ). Since
the dimensions of fibres of a dominant morphism of varieties do not jump in codimension
1 (Varieties, Lemma 20.4) we conclude that B ∩G has codimension ≥ 2.

Next we look at the complement Z = P \ G. This is an irreducible variety because the
determinant is an irreducible polynomial (Lemma 23.6). Thus it suffices to prove that
B does not contain the generic point of Z. For a general point [g] ∈ Z the cokernel
V → Coker(g) has dimension 1, hence U(g) is the complement of a point. Since X 6=
P(V ) we see that for a general [g] ∈ Z we have X ⊂ U(g). Moreover, the morphism
rg|X : X → rg(X) is finite, hence dim(rg(X)) = dim(X). On the other hand, for such
a g the image of rg is the closed subspaceH = P(Im(g)) ⊂ P(V ) which has codimension
1. For general point of Z we see that H ∩ Y has dimension 1 less than Y (compare with
Varieties, Lemma 35.3). Thus we see that we have to show that rg(X) andH ∩Y intersect
properly in H . For a fixed choice of H , we can by postcomposing g by an automorphism,
move rg(X) by an arbitrary automorphism of H = P(Im(g)). Thus we can argue as
above to conclude that the intersection of H ∩ Y with rg(X) is proper for general g with
given H = P(Im(g)). Some details omitted. �

24. Moving Lemma

The moving lemma states that given an r-cycle α and an s-cycle β there exists α′, α′ ∼rat
α such that α′ and β intersect properly (Lemma 24.3). See [?], [?], [?]. The key to this is
Lemma 24.1; the reader may find this lemma in the form stated in [?, Example 11.4.1] and
find a proof in [?].

Lemma 24.1. Let X ⊂ PN be a nonsingular closed subvariety. Let n = dim(X) and
0 ≤ d, d′ < n. Let Z ⊂ X be a closed subvariety of dimension d and Ti ⊂ X , i ∈ I be
a finite collection of closed subvarieties of dimension d′. Then there exists a subvariety
C ⊂ PN such that C intersects X properly and such that

C ·X = Z +
∑

j∈J
mjZj

where Zj ⊂ X are irreducible of dimension d, distinct from Z , and

dim(Zj ∩ Ti) ≤ dim(Z ∩ Ti)

with strict inequality if Z does not intersect Ti properly in X .
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Proof. Write PN = P(VN ) so dim(VN ) = N + 1 and set XN = X . We are going
to choose a sequence of projections from points

rN : P(VN ) \ {pN} → P(VN−1),
rN−1 : P(VN−1) \ {pN−1} → P(VN−2),
. . . ,

rn+1 : P(Vn+1) \ {pn+1} → P(Vn)
as in Section 23. At each step we will choose pN , pN−1, . . . , pn+1 in a suitable Zariski
open set. Pick a closed point x ∈ Z ⊂ X . For every i pick closed points xit ∈ Ti ∩ Z ,
at least one in each irreducible component of Ti ∩ Z. Taking the composition we obtain
a morphism

π = (rn+1 ◦ . . . ◦ rN )|X : X −→ P(Vn)
which has the following properties

(1) π is finite,
(2) π is étale at x and all xit,
(3) π|Z : Z → π(Z) is an isomorphism over an open neighbourhood of π(xit),
(4) Ti ∩ π−1(π(Z)) = (Ti ∩Z)∪Ei with Ei ⊂ Ti closed and dim(Ei) ≤ d+ d′ +

1− (n+ 1) = d+ d′ − n.
It follows in a straightforward manner from Lemmas 23.1, 23.2, and 23.3 and induction that
we can do this; observe that the last projection is from P(Vn+1) and that dim(Vn+1) =
n+ 2 which explains the inequality in (4).
Let C ⊂ P(VN ) be the scheme theoretic closure of (rn+1 ◦ . . . ◦ rN )−1(π(Z)). Because
π is étale at the point x of Z , we see that the closed subscheme C ∩ X contains Z with
multiplicity 1 (local calculation omitted). Hence by Lemma 17.2 we conclude that

C ·X = [Z] +
∑

mj [Zj ]

for some subvarieties Zj ⊂ X of dimension d. Note that

C ∩X = π−1(π(Z))
set theoretically. Hence Ti ∩ Zj ⊂ Ti ∩ π−1(π(Z)) ⊂ Ti ∩ Z ∪ Ei. For any irreducible
component of Ti ∩ Z contained in Ei we have the desired dimension bound. Finally,
let V be an irreducible component of Ti ∩ Zj which is contained in Ti ∩ Z. To finish
the proof it suffices to show that V does not contain any of the points xit, because then
dim(V ) < dim(Z ∩ Ti). To show this it suffices to show that xit 6∈ Zj for all i, t, j.
Set Z ′ = π(Z) and Z ′′ = π−1(Z ′), scheme theoretically. By condition (3) we can find an
open U ⊂ P(Vn) containing π(xit) such that π−1(U) ∩Z → U ∩Z ′ is an isomorphism.
In particular, Z → Z ′ is a local isomorphism at xit. On the other hand, Z ′′ → Z ′ is étale
at xit by condition (2). Hence the closed immersion Z → Z ′′ is étale at xit (Morphisms,
Lemma 36.18). ThusZ = Z ′′ in a Zariski neighbourhood ofxit which proves the assertion.

�

The actual moving is done using the following lemma.

Lemma 24.2. Let C ⊂ PN be a closed subvariety. Let X ⊂ PN be subvariety and
let Ti ⊂ X be a finite collection of closed subvarieties. Assume that C and X intersect
properly. Then there exists a closed subvariety C ′ ⊂ PN ×P1 such that

(1) C ′ → P1 is dominant,
(2) C ′

0 = C scheme theoretically,
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(3) C ′ and X ×P1 intersect properly,
(4) C ′

∞ properly intersects each of the given Ti.

Proof. If C ∩X = ∅, then we take the constant family C ′ = C ×P1. Thus we may
and do assume C ∩X 6= ∅.

Write PN = P(V ) so dim(V ) = N + 1. Let E = End(V ). Let E∨ = Hom(E,C). Set
P = P(E∨) as in Lemma 23.7. Choose a general line ` ⊂ P passing through idV . Set
C ′ ⊂ ` × P(V ) equal to the closed subscheme having fibre rg(C) over [g] ∈ `. More
precisely, C ′ is the image of

`× C ⊂ P×P(V )
under the morphism (23.6.1). By Lemma 23.7 this makes sense, i.e., ` × C ⊂ U(ψ). The
morphism ` × C → C ′ is finite and C ′

[g] = rg(C) set theoretically for all [g] ∈ `. Parts
(1) and (2) are clear with 0 = [idV ] ∈ `. Part (3) follows from the fact that rg(C) and
X intersect properly for all [g] ∈ `. Part (4) follows from the fact that a general point
∞ = [g] ∈ ` is a general point of P and for such as point rg(C) ∩ T is proper for any
closed subvariety T of P(V ). Details omitted. �

Lemma 24.3. LetX be a nonsingular projective variety. Let α be an r-cycle and β be
an s-cycle onX . Then there exists an r-cycle α′ such that α′ ∼rat α and such that α′ and
β intersect properly.

Proof. Write β =
∑
ni[Ti] for some subvarieties Ti ⊂ X of dimension s. By

linearity we may assume that α = [Z] for some irreducible closed subvariety Z ⊂ X of
dimension r. We will prove the lemma by induction on the maximum e of the integers

dim(Z ∩ Ti)

The base case is e = r + s− dim(X). In this case Z intersects β properly and the lemma
is trivial.

Induction step. Assume that e > r + s − dim(X). Choose an embedding X ⊂ PN and
apply Lemma 24.1 to find a closed subvarietyC ⊂ PN such thatC ·X = [Z]+

∑
mj [Zj ]

and such that the induction hypothesis applies to each Zj . Next, apply Lemma 24.2 to C ,
X , Ti to find C ′ ⊂ PN × P1. Let γ = C ′ · X × P1 viewed as a cycle on X × P1. By
Lemma 22.2 we have

[Z] +
∑

mj [Zj ] = prX,∗(γ ·X × 0)

On the other hand the cycle γ∞ = prX,∗(γ · X × ∞) is supported on C ′
∞ ∩ X hence

intersects β transversally. Thus we see that [Z] ∼rat −
∑
mj [Zj ] + γ∞ by Lemma 17.1.

Since by induction each [Zj ] is rationally equivalent to a cycle which properly intersects
β this finishes the proof. �

25. Intersection products and rational equivalence

With definitions as above we show that the intersection product is well defined modulo
rational equivalence. We first deal with a special case.

Lemma 25.1. Let X be a nonsingular variety. Let W ⊂ X × P1 be an (s + 1)-
dimensional subvariety dominating P1. LetWa, resp.Wb be the fibre ofW → P1 over a,
resp. b. Let V be a r-dimensional subvariety of X such that V intersects both Wa and Wb

properly. Then [V ] · [Wa]r ∼rat [V ] · [Wb]r.
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Proof. We have [Wa]r = prX,∗(W ·X×a) and similarly for [Wb]r , see Lemma 17.1.
Thus we reduce to showing

V · prX,∗(W ·X × a) ∼rat V · prX,∗(W ·X × b).

Applying the projection formula Lemma 22.1 we get

V · prX,∗(W ·X × a) = prX,∗(V ×P1 · (W ·X × a))

and similarly for b. Thus we reduce to showing

prX,∗(V ×P1 · (W ·X × a)) ∼rat prX,∗(V ×P1 · (W ·X × b))

If V × P1 intersects W properly, then associativity for the intersection multiplicities
(Lemma 20.1) gives V ×P1 · (W ·X × a) = (V ×P1 ·W ) ·X × a and similarly for b.
Thus we reduce to showing

prX,∗((V ×P1 ·W ) ·X × a) ∼rat prX,∗((V ×P1 ·W ) ·X × b)

which is true by Lemma 17.1.

The argument above does not quite work. The obstruction is that we do not know that
V ×P1 andW intersect properly. We only know that V andWa and V andWb intersect
properly. LetZi, i ∈ I be the irreducible components of V ×P1∩W . Then we know that
dim(Zi) ≥ r+1+s+1−n−1 = r+s+1−nwhere n = dim(X), see Lemma 13.4. Since
we have assumed that V andWa intersect properly, we see that dim(Zi,a) = r+ s−n or
Zi,a = ∅. On the other hand, if Zi,a 6= ∅, then dim(Zi,a) ≥ dim(Zi) − 1 = r + s − n.
It follows that dim(Zi) = r + s + 1 − n if Zi meets X × a and in this case Zi → P1 is
surjective. Thus we may write I = I ′ q I ′′ where I ′ is the set of i ∈ I such that Zi → P1

is surjective and I ′′ is the set of i ∈ I such that Zi lies over a closed point ti ∈ P1 with
ti 6= a and ti 6= b. Consider the cycle

γ =
∑

i∈I′
ei[Zi]

where we take

ei =
∑

p
(−1)plengthOX×P1,Zi

Tor
OX×P1,Zi
p (OV×P1,Zi ,OW,Zi)

We will show that γ can be used as a replacement for the intersection product of V ×P1

and W .

We will show this using associativity of intersection products in exactly the same way as
above. Let U = P1 \ {ti, i ∈ I ′′}. Note that X × a and X × b are contained in X × U .
The subvarieties

V × U, WU , X × a of X × U
intersect transversally pairwise by our choice ofU and moreover dim(V ×U ∩WU ∩X×
a) = dim(V ∩Wa) has the expected dimension. Thus we see that

V × U · (WU ·X × a) = (V × U ·WU ) ·X × a

as cycles on X × U by Lemma 20.1. By construction γ restricts to the cycle V × U ·WU

onX ×U . Trivially, V ×P1 · (W ×X × a) restricts to V ×U · (WU ·X × a) onX ×U .
Hence

V ×P1 · (W ·X × a) = γ ·X × a
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as cycles on X × P1 (because both sides are contained in X × U and are equal after re-
stricting to X × U by what was said before). Since we have the same for b we conclude

V · [Wa] = prX,∗(V ×P1 · (W ·X × a))
= prX,∗(γ ·X × a)
∼rat prX,∗(γ ·X × b)
= prX,∗(V ×P1 · (W ·X × b))
= V · [Wb]

The first and the last equality by the first paragraph of the proof, the second and penul-
timate equalities were shown in this paragraph, and the middle equivalence is Lemma
17.1. �

Theorem 25.2. LetX be a nonsingular projective variety. Let α, resp. β be an r, resp.
s cycle on X . Assume that α and β intersect properly so that α · β is defined. Finally,
assume that α ∼rat 0. Then α · β ∼rat 0.

Proof. Pick a closed immersion X ⊂ PN . By linearity it suffices to prove the result
when β = [Z] for some s-dimensional closed subvariety Z ⊂ X which intersects α prop-
erly. The condition α ∼rat 0 means there are finitely many (r + 1)-dimensional closed
subvarieties Wi ⊂ X ×P1 such that

α =
∑

[Wi,ai ]r − [Wi,bi ]r

for some pairs of points ai, bi of P1. Let W t
i,ai

and W t
i,bi

be the irreducible components
of Wi,ai and Wi,bi . We will use induction on the maximum d of the integers

dim(Z ∩W t
i,ai), dim(Z ∩W t

i,bi)
The main problem in the rest of the proof is that although we know that Z intersects α
properly, it may not be the case that Z intersects the “intermediate” varieties W t

i,ai
and

W t
i,bi

properly, i.e., it may happen that d > r + s− dim(X).

Base case: d = r + s − dim(X). In this case all the intersections of Z with the W t
i,ai

and W t
i,bi

are proper and the desired result follows from Lemma 25.1, because it applies to
show that [Z] · [Wi,ai ]r ∼rat [Z] · [Wi,bi ]r for each i.

Induction step: d > r + s − dim(X). Apply Lemma 24.1 to Z ⊂ X and the family of
subvarieties {W t

i,ai
,W t

i,bi
}. Then we find a closed subvariety C ⊂ PN intersecting X

properly such that
C ·X = [Z] +

∑
mj [Zj ]

and such that

dim(Zj ∩W t
i,ai) ≤ dim(Z ∩W t

i,ai), dim(Zj ∩W t
i,bi) ≤ dim(Z ∩W t

i,bi)
with strict inequality if the right hand side is> r+s−dim(X). This implies two things:
(a) the induction hypothesis applies to each Zj , and (b) C · X and α intersect properly
(becauseα is a linear combination of those [W t

i,ai
] and [W t

i,ai
] which intersectZ properly).

Next, pickC ′ ⊂ PN ×P1 as in Lemma 24.2 with respect toC ,X , andW t
i,ai

,W t
i,bi

. Write
C ′ ·X ×P1 =

∑
nk[Ek] for some subvarieties Ek ⊂ X ×P1 of dimension s+ 1. Note

that nk > 0 for all k by Proposition 19.3. By Lemma 22.2 we have

[Z] +
∑

mj [Zj ] =
∑

nk[Ek,0]s



26. CHOW RINGS 3813

Since Ek,0 ⊂ C ∩X we see that [Ek,0]s and α intersect properly. On the other hand, the
cycle

γ =
∑

nk[Ek,∞]s
is supported onC ′

∞∩X and hence properly intersects eachW t
i,ai

,W t
i,bi

. Thus by the base
case and linearity, we see that

γ · α ∼rat 0
As we have seen that Ek,0 and Ek,∞ intersect α properly Lemma 25.1 applied to Ek ⊂
X ×P1 and α gives

[Ek,0] · α ∼rat [Ek,∞] · α
Putting everything together we have

[Z] · α = (
∑

nk[Ek,0]r −
∑

mj [Zj ]) · α

∼rat
∑

nk[Ek,0] · α (by induction hypothesis)

∼rat
∑

nk[Ek,∞] · α (by the lemma)
= γ · α
∼rat 0 (by base case)

This finishes the proof. �

Remark 25.3. Lemma 24.3 and Theorem 25.2 also hold for nonsingular quasi-projective
varieties with the same proof. The only change is that one needs to prove the following
version of the moving Lemma 24.1: LetX ⊂ PN be a closed subvariety. Let n = dim(X)
and 0 ≤ d, d′ < n. LetXreg ⊂ X be the open subset of nonsingular points. LetZ ⊂ Xreg

be a closed subvariety of dimension d and Ti ⊂ Xreg , i ∈ I be a finite collection of closed
subvarieties of dimension d′. Then there exists a subvariety C ⊂ PN such that C inter-
sects X properly and such that

(C ·X)|Xreg = Z +
∑

j∈J
mjZj

where Zj ⊂ Xreg are irreducible of dimension d, distinct from Z , and

dim(Zj ∩ Ti) ≤ dim(Z ∩ Ti)

with strict inequality if Z does not intersect Ti properly in Xreg .

26. Chow rings

Let X be a nonsingular projective variety. We define the intersection product

CHr(X)× CHs(X) −→ CHr+s−dim(X)(X), (α, β) 7−→ α · β

as follows. Let α ∈ Zr(X) and β ∈ Zs(X). If α and β intersect properly, we use the
definition given in Section 17. If not, then we choose α ∼rat α′ as in Lemma 24.3 and we
set

α · β = class of α′ · β ∈ CHr+s−dim(X)(X)
This is well defined and passes through rational equivalence by Theorem 25.2. The inter-
section product on CH∗(X) is commutative (this is clear), associative (Lemma 20.1) and
has a unit [X] ∈ CHdim(X)(X).
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We often use CHc(X) = CHdimX−c(X) to denote the Chow group of cycles of codimen-
sion c, see Chow Homology, Section 42. The intersection product defines a product

CHk(X)× CHl(X) −→ CHk+l(X)
which is commutative, associative, and has a unit 1 = [X] ∈ CH0(X).

27. Pullback for a general morphism

Let f : X → Y be a morphism of nonsingular projective varieties. We define
f∗ : CHk(Y )→ CHk+dimX−dimY (X)

by the rule
f∗(α) = prX,∗(Γf · pr∗

Y (α))
where Γf ⊂ X × Y is the graph of f . Note that in this generality, it is defined only on
cycle classes and not on cycles. With the notation CH∗ introduced in Section 26 we may
think of pullback as a map

f∗ : CH∗(Y )→ CH∗(X)
in other words, it is a map of graded abelian groups.

Lemma 27.1. Let f : X → Y be a morphism of nonsingular projective varieties. The
pullback map on chow groups satisfies:

(1) f∗ : CH∗(Y )→ CH∗(X) is a ring map,
(2) (g ◦ f)∗ = f∗ ◦ g∗ for a composable pair f, g,
(3) the projection formula holds: f∗(α) · β = f∗(α · f∗β), and
(4) if f is flat then it agrees with the previous definition.

Proof. All of these follow readily from the results above.
For (1) it suffices to show that prX,∗(Γf ·α · β) = prX,∗(Γf ·α) · prX,∗(Γf · β) for cycles
α, β on X × Y . If α is a cycle on X × Y which intersects Γf properly, then it is easy to
see that

Γf · α = Γf · pr∗
X(prX,∗(Γf · α))

as cycles because Γf is a graph. Thus we get the first equality in
prX,∗(Γf · α · β) = prX,∗(Γf · pr∗

X(prX,∗(Γf · α)) · β)
= prX,∗(pr∗

X(prX,∗(Γf · α)) · (Γf · β))
= prX,∗(Γf · α) · prX,∗(Γf · β)

the last step by the projection formula in the flat case (Lemma 22.1).
If g : Y → Z then property (2) follows formally from the observation that

Γ = pr∗
X×Y Γf · pr∗

Y×ZΓg
in Z∗(X × Y × Z) where Γ = {(x, f(x), g(f(x))} and maps isomorphically to Γg◦f in
X × Z. The equality follows from the scheme theoretic equality and Lemma 14.3.
For (3) we use the projection formula for flat maps twice

f∗(α · prX,∗(Γf · pr∗
Y (β))) = f∗(prX,∗(pr∗

Xα · Γf · pr∗
Y (β)))

= prY,∗(pr∗
Xα · Γf · pr∗

Y (β)))
= ptY,∗(pr∗

Xα · Γf ) · β
= f∗(α) · β
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where in the last equality we use the remark on graphs made above. This proves (3).
Property (4) rests on identifying the intersection product Γf · pr∗

Y α in the case f is flat.
Namely, in this case if V ⊂ Y is a closed subvariety, then every generic point ξ of the
scheme f−1(V ) ∼= Γf ∩ pr−1

Y (V ) lies over the generic point of V . Hence the local ring of
pr−1
Y (V ) = X × V at ξ is Cohen-Macaulay. Since Γf ⊂ X × Y is a regular immersion

(as a morphism of smooth projective varieties) we find that

Γf · pr∗
Y [V ] = [Γf ∩ pr−1

Y (V )]d
with d the dimension of Γf ∩ pr−1

Y (V ), see Lemma 16.5. Since Γf ∩ pr−1
Y (V ) maps iso-

morphically to f−1(V ) we conclude. �

28. Pullback of cycles

Suppose that X and Y be nonsingular projective varieties, and let f : X → Y be a mor-
phism. Suppose that Z ⊂ Y is a closed subvariety. Let f−1(Z) be the scheme theoretic
inverse image:

f−1(Z) //

��

Z

��
X // Y

is a fibre product diagram of schemes. In particular f−1(Z) ⊂ X is a closed subscheme of
X . In this case we always have

dim f−1(Z) ≥ dimZ + dimX − dimY.

If equality holds in the formula above, then f∗[Z] = [f−1(Z)]dimZ+dimX−dimY pro-
vided that the schemeZ is Cohen-Macaulay at the images of the generic points of f−1(Z).
This follows by identifying f−1(Z) with the scheme theoretic intersection of Γf and
X × Z and using Lemma 16.5. Details are similar to the proof of part (4) of Lemma 27.1
above.
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CHAPTER 44

Picard Schemes of Curves

1. Introduction

In this chapter we do just enough work to construct the Picard scheme of a projective
nonsingular curve over an algebraically closed field. See [?] for a more thorough discussion
as well as historical background.

Later in the Stacks project we will discuss Hilbert and Quot functors in much greater gen-
erality.

2. Hilbert scheme of points

Let X → S be a morphism of schemes. Let d ≥ 0 be an integer. For a scheme T over S
we let

HilbdX/S(T ) =
{
Z ⊂ XT closed subscheme such that
Z → T is finite locally free of degree d

}
If T ′ → T is a morphism of schemes over S and if Z ∈ HilbdX/S(T ), then the base change
ZT ′ ⊂ XT ′ is an element of HilbdX/S(T ′). In this way we obtain a functor

HilbdX/S : (Sch/S)opp −→ Sets, T −→ HilbdX/S(T )

In general HilbdX/S is an algebraic space (insert future reference here). In this section we
will show that HilbdX/S is representable by a scheme if any finite number of points in a
fibre of X → S are contained in an affine open. If HilbdX/S is representable by a scheme,
we often denote this scheme by HilbdX/S .

Lemma 2.1. Let X → S be a morphism of schemes. The functor HilbdX/S satisfies
the sheaf property for the fpqc topology (Topologies, Definition 9.12).

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti. Note that {Xi → XT }i∈I is an fpqc covering of XT (Topologies, Lemma
9.7) and that XTi×TTi′ = Xi ×XT Xi′ . Suppose that Zi ∈ HilbdX/S(Ti) is a collection
of elements such that Zi and Zi′ map to the same element of HilbdX/S(Ti ×T Ti′). By
effective descent for closed immersions (Descent, Lemma 37.2) there is a closed immersion
Z → XT whose base change by Xi → XT is equal to Zi → Xi. The morphism Z → T
then has the property that its base change to Ti is the morphism Zi → Ti. Hence Z → T
is finite locally free of degree d by Descent, Lemma 23.30. �

Lemma 2.2. LetX → S be a morphism of schemes. IfX → S is of finite presentation,
then the functor HilbdX/S is limit preserving (Limits, Remark 6.2).

3817
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Proof. Let T = limTi be a limit of affine schemes over S. We have to show that
HilbdX/S(T ) = colim HilbdX/S(Ti). Observe that ifZ → XT is an element of HilbdX/S(T ),
then Z → T is of finite presentation. Hence by Limits, Lemma 10.1 there exists an i,
a scheme Zi of finite presentation over Ti, and a morphism Zi → XTi over Ti whose
base change to T gives Z → XT . We apply Limits, Lemma 8.5 to see that we may as-
sume Zi → XTi is a closed immersion after increasing i. We apply Limits, Lemma 8.8
to see that Zi → Ti is finite locally free of degree d after possibly increasing i. Then
Zi ∈ HilbdX/S(Ti) as desired. �

Let S be a scheme. Let i : X → Y be a closed immersion of schemes over S. Then there is
a transformation of functors

HilbdX/S −→ HilbdY/S
which maps an elementZ ∈ HilbdX/S(T ) to iT (Z) ⊂ YT in HilbdY/S . Here iT : XT → YT
is the base change of i.

Lemma 2.3. Let S be a scheme. Let i : X → Y be a closed immersion of schemes. If
HilbdY/S is representable by a scheme, so is HilbdX/S and the corresponding morphism of
schemes HilbdX/S → HilbdY/S is a closed immersion.

Proof. Let T be a scheme over S and let Z ∈ HilbdY/S(T ). Claim: there is a closed
subscheme TX ⊂ T such that a morphism of schemes T ′ → T factors through TX if and
only if ZT ′ → YT ′ factors through XT ′ . Applying this to a scheme Tuniv representing
HilbdY/S and the universal object1 Zuniv ∈ HilbdY/S(Tuniv) we get a closed subscheme
Tuniv,X ⊂ Tuniv such that Zuniv,X = Zuniv ×Tuniv Tuniv,X is a closed subscheme of
X ×S Tuniv,X and hence defines an element of HilbdX/S(Tuniv,X). A formal argument
then shows that Tuniv,X is a scheme representing HilbdX/S with universal object Zuniv,X .

Proof of the claim. Consider Z ′ = XT ×YT Z. Given T ′ → T we see that ZT ′ → YT ′

factors throughXT ′ if and only if Z ′
T ′ → ZT ′ is an isomorphism. Thus the claim follows

from the very general More on Flatness, Lemma 23.4. However, in this special case one
can prove the statement directly as follows: first reduce to the case T = Spec(A) and
Z = Spec(B). After shrinking T further we may assume there is an isomorphism ϕ :
B → A⊕d as A-modules. Then Z ′ = Spec(B/J) for some ideal J ⊂ B. Let gβ ∈ J be a
collection of generators and write ϕ(gβ) = (g1

β , . . . , g
d
β). Then it is clear that TX is given

by Spec(A/(gjβ)). �

Lemma 2.4. Let X → S be a morphism of schemes. If X → S is separated and
HilbdX/S is representable, then HilbdX/S → S is separated.

Proof. In this proof all unadorned products are over S. Let H = HilbdX/S and let
Z ∈ HilbdX/S(H) be the universal object. Consider the two objectsZ1, Z2 ∈ HilbdX/S(H×
H) we get by pulling back Z by the two projections H ×H → H . Then Z1 = Z ×H ⊂
XH×H and Z2 = H × Z ⊂ XH×H . Since H represents the functor HilbdX/S , the di-
agonal morphism ∆ : H → H × H has the following universal property: A morphism
of schemes T → H × H factors through ∆ if and only if Z1,T = Z2,T as elements of
HilbdX/S(T ). Set Z = Z1 ×XH×H Z2. Then we see that T → H ×H factors through ∆
if and only if the morphisms ZT → Z1,T and ZT → Z2,T are isomorphisms. It follows

1See Categories, Section 3
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from the very general More on Flatness, Lemma 23.4 that ∆ is a closed immersion. In the
proof of Lemma 2.3 the reader finds an alternative easier proof of the needed result in our
special case. �

Lemma 2.5. Let X → S be a morphism of affine schemes. Let d ≥ 0. Then HilbdX/S
is representable.

Proof. Say S = Spec(R). Then we can choose a closed immersion of X into the
spectrum ofR[xi; i ∈ I] for some set I (of sufficiently large cardinality. Hence by Lemma
2.3 we may assume that X = Spec(A) where A = R[xi; i ∈ I]. We will use Schemes,
Lemma 15.4 to prove the lemma in this case.
Condition (1) of the lemma follows from Lemma 2.1.

For every subset W ⊂ A of cardinality d we will construct a subfunctor FW of HilbdX/S .
(It would be enough to consider the case whereW consists of a collection of monomials in
the xi but we do not need this.) Namely, we will say that Z ∈ HilbdX/S(T ) is in FW (T )
if and only if theOT -linear map⊕

f∈W
OT −→ (Z → T )∗OZ , (gf ) 7−→

∑
gff |Z

is surjective (equivalently an isomorphism). Here for f ∈ A and Z ∈ HilbdX/S(T ) we
denote f |Z the pullback of f by the morphism Z → XT → X .
Openness, i.e., condition (2)(b) of the lemma. This follows from Algebra, Lemma 79.4.
Covering, i.e., condition (2)(c) of the lemma. Since

A⊗R OT = (XT → T )∗OXT → (Z → T )∗OZ
is surjective and since (Z → T )∗OZ is finite locally free of rank d, for every point t ∈ T
we can find a finite subset W ⊂ A of cardinality d whose images form a basis of the d-
dimensional κ(t)-vector space ((Z → T )∗OZ)t ⊗OT,t

κ(t). By Nakayama’s lemma there
is an open neighbourhood V ⊂ T of t such that ZV ∈ FW (V ).
Representable, i.e., condition (2)(a) of the lemma. Let W ⊂ A have cardinality d. We
claim that FW is representable by an affine scheme over R. We will construct this affine
scheme here, but we encourage the reader to think it trough for themselves. Choose
a numbering f1, . . . , fd of the elements of W . We will construct a universal element
Zuniv = Spec(Buniv) of FW over Tuniv = Spec(Runiv) which will be the spectrum
of

Buniv = Runiv[e1, . . . , ed]/(ekel −
∑

cmklem)
where the el will be the images of the fl and where the closed immersionZuniv → XTuniv

is given by the ring map
A⊗R Runiv −→ Buniv

mapping 1⊗ 1 to
∑
blel and xi to

∑
bliel. In fact, we claim that FW is represented by the

spectrum of the ring
Runiv = R[cmkl, bl, bli]/auniv

where the ideal auniv is generated by the following elements:
(1) multiplication on Buniv is commutative, i.e., cmlk − cmkl ∈ auniv ,
(2) multiplication on Buniv is associative, i.e., cmlkcpmn − c

p
lqc

q
kn ∈ auniv ,

(3)
∑
blel is a multiplicative 1 inBuniv , in other words, we should have (

∑
blel)ek =

ek for all k, which means
∑
blcmlk − δkm ∈ auniv (Kronecker delta).



3820 44. PICARD SCHEMES OF CURVES

After dividing out by the ideal a′
univ of the elements listed sofar we obtain a well defined

ring map

Ψ : A⊗R R[cmkl, bl, bli]/a′
univ −→

(
R[cmkl, bl, bli]/a′

univ

)
[e1, . . . , ed]/(ekel −

∑
cmklem)

sending 1⊗ 1 to
∑
blel and xi ⊗ 1 to

∑
bliel. We need to add some more elements to our

ideal because we need
(5) fl to map to el inBuniv . Write Ψ(fl)−el =

∑
hml em withhml ∈ R[cmkl, bl, bli]/a′

univ

then we need to set hml equal to zero.
Thus setting auniv ⊂ R[cmkl, bl, bli] equal to a′

univ+ ideal generated by lifts of hml to
R[cmkl, bl, bli], then it is clear that FW is represented by Spec(Runiv). �

Proposition 2.6. Let X → S be a morphism of schemes. Let d ≥ 0. Assume for all
(s, x1, . . . , xd) where s ∈ S and x1, . . . , xd ∈ Xs there exists an affine open U ⊂ X with
x1, . . . , xd ∈ U . Then HilbdX/S is representable by a scheme.

Proof. Either using relative glueing (Constructions, Section 2) or using the functo-
rial point of view (Schemes, Lemma 15.4) we reduce to the case where S is affine. Details
omitted.
Assume S is affine. For U ⊂ X affine open, denote FU ⊂ HilbdX/S the subfunctor such
that for a scheme T/S an element Z ∈ HilbdX/S(T ) is in FU (T ) if and only if Z ⊂ UT .
We will use Schemes, Lemma 15.4 and the subfunctors FU to conclude.
Condition (1) is Lemma 2.1.

Condition (2)(a) follows from the fact that FU = HilbdU/S and that this is representable
by Lemma 2.5. Namely, if Z ∈ FU (T ), then Z can be viewed as a closed subscheme of UT
which is finite locally free of degree d over T and hence Z ∈ HilbdU/S(T ). Conversely, if
Z ∈ HilbdU/S(T ) then Z → UT → XT is a closed immersion2 and we may view Z as an
element of FU (T ).

Let Z ∈ HilbdX/S(T ) for some scheme T over S. Let

B = (Z → T )
(
(Z → XT → X)−1(X \ U)

)
This is a closed subset of T and it is clear that over the open TZ,U = T \B the restriction
Zt′ maps into UT ′ . On the other hand, for any b ∈ B the fibre Zb does not map into U .
Thus we see that given a morphism T ′ → T we have ZT ′ ∈ FU (T ′)⇔ T ′ → T factors
through the open TZ,U . This proves condition (2)(b).
Condition (2)(c) follows from our assumption on X/S. All we have to do is show the
following: If T is the spectrum of a field and Z ⊂ XT is a closed subscheme, finite flat of
degree d over T , then Z → XT → X factors through an affine open U ofX . This is clear
because Z will have at most d points and these will all map into the fibre of X over the
image point of T → S. �

2This is clear if X → S is separated as in this case Morphisms, Lemma 41.7 tells us that the immersion
ϕ : Z → XT has closed image and hence is a closed immersion by Schemes, Lemma 10.4. We suggest the reader
skip the rest of this footnote as we don’t know of any instance where the assumptions on X → S hold but
X → S is not separated. In the general case, let x ∈ XT be a point in the closure of ϕ(Z). We have to show
that x ∈ ϕ(Z). Let t ∈ T be the image of x. By assumption onX → S we can choose an affine openW ⊂ XT
containing x and ϕ(Zt). Then ϕ−1(W ) is an open containing the whole fibre Zt and since Z → T is closed,
we may after replacing T by an open neighbourhood of t assume that Z = ϕ−1(W ). Then ϕ(Z) ⊂ W is
closed by the separated case (as W → T is separated) and we conclude x ∈ ϕ(Z).
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Remark 2.7. Let f : X → S be a morphism of schemes. The assumption of Propo-
sition 2.6 and hence the conclusion holds in each of the following cases:

(1) X is quasi-affine,
(2) f is quasi-affine,
(3) f is quasi-projective,
(4) f is locally projective,
(5) there exists an ample invertible sheaf on X ,
(6) there exists an f -ample invertible sheaf on X , and
(7) there exists an f -very ample invertible sheaf on X .

Namely, in each of these cases, every finite set of points of a fibre Xs is contained in a
quasi-compact open U of X which comes with an ample invertible sheaf, is isomorphic
to an open of an affine scheme, or is isomorphic to an open of Proj of a graded ring (in
each case this follows by unwinding the definitions). Thus the existence of suitable affine
opens by Properties, Lemma 29.5.

3. Moduli of divisors on smooth curves

For a smooth morphismX → S of relative dimension 1 the functor HilbdX/S parametrizes
relative effective Cartier divisors as defined in Divisors, Section 18.

Lemma 3.1. Let X → S be a smooth morphism of schemes of relative dimension 1.
Let D ⊂ X be a closed subscheme. Consider the following conditions

(1) D → S is finite locally free,
(2) D is a relative effective Cartier divisor on X/S ,
(3) D → S is locally quasi-finite, flat, and locally of finite presentation, and
(4) D → S is locally quasi-finite and flat.

We always have the implications
(1)⇒ (2)⇔ (3)⇒ (4)

If S is locally Noetherian, then the last arrow is an if and only if. IfX → S is proper (and
S arbitrary), then the first arrow is an if and only if.

Proof. Equivalence of (2) and (3). This follows from Divisors, Lemma 18.9 if we can
show the equivalence of (2) and (3) when S is the spectrum of a field k. Let x ∈ X be
a closed point. As X is smooth of relative dimension 1 over k and we see that OX,x is
a regular local ring of dimension 1 (see Varieties, Lemma 25.3). Thus OX,x is a discrete
valuation ring (Algebra, Lemma 119.7) and hence a PID. It follows that every sheaf of
ideals I ⊂ OX which is nonvanishing at all the generic points ofX is invertible (Divisors,
Lemma 15.2). In other words, every closed subscheme of X which does not contain a
generic point is an effective Cartier divisor. It follows that (2) and (3) are equivalent.
If S is Noetherian, then any locally quasi-finite morphism D → S is locally of finite
presentation (Morphisms, Lemma 21.9), whence (3) is equivalent to (4).
If X → S is proper (and S is arbitrary), then D → S is proper as well. Since a proper
locally quasi-finite morphism is finite (More on Morphisms, Lemma 44.1) and a finite, flat,
and finitely presented morphism is finite locally free (Morphisms, Lemma 48.2), we see
that (1) is equivalent to (2). �

Lemma 3.2. Let X → S be a smooth morphism of schemes of relative dimension 1.
Let D1, D2 ⊂ X be closed subschemes finite locally free of degrees d1, d2 over S. Then
D1 +D2 is finite locally free of degree d1 + d2 over S.
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Proof. By Lemma 3.1 we see thatD1 andD2 are relative effective Cartier divisors on
X/S. ThusD = D1+D2 is a relative effective Cartier divisor onX/S by Divisors, Lemma
18.3. HenceD → S is locally quasi-finite, flat, and locally of finite presentation by Lemma
3.1. Applying Morphisms, Lemma 41.11 the surjective integral morphism D1 qD2 → D
we find that D → S is separated. Then Morphisms, Lemma 41.9 implies that D → S is
proper. This implies that D → S is finite (More on Morphisms, Lemma 44.1) and in turn
we see thatD → S is finite locally free (Morphisms, Lemma 48.2). Thus it suffice to show
that the degree of D → S is d1 + d2. To do this we may base change to a fibre of X → S ,
hence we may assume that S = Spec(k) for some field k. In this case, there exists a finite
set of closed points x1, . . . , xn ∈ X such that D1 and D2 are supported on {x1, . . . , xn}.
In fact, there are nonzerodivisors fi,j ∈ OX,xi such that

D1 =
∐

Spec(OX,xi/(fi,1)) and D2 =
∐

Spec(OX,xi/(fi,2))

Then we see that
D =

∐
Spec(OX,xi/(fi,1fi,2))

From this one sees easily thatD has degree d1 +d2 over k (if need be, use Algebra, Lemma
121.1). �

Lemma 3.3. Let X → S be a smooth morphism of schemes of relative dimension
1. Let D1, D2 ⊂ X be closed subschemes finite locally free of degrees d1, d2 over S. If
D1 ⊂ D2 (as closed subschemes) then there is a closed subscheme D ⊂ X finite locally
free of degree d2 − d1 over S such that D2 = D1 +D.

Proof. This proof is almost exactly the same as the proof of Lemma 3.2. By Lemma
3.1 we see that D1 and D2 are relative effective Cartier divisors on X/S. By Divisors,
Lemma 18.4 there is a relative effective Cartier divisor D ⊂ X such that D2 = D1 + D.
Hence D → S is locally quasi-finite, flat, and locally of finite presentation by Lemma 3.1.
Since D is a closed subscheme of D2, we see that D → S is finite. It follows that D → S
is finite locally free (Morphisms, Lemma 48.2). Thus it suffice to show that the degree of
D → S is d2 − d1. This follows from Lemma 3.2. �

Let X → S be a smooth morphism of schemes of relative dimension 1. By Lemma 3.1 for
a scheme T over S and D ∈ HilbdX/S(T ), we can view D as a relative effective Cartier
divisor on XT /T such that D → T is finite locally free of degree d. Hence, by Lemma 3.2
we obtain a transformation of functors

Hilbd1
X/S ×Hilbd2

X/S −→ Hilbd1+d2
X/S , (D1, D2) 7−→ D1 +D2

If HilbdX/S is representable for all degrees d, then this transformation of functors corre-
sponds to a morphism of schemes

Hilbd1
X/S ×S Hilbd2

X/S −→ Hilbd1+d2
X/S

over S. Observe that Hilb0
X/S = S and Hilb1

X/S = X . A special case of the morphism
above is the morphism

HilbdX/S ×S X −→ Hilbd+1
X/S , (D,x) 7−→ D + x

Lemma 3.4. Let X → S be a smooth morphism of schemes of relative dimension
1 such that the functors HilbdX/S are representable. The morphism HilbdX/S ×S X →
Hilbd+1

X/S is finite locally free of degree d+ 1.
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Proof. Let Duniv ⊂ X ×S Hilbd+1
X/S be the universal object. There is a commutative

diagram

HilbdX/S ×S X //

&&

Duniv

{{

� � // Hilbd+1
X/S ×S X

Hilbd+1
X/S

where the top horizontal arrow maps (D′, x) to (D′ + x, x). We claim this morphism is
an isomorphism which certainly proves the lemma. Namely, given a scheme T over S ,
a T -valued point ξ of Duniv is given by a pair ξ = (D,x) where D ⊂ XT is a closed
subscheme finite locally free of degree d+ 1 over T and x : T → X is a morphism whose
graph x : T → XT factors through D. Then by Lemma 3.3 we can write D = D′ + x
for some D′ ⊂ XT finite locally free of degree d over T . Sending ξ = (D,x) to the pair
(D′, x) is the desired inverse. �

Lemma 3.5. Let X → S be a smooth morphism of schemes of relative dimension 1
such that the functors HilbdX/S are representable. The schemes HilbdX/S are smooth over
S of relative dimension d.

Proof. We have Hilb0
X/S = S and Hilb1

X/S = X thus the result is true for d = 0, 1.
Assuming the result for d, we see that HilbdX/S×SX is smooth overS (Morphisms, Lemma
34.5 and 34.4). Since HilbdX/S ×S X → Hilbd+1

X/S is finite locally free of degree d+ 1 by
Lemma 3.4 the result follows from Descent, Lemma 14.5. We omit the verification that
the relative dimension is as claimed (you can do this by looking at fibres, or by keeping
track of the dimensions in the argument above). �

We collect all the information obtained sofar in the case of a proper smooth curve over a
field.

Proposition 3.6. Let X be a geometrically irreducible smooth proper curve over a
field k.

(1) The functors HilbdX/k are representable by smooth proper varieties HilbdX/k of
dimension d over k.

(2) For a field extension k′/k the k′-rational points of HilbdX/k are in 1-to-1 bijection
with effective Cartier divisors of degree d on Xk′ .

(3) For d1, d2 ≥ 0 there is a morphism

Hilbd1
X/k ×k Hilbd2

X/k −→ Hilbd1+d2
X/k

which is finite locally free of degree
(
d1+d2
d1

)
.

Proof. The functors HilbdX/k are representable by Proposition 2.6 (see also Remark
2.7) and the fact that X is projective (Varieties, Lemma 43.4). The schemes HilbdX/k are
separated over k by Lemma 2.4. The schemes HilbdX/k are smooth over k by Lemma 3.5.
Starting with X = Hilb1

X/k , the morphisms of Lemma 3.4, and induction we find a mor-
phism

Xd = X ×k X ×k . . .×k X −→ HilbdX/k, (x1, . . . , xd) −→ x1 + . . .+ xd
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which is finite locally free of degree d!. Since X is proper over k, so is Xd, hence HilbdX/k
is proper over k by Morphisms, Lemma 41.9. Since X is geometrically irreducible over k,
the productXd is irreducible (Varieties, Lemma 8.4) hence the image is irreducible (in fact
geometrically irreducible). This proves (1). Part (2) follows from the definitions. Part (3)
follows from the commutative diagram

Xd1 ×k Xd2

��

Xd1+d2

��
Hilbd1

X/k ×k Hilbd2
X/k

// Hilbd1+d2
X/k

and multiplicativity of degrees of finite locally free morphisms. �

Remark 3.7. Let X be a geometrically irreducible smooth proper curve over a field
k as in Proposition 3.6. Let d ≥ 0. The universal closed object is a relatively effective
divisor

Duniv ⊂ Hilbd+1
X/k ×k X

over Hilbd+1
X/k by Lemma 3.1. In fact, Duniv is isomorphic as a scheme to HilbdX/k ×k

X , see proof of Lemma 3.4. In particular, Duniv is an effective Cartier divisor and we
obtain an invertible module O(Duniv). If [D] ∈ Hilbd+1

X/k denotes the k-rational point
corresponding to the effective Cartier divisorD ⊂ X of degree d+ 1, then the restriction
ofO(Duniv) to the fibre [D]×X isOX(D).

4. The Picard functor

Given any scheme X we denote Pic(X) the set of isomorphism classes of invertible OX -
modules. See Modules, Definition 25.9. Given a morphism f : X → Y of schemes, pull-
back defines a group homomorphism Pic(Y ) → Pic(X). The assignment X  Pic(X)
is a contravariant functor from the category of schemes to the category of abelian groups.
This functor is not representable, but it turns out that a relative variant of this construc-
tion sometimes is representable.
Let us define the Picard functor for a morphism of schemes f : X → S. The idea be-
hind our construction is that we’ll take it to be the sheaf R1f∗Gm where we use the fppf
topology to compute the higher direct image. Unwinding the definitions this leads to the
following more direct definition.

Definition 4.1. Let Schfppf be a big site as in Topologies, Definition 7.8. Let f :
X → S be a morphism of this site. The Picard functor PicX/S is the fppf sheafification
of the functor

(Sch/S)fppf −→ Sets, T 7−→ Pic(XT )
If this functor is representable, then we denote PicX/S a scheme representing it.

An often used remark is that if T ∈ Ob((Sch/S)fppf ), then PicXT /T is the restriction of
PicX/S to (Sch/T )fppf . It turns out to be nontrivial to see what the value of PicX/S is
on schemes T over S. Here is a lemma that helps with this task.

Lemma 4.2. Let f : X → S be as in Definition 4.1. If OT → fT,∗OXT is an
isomorphism for all T ∈ Ob((Sch/S)fppf ), then

0→ Pic(T )→ Pic(XT )→ PicX/S(T )
is an exact sequence for all T .
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Proof. We may replace S by T andX byXT and assume that S = T to simplify the
notation. Let N be an invertible OS-module. If f∗N ∼= OX , then we see that f∗f

∗N ∼=
f∗OX ∼= OS by assumption. Since N is locally trivial, we see that the canonical map
N → f∗f

∗N is locally an isomorphism (because OS → f∗f
∗OS is an isomorphism by

assumption). Hence we conclude thatN → f∗f
∗N → OS is an isomorphism and we see

thatN is trivial. This proves the first arrow is injective.

Let L be an invertibleOX -module which is in the kernel of Pic(X)→ PicX/S(S). Then
there exists an fppf covering {Si → S} such that L pulls back to the trivial invertible
sheaf on XSi . Choose a trivializing section si. Then pr∗

0si and pr∗
1sj are both trivialising

sections of L over XSi×SSj and hence differ by a multiplicative unit

fij ∈ Γ(XSi×SSj ,O∗
XSi×SSj

) = Γ(Si ×S Sj ,O∗
Si×SSj )

(equality by our assumption on pushforward of structure sheaves). Of course these ele-
ments satisfy the cocycle condition on Si×S Sj×S Sk , hence they define a descent datum
on invertible sheaves for the fppf covering {Si → S}. By Descent, Proposition 5.2 there
is an invertibleOS-moduleN with trivializations over Si whose associated descent datum
is {fij}. Then f∗N ∼= L as the functor from descent data to modules is fully faithful (see
proposition cited above). �

Lemma 4.3. Let f : X → S be as in Definition 4.1. Assume f has a section σ and
thatOT → fT,∗OXT is an isomorphism for all T ∈ Ob((Sch/S)fppf ). Then

0→ Pic(T )→ Pic(XT )→ PicX/S(T )→ 0

is a split exact sequence with splitting given by σ∗
T : Pic(XT )→ Pic(T ).

Proof. DenoteK(T ) = Ker(σ∗
T : Pic(XT )→ Pic(T )). Since σ is a section of f we

see that Pic(XT ) is the direct sum of Pic(T ) and K(T ). Thus by Lemma 4.2 we see that
K(T ) ⊂ PicX/S(T ) for all T . Moreover, it is clear from the construction that PicX/S is
the sheafification of the presheafK. To finish the proof it suffices to show thatK satisfies
the sheaf condition for fppf coverings which we do in the next paragraph.

Let {Ti → T} be an fppf covering. Let Li be elements of K(Ti) which map to the same
elements of K(Ti ×T Tj) for all i and j. Choose an isomorphism αi : OTi → σ∗

Ti
Li for

all i. Choose an isomorphism

ϕij : Li|XTi×T Tj
−→ Lj |XTi×T Tj

If the map

αj |Ti×TTj ◦ σ∗
Ti×TTjϕij ◦ αi|Ti×TTj : OTi×TTj → OTi×TTj

is not equal to multiplication by 1 but some uij , then we can scale ϕij by u−1
ij to correct

this. Having done this, consider the self map

ϕki|XTi×T Tj×T Tk
◦ ϕjk|XTi×T Tj×T Tk

◦ ϕij |XTi×T Tj×T Tk
on Li|XTi×T Tj×T Tk

which is given by multiplication by some regular function fijk on the schemeXTi×TTj×TTk .
By our choice of ϕij we see that the pullback of this map by σ is equal to multiplication
by 1. By our assumption on functions on X , we see that fijk = 1. Thus we obtain a
descent datum for the fppf covering {XTi → X}. By Descent, Proposition 5.2 there is an
invertible OXT -module L and an isomorphism α : OT → σ∗

TL whose pullback to XTi

recovers (Li, αi) (small detail omitted). Thus L defines an object of K(T ) as desired. �



3826 44. PICARD SCHEMES OF CURVES

5. A representability criterion

To prove the Picard functor is representable we will use the following criterion.

Lemma 5.1. Let k be a field. Let G : (Sch/k)opp → Groups be a functor. With
terminology as in Schemes, Definition 15.3, assume that

(1) G satisfies the sheaf property for the Zariski topology,
(2) there exists a subfunctor F ⊂ G such that

(a) F is representable,
(b) F ⊂ G is representable by open immersion,
(c) for every field extension K of k and g ∈ G(K) there exists a g′ ∈ G(k)

such that g′g ∈ F (K).
Then G is representable by a group scheme over k.

Proof. This follows from Schemes, Lemma 15.4. Namely, take I = G(k) and for
i = g′ ∈ I take Fi ⊂ G the subfunctor which associates to T over k the set of elements
g ∈ G(T ) with g′g ∈ F (T ). Then Fi ∼= F by multiplication by g′. The map Fi →
G is isomorphic to the map F → G by multiplication by g′, hence is representable by
open immersions. Finally, the collection (Fi)i∈I coversG by assumption (2)(c). Thus the
lemma mentioned above applies and the proof is complete. �

6. The Picard scheme of a curve

In this section we will apply Lemma 5.1 to show that PicX/k is representable, when k is an
algebraically closed field andX is a smooth projective curve over k. To make this work we
use a bit of cohomology and base change developed in the chapter on derived categories
of schemes.

Lemma 6.1. Let k be a field. Let X be a smooth projective curve over k which has a
k-rational point. Then the hypotheses of Lemma 4.3 are satisfied.

Proof. The meaning of the phrase “has a k-rational point” is exactly that the struc-
ture morphism f : X → Spec(k) has a section, which verifies the first condition. By
Varieties, Lemma 26.2 we see that k′ = H0(X,OX) is a field extension of k. Since X has
a k-rational point there is a k-algebra homomorphism k′ → k and we conclude k′ = k.
Since k is a field, any morphism T → Spec(k) is flat. Hence we see by cohomology and
base change (Cohomology of Schemes, Lemma 5.2) that OT → fT,∗OXT is an isomor-
phism. This finishes the proof. �

Let X be a smooth projective curve over a field k with a k-rational point σ. Then the
functor

PicX/k,σ : (Sch/k)opp −→ Ab, T 7−→ Ker(Pic(XT ) σ∗
T−−→ Pic(T ))

is isomorphic to PicX/k on (Sch/k)fppf by Lemmas 6.1 and 4.3. Hence it will suffice to
prove that PicX/k,σ is representable. We will use the notation “L ∈ PicX/k,σ(T )” to
signify that T is a scheme over k and L is an invertibleOXT -module whose restriction to
T via σT is isomorphic toOT .

Lemma 6.2. Let k be a field. Let X be a smooth projective curve over k with a k-
rational point σ. For a scheme T over k, consider the subset F (T ) ⊂ PicX/k,σ(T ) con-
sisting of L such that RfT,∗L is isomorphic to an invertibleOT -module placed in degree
0. Then F ⊂ PicX/k,σ is a subfunctor and the inclusion is representable by open immer-
sions.
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Proof. Immediate from Derived Categories of Schemes, Lemma 32.3 applied with
i = 0 and r = 1 and Schemes, Definition 15.3. �

To continue it is convenient to make the following definition.

Definition 6.3. Let k be a field. Let X be a smooth projective geometrically irre-
ducible curve over k. The genus of X is g = dimkH

1(X,OX).

Lemma 6.4. Let k be a field. Let X be a smooth projective curve of genus g over k
with a k-rational point σ. The open subfunctor F defined in Lemma 6.2 is representable
by an open subscheme of HilbgX/k.

Proof. In this proof unadorned products are over Spec(k). By Proposition 3.6 the
scheme H = HilbgX/k exists. Consider the universal divisor Duniv ⊂ H × X and the
associated invertible sheaf O(Duniv), see Remark 3.7. We adjust by tensoring with the
pullback via σH : H → H ×X to get

LH = O(Duniv)⊗OH×X pr∗
Hσ

∗
HO(Duniv)⊗−1 ∈ PicX/k,σ(H)

By the Yoneda lemma (Categories, Lemma 3.5) the invertible sheaf LH defines a natural
transformation

hH −→ PicX/k,σ
Because F is an open subfuctor, there exists a maximal open W ⊂ H such that LH |W×X
is in F (W ). Of course, this open is nothing else than the open subscheme constructed
in Derived Categories of Schemes, Lemma 32.3 with i = 0 and r = 1 for the morphism
H×X → H and the sheafF = O(Duniv). Applying the Yoneda lemma again we obtain
a commutative diagram

hW

��

// F

��
hH // PicX/k,σ

To finish the proof we will show that the top horizontal arrow is an isomorphism.

Let L ∈ F (T ) ⊂ PicX/k,σ(T ). Let N be the invertible OT -module such that RfT,∗L ∼=
N [0]. The adjunction map

f∗
TN −→ L corresponds to a section s of L ⊗ f∗

TN⊗−1

onXT . Claim: The zero scheme of s is a relative effective Cartier divisorD on (T×X)/T
finite locally free of degree g over T .

Let us finish the proof of the lemma admitting the claim. Namely, D defines a morphism
m : T → H such that D is the pullback of Duniv . Then

(m× idX)∗O(Duniv) ∼= OT×X(D)

Hence (m× idX)∗LH andO(D) differ by the pullback of an invertible sheaf on H . This
in particular shows that m : T → H factors through the open W ⊂ H above. Moreover,
it follows that these invertible modules define, after adjusting by pullback via σT as above,
the same element of PicX/k,σ(T ). Chasing diagrams using Yoneda’s lemma we see that
m ∈ hW (T ) maps to L ∈ F (T ). We omit the verification that the rule F (T )→ hW (T ),
L 7→ m defines an inverse of the transformation of functors above.
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Proof of the claim. Since D is a locally principal closed subscheme of T × X , it suffices
to show that the fibres of D over T are effective Cartier divisors, see Lemma 3.1 and Divi-
sors, Lemma 18.9. Because taking cohomology of L commutes with base change (Derived
Categories of Schemes, Lemma 30.4) we reduce to T = Spec(K) where K/k is a field ex-
tension. ThenL is an invertible sheaf onXK withH0(XK ,L) = K andH1(XK ,L) = 0.
Thus

deg(L) = χ(XK ,L)− χ(XK ,OXK ) = 1− (1− g) = g

See Varieties, Definition 44.1. To finish the proof we have to show a nonzero section of L
defines an effective Cartier divisor on XK . This is clear. �

Lemma 6.5. Let k be a separably closed field. Let X be a smooth projective curve of
genus g over k. LetK/k be a field extension and let L be an invertible sheaf onXK . Then
there exists an invertible sheaf L0 on X such that dimK H

0(XK ,L ⊗OXK
L0|XK ) = 1

and dimK H
1(XK ,L ⊗OXK

L0|XK ) = 0.

Proof. This proof is a variant of the proof of Varieties, Lemma 44.16. We encourage
the reader to read that proof first.

First we pick an ample invertible sheafL0 and we replaceL byL⊗OXK
L⊗n

0 |XK for some
n � 0. The result will be that we may assume that H0(XK ,L) 6= 0 and H1(XK ,L) =
0. Namely, we will get the vanishing by Cohomology of Schemes, Lemma 17.1 and the
nonvanishing because the degree of the tensor product is� 0. We will finish the proof
by descending induction on t = dimK H

0(XK ,L). The base case t = 1 is trivial. Assume
t > 1.

Observe that for a k-rational point x of X , the inverse image xK is a K-rational point
of XK . Moreover, there are infinitely many k-rational points by Varieties, Lemma 25.6.
Therefore the points xK form a Zariski dense collection of points of XK .

Let s ∈ H0(XK ,L) be nonzero. From the previous paragraph we deduce there exists a k-
rational pointx such that s does not vanish inxK . Let I be the ideal sheaf of i : xK → XK

as in Varieties, Lemma 43.8. Look at the short exact sequence

0→ I ⊗OXK
L → L → i∗i

∗L → 0

Observe that H0(XK , i∗i
∗L) = H0(xK , i∗L) has dimension 1 over K. Since s does not

vanish at x we conclude that

H0(XK ,L) −→ H0(X, i∗i∗L)

is surjective. Hence dimK H
0(XK , I ⊗OXK

L) = t− 1. Finally, the long exact sequence
of cohomology also shows that H1(XK , I ⊗OXK

L) = 0 thereby finishing the proof of
the induction step. �

Proposition 6.6. Let k be a separably closed field. LetX be a smooth projective curve
over k. The Picard functor PicX/k is representable.

Proof. Since k is separably closed there exists a k-rational point σ ofX , see Varieties,
Lemma 25.6. As discussed above, it suffices to show that the functor PicX/k,σ classifying
invertible modules trivial along σ is representable. To do this we will check conditions
(1), (2)(a), (2)(b), and (2)(c) of Lemma 5.1.

The functor PicX/k,σ satisfies the sheaf condition for the fppf topology because it is iso-
morphic to PicX/k. It would be more correct to say that we’ve shown the sheaf condition
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for PicX/k,σ in the proof of Lemma 4.3 which applies by Lemma 6.1. This proves condi-
tion (1)

As our subfunctor we use F as defined in Lemma 6.2. Condition (2)(b) follows. Condition
(2)(a) is Lemma 6.4. Condition (2)(c) is Lemma 6.5. �

In fact, the proof given above produces more information which we collect here.

Lemma 6.7. Let k be a separably closed field. Let X be a smooth projective curve of
genus g over k.

(1) PicX/k is a disjoint union of g-dimensional smooth proper varieties PicdX/k ,
(2) k-points of PicdX/k correspond to invertibleOX -modules of degree d,
(3) Pic0

X/k is an open and closed subgroup scheme,
(4) for d ≥ 0 there is a canonical morphism γd : HilbdX/k → PicdX/k
(5) the morphisms γd are surjective for d ≥ g and smooth for d ≥ 2g − 1,
(6) the morphism HilbgX/k → PicgX/k is birational.

Proof. Pick a k-rational point σ ofX . Recall that PicX/k is isomorphic to the func-
tor PicX/k,σ . By Derived Categories of Schemes, Lemma 32.2 for every d ∈ Z there is an
open subfunctor

PicdX/k,σ ⊂ PicX/k,σ
whose value on a schemeT over k consists of thoseL ∈ PicX/k,σ(T ) such thatχ(Xt,Lt) =
d+ 1− g and moreover we have

PicX/k,σ =
∐

d∈Z
PicdX/k,σ

as fppf sheaves. It follows that the scheme PicX/k (which exists by Proposition 6.6) has a
corresponding decomposition

PicX/k,σ =
∐

d∈Z
PicdX/k,σ

where the points of PicdX/k,σ correspond to isomorphism classes of invertible modules of
degree d on X .

Fix d ≥ 0. There is a morphism

γd : HilbdX/k −→ PicdX/k

coming from the invertible sheafO(Duniv) on HilbdX/k×kX (Remark 3.7) by the Yoneda
lemma (Categories, Lemma 3.5). Our proof of the representability of the Picard functor
of X/k in Proposition 6.6 and Lemma 6.4 shows that γg induces an open immersion on
a nonempty open of HilbgX/k. Moreover, the proof shows that the translates of this open
by k-rational points of the group scheme PicX/k define an open covering. Since HilbgX/K
is smooth of dimension g (Proposition 3.6) over k, we conclude that the group scheme
PicX/k is smooth of dimension g over k.

By Groupoids, Lemma 7.3 we see that PicX/k is separated. Hence, for every d ≥ 0, the
image of γd is a proper variety over k (Morphisms, Lemma 41.10).

Let d ≥ g. Then for any field extensionK/k and any invertibleOXK -moduleL of degree
d, we see that χ(XK ,L) = d+1−g > 0. HenceL has a nonzero section and we conclude
that L = OXK (D) for some divisor D ⊂ XK of degree d. It follows that γd is surjective.
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Combining the facts mentioned above we see that PicdX/k is proper for d ≥ g. This finishes
the proof of (2) because now we see that PicdX/k is proper for d ≥ g but then all PicdX/k
are proper by translation.

It remains to prove that γd is smooth for d ≥ 2g − 1. Consider an invertibleOX -module
L of degree d. Then the fibre of the point corresponding to L is

Z = {D ⊂ X | OX(D) ∼= L} ⊂ HilbdX/k
with its natural scheme structure. Since any isomorphism OX(D) → L is well defined
up to multiplying by a nonzero scalar, we see that the canonical section 1 ∈ OX(D) is
mapped to a section s ∈ Γ(X,L) well defined up to multiplication by a nonzero scalar. In
this way we obtain a morphism

Z −→ Proj(Sym(Γ(X,L)∗))
(dual because of our conventions). This morphism is an isomorphism, because given an
section of L we can take the associated effective Cartier divisor, in other words we can
construct an inverse of the displayed morphism; we omit the precise formulation and
proof. Since dimH0(X,L) = d + 1 − g for every L of degree d ≥ 2g − 1 by Varieties,
Lemma 44.17 we see that Proj(Sym(Γ(X,L)∗)) ∼= Pd−g

k . We conclude that dim(Z) =
dim(Pd−g

k ) = d− g. We conclude that the fibres of the morphism γd all have dimension
equal to the difference of the dimensions of HilbdX/k and PicdX/k. It follows that γd is
flat, see Algebra, Lemma 128.1. As moreover the fibres are smooth, we conclude that γd is
smooth by Morphisms, Lemma 34.3. �

7. Some remarks on Picard groups

This section continues the discussion in Varieties, Section 30 and will be continued in
Algebraic Curves, Section 17.

Lemma 7.1. Let k be a field. Let X be a quasi-compact and quasi-separated scheme
over k with H0(X,OX) = k. If X has a k-rational point, then for any Galois extension
k′/k we have

Pic(X) = Pic(Xk′)Gal(k′/k)

Moreover the action of Gal(k′/k) on Pic(Xk′) is continuous.

Proof. Since Gal(k′/k) = Aut(k′/k) it acts (from the right) on Spec(k′), hence it
acts (from the right) on Xk′ = X ×Spec(k) Spec(k′), and since Pic(−) is a contravariant
functor, it acts (from the left) on Pic(Xk′). If k′/k is an infinite Galois extension, then
we write k′ = colim k′

λ as a filtered colimit of finite Galois extensions, see Fields, Lemma
22.3. Then Xk′ = limXkλ (as in Limits, Section 2) and we obtain

Pic(Xk′) = colim Pic(Xkλ)
by Limits, Lemma 10.3. Moreover, the transition maps in this system of abelian groups are
injective by Varieties, Lemma 30.3. It follows that every element of Pic(Xk′) is fixed by
one of the open subgroups Gal(k′/kλ), which exactly means that the action is continuous.
Injectivity of the transition maps implies that it suffices to prove the statement on fixed
points in the case that k′/k is finite Galois.

Assume k′/k is finite Galois with Galois group G = Gal(k′/k). Let L be an element of
Pic(Xk′) fixed by G. We will use Galois descent (Descent, Lemma 6.1) to prove that L is
the pullback of an invertible sheaf on X . Recall that fσ = idX × Spec(σ) : Xk′ → Xk′
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and that σ acts on Pic(Xk′) by pulling back by fσ . Hence for each σ ∈ Gwe can choose an
isomorphism ϕσ : L → f∗

σL because L is a fixed by the G-action. The trouble is that we
don’t know if we can choose ϕσ such that the cocycle condition ϕστ = f∗

σϕτ ◦ ϕσ holds.
To see that this is possible we use that X has a k-rational point x ∈ X(k). Of course, x
similarly determines a k′-rational point x′ ∈ Xk′ which is fixed by fσ for all σ. Pick a
nonzero element s in the fibre of L at x′; the fibre is the 1-dimensional k′ = κ(x′)-vector
space

Lx′ ⊗OX
k′ ,x′ κ(x′).

Then f∗
σs is a nonzero element of the fibre of f∗

σL at x′. Since we can multiply ϕσ by an
element of (k′)∗ we may assume that ϕσ sends s to f∗

σs. Then we see that both ϕστ and
f∗
σϕτ ◦ ϕσ send s to f∗

στs = f∗
τ f

∗
σs. Since H0(Xk′ ,OXk′ ) = k′ these two isomorphisms

have to be the same (as one is a global unit times the other and they agree in x′) and the
proof is complete. �

Lemma 7.2. Let k be a field of characteristic p > 0. Let X be a quasi-compact and
quasi-separated scheme over kwithH0(X,OX) = k. Letn be an integer prime to p. Then
the map

Pic(X)[n] −→ Pic(Xk′)[n]
is bijective for any purely inseparable extension k′/k.

Proof. First we observe that the map Pic(X) → Pic(Xk′) is injective by Varieties,
Lemma 30.3. Hence we have to show the map in the lemma is surjective. Let L be an
invertibleOXk′ -module which has order dividing n in Pic(Xk′). Choose an isomorphism
α : L⊗n → OXk′ of invertible modules. We will prove that we can descend the pair (L, α)
to X .

Set A = k′ ⊗k k′. Since k′/k is purely inseparable, the kernel of the multiplication map
A→ k′ is a locally nilpotent ideal I of A. Observe that

XA = X ×Spec(k) Spec(A) = Xk′ ×X Xk′

comes with two projections pri : XA → Xk′ , i = 0, 1 which agree over A/I . Hence
the invertible modules Li = pr∗

iL agree over the closed subscheme XA/I = Xk′ . Since
XA/I → XA is a thickening and since Li are n-torsion, we see that there exists an iso-
morphism ϕ : L0 → L1 by More on Morphisms, Lemma 4.2. We may pick ϕ to reduce
to the identity modulo I . Namely, H0(X,OX) = k implies H0(Xk′ ,OXk′ ) = k′ by
Cohomology of Schemes, Lemma 5.2 and A → k′ is surjective hence we can adjust ϕ by
multiplying by a suitable element of A. Consider the map

λ : OXA
pr∗

0α
−1

−−−−→ L⊗n
0

ϕ⊗n

−−−→ L⊗n
1

pr∗
0α−−−→ OXA

We can view λ as an element of A because H0(XA,OXA) = A (same reference as above).
Since ϕ reduces to the identity modulo I we see that λ = 1 mod I . Then there is a unique
nth root of λ in 1 + I (Algebra, Lemma 32.8) and after multiplying ϕ by its inverse we
get λ = 1. We claim that (L, ϕ) is a descent datum for the fpqc covering {Xk′ → X}
(Descent, Definition 2.1). If true, then L is the pullback of an invertible OX -module N
by Descent, Proposition 5.2. Injectivity of the map on Picard groups shows that N is a
torsion element of Pic(X) of the same order as L.

Proof of the claim. To see this we have to verify that

pr∗
12ϕ ◦ pr∗

01ϕ = pr∗
02ϕ on Xk′ ×X Xk′ ×X Xk′ = Xk′⊗kk′⊗kk′
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As before the diagonal morphism ∆ : Xk′ → Xk′⊗kk′⊗kk′ is a thickening. The left and
right hand sides of the equality signs are maps a, b : p∗

0L → p∗
2L compatible with p∗

0α
and p∗

2α where pi : Xk′⊗kk′⊗kk′ → Xk′ are the projection morphisms. Finally, a, b pull
back to the same map under ∆. Affine locally (in local trivializations) this means that a, b
are given by multiplication by invertible functions which reduce to the same function
modulo a locally nilpotent ideal and which have the same nth powers. Then it follows
from Algebra, Lemma 32.8 that these functions are the same. �
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CHAPTER 45

Weil Cohomology Theories

1. Introduction

In this chapter we discuss Weil cohomology theories for smooth projective schemes over
a base field. Briefly, for us such a cohomology theory H∗ is one which has Künneth,
Poincaré duality, and cycle classes (with suitable compatibilities). We warn the reader that
there is no universal agreement in the literature as to what constitutes a “Weil cohomology
theory”.

Before reading this chapter the reader should take a look at Categories, Section 43 and Ho-
mology, Section 17 where we define (symmetric) monoidal categories and we develop just
enough basic language concerning these categories for the needs of this chapter. Equipped
with this language we construct in Section 3 the symmetric monoidal graded category
whose objects are smooth projective schemes and whose morphisms are correspondences.
In Section 4 we add images of projectors and invert the Lefschetz motive in order to obtain
the symmetric monoidal Karoubian category Mk of Chow motives. This category comes
equipped with a contravariant functor

h : {smooth projective schemes over k} −→Mk

As we will see below, a key property of a Weil cohomology theory is that it factors over
h.

First, in the case of an algebraically closed base field, we define what we call a “classical
Weil cohomology theory”, see Section 7. This notion is the same as the notion introduced
in [?, Section 1.2] and agrees with the notion introduced in [?, page 65]. However, our
notion does not a priori agree with the notion introduced in [?, page 10] because there
the author adds two Lefschetz type axioms and it isn’t known whether any classical Weil
cohomology theory as defined in this chapter satisfies those axioms. At the end of Section
7 we show that a classical Weil cohomology theory is of the form H∗ = G ◦ h where G is
a symmetric monoidal functor from Mk to the category of graded vector spaces over the
coefficient field of H∗.

In Section 8 we prove a couple of lemmas on cycle groups over non-closed fields which
will be used in discussing Weil cohomology theories on smooth projective schemes over
arbitrary fields.

Our motivation for our axioms of a Weil cohomology theoryH∗ over a general base field
k are the following

(1) H∗ = G ◦ h for a symmetric monoidal functor G from Mk to the category of
graded vector spaces over the coefficient field F of H∗,

(2) G should send the Tate motive (inverse of the Lefschetz motive) to a 1-dimensional
vector space F (1) sitting in degree −2,

3835



3836 45. WEIL COHOMOLOGY THEORIES

(3) when k is algebraically closed we should recover the notion discussion in Section
7 up to choosing a basis element of F (1).

First, in Section 9 we analyze the first two conditions. After developing a few more results
in Section 10 in Section 11 we add the necessary axioms to obtain property (3).

In the final Section 14 we detail an alternative approach to Weil cohomology theories,
using a first Chern class map instead of cycle classes. It is this approach that will be most
suited for proving that certain cohomology theories are Weil cohomology theories in later
chapters, see de Rham Cohomology, Section 22.

2. Conventions and notation

Let F be a field. In this chapter we view the category of F -graded vector spaces as an
F -linear symmetric monoidal category with associativity constraint as usual and with
commutativity constraint involving signs. See Homology, Example 17.4.

Let R be a ring. In this chapter a graded commutative R-algebra A is a commutative
differential gradedR-algebra (Differential Graded Algebra, Definitions 3.1 and 3.3) whose
differential is zero. Thus A is an R-module endowed with a grading A =

⊕
n∈Z A

n by
R-submodules. The R-bilinear multiplication

An ×Am −→ An+m, α× β 7−→ α ∪ β
will be called the cup product in this chapter. The commutativity constraint is α ∪ β =
(−1)nmβ ∪ α if α ∈ An and β ∈ Am. Finally, there is a multiplicative unit 1 ∈ A0, or
equivalently, there is an additive and multiplicative map R → A0 which is compatible
the R-module structure on A.

Let k be a field. Let X be a scheme of finite type over k. The Chow groups CHk(X)
of X of cycles of dimension k modulo rational equivalence have been defined in Chow
Homology, Definition 19.1. IfX is normal or Cohen-Macaulay, then we can also consider
the Chow groups CHp(X) of cycles of codimension p (Chow Homology, Section 42) and
then [X] ∈ CH0(X) denotes the “fundamental class” of X , see Chow Homology, Remark
42.2. If X is smooth and α and β are cycles on X , then α · β denotes the intersection
product of α and β, see Chow Homology, Section 62.

3. Correspondences

Let k be a field. For schemes X and Y over k we denote X × Y the product of X and
Y in the category of schemes over k. In this section we construct the graded category
over Q whose objects are smooth projective schemes over k and whose morphisms are
correspondences.

Let X and Y be smooth projective schemes over k. Let X =
∐
Xd be the decomposition

ofX into the open and closed subschemes which are equidimensional with dim(Xd) = d.
We define the Q-vector space of correspondences of degree r fromX to Y by the formula:

Corrr(X,Y ) =
⊕

d
CHd+r(Xd × Y )⊗Q ⊂ CH∗(X × Y )⊗Q

Given c ∈ Corrr(X,Y ) and β ∈ CHk(Y )⊗Q we can define the pullback of β by c using
the formula

c∗(β) = pr1,∗(c · pr∗
2β) in CHk−r(X)⊗Q

This makes sense because pr2 is flat of relative dimension d on Xd × Y , hence pr∗
2β is a

cycle of dimension d + k on Xd × Y , hence c · pr∗
2α is a cycle of dimension k − r on
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Xd×Y whose pushforward by the proper morphism pr1 is a cycle of the same dimension.
Similarly, switching to grading by codimension, given α ∈ CHi(X) ⊗Q we can define
the pushforward of α by c using the formula

c∗(α) = pr2,∗(c · pr∗
1α) in CHi+r(Y )⊗Q

This makes sense because pr∗
1α is a cycle of codimension i on X × Y , hence c · pr∗

1α is a
cycle of codimension i+d+r onXd×Y , which pushes forward to a cycle of codimension
i+ r on Y .

Given a three smooth projective schemes X,Y, Z over k we define a composition of cor-
respondences

Corrs(Y, Z)× Corrr(X,Y ) −→ Corrr+s(X,Z)
by the rule

(c′, c) 7−→ c′ ◦ c = pr13,∗(pr∗
12c · pr∗

23c
′)

where pr12 : X × Y × Z → X × Y is the projection and similarly for pr13 and pr23.

Lemma 3.1. We have the following for correspondences:
(1) composition of correspondences is Q-bilinear and associative,
(2) there is a canonical isomorphism

CH−r(X)⊗Q = Corrr(X, Spec(k))

such that pullback by correspondences corresponds to composition,
(3) there is a canonical isomorphism

CHr(X)⊗Q = Corrr(Spec(k), X)

such that pushforward by correspondences corresponds to composition,
(4) composition of correspondences is compatible with pushforward and pullback

of cycles.

Proof. Bilinearity follows immediately from the linearity of pushforward and pull-
back and the bilinearity of the intersection product. To prove associativity, say we have
X,Y, Z,W and c ∈ Corr(X,Y ), c′ ∈ Corr(Y, Z), and c′′ ∈ Corr(Z,W ). Then we have

c′′ ◦ (c′ ◦ c) = pr134
14,∗(pr134,∗

13 pr123
13,∗(pr123,∗

12 c · pr123,∗
23 c′) · pr134,∗

34 c′′)

= pr134
14,∗(pr1234

134,∗pr1234,∗
123 (pr123,∗

12 c · pr123,∗
23 c′) · pr134,∗

34 c′′)

= pr134
14,∗(pr1234

134,∗(pr1234,∗
12 c · pr1234,∗

23 c′) · pr134,∗
34 c′′)

= pr134
14,∗pr1234

134,∗((pr1234,∗
12 c · pr1234,∗

23 c′) · pr1234,∗
34 c′′)

= pr1234
14,∗ ((pr1234,∗

12 c · pr1234,∗
23 c′) · pr1234,∗

34 c′′)

Here we use the notation

p1234
134 : X × Y × Z ×W → X × Z ×W and p134

14 : X × Z ×W → X ×W

the projections and similarly for other indices. The first equality is the definition of the
composition. The second equality holds because pr134,∗

13 pr123
13,∗ = pr1234

134,∗pr1234,∗
123 by Chow

Homology, Lemma 15.1. The third equality holds because intersection product commutes
with the gysin map for p1234

123 (which is given by flat pullback), see Chow Homology,
Lemma 62.3. The fourth equality follows from the projection formula for p1234

134 , see Chow
Homology, Lemma 62.4. The fourth equality is that proper pushforward is compatible
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with composition, see Chow Homology, Lemma 12.2. Since intersection product is as-
sociative by Chow Homology, Lemma 62.1 this concludes the proof of associativity of
composition of correspondences.
We omit the proofs of (2) and (3) as these are essentially proved by carefully bookkeeping
where various cycles live and in what (co)dimension.
The statement on pushforward and pullback of cycles means that (c′◦c)∗(α) = c∗((c′)∗(α))
and (c′ ◦ c)∗(α) = (c′)∗(c∗(α)). This follows on combining (1), (2), and (3). �

Example 3.2. Let f : Y → X be a morphism of smooth projective schemes over
k. Denote Γf ⊂ X × Y the graph of f . More precisely, Γf is the image of the closed
immersion

(f, idY ) : Y −→ X × Y
Let X =

∐
Xd be the decomposition of X into its open and closed parts Xd which are

equidimensional of dimension d. Then Γf ∩ (Xd × Y ) has pure codimension d. Hence
[Γf ] ∈ CH∗(X × Y )⊗Q is contained in Corr0(X × Y ), i.e., [Γf ] is a correspondence of
degree 0 from X to Y .

Lemma 3.3. Smooth projective schemes over k with correspondences and compo-
sition of correspondences as defined above form a graded category over Q (Differential
Graded Algebra, Definition 25.1).

Proof. Everything is clear from the construction and Lemma 3.1 except for the exis-
tence of identity morphisms. Given a smooth projective scheme X consider the class [∆]
of the diagonal ∆ ⊂ X ×X in Corr0(X,X). We note that ∆ is equal to the graph of the
identity idX : X → X which is a fact we will use below.
To prove that [∆] can serve as an identity we have to show that [∆]◦c = c and c′◦[∆] = c′

for any correspondences c ∈ Corrr(Y,X) and c′ ∈ Corrs(X,Y ). For the second case we
have to show that

c′ = pr13,∗(pr∗
12[∆] · pr∗

23c
′)

where pr12 : X ×X × Y → X ×X is the projection and simlarly for pr13 and pr23. We
may write c′ =

∑
ai[Zi] for some integral closed subschemes Zi ⊂ X × Y and rational

numers ai. Thus it clearly suffices to show that
[Z] = pr13,∗(pr∗

12[∆] · pr∗
23[Z])

in the chow group of X × Y for any integral closed subscheme Z of X × Y . After re-
placing X and Y by the irreducible component containing the image of Z under the two
projections we may assume X and Y are integral as well. Then we have to show

[Z] = pr13,∗([∆× Y ] · [X × Z])

DenoteZ ′ ⊂ X×X×Y the image ofZ by the morphism (∆, 1) : X×Y → X×X×Y .
Then Z ′ is a closed subscheme ofX ×X × Y isomorphic to Z and Z ′ = ∆× Y ∩X ×Z
scheme theoretically. By Chow Homology, Lemma 62.51 we conclude that

[Z ′] = [∆× Y ] · [X × Z]
SinceZ ′ maps isomorphically toZ by pr13 also we conclude. The verification that [∆]◦c =
c is similar and we omit it. �

1The reader verifies that dim(Z′) = dim(∆ ×Y ) + dim(X ×Z) − dim(X ×X ×Y ) and that Z′ has
a unique generic point mapping to the generic point of Z (where the local ring is CM) and to some point of X
(where the local ring is CM). Thus all the hypothese of the lemma are indeed verified.
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Lemma 3.4. There is a contravariant functor from the category of smooth projective
schemes over k to the category of correspondences which is the identity on objects and
sends f : Y → X to the element [Γf ] ∈ Corr0(X,Y ).

Proof. In the proof of Lemma 3.3 we have seen that this construction sends identities
to identities. To finish the proof we have to show if g : Z → Y is another morphism of
smooth projective schemes over k, then we have [Γg] ◦ [Γf ] = [Γf◦g] in Corr0(X,Z).
Arguing as in the proof of Lemma 3.3 we see that it suffices to show

[Γf◦g] = pr13,∗([Γf × Z] · [X × Γg])

in CH∗(X × Z) when X , Y , Z are integral. Denote Z ′ ⊂ X × Y × Z the image of the
closed immersion (f ◦ g, g, 1) : Z → X × Y × Z. Then Z ′ = Γf × Z ∩X × Γg scheme
theoretically and we conclude using Chow Homology, Lemma 62.5 that

[Z ′] = [Γf × Z] · [X × Γg]

Since it is clear that pr13,∗([Z ′]) = [Γf◦g] the proof is complete. �

Remark 3.5. LetX and Y be smooth projective schemes over k. AssumeX is equidi-
mensional of dimension d and Y is equidimensional of dimension e. Then the isomor-
phism X × Y → Y ×X switching the factors determines an isomorphism

Corrr(X,Y ) −→ Corrd−e+r(Y,X), c 7−→ ct

called the transpose. It acts on cycles as well as cycle classes. An example which is some-
times useful, is the transpose [Γf ]t = [Γtf ] of the graph of a morphism f : Y → X .

Lemma 3.6. Let f : Y → X be a morphism of smooth projective schemes over k. Let
[Γf ] ∈ Corr0(X,Y ) be as in Example 3.2. Then

(1) pushforward of cycles by the correspondence [Γf ] agrees with the gysin map
f ! : CH∗(X)→ CH∗(Y ),

(2) pullback of cycles by the correspondence [Γf ] agrees with the pushforward map
f∗ : CH∗(Y )→ CH∗(X),

(3) if X and Y are equidimensional of dimensions d and e, then
(a) pushforward of cycles by the correspondence [Γtf ] of Remark 3.5 corre-

sponds to pushforward of cycles by f , and
(b) pullback of cycles by the correspondence [Γtf ] of Remark 3.5 corresponds to

the gysin map f !.

Proof. Proof of (1). Recall that [Γf ]∗(α) = pr2,∗([Γf ] · pr∗
1α). We have

[Γf ] · pr∗
1α = (f, 1)∗((f, 1)!pr∗

1α) = (f, 1)∗((f, 1)!pr!
1α) = (f, 1)∗(f !α)

The first equality by Chow Homology, Lemma 62.6. The second by Chow Homology,
Lemma 59.5. The third because pr1 ◦ (f, 1) = f and Chow Homology, Lemma 59.6. Then
we coclude because pr2,∗ ◦ (f, 1)∗ = 1∗ by Chow Homology, Lemma 12.2.

Proof of (2). Recall that [Γf ]∗(β) = pr1,∗([Γf ] · pr∗
2β). Arguing exactly as above we have

[Γf ] · pr∗
2β = (f, 1)∗β

Thus the result follows as before.

Proof of (3). Proved in exactly the same manner as above. �
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Example 3.7. Let X = P1
k. Then we have

Corr0(X,X) = CH1(X ×X)⊗Q = CH1(X ×X)⊗Q
Choose a k-rational point x ∈ X and consider the cycles c0 = [x×X] and c2 = [X × x].
A computation shows that 1 = [∆] = c0 + c2 in Corr0(X,X) and that we have the
following rules for composition c0 ◦ c0 = c0, c0 ◦ c2 = 0, c2 ◦ c0 = 0, and c2 ◦ c2 = c2.
In other words, c0 and c2 are orthogonal idempotents in the algebra Corr0(X,X) and in
fact we get

Corr0(X,X) = Q×Q
as a Q-algebra.

The category of correspondences is a symmetric monoidal category. Given smooth pro-
jective schemesX and Y over k, we defineX⊗Y = X×Y . Given four smooth projective
schemes X,X ′, Y, Y ′ over k we define a tensor product

⊗ : Corrr(X,Y )× Corrr
′
(X ′, Y ′) −→ Corrr+r′

(X ×X ′, Y × Y ′)
by the rule

(c, c′) 7−→ c⊗ c′ = pr∗
13c · pr∗

24c
′

where pr13 : X ×X ′ × Y × Y ′ → X × Y and pr24 : X ×X ′ × Y × Y ′ → X ′ × Y ′ are
the projections. As associativity constraint

X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z
we use the usual associativity constraint on products of schemes. The commutativity con-
straint will be given by the isomorphism X × Y → Y ×X switching the factors.

Lemma 3.8. The tensor product of correspondences defined above turns the category
of correspondences into a symmetric monoidal category with unit Spec(k).

Proof. Omitted. �

Lemma 3.9. Let f : Y → X be a morphism of smooth projective schemes over k. As-
sume X and Y equidimensional of dimensions d and e. Denote a = [Γf ] ∈ Corr0(X,Y )
and at = [Γtf ] ∈ Corrd−e(Y,X). Set ηX = [ΓX→X×X ] ∈ Corr0(X × X,X), ηY =
[ΓY→Y×Y ] ∈ Corr0(Y×Y, Y ), [X] ∈ Corr−d(X, Spec(k)), and [Y ] ∈ Corr−e(Y, Spec(k)).
The diagram

X ⊗ Y
a⊗id

//

id⊗at

��

Y ⊗ Y
ηY

// Y

[Y ]
��

X ⊗X
ηX // X

[X] // Spec(k)
is commutative in the category of correspondences.

Proof. Recall that Corrr(W,Spec(k)) = CH−r(W ) for any smooth projective scheme
W over k and given c ∈ Corrs(W ′,W ) the composition with c agrees with pullback by
c as a map CH−r(W ) → CH−r−s(W ′) (Lemma 3.1). Finally, we have Lemma 3.6 which
tells us how to convert this into usual pushforward and pullback of cycles. We have

(a⊗ id)∗η∗
Y [Y ] = (a⊗ id)∗[∆Y ] = (f × id)∗∆Y = [Γf ]

and the other way around we get

(id⊗ at)∗η∗
X [X] = (id⊗ at)∗[∆X ] = (id× f)![∆X ] = [Γf ]
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The last equality follows from Chow Homology, Lemma 59.8. In other words, going either
way around the diagram we obtain the element of Corrd(X ×Y, Spec(k)) corresponding
to the cycle Γf ⊂ X × Y . �

4. Chow motives

We fix a base field k. In this section we construct an additive Karoubian Q-linear category
Mk endowed with a symmetric monoidal structure and a contravariant functor

h : {smooth projective schemes over k} −→Mk

which maps products to tensor products and disjoint unions to direct sums. Our con-
struction will be characterized by the fact that h factors through the symmetric monoidal
category whose objects are smooth projective varieties and whose morphisms are corre-
spondences of degree 0 such that the image of the projector c2 on h(P1

k) from Example
3.7 is invertible in Mk , see Lemma 4.8. At the end of the section we will show that every
motive, i.e., every object of Mk to has a (left) dual, see Lemma 4.10.

A motive or a Chow motive over k will be a triple (X, p,m) where
(1) X is a smooth projective scheme over k,
(2) p ∈ Corr0(X,X) satisfies p ◦ p = p,
(3) m ∈ Z.

Given a second motive (Y, q, n) we define a morphism of motives or a morphism of Chow
motives to be an element of

Hom((X, p,m), (Y, q, n)) = q ◦ Corrn−m(X,Y ) ◦ p ⊂ Corrn−m(X,Y )

Composition of morphisms of motives is defined using the composition of correspon-
dences defined above.

Lemma 4.1. The category Mk whose objects are motives over k and morphisms are
morphisms of motives over k is a Q-linear category. There is a contravariant functor

h : {smooth projective schemes over k} −→Mk

defined by h(X) = (X, 1, 0) and h(f) = [Γf ].

Proof. Follows immediately from Lemma 3.4. �

Lemma 4.2. The category Mk is Karoubian.

Proof. LetM = (X, p,m) be a motive and let a ∈ Mor(M,M) be a projector. Then
a = a ◦ a both in Mor(M,M) as well as in Corr0(X,X). Set N = (X, a,m). Since we
have a = p ◦ a ◦ a in Corr0(X,X) we see that a : N → M is a morphism of Mk. Next,
suppose that b : (Y, q, n)→M is a morphism such that (1− a) ◦ b = 0. Then b = a ◦ b as
well as b = b ◦ q. Hence b is a morphism b : (Y, q, n)→ N . Thus we see that the projector
1−a has a kernel, namelyN and we find thatMk is Karoubian, see Homology, Definition
4.1. �

We define a functor
⊗ : Mk ×Mk −→Mk

On objects we use the formula

(X, p,m)⊗ (Y, q, n) = (X × Y, p⊗ q,m+ n)
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On morphisms, we use

Mor((X, p,m), (Y, q, n))×Mor((X ′, p′,m′), (Y ′, q′, n′))

��
Mor((X ×X ′, p⊗ p′,m+m′), (Y × Y ′, q ⊗ q′, n+ n′))

given by the rule (a, a′) 7−→ a ⊗ a′ where ⊗ on correspondences is as in Section 3. This
makes sense: by definition of morphisms of motives we can write a = q ◦ c ◦ p and
a′ = q′ ◦ c′ ◦ p′ with c ∈ Corrn−m(X,Y ) and c′ ∈ Corrn

′−m′
(X ′, Y ′) and then we

obtain

a⊗ a′ = (q ◦ c ◦ p)⊗ (q′ ◦ c′ ◦ p′) = (q ⊗ q′) ◦ (c⊗ c′) ◦ (p⊗ p′)

which is indeed a morphism of motives from (X ×X ′, p⊗ p′,m+m′) to (Y × Y ′, q ⊗
q′, n+ n′).

Lemma 4.3. The category Mk with tensor product defined as above is symmetric
monoidal with the obvious associativity and commutativity constraints and with unit 1 =
(Spec(k), 1, 0).

Proof. Follows readily from Lemma 3.8. Details omitted. �

The motives 1(n) = (Spec(k), 1, n) are useful. Observe that

1 = 1(0) and 1(n+m) = 1(n)⊗ 1(m)

Thus tensoring with 1(1) is an autoequivalence of the category of motives. Given a motive
M we sometimes writeM(n) = M⊗1(n). Observe that ifM = (X, p,m), thenM(n) =
(X, p,m+ n).

Lemma 4.4. With notation as in Example 3.7
(1) the motive (X, c0, 0) is isomorphic to the motive 1 = (Spec(k), 1, 0).
(2) the motive (X, c2, 0) is isomorphic to the motive 1(−1) = (Spec(k), 1,−1).

Proof. We will use Lemma 3.4 without further mention. The structure morphism
X → Spec(k) gives a correspondence a ∈ Corr0(Spec(k), X). On the other hand,
the rational point x is a morphism Spec(k) → X which gives a correspondence b ∈
Corr0(X, Spec(k)). We have b◦a = 1 as a correspondence on Spec(k). The composition
a ◦ b corresponds to the graph of the composition X → x → X which is c0 = [x ×X].
Thus a = a ◦ b ◦ a = c0 ◦ a and b = a ◦ b ◦ a = b ◦ c0. Hence, unwinding the definitions,
we see that a and b are mutually inverse morphisms a : (Spec(k), 1, 0) → (X, c0, 0) and
b : (X, c0, 0)→ (Spec(k), 1, 0).

We will proceed exactly as above to prove the second statement. Denote

a′ ∈ Corr1(Spec(k), X) = CH1(X)

the class of the point x. Denote

b′ ∈ Corr−1(X, Spec(k)) = CH1(X)

the class of [X]. We have b′◦a′ = 1 as a correspondence on Spec(k) because [x] · [X] = [x]
on X = Spec(k)×X × Spec(k). Computing the intersection product pr∗

12b
′ · pr∗

23a
′ on

X×Spec(k)×X gives the cycleX×Spec(k)×x. Hence the composition a′ ◦ b′ is equal
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to c2 as a correspondence onX . Thus a′ = a′ ◦b◦a′ = c2 ◦a′ and b′ = b′ ◦a′ ◦b′ = b′ ◦c2.
Recall that

Mor((Spec(k), 1,−1), (X, c2, 0)) = c2 ◦ Corr1(Spec(k), X) ⊂ Corr1(Spec(k), X)
and
Mor((X, c2, 0), (Spec(k), 1,−1)) = Corr−1(X, Spec(k)) ◦ c2 ⊂ Corr−1(X, Spec(k))

Hence, we see that a′ and b′ are mutually inverse morphisms a′ : (Spec(k), 1,−1) →
(X, c0, 0) and b′ : (X, c0, 0)→ (Spec(k), 1,−1). �

Remark 4.5 (Lefschetz and Tate motive). Let X = P1
k and c2 be as in Example

3.7. In the literature the motive (X, c2, 0) is sometimes called the Lefschetz motive and
depending on the reference the notationL, L, Q(−1), or h2(P1

k) may be used to denote it.
By Lemma 4.4 the Lefschetz motive is isomorphic to 1(−1). Hence the Lefschetz motive is
invertible (Categories, Definition 43.4) with inverse 1(1). The motive 1(1) is sometimes
called the Tate motive and depending on the reference the notation L−1, L−1, T, or Q(1)
may be used to denote it.

Lemma 4.6. The category Mk is additive.

Proof. Let (Y, p,m) and (Z, q, n) be motives. If n = m, then a direct sum is given
by (Y q Z, p+ q,m), with obvious notation. Details omitted.
Suppose that n < m. Let X , c2 be as in Example 3.7. Then we consider

(Z, q, n) = (Z, q,m)⊗ (Spec(k), 1,−1)⊗ . . .⊗ (Spec(k), 1,−1)
∼= (Z, q,m)⊗ (X, c2, 0)⊗ . . .⊗ (X, c2, 0)
∼= (Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m)

where we have used Lemma 4.4. This reduces us to the case discussed in the first paragraph.
�

Lemma 4.7. In Mk we have h(P1
k) ∼= 1⊕ 1(−1).

Proof. This follows from Example 3.7 and Lemma 4.4. �

Lemma 4.8. LetX , c2 be as in Example 3.7. Let C be a Q-linear Karoubian symmetric
monoidal category. Any Q-linear functor

F :
{

smooth projective schemes over k
morphisms are correspondences of degree 0

}
−→ C

of symmetric monoidal categories such that the image of F (c2) on F (X) is an invertible
object, factors uniquely through a functorF : Mk → C of symmetric monoidal categories.

Proof. DenoteU in C the invertible object which is assumed to exist in the statement
of the lemma. We extend F to motives by setting

F (X, p,m) = (the image of the projector F (p) in F (X))⊗ U⊗−m

which makes sense because U is invertible and because C is Karoubian. An important
feature of this choice is that F (X, c2, 0) = U . Observe that

F ((X, p,m)⊗ (Y, q, n)) = F (X × Y, p⊗ q,m+ n)
= (the image of F (p⊗ q) in F (X × Y ))⊗ U⊗−m−n

= F (X, p,m)⊗ F (Y, q, n)
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Thus we see that our rule is compatible with tensor products on the level of objects (details
omitted).

Next, we extend F to morphisms of motives. Suppose that

a ∈ Hom((Y, p,m), (Z, q, n)) = q ◦ Corrn−m(Y, Z) ◦ p ⊂ Corrn−m(Y, Z)

is a morphism. If n = m, then a is a correspondence of degree 0 and we can use F (a) :
F (Y ) → F (Z) to get the desired map F (Y, p,m) → F (Z, q, n). If n < m we get
canonical identifications

s : F ((Z, q, n))→ F (Z, q,m)⊗ Um−n

→ F (Z, q,m)⊗ F (X, c2, 0)⊗ . . .⊗ F (X, c2, 0)
→ F ((Z, q,m)⊗ (X, c2, 0)⊗ . . .⊗ (X, c2, 0))
→ F ((Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m))

Namely, for the first isomorphism we use the definition of F on motives above. For the
second, we use the choice of U . For the third we use the compatibility of F on tensor
products of motives. The fourth is the definition of tensor products on motives. On the
other hand, since we similarly have an isomorphism

σ : (Z, q, n)→ (Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m)

(see proof of Lemma 4.6). Composing a with this isomorphism gives

σ ◦ a ∈ Hom((Y, p,m), (Z ×Xm−n, q ⊗ c2 ⊗ . . .⊗ c2,m))

Putting everything together we obtain

s−1 ◦ F (σ ◦ a) : F (Y, p,m)→ F (Z, q, n)

If n > m we similarly define isomorphisms

t : F ((Y, p,m))→ F ((Y ×Xn−m, p⊗ c2 ⊗ . . .⊗ c2, n))

and
τ : (Y, p,m))→ (Y ×Xn−m, p⊗ c2 ⊗ . . .⊗ c2, n)

and we set F (a) = F (a ◦ τ−1) ◦ t. We omit the verification that this construction defines
a functor of symmetric monoidal categories. �

Lemma 4.9. Let X be a smooth projective scheme over k which is equidimensional
of dimension d. Then h(X)(d) is a left dual to h(X) in Mk.

Proof. We will use Lemma 3.1 without further mention. We compute

Hom(1, h(X)⊗ h(X)(d)) = Corrd(Spec(k), X ×X) = CHd(X ×X)

Here we have η = [∆]. On the other hand, we have

Hom(h(X)(d)⊗ h(X),1) = Corr−d(X ×X, Spec(k)) = CHd(X ×X)

and here we have the class ε = [∆] of the diagonal as well. The composition of the corre-
spondence [∆]⊗1 with 1⊗ [∆] either way is the correspondence [∆] = 1 in Corr0(X,X)
which proves the required diagrams of Categories, Definition 43.5 commute. Namely,
observe that

[∆]⊗ 1 ∈ Corrd(X,X ×X ×X) = CH2d(X ×X ×X ×X)
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is given by the class of the cycle pr1234,−1
23 (∆) ∩ pr1234,−1

14 (∆) with obvious notation.
Similarly, the class

1⊗ [∆] ∈ Corr−d(X ×X ×X,X) = CH2d(X ×X ×X ×X)
is given by the class of the cycle pr1234,−1

23 (∆)∩pr1234,−1
14 (∆). The composition (1⊗[∆])◦

([∆]⊗ 1) is by definition the pushforward pr12345
15,∗ of the intersection product

[pr12345,−1
23 (∆)∩pr12345,−1

14 (∆)]·[pr12345,−1
34 (∆)∩pr12345,−1

15 (∆)] = [small diagonal in X5]
which is equal to ∆ as desired. We omit the proof of the formula for the composition in
the other order. �

Lemma 4.10. Every object of Mk has a left dual.

Proof. LetM = (X, p,m) be an object ofMk. ThenM is a summand of (X, 0,m) =
h(X)(m). By Homology, Lemma 17.3 it suffices to show that h(X)(m) = h(X)⊗ 1(m)
has a dual. By construction 1(−m) is a left dual of 1(m). Hence it suffices to show that
h(X) has a left dual, see Categories, Lemma 43.8. Let X =

∐
Xi be the decomposition

of X into irreducible components. Then h(X) =
⊕
h(Xi) and it suffices to show that

h(Xi) has a left dual, see Homology, Lemma 17.2. This follows from Lemma 4.9. �

5. Chow groups of motives

We define the Chow groups of a motive as follows.

Definition 5.1. Let k be a base field. Let M = (X, p,m) be a Chow motive over k.
For i ∈ Z we define the ith Chow group of M by the formula

CHi(M) = p
(
CHi+m(X)⊗Q

)
We have CHi(h(X)) = CHi(X)⊗Q if X is a smooth projective scheme over k.

Observe that CHi(−) is a functor from Mk to Q-vector spaces. Indeed, if c : M → N is
a morphism of motives M = (X, p,m) and N = (Y, q, n), then c is a correspondence of
degree n−m fromX to Y and hence pushforward along c (Section 3) is a family of maps

c∗ : CHi+m(X)⊗Q −→ CHi+n(Y )⊗Q
Since c = q ◦ c ◦ p by definition of morphisms of motives, we see that indeed we obtain

c∗ : CHi(M)→ CHi(N)
for all i ∈ Z. This is compatible with compositions of morphisms of motives by Lemma
3.1. This functoriality of Chow groups can also be deduced from the following lemma.

Lemma 5.2. Let k be a base field. The functor CHi(−) on the category of motives
Mk is representable by 1(−i), i.e., we have

CHi(M) = HomMk
(1(−i),M)

functorially in M in Mk.

Proof. Immediate from the definitions and Lemma 3.1. �

The reader can imagine that we can use Lemma 5.2, the Yoneda lemma, and the duality in
Lemma 4.9 to obtain the following.

Lemma 5.3 (Manin). Let k be a base field. Let c : M → N be a morphism of motives.
If for every smooth projective schemeX over k the map c⊗ 1 : M ⊗h(X)→ N ⊗h(X)
induces an isomorphism on Chow groups, then c is an isomorphism.
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Proof. Any object L of Mk is a summand of h(X)(m) for some smooth projective
scheme X over k and some m ∈ Z. Observe that the Chow groups of M ⊗ h(X)(m)
are the same as the Chow groups of of M ⊗ h(X) up to a shift in degrees. Hence our
assumption implies that c ⊗ 1 : M ⊗ L → N ⊗ L induces an isomorphism on Chow
groups for every object L of Mk. By Lemma 5.2 we see that

HomMk
(1,M ⊗ L)→ HomMk

(1, N ⊗ L)
is an isomorphism for every L. Since every object of Mk has a left dual (Lemma 4.10) we
conclude that

HomMk
(K,M)→ HomMk

(K,N)
is an isomorphism for every objectK ofMk , see Categories, Lemma 43.6. We conclude by
the Yoneda lemma (Categories, Lemma 3.5). �

6. Projective space bundle formula

Let k be a base field. Let X be a smooth projective scheme over k. Let E be a locally free
OX -module of rank r. Our convention is that the projective bundle associated to E is the
morphism

P = P(E) = Proj
X

(Sym∗(E)) p // X

over X withOP (1) normalized so that p∗(OP (1)) = E . Recall that

[Γp] ∈ Corr0(X,P ) ⊂ CH∗(X × P )⊗Q
See Example 3.2. For i = 0, . . . , r − 1 consider the correspondences

ci = c1(pr∗
2OP (1))i ∩ [Γp] ∈ Corri(X,P )

We may and do think of ci as a morphism h(X)(−i)→ h(P ).

Lemma 6.1 (Projective space bundle formula). In the situation above, the map∑
i=0,...,r−1

ci :
⊕

i=0,...,r−1
h(X)(−i) −→ h(P )

is an isomorphism in the category of motives.

Proof. By Lemma 5.3 it suffices to show that our map defines an isomorphism on
Chow groups of motives after taking the product with any smooth projective scheme Z.
Observe that P × Z → X × Z is the projective bundle associated to the pullback of E
to X × Z. Hence the statement on Chow groups is true by the projective space bundle
formula given in Chow Homology, Lemma 36.2. Namely, pushforward of cycles along
[Γp] is given by pullback of cycles by p according to Lemma 3.6 and Chow Homology,
Lemma 59.5. Hence pushforward along ci sends α to c1(OP (1))i ∩ p∗α. Some details
omitted. �

In the situation above, for j = 0, . . . , r − 1 consider the correspondences

c′
j = c1(pr∗

1OP (1))r−1−j ∩ [Γtp] ∈ Corr−j(P,X)
For i, j ∈ {0, . . . , r − 1} we have

c′
j ◦ ci = pr13,∗

(
c1(pr∗

2OP (1))i+r−1−j ∩ (pr∗
12[Γp] · pr∗

23[Γtp])
)

The cycles pr−1
12 Γp and pr−1

23 Γtp intersect transversally and with intersection equal to the
image of (p, 1, p) : P → X × P ×X . Observe that the fibres of (p, p) = pr13 ◦ (p, 1, p) :
P → X×X have dimension r−1. We immediately conclude c′

j ◦ci = 0 for i+r−1−j <
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r − 1, in other words when i < j. On the other hand, by the projective space bundle
formula (Chow Homology, Lemma 36.2) the cycle c1(OP (1))r−1 ∩ [P ] maps to [X] inX .
Hence for i = j the pushforward above gives the class of the diagonal and hence we see
that

c′
i ◦ ci = 1 ∈ Corr0(X,X)

for all i ∈ {0, . . . , r − 1}. Thus we see that the matrix of the composition⊕
h(X)(−i)

⊕
ci

−−−→ h(P )
⊕

c′
j−−−→
⊕

h(X)(−j)

is invertible (upper triangular with 1s on the diagonal). We conclude from the projec-
tive space bundle formula (Lemma 6.1) that also the composition the other way around is
invertible, but it seems a bit harder to prove this directly.

Lemma 6.2. Let p : P → X be as in Lemma 6.1. The class [∆P ] of the diagonal of P
in CH∗(P × P ) can be written as

[∆P ] =
(∑

i=0,...,r−1

(
r − 1
i

)
cr−1−i(pr∗

1S
∨) ∩ c1(pr∗

2OP (1))i
)
∩ (p× p)∗[∆X ]

where S is the kernel of the canonical surjection p∗E → OP (1).

Proof. Observe that (p×p)∗[∆X ] = [P ×X P ]. Since ∆P ⊂ P ×X P ⊂ P ×P and
since capping with Chern classes commutes with proper pushforward (Chow Homology,
Lemma 38.4) it suffices to show that the class of ∆P ⊂ P ×X P in CH∗(P ×X P ) is equal
to (∑

i=0,...,r−1

(
r − 1
i

)
cr−1−i(q∗

1S∨) ∩ c1(q∗
2OP (1))i

)
∩ [P ×X P ]

where qi : P ×X P → P , i = 1, 2 are the projections. Set q = p◦q1 = p◦q2 : P ×X P →
X . Consider the maps

q∗
1S ⊗ q∗

2OP (−1)→ q∗E ⊗ q∗E∨ → OP×XP

where the final arrow is the pullback by q of the evaluation map E ⊗OX
E∨ → OX . The

source of the composition is a module locally free of rank r − 1 and a local calculation
shows that this map vanishes exactly along ∆P . By Chow Homology, Lemma 44.1 the
class [∆P ] is the top Chern class of the dual

q∗
1S∨ ⊗ q∗

2OP (1)
The desired result follows from Chow Homology, Lemma 39.1. �

7. Classical Weil cohomology theories

In this section we define what we will call a classical Weil cohomology theory. This is
exactly what is called a Weil cohomology theory in [?, Section 1.2].
We fix an algebraically closed field k (the base field). In this section variety will mean a
variety over k, see Varieties, Section 3. We fix a field F of characteristic 0 (the coefficient
field). A Weil cohomology theory is given by data (D1), (D2), and (D3) subject to axioms
(A), (B), and (C).
The data is given by:

(D1) A contravariant functor H∗ from the category of smooth projective varieties to
the category of graded commutative F -algebras.

(D2) For every smooth projective variety X a group homomorphism γ : CHi(X)→
H2i(X).
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(D3) For every smooth projective varietyX of dimension d a map
∫
X

: H2d(X)→ F .
We make some remarks to explain what this means and to introduce some terminology
associated with this.

Remarks on (D1). Given a smooth projective variety X we say that H∗(X) is the coho-
mology of X . Given a morphism f : X → Y of smooth projective varieties we denote
f∗ : H∗(Y )→ H∗(X) the map H∗(f) and we call it the pullback map.

Remarks on (D2). The map γ is called the cycle class map. We say that γ(α) is the coho-
mology class of α. If Z ⊂ Y ⊂ X are closed subschemes with Y andX smooth projective
varieties and Z integral, then [Z] could mean the class of the cycle [Z] in CH∗(Y ) or in
CH∗(X). In this case the notation γ([Z]) is ambiguous and the intended meaning has to
be deduced from context.

Remarks on (D3). The map
∫
X

is sometimes called the trace map and is sometimes denoted
TrX .

The first axiom is often called Poincaré duality
(A) Let X be a smooth projective variety of dimension d. Then

(a) dimF H
i(X) <∞ for all i,

(b) Hi(X) ×H2d−i(X) → H2d(X) → F is a perfect pairing for all i where
the final map is the trace map

∫
X

,
(c) Hi(X) = 0 unless i ∈ [0, 2d], and
(d)

∫
X

: H2d(X)→ F is an isomorphism.
Let f : X → Y be a morphism of smooth projective varieties with dim(X) = d and
dim(Y ) = e. Using Poincaré duality we can define a pushforward

f∗ : H2d−i(X) −→ H2e−i(Y )

as the contragredient of the linear map f∗ : Hi(Y ) → Hi(X). In a formula, for a ∈
H2d−i(X), the element f∗a ∈ H2e−i(Y ) is characterized by∫

X

f∗b ∪ a =
∫
Y

b ∪ f∗a

for all b ∈ Hi(Y ).

Lemma 7.1. Assume given (D1) and (D3) satisfying (A). For f : X → Y a morphism
of smooth projective varieties we have f∗(f∗b ∪ a) = b ∪ f∗a. If g : Y → Z is a second
morphism of smooth projective varieties, then g∗ ◦ f∗ = (g ◦ f)∗.

Proof. The first equality holds because∫
Y

c ∪ b ∪ f∗a =
∫
X

f∗c ∪ f∗b ∪ a =
∫
Y

c ∪ f∗(f∗b ∪ a).

The second equality holds because∫
Z

c ∪ (g ◦ f)∗a =
∫
X

(g ◦ f)∗c ∪ a =
∫
X

f∗g∗c ∪ a =
∫
Y

g∗c ∪ f∗a =
∫
Z

c ∪ g∗f∗a

This ends the proof. �

The second axiom says thatH∗ respects the monoidal structure given by products via the
Künneth formula
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(B) Let X and Y be smooth projective varieties. The map

H∗(X)⊗F H∗(Y )→ H∗(X × Y ), a⊗ b 7→ pr∗
1a ∪ pr∗

2b

is an isomorphism.
The third axiom concerns the cycle class maps

(C) The cycle class maps satisfy the following rules
(a) for a morphism f : X → Y of smooth projective varieties we have γ(f !β) =

f∗γ(β) for β ∈ CH∗(Y ),
(b) for a morphism f : X → Y of smooth projective varieties we have γ(f∗α) =

f∗γ(α) for α ∈ CH∗(X),
(c) for any smooth projective variety X we have γ(α · β) = γ(α) ∪ γ(β) for

α, β ∈ CH∗(X), and
(d)

∫
Spec(k) γ([Spec(k)]) = 1.

Remark 7.2. Let X be a smooth projective variety. We obtain maps

H∗(X)⊗F H∗(X) −→ H∗(X ×X) ∆∗

−−→ H∗(X)

where the first arrow is as in axiom (B) and ∆∗ is pullback along the diagonal morphism
∆ : X → X × X . The composition is the cup product as pullback is an algebra homo-
morphism and pri ◦∆ = id. On the other hand, given cycles α, β on X the intersection
product is defined by the formula

α · β = ∆!(α× β)

In other words, α · β is the pullback of the exterior product α × β on X × X by the
diagonal. Note also that α×β = pr∗

1α ·pr∗
2β in CH∗(X×X) (we omit the proof). Hence,

given axiom (C)(a), axiom (C)(c) is equivalent to the statement that γ is compatible with
exterior product in the sense that γ(α × β) is equal to pr∗

1γ(α) ∪ pr∗
2γ(β). This is how

axiom (C)(c) is formulated in [?].

Definition 7.3. Let k be an algebraically closed field. LetF be a field of characteristic
0. A classical Weil cohomology theory over k with coefficients in F is given by data (D1),
(D2), and (D3) satisfying Poincaré duality, the Künneth formula, and compatibility with
cycle classes, more precisely, satisfying (A), (B), and (C).

We do a tiny bit of work.

Lemma 7.4. Let H∗ be a classical Weil cohomology theory (Definition 7.3). Let X
be a smooth projective variety of dimension d. The diagram

CHd(X)
γ
// H2d(X)∫

X

��
CH0(X) deg // F

commutes where deg : CH0(X) → Z is the degree of zero cycles discussed in Chow
Homology, Section 41.

Proof. The result holds for Spec(k) by axiom (C)(d). Let x : Spec(k) → X be a
closed point of X . Then we have γ([x]) = x∗γ([Spec(k)]) in H2d(X) by axiom (C)(b).
Hence

∫
X
γ([x]) = 1 by the definition of x∗. �
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Lemma 7.5. Let H∗ be a classical Weil cohomology theory (Definition 7.3). Let X
and Y be smooth projective varieties. Then

∫
X×Y =

∫
X
⊗
∫
Y

.

Proof. Say dim(X) = d and dim(Y ) = e. By axiom (B) we haveH2d+2e(X×Y ) =
H2d(X) ⊗ H2e(Y ) and by axiom (A)(d) this is 1-dimensional. By Lemma 7.4 this 1-
dimensional vector space generated by the class γ([x × y]) of a closed point (x, y) and∫
X×Y γ([x× y]) = 1. Since γ([x× y]) = γ([x])⊗ γ([y]) by axioms (C)(a) and (C)(c) and

since
∫
X
γ([x]) = 1 and

∫
Y
γ([y]) = 1 we conclude. �

Lemma 7.6. Let H∗ be a classical Weil cohomology theory (Definition 7.3). Let X
and Y be smooth projective varieties. Then pr2,∗ : H∗(X × Y )→ H∗(Y ) sends a⊗ b to
(
∫
X
a)b.

Proof. This is equivalent to the result of Lemma 7.5. �

Lemma 7.7. LetH∗ be a classical Weil cohomology theory (Definition 7.3). LetX be
a smooth projective variety of dimension d. Choose a basis ei,j , j = 1, . . . , βi of Hi(X)
over F . Using Künneth write

γ([∆]) =
∑

i=0,...,2d

∑
j
ei,j ⊗ e′

2d−i,j in
⊕

i
Hi(X)⊗F H2d−i(X)

with e′
2d−i,j ∈ H2d−i(X). Then

∫
X
ei,j ∪ e′

2d−i,j′ = (−1)iδjj′ .

Proof. Recall that ∆∗ : H∗(X × X) → H∗(X) is equal to the cup product map
H∗(X) ⊗F H∗(X) → H∗(X), see Remark 7.2. On the other hand we have γ([∆]) =
∆∗γ([X]) = ∆∗1 by axiom (C)(b) and the fact that γ([X]) = 1. Namely, [X] · [X] = [X]
hence by axiom (C)(c) the cohomology class γ([X]) is 0 or 1 in the 1-dimensional F -
algebra H0(X); here we have also used axioms (A)(d) and (A)(b). But γ([X]) cannot be
zero as [X] · [x] = [x] for a closed point x of X and we have the nonvanishing of γ([x])
by Lemma 7.4. Hence∫

X×X
γ([∆]) ∪ a⊗ b =

∫
X×X

∆∗1 ∪ a⊗ b =
∫
X

a ∪ b

by the definition of ∆∗. On the other hand, we have∫
X×X

(
∑

ei,j ⊗ e′
2d−i,j) ∪ a⊗ b =

∑
(
∫
X

a ∪ ei,j)(
∫
X

e′
2d−i,j ∪ b)

by Lemma 7.5; note that we made two switches of order so that the sign is 1. Thus if we
choose a such that

∫
X
a ∪ ei,j = 1 and all other pairings equal to zero, then we conclude

that
∫
X
e′

2d−i,j ∪ b =
∫
X
a ∪ b for all b, i.e., e′

2d−i,j = a. This proves the lemma. �

Lemma 7.8. Let H∗ be a classical Weil cohomology theory (Definition 7.3). Let X
be a smooth projective variety. We have∑

i=0,...,2 dim(X)
(−1)i dimF H

i(X) = deg([∆] · [∆]) = deg(cd(TX) ∩ [X])

Proof. Equality on the right. We have [∆] · [∆] = ∆∗(∆![∆]) (Chow Homology,
Lemma 62.6). Since ∆∗ preserves degrees of 0-cycles it suffices to compute the degree of
∆![∆]. The class ∆![∆] is given by capping [∆] with the top Chern class of the normal
sheaf of ∆ ⊂ X ×X (Chow Homology, Lemma 54.5). Since the conormal sheaf of ∆ is
ΩX/k (Morphisms, Lemma 32.7) we see that the normal sheaf is equal to the tangent sheaf
TX = HomOX

(ΩX/k,OX) as desired.
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Equality on the left. By Lemma 7.4 we have

deg([∆] · [∆]) =
∫
X×X

γ([∆]) ∪ γ([∆])

=
∫
X×X

∆∗1 ∪ γ([∆])

=
∫
X×X

∆∗(∆∗γ([∆]))

=
∫
X

∆∗γ([∆])

Write γ([∆]) =
∑
ei,j ⊗ e′

2d−i,j as in Lemma 7.7. Recalling that ∆∗ is given by cup
product we obtain∫

X

∑
i,j
ei,j ∪ e′

2d−i,j =
∑

i,j

∫
X

ei,j ∪ e′
2d−i,j =

∑
i,j

(−1)i =
∑

(−1)iβi

as desired. �

We will now tie classical Weil cohomology theories in with motives as follows.

Lemma 7.9. Let k be an algebraically closed field. Let F be a field of characteristic 0.
Consider a Q-linear functor

G : Mk −→ graded F -vector spaces

of symmetric monoidal categories such that G(1(1)) is nonzero only in degree −2. Then
we obtain data (D1), (D2), (D3) satisfying all of (A), (B), (C) except for possibly (A)(c) and
(A)(d).

Proof. We obtain a contravariant functor from the category of smooth projective
varieties to the category of graded F -vector spaces by setting H∗(X) = G(h(X)). By
assumption we have a canonical isomorphism

H∗(X×Y ) = G(h(X×Y )) = G(h(X)⊗h(Y )) = G(h(X))⊗G(h(Y )) = H∗(X)⊗H∗(Y )
compatible with pullbacks. Using pullback along the diagonal ∆ : X → X×X we obtain
a canonical map

H∗(X)⊗H∗(X) = H∗(X ×X)→ H∗(X)
of graded vector spaces compatible with pullbacks. This defines a functorial graded F -
algebra structure onH∗(X). Since ∆ commutes with the commutativity constrainth(X)⊗
h(X) → h(X) ⊗ h(X) (switching the factors) and since G is a functor of symmetric
monoidal categories (so compatible with commutativity constraints), and by our conven-
tion in Homology, Example 17.4 we conclude that H∗(X) is a graded commutative alge-
bra! Hence we get our datum (D1).

Since 1(1) is invertible in the category of motives we see that G(1(1)) is invertible in
the category of graded F -vector spaces. Thus

∑
i dimF G

i(1(1)) = 1. By assumption
we only get something nonzero in degree−2 and we may choose an isomorphism F [2]→
G(1(1)) of gradedF -vector spaces. Here and belowF [n] means the gradedF -vector space
which has F in degree−n and zero elsewhere. Using compatibility with tensor products,
we find for all n ∈ Z an isomorphismF [2n]→ G(1(n)) compatible with tensor products.

Let X be a smooth projective variety. By Lemma 3.1 we have

CHr(X)⊗Q = Corrr(Spec(k), X) = Hom(1(−r), h(X))
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Applying the functor G we obtain

γ : CHr(X)⊗Q −→ Hom(G(1(−r)),H∗(X)) = H2r(X)

This is the datum (D2).

Let X be a smooth projective variety of dimension d. By Lemma 3.1 we have

Mor(h(X)(d),1) = Mor((X, 1, d), (Spec(k), 1, 0)) = Corr−d(X, Spec(k)) = CHd(X)

Thus the class of the cycle [X] in CHd(X) defines a morphism h(X)(d) → 1. Applying
G we obtain

H∗(X)⊗ F [−2d] = G(h(X)(d)) −→ G(1) = F

This map is zero except in degree 0 where we obtain
∫
X

: H2d(X) → F . This is the
datum (D3).

LetX be a smooth projective variety of dimension d. By Lemma 4.9 we know thath(X)(d)
is a left dual to h(X). HenceG(h(X)(d)) = H∗(X)⊗F [−2d] is a left dual toH∗(X) in
the category of gradedF -vector spaces. By Homology, Lemma 17.5 we find that

∑
i dimF H

i(X) <
∞ and that ε : h(X)(d) ⊗ h(X) → 1 produces nondegenerate pairings H2d−i(X) ⊗F
Hi(X) → F . In the proof of Lemma 4.9 we have seen that ε is given by [∆] via the
identifications

Hom(h(X)(d)⊗ h(X),1) = Corr−d(X ×X, Spec(k)) = CHd(X ×X)

Thus ε is the composition of [X] : h(X)(d) → 1 and h(∆)(d) : h(X)(d) ⊗ h(X) →
h(X)(d). It follows that the pairings above are given by cup product followed by

∫
X

.
This proves axiom (A) parts (a) and (b).

Axiom (B) follows from the assumption that G is compatible with tensor structures and
our construction of the cup product above.

Axiom (C). Our construction of γ takes a cycle α on X , interprets it as a correspondence
a from Spec(k) to X of some degree, and then applies G. If f : Y → X is a morphism of
smooth projective varieties, then f !α is the pushforward (!) of α by the correspondence
[Γf ] from X to Y , see Lemma 3.6. Hence f !α viewed as a correspondence from Spec(k)
to Y is equal to a ◦ [Γf ], see Lemma 3.1. Since G is a functor, we conclude γ is compatible
with pullbacks, i.e., axiom (C)(a) holds.

Let f : Y → X be a morphism of smooth projective varieties and let β ∈ CHr(Y ) be a
cycle on Y . We have to show that∫

Y

γ(β) ∪ f∗c =
∫
X

γ(f∗β) ∪ c

for all c ∈ H∗(X). Let a, at, ηX , ηY , [X], [Y ] be as in Lemma 3.9. Let b be β viewed as
a correspondence from Spec(k) to Y of degree r. Then f∗β viewed as a correspondence
from Spec(k) toX is equal to at ◦b, see Lemmas 3.6 and 3.1. The displayed equality above
holds if we can show that

h(X) = 1⊗h(X) b⊗1−−→ h(Y )(r)⊗h(X) 1⊗a−−→ h(Y )(r)⊗h(Y ) ηY−−→ h(Y )(r) [Y ]−−→ 1(r−e)

is equal to

h(X) = 1⊗h(X) at◦b⊗1−−−−→ h(X)(r+ d− e)⊗h(X) ηX−−→ h(X)(r+ d− e) [X]−−→ 1(r− e)

This follows immediately from Lemma 3.9. Thus we have axiom (C)(b).
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To prove axiom (C)(c) we use the discussion in Remark 7.2. Hence it suffices to prove that
γ is compatible with exterior products. Let X , Y be smooth projective varieties and let
α, β be cycles on them. Denote a, b the corresponding correspondences from Spec(k) to
X , Y . Then α × β corresponds to the correspondence a ⊗ b from Spec(k) to X ⊗ Y =
X×Y . Hence the requirement follows from the fact thatG is compatible with the tensor
structures on both sides.

Axiom (C)(d) follows because the cycle [Spec(k)] corresponds to the identity morphism
on h(Spec(k)). This finishes the proof of the lemma. �

Lemma 7.10. Let k be an algebraically closed field. Let F be a field of characteristic 0.
Let H∗ be a classical Weil cohomology theory. Then we can construct a Q-linear functor

G : Mk −→ graded F -vector spaces

of symmetric monoidal categories such that H∗(X) = G(h(X)).

Proof. By Lemma 4.8 it suffices to construct a functor G on the category of smooth
projective schemes over k with morphisms given by correspondences of degree 0 such that
the image of G(c2) on G(P1) is an invertible graded F -vector space. Since every smooth
projective scheme is canonically a disjoint union of smooth projective varieties, it suffices
to construct G on the category whose objects are smooth projective varieties and whose
morphisms are correspondences of degree 0. (Some details omitted.)

Given a smooth projective variety X we set G(X) = H∗(X).

Given a correspondence c ∈ Corr0(X,Y ) between smooth projective varieties we consider
the map G(c) : G(X) = H∗(X)→ G(Y ) = H∗(Y ) given by the rule

a 7−→ G(c)(a) = pr2,∗(γ(c) ∪ pr∗
1a)

It is clear thatG(c) is additive in c and hence Q-linear. Compatibility of γ with pullbacks,
pushforwards, and intersection products given by axioms (C)(a), (C)(b), and (C)(c) shows
that we have G(c′ ◦ c) = G(c′) ◦ G(c) if c′ ∈ Corr0(Y, Z). Namely, for a ∈ H∗(X) we
have

(G(c′) ◦G(c))(a) = pr23
3,∗(γ(c′) ∪ pr23,∗

2 (pr12
2,∗(γ(c) ∪ pr12,∗

1 a)))

= pr23
3,∗(γ(c′) ∪ pr123

23,∗(pr123,∗
12 (γ(c) ∪ pr12,∗

1 a)))

= pr23
3,∗pr123

23,∗(pr123,∗
23 γ(c′) ∪ pr123,∗

12 γ(c) ∪ pr123,∗
1 a)

= pr23
3,∗pr123

23,∗(γ(pr123,∗
23 c′) ∪ γ(pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗pr123

13,∗(γ(pr123,∗
23 c′ · pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗(γ(pr123

13,∗(pr123,∗
23 c′ · pr123,∗

12 c)) ∪ pr13,∗
1 a)

= G(c′ ◦ c)(a)

with obvious notation. The first equality follows from the definitions. The second equal-
ity holds because pr23,∗

2 ◦pr12
2,∗ = pr123

23,∗ ◦pr123,∗
12 as follows immediately from the descrip-

tion of pushforward along projections given in Lemma 7.6. The third equality holds by
Lemma 7.1 and the fact that H∗ is a functor. The fourth equalith holds by axiom (C)(a)
and the fact that the gysin map agrees with flat pullback for flat morphisms (Chow Ho-
mology, Lemma 59.5). The fifth equality uses axiom (C)(c) as well as Lemma 7.1 to see that
pr23

3,∗ ◦pr123
23,∗ = pr13

3,∗ ◦pr123
13,∗. The sixth equality uses the projection formula from Lemma
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7.1 as well as axiom (C)(b) to see that pr123
13,∗γ(pr123,∗

23 c′ · pr123,∗
12 c) = γ(pr123

13,∗(pr123,∗
23 c′ ·

pr123,∗
12 c)). Finally, the last equality is the definition.

To finish the proof that G is a functor, we have to show identities are preserved. In other
words, if 1 = [∆] ∈ Corr0(X,X) is the identity in the category of correspondences (see
Lemma 3.3 and its proof), then we have to show that G([∆]) = id. This follows from the
determination of γ([∆]) in Lemma 7.7 and Lemma 7.6. This finishes the construction of
G as a functor on smooth projective varieties and correspondences of degree 0.

It follows from axioms (A)(c) and (A)(d) that G(Spec(k)) = H∗(Spec(k)) is canonically
isomorphic toF as anF -algebra. The Künneth axiom (B) shows our functor is compatible
with tensor products. Thus our functor is a functor of symmetric monoidal categories.

We still have to check that the image ofG(c2) onG(P1) is an invertible graded F -vector
space (in particular we don’t know yet that G extends to Mk). By axiom (A)(d) the map∫

P1 : H2(P1)→ F is an isomorphism. By axiom (A)(b) we see that dimF H
0(P1) = 1.

By Lemma 7.8 and axiom (A)(c) we obtain 2 − dimF H
1(P1) = c1(TP1) = 2. Hence

H1(P1) = 0. Thus
G(P1) = H0(P1)⊕H2(P1)

Recall that 1 = c0+c2 is a decomposition of the identity into a sum of orthogonal idempo-
tents in Corr0(P1,P1), see Example 3.7. We have c0 = a◦bwherea ∈ Corr0(Spec(k),P1)
and b ∈ Corr0(P1, Spec(k)) and where b ◦ a = 1 in Corr0(Spec(k), Spec(k)), see proof
of Lemma 4.4. Since F = G(Spec(k)), it follows from functoriality that G(c0) is the
projector onto the summand H0(P1) ⊂ G(P1). Hence G(c2) must necessarily be the
projection onto H2(P1) and the proof is complete. �

Proposition 7.11. Let k be an algebraically closed field. Let F be a field of character-
istic 0. A classical Weil cohomology theory is the same thing as a Q-linear functor

G : Mk −→ graded F -vector spaces

of symmetric monoidal categories together with an isomorphism F [2] → G(1(1)) of
graded F -vector spaces such that in addition

(1) G(h(X)) lives in nonnegative degrees, and
(2) dimF G

0(h(X)) = 1
for any smooth projective variety X .

Proof. Given G and F [2] → G(1(1)) by setting H∗(X) = G(h(X)) we obtain
data (D1), (D2), and (D3) satisfying all of (A), (B), and (C) except for possibly (A)(c) and
(A)(d), see Lemma 7.9 and its proof. Observe that assumptions (1) and (2) imply axioms
(A)(c) and (A)(d) in the presence of the known axioms (A)(a) and (A)(b).

Conversely, given H∗ we get a functor G by the construction of Lemma 7.10. Let X =
P1, c0, c2 be as in Example 3.7. We have constructed an isomorphism 1(−1)→ (X, c2, 0)
of motives in Lemma 4.4. In the proof of Lemma 7.10 we have seen that G(1(−1)) =
G(X, c2, 0) = H2(P1)[−2]. Hence the isomorphism

∫
P1 : H2(P1)→ F of axiom (A)(d)

gives an isomorphism G(1(−1)) → F [−2] which determines an isomorphism F [2] →
G(1(1)). Finally, since G(h(X)) = H∗(X) assumptions (1) and (2) follow from axiom
(A). �
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8. Cycles over non-closed fields

Some lemmas which will help us in our study of motives over base fields which are not
algebraically closed.

Lemma 8.1. Let k be a field. Let X be a smooth projective scheme over k. Then
CH0(X) is generated by classes of closed points whose residue fields are separable over k.

Proof. The lemma is immediate if k has characteristic 0 or is perfect. Thus we may
assume k is an infinite field of characteristic p > 0.

We may assumeX is irreducible of dimension d. Then k′ = H0(X,OX) is a finite separa-
ble field extension of k and thatX is geometrically integral over k′. See Varieties, Lemmas
25.4, 9.3, and 9.4. We may and do replace k by k′ and assume that X is geometrically
integral.

Let x ∈ X be a closed point. To prove the lemma we are going to show that [x] ∈ CH0(X)
is rationally equivalent to an integer linear combination of classes of closed points whose
residue fields are separable over k. Choose an ample invertibleOX -module L. Set

V = {s ∈ H0(X,L) | s(x) = 0}
After replacing L by a power we may assume (a) L is very ample, (b) V generates L over
X \x, (c) the morphismX \x→ P(V ) is an immersion, (d) the map V → mxLx/m2

xLx is
surjective, see Morphisms, Lemma 39.5, Varieties, Lemma 47.1, and Properties, Proposition
26.13. Consider the set

V d ⊃ U = {(s1, . . . , sd) ∈ V d | s1, . . . , sd generate mxLx/m2
xLx over κ(x)}

SinceOX,x is a regular local ring of dimension dwe have dimκ(x)(mx/m2
x) = d and hence

we see that U is a nonempty (Zariski) open of V d. For (s1, . . . , sd) ∈ U set Hi = Z(si).
Since s1, . . . , sd generate mxLx we see that

H1 ∩ . . . ∩Hd = xq Z

scheme theoretically for some closed subscheme Z ⊂ X . By Bertini (in the form of Va-
rieties, Lemma 47.3) for a general element s1 ∈ V the scheme H1 ∩ (X \ x) is smooth
over k of dimension d − 1. Having chosen s1, for a general element s2 ∈ V the scheme
H1 ∩H2 ∩ (X \ x) is smooth over k of dimension d − 2. And so on. We conclude that
for sufficiently general (s1, . . . , sd) ∈ U the scheme Z is étale over Spec(k). In particular
H1 ∩ . . . ∩Hd has dimension 0 and hence

[H1] · . . . · [Hd] = [x] + [Z]
in CH0(X) by repeated application of Chow Homology, Lemma 62.5 (details omitted).
This finishes the proof as it shows that [x] ∼rat −[Z] + [Z ′] where Z ′ = H ′

1 ∩ . . . ∩H ′
d

is a general complete intersection of vanishing loci of sufficiently general sections of L
which will be étale over k by the same argument as before. �

Lemma 8.2. Let K/k be an algebraic field extension. Let X be a finite type scheme
over k. Then CHi(XK) = colim CHi(Xk′) where the colimit is over the subextensions
K/k′/k with k′/k finite.

Proof. This is a special case of Chow Homology, Lemma 67.10. �

Lemma 8.3. Let k be a field. Let X be a geometrically irreducible smooth projective
scheme over k. Let x, x′ ∈ X be k-rational points. Let n be an integer invertible in k.
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Then there exists a finite separable extension k′/k such that the pullback of [x] − [x′] to
Xk′ is divisible by n in CH0(Xk′).

Proof. Let k′ be a separable algebraic closure of k. Suppose that we can show the the
pullback of [x]− [x′] to Xk′ is divisible by n in CH0(Xk′). Then we conclude by Lemma
8.2. Thus we may and do assume k is separably algebraically closed.
Suppose dim(X) > 1. Let L be an ample invertible sheaf on X . Set

V = {s ∈ H0(X,L) | s(x) = 0 and s(x′) = 0}
After replacing L by a power we see that for a general v ∈ V the corresponding divisor
Hv ⊂ X is smooth away from x and x′, see Varieties, Lemmas 47.1 and 47.3. To find v we
use that k is infinite (being separably algebraically closed). If we choose s general, then the
image of s in mxLx/m2

xLx will be nonzero, which implies that Hv is smooth at x (details
omitted). Similarly for x′. Thus Hv is smooth. By Varieties, Lemma 48.3 (applied to the
base change of everything to the algebraic closure of k) we see that Hv is geometrically
connected. It suffices to prove the result for [x]− [x′] seen as an element of CH0(Hv). In
this way we reduce to the case of a curve.
Assume X is a curve. Then we see that OX(x − x′) defines a k-rational point g of J =
Pic0

X/k , see Picard Schemes of Curves, Lemma 6.7. Recall that J is a proper smooth variety
over k which is also a group scheme over k (same reference). Hence J is geometrically
integral (see Varieties, Lemma 7.13 and 25.4). In other words, J is an abelian variety, see
Groupoids, Definition 9.1. Thus [n] : J → J is finite étale by Groupoids, Proposition
9.11 (this is where we use n is invertible in k). Since k is separably closed we conclude that
g = [n](g′) for some g′ ∈ J(k). IfL is the degree 0 invertible module onX corresponding
to g′, then we conclude thatOX(x− x′) ∼= L⊗n as desired. �

Lemma 8.4. LetK/k be an algebraic extension of fields. LetX be a finite type scheme
over k. The kernel of the map CHi(X)→ CHi(XK) constructed in Lemma 8.2 is torsion.

Proof. It clearly suffices to show that the kernel of flat pullback CHi(X)→ CHi(Xk′)
by π : Xk′ → X is torsion for any finite extension k′/k. This is clear because π∗π

∗α =
[k′ : k]α by Chow Homology, Lemma 15.2. �

Lemma 8.5 (Voevodsky). Let k be a field. LetX be a geometrically irreducible smooth
projective scheme over k. Let x, x′ ∈ X be k-rational points. For n large enough the class
of the zero cycle

([x]− [x′])× . . .× ([x]− [x′]) ∈ CH0(Xn)
is torsion.

Proof. If we can show this after base change to the algebraic closure of k, then the
result follows over k because the kernel of pullback is torsion by Lemma 8.4. Hence we
may and do assume k is algebraically closed.
Using Bertini we can choose a smooth curve C ⊂ X passing through x and x′. See proof
of Lemma 8.3. Hence we may assume X is a curve.
AssumeX is a curve and k is algebraically closed. Write Sn(X) = HilbnX/k with notation
as in Picard Schemes of Curves, Sections 2 and 3. There is a canonical morphism

π : Xn −→ Sn(X)
which sends the k-rational point (x1, . . . , xn) to the k-rational point corresponding to the
divisor [x1] + . . . + [xn] on X . There is a faithful action of the symmetric group Sn on
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Xn. The morphism π is Sn-invariant and the fibres of π are Sn-orbits (set theoretically).
Finally, π is finite flat of degree n!, see Picard Schemes of Curves, Lemma 3.4.
Let αn be the zero cycle on Xn given by the formula in the statement of the lemma. Let
L = OX(x− x′). Then c1(L) ∩ [X] = [x]− [x′]. Thus

αn = c1(L1) ∩ . . . ∩ c1(Ln) ∩ [Xn]
where Li = pr∗

iL and pri : Xn → X is the ith projection. By either Divisors, Lemma
17.6 or Divisors, Lemma 17.7 there is a norm for π. Set N = Normπ(L1), see Divisors,
Lemma 17.2. We have

π∗N = (L1 ⊗ . . .⊗ Ln)⊗(n−1)!

in Pic(Xn) by a calculation. Deails omitted; hint: this follows from the fact that Normπ :
π∗OXn → OSn(X) composed with the natural map π∗OSn(X) → OXn is equal to the
product over all σ ∈ Sn of the action of σ on π∗OXn . Consider

βn = c1(N )n ∩ [Sn(X)]
in CH0(Sn(X)). Observe that c1(Li)∩c1(Li) = 0 becauseLi is pulled back from a curve,
see Chow Homology, Lemma 34.6. Thus we see that

π∗βn = ((n− 1)!)n(
∑

i=1,...,n
c1(Li))n ∩ [Xn]

= ((n− 1)!)nnnc1(L1) ∩ . . . ∩ c1(Ln) ∩ [Xn]
= (n!)nαn

Thus it suffices to show that βn is torsion.
There is a canonical morphism

f : Sn(X) −→ PicnX/k
See Picard Schemes of Curves, Lemma 6.7. For n ≥ 2g − 1 this morphism is a projective
space bundle (details omitted; compare with the proof of Picard Schemes of Curves, Lemma
6.7). The invertible sheafN is trivial on the fibres of f , see below. Thus by the projective
space bundle formula (Chow Homology, Lemma 36.2) we see that N = f∗M for some
invertible moduleM on PicnX/k. Of course, then we see that

c1(N )n = f∗(c1(M)n)
is zero because n > g = dim(PicnX/k) and we can use Chow Homology, Lemma 34.6 as
before.
We still have to show thatN is trivial on a fibre F of f . Since the fibres of f are projective
spaces and since Pic(Pm

k ) = Z (Divisors, Lemma 28.5), this can be shown by computing
the degree ofN on a line contained in the fibre. Instead we will prove it by proving thatN
is algebraically equivalent to zero. First we claim there is a connected finite type scheme
T over k, an invertible module L′ on T × X and k-rational points p, q ∈ T such that
Mp
∼= OX andMq = L. Namely, since L = OX(x − x′) we can take T = X , p = x′,

q = x, andL′ = OX×X(∆)⊗pr∗
2OX(−x′). Then we letL′

i on T×Xn for i = 1, . . . , n be
the pullback ofL′ by idT ×pri : T×Xn → T×X . Finally, we letN ′ = NormidT×π(L′

1)
on T × Sn(X). By construction we haveN ′

p = OSn(X) andN ′
q = N . We conclude that

N ′|T×F

is an invertible module on T × F ∼= T × Pm
k whose fibre over p is the trivial invertible

module and whose fibre over q isN|F . Since the euler characteristic of the trivial bundle
is 1 and since this euler characteristic is locally constant in families (Derived Categories
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of Schemes, Lemma 32.2) we conclude χ(F,N⊗s|F ) = 1 for all s ∈ Z. This can happen
only if N|F ∼= OF (see Cohomology of Schemes, Lemma 8.1) and the proof is complete.
Some details omitted. �

9. Weil cohomology theories, I

This section is the analogue of Section 7 over arbitrary fields. In other words, we work out
what data and axioms correspond to functors G of symmetric monoidal categories from
the category of motives to the category of graded vector spaces such that G(1(1)) sits in
degree −2. In Section 11 we will define a Weil cohomology theory by adding a single
suplementary condition.

We fix a field k (the base field). We fix a field F of characteristic 0 (the coefficient field).
The data is given by:

(D0) A 1-dimensional F -vector space F (1).
(D1) A contravariant functor H∗ from the category of smooth projective schemes

over k to the category of graded commutative F -algebras.
(D2) For every smooth projective schemeX over k a group homomorphism γ : CHi(X)→

H2i(X)(i).
(D3) For every nonempty smooth projective scheme X over k which is equidimen-

sional of dimension d a map
∫
X

: H2d(X)(d)→ F .
We make some remarks to explain what this means and to introduce some terminology
associated with this.

Remarks on (D0). The vector space F (1) gives rise to Tate twists on the category of F -
vector spaces. Namely, for n ∈ Z we set F (n) = F (1)⊗n if n ≥ 0, we set F (−1) =
HomF (F (1), F ), and we set F (n) = F (−1)⊗−n if n < 0. Please compare with More on
Algebra, Section 117. For an F -vector space V we define the nth Tate twist

V (n) = V ⊗F F (n)
We will use obvious notation, e.g., given F -vector spaces U , V and W and a linear map
U ⊗F V →W we obtain a linear map U(n)⊗F V (m)→W (n+m) for n,m ∈ Z.

Remarks on (D1). Given a smooth projective scheme X over k we say that H∗(X) is the
cohomology of X . Given a morphism f : X → Y of smooth projective schemes over k
we denote f∗ : H∗(Y )→ H∗(X) the map H∗(f) and we call it the pullback map.

Remarks on (D2). The map γ is called the cycle class map. We say that γ(α) is the coho-
mology class of α. If Z ⊂ Y ⊂ X are closed subschemes with Y andX smooth projective
over k and Z integral, then [Z] could mean the class of the cycle [Z] in CH∗(Y ) or in
CH∗(X). In this case the notation γ([Z]) is ambiguous and the intended meaning has to
be deduced from context.

Remarks on (D3). The map
∫
X

is sometimes called the trace map and is sometimes denoted
TrX .

The first axiom is often called Poincaré duality
(A) LetX be a nonempty smooth projective scheme over k which is equidimensional

of dimension d. Then
(a) dimF H

i(X) <∞ for all i,
(b) Hi(X) × H2d−i(X)(d) → H2d(X)(d) → F is a perfect pairing for all i

where the final map is the trace map
∫
X

.
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Let f : X → Y be a morphism of nonempty smooth projective schemes with X equidi-
mensional of dimension d and Y is equidimensional of dimension e. Using Poincaré du-
ality we can define a pushforward

f∗ : H2d−i(X)(d) −→ H2e−i(Y )(e)

as the contragredient of the linear map f∗ : Hi(Y ) → Hi(X). In a formula, for a ∈
H2d−i(X)(d), the element f∗a ∈ H2e−i(Y )(e) is characterized by∫

X

f∗b ∪ a =
∫
Y

b ∪ f∗a

for all b ∈ Hi(Y ).

Lemma 9.1. Assume given (D0), (D1), and (D3) satisfying (A). For f : X → Y
a morphism of nonempty equidimensional smooth projective schemes over k we have
f∗(f∗b ∪ a) = b ∪ f∗a. If g : Y → Z is a second morphism with Z nonempty smooth
projective and equidimensional, then g∗ ◦ f∗ = (g ◦ f)∗.

Proof. The first equality holds because∫
Y

c ∪ b ∪ f∗a =
∫
X

f∗c ∪ f∗b ∪ a =
∫
Y

c ∪ f∗(f∗b ∪ a).

The second equality holds because∫
Z

c ∪ (g ◦ f)∗a =
∫
X

(g ◦ f)∗c ∪ a =
∫
X

f∗g∗c ∪ a =
∫
Y

g∗c ∪ f∗a =
∫
Z

c ∪ g∗f∗a

This ends the proof. �

The second axiom says thatH∗ respects the monoidal structure given by products via the
Künneth formula

(B) Let X and Y be smooth projective schemes over k.
(a) H∗(X)⊗FH∗(Y )→ H∗(X×Y ),α⊗β 7→ pr∗

1α∪pr∗
2β is an isomorphism,

(b) ifX and Y are nonempty and equidimensional, then
∫
X×Y =

∫
X
⊗
∫
Y

via
(a).

Using axiom (B)(b) we can compute pushforwards along projections.

Lemma 9.2. Assume given (D0), (D1), and (D3) satisfying (A) and (B). Let X and Y
be nonempty smooth projective schemes over k equidimensional of dimensions d and e.
Then pr2,∗ : H∗(X × Y )(d+ e)→ H∗(Y )(e) sends a⊗ b to (

∫
X
a)b.

Proof. This follows from axioms (B)(a) and (B)(b). �

The third axiom concerns the cycle class maps
(C) The cycle class maps satisfy the following rules

(a) for a morphism f : X → Y of smooth projective schemes over k we have
γ(f !β) = f∗γ(β) for β ∈ CH∗(Y ),

(b) for a morphism f : X → Y of nonempty equidimensional smooth projec-
tive schemes over k we have γ(f∗α) = f∗γ(α) for α ∈ CH∗(X),

(c) for any smooth projective schemeX over k we have γ(α ·β) = γ(α)∪γ(β)
for α, β ∈ CH∗(X), and

(d)
∫

Spec(k) γ([Spec(k)]) = 1.
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Let us elucidate axiom (C)(b). Namely, say f : X → Y is as in (C)(b) with dim(X) = d
and dim(Y ) = e. Then we see that pushforward on Chow groups gives

f∗ : CHd−i(X) = CHi(X)→ CHi(Y ) = CHe−i(Y )
Say α ∈ CHd−i(X). On the one hand, we have f∗α ∈ CHe−i(Y ) and hence γ(f∗α) ∈
H2e−2i(Y )(e − i). On the other hand, we have γ(α) ∈ H2d−2i(X)(d − i) and hence
f∗γ(α) ∈ H2e−2i(Y )(e− i) as well. Thus the condition γ(f∗α) = f∗γ(α) makes sense.

Remark 9.3. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C)(a).
Let X be a smooth projective scheme over k. We obtain maps

H∗(X)⊗F H∗(X) −→ H∗(X ×X) ∆∗

−−→ H∗(X)
where the first arrow is as in axiom (B) and ∆∗ is pullback along the diagonal morphism
∆ : X → X × X . The composition is the cup product as pullback is an algebra homo-
morphism and pri ◦∆ = id. On the other hand, given cycles α, β on X the intersection
product is defined by the formula

α · β = ∆!(α× β)
In other words, α · β is the pullback of the exterior product α × β on X × X by the
diagonal. Note also that α×β = pr∗

1α ·pr∗
2β in CH∗(X×X) (we omit the proof). Hence,

given axiom (C)(a), axiom (C)(c) is equivalent to the statement that γ is compatible with
exterior product in the sense that γ(α× β) is equal to pr∗

1γ(α) ∪ pr∗
2γ(β).

Lemma 9.4. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Then Hi(Spec(k)) = 0 for i 6= 0 and there is a unique F -algebra isomorphism F =
H0(Spec(k)). We have γ([Spec(k)]) = 1 and

∫
Spec(k) 1 = 1.

Proof. By axiom (C)(d) we see that H0(Spec(k)) is nonzero and even γ([Spec(k)])
is nonzero. Since Spec(k)× Spec(k) = Spec(k) we get

H∗(Spec(k))⊗F H∗(Spec(k)) = H∗(Spec(k))
by axiom (B)(a) which implies (look at dimensions) that onlyH0 is nonzero and moreover
has dimension 1. Thus F = H0(Spec(k)) via the unique F -algebra isomorphism given
by mapping 1 ∈ F to 1 ∈ H0(Spec(k)). Since [Spec(k)] · [Spec(k)] = [Spec(k)] in the
Chow ring of Spec(k) we conclude that γ([Spec(k)) ∪ γ([Spec(k)]) = γ([Spec(k)]) by
axiom (C)(c). Since we already know that γ([Spec(k)]) is nonzero we conclude that it has
to be equal to 1. Finally, we have

∫
Spec(k) 1 = 1 since

∫
Spec(k) γ([Spec(k)]) = 1 by axiom

(C)(d). �

Lemma 9.5. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C). Let
X be a smooth projective scheme over k. If X = ∅, then H∗(X) = 0. If X is nonempty,
then γ([X]) = 1 and 1 6= 0 in H0(X).

Proof. First assume X is nonempty. Observe that [X] is the pullback of [Spec(k)]
by the structure morphism p : X → Spec(k). Hence we get γ([X]) = 1 by axiom (C)(a)
and Lemma 9.4. Let X ′ ⊂ X be an irreducible component. By functoriality it suffices to
show 1 6= 0 in H0(X ′). Thus we may and do assume X is irreducible, and in particular
nonempty and equidimensional, say of dimension d. To see that 1 6= 0 it suffices to show
that H∗(X) is nonzero.
Let x ∈ X be a closed point whose residue field k′ is separable over k, see Varieties, Lemma
25.6. Let i : Spec(k′) → X be the inclusion morphism. Denote p : X → Spec(k) is the
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structure morphism. Observe that p∗i∗[Spec(k′)] = [k′ : k][Spec(k)] in CH0(Spec(k)).
Using axiom (C)(b) twice and Lemma 9.4 we conclude that

p∗i∗γ([Spec(k′)]) = γ([k′ : k][Spec(k)]) = [k′ : k] ∈ F = H0(Spec(k))
is nonzero. Thus i∗γ([Spec(k)]) ∈ H2d(X)(d) is nonzero (because it maps to something
nonzero via p∗). This concludes the proof in case X is nonempty.

Finally, we consider the case of the empty scheme. Axiom (B)(a) gives H∗(∅)⊗H∗(∅) =
H∗(∅) and we get that H∗(∅) is either zero or 1-dimensional in degree 0. Then axiom
(B)(a) again shows that H∗(∅) ⊗ H∗(X) = H∗(∅) for all smooth projective schemes X
over k. Using axiom (A)(b) and the nonvanishing of H0(X) we’ve seen above we find
that H∗(X) is nonzero in at least two degrees if dim(X) > 0. This then forces H∗(∅) to
be zero. �

Lemma 9.6. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Let i : X → Y be a closed immersion of nonempty smooth projective equidimensional
schemes over k. Then γ([X]) = i∗1 in H2c(Y )(c) where c = dim(Y )− dim(X).

Proof. This is true because 1 = γ([X]) in H0(X) by Lemma 9.5 and then we can
apply axiom (C)(b). �

Lemma 9.7. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Let X be a nonempty smooth projective scheme over k equidimensional of dimension d.
Choose a basis ei,j , j = 1, . . . , βi of Hi(X) over F . Using Künneth write

γ([∆]) =
∑

i

∑
j
ei,j ⊗ e′

2d−i,j in
⊕

i
Hi(X)⊗F H2d−i(X)(d)

with e′
2d−i,j ∈ H2d−i(X)(d). Then

∫
X
ei,j ∪ e′

2d−i,j′ = (−1)iδjj′ .

Proof. Recall that ∆∗ : H∗(X × X) → H∗(X) is equal to the cup product map
H∗(X)⊗F H∗(X)→ H∗(X), see Remark 9.3. On the other hand, recall that γ([∆]) =
∆∗1 (Lemma 9.6) and hence∫

X×X
γ([∆]) ∪ a⊗ b =

∫
X×X

∆∗1 ∪ a⊗ b =
∫
X

a ∪ b

by Lemma 9.1. On the other hand, we have∫
X×X

(
∑

ei,j ⊗ e′
2d−i,j) ∪ a⊗ b =

∑
(
∫
X

a ∪ ei,j)(
∫
X

e′
2d−i,j ∪ b)

by axiom (B)(b); note that we made two switches of order so that the sign for each term
is 1. Thus if we choose a such that

∫
X
a ∪ ei,j = 1 and all other pairings equal to zero,

then we conclude that
∫
X
e′

2d−i,j ∪ b =
∫
X
a ∪ b for all b, i.e., e′

2d−i,j = a. This proves
the lemma. �

Lemma 9.8. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Then H∗(P1

k) is 1-dimensional in dimensions 0 and 2 and zero in other degrees.

Proof. Let x ∈ P1
k be a k-rational point. Observe that ∆ = pr∗

1x+ pr∗
2x as divisors

on P1
k ×P1

k. Using axiom (C)(a) and additivity of γ we see that

γ([∆]) = pr∗
1γ([x]) + pr∗

2γ([x]) = γ([x])⊗ 1 + 1⊗ γ([x])

in H∗(P1
k ×P1

k) = H∗(P1
k)⊗F H∗(P1

k). However, by Lemma 9.7 we know that γ([∆])
cannot be written as a sum of fewer than

∑
βi pure tensors where βi = dimF H

i(P1
k).
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Thus we see that
∑
βi ≤ 2. By Lemma 9.5 we have H0(P1

k) 6= 0. By Poincaré duality,
more precisely axiom (A)(b), we have β0 = β2. Therefore the lemma holds. �

Lemma 9.9. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C). If
X and Y are smooth projective schemes over k, then H∗(X q Y ) → H∗(X) ×H∗(Y ),
a 7→ (i∗a, j∗a) is an isomorphism where i, j are the coprojections.

Proof. IfX or Y is empty, then this is true becauseH∗(∅) = 0 by Lemma 9.5. Thus
we may assume both X and Y are nonempty.

We first show that the map is injective. First, observe that we can find morphismsX ′ → X
and Y ′ → Y of smooth projective schemes so that X ′ and Y ′ are equidimensional of the
same dimension and such that X ′ → X and Y ′ → Y each have a section. Namely,
decompose X =

∐
Xd and Y =

∐
Ye into open and closed subschemes equidimensional

of dimension d and e. Then take X ′ =
∐
Xd ×Pn−d and Y ′ =

∐
Ye ×Pn−e for some

n sufficiently large. Thus pullback by X ′ q Y ′ → X q Y is injective (because there is a
section) and it suffices to show the injectivity for X ′, Y ′ as we do in the next parapgrah.

Let us show the map is injective whenX and Y are equidimensional of the same dimension
d. Observe that [XqY ] = [X]+[Y ] in CH0(XqY ) and that [X] and [Y ] are orthogonal
idempotents in CH0(X q Y ). Thus

1 = γ([X q Y ] = γ([X]) + γ([Y ]) = i∗1 + j∗1

is a decomposition into orthogonal idempotents. Here we have used Lemmas 9.5 and 9.6
and axiom (C)(c). Then we see that

a = a ∪ 1 = a ∪ i∗1 + a ∪ j∗1 = i∗(i∗a) + j∗(j∗a)

by the projection formula (Lemma 9.1) and hence the map is injective.

We show the map is surjective. Write e = γ([X]) and f = γ([Y ]) viewed as elements in
H0(X q Y ). We have i∗e = 1, i∗f = 0, j∗e = 0, and j∗f = 1 by axiom (C)(a). Hence
if i∗ : H∗(X q Y ) → H∗(X) and j∗ : H∗(X q Y ) → H∗(Y ) are surjective, then so is
(i∗, j∗). Namely, for a, a′ ∈ H∗(X q Y ) we have

(i∗a, j∗a′) = (i∗(a ∪ e+ a′ ∪ f), j∗(a ∪ e+ a′ ∪ f))

By symmetry it suffices to show i∗ : H∗(X q Y ) → H∗(X) is surjective. If there is
a morphism Y → X , then there is a morphism g : X q Y → X with g ◦ i = idX
and we conclude. To finish the proof, observe that in order to prove i∗ is surjective, it
suffices to do so after tensoring by a nonzero gradedF -vector space. Hence by axiom (B)(b)
and nonvanishing of cohomology (Lemma 9.5) it suffices to prove i∗ is surjective after
replacingX and Y byX×Spec(k′) and Y ×Spec(k′) for some finite separable extension
k′/k. If we choose k′ such that there exists a closed pointx ∈ X withκ(x) = k′ (and this is
possible by Varieties, Lemma 25.6) then there is a morphismY ×Spec(k′)→ X×Spec(k′)
and we find that the proof is complete. �

Lemma 9.10. Let k be a field. Let F be a field of characteristic 0. Assume given a
Q-linear functor

G : Mk −→ graded F -vector spaces
of symmetric monoidal categories such that G(1(1)) is nonzero only in degree −2. Then
we obtain data (D0), (D1), (D2), and (D3) satisfying all of (A), (B), and (C) above.
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Proof. This proof is the same as the proof of Lemma 7.9; we urge the reader to read
the proof of that lemma instead.

We obtain a contravariant functor from the category of smooth projective schemes over k
to the category of graded F -vector spaces by setting H∗(X) = G(h(X)). By assumption
we have a canonical isomorphism

H∗(X×Y ) = G(h(X×Y )) = G(h(X)⊗h(Y )) = G(h(X))⊗G(h(Y )) = H∗(X)⊗H∗(Y )

compatible with pullbacks. Using pullback along the diagonal ∆ : X → X×X we obtain
a canonical map

H∗(X)⊗H∗(X) = H∗(X ×X)→ H∗(X)
of graded vector spaces compatible with pullbacks. This defines a functorial graded F -
algebra structure onH∗(X). Since ∆ commutes with the commutativity constrainth(X)⊗
h(X) → h(X) ⊗ h(X) (switching the factors) and since G is a functor of symmetric
monoidal categories (so compatible with commutativity constraints), and by our conven-
tion in Homology, Example 17.4 we conclude that H∗(X) is a graded commutative alge-
bra! Hence we get our datum (D1).

Since 1(1) is invertible in the category of motives we see that G(1(1)) is invertible in the
category of graded F -vector spaces. Thus

∑
i dimF G

i(1(1)) = 1. By assumption we
only get something nonzero in degree −2. Our datum (D0) is the vector space F (1) =
G−2(1(1)). Since G is a symmetric monoidal functor we see that F (n) = G−2n(1(n))
for all n ∈ Z. It follows that

H2r(X)(r) = G2r(h(X))⊗G−2r(1(r)) = G0(h(X)(r))

a formula we will frequently use below.

Let X be a smooth projective scheme over k. By Lemma 3.1 we have

CHr(X)⊗Q = Corrr(Spec(k), X) = Hom(1(−r), h(X)) = Hom(1, h(X)(r))

Applying the functorG this maps into Hom(G(1), G(h(X)(r))). By taking the image of
1 in G0(1) = F into G0(h(X)(r)) = H2r(X)(r) we obtain

γ : CHr(X)⊗Q −→ H2r(X)(r)

This is the datum (D2).

Let X be a nonempty smooth projective scheme over k which is equidimensional of di-
mension d. By Lemma 3.1 we have

Mor(h(X)(d),1) = Mor((X, 1, d), (Spec(k), 1, 0)) = Corr−d(X, Spec(k)) = CHd(X)

Thus the class of the cycle [X] in CHd(X) defines a morphism h(X)(d) → 1. Applying
G and taking degree 0 parts we obtain

H2d(X)(d) = G0(h(X)(d)) −→ G0(1) = F

This map
∫
X

: H2d(X)(d)→ F is the datum (D3).

Let X be a smooth projective scheme over k which is nonempty and equidimensional
of dimension d. By Lemma 4.9 we know that h(X)(d) is a left dual to h(X). Hence
G(h(X)(d)) = H∗(X)⊗F F (d)[2d] is a left dual toH∗(X) in the category of graded F -
vector spaces. Here [n] is the shift functor on graded vector spaces. By Homology, Lemma
17.5 we find that

∑
i dimF H

i(X) < ∞ and that ε : h(X)(d) ⊗ h(X) → 1 produces
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nondegenerate pairings H2d−i(X)(d) ⊗F Hi(X) → F . In the proof of Lemma 4.9 we
have seen that ε is given by [∆] via the identifications

Hom(h(X)(d)⊗ h(X),1) = Corr−d(X ×X, Spec(k)) = CHd(X ×X)

Thus ε is the composition of [X] : h(X)(d) → 1 and h(∆)(d) : h(X)(d) ⊗ h(X) →
h(X)(d). It follows that the pairings above are given by cup product followed by

∫
X

.
This proves axiom (A).

Axiom (B) follows from the assumption that G is compatible with tensor structures and
our construction of the cup product above.

Axiom (C). Our construction of γ takes a cycle α on X , interprets it a correspondence a
from Spec(k) to X of some degree, and then applies G. If f : Y → X is a morphism
of nonempty equidimensional smooth projective schemes over k, then f !α is the pushfor-
ward (!) of α by the correspondence [Γf ] from X to Y , see Lemma 3.6. Hence f !α viewed
as a correspondence from Spec(k) to Y is equal to a ◦ [Γf ], see Lemma 3.1. Since G is a
functor, we conclude γ is compatible with pullbacks, i.e., axiom (C)(a) holds.

Let f : Y → X be a morphism of nonempty equidimensional smooth projective schemes
over k and let β ∈ CHr(Y ) be a cycle on Y . We have to show that∫

Y

γ(β) ∪ f∗c =
∫
X

γ(f∗β) ∪ c

for all c ∈ H∗(X). Let a, at, ηX , ηY , [X], [Y ] be as in Lemma 3.9. Let b be β viewed as
a correspondence from Spec(k) to Y of degree r. Then f∗β viewed as a correspondence
from Spec(k) toX is equal to at ◦b, see Lemmas 3.6 and 3.1. The displayed equality above
holds if we can show that

h(X) = 1⊗h(X) b⊗1−−→ h(Y )(r)⊗h(X) 1⊗a−−→ h(Y )(r)⊗h(Y ) ηY−−→ h(Y )(r) [Y ]−−→ 1(r−e)

is equal to

h(X) = 1⊗h(X) at◦b⊗1−−−−→ h(X)(r+ d− e)⊗h(X) ηX−−→ h(X)(r+ d− e) [X]−−→ 1(r− e)

This follows immediately from Lemma 3.9. Thus we have axiom (C)(b).

To prove axiom (C)(c) we use the discussion in Remark 7.2. Hence it suffices to prove that
γ is compatible with exterior products. LetX , Y be nonempty smooth projective schemes
over k and letα, β be cycles on them. Denote a, b the corresponding correspondences from
Spec(k) to X , Y . Then α × β corresponds to the correspondence a⊗ b from Spec(k) to
X ⊗Y = X ×Y . Hence the requirement follows from the fact thatG is compatible with
the tensor structures on both sides.

Axiom (C)(d) follows because the cycle [Spec(k)] corresponds to the identity morphism
on h(Spec(k)). This finishes the proof of the lemma. �

Lemma 9.11. Let k be a field. Let F be a field of characteristic 0. Given (D0), (D1),
(D2), and (D3) satisfying (A), (B), and (C) we can construct a Q-linear functor

G : Mk −→ graded F -vector spaces

of symmetric monoidal categories such that H∗(X) = G(h(X)).
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Proof. The proof of this lemma is the same as the proof of Lemma 7.10; we urge the
reader to read the proof of that lemma instead.

By Lemma 4.8 it suffices to construct a functor G on the category of smooth projective
schemes over k with morphisms given by correspondences of degree 0 such that the image
of G(c2) on G(P1

k) is an invertible graded F -vector space.

Let X be a smooth projective scheme over k. There is a canonical decomposition

X =
∐

0≤d≤dim(X)
Xd

into open and closed subschemes such that Xd is equidimensional of dimension d. By
Lemma 9.9 we have correspondingly

H∗(X) −→
∏

0≤d≤dim(X)
H∗(Xd)

If Y is a second smooth projective scheme over k and we similarly decompose Y =
∐
Ye,

then
Corr0(X,Y ) =

⊕
Corr0(Xd, Ye)

As well we have X ⊗ Y =
∐
Xd ⊗ Ye in the category of correspondences. From these

observations it follows that it suffices to construct G on the category whose objects are
equidimensional smooth projective schemes over k and whose morphisms are correspon-
dences of degree 0. (Some details omitted.)

Given an equdimensional smooth projective scheme X over k we set G(X) = H∗(X).
Observe thatG(X) = 0 ifX = ∅ (Lemma 9.5). Thus maps from and toG(∅) are zero and
we may and do assume our schemes are nonempty in the discussions below.

Given a correspondence c ∈ Corr0(X,Y ) between nonempty equidmensional smooth
projective schemes over k we consider the map G(c) : G(X) = H∗(X) → G(Y ) =
H∗(Y ) given by the rule

a 7−→ G(c)(a) = pr2,∗(γ(c) ∪ pr∗
1a)

It is clear thatG(c) is additive in c and hence Q-linear. Compatibility of γ with pullbacks,
pushforwards, and intersection products given by axioms (C)(a), (C)(b), and (C)(c) shows
that we have G(c′ ◦ c) = G(c′) ◦ G(c) if c′ ∈ Corr0(Y, Z). Namely, for a ∈ H∗(X) we
have

(G(c′) ◦G(c))(a) = pr23
3,∗(γ(c′) ∪ pr23,∗

2 (pr12
2,∗(γ(c) ∪ pr12,∗

1 a)))

= pr23
3,∗(γ(c′) ∪ pr123

23,∗(pr123,∗
12 (γ(c) ∪ pr12,∗

1 a)))

= pr23
3,∗pr123

23,∗(pr123,∗
23 γ(c′) ∪ pr123,∗

12 γ(c) ∪ pr123,∗
1 a)

= pr23
3,∗pr123

23,∗(γ(pr123,∗
23 c′) ∪ γ(pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗pr123

13,∗(γ(pr123,∗
23 c′ · pr123,∗

12 c) ∪ pr123,∗
1 a)

= pr13
3,∗(γ(pr123

13,∗(pr123,∗
23 c′ · pr123,∗

12 c)) ∪ pr13,∗
1 a)

= G(c′ ◦ c)(a)

with obvious notation. The first equality follows from the definitions. The second equal-
ity holds because pr23,∗

2 ◦pr12
2,∗ = pr123

23,∗ ◦pr123,∗
12 as follows immediately from the descrip-

tion of pushforward along projections given in Lemma 9.2. The third equality holds by
Lemma 9.1 and the fact that H∗ is a functor. The fourth equalith holds by axiom (C)(a)
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and the fact that the gysin map agrees with flat pullback for flat morphisms (Chow Ho-
mology, Lemma 59.5). The fifth equality uses axiom (C)(c) as well as Lemma 9.1 to see that
pr23

3,∗ ◦pr123
23,∗ = pr13

3,∗ ◦pr123
13,∗. The sixth equality uses the projection formula from Lemma

9.1 as well as axiom (C)(b) to see that pr123
13,∗γ(pr123,∗

23 c′ · pr123,∗
12 c) = γ(pr123

13,∗(pr123,∗
23 c′ ·

pr123,∗
12 c)). Finally, the last equality is the definition.

To finish the proof that G is a functor, we have to show identities are preserved. In other
words, if 1 = [∆] ∈ Corr0(X,X) is the identity in the category of correspondences
(Lemma 3.3), then we have to show thatG([∆]) = id. This follows from the determination
of γ([∆]) in Lemma 9.7 and Lemma 9.2. This finishes the construction of G as a functor
on smooth projective schemes over k and correspondences of degree 0.

By Lemma 9.4 we have that G(Spec(k)) = H∗(Spec(k)) is canonically isomorphic to F
as an F -algebra. The Künneth axiom (B)(a) shows our functor is compatible with tensor
products. Thus our functor is a functor of symmetric monoidal categories.

We still have to check that the image of G(c2) on G(P1
k) = H∗(P1

k) is an invertible
gradedF -vector space (in particular we don’t know yet thatG extends toMk). By Lemma
9.8 we only have nonzero cohomology in degrees 0 and 2 both of dimension 1. We
have 1 = c0 + c2 is a decomposition of the identity into a sum of orthogonal idem-
potents in Corr0(P1

k,P1
k), see Example 3.7. Further we have c0 = a ◦ b where a ∈

Corr0(Spec(k),P1
k) and b ∈ Corr0(P1

k,Spec(k)) and where b◦a = 1 in Corr0(Spec(k), Spec(k)),
see proof of Lemma 4.4. ThusG(c0) is the projector onto the degree 0 part. It follows that
G(c2) must be the projector onto the degree 2 part and the proof is complete. �

Proposition 9.12. Let k be a field. Let F be a field of characteristic 0. There is a
1-to-1 correspondence between the following

(1) data (D0), (D1), (D2), and (D3) satisfying (A), (B), and(C), and
(2) Q-linear symmetric monoidal functors

G : Mk −→ graded F -vector spaces

such that G(1(1)) is nonzero only in degree −2.

Proof. Given G as in (2) by setting H∗(X) = G(h(X)) we obtain data (D0), (D1),
(D2), and (D3) satisfying (A), (B), and (C), see Lemma 9.10 and its proof.

Conversely, given data (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C) we get a
functor G as in (2) by the construction of the proof of Lemma 9.11.

We omit the detailed proof that these constructions are inverse to each other. �

10. Further properties

In this section we prove a few more results one obtains if given data (D0), (D1), (D2), and
(D3) satisfying (A), (B), and (C) as in Section 9.

Lemma 10.1. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Let X,Y be nonempty smooth projective schemes both equidimensional of dimension d
over k. Then

∫
XqY =

∫
X

+
∫
Y

.

Proof. Denote i : X → X q Y and j : Y → X q Y be the coprojections. By
Lemma 9.9 the map (i∗, j∗) : H∗(X q Y ) → H∗(X) ×H∗(Y ) is an isomorphism. The
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statement of the lemma means that under the isomorphism (i∗, j∗) : H2d(X q Y )(d)→
H2d(X)(d)⊕H2d(Y )(d) the map

∫
X

+
∫
Y

is tranformed into
∫
XqY . This is true because∫

XqY
a =

∫
XqY

i∗(i∗a) + j∗(j∗a) =
∫
X

i∗a+
∫
Y

j∗a

where the equality a = i∗(i∗a) + j∗(j∗a) was shown in the proof of Lemma 9.9. �

Lemma 10.2. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Let X be a smooth projective scheme of dimension zero over k. Then

(1) Hi(X) = 0 for i 6= 0,
(2) H0(X) is a finite separable algebra over F ,
(3) dimF H

0(X) = deg(X → Spec(F )),
(4)

∫
X

: H0(X)→ F is the trace map,
(5) γ([X]) = 1, and
(6)

∫
X
γ([X]) = deg(X → Spec(k)).

Proof. We can write X = Spec(k′) where k′ is a finite separable algebra over k.
Observe that deg(X → Spec(k)) = [k′ : k]. Choose a finite Galois extension k′′/k
containing each of the factors of k′. (Recall that a finite separable k-algebra is a product
of finite separable field extension of k.) Set Σ = Homk(k′, k′′). Then we get

k′ ⊗k k′′ =
∏

σ∈Σ
k′′

Setting Y = Spec(k′′) axioms (B)(a) and Lemma 9.9 give

H∗(X)⊗F H∗(Y ) =
∏

σ∈Σ
H∗(Y )

as graded commutativeF -algebras. By Lemma 9.5 theF -algebraH∗(Y ) is nonzero. Com-
paring dimensions on either side of the displayed equation we conclude that H∗(X) sits
only in degree 0 and dimF H

0(X) = [k′ : k]. Applying this to Y we get H∗(Y ) =
H0(Y ). Since

H0(X)⊗F H0(Y ) = H0(Y )× . . .×H0(Y )
as F -algebras, it follows that H0(X) is a separable F -algebra because we may check this
after the faithfully flat base change F → H0(Y ).

The displayed isomorphism above is given by the map

H0(X)⊗F H0(Y ) −→
∏

σ∈Σ
H0(Y ), a⊗ b 7−→

∏
σ

Spec(σ)∗a ∪ b

Via this isomorphism we have
∫
X×Y =

∑
σ

∫
Y

by Lemma 10.1. Thus∫
X

a = pr1,∗(a⊗ 1) =
∑

Spec(σ)∗a

inH0(Y ); the first equality by Lemma 9.2 and the second by the observation we just made.
Choose an algebraic closure F and a F -algebra map τ : H0(Y ) → F . The isomorphism
above base changes to the isomorphism

H0(X)⊗F F −→
∏

σ∈Σ
F, a⊗ b 7−→

∏
σ
τ(Spec(σ)∗a)b

It follows that a 7→ τ(Spec(σ)∗a) is a full set of embeddings ofH0(X) into F . Applying
τ to the formula for

∫
X
a obtained above we conclude that

∫
X

is the trace map. By Lemma
9.5 we have γ([X]) = 1. Finally, we have

∫
X
γ([X]) = deg(X → Spec(k)) because

γ([X]) = 1 and the trace of 1 is equal to [k′ : k] �
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Lemma 10.3. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Let X be a nonempty smooth projective scheme equidimensional of dimension d over k.
The diagram

CHd(X)
γ
// H2d(X)(d)∫

X

��
CH0(X) deg // F

commutes where deg : CH0(X) → Z is the degree of zero cycles discussed in Chow
Homology, Section 41.

Proof. Let x be a closed point of X whose residue field is separable over k. View x
as a scheme and denote i : x → X the inclusion morphism. To avoid confusion denote
γ′ : CH0(x)→ H0(x) the cycle class map for x. Then we have∫

X

γ([x]) =
∫
X

γ(i∗[x]) =
∫
X

i∗γ
′([x]) =

∫
x

γ′([x]) = deg(x→ Spec(k))

The second equality is axiom (C)(b) and the third equality is the definition of i∗ on co-
homology. The final equality is Lemma 10.2. This proves the lemma because CH0(X) is
generated by the classes of points x as above by Lemma 8.1. �

Lemma 10.4. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C). Let
X be a nonempty smooth projective scheme over kwhich is equidimensional of dimension
d. We have ∑

i
(−1)i dimF H

i(X) = deg(∆ ·∆) = deg(cd(TX/k))

Proof. Equality on the right. We have [∆] · [∆] = ∆∗(∆![∆]) (Chow Homology,
Lemma 62.6). Since ∆∗ preserves degrees of 0-cycles it suffices to compute the degree of
∆![∆]. The class ∆![∆] is given by capping [∆] with the top Chern class of the normal
sheaf of ∆ ⊂ X ×X (Chow Homology, Lemma 54.5). Since the conormal sheaf of ∆ is
ΩX/k (Morphisms, Lemma 32.7) we see that the normal sheaf is equal to the tangent sheaf
TX/k = HomOX

(ΩX/k,OX) as desired.

Equality on the left. By Lemma 10.3 we have

deg([∆] · [∆]) =
∫
X×X

γ([∆]) ∪ γ([∆])

=
∫
X×X

∆∗1 ∪ γ([∆])

=
∫
X×X

∆∗(∆∗γ([∆]))

=
∫
X

∆∗γ([∆])

We have used Lemmas 9.6 and 9.1. Write γ([∆]) =
∑
ei,j ⊗ e′

2d−i,j as in Lemma 9.7.
Recalling that ∆∗ is given by cup product (Remark 9.3) we obtain∫

X

∑
i,j
ei,j ∪ e′

2d−i,j =
∑

i,j

∫
X

ei,j ∪ e′
2d−i,j =

∑
i,j

(−1)i =
∑

(−1)iβi

as desired. �



10. FURTHER PROPERTIES 3869

Lemma 10.5. Let F be a field of characteristic 0. Let F ′ and Fi, i = 1, . . . , r be finite
separable F -algebras. Let A be a finite F -algebra. Let σ, σ′ : A→ F ′ and σi : A→ Fi be
F -algebra maps. Assume σ and σ′ surjective. If there is a relation

TrF ′/F ◦ σ − TrF ′/F ◦ σ′ = n(
∑

miTrFi/F ◦ σi)

where n > 1 and mi are integers, then σ = σ′.

Proof. We may write A =
∏
Aj as a finite product of local Artinian F -algebras

(Aj ,mj , κj), see Algebra, Lemma 53.2 and Proposition 60.7. Denote A′ =
∏
κj where

the product is over those j such that κj/k is separable. Then each of the maps σ, σ′, σi
factors over the map A → A′. After replacing A by A′ we may assume A is a finite
separable F -algebra.

Choose an algebraic closure F . SetA = A⊗F F , F ′ = F ′⊗F F , and F i = Fi⊗F F . We
can base change σ, σ′, σi to get F algebra maps A → F

′ and A → F i. Moreover Tr
F

′
/F

is the base change of TrF ′/F and similarly for TrFi/F . Thus we may replace F by F and
we reduce to the case discussed in the next paragraph.

AssumeF is algebraically closed andA a finite separableF -algebra. Then each ofA,F ′,Fi
is a product of copies ofF . Let us say an element e of a productF×. . .×F of copies ofF is a
minimal idempotent if it generates one of the factors, i.e., if e = (0, . . . , 0, 1, 0, . . . , 0). Let
e ∈ A be a minimal idempotent. Since σ and σ′ are surjective, we see that σ(e) and σ′(e)
are minimal idempotents or zero. If σ 6= σ′, then we can choose a minimal idempotent
e ∈ A such that σ(e) = 0 and σ′(e) 6= 0 or vice versa. Then TrF ′/F (σ(e)) = 0 and
TrF ′/F (σ′(e)) = 1 or vice versa. On the other hand, σi(e) is an idempotent and hence
TrFi/F (σi(e)) = ri is an integer. We conclude that

−1 =
∑

nmiri = n(
∑

miri) or 1 =
∑

nmiri = n(
∑

miri)

which is impossible. �

Lemma 10.6. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Let k′/k be a finite separable extension. Let X be a smooth projective scheme over k′. Let
x, x′ ∈ X be k′-rational points. If γ(x) 6= γ(x′), then [x] − [x′] is not divisible by any
integer n > 1 in CH0(X).

Proof. If x and x′ lie on distinct irreducible components of X , then the result is
obvious. Thus we may X irreducible of dimension d. Say [x]− [x′] is divisible by n > 1
in CH0(X). We may write [x]− [x′] = n(

∑
mi[xi]) in CH0(X) for some xi ∈ X closed

points whose residue fields are separable over k by Lemma 8.1. Then

γ([x])− γ([x′]) = n(
∑

miγ([xi]))

in H2d(X)(d). Denote i∗, (i′)∗, i∗i the pullback maps H0(X) → H0(x), H0(X) →
H0(x′), H0(X) → H0(xi). Recall that H0(x) is a finite separable F -algebra and that∫
x

: H0(x) → F is the trace map (Lemma 10.2) which we will denote Trx. Similarly for
x′ and xi. Then by Poincaré duality in the form of axiom (A)(b) the equation above is
dual to

Trx ◦ i∗ − Trx′ ◦ (i′)∗ = n(
∑

miTrxi ◦ i∗i )

which takes place in HomF (H0(X), F ). Finally, observe that i∗ and (i′)∗ are surjective as
x and x′ are k′-rational points and hence the compositions H0(Spec(k′)) → H0(X) →



3870 45. WEIL COHOMOLOGY THEORIES

H0(x) and H0(Spec(k′)) → H0(X) → H0(x′) are isomorphisms. By Lemma 10.5 we
conclude that i∗ = (i′)∗ which contradicts the assumption that γ([x]) 6= γ([x′]). �

Lemma 10.7. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C). Let
k′/k be a finite separable extension. LetX be a geometrically irreducible smooth projective
scheme over k′ of dimension d. Then γ : CH0(X) → H2d(X)(d) factors through deg :
CH0(X)→ Z.

Proof. By Lemma 8.1 it suffices to show: given closed points x, x′ ∈ X whose residue
fields are separable over k we have deg(x′)γ([x]) = deg(x)γ([x′]).

We first reduce to the case of k′-rational points. Let k′′/k′ be a Galois extension such
that κ(x) and κ(x′) embed into k′′ over k. Set Y = X ×Spec(k′) Spec(k′′) and denote
p : Y → X the projection. By our choice of k′′/k′ there exists a k′′-rational point y, resp.
y′ on Y mapping to x, resp. x′. Then p∗[y] = [k′′ : κ(x)][x] and p∗[y′] = [k′′ : κ(x′)][x′]
in CH0(X). By compatibility with pushforwards given in axiom (C)(b) it suffices to prove
γ([y]) = γ([y′]) in CH2d(Y )(d). This reduces us to the discussion in the next paragraph.

Assume x and x′ are k′-rational points. By Lemma 8.3 there exists a finite separable exten-
sion k′′/k′ of fields such that the pullback [y] − [y′] of the difference [x] − [x′] becomes
divisible by an integer n > 1 on Y = X ×Spec(k′) Spec(k′′). (Note that y, y′ ∈ Y are
k′′-rational points.) By Lemma 10.6 we have γ([y]) = γ([y′]) in H2d(Y )(d). By compat-
ibility with pushforward in axiom (C)(b) we conclude the same for x and x′. �

Lemma 10.8. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Let f : X → Y be a dominant morphism of irreducible smooth projective schemes over
k. Then H∗(Y )→ H∗(X) is injective.

Proof. There exists an integral closed subschemeZ ⊂ X of the same dimension as Y
mapping onto Y . Thus f∗[Z] = m[Y ] for some m > 0. Then f∗γ([Z]) = mγ([Y ]) = m
in H∗(Y ) because of Lemma 9.5. Hence by the projection formula (Lemma 9.1) we have
f∗(f∗a ∪ γ([Z])) = ma and we conclude. �

Lemma 10.9. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Let k′′/k′/k be finite separable algebras and let X be a smooth projective scheme over k′.
Then

H∗(X)⊗H0(Spec(k′)) H
0(Spec(k′′)) = H∗(X ×Spec(k′) Spec(k′′))

Proof. We will use the results of Lemma 10.2 without further mention. Write

k′ ⊗k k′′ = k′′ × l

for some finite separable k′-algebra l. Write F ′ = H0(Spec(k′)), F ′′ = H0(Spec(k′′)),
and G = H0(Spec(l)). Since Spec(k′) × Spec(k′′) = Spec(k′′) q Spec(l) we deduce
from axiom (B)(a) and Lemma 9.9 that we have

F ′ ⊗F F ′′ = F ′′ ×G

The map from left to right identifies F ′′ with F ′ ⊗F ′ F ′′. By the same token we have

H∗(X)⊗F F ′′ = H∗(X ×Spec(k′) Spec(k′′))×H∗(X ×Spec(k′) Spec(l))

as modules over F ′ ⊗F F ′′ = F ′′ ×G. This proves the lemma. �
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11. Weil cohomology theories, II

For us a Weil cohomology theory will be the analogue of a classical Weil cohomology the-
ory (Section 7) when the ground field k is not algebraically closed. In Section 9 we listed
axioms which guarantee our cohomology theory comes from a symmetric monoidal func-
tor on the category of motives over k. Missing from our axioms so far are the condition
Hi(X) = 0 for i < 0 and a condition onH2d(X)(d) forX equidimensional of dimension
d corresponding to the classical axioms (A)(c) and (A)(d). Let us first convince the reader
that it is necessary to impose such conditions.

Example 11.1. Let k = C and F = C both be equal to the field of complex numbers.
For X smooth projective over k denote Hp,q(X) = Hq(X,ΩpX/k). Let (H ′)∗ be the
functor which sends X to (H ′)∗(X) =

⊕
Hp,q(X) with the usual cup product. This

is a classical Weil cohomology theory (insert future reference here). By Proposition 7.11
we obtain a Q-linear symmetric monoidal functor G′ from Mk to the category of graded
F -vector spaces. Of course, in this case for every M in Mk the value G′(M) is naturally
bigraded, i.e., we have

(G′)(M) =
⊕

(G′)p,q(M), (G′)n =
⊕

n=p+q
(G′)p,q(M)

with (G′)p,q sitting in total degree p + q as indicated. Now we are going to construct
a Q-linear symmetric monoidal functor G to the category of graded F -vector spaces by
setting

Gn(M) =
⊕

n=3p−q
(G′)p,q(M)

We omit the verification that this defines a symmetric monoidal functor (a technical point
is that because we chose odd numbers 3 and−1 above the functorG is compatible with the
commutativity constraints). Observe that G(1(1)) is still sitting in degree −2! Hence by
Lemma 7.9 we obtain a functor H∗, cycle classes γ, and trace maps satisfying all classical
axioms (A), (B), (C), except for possibly the classical axioms (A)(a) and (A)(d). However,
if E is an elliptic curve over k, then we find dimH−1(E) = 1, i.e., axiom (A)(a) is indeed
violated.

Lemma 11.2. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
Let X be a smooth projective scheme over k. Set k′ = Γ(X,OX). The following are
equivalent

(1) there exist finitely many closed points x1, . . . , xr ∈ X whose residue fields are
separable over k such that H0(X)→ H0(x1)⊕ . . .⊕H0(xr) is injective,

(2) the map H0(Spec(k′))→ H0(X) is an isomorphism.
If this is true, then H0(X) is a finite separable algebra over F . If X is equidimensional of
dimension d, then (1) and (2) are also equivalent to

(3) the classes of closed points generate H2d(X)(d) as a module over H0(X).

Proof. We observe that the statement makes sense because k′ is a finite separable
algebra over k (Varieties, Lemma 9.3) and hence Spec(k′) is smooth and projective over
k. The compatibility of H∗ with direct sums (Lemmas 9.9 and 10.1) shows that it suffices
to prove the lemma when X is connected. Hence we may assume X is irreducible and we
have to show the equivalence of (1), (2), and (3). Set d = dim(X). This implies that k′ is a
field finite separable over k and that X is geometrically irreducible over k′, see Varieties,
Lemmas 9.3 and 9.4.
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By Lemma 8.1 we see that the closed points in (3) may be assumed to have separable residue
fields over k. By axioms (A)(a) and (A)(b) we see that conditions (1) and (3) are equivalent.
If (2) holds, then pick any closed point x ∈ X whose residue field is finite separable over
k′. Then H0(Spec(k′)) = H0(X)→ H0(x) is injective for example by Lemma 10.8.
Assume the equivalent conditions (1) and (3) hold. Choose x1, . . . , xr ∈ X as in (1).
Choose a finite separable extension k′′/k′. By Lemma 10.9 we have

H0(X)⊗H0(Spec(k′)) H
0(Spec(k′′)) = H0(X ×Spec(k′) Spec(k′′))

Thus in order to show that H0(Spec(k′)) → H0(X) is an isomorphism we may replace
k′ by k′′. Thus we may assume x1, . . . , xr are k′-rational points (this replaces each xi with
multiple points, so r is increased in this step). By Lemma 10.7 γ(x1) = γ(x2) = . . . =
γ(xr). By axiom (A)(b) all the maps H0(X) → H0(xi) are the same. This means (2)
holds.
Finally, Lemma 10.2 implies H0(X) is a separable F -algebra if (1) holds. �

Lemma 11.3. Assume given (D0), (D1), (D2), and (D3) satisfying (A), (B), and (C).
If there exists a smooth projective scheme Y over k such that Hi(Y ) is nonzero for some
i < 0, then there exists an equidimensional smooth projective scheme X over k such that
the equivalent conditions of Lemma 11.2 fail for X .

Proof. By Lemma 9.9 we may assumeY is irreducible and a fortiori equidimensional.
If i is odd, then after replacing Y by Y ×Y we find an example where Y is equidimensional
and i = −2l for some l > 0. Set X = Y × (P1

k)l. Using axiom (B)(a) we obtain

H0(X) ⊃ H0(Y )⊕Hi(Y )⊗F H2(P1
k)⊗F l

with both summands nonzero. Thus it is clear that H0(X) cannot be isomorphic to H0

of the spectrum of Γ(X,OX) = Γ(Y,OY ) as this falls into the first summand. �

Thus it makes sense to finally make the following definition.

Definition 11.4. Let k be a field. Let F be a field of characteristic 0. A Weil coho-
mology theory over k with coefficients in F is given by data (D0), (D1), (D2), and (D3)
satisfying Poincaré duality, the Künneth formula, and compatibility with cycle classes,
more precisely, satisfying axioms (A), (B), and (C) of Section 9 and in addition such that
the equivalent conditions (1) and (2) of Lemma 11.2 hold for every smooth projective X
over k.

By Lemma 11.3 this means also that there are no nonzero negative cohomology groups. In
particular, if k is algebraically closed, then a Weil cohomology theory as above together
with an isomorphism F → F (1) is the same thing as a classical Weil cohomology theory.

Remark 11.5. Let H∗ be a Weil cohomology theory (Definition 11.4). Let X be a
geometrically irreducible smooth projective scheme of dimension d over k′ with k′/k a
finite separable extension of fields. Suppose that

H0(Spec(k′)) = F1 × . . .× Fr
for some fields Fi. Then we accordingly can write

H∗(X) =
∏

i=1,...,r
H∗(X)⊗H0(Spec(k′)) Fi

Now, our final assumption in Definition 11.4 tells us that H0(X) is free of rank 1 over∏
Fi. In other words, each of the factors H0(X) ⊗H0(Spec(k′)) Fi has dimension 1 over
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Fi. Poincaré duality then tells us that the same is true for cohomology in degree 2d. What
isn’t clear however is that the same holds in other degrees. Namely, we don’t know that
given 0 < n < dim(X) the integers

dimFi H
n(X)⊗H0(Spec(k′)) Fi

are independent of i! This question is closely related to the following open question: given
an algebraically closed base field k, a field of characteristic zero F , a classical Weil coho-
mology theoryH∗ over k with coefficient field F , and a smooth projective varietyX over
k is it true that the betti numbers of X

βi = dimF H
i(X)

are independent of F and the Weil cohomology theory H∗?

Proposition 11.6. Let k be a field. Let F be a field of characteristic 0. A Weil coho-
mology theory is the same thing as a Q-linear symmetric monoidal functor

G : Mk −→ graded F -vector spaces

such that
(1) G(1(1)) is nonzero only in degree −2, and
(2) for every smooth projective scheme X over k with k′ = Γ(X,OX) the homo-

morphismG(h(Spec(k′)))→ G(h(X)) of graded F -vector spaces is an isomor-
phism in degree 0.

Proof. Immediate consequence of Proposition 9.12 and Definition 11.4. Of course
we could replace (2) by the condition thatG(h(X))→

⊕
G(h(xi)) is injective in degree

0 for some choice of closed points x1, . . . , xr ∈ X whose residue fields are separable over
k. �

12. Chern classes

In this section we discuss how given a first Chern class and a projective space bundle for-
mula we can get all Chern classes. A reference for this section is [?] although our axioms
are slightly different.

Let C be a category of schemes with the following properties
(1) Every X ∈ Ob(C) is quasi-compact and quasi-separated.
(2) If X ∈ Ob(C) and U ⊂ X is open and closed, then U → X is a morphism

of C. If X ′ → X is a morphism of C factoring through U , then X ′ → U is a
morphism of C.

(3) If X ∈ Ob(C) and if E is a finite locally freeOX -module, then
(a) p : P(E)→ X is a morphism of C ,
(b) for a morphism f : X ′ → X in C the induced morphism P(f∗E)→ P(E)

is a morphism of C ,
(c) if E → F is a surjection onto another finite locally free OX -module then

the closed immersion P(F)→ P(E) is a morphism of C.
Next, assume given a contravariant functor A from the category C to the category of
graded algebras. Here a graded algebraA is a unital, associative, not necessarily commuta-
tive Z-algebraA endowed with a gradingA =

⊕
i≥0 A

i. Given a morphism f : X ′ → X
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of C we denote f∗ : A(X) → A(X ′) the induced algebra map. We will denote the prod-
uct of a, b ∈ A(X) by a∪ b. Finally, we assume given for every object X of C an additive
map

cA1 : Pic(X) −→ A1(X)
We assume the following axioms are satisfied

(1) Given X ∈ Ob(C) and L ∈ Pic(X) the element cA1 (L) is in the center of the
algebra A(X).

(2) If X ∈ Ob(C) and X = U q V with U and V open and closed, then A(X) =
A(U)×A(V ) via the induced maps A(X)→ A(U) and A(X)→ A(V ).

(3) If f : X ′ → X is a morphism of C and L is an invertible OX -module, then
f∗cA1 (L) = cA1 (f∗L).

(4) Given X ∈ Ob(C) and locally free OX -module E of constant rank r consider
the morphism p : P = P(E)→ X of C. Then the map⊕

i=0,...,r−1
A(X) −→ A(P ), (a0, . . . , ar−1) 7−→

∑
cA1 (OP (1))i ∪ p∗(ai)

is bijective.
(5) LetX ∈ Ob(C) and let E → F be a surjection of finite locally freeOX -modules

of ranks r + 1 and r. Denote i : P ′ = P(F) → P(E) = P the corre-
sponding incusion morphism. This is a morphism of C which exhibits P ′ as
an effective Cartier divisor on P . Then for a ∈ A(P ) with i∗a = 0 we have
a ∪ cA1 (OP (P ′)) = 0.

To formulate our result recall that Vect(X) denotes the (exact) category of finite locally
freeOX -modules. In Derived Categories of Schemes, Section 38 we have defined the zeroth
K-group K0(Vect(X)) of this category. Moreover, we have seen that K0(Vect(X)) is a
ring, see Derived Categories of Schemes, Remark 38.6.

Proposition 12.1. In the situation above there is a unique rule which assigns to every
X ∈ Ob(C) a “total Chern class”

cA : K0(Vect(X)) −→
∏

i≥0
Ai(X)

with the following properties
(1) For X ∈ Ob(C) we have cA(α+ β) = cA(α)cA(β) and cA(0) = 1.
(2) If f : X ′ → X is a morphism of C , then f∗ ◦ cA = cA ◦ f∗.
(3) Given X ∈ Ob(C) and L ∈ Pic(X) we have cA([L]) = 1 + cA1 (L).

Proof. Let X ∈ Ob(C) and let E be a finite locally free OX -module. We first show
how to define an element cA(E) ∈ A(X).

As a first step, let X =
⋃
Xr be the decomposition into open and closed subschemes such

that E|Xr has constant rank r. Since X is quasi-compact, this decomposition is finite.
HenceA(X) =

∏
A(Xr). Thus it suffices to define cA(E) when E has constant rank r. In

this case let p : P → X be the projective bundle of E . We can uniquely define elements
cAi (E) ∈ Ai(X) for i ≥ 0 such that cA0 (E) = 1 and the equation

(12.1.1)
∑r

i=0
(−1)ic1(OP (1))i ∪ p∗cAr−i(E) = 0

is true. As usual we set cA(E) = cA0 (E) + cA1 (E) + . . .+ cAr (E) in A(X).

If E is invertible, then cA(E) = 1 + cA1 (L). This follows immediately from the construc-
tion above.
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The elements cAi (E) are in the center of A(X). Namely, to prove this we may assume E
has constant rank r. Let p : P → X be the corresponding projective bundle. if a ∈ A(X)
then p∗a ∪ (−1)rc1(OP (1))r = (−1)rc1(OP (1))r ∪ p∗a and hence we must have the
same for all the other terms in the expression defining cAi (E) as well and we conclude.

If f : X ′ → X is a morphism of C , then f∗cAi (E) = cAi (f∗E). Namely, to prove this we
may assume E has constant rank r. Let p : P → X and p′ : P ′ → X ′ be the projective
bundles corresponding to E and f∗E . The induced morphism g : P ′ → P is a morphism
of C. The pullback by g of the equality defining cAi (E) is the corresponding equation for
f∗E and we conclude.

Let X ∈ Ob(C). Consider a short exact sequence

0→ L → E → F → 0
of finite locally freeOX -modules with L invertible. Then

cA(E) = cA(L)cA(F)
Namely, by the construction of cAi we may assume E has constant rank r + 1 and F has
constant rank r. The inclusion

i : P ′ = P(F) −→ P(E) = P

is a morphism of C and it is the zero scheme of a regular section of the invertible module
L⊗−1 ⊗OP (1). The element∑r

i=0
(−1)icA1 (OP (1))i ∪ p∗cAi (F)

pulls back to zero on P ′ by definition. Hence we see that(
cA1 (OP (1))− cA1 (L)

)
∪
(∑r

i=0
(−1)icA1 (OP (1))i ∪ p∗cAi (F)

)
= 0

in A∗(P ) by assumption (5) on our cohomology A. By definition of cA1 (E) this gives the
desired equality.

Let X ∈ Ob(C). Consider a short exact sequence

0→ E → F → G → 0
of finite locally freeOX -modules. Then

cA(F) = cA(E)cA(G)
Namely, by the construction of cAi we may assume E , F , and G have constant ranks r, s,
and t. We prove it by induction on r. The case r = 1 was done above. If r > 1, then
it suffices to check this after pulling back by the morphism P(E∨) → X . Thus we may
assume we have an invertible submodule L ⊂ E such that both E ′ = E/L and F ′ = E/L
are finite locally free (of ranks s− 1 and t− 1). Then we have

cA(E) = cA(L)cA(E ′) and cA(F) = cA(L)cA(F ′)
Since we have the short exact sequence

0→ E ′ → F ′ → G → 0
we see by induction hypothesis that

cA(F ′) = cA(E ′)cA(G)
Thus the result follows from a formal calculation.
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At this point forX ∈ Ob(C) we can define cA : K0(Vect(X))→ A(X). Namely, we send
a generator [E ] to cA(E) and we extend multiplicatively. Thus for example cA(−[E ]) =
cA(E)−1 is the formal inverse of aA([E ]). The multiplicativity in short exact sequences
shown above guarantees that this works.
Uniqueness. Suppose X ∈ Ob(C) and E is a finite locally free OX -module. We want
to show that conditions (1), (2), and (3) of the lemma uniquely determine cA([E ]). To
prove this we may assume E has constant rank r; this already uses (2). Then we may use
induction on r. If r = 1, then uniqueness follows from (3). If r > 1 we pullback using
(2) to the projective bundle p : P → X and we see that we may assume we have a short
exact sequence 0→ E ′ → E → E ′′ → 0 with E ′ and E ′′ having lower rank. By induction
hypothesis cA(E ′) and cA(E ′′) are uniquely determined. Thus uniqueness for E by the
axiom (1). �

Lemma 12.2. In the situation above. Let X ∈ Ob(C). Let Ei be a finite collection of
locally freeOX -modules of rank ri. There exists a morphism p : P → X in C such that

(1) p∗ : A(X)→ A(P ) is injective,
(2) each p∗Ei has a filtration whose successive quotientsLi,1, . . . ,Li,ri are invertible
OP -modules.

Proof. We may assume ri ≥ 1 for all i. We will prove the lemma by induction on∑
(ri − 1). If this integer is 0, then Ei is invertible for all i and we conclude by taking

π = idX . If not, then we can pick an i such that ri > 1 and consider the projective bundle
p : P → X associated to Ei. We have a short exact sequence

0→ F → p∗Ei → OP (1)→ 0
of finite locally free OP -modules of ranks ri − 1, ri, and 1. Observe that p∗ : A(X) →
A(P ) is injective by assumption. By the induction hypothesis applied to the finite locally
freeOP -modulesF and p∗Ei′ for i′ 6= i, we find a morphism p′ : P ′ → P with properties
stated as in the lemma. Then the composition p ◦ p′ : P ′ → X does the job. �

Lemma 12.3. Let X ∈ Ob(C). Let E be a finite locally free OX -module. Let L be an
invertibleOX -module. Then

cAi (E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
cAi−j(E) ∪ cA1 (L)j

Proof. By the construction of cAi we may assume E has constant rank r. Let p : P →
X and p′ : P ′ → X be the projective bundle associated to E and E ⊗ L. Then there is
an isomorphism g : P → P ′ such that g∗OP ′(1) = OP (1) ⊗ p∗L. See Constructions,
Lemma 20.1. Thus

g∗cA1 (OP ′(1)) = cA1 (OP (1)) + p∗cA1 (L)
The desired equality follows formally from this and the definition of Chern classes using
equation (12.1.1). �

Proposition 12.4. In the situation above assume A(X) is a Q-algebra for all X ∈
Ob(C). Then there is a unique rule which assigns to everyX ∈ Ob(C) a “chern character”

chA : K0(Vect(X)) −→
∏

i≥0
Ai(X)

with the following properties
(1) chA is a ring map for all X ∈ Ob(C).
(2) If f : X ′ → X is a morphism of C , then f∗ ◦ chA = chA ◦ f∗.
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(3) Given X ∈ Ob(C) and L ∈ Pic(X) we have chA([L]) = exp(cA1 (L)).

Proof. Let X ∈ Ob(C) and let E be a finite locally free OX -module. We first show
how to define the rank rA(E) ∈ A0(X). Namely, let X =

⋃
Xr be the decomposition

into open and closed subschemes such that E|Xr has constant rank r. Since X is quasi-
compact, this decomposition is finite, say X = X0 q X1 q . . . q Xn. Then A(X) =
A(X0)×A(X1)× . . .×A(Xn). Thus we can define rA(E) = (0, 1, . . . , n) ∈ A0(X).

Let Pp(c1, . . . , cp) be the polynomials constructed in Chow Homology, Example 43.6.
Then we can define

chA(E) = rA(E) +
∑

i≥1
(1/i!)Pi(cA1 (E), . . . , cAi (E)) ∈

∏
i≥0

Ai(X)

where ciA are the Chern classes of Proposition 12.1. It follows immediately that we have
property (2) and (3) of the lemma.

We still have to show the following three statements
(1) If 0 → E1 → E → E2 → 0 is a short exact sequence of finite locally free OX -

modules on X ∈ Ob(C), then chA(E) = chA(E1) + chA(E2).
(2) If E1 and E2 → 0 are finite locally free OX -modules on X ∈ Ob(C), then

chA(E1 ⊗ E2) = chA(E1)chA(E2).
Namely, the first will prove that chA factors through K0(Vect(X)) and the first and the
second will combined show that chA is a ring map.

To prove these statements we can reduce to the case where E1 and E2 have constant ranks
r1 and r2. In this case the equalities in A0(X) are immediate. To prove the equalities
in higher degrees, by Lemma 12.2 we may assume that E1 and E2 have filtrations whose
graded pieces are invertible modules L1,j , j = 1, . . . , r1 and L2,j , j = 1, . . . , r2. Using
the multiplicativity of Chern classes we get

cAi (E1) = si(cA1 (L1,1), . . . , cA1 (L1,r1))
where si is the ith elementary symmetric function as in Chow Homology, Example 43.6.
Similarly for cAi (E2). In case (1) we get

cAi (E) = si(cA1 (L1,1), . . . , cA1 (L1,r1), cA1 (L2,1), . . . , cA1 (L2,r2))
and for case (2) we get

cAi (E1 ⊗ E2) = si(cA1 (L1,1) + cA1 (L2,1), . . . , cA1 (L1,r1) + cA1 (L2,r2))
By the definition of the polynomials Pi we see that this means

Pi(cA1 (E1), . . . , cAi (E1)) =
∑

j=1,...,r1
cA1 (L1,j)i

and similarly for E2. In case (1) we have also

Pi(cA1 (E), . . . , cAi (E)) =
∑

j=1,...,r1
cA1 (L1,j)i +

∑
j=1,...,r2

cA1 (L2,j)i

In case (2) we get accordingly

Pi(cA1 (E1 ⊗ E2), . . . , cAi (E1 ⊗ E2)) =
∑

j=1,...,r1

∑
j′=1,...,r2

(cA1 (L1,j) + cA1 (L2,j′))i

Thus the desired equalities are now consequences of elementary identities between sym-
metric polynomials.

We omit the proof of uniqueness. �
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Lemma 12.5. In the situation above let X ∈ Ob(C). If ψ2 is as in Chow Homology,
Lemma 56.1 and cA and chA are as in Propositions 12.1 and 12.4 then we have cAi (ψ2(α)) =
2icAi (α) and chAi (ψ2(α)) = 2ichAi (α) for all α ∈ K0(Vect(X)).

Proof. Observe that the map
∏
i≥0 A

i(X) →
∏
i≥0 A

i(X) multiplying by 2i on
Ai(X) is a ring map. Hence, since ψ2 is also a ring map, it suffices to prove the formulas
for additive generators of K0(Vect(X)). Thus we may assume α = [E ] for some finite
locally free OX -module E . By construction of the Chern classes of E we immediately
reduce to the case where E has constant rank r. In this case, we can choose a projective
smooth morphism p : P → X such that restriction A∗(X) → A∗(P ) is injective and
such that p∗E has a finite filtration whose graded parts are invertibleOP -modules Lj , see
Lemma 12.2. Then [p∗E ] =

∑
[Lj ] and hence ψ2([p∗E ]) =

∑
[L⊗2
j ] by definition of ψ2.

Setting xj = cA1 (Lj) we have

cA(α) =
∏

(1 + xj) and cA(ψ2(α)) =
∏

(1 + 2xj)

in
∏
Ai(P ) and we have

chA(α) =
∑

exp(xj) and chA(ψ2(α)) =
∑

exp(2xj)

in
∏
Ai(P ). From these formulas the desired result follows. �

13. Exterior powers and K-groups

We do the minimal amount of work to define the lambda operators. Let X be a scheme.
Recall that Vect(X) denotes the category of finite locally free OX -modules. Moreover,
recall that we have constructed a zerothK-groupK0(Vect(X)) associated to this category
in Derived Categories of Schemes, Section 38. Finally,K0(Vect(X)) is a ring, see Derived
Categories of Schemes, Remark 38.6.

Lemma 13.1. Let X be a scheme. There are maps

λr : K0(Vect(X)) −→ K0(Vect(X))
which sends [E ] to [∧r(E)] when E is a finite locally freeOX -module and which are com-
patible with pullbacks.

Proof. Consider the ring R = K0(Vect(X))[[t]] where t is a variable. For a finite
locally freeOX -module E we set

c(E) =
∑∞

i=0
[∧i(E)]ti

in R. We claim that given a short exact sequence

0→ E ′ → E → E ′′ → 0
of finite locally free OX -modules we have c(E) = c(E ′)c(E ′′). The claim implies that c
extends to a map

c : K0(Vect(X)) −→ R

which converts addition inK0(Vect(X)) to multiplication inR. Writing c(α) =
∑
λi(α)ti

we obtain the desired operators λi.

To see the claim, we consider the short exact sequence as a filtration on E with 2 steps. We
obtain an induced filtration on ∧r(E) with r + 1 steps and subquotients

∧r(E ′),∧r−1(E ′)⊗ E ′′,∧r−2(E ′)⊗ ∧2(E ′′), . . . ∧r (E ′′)
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Thus we see that [∧r(E)] is equal to∑r

i=0
[∧r−i(E ′)][∧i(E ′′)]

and the result follows easily from this and elementary algebra. �

14. Weil cohomology theories, III

Let k be a field. Let F be a field of characteristic zero. Suppose we are given the following
data

(D0) A 1-dimensional F -vector space F (1).
(D1) A contravariant functorH∗(−) from the category of smooth projective schemes

over k to the category of graded commutative F -algebras.
(D2’) For every smooth projective schemeX over k a homomorphism cH1 : Pic(X)→

H2(X)(1) of abelian groups.
We will use the terminology, notation, and conventions regarding (D0) and (D1) as dis-
cussed in Section 9. Given a smooth projective scheme X over k and an invertible OX -
module L the cohomology class cH1 (L) ∈ H2(X)(1) of (D2’) is sometimes called the first
Chern class of L in cohomology.

Here is the list of axioms.
(A1) H∗ is compatible with finite coproducts
(A2) cH1 is compatible with pullbacks
(A3) Let X be a smooth projective scheme over k. Let E be a locally free OX -module

of rank r ≥ 1. Consider the morphism p : P = P(E)→ X . Then the map⊕
i=0,...,r−1

H∗(X)(−i) −→ H∗(P ), (a0, . . . , ar−1) 7−→
∑

cH1 (OP (1))i ∪ p∗(ai)

is an isomorphism of F -vector spaces.
(A4) Let i : Y → X be the inclusion of an effective Cartier divisor over k with both

X and Y smooth and projective over k. For a ∈ H∗(X) with i∗a = 0 we have
a ∪ cH1 (OX(Y )) = 0.

(A5) H∗ is compatible with finite products
(A6) Let X be a nonempty smooth, projective scheme over k equidimensional of di-

mension d. Then there exists an F -linear map λ : H2d(X)(d) → F such that
(id⊗ λ)γ([∆]) = 1 in H∗(X).

(A7) If b : X ′ → X is the blowing up of a smooth center in a smooth projective
scheme X over k2, then b∗ : H∗(X)→ H∗(X ′) is injective.

(A8) If X is a smooth projective scheme over k and k′ = Γ(X,OX), then the map
H0(Spec(k′))→ H0(X) is an isomorphism.

(A9) Let X be a nonempty smooth projective scheme over k equidimensional of di-
mension d. Let i : Y → X be a nonempty effective Cartier divisor smooth over
k. For a ∈ H2d−2(X)(d− 1) we have λY (i∗(a)) = λX(a∪ cH1 (OX(Y )) where
λY and λX are as in axiom (A6) for X and Y .

Let us explain more precisely what we mean by each of these axioms. Axioms (A3), (A4),
and (A7) are clear as stated.

Ad (A1). This means thatH∗(∅) = 0 and that (i∗, j∗) : H∗(X qY )→ H∗(X)×H∗(Y )
is an isomorphism where i and j are the coprojections.

2Then X′ is smooth and projective over k as well, see More on Morphisms, Lemma 17.3.
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Ad (A2). This means that given a morphism f : X → Y of smooth projective schemes
over k and an invertibleOY -moduleN we have f∗cH1 (L) = cH1 (f∗L).

Ad (A5). This means thatH∗(Spec(k)) = F and that forX and Y smooth projective over
k the map H∗(X)⊗F H∗(Y )→ H∗(X × Y ), a⊗ b 7→ p∗(a) ∪ q∗(b) is an isomorphism
where p and q are the projections.

Ad (A6). LetX be a nonempty smooth projective scheme over k which is equidimensional
of dimension d. By Lemma 14.2 if we have axioms (A1) – (A4) we can consider the class
of the diagonal

γ([∆]) ∈ H2d(X ×X)(d) =
⊕

i
Hi(X)⊗F H2d−i(X)(d)

where the tensor decomposition comes from axiom (A5). Given an F -linear map λ :
H2d(X)(d)→ F we may also view λ as an F -linear map λ : H∗(X)(d)→ F by precom-
posing with the projection onto H2d(X)(d). Having said this axiom (A6) makes sense.

Ad (A8). Let X be a smooth projective scheme over k. Then k′ = Γ(X,OX) is a finite
separable k-algebra (Varieties, Lemma 9.3) and hence Spec(k′) is smooth and projective
over k. Thus we may apply H∗ to Spec(k′) and axiom (A8) makes sense.

Ad (A9). We will see in Remark 14.6 that if we have axioms (A1) – (A7) then the map λ
of axiom (A6) is unique.

Lemma 14.1. Assume given (D0), (D1), and (D2’) satisfying axioms (A1), (A2), (A3),
and (A4). There is a unique rule which assigns to every smooth projectiveX over k a ring
homomorphism

chH : K0(Vect(X)) −→
∏

i≥0
H2i(X)(i)

compatible with pullbacks such that chH(L) = exp(cH1 (L)) for any invertible OX -
module L.

Proof. Immediate from Proposition 12.4 applied to the category of smooth projec-
tive schemes over k, the functor A : X 7→

⊕
i≥0 H

2i(X)(i), and the map cH1 . �

Lemma 14.2. Assume given (D0), (D1), and (D2’) satisfying axioms (A1), (A2), (A3),
and (A4). There is a unique rule which assigns to every smooth projective X over k a
graded ring homomorphism

γ : CH∗(X) −→
⊕

i≥0
H2i(X)(i)

compatible with pullbacks such that chH(α) = γ(ch(α)) for α in K0(Vect(X)).

Proof. Recall that we have an isomorphism

K0(Vect(X))⊗Q −→ CH∗(X)⊗Q, α 7−→ ch(α) ∩ [X]
see Chow Homology, Lemma 58.1. It is an isomorphism of rings by Chow Homology,
Remark 56.5. We define γ by the formula γ(α) = chH(α′) where chH is as in Lemma
14.1 and α′ ∈ K0(Vect(X)) is such that ch(α′) ∩ [X] = α in CH∗(X)⊗Q.

The construction α 7→ γ(α) is compatible with pullbacks because both chH and taking
Chern classes is compatible with pullbacks, see Lemma 14.1 and Chow Homology, Remark
59.9.

We still have to see that γ is graded. Let ψ2 : K0(Vect(X)) → K0(Vect(X)) be the
second Adams operator, see Chow Homology, Lemma 56.1. If α ∈ CHi(X) and α′ ∈
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K0(Vect(X))⊗Q is the unique element with ch(α′)∩[X] = α, then we have seen in Chow
Homology, Section 58 thatψ2(α′) = 2iα′. Hence we conclude that chH(α′) ∈ H2i(X)(i)
by Lemma 12.5 as desired. �

Lemma 14.3. Let b : X ′ → X be the blowing up of a smooth projective scheme over
k in a smooth closed subscheme Z ⊂ X . Picture

E
j
//

π

��

X ′

b

��
Z

i // X

Assume there exists an element of K0(X) whose restriction to Z is equal to the class of
CZ/X inK0(Z). Assume every irreducible component ofZ has codimension r inX . Then
there exists a cycle θ ∈ CHr−1(X ′) such that b![Z] = [E] · θ in CHr(X ′) and π∗j

!(θ) =
[Z] in CHr(Z).

Proof. The scheme X is smooth and projective over k and hence we have K0(X) =
K0(Vect(X)). See Derived Categories of Schemes, Lemmas 36.2 and 38.5. Letα ∈ K0(Vect(X))
be an element whose restriction to Z is CZ/X . By Chow Homology, Lemma 56.3 there ex-
ists an element α∨ which restricts to C∨

Z/X . By the blow up formula (Chow Homology,
Lemma 59.11) we have

b![Z] = b!i∗[Z] = j∗res(b!)([Z]) = j∗(cr−1(F∨) ∩ π∗[Z]) = j∗(cr−1(F∨) ∩ [E])

whereF is the kernel of the surjection π∗CZ/X → CE/X′ . Observe that b∗α∨− [OX′(E)]
is an element ofK0(Vect(X ′)) which restricts to [π∗C∨

Z/X ]− [C∨
E/X′ ] = [F∨] onE. Since

capping with Chern classes commutes with j∗ we conclude that the above is equal to

cr−1(b∗α∨ − [OX′(E)]) ∩ [E]

in the chow group of X ′. Hence we see that setting

θ = cr−1(b∗α∨ − [OX′(E)]) ∩ [X ′]

we get the first relation θ · [E] = b![Z] for example by Chow Homology, Lemma 62.2. For
the second relation observe that

j!θ = j!(cr−1(b∗α∨ − [OX′(E)]) ∩ [X ′]) = cr−1(F∨) ∩ j![X ′] = cr−1(F∨) ∩ [E]

in the chow groups of E. To prove that π∗ of this is equal to [Z] it suffices to prove that
the degree of the codimension r − 1 cycle (−1)r−1cr−1(F) ∩ [E] on the fibres of π is 1.
This is a computation we omit. �

Lemma 14.4. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A4)
and (A7). Let X be a smooth projective scheme over k. Let Z ⊂ X be a smooth closed
subscheme such that every irreducible component of Z has codimension r in X . Assume
the class of CZ/X in K0(Z) is the restriction of an element of K0(X). If a ∈ H∗(X) and
a|Z = 0 in H∗(Z), then γ([Z]) ∪ a = 0.

Proof. Let b : X ′ → X be the blowing up. By (A7) it suffices to show that

b∗(γ([Z]) ∪ a) = b∗γ([Z]) ∪ b∗a = 0

By Lemma 14.3 we have

b∗γ([Z]) = γ(b∗[Z]) = γ([E] · θ) = γ([E]) ∪ γ(θ)
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Hence because b∗a restricts to zero onE and since γ([E]) = cH1 (OX′(E)) we get what we
want from (A4). �

Lemma 14.5. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7).
Then axiom (A) of Section 9 holds with

∫
X

= λ as in axiom (A6).

Proof. Let X be a nonempty smooth projective scheme over k which is equidimen-
sional of dimension d. We will show that the graded F -vector space H∗(X)(d)[2d] is a
left dual to H∗(X). This will prove what we want by Homology, Lemma 17.5. We are
going to use axiom (A5) which in particular says that

H∗(X ×X)(d) =
⊕

Hi(X)⊗Hj(X)(d) =
⊕

Hi(X)(d)⊗Hj(X)

Define a map
η : F −→ H∗(X ×X)(d)

by multiplying by γ([∆]) ∈ H2d(X ×X)(d). On the other hand, define a map

ε : H∗(X ×X)(d) −→ H∗(X)(d) λ−→ F

by first using pullback ∆∗ by the diagonal morphism ∆ : X → X × X and then using
the F -linear map λ : H2d(X)(d) → F of axiom (A6) precomposed by the projection
H∗(X)(d) → H2d(X)(d). In order to show that H∗(X)(d) is a left dual to H∗(X) we
have to show that the composition of the maps

η ⊗ 1 : H∗(X) −→ H∗(X ×X ×X)(d)
and

1⊗ ε : H∗(X ×X ×X)(d) −→ H∗(X)
is the identity. If a ∈ H∗(X) then we see that the composition maps a to

(1⊗ λ)(∆∗
23(q∗

12γ([∆]) ∪ q∗
3a)) = (1⊗ λ)(γ([∆]) ∪ p∗

2a)
where qi : X × X × X → X and qij : X × X × X → X × X are the projections,
∆23 : X ×X → X ×X ×X is the diagonal, and pi : X ×X → X are the projections.
The equality holds because ∆∗

23(q∗
12γ([∆]) = ∆∗

23γ([∆ × X]) = γ([∆]) and because
∆∗

23q
∗
3a = p∗

2a. Since γ([∆]) ∪ p∗
1a = γ([∆]) ∪ p∗

2a (see below) the above simplifies to

(1⊗ λ)(γ([∆]) ∪ p∗
1a) = a

by our choice of λ as desired. The second condition (ε⊗ 1) ◦ (1⊗ η) = id of Categories,
Definition 43.5 is proved in exactly the same manner.

Note that p∗
1a and pr∗

2a restrict to the same cohomology class on ∆ ⊂ X ×X . Moreover
we have C∆/X×X = Ω1

∆ which is the restriction of p∗
1Ω1

X . Hence Lemma 14.4 implies
γ([∆]) ∪ p∗

1a = γ([∆]) ∪ p∗
2a and the proof is complete. �

Remark 14.6 (Uniqueness of trace maps). Assume given data (D0), (D1), and (D2’)
satisfying axioms (A1) – (A7). Let X be a smooth projective scheme over k which is
nonempty and equidimensional of dimension d. Combining what was said in the proofs
of Lemma 14.5 and Homology, Lemma 17.5 we see that

γ([∆]) ∈
⊕

i
Hi(X)⊗H2d−i(X)(d)

defines a perfect duality between Hi(X) and H2d−i(X)(d) for all i. In particular, the
linear map

∫
X

= λ : H2d(X)(d) → F of axiom (A6) is unique! We will call the linear
map

∫
X

the trace map of X from now on.
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Lemma 14.7. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7).
Then axiom (B) of Section 9 holds.

Proof. Axiom (B)(a) is immediate from axiom (A5). Let X and Y be nonempty
smooth projective schemes over k equidimensional of dimensions d and e. To see that
axiom (B)(b) holds, observe that the diagonal ∆X×Y ofX×Y is the intersection product
of the pullbacks of the diagonals ∆X of X and ∆Y of Y by the projections p : X × Y ×
X×Y → X×X and q : X×Y ×X×Y → Y ×Y . Compatibility of γ with intersection
products then gives that

γ([∆X×Y ]) ∈ H2d+2e(X × Y ×X × Y )(d+ e)

is the cup product of the pullbacks of γ([∆X ]) and γ([∆Y ]) by p and q. Write

γ([∆X×Y ]) =
∑

ηX×Y,i with ηX×Y,i ∈ Hi(X × Y )⊗H2d+2e−i(X × Y )(d+ e)

and simiarly γ([∆X ]) =
∑
ηX,i and γ([∆Y ]) =

∑
ηY,i. The observation above implies

we have
ηX×Y,0 =

∑
i∈Z

p∗ηX,i ∪ q∗ηY,−i

(If our cohomology theory vanishes in negative degrees, which will be true in almost all
cases, then only the term for i = 0 contributes and ηX×Y,0 lies in H0(X) ⊗ H0(Y ) ⊗
H2d(X)(d)⊗H2e(Y )(e) as expected, but we don’t need this.) Since λX : H2d(X)(d)→
F and λY : H2e(Y )(e) → F send ηX,0 and ηY,0 to 1 in H∗(X) and H∗(Y ), we see
that λX ⊗ λY sends ηX×Y,0 to 1 in H∗(X) ⊗ H∗(Y ) = H∗(X × Y ) and the proof is
complete. �

Lemma 14.8. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7).
Then axiom (C)(d) of Section 9 holds.

Proof. We have γ([Spec(k)]) = 1 ∈ H∗(Spec(k)) by construction. Since

H0(Spec(k)) = F, H0(Spec(k)× Spec(k)) = H0(Spec(k))⊗F H0(Spec(k))

the map
∫

Spec(k) = λ of axiom (A6) must send 1 to 1 because we have seen that
∫

Spec(k)×Spec(k) =∫
Spec(k)

∫
Spec(k) in Lemma 14.7. �

Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7). Then we obtain
data (D0), (D1), (D2), and (D3) of Section 9 satisfying axioms (A), (B) and (C)(a), (C)(c),
and (C)(d) of Section 9, see Lemmas 14.5, 14.7, and 14.8. Moreover, we have the pushfor-
wards f∗ : H∗(X) → H∗(Y ) as constructed in Section 9. The only axiom of Section 9
which isn’t clear yet is axiom (C)(b).

Lemma 14.9. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7).
Let p : P → X be as in axiom (A3) withX nonempty equidimensional. Then γ commutes
with pushforward along p.

Proof. It suffices to prove this on generators for CH∗(P ). Thus it suffices to prove
this for a cycle class of the form ξi · p∗α where 0 ≤ i ≤ r − 1 and α ∈ CH∗(X). Note
that p∗(ξi · p∗α) = 0 if i < r − 1 and p∗(ξr−1 · p∗α) = α. On the other hand, we have
γ(ξi · p∗α) = ci ∪ p∗γ(α) and by the projection formula (Lemma 9.1) we have

p∗γ(ξi · p∗α) = p∗(ci) ∪ γ(α)
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Thus it suffices to show that p∗c
i = 0 for i < r − 1 and p∗c

r−1 = 1. Equivalently, it
suffices to prove that λP : H2d+2r−2(P )(d+ r − 1)→ F defined by the rules

λP (ci ∪ p∗(a)) =
{

0 if i < r − 1∫
X

(a) if i = r − 1
satisfies the condition of axiom (A5). This follows from the computation of the class of
the diagonal of P in Lemma 6.2. �

Lemma 14.10. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7).
If k′/k is a Galois extension, then we have

∫
Spec(k′) 1 = [k′ : k].

Proof. We observe that
Spec(k′)× Spec(k′) =

∐
σ∈Gal(k′/k)

(Spec(σ)× id)−1∆

as cycles on Spec(k′)×Spec(k′). Our construction of γ always sends [X] to 1 inH0(X).
Thus 1 ⊗ 1 = 1 =

∑
(Spec(σ) × id)∗γ([∆]). Denote λ : H0(Spec(k′)) → F the map

from axiom (A6), in other words (id⊗ λ)(γ(∆)) = 1 in H0(Spec(k′)). We obtain
λ(1)1 = (id⊗ λ)(1⊗ 1)

= (id⊗ λ)(
∑

(Spec(σ)× id)∗γ([∆]))

=
∑

(Spec(σ)× id)∗((id⊗ λ)(γ([∆]))

=
∑

(Spec(σ)× id)∗(1)

= [k′ : k]

Since λ is another name for
∫

Spec(k′) (Remark 14.6) the proof is complete. �

Lemma 14.11. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7).
In order to show that γ commutes with pushforward it suffices to show that i∗(1) = γ([Z])
if i : Z → X is a closed immersion of nonempty smooth projective equidimensional
schemes over k.

Proof. We will use without further mention that we’ve constructed our cycle class
map γ in Lemma 14.2 compatible with intersection products and pullbacks and that we’ve
already shown axioms (A), (B), (C)(a), (C)(c), and (C)(d) of Section 9, see Lemma 14.5, Re-
mark 14.6, and Lemmas 14.7 and 14.8. In particular, we may use (for example) Lemma 9.1
to see that pushforward onH∗ is compatible with composition and satisfies the projection
formula.
Let f : X → Y be a morphism of nonempty equidimensional smooth projective schemes
over k. We are trying to show f∗γ(α) = γ(f∗α) for any cycle class α on X . We can
writeα as a Q-linear combination of products of Chern classes of locally freeOX -modules
(Chow Homology, Lemma 58.1). Thus we may assume α is a product of Chern classes of
finite locally free OX -modules E1, . . . , Er. Pick p : P → X as in the splitting princi-
ple (Chow Homology, Lemma 43.1). By Chow Homology, Remark 43.2 we see that p is a
composition of projective space bundles and that α = p∗(ξ1 ∩ . . . ∩ ξd ∩ ·p∗α) where ξi
are first Chern classes of invertible modules. By Lemma 14.9 we know that p∗ commutes
with cycle classes. Thus it suffices to prove the property for the composition f ◦ p. Since
p∗E1, . . . , p

∗Er have filtrations whose successive quotients are invertible modules, this re-
duces us to the case where α is of the form ξ1 ∩ . . .∩ ξt ∩ [X] for some first Chern classes
ξi of invertible modules Li.
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Assume α = c1(L1) ∩ . . . ∩ c1(Lt) ∩ [X] for some invertible modules Li on X . Let
L be an ample invertible OX -module. For n � 0 the invertible OX -modules L⊗n and
L1⊗L⊗n are both very ample onX over k, see Morphisms, Lemma 39.8. Since c1(L1) =
c1(L1 ⊗ L⊗n) − c1(L⊗n) this reduces us to the case where L1 is very ample. Repeating
this with Li for i = 2, . . . , twe reduce to the case where Li is very ample onX over k for
all i = 1, . . . , t.

Assume k is infinite and α = c1(L1) ∩ . . . ∩ c1(Lt) ∩ [X] for some very ample invertible
modules Li on X over k. By Bertini in the form of Varieties, Lemma 47.3 we can succes-
sively find regular sections si of Li such that the schemes Z(s1)∩ . . .∩Z(si) are smooth
over k and of codimension i in X . By the construction of capping with the first class of
an invertible module (going back to Chow Homology, Definition 24.1), this reduces us to
the case where α = [Z] for some nonempty smooth closed subscheme Z ⊂ X which is
equidimensional.

Assume α = [Z] where Z ⊂ X is a smooth closed subscheme. Choose a closed embedding
X → Pn. We can factor f as

X → Y ×Pn → Y

Since we know the result for the second morphism by Lemma 14.9 it suffices to prove the
result when α = [Z] where i : Z → X is a closed immersion and f is a closed immersion.
Then j = f ◦ i is a closed embedding too. Using the hypothesis for i and j we win.

We still have to prove the lemma in case k is finite. We urge the reader to skip the rest of
the proof. Everything we said above continues to work, except that we do not know we
can choose the sections si cutting out our Z over k as k is finite. However, we do know
that we can find si over the algebraic closure k of k (by the same lemma). This means that
we can find a finite extension k′/k such that our sections si are defined over k′. Denote π :
Xk′ → X the projection. The arguments above shows that we get the desired conclusion
(from the assumption in the lemma) for the cycle π∗α and the morphism f ◦π : Xk′ → Y .
We have π∗π

∗α = [k′ : k]α, see Chow Homology, Lemma 15.2. On the other hand, we
have

π∗γ(π∗α) = π∗π
∗γ(α) = γ(α)π∗1

by the projection formula for our cohomology theory. Observe that π is a projection (!)
and hence we have π∗(1) =

∫
Spec(k′)(1)1 by Lemma 9.2. Thus to finish the proof in the

finite field case, it suffices to prove that
∫

Spec(k′)(1) = [k′ : k] which we do in Lemma
14.10. �

In the lemmas below we use the Grassmannians defined and constructed in Constructions,
Section 22.

Lemma 14.12. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7).
Given integers 0 < l < n and a nonempty equidimensional smooth projective scheme X
over k consider the projection morphism p : X ×G(l, n)→ X . Then γ commutes with
pushforward along p.

Proof. If l = 1 or l = n−1 then p is a projective bundle and the result follows from
Lemma 14.9. In general there exists a morphism

h : Y → X ×G(l, n)
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such that both h and p ◦ h are compositions of projective space bundles. Namely, denote
G(1, 2, . . . , l;n) the partial flag variety. Then the morphism

G(1, 2, . . . , l;n)→ G(l, n)

is a compostion of projective space bundles and similarly the structure morphism G(1, 2, . . . , l;n)→
Spec(k) is of this form. Thus we may set Y = X ×G(1, 2, . . . , l;n). Since every cycle
on X ×G(l, n) is the pushforward of a cycle on Y , the result for Y → X and the result
for Y → X ×G(l, n) imply the result for p. �

Lemma 14.13. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7).
In order to show that γ commutes with pushforward it suffices to show that i∗(1) = γ([Z])
if i : Z → X is a closed immersion of nonempty smooth projective equidimensional
schemes over k such that the class of CZ/X in K0(Z) is the pullback of a class in K0(X).

Proof. By Lemma 14.11 it suffices to show that i∗(1) = γ([Z]) if i : Z → X is a
closed immersion of nonempty smooth projective equidimensional schemes over k. Say
Z has codimension r in X . Let L be a sufficiently ample invertible module on X . Choose
n > 0 and a surjection

O⊕n
Z → CZ/X ⊗ L|Z

This gives a morphism g : Z → G(n − r, n) to the Grassmannian over k, see Construc-
tions, Section 22. Consider the composition

Z → X ×G(n− r, n)→ X

Pushforward along the second morphism is compatible with classes of cycles by Lemma
14.12. The conormal sheaf C of the closed immersion Z → X×G(n− r, n) sits in a short
exact sequence

0→ CZ/X → C → g∗ΩG(n−r,n) → 0
See More on Morphisms, Lemma 11.13. Since CZ/X⊗L|Z is the pull back of a finite locally
free sheaf on G(n − r, n) we conclude that the class of C in K0(Z) is the pullback of a
class in K0(X ×G(n − r, n)). Hence we have the property for Z → X ×G(n − r, n)
and we conclude. �

Lemma 14.14. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A7).
If k′′/k′/k are finite separable field extensions, then H0(Spec(k′)) → H0(Spec(k′′)) is
injective.

Proof. We may replace k′′ by its normal closure over k which is Galois over k, see
Fields, Lemma 21.5. Then k′′ is Galois over k′ as well, see Fields, Lemma 21.4. We deduce
we have an isomorphism

k′ ⊗k k′′ −→
∏

σ∈Gal(k′′/k′)
k′′, η ⊗ ζ 7−→ (ησ(ζ))σ

This produces an isomorphism
∐
σ Spec(k′′)→ Spec(k′)×Spec(k′′) which on cohomol-

ogy produces the isomorphism

H∗(Spec(k′))⊗FH∗(Spec(k′′))→
∏

σ
H∗(Spec(k′′)), a′⊗a′′ 7−→ (π∗a′∪Spec(σ)∗a′′)σ

where π : Spec(k′′)→ Spec(k′) is the morphism corresponding to the inclusion of k′ in
k′′. We conclude the lemma is true by taking a′′ = 1. �
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Lemma 14.15. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A8).
Let b : X ′ → X be a blowing up of a smooth projective scheme X over k which is
nonempty equidimensional of dimension d in a nonwhere dense smooth center Z. Then
b∗(1) = 1.

Proof. We may replace X by a connected component of X (some details omitted).
Thus we may assume X is connected and hence irreducible. Set k′ = Γ(X,OX) =
Γ(X ′,OX′); we omit the proof of the equality. Choose a closed point x′ ∈ X ′ which
isn’t contained in the exceptional divisor and whose residue field k′′ is separable over k;
this is possible by Varieties, Lemma 25.6. Denote x ∈ X the image (whose residue field is
equal to k′′ as well of course). Consider the diagram

x′ ×X ′ //

��

X ′ ×X ′

��
x×X // X ×X

The class of the diagonal ∆ = ∆X pulls back to the class of the “diagonal point” δx : x→
x × X and similarly for the class of the diagonal ∆′. On the other hand, the diagonal
point δx pulls back to the diagonal point δx′ by the left vertical arrow. Write γ([∆]) =∑
ηi with ηi ∈ Hi(X) ⊗ H2d−i(X)(d) and γ([∆′]) =

∑
η′
i with η′

i ∈ Hi(X ′) ⊗
H2d−i(X ′)(d). The arguments above show that η0 and η′

0 map to the same class in

H0(x′)⊗F H2d(X ′)(d)

We have H0(Spec(k′)) = H0(X) = H0(X ′) by axiom (A8). By Lemma 14.14 this
common value maps injectively into H0(x′). We conclude that η0 maps to η′

0 by the map

H0(X)⊗F H2d(X)(d) −→ H0(X ′)⊗F H2d(X ′)(d)

This means that
∫
X

is equal to
∫
X′ composed with the pullback map. This proves the

lemma. �

Lemma 14.16. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1) – (A8).
Then the cycle class map γ commutes with pushforward.

Proof. Let i : Z → X be as in Lemma 14.13. Consider the diagram

E
j
//

π

��

X ′

b

��
Z

i // X

Let θ ∈ CHr−1(X ′) be as in Lemma 14.3. Then π∗j
!θ = [Z] in CH∗(Z) implies that

π∗γ(j!θ) = 1 by Lemma 14.9 because π is a projective space bundle. Hence we see that

i∗(1) = i∗(π∗(γ(j!θ))) = b∗j∗(j∗γ(θ)) = b∗(j∗(1) ∪ γ(θ))

We have j∗(1) = γ([E]) by (A9). Thus this is equal to

b∗(γ([E]) ∪ γ(θ)) = b∗(γ([E] · θ)) = b∗(γ(b∗[Z])) = b∗b
∗γ([Z]) = b∗(1) ∪ γ([Z])

Since b∗(1) = 1 by Lemma 14.15 the proof is complete. �

Proposition 14.17. Assume given data (D0), (D1), and (D2’) satisfying axioms (A1)
– (A8). Then we have a Weil cohomology theory.
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Proof. We have axioms (A), (B) and (C)(a), (C)(c), and (C)(d) of Section 9 by Lem-
mas 14.5, 14.7, and 14.8. We have axiom (C)(b) by Lemma 14.16. Finally, the additional
condition of Definition 11.4 holds because it is the same as our axiom (A8). �

The following lemma is sometimes useful to show that we get a Weil cohomology theory
over a nonclosed field by reducing to a closed one.

Lemma 14.18. Let k′/k be an extension of fields. Let F ′/F be an extension of fields
of characteristic 0. Assume given

(1) data (D0), (D1), (D2’) for k and F denoted F (1),H∗, cH1 ,
(2) data (D0), (D1), (D2’) for k′ and F ′ denoted F ′(1), (H ′)∗, cH

′

1 , and
(3) an isomorphism F (1) ⊗F F ′ → F ′(1), functorial isomorphisms H∗(X) ⊗F

F ′ → (H ′)∗(Xk′) on the category of smooth projective schemes X over k such
that the diagrams

Pic(X)
cH1

//

��

H2(X)(1)

��
Pic(Xk′)

cH
′

1 // (H ′)2(Xk′)(1)

commute.
In this case, if F ′(1), (H ′)∗, cH

′

1 satisfy axioms (A1) – (A9), then the same is true for
F (1),H∗, cH1 .

Proof. We go by the axioms one by one.

Axiom (A1). We have to show H∗(∅) = 0 and that (i∗, j∗) : H∗(X q Y ) → H∗(X) ×
H∗(Y ) is an isomorphism where i and j are the coprojections. By the functorial nature
of the isomorphisms H∗(X) ⊗F F ′ → (H ′)∗(Xk′) this follows from linear algebra: if
ϕ : V → W is an F -linear map of F -vector spaces, then ϕ is an isomorphism if and only
if ϕF ′ : V ⊗F F ′ →W ⊗F F ′ is an isomorphism.

Axiom (A2). This means that given a morphism f : X → Y of smooth projective schemes
over k and an invertible OY -module N we have f∗cH1 (L) = cH1 (f∗L). This is immedi-
ately clear from the corresponding property for cH

′

1 , the commutative diagrams in the
lemma, and the fact that the canonical map V → V ⊗F F ′ is injective for any F -vector
space V .

Axiom (A3). This follows from the principle stated in the proof of axiom (A1) and com-
patibility of cH1 and cH

′

1 .

Axiom (A4). Let i : Y → X be the inclusion of an effective Cartier divisor over k with
both X and Y smooth and projective over k. For a ∈ H∗(X) with i∗a = 0 we have to
show a ∪ cH1 (OX(Y )) = 0. Denote a′ ∈ (H ′)∗(Xk′) the image of a. The assumption
implies that (i′)∗a′ = 0 where i′ : Yk′ → Xk′ is the base change of i. Hence we get
a′ ∪ cH′

1 (OXk′ (Yk′)) = 0 by the axiom for (H ′)∗. Since a′ ∪ cH′

1 (OXk′ (Yk′)) is the image
of a ∪ cH1 (OX(Y )) we conclude by the princple stated in the proof of axiom (A2).

Axiom (A5). This means thatH∗(Spec(k)) = F and that forX and Y smooth projective
over k the mapH∗(X)⊗FH∗(Y )→ H∗(X×Y ), a⊗b 7→ p∗(a)∪q∗(b) is an isomorphism
where p and q are the projections. This follows from the principle stated in the proof of
axiom (A1).
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We interrupt the flow of the arguments to show that for every smooth projective scheme
X over k the diagram

CH∗(X)
γ
//

g∗

��

⊕
H2i(X)(i)

��
CH∗(Xk′) γ′

//⊕(H ′)2i(Xk′)(i)

commutes. Observe that we have γ as we know axioms (A1) – (A4) already; see Lemma
14.2. Also, the left vertical arrow is the one discussed in Chow Homology, Section 67 for
the morphism of base schemes g : Spec(k′) → Spec(k). More precisely, it is the map
given in Chow Homology, Lemma 67.4. Pick α ∈ CH∗(X). Write α = ch(β) ∩ [X]
in CH∗(X) ⊗ Q for some β ∈ K0(Vect(X)) ⊗ Q so that γ(α) = chH(β); this is our
construction of γ. Since the map of Chow Homology, Lemma 67.4 is compatible with cap-
ping with Chern classes by Chow Homology, Lemma 67.8 we see that g∗α = ch((Xk′ →
X)∗β) ∩ [Xk′ ]. Hence γ′(g∗α) = chH

′((Xk′ → X)∗β). Thus commutativity of the dia-
gram will hold if for any locally free OX -module E of rank r and 0 ≤ i ≤ r the element
cHi (E) of H2i(X)(i) maps to the element cH

′

i (Ek′) in (H ′)2i(Xk′)(i). Because we have
the projective space bundle formula for both X and X ′ we may replace X by a projective
space bundle overX finitely many times to show this. Thus we may assume E has a filtra-
tion whose graded pieces are invertible OX -modules L1, . . . ,Lr. See Chow Homology,
Lemma 43.1 and Remark 43.2. Then cHi (E is the ith elementary symmetric polynomial in
cH1 (L1), . . . , cH1 (Lr) and we conclude by our assumption that we have agreement for first
Chern classes.
Axiom (A6). Suppose given F -vector spaces V , W , an element v ∈ V , and a tensor ξ ∈
V ⊗F W . Denote V ′ = V ⊗F F ′, W ′ = W ⊗F F ′ and v′, ξ′ the images of v, ξ in V ′,
V ′ ⊗F ′ W ′. The linear algebra principle we will use in the proof of axiom (A6) is the
following: there exists an F -linear map λ : W → F such that (1 ⊗ λ)ξ = v if and only
if there exists an F ′-linear map λ′ : W ⊗F F ′ → F ′ such that (1⊗ λ′)ξ′ = v′.
Let X be a nonempty equidimensional smooth projective scheme over k of dimension
d. Denote γ = γ([∆]) in H2d(X × X)(d) (unadorned fibre products will be over k).
Observe/recall that this makes sense as we know axioms (A1) – (A4) already; see Lemma
14.2. We may decompose

γ =
∑

γi, γi ∈ Hi(X)⊗F H2d−i(X)(d)

in the Künneth decomposition. Similarly, denote γ′ = γ([∆′]) =
∑
γ′
i in (H ′)2d(Xk′×k′

Xk′)(d). By the linear algebra princple mentioned above, it suffices to show that γ0 maps
to γ′

0 in (H ′)0(X)⊗F ′ (H ′)2d(X ′)(d). By the compatibility of Künneth decompositions
we see that it suffice to show that γ maps to γ′ in

(H ′)2d(Xk′ ×k′ Xk′)(d) = (H ′)2d((X ×X)k′)(d)
Since ∆k′ = ∆′ this follows from the discussion above.
Axiom (A7). This follows from the linear algebra fact: a linear map V →W of F -vector
spaces is injective if and only if V ⊗F F ′ →W ⊗F F ′ is injective.
Axiom (A8). Follows from the linear algebra fact used in the proof of axiom (A1).
Axiom (A9). Let X be a nonempty smooth projective scheme over k equidimensional of
dimension d. Let i : Y → X be a nonempty effective Cartier divisor smooth over k. Let
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λY and λX be as in axiom (A6) for X and Y . We have to show: for a ∈ H2d−2(X)(d−
1) we have λY (i∗(a)) = λX(a ∪ cH1 (OX(Y )). By Remark 14.6 we know that λX :
H2d(X)(d)→ F and λY : H2d−2(Y )(d−1) are uniquely determined by the requirement
in axiom (A6). Having said this, it follows from our proof of axiom (A6) for H∗ above
that λX ⊗ idF ′ corresponds to λXk′ via the given identification H2d(X)(d) ⊗F F ′ =
H2d(Xk′)(d). Thus the fact that we know axiom (A9) for F ′(1), (H ′)∗, cH

′

1 implies the
axiom for F (1),H∗, cH1 by a diagram chase. This completes the proof of the lemma. �
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CHAPTER 46

Adequate Modules

1. Introduction

For any scheme X the category QCoh(OX) of quasi-coherent modules is abelian and a
weak Serre subcategory of the abelian category of allOX -modules. The same thing works
for the category of quasi-coherent modules on an algebraic space X viewed as a subcat-
egory of the category of all OX -modules on the small étale site of X . Moreover, for a
quasi-compact and quasi-separated morphism f : X → Y the pushforward f∗ and higher
direct images preserve quasi-coherence.

Next, let X be a scheme and let O be the structure sheaf on one of the big sites of X ,
say, the big fppf site. The category of quasi-coherent O-modules is abelian (in fact it
is equivalent to the category of usual quasi-coherent OX -modules on the scheme X we
mentioned above) but its imbedding into Mod(O) is not exact. An example is the map of
quasi-coherent modules

OA1
k
−→ OA1

k

on A1
k = Spec(k[x]) given by multiplication by x. In the abelian category of quasi-

coherent sheaves this map is injective, whereas in the abelian category of all O-modules
on the big site of A1

k this map has a nontrivial kernel as we see by evaluating on sections
over Spec(k[x]/(x)) = Spec(k). Moreover, for a quasi-compact and quasi-separated mor-
phism f : X → Y the functor fbig,∗ does not preserve quasi-coherence.

In this chapter we introduce the category of what we will call adequate modules, closely
related to quasi-coherent modules, which “fixes” the two problems mentioned above. An-
other solution, which we will implement when we talk about quasi-coherent modules on
algebraic stacks, is to considerO-modules which are locally quasi-coherent and satisfy the
flat base change property. See Cohomology of Stacks, Section 8, Cohomology of Stacks,
Remark 10.7, and Derived Categories of Stacks, Section 5.

2. Conventions

In this chapter we fix τ ∈ {Zar, étale, smooth, syntomic, fppf} and we fix a big τ -site
Schτ as in Topologies, Section 2. All schemes will be objects of Schτ . In particular, given
a scheme S we obtain sites (Aff/S)τ ⊂ (Sch/S)τ . The structure sheaf O on these sites is
defined by the ruleO(T ) = Γ(T,OT ).

All rings A will be such that Spec(A) is (isomorphic to) an object of Schτ . Given a ring
A we denote AlgA the category of A-algebras whose objects are the A-algebras B of the
form B = Γ(U,OU ) where S is an affine object of Schτ . Thus given an affine scheme
S = Spec(A) the functor

(Aff/S)τ −→ AlgA, U 7−→ O(U)
is an equivalence.

3893



3894 46. ADEQUATE MODULES

3. Adequate functors

In this section we discuss a topic closely related to direct images of quasi-coherent sheaves.
Most of this material was taken from the paper [?].

Definition 3.1. Let A be a ring. A module-valued functor is a functor F : AlgA →
Ab such that

(1) for every object B of AlgA the group F (B) is endowed with the structure of a
B-module, and

(2) for any morphism B → B′ of AlgA the map F (B)→ F (B′) is B-linear.
A morphism of module-valued functors is a transformation of functors ϕ : F → G such
that F (B)→ G(B) is B-linear for all B ∈ Ob(AlgA).

Let S = Spec(A) be an affine scheme. The category of module-valued functors on AlgA is
equivalent to the category PMod((Aff/S)τ ,O) of presheaves ofO-modules. The equiva-
lence is given by the rule which assigns to the module-valued functorF the presheafF de-
fined by the ruleF(U) = F (O(U)). This is clear from the equivalence (Aff/S)τ → AlgA,
U 7→ O(U) given in Section 2. The quasi-inverse sets F (B) = F(Spec(B)).

An important special case of a module-valued functor comes about as follows. Let M be
an A-module. Then we will denote M the module-valued functor B 7→ M ⊗A B (with
obviousB-module structure). Note that ifM → N is a map ofA-modules then there is an
associated morphism M → N of module-valued functors. Conversely, any morphism of
module-valued functorsM → N comes from anA-module mapM → N as the reader can
see by evaluating on B = A. In other words ModA is a full subcategory of the category
of module-valued functors on AlgA.

Given and A-module map ϕ : M → N then Coker(M → N) = Q where Q =
Coker(M → N) because⊗ is right exact. But this isn’t the case for the kernel in general:
for example an injective map of A-modules need not be injective after base change. Thus
the following definition makes sense.

Definition 3.2. Let A be a ring. A module-valued functor F on AlgA is called
(1) adequate if there exists a map of A-modules M → N such that F is isomorphic

to Ker(M → N).
(2) linearly adequate if F is isomorphic to the kernel of a map A⊕n → A⊕m.

Note that F is adequate if and only if there exists an exact sequence 0 → F → M → N
and F is linearly adequate if and only if there exists an exact sequence 0→ F → A⊕n →
A⊕m.

Let A be a ring. In this section we will show the category of adequate functors on AlgA is
abelian (Lemmas 3.10 and 3.11) and has a set of generators (Lemma 3.6). We will also see
that it is a weak Serre subcategory of the category of all module-valued functors on AlgA
(Lemma 3.16) and that it has arbitrary colimits (Lemma 3.12).

Lemma 3.3. LetA be a ring. Let F be an adequate functor on AlgA. IfB = colimBi
is a filtered colimit of A-algebras, then F (B) = colimF (Bi).

Proof. This holds because for anyA-moduleM we haveM⊗AB = colimM⊗ABi
(see Algebra, Lemma 12.9) and because filtered colimits commute with exact sequences, see
Algebra, Lemma 8.8. �
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Remark 3.4. Consider the category Algfp,A whose objects are A-algebras B of the
form B = A[x1, . . . , xn]/(f1, . . . , fm) and whose morphisms are A-algebra maps. Every
A-algebra B is a filtered colimit of finitely presented A-algebra, i.e., a filtered colimit of
objects of Algfp,A. By Lemma 3.3 we conclude every adequate functor F is determined
by its restriction to Algfp,A. For some questions we can therefore restrict to functors on
Algfp,A. For example, the category of adequate functors does not depend on the choice of
the big τ -site chosen in Section 2.

Lemma 3.5. Let A be a ring. Let F be an adequate functor on AlgA. If B → B′ is
flat, then F (B)⊗B B′ → F (B′) is an isomorphism.

Proof. Choose an exact sequence 0→ F →M → N . This gives the diagram

0 // F (B)⊗B B′ //

��

(M ⊗A B)⊗B B′ //

��

(N ⊗A B)⊗B B′

��
0 // F (B′) // M ⊗A B′ // N ⊗A B′

where the rows are exact (the top one becauseB → B′ is flat). Since the right two vertical
arrows are isomorphisms, so is the left one. �

Lemma 3.6. LetA be a ring. Let F be an adequate functor on AlgA. Then there exists
a surjection L→ F with L a direct sum of linearly adequate functors.

Proof. Choose an exact sequence 0 → F → M → N where M → N is given by
ϕ : M → N . By Lemma 3.3 it suffices to construct L → F such that L(B) → F (B) is
surjective for every finitely presented A-algebra B. Hence it suffices to construct, given a
finitely presented A-algebra B and an element ξ ∈ F (B) a map L → F with L linearly
adequate such that ξ is in the image of L(B) → F (B). (Because there is a set worth of
such pairs (B, ξ) up to isomorphism.)

To do this write
∑
i=1,...,nmi ⊗ bi the image of ξ in M(B) = M ⊗A B. We know that∑

ϕ(mi)⊗ bi = 0 inN ⊗AB. AsN is a filtered colimit of finitely presentedA-modules,
we can find a finitely presented A-module N ′, a commutative diagram of A-modules

A⊕n //

m1,...,mn

��

N ′

��
M // N

such that (b1, . . . , bn) maps to zero in N ′ ⊗A B. Choose a presentation A⊕l → A⊕k →
N ′ → 0. Choose a lift A⊕n → A⊕k of the map A⊕n → N ′ of the diagram. Then we see
that there exist (c1, . . . , cl) ∈ B⊕l such that (b1, . . . , bn, c1, . . . , cl) maps to zero in B⊕k

under the map B⊕n ⊕B⊕l → B⊕k. Consider the commutative diagram

A⊕n ⊕A⊕l //

��

A⊕k

��
M // N

where the left vertical arrow is zero on the summand A⊕l. Then we see that L equal to
the kernel of A⊕n+l → A⊕k works because the element (b1, . . . , bn, c1, . . . , cl) ∈ L(B)
maps to ξ. �
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Consider a graded A-algebra B =
⊕

d≥0 Bd. Then there are two A-algebra maps p, a :
B → B[t, t−1], namely p : b 7→ b and a : b 7→ tdeg(b)b where b is homogeneous. If F is a
module-valued functor on AlgA, then we define

(3.6.1) F (B)(k) = {ξ ∈ F (B) | tkF (p)(ξ) = F (a)(ξ)}.

For functors which behave well with respect to flat ring extensions this gives a direct
sum decomposition. This amounts to the fact that representations of Gm are completely
reducible.

Lemma 3.7. LetA be a ring. Let F be a module-valued functor on AlgA. Assume that
for B → B′ flat the map F (B) ⊗B B′ → F (B′) is an isomorphism. Let B be a graded
A-algebra. Then

(1) F (B) =
⊕

k∈Z F (B)(k), and
(2) the map B → B0 → B induces map F (B) → F (B) whose image is contained

in F (B)(0).

Proof. Let x ∈ F (B). The map p : B → B[t, t−1] is free hence we know that

F (B[t, t−1]) =
⊕

k∈Z
F (p)(F (B)) · tk =

⊕
k∈Z

F (B) · tk

as indicated we drop the F (p) in the rest of the proof. Write F (a)(x) =
∑
tkxk for

some xk ∈ F (B). Denote ε : B[t, t−1] → B the B-algebra map t 7→ 1. Note that the
compositions ε ◦ p, ε ◦ a : B → B[t, t−1]→ B are the identity. Hence we see that

x = F (ε)(F (a)(x)) = F (ε)(
∑

tkxk) =
∑

xk.

On the other hand, we claim that xk ∈ F (B)(k). Namely, consider the commutative
diagram

B
a

//

a′

��

B[t, t−1]

f

��
B[s, s−1] g // B[t, s, t−1, s−1]

where a′(b) = sdeg(b)b, f(b) = b, f(t) = st and g(b) = tdeg(b)b and g(s) = s. Then

F (g)(F (a′))(x) = F (g)(
∑

skxk) =
∑

skF (a)(xk)

and going the other way we see

F (f)(F (a))(x) = F (f)(
∑

tkxk) =
∑

(st)kxk.

SinceB → B[s, t, s−1, t−1] is free we see that F (B[t, s, t−1, s−1]) =
⊕

k,l∈Z F (B) · tksl

and comparing coefficients in the expressions above we find F (a)(xk) = tkxk as desired.

Finally, the image of F (B0) → F (B) is contained in F (B)(0) because B0 → B
a−→

B[t, t−1] is equal to B0 → B
p−→ B[t, t−1]. �

As a particular case of Lemma 3.7 note that

M(B)(k) = M ⊗A Bk
where Bk is the degree k part of the graded A-algebra B.
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Lemma 3.8. Let A be a ring. Given a solid diagram

0 // L

ϕ

��

// A⊕n //

}}

A⊕m

M

of module-valued functors on AlgA with exact row there exists a dotted arrow making the
diagram commute.

Proof. Suppose that the map A⊕n → A⊕m is given by the m × n-matrix (aij).
Consider the ring B = A[x1, . . . , xn]/(

∑
aijxj). The element (x1, . . . , xn) ∈ A⊕n(B)

maps to zero in A⊕m(B) hence is the image of a unique element ξ ∈ L(B). Note that ξ
has the following universal property: for anyA-algebraC and any ξ′ ∈ L(C) there exists
an A-algebra map B → C such that ξ maps to ξ′ via the map L(B)→ L(C).

Note thatB is a gradedA-algebra, hence we can use Lemmas 3.7 and 3.5 to decompose the
values of our functors on B into graded pieces. Note that ξ ∈ L(B)(1) as (x1, . . . , xn) is
an element of degree one in A⊕n(B). Hence we see that ϕ(ξ) ∈ M(B)(1) = M ⊗A B1.
Since B1 is generated by x1, . . . , xn as an A-module we can write ϕ(ξ) =

∑
mi ⊗ xi.

Consider the map A⊕n → M which maps the ith basis vector to mi. By construction
the associated map A⊕n → M maps the element ξ to ϕ(ξ). It follows from the universal
property mentioned above that the diagram commutes. �

Lemma 3.9. LetA be a ring. Let ϕ : F →M be a map of module-valued functors on
AlgA with F adequate. Then Coker(ϕ) is adequate.

Proof. By Lemma 3.6 we may assume that F =
⊕
Li is a direct sum of linearly

adequate functors. Choose exact sequences 0→ Li → A⊕ni → A⊕mi . For each i choose
a map A⊕ni →M as in Lemma 3.8. Consider the diagram

0 //⊕Li //

��

⊕
A⊕ni //

zz

⊕
A⊕mi

M

Consider the A-modules

Q = Coker(
⊕

A⊕ni →M ⊕
⊕

A⊕mi) and P = Coker(
⊕

A⊕ni →
⊕

A⊕mi).

Then we see that Coker(ϕ) is isomorphic to the kernel of Q→ P . �

Lemma 3.10. LetA be a ring. Let ϕ : F → G be a map of adequate functors on AlgA.
Then Coker(ϕ) is adequate.

Proof. Choose an injection G → M . Then we have an injection G/F → M/F .
By Lemma 3.9 we see that M/F is adequate, hence we can find an injection M/F → N .
Composing we obtain an injectionG/F → N . By Lemma 3.9 the cokernel of the induced
map G → N is adequate hence we can find an injection N/G → K. Then 0 → G/F →
N → K is exact and we win. �

Lemma 3.11. LetA be a ring. Let ϕ : F → G be a map of adequate functors on AlgA.
Then Ker(ϕ) is adequate.



3898 46. ADEQUATE MODULES

Proof. Choose an injectionF →M and an injectionG→ N . DenoteF →M ⊕N
the diagonal map so that

F

��

// G

��
M ⊕N // N

commutes. By Lemma 3.10 we can find a module map M ⊕ N → K such that F is the
kernel of M ⊕N → K. Then Ker(ϕ) is the kernel of M ⊕N → K ⊕N . �

Lemma 3.12. Let A be a ring. An arbitrary direct sum of adequate functors on AlgA
is adequate. A colimit of adequate functors is adequate.

Proof. The statement on direct sums is immediate. A general colimit can be written
as a kernel of a map between direct sums, see Categories, Lemma 14.12. Hence this follows
from Lemma 3.11. �

Lemma 3.13. Let A be a ring. Let F,G be module-valued functors on AlgA. Let
ϕ : F → G be a transformation of functors. Assume

(1) ϕ is additive,
(2) for every A-algebra B and ξ ∈ F (B) and unit u ∈ B∗ we have ϕ(uξ) = uϕ(ξ)

in G(B), and
(3) for any flat ring map B → B′ we have G(B)⊗B B′ = G(B′).

Then ϕ is a morphism of module-valued functors.

Proof. LetB be anA-algebra, ξ ∈ F (B), and b ∈ B. We have to show that ϕ(bξ) =
bϕ(ξ). Consider the ring map

B → B′ = B[x, y, x−1, y−1]/(x+ y − b).
This ring map is faithfully flat, hence G(B) ⊂ G(B′). On the other hand
ϕ(bξ) = ϕ((x+ y)ξ) = ϕ(xξ) + ϕ(yξ) = xϕ(ξ) + yϕ(ξ) = (x+ y)ϕ(ξ) = bϕ(ξ)

because x, y are units in B′. Hence we win. �

Lemma 3.14. Let A be a ring. Let 0→ M → G→ L→ 0 be a short exact sequence
of module-valued functors on AlgA with L linearly adequate. Then G is adequate.

Proof. We first point out that for any flatA-algebra mapB → B′ the mapG(B)⊗B
B′ → G(B′) is an isomorphism. Namely, this holds for M and L, see Lemma 3.5 and
hence follows for G by the five lemma. In particular, by Lemma 3.7 we see that G(B) =⊕

k∈Z G(B)(k) for any graded A-algebra B.

Choose an exact sequence 0→ L→ A⊕n → A⊕m. Suppose that the mapA⊕n → A⊕m is
given by them×n-matrix (aij). Consider the gradedA-algebraB = A[x1, . . . , xn]/(

∑
aijxj).

The element (x1, . . . , xn) ∈ A⊕n(B) maps to zero in A⊕m(B) hence is the image of a
unique element ξ ∈ L(B). Observe that ξ ∈ L(B)(1). The map

HomA(B,C) −→ L(C), f 7−→ L(f)(ξ)
defines an isomorphism of functors. The reason is that f is determined by the images
ci = f(xi) ∈ C which have to satisfy the relations

∑
aijcj = 0. And L(C) is the set of

n-tuples (c1, . . . , cn) satisfying the relations
∑
aijcj = 0.

Since the value of each of the functorsM ,G,L onB is a direct sum of its weight spaces (by
the lemma mentioned above) exactness of 0 → M → G → L → 0 implies the sequence
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0 → M(B)(1) → G(B)(1) → L(B)(1) → 0 is exact. Thus we may choose an element
θ ∈ G(B)(1) mapping to ξ.

Consider the graded A-algebra

C = A[x1, . . . , xn, y1, . . . , yn]/(
∑

aijxj ,
∑

aijyj)

There are three graded A-algebra homomorphisms p1, p2,m : B → C defined by the
rules

p1(xi) = xi, p1(xi) = yi, m(xi) = xi + yi.

We will show that the element

τ = G(m)(θ)−G(p1)(θ)−G(p2)(θ) ∈ G(C)

is zero. First, τ maps to zero in L(C) by a direct calculation. Hence τ is an element of
M(C). Moreover, since m, p1, p2 are graded algebra maps we see that τ ∈ G(C)(1) and
since M ⊂ G we conclude

τ ∈M(C)(1) = M ⊗A C1.

We may write uniquely τ = M(p1)(τ1) + M(p2)(τ2) with τi ∈ M ⊗A B1 = M(B)(1)

because C1 = p1(B1)⊕ p2(B1). Consider the ring map q1 : C → B defined by xi 7→ xi
and yi 7→ 0. Then M(q1)(τ) = M(q1)(M(p1)(τ1) + M(p2)(τ2)) = τ1. On the other
hand, because q1 ◦m = q1 ◦ p1 we see that G(q1)(τ) = −G(q1 ◦ p2)(τ). Since q1 ◦ p2
factors as B → A → B we see that G(q1 ◦ p2)(τ) is in G(B)(0), see Lemma 3.7. Hence
τ1 = 0 because it is in G(B)(0) ∩M(B)(1) ⊂ G(B)(0) ∩G(B)(1) = 0. Similarly τ2 = 0,
whence τ = 0.

Since θ ∈ G(B) we obtain a transformation of functors

ψ : L(−) = HomA(B,−) −→ G(−)

by mapping f : B → C to G(f)(θ). Since θ is a lift of ξ the map ψ is a right inverse
of G → L. In terms of ψ the statements proved above have the following meaning:
τ = 0 means that ψ is additive and θ ∈ G(B)(1) implies that for any A-algebra D we
have ψ(ul) = uψ(l) in G(D) for l ∈ L(D) and u ∈ D∗ a unit. This implies that ψ is
a morphism of module-valued functors, see Lemma 3.13. Clearly this implies that G ∼=
M ⊕ L and we win. �

Remark 3.15. Let A be a ring. The proof of Lemma 3.14 shows that any extension
0 → M → E → L → 0 of module-valued functors on AlgA with L linearly adequate
splits. It uses only the following properties of the module-valued functor F = M :

(1) F (B)⊗B B′ → F (B′) is an isomorphism for a flat ring map B → B′, and
(2) F (C)(1) = F (p1)(F (B)(1))⊕F (p2)(F (B)(1)) whereB = A[x1, . . . , xn]/(

∑
aijxj)

and C = A[x1, . . . , xn, y1, . . . , yn]/(
∑
aijxj ,

∑
aijyj).

These two properties hold for any adequate functor F ; details omitted. Hence we see that
L is a projective object of the abelian category of adequate functors.

Lemma 3.16. Let A be a ring. Let 0→ F → G→ H → 0 be a short exact sequence
of module-valued functors on AlgA. If F and H are adequate, so is G.

Proof. Choose an exact sequence 0 → F → M → N . If we can show that (M ⊕
G)/F is adequate, thenG is the kernel of the map of adequate functors (M⊕G)/F → N ,
hence adequate by Lemma 3.11. Thus we may assume F = M .
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We can choose a surjection L→ H where L is a direct sum of linearly adequate functors,
see Lemma 3.6. If we can show that the pullbackG×HL is adequate, thenG is the cokernel
of the map Ker(L→ H)→ G×HL hence adequate by Lemma 3.10. Thus we may assume
that H =

⊕
Li is a direct sum of linearly adequate functors. By Lemma 3.14 each of the

pullbacksG×H Li is adequate. By Lemma 3.12 we see that
⊕
G×H Li is adequate. Then

G is the cokernel of ⊕
i 6=i′

F −→
⊕

G×H Li

where ξ in the summand (i, i′) maps to (0, . . . , 0, ξ, 0, . . . , 0,−ξ, 0, . . . , 0) with nonzero
entries in the summands i and i′. Thus G is adequate by Lemma 3.10. �

Lemma 3.17. Let A → A′ be a ring map. If F is an adequate functor on AlgA, then
its restriction F ′ to AlgA′ is adequate too.

Proof. Choose an exact sequence 0 → F → M → N . Then F ′(B′) = F (B′) =
Ker(M ⊗A B′ → N ⊗A B′). Since M ⊗A B′ = M ⊗A A′ ⊗A′ B′ and similarly for N
we see that F ′ is the kernel of M ⊗A A′ → N ⊗A A′. �

Lemma 3.18. Let A→ A′ be a ring map. If F ′ is an adequate functor on AlgA′ , then
the module-valued functor F : B 7→ F ′(A′ ⊗A B) on AlgA is adequate too.

Proof. Choose an exact sequence 0→ F ′ →M ′ → N ′. Then

F (B) = F ′(A′ ⊗A B)
= Ker(M ′ ⊗A′ (A′ ⊗A B)→ N ′ ⊗A′ (A′ ⊗A B))
= Ker(M ′ ⊗A B → N ′ ⊗A B)

Thus F is the kernel of M → N where M = M ′ and N = N ′ viewed as A-modules. �

Lemma 3.19. LetA = A1× . . .×An be a product of rings. An adequate functor over
A is the same thing as a sequence F1, . . . , Fn of adequate functors Fi over Ai.

Proof. This is true because anA-algebraB is canonically a productB1×. . .×Bn and
the same thing holds forA-modules. SettingF (B) =

∐
Fi(Bi) gives the correspondence.

Details omitted. �

Lemma 3.20. Let A → A′ be a ring map and let F be a module-valued functor on
AlgA such that

(1) the restriction F ′ of F to the category of A′-algebras is adequate, and
(2) for any A-algebra B the sequence

0→ F (B)→ F (B ⊗A A′)→ F (B ⊗A A′ ⊗A A′)

is exact.
Then F is adequate.

Proof. The functors B → F (B ⊗A A′) and B 7→ F (B ⊗A A′ ⊗A A′) are adequate,
see Lemmas 3.18 and 3.17. Hence F as a kernel of a map of adequate functors is adequate,
see Lemma 3.11. �
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4. Higher exts of adequate functors

Let A be a ring. In Lemma 3.16 we have seen that any extension of adequate functors in
the category of module-valued functors on AlgA is adequate. In this section we show that
the same remains true for higher ext groups.

Lemma 4.1. Let A be a ring. For every module-valued functor F on AlgA there
exists a morphism Q(F ) → F of module-valued functors on AlgA such that (1) Q(F ) is
adequate and (2) for every adequate functorG the map Hom(G,Q(F ))→ Hom(G,F ) is
a bijection.

Proof. Choose a set {Li}i∈I of linearly adequate functors such that every linearly
adequate functor is isomorphic to one of theLi. This is possible. Suppose that we can find
Q(F ) → F with (1) and (2)’ or every i ∈ I the map Hom(Li, Q(F )) → Hom(Li, F ) is
a bijection. Then (2) holds. Namely, combining Lemmas 3.6 and 3.11 we see that every
adequate functor G sits in an exact sequence

K → L→ G→ 0
withK andL direct sums of linearly adequate functors. Hence (2)’ implies that Hom(L,Q(F ))→
Hom(L,F ) and Hom(K,Q(F ))→ Hom(K,F ) are bijections, whence the same thing for
G.

Consider the category I whose objects are pairs (i, ϕ) where i ∈ I and ϕ : Li → F is a
morphism. A morphism (i, ϕ)→ (i′, ϕ′) is a map ψ : Li → Li′ such that ϕ′ ◦ψ = ϕ. Set

Q(F ) = colim(i,ϕ)∈Ob(I) Li

There is a natural map Q(F ) → F , by Lemma 3.12 it is adequate, and by construction it
has property (2)’. �

Lemma 4.2. Let A be a ring. Denote P the category of module-valued functors on
AlgA and A the category of adequate functors on AlgA. Denote i : A → P the inclusion
functor. Denote Q : P → A the construction of Lemma 4.1. Then

(1) i is fully faithful, exact, and its image is a weak Serre subcategory,
(2) P has enough injectives,
(3) the functor Q is a right adjoint to i hence left exact,
(4) Q transforms injectives into injectives,
(5) A has enough injectives.

Proof. This lemma just collects some facts we have already seen so far. Part (1) is
clear from the definitions, the characterization of weak Serre subcategories (see Homology,
Lemma 10.3), and Lemmas 3.10, 3.11, and 3.16. Recall that P is equivalent to the category
PMod((Aff/ Spec(A))τ ,O). Hence (2) by Injectives, Proposition 8.5. Part (3) follows
from Lemma 4.1 and Categories, Lemma 24.5. Parts (4) and (5) follow from Homology,
Lemmas 29.1 and 29.3. �

LetA be a ring. As in Formal Deformation Theory, Section 11 given anA-algebraB and an
B-moduleN we setB[N ] equal to theR-algebra with underlyingB-moduleB⊕N with
multiplication given by (b,m)(b′,m′) = (bb′, bm′ + b′m). Note that this construction
is functorial in the pair (B,N) where morphism (B,N) → (B′, N ′) is given by an A-
algebra map B → B′ and an B-module map N → N ′. In some sense the functor TF
of pairs defined in the following lemma is the tangent space of F . Below we will only
consider pairs (B,N) such that B[N ] is an object of AlgA.
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Lemma 4.3. Let A be a ring. Let F be a module valued functor. For every B ∈
Ob(AlgA) and B-module N there is a canonical decomposition

F (B[N ]) = F (B)⊕ TF (B,N)
characterized by the following properties

(1) TF (B,N) = Ker(F (B[N ])→ F (B)),
(2) there is a B-module structure TF (B,N) compatible with B[N ]-module struc-

ture on F (B[N ]),
(3) TF is a functor from the category of pairs (B,N),
(4) there are canonical maps N ⊗B F (B)→ TF (B,N) inducing a transformation

between functors defined on the category of pairs (B,N),
(5) TF (B, 0) = 0 and the map TF (B,N)→ TF (B,N ′) is zero when N → N ′ is

the zero map.
Proof. Since B → B[N ]→ B is the identity we see that F (B)→ F (B[N ]) is a di-

rect summand whose complement isTF (N,B) as defined in (1). This construction is func-
torial in the pair (B,N) simply because given a morphism of pairs (B,N) → (B′, N ′)
we obtain a commutative diagram

B′ // B′[N ′] // B′

B //

OO

B[N ] //

OO

B

OO

in AlgA. The B-module structure comes from the B[N ]-module structure and the ring
map B → B[N ]. The map in (4) is the composition

N ⊗B F (B) −→ B[N ]⊗B[N ] F (B[N ]) −→ F (B[N ])
whose image is contained in TF (B,N). (The first arrow uses the inclusions N → B[N ]
and F (B) → F (B[N ]) and the second arrow is the multiplication map.) If N = 0, then
B = B[N ] hence TF (B, 0) = 0. If N → N ′ is zero then it factors as N → 0 → N ′

hence the induced map is zero since TF (B, 0) = 0. �

Let A be a ring. Let M be an A-module. Then the module-valued functor M has tangent
space TM given by the rule TM(B,N) = N ⊗A M . In particular, for B given, the
functor N 7→ TM(B,N) is additive and right exact. It turns out this also holds for
injective module-valued functors.

Lemma 4.4. Let A be a ring. Let I be an injective object of the category of module-
valued functors. Then for anyB ∈ Ob(AlgA) and short exact sequence 0→ N1 → N →
N2 → 0 of B-modules the sequence

TI(B,N1)→ TI(B,N)→ TI(B,N2)→ 0
is exact.

Proof. We will use the results of Lemma 4.3 without further mention. Denote h :
AlgA → Sets the functor given by h(C) = MorA(B[N ], C). Similarly for h1 and h2. The
mapB[N ]→ B[N2] corresponding to the surjectionN → N2 is surjective. It corresponds
to a map h2 → h such that h2(C)→ h(C) is injective for all A-algebras C. On the other
hand, there are two maps p, q : h→ h1, corresponding to the zero map N1 → N and the
injection N1 → N . Note that

h2 // h
//
// h1
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is an equalizer diagram. DenoteOh the module-valued functorC 7→
⊕

h(C) C. Similarly
forOh1 andOh2 . Note that

HomP(Oh, F ) = F (B[N ])
whereP is the category of module-valued functors on AlgA. We claim there is an equalizer
diagram

Oh2
// Oh

//
// Oh1

in P . Namely, suppose that C ∈ Ob(AlgA) and ξ =
∑
i=1,...,n ci · fi where ci ∈ C and

fi : B[N ]→ C is an element ofOh(C). If p(ξ) = q(ξ), then we see that∑
ci · fi ◦ z =

∑
ci · fi ◦ y

where z, y : B[N1]→ B[N ] are the maps z : (b,m1) 7→ (b, 0) and y : (b,m1) 7→ (b,m1).
This means that for every i there exists a j such that fj ◦ z = fi ◦ y. Clearly, this implies
that fi(N1) = 0, i.e., fi factors through a unique map f i : B[N2] → C. Hence ξ is the
image of ξ =

∑
ci · f i. Since I is injective, it transforms this equalizer diagram into a

coequalizer diagram

I(B[N1]) //
// I(B[N ]) // I(B[N2])

This diagram is compatible with the direct sum decompositions I(B[N ]) = I(B) ⊕
TI(B,N) and I(B[Ni]) = I(B)⊕ TI(B,Ni). The zero map N → N1 induces the zero
map TI(B,N) → TI(B,N1). Thus we see that the coequalizer property above means
we have an exact sequence TI(B,N1)→ TI(B,N)→ TI(B,N2)→ 0 as desired. �

Lemma 4.5. Let A be a ring. Let F be a module-valued functor such that for any
B ∈ Ob(AlgA) the functor TF (B,−) on B-modules transforms a short exact sequence
of B-modules into a right exact sequence. Then

(1) TF (B,N1 ⊕N2) = TF (B,N1)⊕ TF (B,N2),
(2) there is a second functorialB-module structure on TF (B,N) defined by setting

x · b = TF (B, b · 1N )(x) for x ∈ TF (B,N) and b ∈ B,
(3) the canonical map N ⊗B F (B) → TF (B,N) of Lemma 4.3 is B-linear also

with respect to the second B-module structure,
(4) given a finitely presentedB-moduleN there is a canonical isomorphismTF (B,B)⊗B

N → TF (B,N) where the tensor product uses the second B-module structure
on TF (B,B).

Proof. We will use the results of Lemma 4.3 without further mention. The maps
N1 → N1⊕N2 andN2 → N1⊕N2 give a mapTF (B,N1)⊕TF (B,N2)→ TF (B,N1⊕
N2) which is injective since the maps N1 ⊕ N2 → N1 and N1 ⊕ N2 → N2 induce
an inverse. Since TF is right exact we see that TF (B,N1) → TF (B,N1 ⊕ N2) →
TF (B,N2) → 0 is exact. Hence TF (B,N1) ⊕ TF (B,N2) → TF (B,N1 ⊕ N2) is an
isomorphism. This proves (1).
To see (2) the only thing we need to show is that x·(b1 +b2) = x·b1 +x·b2. (Associativity
and additivity are clear.) To see this consider

N
(b1,b2)−−−−→ N ⊕N +−→ N

and apply TF (B,−).
Part (3) follows immediately from the fact that N ⊗B F (B) → TF (B,N) is functorial
in the pair (B,N).
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Suppose N is a finitely presented B-module. Choose a presentation B⊕m → B⊕n →
N → 0. This gives an exact sequence

TF (B,B⊕m)→ TF (B,B⊕n)→ TF (B,N)→ 0

by right exactness of TF (B,−). By part (1) we can write TF (B,B⊕m) = TF (B,B)⊕m

and TF (B,B⊕n) = TF (B,B)⊕n. Next, suppose that B⊕m → B⊕n is given by the
matrix T = (bij). Then the induced map TF (B,B)⊕m → TF (B,B)⊕n is given by
the matrix with entries TF (B, bij · 1B). This combined with right exactness of⊗ proves
(4). �

Example 4.6. Let F be a module-valued functor as in Lemma 4.5. It is not always
the case that the two module structures on TF (B,N) agree. Here is an example. Suppose
A = Fp where p is a prime. Set F (B) = B but with B-module structure given by
b · x = bpx. Then TF (B,N) = N with B-module structure given by b · x = bpx for
x ∈ N . However, the second B-module structure is given by x · b = bx. Note that in this
case the canonical mapN ⊗B F (B)→ TF (B,N) is zero as raising an element n ∈ B[N ]
to the pth power is zero.

In the following lemma we will frequently use the observation that if 0 → F → G →
H → 0 is an exact sequence of module-valued functors on AlgA, then for any pair (B,N)
the sequence 0 → TF (B,N) → TG(B,N) → TH(B,N) → 0 is exact. This follows
from the fact that 0→ F (B[N ])→ G(B[N ])→ H(B[N ])→ 0 is exact.

Lemma 4.7. Let A be a ring. For F a module-valued functor on AlgA say (∗) holds
if for all B ∈ Ob(AlgA) the functor TF (B,−) on B-modules transforms a short exact
sequence ofB-modules into a right exact sequence. Let 0→ F → G→ H → 0 be a short
exact sequence of module-valued functors on AlgA.

(1) If (∗) holds for F,G then (∗) holds for H .
(2) If (∗) holds for F,H then (∗) holds for G.
(3) If H ′ → H is morphism of module-valued functors on AlgA and (∗) holds for

F , G, H , and H ′, then (∗) holds for G×H H ′.

Proof. Let B be given. Let 0 → N1 → N2 → N3 → 0 be a short exact sequence of
B-modules. Part (1) follows from a diagram chase in the diagram

0 // TF (B,N1) //

��

TG(B,N1) //

��

TH(B,N1) //

��

0

0 // TF (B,N2) //

��

TG(B,N2) //

��

TH(B,N2) //

��

0

0 // TF (B,N3) //

��

TG(B,N3) //

��

TH(B,N3) // 0

0 0
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with exact horizontal rows and exact columns involving TF and TG. To prove part (2)
we do a diagram chase in the diagram

0 // TF (B,N1) //

��

TG(B,N1) //

��

TH(B,N1) //

��

0

0 // TF (B,N2) //

��

TG(B,N2) //

��

TH(B,N2) //

��

0

0 // TF (B,N3) //

��

TG(B,N3) // TH(B,N3) //

��

0

0 0
with exact horizontal rows and exact columns involving TF and TH . Part (3) follows
from part (2) as G×H H ′ sits in the exact sequence 0→ F → G×H H ′ → H ′ → 0. �

Most of the work in this section was done in order to prove the following key vanishing
result.

Lemma 4.8. Let A be a ring. Let M , P be A-modules with P of finite presentation.
Then ExtiP(P ,M) = 0 for i > 0 where P is the category of module-valued functors on
AlgA.

Proof. Choose an injective resolution M → I• in P , see Lemma 4.2. By Derived
Categories, Lemma 27.2 any element of ExtiP(P ,M) comes from a morphism ϕ : P → Ii

with di ◦ ϕ = 0. We will prove that the Yoneda extension

E : 0→M → I0 → . . .→ Ii−1 ×Ker(di) P → P → 0
of P by M associated to ϕ is trivial, which will prove the lemma by Derived Categories,
Lemma 27.5.
ForF a module-valued functor on AlgA say (∗) holds if for allB ∈ Ob(AlgA) the functor
TF (B,−) on B-modules transforms a short exact sequence of B-modules into a right
exact sequence. Recall that the module-valued functors M, In, P each have property (∗),
see Lemma 4.4 and the remarks preceding it. By splitting 0 → M → I• into short exact
sequences we find that each of the functors Im(dn−1) = Ker(dn) ⊂ In has property (∗)
by Lemma 4.7 and also that Ii−1 ×Ker(di) P has property (∗).
Thus we may assume the Yoneda extension is given as

E : 0→M → Fi−1 → . . .→ F0 → P → 0
where each of the module-valued functors Fj has property (∗). Set Gj(B) = TFj(B,B)
viewed as aB-module via the secondB-module structure defined in Lemma 4.5. SinceTFj
is a functor on pairs we see that Gj is a module-valued functor on AlgA. Moreover, since
E is an exact sequence the sequence Gj+1 → Gj → Gj−1 is exact (see remark preceding
Lemma 4.7). Observe that TM(B,B) = M ⊗A B = M(B) and that the two B-module
structures agree on this. Thus we obtain a Yoneda extension

E′ : 0→M → Gi−1 → . . .→ G0 → P → 0
Moreover, the canonical maps

Fj(B) = B ⊗B Fj(B) −→ TFj(B,B) = Gj(B)
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of Lemma 4.3 (4) are B-linear by Lemma 4.5 (3) and functorial in B. Hence a map

0 // M //

1
��

Fi−1 //

��

. . . // F0 //

��

P //

1
��

0

0 // M // Gi−1 // . . . // G0 // P // 0

of Yoneda extensions. In particular we see thatE andE′ have the same class in ExtiP(P ,M)
by the lemma on Yoneda Exts mentioned above. Finally, let N be a A-module of finite
presentation. Then we see that

0→ TM(A,N)→ TFi−1(A,N)→ . . .→ TF0(A,N)→ TP (A,N)→ 0
is exact. By Lemma 4.5 (4) with B = A this translates into the exactness of the sequence
of A-modules

0→M ⊗A N → Gi−1(A)⊗A N → . . .→ G0(A)⊗A N → P ⊗A N → 0
Hence the sequence of A-modules 0 → M → Gi−1(A) → . . . → G0(A) → P →
0 is universally exact, in the sense that it remains exact on tensoring with any finitely
presented A-module N . Let K = Ker(G0(A)→ P ) so that we have exact sequences

0→ K → G0(A)→ P → 0 and G2(A)→ G1(A)→ K → 0
Tensoring the second sequence withN we obtain thatK⊗AN = Coker(G2(A)⊗AN →
G1(A)⊗AN). Exactness ofG2(A)⊗AN → G1(A)⊗AN → G0(A)⊗AN then implies
thatK ⊗AN → G0(A)⊗AN is injective. By Algebra, Theorem 82.3 this means that the
A-module extension 0 → K → G0(A) → P → 0 is exact, and because P is assumed of
finite presentation this means the sequence is split, see Algebra, Lemma 82.4. Any splitting
P → G0(A) defines a mapP → G0 which splits the surjectionG0 → P . Thus the Yoneda
extension E′ is equivalent to the trivial Yoneda extension and we win. �

Lemma 4.9. Let A be a ring. Let M be an A-module. Let L be a linearly adequate
functor on AlgA. Then ExtiP(L,M) = 0 for i > 0 where P is the category of module-
valued functors on AlgA.

Proof. Since L is linearly adequate there exists an exact sequence

0→ L→ A⊕m → A⊕n → P → 0
Here P = Coker(A⊕m → A⊕n) is the cokernel of the map of finite free A-modules
which is given by the definition of linearly adequate functors. By Lemma 4.8 we have the
vanishing of ExtiP(P ,M) and ExtiP(A,M) for i > 0. Let K = Ker(A⊕n → P ). By the
long exact sequence of Ext groups associated to the exact sequence 0 → K → A⊕n →
P → 0 we conclude that ExtiP(K,M) = 0 for i > 0. Repeating with the sequence
0→ L→ A⊕m → K → 0 we win. �

Lemma 4.10. With notation as in Lemma 4.2 we haveRpQ(F ) = 0 for all p > 0 and
any adequate functor F .

Proof. Choose an exact sequence 0 → F → M0 → M1. Set M2 = Coker(M0 →
M1) so that 0 → F → M0 → M1 → M2 → 0 is a resolution. By Derived Categories,
Lemma 21.3 we obtain a spectral sequence

RpQ(Mq)⇒ Rp+qQ(F )
Since Q(Mq) = Mq it suffices to prove RpQ(M) = 0, p > 0 for any A-module M .
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Choose an injective resolution M → I• in the category P . Suppose that RiQ(M) is
nonzero. Then Ker(Q(Ii) → Q(Ii+1)) is strictly bigger than the image of Q(Ii−1) →
Q(Ii). Hence by Lemma 3.6 there exists a linearly adequate functor L and a map ϕ : L→
Q(Ii) mapping into the kernel of Q(Ii) → Q(Ii+1) which does not factor through the
image of Q(Ii−1) → Q(Ii). Because Q is a left adjoint to the inclusion functor the map
ϕ corresponds to a map ϕ′ : L → Ii with the same properties. Thus ϕ′ gives a nonzero
element of ExtiP(L,M) contradicting Lemma 4.9. �

5. Adequate modules

In Descent, Section 8 we have seen that quasi-coherent modules on a schemeS are the same
as quasi-coherent modules on any of the big sites (Sch/S)τ associated to S. We have seen
that there are two issues with this identification:

(1) QCoh(OS) → Mod((Sch/S)τ ,O), F 7→ Fa is not exact in general (Descent,
Lemma 10.2), and

(2) given a quasi-compact and quasi-separated morphism f : X → S the functor
f∗ does not preserve quasi-coherent sheaves on the big sites in general (Descent,
Proposition 9.4).

Part (1) means that we cannot define a triangulated subcategory of D(O) consisting of
complexes whose cohomology sheaves are quasi-coherent. Part (2) means thatRf∗F isn’t
a complex with quasi-coherent cohomology sheaves even when F is quasi-coherent and
f is quasi-compact and quasi-separated. Moreover, the examples given in the proofs of
Descent, Lemma 10.2 and Descent, Proposition 9.4 are not of a pathological nature.
In this section we discuss a slightly larger category ofO-modules on (Sch/S)τ with con-
tains the quasi-coherent modules, is abelian, and is preserved under f∗ when f is quasi-
compact and quasi-separated. To do this, suppose that S is a scheme. Let F be a presheaf
of O-modules on (Sch/S)τ . For any affine object U = Spec(A) of (Sch/S)τ we can
restrict F to (Aff/U)τ to get a presheaf of O-modules on this site. The corresponding
module-valued functor, see Section 3, will be denoted

F = FF,A : AlgA −→ Ab, B 7−→ F(Spec(B))
The assignment F 7→ FF,A is an exact functor of abelian categories.

Definition 5.1. A sheaf of O-modules F on (Sch/S)τ is adequate if there exists a
τ -covering {Spec(Ai)→ S}i∈I such that FF,Ai is adequate for all i ∈ I .

We will see below that the category of adequate O-modules is independent of the chosen
topology τ .

Lemma 5.2. Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ . For
any affine scheme Spec(A) over S the functor FF,A is adequate.

Proof. Let {Spec(Ai) → S}i∈I be a τ -covering such that FF,Ai is adequate for all
i ∈ I . We can find a standard affine τ -covering {Spec(A′

j) → Spec(A)}j=1,...,m such
that Spec(A′

j) → Spec(A) → S factors through Spec(Ai(j)) for some i(j) ∈ I . Then
we see that FF,A′

j
is the restriction of FF,Ai(j) to the category of A′

j-algebras. Hence
FF,A′

j
is adequate by Lemma 3.17. By Lemma 3.19 the sequence FF,A′

j
corresponds to

an adequate “product” functor F ′ over A′ = A′
1 × . . . × A′

m. As F is a sheaf (for the
Zariski topology) this product functor F ′ is equal to FF,A′ , i.e., is the restriction of F to
A′-algebras. Finally, {Spec(A′) → Spec(A)} is a τ -covering. It follows from Lemma
3.20 that FF,A is adequate. �
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Lemma 5.3. Let S = Spec(A) be an affine scheme. The category of adequate O-
modules on (Sch/S)τ is equivalent to the category of adequate module-valued functors
on AlgA.

Proof. Given an adequate module F the functor FF,A is adequate by Lemma 5.2.
Given an adequate functor F we choose an exact sequence 0 → F → M → N and
we consider the O-module F = Ker(Ma → Na) where Ma denotes the quasi-coherent
O-module on (Sch/S)τ associated to the quasi-coherent sheaf M̃ on S. Note that F =
FF,A, in particular the module F is adequate by definition. We omit the proof that the
constructions define mutually inverse equivalences of categories. �

Lemma 5.4. Let f : T → S be a morphism of schemes. The pullback f∗F of an
adequateO-module F on (Sch/S)τ is an adequateO-module on (Sch/T )τ .

Proof. The pullback map f∗ : Mod((Sch/S)τ ,O) → Mod((Sch/T )τ ,O) is given
by restriction, i.e., f∗F(V ) = F(V ) for any scheme V over T . Hence this lemma follows
immediately from Lemma 5.2 and the definition. �

Here is a characterization of the category of adequate O-modules. To understand the sig-
nificance, consider a map G → H of quasi-coherent OS-modules on a scheme S. The
cokernel of the associated map Ga → Ha of O-modules is quasi-coherent because it is
equal to (H/G)a. But the kernel of Ga → Ha in general isn’t quasi-coherent. However, it
is adequate.

Lemma 5.5. Let S be a scheme. Let F be an O-module on (Sch/S)τ . The following
are equivalent

(1) F is adequate,
(2) there exists an affine open covering S =

⋃
Si and maps of quasi-coherent OSi -

modules Gi → Hi such that F|(Sch/Si)τ is the kernel of Gai → Hai
(3) there exists a τ -covering {Si → S}i∈I and maps ofOSi -quasi-coherent modules
Gi → Hi such that F|(Sch/Si)τ is the kernel of Gai → Hai ,

(4) there exists a τ -covering {fi : Si → S}i∈I such that each f∗
i F is adequate,

(5) for any affine scheme U over S the restriction F|(Sch/U)τ is the kernel of a map
Ga → Ha of quasi-coherentOU -modules.

Proof. Let U = Spec(A) be an affine scheme over S. Set F = FF,A. By definition,
the functor F is adequate if and only if there exists a map of A-modules M → N such
that F = Ker(M → N). Combining with Lemmas 5.2 and 5.3 we see that (1) and (5) are
equivalent.
It is clear that (5) implies (2) and (2) implies (3). If (3) holds then we can refine the covering
{Si → S} such that each Si = Spec(Ai) is affine. Then we see, by the preliminary
remarks of the proof, that FF,Ai is adequate. Thus F is adequate by definition. Hence (3)
implies (1).
Finally, (4) is equivalent to (1) using Lemma 5.4 for one direction and that a composition
of τ -coverings is a τ -covering for the other. �

Just like is true for quasi-coherent sheaves the category of adequate modules is independent
of the topology.

Lemma 5.6. Let F be an adequate O-module on (Sch/S)τ . For any surjective flat
morphism Spec(B)→ Spec(A) of affines over S the extended Čech complex

0→ F(Spec(A))→ F(Spec(B))→ F(Spec(B ⊗A B))→ . . .
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is exact. In particular F satisfies the sheaf condition for fpqc coverings, and is a sheaf of
O-modules on (Sch/S)fppf .

Proof. With A → B as in the lemma let F = FF,A. This functor is adequate
by Lemma 5.2. By Lemma 3.5 since A → B, A → B ⊗A B, etc are flat we see that
F (B) = F (A) ⊗A B, F (B ⊗A B) = F (A) ⊗A B ⊗A B, etc. Exactness follows from
Descent, Lemma 3.6.
Thus F satisfies the sheaf condition for τ -coverings (in particular Zariski coverings) and
any faithfully flat covering of an affine by an affine. Arguing as in the proofs of Descent,
Lemma 5.1 and Descent, Proposition 5.2 we conclude that F satisfies the sheaf condition
for all fpqc coverings (made out of objects of (Sch/S)τ ). Details omitted. �

Lemma 5.6 shows in particular that for any pair of topologies τ, τ ′ the collection of ade-
quate modules for the τ -topology and the τ ′-topology are identical (as presheaves of mod-
ules on the underlying category Sch/S).

Definition 5.7. LetS be a scheme. The category of adequateO-modules on (Sch/S)τ
is denoted Adeq(O) or Adeq((Sch/S)τ ,O). If we want to think just about the abelian cat-
egory of adequate modules without choosing a topology we simply write Adeq(S).

Lemma 5.8. Let S be a scheme. Let F be an adequateO-module on (Sch/S)τ .
(1) The restriction F|SZar is a quasi-coherentOS-module on the scheme S.
(2) The restriction F|Sétale is the quasi-coherent module associated to F|SZar .
(3) For any affine scheme U over S we have Hq(U,F) = 0 for all q > 0.
(4) There is a canonical isomorphism

Hq(S,F|SZar ) = Hq((Sch/S)τ ,F).

Proof. By Lemma 3.5 and Lemma 5.2 we see that for any flat morphism of affines
U → V over S we have F(U) = F(V ) ⊗O(V ) O(U). This works in particular if U ⊂
V ⊂ S are affine opens of S , hence F|SZar is quasi-coherent. Thus (1) holds.
Let S′ → S be an étale morphism of schemes. Then for U ⊂ S′ affine open mapping into
an affine open V ⊂ S we see that F(U) = F(V ) ⊗O(V ) O(U) because U → V is étale,
hence flat. Therefore F|S′

Zar
is the pullback of F|SZar . This proves (2).

We are going to apply Cohomology on Sites, Lemma 10.9 to the site (Sch/S)τ with B the
set of affine schemes overS and Cov the set of standard affine τ -coverings. Assumption (3)
of the lemma is satisfied by Descent, Lemma 9.1 and Lemma 5.6 for the case of a covering
by a single affine. Hence we conclude that Hp(U,F) = 0 for every affine scheme U over
S. This proves (3). In exactly the same way as in the proof of Descent, Proposition 9.3
this implies the equality of cohomologies (4). �

Remark 5.9. Let S be a scheme. We have functors u : QCoh(OS)→ Adeq(O) and
v : Adeq(O) → QCoh(OS). Namely, the functor u : F 7→ Fa comes from taking the
associated O-module which is adequate by Lemma 5.5. Conversely, the functor v comes
from restriction v : G 7→ G|SZar , see Lemma 5.8. Since Fa can be described as the pull-
back of F under a morphism of ringed topoi ((Sch/S)τ ,O) → (SZar,OS), see Descent,
Remark 8.6 and since restriction is the pushforward we see that u and v are adjoint as
follows

HomOS
(F , vG) = HomO(uF ,G)

where O denotes the structure sheaf on the big site. It is immediate from the description
that the adjunction mapping F → vuF is an isomorphism for all quasi-coherent sheaves.
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Lemma 5.10. LetS be a scheme. LetF be a presheaf ofO-modules on (Sch/S)τ . If for
every affine scheme Spec(A) over S the functor FF,A is adequate, then the sheafification
of F is an adequateO-module.

Proof. Let U = Spec(A) be an affine scheme over S. Set F = FF,A. The sheafifica-
tion F# = (F+)+, see Sites, Section 10. By construction

(F)+(U) = colimU Ȟ
0(U ,F)

where the colimit is over coverings in the site (Sch/S)τ . Since U is affine it suffices to
take the limit over standard affine τ -coverings U = {Ui → U}i∈I = {Spec(Ai) →
Spec(A)}i∈I of U . Since each A→ Ai and A→ Ai ⊗A Aj is flat we see that

Ȟ0(U ,F) = Ker(
∏

F (A)⊗A Ai →
∏

F (A)⊗A Ai ⊗A Aj)

by Lemma 3.5. Since A →
∏
Ai is faithfully flat we see that this always is canonically

isomorphic to F (A) by Descent, Lemma 3.6. Thus the presheaf (F)+ has the same value
as F on all affine schemes over S. Repeating the argument once more we deduce the same
thing for F# = ((F)+)+. Thus FF,A = FF#,A and we conclude that F# is adequate.

�

Lemma 5.11. Let S be a scheme.
(1) The category Adeq(O) is abelian.
(2) The functor Adeq(O)→Mod((Sch/S)τ ,O) is exact.
(3) If 0→ F1 → F2 → F3 → 0 is a short exact sequence ofO-modules and F1 and
F3 are adequate, then F2 is adequate.

(4) The category Adeq(O) has colimits and Adeq(O) → Mod((Sch/S)τ ,O) com-
mutes with them.

Proof. Let ϕ : F → G be a map of adequate O-modules. To prove (1) and (2) it
suffices to show that K = Ker(ϕ) and Q = Coker(ϕ) computed in Mod((Sch/S)τ ,O)
are adequate. LetU = Spec(A) be an affine scheme over S. Let F = FF,A andG = FG,A.
By Lemmas 3.11 and 3.10 the kernel K and cokernel Q of the induced map F → G are
adequate functors. Because the kernel is computed on the level of presheaves, we see that
K = FK,A and we conclude K is adequate. To prove the result for the cokernel, denote
Q′ the presheaf cokernel of ϕ. ThenQ = FQ′,A andQ = (Q′)#. HenceQ is adequate by
Lemma 5.10.

Let 0→ F1 → F2 → F3 → 0 is a short exact sequence of O-modules and F1 and F3 are
adequate. Let U = Spec(A) be an affine scheme over S. Let Fi = FFi,A. The sequence of
functors

0→ F1 → F2 → F3 → 0
is exact, because for V = Spec(B) affine over U we have H1(V,F1) = 0 by Lemma 5.8.
Since F1 and F3 are adequate functors by Lemma 5.2 we see that F2 is adequate by Lemma
3.16. Thus F2 is adequate.

Let I → Adeq(O), i 7→ Fi be a diagram. Denote F = colimi Fi the colimit computed
in Mod((Sch/S)τ ,O). To prove (4) it suffices to show that F is adequate. Let F ′ =
colimi Fi be the colimit computed in presheaves of O-modules. Then F = (F ′)#. Let
U = Spec(A) be an affine scheme over S. Let Fi = FFi,A. By Lemma 3.12 the functor
colimi Fi = FF ′,A is adequate. Lemma 5.10 shows that F is adequate. �
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The following lemma tells us that the total direct image Rf∗F of an adequate module
under a quasi-compact and quasi-separated morphism is a complex whose cohomology
sheaves are adequate.

Lemma 5.12. Let f : T → S be a quasi-compact and quasi-separated morphism of
schemes. For any adequateOT -module on (Sch/T )τ the pushforward f∗F and the higher
direct images Rif∗F are adequateOS-modules on (Sch/S)τ .

Proof. First we explain how to compute the higher direct images. Choose an injec-
tive resolution F → I•. Then Rif∗F is the ith cohomology sheaf of the complex f∗I•.
Hence Rif∗F is the sheaf associated to the presheaf which associates to an object U/S of
(Sch/S)τ the module

Ker(f∗Ii(U)→ f∗Ii+1(U))
Im(f∗Ii−1(U)→ f∗Ii(U)) = Ker(Ii(U ×S T )→ Ii+1(U ×S T ))

Im(Ii−1(U ×S T )→ Ii(U ×S T ))
= Hi(U ×S T,F)
= Hi((Sch/U ×S T )τ ,F|(Sch/U×ST )τ )
= Hi(U ×S T,F|(U×ST )Zar )

The first equality by Topologies, Lemma 7.12 (and its analogues for other topologies), the
second equality by definition of cohomology of F over an object of (Sch/T )τ , the third
equality by Cohomology on Sites, Lemma 7.1, and the last equality by Lemma 5.8. Thus
by Lemma 5.10 it suffices to prove the claim stated in the following paragraph.

Let A be a ring. Let T be a scheme quasi-compact and quasi-separated over A. Let F be an
adequate OT -module on (Sch/T )τ . For an A-algebra B set TB = T ×Spec(A) Spec(B)
and denote FB = F|(TB)Zar the restriction of F to the small Zariski site of TB . (Recall
that this is a “usual” quasi-coherent sheaf on the scheme TB , see Lemma 5.8.) Claim: The
functor

B 7−→ Hq(TB ,FB)
is adequate. We will prove the lemma by the usual procedure of cutting T into pieces.

Case I: T is affine. In this case the schemes TB are all affine and Hq(TB ,FB) = 0 for all
q ≥ 1. The functor B 7→ H0(TB ,FB) is adequate by Lemma 3.18.

Case II: T is separated. Let n be the minimal number of affines needed to cover T . We
argue by induction on n. The base case is Case I. Choose an affine open covering T =
V1 ∪ . . . ∪ Vn. Set V = V1 ∪ . . . ∪ Vn−1 and U = Vn. Observe that

U ∩ V = (V1 ∩ Vn) ∪ . . . ∪ (Vn−1 ∩ Vn)

is also a union of n− 1 affine opens as T is separated, see Schemes, Lemma 21.7. Note that
for each B the base changes UB , VB and (U ∩ V )B = UB ∩ VB behave in the same way.
Hence we see that for each B we have a long exact sequence

0→ H0(TB ,FB)→ H0(UB ,FB)⊕H0(VB ,FB)→ H0((U∩V )B ,FB)→ H1(TB ,FB)→ . . .

functorial in B, see Cohomology, Lemma 8.2. By induction hypothesis the functors B 7→
Hq(UB ,FB), B 7→ Hq(VB ,FB), and B 7→ Hq((U ∩ V )B ,FB) are adequate. Using
Lemmas 3.11 and 3.10 we see that our functor B 7→ Hq(TB ,FB) sits in the middle of a
short exact sequence whose outer terms are adequate. Thus the claim follows from Lemma
3.16.
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Case III: General quasi-compact and quasi-separated case. The proof is again by induction
on the number n of affines needed to cover T . The base case n = 1 is Case I. Choose an
affine open covering T = V1 ∪ . . . ∪ Vn. Set V = V1 ∪ . . . ∪ Vn−1 and U = Vn. Note
that since T is quasi-separated U ∩ V is a quasi-compact open of an affine scheme, hence
Case II applies to it. The rest of the argument proceeds in exactly the same manner as in
the paragraph above and is omitted. �

6. Parasitic adequate modules

In this section we start comparing adequate modules and quasi-coherent modules on a
scheme S. Recall that there are functors u : QCoh(OS)→ Adeq(O) and v : Adeq(O)→
QCoh(OS) satisfying the adjunction

HomQCoh(OS)(F , vG) = HomAdeq(O)(uF ,G)
and such that F → vuF is an isomorphism for every quasi-coherent sheaf F , see Remark
5.9. Hence u is a fully faithful embedding and we can identify QCoh(OS) with a full
subcategory of Adeq(O). The functor v is exact but u is not left exact in general. The
kernel of v is the subcategory of parasitic adequate modules.

In Descent, Definition 12.1 we give the definition of a parasitic module. For adequate
modules the notion does not depend on the chosen topology.

Lemma 6.1. Let S be a scheme. Let F be an adequate O-module on (Sch/S)τ . The
following are equivalent:

(1) vF = 0,
(2) F is parasitic,
(3) F is parasitic for the τ -topology,
(4) F(U) = 0 for all U ⊂ S open, and
(5) there exists an affine open covering S =

⋃
Ui such that F(Ui) = 0 for all i.

Proof. The implications (2)⇒ (3)⇒ (4)⇒ (5) are immediate from the definitions.
Assume (5). Suppose that S =

⋃
Ui is an affine open covering such thatF(Ui) = 0 for all

i. Let V → S be a flat morphism. There exists an affine open covering V =
⋃
Vj such that

each Vj maps into some Ui. As the morphism Vj → S is flat, also Vj → Ui is flat. Hence
the corresponding ring map Ai = O(Ui)→ O(Vj) = Bj is flat. Thus by Lemma 5.2 and
Lemma 3.5 we see that F(Ui) ⊗Ai Bj → F(Vj) is an isomorphism. Hence F(Vj) = 0.
Since F is a sheaf for the Zariski topology we conclude that F(V ) = 0. In this way we
see that (5) implies (2).

This proves the equivalence of (2), (3), (4), and (5). As (1) is equivalent to (3) (see Remark
5.9) we conclude that all five conditions are equivalent. �

Let S be a scheme. The subcategory of parasitic adequate modules is a Serre subcategory
of Adeq(O). The quotient is the category of quasi-coherent modules.

Lemma 6.2. Let S be a scheme. The subcategory C ⊂ Adeq(O) of parasitic ade-
quate modules is a Serre subcategory. Moreover, the functor v induces an equivalence of
categories

Adeq(O)/C = QCoh(OS).

Proof. The category C is the kernel of the exact functor v : Adeq(O)→ QCoh(OS),
see Lemma 6.1. Hence it is a Serre subcategory by Homology, Lemma 10.4. By Homology,
Lemma 10.6 we obtain an induced exact functor v : Adeq(O)/C → QCoh(OS). Because
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u is a right inverse to v we see right away that v is essentially surjective. We see that v is
faithful by Homology, Lemma 10.7. Because u is a right inverse to v we finally conclude
that v is fully faithful. �

Lemma 6.3. Let f : T → S be a quasi-compact and quasi-separated morphism of
schemes. For any parasitic adequate OT -module on (Sch/T )τ the pushforward f∗F and
the higher direct images Rif∗F are parasitic adequateOS-modules on (Sch/S)τ .

Proof. We have already seen in Lemma 5.12 that these higher direct images are ad-
equate. Hence it suffices to show that (Rif∗F)(Ui) = 0 for any τ -covering {Ui → S}
open. And Rif∗F is parasitic by Descent, Lemma 12.3. �

7. Derived categories of adequate modules, I

Let S be a scheme. We continue the discussion started in Section 6. The exact functor v
induces a functor

D(Adeq(O)) −→ D(QCoh(OS))
and similarly for bounded versions.

Lemma 7.1. Let S be a scheme. Let C ⊂ Adeq(O) denote the full subcategory con-
sisting of parasitic adequate modules. Then

D(Adeq(O))/DC(Adeq(O)) = D(QCoh(OS))
and similarly for the bounded versions.

Proof. Follows immediately from Derived Categories, Lemma 17.3. �

Next, we look for a description the other way around by looking at the functors
K+(QCoh(OS)) −→ K+(Adeq(O)) −→ D+(Adeq(O)) −→ D+(QCoh(OS)).

In some cases the derived category of adequate modules is a localization of the homotopy
category of complexes of quasi-coherent modules at universal quasi-isomorphisms. Let S
be a scheme. A map of complexesϕ : F• → G• of quasi-coherentOS-modules is said to be
a universal quasi-isomorphism if for every morphism of schemes f : T → S the pullback
f∗ϕ is a quasi-isomorphism.

Lemma 7.2. Let U = Spec(A) be an affine scheme. The bounded below derived cat-
egory D+(Adeq(O)) is the localization of K+(QCoh(OU )) at the multiplicative subset
of universal quasi-isomorphisms.

Proof. If ϕ : F• → G• is a morphism of complexes of quasi-coherent OU -modules,
then uϕ : uF• → uG• is a quasi-isomorphism if and only if ϕ is a universal quasi-
isomorphism. Hence the collectionS of universal quasi-isomorphisms is a saturated multi-
plicative system compatible with the triangulated structure by Derived Categories, Lemma
5.4. Hence S−1K+(QCoh(OU )) exists and is a triangulated category, see Derived Cat-
egories, Proposition 5.6. We obtain a canonical functor can : S−1K+(QCoh(OU )) →
D+(Adeq(O)) by Derived Categories, Lemma 5.7.
Note that, almost by definition, every adequate module on U has an embedding into a
quasi-coherent sheaf, see Lemma 5.5. Hence by Derived Categories, Lemma 15.5 given
F• ∈ Ob(K+(Adeq(O))) there exists a quasi-isomorphism F• → uG• where G• ∈
Ob(K+(QCoh(OU ))). This proves that can is essentially surjective.
Similarly, suppose that F• and G• are bounded below complexes of quasi-coherent OU -
modules. A morphism in D+(Adeq(O)) between these consists of a pair f : uF• → H•
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and s : uG• → H• where s is a quasi-isomorphism. Pick a quasi-isomorphism s′ : H• →
uE•. Then we see that s′ ◦ f : F → E• and the universal quasi-isomorphism s′ ◦ s :
G• → E• give a morphism in S−1K+(QCoh(OU )) mapping to the given morphism.
This proves the ”fully” part of full faithfulness. Faithfulness is proved similarly. �

Lemma 7.3. Let U = Spec(A) be an affine scheme. The inclusion functor

Adeq(O)→Mod((Sch/U)τ ,O)
has a right adjoint A1. Moreover, the adjunction mapping A(F)→ F is an isomorphism
for every adequate module F .

Proof. By Topologies, Lemma 7.11 (and similarly for the other topologies) we may
work withO-modules on (Aff/U)τ . DenoteP the category of module-valued functors on
AlgA and A the category of adequate functors on AlgA. Denote i : A → P the inclusion
functor. Denote Q : P → A the construction of Lemma 4.1. We have the commutative
diagram

(7.3.1)

Adeq(O)
k
// Mod((Aff/U)τ ,O)

j
// PMod((Aff/U)τ ,O)

A i // P
The left vertical equality is Lemma 5.3 and the right vertical equality was explained in
Section 3. Define A(F) = Q(j(F)). Since j is fully faithful it follows immediately that
A is a right adjoint of the inclusion functor k. Also, since k is fully faithful too, the final
assertion follows formally. �

The functor A is a right adjoint hence left exact. Since the inclusion functor is exact, see
Lemma 5.11 we conclude thatA transforms injectives into injectives, and that the category
Adeq(O) has enough injectives, see Homology, Lemma 29.3 and Injectives, Theorem 8.4.
This also follows from the equivalence in (7.3.1) and Lemma 4.2.

Lemma 7.4. Let U = Spec(A) be an affine scheme. For any object F of Adeq(O) we
have RpA(F) = 0 for all p > 0 where A is as in Lemma 7.3.

Proof. With notation as in the proof of Lemma 7.3 choose an injective resolution
k(F)→ I• in the category ofO-modules on (Aff/U)τ . By Cohomology on Sites, Lemmas
12.2 and Lemma 5.8 the complex j(I•) is exact. On the other hand, each j(In) is an
injective object of the category of presheaves of modules by Cohomology on Sites, Lemma
12.1. It follows that RpA(F) = RpQ(j(k(F))). Hence the result now follows from
Lemma 4.10. �

LetS be a scheme. By the discussion in Section 5 the embedding Adeq(O) ⊂Mod((Sch/S)τ ,O)
exhibits Adeq(O) as a weak Serre subcategory of the category of allO-modules. Denote

DAdeq(O) ⊂ D(O) = D(Mod((Sch/S)τ ,O))
the triangulated subcategory of complexes whose cohomology sheaves are adequate, see
Derived Categories, Section 17. We obtain a canonical functor

D(Adeq(O)) −→ DAdeq(O)

see Derived Categories, Equation (17.1.1).

1This is the “adequator”.
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Lemma 7.5. If U = Spec(A) is an affine scheme, then the bounded below version
(7.5.1) D+(Adeq(O)) −→ D+

Adeq(O)

of the functor above is an equivalence.

Proof. Let A : Mod(O) → Adeq(O) be the right adjoint to the inclusion functor
constructed in Lemma 7.3. Since A is left exact and since Mod(O) has enough injectives,
A has a right derived functor RA : D+

Adeq(O) → D+(Adeq(O)). We claim that RA is a
quasi-inverse to (7.5.1). To see this the key fact is that if F is an adequate module, then
the adjunction map F → RA(F) is a quasi-isomorphism by Lemma 7.4.
Namely, to prove the lemma in full it suffices to show:

(1) Given F• ∈ K+(Adeq(O)) the canonical map F• → RA(F•) is a quasi-
isomorphism, and

(2) givenG• ∈ K+(Mod(O)) the canonical mapRA(G•)→ G• is a quasi-isomorphism.
Both (1) and (2) follow from the key fact via a spectral sequence argument using one of
the spectral sequences of Derived Categories, Lemma 21.3. Some details omitted. �

Lemma 7.6. Let U = Spec(A) be an affine scheme. Let F and G be adequate O-
modules. For any i ≥ 0 the natural map

ExtiAdeq(O)(F ,G) −→ ExtiMod(O)(F ,G)
is an isomorphism.

Proof. By definition these ext groups are computed as hom sets in the derived cate-
gory. Hence this follows immediately from Lemma 7.5. �

8. Pure extensions

We want to characterize extensions of quasi-coherent sheaves on the big site of an affine
schemes in terms of algebra. To do this we introduce the following notion.

Definition 8.1. Let A be a ring.
(1) An A-module P is said to be pure projective if for every universally exact se-

quence 0→ K →M → N → 0 ofA-module the sequence 0→ HomA(P,K)→
HomA(P,M)→ HomA(P,N)→ 0 is exact.

(2) AnA-module I is said to be pure injective if for every universally exact sequence
0 → K → M → N → 0 of A-module the sequence 0 → HomA(N, I) →
HomA(M, I)→ HomA(K, I)→ 0 is exact.

Let’s characterize pure projectives.

Lemma 8.2. Let A be a ring.
(1) A module is pure projective if and only if it is a direct summand of a direct sum

of finitely presented A-modules.
(2) For any module M there exists a universally exact sequence 0 → N → P →

M → 0 with P pure projective.

Proof. First note that a finitely presented A-module is pure projective by Algebra,
Theorem 82.3. Hence a direct summand of a direct sum of finitely presented A-modules
is indeed pure projective. Let M be any A-module. Write M = colimi∈I Pi as a filtered
colimit of finitely presented A-modules. Consider the sequence

0→ N →
⊕

Pi →M → 0.
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For any finitely presented A-module P the map HomA(P,
⊕
Pi) → HomA(P,M) is

surjective, as any map P →M factors through some Pi. Hence by Algebra, Theorem 82.3
this sequence is universally exact. This proves (2). If now M is pure projective, then the
sequence is split and we see that M is a direct summand of

⊕
Pi. �

Let’s characterize pure injectives.

Lemma 8.3. Let A be a ring. For any A-module M set M∨ = HomZ(M,Q/Z).
(1) For any A-module M the A-module M∨ is pure injective.
(2) An A-module I is pure injective if and only if the map I → (I∨)∨ splits.
(3) For any module M there exists a universally exact sequence 0 → M → I →

N → 0 with I pure injective.

Proof. We will use the properties of the functor M 7→ M∨ found in More on Al-
gebra, Section 55 without further mention. Part (1) holds because HomA(N,M∨) =
HomZ(N ⊗A M,Q/Z) and because Q/Z is injective in the category of abelian groups.
Hence if I → (I∨)∨ is split, then I is pure injective. We claim that for any A-module M
the evaluation map ev : M → (M∨)∨ is universally injective. To see this note that ev∨ :
((M∨)∨)∨ → M∨ has a right inverse, namely ev′ : M∨ → ((M∨)∨)∨. Then for any
A-moduleN applying the exact faithful functor ∨ to the mapN ⊗AM → N ⊗A (M∨)∨

gives

HomA(N, ((M∨)∨)∨) =
(
N ⊗A (M∨)∨

)∨
→
(
N ⊗AM

)∨
= HomA(N,M∨)

which is surjective by the existence of the right inverse. The claim follows. The claim
implies (3) and the necessity of the condition in (2). �

Before we continue we make the following observation which we will use frequently in
the rest of this section.

Lemma 8.4. Let A be a ring.
(1) Let L → M → N be a universally exact sequence of A-modules. Let K =

Im(M → N). Then K → N is universally injective.
(2) Any universally exact complex can be split into universally exact short exact

sequences.

Proof. Proof of (1). For any A-module T the sequence L ⊗A T → M ⊗A T →
K ⊗A T → 0 is exact by right exactness of ⊗. By assumption the sequence L ⊗A T →
M ⊗A T → N ⊗A T is exact. Combined this shows thatK⊗A T → N ⊗A T is injective.

Part (2) means the following: Suppose that M• is a universally exact complex of A-
modules. Set Ki = Ker(di) ⊂ M i. Then the short exact sequences 0 → Ki → M i →
Ki+1 → 0 are universally exact. This follows immediately from part (1). �

Definition 8.5. Let A be a ring. Let M be an A-module.
(1) A pure projective resolution P• →M is a universally exact sequence

. . .→ P1 → P0 →M → 0
with each Pi pure projective.

(2) A pure injective resolution M → I• is a universally exact sequence

0→M → I0 → I1 → . . .

with each Ii pure injective.
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These resolutions satisfy the usual uniqueness properties among the class of all universally
exact left or right resolutions.

Lemma 8.6. Let A be a ring.
(1) Any A-module has a pure projective resolution.

Let M → N be a map of A-modules. Let P• →M be a pure projective resolution and let
N• → N be a universally exact resolution.

(2) There exists a map of complexes P• → N• inducing the given map
M = Coker(P1 → P0)→ Coker(N1 → N0) = N

(3) two maps α, β : P• → N• inducing the same map M → N are homotopic.

Proof. Part (1) follows immediately from Lemma 8.2. Before we prove (2) and (3)
note that by Lemma 8.4 we can split the universally exact complex N• → N → 0 into
universally exact short exact sequences 0→ K0 → N0 → N → 0 and 0→ Ki → Ni →
Ki−1 → 0.
Proof of (2). Because P0 is pure projective we can find a map P0 → N0 lifting the map
P0 → M → N . We obtain an induced map P1 → F0 → N0 wich ends up in K0. Since
P1 is pure projective we may lift this to a map P1 → N1. This in turn induces a map
P2 → P1 → N1 which maps to zero intoN0, i.e., intoK1. Hence we may lift to get a map
P2 → N2. Repeat.
Proof of (3). To show that α, β are homotopic it suffices to show the difference γ = α−β
is homotopic to zero. Note that the image of γ0 : P0 → N0 is contained in K0. Hence we
may lift γ0 to a map h0 : P0 → N1. Consider the map γ′

1 = γ1−h0 ◦dP,1 : P1 → N1. By
our choice of h0 we see that the image of γ′

1 is contained inK1. Since P1 is pure projective
may lift γ′

1 to a map h1 : P1 → N2. At this point we have γ1 = h0 ◦ dF,1 + dN,2 ◦ h1.
Repeat. �

Lemma 8.7. Let A be a ring.
(1) Any A-module has a pure injective resolution.

Let M → N be a map of A-modules. Let M →M• be a universally exact resolution and
let N → I• be a pure injective resolution.

(2) There exists a map of complexes M• → I• inducing the given map

M = Ker(M0 →M1)→ Ker(I0 → I1) = N

(3) two maps α, β : M• → I• inducing the same map M → N are homotopic.

Proof. This lemma is dual to Lemma 8.6. The proof is identical, except one has to
reverse all the arrows. �

Using the material above we can define pure extension groups as follows. Let A be a ring
and let M , N be A-modules. Choose a pure injective resolution N → I•. By Lemma 8.7
the complex

HomA(M, I•)
is well defined up to homotopy. Hence its ith cohomology module is a well defined in-
variant of M and N .

Definition 8.8. LetA be a ring and letM ,N beA-modules. The ith pure extension
module PextiA(M,N) is the ith cohomology module of the complex HomA(M, I•) where
I• is a pure injective resolution of N .
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Warning: It is not true that an exact sequence of A-modules gives rise to a long exact
sequence of pure extensions groups. (You need a universally exact sequence for this.) We
collect some facts which are obvious from the material above.

Lemma 8.9. Let A be a ring.
(1) PextiA(M,N) = 0 for i > 0 whenever N is pure injective,
(2) PextiA(M,N) = 0 for i > 0 whenever M is pure projective, in particular if M

is an A-module of finite presentation,
(3) PextiA(M,N) is also the ith cohomology module of the complex HomA(P•, N)

where P• is a pure projective resolution of M .

Proof. To see (3) consider the double complex
A•,• = HomA(P•, I

•)
Each of its rows is exact except in degree 0 where its cohomology is HomA(M, Iq). Each
of its columns is exact except in degree 0 where its cohomology is HomA(Pp, N). Hence
the two spectral sequences associated to this complex in Homology, Section 25 degenerate,
giving the equality. �

9. Higher exts of quasi-coherent sheaves on the big site

It turns out that the module-valued functor I associated to a pure injective module I gives
rise to an injective object in the category of adequate functors on AlgA. Warning: It is
not true that a pure projective module gives rise to a projective object in the category of
adequate functors. We do have plenty of projective objects, namely, the linearly adequate
functors.

Lemma 9.1. Let A be a ring. Let A be the category of adequate functors on AlgA.
The injective objects ofA are exactly the functors I where I is a pure injectiveA-module.

Proof. Let I be an injective object of A. Choose an embedding I → M for some
A-module M . As I is injective we see that M = I ⊕ F for some module-valued functor
F . ThenM = I(A)⊕F (A) and it follows that I = I(A). Thus we see that any injective
object is of the form I for some A-module I . It is clear that the module I has to be pure
injective since any universally exact sequence 0 → M → N → L → 0 gives rise to an
exact sequence 0→M → N → L→ 0 ofA.
Finally, suppose that I is a pure injectiveA-module. Choose an embedding I → J into an
injective object ofA (see Lemma 4.2). We have seen above that J = I ′ for someA-module
I ′ which is pure injective. As I → I ′ is injective the map I → I ′ is universally injective.
By assumption on I it splits. Hence I is a summand of J = I ′ whence an injective object
of the categoryA. �

Let U = Spec(A) be an affine scheme. Let M be an A-module. We will use the notation
Ma to denote the quasi-coherent sheaf ofO-modules on (Sch/U)τ associated to the quasi-
coherent sheaf M̃ onU . Now we have all the notation in place to formulate the following
lemma.

Lemma 9.2. Let U = Spec(A) be an affine scheme. Let M , N be A-modules. For all
i we have a canonical isomorphism

ExtiMod(O)(Ma, Na) = PextiA(M,N)
functorial in M and N .
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Proof. Let us construct a canonical arrow from right to left. Namely, if N → I•

is a pure injective resolution, then Ma → (I•)a is an exact complex of (adequate) O-
modules. Hence any element of PextiA(M,N) gives rise to a map Na → Ma[i] in D(O),
i.e., an element of the group on the left.

To prove this map is an isomorphism, note that we may replace ExtiMod(O)(Ma, Na) by
ExtiAdeq(O)(Ma, Na), see Lemma 7.6. LetA be the category of adequate functors on AlgA.
We have seen thatA is equivalent to Adeq(O), see Lemma 5.3; see also the proof of Lemma
7.3. Hence now it suffices to prove that

ExtiA(M,N) = PextiA(M,N)
However, this is clear from Lemma 9.1 as a pure injective resolution N → I• exactly
corresponds to an injective resolution of N inA. �

10. Derived categories of adequate modules, II

Let S be a scheme. Denote OS the structure sheaf of S and O the structure sheaf of the
big site (Sch/S)τ . In Descent, Remark 8.4 we constructed a morphism of ringed sites
(10.0.1) f : ((Sch/S)τ ,O) −→ (SZar,OS).
In the previous sections have seen that the functor f∗ : Mod(O) → Mod(OS) trans-
forms adequate sheaves into quasi-coherent sheaves, and induces an exact functor v :
Adeq(O) → QCoh(OS), and in fact that f∗ = v induces an equivalence Adeq(O)/C →
QCoh(OS) where C is the subcategory of parasitic adequate modules. Moreover, the func-
tor f∗ transforms quasi-coherent modules into adequate modules, and induces a functor
u : QCoh(OS)→ Adeq(O) which is a left adjoint to v.
There is a very similar relationship between DAdeq(O) and DQCoh(S). First we explain
why the category DAdeq(O) is independent of the chosen topology.

Remark 10.1. LetS be a scheme. Let τ, τ ′ ∈ {Zar, étale, smooth, syntomic, fppf}.
DenoteOτ , resp.Oτ ′ the structure sheafO viewed as a sheaf on (Sch/S)τ , resp. (Sch/S)τ ′ .
Then DAdeq(Oτ ) and DAdeq(Oτ ′) are canonically isomorphic. This follows from Coho-
mology on Sites, Lemma 29.1. Namely, assume τ is stronger than the topology τ ′, let
C = (Sch/S)fppf , and let B the collection of affine schemes over S. Assumptions (1) and
(2) we’ve seen above. Assumption (3) is clear and assumption (4) follows from Lemma 5.8.

Remark 10.2. Let S be a scheme. The morphism f see (10.0.1) induces adjoint func-
tors Rf∗ : DAdeq(O) → DQCoh(S) and Lf∗ : DQCoh(S) → DAdeq(O). Moreover
Rf∗Lf

∗ ∼= idDQCoh(S).
We sketch the proof. By Remark 10.1 we may assume the topology τ is the Zariski topol-
ogy. We will use the existence of the unbounded total derived functors Lf∗ and Rf∗ on
O-modules and their adjointness, see Cohomology on Sites, Lemma 19.1. In this case f∗ is
just the restriction to the subcategorySZar of (Sch/S)Zar. Hence it is clear thatRf∗ = f∗
induces Rf∗ : DAdeq(O) → DQCoh(S). Suppose that G• is an object of DQCoh(S). We
may choose a system K•

1 → K•
2 → . . . of bounded above complexes of flat OS-modules

whose transition maps are termwise split injectives and a diagram

K•
1

��

// K•
2

��

// . . .

τ≤1G• // τ≤2G• // . . .
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with the properties (1), (2), (3) listed in Derived Categories, Lemma 29.1 whereP is the col-
lection of flatOS-modules. ThenLf∗G• is computed by colim f∗K•

n, see Cohomology on
Sites, Lemmas 18.1 and 18.2 (note that our sites have enough points by Étale Cohomology,
Lemma 30.1). We have to see that Hi(Lf∗G•) = colimHi(f∗K•

n) is adequate for each i.
By Lemma 5.11 we conclude that it suffices to show that each Hi(f∗K•

n) is adequate.
The adequacy ofHi(f∗K•

n) is local onS , hence we may assume thatS = Spec(A) is affine.
Because S is affineDQCoh(S) = D(QCoh(OS)), see the discussion in Derived Categories
of Schemes, Section 3. Hence there exists a quasi-isomorphism F• → K•

n where F• is a
bounded above complex of flat quasi-coherent modules. Then f∗F• → f∗K•

n is a quasi-
isomorphism, and the cohomology sheaves of f∗F• are adequate.
The final assertion Rf∗Lf

∗ ∼= idDQCoh(S) follows from the explicit description of the
functors above. (In plain English: if F is quasi-coherent and p > 0, then Lpf

∗F is a
parasitic adequate module.)

Remark 10.3. Remark 10.2 above implies we have an equivalence of derived cate-
gories

DAdeq(O)/DC(O) −→ DQCoh(S)
where C is the category of parasitic adequate modules. Namely, it is clear that DC(O) is
the kernel of Rf∗, hence a functor as indicated. For any object X of DAdeq(O) the map
Lf∗Rf∗X → X maps to a quasi-isomorphism in DQCoh(S), hence Lf∗Rf∗X → X is
an isomorphism in DAdeq(O)/DC(O). Finally, for X,Y objects of DAdeq(O) the map

Rf∗ : HomDAdeq(O)/DC(O)(X,Y )→ HomDQCoh(S)(Rf∗X,Rf∗Y )

is bijective as Lf∗ gives an inverse (by the remarks above).
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CHAPTER 47

Dualizing Complexes

1. Introduction

In this chapter we discuss dualizing complexes in commutative algebra. A reference is [?].

We begin with a discussion of essential surjections and essential injections, projective cov-
ers, injective hulls, duality for Artinian rings, and study injective hulls of residue fields,
leading quickly to a proof of Matlis duality. See Sections 2, 3, 4, 5, 6, and 7 and Proposition
7.8.

This is followed by three sections discussing local cohomology in great generality, see
Sections 8, 9, and 10. We apply some of this to a discussion of depth in Section 11. In
another application we show how, given a finitely generated ideal I of a ring A, the “I-
complete” and “I-torsion” objects of the derived category of A are equivalent, see Section
12. To learn more about local cohomology, for example the finiteness theorem (which
relies on local duality – see below) please visit Local Cohomology, Section 1.

The bulk of this chapter is devoted to duality for a ring map and dualizing complexes. See
Sections 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, and 23. The key definition is that of a dualizing
complex ω•

A over a Noetherian ring A as an object ω•
A ∈ D+(A) whose cohomology

modules Hi(ω•
A) are finite A-modules, which has finite injective dimension, and is such

that the map
A −→ RHomA(ω•

A, ω
•
A)

is a quasi-isomorphism. After establishing some elementary properties of dualizing com-
plexes, we show a dualizing complex gives rise to a dimension function. Next, we prove
Grothendieck’s local duality theorem. After briefly discussing dualizing modules and
Cohen-Macaulay rings, we introduce Gorenstein rings and we show many familiar Noe-
therian rings have dualizing complexes. In a last section we apply the material to show
there is a good theory of Noetherian local rings whose formal fibres are Gorenstein or local
complete intersections.

In the last few sections, we describe an algebraic construction of the “upper shriek functors”
used in algebraic geometry, for example in the book [?]. This topic is continued in the
chapter on duality for schemes. See Duality for Schemes, Section 1.

2. Essential surjections and injections

We will mostly work in categories of modules, but we may as well make the definition in
general.

Definition 2.1. LetA be an abelian category.
(1) An injection A ⊂ B of A is essential, or we say that B is an essential extension

of A, if every nonzero subobject B′ ⊂ B has nonzero intersection with A.

3923
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(2) A surjection f : A → B of A is essential if for every proper subobject A′ ⊂ A
we have f(A′) 6= B.

Some lemmas about this notion.

Lemma 2.2. LetA be an abelian category.
(1) If A ⊂ B and B ⊂ C are essential extensions, then A ⊂ C is an essential

extension.
(2) If A ⊂ B is an essential extension and C ⊂ B is a subobject, then A ∩C ⊂ C is

an essential extension.
(3) If A → B and B → C are essential surjections, then A → C is an essential

surjection.
(4) Given an essential surjection f : A → B and a surjection A → C with kernel

K , the morphism C → B/f(K) is an essential surjection.

Proof. Omitted. �

Lemma 2.3. Let R be a ring. Let M be an R-module. Let E = colimEi be a filtered
colimit ofR-modules. Suppose given a compatible system of essential injectionsM → Ei
of R-modules. Then M → E is an essential injection.

Proof. Immediate from the definitions and the fact that filtered colimits are exact
(Algebra, Lemma 8.8). �

Lemma 2.4. LetR be a ring. LetM ⊂ N beR-modules. The following are equivalent
(1) M ⊂ N is an essential extension,
(2) for all x ∈ N nonzero there exists an f ∈ R such that fx ∈M and fx 6= 0.

Proof. Assume (1) and let x ∈ N be a nonzero element. By (1) we haveRx∩M 6= 0.
This implies (2).

Assume (2). Let N ′ ⊂ N be a nonzero submodule. Pick x ∈ N ′ nonzero. By (2) we can
find f ∈ R with fx ∈M and fx 6= 0. Thus N ′ ∩M 6= 0. �

3. Injective modules

Some results about injective modules over rings.

Lemma 3.1. Let R be a ring. Any product of injective R-modules is injective.

Proof. Special case of Homology, Lemma 27.3. �

Lemma 3.2. Let R → S be a flat ring map. If E is an injective S-module, then E is
injective as an R-module.

Proof. This is true because HomR(M,E) = HomS(M⊗RS,E) by Algebra, Lemma
14.3 and the fact that tensoring with S is exact. �

Lemma 3.3. Let R → S be an epimorphism of rings. Let E be an S-module. If E is
injective as an R-module, then E is an injective S-module.

Proof. This is true because HomR(N,E) = HomS(N,E) for any S-module N , see
Algebra, Lemma 107.14. �

Lemma 3.4. LetR→ S be a ring map. IfE is an injectiveR-module, then HomR(S,E)
is an injective S-module.
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Proof. This is true because HomS(N,HomR(S,E)) = HomR(N,E) by Algebra,
Lemma 14.4. �

Lemma 3.5. LetR be a ring. Let I be an injectiveR-module. LetE ⊂ I be a submod-
ule. The following are equivalent

(1) E is injective, and
(2) for all E ⊂ E′ ⊂ I with E ⊂ E′ essential we have E = E′.

In particular, an R-module is injective if and only if every essential extension is trivial.

Proof. The final assertion follows from the first and the fact that the category of
R-modules has enough injectives (More on Algebra, Section 55).

Assume (1). Let E ⊂ E′ ⊂ I as in (2). Then the map idE : E → E can be extended to a
map α : E′ → E. The kernel of α has to be zero because it intersectsE trivially andE′ is
an essential extension. Hence E = E′.

Assume (2). LetM ⊂ N beR-modules and let ϕ : M → E be anR-module map. In order
to prove (1) we have to show that ϕ extends to a morphism N → E. Consider the set S
of pairs (M ′, ϕ′) where M ⊂ M ′ ⊂ N and ϕ′ : M ′ → E is an R-module map agreeing
with ϕ onM . We define an ordering on S by the rule (M ′, ϕ′) ≤ (M ′′, ϕ′′) if and only if
M ′ ⊂M ′′ and ϕ′′|M ′ = ϕ′. It is clear that we can take the maximum of a totally ordered
subset of S . Hence by Zorn’s lemma we may assume (M,ϕ) is a maximal element.

Choose an extensionψ : N → I ofϕ composed with the inclusionE → I . This is possible
as I is injective. If ψ(N) ⊂ E , then ψ is the desired extension. If ψ(N) is not contained in
E , then by (2) the inclusion E ⊂ E + ψ(N) is not essential. hence we can find a nonzero
submodule K ⊂ E +ψ(N) meeting E in 0. This means that M ′ = ψ−1(E +K) strictly
contains M . Thus we can extend ϕ to M ′ using

M ′ ψ|M′−−−→ E +K → (E +K)/K = E

This contradicts the maximality of (M,ϕ). �

Example 3.6. LetR be a reduced ring. Let p ⊂ R be a minimal prime so thatK = Rp

is a field (Algebra, Lemma 25.1). Then K is an injective R-module. Namely, we have
HomR(M,K) = HomK(Mp,K) for any R-module M . Since localization is an exact
functor and taking duals is an exact functor onK-vector spaces we conclude HomR(−,K)
is an exact functor, i.e., K is an injective R-module.

Lemma 3.7. LetR be a Noetherian ring. A direct sum of injective modules is injective.

Proof. Let Ei be a family of injective modules parametrized by a set I . Set E =⊕
Ei. To show that E is injective we use Injectives, Lemma 2.6. Thus let ϕ : I → E be a

module map from an ideal ofR intoE. As I is a finiteR-module (becauseR is Noetherian)
we can find finitely many elements i1, . . . , ir ∈ I such that ϕ maps into

⊕
j=1,...,r Eij .

Then we can extend ϕ into
⊕

j=1,...,r Eij using the injectivity of the modules Eij . �

Lemma 3.8. Let R be a Noetherian ring. Let S ⊂ R be a multiplicative subset. If E
is an injective R-module, then S−1E is an injective S−1R-module.

Proof. Since R → S−1R is an epimorphism of rings, it suffices to show that S−1E
is injective as an R-module, see Lemma 3.3. To show this we use Injectives, Lemma 2.6.
Thus let I ⊂ R be an ideal and let ϕ : I → S−1E be an R-module map. As I is a finitely
presented R-module (because R is Noetherian) we can find an f ∈ S and an R-module
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map I → E such that fϕ is the composition I → E → S−1E (Algebra, Lemma 10.2).
Then we can extend I → E to a homomorphism R→ E. Then the composition

R→ E → S−1E
f−1

−−→ S−1E

is the desired extension of ϕ to R. �

Lemma 3.9. Let R be a Noetherian ring. Let I be an injective R-module.
(1) Let f ∈ R. Then E =

⋃
I[fn] = I[f∞] is an injective submodule of I .

(2) Let J ⊂ R be an ideal. Then the J -power torsion submodule I[J∞] is an injec-
tive submodule of I .

Proof. We will use Lemma 3.5 to prove (1). Suppose thatE ⊂ E′ ⊂ I and thatE′ is
an essential extension ofE. We will show thatE′ = E. If not, then we can findx ∈ E′ and
x 6∈ E. Let J = {a ∈ R | ax ∈ E}. SinceR is Noetherian, we may write J = (g1, . . . , gt)
for some gi ∈ R. By definition E is the set of elements of I annihilated by powers of f ,
so we may choose integers ni so that fnigix = 0. Set n = max{ni}. Then x′ = fnx
is an element of E′ not in E and is annihilated by J . Set J ′ = {a ∈ R | ax′ ∈ E} so
J ⊂ J ′. Conversely, we have a ∈ J ′ if and only if ax′ ∈ E if and only if fmax′ = 0 for
some m ≥ 0. But then fmax′ = fm+nax implies ax ∈ E , i.e., a ∈ J . Hence J = J ′.
Thus J = J ′ = Ann(x′), so Rx′ ∩ E = 0. Hence E′ is not an essential extension of E , a
contradiction.

To prove (2) write J = (f1, . . . , ft). Then I[J∞] is equal to

(. . . ((I[f∞
1 ])[f∞

2 ]) . . .)[f∞
t ]

and the result follows from (1) and induction. �

Lemma 3.10. Let A be a Noetherian ring. Let E be an injective A-module. Then
E⊗AA[x] has injective-amplitude [0, 1] as an object ofD(A[x]). In particular,E⊗AA[x]
has finite injective dimension as an A[x]-module.

Proof. Let us write E[x] = E ⊗A A[x]. Consider the short exact sequence of A[x]-
modules

0→ E[x]→ HomA(A[x], E[x])→ HomA(A[x], E[x])→ 0
where the first map sends p ∈ E[x] to f 7→ fp and the second map sends ϕ to f 7→
ϕ(xf) − xϕ(f). The second map is surjective because HomA(A[x], E[x]) =

∏
n≥0 E[x]

as an abelian group and the map sends (en) to (en+1 − xen) which is surjective. As an
A-module we have E[x] ∼=

⊕
n≥0 E which is injective by Lemma 3.7. Hence the A[x]-

module HomA(A[x], E[x]) is injective by Lemma 3.4 and the proof is complete. �

4. Projective covers

In this section we briefly discuss projective covers.

Definition 4.1. Let R be a ring. A surjection P → M of R-modules is said to be
a projective cover, or sometimes a projective envelope, if P is a projective R-module and
P →M is an essential surjection.

Projective covers do not always exist. For example, if k is a field and R = k[x] is the
polynomial ring over k, then the module M = R/(x) does not have a projective cover.
Namely, for any surjection f : P → M with P projective over R, the proper submodule
(x− 1)P surjects onto M . Hence f is not essential.
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Lemma 4.2. Let R be a ring and let M be an R-module. If a projective cover of M
exists, then it is unique up to isomorphism.

Proof. Let P → M and P ′ → M be projective covers. Because P is a projective R-
module and P ′ →M is surjective, we can find an R-module map α : P → P ′ compatible
with the maps to M . Since P ′ → M is essential, we see that α is surjective. As P ′ is a
projective R-module we can choose a direct sum decomposition P = Ker(α)⊕ P ′. Since
P ′ → M is surjective and since P → M is essential we conclude that Ker(α) is zero as
desired. �

Here is an example where projective covers exist.

Lemma 4.3. Let (R,m, κ) be a local ring. Any finiteR-module has a projective cover.

Proof. Let M be a finite R-module. Let r = dimκ(M/mM). Choose x1, . . . , xr ∈
M mapping to a basis of M/mM . Consider the map f : R⊕r → M . By Nakayama’s
lemma this is a surjection (Algebra, Lemma 20.1). IfN ⊂ R⊕r is a proper submodule, then
N/mN → κ⊕r is not surjective (by Nakayama’s lemma again) hence N/mN →M/mM
is not surjective. Thus f is an essential surjection. �

5. Injective hulls

In this section we briefly discuss injective hulls.

Definition 5.1. Let R be a ring. A injection M → I of R-modules is said to be an
injective hull if I is a injective R-module and M → I is an essential injection.

Injective hulls always exist.

Lemma 5.2. Let R be a ring. Any R-module has an injective hull.

Proof. Let M be an R-module. By More on Algebra, Section 55 the category of R-
modules has enough injectives. Choose an injectionM → I with I an injectiveR-module.
Consider the set S of submodulesM ⊂ E ⊂ I such thatE is an essential extension ofM .
We order S by inclusion. If {Eα} is a totally ordered subset of S , then

⋃
Eα is an essential

extension of M too (Lemma 2.3). Thus we can apply Zorn’s lemma and find a maximal
element E ∈ S . We claim M ⊂ E is an injective hull, i.e., E is an injective R-module.
This follows from Lemma 3.5. �

Lemma 5.3. Let R be a ring. Let M , N be R-modules and let M → E and N → E′

be injective hulls. Then
(1) for any R-module map ϕ : M → N there exists an R-module map ψ : E → E′

such that
M //

ϕ

��

E

ψ

��
N // E′

commutes,
(2) if ϕ is injective, then ψ is injective,
(3) if ϕ is an essential injection, then ψ is an isomorphism,
(4) if ϕ is an isomorphism, then ψ is an isomorphism,
(5) if M → I is an embedding of M into an injective R-module, then there is an

isomorphism I ∼= E ⊕ I ′ compatible with the embeddings of M ,
In particular, the injective hull E of M is unique up to isomorphism.
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Proof. Part (1) follows from the fact that E′ is an injective R-module. Part (2) fol-
lows as Ker(ψ) ∩M = 0 and E is an essential extension of M . Assume ϕ is an essential
injection. Then E ∼= ψ(E) ⊂ E′ by (2) which implies E′ = ψ(E) ⊕ E′′ because E is
injective. Since E′ is an essential extension of M (Lemma 2.2) we get E′′ = 0. Part (4) is
a special case of (3). Assume M → I as in (5). Choose a map α : E → I extending the
map M → I . Arguing as before we see that α is injective. Thus as before α(E) splits off
from I . This proves (5). �

Example 5.4. Let R be a domain with fraction field K. Then R ⊂ K is an injective
hull ofR. Namely, by Example 3.6 we see thatK is an injectiveR-module and by Lemma
2.4 we see that R ⊂ K is an essential extension.

Definition 5.5. An objectX of an additive category is called indecomposable if it is
nonzero and if X = Y ⊕ Z , then either Y = 0 or Z = 0.

Lemma 5.6. Let R be a ring. Let E be an indecomposable injective R-module. Then
(1) E is the injective hull of any nonzero submodule of E ,
(2) the intersection of any two nonzero submodules of E is nonzero,
(3) EndR(E,E) is a noncommutative local ring with maximal ideal those ϕ : E →

E whose kernel is nonzero, and
(4) the set of zerodivisors on E is a prime ideal p of R and E is an injective Rp-

module.

Proof. Part (1) follows from Lemma 5.3. Part (2) follows from part (1) and the defi-
nition of injective hulls.

Proof of (3). SetA = EndR(E,E) and I = {ϕ ∈ A | Ker(ϕ) 6= 0}. The statement means
that I is a two sided ideal and that any ϕ ∈ A, ϕ 6∈ I is invertible. Suppose ϕ and ψ are
not injective. Then Ker(ϕ)∩Ker(ψ) is nonzero by (2). Hence ϕ+ψ ∈ I . It follows that
I is a two sided ideal. If ϕ ∈ A, ϕ 6∈ I , then E ∼= ϕ(E) ⊂ E is an injective submodule,
hence E = ϕ(E) because E is indecomposable.

Proof of (4). Consider the ring map R → A and let p ⊂ R be the inverse image of
the maximal ideal I . Then it is clear that p is a prime ideal and that R → A extends to
Rp → A. Thus E is an Rp-module. It follows from Lemma 3.3 that E is injective as an
Rp-module. �

Lemma 5.7. Let p ⊂ R be a prime of a ring R. Let E be the injective hull of R/p.
Then

(1) E is indecomposable,
(2) E is the injective hull of κ(p),
(3) E is the injective hull of κ(p) over the ring Rp.

Proof. By Lemma 2.4 the inclusion R/p ⊂ κ(p) is an essential extension. Then
Lemma 5.3 shows (2) holds. For f ∈ R, f 6∈ p the map f : κ(p)→ κ(p) is an isomorphism
hence the map f : E → E is an isomorphism, see Lemma 5.3. Thus E is an Rp-module.
It is injective as an Rp-module by Lemma 3.3. Finally, let E′ ⊂ E be a nonzero injective
R-submodule. Then J = (R/p) ∩E′ is nonzero. After shrinking E′ we may assume that
E′ is the injective hull of J (see Lemma 5.3 for example). Observe thatR/p is an essential
extension of J for example by Lemma 2.4. Hence E′ → E is an isomorphism by Lemma
5.3 part (3). Hence E is indecomposable. �
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Lemma 5.8. Let R be a Noetherian ring. Let E be an indecomposable injective R-
module. Then there exists a prime ideal p of R such that E is the injective hull of κ(p).

Proof. Let p be the prime ideal found in Lemma 5.6. Say p = (f1, . . . , fr). Pick
a nonzero element x ∈

⋂
Ker(fi : E → E), see Lemma 5.6. Then (Rp)x is a module

isomorphic to κ(p) inside E. We conclude by Lemma 5.6. �

Proposition 5.9 (Structure of injective modules over Noetherian rings). Let R be
a Noetherian ring. Every injective module is a direct sum of indecomposable injective
modules. Every indecomposable injective module is the injective hull of the residue field
at a prime.

Proof. The second statement is Lemma 5.8. For the first statement, let I be an injec-
tiveR-module. We will use transfinite recursion to construct Iα ⊂ I for ordinals αwhich
are direct sums of indecomposable injective R-modules Eβ+1 for β < α. For α = 0 we
let I0 = 0. Suppose given an ordinal α such that Iα has been constructed. Then Iα is an
injective R-module by Lemma 3.7. Hence I ∼= Iα ⊕ I ′. If I ′ = 0 we are done. If not, then
I ′ has an associated prime by Algebra, Lemma 63.7. Thus I ′ contains a copy of R/p for
some prime p. Hence I ′ contains an indecomposable submoduleE by Lemmas 5.3 and 5.7.
Set Iα+1 = Iα ⊕ Eα. If α is a limit ordinal and Iβ has been constructed for β < α, then
we set Iα =

⋃
β<α Iβ . Observe that Iα =

⊕
β<αEβ+1. This concludes the proof. �

6. Duality over Artinian local rings

Let (R,m, κ) be an artinian local ring. Recall that this implies R is Noetherian and that
R has finite length as an R-module. Moreover an R-module is finite if and only if it has
finite length. We will use these facts without further mention in this section. Please see
Algebra, Sections 52 and 53 and Algebra, Proposition 60.7 for more details.

Lemma 6.1. Let (R,m, κ) be an artinian local ring. Let E be an injective hull of κ.
For every finite R-module M we have

lengthR(M) = lengthR(HomR(M,E))

In particular, the injective hull E of κ is a finite R-module.

Proof. Because E is an essential extension of κ we have κ = E[m] where E[m] is
the m-torsion inE (notation as in More on Algebra, Section 88). Hence HomR(κ,E) ∼= κ
and the equality of lengths holds for M = κ. We prove the displayed equality of the
lemma by induction on the length ofM . IfM is nonzero there exists a surjectionM → κ
with kernel M ′. Since the functor M 7→ HomR(M,E) is exact we obtain a short exact
sequence

0→ HomR(κ,E)→ HomR(M,E)→ HomR(M ′, E)→ 0.
Additivity of length for this sequence and the sequence 0 → M ′ → M → κ → 0 and
the equality for M ′ (induction hypothesis) and κ implies the equality for M . The final
statement of the lemma follows as E = HomR(R,E). �

Lemma 6.2. Let (R,m, κ) be an artinian local ring. Let E be an injective hull of κ.
For any finite R-module M the evaluation map

M −→ HomR(HomR(M,E), E)

is an isomorphism. In particular R = HomR(E,E).
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Proof. Observe that the displayed arrow is injective. Namely, if x ∈M is a nonzero
element, then there is a nonzero mapRx→ κ which we can extend to a map ϕ : M → E
that doesn’t vanish on x. Since the source and target of the arrow have the same length
by Lemma 6.1 we conclude it is an isomorphism. The final statement follows on taking
M = R. �

To state the next lemma, denote ModfgR the category of finite R-modules over a ring R.

Lemma 6.3. Let (R,m, κ) be an artinian local ring. Let E be an injective hull of κ.
The functor D(−) = HomR(−, E) induces an exact anti-equivalence ModfgR → ModfgR
and D ◦D ∼= id.

Proof. We have seen that D ◦D = id on ModfgR in Lemma 6.2. It follows immedi-
ately that D is an anti-equivalence. �

Lemma 6.4. Assumptions and notation as in Lemma 6.3. Let I ⊂ R be an ideal and
M a finite R-module. Then

D(M [I]) = D(M)/ID(M) and D(M/IM) = D(M)[I]

Proof. Say I = (f1, . . . , ft). Consider the map

M⊕t f1,...,ft−−−−−→M

with cokernel M/IM . Applying the exact functor D we conclude that D(M/IM) is
D(M)[I]. The other case is proved in the same way. �

7. Injective hull of the residue field

Most of our results will be for Noetherian local rings in this section.

Lemma 7.1. Let R → S be a surjective map of local rings with kernel I . Let E be
the injective hull of the residue field of R over R. Then E[I] is the injective hull of the
residue field of S over S.

Proof. Observe that E[I] = HomR(S,E) as S = R/I . Hence E[I] is an injective
S-module by Lemma 3.4. Since E is an essential extension of κ = R/mR it follows that
E[I] is an essential extension of κ as well. The result follows. �

Lemma 7.2. Let (R,m, κ) be a local ring. Let E be the injective hull of κ. Let M be
a m-power torsion R-module with n = dimκ(M [m]) < ∞. Then M is isomorphic to a
submodule of E⊕n.

Proof. Observe that E⊕n is the injective hull of κ⊕n = M [m]. Thus there is an
R-module map M → E⊕n which is injective on M [m]. Since M is m-power torsion the
inclusion M [m] ⊂ M is an essential extension (for example by Lemma 2.4) we conclude
that the kernel of M → E⊕n is zero. �

Lemma 7.3. Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull of κ
over R. Let En be an injective hull of κ over R/mn. Then E =

⋃
En and En = E[mn].

Proof. We have En = E[mn] by Lemma 7.1. We have E =
⋃
En because

⋃
En =

E[m∞] is an injective R-submodule which contains κ, see Lemma 3.9. �

The following lemma tells us the injective hull of the residue field of a Noetherian local
ring only depends on the completion.
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Lemma 7.4. LetR→ S be a flat local homomorphism of local Noetherian rings such
that R/mR ∼= S/mRS. Then the injective hull of the residue field of R is the injective
hull of the residue field of S.

Proof. Note that mRS = mS as the quotient by the former is a field. Set κ =
R/mR = S/mS . Let ER be the injective hull of κ over R. Let ES be the injective hull of
κ over S. Observe that ES is an injective R-module by Lemma 3.2. Choose an extension
ER → ES of the identification of residue fields. This map is an isomorphism by Lemma
7.3 because R→ S induces an isomorphism R/mnR → S/mnS for all n. �

Lemma 7.5. Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull of κ
over R. Then HomR(E,E) is canonically isomorphic to the completion of R.

Proof. Write E =
⋃
En with En = E[mn] as in Lemma 7.3. Any endomorphism

of E preserves this filtration. Hence
HomR(E,E) = lim HomR(En, En)

The lemma follows as HomR(En, En) = HomR/mn(En, En) = R/mn by Lemma 6.2.
�

Lemma 7.6. Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull of κ
over R. Then E satisfies the descending chain condition.

Proof. If E ⊃M1 ⊃M2 ⊃ . . . is a sequence of submodules, then
HomR(E,E)→ HomR(M1, E)→ HomR(M2, E)→ . . .

is a sequence of surjections. By Lemma 7.5 each of these is a module over the completion
R∧ = HomR(E,E). Since R∧ is Noetherian (Algebra, Lemma 97.6) the sequence sta-
bilizes: HomR(Mn, E) = HomR(Mn+1, E) = . . .. Since E is injective, this can only
happen if HomR(Mn/Mn+1, E) is zero. However, if Mn/Mn+1 is nonzero, then it con-
tains a nonzero element annihilated by m, becauseE is m-power torsion by Lemma 7.3. In
this caseMn/Mn+1 has a nonzero map intoE , contradicting the assumed vanishing. This
finishes the proof. �

Lemma 7.7. Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull of κ.
(1) For an R-module M the following are equivalent:

(a) M satisfies the ascending chain condition,
(b) M is a finite R-module, and
(c) there exist n,m and an exact sequence R⊕m → R⊕n →M → 0.

(2) For an R-module M the following are equivalent:
(a) M satisfies the descending chain condition,
(b) M is m-power torsion and dimκ(M [m]) <∞, and
(c) there exist n,m and an exact sequence 0→M → E⊕n → E⊕m.

Proof. We omit the proof of (1).
Let M be an R-module with the descending chain condition. Let x ∈ M . Then mnx
is a descending chain of submodules, hence stabilizes. Thus mnx = mn+1x for some n.
By Nakayama’s lemma (Algebra, Lemma 20.1) this implies mnx = 0, i.e., x is m-power
torsion. Since M [m] is a vector space over κ it has to be finite dimensional in order to
have the descending chain condition.
Assume that M is m-power torsion and has a finite dimensional m-torsion submodule
M [m]. By Lemma 7.2 we see that M is a submodule of E⊕n for some n. Consider the
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quotient N = E⊕n/M . By Lemma 7.6 the module E has the descending chain condition
hence so do E⊕n and N . Therefore N satisfies (2)(a) which implies N satisfies (2)(b) by
the second paragraph of the proof. Thus by Lemma 7.2 again we see thatN is a submodule
of E⊕m for some m. Thus we have a short exact sequence 0→M → E⊕n → E⊕m.

Assume we have a short exact sequence 0 → M → E⊕n → E⊕m. Since E satisfies the
descending chain condition by Lemma 7.6 so does M . �

Proposition 7.8 (Matlis duality). Let (R,m, κ) be a complete local Noetherian ring.
Let E be an injective hull of κ over R. The functor D(−) = HomR(−, E) induces an
anti-equivalence{

R-modules with the
descending chain condition

}
←→

{
R-modules with the

ascending chain condition

}
and we have D ◦D = id on either side of the equivalence.

Proof. By Lemma 7.5 we have R = HomR(E,E) = D(E). Of course we have
E = HomR(R,E) = D(R). Since E is injective the functor D is exact. The result now
follows immediately from the description of the categories in Lemma 7.7. �

Remark 7.9. Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Here is an addendum to Matlis duality: If N is an m-power torsion mod-
ule and M = HomR(N,E) is a finite module over the completion of R, then N sat-
isfies the descending chain condition. Namely, for any submodules N ′′ ⊂ N ′ ⊂ N
with N ′′ 6= N ′, we can find an embedding κ ⊂ N ′′/N ′ and hence a nonzero map
N ′ → E annihilating N ′′ which we can extend to a map N → E annihilating N ′′.
Thus N ⊃ N ′ 7→ M ′ = HomR(N/N ′, E) ⊂ M is an inclusion preserving map from
submodules of N to submodules of M , whence the conclusion.

8. Deriving torsion

Let A be a ring and let I ⊂ A be a finitely generated ideal (if I is not finitely generated
perhaps a different definition should be used). Let Z = V (I) ⊂ Spec(A). Recall that
the category I∞-torsion of I-power torsion modules only depends on the closed subset Z
and not on the choice of the finitely generated ideal I such that Z = V (I), see More on
Algebra, Lemma 88.6. In this section we will consider the functor

H0
I : ModA −→ I∞-torsion, M 7−→M [I∞] =

⋃
M [In]

which sends M to the submodule of I-power torsion.

LetA be a ring and let I be a finitely generated ideal. Note that I∞-torsion is a Grothendieck
abelian category (direct sums exist, filtered colimits are exact, and

⊕
A/In is a generator

by More on Algebra, Lemma 88.2). Hence the derived category D(I∞-torsion) exists, see
Injectives, Remark 13.3. Our functor H0

I is left exact and has a derived extension which
we will denote

RΓI : D(A) −→ D(I∞-torsion).
Warning: this functor does not deserve the name local cohomology unless the ring A is
Noetherian. The functorsH0

I ,RΓI , and the satellitesHp
I only depend on the closed subset

Z ⊂ Spec(A) and not on the choice of the finitely generated ideal I such that V (I) = Z.
However, we insist on using the subscript I for the functors above as the notation RΓZ
is going to be used for a different functor, see (9.0.1), which agrees with the functor RΓI
only (as far as we know) in case A is Noetherian (see Lemma 10.1).
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Lemma 8.1. Let A be a ring and let I ⊂ A be a finitely generated ideal. The functor
RΓI is right adjoint to the functor D(I∞-torsion)→ D(A).

Proof. This follows from the fact that taking I-power torsion submodules is the
right adjoint to the inclusion functor I∞-torsion → ModA. See Derived Categories,
Lemma 30.3. �

Lemma 8.2. LetA be a ring and let I ⊂ A be a finitely generated ideal. For any object
K of D(A) we have

RΓI(K) = hocolim RHomA(A/In,K)
in D(A) and

RqΓI(K) = colimn ExtqA(A/In,K)
as modules for all q ∈ Z.

Proof. Let J• be a K-injective complex representing K. Then
RΓI(K) = J•[I∞] = colim J•[In] = colim HomA(A/In, J•)

where the first equality is the definition of RΓI(K). By Derived Categories, Lemma 33.7
we obtain the first displayed equality in the statement of the lemma. The second displayed
equality in the statement of the lemma then follows because Hq(HomA(A/In, J•)) =
ExtqA(A/In,K) and because filtered colimits are exact in the category of abelian groups.

�

Lemma 8.3. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let K• be a
complex of A-modules such that f : K• → K• is an isomorphism for some f ∈ I , i.e.,
K• is a complex of Af -modules. Then RΓI(K•) = 0.

Proof. Namely, in this case the cohomology modules ofRΓI(K•) are both f -power
torsion and f acts by automorphisms. Hence the cohomology modules are zero and hence
the object is zero. �

Let A be a ring and I ⊂ A a finitely generated ideal. By More on Algebra, Lemma 88.5
the category of I-power torsion modules is a Serre subcategory of the category of all A-
modules, hence there is a functor
(8.3.1) D(I∞-torsion)→ DI∞-torsion(A)
see Derived Categories, Section 17.

Lemma 8.4. Let A be a ring and let I be a finitely generated ideal. Let M and N be
I-power torsion modules.

(1) HomD(A)(M,N) = HomD(I∞-torsion)(M,N),
(2) Ext1

D(A)(M,N) = Ext1
D(I∞-torsion)(M,N),

(3) Ext2
D(I∞-torsion)(M,N)→ Ext2

D(A)(M,N) is not surjective in general,
(4) (8.3.1) is not an equivalence in general.

Proof. Parts (1) and (2) follow immediately from the fact that I-power torsion forms
a Serre subcategory of ModA. Part (4) follows from part (3).
For part (3) let A be a ring with an element f ∈ A such that A[f ] contains a nonzero
element x annihilated by f and A contains elements xn with fnxn = x. Such a ring A
exists because we can take

A = Z[f, x, xn]/(fx, fnxn − x)
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Given A set I = (f). Then the exact sequence

0→ A[f ]→ A
f−→ A→ A/fA→ 0

defines an element in Ext2
A(A/fA,A[f ]). We claim this element does not come from an

element of Ext2
D(f∞-torsion)(A/fA,A[f ]). Namely, if it did, then there would be an exact

sequence
0→ A[f ]→M → N → A/fA→ 0

where M and N are f -power torsion modules defining the same 2 extension class. Since
A → A is a complex of free modules and since the 2 extension classes are the same we
would be able to find a map

0 // A[f ] //

��

A //

ϕ

��

A //

ψ

��

A/fA //

��

0

0 // A[f ] // M // N // A/fA // 0

(some details omitted). Then we could replaceM by the image ofϕ andN by the image of
ψ. ThenM would be a cyclic module, hence fnM = 0 for some n. Considering ϕ(xn+1)
we get a contradiction with the fact that fn+1xn = x is nonzero in A[f ]. �

9. Local cohomology

LetA be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A). We
will construct a functor
(9.0.1) RΓZ : D(A) −→ DI∞-torsion(A).
which is right adjoint to the inclusion functor. For notation see Section 8. The cohomol-
ogy modules of RΓZ(K) are the local cohomology groups of K with respect to Z. By
Lemma 8.4 this functor will in general not be equal to RΓI(−) even viewed as functors
into D(A). In Section 10 we will show that if A is Noetherian, then the two agree.
We will continue the discussion of local cohomology in the chapter on local cohomology,
see Local Cohomology, Section 1. For example, there we will show that RΓZ computes
cohomology with support in Z for the associated complex of quasi-coherent sheaves on
Spec(A). See Local Cohomology, Lemma 2.1.

Lemma 9.1. Let A be a ring and let I ⊂ A be a finitely generated ideal. There exists
a right adjoint RΓZ (9.0.1) to the inclusion functor DI∞-torsion(A) → D(A). In fact, if I
is generated by f1, . . . , fr ∈ A, then we have

RΓZ(K) = (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )⊗L
A K

functorially in K ∈ D(A).

Proof. Say I = (f1, . . . , fr) is an ideal. Let K• be a complex of A-modules. There
is a canonical map of complexes

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) −→ A.

from the extended Čech complex to A. Tensoring with K•, taking associated total com-
plex, we get a map

Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)
−→ K•
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in D(A). We claim the cohomology modules of the complex on the left are I-power
torsion, i.e., the LHS is an object of DI∞-torsion(A). Namely, we have

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) = colimK(A, fn1 , . . . , fnr )

by More on Algebra, Lemma 29.6. Moreover, multiplication by fni on the complexK(A, fn1 , . . . , fnr )
is homotopic to zero by More on Algebra, Lemma 28.6. Since

Hq (LHS) = colimHq(Tot(K• ⊗A K(A, fn1 , . . . , fnr )))
we obtain our claim. On the other hand, if K• is an object of DI∞-torsion(A), then the
complexes K• ⊗A Afi0 ...fip have vanishing cohomology. Hence in this case the map
LHS → K• is an isomorphism in D(A). The construction

RΓZ(K•) = Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

is functorial in K• and defines an exact functor D(A) → DI∞-torsion(A) between trian-
gulated categories. It follows formally from the existence of the natural transformation
RΓZ → id given above and the fact that this evaluates to an isomorphism on K• in the
subcategory, that RΓZ is the desired right adjoint. �

Lemma 9.2. Let A→ B be a ring homomorphism and let I ⊂ A be a finitely gener-
ated ideal. Set J = IB. Set Z = V (I) and Y = V (J). Then

RΓZ(MA) = RΓY (M)A
functorially in M ∈ D(B). Here (−)A denotes the restriction functors D(B) → D(A)
and DJ∞-torsion(B)→ DI∞-torsion(A).

Proof. This follows from uniqueness of adjoint functors as both RΓZ((−)A) and
RΓY (−)A are right adjoint to the functor DI∞-torsion(A) → D(B), K 7→ K ⊗L

A B.
Alternatively, one can use the description of RΓZ and RΓY in terms of alternating Čech
complexes (Lemma 9.1). Namely, if I = (f1, . . . , fr) then J is generated by the images
g1, . . . , gr ∈ B of f1, . . . , fr. Then the statement of the lemma follows from the existence
of a canonical isomorphism

MA ⊗A (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )

= M ⊗B (B →
∏

i0
Bgi0 →

∏
i0<i1

Bgi0gi1 → . . .→ Bg1...gr )

for any B-module M . �

Lemma 9.3. Let A→ B be a ring homomorphism and let I ⊂ A be a finitely gener-
ated ideal. Set J = IB. Let Z = V (I) and Y = V (J). Then

RΓZ(K)⊗L
A B = RΓY (K ⊗L

A B)
functorially in K ∈ D(A).

Proof. Write I = (f1, . . . , fr). Then J is generated by the images g1, . . . , gr ∈ B
of f1, . . . , fr. Then we have

(A→
∏

Afi0 → . . .→ Af1...fr )⊗A B = (B →
∏

Bgi0 → . . .→ Bg1...gr )

as complexes of B-modules. Represent K by a K-flat complex K• of A-modules. Since
the total complexes associated to

K• ⊗A (A→
∏

Afi0 → . . .→ Af1...fr )⊗A B
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and
K• ⊗A B ⊗B (B →

∏
Bgi0 → . . .→ Bg1...gr )

represent the left and right hand side of the displayed formula of the lemma (see Lemma
9.1) we conclude. �

Lemma 9.4. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let K• be
a complex of A-modules such that f : K• → K• is an isomorphism for some f ∈ I , i.e.,
K• is a complex of Af -modules. Then RΓZ(K•) = 0.

Proof. Namely, in this case the cohomology modules ofRΓZ(K•) are both f -power
torsion and f acts by automorphisms. Hence the cohomology modules are zero and hence
the object is zero. �

Lemma 9.5. Let A be a ring and let I ⊂ A be a finitely generated ideal. For K,L ∈
D(A) we have

RΓZ(K ⊗L
A L) = K ⊗L

A RΓZ(L) = RΓZ(K)⊗L
A L = RΓZ(K)⊗L

A RΓZ(L)

If K or L is in DI∞-torsion(A) then so is K ⊗L
A L.

Proof. By Lemma 9.1 we know that RΓZ is given by C ⊗L − for some C ∈ D(A).
Hence, for K,L ∈ D(A) general we have

RΓZ(K ⊗L
A L) = K ⊗L L⊗L

A C = K ⊗L
A RΓZ(L)

The other equalities follow formally from this one. This also implies the last statement of
the lemma. �

Lemma 9.6. Let A be a ring and let I, J ⊂ A be finitely generated ideals. Set Z =
V (I) and Y = V (J). Then Z ∩ Y = V (I + J) and RΓY ◦ RΓZ = RΓY ∩Z as functors
D(A)→ D(I+J)∞-torsion(A). For K ∈ D+(A) there is a spectral sequence

Ep,q2 = Hp
Y (Hq

Z(K))⇒ Hp+q
Y ∩Z(K)

as in Derived Categories, Lemma 22.2.

Proof. There is a bit of abuse of notation in the lemma as strictly speaking we cannot
compose RΓY and RΓZ . The meaning of the statement is simply that we are composing
RΓZ with the inclusion DI∞-torsion(A) → D(A) and then with RΓY . Then the equality
RΓY ◦RΓZ = RΓY ∩Z follows from the fact that

DI∞-torsion(A)→ D(A) RΓY−−−→ D(I+J)∞-torsion(A)

is right adjoint to the inclusion D(I+J)∞-torsion(A) → DI∞-torsion(A). Alternatively one
can prove the formula using Lemma 9.1 and the fact that the tensor product of extended
Čech complexes on f1, . . . , fr and g1, . . . , gm is the extended Čech complex on f1, . . . , fn.g1, . . . , gm.
The final assertion follows from this and the cited lemma. �

The following lemma is the analogue of More on Algebra, Lemma 91.24 for complexes
with torsion cohomologies.

Lemma 9.7. Let A → B be a flat ring map and let I ⊂ A be a finitely generated
ideal such that A/I = B/IB. Then base change and restriction induce quasi-inverse
equivalences DI∞-torsion(A) = D(IB)∞-torsion(B).
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Proof. More precisely the functors are K 7→ K ⊗L
A B for K in DI∞-torsion(A) and

M 7→ MA for M in D(IB)∞-torsion(B). The reason this works is that Hi(K ⊗L
A B) =

Hi(K)⊗AB = Hi(K). The first equality holds asA→ B is flat and the second by More
on Algebra, Lemma 89.2. �

The following lemma was shown for Hom and Ext1 of modules in More on Algebra, Lem-
mas 89.3 and 89.8.

Lemma 9.8. LetA→ B be a flat ring map and let I ⊂ A be a finitely generated ideal
such that A/I → B/IB is an isomorphism. For K ∈ DI∞-torsion(A) and L ∈ D(A) the
map

RHomA(K,L) −→ RHomB(K ⊗A B,L⊗A B)
is a quasi-isomorphism. In particular, if M , N are A-modules and M is I-power torsion,
then the canonical map

ExtiA(M,N) −→ ExtiB(M ⊗A B,N ⊗A B)
is an isomorphism for all i.

Proof. Let Z = V (I) ⊂ Spec(A) and Y = V (IB) ⊂ Spec(B). Since the coho-
mology modules of K are I power torsion, the canonical map RΓZ(L) → L induces an
isomorphism

RHomA(K,RΓZ(L))→ RHomA(K,L)
in D(A). Similarly, the cohomology modules of K ⊗A B are IB power torsion and we
have an isomorphism

RHomB(K ⊗A B,RΓY (L⊗A B))→ RHomB(K ⊗A B,L⊗A B)
in D(B). By Lemma 9.3 we have RΓZ(L) ⊗A B = RΓY (L ⊗A B). Hence it suffices to
show that the map

RHomA(K,RΓZ(L))→ RHomB(K ⊗A B,RΓZ(L)⊗A B)
is a quasi-isomorphism. This follows from Lemma 9.7. �

10. Local cohomology for Noetherian rings

Let A be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A).
Recall that (8.3.1) is the functor

D(I∞-torsion)→ DI∞-torsion(A)
In fact, there is a natural transformation of functors

(10.0.1) (8.3.1) ◦RΓI(−) −→ RΓZ(−)
Namely, given a complex of A-modules K• the canonical map RΓI(K•)→ K• in D(A)
factors (uniquely) throughRΓZ(K•) asRΓI(K•) has I-power torsion cohomology mod-
ules (see Lemma 8.1). In general this map is not an isomorphism (we’ve seen this in Lemma
8.4).

Lemma 10.1. Let A be a Noetherian ring and let I ⊂ A be an ideal.
(1) the adjunction RΓI(K)→ K is an isomorphism for K ∈ DI∞-torsion(A),
(2) the functor (8.3.1) D(I∞-torsion)→ DI∞-torsion(A) is an equivalence,
(3) the transformation of functors (10.0.1) is an isomorphism, in other wordsRΓI(K) =

RΓZ(K) for K ∈ D(A).
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Proof. A formal argument, which we omit, shows that it suffices to prove (1).
Let M be an I-power torsion A-module. Choose an embedding M → J into an injec-
tive A-module. Then J [I∞] is an injective A-module, see Lemma 3.9, and we obtain an
embedding M → J [I∞]. Thus every I-power torsion module has an injective resolu-
tion M → J• with Jn also I-power torsion. It follows that RΓI(M) = M (this is not
a triviality and this is not true in general if A is not Noetherian). Next, suppose that
K ∈ D+

I∞-torsion(A). Then the spectral sequence

RqΓI(Hp(K))⇒ Rp+qΓI(K)
(Derived Categories, Lemma 21.3) converges and above we have seen that only the terms
with q = 0 are nonzero. Thus we see that RΓI(K)→ K is an isomorphism.
Suppose K is an arbitrary object of DI∞-torsion(A). We have

RqΓI(K) = colim ExtqA(A/In,K)
by Lemma 8.2. Choose f1, . . . , fr ∈ A generating I . Let K•

n = K(A, fn1 , . . . , fnr ) be the
Koszul complex with terms in degrees−r, . . . , 0. Since the pro-objects {A/In} and {K•

n}
in D(A) are the same by More on Algebra, Lemma 94.1, we see that

RqΓI(K) = colim ExtqA(K•
n,K)

Pick any complexK• ofA-modules representingK. SinceK•
n is a finite complex of finite

free modules we see that
ExtqA(Kn,K) = Hq(Tot((K•

n)∨ ⊗A K•))
where (K•

n)∨ is the dual of the complexK•
n. See More on Algebra, Lemma 73.2. As (K•

n)∨

is a complex of finite free A-modules sitting in degrees 0, . . . , r we see that the terms of
the complex Tot((K•

n)∨⊗AK•) are the same as the terms of the complex Tot((K•
n)∨⊗A

τ≥q−r−2K
•) in degrees q − 1 and higher. Hence we see that

ExtqA(Kn,K) = ExtqA(Kn, τ≥q−r−2K)
for all n. It follows that

RqΓI(K) = RqΓI(τ≥q−r−2K) = Hq(τ≥q−r−2K) = Hq(K)
Thus we see that the map RΓI(K)→ K is an isomorphism. �

Lemma 10.2. Let A be a Noetherian ring and let I = (f1, . . . , fr) be an ideal of A.
Set Z = V (I) ⊂ Spec(A). There are canonical isomorphisms

RΓI(A)→ (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )→ RΓZ(A)

in D(A). If M is an A-module, then we have similarly

RΓI(M) ∼= (M →
∏

i0
Mfi0

→
∏

i0<i1
Mfi0fi1

→ . . .→Mf1...fr ) ∼= RΓZ(M)

in D(A).

Proof. This follows from Lemma 10.1 and the computation of the functor RΓZ in
Lemma 9.1. �

Lemma 10.3. If A → B is a homomorphism of Noetherian rings and I ⊂ A is an
ideal, then in D(B) we have

RΓI(A)⊗L
A B = RΓZ(A)⊗L

A B = RΓY (B) = RΓIB(B)
where Y = V (IB) ⊂ Spec(B).
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Proof. Combine Lemmas 10.2 and 9.3. �

11. Depth

In this section we revisit the notion of depth introduced in Algebra, Section 72.

Lemma 11.1. Let A be a Noetherian ring, let I ⊂ A be an ideal, and let M be a finite
A-module such that IM 6= M . Then the following integers are equal:

(1) depthI(M),
(2) the smallest integer i such that ExtiA(A/I,M) is nonzero, and
(3) the smallest integer i such that Hi

I(M) is nonzero.
Moreover, we have ExtiA(N,M) = 0 for i < depthI(M) for any finite A-module N
annihilated by a power of I .

Proof. We prove the equality of (1) and (2) by induction on depthI(M) which is
allowed by Algebra, Lemma 72.4.

Base case. If depthI(M) = 0, then I is contained in the union of the associated primes of
M (Algebra, Lemma 63.9). By prime avoidance (Algebra, Lemma 15.2) we see that I ⊂ p
for some associated prime p. Hence HomA(A/I,M) is nonzero. Thus equality holds in
this case.

Assume that depthI(M) > 0. Let f ∈ I be a nonzerodivisor onM such that depthI(M/fM) =
depthI(M)− 1. Consider the short exact sequence

0→M →M →M/fM → 0
and the associated long exact sequence for Ext∗

A(A/I,−). Note that ExtiA(A/I,M) is a
finite A/I-module (Algebra, Lemmas 71.9 and 71.8). Hence we obtain

HomA(A/I,M/fM) = Ext1
A(A/I,M)

and short exact sequences

0→ ExtiA(A/I,M)→ ExtiA(A/I,M/fM)→ Exti+1
A (A/I,M)→ 0

Thus the equality of (1) and (2) by induction.

Observe that depthI(M) = depthIn(M) for all n ≥ 1 for example by Algebra, Lemma
68.9. Hence by the equality of (1) and (2) we see that ExtiA(A/In,M) = 0 for all n and
i < depthI(M). Let N be a finite A-module annihilated by a power of I . Then we can
choose a short exact sequence

0→ N ′ → (A/In)⊕m → N → 0
for some n,m ≥ 0. Then HomA(N,M) ⊂ HomA((A/In)⊕m,M) and ExtiA(N,M) ⊂
Exti−1

A (N ′,M) for i < depthI(M). Thus a simply induction argument shows that the
final statement of the lemma holds.

Finally, we prove that (3) is equal to (1) and (2). We haveHp
I (M) = colim ExtpA(A/In,M)

by Lemma 8.2. Thus we see that Hi
I(M) = 0 for i < depthI(M). For i = depthI(M),

using the vanishing of Exti−1
A (I/In,M) we see that the map ExtiA(A/I,M)→ Hi

I(M)
is injective which proves nonvanishing in the correct degree. �

Lemma 11.2. Let A be a Noetherian ring. Let 0 → N ′ → N → N ′′ → 0 be a short
exact sequence of finite A-modules. Let I ⊂ A be an ideal.

(1) depthI(N) ≥ min{depthI(N ′), depthI(N ′′)}
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(2) depthI(N ′′) ≥ min{depthI(N), depthI(N ′)− 1}
(3) depthI(N ′) ≥ min{depthI(N), depthI(N ′′) + 1}

Proof. Assume IN 6= N , IN ′ 6= N ′, and IN ′′ 6= N ′′. Then we can use the charac-
terization of depth using the Ext groups Exti(A/I,N), see Lemma 11.1, and use the long
exact cohomology sequence

0→ HomA(A/I,N ′)→ HomA(A/I,N)→ HomA(A/I,N ′′)
→ Ext1

A(A/I,N ′)→ Ext1
A(A/I,N)→ Ext1

A(A/I,N ′′)→ . . .

from Algebra, Lemma 71.6. This argument also works if IN = N because in this case
ExtiA(A/I,N) = 0 for all i. Similarly in case IN ′ 6= N ′ and/or IN ′′ 6= N ′′. �

Lemma 11.3. Let A be a Noetherian ring, let I ⊂ A be an ideal, and let M a finite
A-module with IM 6= M .

(1) If x ∈ I is a nonzerodivisor on M , then depthI(M/xM) = depthI(M)− 1.
(2) Any M -regular sequence x1, . . . , xr in I can be extended to an M -regular se-

quence in I of length depthI(M).

Proof. Part (2) is a formal consequence of part (1). Let x ∈ I be as in (1). By the
short exact sequence 0 → M → M → M/xM → 0 and Lemma 11.2 we see that
depthI(M/xM) ≥ depthI(M) − 1. On the other hand, if x1, . . . , xr ∈ I is a regular
sequence forM/xM , then x, x1, . . . , xr is a regular sequence forM . Hence (1) holds. �

Lemma 11.4. Let R be a Noetherian local ring. If M is a finite Cohen-Macaulay
R-module and I ⊂ R a nontrivial ideal. Then

depthI(M) = dim(Supp(M))− dim(Supp(M/IM)).

Proof. We will prove this by induction on depthI(M).

If depthI(M) = 0, then I is contained in one of the associated primes p of M (Algebra,
Lemma 63.18). Then p ∈ Supp(M/IM), hence dim(Supp(M/IM)) ≥ dim(R/p) =
dim(Supp(M)) where equality holds by Algebra, Lemma 103.7. Thus the lemma holds in
this case.
If depthI(M) > 0, we pickx ∈ I which is a nonzerodivisor onM . Note that (M/xM)/I(M/xM) =
M/IM . On the other hand we have depthI(M/xM) = depthI(M) − 1 by Lemma 11.3
and dim(Supp(M/xM)) = dim(Supp(M))−1 by Algebra, Lemma 63.10. Thus the result
by induction hypothesis. �

Lemma 11.5. LetR→ S be a flat local ring homomorphism of Noetherian local rings.
Denote m ⊂ R the maximal ideal. Let I ⊂ S be an ideal. If S/mS is Cohen-Macaulay,
then

depthI(S) ≥ dim(S/mS)− dim(S/mS + I)

Proof. By Algebra, Lemma 99.3 any sequence in S which maps to a regular sequence
in S/mS is a regular sequence in S. Thus it suffices to prove the lemma in caseR is a field.
This is a special case of Lemma 11.4. �

Lemma 11.6. LetA be a ring and let I ⊂ A be a finitely generated ideal. LetM be an
A-module. Let Z = V (I). Then H0

I (M) = H0
Z(M). Let N be the common value and set

M ′ = M/N . Then
(1) H0

I (M ′) = 0 and Hp
I (M) = Hp

I (M ′) and Hp
I (N) = 0 for all p > 0,

(2) H0
Z(M ′) = 0 and Hp

Z(M) = Hp
Z(M ′) and Hp

Z(N) = 0 for all p > 0.
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Proof. By definition H0
I (M) = M [I∞] is I-power torsion. By Lemma 9.1 we see

that
H0
Z(M) = Ker(M −→Mf1 × . . .×Mfr )

if I = (f1, . . . , fr). Thus H0
I (M) ⊂ H0

Z(M) and conversely, if x ∈ H0
Z(M), then it is

annihilated by a feii for some ei ≥ 1 hence annihilated by some power of I . This proves the
first equality and moreoverN is I-power torsion. By Lemma 8.1 we see thatRΓI(N) = N .
By Lemma 9.1 we see thatRΓZ(N) = N . This proves the higher vanishing ofHp

I (N) and
Hp
Z(N) in (1) and (2). The vanishing ofH0

I (M ′) andH0
Z(M ′) follow from the preceding

remarks and the fact that M ′ is I-power torsion free by More on Algebra, Lemma 88.4.
The equality of higher cohomologies for M and M ′ follow immediately from the long
exact cohomology sequence. �

12. Torsion versus complete modules

Let A be a ring and let I be a finitely generated ideal. In this case we can consider the
derived category DI∞-torsion(A) of complexes with I-power torsion cohomology modules
(Section 9) and the derived category Dcomp(A, I) of derived complete complexes (More
on Algebra, Section 91). In this section we show these categories are equivalent. A more
general statement can be found in [?].

Lemma 12.1. Let A be a ring and let I be a finitely generated ideal. Let RΓZ be as in
Lemma 9.1. Let ∧ denote derived completion as in More on Algebra, Lemma 91.10. For
an object K in D(A) we have

RΓZ(K∧) = RΓZ(K) and (RΓZ(K))∧ = K∧

in D(A).

Proof. Choose f1, . . . , fr ∈ A generating I . Recall that

K∧ = RHomA

(
(A→

∏
Afi0 →

∏
Afi0i1 → . . .→ Af1...fr ),K

)
by More on Algebra, Lemma 91.10. Hence the cone C = Cone(K → K∧) is given by

RHomA

(
(
∏

Afi0 →
∏

Afi0i1 → . . .→ Af1...fr ),K
)

which can be represented by a complex endowed with a finite filtration whose successive
quotients are isomorphic to

RHomA(Afi0 ...fip ,K), p > 0
These complexes vanish on applying RΓZ , see Lemma 9.4. Applying RΓZ to the distin-
guished triangle K → K∧ → C → K[1] we see that the first formula of the lemma is
correct.
Recall that

RΓZ(K) = K ⊗L (A→
∏

Afi0 →
∏

Afi0i1 → . . .→ Af1...fr )

by Lemma 9.1. Hence the cone C = Cone(RΓZ(K) → K) can be represented by a
complex endowed with a finite filtration whose successive quotients are isomorphic to

K ⊗A Afi0 ...fip , p > 0

These complexes vanish on applying ∧, see More on Algebra, Lemma 91.12. Applying
derived completion to the distinguished triangleRΓZ(K)→ K → C → RΓZ(K)[1] we
see that the second formula of the lemma is correct. �
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The following result is a special case of a very general phenomenon concerning admissible
subcategories of a triangulated category.

Proposition 12.2. Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functors RΓZ and ∧ define quasi-inverse equivalences of categories

DI∞-torsion(A)↔ Dcomp(A, I)

Proof. Follows immediately from Lemma 12.1. �

The following addendum of the proposition above makes the correspondence on mor-
phisms more precise.

Lemma 12.3. With notation as in Lemma 12.1. For objects K,L in D(A) there is a
canonical isomorphism

RHomA(K∧, L∧) −→ RHomA(RΓZ(K), RΓZ(L))
in D(A).

Proof. Say I = (f1, . . . , fr). Denote C = (A →
∏
Afi → . . . → Af1...fr ) the

alternating Čech complex. Then derived completion is given by RHomA(C,−) (More
on Algebra, Lemma 91.10) and local cohomology byC⊗L− (Lemma 9.1). Combining the
isomorphism

RHomA(K ⊗L C,L⊗L C) = RHomA(K,RHomA(C,L⊗L C))
(More on Algebra, Lemma 73.1) and the map

L→ RHomA(C,L⊗L C)
(More on Algebra, Lemma 73.6) we obtain a map

γ : RHomA(K,L) −→ RHomA(K ⊗L C,L⊗L C)
On the other hand, the right hand side is derived complete as it is equal to

RHomA(C,RHomA(K,L⊗L C)).
Thus γ factors through the derived completion of RHomA(K,L) by the universal prop-
erty of derived completion. However, the derived completion goes inside theRHomA by
More on Algebra, Lemma 91.13 and we obtain the desired map.
To show that the map of the lemma is an isomorphism we may assume that K and L are
derived complete, i.e., K = K∧ and L = L∧. In this case we are looking at the map

γ : RHomA(K,L) −→ RHomA(RΓZ(K), RΓZ(L))
By Proposition 12.2 we know that the cohomology groups of the left and the right hand
side coincide. In other words, we have to check that the map γ sends a morphismα : K →
L in D(A) to the morphism RΓZ(α) : RΓZ(K) → RΓZ(L). We omit the verification
(hint: note that RΓZ(α) is just the map α ⊗ idC : K ⊗L C → L ⊗L C which is almost
the same as the construction of the map in More on Algebra, Lemma 73.6). �

Lemma 12.4. Let I andJ be ideals in a Noetherian ringA. LetM be a finiteA-module.
Set Z = V (J). Consider the derived I-adic completion RΓZ(M)∧ of local cohomology.
Then

(1) we have RΓZ(M)∧ = R limRΓZ(M/InM), and
(2) there are short exact sequences

0→ R1 limHi−1
Z (M/InM)→ Hi(RΓZ(M)∧)→ limHi

Z(M/InM)→ 0
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In particular RΓZ(M)∧ has vanishing cohomology in negative degrees.

Proof. Suppose that J = (g1, . . . , gm). ThenRΓZ(M) is computed by the complex

M →
∏

Mgj0
→
∏

Mgj0gj1
→ . . .→Mg1g2...gm

by Lemma 9.1. By More on Algebra, Lemma 94.6 the derived I-adic completion of this
complex is given by the complex

limM/InM →
∏

lim(M/InM)gj0
→ . . .→ lim(M/InM)g1g2...gm

of usual completions. Since RΓZ(M/InM) is computed by the complex M/InM →∏
(M/InM)gj0

→ . . . → (M/InM)g1g2...gm and since the transition maps between
these complexes are surjective, we conclude that (1) holds by More on Algebra, Lemma
87.1. Part (2) then follows from More on Algebra, Lemma 87.4. �

Lemma 12.5. With notation and hypotheses as in Lemma 12.4 assumeA is I-adically
complete. Then

H0(RΓZ(M)∧) = colimH0
V (J′)(M)

where the filtered colimit is over J ′ ⊂ J such that V (J ′) ∩ V (I) = V (J) ∩ V (I).

Proof. Since M is a finite A-module, we have that M is I-adically complete. The
proof of Lemma 12.4 shows that

H0(RΓZ(M)∧) = Ker(M∧ →
∏

M∧
gj ) = Ker(M →

∏
M∧
gj )

where on the right hand side we have usual I-adic completion. The kernel Kj of Mgj →
M∧
gj is

⋂
InMgj . By Algebra, Lemma 51.5 for every p ∈ V (IAgj ) we find an f ∈ Agj ,

f 6∈ p such that (Kj)f = 0.

Let s ∈ H0(RΓZ(M)∧). By the above we may think of s as an element ofM . The support
Z ′ of s intersected withD(gj) is disjoint fromD(gj)∩V (I) by the arguments above. Thus
Z ′ is a closed subset of Spec(A) with Z ′ ∩ V (I) ⊂ V (J). Then Z ′ ∪ V (J) = V (J ′) for
some ideal J ′ ⊂ J with V (J ′)∩V (I) ⊂ V (J) and we have s ∈ H0

V (J′)(M). Conversely,
any s ∈ H0

V (J′)(M) with J ′ ⊂ J and V (J ′) ∩ V (I) ⊂ V (J) maps to zero in M∧
gj for all

j. This proves the lemma. �

13. Trivial duality for a ring map

Let A→ B be a ring homomorphism. Consider the functor

HomA(B,−) : ModA −→ModB , M 7−→ HomA(B,M)

This functor is left exact and has a derived extension RHom(B,−) : D(A)→ D(B).

Lemma 13.1. Let A → B be a ring homomorphism. The functor RHom(B,−)
constructed above is right adjoint to the restriction functor D(B)→ D(A).

Proof. This is a consequence of the fact that restriction and HomA(B,−) are adjoint
functors by Algebra, Lemma 14.4. See Derived Categories, Lemma 30.3. �

Lemma 13.2. Let A→ B → C be ring maps. Then RHom(C,−) ◦RHom(B,−) :
D(A)→ D(C) is the functor RHom(C,−) : D(A)→ D(C).

Proof. Follows from uniqueness of right adjoints and Lemma 13.1. �
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Lemma 13.3. Let ϕ : A→ B be a ring homomorphism. For K in D(A) we have

ϕ∗RHom(B,K) = RHomA(B,K)
where ϕ∗ : D(B)→ D(A) is restriction. In particular Rq Hom(B,K) = ExtqA(B,K).

Proof. Choose a K-injective complex I• representing K. Then RHom(B,K) is
represented by the complex HomA(B, I•) ofB-modules. Since this complex, as a complex
of A-modules, represents RHomA(B,K) we see that the lemma is true. �

Let A be a Noetherian ring. We will denote

DCoh(A) ⊂ D(A)
the full subcategory consisting of those objects K of D(A) whose cohomology modules
are all finite A-modules. This makes sense by Derived Categories, Section 17 because as A
is Noetherian, the subcategory of finite A-modules is a Serre subcategory of ModA.

Lemma 13.4. With notation as above, assume A → B is a finite ring map of Noe-
therian rings. Then RHom(B,−) maps D+

Coh(A) into D+
Coh(B).

Proof. We have to show: if K ∈ D+(A) has finite cohomology modules, then the
complex RHom(B,K) has finite cohomology modules too. This follows for example
from Lemma 13.3 if we can show the ext modules ExtiA(B,K) are finiteA-modules. Since
K is bounded below there is a convergent spectral sequence

ExtpA(B,Hq(K))⇒ Extp+q
A (B,K)

This finishes the proof as the modules ExtpA(B,Hq(K)) are finite by Algebra, Lemma
71.9. �

Remark 13.5. Let A be a ring and let I ⊂ A be an ideal. Set B = A/I . In this case
the functor HomA(B,−) is equal to the functor

ModA −→ModB , M 7−→M [I]
which sends M to the submodule of I-torsion.

Situation 13.6. Let R→ A be a ring map. We will give an alternative construction
of RHom(A,−) which will stand us in good stead later in this chapter. Namely, suppose
we have a differential graded algebra (E, d) over R and a quasi-isomorphism E → A
where we view A as a differential graded algebra over R with zero differential. Then we
have commutative diagrams

D(E, d)

$$

D(A)oo

{{
D(R)

and

D(E, d)
−⊗L

EA

// D(A)

D(R)
−⊗L

RE

dd

−⊗L
RA

;;

where the horizontal arrows are equivalences of categories (Differential Graded Algebra,
Lemma 37.1). It is clear that the first diagram commutes. The second diagram commutes
because the first one does and our functors are their left adjoints (Differential Graded
Algebra, Example 33.6) or because we haveE⊗L

EA = E⊗EA and we can use Differential
Graded Algebra, Lemma 34.1.

Lemma 13.7. In Situation 13.6 the functorRHom(A,−) is equal to the composition
of RHom(E,−) : D(R)→ D(E, d) and the equivalence −⊗L

E A : D(E, d)→ D(A).
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Proof. This is true becauseRHom(E,−) is the right adjoint to−⊗L
R E , see Differ-

ential Graded Algebra, Lemma 33.5. Hence this functor plays the same role as the functor
RHom(A,−) for the map R→ A (Lemma 13.1), whence these functors must correspond
via the equivalence −⊗L

E A : D(E, d)→ D(A). �

Lemma 13.8. In Situation 13.6 assume that
(1) E viewed as an object of D(R) is compact, and
(2) N = Hom•

R(E•, R) computes RHom(E,R).
Then RHom(E,−) : D(R)→ D(E) is isomorphic to K 7→ K ⊗L

R N .

Proof. Special case of Differential Graded Algebra, Lemma 33.9. �

Lemma 13.9. In Situation 13.6 assume A is a perfect R-module. Then

RHom(A,−) : D(R)→ D(A)

is given by K 7→ K ⊗L
RM where M = RHom(A,R) ∈ D(A).

Proof. We apply Divided Power Algebra, Lemma 6.10 to choose a Tate resolution
(E, d) of A over R. Note that Ei = 0 for i > 0, E0 = R[x1, . . . , xn] is a polynomial
algebra, andEi is a finite freeE0-module for i < 0. It follows thatE viewed as a complex
of R-modules is a bounded above complex of free R-modules. We check the assumptions
of Lemma 13.8. The first holds because A is perfect (hence compact by More on Algebra,
Proposition 78.3) and the second by More on Algebra, Lemma 73.2. From the lemma
conclude that K 7→ RHom(E,K) is isomorphic to K 7→ K ⊗L

R N for some differential
graded E-module N . Observe that

(R⊗R E)⊗L
E A = R⊗E E ⊗E A

in D(A). Hence by Differential Graded Algebra, Lemma 34.2 we conclude that the com-
position of−⊗L

R N and−⊗L
R A is of the form−⊗RM for some M ∈ D(A). To finish

the proof we apply Lemma 13.7. �

Lemma 13.10. LetR→ A be a surjective ring map whose kernel I is an invertibleR-
module. The functorRHom(A,−) : D(R)→ D(A) is isomorphic toK 7→ K⊗L

RN [−1]
where N is inverse of the invertible A-module I ⊗R A.

Proof. Since A has the finite projective resolution

0→ I → R→ A→ 0

we see thatA is a perfectR-module. By Lemma 13.9 it suffices to prove thatRHom(A,R)
is represented by N [−1] in D(A). This means RHom(A,R) has a unique nonzero coho-
mology module, namely N in degree 1. As ModA → ModR is fully faithful it suffice to
prove this after applying the restriction functor i∗ : D(A) → D(R). By Lemma 13.3 we
have

i∗RHom(A,R) = RHomR(A,R)

Using the finite projective resolution above we find that the latter is represented by the
complexR→ I⊗−1 withR in degree 0. The mapR→ I⊗−1 is injective and the cokernel
is N . �
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14. Base change for trivial duality

In this section we consider a cocartesian square of rings

A
α
// A′

R

ϕ

OO

ρ // R′

ϕ′

OO

In other words, we have A′ = A ⊗R R′. If A and R′ are tor independent over R then
there is a canonical base change map

(14.0.1) RHom(A,K)⊗L
A A

′ −→ RHom(A′,K ⊗L
R R

′)

in D(A′) functorial for K in D(R). Namely, by the adjointness of Lemma 13.1 such an
arrow is the same thing as a map

ϕ′
∗
(
RHom(A,K)⊗L

A A
′) −→ K ⊗L

R R
′

in D(R′) where ϕ′
∗ : D(A′)→ D(R′) is the restriction functor. We may apply More on

Algebra, Lemma 61.2 to the left hand side to get that this is the same thing as a map

ϕ∗(RHom(A,K))⊗L
R R

′ −→ K ⊗L
R R

′

in D(R′) where ϕ∗ : D(A) → D(R) is the restriction functor. For this we can choose
can⊗L idR′ where can : ϕ∗(RHom(A,K))→ K is the counit of the adjunction between
RHom(A,−) and ϕ∗.

Lemma 14.1. In the situation above, the map (14.0.1) is an isomorphism if and only
if the map

RHomR(A,K)⊗L
R R

′ −→ RHomR(A,K ⊗L
R R

′)
of More on Algebra, Lemma 73.5 is an isomorphism.

Proof. To see that the map is an isomorphism, it suffices to prove it is an isomorphism
after applying ϕ′

∗. Applying the functor ϕ′
∗ to (14.0.1) and using that A′ = A⊗L

R R
′ we

obtain the base change mapRHomR(A,K)⊗L
RR

′ → RHomR′(A⊗L
RR

′,K⊗L
RR

′) for
derived hom of More on Algebra, Equation (99.1.1). Unwinding the left and right hand
side exactly as in the proof of More on Algebra, Lemma 99.2 and in particular using More
on Algebra, Lemma 99.1 gives the desired result. �

Lemma 14.2. Let R→ A and R→ R′ be ring maps and A′ = A⊗R R′. Assume
(1) A is pseudo-coherent as an R-module,
(2) R′ has finite tor dimension as an R-module (for example R→ R′ is flat),
(3) A and R′ are tor independent over R.

Then (14.0.1) is an isomorphism for K ∈ D+(R).

Proof. Follows from Lemma 14.1 and More on Algebra, Lemma 98.3 part (4). �

Lemma 14.3. Let R→ A and R→ R′ be ring maps and A′ = A⊗R R′. Assume
(1) A is perfect as an R-module,
(2) A and R′ are tor independent over R.

Then (14.0.1) is an isomorphism for all K ∈ D(R).

Proof. Follows from Lemma 14.1 and More on Algebra, Lemma 98.3 part (1). �
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15. Dualizing complexes

In this section we define dualizing complexes for Noetherian rings.

Definition 15.1. Let A be a Noetherian ring. A dualizing complex is a complex of
A-modules ω•

A such that
(1) ω•

A has finite injective dimension,
(2) Hi(ω•

A) is a finite A-module for all i, and
(3) A→ RHomA(ω•

A, ω
•
A) is a quasi-isomorphism.

This definition takes some time getting used to. It is perhaps a good idea to prove some of
the following lemmas yourself without reading the proofs.

Lemma 15.2. Let A be a Noetherian ring. Let K,L ∈ DCoh(A) and assume L has
finite injective dimension. Then RHomA(K,L) is in DCoh(A).

Proof. Pick an integer n and consider the distinguished triangle
τ≤nK → K → τ≥n+1K → τ≤nK[1]

see Derived Categories, Remark 12.4. Since L has finite injective dimension we see that
RHomA(τ≥n+1K,L) has vanishing cohomology in degrees≥ c−n for some constant c.
Hence, given i, we see that ExtiA(K,L) → ExtiA(τ≤nK,L) is an isomorphism for some
n � −i. By Derived Categories of Schemes, Lemma 11.5 applied to τ≤nK and L we see
conclude that ExtiA(K,L) is a finite A-module for all i. Hence RHomA(K,L) is indeed
an object of DCoh(A). �

Lemma 15.3. Let A be a Noetherian ring. If ω•
A is a dualizing complex, then the

functor
D : K 7−→ RHomA(K,ω•

A)
is an anti-equivalenceDCoh(A)→ DCoh(A) which exchangesD+

Coh(A) andD−
Coh(A) and

induces an anti-equivalence Db
Coh(A)→ Db

Coh(A). Moreover D ◦D is isomorphic to the
identity functor.

Proof. Let K be an object of DCoh(A). From Lemma 15.2 we see RHomA(K,ω•
A)

is an object of DCoh(A). By More on Algebra, Lemma 98.2 and the assumptions on the
dualizing complex we obtain a canonical isomorphism

K = RHomA(ω•
A, ω

•
A)⊗L

A K −→ RHomA(RHomA(K,ω•
A), ω•

A)
Thus our functor has a quasi-inverse and the proof is complete. �

Let R be a ring. Recall that an object L of D(R) is invertible if it is an invertible object
for the symmetric monoidal structure onD(R) given by derived tensor product. In More
on Algebra, Lemma 126.4 we have seen this means L is perfect, L =

⊕
Hn(L)[−n], this

is a finite sum, each Hn(L) is finite projective, and there is an open covering Spec(R) =⋃
D(fi) such that L⊗R Rfi ∼= Rfi [−ni] for some integers ni.

Lemma 15.4. Let A be a Noetherian ring. Let F : Db
Coh(A) → Db

Coh(A) be an A-
linear equivalence of categories. Then F (A) is an invertible object of D(A).

Proof. Let m ⊂ A be a maximal ideal with residue field κ. Consider the object F (κ).
Since κ = HomD(A)(κ, κ) we find that all cohomology groups of F (κ) are annihilated
by m. We also see that

ExtiA(κ, κ) = ExtiA(F (κ), F (κ)) = HomD(A)(F (κ), F (κ)[i])
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is zero for i < 0. Say Ha(F (κ)) 6= 0 and Hb(F (κ)) 6= 0 with a minimal and b maximal
(so in particular a ≤ b). Then there is a nonzero map

F (κ)→ Hb(F (κ))[−b]→ Ha(F (κ))[−b]→ F (κ)[a− b]

in D(A) (nonzero because it induces a nonzero map on cohomology). This proves that
b = a. We conclude that F (κ) = κ[−a].

Let G be a quasi-inverse to our functor F . Arguing as above we find an integer b such
that G(κ) = κ[−b]. On composing we find a + b = 0. Let E be a finite A-module
wich is annihilated by a power of m. Arguing by induction on the length of E we find
that G(E) = E′[−b] for some finite A-module E′ annihilated by a power of m. Then
E[−a] = F (E′). Next, we consider the groups

ExtiA(A,E′) = ExtiA(F (A), F (E′)) = HomD(A)(F (A), E[−a+ i])

The left hand side is nonzero if and only if i = 0 and then we get E′. Applying this with
E = E′ = κ and using Nakayama’s lemma this implies thatHj(F (A))m is zero for j > a
and generated by 1 element for j = a. On the other hand, if Hj(F (A))m is not zero for
some j < a, then there is a map F (A)→ E[−a+ i] for some i < 0 and some E (More on
Algebra, Lemma 65.7) which is a contradiction. Thus we see that F (A)m = M [−a] for
some Am-module M generated by 1 element. However, since

Am = HomD(A)(A,A)m = HomD(A)(F (A), F (A))m = HomAm
(M,M)

we see that M ∼= Am. We conclude that there exists an element f ∈ A, f 6∈ m such that
F (A)f is isomorphic to Af [−a]. This finishes the proof. �

Lemma 15.5. Let A be a Noetherian ring. If ω•
A and (ω′

A)• are dualizing complexes,
then (ω′

A)• is quasi-isomorphic to ω•
A ⊗L

A L for some invertible object L of D(A).

Proof. By Lemmas 15.3 and 15.4 the functorK 7→ RHomA(RHomA(K,ω•
A), (ω′

A)•)
maps A to an invertible object L. In other words, there is an isomorphism

L −→ RHomA(ω•
A, (ω′

A)•)

Since L has finite tor dimension, this means that we can apply More on Algebra, Lemma
98.2 to see that

RHomA(ω•
A, (ω′

A)•)⊗L
A K −→ RHomA(RHomA(K,ω•

A), (ω′
A)•)

is an isomorphism forK inDb
Coh(A). In particular, settingK = ω•

A finishes the proof. �

Lemma 15.6. Let A be a Noetherian ring. Let B = S−1A be a localization. If ω•
A is a

dualizing complex, then ω•
A ⊗A B is a dualizing complex for B.

Proof. Let ω•
A → I• be a quasi-isomorphism with I• a bounded complex of injec-

tives. Then S−1I• is a bounded complex of injective B = S−1A-modules (Lemma 3.8)
representing ω•

A ⊗A B. Thus ω•
A ⊗A B has finite injective dimension. Since Hi(ω•

A ⊗A
B) = Hi(ω•

A) ⊗A B by flatness of A → B we see that ω•
A ⊗A B has finite cohomology

modules. Finally, the map

B −→ RHomA(ω•
A ⊗A B,ω•

A ⊗A B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change in
this case, see More on Algebra, Lemma 99.2. �
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Lemma 15.7. LetA be a Noetherian ring. Let f1, . . . , fn ∈ A generate the unit ideal.
If ω•

A is a complex of A-modules such that (ω•
A)fi is a dualizing complex for Afi for all i,

then ω•
A is a dualizing complex for A.

Proof. Consider the double complex∏
i0

(ω•
A)fi0 →

∏
i0<i1

(ω•
A)fi0fi1 → . . .

The associated total complex is quasi-isomorphic to ω•
A for example by Descent, Remark

3.10 or by Derived Categories of Schemes, Lemma 9.4. By assumption the complexes
(ω•
A)fi have finite injective dimension as complexes of Afi -modules. This implies that

each of the complexes (ω•
A)fi0 ...fip , p > 0 has finite injective dimension over Afi0 ...fip ,

see Lemma 3.8. This in turn implies that each of the complexes (ω•
A)fi0 ...fip , p > 0 has

finite injective dimension overA, see Lemma 3.2. Hence ω•
A has finite injective dimension

as a complex of A-modules (as it can be represented by a complex endowed with a finite
filtration whose graded parts have finite injective dimension). Since Hn(ω•

A)fi is a finite
Afi module for each i we see that Hi(ω•

A) is a finite A-module, see Algebra, Lemma 23.2.
Finally, the (derived) base change of the map A → RHomA(ω•

A, ω
•
A) to Afi is the map

Afi → RHomA((ω•
A)fi , (ω•

A)fi) by More on Algebra, Lemma 99.2. Hence we deduce
that A→ RHomA(ω•

A, ω
•
A) is an isomorphism and the proof is complete. �

Lemma 15.8. Let A → B be a finite ring map of Noetherian rings. Let ω•
A be a

dualizing complex. Then RHom(B,ω•
A) is a dualizing complex for B.

Proof. Let ω•
A → I• be a quasi-isomorphism with I• a bounded complex of injec-

tives. Then HomA(B, I•) is a bounded complex of injectiveB-modules (Lemma 3.4) rep-
resentingRHom(B,ω•

A). ThusRHom(B,ω•
A) has finite injective dimension. By Lemma

13.4 it is an object of DCoh(B). Finally, we compute
HomD(B)(RHom(B,ω•

A), RHom(B,ω•
A)) = HomD(A)(RHom(B,ω•

A), ω•
A) = B

and for n 6= 0 we compute
HomD(B)(RHom(B,ω•

A), RHom(B,ω•
A)[n]) = HomD(A)(RHom(B,ω•

A), ω•
A[n]) = 0

which proves the last property of a dualizing complex. In the displayed equations, the
first equality holds by Lemma 13.1 and the second equality holds by Lemma 15.3. �

Lemma 15.9. LetA→ B be a surjective homomorphism of Noetherian rings. Let ω•
A

be a dualizing complex. Then RHom(B,ω•
A) is a dualizing complex for B.

Proof. Special case of Lemma 15.8. �

Lemma 15.10. LetA be a Noetherian ring. If ω•
A is a dualizing complex, then ω•

A⊗A
A[x] is a dualizing complex for A[x].

Proof. SetB = A[x] and ω•
B = ω•

A⊗AB. It follows from Lemma 3.10 and More on
Algebra, Lemma 69.5 thatω•

B has finite injective dimension. SinceHi(ω•
B) = Hi(ω•

A)⊗A
B by flatness of A → B we see that ω•

A ⊗A B has finite cohomology modules. Finally,
the map

B −→ RHomB(ω•
B , ω

•
B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change in
this case, see More on Algebra, Lemma 99.2. �

Proposition 15.11. LetA be a Noetherian ring which has a dualizing complex. Then
any A-algebra essentially of finite type over A has a dualizing complex.
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Proof. This follows from a combination of Lemmas 15.6, 15.9, and 15.10. �

Lemma 15.12. LetA be a Noetherian ring. Let ω•
A be a dualizing complex. Let m ⊂ A

be a maximal ideal and set κ = A/m. Then RHomA(κ, ω•
A) ∼= κ[n] for some n ∈ Z.

Proof. This is true because RHomA(κ, ω•
A) is a dualizing complex over κ (Lemma

15.9), because dualizing complexes overκ are unique up to shifts (Lemma 15.5), and because
κ is a dualizing complex over κ. �

16. Dualizing complexes over local rings

In this section (A,m, κ) will be a Noetherian local ring endowed with a dualizing com-
plex ω•

A such that the integer n of Lemma 15.12 is zero. More precisely, we assume that
RHomA(κ, ω•

A) = κ[0]. In this case we will say that the dualizing complex is normalized.
Observe that a normalized dualizing complex is unique up to isomorphism and that any
other dualizing complex for A is isomorphic to a shift of a normalized one (Lemma 15.5).

Lemma 16.1. Let (A,m, κ) → (B,m′, κ′) be a finite local map of Noetherian local
rings. Let ω•

A be a normalized dualizing complex. Then ω•
B = RHom(B,ω•

A) is a nor-
malized dualizing complex for B.

Proof. By Lemma 15.8 the complex ω•
B is dualizing for B. We have

RHomB(κ′, ω•
B) = RHomB(κ′, RHom(B,ω•

A)) = RHomA(κ′, ω•
A)

by Lemma 13.1. Since κ′ is isomorphic to a finite direct sum of copies of κ as anA-module
and sinceω•

A is normalized, we see that this complex only has cohomology placed in degree
0. Thus ω•

B is a normalized dualizing complex as well. �

Lemma 16.2. Let (A,m, κ) be a Noetherian local ring with normalized dualizing com-
plexω•

A. LetA→ B be surjective. Thenω•
B = RHomA(B,ω•

A) is a normalized dualizing
complex for B.

Proof. Special case of Lemma 16.1. �

Lemma 16.3. Let (A,m, κ) be a Noetherian local ring. Let F be an A-linear self-
equivalence of the category of finite lengthA-modules. Then F is isomorphic to the iden-
tity functor.

Proof. Since κ is the unique simple object of the category we have F (κ) ∼= κ. Since
our category is abelian, we find thatF is exact. HenceF (E) has the same length asE for all
finite length modules E. Since Hom(E, κ) = Hom(F (E), F (κ)) ∼= Hom(F (E), κ) we
conclude from Nakayama’s lemma thatE and F (E) have the same number of generators.
HenceF (A/mn) is a cyclicA-module. Pick a generator e ∈ F (A/mn). SinceF isA-linear
we conclude that mne = 0. The map A/mn → F (A/mn) has to be an isomorphism as
the lengths are equal. Pick an element

e ∈ limF (A/mn)

which maps to a generator for all n (small argument omitted). Then we obtain a system of
isomorphisms A/mn → F (A/mn) compatible with all A-module maps A/mn → A/mn

′

(byA-linearity of F again). Since any finite length module is a cokernel of a map between
direct sums of cyclic modules, we obtain the isomorphism of the lemma. �
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Lemma 16.4. Let (A,m, κ) be a Noetherian local ring with normalized dualizing com-
plex ω•

A. Let E be an injective hull of κ. Then there exists a functorial isomorphism
RHomA(N,ω•

A) = HomA(N,E)[0]
for N running through the finite length A-modules.

Proof. By induction on the length ofN we see thatRHomA(N,ω•
A) is a module of

finite length sitting in degree 0. ThusRHomA(−, ω•
A) induces an anti-equivalence on the

category of finite length modules. Since the same is true for HomA(−, E) by Proposition
7.8 we see that

N 7−→ HomA(RHomA(N,ω•
A), E)

is an equivalence as in Lemma 16.3. Hence it is isomorphic to the identity functor. Since
HomA(−, E) applied twice is the identity (Proposition 7.8) we obtain the statement of
the lemma. �

Lemma 16.5. Let (A,m, κ) be a Noetherian local ring with normalized dualizing com-
plex ω•

A. Let M be a finite A-module and let d = dim(Supp(M)). Then
(1) if ExtiA(M,ω•

A) is nonzero, then i ∈ {−d, . . . , 0},
(2) the dimension of the support of ExtiA(M,ω•

A) is at most −i,
(3) depth(M) is the smallest integer δ ≥ 0 such that Ext−δ

A (M,ω•
A) 6= 0.

Proof. We prove this by induction on d. If d = 0, this follows from Lemma 16.4 and
Matlis duality (Proposition 7.8) which guarantees that HomA(M,E) is nonzero if M is
nonzero.
Assume the result holds for modules with support of dimension < d and that M has
depth > 0. Choose an f ∈ m which is a nonzerodivisor on M and consider the short
exact sequence

0→M →M →M/fM → 0
Since dim(Supp(M/fM)) = d− 1 (Algebra, Lemma 63.10) we may apply the induction
hypothesis. Writing Ei = ExtiA(M,ω•

A) and F i = ExtiA(M/fM,ω•
A) we obtain a long

exact sequence
. . .→ F i → Ei

f−→ Ei → F i+1 → . . .

By induction Ei/fEi = 0 for i + 1 6∈ {− dim(Supp(M/fM)), . . . ,−depth(M/fM)}.
By Nakayama’s lemma (Algebra, Lemma 20.1) and Algebra, Lemma 72.7 we concludeEi =
0 for i 6∈ {− dim(Supp(M)), . . . ,−depth(M)}. Moreover, in the boundary case i =
−depth(M) we deduce thatEi is nonzero asF i+1 is nonzero by induction. SinceEi/fEi ⊂
F i+1 we get

dim(Supp(F i+1)) ≥ dim(Supp(Ei/fEi)) ≥ dim(Supp(Ei))− 1
(see lemma used above) we also obtain the dimension estimate (2).
If M has depth 0 and d > 0 we let N = M [m∞] and set M ′ = M/N (compare with
Lemma 11.6). Then M ′ has depth > 0 and dim(Supp(M ′)) = d. Thus we know the
result for M ′ and since RHomA(N,ω•

A) = HomA(N,E) (Lemma 16.4) the long exact
cohomology sequence of Ext’s implies the result for M . �

Remark 16.6. Let (A,m) and ω•
A be as in Lemma 16.5. By More on Algebra, Lemma

69.2 we see that ω•
A has injective-amplitude in [−d, 0] because part (3) of that lemma ap-

plies. In particular, for anyA-moduleM (not necessarily finite) we have ExtiA(M,ω•
A) =

0 for i 6∈ {−d, . . . , 0}.
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Lemma 16.7. Let (A,m, κ) be a Noetherian local ring with normalized dualizing com-
plex ω•

A. Let M be a finite A-module. The following are equivalent
(1) M is Cohen-Macaulay,
(2) ExtiA(M,ω•

A) is nonzero for a single i,
(3) Ext−i

A (M,ω•
A) is zero for i 6= dim(Supp(M)).

Denote CMd the category of finite Cohen-Macaulay A-modules of depth d. Then M 7→
Ext−d

A (M,ω•
A) defines an anti-auto-equivalence of CMd.

Proof. We will use the results of Lemma 16.5 without further mention. Fix a finite
moduleM . IfM is Cohen-Macaulay, then only Ext−d

A (M,ω•
A) can be nonzero, hence (1)

⇒ (3). The implication (3)⇒ (2) is immediate. Assume (2) and let N = Ext−δ
A (M,ω•

A)
be the nonzero Ext where δ = depth(M). Then, since

M [0] = RHomA(RHomA(M,ω•
A), ω•

A) = RHomA(N [δ], ω•
A)

(Lemma 15.3) we conclude that M = Ext−δ
A (N,ω•

A). Thus δ ≥ dim(Supp(M)). How-
ever, since we also know that δ ≤ dim(Supp(M)) (Algebra, Lemma 72.3) we conclude
that M is Cohen-Macaulay.

To prove the final statement, it suffices to show that N = Ext−d
A (M,ω•

A) is in CMd for
M in CMd. Above we have seen that M [0] = RHomA(N [d], ω•

A) and this proves the
desired result by the equivalence of (1) and (3). �

Lemma 16.8. Let (A,m, κ) be a Noetherian local ring with normalized dualizing com-
plex ω•

A. If dim(A) = 0, then ω•
A
∼= E[0] where E is an injective hull of the residue field.

Proof. Immediate from Lemma 16.4. �

Lemma 16.9. Let (A,m, κ) be a Noetherian local ring with normalized dualizing com-
plex. Let I ⊂ m be an ideal of finite length. Set B = A/I . Then there is a distinguished
triangle

ω•
B → ω•

A → HomA(I, E)[0]→ ω•
B [1]

in D(A) where E is an injective hull of κ and ω•
B is a normalized dualizing complex for

B.

Proof. Use the short exact sequence 0 → I → A → B → 0 and Lemmas 16.4 and
16.2. �

Lemma 16.10. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complexω•

A. Let f ∈ m be a nonzerodivisor. SetB = A/(f). Then there is a distinguished
triangle

ω•
B → ω•

A → ω•
A → ω•

B [1]
in D(A) where ω•

B is a normalized dualizing complex for B.

Proof. Use the short exact sequence 0→ A→ A→ B → 0 and Lemma 16.2. �

Lemma 16.11. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•

A. Let p be a minimal prime of A with dim(A/p) = e. Then Hi(ω•
A)p is

nonzero if and only if i = −e.

Proof. Since Ap has dimension zero, there exists an integer n > 0 such that pnAp is
zero. Set B = A/pn and ω•

B = RHomA(B,ω•
A). Since Bp = Ap we see that

(ω•
B)p = RHomA(B,ω•

A)⊗L
A Ap = RHomAp

(Bp, (ω•
A)p) = (ω•

A)p
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The second equality holds by More on Algebra, Lemma 99.2. By Lemma 16.2 we may
replace A by B. After doing so, we see that dim(A) = e. Then we see that Hi(ω•

A)p can
only be nonzero if i = −e by Lemma 16.5 parts (1) and (2). On the other hand, since (ω•

A)p
is a dualizing complex for the nonzero ring Ap (Lemma 15.6) we see that the remaining
module has to be nonzero. �

17. Dualizing complexes and dimension functions

Our results in the local setting have the following consequence: a Noetherian ring which
has a dualizing complex is a universally catenary ring of finite dimension.

Lemma 17.1. Let A be a Noetherian ring. Let p be a minimal prime of A. Then
Hi(ω•

A)p is nonzero for exactly one i.

Proof. The complex ω•
A ⊗A Ap is a dualizing complex for Ap (Lemma 15.6). The

dimension of Ap is zero as p is minimal. Hence the result follows from Lemma 16.8. �

Let A be a Noetherian ring and let ω•
A be a dualizing complex. Lemma 15.12 allows us to

define a function
δ = δω•

A
: Spec(A) −→ Z

by mapping p to the integer of Lemma 15.12 for the dualizing complex (ω•
A)p over Ap

(Lemma 15.6) and the residue field κ(p). To be precise, we define δ(p) to be the unique
integer such that

(ω•
A)p[−δ(p)]

is a normalized dualizing complex over the Noetherian local ring Ap.

Lemma 17.2. Let A be a Noetherian ring and let ω•
A be a dualizing complex. Let

A → B be a surjective ring map and let ω•
B = RHom(B,ω•

A) be the dualizing complex
for B of Lemma 15.9. Then we have

δω•
B

= δω•
A
|Spec(B)

Proof. This follows from the definition of the functions and Lemma 16.2. �

Lemma 17.3. Let A be a Noetherian ring and let ω•
A be a dualizing complex. The

function δ = δω•
A

defined above is a dimension function (Topology, Definition 20.1).

Proof. Let p ⊂ q be an immediate specialization. We have to show that δ(p) =
δ(q) + 1. We may replace A by A/p, the complex ω•

A by ω•
A/p = RHom(A/p, ω•

A), the
prime p by (0), and the prime q by q/p, see Lemma 17.2. Thus we may assume that A is a
domain, p = (0), and q is a prime ideal of height 1.
Then Hi(ω•

A)(0) is nonzero for exactly one i, say i0, by Lemma 17.1. In fact i0 = −δ((0))
because (ω•

A)(0)[−δ((0))] is a normalized dualizing complex over the field A(0).
On the other hand (ω•

A)q[−δ(q)] is a normalized dualizing complex for Aq. By Lemma
16.11 we see that

He((ω•
A)q[−δ(q)])(0) = He−δ(q)(ω•

A)(0)

is nonzero only for e = −dim(Aq) = −1. We conclude
−δ((0)) = −1− δ(q)

as desired. �

Lemma 17.4. Let A be a Noetherian ring which has a dualizing complex. Then A is
universally catenary of finite dimension.
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Proof. Because Spec(A) has a dimension function by Lemma 17.3 it is catenary, see
Topology, Lemma 20.2. Hence A is catenary, see Algebra, Lemma 105.2. It follows from
Proposition 15.11 that A is universally catenary.
Because any dualizing complex ω•

A is in Db
Coh(A) the values of the function δω•

A
in mini-

mal primes are bounded by Lemma 17.1. On the other hand, for a maximal ideal m with
residue field κ the integer i = −δ(m) is the unique integer such that ExtiA(κ, ω•

A) is
nonzero (Lemma 15.12). Since ω•

A has finite injective dimension these values are bounded
too. Since the dimension of A is the maximal value of δ(p) − δ(m) where p ⊂ m are a
pair consisting of a minimal prime and a maximal prime we find that the dimension of
Spec(A) is bounded. �

Lemma 17.5. Let (A,m, κ) be a Noetherian local ring with normalized dualizing com-
plex ω•

A. Let d = dim(A) and ωA = H−d(ω•
A). Then

(1) the support of ωA is the union of the irreducible components of Spec(A) of
dimension d,

(2) ωA satisfies (S2), see Algebra, Definition 157.1.

Proof. We will use Lemma 16.5 without further mention. By Lemma 16.11 the sup-
port of ωA contains the irreducible components of dimension d. Let p ⊂ A be a prime. By
Lemma 17.3 the complex (ω•

A)p[−dim(A/p)] is a normalized dualizing complex for Ap.
Hence if dim(A/p) + dim(Ap) < d, then (ωA)p = 0. This proves the support of ωA is
the union of the irreducible components of dimension d, because the complement of this
union is exactly the primes p of A for which dim(A/p) + dim(Ap) < d as A is catenary
(Lemma 17.4). On the other hand, if dim(A/p) + dim(Ap) = d, then

(ωA)p = H− dim(Ap) ((ω•
A)p[−dim(A/p)])

Hence in order to prove ωA has (S2) it suffices to show that the depth of ωA is at least
min(dim(A), 2). We prove this by induction on dim(A). The case dim(A) = 0 is trivial.
Assume depth(A) > 0. Choose a nonzerodivisor f ∈ m and set B = A/fA. Then
dim(B) = dim(A) − 1 and we may apply the induction hypothesis to B. By Lemma
16.10 we see that multiplication by f is injective on ωA and we get ωA/fωA ⊂ ωB . This
proves the depth of ωA is at least 1. If dim(A) > 1, then dim(B) > 0 and ωB has depth
> 0. Hence ωA has depth > 1 and we conclude in this case.
Assume dim(A) > 0 and depth(A) = 0. Let I = A[m∞] and set B = A/I . Then B has
depth ≥ 1 and ωA = ωB by Lemma 16.9. Since we proved the result for ωB above the
proof is done. �

18. The local duality theorem

The main result in this section is due to Grothendieck.

Lemma 18.1. Let (A,m, κ) be a Noetherian local ring. Let ω•
A be a normalized dual-

izing complex. Let Z = V (m) ⊂ Spec(A). Then E = R0ΓZ(ω•
A) is an injective hull of

κ and RΓZ(ω•
A) = E[0].

Proof. By Lemma 10.1 we have RΓm = RΓZ . Thus
RΓZ(ω•

A) = RΓm(ω•
A) = hocolim RHomA(A/mn, ω•

A)
by Lemma 8.2. Let E′ be an injective hull of the residue field. By Lemma 16.4 we can find
isomorphisms

RHomA(A/mn, ω•
A) ∼= HomA(A/mn, E′)[0]
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compatible with transition maps. Since E′ =
⋃
E′[mn] = colim HomA(A/mn, E′) by

Lemma 7.3 we conclude thatE ∼= E′ and that all other cohomology groups of the complex
RΓZ(ω•

A) are zero. �

Remark 18.2. Let (A,m, κ) be a Noetherian local ring with a normalized dualizing
complex ω•

A. By Lemma 18.1 above we see thatRΓZ(ω•
A) is an injective hull of the residue

field placed in degree 0. In fact, this gives a “construction” or “realization” of the injective
hull which is slightly more canonical than just picking any old injective hull. Namely, a
normalized dualizing complex is unique up to isomorphism, with group of automorphisms
the group of units of A, whereas an injective hull of κ is unique up to isomorphism, with
group of automorphisms the group of units of the completion A∧ of A with respect to m.

Here is the main result of this section.

Theorem 18.3. Let (A,m, κ) be a Noetherian local ring. Let ω•
A be a normalized

dualizing complex. Let E be an injective hull of the residue field. Let Z = V (m) ⊂
Spec(A). Denote ∧ derived completion with respect to m. Then

RHomA(K,ω•
A)∧ ∼= RHomA(RΓZ(K), E[0])

for K in D(A).

Proof. Observe thatE[0] ∼= RΓZ(ω•
A) by Lemma 18.1. By More on Algebra, Lemma

91.13 completion on the left hand side goes inside. Thus we have to prove
RHomA(K∧, (ω•

A)∧) = RHomA(RΓZ(K), RΓZ(ω•
A))

This follows from the equivalence between Dcomp(A,m) and Dm∞-torsion(A) given in
Proposition 12.2. More precisely, it is a special case of Lemma 12.3. �

Here is a special case of the theorem above.

Lemma 18.4. Let (A,m, κ) be a Noetherian local ring. Let ω•
A be a normalized dual-

izing complex. Let E be an injective hull of the residue field. Let K ∈ DCoh(A). Then

Ext−i
A (K,ω•

A)∧ = HomA(Hi
m(K), E)

where ∧ denotes m-adic completion.

Proof. By Lemma 15.3 we see that RHomA(K,ω•
A) is an object of DCoh(A). It fol-

lows that the cohomology modules of the derived completion of RHomA(K,ω•
A) are

equal to the usual completions ExtiA(K,ω•
A)∧ by More on Algebra, Lemma 94.4. On

the other hand, we have RΓm = RΓZ for Z = V (m) by Lemma 10.1. Moreover, the
functor HomA(−, E) is exact hence factors through cohomology. Hence the lemma is
consequence of Theorem 18.3. �

19. Dualizing modules

If (A,m, κ) is a Noetherian local ring and ω•
A is a normalized dualizing complex, then we

say the module ωA = H− dim(A)(ω•
A), described in Lemma 17.5, is a dualizing module for

A. This module is a canonical module of A. It seems generally agreed upon to define a
canonical module for a Noetherian local ring (A,m, κ) to be a finite A-module K such
that

HomA(K,E) ∼= H
dim(A)
m (A)

where E is an injective hull of the residue field. A dualizing module is canonical because

HomA(Hdim(A)
m (A), E) = (ωA)∧
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by Lemma 18.4 and hence applying HomA(−, E) we get

HomA(ωA, E) = HomA((ωA)∧, E)

= HomA(HomA(Hdim(A)
m (A), E), E)

= H
dim(A)
m (A)

the first equality because E is m-power torsion, the second by the above, and the third by
Matlis duality (Proposition 7.8). The utility of the definition of a canonical module given
above lies in the fact that it makes sense even if A does not have a dualizing complex.

20. Cohen-Macaulay rings

Cohen-Macaulay modules and rings were studied in Algebra, Sections 103 and 104.

Lemma 20.1. Let (A,m, κ) be a Noetherian local ring with normalized dualizing com-
plex ω•

A. Then depth(A) is equal to the smallest integer δ ≥ 0 such that H−δ(ω•
A) 6= 0.

Proof. This follows immediately from Lemma 16.5. Here are two other ways to see
that it is true.

First alternative. By Nakayama’s lemma we see that δ is the smallest integer such that
HomA(H−δ(ω•

A), κ) 6= 0. In other words, it is the smallest integer such that Ext−δ
A (ω•

A, κ)
is nonzero. Using Lemma 15.3 and the fact that ω•

A is normalized this is equal to the small-
est integer such that ExtδA(κ,A) is nonzero. This is equal to the depth of A by Algebra,
Lemma 72.5.

Second alternative. By the local duality theorem (in the form of Lemma 18.4) δ is the
smallest integer such that Hδ

m(A) is nonzero. This is equal to the depth of A by Lemma
11.1. �

Lemma 20.2. Let (A,m, κ) be a Noetherian local ring with normalized dualizing com-
plex ω•

A and dualizing module ωA = H− dim(A)(ω•
A). The following are equivalent

(1) A is Cohen-Macaulay,
(2) ω•

A is concentrated in a single degree, and
(3) ω•

A = ωA[dim(A)].
In this case ωA is a maximal Cohen-Macaulay module.

Proof. Follows immediately from Lemma 16.7. �

Lemma 20.3. Let A be a Noetherian ring. If there exists a finite A-module ωA such
that ωA[0] is a dualizing complex, then A is Cohen-Macaulay.

Proof. We may replace A by the localization at a prime (Lemma 15.6 and Algebra,
Definition 104.6). In this case the result follows immediately from Lemma 20.2. �

Lemma 20.4. Let A be a Noetherian ring with dualizing complex ω•
A. Let M be a

finite A-module. Then

U = {p ∈ Spec(A) |Mp is Cohen-Macaulay}

is an open subset of Spec(A) whose intersection with Supp(M) is dense.



21. GORENSTEIN RINGS 3957

Proof. If p is a generic point of Supp(M), then depth(Mp) = dim(Mp) = 0 and
hence p ∈ U . This proves denseness. If p ∈ U , then we see that

RHomA(M,ω•
A)p = RHomAp

(Mp, (ω•
A)p)

has a unique nonzero cohomology module, say in degree i0, by Lemma 16.7. SinceRHomA(M,ω•
A)

has only a finite number of nonzero cohomology modules Hi and since each of these is a
finite A-module, we can find an f ∈ A, f 6∈ p such that (Hi)f = 0 for i 6= i0. Then
RHomA(M,ω•

A)f has a unique nonzero cohomology module and reversing the argu-
ments just given we find that D(f) ⊂ U . �

Lemma 20.5. Let A be a Noetherian ring. If A has a dualizing complex ω•
A, then

{p ∈ Spec(A) | Ap is Cohen-Macaulay} is a dense open subset of Spec(A).

Proof. Immediate consequence of Lemma 20.4 and the definitions. �

21. Gorenstein rings

So far, the only explicit dualizing complex we’ve seen is κ on κ for a field κ, see proof of
Lemma 15.12. By Proposition 15.11 this means that any finite type algebra over a field has
a dualizing complex. However, it turns out that there are Noetherian (local) rings which
do not have a dualizing complex. Namely, we have seen that a ring which has a dualizing
complex is universally catenary (Lemma 17.4) but there are examples of Noetherian local
rings which are not catenary, see Examples, Section 18.

Nonetheless many rings in algebraic geometry have dualizing complexes simply because
they are quotients of Gorenstein rings. This condition is in fact both necessary and suffi-
cient. That is: a Noetherian ring has a dualizing complex if and only if it is a quotient of
a finite dimensional Gorenstein ring. This is Sharp’s conjecture ([?]) which can be found
as [?, Corollary 1.4] in the literature. Returning to our current topic, here is the definition
of Gorenstein rings.

Definition 21.1. Gorenstein rings.
(1) Let A be a Noetherian local ring. We say A is Gorenstein if A[0] is a dualizing

complex for A.
(2) LetA be a Noetherian ring. We sayA is Gorenstein ifAp is Gorenstein for every

prime p of A.

This definition makes sense, because if A[0] is a dualizing complex for A, then S−1A[0] is
a dualizing complex for S−1A by Lemma 15.6. We will see later that a finite dimensional
Noetherian ring is Gorenstein if it has finite injective dimension as a module over itself.

Lemma 21.2. A Gorenstein ring is Cohen-Macaulay.

Proof. Follows from Lemma 20.2. �

An example of a Gorenstein ring is a regular ring.

Lemma 21.3. A regular local ring is Gorenstein. A regular ring is Gorenstein.

Proof. Let A be a regular ring of finite dimension d. Then A has finite global di-
mension d, see Algebra, Lemma 110.8. Hence Extd+1

A (M,A) = 0 for allA-modulesM , see
Algebra, Lemma 109.8. ThusA has finite injective dimension as anA-module by More on
Algebra, Lemma 69.2. It follows that A[0] is a dualizing complex, hence A is Gorenstein
by the remark following the definition. �
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Lemma 21.4. Let A be a Noetherian ring.
(1) If A has a dualizing complex ω•

A, then
(a) A is Gorenstein⇔ ω•

A is an invertible object of D(A),
(b) Ap is Gorenstein⇔ (ω•

A)p is an invertible object of D(Ap),
(c) {p ∈ Spec(A) | Ap is Gorenstein} is an open subset.

(2) If A is Gorenstein, then A has a dualizing complex if and only if A[0] is a dual-
izing complex.

Proof. For invertible objects of D(A), see More on Algebra, Lemma 126.4 and the
discussion in Section 15.
By Lemma 15.6 for every p the complex (ω•

A)p is a dualizing complex overAp. By defini-
tion and uniqueness of dualizing complexes (Lemma 15.5) we see that (1)(b) holds.
To see (1)(c) assume thatAp is Gorenstein. Letnx be the unique integer such thatHnx((ω•

A)p)
is nonzero and isomorphic toAp. Since ω•

A is inDb
Coh(A) there are finitely many nonzero

finiteA-modulesHi(ω•
A). Thus there exists some f ∈ A, f 6∈ p such that onlyHnx((ω•

A)f )
is nonzero and generated by 1 element overAf . Since dualizing complexes are faithful (by
definition) we conclude thatAf ∼= Hnx((ω•

A)f ). In this way we see thatAq is Gorenstein
for every q ∈ D(f). This proves that the set in (1)(c) is open.
Proof of (1)(a). The implication⇐ follows from (1)(b). The implication⇒ follows from
the discussion in the previous paragraph, where we showed that if Ap is Gorenstein, then
for some f ∈ A, f 6∈ p the complex (ω•

A)f has only one nonzero cohomology module
which is invertible.
IfA[0] is a dualizing complex thenA is Gorenstein by part (1). Conversely, we see that part
(1) shows that ω•

A is locally isomorphic to a shift of A. Since being a dualizing complex is
local (Lemma 15.7) the result is clear. �

Lemma 21.5. Let (A,m, κ) be a Noetherian local ring. Then A is Gorenstein if and
only if ExtiA(κ,A) is zero for i� 0.

Proof. Observe that A[0] is a dualizing complex for A if and only if A has finite
injective dimension as anA-module (follows immediately from Definition 15.1). Thus the
lemma follows from More on Algebra, Lemma 69.7. �

Lemma 21.6. Let (A,m, κ) be a Noetherian local ring. Let f ∈ m be a nonzerodivisor.
Set B = A/(f). Then A is Gorenstein if and only if B is Gorenstein.

Proof. If A is Gorenstein, then B is Gorenstein by Lemma 16.10. Conversely, sup-
pose that B is Gorenstein. Then ExtiB(κ,B) is zero for i � 0 (Lemma 21.5). Recall that
RHom(B,−) : D(A)→ D(B) is a right adjoint to restriction (Lemma 13.1). Hence

RHomA(κ,A) = RHomB(κ,RHom(B,A)) = RHomB(κ,B[1])
The final equality by direct computation or by Lemma 13.10. Thus we see that ExtiA(κ,A)
is zero for i� 0 and A is Gorenstein (Lemma 21.5). �

Lemma 21.7. If A→ B is a local complete intersection homomorphism of rings and
A is a Noetherian Gorenstein ring, then B is a Gorenstein ring.

Proof. By More on Algebra, Definition 33.2 we can write B = A[x1, . . . , xn]/I
where I is a Koszul-regular ideal. Observe that a polynomial ring over a Gorenstein ring
A is Gorenstein: reduce to A local and then use Lemmas 15.10 and 21.4. A Koszul-regular
ideal is by definition locally generated by a Koszul-regular sequence, see More on Algebra,
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Section 32. Looking at local rings of A[x1, . . . , xn] we see it suffices to show: if R is a
Noetherian local Gorenstein ring and f1, . . . , fc ∈ mR is a Koszul regular sequence, then
R/(f1, . . . , fc) is Gorenstein. This follows from Lemma 21.6 and the fact that a Koszul
regular sequence in R is just a regular sequence (More on Algebra, Lemma 30.7). �

Lemma 21.8. Let A → B be a flat local homomorphism of Noetherian local rings.
The following are equivalent

(1) B is Gorenstein, and
(2) A and B/mAB are Gorenstein.

Proof. Below we will use without further mention that a local Gorenstein ring has
finite injective dimension as well as Lemma 21.5. By More on Algebra, Lemma 65.4 we
have

ExtiA(κA, A)⊗A B = ExtiB(B/mAB,B)
for all i.

Assume (2). Using that RHom(B/mAB,−) : D(B)→ D(B/mAB) is a right adjoint to
restriction (Lemma 13.1) we obtain

RHomB(κB , B) = RHomB/mAB(κB , RHom(B/mAB,B))

The cohomology modules ofRHom(B/mAB,B) are the modules ExtiB(B/mAB,B) =
ExtiA(κA, A)⊗AB. SinceA is Gorenstein, we conclude only a finite number of these are
nonzero and each is isomorphic to a direct sum of copies ofB/mAB. Hence sinceB/mAB
is Gorenstein we conclude that RHomB(B/mB , B) has only a finite number of nonzero
cohomology modules. Hence B is Gorenstein.

Assume (1). Since B has finite injective dimension, ExtiB(B/mAB,B) is 0 for i � 0.
Since A → B is faithfully flat we conclude that ExtiA(κA, A) is 0 for i � 0. We con-
clude that A is Gorenstein. This implies that ExtiA(κA, A) is nonzero for exactly one i,
namely for i = dim(A), and Extdim(A)

A (κA, A) ∼= κA (see Lemmas 16.1, 20.2, and 21.2).
Thus we see that ExtiB(B/mAB,B) is zero except for one i, namely i = dim(A) and
Extdim(A)

B (B/mAB,B) ∼= B/mAB. Thus B/mAB is Gorenstein by Lemma 16.1. �

Lemma 21.9. Let (A,m, κ) be a Noetherian local Gorenstein ring of dimension d. Let
E be the injective hull of κ. Then TorAi (E, κ) is zero for i 6= d and TorAd (E, κ) = κ.

Proof. Since A is Gorenstein ω•
A = A[d] is a normalized dualizing complex for

A. Also E is the only nonzero cohomology module of RΓm(ω•
A) sitting in degree 0, see

Lemma 18.1. By Lemma 9.5 we have

E ⊗L
A κ = RΓm(ω•

A)⊗L
A κ = RΓm(ω•

A ⊗L
A κ) = RΓm(κ[d]) = κ[d]

and the lemma follows. �

22. The ubiquity of dualizing complexes

Many Noetherian rings have dualizing complexes.

Lemma 22.1. Let A → B be a local homomorphism of Noetherian local rings. Let
ω•
A be a normalized dualizing complex. If A→ B is flat and mAB = mB , then ω•

A ⊗A B
is a normalized dualizing complex for B.
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Proof. It is clear that ω•
A ⊗A B is in Db

Coh(B). Let κA and κB be the residue fields
of A and B. By More on Algebra, Lemma 99.2 we see that

RHomB(κB , ω•
A ⊗A B) = RHomA(κA, ω•

A)⊗A B = κA[0]⊗A B = κB [0]
Thus ω•

A ⊗A B has finite injective dimension by More on Algebra, Lemma 69.7. Finally,
we can use the same arguments to see that

RHomB(ω•
A ⊗A B,ω•

A ⊗A B) = RHomA(ω•
A, ω

•
A)⊗A B = A⊗A B = B

as desired. �

Lemma 22.2. Let A → B be a flat map of Noetherian rings. Let I ⊂ A be an ideal
such that A/I = B/IB and such that IB is contained in the Jacobson radical of B. Let
ω•
A be a dualizing complex. Then ω•

A ⊗A B is a dualizing complex for B.

Proof. It is clear that ω•
A⊗AB is inDb

Coh(B). By More on Algebra, Lemma 99.2 we
see that

RHomB(K ⊗A B,ω•
A ⊗A B) = RHomA(K,ω•

A)⊗A B
for any K ∈ Db

Coh(A). For any ideal IB ⊂ J ⊂ B there is a unique ideal I ⊂ J ′ ⊂ A
such that A/J ′ ⊗A B = B/J . Thus ω•

A ⊗A B has finite injective dimension by More on
Algebra, Lemma 69.6. Finally, we also have

RHomB(ω•
A ⊗A B,ω•

A ⊗A B) = RHomA(ω•
A, ω

•
A)⊗A B = A⊗A B = B

as desired. �

Lemma 22.3. Let A be a Noetherian ring and let I ⊂ A be an ideal. Let ω•
A be a

dualizing complex.
(1) ω•

A⊗AAh is a dualizing complex on the henselization (Ah, Ih) of the pair (A, I),
(2) ω•

A ⊗A A∧ is a dualizing complex on the I-adic completion A∧, and
(3) if A is local, then ω•

A ⊗A Ah, resp. ω•
A ⊗A Ash is a dualzing complex on the

henselization, resp. strict henselization of A.

Proof. Immediate from Lemmas 22.1 and 22.2. See More on Algebra, Sections 11, 43,
and 45 and Algebra, Sections 96 and 97 for information on completions and henselizations.

�

Lemma 22.4. The following types of rings have a dualizing complex:
(1) fields,
(2) Noetherian complete local rings,
(3) Z,
(4) Dedekind domains,
(5) any ring which is obtained from one of the rings above by taking an algebra

essentially of finite type, or by taking an ideal-adic completion, or by taking a
henselization, or by taking a strict henselization.

Proof. Part (5) follows from Proposition 15.11 and Lemma 22.3. By Lemma 21.3
a regular local ring has a dualizing complex. A complete Noetherian local ring is the
quotient of a regular local ring by the Cohen structure theorem (Algebra, Theorem 160.8).
Let A be a Dedekind domain. Then every ideal I is a finite projective A-module (follows
from Algebra, Lemma 78.2 and the fact that the local rings ofA are discrete valuation ring
and hence PIDs). Thus every A-module has finite injective dimension at most 1 by More
on Algebra, Lemma 69.2. It follows easily that A[0] is a dualizing complex. �
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23. Formal fibres

This section is a continuation of More on Algebra, Section 51. There we saw there is a
(fairly) good theory of Noetherian rings A whose local rings have Cohen-Macaulay for-
mal fibres. Namely, we proved (1) it suffices to check the formal fibres of localizations at
maximal ideals are Cohen-Macaulay, (2) the property is inherited by rings of finite type
over A, (3) the fibres of A → A∧ are Cohen-Macaulay for any completion A∧ of A, and
(4) the property is inherited by henselizations of A. See More on Algebra, Lemma 51.4,
Proposition 51.5, Lemma 51.6, and Lemma 51.7. Similarly, for Noetherian rings whose lo-
cal rings have formal fibres which are geometrically reduced, geometrically normal, (Sn),
and geometrically (Rn). In this section we will see that the same is true for Noetherian
rings whose local rings have formal fibres which are Gorenstein or local complete inter-
sections. This is relevant to this chapter because a Noetherian ring which has a dualizing
complex is an example.

Lemma 23.1. Properties (A), (B), (C), (D), and (E) of More on Algebra, Section 51
hold for P (k → R) =“R is a Gorenstein ring”.

Proof. Since we already know the result holds for Cohen-Macaulay instead of Goren-
stein, we may in each step assume the ring we have is Cohen-Macaulay. This is not par-
ticularly helpful for the proof, but psychologically may be useful.

Part (A). LetK/k be a finitely generated field extension. LetR be a Gorenstein k-algebra.
We can find a global complete intersection A = k[x1, . . . , xn]/(f1, . . . , fc) over k such
that K is isomorphic to the fraction field of A, see Algebra, Lemma 158.11. Then R →
R⊗k A is a relative global complete intersection. HenceR⊗k A is Gorenstein by Lemma
21.7. Thus R⊗k K is too as a localization.

Proof of (B). This is clear because a ring is Gorenstein if and only if all of its local rings
are Gorenstein.

Part (C). Let A→ B → C be flat maps of Noetherian rings. Assume the fibres of A→ B
are Gorenstein and B → C is regular. We have to show the fibres of A → C are Goren-
stein. Clearly, we may assumeA = k is a field. Then we may assume thatB → C is a reg-
ular local homomorphism of Noetherian local rings. Then B is Gorenstein and C/mBC
is regular, in particular Gorenstein (Lemma 21.3). Then C is Gorenstein by Lemma 21.8.

Part (D). This follows from Lemma 21.8. Part (E) is immediate as the condition does not
refer to the ground field. �

Lemma 23.2. Let A be a Noetherian local ring. If A has a dualizing complex, then
the formal fibres of A are Gorenstein.

Proof. Let p be a prime of A. The formal fibre of A at p is isomorphic to the formal
fibre of A/p at (0). The quotient A/p has a dualizing complex (Lemma 15.9). Thus it
suffices to check the statement whenA is a local domain and p = (0). Letω•

A be a dualizing
complex for A. Then ω•

A ⊗A A∧ is a dualizing complex for the completion A∧ (Lemma
22.1). Then ω•

A ⊗A K is a dualizing complex for the fraction field K of A (Lemma 15.6).
Hence ω•

A⊗AK is isomorphic otK[n] for some n ∈ Z. Similarly, we conclude a dualizing
complex for the formal fibre A∧ ⊗A K is

ω•
A ⊗A A∧ ⊗A∧ (A∧ ⊗A K) = (ω•

A ⊗A K)⊗K (A∧ ⊗A K) ∼= (A∧ ⊗A K)[n]

as desired. �
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Here is the verification promised in Divided Power Algebra, Remark 9.3.
Lemma 23.3. Properties (A), (B), (C), (D), and (E) of More on Algebra, Section 51

hold for P (k → R) =“R is a local complete intersection”. See Divided Power Algebra,
Definition 8.5.

Proof. Part (A). LetK/k be a finitely generated field extension. LetR be a k-algebra
which is a local complete intersection. We can find a global complete intersection A =
k[x1, . . . , xn]/(f1, . . . , fc) over k such thatK is isomorphic to the fraction field ofA, see
Algebra, Lemma 158.11. Then R → R ⊗k A is a relative global complete intersection. It
follows that R ⊗k A is a local complete intersection by Divided Power Algebra, Lemma
8.9.
Proof of (B). This is clear because a ring is a local complete intersection if and only if all
of its local rings are complete intersections.
Part (C). Let A→ B → C be flat maps of Noetherian rings. Assume the fibres of A→ B
are local complete intersections and B → C is regular. We have to show the fibres of
A→ C are local complete intersections. Clearly, we may assumeA = k is a field. Then we
may assume thatB → C is a regular local homomorphism of Noetherian local rings. Then
B is a complete intersection and C/mBC is regular, in particular a complete intersection
(by definition). ThenC is a complete intersection by Divided Power Algebra, Lemma 8.9.
Part (D). This follows by the same arguments as in (C) from the other implication in
Divided Power Algebra, Lemma 8.9. Part (E) is immediate as the condition does not refer
to the ground field. �

24. Upper shriek algebraically

For a finite type homomorphism R→ A of Noetherian rings we will construct a functor
ϕ! : D(R) → D(A) well defined up to nonunique isomorphism which as we will see in
Duality for Schemes, Remark 17.5 agrees up to isomorphism with the upper shriek func-
tors one encounters in the duality theory for schemes. To motivate the construction we
mention two additional properties:

(1) ϕ! sends a dualizing complex for R (if it exists) to a dualizing complex for A,
and

(2) ω•
A/R = ϕ!(R) is a kind of relative dualizing complex: it lies in Db

Coh(A) and
restricts to a dualizing complex on the fibres provided R→ A is flat.

These statemens are Lemmas 24.3 and 25.2.
Let ϕ : R → A be a finite type homomorphism of Noetherian rings. We will define a
functor ϕ! : D(R)→ D(A) in the following way

(1) If ϕ : R → A is surjective we set ϕ!(K) = RHom(A,K). Here we use the
functor RHom(A,−) : D(R)→ D(A) of Section 13, and

(2) in general we choose a surjection ψ : P → A with P = R[x1, . . . , xn] and we
setϕ!(K) = ψ!(K⊗L

RP )[n]. Here we use the functor−⊗L
RP : D(R)→ D(P )

of More on Algebra, Section 60.
Note the shift [n] by the number of variables in the polynomial ring. This construction
is not canonical and the functor ϕ! will only be well defined up to a (nonunique) isomor-
phism of functors1.

1It is possible to make the construction canonical: use Ωn
P/R

[n] instead of P [n] in the construction and
use this in Lemma 24.1. The material in this section becomes a lot more involved if one wants to do this.
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Lemma 24.1. Let ϕ : R → A be a finite type homomorphism of Noetherian rings.
The functor ϕ! is well defined up to isomorphism.

Proof. Suppose thatψ1 : P1 = R[x1, . . . , xn]→ A andψ2 : P2 = R[y1, . . . , ym]→
A are two surjections from polynomial rings ontoA. Then we get a commutative diagram

R[x1, . . . , xn, y1, . . . , ym]

xi 7→gi

��

yj 7→fj

// R[x1, . . . , xn]

��
R[y1, . . . , ym] // A

where fj and gi are chosen such that ψ1(fj) = ψ2(yj) and ψ2(gi) = ψ1(xi). By sym-
metry it suffices to prove the functors defined using P → A and P [y1, . . . , ym] → A are
isomorphic. By induction we may assume m = 1. This reduces us to the case discussed in
the next paragraph.

Here ψ : P → A is given and χ : P [y] → A induces ψ on P . Write Q = P [y]. Choose
g ∈ P with ψ(g) = χ(y). Denote π : Q → P the P -algebra map with π(y) = g.
Then χ = ψ ◦ π and hence χ! = ψ! ◦ π! as both are adjoint to the restriction functor
D(A)→ D(Q) by the material in Section 13. Thus

χ! (K ⊗L
R Q

)
[n+ 1] = ψ! (π! (K ⊗L

R Q
)

[1]
)

[n]

Hence it suffices to show that π!(K ⊗L
RQ[1]) = K ⊗L

R P Thus it suffices to show that the
functor π!(−) : D(Q) → D(P ) is isomorphic to K 7→ K ⊗L

Q P [−1]. This follows from
Lemma 13.10. �

Lemma 24.2. Let ϕ : R→ A be a finite type homomorphism of Noetherian rings.
(1) ϕ! maps D+(R) into D+(A) and D+

Coh(R) into D+
Coh(A).

(2) if ϕ is perfect, then ϕ! maps D−(R) into D−(A), D−
Coh(R) into D−

Coh(A), and
Db

Coh(R) into Db
Coh(A).

Proof. Choose a factorization R → P → A as in the definition of ϕ!. The functor
−⊗L

R : D(R) → D(P ) preserves the subcategories D+, D+
Coh, D

−, D−
Coh, D

b
Coh. The

functor RHom(A,−) : D(P ) → D(A) preserves D+ and D+
Coh by Lemma 13.4. If

R → A is perfect, then A is perfect as a P -module, see More on Algebra, Lemma 82.2.
Recall that the restriction of RHom(A,K) to D(P ) is RHomP (A,K). By More on
Algebra, Lemma 74.15 we have RHomP (A,K) = E ⊗L

P K for some perfect E ∈ D(P ).
Since we can representE by a finite complex of finite projective P -modules it is clear that
RHomP (A,K) is in D−(P ), D−

Coh(P ), Db
Coh(P ) as soon as K is. Since the restriction

functor D(A)→ D(P ) reflects these subcategories, the proof is complete. �

Lemma 24.3. Let ϕ be a finite type homomorphism of Noetherian rings. If ω•
R is a

dualizing complex for R, then ϕ!(ω•
R) is a dualizing complex for A.

Proof. Follows from Lemmas 15.10 and 15.9, �

Lemma 24.4. LetR→ R′ be a flat homomorphism of Noetherian rings. Letϕ : R→
A be a finite type ring map. Let ϕ′ : R′ → A′ = A⊗RR′ be the map induced by ϕ. Then
we have a functorial maps

ϕ!(K)⊗L
A A

′ −→ (ϕ′)!(K ⊗L
R R

′)
for K in D(R) which are isomorphisms for K ∈ D+(R).
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Proof. Choose a factorization R → P → A where P is a polynomial ring over R.
This gives a corresponding factorization R′ → P ′ → A′ by base change. Since we have
(K ⊗L

R P ) ⊗L
P P

′ = (K ⊗L
R R

′) ⊗L
R′ P ′ by More on Algebra, Lemma 60.5 it suffices to

construct maps

RHom(A,K ⊗L
R P [n])⊗L

A A
′ −→ RHom(A′, (K ⊗L

R P [n])⊗L
P P

′)
functorial inK. For this we use the map (14.0.1) constructed in Section 14 forP,A, P ′, A′.
The map is an isomorphism for K ∈ D+(R) by Lemma 14.2. �

Lemma 24.5. Let R → R′ be a homomorphism of Noetherian rings. Let ϕ : R →
A be a perfect ring map (More on Algebra, Definition 82.1) such that R′ and A are tor
independent over R. Let ϕ′ : R′ → A′ = A ⊗R R′ be the map induced by ϕ. Then we
have a functorial isomorphism

ϕ!(K)⊗L
A A

′ = (ϕ′)!(K ⊗L
R R

′)
for K in D(R).

Proof. We may choose a factorization R → P → A where P is a polynomial ring
over R such that A is a perfect P -module, see More on Algebra, Lemma 82.2. This gives a
corresponding factorizationR′ → P ′ → A′ by base change. Since we have (K⊗L

RP )⊗L
P

P ′ = (K ⊗L
R R

′)⊗L
R′ P ′ by More on Algebra, Lemma 60.5 it suffices to construct maps

RHom(A,K ⊗L
R P [n])⊗L

A A
′ −→ RHom(A′, (K ⊗L

R P [n])⊗L
P P

′)
functorial in K. We have

A⊗L
P P

′ = A⊗L
R R

′ = A′

The first equality by More on Algebra, Lemma 61.2 applied to R,R′, P, P ′. The second
equality becauseA andR′ are tor independent overR. HenceA andP ′ are tor independent
over P and we can use the map (14.0.1) constructed in Section 14 for P,A, P ′, A′ get the
desired arrow. By Lemma 14.3 to finish the proof it suffices to prove that A is a perfect
P -module which we saw above. �

Lemma 24.6. Let R→ R′ be a homomorphism of Noetherian rings. Let ϕ : R→ A
be flat of finite type. Let ϕ′ : R′ → A′ = A ⊗R R′ be the map induced by ϕ. Then we
have a functorial isomorphism

ϕ!(K)⊗L
A A

′ = (ϕ′)!(K ⊗L
R R

′)
for K in D(R).

Proof. Special case of Lemma 24.5 by More on Algebra, Lemma 82.4. �

Lemma 24.7. Let A a−→ B
b−→ C be finite type homomorphisms of Noetherian rings.

Then there is a transformation of functors b! ◦ a! → (b ◦ a)! which is an isomorphism on
D+(A).

Proof. Choose a polynomial ring P = A[x1, . . . , xn] over A and a surjection P →
B. Choose elements c1, . . . , cm ∈ C generating C over B. Set Q = P [y1, . . . , ym] and
denote Q′ = Q ⊗P B = B[y1, . . . , ym]. Let χ : Q′ → C be the surjection sending yj to
cj . Picture

Q
ψ′
// Q′

χ
// C

A // P
ψ //

OO

B

OO
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By Lemma 14.2 forM ∈ D(P ) we have an arrow ψ!(M)⊗L
BQ

′ → (ψ′)!(M⊗L
P Q) which

is an isomorphism whenever M is bounded below. Also we have χ! ◦ (ψ′)! = (χ ◦ ψ′)! as
both functors are adjoint to the restriction functor D(C) → D(Q) by Section 13. Then
we see

b!(a!(K)) = χ!(ψ!(K ⊗L
A P )[n]⊗L

B Q)[m]
→ χ!((ψ′)!(K ⊗L

A P ⊗L
P Q))[n+m]

= (χ ◦ ψ′)!(K ⊗L
A Q)[n+m]

= (b ◦ a)!(K)

where we have used in addition to the above More on Algebra, Lemma 60.5. �

Lemma 24.8. Let ϕ : R→ A be a finite map of Noetherian rings. Then ϕ! is isomor-
phic to the functor RHom(A,−) : D(R)→ D(A) from Section 13.

Proof. Suppose that A is generated by n > 1 elements over R. Then can factor
R → A as a composition of two finite ring maps where in both steps the number of
generators is < n. Since we have Lemma 24.7 and Lemma 13.2 we conclude that it suffices
to prove the lemma when A is generated by one element over R. Since A is finite over
R, it follows that A is a quotient of B = R[x]/(f) where f is a monic polynomial in x
(Algebra, Lemma 36.3). Again using the lemmas on composition and the fact that we have
agreement for surjections by definition, we conclude that it suffices to prove the lemma for
R→ B = R[x]/(f). In this case, the functorϕ! is isomorphic toK 7→ K⊗L

RB; you prove
this by using Lemma 13.10 for the mapR[x]→ B (note that the shift in the definition ofϕ!

and in the lemma add up to zero). For the functorRHom(B,−) : D(R)→ D(B) we can
use Lemma 13.9 to see that it suffices to show HomR(B,R) ∼= B as B-modules. Suppose
that f has degree d. Then an R-basis for B is given by 1, x, . . . , xd−1. Let δi : B → R,
i = 0, . . . , d− 1 be the R-linear map which picks off the coefficient of xi with respect to
the given basis. Then δ0, . . . , δd−1 is a basis for HomR(B,R). Finally, for 0 ≤ i ≤ d− 1
a computation shows that

xiδd−1 = δd−1−i + b1δd−i + . . .+ biδd−1

for some c1, . . . , cd ∈ R2. Hence HomR(B,R) is a principal B-module with generator
δd−1. By looking at ranks we conclude that it is a rank 1 free B-module. �

Lemma 24.9. Let R be a Noetherian ring and let f ∈ R. If ϕ denotes the map R →
Rf , then ϕ! is isomorphic to −⊗L

R Rf . More generally, if ϕ : R→ R′ is a map such that
Spec(R′)→ Spec(R) is an open immersion, then ϕ! is isomorphic to −⊗L

R R
′.

Proof. Choose the presentation R → R[x] → R[x]/(fx − 1) = Rf and observe
that fx−1 is a nonzerodivisor inR[x]. Thus we can apply using Lemma 13.10 to compute
the functorϕ!. Details omitted; note that the shift in the definition ofϕ! and in the lemma
add up to zero.

In the general case note that R′ ⊗R R′ = R′. Hence the result follows from the base
change results above. Either Lemma 24.4 or Lemma 24.5 will do. �

Lemma 24.10. Let ϕ : R → A be a perfect homomorphism of Noetherian rings (for
example ϕ is flat of finite type). Then ϕ!(K) = K ⊗L

R ϕ
!(R) for K ∈ D(R).

2If f = xd + a1xd−1 + . . .+ ad , then c1 = −a1 , c2 = a2
1 − a2 , c3 = −a3

1 + 2a1a2 − a3 , etc.
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Proof. (The parenthetical statement follows from More on Algebra, Lemma 82.4.)
We can choose a factorization R → P → A where P is a polynomial ring in n variables
over R and then A is a perfect P -module, see More on Algebra, Lemma 82.2. Recall that
ϕ!(K) = RHom(A,K⊗L

R P [n]). Thus the result follows from Lemma 13.9 and More on
Algebra, Lemma 60.5. �

Lemma 24.11. Let ϕ : A → B be a finite type homomorphism of Noetherian rings.
Letω•

A be a dualizing complex forA. Setω•
B = ϕ!(ω•

A). DenoteDA(K) = RHomA(K,ω•
A)

for K ∈ DCoh(A) and DB(L) = RHomB(L, ω•
B) for L ∈ DCoh(B). Then there is a

functorial isomorphism
ϕ!(K) = DB(DA(K)⊗L

A B)
for K ∈ DCoh(A).

Proof. Observe that ω•
B is a dualizing complex forB by Lemma 24.3. LetA→ B →

C be finite type homomorphisms of Noetherian rings. If the lemma holds forA→ B and
B → C , then the lemma holds for A → C. This follows from Lemma 24.7 and the fact
that DB ◦DB

∼= id by Lemma 15.3. Thus it suffices to prove the lemma in case A→ B is
a surjection and in the case where B is a polynomial ring over A.

Assume B = A[x1, . . . , xn]. Since DA ◦ DA
∼= id, it suffices to prove DB(K ⊗A B) ∼=

DA(K)⊗AB[n] forK inDCoh(A). Choose a bounded complex I• of injectives represent-
ing ω•

A. Choose a quasi-isomorphism I• ⊗A B → J• where J• is a bounded complex of
B-modules. Given a complex K• of A-modules, consider the obvious map of complexes

Hom•(K•, I•)⊗A B[n] −→ Hom•(K• ⊗A B, J•[n])

The left hand side representsDA(K)⊗AB[n] and the right hand side representsDB(K⊗A
B). Thus it suffices to prove this map is a quasi-isomorphism if the cohomology modules
of K• are finite A-modules. Observe that the cohomology of the complex in degree r
(on either side) only depends on finitely many of the Ki. Thus we may replace K• by a
truncation, i.e., we may assume K• represents an object of D−

Coh(A). Then K• is quasi-
isomorphic to a bounded above complex of finite free A-modules. Therefore we may as-
sume K• is a bounded above complex of finite free A-modules. In this case it is easy to
that the displayed map is an isomorphism of complexes which finishes the proof in this
case.

Assume thatA→ B is surjective. Denote i∗ : D(B)→ D(A) the restriction functor and
recall that ϕ!(−) = RHom(A,−) is a right adjoint to i∗ (Lemma 13.1). For F ∈ D(B)
we have

HomB(F,DB(DA(K)⊗L
A B)) = HomB((DA(K)⊗L

A B)⊗L
B F, ω

•
B)

= HomA(DA(K)⊗L
A i∗F, ω

•
A)

= HomA(i∗F,DA(DA(K)))
= HomA(i∗F,K)
= HomB(F,ϕ!(K))

The first equality follows from More on Algebra, Lemma 73.1 and the definition of DB .
The second equality by the adjointness mentioned above and the equality i∗((DA(K)⊗L

A

B)⊗L
B F ) = DA(K)⊗L

A i∗F (More on Algebra, Lemma 60.1). The third equality follows
from More on Algebra, Lemma 73.1. The fourth becauseDA◦DA = id. The final equality
by adjointness again. Thus the result holds by the Yoneda lemma. �



25. RELATIVE DUALIZING COMPLEXES IN THE NOETHERIAN CASE 3967

25. Relative dualizing complexes in the Noetherian case

Let ϕ : R → A be a finite type homomorphism of Noetherian rings. Then we define the
relative dualizing complex of A over R as the object

ω•
A/R = ϕ!(R)

of D(A). Here ϕ! is as in Section 24. From the material in that section we see that ω•
A/R

is well defined up to (non-unique) isomorphism.

Lemma 25.1. Let R → R′ be a homomorphism of Noetherian rings. Let R → A be
of finite type. Set A′ = A⊗R R′. If

(1) R→ R′ is flat, or
(2) R→ A is flat, or
(3) R→ A is perfect and R′ and A are tor independent over R,

then there is an isomorphism ω•
A/R ⊗

L
A A

′ → ω•
A′/R′ in D(A′).

Proof. Follows from Lemmas 24.4, 24.6, and 24.5 and the definitions. �

Lemma 25.2. Let ϕ : R→ A be a flat finite type map of Noetherian rings. Then
(1) ω•

A/R is in Db
Coh(A) and R-perfect (More on Algebra, Definition 83.1),

(2) A→ RHomA(ω•
A/R, ω

•
A/R) is an isomorphism, and

(3) for every mapR→ k to a field the base change ω•
A/R⊗

L
A (A⊗R k) is a dualizing

complex for A⊗R k.

Proof. ChooseR→ P → A as in the definition ofϕ!. Recall thatR→ A is a perfect
ring map (More on Algebra, Lemma 82.4) and hence A is perfect as a P -modue (More on
Algebra, Lemma 82.2). This shows thatω•

A/R is inDb
Coh(A) by Lemma 24.2. To showω•

A/R

isR-perfect it suffices to show it has finite tor dimension as a complex ofR-modules. This
is true because ω•

A/R = ϕ!(R) = RHom(A,P )[n] maps to RHomP (A,P )[n] in D(P ),
which is perfect inD(P ) (More on Algebra, Lemma 74.15), hence has finite tor dimension
in D(R) as R→ P is flat. This proves (1).

Proof of (2). The object RHomA(ω•
A/R, ω

•
A/R) of D(A) maps in D(P ) to

RHomP (ω•
A/R, RHom(A,P )[n]) = RHomP (RHomP (A,P )[n], P )[n]

= RHomP (RHomP (A,P ), P )

This is equal to A by the already used More on Algebra, Lemma 74.15.

Proof of (3). By Lemma 25.1 there is an isomorphism

ω•
A/R ⊗

L
A (A⊗R k) ∼= ω•

A⊗Rk/k

and the right hand side is a dualizing complex by Lemma 24.3. �

Lemma 25.3. Let K/k be an extension of fields. Let A be a finite type k-algebra. Let
AK = A⊗kK. If ω•

A is a dualizing complex forA, then ω•
A⊗AAK is a dualizing complex

for AK .

Proof. By the uniqueness of dualizing complexes, it doesn’t matter which dualizing
complex we pick for A; we omit the detailed proof. Denote ϕ : k → A the algebra
structure. We may take ω•

A = ϕ!(k[0]) by Lemma 24.3. We conclude by Lemma 25.2. �
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Lemma 25.4. Let ϕ : R → A be a local complete intersection homomorphism of
Noetherian rings. Then ω•

A/R is an invertible object of D(A) and ϕ!(K) = K ⊗L
R ω

•
A/R

for all K ∈ D(R).

Proof. Recall that a local complete intersection homomorphism is a perfect ring map
by More on Algebra, Lemma 82.6. Hence the final statement holds by Lemma 24.10. By
More on Algebra, Definition 33.2 we can writeA = R[x1, . . . , xn]/I where I is a Koszul-
regular ideal. The construction ofϕ! in Section 24 shows that it suffices to show the lemma
in case A = R/I where I ⊂ R is a Koszul-regular ideal. Checking ω•

A/R is invertible in
D(A) is local on Spec(A) by More on Algebra, Lemma 126.4. Moreover, formation of
ω•
A/R commutes with localization on R by Lemma 24.4. Combining More on Algebra,

Definition 32.1 and Lemma 30.7 and Algebra, Lemma 68.6 we can find g1, . . . , gr ∈ R
generating the unit ideal in A such that Igj ⊂ Rgj is generated by a regular sequence.
Thus we may assume A = R/(f1, . . . , fc) where f1, . . . , fc is a regular sequence in R.
Then we consider the ring maps

R→ R/(f1)→ R/(f1, f2)→ . . .→ R/(f1, . . . , fc) = A

and we use Lemma 24.7 (and the final statement already proven) to see that it suffices to
prove the lemma for each step. Finally, in case A = R/(f) for some nonzerodivisor f we
see that the lemma is true since ϕ!(R) = RHom(A,R) is invertible by Lemma 13.10. �

Lemma 25.5. Letϕ : R→ A be a flat finite type homomorphism of Noetherian rings.
The following are equivalent

(1) the fibres A⊗R κ(p) are Gorenstein for all primes p ⊂ R, and
(2) ω•

A/R is an invertible object of D(A), see More on Algebra, Lemma 126.4.

Proof. If (2) holds, then the fibre rings A ⊗R κ(p) have invertible dualizing com-
plexes, and hence are Gorenstein. See Lemmas 25.2 and 21.4.
For the converse, assume (1). Observe that ω•

A/R is in Db
Coh(A) by Lemma 24.2 (since flat

finite type homomorphisms of Noetherian rings are perfect, see More on Algebra, Lemma
82.4). Take a prime q ⊂ A lying over p ⊂ R. Then

ω•
A/R ⊗

L
A κ(q) = ω•

A/R ⊗
L
A (A⊗R κ(p))⊗L

(A⊗Rκ(p)) κ(q)

Applying Lemmas 25.2 and 21.4 and assumption (1) we find that this complex has 1 nonzero
cohomology group which is a 1-dimensional κ(q)-vector space. By More on Algebra,
Lemma 77.1 we conclude that (ω•

A/R)f is an invertible object of D(Af ) for some f ∈ A,
f 6∈ q. This proves (2) holds. �

The following lemma is useful to see how dimension functions change when passing to a
finite type algebra over a Noetherian ring.

Lemma 25.6. Let ϕ : R → A be a finite type homomorphism of Noetherian rings.
Assume R local and let m ⊂ A be a maximal ideal lying over the maximal ideal of R.
If ω•

R is a normalized dualizing complex for R, then ϕ!(ω•
R)m is a normalized dualizing

complex for Am.

Proof. We already know that ϕ!(ω•
R) is a dualizing complex for A, see Lemma 24.3.

Choose a factorization R → P → A with P = R[x1, . . . , xn] as in the construction of
ϕ!. If we can prove the lemma for R → P and the maximal ideal m′ of P corresponding
to m, then we obtain the result for R → A by applying Lemma 16.2 to Pm′ → Am or by
applying Lemma 17.2 to P → A. In the case A = R[x1, . . . , xn] we see that dim(Am) =
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dim(R) + n for example by Algebra, Lemma 112.7 (combined with Algebra, Lemma 114.1
to compute the dimension of the fibre). The fact that ω•

R is normalized means that i =
− dim(R) is the smallest index such that Hi(ω•

R) is nonzero (follows from Lemmas 16.5
and 16.11). Then ϕ!(ω•

R)m = ω•
R ⊗R Am[n] has its first nonzero cohomology module in

degree −dim(R)− n and therefore is the normalized dualizing complex for Am. �

Lemma 25.7. Let R → A be a finite type homomorphism of Noetherian rings. Let
q ⊂ A be a prime ideal lying over p ⊂ R. Then

Hi(ω•
A/R)q 6= 0⇒ −d ≤ i

where d is the dimension of the fibre of Spec(A)→ Spec(R) over p at the point q.

Proof. Choose a factorization R → P → A with P = R[x1, . . . , xn] as in Section
24 so that ω•

A/R = RHom(A,P )[n]. We have to show that RHom(A,P )q has vanish-
ing cohomology in degrees < n − d. By Lemma 13.3 this means we have to show that
ExtiP (P/I, P )r = 0 for i < n − d where r ⊂ P is the prime corresponding to q and I
is the kernel of P → A. We may rewrite this as ExtiPr

(Pr/IPr, Pr) by More on Algebra,
Lemma 65.4. Thus we have to show

depthIPr
(Pr) ≥ n− d

by Lemma 11.1. By Lemma 11.5 we have

depthIPr
(Pr) ≥ dim((P ⊗R κ(p))r)− dim((P/I ⊗R κ(p))r)

The two expressions on the right hand side agree by Algebra, Lemma 116.4. �

Lemma 25.8. Let R → A be a flat finite type homomorphism of Noetherian rings.
Let q ⊂ A be a prime ideal lying over p ⊂ R. Then

Hi(ω•
A/R)q 6= 0⇒ −d ≤ i ≤ 0

where d is the dimension of the fibre of Spec(A) → Spec(R) over p at the point q. If
all fibres of Spec(A) → Spec(R) have dimension ≤ d, then ω•

A/R has tor amplitude in
[−d, 0] as a complex of R-modules.

Proof. The lower bound has been shown in Lemma 25.7. Choose a factorization
R→ P → A with P = R[x1, . . . , xn] as in Section 24 so that ω•

A/R = RHom(A,P )[n].
The upper bound means that ExtiP (A,P ) is zero for i > n. This follows from More on
Algebra, Lemma 77.5 which shows that A is a perfect P -module with tor amplitude in
[−n, 0].

Proof of the final statement. Let R → R′ be a ring homomorphism of Noetherian rings.
Set A′ = A⊗R R′. Then

ω•
A′/R′ = ω•

A/R ⊗
L
A A

′ = ω•
A/R ⊗

L
R R

′

The first isomorphism by Lemma 25.1 and the second, which takes place inD(R′), by More
on Algebra, Lemma 61.2. By the first part of the proof (note that the fibres of Spec(A′)→
Spec(R′) have dimension ≤ d) we conclude that ω•

A/R ⊗
L
R R

′ has cohomology only in
degrees [−d, 0]. Taking R′ = R⊕M to be the square zero thickening of R by a finite R-
module M , we see that RHom(A,P )⊗L

RM has cohomology only in the interval [−d, 0]
for any finite R-module M . Since any R-module is a filtered colimit of finite R-modules
and since tensor products commute with colimits we conclude. �
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Lemma 25.9. Let R → A be a finite type homomorphism of Noetherian rings. Let
p ⊂ R be a prime ideal. Assume

(1) Rp is Cohen-Macaulay, and
(2) for any minimal prime q ⊂ A we have trdegκ(R∩q)κ(q) ≤ r.

Then
Hi(ω•

A/R)p 6= 0⇒ −r ≤ i
and H−r(ω•

A/R)p is (S2) as an Ap-module.

Proof. We may replaceR byRp by Lemma 25.1. Thus we may assumeR is a Cohen-
Macaulay local ring and we have to show the assertions of the lemma for the A-modules
Hi(ω•

A/R).

LetR∧ be the completion ofR. The mapR→ R∧ is flat andR∧ is Cohen-Macaulay (More
on Algebra, Lemma 43.3). Observe that the minimal primes ofA⊗R R∧ lie over minimal
primes of A by the flatness of A → A ⊗R R∧ (and going down for flatness, see Algebra,
Lemma 39.19). Thus condition (2) holds for the finite type ring map R∧ → A⊗R R∧ by
Morphisms, Lemma 28.3. Appealing to Lemma 25.1 once again it suffices to prove the
lemma for R∧ → A ⊗R R∧. In this way, using Lemma 22.4, we may assume R is a
Noetherian local Cohen-Macaulay ring which has a dualizing complex ω•

R.
Let m ⊂ A be a maximal ideal. It suffices to show that the assertions of the lemma hold
for Hi(ω•

A/R)m. If m does not lie over the maximal ideal of R, then we replace R by a
localization to reduce to this case (small detail omitted).
We may assume ω•

R is normalized. Setting d = dim(R) we see that ω•
R = ωR[d] for some

R-module ωR, see Lemma 20.2. Set ω•
A = ϕ!(ω•

R). By Lemma 24.11 we have

ω•
A/R = RHomA(ωR[d]⊗L

R A,ω
•
A)

By the dimension formula we have dim(Am) ≤ d+r, see Morphisms, Lemma 52.2 and use
that κ(m) is finite over the residue field of R by the Hilbert Nullstellensatz. By Lemma
25.6 we see that (ω•

A)m is a normalized dualizing complex for Am. Hence Hi((ω•
A)m) is

nonzero only for −d − r ≤ i ≤ 0, see Lemma 16.5. Since ωR[d] ⊗L
R A lives in degrees

≤ −d we conclude the vanishing holds. Finally, we also see that

H−r(ω•
A/R)m = HomA(ωR ⊗R A,H−d−r(ω•

A))m
SinceH−d−r(ω•

A)m is (S2) by Lemma 17.5 we find that the final statement is true by More
on Algebra, Lemma 23.11. �

26. More on dualizing complexes

Some lemmas which don’t fit anywhere else very well.

Lemma 26.1. Let A→ B be a faithfully flat map of Noetherian rings. If K ∈ D(A)
and K ⊗L

A B is a dualizing complex for B, then K is a dualizing complex for A.

Proof. Since A→ B is flat we have Hi(K)⊗A B = Hi(K ⊗L
A B). Since K ⊗L

A B
is in Db

Coh(B) we first find that K is in Db(A) and then we see that Hi(K) is a finite
A-module by Algebra, Lemma 83.2. Let M be a finite A-module. Then

RHomA(M,K)⊗A B = RHomB(M ⊗A B,K ⊗L
A B)

by More on Algebra, Lemma 99.2. Since K ⊗L
A B has finite injective dimension, say

injective-amplitude in [a, b], we see that the right hand side has vanishing cohomology in
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degrees > b. Since A → B is faithfully flat, we find that RHomA(M,K) has vanishing
cohomology in degrees > b. Thus K has finite injective dimension by More on Algebra,
Lemma 69.2. To finish the proof we have to show that the map A → RHomA(K,K) is
an isomorphism. For this we again use More on Algebra, Lemma 99.2 and the fact that
B → RHomB(K ⊗L

A B,K ⊗L
A B) is an isomorphism. �

Lemma 26.2. Let ϕ : A→ B be a homomorphism of Noetherian rings. Assume
(1) A→ B is syntomic and induces a surjective map on spectra, or
(2) A→ B is a faithfully flat local complete intersection, or
(3) A→ B is faithfully flat of finite type with Gorenstein fibres.

ThenK ∈ D(A) is a dualizing complex forA if and only ifK⊗L
AB is a dualizing complex

for B.

Proof. Observe that A → B satisfies (1) if and only if A → B satisfies (2) by More
on Algebra, Lemma 33.5. Observe that in both (2) and (3) the relative dualzing complex
ϕ!(A) = ω•

B/A is an invertible object of D(B), see Lemmas 25.4 and 25.5. Moreover we
have ϕ!(K) = K ⊗L

A ω
•
B/A in both cases, see Lemma 24.10 for case (3). Thus ϕ!(K) is

the same as K ⊗L
A B up to tensoring with an invertible object of D(B). Hence ϕ!(K) is a

dualizing complex for B if and only if K ⊗L
A B is (as being a dualizing complex is local

and invariant under shifts). Thus we see that if K is dualizing for A, then K ⊗L
A B is

dualizing for B by Lemma 24.3. To descend the property, see Lemma 26.1. �

Lemma 26.3. Let (A,m, κ) → (B, n, l) be a flat local homorphism of Noetherian
rings such that n = mB. If E is the injective hull of κ, then E ⊗A B is the injective hull
of l.

Proof. Write E =
⋃
En as in Lemma 7.3. It suffices to show that En ⊗A/mn B/nn

is the injective hull of l over B/n. This reduces us to the case where A and B are Ar-
tinian local. Observe that lengthA(A) = lengthB(B) and lengthA(E) = lengthB(E ⊗A
B) by Algebra, Lemma 52.13. By Lemma 6.1 we have lengthA(E) = lengthA(A) and
lengthB(E′) = lengthB(B) where E′ is the injective hull of l over B. We conclude
lengthB(E′) = lengthB(E ⊗A B). Observe that

diml((E ⊗A B)[n]) = diml(E[m]⊗A B) = dimκ(E[m]) = 1
where we have used flatness of A → B and n = mB. Thus there is an injective B-
module map E ⊗A B → E′ by Lemma 7.2. By equality of lengths shown above this is an
isomorphism. �

Lemma 26.4. Let ϕ : A→ B be a flat homorphism of Noetherian rings such that for
all primes q ⊂ B we have pBq = qBq where p = ϕ−1(q), for example if ϕ is étale. If I is
an injective A-module, then I ⊗A B is an injective B-module.

Proof. Étale maps satisfy the assumption by Algebra, Lemma 143.5. By Lemma 3.7
and Proposition 5.9 we may assume I is the injective hull of κ(p) for some prime p ⊂ A.
Then I is a module over Ap. It suffices to prove I ⊗A B = I ⊗Ap

Bp is injective as a
Bp-module, see Lemma 3.2. Thus we may assume (A,m, κ) is local Noetherian and I = E
is the injective hull of the residue field κ. Our assumption implies that the Noetherian
ring B/mB is a product of fields (details omitted). Thus there are finitely many prime
ideals m1, . . . ,mn in B lying over m and they are all maximal ideals. Write E =

⋃
En

as in Lemma 7.3. Then E ⊗A B =
⋃
En ⊗A B and En ⊗A B is a finite B-module with

support {m1, . . . ,mn} hence decomposes as a product over the localizations at mi. Thus
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E ⊗A B =
∏

(E ⊗A B)mi . Since (E ⊗A B)mi = E ⊗A Bmi is the injective hull of the
residue field of mi by Lemma 26.3 we conclude. �

27. Relative dualizing complexes

For a finite type ring map ϕ : R→ A of Noetherian rings we have the relative dualizing
complex ω•

A/R = ϕ!(R) considered in Section 25. If R is not Noetherian, a similarly con-
structed complex will in general not have good properties. In this section, we give a defi-
nition of a relative dualizing complex for a flat and finitely presented ring mapsR→ A of
non-Noetherian rings. The definition is chosen to globalize to flat and finitely presented
morphisms of schemes, see Duality for Schemes, Section 28. We will show that relative
dualizing complexes exist (when the definition applies), are unique up to (noncanonical)
isomorphism, and that in the Noetherian case we recover the complex of Section 25.

The Noetherian reader may safely skip this section!

Definition 27.1. Let R → A be a flat ring map of finite presentation. A relative
dualizing complex is an object K ∈ D(A) such that

(1) K is R-perfect (More on Algebra, Definition 83.1), and
(2) RHomA⊗RA(A,K ⊗L

A (A⊗R A)) is isomorphic to A.

To understand this definition you may have to read and understand some of the following
lemmas. Lemmas 27.3 and 27.2 show this definition does not clash with the definition in
Section 25.

Lemma 27.2. Let R → A be a flat ring map of finite presentation. Any two relative
dualizing complexes for R→ A are isomorphic.

Proof. Let K and L be two relative dualizing complexes for R→ A. Denote K1 =
K ⊗L

A (A ⊗R A) and L2 = (A ⊗R A) ⊗L
A L the derived base changes via the first and

second coprojections A → A ⊗R A. By symmetry the assumption on L2 implies that
RHomA⊗RA(A,L2) is isomorphic to A. By More on Algebra, Lemma 98.3 part (3) ap-
plied twice we have

A⊗L
A⊗RA L2 ∼= RHomA⊗RA(A,K1 ⊗L

A⊗RA L2) ∼= A⊗L
A⊗RA K1

Applying the restriction functor D(A⊗R A)→ D(A) for either coprojection we obtain
the desired result. �

Lemma 27.3. Let ϕ : R→ A be a flat finite type ring map of Noetherian rings. Then
the relative dualizing complexω•

A/R = ϕ!(R) of Section 25 is a relative dualizing complex
in the sense of Definition 27.1.

Proof. From Lemma 25.2 we see that ϕ!(R) is R-perfect. Denote δ : A ⊗R A → A
the multiplication map and p1, p2 : A→ A⊗R A the coprojections. Then

ϕ!(R)⊗L
A (A⊗R A) = ϕ!(R)⊗L

A,p1
(A⊗R A) = p!

2(A)

by Lemma 24.4. Recall thatRHomA⊗RA(A,ϕ!(R)⊗L
A(A⊗RA)) is the image of δ!(ϕ!(R)⊗L

A

(A⊗R A)) under the restriction map δ∗ : D(A)→ D(A⊗R A). Use the definition of δ!

from Section 24 and Lemma 13.3. Since δ!(p!
2(A)) ∼= A by Lemma 24.7 we conclude. �

Lemma 27.4. Let R→ A be a flat ring map of finite presentation. Then
(1) there exists a relative dualizing complex K in D(A), and
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(2) for any ring map R → R′ setting A′ = A⊗R R′ and K ′ = K ⊗L
A A

′, then K ′

is a relative dualizing complex for R′ → A′.
Moreover, if

ξ : A −→ K ⊗L
A (A⊗R A)

is a generator for the cyclic module HomD(A⊗RA)(A,K ⊗L
A (A ⊗R A)) then in (2) the

derived base change of ξ by A ⊗R A → A′ ⊗R′ A′ is a generator for the cyclic module
HomD(A′⊗R′A′)(A′,K ′ ⊗L

A′ (A′ ⊗R′ A′))

Proof. We first reduce to the Noetherian case. By Algebra, Lemma 168.1 there exists
a finite type Z subalgebra R0 ⊂ R and a flat finite type ring map R0 → A0 such that
A = A0 ⊗R0 R. By Lemma 27.3 there exists a relative dualizing complex K0 ∈ D(A0).
Thus if we show (2) forK0, then we find thatK0⊗L

A0
A is a dualizing complex forR→ A

and that it also satisfies (2) by transitivity of derived base change. The uniqueness of
relative dualizing complexes (Lemma 27.2) then shows that this holds for any relative
dualizing complex.

AssumeRNoetherian and letK be a relative dualizing complex forR→ A. Given a ring
mapR→ R′ setA′ = A⊗RR′ andK ′ = K ⊗L

AA
′. To finish the proof we have to show

thatK ′ is a relative dualizing complex forR′ → A′. By More on Algebra, Lemma 83.5 we
see thatK ′ isR′-perfect in all cases. By Lemmas 25.1 and 27.3 ifR′ is Noetherian, thenK ′

is a relative dualizing complex forR′ → A′ (in either sense). Transitivity of derived tensor
product shows thatK⊗L

A (A⊗RA)⊗L
A⊗RA (A′⊗R′ A′) = K ′⊗L

A′ (A′⊗R′ A′). Flatness
of R → A guarantees that A ⊗L

A⊗RA (A′ ⊗R′ A′) = A′; namely A ⊗R A and R′ are tor
independent over R so we can apply More on Algebra, Lemma 61.2. Finally, A is pseudo-
coherent as anA⊗RA-module by More on Algebra, Lemma 82.8. Thus we have checked all
the assumptions of More on Algebra, Lemma 83.6. We find there exists a bounded below
complex E• of R-flat finitely presented A⊗R A-modules such that E• ⊗R R′ represents
RHomA′⊗R′A′(A′,K ′ ⊗L

A′ (A′ ⊗R′ A′)) and these identifications are compatible with
derived base change. Let n ∈ Z, n 6= 0. Define Qn by the sequence

En−1 → En → Qn → 0

Since κ(p) is a Noetherian ring, we know that Hn(E• ⊗R κ(p)) = 0, see remarks above.
Chasing diagrams this means that

Qn ⊗R κ(p)→ En+1 ⊗R κ(p)

is injective. Hence for a prime q of A ⊗R A lying over p we have Qnq is Rp-flat and
Qnp → En+1

q is Rp-universally injective, see Algebra, Lemma 99.1. Since this holds for
all primes, we conclude that Qn is R-flat and Qn → En+1 is R-universally injective. In
particular Hn(E• ⊗R R′) = 0 for any ring map R → R′. Let Z0 = Ker(E0 → E1).
Since there is an exact sequence 0→ Z0 → E0 → E1 → Q1 → 0 we see that Z0 isR-flat
and that Z0⊗RR′ = Ker(E0⊗RR′ → E1⊗RR′) for allR→ R′. Then the short exact
sequence 0→ Q−1 → Z0 → H0(E•)→ 0 shows that

H0(E• ⊗R R′) = H0(E•)⊗R R′ = A⊗R R′ = A′

as desired. This equality furthermore gives the final assertion of the lemma. �

Lemma 27.5. LetR→ A be a flat ring map of finite presentation. LetK be a relative
dualizing complex. Then A→ RHomA(K,K) is an isomorphism.
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Proof. By Algebra, Lemma 168.1 there exists a finite type Z subalgebra R0 ⊂ R and
a flat finite type ring map R0 → A0 such that A = A0 ⊗R0 R. By Lemmas 27.2, 27.3, and
27.4 there exists a relative dualizing complex K0 ∈ D(A0) and its derived base change is
K. This reduces us to the situation discussed in the next paragraph.
Assume R Noetherian and let K be a relative dualizing complex for R → A. Given a
ring map R → R′ set A′ = A ⊗R R′ and K ′ = K ⊗L

A A
′. To finish the proof we show

RHomA′(K ′,K ′) = A′. By Lemma 25.2 we know this is true wheneverR′ is Noetherian.
Since a general R′ is a filtered colimit of Noetherian R-algebras, we find the result holds
by More on Algebra, Lemma 83.7. �

Lemma 27.6. Let R → A → B be a ring maps which are flat and of finite presenta-
tion. LetKA/R andKB/A be relative dualizing complexes forR→ A andA→ B. Then
K = KA/R ⊗L

A KB/A is a relative dualizing complex for R→ B.

Proof. We will use reduction to the Noetherian case. Namely, by Algebra, Lemma
168.1 there exists a finite type Z subalgebra R0 ⊂ R and a flat finite type ring map R0 →
A0 such that A = A0 ⊗R0 R. After increasing R0 and correspondingly replacing A0 we
may assume there is a flat finite type ring map A0 → B0 such that B = B0 ⊗R0 R (use
the same lemma). If we prove the lemma for R0 → A0 → B0, then the lemma follows
by Lemmas 27.2, 27.3, and 27.4. This reduces us to the situation discussed in the next
paragraph.
Assume R is Noetherian and denote ϕ : R → A and ψ : A → B the given ring maps.
Then KA/R

∼= ϕ!(R) and KB/A
∼= ψ!(A), see references given above. Then

K = KA/R ⊗L
A KB/A

∼= ϕ!(R)⊗L
A ψ

!(A) ∼= ψ!(ϕ!(R)) ∼= (ψ ◦ ϕ)!(R)
by Lemmas 24.10 and 24.7. Thus K is a relative dualizing complex for R→ B. �
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CHAPTER 48

Duality for Schemes

1. Introduction

This chapter studies relative duality for morphisms of schemes and the dualizing complex
on a scheme. A reference is [?].

Dualizing complexes for Noetherian rings were defined and studied in Dualizing Com-
plexes, Section 15 ff. In this chapter we continue this by studying dualizing complexes on
schemes, see Section 2.

The bulk of this chapter is devoted to studying the right adjoint of pushforward in the set-
ting of derived categories of sheaves of modules with quasi-coherent cohomology sheaves.
See Sections 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, and 15. Here we follow the papers [?], [?], [?], and
[?].

We discuss the important and useful upper shriek functors f ! for separated morphisms
of finite type between Noetherian schemes in Sections 16, 17, and 18 culminating in the
overview Section 19.

In Section 20 we explain alternative theory of duality and dualizing complexes when
working over a fixed locally Noetherian base endowed with a dualizing complex (this
section corresponds to a remark in Hartshorne’s book).

In the remaining sections we give a few applications.

This chapter is continued by the chapter on duality on algebraic spaces, see Duality for
Spaces, Section 1.

2. Dualizing complexes on schemes

We define a dualizing complex on a locally Noetherian scheme to be a complex which
affine locally comes from a dualizing complex on the corresponding ring. This is not
completely standard but agrees with all definitions in the literature on Noetherian schemes
of finite dimension.

Lemma 2.1. Let X be a locally Noetherian scheme. Let K be an object of D(OX).
The following are equivalent

(1) For every affine open U = Spec(A) ⊂ X there exists a dualizing complex ω•
A

forA such thatK|U is isomorphic to the image of ω•
A by the functor̃ : D(A)→

D(OU ).
(2) There is an affine open covering X =

⋃
Ui, Ui = Spec(Ai) such that for each i

there exists a dualizing complex ω•
i for Ai such that K|Ui is isomorphic to the

image of ω•
i by the functor˜: D(Ai)→ D(OUi).

Proof. Assume (2) and let U = Spec(A) be an affine open of X . Since condition (2)
implies thatK is inDQCoh(OX) we find an object ω•

A inD(A) whose associated complex

3977
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of quasi-coherent sheaves is isomorphic toK|U , see Derived Categories of Schemes, Lemma
3.5. We will show that ω•

A is a dualizing complex for A which will finish the proof.
Since X =

⋃
Ui is an open covering, we can find a standard open covering U = D(f1) ∪

. . . ∪ D(fm) such that each D(fj) is a standard open in one of the affine opens Ui, see
Schemes, Lemma 11.5. Say D(fj) = D(gj) for gj ∈ Aij . Then Afj ∼= (Aij )gj and we
have

(ω•
A)fj ∼= (ω•

i )gj
in the derived category by Derived Categories of Schemes, Lemma 3.5. By Dualizing Com-
plexes, Lemma 15.6 we find that the complex (ω•

A)fj is a dualizing complex over Afj for
j = 1, . . . ,m. This implies thatω•

A is dualizing by Dualizing Complexes, Lemma 15.7. �

Definition 2.2. Let X be a locally Noetherian scheme. An object K of D(OX) is
called a dualizing complex if K satisfies the equivalent conditions of Lemma 2.1.

Please see remarks made at the beginning of this section.

Lemma 2.3. LetA be a Noetherian ring and letX = Spec(A). LetK,L be objects of
D(A). If K ∈ DCoh(A) and L has finite injective dimension, then

RHomOX
(K̃, L̃) = ˜RHomA(K,L)

in D(OX).

Proof. We may assume thatL is given by a finite complex I• of injectiveA-modules.
By induction on the length of I• and compatibility of the constructions with distin-
guished triangles, we reduce to the case that L = I[0] where I is an injective A-module.
In this case, Derived Categories of Schemes, Lemma 10.8, tells us that the nth cohomology
sheaf of RHomOX

(K̃, L̃) is the sheaf associated to the presheaf
D(f) 7−→ ExtnAf (K ⊗A Af , I ⊗A Af )

SinceA is Noetherian, theAf -module I⊗AAf is injective (Dualizing Complexes, Lemma
3.8). Hence we see that

ExtnAf (K ⊗A Af , I ⊗A Af ) = HomAf (H−n(K ⊗A Af ), I ⊗A Af )
= HomAf (H−n(K)⊗A Af , I ⊗A Af )
= HomA(H−n(K), I)⊗A Af

The last equality because H−n(K) is a finite A-module, see Algebra, Lemma 10.2. This
proves that the canonical map

˜RHomA(K,L) −→ RHomOX
(K̃, L̃)

is a quasi-isomorphism in this case and the proof is done. �

Lemma 2.4. Let X be a Noetherian scheme. Let K,L,M ∈ DQCoh(OX). Then the
map

RHom(L,M)⊗L
OX

K −→ RHom(RHom(K,L),M)
of Cohomology, Lemma 42.9 is an isomorphism in the following two cases

(1) K ∈ D−
Coh(OX), L ∈ D+

Coh(OX), and M affine locally has finite injective di-
mension (see proof), or

(2) K and L are in DCoh(OX), the object RHom(L,M) has finite tor dimension,
and L and M affine locally have finite injective dimension (in particular L and
M are bounded).
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Proof. Proof of (1). We say M has affine locally finite injective dimension if X has
an open covering by affines U = Spec(A) such that the object of D(A) corresponding
to M |U (Derived Categories of Schemes, Lemma 3.5) has finite injective dimension1. To
prove the lemma we may replace X by U , i.e., we may assume X = Spec(A) for some
Noetherian ringA. Observe thatRHom(K,L) is inD+

Coh(OX) by Derived Categories of
Schemes, Lemma 11.5. Moreover, the formation of the left and right hand side of the arrow
commutes with the functorD(A)→ DQCoh(OX) by Lemma 2.3 and Derived Categories
of Schemes, Lemma 10.8 (to be sure this uses the assumptions on K , L, M and what we
just proved about RHom(K,L)). Then finally the arrow is an isomorphism by More on
Algebra, Lemmas 98.1 part (2).

Proof of (2). We argue as above. A small change is that here we get RHom(K,L) in
DCoh(OX) because affine locally (which is allowable by Lemma 2.3) we may appeal to
Dualizing Complexes, Lemma 15.2. Then we finally conclude by More on Algebra, Lemma
98.2. �

Lemma 2.5. Let K be a dualizing complex on a locally Noetherian scheme X . Then
K is an object of DCoh(OX) and D = RHomOX

(−,K) induces an anti-equivalence

D : DCoh(OX) −→ DCoh(OX)

which comes equipped with a canonical isomorphism id→ D ◦D. IfX is quasi-compact,
then D exchanges D+

Coh(OX) and D−
Coh(OX) and induces an equivalence Db

Coh(OX) →
Db

Coh(OX).

Proof. Let U ⊂ X be an affine open. Say U = Spec(A) and let ω•
A be a dualizing

complex for A corresponding to K|U as in Lemma 2.1. By Lemma 2.3 the diagram

DCoh(A) //

RHomA(−,ω•
A)
��

DCoh(OU )

RHomOX (−,K|U )
��

DCoh(A) // D(OU )

commutes. We conclude that D sends DCoh(OX) into DCoh(OX). Moreover, the canon-
ical map

L −→ RHomOX
(K,K)⊗L

OX
L −→ RHomOX

(RHomOX
(L,K),K)

(using Cohomology, Lemma 42.9 for the second arrow) is an isomorphism for allL because
this is true on affines by Dualizing Complexes, Lemma 15.32 and we have already seen on
affines that we recover what happens in algebra. The statement on boundedness properties
of the functorD in the quasi-compact case also follows from the corresponding statements
of Dualizing Complexes, Lemma 15.3. �

Let X be a locally ringed space. Recall that an object L of D(OX) is invertible if it is an
invertible object for the symmetric monoidal structure onD(OX) given by derived tensor
product. In Cohomology, Lemma 52.2 we have seen this means L is perfect and there is an

1This condition is independent of the choice of the affine open cover of the Noetherian schemeX . Details
omitted.

2An alternative is to first show that RHomOX (K,K) = OX by working affine locally and then use
Lemma 2.4 part (2) to see the map is an isomorphism.
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open covering X =
⋃
Ui such that L|Ui ∼= OUi [−ni] for some integers ni. In this case,

the function
x 7→ nx, where nx is the unique integer such that Hnx(Lx) 6= 0

is locally constant on X . In particular, we have L =
⊕
Hn(L)[−n] which gives a well

defined complex ofOX -modules (with zero differentials) representing L.

Lemma 2.6. Let X be a locally Noetherian scheme. If K and K ′ are dualizing com-
plexes on X , then K ′ is isomorphic to K ⊗L

OX
L for some invertible object L of D(OX).

Proof. Set
L = RHomOX

(K,K ′)
This is an invertible object of D(OX), because affine locally this is true, see Dualizing
Complexes, Lemma 15.5 and its proof. The evaluation map L⊗L

OX
K → K ′ is an isomor-

phism for the same reason. �

Lemma 2.7. Let X be a locally Noetherian scheme. Let ω•
X be a dualizing complex

on X . Then X is universally catenary and the function X → Z defined by
x 7−→ δ(x) such that ω•

X,x[−δ(x)] is a normalized dualizing complex overOX,x
is a dimension function.

Proof. Immediate from the affine case Dualizing Complexes, Lemma 17.3 and the
definitions. �

Lemma 2.8. Let X be a locally Noetherian scheme. Let ω•
X be a dualizing complex

on X with associated dimension function δ. Let F be a coherent OX -module. Set E i =
Ext−i

OX
(F , ω•

X). Then E i is a coherentOX -module and for x ∈ X we have
(1) E ix is nonzero only for δ(x) ≤ i ≤ δ(x) + dim(Supp(Fx)),
(2) dim(Supp(E i+δ(x)

x )) ≤ i,
(3) depth(Fx) is the smallest integer i ≥ 0 such that E i+δ(x)

x 6= 0, and
(4) we have x ∈ Supp(

⊕
j≤i Ej)⇔ depthOX,x

(Fx) + δ(x) ≤ i.

Proof. Lemma 2.5 tells us that E i is coherent. Choosing an affine neighbourhood
of x and using Derived Categories of Schemes, Lemma 10.8 and More on Algebra, Lemma
99.2 part (3) we have

E ix = Ext−i
OX

(F , ω•
X)x = Ext−i

OX,x
(Fx, ω•

X,x) = Extδ(x)−i
OX,x

(Fx, ω•
X,x[−δ(x)])

By construction of δ in Lemma 2.7 this reduces parts (1), (2), and (3) to Dualizing Com-
plexes, Lemma 16.5. Part (4) is a formal consequence of (3) and (1). �

3. Right adjoint of pushforward

References for this section and the following are [?], [?], [?], and [?].
Let f : X → Y be a morphism of schemes. In this section we consider the right adjoint to
the functor Rf∗ : DQCoh(OX) → DQCoh(OY ). In the literature, if this functor exists,
then it is sometimes denoted f×. This notation is not universally accepted and we refrain
from using it. We will not use the notation f ! for such a functor, as this would clash (for
general morphisms f ) with the notation in [?].

Lemma 3.1. Let f : X → Y be a morphism between quasi-separated and quasi-
compact schemes. The functor Rf∗ : DQCoh(X)→ DQCoh(Y ) has a right adjoint.
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Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived
Categories, Proposition 38.2. First off, the category DQCoh(OX) has direct sums, see De-
rived Categories of Schemes, Lemma 3.1. The category DQCoh(OX) is compactly gener-
ated by Derived Categories of Schemes, Theorem 15.3. Since X and Y are quasi-compact
and quasi-separated, so is f , see Schemes, Lemmas 21.13 and 21.14. Hence the functor Rf∗
commutes with direct sums, see Derived Categories of Schemes, Lemma 4.5. This finishes
the proof. �

Example 3.2. Let A → B be a ring map. Let Y = Spec(A) and X = Spec(B)
and f : X → Y the morphism corresponding to A → B. Then Rf∗ : DQCoh(OX) →
DQCoh(OY ) corresponds to restriction D(B) → D(A) via the equivalences D(B) →
DQCoh(OX) and D(A) → DQCoh(OY ). Hence the right adjoint corresponds to the
functor K 7−→ RHom(B,K) of Dualizing Complexes, Section 13.

Example 3.3. If f : X → Y is a separated finite type morphism of Noetherian
schemes, then the right adjoint of Rf∗ : DQCoh(OX) → DQCoh(OY ) does not map
DCoh(OY ) intoDCoh(OX). Namely, let k be a field and consider the morphism f : A1

k →
Spec(k). By Example 3.2 this corresponds to the question of whetherRHom(B,−) maps
DCoh(A) into DCoh(B) where A = k and B = k[x]. This is not true because

RHom(k[x], k) =
(∏

n≥0
k
)

[0]

which is not a finite k[x]-module. Hence a(OY ) does not have coherent cohomology
sheaves.

Example 3.4. If f : X → Y is a proper or even finite morphism of Noetherian
schemes, then the right adjoint of Rf∗ : DQCoh(OX) → DQCoh(OY ) does not map
D−

QCoh(OY ) intoD−
QCoh(OX). Namely, let k be a field, let k[ε] be the dual numbers over

k, let X = Spec(k), and let Y = Spec(k[ε]). Then Extik[ε](k, k) is nonzero for all i ≥ 0.
Hence a(OY ) is not bounded above by Example 3.2.

Lemma 3.5. Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. Let a : DQCoh(OY ) → DQCoh(OX) be the right adjoint to Rf∗ of Lemma 3.1.
Then a maps D+

QCoh(OY ) into D+
QCoh(OX). In fact, there exists an integer N such that

Hi(K) = 0 for i ≤ c implies Hi(a(K)) = 0 for i ≤ c−N .

Proof. By Derived Categories of Schemes, Lemma 4.1 the functor Rf∗ has finite co-
homological dimension. In other words, there exist an integerN such thatHi(Rf∗L) = 0
for i ≥ N + c if Hi(L) = 0 for i ≥ c. Say K ∈ D+

QCoh(OY ) has Hi(K) = 0 for i ≤ c.
Then

HomD(OX)(τ≤c−Na(K), a(K)) = HomD(OY )(Rf∗τ≤c−Na(K),K) = 0

by what we said above. Clearly, this implies that Hi(a(K)) = 0 for i ≤ c−N . �

Let f : X → Y be a morphism of quasi-separated and quasi-compact schemes. Let a denote
the right adjoint to Rf∗ : DQCoh(OX) → DQCoh(OY ). For every K ∈ DQCoh(OY )
and L ∈ DQCoh(OX) we obtain a canonical map

(3.5.1) Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)

Namely, this map is constructed as the composition

Rf∗RHomOX
(L, a(K))→ RHomOY

(Rf∗L,Rf∗a(K))→ RHomOY
(Rf∗L,K)
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where the first arrow is Cohomology, Remark 42.11 and the second arrow is the counit
Rf∗a(K)→ K of the adjunction.

Lemma 3.6. Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. Let a be the right adjoint to Rf∗ : DQCoh(OX) → DQCoh(OY ). Let L ∈
DQCoh(OX) and K ∈ DQCoh(OY ). Then the map (3.5.1)

Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)
becomes an isomorphism after applying the functor DQY : D(OY ) → DQCoh(OY )
discussed in Derived Categories of Schemes, Section 21.

Proof. The statement makes sense asDQY exists by Derived Categories of Schemes,
Lemma 21.1. Since DQY is the right adjoint to the inclusion functor DQCoh(OY ) →
D(OY ) to prove the lemma we have to show that for any M ∈ DQCoh(OY ) the map
(3.5.1) induces an bijection

HomY (M,Rf∗RHomOX
(L, a(K))) −→ HomY (M,RHomOY

(Rf∗L,K))
To see this we use the following string of equalities

HomY (M,Rf∗RHomOX
(L, a(K))) = HomX(Lf∗M,RHomOX

(L, a(K)))
= HomX(Lf∗M ⊗L

OX
L, a(K))

= HomY (Rf∗(Lf∗M ⊗L
OX

L),K)
= HomY (M ⊗L

OY
Rf∗L,K)

= HomY (M,RHomOY
(Rf∗L,K))

The first equality holds by Cohomology, Lemma 28.1. The second equality by Cohomol-
ogy, Lemma 42.2. The third equality by construction of a. The fourth equality by Derived
Categories of Schemes, Lemma 22.1 (this is the important step). The fifth by Cohomology,
Lemma 42.2. �

Example 3.7. The statement of Lemma 3.6 is not true without applying the “coher-
ator” DQY . Indeed, suppose Y = Spec(R) and X = A1

R. Take L = OX and K = OY .
The left hand side of the arrow is in DQCoh(OY ) but the right hand side of the arrow is
isomorphic to

∏
n≥0OY which is not quasi-coherent.

Remark 3.8. In the situation of Lemma 3.6 we have
DQY (Rf∗RHomOX

(L, a(K))) = Rf∗DQX(RHomOX
(L, a(K)))

by Derived Categories of Schemes, Lemma 21.2. Thus ifRHomOX
(L, a(K)) ∈ DQCoh(OX),

then we can “erase” the DQY on the left hand side of the arrow. On the other hand, if
we know that RHomOY

(Rf∗L,K) ∈ DQCoh(OY ), then we can “erase” the DQY from
the right hand side of the arrow. If both are true then we see that (3.5.1) is an isomor-
phism. Combining this with Derived Categories of Schemes, Lemma 10.8 we see that
Rf∗RHomOX

(L, a(K))→ RHomOY
(Rf∗L,K) is an isomorphism if

(1) L and Rf∗L are perfect, or
(2) K is bounded below and L and Rf∗L are pseudo-coherent.

For (2) we use that a(K) is bounded below if K is bounded below, see Lemma 3.5.
Example 3.9. Let f : X → Y be a proper morphism of Noetherian schemes, L ∈

D−
Coh(X) andK ∈ D+

QCoh(OY ). Then the mapRf∗RHomOX
(L, a(K))→ RHomOY

(Rf∗L,K)
is an isomorphism. Namely, the complexes L and Rf∗L are pseudo-coherent by Derived
Categories of Schemes, Lemmas 10.3 and 11.3 and the discussion in Remark 3.8 applies.
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Lemma 3.10. Let f : X → Y be a morphism of quasi-separated and quasi-compact
schemes. For all L ∈ DQCoh(OX) and K ∈ DQCoh(OY ) (3.5.1) induces an isomorphism
RHomX(L, a(K))→ RHomY (Rf∗L,K) of global derived homs.

Proof. By the construction in Cohomology, Section 44 we have

RHomX(L, a(K)) = RΓ(X,RHomOX
(L, a(K))) = RΓ(Y,Rf∗RHomOX

(L, a(K)))

and
RHomY (Rf∗L,K) = RΓ(Y,RHomOY

(Rf∗L,K))

Thus the lemma is a consequence of Lemma 3.6. Namely, a map E → E′ in D(OY )
which induces an isomorphism DQY (E) → DQY (E′) induces a quasi-isomorphism
RΓ(Y,E)→ RΓ(Y,E′). Indeed we haveHi(Y,E) = ExtiY (OY , E) = Hom(OY [−i], E) =
Hom(OY [−i], DQY (E)) becauseOY [−i] is inDQCoh(OY ) andDQY is the right adjoint
to the inclusion functor DQCoh(OY )→ D(OY ). �

4. Right adjoint of pushforward and restriction to opens

In this section we study the question to what extend the right adjoint of pushforward
commutes with restriction to open subschemes. This is a base change question, so let’s first
discuss this more generally.

We often want to know whether the right adjoints to pushforward commutes with base
change. Thus we consider a cartesian square

(4.0.1)

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes. Denote

a : DQCoh(OY )→ DQCoh(OX) and a′ : DQCoh(OY ′)→ DQCoh(OX′)

the right adjoints to Rf∗ and Rf ′
∗ (Lemma 3.1). Consider the base change map of Coho-

mology, Remark 28.3. It induces a transformation of functors

Lg∗ ◦Rf∗ −→ Rf ′
∗ ◦ L(g′)∗

on derived categories of sheaves with quasi-coherent cohomology. Hence a transformation
between the right adjoints in the opposite direction

a ◦Rg∗ ←− Rg′
∗ ◦ a′

Lemma 4.1. In diagram (4.0.1) assume that g is flat or more generally that f and g
are Tor independent. Then a ◦Rg∗ ← Rg′

∗ ◦ a′ is an isomorphism.

Proof. In this case the base change map Lg∗ ◦ Rf∗K −→ Rf ′
∗ ◦ L(g′)∗K is an

isomorphism for everyK inDQCoh(OX) by Derived Categories of Schemes, Lemma 22.5.
Thus the corresponding transformation between adjoint functors is an isomorphism as
well. �
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Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let V ⊂ Y
be a quasi-compact open subscheme and set U = f−1(V ). This gives a cartesian square

U
j′
//

f |U
��

X

f

��
V

j // Y

as in (4.0.1). By Lemma 4.1 the map ξ : a ◦ Rj∗ ← Rj′
∗ ◦ a′ is an isomorphism where a

and a′ are the right adjoints toRf∗ andR(f |U )∗. We obtain a transformation of functors
DQCoh(OY )→ DQCoh(OU )

(4.1.1) (j′)∗ ◦ a→ (j′)∗ ◦ a ◦Rj∗ ◦ j∗ ξ−1

−−→ (j′)∗ ◦Rj′
∗ ◦ a′ ◦ j∗ → a′ ◦ j∗

where the first arrow comes from id→ Rj∗◦j∗ and the final arrow from the isomorphism
(j′)∗ ◦ Rj′

∗ → id. In particular, we see that (4.1.1) is an isomorphism when evaluated on
K if and only if a(K)|U → a(Rj∗(K|V ))|U is an isomorphism.

Example 4.2. There is a finite morphism f : X → Y of Noetherian schemes such
that (4.1.1) is not an isomorphism when evaluated on some K ∈ DCoh(OY ). Namely, let
X = Spec(B) → Y = Spec(A) with A = k[x, ε] where k is a field and ε2 = 0 and
B = k[x] = A/(ε). For n ∈ N set Mn = A/(ε, xn). Observe that

ExtiA(B,Mn) = Mn, i ≥ 0
because B has the free periodic resolution . . . → A → A → A with maps given by mul-
tiplication by ε. Consider the object K =

⊕
Mn[n] =

∏
Mn[n] of DCoh(A) (equality in

D(A) by Derived Categories, Lemmas 33.5 and 34.2). Then we see that a(K) corresponds
to RHom(B,K) by Example 3.2 and

H0(RHom(B,K)) = Ext0
A(B,K) =

∏
n≥1

ExtnA(B.Mn) =
∏

n≥1
Mn

by the above. But this module has elements which are not annihilated by any power of
x, whereas the complex K does have every element of its cohomology annihilated by a
power of x. In other words, for the map (4.1.1) with V = D(x) and U = D(x) and
the complexK cannot be an isomorphism because (j′)∗(a(K)) is nonzero and a′(j∗K) is
zero.

Lemma 4.3. Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. Let a be the right adjoint to Rf∗ : DQCoh(OX)→ DQCoh(OY ). Let V ⊂ Y be
quasi-compact open with inverse image U ⊂ X .

(1) For every Q ∈ D+
QCoh(OY ) supported on Y \ V the image a(Q) is supported

on X \ U if and only if (4.1.1) is an isomorphism on all K in D+
QCoh(OY ).

(2) For every Q ∈ DQCoh(OY ) supported on Y \ V the image a(Q) is supported
on X \ U if and only if (4.1.1) is an isomorphism on all K in DQCoh(OY ).

(3) If a commutes with direct sums, then the equivalent conditions of (1) imply the
equivalent conditions of (2).

Proof. Proof of (1). Let K ∈ D+
QCoh(OY ). Choose a distinguished triangle

K → Rj∗K|V → Q→ K[1]
Observe that Q is in D+

QCoh(OY ) (Derived Categories of Schemes, Lemma 4.1) and is
supported on Y \ V (Derived Categories of Schemes, Definition 6.1). Applying a we



4. RIGHT ADJOINT OF PUSHFORWARD AND RESTRICTION TO OPENS 3985

obtain a distinguished triangle

a(K)→ a(Rj∗K|V )→ a(Q)→ a(K)[1]

onX . Ifa(Q) is supported onX\U , then restricting toU the mapa(K)|U → a(Rj∗K|V )|U
is an isomorphism, i.e., (4.1.1) is an isomorphism on K. The converse is immediate.

The proof of (2) is exactly the same as the proof of (1).

Proof of (3). Assume the equivalent conditions of (1) hold. Set T = Y \V . We will use the
notationDQCoh,T (OY ) andDQCoh,f−1(T )(OX) to denote complexes whose cohomology
sheaves are supported on T and f−1(T ). Since a commutes with direct sums, the strictly
full, saturated, triangulated subcategory D with objects

{Q ∈ DQCoh,T (OY ) | a(Q) ∈ DQCoh,f−1(T )(OX)}

is preserved by direct sums and hence derived colimits. On the other hand, the category
DQCoh,T (OY ) is generated by a perfect object E (see Derived Categories of Schemes,
Lemma 15.4). By assumption we see that E ∈ D. By Derived Categories, Lemma 37.3
every object Q of DQCoh,T (OY ) is a derived colimit of a system Q1 → Q2 → Q3 → . . .
such that the cones of the transition maps are direct sums of shifts of E. Arguing by in-
duction we see that Qn ∈ D for all n and finally that Q is in D. Thus the equivalent
conditions of (2) hold. �

Lemma 4.4. Let Y be a quasi-compact and quasi-separated scheme. Let f : X → Y
be a proper morphism. If3

(1) f is flat and of finite presentation, or
(2) Y is Noetherian

then the equivalent conditions of Lemma 4.3 part (1) hold for all quasi-compact opens V
of Y .

Proof. LetQ ∈ D+
QCoh(OY ) be supported on Y \V . To get a contradiction, assume

that a(Q) is not supported on X \U . Then we can find a perfect complex PU on U and a
nonzero mapPU → a(Q)|U (follows from Derived Categories of Schemes, Theorem 15.3).
Then using Derived Categories of Schemes, Lemma 13.10 we may assume there is a perfect
complex P on X and a map P → a(Q) whose restriction to U is nonzero. By definition
of a this map is adjoint to a map Rf∗P → Q.

The complex Rf∗P is pseudo-coherent. In case (1) this follows from Derived Categories
of Schemes, Lemma 30.5. In case (2) this follows from Derived Categories of Schemes,
Lemmas 11.3 and 10.3. Thus we may apply Derived Categories of Schemes, Lemma 17.5
and get a map I → OY of perfect complexes whose restriction to V is an isomorphism
such that the composition I ⊗L

OY
Rf∗P → Rf∗P → Q is zero. By Derived Categories

of Schemes, Lemma 22.1 we have I ⊗L
OY

Rf∗P = Rf∗(Lf∗I ⊗L
OX

P ). We conclude that
the composition

Lf∗I ⊗L
OX

P → P → a(Q)
is zero. However, the restriction to U is the map P |U → a(Q)|U which we assumed to be
nonzero. This contradiction finishes the proof. �

3This proof works for those morphisms of quasi-compact and quasi-separated schemes such that Rf∗P is
pseudo-coherent for allP perfect onX . It follows easily from a theorem of Kiehl [?] that this holds if f is proper
and pseudo-coherent. This is the correct generality for this lemma and some of the other results in this chapter.
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5. Right adjoint of pushforward and base change, I

The map (4.1.1) is a special case of a base change map. Namely, suppose that we have a
cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes, i.e., a diagram as in (4.0.1). Assume f and
g are Tor independent. Then we can consider the morphism of functors DQCoh(OY ) →
DQCoh(OX′) given by the composition

(5.0.1) L(g′)∗ ◦ a→ L(g′)∗ ◦ a ◦Rg∗ ◦ Lg∗ ← L(g′)∗ ◦Rg′
∗ ◦ a′ ◦ Lg∗ → a′ ◦ Lg∗

The first arrow comes from the adjunction map id → Rg∗Lg
∗ and the last arrow from

the adjunction map L(g′)∗Rg′
∗ → id. We need the assumption on Tor independence to

invert the arrow in the middle, see Lemma 4.1. Alternatively, we can think of (5.0.1) by
adjointness of L(g′)∗ and R(g′)∗ as a natural transformation

a→ a ◦Rg∗ ◦ Lg∗ ← Rg′
∗ ◦ a′ ◦ Lg∗

were again the second arrow is invertible. If M ∈ DQCoh(OX) and K ∈ DQCoh(OY )
then on Yoneda functors this map is given by

HomX(M,a(K)) = HomY (Rf∗M,K)
→ HomY (Rf∗M,Rg∗Lg

∗K)
= HomY ′(Lg∗Rf∗M,Lg∗K)
← HomY ′(Rf ′

∗L(g′)∗M,Lg∗K)
= HomX′(L(g′)∗M,a′(Lg∗K))
= HomX(M,Rg′

∗a
′(Lg∗K))

(were the arrow pointing left is invertible by the base change theorem given in Derived
Categories of Schemes, Lemma 22.5) which makes things a little bit more explicit.

In this section we first prove that the base change map satisfies some natural compatibilities
with regards to stacking squares as in Cohomology, Remarks 28.4 and 28.5 for the usual
base change map. We suggest the reader skip the rest of this section on a first reading.

Lemma 5.1. Consider a commutative diagram

X ′
k
//

f ′

��

X

f

��
Y ′ l //

g′

��

Y

g

��
Z ′ m // Z

of quasi-compact and quasi-separated schemes where both diagrams are cartesian and where
f and l as well as g andm are Tor independent. Then the maps (5.0.1) for the two squares
compose to give the base change map for the outer rectangle (see proof for a precise state-
ment).
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Proof. It follows from the assumptions that g◦f andm are Tor independent (details
omitted), hence the statement makes sense. In this proof we write k∗ in place of Lk∗ and
f∗ instead of Rf∗. Let a, b, and c be the right adjoints of Lemma 3.1 for f , g, and g ◦ f
and similarly for the primed versions. The arrow corresponding to the top square is the
composition

γtop : k∗ ◦ a→ k∗ ◦ a ◦ l∗ ◦ l∗
ξtop←−− k∗ ◦ k∗ ◦ a′ ◦ l∗ → a′ ◦ l∗

where ξtop : k∗ ◦ a′ → a ◦ l∗ is an isomorphism (hence can be inverted) and is the arrow
“dual” to the base change map l∗◦f∗ → f ′

∗◦k∗. The outer arrows come from the canonical
maps 1→ l∗ ◦ l∗ and k∗ ◦ k∗ → 1. Similarly for the second square we have

γbot : l∗ ◦ b→ l∗ ◦ b ◦m∗ ◦m∗ ξbot←−− l∗ ◦ l∗ ◦ b′ ◦m∗ → b′ ◦m∗

For the outer rectangle we get

γrect : k∗ ◦ c→ k∗ ◦ c ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ c′ ◦m∗ → c′ ◦m∗

We have (g ◦ f)∗ = g∗ ◦ f∗ and hence c = a ◦ b and similarly c′ = a′ ◦ b′. The statement
of the lemma is that γrect is equal to the composition

k∗ ◦ c = k∗ ◦ a ◦ b γtop−−→ a′ ◦ l∗ ◦ b γbot−−→ a′ ◦ b′ ◦m∗ = c′ ◦m∗

To see this we contemplate the following diagram:

k∗ ◦ a ◦ b

��

tt

k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b

tt
k∗ ◦ a ◦ b ◦m∗ ◦m∗ // k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b ◦m∗ ◦m∗ k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b

ξtop

OO

��tt
k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

ξtop

OO

**

a′ ◦ l∗ ◦ b

��
k∗ ◦ k∗ ◦ a′ ◦ b′ ◦m∗

ξrect

OO

**

k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

oo

**

a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

��
a′ ◦ b′ ◦m∗

Going down the right hand side we have the composition and going down the left hand
side we have γrect. All the quadrilaterals on the right hand side of this diagram commute
by Categories, Lemma 28.2 or more simply the discussion preceding Categories, Definition
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28.1. Hence we see that it suffices to show the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦m∗oo

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop

OO

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

ξbot

OO

// k∗ ◦ a′ ◦ b′

ξrect

OO

becomes commutative if we invert the arrows ξtop, ξbot, and ξrect (note that this is different
from asking the diagram to be commutative). However, the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

ξbot

55

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop
ii

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′
ξtop

ii

ξbot

55

commutes by Categories, Lemma 28.2. Since the diagrams

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦moo

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

OO

a ◦ l∗ ◦ b′oo

OO

and

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′ // a ◦ l∗ ◦ b′

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

OO

// k∗ ◦ a′ ◦ b′

OO

commute (see references cited) and since the composition of l∗ → l∗ ◦ l∗ ◦ l∗ → l∗ is the
identity, we find that it suffices to prove that

k ◦ a′ ◦ b′ ξbot−−→ a ◦ l∗ ◦ b
ξtop−−→ a ◦ b ◦m∗

is equal to ξrect (via the identifications a ◦ b = c and a′ ◦ b′ = c′). This is the statement
dual to Cohomology, Remark 28.4 and the proof is complete. �

Lemma 5.2. Consider a commutative diagram

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

of quasi-compact and quasi-separated schemes where both diagrams are cartesian and where
f and h as well as f ′ and h′ are Tor independent. Then the maps (5.0.1) for the two squares
compose to give the base change map for the outer rectangle (see proof for a precise state-
ment).

Proof. It follows from the assumptions that f and h◦h′ are Tor independent (details
omitted), hence the statement makes sense. In this proof we write g∗ in place of Lg∗ and
f∗ instead of Rf∗. Let a, a′, and a′′ be the right adjoints of Lemma 3.1 for f , f ′, and f ′′.
The arrow corresponding to the right square is the composition

γright : g∗ ◦ a→ g∗ ◦ a ◦ h∗ ◦ h∗ ξright←−−−− g∗ ◦ g∗ ◦ a′ ◦ h∗ → a′ ◦ h∗
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where ξright : g∗ ◦ a′ → a ◦ h∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map h∗ ◦ f∗ → f ′

∗ ◦ g∗. The outer arrows come from the
canonical maps 1→ h∗ ◦ h∗ and g∗ ◦ g∗ → 1. Similarly for the left square we have

γleft : (g′)∗ ◦ a′ → (g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ξleft←−−− (g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ → a′′ ◦ (h′)∗

For the outer rectangle we get

γrect : k∗ ◦ a→ k∗ ◦ a ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ a′′ ◦m∗ → a′′ ◦m∗

where k = g ◦ g′ and m = h ◦ h′. We have k∗ = (g′)∗ ◦ g∗ and m∗ = (h′)∗ ◦ h∗. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ a = (g′)∗ ◦ g∗ ◦ a γright−−−−→ (g′)∗ ◦ a′ ◦ h∗ γleft−−−→ a′′ ◦ (h′)∗ ◦ h∗ = a′′ ◦m∗

To see this we contemplate the following diagram

(g′)∗ ◦ g∗ ◦ a

��

ww

(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ h∗

ss
(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗ (g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ h∗

ξright

OO

��ss
(g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

ξright

OO

++

(g′)∗ ◦ a′ ◦ h∗

��
(g′)∗ ◦ g∗ ◦ g∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

''

++

(g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

(g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

��
a′′ ◦ (h′)∗ ◦ h∗

Going down the right hand side we have the composition and going down the left hand
side we have γrect. All the quadrilaterals on the right hand side of this diagram commute
by Categories, Lemma 28.2 or more simply the discussion preceding Categories, Definition
28.1. Hence we see that it suffices to show that

g∗ ◦ (g′)∗ ◦ a′′ ξleft−−−→ g∗ ◦ a′ ◦ (h′)∗
ξright−−−−→ a ◦ h∗ ◦ (h′)∗

is equal to ξrect. This is the statement dual to Cohomology, Remark 28.5 and the proof is
complete. �
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Remark 5.3. Consider a commutative diagram

X ′′
k′
//

f ′′

��

X ′
k
//

f ′

��

X

f

��
Y ′′ l′ //

g′′

��

Y ′ l //

g′

��

Y

g

��
Z ′′ m′

// Z ′ m // Z

of quasi-compact and quasi-separated schemes where all squares are cartesian and where
(f, l), (g,m), (f ′, l′), (g′,m′) are Tor independent pairs of maps. Let a, a′, a′′, b, b′, b′′

be the right adjoints of Lemma 3.1 for f , f ′, f ′′, g, g′, g′′. Let us label the squares of the
diagram A, B, C , D as follows

A B
C D

Then the maps (5.0.1) for the squares are (where we use k∗ = Lk∗, etc)

γA : (k′)∗ ◦ a′ → a′′ ◦ (l′)∗ γB : k∗ ◦ a→ a′ ◦ l∗
γC : (l′)∗ ◦ b′ → b′′ ◦ (m′)∗ γD : l∗ ◦ b→ b′ ◦m∗

For the 2× 1 and 1× 2 rectangles we have four further base change maps

γA+B : (k ◦ k′)∗ ◦ a→ a′′ ◦ (l ◦ l′)∗

γC+D : (l ◦ l′)∗ ◦ b→ b′′ ◦ (m ◦m′)∗

γA+C : (k′)∗ ◦ (a′ ◦ b′)→ (a′′ ◦ b′′) ◦ (m′)∗

γB+D : k∗ ◦ (a ◦ b)→ (a′ ◦ b′) ◦m∗

By Lemma 5.2 we have

γA+B = γA ◦ γB , γC+D = γC ◦ γD
and by Lemma 5.1 we have

γA+C = γC ◦ γA, γB+D = γD ◦ γB
Here it would be more correct to write γA+B = (γA?idl∗)◦(id(k′)∗ ?γB) with notation as
in Categories, Section 28 and similarly for the others. However, we continue the abuse of
notation used in the proofs of Lemmas 5.1 and 5.2 of dropping ? products with identities as
one can figure out which ones to add as long as the source and target of the transformation
is known. Having said all of this we find (a priori) two transformations

(k′)∗ ◦ k∗ ◦ a ◦ b −→ a′′ ◦ b′′ ◦ (m′)∗ ◦m∗

namely
γC ◦ γA ◦ γD ◦ γB = γA+C ◦ γB+D

and
γC ◦ γD ◦ γA ◦ γB = γC+D ◦ γA+B

The point of this remark is to point out that these transformations are equal. Namely, to
see this it suffices to show that

(k′)∗ ◦ a′ ◦ l∗ ◦ b
γD
//

γA

��

(k′)∗ ◦ a′ ◦ b′ ◦m∗

γA

��
a′′ ◦ (l′)∗ ◦ l∗ ◦ b

γD // a′′ ◦ (l′)∗ ◦ b′ ◦m∗
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commutes. This is true by Categories, Lemma 28.2 or more simply the discussion preceding
Categories, Definition 28.1.

6. Right adjoint of pushforward and base change, II

In this section we prove that the base change map of Section 5 is an isomorphism in some
cases. We first observe that it suffices to check over affine opens, provided formation of
the right adjoint of pushforward commutes with restriction to opens.

Remark 6.1. Consider a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes with (g, f) Tor independent. Let V ⊂ Y
and V ′ ⊂ Y ′ be affine opens with g(V ′) ⊂ V . Form the cartesian diagrams

U //

��

X

��
V // Y

and

U ′ //

��

X ′

��
V ′ // Y ′

Assume (4.1.1) with respect to K and the first diagram and (4.1.1) with respect to Lg∗K
and the second diagram are isomorphisms. Then the restriction of the base change map
(5.0.1)

L(g′)∗a(K) −→ a′(Lg∗K)
to U ′ is isomorphic to the base change map (5.0.1) for K|V and the cartesian diagram

U ′ //

��

U

��
V ′ // V

This follows from the fact that (4.1.1) is a special case of the base change map (5.0.1) and
that the base change maps compose correctly if we stack squares horizontally, see Lemma
5.2. Thus in order to check the base change map restricted to U ′ is an isomorphism it
suffices to work with the last diagram.

Lemma 6.2. In diagram (4.0.1) assume
(1) g : Y ′ → Y is a morphism of affine schemes,
(2) f : X → Y is proper, and
(3) f and g are Tor independent.

Then the base change map (5.0.1) induces an isomorphism

L(g′)∗a(K) −→ a′(Lg∗K)

in the following cases
(1) for all K ∈ DQCoh(OX) if f is flat of finite presentation,
(2) for all K ∈ DQCoh(OX) if f is perfect and Y Noetherian,
(3) for K ∈ D+

QCoh(OX) if g has finite Tor dimension and Y Noetherian.
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Proof. Write Y = Spec(A) and Y ′ = Spec(A′). As a base change of an affine mor-
phism, the morphism g′ is affine. Let M be a perfect generator for DQCoh(OX), see De-
rived Categories of Schemes, Theorem 15.3. ThenL(g′)∗M is a generator forDQCoh(OX′),
see Derived Categories of Schemes, Remark 16.4. Hence it suffices to show that (5.0.1) in-
duces an isomorphism

(6.2.1) RHomX′(L(g′)∗M,L(g′)∗a(K)) −→ RHomX′(L(g′)∗M,a′(Lg∗K))

of global hom complexes, see Cohomology, Section 44, as this will imply the cone of
L(g′)∗a(K) → a′(Lg∗K) is zero. The structure of the proof is as follows: we will first
show that these Hom complexes are isomorphic and in the last part of the proof we will
show that the isomorphism is induced by (6.2.1).

The left hand side. Because M is perfect, the canonical map

RHomX(M,a(K))⊗L
A A

′ −→ RHomX′(L(g′)∗M,L(g′)∗a(K))

is an isomorphism by Derived Categories of Schemes, Lemma 22.6. We can combine this
with the isomorphism RHomY (Rf∗M,K) = RHomX(M,a(K)) of Lemma 3.10 to get
that the left hand side equals RHomY (Rf∗M,K)⊗L

A A
′.

The right hand side. Here we first use the isomorphism

RHomX′(L(g′)∗M,a′(Lg∗K)) = RHomY ′(Rf ′
∗L(g′)∗M,Lg∗K)

of Lemma 3.10. Then we use the base change map Lg∗Rf∗M → Rf ′
∗L(g′)∗M is an

isomorphism by Derived Categories of Schemes, Lemma 22.5. Hence we may rewrite this
asRHomY ′(Lg∗Rf∗M,Lg∗K). Since Y , Y ′ are affine andK ,Rf∗M are inDQCoh(OY )
(Derived Categories of Schemes, Lemma 4.1) we have a canonical map

β : RHomY (Rf∗M,K)⊗L
A A

′ −→ RHomY ′(Lg∗Rf∗M,Lg∗K)

in D(A′). This is the arrow More on Algebra, Equation (99.1.1) where we have used De-
rived Categories of Schemes, Lemmas 3.5 and 10.8 to translate back and forth into algebra.

(1) If f is flat and of finite presentation, the complex Rf∗M is perfect on Y by
Derived Categories of Schemes, Lemma 30.4 and β is an isomorphism by More
on Algebra, Lemma 99.2 part (1).

(2) If f is perfect and Y Noetherian, the complex Rf∗M is perfect on Y by More
on Morphisms, Lemma 61.13 and β is an isomorphism as before.

(3) If g has finite tor dimension and Y is Noetherian, the complexRf∗M is pseudo-
coherent on Y (Derived Categories of Schemes, Lemmas 11.3 and 10.3) and β is
an isomorphism by More on Algebra, Lemma 99.2 part (4).

We conclude that we obtain the same answer as in the previous paragraph.

In the rest of the proof we show that the identifications of the left and right hand side
of (6.2.1) given in the second and third paragraph are in fact given by (6.2.1). To make
our formulas manageable we will use (−,−)X = RHomX(−,−), use − ⊗ A′ in stead
of − ⊗L

A A
′, and we will abbreviate g∗ = Lg∗ and f∗ = Rf∗. Consider the following
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commutative diagram

((g′)∗M, (g′)∗a(K))X′

��

(M,a(K))X ⊗A′
α

oo

��

(f∗M,K)Y ⊗A′

��
((g′)∗M, (g′)∗a(g∗g

∗K))X′ (M,a(g∗g
∗K))X ⊗A′

α
oo (f∗M, g∗g

∗K)Y ⊗A′

µ′

''

((g′)∗M, (g′)∗g′
∗a

′(g∗K))X′

OO

��

(M, g′
∗a

′(g∗K))X ⊗A′

OO

α
oo

µ
tt

(f∗M,K)⊗A′

β

��
((g′)∗M,a′(g∗K))X′ (f ′

∗(g′)∗M, g∗K)Y ′ // (g∗f∗M, g∗K)Y ′

The arrows labeled α are the maps from Derived Categories of Schemes, Lemma 22.6 for
the diagram with corners X ′, X, Y ′, Y . The upper part of the diagram is commutative as
the horizontal arrows are functorial in the entries. The middle vertical arrows come from
the invertible transformation g′

∗ ◦ a′ → a ◦ g∗ of Lemma 4.1 and therefore the middle
square is commutative. Going down the left hand side is (6.2.1). The upper horizontal
arrows provide the identifications used in the second paragraph of the proof. The lower
horizontal arrows including β provide the identifications used in the third paragraph of
the proof. Given E ∈ D(A), E′ ∈ D(A′), and c : E → E′ in D(A) we will denote
µc : E⊗A′ → E′ the map induced by c and the adjointness of restriction and base change;
if c is clear we write µ = µc, i.e., we drop c from the notation. The map µ in the diagram is
of this form with c given by the identification (M, g′

∗a(g∗K))X = ((g′)∗M,a′(g∗K))X′

; the triangle involving µ is commutative by Derived Categories of Schemes, Remark 22.7.

Observe that

(M,a(g∗g
∗K))X (f∗M, g∗g

∗K)Y (g∗f∗M, g∗K)Y ′

(M, g′
∗a

′(g∗K))X

OO

((g′)∗M,a′(g∗K))X′ (f ′
∗(g′)∗M, g∗K)Y ′

OO

is commutative by the very definition of the transformation g′
∗◦a′ → a◦g∗. Letting µ′ be

as above corresponding to the identification (f∗M, g∗g
∗K)X = (g∗f∗M, g∗K)Y ′ , then

the hexagon commutes as well. Thus it suffices to show that β is equal to the composition
of (f∗M,K)Y ⊗ A′ → (f∗M, g∗g

∗K)X ⊗ A′ and µ′. To do this, it suffices to prove
the two induced maps (f∗M,K)Y → (g∗f∗M, g∗K)Y ′ are the same. In other words, it
suffices to show the diagram

RHomA(E,K)
induced by β

//

))

RHomA′(E ⊗L
A A

′,K ⊗L
A A

′)

RHomA(E,K ⊗L
A A

′)

44

commutes for all E,K ∈ D(A). Since this is how β is constructed in More on Algebra,
Section 99 the proof is complete. �
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7. Right adjoint of pushforward and trace maps

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let a :
DQCoh(OY )→ DQCoh(OX) be the right adjoint as in Lemma 3.1. By Categories, Section
24 we obtain a transformation of functors

Trf : Rf∗ ◦ a −→ id
The corresponding map Trf,K : Rf∗a(K) −→ K for K ∈ DQCoh(OY ) is sometimes
called the trace map. This is the map which has the property that the bijection

HomX(L, a(K)) −→ HomY (Rf∗L,K)
for L ∈ DQCoh(OX) which characterizes the right adjoint is given by

ϕ 7−→ Trf,K ◦Rf∗ϕ

The map (3.5.1)
Rf∗RHomOX

(L, a(K)) −→ RHomOY
(Rf∗L,K)

comes about by composition with Trf,K . Every trace map we are going to consider in this
section will be a special case of this trace map. Before we discuss some special cases we
show that formation of the trace map commutes with base change.

Lemma 7.1 (Trace map and base change). Suppose we have a diagram (4.0.1) where
f and g are tor independent. Then the maps 1 ?Trf : Lg∗ ◦Rf∗ ◦ a→ Lg∗ and Trf ′ ? 1 :
Rf ′

∗ ◦ a′ ◦ Lg∗ → Lg∗ agree via the base change maps β : Lg∗ ◦ Rf∗ → Rf ′
∗ ◦ L(g′)∗

(Cohomology, Remark 28.3) and α : L(g′)∗ ◦ a → a′ ◦ Lg∗ (5.0.1). More precisely, the
diagram

Lg∗ ◦Rf∗ ◦ a

β?1
��

1?Trf
// Lg∗

Rf ′
∗ ◦ L(g′)∗ ◦ a 1?α // Rf ′

∗ ◦ a′ ◦ Lg∗

Trf′?1

OO

of transformations of functors commutes.

Proof. In this proof we write f∗ for Rf∗ and g∗ for Lg∗ and we drop ? products
with identities as one can figure out which ones to add as long as the source and target of
the transformation is known. Recall that β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an isomorphism and
that α is defined using the isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗ which is the adjoint of β,
see Lemma 4.1 and its proof. First we note that the top horizontal arrow of the diagram
in the lemma is equal to the composition

g∗ ◦ f∗ ◦ a→ g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗ → g∗ ◦ g∗ ◦ g∗ → g∗

where the first arrow is the unit for (g∗, g∗), the second arrow is Trf , and the third arrow
is the counit for (g∗, g∗). This is a simple consequence of the fact that the composition
g∗ → g∗ ◦ g∗ ◦ g∗ → g∗ of unit and counit is the identity. Consider the diagram

g∗ ◦ f∗ ◦ a
β

uu ��

Trf
// g∗

f ′
∗ ◦ (g′)∗ ◦ a

))

g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗

β

��

44

g∗ ◦ f∗ ◦ g′
∗ ◦ a′ ◦ g∗β∨

oo

β

��

f ′
∗ ◦ a′ ◦ g∗

Trf′

ii

f ′
∗ ◦ (g′)∗ ◦ a ◦ g∗ ◦ g∗ f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′ ◦ g∗

55

β∨
oo
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In this diagram the two squares commute Categories, Lemma 28.2 or more simply the
discussion preceding Categories, Definition 28.1. The triangle commutes by the discussion
above. By Categories, Lemma 24.8 the square

g∗ ◦ f∗ ◦ g′
∗ ◦ a′

β∨

��

β
// f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′

��
g∗ ◦ f∗ ◦ a ◦ g∗ // id

commutes which implies the pentagon in the big diagram commutes. Since β and β∨ are
isomorphisms, and since going on the outside of the big diagram equals Trf ◦ α ◦ β by
definition this proves the lemma. �

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let a :
DQCoh(OY )→ DQCoh(OX) be the right adjoint ofRf∗ as in Lemma 3.1. By Categories,
Section 24 we obtain a transformation of functors

ηf : id→ a ◦Rf∗

which is called the unit of the adjunction.

Lemma 7.2. Suppose we have a diagram (4.0.1) where f and g are tor independent.
Then the maps 1?ηf : L(g′)∗ → L(g′)∗ ◦a◦Rf∗ and ηf ′ ?1 : L(g′)∗ → a′ ◦Rf ′

∗ ◦L(g′)∗

agree via the base change maps β : Lg∗ ◦ Rf∗ → Rf ′
∗ ◦ L(g′)∗ (Cohomology, Remark

28.3) and α : L(g′)∗ ◦ a→ a′ ◦ Lg∗ (5.0.1). More precisely, the diagram

L(g′)∗
1?ηf

//

ηf′?1
��

L(g′)∗ ◦ a ◦Rf∗

α

��
a′ ◦Rf ′

∗ ◦ L(g′)∗ a′ ◦ Lg∗ ◦Rf∗
βoo

of transformations of functors commutes.

Proof. This proof is dual to the proof of Lemma 7.1. In this proof we write f∗ for
Rf∗ and g∗ for Lg∗ and we drop ? products with identities as one can figure out which
ones to add as long as the source and target of the transformation is known. Recall that
β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an isomorphism and that α is defined using the isomorphism
β∨ : g′

∗ ◦ a′ → a ◦ g∗ which is the adjoint of β, see Lemma 4.1 and its proof. First we note
that the left vertical arrow of the diagram in the lemma is equal to the composition

(g′)∗ → (g′)∗ ◦ g′
∗ ◦ (g′)∗ → (g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗ → a′ ◦ f ′

∗ ◦ (g′)∗

where the first arrow is the unit for ((g′)∗, g′
∗), the second arrow is ηf ′ , and the third arrow

is the counit for ((g′)∗, g′
∗). This is a simple consequence of the fact that the composition

(g′)∗ → (g′)∗ ◦ (g′)∗ ◦ (g′)∗ → (g′)∗ of unit and counit is the identity. Consider the
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diagram

(g′)∗ ◦ a ◦ f∗ // (g′)∗ ◦ a ◦ g∗ ◦ g∗ ◦ f∗
β

tt
(g′)∗

ηf
55

ηf′

��

))

(g′)∗ ◦ a ◦ g∗ ◦ f ′
∗ ◦ (g′)∗ (g′)∗ ◦ g′

∗ ◦ a′ ◦ g∗ ◦ f∗

β∨

OO

β

tt ��
(g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗

uu

β∨

OO

a′ ◦ g∗ ◦ f∗

β
rr

a′ ◦ f ′
∗ ◦ (g′)∗

In this diagram the two squares commute Categories, Lemma 28.2 or more simply the
discussion preceding Categories, Definition 28.1. The triangle commutes by the discussion
above. By the dual of Categories, Lemma 24.8 the square

id //

��

g′
∗ ◦ a′ ◦ g∗ ◦ f∗

β

��
g′

∗ ◦ a′ ◦ g∗ ◦ f∗
β∨
// a ◦ g∗ ◦ f ′

∗ ◦ (g′)∗

commutes which implies the pentagon in the big diagram commutes. Since β and β∨ are
isomorphisms, and since going on the outside of the big diagram equals β ◦ α ◦ ηf by
definition this proves the lemma. �

Example 7.3. Let A → B be a ring map. Let Y = Spec(A) and X = Spec(B) and
f : X → Y the morphism corresponding to A → B. As seen in Example 3.2 the right
adjoint ofRf∗ : DQCoh(OX)→ DQCoh(OY ) sends an objectK ofD(A) = DQCoh(OY )
to RHom(B,K) in D(B) = DQCoh(OX). The trace map is the map

Trf,K : RHom(B,K) −→ RHom(A,K) = K

induced by the A-module map A→ B.

8. Right adjoint of pushforward and pullback

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let a be
the right adjoint of pushforward as in Lemma 3.1. For K,L ∈ DQCoh(OY ) there is a
canonical map

Lf∗K ⊗L
OX

a(L) −→ a(K ⊗L
OY

L)
Namely, this map is adjoint to a map

Rf∗(Lf∗K ⊗L
OX

a(L)) = K ⊗L
OY

Rf∗(a(L)) −→ K ⊗L
OY

L

(equality by Derived Categories of Schemes, Lemma 22.1) for which we use the trace map
Rf∗a(L)→ L. When L = OY we obtain a map

(8.0.1) Lf∗K ⊗L
OX

a(OY ) −→ a(K)

functorial in K and compatible with distinguished triangles.
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Lemma 8.1. Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. The mapLf∗K⊗L

OX
a(L)→ a(K⊗L

OY
L) defined above forK,L ∈ DQCoh(OY )

is an isomorphism if K is perfect. In particular, (8.0.1) is an isomorphism if K is perfect.

Proof. LetK∨ be the “dual” toK , see Cohomology, Lemma 50.5. ForM ∈ DQCoh(OX)
we have

HomD(OY )(Rf∗M,K ⊗L
OY

L) = HomD(OY )(Rf∗M ⊗L
OY

K∨, L)
= HomD(OX)(M ⊗L

OX
Lf∗K∨, a(L))

= HomD(OX)(M,Lf∗K ⊗L
OX

a(L))

Second equality by the definition of a and the projection formula (Cohomology, Lemma
54.3) or the more general Derived Categories of Schemes, Lemma 22.1. Hence the result
by the Yoneda lemma. �

Lemma 8.2. Suppose we have a diagram (4.0.1) where f and g are tor independent.
Let K ∈ DQCoh(OY ). The diagram

L(g′)∗(Lf∗K ⊗L
OX

a(OY )) //

��

L(g′)∗a(K)

��
L(f ′)∗Lg∗K ⊗L

OX′ a
′(OY ′) // a′(Lg∗K)

commutes where the horizontal arrows are the maps (8.0.1) for K and Lg∗K and the
vertical maps are constructed using Cohomology, Remark 28.3 and (5.0.1).

Proof. In this proof we will write f∗ for Rf∗ and f∗ for Lf∗, etc, and we will write
⊗ for ⊗L

OX
, etc. Let us write (8.0.1) as the composition

f∗K ⊗ a(OY )→ a(f∗(f∗K ⊗ a(OY )))
← a(K ⊗ f∗a(OK))
→ a(K ⊗OY )
→ a(K)

Here the first arrow is the unit ηf , the second arrow is a applied to Cohomology, Equation
(54.2.1) which is an isomorphism by Derived Categories of Schemes, Lemma 22.1, the third
arrow is a applied to idK⊗Trf , and the fourth arrow is a applied to the isomorphismK⊗
OY = K. The proof of the lemma consists in showing that each of these maps gives rise to
a commutative square as in the statement of the lemma. For ηf and Trf this is Lemmas 7.2
and 7.1. For the arrow using Cohomology, Equation (54.2.1) this is Cohomology, Remark
54.5. For the multiplication map it is clear. This finishes the proof. �

Lemma 8.3. Let f : X → Y be a proper morphism of Noetherian schemes. Let
V ⊂ Y be an open such that f−1(V )→ V is an isomorphism. Then forK ∈ D+

QCoh(OY )
the map (8.0.1) restricts to an isomorphism over f−1(V ).

Proof. By Lemma 4.4 the map (4.1.1) is an isomorphism for objects of D+
QCoh(OY ).

Hence Lemma 8.2 tells us the restriction of (8.0.1) for K to f−1(V ) is the map (8.0.1) for
K|V and f−1(V )→ V . Thus it suffices to show that the map is an isomorphism when f
is the identity morphism. This is clear. �
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Lemma 8.4. Let f : X → Y and g : Y → Z be composable morphisms of quasi-
compact and quasi-separated schemes and set h = g◦f . Let a, b, c be the adjoints of Lemma
3.1 for f, g, h. For any K ∈ DQCoh(OZ) the diagram

Lf∗(Lg∗K ⊗L
OY

b(OZ))⊗L
OX

a(OY ) // a(Lg∗K ⊗L
OY

b(OZ)) // a(b(K))

Lh∗K ⊗L
OX

Lf∗b(OZ)⊗L
OX

a(OY ) // Lh∗K ⊗L
OX

c(OZ) // c(K)

is commutative where the arrows are (8.0.1) and we have used Lh∗ = Lf∗ ◦ Lg∗ and
c = a ◦ b.

Proof. In this proof we will write f∗ for Rf∗ and f∗ for Lf∗, etc, and we will write
⊗ for ⊗L

OX
, etc. The composition of the top arrows is adjoint to a map

g∗f∗(f∗(g∗K ⊗ b(OZ))⊗ a(OY ))→ K

The left hand side is equal to K ⊗ g∗f∗(f∗b(OZ) ⊗ a(OY )) by Derived Categories of
Schemes, Lemma 22.1 and inspection of the definitions shows the map comes from the
map

g∗f∗(f∗b(OZ)⊗ a(OY )) g∗ε←−− g∗(b(OZ)⊗ f∗a(OY )) g∗α−−→ g∗(b(OZ)) β−→ OZ
tensored with idK . Here ε is the isomorphism from Derived Categories of Schemes, Lemma
22.1 and β comes from the counit map g∗b→ id. Similarly, the composition of the lower
horizontal arrows is adjoint to idK tensored with the composition

g∗f∗(f∗b(OZ)⊗ a(OY )) g∗f∗δ−−−→ g∗f∗(ab(OZ)) g∗γ−−→ g∗(b(OZ)) β−→ OZ
where γ comes from the counit map f∗a → id and δ is the map whose adjoint is the
composition

f∗(f∗b(OZ)⊗ a(OY )) ε←− b(OZ)⊗ f∗a(OY ) α−→ b(OZ)
By general properties of adjoint functors, adjoint maps, and counits (see Categories, Section
24) we have γ ◦ f∗δ = α ◦ ε−1 as desired. �

9. Right adjoint of pushforward for closed immersions

Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces such that i is a homeomor-
phism onto a closed subset and such that i] : OX → i∗OZ is surjective. (For example a
closed immersion of schemes.) Let I = Ker(i]). For a sheaf ofOX -modules F the sheaf

HomOX
(i∗OZ ,F)

a sheaf of OX -modules annihilated by I . Hence by Modules, Lemma 13.4 there is a sheaf
ofOZ -modules, which we will denoteHom(OZ ,F), such that

i∗Hom(OZ ,F) = HomOX
(i∗OZ ,F)

asOX -modules. We spell out what this means.

Lemma 9.1. With notation as above. The functorHom(OZ ,−) is a right adjoint to
the functor i∗ : Mod(OZ)→Mod(OX). For V ⊂ Z open we have

Γ(V,Hom(OZ ,F)) = {s ∈ Γ(U,F) | Is = 0}
where U ⊂ X is an open whose intersection with Z is V .
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Proof. Let G be a sheaf ofOZ -modules. Then

HomOX
(i∗G,F) = Homi∗OZ

(i∗G,HomOX
(i∗OZ ,F)) = HomOZ

(G,Hom(OZ ,F))
The first equality by Modules, Lemma 22.3 and the second by the fully faithfulness of i∗,
see Modules, Lemma 13.4. The description of sections is left to the reader. �

The functor
Mod(OX) −→Mod(OZ), F 7−→ Hom(OZ ,F)

is left exact and has a derived extension

RHom(OZ ,−) : D(OX)→ D(OZ).

Lemma 9.2. With notation as above. The functorRHom(OZ ,−) is the right adjoint
of the functor Ri∗ : D(OZ)→ D(OX).

Proof. This is a consequence of the fact that i∗ andHom(OZ ,−) are adjoint functors
by Lemma 9.1. See Derived Categories, Lemma 30.3. �

Lemma 9.3. With notation as above. We have

Ri∗RHom(OZ ,K) = RHomOX
(i∗OZ ,K)

in D(OX) for all K in D(OX).

Proof. This is immediate from the construction of the functorRHom(OZ ,−). �

Lemma 9.4. With notation as above. For M ∈ D(OZ) we have

RHomOX
(Ri∗M,K) = Ri∗RHomOZ

(M,RHom(OZ ,K))
in D(OZ) for all K in D(OX).

Proof. This is immediate from the construction of the functor RHom(OZ ,−) and
the fact that if K• is a K-injective complex of OX -modules, then Hom(OZ ,K•) is a K-
injective complex ofOZ -modules, see Derived Categories, Lemma 31.9. �

Lemma 9.5. Let i : Z → X be a pseudo-coherent closed immersion of schemes (any
closed immersion if X is locally Noetherian). Then

(1) RHom(OZ ,−) maps D+
QCoh(OX) into D+

QCoh(OZ), and
(2) if X = Spec(A) and Z = Spec(B), then the diagram

D+(B) // D+
QCoh(OZ)

D+(A) //

RHom(B,−)

OO

D+
QCoh(OX)

RHom(OZ ,−)

OO

is commutative.

Proof. To explain the parenthetical remark, if X is locally Noetherian, then i is
pseudo-coherent by More on Morphisms, Lemma 60.9.

Let K be an object of D+
QCoh(OX). To prove (1), by Morphisms, Lemma 4.1 it suffices

to show that i∗ applied to Hn(RHom(OZ ,K)) produces a quasi-coherent module on X .
By Lemma 9.3 this means we have to show that RHomOX

(i∗OZ ,K) is in DQCoh(OX).
Since i is pseudo-coherent the sheafOZ is a pseudo-coherentOX -module. Hence the result
follows from Derived Categories of Schemes, Lemma 10.8.
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Assume X = Spec(A) and Z = Spec(B) as in (2). Let I• be a bounded below com-
plex of injective A-modules representing an object K of D+(A). Then we know that
RHom(B,K) = HomA(B, I•) viewed as a complex of B-modules. Choose a quasi-
isomorphism

Ĩ• −→ I•

where I• is a bounded below complex of injective OX -modules. It follows from the de-
scription of the functorHom(OZ ,−) in Lemma 9.1 that there is a map

HomA(B, I•) −→ Γ(Z,Hom(OZ , I•))

Observe thatHom(OZ , I•) representsRHom(OZ , K̃). Applying the universal property
of the˜functor we obtain a map

˜HomA(B, I•) −→ RHom(OZ , K̃)

in D(OZ). We may check that this map is an isomorphism in D(OZ) after applying i∗.
However, once we apply i∗ we obtain the isomorphism of Derived Categories of Schemes,
Lemma 10.8 via the identification of Lemma 9.3. �

Lemma 9.6. Let i : Z → X be a closed immersion of schemes. Assume X is a locally
Noetherian. Then RHom(OZ ,−) maps D+

Coh(OX) into D+
Coh(OZ).

Proof. The question is local on X , hence we may assume that X is affine. Say X =
Spec(A) and Z = Spec(B) with A Noetherian and A → B surjective. In this case, we
can apply Lemma 9.5 to translate the question into algebra. The corresponding algebra
result is a consequence of Dualizing Complexes, Lemma 13.4. �

Lemma 9.7. Let X be a quasi-compact and quasi-separated scheme. Let i : Z → X
be a pseudo-coherent closed immersion (if X is Noetherian, then any closed immersion is
pseudo-coherent). Let a : DQCoh(OX)→ DQCoh(OZ) be the right adjoint toRi∗. Then
there is a functorial isomorphism

a(K) = RHom(OZ ,K)

for K ∈ D+
QCoh(OX).

Proof. (The parenthetical statement follows from More on Morphisms, Lemma 60.9.)
By Lemma 9.2 the functor RHom(OZ ,−) is a right adjoint to Ri∗ : D(OZ)→ D(OX).
Moreover, by Lemma 9.5 and Lemma 3.5 both RHom(OZ ,−) and a map D+

QCoh(OX)
into D+

QCoh(OZ). Hence we obtain the isomorphism by uniqueness of adjoint functors.
�

Example 9.8. If i : Z → X is closed immersion of Noetherian schemes, then the
diagram

i∗a(K)
Tri,K

// K

i∗RHom(OZ ,K) RHomOX
(i∗OZ ,K) // K

is commutative for K ∈ D+
QCoh(OX). Here the horizontal equality sign is Lemma 9.3

and the lower horizontal arrow is induced by the map OX → i∗OZ . The commutativity
of the diagram is a consequence of Lemma 9.7.
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10. Right adjoint of pushforward for closed immersions and base change

Consider a cartesian diagram of schemes

Z ′
i′
//

g

��

X ′

f

��
Z

i // X

where i is a closed immersion. If Z and X ′ are tor independent over X , then there is a
canonical base change map

(10.0.1) Lg∗RHom(OZ ,K) −→ RHom(OZ′ , Lf∗K)
in D(OZ′) functorial for K in D(OX). Namely, by adjointness of Lemma 9.2 such an
arrow is the same thing as a map

Ri′∗Lg
∗RHom(OZ ,K) −→ Lf∗K

inD(OX′). By tor independence we haveRi′∗ ◦Lg∗ = Lf∗ ◦Ri∗ (see Derived Categories
of Schemes, Lemma 22.9). Thus this is the same thing as a map

Lf∗Ri∗RHom(OZ ,K) −→ Lf∗K

For this we can use Lf∗(can) where can : Ri∗RHom(OZ ,K)→ K is the counit of the
adjunction.

Lemma 10.1. In the situation above, the map (10.0.1) is an isomorphism if and only
if the base change map

Lf∗RHomOX
(OZ ,K) −→ RHomOX′ (OZ′ , Lf∗K)

of Cohomology, Remark 42.13 is an isomorphism.

Proof. The statement makes sense because OZ′ = Lf∗OZ by the assumed tor inde-
pendence. Since i′∗ is exact and faithful we see that it suffices to show the map (10.0.1) is
an isomorphism after applying Ri′∗. Since Ri′∗ ◦ Lg∗ = Lf∗ ◦ Ri∗ by the assumed tor
indepence and Derived Categories of Schemes, Lemma 22.9 we obtain a map

Lf∗Ri∗RHom(OZ ,K) −→ Ri′∗RHom(OZ′ , Lf∗K)
whose source and target are as in the statement of the lemma by Lemma 9.3. We omit
the verification that this is the same map as the one constructed in Cohomology, Remark
42.13. �

Lemma 10.2. In the situation above, assume f is flat and i pseudo-coherent. Then
(10.0.1) is an isomorphism for K in D+

QCoh(OX).

Proof. First proof. To prove this map is an isomorphism, we may work locally.
Hence we may assume X , X ′, Z , Z ′ are affine, say corresponding to the rings A, A′, B,
B′. Then B and A′ are tor independent over A. By Lemma 10.1 it suffices to check that

RHomA(B,K)⊗L
A A

′ = RHomA′(B′,K ⊗L
A A

′)
inD(A′) for allK ∈ D+(A). Here we use Derived Categories of Schemes, Lemma 10.8 and
the fact that B, resp. B′ is pseudo-coherent as an A-module, resp. A′-module to compare
derived hom on the level of rings and schemes. The displayed equality follows from More
on Algebra, Lemma 98.3 part (3). See also the discussion in Dualizing Complexes, Section
14.
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Second proof4. Let z′ ∈ Z ′ with image z ∈ Z. First show that (10.0.1) on stalks at z′

induces the map

RHom(OZ,z,Kz)⊗L
OZ,x

OZ′,z′ −→ RHom(OZ′,z′ ,Kz ⊗L
OX,z

OX′,z′)

from Dualizing Complexes, Equation (14.0.1). Namely, the constructions of these maps
are identical. Then apply Dualizing Complexes, Lemma 14.2. �

Lemma 10.3. Let i : Z → X be a pseudo-coherent closed immersion of schemes. Let
M ∈ DQCoh(OX) locally have tor-amplitude in [a,∞). Let K ∈ D+

QCoh(OX). Then
there is a canonical isomorphism

RHom(OZ ,K)⊗L
OZ

Li∗M = RHom(OZ ,K ⊗L
OX

M)
in D(OZ).

Proof. A map from LHS to RHS is the same thing as a map

Ri∗RHom(OZ ,K)⊗L
OX

M −→ K ⊗L
OX

M

by Lemmas 9.2 and 9.3. For this map we take the counit Ri∗RHom(OZ ,K) → K ten-
sored with idM . To see this map is an isomorphism under the hypotheses given, translate
into algebra using Lemma 9.5 and then for example use More on Algebra, Lemma 98.3 part
(3). Instead of using Lemma 9.5 you can look at stalks as in the second proof of Lemma
10.2. �

11. Right adjoint of pushforward for finite morphisms

If i : Z → X is a closed immersion of schemes, then there is a right adjointHom(OZ ,−) to
the functor i∗ : Mod(OZ) → Mod(OX) whose derived extension RHom(OZ ,−) is the
right adjoint to Ri∗ : D(OZ)→ D(OX). See Section 9. In the case of a finite morphism
f : Y → X this strategy cannot work, as the functor f∗ : Mod(OY )→ Mod(OX) is not
exact in general and hence does not have a right adjoint. A replacement is to consider the
exact functor Mod(f∗OY ) → Mod(OX) and consider the corresponding right adjoint
and its derived extension.
Let f : Y → X be an affine morphism of schemes. For a sheaf ofOX -modulesF the sheaf

HomOX
(f∗OY ,F)

is a sheaf of f∗OY -modules. We obtain a functor Mod(OX) → Mod(f∗OY ) which we
will denoteHom(f∗OY ,−).

Lemma 11.1. With notation as above. The functorHom(f∗OY ,−) is a right adjoint
to the restriction functor Mod(f∗OY )→Mod(OX). For an affine open U ⊂ X we have

Γ(U,Hom(f∗OY ,F)) = HomA(B,F(U))
where A = OX(U) and B = OY (f−1(U)).

Proof. Adjointness follows from Modules, Lemma 22.3. As f is affine we see that
f∗OY is the quasi-coherent sheaf corresponding to B viewed as an A-module. Hence the
description of sections over U follows from Schemes, Lemma 7.1. �

The functorHom(f∗OY ,−) is left exact. Let
RHom(f∗OY ,−) : D(OX) −→ D(f∗OY )

be its derived extension.
4This proof shows it suffices to assume K is in D+(OX).



12. RIGHT ADJOINT OF PUSHFORWARD FOR PROPER FLAT MORPHISMS 4003

Lemma 11.2. With notation as above. The functor RHom(f∗OY ,−) is the right
adjoint of the functor D(f∗OY )→ D(OX).

Proof. Follows from Lemma 11.1 and Derived Categories, Lemma 30.3. �

Lemma 11.3. With notation as above. The composition

D(OX) RHom(f∗OY ,−)−−−−−−−−−−−→ D(f∗OY )→ D(OX)
is the functor K 7→ RHomOX

(f∗OY ,K).

Proof. This is immediate from the construction. �

Lemma 11.4. Let f : Y → X be a finite pseudo-coherent morphism of schemes (a fi-
nite morphism of Noetherian schemes is pseudo-coherent). The functorRHom(f∗OY ,−)
maps D+

QCoh(OX) into D+
QCoh(f∗OY ). If X is quasi-compact and quasi-separated, then

the diagram

D+
QCoh(OX)

a
//

RHom(f∗OY ,−) ''

D+
QCoh(OY )

Φww
D+

QCoh(f∗OY )

is commutative, where a is the right adjoint of Lemma 3.1 for f and Φ is the equivalence
of Derived Categories of Schemes, Lemma 5.4.

Proof. (The parenthetical remark follows from More on Morphisms, Lemma 60.9.)
Since f is pseudo-coherent, the OX -module f∗OY is pseudo-coherent, see More on Mor-
phisms, Lemma 60.8. ThusRHom(f∗OY ,−) mapsD+

QCoh(OX) intoD+
QCoh(f∗OY ), see

Derived Categories of Schemes, Lemma 10.8. Then Φ ◦ a and RHom(f∗OY ,−) agree
on D+

QCoh(OX) because these functors are both right adjoint to the restriction functor
D+

QCoh(f∗OY )→ D+
QCoh(OX). To see this use Lemmas 3.5 and 11.2. �

Remark 11.5. If f : Y → X is a finite morphism of Noetherian schemes, then the
diagram

Rf∗a(K)
Trf,K

// K

RHomOX
(f∗OY ,K) // K

is commutative for K ∈ D+
QCoh(OX). This follows from Lemma 11.4. The lower hori-

zontal arrow is induced by the map OX → f∗OY and the upper horizontal arrow is the
trace map discussed in Section 7.

12. Right adjoint of pushforward for proper flat morphisms

For proper, flat, and finitely presented morphisms of quasi-compact and quasi-separated
schemes the right adjoint of pushforward enjoys some remarkable properties.

Lemma 12.1. Let Y be a quasi-compact and quasi-separated scheme. Let f : X → Y
be a morphism of schemes which is proper, flat, and of finite presentation. Let a be the
right adjoint for Rf∗ : DQCoh(OX) → DQCoh(OY ) of Lemma 3.1. Then a commutes
with direct sums.
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Proof. Let P be a perfect object of D(OX). By Derived Categories of Schemes,
Lemma 30.4 the complexRf∗P is perfect onY . LetKi be a family of objects ofDQCoh(OY ).
Then

HomD(OX)(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX)(P, a(Ki))

because a perfect object is compact (Derived Categories of Schemes, Proposition 17.1).
SinceDQCoh(OX) has a perfect generator (Derived Categories of Schemes, Theorem 15.3)
we conclude that the map

⊕
a(Ki)→ a(

⊕
Ki) is an isomorphism, i.e., a commutes with

direct sums. �

Lemma 12.2. Let Y be a quasi-compact and quasi-separated scheme. Let f : X → Y
be a morphism of schemes which is proper, flat, and of finite presentation. Let a be the
right adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma 3.1. Then

(1) for every closed T ⊂ Y if Q ∈ DQCoh(Y ) is supported on T , then a(Q) is
supported on f−1(T ),

(2) for every open V ⊂ Y and any K ∈ DQCoh(OY ) the map (4.1.1) is an isomor-
phism, and

Proof. This follows from Lemmas 4.3, 4.4, and 12.1. �

Lemma 12.3. Let Y be a quasi-compact and quasi-separated scheme. Let f : X → Y
be a morphism of schemes which is proper, flat, and of finite presentation. The map (8.0.1)
is an isomorphism for every object K of DQCoh(OY ).

Proof. By Lemma 12.1 we know that a commutes with direct sums. Hence the col-
lection of objects ofDQCoh(OY ) for which (8.0.1) is an isomorphism is a strictly full, satu-
rated, triangulated subcategory ofDQCoh(OY ) which is moreover preserved under taking
direct sums. SinceDQCoh(OY ) is a module category (Derived Categories of Schemes, The-
orem 18.3) generated by a single perfect object (Derived Categories of Schemes, Theorem
15.3) we can argue as in More on Algebra, Remark 59.11 to see that it suffices to prove
(8.0.1) is an isomorphism for a single perfect object. However, the result holds for perfect
objects, see Lemma 8.1. �

The following lemma shows that the base change map (5.0.1) is an isomorphism for proper,
flat morphisms of finite presentation. We will see in Example 15.2 that this does not re-
main true for perfect proper morphisms; in that case one has to make a tor independence
condition.

Lemma 12.4. Let g : Y ′ → Y be a morphism of quasi-compact and quasi-separated
schemes. Let f : X → Y be a proper, flat morphism of finite presentation. Then the base
change map (5.0.1) is an isomorphism for all K ∈ DQCoh(OY ).

Proof. By Lemma 12.2 formation of the functors a and a′ commutes with restriction
to opens of Y and Y ′. Hence we may assume Y ′ → Y is a morphism of affine schemes, see
Remark 6.1. In this case the statement follows from Lemma 6.2. �

Remark 12.5. Let Y be a quasi-compact and quasi-separated scheme. Let f : X → Y
be a proper, flat morphism of finite presentation. Let a be the adjoint of Lemma 3.1 for
f . In this situation, ω•

X/Y = a(OY ) is sometimes called the relative dualizing complex.
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By Lemma 12.3 there is a functorial isomorphism a(K) = Lf∗K ⊗L
OX

ω•
X/Y for K ∈

DQCoh(OY ). Moreover, the trace map

Trf,OY
: Rf∗ω

•
X/Y → OY

of Section 7 induces the trace map for all K in DQCoh(OY ). More precisely the diagram

Rf∗a(K)
Trf,K

// K

Rf∗(Lf∗K ⊗L
OX

ω•
X/Y ) K ⊗L

OY
Rf∗ω

•
X/Y

idK⊗Trf,OY // K

where the equality on the lower right is Derived Categories of Schemes, Lemma 22.1. If g :
Y ′ → Y is a morphism of quasi-compact and quasi-separated schemes andX ′ = Y ′×Y X ,
then by Lemma 12.4 we have ω•

X′/Y ′ = L(g′)∗ω•
X/Y where g′ : X ′ → X is the projection

and by Lemma 7.1 the trace map

Trf ′,OY ′ : Rf ′
∗ω

•
X′/Y ′ → OY ′

for f ′ : X ′ → Y ′ is the base change of Trf,OY
via the base change isomorphism.

Remark 12.6. Let f : X → Y , ω•
X/Y , and Trf,OY

be as in Remark 12.5. LetK andM
be in DQCoh(OX) with M pseudo-coherent (for example perfect). Suppose given a map
K ⊗L

OX
M → ω•

X/Y which corresponds to an isomorphism K → RHomOX
(M,ω•

X/Y )
via Cohomology, Equation (42.0.1). Then the relative cup product (Cohomology, Remark
28.7)

Rf∗K ⊗L
OY

Rf∗M → Rf∗(K ⊗L
OX

M)→ Rf∗ω
•
X/Y

Trf,OY−−−−→ OY
determines an isomorphism Rf∗K → RHomOY

(Rf∗M,OY ). Namely, since ω•
X/Y =

a(OY ) the canonical map (3.5.1)

Rf∗RHomOX
(M,ω•

X/Y )→ RHomOY
(Rf∗M,OY )

is an isomorphism by Lemma 3.6 and Remark 3.8 and the fact that M and Rf∗M are
pseudo-coherent, see Derived Categories of Schemes, Lemma 30.5. To see that the relative
cup product induces this isomorphism use the commutativity of the diagram in Cohomol-
ogy, Remark 42.12.

Lemma 12.7. Let Y be a quasi-compact and quasi-separated scheme. Let f : X → Y
be a morphism of schemes which is proper, flat, and of finite presentation with relative
dualizing complex ω•

X/Y (Remark 12.5). Then
(1) ω•

X/Y is a Y -perfect object of D(OX),
(2) Rf∗ω

•
X/Y has vanishing cohomology sheaves in positive degrees,

(3) OX → RHomOX
(ω•
X/Y , ω

•
X/Y ) is an isomorphism.

Proof. In view of the fact that formation of ω•
X/Y commutes with base change (see

Remark 12.5), we may and do assume that Y is affine. For a perfect objectE ofD(OX) we
have

Rf∗(E ⊗L
OX

ω•
X/Y ) = Rf∗RHomOX

(E∨, ω•
X/Y )

= RHomOY
(Rf∗E

∨,OY )
= (Rf∗E

∨)∨
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For the first equality, see Cohomology, Lemma 50.5. For the second equality, see Lemma
3.6, Remark 3.8, and Derived Categories of Schemes, Lemma 30.4. The third equality is
the definition of the dual. In particular these references also show that the outcome is a
perfect object of D(OY ). We conclude that ω•

X/Y is Y -perfect by More on Morphisms,
Lemma 69.6. This proves (1).

Let M be an object of DQCoh(OY ). Then

HomY (M,Rf∗ω
•
X/Y ) = HomX(Lf∗M,ω•

X/Y )
= HomY (Rf∗Lf

∗M,OY )
= HomY (M ⊗L

OY
Rf∗OX ,OY )

The first equality holds by Cohomology, Lemma 28.1. The second equality by construction
of a. The third equality by Derived Categories of Schemes, Lemma 22.1. RecallRf∗OX is
perfect of tor amplitude in [0, N ] for some N , see Derived Categories of Schemes, Lemma
30.4. Thus we can represent Rf∗OX by a complex of finite projective modules sitting in
degrees [0, N ] (using More on Algebra, Lemma 74.2 and the fact that Y is affine). Hence
if M = OY [−i] for some i > 0, then the last group is zero. Since Y is affine we conclude
that Hi(Rf∗ω

•
X/Y ) = 0 for i > 0. This proves (2).

Let E be a perfect object of DQCoh(OX). Then we have

HomX(E,RHomOX
(ω•
X/Y , ω

•
X/Y ) = HomX(E ⊗L

OX
ω•
X/Y , ω

•
X/Y )

= HomY (Rf∗(E ⊗L
OX

ω•
X/Y ),OY )

= HomY (Rf∗(RHomOX
(E∨, ω•

X/Y )),OY )
= HomY (RHomOY

(Rf∗E
∨,OY ),OY )

= RΓ(Y,Rf∗E
∨)

= HomX(E,OX)

The first equality holds by Cohomology, Lemma 42.2. The second equality is the defini-
tion of ω•

X/Y . The third equality comes from the construction of the dual perfect com-
plex E∨, see Cohomology, Lemma 50.5. The fourth equality follows from the equality
Rf∗RHomOX

(E∨, ω•
X/Y ) = RHomOY

(Rf∗E
∨,OY ) shown in the first paragraph of

the proof. The fifth equality holds by double duality for perfect complexes (Cohomology,
Lemma 50.5) and the fact thatRf∗E is perfect by Derived Categories of Schemes, Lemma
30.4. The last equality is Leray for f . This string of equalities essentially shows (3) holds
by the Yoneda lemma. Namely, the object RHom(ω•

X/Y , ω
•
X/Y ) is in DQCoh(OX) by

Derived Categories of Schemes, Lemma 10.8. Taking E = OX in the above we get a map
α : OX → RHomOX

(ω•
X/Y , ω

•
X/Y ) corresponding to idOX

∈ HomX(OX ,OX). Since
all the isomorphisms above are functorial in E we see that the cone on α is an object C
of DQCoh(OX) such that Hom(E,C) = 0 for all perfect E. Since the perfect objects
generate (Derived Categories of Schemes, Theorem 15.3) we conclude that α is an isomor-
phism. �

Lemma 12.8 (Rigidity). Let Y be a quasi-compact and quasi-separated scheme. Let
f : X → Y be a proper, flat morphism of finite presentation with relative dualizing
complex ω•

X/Y (Remark 12.5). There is a canonical isomorphism

(12.8.1) OX = c(Lpr∗
1ω

•
X/Y ) = c(Lpr∗

2ω
•
X/Y )
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and a canonical isomorphism

(12.8.2) ω•
X/Y = c

(
Lpr∗

1ω
•
X/Y ⊗

L
OX×Y X

Lpr∗
2ω

•
X/Y

)
where c is the right adjoint of Lemma 3.1 for the diagonal ∆ : X → X ×Y X .

Proof. Let a be the right adjoint to Rf∗ as in Lemma 3.1. Consider the cartesian
square

X ×Y X q
//

p

��

X

f

��
X

f // Y

Let b be the right adjoint for p as in Lemma 3.1. Then

ω•
X/Y = c(b(ω•

X/Y ))

= c(Lp∗ω•
X/Y ⊗

L
OX×Y X

b(OX))

= c(Lp∗ω•
X/Y ⊗

L
OX×Y X

Lq∗a(OY ))

= c(Lp∗ω•
X/Y ⊗

L
OX×Y X

Lq∗ω•
X/Y )

as in (12.8.2). Explanation as follows:
(1) The first equality holds as id = c ◦ b because idX = p ◦∆.
(2) The second equality holds by Lemma 12.3.
(3) The third holds by Lemma 12.4 and the fact thatOX = Lf∗OY .
(4) The fourth holds because ω•

X/Y = a(OY ).

Equation (12.8.1) is proved in exactly the same way. �

Remark 12.9. Lemma 12.8 means our relative dualizing complex is rigid in a sense
analogous to the notion introduced in [?]. Namely, since the functor on the right of (12.8.2)
is “quadratic” in ω•

X/Y and the functor on the left of (12.8.2) is “linear” this “pins down”
the complex ω•

X/Y to some extent. There is an approach to duality theory using “rigid”
(relative) dualizing complexes, see for example [?], [?], and [?]. We will return to this in
Section 28.

13. Right adjoint of pushforward for perfect proper morphisms

The correct generality for this section would be to consider perfect proper morphisms of
quasi-compact and quasi-separated schemes, see [?].

Lemma 13.1. Let f : X → Y be a perfect proper morphism of Noetherian schemes.
Let a be the right adjoint for Rf∗ : DQCoh(OX) → DQCoh(OY ) of Lemma 3.1. Then a
commutes with direct sums.

Proof. Let P be a perfect object of D(OX). By More on Morphisms, Lemma 61.13
the complex Rf∗P is perfect on Y . Let Ki be a family of objects of DQCoh(OY ). Then

HomD(OX)(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX)(P, a(Ki))
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because a perfect object is compact (Derived Categories of Schemes, Proposition 17.1).
SinceDQCoh(OX) has a perfect generator (Derived Categories of Schemes, Theorem 15.3)
we conclude that the map

⊕
a(Ki)→ a(

⊕
Ki) is an isomorphism, i.e., a commutes with

direct sums. �

Lemma 13.2. Let f : X → Y be a perfect proper morphism of Noetherian schemes.
Let a be the right adjoint for Rf∗ : DQCoh(OX)→ DQCoh(OY ) of Lemma 3.1. Then

(1) for every closed T ⊂ Y if Q ∈ DQCoh(Y ) is supported on T , then a(Q) is
supported on f−1(T ),

(2) for every open V ⊂ Y and any K ∈ DQCoh(OY ) the map (4.1.1) is an isomor-
phism, and

Proof. This follows from Lemmas 4.3, 4.4, and 13.1. �

Lemma 13.3. Let f : X → Y be a perfect proper morphism of Noetherian schemes.
The map (8.0.1) is an isomorphism for every object K of DQCoh(OY ).

Proof. By Lemma 13.1 we know that a commutes with direct sums. Hence the col-
lection of objects ofDQCoh(OY ) for which (8.0.1) is an isomorphism is a strictly full, satu-
rated, triangulated subcategory ofDQCoh(OY ) which is moreover preserved under taking
direct sums. SinceDQCoh(OY ) is a module category (Derived Categories of Schemes, The-
orem 18.3) generated by a single perfect object (Derived Categories of Schemes, Theorem
15.3) we can argue as in More on Algebra, Remark 59.11 to see that it suffices to prove
(8.0.1) is an isomorphism for a single perfect object. However, the result holds for perfect
objects, see Lemma 8.1. �

Lemma 13.4. Let f : X → Y be a perfect proper morphism of Noetherian schemes.
Let g : Y ′ → Y be a morphism with Y ′ Noetherian. IfX and Y ′ are tor independent over
Y , then the base change map (5.0.1) is an isomorphism for all K ∈ DQCoh(OY ).

Proof. By Lemma 13.2 formation of the functors a and a′ commutes with restriction
to opens of Y and Y ′. Hence we may assume Y ′ → Y is a morphism of affine schemes, see
Remark 6.1. In this case the statement follows from Lemma 6.2. �

14. Right adjoint of pushforward for effective Cartier divisors

Let X be a scheme and let i : D → X be the inclusion of an effective Cartier divisor. De-
noteN = i∗OX(D) the normal sheaf of i, see Morphisms, Section 31 and Divisors, Section
13. Recall that RHom(OD,−) denotes the right adjoint to i∗ : D(OD) → D(OX) and
has the property i∗RHom(OD,−) = RHomOX

(i∗OD,−), see Section 9.

Lemma 14.1. As above, let X be a scheme and let D ⊂ X be an effective Cartier
divisor. There is a canonical isomorphism RHom(OD,OX) = N [−1] in D(OD).

Proof. Equivalently, we are saying that RHom(OD,OX) has a unique nonzero co-
homology sheaf in degree 1 and that this sheaf is isomorphic to N . Since i∗ is exact and
fully faithful, it suffices to prove that i∗RHom(OD,OX) is isomorphic to i∗N [−1]. We
have i∗RHom(OD,OX) = RHomOX

(i∗OD,OX) by Lemma 9.3. We have a resolution
0→ I → OX → i∗OD → 0

whereI is the ideal sheaf ofDwhich we can use to compute. SinceRHomOX
(OX ,OX) =

OX and RHomOX
(I,OX) = OX(D) by a local computation, we see that
RHomOX

(i∗OD,OX) = (OX → OX(D))
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where on the right hand side we haveOX in degree 0 andOX(D) in degree 1. The result
follows from the short exact sequence

0→ OX → OX(D)→ i∗N → 0
coming from the fact that D is the zero scheme of the canonical section of OX(D) and
from the fact thatN = i∗OX(D). �

For every object K of D(OX) there is a canonical map

(14.1.1) Li∗K ⊗L
OD

RHom(OD,OX) −→ RHom(OD,K)
inD(OD) functorial inK and compatible with distinguished triangles. Namely, this map
is adjoint to a map

i∗(Li∗K ⊗L
OD

RHom(OD,OX)) = K ⊗L
OX

RHomOX
(i∗OD,OX) −→ K

where the equality is Cohomology, Lemma 54.4 and the arrow comes from the canonical
map RHomOX

(i∗OD,OX)→ OX induced byOX → i∗OD.

IfK ∈ DQCoh(OX), then (14.1.1) is equal to (8.0.1) via the identification a(K) = RHom(OD,K)
of Lemma 9.7. If K ∈ DQCoh(OX) and X is Noetherian, then the following lemma is a
special case of Lemma 13.3.

Lemma 14.2. As above, let X be a scheme and let D ⊂ X be an effective Cartier
divisor. Then (14.1.1) combined with Lemma 14.1 defines an isomorphism

Li∗K ⊗L
OD
N [−1] −→ RHom(OD,K)

functorial in K in D(OX).

Proof. Since i∗ is exact and fully faithful on modules, to prove the map is an isomor-
phism, it suffices to show that it is an isomorphism after applying i∗. We will use the short
exact sequences 0 → I → OX → i∗OD → 0 and 0 → OX → OX(D) → i∗N → 0
used in the proof of Lemma 14.1 without further mention. By Cohomology, Lemma 54.4
which was used to define the map (14.1.1) the left hand side becomes

K ⊗L
OX

i∗N [−1] = K ⊗L
OX

(OX → OX(D))
The right hand side becomes

RHomOX
(i∗OD,K) = RHomOX

((I → OX),K)
= RHomOX

((I → OX),OX)⊗L
OX

K

the final equality by Cohomology, Lemma 50.5. Since the map comes from the isomor-
phism

RHomOX
((I → OX),OX) = (OX → OX(D))

the lemma is clear. �

15. Right adjoint of pushforward in examples

In this section we compute the right adjoint to pushforward in some examples. The iso-
morphisms are canonical but only in the weakest possible sense, i.e., we do not prove or
claim that these isomorphisms are compatible with various operations such as base change
and compositions of morphisms. There is a huge literature on these types of issues; the
reader can start with the material in [?], [?] (these citations use a different starting point
for duality but address the issue of constructing canonical representatives for relative dual-
izing complexes) and then continue looking at works by Joseph Lipman and collaborators.
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Lemma 15.1. Let Y be a Noetherian scheme. Let E be a finite locally freeOY -module
of rank n+ 1 with determinant L = ∧n+1(E). Let f : X = P(E)→ Y be the projection.
Let a be the right adjoint for Rf∗ : DQCoh(OX) → DQCoh(OY ) of Lemma 3.1. Then
there is an isomorphism

c : f∗L(−n− 1)[n] −→ a(OY )
In particular, if E = O⊕n+1

Y , then X = Pn
Y and we obtain a(OY ) = OX(−n− 1)[n].

Proof. In (the proof of) Cohomology of Schemes, Lemma 8.4 we constructed a canon-
ical isomorphism

Rnf∗(f∗L(−n− 1)) −→ OY
Moreover, Rf∗(f∗L(−n − 1))[n] = Rnf∗(f∗L(−n − 1)), i.e., the other higher direct
images are zero. Thus we find an isomorphism

Rf∗(f∗L(−n− 1)[n]) −→ OY
This isomorphism determines c as in the statement of the lemma because a is the right
adjoint of Rf∗. By Lemma 4.4 construction of the a is local on the base. In particular,
to check that c is an isomorphism, we may work locally on Y . In other words, we may
assume Y is affine and E = O⊕n+1

Y . In this case the sheaves OX ,OX(−1), . . . ,OX(−n)
generate DQCoh(X), see Derived Categories of Schemes, Lemma 16.3. Hence it suffices to
show that c : OX(−n − 1)[n] → a(OY ) is transformed into an isomorphism under the
functors

Fi,p(−) = HomD(OX)(OX(i), (−)[p])
for i ∈ {−n, . . . , 0} and p ∈ Z. For F0,p this holds by construction of the arrow c! For
i ∈ {−n, . . . ,−1} we have

HomD(OX)(OX(i),OX(−n− 1)[n+ p]) = Hp(X,OX(−n− 1− i)) = 0

by the computation of cohomology of projective space (Cohomology of Schemes, Lemma
8.1) and we have

HomD(OX)(OX(i), a(OY )[p]) = HomD(OY )(Rf∗OX(i),OY [p]) = 0
because Rf∗OX(i) = 0 by the same lemma. Hence the source and the target of Fi,p(c)
vanish and Fi,p(c) is necessarily an isomorphism. This finishes the proof. �

Example 15.2. The base change map (5.0.1) is not an isomorphism if f is perfect
proper and g is perfect. Let k be a field. Let Y = A2

k and let f : X → Y be the blowup of
Y in the origin. Denote E ⊂ X the exceptional divisor. Then we can factor f as

X
i−→ P1

Y
p−→ Y

This gives a factorization a = c ◦ bwhere a, b, and c are the right adjoints of Lemma 3.1 of
Rf∗, Rp∗, andRi∗. DenoteO(n) the Serre twist of the structure sheaf on P1

Y and denote
OX(n) its restriction toX . Note thatX ⊂ P1

Y is cut out by a degree one equation, hence
O(X) = O(1). By Lemma 15.1 we have b(OY ) = O(−2)[1]. By Lemma 9.7 we have

a(OY ) = c(b(OY )) = c(O(−2)[1]) = RHom(OX ,O(−2)[1]) = OX(−1)
Last equality by Lemma 14.2. Let Y ′ = Spec(k) be the origin in Y . The restriction
of a(OY ) to X ′ = E = P1

k is an invertible sheaf of degree −1 placed in cohomological
degree 0. But on the other hand, a′(OSpec(k)) = OE(−2)[1] which is an invertible sheaf of
degree−2 placed in cohomological degree−1, so different. In this example the hypothesis
of Tor indepence in Lemma 6.2 is violated.
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Lemma 15.3. Let Y be a ringed space. Let I ⊂ OY be a sheaf of ideals. Set OX =
OY /I and N = HomOY

(I/I2,OX). There is a canonical isomorphism c : N →
Ext1

OY
(OX ,OX).

Proof. Consider the canonical short exact sequence

(15.3.1) 0→ I/I2 → OY /I2 → OX → 0

Let U ⊂ X be open and let s ∈ N (U). Then we can pushout (15.3.1) via s to get an
extension Es of OX |U by OX |U . This in turn defines a section c(s) of Ext1

OY
(OX ,OX)

over U . See Cohomology, Lemma 42.1 and Derived Categories, Lemma 27.6. Conversely,
given an extension

0→ OX |U → E → OX |U → 0
ofOU -modules, we can find an open coveringU =

⋃
Ui and sections ei ∈ E(Ui) mapping

to 1 ∈ OX(Ui). Then ei defines a map OY |Ui → E|Ui whose kernel contains I2. In this
way we see that E|Ui comes from a pushout as above. This shows that c is surjective. We
omit the proof of injectivity. �

Lemma 15.4. Let Y be a ringed space. Let I ⊂ OY be a sheaf of ideals. Set OX =
OY /I . IfI is Koszul-regular (Divisors, Definition 20.2) then composition onRHomOY

(OX ,OX)
defines isomorphisms

∧i(Ext1
OY

(OX ,OX)) −→ ExtiOY
(OX ,OX)

for all i.

Proof. By composition we mean the map

RHomOY
(OX ,OX)⊗L

OY
RHomOY

(OX ,OX) −→ RHomOY
(OX ,OX)

of Cohomology, Lemma 42.5. This induces multiplication maps

ExtaOY
(OX ,OX)⊗OY

ExtbOY
(OX ,OX) −→ Exta+b

OY
(OX ,OX)

Please compare with More on Algebra, Equation (63.0.1). The statement of the lemma
means that the induced map

Ext1
OY

(OX ,OX)⊗ . . .⊗ Ext1
OY

(OX ,OX) −→ ExtiOY
(OX ,OX)

factors through the wedge product and then induces an isomorphism. To see this is true
we may work locally on Y . Hence we may assume that we have global sections f1, . . . , fr
ofOY which generate I and which form a Koszul regular sequence. Denote

A = OY 〈ξ1, . . . , ξr〉

the sheaf of strictly commutative differential graded OY -algebras which is a (divided
power) polynomial algebra on ξ1, . . . , ξr in degree −1 over OY with differential d given
by the rule dξi = fi. Let us denote A• the underlying complex of OY -modules which
is the Koszul complex mentioned above. Thus the canonical map A• → OX is a quasi-
isomorphism. We obtain quasi-isomorphisms

RHomOY
(OX ,OX)→ Hom•(A•,A•)→ Hom•(A•,OX)

by Cohomology, Lemma 46.9. The differentials of the latter complex are zero, and hence

ExtiOY
(OX ,OX) ∼= HomOY

(A−i,OX)
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For j ∈ {1, . . . , r} let δj : A → A be the derivation of degree 1 with δj(ξi) = δij
(Kronecker delta). A computation shows that δj ◦ d = −d ◦ δj which shows that we get
a morphism of complexes.

δj : A• → A•[1].
Whence δj defines a section of the corresponding Ext-sheaf. Another computation shows
that δ1, . . . , δr map to a basis for HomOY

(A−1,OX) over OX . Since it is clear that δj ◦
δj = 0 and δj ◦ δj′ = −δj′ ◦ δj as endomorphisms of A and hence in the Ext-sheaves we
obtain the statement that our map above factors through the exterior power. To see we
get the desired isomorphism the reader checks that the elements

δj1 ◦ . . . ◦ δji
for j1 < . . . < ji map to a basis of the sheafHomOY

(A−i,OX) overOX . �

Lemma 15.5. Let Y be a ringed space. Let I ⊂ OY be a sheaf of ideals. Set OX =
OY /I and N = HomOY

(I/I2,OX). If I is Koszul-regular (Divisors, Definition 20.2)
then

RHomOY
(OX ,OY ) = ∧rN [r]

where r : Y → {1, 2, 3, . . .} sends y to the minimal number of generators of I needed in
a neighbourhood of y.

Proof. We can use Lemmas 15.3 and 15.4 to see that we have isomorphisms ∧iN →
ExtiOY

(OX ,OX) for i ≥ 0. Thus it suffices to show that the map OY → OX induces an
isomorphism

ExtrOY
(OX ,OY ) −→ ExtrOY

(OX ,OX)

and that ExtiOY
(OX ,OY ) is zero for i 6= r. These statements are local on Y . Thus we may

assume that we have global sections f1, . . . , fr of OY which generate I and which form
a Koszul regular sequence. Let A• be the Koszul complex on f1, . . . , fr as introduced in
the proof of Lemma 15.4. Then

RHomOY
(OX ,OY ) = Hom•(A•,OY )

by Cohomology, Lemma 46.9. Denote 1 ∈ H0(Hom•(A•,OY )) the identity map of
A0 = OY → OY . With δj as in the proof of Lemma 15.4 we get an isomorphism of
gradedOY -modules

OY 〈δ1, . . . , δr〉 −→ Hom•(A•,OY )
by mapping δj1 . . . δji to 1◦δj1 ◦ . . .◦δji in degree i. Via this isomorphism the differential
on the right hand side induces a differential d on the left hand side. By our sign rules we
have d(1) = −

∑
fjδj . Since δj : A• → A•[1] is a morphism of complexes, it follows

that
d(δj1 . . . δji) = (−

∑
fjδj)δj1 . . . δji

Observe that we have d =
∑
fjδj on the differential graded algebra A. Therefore the

map defined by the rule

1 ◦ δj1 . . . δji 7−→ (δj1 ◦ . . . ◦ δji)(ξ1 . . . ξr)

will define an isomorphism of complexes

Hom•(A•,OY ) −→ A•[−r]
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if r is odd and commuting with differentials up to sign if r is even. In any case these
complexes have isomorphic cohomology, which shows the desired vanishing. The iso-
morphism on cohomology in degree r under the map

Hom•(A•,OY ) −→ Hom•(A•,OX)
also follows in a straightforward manner from this. (We observe that our choice of con-
ventions regarding Koszul complexes does intervene in the definition of the isomorphism
RHomOX

(OX ,OY ) = ∧rN [r].) �

Lemma 15.6. Let Y be a quasi-compact and quasi-separated scheme. Let i : X → Y
be a Koszul-regular closed immersion. Let a be the right adjoint of Ri∗ : DQCoh(OX)→
DQCoh(OY ) of Lemma 3.1. Then there is an isomorphism

∧rN [−r] −→ a(OY )
where N = HomOX

(CX/Y ,OX) is the normal sheaf of i (Morphisms, Section 31) and r
is its rank viewed as a locally constant function on X .

Proof. Recall, from Lemmas 9.7 and 9.3, that a(OY ) is an object of DQCoh(OX)
whose pushforward to Y is RHomOY

(i∗OX ,OY ). Thus the result follows from Lemma
15.5. �

Lemma 15.7. Let S be a Noetherian scheme. Let f : X → S be a smooth proper
morphism of relative dimension d. Let a be the right adjoint of Rf∗ : DQCoh(OX) →
DQCoh(OS) as in Lemma 3.1. Then there is an isomorphism

∧dΩX/S [d] −→ a(OS)
in D(OX).

Proof. Set ω•
X/S = a(OS) as in Remark 12.5. Let c be the right adjoint of Lemma

3.1 for ∆ : X → X ×S X . Because ∆ is the diagonal of a smooth morphism it is a
Koszul-regular immersion, see Divisors, Lemma 22.11. In particular, ∆ is a perfect proper
morphism (More on Morphisms, Lemma 61.7) and we obtain

OX = c(Lpr∗
1ω

•
X/S)

= L∆∗(Lpr∗
1ω

•
X/S)⊗L

OX
c(OX×SX)

= ω•
X/S ⊗

L
OX

c(OX×SX)

= ω•
X/S ⊗

L
OX
∧d(N∆)[−d]

The first equality is (12.8.1) because ω•
X/S = a(OS). The second equality by Lemma 13.3.

The third equality because pr1 ◦∆ = idX . The fourth equality by Lemma 15.6. Observe
that ∧d(N∆) is an invertible OX -module. Hence ∧d(N∆)[−d] is an invertible object of
D(OX) and we conclude that a(OS) = ω•

X/S = ∧d(C∆)[d]. Since the conormal sheaf C∆
of ∆ is ΩX/S by Morphisms, Lemma 32.7 the proof is complete. �

16. Upper shriek functors

In this section, we construct the functors f ! for morphisms between schemes which are
of finite type and separated over a fixed Noetherian base using compactifications. As is
customary in coherent duality, there are a number of diagrams that have to be shown to be
commutative. We suggest the reader, after reading the construction, skips the verification
of the lemmas and continues to the next section where we discuss properties of the upper
shriek functors.
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Situation 16.1. Here S is a Noetherian scheme and FTSS is the category whose
(1) objects are schemes X over S such that the structure morphism X → S is both

separated and of finite type, and
(2) morphisms f : X → Y between objects are morphisms of schemes over S.

In Situation 16.1 given a morphism f : X → Y in FTSS , we will define an exact functor

f ! : D+
QCoh(OY )→ D+

QCoh(OX)

of triangulated categories. Namely, we choose a compactification X → X over Y which
is possible by More on Flatness, Theorem 33.8 and Lemma 32.2. Denote f : X → Y the
structure morphism. Let a : DQCoh(OY ) → DQCoh(OX) be the right adjoint of Rf∗
constructed in Lemma 3.1. Then we set

f !K = a(K)|X
for K ∈ D+

QCoh(OY ). The result is an object of D+
QCoh(OX) by Lemma 3.5.

Lemma 16.2. In Situation 16.1 let f : X → Y be a morphism of FTSS . The functor
f ! is, up to canonical isomorphism, independent of the choice of the compactification.

Proof. The category of compactifications ofX overY is defined in More on Flatness,
Section 32. By More on Flatness, Theorem 33.8 and Lemma 32.2 it is nonempty. To every
choice of a compactification

j : X → X, f : X → Y

the construction above associates the functor j∗ ◦a : D+
QCoh(OY )→ D+

QCoh(OX) where
a is the right adjoint of Rf∗ constructed in Lemma 3.1.

Suppose given a morphism g : X1 → X2 between compactifications ji : X → Xi over
Y such that g−1(j2(X)) = j1(X)5. Let c be the right adjoint of Lemma 3.1 for g. Then
c ◦ a2 = a1 because these functors are adjoint toRf2,∗ ◦Rg∗ = R(f2 ◦ g)∗. By (4.1.1) we
have a canonical transformation

j∗
1 ◦ c −→ j∗

2

of functors D+
QCoh(OX2

) → D+
QCoh(OX) which is an isomorphism by Lemma 4.4. The

composition
j∗

1 ◦ a1 −→ j∗
1 ◦ c ◦ a2 −→ j∗

2 ◦ a2

is an isomorphism of functors which we will denote by αg .

Consider two compactifications ji : X → Xi, i = 1, 2 ofX over Y . By More on Flatness,
Lemma 32.1 part (b) we can find a compactification j : X → X with dense image and
morphisms gi : X → Xi of compactifications. By More on Flatness, Lemma 32.1 part (c)
we have g−1

i (ji(X)) = j(X). Hence we get isomorpisms

αgi : j∗ ◦ a −→ j∗
i ◦ ai

by the previous paragraph. We obtain an isomorphism

αg2 ◦ α−1
g1

: j∗
1 ◦ a1 → j∗

2 ◦ a2

To finish the proof we have to show that these isomorphisms are well defined. We claim it
suffices to show the composition of isomorphisms constructed in the previous paragraph
is another (for a precise statement see the next paragraph). We suggest the reader check

5This may fail with our definition of compactification. See More on Flatness, Section 32.
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this is true on a napkin, but we will also completely spell it out in the rest of this para-
graph. Namely, consider a second choice of a compactification j′ : X → X

′ with dense
image and morphisms of compactifications g′

i : X ′ → Xi. By More on Flatness, Lemma
32.1 we can find a compactification j′′ : X → X

′′ with dense image and morphisms of
compactifications h : X ′′ → X and h′ : X ′′ → X

′. We may even assume g1 ◦ h = g′
1 ◦ h′

and g2 ◦ h = g′
2 ◦ h′. The result of the next paragraph gives

αgi ◦ αh = αgi◦h = αg′
i
◦h′ = αg′

i
◦ αh′

for i = 1, 2. Since these are all isomorphisms of functors we conclude that αg2 ◦ α−1
g1

=
αg′

2
◦ α−1

g′
1

as desired.

Suppose given compactifications ji : X → Xi for i = 1, 2, 3. Suppose given morphisms
g : X1 → X2 and h : X2 → X3 of compactifications such that g−1(j2(X)) = j1(X)
and h−1(j2(X)) = j3(X). Let ai be as above. The claim above means that

αg ◦ αh = αg◦h : j∗
1 ◦ a1 → j∗

3 ◦ a3

Let c, resp. d be the right adjoint of Lemma 3.1 for g, resp. h. Then c ◦ a2 = a1 and
d ◦ a3 = a2 and there are canonical transformations

j∗
1 ◦ c −→ j∗

2 and j∗
2 ◦ d −→ j∗

3

of functors D+
QCoh(OX2

) → D+
QCoh(OX) and D+

QCoh(OX3
) → D+

QCoh(OX) for the
same reasons as above. Denote e the right adjoint of Lemma 3.1 for h ◦ g. There is a
canonical transformation

j∗
1 ◦ e −→ j∗

3

of functors D+
QCoh(OX3

) → D+
QCoh(OX) given by (4.1.1). Spelling things out we have

to show that the composition

αh ◦ αg : j∗
1 ◦ a1 → j∗

1 ◦ c ◦ a2 → j∗
2 ◦ a2 → j∗

2 ◦ d ◦ a3 → j∗
3 ◦ a3

is the same as the composition

αh◦g : j∗
1 ◦ a1 → j∗

1 ◦ e ◦ a3 → j∗
3 ◦ a3

We split this into two parts. The first is to show that the diagram

a1 //

��

c ◦ a2

��
e ◦ a3 // c ◦ d ◦ a3

commutes where the lower horizontal arrow comes from the identification e = c◦d. This
is true because the corresponding diagram of total direct image functors

Rf1,∗
//

��

Rg∗ ◦Rf2,∗

��
R(h ◦ g)∗ ◦Rf3,∗

// Rg∗ ◦Rh∗ ◦Rf3,∗

is commutative (insert future reference here). The second part is to show that the compo-
sition

j∗
1 ◦ c ◦ d→ j∗

2 ◦ d→ j∗
3
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is equal to the map
j∗

1 ◦ e→ j∗
3

via the identification e = c ◦ d. This was proven in Lemma 5.1 (note that in the current
case the morphisms f ′, g′ of that lemma are equal to idX ). �

Lemma 16.3. In Situation 16.1 let f : X → Y and g : Y → Z be composable
morphisms of FTSS . Then there is a canonical isomorphism (g ◦ f)! → f ! ◦ g!.

Proof. Choose a compactification i : Y → Y of Y over Z. Choose a compactifica-
tion X → X of X over Y . This uses More on Flatness, Theorem 33.8 and Lemma 32.2
twice. Let a be the right adjoint of Lemma 3.1 for X → Y and let b be the right adjoint of
Lemma 3.1 for Y → Z. Then a ◦ b is the right adjoint of Lemma 3.1 for the composition
X → Z. Hence g! = i∗ ◦ b and (g ◦ f)! = (X → X)∗ ◦ a ◦ b. Let U be the inverse image
of Y in X so that we get the commutative diagram

X
j
//

��

U

��

j′
// X

��
Y

i
//

��

Y

��
Z

Let a′ be the right adjoint of Lemma 3.1 for U → Y . Then f ! = j∗ ◦ a′. We obtain

γ : (j′)∗ ◦ a→ a′ ◦ i∗

by (4.1.1) and we can use it to define

(g ◦ f)! = (j′ ◦ j)∗ ◦ a ◦ b = j∗ ◦ (j′)∗ ◦ a ◦ b→ j∗ ◦ a′ ◦ i∗ ◦ b = f ! ◦ g!

which is an isomorphism on objects ofD+
QCoh(OZ) by Lemma 4.4. To finish the proof we

show that this isomorphism is independent of choices made.

Suppose we have two diagrams

X
j1

//

��

U1

��

j′
1

// X1

~~
Y

i1
//

��

Y 1

~~
Z

and

X
j2

//

��

U2

��

j′
2

// X2

~~
Y

i2
//

��

Y 2

~~
Z

We can first choose a compactification i : Y → Y with dense image of Y over Z which
dominates both Y 1 and Y 2, see More on Flatness, Lemma 32.1. By More on Flatness,
Lemma 32.3 and Categories, Lemmas 27.13 and 27.14 we can choose a compactification
X → X with dense image ofX over Y with morphismsX → X1 andX → X2 and such
that the composition X → Y → Y 1 is equal to the composition X → X1 → Y 1 and
such that the composition X → Y → Y 2 is equal to the composition X → X2 → Y 2.
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Thus we see that it suffices to compare the maps determined by our diagrams when we
have a commutative diagram as follows

X
j1

// U1

��

��

j′
1

// X1

��

��

X
j2 //

��

U2

��

j′
2 // X2

��

Y
i1 // Y 1

��
Y

i2 //

��

Y 2

xx
Z

and moreover the compactifications X → X1 and Y → Y 2 have dense image. We use ai,
a′
i, c, and c′ for the right adjoint of Lemma 3.1 for Xi → Y i, Ui → Y , X1 → X2, and
U1 → U2. Each of the squares

X //

��
A

U1

��
X // U2

U2 //

��
B

X2

��
Y // Y 2

U1 //

��
C

X1

��
Y // Y 1

Y //

��
D

Y 1

��
Y // Y 2

X //

��
E

X1

��
X // X2

is cartesian (see More on Flatness, Lemma 32.1 part (c) for A, D, E and recall that Ui is the
inverse image of Y byXi → Y i for B, C) and hence gives rise to a base change map (4.1.1)
as follows

γA : j∗
1 ◦ c′ → j∗

2 γB : (j′
2)∗ ◦ a2 → a′

2 ◦ i∗2 γC : (j′
1)∗ ◦ a1 → a′

1 ◦ i∗1
γD : i∗1 ◦ d→ i∗2 γE : (j′

1 ◦ j1)∗ ◦ c→ (j′
2 ◦ j2)∗

Denote f !
1 = j∗

1 ◦a′
1, f !

2 = j∗
2 ◦a′

2, g!
1 = i∗1 ◦ b1, g!

2 = i∗2 ◦ b2, (g ◦f)!
1 = (j′

1 ◦ j1)∗ ◦a1 ◦ b1,
and (g ◦ f)!

2 = (j′
2 ◦ j2)∗ ◦ a2 ◦ b2. The construction given in the first paragraph of the

proof and in Lemma 16.2 uses
(1) γC for the map (g ◦ f)!

1 → f !
1 ◦ g!

1,
(2) γB for the map (g ◦ f)!

2 → f !
2 ◦ g!

2,
(3) γA for the map f !

1 → f !
2,

(4) γD for the map g!
1 → g!

2, and
(5) γE for the map (g ◦ f)!

1 → (g ◦ f)!
2.

We have to show that the diagram

(g ◦ f)!
1 γE

//

γC

��

(g ◦ f)!
2

γB

��
f !

1 ◦ g!
1
γA◦γD // f !

2 ◦ g!
2

is commutative. We will use Lemmas 5.1 and 5.2 and with (abuse of) notation as in Remark
5.3 (in particular dropping ? products with identity transformations from the notation).
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We can write γE = γA ◦ γF where

U1 //

��
F

X1

��
U2 // X2

Thus we see that
γB ◦ γE = γB ◦ γA ◦ γF = γA ◦ γB ◦ γF

the last equality because the two squares A and B only intersect in one point (similar to
the last argument in Remark 5.3). Thus it suffices to prove that γD ◦ γC = γB ◦ γF . Since
both of these are equal to the map (4.1.1) for the square

U1 //

��

X1

��
Y // Y 2

we conclude. �

Lemma 16.4. In Situation 16.1 the constructions of Lemmas 16.2 and 16.3 define a
pseudo functor from the category FTSS into the 2-category of categories (see Categories,
Definition 29.5).

Proof. To show this we have to prove given morphisms f : X → Y , g : Y → Z ,
h : Z → T that

(h ◦ g ◦ f)!
γA+B

//

γB+C

��

f ! ◦ (h ◦ g)!

γC

��
(g ◦ f)! ◦ h! γA // f ! ◦ g! ◦ h!

is commutative (for the meaning of the γ’s, see below). To do this we choose a compactifi-
cation Z of Z over T , then a compactification Y of Y over Z , and then a compactification
X of X over Y . This uses More on Flatness, Theorem 33.8 and Lemma 32.2. Let W ⊂ Y
be the inverse image of Z under Y → Z and let U ⊂ V ⊂ X be the inverse images of
Y ⊂W under X → Y . This produces the following diagram

X

f

��

// U //

��
A

V

��

//

B

X

��
Y

g

��

// Y //

��

W //

��
C

Y

��
Z

h

��

// Z

��

// Z

��

// Z

��
T // T // T // T

Without introducing tons of notation but arguing exactly as in the proof of Lemma 16.3
we see that the maps in the first displayed diagram use the maps (4.1.1) for the rectangles
A+B,B+C ,A, andC as indicated. Since by Lemmas 5.1 and 5.2 we have γA+B = γA◦γB
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and γB+C = γC ◦ γB we conclude that the desired equality holds provided γA ◦ γC =
γC ◦ γA. This is true because the two squaresA and C only intersect in one point (similar
to the last argument in Remark 5.3). �

Lemma 16.5. In Situation 16.1 let f : X → Y be a morphism of FTSS . There are
canonical maps

µf,K : Lf∗K ⊗L
OX

f !OY −→ f !K

functorial in K in D+
QCoh(OY ). If g : Y → Z is another morphism of FTSS , then the

diagram

Lf∗(Lg∗K ⊗L
OY

g!OZ)⊗L
OX

f !OY µf
// f !(Lg∗K ⊗L

OY
g!OZ)

f !µg

// f !g!K

Lf∗Lg∗K ⊗L
OX

Lf∗g!OZ ⊗L
OX

f !OY
µf // Lf∗Lg∗K ⊗L

OX
f !g!OZ

µg◦f // f !g!K

commutes for all K ∈ D+
QCoh(OZ).

Proof. If f is proper, then f ! = a and we can use (8.0.1) and if g is also proper, then
Lemma 8.4 proves the commutativity of the diagram (in greater generality).

Let us define the map µf,K . Choose a compactification j : X → X of X over Y . Since f !

is defined as j∗ ◦ a we obtain µf,K as the restriction of the map (8.0.1)

Lf
∗
K ⊗L

O
X
a(OY ) −→ a(K)

to X . To see this is independent of the choice of the compactification we argue as in the
proof of Lemma 16.2. We urge the reader to read the proof of that lemma first.

Assume given a morphism g : X1 → X2 between compactifications ji : X → Xi over
Y such that g−1(j2(X)) = j1(X). Denote c the right adjoint for pushforward of Lemma
3.1 for the morphism g. The maps

Lf
∗
1K ⊗L

O
X
a1(OY ) −→ a1(K) and Lf

∗
2K ⊗L

O
X
a2(OY ) −→ a2(K)

fit into the commutative diagram

Lg∗(Lf∗
2K ⊗L a2(OY ))⊗L c(OX2

)
σ
// c(Lf∗

2K ⊗L a2(OY )) // c(a2(K))

Lf
∗
1K ⊗L Lg∗a2(OY )⊗L c(OX2

) 1⊗τ // Lf
∗
1K ⊗L a1(OY ) // a1(K)

by Lemma 8.4. By Lemma 8.3 the maps σ and τ restrict to an isomorphism over X . In
fact, we can say more. Recall that in the proof of Lemma 16.2 we used the map (4.1.1)
γ : j∗

1 ◦ c→ j∗
2 to construct our isomorphism αg : j∗

1 ◦a1 → j∗
2 ◦a2. Pulling back to map

σ by j1 we obtain the identity map on j∗
2

(
Lf

∗
2K ⊗L a2(OY )

)
if we identify j∗

1c(OX2
)

withOX via j∗
1 ◦c→ j∗

2 , see Lemma 8.2. Similarly, the map τ : Lg∗a2(OY )⊗Lc(OX2
)→

a1(OY ) = c(a2(OY )) pulls back to the identity map on j∗
2a2(OY ). We conclude that
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pulling back by j1 and applying γ wherever we can we obtain a commutative diagram

j∗
2

(
Lf

∗
2K ⊗L a2(OY )

)
//

��

j∗
2a2(K)

j∗
1Lf

∗
1K ⊗L j∗

2a2(OY ) j∗
1 (Lf∗

1K ⊗L a1(OY )) //1⊗αgoo j∗
1a1(K)

αg

gg

The commutativity of this diagram exactly tells us that the map µf,K constructed using
the compactification X1 is the same as the map µf,K constructed using the compacti-
fication X2 via the identification αg used in the proof of Lemma 16.2. Some categorical
arguments exactly as in the proof of Lemma 16.2 now show thatµf,K is well defined (small
detail omitted).
Having said this, the commutativity of the diagram in the statement of our lemma follows
from the construction of the isomorphism (g ◦ f)! → f ! ◦ g! (first part of the proof of
Lemma 16.3 using X → Y → Z) and the result of Lemma 8.4 for X → Y → Z. �

17. Properties of upper shriek functors

Here are some properties of the upper shriek functors.

Lemma 17.1. In Situation 16.1 let Y be an object of FTSS and let j : X → Y be an
open immersion. Then there is a canonical isomorphism j! = j∗ of functors.

For an étale morphism f : X → Y of FTSS we also have f∗ ∼= f !, see Lemma 18.2.

Proof. In this case we may choose X = Y as our compactification. Then the right
adjoint of Lemma 3.1 for id : Y → Y is the identity functor and hence j! = j∗ by
definition. �

Lemma 17.2. In Situation 16.1 let

U
j
//

g

��

X

f

��
V

j′
// Y

be a commutative diagram of FTSS where j and j′ are open immersions. Then j∗ ◦ f ! =
g! ◦ (j′)∗ as functors D+

QCoh(OY )→ D+(OU ).

Proof. Let h = f ◦ j = j′ ◦ g. By Lemma 16.3 we have h! = j! ◦ f ! = g! ◦ (j′)!. By
Lemma 17.1 we have j! = j∗ and (j′)! = (j′)∗. �

Lemma 17.3. In Situation 16.1 let Y be an object of FTSS and let f : X = A1
Y → Y

be the projection. Then there is a (noncanonical) isomorphism f !(−) ∼= Lf∗(−)[1] of
functors.

Proof. Since X = A1
Y ⊂ P1

Y and since OP1
Y

(−2)|X ∼= OX this follows from
Lemmas 15.1 and 13.3. �

Lemma 17.4. In Situation 16.1 let Y be an object of FTSS and let i : X → Y be
a closed immersion. Then there is a canonical isomorphism i!(−) = RHom(OX ,−) of
functors.

Proof. This is a restatement of Lemma 9.7. �
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Remark 17.5 (Local description upper shriek). In Situation 16.1 let f : X → Y
be a morphism of FTSS . Using the lemmas above we can compute f ! locally as follows.
Suppose that we are given affine opens

U
j
//

g

��

X

f

��
V

i // Y

Since j! ◦ f ! = g! ◦ i! (Lemma 16.3) and since j! and i! are given by restriction (Lemma
17.1) we see that

(f !E)|U = g!(E|V )

for any E ∈ D+
QCoh(OX). Write U = Spec(A) and V = Spec(R) and let ϕ : R → A

be the finite type ring map corresponding to g. Choose a presentation A = P/I where
P = R[x1, . . . , xn] is a polynomial algebra in n variables over R. Choose an object K ∈
D+(R) corresponding to E|V (Derived Categories of Schemes, Lemma 3.5). Then we
claim that f !E|U corresponds to

ϕ!(K) = RHom(A,K ⊗L
R P )[n]

where RHom(A,−) : D(P ) → D(A) is the functor of Dualizing Complexes, Section
13 and where ϕ! : D(R) → D(A) is the functor of Dualizing Complexes, Section 24.
Namely, the choice of presentation gives a factorization

U → An
V → An−1

V → . . .→ A1
V → V

Applying Lemma 17.3 exactly n times we see that (An
V → V )!(E|V ) corresponds toK⊗L

R

P [n]. By Lemmas 9.5 and 17.4 the last step corresponds to applying RHom(A,−).

Lemma 17.6. In Situation 16.1 let f : X → Y be a morphism of FTSS . Then f ! maps
D+

Coh(OY ) into D+
Coh(OX).

Proof. The question is local on X hence we may assume that X and Y are affine
schemes. In this case we can factor f : X → Y as

X
i−→ An

Y → An−1
Y → . . .→ A1

Y → Y

where i is a closed immersion. The lemma follows from By Lemmas 17.3 and 9.6 and
Dualizing Complexes, Lemma 15.10 and induction. �

Lemma 17.7. In Situation 16.1 let f : X → Y be a morphism of FTSS . If K is a
dualizing complex for Y , then f !K is a dualizing complex for X .

Proof. The question is local on X hence we may assume that X and Y are affine
schemes. In this case we can factor f : X → Y as

X
i−→ An

Y → An−1
Y → . . .→ A1

Y → Y

where i is a closed immersion. By Lemma 17.3 and Dualizing Complexes, Lemma 15.10
and induction we see that the p!K is a dualizing complex on An

Y where p : An
Y → Y is

the projection. Similarly, by Dualizing Complexes, Lemma 15.9 and Lemmas 9.5 and 17.4
we see that i! transforms dualizing complexes into dualizing complexes. �
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Lemma 17.8. In Situation 16.1 let f : X → Y be a morphism of FTSS . Let K be
a dualizing complex on Y . Set DY (M) = RHomOY

(M,K) for M ∈ DCoh(OY ) and
DX(E) = RHomOX

(E, f !K) for E ∈ DCoh(OX). Then there is a canonical isomor-
phism

f !M −→ DX(Lf∗DY (M))
for M ∈ D+

Coh(OY ).

Proof. Choose compactification j : X ⊂ X of X over Y (More on Flatness, The-
orem 33.8 and Lemma 32.2). Let a be the right adjoint of Lemma 3.1 for X → Y . Set
DX(E) = RHomO

X
(E, a(K)) for E ∈ DCoh(OX). Since formation of RHom com-

mutes with restriction to opens and since f ! = j∗ ◦ a we see that it suffices to prove that
there is a canonical isomorphism

a(M) −→ DX(Lf∗
DY (M))

for M ∈ DCoh(OY ). For F ∈ DQCoh(OX) we have

HomX(F,DX(Lf∗
DY (M))) = HomX(F ⊗L

OX
Lf

∗
DY (M), a(K))

= HomY (Rf∗(F ⊗L
OX

Lf
∗
DY (M)),K)

= HomY (Rf∗(F )⊗L
OY

DY (M),K)
= HomY (Rf∗(F ), DY (DY (M)))
= HomY (Rf∗(F ),M)
= HomX(F, a(M))

The first equality by Cohomology, Lemma 42.2. The second by definition of a. The third
by Derived Categories of Schemes, Lemma 22.1. The fourth equality by Cohomology,
Lemma 42.2 and the definition ofDY . The fifth equality by Lemma 2.5. The final equality
by definition of a. Hence we see that a(M) = DX(Lf∗

DY (M)) by Yoneda’s lemma. �

Lemma 17.9. In Situation 16.1 let f : X → Y be a morphism of FTSS . Assume f is
perfect (e.g., flat). Then

(a) f ! maps Db
Coh(OY ) into Db

Coh(OX),
(b) the map µf,K : Lf∗K⊗L

OX
f !OY → f !K of Lemma 16.5 is an isomorphism for

all K ∈ D+
QCoh(OY ).

Proof. (A flat morphism of finite presentation is perfect, see More on Morphisms,
Lemma 61.5.) We begin with a series of preliminary remarks.

(1) We already know that f ! sends D+
Coh(OY ) into D+

Coh(OX), see Lemma 17.6.
(2) If f is an open immersion, then (a) and (b) are true because we can take X = Y

in the construction of f ! and µf . See also Lemma 17.1.
(3) If f is a perfect proper morphism, then (b) is true by Lemma 13.3.
(4) If there exists an open covering X =

⋃
Ui and (a) is true for Ui → Y , then (a)

is true for X → Y . Same for (b). This holds because the construction of f ! and
µf commutes with passing to open subschemes.

(5) If g : Y → Z is a second perfect morphism in FTSS and (b) holds for f and g,
then f !g!OZ = Lf∗g!OZ⊗L

OX
f !OY and (b) holds for g◦f by the commutative

diagram of Lemma 16.5.
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(6) If (a) and (b) hold for both f and g, then (a) and (b) hold for g ◦ f . Namely,
then f !g!OZ is bounded above (by the previous point) and L(g ◦ f)∗ has finite
cohomological dimension and (a) follows from (b) which we saw above.

From these points we see it suffices to prove the result in case X is affine. Choose an
immersionX → An

Y (Morphisms, Lemma 39.2) which we factor asX → U → An
Y → Y

where X → U is a closed immersion and U ⊂ An
Y is open. Note that X → U is a

perfect closed immersion by More on Morphisms, Lemma 61.8. Thus it suffices to prove
the lemma for a perfect closed immersion and for the projection An

Y → Y .

Let f : X → Y be a perfect closed immersion. We already know (b) holds. Let K ∈
Db

Coh(OY ). Then f !K = RHom(OX ,K) (Lemma 17.4) and f∗f
!K = RHomOY

(f∗OX ,K).
Since f is perfect, the complex f∗OX is perfect and henceRHomOY

(f∗OX ,K) is bounded
above. This proves that (a) holds. Some details omitted.

Let f : An
Y → Y be the projection. Then (a) holds by repeated application of Lemma 17.3.

Finally, (b) is true because it holds for Pn
Y → Y (flat and proper) and because An

Y ⊂ Pn
Y

is an open. �

Lemma 17.10. In Situation 16.1 let f : X → Y be a morphism of FTSS . If f is flat,
then f !OY is a Y -perfect object of D(OX) and OX → RHomOX

(f !OY , f !OY ) is an
isomorphism.

Proof. Both assertions are local on X . Thus we may assume X and Y are affine.
Then Remark 17.5 turns the lemma into an algebra lemma, namely Dualizing Complexes,
Lemma 25.2. (Use Derived Categories of Schemes, Lemma 35.3 to match the languages.)

�

Lemma 17.11. In Situation 16.1 let f : X → Y be a morphism of FTSS . Assume
f : X → Y is a local complete intersection morphism. Then

(1) f !OY is an invertible object of D(OX), and
(2) f ! maps perfect complexes to perfect complexes.

Proof. Recall that a local complete intersection morphism is perfect, see More on
Morphisms, Lemma 62.4. By Lemma 17.9 it suffices to show that f !OY is an invertible
object in D(OX). This question is local on X and Y . Hence we may assume that X → Y
factors as X → An

Y → Y where the first arrow is a Koszul regular immersion. See More
on Morphisms, Section 62. The result holds for An

Y → Y by Lemma 17.3. Thus it suffices
to prove the lemma when f is a Koszul regular immersion. Working locally once again we
reduce to the case X = Spec(A) and Y = Spec(B), where A = B/(f1, . . . , fr) for some
regular sequence f1, . . . , fr ∈ B (use that for Noetherian local rings the notion of Koszul
regular and regular are the same, see More on Algebra, Lemma 30.7). Thus X → Y is a
composition

X = Xr → Xr−1 → . . .→ X1 → X0 = Y

where each arrow is the inclusion of an effective Cartier divisor. In this way we reduce to
the case of an inclusion of an effective Cartier divisor i : D → X . In this case i!OX =
N [1] by Lemma 14.1 and the proof is complete. �
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18. Base change for upper shriek

In Situation 16.1 let
X ′

g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram in FTSS such thatX and Y ′ are Tor independent over Y . Our setup
is currently not sufficient to construct a base change map L(g′)∗ ◦f ! → (f ′)! ◦Lg∗ in this
generality. The reason is that in general it will not be possible to choose a compactification
j : X → X over Y such that X and Y ′ are tor independent over Y and hence our
construction of the base change map in Section 5 does not apply6.

A partial remedy will be found in Section 28. Namely, if the morphism f is flat, then there
is a good notion of a relative dualizing complex and using Lemmas 28.9 28.6, and 17.9 we
may construct a canonical base change isomorphism. If we ever need to use this, we will
add precise statements and proofs later in this chapter.

Lemma 18.1. In Situation 16.1 let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of FTSS with g flat. Then there is an isomorphism L(g′)∗ ◦ f ! →
(f ′)! ◦ Lg∗ on D+

QCoh(OY ).

Proof. Namely, because g is flat, for every choice of compactification j : X → X of
X over Y the scheme X is Tor independent of Y ′. Denote j′ : X ′ → X

′ the base change
of j and g′ : X ′ → X the projection. We define the base change map as the composition

L(g′)∗ ◦ f ! = L(g′)∗ ◦ j∗ ◦ a = (j′)∗ ◦ L(g′)∗ ◦ a −→ (j′)∗ ◦ a′ ◦ Lg∗ = (f ′)! ◦ Lg∗

where the middle arrow is the base change map (5.0.1) and a and a′ are the right adjoints
to pushforward of Lemma 3.1 forX → Y andX ′ → Y ′. This construction is independent
of the choice of compactification (we will formulate a precise lemma and prove it, if we
ever need this result).

To finish the proof it suffices to show that the base change map L(g′)∗ ◦ a → a′ ◦ Lg∗

is an isomorphism on D+
QCoh(OY ). By Lemma 4.4 formation of a and a′ commutes with

restriction to affine opens of Y and Y ′. Thus by Remark 6.1 we may assume that Y and
Y ′ are affine. Thus the result by Lemma 6.2. �

Lemma 18.2. In Situation 16.1 let f : X → Y be an étale morphism of FTSS . Then
f ! ∼= f∗ as functors on D+

QCoh(OY ).

6The reader who is well versed with derived algebraic geometry will realize this is not a “real” problem.
Namely, takingX′ to be the derived fibre product ofX and Y ′ over Y , one can argue exactly as in the proof of
Lemma 18.1 to define this map. After all, the Tor independence ofX and Y ′ guarantees thatX′ will be an open
subscheme of the derived scheme X′.
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Proof. We are going to use that an étale morphism is flat, syntomic, and a local
complete intersection morphism (Morphisms, Lemma 36.10 and 36.12 and More on Mor-
phisms, Lemma 62.8). By Lemma 17.9 it suffices to show f !OY = OX . By Lemma 17.11
we know that f !OY is an invertible module. Consider the commutative diagram

X ×Y X p2
//

p1

��

X

f

��
X

f // Y

and the diagonal ∆ : X → X ×Y X . Since ∆ is an open immersion (by Morphisms,
Lemmas 35.13 and 36.5), by Lemma 17.1 we have ∆! = ∆∗. By Lemma 16.3 we have
∆! ◦ p!

1 ◦ f ! = f !. By Lemma 18.1 applied to the diagram we have p!
1OX = p∗

2f
!OY .

Hence we conclude

f !OY = ∆!p!
1f

!OY = ∆∗(p∗
1f

!OY ⊗ p!
1OX) = ∆∗(p∗

2f
!OY ⊗ p∗

1f
!OY ) = (f !OY )⊗2

where in the second step we have used Lemma 17.9 once more. Thus f !OY = OX as
desired. �

In the rest of this section, we formulate some easy to prove results which would be conse-
quences of a good theory of the base change map.

Lemma 18.3 (Makeshift base change). In Situation 16.1 let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of FTSS . Let E ∈ D+
QCoh(OY ) be an object such that Lg∗E is

in D+(OY ). If f is flat, then L(g′)∗f !E and (f ′)!Lg∗E restrict to isomorphic objects of
D(OU ′) for U ′ ⊂ X ′ affine open mapping into affine opens of Y , Y ′, and X .

Proof. By our assumptions we immediately reduce to the case where X , Y , Y ′, and
X ′ are affine. Say Y = Spec(R), Y ′ = Spec(R′), X = Spec(A), and X ′ = Spec(A′).
Then A′ = A ⊗R R′. Let E correspond to K ∈ D+(R). Denoting ϕ : R → A and
ϕ′ : R′ → A′ the given maps we see from Remark 17.5 that L(g′)∗f !E and (f ′)!Lg∗E
correspond to ϕ!(K)⊗L

AA
′ and (ϕ′)!(K⊗L

RR
′) where ϕ! and (ϕ′)! are the functors from

Dualizing Complexes, Section 24. The result follows from Dualizing Complexes, Lemma
24.6. �

Lemma 18.4. In Situation 16.1 let f : X → Y be a morphism of FTSS . Assume f is
flat. Set ω•

X/Y = f !OY in Db
Coh(X). Let y ∈ Y and h : Xy → X the projection. Then

Lh∗ω•
X/Y is a dualizing complex on Xy .

Proof. The complex ω•
X/Y is in Db

Coh by Lemma 17.9. Being a dualizing complex is
a local property. Hence by Lemma 18.3 it suffices to show that (Xy → y)!Oy is a dualizing
complex on Xy . This follows from Lemma 17.7. �
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19. A duality theory

In this section we spell out what kind of a duality theory our very general results above
give for finite type separated schemes over a fixed Noetherian base scheme.

Recall that a dualizing complex on a Noetherian scheme X , is an object of D(OX) which
affine locally gives a dualizing complex for the corresponding rings, see Definition 2.2.

Given a Noetherian scheme S denote FTSS the category of schemes which are of finite
type and separated over S. Then:

(1) the functors f ! turn D+
QCoh into a pseudo functor on FTSS ,

(2) if f : X → Y is a proper morphism in FTSS , then f ! is the restriction of the
right adjoint of Rf∗ : DQCoh(OX) → DQCoh(OY ) to D+

QCoh(OY ) and there
is a canonical isomorphism

Rf∗RHomOX
(K, f !M)→ RHomOY

(Rf∗K,M)

for all K ∈ D−
Coh(OX) and M ∈ D+

QCoh(OY ),
(3) if an object X of FTSS has a dualizing complex ω•

X , then the functor DX =
RHomOX

(−, ω•
X) defines an involution of DCoh(OX) switching D+

Coh(OX)
and D−

Coh(OX) and fixing Db
Coh(OX),

(4) if f : X → Y is a morphism of FTSS and ω•
Y is a dualizing complex on Y , then

(a) ω•
X = f !ω•

Y is a dualizing complex for X ,
(b) f !M = DX(Lf∗DY (M)) canonically for M ∈ D+

Coh(OY ), and
(c) if in addition f is proper then

Rf∗RHomOX
(K,ω•

X) = RHomOY
(Rf∗K,ω

•
Y )

for K in D−
Coh(OX),

(5) if f : X → Y is a closed immersion in FTSS , then f !(−) = RHom(OX ,−),
(6) if f : Y → X is a finite morphism in FTSS , then f∗f

!(−) = RHomOX
(f∗OY ,−),

(7) if f : X → Y is the inclusion of an effective Cartier divisor into an object of
FTSS , then f !(−) = Lf∗(−)⊗OX

OY (−X)[−1],
(8) if f : X → Y is a Koszul regular immersion of codimension c into an object of

FTSS , then f !(−) ∼= Lf∗(−)⊗OX
∧cN [−c], and

(9) if f : X → Y is a smooth proper morphism of relative dimension d in FTSS ,
then f !(−) ∼= Lf∗(−)⊗OX

ΩdX/Y [d].
This follows from Lemmas 2.5, 3.6, 9.7, 11.4, 14.2, 15.6, 15.7, 16.3, 16.4, 17.4, 17.7, 17.8,
and 17.9 and Example 3.9. We have obtained our functors by a very abstract procedure
which finally rests on invoking an existence theorem (Derived Categories, Proposition
38.2). This means we have, in general, no explicit description of the functors f !. This can
sometimes be a problem. But in fact, it is often enough to know the existence of a dualizing
complex and the duality isomorphism to pin down f !.

20. Glueing dualizing complexes

We will now use glueing of dualizing complexes to get a theory which works for all finite
type schemes over S given a pair (S, ω•

S) as in Situation 20.1. This is similar to [?, Remark
on page 310].

Situation 20.1. Here S is a Noetherian scheme and ω•
S is a dualizing complex.
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In Situation 20.1 let X be a scheme of finite type over S. Let U : X =
⋃
i=1,...,n Ui

be a finite open covering of X by objects of FTSS , see Situation 16.1. All this means is
that the morphisms Ui → S are separated (as they are already of finite type). Every affine
scheme of finite type overS is an object of FTSS by Schemes, Lemma 21.13 hence such open
coverings certainly exist. Then for each i, j, k ∈ {1, . . . , n} the morphisms pi : Ui → S ,
pij : Ui ∩ Uj → S , and pijk : Ui ∩ Uj ∩ Uk → S are separated and each of these schemes
is an object of FTSS . From such an open covering we obtain

(1) ω•
i = p!

iω
•
S a dualizing complex on Ui, see Section 19,

(2) for each i, j a canonical isomorphism ϕij : ω•
i |Ui∩Uj → ω•

j |Ui∩Uj , and
(3) for each i, j, k we have

ϕik|Ui∩Uj∩Uk = ϕjk|Ui∩Uj∩Uk ◦ ϕij |Ui∩Uj∩Uk

in D(OUi∩Uj∩Uk).
Here, in (2) we use that (Ui ∩Uj → Ui)! is given by restriction (Lemma 17.1) and that we
have canonical isomorphisms

(Ui ∩ Uj → Ui)! ◦ p!
i = p!

ij = (Ui ∩ Uj → Uj)! ◦ p!
j

by Lemma 16.3 and to get (3) we use that the upper shriek functors form a pseudo functor
by Lemma 16.4.

In the situation just described a dualizing complex normalized relative toω•
S andU is a pair

(K,αi) whereK ∈ D(OX) and αi : K|Ui → ω•
i are isomorphisms such that ϕij is given

by αj |Ui∩Uj ◦α−1
i |Ui∩Uj . Since being a dualizing complex on a scheme is a local property

we see that dualizing complexes normalized relative to ω•
S and U are indeed dualizing

complexes.

Lemma 20.2. In Situation 20.1 let X be a scheme of finite type over S and let U be a
finite open covering ofX by schemes separated over S. If there exists a dualizing complex
normalized relative to ω•

S and U , then it is unique up to unique isomorphism.

Proof. If (K,αi) and (K ′, α′
i) are two, then we consider L = RHomOX

(K,K ′).
By Lemma 2.6 and its proof, this is an invertible object of D(OX). Using αi and α′

i we
obtain an isomorphism

αti ⊗ α′
i : L|Ui −→ RHomOX

(ω•
i , ω

•
i ) = OUi [0]

This already implies that L = H0(L)[0] in D(OX). Moreover, H0(L) is an invert-
ible sheaf with given trivializations on the opens Ui of X . Finally, the condition that
αj |Ui∩Uj ◦α−1

i |Ui∩Uj and α′
j |Ui∩Uj ◦ (α′

i)−1|Ui∩Uj both give ϕij implies that the transi-
tion maps are 1 and we get an isomorphism H0(L) = OX . �

Lemma 20.3. In Situation 20.1 let X be a scheme of finite type over S and let U ,
V be two finite open coverings of X by schemes separated over S. If there exists a du-
alizing complex normalized relative to ω•

S and U , then there exists a dualizing complex
normalized relative to ω•

S and V and these complexes are canonically isomorphic.

Proof. It suffices to prove this whenU is given by the opensU1, . . . , Un andV by the
opens U1, . . . , Un+m. In fact, we may and do even assume m = 1. To go from a dualizing
complex (K,αi) normalized relative to ω•

S and V to a dualizing complex normalized rela-
tive toω•

S andU is achieved by forgetting aboutαi for i = n+1. Conversely, let (K,αi) be
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a dualizing complex normalized relative to ω•
S and U . To finish the proof we need to con-

struct a map αn+1 : K|Un+1 → ω•
n+1 satisfying the desired conditions. To do this we ob-

serve thatUn+1 =
⋃
Ui∩Un+1 is an open covering. It is clear that (K|Un+1 , αi|Ui∩Un+1)

is a dualizing complex normalized relative to ω•
S and the covering Un+1 =

⋃
Ui ∩Un+1.

On the other hand, by condition (3) the pair (ω•
n+1|Un+1 , ϕn+1i) is another dualizing com-

plex normalized relative to ω•
S and the covering Un+1 =

⋃
Ui ∩ Un+1. By Lemma 20.2

we obtain a unique isomorphism
αn+1 : K|Un+1 −→ ω•

n+1

compatible with the given local isomorphisms. It is a pleasant exercise to show that this
means it satisfies the required property. �

Lemma 20.4. In Situation 20.1 let X be a scheme of finite type over S and let U be
a finite open covering of X by schemes separated over S. Then there exists a dualizing
complex normalized relative to ω•

S and U .

Proof. Say U : X =
⋃
i=1,...,n Ui. We prove the lemma by induction on n. The

base case n = 1 is immediate. Assume n > 1. Set X ′ = U1 ∪ . . . ∪ Un−1 and let
(K ′, {α′

i}i=1,...,n−1) be a dualizing complex normalized relative to ω•
S and U ′ : X ′ =⋃

i=1,...,n−1 Ui. It is clear that (K ′|X′∩Un , α
′
i|Ui∩Un) is a dualizing complex normalized

relative to ω•
S and the covering X ′ ∩ Un =

⋃
i=1,...,n−1 Ui ∩ Un. On the other hand, by

condition (3) the pair (ω•
n|X′∩Un , ϕni) is another dualizing complex normalized relative

to ω•
S and the covering X ′ ∩ Un =

⋃
i=1,...,n−1 Ui ∩ Un. By Lemma 20.2 we obtain a

unique isomorphism
ε : K ′|X′∩Un −→ ω•

i |X′∩Un
compatible with the given local isomorphisms. By Cohomology, Lemma 45.1 we obtain
K ∈ D(OX) together with isomorphisms β : K|X′ → K ′ and γ : K|Un → ω•

n such that
ε = γ|X′∩Un ◦ β|−1

X′∩Un . Then we define

αi = α′
i ◦ β|Ui , i = 1, . . . , n− 1, and αn = γ

We still need to verify that ϕij is given by αj |Ui∩Uj ◦ α−1
i |Ui∩Uj . For i, j ≤ n − 1 this

follows from the corresponding condition for α′
i. For i = j = n it is clear as well. If

i < j = n, then we get

αn|Ui∩Un ◦α−1
i |Ui∩Un = γ|Ui∩Un ◦β−1|Ui∩Un ◦(α′

i)−1|Ui∩Un = ε|Ui∩Un ◦(α′
i)−1|Ui∩Un

This is equal to αin exactly because ε is the unique map compatible with the maps α′
i and

αni. �

Let (S, ω•
S) be as in Situation 20.1. The upshot of the lemmas above is that given any

scheme X of finite type over S , there is a pair (K,αU ) given up to unique isomorphism,
consisting of an object K ∈ D(OX) and isomorphisms αU : K|U → ω•

U for every open
subscheme U ⊂ X which is separated over S. Here ω•

U = (U → S)!ω•
S is a dualizing

complex on U , see Section 19. Moreover, if U : X =
⋃
Ui is a finite open covering

by opens which are separated over S , then (K,αUi) is a dualizing complex normalized
relative to ω•

S and U . Namely, uniqueness up to unique isomorphism by Lemma 20.2,
existence for one open covering by Lemma 20.4, and the fact that K then works for all
open coverings is Lemma 20.3.

Definition 20.5. Let S be a Noetherian scheme and let ω•
S be a dualizing complex

on S. LetX be a scheme of finite type over S. The complexK constructed above is called
the dualizing complex normalized relative to ω•

S and is denoted ω•
X .
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As the terminology suggest, a dualizing complex normalized relative to ω•
S is not just

an object of the derived category of X but comes equipped with the local isomorphisms
described above. This does not conflict with setting ω•

X = p!ω•
S where p : X → S is

the structure morphism if X is separated over S. More generally we have the following
sanity check.

Lemma 20.6. Let (S, ω•
S) be as in Situation 20.1. Let f : X → Y be a morphism of

finite type schemes over S. Let ω•
X and ω•

Y be dualizing complexes normalized relative to
ω•
S . Then ω•

X is a dualizing complex normalized relative to ω•
Y .

Proof. This is just a matter of bookkeeping. Choose a finite affine open covering
V : Y =

⋃
Vj . For each j choose a finite affine open covering f−1(Vj) = Uji. Set

U : X =
⋃
Uji. The schemes Vj and Uji are separated over S , hence we have the upper

shriek functors for qj : Vj → S , pji : Uji → S and fji : Uji → Vj and f ′
ji : Uji → Y . Let

(L, βj) be a dualizing complex normalized relative toω•
S andV . Let (K, γji) be a dualizing

complex normalized relative to ω•
S and U . (In other words, L = ω•

Y and K = ω•
X .) We

can define

αji : K|Uji
γji−−→ p!

jiω
•
S = f !

jiq
!
jω

•
S

f !
jiβ

−1
j−−−−→ f !

ji(L|Vj ) = (f ′
ji)!(L)

To finish the proof we have to show that αji|Uji∩Uj′i′ ◦ α
−1
j′i′ |Uji∩Uj′i′ is the canonical

isomorphism (f ′
ji)!(L)|Uji∩Uj′i′ → (f ′

j′i′)!(L)|Uji∩Uj′i′ . This is formal and we omit the
details. �

Lemma 20.7. Let (S, ω•
S) be as in Situation 20.1. Let j : X → Y be an open immer-

sion of schemes of finite type over S. Let ω•
X and ω•

Y be dualizing complexes normalized
relative to ω•

S . Then there is a canonical isomorphism ω•
X = ω•

Y |X .
Proof. Immediate from the construction of normalized dualizing complexes given

just above Definition 20.5. �

Lemma 20.8. Let (S, ω•
S) be as in Situation 20.1. Let f : X → Y be a proper mor-

phism of schemes of finite type over S. Let ω•
X and ω•

Y be dualizing complexes normalized
relative to ω•

S . Let a be the right adjoint of Lemma 3.1 for f . Then there is a canonical
isomorphism a(ω•

Y ) = ω•
X .

Proof. Let p : X → S and q : Y → S be the structure morphisms. If X and Y are
separated over S , then this follows from the fact that ω•

X = p!ω•
S , ω•

Y = q!ω•
S , f ! = a,

and f ! ◦ q! = p! (Lemma 16.3). In the general case we first use Lemma 20.6 to reduce to the
case Y = S. In this case X and Y are separated over S and we’ve just seen the result. �

Let (S, ω•
S) be as in Situation 20.1. For a scheme X of finite type over S denote ω•

X the
dualizing complex forX normalized relative toω•

S . DefineDX(−) = RHomOX
(−, ω•

X)
as in Lemma 2.5. Let f : X → Y be a morphism of finite type schemes over S. Define

f !
new = DX ◦ Lf∗ ◦DY : D+

Coh(OY )→ D+
Coh(OX)

If f : X → Y and g : Y → Z are composable morphisms between schemes of finite type
over S , define

(g ◦ f)!
new = DX ◦ L(g ◦ f)∗ ◦DZ

= DX ◦ Lf∗ ◦ Lg∗ ◦DZ

→ DX ◦ Lf∗ ◦DY ◦DY ◦ Lg∗ ◦DZ

= f !
new ◦ g!

new
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where the arrow is defined in Lemma 2.5. We collect the results together in the following
lemma.

Lemma 20.9. Let (S, ω•
S) be as in Situation 20.1. With f !

new and ω•
X defined for all

(morphisms of) schemes of finite type over S as above:
(1) the functors f !

new and the arrows (g ◦ f)!
new → f !

new ◦ g!
new turn D+

Coh into
a pseudo functor from the category of schemes of finite type over S into the
2-category of categories,

(2) ω•
X = (X → S)!

newω
•
S ,

(3) the functor DX defines an involution of DCoh(OX) switching D+
Coh(OX) and

D−
Coh(OX) and fixing Db

Coh(OX),
(4) ω•

X = f !
newω

•
Y for f : X → Y a morphism of finite type schemes over S ,

(5) f !
newM = DX(Lf∗DY (M)) for M ∈ D+

Coh(OY ), and
(6) if in addition f is proper, then f !

new is isomorphic to the restriction of the right
adjoint of Rf∗ : DQCoh(OX) → DQCoh(OY ) to D+

Coh(OY ) and there is a
canonical isomorphism

Rf∗RHomOX
(K, f !

newM)→ RHomOY
(Rf∗K,M)

for K ∈ D−
Coh(OX) and M ∈ D+

Coh(OY ), and

Rf∗RHomOX
(K,ω•

X) = RHomOY
(Rf∗K,ω

•
Y )

for K ∈ D−
Coh(OX) and

If X is separated over S , then ω•
X is canonically isomorphic to (X → S)!ω•

S and if f is
a morphism between schemes separated over S , then there is a canonical isomorphism7

f !
newK = f !K for K in D+

Coh.

Proof. Let f : X → Y , g : Y → Z , h : Z → T be morphisms of schemes of finite
type over S. We have to show that

(h ◦ g ◦ f)!
new

//

��

f !
new ◦ (h ◦ g)!

new

��
(g ◦ f)!

new ◦ h!
new

// f !
new ◦ g!

new ◦ h!
new

is commutative. Let ηY : id → D2
Y and ηZ : id → D2

Z be the canonical isomorphisms
of Lemma 2.5. Then, using Categories, Lemma 28.2, a computation (omitted) shows that
both arrows (h ◦ g ◦ f)!

new → f !
new ◦ g!

new ◦ h!
new are given by

1?ηY ?1?ηZ ?1 : DX ◦Lf∗ ◦Lg∗ ◦Lh∗ ◦DT −→ DX ◦Lf∗ ◦D2
Y ◦Lg∗ ◦D2

Z ◦Lh∗ ◦DT

This proves (1). Part (2) is immediate from the definition of (X → S)!
new and the fact

that DS(ω•
S) = OS . Part (3) is Lemma 2.5. Part (4) follows by the same argument as part

(2). Part (5) is the definition of f !
new.

Proof of (6). Let a be the right adjoint of Lemma 3.1 for the proper morphism f : X → Y
of schemes of finite type over S. The issue is that we do not know X or Y is separated
over S (and in general this won’t be true) hence we cannot immediately apply Lemma
17.8 to f over S. To get around this we use the canonical identification ω•

X = a(ω•
Y ) of

7We haven’t checked that these are compatible with the isomorphisms (g◦f)! → f !◦g! and (g◦f)!
new →

f !
new ◦ g!

new . We will do this here if we need this later.



20. GLUEING DUALIZING COMPLEXES 4031

Lemma 20.8. Hence f !
new is the restriction of a to D+

Coh(OY ) by Lemma 17.8 applied to
f : X → Y over the base scheme Y ! The displayed equalities hold by Example 3.9.

The final assertions follow from the construction of normalized dualizing complexes and
the already used Lemma 17.8. �

Remark 20.10. Let S be a Noetherian scheme which has a dualizing complex. Let
f : X → Y be a morphism of schemes of finite type over S. Then the functor

f !
new : D+

Coh(OY )→ D+
Coh(OX)

is independent of the choice of the dualizing complex ω•
S up to canonical isomorphism.

We sketch the proof. Any second dualizing complex is of the form ω•
S ⊗L

OS
L where L is

an invertible object of D(OS), see Lemma 2.6. For any separated morphism p : U → S
of finite type we have p!(ω•

S ⊗L
OS
L) = p!(ω•

S) ⊗L
OU

Lp∗L by Lemma 8.1. Hence, if ω•
X

and ω•
Y are the dualizing complexes normalized relative to ω•

S we see that ω•
X ⊗L

OX
La∗L

and ω•
Y ⊗L

OY
Lb∗L are the dualizing complexes normalized relative to ω•

S ⊗L
OS
L (where

a : X → S and b : Y → S are the structure morphisms). Then the result follows as

RHomOX
(Lf∗RHomOY

(K,ω•
Y ⊗L

OY
Lb∗L), ω•

X ⊗L
OX

La∗L)
= RHomOX

(Lf∗R(HomOY
(K,ω•

Y )⊗L
OY

Lb∗L), ω•
X ⊗L

OX
La∗L)

= RHomOX
(Lf∗RHomOY

(K,ω•
Y )⊗L

OX
La∗L, ω•

X ⊗L
OX

La∗L)
= RHomOX

(Lf∗RHomOY
(K,ω•

Y ), ω•
X)

for K ∈ D+
Coh(OY ). The last equality because La∗L is invertible in D(OX).

Example 20.11. Let S be a Noetherian scheme and let ω•
S be a dualizing complex.

Let f : X → Y be a proper morphism of finite type schemes over S. Let ω•
X and ω•

Y be
dualizing complexes normalized relative to ω•

S . In this situation we have a(ω•
Y ) = ω•

X

(Lemma 20.8) and hence the trace map (Section 7) is a canonical arrow

Trf : Rf∗ω
•
X −→ ω•

Y

which produces the isomorphisms (Lemma 20.9)

HomX(L, ω•
X) = HomY (Rf∗L, ω

•
Y )

and
Rf∗RHomOX

(L, ω•
X) = RHomOY

(Rf∗L, ω
•
Y )

for L in DQCoh(OX).

Remark 20.12. Let S be a Noetherian scheme and let ω•
S be a dualizing complex. Let

f : X → Y be a finite morphism between schemes of finite type over S. Let ω•
X and ω•

Y

be dualizing complexes normalized relative to ω•
S . Then we have

f∗ω
•
X = RHom(f∗OX , ω•

Y )

inD+
QCoh(f∗OX) by Lemmas 11.4 and 20.8 and the trace map of Example 20.11 is the map

Trf : Rf∗ω
•
X = f∗ω

•
X = RHom(f∗OX , ω•

Y ) −→ ω•
Y

which often goes under the name “evaluation at 1”.
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Remark 20.13. Let f : X → Y be a flat proper morphism of finite type schemes
over a pair (S, ω•

S) as in Situation 20.1. The relative dualizing complex (Remark 12.5) is
ω•
X/Y = a(OY ). By Lemma 20.8 we have the first canonical isomorphism in

ω•
X = a(ω•

Y ) = Lf∗ω•
Y ⊗L

OX
ω•
X/Y

in D(OX). The second canonical isomorphism follows from the discussion in Remark
12.5.

21. Dimension functions

We need a bit more information about how the dimension functions change when passing
to a scheme of finite type over another.

Lemma 21.1. Let S be a Noetherian scheme and let ω•
S be a dualizing complex. LetX

be a scheme of finite type over S and let ω•
X be the dualizing complex normalized relative

to ω•
S . If x ∈ X is a closed point lying over a closed point s of S , then ω•

X,x is a normalized
dualizing complex over OX,x provided that ω•

S,s is a normalized dualizing complex over
OS,s.

Proof. We may replaceX by an affine neighbourhood of x, hence we may and do as-
sume that f : X → S is separated. Thenω•

X = f !ω•
S . We have to show thatRHomOX,x

(κ(x), ω•
X,x)

is sitting in degree 0. Let ix : x→ X denote the inclusion morphism which is a closed im-
mersion as x is a closed point. HenceRHomOX,x

(κ(x), ω•
X,x) represents i!xω•

X by Lemma
17.4. Consider the commutative diagram

x
ix
//

π

��

X

f

��
s

is // S

By Morphisms, Lemma 20.3 the extension κ(x)/κ(s) is finite and hence π is a finite mor-
phism. We conclude that

i!xω
•
X = i!xf

!ω•
S = π!i!sω

•
S

Thus if ω•
S,s is a normalized dualizing complex over OS,s, then i!sω•

S = κ(s)[0] by the
same reasoning as above. We have

Rπ∗(π!(κ(s)[0])) = RHomOs
(Rπ∗(κ(x)[0]), κ(s)[0]) = ˜Homκ(s)(κ(x), κ(s))

The first equality by Example 3.9 applied with L = κ(x)[0]. The second equality holds
because π∗ is exact. Thus π!(κ(s)[0]) is supported in degree 0 and we win. �

Lemma 21.2. Let S be a Noetherian scheme and let ω•
S be a dualizing complex. Let

f : X → S be of finite type and let ω•
X be the dualizing complex normalized relative to

ω•
S . For all x ∈ X we have

δX(x)− δS(f(x)) = trdegκ(f(x))(κ(x))

where δS , resp. δX is the dimension function of ω•
S , resp. ω•

X , see Lemma 2.7.

Proof. We may replace X by an affine neighbourhood of x. Hence we may and do
assume there is a compactification X ⊂ X over S. Then we may replace X by X and
assume that X is proper over S. We may also assume X is connected by replacing X by
the connected component of X containing x. Next, recall that both δX and the function
x 7→ δS(f(x))+trdegκ(f(x))(κ(x)) are dimension functions onX , see Morphisms, Lemma
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52.3 (and the fact that S is universally catenary by Lemma 2.7). By Topology, Lemma 20.3
we see that the difference is locally constant, hence constant as X is connected. Thus it
suffices to prove equality in any point of X . By Properties, Lemma 5.9 the scheme X has
a closed point x. Since X → S is proper the image s of x is closed in S. Thus we may
apply Lemma 21.1 to conclude. �

Lemma 21.3. In Situation 16.1 let f : X → Y be a morphism of FTSS . Let x ∈ X
with image y ∈ Y . Then

Hi(f !OY )x 6= 0⇒ − dimx(Xy) ≤ i.

Proof. Since the statement is local onX we may assumeX and Y are affine schemes.
Write X = Spec(A) and Y = Spec(R). Then f !OY corresponds to the relative dualiz-
ing complex ω•

A/R of Dualizing Complexes, Section 25 by Remark 17.5. Thus the lemma
follows from Dualizing Complexes, Lemma 25.7. �

Lemma 21.4. In Situation 16.1 let f : X → Y be a morphism of FTSS . Let x ∈ X
with image y ∈ Y . If f is flat, then

Hi(f !OY )x 6= 0⇒ − dimx(Xy) ≤ i ≤ 0.
In fact, if all fibres of f have dimension≤ d, then f !OY has tor-amplitude in [−d, 0] as an
object of D(X, f−1OY ).

Proof. Arguing exactly as in the proof of Lemma 21.3 this follows from Dualizing
Complexes, Lemma 25.8. �

Lemma 21.5. In Situation 16.1 let f : X → Y be a morphism of FTSS . Let x ∈ X
with image y ∈ Y . Assume

(1) OY,y is Cohen-Macaulay, and
(2) trdegκ(f(ξ))(κ(ξ)) ≤ r for any generic point ξ of an irreducible component of

X containing x.
Then

Hi(f !OY )x 6= 0⇒ −r ≤ i
and the stalk H−r(f !OY )x is (S2) as anOX,x-module.

Proof. After replacing X by an open neighbourhood of x, we may assume every
irreducible component of X passes through x. Then arguing exactly as in the proof of
Lemma 21.3 this follows from Dualizing Complexes, Lemma 25.9. �

Lemma 21.6. In Situation 16.1 let f : X → Y be a morphism of FTSS . If f is flat
and quasi-finite, then

f !OY = ωX/Y [0]
for some coherentOX -module ωX/Y flat over Y .

Proof. Consequence of Lemma 21.4 and the fact that the cohomology sheaves of
f !OY are coherent by Lemma 17.6. �

Lemma 21.7. In Situation 16.1 let f : X → Y be a morphism of FTSS . If f is
Cohen-Macaulay (More on Morphisms, Definition 22.1), then

f !OY = ωX/Y [d]
for some coherentOX -module ωX/Y flat over Y where d is the locally constant function
on X which gives the relative dimension of X over Y .
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Proof. The relative dimension d is well defined and locally constant by Morphisms,
Lemma 29.4. The cohomology sheaves of f !OY are coherent by Lemma 17.6. We will get
flatness of ωX/Y from Lemma 21.4 if we can show the other cohomology sheaves of f !OY
are zero.

The question is local on X , hence we may assume X and Y are affine and the morphism
has relative dimension d. If d = 0, then the result follows directly from Lemma 21.6. If
d > 0, then we may assume there is a factorization

X
g−→ Ad

Y
p−→ Y

with g quasi-finite and flat, see More on Morphisms, Lemma 22.8. Then f ! = g! ◦ p!. By
Lemma 17.3 we see that p!OY ∼= OAd

Y
[−d]. We conclude by the case d = 0. �

Remark 21.8. Let S be a Noetherian scheme endowed with a dualizing complex ω•
S .

In this case Lemmas 21.3, 21.4, 21.6, and 21.7 are true for any morphism f : X → Y of
finite type schemes over S but with f ! replaced by f !

new. This is clear because in each case
the proof reduces immediately to the affine case and then f ! = f !

new by Lemma 20.9.

22. Dualizing modules

This section is a continuation of Dualizing Complexes, Section 19.

Let X be a Noetherian scheme and let ω•
X be a dualizing complex. Let n ∈ Z be the

smallest integer such that Hn(ω•
X) is nonzero. In other words, −n is the maximal value

of the dimension function associated to ω•
X (Lemma 2.7). Sometimes Hn(ω•

X) is called a
dualizing module or dualizing sheaf for X and then it is often denoted by ωX . We will
say “let ωX be a dualizing module” to indicate the above.

Care has to be taken when using dualizing modules ωX on Noetherian schemes X :
(1) the integer n may change when passing from X to an open U of X and then it

won’t be true that ωX |U = ωU ,
(2) the dualizing complex isn’t unique; the dualizing module is only unique up to

tensoring by an invertible module.
The second problem will often be irrelevant because we will work with X of finite type
over a base change S which is endowed with a fixed dualizing complex ω•

S and ω•
X will be

the dualizing complex normalized relative to ω•
S . The first problem will not occur if X is

equidimensional, more precisely, if the dimension function associated to ω•
X (Lemma 2.7)

maps every generic point of X to the same integer.

Example 22.1. Say S = Spec(A) with (A,m, κ) a local Noetherian ring, and ω•
S

corresponds to a normalized dualizing complex ω•
A. Then if f : X → S is proper over S

and ω•
X = f !ω•

S the coherent sheaf

ωX = H− dim(X)(ω•
X)

is a dualizing module and is often called the dualizing module ofX (with S and ω•
S being

understood). We will see that this has good properties.

Example 22.2. SayX is an equidimensional scheme of finite type over a field k. Then
it is customary to take ω•

X the dualizing complex normalized relative to k[0] and to refer
to

ωX = H− dim(X)(ω•
X)
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as the dualizing module of X . If X is separated over k, then ω•
X = f !OSpec(k) where

f : X → Spec(k) is the structure morphism by Lemma 20.9. If X is proper over k, then
this is a special case of Example 22.1.

Lemma 22.3. Let X be a connected Noetherian scheme and let ωX be a dualizing
module on X . The support of ωX is the union of the irreducible components of maxi-
mal dimension with respect to any dimension function and ωX is a coherentOX -module
having property (S2).

Proof. By our conventions discussed above there exists a dualizing complexω•
X such

that ωX is the leftmost nonvanishing cohomology sheaf. Since X is connected, any two
dimension functions differ by a constant (Topology, Lemma 20.3). Hence we may use the
dimension function associated toω•

X (Lemma 2.7). With these remarks in place, the lemma
now follows from Dualizing Complexes, Lemma 17.5 and the definitions (in particular
Cohomology of Schemes, Definition 11.1). �

Lemma 22.4. Let X/A with ω•
X and ωX be as in Example 22.1. Then

(1) Hi(ω•
X) 6= 0⇒ i ∈ {− dim(X), . . . , 0},

(2) the dimension of the support of Hi(ω•
X) is at most −i,

(3) Supp(ωX) is the union of the components of dimension dim(X), and
(4) ωX has property (S2).

Proof. Let δX and δS be the dimension functions associated to ω•
X and ω•

S as in
Lemma 21.2. As X is proper over A, every closed subscheme of X contains a closed point
x which maps to the closed point s ∈ S and δX(x) = δS(s) = 0. Hence δX(ξ) =
dim({ξ}) for any point ξ ∈ X . Hence we can check each of the statements of the lemma by
looking at what happens over Spec(OX,x) in which case the result follows from Dualizing
Complexes, Lemmas 16.5 and 17.5. Some details omitted. The last two statements can also
be deduced from Lemma 22.3. �

Lemma 22.5. Let X/A with dualizing module ωX be as in Example 22.1. Let d =
dim(Xs) be the dimension of the closed fibre. If dim(X) = d+dim(A), then the dualizing
module ωX represents the functor

F 7−→ HomA(Hd(X,F), ωA)
on the category of coherentOX -modules.

Proof. We have

HomX(F , ωX) = Ext− dim(X)
X (F , ω•

X)
= HomX(F [dim(X)], ω•

X)
= HomX(F [dim(X)], f !(ω•

A))
= HomS(Rf∗F [dim(X)], ω•

A)
= HomA(Hd(X,F), ωA)

The first equality because Hi(ω•
X) = 0 for i < −dim(X), see Lemma 22.4 and Derived

Categories, Lemma 27.3. The second equality is follows from the definition of Ext groups.
The third equality is our choice of ω•

X . The fourth equality holds because f ! is the right
adjoint of Lemma 3.1 for f , see Section 19. The final equality holds because Rif∗F is zero
for i > d (Cohomology of Schemes, Lemma 20.9) and Hj(ω•

A) is zero for j < −dim(A).
�
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23. Cohen-Macaulay schemes

This section is the continuation of Dualizing Complexes, Section 20. Duality takes a par-
ticularly simple form for Cohen-Macaulay schemes.

Lemma 23.1. Let X be a locally Noetherian scheme with dualizing complex ω•
X .

(1) X is Cohen-Macaulay⇔ ω•
X locally has a unique nonzero cohomology sheaf,

(2) OX,x is Cohen-Macaulay⇔ ω•
X,x has a unique nonzero cohomology,

(3) U = {x ∈ X | OX,x is Cohen-Macaulay} is open and Cohen-Macaulay.
If X is connected and Cohen-Macaulay, then there is an integer n and a coherent Cohen-
MacaulayOX -module ωX such that ω•

X = ωX [−n].

Proof. By definition and Dualizing Complexes, Lemma 15.6 for every x ∈ X the
complex ω•

X,x is a dualizing complex over OX,x. By Dualizing Complexes, Lemma 20.2
we see that (2) holds.

To see (3) assume that OX,x is Cohen-Macaulay. Let nx be the unique integer such that
Hnx(ω•

X,x) is nonzero. For an affine neighbourhood V ⊂ X of x we have ω•
X |V is in

Db
Coh(OV ) hence there are finitely many nonzero coherent modules Hi(ω•

X)|V . Thus
after shrinking V we may assume only Hnx is nonzero, see Modules, Lemma 9.5. In this
way we see that OX,v is Cohen-Macaulay for every v ∈ V . This proves that U is open as
well as a Cohen-Macaulay scheme.

Proof of (1). The implication⇐ follows from (2). The implication⇒ follows from the
discussion in the previous paragraph, where we showed that if OX,x is Cohen-Macaulay,
then in a neighbourhood of x the complex ω•

X has only one nonzero cohomology sheaf.

Assume X is connected and Cohen-Macaulay. The above shows that the map x 7→ nx is
locally constant. SinceX is connected it is constant, say equal ton. SettingωX = Hn(ω•

X)
we see that the lemma holds because ωX is Cohen-Macaulay by Dualizing Complexes,
Lemma 20.2 (and Cohomology of Schemes, Definition 11.4). �

Lemma 23.2. Let X be a locally Noetherian scheme. If there exists a coherent sheaf
ωX such that ωX [0] is a dualizing complex on X , then X is a Cohen-Macaulay scheme.

Proof. This follows immediately from Dualizing Complexes, Lemma 20.3 and our
definitions. �

Lemma 23.3. In Situation 16.1 let f : X → Y be a morphism of FTSS . Let x ∈ X .
If f is flat, then the following are equivalent

(1) f is Cohen-Macaulay at x,
(2) f !OY has a unique nonzero cohomology sheaf in a neighbourhood of x.

Proof. One direction of the lemma follows from Lemma 21.7. To prove the con-
verse, we may assume f !OY has a unique nonzero cohomology sheaf. Let y = f(x). Let
ξ1, . . . , ξn ∈ Xy be the generic points of the fibre Xy specializing to x. Let d1, . . . , dn
be the dimensions of the corresponding irreducible components of Xy . The morphism
f : X → Y is Cohen-Macaulay at ηi by More on Morphisms, Lemma 22.7. Hence
by Lemma 21.7 we see that d1 = . . . = dn. If d denotes the common value, then d =
dimx(Xy). After shrinking X we may assume all fibres have dimension at most d (Mor-
phisms, Lemma 28.4). Then the only nonzero cohomology sheaf ω = H−d(f !OY ) is flat
over Y by Lemma 21.4. Hence, if h : Xy → X denotes the canonical morphism, then
Lh∗(f !OY ) = Lh∗(ω[d]) = (h∗ω)[d] by Derived Categories of Schemes, Lemma 22.8.
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Thush∗ω[d] is the dualizing complex ofXy by Lemma 18.4. HenceXy is Cohen-Macaulay
by Lemma 23.1. This proves f is Cohen-Macaulay at x as desired. �

Remark 23.4. In Situation 16.1 let f : X → Y be a morphism of FTSS . Assume
f is a Cohen-Macaulay morphism of relative dimension d. Let ωX/Y = H−d(f !OY ) be
the unique nonzero cohomology sheaf of f !OY , see Lemma 21.7. Then there is a canonical
isomorphism

f !K = Lf∗K ⊗L
OX

ωX/Y [d]
for K ∈ D+

QCoh(OY ), see Lemma 17.9. In particular, if S has a dualizing complex ω•
S ,

ω•
Y = (Y → S)!ω•

S , and ω•
X = (X → S)!ω•

S then we have

ω•
X = Lf∗ω•

Y ⊗L
OX

ωX/Y [d]
Thus if further X and Y are connected and Cohen-Macaulay and if ωY and ωX denote
the unique nonzero cohomology sheaves of ω•

Y and ω•
X , then we have

ωX = f∗ωY ⊗OX
ωX/Y .

Similar results hold forX and Y arbitrary finite type schemes over S (i.e., not necessarily
separated over S) with dualizing complexes normalized with respect to ω•

S as in Section
20.

24. Gorenstein schemes

This section is the continuation of Dualizing Complexes, Section 21.

Definition 24.1. Let X be a scheme. We say X is Gorenstein if X is locally Noe-
therian andOX,x is Gorenstein for all x ∈ X .

This definition makes sense because a Noetherian ring is said to be Gorenstein if and only
if all of its local rings are Gorenstein, see Dualizing Complexes, Definition 21.1.

Lemma 24.2. A Gorenstein scheme is Cohen-Macaulay.

Proof. Looking affine locally this follows from the corresponding result in algebra,
namely Dualizing Complexes, Lemma 21.2. �

Lemma 24.3. A regular scheme is Gorenstein.

Proof. Looking affine locally this follows from the corresponding result in algebra,
namely Dualizing Complexes, Lemma 21.3. �

Lemma 24.4. Let X be a locally Noetherian scheme.
(1) If X has a dualizing complex ω•

X , then
(a) X is Gorenstein⇔ ω•

X is an invertible object of D(OX),
(b) OX,x is Gorenstein⇔ ω•

X,x is an invertible object of D(OX,x),
(c) U = {x ∈ X | OX,x is Gorenstein} is an open Gorenstein subscheme.

(2) If X is Gorenstein, then X has a dualizing complex if and only if OX [0] is a
dualizing complex.

Proof. Looking affine locally this follows from the corresponding result in algebra,
namely Dualizing Complexes, Lemma 21.4. �

Lemma 24.5. If f : Y → X is a local complete intersection morphism with X a
Gorenstein scheme, then Y is Gorenstein.
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Proof. By More on Morphisms, Lemma 62.5 it suffices to prove the corresponding
statement about ring maps. This is Dualizing Complexes, Lemma 21.7. �

Lemma 24.6. The property P(S) =“S is Gorenstein” is local in the syntomic topol-
ogy.

Proof. Let {Si → S} be a syntomic covering. The scheme S is locally Noetherian
if and only if each Si is Noetherian, see Descent, Lemma 16.1. Thus we may now assume
S and Si are locally Noetherian. If S is Gorenstein, then each Si is Gorenstein by Lemma
24.5. Conversely, if each Si is Gorenstein, then for each point s ∈ S we can pick i and
t ∈ Si mapping to s. Then OS,s → OSi,t is a flat local ring homomorphism with OSi,t
Gorenstein. HenceOS,s is Gorenstein by Dualizing Complexes, Lemma 21.8. �

25. Gorenstein morphisms

This section is one in a series. The corresponding sections for normal morphisms, regu-
lar morphisms, and Cohen-Macaulay morphisms can be found in More on Morphisms,
Sections 20, 21, and 22.

The following lemma says that it does not make sense to define geometrically Gorenstein
schemes, since these would be the same as Gorenstein schemes.

Lemma 25.1. Let X be a locally Noetherian scheme over the field k. Let k′/k be a
finitely generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying
over x. Then we have

OX,x is Gorenstein⇔ OXk′ ,x′ is Gorenstein

If X is locally of finite type over k, the same holds for any field extension k′/k.

Proof. In both cases the ring map OX,x → OXk′ ,x′ is a faithfully flat local homo-
morphism of Noetherian local rings. Thus if OXk′ ,x′ is Gorenstein, then so is OX,x by
Dualizing Complexes, Lemma 21.8. To go up, we use Dualizing Complexes, Lemma 21.8
as well. Thus we have to show that

OXk′ ,x′/mxOXk′ ,x′ = κ(x)⊗k k′

is Gorenstein. Note that in the first case k → k′ is finitely generated and in the second case
k → κ(x) is finitely generated. Hence this follows as property (A) holds for Gorenstein,
see Dualizing Complexes, Lemma 23.1. �

The lemma above guarantees that the following is the correct definition of Gorenstein
morphisms.

Definition 25.2. Let f : X → Y be a morphism of schemes. Assume that all the
fibres Xy are locally Noetherian schemes.

(1) Let x ∈ X , and y = f(x). We say that f is Gorenstein at x if f is flat at x, and
the local ring of the scheme Xy at x is Gorenstein.

(2) We say f is a Gorenstein morphism if f is Gorenstein at every point of X .

Here is a translation.

Lemma 25.3. Let f : X → Y be a morphism of schemes. Assume all fibres of f are
locally Noetherian. The following are equivalent

(1) f is Gorenstein, and
(2) f is flat and its fibres are Gorenstein schemes.
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Proof. This follows directly from the definitions. �

Lemma 25.4. A Gorenstein morphism is Cohen-Macaulay.

Proof. Follows from Lemma 24.2 and the definitions. �

Lemma 25.5. A syntomic morphism is Gorenstein. Equivalently a flat local complete
intersection morphism is Gorenstein.

Proof. Recall that a syntomic morphism is flat and its fibres are local complete inter-
sections over fields, see Morphisms, Lemma 30.11. Since a local complete intersection over
a field is a Gorenstein scheme by Lemma 24.5 we conclude. The properties “syntomic” and
“flat and local complete intersection morphism” are equivalent by More on Morphisms,
Lemma 62.8. �

Lemma 25.6. Let f : X → Y and g : Y → Z be morphisms. Assume that the fibres
Xy , Yz and Xz of f , g, and g ◦ f are locally Noetherian.

(1) If f is Gorenstein at x and g is Gorenstein at f(x), then g ◦ f is Gorenstein at x.
(2) If f and g are Gorenstein, then g ◦ f is Gorenstein.
(3) If g ◦ f is Gorenstein at x and f is flat at x, then f is Gorenstein at x and g is

Gorenstein at f(x).
(4) If g ◦ f is Gorenstein and f is flat, then f is Gorenstein and g is Gorenstein at

every point in the image of f .

Proof. After translating into algebra this follows from Dualizing Complexes, Lemma
21.8. �

Lemma 25.7. Let f : X → Y be a flat morphism of locally Noetherian schemes. If
X is Gorenstein, then f is Gorenstein andOY,f(x) is Gorenstein for all x ∈ X .

Proof. After translating into algebra this follows from Dualizing Complexes, Lemma
21.8. �

Lemma 25.8. Let f : X → Y be a morphism of schemes. Assume that all the fibresXy

are locally Noetherian schemes. Let Y ′ → Y be locally of finite type. Let f ′ : X ′ → Y ′

be the base change of f . Let x′ ∈ X ′ be a point with image x ∈ X .
(1) If f is Gorenstein at x, then f ′ : X ′ → Y ′ is Gorenstein at x′.
(2) If f is flat at x and f ′ is Gorenstein at x′, then f is Gorenstein at x.
(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Gorenstein at x′, then f is Gorenstein at x.

Proof. Note that the assumption on Y ′ → Y implies that for y′ ∈ Y ′ mapping
to y ∈ Y the field extension κ(y′)/κ(y) is finitely generated. Hence also all the fibres
X ′
y′ = (Xy)κ(y′) are locally Noetherian, see Varieties, Lemma 11.1. Thus the lemma makes

sense. Set y′ = f ′(x′) and y = f(x). Hence we get the following commutative diagram
of local rings

OX′,x′ OX,xoo

OY ′,y′

OO

OY,yoo

OO

where the upper left corner is a localization of the tensor product of the upper right and
lower left corners over the lower right corner.
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Assume f is Gorenstein atx. The flatness ofOY,y → OX,x implies the flatness ofOY ′,y′ →
OX′,x′ , see Algebra, Lemma 100.1. The fact thatOX,x/myOX,x is Gorenstein implies that
OX′,x′/my′OX′,x′ is Gorenstein, see Lemma 25.1. Hence we see that f ′ is Gorenstein at
x′.
Assume f is flat at x and f ′ is Gorenstein at x′. The fact thatOX′,x′/my′OX′,x′ is Goren-
stein implies that OX,x/myOX,x is Gorenstein, see Lemma 25.1. Hence we see that f is
Gorenstein at x.
Assume Y ′ → Y is flat at y′ and f ′ is Gorenstein at x′. The flatness of OY ′,y′ → OX′,x′

and OY,y → OY ′,y′ implies the flatness of OY,y → OX,x, see Algebra, Lemma 100.1. The
fact that OX′,x′/my′OX′,x′ is Gorenstein implies that OX,x/myOX,x is Gorenstein, see
Lemma 25.1. Hence we see that f is Gorenstein at x. �

Lemma 25.9. Let f : X → Y be a morphism of schemes which is flat and locally
of finite type. Then formation of the set {x ∈ X | f is Gorenstein at x} commutes with
arbitrary base change.

Proof. The assumption implies any fibre of f is locally of finite type over a field and
hence locally Noetherian and the same is true for any base change. Thus the statement
makes sense. Looking at fibres we reduce to the following problem: let X be a scheme
locally of finite type over a field k, let K/k be a field extension, and let xK ∈ XK be a
point with image x ∈ X . Problem: show that OXK ,xK is Gorenstein if and only if OX,x
is Gorenstein.
The problem can be solved using a bit of algebra as follows. Choose an affine open Spec(A) ⊂
X containing x. Say x corresponds to p ⊂ A. With AK = A ⊗k K we see that
Spec(AK) ⊂ XK contains xK . Say xK corresponds to pK ⊂ AK . Let ω•

A be a dual-
izing complex for A. By Dualizing Complexes, Lemma 25.3 ω•

A ⊗A AK is a dualizing
complex for AK . Now we are done because Ap → (AK)pK is a flat local homomor-
phism of Noetherian rings and hence (ω•

A)p is an invertible object of D(Ap) if and only
if (ω•

A)p ⊗Ap
(AK)pK is an invertible object of D((AK)pK ). Some details omitted; hint:

look at cohomology modules. �

Lemma 25.10. In Situation 16.1 let f : X → Y be a morphism of FTSS . Let x ∈ X .
If f is flat, then the following are equivalent

(1) f is Gorenstein at x,
(2) f !OY is isomorphic to an invertible object in a neighbourhood of x.

In particular, the set of points where f is Gorenstein is open in X .

Proof. Set ω• = f !OY . By Lemma 18.4 this is a bounded complex with coherent co-
homology sheaves whose derived restrictionLh∗ω• to the fibreXy is a dualizing complex
on Xy . Denote i : x→ Xy the inclusion of a point. Then the following are equivalent

(1) f is Gorenstein at x,
(2) OXy,x is Gorenstein,
(3) Lh∗ω• is invertible in a neighbourhood of x,
(4) Li∗Lh∗ω• has exactly one nonzero cohomology of dimension 1 over κ(x),
(5) L(h ◦ i)∗ω• has exactly one nonzero cohomology of dimension 1 over κ(x),
(6) ω• is invertible in a neighbourhood of x.

The equivalence of (1) and (2) is by definition (as f is flat). The equivalence of (2) and (3)
follows from Lemma 24.4. The equivalence of (3) and (4) follows from More on Algebra,
Lemma 77.1. The equivalence of (4) and (5) holds because Li∗Lh∗ = L(h ◦ i)∗. The
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equivalence of (5) and (6) holds by More on Algebra, Lemma 77.1. Thus the lemma is
clear. �

Lemma 25.11. Let f : X → S be a morphism of schemes which is flat and locally of
finite presentation. Let x ∈ X with image s ∈ S. Set d = dimx(Xs). The following are
equivalent

(1) f is Gorenstein at x,
(2) there exists an open neighbourhood U ⊂ X of x and a locally quasi-finite mor-

phism U → Ad
S over S which is Gorenstein at x,

(3) there exists an open neighbourhoodU ⊂ X ofx and a locally quasi-finite Goren-
stein morphism U → Ad

S over S ,
(4) for any S-morphism g : U → Ad

S of an open neighbourhood U ⊂ X of x we
have: g is quasi-finite at x⇒ g is Gorenstein at x.

In particular, the set of points where f is Gorenstein is open in X .

Proof. Choose affine open U = Spec(A) ⊂ X with x ∈ U and V = Spec(R) ⊂ S
with f(U) ⊂ V . Then R → A is a flat ring map of finite presentation. Let p ⊂ A be
the prime ideal corresponding to x. After replacing A by a principal localization we may
assume there exists a quasi-finite mapR[x1, . . . , xd]→ A, see Algebra, Lemma 125.2. Thus
there exists at least one pair (U, g) consisting of an open neighbourhood U ⊂ X of x and
a locally8 quasi-finite morphism g : U → Ad

S .

Having said this, the lemma translates into the following algebra problem (translation
omitted). GivenR→ Aflat and of finite presentation, a prime p ⊂ A andϕ : R[x1, . . . , xd]→
A quasi-finite at p the following are equivalent

(a) Spec(ϕ) is Gorenstein at p, and
(b) Spec(A)→ Spec(R) is Gorenstein at p.
(c) Spec(A)→ Spec(R) is Gorenstein in an open neighbourhood of p.

In each caseR[x1, . . . , xn]→ A is flat at phence by openness of flatness (Algebra, Theorem
129.4), we may assume R[x1, . . . , xn]→ A is flat (replace A by a suitable principal local-
ization). By Algebra, Lemma 168.1 there exists R0 ⊂ R and R0[x1, . . . , xn] → A0 such
thatR0 is of finite type over Z andR0 → A0 is of finite type andR0[x1, . . . , xn]→ A0 is
flat. Note that the set of points where a flat finite type morphism is Gorenstein commutes
with base change by Lemma 25.8. In this way we reduce to the case whereR is Noetherian.

Thus we may assume X and S affine and that we have a factorization of f of the form

X
g−→ An

S
p−→ S

with g flat and quasi-finite and S Noetherian. Then X and An
S are separated over S and

we have
f !OS = g!p!OS = g!OAn

S
[n]

by know properties of upper shriek functors (Lemmas 16.3 and 17.3). Hence the equiva-
lence of (a), (b), and (c) by Lemma 25.10. �

Lemma 25.12. The property P(f) =“the fibres of f are locally Noetherian and f is
Gorenstein” is local in the fppf topology on the target and local in the syntomic topology
on the source.

8If S is quasi-separated, then g will be quasi-finite.
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Proof. We have P(f) = P1(f)∧P2(f) where P1(f) =“f is flat”, and P2(f) =“the
fibres of f are locally Noetherian and Gorenstein”. We know that P1 is local in the fppf
topology on the source and the target, see Descent, Lemmas 23.15 and 27.1. Thus we have
to deal with P2.

Let f : X → Y be a morphism of schemes. Let {ϕi : Yi → Y }i∈I be an fppf covering of
Y . Denote fi : Xi → Yi the base change of f by ϕi. Let i ∈ I and let yi ∈ Yi be a point.
Set y = ϕi(yi). Note that

Xi,yi = Spec(κ(yi))×Spec(κ(y)) Xy.

and that κ(yi)/κ(y) is a finitely generated field extension. Hence ifXy is locally Noether-
ian, then Xi,yi is locally Noetherian, see Varieties, Lemma 11.1. And if in addition Xy is
Gorenstein, then Xi,yi is Gorenstein, see Lemma 25.1. Thus P2 is fppf local on the target.

Let {Xi → X} be a syntomic covering of X . Let y ∈ Y . In this case {Xi,y → Xy} is a
syntomic covering of the fibre. Hence the locality of P2 for the syntomic topology on the
source follows from Lemma 24.6. �

26. More on dualizing complexes

Some lemmas which don’t fit anywhere else very well.

Lemma 26.1. Let f : X → Y be a morphism of locally Noetherian schemes. Assume
(1) f is syntomic and surjective, or
(2) f is a surjective flat local complete intersection morphism, or
(3) f is a surjective Gorenstein morphism of finite type.

Then K ∈ DQCoh(OY ) is a dualizing complex on Y if and only if Lf∗K is a dualizing
complex on X .

Proof. Taking affine opens and using Derived Categories of Schemes, Lemma 3.5 this
translates into Dualizing Complexes, Lemma 26.2. �

27. Duality for proper schemes over fields

In this section we work out the consequences of the very general material above on dual-
izing complexes and duality for proper schemes over fields.

Lemma 27.1. Let X be a proper scheme over a field k. There exists a dualizing com-
plex ω•

X with the following properties
(1) Hi(ω•

X) is nonzero only for i ∈ [−dim(X), 0],
(2) ωX = H− dim(X)(ω•

X) is a coherent (S2)-module whose support is the irre-
ducible components of dimension dim(X),

(3) the dimension of the support of Hi(ω•
X) is at most −i,

(4) for x ∈ X closed the moduleHi(ω•
X,x)⊕ . . .⊕H0(ω•

X,x) is nonzero if and only
if depth(OX,x) ≤ −i,

(5) for K ∈ DQCoh(OX) there are functorial isomorphisms9

ExtiX(K,ω•
X) = Homk(H−i(X,K), k)

compatible with shifts and distinguished triangles,

9This property characterizes ω•
X inDQCoh(OX) up to unique isomorphism by the Yoneda lemma. Since

ω•
X is in DbCoh(OX) in fact it suffices to consider K ∈ DbCoh(OX).
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(6) there are functorial isomorphisms Hom(F , ωX) = Homk(Hdim(X)(X,F), k)
for F quasi-coherent on X , and

(7) if X → Spec(k) is smooth of relative dimension d, then ω•
X
∼= ∧dΩX/k[d] and

ωX ∼= ∧dΩX/k.

Proof. Denote f : X → Spec(k) the structure morphism. Let a be the right adjoint
of pushforward of this morphism, see Lemma 3.1. Consider the relative dualizing complex

ω•
X = a(OSpec(k))

Compare with Remark 12.5. Since f is proper we have f !(OSpec(k)) = a(OSpec(k)) by
definition, see Section 16. Applying Lemma 17.7 we find that ω•

X is a dualizing complex.
Moreover, we see that ω•

X and ωX are as in Example 22.1 and as in Example 22.2.
Parts (1), (2), and (3) follow from Lemma 22.4.
For a closed point x ∈ X we see that ω•

X,x is a normalized dualizing complex over OX,x,
see Lemma 21.1. Part (4) then follows from Dualizing Complexes, Lemma 20.1.
Part (5) holds by construction asa is the right adjoint toRf∗ : DQCoh(OX)→ D(OSpec(k)) =
D(k) which we can identify withK 7→ RΓ(X,K). We also use that the derived category
D(k) of k-modules is the same as the category of graded k-vector spaces.
Part (6) follows from Lemma 22.5 for coherent F and in general by unwinding (5) for
K = F [0] and i = −dim(X).
Part (7) follows from Lemma 15.7. �

Remark 27.2. Let k, X , and ω•
X be as in Lemma 27.1. The identity on the complex

ω•
X corresponds, via the functorial isomorphism in part (5), to a map

t : H0(X,ω•
X) −→ k

For an arbitrary K in DQCoh(OX) the identification Hom(K,ω•
X) with H0(X,K)∨ in

part (5) corresponds to the pairing

HomX(K,ω•
X)×H0(X,K) −→ k, (α, β) 7−→ t(α(β))

This follows from the functoriality of the isomorphisms in (5). Similarly for any i ∈ Z
we get the pairing

ExtiX(K,ω•
X)×H−i(X,K) −→ k, (α, β) 7−→ t(α(β))

Here we think of α as a morphism K[−i] → ω•
X and β as an element of H0(X,K[−i])

in order to define α(β). Observe that if K is general, then we only know that this pair-
ing is nondegenerate on one side: the pairing induces an isomorphism of HomX(K,ω•

X),
resp. ExtiX(K,ω•

X) with the k-linear dual of H0(X,K), resp. H−i(X,K) but in general
not vice versa. If K is in Db

Coh(OX), then HomX(K,ω•
X), ExtX(K,ω•

X), H0(X,K),
and Hi(X,K) are finite dimensional k-vector spaces (by Derived Categories of Schemes,
Lemmas 11.5 and 11.4) and the pairings are perfect in the usual sense.

Remark 27.3. We continue the discussion in Remark 27.2 and we use the same nota-
tion k, X , ω•

X , and t. If F is a coherentOX -module we obtain perfect pairings

〈−,−〉 : ExtiX(F , ω•
X)×H−i(X,F) −→ k, (α, β) 7−→ t(α(β))

of finite dimensional k-vector spaces. These pairings satisfy the following (obvious) func-
toriality: if ϕ : F → G is a homomorphism of coherentOX -modules, then we have

〈α ◦ ϕ, β〉 = 〈α, ϕ(β)〉
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forα ∈ ExtiX(G, ω•
X) andβ ∈ H−i(X,F). In other words, the k-linear map ExtiX(G, ω•

X)→
ExtiX(F , ω•

X) induced by ϕ is, via the pairings, the k-linear dual of the k-linear map
H−i(X,F) → H−i(X,G) induced by ϕ. Formulated in this manner, this still works
if ϕ is a homomorphism of quasi-coherentOX -modules.

Lemma 27.4. Let k, X , and ω•
X be as in Lemma 27.1. Let t : H0(X,ω•

X)→ k be as in
Remark 27.2. Let E ∈ D(OX) be perfect. Then the pairings

Hi(X,ω•
X ⊗L

OX
E∨)×H−i(X,E) −→ k, (ξ, η) 7−→ t((1ω•

X
⊗ ε)(ξ ∪ η))

are perfect for all i. Here ∪ denotes the cupproduct of Cohomology, Section 31 and ε :
E∨ ⊗L

OX
E → OX is as in Cohomology, Example 50.7.

Proof. By replacing E with E[−i] this reduces to the case i = 0. By Cohomology,
Lemma 51.2 we see that the pairing is the same as the one discussed in Remark 27.2 whence
the result by the discussion in that remark. �

Lemma 27.5. Let X be a proper scheme over a field k which is Cohen-Macaulay
and equidimensional of dimension d. The module ωX of Lemma 27.1 has the following
properties

(1) ωX is a dualizing module on X (Section 22),
(2) ωX is a coherent Cohen-Macaulay module whose support is X ,
(3) there are functorial isomorphisms ExtiX(K,ωX [d]) = Homk(H−i(X,K), k)

compatible with shifts and distinguished triangles for K ∈ DQCoh(X),
(4) there are functorial isomorphisms Extd−i(F , ωX) = Homk(Hi(X,F), k) for
F quasi-coherent on X .

Proof. It is clear from Lemma 27.1 thatωX is a dualizing module (as it is the left most
nonvanishing cohomology sheaf of a dualizing complex). We haveω•

X = ωX [d] andωX is
Cohen-Macaulay as X is Cohen-Macualay, see Lemma 23.1. The other statements follow
from this combined with the corresponding statements of Lemma 27.1. �

Remark 27.6. Let X be a proper Cohen-Macaulay scheme over a field k which is
equidimensional of dimension d. Let ω•

X and ωX be as in Lemma 27.1. By Lemma 27.5 we
have ω•

X = ωX [d]. Let t : Hd(X,ωX) → k be the map of Remark 27.2. Let E be a finite
locally freeOX -module with dual E∨. Then we have perfect pairings

Hi(X,ωX ⊗OX
E∨)×Hd−i(X, E) −→ k, (ξ, η) 7−→ t(1⊗ ε)(ξ ∪ η))

where ∪ is the cup-product and ε : E∨ ⊗OX
E → OX is the evaluation map. This is a

special case of Lemma 27.4.

Here is a sanity check for the dualizing complex.

Lemma 27.7. LetX be a proper scheme over a field k. Let ω•
X and ωX be as in Lemma

27.1.
(1) If X → Spec(k) factors as X → Spec(k′) → Spec(k) for some field k′, then

ω•
X and ωX are as in Lemma 27.1 for the morphism X → Spec(k′).

(2) If K/k is a field extension, then the pullback of ω•
X and ωX to the base change

XK are as in Lemma 27.1 for the morphism XK → Spec(K).

Proof. Denote f : X → Spec(k) the structure morphism and denote f ′ : X →
Spec(k′) the given factorization. In the proof of Lemma 27.1 we took ω•

X = a(OSpec(k))
where a be is the right adjoint of Lemma 3.1 for f . Thus we have to show a(OSpec(k)) ∼=
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a′(OSpec(k)) where a′ be is the right adjoint of Lemma 3.1 for f ′. Since k′ ⊂ H0(X,OX)
we see that k′/k is a finite extension (Cohomology of Schemes, Lemma 19.2). By unique-
ness of adjoints we have a = a′ ◦ b where b is the right adjoint of Lemma 3.1 for g :
Spec(k′) → Spec(k). Another way to say this: we have f ! = (f ′)! ◦ g!. Thus it suffices
to show that Homk(k′, k) ∼= k′ as k′-modules, see Example 3.2. This holds because these
are k′-vector spaces of the same dimension (namely dimension 1).

Proof of (2). This holds because we have base change for a by Lemma 6.2. See discussion
in Remark 12.5. �

28. Relative dualizing complexes

For a proper, flat morphism of finite presentation we have a rigid relative dualizing com-
plex, see Remark 12.5 and Lemma 12.8. For a separated and finite type morphism f :
X → Y of Noetherian schemes, we can consider f !OY . In this section we define relative
dualizing complexes for morphisms which are flat and locally of finite presentation (but
not necessarily quasi-separated or quasi-compact) between schemes (not necessarily locally
Noetherian). We show such complexes exist, are unique up to unique isomorphism, and
agree with the cases mentioned above. Before reading this section, please read Dualizing
Complexes, Section 27.

Definition 28.1. Let X → S be a morphism of schemes which is flat and locally of
finite presentation. Let W ⊂ X ×S X be any open such that the diagonal ∆X/S : X →
X ×S X factors through a closed immersion ∆ : X → W . A relative dualizing complex
is a pair (K, ξ) consisting of an object K ∈ D(OX) and a map

ξ : ∆∗OX −→ Lpr∗
1K|W

in D(OW ) such that
(1) K is S-perfect (Derived Categories of Schemes, Definition 35.1), and
(2) ξ defines an isomorphism of ∆∗OX with RHomOW

(∆∗OX , Lpr∗
1K|W ).

By Lemma 9.3 condition (2) is equivalent to the existence of an isomorphism

OX −→ RHom(OX , Lpr∗
1K|W )

in D(OX) whose pushforward via ∆ is equal to ξ. Since RHom(OX , Lpr∗
1K|W ) is in-

dependent of the choice of the open W , so is the category of pairs (K, ξ). If X → S is
separated, then we can choose W = X ×S X . We will reduce many of the arguments to
the case of rings using the following lemma.

Lemma 28.2. Let X → S be a morphism of schemes which is flat and locally of
finite presentation. Let (K, ξ) be a relative dualizing complex. Then for any commutative
diagram

Spec(A)

��

// X

��
Spec(R) // S

whose horizontal arrows are open immersions, the restriction of K to Spec(A) corre-
sponds via Derived Categories of Schemes, Lemma 3.5 to a relative dualizing complex for
R→ A in the sense of Dualizing Complexes, Definition 27.1.
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Proof. Since formation of RHom commutes with restrictions to opens we may as
well assume X = Spec(A) and S = Spec(R). Observe that relatively perfect objects
of D(OX) are pseudo-coherent and hence are in DQCoh(OX) (Derived Categories of
Schemes, Lemma 10.1). Thus the statement makes sense. Observe that taking ∆∗, Lpr∗

1 ,
and RHom is compatible with what happens on the algebraic side by Derived Categories
of Schemes, Lemmas 3.7, 3.8, 10.8. For the last one we observe that Lpr∗

1K is S-perfect
(hence bounded below) and that ∆∗OX is a pseudo-coherent object ofD(OW ); translated
into algebra this means that A is pseudo-coherent as an A ⊗R A-module which follows
from More on Algebra, Lemma 82.8 applied to R → A ⊗R A → A. Thus we recover
exactly the conditions in Dualizing Complexes, Definition 27.1. �

Lemma 28.3. LetX → S be a morphism of schemes which is flat and locally of finite
presentation. Let (K, ξ) be a relative dualizing complex. Then OX → RHomOX

(K,K)
is an isomorphism.

Proof. Looking affine locally this reduces using Lemma 28.2 to the algebraic case
which is Dualizing Complexes, Lemma 27.5. �

Lemma 28.4. LetX → S be a morphism of schemes which is flat and locally of finite
presentation. If (K, ξ) and (L, η) are two relative dualizing complexes onX/S , then there
is a unique isomorphism K → L sending ξ to η.

Proof. Let U ⊂ X be an affine open mapping into an affine open of S. Then there is
an isomorphismK|U → L|U by Lemma 28.2 and Dualizing Complexes, Lemma 27.2. The
reader can reuse the argument of that lemma in the schemes case to obtain a proof in this
case. We will instead use a glueing argument.

Suppose we have an isomorphism α : K → L. Then α(ξ) = uη for some invertible
section u ∈ H0(W,∆∗OX) = H0(X,OX). (Because both η and α(ξ) are generators of
an invertible ∆∗OX -module by assumption.) Hence after replacingα by u−1αwe see that
α(ξ) = η. Since the automorphism group of K is H0(X,O∗

X) by Lemma 28.3 there is at
most one such α.

Let B be the collection of affine opens of X which map into an affine open of S. For each
U ∈ B we have a unique isomorphism αU : K|U → L|U mapping ξ to η by the discussion
in the previous two paragraphs. Observe that Exti(K|U ,K|U ) = 0 for i < 0 and any
open U of X by Lemma 28.3. By Cohomology, Lemma 45.2 applied to id : X → X we
get a unique morphism α : K → L agreeing with αU for all U ∈ B. Then α sends ξ to η
as this is true locally. �

Lemma 28.5. LetX → S be a morphism of schemes which is flat and locally of finite
presentation. There exists a relative dualizing complex (K, ξ).

Proof. Let B be the collection of affine opens of X which map into an affine open
of S. For each U we have a relative dualizing complex (KU , ξU ) for U over S. Namely,
choose an affine open V ⊂ S such that U → X → S factors through V . Write U =
Spec(A) and V = Spec(R). By Dualizing Complexes, Lemma 27.4 there exists a relative
dualizing complex KA ∈ D(A) for R → A. Arguing backwards through the proof of
Lemma 28.2 this determines an V -perfect object KU ∈ D(OU ) and a map

ξ : ∆∗OU → Lpr∗
1KU

inD(OU×V U ). Since being V -perfect is the same as being S-perfect and since U ×V U =
U ×S U we find that (KU , ξU ) is as desired.
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IfU ′ ⊂ U ⊂ X withU ′, U ∈ B, then we have a unique isomorphism ρUU ′ : KU |U ′ → KU ′

inD(OU ′) sending ξU |U ′×SU ′ to ξU ′ by Lemma 28.4 (note that trivially the restriction of
a relative dualizing complex to an open is a relative dualizing complex). The unique-
ness guarantees that ρUU ′′ = ρVU ′′ ◦ ρUU ′ |U ′′ for U ′′ ⊂ U ′ ⊂ U in B. Observe that
Exti(KU ,KU ) = 0 for i < 0 for U ∈ B by Lemma 28.3 applied to U/S and KU . Thus
the BBD glueing lemma (Cohomology, Theorem 45.8) tells us there is a unique solution,
namely, an object K ∈ D(OX) and isomorphisms ρU : K|U → KU such that we have
ρUU ′ ◦ ρU |U ′ = ρU ′ for all U ′ ⊂ U , U,U ′ ∈ B.

To finish the proof we have to construct the map

ξ : ∆∗OX −→ Lpr∗
1K|W

inD(OW ) inducing an isomorphism from ∆∗OX toRHomOW
(∆∗OX , Lpr∗

1K|W ). Since
we may change W , we choose W =

⋃
U∈B U ×S U . We can use ρU to get isomorphisms

RHomOW
(∆∗OX , Lpr∗

1K|W )|U×SU
ρU−−→ RHomOU×SU

(∆∗OU , Lpr∗
1KU )

As W is covered by the opens U ×S U we conclude that the cohomology sheaves of
RHomOW

(∆∗OX , Lpr∗
1K|W ) are zero except in degree 0. Moreover, we obtain isomor-

phisms

H0 (U ×S U,RHomOW
(∆∗OX , Lpr∗

1K|W )
) ρU−−→ H0

(
(RHomOU×SU

(∆∗OU , Lpr∗
1KU )

)
Let τU in the LHS be an element mapping to ξU under this map. The compatibilities be-
tween ρUU ′ , ξU , ξU ′ , ρU , and ρU ′ forU ′ ⊂ U ⊂ X openU ′, U ∈ B imply that τU |U ′×SU ′ =
τU ′ . Thus we get a global section τ of the 0th cohomology sheafH0(RHomOW

(∆∗OX , Lpr∗
1K|W )).

Since the other cohomology sheaves ofRHomOW
(∆∗OX , Lpr∗

1K|W ) are zero, this global
section τ determines a morphism ξ as desired. Since the restriction of ξ to U ×S U gives
ξU , we see that it satisfies the final condition of Definition 28.1. �

Lemma 28.6. Consider a cartesian square

X ′

f ′

��

g′
// X

f

��
S′ g // S

of schemes. Assume X → S is flat and locally of finite presentation. Let (K, ξ) be a
relative dualizing complex for f . Set K ′ = L(g′)∗K. Let ξ′ be the derived base change of
ξ (see proof). Then (K ′, ξ′) is a relative dualizing complex for f ′.

Proof. Consider the cartesian square

X ′

∆X′/S′

��

// X

∆X/S

��
X ′ ×S′ X ′ g

′×g′
// X ×S X

ChooseW ⊂ X×SX open such that ∆X/S factors through a closed immersion ∆ : X →
W . Choose W ′ ⊂ X ′ ×S′ X ′ open such that ∆X′/S′ factors through a closed immersion
∆′ : X → W ′ and such that (g′ × g′)(W ′) ⊂ W . Let us still denote g′ × g′ : W ′ → W
the induced morphism. We have

L(g′ × g′)∗∆∗OX = ∆′
∗OX′ and L(g′ × g′)∗Lpr∗

1K|W = Lpr∗
1K

′|W ′
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The first equality holds becauseX andX ′×S′X ′ are tor independent overX×SX (see for
example More on Morphisms, Lemma 69.1). The second holds by transitivity of derived
pullback (Cohomology, Lemma 27.2). Thus ξ′ = L(g′ × g′)∗ξ can be viewed as a map

ξ′ : ∆′
∗OX′ −→ Lpr∗

1K
′|W ′

Having said this the proof of the lemma is straightforward. First, K ′ is S′-perfect by
Derived Categories of Schemes, Lemma 35.6. To check that ξ′ induces an isomorphism
of ∆′

∗OX′ to RHomOW ′ (∆′
∗OX′ , Lpr∗

1K
′|W ′) we may work affine locally. By Lemma

28.2 we reduce to the corresponding statement in algebra which is proven in Dualizing
Complexes, Lemma 27.4. �

Lemma 28.7. Let S be a quasi-compact and quasi-separated scheme. Let f : X → S
be a proper, flat morphism of finite presentation. The relative dualizing complex ω•

X/S of
Remark 12.5 together with (12.8.1) is a relative dualizing complex in the sense of Definition
28.1.

Proof. In Lemma 12.7 we proved that ω•
X/S is S-perfect. Let c be the right adjoint

of Lemma 3.1 for the diagonal ∆ : X → X ×S X . Then we can apply ∆∗ to (12.8.1) to
get an isomorphism

∆∗OX → ∆∗(c(Lpr∗
1ω

•
X/S)) = RHomOX×SX

(∆∗OX , Lpr∗
1ω

•
X/S)

The equality holds by Lemmas 9.7 and 9.3. This finishes the proof. �

Remark 28.8. Let X → S be a morphism of schemes which is flat, proper, and of
finite presentation. By Lemma 28.5 there exists a relative dualizing complex (ω•

X/S , ξ)
in the sense of Definition 28.1. Consider any morphism g : S′ → S where S′ is quasi-
compact and quasi-separated (for example an affine open of S). By Lemma 28.6 we see that
(L(g′)∗ω•

X/S , L(g′)∗ξ) is a relative dualizing complex for the base change f ′ : X ′ → S′

in the sense of Definition 28.1. Let ω•
X′/S′ be the relative dualizing complex for X ′ → S′

in the sense of Remark 12.5. Combining Lemmas 28.7 and 28.4 we see that there is a unique
isomorphism

ω•
X′/S′ −→ L(g′)∗ω•

X/S

compatible with (12.8.1) and L(g′)∗ξ. These isomorphisms are compatible with mor-
phisms between quasi-compact and quasi-separated schemes over S and the base change
isomorphisms of Lemma 12.4 (if we ever need this compatibility we will carefully state
and prove it here).

Lemma 28.9. In Situation 16.1 let f : X → Y be a morphism of FTSS . If f is flat,
then f !OY is (the first component of) a relative dualizing complex for X over Y in the
sense of Definition 28.1.

Proof. By Lemma 17.10 we have that f !OY is Y -perfect. As f is separated the diago-
nal ∆ : X → X×Y X is a closed immersion and ∆∗∆!(−) = RHomOX×Y X

(OX ,−), see
Lemmas 9.7 and 9.3. Hence to finish the proof it suffices to show ∆!(Lpr∗

1f
!(OY )) ∼= OX

where pr1 : X ×Y X → X is the first projection. We have

OX = ∆!pr!
1OX = ∆!pr!

1Lpr∗
2OY = ∆!(Lpr∗

1f
!OY )

where pr2 : X ×Y X → X is the second projection and where we have used the base
change isomorphism pr!

1 ◦ Lpr∗
2 = Lpr∗

1 ◦ f
! of Lemma 18.1. �
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Lemma 28.10. Let f : Y → X and X → S be morphisms of schemes which are
flat and of finite presentation. Let (K, ξ) and (M,η) be a relative dualizing complex for
X → S and Y → X . SetE = M⊗L

OY
Lf∗K. Then (E, ζ) is a relative dualizing complex

for Y → S for a suitable ζ .

Proof. Using Lemma 28.2 and the algebraic version of this lemma (Dualizing Com-
plexes, Lemma 27.6) we see that E is affine locally the first component of a relative dual-
izing complex. In particular we see that E is S-perfect since this may be checked affine
locally, see Derived Categories of Schemes, Lemma 35.3.

Let us first prove the existence of ζ in case the morphisms X → S and Y → X are
separated so that ∆X/S , ∆Y/X , and ∆Y/S are closed immersions. Consider the following
diagram

Y Y

f

��
Y

∆Y/X

// Y ×X Y

m

��

δ
//

q

88

Y ×S Y

f×f
��

p

::

X

X
∆X/S // X ×S X

r

;;

where p, q, r are the first projections. By Lemma 9.4 we have

RHomOY×SY
(∆Y/S,∗OY , Lp∗E) = Rδ∗

(
RHomOY×XY

(∆Y/X,∗OY , RHom(OY×XY , Lp
∗E))

)
By Lemma 10.3 we have

RHom(OY×XY , Lp
∗E) = RHom(OY×XY , L(f × f)∗Lr∗K)⊗L

OY×SY
Lq∗M

By Lemma 10.2 we have

RHom(OY×XY , L(f × f)∗Lr∗K) = Lm∗RHom(OX , Lr∗K)
The last expression is isomorphic (via ξ) to Lm∗OX = OY×XY . Hence the expression
preceding is isomorphic to Lq∗M . Hence

RHomOY×SY
(∆Y/S,∗OY , Lp∗E) = Rδ∗

(
RHomOY×XY

(∆Y/X,∗OY , Lq∗M)
)

The material inside the parentheses is isomorphic to ∆Y/X,∗ ∗OX via η. This finishes the
proof in the separated case.

In the general case we choose an open W ⊂ X ×S X such that ∆X/S factors through a
closed immersion ∆ : X → W and we choose an open V ⊂ Y ×X Y such that ∆Y/X

factors through a closed immersion ∆′ : Y → V . Finally, choose an open W ′ ⊂ Y ×S Y
whose intersection with Y ×X Y gives V and which maps into W . Then we consider the
diagram

Y Y

f

��
Y

∆′
// V

m

��

δ
//

q

==

W ′

f×f
��

p

==

X

X
∆ // W

r

==

and we use exactly the same argument as before. �
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29. The fundamental class of an lci morphism

In this section we will use the computations made in Section 15. Thus our result will suffer
from the same kind of non-uniqueness as we have in that section.

Lemma 29.1. Let X be a locally ringed space. Let

E1
α−→ E0 → F → 0

be a short exact sequence ofOX -modules. Assume E1 and E0 are locally free of ranks r1, r0.
Then there is a canonical map

∧r0−r1F −→ ∧r1(E∨
1 )⊗ ∧r0E0

which is an isomorphism on the stalk at x ∈ X if and only if F is locally free of rank
r0 − r1 in an open neighbourhood of x.

Proof. If r1 > r0 then ∧r0−r1F = 0 by convention and the unique map cannot be
an isomorphism. Thus we may assume r = r0 − r1 ≥ 0. Define the map by the formula

s1 ∧ . . . ∧ sr 7→ t∨1 ∧ . . . ∧ t∨r1
⊗ α(t1) ∧ . . . ∧ α(tr1) ∧ s̃1 ∧ . . . ∧ s̃r

where t1, . . . , tr1 is a local basis for E1, correspondingly t∨1 , . . . , t∨r1
is the dual basis for

E∨
1 , and s′

i is a local lift of si to a section of E0. We omit the proof that this is well defined.
If F is locally free of rank r, then it is straightforward to verify that the map is an iso-
morphism. Conversely, assume the map is an isomorphism on stalks at x. Then ∧rFx is
invertible. This implies that Fx is generated by at most r elements. This can only hap-
pen if α has rank r modulo mx, i.e., α has maximal rank modulo mx. This implies that
α has maximal rank in a neighbourhood of x and hence F is locally free of rank r in a
neighbourhood as desired. �

Lemma 29.2. Let Y be a Noetherian scheme. Let f : X → Y be a local complete in-
tersection morphism which factors as an immersionX → P followed by a proper smooth
morphism P → Y . Let r be the locally constant function on X such that ωX/Y =
H−r(f !OY ) is the unique nonzero cohomology sheaf of f !OY , see Lemma 17.11. Then
there is a map

∧rΩX/Y −→ ωX/Y
which is an isomorphism on the stalk at a point x if and only if f is smooth at x.

Proof. The assumption implies that X is compactifiable over Y hence f ! is defined,
see Section 16. Let j : W → P be an open subscheme such that X → P factors through
a closed immersion i : X → W . Moreover, we have f ! = i! ◦ j! ◦ g! where g : P → Y is
the given morphism. We have g!OY = ∧dΩP/Y [d] by Lemma 15.7 where d is the locally
constant function giving the relative dimension of P over Y . We have j! = j∗. We have
i!OW = ∧cN [−c] where c is the codimension of X in W (a locally constant function on
X) and where N is the normal sheaf of the Koszul-regular immersion i, see Lemma 15.6.
Combining the above we find

f !OY =
(
∧cN ⊗OX

∧dΩP/Y |X
)

[d− c]
where we have also used Lemma 17.9. Thus r = d|X − c as locally constant functions on
X . The conormal sheaf of X → P is the module I/I2 where I ⊂ OW is the ideal sheaf
of i, see Morphisms, Section 31. Consider the canonical exact sequence

I/I2 → ΩP/Y |X → ΩX/Y → 0
of Morphisms, Lemma 32.15. We obtain our map by an application of Lemma 29.1.



30. EXTENSION BY ZERO FOR COHERENT MODULES 4051

If f is smooth at x, then the map is an isomorphism by an application of Lemma 29.1
and the fact that ΩX/Y is locally free at x of rank r. Conversely, assume that our map is
an isomorphism on stalks at x. Then the lemma shows that ΩX/Y is free of rank r after
replacingX by an open neighbourhood of x. On the other hand, we may also assume that
X = Spec(A) and Y = Spec(R) where A = R[x1, . . . , xn]/(f1, . . . , fm) and where
f1, . . . , fm is a Koszul regular sequence (this follows from the definition of local complete
intersection morphisms). Clearly this implies r = n −m. We conclude that the rank of
the matrix of partials ∂fj/∂xi in the residue field at x is m. Thus after reordering the
variables we may assume the determinant of (∂fj/∂xi)1≤i,j≤m is invertible in an open
neighbourhood of x. It follows that R → A is smooth at this point, see for example
Algebra, Example 137.8. �

Lemma 29.3. Let f : X → Y be a morphism of schemes. Let r ≥ 0. Assume
(1) Y is Cohen-Macaulay (Properties, Definition 8.1),
(2) f factors as X → P → Y where the first morphism is an immersion and the

second is smooth and proper,
(3) if x ∈ X and dim(OX,x) ≤ 1, then f is Koszul at x (More on Morphisms,

Definition 62.2), and
(4) if ξ is a generic point of an irreducible component ofX , then we have trdegκ(f(ξ))κ(ξ) =

r.
Then with ωX/Y = H−r(f !OY ) there is a map

∧rΩX/Y −→ ωX/Y

which is an isomorphism on the locus where f is smooth.

Proof. Let U ⊂ X be the open subscheme over which f is a local complete intersec-
tion morphism. Since f has relative dimension r at all generic points by assumption (4)
we see that the locally constant function of Lemma 29.2 is constant with value r and we
obtain a map

∧rΩX/Y |U = ∧rΩU/Y −→ ωU/Y = ωX/Y |U
which is an isomorphism in the smooth points of f (this locus is contained in U because
a smooth morphism is a local complete intersection morphism). By Lemma 21.5 and the
assumption that Y is Cohen-Macaulay the module ωX/Y is (S2). Since U contains all
the points of codimension 1 by condition (3) and using Divisors, Lemma 5.11 we see that
j∗ωU/Y = ωX/Y . Hence the map over U extends to X and the proof is complete. �

30. Extension by zero for coherent modules

The material in this section and the next few can be found in the appendix by Deligne of
[?].
In this section j : U → X will be an open immersion of Noetherian schemes. We are
going to consider inverse systems (Kn) in Db

Coh(OX) constructed as follows. Let F• be
a bounded complex of coherent OX -modules. Let I ⊂ OX be a quasi-coherent sheaf of
ideals with V (I) = X \ U . Then we can set

Kn = InF•

More precisely, Kn is the object of Db
Coh(OX) represented by the complex whose term in

degree q is the coherent submodule InFq of Fq . Observe that the maps . . . → K3 →
K2 → K1 induce isomorphisms on restriction to U . Let us call such a system a Deligne
system.
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Lemma 30.1. Let j : U → X be an open immersion of Noetherian schemes. Let (Kn)
be a Deligne system and denoteK ∈ Db

Coh(OU ) the value of the constant system (Kn|U ).
Let L be an object of Db

Coh(OX). Then colim HomX(Kn, L) = HomU (K,L|U ).

Proof. Let L → M → N → L[1] be a distinguished triangle in Db
Coh(OX). Then

we obtain a commutative diagram

. . . // colim HomX(Kn, L) //

��

colim HomX(Kn,M) //

��

colim HomX(Kn, N) //

��

. . .

. . . // HomU (K,L|U ) // HomU (K,M |U ) // HomU (K,N |U ) // . . .

whose rows are exact by Derived Categories, Lemma 4.2 and Algebra, Lemma 8.8. Hence
if the statement of the lemma holds for N [−1], L, N , and L[1] then it holds for M by
the 5-lemma. Thus, using the distinguished triangles for the canonical truncations of L
(see Derived Categories, Remark 12.4) we reduce to the case that L has only one nonzero
cohomology sheaf.

Choose a bounded complex F• of coherent OX -modules and a quasi-coherent ideal I ⊂
OX cutting out X \ U such that Kn is represented by InF•. Using “stupid” truncations
we obtain compatible termwise split short exact sequences of complexes

0→ σ≥a+1InF• → InF• → σ≤aInF• → 0

which in turn correspond to compatible systems of distinguished triangles in Db
Coh(OX).

Arguing as above we reduce to the case whereF• has only one nonzero term. This reduces
us to the case discussed in the next paragraph.

Given a coherent OX -module F and a coherent OX -module G we have to show that the
canonical map

colim ExtiX(InF ,G) −→ ExtiU (F|U ,G|U )

is an isomorphism for all i ≥ 0. For i = 0 this is Cohomology of Schemes, Lemma 10.5.
Assume i > 0.

Injectivity. Let ξ ∈ ExtiX(InF ,G) be an element whose restriction to U is zero. We have
to show there exists an m ≥ n such that the restriction of ξ to ImF = Im−nInF is
zero. After replacing F by InF we may assume n = 0, i.e., we have ξ ∈ ExtiX(F ,G)
whose restriction to U is zero. By Derived Categories of Schemes, Proposition 11.2 we
have Db

Coh(OX) = Db(Coh(OX)). Hence we can compute the Ext group in the abelian
category of coherent OX -modules. This implies there exists an surjection α : F ′′ → F
such that ξ ◦ α = 0 (this is where we use that i > 0). Set F ′ = Ker(α) so that we have a
short exact sequence

0→ F ′ → F ′′ → F → 0

It follows that ξ is the image of an element ξ′ ∈ Exti−1
X (F ′,G) whose restriction to U

is in the image of Exti−1
U (F ′′|U ,G|U ) → Exti−1

U (F ′|U ,G|U ). By Artin-Rees the inverse
systems (InF ′) and (InF ′′∩F ′) are pro-isomorphic, see Cohomology of Schemes, Lemma
10.3. Since we have the compatible system of short exact sequences

0→ F ′ ∩ InF ′′ → InF ′′ → InF → 0
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we obtain a commutativew diagram

colim Exti−1
X (InF ′′,G) //

��

colim Exti−1
X (F ′ ∩ InF ′′,G) //

��

colim ExtiX(InF ,G)

��
Exti−1

U (F ′′|U ,G|U ) // Exti−1
U (F ′|U ,G|U ) // Exti−1

U (F|U ,G|U )

with exact rows. By induction on i and the comment on inverse systems above we find
that the left two vertical arrows are isomorphisms. Now ξ gives an element in the top
right group which is the image of ξ′ in the middle top group, which in turn maps to an
element of the bottom middle group coming from some element in the left bottom group.
We conclude that ξ maps to zero in ExtiX(InF ,G) for some n as desired.

Surjectivity. Let ξ ∈ ExtiU (F|U ,G|U ). Arguing as above using that i > 0 we can find an
surjectionH → F|U of coherentOU -modules such that ξ maps to zero in ExtiU (H,G|U ).
Then we can find a map ϕ : F ′′ → F of coherent OX -modules whose restriction to U
is H → F|U , see Properties, Lemma 22.4. Observe that the lemma doesn’t guarantee ϕ
is surjective but this won’t matter (it is possible to pick a surjective ϕ with a little bit of
additional work). Denote F ′ = Ker(ϕ). The short exact sequence

0→ F ′|U → F ′′|U → F|U → 0

shows that ξ is the image of ξ′ in Exti−1
U (F ′|U ,G|U ). By induction on i we can find an

n such that ξ′ is the image of some ξ′
n in Exti−1

X (InF ′,G). By Artin-Rees we can find an
m ≥ n such that F ′ ∩ ImF ′′ ⊂ InF ′. Using the short exact sequence

0→ F ′ ∩ ImF ′′ → ImF ′′ → Im Im(ϕ)→ 0

the image of ξ′
n in Exti−1

X (F ′ ∩ ImF ′′,G) maps by the boundary map to an element
ξm of ExtiX(Im Im(ϕ),G) which maps to ξ. Since Im(ϕ) and F agree over U we see
that F/Im Im(ϕ) is supported on X \ U . Hence there exists an l ≥ m such that IlF ⊂
Im Im(ϕ), see Cohomology of Schemes, Lemma 10.2. Taking the image of ξm in ExtiX(IlF ,G)
we win. �

Lemma 30.2. The result of Lemma 30.1 holds even for L ∈ D+
Coh(OX).

Proof. Namely, if (Kn) is a Deligne system then there exists a b ∈ Z such that
Hi(Kn) = 0 for i > b. Then Hom(Kn, L) = Hom(Kn, τ≤bL) and Hom(K,L) =
Hom(K, τ≤bL). Hence using the result of the lemma for τ≤bL we win. �

Lemma 30.3. Let j : U → X be an open immersion of Noetherian schemes.
(1) Let (Kn) and (Ln) be Deligne systems. LetK andL be the values of the constant

systems (Kn|U ) and (Ln|U ). Given a morphismα : K → L ofD(OU ) there is a
unique morphism of pro-systems (Kn)→ (Ln) ofDb

Coh(OX) whose restriction
to U is α.

(2) Given K ∈ Db
Coh(OU ) there exists a Deligne system (Kn) such that (Kn|U ) is

constant with value K.
(3) The pro-object (Kn) ofDb

Coh(OX) of (2) is unique up to unique isomorphism (as
a pro-object).

Proof. Part (1) is an immediate consequence of Lemma 30.1 and the fact that mor-
phisms between pro-systems are the same as morphisms between the functors they corep-
resent, see Categories, Remark 22.7.
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Let K be as in (2). We can choose K ′ ∈ Db
Coh(OX) whose restriction to U is isomorphic

toK , see Derived Categories of Schemes, Lemma 13.2. By Derived Categories of Schemes,
Proposition 11.2 we can representK ′ by a bounded complexF• of coherentOX -modules.
Choose a quasi-coherent sheaf of ideals I ⊂ OX whose vanishing locus isX\U (for exam-
ple choose I to correspond to the reduced induced subscheme structure on X \ U ). Then
we can setKn equal to the object represented by the complex InF• as in the introduction
to this section.
Part (3) is immediate from parts (1) and (2). �

Lemma 30.4. Let j : U → X be an open immersion of Noetherian schemes. Let
K → L→M → K[1]

be a distinguished triangle of Db
Coh(OU ). Then there exists an inverse system of distin-

guished triangles
Kn → Ln →Mn → Kn[1]

inDb
Coh(OX) such that (Kn), (Ln), (Mn) are Deligne systems and such that the restriction

of these distinguished triangles toU is isomorphic to the distinguished triangle we started
out with.

Proof. Let (Kn) be as in Lemma 30.3 part (2). Choose an object L′ of Db
Coh(OX)

whose restriction to U is L (we can do this as the lemma shows). By Lemma 30.1 we can
find an n and a morphism Kn → L′ on X whose restriction to U is the given arrow
K → L. We conclude there is a morphismK ′ → L′ ofDb

Coh(OX) whose restriction to U
is the given arrow K → L.
By Derived Categories of Schemes, Proposition 11.2 we can find a morphism α• : F• →
G• of bounded complexes of coherent OX -modules representing K ′ → L′. Choose a
quasi-coherent sheaf of ideals I ⊂ OX whose vanishing locus is X \ U . Then we let
Kn = InF• and Ln = InG•. Observe that α• induces a morphism of complexes α•

n :
InF• → InG•. From the construction of cones in Derived Categories, Section 9 it is
clear that

C(αn)• = InC(α•)
and hence we can set Mn = C(αn)•. Namely, we have a compatible system of distin-
guished triangles (see discussion in Derived Categories, Section 12)

Kn → Ln →Mn → Kn[1]
whose restriction to U is isomorphic to the distinguished triangle we started out with by
axiom TR3 and Derived Categories, Lemma 4.3. �

Remark 30.5. Let j : U → X be an open immersion of Noetherian schemes. Sending
K ∈ Db

Coh(OU ) to a Deligne system whose restriction to U is K determines a functor

Rj! : Db
Coh(OU ) −→ Pro-Db

Coh(OX)
which is “exact” by Lemma 30.4 and which is “left adjoint” to the functor j∗ : Db

Coh(OX)→
Db

Coh(OU ) by Lemma 30.1.

Remark 30.6. Let (An) and (Bn) be inverse systems of a category C. Let us say a
linear-pro-morphism from (An) to (Bn) is given by a compatible family of morphisms
ϕn : Acn+d → Bn for all n ≥ 1 for some fixed integers c, d ≥ 1. We’ll say (ϕn :
Acn+d → Bn) and (ψn : Ac′n+d′ → Bn) determine the same morphism if there exist
c′′ ≥ max(c, c′) and d′′ ≥ max(d, d′) such that the two induced morphisms Ac′′n+d′′ →
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Bn are the same for all n. It seems likely that Deligne systems (Kn) with given value on
U are well defined up to linear-pro-isomorphisms. If we ever need this we will carefully
formulate and prove this here.

Lemma 30.7. Let j : U → X be an open immersion of Noetherian schemes. Let

Kn → Ln →Mn → Kn[1]

be an inverse system of distinguished triangles in Db
Coh(OX). If (Kn) and (Mn) are pro-

isomorphic to Deligne systems, then so is (Ln).

Proof. Observe that the systems (Kn|U ) and (Mn|U ) are essentially constant as they
are pro-isomorphic to constant systems. Denote K and M their values. By Derived Cat-
egories, Lemma 42.2 we see that the inverse system Ln|U is essentially constant as well.
Denote L its value. Let N ∈ Db

Coh(OX). Consider the commutative diagram

. . . // colim HomX(Mn, N) //

��

colim HomX(Ln, N) //

��

colim HomX(Kn, N) //

��

. . .

. . . // HomU (M,N |U ) // HomU (L,N |U ) // HomU (K,N |U ) // . . .

By Lemma 30.1 and the fact that isomorphic ind-systems have the same colimit, we see that
the vertical arrows two to the right and two to the left of the middle one are isomorphisms.
By the 5-lemma we conclude that the middle vertical arrow is an isomorphism. Now, if
(L′

n) is a Deligne system whose restriction to U has constant value L (which exists by
Lemma 30.3), then we have colim HomX(L′

n, N) = HomU (L,N |U ) as well. Hence the
pro-systems (Ln) and (L′

n) are pro-isomorphic by Categories, Remark 22.7. �

Lemma 30.8. Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent sheaf
of ideals. Let F• be a complex of coherent OX -modules. Let p ∈ Z. Set H = Hp(F•)
andHn = Hp(InF•). Then there are canonicalOX -module maps

. . .→ H3 → H2 → H1 → H

There exists a c > 0 such that for n ≥ c the image of Hn → H is contained in In−cH
and there is a canonicalOX -module map InH → Hn−c such that the compositions

InH → Hn−c → In−2cH and Hn → In−cH → Hn−2c

are the canonical ones. In particular, the inverse systems (Hn) and (InH) are isomorphic
as pro-objects of Mod(OX).

Proof. If X is affine, translated into algebra this is More on Algebra, Lemma 101.1.
In the general case, argue exactly as in the proof of that lemma replacing the reference to
Artin-Rees in algebra with a reference to Cohomology of Schemes, Lemma 10.3. Details
omitted. �

Lemma 30.9. Let j : U → X be an open immersion of Noetherian schemes. Let
a ≤ b be integers. Let (Kn) be an inverse system ofDb

Coh(OX) such thatHi(Kn) = 0 for
i 6∈ [a, b]. The following are equivalent

(1) (Kn) is pro-isomorphic to a Deligne system,
(2) for every p ∈ Z there exists a coherentOX -moduleF such that the pro-systems

(Hp(Kn)) and (InF) are pro-isomorphic.
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Proof. Assume (1). To prove (2) holds we may assume (Kn) is a Deligne system. By
definition we may choose a bounded complex F• of coherent OX -modules and a quasi-
coherent sheaf of ideals cutting outX \U such thatKn is represented by InF•. Thus the
result follows from Lemma 30.8.

Assume (2). We will prove that (Kn) is as in (1) by induction on b − a. If a = b then
(1) holds essentially by assumption. If a < b then we consider the compatible system of
distinguished triangles

τ≤aKn → Kn → τ≥a+1Kn → (τ≤aKn)[1]
See Derived Categories, Remark 12.4. By induction on b − a we know that τ≤aKn and
τ≥a+1Kn are pro-isomorphic to Deligne systems. We conclude by Lemma 30.7. �

Lemma 30.10. Let j : U → X be an open immersion of Noetherian schemes. Let
(Kn) be an inverse system in Db

Coh(OX). Let X = W1 ∪ . . . ∪Wr be an open covering.
The following are equivalent

(1) (Kn) is pro-isomorphic to a Deligne system,
(2) for each i the restriction (Kn|Wi) is pro-isomorphic to a Deligne system with

respect to the open immersion U ∩Wi →Wi.

Proof. By induction on r. If r = 1 then the result is clear. Assume r > 1. Set
V = W1 ∪ . . . ∪ Wr−1. By induction we see that (Kn|V ) is a Deligne system. This
reduces us to the discussion in the next paragraph.

Assume X = V ∪W is an open covering and (Kn|W ) and (Kn|V ) are pro-isomorphic to
Deligne systems. We have to show that (Kn) is pro-isomorphic to a Deligne system. Ob-
serve that (Kn|V ∩W ) is pro-isomorphic to a Deligne system (it follows immediately from
the construction of Deligne systems that restrictions to opens preserves them). In particu-
lar the pro-systems (Kn|U∩V ), (Kn|U∩W ), and (Kn|U∩V ∩W ) are essentially constant. It
follows from the distinguished triangles in Cohomology, Lemma 33.2 and Derived Cate-
gories, Lemma 42.2 that (Kn|U ) is essentially constant. DenoteK ∈ Db

Coh(OU ) the value
of this system. Let L be an object of Db

Coh(OX). Consider the diagram

colim Ext−1(Kn|V , L|V )⊕ colim Ext−1(Kn|W , L|W ) //

��

Ext−1(K|U∩V , L|U∩V )⊕ Ext−1(K|U∩W , L|U∩W )

��
colim Ext−1(Kn|V ∩W , L|V ∩W ) //

��

Ext−1(K|U∩V ∩W , L|U∩V ∩W )

��
colim Hom(Kn, L)

��

// Hom(K|U , L|U )

��
colim Hom(Kn|V , L|V )⊕ colim Hom(Kn|W , L|W ) //

��

Hom(K|U∩V , L|U∩V )⊕Hom(K|U∩W , L|U∩W )

��
colim Hom(Kn|V ∩W , L|V ∩W ) // Hom(K|U∩V ∩W , L|U∩V ∩W )

The vertical sequences are exact by Cohomology, Lemma 33.3 and the fact that filtered
colimits are exact. All horizontal arrows except for the middle one are isomorphisms by
Lemma 30.1 and the fact that pro-isomorphic systems have the same colimits. Hence the
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middle one is an isomorphism too by the 5-lemma. It follows that (Kn) is pro-isomorphic
to a Deligne system forK. Namey, if (K ′

n) is a Deligne system whose restriction to U has
constant value K (which exists by Lemma 30.3), then we have colim HomX(K ′

n, L) =
HomU (K,L|U ) as well. Hence the pro-systems (Kn) and (K ′

n) are pro-isomorphic by
Categories, Remark 22.7. �

Lemma 30.11. Let j : U → X be an open immersion of Noetherian schemes. Let
I ⊂ OX be a quasi-coherent sheaf of ideals with V (I) = X \U . Let K be in Db

Coh(OX).
Then

K ⊗L
OX
In

is pro-isomorphic to a Deligne system with constant value K|U over U .

Proof. By Lemma 30.10 the question is local on X . Thus we may assume X is the
spectrum of a Noetherian ring. In this case the statement follows from the algebra version
which is More on Algebra, Lemma 101.6. �

31. Preliminaries to compactly supported cohomology

In Situation 16.1 let f : X → Y be a morphism in the category FTSS . Using the con-
structions in the previous section, we will construct a functor

Rf! : Db
Coh(OX) −→ Pro-Db

Coh(OY )

which reduces to the functor of Remark 30.5 if f is an open immersion and in general
is constructed using a compactification of f . Before we do this, we need the following
lemmas to prove our construction is well defined.

Lemma 31.1. Let f : X → Y be a proper morphism of Noetherian schemes. Let
V ⊂ Y be an open subscheme and set U = f−1(V ). Picture

U
j
//

g

��

X

f

��
V

j′
// Y

Then we have a canonical isomorphismRj′
! ◦Rg∗ → Rf∗ ◦Rj! of functorsDb

Coh(OU )→
Pro-Db

Coh(OY ) where Rj! and Rj′
! are as in Remark 30.5.

First proof. Let K be an object of Db
Coh(OU ). Let (Kn) be a Deligne system for

U → X whose restriction to U is constant with value K. Of course this means that (Kn)
represents Rj!K in Pro-Db

Coh(OX). Observe that both Rj′
!Rg∗K and Rf∗Rj!K restrict

to the constant pro-object with value Rg∗K on V . This is immediate for the first one and
for the second one it follows from the fact that (Rf∗Kn)|V = Rg∗(Kn|U ) = Rg∗K.
By the uniqueness of Deligne systems in Lemma 30.3 it suffices to show that (Rf∗Kn)
is pro-isomorphic to a Deligne system. The lemma referenced will also show that the
isomorphism we obtain is functorial.

Proof that (Rf∗Kn) is pro-isomorphic to a Deligne system. First, we observe that the
question is independent of the choice of the Deligne system (Kn) corresponding to K
(by the aforementioned uniqueness). By Lemmas 30.4 and 30.7 if we have a distinguished
triangle

K → L→M → K[1]



4058 48. DUALITY FOR SCHEMES

inDb
Coh(OU ) and the result holds forK andM , then the result holds forL. Using the dis-

tinguished triangles of canonical truncations (Derived Categories, Remark 12.4) we reduce
to the problem studied in the next paragraph.

Let F be a coherent OX -module. Let J ⊂ OY be a quasi-coherent sheaf of ideals cutting
outY \V . DenoteJ nF the image of f∗J n⊗F → F . We have to show that (Rf∗(J nF))
is a Deligne system. By Lemma 30.10 the question is local on Y . Thus we may assume
Y = Spec(A) is affine and J corresponds to an ideal I ⊂ A. By Lemma 30.9 it suffices to
show that the inverse system of cohomology modules (Hp(X, InF)) is pro-isomorphic
to the inverse system (InM) for some finiteA-moduleM . This is shown in Cohomology
of Schemes, Lemma 20.3. �

Second proof. Let K be an object of Db
Coh(OU ). Let L be an object of Db

Coh(OY ).
We will construct a bijection

HomPro-DbCoh(OY )(Rj′
!Rg∗K,L) −→ HomPro-DbCoh(OY )(Rf∗Rj!K,L)

functorial in K and L. Fixing K this will determine an isomorphism of pro-objects
Rf∗Rj!K → Rj′

!Rg∗K by Categories, Remark 22.7 and varying K we obtain that this
determines an isomorphism of functors. To actually produce the isomorphism we use the
sequence of functorial equalities

HomPro-DbCoh(OY )(Rj′
!Rg∗K,L) = HomV (Rg∗K,L|V )

= HomU (K, g!(L|V ))
= HomU (K, f !L|U ))
= HomPro-DbCoh(OX)(Rj!K, f

!L)
= HomPro-DbCoh(OY )(Rf∗Rj!K,L)

The first equality is true by Lemma 30.1. The second equality is true because g is proper (as
the base change of f toV ) and hence g! is the right adjoint of pushforward by construction,
see Section 16. The third equality holds as g!(L|V ) = f !L|U by Lemma 17.2. Since f !L
is in D+

Coh(OX) by Lemma 17.6 the fourth equality follows from Lemma 30.2. The fifth
equality holds again because f ! is the right adjoint to Rf∗ as f is proper. �

Lemma 31.2. Let j : U → X be an open immersion of Noetherian schemes. Let
j′ : U → X ′ be a compactification of U over X (see proof) and denote f : X ′ → X
the structure morphism. Then we have a canonical isomorphism Rj! → Rf∗ ◦ R(j′)! of
functors Db

Coh(OU )→ Pro-Db
Coh(OX) where Rj! and Rj′

! are as in Remark 30.5.

Proof. The fact that X ′ is a compactification of U over X means precisely that f :
X ′ → X is proper, that j′ is an open immersion, and j = f ◦ j′. See More on Flatness,
Section 32. If j′(U) = f−1(j(U)), then the lemma follows immediately from Lemma 31.1.
If j′(U) 6= f−1(j(U)), then denoteX ′′ ⊂ X ′ the scheme theoretic closure of j′ : U → X ′
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and denote j′′ : U → X ′′ the corresponding open immersion. Picture

X ′′

f ′

��
X ′

f

��
U

j //

j′
77

j′′

@@

X

By More on Flatness, Lemma 32.1 part (c) and the discussion above we have isomorphisms
Rf ′

∗ ◦ Rj′′
! = Rj′

! and R(f ◦ f ′)∗ ◦ Rj′′
! = Rj!. Since R(f ◦ f ′)∗ = Rf∗ ◦ Rf ′

∗ we
conclude. �

Remark 31.3. Let X ⊃ U ⊃ U ′ be open subschemes of a Noetherian scheme X .
Denote j : U → X and j′ : U ′ → X the inclusion morphisms. We claim there is a
canonical map

Rj′
!(K|U ′) −→ Rj!K

functorial for K in Db
Coh(OU ). Namely, by Lemma 30.1 we have for any L in Db

Coh(OX)
the map

HomPro-DbCoh(OX)(Rj!K,L) = HomU (K,L|U )
→ HomU ′(K|U ′ , L|U ′)
= HomPro-DbCoh(OX)(Rj′

!(K|U ′), L)

functorial in L and K ′. The functoriality in L shows by Categories, Remark 22.7 that we
obtain a canonical mapRj′

!(K|U ′)→ Rj!K which is functorial inK by the functoriality
of the arrow above in K.

Here is an explicit construction of this arrow. Namely, suppose that F• is a bounded
complex of coherent OX -modules whose restriction to U represents K in the derived
category. We have seen in the proof of Lemma 30.3 that such a complex always exists. Let
I , resp. I ′ be a quasi-coherent sheaf of ideals on X with V (I) = X \ U , resp. V (I ′) =
X \U ′. After replacing I by I + I ′ we may assume I ′ ⊂ I . By construction Rj!K , resp.
Rj′

!(K|U ′) is represented by the inverse system (Kn), resp. (K ′
n) of Db

Coh(OX) with

Kn = InF• resp. K ′
n = (I ′)nF•

Clearly the map constructed above is given by the maps K ′
n → Kn coming from the

inclusions (I ′)n ⊂ In.

32. Compactly supported cohomology for coherent modules

In Situation 16.1 given a morphism f : X → Y in FTSS , we will define a functor

Rf! : Db
Coh(OX) −→ Pro-Db

Coh(OY )

Namely, we choose a compactification j : X → X over Y which is possible by More on
Flatness, Theorem 33.8 and Lemma 32.2. Denote f : X → Y the structure morphism.
Then we set

Rf!K = Rf∗Rj!K

for K ∈ Db
Coh(OX) where Rj! is as in Remark 30.5.
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Lemma 32.1. The functor Rf! is, up to isomorphism, independent of the choice of
the compactification.

In fact, the functorRf! will be characterized as a “left adjoint” to f ! which will determine
it up to unique isomorphism.

Proof. Consider the category of compactifications of X over Y , which is cofiltered
according to More on Flatness, Theorem 33.8 and Lemmas 32.1 and 32.2. To every choice
of a compactification

j : X → X, f : X → Y

the construction above associates the functor Rf∗ ◦ Rj!. Suppose given a morphism g :
X1 → X2 between compactifications ji : X → Xi over Y . Then we get an isomorphism

Rf2,∗ ◦Rj2,! = Rf2,∗ ◦Rg∗ ◦ j1,! = Rf1,∗ ◦Rj1,!

using Lemma 31.2 in the first equality. In this way we see our functor is independent of
the choice of compactification up to isomorphism. �

Proposition 32.2. In Situation 16.1 let f : X → Y be a morphism of FTSS . Then
the functors Rf! and f ! are adjoint in the following sense: for all K ∈ Db

Coh(OX) and
L ∈ D+

Coh(OY ) we have

HomX(K, f !L) = HomPro-D+
Coh(OY )(Rf!K,L)

bifunctorially in K and L.

Proof. Choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Then we have

HomX(K, f !L) = HomX(K, j∗f !L)
= HomPro-D+

Coh(O
X

)(Rj!K, f
!L)

= HomPro-D+
Coh(OY )(Rf∗Rj!K,L)

= HomPro-D+
Coh(OY )(Rf!K,L)

The first equality follows immediately from the construction of f ! in Section 16. By
Lemma 17.6 we have f !L in D+

Coh(OX) hence the second equality follows from Lemma
30.2. Since f is proper the functor f ! is the right adjoint of pushforward by construc-
tion. This is why we have the third equality. The fourth equality holds because Rf! =
Rf∗Rj!. �

Lemma 32.3. In Situation 16.1 let f : X → Y be a morphism of FTSS . Let

K → L→M → K[1]

be a distinguished triangle of Db
Coh(OX). Then there exists an inverse system of distin-

guished triangles
Kn → Ln →Mn → Kn[1]

in Db
Coh(OY ) such that the pro-systems (Kn), (Ln), and (Mn) give Rf!K , Rf!L, and

Rf!M .
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Proof. Choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Choose an inverse system of distinguished triangles

Kn → Ln →Mn → Kn[1]
in Db

Coh(OX) as in Lemma 30.4 corresponding to the open immersion j and the given
distinguished triangle. Take Kn = Rf∗Kn and similarly for Ln and Mn. This works by
the very definition of Rf!. �

Remark 32.4. Let C be a category. Suppose given an inverse system

. . .
α4−→ (M3,n) α3−→ (M2,n) α2−→ (M1,n)

of inverse systems in the category of pro-objects of C. In other words, the arrows αi are
morphisms of pro-objects. By Categories, Example 22.6 we can represent each αi by a pair
(mi, ai) where mi : N→ N is an increasing function and ai,n : Mi,mi(n) →Mi−1,n is a
morphism of C making the diagrams

. . . // Mi,mi(3)

ai,3

��

// Mi,mi(2)

ai,2

��

// Mi,mi(1)

ai,1

��
. . . // Mi−1,3 // Mi−1,2 // Mi−1,1

commute. By replacing mi(n) by max(n,mi(n)) and adjusting the morphisms ai(n) ac-
cordingly (as in the example referenced) we may assume thatmi(n) ≥ n. In this situation
consider the inverse system

. . .→M4,m4(m3(m2(4))) →M3,m3(m2(3)) →M2,m2(2) →M1,1

with general term
Mk = Mk,mk(mk−1(...(m2(k))...))

For any object N of C we have

colimi colimn MorC(Mi,n, N) = colimk MorC(Mk, N)
We omit the details. In other words, we see that the inverse system (Mk) has the property

colimi MorPro-C((Mi,n), N) = MorPro-C((Mk), N)
This property determines the inverse system (Mk) up to pro-isomorphism by the discus-
sion in Categories, Remark 22.7. In this way we can turn certain inverse systems in Pro-C
into pro-objects with countable index categories.

Remark 32.5. In Situation 16.1 let f : X → Y and g : Y → Z be composable
morphisms of FTSS . Let us define the composition

Rg! ◦Rf! : Db
Coh(OX) −→ Pro-Db

Coh(OZ)
Namely, by the very construction ofRf! forK inDb

Coh(OX) the outputRf!K is the pro-
isomorphism class of an inverse system (Mn) inDb

Coh(OY ). Then, sinceRg! is constructed
similarly, we see that

. . .→ Rg!M3 → Rg!M2 → Rg!M1

is an inverse system of Pro-Db
Coh(OY ). By the discussion in Remark 32.4 there is a unique

pro-isomorphism class, which we will denote Rg!Rf!K , of inverse systems in Db
Coh(OZ)

such that

HomPro-DbCoh(OZ)(Rg!Rf!K,L) = colimn HomPro-DbCoh(OZ)(Rg!Mn, L)
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We omit the discussion necessary to see that this construction is functorial in K as it will
immediately follow from the next lemma.

Lemma 32.6. In Situation 16.1 let f : X → Y and g : Y → Z be composable
morphisms of FTSS . With notation as in Remark 32.5 we have Rg! ◦Rf! = R(g ◦ f)!.

Proof. By the discussion in Categories, Remark 22.7 it suffices to show that we obtain
the same answer if we compute Hom into L in Db

Coh(OZ). To do this we compute, using
the notation in Remark 32.5, as follows

HomZ(Rg!Rf!K,L) = colimn HomZ(Rg!Mn, L)
= colimn HomY (Mn, g

!L)
= HomY (Rf!K, g

!L)
= HomX(K, f !g!L)
= HomX(K, (g ◦ f)!L)
= HomZ(R(g ◦ f)!K,L)

The first equality is the definition of Rg!Rf!K. The second equality is Proposition 32.2
for g. The third equality is the fact that Rf!K is given by (Mn). The fourth equality is
Proposition 32.2 for f . The fifth equality is Lemma 16.3. The sixth is Proposition 32.2 for
g ◦ f . �

Remark 32.7. In Situation 16.1 let f : X → Y be a morphism of FTSS and let
U ⊂ X be an open. Set g = f |U : U → Y . Then there is a canonical morphism

Rg!(K|U ) −→ Rf!K

functorial in K in Db
Coh(OX) which can be defined in at least 3 ways.

(1) Denote i : U → X the inclusion morphism. We have Rg! = Rf! ◦ Ri! by
Lemma 32.6 and we can use Rf! applied to the map Ri!(K|U ) → K which is a
special case of Remark 31.3.

(2) Choose a compactification j : X → X of X over Y with structure morphism
f : X → Y . Set j′ = j ◦ i : U → X . We can use that Rf! = Rf∗ ◦ Rj! and
Rg! = Rf∗ ◦ Rj′

! and we can use Rf∗ applied to the map Rj′
!(K|U ) → Rj!K

of Remark 31.3.
(3) We can use

HomPro-DbCoh(OY )(Rf!K,L) = HomX(K, f !L)

→ HomU (K|U , f !L|U )
= HomU (K|U , g!L)
= HomPro-DbCoh(OY )(Rg!(K|U ), L)

functorial in L and K. Here we have used Proposition 32.2 twice and the con-
struction of upper shriek functors which shows that g! = i∗ ◦ f !. The functo-
riality in L shows by Categories, Remark 22.7 that we obtain a canonical map
Rg!(K|U ) → Rf!K in Pro-Db

Coh(OY ) which is functorial in K by the functo-
riality of the arrow above in K.

Each of these three constructions gives the same arrow; we omit the details.
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Remark 32.8. Let us generalize the covariance of compactly supported cohomology
given in Remark 32.7 to étale morphisms. Namely, in Situation 16.1 suppose given a com-
mutative diagram

U
h

//

g
��

X

f~~
Y

of FTSS with h étale. Then there is a canonical morphism

Rg!(h∗K) −→ Rf!K

functorial in K in Db
Coh(OX). We define this transformation using the sequence of maps

HomPro-DbCoh(OY )(Rf!K,L) = HomX(K, f !L)

→ HomU (h∗K,h∗(f !L))
= HomU (h∗K,h!f !L)
= HomU (h∗K, g!L)
= HomPro-DbCoh(OY )(Rg!(h∗K), L)

functorial inL andK. Here we have used Proposition 32.2 twice, we have used the equality
h∗ = h! of Lemma 18.2, and we have used the equality h! ◦ f ! = g! of Lemma 16.3.
The functoriality in L shows by Categories, Remark 22.7 that we obtain a canonical map
Rg!(h∗K) → Rf!K in Pro-Db

Coh(OY ) which is functorial in K by the functoriality of
the arrow above in K.

Remark 32.9. In Remarks 32.7 and 32.8 we have seen that the construction of com-
pactly supported cohomology is covariant with respect to open immersions and étale mor-
phisms. In fact, the correct generality is that given a commutative diagram

U
h

//

g
��

X

f~~
Y

of FTSS with h flat and quasi-finite there exists a canonical transformation

Rg! ◦ h∗ −→ Rf!

As in Remark 32.8 this map can be constructed using a transformation of functors h∗ → h!

on D+
Coh(OX). Recall that h!K = h∗K ⊗ ωU/X where ωU/X = h!OX is the relative du-

alizing sheaf of the flat quasi-finite morphism h (see Lemmas 17.9 and 21.6). Recall that
ωU/X is the same as the relative dualizing module which will be constructed in Discrim-
inants, Remark 2.11 by Discriminants, Lemma 15.1. Thus we can use the trace element
τU/X : OU → ωU/X which will be constructed in Discriminants, Remark 4.7 to define
our transformation. If we ever need this, we will precisely formulate and prove the result
here.

33. Duality for compactly supported cohomology

Let k be a field. Let U be a separated scheme of finite type over k. Let K be an object of
Db

Coh(OU ). Let us define the compactly supported cohomologyHi
c(U,K) ofK as follows.
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Choose an open immersion j : U → X into a scheme proper over k and a Deligne system
(Kn) for j : U → X whose restriction to U is constant with value K. Then we set

Hi
c(U,K) = limHi(X,Kn)

We view this as a topological k-vector space using the limit topology (see More on Algebra,
Section 36). There are several points to make here.

First, this definition is independent of the choice of X and (Kn). Namely, if p : U →
Spec(k) denotes the structure morphism, then we already know thatRp!K = (RΓ(X,Kn))
is well defined up to pro-isomorphism in D(k) hence so is the limit defining Hi

c(U,K).

Second, it may seem more natural to use the expression

Hi(R limRΓ(X,Kn)) = RΓ(X,R limKn)
but this would give the same answer: since the k-vector spaces Hj(X,Kn) are finite di-
mensional, these inverse systems satisfy Mittag-Leffler and hence R1 lim terms of Coho-
mology, Lemma 37.1 vanish.

If U ′ ⊂ U is an open subscheme, then there is a canonical map

Hi
c(U ′,K|U ′) −→ Hi

c(U,K)
functorial for K in Db

Coh(OU ). See for example Remark 32.7. In fact, using Remark 32.8
we see that more generally such a map exists for an étale morphism U ′ → U of separated
schemes of finite type over k.

If V is a k-vector space then we put a topology on Homk(V, k) as follows: write V =
⋃
Vi

as the filtered union of its finite dimensional k-subvector spaces and use the limit topology
on Homk(V, k) = lim Homk(Vi, k). If dimk V < ∞ then the topology on Homk(V, k)
is discrete. More generally, if V = colimn Vn is written as a directed colimit of finite
dimensional vector spaces, then Homk(V, k) = lim Homk(Vn, k) as topological vector
spaces.

Lemma 33.1. Let p : U → Spec(k) be separated of finite type where k is a field. Let
ω•
U/k = p!OSpec(k). There are canonical isomorphisms

Homk(Hi(U,K), k) = H−i
c (U,RHomOU

(K,ω•
U/k))

of topological k-vector spaces functorial for K in Db
Coh(OU ).

Proof. Choose a compactification j : U → X over k. Let I ⊂ OX be a quasi-
coherent ideal sheaf with V (I) = X \U . By Derived Categories of Schemes, Proposition
11.2 we may choose M ∈ Db

Coh(OX) with K = M |U . We have

Hi(U,K) = ExtiU (OU ,M |U ) = colim ExtiX(In,M) = colimHi(X,RHomOX
(In,M))

by Lemma 30.1. Since In is a coherent OX -module, we have In in D−
Coh(OX), hence

RHomOX
(In,M) is in D+

Coh(OX) by Derived Categories of Schemes, Lemma 11.5.

Let ω•
X/k = q!OSpec(k) where q : X → Spec(k) is the structure morphism, see Section 27.

We find that

Homk(Hi(X,RHomOX
(In,M)), k)

= Ext−i
X (RHomOX

(In,M), ω•
X/k)

= H−i(X,RHomOX
(RHomOX

(In,M), ω•
X/k))
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by Lemma 27.1. By Lemma 2.4 part (1) the canonical map

RHomOX
(M,ω•

X/k)⊗L
OX
In −→ RHomOX

(RHomOX
(In,M), ω•

X/k)

is an isomorphism. Observe that ω•
U/k = ω•

X/k|U because p! is constructed as q! com-
posed with restriction to U . HenceRHomOX

(M,ω•
X/k) is an object ofDb

Coh(OX) which
restricts to RHomOU

(K,ω•
U/k) on U . Hence by Lemma 30.11 we conclude that

limH−i(X,RHomOX
(M,ω•

X/k)⊗L
OX
In)

is an avatar for the right hand side of the equality of the lemma. Combining all the iso-
morphisms obtained in this manner we get the isomorphism of the lemma. �

Lemma 33.2. With notation as in Lemma 33.1 supposeU ′ ⊂ U is an open subscheme.
Then the diagram

Homk(Hi(U,K), k) // H−i
c (U,RHomOU

(K,ω•
U/k))

Homk(Hi(U ′,K|U ′), k) //

OO

H−i
c (U ′, RHomOU′ (K,ω•

U ′/k))

OO

is commutative. Here the horizontal arrows are the isomorphisms of Lemma 33.1, the verti-
cal arrow on the left is the contragredient to the restriction mapHi(U,K)→ Hi(U ′,K|U ′),
and the right vertical arrow is Remark 32.7 (see discussion before the lemma).

Proof. We strongly urge the reader to skip this proof. Choose X and M as in the
proof of Lemma 33.1. We are going to drop the subscript OX from RHom and ⊗L. We
write

Hi(U,K) = colimHi(X,RHom(In,M))
and

Hi(U ′,K|U ′) = colimHi(X,RHom((I ′)n,M))
as in the proof of Lemma 33.1 where we choose I ′ ⊂ I as in the discussion in Remark
31.3 so that the mapHi(U,K)→ Hi(U ′,K|U ′) is induced by the maps (I ′)n → In. We
similarly write

Hi
c(U,RHom(K,ω•

U/k)) = limHi(X,RHom(M,ω•
X/k)⊗L In)

and

Hi
c(U ′, RHom(K|U ′ , ω•

U ′/k)) = limHi(X,RHom(M,ω•
X/k)⊗L (I ′)n)

so that the arrowHi
c(U ′, RHom(K|U ′ , ω•

U ′/k))→ Hi
c(U,RHom(K,ω•

U/k)) is similarly
deduced from the maps (I ′)n → In. The diagrams

RHom(M,ω•
X/k)⊗L In // RHom(RHom(In,M), ω•

X/k)

RHom(M,ω•
X/k)⊗L (I ′)n //

OO

RHom(RHom((I ′)n,M), ω•
X/k)

OO

commute because the construction of the horizontal arrows in Cohomology, Lemma 42.9
is functorial in all three entries. Hence we finally come down to the assertion that the
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diagrams

Homk(Hi(X,RHom(In,M)), k) // H−i(X,RHom(RHom(In,M), ω•
X/k))

Homk(Hi(X,RHom((I ′)n,M)), k) //

OO

H−i(X,RHom(RHom((I ′)n,M), ω•
X/k))

OO

commute. This is true because the duality isomorphism

Homk(Hi(X,L), k) = Ext−i
X (L, ω•

X/k) = H−i(X,RHom(L, ω•
X/k))

is functorial for L in DQCoh(OX). �

Lemma 33.3. Let X be a proper scheme over a field k. Let K ∈ Db
Coh(OX) with

Hi(K) = 0 for i < 0. Set F = H0(K). Let Z ⊂ X be closed with complement
U = X \ U . Then

H0
c (U,K|U ) ⊂ H0(X,F)

is given by those global sections of F which vanish in an open neighbourhood of Z.

Proof. Consider the map H0
c (U,K|U ) → H0

X(X,K) = H0(X,K) = H0(X,F)
of Remark 32.7. To study this we representK by a bounded complex F• with F i = 0 for
i < 0. Then we have by definition

H0
c (U,K|U ) = limH0(X, InF•) = lim Ker(H0(X, InF0)→ H0(X, InF1))

By Artin-Rees (Cohomology of Schemes, Lemma 10.3) this is the same as limH0(X, InF).
Thus the arrow H0

c (U,K|U ) → H0(X,F) is injective and the image consists of those
global sections of F which are contained in the subsheaf InF for any n. The characteri-
zation of these as the sections which vanish in a neighbourhood of Z comes from Krull’s
intersection theorem (Algebra, Lemma 51.4) by looking at stalks of F . See discussion in
Algebra, Remark 51.6 for the case of functions. �

34. Lichtenbaum’s theorem

The theorem below was conjectured by Lichtenbaum and proved by Grothendieck (see
[?]). There is a very nice proof of the theorem by Kleiman in [?]. A generalization of the
theorem to the case of cohomology with supports can be found in [?]. The most interesting
part of the argument is contained in the proof of the following lemma.

Lemma 34.1. Let U be a variety. Let F be a coherent OU -module. If Hd(U,F) is
nonzero, then dim(U) ≥ d and if equality holds, then U is proper.

Proof. By the Grothendieck’s vanishing result in Cohomology, Proposition 20.7 we
conclude that dim(U) ≥ d. Assume dim(U) = d. Choose a compactification U → X
such thatU is dense inX . (This is possible by More on Flatness, Theorem 33.8 and Lemma
32.2.) After replacing X by its reduction we find that X is a proper variety of dimension
d and we see that U is proper if and only if U = X . Set Z = X \ U . We will show that
Hd(U,F) is zero if Z is nonempty.

Choose a coherentOX -module G whose restriction to U is F , see Properties, Lemma 22.5.
Let ω•

X denote the dualizing complex of X as in Section 27. Set ω•
U = ω•

X |U . Then
Hd(U,F) is dual to

H−d
c (U,RHomOU

(F , ω•
U ))
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by Lemma 33.1. By Lemma 27.1 we see that the cohomology sheaves of ω•
X vanish in

degrees < −d and H−d(ω•
X) = ωX is a coherent OX -module which is (S2) and whose

support isX . In particular, ωX is torsion free, see Divisors, Lemma 11.10. Thus we see that
the cohomology sheaf

H−d(RHomOX
(G, ω•

X)) = Hom(G, ωX)
is torsion free, see Divisors, Lemma 11.12. Consequently this sheaf has no nonzero sections
vanishing on any nonempty open of X (those would be torsion sections). Thus it follows
from Lemma 33.3 thatH−d

c (U,RHomOU
(F , ω•

U )) is zero, and henceHd(U,F) is zero as
desired. �

Theorem 34.2. Let X be a nonempty separated scheme of finite type over a field k.
Let d = dim(X). The following are equivalent

(1) Hd(X,F) = 0 for all coherentOX -modules F on X ,
(2) Hd(X,F) = 0 for all quasi-coherentOX -modules F on X , and
(3) no irreducible component X ′ ⊂ X of dimension d is proper over k.

Proof. Assume there exists an irreducible component X ′ ⊂ X (which we view as
an integral closed subscheme) which is proper and has dimension d. Let ωX′ be a dualiz-
ing module of X ′ over k, see Lemma 27.1. Then Hd(X ′, ωX′) is nonzero as it is dual to
H0(X ′,OX′) by the lemma. Hence we see that Hd(X,ωX′) = Hd(X ′, ωX′) is nonzero
and we conclude that (1) does not hold. In this way we see that (1) implies (3).
Let us prove that (3) implies (1). Let F be a coherent OX -module such that Hd(X,F) is
nonzero. Choose a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
as in Cohomology of Schemes, Lemma 12.3. We obtain exact sequences

Hd(X,Fi)→ Hd(X,Fi+1)→ Hd(X,Fi+1/Fi)
Thus for some i ∈ {1, . . . ,m} we find that Hd(X,Fi+1/Fi) is nonzero. By our choice
of the filtration this means that there exists an integral closed subscheme Z ⊂ X and a
nonzero coherent sheaf of ideals I ⊂ OZ such that Hd(Z, I) is nonzero. By Lemma 34.1
we conclude dim(Z) = d and Z is proper over k contradicting (3). Hence (3) implies (1).
Finally, let us show that (1) and (2) are equivalent for any Noetherian schemeX . Namely,
(2) trivially implies (1). On the other hand, assume (1) and let F be a quasi-coherent
OX -module. Then we can write F = colimFi as the filtered colimit of its coherent
submodules, see Properties, Lemma 22.3. Then we haveHd(X,F) = colimHd(X,Fi) =
0 by Cohomology, Lemma 19.1. Thus (2) is true. �
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CHAPTER 49

Discriminants and Differents

1. Introduction

In this chapter we study the different and discriminant of locally quasi-finite morphisms
of schemes. A good reference for some of this material is [?].
Given a quasi-finite morphism f : Y → X of Noetherian schemes there is a relative du-
alizing module ωY/X . In Section 2 we construct this module from scratch, using Zariski’s
main theorem and étale localization methods. The key property is that given a diagram

Y ′

f ′

��

g′
// Y

f

��
X ′ g // X

with g : X ′ → X flat, Y ′ ⊂ X ′ ×X Y open, and f ′ : Y ′ → X ′ finite, then there is a
canonical isomorphism

f ′
∗(g′)∗ωY/X = HomOX′ (f ′

∗OY ′ ,OX′)
as sheaves of f ′

∗OY ′ -modules. In Section 4 we prove that if f is flat, then there is a canonical
global section τY/X ∈ H0(Y, ωY/X) which for every commutative diagram as above maps
(g′)∗τY/X to the trace map of Section 3 for the finite locally free morphism f ′. In Section
9 we define the different for a flat quasi-finite morphism of Noetherian schemes as the
annihilator of the cokernel of τY/X : OX → ωY/X .
The main goal of this chapter is to prove that for quasi-finite syntomic1 f the different
agrees with the Kähler different. The Kähler different is the zeroth fitting ideal of ΩY/X ,
see Section 7. This agreement is not obvious; we use a slick argument due to Tate, see
Section 12. On the way we also discuss the Noether different and the Dedekind different.
Only in the end of this chapter, see Sections 15 and 16, do we make the link with the more
advanced material on duality for schemes.

2. Dualizing modules for quasi-finite ring maps

Let A → B be a quasi-finite homomorphism of Noetherian rings. By Zariski’s main the-
orem (Algebra, Lemma 123.14) there exists a factorization A → B′ → B with A → B′

finite and B′ → B inducing an open immersion of spectra. We set
(2.0.1) ωB/A = HomA(B′, A)⊗B′ B

in this situation. The reader can think of this as a kind of relative dualizing module, see
Lemmas 15.1 and 2.12. In this section we will show by elementary commutative algebra
methods that ωB/A is independent of the choice of the factorization and that formation of

1AKA flat and lci.

4071
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ωB/A commutes with flat base change. To help prove the independence of factorizations
we compare two given factorizations.

Lemma 2.1. Let A → B be a quasi-finite ring map. Given two factorizations A →
B′ → B andA→ B′′ → B withA→ B′ andA→ B′′ finite and Spec(B)→ Spec(B′)
and Spec(B)→ Spec(B′′) open immersions, there exists anA-subalgebraB′′′ ⊂ B finite
over A such that Spec(B) → Spec(B′′′) an open immersion and B′ → B and B′′ → B
factor through B′′′.

Proof. Let B′′′ ⊂ B be the A-subalgebra generated by the images of B′ → B and
B′′ → B. AsB′ andB′′ are each generated by finitely many elements integral overA, we
see that B′′′ is generated by finitely many elements integral over A and we conclude that
B′′′ is finite over A (Algebra, Lemma 36.5). Consider the maps

B = B′ ⊗B′ B → B′′′ ⊗B′ B → B ⊗B′ B = B

The final equality holds because Spec(B) → Spec(B′) is an open immersion (and hence
a monomorphism). The second arrow is injective as B′ → B is flat. Hence both arrows
are isomorphisms. This means that

Spec(B′′′)

��

Spec(B)

��

oo

Spec(B′) Spec(B)oo

is cartesian. Since the base change of an open immersion is an open immersion we con-
clude. �

Lemma 2.2. The module (2.0.1) is well defined, i.e., independent of the choice of the
factorization.

Proof. Let B′, B′′, B′′′ be as in Lemma 2.1. We obtain a canonical map

ω′′′ = HomA(B′′′, A)⊗B′′′ B −→ HomA(B′, A)⊗B′ B = ω′

and a similar one involving B′′. If we show these maps are isomorphisms then the lemma
is proved. Let g ∈ B′ be an element such that B′

g → Bg is an isomorphism and hence
B′
g → (B′′′)g → Bg are isomorphisms. It suffices to show that (ω′′′)g → ω′

g is an
isomorphism. The kernel and cokernel of the ring map B′ → B′′′ are finite A-modules
and g-power torsion. Hence they are annihilated by a power of g. This easily implies the
result. �

Lemma 2.3. Let A→ B be a quasi-finite map of Noetherian rings.
(1) If A→ B factors as A→ Af → B for some f ∈ A, then ωB/A = ωB/Af .
(2) If g ∈ B, then (ωB/A)g = ωBg/A.
(3) If f ∈ A, then ωBf/Af = (ωB/A)f .

Proof. Say A → B′ → B is a factorization with A → B′ finite and Spec(B) →
Spec(B′) an open immersion. In case (1) we may use the factorization Af → B′

f → B to
compute ωB/Af and use Algebra, Lemma 10.2. In case (2) use the factorizationA→ B′ →
Bg to see the result. Part (3) follows from a combination of (1) and (2). �
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Let A → B be a quasi-finite ring map of Noetherian rings, let A → A1 be an arbitrary
ring map of Noetherian rings, and set B1 = B ⊗A A1. We obtain a cocartesian diagram

B // B1

A

OO

// A1

OO

Observe that A1 → B1 is quasi-finite as well (Algebra, Lemma 122.8). In this situation we
will define a canonical B-linear base change map

(2.3.1) ωB/A −→ ωB1/A1

Namely, we choose a factorization A → B′ → B as in the construction of ωB/A. Then
B′

1 = B′⊗A A1 is finite over A1 and we can use the factorization A1 → B′
1 → B1 in the

construction of ωB1/A1 . Thus we have to construct a map

HomA(B′, A)⊗B′ B −→ HomA1(B′ ⊗A A1, A1)⊗B′
1
B1

Thus it suffices to construct a B′-linear map HomA(B′, A) → HomA1(B′ ⊗A A1, A1)
which we will denote ϕ 7→ ϕ1. Namely, given an A-linear map ϕ : B′ → A we let ϕ1 be
the map such that ϕ1(b′ ⊗ a1) = ϕ(b′)a1. This is clearly A1-linear and the construction
is complete.

Lemma 2.4. The base change map (2.3.1) is independent of the choice of the factor-
ization A → B′ → B. Given ring maps A → A1 → A2 the composition of the base
change maps for A→ A1 and A1 → A2 is the base change map for A→ A2.

Proof. Omitted. Hint: argue in exactly the same way as in Lemma 2.2 using Lemma
2.1. �

Lemma 2.5. If A → A1 is flat, then the base change map (2.3.1) induces an isomor-
phism ωB/A ⊗B B1 → ωB1/A1 .

Proof. Assume that A → A1 is flat. By construction of ωB/A we may assume that
A → B is finite. Then ωB/A = HomA(B,A) and ωB1/A1 = HomA1(B1, A1). Since
B1 = B ⊗A A1 the result follows from More on Algebra, Lemma 65.4. �

Lemma 2.6. Let A → B → C be quasi-finite homomorphisms of Noetherian rings.
There is a canonical map ωB/A ⊗B ωC/B → ωC/A.

Proof. Choose A → B′ → B with A → B′ finite such that Spec(B) → Spec(B′)
is an open immersion. Then B′ → C is quasi-finite too. Choose B′ → C ′ → C with
B′ → C ′ finite and Spec(C) → Spec(C ′) an open immersion. Then the source of the
arrow is

HomA(B′, A)⊗B′ B ⊗B HomB(B ⊗B′ C ′, B)⊗B⊗B′C′ C

which is equal to
HomA(B′, A)⊗B′ HomB′(C ′, B)⊗C′ C

This indeed comes with a canonical map to HomA(C ′, A) ⊗C′ C = ωC/A coming from
composition HomA(B′, A)×HomB′(C ′, B)→ HomA(C ′, A). �

Lemma 2.7. Let A→ B and A→ C be quasi-finite maps of Noetherian rings. Then
ωB×C/A = ωB/A × ωC/A as modules over B × C.
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Proof. Choose factorizations A → B′ → B and A → C ′ → C such that A → B′

and A → C ′ are finite and such that Spec(B) → Spec(B′) and Spec(C) → Spec(C ′)
are open immersions. Then A→ B′ ×C ′ → B ×C is a similar factorization. Using this
factorization to compute ωB×C/A gives the lemma. �

Lemma 2.8. Let A→ B be a quasi-finite homomorphism of Noetherian rings. Then
AssB(ωB/A) is the set of primes of B lying over associated primes of A.

Proof. Choose a factorization A → B′ → B with A → B′ finite and B′ → B
inducing an open immersion on spectra. As ωB/A = ωB′/A ⊗B′ B it suffices to prove the
statement for ωB′/A. Thus we may assume A→ B is finite.
Assume p ∈ Ass(A) and q is a prime of B lying over p. Let x ∈ A be an element whose
annihilator is p. Choose a nonzero κ(p) linear map λ : κ(q) → κ(p). Since A/p ⊂ B/q
is a finite extension of rings, there is an f ∈ A, f 6∈ p such that fλ maps B/q into A/p.
Hence we obtain a nonzero A-linear map

B → B/q→ A/p→ A, b 7→ fλ(b)x
An easy computation shows that this element of ωB/A has annihilator q, whence q ∈
Ass(ωB/A).
Conversely, suppose that q ⊂ B is a prime ideal lying over a prime p ⊂ A which is not
an associated prime of A. We have to show that q 6∈ AssB(ωB/A). After replacing A by
Ap andB byBp we may assume that p is a maximal ideal ofA. This is allowed by Lemma
2.5 and Algebra, Lemma 63.16. Then there exists an f ∈ m which is a nonzerodivisor on
A. Then f is a nonzerodivisor on ωB/A and hence q is not an associated prime of this
module. �

Lemma 2.9. Let A → B be a flat quasi-finite homomorphism of Noetherian rings.
Then ωB/A is a flat A-module.

Proof. Let q ⊂ B be a prime lying over p ⊂ A. We will show that the localization
ωB/A,q is flat over Ap. This suffices by Algebra, Lemma 39.18. By Algebra, Lemma 145.2
we can find an étale ring map A → A′ and a prime ideal p′ ⊂ A′ lying over p such that
κ(p′) = κ(p) and such that

B′ = B ⊗A A′ = C ×D
with A′ → C finite and such that the unique prime q′ of B ⊗A A′ lying over q and p′

corresponds to a prime of C. By Lemma 2.5 and Algebra, Lemma 100.1 it suffices to show
ωB′/A′,q′ is flat overA′

p′ . Since ωB′/A′ = ωC/A′ ×ωD/A′ by Lemma 2.7 this reduces us to
the case where B is finite flat over A. In this case B is finite locally free as an A-module
and ωB/A = HomA(B,A) is the dual finite locally free A-module. �

Lemma 2.10. If A → B is flat, then the base change map (2.3.1) induces an isomor-
phism ωB/A ⊗B B1 → ωB1/A1 .

Proof. If A → B is finite flat, then B is finite locally free as an A-module. In this
case ωB/A = HomA(B,A) is the dual finite locally free A-module and formation of this
module commutes with arbitrary base change which proves the lemma in this case. In
the next paragraph we reduce the general (quasi-finite flat) case to the finite flat case just
discussed.
Let q1 ⊂ B1 be a prime. We will show that the localization of the map at the prime q1 is an
isomorphism, which suffices by Algebra, Lemma 23.1. Let q ⊂ B and p ⊂ A be the prime
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ideals lying under q1. By Algebra, Lemma 145.2 we can find an étale ring map A → A′

and a prime ideal p′ ⊂ A′ lying over p such that κ(p′) = κ(p) and such that

B′ = B ⊗A A′ = C ×D
with A′ → C finite and such that the unique prime q′ of B ⊗A A′ lying over q and p′

corresponds to a prime ofC. SetA′
1 = A′⊗AA1 and consider the base change maps (2.3.1)

for the ring maps A→ A′ → A′
1 and A→ A1 → A′

1 as in the diagram

ωB′/A′ ⊗B′ B′
1

// ωB′
1/A

′
1

ωB/A ⊗B B′
1

//

OO

ωB1/A1 ⊗B1 B
′
1

OO

where B′ = B ⊗A A′, B1 = B ⊗A A1, and B′
1 = B ⊗A (A′ ⊗A A1). By Lemma 2.4 the

diagram commutes. By Lemma 2.5 the vertical arrows are isomorphisms. As B1 → B′
1 is

étale and hence flat it suffices to prove the top horizontal arrow is an isomorphism after
localizing at a prime q′

1 of B′
1 lying over q (there is such a prime and use Algebra, Lemma

39.17). Thus we may assume that B = C × D with A → C finite and q corresponding
to a prime of C. In this case the dualizing module ωB/A decomposes in a similar fashion
(Lemma 2.7) which reduces the question to the finite flat case A→ C handled above. �

Remark 2.11. Let f : Y → X be a locally quasi-finite morphism of locally Noether-
ian schemes. It is clear from Lemma 2.3 that there is a unique coherentOY -module ωY/X
on Y such that for every pair of affine opens Spec(B) = V ⊂ Y , Spec(A) = U ⊂ X
with f(V ) ⊂ U there is a canonical isomorphism

H0(V, ωY/X) = ωB/A

and where these isomorphisms are compatible with restriction maps.

Lemma 2.12. Let A → B be a quasi-finite homomorphism of Noetherian rings. Let
ω•
B/A ∈ D(B) be the algebraic relative dualizing complex discussed in Dualizing Com-

plexes, Section 25. Then there is a (nonunique) isomorphism ωB/A = H0(ω•
B/A).

Proof. Choose a factorizationA→ B′ → BwhereA→ B′ is finite and Spec(B′)→
Spec(B) is an open immersion. Then ω•

B/A = ω•
B′/A ⊗

L
B B′ by Dualizing Complexes,

Lemmas 24.7 and 24.9 and the definition of ω•
B/A. Hence it suffices to show there is an

isomorphism whenA→ B is finite. In this case we can use Dualizing Complexes, Lemma
24.8 to see that ω•

B/A = RHom(B,A) and hence H0(ω•
B/A) = HomA(B,A) as de-

sired. �

3. Discriminant of a finite locally free morphism

LetX be a scheme and let F be a finite locally freeOX -module. Then there is a canonical
trace map

Trace : HomOX
(F ,F) −→ OX

See Exercises, Exercise 22.6. This map has the property that Trace(id) is the locally con-
stant function onOX corresponding to the rank of F .

Let π : X → Y be a morphism of schemes which is finite locally free. Then there exists a
canonical trace for π which is anOY -linear map

Traceπ : π∗OX −→ OY
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sending a local section f of π∗OX to the trace of multiplication by f on π∗OX . Over
affine opens this recovers the construction in Exercises, Exercise 22.7. The composition

OY
π]−→ π∗OX

Traceπ−−−−→ OY
equals multiplication by the degree of π (which is a locally constant function on Y ). In
analogy with Fields, Section 20 we can define the trace pairing

Qπ : π∗OX × π∗OX −→ OY
by the rule (f, g) 7→ Traceπ(fg). We can think ofQπ as a linear mapπ∗OX → HomOY

(π∗OX ,OY )
between locally free modules of the same rank, and hence obtain a determinant

det(Qπ) : ∧top(π∗OX) −→ ∧top(π∗OX)⊗−1

or in other words a global section
det(Qπ) ∈ Γ(Y,∧top(π∗OX)⊗−2)

The discriminant of π is by definition the closed subschemeDπ ⊂ Y cut out by this global
section. Clearly, Dπ is a locally principal closed subscheme of Y .

Lemma 3.1. Let π : X → Y be a morphism of schemes which is finite locally free.
Then π is étale if and only if its discriminant is empty.

Proof. By Morphisms, Lemma 36.8 it suffices to check that the fibres of π are étale.
Since the construction of the trace pairing commutes with base change we reduce to the
following question: Let k be a field and letA be a finite dimensional k-algebra. Show that
A is étale over k if and only if the trace pairingQA/k : A×A→ k, (a, b) 7→ TraceA/k(ab)
is nondegenerate.
Assume QA/k is nondegenerate. If a ∈ A is a nilpotent element, then ab is nilpotent for
all b ∈ A and we conclude that QA/k(a,−) is identically zero. Hence A is reduced. Then
we can write A = K1 × . . . × Kn as a product where each Ki is a field (see Algebra,
Lemmas 53.2, 53.6, and 25.1). In this case the quadratic space (A,QA/k) is the orthogonal
direct sum of the spaces (Ki, QKi/k). It follows from Fields, Lemma 20.7 that each Ki is
separable over k. This means thatA is étale over k by Algebra, Lemma 143.4. The converse
is proved by reading the argument backwards. �

4. Traces for flat quasi-finite ring maps

The trace referred to in the title of this section is of a completely different nature than the
trace discussed in Duality for Schemes, Section 7. Namely, it is the trace as discussed in
Fields, Section 20 and generalized in Exercises, Exercises 22.6 and 22.7.
Let A → B be a finite flat map of Noetherian rings. Then B is finite flat as an A-module
and hence finite locally free (Algebra, Lemma 78.2). Given b ∈ B we can consider the
trace TraceB/A(b) of the A-linear map B → B given by multiplication by b on B. By
the references above this defines an A-linear map TraceB/A : B → A. Since ωB/A =
HomA(B,A) as A→ B is finite, we see that TraceB/A ∈ ωB/A.
For a general flat quasi-finite ring map we define the notion of a trace as follows.

Definition 4.1. Let A → B be a flat quasi-finite map of Noetherian rings. The
trace element is the unique2 element τB/A ∈ ωB/A with the following property: for any
Noetherian A-algebra A1 such that B1 = B ⊗A A1 comes with a product decomposition

2Uniqueness and existence will be justified in Lemmas 4.2 and 4.6.
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B1 = C ×D with A1 → C finite the image of τB/A in ωC/A1 is TraceC/A1 . Here we use
the base change map (2.3.1) and Lemma 2.7 to get ωB/A → ωB1/A1 → ωC/A1 .

We first prove that trace elements are unique and then we prove that they exist.

Lemma 4.2. Let A→ B be a flat quasi-finite map of Noetherian rings. Then there is
at most one trace element in ωB/A.

Proof. Let q ⊂ B be a prime ideal lying over the prime p ⊂ A. By Algebra, Lemma
145.2 we can find an étale ring map A→ A1 and a prime ideal p1 ⊂ A1 lying over p such
that κ(p1) = κ(p) and such that

B1 = B ⊗A A1 = C ×D
with A1 → C finite and such that the unique prime q1 of B ⊗A A1 lying over q and p1
corresponds to a prime ofC. Observe thatωC/A1 = ωB/A⊗BC (combine Lemmas 2.5 and
2.7). Since the collection of ring mapsB → C obtained in this manner is a jointly injective
family of flat maps and since the image of τB/A in ωC/A1 is prescribed the uniqueness
follows. �

Here is a sanity check.

Lemma 4.3. Let A → B be a finite flat map of Noetherian rings. Then TraceB/A ∈
ωB/A is the trace element.

Proof. Suppose we haveA→ A1 withA1 Noetherian and a product decomposition
B ⊗A A1 = C ×D with A1 → C finite. Of course in this case A1 → D is also finite. Set
B1 = B ⊗A A1. Since the construction of traces commutes with base change we see that
TraceB/A maps to TraceB1/A1 . Thus the proof is finished by noticing that TraceB1/A1 =
(TraceC/A1 ,TraceD/A1) under the isomorphism ωB1/A1 = ωC/A1 × ωD/A1 of Lemma
2.7. �

Lemma 4.4. LetA→ B be a flat quasi-finite map of Noetherian rings. Let τ ∈ ωB/A
be a trace element.

(1) If A → A1 is a map with A1 Noetherian, then with B1 = A1 ⊗A B the image
of τ in ωB1/A1 is a trace element.

(2) If A = Rf , then τ is a trace element in ωB/R.
(3) If g ∈ B, then the image of τ in ωBg/A is a trace element.
(4) If B = B1 ×B2, then τ maps to a trace element in both ωB1/A and ωB2/A.

Proof. Part (1) is a formal consequence of the definition.

Statement (2) makes sense because ωB/R = ωB/A by Lemma 2.3. Denote τ ′ the element τ
but viewed as an element of ωB/R. To see that (2) is true suppose that we have R → R1
withR1 Noetherian and a product decompositionB⊗RR1 = C×DwithR1 → C finite.
Then withA1 = (R1)f we see thatB⊗AA1 = C ×D. SinceR1 → C is finite, a fortiori
A1 → C is finite. Hence we can use the defining property of τ to get the corresponding
property of τ ′.

Statement (3) makes sense because ωBg/A = (ωB/A)g by Lemma 2.3. The proof is sim-
ilar to the proof of (2). Suppose we have A → A1 with A1 Noetherian and a product
decomposition Bg ⊗A A1 = C × D with A1 → C finite. Set B1 = B ⊗A A1. Then
Spec(C) → Spec(B1) is an open immersion as Bg ⊗A A1 = (B1)g and the image is
closed because B1 → C is finite (as A1 → C is finite). Thus we see that B1 = C × D1
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and D = (D1)g . Then we can use the defining property of τ to get the corresponding
property for the image of τ in ωBg/A.

Statement (4) makes sense because ωB/A = ωB1/A × ωB2/A by Lemma 2.7. Suppose we
have A → A′ with A′ Noetherian and a product decomposition B ⊗A A′ = C × D
with A′ → C finite. Then it is clear that we can refine this product decomposition into
B⊗AA′ = C1×C2×D1×D2 withA′ → Ci finite such thatBi⊗AA′ = Ci×Di. Then
we can use the defining property of τ to get the corresponding property for the image of
τ in ωBi/A. This uses the obvious fact that TraceC/A′ = (TraceC1/A′ ,TraceC2/A′) under
the decomposition ωC/A′ = ωC1/A′ × ωC2/A′ . �

Lemma 4.5. LetA→ B be a flat quasi-finite map of Noetherian rings. Let g1, . . . , gm ∈
B be elements generating the unit ideal. Let τ ∈ ωB/A be an element whose image in
ωBgi/A is a trace element for A→ Bgi . Then τ is a trace element.

Proof. Suppose we haveA→ A1 withA1 Noetherian and a product decomposition
B⊗AA1 = C×D withA1 → C finite. We have to show that the image of τ in ωC/A1 is
TraceC/A1 . Observe that g1, . . . , gm generate the unit ideal in B1 = B ⊗A A1 and that τ
maps to a trace element in ω(B1)gi/A1 by Lemma 4.4. Hence we may replace A by A1 and
B by B1 to get to the situation as described in the next paragraph.
Here we assume thatB = C ×D withA→ C is finite. Let τC be the image of τ in ωC/A.
We have to prove that τC = TraceC/A in ωC/A. By the compatibility of trace elements
with products (Lemma 4.4) we see that τC maps to a trace element in ωCgi/A. Hence, after
replacing B by C we may assume that A→ B is finite flat.
Assume A → B is finite flat. In this case TraceB/A is a trace element by Lemma 4.3.
Hence TraceB/A maps to a trace element inωBgi/A by Lemma 4.4. Since trace elements are
unique (Lemma 4.2) we find that TraceB/A and τ map to the same elements in ωBgi/A =
(ωB/A)gi . As g1, . . . , gm generate the unit ideal of B the map ωB/A →

∏
ωBgi/A is

injective and we conclude that τC = TraceB/A as desired. �

Lemma 4.6. Let A → B be a flat quasi-finite map of Noetherian rings. There exists
a trace element τ ∈ ωB/A.

Proof. Choose a factorization A → B′ → B with A → B′ finite and Spec(B) →
Spec(B′) an open immersion. Let g1, . . . , gn ∈ B′ be elements such that Spec(B) =⋃
D(gi) as opens of Spec(B′). Suppose that we can prove the existence of trace elements

τi for the quasi-finite flat ring mapsA→ Bgi . Then for all i, j the elements τi and τj map
to trace elements of ωBgigj /A by Lemma 4.4. By uniqueness of trace elements (Lemma 4.2)
they map to the same element. Hence the sheaf condition for the quasi-coherent module
associated to ωB/A (see Algebra, Lemma 24.1) produces an element τ ∈ ωB/A. Then τ
is a trace element by Lemma 4.5. In this way we reduce to the case treated in the next
paragraph.
Assume we have A → B′ finite and g ∈ B′ with B = B′

g flat over A. It is our task to
construct a trace element in ωB/A = HomA(B′, A) ⊗B′ B. Choose a resolution F1 →
F0 → B′ → 0 ofB′ by finite freeA-modules F0 and F1. Then we have an exact sequence

0→ HomA(B′, A)→ F∨
0 → F∨

1

where F∨
i = HomA(Fi, A) is the dual finite free module. Similarly we have the exact

sequence
0→ HomA(B′, B′)→ F∨

0 ⊗A B′ → F∨
1 ⊗A B′
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The idea of the construction of τ is to use the diagram

B′ µ−→ HomA(B′, B′)← HomA(B′, A)⊗A B′ ev−→ A

where the first arrow sends b′ ∈ B′ to the A-linear operator given by multiplication by
b′ and the last arrow is the evaluation map. The problem is that the middle arrow, which
sends λ′ ⊗ b′ to the map b′′ 7→ λ′(b′′)b′, is not an isomorphism. If B′ is flat over A, the
exact sequences above show that it is an isomorphism and the composition from left to
right is the usual trace TraceB′/A. In the general case, we consider the diagram

HomA(B′, A)⊗A B′ //

��

HomA(B′, A)⊗A B′
g

��
B′

µ
//

22
ψ

77

HomA(B′, B′) // Ker(F∨
0 ⊗A B′

g → F∨
1 ⊗A B′

g)

By flatness of A → B′
g we see that the right vertical arrow is an isomorphism. Hence

we obtain the unadorned dotted arrow. Since B′
g = colim 1

gnB
′, since colimits commute

with tensor products, and since B′ is a finitely presented A-module we can find an n ≥ 0
and a B′-linear (for right B′-module structure) map ψ : B′ → HomA(B′, A) ⊗A B′

whose composition with the left vertical arrow is gnµ. Composing with ev we obtain an
element ev ◦ ψ ∈ HomA(B′, A). Then we set

τ = (ev ◦ ψ)⊗ g−n ∈ HomA(B′, A)⊗B′ B′
g = ωB′

g/A
= ωB/A

We omit the easy verification that this element does not depend on the choice of n and ψ
above.

Let us prove that τ as constructed in the previous paragraph has the desired property in
a special case. Namely, say B′ = C ′ × D′ and g = (f, h) where A → C ′ flat, D′

h is
flat, and f is a unit in C ′. To show: τ maps to TraceC′/A in ωC′/A. In this case we first
choose nD and ψD : D′ → HomA(D′, A) ⊗A D′ as above for the pair (D′, h) and we
can let ψC : C ′ → HomA(C ′, A)⊗A C ′ = HomA(C ′, C ′) be the map seconding c′ ∈ C ′

to multiplication by c′. Then we take n = nD and ψ = (fnDψC , ψD) and the desired
compatibility is clear because TraceC′/A = ev ◦ ψC as remarked above.

To prove the desired property in general, suppose givenA→ A1 withA1 Noetherian and
a product decomposition B′

g ⊗A A1 = C ×D with A1 → C finite. Set B′
1 = B′ ⊗A A1.

Then Spec(C) → Spec(B′
1) is an open immersion as B′

g ⊗A A1 = (B′
1)g and the image

is closed as B′
1 → C is finite (since A1 → C is finite). Thus B′

1 = C ×D′ and D′
g = D.

We conclude that B′
1 = C × D′ and g over A1 are as in the previous paragraph. Since

formation of the displayed diagram above commutes with base change, the formation of τ
commutes with the base changeA→ A1 (details omitted; use the resolution F1⊗AA1 →
F0 ⊗A A1 → B′

1 → 0 to see this). Thus the desired compatibility follows from the result
of the previous paragraph. �

Remark 4.7. Let f : Y → X be a flat locally quasi-finite morphism of locally Noe-
therian schemes. Let ωY/X be as in Remark 2.11. It is clear from the uniqueness, existence,
and compatibility with localization of trace elements (Lemmas 4.2, 4.6, and 4.4) that there
exists a global section

τY/X ∈ Γ(Y, ωY/X)
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such that for every pair of affine opens Spec(B) = V ⊂ Y , Spec(A) = U ⊂ X
with f(V ) ⊂ U that element τY/X maps to τB/A under the canonical isomorphism
H0(V, ωY/X) = ωB/A.

Lemma 4.8. Let k be a field and let A be a finite k-algebra. Assume A is local with
residue field k′. The following are equivalent

(1) TraceA/k is nonzero,
(2) τA/k ∈ ωA/k is nonzero, and
(3) k′/k is separable and lengthA(A) is prime to the characteristic of k.

Proof. Conditions (1) and (2) are equivalent by Lemma 4.3. Let m ⊂ A. Since
dimk(A) <∞ it is clear that A has finite length over A. Choose a filtration

A = I0 ⊃ m = I1 ⊃ I2 ⊃ . . . In = 0
by ideals such that Ii/Ii+1 ∼= k′ asA-modules. See Algebra, Lemma 52.11 which also shows
thatn = lengthA(A). If a ∈ m then aIi ⊂ Ii+1 and it is immediate that TraceA/k(a) = 0.
If a 6∈ m with image λ ∈ k′, then we conclude

TraceA/k(a) =
∑

i=0,...,n−1
Tracek(a : Ii/Ii−1 → Ii/Ii−1) = nTracek′/k(λ)

The proof of the lemma is finished by applying Fields, Lemma 20.7. �

5. Finite morphisms

In this section we collect some observations about the constructions in the previous sec-
tions for finite morphisms. Let f : Y → X be a finite morphism of locally Noetherian
schemes. Let ωY/X be as in Remark 2.11.
The first remark is that

f∗ωY/X = HomOX
(f∗OY ,OX)

as sheaves of f∗OY -modules. Since f is affine, this formula uniquely characterizes ωY/X ,
see Morphisms, Lemma 11.6. The formula holds because for Spec(A) = U ⊂ X affine
open, the inverse image V = f−1(U) is the spectrum of a finite A-algebra B and hence
H0(U, f∗ωY/X) = H0(V, ωY/X) = ωB/A = HomA(B,A) = H0(U,HomOX

(f∗OY ,OX))
by construction. In particular, we obtain a canonical evaluation map

f∗ωY/X −→ OX
which is given by evaluation at 1 if we think of f∗ωY/X as the sheafHomOX

(f∗OY ,OX).
The second remark is that using the evaluation map we obtain canonical identifications

HomY (F , f∗G ⊗OY
ωY/X) = HomX(f∗F ,G)

functorially in the quasi-coherent module F on Y and the finite locally free module G on
X . If G = OX this follows immediately from the above and Algebra, Lemma 14.4. For
general G we can use the same lemma and the isomorphisms

f∗(f∗G ⊗OY
ωY/X) = G ⊗OX

HomOX
(f∗OY ,OX) = HomOX

(f∗OY ,G)
of f∗OY -modules where the first equality is the projection formula (Cohomology, Lemma
54.2). An alternative is to prove the formula affine locally by direct computation.
The third remark is that if f is in addition flat, then the composition

f∗OY
f∗τY/X−−−−−→ f∗ωY/X −→ OX
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is equal to the trace map Tracef discussed in Section 3. This follows immediately by look-
ing over affine opens.
The fourth remark is that if f is flat and X Noetherian, then we obtain

HomY (K,Lf∗M ⊗OY
ωY/X) = HomX(Rf∗K,M)

for any K in DQCoh(OY ) and M in DQCoh(OX). This follows from the material in
Duality for Schemes, Section 12, but can be proven directly in this case as follows. First,
if X is affine, then it holds by Dualizing Complexes, Lemmas 13.1 and 13.93 and Derived
Categories of Schemes, Lemma 3.5. Then we can use the induction principle (Cohomology
of Schemes, Lemma 4.1) and Mayer-Vietoris (in the form of Cohomology, Lemma 33.3) to
finish the proof.

6. The Noether different

There are many different differents available in the literature. We list some of them in
this and the next sections; for more information we suggest the reader consult [?].
Let A→ B be a ring map. Denote

µ : B ⊗A B −→ B, b⊗ b′ 7−→ bb′

the multiplication map. Let I = Ker(µ). It is clear that I is generated by the elements
b ⊗ 1 − 1 ⊗ b for b ∈ B. Hence the annihilator J ⊂ B ⊗A B of I is a B-module in a
canonical manner. The Noether different of B over A is the image of J under the map
µ : B ⊗A B → B. Equivalently, the Noether different is the image of the map

J = HomB⊗AB(B,B ⊗A B) −→ B, ϕ 7−→ µ(ϕ(1))
We begin with some obligatory lemmas.

Lemma 6.1. Let A→ Bi, i = 1, 2 be ring maps. Set B = B1 ×B2.
(1) The annihilator J of Ker(B ⊗A B → B) is J1 × J2 where Ji is the annihilator

of Ker(Bi ⊗A Bi → Bi).
(2) The Noether different D of B over A is D1 × D2, where Di is the Noether

different of Bi over A.

Proof. Omitted. �

Lemma 6.2. LetA→ B be a finite type ring map. LetA→ A′ be a flat ring map. Set
B′ = B ⊗A A′.

(1) The annihilatorJ ′ of Ker(B′⊗A′B′ → B′) isJ⊗AA′ whereJ is the annihilator
of Ker(B ⊗A B → B).

(2) The Noether different D′ ofB′ overA′ is DB′, where D is the Noether different
of B over A.

Proof. Choose generators b1, . . . , bn of B as an A-algebra. Then

J = Ker(B ⊗A B
bi⊗1−1⊗bi−−−−−−−→ (B ⊗A B)⊕n)

Hence we see that the formation of J commutes with flat base change. The result on the
Noether different follows immediately from this. �

Lemma 6.3. LetA→ B′ → B be ring maps withA→ B′ of finite type andB′ → B
inducing an open immersion of spectra.

3There is a simpler proof of this lemma in our case.
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(1) The annihilator J of Ker(B⊗AB → B) is J ′⊗B′ B where J ′ is the annihilator
of Ker(B′ ⊗A B′ → B′).

(2) The Noether different D of B over A is D′B, where D′ is the Noether different
of B′ over A.

Proof. Write I = Ker(B ⊗A B → B) and I ′ = Ker(B′ ⊗A B′ → B′). As
Spec(B)→ Spec(B′) is an open immersion, it follows thatB = (B⊗AB)⊗B′⊗AB′ B′.
Thus we see that I = I ′(B⊗AB). Since I ′ is finitely generated andB′⊗AB′ → B⊗AB
is flat, we conclude that J = J ′(B ⊗A B), see Algebra, Lemma 40.4. Since the B′ ⊗A B′-
module structure of J ′ factors through B′ ⊗A B′ → B′ we conclude that (1) is true. Part
(2) is a consequence of (1). �

Remark 6.4. Let A → B be a quasi-finite homomorphism of Noetherian rings. Let
J be the annihilator of Ker(B ⊗A B → B). There is a canonical B-bilinear pairing
(6.4.1) ωB/A × J −→ B

defined as follows. Choose a factorizationA→ B′ → B withA→ B′ finite andB′ → B
inducing an open immersion of spectra. Let J ′ be the annihilator of Ker(B′⊗AB′ → B′).
We first define

HomA(B′, A)× J ′ −→ B′, (λ,
∑

bi ⊗ ci) 7−→
∑

λ(bi)ci
This is B′-bilinear exactly because for ξ ∈ J ′ and b ∈ B′ we have (b ⊗ 1)ξ = (1 ⊗ b)ξ.
By Lemma 6.3 and the fact that ωB/A = HomA(B′, A) ⊗B′ B we can extend this to a
B-bilinear pairing as displayed above.

Lemma 6.5. Let A→ B be a quasi-finite homomorphism of Noetherian rings.
(1) If A→ A′ is a flat map of Noetherian rings, then

ωB/A × J //

��

B

��
ωB′/A′ × J ′ // B′

is commutative where notation as in Lemma 6.2 and horizontal arrows are given
by (6.4.1).

(2) If B = B1 ×B2, then

ωB/A × J //

��

B

��
ωBi/A × Ji // Bi

is commutative for i = 1, 2 where notation as in Lemma 6.1 and horizontal
arrows are given by (6.4.1).

Proof. Because of the construction of the pairing in Remark 6.4 both (1) and (2) re-
duce to the case whereA→ B is finite. Then (1) follows from the fact that the contraction
map HomA(M,A) ⊗A M ⊗A M → M , λ ⊗m ⊗m′ 7→ λ(m)m′ commuted with base
change. To see (2) use that J = J1 × J2 is contained in the summands B1 ⊗A B1 and
B2 ⊗A B2 of B ⊗A B. �

Lemma 6.6. Let A → B be a flat quasi-finite homomorphism of Noetherian rings.
The pairing of Remark 6.4 induces an isomorphism J → HomB(ωB/A, B).
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Proof. We first prove this whenA→ B is finite and flat. In this case we can localize
on A and assume B is finite free as an A-module. Let b1, . . . , bn be a basis of B as an A-
module and denote b∨

1 , . . . , b
∨
n the dual basis ofωB/A. Note that

∑
bi⊗ci ∈ J maps to the

element of HomB(ωB/A, B) which sends b∨
i to ci. Suppose ϕ : ωB/A → B is B-linear.

Then we claim that ξ =
∑
bi ⊗ ϕ(b∨

i ) is an element of J . Namely, the B-linearity of ϕ
exactly implies that (b⊗ 1)ξ = (1⊗ b)ξ for all b ∈ B. Thus our map has an inverse and
it is an isomorphism.

Let q ⊂ B be a prime lying over p ⊂ A. We will show that the localization

Jq −→ HomB(ωB/A,B)q

is an isomorphism. This suffices by Algebra, Lemma 23.1. By Algebra, Lemma 145.2 we
can find an étale ring map A → A′ and a prime ideal p′ ⊂ A′ lying over p such that
κ(p′) = κ(p) and such that

B′ = B ⊗A A′ = C ×D

with A′ → C finite and such that the unique prime q′ of B ⊗A A′ lying over q and p′

corresponds to a prime of C. Let J ′ be the annihilator of Ker(B′ ⊗A′ B′ → B′). By
Lemmas 2.5, 6.2, and 6.5 the map J ′ → HomB′(ωB′/A′ , B′) is gotten by applying the
functor −⊗B B′ to the map J → HomB(ωB/A, B). Since Bq → B′

q′ is faithfully flat it
suffices to prove the result for (A′ → B′, q′). By Lemmas 2.7, 6.1, and 6.5 this reduces us
to the case proved in the first paragraph of the proof. �

Lemma 6.7. Let A → B be a flat quasi-finite homomorphism of Noetherian rings.
The diagram

J //

µ
��

HomB(ωB/A, B)

ϕ7→ϕ(τB/A)
xx

B

commutes where the horizontal arrow is the isomorphism of Lemma 6.6. Hence the Noether
different of B over A is the image of the map HomB(ωB/A, B)→ B.

Proof. Exactly as in the proof of Lemma 6.6 this reduces to the case of a finite free
map A → B. In this case τB/A = TraceB/A. Choose a basis b1, . . . , bn of B as an A-
module. Let ξ =

∑
bi ⊗ ci ∈ J . Then µ(ξ) =

∑
bici. On the other hand, the image of ξ

in HomB(ωB/A, B) sends TraceB/A to
∑

TraceB/A(bi)ci. Thus we have to show∑
bici =

∑
TraceB/A(bi)ci

when ξ =
∑
bi⊗ ci ∈ J . Write bibj =

∑
k a

k
ijbk for some akij ∈ A. Then the right hand

side is
∑
i,j a

j
ijci. On the other hand, ξ ∈ J implies

(bj ⊗ 1)(
∑

i
bi ⊗ ci) = (1⊗ bj)(

∑
i
bi ⊗ ci)

which implies that bjci =
∑
k a

i
jkck. Thus the left hand side is

∑
i,j a

i
ijcj . Since akij = akji

the equality holds. �

Lemma 6.8. Let A → B be a finite type ring map. Let D ⊂ B be the Noether
different. Then V (D) is the set of primes q ⊂ B such that A→ B is not unramified at q.
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Proof. Assume A→ B is unramified at q. After replacing B by Bg for some g ∈ B,
g 6∈ q we may assume A → B is unramified (Algebra, Definition 151.1 and Lemma 6.3).
In this case ΩB/A = 0. Hence if I = Ker(B ⊗A B → B), then I/I2 = 0 by Algebra,
Lemma 131.13. Since A → B is of finite type, we see that I is finitely generated. Hence
by Nakayama’s lemma (Algebra, Lemma 20.1) there exists an element of the form 1 + i
annihilating I . It follows that D = B.

Conversely, assume that D 6⊂ q. Then after replacing B by a principal localization as
above we may assume D = B. This means there exists an element of the form 1 + i in the
annihilator of I . Conversely this implies that I/I2 = ΩB/A is zero and we conclude. �

7. The Kähler different

Let A → B be a finite type ring map. The Kähler different is the zeroth fitting ideal of
ΩB/A as a B-module. We globalize the definition as follows.

Definition 7.1. Let f : Y → X be a morphism of schemes which is locally of finite
type. The Kähler different is the 0th fitting ideal of ΩY/X .

The Kähler different is a quasi-coherent sheaf of ideals on Y .

Lemma 7.2. Consider a cartesian diagram of schemes

Y ′

f ′

��

// Y

f

��
X ′ g // X

with f locally of finite type. LetR ⊂ Y , resp.R′ ⊂ Y ′ be the closed subscheme cut out by
the Kähler different of f , resp. f ′. Then Y ′ → Y induces an isomorphismR′ → R×Y Y ′.

Proof. This is true because ΩY ′/X′ is the pullback of ΩY/X (Morphisms, Lemma
32.10) and then we can apply More on Algebra, Lemma 8.4. �

Lemma 7.3. Let f : Y → X be a morphism of schemes which is locally of finite
type. Let R ⊂ Y be the closed subscheme defined by the Kähler different. Then R ⊂ Y
is exactly the set of points where f is not unramified.

Proof. This is a copy of Divisors, Lemma 10.2. �

Lemma 7.4. Let A be a ring. Let n ≥ 1 and f1, . . . , fn ∈ A[x1, . . . , xn]. Set B =
A[x1, . . . , xn]/(f1, . . . , fn). The Kähler different of B over A is the ideal of B generated
by det(∂fi/∂xj).

Proof. This is true because ΩB/A has a presentation⊕
i=1,...,n

Bfi
d−→
⊕

j=1,...,n
Bdxj → ΩB/A → 0

by Algebra, Lemma 131.9. �
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8. The Dedekind different

Let A → B be a ring map. We say the Dedekind different is defined if A is Noetherian,
A → B is finite, any nonzerodivisor on A is a nonzerodivisor on B, and K → L is étale
where K = Q(A) and L = B ⊗A K. Then K ⊂ L is finite étale and

LB/A = {x ∈ L | TraceL/K(bx) ∈ A for all b ∈ B}

is the Dedekind complementary module. In this situation the Dedekind different is

DB/A = {x ∈ L | xLB/A ⊂ B}

viewed as a B-submodule of L. By Lemma 8.1 the Dedekind different is an ideal of B
either if A is normal or if B is flat over A.

Lemma 8.1. Assume the Dedekind different of A → B is defined. Consider the
statements

(1) A→ B is flat,
(2) A is a normal ring,
(3) TraceL/K(B) ⊂ A,
(4) 1 ∈ LB/A, and
(5) the Dedekind different DB/A is an ideal of B.

Then we have (1)⇒ (3), (2)⇒ (3), (3)⇔ (4), and (4)⇒ (5).

Proof. The equivalence of (3) and (4) and the implication (4)⇒ (5) are immediate.

If A→ B is flat, then we see that TraceB/A : B → A is defined and that TraceL/K is the
base change. Hence (3) holds.

If A is normal, then A is a finite product of normal domains, hence we reduce to the case
of a normal domain. Then K is the fraction field of A and L =

∏
Li is a finite product

of finite separable field extensions of K. Then TraceL/K(b) =
∑

TraceLi/K(bi) where
bi ∈ Li is the image of b. Since b is integral overA asB is finite overA, these traces are in
A. This is true because the minimal polynomial of bi overK has coefficients inA (Algebra,
Lemma 38.6) and because TraceLi/K(bi) is an integer multiple of one of these coefficients
(Fields, Lemma 20.3). �

Lemma 8.2. If the Dedekind different of A→ B is defined, then there is a canonical
isomorphism LB/A → ωB/A.

Proof. Recall that ωB/A = HomA(B,A) as A → B is finite. We send x ∈ LB/A
to the map b 7→ TraceL/K(bx). Conversely, given an A-linear map ϕ : B → A we
obtain a K-linear map ϕK : L → K. Since K → L is finite étale, we see that the
trace pairing is nondegenerate (Lemma 3.1) and hence there exists a x ∈ L such that
ϕK(y) = TraceL/K(xy) for all y ∈ L. Then x ∈ LB/A maps to ϕ in ωB/A. �

Lemma 8.3. If the Dedekind different of A→ B is defined and A→ B is flat, then
(1) the canonical isomorphism LB/A → ωB/A sends 1 ∈ LB/A to the trace element

τB/A ∈ ωB/A, and
(2) the Dedekind different is DB/A = {b ∈ B | bωB/A ⊂ BτB/A}.

Proof. The first assertion follows from the proof of Lemma 8.1 and Lemma 4.3. The
second assertion is immediate from the first and the definitions. �
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9. The different

The motivation for the following definition is that it recovers the Dedekind different in
the finite flat case as we will see below.

Definition 9.1. Let f : Y → X be a flat locally quasi-finite morphism of lo-
cally Noetherian schemes. Let ωY/X be the relative dualizing module and let τY/X ∈
Γ(Y, ωY/X) be the trace element (Remarks 2.11 and 4.7). The annihilator of

Coker(OY
τY/X−−−→ ωY/X)

is the different of Y/X . It is a coherent ideal Df ⊂ OY .

We will generalize this in Remark 14.2 below. Observe that Df is locally generated by
one element if ωY/X is an invertible OY -module. We first state the agreement with the
Dedekind different.

Lemma 9.2. Let f : Y → X be a flat quasi-finite morphism of Noetherian schemes.
Let V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X be affine open subschemes with f(V ) ⊂ U .
If the Dedekind different of A→ B is defined, then

Df |V = D̃B/A

as coherent ideal sheaves on V .

Proof. This is clear from Lemmas 8.1 and 8.3. �

Lemma 9.3. Let f : Y → X be a flat quasi-finite morphism of Noetherian schemes.
Let V = Spec(B) ⊂ Y , U = Spec(A) ⊂ X be affine open subschemes with f(V ) ⊂ U .
If ωY/X |V is invertible, i.e., if ωB/A is an invertible B-module, then

Df |V = D̃

as coherent ideal sheaves on V where D ⊂ B is the Noether different of B over A.

Proof. Consider the map

HomOY
(ωY/X ,OY ) −→ OY , ϕ 7−→ ϕ(τY/X)

The image of this map corresponds to the Noether different on affine opens, see Lemma
6.7. Hence the result follows from the elementary fact that given an invertible module
ω and a global section τ the image of τ : Hom(ω,O) = ω⊗−1 → O is the same as the
annihilator of Coker(τ : O → ω). �

Lemma 9.4. Consider a cartesian diagram of Noetherian schemes

Y ′

f ′

��

// Y

f

��
X ′ g // X

with f flat and quasi-finite. Let R ⊂ Y , resp. R′ ⊂ Y ′ be the closed subscheme cut
out by the different Df , resp. Df ′ . Then Y ′ → Y induces a bijective closed immersion
R′ → R×Y Y ′. If g is flat or if ωY/X is invertible, then R′ = R×Y Y ′.
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Proof. There is an immediate reduction to the case whereX ,X ′, Y , Y ′ are affine. In
other words, we have a cocartesian diagram of Noetherian rings

B′ Boo

A′

OO

Aoo

OO

with A → B flat and quasi-finite. The base change map ωB/A ⊗B B′ → ωB′/A′ is an
isomorphism (Lemma 2.10) and maps the trace element τB/A to the trace element τB′/A′

(Lemma 4.4). Hence the finite B-module Q = Coker(τB/A : B → ωB/A) satisfies Q⊗B
B′ = Coker(τB′/A′ : B′ → ωB′/A′). Thus DB/AB

′ ⊂ DB′/A′ which means we obtain
the closed immersion R′ → R ×Y Y ′. Since R = Supp(Q) and R′ = Supp(Q ⊗B B′)
(Algebra, Lemma 40.5) we see that R′ → R ×Y Y ′ is bijective by Algebra, Lemma 40.6.
The equalityDB/AB

′ = DB′/A′ holds ifB → B′ is flat, e.g., ifA→ A′ is flat, see Algebra,
Lemma 40.4. Finally, if ωB/A is invertible, then we can localize and assume ωB/A = Bλ.
Writing τB/A = bλ we see that Q = B/bB and DB/A = bB. The same reasoning over
B′ gives DB′/A′ = bB′ and the lemma is proved. �

Lemma 9.5. Let f : Y → X be a finite flat morphism of Noetherian schemes. Then
Normf : f∗OY → OX maps f∗Df into the ideal sheaf of the discriminant Df .

Proof. The norm map is constructed in Divisors, Lemma 17.6 and the discriminant
of f in Section 3. The question is affine local, hence we may assume X = Spec(A),
Y = Spec(B) and f given by a finite locally free ring map A → B. Localizing fur-
ther we may assume B is finite free as an A-module. Choose a basis b1, . . . , bn ∈ B for
B as an A-module. Denote b∨

1 , . . . , b
∨
n the dual basis of ωB/A = HomA(B,A) as an A-

module. Since the norm of b is the determinant of b : B → B as an A-linear map, we see
that NormB/A(b) = det(b∨

i (bbj)). The discriminant is the principal closed subscheme of
Spec(A) defined by det(TraceB/A(bibj)). If b ∈ DB/A then there exist ci ∈ B such that
b · b∨

i = ci · TraceB/A where we use a dot to indicate the B-module structure on ωB/A.
Write ci =

∑
ailbl. We have

NormB/A(b) = det(b∨
i (bbj))

= det((b · b∨
i )(bj))

= det((ci · TraceB/A)(bj))
= det(TraceB/A(cibj))
= det(ail) det(TraceB/A(blbj))

which proves the lemma. �

Lemma 9.6. Let f : Y → X be a flat quasi-finite morphism of Noetherian schemes.
The closed subschemeR ⊂ Y defined by the differentDf is exactly the set of points where
f is not étale (equivalently not unramified).

Proof. Since f is of finite presentation and flat, we see that it is étale at a point if
and only if it is unramified at that point. Moreover, the formation of the locus of ramified
points commutes with base change. See Morphisms, Section 36 and especially Morphisms,
Lemma 36.17. By Lemma 9.4 the formation of R commutes set theoretically with base
change. Hence it suffices to prove the lemma when X is the spectrum of a field. On the
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other hand, the construction of (ωY/X , τY/X) is local on Y . Since Y is a finite discrete
space (being quasi-finite over a field), we may assume Y has a unique point.

Say X = Spec(k) and Y = Spec(B) where k is a field and B is a finite local k-algebra. If
Y → X is étale, thenB is a finite separable extension of k, and the trace element TraceB/k
is a basis element ofωB/k by Fields, Lemma 20.7. ThusDB/k = B in this case. Conversely,
if DB/k = B, then we see from Lemma 9.5 and the fact that the norm of 1 equals 1 that
the discriminant is empty. Hence Y → X is étale by Lemma 3.1. �

Lemma 9.7. Let f : Y → X be a flat quasi-finite morphism of Noetherian schemes.
Let R ⊂ Y be the closed subscheme defined by Df .

(1) If ωY/X is invertible, then R is a locally principal closed subscheme of Y .
(2) If ωY/X is invertible and f is finite, then the norm of R is the discriminant Df

of f .
(3) If ωY/X is invertible and f is étale at the associated points of Y , then R is an

effective Cartier divisor and there is an isomorphismOY (R) = ωY/X .

Proof. Proof of (1). We may work locally on Y , hence we may assume ωY/X is free
of rank 1. Say ωY/X = OY λ. Then we can write τY/X = hλ and then we see that R is
defined by h, i.e., R is locally principal.

Proof of (2). We may assume Y → X is given by a finite free ring map A → B and
that ωB/A is free of rank 1 as B-module. Choose a B-basis element λ for ωB/A and
write TraceB/A = b · λ for some b ∈ B. Then DB/A = (b) and Df is cut out by
det(TraceB/A(bibj)) where b1, . . . , bn is a basis of B as an A-module. Let b∨

1 , . . . , b
∨
n be

the dual basis. Writing b∨
i = ci · λ we see that c1, . . . , cn is a basis of B as well. Hence

with ci =
∑
ailbl we see that det(ail) is a unit inA. Clearly, b · b∨

i = ci ·TraceB/A hence
we conclude from the computation in the proof of Lemma 9.5 that NormB/A(b) is a unit
times det(TraceB/A(bibj)).

Proof of (3). In the notation above we see from Lemma 9.6 and the assumption that h does
not vanish in the associated points of Y , which implies that h is a nonzerodivisor. The
canonical isomorphism sends 1 to τY/X , see Divisors, Lemma 14.10. �

10. Quasi-finite syntomic morphisms

This section discusses the fact that a quasi-finite syntomic morphism has an invertible
relative dualizing module.

Lemma 10.1. Let f : Y → X be a morphism of schemes. The following are equivalent
(1) f is locally quasi-finite and syntomic,
(2) f is locally quasi-finite, flat, and a local complete intersection morphism,
(3) f is locally quasi-finite, flat, locally of finite presentation, and the fibres of f are

local complete intersections,
(4) f is locally quasi-finite and for every y ∈ Y there are affine opens y ∈ V =

Spec(B) ⊂ Y ,U = Spec(A) ⊂ X with f(V ) ⊂ U an integern andh, f1, . . . , fn ∈
A[x1, . . . , xn] such that B = A[x1, . . . , xn, 1/h]/(f1, . . . , fn),

(5) for every y ∈ Y there are affine opens y ∈ V = Spec(B) ⊂ Y , U = Spec(A) ⊂
X with f(V ) ⊂ U such that A → B is a relative global complete intersection
of the form B = A[x1, . . . , xn]/(f1, . . . , fn),

(6) f is locally quasi-finite, flat, locally of finite presentation, and NLX/Y has tor-
amplitude in [−1, 0], and
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(7) f is flat, locally of finite presentation, NLX/Y is perfect of rank 0 with tor-
amplitude in [−1, 0],

Proof. The equivalence of (1) and (2) is More on Morphisms, Lemma 62.8. The equiv-
alence of (1) and (3) is Morphisms, Lemma 30.11.

If A→ B is as in (4), then B = A[x, x1, . . . , xn]/(xh− 1, f1, . . . , fn] is a relative global
complete intersection by see Algebra, Definition 136.5. Thus (4) implies (5). It is clear
that (5) implies (4).

Condition (5) implies (1): by Algebra, Lemma 136.13 a relative global complete intersec-
tion is syntomic and the definition of a relative global complete intersection guarantees
that a relative global complete intersection on n variables with n equations is quasi-finite,
see Algebra, Definition 136.5 and Lemma 122.2.

Either Algebra, Lemma 136.15 or Morphisms, Lemma 30.10 shows that (1) implies (5).

More on Morphisms, Lemma 62.17 shows that (6) is equivalent to (1). If the equivalent
conditions (1) – (6) hold, then we see that affine locally Y → X is given by a relative
global complete intersection B = A[x1, . . . , xn]/(f1, . . . , fn) with the same number of
variables as the number of equations. Using this presentation we see that

NLB/A =
(

(f1, . . . , fn)/(f1, . . . , fn)2 −→
⊕

i=1,...,n
Bdxi

)
By Algebra, Lemma 136.12 the module (f1, . . . , fn)/(f1, . . . , fn)2 is free with generators
the congruence classes of the elements f1, . . . , fn. Thus NLB/A has rank 0 and so does
NLY/X . In this way we see that (1) – (6) imply (7).

Finally, assume (7). By More on Morphisms, Lemma 62.17 we see that f is syntomic. Thus
on suitable affine opens f is given by a relative global complete intersection A → B =
A[x1, . . . , xn]/(f1, . . . , fm), see Morphisms, Lemma 30.10. Exactly as above we see that
NLB/A is a perfect complex of rank n−m. Thus n = m and we see that (5) holds. This
finishes the proof. �

Lemma 10.2. Invertibility of the relative dualizing module.
(1) IfA→ B is a quasi-finite flat homomorphism of Noetherian rings, then ωB/A is

an invertibleB-module if and only if ωB⊗Aκ(p)/κ(p) is an invertibleB⊗A κ(p)-
module for all primes p ⊂ A.

(2) If Y → X is a quasi-finite flat morphism of Noetherian schemes, then ωY/X is
invertible if and only if ωYx/x is invertible for all x ∈ X .

Proof. Proof of (1). As A → B is flat, the module ωB/A is A-flat, see Lemma 2.9.
Thus ωB/A is an invertible B-module if and only if ωB/A ⊗A κ(p) is an invertible B ⊗A
κ(p)-module for every prime p ⊂ A, see More on Morphisms, Lemma 16.7. Still using that
A → B is flat, we have that formation of ωB/A commutes with base change, see Lemma
2.10. Thus we see that invertibility of the relative dualizing module, in the presence of
flatness, is equivalent to invertibility of the relative dualizing module for the maps κ(p)→
B ⊗A κ(p).

Part (2) follows from (1) and the fact that affine locally the dualizing modules are given
by their algebraic counterparts, see Remark 2.11. �

Lemma 10.3. Let k be a field. Let B = k[x1, . . . , xn]/(f1, . . . , fn) be a global com-
plete intersection over k of dimension 0. Then ωB/k is invertible.
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Proof. By Noether normalization, see Algebra, Lemma 115.4 we see that there exists
a finite injection k → B, i.e., dimk(B) <∞. Hence ωB/k = Homk(B, k) as aB-module.
By Dualizing Complexes, Lemma 15.8 we see thatRHom(B, k) is a dualizing complex for
B and by Dualizing Complexes, Lemma 13.3 we see that RHom(B, k) is equal to ωB/k
placed in degree 0. Thus it suffices to show that B is Gorenstein (Dualizing Complexes,
Lemma 21.4). This is true by Dualizing Complexes, Lemma 21.7. �

Lemma 10.4. Let f : Y → X be a morphism of locally Noetherian schemes. If f
satisfies the equivalent conditions of Lemma 10.1 then ωY/X is an invertibleOY -module.

Proof. We may assumeA→ B is a relative global complete intersection of the form
B = A[x1, . . . , xn]/(f1, . . . , fn) and we have to show ωB/A is invertible. This follows in
combining Lemmas 10.2 and 10.3. �

Example 10.5. Let n ≥ 1 and d ≥ 1 be integers. Let T be the set of multi-indices
E = (e1, . . . , en) with ei ≥ 0 and

∑
ei ≤ d. Consider the ring

A = Z[ai,E ; 1 ≤ i ≤ n,E ∈ T ]

In A[x1, . . . , xn] consider the elements fi =
∑
E∈T ai,Ex

E where xE = xe1
1 . . . xenn as is

customary. Consider the A-algebra

B = A[x1, . . . , xn]/(f1, . . . , fn)

Denote Xn,d = Spec(A) and let Yn,d ⊂ Spec(B) be the maximal open subscheme such
that the restriction of the morphism Spec(B) → Spec(A) = Xn,d is quasi-finite, see
Algebra, Lemma 123.13.

Lemma 10.6. With notation as in Example 10.5 the schemesXn,d andYn,d are regular
and irreducible, the morphism Yn,d → Xn,d is locally quasi-finite and syntomic, and there
is a dense open subscheme V ⊂ Yn,d such that Yn,d → Xn,d restricts to an étale morphism
V → Xn,d.

Proof. The scheme Xn,d is the spectrum of the polynomial ring A. Hence Xn,d is
regular and irreducible. Since we can write

fi = ai,(0,...,0) +
∑

E∈T,E 6=(0,...,0)
ai,Ex

E

we see that the ringB is isomorphic to the polynomial ring onx1, . . . , xn and the elements
ai,E with E 6= (0, . . . , 0). Hence Spec(B) is an irreducible and regular scheme and so is
the open Yn,d. The morphism Yn,d → Xn,d is locally quasi-finite and syntomic by Lemma
10.1. To find V it suffices to find a single point where Yn,d → Xn,d is étale (the locus of
points where a morphism is étale is open by definition). Thus it suffices to find a point
of Xn,d where the fibre of Yn,d → Xn,d is nonempty and étale, see Morphisms, Lemma
36.15. We choose the point corresponding to the ring map χ : A → Q sending fi to
1 + xdi . Then

B ⊗A,χ Q = Q[x1, . . . , xn]/(xd1 − 1, . . . , xdn − 1)

which is a nonzero étale algebra over Q. �
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Lemma 10.7. Let f : Y → X be a morphism of schemes. If f satisfies the equivalent
conditions of Lemma 10.1 then for every y ∈ Y there existn, d and a commutative diagram

Y

��

V

��

oo // Yn,d

��
X Uoo // Xn,d

where U ⊂ X and V ⊂ Y are open, where Yn,d → Xn,d is as in Example 10.5, and where
the square on the right hand side is cartesian.

Proof. By Lemma 10.1 we can choose U and V affine so that U = Spec(R) and
V = Spec(S) with S = R[y1, . . . , yn]/(g1, . . . , gn). With notation as in Example 10.5 if
we pick d large enough, then we can write each gi as gi =

∑
E∈T gi,Ey

E with gi,E ∈ R.
Then the map A → R sending ai,E to gi,E and the map B → S sending xi → yi give a
cocartesian diagram of rings

S Boo

R

OO

Aoo

OO

which proves the lemma. �

11. Finite syntomic morphisms

This section is the analogue of Section 10 for finite syntomic morphisms.

Lemma 11.1. Let f : Y → X be a morphism of schemes. The following are equivalent
(1) f is finite and syntomic,
(2) f is finite, flat, and a local complete intersection morphism,
(3) f is finite, flat, locally of finite presentation, and the fibres of f are local complete

intersections,
(4) f is finite and for every x ∈ X there is an affine open x ∈ U = Spec(A) ⊂ X

an integer n and f1, . . . , fn ∈ A[x1, . . . , xn] such that f−1(U) is isomorphic to
the spectrum of A[x1, . . . , xn]/(f1, . . . , fn),

(5) f is finite, flat, locally of finite presentation, and NLX/Y has tor-amplitude in
[−1, 0], and

(6) f is finite, flat, locally of finite presentation, andNLX/Y is perfect of rank 0 with
tor-amplitude in [−1, 0],

Proof. The equivalence of (1), (2), (3), (5), and (6) and the implication (4) ⇒ (1)
follow immediately from Lemma 10.1. Assume the equivalent conditions (1), (2), (3),
(5), (6) hold. Choose a point x ∈ X and an affine open U = Spec(A) of x in X
and say x corresponds to the prime ideal p ⊂ A. Write f−1(U) = Spec(B). Write
B = A[x1, . . . , xn]/I . Since NLB/A is perfect of tor-amplitude in [−1, 0] by (6) we see
that I/I2 is a finite locally free B-module of rank n. Since Bp is semi-local we see that
(I/I2)p is free of rank n, see Algebra, Lemma 78.7. Thus after replacing A by a principal
localization at an element not in p we may assume I/I2 is a freeB-module of rank n. Thus
by Algebra, Lemma 136.6 we can find a presentation ofB overAwith the same number of
variables as equations. In other words, we may assume B = A[x1, . . . , xn]/(f1, . . . , fn).
This proves (4). �
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Example 11.2. Let d ≥ 1 be an integer. Consider variables alij for 1 ≤ i, j, l ≤ d and
denote

Ad = Z[akij ]/J
where J is the ideal generated by the elements

∑
l a
l
ija

m
lk −

∑
l a
m
il a

l
jk ∀i, j, k,m

akij − akji ∀i, j, k
aji1 − δij ∀i, j

where δij indices the Kronecker delta function. We define an Ad-algebra Bd as follows:
as an Ad-module we set

Bd = Ade1 ⊕ . . .⊕Aded
The algebra structure is given by Ad → Bd mapping 1 to e1. The multiplication on Bd is
the Ad-bilinar map

m : Bd ×Bd −→ Bd, m(ei, ej) =
∑

akijek

It is straightforward to check that the relations given above exactly force this to be an
Ad-algebra structure. The morphism

πd : Yd = Spec(Bd) −→ Spec(Ad) = Xd

is the “universal” finite free morphism of rank d.

Lemma 11.3. With notation as in Example 11.2 there is an open subscheme Ud ⊂ Xd

with the following property: a morphism of schemes X → Xd factors through Ud if and
only if Yd ×Xd X → X is syntomic.

Proof. Recall that being syntomic is the same thing as being flat and a local complete
intersection morphism, see More on Morphisms, Lemma 62.8. The set Wd ⊂ Yd of points
where πd is Koszul is open in Yd and its formation commutes with arbitrary base change,
see More on Morphisms, Lemma 62.21. Since πd is finite and hence closed, we see that
Z = πd(Yd \Wd) is closed. Since clearly Ud = Xd \Z and since its formation commutes
with base change we find that the lemma is true. �

Lemma 11.4. With notation as in Example 11.2 and Ud as in Lemma 11.3 then Ud is
smooth over Spec(Z).

Proof. Let us use More on Morphisms, Lemma 12.1 to show that Ud → Spec(Z) is
smooth. Namely, suppose that Spec(A) → Ud is a morphism and A′ → A is a small
extension. Then B = A ⊗Ad Bd is a finite free A-algebra which is syntomic over A (by
construction of Ud). By Smoothing Ring Maps, Proposition 3.2 there exists a syntomic
ring map A′ → B′ such that B ∼= B′ ⊗A′ A. Set e′

1 = 1 ∈ B′. For 1 < i ≤ d choose
lifts e′

i ∈ B′ of the elements 1 ⊗ ei ∈ A ⊗Ad Bd = B. Then e′
1, . . . , e

′
d is a basis for

B′ over A′ (for example see Algebra, Lemma 101.1). Thus we can write e′
ie

′
j =

∑
αlije

′
l

for unique elements αlij ∈ A′ which satisfy the relations
∑
l α

l
ijα

m
lk =

∑
l α

m
il α

l
jk and

αkij = αkji and αji1 − δij in A′. This determines a morphism Spec(A′)→ Xd by sending
alij ∈ Ad to αlij ∈ A′. This morphism agrees with the given morphism Spec(A) → Ud.
Since Spec(A′) and Spec(A) have the same underlying topological space, we see that we
obtain the desired lift Spec(A′)→ Ud and we conclude that Ud is smooth over Z. �

Lemma 11.5. With notation as in Example 11.2 consider the open subscheme U ′
d ⊂

Xd over which πd is étale. Then U ′
d is a dense subset of the open Ud of Lemma 11.3.
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Proof. By exactly the same reasoning as in the proof of Lemma 11.3, using Mor-
phisms, Lemma 36.17, there is a maximal openU ′

d ⊂ Xd over which πd is étale. Moreover,
since an étale morphism is syntomic, we see that U ′

d ⊂ Ud. To finish the proof we have
to show that U ′

d ⊂ Ud is dense. Let u : Spec(k) → Ud be a morphism where k is a field.
Let B = k ⊗Ad Bd as in the proof of Lemma 11.4. We will show there is a local domain
A′ with residue field k and a finite syntomic A′ algebra B′ with B = k ⊗A′ B′ whose
generic fibre is étale. Exactly as in the previous paragraph this will determine a morphism
Spec(A′) → Ud which will map the generic point into U ′

d and the closed point to u,
thereby finishing the proof.
By Lemma 11.1 part (4) we can choose a presentationB = k[x1, . . . , xn]/(f1, . . . , fn). Let
d′ be the maximum total degree of the polynomials f1, . . . , fn. Let Yn,d′ → Xn,d′ be as
in Example 10.5. By construction there is a morphism u′ : Spec(k)→ Xn,d′ such that

Spec(B) ∼= Yn,d′ ×Xn,d′ ,u′ Spec(k)

DenoteA = OhXn,d′ ,u′ the henselization of the local ring ofXn,d′ at the image of u′. Then
we can write

Yn,d′ ×Xn,d′ Spec(A) = Z qW
with Z → Spec(A) finite and W → Spec(A) having empty closed fibre, see Algebra,
Lemma 153.3 part (13) or the discussion in More on Morphisms, Section 41. By Lemma
10.6 the local ring A is regular (here we also use More on Algebra, Lemma 45.10) and the
morphism Z → Spec(A) is étale over the generic point of Spec(A) (because it is mapped
to the generic point of Xd,n′ ). By construction Z ×Spec(A) Spec(k) ∼= Spec(B). This
proves what we want except that the map from residue field of A to k may not be an
isomorphism. By Algebra, Lemma 159.1 there exists a flat local ring map A → A′ such
that the residue field of A′ is k. If A′ isn’t a domain, then we choose a minimal prime
p ⊂ A′ (which lies over the unique minimal prime of A by flatness) and we replace A′ by
A′/p. Set B′ equal to the unique A′-algebra such that Z ×Spec(A) Spec(A′) = Spec(B′).
This finishes the proof. �

Remark 11.6. Let πd : Yd → Xd be as in Example 11.2. Let Ud ⊂ Xd be the maximal
open over which Vd = π−1

d (Ud) is finite syntomic as in Lemma 11.3. Then it is also true
that Vd is smooth over Z. (Of course the morphism Vd → Ud is not smooth when d ≥ 2.)
Arguing as in the proof of Lemma 11.4 this corresponds to the following deformation
problem: given a small extensionC ′ → C and a finite syntomicC-algebraBwith a section
B → C , find a finite syntomicC ′-algebraB′ and a sectionB′ → C ′ whose tensor product
with C recovers B → C. By Lemma 11.1 we may write B = C[x1, . . . , xn]/(f1, . . . , fn)
as a relative global complete intersection. After a change of coordinates we may assume
x1, . . . , xn are in the kernel ofB → C. Then the polynomials fi have vanishing constant
terms. Choose any lifts f ′

i ∈ C ′[x1, . . . , xn] of fi with vanishing constant terms. Then
B′ = C ′[x1, . . . , xn]/(f ′

1, . . . , f
′
n) with section B′ → C ′ sending xi to zero works.

Lemma 11.7. Let f : Y → X be a morphism of schemes. If f satisfies the equivalent
conditions of Lemma 11.1 then for every x ∈ X there exist a d and a commutative diagram

Y

��

V

��

oo // Vd

��

// Yd

πd

��
X Uoo // Ud // Xd

with the following properties
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(1) U ⊂ X is open, x ∈ U , and V = f−1(U),
(2) πd : Yd → Xd is as in Example 11.2,
(3) Ud ⊂ Xd is as in Lemma 11.3 and Vd = π−1

d (Ud) ⊂ Yd,
(4) where the middle square is cartesian.

Proof. Choose an affine open neighbourhood U = Spec(A) ⊂ X of x. Write V =
f−1(U) = Spec(B). ThenB is a finite locally freeA-module and the inclusionA ⊂ B is
a locally direct summand. Thus after shrinkingU we can choose a basis 1 = e1, e2, . . . , ed
of B as an A-module. Write eiej =

∑
αlijel for unique elements αlij ∈ A which satisfy

the relations
∑
l α

l
ijα

m
lk =

∑
l α

m
il α

l
jk and αkij = αkji and αji1 − δij in A. This determines

a morphism Spec(A) → Xd by sending alij ∈ Ad to αlij ∈ A. By construction V ∼=
Spec(A)×Xd Yd. By the definition of Ud we see that Spec(A)→ Xd factors through Ud.
This finishes the proof. �

12. A formula for the different

In this section we discuss the material in [?, Appendix A] due to Tate. In our language, this
will show that the different is equal to the Kähler different in the case of a flat, quasi-finite,
local complete intersection morphism. First we compute the Noether different in a special
case.

Lemma 12.1. Let A → P be a ring map. Let f1, . . . , fn ∈ P be a Koszul regular
sequence. Assume B = P/(f1, . . . , fn) is flat over A. Let g1, . . . , gn ∈ P ⊗A B be a
Koszul regular sequence generating the kernel of the multiplication map P ⊗A B → B.
Write fi ⊗ 1 =

∑
gijgj . Then the annihilator of Ker(B ⊗A B → B) is a principal ideal

generated by the image of det(gij).

Proof. The Koszul complex K• = K(P, f1, . . . , fn) is a resolution of B by finite
free P -modules. The Koszul complex M• = K(P ⊗A B, g1, . . . , gn) is a resolution of B
by finite free P ⊗A B-modules. There is a map of complexes

K• −→M•

which in degree 1 is given by the matrix (gij) and in degree n by det(gij). See More on
Algebra, Lemma 28.3. As B is a flat A-module, we can view M• as a complex of flat P -
modules (via P → P ⊗A B, p 7→ p ⊗ 1). Thus we may use both complexes to compute
TorP∗ (B,B) and it follows that the displayed map defines a quasi-isomorphism after ten-
soring with B. It is clear that Hn(K• ⊗P B) = B. On the other hand, Hn(M• ⊗P B) is
the kernel of

B ⊗A B
g1,...,gn−−−−−→ (B ⊗A B)⊕n

Since g1, . . . , gn generate the kernel of B ⊗A B → B this proves the lemma. �

Lemma 12.2. Let A be a ring. Let n ≥ 1 and h, f1, . . . , fn ∈ A[x1, . . . , xn]. Set
B = A[x1, . . . , xn, 1/h]/(f1, . . . , fn). Assume that B is quasi-finite over A. Then

(1) B is flat over A and A→ B is a relative local complete intersection,
(2) the annihilator J of I = Ker(B ⊗A B → B) is free of rank 1 over B,
(3) the Noether different of B over A is generated by det(∂fi/∂xj) in B.

Proof. Note that B = A[x, x1, . . . , xn]/(xh − 1, f1, . . . , fn) is a relative global
complete intersection over A, see Algebra, Definition 136.5. By Algebra, Lemma 136.13
we see that B is flat over A.
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Write P ′ = A[x, x1, . . . , xn] and P = P ′/(xh− 1) = A[x1, . . . , xn, 1/g]. Then we have
P ′ → P → B. By More on Algebra, Lemma 33.4 we see that xh−1, f1, . . . , fn is a Koszul
regular sequence in P ′. Since xh− 1 is a Koszul regular sequence of length one in P ′ (by
the same lemma for example) we conclude that f1, . . . , fn is a Koszul regular sequence in
P by More on Algebra, Lemma 30.14.

Let gi ∈ P ⊗A B be the image of xi ⊗ 1− 1⊗ xi. Let us use the short hand yi = xi ⊗ 1
and zi = 1⊗ xi in A[x1, . . . , xn]⊗A A[x1, . . . , xn] so that gi is the image of yi − zi. For
a polynomial f ∈ A[x1, . . . , xn] we write f(y) = f ⊗ 1 and f(z) = 1 ⊗ f in the above
tensor product. Then we have

P ⊗A B/(g1, . . . , gn) =
A[y1, . . . , yn, z1, . . . , zn,

1
h(y)h(z) ]

(f1(z), . . . , fn(z), y1 − z1, . . . , yn − zn)
which is clearly isomorphic to B. Hence by the same arguments as above we find that
f1(z), . . . , fn(z), y1−z1, . . . , yn−zn is a Koszul regular sequence inA[y1, . . . , yn, z1, . . . , zn,

1
h(y)h(z) ].

The sequence f1(z), . . . , fn(z) is a Koszul regular inA[y1, . . . , yn, z1, . . . , zn,
1

h(y)h(z) ] by
flatness of the map

P −→ A[y1, . . . , yn, z1, . . . , zn,
1

h(y)h(z) ], xi 7−→ zi

and More on Algebra, Lemma 30.5. By More on Algebra, Lemma 30.14 we conclude that
g1, . . . , gn is a regular sequence in P ⊗A B.

At this point we have verified all the assumptions of Lemma 12.1 above with P , f1, . . . , fn,
and gi ∈ P ⊗A B as above. In particular the annihilator J of I is freely generated by one
element δ over B. Set fij = ∂fi/∂xj ∈ A[x1, . . . , xn]. An elementary computation
shows that we can write

fi(y) = fi(z1 + g1, . . . , zn + gn) = fi(z) +
∑

j
fij(z)gj +

∑
j,j′

Fijj′gjgj′

for some Fijj′ ∈ A[y1, . . . , yn, z1, . . . , zn]. Taking the image in P ⊗A B the terms fi(z)
map to zero and we obtain

fi ⊗ 1 =
∑

j

(
1⊗ fij +

∑
j′
Fijj′gj′

)
gj

Thus we conclude from Lemma 12.1 that δ = det(gij) with gij = 1⊗ fij +
∑
j′ Fijj′gj′ .

Since gj′ maps to zero in B, we conclude that the image of det(∂fi/∂xj) in B generates
the Noether different of B over A. �

Lemma 12.3. Let f : Y → X be a morphism of Noetherian schemes. If f satisfies the
equivalent conditions of Lemma 10.1 then the different Df of f is the Kähler different of
f .

Proof. By Lemmas 9.3 and 10.4 the different of f affine locally is the same as the
Noether different. Then the lemma follows from the computation of the Noether different
and the Kähler different on standard affine pieces done in Lemmas 7.4 and 12.2. �

Lemma 12.4. Let A be a ring. Let n ≥ 1 and h, f1, . . . , fn ∈ A[x1, . . . , xn]. Set
B = A[x1, . . . , xn, 1/h]/(f1, . . . , fn). Assume that B is quasi-finite over A. Then there
is an isomorphism B → ωB/A mapping det(∂fi/∂xj) to τB/A.

Proof. Let J be the annihilator of Ker(B ⊗A B → B). By Lemma 12.2 the map
A → B is flat and J is a free B-module with generator ξ mapping to det(∂fi/∂xj) in
B. Thus the lemma follows from Lemma 6.7 and the fact (Lemma 10.4) that ωB/A is an
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invertibleB-module. (Warning: it is necessary to proveωB/A is invertible because a finite
B-module M such that HomB(M,B) ∼= B need not be free.) �

Example 12.5. Let A be a Noetherian ring. Let f, h ∈ A[x] such that

B = (A[x]/(f))h = A[x, 1/h]/(f)

is quasi-finite over A. Let f ′ ∈ A[x] be the derivative of f with respect to x. The ideal
D = (f ′) ⊂ B is the Noether different of B over A, is the Kähler different of B over A,
and is the ideal whose associated quasi-coherent sheaf of ideals is the different of Spec(B)
over Spec(A).

Lemma 12.6. Let S be a Noetherian scheme. Let X , Y be smooth schemes of relative
dimension n over S. Let f : Y → X be a locally quasi-finite morphism over S. Then f is
flat and the closed subscheme R ⊂ Y cut out by the different of f is the locally principal
closed subscheme cut out by

∧n(df) ∈ Γ(Y, (f∗ΩnX/S)⊗−1 ⊗OY
ΩnY/S)

If f is étale at the associated points of Y , then R is an effective Cartier divisor and

f∗ΩnX/S ⊗OY
O(R) = ΩnY/S

as invertible sheaves on Y .

Proof. To prove that f is flat, it suffices to prove Ys → Xs is flat for all s ∈ S (More
on Morphisms, Lemma 16.3). Flatness of Ys → Xs follows from Algebra, Lemma 128.1.
By More on Morphisms, Lemma 62.10 the morphism f is a local complete intersection
morphism. Thus the statement on the different follows from the corresponding statement
on the Kähler different by Lemma 12.3. Finally, since we have the exact sequence

f∗ΩX/S
df−→ ΩY/S → ΩY/X → 0

by Morphisms, Lemma 32.9 and since ΩX/S and ΩY/S are finite locally free of rank n
(Morphisms, Lemma 34.12), the statement for the Kähler different is clear from the def-
inition of the zeroth fitting ideal. If f is étale at the associated points of Y , then ∧ndf
does not vanish in the associated points of Y , which implies that the local equation of R
is a nonzerodivisor. Hence R is an effective Cartier divisor. The canonical isomorphism
sends 1 to ∧ndf , see Divisors, Lemma 14.10. �

13. The Tate map

In this section we produce an isomorphism between the determinant of the relative cotan-
gent complex and the relative dualizing module for a locally quasi-finite syntomic mor-
phism of locally Noetherian schemes. Following [?, 1.4.4] we dub the isomorphism the
Tate map. Our approach is to avoid doing local calculations as much as is possible.

Let Y → X be a locally quasi-finite syntomic morphism of schemes. We will use all the
equivalent conditions for this notion given in Lemma 10.1 without further mention in this
section. In particular, we see thatNLY/X is a perfect object ofD(OY ) with tor-amplitude
in [−1, 0]. Thus we have a canonical invertible module det(NLY/X) on Y and a global
section

δ(NLY/X) ∈ Γ(Y, det(NLY/X))
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See Derived Categories of Schemes, Lemma 39.1. Suppose given a commutative diagram
of schemes

Y ′
b
//

��

Y

��
X ′ // X

whose vertical arrows are locally quasi-finite syntomic and which induces an isomorphism
of Y ′ with an open of X ′ ×X Y . Then the canonical map

Lb∗ NLY/X −→ NLY ′/X′

is a quasi-isomorphism by More on Morphisms, Lemma 13.16. Thus we get a canoni-
cal isomorphism b∗ det(NLY/X) → det(NLY ′/X′) which sends the canonical section
δ(NLY/X) to δ(NLY ′/X′), see Derived Categories of Schemes, Remark 39.2.

Remark 13.1. Let Y → X be a locally quasi-finite syntomic morphism of schemes.
What does the pair (det(NLY/X), δ(NLY/X)) look like locally? Choose affine opens V =
Spec(B) ⊂ Y , U = Spec(A) ⊂ X with f(V ) ⊂ U and an integer n and f1, . . . , fn ∈
A[x1, . . . , xn] such that B = A[x1, . . . , xn]/(f1, . . . , fn). Then

NLB/A =
(

(f1, . . . , fn)/(f1, . . . , fn)2 −→
⊕

i=1,...,n
Bdxi

)
and (f1, . . . , fn)/(f1, . . . , fn)2 is free with generators the classes f i. See proof of Lemma
10.1. Thus det(LB/A) is free on the generator

dx1 ∧ . . . ∧ dxn ⊗ (f1 ∧ . . . ∧ fn)⊗−1

and the section δ(NLB/A) is the element

δ(NLB/A) = det(∂fj/∂xi) · dx1 ∧ . . . ∧ dxn ⊗ (f1 ∧ . . . ∧ fn)⊗−1

by definition.

Let Y → X be a locally quasi-finite syntomic morphism of locally Noetherian schemes.
By Remarks 2.11 and 4.7 we have a coherent OY -module ωY/X and a canonical global
section

τY/X ∈ Γ(Y, ωY/X)
which affine locally recovers the pair ωB/A, τB/A. By Lemma 10.4 the module ωY/X is
invertible. Suppose given a commutative diagram of locally Noetherian schemes

Y ′
b
//

��

Y

��
X ′ // X

whose vertical arrows are locally quasi-finite syntomic and which induces an isomorphism
of Y ′ with an open of X ′ ×X Y . Then there is a canonical base change map

b∗ωY/X −→ ωY ′/X′

which is an isomorphism mapping τY/X to τY ′/X′ . Namely, the base change map in the
affine setting is (2.3.1), it is an isomorphism by Lemma 2.10, and it maps τY/X to τY ′/X′

by Lemma 4.4 part (1).
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Proposition 13.2. There exists a unique rule that to every locally quasi-finite syn-
tomic morphism of locally Noetherian schemes Y → X assigns an isomorphism

cY/X : det(NLY/X) −→ ωY/X

satisfying the following two properties
(1) the section δ(NLY/X) is mapped to τY/X , and
(2) the rule is compatible with restriction to opens and with base change.

Proof. Let us reformulate the statement of the proposition. Consider the category
C whose objects, denoted Y/X , are locally quasi-finite syntomic morphism Y → X of
locally Noetherian schemes and whose morphisms b/a : Y ′/X ′ → Y/X are commutative
diagrams

Y ′

��

b
// Y

��
X ′ a // X

which induce an isomorphism of Y ′ with an open subscheme ofX ′×XY . The proposition
means that for every object Y/X of C we have an isomorphism cY/X : det(NLY/X) →
ωY/X with cY/X(δ(NLY/X)) = τY/X and for every morphism b/a : Y ′/X ′ → Y/X of
C we have b∗cY/X = cY ′/X′ via the identifications b∗ det(NLY/X) = det(NLY ′/X′) and
b∗ωY/X = ωY ′/X′ described above.

Given Y/X in C and y ∈ Y we can find an affine open V ⊂ Y andU ⊂ X with f(V ) ⊂ U
such that there exists some isomorphism

det(NLY/X)|V −→ ωY/X |V
mapping δ(NLY/X)|V to τY/X |V . This follows from picking affine opens as in Lemma 10.1
part (5), the affine local description of δ(NLY/X) in Remark 13.1, and Lemma 12.4. If the
annihilator of the section τY/X is zero, then these local maps are unique and automatically
glue. Hence if the annihilator of τY/X is zero, then there is a unique isomorphism cY/X :
det(NLY/X) → ωY/X with cY/X(δ(NLY/X)) = τY/X . If b/a : Y ′/X ′ → Y/X is a
morphism of C and the annihilator of τY ′/X′ is zero as well, then b∗cY/X is the unique
isomorphism cY ′/X′ : det(NLY ′/X′) → ωY ′/X′ with cY ′/X′(δ(NLY ′/X′)) = τY ′/X′ .
This follows formally from the fact that b∗δ(NLY/X) = δ(NLY ′/X′) and b∗τY/X =
τY ′/X′ .

We can summarize the results of the previous paragraph as follows. Let Cnice ⊂ C denote
the full subcategory of Y/X such that the annihilator of τY/X is zero. Then we have
solved the problem on Cnice. For Y/X in Cnice we continue to denote cY/X the solution
we’ve just found.

Consider morphisms

Y1/X1
b1/a1←−−− Y/X b2/a2−−−→ Y2/X2

in C such that Y1/X1 and Y2/X2 are objects of Cnice. Claim. b∗
1cY1/X1 = b∗

2cY2/X2 . We
will first show that the claim implies the proposition and then we will prove the claim.

Let d, n ≥ 1 and consider the locally quasi-finite syntomic morphism Yn,d → Xn,d con-
structed in Example 10.5. Then Yn,d is an irreducible regular scheme and the morphism
Yn,d → Xn,d is locally quasi-finite syntomic and étale over a dense open, see Lemma
10.6. Thus τYn,d/Xn,d is nonzero for example by Lemma 9.6. Now a nonzero section of
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an invertible module over an irreducible regular scheme has vanishing annihilator. Thus
Yn,d/Xn,d is an object of Cnice.

Let Y/X be an arbitrary object of C. Let y ∈ Y . By Lemma 10.7 we can find n, d ≥ 1 and
morphisms

Y/X ← V/U
b/a−−→ Yn,d/Xn,d

of C such that V ⊂ Y andU ⊂ X are open. Thus we can pullback the canonical morphism
cYn,d/Xn,d constructed above by b to V . The claim guarantees these local isomorphisms
glue! Thus we get a well defined global isomorphism cY/X : det(NLY/X)→ ωY/X with
cY/X(δ(NLY/X)) = τY/X . If b/a : Y ′/X ′ → Y/X is a morphism of C , then the claim
also implies that the similarly constructed map cY ′/X′ is the pullback by b of the locally
constructed map cY/X . Thus it remains to prove the claim.

In the rest of the proof we prove the claim. We may pick a point y ∈ Y and prove the maps
agree in an open neighbourhood of y. Thus we may replaceY1, Y2 by open neighbourhoods
of the image of y in Y1 and Y2. Thus we may assume there are morphisms

Yn1,d1/Xn1,d1 ← Y1/X1 and Y2/X2 → Yn2,d2/Xn2,d2

These are morphisms of Cnice for which we know the desired compatibilities. Thus we
may replace Y1/X1 by Yn1,d1/Xn1,d1 and Y2/X2 by Yn2,d2/Xn2,d2 . This reduces us to
the case that Y1, X1, Y2, X2 are of finite type over Z. (The astute reader will realize that
this step wouldn’t have been necessary if we’d defined Cnice to consist only of those objects
Y/X with Y and X of finite type over Z.)

Assume Y1, X1, Y2, X2 are of finite type over Z. After replacing Y,X, Y1, X1, Y2, X2 by
suitable open neighbourhoods of the image of y we may assume Y,X, Y1, X1, Y2, X2 are
affine. We may writeX = limXλ as a cofiltered limit of affine schemes of finite type over
X1 ×X2. For each λ we get

Y1 ×X1 Xλ and Xλ ×X2 Y2

If we take limits we obtain

limY1 ×X1 Xλ = Y1 ×X1 X ⊃ Y ⊂ X ×X2 Y2 = limXλ ×X2 Y2

By Limits, Lemma 4.11 we can find aλ and opensV1,λ ⊂ Y1×X1Xλ andV2,λ ⊂ Xλ×X2Y2
whose base change to X recovers Y (on both sides). After increasing λ we may assume
there is an isomorphism V1,λ → V2,λ whose base change to X is the identity on Y , see
Limits, Lemma 10.1. Then we have the commutative diagram

Y/X

��

b1/a1

yy

b2/a2

%%
Y1/X1 V1,λ/Xλ

oo // Y2/X2

Thus it suffices to prove the claim for the lower row of the diagram and we reduce to the
case discussed in the next paragraph.

Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z. Write X = Spec(A), Xi =
Spec(Ai). The ring map A1 → A corresponding to X → X1 is of finite type and hence
we may choose a surjection A1[x1, . . . , xn] → A. Similarly, we may choose a surjection
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A2[y1, . . . , ym] → A. Set X ′
1 = Spec(A1[x1, . . . , xn]) and X ′

2 = Spec(A2[y1, . . . , ym]).
Set Y ′

1 = Y1 ×X1 X
′
1 and Y ′

2 = Y2 ×X2 X
′
2. We get the following diagram

Y1/X1 ← Y ′
1/X

′
1 ← Y/X → Y ′

2/X
′
2 → Y2/X2

Since X ′
1 → X1 and X ′

2 → X2 are flat, the same is true for Y ′
1 → Y1 and Y ′

2 → Y2.
It follows easily that the annihilators of τY ′

1/X
′
1

and τY ′
2/X

′
2

are zero. Hence Y ′
1/X

′
1 and

Y ′
2/X

′
2 are in Cnice. Thus the outer morphisms in the displayed diagram are morphisms of

Cnice for which we know the desired compatibilities. Thus it suffices to prove the claim for
Y ′

1/X
′
1 ← Y/X → Y ′

2/X
′
2. This reduces us to the case discussed in the next paragraph.

Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z and X → X1 and X → X2
are closed immersions. Consider the open embeddings Y1 ×X1 X ⊃ Y ⊂ X ×X2 Y2.
There is an open neighbourhood V ⊂ Y of y which is a standard open of both Y1 ×X1 X
and X ×X2 Y2. This follows from Schemes, Lemma 11.5 applied to the scheme obtained
by glueing Y1×X1 X andX ×X2 Y2 along Y ; details omitted. SinceX ×X2 Y2 is a closed
subscheme of Y2 we can find a standard open V2 ⊂ Y2 such that V2×X2X = V . Similarly,
we can find a standard open V1 ⊂ Y1 such that V1 ×X1 X = V . After replacing Y, Y1, Y2
by V, V1, V2 we reduce to the case discussed in the next paragraph.

Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z and X → X1 and X → X2
are closed immersions and Y1 ×X1 X = Y = X ×X2 Y2. Write X = Spec(A), Xi =
Spec(Ai), Y = Spec(B), Yi = Spec(Bi). Then we can consider the affine schemes

X ′ = Spec(A1 ×A A2) = Spec(A′) and Y ′ = Spec(B1 ×B B2) = Spec(B′)

Observe thatX ′ = X1qX X2 and Y ′ = Y1qY Y2, see More on Morphisms, Lemma 14.1.
By More on Algebra, Lemma 5.1 the ringsA′ andB′ are of finite type over Z. By More on
Algebra, Lemma 6.4 we have B′ ⊗A A1 = B1 and B′ ×A A2 = B2. In particular a fibre
of Y ′ → X ′ over a point of X ′ = X1 qX X2 is always equal to either a fibre of Y1 → X1
or a fibre of Y2 → X2. By More on Algebra, Lemma 6.8 the ring map A′ → B′ is flat.
Thus by Lemma 10.1 part (3) we conclude that Y ′/X ′ is an object of C. Consider now the
commutative diagram

Y/X

b1/a1

zz

b2/a2

$$
Y1/X1

$$

Y2/X2

zz
Y ′/X ′

Now we would be done if Y ′/X ′ is an object of Cnice. Namely, then pulling back cY ′/X′

around the two sides of the square, we would obtain the desired conclusion. Now, in fact, it
is true that Y ′/X ′ is an object of Cnice4. But it is amusing to note that we don’t even need
this. Namely, the arguments above show that, after possibly shrinking all of the schemes

4Namely, the structure sheaf OY ′ is a subsheaf of (Y1 → Y ′)∗OY1 × (Y2 → Y ′)∗OY2 .
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X,Y,X1, Y1, X2, Y2, X
′, Y ′ we can find some n, d ≥ 1, and extend the diagram like so:

Y/X

b1/a1

yy

b2/a2

%%
Y1/X1

%%

Y2/X2

yy
Y ′/X ′

��
Yn,d/Xn,d

and then we can use the already given argument by pulling back from cYn,d/Xn,d . This
finishes the proof. �

14. A generalization of the different

In this section we generalize Definition 9.1 to take into account all cases of ring maps
A→ B where the Dedekind different is defined and 1 ∈ LB/A. First we explain the con-
dition “A→ B maps nonzerodivisors to nonzerodivisors and induces a flat map Q(A)→
Q(A)⊗A B”.

Lemma 14.1. Let A→ B be a map of Noetherian rings. Consider the conditions
(1) nonzerodivisors of A map to nonzerodivisors of B,
(2) (1) holds and Q(A)→ Q(A)⊗A B is flat,
(3) A→ Bq is flat for every q ∈ Ass(B),
(4) (3) holds and A→ Bq is flat for every q lying over an element in Ass(A).

Then we have the following implications

(1) (2)ks

��
(3)

KS

(4)ks

If going up holds for A→ B then (2) and (4) are equivalent.

Proof. The horizontal implications in the diagram are trivial. Let S ⊂ A be the
set of nonzerodivisors so that Q(A) = S−1A and Q(A) ⊗A B = S−1B. Recall that
S = A \

⋃
p∈Ass(A) p by Algebra, Lemma 63.9. Let q ⊂ B be a prime lying over p ⊂ A.

Assume (2). If q ∈ Ass(B) then q consists of zerodivisors, hence (1) implies the same is true
for p. Hence p corresponds to a prime of S−1A. Hence A→ Bq is flat by our assumption
(2). If q lies over an associated prime p ofA, then certainly p ∈ Spec(S−1A) and the same
argument works.

Assume (3). Let f ∈ A be a nonzerodivisor. If f were a zerodivisor on B, then f is
contained in an associated prime q ofB. SinceA→ Bq is flat by assumption, we conclude
that p is an associated prime of A by Algebra, Lemma 65.3. This would imply that f is a
zerodivisor on A, a contradiction.
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Assume (4) and going up for A → B. We already know (1) holds. If q corresponds to a
prime of S−1B then p is contained in an associated prime p′ ofA. By going up there exists
a prime q′ containing q and lying over p. Then A → Bq′ is flat by (4). Hence A → Bq

is flat as a localization. Thus A → S−1B is flat and so is S−1A → S−1B, see Algebra,
Lemma 39.18. �

Remark 14.2. We can generalize Definition 9.1. Suppose that f : Y → X is a quasi-
finite morphism of Noetherian schemes with the following properties

(1) the open V ⊂ Y where f is flat contains Ass(OY ) and f−1(Ass(OX)),
(2) the trace element τV/X comes from a section τ ∈ Γ(Y, ωY/X).

Condition (1) implies that V contains the associated points of ωY/X by Lemma 2.8. In
particular, τ is unique if it exists (Divisors, Lemma 2.8). Given τ we can define the dif-
ferent Df as the annihilator of Coker(τ : OY → ωY/X). This agrees with the Dedekind
different in many cases (Lemma 14.3). However, for non-flat maps between non-normal
rings, this generalization no longer measures ramification of the morphism, see Example
14.4.

Lemma 14.3. Assume the Dedekind different is defined for A → B. Set X =
Spec(A) and Y = Spec(B). The generalization of Remark 14.2 applies to the morphism
f : Y → X if and only if 1 ∈ LB/A (e.g., if A is normal, see Lemma 8.1). In this case
DB/A is an ideal of B and we have

Df = D̃B/A

as coherent ideal sheaves on Y .

Proof. As the Dedekind different for A → B is defined we can apply Lemma 14.1
to see that Y → X satisfies condition (1) of Remark 14.2. Recall that there is a canonical
isomorphism c : LB/A → ωB/A, see Lemma 8.2. Let K = Q(A) and L = K ⊗A B as
above. By construction the map c fits into a commutative diagram

LB/A //

c

��

L

��
ωB/A // HomK(L,K)

where the right vertical arrow sends x ∈ L to the map y 7→ TraceL/K(xy) and the
lower horizontal arrow is the base change map (2.3.1) for ωB/A. We can factor the lower
horizontal map as

ωB/A = Γ(Y, ωY/X)→ Γ(V, ωV/X)→ HomK(L,K)

Since all associated points of ωV/X map to associated primes ofA (Lemma 2.8) we see that
the second map is injective. The element τV/X maps to TraceL/K in HomK(L,K) by the
very definition of trace elements (Definition 4.1). Thus τ as in condition (2) of Remark
14.2 exists if and only if 1 ∈ LB/A and then τ = c(1). In this case, by Lemma 8.1 we
see that DB/A ⊂ B. Finally, the agreement of Df with DB/A is immediate from the
definitions and the fact τ = c(1) seen above. �

Example 14.4. Let k be a field. Let A = k[x, y]/(xy) and B = k[u, v]/(uv) and let
A→ B be given by x 7→ un and y 7→ vm for somen,m ∈ N prime to the characteristic of
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k. Then Ax+y → Bx+y is (finite) étale hence we are in the situation where the Dedekind
different is defined. A computation shows that

TraceL/K(1) = (nx+my)/(x+ y), TraceL/K(ui) = 0, TraceL/K(vj) = 0

for 1 ≤ i < n and 1 ≤ j < m. We conclude that 1 ∈ LB/A if and only if n = m.
Moreover, a computation shows that if n = m, then LB/A = B and the Dedekind differ-
ent is B as well. In other words, we find that the different of Remark 14.2 is defined for
Spec(B)→ Spec(A) if and only if n = m, and in this case the different is the unit ideal.
Thus we see that in nonflat cases the nonvanishing of the different does not guarantee the
morphism is étale or unramified.

15. Comparison with duality theory

In this section we compare the elementary algebraic constructions above with the con-
structions in the chapter on duality theory for schemes.

Lemma 15.1. Let f : Y → X be a quasi-finite separated morphism of Noetherian
schemes. For every pair of affine opens Spec(B) = V ⊂ Y , Spec(A) = U ⊂ X with
f(V ) ⊂ U there is an isomorphism

H0(V, f !OY ) = ωB/A

where f ! is as in Duality for Schemes, Section 16. These isomorphisms are compatible with
restriction maps and define a canonical isomorphismH0(f !OX) = ωY/X withωY/X as in
Remark 2.11. Similarly, if f : Y → X is a quasi-finite morphism of schemes of finite type
over a Noetherian base S endowed with a dualizing complex ω•

S , then H0(f !
newOX) =

ωY/X .

Proof. By Zariski’s main theorem we can choose a factorization f = f ′ ◦ j where
j : Y → Y ′ is an open immersion and f ′ : Y ′ → X is a finite morphism, see More
on Morphisms, Lemma 43.3. By our construction in Duality for Schemes, Lemma 16.2
we have f ! = j∗ ◦ a′ where a′ : DQCoh(OX) → DQCoh(OY ′) is the right adjoint to
Rf ′

∗ of Duality for Schemes, Lemma 3.1. By Duality for Schemes, Lemma 11.4 we see that
Φ(a′(OX)) = RHom(f ′

∗OY ′ ,OX) in D+
QCoh(f ′

∗OY ′). In particular a′(OX) has vanish-
ing cohomology sheaves in degrees < 0. The zeroth cohomology sheaf is determined by
the isomorphism

f ′
∗H

0(a′(OX)) = HomOX
(f ′

∗OY ′ ,OX)
as f ′

∗OY ′ -modules via the equivalence of Morphisms, Lemma 11.6. Writing (f ′)−1U =
V ′ = Spec(B′), we obtain

H0(V ′, a′(OX)) = HomA(B′, A).

As the zeroth cohomology sheaf of a′(OX) is a quasi-coherent module we find that the
restriction to V is given by ωB/A = HomA(B′, A)⊗B′ B as desired.

The statement about restriction maps signifies that the restriction mappings of the quasi-
coherentOY ′ -moduleH0(a′(OX)) for opens inY ′ agrees with the maps defined in Lemma
2.3 for the modules ωB/A via the isomorphisms given above. This is clear.

Let f : Y → X be a quasi-finite morphism of schemes of finite type over a Noetherian
base S endowed with a dualizing complex ω•

S . Consider opens V ⊂ Y and U ⊂ X
with f(V ) ⊂ U and V and U separated over S. Denote f |V : V → U the restriction
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of f . By the discussion above and Duality for Schemes, Lemma 20.9 there are canonical
isomorphisms

H0(f !
newOX)|V = H0((f |V )!OU ) = ωV/U = ωY/X |V

We omit the verification that these isomorphisms glue to a global isomorphismH0(f !
newOX)→

ωY/X . �

Lemma 15.2. Let f : Y → X be a finite flat morphism of Noetherian schemes. The
map

Tracef : f∗OY −→ OX
of Section 3 corresponds to a mapOY → f !OX (see proof). Denote τY/X ∈ H0(Y, f !OX)
the image of 1. Via the isomorphism H0(f !OX) = ωX/Y of Lemma 15.1 this agrees with
the construction in Remark 4.7.

Proof. The functor f ! is defined in Duality for Schemes, Section 16. Since f is finite
(and hence proper), we see that f ! is given by the right adjoint to pushforward for f . In
Duality for Schemes, Section 11 we have made this adjoint explicit. In particular, the object
f !OX consists of a single cohomology sheaf placed in degree 0 and for this sheaf we have

f∗f
!OX = HomOX

(f∗OY ,OX)

To see this we use also that f∗OY is finite locally free as f is a finite flat morphism of
Noetherian schemes and hence all higher Ext sheaves are zero. Some details omitted. Thus
finally

Tracef ∈ HomOX
(f∗OY ,OX) = Γ(X, f∗f

!OX) = Γ(Y, f !OX)

On the other hand, we have f !OX = ωY/X by the identification of Lemma 15.1. Thus we
now have two elements, namely Tracef and τY/X from Remark 4.7 in

Γ(Y, f !OX) = Γ(Y, ωY/X)

and the lemma says these elements are the same.

Let U = Spec(A) ⊂ X be an affine open with inverse image V = Spec(B) ⊂ Y . Since f
is finite, we see thatA→ B is finite and hence theωY/X(V ) = HomA(B,A) by construc-
tion and this isomorphism agrees with the identification of f∗f

!OY withHomOX
(f∗OY ,OX)

discussed above. Hence the agreement of Tracef and τY/X follows from the fact that
τB/A = TraceB/A by Lemma 4.3. �

16. Quasi-finite Gorenstein morphisms

This section discusses quasi-finite Gorenstein morphisms.

Lemma 16.1. Let f : Y → X be a quasi-finite morphism of Noetherian schemes. The
following are equivalent

(1) f is Gorenstein,
(2) f is flat and the fibres of f are Gorenstein,
(3) f is flat and ωY/X is invertible (Remark 2.11),
(4) for every y ∈ Y there are affine opens y ∈ V = Spec(B) ⊂ Y , U = Spec(A) ⊂

X with f(V ) ⊂ U such thatA→ B is flat and ωB/A is an invertibleB-module.
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Proof. Parts (1) and (2) are equivalent by definition. Parts (3) and (4) are equiva-
lent by the construction of ωY/X in Remark 2.11. Thus we have to show that (1)-(2) is
equivalent to (3)-(4).
First proof. Working affine locally we can assume f is a separated morphism and apply
Lemma 15.1 to see that ωY/X is the zeroth cohomology sheaf of f !OX . Under both as-
sumptions f is flat and quasi-finite, hence f !OX is isomorphic to ωY/X [0], see Duality for
Schemes, Lemma 21.6. Hence the equivalence follows from Duality for Schemes, Lemma
25.10.
Second proof. By Lemma 10.2, we see that it suffices to prove the equivalence of (2) and
(3) whenX is the spectrum of a field k. Then Y = Spec(B) whereB is a finite k-algebra.
In this case ωB/A = ωB/k = Homk(B, k) placed in degree 0 is a dualizing complex for
B, see Dualizing Complexes, Lemma 15.8. Thus the equivalence follows from Dualizing
Complexes, Lemma 21.4. �

Remark 16.2. Let f : Y → X be a quasi-finite Gorenstein morphism of Noetherian
schemes. Let Df ⊂ OY be the different and let R ⊂ Y be the closed subscheme cut out
by Df . Then we have

(1) Df is a locally principal ideal,
(2) R is a locally principal closed subscheme,
(3) Df is affine locally the same as the Noether different,
(4) formation of R commutes with base change,
(5) if f is finite, then the norm of R is the discriminant of f , and
(6) if f is étale in the associated points of Y , then R is an effective Cartier divisor

and ωY/X = OY (R).
This follows from Lemmas 9.3, 9.4, and 9.7.

Remark 16.3. Let S be a Noetherian scheme endowed with a dualizing complex ω•
S .

Let f : Y → X be a quasi-finite Gorenstein morphism of compactifyable schemes over S.
Assume moreover Y andX Cohen-Macaulay and f étale at the generic points of Y . Then
we can combine Duality for Schemes, Remark 23.4 and Remark 16.2 to see that we have a
canonical isomorphism

ωY = f∗ωX ⊗OY
ωY/X = f∗ωX ⊗OY

OY (R)
of OY -modules. If further f is finite, then the isomorphism OY (R) = ωY/X comes
from the global section τY/X ∈ H0(Y, ωY/X) which corresponds via duality to the map
Tracef : f∗OY → OX , see Lemma 15.2.

17. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks

(9) Fields
(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites



4106 49. DISCRIMINANTS AND DIFFERENTS

(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory
(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks



17. OTHER CHAPTERS 4107

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises

(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index





CHAPTER 50

de Rham Cohomology

1. Introduction

In this chapter we start with a discussion of the de Rham complex of a morphism of
schemes and we end with a proof that de Rham cohomology defines a Weil cohomology
theory when the base field has characteristic zero.

2. The de Rham complex

Let p : X → S be a morphism of schemes. There is a complex

Ω•
X/S = OX/S → Ω1

X/S → Ω2
X/S → . . .

of p−1OS-modules with ΩiX/S = ∧i(ΩX/S) placed in degree i and differential determined
by the rule d(g0dg1 ∧ . . . ∧ dgp) = dg0 ∧ dg1 ∧ . . . ∧ dgp on local sections. See Modules,
Section 30.

Given a commutative diagram
X ′

f
//

��

X

��
S′ // S

of schemes, there are canonical maps of complexes f−1Ω•
X/S → Ω•

X′/S′ and Ω•
X/S →

f∗Ω•
X′/S′ . See Modules, Section 30. Linearizing, for every p we obtain a linear map

f∗ΩpX/S → ΩpX′/S′ .

In particular, if f : Y → X be a morphism of schemes over a base scheme S , then there is
a map of complexes

Ω•
X/S −→ f∗Ω•

Y/S

Linearizing, we see that for every p ≥ 0 we obtain a canonical map

ΩpX/S ⊗OX
f∗OY −→ f∗ΩpY/S

Lemma 2.1. Let
X ′

f
//

��

X

��
S′ // S

be a cartesian diagram of schemes. Then the maps discussed above induce isomorphisms
f∗ΩpX/S → ΩpX′/S′ .

Proof. Combine Morphisms, Lemma 32.10 with the fact that formation of exterior
power commutes with base change. �

4109
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Lemma 2.2. Consider a commutative diagram of schemes

X ′
f
//

��

X

��
S′ // S

If X ′ → X and S′ → S are étale, then the maps discussed above induce isomorphisms
f∗ΩpX/S → ΩpX′/S′ .

Proof. We have ΩS′/S = 0 and ΩX′/X = 0, see for example Morphisms, Lemma
36.15. Then by the short exact sequences of Morphisms, Lemmas 32.9 and 34.16 we see
that ΩX′/S′ = ΩX′/S = f∗ΩX/S . Taking exterior powers we conclude. �

3. de Rham cohomology

Let p : X → S be a morphism of schemes. We define the de Rham cohomology ofX over
S to be the cohomology groups

Hi
dR(X/S) = Hi(RΓ(X,Ω•

X/S))

Since Ω•
X/S is a complex of p−1OS-modules, these cohomology groups are naturally mod-

ules over H0(S,OS).
Given a commutative diagram

X ′
f
//

��

X

��
S′ // S

of schemes, using the canonical maps of Section 2 we obtain pullback maps
f∗ : RΓ(X,Ω•

X/S) −→ RΓ(X ′,Ω•
X′/S′)

and
f∗ : Hi

dR(X/S) −→ Hi
dR(X ′/S′)

These pullbacks satisfy an obvious composition law. In particular, if we work over a fixed
base scheme S , then de Rham cohomology is a contravariant functor on the category of
schemes over S.

Lemma 3.1. Let X → S be a morphism of affine schemes given by the ring map
R→ A. Then RΓ(X,Ω•

X/S) = Ω•
A/R in D(R) and Hi

dR(X/S) = Hi(Ω•
A/R).

Proof. This follows from Cohomology of Schemes, Lemma 2.2 and Leray’s acyclicity
lemma (Derived Categories, Lemma 16.7). �

Lemma 3.2. Let p : X → S be a morphism of schemes. If p is quasi-compact and
quasi-separated, then Rp∗Ω•

X/S is an object of DQCoh(OS).

Proof. There is a spectral sequence with first page Ea,b1 = Rbp∗ΩaX/S converging
to the cohomology of Rp∗Ω•

X/S (see Derived Categories, Lemma 21.3). Hence by Homol-
ogy, Lemma 25.3 it suffices to show that Rbp∗ΩaX/S is quasi-coherent. This follows from
Cohomology of Schemes, Lemma 4.5. �

Lemma 3.3. Let p : X → S be a proper morphism of schemes with S locally Noe-
therian. Then Rp∗Ω•

X/S is an object of DCoh(OS).
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Proof. In this case by Morphisms, Lemma 32.12 the modules ΩiX/S are coherent.
Hence we can use exactly the same argument as in the proof of Lemma 3.2 using Coho-
mology of Schemes, Proposition 19.1. �

Lemma 3.4. LetA be a Noetherian ring. LetX be a proper scheme overS = Spec(A).
Then Hi

dR(X/S) is a finite A-module for all i.

Proof. This is a special case of Lemma 3.3. �

Lemma 3.5. Let f : X → S be a proper smooth morphism of schemes. Then
Rf∗ΩpX/S , p ≥ 0 andRf∗Ω•

X/S are perfect objects ofD(OS) whose formation commutes
with arbitrary change of base.

Proof. Since f is smooth the modules ΩpX/S are finite locally free OX -modules, see
Morphisms, Lemma 34.12. Their formation commutes with arbitrary change of base by
Lemma 2.1. Hence Rf∗ΩpX/S is a perfect object of D(OS) whose formation commutes
with abitrary base change, see Derived Categories of Schemes, Lemma 30.4. This proves
the first assertion of the lemma.

To prove that Rf∗Ω•
X/S is perfect on S we may work locally on S. Thus we may assume

S is quasi-compact. This means we may assume that ΩnX/S is zero for n large enough. For
every p ≥ 0 we claim that Rf∗σ≥pΩ•

X/S is a perfect object of D(OS) whose formation
commutes with arbitrary change of base. By the above we see that this is true for p � 0.
Suppose the claim holds for p and consider the distinguished triangle

σ≥pΩ•
X/S → σ≥p−1Ω•

X/S → Ωp−1
X/S [−(p− 1)]→ (σ≥pΩ•

X/S)[1]

in D(f−1OS). Applying the exact functor Rf∗ we obtain a distinguished triangle in
D(OS). Since we have the 2-out-of-3 property for being perfect (Cohomology, Lemma
49.7) we conclude Rf∗σ≥p−1Ω•

X/S is a perfect object of D(OS). Similarly for the com-
mutation with arbitrary base change. �

4. Cup product

Consider the maps ΩpX/S ×ΩqX/S → Ωp+q
X/S given by (ω, η) 7−→ ω∧η. Using the formula

for d given in Section 2 and the Leibniz rule for d : OX → ΩX/S we see that d(ω ∧ η) =
d(ω) ∧ η + (−1)deg(ω)ω ∧ d(η). This means that ∧ defines a morphism

(4.0.1) ∧ : Tot(Ω•
X/S ⊗p−1OS

Ω•
X/S) −→ Ω•

X/S

of complexes of p−1OS-modules.

Combining the cup product of Cohomology, Section 31 with (4.0.1) we find aH0(S,OS)-
bilinear cup product map

∪ : Hi
dR(X/S)×Hj

dR(X/S) −→ Hi+j
dR (X/S)

For example, if ω ∈ Γ(X,ΩiX/S) and η ∈ Γ(X,ΩjX/S) are closed, then the cup product
of the de Rham cohomology classes of ω and η is the de Rham cohomology class of ω ∧ η,
see discussion in Cohomology, Section 31.
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Given a commutative diagram
X ′

f
//

��

X

��
S′ // S

of schemes, the pullback maps f∗ : RΓ(X,Ω•
X/S)→ RΓ(X ′,Ω•

X′/S′) and f∗ : Hi
dR(X/S) −→

Hi
dR(X ′/S′) are compatible with the cup product defined above.

Lemma 4.1. Let p : X → S be a morphism of schemes. The cup product onH∗
dR(X/S)

is associative and graded commutative.

Proof. This follows from Cohomology, Lemmas 31.5 and 31.6 and the fact that ∧ is
associative and graded commutative. �

Remark 4.2. Let p : X → S be a morphism of schemes. Then we can think of
Ω•
X/S as a sheaf of differential graded p−1OS-algebras, see Differential Graded Sheaves,

Definition 12.1. In particular, the discussion in Differential Graded Sheaves, Section 32
applies. For example, this means that for any commutative diagram

X

p

��

f
// Y

q

��
S

h // T

of schemes there is a canonical relative cup product

µ : Rf∗Ω•
X/S ⊗

L
q−1OT

Rf∗Ω•
X/S −→ Rf∗Ω•

X/S

inD(Y, q−1OT ) which is associative and which on cohomology reproduces the cup prod-
uct discussed above.

Remark 4.3. Let f : X → S be a morphism of schemes. Let ξ ∈ Hn
dR(X/S). Ac-

cording to the discussion Differential Graded Sheaves, Section 32 there exists a canonical
morphism

ξ′ : Ω•
X/S → Ω•

X/S [n]
in D(f−1OS) uniquely characterized by (1) and (2) of the following list of properties:

(1) ξ′ can be lifted to a map in the derived category of right differential graded
Ω•
X/S-modules, and

(2) ξ′(1) = ξ in H0(X,Ω•
X/S [n]) = Hn

dR(X/S),
(3) the map ξ′ sends η ∈ Hm

dR(X/S) to ξ ∪ η in Hn+m
dR (X/S),

(4) the construction of ξ′ commutes with restrictions to opens: forU ⊂ X open the
restriction ξ′|U is the map corresponding to the image ξ|U ∈ Hn

dR(U/S),
(5) for any diagram as in Remark 4.2 we obtain a commutative diagram

Rf∗Ω•
X/S ⊗

L
q−1OT

Rf∗Ω•
X/S

ξ′⊗id
��

µ
// Rf∗Ω•

X/S

ξ′

��
Rf∗Ω•

X/S [n]⊗L
q−1OT

Rf∗Ω•
X/S

µ // Rf∗Ω•
X/S [n]

in D(Y, q−1OT ).
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5. Hodge cohomology

Let p : X → S be a morphism of schemes. We define the Hodge cohomology ofX over S
to be the cohomology groups

Hn
Hodge(X/S) =

⊕
n=p+q

Hq(X,ΩpX/S)

viewed as a graded H0(X,OX)-module. The wedge product of forms combined with the
cup product of Cohomology, Section 31 defines a H0(X,OX)-bilinear cup product

∪ : Hi
Hodge(X/S)×Hj

Hodge(X/S) −→ Hi+j
Hodge(X/S)

Of course if ξ ∈ Hq(X,ΩpX/S) and ξ′ ∈ Hq′(X,Ωp
′

X/S) then ξ ∪ ξ′ ∈ Hq+q′(X,Ωp+p′

X/S ).

Lemma 5.1. Let p : X → S be a morphism of schemes. The cup product onH∗
Hodge(X/S)

is associative and graded commutative.

Proof. The proof is identical to the proof of Lemma 4.1. �

Given a commutative diagram

X ′
f
//

��

X

��
S′ // S

of schemes, there are pullback maps f∗ : Hi
Hodge(X/S) −→ Hi

Hodge(X ′/S′) compatible
with gradings and with the cup product defined above.

6. Two spectral sequences

Let p : X → S be a morphism of schemes. Since the category of p−1OS-modules on
X has enough injectives there exist a Cartan-Eilenberg resolution for Ω•

X/S . See Derived
Categories, Lemma 21.2. Hence we can apply Derived Categories, Lemma 21.3 to get two
spectral sequences both converging to the de Rham cohomology of X over S.

The first is customarily called the Hodge-to-de Rham spectral sequence. The first page of
this spectral sequence has

Ep,q1 = Hq(X,ΩpX/S)

which are the Hodge cohomology groups of X/S (whence the name). The differential d1
on this page is given by the maps dp,q1 : Hq(X,ΩpX/S) → Hq(X.Ωp+1

X/S) induced by the
differential d : ΩpX/S → Ωp+1

X/S . Here is a picture

H2(X,OX) //

++

**

H2(X,Ω1
X/S) //

++

H2(X,Ω2
X/S) // H2(X,Ω3

X/S)

H1(X,OX) //

++

H1(X,Ω1
X/S) //

++

H1(X,Ω2
X/S) // H1(X,Ω3

X/S)

H0(X,OX) // H0(X,Ω1
X/S) // H0(X,Ω2

X/S) // H0(X,Ω3
X/S)
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where we have drawn striped arrows to indicate the source and target of the differentials
on the E2 page and a dotted arrow for a differential on the E3 page. Looking in degree 0
we conclude that

H0
dR(X/S) = Ker(d : H0(X,OX)→ H0(X,Ω1

X/S))

Of course, this is also immediately clear from the fact that the de Rham complex starts in
degree 0 withOX → Ω1

X/S .

The second spectral sequence is usually called the conjugate spectral sequence. The second
page of this spectral sequence has

Ep,q2 = Hp(X,Hq(Ω•
X/S)) = Hp(X,Hq)

where Hq = Hq(Ω•
X/S) is the qth cohomology sheaf of the de Rham complex of X/S.

The differentials on this page are given by Ep,q2 → Ep+2,q−1
2 . Here is a picture

H0(X,H2)

++

))

H1(X,H2)

++

H2(X,H2) H3(X,H2)

H0(X,H1)

++

H1(X,H1)

++

H2(X,H1) H3(X,H1)

H0(X,H0) H1(X,H0) H2(X,H0) H3(X,H0)

Looking in degree 0 we conclude that

H0
dR(X/S) = H0(X,H0)

which is obvious if you think about it. In degree 1 we get an exact sequence

0→ H1(X,H0)→ H1
dR(X/S)→ H0(X,H1)→ H2(X,H0)→ H2

dR(X/S)
It turns out that if X → S is smooth and S lives in characteristic p, then the sheavesHq
are computable (in terms of a certain sheaves of differentials) and the conjugate spectral
sequence is a valuable tool (insert future reference here).

7. The Hodge filtration

LetX → S be a morphism of schemes. The Hodge filtration onHn
dR(X/S) is the filtration

induced by the Hodge-to-de Rham spectral sequence (Homology, Definition 24.5). To
avoid misunderstanding, we explicitly define it as follows.

Definition 7.1. Let X → S be a morphism of schemes. The Hodge filtration on
Hn
dR(X/S) is the filtration with terms

F pHn
dR(X/S) = Im

(
Hn(X,σ≥pΩ•

X/S) −→ Hn
dR(X/S)

)
where σ≥pΩ•

X/S is as in Homology, Section 15.

Of course σ≥pΩ•
X/S is a subcomplex of the relative de Rham complex and we obtain a

filtration

Ω•
X/S = σ≥0Ω•

X/S ⊃ σ≥1Ω•
X/S ⊃ σ≥2Ω•

X/S ⊃ σ≥3Ω•
X/S ⊃ . . .

of the relative de Rham complex with grp(Ω•
X/S) = ΩpX/S [−p]. The spectral sequence

constructed in Cohomology, Lemma 29.1 for Ω•
X/S viewed as a filtered complex of sheaves
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is the same as the Hodge-to-de Rham spectral sequence constructed in Section 6 by Coho-
mology, Example 29.4. Further the wedge product (4.0.1) sends Tot(σ≥iΩ•

X/S ⊗p−1OS

σ≥jΩ•
X/S) into σ≥i+jΩ•

X/S . Hence we get commutative diagrams

Hn(X,σ≥jΩ•
X/S))×Hm(X,σ≥jΩ•

X/S)) //

��

Hn+m(X,σ≥i+jΩ•
X/S))

��
Hn
dR(X/S)×Hm

dR(X/S) ∪ // Hn+m
dR (X/S)

In particular we find that

F iHn
dR(X/S) ∪ F jHm

dR(X/S) ⊂ F i+jHn+m
dR (X/S)

8. Künneth formula

An important feature of de Rham cohomology is that there is a Künneth formula.

Let a : X → S and b : Y → S be morphisms of schemes with the same target. Let
p : X×SY → X and q : X×SY → Y be the projection morphisms and f = a◦p = b◦q.
Here is a picture

X ×S Y

p
{{

q
##

f

��

X

a
$$

Y

b
zz

S

In this section, given anOX -module F and anOY -module G let us set

F � G = p∗F ⊗OX×SY
q∗G

The bifunctor (F ,G) 7→ F�G on quasi-coherent modules extends to a bifunctor on quasi-
coherent modules and differential operators of finite over over S , see Morphisms, Remark
33.3. Since the differentials of the de Rham complexes Ω•

X/S and Ω•
Y/S are differential

operators of order 1 over S by Modules, Lemma 30.5. Thus it makes sense to consider the
complex

Tot(Ω•
X/S � Ω•

Y/S)
Please see the discussion in Derived Categories of Schemes, Section 24.

Lemma 8.1. In the situation above there is a canonical isomorphism

Tot(Ω•
X/S � Ω•

Y/S) −→ Ω•
X×SY/S

of complexes of f−1OS-modules.

Proof. We know that ΩX×SY/S = p∗ΩX/S⊕q∗ΩY/S by Morphisms, Lemma 32.11.
Taking exterior powers we obtain

ΩnX×SY/S =
⊕

i+j=n
p∗ΩiX/S ⊗OX×SY

q∗ΩjY/S =
⊕

i+j=n
ΩiX/S � ΩjY/S

by elementary properties of exterior powers. These identifications determine isomor-
phisms between the terms of the complexes on the left and the right of the arrow in the
lemma. We omit the verification that these maps are compatible with differentials. �
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Set A = Γ(S,OS). Combining the result of Lemma 8.1 with the map Derived Categories
of Schemes, Equation (24.0.2) we obtain a cup product

RΓ(X,Ω•
X/S)⊗L

A RΓ(Y,Ω•
Y/S) −→ RΓ(X ×S Y,Ω•

X×SY/S)
On the level of cohomology, using the discussion in More on Algebra, Section 63, we obtain
a canonical map

Hi
dR(X/S)⊗A Hj

dR(Y/S) −→ Hi+j
dR (X ×S Y/S), (ξ, ζ) 7−→ p∗ξ ∪ q∗ζ

We note that the construction above indeed proceeds by first pulling back and then taking
the cup product.

Lemma 8.2. Assume X and Y are smooth, quasi-compact, with affine diagonal over
S = Spec(A). Then the map

RΓ(X,Ω•
X/S)⊗L

A RΓ(Y,Ω•
Y/S) −→ RΓ(X ×S Y,Ω•

X×SY/S)
is an isomorphism in D(A).

Proof. By Morphisms, Lemma 34.12 the sheaves ΩnX/S and ΩmY/S are finite locally
free OX and OY -modules. On the other hand, X and Y are flat over S (Morphisms,
Lemma 34.9) and hence we find that ΩnX/S and ΩmY/S are flat over S. Also, observe that
Ω•
X/S is a locally bounded. Thus the result by Lemma 8.1 and Derived Categories of

Schemes, Lemma 24.1. �

There is a relative version of the cup product, namely a map

Ra∗Ω•
X/S ⊗

L
OS

Rb∗Ω•
Y/S −→ Rf∗Ω•

X×SY/S

in D(OS). The construction combines Lemma 8.1 with the map Derived Categories of
Schemes, Equation (24.0.1). The construction shows that this map is given by the diagram

Ra∗Ω•
X/S ⊗

L
OS

Rb∗Ω•
Y/S

units of adjunction
��

Rf∗(p−1Ω•
X/S)⊗L

OS
Rf∗(q−1Ω•

Y/S) //

relative cup product
��

Rf∗(Ω•
X×SY/S)⊗L

OS
Rf∗(Ω•

X×SY/S)

relative cup product
��

Rf∗(p−1Ω•
X/S ⊗

L
f−1OS

q−1Ω•
Y/S)

from derived to usual
��

// Rf∗(Ω•
X×SY/S ⊗

L
f−1OS

Ω•
X×SY/S)

from derived to usual
��

Rf∗Tot(p−1Ω•
X/S ⊗f−1OS

q−1Ω•
Y/S) //

canonical map

��

Rf∗Tot(Ω•
X×SY/S ⊗f−1OS

Ω•
X×SY/S)

η⊗ω 7→η∧ω

��
Rf∗Tot(Ω•

X/S � Ω•
Y/S) Rf∗Ω•

X×SY/S

Here the first arrow uses the units id → Rp∗p
−1 and id → Rq∗q

−1 of adjunction as well
as the identifications Rf∗p

−1 = Ra∗Rp∗p
−1 and Rf∗q

−1 = Rb∗Rq∗q
−1. The second

arrow is the relative cup product of Cohomology, Remark 28.7. The third arrow is the map
sending a derived tensor product of complexes to the totalization of the tensor product of
complexes. The final equality is Lemma 8.1. This construction recovers on global section
the construction given earlier.
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Lemma 8.3. Assume X → S and Y → S are smooth and quasi-compact and the
morphisms X → X ×S X and Y → Y ×S Y are affine. Then the relative cup product

Ra∗Ω•
X/S ⊗

L
OS

Rb∗Ω•
Y/S −→ Rf∗Ω•

X×SY/S

is an isomorphism in D(OS).

Proof. Immediate consequence of Lemma 8.2. �

9. First Chern class in de Rham cohomology

Let X → S be a morphism of schemes. There is a map of complexes

d log : O∗
X [−1] −→ Ω•

X/S

which sends the section g ∈ O∗
X(U) to the section d log(g) = g−1dg of Ω1

X/S(U). Thus
we can consider the map

Pic(X) = H1(X,O∗
X) = H2(X,O∗

X [−1]) −→ H2
dR(X/S)

where the first equality is Cohomology, Lemma 6.1. The image of the isomorphism class
of the invertible module L is denoted cdR1 (L) ∈ H2

dR(X/S).

We can also use the map d log : O∗
X → Ω1

X/S to define a Chern class in Hodge cohomology

cHodge1 : Pic(X) −→ H1(X,Ω1
X/S) ⊂ H2

Hodge(X/S)

These constructions are compatible with pullbacks.

Lemma 9.1. Given a commutative diagram

X ′
f
//

��

X

��
S′ // S

of schemes the diagrams

Pic(X ′)

cdR1
��

Pic(X)

cdR1
��

f∗
oo

H2
dR(X ′/S′) H2

dR(X/S)f∗
oo

Pic(X ′)

cHodge1
��

Pic(X)

cHodge1
��

f∗
oo

H1(X ′,Ω1
X′/S′) H1(X,Ω1

X/S)f∗
oo

commute.

Proof. Omitted. �

Let us “compute” the element cdR1 (L) in Čech cohomology (with sign rules for Čech differ-
entials as in Cohomology, Section 25). Namely, choose an open coveringU : X =

⋃
i∈I Ui

such that we have a trivializing section si of L|Ui for all i. On the overlaps Ui0i1 =
Ui0 ∩ Ui1 we have an invertible function fi0i1 such that fi0i1 = si1 |Ui0i1 si0 |

−1
Ui0i1

1. Of
course we have

fi1i2 |Ui0i1i2 f
−1
i0i2
|Ui0i1i2 fi0i1 |Ui0i1i2 = 1

The cohomology class of L in H1(X,O∗
X) is the image of the Čech cohomology class

of the cocycle {fi0i1} in Č•(U ,O∗
X). Therefore we see that cdR1 (L) is the image of the

1The Čech differential of a 0-cycle {ai0 } has ai1 − ai0 over Ui0i1 .
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cohomology class associated to the Čech cocycle {αi0...ip} in Tot(Č•(U ,Ω•
X/S)) of degree

2 given by
(1) αi0 = 0 in Ω2

X/S(Ui0),
(2) αi0i1 = f−1

i0i1
dfi0i1 in Ω1

X/S(Ui0i1), and
(3) αi0i1i2 = 0 inOX/S(Ui0i1i2).

Suppose we have invertible modules Lk , k = 1, . . . , a each trivialized over Ui for all
i ∈ I giving rise to cocycles fk,i0i1 and αk = {αk,i0...ip} as above. Using the rule in
Cohomology, Section 25 we can compute

β = α1 ∪ α2 ∪ . . . ∪ αa
to be given by the cocycle β = {βi0...ip} described as follows

(1) βi0...ip = 0 in Ω2a−p
X/S (Ui0...ip) unless p = a, and

(2) βi0...ia = (−1)a(a−1)/2α1,i0i1 ∧ α2,i1i2 ∧ . . . ∧ αa,ia−1ia in ΩaX/S(Ui0...ia).

Thus this is a cocycle representing cdR1 (L1) ∪ . . . ∪ cdR1 (La) Of course, the same compu-
tation shows that the cocycle {βi0...ia} in Ča(U ,ΩaX/S)) represents the cohomology class
cHodge1 (L1) ∪ . . . ∪ cHodge1 (La)

Remark 9.2. Here is a reformulation of the calculations above in more abstract terms.
Let p : X → S be a morphism of schemes. Let L be an invertibleOX -module. If we view
d log as a map

O∗
X [−1]→ σ≥1Ω•

X/S

then using Pic(X) = H1(X,O∗
X) as above we find a cohomology class

γ1(L) ∈ H2(X,σ≥1Ω•
X/S)

The image of γ1(L) under the map σ≥1Ω•
X/S → Ω•

X/S recovers cdR1 (L). In particular
we see that cdR1 (L) ∈ F 1H2

dR(X/S), see Section 7. The image of γ1(L) under the map
σ≥1Ω•

X/S → Ω1
X/S [−1] recovers cHodge1 (L). Taking the cup product (see Section 7) we

obtain
ξ = γ1(L1) ∪ . . . ∪ γ1(La) ∈ H2a(X,σ≥aΩ•

X/S)
The commutative diagrams in Section 7 show that ξ is mapped to cdR1 (L1)∪ . . .∪cdR1 (La)
in H2a

dR(X/S) by the map σ≥aΩ•
X/S → Ω•

X/S . Also, it follows cdR1 (L1) ∪ . . . ∪ cdR1 (La)
is contained in F aH2a

dR(X/S). Similarly, the map σ≥aΩ•
X/S → ΩaX/S [−a] sends ξ to

cHodge1 (L1) ∪ . . . ∪ cHodge1 (La) in Ha(X,ΩaX/S).

Remark 9.3. Let p : X → S be a morphism of schemes. For i > 0 denote ΩiX/S,log ⊂
ΩiX/S the abelian subsheaf generated by local sections of the form

d log(u1) ∧ . . . ∧ d log(ui)
where u1, . . . , un are invertible local sections of OX . For i = 0 the subsheaf Ω0

X/S,log ⊂
OX is the image of Z→ OX . For every i ≥ 0 we have a map of complexes

ΩiX/S,log[−i] −→ Ω•
X/S

because the derivative of a logarithmic form is zero. Moreover, wedging logarithmic forms
gives another, hence we find bilinear maps

∧ : ΩiX/S,log × ΩjX/S,log −→ Ωi+jX/S,log
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compatible with (4.0.1) and the maps above. Let L be an invertible OX -module. Using
the map of abelian sheaves d log : O∗

X → Ω1
X/S,log and the identification Pic(X) =

H1(X,O∗
X) we find a canonical cohomology class

γ̃1(L) ∈ H1(X,Ω1
X/S,log)

These classes have the following properties
(1) the image of γ̃1(L) under the canonical map Ω1

X/S,log[−1] → σ≥1Ω•
X/S sends

γ̃1(L) to the class γ1(L) ∈ H2(X,σ≥1Ω•
X/S) of Remark 9.2,

(2) the image of γ̃1(L) under the canonical map Ω1
X/S,log[−1]→ Ω•

X/S sends γ̃1(L)
to cdR1 (L) in H2

dR(X/S),
(3) the image of γ̃1(L) under the canonical map Ω1

X/S,log → Ω1
X/S sends γ̃1(L) to

cHodge1 (L) in H1(X,Ω1
X/S),

(4) the construction of these classes is compatible with pullbacks,
(5) add more here.

10. de Rham cohomology of a line bundle

A line bundle is a special case of a vector bundle, which in turn is a cone endowed with
some extra structure. To intelligently talk about the de Rham complex of these, it makes
sense to discuss the de Rham complex of a graded ring.

Remark 10.1 (de Rham complex of a graded ring). LetG be an abelian monoid writ-
ten additively with neutral element 0. LetR→ A be a ring map and assumeA comes with
a gradingA =

⊕
g∈GAg byR-modules such thatR maps intoA0 andAg ·Ag′ ⊂ Ag+g′ .

Then the module of differentials comes with a grading

ΩA/R =
⊕

g∈G
ΩA/R,g

where ΩA/R,g is the R-submodule of ΩA/R generated by a0da1 with ai ∈ Agi such that
g = g0 + g1. Similarly, we obtain

ΩpA/R =
⊕

g∈G
ΩpA/R,g

where ΩpA/R,g is theR-submodule of ΩpA/R generated by a0da1∧ . . .∧dap with ai ∈ Agi
such that g = g0 + g1 + . . .+ gp. Of course the differentials preserve the grading and the
wedge product is compatible with the gradings in the obvious manner.

Let f : X → S be a morphism of schemes. Let π : C → X be a cone, see Constructions,
Definition 7.2. Recall that this means π is affine and we have a grading π∗OC =

⊕
n≥0An

withA0 = OX . Using the discussion in Remark 10.1 over affine opens we find that2

π∗(Ω•
C/S) =

⊕
n≥0

Ω•
C/S,n

is canonically a direct sum of subcomplexes. Moreover, we have a factorization

Ω•
X/S → Ω•

C/S,0 → π∗(Ω•
C/S)

and we know that ω ∧ η ∈ Ωp+q
C/S,n+m if ω ∈ ΩpC/S,n and η ∈ ΩqC/S,m.

2With excuses for the notation!
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Let f : X → S be a morphism of schemes. Let π : L→ X be the line bundle associated to
the invertibleOX -module L. This means that π is the unique affine morphism such that

π∗OL =
⊕

n≥0
L⊗n

as OX -algebras. Thus L is a cone over X . By the discussion above we find a canonical
direct sum decomposition

π∗(Ω•
L/S) =

⊕
n≥0

Ω•
L/S,n

compatible with wedge product, compatible with the decomposition of π∗OL above, and
such that ΩX/S maps into the part ΩL/S,0 of degree 0.

There is another case which will be useful to us. Namely, consider the complement3 L? ⊂
L of the zero section o : X → L in our line bundleL. A local computation shows we have
a canonical isomorphism

(L? → X)∗OL? =
⊕

n∈Z
L⊗n

ofOX -algebras. The right hand side is a Z-graded quasi-coherentOX -algebra. Using the
discussion in Remark 10.1 over affine opens we find that

(L? → X)∗(Ω•
L?/S) =

⊕
n∈Z

Ω•
L?/S,n

compatible with wedge product, compatible with the decomposition of (L? → X)∗OL?
above, and such that ΩX/S maps into the part ΩL?/S,0 of degree 0. The complex Ω•

L?/S,0
will be of particular interest to us.

Lemma 10.2. With notation as above, there is a short exact sequence of complexes

0→ Ω•
X/S → Ω•

L?/S,0 → Ω•
X/S [−1]→ 0

Proof. We have constructed the map Ω•
X/S → Ω•

L?/S,0 above.

Construction of Res : Ω•
L?/S,0 → Ω•

X/S [−1]. Let U ⊂ X be an open and let s ∈ L(U)
and s′ ∈ L⊗−1(U) be sections such that s′s = 1. Then s gives an invertible section of the
sheaf of algebras (L? → X)∗OL? over U with inverse s′ = s−1. Then we can consider
the 1-form d log(s) = s′d(s) which is an element of Ω1

L?/S,0(U) by our construction of
the grading on Ω1

L?/S . Our computations on affines given below will show that 1 and
d log(s) freely generate Ω•

L?/S,0|U as a right module over Ω•
X/S |U . Thus we can define

Res over U by the rule
Res(ω′ + d log(s) ∧ ω) = ω

for all ω′, ω ∈ Ω•
X/S(U). This map is independent of the choice of local generator s and

hence glues to give a global map. Namely, another choice of swould be of the form gs for
some invertible g ∈ OX(U) and we would get d log(gs) = g−1d(g)+d log(s) from which
the independence easily follows. Finally, observe that our rule for Res is compatible with
differentials as d(ω′ +d log(s)∧ω) = d(ω′)−d log(s)∧d(ω) and because the differential
on Ω•

X/S [−1] sends ω′ to −d(ω′) by our sign convention in Homology, Definition 14.7.

3The scheme L? is the Gm-torsor over X associated to L. This is why the grading we get below is a
Z-grading, compare with Groupoids, Example 12.3 and Lemmas 12.4 and 12.5.
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Local computation. We can cover X by affine opens U ⊂ X such that L|U ∼= OU which
moreover map into an affine open V ⊂ S. WriteU = Spec(A), V = Spec(R) and choose
a generator s of L. We find that we have

L? ×X U = Spec(A[s, s−1])
Computing differentials we see that

Ω1
A[s,s−1]/R = A[s, s−1]⊗A Ω1

A/R ⊕A[s, s−1]d log(s)

and therefore taking exterior powers we obtain

ΩpA[s,s−1]/R = A[s, s−1]⊗A ΩpA/R ⊕A[s, s−1]d log(s)⊗A Ωp−1
A/R

Taking degree 0 parts we find

ΩpA[s,s−1]/R,0 = ΩpA/R ⊕ d log(s)⊗A Ωp−1
A/R

and the proof of the lemma is complete. �

Lemma 10.3. The “boundary” map δ : Ω•
X/S → Ω•

X/S [2] in D(X, f−1OS) coming
from the short exact sequence in Lemma 10.2 is the map of Remark 4.3 for ξ = cdR1 (L).

Proof. To be precise we consider the shift

0→ Ω•
X/S [1]→ Ω•

L?/S,0[1]→ Ω•
X/S → 0

of the short exact sequence of Lemma 10.2. As the degree zero part of a grading on
(L? → X)∗Ω•

L?/S we see that Ω•
L?/S,0 is a differential graded OX -algebra and that the

map Ω•
X/S → Ω•

L?/S,0 is a homomorphism of differential graded OX -algebras. Hence
we may view Ω•

X/S [1]→ Ω•
L?/S,0[1] as a map of right differential graded Ω•

X/S-modules
on X . The map Res : Ω•

L?/S,0[1] → Ω•
X/S is a map of right differential graded Ω•

X/S-
modules since it is locally defined by the rule Res(ω′ + d log(s) ∧ ω) = ω, see proof of
Lemma 10.2. Thus by the discussion in Differential Graded Sheaves, Section 32 we see
that δ comes from a map δ′ : Ω•

X/S → Ω•
X/S [2] in the derived category D(Ω•

X/S , d) of
right differential graded modules over the de Rham complex. The uniqueness averted in
Remark 4.3 shows it suffices to prove that δ(1) = cdR1 (L).

We claim that there is a commutative diagram

0 // O∗
X

//

d log
��

E //

��

Z

��

// 0

0 // Ω•
X/S [1] // Ω•

L?/S,0[1] // Ω•
X/S

// 0

where the top row is a short exact sequence of abelian sheaves whose boundary map sends
1 to the class of L in H1(X,O∗

X). It suffices to prove the claim by the compatibility of
boundary maps with maps between short exact sequences. We define E as the sheafifica-
tion of the rule

U 7−→ {(s, n) | n ∈ Z, s ∈ L⊗n(U) generator}
with group structure given by (s, n) · (t,m) = (s ⊗ t, n + m). The middle vertical map
sends (s, n) to d log(s). This produces a map of short exact sequences because the map
Res : Ω1

L?/S,0 → OX constructed in the proof of Lemma 10.2 sends d log(s) to 1 if s
is a local generator of L. To calculate the boundary of 1 in the top row, choose local
trivializations si of L over opens Ui as in Section 9. On the overlaps Ui0i1 = Ui0 ∩Ui1 we
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have an invertible function fi0i1 such that fi0i1 = si1 |Ui0i1 si0 |
−1
Ui0i1

and the cohomology
class of L is given by the Čech cocycle {fi0i1}. Then of course we have

(fi0i1 , 0) = (si1 , 1)|Ui0i1 · (si0 , 1)|−1
Ui0i1

as sections of E which finishes the proof. �

Lemma 10.4. With notation as above we have
(1) ΩpL?/S,n = ΩpL?/S,0 ⊗OX

L⊗n for all n ∈ Z as quasi-coherentOX -modules,
(2) Ω•

X/S = Ω•
L/X,0 as complexes, and

(3) for n > 0 and p ≥ 0 we have ΩpL/X,n = ΩpL?/S,n.

Proof. In each case there is a globally defined canonical map which is an isomor-
phism by local calculations which we omit. �

Lemma 10.5. In the situation above, assume there is a morphism S → Spec(Q).
Then Ω•

X/S → π∗Ω•
L/S is a quasi-isomorphism and H∗

dR(X/S) = H∗
dR(L/S).

Proof. Let R be a Q-algebra. Let A be an R-algebra. The affine local statement is
that the map

Ω•
A/R −→ Ω•

A[t]/R

is a quasi-isomorphism of complexes of R-modules. In fact it is a homotopy equivalence
with homotopy inverse given by the map sending gω+ g′dt∧ω′ to g(0)ω for g, g′ ∈ A[t]
and ω, ω′ ∈ Ω•

A/R. The homotopy sends gω + g′dt ∧ ω′ to (
∫
g′)ω′ were

∫
g′ ∈ A[t] is

the polynomial with vanishing constant term whose derivative with respect to t is g′. Of
course, here we use that R contains Q as

∫
tn = (1/n)tn+1. �

Example 10.6. Lemma 10.5 is false in positive characteristic. The de Rham complex
of A1

k = Spec(k[x]) over a field k looks like a direct sum

k ⊕
⊕

n≥1
(k · tn n−→ k · tn−1dt)

Hence if the characteristic of k is p > 0, then we see that bothH0
dR(A1

k/k) andH1
dR(A1

k/k)
are infinite dimensional over k.

11. de Rham cohomology of projective space

Let A be a ring. Let n ≥ 1. The structure morphism Pn
A → Spec(A) is a proper smooth

of relative dimension n. It is smooth of relative dimension n and of finite type as Pn
A has a

finite affine open covering by schemes each isomorphic to An
A, see Constructions, Lemma

13.3. It is proper because it is also separated and universally closed by Constructions,
Lemma 13.4. Let us denote O and O(d) the structure sheaf OPn

A
and the Serre twists

OPn
A

(d). Let us denote Ω = ΩPn
A
/A the sheaf of relative differentials and Ωp its exterior

powers.

Lemma 11.1. There exists a short exact sequence

0→ Ω→ O(−1)⊕n+1 → O → 0

Proof. To explain this, we recall that Pn
A = Proj(A[T0, . . . , Tn]), and we write sym-

bolically
O(−1)⊕n+1 =

⊕
j=0,...,n

O(−1)dTj
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The first arrow
Ω→

⊕
j=0,...,n

O(−1)dTj

in the short exact sequence above is given on each of the standard opens D+(Ti) =
Spec(A[T0/Ti, . . . , Tn/Ti]) mentioned above by the rule∑

j 6=i
gjd(Tj/Ti) 7−→

∑
j 6=i

gj/TidTj − (
∑

j 6=i
gjTj/T

2
i )dTi

This makes sense because 1/Ti is a section ofO(−1) over D+(Ti). The map⊕
j=0,...,n

O(−1)dTj → O

is given by sending dTj to Tj , more precisely, on D+(Ti) we send the section
∑
gjdTj to∑

Tjgj . We omit the verification that this produces a short exact sequence. �

Given an integer k ∈ Z and a quasi-coherent OPn
A

-module F denote as usual F(k) the
kth Serre twist of F . See Constructions, Definition 10.1.

Lemma 11.2. In the situation above we have the following cohomology groups
(1) Hq(Pn

A,Ωp) = 0 unless 0 ≤ p = q ≤ n,
(2) for 0 ≤ p ≤ n the A-module Hp(Pn

A,Ωp) free of rank 1.
(3) for q > 0, k > 0, and p arbitrary we have Hq(Pn

A,Ωp(k)) = 0, and
(4) add more here.

Proof. We are going to use the results of Cohomology of Schemes, Lemma 8.1 with-
out further mention. In particular, the statements are true for Hq(Pn

A,O(k)).

Proof for p = 1. Consider the short exact sequence

0→ Ω→ O(−1)⊕n+1 → O → 0

of Lemma 11.1. Since O(−1) has vanishing cohomology in all degrees, this gives that
Hq(Pn

A,Ω) is zero except in degree 1 where it is freely generated by the boundary of 1 in
H0(Pn

A,O).

Assume p > 1. Let us think of the short exact sequence above as defining a 2 step filtration
onO(−1)⊕n+1. The induced filtration on ∧pO(−1)⊕n+1 looks like this

0→ Ωp → ∧p
(
O(−1)⊕n+1)→ Ωp−1 → 0

Observe that ∧pO(−1)⊕n+1 is isomorphic to a direct sum of n + 1 choose p copies of
O(−p) and hence has vanishing cohomology in all degrees. By induction hypothesis,
this shows that Hq(Pn

A,Ωp) is zero unless q = p and Hp(Pn
A,Ωp) is free of rank 1 with

generator the boundary of the generator in Hp−1(Pn
A,Ωp−1).

Let k > 0. Observe that Ωn = O(−n− 1) for example by the short exact sequence above
for p = n + 1. Hence Ωn(k) has vanishing cohomology in positive degrees. Using the
short exact sequences

0→ Ωp(k)→ ∧p
(
O(−1)⊕n+1) (k)→ Ωp−1(k)→ 0

and descending induction on p we get the vanishing of cohomology of Ωp(k) in positive
degrees for all p. �

Lemma 11.3. We have Hq(Pn
A,Ωp) = 0 unless 0 ≤ p = q ≤ n. For 0 ≤ p ≤ n the

A-module Hp(Pn
A,Ωp) free of rank 1 with basis element cHodge1 (O(1))p.
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Proof. We have the vanishing and and freeness by Lemma 11.2. For p = 0 it is
certainly true that 1 ∈ H0(Pn

A,O) is a generator.
Proof for p = 1. Consider the short exact sequence

0→ Ω→ O(−1)⊕n+1 → O → 0
of Lemma 11.1. In the proof of Lemma 11.2 we have seen that the generator ofH1(Pn

A,Ω)
is the boundary ξ of 1 ∈ H0(Pn

A,O). As in the proof of Lemma 11.1 we will identify
O(−1)⊕n+1 with

⊕
j=0,...,nO(−1)dTj . Consider the open covering

U : Pn
A =

⋃
i=0,...,n

D+(Ti)

We can lift the restriction of the global section 1 of O to Ui = D+(Ti) by the section
T−1
i dTi of

⊕
O(−1)dTj over Ui. Thus the cocyle representing ξ is given by

T−1
i1

dTi1 − T−1
i0

dTi0 = d log(Ti1/Ti0) ∈ Ω(Ui0i1)
On the other hand, for each i the section Ti is a trivializing section ofO(1) overUi. Hence
we see that fi0i1 = Ti1/Ti0 ∈ O∗(Ui0i1) is the cocycle representingO(1) in Pic(Pn

A), see
Section 9. Hence cHodge1 (O(1)) is given by the cocycle d log(Ti1/Ti0) which agrees with
what we got for ξ above.
Proof for general p by induction. The base cases p = 0, 1 were handled above. Assume
p > 1. In the proof of Lemma 11.2 we have seen that the generator of Hp(Pn

A,Ωp) is the
boundary of cHodge1 (O(1))p−1 in the long exact cohomology sequence associated to

0→ Ωp → ∧p
(
O(−1)⊕n+1)→ Ωp−1 → 0

By the calculation in Section 9 the cohomology class cHodge1 (O(1))p−1 is, up to a sign,
represented by the cocycle with terms

βi0...ip−1 = d log(Ti1/Ti0) ∧ d log(Ti2/Ti1) ∧ . . . ∧ d log(Tip−1/Tip−2)

in Ωp−1(Ui0...ip−1). These βi0...ip−1 can be lifted to the sections β̃i0...ip−1 = T−1
i0

dTi0 ∧
βi0...ip−1 of∧p(

⊕
O(−1)dTj) overUi0...ip−1 . We conclude that the generator ofHp(Pn

A,Ωp)
is given by the cocycle whose components are∑p

a=0
(−1)aβ̃i0...îa...ip = T−1

i1
dTi1 ∧ βi1...ip +

∑p

a=1
(−1)aT−1

i0
dTi0 ∧ βi0...îa...ip

= (T−1
i1

dTi1 − T−1
i0

dTi0) ∧ βi1...ip + T−1
i0

dTi0 ∧ d(β)i0...ip
= d log(Ti1/Ti0) ∧ βi1...ip

viewed as a section of Ωp overUi0...ip . This is up to sign the same as the cocycle represent-
ing cHodge1 (O(1))p and the proof is complete. �

Lemma 11.4. For 0 ≤ i ≤ n the de Rham cohomology H2i
dR(Pn

A/A) is a free A-
module of rank 1 with basis element cdR1 (O(1))i. In all other degrees the de Rham coho-
mology of Pn

A over A is zero.

Proof. Consider the Hodge-to-de Rham spectral sequence of Section 6. By the com-
putation of the Hodge cohomology of Pn

A overA done in Lemma 11.3 we see that the spec-
tral sequence degenerates on the E1 page. In this way we see that H2i

dR(Pn
A/A) is a free

A-module of rank 1 for 0 ≤ i ≤ n and zero else. Observe that cdR1 (O(1))i ∈ H2i
dR(Pn

A/A)
for i = 0, . . . , n and that for i = n this element is the image of cHodge1 (L)n by the map of
complexes

ΩnPn
A
/A[−n] −→ Ω•

Pn
A
/A
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This follows for example from the discussion in Remark 9.2 or from the explicit descrip-
tion of cocycles representing these classes in Section 9. The spectral sequence shows that
the induced map

Hn(Pn
A,ΩnPn

A
/A) −→ H2n

dR(Pn
A/A)

is an isomorphism and since cHodge1 (L)n is a generator of of the source (Lemma 11.3),
we conclude that cdR1 (L)n is a generator of the target. By the A-bilinearity of the cup
products, it follows that also cdR1 (L)i is a generator of H2i

dR(Pn
A/A) for 0 ≤ i ≤ n. �

12. The spectral sequence for a smooth morphism

Consider a commutative diagram of schemes

X
f

//

p
��

Y

q
��

S

where f is a smooth morphism. Then we obtain a locally split short exact sequence

0→ f∗ΩY/S → ΩX/S → ΩX/Y → 0

by Morphisms, Lemma 34.16. Let us think of this as a descending filtration F on ΩX/S
with F 0ΩX/S = ΩX/S , F 1ΩX/S = f∗ΩY/S , and F 2ΩX/S = 0. Applying the functor
∧p we obtain for every p an induced filtration

ΩpX/S = F 0ΩpX/S ⊃ F
1ΩpX/S ⊃ F

2ΩpX/S ⊃ . . . ⊃ F
p+1ΩpX/S = 0

whose succesive quotients are

grkΩpX/S = F kΩpX/S/F
k+1ΩpX/S = f∗ΩkY/S ⊗OX

Ωp−k
X/Y = f−1ΩkY/S ⊗f−1OY

Ωp−k
X/Y

for k = 0, . . . , p. In fact, the reader can check using the Leibniz rule that F kΩ•
X/S is a

subcomplex of Ω•
X/S . In this way Ω•

X/S has the structure of a filtered complex. We can
also see this by observing that

F kΩ•
X/S = Im

(
∧ : Tot(f−1σ≥kΩ•

Y/S ⊗p−1OS
Ω•
X/S) −→ Ω•

X/S

)
is the image of a map of complexes on X . The filtered complex

Ω•
X/S = F 0Ω•

X/S ⊃ F
1Ω•

X/S ⊃ F
2Ω•

X/S ⊃ . . .

has the following associated graded parts

grkΩ•
X/S = f−1ΩkY/S [−k]⊗f−1OY

Ω•
X/Y

by what was said above.

Lemma 12.1. Let f : X → Y be a quasi-compact, quasi-separated, and smooth mor-
phism of schemes over a base scheme S. There is a bounded spectral sequence with first
page

Ep,q1 = Hq(ΩpY/S ⊗
L
OY

Rf∗Ω•
X/Y )

converging to Rp+qf∗Ω•
X/S .
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Proof. Consider Ω•
X/S as a filtered complex with the filtration introduced above.

The spectral sequence is the spectral sequence of Cohomology, Lemma 29.5. By Derived
Categories of Schemes, Lemma 23.2 we have

Rf∗grkΩ•
X/S = ΩkY/S [−k]⊗L

OY
Rf∗Ω•

X/Y

and thus we conclude. �

Remark 12.2. In Lemma 12.1 consider the cohomology sheaves

HqdR(X/Y ) = Hq(Rf∗Ω•
X/Y ))

If f is proper in addition to being smooth and S is a scheme over Q then HqdR(X/Y ) is
finite locally free (insert future reference here). If we only assume HqdR(X/Y ) are flat
OY -modules, then we obtain (tiny argument omitted)

Ep,q1 = ΩpY/S ⊗OY
HqdR(X/Y )

and the differentials in the spectral sequence are maps

dp,q1 : ΩpY/S ⊗OY
HqdR(X/Y ) −→ Ωp+1

Y/S ⊗OY
HqdR(X/Y )

In particular, for p = 0 we obtain a map d0,q
1 : HqdR(X/Y ) → Ω1

Y/S ⊗OY
HqdR(X/Y )

which turns out to be an integrable connection ∇ (insert future reference here) and the
complex

HqdR(X/Y )→ Ω1
Y/S ⊗OY

HqdR(X/Y )→ Ω2
Y/S ⊗OY

HqdR(X/Y )→ . . .

with differentials given by d•,q
1 is the de Rham complex of∇. The connection∇ is known

as the Gauss-Manin connection.

13. Leray-Hirsch type theorems

In this section we prove that for a smooth proper morphism one can sometimes express
the de Rham cohomology upstairs in terms of the de Rham cohomology downstairs.

Lemma 13.1. Let f : X → Y be a smooth proper morphism of schemes. Let N and
n1, . . . , nN ≥ 0 be integers and let ξi ∈ Hni

dR(X/Y ), 1 ≤ i ≤ N . Assume for all points
y ∈ Y the images of ξ1, . . . , ξN in H∗

dR(Xy/y) form a basis over κ(y). Then the map⊕N

i=1
OY [−ni] −→ Rf∗Ω•

X/Y

associated to ξ1, . . . , ξN is an isomorphism.

Proof. By Lemma 3.5Rf∗Ω•
X/Y is a perfect object ofD(OY ) whose formation com-

mutes with arbitrary base change. Thus the map of the lemma is a map a : K → L between
perfect objects ofD(OY ) whose derived restriction to any point is an isomorphism by our
assumption on fibres. Then the cone C on a is a perfect object of D(OY ) (Cohomology,
Lemma 49.7) whose derived restriction to any point is zero. It follows that C is zero by
More on Algebra, Lemma 75.6 and a is an isomorphism. (This also uses Derived Categories
of Schemes, Lemmas 3.5 and 10.7 to translate into algebra.) �

We first prove the main result of this section in the following special case.

Lemma 13.2. Let f : X → Y be a smooth proper morphism of schemes over a base
S. Assume

(1) Y and S are affine, and
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(2) there exist integers N and n1, . . . , nN ≥ 0 and ξi ∈ Hni
dR(X/S), 1 ≤ i ≤ N

such that for all points y ∈ Y the images of ξ1, . . . , ξN in H∗
dR(Xy/y) form a

basis over κ(y).
Then the map⊕N

i=1
H∗
dR(Y/S) −→ H∗

dR(X/S), (a1, . . . , aN ) 7−→
∑

ξi ∪ f∗ai

is an isomorphism.

Proof. SayY = Spec(A) andS = Spec(R). In this case Ω•
A/R computesRΓ(Y,Ω•

Y/S)
by Lemma 3.1. Choose a finite affine open covering U : X =

⋃
i∈I Ui. Consider the com-

plex
K• = Tot(Č•(U ,Ω•

X/S))
as in Cohomology, Section 25. Let us collect some facts about this complex most of which
can be found in the reference just given:

(1) K• is a complex of R-modules whose terms are A-modules,
(2) K• representsRΓ(X,Ω•

X/S) inD(R) (Cohomology of Schemes, Lemma 2.2 and
Cohomology, Lemma 25.2),

(3) there is a natural map Ω•
A/R → K• of complexes of R-modules which is A-

linear on terms and induces the pullback map H∗
dR(Y/S) → H∗

dR(X/S) on
cohomology,

(4) K• has a multiplication denoted ∧ which turns it into a differential graded R-
algebra,

(5) the multiplication onK• induces the cup product onH∗
dR(X/S) (Cohomology,

Section 31),
(6) the filtration F on Ω∗

X/S induces a filtration

K• = F 0K• ⊃ F 1K• ⊃ F 2K• ⊃ . . .

by subcomplexes on K• such that
(a) F kKn ⊂ Kn is an A-submmodule,
(b) F kK• ∧ F lK• ⊂ F k+lK•,
(c) grkK• is a complex of A-modules,
(d) gr0K• = Tot(Č•(U ,Ω•

X/Y )) and represents RΓ(X,Ω•
X/Y ) in D(A),

(e) multiplication induces an isomorphism ΩkA/R[−k]⊗A gr0K• → grkK•

We omit the detailed proofs of these statements; please see discussion leading up to the
construction of the spectral sequence in Lemma 12.1.

For every i = 1, . . . , N we choose a cocycle xi ∈ Kni representing ξi. Next, we look at
the map of complexes

x̃ : M• =
⊕

i=1,...,N
Ω•
A/R[−ni] −→ K•

which sends ω in the ith summand to xi ∧ ω. All that remains is to show that this map is
a quasi-isomorphism. We endow M• with the structure of a filtered complex by the rule

F kM• =
⊕

i=1,...,N
(σ≥kΩ•

A/R)[−ni]

With this choice the map x̃ is a morphism of filtered complexes. Observe that gr0M• =⊕
A[−ni] and multiplication induces an isomorphism ΩkA/R[−k]⊗A gr0M• → grkM•.
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By construction and Lemma 13.1 we see that

gr0x̃ : gr0M• −→ gr0K•

is an isomorphism in D(A). It follows that for all k ≥ 0 we obtain isomorphisms

grkx̃ : grkM• = ΩkA/R[−k]⊗A gr0M• −→ ΩkA/R[−k]⊗A gr0K• = grkK•

in D(A). Namely, the complex gr0K• = Tot(Č•(U ,Ω•
X/Y )) is K-flat as a complex of

A-modules by Derived Categories of Schemes, Lemma 23.3. Hence the tensor product on
the right hand side is the derived tensor product as is true by inspection on the left hand
side. Finally, taking the derived tensor product ΩkA/R[−k]⊗L

A− is a functor onD(A) and
therefore sends isomorphisms to isomorphisms. Arguing by induction on kwe deduce that

x̃ : M•/F kM• → K•/F kK•

is an isomorphism in D(R) since we have the short exact sequences

0→ F kM•/F k+1M• →M•/F k+1M• → grkM• → 0

and similarly forK•. This proves that x̃ is a quasi-isomorphism as the filtrations are finite
in any given degree. �

Proposition 13.3. Let f : X → Y be a smooth proper morphism of schemes over
a base S. Let N and n1, . . . , nN ≥ 0 be integers and let ξi ∈ Hni

dR(X/S), 1 ≤ i ≤ N .
Assume for all points y ∈ Y the images of ξ1, . . . , ξN in H∗

dR(Xy/y) form a basis over
κ(y). The map

ξ̃ =
⊕

ξ̃i[−ni] :
⊕

Ω•
Y/S [−ni] −→ Rf∗Ω•

X/S

(see proof) is an isomorphism in D(Y, (Y → S)−1OS) and correspondingly the map⊕N

i=1
H∗
dR(Y/S) −→ H∗

dR(X/S), (a1, . . . , aN ) 7−→
∑

ξi ∪ f∗ai

is an isomorphism.

Proof. Denote p : X → S and q : Y → S be the structure morphisms. Let ξ′
i :

Ω•
X/S → Ω•

X/S [ni] be the map of Remark 4.3 corresponding to ξi. Denote

ξ̃i : Ω•
Y/S → Rf∗Ω•

X/S [ni]

the composition of ξ′
i with the canonical map Ω•

Y/S → Rf∗Ω•
X/S . Using

RΓ(Y,Rf∗Ω•
X/S) = RΓ(X,Ω•

X/S)

on cohomology ξ̃i is the map η 7→ ξi ∪ f∗η from Hm
dR(Y/S) to Hm+n

dR (X/S). Further,
since the formation of ξ′

i commutes with restrictions to opens, so does the formation of ξ̃i
commute with restriction to opens.

Thus we can consider the map

ξ̃ =
⊕

ξ̃i[−ni] :
⊕

Ω•
Y/S [−ni] −→ Rf∗Ω•

X/S

To prove the lemma it suffices to show that this is an isomorphism inD(Y, q−1OS). If we
could show ξ̃ comes from a map of filtered complexes (with suitable filtrations), then we
could appeal to the spectral sequence of Lemma 12.1 to finish the proof. This takes more
work than is necessary and instead our approach will be to reduce to the affine case (whose
proof does in some sense use the spectral sequence).
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Indeed, if Y ′ ⊂ Y is is any open with inverse image X ′ ⊂ X , then ξ̃|X′ induces the map⊕N

i=1
H∗
dR(Y ′/S) −→ H∗

dR(X ′/S), (a1, . . . , aN ) 7−→
∑

ξi|X′ ∪ f∗ai

on cohomology over Y ′, see discussion above. Thus it suffices to find a basis for the topol-
ogy on Y such that the proposition holds for the members of the basis (in particular we
can forget about the map ξ̃ when we do this). This reduces us to the case where Y and S
are affine which is handled by Lemma 13.2 and the proof is complete. �

14. Projective space bundle formula

The title says it all.

Proposition 14.1. Let X → S be a morphism of schemes. Let E be a locally free
OX -module of constant rank r. Consider the morphism p : P = P(E) → X . Then the
map ⊕

i=0,...,r−1
H∗
dR(X/S) −→ H∗

dR(P/S)

given by the rule

(a0, . . . , ar−1) 7−→
∑

i=0,...,r−1
cdR1 (OP (1))i ∪ p∗(ai)

is an isomorphism.

Proof. Choose an affine open Spec(A) ⊂ X such that E restricts to the trivial locally
free module O⊕r

Spec(A). Then P ×X Spec(A) = Pr−1
A . Thus we see that p is proper and

smooth, see Section 11. Moreover, the classes cdR1 (OP (1))i, i = 0, 1, . . . , r − 1 restricted
to a fibre Xy = Pr−1

y freely generate the de Rham cohomology H∗
dR(Xy/y) over κ(y),

see Lemma 11.4. Thus we’ve verified the conditions of Proposition 13.3 and we win. �

Remark 14.2. In the situation of Proposition 14.1 we get moreover that the map

ξ̃ :
⊕

t=0,...,r−1
Ω•
X/S [−2t] −→ Rp∗Ω•

P/S

is an isomorphism in D(X, (X → S)−1OX) as follows immediately from the applica-
tion of Proposition 13.3. Note that the arrow for t = 0 is simply the canonical map
cP/X : Ω•

X/S → Rp∗Ω•
P/S of Section 2. In fact, we can pin down this map further in this

particular case. Namely, consider the canonical map

ξ′ : Ω•
P/S → Ω•

P/S [2]

of Remark 4.3 corresponding to cdR1 (OP (1)). Then

ξ′[2(t− 1)] ◦ . . . ◦ ξ′[2] ◦ ξ′ : Ω•
P/S → Ω•

P/S [2t]

is the map of Remark 4.3 corresponding to cdR1 (OP (1))t. Tracing through the choices
made in the proof of Proposition 13.3 we find the value

ξ̃|Ω•
X/S

[−2t] = Rp∗ξ
′[−2] ◦ . . . ◦Rp∗ξ

′[−2(t− 1)] ◦Rp∗ξ
′[−2t] ◦ cP/X [−2t]

for the restriction of our isomorphism to the summand Ω•
X/S [−2t]. This has the following

simple consequence we will use below: let

M =
⊕

t=1,...,r−1
Ω•
X/S [−2t] and K =

⊕
t=0,...,r−2

Ω•
X/S [−2t]
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viewed as subcomplexes of the source of the arrow ξ̃. It follows formally from the discus-
sion above that

cP/X ⊕ ξ̃|M : Ω•
X/S ⊕M −→ Rp∗Ω•

P/S

is an isomorphism and that the diagram

K

ξ̃|K
��

id
// M [2]

(ξ̃|M )[2]
��

Rp∗Ω•
P/S

Rp∗ξ
′
// Rp∗Ω•

P/S [2]

commutes where id : K →M [2] identifies the summand corresponding to t in the deom-
position of K to the summand corresponding to t+ 1 in the decomposition of M .

15. Log poles along a divisor

Let X → S be a morphism of schemes. Let Y ⊂ X be an effective Cartier divisor. If X
étale locally along Y looks like Y ×A1, then there is a canonical short exact sequence of
complexes

0→ Ω•
X/S → Ω•

X/S(log Y )→ Ω•
Y/S [−1]→ 0

having many good properties we will discuss in this section. There is a variant of this con-
struction where one starts with a normal crossings divisor (Étale Morphisms, Definition
21.1) which we will discuss elsewhere (insert future reference here).

Definition 15.1. Let X → S be a morphism of schemes. Let Y ⊂ X be an effective
Cartier divisor. We say the de Rham complex of log poles is defined for Y ⊂ X over S if
for all y ∈ Y and local equation f ∈ OX,y of Y we have

(1) OX,y → ΩX/S,y , g 7→ gdf is a split injection, and
(2) ΩpX/S,y is f -torsion free for all p.

An easy local calculation shows that it suffices for every y ∈ Y to find one local equation
f for which conditions (1) and (2) hold.

Lemma 15.2. Let X → S be a morphism of schemes. Let Y ⊂ X be an effective
Cartier divisor. Assume the de Rham complex of log poles is defined for Y ⊂ X over S.
There is a canonical short exact sequence of complexes

0→ Ω•
X/S → Ω•

X/S(log Y )→ Ω•
Y/S [−1]→ 0

Proof. Our assumption is that for every y ∈ Y and local equation f ∈ OX,y of Y
we have

ΩX/S,y = OX,ydf ⊕M and ΩpX/S,y = ∧p−1(M)df ⊕ ∧p(M)

for some module M with f -torsion free exterior powers ∧p(M). It follows that
ΩpY/S,y = ∧p(M/fM) = ∧p(M)/f ∧p (M)

Below we will tacitly use these facts. In particular the sheaves ΩpX/S have no nonzero local
sections supported on Y and we have a canonical inclusion

ΩpX/S ⊂ ΩpX/S(Y )

see More on Flatness, Section 42. Let U = Spec(A) be an affine open subscheme such that
Y ∩ U = V (f) for some nonzerodivisor f ∈ A. Let us consider the OU -submodule of
ΩpX/S(Y )|U generated by ΩpX/S |U and d log(f)∧Ωp−1

X/S where d log(f) = f−1d(f). This
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is independent of the choice of f as another generator of the ideal of Y on U is equal to
uf for a unit u ∈ A and we get

d log(uf)− d log(f) = d log(u) = u−1du
which is a section of ΩX/S over U . These local sheaves glue to give a quasi-coherent
submodule

ΩpX/S ⊂ ΩpX/S(log Y ) ⊂ ΩpX/S(Y )
Let us agree to think of ΩpY/S as a quasi-coherentOX -module. There is a unique surjective
OX -linear map

Res : ΩpX/S(log Y )→ Ωp−1
Y/S

defined by the rule
Res(η′ + d log(f) ∧ η) = η|Y ∩U

for all opens U as above and all η′ ∈ ΩpX/S(U) and η ∈ Ωp−1
X/S(U). If a form η over U

restricts to zero on Y ∩ U , then η = df ∧ η′ + fη′′ for some forms η′ and η′′ over U . We
conclude that we have a short exact sequence

0→ ΩpX/S → ΩpX/S(log Y )→ Ωp−1
Y/S → 0

for all p. We still have to define the differentials ΩpX/S(log Y ) → Ωp+1
X/S(log Y ). On the

subsheaf ΩpX/S we use the differential of the de Rham complex of X over S. Finally, we
define d(d log(f)∧ η) = −d log(f)∧ dη. The sign is forced on us by the Leibniz rule (on
Ω•
X/S) and it is compatible with the differential on Ω•

Y/S [−1] which is after all−dY/S by
our sign convention in Homology, Definition 14.7. In this way we obtain a short exact
sequence of complexes as stated in the lemma. �

Definition 15.3. Let X → S be a morphism of schemes. Let Y ⊂ X be an effective
Cartier divisor. Assume the de Rham complex of log poles is defined for Y ⊂ X over S.
Then the complex

Ω•
X/S(log Y )

constructed in Lemma 15.2 is the de Rham complex of log poles for Y ⊂ X over S.

This complex has many good properties.

Lemma 15.4. Let p : X → S be a morphism of schemes. Let Y ⊂ X be an effective
Cartier divisor. Assume the de Rham complex of log poles is defined for Y ⊂ X over S.

(1) The maps ∧ : ΩpX/S × ΩqX/S → Ωp+q
X/S extend uniquely toOX -bilinear maps

∧ : ΩpX/S(log Y )× ΩqX/S(log Y )→ Ωp+q
X/S(log Y )

satisfying the Leibniz rule d(ω ∧ η) = d(ω) ∧ η + (−1)deg(ω)ω ∧ d(η),
(2) with multiplication as in (1) the map Ω•

X/S → Ω•
X/S(log(Y ) is a homomorphism

of differential gradedOS-algebras,
(3) via the maps in (1) we have ΩpX/S(log Y ) = ∧p(Ω1

X/S(log Y )), and
(4) the map Res : Ω•

X/S(log Y )→ Ω•
Y/S [−1] satisfies

Res(ω ∧ η) = Res(ω) ∧ η|Y
for ω a local section of ΩpX/S(log Y ) and η a local section of ΩqX/S .

Proof. This follows by direct calcuation from the local construction of the complex
in the proof of Lemma 15.2. Details omitted. �
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Consider a commutative diagram

X ′
f
//

��

X

��
S′ // S

of schemes. Let Y ⊂ X be an effective Cartier divisor whose pullback Y ′ = f∗Y is
defined (Divisors, Definition 13.12). Assume the de Rham complex of log poles is defined
for Y ⊂ X over S and the de Rham complex of log poles is defined for Y ′ ⊂ X ′ over S′.
In this case we obtain a map of short exact sequences of complexes

0 // f−1Ω•
X/S

//

��

f−1Ω•
X/S(log Y ) //

��

f−1Ω•
Y/S [−1] //

��

0

0 // Ω•
X′/S′

// Ω•
X′/S′(log Y ′) // Ω•

Y ′/S′ [−1] // 0

Linearizing, for every p we obtain a linear map f∗ΩpX/S(log Y )→ ΩpX′/S′(log Y ′).

Lemma 15.5. Let f : X → S be a morphism of schemes. Let Y ⊂ X be an effective
Cartier divisor. Assume the de Rham complex of log poles is defined for Y ⊂ X over S.
Denote

δ : Ω•
Y/S → Ω•

X/S [2]

in D(X, f−1OS) the “boundary” map coming from the short exact sequence in Lemma
15.2. Denote

ξ′ : Ω•
X/S → Ω•

X/S [2]

in D(X, f−1OS) the map of Remark 4.3 corresponding to ξ = cdR1 (OX(−Y )). Denote

ζ ′ : Ω•
Y/S → Ω•

Y/S [2]

in D(Y, f |−1
Y OS) the map of Remark 4.3 corresponding to ζ = cdR1 (OX(−Y )|Y ). Then

the diagram
Ω•
X/S

ξ′

��

// Ω•
Y/S

ζ′

��

δ

zz
Ω•
X/S [2] // Ω•

Y/S [2]

is commutative in D(X, f−1OS).

Proof. More precisely, we define δ as the boundary map corresponding to the shifted
short exact sequence

0→ Ω•
X/S [1]→ Ω•

X/S(log Y )[1]→ Ω•
Y/S → 0

It suffices to prove each triangle commutes. Set L = OX(−Y ). Denote π : L → X the
line bundle with π∗OL =

⊕
n≥0 L⊗n.

Commutativity of the upper left triangle. By Lemma 10.3 the map ξ′ is the boundary map
of the triangle given in Lemma 10.2. By functoriality it suffices to prove there exists a
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morphism of short exact sequences

0 // Ω•
X/S [1] //

��

Ω•
L?/S,0[1] //

��

Ω•
X/S

//

��

0

0 // Ω•
X/S [1] // Ω•

X/S(log Y )[1] // Ω•
Y/S

// 0

where the left and right vertical arrows are the obvious ones. We can define the middle
vertical arrow by the rule

ω′ + d log(s) ∧ ω 7−→ ω′ + d log(f) ∧ ω

where ω′, ω are local sections of Ω•
X/S and where s is a local generator of L and f ∈

OX(−Y ) is the corresponding section of the ideal sheaf ofY inX . Since the constructions
of the maps in Lemmas 10.2 and 15.2 match exactly, this works.

Commutativity of the lower right triangle. DenoteL the restriction ofL to Y . By Lemma
10.3 the map ζ ′ is the boundary map of the triangle given in Lemma 10.2 using the line
bundleL on Y . By functoriality it suffices to prove there exists a morphism of short exact
sequences

0 // Ω•
X/S [1] //

��

Ω•
X/S(log Y )[1] //

��

Ω•
Y/S

//

��

0

0 // Ω•
Y/S [1] // Ω•

L
?
/S,0[1] // Ω•

Y/S
// 0

where the left and right vertical arrows are the obvious ones. We can define the middle
vertical arrow by the rule

ω′ + d log(f) ∧ ω 7−→ ω′|Y + d log(s) ∧ ω|Y

whereω′, ω are local sections of Ω•
X/S and where f is a local generator ofOX(−Y ) viewed

as a function on X and where s is f |Y viewed as a section of L|Y = OX(−Y )|Y . Since
the constructions of the maps in Lemmas 10.2 and 15.2 match exactly, this works. �

Lemma 15.6. Let X → S be a morphism of schemes. Let Y ⊂ X be an effective
Cartier divisor. Assume the de Rham complex of log poles is defined for Y ⊂ X over S.
Let b ∈ Hm

dR(X/S) be a de Rham cohomology class whose restriction to Y is zero. Then
cdR1 (OX(Y )) ∪ b = 0 in Hm+2

dR (X/S).

Proof. This follows immediately from Lemma 15.5. Namely, we have

cdR1 (OX(Y )) ∪ b = −cdR1 (OX(−Y )) ∪ b = −ξ′(b) = −δ(b|Y ) = 0

as desired. For the second equality, see Remark 4.3. �

Lemma 15.7. Let X → T → S be morphisms of schemes. Let Y ⊂ X be an effective
Cartier divisor. If both X → T and Y → T are smooth, then the de Rham complex of
log poles is defined for Y ⊂ X over S.
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Proof. Let y ∈ Y be a point. By More on Morphisms, Lemma 17.1 there exists an
integer 0 ≥ m and a commutative diagram

Y

��

Voo

��

// Am
T

(a1,...,am)7→(a1,...,am,0)
��

X Uoo π // Am+1
T

whereU ⊂ X is open, V = Y ∩U , π is étale, V = π−1(Am
T ), and y ∈ V . Denote z ∈ Am

T

the image of y. Then we have
ΩpX/S,y = ΩpAm+1

T
/S,z
⊗OAm+1

T
,z
OX,x

by Lemma 2.2. Denote x1, . . . , xm+1 the coordinate functions on Am+1
T . Since the con-

ditions (1) and (2) in Definition 15.1 do not depend on the choice of the local coordinate,
it suffices to check the conditions (1) and (2) when f is the image of xm+1 by the flat local
ring homomorphism OAm+1

T
,z → OX,x. In this way we see that it suffices to check con-

ditions (1) and (2) for Am
T ⊂ Am+1

T and the point z. To prove this case we may assume
S = Spec(A) and T = Spec(B) are affine. Let A→ B be the ring map corresponding to
the morphism T → S and set P = B[x1, . . . , xm+1] so that Am+1

T = Spec(B). We have

ΩP/A = ΩB/A ⊗B P ⊕
⊕

j=1,...,m
Pdxj ⊕ Pdxm+1

Hence the map P → ΩP/A, g 7→ gdxm+1 is a split injection and xm+1 is a nonzerodivisor
on ΩpP/A for all p ≥ 0. Localizing at the prime ideal corresponding to z finishes the
proof. �

Remark 15.8. Let S be a locally Noetherian scheme. Let X be locally of finite type
over S. Let Y ⊂ X be an effective Cartier divisor. If the map

O∧
X,y −→ O∧

Y,y

has a section for all y ∈ Y , then the de Rham complex of log poles is defined for Y ⊂ X
over S. If we ever need this result we will formulate a precise statement and add a proof
here.

Remark 15.9. Let S be a locally Noetherian scheme. Let X be locally of finite type
over S. Let Y ⊂ X be an effective Cartier divisor. If for every y ∈ Y we can find a
diagram of schemes over S

X
ϕ←− U ψ−→ V

with ϕ étale and ψ|ϕ−1(Y ) : ϕ−1(Y )→ V étale, then the de Rham complex of log poles is
defined for Y ⊂ X over S. A special case is when the pair (X,Y ) étale locally looks like
(V ×A1, V × {0}). If we ever need this result we will formulate a precise statement and
add a proof here.

16. Calculations

In this section we calculate some Hodge and de Rham cohomology groups for a standard
blowing up.
We fix a ring R and we set S = Spec(R). Fix integers 0 ≤ m and 1 ≤ n. Consider the
closed immersion

Z = Am
S −→ Am+n

S = X, (a1, . . . , am) 7→ (a1, . . . , am, 0, . . . 0).
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We are going to consider the blowing up L of X along the closed subscheme Z. Write

X = Am+n
S = Spec(A) with A = R[x1, . . . , xm, y1, . . . , yn]

We will considerA = R[x1, . . . , xm, y1, . . . , yn] as a gradedR-algebra by setting deg(xi) =
0 and deg(yj) = 1. With this grading we have

P = Proj(A) = Am
S ×S Pn−1

S = Z ×S Pn−1
S = Pn−1

Z

Observe that the ideal cutting out Z in X is the ideal A+. Hence L is the Proj of the Rees
algebra

A⊕A+ ⊕ (A+)2 ⊕ . . . =
⊕

d≥0
A≥d

Hence L is an example of the phenomenon studied in more generality in More on Mor-
phisms, Section 51; we will use the observations we made there without further mention.
In particular, we have a commutative diagram

P
0
//

p

��

L
π
//

b
��

P

p

��
Z

i // X // Z

such that π : L → P is a line bundle over P = Z ×S Pn−1
S with zero section 0 whose

image E = 0(P ) ⊂ L is the exceptional divisor of the blowup b.

Lemma 16.1. For a ≥ 0 we have
(1) the map ΩaX/S → b∗ΩaL/S is an isomorphism,
(2) the map ΩaZ/S → p∗ΩaP/S is an isomorphism, and
(3) the mapRb∗ΩaL/S → i∗Rp∗ΩaP/S is an isomorphism on cohomology sheaves in

degree ≥ 1.

Proof. Let us first prove part (2). Since P = Z ×S Pn−1
S we see that

ΩaP/S =
⊕

a=r+s
pr∗

1ΩrZ/S ⊗ pr∗
2ΩsPn−1

S
/S

Recalling that p = pr1 by the projection formula (Cohomology, Lemma 54.2) we obtain

p∗ΩaP/S =
⊕

a=r+s
ΩrZ/S ⊗ pr1,∗pr∗

2ΩsPn−1
S

/S

By the calculations in Section 11 and in particular in the proof of Lemma 11.3 we have
pr1,∗pr∗

2ΩsPn−1
S

/S
= 0 except if s = 0 in which case we get pr1,∗OP = OZ . This proves

(2).

By the material in Section 10 and in particular Lemma 10.4 we have π∗ΩaL/S = ΩaP/S ⊕⊕
k≥1 ΩaL/S,k. Since the composition π ◦0 in the diagram above is the identity morphism

on P to prove part (3) it suffices to show that ΩaL/S,k has vanishing higher cohomology
for k > 0. By Lemmas 10.2 and 10.4 there are short exact sequences

0→ ΩaP/S ⊗OP (k)→ ΩaL/S,k → Ωa−1
P/S ⊗OP (k)→ 0

where Ωa−1
P/S = 0 if a = 0. Since P = Z ×S Pn−1

S we have

ΩaP/S =
⊕

i+j=a
ΩiZ/S � ΩjPn−1

S
/S



4136 50. DE RHAM COHOMOLOGY

by Lemma 8.1. Since ΩiZ/S is free of finite rank we see that it suffices to show that the
higher cohomology ofOZ�ΩjPn−1

S
/S

(k) is zero for k > 0. This follows from Lemma 11.2

applied to P = Z ×S Pn−1
S = Pn−1

Z and the proof of (3) is complete.

We still have to prove (1). If n = 1, then we are blowing up an effective Cartier divisor
and b is an isomorphism and we have (1). If n > 1, then the composition

Γ(X,ΩaX/S)→ Γ(L,ΩaL/S)→ Γ(L \ E,ΩaL/S) = Γ(X \ Z,ΩaX/S)

is an isomorphism as ΩaX/S is finite free (small detail omitted). Thus the only way (1) can
fail is if there are nonzero elements of Γ(L,ΩaL/S) which vanish outside of E = 0(P ).
Since L is a line bundle over P with zero section 0 : P → L, it suffices to show that
on a line bundle there are no nonzero sections of a sheaf of differentials which vanish
identically outside the zero section. The reader sees this is true either (preferably) by a
local caculation or by using that ΩL/S,k ⊂ ΩL?/S,k (see references above). �

We suggest the reader skip to the next section at this point.

Lemma 16.2. For a ≥ 0 there are canonical maps

b∗ΩaX/S −→ ΩaL/S −→ b∗ΩaX/S ⊗OL
OL((n− 1)E)

whose composition is induced by the inclusionOL ⊂ OL((n− 1)E).

Proof. The first arrow in the displayed formula is discussed in Section 2. To get the
second arrow we have to show that if we view a local section of ΩaL/S as a “meromorphic
section” of b∗ΩaX/S , then it has a pole of order at most n− 1 alongE. To see this we work
on affine local charts on L. Namely, recall that L is covered by the spectra of the affine
blowup algebras A[ Iyi ] where I = A+ is the ideal generated by y1, . . . , yn. See Algebra,
Section 70 and Divisors, Lemma 32.2. By symmetry it is enough to work on the chart
corresponding to i = 1. Then

A[ I
y1

] = R[x1, . . . , xm, y1, t2, . . . , tn]

where ti = yi/y1, see More on Algebra, Lemma 31.2. Thus the module Ω1
L/S is over the

corresponding affine open freely generated by dx1, . . . , dxm, dy1, and dt1, . . . , dtn. Of
course, the firstm+ 1 of these generators come from b∗Ω1

X/S and for the remaining n−1
we have

dtj = d
yj
y1

= 1
y1

dyj −
yj
y2

1
dy1 = dyj − tjdy1

y1

which has a pole of order 1 alongE sinceE is cut out by y1 on this chart. Since the wedges
of a of these elements give a basis of ΩaL/S over this chart, and since there are at most n−1
of the dtj involved this finishes the proof. �

Lemma 16.3. Let E = 0(P ) be the exceptional divisor of the blowing up b. For any
locally freeOX -module E and 0 ≤ i ≤ n− 1 the map

E −→ Rb∗(b∗E ⊗OL
OL(iE))

is an isomorphism in D(OX).
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Proof. By the projection formula it is enough to show this for E = OX , see Coho-
mology, Lemma 54.2. Since X is affine it suffices to show that the maps

H0(X,OX)→ H0(L,OL)→ H0(L,OL(iE))

are isomorphisms and that Hj(X,OL(iE)) = 0 for j > 0 and 0 ≤ i ≤ n − 1, see
Cohomology of Schemes, Lemma 4.6. Since π is affine, we can compute global sections
and cohomology after taking π∗, see Cohomology of Schemes, Lemma 2.4. If n = 1, then
L → X is an isomorphism and i = 0 hence the first statement holds. If n > 1, then we
consider the composition

H0(X,OX)→ H0(L,OL)→ H0(L,OL(iE))→ H0(L \ E,OL) = H0(X \ Z,OX)

SinceH0(X\Z,OX) = H0(X,OX) in this case asZ has codimensionn ≥ 2 inX (details
omitted) we conclude the first statement holds. For the second, recall that OL(E) =
OL(−1), see Divisors, Lemma 32.4. Hence we have

π∗OL(iE) = π∗OL(−i) =
⊕

k≥−i
OP (k)

as discussed in More on Morphisms, Section 51. Thus we conclude by the vanishing of
the cohomology of twists of the structure sheaf on P = Pn−1

Z shown in Cohomology of
Schemes, Lemma 8.1. �

17. Blowing up and de Rham cohomology

Fix a base scheme S , a smooth morphism X → S , and a closed subscheme Z ⊂ X which
is also smooth over S. Denote b : X ′ → X the blowing up ofX alongZ. DenoteE ⊂ X ′

the exceptional divisor. Picture

(17.0.1)

E
j
//

p

��

X ′

b

��
Z

i // X

Our goal in this section is to prove that the map b∗ : H∗
dR(X/S) −→ H∗

dR(X ′/S) is
injective (although a lot more can be said).

Lemma 17.1. With notation as in More on Morphisms, Lemma 17.3 for a ≥ 0 we
have

(1) the map ΩaX/S → b∗ΩaX′/S is an isomorphism,
(2) the map ΩaZ/S → p∗ΩaE/S is an isomorphism,
(3) the map Rb∗ΩaX′/S → i∗Rp∗ΩaE/S is an isomorphism on cohomology sheaves

in degree ≥ 1.

Proof. Let ε : X1 → X be a surjective étale morphism. Denote i1 : Z1 → X1,
b1 : X ′

1 → X1, E1 ⊂ X ′
1, and p1 : E1 → Z1 the base changes of the objects considered in

More on Morphisms, Lemma 17.3. Observe that i1 is a closed immersion of schemes smooth
over S and that b1 is the blowing up with center Z1 by Divisors, Lemma 32.3. Suppose
that we can prove (1), (2), and (3) for the morphisms b1, p1, and i1. Then by Lemma 2.2
we obtain that the pullback by ε of the maps in (1), (2), and (3) are isomorphisms. As ε is a
surjective flat morphism we conclude. Thus working étale locally, by More on Morphisms,
Lemma 17.1, we may assume we are in the situation discussed in Section 16. In this case the
lemma is the same as Lemma 16.1. �
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Lemma 17.2. With notation as in More on Morphisms, Lemma 17.3 and denoting
f : X → S the structure morphism there is a canonical distinguished triangle

Ω•
X/S → Rb∗(Ω•

X′/S)⊕ i∗Ω•
Z/S → i∗Rp∗(Ω•

E/S)→ Ω•
X/S [1]

in D(X, f−1OS) where the four maps

Ω•
X/S → Rb∗(Ω•

X′/S),
Ω•
X/S → i∗Ω•

Z/S ,

Rb∗(Ω•
X′/S) → i∗Rp∗(Ω•

E/S),
i∗Ω•

Z/S → i∗Rp∗(Ω•
E/S)

are the canonical ones (Section 2), except with sign reversed for one of them.

Proof. Choose a distinguished triangle

C → Rb∗Ω•
X′/S ⊕ i∗Ω•

Z/S → i∗Rp∗Ω•
E/S → C[1]

inD(X, f−1OS). It suffices to show that Ω•
X/S is isomorphic toC in a manner compatible

with the canonical maps. By the axioms of triangulated categories there exists a map of
distinguished triangles

C ′ //

��

b∗Ω•
X′/S ⊕ i∗Ω•

Z/S
//

��

i∗p∗Ω•
E/S

//

��

C ′[1]

��
C // Rb∗Ω•

X′/S ⊕ i∗Ω•
Z/S

// i∗Rp∗Ω•
E/S

// C[1]

By Lemma 17.1 part (3) and Derived Categories, Proposition 4.23 we conclude that C ′ →
C is an isomorphism. By Lemma 17.1 part (2) the map i∗Ω•

Z/S → i∗p∗Ω•
E/S is an iso-

morphism. Thus C ′ = b∗Ω•
X′/S in the derived category. Finally we use Lemma 17.1 part

(1) tells us this is equal to Ω•
X/S . We omit the verification this is compatible with the

canonical maps. �

Proposition 17.3. With notation as in More on Morphisms, Lemma 17.3 the map
Ω•
X/S → Rb∗Ω•

X′/S has a splitting in D(X, (X → S)−1OS).

Proof. Consider the triangle constructed in Lemma 17.2. We claim that the map

Rb∗(Ω•
X′/S)⊕ i∗Ω•

Z/S → i∗Rp∗(Ω•
E/S)

has a splitting whose image contains the summand i∗Ω•
Z/S . By Derived Categories, Lemma

4.11 this will show that the first arrow of the triangle has a splitting which vanishes on
the summand i∗Ω•

Z/S which proves the lemma. We will prove the claim by decomposing
Rp∗Ω•

E/S into a direct sum where the first piece corresponds to Ω•
Z/S and the second piece

can be lifted through Rb∗Ω•
X′/S .

Proof of the claim. We may decompose X into open and closed subschemes having fixed
relative dimension toS , see Morphisms, Lemma 34.12. Since the derived categoryD(X, f−1O)S)
correspondingly decomposes as a product of categories, we may assumeX has fixed relative
dimensionN over S. We may decompose Z =

∐
Zm into open and closed subschemes of

relative dimension m ≥ 0 over S. The restriction im : Zm → X of i to Zm is a regular
immersion of codimension N − m, see Divisors, Lemma 22.11. Let E =

∐
Em be the
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corresponding decomposition, i.e., we set Em = p−1(Zm). If pm : Em → Zm denotes
the restriction of p to Em, then we have a canonical isomorphism

ξ̃m :
⊕

t=0,...,N−m−1
Ω•
Zm/S

[−2t] −→ Rpm,∗Ω•
Em/S

in D(Zm, (Zm → S)−1OS) where in degree 0 we have the canonical map Ω•
Zm/S

→
Rpm,∗Ω•

Em/S
. See Remark 14.2. Thus we have an isomorphism

ξ̃ :
⊕

m

⊕
t=0,...,N−m−1

Ω•
Zm/S

[−2t] −→ Rp∗(Ω•
E/S)

in D(Z, (Z → S)−1OS) whose restriction to the summand Ω•
Z/S =

⊕
Ω•
Zm/S

of the
source is the canonical map Ω•

Z/S → Rp∗(Ω•
E/S). Consider the subcomplexes Mm and

Km of the complex
⊕

t=0,...,N−m−1 Ω•
Zm/S

[−2t] introduced in Remark 14.2. We set

M =
⊕

Mm and K =
⊕

Km

We have M = K[−2] and by construction the map

cE/Z ⊕ ξ̃|M : Ω•
Z/S ⊕M −→ Rp∗(Ω•

E/S)

is an isomorphism (see remark referenced above).

Consider the map
δ : Ω•

E/S [−2] −→ Ω•
X′/S

in D(X ′, (X ′ → S)−1OS) of Lemma 15.5 with the property that the composition

Ω•
E/S [−2] −→ Ω•

X′/S −→ Ω•
E/S

is the map θ′ of Remark 4.3 for cdR1 (OX′(−E))|E) = cdR1 (OE(1)). The final assertion of
Remark 14.2 tells us that the diagram

K[−2]

(ξ̃|K)[−2]
��

id
// M

x̃|M
��

Rp∗Ω•
E/S [−2] Rp∗θ

′
// Rp∗Ω•

E/S

commutes. Thus we see that we can obtain the desired splitting of the claim as the map

Rp∗(Ω•
E/S)

(cE/Z⊕ξ̃|M )−1

−−−−−−−−−→ Ω•
Z/S ⊕M

id⊕id−1

−−−−−→ Ω•
Z/S ⊕K[−2]

id⊕(ξ̃|K)[−2]−−−−−−−−→ Ω•
Z/S ⊕Rp∗Ω•

E/S [−2]
id⊕Rb∗δ−−−−−→ Ω•

Z/S ⊕Rb∗Ω•
X′/S

The relationship between θ′ and δ stated above together with the commutative diagram
involving θ′, ξ̃|K , and ξ̃|M above are exactly what’s needed to show that this is a section
to the canonical map Ω•

Z/S ⊕ Rb∗(Ω•
X′/S) → Rp∗(Ω•

E/S) and the proof of the claim is
complete. �

Lemma 17.5 shows that producing the splitting on Hodge cohomology is a good deal easier
than the result of Proposition 17.3. We urge the reader to skip ahead to the next section.
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Lemma 17.4. Let i : Z → X be a closed immersion of schemes which is regular of
codimension c. Then ExtqOX

(i∗F , E) = 0 for q < c for E locally free on X and F any
OZ -module.

Proof. By the local to global spectral sequence of Ext it suffices to prove this affine
locally onX . See Cohomology, Section 43. Thus we may assumeX = Spec(A) and there
exists a regular sequence f1, . . . , fc in A such that Z = Spec(A/(f1, . . . , fc)). We may
assume c ≥ 1. Then we see that f1 : E → E is injective. Since i∗F is annihilated by f1
this shows that the lemma holds for i = 0 and that we have a surjection

Extq−1
OX

(i∗F , E/f1E) −→ ExtqOX
(i∗F , E)

Thus it suffices to show that the source of this arrow is zero. Next we repeat this argument:
if c ≥ 2 the map f2 : E/f1E → E/f1E is injective. Since i∗F is annihilated by f2 this
shows that the lemma holds for q = 1 and that we have a surjection

Extq−2
OX

(i∗F , E/f1E + f2E) −→ Extq−1
OX

(i∗F , E/f1E)

Continuing in this fashion the lemma is proved. �

Lemma 17.5. With notation as in More on Morphisms, Lemma 17.3 for a ≥ 0 there
is a unique arrow Rb∗ΩaX′/S → ΩaX/S in D(OX) whose composition with ΩaX/S →
Rb∗ΩaX′/S is the identity on ΩaX/S .

Proof. We may decomposeX into open and closed subschemes having fixed relative
dimension to S , see Morphisms, Lemma 34.12. Since the derived categoryD(X, f−1O)S)
correspondingly decomposes as a product of categories, we may assumeX has fixed relative
dimension N over S. We may decompose Z =

∐
Zm into open and closed subschemes

of relative dimension m ≥ 0 over S. The restriction im : Zm → X of i to Zm is a
regular immersion of codimension N −m, see Divisors, Lemma 22.11. Let E =

∐
Em be

the corresponding decomposition, i.e., we set Em = p−1(Zm). We claim that there are
natural maps

b∗ΩaX/S → ΩaX′/S → b∗ΩaX/S ⊗OX′ OX′(
∑

(N −m− 1)Em)

whose composition is induced by the inclusionOX′ → OX′(
∑

(N−m−1)Em). Namely,
in order to prove this, it suffices to show that the cokernel of the first arrow is locally onX ′

annihilated by a local equation of the effective Cartier divisor
∑

(N −m− 1)Em. To see
this in turn we can work étale locally onX as in the proof of Lemma 17.1 and apply Lemma
16.2. Computing étale locally using Lemma 16.3 we see that the induced composition

ΩaX/S → Rb∗ΩaX′/S → Rb∗

(
b∗ΩaX/S ⊗OX′ OX′(

∑
(N −m− 1)Em)

)
is an isomorphism in D(OX) which is how we obtain the existence of the map in the
lemma.

For uniqueness, it suffices to show that there are no nonzero maps from τ≥1Rb∗ΩX′/S to
ΩaX/S in D(OX). For this it suffices in turn to show that there are no nonzero maps from
Rqb∗ΩX′/s[−q] to ΩaX/S inD(OX) for q ≥ 1 (details omitted). By Lemma 17.1 we see that
Rqb∗ΩX′/s

∼= i∗R
qp∗ΩaE/S is the pushforward of a module on Z =

∐
Zm. Moreover,

observe that the restriction ofRqp∗ΩaE/S to Zm is nonzero only for q < N −m. Namely,
the fibres ofEm → Zm have dimensionN −m−1 and we can apply Limits, Lemma 19.2.
Thus the desired vanishing follows from Lemma 17.4. �
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18. Comparing sheaves of differential forms

The goal of this section is to compare the sheaves ΩpX/Z and ΩpY/Z when given a locally
quasi-finite syntomic morphism of schemes f : Y → X . The result will be applied in
Section 19 to the construction of the trace map on de Rham complexes if f is finite.

Lemma 18.1. Let R be a ring and consider a commutative diagram

0 // K0 // L0 // M0 // 0

L−1

∂

OO

M−1

OO

of R-modules with exact top row and M0 and M−1 finite free of the same rank. Then
there are canonical maps

∧i(H0(L•)) −→ ∧i(K0)⊗R det(M•)

whose composition with ∧i(K0)→ ∧i(H0(L•)) is equal to multiplication with δ(M•).

Proof. Say M0 and M−1 are free of rank n. For every i ≥ 0 there is a canonical
surjection

πi : ∧n+i(L0) −→ ∧i(K0)⊗ ∧n(M0)
whose kernel is the submodule generated by wedges l1 ∧ . . .∧ ln+i such that > i of the lj
are in K0. On the other hand, the exact sequence

L−1 → L0 → H0(L•)→ 0

similarly produces canonical maps

∧i(H0(L•))⊗ ∧n(L−1) −→ ∧n+i(L0)

by sending η ⊗ θ to η̃ ∧ ∂(θ) where η̃ ∈ ∧i(L0) is a lift of η. The composition of these
two maps, combined with the identification ∧n(L−1) = ∧n(M−1) gives a map

∧i(H0(L•))⊗ ∧n(M−1) −→ ∧i(K0)⊗ ∧n(M0)

Since det(M•) = ∧n(M0)⊗ (∧n(M−1))⊗−1 this produces a map as in the statement of
the lemma. If η is the image of ω ∈ ∧i(K0), then we see that θ ⊗ η is mapped to πi(ω ∧
∂(θ)) = ω ⊗ θ in ∧i(K0)⊗∧n(M0) where θ is the image of θ in ∧n(M0). Since δ(M•)
is simply the determinant of the map M−1 →M0 this proves the last statement. �

Remark 18.2. Let A be a ring. Let P = A[x1, . . . , xn]. Let f1, . . . , fn ∈ P and set
B = P/(f1, . . . , fn). AssumeA→ B is quasi-finite. ThenB is a relative global complete
intersection overA (Algebra, Definition 136.5) and (f1, . . . , fn)/(f1, . . . , fn)2 is free with
generators the classes f i by Algebra, Lemma 136.12. Consider the following diagram

ΩA/Z ⊗A B // ΩP/Z ⊗P B // ΩP/A ⊗P B

(f1, . . . , fn)/(f1, . . . , fn)2

OO

(f1, . . . , fn)/(f1, . . . , fn)2

OO

The right column represents NLB/A in D(B) hence has cohomology ΩB/A in degree 0.
The top row is the split short exact sequence 0 → ΩA/Z ⊗A B → ΩP/Z ⊗P B →
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ΩP/A ⊗P B → 0. The middle column has cohomology ΩB/Z in degree 0 by Algebra,
Lemma 131.9. Thus by Lemma 18.1 we obtain canonical B-module maps

ΩpB/Z −→ ΩpA/Z ⊗A det(NLB/A)

whose composition with ΩpA/Z → ΩpB/Z is multiplication by δ(NLB/A).

Lemma 18.3. There exists a unique rule that to every locally quasi-finite syntomic
morphism of schemes f : Y → X assignsOY -module maps

cpY/X : ΩpY/Z −→ f∗ΩpX/Z ⊗OY
det(NLY/X)

satisfying the following two properties
(1) the composition with f∗ΩpX/Z → ΩpY/Z is multiplication by δ(NLY/X), and
(2) the rule is compatible with restriction to opens and with base change.

Proof. This proof is very similar to the proof of Discriminants, Proposition 13.2 and
we suggest the reader look at that proof first. We fix p ≥ 0 throughout the proof.

Let us reformulate the statement. Consider the category C whose objects, denoted Y/X ,
are locally quasi-finite syntomic morphism f : Y → X of schemes and whose morphisms
b/a : Y ′/X ′ → Y/X are commutative diagrams

Y ′

f ′

��

b
// Y

f

��
X ′ a // X

which induce an isomorphism of Y ′ with an open subscheme of X ′ ×X Y . The lemma
means that for every object Y/X of C we have maps cpY/X with property (1) and for every
morphism b/a : Y ′/X ′ → Y/X of C we have b∗cpY/X = cpY ′/X′ via the identifications
b∗ det(NLY/X) = det(NLY ′/X′) (Discriminants, Section 13) and b∗ΩpY/X = ΩpY ′/X′

(Lemma 2.1).

Given Y/X in C and y ∈ Y we can find an affine open V ⊂ Y andU ⊂ X with f(V ) ⊂ U
such that there exists some maps

ΩpY/Z|V −→
(
f∗ΩpX/Z ⊗OY

det(NLY/X)
)
|V

with property (1). This follows from picking affine opens as in Discriminants, Lemma
10.1 part (5) and Remark 18.2. If ΩpX/Z is finite locally free and annihilator of the section
δ(NLY/X) is zero, then these local maps are unique and automatically glue!

Let Cnice ⊂ C denote the full subcategory of Y/X such that
(1) X is of finite type over Z,
(2) ΩX/Z is locally free, and
(3) the annihilator of δ(NLY/X) is zero.

By the remarks in the previous paragraph, we see that for any object Y/X of Cnice we have
a unique map cpY/X satisfying condition (1). If b/a : Y ′/X ′ → Y/X is a morphism of
Cnice, then b∗cpY/X is equal to cpY ′/X′ because b∗δ(NLY/X) = δ(NLY ′/X′) (see Discrim-
inants, Section 13). In other words, we have solved the problem on the full subcategory
Cnice. For Y/X in Cnice we continue to denote cpY/X the solution we’ve just found.
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Consider morphisms

Y1/X1
b1/a1←−−− Y/X b2/a2−−−→ Y2/X2

in C such that Y1/X1 and Y2/X2 are objects of Cnice. Claim. b∗
1c
p
Y1/X1

= b∗
2c
p
Y2/X2

. We
will first show that the claim implies the lemma and then we will prove the claim.

Let d, n ≥ 1 and consider the locally quasi-finite syntomic morphism Yn,d → Xn,d con-
structed in Discriminants, Example 10.5. Then Yn,d and Yn,d are irreducible schemes of
finite type and smooth over Z. Namely,Xn,d is a spectrum of a polynomial ring over Z and
Yn,d is an open subscheme of such. The morphism Yn,d → Xn,d is locally quasi-finite syn-
tomic and étale over a dense open, see Discriminants, Lemma 10.6. Thus δ(NLYn,d/Xn,d)
is nonzero: for example we have the local description of δ(NLY/X) in Discriminants, Re-
mark 13.1 and we have the local description of étale morphisms in Morphisms, Lemma
36.15 part (8). Now a nonzero section of an invertible module over an irreducible regular
scheme has vanishing annihilator. Thus Yn,d/Xn,d is an object of Cnice.
Let Y/X be an arbitrary object of C. Let y ∈ Y . By Discriminants, Lemma 10.7 we can
find n, d ≥ 1 and morphisms

Y/X ← V/U
b/a−−→ Yn,d/Xn,d

of C such that V ⊂ Y andU ⊂ X are open. Thus we can pullback the canonical morphism
cpYn,d/Xn,d constructed above by b to V . The claim guarantees these local isomorphisms
glue! Thus we get a well defined global maps cpY/X with property (1). If b/a : Y ′/X ′ →
Y/X is a morphism of C , then the claim also implies that the similarly constructed map
cpY ′/X′ is the pullback by b of the locally constructed map cpY/X . Thus it remains to prove
the claim.

In the rest of the proof we prove the claim. We may pick a point y ∈ Y and prove the maps
agree in an open neighbourhood of y. Thus we may replaceY1, Y2 by open neighbourhoods
of the image of y in Y1 and Y2. Thus we may assume Y,X, Y1, X1, Y2, X2 are affine. We
may writeX = limXλ as a cofiltered limit of affine schemes of finite type overX1×X2.
For each λ we get

Y1 ×X1 Xλ and Xλ ×X2 Y2

If we take limits we obtain

limY1 ×X1 Xλ = Y1 ×X1 X ⊃ Y ⊂ X ×X2 Y2 = limXλ ×X2 Y2

By Limits, Lemma 4.11 we can find aλ and opensV1,λ ⊂ Y1×X1Xλ andV2,λ ⊂ Xλ×X2Y2
whose base change to X recovers Y (on both sides). After increasing λ we may assume
there is an isomorphism V1,λ → V2,λ whose base change to X is the identity on Y , see
Limits, Lemma 10.1. Then we have the commutative diagram

Y/X

��

b1/a1

yy

b2/a2

%%
Y1/X1 V1,λ/Xλ

oo // Y2/X2

Thus it suffices to prove the claim for the lower row of the diagram and we reduce to the
case discussed in the next paragraph.

Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z. Write X = Spec(A), Xi =
Spec(Ai). The ring map A1 → A corresponding to X → X1 is of finite type and hence
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we may choose a surjection A1[x1, . . . , xn] → A. Similarly, we may choose a surjection
A2[y1, . . . , ym] → A. Set X ′

1 = Spec(A1[x1, . . . , xn]) and X ′
2 = Spec(A2[y1, . . . , ym]).

Observe that ΩX′
1/Z is the direct sum of the pullback of ΩX1/Z and a finite free module.

Similarly for X ′
2. Set Y ′

1 = Y1 ×X1 X
′
1 and Y ′

2 = Y2 ×X2 X
′
2. We get the following

diagram

Y1/X1 ← Y ′
1/X

′
1 ← Y/X → Y ′

2/X
′
2 → Y2/X2

Since X ′
1 → X1 and X ′

2 → X2 are flat, the same is true for Y ′
1 → Y1 and Y ′

2 → Y2.
It follows easily that the annihilators of δ(NLY ′

1/X
′
1
) and δ(NLY ′

2/X
′
2
) are zero. Hence

Y ′
1/X

′
1 and Y ′

2/X
′
2 are in Cnice. Thus the outer morphisms in the displayed diagram are

morphisms of Cnice for which we know the desired compatibilities. Thus it suffices to
prove the claim for Y ′

1/X
′
1 ← Y/X → Y ′

2/X
′
2. This reduces us to the case discussed in

the next paragraph.

Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z and X → X1 and X → X2
are closed immersions. Consider the open embeddings Y1 ×X1 X ⊃ Y ⊂ X ×X2 Y2.
There is an open neighbourhood V ⊂ Y of y which is a standard open of both Y1 ×X1 X
and X ×X2 Y2. This follows from Schemes, Lemma 11.5 applied to the scheme obtained
by glueing Y1×X1 X andX ×X2 Y2 along Y ; details omitted. SinceX ×X2 Y2 is a closed
subscheme of Y2 we can find a standard open V2 ⊂ Y2 such that V2×X2X = V . Similarly,
we can find a standard open V1 ⊂ Y1 such that V1 ×X1 X = V . After replacing Y, Y1, Y2
by V, V1, V2 we reduce to the case discussed in the next paragraph.

Assume Y,X, Y1, X1, Y2, X2 are affine of finite type over Z and X → X1 and X → X2
are closed immersions and Y1 ×X1 X = Y = X ×X2 Y2. Write X = Spec(A), Xi =
Spec(Ai), Y = Spec(B), Yi = Spec(Bi). Then we can consider the affine schemes

X ′ = Spec(A1 ×A A2) = Spec(A′) and Y ′ = Spec(B1 ×B B2) = Spec(B′)

Observe thatX ′ = X1qX X2 and Y ′ = Y1qY Y2, see More on Morphisms, Lemma 14.1.
By More on Algebra, Lemma 5.1 the ringsA′ andB′ are of finite type over Z. By More on
Algebra, Lemma 6.4 we haveB′⊗AA1 = B1 andB′×AA2 = B2. In particular a fibre of
Y ′ → X ′ over a point of X ′ = X1 qX X2 is always equal to either a fibre of Y1 → X1 or
a fibre of Y2 → X2. By More on Algebra, Lemma 6.8 the ring map A′ → B′ is flat. Thus
by Discriminants, Lemma 10.1 part (3) we conclude that Y ′/X ′ is an object of C. Consider
now the commutative diagram

Y/X

b1/a1

zz

b2/a2

$$
Y1/X1

$$

Y2/X2

zz
Y ′/X ′

Now we would be done if Y ′/X ′ is an object of Cnice, but this is almost never the case.
Namely, then pulling back cpY ′/X′ around the two sides of the square, we would obtain the
desired conclusion. To get around the problem thatY ′/X ′ is not in Cnice we note the argu-
ments above show that, after possibly shrinking all of the schemesX,Y,X1, Y1, X2, Y2, X

′, Y ′
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we can find some n, d ≥ 1, and extend the diagram like so:

Y/X

b1/a1

yy

b2/a2

%%
Y1/X1

%%

Y2/X2

yy
Y ′/X ′

��
Yn,d/Xn,d

and then we can use the already given argument by pulling back from cpYn,d/Xn,d . This
finishes the proof. �

19. Trace maps on de Rham complexes

A reference for some of the material in this section is [?]. Let S be a scheme. Let f :
Y → X be a finite locally free morphism of schemes over S. Then there is a trace map
Tracef : f∗OY → OX , see Discriminants, Section 3. In this situation a trace map on de
Rham complexes is a map of complexes

ΘY/X : f∗Ω•
Y/S −→ Ω•

X/S

such that ΘY/X is equal to Tracef in degree 0 and satisfies

ΘY/X(ω ∧ η) = ω ∧ΘY/X(η)

for local sectionsω of Ω•
X/S and η of f∗Ω•

Y/S . It is not clear to us whether such a trace map
ΘY/X exists for every finite locally free morphismY → X ; please email stacks.project@gmail.com
if you have a counterexample or a proof.

Example 19.1. Here is an example where we do not have a trace map on de Rham
complexes. For example, consider the C-algebra B = C[x, y] with action of G = {±1}
given by x 7→ −x and y 7→ −y. The invariants A = BG form a normal domain of
finite type over C generated by x2, xy, y2. We claim that for the inclusion A ⊂ B there
is no reasonable trace map ΩB/C → ΩA/C on 1-forms. Namely, consider the element
ω = xdy ∈ ΩB/C. Since ω is invariant under the action of G if a “reasonable” trace map
exists, then 2ω should be in the image of ΩA/C → ΩB/C. This is not the case: there is no
way to write 2ω as a linear combination of d(x2), d(xy), and d(y2) even with coefficients
in B. This example contradicts the main theorem in [?].

Lemma 19.2. There exists a unique rule that to every finite syntomic morphism of
schemes f : Y → X assignsOX -module maps

Θp
Y/X : f∗ΩpY/Z −→ ΩpX/Z

satisfying the following properties
(1) the composition with ΩpX/Z⊗OX

f∗OY → f∗ΩpY/Z is equal to id⊗Tracef where
Tracef : f∗OY → OX is the map from Discriminants, Section 3,

(2) the rule is compatible with base change.

mailto:stacks.project@gmail.com
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Proof. First, assume that X is locally Noetherian. By Lemma 18.3 we have a canon-
ical map

cpY/X : ΩpY/S −→ f∗ΩpX/S ⊗OY
det(NLY/X)

By Discriminants, Proposition 13.2 we have a canonical isomorphism
cY/X : det(NLY/X)→ ωY/X

mapping δ(NLY/X) to τY/X . Combined these maps give

cpY/X ⊗ cY/X : ΩpY/S −→ f∗ΩpX/S ⊗OY
ωY/X

By Discriminants, Section 5 this is the same thing as a map
Θp
Y/X : f∗ΩpY/S −→ ΩpX/S

Recall that the relationship between cpY/X ⊗ cY/X and Θp
Y/X uses the evaluation map

f∗ωY/X → OX which sends τY/X to Tracef (1), see Discriminants, Section 5. Hence
property (1) holds. Property (2) holds for base changes by X ′ → X with X ′ locally
Noetherian because both cpY/X and cY/X are compatible with such base changes. For f :
Y → X finite syntomic and X locally Noetherian, we will continue to denote Θp

Y/X the
solution we’ve just found.
Uniqueness. Suppose that we have a finite syntomic morphism f : Y → X such that X
is smooth over Spec(Z) and f is étale over a dense open of X . We claim that in this case
Θp
Y/X is uniquely determined by property (1). Namely, consider the maps

ΩpX/Z ⊗OX
f∗OY → f∗ΩpY/Z → ΩpX/Z

The sheaf ΩpX/Z is torsion free (by the assumed smoothness), hence it suffices to check that
the restriction of Θp

Y/X is uniquely determined over the dense open over which f is étale,
i.e., we may assume f is étale. However, if f is étale, then f∗ΩX/Z = ΩY/Z hence the
first arrow in the displayed equation is an isomorphism. Since we’ve pinned down the
composition, this guarantees uniqueness.
Let f : Y → X be a finite syntomic morphism of locally Noetherian schemes. Let x ∈ X .
By Discriminants, Lemma 11.7 we can find d ≥ 1 and a commutative diagram

Y

��

V

��

oo // Vd

��
X Uoo // Ud

such that x ∈ U ⊂ X is open, V = f−1(U) and V = U ×Ud Vd. Thus Θp
Y/X |V is

the pullback of the map Θp
Vd/Ud

. However, by the discussion on uniqueness above and
Discriminants, Lemmas 11.4 and 11.5 the map Θp

Vd/Ud
is uniquely determined by the re-

quirement (1). Hence uniqueness holds.
At this point we know that we have existence and uniqueness for all finite syntomic mor-
phisms Y → X with X locally Noetherian. We could now give an argument similar to
the proof of Lemma 18.3 to extend to general X . However, instead it possible to directly
use absolute Noetherian approximation to finish the proof. Namely, to construct Θp

Y/X

it suffices to do so Zariski locally onX (provided we also show the uniqueness). Hence we
may assume X is affine (small detail omitted). Then we can write X = limi∈I Xi as the
limit over a directed set I of Noetherian affine schemes. By Algebra, Lemma 127.8 we can
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find 0 ∈ I and a finitely presented morphism of affines f0 : Y0 → X0 whose base change
toX is Y → X . After increasing 0 we may assume Y0 → X0 is finite and syntomic, see Al-
gebra, Lemma 168.9 and 168.3. For i ≥ 0 also the base change fi : Yi = Y0 ×X0 Xi → Xi

is finite syntomic. Then

Γ(X, f∗ΩpY/Z) = Γ(Y,ΩpY/Z) = colimi≥0 Γ(Yi,ΩpYi/Z) = colimi≥0 Γ(Xi, fi,∗ΩpYi/Z)

Hence we can (and are forced to) define Θp
Y/X as the colimit of the maps Θp

Yi/Xi
. This

map is compatible with any cartesian diagram

Y ′ //

��

Y

��
X ′ // X

withX ′ affine as we know this for the case of Noetherian affine schemes by the arguments
given above (small detail omitted; hint: if we also write X ′ = limj∈J X

′
j then for every

i ∈ I there is a j ∈ J and a morphismX ′
j → Xi compatible with the morphismX ′ → X).

This finishes the proof. �

Proposition 19.3. Let f : Y → X be a finite syntomic morphism of schemes. The
maps Θp

Y/X of Lemma 19.2 define a map of complexes

ΘY/X : f∗Ω•
Y/Z −→ Ω•

X/Z

with the following properties
(1) in degree 0 we get Tracef : f∗OY → OX , see Discriminants, Section 3,
(2) we have ΘY/X(ω ∧ η) = ω ∧ΘY/X(η) for ω in Ω•

X/Z and η in f∗Ω•
Y/Z,

(3) if f is a morphism over a base scheme S , then ΘY/X induces a map of complexes
f∗Ω•

Y/S → Ω•
X/S .

Proof. By Discriminants, Lemma 11.7 for every x ∈ X we can find d ≥ 1 and a
commutative diagram

Y

��

V

��

oo // Vd

��

// Yd = Spec(Bd)

��
X Uoo // Ud // Xd = Spec(Ad)

such that x ∈ U ⊂ X is affine open, V = f−1(U) and V = U ×Ud Vd. Write U =
Spec(A) and V = Spec(B) and observe that B = A ⊗Ad Bd and recall that Bd =
Ade1 ⊕ . . .⊕ Aded. Suppose we have a1, . . . , ar ∈ A and b1, . . . , bs ∈ B. We may write
bj =

∑
aj,led with aj,l ∈ A. Set N = r + sd and consider the factorizations

V //

��

V ′ = AN × Vd //

��

Vd

��
U // U ′ = AN × Ud // Ud

Here the horizontal lower right arrow is given by the morphismU → Ud (from the earlier
diagram) and the morphism U → AN given by a1, . . . , ar, a1,1, . . . , as,d. Then we see
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that the functions a1, . . . , ar are in the image of Γ(U ′,OU ′) → Γ(U,OU ) and the func-
tions b1, . . . , bs are in the image of Γ(V ′,OV ′) → Γ(V,OV ). In this way we see that for
any finite collection of elements4 of the groups

Γ(V,ΩiY/Z), i = 0, 1, 2, . . . and Γ(U,ΩjX/Z), j = 0, 1, 2, . . .

we can find a factorizations V → V ′ → Vd and U → U ′ → Ud with V ′ = AN × Vd and
U ′ = AN × Ud as above such that these sections are the pullbacks of sections from

Γ(V ′,ΩiV ′/Z), i = 0, 1, 2, . . . and Γ(U ′,ΩjU ′/Z), j = 0, 1, 2, . . .

The upshot of this is that to check d ◦ ΘY/X = ΘY/X ◦ d it suffices to check this is true
for ΘV ′/U ′ . Similarly, for property (2) of the lemma.

By Discriminants, Lemmas 11.4 and 11.5 the schemeUd is smooth and the morphism Vd →
Ud is étale over a dense open of Ud. Hence the same is true for the morphism V ′ → U ′.
Since ΩU ′/Z is locally free and hence ΩpU ′/Z is torsion free, it suffices to check the desired
relations after restricting to the open over which V ′ is finite étale. Then we may check
the relations after a surjective étale base change. Hence we may split the finite étale cover
and assume we are looking at a morphism of the form∐

i=1,...,d
W −→W

with W smooth over Z. In this case any local properties of our construction are trivial to
check (provided they are true). This finishes the proof of (1) and (2).

Finally, we observe that (3) follows from (2) because ΩY/S is the quotient of ΩY/Z by the
submodule generated by pullbacks of local sections of ΩS/Z. �

Example 19.4. Let A be a ring. Let f = xd +
∑

0≤i<d ad−ix
i ∈ A[x]. Let B =

A[x]/(f). By Proposition 19.3 we have a morphism of complexes

ΘB/A : Ω•
B −→ Ω•

A

In particular, if t ∈ B denotes the image of x ∈ A[x] we can consider the elements

ΘB/A(tidt) ∈ Ω1
A, i = 0, . . . , d− 1

What are these elements? By the same principle as used in the proof of Proposition 19.3 it
suffices to compute this in the universal case, i.e., when A = Z[a1, . . . , ad] or even when
A is replaced by the fraction field Q(a1, . . . , ad). Writing symbolically

f =
∏

i=1,...,d
(x− αi)

we see that over Q(α1, . . . , αd) the algebra B becomes split:

Q(a0, . . . , ad−1)[x]/(f) −→
∏

i=1,...,d
Q(α1, . . . , αd), t 7−→ (α1, . . . , αd)

Thus for example
Θ(dt) =

∑
dαi = −da1

Next, we have
Θ(tdt) =

∑
αidαi = a1da1 − da2

4After all these elements will be finite sums of elements of the form a0da1 ∧. . .∧dai with a0, . . . , ai ∈ A
or finite sums of elements of the form b0db1 ∧ . . . ∧ dbj with b0, . . . , bj ∈ B.
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Next, we have

Θ(t2dt) =
∑

α2
i dαi = −a2

1da1 + a1da2 + a2da1 − da3

(modulo calculation error), and so on. This suggests that if f(x) = xd − a then

ΘB/A(tidt) =
{

0 if i = 0, . . . , d− 2
da if i = d− 1

in ΩA. This is true for in this particular case one can do the calculation for the extension
Q(a)[x]/(xd − a) to verify this directly.

Lemma 19.5. Let p be a prime number. LetX → S be a smooth morphism of relative
dimension d of schemes in characteristic p. The relative Frobenius FX/S : X → X(p) of
X/S (Varieties, Definition 36.4) is finite syntomic and the corresponding map

ΘX/X(p) : FX/S,∗Ω•
X/S → Ω•

X(p)/S

is zero in all degrees except in degree d where it defines a surjection.

Proof. Observe that FX/S is a finite morphism by Varieties, Lemma 36.8. To prove
thatFX/S is flat, it suffices to show that the morphismFX/S,s : Xs → X

(p)
s between fibres

is flat for all s ∈ S , see More on Morphisms, Theorem 16.2. Flatness ofXs → X
(p)
s follows

from Algebra, Lemma 128.1 (and the finiteness already shown). By More on Morphisms,
Lemma 62.10 the morphism FX/S is a local complete intersection morphism. Hence FX/S
is finite syntomic (see More on Morphisms, Lemma 62.8).

For every point x ∈ X we may choose a commutative diagram

X

��

Uoo

π

��
S Ad

S
oo

where π is étale and x ∈ U is open in X , see Morphisms, Lemma 36.20. Observe that
Ad
S → Ad

S , (x1, . . . , xd) 7→ (xp1, . . . , x
p
d) is the relative Frobenius for AdS over S. The

commutative diagram
U

π

��

FX/S

// U (p)

π(p)

��
Ad
S

xi 7→xp
i // Ad

S

of Varieties, Lemma 36.5 for π : U → Ad
S is cartesian by Étale Morphisms, Lemma 14.3.

Since the construction of Θ is compatible with base change and since ΩU/S = π∗ΩAd
S
/S

(Lemma 2.2) we conclude that it suffices to show the lemma for Ad
S .

LetA be a ring of characteristic p. Consider the uniqueA-algebra homomorphismA[y1, . . . , yd]→
A[x1, . . . , xd] sending yi to xpi . The arguments above reduce us to computing the map

Θi : ΩiA[x1,...,xd]/A → ΩiA[y1,...,yd]/A

We urge the reader to do the computation in this case for themselves. As in Example 19.4
we may reduce this to computing a formula for Θi in the universal case

Z[y1, . . . , yd]→ Z[x1, . . . , xd], yi 7→ xpi
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In turn, we can find the formula for Θi by computing in the complex case, i.e., for the
C-algebra map

C[y1, . . . , yd]→ C[x1, . . . , xd], yi 7→ xpi

We may even invert x1, . . . , xd and y1, . . . , yd. In this case, we have dxi = p−1x−p+1
i dyi.

Hence we see that

Θi(xe1
1 . . . xedd dx1 ∧ . . . ∧ dxi) = p−iΘi(xe1−p+1

1 . . . xei−p+1
i x

ei+1
i+1 . . . xedd dy1 ∧ . . . ∧ dyi)

= p−iTrace(xe1−p+1
1 . . . xei−p+1

i x
ei+1
i+1 . . . xedd )dy1 ∧ . . . ∧ dyi

by the properties of Θi. An elementary computation shows that the trace in the expression
above is zero unless e1, . . . , ei are congruent to−1 modulo p and ei+1, . . . , ed are divisible
by p. Moreover, in this case we obtain

pd−iy
(e1−p+1)/p
1 . . . y

(ei−p+1)/p
i y

ei+1/p
i+1 . . . y

ed/p
d dy1 ∧ . . . ∧ dyi

We conclude that we get zero in characteristic p unless d = i and in this case we get every
possible d-form. �

20. Poincaré duality

In this section we prove Poincar’e duality for the de Rham cohomology of a proper smooth
scheme over a field. Let us first explain how this works for Hodge cohomology.

Lemma 20.1. Let k be a field. Let X be a nonempty smooth proper scheme over k
equidimensional of dimension d. There exists a k-linear map

t : Hd(X,ΩdX/k) −→ k

unique up to precomposing by multiplication by a unit ofH0(X,OX) with the following
property: for all p, q the pairing

Hq(X,ΩpX/k)×Hd−q(X,Ωd−p
X/k) −→ k, (ξ, ξ′) 7−→ t(ξ ∪ ξ′)

is perfect.

Proof. By Duality for Schemes, Lemma 27.1 we have ω•
X = ΩdX/k[d]. Since ΩX/k is

locally free of rank d (Morphisms, Lemma 34.12) we have

ΩdX/k ⊗OX
(ΩpX/k)∨ ∼= Ωd−p

X/k

Thus we obtain a k-linear map t : Hd(X,ΩdX/k) → k such that the statement is true by
Duality for Schemes, Lemma 27.4. In particular the pairingH0(X,OX)×Hd(X,ΩdX/k)→
k is perfect, which implies that any k-linear map t′ : Hd(X,ΩdX/k) → k is of the form
ξ 7→ t(gξ) for some g ∈ H0(X,OX). Of course, in order for t′ to still produce a dual-
ity between H0(X,OX) and Hd(X,ΩdX/k) we need g to be a unit. Denote 〈−,−〉p,q the
pairing constructed using t and denote 〈−,−〉′p,q the pairing constructed using t′. Clearly
we have

〈ξ, ξ′〉′p,q = 〈gξ, ξ′〉p,q

for ξ ∈ Hq(X,ΩpX/k) and ξ′ ∈ Hd−q(X,Ωd−p
X/k). Since g is a unit, i.e., invertible, we see

that using t′ instead of t we still get perfect pairings for all p, q. �
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Lemma 20.2. Let k be a field. Let X be a smooth proper scheme over k. The map

d : H0(X,OX)→ H0(X,Ω1
X/k)

is zero.

Proof. Since X is smooth over k it is geometrically reduced over k, see Varieties,
Lemma 25.4. Hence H0(X,OX) =

∏
ki is a finite product of finite separable field exten-

sions ki/k, see Varieties, Lemma 9.3. It follows that ΩH0(X,OX)/k =
∏

Ωki/k = 0 (see
for example Algebra, Lemma 158.1). Since the map of the lemma factors as

H0(X,OX)→ ΩH0(X,OX)/k → H0(X,ΩX/k)
by functoriality of the de Rham complex (see Section 2), we conclude. �

Lemma 20.3. Let k be a field. Let X be a smooth proper scheme over k equidimen-
sional of dimension d. The map

d : Hd(X,Ωd−1
X/k)→ Hd(X,ΩdX/k)

is zero.

Proof. It is tempting to think this follows from a combination of Lemmas 20.2 and
20.1. However this doesn’t work because the maps OX → Ω1

X/k and Ωd−1
X/k → ΩdX/k are

notOX -linear and hence we cannot use the functoriality discussed in Duality for Schemes,
Remark 27.3 to conclude the map in Lemma 20.2 is dual to the one in this lemma.
We may replace X by a connected component of X . Hence we may assume X is irre-
ducible. By Varieties, Lemmas 25.4 and 9.3 we see that k′ = H0(X,OX) is a finite sepa-
rable extension k′/k. Since Ωk′/k = 0 (see for example Algebra, Lemma 158.1) we see that
ΩX/k = ΩX/k′ (see Morphisms, Lemma 32.9). Thus we may replace k by k′ and assume
that H0(X,OX) = k.
Assume H0(X,OX) = k. We conclude that dimHd(X,ΩdX/k) = 1 by Lemma 20.1. As-
sume first that the characteristic of k is a prime number p. Denote FX/k : X → X(p) the
relative Frobenius ofX over k; please keep in mind the facts proved about this morphism
in Lemma 19.5. Consider the commutative diagram

Hd(X,Ωd−1
X/k)

��

// Hd(X(p), FX/k,∗Ωd−1
X/k)

��

Θd−1
// Hd(X(p),Ωd−1

X(p)/k
)

��
Hd(X,ΩdX/k) // Hd(X(p), FX/k,∗ΩdX/k) Θd // Hd(X(p),Ωd

X(p)/k
)

The left two horizontal arrows are isomorphisms as FX/k is finite, see Cohomology of
Schemes, Lemma 2.4. The right square commutes as ΘX(p)/X is a morphism of complexes
and Θd−1 is zero. Thus it suffices to show that Θd is nonzero (because the dimension of
the source of the map Θd is 1 by the discussion above). However, we know that

Θd : FX/k,∗ΩdX/k → ΩdX(p)/k

is surjective and hence surjective after applying the right exact functorHd(X(p),−) (right
exactness by the vanishing of cohomology beyond d as follows from Cohomology, Propo-
sition 20.7). Finally, Hd(X(d),Ωd

X(d)/k
) is nonzero for example because it is dual to

H0(X(d),OX(p)) by Lemma 20.1 applied to X(p) over k. This finishes the proof in this
case.
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Finally, assume the characteristic of k is 0. We can write k as the filtered colimit of its
finite type Z-subalgebras R. For one of these we can find a cartesian diagram of schemes

X

��

// Y

��
Spec(k) // Spec(R)

such that Y → Spec(R) is smooth of relative dimension d and proper. See Limits, Lemmas
10.1, 8.9, 18.4, and 13.1. The modules M i,j = Hj(Y,ΩiY/R) are finite R-modules, see
Cohomology of Schemes, Lemma 19.2. Thus after replacing R by a localization we may
assume all of these modules are finite free. We haveM i,j⊗Rk = Hj(X,ΩiX/k) by flat base
change (Cohomology of Schemes, Lemma 5.2). Thus it suffices to show that Md−1,d →
Md,d is zero. This is a map of finite free modules over a domain, hence it suffices to find a
dense set of primes p ⊂ R such that after tensoring with κ(p) we get zero. Since R is of
finite type over Z, we can take the collection of primes p whose residue field has positive
characteristic (details omitted). Observe that

Md−1,d ⊗R κ(p) = Hd(Yκ(p),Ωd−1
Yκ(p)/κ(p))

for example by Limits, Lemma 19.2. Similarly for Md,d. Thus we see that Md−1,d ⊗R
κ(p)→Md,d ⊗R κ(p) is zero by the case of positive characteristic handled above. �

Proposition 20.4. Let k be a field. LetX be a nonempty smooth proper scheme over
k equidimensional of dimension d. There exists a k-linear map

t : H2d
dR(X/k) −→ k

unique up to precomposing by multiplication by a unit ofH0(X,OX) with the following
property: for all i the pairing

Hi
dR(X/k)×H2d−i

dR (X/k) −→ k, (ξ, ξ′) 7−→ t(ξ ∪ ξ′)
is perfect.

Proof. By the Hodge-to-de Rham spectral sequence (Section 6), the vanishing of
ΩiX/k for i > d, the vanishing in Cohomology, Proposition 20.7 and the results of Lemmas
20.2 and 20.3 we see that H0

dR(X/k) = H0(X,OX) and Hd(X,ΩdX/k) = H2d
dR(X/k).

More precisesly, these identifications come from the maps of complexes

Ω•
X/k → OX [0] and ΩdX/k[−d]→ Ω•

X/k

Let us choose t : H2d
dR(X/k) → k which via this identification corresponds to a t as in

Lemma 20.1. Then in any case we see that the pairing displayed in the lemma is perfect
for i = 0.

Denote k the constant sheaf with value k on X . Let us abbreviate Ω• = Ω•
X/k. Consider

the map (4.0.1) which in our situation reads

∧ : Tot(Ω• ⊗k Ω•) −→ Ω•

For every integer p = 0, 1, . . . , d this map annihilates the subcomplex Tot(σ>pΩ• ⊗k
σ≥d−pΩ•) for degree reasons. Hence we find that the restriction of ∧ to the subcomplex
Tot(Ω• ⊗k σ≥d−pΩ•) factors through a map of complexes

γp : Tot(σ≤pΩ• ⊗k σ≥d−pΩ•) −→ Ω•
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Using the same procedure as in Section 4 we obtain cup products

Hi(X,σ≤pΩ•)×H2d−i(X,σ≥d−pΩ•) −→ H2d
dR(X,Ω•)

We will prove by induction on p that these cup products via t induce perfect pairings
between Hi(X,σ≤pΩ•) and H2d−i(X,σ≥d−pΩ•). For p = d this is the assertion of the
proposition.

The base case is p = 0. In this case we simply obtain the pairing between Hi(X,OX) and
Hd−i(X,Ωd) of Lemma 20.1 and the result is true.

Induction step. Say we know the result is true for p. Then we consider the distinguished
triangle

Ωp+1[−p− 1]→ σ≤p+1Ω• → σ≤pΩ• → Ωp+1[−p]
and the distinguished triangle

σ≥d−pΩ• → σ≥d−p−1Ω• → Ωd−p−1[−d+ p+ 1]→ (σ≥d−pΩ•)[1]
Observe that both are distinguished triangles in the homotopy category of complexes of
sheaves of k-modules; in particular the maps σ≤pΩ• → Ωp+1[−p] and Ωd−p−1[−d+ p+
1]→ (σ≥d−pΩ•)[1] are given by actual maps of complexes, namely using the differential
Ωp → Ωp+1 and the differential Ωd−p−1 → Ωd−p. Consider the long exact cohomology
sequences associated to these distinguished triangles

Hi−1(X,σ≤pΩ•)

a

��
Hi(X,Ωp+1[−p− 1])

b

��
Hi(X,σ≤p+1Ω•)

c

��
Hi(X,σ≤pΩ•)

d

��
Hi+1(X,Ωp+1[−p− 1])

H2d−i+1(X,σ≥d−pΩ•)

H2d−i(X,Ωd−p−1[−d+ p+ 1])

a′

OO

H2d−i(X,σ≥d−p−1Ω•)

b′

OO

H2d−i(X,σ≥d−pΩ•)

c′

OO

H2d−i−1(X,Ωd−p−1[−d+ p+ 1])

d′

OO

By induction and Lemma 20.1 we know that the pairings constructed above between the
k-vectorspaces on the first, second, fourth, and fifth rows are perfect. By the 5-lemma,
in order to show that the pairing between the cohomology groups in the middle row is
perfect, it suffices to show that the pairs (a, a′), (b, b′), (c, c′), and (d, d′) are compatible
with the given pairings (see below).

Let us prove this for the pair (c, c′). Here we observe simply that we have a commutative
diagram

Tot(σ≤pΩ• ⊗k σ≥d−pΩ•)

γp

��

Tot(σ≤p+1Ω• ⊗k σ≥d−pΩ•)oo

��
Ω• Tot(σ≤p+1Ω• ⊗k σ≥d−p−1Ω•)

γp+1oo
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Hence if we haveα ∈ Hi(X,σ≤p+1Ω•) and β ∈ H2d−i(X,σ≥d−pΩ•) then we get γp(α∪
c′(β)) = γp+1(c(α) ∪ β) by functoriality of the cup product.
Similarly for the pair (b, b′) we use the commutative diagram

Tot(σ≤p+1Ω• ⊗k σ≥d−p−1Ω•)

γp+1

��

Tot(Ωp+1[−p− 1]⊗k σ≥d−p−1Ω•)oo

��
Ω• Ωp+1[−p− 1]⊗k Ωd−p−1[−d+ p+ 1]∧oo

and argue in the same manner.
For the pair (d, d′) we use the commutative diagram

Ωp+1[−p]⊗k Ωd−p−1[−d+ p]

��

Tot(σ≤pΩ• ⊗k Ωd−p−1[−d+ p])oo

��
Ω• Tot(σ≤pΩ• ⊗k σ≥d−pΩ•)oo

and we look at cohomology classes in Hi(X,σ≤pΩ•) and H2d−i(X,Ωd−p−1[−d + p]).
Changing i to i − 1 we get the result for the pair (a, a′) thereby finishing the proof that
our pairings are perfect.
We omit the argument showing the uniqueness of t up to precomposing by multiplication
by a unit in H0(X,OX). �

21. Chern classes

The results proved so far suffice to use the discussion in Weil Cohomology Theories, Sec-
tion 12 to produce Chern classes in de Rham cohomology.

Lemma 21.1. There is a unique rule which assigns to every quasi-compact and quasi-
separated scheme X a total Chern class

cdR : K0(Vect(X)) −→
∏

i≥0
H2i
dR(X/Z)

with the following properties
(1) we have cdR(α+ β) = cdR(α)cdR(β) for α, β ∈ K0(Vect(X)),
(2) if f : X → X ′ is a morphism of quasi-compact and quasi-separated schemes,

then cdR(f∗α) = f∗cdR(α),
(3) given L ∈ Pic(X) we have cdR([L]) = 1 + cdR1 (L)

The construction can easily be extended to all schemes, but to do so one needs to slightly
upgrade the discussion in Weil Cohomology Theories, Section 12.

Proof. We will apply Weil Cohomology Theories, Proposition 12.1 to get this.
Let C be the category of all quasi-compact and quasi-separated schemes. This certainly
satisfies conditions (1), (2), and (3) (a), (b), and (c) of Weil Cohomology Theories, Section
12.
As our contravariant functor A from C to the category of graded algebras will send X
to A(X) =

⊕
i≥0 H

2i
dR(X/Z) endowed with its cup product. Functoriality is discussed

in Section 3 and the cup product in Section 4. For the additive maps cA1 we take cdR1
constructed in Section 9.
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In fact, we obtain commutative algebras by Lemma 4.1 which shows we have axiom (1) for
A.

To check axiom (2) for A it suffices to check that H∗
dR(X

∐
Y/Z) = H∗

dR(X/Z) ×
H∗
dR(Y/Z). This is a consequence of the fact that de Rham cohomology is constructed

by taking the cohomology of a sheaf of differential graded algebras (in the Zariski topol-
ogy).

Axiom (3) for A is just the statement that taking first Chern classes of invertible modules
is compatible with pullbacks. This follows from the more general Lemma 9.1.

Axiom (4) for A is the projective space bundle formula which we proved in Proposition
14.1.

Axiom (5). Let X be a quasi-compact and quasi-separated scheme and let E → F be
a surjection of finite locally free OX -modules of ranks r + 1 and r. Denote i : P ′ =
P(F)→ P(E) = P the corresponding incusion morphism. This is a morphism of smooth
projective schemes overX which exhibits P ′ as an effective Cartier divisor on P . Thus by
Lemma 15.7 the complex of log poles for P ′ ⊂ P over Z is defined. Hence for a ∈ A(P )
with i∗a = 0 we have a ∪ cA1 (OP (P ′)) = 0 by Lemma 15.6. This finishes the proof. �

Remark 21.2. The analogues of Weil Cohomology Theories, Lemmas 12.2 (splitting
principle) and 12.3 (chern classes of tensor products) hold for de Rham Chern classes on
quasi-compact and quasi-separated schemes. This is clear as we’ve shown in the proof of
Lemma 21.1 that all the axioms of Weil Cohomology Theories, Section 12 are satisfied.

Working with schemes over Q we can construct a Chern character.

Lemma 21.3. There is a unique rule which assigns to every quasi-compact and quasi-
separated scheme X over Q a “chern character”

chdR : K0(Vect(X)) −→
∏

i≥0
H2i
dR(X/Q)

with the following properties
(1) chdR is a ring map for all X ,
(2) if f : X ′ → X is a morphism of quasi-compact and quasi-separated schemes

over Q, then f∗ ◦ chdR = chdR ◦ f∗, and
(3) given L ∈ Pic(X) we have chdR([L]) = exp(cdR1 (L)).

The construction can easily be extended to all schemes over Q, but to do so one needs to
slightly upgrade the discussion in Weil Cohomology Theories, Section 12.

Proof. Exactly as in the proof of Lemma 21.1 one shows that the category of quasi-
compact and quasi-separated schemes over Q together with the functorA∗(X) =

⊕
i≥0 H

2i
dR(X/Q)

satisfy the axioms of Weil Cohomology Theories, Section 12. Moreover, in this caseA(X)
is a Q-algebra for all X . Hence the lemma follows from Weil Cohomology Theories,
Proposition 12.4. �

22. A Weil cohomology theory

Let k be a field of characteristic 0. In this section we prove that the functor

X 7−→ H∗
dR(X/k)

defines a Weil cohomology theory over k with coefficients in k as defined in Weil Coho-
mology Theories, Definition 11.4. We will proceed by checking the constructions earlier
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in this chapter provide us with data (D0), (D1), and (D2’) satisfying axioms (A1) – (A9) of
Weil Cohomology Theories, Section 14.
Throughout the rest of this section we fix the field k of characteristic 0 and we set F = k.
Next, we take the following data

(D0) For our 1-dimensional F vector space F (1) we take F (1) = F = k.
(D1) For our functor H∗ we take the functor sending a smooth projective scheme X

over k toH∗
dR(X/k). Functoriality is discussed in Section 3 and the cup product

in Section 4. We obtain graded commutative F -algebras by Lemma 4.1.
(D2’) For the maps cH1 : Pic(X) → H2(X)(1) we use the de Rham first Chern class

introduced in Section 9.
We are going to show axioms (A1) – (A9) hold.
In this paragraph, we are going to reduce the checking of the axioms to the case where
k is algebraically closed by using Weil Cohomology Theories, Lemma 14.18. Denote k′

the algebraic closure of k. Set F ′ = k′. We obtain data (D0), (D1), (D2’) over k′ with
coefficient field F ′ in exactly the same way as above. By Lemma 3.5 there are functorial
isomorphisms

H2d
dR(X/k)⊗k k′ −→ H2d

dR(Xk′/k′)
for X smooth and projective over k. Moreover, the diagrams

Pic(X)
cdR1

//

��

H2
dR(X/k)

��
Pic(Xk′)

cdR1 // H2
dR(Xk′/k′)

commute by Lemma 9.1. This finishes the proof of the reduction.
Assume k is algebraically closed field of characteristic zero. We will show axioms (A1) –
(A9) for the data (D0), (D1), and (D2’) given above.
Axiom (A1). Here we have to check that H∗

dR(X
∐
Y/k) = H∗

dR(X/k) × H∗
dR(Y/k).

This is a consequence of the fact that de Rham cohomology is constructed by taking the
cohomology of a sheaf of differential graded algebras (in the Zariski topology).
Axiom (A2). This is just the statement that taking first Chern classes of invertible modules
is compatible with pullbacks. This follows from the more general Lemma 9.1.
Axiom (A3). This follows from the more general Proposition 14.1.
Axiom (A4). This follows from the more general Lemma 15.6.
Already at this point, using Weil Cohomology Theories, Lemmas 14.1 and 14.2, we obtain
a Chern character and cycle class maps

γ : CH∗(X) −→
⊕

i≥0
H2i
dR(X/k)

for X smooth projective over k which are graded ring homomorphisms compatible with
pullbacks between morphisms f : X → Y of smooth projective schemes over k.
Axiom (A5). We have H∗

dR(Spec(k)/k) = k = F in degree 0. We have the Künneth
formula for the product of two smooth projective k-schemes by Lemma 8.2 (observe that
the derived tensor products in the statement are harmless as we are tensoring over the field
k).
Axiom (A7). This follows from Proposition 17.3.
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Axiom (A8). LetX be a smooth projective scheme over k. By the explanatory text to this
axiom in Weil Cohomology Theories, Section 14 we see that k′ = H0(X,OX) is a finite
separable k-algebra. It follows that H∗

dR(Spec(k′)/k) = k′ sitting in degree 0 because
Ωk′/k = 0. By Lemma 20.2 we also have H0

dR(X,OX) = k′ and we get the axiom.

Axiom (A6). Let X be a nonempty smooth projective scheme over k which is equidimen-
sional of dimension d. Denote ∆ : X → X ×Spec(k) X the diagonal morphism ofX over
k. We have to show that there exists a k-linear map

λ : H2d
dR(X/k) −→ k

such that (1⊗ λ)γ([∆]) = 1 in H0
dR(X/k). Let us write

γ = γ([∆]) = γ0 + . . .+ γ2d

with γi ∈ Hi
dR(X/k)⊗kH2d−i

dR (X/k) the Künneth components. Our problem is to show
that there is a linear map λ : H2d

dR(X/k)→ k such that (1⊗ λ)γ0 = 1 in H0
dR(X/k).

Let X =
∐
Xi be the decomposition of X into connected and hence irreducible com-

ponents. Then we have correspondingly ∆ =
∐

∆i with ∆i ⊂ Xi × Xi. It follows
that

γ([∆]) =
∑

γ([∆i])
and moreover γ([∆i]) corresponds to the class of ∆i ⊂ Xi ×Xi via the decomposition

H∗
dR(X ×X) =

∏
i,j
H∗
dR(Xi ×Xj)

We omit the details; one way to show this is to use that in CH0(X ×X) we have idempo-
tents ei,j corresponding to the open and closed subschemesXi×Xj and to use that γ is a
ring map which sends ei,j to the corresponding idempotent in the displayed product de-
composition of cohomology. If we can find λi : H2d

dR(Xi/k)→ k with (1⊗λi)γ([∆i]) =
1 in H0

dR(Xi/k) then taking λ =
∑
λi will solve the problem for X . Thus we may and

do assume X is irreducible.
Proof of Axiom (A6) forX irreducible. Since k is algebraically closed we haveH0

dR(X/k) =
k because H0(X,OX) = k as X is a projective variety over an algebraically closed field
(see Varieties, Lemma 9.3 for example). Let x ∈ X be any closed point. Consider the
cartesian diagram

x

��

// X

∆
��

X
x×id // X ×Spec(k) X

Compatibility of γ with pullbacks implies that γ([∆]) maps to γ([x]) in H2d
dR(X/k), in

other words, we have γ0 = 1 ⊗ γ([x]). We conclude two things from this: (a) the class
γ([x]) is independent of x, (b) it suffices to show the class γ([x]) is nonzero, and hence (c)
it suffices to find any zero cycle α on X such that γ(α) 6= 0. To do this we choose a finite
morphism

f : X −→ Pd
k

To see such a morphism exist, see Intersection Theory, Section 23 and in particular Lemma
23.1. Observe that f is finite syntomic (local complete intersection morphism by More on
Morphisms, Lemma 62.10 and flat by Algebra, Lemma 128.1). By Proposition 19.3 we have
a trace map

Θf : f∗Ω•
X/k −→ Ω•

Pd
k
/k
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whose composition with the canonical map
Ω•

Pd
k
/k −→ f∗Ω•

X/k

is multiplication by the degree of f . Hence we see that we get a map

Θ : H2d
dR(X/k)→ H2d

dR(Pd
k/k)

such that Θ ◦ f∗ is multiplication by a positive integer. Hence if we can find a zero cycle
on Pd

k whose class is nonzero, then we conclude by the compatibility of γ with pullbacks.
This is true by Lemma 11.4 and this finishes the proof of axiom (A6).
Below we will use the following without further mention. First, by Weil Cohomology
Theories, Remark 14.6 the map λX : H2d

dR(X/k) → k is unique. Second, in the proof of
axiom (A6) we have seen that λX(γ([x])) = 1 whenX is irreducible, i.e., the composition
of the cycle class map γ : CHd(X)→ H2d

dR(X/k) with λX is the degree map.
Axiom (A9). Let Y ⊂ X be a nonempty smooth divisor on a nonempty smooth equidi-
mensional projective schemeX over k of dimension d. We have to show that the diagram

H2d−2
dR (X/k)

cdR1 (OX(Y ))∩−
//

restriction

��

H2d
dR(X)

λX

��
H2d−2
dR (Y/k) λY // k

commutes where λX and λY are as in axiom (A6). Above we have seen that if we de-
compose X =

∐
Xi into connected (equivalently irreducible) components, then we have

correspondingly λX =
∑
λXi . Similarly, if we decompoese Y =

∐
Yj into connected

(equivalently irreducible) components, then we have λY =
∑
λYj . Moreover, in this case

we haveOX(Y ) = ⊗jOX(Yj) and hence

cdR1 (OX(Y )) =
∑

j
cdR1 (OX(Yj))

in H2
dR(X/k). A straightforward diagram chase shows that it suffices to prove the com-

mutativity of the diagram in case X and Y are both irreducible. Then H2d−2
dR (Y/k) is

1-dimensional as we have Poincar’e duality for Y by Weil Cohomology Theories, Lemma
14.5. By axiom (A4) the kernel of restriction (left vertical arrow) is contained in the ker-
nel of cupping with cdR1 (OX(Y )). This means it suffices to find one cohomology class
a ∈ H2d−2

dR (X) whose restriction to Y is nonzero such that we have commutativity in the
diagram for a. Take any ample invertible module L and set

a = cdR1 (L)d−1

Then we know that a|Y = cdR1 (L|Y )d−1 and hence

λY (a|Y ) = deg(c1(L|Y )d−1 ∩ [Y ])
by our description of λY above. This is a positive integer by Chow Homology, Lemma
41.4 combined with Varieties, Lemma 45.9. Similarly, we find

λX(cdR1 (OX(Y )) ∩ a) = deg(c1(OX(Y )) ∩ c1(L)d−1 ∩ [X])
Since we know that c1(OX(Y ))∩[X] = [Y ] more or less by definition we have an equality
of zero cycles

(Y → X)∗
(
c1(L|Y )d−1 ∩ [Y ]

)
= c1(OX(Y )) ∩ c1(L)d−1 ∩ [X]

on X . Thus these cycles have the same degree and the proof is complete.
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Proposition 22.1. Let k be a field of characteristic zero. The functor that sends a
smooth projective scheme X over k to H∗

dR(X/k) is a Weil cohomology theory in the
sense of Weil Cohomology Theories, Definition 11.4.

Proof. In the discussion above we showed that our data (D0), (D1), (D2’) satisfies
axioms (A1) – (A9) of Weil Cohomology Theories, Section 14. Hence we conclude by
Weil Cohomology Theories, Proposition 14.17.

Please don’t read what follows. In the proof of the assertions we also used Lemmas 3.5,
9.1, 15.6, 8.2, 20.2, and 11.4, Propositions 14.1, 17.3, and 19.3, Weil Cohomology Theories,
Lemmas 14.18, 14.1, 14.2, and 14.5, Weil Cohomology Theories, Remark 14.6, Varieties,
Lemmas 9.3 and 45.9, Intersection Theory, Section 23 and Lemma 23.1, More on Mor-
phisms, Lemma 62.10, Algebra, Lemma 128.1, and Chow Homology, Lemma 41.4. �

Remark 22.2. In exactly the same manner as above one can show that Hodge co-
homology X 7→ H∗

Hodge(X/k) equipped with cHodge1 determines a Weil cohomology
theory. If we ever need this, we will precisely formulate and prove this here. This leads
to the following amusing consequence: If the betti numbers of a Weil cohomology theory
are independent of the chosen Weil cohomology theory (over our field k of characteristic
0), then the Hodge-to-de Rham spectral sequence degenerates at E1! Of course, the de-
generation of the Hodge-to-de Rham spectral sequence is known (see for example [?] for a
marvelous algebraic proof), but it is by no means an easy result! This suggests that proving
the independence of betti numbers is a hard problem as well and as far as we know is still
an open problem. See Weil Cohomology Theories, Remark 11.5 for a related question.

23. Gysin maps for closed immersions

In this section we define the gysin map for closed immersions.

Remark 23.1. Let X → S be a morphism of schemes. Let f1, . . . , fc ∈ Γ(X,OX).
Let Z ⊂ X be the closed subscheme cut out by f1, . . . , fc. Below we will study the gysin
map

(23.1.1) γpf1,...,fc
: ΩpZ/S −→ H

c
Z(Ωp+c

X/S)

defined as follows. Given a local section ω of ΩpZ/S which is the restriction of a section ω̃
of ΩpX/S we set

γpf1,...,fc
(ω) = cf1,...,fc(ω̃|Z) ∧ df1 ∧ . . . ∧ dfc

where cf1,...,fc : ΩpX/S⊗OZ → H
c
Z(ΩpX/S) is the map constructed in Derived Categories

of Schemes, Remark 6.10. This is well defined: given ω we can change our choice of ω̃ by
elements of the form

∑
fiω

′
i+
∑

d(fi)∧ω′′
i which are mapped to zero by the construction.

Lemma 23.2. The gysin map (23.1.1) is compatible with the de Rham differentials on
Ω•
X/S and Ω•

Z/S .

Proof. This follows from an almost trivial calculation once we correctly interpret
this. First, we recall that the functor HcZ computed on the category of OX -modules
agrees with the similarly defined functor on the category of abelian sheaves on X , see
Cohomology, Lemma 34.8. Hence, the differential d : ΩpX/S → Ωp+1

X/S induces a map
HcZ(ΩpX/S) → HcZ(Ωp+1

X/S). Moreover, the formation of the extended alternating Čech
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complex in Derived Categories of Schemes, Remark 6.4 works on the category of abelian
sheaves. The map

Coker
(⊕

F1...̂i...c → F1...c

)
−→ i∗HcZ(F)

used in the construction of cf1,...,fc in Derived Categories of Schemes, Remark 6.10 is well
defined and functorial on the category of all abelian sheaves on X . Hence we see that the
lemma follows from the equality

d
(
ω̃ ∧ df1 ∧ . . . ∧ dfc

f1 . . . fc

)
= d(ω̃) ∧ df1 ∧ . . . ∧ dfc

f1 . . . fc

which is clear. �

Lemma 23.3. Let X → S be a morphism of schemes. Let Z → X be a closed im-
mersion of finite presentation whose conormal sheaf CZ/X is locally free of rank c. Then
there is a canonical map

γp : ΩpZ/S → H
c
Z(Ωp+c

X/S)
which is locally given by the maps γpf1,...,fc

of Remark 23.1.

Proof. The assumptions imply that given x ∈ Z ⊂ X there exists an open neigh-
bourhood U of x such that Z is cut out by c elements f1, . . . , fc ∈ OX(U). Thus it
suffices to show that given f1, . . . , fc and g1, . . . , gc in OX(U) cutting out Z ∩ U , the
maps γpf1,...,fc

and γpg1,...,gc are the same. To do this, after shrinking U we may assume
gj =

∑
ajifi for some aji ∈ OX(U). Then we have cf1,...,fc = det(aji)cg1,...,gc by

Derived Categories of Schemes, Lemma 6.12. On the other hand we have

d(g1) ∧ . . . ∧ d(gc) ≡ det(aji)d(f1) ∧ . . . ∧ d(fc) mod (f1, . . . , fc)ΩcX/S
Combining these relations, a straightforward calculation gives the desired equality. �

Lemma 23.4. Let X → S and i : Z → X be as in Lemma 23.3. The gysin map γp is
compatible with the de Rham differentials on Ω•

X/S and Ω•
Z/S .

Proof. We may check this locally and then it follows from Lemma 23.2. �

Lemma 23.5. Let X → S and i : Z → X be as in Lemma 23.3. Given α ∈
Hq(X,ΩpX/S) we have γp(α|Z) = i−1α ∧ γ0(1) in Hq(Z,HcZ(Ωp+c

X/S)). Please see proof
for notation.

Proof. The restriction α|Z is the element of Hq(Z,ΩpZ/S) given by functoriality
for Hodge cohomology. Applying functoriality for cohomology using γp : ΩpZ/S →
HcZ(Ωp+c

X/S) we get get γp(α|Z) in Hq(Z,HcZ(Ωp+c
X/S)). This explains the left hand side of

the formula.

To explain the right hand side, we first pullback by the map of ringed spaces i : (Z, i−1OX)→
(X,OX) to get the element i−1α ∈ Hq(Z, i−1ΩpX/S). Let γ0(1) ∈ H0(Z,HcZ(ΩcX/S))
be the image of 1 ∈ H0(Z,OZ) = H0(Z,Ω0

Z/S) by γ0. Using cup product we obtain an
element

i−1α ∪ γ0(1) ∈ Hq+c(Z, i−1ΩpX/S ⊗i−1OX
HcZ(ΩcX/S))

Using Cohomology, Remark 34.9 and wedge product there are canonical maps

i−1ΩpX/S ⊗
L
i−1OX

RHZ(ΩcX/S)→ RHZ(ΩpX/S ⊗
L
OX

ΩcX/S)→ RHZ(Ωp+c
X/S)
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By Derived Categories of Schemes, Lemma 6.8 the objects RHZ(ΩjX/S) have vanishing
cohomology sheaves in degrees > c. Hence on cohomology sheaves in degree c we obtain
a map

i−1ΩpX/S ⊗i−1OX
HcZ(ΩcX/S) −→ HcZ(Ωp+c

X/S)
The expression i−1α∧ γ0(1) is the image of the cup product i−1α∪ γ0(1) by the functo-
riality of cohomology.

Having explained the content of the formula in this manner, by general properties of cup
products (Cohomology, Section 31), it now suffices to prove that the diagram

i−1ΩpX ⊗ Ω0
Z id⊗γ0

//

��

i−1ΩpX ⊗HcZ(ΩcX)

∧
��

ΩpZ ⊗ Ω0
Z

∧ // ΩpZ
γp // HcZ(Ωp+c

X )

is commutative in the category of sheaves on Z (with obvious abuse of notation). This
boils down to a simple computation for the maps γjf1,...,fc

which we omit; in fact these
maps are chosen exactly such that this works and such that 1 maps to df1∧...∧dfc

f1...fc
. �

Lemma 23.6. Let c ≥ 0 be a integer. Let

Z ′

h

��

// X ′

g

��

// S′

��
Z // X // S

be a commutative diagram of schemes. Assume
(1) Z → X and Z ′ → X ′ satisfy the assumptions of Lemma 23.3,
(2) the left square in the diagram is cartesian, and
(3) h∗CZ/X → CZ′/X′ (Morphisms, Lemma 31.3) is an isomorphism.

Then the diagram

h∗ΩpZ/S h−1γp
//

��

OX′ |Z′ ⊗h−1OX |Z h
−1HcZ(Ωp+c

X/S)

��
ΩpZ′/S′

γp // HcZ′(Ωp+c
X′/S′)

is commutative. The left vertical arrow is functoriality of modules of differentials and the
right vertical arrow uses Cohomology, Remark 34.12.

Proof. More precisely, consider the composition

OX′ |Z′ ⊗L
h−1OX |Z h

−1RHZ(Ωp+c
X/S)→ RHZ′(Lg∗Ωp+c

X/S)

→ RHZ′(g∗Ωp+c
X/S)

→ RHZ′(Ωp+c
X′/S′)

where the first arrow is given by Cohomology, Remark 34.12 and the last one by functo-
riality of differentials. Since we have the vanishing of cohomology sheaves in degrees
> c by Derived Categories of Schemes, Lemma 6.8 this induces the right vertical ar-
row. We can check the commutativity locally. Thus we may assume Z is cut out by
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f1, . . . , fc ∈ Γ(X,OX). Then Z ′ is cut out by f ′
i = g](fi). The maps cf1,...,fc and

cf ′
1,...,f

′
c

fit into the commutative diagram

h∗i∗ΩpX/S h−1cf1,...,fc

//

��

OX′ |Z′ ⊗h−1OX |Z h
−1HcZ(ΩpX/S)

��
(i′)∗ΩpX′/S′

cf′
1,...,f

′
c // HcZ′(ΩpX′/S′)

See Derived Categories of Schemes, Remark 6.14. Recall given a p-form ω on Z we define
γp(ω) by choosing (locally on X and Z) a p-form ω̃ on X lifting ω and taking γp(ω) =
cf1,...,fc(ω̃)∧ df1 ∧ . . .∧ dfc. Since the form df1 ∧ . . .∧ dfc pulls back to df ′

1 ∧ . . .∧ df ′
c

we conclude. �

Remark 23.7. Let X → S , i : Z → X , and c ≥ 0 be as in Lemma 23.3. Let p ≥ 0
and assume that HiZ(Ωp+c

X/S) = 0 for i = 0, . . . , c − 1. This vanishing holds if X → S

is smooth and Z → X is a Koszul regular immersion, see Derived Categories of Schemes,
Lemma 6.9. Then we obtain a map

γp,q : Hq(Z,ΩpZ/S) −→ Hq+c(X,Ωp+c
X/S)

by first using γp : ΩpZ/S → H
c
Z(Ωp+c

X/S) to map into

Hq(Z,HcZ(Ωp+c
X/S)) = Hq(Z,RHZ(Ωp+c

X/S)[c]) = Hq(X, i∗RHZ(Ωp+c
X/S)[c])

and then using the adjunction map i∗RHZ(Ωp+c
X/S)→ Ωp+c

X/S to continue on to the desired
Hodge cohomology module.

Lemma 23.8. Let X → S and i : Z → X be as in Lemma 23.3. Assume X → S
is smooth and Z → X Koszul regular. The gysin maps γp,q are compatible with the de
Rham differentials on Ω•

X/S and Ω•
Z/S .

Proof. This follows immediately from Lemma 23.4. �

Lemma 23.9. LetX → S , i : Z → X , and c ≥ 0 be as in Lemma 23.3. AssumeX → S
smooth and Z → X Koszul regular. Given α ∈ Hq(X,ΩpX/S) we have γp,q(α|Z) =
α ∪ γ0,0(1) in Hq+c(X,Ωp+c

X/S) with γa,b as in Remark 23.7.

Proof. This lemma follows from Lemma 23.5 and Cohomology, Lemma 34.11. We
suggest the reader skip over the more detailed discussion below.

We will use without further mention that RHZ(ΩjX/S) = HcZ(ΩjX/S)[−c] for all j as
pointed out in Remark 23.7. We will also silently use the identificationsHq+c

Z (X,ΩjX/S) =
Hq+c(Z,RHZ(ΩjX/S) = Hq(Z,HcZ(ΩjX/S)), see Cohomology, Lemma 34.4 for the first
one. With these identifications

(1) γ0(1) ∈ Hc
Z(X,ΩcX/S) maps to γ0,0(1) in Hc(X,ΩcX/S),

(2) the right hand side i−1α ∧ γ0(1) of the equality in Lemma 23.5 is the (image
by wedge product of the) cup product of Cohomology, Remark 34.10 of the ele-
ments α and γ0(1), in other words, the constructions in the proof of Lemma 23.5
and in Cohomology, Remark 34.10 match,

(3) by Cohomology, Lemma 34.11 this maps to α ∪ γ0,0(1) in Hq+c(X,ΩpX/S ⊗
ΩcX/S), and
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(4) the left hand side γp(α|Z) of the equality in Lemma 23.5 maps to γp,q(α|Z).
This finishes the proof. �

Lemma 23.10. Let c ≥ 0 and

Z ′

h

��

// X ′

g

��

// S′

��
Z // X // S

satisfy the assumptions of Lemma 23.6 and assume in addition that X → S and X ′ → S′

are smooth and that Z → X and Z ′ → X ′ are Koszul regular immersions. Then the
diagram

Hq(Z,ΩpZ/S)
γp,q

//

��

Hq+c(X,Ωp+c
X/S)

��
Hq(Z ′,ΩpZ′/S′)

γp,q // Hq+c(X ′,Ωp+c
X′/S′)

is commutative where γp,q is as in Remark 23.7.

Proof. This follows on combining Lemma 23.6 and Cohomology, Lemma 34.13. �

Lemma 23.11. Let k be a field. Let X be an irreducible smooth proper scheme over
k of dimension d. Let Z ⊂ X be the reduced closed subscheme consisting of a single k-
rational point x. Then the image of 1 ∈ k = H0(Z,OZ) = H0(Z,Ω0

Z/k) by the map
H0(Z,Ω0

Z/k)→ Hd(X,ΩdX/k) of Remark 23.7 is nonzero.

Proof. The map γ0 : OZ → HdZ(ΩdX/k) = RHZ(ΩdX/k)[d] is adjoint to a map

g0 : i∗OZ −→ ΩdX/k[d]

in D(OX). Recall that ΩdX/k = ωX is a dualizing sheaf for X/k, see Duality for Schemes,
Lemma 27.1. Hence the k-linear dual of the map in the statement of the lemma is the map

H0(X,OX)→ ExtdX(i∗OZ , ωX)
which sends 1 to g0. Thus it suffices to show that g0 is nonzero. This we may do in any
neighbourhood U of the point x. Choose U such that there exist f1, . . . , fd ∈ OX(U)
vanishing only atx and generating the maximal idealmx ⊂ OX,x. We may assume assume
U = Spec(R) is affine. Looking over the construction of γ0 we find that our extension is
given by

k → (R→
⊕

i0
Rfi0 →

⊕
i0<i1

Rfi0fi1 → . . .→ Rf1...fr )[d]→ R[d]

where 1 maps to 1/f1 . . . fc under the first map. This is nonzero because 1/f1 . . . fc is a
nonzero element of local cohomology group Hd

(f1,...,fd)(R) in this case, �

24. Relative Poincaré duality

In this section we prove Poincar’e duality for the relative de Rham cohomology of a proper
smooth scheme over a base. We strongly urge the reader to look at Section 20 first.

Situation 24.1. Here S is a quasi-compact and quasi-separated scheme and f : X →
S is a proper smooth morphism of schemes all of whose fibres are nonempty and equidi-
mensional of dimension n.
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Lemma 24.2. In Situation 24.1 the psuhforward f∗OX is a finite étaleOS-algebra and
locally on S we haveRf∗OX = f∗OX ⊕P inD(OS) with P perfect of tor amplitude in
[1,∞). The map d : f∗OX → f∗ΩX/S is zero.

Proof. The first part of the statement follows from Derived Categories of Schemes,
Lemma 32.8. Setting S′ = Spec

S
(f∗OX) we get a factorization X → S′ → S (this is the

Stein factorization, see More on Morphisms, Section 53, although we don’t need this) and
we see that ΩX/S = ΩX/S′ for example by Morphisms, Lemma 32.9 and 36.15. This of
course implies that d : f∗OX → f∗ΩX/S is zero. �

Lemma 24.3. In Situation 24.1 there exists anOS-module map
t : Rf∗ΩnX/S [n] −→ OS

unique up to precomposing by multiplication by a unit ofH0(X,OX) with the following
property: for all p the pairing

Rf∗ΩpX/S ⊗
L
OS

Rf∗Ωn−p
X/S [n] −→ OS

given by the relative cup product composed with t is a perfect pairing of perfect complexes
on S.

Proof. Let ω•
X/S be the relative dualizing complex of X over S as in Duality for

Schemes, Remark 12.5 and let Rf∗ω
•
X/S → OS be its trace map. By Duality for Schemes,

Lemma 15.7 there exists an isomorphism ω•
X/S

∼= ΩnX/S [n] and using this isomorphism
we obtain t. The complexesRf∗ΩpX/S are perfect by Lemma 3.5. Since ΩpX/S is locally free
and since ΩpX/S⊗OX

Ωn−p
X/S → ΩnX/S exhibits an isomorphism ΩpX/S ∼= HomOX

(Ωn−p
X/S ,Ω

n
X/S)

we see that the pairing induced by the relative cup product is perfect by Duality for
Schemes, Remark 12.6.
Uniqueness of t. Choose a distinguished triangle f∗OX → Rf∗OX → P → f∗OX [1]. By
Lemma 24.2 the object P is perfect of tor amplitude in [1,∞) and the triangle is locally on
S split. Thus RHomOX

(P,OX) is perfect of tor amplitude in (−∞,−1]. Hence duality
(above) shows that locally on S we have

Rf∗ΩnX/S [n] ∼= RHomOS
(f∗OX ,OS)⊕RHomOX

(P,OX)
This shows that Rnf∗ΩnX/S is finite locally free and that we obtain a perfect OS-bilinear
pairing

f∗OX ×Rnf∗ΩnX/S −→ OS
using t. This implies that anyOS-linear map t′ : Rnf∗ΩnX/S → OS is of the form t′ = t◦g
for some g ∈ Γ(S, f∗OX) = Γ(X,OX). In order for t′ to still determine a perfect pairing
g will have to be a unit. This finishes the proof. �

Lemma 24.4. In Situation 24.1 the map d : Rnf∗Ωn−1
X/S → Rnf∗ΩnX/S is zero.

As we mentioned in the proof of Lemma 20.3 this lemma is not an easy consequence of
Lemmas 24.3 and 24.2.

Proof in case S is reduced. Assume S is reduced. Observe that d : Rnf∗Ωn−1
X/S →

Rnf∗ΩnX/S is anOS-linear map of (quasi-coherent)OS-modules. TheOS-moduleRnf∗ΩnX/S
is finite locally free (as the dual of the finite locally freeOS-module f∗OX by Lemmas 24.3
and 24.2). Since S is reduced it suffices to show that the stalk of d in every generic point
η ∈ S is zero; this follows by looking at sections over affine opens, using that the target of d
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is locally free, and Algebra, Lemma 25.2 part (2). Since S is reduced we haveOS,η = κ(η),
see Algebra, Lemma 25.1. Thus dη is identified with the map

d : Hn(Xη,Ωn−1
Xη/κ(η)) −→ Hn(Xη,ΩnXη/κ(η))

which is zero by Lemma 20.3. �

Proof in the general case. Observe that the question is flat local on S: if S′ → S
is a surjective flat morphism of schemes and the map is zero after pullback to S′, then the
map is zero. Also, formation of the map commutes with base change by flat morphisms by
flat base change (Cohomology of Schemes, Lemma 5.2).
Consider the Stein factorization X → S′ → S as in More on Morphisms, Theorem 53.5.
By Lemma 24.2 the morphism π : S′ → S is finite étale. The morphism f : X → S′ is
proper (by the theorem), smooth (by More on Morphisms, Lemma 13.12) with geometri-
cally connected fibres by the theorem on Stein factorization. In the proof of Lemma 24.2
we saw that ΩX/S = ΩX/S′ because S′ → S is étale. Hence Ω•

X/S = Ω•
X/S′ . We have

Rqf∗ΩpX/S = π∗R
qf ′

∗ΩpX/S′

for all p, q by the Leray spectral sequence (Cohomology, Lemma 13.8), the fact that π
is finite hence affine, and Cohomology of Schemes, Lemma 2.3 (of course we also use
that Rqf ′

∗ΩpX′/S is quasi-coherent). Thus the map of the lemma is π∗ applied to d :
Rnf ′

∗Ωn−1
X/S′ → Rnf ′

∗ΩnX/S′ . In other words, in order to prove the lemma we may re-
place f : X → S by f ′ : X → S′ to reduce to the case discussed in the next pargraph.
Assume f has geometrically connected fibres and f∗OX = OS . For every s ∈ S we can
choose an étale neighbourhood (S′, s′)→ (S, s) such that the base change X ′ → S′ of S
has a section. See More on Morphisms, Lemma 38.6. By the initial remarks of the proof
this reduces us to the case discussed in the next paragraph.
Assume f has geometrically connected fibres, f∗OX = OS , and we have a section s : S →
X of f . We may and do assume S = Spec(A) is affine. The map s∗ : RΓ(X,OX) →
RΓ(S,OS) = A is a splitting of the map A→ RΓ(X,OX). Thus we can write

RΓ(X,OX) = A⊕ P
where P is the “kernel” of s∗. By Lemma 24.2 the object P of D(A) is perfect of tor
amplitude in [1, n]. As in the proof of Lemma 24.3 we see that Hn(X,ΩnX/S) is a locally
free A-module of rank 1 (and in fact dual to A so free of rank 1 – we will soon choose a
generator but we don’t want to check it is the same generator nor will it be necessary to
do so).
DenoteZ ⊂ X the image of swhich is a closed subscheme ofX by Schemes, Lemma 21.11.
Observe that Z → X is a regular (and a fortiori Koszul regular by Divisors, Lemma 21.2)
closed immersion by Divisors, Lemma 22.8. Of course Z → X has codimension n. Thus
by Remark 23.7 we can consider the map

γ0,0 : H0(Z,Ω0
Z/S) −→ Hn(X,ΩnX/S)

and we set ξ = γ0,0(1) ∈ Hn(X,ΩnX/S).

We claim ξ is a basis element. Namely, since we have base change in top degree (see for
example Limits, Lemma 19.2) we see thatHn(X,ΩnX/S)⊗A k = Hn(Xk,ΩnXk/k) for any
ring map A → k. By the compatibility of the construction of ξ with base change, see
Lemma 23.10, we see that the image of ξ in Hn(Xk,ΩnXk/k) is nonzero by Lemma 23.11
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if k is a field. Thus ξ is a nowhere vanishing section of an invertible module and hence a
generator.

Let θ ∈ Hn(X,Ωn−1
X/S). We have to show that d(θ) is zero in Hn(X,ΩnX/S). We may

write d(θ) = aξ for some a ∈ A as ξ is a basis element. Then we have to show a = 0.

Consider the closed immersion

∆ : X → X ×S X

This is also a section of a smooth morphism (namely either projection) and hence a regular
and Koszul immersion of codimension n as well. Thus we can consider the maps

γp,q : Hq(X,ΩpX/S) −→ Hq+n(X ×S X,Ωp+n
X×SX/S)

of Remark 23.7. Consider the image

γn−1,n(θ) ∈ H2n(X ×S X,Ω2n−1
X×SX)

By Lemma 8.1 we have

Ω2n−1
X×SX = Ωn−1

X/S � ΩnX/S ⊕ ΩnX/S � Ωn−1
X/S

By the Künneth formula (either Derived Categories of Schemes, Lemma 23.1 or Derived
Categories of Schemes, Lemma 23.4) we see that

H2n(X ×S X,Ωn−1
X/S � ΩnX/S) = Hn(X,Ωn−1

X/S)⊗A Hn(X,ΩnX/S)

and
H2n(X ×S X,ΩnX/S � Ωn−1

X/S) = Hn(X,ΩnX/S)⊗A Hn(X,Ωn−1
X/S)

Namely, since we are looking in top degree there no higher tor groups that intervene.
Combined with the fact that ξ is a generator this means we can write

γn−1,n(θ) = θ1 ⊗ ξ + ξ ⊗ θ2

with θ1, θ2 ∈ Hn(X,Ωn−1
X/S). Arguing in exactly the same manner we can write

γn,n(ξ) = bξ ⊗ ξ

inH2n(X×SX,Ω2n
X×SX/S) = Hn(X,ΩnX/S)⊗AHn(X,ΩnX/S) for some b ∈ H0(S,OS).

Claim: θ1 = θ, θ2 = θ, and b = 1. Let us show that the claim implies the desired result
a = 0. Namely, by Lemma 23.8 we have

γn,n(d(θ)) = d(γn−1,n(θ))

By our choices above this gives

aξ ⊗ ξ = γn,n(aξ) = d(θ ⊗ ξ + ξ ⊗ θ) = aξ ⊗ ξ + (−1)naξ ⊗ ξ

The right most equality comes from the fact that the map d : Ω2n−1
X⊗SX/S → Ω2n

X×SX/S by
Lemma 8.1 is the sum of the differential d� 1 : Ωn−1

X/S � ΩnX/S → ΩnX/S � ΩnX/S and the
differential (−1)n1�d : ΩnX/S�Ωn−1

X/S → ΩnX/S�ΩnX/S . Please see discussion in Section
8 and Derived Categories of Schemes, Section 24 for more information. Since ξ ⊗ ξ is a
basis for the rank 1 free A-module Hn(X,ΩnX/S)⊗A Hn(X,ΩnX/S) we conclude

a = a+ (−1)na⇒ a = 0

as desired.
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In the rest of the proof we prove the claim above. Let us denote η = γ0,0(1) ∈ Hn(X ×S
X,ΩnX×SX/S). Since ΩnX×SX/S =

⊕
p+p′=n ΩpX/S � Ωp

′

X/S we may write

η = η0 + η1 + . . .+ ηn

where ηp is in Hn(X ×S X,ΩpX/S � Ωn−p
X/S). For p = 0 we can write

Hn(X ×S X,OX � ΩnX/S) = Hn(RΓ(X,OX)⊗L
A RΓ(X,ΩnX/S))

= A⊗A Hn(X,ΩnX/S)⊕Hn(P ⊗L
A RΓ(X,ΩnX/S))

by our previously given decomposition RΓ(X,OX) = A ⊕ P . Consider the morphism
(s, id) : X → X ×S X . Then (s, id)−1(∆) = Z scheme theoretically. Hence we see that
(s, id)∗η = ξ by Lemma 23.10. This means that

ξ = (s, id)∗η = (s∗ ⊗ id)(η0)

This means exactly that the first component of η0 in the direct sum decomposition above
is ξ. In other words, we can write

η0 = 1⊗ ξ + η′
0

with η′
0 ∈ Hn(P ⊗L

A RΓ(X,ΩnX/S)). In exactly the same manner for p = n we can write

Hn(X ×S X,ΩnX/S �OX) = Hn(RΓ(X,ΩnX/S)⊗L
A RΓ(X,OX))

= Hn(X,ΩnX/S)⊗A A⊕Hn(RΓ(X,ΩnX/S)⊗L
A P )

and we can write
ηn = ξ ⊗ 1 + η′

n

with η′
n ∈ Hn(RΓ(X,ΩnX/S)⊗L

A P ).

Observe that pr∗
1θ = θ ⊗ 1 and pr∗

2θ = 1⊗ θ are Hodge cohomology classes on X ×S X
which pull back to θ by ∆. Hence by Lemma 23.9 we have

θ1 ⊗ ξ + ξ ⊗ θ2 = γn−1,n(θ) = (θ ⊗ 1) ∪ η = (1⊗ θ) ∪ η

in the Hodge cohomology ring of X ×S X over S. In terms of the direct sum decomposi-
tion on the modules of differentials of X ×S X/S we obtain

θ1 ⊗ ξ = (θ ⊗ 1) ∪ η0 and ξ ⊗ θ2 = (1⊗ θ) ∪ ηn
Looking at the formula η0 = 1⊗ ξ + η′

0 we found above, we see that to show that θ1 = θ
it suffices to prove that

(θ ⊗ 1) ∪ η′
0 = 0

To do this, observe that cupping with θ ⊗ 1 is given by the action on cohomology of the
map

(P ⊗L
A RΓ(X,ΩnX/S))[−n] θ⊗1−−→ RΓ(X,Ωn−1

X/S)⊗L
A RΓ(X,ΩnX/S)

in the derived category, see Cohomology, Remark 31.2. This map is the derived tensor
product of the two maps

θ : P [−n]→ RΓ(X,Ωn−1
X/S) and 1 : RΓ(X,ΩnX/S)→ RΓ(X,ΩnX/S)

by Derived Categories of Schemes, Remark 23.5. However, the first of these is zero inD(A)
because it is a map from a perfect complex of tor amplitude in [n + 1, 2n] to a complex
with cohomology only in degrees 0, 1, . . . , n, see More on Algebra, Lemma 76.1. A similar
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argument works to show the vanishing of (1⊗θ)∪η′
n. Finally, in exactly the same manner

we obtain
bξ ⊗ ξ = γn,n(ξ) = (ξ ⊗ 1) ∪ η0

and we conclude as before by showing that (ξ⊗ 1)∪ η′
0 = 0 in the same manner as above.

This finishes the proof. �

Proposition 24.5. Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a proper smooth morphism of schemes all of whose fibres are nonempty and
equidimensional of dimension n. There exists anOS-module map

t : R2nf∗Ω•
X/S −→ OS

unique up to precomposing by multiplication by a unit ofH0(X,OX) with the following
property: the pairing

Rf∗Ω•
X/S ⊗

L
OS

Rf∗Ω•
X/S [2n] −→ OS , (ξ, ξ′) 7−→ t(ξ ∪ ξ′)

is a perfect pairing of perfect complexes on S.

Proof. The proof is exactly the same as the proof of Proposition 20.4.

By the relative Hodge-to-de Rham spectral sequence

Ep,q1 = Rqf∗ΩpX/S ⇒ Rp+qf∗Ω•
X/S

(Section 6), the vanishing of ΩiX/S for i > n, the vanishing in for example Limits, Lemma
19.2 and the results of Lemmas 24.2 and 24.4 we see that R0f∗ΩX/S = R0f∗OX and
Rnf∗ΩnX/S = R2nf∗Ω•

X/S . More precisesly, these identifications come from the maps of
complexes

Ω•
X/S → OX [0] and ΩnX/S [−n]→ Ω•

X/S

Let us choose t : R2nf∗ΩX/S → OS which via this identification corresponds to a t as in
Lemma 24.3.

Let us abbreviate Ω• = Ω•
X/S . Consider the map (4.0.1) which in our situation reads

∧ : Tot(Ω• ⊗f−1OS
Ω•) −→ Ω•

For every integer p = 0, 1, . . . , n this map annihilates the subcomplex Tot(σ>pΩ•⊗f−1OS

σ≥n−pΩ•) for degree reasons. Hence we find that the restriction of ∧ to the subcomplex
Tot(Ω•⊗f−1OS

≥n−p Ω•) factors through a map of complexes

γp : Tot(σ≤pΩ• ⊗f−1OS
σ≥n−pΩ•) −→ Ω•

Using the same procedure as in Section 4 we obtain relative cup products

Rf∗σ≤pΩ• ⊗L
OS

Rf∗σ≥n−pΩ• −→ Rf∗Ω•

We will prove by induction on p that these cup products via t induce perfect pairings
between Rf∗σ≤pΩ• and Rf∗σ≥n−pΩ•[2n]. For p = n this is the assertion of the propo-
sition.

The base case is p = 0. In this case we have

Rf∗σ≤pΩ• = Rf∗OX and Rf∗σ≥n−pΩ•[2n] = Rf∗(Ωn[−n])[2n] = Rf∗Ωn[n]

In this case we simply obtain the pairing between Rf∗OX and Rf∗Ωn[n] of Lemma 24.3
and the result is true.
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Induction step. Say we know the result is true for p. Then we consider the distinguished
triangle

Ωp+1[−p− 1]→ σ≤p+1Ω• → σ≤pΩ• → Ωp+1[−p]
and the distinguished triangle

σ≥n−pΩ• → σ≥n−p−1Ω• → Ωn−p−1[−n+ p+ 1]→ (σ≥n−pΩ•)[1]

Observe that both are distinguished triangles in the homotopy category of complexes of
sheaves of f−1OS-modules; in particular the mapsσ≤pΩ• → Ωp+1[−p] and Ωn−p−1[−d+
p + 1] → (σ≥n−pΩ•)[1] are given by actual maps of complexes, namely using the differ-
ential Ωp → Ωp+1 and the differential Ωn−p−1 → Ωn−p. Consider the distinguished
triangles associated gotten from these distinguished triangles by applying Rf∗

Rf∗σ≤pΩ•

a

��
Rf∗Ωp+1[−p− 1]

b

��
Rf∗σ≤p+1Ω•

c

��
Rf∗σ≤pΩ•

d

��
Rf∗Ωp+1[−p− 1]

Rf∗σ≥n−pΩ•

Rf∗Ωn−p−1[−n+ p+ 1]

a′

OO

Rf∗σ≥n−p−1Ω•

b′

OO

Rf∗σ≥n−pΩ•

c′

OO

Rf∗Ωn−p−1[−n+ p+ 1]

d′

OO

We will show below that the pairs (a, a′), (b, b′), (c, c′), and (d, d′) are compatible with the
given pairings. This means we obtain a map from the distinguished triangle on the left to
the distuiguished triangle obtained by applying RHom(−,OS) to the distinguished tri-
angle on the right. By induction and Lemma 20.1 we know that the pairings constructed
above between the complexes on the first, second, fourth, and fifth rows are perfect, i.e., de-
termine isomorphisms after taking duals. By Derived Categories, Lemma 4.3 we conclude
the pairing between the complexes in the middle row is perfect as desired.

Let e : K → K ′ and e′ : M ′ →M be maps of objects ofD(OS) and letK⊗L
OS

M → OS
and K ′ ⊗L

OS
M ′ → OS be pairings. Then we say these pairings are compatible if the

diagram
K ′ ⊗L

OS
M ′

��

K ⊗L
OS

M ′
e⊗1
oo

1⊗e′

��
OS K ⊗L

OS
Moo

commutes. This indeed means that the diagram

K //

e

��

RHom(M,OS)

RHom(e′,−)
��

K ′ // RHom(M ′,OS)
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commutes and hence is sufficient for our purposes.
Let us prove this for the pair (c, c′). Here we observe simply that we have a commutative
diagram

Tot(σ≤pΩ• ⊗f−1OS
σ≥n−pΩ•)

γp

��

Tot(σ≤p+1Ω• ⊗f−1OS
σ≥n−pΩ•)oo

��
Ω• Tot(σ≤p+1Ω• ⊗f−1OS

σ≥n−p−1Ω•)
γp+1oo

By functoriality of the cup product we obtain commutativity of the desired diagram.
Similarly for the pair (b, b′) we use the commutative diagram

Tot(σ≤p+1Ω• ⊗f−1OS
σ≥n−p−1Ω•)

γp+1

��

Tot(Ωp+1[−p− 1]⊗f−1OS
σ≥n−p−1Ω•)oo

��
Ω• Ωp+1[−p− 1]⊗f−1OS

Ωn−p−1[−n+ p+ 1]∧oo

For the pairs (d, d′) and (a, a′) we use the commutative diagram

Ωp+1[−p]⊗f−1OS
Ωn−p−1[−n+ p]

��

Tot(σ≤pΩ• ⊗f−1OS
Ωn−p−1[−n+ p])oo

��
Ω• Tot(σ≤pΩ• ⊗f−1OS

σ≥n−pΩ•)oo

We omit the argument showing the uniqueness of t up to precomposing by multiplication
by a unit in H0(X,OX). �
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CHAPTER 51

Local Cohomology

1. Introduction

This chapter continues the study of local cohomology. A reference is [?]. The definition of
local cohomology can be found in Dualizing Complexes, Section 9. For Noetherian rings
taking local cohomology is the same as deriving a suitable torsion functor as is shown in
Dualizing Complexes, Section 10. The relationship with depth can be found in Dualizing
Complexes, Section 11.

We discuss finiteness properties of local cohomology leading to a proof of a fairly general
version of Grothendieck’s finiteness theorem, see Theorem 11.6 and Lemma 12.1 (higher
direct images of coherent modules under open immersions). Our methods incorporate a
few very slick arguments the reader can find in papers of Faltings, see [?] and [?].

As applications we offer a discussion of Hartshorne-Lichtenbaum vanishing. We also dis-
cuss the action of Frobenius and of differential operators on local cohomology.

2. Generalities

The following lemma tells us that the functor RΓZ is related to cohomology with sup-
ports.

Lemma 2.1. Let A be a ring and let I be a finitely generated ideal. Set Z = V (I) ⊂
X = Spec(A). For K ∈ D(A) corresponding to K̃ ∈ DQCoh(OX) via Derived Cate-
gories of Schemes, Lemma 3.5 there is a functorial isomorphism

RΓZ(K) = RΓZ(X, K̃)

where on the left we have Dualizing Complexes, Equation (9.0.1) and on the right we have
the functor of Cohomology, Section 34.

Proof. By Cohomology, Lemma 34.5 there exists a distinguished triangle

RΓZ(X, K̃)→ RΓ(X, K̃)→ RΓ(U, K̃)→ RΓZ(X, K̃)[1]

where U = X \ Z. We know that RΓ(X, K̃) = K by Derived Categories of Schemes,
Lemma 3.5. Say I = (f1, . . . , fr). Then we obtain a finite affine open covering U : U =
D(f1)∪ . . .∪D(fr). By Derived Categories of Schemes, Lemma 9.4 the alternating Čech
complex Tot(Č•

alt(U , K̃•)) computes RΓ(U, K̃) where K• is any complex of A-modules
representing K. Working through the definitions we find

RΓ(U, K̃) = Tot
(
K• ⊗A (

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

4173
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It is clear that K• = RΓ(X, K̃•) → RΓ(U, K̃•) is induced by the diagonal map from A
into

∏
Afi . Hence we conclude that

RΓZ(X,F•) = Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

By Dualizing Complexes, Lemma 9.1 this complex computes RΓZ(K) and we see the
lemma holds. �

Lemma 2.2. Let A be a ring and let I ⊂ A be a finitely generated ideal. Set X =
Spec(A), Z = V (I), U = X \ Z , and j : U → X the inclusion morphism. Let F be a
quasi-coherentOU -module. Then

(1) there exists an A-module M such that F is the restriction of M̃ to U ,
(2) given M there is an exact sequence

0→ H0
Z(M)→M → H0(U,F)→ H1

Z(M)→ 0

and isomorphisms Hp(U,F) = Hp+1
Z (M) for p ≥ 1,

(3) we may take M = H0(U,F) in which case we have H0
Z(M) = H1

Z(M) = 0.

Proof. The existence of M follows from Properties, Lemma 22.1 and the fact that
quasi-coherent sheaves on X correspond to A-modules (Schemes, Lemma 7.5). Then we
look at the distinguished triangle

RΓZ(X, M̃)→ RΓ(X, M̃)→ RΓ(U, M̃ |U )→ RΓZ(X, M̃)[1]

of Cohomology, Lemma 34.5. SinceX is affine we haveRΓ(X, M̃) = M by Cohomology
of Schemes, Lemma 2.2. By our choice of M we have F = M̃ |U and hence this produces
an exact sequence

0→ H0
Z(X, M̃)→M → H0(U,F)→ H1

Z(X, M̃)→ 0

and isomorphismsHp(U,F) = Hp+1
Z (X, M̃) for p ≥ 1. By Lemma 2.1 we haveHi

Z(M) =
Hi
Z(X, M̃) for all i. Thus (1) and (2) do hold. Finally, setting M ′ = H0(U,F) we see

that the kernel and cokernel of M → M ′ are I-power torsion. Therefore M̃ |U → M̃ ′|U
is an isomorphism and we can indeed use M ′ as predicted in (3). It goes without saying
that we obtain zero for both H0

Z(M ′) and H0
Z(M ′). �

Lemma 2.3. Let I, J ⊂ A be finitely generated ideals of a ringA. IfM is an I-power
torsion module, then the canonical map

Hi
V (I)∩V (J)(M)→ Hi

V (J)(M)

is an isomorphism for all i.

Proof. Use the spectral sequence of Dualizing Complexes, Lemma 9.6 to reduce to
the statement RΓI(M) = M which is immediate from the construction of local coho-
mology in Dualizing Complexes, Section 9. �

Lemma 2.4. Let S ⊂ A be a multiplicative set of a ring A. Let M be an A-module
with S−1M = 0. Then colimf∈S H

0
V (f)(M) = M and colimf∈S H

1
V (f)(M) = 0.

Proof. The statement on H0 follows directly from the definitions. To see the state-
ment on H1 observe that RΓV (f) and H1

V (f) commute with colimits. Hence we may
assume M is annihilated by some f ∈ S. Then H1

V (ff ′)(M) = 0 for all f ′ ∈ S (for
example by Lemma 2.3). �
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Lemma 2.5. Let I ⊂ A be a finitely generated ideal of a ringA. Let p be a prime ideal.
Let M be an A-module. Let i ≥ 0 be an integer and consider the map

Ψ : colimf∈A,f 6∈pH
i
V ((I,f))(M) −→ Hi

V (I)(M)
Then

(1) Im(Ψ) is the set of elements which map to zero in Hi
V (I)(M)p,

(2) if Hi−1
V (I)(M)p = 0, then Ψ is injective,

(3) if Hi−1
V (I)(M)p = Hi

V (I)(M)p = 0, then Ψ is an isomorphism.

Proof. For f ∈ A, f 6∈ p the spectral sequence of Dualizing Complexes, Lemma 9.6
degenerates to give short exact sequences

0→ H1
V (f)(H

i−1
V (I)(M))→ Hi

V ((I,f))(M)→ H0
V (f)(Hi

V (I)(M))→ 0

This proves (1) and part (2) follows from this and Lemma 2.4. Part (3) is a formal conse-
quence. �

Lemma 2.6. Let I ⊂ I ′ ⊂ A be finitely generated ideals of a Noetherian ring A. Let
M be an A-module. Let i ≥ 0 be an integer. Consider the map

Ψ : Hi
V (I′)(M)→ Hi

V (I)(M)
The following are true:

(1) if Hi
pAp

(Mp) = 0 for all p ∈ V (I) \ V (I ′), then Ψ is surjective,
(2) if Hi−1

pAp
(Mp) = 0 for all p ∈ V (I) \ V (I ′), then Ψ is injective,

(3) if Hi
pAp

(Mp) = Hi−1
pAp

(Mp) = 0 for all p ∈ V (I) \ V (I ′), then Ψ is an isomor-
phism.

Proof. Proof of (1). Let ξ ∈ Hi
V (I)(M). Since A is Noetherian, there exists a largest

ideal I ⊂ I ′′ ⊂ I ′ such that ξ is the image of some ξ′′ ∈ Hi
V (I′′)(M). If V (I ′′) = V (I ′),

then we are done. If not, choose a generic point p ∈ V (I ′′) not in V (I ′). Then we have
Hi
V (I′′)(M)p = Hi

pAp
(Mp) = 0 by assumption. By Lemma 2.5 we can increase I ′′ which

contradicts maximality.
Proof of (2). Let ξ′ ∈ Hi

V (I′)(M) be in the kernel of Ψ. SinceA is Noetherian, there exists
a largest ideal I ⊂ I ′′ ⊂ I ′ such that ξ′ maps to zero in Hi

V (I′′)(M). If V (I ′′) = V (I ′),
then we are done. If not, then choose a generic point p ∈ V (I ′′) not in V (I ′). Then we
have Hi−1

V (I′′)(M)p = Hi−1
pAp

(Mp) = 0 by assumption. By Lemma 2.5 we can increase I ′′

which contradicts maximality.
Part (3) is formal from parts (1) and (2). �

3. Hartshorne’s connectedness lemma

The title of this section refers to the following result.
Lemma 3.1. Let A be a Noetherian local ring of depth ≥ 2. Then the punctured

spectra of A, Ah, and Ash are connected.
Proof. Let U be the punctured spectrum of A. If U is disconnected then we see that

Γ(U,OU ) has a nontrivial idempotent. But A, being local, does not have a nontrivial
idempotent. Hence A → Γ(U,OU ) is not an isomorphism. By Lemma 2.2 we conclude
that either H0

m(A) or H1
m(A) is nonzero. Thus depth(A) ≤ 1 by Dualizing Complexes,

Lemma 11.1. To see the result for Ah and Ash use More on Algebra, Lemma 45.8. �
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Lemma 3.2. Let A be a Noetherian local ring which is catenary and (S2). Then
Spec(A) is equidimensional.

Proof. SetX = Spec(A). Say d = dim(A) = dim(X). InsideX consider the union
X1 of the irreducible components of dimension d and the union X2 of the irreducible
components of dimension < d. Of course X = X1 ∪ X2. If X2 = ∅, then the lemma
holds. If not, then Z = X1 ∩X2 is a nonempty closed subset of X because it contains at
least the closed point of X . Hence we can choose a generic point z ∈ Z of an irreducible
component of Z. Recall that the spectrum of OZ,z is the set of points of X specializing
to z. Since z is both contained in an irreducible component of dimension d and in an
irreducible component of dimension < d we obtain nontrivial specializations x1  z
and x2  z such that the closures of x1 and x2 have different dimensions. Since X is
catenary, this can only happen if at least one of the specializations x1  z and x2  z
is not immediate! Thus dim(OZ,z) ≥ 2. Therefore depth(OZ,z) ≥ 2 because A is (S2).
However, the punctured spectrum U of OZ,z is disconnected because the closed subsets
U ∩X1 and U ∩X2 are disjoint (by our choice of z) and cover U . This is a contradiction
with Lemma 3.1 and the proof is complete. �

4. Cohomological dimension

A quick section about cohomological dimension.

Lemma 4.1. Let I ⊂ A be a finitely generated ideal of a ring A. Set Y = V (I) ⊂
X = Spec(A). Let d ≥ −1 be an integer. The following are equivalent

(1) Hi
Y (A) = 0 for i > d,

(2) Hi
Y (M) = 0 for i > d for every A-module M , and

(3) if d = −1, then Y = ∅, if d = 0, then Y is open and closed in X , and if d > 0
then Hi(X \ Y,F) = 0 for i ≥ d for every quasi-coherentOX\Y -module F .

Proof. Observe thatRΓY (−) has finite cohomological dimension by Dualizing Com-
plexes, Lemma 9.1 for example. Hence there exists an integer i0 such that Hi

Y (M) = 0
for all A-modules M and i ≥ i0.
Let us prove that (1) and (2) are equivalent. It is immediate that (2) implies (1). Assume
(1). By descending induction on i > d we will show that Hi

Y (M) = 0 for all A-modules
M . For i ≥ i0 we have seen this above. To do the induction step, let i0 > i > d.
Choose any A-module M and fit it into a short exact sequence 0 → N → F → M → 0
where F is a free A-module. Since RΓY is a right adjoint, we see that Hi

Y (−) commutes
with direct sums. Hence Hi

Y (F ) = 0 as i > d by assumption (1). Then we see that
Hi
Y (M) = Hi+1

Y (N) = 0 as desired.
Assume d = −1 and (2) holds. Then 0 = H0

Y (A/I) = A/I ⇒ A = I ⇒ Y = ∅. Thus
(3) holds. We omit the proof of the converse.
Assume d = 0 and (2) holds. Set J = H0

I (A) = {x ∈ A | Inx = 0 for some n > 0}.
Then
H1
Y (A) = Coker(A→ Γ(X\Y,OX\Y )) and H1

Y (I) = Coker(I → Γ(X\Y,OX\Y ))
and the kernel of the first map is equal to J . See Lemma 2.2. We conclude from (2) that
I(A/J) = A/J . Thus we may pick f ∈ I mapping to 1 in A/J . Then 1 − f ∈ J so
In(1 − f) = 0 for some n > 0. Hence fn = fn+1. Then e = fn ∈ I is an idempotent.
Consider the complementary idempotent e′ = 1 − fn ∈ J . For any element g ∈ I we
have gme′ = 0 for some m > 0. Thus I is contained in the radical of ideal (e) ⊂ I .
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This means Y = V (I) = V (e) is open and closed in X as predicted in (3). Conversely, if
Y = V (I) is open and closed, then the functor H0

Y (−) is exact and has vanshing higher
derived functors.
If d > 0, then we see immediately from Lemma 2.2 that (2) is equivalent to (3). �

Definition 4.2. Let I ⊂ A be a finitely generated ideal of a ringA. The smallest inte-
ger d ≥ −1 satisfying the equivalent conditions of Lemma 4.1 is called the cohomological
dimension of I in A and is denoted cd(A, I).

Thus we have cd(A, I) = −1 if I = A and cd(A, I) = 0 if I is locally nilpotent or
generated by an idempotent. Observe that cd(A, I) exists by the following lemma.

Lemma 4.3. Let I ⊂ A be a finitely generated ideal of a ring A. Then
(1) cd(A, I) is at most equal to the number of generators of I ,
(2) cd(A, I) ≤ r if there exist f1, . . . , fr ∈ A such that V (f1, . . . , fr) = V (I),
(3) cd(A, I) ≤ c if Spec(A) \ V (I) can be covered by c affine opens.

Proof. The explicit description forRΓY (−) given in Dualizing Complexes, Lemma
9.1 shows that (1) is true. We can deduce (2) from (1) using the fact that RΓZ depends
only on the closed subset Z and not on the choice of the finitely generated ideal I ⊂
A with V (I) = Z. This follows either from the construction of local cohomology in
Dualizing Complexes, Section 9 combined with More on Algebra, Lemma 88.6 or it follows
from Lemma 2.1. To see (3) we use Lemma 4.1 and the vanishing result of Cohomology of
Schemes, Lemma 4.2. �

Lemma 4.4. Let I, J ⊂ A be finitely generated ideals of a ring A. Then cd(A, I +
J) ≤ cd(A, I) + cd(A, J).

Proof. Use the definition and Dualizing Complexes, Lemma 9.6. �

Lemma 4.5. LetA→ B be a ring map. Let I ⊂ A be a finitely generated ideal. Then
cd(B, IB) ≤ cd(A, I). If A→ B is faithfully flat, then equality holds.

Proof. Use the definition and Dualizing Complexes, Lemma 9.3. �

Lemma 4.6. Let I ⊂ A be a finitely generated ideal of a ring A. Then cd(A, I) =
max cd(Ap, Ip).

Proof. Let Y = V (I) and Y ′ = V (Ip) ⊂ Spec(Ap). Recall that RΓY (A)⊗A Ap =
RΓY ′(Ap) by Dualizing Complexes, Lemma 9.3. Thus we conclude by Algebra, Lemma
23.1. �

Lemma 4.7. Let I ⊂ A be a finitely generated ideal of a ring A. If M is a finite A-
module, then Hi

V (I)(M) = 0 for i > dim(Supp(M)). In particular, we have cd(A, I) ≤
dim(A).

Proof. We first prove the second statement. Recall that dim(A) denotes the Krull
dimension. By Lemma 4.6 we may assume A is local. If V (I) = ∅, then the result is true.
If V (I) 6= ∅, then dim(Spec(A) \ V (I)) < dim(A) because the closed point is missing.
Observe that U = Spec(A) \V (I) is a quasi-compact open of the spectral space Spec(A),
hence a spectral space itself. See Algebra, Lemma 26.2 and Topology, Lemma 23.5. Thus
Cohomology, Proposition 22.4 implies Hi(U,F) = 0 for i ≥ dim(A) which implies
what we want by Lemma 4.1. In the Noetherian case the reader may use Grothendieck’s
Cohomology, Proposition 20.7.
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We will deduce the first statement from the second. Let a be the annihilator of the finite
A-module M . Set B = A/a. Recall that Spec(B) = Supp(M), see Algebra, Lemma
40.5. Set J = IB. Then M is a B-module and Hi

V (I)(M) = Hi
V (J)(M), see Dualizing

Complexes, Lemma 9.2. Since cd(B, J) ≤ dim(B) = dim(Supp(M)) by the first part we
conclude. �

Lemma 4.8. Let I ⊂ A be a finitely generated ideal of a ring A. If cd(A, I) = 1 then
Spec(A) \ V (I) is nonempty affine.

Proof. This follows from Lemma 4.1 and Cohomology of Schemes, Lemma 3.1. �

Lemma 4.9. Let (A,m) be a Noetherian local ring of dimension d. Then Hd
m(A) is

nonzero and cd(A,m) = d.

Proof. By one of the characterizations of dimension, there exists an ideal of defini-
tion for A generated by d elements, see Algebra, Proposition 60.9. Hence cd(A,m) ≤ d
by Lemma 4.3. Thus Hd

m(A) is nonzero if and only if cd(A,m) = d if and only if
cd(A,m) ≥ d.

Let A→ A∧ be the map from A to its completion. Observe that A∧ is a Noetherian local
ring of the same dimension asAwith maximal idealmA∧. See Algebra, Lemmas 97.6, 97.4,
and 97.3 and More on Algebra, Lemma 43.1. By Lemma 4.5 it suffices to prove the lemma
for A∧.

By the previous paragraph we may assume that A is a complete local ring. Then A has a
normalized dualizing complex ω•

A (Dualizing Complexes, Lemma 22.4). The local duality
theorem (in the form of Dualizing Complexes, Lemma 18.4) tells usHd

m(A) is Matlis dual
to Ext−d(A,ω•

A) = H−d(ω•
A) which is nonzero for example by Dualizing Complexes,

Lemma 16.11. �

Lemma 4.10. Let (A,m) be a Noetherian local ring. Let I ⊂ A be a proper ideal. Let
p ⊂ A be a prime ideal such that V (p) ∩ V (I) = {m}. Then dim(A/p) ≤ cd(A, I).

Proof. By Lemma 4.5 we have cd(A, I) ≥ cd(A/p, I(A/p)). Since V (I) ∩ V (p) =
{m}we have cd(A/p, I(A/p)) = cd(A/p,m/p). By Lemma 4.9 this is equal to dim(A/p).

�

Lemma 4.11. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let b : X ′ →
X = Spec(A) be the blowing up of I . If the fibres of b have dimension ≤ d − 1, then
cd(A, I) ≤ d.

Proof. Set U = X \ V (I). Denote j : U → X ′ the canonical open immersion, see
Divisors, Section 32. Since the exceptional divisor is an effective Cartier divisor (Divisors,
Lemma 32.4) we see that j is affine, see Divisors, Lemma 13.3. Let F be a quasi-coherent
OU -module. Then Rpj∗F = 0 for p > 0, see Cohomology of Schemes, Lemma 2.3. On
the other hand, we have Rqb∗(j∗F) = 0 for q ≥ d by Limits, Lemma 19.2. Thus by the
Leray spectral sequence (Cohomology, Lemma 13.8) we conclude that Rn(b ◦ j)∗F = 0
for n ≥ d. Thus Hn(U,F) = 0 for n ≥ d (by Cohomology, Lemma 13.6). This means
that cd(A, I) ≤ d by definition. �
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5. More general supports

Let A be a Noetherian ring. Let M be an A-module. Let T ⊂ Spec(A) be a subset stable
under specialization (Topology, Definition 19.1). Let us define

H0
T (M) = colimZ⊂T H

0
Z(M)

where the colimit is over the directed partially ordered set of closed subsets Z of Spec(A)
contained in T 1. In other words, an elementm ofM is inH0

T (M) ⊂M if and only if the
support V (AnnR(m)) of m is contained in T .

Lemma 5.1. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. For an A-module M the following are equivalent

(1) H0
T (M) = M , and

(2) Supp(M) ⊂ T .
The category of such A-modules is a Serre subcategory of the category A-modules closed
under direct sums.

Proof. The equivalence holds because the support of an element of M is contained
in the support of M and conversely the support of M is the union of the supports of its
elements. The category of these modules is a Serre subcategory (Homology, Definition
10.1) of ModA by Algebra, Lemma 40.9. We omit the proof of the statement on direct
sums. �

Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under specialization.
Let us denote ModA,T ⊂ ModA the Serre subcategory described in Lemma 5.1. Let us
denote DT (A) ⊂ D(A) the strictly full saturated triangulated subcategory of D(A) (De-
rived Categories, Lemma 17.1) consisting of complexes of A-modules whose cohomology
modules are in ModA,T . We obtain functors

D(ModA,T )→ DT (A)→ D(A)
See discussion in Derived Categories, Section 17. Denote RH0

T : D(A) → D(ModA,T )
the right derived extension of H0

T . We will denote

RΓT : D+(A)→ D+
T (A),

the composition of RH0
T : D+(A) → D+(ModA,T ) with D+(ModA,T ) → D+

T (A). If
the dimension of A is finite2, then we will denote

RΓT : D(A)→ DT (A)
the composition of RH0

T with D(ModA,T )→ DT (A).

Lemma 5.2. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. The functorRH0

T is the right adjoint to the functorD(ModA,T )→ D(A).

Proof. This follows from the fact that the functorH0
T (−) is the right adjoint to the

inclusion functor ModA,T →ModA, see Derived Categories, Lemma 30.3. �

Lemma 5.3. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. For any object K of D(A) we have

Hi(RH0
T (K)) = colimZ⊂T closed H

i
Z(K)

1Since T is stable under specialization we have T =
⋃
Z⊂T Z , see Topology, Lemma 19.3.

2If dim(A) = ∞ the construction may have unexpected properties on unbounded complexes.
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Proof. Let J• be a K-injective complex representing K. By definition RH0
T is rep-

resented by the complex
H0
T (J•) = colimH0

Z(J•)
where the equality follows from our definition of H0

T . Since filtered colimits are exact
the cohomology of this complex in degree i is colimHi(H0

Z(J•)) = colimHi
Z(K) as

desired. �

Lemma 5.4. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. The functor D+(ModA,T )→ D+

T (A) is an equivalence.

Proof. Let M be an object of ModA,T . Choose an embedding M → J into an injec-
tive A-module. By Dualizing Complexes, Proposition 5.9 the module J is a direct sum of
injective hulls of residue fields. Let E be an injective hull of the residue field of p. Since
E is p-power torsion we see that H0

T (E) = 0 if p 6∈ T and H0
T (E) = E if p ∈ T . Thus

H0
T (J) is injective as a direct sum of injective hulls (by the proposition) and we have an

embedding M → H0
T (J). Thus every object M of ModA,T has an injective resolution

M → J• with Jn also in ModA,T . It follows that RH0
T (M) = M .

Next, suppose that K ∈ D+
T (A). Then the spectral sequence

RqH0
T (Hp(K))⇒ Rp+qH0

T (K)
(Derived Categories, Lemma 21.3) converges and above we have seen that only the terms
with q = 0 are nonzero. Thus we see that RH0

T (K) → K is an isomorphism. Thus the
functorD+(ModA,T )→ D+

T (A) is an equivalence with quasi-inverse given byRH0
T . �

Lemma 5.5. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. If dim(A) <∞, then functor D(ModA,T )→ DT (A) is an equivalence.

Proof. Say dim(A) = d. Then we see that Hi
Z(M) = 0 for i > d for every closed

subset Z of Spec(A), see Lemma 4.7. By Lemma 5.3 we find that H0
T has bounded coho-

mological dimension.

Let K ∈ DT (A). We claim that RH0
T (K)→ K is an isomorphism. We know this is true

whenK is bounded below, see Lemma 5.4. However, sinceH0
T has bounded cohomological

dimension, we see that the ith cohomology ofRH0
T (K) only depends on τ≥−d+iK and we

conclude. Thus D(ModA,T )→ DT (A) is an equivalence with quasi-inverse RH0
T . �

Remark 5.6. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. The upshot of the discussion above is that RΓT : D+(A) → D+

T (A) is
the right adjoint to the inclusion functor D+

T (A) → D+(A). If dim(A) < ∞, then
RΓT : D(A)→ DT (A) is the right adjoint to the inclusion functor DT (A)→ D(A). In
both cases we have

Hi
T (K) = Hi(RΓT (K)) = RiH0

T (K) = colimZ⊂T closed H
i
Z(K)

This follows by combining Lemmas 5.2, 5.3, 5.4, and 5.5.

Lemma 5.7. Let A → B be a flat homomorphism of Noetherian rings. Let T ⊂
Spec(A) be a subset stable under specialization. Let T ′ ⊂ Spec(B) be the inverse image
of T . Then the canonical map

RΓT (K)⊗L
A B −→ RΓT ′(K ⊗L

A B)
is an isomorphism for K ∈ D+(A). If A and B have finite dimension, then this is true
for K ∈ D(A).
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Proof. From the map RΓT (K) → K we get a map RΓT (K) ⊗L
A B → K ⊗L

A B.
The cohomology modules of RΓT (K) ⊗L

A B are supported on T ′ and hence we get the
arrow of the lemma. This arrow is an isomorphism if T is a closed subset of Spec(A) by
Dualizing Complexes, Lemma 9.3. Recall that Hi

T (K) is the colimit of Hi
Z(K) where

Z runs over the (directed set of) closed subsets of T , see Lemma 5.3. Correspondingly
Hi
T ′(K ⊗L

A B) = colimHi
Z′(K ⊗L

A B) where Z ′ is the inverse image of Z. Thus the
result because ⊗AB commutes with filtered colimits and there are no higher Tors. �

Lemma 5.8. Let A be a ring and let T, T ′ ⊂ Spec(A) subsets stable under specializa-
tion. For K ∈ D+(A) there is a spectral sequence

Ep,q2 = Hp
T (Hp

T ′(K))⇒ Hp+q
T∩T ′(K)

as in Derived Categories, Lemma 22.2.

Proof. Let E be an object of DT∩T ′(A). Then we have

Hom(E,RΓT (RΓT ′(K))) = Hom(E,RΓT ′(K)) = Hom(E,K)

The first equality by the adjointness property of RΓT and the second by the adjointness
property ofRΓT ′ . On the other hand, ifJ• is a bounded below complex of injectives repre-
sentingK , thenH0

T ′(J•) is a complex of injectiveA-modules representingRΓT ′(K) and
henceH0

T (H0
T ′(J•)) is a complex representingRΓT (RΓT ′(K)). ThusRΓT (RΓT ′(K)) is

an object ofD+
T∩T ′(A). Combining these two facts we find thatRΓT∩T ′ = RΓT ◦RΓT ′ .

This produces the spectral sequence by the lemma referenced in the statement. �

Lemma 5.9. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. Assume A has finite dimension. Then

RΓT (K) = RΓT (A)⊗L
A K

for K ∈ D(A). For K,L ∈ D(A) we have

RΓT (K ⊗L
A L) = K ⊗L

A RΓT (L) = RΓT (K)⊗L
A L = RΓT (K)⊗L

A RΓT (L)

If K or L is in DT (A) then so is K ⊗L
A L.

Proof. By construction we may represent RΓT (A) by a complex J• in ModA,T .
Thus if we represent K by a K-flat complex K• then we see that RΓT (A) ⊗L

A K is rep-
resented by the complex Tot(J• ⊗A K•) in ModA,T . Using the map RΓT (A) → A we
obtain a map RΓT (A)⊗L

A K → K. Thus by the adjointness property of RΓT we obtain
a canonical map

RΓT (A)⊗L
A K −→ RΓT (K)

factoring the just constructed map. Observe that RΓT commutes with direct sums in
D(A) for example by Lemma 5.3, the fact that directed colimits commute with direct
sums, and the fact that usual local cohomology commutes with direct sums (for example
by Dualizing Complexes, Lemma 9.1). Thus by More on Algebra, Remark 59.11 it suffices
to check the map is an isomorphism for K = A[k] where k ∈ Z. This is clear.

The final statements follow from the result we’ve just shown by transitivity of derived
tensor products. �



4182 51. LOCAL COHOMOLOGY

6. Filtrations on local cohomology

Some tricks related to the spectral sequence of Lemma 5.8.

Lemma 6.1. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. Let T ′ ⊂ T be the set of nonminimal primes in T . Then T ′ is a subset of
Spec(A) stable under specialization and for everyA-moduleM there is an exact sequence

0→ colimZ,f H
1
f (Hi−1

Z (M))→ Hi
T ′(M)→ Hi

T (M)→
⊕

p∈T\T ′
Hi

pAp
(Mp)

where the colimit is over closed subsets Z ⊂ T and f ∈ A with V (f) ∩ Z ⊂ T ′.

Proof. For everyZ and f the spectral sequence of Dualizing Complexes, Lemma 9.6
degenerates to give short exact sequences

0→ H1
f (Hi−1

Z (M))→ Hi
Z∩V (f)(M)→ H0

f (Hi
Z(M))→ 0

We will use this without further mention below.

Let ξ ∈ Hi
T (M) map to zero in the direct sum. Then we first write ξ as the image of

some ξ′ ∈ Hi
Z(M) for some closed subset Z ⊂ T , see Lemma 5.3. Then ξ′ maps to zero

in Hi
pAp

(Mp) for every p ∈ Z , p 6∈ T ′. Since there are finitely many of these primes, we
may choose f ∈ A not contained in any of these such that f annihilates ξ′. Then ξ′ is the
image of some ξ′′ ∈ Hi

Z′(M) where Z ′ = Z ∩V (f). By our choice of f we have Z ′ ⊂ T ′

and we get exactness at the penultimate spot.

Let ξ ∈ Hi
T ′(M) map to zero in Hi

T (M). Choose closed subsets Z ′ ⊂ Z with Z ′ ⊂ T ′

and Z ⊂ T such that ξ comes from ξ′ ∈ Hi
Z′(M) and maps to zero in Hi

Z(M). Then we
can find f ∈ A with V (f) ∩ Z = Z ′ and we conclude. �

Lemma 6.2. Let A be a Noetherian ring of finite dimension. Let T ⊂ Spec(A) be a
subset stable under specialization. Let {Mn}n≥0 be an inverse system of A-modules. Let
i ≥ 0 be an integer. Assume that for every m there exists an integer m′(m) ≥ m such
that for all p ∈ T the induced map

Hi
pAp

(Mk,p) −→ Hi
pAp

(Mm,p)

is zero for k ≥ m′(m). Let m′′ : N → N be the 2dim(T )-fold self-composition of m′.
Then the map Hi

T (Mk)→ Hi
T (Mm) is zero for all k ≥ m′′(m).

Proof. We first make a general remark: suppose we have an exact sequence

(An)→ (Bn)→ (Cn)
of inverse systems of abelian groups. Suppose that for every m there exists an integer
m′(m) ≥ m such that

Ak → Am and Ck → Cm

are zero for k ≥ m′(m). Then for k ≥ m′(m′(m)) the map Bk → Bm is zero.

We will prove the lemma by induction on dim(T ) which is finite because dim(A) is finite.
LetT ′ ⊂ T be the set of nonminimal primes inT . ThenT ′ is a subset of Spec(A) stable un-
der specialization and the hypotheses of the lemma apply to T ′. Since dim(T ′) < dim(T )
we know the lemma holds for T ′. For every A-module M there is an exact sequence

Hi
T ′(M)→ Hi

T (M)→
⊕

p∈T\T ′
Hi

pAp
(Mp)

by Lemma 6.1. Thus we conclude by the initial remark of the proof. �
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Lemma 6.3. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. Let {Mn}n≥0 be an inverse system of A-modules. Let i ≥ 0 be an integer.
Assume the dimension ofA is finite and that for everym there exists an integerm′(m) ≥
m such that for all p ∈ T we have

(1) Hi−1
pAp

(Mk,p)→ Hi−1
pAp

(Mm,p) is zero for k ≥ m′(m), and
(2) Hi

pAp
(Mk,p) → Hi

pAp
(Mm,p) has image G(p,m) independent of k ≥ m′(m)

and moreover G(p,m) maps injectively into Hi
pAp

(M0,p).

Then there exists an integer m0 such that for every m ≥ m0 there exists an integer
m′′(m) ≥ m such that for k ≥ m′′(m) the image of Hi

T (Mk) → Hi
T (Mm) maps in-

jectively into Hi
T (Mm0).

Proof. We first make a general remark: suppose we have an exact sequence

(An)→ (Bn)→ (Cn)→ (Dn)

of inverse systems of abelian groups. Suppose that there exists an integerm0 such that for
every m ≥ m0 there exists an integer m′(m) ≥ m such that the maps

Im(Bk → Bm) −→ Bm0 and Im(Dk → Dm) −→ Dm0

are injective for k ≥ m′(m) andAk → Am is zero for k ≥ m′(m). Then form ≥ m′(m0)
and k ≥ m′(m′(m)) the map

Im(Ck → Cm)→ Cm′(m0)

is injective. Namely, let c0 ∈ Cm be the image of c3 ∈ Ck and say c0 maps to zero in
Cm′(m0). Picture

Ck → Cm′(m′(m)) → Cm′(m) → Cm → Cm′(m0), c3 7→ c2 7→ c1 7→ c0 7→ 0

We have to show c0 = 0. The image d3 of c3 maps to zero in Cm0 and hence we see that
the image d1 ∈ Dm′(m) is zero. Thus we can choose b1 ∈ Bm′(m) mapping to the image
c1. Since c3 maps to zero in Cm′(m0) we find an element a−1 ∈ Am′(m0) which maps to
the image b−1 ∈ Bm′(m0) of b1. Since a−1 maps to zero inAm0 we conclude that b1 maps
to zero inBm0 . Thus the image b0 ∈ Bm is zero which of course implies c0 = 0 as desired.

We will prove the lemma by induction on dim(T ) which is finite because dim(A) is finite.
LetT ′ ⊂ T be the set of nonminimal primes inT . ThenT ′ is a subset of Spec(A) stable un-
der specialization and the hypotheses of the lemma apply to T ′. Since dim(T ′) < dim(T )
we know the lemma holds for T ′. For every A-module M there is an exact sequence

0→ colimZ,f H
1
f (Hi−1

Z (M))→ Hi
T ′(M)→ Hi

T (M)→
⊕

p∈T\T ′
Hi

pAp
(Mp)

by Lemma 6.1. Thus we conclude by the initial remark of the proof and the fact that we’ve
seen the system of groups {

colimZ,f H
1
f (Hi−1

Z (Mn))
}
n≥0

is pro-zero in Lemma 6.2; this uses that the function m′′(m) in that lemma for Hi−1
Z (M)

is independent of Z. �



4184 51. LOCAL COHOMOLOGY

7. Finiteness of local cohomology, I

We will follow Faltings approach to finiteness of local cohomology modules, see [?] and
[?]. Here is a lemma which shows that it suffices to prove local cohomology modules have
an annihilator in order to prove that they are finite modules.

Lemma 7.1. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. Let M be a finite A-module. Let n ≥ 0. The following are equivalent

(1) Hi
T (M) is finite for i ≤ n,

(2) there exists an ideal J ⊂ A with V (J) ⊂ T such that J annihilates Hi
T (M) for

i ≤ n.
If T = V (I) = Z for an ideal I ⊂ A, then these are also equivalent to

(3) there exists an e ≥ 0 such that Ie annihilates Hi
Z(M) for i ≤ n.

Proof. We prove the equivalence of (1) and (2) by induction on n. For n = 0 we
have H0

T (M) ⊂M is finite. Hence (1) is true. Since H0
T (M) = colimH0

V (J)(M) with J
as in (2) we see that (2) is true. Assume that n > 0.

Assume (1) is true. Recall that Hi
J(M) = Hi

V (J)(M), see Dualizing Complexes, Lemma
10.1. ThusHi

T (M) = colimHi
J(M) where the colimit is over ideals J ⊂ Awith V (J) ⊂

T , see Lemma 5.3. Since Hi
T (M) is finitely generated for i ≤ n we can find a J ⊂ A as in

(2) such that Hi
J(M)→ Hi

T (M) is surjective for i ≤ n. Thus the finite list of generators
are J -power torsion elements and we see that (2) holds with J replaced by some power.

Assume we have J as in (2). Let N = H0
T (M) and M ′ = M/N . By construction of RΓT

we find that Hi
T (N) = 0 for i > 0 and H0

T (N) = N , see Remark 5.6. Thus we find that
H0
T (M ′) = 0 andHi

T (M ′) = Hi
T (M) for i > 0. We conclude that we may replaceM by

M ′. Thus we may assume that H0
T (M) = 0. This means that the finite set of associated

primes of M are not in T . By prime avoidance (Algebra, Lemma 15.2) we can find f ∈ J
not contained in any of the associated primes ofM . Then the long exact local cohomology
sequence associated to the short exact sequence

0→M →M →M/fM → 0

turns into short exact sequences

0→ Hi
T (M)→ Hi

T (M/fM)→ Hi+1
T (M)→ 0

for i < n. We conclude that J2 annihilates Hi
T (M/fM) for i < n. By induction hy-

pothesis we see that Hi
T (M/fM) is finite for i < n. Using the short exact sequence once

more we see that Hi+1
T (M) is finite for i < n as desired.

We omit the proof of the equivalence of (2) and (3) in case T = V (I). �

The following result of Faltings allows us to prove finiteness of local cohomology at the
level of local rings.

Lemma 7.2. Let A be a Noetherian ring, I ⊂ A an ideal, M a finite A-module, and
n ≥ 0 an integer. Let Z = V (I). The following are equivalent

(1) the modules Hi
Z(M) are finite for i ≤ n, and

(2) for all p ∈ Spec(A) the modules Hi
Z(M)p, i ≤ n are finite Ap-modules.

Proof. The implication (1)⇒ (2) is immediate. We prove the converse by induction
on n. The case n = 0 is clear because both (1) and (2) are always true in that case.
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Assume n > 0 and that (2) is true. Let N = H0
Z(M) and M ′ = M/N . By Dualizing

Complexes, Lemma 11.6 we may replaceM byM ′. Thus we may assume thatH0
Z(M) = 0.

This means that depthI(M) > 0 (Dualizing Complexes, Lemma 11.1). Pick f ∈ I a
nonzerodivisor on M and consider the short exact sequence

0→M →M →M/fM → 0

which produces a long exact sequence

0→ H0
Z(M/fM)→ H1

Z(M)→ H1
Z(M)→ H1

Z(M/fM)→ H2
Z(M)→ . . .

and similarly after localization. Thus assumption (2) implies that the modulesHi
Z(M/fM)p

are finite for i < n. Hence by induction assumption Hi
Z(M/fM) are finite for i < n.

Let p be a prime ofAwhich is associated toHi
Z(M) for some i ≤ n. Say p is the annihilator

of the element x ∈ Hi
Z(M). Then p ∈ Z , hence f ∈ p. Thus fx = 0 and hence x comes

from an element of Hi−1
Z (M/fM) by the boundary map δ in the long exact sequence

above. It follows that p is an associated prime of the finite module Im(δ). We conclude
that Ass(Hi

Z(M)) is finite for i ≤ n, see Algebra, Lemma 63.5.

Recall that
Hi
Z(M) ⊂

∏
p∈Ass(Hi

Z
(M))

Hi
Z(M)p

by Algebra, Lemma 63.19. Since by assumption the modules on the right hand side are
finite and I-power torsion, we can find integers ep,i ≥ 0, i ≤ n, p ∈ Ass(Hi

Z(M)) such
that Iep,i annihilates Hi

Z(M)p. We conclude that Ie with e = max{ep,i} annihilates
Hi
Z(M) for i ≤ n. By Lemma 7.1 we see that Hi

Z(M) is finite for i ≤ n. �

Lemma 7.3. LetA be a ring and let J ⊂ I ⊂ A be finitely generated ideals. Let i ≥ 0
be an integer. Set Z = V (I). If Hi

Z(A) is annihilated by Jn for some n, then Hi
Z(M)

annihilated by Jm for some m = m(M) for every finitely presented A-module M such
that Mf is a finite locally free Af -module for all f ∈ I .

Proof. Consider the annihilator a ofHi
Z(M). Let p ⊂ Awith p 6∈ Z. By assumption

there exists an f ∈ I , f 6∈ p and an isomorphismϕ : A⊕r
f →Mf ofAf -modules. Clearing

denominators (and using that M is of finite presentation) we find maps

a : A⊕r −→M and b : M −→ A⊕r

with af = fNϕ and bf = fNϕ−1 for some N . Moreover we may assume that a ◦ b
and b ◦ a are equal to multiplication by f2N . Thus we see that Hi

Z(M) is annihilated by
f2NJn, i.e., f2NJn ⊂ a.

AsU = Spec(A)\Z is quasi-compact we can find finitely many f1, . . . , ft andN1, . . . , Nt
such that U =

⋃
D(fj) and f2Nj

j Jn ⊂ a. Then V (I) = V (f1, . . . , ft) and since I is
finitely generated we conclude IM ⊂ (f1, . . . , ft) for some M . All in all we see that
Jm ⊂ a for m� 0, for example m = M(2N1 + . . .+ 2Nt)n will do. �

Lemma 7.4. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Set Z = V (I). Let
n ≥ 0 be an integer. If Hi

Z(A) is finite for 0 ≤ i ≤ n, then the same is true for Hi
Z(M),

0 ≤ i ≤ n for any finite A-module M such that Mf is a finite locally free Af -module for
all f ∈ I .
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Proof. The assumption that Hi
Z(A) is finite for 0 ≤ i ≤ n implies there exists an

e ≥ 0 such that Ie annihilates Hi
Z(A) for 0 ≤ i ≤ n, see Lemma 7.1. Then Lemma 7.3

implies that Hi
Z(M), 0 ≤ i ≤ n is annihilated by Im for some m = m(M, i). We may

take the same m for all 0 ≤ i ≤ n. Then Lemma 7.1 implies that Hi
Z(M) is finite for

0 ≤ i ≤ n as desired. �

8. Finiteness of pushforwards, I

In this section we discuss the easiest nontrivial case of the finiteness theorem, namely,
the finiteness of the first local cohomology or what is equivalent, finiteness of j∗F where
j : U → X is an open immersion, X is locally Noetherian, and F is a coherent sheaf on
U . Following a method of Kollár ([?] and [?]) we find a necessary and sufficient condition,
see Proposition 8.7. The reader who is interested in higher direct images or higher local
cohomology groups should skip ahead to Section 12 or Section 11 (which are developed
independently of the rest of this section).

Lemma 8.1. Let X be a locally Noetherian scheme. Let j : U → X be the inclusion
of an open subscheme with complement Z. For x ∈ U let ix : Wx → U be the integral
closed subscheme with generic point x. Let F be a coherent OU -module. The following
are equivalent

(1) for all x ∈ Ass(F) theOX -module j∗ix,∗OWx
is coherent,

(2) j∗F is coherent.

Proof. We first prove that (1) implies (2). Assume (1) holds. The statement is local
on X , hence we may assume X is affine. Then U is quasi-compact, hence Ass(F) is finite
(Divisors, Lemma 2.5). Thus we may argue by induction on the number of associated
points. Let x ∈ U be a generic point of an irreducible component of the support of F .
By Divisors, Lemma 2.5 we have x ∈ Ass(F). By our choice of x we have dim(Fx) = 0
as OX,x-module. Hence Fx has finite length as an OX,x-module (Algebra, Lemma 62.3).
Thus we may use induction on this length.

Set G = j∗ix,∗OWx
. This is a coherent OX -module by assumption. We have Gx = κ(x).

Choose a nonzero map ϕx : Fx → κ(x) = Gx. By Cohomology of Schemes, Lemma 9.6
there is an open x ∈ V ⊂ U and a map ϕV : F|V → G|V whose stalk at x is ϕx. Choose
f ∈ Γ(X,OX) which does not vanish at x such that D(f) ⊂ V . By Cohomology of
Schemes, Lemma 10.5 (for example) we see that ϕV extends to fnF → G|U for some n.
Precomposing with multiplication by fn we obtain a map F → G|U whose stalk at x is
nonzero. LetF ′ ⊂ F be the kernel. Note that Ass(F ′) ⊂ Ass(F), see Divisors, Lemma 2.4.
Since lengthOX,x

(F ′
x) = lengthOX,x

(Fx)− 1 we may apply the induction hypothesis to
conclude j∗F ′ is coherent. Since G = j∗(G|U ) = j∗ix,∗OWx

is coherent, we can consider
the exact sequence

0→ j∗F ′ → j∗F → G
By Schemes, Lemma 24.1 the sheaf j∗F is quasi-coherent. Hence the image of j∗F in
j∗(G|U ) is coherent by Cohomology of Schemes, Lemma 9.3. Finally, j∗F is coherent by
Cohomology of Schemes, Lemma 9.2.

Assume (2) holds. Exactly in the same manner as above we reduce to the caseX affine. We
pick x ∈ Ass(F) and we set G = j∗ix,∗OWx . Then we choose a nonzero map ϕx : Gx =
κ(x)→ Fx which exists exactly because x is an associated point of F . Arguing exactly as
above we may assumeϕx extends to anOU -module mapϕ : G|U → F . Thenϕ is injective
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(for example by Divisors, Lemma 2.10) and we find an injective map G = j∗(G|V )→ j∗F .
Thus (1) holds. �

Lemma 8.2. LetA be a Noetherian ring and let I ⊂ A be an ideal. SetX = Spec(A),
Z = V (I), U = X \ Z , and j : U → X the inclusion morphism. Let F be a coherent
OU -module. Then

(1) there exists a finite A-module M such that F is the restriction of M̃ to U ,
(2) given M there is an exact sequence

0→ H0
Z(M)→M → H0(U,F)→ H1

Z(M)→ 0

and isomorphisms Hp(U,F) = Hp+1
Z (M) for p ≥ 1,

(3) given M and p ≥ 0 the following are equivalent
(a) Rpj∗F is coherent,
(b) Hp(U,F) is a finite A-module,
(c) Hp+1

Z (M) is a finite A-module,
(4) if the equivalent conditions in (3) hold for p = 0, we may take M = Γ(U,F) in

which case we have H0
Z(M) = H1

Z(M) = 0.

Proof. By Properties, Lemma 22.5 there exists a coherent OX -module F ′ whose re-
striction to U is isomorphic to F . Say F ′ corresponds to the finite A-module M as in
(1). Note that Rpj∗F is quasi-coherent (Cohomology of Schemes, Lemma 4.5) and cor-
responds to the A-module Hp(U,F). By Lemma 2.1 and the discussion in Cohomology,
Sections 21 and 34 we obtain an exact sequence

0→ H0
Z(M)→M → H0(U,F)→ H1

Z(M)→ 0

and isomorphisms Hp(U,F) = Hp+1
Z (M) for p ≥ 1. Here we use that Hj(X,F ′) = 0

for j > 0 as X is affine and F ′ is quasi-coherent (Cohomology of Schemes, Lemma 2.2).
This proves (2). Parts (3) and (4) are straightforward from (2); see also Lemma 2.2. �

Lemma 8.3. Let X be a locally Noetherian scheme. Let j : U → X be the inclusion
of an open subscheme with complement Z. Let F be a coherentOU -module. Assume

(1) X is Nagata,
(2) X is universally catenary, and
(3) for x ∈ Ass(F) and z ∈ Z ∩ {x} we have dim(O{x},z) ≥ 2.

Then j∗F is coherent.

Proof. By Lemma 8.1 it suffices to prove j∗ix,∗OWx
is coherent for x ∈ Ass(F).

Let π : Y → X be the normalization of X in Spec(κ(x)), see Morphisms, Section 54.
By Morphisms, Lemma 53.14 the morphism π is finite. Since π is finite G = π∗OY is
a coherent OX -module by Cohomology of Schemes, Lemma 9.9. Observe that Wx =
U ∩ π(Y ). Thus π|π−1(U) : π−1(U)→ U factors through ix : Wx → U and we obtain a
canonical map

ix,∗OWx
−→ (π|π−1(U))∗(Oπ−1(U)) = (π∗OY )|U = G|U

This map is injective (for example by Divisors, Lemma 2.10). Hence j∗ix,∗OWx ⊂ j∗G|U
and it suffices to show that j∗G|U is coherent.

It remains to prove that j∗(G|U ) is coherent. We claim Divisors, Lemma 5.11 applies to

G −→ j∗(G|U )
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which finishes the proof. It suffices to show that depth(Gz) ≥ 2 for z ∈ Z. Let y1, . . . , yn ∈
Y be the points mapping to z. By Algebra, Lemma 72.11 it suffices to show that depth(OY,yi) ≥
2 for i = 1, . . . , n. If not, then by Properties, Lemma 12.5 we see that dim(OY,yi) = 1
for some i. This is impossible by the dimension formula (Morphisms, Lemma 52.1) for
π : Y → {x} and assumption (3). �

Lemma 8.4. Let X be an integral locally Noetherian scheme. Let j : U → X be the
inclusion of a nonempty open subscheme with complement Z. Assume that for all z ∈ Z
and any associated prime p of the completion O∧

X,z we have dim(O∧
X,z/p) ≥ 2. Then

j∗OU is coherent.

Proof. We may assume X is affine. Using Lemmas 7.2 and 8.2 we reduce to X =
Spec(A) where (A,m) is a Noetherian local domain and m ∈ Z. Then we can use induc-
tion on d = dim(A). (The base case is d = 0, 1 which do not happen by our assumption
on the local rings.) Set V = Spec(A) \ {m}. Observe that the local rings of V have di-
mension strictly smaller than d. Repeating the arguments for j′ : U → V we and using
induction we conclude that j′

∗OU is a coherentOV -module. Pick a nonzero f ∈ Awhich
vanishes on Z. Since D(f) ∩ V ⊂ U we find an n such that multiplication by fn on U
extends to a map fn : j′

∗OU → OV over V (for example by Cohomology of Schemes,
Lemma 10.5). This map is injective hence there is an injective map

j∗OU = j′′
∗ j

′
∗OU → j′′

∗OV
on X where j′′ : V → X is the inclusion morphism. Hence it suffices to show that j′′

∗OV
is coherent. In other words, we may assume that X is the spectrum of a local Noetherian
domain and that Z consists of the closed point.

Assume X = Spec(A) with (A,m) local and Z = {m}. Let A∧ be the completion of A.
Set X∧ = Spec(A∧), Z∧ = {m∧}, U∧ = X∧ \ Z∧, and F∧ = OU∧ . The ring A∧ is
universally catenary and Nagata (Algebra, Remark 160.9 and Lemma 162.8). Moreover,
condition (3) of Lemma 8.3 for X∧, Z∧, U∧,F∧ holds by assumption! Thus we see that
(U∧ → X∧)∗OU∧ is coherent. Since the morphism c : X∧ → X is flat we conclude
that the pullback of j∗OU is (U∧ → X∧)∗OU∧ (Cohomology of Schemes, Lemma 5.2).
Finally, since c is faithfully flat we conclude that j∗OU is coherent by Descent, Lemma
7.1. �

Remark 8.5. Let j : U → X be an open immersion of locally Noetherian schemes.
Let x ∈ U . Let ix : Wx → U be the integral closed subscheme with generic point x and
let {x} be the closure in X . Then we have a commutative diagram

Wx

ix

��

j′
// {x}

i

��
U

j // X

We have j∗ix,∗OWx = i∗j
′
∗OWx . As the left vertical arrow is a closed immersion we see

that j∗ix,∗OWx is coherent if and only if j′
∗OWx is coherent.

Remark 8.6. Let X be a locally Noetherian scheme. Let j : U → X be the inclusion
of an open subscheme with complementZ. LetF be a coherentOU -module. If there exists
an x ∈ Ass(F) and z ∈ Z ∩ {x} such that dim(O{x},z) ≤ 1, then j∗F is not coherent.
To prove this we can do a flat base change to the spectrum of OX,z . Let X ′ = {x}. The
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assumption implies OX′∩U ⊂ F . Thus it suffices to see that j∗OX′∩U is not coherent.
This is clear becauseX ′ = {x, z}, hence j∗OX′∩U corresponds to κ(x) as anOX,z-module
which cannot be finite as x is not a closed point.

In fact, the converse of Lemma 8.4 holds true: given an open immersion j : U → X of
integral Noetherian schemes and there exists a z ∈ X \U and an associated prime p of the
completion O∧

X,z with dim(O∧
X,z/p) = 1, then j∗OU is not coherent. Namely, you can

pass to the local ring, you can enlarge U to the punctured spectrum, you can pass to the
completion, and then the argument above gives the nonfiniteness.

Proposition 8.7 (Kollár). Let j : U → X be an open immersion of locally Noe-
therian schemes with complement Z. Let F be a coherentOU -module. The following are
equivalent

(1) j∗F is coherent,
(2) for x ∈ Ass(F) and z ∈ Z ∩ {x} and any associated prime p of the completion
O∧

{x},z
we have dim(O∧

{x},z
/p) ≥ 2.

Proof. If (2) holds we get (1) by a combination of Lemmas 8.1, Remark 8.5, and
Lemma 8.4. If (2) does not hold, then j∗ix,∗OWx is not finite for some x ∈ Ass(F) by the
discussion in Remark 8.6 (and Remark 8.5). Thus j∗F is not coherent by Lemma 8.1. �

Lemma 8.8. LetA be a Noetherian ring and let I ⊂ A be an ideal. Set Z = V (I). Let
M be a finite A-module. The following are equivalent

(1) H1
Z(M) is a finite A-module, and

(2) for all p ∈ Ass(M), p 6∈ Z and all q ∈ V (p + I) the completion of (A/p)q does
not have associated primes of dimension 1.

Proof. Follows immediately from Proposition 8.7 via Lemma 8.2. �

The formulation in the following lemma has the advantage that conditions (1) and (2) are
inherited by schemes of finite type overX . Moreover, this is the form of finiteness which
we will generalize to higher direct images in Section 12.

Lemma 8.9. Let X be a locally Noetherian scheme. Let j : U → X be the inclusion
of an open subscheme with complement Z. Let F be a coherentOU -module. Assume

(1) X is universally catenary,
(2) for every z ∈ Z the formal fibres ofOX,z are (S1).

In this situation the following are equivalent
(a) for x ∈ Ass(F) and z ∈ Z ∩ {x} we have dim(O{x},z) ≥ 2, and
(b) j∗F is coherent.

Proof. Let x ∈ Ass(F). By Proposition 8.7 it suffices to check that A = O{x},z
satisfies the condition of the proposition on associated primes of its completion if and
only if dim(A) ≥ 2. Observe that A is universally catenary (this is clear) and that its
formal fibres are (S1) as follows from More on Algebra, Lemma 51.10 and Proposition
51.5. Let p′ ⊂ A∧ be an associated prime. As A→ A∧ is flat, by Algebra, Lemma 65.3, we
find that p′ lies over (0) ⊂ A. The formal fibre A∧ ⊗A F is (S1) where F is the fraction
field of A. We conclude that p′ is a minimal prime, see Algebra, Lemma 157.2. Since A is
universally catenary it is formally catenary by More on Algebra, Proposition 109.5. Hence
dim(A∧/p′) = dim(A) which proves the equivalence. �
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9. Depth and dimension

Some helper lemmas.

Lemma 9.1. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let M be a finite
A-module. Let p ∈ V (I) be a prime ideal. Assume e = depthIAp

(Mp) <∞. Then there
exists a nonempty open U ⊂ V (p) such that depthIAq

(Mq) ≥ e for all q ∈ U .

Proof. By definition of depth we have IMp 6= Mp and there exists an Mp-regular
sequence f1, . . . , fe ∈ IAp. After replacing A by a principal localization we may assume
f1, . . . , fe ∈ I form an M -regular sequence, see Algebra, Lemma 68.6. Consider the mod-
uleM ′ = M/IM . Since p ∈ Supp(M ′) and since the support of a finite module is closed,
we find V (p) ⊂ Supp(M ′). Thus for q ∈ V (p) we get IMq 6= Mq. Hence, using that
localization is exact, we see that depthIAq

(Mq) ≥ e for any q ∈ V (I) by definition of
depth. �

Lemma 9.2. LetA be a Noetherian ring. LetM be a finiteA-module. Let p be a prime
ideal. Assume e = depthAp

(Mp) < ∞. Then there exists a nonempty open U ⊂ V (p)
such that depthAq

(Mq) ≥ e for all q ∈ U and for all but finitely many q ∈ U we have
depthAq

(Mq) > e.

Proof. By definition of depth we have pMp 6= Mp and there exists an Mp-regular
sequence f1, . . . , fe ∈ pAp. After replacing A by a principal localization we may as-
sume f1, . . . , fe ∈ p form an M -regular sequence, see Algebra, Lemma 68.6. Consider the
module M ′ = M/(f1, . . . , fe)M . Since p ∈ Supp(M ′) and since the support of a finite
module is closed, we find V (p) ⊂ Supp(M ′). Thus for q ∈ V (p) we get qMq 6= Mq.
Hence, using that localization is exact, we see that depthAq

(Mq) ≥ e for any q ∈ V (I) by
definition of depth. Moreover, as soon as q is not an associated prime of the module M ′,
then the depth goes up. Thus we see that the final statement holds by Algebra, Lemma
63.5. �

Lemma 9.3. Let X be a Noetherian scheme with dualizing complex ω•
X . Let F be a

coherent OX -module. Let k ≥ 0 be an integer. Assume F is (Sk). Then there is a finite
number of points x ∈ X such that

depth(Fx) = k and dim(Supp(Fx)) > k

Proof. We will prove this lemma by induction on k. The base case k = 0 says thatF
has a finite number of embedded associated points, which follows from Divisors, Lemma
2.5.
Assume k > 0 and the result holds for all smaller k. We can cover X by finitely many
affine opens, hence we may assume X = Spec(A) is affine. Then F is the coherent OX -
module associated to a finiteA-moduleM which satisfies (Sk). We will use Algebra, Lem-
mas 63.10 and 72.7 without further mention.
Let f ∈ A be a nonzerodivisor on M . Then M/fM has (Sk−1). By induction we
see that there are finitely many primes p ∈ V (f) with depth((M/fM)p) = k − 1
and dim(Supp((M/fM)p)) > k − 1. These are exactly the primes p ∈ V (f) with
depth(Mp) = k and dim(Supp(Mp)) > k. Thus we may replace A by Af and M by
Mf in trying to prove the finiteness statement.
Since M satisfies (Sk) and k > 0 we see that M has no embedded associated primes (Al-
gebra, Lemma 157.2). Thus Ass(M) is the set of generic points of the support of M . Thus



10. ANNIHILATORS OF LOCAL COHOMOLOGY, I 4191

Dualizing Complexes, Lemma 20.4 shows the set U = {q |Mq is Cohen-Macaulay} is an
open containing Ass(M). By prime avoidance (Algebra, Lemma 15.2) we can pick f ∈ A
with f 6∈ p for p ∈ Ass(M) such that D(f) ⊂ U . Then f is a nonzerodivisor on M
(Algebra, Lemma 63.9). After replacing A by Af and M by Mf (see above) we find that
M is Cohen-Macaulay. Thus for all q ⊂ A we have dim(Mq) = depth(Mq) and hence
the set described in the lemma is empty and a fortiori finite. �

Lemma 9.4. Let (A,m) be a Noetherian local ring with normalized dualizing complex
ω•
A. Let M be a finite A-module. Set Ei = Ext−i

A (M,ω•
A). Then

(1) Ei is a finite A-module nonzero only for 0 ≤ i ≤ dim(Supp(M)),
(2) dim(Supp(Ei)) ≤ i,
(3) depth(M) is the smallest integer δ ≥ 0 such that Eδ 6= 0,
(4) p ∈ Supp(E0 ⊕ . . .⊕ Ei)⇔ depthAp

(Mp) + dim(A/p) ≤ i,
(5) the annihilator of Ei is equal to the annihilator of Hi

m(M).

Proof. Parts (1), (2), and (3) are copies of the statements in Dualizing Complexes,
Lemma 16.5. For a prime p ofAwe have that (ω•

A)p[−dim(A/p)] is a normalized dualzing
complex for Ap. See Dualizing Complexes, Lemma 17.3. Thus

Eip = Ext−i
A (M,ω•

A)p = Ext−i+dim(A/p)
Ap

(Mp, (ω•
A)p[−dim(A/p)])

is zero for i−dim(A/p) < depthAp
(Mp) and nonzero for i = dim(A/p)+depthAp

(Mp)
by part (3) overAp. This proves part (4). IfE is an injective hull of the residue field ofA,
then we have

HomA(Hi
m(M), E) = Ext−i

A (M,ω•
A)∧ = (Ei)∧ = Ei ⊗A A∧

by the local duality theorem (in the form of Dualizing Complexes, Lemma 18.4). Since
A → A∧ is faithfully flat, we find (5) is true by Matlis duality (Dualizing Complexes,
Proposition 7.8). �

10. Annihilators of local cohomology, I

This section discusses a result due to Faltings, see [?].

Proposition 10.1. Let A be a Noetherian ring which has a dualizing complex. Let
T ⊂ T ′ ⊂ Spec(A) be subsets stable under specialization. Let s ≥ 0 an integer. Let M be
a finite A-module. The following are equivalent

(1) there exists an ideal J ⊂ Awith V (J) ⊂ T ′ such that J annihilatesHi
T (M) for

i ≤ s, and
(2) for all p 6∈ T ′, q ∈ T with p ⊂ q we have

depthAp
(Mp) + dim((A/p)q) > s

Proof. Let ω•
A be a dualizing complex. Let δ be its dimension function, see Dualizing

Complexes, Section 17. An important role will be played by the finite A-modules

Ei = ExtiA(M,ω•
A)

For p ⊂ Awe will writeHi
p to denote the local cohomology of anAp-module with respect

to pAp. Then we see that the pAp-adic completion of

(Ei)p = Extδ(p)+i
Ap

(Mp, (ω•
A)p[−δ(p)])

is Matlis dual to
H

−δ(p)−i
p (Mp)
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by Dualizing Complexes, Lemma 18.4. In particular we deduce from this the following
fact: an ideal J ⊂ A annihilates (Ei)p if and only if J annihilates H−δ(p)−i

p (Mp).

Set Tn = {p ∈ T | δ(p) ≤ n}. As δ is a bounded function, we see that Ta = ∅ for a � 0
and Tb = T for b� 0.

Assume (2). Let us prove the existence of J as in (1). We will use a double induction
to do this. For i ≤ s consider the induction hypothesis IHi: Ha

T (M) is annihilated by
some J ⊂ A with V (J) ⊂ T ′ for 0 ≤ a ≤ i. The case IH0 is trivial because H0

T (M) is a
submodule ofM and hence finite and hence is annihilated by some idealJ withV (J) ⊂ T .

Induction step. Assume IHi−1 holds for some 0 < i ≤ s. Pick J ′ with V (J ′) ⊂ T ′

annihilating Ha
T (M) for 0 ≤ a ≤ i − 1 (the induction hypothesis guarantees we can

do this). We will show by descending induction on n that there exists an ideal J with
V (J) ⊂ T ′ such that the associated primes of JHi

T (M) are in Tn. For n� 0 this implies
JHi

T (M) = 0 (Algebra, Lemma 63.7) and hence IHi will hold. The base case n � 0 is
trivial because T = Tn in this case and all associated primes of Hi

T (M) are in T .

Thus we assume given J with the property for n. Let q ∈ Tn. Let Tq ⊂ Spec(Aq) be the
inverse image of T . We have Hj

T (M)q = Hj
Tq

(Mq) by Lemma 5.7. Consider the spectral
sequence

Hp
q (Hq

Tq
(Mq))⇒ Hp+q

q (Mq)

of Lemma 5.8. Below we will find an ideal J ′′ ⊂ A with V (J ′′) ⊂ T ′ such that Hi
q(Mq)

is annihilated by J ′′ for all q ∈ Tn \Tn−1. Claim: J(J ′)iJ ′′ will work for n−1. Namely,
let q ∈ Tn \ Tn−1. The spectral sequence above defines a filtration

E0,i
∞ = E0,i

i+2 ⊂ . . . ⊂ E
0,i
3 ⊂ E0,i

2 = H0
q (Hi

Tq
(Mq))

The moduleE0,i
∞ is annihilated by J ′′. The subquotientsE0,i

j /E0,i
j+1 for i+ 1 ≥ j ≥ 2 are

annihilated by J ′ because the target of d0,i
j is a subquotient of

Hj
q(Hi−j+1

Tq
(Mq)) = Hj

q(Hi−j+1
T (M)q)

and Hi−j+1
T (M)q is annihilated by J ′ by choice of J ′. Finally, by our choice of J we

have JHi
T (M)q ⊂ H0

q (Hi
T (M)q) since the non-closed points of Spec(Aq) have higher δ

values. Thus q cannot be an associated prime of J(J ′)iJ ′′Hi
T (M) as desired.

By our initial remarks we see that J ′′ should annihilate

(E−δ(q)−i)q = (E−n−i)q
for all q ∈ Tn \ Tn−1. But if J ′′ works for one q, then it works for all q in an open
neighbourhood of q as the modules E−n−i are finite. Since every subset of Spec(A) is
Noetherian with the induced topology (Topology, Lemma 9.2), we conclude that it suffices
to prove the existence of J ′′ for one q.

Since the ext modules are finite the existence of J ′′ is equivalent to

Supp(E−n−i) ∩ Spec(Aq) ⊂ T ′.

This is equivalent to showing the localization of E−n−i at every p ⊂ q, p 6∈ T ′ is zero.
Using local duality over Ap we find that we need to prove that

H
i+n−δ(p)
p (Mp) = H

i−dim((A/p)q)
p (Mp)
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is zero (this uses that δ is a dimension function). This vanishes by the assumption in the
lemma and i ≤ s and Dualizing Complexes, Lemma 11.1.

To prove the converse implication we assume (2) does not hold and we work backwards
through the arguments above. First, we pick a q ∈ T , p ⊂ q with p 6∈ T ′ such that

i = depthAp
(Mp) + dim((A/p)q) ≤ s

is minimal. ThenHi−dim((A/p)q)
p (Mp) is nonzero by the nonvanishing in Dualizing Com-

plexes, Lemma 11.1. Set n = δ(q). Then there does not exist an ideal J ⊂ A with
V (J) ⊂ T ′ such that J(E−n−i)q = 0. ThusHi

q(Mq) is not annihilated by an ideal J ⊂ A
with V (J) ⊂ T ′. By minimality of i it follows from the spectral sequence displayed above
that the module Hi

T (M)q is not annihilated by an ideal J ⊂ A with V (J) ⊂ T ′. Thus
Hi
T (M) is not annihilated by an ideal J ⊂ A with V (J) ⊂ T ′. This finishes the proof of

the proposition. �

Lemma 10.2. Let I be an ideal of a Noetherian ring A. Let M be a finite A-module,
let p ⊂ A be a prime ideal, and let s ≥ 0 be an integer. Assume

(1) A has a dualizing complex,
(2) p 6∈ V (I), and
(3) for all primes p′ ⊂ p and q ∈ V (I) with p′ ⊂ q we have

depthAp′
(Mp′) + dim((A/p′)q) > s

Then there exists an f ∈ A, f 6∈ p which annihilates Hi
V (I)(M) for i ≤ s.

Proof. Consider the sets

T = V (I) and T ′ =
⋃

f∈A,f 6∈p
V (f)

These are subsets of Spec(A) stable under specialization. Observe that T ⊂ T ′ and p 6∈ T ′.
Assumption (3) says that hypothesis (2) of Proposition 10.1 holds. Hence we can find
J ⊂ A with V (J) ⊂ T ′ such that JHi

V (I)(M) = 0 for i ≤ s. Choose f ∈ A, f 6∈ p with
V (J) ⊂ V (f). A power of f annihilates Hi

V (I)(M) for i ≤ s. �

11. Finiteness of local cohomology, II

We continue the discussion of finiteness of local cohomology started in Section 7. Using
Faltings Annihilator Theorem we easily prove the following fundamental result.

Proposition 11.1. Let A be a Noetherian ring which has a dualizing complex. Let
T ⊂ Spec(A) be a subset stable under specialization. Let s ≥ 0 an integer. Let M be a
finite A-module. The following are equivalent

(1) Hi
T (M) is a finite A-module for i ≤ s, and

(2) for all p 6∈ T , q ∈ T with p ⊂ q we have

depthAp
(Mp) + dim((A/p)q) > s

Proof. Formal consequence of Proposition 10.1 and Lemma 7.1. �

Besides some lemmas for later use, the rest of this section is concerned with the question
to what extend the condition in Proposition 11.1 that A has a dualizing complex can be
weakened. The answer is roughly that one has to assume the formal fibres of A are (Sn)
for sufficiently large n.
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LetA be a Noetherian ring and let I ⊂ A be an ideal. SetX = Spec(A) and Z = V (I) ⊂
X . Let M be a finite A-module. We define

(11.1.1) sA,I(M) = min{depthAp
(Mp) + dim((A/p)q) | p ∈ X \ Z, q ∈ Z, p ⊂ q}

Our conventions on depth are that the depth of 0 is ∞ thus we only need to consider
primes p in the support of M . It will turn out that sA,I(M) is an important invariant of
the situation.

Lemma 11.2. Let A→ B be a finite homomorphism of Noetherian rings. Let I ⊂ A
be an ideal and set J = IB. LetM be a finiteB-module. IfA is universally catenary, then
sB,J(M) = sA,I(M).

Proof. Let p ⊂ q ⊂ A be primes with I ⊂ q and I 6⊂ p. Since A→ B is finite there
are finitely many primes pi lying over p. By Algebra, Lemma 72.11 we have

depth(Mp) = min depth(Mpi)

Let pi ⊂ qij be primes lying over q. By going up forA→ B (Algebra, Lemma 36.22) there
is at least one qij for each i. Then we see that

dim((B/pi)qij ) = dim((A/p)q)

by the dimension formula, see Algebra, Lemma 113.1. This implies that the minimum of
the quantities used to define sB,J(M) for the pairs (pi, qij) is equal to the quantity for
the pair (p, q). This proves the lemma. �

Lemma 11.3. Let A be a Noetherian ring which has a dualizing complex. Let I ⊂ A
be an ideal. Let M be a finite A-module. Let A′,M ′ be the I-adic completions of A,M .
Let p′ ⊂ q′ be prime ideals of A′ with q′ ∈ V (IA′) lying over p ⊂ q in A. Then

depthAp′
(M ′

p′) ≥ depthAp
(Mp)

and
depthAp′

(M ′
p′) + dim((A′/p′)q′) = depthAp

(Mp) + dim((A/p)q)

Proof. We have

depth(M ′
p′) = depth(Mp) + depth(A′

p′/pA′
p′) ≥ depth(Mp)

by flatness of A → A′, see Algebra, Lemma 163.1. Since the fibres of A → A′ are Cohen-
Macaulay (Dualizing Complexes, Lemma 23.2 and More on Algebra, Section 51) we see
that depth(A′

p′/pA′
p′) = dim(A′

p′/pA′
p′). Thus we obtain

depth(M ′
p′) + dim((A′/p′)q′) = depth(Mp) + dim(A′

p′/pA′
p′) + dim((A′/p′)q′)

= depth(Mp) + dim((A′/pA′)q′)
= depth(Mp) + dim((A/p)q)

Second equality becauseA′ is catenary and third equality by More on Algebra, Lemma 43.1
as (A/p)q and (A′/pA′)q′ have the same I-adic completions. �

Lemma 11.4. Let A be a universally catenary Noetherian local ring. Let I ⊂ A be an
ideal. Let M be a finite A-module. Then

sA,I(M) ≥ sA∧,I∧(M∧)

If the formal fibres of A are (Sn), then min(n+ 1, sA,I(M)) ≤ sA∧,I∧(M∧).
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Proof. Write X = Spec(A), X∧ = Spec(A∧), Z = V (I) ⊂ X , and Z∧ = V (I∧).
Let p′ ⊂ q′ ⊂ A∧ be primes with p′ 6∈ Z∧ and q′ ∈ Z∧. Let p ⊂ q be the corresponding
primes of A. Then p 6∈ Z and q ∈ Z. Picture

p′ // q′ // A∧

p // q // A

OO

Let us write

a = dim(A/p) = dim(A∧/pA∧),
b = dim(A/q) = dim(A∧/qA∧),
a′ = dim(A∧/p′),
b′ = dim(A∧/q′)

Equalities by More on Algebra, Lemma 43.1. We also write

p = dim(A∧
p′/pA∧

p′) = dim((A∧/pA∧)p′)
q = dim(A∧

q′/pA∧
q′) = dim((A∧/qA∧)q′)

Since A is universally catenary we see that A∧/pA∧ = (A/p)∧ is equidimensional of
dimension a (More on Algebra, Proposition 109.5). Hence a = a′+p. Similarly b = b′+q.
By Algebra, Lemma 163.1 applied to the flat local ring map Ap → A∧

p′ we have

depth(M∧
p′) = depth(Mp) + depth(A∧

p′/pA∧
p′)

The quantity we are minimizing for sA,I(M) is

s(p, q) = depth(Mp) + dim((A/p)q) = depth(Mp) + a− b
(last equality as A is catenary). The quantity we are minimizing for sA∧,I∧(M∧) is

s(p′, q′) = depth(M∧
p′) + dim((A∧/p′)q′) = depth(M∧

p′) + a′ − b′

(last equality asA∧ is catenary). Now we have enough notation in place to start the proof.

Let p ⊂ q ⊂ A be primes with p 6∈ Z and q ∈ Z such that sA,I(M) = s(p, q). Then
we can pick q′ minimal over qA∧ and p′ ⊂ q′ minimal over pA∧ (using going down for
A→ A∧). Then we have four primes as above with p = 0 and q = 0. Moreover, we have
depth(A∧

p′/pA∧
p′) = 0 also because p = 0. This means that s(p′, q′) = s(p, q). Thus we

get the first inequality.

Assume that the formal fibres of A are (Sn). Then depth(A∧
p′/pA∧

p′) ≥ min(n, p). Hence

s(p′, q′) ≥ s(p, q) + q + min(n, p)− p ≥ sA,I(M) + q + min(n, p)− p
Thus the only way we can get in trouble is if p > n. If this happens then

s(p′, q′) = depth(M∧
p′) + dim((A∧/p′)q′)

= depth(Mp) + depth(A∧
p′/pA∧

p′) + dim((A∧/p′)q′)
≥ 0 + n+ 1

because (A∧/p′)q′ has at least two primes. This proves the second inequality. �

The method of proof of the following lemma works more generally, but the stronger re-
sults one gets will be subsumed in Theorem 11.6 below.
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Lemma 11.5. LetA be a Gorenstein Noetherian local ring. Let I ⊂ A be an ideal and
set Z = V (I) ⊂ Spec(A). Let M be a finite A-module. Let s = sA,I(M) as in (11.1.1).
Then Hi

Z(M) is finite for i < s, but Hs
Z(M) is not finite.

Proof. Since a Gorenstein local ring has a dualizing complex, this is a special case of
Proposition 11.1. It would be helpful to have a short proof of this special case, which will
be used in the proof of a general finiteness theorem below. �

Observe that the hypotheses of the following theorem are satisfied by excellent Noether-
ian rings (by definition), by Noetherian rings which have a dualizing complex (Dualizing
Complexes, Lemma 17.4 and Dualizing Complexes, Lemma 23.2), and by quotients of reg-
ular Noetherian rings.

Theorem 11.6. Let A be a Noetherian ring and let I ⊂ A be an ideal. Set Z =
V (I) ⊂ Spec(A). Let M be a finite A-module. Set s = sA,I(M) as in (11.1.1). Assume
that

(1) A is universally catenary,
(2) the formal fibres of the local rings of A are Cohen-Macaulay.

Then Hi
Z(M) is finite for 0 ≤ i < s and Hs

Z(M) is not finite.

Proof. By Lemma 7.2 we may assume that A is a local ring.

If A is a Noetherian complete local ring, then we can write A as the quotient of a regu-
lar complete local ring B by Cohen’s structure theorem (Algebra, Theorem 160.8). Using
Lemma 11.2 and Dualizing Complexes, Lemma 9.2 we reduce to the case of a regular lo-
cal ring which is a consequence of Lemma 11.5 because a regular local ring is Gorenstein
(Dualizing Complexes, Lemma 21.3).

Let A be a Noetherian local ring. Let m be the maximal ideal. We may assume I ⊂ m,
otherwise the lemma is trivial. Let A∧ be the completion of A, let Z∧ = V (IA∧), and let
M∧ = M⊗AA∧ be the completion ofM (Algebra, Lemma 97.1). ThenHi

Z(M)⊗AA∧ =
Hi
Z∧(M∧) by Dualizing Complexes, Lemma 9.3 and flatness ofA→ A∧ (Algebra, Lemma

97.2). Hence it suffices to show that Hi
Z∧(M∧) is finite for i < s and not finite for i = s,

see Algebra, Lemma 83.2. Since we know the result is true for A∧ it suffices to show that
sA,I(M) = sA∧,I∧(M∧). This follows from Lemma 11.4. �

Remark 11.7. The astute reader will have realized that we can get away with a slightly
weaker condition on the formal fibres of the local rings of A. Namely, in the situation of
Theorem 11.6 assume A is universally catenary but make no assumptions on the formal
fibres. Suppose we have an n and we want to prove that Hi

Z(M) are finite for i ≤ n.
Then the exact same proof shows that it suffices that sA,I(M) > n and that the formal
fibres of local rings of A are (Sn). On the other hand, if we want to show that Hs

Z(M)
is not finite where s = sA,I(M), then our arguments prove this if the formal fibres are
(Ss−1).

12. Finiteness of pushforwards, II

This section is the continuation of Section 8. In this section we reap the fruits of the labor
done in Section 11.

Lemma 12.1. Let X be a locally Noetherian scheme. Let j : U → X be the inclusion
of an open subscheme with complement Z. Let F be a coherent OU -module. Let n ≥ 0
be an integer. Assume
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(1) X is universally catenary,
(2) for every z ∈ Z the formal fibres ofOX,z are (Sn).

In this situation the following are equivalent
(a) for x ∈ Supp(F) and z ∈ Z ∩{x}we have depthOX,x

(Fx) + dim(O{x},z) > n,
(b) Rpj∗F is coherent for 0 ≤ p < n.

Proof. The statement is local on X , hence we may assume X is affine. Say X =
Spec(A) and Z = V (I). Let M be a finite A-module whose associated coherent OX -
module restricts to F over U , see Lemma 8.2. This lemma also tells us that Rpj∗F is
coherent if and only if Hp+1

Z (M) is a finite A-module. Observe that the minimum of the
expressions depthOX,x

(Fx)+dim(O{x},z) is the number sA,I(M) of (11.1.1). Having said
this the lemma follows from Theorem 11.6 as elucidated by Remark 11.7. �

Lemma 12.2. Let X be a locally Noetherian scheme. Let j : U → X be the inclusion
of an open subscheme with complementZ. Letn ≥ 0 be an integer. IfRpj∗OU is coherent
for 0 ≤ p < n, then the same is true for Rpj∗F , 0 ≤ p < n for any finite locally free
OU -module F .

Proof. The question is local on X , hence we may assume X is affine. Say X =
Spec(A) and Z = V (I). Via Lemma 8.2 our lemma follows from Lemma 7.4. �

Lemma 12.3. Let A be a ring and let J ⊂ I ⊂ A be finitely generated ideals. Let
p ≥ 0 be an integer. Set U = Spec(A) \ V (I). If Hp(U,OU ) is annihilated by Jn for
some n, then Hp(U,F) annihilated by Jm for some m = m(F) for every finite locally
freeOU -module F .

Proof. Consider the annihilator a of Hp(U,F). Let u ∈ U . There exists an open
neighbourhood u ∈ U ′ ⊂ U and an isomorphism ϕ : O⊕r

U ′ → F|U ′ . Pick f ∈ A such
that u ∈ D(f) ⊂ U ′. There exist maps

a : O⊕r
U −→ F and b : F −→ O⊕r

U

whose restriction to D(f) are equal to fNϕ and fNϕ−1 for some N . Moreover we may
assume that a◦b and b◦a are equal to multiplication by f2N . This follows from Properties,
Lemma 17.3 since U is quasi-compact (I is finitely generated), separated, and F and O⊕r

U

are finitely presented. Thus we see thatHp(U,F) is annihilated by f2NJn, i.e., f2NJn ⊂
a.

AsU is quasi-compact we can find finitely many f1, . . . , ft andN1, . . . , Nt such thatU =⋃
D(fi) and f2Ni

i Jn ⊂ a. Then V (I) = V (f1, . . . , ft) and since I is finitely generated
we conclude IM ⊂ (f1, . . . , ft) for some M . All in all we see that Jm ⊂ a for m � 0,
for example m = M(2N1 + . . .+ 2Nt)n will do. �

13. Annihilators of local cohomology, II

We extend the discussion of annihilators of local cohomology in Section 10 to bounded
below complexes with finite cohomology modules.

Definition 13.1. Let I be an ideal of a Noetherian ring A. Let K ∈ D+
Coh(A). We

define the I-depth of K , denoted depthI(K), to be the maximal m ∈ Z ∪ {∞} such that
Hi
I(K) = 0 for all i < m. If A is local with maximal ideal m then we call depthm(K)

simply the depth of K.
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This definition does not conflict with Algebra, Definition 72.1 by Dualizing Complexes,
Lemma 11.1.

Proposition 13.2. Let A be a Noetherian ring which has a dualizing complex. Let
T ⊂ T ′ ⊂ Spec(A) be subsets stable under specialization. Let s ∈ Z. Let K be an object
of D+

Coh(A). The following are equivalent
(1) there exists an ideal J ⊂ A with V (J) ⊂ T ′ such that J annihilatesHi

T (K) for
i ≤ s, and

(2) for all p 6∈ T ′, q ∈ T with p ⊂ q we have

depthAp
(Kp) + dim((A/p)q) > s

Proof. This lemma is the natural generalization of Proposition 10.1 whose proof the
reader should read first. Let ω•

A be a dualizing complex. Let δ be its dimension function,
see Dualizing Complexes, Section 17. An important role will be played by the finite A-
modules

Ei = ExtiA(K,ω•
A)

For p ⊂ A we will write Hi
p to denote the local cohomology of an object of D(Ap) with

respect to pAp. Then we see that the pAp-adic completion of

(Ei)p = Extδ(p)+i
Ap

(Kp, (ω•
A)p[−δ(p)])

is Matlis dual to
H

−δ(p)−i
p (Kp)

by Dualizing Complexes, Lemma 18.4. In particular we deduce from this the following
fact: an ideal J ⊂ A annihilates (Ei)p if and only if J annihilates H−δ(p)−i

p (Kp).

Set Tn = {p ∈ T | δ(p) ≤ n}. As δ is a bounded function, we see that Ta = ∅ for a � 0
and Tb = T for b� 0.

Assume (2). Let us prove the existence of J as in (1). We will use a double induction to
do this. For i ≤ s consider the induction hypothesis IHi: Ha

T (K) is annihilated by some
J ⊂ A with V (J) ⊂ T ′ for a ≤ i. The case IHi is trivial for i small enough because K is
bounded below.

Induction step. Assume IHi−1 holds for some i ≤ s. Pick J ′ with V (J ′) ⊂ T ′ annihi-
lating Ha

T (K) for a ≤ i − 1 (the induction hypothesis guarantees we can do this). We
will show by descending induction on n that there exists an ideal J with V (J) ⊂ T ′ such
that the associated primes of JHi

T (K) are in Tn. For n � 0 this implies JHi
T (K) = 0

(Algebra, Lemma 63.7) and hence IHi will hold. The base case n � 0 is trivial because
T = Tn in this case and all associated primes of Hi

T (K) are in T .

Thus we assume given J with the property for n. Let q ∈ Tn. Let Tq ⊂ Spec(Aq) be the
inverse image of T . We have Hj

T (K)q = Hj
Tq

(Kq) by Lemma 5.7. Consider the spectral
sequence

Hp
q (Hq

Tq
(Kq))⇒ Hp+q

q (Kq)

of Lemma 5.8. Below we will find an ideal J ′′ ⊂ Awith V (J ′′) ⊂ T ′ such thatHi
q(Kq) is

annihilated by J ′′ for all q ∈ Tn \ Tn−1. Claim: J(J ′)iJ ′′ will work for n− 1. Namely,
let q ∈ Tn \ Tn−1. The spectral sequence above defines a filtration

E0,i
∞ = E0,i

i+2 ⊂ . . . ⊂ E
0,i
3 ⊂ E0,i

2 = H0
q (Hi

Tq
(Kq))
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The moduleE0,i
∞ is annihilated by J ′′. The subquotientsE0,i

j /E0,i
j+1 for i+ 1 ≥ j ≥ 2 are

annihilated by J ′ because the target of d0,i
j is a subquotient of

Hj
q(Hi−j+1

Tq
(Kq)) = Hj

q(Hi−j+1
T (K)q)

and Hi−j+1
T (K)q is annihilated by J ′ by choice of J ′. Finally, by our choice of J we

have JHi
T (K)q ⊂ H0

q (Hi
T (K)q) since the non-closed points of Spec(Aq) have higher δ

values. Thus q cannot be an associated prime of J(J ′)iJ ′′Hi
T (K) as desired.

By our initial remarks we see that J ′′ should annihilate

(E−δ(q)−i)q = (E−n−i)q
for all q ∈ Tn \ Tn−1. But if J ′′ works for one q, then it works for all q in an open
neighbourhood of q as the modules E−n−i are finite. Since every subset of Spec(A) is
Noetherian with the induced topology (Topology, Lemma 9.2), we conclude that it suffices
to prove the existence of J ′′ for one q.

Since the ext modules are finite the existence of J ′′ is equivalent to

Supp(E−n−i) ∩ Spec(Aq) ⊂ T ′.

This is equivalent to showing the localization of E−n−i at every p ⊂ q, p 6∈ T ′ is zero.
Using local duality over Ap we find that we need to prove that

H
i+n−δ(p)
p (Kp) = H

i−dim((A/p)q)
p (Kp)

is zero (this uses that δ is a dimension function). This vanishes by the assumption in the
lemma and i ≤ s and our definition of depth in Definition 13.1.

To prove the converse implication we assume (2) does not hold and we work backwards
through the arguments above. First, we pick a q ∈ T , p ⊂ q with p 6∈ T ′ such that

i = depthAp
(Kp) + dim((A/p)q) ≤ s

is minimal. Then Hi−dim((A/p)q)
p (Kp) is nonzero by the our definition of depth in Def-

inition 13.1. Set n = δ(q). Then there does not exist an ideal J ⊂ A with V (J) ⊂ T ′

such that J(E−n−i)q = 0. Thus Hi
q(Kq) is not annihilated by an ideal J ⊂ A with

V (J) ⊂ T ′. By minimality of i it follows from the spectral sequence displayed above
that the module Hi

T (K)q is not annihilated by an ideal J ⊂ A with V (J) ⊂ T ′. Thus
Hi
T (K) is not annihilated by an ideal J ⊂ A with V (J) ⊂ T ′. This finishes the proof of

the proposition. �

14. Finiteness of local cohomology, III

We extend the discussion of finiteness of local cohomology in Sections 7 and 11 to bounded
below complexes with finite cohomology modules.

Lemma 14.1. Let A be a Noetherian ring. Let T ⊂ Spec(A) be a subset stable under
specialization. Let K be an object of D+

Coh(A). Let n ∈ Z. The following are equivalent
(1) Hi

T (K) is finite for i ≤ n,
(2) there exists an ideal J ⊂ A with V (J) ⊂ T such that J annihilates Hi

T (K) for
i ≤ n.

If T = V (I) = Z for an ideal I ⊂ A, then these are also equivalent to
(3) there exists an e ≥ 0 such that Ie annihilates Hi

Z(K) for i ≤ n.
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Proof. This lemma is the natural generalization of Lemma 7.1 whose proof the reader
should read first. Assume (1) is true. Recall that Hi

J(K) = Hi
V (J)(K), see Dualizing

Complexes, Lemma 10.1. Thus Hi
T (K) = colimHi

J(K) where the colimit is over ideals
J ⊂ A with V (J) ⊂ T , see Lemma 5.3. Since Hi

T (K) is finitely generated for i ≤ n we
can find a J ⊂ A as in (2) such that Hi

J(K) → Hi
T (K) is surjective for i ≤ n. Thus

the finite list of generators are J -power torsion elements and we see that (2) holds with J
replaced by some power.

Let a ∈ Z be an integer such thatHi(K) = 0 for i < a. We prove (2)⇒ (1) by descending
induction on a. If a > n, then we have Hi

T (K) = 0 for i ≤ n hence both (1) and (2) are
true and there is nothing to prove.

Assume we have J as in (2). Observe that N = Ha
T (K) = H0

T (Ha(K)) is finite as a
submodule of the finite A-module Ha(K). If n = a we are done; so assume a < n from
now on. By construction of RΓT we find that Hi

T (N) = 0 for i > 0 and H0
T (N) = N ,

see Remark 5.6. Choose a distinguished triangle

N [−a]→ K → K ′ → N [−a+ 1]

Then we see that Ha
T (K ′) = 0 and Hi

T (K) = Hi
T (K ′) for i > a. We conclude that we

may replace K by K ′. Thus we may assume that Ha
T (K) = 0. This means that the finite

set of associated primes of Ha(K) are not in T . By prime avoidance (Algebra, Lemma
15.2) we can find f ∈ J not contained in any of the associated primes of Ha(K). Choose
a distinguished triangle

L→ K
f−→ K → L[1]

By construction we see thatHi(L) = 0 for i ≤ a. On the other hand we have a long exact
cohomology sequence

0→ Ha+1
T (L)→ Ha+1

T (K) f−→ Ha+1
T (K)→ Ha+2

T (L)→ Ha+2
T (K) f−→ . . .

which breaks into the identification Ha+1
T (L) = Ha+1

T (K) and short exact sequences

0→ Hi−1
T (K)→ Hi

T (L)→ Hi
T (K)→ 0

for i ≤ n since f ∈ J . We conclude that J2 annihilates Hi
T (L) for i ≤ n. By induction

hypothesis applied to L we see that Hi
T (L) is finite for i ≤ n. Using the short exact

sequence once more we see that Hi
T (K) is finite for i ≤ n as desired.

We omit the proof of the equivalence of (2) and (3) in case T = V (I). �

Proposition 14.2. Let A be a Noetherian ring which has a dualizing complex. Let
T ⊂ Spec(A) be a subset stable under specialization. Let s ∈ Z. Let K ∈ D+

Coh(A). The
following are equivalent

(1) Hi
T (K) is a finite A-module for i ≤ s, and

(2) for all p 6∈ T , q ∈ T with p ⊂ q we have

depthAp
(Kp) + dim((A/p)q) > s

Proof. Formal consequence of Proposition 13.2 and Lemma 14.1. �
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15. Improving coherent modules

Similar constructions can be found in [?] and more recently in [?] and [?].

Lemma 15.1. Let X be a Noetherian scheme. Let T ⊂ X be a subset stable under
specialization. Let F be a coherent OX -module. Then there is a unique map F → F ′ of
coherentOX -modules such that

(1) F → F ′ is surjective,
(2) Fx → F ′

x is an isomorphism for x 6∈ T ,
(3) depthOX,x

(F ′
x) ≥ 1 for x ∈ T .

If f : Y → X is a flat morphism with Y Noetherian, then f∗F → f∗F ′ is the corre-
sponding quotient for f−1(T ) ⊂ Y and f∗F .

Proof. Condition (3) just means that Ass(F ′)∩T = ∅. ThusF → F ′ is the quotient
ofF by the subsheaf of sections whose support is contained in T . This proves uniqueness.
The statement on pullbacks follows from Divisors, Lemma 3.1 and the uniqueness.

Existence of F → F ′. By the uniqueness it suffices to prove the existence and uniqueness
locally on X ; small detail omitted. Thus we may assume X = Spec(A) is affine and F
is the coherent module associated to the finite A-module M . Set M ′ = M/H0

T (M) with
H0
T (M) as in Section 5. Then Mp = M ′

p for p 6∈ T which proves (1). On the other hand,
we haveH0

T (M) = colimH0
Z(M) whereZ runs over the closed subsets ofX contained in

T . Thus by Dualizing Complexes, Lemmas 11.6 we have H0
T (M ′) = 0, i.e., no associated

prime of M ′ is in T . Therefore depth(M ′
p) ≥ 1 for p ∈ T . �

Lemma 15.2. Let j : U → X be an open immersion of Noetherian schemes. Let F be
a coherent OX -module. Assume F ′ = j∗(F|U ) is coherent. Then F → F ′ is the unique
map of coherentOX -modules such that

(1) F|U → F ′|U is an isomorphism,
(2) depthOX,x

(F ′
x) ≥ 2 for x ∈ X , x 6∈ U .

If f : Y → X is a flat morphism with Y Noetherian, then f∗F → f∗F ′ is the corre-
sponding map for f−1(U) ⊂ Y .

Proof. We have depthOX,x
(F ′

x) ≥ 2 by Divisors, Lemma 6.6 part (3). The unique-
ness ofF → F ′ follows from Divisors, Lemma 5.11. The compatibility with flat pullbacks
follows from flat base change, see Cohomology of Schemes, Lemma 5.2. �

Lemma 15.3. Let X be a Noetherian scheme. Let Z ⊂ X be a closed subscheme. Let
F be a coherent OX -module. Assume X is universally catenary and the formal fibres of
local rings have (S1). Then there exists a unique map F → F ′′ of coherent OX -modules
such that

(1) Fx → F ′′
x is an isomorphism for x ∈ X \ Z ,

(2) Fx → F ′′
x is surjective and depthOX,x

(F ′′
x ) = 1 for x ∈ Z such that there exists

an immediate specialization x′  x with x′ 6∈ Z and x′ ∈ Ass(F),
(3) depthOX,x

(F ′′
x ) ≥ 2 for the remaining x ∈ Z.

If f : Y → X is a Cohen-Macaulay morphism with Y Noetherian, then f∗F → f∗F ′′

satisfies the same properties with respect to f−1(Z) ⊂ Y .

Proof. Let F → F ′ be the map constructed in Lemma 15.1 for the subset Z of X .
Recall that F ′ is the quotient of F by the subsheaf of sections supported on Z.
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We first prove uniqueness. Let F → F ′′ be as in the lemma. We get a factorization
F → F ′ → F ′′ since Ass(F ′′)∩Z = ∅ by conditions (2) and (3). LetU ⊂ X be a maximal
open subscheme such that F ′|U → F ′′|U is an isomorphism. We see that U contains all
the points as in (2). Then by Divisors, Lemma 5.11 we conclude that F ′′ = j∗(F ′|U ). In
this way we get uniqueness (small detail: if we have two of these F ′′ then we take the
intersection of the opens U we get from either).

Proof of existence. Recall that Ass(F ′) = {x1, . . . , xn} is finite and xi 6∈ Z. Let Yi
be the closure of {xi}. Let Zi,j be the irreducible components of Z ∩ Yi. Observe that
Supp(F ′) ∩ Z =

⋃
Zi,j . Let zi,j ∈ Zi,j be the generic point. Let

di,j = dim(O{xi},zi,j
)

If di,j = 1, then zi,j is one of the points as in (2). Thus we do not need to modify F ′

at these points. Furthermore, still assuming di,j = 1, using Lemma 9.2 we can find an
open neighbourhood zi,j ∈ Vi,j ⊂ X such that depthOX,z

(F ′
z) ≥ 2 for z ∈ Zi,j ∩ Vi,j ,

z 6= zi,j . Set

Z ′ = X \
(
X \ Z ∪

⋃
di,j=1

Vi,j)
)

Denote j′ : X \Z ′ → X . By our choice of Z ′ the assumptions of Lemma 8.9 are satisfied.
We conclude by setting F ′′ = j′

∗(F ′|X\Z′) and applying Lemma 15.2.

The final statement follows from the formula for the change in depth along a flat local
homomorphism, see Algebra, Lemma 163.1 and the assumption on the fibres of f inherent
in f being Cohen-Macaulay. Details omitted. �

Lemma 15.4. Let X be a Noetherian scheme which locally has a dualizing complex.
Let T ′ ⊂ X be a subset stable under specialization. Let F be a coherent OX -module.
Assume that if x  x′ is an immediate specialization of points in X with x′ ∈ T ′ and
x 6∈ T ′, then depth(Fx) ≥ 1. Then there exists a unique map F → F ′′ of coherent
OX -modules such that

(1) Fx → F ′′
x is an isomorphism for x 6∈ T ′,

(2) depthOX,x
(F ′′

x ) ≥ 2 for x ∈ T ′.
If f : Y → X is a Cohen-Macaulay morphism with Y Noetherian, then f∗F → f∗F ′′

satisfies the same properties with respect to f−1(T ′) ⊂ Y .

Proof. LetF → F ′ be the quotient ofF constructed in Lemma 15.1 using T ′. Recall
that F ′ is the quotient of F by the subsheaf of sections supported on T ′.

Proof of uniqueness. Let F → F ′′ be as in the lemma. We get a factorization F → F ′ →
F ′′ since Ass(F ′′) ∩ T ′ = ∅ by condition (2). Let U ⊂ X be a maximal open subscheme
such that F ′|U → F ′′|U is an isomorphism. We see that U contains all the points of
T ′. Then by Divisors, Lemma 5.11 we conclude that F ′′ = j∗(F ′|U ). In this way we get
uniqueness (small detail: if we have two of these F ′′ then we take the intersection of the
opens U we get from either).

Proof of existence. We will define

F ′′ = colim j∗(F ′|V )
where j : V → X runs over the open subschemes such thatX \V ⊂ T ′. Observe that the
colimit is filtered as T ′ is stable under specialization. Each of the maps F ′ → j∗(F ′|V ) is
injective as Ass(F ′) is disjoint from T ′. Thus F ′ → F ′′ is injective.
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Suppose X = Spec(A) is affine and F corresponds to the finite A-module M . Then F ′

corresponds toM ′ = M/H0
T ′(M), see proof of Lemma 15.1. Applying Lemmas 2.2 and 5.3

we see that F ′′ corresponds to an A-module M ′′ which fits into the short exact sequence

0→M ′ →M ′′ → H1
T ′(M ′)→ 0

By Proposition 11.1 and our condition on immediate specializations in the statement of
the lemma we see that M ′′ is a finite A-module. In this way we see that F ′′ is coherent.
The final statement follows from the formula for the change in depth along a flat local
homomorphism, see Algebra, Lemma 163.1 and the assumption on the fibres of f inherent
in f being Cohen-Macaulay. Details omitted. �

Lemma 15.5. Let X be a Noetherian scheme which locally has a dualizing complex.
Let T ′ ⊂ T ⊂ X be subsets stable under specialization such that if x x′ is an immediate
specialization of points in X and x′ ∈ T ′, then x ∈ T . Let F be a coherent OX -module.
Then there exists a unique map F → F ′′ of coherentOX -modules such that

(1) Fx → F ′′
x is an isomorphism for x 6∈ T ,

(2) Fx → F ′′
x is surjective and depthOX,x

(F ′′
x ) ≥ 1 for x ∈ T , x 6∈ T ′, and

(3) depthOX,x
(F ′′

x ) ≥ 2 for x ∈ T ′.
If f : Y → X is a Cohen-Macaulay morphism with Y Noetherian, then f∗F → f∗F ′′

satisfies the same properties with respect to f−1(T ′) ⊂ f−1(T ) ⊂ Y .

Proof. First, let F → F ′ be the quotient of F constructed in Lemma 15.1 using T .
Second, let F ′ → F ′′ be the unique map of coherent modules construction in Lemma 15.4
using T ′. Then F → F ′′ is as desired. �

16. Hartshorne-Lichtenbaum vanishing

This vanishing result is the local analogue of Lichtenbaum’s theorem that the reader can
find in Duality for Schemes, Section 34. This and much else besides can be found in [?].

Lemma 16.1. Let A be a Noetherian ring of dimension d. Let I ⊂ I ′ ⊂ A be ideals.
If I ′ is contained in the Jacobson radical of A and cd(A, I ′) < d, then cd(A, I) < d.

Proof. By Lemma 4.7 we know cd(A, I) ≤ d. We will use Lemma 2.6 to show

Hd
V (I′)(A)→ Hd

V (I)(A)

is surjective which will finish the proof. Pick p ∈ V (I) \ V (I ′). By our assumption on I ′

we see that p is not a maximal ideal of A. Hence dim(Ap) < d. Then Hd
pAp

(Ap) = 0 by
Lemma 4.7. �

Lemma 16.2. Let A be a Noetherian ring of dimension d. Let I ⊂ A be an ideal.
If Hd

V (I)(M) = 0 for some finite A-module whose support contains all the irreducible
components of dimension d, then cd(A, I) < d.

Proof. By Lemma 4.7 we know cd(A, I) ≤ d. Thus for any finite A-module N we
have Hi

V (I)(N) = 0 for i > d. Let us say property P holds for the finite A-module N
if Hd

V (I)(N) = 0. One of our assumptions is that P(M) holds. Observe that P(N1 ⊕
N2) ⇔ (P(N1) ∧ P(N2)). Observe that if N → N ′ is surjective, then P(N) ⇒ P(N ′)
as we have the vanishing of Hd+1

V (I) (see above). Let p1, . . . , pn be the minimal primes of
A with dim(A/pi) = d. Observe that P(N) holds if the support of N is disjoint from
{p1, . . . , pn} for dimension reasons, see Lemma 4.7. For each i set Mi = M/piM . This
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is a finite A-module annihilated by pi whose support is equal to V (pi) (here we use the
assumption on the support of M ). Finally, if J ⊂ A is an ideal, then we have P(JMi) as
JMi is a quotient of a direct sum of copies of M . Thus it follows from Cohomology of
Schemes, Lemma 12.8 that P holds for every finite A-module. �

Lemma 16.3. Let A be a Noetherian local ring of dimension d. Let f ∈ A be an ele-
ment which is not contained in any minimal prime of dimension d. Then f : Hd

V (I)(M)→
Hd
V (I)(M) is surjective for any finite A-module M and any ideal I ⊂ A.

Proof. The support of M/fM has dimension < d by our assumption on f . Thus
Hd
V (I)(M/fM) = 0 by Lemma 4.7. Thus Hd

V (I)(fM)→ Hd
V (I)(M) is surjective. Since

by Lemma 4.7 we know cd(A, I) ≤ d we also see that the surjection M → fM , x 7→ fx
induces a surjection Hd

V (I)(M)→ Hd
V (I)(fM). �

Lemma 16.4. Let A be a Noetherian local ring with normalized dualizing complex
ω•
A. Let I ⊂ A be an ideal. If H0

V (I)(ω•
A) = 0, then cd(A, I) < dim(A).

Proof. Set d = dim(A). Let p1, . . . , pn ⊂ A be the minimal primes of dimension d.
Recall that the finite A-module H−i(ω•

A) is nonzero only for i ∈ {0, . . . , d} and that the
support of H−i(ω•

A) has dimension ≤ i, see Lemma 9.4. Set ωA = H−d(ω•
A). By prime

avoidence (Algebra, Lemma 15.2) we can find f ∈ A, f 6∈ pi which annihilates H−i(ω•
A)

for i < d. Consider the distinguished triangle
ωA[d]→ ω•

A → τ≥−d+1ω
•
A → ωA[d+ 1]

See Derived Categories, Remark 12.4. By Derived Categories, Lemma 12.5 we see that
fd induces the zero endomorphism of τ≥−d+1ω

•
A. Using the axioms of a triangulated

category, we find a map
ω•
A → ωA[d]

whose composition withωA[d]→ ω•
A is multiplication by fd onωA[d]. Thus we conclude

that fd annihilates Hd
V (I)(ωA). By Lemma 16.3 we conlude Hd

V (I)(ωA) = 0. Then we
conclude by Lemma 16.2 and the fact that (ωA)pi is nonzero (see for example Dualizing
Complexes, Lemma 16.11). �

Lemma 16.5. Let (A,m) be a complete Noetherian local domain. Let p ⊂ A be a
prime ideal of dimension 1. For every n ≥ 1 there is an m ≥ n such that p(m) ⊂ pn.

Proof. Recall that the symbolic power p(m) is defined as the kernel ofA→ Ap/p
mAp.

Since localization is exact we conclude that in the short exact sequence

0→ an → A/pn → A/p(n) → 0
the support of an is contained in {m}. In particular, the inverse system (an) is Mittag-
Leffler as each an is an Artinian A-module. We conclude that the lemma is equivalent to
the requirement that lim an = 0. Let f ∈ lim an. Then f is an element of A = limA/pn

(here we use that A is complete) which maps to zero in the completion A∧
p of Ap. Since

Ap → A∧
p is faithfully flat, we see that f maps to zero in Ap. Since A is a domain we see

that f is zero as desired. �

Proposition 16.6. Let A be a Noetherian local ring with completion A∧. Let I ⊂ A
be an ideal such that

dimV (IA∧ + p) ≥ 1
for every minimal prime p ⊂ A∧ of dimension dim(A). Then cd(A, I) < dim(A).
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Proof. Since A→ A∧ is faithfully flat we have Hd
V (I)(A)⊗A A∧ = Hd

V (IA∧)(A∧)
by Dualizing Complexes, Lemma 9.3. Thus we may assume A is complete.
Assume A is complete. Let p1, . . . , pn ⊂ A be the minimal primes of dimension d. Con-
sider the complete local ringAi = A/pi. We haveHd

V (I)(Ai) = Hd
V (IAi)(Ai) by Dualiz-

ing Complexes, Lemma 9.2. By Lemma 16.2 it suffices to prove the lemma for (Ai, IAi).
Thus we may assume A is a complete local domain.
AssumeA is a complete local domain. We can choose a prime ideal p ⊃ I with dim(A/p) =
1. By Lemma 16.1 it suffices to prove the lemma for p.
By Lemma 16.4 it suffices to show that H0

V (p)(ω•
A) = 0. Recall that

H0
V (p)(ω•

A) = colim Ext0
A(A/pn, ω•

A)
By Lemma 16.5 we see that the colimit is the same as

colim Ext0
A(A/p(n), ω•

A)
Since depth(A/p(n)) = 1 we see that these ext groups are zero by Lemma 9.4 as desired.

�

Lemma 16.7. Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Assume
A is excellent, normal, and dimV (I) ≥ 1. Then cd(A, I) < dim(A). In particular, if
dim(A) = 2, then Spec(A) \ V (I) is affine.

Proof. By More on Algebra, Lemma 52.6 the completion A∧ is normal and hence a
domain. Thus the assumption of Proposition 16.6 holds and we conclude. The statement
on affineness follows from Lemma 4.8. �

17. Frobenius action

Let p be a prime number. Let A be a ring with p = 0 in A. The Frobenius endomorphism
of A is the map

F : A −→ A, a 7−→ ap

In this section we prove lemmas on modules which have Frobenius actions.

Lemma 17.1. Let p be a prime number. Let (A,m, κ) be a Noetherian local ring with
p = 0 inA. LetM be a finiteA-module such thatM ⊗A,F A ∼= M . ThenM is finite free.

Proof. Choose a presentation A⊕m → A⊕n → M which induces an isomorphism
κ⊕n → M/mM . Let T = (aij) be the matrix of the map A⊕m → A⊕n. Observe
that aij ∈ m. Applying base change by F , using right exactness of base change, we get
a presentation A⊕m → A⊕n → M where the matrix is T = (apij). Thus we have a
presentation with aij ∈ mp. Repeating this construction we find that for each e ≥ 1 there
exists a presentation with aij ∈ me. This implies the fitting ideals (More on Algebra,
Definition 8.3) Fitk(M) for k < n are contained in

⋂
e≥1 m

e. Since this is zero by Krull’s
intersection theorem (Algebra, Lemma 51.4) we conclude thatM is free of rank n by More
on Algebra, Lemma 8.7. �

In this section, we say elements f1, . . . , fr of a ring A are independent if
∑
aifi = 0

implies ai ∈ (f1, . . . , fr). In other words, with I = (f1, . . . , fr) we have I/I2 is free over
A/I with basis f1, . . . , fr.

Lemma 17.2. Let A be a ring. If f1, . . . , fr−1, frgr are independent, then f1, . . . , fr
are independent.
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Proof. Say
∑
aifi = 0. Then

∑
aigrfi = 0. Hence ar ∈ (f1, . . . , fr−1, frgr).

Write ar =
∑
i<r bifi + bfrgr. Then 0 =

∑
i<r(ai + bifr)fi + bf2

r gr. Thus ai + bifr ∈
(f1, . . . , fr−1, frgr) which implies ai ∈ (f1, . . . , fr) as desired. �

Lemma 17.3. Let A be a ring. If f1, . . . , fr−1, frgr are independent and if the A-
module A/(f1, . . . , fr−1, frgr) has finite length, then

lengthA(A/(f1, . . . , fr−1, frgr))
= lengthA(A/(f1, . . . , fr−1, fr)) + lengthA(A/(f1, . . . , fr−1, gr))

Proof. We claim there is an exact sequence

0→ A/(f1, . . . , fr−1, gr)
fr−→ A/(f1, . . . , fr−1, frgr)→ A/(f1, . . . , fr−1, fr)→ 0

Namely, if afr ∈ (f1, . . . , fr−1, frgr), then
∑
i<r aifi+(a+bgr)fr = 0 for some b, ai ∈

A. Hence
∑
i<r aigrfi+(a+bgr)grfr = 0 which implies a+bgr ∈ (f1, . . . , fr−1, frgr)

which means that amaps to zero inA/(f1, . . . , fr−1, gr). This proves the claim. To finish
use additivity of lengths (Algebra, Lemma 52.3). �

Lemma 17.4. Let (A,m) be a local ring. If m = (x1, . . . , xr) and xe1
1 , . . . , x

er
r are

independent for some ei > 0, then lengthA(A/(xe1
1 , . . . , x

er
r )) = e1 . . . er.

Proof. Use Lemmas 17.2 and 17.3 and induction. �

Lemma 17.5. Let ϕ : A → B be a flat ring map. If f1, . . . , fr ∈ A are independent,
then ϕ(f1), . . . , ϕ(fr) ∈ B are independent.

Proof. Let I = (f1, . . . , fr) and J = ϕ(I)B. By flatness we have I/I2 ⊗A B =
J/J2. Hence freeness of I/I2 over A/I implies freeness of J/J2 over B/J . �

Lemma 17.6 (Kunz). Let p be a prime number. LetA be a Noetherian ring with p = 0.
The following are equivalent

(1) A is regular, and
(2) F : A→ A, a 7→ ap is flat.

Proof. Observe that Spec(F ) : Spec(A) → Spec(A) is the identity map. Being
regular is defined in terms of the local rings and being flat is something about local rings,
see Algebra, Lemma 39.18. Thus we may and do assume A is a Noetherian local ring with
maximal ideal m.

Assume A is regular. Let x1, . . . , xd be a system of parameters for A. Applying F we find
F (x1), . . . , F (xd) = xp1, . . . , x

p
d, which is a system of parameters for A. Hence F is flat,

see Algebra, Lemmas 128.1 and 106.3.

Conversely, assume F is flat. Write m = (x1, . . . , xr) with r minimal. Then x1, . . . , xr
are independent in the sense defined above. Since F is flat, we see that xp1, . . . , xpr are
independent, see Lemma 17.5. Hence lengthA(A/(xp1, . . . , xpr)) = pr by Lemma 17.4. Let
χ(n) = lengthA(A/mn) and recall that this is a numerical polynomial of degree dim(A),
see Algebra, Proposition 60.9. Choose n� 0. Observe that

mpn+pr ⊂ F (mn)A ⊂ mpn

as can be seen by looking at monomials in x1, . . . , xr. We have

A/F (mn)A = A/mn ⊗A,F A
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By flatness of F this has length χ(n)lengthA(A/F (m)A) (Algebra, Lemma 52.13) which
is equal to prχ(n) by the above. We conclude

χ(pn+ pr) ≥ prχ(n) ≥ χ(pn)
Looking at the leading terms this implies r = dim(A), i.e., A is regular. �

18. Structure of certain modules

Some results on the structure of certain types of modules over regular local rings. These
types of results and much more can be found in [?], [?], [?].

Lemma 18.1. Let k be a field of characteristic 0. Let d ≥ 1. Let A = k[[x1, . . . , xd]]
with maximal ideal m. Let M be an m-power torsion A-module endowed with additive
operators D1, . . . , Dd satisfying the leibniz rule

Di(fz) = ∂i(f)z + fDi(z)
for f ∈ A and z ∈M . Here ∂i is differentiation with respect to xi. ThenM is isomorphic
to a direct sum of copies of the injective hull E of k.

Proof. Choose a set J and an isomorphism M [m] →
⊕

j∈J k. Since
⊕

j∈J E is
injective (Dualizing Complexes, Lemma 3.7) we can extend this isomorphism to an A-
module homomorphism ϕ : M →

⊕
j∈J E. We claim that ϕ is an isomorphism, i.e.,

bijective.

Injective. Let z ∈ M be nonzero. Since M is m-power torsion we can choose an element
f ∈ A such that fz ∈M [m] and fz 6= 0. Then ϕ(fz) = fϕ(z) is nonzero, hence ϕ(z) is
nonzero.

Surjective. Let z ∈ M . Then xn1 z = 0 for some n ≥ 0. We will prove that z ∈ x1M
by induction on n. If n = 0, then z = 0 and the result is true. If n > 0, then applying
D1 we find 0 = nxn−1

1 z + xn1D1(z). Hence xn−1
1 (nz + x1D1(z)) = 0. By induction

we get nz + x1D1(z) ∈ x1M . Since n is invertible, we conclude z ∈ x1M . Thus we
see that M is x1-divisible. If ϕ is not surjective, then we can choose e ∈

⊕
j∈J E not in

M . Arguing as above we may assume me ⊂ M , in particular x1e ∈ M . There exists an
element z1 ∈M with x1z1 = x1e. Hence x1(z1 − e) = 0. Replacing e by e− z1 we may
assume e is annihilated by x1. Thus it suffices to prove that

ϕ[x1] : M [x1] −→
(⊕

j∈J
E
)

[x1] =
⊕

j∈J
E[x1]

is surjective. If d = 1, this is true by construction of ϕ. If d > 1, then we observe that
E[x1] is the injective hull of the residue field of k[[x2, . . . , xd]], see Dualizing Complexes,
Lemma 7.1. Observe thatM [x1] as a module over k[[x2, . . . , xd]] is m/(x1)-power torsion
and comes equipped with operatorsD2, . . . , Dd satisfying the displayed Leibniz rule. Thus
by induction on d we conclude that ϕ[x1] is surjective as desired. �

Lemma 18.2. Let p be a prime number. Let (A,m, k) be a regular local ring with
p = 0. Denote F : A → A, a 7→ ap be the Frobenius endomorphism. Let M be a m-
power torsion module such that M ⊗A,F A ∼= M . Then M is isomorphic to a direct sum
of copies of the injective hull E of k.

Proof. Choose a set J and an A-module homorphism ϕ : M →
⊕

j∈J E which
mapsM [m] isomorphically onto (

⊕
j∈J E)[m] =

⊕
j∈J k. We claim that ϕ is an isomor-

phism, i.e., bijective.
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Injective. Let z ∈ M be nonzero. Since M is m-power torsion we can choose an element
f ∈ A such that fz ∈M [m] and fz 6= 0. Then ϕ(fz) = fϕ(z) is nonzero, hence ϕ(z) is
nonzero.

Surjective. Recall that F is flat, see Lemma 17.6. Let x1, . . . , xd be a minimal system of
generators of m. Denote

Mn = M [xp
n

1 , . . . , xp
n

d ]
the submodule of M consisting of elements killed by xp

n

1 , . . . , xp
n

d . So M0 = M [m] is
a vector space over k. Also M =

⋃
Mn by our assumption that M is m-power torsion.

Since Fn is flat and Fn(xi) = xp
n

i we have

Mn
∼= (M⊗A,FnA)[xp

n

1 , . . . , xp
n

d ] = M [x1, . . . , xd]⊗A,FnA = M0⊗kA/(xp
n

1 , . . . , xp
n

d )

Thus Mn is free over A/(xp
n

1 , . . . , xp
n

d ). A computation shows that every element of
A/(xp

n

1 , . . . , xp
n

d ) annihilated by xp
n−1

1 is divisible by x1; for example you can use that
A/(xp

n

1 , . . . , xp
n

d ) ∼= k[x1, . . . , xd]/(xp
n

1 , . . . , xp
n

d ) by Algebra, Lemma 160.10. Thus the
same is true for every element of Mn. Since every element of M is in Mn for all n � 0
and since every element of M is killed by some power of x1, we conclude that M is x1-
divisible.

Let x = x1. Above we have seen that M is x-divisible. If ϕ is not surjective, then we can
choose e ∈

⊕
j∈J E not in M . Arguing as above we may assume me ⊂ M , in particular

xe ∈M . There exists an element z1 ∈M with xz1 = xe. Hence x(z1−e) = 0. Replacing
e by e− z1 we may assume e is annihilated by x. Thus it suffices to prove that

ϕ[x] : M [x] −→
(⊕

j∈J
E
)

[x] =
⊕

j∈J
E[x]

is surjective. If d = 1, this is true by construction ofϕ. If d > 1, then we observe thatE[x]
is the injective hull of the residue field of the regular ringA/xA, see Dualizing Complexes,
Lemma 7.1. Observe that M [x] as a module over A/xA is m/(x)-power torsion and we
have

M [x]⊗A/xA,F A/xA = M [x]⊗A,F A⊗A A/xA
= (M ⊗A,F A)[xp]⊗A A/xA
∼= M [xp]⊗A A/xA

Argue using flatness of F as before. We claim that M [xp] ⊗A A/xA → M [x], z ⊗ 1 7→
xp−1z is an isomorphism. This can be seen by proving it for each of the modulesMn,n > 0
defined above where it follows by the same result forA/(xp

n

1 , . . . , xp
n

d ) and x = x1. Thus
by induction on dim(A) we conclude that ϕ[x] is surjective as desired. �

19. Additional structure on local cohomology

Here is a sample result.

Lemma 19.1. Let A be a ring. Let I ⊂ A be a finitely generated ideal. Set Z = V (I).
For each derivation θ : A → A there exists a canonical additive operator D on the local
cohomology modules Hi

Z(A) satisfying the Leibniz rule with respect to θ.

Proof. Let f1, . . . , fr be elements generating I . Recall thatRΓZ(A) is computed by
the complex

A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr
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See Dualizing Complexes, Lemma 9.1. Since θ extends uniquely to an additive operator on
any localization of A satisfying the Leibniz rule with respect to θ, the lemma is clear. �

Lemma 19.2. Let p be a prime number. Let A be a ring with p = 0. Denote F : A→
A, a 7→ ap the Frobenius endomorphism. Let I ⊂ A be a finitely generated ideal. Set
Z = V (I). There exists an isomorphism RΓZ(A)⊗L

A,F A
∼= RΓZ(A).

Proof. Follows from Dualizing Complexes, Lemma 9.3 and the fact thatZ = V (fp1 , . . . , fpr )
if I = (f1, . . . , fr). �

Lemma 19.3. Let A be a ring. Let V → Spec(A) be quasi-compact, quasi-separated,
and étale. For each derivation θ : A→ A there exists a canonical additive operator D on
Hi(V,OV ) satisfying the Leibniz rule with respect to θ.

Proof. If V is separated, then we can argue using an affine open covering V =⋃
j=1,...m Vj . Namely, because V is separated we may write Vj0...jp = Spec(Bj0...jp). See

Schemes, Lemma 21.7. Then we find that theA-moduleHi(V,OV ) is the ith cohomology
group of the Čech complex∏

Bj0 →
∏

Bj0j1 →
∏

Bj0j1j2 → . . .

See Cohomology of Schemes, Lemma 2.6. Each B = Bj0...jp is an étale A-algebra. Hence
ΩB = ΩA⊗A B and we conclude θ extends uniquely to a derivation θB : B → B. These
maps define an endomorphism of the Čech complex and define the desired operators on
the cohomology groups.

In the general case we use a hypercovering of V by affine opens, exactly as in the first part
of the proof of Cohomology of Schemes, Lemma 7.3. We omit the details. �

Remark 19.4. We can upgrade Lemmas 19.1 and 19.3 to include higher order differ-
ential operators. If we ever need this we will state and prove a precise lemma here.

Lemma 19.5. Let p be a prime number. Let A be a ring with p = 0. Denote F :
A→ A, a 7→ ap the Frobenius endomorphism. If V → Spec(A) is quasi-compact, quasi-
separated, and étale, then there exists an isomorphismRΓ(V,OV )⊗L

A,F A
∼= RΓ(V,OV ).

Proof. Observe that the relative Frobenius morphism

V −→ V ×Spec(A),Spec(F ) Spec(A)

of V over A is an isomorphism, see Étale Morphisms, Lemma 14.3. Thus the lemma fol-
lows from cohomology and base change, see Derived Categories of Schemes, Lemma 22.5.
Observe that since V is étale over A, it is flat over A. �

20. A bit of uniformity, I

The main task of this section is to formulate and prove Lemma 20.2.

Lemma 20.1. Let R be a ring. Let M →M ′ be a map of R-modules with M of finite
presentation such that TorR1 (M,N)→ TorR1 (M ′, N) is zero for all R-modules N . Then
M →M ′ factors through a free R-module.
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Proof. We may choose a map of short exact sequences

0 // K //

��

R⊕r //

��

M //

��

0

0 // K ′ //⊕
i∈I R

// M ′ // 0

whose right vertical arrow is the given map. We can factor this map through the short
exact sequence

(20.1.1) 0→ K ′ → E →M → 0

which is the pushout of the first short exact sequence by K → K ′. By a diagram chase
we see that the assumption in the lemma implies that the boundary map TorR1 (M,N)→
K ′ ⊗R N induced by (20.1.1) is zero, i.e., the sequence (20.1.1) is universally exact. This
implies by Algebra, Lemma 82.4 that (20.1.1) is split (this is where we use that M is of
finite presentation). Hence the map M →M ′ factors through

⊕
i∈I R and we win. �

Lemma 20.2. LetR be a ring. Let α : M →M ′ be a map ofR-modules. Let P• →M
and P ′

• →M ′ be resolutions by projective R-modules. Let e ≥ 0 be an integer. Consider
the following conditions

(1) We can find a map of complexes a• : P• → P ′
• inducing α on cohomology with

ai = 0 for i > e.
(2) We can find a map of complexes a• : P• → P ′

• inducing α on cohomology with
ae+1 = 0.

(3) The map ExtiR(M ′, N)→ ExtiR(M,N) is zero for all R-modules N and i > e.
(4) The map Exte+1

R (M ′, N)→ Exte+1
R (M,N) is zero for all R-modules N .

(5) Let N = Im(P ′
e+1 → P ′

e) and denote ξ ∈ Exte+1
R (M ′, N) the canonical ele-

ment (see proof). Then ξ maps to zero in Exte+1
R (M,N).

(6) The map TorRi (M,N)→ TorRi (M ′, N) is zero for all R-modules N and i > e.
(7) The map TorRe+1(M,N)→ TorRe+1(M ′, N) is zero for all R-modules N .

Then we always have the implications

(1)⇔ (2)⇔ (3)⇔ (4)⇔ (5)⇒ (6)⇔ (7)

If M is (−e − 1)-pseudo-coherent (for example if R is Noetherian and M is a finite R-
module), then all conditions are equivalent.

Proof. It is clear that (2) implies (1). If a• is as in (1), then we can consider the map
of complexes a′

• : P• → P ′
• with a′

i = ai for i ≤ e+ 1 and a′
i = 0 for i ≥ e+ 1 to get a

map of complexes as in (2). Thus (1) is equivalent to (2).

By the construction of the Ext and Tor functors using resolutions (Algebra, Sections 71
and 75) we see that (1) and (2) imply all of the other conditions.

It is clear that (3) implies (4) implies (5). LetN be as in (5). The canonical map ξ̃ : P ′
e+1 →

N precomposed with P ′
e+2 → P ′

e+1 is zero. Hence we may consider the class ξ of ξ̃ in

Exte+1
R (M ′, N) =

Ker(Hom(P ′
e+1, N → Hom(P ′

e+2, N)
Im(Hom(P ′

e, N → Hom(P ′
e+1, N)

Choose a map of complexes a• : P• → P ′
• lifting α, see Derived Categories, Lemma

19.6. If ξ maps to zero in Exte+1
R (M ′, N), then we find a map ϕ : Pe → N such that
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ξ̃ ◦ ae+1 = ϕ ◦ d. Thus we obtain a map of complexes

. . . // Pe+1 //

0
��

Pe //

ae−ϕ
��

Pe−1 //

ae−1

��

. . .

. . . // P ′
e+1

// P ′
e

// P ′
e−1

// . . .

as in (2). Hence (1) – (5) are equivalent.

The equivalence of (6) and (7) follows from dimension shifting; we omit the details.

Assume M is (−e− 1)-pseudo-coherent. (The parenthetical statement in the lemma fol-
lows from More on Algebra, Lemma 64.17.) We will show that (7) implies (4) which
finishes the proof. We will use induction on e. The base case is e = 0. Then M is of
finite presentation by More on Algebra, Lemma 64.4 and we conclude from Lemma 20.1
that M → M ′ factors through a free module. Of course if M → M ′ factors through a
free module, then ExtiR(M ′, N)→ ExtiR(M,N) is zero for all i > 0 as desired. Assume
e > 0. We may choose a map of short exact sequences

0 // K //

��

R⊕r //

��

M //

��

0

0 // K ′ //⊕
i∈I R

// M ′ // 0

whose right vertical arrow is the given map. We obtain TorRi+1(M,N) = TorRi (K,N)
and Exti+1

R (M,N) = ExtiR(K,N) for i ≥ 1 and all R-modules N and similarly for
M ′,K ′. Hence we see that TorRe (K,N) → TorRe (K ′, N) is zero for all R-modules N .
By More on Algebra, Lemma 64.2 we see that K is (−e)-pseudo-coherent. By induction
we conclude that Exte(K ′, N) → Exte(K,N) is zero for all R-modules N , which gives
what we want. �

Lemma 20.3. Let I be an ideal of a Noetherian ring A. For all n ≥ 1 there exists an
m > n such that the map A/Im → A/In satisfies the equivalent conditions of Lemma
20.2 with e = cd(A, I).

Proof. Let ξ ∈ Exte+1
A (A/In, N) be the element constructed in Lemma 20.2 part

(5). Since e = cd(A, I) we have 0 = He+1
Z (N) = He+1

I (N) = colim Exte+1(A/Im, N)
by Dualizing Complexes, Lemmas 10.1 and 8.2. Thus we may pick m ≥ n such that ξ
maps to zero in Exte+1

A (A/Im, N) as desired. �

21. A bit of uniformity, II

Let I be an ideal of a Noetherian ring A. Let M be a finite A-module. Let i > 0. By More
on Algebra, Lemma 27.3 there exists a c = c(A, I,M, i) such that TorAi (M,A/In) →
TorAi (M,A/In−c) is zero for all n ≥ c. In this section, we discuss some results which
show that one sometimes can choose a constant c which works for all A-modules M si-
multaneously (and for a range of indices i). This material is related to uniform Artin-Rees
as discussed in [?] and [?].

In Remark 21.9 we will apply this to show that various pro-systems related to derived
completion are (or are not) strictly pro-isomorphic.

The following lemma can be significantly strengthened.
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Lemma 21.1. Let I be an ideal of a Noetherian ring A. For every m ≥ 0 and i > 0
there exist a c = c(A, I,m, i) ≥ 0 such that for every A-module M annihilated by Im
the map

TorAi (M,A/In)→ TorAi (M,A/In−c)
is zero for all n ≥ c.

Proof. By induction on i. Base case i = 1. The short exact sequence 0 → In →
A → A/In → 0 determines an injection TorA1 (M,A/In) ⊂ In ⊗A M , see Algebra,
Remark 75.9. As M is annihilated by Im we see that the map In ⊗AM → In−m ⊗AM
is zero for n ≥ m. Hence the result holds with c = m.

Induction step. Let i > 1 and assume c works for i − 1. By More on Algebra, Lemma
27.3 applied to M = A/Im we can choose c′ ≥ 0 such that Tori(A/Im, A/In) →
Tori(A/Im, A/In−c′) is zero for n ≥ c′. Let M be annihilated by Im. Choose a short
exact sequence

0→ S →
⊕

i∈I
A/Im →M → 0

The corresponding long exact sequence of tors gives an exact sequence

TorAi (
⊕

i∈I
A/Im, A/In)→ TorAi (M,A/In)→ TorAi−1(S,A/In)

for all integersn ≥ 0. Ifn ≥ c+c′, then the map TorAi−1(S,A/In)→ TorAi−1(S,A/In−c)
is zero and the map TorAi (A/Im, A/In−c) → TorAi (A/Im, A/In−c−c′) is zero. Com-
bined with the short exact sequences this implies the result holds for i with constant
c+ c′. �

Lemma 21.2. Let I = (a1, . . . , at) be an ideal of a Noetherian ringA. Set a = a1 and
denote B = A[ Ia ] the affine blowup algebra. There exists a c > 0 such that TorAi (B,M)
is annihilated by Ic for all A-modules M and i ≥ t.

Proof. Recall thatB is the quotient ofA[x2, . . . , xt]/(a1x2−a2, . . . , a1xt−at) by
its a1-torsion, see Algebra, Lemma 70.6. Let

B• = Koszul complex on a1x2 − a2, . . . , a1xt − at over A[x2, . . . , xt]
viewed as a chain complex sitting in degrees (t− 1), . . . , 0. The complex B•[1/a1] is iso-
morphic to the Koszul complex on x2−a2/a1, . . . , xt−at/a1 which is a regular sequence
in A[1/a1][x2, . . . , xt]. Since regular sequences are Koszul regular, we conclude that the
augmentation

ε : B• −→ B

is a quasi-isomorphism after inverting a1. Since the homology modules of the cone C• on
ε are finite A[x2, . . . , xn]-modules and since C• is bounded, we conclude that there exists
a c ≥ 0 such that ac1 annihilates all of these. By Derived Categories, Lemma 12.5 this
implies that, after possibly replacing c by a larger integer, that ac1 is zero on C• in D(A).
The proof is finished once the reader contemplates the distinguished triangle

B• ⊗L
AM → B ⊗L

AM → C• ⊗L
AM

Namely, the first term is represented byB•⊗AM which is sitting in homological degrees
(t − 1), . . . , 0 in view of the fact that the terms in the Koszul complex B• are free (and
hence flat) A-modules. Whence TorAi (B,M) = Hi(C• ⊗L

A M) for i > t − 1 and this
is annihilated by ac1. Since ac1B = IcB and since the tor module is a module over B we
conclude. �
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For the rest of the discussion in this section we fix a Noetherian ringA and an ideal I ⊂ A.
We denote

p : X → Spec(A)
the blowing up of Spec(A) in the ideal I . In other words,X is the Proj of the Rees algebra⊕

n≥0 I
n. By Cohomology of Schemes, Lemmas 14.2 and 14.3 we can choose an integer

q(A, I) ≥ 0 such that for all q ≥ q(A, I) we have Hi(X,OX(q)) = 0 for i > 0 and
H0(X,OX(q)) = Iq .

Lemma 21.3. In the situation above, for q ≥ q(A, I) and any A-module M we have

RΓ(X,Lp∗M̃(q)) ∼= M ⊗L
A I

q

in D(A).

Proof. Choose a free resolution F• →M . Then F̃• is a flat resolution of M̃ . Hence
Lp∗M̃ is given by the complex p∗F̃•. Thus Lp∗M̃(q) is given by the complex p∗F̃•(q).
Since p∗F̃i(q) are right acyclic for Γ(X,−) by our choice of q ≥ q(A, I) and since we
have Γ(X, p∗F̃i(q)) = IqFi by our choice of q ≥ q(A, I), we get that RΓ(X,Lp∗M̃(q))
is given by the complex with terms IqFi by Derived Categories of Schemes, Lemma 4.3.
The result follows as the complex IqF• computes M ⊗L

A I
q by definition. �

Lemma 21.4. In the situation above, let t be an upper bound on the number of gen-
erators for I . There exists an integer c = c(A, I) ≥ 0 such that for any A-module M the
cohomology sheaves Hj(Lp∗M̃) are annihilated by Ic for j ≤ −t.

Proof. Say I = (a1, . . . , at). The question is affine local on X . For 1 ≤ i ≤ t let
Bi = A[ Iai ] be the affine blowup algebra. Then X has an affine open covering by the
spectra of the rings Bi, see Divisors, Lemma 32.2. By the description of derived pullback
given in Derived Categories of Schemes, Lemma 3.8 we conclude it suffices to prove that
for each i there exists a c ≥ 0 such that

TorAj (Bi,M)
is annihilated by Ic for j ≥ t. This is Lemma 21.2. �

Lemma 21.5. In the situation above, let t be an upper bound on the number of gen-
erators for I . There exists an integer c = c(A, I) ≥ 0 such that for any A-module M the
tor modules TorAi (M,A/Iq) are annihilated by Ic for i > t and all q ≥ 0.

Proof. Let q(A, I) be as above. For q ≥ q(A, I) we have

RΓ(X,Lp∗M̃(q)) = M ⊗L
A I

q

by Lemma 21.3. We have a bounded and convergent spectral sequence

Ha(X,Hb(Lp∗M̃(q)))⇒ TorA−a−b(M, Iq)
by Derived Categories of Schemes, Lemma 4.4. Let d be an integer as in Cohomology of
Schemes, Lemma 4.4 (actually we can take d = t, see Cohomology of Schemes, Lemma
4.2). Then we see that H−i(X,Lp∗M̃(q)) = TorAi (M, Iq) has a finite filtration with at
most d steps whose graded are subquotients of the modules

Ha(X,H−i−a(Lp∗M̃)(q)), a = 0, 1, . . . , d− 1
If i ≥ t then all of these modules are annihilated by Ic where c = c(A, I) is as in
Lemma 21.4 because the cohomology sheaves H−i−a(Lp∗M̃) are all annihilated by Ic
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by the lemma. Hence we see that TorAi (M, Iq) is annihilated by Idc for q ≥ q(A, I)
and i ≥ t. Using the short exact sequence 0 → Iq → A → A/Iq → 0 we find that
Tori(M,A/Iq) is annihilated by Idc for q ≥ q(A, I) and i > t. We conclude that Im
with m = max(dc, q(A, I) − 1) annihilates TorAi (M,A/Iq) for all q ≥ 0 and i > t as
desired. �

Lemma 21.6. Let I be an ideal of a Noetherian ring A. Let t ≥ 0 be an upper bound
on the number of generators of I . There exist N, c ≥ 0 such that the maps

TorAt+1(M,A/In)→ TorAt+1(M,A/In−c)

are zero for any A-module M and all n ≥ N .

Proof. Let c1 be the constant found in Lemma 21.5. Please keep in mind that this
constant c1 works for Tori for all i > t simultaneously.

Say I = (a1, . . . , at). For an A-module M we set

`(M) = #{i | 1 ≤ i ≤ t, ac1
i is zero on M}

This is an element of {0, 1, . . . , t}. We will prove by descending induction on 0 ≤ s ≤ t
the following statement Hs: there exist N, c ≥ 0 such that for every module M with
`(M) ≥ s the maps

TorAt+1+i(M,A/In)→ TorAt+1+i(M,A/In−c)

are zero for i = 0, . . . , s for all n ≥ N .

Base case: s = t. If `(M) = t, then M is annihilated by (ac1
1 , . . . , a

c1
t } and hence by

It(c1−1)+1. We conclude from Lemma 21.1 that Ht holds by taking c = N to be the
maximum of the integers c(A, I, t(c1 − 1) + 1, t+ 1), . . . , c(A, I, t(c1 − 1) + 1, 2t+ 1)
found in the lemma.

Induction step. Say 0 ≤ s < t we have N, c as in Hs+1. Consider a module M with
`(M) = s. Then we can choose an i such that ac1

i is nonzero on M . It follows that
`(M [aci ]) ≥ s+1 and `(M/ac1

i M) ≥ s+1 and the induction hypothesis applies to them.
Consider the exact sequence

0→M [ac1
i ]→M

a
c1
i−−→M →M/ac1

i M → 0

Denote E ⊂ M the image of the middle arrow. Consider the corresponding diagram of
Tor modules

Tori+1(M/ac1
i M,A/Iq)

��
Tori(M [ac1

i ], A/Iq) // Tori(M,A/Iq) //

0

))

Tori(E,A/Iq)

��
Tori(M,A/Iq)

with exact rows and columns (for every q). The south-east arrow is zero by our choice of c1.
We conclude that the module Tori(M,A/Iq) is sandwiched between a quotient module
of Tori(M [ac1

i ], A/Iq) and a submodule of Tori+1(M/ac1
i M,A/Iq). Hence we conclude

Hs holds with N replaced by N + c and c replaced by 2c. Some details omitted. �
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Proposition 21.7. Let I be an ideal of a Noetherian ring A. Let t ≥ 0 be an upper
bound on the number of generators of I . There exist N, c ≥ 0 such that for n ≥ N the
maps

A/In → A/In−c

satisfy the equivalent conditions of Lemma 20.2 with e = t.

Proof. Immediate consequence of Lemmas 21.6 and 20.2. �

Remark 21.8. The paper [?] shows, besides many other things, that ifA is local, then
Proposition 21.7 also holds with e = t replaced by e = dim(A). Looking at Lemma 20.3
it is natural to ask whether Proposition 21.7 holds with e = t replaced with e = cd(A, I).
We don’t know.

Remark 21.9. Let I be an ideal of a Noetherian ringA. Say I = (f1, . . . , fr). Denote
K•
n the Koszul complex on fn1 , . . . , fnr as in More on Algebra, Situation 91.15 and denote

Kn ∈ D(A) the corresponding object. LetM• be a bounded complex of finiteA-modules
and denoteM ∈ D(A) the corresponding object. Consider the following inverse systems
in D(A):

(1) M•/InM•, i.e., the complex whose terms are M i/InM i,
(2) M ⊗L

A A/I
n,

(3) M ⊗L
A Kn, and

(4) M ⊗L
P P/J

n (see below).
All of these inverse systems are isomorphic as pro-objects: the isomorphism between (2)
and (3) follows from More on Algebra, Lemma 94.1. The isomorphism between (1) and (2)
is given in More on Algebra, Lemma 100.3. For the last one, see below.
However, we can ask if these isomorphisms of pro-systems are “strict”; this terminology
and question is related to the discussion in [?, pages 61, 62]. Namely, given a category C
we can define a “strict pro-category” whose objects are inverse systems (Xn) and whose
morphisms (Xn)→ (Yn) are given by tuples (c, ϕn) consisting of a c ≥ 0 and morphisms
ϕn : Xn → Yn−c for all n ≥ c satisfying an obvious compatibility condition and up to
a certain equivalence (given essentially by increasing c). Then we ask whether the above
inverse systems are isomorphic in this strict pro-category.
This clearly cannot be the case for (1) and (3) even when M = A[0]. Namely, the system
H0(Kn) = A/(fn1 , . . . , fnr ) is not strictly pro-isomorphic in the category of modules to
the systemA/In in general. For example, if we takeA = Z[x1, . . . , xr] and fi = xi, then
H0(Kn) is not annihilated by Ir(n−1).3

It turns out that the results above show that the natural map from (2) to (1) discussed in
More on Algebra, Lemma 100.3 is a strict pro-isomorphism. We will sketch the proof. Us-
ing standard arguments involving stupid truncations, we first reduce to the case whereM•

is given by a single finiteA-moduleM placed in degree 0. PickN, c ≥ 0 as in Proposition
21.7. The proposition implies that for n ≥ N we get factorizations

M ⊗L
A A/I

n → τ≥−t(M ⊗L
A A/I

n)→M ⊗L
A A/I

n−c

of the transition maps in the system (2). On the other hand, by More on Algebra, Lemma
27.3, we can find another constant c′ = c′(M) ≥ 0 such that the maps TorAi (M,A/In

′)→

3Of course, we can ask whether these pro-systems are isomorphic in a category whose objects are inverse
systems and where maps are given by tuples (r, c, ϕn) consisting of r ≥ 1, c ≥ 0 and mapsϕn : Xrn → Yn−c
for n ≥ c.
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Tori(M,A/In
′−c′) are zero for i = 1, 2, . . . , t and n′ ≥ c′. Then it follows from Derived

Categories, Lemma 12.5 that the map

τ≥−t(M ⊗L
A A/I

n+tc′
)→ τ≥−t(M ⊗L

A A/I
n)

factors throughM ⊗L
AA/I

n+tc′ →M/In+tc′
M . Combined with the previous result we

obtain a factorization
M ⊗L

A A/I
n+tc′

→M/In+tc′
M →M ⊗L

A A/I
n−c

which gives us what we want. If we ever need this result, we will carefully state it and
provide a detailed proof.
For number (4) suppose we have a Noetherian ring P , a ring homomorphism P → A,
and an ideal J ⊂ P such that I = JA. By More on Algebra, Section 60 we get a functor
M ⊗L

P − : D(P )→ D(A) and we get an inverse system M ⊗L
P P/J

n in D(A) as in (4).
If P is Noetherian, then the system in (4) is pro-isomorphic to the system in (1) because
we can compare with Koszul complexes. If P → A is finite, then the system (4) is strictly
pro-isomorphic to the system (2) because the inverse system A ⊗L

P P/J
n is strictly pro-

isomorphic to the inverse system A/In (by the discussion above) and because we have

M ⊗L
P P/J

n = M ⊗L
A (A⊗L

P P/J
n)

by More on Algebra, Lemma 60.1.
A standard example in (4) is to take P = Z[x1, . . . , xr], the map P → A sending xi to fi,
and J = (x1, . . . , xr). In this case one shows that

M ⊗L
P P/J

n = M ⊗L
A[x1,...,xr] A[x1, . . . , xr]/(x1, . . . , xr)n

and we reduce to one of the cases discussed above (although this case is strictly easier as
A[x1, . . . , xr]/(x1, . . . , xr)n has tor dimension at most r for all n and hence the step using
Proposition 21.7 can be avoided). This case is discussed in the proof of [?, Proposition
3.5.1].

22. A bit of uniformity, III

In this section we fix a Noetherian ringA and an ideal I ⊂ A. Our goal is to prove Lemma
22.7 which we will use in a later chapter to solve a lifting problem, see Algebraization of
Formal Spaces, Lemma 5.3.
Throughout this section we denote

p : X → Spec(A)
the blowing up of Spec(A) in the ideal I . In other words,X is the Proj of the Rees algebra⊕

n≥0 I
n. We also consider the fibre product

Y //

��

X

p

��
Spec(A/I) // Spec(A)

Then Y is the exceptional divisor of the blowup and hence an effective Cartier divisor on
X such thatOX(−1) = OX(Y ). Since taking Proj commutes with base change we have

Y = Proj(
⊕

n≥0
In/In+1) = Proj(S)

where S = GrI(A) =
⊕

n≥0 I
n/In+1.
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We denote d = d(S) = d(GrI(A)) = d(
⊕

n≥0 I
n/In+1) the maximum of the dimen-

sions of the fibres of p (and we set it equal to 0 if X = ∅). This is well defined. In fact, we
have

(1) d ≤ t− 1 if I = (a1, . . . , at) since then X ⊂ Pt−1
A , and

(2) d is also the maximal dimension of the fibres of Proj(S) → Spec(S0) provided
that Y is nonempty and d = 0 if Y = ∅ (equivalently S = 0, equivalently
I = A).

Hence d only depends on the isomorphism class ofS = GrI(A). Observe thatHi(X,F) =
0 for every coherent OX -module F and i > d by Cohomology of Schemes, Lemmas 20.9
and 4.6. Of course the same is true for coherent modules on Y .
We denote d = d(S) = d(GrI(A)) = d(

⊕
n≥0 I

n/In+1) the integer defined as follows.
Note that the algebraS =

⊕
n≥0 I

n/In+1 is a Noetherian graded ring generated in degree
1 over degree 0. Hence by Cohomology of Schemes, Lemmas 14.2 and 14.3 we can define
q(S) as the smallest integer q(S) ≥ 0 such that for all q ≥ q(S) we haveHi(Y,OY (q)) =
0 for 1 ≤ i ≤ d and H0(Y,OY (q)) = Iq/Iq+1. (If S = 0, then q(S) = 0.)
For n ≥ 1 we may consider the effective Cartier divisor nY which we will denote Yn.

Lemma 22.1. With q0 = q(S) and d = d(S) as above, we have
(1) for n ≥ 1, q ≥ q0, and i > 0 we have Hi(X,OYn(q)) = 0,
(2) for n ≥ 1 and q ≥ q0 we have H0(X,OYn(q)) = Iq/Iq+n,
(3) for q ≥ q0 and i > 0 we have Hi(X,OX(q)) = 0,
(4) for q ≥ q0 we have H0(X,OX(q)) = Iq .

Proof. If I = A, then X is affine and the statements are trivial. Hence we may and
do assume I 6= A. Thus Y and X are nonempty schemes.
Let us prove (1) and (2) by induction on n. The base case n = 1 is our definition of q0 as
Y1 = Y . Recall thatOX(1) = OX(−Y ). Hence we have a short exact sequence

0→ OYn(1)→ OYn+1 → OY → 0
Hence for i > 0 we find

Hi(X,OYn(q + 1))→ Hi(X,OYn+1(q))→ Hi(X,OY (q))
and we obtain the desired vanishing of the middle term from the given vanishing of the
outer terms. For i = 0 we obtain a commutative diagram

0 // Iq+1/Iq+1+n

��

// Iq/Iq+1+n

��

// Iq/Iq+1

��

// 0

0 // H0(X,OYn(q + 1)) // H0(X,OYn+1(q)) // H0(Y,OY (q)) // 0

with exact rows for q ≥ q0 (for the bottom row observe that the next term in the long
exact cohomology sequence vanishes for q ≥ q0). Since q ≥ q0 the left and right vertical
arrows are isomorphisms and we conclude the middle one is too.
We omit the proofs of (3) and (4) which are similar. In fact, one can deduce (3) and (4)
from (1) and (2) using the theorem on formal functors (but this would be overkill). �

Let us introduce a notation: given n ≥ c ≥ 0 an (A,n, c)-module is a finite A-module M
which is annihilated by In and which as an A/In-module is Ic/In-projective, see More
on Algebra, Section 70.
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We will use the following abuse of notation: given an A-module M we denote p∗M

the quasi-coherent module gotten by pulling back by p the quasi-coherent module M̃ on
Spec(A) associated to M . For example we have OYn = p∗(A/In). For a short exact
sequence 0→ K → L→M → 0 of A-modules we obtain an exact sequence

p∗K → p∗L→ p∗M → 0

as˜is an exact functor and p∗ is a right exact functor.

Lemma 22.2. Let 0 → K → L → M → 0 be a short exact sequence of A-modules
such that K and L are annihilated by In and M is an (A,n, c)-module. Then the kernel
of p∗K → p∗L is scheme theoretically supported on Yc.

Proof. Let Spec(B) ⊂ X be an affine open. The restriction of the exact sequence
over Spec(B) corresponds to the sequence of B-modules

K ⊗A B → L⊗A B →M ⊗A B → 0

which is isomorphismic to the sequence

K ⊗A/In B/InB → L⊗A/In B/InB →M ⊗A/In B/InB → 0

Hence the kernel of the first map is the image of the module TorA/I
n

1 (M,B/InB). Re-
call that the exceptional divisor Y is cut out by IOX . Hence it suffices to show that
TorA/I

n

1 (M,B/InB) is annihilated by Ic. Since multiplication by a ∈ Ic on M factors
through a finite free A/In-module, this is clear. �

We have the canonical map OX → OX(1) which vanishes exactly along Y . Hence for
every coherentOX -module F we always have canonical maps F(q)→ F(q + n) for any
q ∈ Z and n ≥ 0.

Lemma 22.3. Let F be a coherent OX -module. Then F is scheme theoretically sup-
ported on Yc if and only if the canonical map F → F(c) is zero.

Proof. This is true becauseOX → OX(1) vanishes exactly along Y . �

Lemma 22.4. With q0 = q(S) and d = d(S) as above, suppose we have integers
n ≥ c ≥ 0, an (A,n, c)-module M , an index i ∈ {0, 1, . . . , d}, and an integer q. Then we
distinguish the following cases

(1) In the case i = d ≥ 1 and q ≥ q0 we have Hd(X, p∗M(q)) = 0.
(2) In the case i = d− 1 ≥ 1 and q ≥ q0 we have Hd−1(X, p∗M(q)) = 0.
(3) In the case d− 1 > i > 0 and q ≥ q0 + (d− 1− i)c the mapHi(X, p∗M(q))→

Hi(X, p∗M(q − (d− 1− i)c)) is zero.
(4) In the case i = 0, d ∈ {0, 1}, and q ≥ q0, there is a surjection

IqM −→ H0(X, p∗M(q))

(5) In the case i = 0, d > 1, and q ≥ q0 + (d− 1)c the map

H0(X, p∗M(q))→ H0(X, p∗M(q − (d− 1)c))

has image contained in the image of the canonical map Iq−(d−1)cM → H0(X, p∗M(q−
(d− 1)c)).

Proof. Let M be an (A,n, c)-module. Choose a short exact sequence

0→ K → (A/In)⊕r →M → 0
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We will use below thatK is an (A,n, c)-module, see More on Algebra, Lemma 70.6. Con-
sider the corresponding exact sequence

p∗K → (OYn)⊕r → p∗M → 0
We split this into short exact sequences

0→ F → p∗K → G → 0 and 0→ G → (OYn)⊕r → p∗M → 0
By Lemma 22.2 the coherent module F is scheme theoretically supported on Yc.

Proof of (1). Assume d > 0. We have to prove Hd(X, p∗M(q)) = 0 for q ≥ q0. By the
vanishing of the cohomology of twists of G in degrees > d and the long exact cohomol-
ogy sequence associated to the second short exact sequence above, it suffices to prove that
Hd(X,OYn(q)) = 0. This is true by Lemma 22.1.

Proof of (2). Assume d > 1. We have to prove Hd−1(X, p∗M(q)) = 0 for q ≥ q0.
Arguing as in the previous paragraph, we see that it suffices to show thatHd(X,G(q)) = 0.
Using the first short exact sequence and the vanishing of the cohomology of twists of F
in degrees > d we see that it suffices to show Hd(X, p∗K(q)) is zero which is true by (1)
and the fact that K is an (A,n, c)-module (see above).

Proof of (3). Let 0 < i < d−1 and assume the statement holds for i+ 1 except in the case
i = d− 2 we have statement (2). Using the long exact sequence of cohomology associated
to the second short exact sequence above we find an injection

Hi(X, p∗M(q − (d− 1− i)c)) ⊂ Hi+1(X,G(q − (d− 1− i)c))
as q− (d− 1− i)c ≥ q0 gives the vanishing ofHi(X,OYn(q− (d− 1− i)c)) (see above).
Thus it suffices to show that the map Hi+1(X,G(q))→ Hi+1(X,G(q− (d− 1− i)c)) is
zero. To study this, we consider the maps of exact sequences

Hi+1(X, p∗K(q)) //

��

Hi+1(X,G(q)) //

��ss

Hi+2(X,F(q))

��
Hi+1(X, p∗K(q − c)) //

��

Hi+1(X,G(q − c)) //

��

Hi+2(X,F(q − c))

Hi+1(X, p∗K(q − (d− 1− i)c)) // Hi+1(X,G(q − (d− 1− i)c))

Since F is scheme theoretically supported on Yc we see that the canonical map G(q) →
G(q − c) factors through p∗K(q − c) by Lemma 22.3. This gives the dotted arrow in the
diagram. (In fact, for the proof it suffices to observe that the vertical arrow on the extreme
right is zero in order to get the dotted arrow as a map of sets.) Thus it suffices to show that
Hi+1(X, p∗K(q− c))→ Hi+1(X, p∗K(q− (d− 1− i)c)) is zero. If i = d− 2, then the
source of this arrow is zero by (2) as q− c ≥ q0 andK is an (A,n, c)-module. If i < d− 2,
then as K is an (A,n, c)-module, we get from the induction hypothesis that the map is
indeed zero since q− c− (q− (d− 1− i)c) = (d− 2− i)c = (d− 1− (i+ 1))c and since
q − c ≥ q0 + (d− 1− (i+ 1))c. In this way we conclude the proof of (3).

Proof of (4). Assume d ∈ {0, 1} and q ≥ q0. Then the first short exact sequence gives a
surjection H1(X, p∗K(q)) → H1(X,G(q)) and the source of this arrow is zero by case
(1). Hence for all q ∈ Z we see that the map

H0(X, (OYn)⊕r(q)) −→ H0(X, p∗M(q))
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is surjective. For q ≥ q0 the source is equal to (Iq/Iq+n)⊕r by Lemma 22.1 and this easily
proves the statement.

Proof of (5). Assume d > 1. Arguing as in the proof of (4) we see that it suffices to show
that the image of

H0(X, p∗M(q)) −→ H0(X, p∗M(q − (d− 1)c))

is contained in the image of

H0(X, (OYn)⊕r(q − (d− 1)c)) −→ H0(X, p∗M(q − (d− 1)c))

To show the inclusion above, it suffices to show that for σ ∈ H0(X, p∗M(q)) with bound-
ary ξ ∈ H1(X,G(q)) the image of ξ in H1(X,G(q − (d − 1)c)) is zero. This follows by
the exact same arguments as in the proof of (3). �

Remark 22.5. Given a pair (M,n) consisting of an integer n ≥ 0 and a finite A/In-
module M we set M∨ = HomA/In(M,A/In). Given a pair (F , n) consisting of an
integer n and a coherentOYn -module F we set

F∨ = HomOYn
(F ,OYn)

Given (M,n) as above, there is a canonical map

can : p∗(M∨) −→ (p∗M)∨

Namely, if we choose a presentation (A/In)⊕s → (A/In)⊕r → M → 0 then we obtain
a presentationO⊕s

Yn
→ O⊕r

Yn
→ p∗M → 0. Taking duals we obtain exact sequences

0→M∨ → (A/In)⊕r → (A/In)⊕s

and
0→ (p∗M)∨ → O⊕r

Yn
→ O⊕s

Yn

Pulling back the first sequence by p we find the desired map can. The construction of
this map is functorial in the finite A/In-module M . The kernel and cokernel of can are
scheme theoretically supported on Yc if M is an (A,n, c)-module. Namely, in that case
for a ∈ Ic the map a : M →M factors through a finite freeA/In-module for which can
is an isomorphism. Hence a annihilates the kernel and cokernel of can.

Lemma 22.6. With q0 = q(S) and d = d(S) as above, let M be an (A,n, c)-module
and let ϕ : M → In/I2n be an A-linear map. Assume n ≥ max(q0 + (1 + d)c, (2 + d)c)
and if d = 0 assume n ≥ q0 + 2c. Then the composition

M
ϕ−→ In/I2n → In−(1+d)c/I2n−(1+d)c

is of the form
∑
aiψi with ai ∈ Ic and ψi : M → In−(2+d)c/I2n−(2+d)c.

Proof. The case d > 1. Since we have a compatible system of maps p∗(Iq)→ OX(q)
for q ≥ 0 there are canonical maps p∗(Iq/Iq+ν) → OYν (q) for ν ≥ 0. Using this and
pulling back ϕ we obtain a map

χ : p∗M −→ OYn(n)

such that the compositionM → H0(X, p∗M)→ H0(X,OYn(n)) is the given homomor-
phism ϕ combined with the map In/I2n → H0(X,OYn(n)). Since OYn(n) is invertible
on Yn the linear map χ determines a section

σ ∈ Γ(X, (p∗M)∨(n))
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with notation as in Remark 22.5. The discussion in Remark 22.5 shows the cokernel and
kernel of can : p∗(M∨)→ (p∗M)∨ are scheme theoretically supported on Yc. By Lemma
22.3 the map (p∗M)∨(n) → (p∗M)∨(n − 2c) factors through p∗(M∨)(n − 2c); small
detail omitted. Hence the image of σ in Γ(X, (p∗M)∨(n− 2c)) comes from an element

σ′ ∈ Γ(X, p∗(M∨)(n− 2c))
By Lemma 22.4 part (5), the fact that M∨ is an (A,n, c)-module by More on Algebra,
Lemma 70.7, and the fact that n ≥ q0 + (1 +d)c so n− 2c ≥ q0 + (d− 1)cwe see that the
image of σ′ inH0(X, p∗M∨(n−(1+d)c)) is the image of an element τ in In−(1+d)cM∨.
Write τ =

∑
aiτi with τi ∈ In−(2+d)cM∨; this makes sense as n− (2 + d)c ≥ 0. Then

τi determines a homomorphism of modules ψi : M → In−(2+d)c/I2n−(2+d)c using the
evaluation map M ⊗M∨ → A/In.

Let us prove that this works4. Pick z ∈ M and let us show that ϕ(z) and
∑
aiψi(z)

have the same image in In−(1+d)c/I2n−(1+d)c. First, the element z determines a map
p∗z : OYn → p∗M whose composition with χ is equal to the map OYn → OYn(n)
corresponding to ϕ(z) via the map In/I2n → Γ(OYn(n)). Next z and p∗z determine
evaluation maps ez : M∨ → A/In and ep∗z : (p∗M)∨ → OYn . Since χ(p∗z) is the
section corresponding to ϕ(z) we see that ep∗z(σ) is the section corresponding to ϕ(z).
Here and below we abuse notation: for a map a : F → G of modules on X we also denote
a : F(t)→ F(t) the corresponding map of twisted modules. The diagram

p∗(M∨)

can

��

p∗ez

// OYn

(p∗M)∨ ep∗z // OYn
commutes by functoriality of the construction can. Hence (p∗ez)(σ′) in Γ(Yn,OYn(n−
2c)) is the section corresponding to the image of ϕ(z) in In−2c/I2n−2c. The next step is
that σ′ maps to the image of

∑
aiτi in H0(X, p∗M∨(n − (1 + d)c)). This implies that

(p∗ez)(
∑
aiτi) =

∑
aip

∗ez(τi) in Γ(Yn,OYn(n−(1+d)c)) is the section corresponding
to the image of ϕ(z) in In−(1+d)c/I2n−(1+d)c. Recall that ψi is defined from τi using an
evaluation map. Hence if we denote

χi : p∗M −→ OYn(n− (2 + d)c)
the map we get from ψi, then we see by the same reasoning as above that the section
corresponding to ψi(z) is χi(p∗z) = ep∗z(χi) = p∗ez(τi). Hence we conclude that the
image of ϕ(z) in Γ(Yn,OYn(n − (1 + d)c)) is equal to the image of

∑
aiψi(z). Since

n− (1+d)c ≥ q0 we have Γ(Yn,OYn(n− (1+d)c)) = In−(1+d)c/I2n−(1+d)c by Lemma
22.1 and we conclude the desired compatibility is true.

The case d = 1. Here we argue as above that we get

χ : p∗M −→ OYn(n), σ ∈ Γ(X, (p∗M)∨(n)), σ′ ∈ Γ(X, p∗(M∨)(n− 2c)),
and then we use Lemma 22.4 part (4) to see that σ′ is the image of some element τ ∈
In−2cM∨. The rest of the argument is the same.

The case d = 0. Argument is exactly the same as in the case d = 1. �

Lemma 22.7. With d = d(S) and q0 = q(S) as above. Then

4We hope some reader will suggest a less dirty proof of this fact.
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(1) for integers n ≥ c ≥ 0 with n ≥ max(q0 + (1 + d)c, (2 + d)c),
(2) for K of D(A/In) with Hi(K) = 0 for i 6= −1, 0 and Hi(K) finite for i =
−1, 0 such that Ext1

A/Ic(K,N) is annihilated by Ic for all finiteA/In-modules
N

the map

Ext1
A/In(K, In/I2n) −→ Ext1

A/In(K, In−(1+d)c/I2n−2(1+d)c)
is zero.

Proof. The case d > 0. Let K−1 → K0 be a complex representing K as in More
on Algebra, Lemma 84.5 part (5) with respect to the ideal Ic/In in the ring A/In. In
particular K−1 is Ic/In-projective as multiplication by elements of Ic/In even factor
through K0. By More on Algebra, Lemma 84.4 part (1) we have

Ext1
A/In(K, In/I2n) = Coker(HomA/In(K0, In/I2n)→ HomA/In(K−1, In/I2n))

and similarly for other Ext groups. Hence any class ξ in Ext1
A/In(K, In/I2n) comes from

an elementϕ ∈ HomA/In(K−1, In/I2n). Denoteϕ′ the image ofϕ in HomA/In(K−1, In−(1+d)c/I2n−(1+d)c).
By Lemma 22.6 we can writeϕ′ =

∑
aiψi withai ∈ Ic andψi ∈ HomA/In(M, In−(2+d)c/I2n−(2+d)c).

Choose hi : K0 → K−1 such that aiidK−1 = hi ◦ d−1
K . Set ψ =

∑
ψi ◦ hi : K0 →

In−(2+d)c/I2n−(2+d)c. Thenϕ′ = ψ◦d−1
K and we conclude that ξ already maps to zero in

Ext1
A/In(K, In−(1+d)c/I2n−(1+d)c) and a fortiori in Ext1

A/In(K, In−(1+d)c/I2n−2(1+d)c).

The case d = 05. Let ξ and ϕ be as above. We consider the diagram

K0

K−1

OO

ϕ // In/I2n // In−c/I2n−c

Pulling back to X and using the map p∗(In/I2n)→ OYn(n) we find a solid diagram

p∗K0

**
p∗K−1

OO

// OYn(n) // OYn(n− c)

We can cover X by affine opens U = Spec(B) such that there exists an a ∈ I with
the following property: IB = aB and a is a nonzerodivisor on B. Namely, we can
cover X by spectra of affine blowup algebras, see Divisors, Lemma 32.2. The restriction
of OYn(n) → OYn(n − c) to U is isomorphic to the map of quasi-coherent OU -modules
corresponding to the B-module map ac : B/anB → B/anB. Since ac : K−1 → K−1

factors throughK0 we see that the dotted arrow exists over U . In other words, locally on
X we can find the dotted arrow! Now the sheaf of dotted arrows fitting into the diagram
is principal homogeneous under

F = HomOX
(Coker(p∗K−1 → p∗K0),OYn(n− c))

which is a coherent OX -module. Hence the obstruction for finding the dotted arrow is
an element of H1(X,F). This cohomology group is zero as 1 > d = 0, see discussion
following the definition of d = d(S). This proves that we can find a dotted arrow ψ :

5The argument given for d > 0 works but gives a slightly weaker result.
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p∗K0 → OYn(n − c) fitting into the diagram. Since n − c ≥ q0 we find that ψ induces
a map K0 → In−c/I2n−c. Chasing the diagram we conclude that ϕ′ = ψ ◦ d−1

K and the
proof is finished as before. �
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CHAPTER 52

Algebraic and Formal Geometry

1. Introduction

This chapter continues the study of formal algebraic geometry and in particular the ques-
tion of whether a formal object is the completion of an algebraic one. A fundamental
reference is [?]. Here is a list of results we have already discussed in the Stacks project:

(1) The theorem on formal functions, see Cohomology of Schemes, Section 20.
(2) Coherent formal modules, see Cohomology of Schemes, Section 23.
(3) Grothendieck’s existence theorem, see Cohomology of Schemes, Sections 24, 25,

and 27.
(4) Grothendieck’s algebraization theorem, see Cohomology of Schemes, Section 28.
(5) Grothendieck’s existence theorem more generally, see More on Flatness, Sections

28 and 29.
Let us give an overview of the contents of this chapter.

Let X be a scheme and let I ⊂ OX be a finite type quasi-coherent sheaf of ideals. Many
questions in this chapter have to do with inverse systems (Fn) of quasi-coherent OX -
modules such thatFn = Fn+1/InFn+1. An important special case is whereX is a scheme
over a Noetherian ring A and I = IOX for some ideal I ⊂ A. In Cohomology, Sections
35, 36, and 39 we have some general results. In this chapter, Sections 2 and 3 contain
results specific to schemes and quasi-coherent modules. In Section 4 we prove that the
limit topology on limHp(X,Fn) is I-adic in case cd(A, I) = 1. One of the themes of
this chapter will be to show that results proven in the principal ideal case I = (f) also
hold when we only assume cd(A, I) = 1.

In Section 6 we discuss derived completion of modules on a ringed site (C,O) with respect
to a finite type sheaf of ideals I . This section is the natural continuation of the theory of
derived completion in commutative algebra as described in More on Algebra, Section 91.
The first main result is that derived completion exists. The second main result is that for
a morphism f if ringed sites derived completion commutes with derived pushforward:

(Rf∗K)∧ = Rf∗(K∧)

if the ideal sheaf upstairs is locally generated by sections coming from the ideal downstairs,
see Lemma 6.19. We stress that both main results are very elementary in case the ideals
in question are globally finitely generated which will be true for all applications of this
theory in this chapter. The displayed equality is the “correct” version of the theorem on
formal functions, see discussion in Section 7.

Let A be a Noetherian ring and let I, J be two ideals of A. Let M be a finite A-module.
The next topic in this chapter is the map

RΓJ(M) −→ RΓJ(M)∧

4225
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from local cohomology of M into the derived I-adic completion of the same. It turns
out that if we impose suitable depth conditions this map becomes an isomorphism on co-
homology in a range of degrees. In Section 8 we work essentially in the generality just
mentioned. In Section 9 we assume A is a local ring and J = m is a maximal ideal. We
encourage the reader to read this section before the other two in this part of the chapter.
Finally, in Section 10 we bootstrap the local case to obtain stronger results back in the
general case.

In the next part of this chapter we use the results on completion of local cohomology to
get a nonexhaustive list of results on cohomology of the completion of coherent modules.
More precisely, letA be a Noetherian ring, let I ⊂ A be an ideal, and let U ⊂ Spec(A) be
an open subscheme. If F is a coherentOU -module, then we may consider the maps

Hi(U,F) −→ limHi(U,F/InF)

and ask if we get an isomorphism in a certain range of degrees. In Section 11 we work
out some examples where U is the punctured spectrum of a local ring. In Section 12 we
discuss the general case. In Section 14 we apply some of the results obtained to questions
of connectedness in algebraic geometry.

The remaining sections of this chapter are devoted to a discussion of algebraization of
coherent formal modules. In other words, given an inverse system of coherent modules
(Fn) on U as above with Fn = Fn+1/I

nFn+1 we ask whether there exists a coherent
OU -module F such that Fn = F/InF for all n. We encourage the reader to read Section
16 for a precise statement of the question, a useful general result (Lemma 16.10), and a
nontrivial application (Lemma 16.11). To prove a result going essentially beyond this case
quite a bit more theory has to be developed. Please see Section 22 for the strongest results
of this type obtained in this chapter.

2. Formal sections, I

We suggest looking at Cohomology, Section 35 first.

Lemma 2.1. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals. Let

. . .→ F3 → F2 → F1

be an inverse system of quasi-coherent OX -modules such that Fn = Fn+1/InFn+1. Set
F = limFn. Then

(1) F = R limFn,
(2) for any affine open U ⊂ X we have Hp(U,F) = 0 for p > 0, and
(3) for each p there is a short exact sequence 0→ R1 limHp−1(X,Fn)→ Hp(X,F)→

limHp(X,Fn)→ 0.
If moreover I is of finite type, then

(4) Fn = F/InF , and
(5) InF = limm≥n InFm.

Proof. Parts (1), (2), and (3) are general facts about inverse systems of quasi-coherent
modules with surjective transition maps, see Derived Categories of Schemes, Lemma 3.2
and Cohomology, Lemma 37.1. Next, assume I is of finite type. Let U ⊂ X be affine
open. Say U = Spec(A) and I|U corresponds to I ⊂ A. Observe that I is a finitely
generated ideal. By the equivalence of categories between quasi-coherent OU -modules
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and A-modules (Schemes, Lemma 7.5) we find that Mn = Fn(U) is an inverse system of
A-modules with Mn = Mn+1/I

nMn+1. Thus

M = F(U) = limFn(U) = limMn

is an I-adically complete module with M/InM = Mn by Algebra, Lemma 98.2. This
proves (4). Part (5) translates into the statement that limm≥n I

nM/ImM = InM . Since
ImM = Im−n · InM this is just the statement that ImM is I-adically complete. This
follows from Algebra, Lemma 96.3 and the fact that M is complete. �

3. Formal sections, II

We suggest looking at Cohomology, Sections 36 and 39 first.

Lemma 3.1. Let X be a scheme. Let f ∈ Γ(X,OX). Let

. . .→ F3 → F2 → F1

be an inverse system of quasi-coherentOX -modules. The following are equivalent
(1) for all n ≥ 1 the map f : Fn+1 → Fn+1 factors through Fn+1 → Fn to give a

short exact sequence 0→ Fn → Fn+1 → F1 → 0,
(2) for all n ≥ 1 the map fn : Fn+1 → Fn+1 factors through Fn+1 → F1 to give

a short exact sequence 0→ F1 → Fn+1 → Fn → 0
(3) there exists anOX -module G which is f -divisible such that Fn = G[fn].
(4) there exists anOX -module F which is f -torsion free such that Fn = F/fnF .

Proof. The equivalence of (1), (2), (3) and the implication (4)⇒ (1) are proven in
Cohomology, Lemma 36.1. Assume (1) holds. Set F = limFn. By Lemma 2.1 part (4) we
have Fn = F/fnF . Let U ⊂ X be open and s = (sn) ∈ F(U) = limFn(U). Choose
n ≥ 1. If fs = 0, then sn+1 is in the kernel of Fn+1 → Fn by condition (1). Hence
sn = 0. Since n was arbitrary, we see s = 0. Thus F is f -torsion free. �

Lemma 3.2. Let A be a ring and f ∈ A. Let X be a scheme over A. Let F be a
quasi-coherentOX -module. Assume that F [fn] = Ker(fn : F → F) stabilizes. Then

RΓ(X, limF/fnF) = RΓ(X,F)∧

where the right hand side indicates the derived completion with respect to the ideal (f) ⊂
A. Consequently, for p ∈ Z we obtain a commutative diagram

0 0

0 // ̂Hp(X,F) //

OO

limHp(X,F/fnF) //

OO

Tf (Hp+1(X,F)) // 0

0 // H0(Hp(X,F)∧) //

OO

Hp(X, limF/fnF) //

OO

Tf (Hp+1(X,F)) // 0

R1 limHp(X,F)[fn]

OO

∼= // R1 limHp−1(X,F/fnF)

OO

0

OO

0

OO
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with exact rows and columns where ̂Hp(X,F) = limHp(X,F)/fnHp(X,F) is the
usual f -adic completion and Tf (−) denotes the f -adic Tate module as in More on Algebra,
Example 93.5.

Proof. By Lemma 2.1 we have limF/fnF = R limF/fnF . Everything else fol-
lows from Cohomology, Example 39.3. �

4. Formal sections, III

In this section we prove Lemma 4.5 which (in the setting of Noetherian schemes and co-
herent modules) is the analogue of Cohomology, Lemma 36.2 in case the ideal I is not
assumed principal but has the property that cd(A, I) = 1.

Lemma 4.1. Let I = (f1, . . . , fr) be an ideal of a Noetherian ringA. If cd(A, I) = 1,
then there exist c ≥ 1 and maps ϕj : Ic → A such that

∑
fjϕj : Ic → I is the inclusion

map.

Proof. Since cd(A, I) = 1 the complement U = Spec(A) \ V (I) is affine (Lo-
cal Cohomology, Lemma 4.8). Say U = Spec(B). Then IB = B and we can write
1 =

∑
j=1,...,r fjbj for some bj ∈ B. By Cohomology of Schemes, Lemma 10.5 we can

represent bj by maps ϕj : Ic → A for some c ≥ 0. Then
∑
fjϕj : Ic → I ⊂ A is the

canonical embedding, after possibly replacing c by a larger integer, by the same lemma. �

Lemma 4.2. Let I = (f1, . . . , fr) be an ideal of a Noetherian ringAwith cd(A, I) =
1. Let c ≥ 1 and ϕj : Ic → A, j = 1, . . . , r be as in Lemma 4.1. Then there is a unique
graded A-algebra map

Φ :
⊕

n≥0
Inc → A[T1, . . . , Tr]

with Φ(g) =
∑
ϕj(g)Tj for g ∈ Ic. Moreover, the composition of Φ with the map

A[T1, . . . , Tr]→
⊕

n≥0 I
n, Tj 7→ fj is the inclusion map

⊕
n≥0 I

nc →
⊕

n≥0 I
n.

Proof. For each j and m ≥ c the restriction of ϕj to Im is a map ϕj : Im → Im−c.
Given j1, . . . , jn ∈ {1, . . . , r} we claim that the composition

ϕj1 . . . ϕjn : Inc → I(n−1)c → . . .→ Ic → A

is independent of the order of the indices j1, . . . , jn. Namely, if g = g1 . . . gn with gi ∈ Ic,
then we see that

(ϕj1 . . . ϕjn)(g) = ϕj1(g1) . . . ϕjn(gn)
is independent of the ordering as multiplication inA is commutative. Thus we can define
Φ by sending g ∈ Inc to

Φ(g) =
∑

e1+...+er=n
(ϕe1

1 ◦ . . . ◦ ϕerr )(g)T e1
1 . . . T err

It is straightforward to prove that this is a graded A-algebra homomorphism with the
desired property. Uniqueness is immediate as is the final property. This proves the lemma.

�

Lemma 4.3. Let I = (f1, . . . , fr) be an ideal of a Noetherian ringAwith cd(A, I) =
1. Let c ≥ 1 and ϕj : Ic → A, j = 1, . . . , r be as in Lemma 4.1. Let A→ B be a ring map
with B Noetherian and let N be a finite B-module. Then, after possibly increasing c and
adjusting ϕj accordingly, there is a unique unique graded B-module map

ΦN :
⊕

n≥0
IncN → N [T1, . . . , Tr]
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with ΦN (gx) = Φ(g)x for g ∈ Inc and x ∈ N where Φ is as in Lemma 4.2. The compo-
sition of ΦN with the map N [T1, . . . , Tr] →

⊕
n≥0 I

nN , Tj 7→ fj is the inclusion map⊕
n≥0 I

ncN →
⊕

n≥0 I
nN .

Proof. The uniqueness is clear from the formula and the uniqueness of Φ in Lemma
4.2. Consider the Noetherian A-algebra B′ = B ⊕N where N is an ideal of square zero.
To show the existence of ΦN it is enough (via Lemma 4.1) to show that ϕj extends to
a map ϕ′

j : IcB′ → B′ after possibly increasing c to some c′ (and replacing ϕj by the
composition of the inclusion Ic

′ → Ic with ϕj). Recall that ϕj corresponds to a section
hj ∈ Γ(Spec(A) \ V (I),OSpec(A))

see Cohomology of Schemes, Lemma 10.5. (This is in fact how we chose our ϕj in the
proof of Lemma 4.1.) Let us use the same lemma to represent the pullback

h′
j ∈ Γ(Spec(B′) \ V (IB′),OSpec(B′))

of hj by a B′-linear map ϕ′
j : Ic′

B′ → B′ for some c′ ≥ c. The agreement with ϕj will
hold for c′ sufficiently large by a further application of the lemma: namely we can test
agreement on a finite list of generators of Ic

′
. Small detail omitted. �

Lemma 4.4. Let I = (f1, . . . , fr) be an ideal of a Noetherian ringAwith cd(A, I) =
1. Let c ≥ 1 and ϕj : Ic → A, j = 1, . . . , r be as in Lemma 4.1. Let X be a Noetherian
scheme over Spec(A). Let

. . .→ F3 → F2 → F1

be an inverse system of coherent OX -modules such that Fn = Fn+1/I
nFn+1. Set F =

limFn. Then, after possibly increasing c and adjusting ϕj accordingly, there exists a
unique gradedOX -module map

ΦF :
⊕

n≥0
IncF −→ F [T1, . . . , Tr]

with ΦF (gs) = Φ(g)s for g ∈ Inc and s a local section of F where Φ is as in Lemma
4.2. The composition of ΦF with the map F [T1, . . . , Tr] →

⊕
n≥0 I

nF , Tj 7→ fj is the
canonical inclusion

⊕
n≥0 I

ncF →
⊕

n≥0 I
nF .

Proof. The uniqueness is immediate from theOX -linearity and the requirement that
ΦF (gs) = Φ(g)s for g ∈ Inc and s a local section of F . Thus we may assume X =
Spec(B) is affine. Observe that (Fn) is an object of the category Coh(X, IOX) introduced
in Cohomology of Schemes, Section 23. Let B′ = B∧ be the I-adic completion of B. By
Cohomology of Schemes, Lemma 23.1 the object (Fn) corresponds to a finite B′-module
N in the sense that Fn is the coherent module associated to the finite B-module N/InN .
Applying Lemma 4.3 to I ⊂ A → B′ and N we see that, after possibly increasing c and
adjusting ϕj accordingly, we get unique maps

ΦN :
⊕

n≥0
IncN → N [T1, . . . , Tr]

with the corresponding properties. Note that in degree n we obtain an inverse system of
maps N/ImN →

⊕
e1+...+er=nN/I

m−ncN · T e1
1 . . . T err for m ≥ nc. Translating back

into coherent sheaves we see that ΦN corresponds to a system of maps

Φnm : IncFm −→
⊕

e1+...+er=n
Fm−nc · T e1

1 . . . T err

for varying m ≥ nc and n ≥ 1. Taking the inverse limit of these maps over m we
obtain ΦF =

⊕
n limm Φnm. Note that limm I

tFm = ItF as can be seen by evaluating
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on affines for example, but in fact we don’t need this because it is clear there is a map
ItF → limm I

tFm. �

Lemma 4.5. Let I be an ideal of a Noetherian ring A. Let X be a Noetherian scheme
over Spec(A). Let

. . .→ F3 → F2 → F1

be an inverse system of coherentOX -modules such thatFn = Fn+1/I
nFn+1. If cd(A, I) =

1, then for all p ∈ Z the limit topology on limHp(X,Fn) is I-adic.

Proof. First it is clear that It limHp(X,Fn) maps to zero in Hp(X,Ft). Thus the
I-adic topology is finer than the limit topology. For the converse we set F = limFn, we
pick generators f1, . . . , fr of I , we pick c ≥ 1, and we choose ΦF as in Lemma 4.4. We
will use the results of Lemma 2.1 without further mention. In particular we have a short
exact sequence

0→ R1 limHp−1(X,Fn)→ Hp(X,F)→ limHp(X,Fn)→ 0
Thus we can lift any element ξ of limHp(X,Fn) to an element ξ′ ∈ Hp(X,F). Suppose
ξ maps to zero inHp(X,Fnc) for some n, in other words, suppose ξ is “small” in the limit
topology. We have a short exact sequence

0→ IncF → F → Fnc → 0
and hence the assumption means we can lift ξ′ to an element ξ′′ ∈ Hp(X, IncF). Apply-
ing ΦF we get

ΦF (ξ′′) =
∑

e1+...+er=n
ξ′
e1,...,er · T

e1
1 . . . T err

for some ξ′
e1,...,er ∈ Hp(X,F). Letting ξe1,...,er ∈ limHp(X,Fn) be the images and

using the final assertion of Lemma 4.4 we conclude that

ξ =
∑

fe1
1 . . . ferr ξe1,...,er

is in In limHp(X,Fn) as desired. �

Example 4.6. Let k be a field. Let A = k[x, y][[s, t]]/(xs − yt). Let I = (s, t) and
a = (x, y, s, t). Let X = Spec(A) − V (a) and Fn = OX/InOX . Observe that the
rational function

g = t

x
= s

y

is regular in an open neighbourhood V ⊂ X of V (IOX). Hence every power ge deter-
mines a section ge ∈ M = limH0(X,Fn). Observe that ge → 0 as e → ∞ in the
limit topology on M since ge maps to zero in Fe. On the other hand, ge 6∈ IM for
any e as the reader can see by computing H0(U,Fn); computation omitted. Observe that
cd(A, I) = 2. Thus the result of Lemma 4.5 is sharp.

5. Mittag-Leffler conditions

When taking local cohomology with respect to the maximal ideal of a local Noetherian
ring, we often get the Mittag-Leffler condition for free. This implies the same thing is true
for higher cohomology groups of an inverse system of coherent sheaves with surjective
transition maps on the puncture spectrum.

Lemma 5.1. Let (A,m) be a Noetherian local ring.
(1) LetM be a finiteA-module. Then theA-moduleHi

m(M) satisfies the descending
chain condition for any i.
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(2) LetU = Spec(A)\{m} be the punctured spectrum ofA. LetF be a coherentOU -
module. Then the A-module Hi(U,F) satisfies the descending chain condition
for i > 0.

Proof. We will prove part (1) by induction on the dimension of the support of M .
The statement holds if M = 0, thus we may and do assume M is not zero.
Base case of the induction. If dim(Supp(M)) = 0, then the support of M is {m} and we
see that H0

m(M) = M and Hi
m(M) = 0 for i > 0 as is clear from the construction of

local cohomology, see Dualizing Complexes, Section 9. SinceM has finite length (Algebra,
Lemma 52.8) it has the descending chain condition.
Induction step. Assume dim(Supp(M)) > 0. By the base case the finite moduleH0

m(M) ⊂
M has the descending chain condition. By Dualizing Complexes, Lemma 11.6 we may
replaceM byM/H0

m(M). ThenH0
m(M) = 0, i.e., M has depth≥ 1, see Dualizing Com-

plexes, Lemma 11.1. Choose x ∈ m such that x : M →M is injective. By Algebra, Lemma
63.10 we have dim(Supp(M/xM)) = dim(Supp(M))− 1 and the induction hypothesis
applies. Pick an index i and consider the exact sequence

Hi−1
m (M/xM)→ Hi

m(M) x−→ Hi
m(M)

coming from the short exact sequence 0 → M
x−→ M → M/xM → 0. It follows

that the x-torsion Hi
m(M)[x] is a quotient of a module with the descending chain condi-

tion, and hence has the descending chain condition itself. Hence the m-torsion submod-
ule Hi

m(M)[m] has the descending chain condition (and hence is finite dimensional over
A/m). Thus we conclude that the m-power torsion module Hi

m(M) has the descending
chain condition by Dualizing Complexes, Lemma 7.7.
Part (2) follows from (1) via Local Cohomology, Lemma 8.2. �

Lemma 5.2. Let (A,m) be a Noetherian local ring.
(1) Let (Mn) be an inverse system of finite A-modules. Then the inverse system

Hi
m(Mn) satisfies the Mittag-Leffler condition for any i.

(2) Let U = Spec(A) \ {m} be the punctured spectrum of A. Let Fn be an inverse
system of coherent OU -modules. Then the inverse system Hi(U,Fn) satisfies
the Mittag-Leffler condition for i > 0.

Proof. Follows immediately from Lemma 5.1. �

Lemma 5.3. Let (A,m) be a Noetherian local ring. Let (Mn) be an inverse system
of finite A-modules. Let M → limMn be a map where M is a finite A-module such that
for some i the map Hi

m(M)→ limHi
m(Mn) is an isomorphism. Then the inverse system

Hi
m(Mn) is essentially constant with value Hi

m(M).

Proof. By Lemma 5.2 the inverse system Hi
m(Mn) satisfies the Mittag-Leffler con-

dition. Let En ⊂ Hi
m(Mn) be the image of Hi

m(Mn′) for n′ � n. Then (En) is an
inverse system with surjective transition maps and Hi

m(M) = limEn. Since Hi
m(M) has

the descending chain condition by Lemma 5.1 we find there can only be a finite number of
nontrivial kernels of the surjectionsHi

m(M)→ En. ThusEn → En−1 is an isomorphism
for all n� 0 as desired. �

Lemma 5.4. Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M be
a finite A-module. Then

Hi(RΓm(M)∧) = limHi
m(M/InM)
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for all i where RΓm(M)∧ denotes the derived I-adic completion.

Proof. Apply Dualizing Complexes, Lemma 12.4 and Lemma 5.2 to see the vanishing
of the R1 lim terms. �

6. Derived completion on a ringed site

We urge the reader to skip this section on a first reading.

The algebra version of this material can be found in More on Algebra, Section 91. Let O
be a sheaf of rings on a site C. Let f be a global section of O. We denote Of the sheaf
associated to the presheaf of localizations U 7→ O(U)f .

Lemma 6.1. Let (C,O) be a ringed site. Let f be a global section ofO.
(1) For L,N ∈ D(Of ) we have RHomO(L,N) = RHomOf

(L,N). In particular
the twoOf -structures on RHomO(L,N) agree.

(2) For K ∈ D(O) and L ∈ D(Of ) we have

RHomO(L,K) = RHomOf
(L,RHomO(Of ,K))

In particular RHomO(Of , RHomO(Of ,K)) = RHomO(Of ,K).
(3) If g is a second global section ofO, then

RHomO(Of , RHomO(Og,K)) = RHomO(Ogf ,K).

Proof. Proof of (1). Let J • be a K-injective complex of Of -modules representing
N . By Cohomology on Sites, Lemma 20.10 it follows that J • is a K-injective complex of
O-modules as well. Let F• be a complex ofOf -modules representing L. Then

RHomO(L,N) = RHomO(F•,J •) = RHomOf
(F•,J •)

by Modules on Sites, Lemma 11.4 because J • is a K-injective complex of O and of Of -
modules.

Proof of (2). LetI• be a K-injective complex ofO-modules representingK. ThenRHomO(Of ,K)
is represented by HomO(Of , I•) which is a K-injective complex of Of -modules and of
O-modules by Cohomology on Sites, Lemmas 20.11 and 20.10. Let F• be a complex of
Of -modules representing L. Then

RHomO(L,K) = RHomO(F•, I•) = RHomOf
(F•,HomO(Of , I•))

by Modules on Sites, Lemma 27.8 and becauseHomO(Of , I•) is a K-injective complex of
Of -modules.

Proof of (3). This follows from the fact thatRHomO(Og, I•) is K-injective as a complex
of O-modules and the fact that HomO(Of ,HomO(Og,H)) = HomO(Ogf ,H) for all
sheaves ofO-modulesH. �

LetK ∈ D(O). We denote T (K, f) a derived limit (Derived Categories, Definition 34.1)
of the inverse system

. . .→ K
f−→ K

f−→ K

in D(O).

Lemma 6.2. Let (C,O) be a ringed site. Let f be a global section ofO. LetK ∈ D(O).
The following are equivalent

(1) RHomO(Of ,K) = 0,
(2) RHomO(L,K) = 0 for all L in D(Of ),
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(3) T (K, f) = 0.

Proof. It is clear that (2) implies (1). The implication (1)⇒ (2) follows from Lemma
6.1. A free resolution of theO-moduleOf is given by

0→
⊕

n∈N
O →

⊕
n∈N
O → Of → 0

where the first map sends a local section (x0, x1, . . .) to (x0, x1− fx0, x2− fx1, . . .) and
the second map sends (x0, x1, . . .) to x0 + x1/f + x2/f

2 + . . .. ApplyingHomO(−, I•)
where I• is a K-injective complex of O-modules representing K we get a short exact se-
quence of complexes

0→ HomO(Of , I•)→
∏
I• →

∏
I• → 0

because In is an injective O-module. The products are products in D(O), see Injectives,
Lemma 13.4. This means that the object T (K, f) is a representative of RHomO(Of ,K)
in D(O). Thus the equivalence of (1) and (3). �

Lemma 6.3. Let (C,O) be a ringed site. LetK ∈ D(O). The rule which associates to
U the set I(U) of sections f ∈ O(U) such that T (K|U , f) = 0 is a sheaf of ideals inO.

Proof. We will use the results of Lemma 6.2 without further mention. If f ∈ I(U),
and g ∈ O(U), then OU,gf is an OU,f -module hence RHomO(OU,gf ,K|U ) = 0, hence
gf ∈ I(U). Suppose f, g ∈ O(U). Then there is a short exact sequence

0→ OU,f+g → OU,f(f+g) ⊕OU,g(f+g) → OU,gf(f+g) → 0
because f, g generate the unit ideal in O(U)f+g . This follows from Algebra, Lemma
24.2 and the easy fact that the last arrow is surjective. Because RHomO(−,K|U ) is an
exact functor of triangulated categories the vanishing of RHomOU

(OU,f(f+g),K|U ),
RHomOU

(OU,g(f+g),K|U ), and RHomOU
(OU,gf(f+g),K|U ), implies the vanishing of

RHomOU
(OU,f+g,K|U ). We omit the verification of the sheaf condition. �

We can make the following definition for any ringed site.

Definition 6.4. Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. Let
K ∈ D(O). We say that K is derived complete with respect to I if for every object U of
C and f ∈ I(U) the object T (K|U , f) of D(OU ) is zero.

It is clear that the full subcategory Dcomp(O) = Dcomp(O, I) ⊂ D(O) consisting of
derived complete objects is a saturated triangulated subcategory, see Derived Categories,
Definitions 3.4 and 6.1. This subcategory is preserved under products and homotopy lim-
its in D(O). But it is not preserved under countable direct sums in general.

Lemma 6.5. Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. IfK ∈ D(O)
and L ∈ Dcomp(O), then RHomO(K,L) ∈ Dcomp(O).

Proof. Let U be an object of C and let f ∈ I(U). Recall that

HomD(OU )(OU,f , RHomO(K,L)|U ) = HomD(OU )(K|U ⊗L
OU
OU,f , L|U )

by Cohomology on Sites, Lemma 35.2. The right hand side is zero by Lemma 6.2 and the
relationship between internal hom and actual hom, see Cohomology on Sites, Lemma 35.1.
The same vanishing holds for allU ′/U . Thus the objectRHomOU

(OU,f , RHomO(K,L)|U )
of D(OU ) has vanishing 0th cohomology sheaf (by locus citatus). Similarly for the other
cohomology sheaves, i.e.,RHomOU

(OU,f , RHomO(K,L)|U ) is zero inD(OU ). By Lemma
6.2 we conclude. �
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Lemma 6.6. Let C be a site. Let O → O′ be a homomorphism of sheaves of rings.
Let I ⊂ O be a sheaf of ideals. The inverse image of Dcomp(O, I) under the restriction
functor D(O′)→ D(O) is Dcomp(O′, IO′).

Proof. Using Lemma 6.3 we see that K ′ ∈ D(O′) is in Dcomp(O′, IO′) if and only
if T (K ′|U , f) is zero for every local section f ∈ I(U). Observe that the cohomology
sheaves of T (K ′|U , f) are computed in the category of abelian sheaves, so it doesn’t matter
whether we think of f as a section ofO or take the image of f as a section ofO′. The lemma
follows immediately from this and the definition of derived complete objects. �

Lemma 6.7. Let f : (Sh(D),O′) → (Sh(C),O) be a morphism of ringed topoi. Let
I ⊂ O and I ′ ⊂ O′ be sheaves of ideals such that f ] sends f−1I into I ′. ThenRf∗ sends
Dcomp(O′, I ′) into Dcomp(O, I).

Proof. We may assume f is given by a morphism of ringed sites corresponding to a
continuous functor C → D (Modules on Sites, Lemma 7.2 ). LetU be an object of C and let g
be a section of I overU . We have to show that HomD(OU )(OU,g, Rf∗K|U ) = 0 whenever
K is derived complete with respect to I ′. Namely, by Cohomology on Sites, Lemma 35.1
this, applied to all objects overU and all shifts ofK , will imply thatRHomOU

(OU,g, Rf∗K|U )
is zero, which implies that T (Rf∗K|U , g) is zero (Lemma 6.2) which is what we have to
show (Definition 6.4). Let V in D be the image of U . Then

HomD(OU )(OU,g, Rf∗K|U ) = HomD(O′
V

)(O′
V,g′ ,K|V ) = 0

where g′ = f ](g) ∈ I ′(V ). The second equality because K is derived complete and the
first equality because the derived pullback of OU,g is O′

V,g′ and Cohomology on Sites,
Lemma 19.1. �

The following lemma is the simplest case where one has derived completion.

Lemma 6.8. Let (C,O) be a ringed on a site. Let f1, . . . , fr be global sections of
O. Let I ⊂ O be the ideal sheaf generated by f1, . . . , fr. Then the inclusion functor
Dcomp(O)→ D(O) has a left adjoint, i.e., given any objectK ofD(O) there exists a map
K → K∧ with K∧ in Dcomp(O) such that the map

HomD(O)(K∧, E) −→ HomD(O)(K,E)

is bijective whenever E is in Dcomp(O). In fact we have

K∧ = RHomO(O →
∏

i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr ,K)

functorially in K.

Proof. Define K∧ by the last displayed formula of the lemma. There is a map of
complexes

(O →
∏

i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr ) −→ O

which induces a map K → K∧. It suffices to prove that K∧ is derived complete and that
K → K∧ is an isomorphism if K is derived complete.

Let f be a global section ofO. By Lemma 6.1 the object RHomO(Of ,K∧) is equal to

RHomO((Of →
∏

i0
Offi0 →

∏
i0<i1

Offi0fi1 → . . .→ Off1...fr ),K)
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If f = fi for some i, then f1, . . . , fr generate the unit ideal in Of , hence the extended
alternating Čech complex

Of →
∏

i0
Offi0 →

∏
i0<i1

Offi0fi1 → . . .→ Off1...fr

is zero (even homotopic to zero). In this way we see that K∧ is derived complete.

IfK is derived complete, thenRHomO(Of ,K) is zero for all f = fi0 . . . fip , p ≥ 0. Thus
K → K∧ is an isomorphism in D(O). �

Next we explain why derived completion is a completion.

Lemma 6.9. Let (C,O) be a ringed on a site. Let f1, . . . , fr be global sections of O.
Let I ⊂ O be the ideal sheaf generated by f1, . . . , fr. Let K ∈ D(O). The derived
completion K∧ of Lemma 6.8 is given by the formula

K∧ = R limK ⊗L
O Kn

where Kn = K(O, fn1 , . . . , fnr ) is the Koszul complex on fn1 , . . . , fnr overO.

Proof. In More on Algebra, Lemma 29.6 we have seen that the extended alternating
Čech complex

O →
∏

i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr

is a colimit of the Koszul complexes Kn = K(O, fn1 , . . . , fnr ) sitting in degrees 0, . . . , r.
Note thatKn is a finite chain complex of finite freeO-modules with dualHomO(Kn,O) =
Kn where Kn is the Koszul cochain complex sitting in degrees −r, . . . , 0 (as usual). By
Lemma 6.8 the functorE 7→ E∧ is gotten by takingRHom from the extended alternating
Čech complex into E:

E∧ = RHom(colimKn, E)
This is equal to R lim(E ⊗L

O Kn) by Cohomology on Sites, Lemma 48.8. �

Lemma 6.10. There exist a way to construct
(1) for every pair (A, I) consisting of a ring A and a finitely generated ideal I ⊂ A

a complex K(A, I) of A-modules,
(2) a map K(A, I)→ A of complexes of A-modules,
(3) for every ring map A → B and finitely generated ideal I ⊂ A a map of com-

plexes K(A, I)→ K(B, IB),
such that

(a) for A→ B and I ⊂ A finitely generated the diagram

K(A, I) //

��

A

��
K(B, IB) // B

commutes,
(b) for A → B → C and I ⊂ A finitely generated the composition of the maps

K(A, I)→ K(B, IB)→ K(C, IC) is the map K(A, I)→ K(C, IC).
(c) for A → B and a finitely generated ideal I ⊂ A the induced map K(A, I) ⊗L

A

B → K(B, IB) is an isomorphism in D(B), and
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(d) if I = (f1, . . . , fr) ⊂ A then there is a commutative diagram

(A→
∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) //

��

K(A, I)

��
A

1 // A

in D(A) whose horizontal arrows are isomorphisms.

Proof. Let S be the set of rings A0 of the form A0 = Z[x1, . . . , xn]/J . Every finite
type Z-algebra is isomorphic to an element of S. LetA0 be the category whose objects are
pairs (A0, I0) where A0 ∈ S and I0 ⊂ A0 is an ideal and whose morphisms (A0, I0) →
(B0, J0) are ring maps ϕ : A0 → B0 such that J0 = ϕ(I0)B0.
Suppose we can construct K(A0, I0)→ A0 functorially for objects ofA0 having proper-
ties (a), (b), (c), and (d). Then we take

K(A, I) = colimϕ:(A0,I0)→(A,I) K(A0, I0)
where the colimit is over ring maps ϕ : A0 → A such that ϕ(I0)A = I with (A0, I0)
in A0. A morphism between (A0, I0) → (A, I) and (A′

0, I
′
0) → (A, I) are given by

maps (A0, I0) → (A′
0, I

′
0) in A0 commuting with maps to A. The category of these

(A0, I0) → (A, I) is filtered (details omitted). Moreover, colimϕ:(A0,I0)→(A,I) A0 = A
so that K(A, I) is a complex of A-modules. Finally, given ϕ : A → B and I ⊂ A for
every (A0, I0) → (A, I) in the colimit, the composition (A0, I0) → (B, IB) lives in the
colimit for (B, IB). In this way we get a map on colimits. Properties (a), (b), (c), and (d)
follow readily from this and the corresponding properties of the complexes K(A0, I0).
Endow C0 = Aopp0 with the chaotic topology. We equip C0 with the sheaf of rings O :
(A, I) 7→ A. The ideals I fit together to give a sheaf of ideals I ⊂ O. Choose an injective
resolutionO → J •. Consider the object

F• =
⋃

n
J •[In]

Let U = (A, I) ∈ Ob(C0). Since the topology in C0 is chaotic, the value J •(U) is a
resolution of A by injective A-modules. Hence the value F•(U) is an object of D(A)
representing the image of RΓI(A) in D(A), see Dualizing Complexes, Section 9. Choose
a complex ofO-modules K• and a commutative diagram

O // J •

K• //

OO

F•

OO

where the horizontal arrows are quasi-isomorphisms. This is possible by the construction
of the derived category D(O). Set K(A, I) = K•(U) where U = (A, I). Properties (a)
and (b) are clear and properties (c) and (d) follow from Dualizing Complexes, Lemmas 10.2
and 10.3. �

Lemma 6.11. Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf of ideals.
There exists a map K → O in D(O) such that for every U ∈ Ob(C) such that I|U is
generated by f1, . . . , fr ∈ I(U) there is an isomorphism

(OU →
∏

i0
OU,fi0 →

∏
i0<i1

OU,fi0fi1 → . . .→ OU,f1...fr ) −→ K|U

compatible with maps toOU .
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Proof. Let C′ ⊂ C be the full subcategory of objects U such that I|U is generated by
finitely many sections. Then C′ → C is a special cocontinuous functor (Sites, Definition
29.2). Hence it suffices to work with C′, see Sites, Lemma 29.1. In other words we may
assume that for every object U of C there exists a finitely generated ideal I ⊂ I(U) such
that I|U = Im(I ⊗OU → OU ). We will say that I generates I|U . Warning: We do not
know that I(U) is a finitely generated ideal inO(U).

Let U be an object and I ⊂ O(U) a finitely generated ideal which generates I|U . On the
category C/U consider the complex of presheaves

K•
U,I : U ′/U 7−→ K(O(U ′), IO(U ′))

withK(−,−) as in Lemma 6.10. We claim that the sheafification of this is independent of
the choice of I . Indeed, if I ′ ⊂ O(U) is a finitely generated ideal which also generates I|U ,
then there exists a covering {Uj → U} such that IO(Uj) = I ′O(Uj). (Hint: this works
because both I and I ′ are finitely generated and generate I|U .) HenceK•

U,I andK•
U,I′ are

the same for any object lying over one of theUj . The statement on sheafifications follows.
Denote K•

U the common value.

The independence of choice of I also shows thatK•
U |C/U ′ = K•

U ′ whenever we are given a
morphismU ′ → U and hence a localization morphism C/U ′ → C/U . Thus the complexes
K•
U glue to give a single well defined complex K• of O-modules. The existence of the

map K• → O and the quasi-isomorphism of the lemma follow immediately from the
corresponding properties of the complexes K(−,−) in Lemma 6.10. �

Proposition 6.12. Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf of
ideals. There exists a left adjoint to the inclusion functor Dcomp(O)→ D(O).

Proof. LetK → O inD(O) be as constructed in Lemma 6.11. LetE ∈ D(O). Then
E∧ = RHom(K,E) together with the map E → E∧ will do the job. Namely, locally
on the site C we recover the adjoint of Lemma 6.8. This shows that E∧ is always derived
complete and that E → E∧ is an isomorphism if E is derived complete. �

Remark 6.13 (Comparison with completion). Let (C,O) be a ringed site. Let I ⊂
O be a finite type sheaf of ideals. Let K 7→ K∧ be the derived completion functor of
Proposition 6.12. For any n ≥ 1 the object K ⊗L

O O/In is derived complete as it is
annihilated by powers of local sections of I . Hence there is a canonical factorization

K → K∧ → K ⊗L
O O/In

of the canonical map K → K ⊗L
O O/In. These maps are compatible for varying n and

we obtain a comparison map

K∧ −→ R lim
(
K ⊗L

O O/In
)

The right hand side is more recognizable as a kind of completion. In general this compar-
ison map is not an isomorphism.

Remark 6.14 (Localization and derived completion). Let (C,O) be a ringed site. Let
I ⊂ O be a finite type sheaf of ideals. Let K 7→ K∧ be the derived completion functor
of Proposition 6.12. It follows from the construction in the proof of the proposition that
K∧|U is the derived completion ofK|U for anyU ∈ Ob(C). But we can also prove this as
follows. From the definition of derived complete objects it follows that K∧|U is derived
complete. Thus we obtain a canonical map a : (K|U )∧ → K∧|U . On the other hand,
if E is a derived complete object of D(OU ), then Rj∗E is a derived complete object of
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D(O) by Lemma 6.7. Here j is the localization morphism (Modules on Sites, Section 19).
Hence we also obtain a canonical map b : K∧ → Rj∗((K|U )∧). We omit the (formal)
verification that the adjoint of b is the inverse of a.

Remark 6.15 (Completed tensor product). Let (C,O) be a ringed site. Let I ⊂ O be
a finite type sheaf of ideals. Denote K 7→ K∧ the adjoint of Proposition 6.12. Then we
set

K ⊗∧
O L = (K ⊗L

O L)∧

This completed tensor product defines a functor Dcomp(O) × Dcomp(O) → Dcomp(O)
such that we have

HomDcomp(O)(K,RHomO(L,M)) = HomDcomp(O)(K ⊗∧
O L,M)

for K,L,M ∈ Dcomp(O). Note that RHomO(L,M) ∈ Dcomp(O) by Lemma 6.5.

Lemma 6.16. Let C be a site. Assume ϕ : O → O′ is a flat homomorphism of sheaves
of rings. Let f1, . . . , fr be global sections ofO such thatO/(f1, . . . , fr) ∼= O′/(f1, . . . , fr)O′.
Then the map of extended alternating Čech complexes

O →
∏
i0
Ofi0 →

∏
i0<i1

Ofi0fi1 → . . .→ Of1...fr

��
O′ →

∏
i0
O′
fi0
→
∏
i0<i1

O′
fi0fi1

→ . . .→ O′
f1...fr

is a quasi-isomorphism.

Proof. Observe that the second complex is the tensor product of the first complex
with O′. We can write the first extended alternating Čech complex as a colimit of the
Koszul complexes Kn = K(O, fn1 , . . . , fnr ), see More on Algebra, Lemma 29.6. Hence
it suffices to prove Kn → Kn ⊗O O′ is a quasi-isomorphism. Since O → O′ is flat it
suffices to show thatHi → Hi⊗OO′ is an isomorphism whereHi is the ith cohomology
sheaf Hi = Hi(Kn). These sheaves are annihilated by fn1 , . . . , fnr , see More on Algebra,
Lemma 28.6. Hence these sheaves are annihilated by (f1, . . . , fr)m for somem� 0. Thus
Hi → Hi ⊗O O′ is an isomorphism by Modules on Sites, Lemma 28.16. �

Lemma 6.17. Let C be a site. Let O → O′ be a homomorphism of sheaves of rings.
Let I ⊂ O be a finite type sheaf of ideals. If O → O′ is flat and O/I ∼= O′/IO′,
then the restriction functor D(O′)→ D(O) induces an equivalence Dcomp(O′, IO′)→
Dcomp(O, I).

Proof. Lemma 6.7 implies restriction r : D(O′) → D(O) sends Dcomp(O′, IO′)
into Dcomp(O, I). We will construct a quasi-inverse E 7→ E′.

Let K → O be the morphism of D(O) constructed in Lemma 6.11. Set K ′ = K ⊗L
O O′ in

D(O′). Then K ′ → O′ is a map in D(O′) which satisfies the conclusions of Lemma 6.11
with respect to I ′ = IO′. The map K → r(K ′) is a quasi-isomorphism by Lemma 6.16.
Now, for E ∈ Dcomp(O, I) we set

E′ = RHomO(r(K ′), E)

viewed as an object in D(O′) using the O′-module structure on K ′. Since E is derived
complete we haveE = RHomO(K,E), see proof of Proposition 6.12. On the other hand,
since K → r(K ′) is an isomorphism in we see that there is an isomorphism E → r(E′)
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in D(O). To finish the proof we have to show that, if E = r(M ′) for an object M ′ of
Dcomp(O′, I ′), then E′ ∼= M ′. To get a map we use
M ′ = RHomO′(O′,M ′)→ RHomO(r(O′), r(M ′))→ RHomO(r(K ′), r(M ′)) = E′

where the second arrow uses the map K ′ → O′. To see that this is an isomorphism, one
shows that r applied to this arrow is the same as the isomorphism E → r(E′) above.
Details omitted. �

Lemma 6.18. Let f : (Sh(D),O′)→ (Sh(C),O) be a morphism of ringed topoi. Let
I ⊂ O and I ′ ⊂ O′ be finite type sheaves of ideals such that f ] sends f−1I into I ′. Then
Rf∗ sends Dcomp(O′, I ′) into Dcomp(O, I) and has a left adjoint Lf∗

comp which is Lf∗

followed by derived completion.

Proof. The first statement we have seen in Lemma 6.7. Note that the second state-
ment makes sense as we have a derived completion functor D(O′) → Dcomp(O′, I ′) by
Proposition 6.12. OK, so now let K ∈ Dcomp(O, I) and M ∈ Dcomp(O′, I ′). Then we
have

Hom(K,Rf∗M) = Hom(Lf∗K,M) = Hom(Lf∗
compK,M)

by the universal property of derived completion. �

Lemma 6.19. Let f : (Sh(D),O′)→ (Sh(C),O) be a morphism of ringed topoi. Let
I ⊂ O be a finite type sheaf of ideals. Let I ′ ⊂ O′ be the ideal generated by f ](f−1I).
Then Rf∗ commutes with derived completion, i.e., Rf∗(K∧) = (Rf∗K)∧.

Proof. By Proposition 6.12 the derived completion functors exist. By Lemma 6.7 the
object Rf∗(K∧) is derived complete, and hence we obtain a canonical map (Rf∗K)∧ →
Rf∗(K∧) by the universal property of derived completion. We may check this map is
an isomorphism locally on C. Thus, since derived completion commutes with localization
(Remark 6.14) we may assume that I is generated by global sections f1, . . . , fr. Then I ′

is generated by gi = f ](fi). By Lemma 6.9 we have to prove that

R lim
(
Rf∗K ⊗L

O K(O, fn1 , . . . , fnr )
)

= Rf∗
(
R limK ⊗L

O′ K(O′, gn1 , . . . , g
n
r )
)

BecauseRf∗ commutes withR lim (Cohomology on Sites, Lemma 23.3) it suffices to prove
that

Rf∗K ⊗L
O K(O, fn1 , . . . , fnr ) = Rf∗

(
K ⊗L

O′ K(O′, gn1 , . . . , g
n
r )
)

This follows from the projection formula (Cohomology on Sites, Lemma 50.1) and the fact
that Lf∗K(O, fn1 , . . . , fnr ) = K(O′, gn1 , . . . , g

n
r ). �

Lemma 6.20. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let C be a
site and letO be a sheaf of A-algebras. Let F be a sheaf ofO-modules. Then we have

RΓ(C,F)∧ = RΓ(C,F∧)
in D(A) where F∧ is the derived completion of F with respect to IO and on the left
hand wide we have the derived completion with respect to I . This produces two spectral
sequences

Ei,j2 = Hi(Hj(C,F)∧) and Ep,q2 = Hp(C,Hq(F∧))
both converging to H∗(RΓ(C,F)∧) = H∗(C,F∧)

Proof. Apply Lemma 6.19 to the morphism of ringed topoi (C,O) → (pt, A) and
take cohomology to get the first statement. The second spectral sequence is the second
spectral sequence of Derived Categories, Lemma 21.3. The first spectral sequence is the
spectral sequence of More on Algebra, Example 91.22 applied to RΓ(C,F)∧. �
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Remark 6.21. Let (C,O) be a ringed site. Let I ⊂ O be a finite type sheaf of ideals.
Let K 7→ K∧ be the derived completion of Proposition 6.12. Let U ∈ Ob(C) be an object
such that I is generated as an ideal sheaf by f1, . . . , fr ∈ I(U). Set A = O(U) and
I = (f1, . . . , fr) ⊂ A. Warning: it may not be the case that I = I(U). Then we have

RΓ(U,K∧) = RΓ(U,K)∧

where the right hand side is the derived completion of the objectRΓ(U,K) ofD(A) with
respect to I . This is true because derived completion commutes with localization (Remark
6.14) and Lemma 6.20.

7. The theorem on formal functions

We interrupt the flow of the exposition to talk a little bit about derived completion in the
setting of quasi-coherent modules on schemes and to use this to give a somewhat different
proof of the theorem on formal functions. We give some pointers to the literature in
Remark 7.4.
Lemma 6.19 is a (very formal) derived version of the theorem on formal functions (Coho-
mology of Schemes, Theorem 20.5). To make this more explicit, suppose f : X → S is a
morphism of schemes, I ⊂ OS is a quasi-coherent sheaf of ideals of finite type, and F is a
quasi-coherent sheaf on X . Then the lemma says that
(7.0.1) Rf∗(F∧) = (Rf∗F)∧

where F∧ is the derived completion of F with respect to f−1I · OX and the right hand
side is the derived completion of Rf∗F with respect to I . To see that this gives back the
theorem on formal functions we have to do a bit of work.

Lemma 7.1. Let X be a locally Noetherian scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let K be a pseudo-coherent object of D(OX) with derived completion
K∧. Then

Hp(U,K∧) = limHp(U,K)/InHp(U,K) = Hp(U,K)∧

for any affine open U ⊂ X where I = I(U) and where on the right we have the derived
completion with respect to I .

Proof. Write U = Spec(A). The ring A is Noetherian and hence I ⊂ A is finitely
generated. Then we have

RΓ(U,K∧) = RΓ(U,K)∧

by Remark 6.21. Now RΓ(U,K) is a pseudo-coherent complex of A-modules (Derived
Categories of Schemes, Lemma 10.2). By More on Algebra, Lemma 94.4 we conclude that
the pth cohomology module ofRΓ(U,K∧) is equal to the I-adic completion ofHp(U,K).
This proves the first equality. The second (less important) equality follows immediately
from a second application of the lemma just used. �

Lemma 7.2. Let X be a locally Noetherian scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals. Let K be an object of D(OX). Then

(1) the derived completion K∧ is equal to R lim(K ⊗L
OX
OX/In).

Let K is a pseudo-coherent object of D(OX). Then
(2) the cohomology sheaf Hq(K∧) is equal to limHq(K)/InHq(K).

Let F be a coherentOX -module1. Then

1For example Hq(K) for K pseudo-coherent on our locally Noetherian X .
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(3) the derived completion F∧ is equal to limF/InF ,
(4) limF/InF = R limF/InF ,
(5) Hp(U,F∧) = 0 for p 6= 0 for all affine opens U ⊂ X .

Proof. Proof of (1). There is a canonical map

K −→ R lim(K ⊗L
OX
OX/In),

see Remark 6.13. Derived completion commutes with passing to open subschemes (Remark
6.14). Formation ofR lim commutes with passsing to open subschemes. It follows that to
check our map is an isomorphism, we may work locally. Thus we may assume X = U =
Spec(A). Say I = (f1, . . . , fr). Let Kn = K(A, fn1 , . . . , fnr ) be the Koszul complex. By
More on Algebra, Lemma 94.1 we have seen that the pro-systems {Kn} and {A/In} of
D(A) are isomorphic. Using the equivalenceD(A) = DQCoh(OX) of Derived Categories
of Schemes, Lemma 3.5 we see that the pro-systems {K(OX , fn1 , . . . , fnr )} and {OX/In}
are isomorphic in D(OX). This proves the second equality in

K∧ = R lim
(
K ⊗L

OX
K(OX , fn1 , . . . , fnr )

)
= R lim(K ⊗L

OX
OX/In)

The first equality is Lemma 6.9.

AssumeK is pseudo-coherent. ForU ⊂ X affine open we haveHq(U,K∧) = limHq(U,K)/In(U)Hq(U,K)
by Lemma 7.1. As this is true for every U we see that Hq(K∧) = limHq(K)/InHq(K)
as sheaves. This proves (2).

Part (3) is a special case of (2). Parts (4) and (5) follow from Derived Categories of Schemes,
Lemma 3.2. �

Lemma 7.3. Let A be a Noetherian ring and let I ⊂ A be an ideal. Let X be a Noe-
therian scheme overA. LetF be a coherentOX -module. Assume thatHp(X,F) is a finite
A-module for all p. Then there are short exact sequences

0→ R1 limHp−1(X,F/InF)→ Hp(X,F)∧ → limHp(X,F/InF)→ 0
of A-modules where Hp(X,F)∧ is the usual I-adic completion. If f is proper, then the
R1 lim term is zero.

Proof. Consider the two spectral sequences of Lemma 6.20. The first degenerates by
More on Algebra, Lemma 94.4. We obtain Hp(X,F)∧ in degree p. This is where we use
the assumption that Hp(X,F) is a finite A-module. The second degenerates because

F∧ = limF/InF = R limF/InF
is a sheaf by Lemma 7.2. We obtain Hp(X, limF/InF) in degree p. Since RΓ(X,−)
commutes with derived limits (Injectives, Lemma 13.6) we also get

RΓ(X, limF/InF) = RΓ(X,R limF/InF) = R limRΓ(X,F/InF)
By More on Algebra, Remark 87.6 we obtain exact sequences

0→ R1 limHp−1(X,F/InF)→ Hp(X, limF/InF)→ limHp(X,F/InF)→ 0
ofA-modules. Combining the above we get the first statement of the lemma. The vanish-
ing of the R1 lim term follows from Cohomology of Schemes, Lemma 20.4. �

Remark 7.4. Here are some references to discussions of related material the litera-
ture. It seems that a “derived formal functions theorem” for proper maps goes back to [?,
Theorem 6.3.1]. There is the discussion in [?], especially Chapter 4 which discusses the
affine story, see More on Algebra, Section 91. In [?, Section 2.9] one finds a discussion of
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proper base change and derived completion using (ind) coherent modules. An analogue of
(7.0.1) for complexes of quasi-coherent modules can be found as [?, Theorem 6.5]

8. Algebraization of local cohomology, I

LetA be a Noetherian ring and let I and J be two ideals ofA. LetM be a finiteA-module.
In this section we study the cohomology groups of the object

RΓJ(M)∧ of D(A)

where ∧ denotes derived I-adic completion. Observe that in Dualizing Complexes, Lemma
12.5 we have shown, if A is complete with respect to I , that there is an isomorphism

colimH0
Z(M) −→ H0(RΓJ(M)∧)

where the (directed) colimit is over the closed subsetsZ = V (J ′) with J ′ ⊂ J andV (J ′)∩
V (I) = V (J) ∩ V (I). The union of these closed subsets is

(8.0.1) T = {p ∈ Spec(A) : V (p) ∩ V (I) ⊂ V (J) ∩ V (I)}

This is a subset of Spec(A) stable under specialization. The result above becomes the
statement that

H0
T (M) −→ H0(RΓJ(M)∧)

is an isomorphism providedA is complete with respect to I , see Local Cohomology, Lemma
5.3 and Remark 5.6. Our method to extend this isomorphism to higher cohomology
groups rests on the following lemma.

Lemma 8.1. Let I, J be ideals of a Noetherian ring A. Let M be a finite A-module.
Let p ⊂ A be a prime. Let s and d be integers. Assume

(1) A has a dualizing complex,
(2) p 6∈ V (J) ∩ V (I),
(3) cd(A, I) ≤ d, and
(4) for all primes p′ ⊂ p we have depthAp′

(Mp′) + dim((A/p′)q) > d + s for all
q ∈ V (p′) ∩ V (J) ∩ V (I).

Then there exists an f ∈ A, f 6∈ p which annihilates Hi(RΓJ(M)∧) for i ≤ s where ∧

indicates I-adic completion.

Proof. We will use that RΓJ = RΓV (J) and similarly for I + J , see Dualizing
Complexes, Lemma 10.1. Observe that RΓJ(M)∧ = RΓI(RΓJ(M))∧ = RΓI+J(M)∧,
see Dualizing Complexes, Lemmas 12.1 and 9.6. Thus we may replace J by I + J and
assume I ⊂ J and p 6∈ V (J). Recall that

RΓJ(M)∧ = RHomA(RΓI(A), RΓJ(M))

by the description of derived completion in More on Algebra, Lemma 91.10 combined with
the description of local cohomology in Dualizing Complexes, Lemma 10.2. Assumption
(3) means thatRΓI(A) has nonzero cohomology only in degrees≤ d. Using the canonical
truncations of RΓI(A) we find it suffices to show that

Exti(N,RΓJ(M))

is annihilated by an f ∈ A, f 6∈ p for i ≤ s + d and any A-module N . In turn using the
canonical truncations for RΓJ(M) we see that it suffices to show Hi

J(M) is annihilated
by an f ∈ A, f 6∈ p for i ≤ s+d. This follows from Local Cohomology, Lemma 10.2. �
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Lemma 8.2. Let I, J be ideals of a Noetherian ring. Let M be a finite A-module. Let
s and d be integers. With T as in (8.0.1) assume

(1) A has a dualizing complex,
(2) if p ∈ V (I), then no condition,
(3) if p 6∈ V (I), p ∈ T , then dim((A/p)q) ≤ d for some q ∈ V (p) ∩ V (J) ∩ V (I),
(4) if p 6∈ V (I), p 6∈ T , then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

for all q ∈ V (p) ∩ V (J) ∩ V (I).
Then there exists an ideal J0 ⊂ J with V (J0) ∩ V (I) = V (J) ∩ V (I) such that for any
J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I) the map

RΓJ′(M) −→ RΓJ0(M)

induces an isomorphism in cohomology in degrees ≤ s and moreover these modules are
annihilated by a power of J0I .

Proof. Let us consider the set

B = {p 6∈ V (I), p ∈ T, and depth(Mp) ≤ s}

Choose J0 ⊂ J such that V (J0) is the closure of B ∪ V (J).

Claim I: V (J0) ∩ V (I) = V (J) ∩ V (I).

Proof of Claim I. The inclusion ⊃ holds by construction. Let p be a minimal prime of
V (J0). If p ∈ B ∪ V (J), then either p ∈ T or p ∈ V (J) and in both cases V (p) ∩
V (I) ⊂ V (J)∩ V (I) as desired. If p 6∈ B ∪ V (J), then V (p)∩B is dense, hence infinite,
and we conclude that depth(Mp) < s by Local Cohomology, Lemma 9.2. In fact, let
V (p) ∩ B = {pλ}λ∈Λ. Pick qλ ∈ V (pλ) ∩ V (J) ∩ V (I) as in (3). Let δ : Spec(A) → Z
be the dimension function associated to a dualizing complex ω•

A for A. Since Λ is infinite
and δ is bounded, there exists an infinite subset Λ′ ⊂ Λ on which δ(qλ) is constant. For
λ ∈ Λ′ we have

depth(Mpλ) + δ(pλ)− δ(qλ) = depth(Mpλ) + dim((A/pλ)qλ) ≤ d+ s

by (3) and the definition of B. By the semi-continuity of the function depth + δ proved
in Duality for Schemes, Lemma 2.8 we conclude that

depth(Mp) + dim((A/p)qλ) = depth(Mp) + δ(p)− δ(qλ) ≤ d+ s

Since also p 6∈ V (I) we read off from (4) that p ∈ T , i.e., V (p) ∩ V (I) ⊂ V (J) ∩ V (I).
This finishes the proof of Claim I.

Claim II: Hi
J0

(M) → Hi
J(M) is an isomorphism for i ≤ s and J ′ ⊂ J0 with V (J ′) ∩

V (I) = V (J) ∩ V (I).

Proof of claim II. Choose p ∈ V (J ′) not in V (J0). It suffices to show thatHi
pAp

(Mp) = 0
for i ≤ s, see Local Cohomology, Lemma 2.6. Observe that p ∈ T . Hence since p is not
in B we see that depth(Mp) > s and the groups vanish by Dualizing Complexes, Lemma
11.1.

Claim III. The final statement of the lemma is true.

By Claim II for i ≤ s we have

Hi
T (M) = Hi

J0
(M) = Hi

J′(M)
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for all ideals J ′ ⊂ J0 with V (J ′)∩V (I) = V (J)∩V (I). See Local Cohomology, Lemma
5.3. Let us check the hypotheses of Local Cohomology, Proposition 10.1 for the subsets
T ⊂ T ∪ V (I), the module M , and the integer s. We have to show that given p ⊂ q with
p 6∈ T ∪ V (I) and q ∈ T we have

depthAp
(Mp) + dim((A/p)q) > s

If depth(Mp) ≥ s, then this is true because the dimension of (A/p)q is at least 1. Thus
we may assume depth(Mp) < s. If q ∈ V (I), then q ∈ V (J) ∩ V (I) and the inequality
holds by (4). If q 6∈ V (I), then we can use (3) to pick q′ ∈ V (q) ∩ V (J) ∩ V (I) with
dim((A/q)q′) ≤ d. Then assumption (4) gives

depthAp
(Mp) + dim((A/p)q′) > s+ d

Since A is catenary this implies the inequality we want. Applying Local Cohomology,
Proposition 10.1 we find J ′′ ⊂ A with V (J ′′) ⊂ T ∪ V (I) such that J ′′ annihilates
Hi
T (M) for i ≤ s. Then we can write V (J ′′)∪V (J0)∪V (I) = V (J ′I) for some J ′ ⊂ J0

with V (J ′) ∩ V (I) = V (J) ∩ V (I). Replacing J0 by J ′ the proof is complete. �

Lemma 8.3. In Lemma 8.2 if instead of the empty condition (2) we assume
(2’) if p ∈ V (I), p 6∈ V (J) ∩ V (I), then depthAp

(Mp) + dim((A/p)q) > s for all
q ∈ V (p) ∩ V (J) ∩ V (I),

then the conditions also imply that Hi
J0

(M) is a finite A-module for i ≤ s.

Proof. Recall that Hi
J0

(M) = Hi
T (M), see proof of Lemma 8.2. Thus it suffices to

check that for p 6∈ T and q ∈ T with p ⊂ q we have depthAp
(Mp) + dim((A/p)q) > s,

see Local Cohomology, Proposition 11.1. Condition (2’) tells us this is true for p ∈ V (I).
Since we know Hi

T (M) is annihilated by a power of IJ0 we know the condition holds if
p 6∈ V (IJ0) by Local Cohomology, Proposition 10.1. This covers all cases and the proof
is complete. �

Lemma 8.4. If in Lemma 8.2 we additionally assume
(6) if p 6∈ V (I), p ∈ T , then depthAp

(Mp) > s,

then Hi
J0

(M) = Hi
J(M) = Hi

J+I(M) for i ≤ s and these modules are annihilated by a
power of I .

Proof. Choose p ∈ V (J) or p ∈ V (J0) but p 6∈ V (J + I) = V (J0 + I). It
suffices to show that Hi

pAp
(Mp) = 0 for i ≤ s, see Local Cohomology, Lemma 2.6. These

groups vanish by condition (6) and Dualizing Complexes, Lemma 11.1. The final statement
follows from Local Cohomology, Proposition 10.1. �

Lemma 8.5. Let I, J be ideals of a Noetherian ring A. Let M be a finite A-module.
Let s and d be integers. With T as in (8.0.1) assume

(1) A is I-adically complete and has a dualizing complex,
(2) if p ∈ V (I) no condition,
(3) cd(A, I) ≤ d,
(4) if p 6∈ V (I), p 6∈ T then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

for all q ∈ V (p) ∩ V (J) ∩ V (I),
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(5) if p 6∈ V (I), p 6∈ T , V (p) ∩ V (J) ∩ V (I) 6= ∅, and depth(Mp) < s, then one of
the following holds2:
(a) dim(Supp(Mp)) < s+ 23, or
(b) δ(p) > d + δmax − 1 where δ is a dimension function and δmax is the

maximum of δ on V (J) ∩ V (I), or
(c) depthAp

(Mp) + dim((A/p)q) > d + s + δmax − δmin − 2 for all q ∈
V (p) ∩ V (J) ∩ V (I).

Then there exists an ideal J0 ⊂ J with V (J0) ∩ V (I) = V (J) ∩ V (I) such that for any
J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I) the map

RΓJ′(M) −→ RΓJ(M)∧

induces an isomorphism on cohomology in degrees ≤ s. Here ∧ denotes derived I-adic
completion.

We encourage the reader to read the proof in the local case first (Lemma 9.5) as it explains
the structure of the proof without having to deal with all the inequalities.

Proof. For an ideal a ⊂ A we have RΓa = RΓV (a), see Dualizing Complexes,
Lemma 10.1. Next, we observe that
RΓJ(M)∧ = RΓI(RΓJ(M))∧ = RΓI+J(M)∧ = RΓI+J′(M)∧ = RΓI(RΓJ′(M))∧ = RΓJ′(M)∧

by Dualizing Complexes, Lemmas 9.6 and 12.1. This explains how we define the arrow in
the statement of the lemma.
We claim that the hypotheses of Lemma 8.2 are implied by our current hypotheses on M .
The only thing to verify is hypothesis (3). Thus let p 6∈ V (I), p ∈ T . Then V (p)∩V (I) is
nonempty as I is contained in the Jacobson radical ofA (Algebra, Lemma 96.6). Since p ∈
T we have V (p)∩V (I) = V (p)∩V (J)∩V (I). Let q ∈ V (p)∩V (I) be the generic point
of an irreducible component. We have cd(Aq, Iq) ≤ d by Local Cohomology, Lemma 4.6.
We have V (pAq)∩V (Iq) = {qAq} by our choice of q and we conclude dim((A/p)q) ≤ d
by Local Cohomology, Lemma 4.10.
Observe that the lemma holds for s < 0. This is not a trivial case because it is not a priori
clear that Hi(RΓJ(M)∧) is zero for i < 0. However, this vanishing was established in
Dualizing Complexes, Lemma 12.4. We will prove the lemma by induction for s ≥ 0.
The lemma for s = 0 follows immediately from the conclusion of Lemma 8.2 and Dualiz-
ing Complexes, Lemma 12.5.
Assume s > 0 and the lemma has been shown for smaller values of s. Let M ′ ⊂M be the
maximal submodule whose support is contained inV (I)∪T . ThenM ′ is a finiteA-module
whose support is contained in V (J ′)∪ V (I) for some ideal J ′ ⊂ J with V (J ′)∩ V (I) =
V (J) ∩ V (I). We claim that

RΓJ′(M ′)→ RΓJ(M ′)∧

is an isomorphism for any choice of J ′. Namely, we can choose a short exact sequence 0→
M1 ⊕M2 →M ′ → N → 0 with M1 annihilated by a power of J ′, with M2 annihilated
by a power of I , and withN annihilated by a power of I+J ′. Thus it suffices to show that
the claim holds for M1, M2, and N . In the case of M1 we see that RΓJ′(M1) = M1 and
sinceM1 is a finiteA-module and I-adically complete we haveM∧

1 = M1. This proves the

2Our method forces this additional condition. We will return to this (insert future reference).
3For example if M satisfies Serre’s condition (Ss) on the complement of V (I) ∪ T .



4246 52. ALGEBRAIC AND FORMAL GEOMETRY

claim forM1 by the initial remarks of the proof. In the case ofM2 we see thatHi
J(M2) =

Hi
I+J(M) = Hi

I+J′(M) = Hi
J′(M2) are annihilated by a power of I and hence derived

complete. Thus the claim in this case also. For N we can use either of the arguments just
given. Considering the short exact sequence 0→M ′ →M →M/M ′ → 0 we see that it
suffices to prove the lemma for M/M ′. Thus we may assume Ass(M) ∩ (V (I) ∪ T ) = ∅.

Let p ∈ Ass(M) be such that V (p)∩V (J)∩V (I) = ∅. Since I is contained in the Jacobson
radical of A this implies that V (p) ∩ V (J ′) = ∅ for any J ′ ⊂ J with V (J ′) ∩ V (I) =
V (J) ∩ V (I). Thus setting N = H0

p(M) we see that RΓJ(N) = RΓJ′(N) = 0 for all
J ′ ⊂ J with V (J ′) ∩ V (I) = V (J) ∩ V (I). In particular RΓJ(N)∧ = 0. Thus we may
replace M by M/N as this changes the structure of M only in primes which do not play
a role in conditions (4) or (5). Repeating we may assume that V (p) ∩ V (J) ∩ V (I) 6= ∅
for all p ∈ Ass(M).

Assume Ass(M) ∩ (V (I) ∪ T ) = ∅ and that V (p) ∩ V (J) ∩ V (I) 6= ∅ for all p ∈
Ass(M). Let p ∈ Ass(M). We want to show that we may apply Lemma 8.1. It is in the
verification of this that we will use the supplemental condition (5). Choose p′ ⊂ p and
q′ ⊂ V (p) ∩ V (J) ∩ V (I).

(1) If Mp′ = 0, then depth(Mp′) =∞ and depth(Mp′) + dim((A/p′)q′) > d+ s.
(2) If depth(Mp′) < s, then depth(Mp′) + dim((A/p′)q′) > d+ s by (4).

In the remaining cases we have Mp′ 6= 0 and depth(Mp′) ≥ s. In particular, we see that
p′ is in the support of M and we can choose p′′ ⊂ p′ with p′′ ∈ Ass(M).

(a) Observe that dim((A/p′′)p′) ≥ depth(Mp′) by Algebra, Lemma 72.9. If equality
holds, then we have

depth(Mp′) + dim((A/p′)q′) = depth(Mp′′) + dim((A/p′′)q′) > s+ d

by (4) applied to p′′ and we are done. This means we are only in trouble if
dim((A/p′′)p′) > depth(Mp′). This implies that dim(Mp) ≥ s + 2. Thus
if (5)(a) holds, then this does not occur.

(b) If (5)(b) holds, then we get

depth(Mp′) + dim((A/p′)q′) ≥ s+ δ(p′)− δ(q′) ≥ s+ 1 + δ(p)− δmax > s+ d

as desired.
(c) If (5)(c) holds, then we get

depth(Mp′) + dim((A/p′)q′) ≥ s+ δ(p′)− δ(q′)
≥ s+ 1 + δ(p)− δ(q′)
= s+ 1 + δ(p)− δ(q) + δ(q)− δ(q′)
> s+ 1 + (s+ d+ δmax − δmin − 2) + δ(q)− δ(q′)
≥ 2s+ d− 1 ≥ s+ d

as desired. Observe that this argument works because we know that a prime
q ∈ V (p) ∩ V (J) ∩ V (I) exists.

Now we are ready to do the induction step.

Choose an ideal J0 as in Lemma 8.2 and an integer t > 0 such that (J0I)t annihilates
Hs
J(M). The assumptions of Lemma 8.1 are satisfied for every p ∈ Ass(M) (see previous

paragraph). Thus the annihilator a ⊂ A of Hs(RΓJ(M)∧) is not contained in p for
p ∈ Ass(M). Thus we can find an f ∈ a(J0I)t not in any associated prime of M which
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is an annihilator of both Hs(RΓJ(M)∧) and Hs
J(M). Then f is a nonzerodivisor on M

and we can consider the short exact sequence

0→M
f−→M →M/fM → 0

Our choice of f shows that we obtain

Hs−1
J′ (M)

��

// Hs−1
J′ (M/fM)

��

// Hs
J′(M)

��

// 0

Hs−1(RΓJ(M)∧) // Hs−1(RΓJ(M/fM)∧) // Hs(RΓJ(M)∧) // 0

for any J ′ ⊂ J0 with V (J ′) ∩ V (I) = V (J) ∩ V (I). Thus if we choose J ′ such that it
works for M and M/fM and s − 1 (possible by induction hypothesis – see next para-
graph), then we conclude that the lemma is true.
To finish the proof we have to show that the module M/fM satisfies the hypotheses (4)
and (5) for s−1. Thus we let p be a prime in the support ofM/fM with depth((M/fM)p) <
s− 1 and with V (p) ∩ V (J) ∩ V (I) nonempty. Then dim(Mp) = dim((M/fM)p) + 1
and depth(Mp) = depth((M/fM)p) + 1. In particular, we know (4) and (5) hold for p
and M with the original value s. The desired inequalities then follow by inspection. �

Example 8.6. In Lemma 8.5 we do not know that the inverse systems Hi
J(M/InM)

satisfy the Mittag-Leffler condition. For example, suppose that A = Zp[[x, y]], I = (p),
J = (p, x), and M = A/(xy − p). Then the image of H0

J(M/pnM) → H0
J(M/pM) is

the ideal generated by yn in M/pM = A/(p, xy).

9. Algebraization of local cohomology, II

In this section we redo the arguments of Section 8 when (A,m) is a local ring and we take
local cohomologyRΓm with respect tom. As before our main tool is the following lemma.

Lemma 9.1. Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M be
a finite A-module and let p ⊂ A be a prime. Let s and d be integers. Assume

(1) A has a dualizing complex,
(2) cd(A, I) ≤ d, and
(3) depthAp

(Mp) + dim(A/p) > d+ s.
Then there exists an f ∈ A \ p which annihilates Hi(RΓm(M)∧) for i ≤ s where ∧

indicates I-adic completion.

Proof. According to Local Cohomology, Lemma 9.4 the function
p′ 7−→ depthAp′

(Mp′) + dim(A/p′)

is lower semi-continuous on Spec(A). Thus the value of this function on p′ ⊂ p is> s+d.
Thus our lemma is a special case of Lemma 8.1 provided that p 6= m. If p = m, then we
have Hi

m(M) = 0 for i ≤ s+ d by the relationship between depth and local cohomology
(Dualizing Complexes, Lemma 11.1). Thus the argument given in the proof of Lemma 8.1
shows that Hi(RΓm(M)∧) = 0 for i ≤ s in this (degenerate) case. �

Lemma 9.2. Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M be
a finite A-module. Let s and d be integers. Assume

(1) A has a dualizing complex,
(2) if p ∈ V (I), then no condition,
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(3) if p 6∈ V (I) and V (p) ∩ V (I) = {m}, then dim(A/p) ≤ d,
(4) if p 6∈ V (I) and V (p) ∩ V (I) 6= {m}, then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim(A/p) > d+ s

Then there exists an ideal J0 ⊂ A with V (J0) ∩ V (I) = {m} such that for any J ⊂ J0
with V (J) ∩ V (I) = {m} the map

RΓJ(M) −→ RΓJ0(M)

induces an isomorphism in cohomology in degrees ≤ s and moreover these modules are
annihilated by a power of J0I .

Proof. This is a special case of Lemma 8.2. �

Lemma 9.3. In Lemma 9.2 if instead of the empty condition (2) we assume
(2’) if p ∈ V (I) and p 6= m, then depthAp

(Mp) + dim(A/p) > s,

then the conditions also imply that Hi
J0

(M) is a finite A-module for i ≤ s.

Proof. This is a special case of Lemma 8.3. �

Lemma 9.4. If in Lemma 9.2 we additionally assume
(6) if p 6∈ V (I) and V (p) ∩ V (I) = {m}, then depthAp

(Mp) > s,

then Hi
J0

(M) = Hi
J(M) = Hi

m(M) for i ≤ s and these modules are annihilated by a
power of I .

Proof. This is a special case of Lemma 8.4. �

Lemma 9.5. Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M be
a finite A-module. Let s and d be integers. Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if p ∈ V (I), no condition,
(3) cd(A, I) ≤ d,
(4) if p 6∈ V (I) and V (p) ∩ V (I) 6= {m} then

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim(A/p) > d+ s

Then there exists an ideal J0 ⊂ A with V (J0) ∩ V (I) = {m} such that for any J ⊂ J0
with V (J) ∩ V (I) = {m} the map

RΓJ(M) −→ RΓJ(M)∧ = RΓm(M)∧

induces an isomorphism in cohomology in degrees ≤ s. Here ∧ denotes derived I-adic
completion.

Proof. This lemma is a special case of Lemma 8.5 since condition (5)(c) is implied by
condition (4) as δmax = δmin = δ(m). We will give the proof of this important special
case as it is somewhat easier (fewer things to check).

There is no difference between RΓa and RΓV (a) in our current situation, see Dualizing
Complexes, Lemma 10.1. Next, we observe that

RΓm(M)∧ = RΓI(RΓJ(M))∧ = RΓJ(M)∧

by Dualizing Complexes, Lemmas 9.6 and 12.1 which explains the equality sign in the
statement of the lemma.
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Observe that the lemma holds for s < 0. This is not a trivial case because it is not a priori
clear that Hs(RΓm(M)∧) is zero for negative s. However, this vanishing was established
in Lemma 5.4. We will prove the lemma by induction for s ≥ 0.
The assumptions of Lemma 9.2 are satisfied by Local Cohomology, Lemma 4.10. The
lemma for s = 0 follows from Lemma 9.2 and Dualizing Complexes, Lemma 12.5.
Assume s > 0 and the lemma holds for smaller values of s. LetM ′ ⊂M be the submodule
of elements whose support is condained in V (I) ∪ V (J) for some ideal J with V (J) ∩
V (I) = {m}. Then M ′ is a finite A-module. We claim that

RΓJ(M ′)→ RΓm(M ′)∧

is an isomorphism for any choice of J . Namely, for any such module there is a short exact
sequence 0→M1⊕M2 →M ′ → N → 0 withM1 annihilated by a power of J , withM2
annihilated by a power of I and with N annihilated by a power of m. In the case of M1
we see that RΓJ(M1) = M1 and since M1 is a finite A-module and I-adically complete
we have M∧

1 = M1. Thus the claim holds for M1. In the case of M2 we see that Hi
J(M2)

is annihilated by a power of I and hence derived complete. Thus the claim forM2. By the
same arguments the claim holds forN and we conclude that the claim holds. Considering
the short exact sequence 0 → M ′ → M → M/M ′ → 0 we see that it suffices to prove
the lemma forM/M ′. This we may assume p ∈ Ass(M) implies V (p)∩V (I) 6= {m}, i.e.,
p is a prime as in (4).
Choose an ideal J0 as in Lemma 9.2 and an integer t > 0 such that (J0I)t annihilates
Hs
J(M). Here J denotes an arbitrary ideal J ⊂ J0 with V (J) ∩ V (I) = {m}. The as-

sumptions of Lemma 9.1 are satisfied for every p ∈ Ass(M) (see previous paragraph). Thus
the annihilator a ⊂ A of Hs(RΓm(M)∧) is not contained in p for p ∈ Ass(M). Thus we
can find an f ∈ a(J0I)t not in any associated prime ofM which is an annihilator of both
Hs(RΓm(M)∧) and Hs

J(M). Then f is a nonzerodivisor on M and we can consider the
short exact sequence

0→M
f−→M →M/fM → 0

Our choice of f shows that we obtain

Hs−1
J (M)

��

// Hs−1
J (M/fM)

��

// Hs
J(M)

��

// 0

Hs−1(RΓm(M)∧) // Hs−1(RΓm(M/fM)∧) // Hs(RΓm(M)∧) // 0

for any J ⊂ J0 with V (J) ∩ V (I) = {m}. Thus if we choose J such that it works for
M and M/fM and s − 1 (possible by induction hypothesis), then we conclude that the
lemma is true. �

10. Algebraization of local cohomology, III

In this section we bootstrap the material in Sections 8 and 9 to give a stronger result the
following situation.

Situation 10.1. Here A is a Noetherian ring. We have an ideal I ⊂ A, a finite A-
module M , and a subset T ⊂ V (I) stable under specialization. We have integers s and d.
We assume

(1) A has a dualizing complex,
(3) cd(A, I) ≤ d,
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(4) given primes p ⊂ r ⊂ q with p 6∈ V (I), r ∈ V (I) \ T , q ∈ T we have
depthAp

(Mp) ≥ s or depthAp
(Mp) + dim((A/p)q) > d+ s

(6) given q ∈ T denotingA′,m′, I ′,M ′ are the usual I-adic completions ofAq, qAq, Iq,Mq

we have
depth(M ′

p′) > s

for all p′ ∈ Spec(A′) \ V (I ′) with V (p′) ∩ V (I ′) = {m′}.

The following lemma explains why in Situation 10.1 it suffices to look at triples p ⊂ r ⊂ q
of primes in (4) even though the actual assumption only involves p and q.

Lemma 10.2. In Situation 10.1 let p ⊂ q be primes of A with p 6∈ V (I) and q ∈ T . If
there does not exist an r ∈ V (I) \ T with p ⊂ r ⊂ q then depth(Mp) > s.

Proof. Choose q′ ∈ T with p ⊂ q′ ⊂ q such that there is no prime in T strictly in
between p and q′. To prove the lemma we may and do replace q by q′. Next, let p′ ⊂ Aq be
the prime corresponding to p. After doing this we obtain that V (p′) ∩ V (IAq) = {qAq}
because of the nonexistence of a prime r as in the lemma. Let A′, I ′,m′,M ′ be the I-adic
completions of Aq, Iq, qAq,Mq. Since Aq → A′ is faithfully flat (Algebra, Lemma 97.3)
we can choose p′′ ⊂ A′ lying over p′ with dim(A′

p′′/p′A′
p′′) = 0. Then we see that

depth(M ′
p′′) = depth((Mq ⊗Aq

A′)p′′) = depth(Mp ⊗Ap
A′

p′′) = depth(Mp)
by flatness of A → A′ and our choice of p′′, see Algebra, Lemma 163.1. Since p′′ lies
over p′ we have V (p′′) ∩ V (I ′) = {m′}. Thus condition (6) in Situation 10.1 implies
depth(M ′

p′′) > s which finishes the proof. �

The following tedious lemma explains the relationships between various collections of
conditions one might impose.

Lemma 10.3. In Situation 10.1 we have
(E) if T ′ ⊂ T is a smaller specialization stable subset, then A, I, T ′,M satisfies the

assumptions of Situation 10.1,
(F) if S ⊂ A is a multiplicative subset, then S−1A,S−1I, T ′, S−1M satisfies the

assumptions of Situation 10.1 where T ′ ⊂ V (S−1I) is the inverse image of T ,
(G) the quadruple A′, I ′, T ′,M ′ satisfies the assumptions of Situation 10.1 where

A′, I ′,M ′ are the usual I-adic completions of A, I,M and T ′ ⊂ V (I ′) is the
inverse image of T .

Let I ⊂ a ⊂ A be an ideal such that V (a) ⊂ T . Then
(A) if I is contained in the Jacobson radical of A, then all hypotheses of Lemmas 8.2

and 8.4 are satisfied for A, I, a,M ,
(B) if A is complete with respect to I , then all hypotheses except for possibly (5) of

Lemma 8.5 are satisfied for A, I, a,M ,
(C) if A is local with maximal ideal m = a, then all hypotheses of Lemmas 9.2 and

9.4 hold for A,m, I,M ,
(D) if A is local with maximal ideal m = a and I-adically complete, then all hy-

potheses of Lemma 9.5 hold for A,m, I,M ,

Proof. Proof of (E). We have to prove assumptions (1), (3), (4), (6) of Situation 10.1
hold for A, I, T,M . Shrinking T to T ′ weakens assumption (6) and strengthens assump-
tion (4). However, if we have p ⊂ r ⊂ q with p 6∈ V (I), r ∈ V (I) \ T ′, q ∈ T ′ as in
assumption (4) for A, I, T ′,M , then either we can pick r ∈ V (I) \ T and condition (4)
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for A, I, T,M kicks in or we cannot find such an r in which case we get depth(Mp) > s
by Lemma 10.2. This proves (4) holds for A, I, T ′,M as desired.
Proof of (F). This is straightforward and we omit the details.
Proof of (G). We have to prove assumptions (1), (3), (4), (6) of Situation 10.1 hold for the
I-adic completionsA′, I ′, T ′,M ′. Please keep in mind that Spec(A′)→ Spec(A) induces
an isomorphism V (I ′)→ V (I).
Assumption (1): The ring A′ has a dualizing complex, see Dualizing Complexes, Lemma
22.4.
Assumption (3): Since I ′ = IA′ this follows from Local Cohomology, Lemma 4.5.
Assumption (4): If we have primes p′ ⊂ r′ ⊂ q′ in A′ with p′ 6∈ V (I ′), r′ ∈ V (I ′) \ T ′,
q′ ∈ T ′ then their images p ⊂ r ⊂ q in the spectrum of A satisfy p 6∈ V (I), r ∈ V (I) \ T ,
q ∈ T . Then we have

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

by assumption (4) forA, I, T,M . We have depth(M ′
p′) ≥ depth(Mp) and depth(M ′

p′) +
dim((A′/p′)q′) = depth(Mp) + dim((A/p)q) by Local Cohomology, Lemma 11.3. Thus
assumption (4) holds for A′, I ′, T ′,M ′.
Assumption (6): Let q′ ∈ T ′ lying over the prime q ∈ T . Then A′

q′ and Aq have iso-
morphic I-adic completions and similarly for Mq and M ′

q′ . Thus assumption (6) for
A′, I ′, T ′,M ′ is equivalent to assumption (6) for A, I, T,M .
Proof of (A). We have to check conditions (1), (2), (3), (4), and (6) of Lemmas 8.2 and 8.4
for (A, I, a,M). Warning: the set T in the statement of these lemmas is not the same as
the set T above.
Condition (1): This holds because we have assumedA has a dualizing complex in Situation
10.1.
Condition (2): This is empty.
Condition (3): Let p ⊂ Awith V (p)∩V (I) ⊂ V (a). Since I is contained in the Jacobson
radical of A we see that V (p) ∩ V (I) 6= ∅. Let q ∈ V (p) ∩ V (I) be a generic point. Since
cd(Aq, Iq) ≤ d (Local Cohomology, Lemma 4.6) and since V (pAq)∩ V (Iq) = {qAq} we
get dim((A/p)q) ≤ d by Local Cohomology, Lemma 4.10 which proves (3).
Condition (4): Suppose p 6∈ V (I) and q ∈ V (p) ∩ V (a). It suffices to show

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

If there exists a prime p ⊂ r ⊂ q with r ∈ V (I) \ T , then this follows immediately from
assumption (4) in Situation 10.1. If not, then depth(Mp) > s by Lemma 10.2.
Condition (6): Let p 6∈ V (I) with V (p) ∩ V (I) ⊂ V (a). Since I is contained in the
Jacobson radical of A we see that V (p) ∩ V (I) 6= ∅. Choose q ∈ V (p) ∩ V (I) ⊂ V (a).
It is clear there does not exist a prime p ⊂ r ⊂ q with r ∈ V (I) \ T . By Lemma 10.2 we
have depth(Mp) > s which proves (6).
Proof of (B). We have to check conditions (1), (2), (3), (4) of Lemma 8.5. Warning: the set
T in the statement of this lemma is not the same as the set T above.
Condition (1): This holds because A is complete and has a dualizing complex.
Condition (2): This is empty.
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Condition (3): This is the same as assumption (3) in Situation 10.1.

Condition (4): This is the same as assumption (4) in Lemma 8.2 which we proved in (A).

Proof of (C). This is true because the assumptions in Lemmas 9.2 and 9.4 are the same as
the assumptions in Lemmas 8.2 and 8.4 in the local case and we proved these hold in (A).

Proof of (D). This is true because the assumptions in Lemma 9.5 are the same as the as-
sumptions (1), (2), (3), (4) in Lemma 8.5 and we proved these hold in (B). �

Lemma 10.4. In Situation 10.1 assumeA is local with maximal ideal m and T = {m}.
Then Hi

m(M) → limHi
m(M/InM) is an isomorphism for i ≤ s and these modules are

annihilated by a power of I .

Proof. Let A′, I ′,m′,M ′ be the usual I-adic completions of A, I,m,M . Recall that
we have Hi

m(M) ⊗A A′ = Hi
m′(M ′) by flatness of A → A′ and Dualizing Complexes,

Lemma 9.3. Since Hi
m(M) is m-power torsion we have Hi

m(M) = Hi
m(M) ⊗A A′, see

More on Algebra, Lemma 89.3. We conclude that Hi
m(M) = Hi

m′(M ′). The exact same
arguments will show that Hi

m(M/InM) = Hi
m′(M ′/(I ′)nM ′) for all n and i.

Lemmas 9.5, 9.2, and 9.4 apply to A′,m′, I ′,M ′ by Lemma 10.3 parts (C) and (D). Thus
we get an isomorphism

Hi
m′(M ′) −→ Hi(RΓm′(M ′)∧)

for i ≤ s where ∧ is derived I ′-adic completion and these modules are annihilated by a
power of I ′. By Lemma 5.4 we obtain isomorphisms

Hi
m′(M ′) −→ limHi

m′(M ′/(I ′)nM ′))

for i ≤ s. Combined with the already established comparison with local cohomology over
A we conclude the lemma is true. �

Lemma 10.5. Let I ⊂ a be ideals of a Noetherian ringA. LetM be a finiteA-module.
Let s and d be integers. If we assume

(a) A has a dualizing complex,
(b) cd(A, I) ≤ d,
(c) if p 6∈ V (I) and q ∈ V (p) ∩ V (a) then depthAp

(Mp) > s or depthAp
(Mp) +

dim((A/p)q) > d+ s.
Then A, I, V (a),M, s, d are as in Situation 10.1.

Proof. We have to show that assumptions (1), (3), (4), and (6) of Situation 10.1 hold.
It is clear that (a)⇒ (1), (b)⇒ (3), and (c)⇒ (4). To finish the proof in the next paragraph
we show (6) holds.

Let q ∈ V (a). Denote A′, I ′,m′,M ′ the I-adic completions of Aq, Iq, qAq,Mq. Let
p′ ⊂ A′ be a nonmaximal prime with V (p′) ∩ V (I ′) = {m′}. Observe that this im-
plies dim(A′/p′) ≤ d by Local Cohomology, Lemma 4.10. Denote p ⊂ A the image of
p′. We have depth(M ′

p′) ≥ depth(Mp) and depth(M ′
p′) + dim(A′/p′) = depth(Mp) +

dim((A/p)q) by Local Cohomology, Lemma 11.3. By assumption (c) either we have depth(M ′
p′) ≥

depth(Mp) > s and we’re done or we have depth(M ′
p′) + dim(A′/p′) > s+ d which im-

plies depth(M ′
p′) > s because of the already shown inequality dim(A′/p′) ≤ d. In both

cases we obtain what we want. �
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Lemma 10.6. In Situation 10.1 the inverse systems {Hi
T (InM)}n≥0 are pro-zero for

i ≤ s. Moreover, there exists an integer m0 such that for all m ≥ m0 there exists an
integerm′(m) ≥ m such that for k ≥ m′(m) the image ofHs+1

T (IkM)→ Hs+1
T (ImM)

maps injectively to Hs+1
T (Im0M).

Proof. Fix m. Let q ∈ T . By Lemmas 10.3 and 10.4 we see that
Hi

q(Mq) −→ limHi
q(Mq/I

nMq)

is an isomorphism for i ≤ s. The inverse systems {Hi
q(InMq)}n≥0 and {Hi

q(M/InM)}n≥0
satisfy the Mittag-Leffler condition for all i, see Lemma 5.2. Thus looking at the inverse
system of long exact sequences

0→ H0
q (InMq)→ H0

q (Mq)→ H0
q (Mq/I

nMq)→ H1
q (InMq)→ H1

q (Mq)→ . . .

we conclude (some details omitted) that there exists an integer m′(m, q) ≥ m such that
for all k ≥ m′(m, q) the map Hi

q(IkMq) → Hi
q(ImMq) is zero for i ≤ s and the image

of Hs+1
q (IkMq) → Hs+1

q (ImMq) is independent of k ≥ m′(m, q) and maps injectively
into Hs+1

q (Mq).
Suppose we can show that m′(m, q) can be chosen independently of q ∈ T . Then the
lemma follows immediately from Local Cohomology, Lemmas 6.2 and 6.3.
Let ω•

A be a dualizing complex. Let δ : Spec(A) → Z be the corresponding dimension
function. Recall that δ attains only a finite number of values, see Dualizing Complexes,
Lemma 17.4. Claim: for each d ∈ Z the integer m′(m, q) can be chosen independently of
q ∈ T with δ(q) = d. Clearly the claim implies the lemma by what we said above.
Pick q ∈ T with δ(q) = d. Consider the ext modules

E(n, j) = ExtjA(InM,ω•
A)

A key feature we will use is that these are finite A-modules. Recall that (ω•
A)q[−d] is a

normalized dualizing complex for Aq by definition of the dimension function associated
to a dualizing complex, see Dualizing Complexes, Section 17. The local duality theorem
(Dualizing Complexes, Lemma 18.4) tells us that the qAq-adic completion ofE(n,−d−i)q
is Matlis dual to Hi

q(InMq). Thus the choice of m′(m, q) for i ≤ s in the first paragraph
tells us that for k ≥ m′(m, q) and j ≥ −d− s the map

E(m, j)q → E(k, j)q
is zero. Since these modules are finite and nonzero only for a finite number of possible j
(small detail omitted), we can find an open neighbourhood W ⊂ Spec(A) of q such that

E(m, j)q′ → E(m′(m, q), j)q′

is zero for j ≥ −d − s for all q′ ∈ W . Then of course the maps E(m, j)q′ → E(k, j)q′

for k ≥ m′(m, q) are zero as well.
For i = s + 1 corresponding to j = −d − s − 1 we obtain from local duality and the
results of the first paragraph that

Kk,q = Ker(E(m,−d− s− 1)q → E(k,−d− s− 1)q)
is independent of k ≥ m′(m, q) and that

E(0,−d− s− 1)q → E(m,−d− s− 1)q/Km′(m,q),q

is surjective. For k ≥ m′(m, q) set
Kk = Ker(E(m,−d− s− 1)→ E(k,−d− s− 1))
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Since Kk is an increasing sequence of submodules of the finite module E(m,−d− s− 1)
we see that, at the cost of increasing m′(m, q) a little bit, we may assume Km′(m,q) = Kk

for k ≥ m′(m, q). After shrinking W further if necessary, we may also assume that

E(0,−d− s− 1)q′ → E(m,−d− s− 1)q′/Km′(m,q),q′

is surjective for all q′ ∈W (as before use that these modules are finite and that the map is
surjective after localization at q).

Any subset, in particular Td = {q ∈ T with δ(q) = d}, of the Noetherian topological
space Spec(A) with the endowed topology is Noetherian and hence quasi-compact. Above
we have seen that for every q ∈ Td there is an open neighbourhood W where m′(m, q)
works for all q′ ∈ Td ∩W . We conclude that we can find an integer m′(m, d) such that
for all q ∈ Td we have

E(m, j)q → E(m′(m, d), j)q
is zero for j ≥ −d−s and withKm′(m,d) = Ker(E(m,−d−s−1)→ E(m′(m, d),−d−
s− 1)) we have

Km′(m,d),q = Ker(E(m,−d− s− 1)q → E(k,−d− s− 1)q)
for all k ≥ m′(m, d) and the map

E(0,−d− s− 1)q → E(m,−d− s− 1)q/Km′(m,d),q

is surjective. Using the local duality theorem again (in the opposite direction) we conclude
that the claim is correct. This finishes the proof. �

Lemma 10.7. In Situation 10.1 there exists an integer m0 ≥ 0 such that
(1) {Hi

T (M/InM)}n≥0 satisfies the Mittag-Leffler condition for i < s.
(2) {Hi

T (Im0M/InM)}n≥m0 satisfies the Mittag-Leffler condition for i ≤ s,
(3) Hi

T (M)→ limHi
T (M/InM) is an isomorphism for i < s,

(4) Hs
T (Im0M)→ limHs

T (Im0M/InM) is an isomorphism for i ≤ s,
(5) Hs

T (M)→ limHs
T (M/InM) is injective with cokernel killed by Im0 , and

(6) R1 limHs
T (M/InM) is killed by Im0 .

Proof. Consider the long exact sequences

0→ H0
T (InM)→ H0

T (M)→ H0
T (M/InM)→ H1

T (InM)→ H1
T (M)→ . . .

Parts (1) and (3) follows easily from this and Lemma 10.6.

Let m0 and m′(−) be as in Lemma 10.6. For m ≥ m0 consider the long exact sequence

Hs
T (ImM)→ Hs

T (Im0M)→ Hs
T (Im0M/ImM)→ Hs+1

T (ImM)→ H1
T (Im0M)

Then for k ≥ m′(m) the image of Hs+1
T (IkM) → Hs+1

T (ImM) maps injectively to
Hs+1
T (Im0M). Hence the image of Hs

T (Im0M/IkM) → Hs
T (Im0M/ImM) maps to

zero in Hs+1
T (ImM) for all k ≥ m′(m). We conclude that (2) and (4) hold.

Consider the short exact sequences 0 → Im0M → M → M/Im0M → 0 and 0 →
Im0M/InM →M/InM →M/Im0M → 0. We obtain a diagram

Hs−1
T (M/Im0M) // limHs

T (Im0M/InM) // limHs
T (M/InM) // Hs

T (M/Im0M)

Hs−1
T (M/Im0M) // Hs

T (Im0M) //

∼=

OO

Hs
T (M) //

OO

Hs
T (M/Im0M)
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whose lower row is exact. The top row is also exact (at the middle two spots) by Homology,
Lemma 31.4. Part (5) follows.

WriteBn = Hs
T (M/InM). LetAn ⊂ Bn be the image ofHs

T (Im0M/InM)→ Hs
T (M/InM).

Then (An) satisfies the Mittag-Leffler condition by (2) and Homology, Lemma 31.3. Also
Cn = Bn/An is killed by Im0 . Thus R1 limBn ∼= R1 limCn is killed by Im0 and we get
(6). �

Theorem 10.8. In Situation 10.1 the inverse system {Hi
T (M/InM)}n≥0 satisfies the

Mittag-Leffler condition for i ≤ s, the map

Hi
T (M) −→ limHi

T (M/InM)
is an isomorphism for i ≤ s, and Hi

T (M) is annihilated by a power of I for i ≤ s.

Proof. To prove the final assertion of the theorem we apply Local Cohomology,
Proposition 10.1 with T ⊂ V (I) ⊂ Spec(A). Namely, suppose that p 6∈ V (I), q ∈ T
with p ⊂ q. Then either there exists a prime p ⊂ r ⊂ q with r ∈ V (I) \ T and we get

depthAp
(Mp) ≥ s or depthAp

(Mp) + dim((A/p)q) > d+ s

by (4) in Situation 10.1 or there does not exist an r and we get depthAp
(Mp) > s by

Lemma 10.2. In all three cases we see that depthAp
(Mp) + dim((A/p)q) > s. Thus Local

Cohomology, Proposition 10.1 (2) holds and we find that a power of I annihilatesHi
T (M)

for i ≤ s.

We already know the other two assertions of the theorem hold for i < s by Lemma 10.7
and for the module Im0M for i = s and m0 large enough. To finish of the proof we will
show that in fact these assertions for i = s holds for M .

Let M ′ = H0
I (M) and M ′′ = M/M ′ so that we have a short exact sequence

0→M ′ →M →M ′′ → 0
and M ′′ has H0

I (M ′) = 0 by Dualizing Complexes, Lemma 11.6. By Artin-Rees (Algebra,
Lemma 51.2) we get short exact sequences

0→M ′ →M/InM →M ′′/InM ′′ → 0
for n large enough. Consider the long exact sequences

Hs
T (M ′)→ Hs

T (M/InM)→ Hs
T (M ′′/InM ′′)→ Hs+1

T (M ′)
Now it is a simple matter to see that if we have Mittag-Leffler for the inverse system
{Hs

T (M ′′/InM ′′)}n≥0 then we have Mittag-Leffler for the inverse system {Hs
T (M/InM)}n≥0.

(Note that the ML condition for an inverse system of groupsGn only depends on the val-
ues of the inverse system for sufficiently large n.) Moreover the sequence

Hs
T (M ′)→ limHs

T (M/InM)→ limHs
T (M ′′/InM ′′)→ Hs+1

T (M ′)
is exact because we have ML in the required spots, see Homology, Lemma 31.4. Hence, if
Hs
T (M ′′)→ limHs

T (M ′′/InM ′′) is an isomorphism, thenHs
T (M)→ limHs

T (M/InM)
is an isomorphism too by the five lemma (Homology, Lemma 5.20). This reduces us to the
case discussed in the next paragraph.

Assume that H0
I (M) = 0. Choose generators f1, . . . , fr of Im0 where m0 is the integer

found for M in Lemma 10.7. Then we consider the exact sequence

0→M
f1,...,fr−−−−−→ (Im0M)⊕r → Q→ 0
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defining Q. Some observations: the first map is injective exactly because H0
I (M) = 0.

The cokernel Q of this injection is a finite A-module such that for every 1 ≤ j ≤ r
we have Qfj ∼= (Mfj )⊕r−1. In particular, for a prime p ⊂ A with p 6∈ V (I) we have
Qp
∼= (Mp)⊕r−1. Similarly, given q ∈ T and p′ ⊂ A′ = (Aq)∧ not contained in V (IA′),

we haveQ′
p′
∼= (M ′

p′)⊕r−1 whereQ′ = (Qq)∧ andM ′ = (Mq)∧. Thus the conditions in
Situation 10.1 hold for A, I, T,Q. (Observe that Q may have nonvanishing H0

I (Q) but
this won’t matter.)

For any n ≥ 0 we set FnM = M ∩ In(Im0M)⊕r so that we get short exact sequences

0→ FnM → In(Im0M)⊕r → InQ→ 0

By Artin-Rees (Algebra, Lemma 51.2) there exists a c ≥ 0 such that InM ⊂ FnM ⊂
In−cM for all n ≥ c. Let m0 be the integer and let m′(m) be the function defined for
m ≥ m0 found in Lemma 10.6 applied to M . Note that the integer m0 is the same as our
integer m0 chosen above (you don’t need to check this: you can just take the maximum
of the two integers if you like). Finally, by Lemma 10.6 applied to Q for every integer
m there exists an integer m′′(m) ≥ m such that Hs

T (IkQ) → Hs
T (ImQ) is zero for all

k ≥ m′′(m).

Fixm ≥ m0. Choose k ≥ m′(m′′(m+ c)). Choose ξ ∈ Hs+1
T (IkM) which maps to zero

in Hs+1
T (M). We want to show that ξ maps to zero in Hs+1

T (ImM). Namely, this will
show that {Hs

T (M/InM)}n≥0 is Mittag-Leffler exactly as in the proof of Lemma 10.7.
Picture to help vizualize the argument:

Hs+1
T (IkM) //

��

Hs+1
T (Ik(Im0M)⊕r)

��
Hs
T (Im′′(m+c)Q)

δ
//

��

Hs+1
T (Fm′′(m+c)M) //

��

Hs+1
T (Im′′(m+c)(Im0M)⊕r)

Hs
T (Im+cQ) // Hs+1

T (Fm+cM)

��
Hs+1
T (ImM)

The image of ξ in Hs+1
T (Ik(Im0M)⊕r) maps to zero in Hs+1

T ((Im0M)⊕r) and hence
maps to zero in Hs+1

T (Im′′(m+c)(Im0M)⊕r) by choice of m′(−). Thus the image ξ′ ∈
Hs+1
T (Fm′′(m+c)M) maps to zero in Hs+1

T (Im′′(m+c)(Im0M)⊕r) and hence ξ′ = δ(η)
for some η ∈ Hs

T (Im′′(m+c)Q). By our choice of m′′(−) we find that η maps to zero
in Hs

T (Im+cQ). This in turn means that ξ′ maps to zero in Hs+1
T (Fm+cM). Since

Fm+cM ⊂ ImM we conclude.

Finally, we prove the statement on limits. Consider the short exact sequences

0→M/FnM → (Im0M)⊕r/In(Im0M)⊕r → Q/InQ→ 0
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We have limHs
T (M/InM) = limHs

T (M/FnM) as these inverse systems are pro-isomorphic.
We obtain a commutative diagram

Hs−1
T (Q) //

��

limHs−1
T (Q/InQ)

��
Hs
T (M) //

��

limHs
T (M/InM)

��
Hs
T ((Im0M)⊕r) //

��

limHs
T ((Im0M)⊕r/In(Im0M)⊕r)

��
Hs
T (Q) // limHs

T (Q/InQ)

The right column is exact because we have ML in the required spots, see Homology, Lemma
31.4. The lowest horizontal arrow is injective (!) by part (5) of Lemma 10.7. The horizon-
tal arrow above it is bijective by part (4) of Lemma 10.7. The arrows in cohomological
degrees≤ s− 1 are isomorphisms. Thus we concludeHs

T (M)→ limHs
T (M/InM) is an

isomorphism by the five lemma (Homology, Lemma 5.20). This finishes the proof of the
theorem. �

Lemma 10.9. Let I ⊂ a ⊂ A be ideals of a Noetherian ring A and let M be a finite
A-module. Let s and d be integers. Suppose that

(1) A, I, V (a),M satisfy the assumptions of Situation 10.1 for s and d, and
(2) A, I, a,M satisfy the conditions of Lemma 8.5 for s+ 1 and d with J = a.

Then there exists an ideal J0 ⊂ a with V (J0) ∩ V (I) = V (a) such that for any J ⊂ J0
with V (J) ∩ V (I) = V (a) the map

Hs+1
J (M) −→ limHs+1

a (M/InM)
is an isomorphism.

Proof. Namely, we have the existence of J0 and the isomorphism Hs+1
J (M) =

Hs+1(RΓa(M)∧) by Lemma 8.5, we have a short exact sequence

0→ R1 limHs
a(M/InM)→ Hs+1(RΓa(M)∧)→ limHs+1

a (M/InM)→ 0
by Dualizing Complexes, Lemma 12.4, and the module R1 limHs

a(M/InM) is zero be-
cause {Hs

a(M/InM)}n≥0 has Mittag-Leffler by Theorem 10.8. �

11. Algebraization of formal sections, I

In this section we study the problem of algebraization of formal sections in the local case.
Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let

X = Spec(A) ⊃ U = Spec(A) \ {m}
and denote Y = V (I) the closed subscheme corresponding to I . Let F be a coherent
OU -module. In this section we consider the limits

limnH
i(U,F/InF)

This is closely related to the cohomology of the pullback of F to the formal completion
of U along Y ; however, since we have not yet introduced formal schemes, we cannot use
this terminology here.
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Lemma 11.1. Let U be the punctured spectrum of a Noetherian local ring A. Let F
be a coherentOU -module. Let I ⊂ A be an ideal. Then

Hi(RΓ(U,F)∧) = limHi(U,F/InF)
for all i where RΓ(U,F)∧ denotes the derived I-adic completion.

Proof. By Lemmas 6.20 and 7.2 we have

RΓ(U,F)∧ = RΓ(U,F∧) = RΓ(U,R limF/InF)
Thus we obtain short exact sequences

0→ R1 limHi−1(U,F/InF)→ Hi(RΓ(U,F)∧)→ limHi(U,F/InF)→ 0
by Cohomology, Lemma 37.1. The R1 lim terms vanish because the inverse systems of
groups Hi(U,F/InF) satisfy the Mittag-Leffler condition by Lemma 5.2. �

Theorem 11.2. Let (A,m) be a Noetherian local ring which has a dualizing complex
and is complete with respect to an ideal I . SetX = Spec(A), Y = V (I), andU = X\{m}.
Let F be a coherent sheaf on U . Assume

(1) cd(A, I) ≤ d, i.e., Hi(X \ Y,G) = 0 for i ≥ d and quasi-coherent G on X ,
(2) for any x ∈ X \ Y whose closure {x} in X meets U ∩ Y we have

depthOX,x
(Fx) ≥ s or depthOX,x

(Fx) + dim({x}) > d+ s

Then there exists an open V0 ⊂ U containing U ∩ Y such that for any open V ⊂ V0
containing U ∩ Y the map

Hi(V,F)→ limHi(U,F/InF)

is an isomorphism for i < s. If in addition depthOX,x
(Fx) + dim({x}) > s for all

x ∈ U ∩ Y , then these cohomology groups are finite A-modules.

Proof. Choose a finiteA-moduleM such thatF is the restriction to U of the coher-
ent OX -module associated to M , see Local Cohomology, Lemma 8.2. Then the assump-
tions of Lemma 9.5 are satisfied. Pick J0 as in that lemma and set V0 = X \ V (J0).
Then opens V ⊂ V0 containing U ∩ Y correspond 1-to-1 with ideals J ⊂ J0 with
V (J) ∩ V (I) = {m}. Moreover, for such a choice we have a distinguished triangle

RΓJ(M)→M → RΓ(V,F)→ RΓJ(M)[1]
We similarly have a distinguished triangle

RΓm(M)∧ →M → RΓ(U,F)∧ → RΓm(M)∧[1]
involving derived I-adic completions. The cohomology groups of RΓ(U,F)∧ are equal
to the limits in the statement of the theorem by Lemma 11.1. The canonical map between
these triangles and some easy arguments show that our theorem follows from the main
Lemma 9.5 (note that we have i < s here whereas we have i ≤ s in the lemma; this
is because of the shift). The finiteness of the cohomology groups (under the additional
assumption) follows from Lemma 9.3. �

Lemma 11.3. Let (A,m) be a Noetherian local ring which has a dualizing complex and
is complete with respect to an ideal I . Set X = Spec(A), Y = V (I), and U = X \ {m}.
Let F be a coherent sheaf on U . Assume for any associated point x ∈ U of F we have
dim({x}) > cd(A, I) + 1 where {x} is the closure in X . Then the map

colimH0(V,F) −→ limH0(U,F/InF)
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is an isomorphism of finiteA-modules where the colimit is over opens V ⊂ U containing
U ∩ Y .

Proof. Apply Theorem 11.2 with s = 1 (we get finiteness too). �

12. Algebraization of formal sections, II

It is a bit difficult to succintly state all possible consequences of the results in Sections 8
and 10 for cohomology of coherent sheaves on quasi-affine schemes and their completion
with respect to an ideal. This section gives a nonexhaustive list of applications toH0. The
next section contains applications to higher cohomology.

Lemma 12.1. Let I ⊂ a be ideals of a Noetherian ringA. Let 0→ F ′ → F → F ′′ →
0 be a short exact sequence of coherent modules on U = Spec(A) \V (a). Let V be the set
of open subschemes V ⊂ U containing U ∩ V (I) ordered by reverse inclusion. Consider
the commutative diagram

colimV H
0(V,F ′)

��

// colimV H
0(V,F)

��

// colimV H
0(V,F ′′)

��
limH0(U,F ′/InF ′) // limH0(U,F ′/InF) // limH0(U,F ′/InF ′′)

If the left and right downarrows are isomorphisms so is the middle. If the middle and left
downarrows are isomorphisms, so is the left.

Proof. The sequences in the diagram are exact in the middle and the first arrow is
injective. Thus the final statement follows from an easy diagram chase. For the rest of the
proof we assume the left and right downward arrows are isomorphisms. A diagram chase
shows that the middle downward arrow is injective. All that remains is to show that it is
surjective.

We may choose finite A-modules M and M ′ such that F and F ′ are the restriction of
M̃ and M̃ ′ to U , see Local Cohomology, Lemma 8.2. After replacing M ′ by anM ′ for
some n ≥ 0 we may assume that F ′ → F corresponds to a module map M ′ → M , see
Cohomology of Schemes, Lemma 10.5. After replacing M ′ by the image of M ′ →M and
seting M ′′ = M/M ′ we see that our short exact sequence corresponds to the restriction
of the short exact sequence of coherent modules associated to the short exact sequence
0→M ′ →M →M ′′ → 0 of A-modules.

Let ŝ ∈ limH0(U,F/InF) with image ŝ′′ ∈ limH0(U,F ′′/InF ′′). By assumption we
find V ∈ V and a section s′′ ∈ F ′′(V ) mapping to ŝ′′. Let J ⊂ A be an ideal such that
V (J) = Spec(A) \ V . By Cohomology of Schemes, Lemma 10.5 after replacing J by a
power, we may assume there is anA-linear map ϕ : J →M ′′ corresponding to s′′. We fix
this choice of J ; in the rest of the proof we will replace V by a smaller V in V , i.e, we will
have V ∩ V (J) = ∅.

Choose a presentation A⊕m → A⊕n → J → 0. Denote g1, . . . , gn ∈ J the images
of the basis vectors of A⊕n, so that J = (g1, . . . , gn). Let A⊕m → A⊕n be given by
the matric (aji) so that

∑
ajigi = 0, j = 1, . . . ,m. Since M → M ′′ is surjective, for

each i we can choose mi ∈ M mapping to ϕ(gi) ∈ M ′′. Then the element giŝ − mi

of limH0(U,F/InF) lies in the submodule limH0(U,F ′/InF ′). By assumption after
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shrinking V we may assume there are s′
i ∈ F ′(V ), i = 1, . . . , n with s′

i mapping to
giŝ−mi. Set si = s′

i+mi inF(V ). Note that
∑
ajisi maps to

∑
ajigiŝ = 0 by the map

colimV F(V ′) −→ limH0(U,F/InF)

Since this map is injective (see above), we may after shrinking V assume that
∑
ajisi = 0

in F(V ) for all j = 1, . . . ,m. Then it follows that we obtain an A-module map J →
F(V ) sending gi to si. By the universal property of J̃ thisA-module map corresponds to
anOV -module map J̃ |V → F . However, since V (J) ∩ V = ∅ we have J̃ |V = OV . Thus
we have produced a section s ∈ F(V ). We omit the computation that shows that s maps
to ŝ by the map displayed above. �

The following lemma will be superceded by Proposition 12.3.

Lemma 12.2. Let I ⊂ a be ideals of a Noetherian ringA. LetF be a coherent module
on U = Spec(A) \ V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x 6∈ V (I), {x} ∩ V (I) 6⊂ V (a), and z ∈ {x} ∩ V (a), then

dim(O{x},z) > cd(A, I) + 1,
(3) one of the following holds:

(a) the restriction of F to U \ V (I) is (S1)
(b) the dimension of V (a) is at most 24.

Then we obtain an isomorphism

colimH0(V,F) −→ limH0(U,F/InF)

where the colimit is over opens V ⊂ U containing U ∩ V (I).

Proof. Choose a finiteA-moduleM such thatF is the restriction to U of the coher-
ent module associated to M , see Local Cohomology, Lemma 8.2. Set d = cd(A, I). Let p
be a prime of A not contained in V (I) and let q ∈ V (p) ∩ V (a). Then either p is not an
associated prime of M and hence depth(Mp) ≥ 1 or we have dim((A/p)q) > d + 1 by
(2). Thus the hypotheses of Lemma 8.5 are satisfied for s = 1 and d; here we use condition
(3). Thus we find there exists an ideal J0 ⊂ a with V (J0) ∩ V (I) = V (a) such that for
any J ⊂ J0 with V (J) ∩ V (I) = V (a) the maps

Hi
J(M) −→ Hi(RΓa(M)∧)

are isomorphisms for i = 0, 1. Consider the morphisms of exact triangles

RΓJ(M)

��

// M //

��

RΓ(V,F)

��

// RΓJ(M)[1]

��
RΓJ(M)∧ // M // RΓ(V,F)∧ // RΓJ(M)∧[1]

RΓa(M)∧ //

OO

M //

OO

RΓ(U,F)∧ //

OO

RΓa(M)∧[1]

OO

4In the sense that the difference of the maximal and minimal values on V (a) of a dimension function on
Spec(A) is at most 2.
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where V = Spec(A) \ V (J). Recall that RΓa(M)∧ → RΓJ(M)∧ is an isomorphism
(because a, a + I , and J + I cut out the same closed subscheme, for example see proof of
Lemma 8.5). Hence RΓ(U,F)∧ = RΓ(V,F)∧. This produces a commutative diagram

0 // H0
J(M) //

��

M //

��

// Γ(V,F)

��

// H1
J(M)

��

// 0

0 // H0(RΓJ(M)∧) // M // H0(RΓ(V,F)∧) // H1(RΓJ(M)∧) // 0

0 // H0(RΓa(M)∧) //

OO

M //

OO

H0(RΓ(U,F)∧) //

OO

H1(RΓa(M)∧) //

OO

0

with exact rows and isomorphisms for the lower vertical arrows. Hence we obtain an
isomorphism Γ(V,F)→ H0(RΓ(U,F)∧). By Lemmas 6.20 and 7.2 we have

RΓ(U,F)∧ = RΓ(U,F∧) = RΓ(U,R limF/InF)

and we find H0(RΓ(U,F)∧) = limH0(U,F/InF) by Cohomology, Lemma 37.1. �

Now we bootstrap the preceding lemma to get rid of condition (3).

Proposition 12.3. Let I ⊂ a be ideals of a Noetherian ring A. Let F be a coherent
module on U = Spec(A) \ V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x 6∈ V (I), {x} ∩ V (I) 6⊂ V (a), and z ∈ {x} ∩ V (a), then

dim(O{x},z) > cd(A, I) + 1.

Then we obtain an isomorphism

colimH0(V,F) −→ limH0(U,F/InF)

where the colimit is over opens V ⊂ U containing U ∩ V (I).

Proof. Let T ⊂ U be the set of points x with {x} ∩ V (I) ⊂ V (a). Let F → F ′ be
the surjection of coherent modules on U constructed in Local Cohomology, Lemma 15.1.
Since F → F ′ is an isomorphism over an open V ⊂ U containing U ∩ V (I) it suffices to
prove the lemma with F replaced by F ′. Hence we may and do assume for x ∈ U with
{x} ∩ V (I) ⊂ V (a) we have depth(Fx) ≥ 1.

Let V be the set of open subschemes V ⊂ U containing U ∩ V (I) ordered by reverse
inclusion. This is a directed set. We first claim that

F(V ) −→ limH0(U,F/InF)

is injective for any V ∈ F (and in particular the map of the lemma is injective). Namely,
an associated point x of F must have {x} ∩ U ∩ Y 6= ∅ by the previous paragraph. If
y ∈ {x} ∩ U ∩ Y then Fx is a localization of Fy and Fy ⊂ limFy/InFy by Krull’s
intersection theorem (Algebra, Lemma 51.4). This proves the claim as a section s ∈ F(V )
in the kernel would have to have empty support, hence would have to be zero.

Choose a finite A-module M such that F is the restriction of M̃ to U , see Local Coho-
mology, Lemma 8.2. We may and do assume that H0

a(M) = 0. Let Ass(M) \ V (I) =
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{p1, . . . , pn}. We will prove the lemma by induction on n. After reordering we may as-
sume that pn is a minimal element of the set {p1, . . . , pn}with respect to inclusion, i.e, pn
is a generic point of the support of M . Set

M ′ = H0
p1...pn−1I(M)

and M ′′ = M/M ′. Let F ′ and F ′′ be the coherent OU -modules corresponding to M ′

and M ′′. Dualizing Complexes, Lemma 11.6 implies that M ′′ has only one associated
prime, namely pn. Hence F ′′ has only one associated point and we see that condition
(3)(a) of Lemma 12.2 holds; thus the map colimH0(V,F ′′) → limH0(U,F ′′/InF ′′) is
an isomorphism. On the other hand, since pn 6∈ V (p1 . . . pn−1I) we see that pn is not
an associated prime of M ′. Hence the induction hypothesis applies to M ′; note that since
F ′ ⊂ F the condition depth(F ′

x) ≥ 1 at points x with {x} ∩ V (I) ⊂ V (a) holds,
see Algebra, Lemma 72.6. Thus the map colimH0(V,F ′) → limH0(U,F ′/InF ′) is an
isomorphism too. We conclude by Lemma 12.1. �

Lemma 12.4. Let I ⊂ a be ideals of a Noetherian ringA. LetF be a coherent module
on U = Spec(A) \ V (a). Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x 6∈ V (I), {x} ∩ V (I) 6⊂ V (a), and z ∈ V (a) ∩ {x}, then

dim(O{x},z) > cd(A, I) + 1,
(3) for x ∈ U with {x} ∩ V (I) ⊂ V (a) we have depth(Fx) ≥ 2,

Then we obtain an isomorphism
H0(U,F) −→ limH0(U,F/InF)

Proof. Let ŝ ∈ limH0(U,F/InF). By Proposition 12.3 we find that ŝ is the image
of an element s ∈ F(V ) for some V ⊂ U open containing U ∩V (I). However, condition
(3) shows that depth(Fx) ≥ 2 for all x ∈ U \ V and hence we find that F(V ) = F(U)
by Divisors, Lemma 5.11 and the proof is complete. �

Lemma 12.5. LetA be a Noetherian ring. Let f ∈ a ⊂ A be an element of an ideal of
A. Let M be a finite A-module. Assume

(1) A is f -adically complete,
(2) f is a nonzerodivisor on M ,
(3) H1

a(M/fM) is a finite A-module.
Then with U = Spec(A) \ V (a) the map

colimV Γ(V, M̃) −→ lim Γ(U, M̃/fnM)
is an isomorphism where the colimit is over opens V ⊂ U containing U ∩ V (f).

Proof. Set F = M̃ |U . The finiteness of H1
a(M/fM) implies that H0(U,F/fF) is

finite, see Local Cohomology, Lemma 8.2. By Cohomology, Lemma 36.3 (which applies as
f is a nonzerodivisor on F ) we see that N = limH0(U,F/fnF) is a finite A-module, is
f -torsion free, andN/fN ⊂ H0(U,F/fF). On the other hand, we have a mapM → N
and a compatible map

M/fM −→ H0(U,F/fF)
For g ∈ a we see that (M/fM)g maps isomorphically to H0(U ∩ D(f),F/fF) since
F/fF is the restriction of M̃/fM to U . We conclude thatMg → Ng induces an isomor-
phism

Mg/fMg = (M/fM)g → (N/fN)g = Ng/fNg
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Since f is a nonzerodivisor on both N and M we conclude that Mg → Ng induces an
isomorphism on f -adic completions which in turn implies Mg → Ng is an isomorphism
in an open neightbourhood of V (f) ∩D(g). Since g ∈ a was arbitrary, we conclude that
M and N determine isomorphic coherent modules over an open V as in the statement of
the lemma. This finishes the proof. �

Proposition 12.6. Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an
ideal of A. Let F be a coherent module on U = Spec(A) \ V (a). Assume

(1) A is f -adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x 6∈ V (f), {x} ∩ V (f) 6⊂ V (a), and z ∈ {x} ∩ V (a), then

dim(O{x},z) > 2.

Then the map
colimV Γ(V,F) −→ lim Γ(U,F/fnF)

is an isomorphism where the colimit is over opens V ⊂ U containing U ∩ V (f).

First proof. Recall thatA is universally catenary and with Gorenstein formal fibres,
see Dualizing Complexes, Lemmas 23.2 and 17.4. Thus we may consider the map F →
F ′ constructed in Local Cohomology, Lemma 15.3 for the closed subset V (f) ∩ U of U .
Observe that

(1) The kernel and cokernel of F → F ′ are supported on V (f) ∩ U .
(2) The module F ′ is f -torsion free as its stalks have depth ≥ 1 for all points of

V (f) ∩ U , i.e., F ′ has no associated points in V (f) ∩ U .
(3) If y ∈ V (f)∩U is an associated point ofF ′/fF ′, then depth(F ′

y) = 1 and hence
(by the construction of F ′) there is an immediate specialization x  y with
x 6∈ V (f) an associated point of F . It follows that y cannot have an immediate
specialization in Spec(A) to a point z ∈ V (a) by our assumption (2).

(4) It follows from (3) that H0(U,F ′/fF ′) is a finite A-module, see Local Coho-
mology, Lemma 12.1.

These observations will allow us to finish the proof.

First, we claim the lemma holds for F ′. Namely, choose a finite A-module M ′ such that
F ′ is the restriction to U of the coherent module associated toM ′, see Local Cohomology,
Lemma 8.2. Since F ′ is f -torsion free, we may assumeM ′ is f -torsion free as well. Obser-
vation (4) above shows that H1

a(M ′) is a finite A-module, see Local Cohomology, Lemma
8.2. Thus the claim by Lemma 12.5.

Second, we observe that the lemma holds trivially for any coherentOU -module supported
on V (f) ∩ U . Let K, resp. G , resp. Q be the kernel, resp. image, resp. cokernel of the
map F → F ′. The short exact sequence 0 → G → F ′ → Q → 0 and Lemma 12.1
show that the result holds for G. Then we do this again with the short exact sequence
0→ K → F → G → 0 to finish the proof. �

Second proof. The proposition is a special case of Proposition 12.3. �

Lemma 12.7. LetA be a Noetherian ring. Let f ∈ a ⊂ A be an element of an ideal of
A. Let M be a finite A-module. Assume

(1) A is f -adically complete,
(2) H1

a(M) and H2
a(M) are annihilated by a power of f .
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Then with U = Spec(A) \ V (a) the map

Γ(U, M̃) −→ lim Γ(U, M̃/fnM)

is an isomorphism.

Proof. We may apply Lemma 3.2 to U and F = M̃ |U because F is a Noetherian
object in the category of coherentOU -modules. Since H1(U,F) = H2

a(M) (Local Coho-
mology, Lemma 8.2) is annihilated by a power of f , we see that its f -adic Tate module is
zero. Hence the lemma shows limH0(U,F/fnF) is equal to the usual f -adic completion
of H0(U,F). Consider the short exact sequence

0→M/H0
a(M)→ H0(U,F)→ H1

a(M)→ 0

of Local Cohomology, Lemma 8.2. SinceM/H0
a(M) is a finiteA-module, it is complete, see

Algebra, Lemma 97.1. Since H1
a(M) is killed by a power of f , we conclude from Algebra,

Lemma 96.4 that H0(U,F) is complete as well. This finishes the proof. �

13. Algebraization of formal sections, III

The next section contains a nonexhaustive list of applications of the material on com-
pletion of local cohomology to higher cohomology of coherent modules on quasi-affine
schemes and their completion with respect to an ideal.

Proposition 13.1. Let I ⊂ a be ideals of a Noetherian ring A. Let F be a coherent
module on U = Spec(A) \ V (a). Let s ≥ 0. Assume

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ U \ V (I) then depth(Fx) > s or

depth(Fx) + dim(O{x},z) > cd(A, I) + s+ 1

for all z ∈ V (a) ∩ {x},
(3) one of the following conditions holds:

(a) the restriction of F to U \ V (I) is (Ss+1), or
(b) the dimension of V (a) is at most 25.

Then the maps
Hi(U,F) −→ limHi(U,F/InF)

are isomorphisms for i < s. Moreover we have an isomorphism

colimHs(V,F) −→ limHs(U,F/InF)

where the colimit is over opens V ⊂ U containing U ∩ V (I).

Proof. We may assume s > 0 as the case s = 0 was done in Proposition 12.3.

Choose a finite A-module M such that F is the restriction to U of the coherent module
associated to M , see Local Cohomology, Lemma 8.2. Set d = cd(A, I). Let p be a prime of
A not contained in V (I) and let q ∈ V (p)∩V (a). Then either depth(Mp) ≥ s+1 > s or
we have dim((A/p)q) > d+s+1 by (2). By Lemma 10.5 we conclude that the assumptions
of Situation 10.1 are satisfied for A, I, V (a),M, s, d. On the other hand, the hypotheses
of Lemma 8.5 are satisfied for s+ 1 and d; this is where condition (3) is used.

5In the sense that the difference of the maximal and minimal values on V (a) of a dimension function on
Spec(A) is at most 2.
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Applying Lemma 8.5 we find there exists an ideal J0 ⊂ a with V (J0) ∩ V (I) = V (a)
such that for any J ⊂ J0 with V (J) ∩ V (I) = V (a) the maps

Hi
J(M) −→ Hi(RΓa(M)∧)

is an isomorphism for i ≤ s+ 1.

For i ≤ s the map Hi
a(M)→ Hi

J(M) is an isomorphism by Lemmas 10.3 and 8.4. Using
the comparison of cohomology and local cohomology (Local Cohomology, Lemma 2.2) we
deduce Hi(U,F)→ Hi(V,F) is an isomorphism for V = Spec(A) \ V (J) and i < s.

By Theorem 10.8 we have Hi
a(M) = limHi

a(M/InM) for i ≤ s. By Lemma 10.9 we
have Hs+1

a (M) = limHs+1
a (M/InM).

The isomorphism H0(U,F) = H0(V,F) = limH0(U,F/InF) follows from the above
and Proposition 12.3. For 0 < i < s we get the desired isomorphisms Hi(U,F) =
Hi(V,F) = limHi(U,F/InF) in the same manner using the relation between local
cohomology and cohomology; it is easier than the case i = 0 because for i > 0 we have

Hi(U,F) = Hi+1
a (M), Hi(V,F) = Hi+1

J (M), Hi(RΓ(U,F)∧) = Hi+1(RΓa(M)∧)

Similarly for the final statement. �

Lemma 13.2. Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an ideal of
A. Let M be a finite A-module. Let s ≥ 0. Assume

(1) A is f -adically complete,
(2) Hi

a(M) is annihilated by a power of f for i ≤ s+ 1.
Then with U = Spec(A) \ V (a) the map

Hi(U, M̃) −→ limHi(U, M̃/fnM)

is an isomorphism for i < s.

Proof. By induction on s. If s = 0, the assertion is empty. If s = 1, then the result is
Lemma 12.7. Assume s > 1. By induction it suffices to prove the result for i = s− 1 ≥ 1.
We may apply Lemma 3.2 to U and F = M̃ |U because F is a Noetherian object in the
category of coherentOU -modules. Observe thatHj(U,F) = Hj+1

a (M) for all j by Local
Cohomology, Lemma 8.2. Thus for j = s = (s− 1) + 1 this is annihilated by a power of
f by assumption. Thus it follows from Lemma 3.2 that limHs−1(U,F/fnF) is the usual
f -adic completion ofHs−1(U,F). Then again using that this module is killed by a power
of f we see that the completion is simply equal to Hs−1(U,F) as desired. �

14. Application to connectedness

In this section we discuss Grothendieck’s connectedness theorem and variants; the original
version can be found as [?, Exposee XIII, Theorem 2.1]. There is a version called Faltings’
connectedness theorem in the literature; our guess is that this refers to [?, Theorem 6]. Let
us state and prove the optimal version for complete local rings given in [?, Theorem 1.6].

Lemma 14.1. Let (A,m) be a Noetherian complete local ring. Let I be a proper ideal
of A. Set X = Spec(A) and Y = V (I). Denote

(1) d the minimal dimension of an irreducible component of X , and
(2) c the minimal dimension of a closed subset Z ⊂ X such that X \ Z is discon-

nected.
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Then forZ ⊂ Y closed we have Y \Z is connected if dim(Z) < min(c, d−1)−cd(A, I).
In particular, the punctured spectrum of A/I is connected if cd(A, I) < min(c, d− 1).

Proof. Let us first prove the final assertion. As a first case, if the punctured spectrum
ofA/I is empty, then Local Cohomology, Lemma 4.10 shows every irreducible component
ofX has dimension≤ cd(A, I) and we get min(c, d−1)−cd(A, I) < 0 which implies the
lemma holds in this case. Thus we may assume U ∩ Y is nonempty where U = X \ {m}
is the punctured spectrum of A. We may replace A by its reduction. Observe that A
has a dualizing complex (Dualizing Complexes, Lemma 22.4) and thatA is complete with
respect to I (Algebra, Lemma 96.8). If we assume d − 1 > cd(A, I), then we may apply
Lemma 11.3 to see that

colimH0(V,OV ) −→ limH0(U,OU/InOU )
is an isomorphism where the colimit is over opens V ⊂ U containing U ∩ Y . If U ∩ Y
is disconnected, then its nth infinitesimal neighbourhood in U is disconnected for all n
and we find the right hand side has a nontrivial idempotent (here we use that U ∩ Y is
nonempty). Thus we can find a V which is disconnected. Set Z = X \ V . By Local
Cohomology, Lemma 4.10 we see that every irreducible component of Z has dimension
≤ cd(A, I). Hence c ≤ cd(A, I) and this indeed proves the final statement.

We can deduce the statement of the lemma from what we just proved as follows. Sup-
pose that Z ⊂ Y closed and Y \ Z is disconnected and dim(Z) = e. Recall that a con-
nected space is nonempty by convention. Hence we conclude either (a) Y = Z or (b)
Y \ Z = W1 qW2 with Wi nonempty, open, and closed in Y \ Z. In case (b) we may
pick points wi ∈ Wi which are closed in U , see Morphisms, Lemma 16.10. Then we can
find f1, . . . , fe ∈ m such that V (f1, . . . , fe) ∩ Z = {m} and in case (b) we may assume
wi ∈ V (f1, . . . , fe). Namely, we can inductively using prime avoidance choose fi such
that dimV (f1, . . . , fi) ∩ Z = e− i and such that in case (b) we have w1, w2 ∈ V (fi). It
follows that the punctured spectrum of A/I + (f1, . . . , fe) is disconnected (small detail
omitted). Since cd(A, I + (f1, . . . , fe)) ≤ cd(A, I) + e by Local Cohomology, Lemmas
4.4 and 4.3 we conclude that

cd(A, I) + e ≥ min(c, d− 1)
by the first part of the proof. This implies e ≥ min(c, d− 1)− cd(A, I) which is what we
had to show. �

Lemma 14.2. Let I ⊂ a be ideals of a Noetherian ring A. Assume
(1) A is I-adically complete and has a dualizing complex,
(2) if p ⊂ A is a minimal prime not contained in V (I) and q ∈ V (p) ∩ V (a), then

dim((A/p)q) > cd(A, I) + 1,
(3) any nonempty open V ⊂ Spec(A) which contains V (I) \ V (a) is connected6.

Then V (I) \ V (a) is either empty or connected.

Proof. We may replace A by its reduction. Then we have the inequality in (2) for
all associated primes of A. By Proposition 12.3 we see that

colimH0(V,OV ) = limH0(Tn,OTn)
where the colimit is over the opens V as in (3) and Tn is the nth infinitesimal neighbour-
hood of T = V (I) \ V (a) in U = Spec(A) \ V (a). Thus T is either empty or connected,

6For example if A is a domain.
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since if not, then the right hand side would have a nontrivial idempotent and we’ve as-
sumed the left hand side does not. Some details omitted. �

Lemma 14.3. LetA be a Noetherian domain which has a dualizing complex and which
is complete with respect to a nonzero f ∈ A. Let f ∈ a ⊂ A be an ideal. Assume every
irreducible component of Z = V (a) has codimension > 2 in X = Spec(A), i.e., assume
every irreducible component of Z has codimension > 1 in Y = V (f). Then Y \ Z is
connected.

Proof. This is a special case of Lemma 14.2 (whose proof relies on Proposition 12.3).
Below we prove it using the easier Proposition 12.6.

Set U = X \ Z. By Proposition 12.6 we have an isomorphism

colim Γ(V,OV )→ limn Γ(U,OU/fnOU )

where the colimit is over open V ⊂ U containing U ∩Y . Hence if U ∩Y is disconnected,
then for some V there exists a nontrivial idempotent in Γ(V,OV ). This is impossible as
V is an integral scheme as X is the spectrum of a domain. �

15. The completion functor

Let X be a Noetherian scheme. Let Y ⊂ X be a closed subscheme with quasi-coherent
sheaf of ideals I ⊂ OX . In this section we consider inverse systems of coherent OX -
modules (Fn) with Fn annihilated by In such that the transition maps induce isomor-
phisms Fn+1/I

nFn+1 → Fn. The category of these inverse systems was denoted

Coh(X, I)

in Cohomology of Schemes, Section 23. This category is equivalent to the category of
coherent modules on the formal completion ofX along Y ; however, since we have not yet
introduced formal schemes or coherent modules on them, we cannot use this terminology
here. We are particularly interested in the completion functor

Coh(OX) −→ Coh(X, I), F 7−→ F∧

See Cohomology of Schemes, Equation (23.3.1).

Lemma 15.1. Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme.
Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y in X . Consider the following
conditions

(1) X is quasi-affine and Γ(X,OX)→ lim Γ(Yn,OYn) is an isomorphism,
(2) X has an ample invertible module L and Γ(X,L⊗m) → lim Γ(Yn,L⊗m|Yn) is

an isomorphism for all m� 0,
(3) for every finite locally free OX -module E the map Γ(X, E) → lim Γ(Yn, E|Yn)

is an isomorphism, and
(4) the completion functor Coh(OX) → Coh(X, I) is fully faithful on the full

subcategory of finite locally free objects.
Then (1)⇒ (2)⇒ (3)⇒ (4) and (4)⇒ (3).

Proof. Proof of (3) ⇒ (4). If F and G are finite locally free on X , then consider-
ing H = HomOX

(G,F) and using Cohomology of Schemes, Lemma 23.5 we see that (3)
implies (4).
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Proof of (2)→ (3). Namely, let L be ample onX and suppose that E is a finite locally free
OX -module. We claim we can find a universally exact sequence

0→ E → (L⊗p)⊕r → (L⊗q)⊕s

for some r, s ≥ 0 and 0� p� q. If this holds, then using the exact sequence

0→ lim Γ(E|Yn)→ lim Γ((L⊗p)⊕r|Yn)→ lim Γ((L⊗q)⊕s|Yn)
and the isomorphisms in (2) we get the isomorphism in (3). To prove the claim, consider
the dual locally free module HomOX

(E ,OX) and apply Properties, Proposition 26.13 to
find a surjection

(L⊗−p)⊕r −→ HomOX
(E ,OX)

Taking duals we obtain the first map in the exact sequence (it is universally injective be-
cause being a surjection is universal). Repeat with the cokernel to get the second. Some
details omitted.

Proof of (1)⇒ (2). This is true because ifX is quasi-affine thenOX is an ample invertible
module, see Properties, Lemma 27.1.

We omit the proof of (4)⇒ (3). �

Given a Noetherian scheme and a quasi-coherent sheaf of ideals I ⊂ OX we will say an
object (Fn) of Coh(X, I) is finite locally free if each Fn is a finite locally free OX/In-
module.

Lemma 15.2. Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y inX .
Let V be the set of open subschemes V ⊂ X containing Y ordered by reverse inclusion.

(1) X is quasi-affine and

colimV Γ(V,OV ) −→ lim Γ(Yn,OYn)
is an isomorphism,

(2) X has an ample invertible module L and

colimV Γ(V,L⊗m) −→ lim Γ(Yn,L⊗m|Yn)
is an isomorphism for all m� 0,

(3) for every V ∈ V and every finite locally freeOV -module E the map

colimV ′≥V Γ(V ′, E|V ′) −→ lim Γ(Yn, E|Yn)
is an isomorphism, and

(4) the completion functor

colimV Coh(OV ) −→ Coh(X, I), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects (see explana-
tion above).

Then (1)⇒ (2)⇒ (3)⇒ (4) and (4)⇒ (3).

Proof. Observe that V is a directed set, so the colimits are as in Categories, Section
19. The rest of the argument is almost exactly the same as the argument in the proof of
Lemma 15.1; we urge the reader to skip it.

Proof of (3)⇒ (4). If F and G are finite locally free on V ∈ V , then considering H =
HomOV

(G,F) and using Cohomology of Schemes, Lemma 23.5 we see that (3) implies (4).
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Proof of (2)⇒ (3). Let L be ample on X and suppose that E is a finite locally free OV -
module for some V ∈ V . We claim we can find a universally exact sequence

0→ E → (L⊗p)⊕r|V → (L⊗q)⊕s|V
for some r, s ≥ 0 and 0 � p � q. If this is true, then the isomorphism in (2) will im-
ply the isomorphism in (3). To prove the claim, recall that L|V is ample, see Properties,
Lemma 26.14. Consider the dual locally free module HomOV

(E ,OV ) and apply Proper-
ties, Proposition 26.13 to find a surjection

(L⊗−p)⊕r|V −→ HomOV
(E ,OV )

(it is universally injective because being a surjection is universal). Taking duals we obtain
the first map in the exact sequence. Repeat with the cokernel to get the second. Some
details omitted.

Proof of (1)⇒ (2). This is true because ifX is quasi-affine thenOX is an ample invertible
module, see Properties, Lemma 27.1.

We omit the proof of (4)⇒ (3). �

Lemma 15.3. Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent sheaf
of ideals. The functor

Coh(X, I) −→ Pro-QCoh(OX)
is fully faithful, see Categories, Remark 22.5.

Proof. Let (Fn) and (Gn) be objects of Coh(X, I). A morphism of pro-objects α
from (Fn) to (Gn) is given by a system of maps αn : Fn′(n) → Gn where N → N, n 7→
n′(n) is an increasing function. Since Fn = Fn′(n)/InFn′(n) and since Gn is annihilated
by In we see that αn induces a map Fn → Gn. �

Next we add some examples of the kind of fully faithfulness result we will be able to prove
using the work done earlier in this chapter.

Lemma 15.4. Let I ⊂ a be ideals of a Noetherian ring A. Let U = Spec(A) \ V (a).
Assume

(1) A is I-adically complete and has a dualizing complex,
(2) for any associated prime p ⊂ A with p 6∈ V (I) and V (p) ∩ V (I) 6⊂ V (a) and

q ∈ V (p) ∩ V (a) we have dim((A/p)q) > cd(A, I) + 1,
(3) for p ⊂ A with p 6∈ V (I) and V (p) ∩ V (I) ⊂ V (a) we have depth(Ap) ≥ 2.

Then the completion functor

Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 15.1 it suffices to show that

Γ(U,OU ) = lim Γ(U,OU/InOU )
This follows immediately from Lemma 12.4. �

Lemma 15.5. LetA be a Noetherian ring. Let f ∈ a ⊂ A be an element of an ideal of
A. Let U = Spec(A) \ V (a). Assume

(1) A is f -adically complete,
(2) H1

a(A) and H2
a(A) are annihilated by a power of f .
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Then the completion functor
Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 15.1 it suffices to show that
Γ(U,OU ) = lim Γ(U,OU/InOU )

This follows immediately from Lemma 12.7. �

Lemma 15.6. Let A be a Noetherian ring. Let f ∈ a be an element of an ideal of A.
Let U = Spec(A) \ V (a). Assume

(1) A has a dualizing complex and is complete with respect to f ,
(2) for every prime p ⊂ A, f 6∈ p and q ∈ V (p) ∩ V (a) we have depth(Ap) +

dim((A/p)q) > 2.
Then the completion functor

Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. Follows from Lemma 15.5 and Local Cohomology, Proposition 10.1. �

Lemma 15.7. Let I ⊂ a ⊂ A be ideals of a Noetherian ring A. Let U = Spec(A) \
V (a). Let V be the set of open subschemes of U containing U ∩ V (I) ordered by reverse
inclusion. Assume

(1) A is I-adically complete and has a dualizing complex,
(2) for any associated prime p ⊂ A with I 6⊂ p and V (p) ∩ V (I) 6⊂ V (a) and

q ∈ V (p) ∩ V (a) we have dim((A/p)q) > cd(A, I) + 1.
Then the completion functor

colimV Coh(OV ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 15.2 it suffices to show that
colimV Γ(V,OV ) = lim Γ(U,OU/InOU )

This follows immediately from Proposition 12.3. �

Lemma 15.8. Let A be a Noetherian ring. Let f ∈ a ⊂ A be an element of an ideal
of A. Let U = Spec(A) \ V (a). Let V be the set of open subschemes of U containing
U ∩ V (f) ordered by reverse inclusion. Assume

(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

a(A/fA) is a finite A-module.
Then the completion functor

colimV Coh(OV ) −→ Coh(U, fOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 15.2 it suffices to show that
colimV Γ(V,OV ) = lim Γ(U,OU/InOU )

This follows immediately from Lemma 12.5. �
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Lemma 15.9. Let I ⊂ a ⊂ A be ideals of a Noetherian ring A. Let U = Spec(A) \
V (a). Let V be the set of open subschemes of U containing U ∩ V (I) ordered by reverse
inclusion. Let F and G be coherentOV -modules for some V ∈ V . The map

colimV ′≥V HomV (G|V ′ ,F|V ′) −→ HomCoh(U,IOU )(G∧,F∧)
is bijective if the following assumptions hold:

(1) A is I-adically complete and has a dualizing complex,
(2) if x ∈ Ass(F), x 6∈ V (I), {x} ∩ V (I) 6⊂ V (a) and z ∈ {x} ∩ V (a), then

dim(O{x},z) > cd(A, I) + 1.

Proof. We may choose coherent OU -modules F ′ and G′ whose restriction to V is
F and G , see Properties, Lemma 22.5. We may modify our choice of F ′ to ensure that
Ass(F ′) ⊂ V , see for example Local Cohomology, Lemma 15.1. Thus we may and do
replace V by U and F and G by F ′ and G′. Set H = HomOU

(G,F). This is a coherent
OU -module. We have

HomV (G|V ,F|V ) = H0(V,H) and limH0(U,H/InH) = MorCoh(U,IOU )(G∧,F∧)
See Cohomology of Schemes, Lemma 23.5. Thus if we can show that the assumptions of
Proposition 12.3 hold for H, then the proof is complete. This holds because Ass(H) ⊂
Ass(F). See Cohomology of Schemes, Lemma 11.2. �

16. Algebraization of coherent formal modules, I

The essential surjectivity of the completion functor (see below) was studied systematically
in [?], [?], and [?]. We work in the following affine situation.

Situation 16.1. Here A is a Noetherian ring and I ⊂ a ⊂ A are ideals. We set
X = Spec(A), Y = V (I) = Spec(A/I), and Z = V (a) = Spec(A/a). Furthermore
U = X \ Z.

In this section we try to find conditions that guarantee an object of Coh(U, IOU ) is in
the image of the completion functor Coh(OU ) → Coh(U, IOU ). See Cohomology of
Schemes, Section 23 and Section 15.

Lemma 16.2. In Situation 16.1. Consider an inverse system (Mn) ofA-modules such
that

(1) Mn is a finite A-module,
(2) Mn is annihilated by In,
(3) the kernel and cokernel of Mn+1/I

nMn+1 →Mn are a-power torsion.
Then (M̃n|U ) is in Coh(U, IOU ). Conversely, every object of Coh(U, IOU ) arises in this
manner.

Proof. We omit the verification that (M̃n|U ) is in Coh(U, IOU ). Let (Fn) be an ob-
ject of Coh(U, IOU ). By Local Cohomology, Lemma 8.2 we see thatFn = M̃n for some fi-
niteA/In-moduleMn. After dividingMn byH0

a(Mn) we may assumeMn ⊂ H0(U,Fn),
see Dualizing Complexes, Lemma 11.6 and the already referenced lemma. After replacing
inductively Mn+1 by the inverse image of Mn under the map Mn+1 → H0(U,Fn+1)→
H0(U,Fn), we may assumeMn+1 maps intoMn. This gives a inverse system (Mn) satisfy-
ing (1) and (2) such thatFn = M̃n. To see that (3) holds, use thatMn+1/I

nMn+1 →Mn

is a map of finiteA-modules which induces an isomorphism after applying˜and restriction
to U (here we use the first referenced lemma one more time). �
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In Situation 16.1 we can study the completion functor Cohomology of Schemes, Equation
(23.3.1)

(16.2.1) Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

If A is I-adically complete, then this functor is fully faithful on suitable subcategories by
our earlier work on algebraization of formal sections, see Section 15 and Lemma 19.6 for
some sample results. Next, let (Fn) be an object of Coh(U, IOU ). Still assuming A is
I-adically complete, we can ask: When is (Fn) in the essential image of the completion
functor displayed above?

Lemma 16.3. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Consider the
following conditions:

(1) (Fn) is in the essential image of the functor (16.2.1),
(2) (Fn) is the completion of a coherentOU -module,
(3) (Fn) is the completion of a coherentOV -module for U ∩ Y ⊂ V ⊂ U open,
(4) (Fn) is the completion of the restriction to U of a coherentOX -module,
(5) (Fn) is the restriction to U of the completion of a coherentOX -module,
(6) there exists an object (Gn) of Coh(X, IOX) whose restriction to U is (Fn).

Then conditions (1), (2), (3), (4), and (5) are equivalent and imply (6). If A is I-adically
complete then condition (6) implies the others.

Proof. Parts (1) and (2) are equivalent, because the completion of a coherent OU -
module F is by definition the image of F under the functor (16.2.1). If V ⊂ U is an open
subscheme containing U ∩ Y , then we have

Coh(V, IOV ) = Coh(U, IOU )

since the category of coherentOV -modules supported on V ∩Y is the same as the category
of coherent OU -modules supported on U ∩ Y . Thus the completion of a coherent OV -
module is an object of Coh(U, IOU ). Having said this the equivalence of (2), (3), (4),
and (5) holds because the functors Coh(OX) → Coh(OU ) → Coh(OV ) are essentially
surjective. See Properties, Lemma 22.5.

It is always the case that (5) implies (6). AssumeA is I-adically complete. Then any object
of Coh(X, IOX) corresponds to a finite A-module by Cohomology of Schemes, Lemma
23.1. Thus we see that (6) implies (5) in this case. �

Example 16.4. Let k be a field. Let A = k[x, y][[t]] with I = (t) and a = (x, y, t).
Let us use notation as in Situation 16.1. Observe that U ∩ Y = (D(x)∩ Y )∪ (D(y)∩ Y )
is an affine open covering. For n ≥ 1 consider the invertible module Ln of OU/tnOU
given by glueingAx/tnAx andAy/tnAy via the invertible element ofAxy/tnAxy which
is the image of any power series of the form

u = 1 + t

xy
+
∑
n≥2

an
tn

(xy)ϕ(n)

with an ∈ k[x, y] and ϕ(n) ∈ N. Then (Ln) is an invertible object of Coh(U, IOU )
which is not the completion of a coherent OU -module L. We only sketch the argument
and we omit most of the details. Let y ∈ U ∩ Y . Then the completion of the stalk Ly
would be an invertible module hence Ly is invertible. Thus there would exist an open
V ⊂ U containing U ∩ Y such that L|V is invertible. By Divisors, Lemma 28.3 we find
an invertible A-module M with M̃ |V ∼= L|V . However the ring A is a UFD hence we see
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M ∼= A which would imply Ln ∼= OU/InOU . Since L2 6∼= OU/I2OU by construction
we get a contradiction as desired.

Note that if we take an = 0 for n ≥ 2, then we see that limH0(U,Ln) is nonzero: in
this case we the function x onD(x) and the function x+ t/y onD(y) glue. On the other
hand, if we take an = 1 and ϕ(n) = 2n or even ϕ(n) = n2 then the reader can show that
limH0(U,Ln) is zero; this gives another proof that (Ln) is not algebraizable in this case.

If in Situation 16.1 the ring A is not I-adically complete, then Lemma 16.3 suggests the
correct thing is to ask whether (Fn) is in the essential image of the restriction functor

Coh(X, IOX) −→ Coh(U, IOU )

However, we can no longer say that this means (Fn) is algebraizable. Thus we introduce
the following terminology.

Definition 16.5. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). We say
(Fn) extends to X if there exists an object (Gn) of Coh(X, IOX) whose restriction to U
is isomorphic to (Fn).

This notion is equivalent to being algebraizable over the completion.

Lemma 16.6. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). LetA′, I ′, a′ be
the I-adic completions ofA, I, a. SetX ′ = Spec(A′) andU ′ = X ′\V (a′). The following
are equivalent

(1) (Fn) extends to X , and
(2) the pullback of (Fn) to U ′ is the completion of a coherentOU ′ -module.

Proof. Recall thatA→ A′ is a flat ring map which induces an isomorphismA/I →
A′/I ′. See Algebra, Lemmas 97.2 and 97.4. Thus X ′ → X is a flat morphism inducing an
isomorphism Y ′ → Y . Thus U ′ → U is a flat morphism which induces an isomorphism
U ′ ∩ Y ′ → U ∩ Y . This implies that in the commutative diagram

Coh(X ′, IOX′) // Coh(U ′, IOU ′)

Coh(X, IOX)

OO

// Coh(U, IOU )

OO

the vertical functors are equivalences. See Cohomology of Schemes, Lemma 23.10. The
lemma follows formally from this and the results of Lemma 16.3. �

In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). To figure out if (Fn) extends to
X it makes sense to look at the A-module

(16.6.1) M = limH0(U,Fn)

Observe that M has a limit topology which is (a priori) coarser than the I-adic topology
since M → H0(U,Fn) annihilates InM . There are canonical maps

M̃ |U → M̃/InM |U → ˜H0(U,Fn)|U → Fn

One could hope that M̃ restricts to a coherent module on U and that (Fn) is the comple-
tion of this module. This is naive because this has almost no chance of being true if A is
not complete. But even if A is I-adically complete this notion is very difficult to work
with. A less naive approach is to consider the following requirement.
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Definition 16.7. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). We say
(Fn) canonically extends to X if the the inverse system

{ ˜H0(U,Fn)}n≥1

in QCoh(OX) is pro-isomorphic to an object (Gn) of Coh(X, IOX).

We will see in Lemma 16.8 that the condition in Definition 16.7 is stronger than the con-
dition of Definition 16.5.

Lemma 16.8. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). If (Fn) canon-
ically extends to X , then

(1) ( ˜H0(U,Fn)) is pro-isomorphic to an object (Gn) of Coh(X, IOX) unique up to
unique isomorphism,

(2) the restriction of (Gn) to U is isomorphic to (Fn), i.e., (Fn) extends to X ,
(3) the inverse system {H0(U,Fn)} satisfies the Mittag-Leffler condition, and
(4) the module M in (16.6.1) is finite over the I-adic completion of A and the limit

topology on M is the I-adic topology.

Proof. The existence of (Gn) in (1) follows from Definition 16.7. The uniqueness
of (Gn) in (1) follows from Lemma 15.3. Write Gn = M̃n. Then {Mn} is an inverse
system of finite A-modules with Mn = Mn+1/I

nMn+1. By Definition 16.7 the inverse
system {H0(U,Fn)} is pro-isomorphic to {Mn}. Hence we see that the inverse system
{H0(U,Fn)} satisfies the Mittag-Leffler condition and that M = limMn (as topological
modules). Thus the properties of M in (4) follow from Algebra, Lemmas 98.2, 96.12, and
96.3. Since U is quasi-affine the canonical maps

˜H0(U,Fn)|U → Fn
are isomorphisms (Properties, Lemma 18.2). We conclude that (Gn|U ) and (Fn) are pro-
isomorphic and hence isomorphic by Lemma 15.3. �

Lemma 16.9. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let A → A′

be a flat ring map. Set X ′ = Spec(A′), let U ′ ⊂ X ′ be the inverse image of U , and denote
g : U ′ → U the induced morphism. Set (F ′

n) = (g∗Fn), see Cohomology of Schemes,
Lemma 23.9. If (Fn) canonically extends to X , then (F ′

n) canonically extends to X ′.
Moreover, the extension found in Lemma 16.8 for (Fn) pulls back to the extension for
(F ′

n).

Proof. Let f : X ′ → X be the induced morphism. We haveH0(U ′,F ′
n) = H0(U,Fn)⊗A

A′ by flat base change, see Cohomology of Schemes, Lemma 5.2. Thus if (Gn) in Coh(X, IOX)
is pro-isomorphic to ( ˜H0(U,Fn)), then (f∗Gn) is pro-isomorphic to

(f∗ ˜H0(U,Fn)) = ( ˜H0(U,Fn)⊗A A′) = ( ˜H0(U ′,F ′
n))

This finishes the proof. �

Lemma 16.10. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let M be as
in (16.6.1). Assume

(a) the inverse system H0(U,Fn) has Mittag-Leffler,
(b) the limit topology on M agrees with the I-adic topology, and
(c) the image of M → H0(U,Fn) is a finite A-module for all n.
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Then (Fn) extends canonically toX . In particular, ifA is I-adically complete, then (Fn)
is the completion of a coherentOU -module.

Proof. Since H0(U,Fn) has the Mittag-Leffler condition and since the limit topol-
ogy onM is the I-adic topology we see that {M/InM} and {H0(U,Fn)} are pro-isomorphic
inverse systems of A-modules. Thus if we set

Gn = M̃/InM

then we see that to verify the condition in Definition 16.7 it suffices to show that M is a
finite module over the I-adic completion of A. This follows from the fact that M/InM
is finite by condition (c) and the above and Algebra, Lemma 96.12. �

The following is in some sense the most straightforward possible application Lemma 16.10
above.

Lemma 16.11. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) I = (f) is a principal ideal for a nonzerodivisor f ∈ a,
(2) Fn is a finite locally freeOU/fnOU -module,
(3) H1

a(A/fA) and H2
a(A/fA) are finite A-modules.

Then (Fn) extends canonically to X . In particular, if A is complete, then (Fn) is the
completion of a coherentOU -module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma 16.10.

Since Fn is locally free over OU/fnOU we see that we have short exact sequences 0 →
Fn → Fn+1 → F1 → 0 for all n. Thus condition (b) holds by Cohomology, Lemma 36.2.

As f is a nonzerodivisor we obtain short exact sequences

0→ A/fnA
f−→ A/fn+1A→ A/fA→ 0

and we have corresponding short exact sequences 0 → Fn → Fn+1 → F1 → 0. We
will use Local Cohomology, Lemma 8.2 without further mention. Our assumptions im-
ply that H0(U,OU/fOU ) and H1(U,OU/fOU ) are finite A-modules. Hence the same
thing is true for F1, see Local Cohomology, Lemma 12.2. Using induction and the short
exact sequences we find that H0(U,Fn) are finite A-modules for all n. In this way we see
hypothesis (c) is satisfied.

Finally, as H1(U,F1) is a finite A-module we can apply Cohomology, Lemma 36.4 to see
hypothesis (a) holds. �

Remark 16.12. In Lemma 16.11 if A is universally catenary with Cohen-Macaulay
formal fibres (for example ifAhas a dualizing complex), then the condition thatH1

a(A/fA)
and H2

a(A/fA) are finite A-modules, is equivalent with

depth((A/f)p) + dim((A/p)q) > 2

for all p ∈ V (f) \ V (a) and q ∈ V (p) ∩ V (a) by Local Cohomology, Theorem 11.6.

For example, if A/fA is (S2) and if every irreducible component of Z = V (a) has
codimension ≥ 3 in Y = Spec(A/fA), then we get the finiteness of H1

a(A/fA) and
H2

a(A/fA). This should be contrasted with the slightly weaker conditions found in
Lemma 20.1 (see also Remark 20.2).
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17. Algebraization of coherent formal modules, II

We continue the discussion started in Section 16. This section can be skipped on a first
reading.

Lemma 17.1. In Situation 16.1. Let (Fn) → (F ′
n) be a morphism of Coh(U, IOU )

whose kernel and cokernel are annihilated by a power of I . Then
(1) (Fn) extends to X if and only if (F ′

n) extends to X , and
(2) (Fn) is the completion of a coherentOU -module if and only if (F ′

n) is.

Proof. Part (2) follows immediately from Cohomology of Schemes, Lemma 23.6. To
see part (1), we first use Lemma 16.6 to reduce to the case where A is I-adically complete.
However, in that case (1) reduces to (2) by Lemma 16.3. �

The following two lemmas where originally used in the proof of Lemma 16.10. We keep
them here for the reader who is interested to know what intermediate results one can
obtain.

Lemma 17.2. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). If the inverse
system H0(U,Fn) has Mittag-Leffler, then the canonical maps

M̃/InM |U → Fn
are surjective for all n where M is as in (16.6.1).

Proof. Surjectivity may be checked on the stalk at some point y ∈ Y \ Z. If y
corresponds to the prime q ⊂ A, then we can choose f ∈ a, f 6∈ q. Then it suffices to
show

Mf −→ H0(U,Fn)f = H0(D(f),Fn)
is surjective as D(f) is affine (equality holds by Properties, Lemma 17.1). Since we have
the Mittag-Leffler property, we find that

Im(M → H0(U,Fn)) = Im(H0(U,Fm)→ H0(U,Fn))

for some m ≥ n. Using the long exact sequence of cohomology we see that

Coker(H0(U,Fm)→ H0(U,Fn)) ⊂ H1(U,Ker(Fm → Fn))

Since U = X \ V (a) this H1 is a-power torsion. Hence after inverting f the cokernel
becomes zero. �

Lemma 17.3. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let M be as in
(16.6.1). Set

Gn = M̃/InM.

If the limit topology on M agrees with the I-adic topology, then Gn|U is a coherent OU -
module and the map of inverse systems

(Gn|U ) −→ (Fn)

is injective in the abelian category Coh(U, IOU ).

Proof. Observe that Gn is a quasi-coherent OX -module annihilated by In and that
Gn+1/I

nGn+1 = Gn. Consider

Mn = Im(M −→ H0(U,Fn))
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The assumption says that the inverse systems (Mn) and (M/InM) are isomorphic as pro-
objects of ModA. Pick f ∈ a so D(f) ⊂ U is an affine open. Then we have

(Mn)f ⊂ H0(U,Fn)f = H0(D(f),Fn)

Equality holds by Properties, Lemma 17.1. Thus M̃n|U → Fn is injective. It follows that
M̃n|U is a coherent module (Cohomology of Schemes, Lemma 9.3). Since M →M/InM
is surjective and factors asMn′ →M/InM for some n′ ≥ nwe find that Gn|U is coherent
as the quotient of a coherent module. Combined with the initical remarks of the proof
we conclude that (Gn|U ) indeed forms an object of Coh(U, IOU ). Finally, to show the
injectivity of the map it suffices to show that

lim(M/InM)f = limH0(D(f),Gn)→ limH0(D(f),Fn)

is injective, see Cohomology of Schemes, Lemmas 23.2 and 23.1. The injectivity of lim(Mn)f →
limH0(D(f),Fn) is clear (see above) and by our remark on pro-systems we have lim(Mn)f =
lim(M/InM)f . This finishes the proof. �

18. A distance function

Let Y be a Noetherian scheme and let Z ⊂ Y be a closed subset. We define a function

(18.0.1) δYZ = δZ : Y −→ Z≥0 ∪ {∞}

which measures the “distance” of a point of Y from Z. For an informal discussion, please
see Remark 18.3. Let y ∈ Y . We set δZ(y) =∞ if y is contained in a connected component
of Y which does not meetZ. If y is contained in a connected component of Y which meets
Z , then we can find k ≥ 0 and a system

V0 ⊂W0 ⊃ V1 ⊂W1 ⊃ . . . ⊃ Vk ⊂Wk

of integral closed subschemes of Y such that V0 ⊂ Z and y ∈ Vk is the generic point. Set
ci = codim(Vi,Wi) for i = 0, . . . , k and bi = codim(Vi+1,Wi) for i = 0, . . . , k − 1. For
such a system we set

δ(V0,W0, V1, . . . ,Wk) = k + max
i=0,1,...,k

(ci + ci+1 + . . .+ ck − bi − bi+1 − . . .− bk−1)

This is ≥ k as we can take i = k and we have ck ≥ 0. Finally, we set

δZ(y) = min δ(V0,W0, V1, . . . ,Wk)

where the minimum is over all systems of integral closed subschemes of Y as above.

Lemma 18.1. Let Y be a Noetherian scheme and let Z ⊂ Y be a closed subset.
(1) For y ∈ Y we have δZ(y) = 0⇔ y ∈ Z.
(2) The subsets {y ∈ Y | δZ(y) ≤ k} are stable under specialization.
(3) For y ∈ Y and z ∈ {y} ∩ Z we have dim(O{y},z) ≥ δZ(y).
(4) If δ is a dimension function on Y , then δ(y) ≤ δZ(y) + δmax where δmax is the

maximum value of δ on Z.
(5) If Y = Spec(A) is the spectrum of a catenary Noetherian local ring with maxi-

mal ideal m and Z = {m}, then δZ(y) = dim({y}).
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(6) Given a pattern of specializations

y′
0

�� ��

y′
1

��

. . . y′
k−1

$$
y0 y1 . . . yk = y

between points of Y with y0 ∈ Z and y′
i  yi an immediate specialization, then

δZ(yk) ≤ k.
(7) If Y ′ ⊂ Y is an open subscheme, then δY

′

Y ′∩Z(y′) ≥ δYZ (y′) for y′ ∈ Y ′.

Proof. Part (1) is essentially true by definition. Namely, if y ∈ Z , then we can take
k = 0 and V0 = W0 = {y}.

Proof of (2). Let y  y′ be a nontrivial specialization and let V0 ⊂ W0 ⊃ V1 ⊂
W1 ⊃ . . . ⊂ Wk is a system for y. Here there are two cases. Case I: Vk = Wk , i.e.,
ck = 0. In this case we can set V ′

k = W ′
k = {y′}. An easy computation shows that

δ(V0,W0, . . . , V
′
k,W

′
k) ≤ δ(V0,W0, . . . , Vk,Wk) because only bk−1 is changed into a big-

ger integer. Case II: Vk 6= Wk , i.e., ck > 0. Observe that in this case maxi=0,1,...,k(ci +
ci+1 + . . . + ck − bi − bi+1 − . . . − bk−1) > 0. Hence if we set V ′

k+1 = Wk+1 = {y′},
then although k is replaced by k + 1, the maximum now looks like

max
i=0,1,...,k+1

(ci + ci+1 + . . .+ ck + ck+1 − bi − bi+1 − . . .− bk−1 − bk)

with ck+1 = 0 and bk = codim(Vk+1,Wk) > 0. This is strictly smaller than maxi=0,1,...,k(ci+
ci+1 + . . . + ck − bi − bi+1 − . . . − bk−1) and hence δ(V0,W0, . . . , V

′
k+1,W

′
k+1) ≤

δ(V0,W0, . . . , Vk,Wk) as desired.

Proof of (3). Given y ∈ Y and z ∈ {y} ∩ Z we get the system

V0 = {z} ⊂W0 = {y}

and c0 = codim(V0,W0) = dim(O{y},z) by Properties, Lemma 10.3. Thus we see that
δ(V0,W0) = 0 + c0 = c0 which proves what we want.

Proof of (4). Let δ be a dimension function on Y . Let V0 ⊂ W0 ⊃ V1 ⊂ W1 ⊃ . . . ⊂ Wk

be a system for y. Let y′
i ∈ Wi and yi ∈ Vi be the generic points, so y0 ∈ Z and yk = y.

Then we see that

δ(yi)− δ(yi−1) = δ(y′
i−1)− δ(yi−1)− δ(y′

i−1) + δ(yi) = ci−1 − bi−1

Finally, we have δ(y′
k)− δ(yk−1) = ck. Thus we see that

δ(y)− δ(y0) = c0 + . . .+ ck − b0 − . . .− bk−1

We conclude δ(V0,W0, . . . ,Wk) ≥ k + δ(y)− δ(y0) which proves what we want.

Proof of (5). The function δ(y) = dim({y}) is a dimension function. Hence δ(y) ≤ δZ(y)
by part (4). By part (3) we have δZ(y) ≤ δ(y) and we are done.

Proof of (6). Given such a sequence of points, we may assume all the specializations y′
i  

yi+1 are nontrivial (otherwise we can shorten the chain of specializations). Then we set
Vi = {yi} and Wi = {y′

i} and we compute δ(V0,W1, V1, . . . ,Wk−1) = k because all the
codimensions ci of Vi ⊂ Wi are 1 and all bi > 0. This implies δZ(y′

k−1) ≤ k as y′
k−1 is

the generic point of Wk. Then δZ(y) ≤ k by part (2) as y is a specialization of yk−1.
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Proof of (7). This is clear as their are fewer systems to consider in the computation of
δY

′

Y ′∩Z . �

Lemma 18.2. Let Y be a universally catenary Noetherian scheme. Let Z ⊂ Y be a
closed subscheme. Let f : Y ′ → Y be a finite type morphism all of whose fibres have
dimension ≤ e. Set Z ′ = f−1(Z). Then

δZ(y) ≤ δZ′(y′) + e− trdegκ(y)(κ(y′))

for y′ ∈ Y ′ with image y ∈ Y .

Proof. If δZ′(y′) = ∞, then there is nothing to prove. If δZ′(y′) < ∞, then we
choose a system of integral closed subschemes

V ′
0 ⊂W ′

0 ⊃ V ′
1 ⊂W ′

1 ⊃ . . . ⊂W ′
k

ofY ′ withV ′
0 ⊂ Z ′ and y′ the generic point ofW ′

k such that δZ′(y′) = δ(V ′
0 ,W

′
0, . . . ,W

′
k).

Denote
V0 ⊂W0 ⊃ V1 ⊂W1 ⊃ . . . ⊂Wk

the scheme theoretic images of the above schemes in Y . Observe that y is the generic point
of Wk and that V0 ⊂ Z. For each i we look at the diagram

V ′
i

//

��

W ′
i

��

V ′
i+1

oo

��
Vi // Wi Vi+1oo

Denote ni the relative dimension of V ′
i /Vi and mi the relative dimension of W ′

i/Wi;
more precisely these are the transcendence degrees of the corresponding extensions of the
function fields. Set ci = codim(Vi,Wi), c′

i = codim(V ′
i ,W

′
i ), bi = codim(Vi+1,Wi), and

b′
i = codim(V ′

i+1,W
′
i ). By the dimension formula we have

ci = c′
i + ni −mi and bi = b′

i + ni+1 −mi

See Morphisms, Lemma 52.1. Hence ci − bi = c′
i − b′

i + ni − ni+1. Thus we see that

ci + ci+1 + . . .+ ck − bi − bi+1 − . . .− bk−1

= c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni − nk + ck − c′
k

= c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni −mk

Thus we see that

max
i=0,...,k

(ci + ci+1 + . . .+ ck − bi − bi+1 − . . .− bk−1)

= max
i=0,...,k

(c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni −mk)

= max
i=0,...,k

(c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1 + ni)−mk

≤ max
i=0,...,k

(c′
i + c′

i+1 + . . .+ c′
k − b′

i − b′
i+1 − . . .− b′

k−1) + e−mk

Since mk = trdegκ(y)(κ(y′)) we conclude that

δ(V0,W0, . . . ,Wk) ≤ δ(V ′
0 ,W

′
0, . . . ,W

′
k) + e− trdegκ(y)(κ(y′))

as desired. �
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Remark 18.3. Let Y be a Noetherian scheme and let Z ⊂ Y be a closed subset. By
Lemma 18.1 we have

δZ(y) ≤ min

k
∣∣∣∣∣∣

there exist specializations in Y
y0 ← y′

0 → y1 ← y′
1 → . . .← y′

k−1 → yk = y
with y0 ∈ Z and y′

i  yi immediate


We claim that if Y is of finite type over a field, then equality holds. If we ever need this
result we will formulate a precise result and prove it here. However, in general if we define
δZ by the right hand side of this inequality, then we don’t know if Lemma 18.2 remains
true.

Example 18.4. Let k be a field and Y = An
k . Denote δ : Y → Z≥0 the usual

dimension function.
(1) If Z = {z} for some closed point z, then

(a) δZ(y) = δ(y) if y  z and
(b) δZ(y) = δ(y) + 1 if y 6 z.

(2) If Z is a closed subvariety and W = {y}, then
(a) δZ(y) = 0 if W ⊂ Z ,
(b) δZ(y) = dim(W )− dim(Z) if Z is contained in W ,
(c) δZ(y) = 1 if dim(W ) ≤ dim(Z) and W 6⊂ Z ,
(d) δZ(y) = dim(W )− dim(Z) + 1 if dim(W ) > dim(Z) and Z 6⊂W .

A generalization of case (1) is ifY is of finite type over a field andZ = {z} is a closed point.
Then δZ(y) = δ(y) + t where t is the minimum length of a chain of curves connecting z
to a closed point of {y}.

19. Algebraization of coherent formal modules, III

We continue the discussion started in Sections 16 and 17. We will use the distance func-
tion of Section 18 to formulate a some natural conditions on coherent formal modules in
Situation 16.1.

In Situation 16.1 given a point y ∈ U ∩ Y we can consider the I-adic completion

O∧
X,y = limOX,y/InOX,y

This is a Noetherian local ring complete with respect to IO∧
X,y with maximal ideal m∧

y ,
see Algebra, Section 97. Let (Fn) be an object of Coh(U, IOU ). Let us define the “stalk”
of (Fn) at y by the formula

F∧
y = limFn,y

This is a finite module overO∧
X,y . See Algebra, Lemmas 98.2 and 96.12.

Definition 19.1. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let a, b
be integers. Let δYZ be as in (18.0.1). We say (Fn) satisfies the (a, b)-inequalities if for
y ∈ U ∩ Y and a prime p ⊂ O∧

X,y with p 6∈ V (IO∧
X,y)

(1) if V (p) ∩ V (IO∧
X,y) 6= {m∧

y }, then

depth((F∧
y )p) + δYZ (y) ≥ a or depth((F∧

y )p) + dim(O∧
X,y/p) + δYZ (y) > b

(2) if V (p) ∩ V (IO∧
X,y) = {m∧

y }, then

depth((F∧
y )p) + δYZ (y) > a
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We say (Fn) satisfies the strict (a, b)-inequalities if for y ∈ U ∩ Y and a prime p ⊂ O∧
X,y

with p 6∈ V (IO∧
X,y) we have

depth((F∧
y )p) + δYZ (y) > a or depth((F∧

y )p) + dim(O∧
X,y/p) + δYZ (y) > b

Here are some elementary observations.

Lemma 19.2. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Let a, b be
integers.

(1) If (Fn) is annihilated by a power of I , then (Fn) satisfies the (a, b)-inequalities
for any a, b.

(2) If (Fn) satisfies the (a + 1, b)-inequalities, then (Fn) satisfies the strict (a, b)-
inequalities.

If cd(A, I) ≤ d and A has a dualizing complex, then
(3) (Fn) satisfies the (s, s+d)-inequalities if and only if for all y ∈ U ∩Y the tuple
O∧
X,y, IO∧

X,y, {m∧
y },F∧

y , s− δYZ (y), d is as in Situation 10.1.
(4) If (Fn) satisfies the strict (s, s+d)-inequalities, then (Fn) satisfies the (s, s+d)-

inequalities.

Proof. Immediate except for part (4) which is a consequence of Lemma 10.5 and the
translation in (3). �

Lemma 19.3. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). If cd(A, I) = 1,
then F satisfies the (2, 3)-inequalities if and only if

depth((F∧
y )p) + dim(O∧

X,y/p) + δYZ (y) > 3
for all y ∈ U ∩ Y and p ⊂ O∧

X,y with p 6∈ V (IO∧
X,y).

Proof. Observe that for a prime p ⊂ O∧
X,y , p 6∈ V (IO∧

X,y) we haveV (p)∩V (IO∧
X,y) =

{m∧
y } ⇔ dim(O∧

X,y/p) = 1 as cd(A, I) = 1. See Local Cohomology, Lemmas 4.5 and
4.10. OK, consider the three numbers α = depth((F∧

y )p) ≥ 0, β = dim(O∧
X,y/p) ≥ 1,

and γ = δYZ (y) ≥ 1. Then we see Definition 19.1 requires
(1) if β > 1, then α+ γ ≥ 2 or α+ β + γ > 3, and
(2) if β = 1, then α+ γ > 2.

It is trivial to see that this is equivalent to α+ β + γ > 3. �

In the rest of this section, which we suggest the reader skip on a first reading, we will show
that, when A is I-adically complete, the category of (Fn) of Coh(U, IOU ) which extend
toX and satisfy the strict (1, 1 + cd(A, I))-inequalities is equivalent to a full subcategory
of the category of coherentOU -modules.

Lemma 19.4. In Situation 16.1 let F be a coherentOU -module and d ≥ 1. Assume
(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) the completion F∧ of F satisfies the strict (1, 1 + d)-inequalities.

Let x ∈ X be a point. Let W = {x}. If W ∩ Y has an irreducible component contained
in Z and one which is not, then depth(Fx) ≥ 1.

Proof. Let W ∩ Y = W1 ∪ . . . ∪Wn be the decomposition into irreducible compo-
nents. By assumption, after renumbering, we can find 0 < m < n such thatW1, . . . ,Wm ⊂
Z and Wm+1, . . . ,Wn 6⊂ Z. We conclude that

W ∩ Y \ ((W1 ∪ . . . ∪Wm) ∩ (Wm+1 ∪ . . . ∪Wn))
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is disconnected. By Lemma 14.2 we can find 1 ≤ i ≤ m < j ≤ n and z ∈ Wi ∩Wj

such that dim(OW,z) ≤ d+ 1. Choose an immediate specialization y  z with y ∈ Wj ,
y 6∈ Z ; existence of y follows from Properties, Lemma 6.4. Observe that δYZ (y) = 1 and
dim(OW,y) ≤ d. Let p ⊂ OX,y be the prime corresponding to x. Let p′ ⊂ O∧

X,y be a
minimal prime over pO∧

X,y . Then we have

depth(Fx) = depth((F∧
y )p′) and dim(OW,y) = dim(O∧

X,y/p
′)

See Algebra, Lemma 163.1 and Local Cohomology, Lemma 11.3. Now we read off the con-
clusion from the inequalities given to us. �

Lemma 19.5. In Situation 16.1 let F be a coherentOU -module and d ≥ 1. Assume
(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) the completion F∧ of F satisfies the strict (1, 1 + d)-inequalities, and
(3) for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Fx) ≥ 2.

Then H0(U,F)→ limH0(U,F/InF) is an isomorphism.

Proof. We will prove this by showing that Lemma 12.4 applies. Thus we let x ∈
Ass(F) with x 6∈ Y . Set W = {x}. By condition (3) we see that W ∩ Y 6⊂ Z. By
Lemma 19.4 we see that no irreducible component of W ∩ Y is contained in Z. Thus if
z ∈ W ∩ Z , then there is an immediate specialization y  z, y ∈ W ∩ Y , y 6∈ Z. For
existence of y use Properties, Lemma 6.4. Then δYZ (y) = 1 and the assumption implies
that dim(OW,y) > d. Hence dim(OW,z) > 1 + d and we win. �

Lemma 19.6. In Situation 16.1 let F be a coherentOU -module and d ≥ 1. Assume
(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) the completion F∧ of F satisfies the strict (1, 1 + d)-inequalities, and
(3) for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Fx) ≥ 2.

Then the map
HomU (G,F) −→ HomCoh(U,IOU )(G∧,F∧)

is bijective for every coherentOU -module G.

Proof. Set H = HomOU
(G,F). Using Cohomology of Schemes, Lemma 11.2 or

More on Algebra, Lemma 23.10 we see that the completion ofH satisfies the strict (1, 1+d)-
inequalities and that for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Hx) ≥ 2. Details
omitted. Thus by Lemma 19.5 we have

HomU (G,F) = H0(U,H) = limH0(U,H/InH) = MorCoh(U,IOU )(G∧,F∧)

See Cohomology of Schemes, Lemma 23.5 for the final equality. �

Lemma 19.7. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ) and d ≥ 1.
Assume

(1) A is I-adically complete, has a dualizing complex, and cd(A, I) ≤ d,
(2) (Fn) is the completion of a coherentOU -module,
(3) (Fn) satisfies the strict (1, 1 + d)-inequalities.

Then there exists a unique coherent OU -module F whose completion is (Fn) such that
for x ∈ U with {x} ∩ Y ⊂ Z we have depth(Fx) ≥ 2.
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Proof. Choose a coherent OU -module F whose completion is (Fn). Let T = {x ∈
U | {x} ∩ Y ⊂ Z}. We will construct F by applying Local Cohomology, Lemma 15.4
with F and T . Then uniqueness will follow from the mapping property of Lemma 19.6.

Since T is stable under specialization in U the only thing to check is the following. If
x′  x is an immediate specialization of points of U with x ∈ T and x′ 6∈ T , then
depth(Fx′) ≥ 1. Set W = {x} and W ′ = {x′}. Since x′ 6∈ T we see that W ′ ∩ Y is not
contained in Z. IfW ′∩Y contains an irreducible component contained in Z , then we are
done by Lemma 19.4. If not, we choose an irreducible component W1 of W ∩ Y and an
irreducible component W ′

1 of W ′ ∩ Y with W1 ⊂ W ′
1. Let z ∈ W1 be the generic point.

Let y  z, y ∈ W ′
1 be an immediate specialization with y 6∈ Z ; existence of y follows

fromW ′
1 6⊂ Z (see above) and Properties, Lemma 6.4. Then we have the following z ∈ Z ,

x  z, x′  y  z, y ∈ Y \ Z , and δYZ (y) = 1. By Local Cohomology, Lemma 4.10
and the fact that z is a generic point of W ∩ Y we have dim(OW,z) ≤ d. Since x′  x
is an immediate specialization we have dim(OW ′,z) ≤ d + 1. Since y 6= z we conclude
dim(OW ′,y) ≤ d. If depth(Fx′) = 0 then we would get a contradiction with assumption
(3); details about passage fromOX,y to its completion omitted. This finishes the proof. �

20. Algebraization of coherent formal modules, IV

In this section we prove two stronger versions of Lemma 16.11 in the local case, namely,
Lemmas 20.1 and 20.4. Although these lemmas will be obsoleted by the more general
Proposition 22.2, their proofs are significantly easier.

Lemma 20.1. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local and a = m is the maximal ideal,
(2) A has a dualizing complex,
(3) I = (f) is a principal ideal for a nonzerodivisor f ∈ m,
(4) Fn is a finite locally freeOU/fnOU -module,
(5) if p ∈ V (f) \ {m}, then depth((A/f)p) + dim(A/p) > 1, and
(6) if p 6∈ V (f) and V (p) ∩ V (f) 6= {m}, then depth(Ap) + dim(A/p) > 3.

Then (Fn) extends canonically to X . In particular, if A is complete, then (Fn) is the
completion of a coherentOU -module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma 16.10.

Since Fn is locally free over OU/fnOU we see that we have short exact sequences 0 →
Fn → Fn+1 → F1 → 0 for all n. Thus condition (b) holds by Cohomology, Lemma 36.2.

By induction on n and the short exact sequences 0→ A/fn → A/fn+1 → A/f → 0 we
see that the associated primes ofA/fnA agree with the associated primes ofA/fA. Since
the associated points of Fn correspond to the associated primes of A/fnA not equal to m
by assumption (3), we conclude that Mn = H0(U,Fn) is a finite A-module by (5) and
Local Cohomology, Proposition 8.7. Thus hypothesis (c) holds.

To finish the proof it suffices to show that there exists an n > 1 such that the image of

H1(U,Fn) −→ H1(U,F1)

has finite length as anA-module. Namely, this will imply hypothesis (a) by Cohomology,
Lemma 36.5. The image is independent of n for n large enough by Lemma 5.2. Let ω•

A be
a normalized dualizing complex for A. By the local duality theorem and Matlis duality
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(Dualizing Complexes, Lemma 18.4 and Proposition 7.8) our claim is equivalent to: the
image of

Ext−2
A (M1, ω

•
A)→ Ext−2

A (Mn, ω
•
A)

has finite length for n � 1. The modules in question are finite A-modules supported
at V (f). Thus it suffices to show that this map is zero after localization at a prime q
containing f and different from m. Let ω•

Aq
be a normalized dualizing complex on Aq

and recall that ω•
Aq

= (ω•
A)q[dim(A/q)] by Dualizing Complexes, Lemma 17.3. Using

the local structure of Fn given in (4) we find that it suffices to show the vanishing of

Ext−2+dim(A/q)
Aq

(Aq/f, ω
•
Aq

)→ Ext−2+dim(A/q)
Aq

(Aq/f
n, ω•

Aq
)

for n large enough. If dim(A/q) > 3, then this is immediate from Local Cohomology,
Lemma 9.4. For the other cases we will use the long exact sequence

. . .
fn−−→ H−1(ω•

Aq
)→ Ext−1

Aq
(Aq/f

n, ω•
Aq

)→ H0(ω•
Aq

) fn−−→ H0(ω•
Aq

)→ Ext0
Aq

(Aq/f
n, ω•

Aq
)→ 0

If dim(A/q) = 2, then H0(ω•
Aq

) = 0 because depth(Aq) ≥ 1 as f is a nonzerodivisor.
Thus the long exact sequence shows the condition is that

fn−1 : H−1(ω•
Aq

)/f → H−1(ω•
Aq

)/fn

is zero. Now H−1(ω•
q) is a finite module supported in the primes p ⊂ Aq such that

depth(Ap) + dim((A/p)q) ≤ 1. Since dim((A/p)q) = dim(A/p)− 2 condition (6) tells
us these primes are contained in V (f). Thus the desired vanishing for n large enough.
Finally, if dim(A/q) = 1, then condition (5) combined with the fact that f is a nonzero-
divisor insures that Aq has depth at least 2. Hence H0(ω•

Aq
) = H−1(ω•

Aq
) = 0 and the

long exact sequence shows the claim is equivalent to the vanishing of

fn−1 : H−2(ω•
Aq

)/f → H−2(ω•
Aq

)/fn

Now H−2(ω•
q) is a finite module supported in the primes p ⊂ Aq such that depth(Ap) +

dim((A/p)q) ≤ 2. By condition (6) all of these primes are contained in V (f). Thus the
desired vanishing for n large enough. �

Remark 20.2. Let (A,m) be a complete Noetherian normal local domain of dimen-
sion ≥ 4 and let f ∈ m be nonzero. Then assumptions (1), (2), (3), (5), and (6) of Lemma
20.1 are satisfied. Thus vectorbundles on the formal completion of U along U ∩V (f) can
be algebraized. In Lemma 20.4 we will generalize this to more general coherent formal
modules; please also compare with Remark 20.7.

Lemma 20.3. In Situation 16.1 let (Mn) be an inverse system of A-modules as in
Lemma 16.2 and let (Fn) be the corresponding object of Coh(U, IOU ). Let d ≥ cd(A, I)
and s ≥ 0 be integers. With notation as above assume

(1) A is local with maximal ideal m = a,
(2) A has a dualizing complex, and
(3) (Fn) satisfies the (s, s+ d)-inequalities (Definition 19.1).

Let E be an injective hull of the residue field of A. Then for i ≤ s there exists a finite
A-module N annihilated by a power of I and for n� 0 compatible maps

Hi
m(Mn)→ HomA(N,E)

whose cokernels are finite lengthA-modules and whose kernelsKn form an inverse system
such that Im(Kn′′ → Kn′) has finite length for n′′ � n′ � 0.
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Proof. Let ω•
A be a normalized dualizing complex. Then δYZ = δ is the dimension

function associated with this dualizing complex. Observe that Ext−i
A (Mn, ω

•
A) is a finite

A-module annihilated by In. Fix 0 ≤ i ≤ s. Below we will find n1 > n0 > 0 such that
if we set

N = Im(Ext−i
A (Mn0 , ω

•
A)→ Ext−i

A (Mn1 , ω
•
A))

then the kernels of the maps

N → Ext−i
A (Mn, ω

•
A), n ≥ n1

are finite length A-modules and the cokernels Qn form a system such that Im(Qn′ →
Qn′′) has finite length for n′′ � n′ � n1. This is equivalent to the statement that
the system {Ext−i

A (Mn, ω
•
A)}n≥1 is essentially constant in the quotient of the category

of finite A-modules modulo the Serre subcategory of finite length A-modules. By the
local duality theorem (Dualizing Complexes, Lemma 18.4) and Matlis duality (Dualizing
Complexes, Proposition 7.8) we conclude that there are maps

Hi
m(Mn)→ HomA(N,E), n ≥ n1

as in the statement of the lemma.

Pick f ∈ m. Let B = A∧
f be the I-adic completion of the localization Af . Recall that

ω•
Af

= ω•
A ⊗A Af and ω•

B = ω•
A ⊗A B are dualizing complexes (Dualizing Complexes,

Lemma 15.6 and 22.3). Let M be the finite B-module limMn,f (compare with discussion
in Cohomology of Schemes, Lemma 23.1). Then

Ext−i
A (Mn, ω

•
A)f = Ext−i

Af
(Mn,f , ω

•
Af

) = Ext−i
B (M/InM,ω•

B)

Since m can be generated by finitely many f ∈ m it suffices to show that for each f the
system

{Ext−i
B (M/InM,ω•

B)}n≥1

is essentially constant. Some details omitted.

Let q ⊂ IB be a prime ideal. Then q corresponds to a point y ∈ U ∩ Y . Observe that
δ(q) = dim({y}) is also the value of the dimension function associated toω•

B (we omit the
details; use thatω•

B is gotten fromω•
A by tensoring up withB). Assumption (3) guarantees

via Lemma 19.2 that Lemma 10.4 applies toBq, IBq, qBq,Mq with s replaced by s−δ(y).
We obtain that

H
i−δ(q)
qBq

(Mq) = limH
i−δ(q)
qBq

((M/InM)q)
and this module is annihilated by a power of I . By Lemma 5.3 we find that the inverse
systems Hi−δ(q)

qBq
((M/InM)q) are essentially constant with value Hi−δ(q)

qBq
(Mq). Since

(ω•
B)q[−δ(q)] is a normalized dualizing complex on Bq the local duality theorem shows

that the system
Ext−i

B (M/InM,ω•
B)q

is essentially constant with value Ext−i
B (M,ω•

B)q.

To finish the proof we globalize as in the proof of Lemma 10.6; the argument here is easier
because we know the value of our system already. Namely, consider the maps

αn : Ext−i
B (M/InM,ω•

B) −→ Ext−i
B (M,ω•

B)
for varying n. By the above, for every q we can find an n such that αn is surjective after
localization at q. SinceB is Noetherian and Ext−i

B (M,ω•
B) a finite module, we can find an

n such thatαn is surjective. For any n such thatαn is surjective, given a prime q ∈ V (IB)



4286 52. ALGEBRAIC AND FORMAL GEOMETRY

we can find an n′ > n such that Ker(αn) maps to zero in Ext−i(M/In
′
M,ω•

B) at least
after localizing at q. Since Ker(αn) is a finiteA-module and since supports of sections are
quasi-compact, we can find ann′ such that Ker(αn) maps to zero in Ext−i(M/In

′
M,ω•

B).
In this way we see that Ext−i(M/InM,ω•

B) is essentially constant with value Ext−i(M,ω•
B).

This finishes the proof. �

Here is a more general version of Lemma 20.1.

Lemma 20.4. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local and a = m is the maximal ideal,
(2) A has a dualizing complex,
(3) I = (f) is a principal ideal,
(4) (Fn) satisfies the (2, 3)-inequalities.

Then (Fn) extends to X . In particular, if A is I-adically complete, then (Fn) is the com-
pletion of a coherentOU -module.

Proof. Recall that Coh(U, IOU ) is an abelian category, see Cohomology of Schemes,
Lemma 23.2. Over affine opens of U the object (Fn) corresponds to a finite module over
a Noetherian ring (Cohomology of Schemes, Lemma 23.1). Thus the kernels of the maps
fN : (Fn) → (Fn) stabilize for N large enough. By Lemmas 17.1 and 16.3 in order to
prove the lemma we may replace (Fn) by the image of such a map. Thus we may assume f
is injective on (Fn). After this replacement the equivalent conditions of Lemma 3.1 hold
for the inverse system (Fn) on U . We will use this without further mention in the rest of
the proof.

We will check hypotheses (a), (b), and (c) of Lemma 16.10. Hypothesis (b) holds by Coho-
mology, Lemma 36.2.

Pick a inverse system of modules {Mn} as in Lemma 16.2. We may assume H0
m(Mn) = 0

by replacing Mn by Mn/H
0
m(Mn) if necessary. Then we obtain short exact sequences

0→Mn → H0(U,Fn)→ H1
m(Mn)→ 0

for all n. Let E be an injective hull of the residue field of A. By Lemma 20.3 and our
current assumption (4) we can choose, an integer m ≥ 0, finite A-modules N1 and N2
annihilated by f c for some c ≥ 0 and compatible systems of maps

Hi
m(Mn)→ HomA(Ni, E), i = 1, 2

for n ≥ m with the properties stated in the lemma.

We know that M = limH0(U,Fn) is an A-module whose limit topology is the f -adic
topology. Thus, given n, the module M/fnM is a subquotient of H0(U,FN ) for some
N � n. Looking at the information obtained above we see that f cM/fnM is a finite
A-module. Since f is a nonzerodivisor on M we conclude that M/fn−cM is a finite A-
module. In this way we see that hypothesis (c) of Lemma 16.10 holds.

Next, we study the module

Ob = limH1(U,Fn) = limH2
m(Mn)

For n ≥ m letKn be the kernel of the mapH2
m(Mn)→ HomA(N2, E). SetK = limKn.

We obtain an exact sequence

0→ K → Ob→ HomA(N2, E)
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By the above the limit topology on Ob = limH2
m(Mn) is the f -adic topology. Since N2

is annihilated by f c we conclude the same is true for the limit topology on K = limKn.
ThusK/fK is a subquotient ofKn for n� 1. However, since {Kn} is pro-isomorphic to
a inverse system of finite lengthA-modules (by the conclusion of Lemma 20.3) we conclude
that K/fK is a subquotient of a finite length A-module. It follows that K is a finite A-
module, see Algebra, Lemma 96.12. (In fact, we even see that dim(Supp(K)) = 1 but we
will not need this.)

Given n ≥ 1 consider the boundary map

δn : H0(U,Fn) −→ limN H
1(U, fnFN ) f−n

−−−→ Ob

(the second map is an isomorphism) coming from the short exact sequences

0→ fnFN → FN → Fn → 0

For each n set
Pn = Im(H0(U,Fn+m)→ H0(U,Fn))

where m is as above. Observe that {Pn} is an inverse system and that the map f : Fn →
Fn+1 on global sections maps Pn into Pn+1. If p ∈ Pn, then δn(p) ∈ K ⊂ Ob because
δn(p) maps to zero inH1(U, fnFn+m) = H2

m(Mm) and the composition of δn andOb→
HomA(N2, E) factors through H2

m(Mm) by our choice of m. Hence⊕
n≥0

Im(Pn → Ob)

is a finite gradedA[T ]-module where T acts via multiplication by f . Namely, it is a graded
submodule ofK[T ] andK is finite overA. Arguing as in the proof of Cohomology, Lemma
35.17 we find that the inverse system {Pn} satisfies ML. Since {Pn} is pro-isomorphic to
{H0(U,Fn)}we conclude that {H0(U,Fn)} has ML. Thus hypothesis (a) of Lemma 16.10
holds and the proof is complete. �

We can unwind condition of Lemma 20.4 as follows.

Lemma 20.5. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local with maximal ideal a = m,
(2) cd(A, I) = 1.

Then (Fn) satisfies the (2, 3)-inequalities if and only if for all y ∈ U∩Y with dim({y}) =
1 and every prime p ⊂ O∧

X,y , p 6∈ V (IO∧
X,y) we have

depth((F∧
y )p) + dim(O∧

X,y/p) > 2

Proof. We will use Lemma 19.3 without further mention. In particular, we see the
condition is necessary. Conversely, suppose the condition is true. Note that δYZ (y) =
dim({y}) by Lemma 18.1. Let us write δ for this function. Let y ∈ U ∩ Y . If δ(y) > 2,
then the inequality of Lemma 19.3 holds. Finally, suppose δ(y) = 2. We have to show
that

depth((F∧
y )p) + dim(O∧

X,y/p) > 1

7Choose homogeneous generators of the form δnj (pj) for the displayed module. Then if k = max(nj)
we find that for n ≥ k and any p ∈ Pn we can find aj ∈ A such that p−

∑
ajf

n−nj pj is in the kernel of δn
and hence in the image of Pn′ for all n′ ≥ n. Thus Im(Pn → Pn−k) = Im(Pn′ → Pn−k) for all n′ ≥ n.
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Choose a specialization y  y′ with δ(y′) = 1. Then there is a ring map O∧
X,y′ → O∧

X,y

which identifies the target with the completion of the localization of O∧
X,y′ at a prime q

with dim(O∧
X,y′/q) = 1. Moreover, we then obtain

F∧
y = F∧

y′ ⊗O∧
X,y′
O∧
X,y

Let p′ ⊂ O∧
X,y′ be the image of p. By Local Cohomology, Lemma 11.3 we have

depth((F∧
y )p) + dim(O∧

X,y/p) = depth((F∧
y′)p′) + dim((O∧

X,y/p)p′)
= depth((F∧

y′)p′) + dim(O∧
X,y/p

′)− 1
the last equality because the specialization is immediate. Thus the lemma is prove by the
assumed inequality for y′, p′. �

Lemma 20.6. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is local with maximal ideal a = m,
(2) A has a dualizing complex,
(3) cd(A, I) = 1,
(4) for y ∈ U∩Y the moduleF∧

y is finite locally free outsideV (IO∧
X,y), for example

if Fn is a finite locally freeOU/InOU -module, and
(5) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in Y has
dimension ≥ 4, or

(b) if p 6∈ V (f) and V (p) ∩ V (f) 6= {m}, then depth(Ap) + dim(A/p) > 3.
Then (Fn) satisfies the (2, 3)-inequalities.

Proof. We will use the criterion of Lemma 20.5. Let y ∈ U ∩ Y with dim({y} = 1
and let p be a prime p ⊂ O∧

X,y with p 6∈ V (IO∧
X,y). Condition (4) shows that depth((F∧

y )p) =
depth((O∧

X,y)p). Thus we have to prove

depth((O∧
X,y)p) + dim(O∧

X,y/p) > 2
Let p0 ⊂ A be the image of p. Let q ⊂ A be the prime corresponding to y. By Local
Cohomology, Lemma 11.3 we have

depth((O∧
X,y)p) + dim(O∧

X,y/p) = depth(Ap0) + dim((A/p0)q)
= depth(Ap0) + dim(A/p0)− 1

If (5)(a) holds, then we get that this is
≥ min(2, dim(Ap0)) + dim(A/p0)− 1

Note that in any case dim(A/p0) ≥ 2. Hence if we get 2 for the minimum, then we are
done. If not we get

dim(Ap0) + dim(A/p0)− 1 ≥ 4− 1
because every component of Spec(A) passing through p0 has dimension ≥ 4. If (5)(b)
holds, then we win immediately. �

Remark 20.7. Let (A,m) be a Noetherian local ring which has a dualizing complex
and is complete with respect to f ∈ m. Let (Fn) be an object of Coh(U, fOU ) where U is
the punctured spectrum ofA. Set Y = V (f) ⊂ X = Spec(A). If for y ∈ U∩V (f) closed
in U , i.e., with dim({y}) = 1, we assume theO∧

X,y-moduleF∧
y satisfies the following two

conditions
(1) F∧

y [1/f ] is (S2) as aO∧
X,y[1/f ]-module, and
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(2) for p ∈ Ass(F∧
y [1/f ]) we have dim(O∧

X,y/p) ≥ 3.
Then (Fn) is the completion of a coherent module on U . This follows from Lemmas 20.4
and 20.5.

21. Improving coherent formal modules

Let X be a Noetherian scheme. Let Y ⊂ X be a closed subscheme with quasi-coherent
sheaf of ideals I ⊂ OX . Let (Fn) be an object of Coh(X, I). In this section we construct
maps (Fn)→ (F ′

n) similar to the maps constructed in Local Cohomology, Section 15 for
coherent modules. For a point y ∈ Y we set

O∧
X,y = limOX,y/Iny , I∧

y = lim Iy/Iny and m∧
y = limmy/Iny

Then O∧
X,y is a Noetherian local ring with maximal ideal m∧

y complete with respect to
I∧
y = IyO∧

X,y . We also set
F∧
y = limFn,y

Then F∧
y is a finite module over O∧

X,y with F∧
y /(I∧

y )nF∧
y = Fn,y for all n, see Algebra,

Lemmas 98.2 and 96.12.

Lemma 21.1. In the situation above assume X locally has a dualizing complex. Let
T ⊂ Y be a subset stable under specialization. Assume for y ∈ T and for a nonmaximal
prime p ⊂ O∧

X,y with V (p) ∩ V (I∧
y ) = {m∧

y } we have

depth(OX,y)p((F∧
y )p) > 0

Then there exists a canonical map (Fn) → (F ′
n) of inverse systems of coherent OX -

modules with the following properties
(1) for y ∈ T we have depth(F ′

n,y) ≥ 1,
(2) (F ′

n) is isomorphic as a pro-system to an object (Gn) of Coh(X, I),
(3) the induced morphism (Fn) → (Gn) of Coh(X, I) is surjective with kernel

annihilated by a power of I .

Proof. For everynwe letFn → F ′
n be the surjection constructed in Local Cohomol-

ogy, Lemma 15.1. Since this is the quotient ofFn by the subsheaf of sections supported on
T we see that we get canonical mapsF ′

n+1 → F ′
n such that we obtain a map (Fn)→ (F ′

n)
of inverse systems of coherentOX -modules. Property (1) holds by construction.

To prove properties (2) and (3) we may assume that X = Spec(A0) is affine and A0 has a
dualizing complex. Let I0 ⊂ A0 be the ideal corresponding to Y . Let A, I be the I-adic
completions of A0, I0. For later use we observe that A has a dualizing complex (Dualiz-
ing Complexes, Lemma 22.4). Let M be the finite A-module corresponding to (Fn), see
Cohomology of Schemes, Lemma 23.1. Then Fn corresponds to Mn = M/InM . Recall
thatF ′

n corresponds to the quotientM ′
n = Mn/H

0
T (Mn), see Local Cohomology, Lemma

15.1 and its proof.

Set s = 0 and d = cd(A, I). We claim thatA, I, T,M, s, d satisfy assumptions (1), (3), (4),
(6) of Situation 10.1. Namely, (1) and (3) are immediate from the above, (4) is the empty
condition as s = 0, and (6) is the assumption we made in the statement of the lemma.

By Theorem 10.8 we see that {H0
T (Mn)} is Mittag-Leffler, that limH0

T (Mn) = H0
T (M),

and that H0
T (M) is killed by a power of I . Thus the limit of the short exact sequences

0→ H0
T (Mn)→Mn →M ′

n → 0 is the short exact sequence

0→ H0
T (M)→M → limM ′

n → 0
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SettingM ′ = limM ′
n we find that Gn corresponds to the finiteA0-moduleM ′/InM ′. To

finish the prove we have to show that the canonical map {M ′/InM ′} → {M ′
n} is a pro-

isomorphism. This is equivalent to saying that {H0
T (M)+InM} → {ker(M →M ′

n)} is
a pro-isomorphism. Which in turn says that {H0

T (M)/H0
T (M) ∩ InM} → {H0

T (Mn)}
is a pro-isomorphism. This is true because {H0

T (Mn)} is Mittag-Leffler, limH0
T (Mn) =

H0
T (M), and H0

T (M) is killed by a power of I (so that Artin-Rees tells us that H0
T (M) ∩

InM = 0 for n large enough). �

Lemma 21.2. In the situation above assume X locally has a dualizing complex. Let
T ′ ⊂ T ⊂ Y be subsets stable under specialization. Let d ≥ 0 be an integer. Assume

(a) affine locally we have X = Spec(A0) and Y = V (I0) and cd(A0, I0) ≤ d,
(b) for y ∈ T and a nonmaximal prime p ⊂ O∧

X,y with V (p) ∩ V (I∧
y ) = {m∧

y } we
have

depth(OX,y)p((F∧
y )p) > 0

(c) for y ∈ T ′ and for a prime p ⊂ O∧
X,y with p 6∈ V (I∧

y ) and V (p) ∩ V (I∧
y ) 6=

{m∧
y } we have

depth(OX,y)p((F∧
y )p) ≥ 1 or depth(OX,y)p((F∧

y )p) + dim(O∧
X,y/p) > 1 + d

(d) for y ∈ T ′ and a nonmaximal prime p ⊂ O∧
X,y with V (p)∩ V (I∧

y ) = {m∧
y } we

have
depth(OX,y)p((F∧

y )p) > 1
(e) if y  y′ is an immediate specialization and y′ ∈ T ′, then y ∈ T .

Then there exists a canonical map (Fn) → (F ′′
n) of inverse systems of coherent OX -

modules with the following properties
(1) for y ∈ T we have depth(F ′′

n,y) ≥ 1,
(2) for y′ ∈ T ′ we have depth(F ′′

n,y′) ≥ 2,
(3) (F ′′

n) is isomorphic as a pro-system to an object (Hn) of Coh(X, I),
(4) the induced morphism (Fn) → (Hn) of Coh(X, I) has kernel and cokernel

annihilated by a power of I .

Proof. As in Lemma 21.1 and its proof for every nwe letFn → F ′
n be the surjection

constructed in Local Cohomology, Lemma 15.1. Next, we let F ′
n → F ′′

n be the injection
constructed in Local Cohomology, Lemma 15.5 and its proof. The constructions show that
we get canonical maps F ′′

n+1 → F ′′
n such that we obtain maps

(Fn) −→ (F ′
n) −→ (F ′′

n)
of inverse systems of coherentOX -modules. Properties (1) and (2) hold by construction.

To prove properties (3) and (4) we may assume that X = Spec(A0) is affine and A0
has a dualizing complex. Let I0 ⊂ A0 be the ideal corresponding to Y . Let A, I be the
I-adic completions of A0, I0. For later use we observe that A has a dualizing complex
(Dualizing Complexes, Lemma 22.4). Let M be the finite A-module corresponding to
(Fn), see Cohomology of Schemes, Lemma 23.1. ThenFn corresponds toMn = M/InM .
Recall that F ′

n corresponds to the quotient M ′
n = Mn/H

0
T (Mn). Also, recall that M ′ =

limM ′
n is the quotient ofM byH0

T (M) and that {M ′
n} and {M ′/InM ′} are isomorphic

as pro-systems. Finally, we see that F ′′
n corresponds to an extension

0→M ′
n →M ′′

n → H1
T ′(M ′

n)→ 0
see proof of Local Cohomology, Lemma 15.5.
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Set s = 1. We claim thatA, I, T ′,M ′, s, d satisfy assumptions (1), (3), (4), (6) of Situation
10.1. Namely, (1) and (3) are immediate, (4) is implied by (c), and (6) follows from (d). We
omit the details of the verification (c)⇒ (4).

By Theorem 10.8 we see that {H1
T ′(M ′/InM ′)} is Mittag-Leffler, thatH1

T ′(M ′) = limH1
T ′(M ′/InM ′),

and that H1
T ′(M ′) is killed by a power of I . We deduce {H1

T ′(M ′
n)} is Mittag-Leffler and

H1
T ′(M ′) = limH1

T ′(M ′
n). Thus the limit of the short exact sequences displayed above is

the short exact sequence

0→M ′ → limM ′′
n → H1

T ′(M ′)→ 0
Set M ′′ = limM ′′

n . It follows from Local Cohomology, Proposition 11.1 that H1
T ′(M ′)

and hence M ′′ are finite A-modules. Thus we find that Hn corresponds to the finite
A0-module M ′′/InM ′′. To finish the prove we have to show that the canonical map
{M ′′/InM ′′} → {M ′′

n} is a pro-isomorphism. Since we already know that {M ′/InM ′}
is pro-isomorphic to {M ′

n} the reader verifies (omitted) this is equivalent to asking {H1
T ′(M ′)/InH1

T ′(M ′)} →
{H1

T ′(M ′
n)} to be a pro-isomorphism. This is true because {H1

T ′(M ′
n)} is Mittag-Leffler,

H1
T ′(M ′) = limH1

T ′(M ′
n), and H1

T ′(M ′) is killed by a power of I . �

Lemma 21.3. In Situation 16.1 assume that A has a dualizing complex. Let d ≥
cd(A, I). Let (Fn) be an object of Coh(U, IOU ). Assume (Fn) satisfies the (2, 2 + d)-
inequalities, see Definition 19.1. Then there exists a canonical map (Fn) → (F ′′

n) of
inverse systems of coherentOU -modules with the following properties

(1) if depth(F ′′
n,y) + δYZ (y) ≥ 3 for all y ∈ U ∩ Y ,

(2) (F ′′
n) is isomorphic as a pro-system to an object (Hn) of Coh(U, IOU ),

(3) the induced morphism (Fn) → (Hn) of Coh(U, IOU ) has kernel and cokernel
annihilated by a power of I ,

(4) the modules H0(U,F ′′
n) and H1(U,F ′′

n) are finite A-modules for all n.

Proof. The existence and properties (2), (3), (4) follow immediately from Lemma
21.2 applied to U , U ∩Y , T = {y ∈ U ∩Y : δYZ (y) ≤ 2}, T ′ = {y ∈ U ∩Y : δYZ (y) ≤ 1},
and (Fn). The finiteness of the modules H0(U,F ′′

n) and H1(U,F ′′
n) follows from Local

Cohomology, Lemma 12.1 and the elementary properties of the function δYZ (−) proved in
Lemma 18.1. �

22. Algebraization of coherent formal modules, V

In this section we prove our most general results on algebraization of coherent formal
modules. We first prove it in case the ideal has cohomological dimension 1. Then we
apply this to a blowup to prove a more general result.

Lemma 22.1. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A has a dualizing complex and cd(A, I) = 1,
(2) (Fn) is pro-isomorphic to an inverse system (F ′′

n) of coherentOU -modules such
that depth(F ′′

n,y) + δYZ (y) ≥ 3 for all y ∈ U ∩ Y .
Then (Fn) extends canonically to X , see Definition 16.7.

Proof. We will check hypotheses (a), (b), and (c) of Lemma 16.10. Before we start,
let us point out that the modules H0(U,F ′′

n) and H1(U,F ′′
n) are finite A-modules for all

n by Local Cohomology, Lemma 12.1.

Observe that for each p ≥ 0 the limit topology on limHp(U,Fn) is the I-adic topology
by Lemma 4.5. In particular, hypothesis (b) holds.
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We know that M = limH0(U,Fn) is an A-module whose limit topology is the I-adic
topology. Thus, given n, the module M/InM is a subquotient of H0(U,FN ) for some
N � n. Since the inverse system {H0(U,FN )} is pro-isomorphic to an inverse system
of finiteA-modules, namely {H0(U,F ′′

N )}, we conclude thatM/InM is finite. It follows
that M is finite, see Algebra, Lemma 96.12. In particular hypothesis (c) holds.

For each n ≥ 0 let us write Obn = limN H
1(U, InFN ). A special case is Ob = Ob0 =

limN H
1(U,FN ). Arguing exactly as in the previous paragraph we find thatOb is a finite

A-module. (In fact, we also know thatOb/IOb is annihilated by a power of a, but it seems
somewhat difficult to use this.)

We set F = limFn, we pick generators f1, . . . , fr of I , we pick c ≥ 1, and we choose
ΦF as in Lemma 4.4. We will use the results of Lemma 2.1 without further mention. In
particular, for each n ≥ 1 there are maps

δn : H0(U,Fn) −→ H1(U, InF) −→ Obn

The first comes from the short exact sequence 0 → InF → F → Fn → 0 and the
second from InF = lim InFN . We will later use that if δn(s) = 0 for s ∈ H0(U,Fn)
then we can for each n′ ≥ n find s′ ∈ H0(U,Fn′) mapping to s. Observe that there are
commutative diagrams

H0(U,Fnc) //

��

H1(U, IncF)

��

ΦF

**⊕
e1+...+er=nH

1(U,F) · T e1
1 . . . T err

tt
H0(U,Fn) // H1(U, InF)

We conclude that the obstruction mapH0(U,Fn)→ Obn sends the image ofH0(U,Fnc)→
H0(U,Fn) into the submodule

Ob′
n = Im

(⊕
e1+...+er=n

Ob · T e1
1 . . . T err → Obn

)
where on the summandOb ·T e1

1 . . . T err we use the map on cohomology coming from the
reductions modulo powers of I of the multiplication map fe1

1 . . . ferr : F → InF . By
construction ⊕

n≥0
Ob′

n

is a finite graded module over the Rees algebra
⊕

n≥0 I
n. For each n we set

Mn = {s ∈ H0(U,Fn) | δn(s) ∈ Ob′
n}

Observe that {Mn} is an inverse system and that fj : Fn → Fn+1 on global sections maps
Mn into Mn+1. By exactly the same argument as in the proof of Cohomology, Lemma
35.1 we find that {Mn} is ML. Namely, because the Rees algebra is Noetherian we can
choose a finite number of homogeneous generators of the form δnj (zj) with zj ∈ Mnj

for the graded submodule
⊕

n≥0 Im(Mn → Ob′
n). Then if k = max(nj) we find that for

n ≥ k and any z ∈ Mn we can find aj ∈ In−nj such that z −
∑
ajzj is in the kernel of

δn and hence in the image of Mn′ for all n′ ≥ n (because the vanishing of δn means that
we can lift z −

∑
ajzj to an element z′ ∈ H0(U,Fn′c) for all n′ ≥ n and then the image
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of z′ in H0(U,Fn′) is in Mn′ by what we proved above). Thus Im(Mn → Mn−k) =
Im(Mn′ →Mn−k) for all n′ ≥ n.

Choose n. By the Mittag-Leffler property of {Mn}we just established we can find an n′ ≥
n such that the image ofMn′ →Mn is the same as the image ofM ′ →Mn. By the above
we see that the image of M ′ → Mn contains the image of H0(U,Fn′c) → H0(U,Fn).
Thus we see that {Mn} and {H0(U,Fn)} are pro-isomorphic. Therefore {H0(U,Fn)}
has ML and we finally conclude that hypothesis (a) holds. This concludes the proof. �

Proposition 22.2 (Algebraization in cohomological dimension 1). In Situation 16.1
let (Fn) be an object of Coh(U, IOU ). Assume

(1) A has a dualizing complex and cd(A, I) = 1,
(2) (Fn) satisfies the (2, 3)-inequalities, see Definition 19.1.

Then (Fn) extends to X . In particular, if A is I-adically complete, then (Fn) is the com-
pletion of a coherentOU -module.

Proof. By Lemma 17.1 we may replace (Fn) by the object (Hn) of Coh(U, IOU )
found in Lemma 21.3. Thus we may assume that (Fn) is pro-isomorphic to a inverse system
(F ′′

n) with the properties mentioned in Lemma 21.3. In Lemma 22.1 we proved that (Fn)
canonically extends to X . The final statement follows from Lemma 16.8. �

Lemma 22.3. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A has a dualizing complex,
(2) all fibres of the blowing up b : X ′ → X of I have dimension ≤ d− 1,
(3) one of the following is true

(a) (Fn) satisfies the (d+ 1, d+ 2)-inequalities (Definition 19.1), or
(b) for y ∈ U ∩ Y and a prime p ⊂ O∧

X,y with p 6∈ V (IO∧
X,y) we have

depth((F∧
y )p) + dim(O∧

X,y/p) + δYZ (y) > d+ 2

Then (Fn) extends to X .

Proof. Let Y ′ ⊂ X ′ be the exceptional divisor. Let Z ′ ⊂ Y ′ be the inverse image of
Z ⊂ Y . Then U ′ = X ′ \ Z ′ is the inverse image of U . With δY

′

Z′ as in (18.0.1) we set

T ′ = {y′ ∈ Y ′ | δY
′

Z′ (y′) = 1 or 2} ⊂ T = {y′ ∈ Y ′ | δY
′

Z′ (y′) = 1}

These are specialization stable subsets of U ′ ∩Y ′ = Y ′ \Z ′. Consider the object (b|∗U ′Fn)
of Coh(U ′, IOU ′), see Cohomology of Schemes, Lemma 23.9. For y′ ∈ U ′ ∩ Y ′ let us
denote

F∧
y′ = lim(b|∗U ′Fn)y′

the “stalk” of this pullback at y′. We claim that conditions (a), (b), (c), (d), and (e) of Lemma
21.2 hold for the object (b|∗U ′Fn) on U ′ with d replaced by 1 and the subsets T ′ ⊂ T ⊂
U ′ ∩ Y ′. Condition (a) holds because Y ′ is an effective Cartier divisor and hence locally
cut out by 1 equation. Condition (e) holds by Lemma 18.1 parts (1) and (2). To prove (b),
(c), and (d) we need some preparation.

Let y′ ∈ U ′∩Y ′ and let p′ ⊂ O∧
X′,y′ be a prime ideal not contained inV (IO∧

X′,y′). Denote
y = b(y′) ∈ U ∩ Y . Choose f ∈ I such that y′ is contained in the spectrum of the affine
blowup algebraA[ If ], see Divisors, Lemma 32.2. For anyA-algebraB denoteB′ = B[ IBf ]
the corresponding affine blowup algebra. Denote I-adic completion by ∧. By our choice
of f we get a ring map (O∧

X,y)′ → O∧
X′,y′ . If we let q′ ⊂ (O∧

X,y)′ be the inverse image of
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m∧
y′ , then we see that ((O∧

X,y)′
q′)∧ = O∧

X′,y′ . Let p ⊂ O∧
X,y be the corresponding prime.

At this point we have a commutative diagram

O∧
X,y

��

// (O∧
X,y)′

α

��

// (O∧
X,y)′

q′

��

β
// O∧

X′,y′

��
O∧
X,y/p

// (O∧
X,y/p)′ // (O∧

X,y/p)′
q′

γ // ((O∧
X,y/p)′

q′)∧

��
O∧
X′,y′/p′

whose vertical arrows are surjective. By More on Algebra, Lemma 43.1 and the dimension
formula (Algebra, Lemma 113.1) we have

dim(((O∧
X,y/p)′

q′)∧) = dim((O∧
X,y/p)′

q′) = dim(O∧
X,y/p)− trdeg(κ(y′)/κ(y))

Tracing through the definitions of pullbacks, stalks, localizations, and completions we find

(F∧
y )p ⊗(O∧

X,y
)p (O∧

X′,y′)p′ = (F∧
y′)p′

Details omitted. The ring maps β and γ in the diagram are flat with Gorenstein (hence
Cohen-Macaulay) fibres, as these are completions of rings having a dualizing complex.
See Dualizing Complexes, Lemmas 23.1 and 23.2 and the discussion in More on Algebra,
Section 51. Observe that (O∧

X,y)p = (O∧
X,y)′

p̃ where p̃ is the kernel of α in the diagram.
On the other hand, (O∧

X,y)′
p̃ → (O∧

X′,y′)p′ is flat with CM fibres by the above. Whence
(O∧

X,y)p → (O∧
X′,y′)p′ is flat with CM fibres. Using Algebra, Lemma 163.1 we see that

depth((F∧
y′)p′) = depth((F∧

y )p) + dim(Fr)

where F is the generic formal fibre of (O∧
X,y/p)′

q′ and r is the prime corresponding to p′.
Since (O∧

X,y/p)′
q′ is a universally catenary local domain, its I-adic completion is equidi-

mensional and (universally) catenary by Ratliff’s theorem (More on Algebra, Proposition
109.5). It then follows that

dim(((O∧
X,y/p)′

q′)∧) = dim(Fr) + dim(O∧
X′,y′/p′)

Combined with Lemma 18.2 we get

(22.3.1)

depth((F∧
y′)p′) + δY

′

Z′ (y′)

= depth((F∧
y )p) + dim(Fr) + δY

′

Z′ (y′)
≥ depth((F∧

y )p) + δYZ (y) + dim(Fr) + trdeg(κ(y′)/κ(y))− (d− 1)
= depth((F∧

y )p) + δYZ (y)− (d− 1) + dim(O∧
X,y/p)− dim(O∧

X′,y′/p′)

Please keep in mind that dim(O∧
X,y/p) ≥ dim(O∧

X′,y′/p′). Rewriting this we get

(22.3.2)
depth((F∧

y′)p′) + dim(O∧
X′,y′/p′) + δY

′

Z′ (y′)
≥ depth((F∧

y )p) + dim(O∧
X,y/p) + δYZ (y)− (d− 1)

This inequality will allow us to check the remaning conditions.

Conditions (b) and (d) of Lemma 21.2. Assume V (p′)∩V (IO∧
X′,y′) = {m∧

y′}. This implies
that dim(O∧

X′,y′/p′) = 1 because Z ′ is an effective Cartier divisor. The combination of
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(b) and (d) is equivalent with

depth((F∧
y′)p′) + δY

′

Z′ (y′) > 2

If (Fn) satisfies the inequalities in (3)(b) then we immediately conclude this is true by
applying (22.3.2). If (Fn) satisfies (3)(a), i.e., the (d + 1, d + 2)-inequalities, then we see
that in any case

depth((F∧
y )p) + δYZ (y) ≥ d+ 1 or depth((F∧

y )p) + dim(O∧
X,y/p) + δYZ (y) > d+ 2

Looking at (22.3.1) and (22.3.2) above this gives what we want except possibly if dim(O∧
X,y/p) =

1. However, if dim(O∧
X,y/p) = 1, then we have V (p) ∩ V (IO∧

X,y) = {m∧
y } and we see

that actually
depth((F∧

y )p) + δYZ (y) > d+ 1
as (Fn) satisfies the (d+ 1, d+ 2)-inequalities and we conclude again.

Condition (c) of Lemma 21.2. Assume V (p′) ∩ V (IO∧
X′,y′) 6= {m∧

y′}. Then condition (c)
is equivalent to

depth((F∧
y′)p′) + δY

′

Z′ (y′) ≥ 2 or depth((F∧
y′)p′) + dim(O∧

X′,y′/p′) + δY
′

Z′ (y′) > 3

If (Fn) satisfies the inequalities in (3)(b) then we see the second of the two displayed in-
equalities holds true by applying (22.3.2). If (Fn) satisfies (3)(a), i.e., the (d + 1, d + 2)-
inequalities, then this follows immediately from (22.3.1) and (22.3.2). This finishes the
proof of our claim.

Choose (b|∗U ′Fn) → (F ′′
n) and (Hn) in Coh(U ′, IOU ′) as in Lemma 21.2. For any affine

open W ⊂ X ′ observe that δW∩Y ′

W∩Z′ (y′) ≥ δY
′

Z′ (y′) by Lemma 18.1 part (7). Hence we see
that (Hn|W ) satisfies the assumptions of Lemma 22.1. Thus (Hn|W ) extends canonically
to W . Let (GW,n) in Coh(W, IOW ) be the canonical extension as in Lemma 16.8. By
Lemma 16.9 we see that for W ′ ⊂W there is a unique isomorphism

(GW,n|W ′) −→ (GW ′,n)
compatible with the given isomorphisms (GW,n|W∩U ) ∼= (Hn|W∩U ). We conclude that
there exists an object (Gn) of Coh(X ′, IOX′) whose restriction to U is isomorphic to
(Hn).

If A is I-adically complete we can finish the proof as follows. By Grothedieck’s existence
theorem (Cohomology of Schemes, Lemma 24.3) we see that (Gn) is the completion of a co-
herentOX′ -module. Then by Cohomology of Schemes, Lemma 23.6 we see that (b|∗U ′Fn)
is the completion of a coherentOU ′ -moduleF ′. By Cohomology of Schemes, Lemma 25.3
we see that there is a map

(Fn) −→ ((b|U ′)∗F ′)∧

whose kernel and cokernel is annihilated by a power of I . Then finally, we win by applying
Lemma 17.1.

IfA is not complete, then, before starting the proof, we may replaceA by its completion, see
Lemma 16.6. After completion the assumptions still hold: this is immediate for condition
(3), follows from Dualizing Complexes, Lemma 22.4 for condition (1), and from Divisors,
Lemma 32.3 for condition (2). Thus the complete case implies the general case. �

Proposition 22.4 (Algebraization for ideals with few generators). In Situation 16.1
let (Fn) be an object of Coh(U, IOU ). Assume

(1) A has a dualizing complex,
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(2) V (I) = V (f1, . . . , fd) for some d ≥ 1 and f1, . . . , fd ∈ A,
(3) one of the following is true

(a) (Fn) satisfies the (d+ 1, d+ 2)-inequalities (Definition 19.1), or
(b) for y ∈ U ∩ Y and a prime p ⊂ O∧

X,y with p 6∈ V (IO∧
X,y) we have

depth((F∧
y )p) + dim(O∧

X,y/p) + δYZ (y) > d+ 2

Then (Fn) extends to X . In particular, if A is I-adically complete, then (Fn) is the com-
pletion of a coherentOU -module.

Proof. We may assume I = (f1, . . . , fd), see Cohomology of Schemes, Lemma 23.11.
Then we see that all fibres of the blowup ofX in I have dimension at most d−1. Thus we
get the extension from Lemma 22.3. The final statement follows from Lemma 16.3. �

Please compare the next lemma with Remarks 16.12, 20.2, 20.7, and 23.2.

Lemma 22.5. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is a local ring which has a dualizing complex,
(2) all irreducible components of X have the same dimension,
(3) the scheme X \ Y is Cohen-Macaulay,
(4) I is generated by d elements,
(5) dim(X)− dim(Z) > d+ 2, and
(6) for y ∈ U∩Y the moduleF∧

y is finite locally free outsideV (IO∧
X,y), for example

if Fn is a finite locally freeOU/InOU -module.
Then (Fn) extends to X . In particular if A is I-adically complete, then (Fn) is the com-
pletion of a coherentOU -module.

Proof. We will show that the hypotheses (1), (2), (3)(b) of Proposition 22.4 are sat-
isfied. This is clear for (1) and (2).

Let y ∈ U ∩ Y and let p be a prime p ⊂ O∧
X,y with p 6∈ V (IO∧

X,y). The last condition
shows that depth((F∧

y )p) = depth((O∧
X,y)p). Since X \ Y is Cohen-Macaulay we see

that (O∧
X,y)p is Cohen-Macaulay. Thus we see that

depth((F∧
y )p) + dim(O∧

X,y/p) + δYZ (y)
= dim((O∧

X,y)p) + dim(O∧
X,y/p) + δYZ (y)

= dim(O∧
X,y) + δYZ (y)

The final equality because OX,y is equidimensional by the second condition. Let δ(y) =
dim({y}). This is a dimension function as A is a catenary local ring. By Lemma 18.1 we
have δYZ (y) ≥ δ(y)− dim(Z). Since X is equidimensional we get

dim(O∧
X,y) + δYZ (y) ≥ dim(O∧

X,y) + δ(y)− dim(Z) = dim(X)− dim(Z)

Thus we get the desired inequality and we win. �

Remark 22.6. We are unable to prove or disprove the analogue of Proposition 22.4
where the assumption that I has d generators is replaced with the assumption cd(A, I) ≤
d. If you know a proof or have a counter example, please email stacks.project@gmail.com.
Another obvious question is to what extend the conditions in Proposition 22.4 are neces-
sary.

mailto:stacks.project@gmail.com
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23. Algebraization of coherent formal modules, VI

In this section we add a few more easier to prove cases.

Proposition 23.1. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) there exist f1, . . . , fd ∈ I such that for y ∈ U ∩ Y the ideal IOX,y is generated

by f1, . . . , fd and f1, . . . , fd form a F∧
y -regular sequence,

(2) H0(U,F1) and H1(U,F1) are finite A-modules.
Then (Fn) extends canonically to X . In particular, if A is complete, then (Fn) is the
completion of a coherentOU -module.

Proof. We will prove this by verifying hypotheses (a), (b), and (c) of Lemma 16.10.
For every n we have a short exact sequence

0→ InFn+1 → Fn+1 → Fn → 0
Since f1, . . . , fd forms a regular sequence (and hence quasi-regular, see Algebra, Lemma
69.2) on each of the “stalks” F∧

y and since we have IFn = (f1, . . . , fd)Fn for all n, we
find that

InFn+1 =
⊕

e1+...+ed=n
F1 · fe1

1 . . . fedd

by checking on stalks. Using the assumption of finiteness of H0(U,F1) and induction,
we first conclude that Mn = H0(U,Fn) is a finite A-module for all n. In this way we see
that condition (c) of Lemma 16.10 holds. We also see that⊕

n≥0
H1(U, InFn+1)

is a finite graded R =
⊕
In/In+1-module. By Cohomology, Lemma 35.1 we conclude

that condition (a) of Lemma 16.10 is satisfied. Finally, condition (b) of Lemma 16.10 is
satisfied because

⊕
H0(U, InFn+1) is a finite graded R-module and we can apply Coho-

mology, Lemma 35.3. �

Remark 23.2. In the situation of Proposition 23.1 if we assume A has a dualizing
complex, then the condition that H0(U,F1) and H1(U,F1) are finite is equivalent to

depth(F1,y) + dim(O{y},z) > 2

for all y ∈ U ∩ Y and z ∈ Z ∩ {y}. See Local Cohomology, Lemma 12.1. This holds for
example if F1 is a finite locally freeOU∩Y -module, Y is (S2), and codim(Z ′, Y ′) ≥ 3 for
every pair of irreducible components Y ′ of Y , Z ′ of Z with Z ′ ⊂ Y ′.

Proposition 23.3. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
there is Noetherian local ring (R,m) and a ring map R→ A such that

(1) I = mA,
(2) for y ∈ U ∩ Y the stalk F∧

y is R-flat,
(3) H0(U,F1) and H1(U,F1) are finite A-modules.

Then (Fn) extends canonically to X . In particular, if A is complete, then (Fn) is the
completion of a coherentOU -module.

Proof. The proof is exactly the same as the proof of Proposition 23.1. Namely, if
κ = R/m then for n ≥ 0 there is an isomorphism

InFn+1 ∼= F1 ⊗κ mn/mn+1

and the right hand side is a finite direct sum of copies of F1. This can be checked by
looking at stalks. Everything else is exactly the same. �



4298 52. ALGEBRAIC AND FORMAL GEOMETRY

Remark 23.4. Proposition 23.3 is a local version of [?, Theorem 2.10 (i)]. It is straight-
forward to deduce the global results from the local one; we will sketch the argument.
Namely, suppose (R,m) is a complete Noetherian local ring andX → Spec(R) is a proper
morphism. For n ≥ 1 set Xn = X ×Spec(R) Spec(R/mn). Let Z ⊂ X1 be a closed subset
of the special fibre. Set U = X \ Z and denote j : U → X the inclusion morphism.
Suppose given an object

(Fn) of Coh(U,mOU )
which is flat over R in the sense that Fn is flat over R/mn for all n. Assume that j∗F1
andR1j∗F1 are coherent modules. Then affine locally onX we get a canonical extension
of (Fn) by Proposition 23.3 and formation of this extension commutes with localization
(by Lemma 16.11). Thus we get a canonical global object (Gn) of Coh(X,mOX) whose
restriction of U is (Fn). By Grothendieck’s existence theorem (Cohomology of Schemes,
Proposition 25.4) we see there exists a coherentOX -module G whose completion is (Gn).
In this way we see that (Fn) is algebraizable, i.e., it is the completion of a coherent OU -
module.
We add that the coherence of j∗F1 andR1j∗F1 is a condition on the special fibre. Namely,
if we denote j1 : U1 → X1 the special fibre of j : U → X , then we can think of F1 as
a coherent sheaf on U1 and we have j∗F1 = j1,∗F1 and R1j∗F1 = R1j1,∗F1. Hence for
example ifX1 is (S2) and irreducible, we have dim(X1)−dim(Z) ≥ 3, andF1 is a locally
freeOU1 -module, then j1,∗F1 and R1j1,∗F1 are coherent modules.

24. Application to the completion functor

In this section we just combine some already obtained results in order to conveniently
reference them. There are many (stronger) results we could state here.

Lemma 24.1. In Situation 16.1 assume
(1) A has a dualizing complex and is I-adically complete,
(2) I = (f) generated by a single element,
(3) A is local with maximal ideal a = m,
(4) one of the following is true

(a) Af is (S2) and for p ⊂ A, f 6∈ p minimal we have dim(A/p) ≥ 4, or
(b) if p 6∈ V (f) and V (p) ∩ V (f) 6= {m}, then depth(Ap) + dim(A/p) > 3.

Then with U0 = U ∩ V (f) the completion functor
colimU0⊂U ′⊂U open Coh(OU ′) −→ Coh(U, fOU )

is an equivalence on the full subcategories of finite locally free objects.

Proof. It follows from Lemma 15.7 that the functor is fully faithful (details omitted).
Let us prove essential surjectivity. Let (Fn) be a finite locally free object of Coh(U, fOU ).
By either Lemma 20.4 or Proposition 22.2 there exists a coherentOU -moduleF such that
(Fn) is the completion ofF . Namely, for the application of either result the only thing to
check is that (Fn) satisfies the (2, 3)-inequalities. This is done in Lemma 20.6. If y ∈ U0,
then the f -adic completion of the stalk Fy is isomorphic to a finite free module over the
f -adic completion ofOU,y . HenceF is finite locally free in an open neighbourhood U ′ of
U0. This finishes the proof. �

Lemma 24.2. In Situation 16.1 assume
(1) I = (f) is principal,
(2) A is f -adically complete,
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(3) f is a nonzerodivisor,
(4) H1

a(A/fA) and H2
a(A/fA) are finite A-modules.

Then with U0 = U ∩ V (f) the completion functor

colimU0⊂U ′⊂U open Coh(OU ′) −→ Coh(U, fOU )

is an equivalence on the full subcategories of finite locally free objects.

Proof. The functor is fully faithful by Lemma 15.8. Essential surjectivity follows
from Lemma 16.11. �

25. Coherent triples

Let (A,m) be a Noetherian local ring. Let f ∈ m be a nonzerodivisor. Set X = Spec(A),
X0 = Spec(A/fA), U = X \ V (m), and U0 = U ∩X0. We say (F ,F0, α) is a coherent
triple if we have

(1) F is a coherentOU -module such that f : F → F is injective,
(2) F0 is a coherentOX0 -module,
(3) α : F/fF → F0|U0 is an isomorphism.

There is an obvious notion of a morphism of coherent triples which turns the collection
of all coherent triples into a category.

The category of coherent triples is additive but not abelian. However, it is clear what a
short exact sequence of coherent triples is.

Given two coherent triples (F ,F0, α) and (G,G0, β) it may not be the case that (F ⊗OU

G,F0 ⊗OX0
G0, α ⊗ β) is a coherent triple8. However, if the stalks Gx are free for all

x ∈ U0, then this does hold.

We will say the coherent triple (G,G0, β) is locally free, resp. invertible if G and G0 are
locally free, resp. invertible modules. In this case tensoring with (G,G0, β) makes sense
(see above) and turns short exact sequences of coherent triples into short exact sequences
of coherent triples.

Lemma 25.1. For any coherent triple (F ,F0, α) there exists a coherentOX -module
F ′ such that f : F ′ → F ′ is injective, an isomorphism α′ : F ′|U → F , and a map
α′

0 : F ′/fF ′ → F0 such that α ◦ (α′ mod f) = α′
0|U0 .

Proof. Choose a finite A-module M such that F is the restriction to U of the co-
herent OX -module associated to M , see Local Cohomology, Lemma 8.2. Since F is f -
torsion free, we may replaceM by its quotient by f -power torsion. On the other hand, let
M0 = Γ(X0,F0) so that F0 is the coherent OX0 -module associated to the finite A/fA-
module M0. By Cohomology of Schemes, Lemma 10.5 there exists an n such that the iso-
morphismα0 corresponds to anA/fA-module homomorphismmnM/fM →M0 (whose
kernel and cokernel are annihilated by a power of m, but we don’t need this). Thus if we
take M ′ = mnM and we let F ′ be the coherent OX -module associated to M ′, then the
lemma is clear. �

Let (F ,F0, α) be a coherent triple. Choose F ′, α′, α′
0 as in Lemma 25.1. Set

(25.1.1) χ(F ,F0, α) = lengthA(Coker(α′
0))− lengthA(Ker(α′

0))

8Namely, it isn’t necessarily the case that f is injective on F ⊗OU G.
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The expression on the right makes sense as α′
0 is an isomorphism over U0 and hence its

kernel and coherent are coherent modules supported on {m} which therefore have finite
length (Algebra, Lemma 62.3).

Lemma 25.2. The quantity χ(F ,F0, α) in (25.1.1) does not depend on the choice of
F ′, α′, α′

0 as in Lemma 25.1.

Proof. Let F ′, α′, α′
0 and F ′′, α′′, α′′

0 be two such choices. For n > 0 set F ′
n =

mnF ′. By Cohomology of Schemes, Lemma 10.5 for some n there exists an OX -module
map F ′

n → F ′′ agreeing with the identification F ′′|U = F ′|U determined by α′ and α′′.
Then the diagram

F ′
n/fF ′

n
//

��

F ′/fF ′

α′
0

��
F ′′/fF ′′ α′′

0 // F0

is commutative after restricting to U0. Hence by Cohomology of Schemes, Lemma 10.5 it
is commutative after restricting to ml(F ′

n/fF ′
n) for some l > 0. Since F ′

n+l/fF ′
n+l →

F ′
n/fF ′

n factors through ml(F ′
n/fF ′

n) we see that after replacing n by n+ l the diagram
is commutative. In other words, we have found a third choiceF ′′′, α′′′, α′′′

0 such that there
are maps F ′′′ → F ′′ and F ′′′ → F ′ over X compatible with the maps over U and X0.
This reduces us to the case discussed in the next paragraph.

Assume we have a map F ′′ → F ′ over X compatible with α′, α′′ over U and with α′
0, α

′′
0

over X0. Observe that F ′′ → F ′ is injective as it is an isomorphism over U and since
f : F ′′ → F ′′ is injective. Clearly F ′/F ′′ is supported on {m} hence has finite length.
We have the maps of coherentOX0 -modules

F ′′/fF ′′ → F ′/fF ′ α′
0−→ F0

whose composition is α′′
0 and which are isomorphisms over U0. Elementary homological

algebra gives a 6-term exact sequence

0→ Ker(F ′′/fF ′′ → F ′/fF ′)→ Ker(α′′
0)→ Ker(α′

0)→
Coker(F ′′/fF ′′ → F ′/fF ′)→ Coker(α′′

0)→ Coker(α′
0)→ 0

By additivity of lengths (Algebra, Lemma 52.3) we find that it suffices to show that

lengthA(Coker(F ′′/fF ′′ → F ′/fF ′))− lengthA(Ker(F ′′/fF ′′ → F ′/fF ′)) = 0

This follows from applying the snake lemma to the diagram

0 // F ′′
f
//

��

F ′′ //

��

F ′′/fF ′′ //

��

0

0 // F ′ f // F ′ // F ′/fF ′ // 0

and the fact that F ′/F ′′ has finite length. �

Lemma 25.3. We have χ(G,G0, β) = χ(F ,F0, α) + χ(H,H0, γ) if

0→ (F ,F0, α)→ (G,G0, β)→ (H,H0, γ)→ 0

is a short exact sequence of coherent triples.
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Proof. Choose G′, β′, β′
0 as in Lemma 25.1 for the triple (G,G0, β). Denote j : U →

X the inclusion morphism. Let F ′ ⊂ G′ be the kernel of the composition

G′ β′

−→ j∗G → j∗H
Observe that H′ = G′/F ′ is a coherent subsheaf of j∗H and hence f : H′ → H′ is
injective. Hence by the snake lemma we obtain a short exact sequence

0→ F ′/fF ′ → G′/fG′ → H′/fH′ → 0
We have isomorphisms α′ : F ′|U → F , β′ : G′|U → G , and γ′ : H′|U → H by con-
struction. To finish the proof we’ll need to construct maps α′

0 : F ′/fF ′ → F0 and
γ′

0 : H′/fH′ → H0 as in Lemma 25.1 and fitting into a commutative diagram

0 // F ′/fF ′ //

α′
0
��

G′/fG′ //

β′
0
��

H′/fH′ //

γ′
0
��

0

0 // F0 // G0 // H0 // 0

However, this may not be possible with our initial choice of G′. From the displayed dia-
gram we see the obstruction is exactly the composition

δ : F ′/fF ′ → G′/fG′ β′
0−→ G0 → H0

Note that the restriction of δ toU0 is zero by our choice ofF ′ andH′. Hence by Cohomol-
ogy of Schemes, Lemma 10.5 there exists an k > 0 such that δ vanishes on mk · (F ′/fF ′).
For n > k set G′

n = mnG′, F ′
n = G′

n ∩ F ′, and H′
n = G′

n/F ′
n. Observe that β′

0 can be
composed with G′

n/fG′
n → G′/fG′ to give a map β′

n,0 : G′
n/fG′

n → G0 as in Lemma 25.1.
By Artin-Rees (Algebra, Lemma 51.2) we may choose n such that F ′

n ⊂ mkF ′. As above
the maps f : F ′

n → F ′
n, f : G′

n → G′
n, and f : H′

n → H′
n are injective and as above using

the snake lemma we obtain a short exact sequence

0→ F ′
n/fF ′

n → G′
n/fG′

n → H′
n/fH′

n → 0
As above we have isomorphisms α′

n : F ′
n|U → F , β′

n : G′
n|U → G , and γ′

n : H′
n|U → H.

We consider the obstruction

δn : F ′
n/fF ′

n → G′
n/fG′

n

β′
n,0−−−→ G0 → H0

as before. However, the commutative diagram

F ′
n/fF ′

n
//

��

G′
n/fG′

n
β′
n,0

//

��

G0 //

��

H0

��
F ′/fF ′ // G′/fG′ β′

0 // G0 // H0

our choice of n and our observation about δ show that δn = 0. This produces the desired
mapsα′

n,0 : F ′
n/fF ′

n → F0, and γ′
n,0 : H′

n/fH′
n → H0. OK, so we may useF ′

n, α
′
n, α

′
n,0,

G′
n, β

′
n, β

′
n,0, andH′

n, γ
′
n, γ

′
n,0 to computeχ(F ,F0, α),χ(G,G0, β), andχ(H,H0, γ). Now

finally the lemma follows from an application of the snake lemma to

0 // F ′
n/fF ′

n
//

��

G′
n/fG′

n
//

��

H′
n/fH′

n
//

��

0

0 // F0 // G0 // H0 // 0
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and additivity of lengths (Algebra, Lemma 52.3). �

Proposition 25.4. Let (F ,F0, α) be a coherent triple. Let (L,L0, λ) be an invertible
coherent triple. Then the function

Z −→ Z, n 7−→ χ((F ,F0, α)⊗ (L,L0, λ)⊗n)

is a polynomial of degree ≤ dim(Supp(F)).

More precisely, if F = 0, then the function is constant. If F has finite support in U , then
the function is constant. If the support of F in U has dimension 1, i.e., the closure of the
support of F in X has dimension 2, then the function is linear, etc.

Proof. We will prove this by induction on the dimension of the support of F .

The base case is when F = 0. Then either F0 is zero or its support is {m}. In this case we
have

(F ,F0, α)⊗ (L,L0, λ)⊗n = (0,F0 ⊗ L⊗n
0 , 0) ∼= (0,F0, 0)

Thus the function of the lemma is constant with value equal to the length of F0.

Induction step. Assume the support ofF is nonempty. Let G0 ⊂ F0 denote the submodule
of sections supported on {m}. Then we get a short exact sequence

0→ (0,G0, 0)→ (F ,F0, α)→ (F ,F0/G0, α)→ 0

This sequence remains exact if we tensor by the invertible coherent triple (L,L0, λ), see
discussion above. Thus by additivity of χ (Lemma 25.3) and the base case explained above,
it suffices to prove the induction step for (F ,F0/G0, α). In this way we see that we may
assume m is not an associated point of F0.

LetT = Ass(F)∪Ass(F/fF). SinceU is quasi-affine, we can find s ∈ Γ(U,L) which does
not vanish at any u ∈ T , see Properties, Lemma 29.7. After multiplying s by a suitable
element of m we may assume λ(s mod f) = s0|U0 for some s0 ∈ Γ(X0,L0); details
omitted. We obtain a morphism

(s, s0) : (OU ,OX0 , 1) −→ (L,L0, λ)

in the category of coherent triples. Let G = Coker(s : F → F ⊗L) and G0 = Coker(s0 :
F0 → F0 ⊗ L0). Observe that s0 : F0 → F0 ⊗ L0 is injective as it is injective on U0
by our choice of s and as m isn’t an associated point of F0. It follows that there exists an
isomorphism β : G/fG → G0|U0 such that we obtain a short exact sequence

0→ (F ,F0, α)→ (F ,F0, α)⊗ (L,L0, λ)→ (G,G0, β)→ 0

By induction on the dimension of the support we know the proposition holds for the
coherent triple (G,G0, β). Using the additivity of Lemma 25.3 we see that

n 7−→ χ((F ,F0, α)⊗ (L,L0, λ)⊗n+1)− χ((F ,F0, α)⊗ (L,L0, λ)⊗n)

is a polynomial. We conclude by a variant of Algebra, Lemma 58.5 for functions defined
for all integers (details omitted). �

Lemma 25.5. Assume depth(A) ≥ 3 or equivalently depth(A/fA) ≥ 2. Let (L,L0, λ)
be an invertible coherent triple. Then

χ(L,L0, λ) = lengthA Coker(Γ(U,L)→ Γ(U0,L0))

and in particular this is ≥ 0. Moreover, χ(L,L0, λ) = 0 if and only if L ∼= OU .
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Proof. The equivalence of the depth conditions follows from Algebra, Lemma 72.7.
By the depth condition we see that Γ(U,OU ) = A and Γ(U0,OU0) = A/fA, see Dual-
izing Complexes, Lemma 11.1 and Local Cohomology, Lemma 8.2. Using Local Cohomol-
ogy, Lemma 12.2 we find that M = Γ(U,L) is a finite A-module. This in turn implies
depth(M) ≥ 2 for example by part (4) of Local Cohomology, Lemma 8.2 or by Divisors,
Lemma 6.6. Also, we have L0 ∼= OX0 as X0 is a local scheme. Hence we also see that
M0 = Γ(X0,L0) = Γ(U0,L0|U0) and that this module is isomorphic to A/fA.

By the aboveF ′ = M̃ is a coherentOX -module whose restriction toU is isomorphic toL.
The isomorphism λ : L/fL → L0|U0 determines a mapM/fM →M0 on global sections
which is an isomorphism over U0. Since depth(M) ≥ 2 we see that H0

m(M/fM) = 0
and it follows that M/fM →M0 is injective. Thus by definition

χ(L,L0, λ) = lengthA Coker(M/fM →M0)
which gives the first statement of the lemma.
Finally, if this length is 0, then M → M0 is surjective. Hence we can find s ∈ M =
Γ(U,L) mapping to a trivializing section of L0. Consider the finite A-modules K , Q
defined by the exact sequence

0→ K → A
s−→M → Q→ 0

The supports of K and Q do not meet U0 because s is nonzero at points of U0. Using
Algebra, Lemma 72.6 we see that depth(K) ≥ 2 (observe that As ⊂ M has depth ≥ 1 as
a submodule of M ). Thus the support of K if nonempty has dimension ≥ 2 by Algebra,
Lemma 72.3. This contradicts Supp(M) ∩ V (f) ⊂ {m} unless K = 0. When K = 0
we find that depth(Q) ≥ 2 and we conclude Q = 0 as before. Hence A ∼= M and L is
trivial. �

26. Invertible modules on punctured spectra, I

In this section we prove some local Lefschetz theorems for the Picard group. Some of the
ideas are taken from [?], [?], and [?].

Lemma 26.1. Let (A,m) be a Noetherian local ring. Let f ∈ m be a nonzerodivisor
and assume that depth(A/fA) ≥ 2, or equivalently depth(A) ≥ 3. Let U , resp. U0 be the
punctured spectrum of A, resp. A/fA. The map

Pic(U)→ Pic(U0)
is injective on torsion.

Proof. Let L be an invertible OU -module. Observe that L maps to 0 in Pic(U0) if
and only if we can extend L to an invertible coherent triple (L,L0, λ) as in Section 25.
By Proposition 25.4 the function

n 7−→ χ((L,L0, λ)⊗n)
is a polynomial. By Lemma 25.5 the value of this polynomial is zero if and only if L⊗n

is trivial. Thus if L is torsion, then this polynomial has infinitely many zeros, hence is
identically zero, hence L is trivial. �

Proposition 26.2 (Kollár). Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
(1) A has a dualizing complex,
(2) f is a nonzerodivisor,
(3) depth(A/fA) ≥ 2, or equivalently depth(A) ≥ 3,
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(4) if f ∈ p ⊂ A is a prime ideal with dim(A/p) = 2, then depth(Ap) ≥ 2.
Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. The map

Pic(U)→ Pic(U0)

is injective. Finally, if (1), (2), (3), A is (S2), and dim(A) ≥ 4, then (4) holds.

Proof. Let L be an invertible OU -module. Observe that L maps to 0 in Pic(U0) if
and only if we can extend L to an invertible coherent triple (L,L0, λ) as in Section 25.
By Proposition 25.4 the function

n 7−→ χ((L,L0, λ)⊗n)

is a polynomial P . By Lemma 25.5 we have P (n) ≥ 0 for all n ∈ Z with equality if and
only if L⊗n is trivial. In particular P (0) = 0 and P is either identically zero and we win
or P has even degree ≥ 2.

Set M = Γ(U,L) and M0 = Γ(X0,L0) = Γ(U0,L0). Then M is a finite A-module of
depth ≥ 2 and M0 ∼= A/fA, see proof of Lemma 25.5. Note that H2

m(M) is finite A-
module by Local Cohomology, Lemma 7.4 and the fact that Hi

m(A) = 0 for i = 0, 1, 2
since depth(A) ≥ 3. Consider the short exact sequence

0→M/fM →M0 → Q→ 0

Lemma 25.5 tells usQ has finite length equal toχ(L,L0, λ). We obtainQ = H1
m(M/fM)

andHi
m(M/fM) = Hi

m(M0) ∼= Hi
m(A/fA) for i > 1 from the long exact sequence of lo-

cal cohomology associated to the displayed short exact sequence. Consider the long exact
sequence of local cohomology associated to the sequence 0→M →M →M/fM → 0.
It starts with

0→ Q→ H2
m(M)→ H2

m(M)→ H2
m(A/fA)

Using additivity of lengths we see that χ(L,L0, λ) is equal to the length of the image of
H2

m(M)→ H2
m(A/fA).

Let prove the lemma in a special case to elucidate the rest of the proof. Namely, assume
for a moment that H2

m(A/fA) is a finite length module. Then we would have P (1) ≤
lengthAH

2
m(A/fA). The exact same argument applied toL⊗n shows thatP (n) ≤ lengthAH

2
m(A/fA)

for all n. Thus P cannot have positive degree and we win. In the rest of the proof we will
modify this argument to give a linear upper bound for P (n) which suffices.

Let us study the mapH2
m(M)→ H2

m(M0) ∼= H2
m(A/fA). Choose a normalized dualizing

complexω•
A forA. By local duality (Dualizing Complexes, Lemma 18.4) this map is Matlis

dual to the map
Ext−2

A (M,ω•
A)←− Ext−2

A (M0, ω
•
A)

whose image therefore has the same (finite) length. The support (if nonempty) of the finite
A-module Ext−2

A (M0, ω
•
A) consists of m and a finite number of primes p1, . . . , pr contain-

ing f with dim(A/pi) = 1. Namely, by Local Cohomology, Lemma 9.4 the support is con-
tained in the set of primes p ⊂ A with depthAp

(M0,p) + dim(A/p) ≤ 2. Thus it suffices
to show there is no prime p containing f with dim(A/p) = 2 and depthAp

(M0,p) = 0.
However, because M0,p ∼= (A/fA)p this would give depth(Ap) = 1 which contradicts
assumption (4). Choose a section t ∈ Γ(U,L⊗−1) which does not vanish in the points
p1, . . . , pr , see Properties, Lemma 29.7. Multiplication by t on global sections determines
a map t : M → A which defines an isomorphism Mpi → Api for i = 1, . . . , r. Denote
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t0 = t|U0 the corresponding section of Γ(U0,L⊗−1
0 ) which similarly determines a map

t0 : M0 → A/fA compatible with t. We conclude that there is a commutative diagram

Ext−2
A (M,ω•

A) Ext−2
A (M0, ω

•
A)oo

Ext−2
A (A,ω•

A)

t

OO

Ext−2
A (A/fA, ω•

A)oo

t0

OO

It follows that the length of the image of the top horizontal map is at most the length of
Ext−2

A (A/fA, ω•
A) plus the length of the cokernel of t0.

However, if we replace L by Ln for n > 1, then we can use

tn : Mn = Γ(U,L⊗n) −→ Γ(U,OU ) = A

instead of t. This replaces t0 by its nth power. Thus the length of the image of the map
Ext−2

A (Mn, ω
•
A)← Ext−2

A (Mn,0, ω
•
A) is at most the length of Ext−2

A (A/fA, ω•
A) plus the

length of the cokernel of

tn0 : Ext−2
A (A/fA, ω•

A) −→ Ext−2
A (Mn,0, ω

•
A)

Via the isomorphism M0 ∼= A/fA the map t0 becomes g : A/fA → A/fA for some
g ∈ A/fA and via the corresponding isomorphisms Mn,0 ∼= A/fA the map tn0 becomes
gn : A/fA→ A/fA. Thus the length of the cokernel above is the length of the quotient
of Ext−2

A (A/fA, ω•
A) by gn. Since Ext−2

A (A/fA, ω•
A) is a finite A-module with support

T of dimension 1 and since V (g) ∩ T consists of the closed point by our choice of t this
length grows linearly in n by Algebra, Lemma 62.6.

To finish the proof we prove the final assertion. Assume f ∈ m ⊂ A satisfies (1), (2),
(3), A is (S2), and dim(A) ≥ 4. Condition (1) implies A is catenary, see Dualizing Com-
plexes, Lemma 17.4. Then Spec(A) is equidimensional by Local Cohomology, Lemma
3.2. Thus dim(Ap) + dim(A/p) ≥ 4 for every prime p of A. Then depth(Ap) ≥
min(2, dim(Ap)) ≥ min(2, 4− dim(A/p)) and hence (4) holds. �

Remark 26.3. In SGA2 we find the following result. Let (A,m) be a Noetherian local
ring. Let f ∈ m. AssumeA is a quotient of a regular ring, the element f is a nonzerodivisor,
and

(a) if p ⊂ A is a prime ideal with dim(A/p) = 1, then depth(Ap) ≥ 2, and
(b) depth(A/fA) ≥ 3, or equivalently depth(A) ≥ 4.

Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. Then the map

Pic(U)→ Pic(U0)

is injective. This is [?, Exposee XI, Lemma 3.16]9. This result from SGA2 follows from
Proposition 26.2 because

(1) a quotient of a regular ring has a dualizing complex (see Dualizing Complexes,
Lemma 21.3 and Proposition 15.11), and

(2) if depth(A) ≥ 4 then depth(Ap) ≥ 2 for all primes p with dim(A/p) = 2, see
Algebra, Lemma 72.10.

9Condition (a) follows from condition (b), see Algebra, Lemma 72.10.
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27. Invertible modules on punctured spectra, II

Next we turn to surjectivity in local Lefschetz for the Picard group. First to extend an in-
vertible module on U0 to an open neighbourhood we have the following simple criterion.

Lemma 27.1. Let (A,m) be a Noetherian local ring and f ∈ m. Assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules, and

(4) H3
m(A/fA) = 010.

Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. Then

colimU0⊂U ′⊂U open Pic(U ′) −→ Pic(U0)

is surjective.

Proof. Let U0 ⊂ Un ⊂ U be the nth infinitesimal neighbourhood of U0. Observe
that the ideal sheaf of Un in Un+1 is isomorphic toOU0 as U0 ⊂ U is the principal closed
subscheme cut out by the nonzerodivisor f . Hence we have an exact sequence of abelian
groups

Pic(Un+1)→ Pic(Un)→ H2(U0,OU0) = H3
m(A/fA) = 0

see More on Morphisms, Lemma 4.1. Thus every invertibleOU0 -module is the restriction
of an invertible coherent formal module, i.e., an invertible object of Coh(U, fOU ). We
conclude by applying Lemma 24.2. �

Remark 27.2. Let (A,m) be a Noetherian local ring and f ∈ m. The conclusion of
Lemma 27.1 holds if we assume

(1) A has a dualizing complex,
(2) A is f -adically complete,
(3) f is a nonzerodivisor,
(4) one of the following is true

(a) Af is (S2) and for p ⊂ A, f 6∈ p minimal we have dim(A/p) ≥ 4, or
(b) if p 6∈ V (f) and V (p) ∩ V (f) 6= {m}, then depth(Ap) + dim(A/p) > 3.

(5) H3
m(A/fA) = 0.

The proof is exactly the same as the proof of Lemma 27.1 using Lemma 24.1 instead of
Lemma 24.2. Two points need to be made here: (a) it seems hard to find examples where
one knows H3

m(A/fA) = 0 without assuming depth(A/fA) ≥ 4, and (b) the proof of
Lemma 24.1 is a good deal harder than the proof of Lemma 24.2.

Lemma 27.3. Let (A,m) be a Noetherian local ring and f ∈ m. Assume
(1) the conditions of Lemma 27.1 hold, and
(2) for every maximal ideal p ⊂ Af the punctured spectrum of (Af )p has trivial

Picard group.
Let U , resp. U0 be the punctured spectrum of A, resp. A/fA. Then

Pic(U) −→ Pic(U0)

is surjective.

10Observe that (3) and (4) hold if depth(A/fA) ≥ 4, or equivalently depth(A) ≥ 5.
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Proof. Let L0 ∈ Pic(U0). By Lemma 27.1 there exists an open U0 ⊂ U ′ ⊂ U
and L′ ∈ Pic(U ′) whose restriction to U0 is L0. Since U ′ ⊃ U0 we see that U \ U ′

consists of points corresponding to prime ideals p1, . . . , pn as in (2). By assumption we can
find invertible modules L′

i on Spec(Api) agreeing with L′ over the punctured spectrum
U ′ ×U Spec(Api) since trivial invertible modules always extend. By Limits, Lemma 20.2
applied n times we see that L′ extends to an invertible module on U . �

Lemma 27.4. Let (A,m) be a Noetherian local ring of depth ≥ 2. Let A∧ be its
completion. Let U , resp. U∧ be the punctured spectrum of A, resp. A∧. Then Pic(U) →
Pic(U∧) is injective.

Proof. LetL be an invertibleOU -module with pullbackL∧ onU∧. We haveH0(U,OU ) =
A by our assumption on depth and Dualizing Complexes, Lemma 11.1 and Local Cohomol-
ogy, Lemma 8.2. Thus L is trivial if and only if M = H0(U,L) is isomorphic to A as an
A-module. (Details omitted.) Since A → A∧ is flat we have M ⊗A A∧ = Γ(U∧,L∧)
by flat base change, see Cohomology of Schemes, Lemma 5.2. Finally, it is easy to see that
M ∼= A if and only if M ⊗A A∧ ∼= A∧. �

Lemma 27.5. Let (A,m) be a regular local ring. Then the Picard group of the punc-
tured spectrum of A is trivial.

Proof. Combine Divisors, Lemma 28.3 with More on Algebra, Lemma 121.2. �

Now we can bootstrap the earlier results to prove that Picard groups are trivial for punc-
tured spectra of complete intersections of dimension ≥ 4. Recall that a Noetherian local
ring is called a complete intersection if its completion is the quotient of a regular local
ring by the ideal generated by a regular sequence. See the discussion in Divided Power
Algebra, Section 8.

Proposition 27.6 (Grothendieck). Let (A,m) be a Noetherian local ring. If A is a
complete intersection of dimension≥ 4, then the Picard group of the punctured spectrum
of A is trivial.

Proof. By Lemma 27.4 we may assume thatA is a complete local ring. By assumption
we can write A = B/(f1, . . . , fr) where B is a complete regular local ring and f1, . . . , fr
is a regular sequence. We will finish the proof by induction on r. The base case is r = 0
which follows from Lemma 27.5.
Assume that A = B/(f1, . . . , fr) and that the proposition holds for r − 1. Set A′ =
B/(f1, . . . , fr−1) and apply Lemma 27.3 to fr ∈ A′. This is permissible:

(1) condition (1) of Lemma 27.1 holds because our local rings are complete,
(2) condition (2) of Lemma 27.1 holds holds as f1, . . . , fr is a regular sequence,
(3) condition (3) and (4) of Lemma 27.1 hold as A = A′/frA

′ is Cohen-Macaulay
of dimension dim(A) ≥ 4,

(4) condition (2) of Lemma 27.3 holds by induction hypothesis as dim((A′
fr

)p) ≥ 4
for a maximal prime p of A′

fr
and as (A′

fr
)p = Bq/(f1, . . . , fr−1) for some

prime ideal q ⊂ B and Bq is regular.
This finishes the proof. �

Example 27.7. The dimension bound in Proposition 27.6 is sharp. For example
the Picard group of the punctured spectrum of A = k[[x, y, z, w]]/(xy − zw) is non-
trivial. Namely, the ideal I = (x, z) cuts out an effective Cartier divisor D on the
punctured spectrum U of A as it is easy to see that Ix, Iy, Iz, Iw are invertible ideals in
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Ax, Ay, Az, Aw. But on the other hand, A/I has depth ≥ 1 (in fact 2), hence I has depth
≥ 2 (in fact 3), hence I = Γ(U,OU (−D)). Thus ifOU (−D) were trivial, then we’d have
I ∼= Γ(U,OU ) = A which isn’t true as I isn’t generated by 1 element.

Example 27.8. Proposition 27.6 cannot be extended to quotients

A = B/(f1, . . . , fr)

whereB is regular and dim(B)−r ≥ 4. In other words, the condition that f1, . . . , fr be a
regular sequence is (in general) needed for vanishing of the Picard group of the punctured
spectrum of A. Namely, let k be a field and set

A = k[[a, b, x, y, z, u, v, w]]/(a3, b3, xa2 + yab+ zb2, w2)

Observe thatA = A0[w]/(w2) withA0 = k[[a, b, x, y, z, u, v]]/(a3, b3, xa2 +yab+zb2).
We will show below that A0 has depth 2. Denote U the punctured spectrum of A and U0
the punctured spectrum of A0. Observe there is a short exact sequence 0 → A0 → A →
A0 → 0 where the first arrow is given by multiplication by w. By More on Morphisms,
Lemma 4.1 we find that there is an exact sequence

H0(U,O∗
U )→ H0(U0,O∗

U0
)→ H1(U0,OU0)→ Pic(U)

Since the depth ofA0 and henceA is 2 we see thatH0(U0,OU0) = A0 andH0(U,OU ) =
A and that H1(U0,OU0) is nonzero, see Dualizing Complexes, Lemma 11.1 and Local Co-
homology, Lemma 2.2. Thus the last arrow displayed above is nonzero and we conclude
that Pic(U) is nonzero.

To show that A0 has depth 2 it suffices to show that A1 = k[[a, b, x, y, z]]/(a3, b3, xa2 +
yab+ zb2) has depth 0. This is true because a2b2 maps to a nonzero element of A1 which
is annihilated by each of the variables a, b, x, y, z. For example ya2b2 = (yab)(ab) =
−(xa2 + zb2)(ab) = −xa3b− yab3 = 0 in A1. The other cases are similar.

28. Application to Lefschetz theorems

In this section we discuss the relation between coherent sheaves on a projective scheme P
and coherent modules on formal completion along an ample divisor Q.

Let k be a field. LetP be a proper scheme over k. LetL be an ample invertibleOP -module.
Let s ∈ Γ(P,L) be a section11 and letQ = Z(s) be the zero scheme, see Divisors, Definition
14.8. For all n ≥ 1 we denote Qn = Z(sn) the nth infinitesimal neighbourhood of Q. If
F is a coherentOP -module, then we denote Fn = F|Qn the restriction, i.e., the pullback
of F by the closed immersion Qn → P .

Proposition 28.1. In the situation above assume for all points p ∈ P \Q we have

depth(Fp) + dim({p}) > s

Then the map
Hi(P,F) −→ limHi(Qn,Fn)

is an isomorphism for 0 ≤ i < s.

11We do not require s to be a regular section. Correspondingly, Q is only a locally principal closed sub-
scheme of P and not necessarily an effective Cartier divisor.
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Proof. We will use More on Morphisms, Lemma 51.1 and we will use the notation
used and results found More on Morphisms, Section 51 without further mention; this
proof will not make sense without at least understanding the statement of the lemma.
Observe that in our case A =

⊕
m≥0 Γ(P,L⊗m) is a finite type k-algebra all of whose

graded parts are finite dimensional k-vector spaces, see Cohomology of Schemes, Lemma
16.1.

We may and do think of s as an element f ∈ A1 ⊂ A, i.e., a homogeneous element of
degree 1 ofA. Denote Y = V (f) ⊂ X the closed subscheme defined by f . ThenU ∩Y =
(π|U )−1(Q) scheme theoretically. Recall the notation FU = π∗F|U = (π|U )∗F . This is
a coherentOU -module. Choose a finiteA-moduleM such thatFU = M̃ |U (for existence
see Local Cohomology, Lemma 8.2). We claim that Hi

Z(M) is annihilated by a power of
f for i ≤ s+ 1.

To prove the claim we will apply Local Cohomology, Proposition 10.1. Translating into
geometry we see that it suffices to prove for u ∈ U , u 6∈ Y and z ∈ {u} ∩ Z that

depth(FU,u) + dim(O{u},z) > s+ 1

This requires only a small amount of thought.

Observe that Z = Spec(A0) is a finite set of closed points of X because A0 is a finite
dimensional k-algebra. (The reader who would like Z to be a singleton can replace the
finite k-algebra A0 by k; it won’t affect anything else in the proof.)

The morphism π : L → P and its restriction π|U : U → P are smooth of relative
dimension 1. Let u ∈ U , u 6∈ Y and z ∈ {u} ∩ Z. Let p = π(u) ∈ P \ Q be its image.
Then either u is a generic point of the fibre of π over p or a closed point of the fibre. If u is a
generic point of the fibre, then depth(FU,u) = depth(Fp) and dim({u}) = dim({p})+1.
If u is a closed point of the fibre, then depth(FU,u) = depth(Fp) + 1 and dim({u}) =
dim({p}). In both cases we have dim({u}) = dim(O{u},z) because every point of Z is
closed. Thus the desired inequality follows from the assumption in the statement of the
lemma.

Let A′ be the f -adic completion of A. So A→ A′ is flat by Algebra, Lemma 97.2. Denote
U ′ ⊂ X ′ = Spec(A′) the inverse image of U and similarly for Y ′ and Z ′. Let F ′ on U ′

be the pullback of FU and let M ′ = M ⊗A A′. By flat base change for local cohomology
(Local Cohomology, Lemma 5.7) we have

Hi
Z′(M ′) = Hi

Z(M)⊗A A′

and we find that for i ≤ s+1 these are annihilated by a power of f . Consider the diagram

Hi(U,FU )

vv ��

// limHi(U,FU/fnFU )

Hi(U,FU )⊗A A′ Hi(U ′,F ′) // limHi(U ′,F ′/fnF ′)

The lower horizontal arrow is an isomorphism for i < s by Lemma 13.2 and the torsion
property we just proved. The horizontal equal sign is flat base change (Cohomology of
Schemes, Lemma 5.2) and the vertical equal sign is because U ∩ Y and U ′ ∩ Y ′ as well as
their nth infinitesimal neighbourhoods are mapped isomorphically onto each other (as we
are completing with respect to f ).
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Applying More on Morphisms, Equation (51.0.2) we have compatible direct sum decom-
positions

limHi(U,FU/fnFU ) = lim
(⊕

m∈Z
Hi(Qn,Fn ⊗ L⊗m)

)
and

Hi(U,FU ) =
⊕

m∈Z
Hi(P,F ⊗ L⊗m)

Thus we conclude by Algebra, Lemma 98.4. �

Lemma 28.2. Let k be a field. Let X be a proper scheme over k. Let L be an ample
invertible OX -module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero scheme of s with nth
infinitesimal neighbourhood Yn = Z(sn). Let F be a coherentOX -module. Assume that
for all x ∈ X \ Y we have

depth(Fx) + dim({x}) > 1

Then Γ(V,F) → lim Γ(Yn,F|Yn) is an isomorphism for any open subscheme V ⊂ X
containing Y .

Proof. By Proposition 28.1 this is true for V = X . Thus it suffices to show that
the map Γ(V,F) → lim Γ(Yn,F|Yn) is injective. If σ ∈ Γ(V,F) maps to zero, then its
support is disjoint from Y (details omitted; hint: use Krull’s intersection theorem). Then
the closure T ⊂ X of Supp(σ) is disjoint from Y . Whence T is proper over k (being
closed in X) and affine (being closed in the affine scheme X \ Y , see Morphisms, Lemma
43.18) and hence finite over k (Morphisms, Lemma 44.11). Thus T is a finite set of closed
points ofX . Thus depth(Fx) ≥ 2 is at least 1 for x ∈ T by our assumption. We conclude
that Γ(V,F)→ Γ(V \ T,F) is injective and σ = 0 as desired. �

Example 28.3. Let k be a field and let X be a proper variety over k. Let Y ⊂ X be
an effective Cartier divisor such thatOX(Y ) is ample and denote Yn its nth infinitesimal
neighbourhood. Let E be a finite locally free OX -module. Here are some special cases of
Proposition 28.1.

(1) If X is a curve, we don’t learn anything.
(2) If X is a Cohen-Macaulay (for example normal) surface, then

H0(X, E)→ limH0(Yn, E|Yn)

is an isomorphism.
(3) If X is a Cohen-Macaulay threefold, then

H0(X, E)→ limH0(Yn, E|Yn) and H1(X, E)→ limH1(Yn, E|Yn)

are isomorphisms.
Presumably the pattern is clear. IfX is a normal threefold, then we can conclude the result
for H0 but not for H1.

Before we prove the next main result, we need a lemma.

Lemma 28.4. In Situation 16.1 let (Fn) be an object of Coh(U, IOU ). Assume
(1) A is a graded ring, a = A+, and I is a homogeneous ideal,
(2) (Fn) = (M̃n|U ) where (Mn) is an inverse system of graded A-modules, and
(3) (Fn) extends canonically to X .

Then there is a finite graded A-module N such that
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(a) the inverse systems (N/InN) and (Mn) are pro-isomorphic in the category of
graded A-modules modulo A+-power torsion modules, and

(b) (Fn) is the completion of of the coherent module associated to N .

Proof. Let (Gn) be the canonical extension as in Lemma 16.8. The grading onA and
Mn determines an action

a : Gm ×X −→ X

of the group scheme Gm onX such that (M̃n) becomes an inverse system of Gm-equivariant
quasi-coherentOX -modules, see Groupoids, Example 12.3. Since a and I are homogeneous
ideals the closed subschemesZ , Y and the open subschemeU are Gm-invariant closed and
open subschemes. The restriction (Fn) of (M̃n) is an inverse system of Gm-equivariant
coherentOU -modules. In other words, (Fn) is a Gm-equivariant coherent formal module,
in the sense that there is an isomorphism

α : (a∗Fn) −→ (p∗Fn)

over Gm × U satisfying a suitable cocycle condition. Since a and p are flat morphisms of
affine schemes, by Lemma 16.9 we conclude that there exists a unique isomorphism

β : (a∗Gn) −→ (p∗Gn)

over Gm×X restricting to α on Gm×U . The uniqueness guarantees that β satisfies the
corresponding cocycle condition. In this way eachGn becomes a Gm-equivariant coherent
OX -module in a manner compatible with transition maps.

By Groupoids, Lemma 12.5 we see that Gn with its Gm-equivariant structure corresponds
to a graded A-module Nn. The transition maps Nn+1 → Nn are graded module maps.
Note that Nn is a finite A-module and Nn = Nn+1/I

nNn+1 because (Gn) is an object of
Coh(X, IOX). Let N be the finite graded A-module foud in Algebra, Lemma 98.3. Then
Nn = N/InN , whence (Gn) is the completion of the coherent module associated to N ,
and a fortiori we see that (b) is true.

To see (a) we have to unwind the situation described above a bit more. First, observe that
the kernel and cokernel of Mn → H0(U,Fn) is A+-power torsion (Local Cohomology,
Lemma 8.2). Observe that H0(U,Fn) comes with a natural grading such that these maps
and the transition maps of the system are graded A-module map; for example we can
use that (U → X)∗Fn is a Gm-equivariant module on X and use Groupoids, Lemma
12.5. Next, recall that (Nn) and (H0(U,Fn)) are pro-isomorphic by Definition 16.7 and
Lemma 16.8. We omit the verification that the maps defining this pro-isomorphism are
graded module maps. Thus (Nn) and (Mn) are pro-isomorphic in the category of graded
A-modules modulo A+-power torsion modules. �

Let k be a field. LetP be a proper scheme over k. LetL be an ample invertibleOP -module.
Let s ∈ Γ(P,L) be a section and letQ = Z(s) be the zero scheme, see Divisors, Definition
14.8. Let I ⊂ OP be the ideal sheaf of Q. We will use Coh(P, I) to denote the category
of coherent formal modules introduced in Cohomology of Schemes, Section 23.

Proposition 28.5. In the situation above let (Fn) be an object of Coh(P, I). Assume
for all q ∈ Q and for all primes p ∈ O∧

P,q , p 6∈ V (I∧
q ) we have

depth((F∧
q )p) + dim(O∧

P,q/p) + dim({q}) > 2

Then (Fn) is the completion of a coherentOP -module.
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Proof. By Cohomology of Schemes, Lemma 23.6 to prove the lemma, we may replace
(Fn) by an object differing from it by I-torsion (see below for more precision). Let T ′ =
{q ∈ Q | dim({q}) = 0} and T = {q ∈ Q | dim({q}) ≤ 1}. The assumption in the
proposition is exactly thatQ ⊂ P , (Fn), and T ′ ⊂ T ⊂ Q satisfy the conditions of Lemma
21.2 with d = 1; besides trivial manipulations of inequalities, use that V (p) ∩ V (I∧

y ) =
{m∧

y } ⇔ dim(O∧
P,q/p) = 1 as I∧

y is generated by 1 element. Combining these two
remarks, we may replace (Fn) by the object (Hn) of Coh(P, I) found in Lemma 21.2.
Thus we may and do assume (Fn) is pro-isomorphic to an inverse system (F ′′

n) of coherent
OP -modules such that depth(F ′′

n,q) + dim({q}) ≥ 2 for all q ∈ Q.

We will use More on Morphisms, Lemma 51.1 and we will use the notation used and results
found More on Morphisms, Section 51 without further mention; this proof will not make
sense without at least understanding the statement of the lemma. Observe that in our
case A =

⊕
m≥0 Γ(P,L⊗m) is a finite type k-algebra all of whose graded parts are finite

dimensional k-vector spaces, see Cohomology of Schemes, Lemma 16.1.

By Cohomology of Schemes, Lemma 23.9 the pull back by π|U : U → P is an object
(π|∗UFn) of Coh(U, fOU ) which is pro-isomorphic to the inverse system (π|∗UF ′′

n) of co-
herentOU -modules. We claim

depth(π|∗UF ′′
n,y) + δYZ (y) ≥ 3

for all y ∈ U ∩ Y . Since all the points of Z are closed, we see that δYZ (y) ≥ dim({y})
for all y ∈ U ∩ Y , see Lemma 18.1. Let q ∈ Q be the image of y. Since the morphism
π : U → P is smooth of relative dimension 1 we see that either y is a closed point of a
fibre of π or a generic point. Thus we see that

depth(π∗F ′′
n,y) + δYZ (y) ≥ depth(π∗F ′′

n,y) + dim({y}) = depth(F ′′
n,q) + dim({q}) + 1

because either the depth goes up by 1 or the dimension. This proves the claim.

By Lemma 22.1 we conclude that (π|∗UFn) canonically extends to X . Observe that

Mn = Γ(U, π|∗UFn) =
⊕

m∈Z
Γ(P,Fn ⊗OP

L⊗m)

is canonically a graded A-module, see More on Morphisms, Equation (51.0.2). By Proper-
ties, Lemma 18.2 we have π|∗UFn = M̃n|U . Thus we may apply Lemma 28.4 to find a finite
gradedA-moduleN such that (Mn) and (N/InN) are pro-isomorphic in the category of
graded A-modules modulo A+-torsion modules. Let F be the coherent OP -module asso-
ciated to N , see Cohomology of Schemes, Proposition 15.3. The same proposition tells us
that (F/InF) is pro-isomorphic to (Fn). Since both are objects of Coh(P, I) we win by
Lemma 15.3. �

Example 28.6. Let k be a field and letX be a proper variety over k. Let Y ⊂ X be an
effective Cartier divisor such thatOX(Y ) is ample and denote I ⊂ OX the corresponding
sheaf of ideals. Let (En) an object of Coh(X, I) with En finite locally free. Here are some
special cases of Proposition 28.5.

(1) If X is a curve or a surface, we don’t learn anything.
(2) If X is a Cohen-Macaulay threefold, then (En) is the completion of a coherent
OX -module E .

(3) More generally, if dim(X) ≥ 3 and X is (S3), then (En) is the completion of a
coherentOX -module E .

Of course, if E exists, then E is finite locally free in an open neighbourhood of Y .
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Proposition 28.7. Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX -module and let s ∈ Γ(X,L). Let Y = Z(s) be the zero scheme of s
and denote I ⊂ OX the corresponding sheaf of ideals. Let V be the set of open subschemes
of X containing Y ordered by reverse inclusion. Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 2
Then the completion functor

colimV Coh(OV ) −→ Coh(X, I)
is an equivalence on the full subcategories of finite locally free objects.

Proof. To prove fully faithfulness it suffices to prove that
colimV Γ(V,L⊗m) −→ lim Γ(Yn,L⊗m|Yn)

is an isomorphism for all m, see Lemma 15.2. This follows from Lemma 28.2.
Essential surjectivity. Let (Fn) be a finite locally free object of Coh(X, I). Then for y ∈ Y
we have F∧

y = limFn,y is is a finite free O∧
X,y-module. Let p ⊂ O∧

X,y be a prime with
p 6∈ V (I∧

y ). Then p lies over a prime p0 ⊂ OX,y which corresponds to a specialization
x  y with x 6∈ Y . By Local Cohomology, Lemma 11.3 and some dimension theory (see
Varieties, Section 20) we have

depth((O∧
X,y)p) + dim(O∧

X,y/p) = depth(OX,x) + dim({x})− dim({y})
Thus our assumptions imply the assumptions of Proposition 28.5 are satisfied and we find
that (Fn) is the completion of a coherentOX -module F . It then follows that Fy is finite
free for all y ∈ Y and hence F is finite locally free in an open neighbourhood V of Y .
This finishes the proof. �
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CHAPTER 53

Algebraic Curves

1. Introduction

In this chapter we develop some of the theory of algebraic curves. A reference covering
algebraic curves over the complex numbers is the book [?].
What we already know. Besides general algebraic geometry, we have already proved some
specific results on algebraic curves. Here is a list.

(1) We have discussed affine opens of and ample invertible sheaves on 1 dimensional
Noetherian schemes in Varieties, Section 38.

(2) We have seen a curve is either affine or projective in Varieties, Section 43.
(3) We have discussed degrees of locally free modules on proper curves in Varieties,

Section 44.
(4) We have discussed the Picard scheme of a nonsingular projective curve over an

algebraically closed field in Picard Schemes of Curves, Section 1.

2. Curves and function fields

In this section we elaborate on the results of Varieties, Section 4 in the case of curves.

Lemma 2.1. Let k be a field. Let X be a curve and Y a proper variety. Let U ⊂ X be
a nonempty open and let f : U → Y be a morphism. If x ∈ X is a closed point such that
OX,x is a discrete valuation ring, then there exist an open U ⊂ U ′ ⊂ X containing x and
a morphism of varieties f ′ : U ′ → Y extending f .

Proof. This is a special case of Morphisms, Lemma 42.5. �

Lemma 2.2. Let k be a field. LetX be a normal curve and Y a proper variety. The set
of rational maps from X to Y is the same as the set of morphisms X → Y .

Proof. A rational map from X to Y can be extended to a morphism X → Y by
Lemma 2.1 as every local ring is a discrete valuation ring (for example by Varieties, Lemma
43.8). Conversely, if two morphisms f, g : X → Y are equivalent as rational maps, then
f = g by Morphisms, Lemma 7.10. �

Lemma 2.3. Let k be a field. Let f : X → Y be a nonconstant morphism of curves
over k. If Y is normal, then f is flat.

Proof. Pick x ∈ X mapping to y ∈ Y . Then OY,y is either a field or a discrete
valuation ring (Varieties, Lemma 43.8). Since f is nonconstant it is dominant (as it must
map the generic point of X to the generic point of Y ). This implies that OY,y → OX,x
is injective (Morphisms, Lemma 8.7). Hence OX,x is torsion free as a OY,y-module and
thereforeOX,x is flat as aOY,y-module by More on Algebra, Lemma 22.10. �

Lemma 2.4. Let k be a field. Let f : X → Y be a morphism of schemes over k.
Assume

4315
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(1) Y is separated over k,
(2) X is proper of dimension ≤ 1 over k,
(3) f(Z) has at least two points for every irreducible component Z ⊂ X of dimen-

sion 1.
Then f is finite.

Proof. The morphism f is proper by Morphisms, Lemma 41.7. Thus f(X) is closed
and images of closed points are closed. Let y ∈ Y be the image of a closed point inX . Then
f−1({y}) is a closed subset of X not containing any of the generic points of irreducible
components of dimension 1 by condition (3). It follows that f−1({y}) is finite. Hence
f is finite over an open neighbourhood of y by More on Morphisms, Lemma 44.2 (if Y
is Noetherian, then you can use the easier Cohomology of Schemes, Lemma 21.2). Since
we’ve seen above that there are enough of these points y, the proof is complete. �

Lemma 2.5. Let k be a field. Let X → Y be a morphism of varieties with Y proper
and X a curve. There exists a factorization X → X → Y where X → X is an open
immersion and X is a projective curve.

Proof. This is clear from Lemma 2.1 and Varieties, Lemma 43.6. �

Here is the main theorem of this section. We will say a morphism f : X → Y of varieties
is constant if the image f(X) consists of a single point y of Y . If this happens then y is a
closed point of Y (since the image of a closed point of X will be a closed point of Y ).

Theorem 2.6. Let k be a field. The following categories are canonically equivalent
(1) The category of finitely generated field extensionsK/k of transcendence degree

1.
(2) The category of curves and dominant rational maps.
(3) The category of normal projective curves and nonconstant morphisms.
(4) The category of nonsingular projective curves and nonconstant morphisms.
(5) The category of regular projective curves and nonconstant morphisms.
(6) The category of normal proper curves and nonconstant morphisms.

Proof. The equivalence between categories (1) and (2) is the restriction of the equiv-
alence of Varieties, Theorem 4.1. Namely, a variety is a curve if and only if its function
field has transcendence degree 1, see for example Varieties, Lemma 20.3.

The categories in (3), (4), (5), and (6) are the same. First of all, the terms “regular” and
“nonsingular” are synonyms, see Properties, Definition 9.1. Being normal and regular are
the same thing for Noetherian 1-dimensional schemes (Properties, Lemmas 9.4 and 12.6).
See Varieties, Lemma 43.8 for the case of curves. Thus (3) is the same as (5). Finally, (6) is
the same as (3) by Varieties, Lemma 43.4.

If f : X → Y is a nonconstant morphism of nonsingular projective curves, then f sends
the generic point η ofX to the generic point ξ of Y . Hence we obtain a morphism k(Y ) =
OY,ξ → OX,η = k(X) in the category (1). If two morphisms f, g : X → Y gives the
same morphism k(Y ) → k(X), then by the equivalence between (1) and (2), f and g are
equivalent as rational maps, so f = g by Lemma 2.2. Conversely, suppose that we have
a map k(Y ) → k(X) in the category (1). Then we obtain a morphism U → Y for some
nonempty openU ⊂ X . By Lemma 2.1 this extends to all ofX and we obtain a morphism
in the category (5). Thus we see that there is a fully faithful functor (5)→(1).
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To finish the proof we have to show that everyK/k in (1) is the function field of a normal
projective curve. We already know that K = k(X) for some curve X . After replacing
X by its normalization (which is a variety birational to X) we may assume X is normal
(Varieties, Lemma 27.1). Then we choose X → X with X \ X = {x1, . . . , xn} as in
Varieties, Lemma 43.6. SinceX is normal and since each of the local ringsOX,xi is normal
we conclude that X is a normal projective curve as desired. (Remark: We can also first
compactify using Varieties, Lemma 43.5 and then normalize using Varieties, Lemma 27.1.
Doing it this way we avoid using the somewhat tricky Morphisms, Lemma 53.16.) �

Definition 2.7. Let k be a field. Let X be a curve. A nonsingular projective model
of X is a pair (Y, ϕ) where Y is a nonsingular projective curve and ϕ : k(X) → k(Y ) is
an isomorphism of function fields.

A nonsingular projective model is determined up to unique isomorphism by Theorem 2.6.
Thus we often say “the nonsingular projective model”. We usually drop ϕ from the nota-
tion. Warning: it needn’t be the case that Y is smooth over k but Lemma 2.8 shows this
can only happen in positive characteristic.

Lemma 2.8. Let k be a field. LetX be a curve and let Y be the nonsingular projective
model of X . If k is perfect, then Y is a smooth projective curve.

Proof. See Varieties, Lemma 43.8 for example. �

Lemma 2.9. Let k be a field. Let X be a geometrically irreducible curve over k. For
a field extension K/k denote YK a nonsingular projective model of (XK)red.

(1) If X is proper, then YK is the normalization of XK .
(2) There exists K/k finite purely inseparable such that YK is smooth.
(3) Whenever YK is smooth1 we have H0(YK ,OYK ) = K.
(4) Given a commutative diagram

Ω K ′oo

K

OO

koo

OO

of fields such that YK and YK′ are smooth, then YΩ = (YK)Ω = (YK′)Ω.

Proof. Let X ′ be a nonsingular projective model of X . Then X ′ and X have iso-
morphic nonempty open subschemes. In particular X ′ is geometrically irreducible as X
is (some details omitted). Thus we may assume that X is projective.

AssumeX is proper. ThenXK is proper and hence the normalization (XK)ν is proper as a
scheme finite over a proper scheme (Varieties, Lemma 27.1 and Morphisms, Lemmas 44.11
and 41.4). On the other hand, XK is irreducible as X is geometrically irreducible. Hence
Xν
K is proper, normal, irreducible, and birational to (XK)red. This proves (1) because a

proper curve is projective (Varieties, Lemma 43.4).

Proof of (2). As X is proper and we have (1), we can apply Varieties, Lemma 27.4 to
find K/k finite purely inseparable such that YK is geometrically normal. Then YK is
geometrically regular as normal and regular are the same for curves (Properties, Lemma
12.6). Then Y is a smooth variety by Varieties, Lemma 12.6.

1Or even geometrically reduced.
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If YK is geometrically reduced, then YK is geometrically integral (Varieties, Lemma 9.2)
and we see that H0(YK ,OYK ) = K by Varieties, Lemma 26.2. This proves (3) because a
smooth variety is geometrically reduced (even geometrically regular, see Varieties, Lemma
12.6).

If YK is smooth, then for every extension Ω/K the base change (YK)Ω is smooth over Ω
(Morphisms, Lemma 34.5). Hence it is clear that YΩ = (YK)Ω. This proves (4). �

3. Linear series

We deviate from the classical story (see Remark 3.6) by defining linear series in the fol-
lowing manner.

Definition 3.1. Let k be a field. Let X be a proper scheme of dimension≤ 1 over k.
Let d ≥ 0 and r ≥ 0. A linear series of degree d and dimension r is a pair (L, V ) where L
is an invertibleOX -module of degree d (Varieties, Definition 44.1) and V ⊂ H0(X,L) is
a k-subvector space of dimension r + 1. We will abbreviate this by saying (L, V ) is a grd
on X .

We will mostly use this whenX is a nonsingular proper curve. In fact, the definition above
is just one way to generalize the classical definition of a grd. For example, if X is a proper
curve, then one can generalize linear series by allowingL to be a torsion free coherentOX -
module of rank 1. On a nonsingular curve every torsion free coherent module is locally
free, so this agrees with our notion for nonsingular proper curves.

The following lemma explains the geometric meaning of linear series for proper nonsin-
gular curves.

Lemma 3.2. Let k be a field. Let X be a nonsingular proper curve over k. Let (L, V )
be a grd on X . Then there exists a morphism

ϕ : X −→ Pr
k = Proj(k[T0, . . . , Tr])

of varieties over k and a map α : ϕ∗OPr
k
(1) → L such that ϕ∗T0, . . . , ϕ

∗Tr are sent to a
basis of V by α.

Proof. Let s0, . . . , sr ∈ V be a k-basis. Since X is nonsingular the image L′ ⊂ L of
the map s0, . . . , sr : O⊕r+1

X → L is an invertible OX -module for example by Divisors,
Lemma 11.11. Then we use Constructions, Lemma 13.1 to get a morphism

ϕ = ϕ(L′,(s0,...,sr)) : X −→ Pr
k

as in the statement of the lemma. �

Lemma 3.3. Let k be a field. Let X be a proper scheme of dimension ≤ 1 over k. If
X has a grd, then X has a gsd for all 0 ≤ s ≤ r.

Proof. This is true because a vector space V of dimension r + 1 over k has a linear
subspace of dimension s+ 1 for all 0 ≤ s ≤ r. �

Lemma 3.4. Let k be a field. Let X be a nonsingular proper curve over k. Let (L, V )
be a g1

d on X . Then the morphism ϕ : X → P1
k of Lemma 3.2 either

(1) is nonconstant and has degree ≤ d, or
(2) factors through a closed point of P1

k and in this case H0(X,OX) 6= k.
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Proof. By Lemma 3.2 we see thatL′ = ϕ∗OP1
k
(1) has a nonzero mapL′ → L. Hence

by Varieties, Lemma 44.12 we see that 0 ≤ deg(L′) ≤ d. If deg(L′) = 0, then the same
lemma tells us L′ ∼= OX and since we have two linearly independent sections we find we
are in case (2). If deg(L′) > 0 then ϕ is nonconstant (since the pullback of an invertible
module by a constant morphism is trivial). Hence

deg(L′) = deg(X/P1
k) deg(OP1

k
(1))

by Varieties, Lemma 44.11. This finishes the proof as the degree ofOP1
k
(1) is 1. �

Lemma 3.5. Let k be a field. Let X be a proper curve over k with H0(X,OX) = k.
If X has a grd, then r ≤ d. If equality holds, then H1(X,OX) = 0, i.e., the genus of X
(Definition 8.1) is 0.

Proof. Let (L, V ) be a grd. Since this will only increase r, we may assume V =
H0(X,L). Choose a nonzero element s ∈ V . Then the zero scheme of s is an effective
Cartier divisor D ⊂ X , we have L = OX(D), and we have a short exact sequence

0→ OX → L → L|D → 0

see Divisors, Lemma 14.10 and Remark 14.11. By Varieties, Lemma 44.9 we have deg(D) =
deg(L) = d. Since D is an Artinian scheme we have L|D ∼= OD2. Thus

dimkH
0(D,L|D) = dimkH

0(D,OD) = deg(D) = d

On the other hand, by assumption dimkH
0(X,OX) = 1 and dimH0(X,L) = r + 1.

We conclude that r + 1 ≤ 1 + d, i.e., r ≤ d as in the lemma.

Assume equality holds. Then H0(X,L) → H0(X,L|D) is surjective. If we knew that
H1(X,L) was zero, then we would conclude that H1(X,OX) is zero by the long exact
cohomology sequence and the proof would be complete. Our strategy will be to replace
L by a large power which has vanishing. As L|D is the trivial invertible module (see
above), we can find a section t of L whose restriction of D generates L|D. Consider the
multiplication map

µ : H0(X,L)⊗k H0(X,L) −→ H0(X,L⊗2)

and consider the short exact sequence

0→ L s−→ L⊗2 → L⊗2|D → 0

Since H0(L) → H0(L|D) is surjective and since t maps to a trivialization of L|D we see
that µ(H0(X,L)⊗ t) gives a subspace of H0(X,L⊗2) surjecting onto the global sections
of L⊗2|D. Thus we see that

dimH0(X,L⊗2) = r + 1 + d = 2r + 1 = deg(L⊗2) + 1

Ok, so L⊗2 has the same property as L, i.e., that the dimension of the space of global sec-
tions is equal to the degree plus one. SinceL is ample (Varieties, Lemma 44.14) there exists
some n0 such thatL⊗n has vanishingH1 for all n ≥ n0 (Cohomology of Schemes, Lemma
16.1). Thus applying the argument above to L⊗n with n = 2m for some sufficiently large
m we conclude the lemma is true. �

2In our case this follows from Divisors, Lemma 17.1 as D → Spec(k) is finite.
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Remark 3.6 (Classical definition). Let X be a smooth projective curve over an al-
gebraically closed field k. We say two effective Cartier divisors D,D′ ⊂ X are linearly
equivalent if and only ifOX(D) ∼= OX(D′) asOX -modules. Since Pic(X) = Cl(X) (Di-
visors, Lemma 27.7) we see that D and D′ are linearly equivalent if and only if the Weil
divisors associated to D and D′ define the same element of Cl(X). Given an effective
Cartier divisor D ⊂ X of degree d the complete linear system or complete linear series
|D| ofD is the set of effective Cartier divisorsE ⊂ X which are linearly equivalent toD.
Another way to say it is that |D| is the set of closed points of the fibre of the morphism

γd : HilbdX/k −→ PicdX/k
(Picard Schemes of Curves, Lemma 6.7) over the closed point corresponding to OX(D).
This gives |D| a natural scheme structure and it turns out that |D| ∼= Pm

k with m + 1 =
h0(OX(D)). In fact, more canonically we have

|D| = P(H0(X,OX(D))∨)
where (−)∨ indicates k-linear dual and P is as in Constructions, Example 21.2. In this
language a linear system or a linear series on X is a closed subvariety L ⊂ |D| which
can be cut out by linear equations. If L has dimension r, then L = P(V ∨) where V ⊂
H0(X,OX(D)) is a linear subspace of dimension r + 1. Thus the classical linear series
L ⊂ |D| corresponds to the linear series (OX(D), V ) as defined above.

4. Duality

In this section we work out the consequences of the very general material on dualizing
complexes and duality for proper 1-dimensional schemes over fields. If you are interested
in the analogous discussion for higher dimension proper schemes over fields, see Duality
for Schemes, Section 27.

Lemma 4.1. Let X be a proper scheme of dimension ≤ 1 over a field k. There exists
a dualizing complex ω•

X with the following properties
(1) Hi(ω•

X) is nonzero only for i = −1, 0,
(2) ωX = H−1(ω•

X) is a coherent Cohen-Macaulay module whose support is the
irreducible components of dimension 1,

(3) for x ∈ X closed, the module H0(ω•
X,x) is nonzero if and only if either

(a) dim(OX,x) = 0 or
(b) dim(OX,x) = 1 andOX,x is not Cohen-Macaulay,

(4) for K ∈ DQCoh(OX) there are functorial isomorphisms3

ExtiX(K,ω•
X) = Homk(H−i(X,K), k)

compatible with shifts and distinguished triangles,
(5) there are functorial isomorphisms Hom(F , ωX) = Homk(H1(X,F), k) for F

quasi-coherent on X ,
(6) if X → Spec(k) is smooth of relative dimension 1, then ωX ∼= ΩX/k.

Proof. Denote f : X → Spec(k) the structure morphism. We start with the relative
dualizing complex

ω•
X = ω•

X/k = a(OSpec(k))

3This property characterizes ω•
X inDQCoh(OX) up to unique isomorphism by the Yoneda lemma. Since

ω•
X is in DbCoh(OX) in fact it suffices to consider K ∈ DbCoh(OX).



4. DUALITY 4321

as described in Duality for Schemes, Remark 12.5. Then property (4) holds by construction
as a is the right adjoint for f∗ : DQCoh(OX) → D(OSpec(k)). Since f is proper we have
f !(OSpec(k)) = a(OSpec(k)) by definition, see Duality for Schemes, Section 16. Hence
ω•
X and ωX are as in Duality for Schemes, Example 22.1 and as in Duality for Schemes,

Example 22.2. Parts (1) and (2) follow from Duality for Schemes, Lemma 22.4. For a closed
point x ∈ X we see that ω•

X,x is a normalized dualizing complex over OX,x, see Duality
for Schemes, Lemma 21.1. Assertion (3) then follows from Dualizing Complexes, Lemma
20.2. Assertion (5) follows from Duality for Schemes, Lemma 22.5 for coherent F and in
general by unwinding (4) for K = F [0] and i = −1. Assertion (6) follows from Duality
for Schemes, Lemma 15.7. �

Lemma 4.2. Let X be a proper scheme over a field k which is Cohen-Macaulay and
equidimensional of dimension 1. The module ωX of Lemma 4.1 has the following proper-
ties

(1) ωX is a dualizing module on X (Duality for Schemes, Section 22),
(2) ωX is a coherent Cohen-Macaulay module whose support is X ,
(3) there are functorial isomorphisms ExtiX(K,ωX [1]) = Homk(H−i(X,K), k)

compatible with shifts for K ∈ DQCoh(X),
(4) there are functorial isomorphisms Ext1+i(F , ωX) = Homk(H−i(X,F), k) for
F quasi-coherent on X .

Proof. Recall from the proof of Lemma 4.1 that ωX is as in Duality for Schemes,
Example 22.1 and hence is a dualizing module. The other statements follow from Lemma
4.1 and the fact that ω•

X = ωX [1] as X is Cohen-Macualay (Duality for Schemes, Lemma
23.1). �

Remark 4.3. Let X be a proper scheme of dimension ≤ 1 over a field k. Let ω•
X and

ωX be as in Lemma 4.1. If E is a finite locally freeOX -module with dual E∨ then we have
canonical isomorphisms

Homk(H−i(X, E), k) = Hi(X, E∨ ⊗L
OX

ω•
X)

This follows from the lemma and Cohomology, Lemma 50.5. If X is Cohen-Macaulay
and equidimensional of dimension 1, then we have canonical isomorphisms

Homk(H−i(X, E), k) = H1+i(X, E∨ ⊗OX
ωX)

by Lemma 4.2. In particular if L is an invertibleOX -module, then we have

dimkH
0(X,L) = dimkH

1(X,L⊗−1 ⊗OX
ωX)

and
dimkH

1(X,L) = dimkH
0(X,L⊗−1 ⊗OX

ωX)

Here is a sanity check for the dualizing complex.

Lemma 4.4. Let X be a proper scheme of dimension ≤ 1 over a field k. Let ω•
X and

ωX be as in Lemma 4.1.
(1) If X → Spec(k) factors as X → Spec(k′) → Spec(k) for some field k′, then

ω•
X and ωX satisfy properties (4), (5), (6) with k replaced with k′.

(2) If K/k is a field extension, then the pullback of ω•
X and ωX to the base change

XK are as in Lemma 4.1 for the morphism XK → Spec(K).
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Proof. Denote f : X → Spec(k) the structure morphism. Assertion (1) really
means that ω•

X and ωX are as in Lemma 4.1 for the morphism f ′ : X → Spec(k′). In the
proof of Lemma 4.1 we took ω•

X = a(OSpec(k)) where a be is the right adjoint of Duality
for Schemes, Lemma 3.1 for f . Thus we have to show a(OSpec(k)) ∼= a′(OSpec(k)) where a′

be is the right adjoint of Duality for Schemes, Lemma 3.1 for f ′. Since k′ ⊂ H0(X,OX) we
see that k′/k is a finite extension (Cohomology of Schemes, Lemma 19.2). By uniqueness
of adjoints we have a = a′ ◦ b where b is the right adjoint of Duality for Schemes, Lemma
3.1 for g : Spec(k′) → Spec(k). Another way to say this: we have f ! = (f ′)! ◦ g!.
Thus it suffices to show that Homk(k′, k) ∼= k′ as k′-modules, see Duality for Schemes,
Example 3.2. This holds because these are k′-vector spaces of the same dimension (namely
dimension 1).

Proof of (2). This holds because we have base change for a by Duality for Schemes, Lemma
6.2. See discussion in Duality for Schemes, Remark 12.5. �

Lemma 4.5. LetX be a proper scheme of dimension≤ 1 over a field k. Let i : Y → X
be a closed immersion. Let ω•

X , ωX , ω•
Y , ωY be as in Lemma 4.1. Then

(1) ω•
Y = RHom(OY , ω•

X),
(2) ωY = Hom(OY , ωX) and i∗ωY = HomOX

(i∗OY , ωX).

Proof. Denote g : Y → Spec(k) and f : X → Spec(k) the structure morphisms.
Then g = f ◦ i. Denote a, b, c the right adjoint of Duality for Schemes, Lemma 3.1 for
f, g, i. Then b = c ◦ a by uniqueness of right adjoints and because Rg∗ = Rf∗ ◦ Ri∗. In
the proof of Lemma 4.1 we set ω•

X = a(OSpec(k)) and ω•
Y = b(OSpec(k)). Hence ω•

Y =
c(ω•

X) which implies (1) by Duality for Schemes, Lemma 9.7. Since ωX = H−1(ω•
X)

and ωY = H−1(ω•
Y ) we conclude that ωY = Hom(OY , ωX). This implies i∗ωY =

HomOX
(i∗OY , ωX) by Duality for Schemes, Lemma 9.3. �

Lemma 4.6. Let X be a proper scheme over a field k which is Gorenstein, reduced,
and equidimensional of dimension 1. Let i : Y → X be a reduced closed subscheme
equidimensional of dimension 1. Let j : Z → X be the scheme theoretic closure ofX \Y .
Then

(1) Y and Z are Cohen-Macaulay,
(2) if I ⊂ OX , resp. J ⊂ OX is the ideal sheaf of Y , resp. Z in X , then

I = i∗I ′ and J = j∗J ′

where I ′ ⊂ OZ , resp. J ′ ⊂ OY is the ideal sheaf of Y ∩ Z in Z , resp. Y ,
(3) ωY = J ′(i∗ωX) and i∗(ωY ) = JωX ,
(4) ωZ = I ′(i∗ωX) and i∗(ωZ) = IωX ,
(5) we have the following short exact sequences

0→ ωX → i∗i
∗ωX ⊕ j∗j

∗ωX → OY ∩Z → 0
0→ i∗ωY → ωX → j∗j

∗ωX → 0
0→ j∗ωZ → ωX → i∗i

∗ωX → 0
0→ i∗ωY ⊕ j∗ωZ → ωX → OY ∩Z → 0

0→ ωY → i∗ωX → OY ∩Z → 0
0→ ωZ → j∗ωX → OY ∩Z → 0

Here ωX , ωY , ωZ are as in Lemma 4.1.
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Proof. A reduced 1-dimensional Noetherian scheme is Cohen-Macaulay, so (1) is
true. Since X is reduced, we see that X = Y ∪ Z scheme theoretically. With notation
as in Morphisms, Lemma 4.6 and by the statement of that lemma we have a short exact
sequence

0→ OX → OY ⊕OZ → OY ∩Z → 0
Since J = Ker(OX → OZ), J ′ = Ker(OY → OY ∩Z), I = Ker(OX → OY ), and
I ′ = Ker(OZ → OY ∩Z) a diagram chase implies (2). Observe that I + J is the ideal
sheaf of Y ∩ Z and that I ∩ J = 0. Hence we have the following exact sequences

0→ OX → OY ⊕OZ → OY ∩Z → 0
0→ J → OX → OZ → 0
0→ I → OX → OY → 0

0→ J ⊕ I → OX → OY ∩Z → 0
0→ J ′ → OY → OY ∩Z → 0
0→ I ′ → OZ → OY ∩Z → 0

SinceX is GorensteinωX is an invertibleOX -module (Duality for Schemes, Lemma 24.4).
Since Y ∩ Z has dimension 0 we have ωX |Y ∩Z ∼= OY ∩Z . Thus if we prove (3) and (4),
then we obtain the short exact sequences of the lemma by tensoring the above short exact
sequence with the invertible module ωX . By symmetry it suffices to prove (3) and by (2)
it suffices to prove i∗(ωY ) = JωX .

We have i∗ωY = HomOX
(i∗OY , ωX) by Lemma 4.5. Again using that ωX is invertible

we finally conclude that it suffices to showHomOX
(OX/I,OX) maps isomorphically to

J by evaluation at 1. In other words, that J is the annihilator of I . This follows from
the above. �

5. Riemann-Roch

Let k be a field. LetX be a proper scheme of dimension≤ 1 over k. In Varieties, Section 44
we have defined the degree of a locally freeOX -module E of constant rank by the formula

(5.0.1) deg(E) = χ(X, E)− rank(E)χ(X,OX)
see Varieties, Definition 44.1. In the chapter on Chow Homology we defined the first
Chern class of E as an operation on cycles (Chow Homology, Section 38) and we proved
that

(5.0.2) deg(E) = deg(c1(E) ∩ [X]1)
see Chow Homology, Lemma 41.3. Combining (5.0.1) and (5.0.2) we obtain our first ver-
sion of the Riemann-Roch formula

(5.0.3) χ(X, E) = deg(c1(E) ∩ [X]1) + rank(E)χ(X,OX)
If L is an invertible OX -module, then we can also consider the numerical intersection
(L·X) as defined in Varieties, Definition 45.3. However, this does not give anything new
as

(5.0.4) (L ·X) = deg(L)
by Varieties, Lemma 45.12. If L is ample, then this integer is positive and is called the
degree

(5.0.5) degL(X) = (L ·X) = deg(L)
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of X with respect to L, see Varieties, Definition 45.10.

To obtain a true Riemann-Roch theorem we would like to write χ(X,OX) as the degree
of a canonical zero cycle on X . We refer to [?] for a fully general version of this. We will
use duality to get a formula in the case whereX is Gorenstein; however, in some sense this
is a cheat (for example because this method cannot work in higher dimension).

We first use Lemmas 4.1 and 4.2 to get a relation between the euler characteristic of OX
and the euler characteristic of the dualizing complex or the dualizing module.

Lemma 5.1. LetX be a proper scheme of dimension≤ 1 over a field k. With ω•
X and

ωX as in Lemma 4.1 we have

χ(X,OX) = χ(X,ω•
X)

If X is Cohen-Macaulay and equidimensional of dimension 1, then

χ(X,OX) = −χ(X,ωX)

Proof. We define the right hand side of the first formula as follows:

χ(X,ω•
X) =

∑
i∈Z

(−1)i dimkH
i(X,ω•

X)

This is well defined because ω•
X is in Db

Coh(OX), but also because

Hi(X,ω•
X) = Exti(OX , ω•

X) = H−i(X,OX)
which is always finite dimensional and nonzero only if i = 0,−1. This of course also
proves the first formula. The second is a consequence of the first because ω•

X = ωX [1] in
the CM case, see Lemma 4.2. �

We will use Lemma 5.1 to get the desired formula for χ(X,OX) in the case that ωX is
invertible, i.e., that X is Gorenstein. The statement is that −1/2 of the first Chern class
of ωX capped with the cycle [X]1 associated to X is a natural zero cycle on X with half-
integer coefficients whose degree isχ(X,OX). The occurence of fractions in the statement
of Riemann-Roch cannot be avoided.

Lemma 5.2 (Riemann-Roch). LetX be a proper scheme over a field k which is Goren-
stein and equidimensional of dimension 1. Let ωX be as in Lemma 4.1. Then

(1) ωX is an invertibleOX -module,
(2) deg(ωX) = −2χ(X,OX),
(3) for a locally freeOX -module E of constant rank we have

χ(X, E) = deg(E)− 1
2 rank(E) deg(ωX)

and dimk(Hi(X, E)) = dimk(H1−i(X, E∨ ⊗OX
ωX)) for all i ∈ Z.

Nonsingular (normal) curves are Gorenstein, see Duality for Schemes, Lemma 24.3.

Proof. Recall that Gorenstein schemes are Cohen-Macaulay (Duality for Schemes,
Lemma 24.2) and hence ωX is a dualizing module onX , see Lemma 4.2. It follows more or
less from the definition of the Gorenstein property that the dualizing sheaf is invertible,
see Duality for Schemes, Section 24. By (5.0.3) applied to ωX we have

χ(X,ωX) = deg(c1(ωX) ∩ [X]1) + χ(X,OX)
Combined with Lemma 5.1 this gives

2χ(X,OX) = −deg(c1(ωX) ∩ [X]1) = −deg(ωX)
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the second equality by (5.0.2). Putting this back into (5.0.3) for E gives the displayed
formula of the lemma. The symmetry in dimensions is a consequence of duality forX , see
Remark 4.3. �

6. Some vanishing results

This section contains some very weak vanishing results. Please see Section 21 for a few
more and more interesting results.

Lemma 6.1. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Then X is connected, Cohen-Macaulay, and equidimensional of
dimension 1.

Proof. Since Γ(X,OX) = k has no nontrivial idempotents, we see that X is con-
nected. This already shows that X is equidimensional of dimension 1 (any irreducible
component of dimension 0 would be a connected component). Let I ⊂ OX be the maxi-
mal coherent submodule supported in closed points. Then I exists (Divisors, Lemma 4.6)
and is globally generated (Varieties, Lemma 33.3). Since 1 ∈ Γ(X,OX) is not a section
of I we conclude that I = 0. Thus X does not have embedded points (Divisors, Lemma
4.6). Thus X has (S1) by Divisors, Lemma 4.3. Hence X is Cohen-Macaulay. �

In this section we work in the following situation.

Situation 6.2. Here k is a field,X is a proper scheme over k having dimension 1 and
H0(X,OX) = k.

By Lemma 6.1 the scheme X is Cohen-Macaulay and equidimensional of dimension 1.
The dualizing module ωX discussed in Lemmas 4.1 and 4.2 has nonvanishing H1 because
in fact dimkH

1(X,ωX) = dimkH
0(X,OX) = 1. It turns out that anything slightly

more “positive” than ωX has vanishing H1.

Lemma 6.3. In Situation 6.2. Given an exact sequence

ωX → F → Q→ 0
of coherent OX -modules with H1(X,Q) = 0 (for example if dim(Supp(Q)) = 0), then
either H1(X,F) = 0 or F = ωX ⊕Q.

Proof. (The parenthetical statement follows from Cohomology of Schemes, Lemma
9.10.) SinceH0(X,OX) = k is dual toH1(X,ωX) (see Section 5) we see that dimH1(X,ωX) =
1. The sheaf ωX represents the functor F 7→ Homk(H1(X,F), k) on the category of co-
herent OX -modules (Duality for Schemes, Lemma 22.5). Consider an exact sequence as
in the statement of the lemma and assume that H1(X,F) 6= 0. Since H1(X,Q) = 0 we
see that H1(X,ωX) → H1(X,F) is an isomorphism. By the universal property of ωX
stated above, we conclude there is a map F → ωX whose action on H1 is the inverse of
this isomorphism. The composition ωX → F → ωX is the identity (by the universal
property) and the lemma is proved. �

Lemma 6.4. In Situation 6.2. Let L be an invertible OX -module which is globally
generated and not isomorphic toOX . Then H1(X,ωX ⊗ L) = 0.

Proof. By duality as discussed in Section 5 we have to show that H0(X,L⊗−1) =
0. If not, then we can choose a global section t of L⊗−1 and a global section s of L
such that st 6= 0. However, then st is a constant multiple of 1, by our assumption that
H0(X,OX) = k. It follows that L ∼= OX , which is a contradiction. �



4326 53. ALGEBRAIC CURVES

Lemma 6.5. In Situation 6.2. Given an exact sequence

ωX → F → Q→ 0

of coherent OX -modules with dim(Supp(Q)) = 0 and dimkH
0(X,Q) ≥ 2 and such

that there is no nonzero submodule Q′ ⊂ F such that Q′ → Q is injective. Then the
submodule of F generated by global sections surjects ontoQ.

Proof. Let F ′ ⊂ F be the submodule generated by global sections and the image of
ωX → F . Since dimkH

0(X,Q) ≥ 2 and dimkH
1(X,ωX) = dimkH

0(X,OX) = 1, we
see that F ′ → Q is not zero and ωX → F ′ is not an isomorphism. Hence H1(X,F ′) = 0
by Lemma 6.3 and our assumption on F . Consider the short exact sequence

0→ F ′ → F → Q/ Im(F ′ → Q)→ 0

If the quotient on the right is nonzero, then we obtain a contradiction because thenH0(X,F)
is bigger than H0(X,F ′). �

Here is an example global generation statement.

Lemma 6.6. In Situation 6.2 assume thatX is integral. Let 0→ ωX → F → Q→ 0
be a short exact sequence of coherentOX -modules with F torsion free, dim(Supp(Q)) =
0, and dimkH

0(X,Q) ≥ 2. Then F is globally generated.

Proof. Consider the submodule F ′ generated by the global sections. By Lemma 6.5
we see thatF ′ → Q is surjective, in particularF ′ 6= 0. SinceX is a curve, we see thatF ′ ⊂
F is an inclusion of rank 1 sheaves, henceQ′ = F/F ′ is supported in finitely many points.
To get a contradiction, assume thatQ′ is nonzero. Then we see thatH1(X,F ′) 6= 0. Then
we get a nonzero map F ′ → ωX by the universal property (Duality for Schemes, Lemma
22.5). The image of the compositionF ′ → ωX → F is generated by global sections, hence
is inside ofF ′. Thus we get a nonzero self mapF ′ → F ′. SinceF ′ is torsion free of rank 1
on a proper curve this has to be an automorphism (details omitted). But then this implies
that F ′ is contained in ωX ⊂ F contradicting the surjectivity of F ′ → Q. �

Lemma 6.7. In Situation 6.2. Let L be a very ample invertible OX -module with
deg(L) ≥ 2. Then ωX ⊗OX

L is globally generated.

Proof. Assume k is algebraically closed. Let x ∈ X be a closed point. LetCi ⊂ X be
the irreducible components and for each i let xi ∈ Ci be the generic point. By Varieties,
Lemma 22.2 we can choose a section s ∈ H0(X,L) such that s vanishes at x but not at
xi for all i. The corresponding module map s : OX → L is injective with cokernel Q
supported in finitely many points and with H0(X,Q) ≥ 2. Consider the corresponding
exact sequence

0→ ωX → ωX ⊗ L → ωX ⊗Q → 0
By Lemma 6.5 we see that the module generated by global sections surjects onto ωX ⊗Q.
Since x was arbitrary this proves the lemma. Some details omitted.

We will reduce the case where k is not algebraically closed, to the algebraically closed
field case. We suggest the reader skip the rest of the proof. Choose an algebraic closure
k of k and consider the base change Xk. Let us check that Xk → Spec(k) is an example
of Situation 6.2. By flat base change (Cohomology of Schemes, Lemma 5.2) we see that
H0(Xk,O) = k. The scheme Xk is proper over k (Morphisms, Lemma 41.5) and equidi-
mensional of dimension 1 (Morphisms, Lemma 28.3). The pullback of ωX to Xk is the
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dualizing module of Xk by Lemma 4.4. The pullback of L to Xk is very ample (Mor-
phisms, Lemma 38.8). The degree of the pullback of L toXk is equal to the degree of L on
X (Varieties, Lemma 44.2). Finally, we see that ωX ⊗ L is globally generated if and only
if its base change is so (Varieties, Lemma 22.1). In this way we see that the result follows
from the result in the case of an algebraically closed ground field. �

7. Very ample invertible sheaves

An often used criterion for very ampleness of an invertible module L on a scheme X of
finite type over an algebraically closed field is: sections of L separate points and tangent
vectors (Varieties, Section 23). Here is another criterion for curves; please compare with
Varieties, Subsection 35.6.

Lemma 7.1. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Let L be an invertibleOX -module. Assume

(1) L has a regular global section,
(2) H1(X,L) = 0, and
(3) L is ample.

Then L⊗6 is very ample on X over k.

Proof. Let s be a regular global section of L. Let i : Z = Z(s) → X be the zero
scheme of s, see Divisors, Section 14. By condition (3) we see that Z 6= ∅ (small detail
omitted). Consider the short exact sequence

0→ OX
s−→ L → i∗(L|Z)→ 0

Tensoring with L we obtain

0→ L → L⊗2 → i∗(L⊗2|Z)→ 0

Observe that Z has dimension 0 (Divisors, Lemma 13.5) and hence is the spectrum of an
Artinian ring (Varieties, Lemma 20.2) hence L|Z ∼= OZ (Algebra, Lemma 78.7). The short
exact sequence also shows thatH1(X,L⊗2) = 0 (for example using Varieties, Lemma 33.3
to see vanishing in the spot on the right). Using induction on n ≥ 1 and the sequence

0→ L⊗n s−→ L⊗n+1 → i∗(L⊗n+1|Z)→ 0

we see that H1(X,L⊗n) = 0 for n > 0 and that there exists a global section tn+1 of
L⊗n+1 which gives a trivialization of L⊗n+1|Z ∼= OZ .

Consider the multiplication map

µn : H0(X,L)⊗k H0(X,L⊗n)⊕H0(X,L⊗2)⊗k H0(X,L⊗n−1) −→ H0(X,L⊗n+1)

We claim this is surjective for n ≥ 3. To see this we consider the short exact sequence

0→ L⊗n s−→ L⊗n+1 → i∗(L⊗n+1|Z)→ 0

The sections of L⊗n+1 coming from the left in this sequence are in the image of µn. On
the other hand, since H0(L⊗2) → H0(L⊗2|Z) is surjective (see above) and since tn−1
maps to a trivialization of L⊗n−1|Z we see that µn(H0(X,L⊗2)⊗ tn−1) gives a subspace
of H0(X,L⊗n+1) surjecting onto the global sections of L⊗n+1|Z . This proves the claim.

From the claim in the previous paragraph we conclude that the graded k-algebra

S =
⊕

n≥0
H0(X,L⊗n)
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is generated in degrees 0, 1, 2, 3 over k. Recall that X = Proj(S), see Morphisms, Lemma
43.17. Thus S(6) =

⊕
n S6n is generated in degree 1. This means that L⊗6 is very ample

as desired. �

Lemma 7.2. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Let L be an invertibleOX -module. Assume

(1) L is globally generated,
(2) H1(X,L) = 0, and
(3) L is ample.

Then L⊗2 is very ample on X over k.

Proof. Choose basis s0, . . . , sn of H0(X,L⊗2) over k. By property (1) we see that
L⊗2 is globally generated and we get a morphism

ϕL⊗2,(s0,...,sn) : X −→ Pn
k

See Constructions, Section 13. The lemma asserts that this morphism is a closed immersion.
To check this we may replace k by its algebraic closure, see Descent, Lemma 23.19. Thus
we may assume k is algebraically closed.

Assume k is algebraically closed. For each generic point ηi ∈ X let Vi ⊂ H0(X,L) be
the k-subvector space of sections vanishing at ηi. Since L is globally generated, we see
that Vi 6= H0(X,L). Since X has only a finite number of irreducible components and
k is infinite, we can find s ∈ H0(X,L) nonvanishing at ηi for all i. Then s is a regular
section of L (because X is Cohen-Macaulay by Lemma 6.1 and hence L has no embedded
associated points).

In particular, all of the statements given in the proof of Lemma 7.1 hold with this s. More-
over, as L is globally generated, we can find a global section t ∈ H0(X,L) such that t|Z is
nonvanishing (argue as above using the finite number of points of Z). Then in the proof
of Lemma 7.1 we can use t to see that additionally the multiplication map

µn : H0(X,L)⊗k H0(X,L⊗2) −→ H0(X,L⊗3)
is surjective. Thus

S =
⊕

n≥0
H0(X,L⊗n)

is generated in degrees 0, 1, 2 over k. Arguing as in the proof of Lemma 7.1 we find that
S(2) =

⊕
n S2n is generated in degree 1. This means that L⊗2 is very ample as desired.

Some details omitted. �

8. The genus of a curve

If X is a smooth projective geometrically irreducible curve over a field k, then we’ve pre-
viously defined the genus of X as the dimension of H1(X,OX), see Picard Schemes of
Curves, Definition 6.3. Observe that H0(X,OX) = k in this case, see Varieties, Lemma
26.2. Let us generalize this as follows.

Definition 8.1. Let k be a field. Let X be a proper scheme over k having dimension
1 and H0(X,OX) = k. Then the genus of X is g = dimkH

1(X,OX).

This is sometimes called the arithmetic genus of X . In the literature the arithmetic genus
of a proper curve X over k is sometimes defined as

pa(X) = 1− χ(X,OX) = 1− dimkH
0(X,OX) + dimkH

1(X,OX)
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This agrees with our definition when it applies because we assume H0(X,OX) = k. But
note that

(1) pa(X) can be negative, and
(2) pa(X) depends on the base field k and should be written pa(X/k).

For example if k = Q and X = P1
Q(i) then pa(X/Q) = −1 and pa(X/Q(i)) = 0.

The assumption thatH0(X,OX) = k in our definition has two consequences. On the one
hand, it means there is no confusion about the base field. On the other hand, it implies the
scheme X is Cohen-Macaulay and equidimensional of dimension 1 (Lemma 6.1). If ωX
denotes the dualizing module as in Lemmas 4.1 and 4.2 we see that

(8.1.1) g = dimkH
1(X,OX) = dimkH

0(X,ωX)
by duality, see Remark 4.3.
IfX is proper over k of dimension≤ 1 andH0(X,OX) is not equal to the ground field k,
instead of using the arithmetic genus pa(X) given by the displayed formula above we shall
use the invariant χ(X,OX). In fact, it is advocated in [?, page 276] and [?, Introduction]
that we should call χ(X,OX) the arithmetic genus.

Lemma 8.2. Let k′/k be a field extension. Let X be a proper scheme over k having
dimension 1 andH0(X,OX) = k. ThenXk′ is a proper scheme over k′ having dimension
1 and H0(Xk′ ,OXk′ ) = k′. Moreover the genus of Xk′ is equal to the genus of X .

Proof. The dimension ofXk′ is 1 for example by Morphisms, Lemma 28.3. The mor-
phismXk′ → Spec(k′) is proper by Morphisms, Lemma 41.5. The equalityH0(Xk′ ,OXk′ ) =
k′ follows from Cohomology of Schemes, Lemma 5.2. The equality of the genus follows
from the same lemma. �

Lemma 8.3. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. If X is Gorenstein, then

deg(ωX) = 2g − 2
where g is the genus of X and ωX is as in Lemma 4.1.

Proof. Immediate from Lemma 5.2. �

Lemma 8.4. Let X be a smooth proper curve over a field k with H0(X,OX) = k.
Then

dimkH
0(X,ΩX/k) = g and deg(ΩX/k) = 2g − 2

where g is the genus of X .

Proof. By Lemma 4.1 we have ΩX/k = ωX . Hence the formulas hold by (8.1.1) and
Lemma 8.3. �

9. Plane curves

Let k be a field. A plane curve will be a curveX which is isomorphic to a closed subscheme
of P2

k. Often the embedding X → P2
k will be considered given. By Divisors, Example

31.2 a curve is determined by the corresponding homogeneous ideal

I(X) = Ker
(
k[T0, T2, T2] −→

⊕
Γ(X,OX(n))

)
Recall that in this situation we have

X = Proj(k[T0, T2, T2]/I)
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as closed subschemes of P2
k. For more general information on these constructions we

refer the reader to Divisors, Example 31.2 and the references therein. It turns out that
I(X) = (F ) for some homogeneous polynomial F ∈ k[T0, T1, T2], see Lemma 9.1. Since
X is irreducible, it follows that F is irreducible, see Lemma 9.2. Moreover, looking at the
short exact sequence

0→ OP2
k
(−d) F−→ OP2

k
→ OX → 0

where d = deg(F ) we find that H0(X,OX) = k and that X has genus (d− 1)(d− 2)/2,
see proof of Lemma 9.3.
To find smooth plane curves it is easiest to write explicit equations. Let p denote the
characteristic of k. If p does not divide d, then we can take

F = T d0 + T d1 + T d2

The corresponding curveX = V+(F ) is called the Fermat curve of degree d. It is smooth
because on each standard affine piece D+(Ti) we obtain a curve isomorphic to the affine
curve

Spec(k[x, y]/(xd + yd + 1))
The ring map k → k[x, y]/(xd + yd + 1) is smooth by Algebra, Lemma 137.16 as dxd−1

and dyd−1 generate the unit ideal in k[x, y]/(xd + yd + 1). If p|d but p 6= 3 then you can
use the equation

F = T d−1
0 T1 + T d−1

1 T2 + T d−1
2 T0

Namely, on the affine pieces you get x + xd−1y + yd−1 with derivatives 1 − xd−2y and
xd−1 − yd−2 whose common zero set (of all three) is empty4. We leave it to the reader to
make examples in characteristic 3.
More generally for any field k and any n and d there exists a smooth hypersurface of
degree d in Pn

k , see for example [?].
Of course, in this way we only find smooth curves whose genus is a triangular number. To
get smooth curves of an arbitrary genus one can look for smooth curves lying on P1×P1

(insert future reference here).

Lemma 9.1. Let Z ⊂ P2
k be a closed subscheme which is equidimensional of dimen-

sion 1 and has no embedded points (equivalently Z is Cohen-Macaulay). Then the ideal
I(Z) ⊂ k[T0, T1, T2] corresponding to Z is principal.

Proof. This is a special case of Divisors, Lemma 31.3 (see also Varieties, Lemma 34.4).
The parenthetical statement follows from the fact that a 1 dimensional Noetherian scheme
is Cohen-Macaulay if and only if it has no embedded points, see Divisors, Lemma 4.4. �

Lemma 9.2. Let Z ⊂ P2
k be as in Lemma 9.1 and let I(Z) = (F ) for some F ∈

k[T0, T1, T2]. Then Z is a curve if and only if F is irreducible.

Proof. If F is reducible, say F = F ′F ′′ then let Z ′ be the closed subscheme of P2
k

defined by F ′. It is clear that Z ′ ⊂ Z and that Z ′ 6= Z. Since Z ′ has dimension 1 as well,
we conclude that either Z is not reduced, or that Z is not irreducible. Conversely, write
Z =

∑
aiDi where Di are the irreducible components of Z , see Divisors, Lemmas 15.8

and 15.9. Let Fi ∈ k[T0, T1, T2] be the homogeneous polynomial generating the ideal of
Di. Then it is clear that F and

∏
F aii cut out the same closed subscheme of P2

k. Hence

4Namely, as xd−1 = yd−2 , then 0 = x + xd−1y + yd−1 = x + 2xd−1y. Since x 6= 0 because
1 = xd−2y we get 0 = 1 + 2xd−2y = 3 which is absurd unless 3 = 0.



9. PLANE CURVES 4331

F = λ
∏
F aii for some λ ∈ k∗ because both generate the ideal of Z. Thus we see that if

F is irreducible, then Z is a prime divisor, i.e., a curve. �

Lemma 9.3. Let Z ⊂ P2
k be as in Lemma 9.1 and let I(Z) = (F ) for some F ∈

k[T0, T1, T2]. Then H0(Z,OZ) = k and the genus of Z is (d − 1)(d − 2)/2 where d =
deg(F ).

Proof. Let S = k[T0, T1, T2]. There is an exact sequence of graded modules

0→ S(−d) F−→ S → S/(F )→ 0

Denote i : Z → P2
k the given closed immersion. Applying the exact functor˜(Construc-

tions, Lemma 8.4) we obtain

0→ OP2
k
(−d)→ OP2

k
→ i∗OZ → 0

because F generates the ideal of Z. Note that the cohomology groups of OP2
k
(−d) and

OP2
k

are given in Cohomology of Schemes, Lemma 8.1. On the other hand, we have
Hq(Z,OZ) = Hq(P2

k, i∗OZ) by Cohomology of Schemes, Lemma 2.4. Applying the
long exact cohomology sequence we first obtain that

k = H0(P2
k,OP2

k
) −→ H0(Z,OZ)

is an isomorphism and next that the boundary map

H1(Z,OZ) −→ H2(P2
k,OP2

k
(−d)) ∼= k[T0, T1, T2]d−3

is an isomorphism. Since it is easy to see that the dimension of this is (d−1)(d−2)/2 the
proof is finished. �

Lemma 9.4. Let Z ⊂ P2
k be as in Lemma 9.1 and let I(Z) = (F ) for some F ∈

k[T0, T1, T2]. If Z → Spec(k) is smooth in at least one point and k is infinite, then
there exists a closed point z ∈ Z contained in the smooth locus such that κ(z)/k is finite
separable of degree at most d.

Proof. Suppose that z′ ∈ Z is a point where Z → Spec(k) is smooth. After
renumbering the coordinates if necessary we may assume z′ is contained in D+(T0). Set
f = F (1, x, y) ∈ k[x, y]. ThenZ∩D+(X0) is isomorphic to the spectrum of k[x, y]/(f).
Let fx, fy be the partial derivatives of f with respect to x, y. Since z′ is a smooth point of
Z/k we see that either fx or fy is nonzero in z′ (see discussion in Algebra, Section 137).
After renumbering the coordinates we may assume fy is not zero at z′. Hence there is a
nonempty open subscheme V ⊂ Z ∩D+(X0) such that the projection

p : V −→ Spec(k[x])

is étale. Because the degree of f as a polynomial in y is at most d, we see that the degrees
of the fibres of the projection p are at most d (see discussion in Morphisms, Section 57).
Moreover, as p is étale the image of p is an open U ⊂ Spec(k[x]). Finally, since k is
infinite, the set of k-rational points U(k) of U is infinite, in particular not empty. Pick
any t ∈ U(k) and let z ∈ V be a point mapping to t. Then z works. �
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10. Curves of genus zero

Later we will need to know what a proper genus zero curve looks like. It turns out that
a Gorenstein proper genus zero curve is a plane curve of degree 2, i.e., a conic, see Lemma
10.3. A general proper genus zero curve is obtained from a nonsingular one (over a bigger
field) by a pushout procedure, see Lemma 10.5. Since a nonsingular curve is Gorenstein,
these two results cover all possible cases.

Lemma 10.1. Let X be a proper curve over a field k with H0(X,OX) = k. If X has
genus 0, then every invertibleOX -module L of degree 0 is trivial.

Proof. Namely, we have dimkH
0(X,L) ≥ 0+1−0 = 1 by Riemann-Roch (Lemma

5.2), hence L has a nonzero section, hence L ∼= OX by Varieties, Lemma 44.12. �

Lemma 10.2. Let X be a proper curve over a field k with H0(X,OX) = k. Assume
X has genus 0. Let L be an invertibleOX -module of degree d > 0. Then we have

(1) dimkH
0(X,L) = d+ 1 and dimkH

1(X,L) = 0,
(2) L is very ample and defines a closed immersion into Pd

k.

Proof. By definition of degree and genus we have

dimkH
0(X,L)− dimkH

1(X,L) = d+ 1

Let s be a nonzero section of L. Then the zero scheme of s is an effective Cartier divisor
D ⊂ X , we have L = OX(D) and we have a short exact sequence

0→ OX → L → L|D → 0

see Divisors, Lemma 14.10 and Remark 14.11. Since H1(X,OX) = 0 by assumption, we
see that H0(X,L) → H0(X,L|D) is surjective. As L|D is generated by global sections
(because dim(D) = 0, see Varieties, Lemma 33.3) we conclude that the invertible moduleL
is generated by global sections. In fact, sinceD is an Artinian scheme we haveL|D ∼= OD5

and hence we can find a section t of L whose restriction of D generates L|D. The short
exact sequence also shows that H1(X,L) = 0.

For n ≥ 1 consider the multiplication map

µn : H0(X,L)⊗k H0(X,L⊗n) −→ H0(X,L⊗n+1)

We claim this is surjective. To see this we consider the short exact sequence

0→ L⊗n s−→ L⊗n+1 → L⊗n+1|D → 0

The sections of L⊗n+1 coming from the left in this sequence are in the image of µn. On
the other hand, sinceH0(L)→ H0(L|D) is surjective and since tn maps to a trivialization
of L⊗n|D we see that µn(H0(X,L) ⊗ tn) gives a subspace of H0(X,L⊗n+1) surjecting
onto the global sections of L⊗n+1|D. This proves the claim.

Observe thatL is ample by Varieties, Lemma 44.14. Hence Morphisms, Lemma 43.17 gives
an isomorphism

X −→ Proj
(⊕

n≥0
H0(X,L⊗n)

)
Since the maps µn are surjective for all n ≥ 1 we see that the graded algebra on the
right hand side is a quotient of the symmetric algebra on H0(X,L). Choosing a k-basis

5In our case this follows from Divisors, Lemma 17.1 as D → Spec(k) is finite.
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s0, . . . , sd of H0(X,L) we see that it is a quotient of a polynomial algebra in d+ 1 vari-
ables. Since quotients of graded rings correspond to closed immersions of Proj (Construc-
tions, Lemma 11.5) we find a closed immersion X → Pd

k. We omit the verification that
this morphism is the morphism of Constructions, Lemma 13.1 associated to the sections
s0, . . . , sd of L. �

Lemma 10.3. Let X be a proper curve over a field k with H0(X,OX) = k. If X is
Gorenstein and has genus 0, then X is isomorphic to a plane curve of degree 2.

Proof. Consider the invertible sheaf L = ω⊗−1
X where ωX is as in Lemma 4.1. Then

deg(ωX) = −2 by Lemma 8.3 and hence deg(L) = 2. By Lemma 10.2 we conclude that
choosing a basis s0, s1, s2 of the k-vector space of global sections of L we obtain a closed
immersion

ϕ(L,(s0,s1,s2)) : X −→ P2
k

Thus X is a plane curve of some degree d. Let F ∈ k[T0, T1, T2]d be its equation (Lemma
9.1). Because the genus of X is 0 we see that d is 1 or 2 (Lemma 9.3). Observe that
F restricts to the zero section on ϕ(X) and hence F (s0, s1, s2) is the zero section of
L⊗2. Because s0, s1, s2 are linearly independent we see that F cannot be linear, i.e.,
d = deg(F ) ≥ 2. Thus d = 2 and the proof is complete. �

Proposition 10.4 (Characterization of the projective line). Let k be a field. LetX be
a proper curve over k. The following are equivalent

(1) X ∼= P1
k ,

(2) X is smooth and geometrically irreducible over k, X has genus 0, and X has an
invertible module of odd degree,

(3) X is geometrically integral over k, X has genus 0, X is Gorenstein, and X has
an invertible sheaf of odd degree,

(4) H0(X,OX) = k,X has genus 0,X is Gorenstein, andX has an invertible sheaf
of odd degree,

(5) X is geometrically integral over k, X has genus 0, and X has an invertibleOX -
module of degree 1,

(6) H0(X,OX) = k, X has genus 0, and X has an invertibleOX -module of degree
1,

(7) H1(X,OX) = 0 and X has an invertibleOX -module of degree 1,
(8) H1(X,OX) = 0 and X has closed points x1, . . . , xn such thatOX,xi is normal

and gcd([κ(xi) : k]) = 1, and
(9) add more here.

Proof. We will prove that each condition (2) – (8) implies (1) and we omit the veri-
fication that (1) implies (2) – (8).
Assume (2). A smooth scheme over k is geometrically reduced (Varieties, Lemma 25.4)
and regular (Varieties, Lemma 25.3). HenceX is Gorenstein (Duality for Schemes, Lemma
24.3). Thus we reduce to (3).
Assume (3). Since X is geometrically integral over k we have H0(X,OX) = k by Vari-
eties, Lemma 26.2. and we reduce to (4).
Assume (4). Since X is Gorenstein the dualizing module ωX as in Lemma 4.1 has degree
deg(ωX) = −2 by Lemma 8.3. Combined with the assumed existence of an odd degree
invertible module, we conclude there exists an invertible module of degree 1. In this way
we reduce to (6).
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Assume (5). Since X is geometrically integral over k we have H0(X,OX) = k by Vari-
eties, Lemma 26.2. and we reduce to (6).

Assume (6). Then X ∼= P1
k by Lemma 10.2.

Assume (7). Observe that κ = H0(X,OX) is a field finite over k by Varieties, Lemma
26.2. If d = [κ : k] > 1, then every invertible sheaf has degree divisible by d and there
cannot be an invertible sheaf of degree 1. Hence d = 1 and we reduce to case (6).

Assume (8). Observe that κ = H0(X,OX) is a field finite over k by Varieties, Lemma
26.2. Since κ ⊂ κ(xi) we see that k = κ by the assumption on the gcd of the degrees.
The same condition allows us to find integers ai such that 1 =

∑
ai[κ(xi) : k]. Because

xi defines an effective Cartier divisor on X by Varieties, Lemma 43.8 we can consider the
invertible module OX(

∑
aixi). By our choice of ai the degree of L is 1. Thus X ∼= P1

k

by Lemma 10.2. �

Lemma 10.5. Let X be a proper curve over a field k with H0(X,OX) = k. Assume
X is singular and has genus 0. Then there exists a diagram

x′

��

// X ′

ν

��

// Spec(k′)

��
x // X // Spec(k)

where
(1) k′/k is a nontrivial finite extension,
(2) X ′ ∼= P1

k′ ,
(3) x′ is a k′-rational point of X ′,
(4) x is a k-rational point of X ,
(5) X ′ \ {x′} → X \ {x} is an isomorphism,
(6) 0 → OX → ν∗OX′ → k′/k → 0 is a short exact sequence where k′/k =

κ(x′)/κ(x) indicates the skyscraper sheaf on the point x.

Proof. Let ν : X ′ → X be the normalization of X , see Varieties, Sections 27 and 41.
SinceX is singular ν is not an isomorphism. Then k′ = H0(X ′,OX′) is a finite extension
of k (Varieties, Lemma 26.2). The short exact sequence

0→ OX → ν∗OX′ → Q→ 0

and the fact thatQ is supported in finitely many closed points give us that
(1) H1(X ′,OX′) = 0, i.e., X ′ has genus 0 as a curve over k′,
(2) there is a short exact sequence 0→ k → k′ → H0(X,Q)→ 0.

In particular k′/k is a nontrivial extension.

Next, we consider what is often called the conductor ideal

I = HomOX
(ν∗OX′ ,OX)

This is a quasi-coherentOX -module. We view I as an ideal inOX via the map ϕ 7→ ϕ(1).
Thus I(U) is the set of f ∈ OX(U) such that f (ν∗OX′(U)) ⊂ OX(U). In other words,
the condition is that f annihilatesQ. In other words, there is a defining exact sequence

0→ I → OX → HomOX
(Q,Q)
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Let U ⊂ X be an affine open containing the support ofQ. Then V = Q(U) = H0(X,Q)
is a k-vector space of dimension n−1. The image ofOX(U)→ Homk(V, V ) is a commu-
tative subalgebra, hence has dimension≤ n− 1 over k (this is a property of commutative
subalgebras of matrix algebras; details omitted). We conclude that we have a short exact
sequence

0→ I → OX → A→ 0
where Supp(A) = Supp(Q) and dimkH

0(X,A) ≤ n − 1. On the other hand, the de-
scription I = HomOX

(ν∗OX′ ,OX) provides I with a ν∗OX′ -module structure such that
the inclusion map I → ν∗OX′ is a ν∗OX′ -module map. We conclude that I = ν∗I ′ for
some quasi-coherent sheaf of ideals I ′ ⊂ OX′ , see Morphisms, Lemma 11.6. Define A′ as
the cokernel:

0→ I ′ → OX′ → A′ → 0
Combining the exact sequences so far we obtain a short exact sequence 0→ A→ ν∗A′ →
Q→ 0. Using the estimate above, combined with dimkH

0(X,Q) = n− 1, gives

dimkH
0(X ′,A′) = dimkH

0(X,A) + dimkH
0(X,Q) ≤ 2n− 2

However, since X ′ is a curve over k′ we see that the left hand side is divisible by n (Vari-
eties, Lemma 44.10). AsA andA′ cannot be zero, we conclude that dimkH

0(X ′,A′) = n
which means that I ′ is the ideal sheaf of a k′-rational point x′. By Proposition 10.4 we find
X ′ ∼= P1

k′ . Going back to the equalities above, we conclude that dimkH
0(X,A) = 1.

This means that I is the ideal sheaf of a k-rational point x. Then A = κ(x) = k and
A′ = κ(x′) = k′ as skyscraper sheaves. Comparing the exact sequences given above, this
immediately implies the result on structure sheaves as stated in the lemma. �

Example 10.6. In fact, the situation described in Lemma 10.5 occurs for any nontriv-
ial finite extension k′/k. Namely, we can consider

A = {f ∈ k′[x] | f(0) ∈ k}
The spectrum of A is an affine curve, which we can glue to the spectrum of B = k′[y]
using the isomorphism Ax ∼= By sending x−1 to y. The result is a proper curve X with
H0(X,OX) = k and singular point x corresponding to the maximal ideal A ∩ (x). The
normalization of X is P1

k′ exactly as in the lemma.

11. Geometric genus

If X is a proper and smooth curve over k with H0(X,OX) = k, then

pg(X) = dimkH
0(X,ΩX/k)

is called the geometric genus of X . By Lemma 8.4 the geometric genus of X agrees with
the (arithmetic) genus. However, in higher dimensions there is a difference between the
geometric genus and the arithmetic genus, see Remark 11.2.

For singular curves, we will define the geometric genus as follows.

Definition 11.1. Let k be a field. Let X be a geometrically irreducible curve over k.
The geometric genus ofX is the genus of a smooth projective model ofX possibly defined
over an extension field of k as in Lemma 2.9.

If k is perfect, then the nonsingular projective model Y of X is smooth (Lemma 2.8) and
the geometric genus of X is just the genus of Y . But if k is not perfect, this may not be
true. In this case we choose an extension K/k such that the nonsingular projective model
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YK of (XK)red is a smooth projective curve and we define the geometric genus ofX to be
the genus of YK . This is well defined by Lemmas 2.9 and 8.2.

Remark 11.2. Suppose thatX is a d-dimensional proper smooth variety over an alge-
braically closed field k. Then the arithmetic genus is often defined as pa(X) = (−1)d(χ(X,OX)−
1) and the geometric genus as pg(X) = dimkH

0(X,ΩdX/k). In this situation the arith-
metic genus and the geometric genus no longer agree even though it is still true that
ωX ∼= ΩdX/k. For example, if d = 2, then we have

pa(X)− pg(X) = h0(X,OX)− h1(X,OX) + h2(X,OX)− 1− h0(X,Ω2
X/k)

= −h1(X,OX) + h2(X,OX)− h0(X,ωX)
= −h1(X,OX)

where hi(X,F) = dimkH
i(X,F) and where the last equality follows from duality.

Hence for a surface the difference pg(X)− pa(X) is always nonnegative; it is sometimes
called the irregularity of the surface. If X = C1 × C2 is a product of smooth projective
curves of genus g1 and g2, then the irregularity is g1 + g2.

12. Riemann-Hurwitz

Let k be a field. Let f : X → Y be a morphism of smooth curves over k. Then we obtain
a canonical exact sequence

f∗ΩY/k
df−→ ΩX/k −→ ΩX/Y −→ 0

by Morphisms, Lemma 32.9. Since X and Y are smooth, the sheaves ΩX/k and ΩY/k are
invertible modules, see Morphisms, Lemma 34.12. Assume the first map is nonzero, i.e.,
assume f is generically étale, see Lemma 12.1. Let R ⊂ X be the closed subscheme cut out
by the different Df of f . By Discriminants, Lemma 12.6 this is the same as the vanishing
locus of df , it is an effective Cartier divisor, and we get

f∗ΩY/k ⊗OX
OX(R) = ΩX/k

In particular, if X , Y are projective with k = H0(Y,OY ) = H0(X,OX) and X , Y have
genus gX , gY , then we get the Riemann-Hurwitz formula

2gX − 2 = deg(ΩX/k)
= deg(f∗ΩY/k ⊗OX

OX(R))
= deg(f) deg(ΩY/k) + deg(R)
= deg(f)(2gY − 2) + deg(R)

The first and last equality by Lemma 8.4. The second equality by the isomorphism of
invertible sheaves given above. The third equality by additivity of degrees (Varieties,
Lemma 44.7), the formula for the degree of a pullback (Varieties, Lemma 44.11), and finally
the formula for the degree ofOX(R) (Varieties, Lemma 44.9).

To use the Riemann-Hurwitz formula we need to compute deg(R) = dimk Γ(R,OR).
By the structure of zero dimensional schemes over k (see for example Varieties, Lemma
20.2), we see that R is a finite disjoint union of spectra of Artinian local rings R =∐
x∈R Spec(OR,x) with eachOR,x of finite dimension over k. Thus

deg(R) =
∑

x∈R
dimkOR,x =

∑
x∈R

dx[κ(x) : k]
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with
dx = lengthOR,x

OR,x = lengthOX,x
OR,x

the multiplicity of x in R (see Algebra, Lemma 52.12). Let x ∈ X be a closed point with
image y ∈ Y . Looking at stalks we obtain an exact sequence

ΩY/k,y → ΩX/k,x → ΩX/Y,x → 0

Choosing local generators ηx and ηy of the (free rank 1) modules ΩX/k,x and ΩY/k,y we see
that ηy 7→ hηx for some nonzero h ∈ OX,x. By the exact sequence we see that ΩX/Y,x ∼=
OX,x/hOX,x as OX,x-modules. Since the divisor R is cut out by h (see above) we have
OR,x = OX,x/hOX,x. Thus we find the following equalities

dx = lengthOX,x
(OR,x)

= lengthOX,x
(OX,x/hOX,x)

= lengthOX,x
(ΩX/Y,x)

= ordOX,x
(h)

= ordOX,x
(“ηy/ηx”)

The first equality by our definition of dx. The second and third we saw above. The fourth
equality is the definition of ord, see Algebra, Definition 121.2. Note that since OX,x is a
discrete valuation ring, the integer ordOX,x

(h) just the valuation of h. The fifth equality
is a mnemonic.

Here is a case where one can “calculate” the multiplicity dx in terms of other invariants.
Namely, if κ(x) is separable over k, then we may choose ηx = ds and ηy = dt where s
and t are uniformizers in OX,x and OY,y (Lemma 12.3). Then t 7→ usex for some unit
u ∈ OX,x where ex is the ramification index of the extension OY,y ⊂ OX,x. Hence we
get

ηy = dt = d(usex) = esex−1uds+ sexdu
Writing du = wds for some w ∈ OX,x we see that

“ηy/ηx” = esex−1u+ sexw = (exu+ sw)sex−1

We conclude that the order of vanishing of this is ex − 1 unless the characteristic of κ(x)
is p > 0 and p divides ex in which case the order of vanishing is > ex − 1.

Combining all of the above we find that if k has characteristic zero, then

2gX − 2 = (2gY − 2) deg(f) +
∑

x∈X
(ex − 1)[κ(x) : k]

where ex is the ramification index of OX,x over OY,f(x). This precise formula will hold
if and only if all the ramification is tame, i.e., when the residue field extensions κ(x)/κ(y)
are separable and ex is prime to the characteristic of k, although the arguments above are
insufficient to prove this. We refer the reader to Lemma 12.4 and its proof.

Lemma 12.1. Let k be a field. Let f : X → Y be a morphism of smooth curves over
k. The following are equivalent

(1) df : f∗ΩY/k → ΩX/k is nonzero,
(2) ΩX/Y is supported on a proper closed subset of X ,
(3) there exists a nonempty open U ⊂ X such that f |U : U → Y is unramified,
(4) there exists a nonempty open U ⊂ X such that f |U : U → Y is étale,
(5) the extension k(X)/k(Y ) of function fields is finite separable.
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Proof. Since X and Y are smooth, the sheaves ΩX/k and ΩY/k are invertible mod-
ules, see Morphisms, Lemma 34.12. Using the exact sequence

f∗ΩY/k −→ ΩX/k −→ ΩX/Y −→ 0
of Morphisms, Lemma 32.9 we see that (1) and (2) are equivalent and equivalent to the
condition that f∗ΩY/k → ΩX/k is nonzero in the generic point. The equivalence of (2)
and (3) follows from Morphisms, Lemma 35.2. The equivalence between (3) and (4) follows
from Morphisms, Lemma 36.16 and the fact that flatness is automatic (Lemma 2.3). To see
the equivalence of (5) and (4) use Algebra, Lemma 140.9. Some details omitted. �

Lemma 12.2. Let f : X → Y be a morphism of smooth proper curves over a field k
which satisfies the equivalent conditions of Lemma 12.1. If k = H0(Y,OY ) = H0(X,OX)
and X and Y have genus gX and gY , then

2gX − 2 = (2gY − 2) deg(f) + deg(R)
where R ⊂ X is the effective Cartier divisor cut out by the different of f .

Proof. See discussion above; we used Discriminants, Lemma 12.6, Lemma 8.4, and
Varieties, Lemmas 44.7 and 44.11. �

Lemma 12.3. Let X → Spec(k) be smooth of relative dimension 1 at a closed point
x ∈ X . If κ(x) is separable over k, then for any uniformizer s in the discrete valuation
ringOX,x the element ds freely generates ΩX/k,x overOX,x.

Proof. The ringOX,x is a discrete valuation ring by Algebra, Lemma 140.3. Since x
is closed κ(x) is finite over k. Hence if κ(x)/k is separable, then any uniformizer s maps
to a nonzero element of ΩX/k,x ⊗OX,x

κ(x) by Algebra, Lemma 140.4. Since ΩX/k,x is
free of rank 1 overOX,x the result follows. �

Lemma 12.4. Notation and assumptions as in Lemma 12.2. For a closed point x ∈ X
let dx be the multiplicity of x in R. Then

2gX − 2 = (2gY − 2) deg(f) +
∑

dx[κ(x) : k]

Moreover, we have the following results
(1) dx = lengthOX,x

(ΩX/Y,x),
(2) dx ≥ ex − 1 where ex is the ramification index ofOX,x overOY,y ,
(3) dx = ex − 1 if and only ifOX,x is tamely ramified overOY,y .

Proof. By Lemma 12.2 and the discussion above (which used Varieties, Lemma 20.2
and Algebra, Lemma 52.12) it suffices to prove the results on the multiplicity dx of x inR.
Part (1) was proved in the discussion above. In the discussion above we proved (2) and (3)
only in the case where κ(x) is separable over k. In the rest of the proof we give a uniform
treatment of (2) and (3) using material on differents of quasi-finite Gorenstein morphisms.
First, observe that f is a quasi-finite Gorenstein morphism. This is true for example be-
cause f is a flat quasi-finite morphism and X is Gorenstein (see Duality for Schemes,
Lemma 25.7) or because it was shown in the proof of Discriminants, Lemma 12.6 (which we
used above). Thus ωX/Y is invertible by Discriminants, Lemma 16.1 and the same remains
true after replacingX by opens and after performing a base change by some Y ′ → Y . We
will use this below without further mention.
Choose affine opens U ⊂ X and V ⊂ Y such that x ∈ U , y ∈ V , f(U) ⊂ V , and x is
the only point of U lying over y. Write U = Spec(A) and V = Spec(B). Then R ∩ U
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is the different of f |U : U → V . By Discriminants, Lemma 9.4 formation of the different
commutes with arbitrary base change in our case. By our choice of U and V we have

A⊗B κ(y) = OX,x ⊗OY,y
κ(y) = OX,x/(sex)

where ex is the ramification index as in the statement of the lemma. Let C = OX,x/(sex)
viewed as a finite algebra over κ(y). Let DC/κ(y) be the different of C over κ(y) in the
sense of Discriminants, Definition 9.1. It suffices to show: DC/κ(y) is nonzero if and only
if the extensionOY,y ⊂ OX,x is tamely ramified and in the tamely ramified case DC/κ(y)
is equal to the ideal generated by sex−1 in C. Recall that tame ramification means exactly
that κ(x)/κ(y) is separable and that the characteristic of κ(y) does not divide ex. On
the other hand, the different of C/κ(y) is nonzero if and only if τC/κ(y) ∈ ωC/κ(y) is
nonzero. Namely, since ωC/κ(y) is an invertible C-module (as the base change of ωA/B)
it is free of rank 1, say with generator λ. Write τC/κ(y) = hλ for some h ∈ C. Then
DC/κ(y) = (h) ⊂ C whence the claim. By Discriminants, Lemma 4.8 we have τC/κ(y) 6= 0
if and only if κ(x)/κ(y) is separable and ex is prime to the characteristic. Finally, even if
τC/κ(y) is nonzero, then it is still the case that sτC/κ(y) = 0 because sτC/κ(y) : C → κ(y)
sends c to the trace of the nilpotent operator sc which is zero. Hence sh = 0, hence
h ∈ (sex−1) which proves that DC/κ(y) ⊂ (sex−1) always. Since (sex−1) ⊂ C is the
smallest nonzero ideal, we have proved the final assertion. �

13. Inseparable maps

Some remarks on the behaviour of the genus under inseparable maps.

Lemma 13.1. Let k be a field. Let f : X → Y be a surjective morphism of curves over
k. If X is smooth over k and Y is normal, then Y is smooth over k.

Proof. Let y ∈ Y . Pick x ∈ X mapping to y. By Varieties, Lemma 25.9 it suffices to
show that f is flat at x. This follows from Lemma 2.3. �

Lemma 13.2. Let k be a field of characteristic p > 0. Let f : X → Y be a nonconstant
morphism of proper nonsingular curves over k. If the extension k(X)/k(Y ) of function
fields is purely inseparable, then there exists a factorization

X = X0 → X1 → . . .→ Xn = Y

such that each Xi is a proper nonsingular curve and Xi → Xi+1 is a degree p morphism
with k(Xi+1) ⊂ k(Xi) inseparable.

Proof. This follows from Theorem 2.6 and the fact that a finite purely inseparable
extension of fields can always be gotten as a sequence of (inseparable) extensions of degree
p, see Fields, Lemma 14.5. �

Lemma 13.3. Let k be a field of characteristic p > 0. Let f : X → Y be a nonconstant
morphism of proper nonsingular curves over k. If X is smooth and k(Y ) ⊂ k(X) is
inseparable of degree p, then there is a unique isomorphism Y = X(p) such that f is
FX/k.

Proof. The relative frobenius morphism FX/k : X → X(p) is constructed in Vari-
eties, Section 36. Observe that X(p) is a smooth proper curve over k as a base change of
X . The morphism FX/k has degree p by Varieties, Lemma 36.10. Thus k(X(p)) and k(Y )
are both subfields of k(X) with [k(X) : k(Y )] = [k(X) : k(X(p))] = p. To prove the
lemma it suffices to show that k(Y ) = k(X(p)) inside k(X). See Theorem 2.6.
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Write K = k(X). Consider the map d : K → ΩK/k. It follows from Lemma 12.1 that
both k(Y ) is contained in the kernel of d. By Varieties, Lemma 36.7 we see that k(X(p))
is in the kernel of d. Since X is a smooth curve we know that ΩK/k is a vector space of
dimension 1 over K. Then More on Algebra, Lemma 46.2. implies that Ker(d) = kKp

and that [K : kKp] = p. Thus k(Y ) = kKp = k(X(p)) for reasons of degree. �

Lemma 13.4. Let k be a field of characteristic p > 0. Let f : X → Y be a nonconstant
morphism of proper nonsingular curves over k. IfX is smooth and k(Y ) ⊂ k(X) is purely
inseparable, then there is a unique n ≥ 0 and a unique isomorphism Y = X(pn) such that
f is the n-fold relative Frobenius of X/k.

Proof. The n-fold relative Frobenius of X/k is defined in Varieties, Remark 36.11.
The lemma follows by combining Lemmas 13.3 and 13.2. �

Lemma 13.5. Let k be a field of characteristic p > 0. Let f : X → Y be a nonconstant
morphism of proper nonsingular curves over k. Assume

(1) X is smooth,
(2) H0(X,OX) = k,
(3) k(X)/k(Y ) is purely inseparable.

Then Y is smooth, H0(Y,OY ) = k, and the genus of Y is equal to the genus of X .

Proof. By Lemma 13.4 we see that Y = X(pn) is the base change of X by FnSpec(k).
Thus Y is smooth and the result on the cohomology and genus follows from Lemma 8.2.

�

Example 13.6. This example will show that the genus can change under a purely
inseparable morphism of nonsingular projective curves. Let k be a field of characteristic 3.
Assume there exists an element a ∈ k which is not a 3rd power. For example k = F3(a)
would work. Let X be the plane curve with homogeneous equation

F = T 2
1 T0 − T 3

2 + aT 3
0

as in Section 9. On the affine piece D+(T0) using coordinates x = T1/T0 and y = T2/T0
we obtain x2 − y3 + a = 0 which defines a nonsingular affine curve. Moreover, the point
at infinity (0 : 1 : 0) is a smooth point. Hence X is a nonsingular projective curve of
genus 1 (Lemma 9.3). On the other hand, consider the morphism f : X → P1

k which
on D+(T0) sends (x, y) to x ∈ A1

k ⊂ P1
k. Then f is a morphism of proper nonsingular

curves over k inducing an inseparable function field extension of degree p = 3 but the
genus of X is 1 and the genus of P1

k is 0.

Proposition 13.7. Let k be a field of characteristic p > 0. Let f : X → Y be a
nonconstant morphism of proper smooth curves over k. Then we can factor f as

X −→ X(pn) −→ Y

where X(pn) → Y is a nonconstant morphism of proper smooth curves inducing a sepa-
rable field extension k(X(pn))/k(Y ), we have

X(pn) = X ×Spec(k),FnSpec(k)
Spec(k),

and X → X(pn) is the n-fold relative frobenius of X .
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Proof. By Fields, Lemma 14.6 there is a subextension k(X)/E/k(Y ) such that k(X)/E
is purely inseparable and E/k(Y ) is separable. By Theorem 2.6 this corresponds to a fac-
torization X → Z → Y of f with Z a nonsingular proper curve. Apply Lemma 13.4 to
the morphism X → Z to conclude. �

Lemma 13.8. Let k be a field of characteristic p > 0. LetX be a smooth proper curve
over k. Let (L, V ) be a grd with r ≥ 1. Then one of the following two is true

(1) there exists a g1
d whose corresponding morphismX → P1

k (Lemma 3.2) is gener-
ically étale (i.e., is as in Lemma 12.1), or

(2) there exists a grd′ on X(p) where d′ ≤ d/p.

Proof. Pick two k-linearly independent elements s, t ∈ V . Then f = s/t is the
rational function defining the morphism X → P1

k corresponding to the linear series
(L, ks + kt). If this morphism is not generically étale, then f ∈ k(X(p)) by Proposition
13.7. Now choose a basis s0, . . . , sr of V and let L′ ⊂ L be the invertible sheaf generated
by s0, . . . , sr. Set fi = si/s0 in k(X). If for each pair (s0, si) we have fi ∈ k(X(p)), then
the morphism

ϕ = ϕ(L′,(s0,...,sr) : X −→ Pr
k = Proj(k[T0, . . . , Tr])

factors through X(p) as this is true over the affine open D+(T0) and we can extend the
morphism over the affine part to the whole of the smooth curve X(p) by Lemma 2.2. In-
troducing notation, say we have the factorization

X
FX/k−−−→ X(p) ψ−→ Pr

k

of ϕ. Then N = ψ∗OP1
k
(1) is an invertible OX(p) -module with L′ = F ∗

X/kN and with
ψ∗T0, . . . , ψ

∗Tr k-linearly independent (as they pullback to s0, . . . , sr on X). Finally,
we have

d = deg(L) ≥ deg(L′) = deg(FX/k) deg(N ) = p deg(N )
as desired. Here we used Varieties, Lemmas 44.12, 44.11, and 36.10. �

Lemma 13.9. Let k be a field. LetX be a smooth proper curve over kwithH0(X,OX) =
k and genus g ≥ 2. Then there exists a closed pointx ∈ X withκ(x)/k separable of degree
≤ 2g − 2.

Proof. Set ω = ΩX/k. By Lemma 8.4 this has degree 2g−2 and has g global sections.
Thus we have a gg−1

2g−2. By the trivial Lemma 3.3 there exists a g1
2g−2 and by Lemma 3.4

we obtain a morphism
ϕ : X −→ P1

k

of some degree d ≤ 2g − 2. Since ϕ is flat (Lemma 2.3) and finite (Lemma 2.4) it is finite
locally free of degree d (Morphisms, Lemma 48.2). Pick any rational point t ∈ P1

k and
any point x ∈ X with ϕ(x) = t. Then

d ≥ [κ(x) : κ(t)] = [κ(x) : k]
for example by Morphisms, Lemmas 57.3 and 57.2. Thus if k is perfect (for example has
characteristic zero or is finite) then the lemma is proved. Thus we reduce to the case dis-
cussed in the next paragraph.

Assume that k is an infinite field of characteristic p > 0. As above we will use that X has
a gg−1

2g−2. The smooth proper curve X(p) has the same genus as X . Hence its genus is > 0.
We conclude that X(p) does not have a gg−1

d for any d ≤ g − 1 by Lemma 3.5. Applying
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Lemma 13.8 to our gg−1
2g−2 (and noting that 2g− 2/p ≤ g− 1) we conclude that possibility

(2) does not occur. Hence we obtain a morphism

ϕ : X −→ P1
k

which is generically étale (in the sense of the lemma) and has degree≤ 2g−2. LetU ⊂ X
be the nonempty open subscheme where ϕ is étale. Then ϕ(U) ⊂ P1

k is a nonempty
Zariski open and we can pick a k-rational point t ∈ ϕ(U) as k is infinite. Let u ∈ U be a
point with ϕ(u) = t. Then κ(u)/κ(t) is separable (Morphisms, Lemma 36.7), κ(t) = k,
and [κ(u) : k] ≤ 2g − 2 as before. �

The following lemma does not really belong in this section but we don’t know a good place
for it elsewhere.

Lemma 13.10. Let X be a smooth curve over a field k. Let x ∈ Xk be a closed point
with image x ∈ X . The ramification index ofOX,x ⊂ OX

k
,x is the inseparable degree of

κ(x)/k.

Proof. After shrinking X we may assume there is an étale morphism π : X → A1
k ,

see Morphisms, Lemma 36.20. Then we can consider the diagram of local rings

OX
k
,x OA1

k
,π(x)oo

OX,x

OO

OA1
k
,π(x)oo

OO

The horizontal arrows have ramification index 1 as they correspond to étale morphisms.
Moreover, the extension κ(x)/κ(π(x)) is separable hence κ(x) and κ(π(x)) have the same
inseparable degree over k. By multiplicativity of ramification indices it suffices to prove
the result when x is a point of the affine line.
Assume X = A1

k. In this case, the local ring of X at x looks like
OX,x = k[t](P )

where P is an irreducible monic polynomial over k. Then P (t) = Q(tq) for some sep-
arable polynomial Q ∈ k[t], see Fields, Lemma 12.1. Observe that κ(x) = k[t]/(P ) has
inseparable degree q over k. On the other hand, over k we can factor Q(t) =

∏
(t − αi)

with αi pairwise distinct. Write αi = βqi for some unique βi ∈ k. Then our point x
corresponds to one of the βi and we conclude because the ramification index of

k[t](P ) −→ k[t](t−βi)
is indeed equal to q as the uniformizer P maps to (t− βi)q times a unit. �

14. Pushouts

Let k be a field. Consider a solid diagram

Z ′

��

i′
// X ′

a

��
Z

i // X

of schemes over k satisfying
(a) X ′ is separated of finite type over k of dimension ≤ 1,
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(b) i : Z ′ → X ′ is a closed immersion,
(c) Z ′ and Z are finite over Spec(k), and
(d) Z ′ → Z is surjective.

In this situation every finite set of points of X ′ are contained in an affine open, see Vari-
eties, Proposition 42.7. Thus the assumptions of More on Morphisms, Proposition 67.3
are satisfied and we obtain the following

(1) the pushout X = Z qZ′ X ′ exists in the category of schemes,
(2) i : Z → X is a closed immersion,
(3) a : X ′ → X is integral surjective,
(4) X → Spec(k) is separated by More on Morphisms, Lemma 67.4
(5) X → Spec(k) is of finite type by More on Morphisms, Lemmas 67.5,
(6) thus a : X ′ → X is finite by Morphisms, Lemmas 44.4 and 15.8,
(7) ifX ′ → Spec(k) is proper, thenX → Spec(k) is proper by Morphisms, Lemma

41.9.
The following lemma can be generalized significantly.

Lemma 14.1. In the situation above, let Z = Spec(k′) where k′ is a field and Z ′ =
Spec(k′

1 × . . . × k′
n) with k′

i/k
′ finite extensions of fields. Let x ∈ X be the image of

Z → X and x′
i ∈ X ′ the image of Spec(k′

i)→ X ′. Then we have a fibre product diagram∏
i=1,...,n k

′
i

∏
i=1,...,nO∧

X′,x′
i

oo

k′

OO

O∧
X,x

OO

oo

where the horizontal arrows are given by the maps to the residue fields.

Proof. Choose an affine open neighbourhood Spec(A) of x in X . Let Spec(A′) ⊂
X ′ be the inverse image. By construction we have a fibre product diagram∏

i=1,...,n k
′
i A′oo

k′

OO

A

OO

oo

Since everything is finite over A we see that the diagram remains a fibre product diagram
after completion with respect to the maximal ideal m ⊂ A corresponding to x (Algebra,
Lemma 97.2). Finally, apply Algebra, Lemma 97.8 to identify the completion of A′. �

15. Glueing and squishing

Below we will indicate k[ε] the algebra of dual numbers over k as defined in Varieties,
Definition 16.1.

Lemma 15.1. Let k be an algebraically closed field. Let k ⊂ A be a ring extension
such that A has exactly two k-sub algebras, then either A = k × k or A = k[ε].

Proof. The assumption means k 6= A and any subring k ⊂ C ⊂ A is equal to either
k or A. Let t ∈ A, t 6∈ k. Then A is generated by t over k. Hence A = k[x]/I for some
ideal I . If I = (0), then we have the subalgebra k[x2] which is not allowed. Otherwise
I is generated by a monic polynomial P . Write P =

∏d
i=1(t − ai). If d > 2, then the
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subalgebra generated by (t − a1)(t − a2) gives a contradiction. Thus d = 2. If a1 6= a2,
then A = k × k, if a1 = a2, then A = k[ε]. �

Example 15.2 (Glueing points). Let k be an algebraically closed field. Let f : X ′ →
X be a morphism of algebraic k-schemes. We say X is obtained by glueing a and b in X ′

if the following are true:
(1) a, b ∈ X ′(k) are distinct points which map to the same point x ∈ X(k),
(2) f is finite and f−1(X \ {x})→ X \ {x} is an isomorphism,
(3) there is a short exact sequence

0→ OX → f∗OX′
a−b−−→ x∗k → 0

where arrow on the right sends a local sectionh of f∗OX′ to the differenceh(a)−
h(b) ∈ k.

If this is the case, then there also is a short exact sequence

0→ O∗
X → f∗O∗

X′
ab−1

−−−→ x∗k
∗ → 0

where arrow on the right sends a local section h of f∗O∗
X′ to the multiplicative difference

h(a)h(b)−1 ∈ k∗.

Example 15.3 (Squishing a tangent vector). Let k be an algebraically closed field. Let
f : X ′ → X be a morphism of algebraic k-schemes. We say X is obtained by squishing
the tangent vector ϑ in X ′ if the following are true:

(1) ϑ : Spec(k[ε])→ X ′ is a closed immersion over k such that f ◦ϑ factors through
a point x ∈ X(k),

(2) f is finite and f−1(X \ {x})→ X \ {x} is an isomorphism,
(3) there is a short exact sequence

0→ OX → f∗OX′
ϑ−→ x∗k → 0

where arrow on the right sends a local section h of f∗OX′ to the coefficient of ε
in ϑ](h) ∈ k[ε].

If this is the case, then there also is a short exact sequence

0→ O∗
X → f∗O∗

X′
ϑ−→ x∗k → 0

where arrow on the right sends a local section h of f∗O∗
X′ to d log(ϑ](h)) where d log :

k[ε]∗ → k is the homomorphism of abelian groups sending a+ bε to b/a ∈ k.

Lemma 15.4. Let k be an algebraically closed field. Let f : X ′ → X be a finite
morphism algebraic k-schemes such thatOX ⊂ f∗OX′ and such that f is an isomorphism
away from a finite set of points. Then there is a factorization

X ′ = Xn → Xn−1 → . . .→ X1 → X0 = X

such that eachXi → Xi−1 is either the glueing of two points or the squishing of a tangent
vector (see Examples 15.2 and 15.3).

Proof. Let U ⊂ X be the maximal open set over which f is an isomorphism. Then
X \ U = {x1, . . . , xn} with xi ∈ X(k). We will consider factorizations X ′ → Y → X
of f such that both morphisms are finite and

OX ⊂ g∗OY ⊂ f∗OX′
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where g : Y → X is the given morphism. By assumption OX,x → (f∗OX′)x is an
isomorphism onless x = xi for some i. Hence the cokernel

f∗OX′/OX =
⊕
Qi

is a direct sum of skyscraper sheaves Qi supported at x1, . . . , xn. Because the displayed
quotient is a coherent OX -module, we conclude that Qi has finite length over OX,xi .
Hence we can argue by induction on the sum of these lengths, i.e., the length of the whole
cokernel.

If n > 1, then we can define an OX -subalgebra A ⊂ f∗OX′ by taking the inverse image
ofQ1. This will give a nontrivial factorization and we win by induction.

Assume n = 1. We abbreviate x = x1. Consider the finite k-algebra extension

A = OX,x ⊂ (f∗OX′)x = B

Note that Q = Q1 is the skyscraper sheaf with value B/A. We have a k-subalgebra
A ⊂ A+mAB ⊂ B. If both inclusions are strict, then we obtain a nontrivial factorization
and we win by induction as above. If A + mAB = B, then A = B by Nakayama, then
f is an isomorphism and there is nothing to prove. We conclude that we may assume
B = A + mAB. Set C = B/mAB. If C has more than 2 k-subalgebras, then we obtain
a subalgebra between A and B by taking the inverse image in B. Thus we may assume C
has exactly 2 k-subalgebras. Thus C = k× k or C = k[ε] by Lemma 15.1. In this case f is
correspondingly the glueing two points or the squishing of a tangent vector. �

Lemma 15.5. Let k be an algebraically closed field. If f : X ′ → X is the glueing of
two points a, b as in Example 15.2, then there is an exact sequence

k∗ → Pic(X)→ Pic(X ′)→ 0

The first map is zero if a and b are on different connected components of X ′ and injective
if X ′ is proper and a and b are on the same connected component of X ′.

Proof. The map Pic(X) → Pic(X ′) is surjective by Varieties, Lemma 38.7. Using
the short exact sequence

0→ O∗
X → f∗O∗

X′
ab−1

−−−→ x∗k
∗ → 0

we obtain
H0(X ′,O∗

X′) ab−1

−−−→ k∗ → H1(X,O∗
X)→ H1(X, f∗O∗

X′)
We haveH1(X, f∗O∗

X′) ⊂ H1(X ′,O∗
X′) (for example by the Leray spectral sequence, see

Cohomology, Lemma 13.4). Hence the kernel of Pic(X) → Pic(X ′) is the cokernel of
ab−1 : H0(X ′,O∗

X′)→ k∗. If a and b are on different connected components ofX ′, then
ab−1 is surjective. Because k is algebraically closed any regular function on a reduced
connected proper scheme over k comes from an element of k, see Varieties, Lemma 9.3.
Thus ab−1 is zero if X ′ is proper and a and b are on the same connected component. �

Lemma 15.6. Let k be an algebraically closed field. If f : X ′ → X is the squishing
of a tangent vector ϑ as in Example 15.3, then there is an exact sequence

(k,+)→ Pic(X)→ Pic(X ′)→ 0

and the first map is injective if X ′ is proper and reduced.
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Proof. The map Pic(X) → Pic(X ′) is surjective by Varieties, Lemma 38.7. Using
the short exact sequence

0→ O∗
X → f∗O∗

X′
ϑ−→ x∗k → 0

of Example 15.3 we obtain

H0(X ′,O∗
X′) ϑ−→ k → H1(X,O∗

X)→ H1(X, f∗O∗
X′)

We haveH1(X, f∗O∗
X′) ⊂ H1(X ′,O∗

X′) (for example by the Leray spectral sequence, see
Cohomology, Lemma 13.4). Hence the kernel of Pic(X) → Pic(X ′) is the cokernel of
the map ϑ : H0(X ′,O∗

X′) → k. Because k is algebraically closed any regular function
on a reduced connected proper scheme over k comes from an element of k, see Varieties,
Lemma 9.3. Thus the final statement of the lemma. �

16. Multicross and nodal singularities

In this section we discuss the simplest possible curve singularities.
Let k be a field. Consider the complete local k-algebra
(16.0.1) A = {(f1, . . . , fn) ∈ k[[t]]× . . .× k[[t]] | f1(0) = . . . = fn(0)}
In the language introduced in Varieties, Definition 40.4 we see that A is a wedge of n
copies of the power series ring in 1 variable over k. Observe that k[[t]] × . . . × k[[t]] is
the integral closure of A in its total ring of fractions. Hence the δ-invariant of A is n− 1.
There is an isomorphism

k[[x1, . . . , xn]]/({xixj}i 6=j) −→ A

obtained by sending xi to (0, . . . , 0, t, 0, . . . , 0) in A. It follows that dim(A) = 1 and
dimk m/m

2 = n. In particular, A is regular if and only if n = 1.

Lemma 16.1. Let k be a separably closed field. Let A be a 1-dimensional reduced
Nagata local k-algebra with residue field k. Then

δ-invariant A ≥ number of branches of A− 1
If equality holds, then A∧ is as in (16.0.1).

Proof. Since the residue field of A is separably closed, the number of branches of A
is equal to the number of geometric branches ofA, see More on Algebra, Definition 106.6.
The inequality holds by Varieties, Lemma 40.6. Assume equality holds. We may replace
A by the completion ofA; this does not change the number of branches or the δ-invariant,
see More on Algebra, Lemma 108.7 and Varieties, Lemma 39.6. ThenA is strictly henselian,
see Algebra, Lemma 153.9. By Varieties, Lemma 40.5 we see that A is a wedge of complete
discrete valuation rings. Each of these is isomorphic to k[[t]] by Algebra, Lemma 160.10.
Hence A is as in (16.0.1). �

Definition 16.2. Let k be an algebraically closed field. Let X be an algebraic 1-
dimensional k-scheme. Let x ∈ X be a closed point. We say x defines a multicross sin-
gularity if the completion O∧

X,x is isomorphic to (16.0.1) for some n ≥ 2. We say x is a
node, or an ordinary double point, or defines a nodal singularity if n = 2.

These singularities are in some sense the simplest kind of singularities one can have on a
curve over an algebraically closed field.

Lemma 16.3. Let k be an algebraically closed field. Let X be a reduced algebraic 1-
dimensional k-scheme. Let x ∈ X . The following are equivalent
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(1) x defines a multicross singularity,
(2) the δ-invariant of X at x is the number of branches of X at x minus 1,
(3) there is a sequence of morphisms Un → Un−1 → . . .→ U0 = U ⊂ X where U

is an open neighbourhood of x, where Un is nonsingular, and where each Ui →
Ui−1 is the glueing of two points as in Example 15.2.

Proof. The equivalence of (1) and (2) is Lemma 16.1.
Assume (3). We will argue by descending induction on i that all singularities of Ui are
multicross. This is true for Un as Un has no singular points. If Ui is gotten from Ui+1 by
glueing a, b ∈ Ui+1 to a point c ∈ Ui, then we see that

O∧
Ui,c ⊂ O

∧
Ui+1,a ×O

∧
Ui+1,b

is the set of elements having the same residue classes in k. Thus the number of branches
at c is the sum of the number of branches at a and b, and the δ-invariant at c is the sum
of the δ-invariants at a and b plus 1 (because the displayed inclusion has codimension 1).
This proves that (2) holds as desired.
Assume the equivalent conditions (1) and (2). We may choose an open U ⊂ X such that x
is the only singular point ofU . Then we apply Lemma 15.4 to the normalization morphism

Uν = Un → Un−1 → . . .→ U1 → U0 = U

All we have to do is show that in none of the steps we are squishing a tangent vector.
Suppose Ui+1 → Ui is the smallest i such that this is the squishing of a tangent vector
θ at u′ ∈ Ui+1 lying over u ∈ Ui. Arguing as above, we see that ui is a multicross
singularity (because the maps Ui → . . .→ U0 are glueing of pairs of points). But now the
number of branches at u′ and u is the same and the δ-invariant of Ui at u is 1 bigger than
the δ-invariant of Ui+1 at u′. By Lemma 16.1 this implies that u cannot be a multicross
singularity which is a contradiction. �

Lemma 16.4. Let k be an algebraically closed field. Let X be a reduced algebraic 1-
dimensional k-scheme. Let x ∈ X be a multicross singularity (Definition 16.2). If X is
Gorenstein, then x is a node.

Proof. The map OX,x → O∧
X,x is flat and unramified in the sense that κ(x) =

O∧
X,x/mxO∧

X,x. (See More on Algebra, Section 43.) Thus X is Gorenstein implies OX,x
is Gorenstein, implies O∧

X,x is Gorenstein by Dualizing Complexes, Lemma 21.8. Thus it
suffices to show that the ring A in (16.0.1) with n ≥ 2 is Gorenstein if and only if n = 2.
If n = 2, then A = k[[x, y]]/(xy) is a complete intersection and hence Gorenstein. For
example this follows from Duality for Schemes, Lemma 24.5 applied to k[[x, y]]→ A and
the fact that the regular local ring k[[x, y]] is Gorenstein by Dualizing Complexes, Lemma
21.3.
Assume n > 2. If A where Gorenstein, then A would be a dualizing complex over A
(Duality for Schemes, Definition 24.1). Then RHom(k,A) would be equal to k[n] for
somen ∈ Z, see Dualizing Complexes, Lemma 15.12. It would follow that Ext1

A(k,A) ∼= k

or Ext1
A(k,A) = 0 (depending on the value of n; in fact n has to be −1 but it doesn’t

matter to us here). Using the exact sequence
0→ mA → A→ k → 0

we find that
Ext1

A(k,A) = HomA(mA, A)/A
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where A → HomA(mA, A) is given by a 7→ (a′ 7→ aa′). Let ei ∈ HomA(mA, A) be the
element that sends (f1, . . . , fn) ∈ mA to (0, . . . , 0, fi, 0, . . . , 0). The reader verifies easily
that e1, . . . , en−1 are k-linearly independent in HomA(mA, A)/A. Thus dimk Ext1

A(k,A) ≥
n − 1 ≥ 2 which finishes the proof. (Observe that e1 + . . . + en is the image of 1 under
the map A→ HomA(mA, A).) �

17. Torsion in the Picard group

In this section we bound the torsion in the Picard group of a 1-dimensional proper scheme
over a field. We will use this in our study of semistable reduction for curves.

There does not seem to be an elementary way to obtain the result of Lemma 17.1. Analyzing
the proof there are two key ingredients: (1) there is an abelian variety classifying degree
zero invertible sheaves on a smooth projective curve and (2) the structure of torsion points
on an abelian variety can be determined.

Lemma 17.1. Let k be an algebraically closed field. LetX be a smooth projective curve
of genus g over k.

(1) If n ≥ 1 is invertible in k, then Pic(X)[n] ∼= (Z/nZ)⊕2g .
(2) If the characteristic of k is p > 0, then there exists an integer 0 ≤ f ≤ g such

that Pic(X)[pm] ∼= (Z/pmZ)⊕f for all m ≥ 1.

Proof. Let Pic0(X) ⊂ Pic(X) denote the subgroup of invertible sheaves of degree
0. In other words, there is a short exact sequence

0→ Pic0(X)→ Pic(X) deg−−→ Z→ 0.

The group Pic0(X) is the k-points of the group scheme Pic0
X/k , see Picard Schemes of

Curves, Lemma 6.7. The same lemma tells us that Pic0
X/k is a g-dimensional abelian va-

riety over k as defined in Groupoids, Definition 9.1. Thus we conclude by the results of
Groupoids, Proposition 9.11. �

Lemma 17.2. Let k be a field. Let n be prime to the characteristic of k. Let X be a
smooth proper curve over k with H0(X,OX) = k and of genus g.

(1) If g = 1 then there exists a finite separable extension k′/k such that Xk′ has a
k′-rational point and Pic(Xk′)[n] ∼= (Z/nZ)⊕2.

(2) If g ≥ 2 then there exists a finite separable extension k′/k with [k′ : k] ≤ (2g−
2)(n2g)! such that Xk′ has a k′-rational point and Pic(Xk′)[n] ∼= (Z/nZ)⊕2g .

Proof. Assume g ≥ 2. First we may choose a finite separable extension of degree
at most 2g − 2 such that X acquires a rational point, see Lemma 13.9. Thus we may
assume X has a k-rational point x ∈ X(k) but now we have to prove the lemma with
[k′ : k] ≤ (n2g)!. Let k ⊂ ksep ⊂ k be a separable algebraic closure inside an algebraic
closure. By Lemma 17.1 we have

Pic(Xk)[n] ∼= (Z/nZ)⊕2g

By Picard Schemes of Curves, Lemma 7.2 we conclude that

Pic(Xksep)[n] ∼= (Z/nZ)⊕2g

By Picard Schemes of Curves, Lemma 7.2 there is a continuous action

Gal(ksep/k) −→ Aut(Pic(Xksep)[n]
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and the lemma is true for the fixed field k′ of the kernel of this map. The kernel is
open because the action is continuous which implies that k′/k is finite. By Galois the-
ory Gal(k′/k) is the image of the displayed arrow. Since the permutation group of a set of
cardinality n2g has cardinality (n2g)! we conclude by Galois theory that [k′ : k] ≤ (n2g)!.
(Of course this proves the lemma with the bound |GL2g(Z/nZ)|, but all we want here is
that there is some bound.)

If the genus is 1, then there is no upper bound on the degree of a finite separable field
extension over which X acquires a rational point (details omitted). Still, there is such an
extension for example by Varieties, Lemma 25.6. The rest of the proof is the same as in the
case of g ≥ 2. �

Proposition 17.3. Let k be an algebraically closed field. Let X be a proper scheme
over k which is reduced, connected, and has dimension 1. Let g be the genus of X and let
ggeom be the sum of the geometric genera of the irreducible components of X . For any
prime ` different from the characteristic of k we have

dimF` Pic(X)[`] ≤ g + ggeom

and equality holds if and only if all the singularities of X are multicross.

Proof. Let ν : Xν → X be the normalization (Varieties, Lemma 41.2). Choose a
factorization

Xν = Xn → Xn−1 → . . .→ X1 → X0 = X

as in Lemma 15.4. Let us denote h0
i = dimkH

0(Xi,OXi) and h1
i = dimkH

1(Xi,OXi).
By Lemmas 15.5 and 15.6 for each n > i ≥ 0 we have one of the following there possibil-
ities

(1) Xi is obtained by glueing a, b ∈ Xi+1 which are on different connected compo-
nents: in this case Pic(Xi) = Pic(Xi+1), h0

i+1 = h0
i + 1, h1

i+1 = h1
i ,

(2) Xi is obtained by glueing a, b ∈ Xi+1 which are on the same connected compo-
nent: in this case there is a short exact sequence

0→ k∗ → Pic(Xi)→ Pic(Xi+1)→ 0,

and h0
i+1 = h0

i , h1
i+1 = h1

i − 1,
(3) Xi is obtained by squishing a tangent vector inXi+1: in this case there is a short

exact sequence

0→ (k,+)→ Pic(Xi)→ Pic(Xi+1)→ 0,

and h0
i+1 = h0

i , h1
i+1 = h1

i − 1.
To prove the statements on dimensions of cohomology groups of the structure sheaf, use
the exact sequences in Examples 15.2 and 15.3. Since k is algebraically closed of character-
istic prime to ` we see that (k,+) and k∗ are `-divisible and with `-torsion (k,+)[`] = 0
and k∗[`] ∼= F`. Hence

dimF` Pic(Xi+1)[`]− dimF` Pic(Xi)[`]

is zero, except in case (2) where it is equal to −1. At the end of this process we get the
normalization Xν = Xn which is a disjoint union of smooth projective curves over k.
Hence we have

(1) h1
n = ggeom and

(2) dimF` Pic(Xn)[`] = 2ggeom.
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The last equality by Lemma 17.1. Since g = h1
0 we see that the number of steps of type (2)

and (3) is at most h1
0−h1

n = g− ggeom. By our comptation of the differences in ranks we
conclude that

dimF` Pic(X)[`] ≤ g − ggeom + 2ggeom = g + ggeom

and equality holds if and only if no steps of type (3) occur. This indeed means that all
singularities of X are multicross by Lemma 16.3. Conversely, if all the singularities are
multicross, then Lemma 16.3 guarantees that we can find a sequence Xν = Xn → . . . →
X0 = X as above such that no steps of type (3) occur in the sequence and we find equality
holds in the lemma (just glue the local sequences for each point to find one that works for
all singular points of x; some details omitted). �

18. Genus versus geometric genus

Let k be a field with algebraic closure k. Let X be a proper scheme of dimension ≤ 1
over k. We define ggeom(X/k) to be the sum of the geometric genera of the irreducible
components of Xk which have dimension 1.

Lemma 18.1. Let k be a field. Let X be a proper scheme of dimension ≤ 1 over k.
Then

ggeom(X/k) =
∑

C⊂X
ggeom(C/k)

where the sum is over irreducible components C ⊂ X of dimension 1.

Proof. This is immediate from the definition and the fact that an irreducible com-
ponent Z of Xk maps onto an irreducible component Z of X (Varieties, Lemma 8.10) of
the same dimension (Morphisms, Lemma 28.3 applied to the generic point of Z). �

Lemma 18.2. Let k be a field. Let X be a proper scheme of dimension ≤ 1 over k.
Then

(1) We have ggeom(X/k) = ggeom(Xred/k).
(2) IfX ′ → X is a birational proper morphism, then ggeom(X ′/k) = ggeom(X/k).
(3) IfXν → X is the normalization morphism, then ggeom(Xν/k) = ggeom(X/k).

Proof. Part (1) is immediate from Lemma 18.1. IfX ′ → X is proper birational, then
it is finite and an isomorphism over a dense open (see Varieties, Lemmas 17.2 and 17.3).
Hence X ′

k
→ Xk is an isomorphism over a dense open. Thus the irreducible components

of X ′
k

and Xk are in bijective correspondence and the corresponding components have
isomorphic function fields. In particular these components have isomorphic nonsingular
projective models and hence have the same geometric genera. This proves (2). Part (3)
follows from (1) and (2) and the fact that Xν → Xred is birational (Morphisms, Lemma
54.7). �

Lemma 18.3. Let k be a field. LetX be a proper scheme of dimension≤ 1 over k. Let
f : Y → X be a finite morphism such that there exists a dense open U ⊂ X over which
f is a closed immersion. Then

dimkH
1(X,OX) ≥ dimkH

1(Y,OY )

Proof. Consider the exact sequence
0→ G → OX → f∗OY → F → 0

of coherent sheaves on X . By assumption F is supported in finitely many closed points
and hence has vanishing higher cohomology (Varieties, Lemma 33.3). On the other hand,
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we have H2(X,G) = 0 by Cohomology, Proposition 20.7. It follows formally that
the induced map H1(X,OX) → H1(X, f∗OY ) is surjective. Since H1(X, f∗OY ) =
H1(Y,OY ) (Cohomology of Schemes, Lemma 2.4) we conclude the lemma holds. �

Lemma 18.4. Let k be a field. Let X be a proper scheme of dimension ≤ 1 over k. If
X ′ → X is a birational proper morphism, then

dimkH
1(X,OX) ≥ dimkH

1(X ′,OX′)

IfX is reduced,H0(X,OX)→ H0(X ′,OX′) is surjective, and equality holds, thenX ′ =
X .

Proof. If f : X ′ → X is proper birational, then it is finite and an isomorphism
over a dense open (see Varieties, Lemmas 17.2 and 17.3). Thus the inequality by Lemma
18.3. Assume X is reduced. Then OX → f∗OX′ is injective and we obtain a short exact
sequence

0→ OX → f∗OX′ → F → 0
Under the assumptions given in the second statement, we conclude from the long exact
cohomology sequence that H0(X,F) = 0. Then F = 0 because F is generated by global
sections (Varieties, Lemma 33.3). and OX = f∗OX′ . Since f is affine this implies X =
X ′. �

Lemma 18.5. Let k be a field. Let C be a proper curve over k. Set κ = H0(C,OC).
Then

[κ : k]s dimκH
1(C,OC) ≥ ggeom(C/k)

Proof. Varieties, Lemma 26.2 impliesκ is a field and a finite extension of k. By Fields,
Lemma 14.8 we have [κ : k]s = |Mork(κ, k)| and hence Spec(κ⊗k k) has [κ : k]s points
each with residue field k. Thus

Ck =
⋃

t∈Spec(κ⊗kk)
Ct

(set theoretic union). HereCt = C×Spec(κ),t Spec(k) where we view t as a k-algebra map
t : κ→ k. The conclusion is that ggeom(C/k) =

∑
t ggeom(Ct/k) and the sum is over an

index set of size [κ : k]s. We have

H0(Ct,OCt) = k and dimkH
1(Ct,OCt) = dimκH

1(C,OC)

by cohomology and base change (Cohomology of Schemes, Lemma 5.2). Observe that
the normalization Cνt is the disjoint union of the nonsingular projective models of the
irreducible components of Ct (Morphisms, Lemma 54.6). Hence dimkH

1(Cνt ,OCνt ) is
equal to ggeom(Ct/k). By Lemma 18.3 we have

dimkH
1(Ct,OCt) ≥ dimkH

1(Cνt ,OCνt )

and this finishes the proof. �

Lemma 18.6. Let k be a field. LetX be a proper scheme of dimension≤ 1 over k. Let
` be a prime number invertible in k. Then

dimF` Pic(X)[`] ≤ dimkH
1(X,OX) + ggeom(X/k)

where ggeom(X/k) is as defined above.
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Proof. The map Pic(X) → Pic(Xk) is injective by Varieties, Lemma 30.3. By Co-
homology of Schemes, Lemma 5.2 dimkH

1(X,OX) equals dimkH
1(Xk,OXk). Hence

we may assume k is algebraically closed.

Let Xred be the reduction of X . Then the surjection OX → OXred induces a surjection
H1(X,OX)→ H1(X,OXred) because cohomology of quasi-coherent sheaves vanishes in
degrees≥ 2 by Cohomology, Proposition 20.7. SinceXred → X induces an isomorphism
on irreducible components over k and an isomorphism on `-torsion in Picard groups (Pi-
card Schemes of Curves, Lemma 7.2) we may replaceX byXred. In this way we reduce to
Proposition 17.3. �

19. Nodal curves

We have already defined ordinary double points over algebraically closed fields, see Defi-
nition 16.2. Namely, if x ∈ X is a closed point of a 1-dimensional algebraic scheme over
an algebraically closed field k, then x is an ordinary double point if and only if

O∧
X,x
∼= k[[x, y]]/(xy)

See discussion following (16.0.1) in Section 16.

Definition 19.1. Let k be a field. Let X be a 1-dimensional locally algebraic k-
scheme.

(1) We say a closed point x ∈ X is a node, or an ordinary double point, or defines a
nodal singularity if there exists an ordinary double point x ∈ Xk mapping to x.

(2) We say the singularities of X are at-worst-nodal if all closed points of X are
either in the smooth locus of the structure morphismX → Spec(k) or are ordi-
nary double points.

Often a 1-dimensional algebraic schemeX is called a nodal curve if the singularities ofX
are at worst nodal. Sometimes a nodal curve is required to be proper. Since a nodal curve
so defined need not be irreducible, this conflicts with our earlier definition of a curve as a
variety of dimension 1.

Lemma 19.2. Let (A,m) be a regular local ring of dimension 2. Let I ⊂ m be an ideal.
(1) If A/I is reduced, then I = (0), I = m, or I = (f) for some nonzero f ∈ m.
(2) If A/I has depth 1, then I = (f) for some nonzero f ∈ m.

Proof. Assume I 6= 0. Write I = (f1, . . . , fr). As A is a UFD (More on Algebra,
Lemma 121.2) we can write fi = fgi where f is the gcd of f1, . . . , fr. Thus the gcd of
g1, . . . , gr is 1 which means that there is no height 1 prime ideal over g1, . . . , gr. Then
either (g1, . . . , gr) = A which implies I = (f) or if not, then dim(A) = 2 implies that
V (g1, . . . , gr) = {m}, i.e., m =

√
(g1, . . . , gr).

AssumeA/I reduced, i.e., I radical. If f is a unit, then since I is radical we see that I = m.
If f ∈ m, then we see that fn maps to zero in A/I . Hence f ∈ I by reducedness and we
conclude I = (f).

Assume A/I has depth 1. Then m is not an associated prime of A/I . Since the class of f
modulo I is annihilated by g1, . . . , gr , this implies that the class of f is zero in A/I . Thus
I = (f) as desired. �
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Let κ be a field and let V be a vector space over κ. We will say q ∈ Sym2
κ(V ) is nondegen-

erate if the induced κ-linear map V ∨ → V is an isomorphism. If q =
∑
i≤j aijxixj for

some κ-basis x1, . . . , xn of V , then this means that the determinant of the matrix2a11 a12 . . .
a12 2a22 . . .
. . . . . . . . .


is nonzero. This is equivalent to the condition that the partial derivatives of q with respect
to the xi cut out 0 scheme theoretically.

Lemma 19.3. Let k be a field. Let (A,m, κ) be a Noetherian local k-algebra. The
following are equivalent

(1) κ/k is separable,A is reduced, dimκ(m/m2) = 2, and there exists a nondegener-
ate q ∈ Sym2

κ(m/m2) which maps to zero in m2/m3,
(2) κ/k is separable, depth(A) = 1, dimκ(m/m2) = 2, and there exists a nondegen-

erate q ∈ Sym2
κ(m/m2) which maps to zero in m2/m3,

(3) κ/k is separable, A∧ ∼= κ[[x, y]]/(ax2 + bxy + cy2) as a k-algebra where ax2 +
bxy + cy2 is a nondegenerate quadratic form over κ.

Proof. Assume (3). ThenA∧ is reduced because ax2 +bxy+cy2 is either irreducible
or a product of two nonassociated prime elements. Hence A ⊂ A∧ is reduced. It follows
that (1) is true.

Assume (1). Then A cannot be Artinian, since it would not be reduced because m 6= (0).
Hence dim(A) ≥ 1, hence depth(A) ≥ 1 by Algebra, Lemma 157.3. On the other hand
dim(A) = 2 implies A is regular which contradicts the existence of q by Algebra, Lemma
106.1. Thus dim(A) ≤ 1 and we conclude depth(A) = 1 by Algebra, Lemma 72.3. It
follows that (2) is true.

Assume (2). Since the depth ofA is the same as the depth ofA∧ (More on Algebra, Lemma
43.2) and since the other conditions are insensitive to completion, we may assume that A
is complete. Choose κ→ A as in More on Algebra, Lemma 38.3. Since dimκ(m/m2) = 2
we can choose x0, y0 ∈ m which map to a basis. We obtain a continuous κ-algebra map

κ[[x, y]] −→ A

by the rules x 7→ x0 and y 7→ y0. Let q be the class of ax2
0 + bx0y0 + cy2

0 in Sym2
κ(m/m2).

Write Q(x, y) = ax2 + bxy + cy2 viewed as a polynomial in two variables. Then we see
that

Q(x0, y0) = ax2
0 + bx0y0 + cy2

0 =
∑

i+j=3
aijx

i
0y
j
0

for some aij in A. We want to prove that we can increase the order of vanishing by
changing our choice of x0, y0. Suppose that x1, y1 ∈ m2. Then

Q(x0 + x1, y0 + y1) = Q(x0, y0) + (2ax0 + by0)x1 + (bx0 + 2cy0)y1 mod m4

Nondegeneracy of Q means exactly that 2ax0 + by0 and bx0 + 2cy0 are a κ-basis for
m/m2, see discussion preceding the lemma. Hence we can certainly choose x1, y1 ∈ m2

such thatQ(x0 +x1, y0 + y1) ∈ m4. Continuing in this fashion by induction we can find
xi, yi ∈ mi+1 such that

Q(x0 + x1 + . . .+ xn, y0 + y1 + . . .+ yn) ∈ mn+3

Since A is complete we can set x∞ =
∑
xi and y∞ =

∑
yi and we can consider the map

κ[[x, y]] −→ A sendingx tox∞ and y to y∞. This map induces a surjectionκ[[x, y]]/(Q) −→
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A by Algebra, Lemma 96.1. By Lemma 19.2 the kernel of k[[x, y]]→ A is principal. But the
kernel cannot contain a proper divisor of Q as such a divisor would have degree 1 in x, y
and this would contradict dim(m/m2) = 2. Hence Q generates the kernel as desired. �

Lemma 19.4. Let k be a field. Let (A,m, κ) be a Nagata local k-algebra. The following
are equivalent

(1) k → A is as in Lemma 19.3,
(2) κ/k is separable, A is reduced of dimension 1, the δ-invariant of A is 1, and A

has 2 geometric branches.
If this holds, then the integral closure A′ of A in its total ring of fractions has either 1 or
2 maximal ideals m′ and the extensions κ(m′)/k are separable.

Proof. In both cases A and A∧ are reduced. In case (2) because the completion of a
reduced local Nagata ring is reduced (More on Algebra, Lemma 43.6). In both casesA and
A∧ have dimension 1 (More on Algebra, Lemma 43.1). The δ-invariant and the number
of geometric branches of A and A∧ agree by Varieties, Lemma 39.6 and More on Algebra,
Lemma 108.7. LetA′ be the integral closure ofA in its total ring of fractions as in Varieties,
Lemma 39.2. By Varieties, Lemma 39.5 we see that A′ ⊗A A∧ plays the same role for A∧.
Thus we may replace A by A∧ and assume A is complete.

Assume (1) holds. It suffices to show thatA has two geometric branches and δ-invariant 1.
We may assumeA = κ[[x, y]]/(ax2+bxy+cy2) with q = ax2+bxy+cy2 nondegenerate.
There are two cases.

Case I: q splits over κ. In this case we may after changing coordinates assume that q = xy.
Then we see that

A′ = κ[[x, y]]/(x)× κ[[x, y]]/(y)

Case II: q does not split. In this case c 6= 0 and nondegenerate means b2− 4ac 6= 0. Hence
κ′ = κ[t]/(a + bt + ct2) is a degree 2 separable extension of κ. Then t = y/x is integral
over A and we conclude that

A′ = κ′[[x]]
with y mapping to tx on the right hand side.

In both cases one verifies by hand that the δ-invariant is 1 and the number of geometric
branches is 2. In this way we see that (1) implies (2). Moreover we conclude that the final
statement of the lemma holds.

Assume (2) holds. More on Algebra, Lemma 106.7 impliesA′ either has two maximal ideals
or A′ has one maximal ideal and [κ(m′) : κ]s = 2.

Case I: A′ has two maximal ideals m′
1, m′

2 with residue fields κ1, κ2. Since the δ-invariant
is the length of A′/A and since there is a surjection A′/A → (κ1 × κ2)/κ we see that
κ = κ1 = κ2. Since A is complete (and henselian by Algebra, Lemma 153.9) and A′

is finite over A we see that A′ = A1 × A2 (by Algebra, Lemma 153.4). Since A′ is a
normal ring it follows that A1 and A2 are discrete valuation rings. Hence A1 and A2 are
isomorphic to κ[[t]] (as k-algebras) by More on Algebra, Lemma 38.4. Since the δ-invariant
is 1 we conclude that A is the wedge of A1 and A2 (Varieties, Definition 40.4). It follows
easily that A ∼= κ[[x, y]]/(xy).

Case II: A′ has a single maximal ideal m′ with residue field κ′ and [κ′ : κ]s = 2. Arguing
exactly as in Case I we see that [κ′ : κ] = 2 and κ′ is separable over κ. Since A′ is normal
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we see that A′ is isomorphic to κ′[[t]] (see reference above). Since A′/A has length 1 we
conclude that

A = {f ∈ κ′[[t]] | f(0) ∈ κ}
Then a simple computation shows that A as in case (1). �

Lemma 19.5. Let k be a field. Let A = k[[x1, . . . , xn]]. Let I = (f1, . . . , fm) ⊂ A
be an ideal. For any r ≥ 0 the ideal in A/I generated by the r × r-minors of the matrix
(∂fj/∂xi) is independent of the choice of the generators of I or the regular system of
parameters x1, . . . , xn of A.

Proof. The “correct” proof of this lemma is to prove that this ideal is the (n− r)th
Fitting ideal of a module of continuous differentials ofA/I over k. Here is a direct proof.
If g1, . . . gl is a second set of generators of I , then we can write gs =

∑
asjfj and we have

the equality of matrices

(∂gs/∂xi) = (asj)(∂fj/∂xi) + (∂asj/∂xifj)

The final term is zero inA/I . By the Cauchy-Binet formula we see that the ideal of minors
for the gs is contained in the ideal for the fj . By symmetry these ideals are the same. If
y1, . . . , yn ∈ mA is a second regular system of parameters, then the matrix (∂yj/∂xi) is
invertible and we can use the chain rule for differentiation. Some details omitted. �

Lemma 19.6. Let k be a field. Let A = k[[x1, . . . , xn]]. Let I = (f1, . . . , fm) ⊂ mA
be an ideal. The following are equivalent

(1) k → A/I is as in Lemma 19.3,
(2) A/I is reduced and the (n−1)×(n−1) minors of the matrix (∂fj/∂xi) generate

I + mA,
(3) depth(A/I) = 1 and the (n − 1) × (n − 1) minors of the matrix (∂fj/∂xi)

generate I + mA.

Proof. By Lemma 19.5 we may change our system of coordinates and the choice of
generators during the proof.

If (1) holds, then we may change coordinates such that x1, . . . , xn−2 map to zero in A/I
and A/I = k[[xn−1, xn]]/(ax2

n−1 + bxn−1xn + cx2
n) for some nondegenerate quadric

ax2
n−1 + bxn−1xn + cx2

n. Then we can explicitly compute to show that both (2) and (3)
are true.

Assume the (n−1)×(n−1) minors of the matrix (∂fj/∂xi) generate I+mA. Suppose that
for some i and j the partial derivative ∂fj/∂xi is a unit inA. Then we may use the system
of parameters fj , x1, . . . , xi−1, x̂i, xi+1, . . . , xn and the generators fj , f1, . . . , fj−1, f̂j , fj+1, . . . , fm
of I . Then we get a regular system of parameters x1, . . . , xn and generators x1, f2, . . . , fm
of I . Next, we look for an i ≥ 2 and j ≥ 2 such that ∂fj/∂xi is a unit in A. If such a
pair exists, then we can make a replacement as above and assume that we have a regular
system of parameters x1, . . . , xn and generators x1, x2, f3, . . . , fm of I . Continuing, in
finitely many steps we reach the situation where we have a regular system of parameters
x1, . . . , xn and generators x1, . . . , xt, ft+1, . . . , fm of I such that ∂fj/∂xi ∈ mA for all
i, j ≥ t+ 1.

In this case the matrix of partial derivatives has the following block shape(
It×t ∗

0 mA

)
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Hence every (n−1)× (n−1)-minor is in mn−1−t
A . Note that I 6= mA otherwise the ideal

of minors would contain 1. It follows that n − 1 − t ≤ 1 because there is an element of
mA \ m2

A + I (otherwise I = mA by Nakayama). Thus t ≥ n − 2. We have seen that
t 6= n above and similarly if t = n−1, then there is an invertible (n−1)× (n−1)-minor
which is disallowed as well. Hence t = n − 2. Then A/I is a quotient of k[[xn−1, xn]]
and Lemma 19.2 implies in both cases (2) and (3) that I is generated by x1, . . . , xn−2, f
for some f = f(xn−1, xn). In this case the condition on the minors exactly says that the
quadratic term in f is nondegenerate, i.e., A/I is as in Lemma 19.3. �

Lemma 19.7. Let k be a field. LetX be a 1-dimensional algebraic k-scheme. Letx ∈ X
be a closed point. The following are equivalent

(1) x is a node,
(2) k → OX,x is as in Lemma 19.3,
(3) any x ∈ Xk mapping to x defines a nodal singularity,
(4) κ(x)/k is separable,OX,x is reduced, and the first Fitting ideal of ΩX/k generates

mx inOX,x,
(5) κ(x)/k is separable, depth(OX,x) = 1, and the first Fitting ideal of ΩX/k gener-

ates mx inOX,x,
(6) κ(x)/k is separable and OX,x is reduced, has δ-invariant 1, and has 2 geometric

branches.

Proof. First assume that k is algebraically closed. In this case the equivalence of (1)
and (3) is trivial. The equivalence of (1) and (3) with (2) holds because the only nondegen-
erate quadric in two variables is xy up to change in coordinates. The equivalence of (1) and
(6) is Lemma 16.1. After replacingX by an affine neighbourhood ofx, we may assume there
is a closed immersion X → An

k mapping x to 0. Let f1, . . . , fm ∈ k[x1, . . . , xn] be gen-
erators for the ideal I of X in An

k . Then ΩX/k corresponds to the R = k[x1, . . . , xn]/I-
module ΩR/k which has a presentation

R⊕m (∂fj/∂xi)−−−−−−→ R⊕n → ΩR/k → 0

(See Algebra, Sections 131 and 134.) The first Fitting ideal of ΩR/k is thus the ideal gen-
erated by the (n − 1) × (n − 1)-minors of the matrix (∂fj/∂xi). Hence (2), (4), (5) are
equivalent by Lemma 19.6 applied to the completion of k[x1, . . . , xn]→ R at the maximal
ideal (x1, . . . , xn).

Now assume k is an arbitrary field. In cases (2), (4), (5), (6) the residue fieldκ(x) is separable
over k. Let us show this holds as well in cases (1) and (3). Namely, letZ ⊂ X be the closed
subscheme of X defined by the first Fitting ideal of ΩX/k. The formation of Z commutes
with field extension (Divisors, Lemma 10.1). If (1) or (3) is true, then there exists a point x
of Xk such that x is an isolated point of multiplicity 1 of Zk (as we have the equivalence
of the conditions of the lemma over k). In particular Zx is geometrically reduced at x
(because k is algebraically closed). HenceZ is geometrically reduced atx (Varieties, Lemma
6.6). In particular, Z is reduced at x, hence Z = Spec(κ(x)) in a neighbourhood of x
and κ(x) is geometrically reduced over k. This means that κ(x)/k is separable (Algebra,
Lemma 44.1).

The argument of the previous paragraph shows that if (1) or (3) holds, then the first Fit-
ting ideal of ΩX/k generates mx. Since OX,x → OX

k
,x is flat and since OX

k
,x is reduced



19. NODAL CURVES 4357

and has depth 1, we see that (4) and (5) hold (use Algebra, Lemmas 164.2 and 163.2). Con-
versely, (4) implies (5) by Algebra, Lemma 157.3. If (5) holds, then Z is geometrically re-
duced at x (because κ(x)/k separable andZ is x in a neighbourhood). HenceZk is reduced
at any point x ofXk lying over x. In other words, the first fitting ideal of ΩX

k
/k generates

mx in OX
k,x

. Moreover, since OX,x → OX
k
,x is flat we see that depth(OX

k
,x) = 1 (see

reference above). Hence (5) holds for x ∈ Xk and we conclude that (3) holds (because of
the equivalence over algebraically closed fields). In this way we see that (1), (3), (4), (5) are
equivalent.

The equivalence of (2) and (6) follows from Lemma 19.4.

Finally, we prove the equivalence of (2) = (6) with (1) = (3) = (4) = (5). First we note
that the geometric number of branches ofX at x and the geometric number of branches of
Xk at x are equal by Varieties, Lemma 40.2. We conclude from the information available
to us at this point that in all cases this number is equal to 2. On the other hand, in case (1)
it is clear that X is geometrically reduced at x, and hence

δ-invariant of X at x ≤ δ-invariant of Xk at x

by Varieties, Lemma 39.8. Since in case (1) the right hand side is 1, this forces the δ-
invariant of X at x to be 1 (because if it were zero, then OX,x would be a discrete valua-
tion ring by Varieties, Lemma 39.4 which is unibranch, a contradiction). Thus (5) holds.
Conversely, if (2) = (5) is true, then assumptions (a), (b), (c) of Varieties, Lemma 27.6 hold
for x ∈ X by Lemma 19.4. Thus Varieties, Lemma 39.9 applies and shows that we have
equality in the above displayed inequality. We conclude that (5) holds for x ∈ Xk and
we are back in case (1) by the equivalence of the conditions over an algebraically closed
field. �

Remark 19.8 (The quadratic extension associated to a node). Let k be a field. Let
(A,m, κ) be a Noetherian local k-algebra. Assume that either (A,m, κ) is as in Lemma
19.3, or A is Nagata as in Lemma 19.4, or A is complete and as in Lemma 19.6. Then A
defines canonically a degree 2 separable κ-algebra κ′ as follows

(1) let q = ax2 + bxy + cy2 be a nondegenerate quadric as in Lemma 19.3 with
coordinates x, y chosen such that a 6= 0 and set κ′ = κ[x]/(ax2 + bx+ c),

(2) let A′ ⊃ A be the integral closure of A in its total ring of fractions and set
κ′ = A′/mA′, or

(3) let κ′ be the κ-algebra such that Proj(
⊕

n≥0 m
n/mn+1) = Spec(κ′).

The equivalence of (1) and (2) was shown in the proof of Lemma 19.4. We omit the equiv-
alence of this with (3). If X is a locally Noetherian k-scheme and x ∈ X is a point such
that OX,x = A, then (3) shows that Spec(κ′) = Xν ×X Spec(κ) where ν : Xν → X is
the normalization morphism.

Remark 19.9 (Trivial quadratic extension). Let k be a field. Let (A,m, κ) be as in Re-
mark 19.8 and let κ′/κ be the associated separable algebra of degree 2. Then the following
are equivalent

(1) κ′ ∼= κ× κ as κ-algebra,
(2) the form q of Lemma 19.3 can be chosen to be xy,
(3) A has two branches,
(4) the extension A′/A of Lemma 19.4 has two maximal ideals, and
(5) A∧ ∼= κ[[x, y]]/(xy) as a k-algebra.
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The equivalence between these conditions has been shown in the proof of Lemma 19.4. If
X is a locally Noetherian k-scheme and x ∈ X is a point such that OX,x = A, then this
means exactly that there are two points x1, x2 of the normalization Xν lying over x and
that κ(x) = κ(x1) = κ(x2).

Definition 19.10. Let k be a field. Let X be a 1-dimensional algebraic k-scheme.
Let x ∈ X be a closed point. We say x is a split node if x is a node, κ(x) = k, and the
equivalent assertions of Remark 19.9 hold for A = OX,x.

We formulate the obligatory lemma stating what we already know about this concept.

Lemma 19.11. Let k be a field. Let X be a 1-dimensional algebraic k-scheme. Let
x ∈ X be a closed point. The following are equivalent

(1) x is a split node,
(2) x is a node and there are exactly two points x1, x2 of the normalizationXν lying

over x with k = κ(x1) = κ(x2),
(3) O∧

X,x
∼= k[[x, y]]/(xy) as a k-algebra, and

(4) add more here.

Proof. This follows from the discussion in Remark 19.9 and Lemma 19.7. �

Lemma 19.12. LetK/k be an extension of fields. LetX be a locally algebraic k-scheme
of dimension 1. Let y ∈ XK be a point with image x ∈ X . The following are equivalent

(1) x is a closed point of X and a node, and
(2) y is a closed point of Y and a node.

Proof. If x is a closed point of X , then y is too (look at residue fields). But con-
versely, this need not be the case, i.e., it can happen that a closed point of Y maps to a
nonclosed point of X . However, in this case y cannot be a node. Namely, then X would
be geometrically unibranch at x (because xwould be a generic point ofX andOX,x would
be Artinian and any Artinian local ring is geometrically unibranch), hence Y is geomet-
rically unibranch at y (Varieties, Lemma 40.3), which means that y cannot be a node by
Lemma 19.7. Thus we may and do assume that both x and y are closed points.

Choose algebraic closures k,K and a map k → K extending the given map k → K. Using
the equivalence of (1) and (3) in Lemma 19.7 we reduce to the case where k andK are alge-
braically closed. In this case we can argue as in the proof of Lemma 19.7 that the geometric
number of branches and δ-invariants of X at x and Y at y are the same. Another argu-
ment can be given by choosing an isomorphism k[[x1, . . . , xn]]/(g1, . . . , gm)→ O∧

X,x of
k-algebras as in Varieties, Lemma 21.1. By Varieties, Lemma 21.2 this gives an isomorphism
K[[x1, . . . , xn]]/(g1, . . . , gm)→ O∧

Y,y ofK-algebras. By definition we have to show that

k[[x1, . . . , xn]]/(g1, . . . , gm) ∼= k[[s, t]]/(st)
if and only if

K[[x1, . . . , xn]]/(g1, . . . , gm) ∼= K[[s, t]]/(st)
We encourage the reader to prove this for themselves. Since k and K are algebraically
closed fields, this is the same as asking these rings to be as in Lemma 19.3. Via Lemma 19.6
this translates into a statement about the (n−1)×(n−1)-minors of the matrix (∂gj/∂xi)
which is clearly independent of the field used. We omit the details. �

Lemma 19.13. Let k be a field. Let X be a locally algebraic k-scheme of dimension 1.
Let Y → X be an étale morphism. Let y ∈ Y be a point with image x ∈ X . The following
are equivalent
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(1) x is a closed point of X and a node, and
(2) y is a closed point of Y and a node.

Proof. By Lemma 19.12 we may base change to the algebraic closure of k. Then the
residue fields of x and y are k. Hence the map O∧

X,x → O∧
Y,y is an isomorphism (for

example by Étale Morphisms, Lemma 11.3 or More on Algebra, Lemma 43.9). Thus the
lemma is clear. �

Lemma 19.14. Let k′/k be a finite separable field extension. Let X be a locally alge-
braic k′-scheme of dimension 1. Let x ∈ X be a closed point. The following are equivalent

(1) x is a node, and
(2) x is a node when X viewed as a locally algebraic k-scheme.

Proof. Follows immediately from the characterization of nodes in Lemma 19.7. �

Lemma 19.15. Let k be a field. LetX be a locally algebraic k-scheme equidimensional
of dimension 1. The following are equivalent

(1) the singularities of X are at-worst-nodal, and
(2) X is a local complete intersection over k and the closed subscheme Z ⊂ X cut

out by the first fitting ideal of ΩX/k is unramified over k.

Proof. We urge the reader to find their own proof of this lemma; what follows is
just putting together earlier results and may hide what is really going on.
Assume (2). Since Z → Spec(k) is quasi-finite (Morphisms, Lemma 35.10) we see that the
residue fields of points x ∈ Z are finite over k (as well as separable) by Morphisms, Lemma
20.5. Hence each x ∈ Z is a closed point of X by Morphisms, Lemma 20.2. The local ring
OX,x is Cohen-Macaulay by Algebra, Lemma 135.3. Since dim(OX,x) = 1 by dimension
theory (Varieties, Section 20), we conclude that depth(OX,x)) = 1. Thus x is a node by
Lemma 19.7. If x ∈ X , x 6∈ Z , then X → Spec(k) is smooth at x by Divisors, Lemma
10.3.
Assume (1). Under this assumption X is geometrically reduced at every closed point (see
Varieties, Lemma 6.6). Hence X → Spec(k) is smooth on a dense open by Varieties,
Lemma 25.7. Thus Z is closed and consists of closed points. By Divisors, Lemma 10.3 the
morphism X \ Z → Spec(k) is smooth. Hence X \ Z is a local complete intersection by
Morphisms, Lemma 34.7 and the definition of a local complete intersection in Morphisms,
Definition 30.1. By Lemma 19.7 for every point x ∈ Z the local ringOZ,x is equal to κ(x)
andκ(x) is separable over k. ThusZ → Spec(k) is unramified (Morphisms, Lemma 35.11).
Finally, Lemma 19.7 via part (3) of Lemma 19.3, shows thatOX,x is a complete intersection
in the sense of Divided Power Algebra, Definition 8.5. However, Divided Power Algebra,
Lemma 8.8 and Morphisms, Lemma 30.9 show that this agrees with the notion used to
define a local complete intersection scheme over a field and the proof is complete. �

Lemma 19.16. Let k be a field. Let X be a locally algebraic k-scheme equidimen-
sional of dimension 1 whose singularities are at-worst-nodal. Then X is Gorenstein and
geometrically reduced.

Proof. The Gorenstein assertion follows from Lemma 19.15 and Duality for Schemes,
Lemma 24.5. Or you can use that it suffices to check after passing to the algebraic closure
(Duality for Schemes, Lemma 25.1), then use that a Noetherian local ring is Gorenstein if
and only if its completion is so (by Dualizing Complexes, Lemma 21.8), and then prove
that the local rings k[[t]] and k[[x, y]]/(xy) are Gorenstein by hand.
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To see that X is geometrically reduced, it suffices to show that Xk is reduced (Varieties,
Lemmas 6.3 and 6.4). But Xk is a nodal curve over an algebraically closed field. Thus
the complete local rings of Xk are isomorphic to either k[[t]] or k[[x, y]]/(xy) which are
reduced as desired. �

Lemma 19.17. Let k be a field. LetX be a locally algebraic k-scheme equidimensional
of dimension 1 whose singularities are at-worst-nodal. If Y ⊂ X is a reduced closed
subscheme equidimensional of dimension 1, then

(1) the singularities of Y are at-worst-nodal, and
(2) if Z ⊂ X is the scheme theoretic closure of X \ Y , then

(a) the scheme theoretic intersection Y ∩ Z is the disjoint union of spectra of
finite separable extensions of k,

(b) each point of Y ∩ Z is a node of X , and
(c) Y → Spec(k) is smooth at every point of Y ∩ Z.

Proof. SinceX andY are reduced and equidimensional of dimension 1, we see thatY
is the scheme theoretic union of a subset of the irreducible components ofX (in a reduced
ring (0) is the intersection of the minimal primes). Let y ∈ Y be a closed point. If y is in the
smooth locus of X → Spec(k), then y is on a unique irreducible component of X and we
see that Y andX agree in an open neighbourhood of y. Hence Y → Spec(k) is smooth at
y. If y is a node ofX but still lies on a unique irreducible component ofX , then y is a node
on Y by the same argument. Suppose that y lies on more than 1 irreducible component
of X . Since the number of geometric branches of X at y is 2 by Lemma 19.7, there can
be at most 2 irreducible components passing through y by Properties, Lemma 15.5. If Y
contains both of these, then again Y = X in an open neighbourhood of y and y is a node of
Y . Finally, assume Y contains only one of the irreducible components. After replacingX
by an open neighbourhood of xwe may assume Y is one of the two irreducble components
and Z is the other. By Properties, Lemma 15.5 again we see that X has two branches at
y, i.e., the local ring OX,y has two branches and that these branches come from OY,y and
OZ,y . WriteO∧

X,y
∼= κ(y)[[u, v]]/(uv) as in Remark 19.9. The fieldκ(y) is finite separable

over k by Lemma 19.7 for example. Thus, after possibly switching the roles of u and v, the
completion of the map OX,y → OY,Y corresponds to κ(y)[[u, v]]/(uv) → κ(y)[[u]] and
the completion of the map OX,y → OY,Y corresponds to κ(y)[[u, v]]/(uv) → κ(y)[[v]].
The scheme theoretic intersection of Y ∩ Z is cut out by the sum of their ideas which in
the completion is (u, v), i.e., the maximal ideal. Thus (2)(a) and (2)(b) are clear. Finally,
(2)(c) holds: the completion of OY,y is regular, hence OY,y is regular (More on Algebra,
Lemma 43.4) and κ(y)/k is separable, hence smoothness in an open neighbourhood by
Algebra, Lemma 140.5. �

20. Families of nodal curves

In the Stacks project curves are irreducible varieties of dimension 1, but in the literature
a “semi-stable curve” or a “nodal curve” is usually not irreducible and often assumed to be
proper, especially when used in a phrase such as “family of semistable curves” or “family
of nodal curves”, or “nodal family”. Thus it is a bit difficult for us to choose a terminology
which is consistent with the literature as well as internally consistent. Moreover, we really
want to first study the notion introduced in the following lemma (which is local on the
source).

Lemma 20.1. Let f : X → S be a morphism of schemes. The following are equivalent
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(1) f is flat, locally of finite presentation, every nonempty fibre Xs is equidimen-
sional of dimension 1, and Xs has at-worst-nodal singularities, and

(2) f is syntomic of relative dimension 1 and the closed subscheme Sing(f) ⊂ X
defined by the first Fitting ideal of ΩX/S is unramified over S.

Proof. Recall that the formation of Sing(f) commutes with base change, see Divi-
sors, Lemma 10.1. Thus the lemma follows from Lemma 19.15, Morphisms, Lemma 30.11,
and Morphisms, Lemma 35.12. (We also use the trivial Morphisms, Lemmas 30.6 and
30.7.) �

Definition 20.2. Let f : X → S be a morphism of schemes. We say f is at-worst-
nodal of relative dimension 1 if f satisfies the equivalent conditions of Lemma 20.1.

Here are some reasons for the cumbersome terminology6. First, we want to make sure this
notion is not confused with any of the other notions in the literature (see introduction to
this section). Second, we can imagine several generalizations of this notion to morphisms
of higher relative dimension (for example, one can ask for morphisms which are étale
locally compositions of at-worst-nodal morphisms or one can ask for morphisms whose
fibres are higher dimensional but have at worst ordinary double points).

Lemma 20.3. A smooth morphism of relative dimension 1 is at-worst-nodal of rela-
tive dimension 1.

Proof. Omitted. �

Lemma 20.4. Let f : X → S be at-worst-nodal of relative dimension 1. Then the
same is true for any base change of f .

Proof. This is true because the base change of a syntomic morphism is syntomic
(Morphisms, Lemma 30.4), the base change of a morphism of relative dimension 1 has
relative dimension 1 (Morphisms, Lemma 29.2), the formation of Sing(f) commutes with
base change (Divisors, Lemma 10.1), and the base change of an unramified morphism is
unramified (Morphisms, Lemma 35.5). �

The following lemma tells us that we can check whether a morphism is at-worst-nodal of
relative dimension 1 on the fibres.

Lemma 20.5. Let f : X → S be a morphism of schemes which is flat and locally
of finite presentation. Then there is a maximal open subscheme U ⊂ X such that f |U :
U → S is at-worst-nodal of relative dimension 1. Moreover, formation of U commutes
with arbitrary base change.

Proof. By Morphisms, Lemma 30.12 we find that there is such an open where f is
syntomic. Hence we may assume that f is a syntomic morphism. In particular f is a
Cohen-Macaulay morphism (Duality for Schemes, Lemmas 25.5 and 25.4). Thus X is a
disjoint union of open and closed subschemes on which f has given relative dimension,
see Morphisms, Lemma 29.4. This decomposition is preserved by arbitrary base change,
see Morphisms, Lemma 29.2. Discarding all but one piece we may assume f is syntomic of
relative dimension 1. Let Sing(f) ⊂ X be the closed subscheem defined by the first fitting
ideal of ΩX/S . There is a maximal open subscheme W ⊂ Sing(f) such that W → S

is unramified and its formation commutes with base change (Morphisms, Lemma 35.15).

6But please email the maintainer of the Stacks project if you have a better suggestion.
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Since also formation of Sing(f) commutes with base change (Divisors, Lemma 10.1), we
see that

U = (X \ Sing(f)) ∪W
is the maximal open subscheme of X such that f |U : U → S is at-worst-nodal of relative
dimension 1 and that formation of U commutes with base change. �

Lemma 20.6. Let f : X → S be at-worst-nodal of relative dimension 1. If Y →
X is an étale morphism, then the composition g : Y → S is at-worst-nodal of relative
dimension 1.

Proof. Observe that g is flat and locally of finite presentation as a composition of
morphisms which are flat and locally of finite presentation (use Morphisms, Lemmas 36.11,
36.12, 21.3, and 25.6). Thus it suffices to prove the fibres have at-worst-nodal singularities.
This follows from Lemma 19.13 (and the fact that the composition of an étale morphism
and a smooth morphism is smooth by Morphisms, Lemmas 36.5 and 34.4). �

Lemma 20.7. Let S′ → S be an étale morphism of schemes. Let f : X → S′ be at-
worst-nodal of relative dimension 1. Then the composition g : X → S is at-worst-nodal
of relative dimension 1.

Proof. Observe that g is flat and locally of finite presentation as a composition of
morphisms which are flat and locally of finite presentation (use Morphisms, Lemmas 36.11,
36.12, 21.3, and 25.6). Thus it suffices to prove the fibres of g have at-worst-nodal singu-
larities. This follows from Lemma 19.14 and the analogous result for smooth points. �

Lemma 20.8. Let f : X → S be a morphism of schemes. Let {Ui → X} be an étale
covering. The following are equivalent

(1) f is at-worst-nodal of relative dimension 1,
(2) each Ui → S is at-worst-nodal of relative dimension 1.

In other words, being at-worst-nodal of relative dimension 1 is étale local on the source.

Proof. One direction we have seen in Lemma 20.6. For the other direction, observe
that being locally of finite presentation, flat, or to have relative dimension 1 is étale local
on the source (Descent, Lemmas 28.1, 27.1, and 33.8). Taking fibres we reduce to the case
where S is the spectrum of a field. In this case the result follows from Lemma 19.13 (and
the fact that being smooth is étale local on the source by Descent, Lemma 30.1). �

Lemma 20.9. Let f : X → S be a morphism of schemes. Let {Ui → S} be an fpqc
covering. The following are equivalent

(1) f is at-worst-nodal of relative dimension 1,
(2) each X ×S Ui → Ui is at-worst-nodal of relative dimension 1.

In other words, being at-worst-nodal of relative dimension 1 is fpqc local on the target.

Proof. One direction we have seen in Lemma 20.4. For the other direction, observe
that being locally of finite presentation, flat, or to have relative dimension 1 is fpqc local
on the target (Descent, Lemmas 23.11, 23.15, and Morphisms, Lemma 28.3). Taking fibres
we reduce to the case where S is the spectrum of a field. In this case the result follows
from Lemma 19.12 (and the fact that being smooth is fpqc local on the target by Descent,
Lemma 23.27). �
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Lemma 20.10. Let S = limSi be a limit of a directed system of schemes with affine
transition morphisms. Let 0 ∈ I and let f0 : X0 → Y0 be a morphism of schemes over S0.
Assume S0, X0, Y0 are quasi-compact and quasi-separated. Let fi : Xi → Yi be the base
change of f0 to Si and let f : X → Y be the base change of f0 to S. If

(1) f is at-worst-nodal of relative dimension 1, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is at-worst-nodal of relative dimension 1.

Proof. By Limits, Lemma 8.16 there exists an i such that fi is syntomic. Then Xi =∐
d≥0 Xi,d is a disjoint union of open and closed subschemes such thatXi,d → Yi has rela-

tive dimension d, see Morphisms, Lemma 30.14. Because of the behaviour of dimensions of
fibres under base change given in Morphisms, Lemma 28.3 we see thatX → Xi maps into
Xi,1. Then there exists an i′ ≥ i such that Xi′ → Xi maps into Xi,1, see Limits, Lemma
4.10. Thus fi′ : Xi′ → Yi′ is syntomic of relative dimension 1 (by Morphisms, Lemma
28.3 again). Consider the morphism Sing(fi′) → Yi′ . We know that the base change to
Y is an unramified morphism. Hence by Limits, Lemma 8.4 we see that after increasing i′
the morphism Sing(fi′)→ Yi′ becomes unramified. This finishes the proof. �

Lemma 20.11. Let f : T → S be a morphism of schemes. Let t ∈ T with image
s ∈ S. Assume

(1) f is flat at t,
(2) OS,s is Noetherian,
(3) f is locally of finite type,
(4) t is a split node of the fibre Ts.

Then there exists an h ∈ m∧
s and an isomorphism

O∧
T,t
∼= O∧

S,s[[x, y]]/(xy − h)

ofO∧
S,s-algebras.

Proof. We replace S by Spec(OS,s) and T by the base change to Spec(OS,s). Then
T is locally Noetherian and hence OT,t is Noetherian. Set A = O∧

S,s, m = mA, and B =
O∧
T,t. By More on Algebra, Lemma 43.8 we see that A→ B is flat. SinceOT,t/msOT,t =
OTs,t we see thatB/mB = O∧

Ts,t
. By assumption (4) and Lemma 19.11 we conclude there

exist u, v ∈ B/mB such that the map

(A/m)[[x, y]] −→ B/mB, x 7−→ u, x 7−→ v

is surjective with kernel (xy).

Assume we have n ≥ 1 and u, v ∈ B mapping to u, v such that

uv = h+ δ

for some h ∈ A and δ ∈ mnB. We claim that there exist u′, v′ ∈ B with u− u′, v − v′ ∈
mnB such that

u′v′ = h′ + δ′

for some h′ ∈ A and δ′ ∈ mn+1B. To see this, write δ =
∑
fibi with fi ∈ mn and bi ∈ B.

Then write bi = ai + ubi,1 + vbi,2 + δi with ai ∈ A, bi,1, bi,2 ∈ B and δi ∈ mB. This is
possible because the residue field of B agrees with the residue field of A and the images of
u and v in B/mB generate the maximal ideal. Then we set

u′ = u−
∑

bi,2fi, v′ = v −
∑

bi,1fi
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and we obtain

u′v′ = h+ δ−
∑

(bi,1u+ bi,2v)fi +
∑

cijfifj = h+
∑

aifi +
∑

fiδi +
∑

cijfifj

for some ci,j ∈ B. Thus we get a formula as above with h′ = h +
∑
aifi and δ′ =∑

fiδi +
∑
cijfifj .

Arguing by induction and starting with any lifts u1, v1 ∈ B of u, v the result of the
previous paragraph shows that we find a sequence of elements un, vn ∈ B and hn ∈ A
such that un − un+1 ∈ mnB, vn − vn+1 ∈ mnB, hn − hn+1 ∈ mn, and such that
unvn − hn ∈ mnB. Since A and B are complete we can set u∞ = lim un, v∞ = lim vn,
and h∞ = lim hn, and then we obtain u∞v∞ = h∞ in B. Thus we have an A-algebra
map

A[[x, y]]/(xy − h∞) −→ B

sending x to u∞ and v to v∞. This is a map of flat A-algebras which is an isomorphism
after dividing by m. It is surjective modulo m and hence surjective by completeness and
Algebra, Lemma 96.1. Then we can apply Algebra, Lemma 99.1 to conclude it is an iso-
morphism. �

Consider the morphism of schemes

Spec(Z[u, v, a]/(uv − a)) −→ Spec(Z[a])
The next lemma shows that this morphism is a model for the étale local structure of a
nodal family of curves. If you know a proof of this lemma avoiding the use of Artin
approximation, then please email stacks.project@gmail.com.

Lemma 20.12. Let f : X → S be a morphism of schemes. Assume that f is at-worst-
nodal of relative dimension 1. Let x ∈ X be a point which is a singular point of the fibre
Xs. Then there exists a commutative diagram of schemes

X

��

U //oo

��

W //

��

Spec(Z[u, v, a]/(uv − a))

��
S Voo // Spec(Z[a])

with X ← U , S ← V , and U → W étale morphisms, and with the right hand square
cartesian, such that there exists a point u ∈ U mapping to x in X .

Proof. We first use absolute Noetherian approximation to reduce to the case of schemes
of finite type over Z. The question is local on X and S. Hence we may assume that
X and S are affine. Then we can write S = Spec(R) and write R as a filtered colimit
R = colimRi of finite type Z-algebras. Using Limits, Lemma 10.1 we can find an i and
a morphism fi : Xi → Spec(Ri) whose base change to S is f . After increasing i we
may assume that fi is at-worst-nodal of relative dimension 1, see Lemma 20.10. The image
xi ∈ Xi of x will be a singular point of its fibre, for example because the formation of
Sing(f) commutes with base change (Divisors, Lemma 10.1). If we can prove the lemma
for fi : Xi → Si and xi, then the lemma follows for f : X → S by base change. Thus we
reduce to the case studied in the next paragraph.

Assume S is of finite type over Z. Let s ∈ S be the image of x. Recall that κ(x) is a finite
separable extension of κ(s), for example because Sing(f)→ S is unramified or because x
is a node of the fibre Xs and we can apply Lemma 19.7. Furthermore, let κ′/κ(x) be the
degree 2 separable algebra associated to OXs,x in Remark 19.8. By More on Morphisms,

mailto:stacks.project@gmail.com
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Lemma 35.2 we can choose an étale neighbourhood (V, v) → (S, s) such that the exten-
sion κ(v)/κ(s) realizes either the extension κ(x)/κ(s) in case κ′ ∼= κ(x) × κ(x) or the
extension κ′/κ(s) if κ′ is a field. After replacing X by X ×S V and S by V we reduce to
the situation described in the next paragraph.

Assume S is of finite type over Z and x ∈ Xs is a split node, see Definition 19.10. By
Lemma 20.11 we see that there exists anOS,s-algebra isomorphism

O∧
X,x
∼= O∧

S,s[[s, t]]/(st− h)

for some h ∈ m∧
s ⊂ O∧

S,s. In other words, if we consider the homomorphism

σ : Z[a] −→ O∧
S,s

sending a to h, then there exists anOS,s-algebra isomorphism

O∧
X,x −→ O∧

Yσ,yσ

where
Yσ = Spec(Z[u, v, t]/(uv − a))×Spec(Z[a]),σ Spec(O∧

S,s)
and yσ is the point of Yσ lying over the closed point of Spec(O∧

S,s) and having coordinates
u, v equal to zero. Since OS,s is a G-ring by More on Algebra, Proposition 50.12 we may
apply More on Morphisms, Lemma 39.3 to conclude. �

Lemma 20.13. Let f : X → S be a morphism of schemes. Assume
(1) f is proper,
(2) f is at-worst-nodal of relative dimension 1, and
(3) the geometric fibres of f are connected.

Then (a) f∗OX = OS and this holds after any base change, (b) R1f∗OX is a finite locally
free OS-module whose formation commutes with any base change, and (c) Rqf∗OX = 0
for q ≥ 2.

Proof. Part (a) follows from Derived Categories of Schemes, Lemma 32.6. By De-
rived Categories of Schemes, Lemma 32.5 locally on S we can write Rf∗OX = OS ⊕ P
where P is perfect of tor amplitude in [1,∞). Recall that formation ofRf∗OX commutes
with arbitrary base change (Derived Categories of Schemes, Lemma 30.4). Thus for s ∈ S
we have

Hi(P ⊗L
OS

κ(s)) = Hi(Xs,OXs) for i ≥ 1
This is zero unless i = 1 sinceXs is a 1-dimensional Noetherian scheme, see Cohomology,
Proposition 20.7. Then P = H1(P )[−1] and H1(P ) is finite locally free for example
by More on Algebra, Lemma 75.6. Since everything is compatible with base change we
conclude. �

21. More vanishing results

Continuation of Section 6.

Lemma 21.1. In Situation 6.2 assume X is integral and has genus g. Let L be an
invertible OX -module. Let Z ⊂ X be a 0-dimensional closed subscheme with ideal sheaf
I ⊂ OX . If H1(X, IL) is nonzero, then

deg(L) ≤ 2g − 2 + deg(Z)

with strict inequality unless IL ∼= ωX .
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Proof. Any curve, e.g. X , is Cohen-Macaulay. If H1(X, IL) is nonzero, then there
is a nonzero map IL → ωX , see Lemma 4.2. Since IL is torsion free, this map is injective.
Since a field is Gorenstein and X is reduced, we find that the Gorenstein locus U ⊂ X of
X is nonempty, see Duality for Schemes, Lemma 24.4. This lemma also tells us that ωX |U
is invertible. In this way we see we have a short exact sequence

0→ IL → ωX → Q→ 0
where the support ofQ is zero dimensional. Hence we have

0 ≤ dim Γ(X,Q)
= χ(Q)
= χ(ωX)− χ(IL)
= χ(ωX)− deg(L)− χ(I)
= 2g − 2− deg(L) + deg(Z)

by Lemmas 5.1 and 5.2, by (8.1.1), and by Varieties, Lemmas 33.3 and 44.5. We have also
used that deg(Z) = dimk Γ(Z,OZ) = χ(OZ) and the short exact sequence 0 → I →
OX → OZ → 0. The lemma follows. �

Lemma 21.2. In Situation 6.2 assume X is integral and has genus g. Let L be an
invertible OX -module. Let Z ⊂ X be a 0-dimensional closed subscheme with ideal sheaf
I ⊂ OX . If deg(L) > 2g − 2 + deg(Z), then H1(X, IL) = 0 and one of the following
possibilities occurs

(1) H0(X, IL) 6= 0, or
(2) g = 0 and deg(L) = deg(Z)− 1.

In case (2) if Z = ∅, then X ∼= P1
k and L corresponds toOP1(−1).

Proof. The vanishing of H1(X, IL) follows from Lemma 21.1. If H0(X, IL) = 0,
then χ(IL) = 0. From the short exact sequence 0 → IL → L → OZ → 0 we conclude
deg(L) = g−1 + deg(Z). Thus g−1 + deg(Z) > 2g−2 + deg(Z) which implies g = 0
hence (2) holds. If Z = ∅ in case (2), then L−1 is an invertible sheaf of degree 1. This
implies there is an isomorphism X → P1

k and L−1 is the pullback of OP1(1) by Lemma
10.2. �

Lemma 21.3. In Situation 6.2 assume X is integral and has genus g. Let L be an
invertibleOX -module. If deg(L) ≥ 2g, then L is globally generated.

Proof. Let Z ⊂ X be the closed subscheme cut out by the global sections of L. By
Lemma 21.2 we see that Z 6= X . Let I ⊂ OX be the ideal sheaf cutting out Z. Consider
the short exact sequence

0→ IL → L → OZ → 0
If Z 6= ∅, then H1(X, IL) is nonzero as follows from the long exact sequence of coho-
mology. By Lemma 4.2 this gives a nonzero and hence injective map

IL −→ ωX

In particular, we find an injective map H0(X,L) = H0(X, IL) → H0(X,ωX). This is
impossible as

dimkH
0(X,L) = dimkH

1(X,L) + deg(L) + 1− g ≥ g + 1
and dimH0(X,ωX) = g by (8.1.1). �
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Lemma 21.4. In Situation 6.2 assume X is integral and has genus g. Let L be an
invertible OX -module. Let Z ⊂ X be a nonempty 0-dimensional closed subscheme. If
deg(L) ≥ 2g − 1 + deg(Z), then L is globally generated and H0(X,L)→ H0(X,L|Z)
is surjective.

Proof. Global generation by Lemma 21.3. If I ⊂ OX is the ideal sheaf of Z , then
H1(X, IL) = 0 by Lemma 21.1. Hence surjectivity. �

Lemma 21.5. In Situation 6.2, assumeX is geometrically integral over k and has genus
g. Let L be an invertibleOX -module. If deg(L) ≥ 2g + 1, then L is very ample.

Proof. By Lemma 21.3, L is globally generated, and so it determines a morphism f :
X → Pn

k where n = h0(X,L)−1. To show thatL is very ample means to show that f is a
closed immersion. It suffices to check that the base change of f to an algebraic closure k of
k is a closed immersion (Descent, Lemma 23.19). So we may assume that k is algebraically
closed;X remains integral, by assumption. Lemma 21.4 gives that for every 0-dimensional
closed subscheme Z ⊂ X of degree 2, the restriction map H0(X,L) → H0(X,L|Z) is
surjective. By Varieties, Lemma 23.2, L is very ample. �

Lemma 21.6. Let k be a field. Let X be a proper scheme over k which is reduced,
connected, and of dimension 1. Let L be an invertible OX -module. Let Z ⊂ X be a 0-
dimensional closed subscheme with ideal sheaf I ⊂ OX . If H1(X, IL) 6= 0, then there
exists a reduced connected closed subscheme Y ⊂ X of dimension 1 such that

deg(L|Y ) ≤ −2χ(Y,OY ) + deg(Z ∩ Y )
where Z ∩ Y is the scheme theoretic intersection.

Proof. If H1(X, IL) is nonzero, then there is a nonzero map ϕ : IL → ωX , see
Lemma 4.2. Let Y ⊂ X be the union of the irreducible components C of X such that ϕ is
nonzero in the generic point of C. Then Y is a reduced closed subscheme. Let J ⊂ OX
be the ideal sheaf of Y . Since J IL has no embedded associated points (as a submodule of
L) and as ϕ is zero in the generic points of the support of J (by choice of Y and as X is
reduced), we find that ϕ factors as

IL → IL/J IL → ωX

We can view IL/J IL as the pushforward of a coherent sheaf on Y which by abuse of
notation we indicate with the same symbol. Since ωY = Hom(OY , ωX) by Lemma 4.5
we find a map

IL/J IL → ωY

of OY -modules which is injective in the generic points of Y . Let I ′ ⊂ OY be the ideal
sheaf of Z ∩ Y . There is a map IL/J IL → I ′L|Y whose kernel is supported in closed
points. SinceωY is a Cohen-Macaulay module, the map above factors through an injective
map I ′L|Y → ωY . We see that we get an exact sequence

0→ I ′L|Y → ωY → Q→ 0
of coherent sheaves on Y where Q is supported in dimension 0 (this uses that ωY is an
invertible module in the generic points of Y ). We conclude that
0 ≤ dim Γ(Y,Q) = χ(Q) = χ(ωY )− χ(I ′L) = −2χ(OY )− deg(L|Y ) + deg(Z ∩ Y )
by Lemma 5.1 and Varieties, Lemma 33.3. If Y is connected, then this proves the lemma.
If not, then we repeat the last part of the argument for one of the connected components
of Y . �
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Lemma 21.7. Let k be a field. Let X be a proper scheme over k which is reduced,
connected, and of dimension 1. Let L be an invertibleOX -module. Assume that for every
reduced connected closed subscheme Y ⊂ X of dimension 1 we have

deg(L|Y ) ≥ 2 dimkH
1(Y,OY )

Then L is globally generated.

Proof. By induction on the number of irreducible components of X . If X is irre-
ducible, then the lemma holds by Lemma 21.3 applied to X viewed as a scheme over the
field k′ = H0(X,OX). Assume X is not irreducible. Before we continue, if k is finite,
then we replace k by a purely transcendental extension K. This is allowed by Varieties,
Lemmas 22.1, 44.2, 6.7, and 8.4, Cohomology of Schemes, Lemma 5.2, Lemma 4.4 and the
elementary fact that K is geometrically integral over k.

Assume that L is not globally generated to get a contradiction. Then we may choose a
coherent ideal sheaf I ⊂ OX such that H0(X, IL) = H0(X,L) and such that OX/I is
nonzero with support of dimension 0. For example, take I the ideal sheaf of any closed
point in the common vanishing locus of the global sections of L. We consider the short
exact sequence

0→ IL → L → L/IL → 0
Since the support of L/IL has dimension 0 we see that L/IL is generated by global sec-
tions (Varieties, Lemma 33.3). From the short exact sequence, and the fact thatH0(X, IL) =
H0(X,L) we get an injection H0(X,L/IL)→ H1(X, IL).

Recall that the k-vector space H1(X, IL) is dual to Hom(IL, ωX). Choose ϕ : IL →
ωX . By Lemma 21.6 we have H1(X,L) = 0. Hence

dimkH
0(X, IL) = dimkH

0(X,L) = deg(L)+χ(OX) > dimkH
1(X,OX) = dimkH

0(X,ωX)

We conclude that ϕ is not injective on global sections, in particular ϕ is not injective. For
every generic point η ∈ X of an irreducible component ofX denote Vη ⊂ Hom(IL, ωX)
the k-subvector space consisting of those ϕ which are zero at η. Since every associated
point of IL is a generic point of X , the above shows that Hom(IL, ωX) =

⋃
Vη . As X

has finitely many generic points and k is infinite, we conclude Hom(IL, ωX) = Vη for
some η. Let η ∈ C ⊂ X be the corresponding irreducible component. Let Y ⊂ X be the
union of the other irreducible components of X . Then Y is a nonempty reduced closed
subscheme not equal to X . Let J ⊂ OX be the ideal sheaf of Y . Please keep in mind that
the support of J is C.

Let ϕ : IL → ωX be arbitrary. Since J IL has no embedded associated points (as a
submodule of L) and as ϕ is zero in the generic point η of the support of J , we find that
ϕ factors as

IL → IL/J IL → ωX

We can view IL/J IL as the pushforward of a coherent sheaf on Y which by abuse of
notation we indicate with the same symbol. Since ωY = Hom(OY , ωX) by Lemma 4.5
we find a factorization

IL → IL/J IL ϕ′

−→ ωY → ωX

ofϕ. Let I ′ ⊂ OY be the image of I ⊂ OX . There is a surjective map IL/J IL → I ′L|Y
whose kernel is supported in closed points. Since ωY is a Cohen-Macaulay module on
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Y , the map ϕ′ factors through a map ϕ′′ : I ′L|Y → ωY . Thus we have commutative
diagrams

0 // IL //

��

L //

��

L/IL //

��

0

0 // I ′L|Y // L|Y // L|Y /I ′L|Y // 0

and

IL
ϕ
//

��

ωX

I ′L|Y
ϕ′′

// ωY

OO

Now we can finish the proof as follows: Since for every ϕ we have a ϕ′′ and since ωX ∈
Coh(OX) represents the functor F 7→ Homk(H1(X,F), k), we find that H1(X, IL)→
H1(Y, I ′L|Y ) is injective. Since the boundary H0(X,L/IL)→ H1(X, IL) is injective,
we conclude the composition

H0(X,L/IL)→ H0(X,L|Y /I ′L|Y )→ H1(X, I ′L|Y )
is injective. SinceL/IL → L|Y /I ′L|Y is a surjective map of coherent modules whose sup-
ports have dimension 0, we see that the first mapH0(X,L/IL)→ H0(X,L|Y /I ′L|Y ) is
surjective (and hence bijective). But by induction we have that L|Y is globally generated
(if Y is disconnected this still works of course) and hence the boundary map

H0(X,L|Y /I ′L|Y )→ H1(X, I ′L|Y )
cannot be injective. This contradiction finishes the proof. �

22. Contracting rational tails

In this section we discuss the simplest possible case of contracting a scheme to improve
positivity properties of its canonical sheaf.

Example 22.1 (Contracting a rational tail). Let k be a field. LetX be a proper scheme
over k having dimension 1 and H0(X,OX) = k. Assume the singularities of X are
at-worst-nodal. A rational tail will be an irreducible component C ⊂ X (viewed as an
integral closed subscheme) with the following properties

(1) X ′ 6= ∅ where X ′ ⊂ X is the scheme theoretic closure of X \ C ,
(2) the scheme theoretic intersection C ∩X ′ is a single reduced point x,
(3) H0(C,OC) maps isomorphically to the residue field of x, and
(4) C has genus zero.

Since there are at least two irreducible components of X passing through x, we conclude
that x is a node. Set k′ = H0(C,OC) = κ(x). Then k′/k is a finite separable extension
of fields (Lemma 19.7). There is a canonical morphism

c : X −→ X ′

inducing the identity on X ′ and mapping C to x ∈ X ′ via the canonical morphism C →
Spec(k′) = x. This follows from Morphisms, Lemma 4.6 since X is the scheme theoretic
union of C and X ′ (as X is reduced). Moreover, we claim that

c∗OX = OX′ and R1c∗OX = 0
To see this, denote iC : C → X , iX′ : X ′ → X and ix : x → X the embeddings and use
the exact sequence

0→ OX → iC,∗OC ⊕ iX′,∗OX′ → ix,∗κ(x)→ 0
of Morphisms, Lemma 4.6. Looking at the long exact sequence of higher direct images,
it follows that it suffices to show H0(C,OC) = k′ and H1(C,OC) = 0 which follows
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from the assumptions. Observe that X ′ is also a proper scheme over k, of dimension 1
whose singularities are at-worst-nodal (Lemma 19.17) has H0(X ′,OX′) = k, and X ′ has
the same genus as X . We will say c : X → X ′ is the contraction of a rational tail.

Lemma 22.2. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let C ⊂ X be a
rational tail (Example 22.1). Then deg(ωX |C) < 0.

Proof. Let X ′ ⊂ X be as in the example. Then we have a short exact sequence
0→ ωC → ωX |C → OC∩X′ → 0

See Lemmas 4.6, 19.16, and 19.17. With k′ as in the example we see that deg(ωC) = −2[k′ :
k] as C ∼= P1

k′ by Proposition 10.4 and deg(C ∩ X ′) = [k′ : k]. Hence deg(ωX |C) =
−[k′ : k] which is negative. �

Lemma 22.3. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let C ⊂ X be a
rational tail (Example 22.1). For any field extension K/k the base change CK ⊂ XK is a
finite disjoint union of rational tails.

Proof. Let x ∈ C and k′ = κ(x) be as in the example. Observe that C ∼= P1
k′ by

Proposition 10.4. Since k′/k is finite separable, we see that k′ ⊗k K = K ′
1 × . . .×K ′

n is
a finite product of finite separable extensions K ′

i/K. Set Ci = P1
K′
i

and denote xi ∈ Ci
the inverse image of x. Then CK =

∐
Ci and X ′

K ∩ Ci = xi as desired. �

Lemma 22.4. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. If X does not
have a rational tail (Example 22.1), then for every reduced connected closed subscheme
Y ⊂ X , Y 6= X of dimension 1 we have deg(ωX |Y ) ≥ dimkH

1(Y,OY ).

Proof. Let Y ⊂ X be as in the statement. Then k′ = H0(Y,OY ) is a field and
a finite extension of k and [k′ : k] divides all numerical invariants below associated to
Y and coherent sheaves on Y , see Varieties, Lemma 44.10. Let Z ⊂ X be as in Lemma
4.6. We will use the results of this lemma and of Lemmas 19.16 and 19.17 without further
mention. Then we get a short exact sequence

0→ ωY → ωX |Y → OY ∩Z → 0
See Lemma 4.6. We conclude that

deg(ωX |Y ) = deg(Y ∩ Z) + deg(ωY ) = deg(Y ∩ Z)− 2χ(Y,OY )
Hence, if the lemma is false, then

2[k′ : k] > deg(Y ∩ Z) + dimkH
1(Y,OY )

Since Y ∩Z is nonempty and by the divisiblity mentioned above, this can happen only if
Y ∩ Z is a single k′-rational point of the smooth locus of Y and H1(Y,OY ) = 0. If Y is
irreducible, then this implies Y is a rational tail. If Y is reducible, then since deg(ωX |Y ) =
−[k′ : k] we find there is some irreducible component C of Y such that deg(ωX |C) < 0,
see Varieties, Lemma 44.6. Then the analysis above applied to C gives that C is a rational
tail. �

Lemma 22.5. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Assume X does
not have a rational tail (Example 22.1). If
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(1) the genus ofX is 0, thenX is isomorphic to an irreducible plane conic and ω⊗−1
X

is very ample,
(2) the genus of X is 1, then ωX ∼= OX ,
(3) the genus of X is ≥ 2, then ω⊗m

X is globally generated for m ≥ 2.

Proof. By Lemma 19.16 we find that X is Gorenstein, i.e., ωX is an invertible OX -
module.
If the genus of X is zero, then deg(ωX) < 0, hence if X has more than one irreducible
component, we get a contradiction with Lemma 22.4. In the irreducible case we see that
X is isomorphic to an irreducible plane conic and ω⊗−1

X is very ample by Lemma 10.3.
If the genus ofX is 1, then ωX has a global section and deg(ωX |C) = 0 for all irreducible
components. Namely, deg(ωX |C) ≥ 0 for all irreducible components C by Lemma 22.4,
the sum of these numbers is 0 by Lemma 8.3, and we can apply Varieties, Lemma 44.6.
Then ωX ∼= OX by Varieties, Lemma 44.13.
Assume the genus g ofX is greater than or equal to 2. IfX is irreducible, then we are done
by Lemma 21.3. AssumeX reducible. By Lemma 22.4 the inequalities of Lemma 21.7 hold
for every Y ⊂ X as in the statement, except for Y = X . Analyzing the proof of Lemma
21.7 we see that (in the reducible case) the only inequality used for Y = X are

deg(ω⊗m
X ) > −2χ(OX) and deg(ω⊗m

X ) + χ(OX) > dimkH
1(X,OX)

Since these both hold under the assumption g ≥ 2 and m ≥ 2 we win. �

Lemma 22.6. Let k be a field. Let X be a proper scheme over k of dimension 1 with
H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Consider a sequence

X = X0 → X1 → . . .→ Xn = X ′

of contractions of rational tails (Example 22.1) until none are left. Then
(1) if the genus of X is 0, then X ′ is an irreducible plane conic,
(2) if the genus of X is 1, then ωX′ ∼= OX ,
(3) if the genus of X is > 1, then ω⊗m

X′ is globally generated for m ≥ 2.
If the genus of X is ≥ 1, then the morphism X → X ′ is independent of choices and
formation of this morphism commutes with base field extensions.

Proof. We proceed by contracting rational tails until there are none left. Then we
see that (1), (2), (3) hold by Lemma 22.5.
Uniqueness. To see that f : X → X ′ is independent of the choices made, it suffices to
show: any rational tail C ⊂ X is mapped to a point by X → X ′; some details omitted.
If not, then we can find a section s ∈ Γ(X ′, ω⊗2

X′ ) which does not vanish in the generic
point of the irreducible component f(C). Since in each of the contractions Xi → Xi+1
we have a section Xi+1 → Xi, there is a section X ′ → X of f . Then we have an exact
sequence

0→ ωX′ → ωX → ωX |X′′ → 0
where X ′′ ⊂ X is the union of the irreducible components contracted by f . See Lemma
4.6. Thus we get a map ω⊗2

X′ → ω⊗2
X and we can take the image of s to get a section of

ω⊗2
X not vanishing in the generic point ofC. This is a contradiction with the fact that the

restriction of ωX to a rational tail has negative degree (Lemma 22.2).
The statement on base field extensions follows from Lemma 22.3. Some details omitted.

�
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23. Contracting rational bridges

In this section we discuss the next simplest possible case (after the case discussed in Section
22) of contracting a scheme to improve positivity properties of its canonical sheaf.

Example 23.1 (Contracting a rational bridge). Let k be a field. Let X be a proper
scheme over k having dimension 1 and H0(X,OX) = k. Assume the singularities of X
are at-worst-nodal. A rational bridge will be an irreducible component C ⊂ X (viewed
as an integral closed subscheme) with the following properties

(1) X ′ 6= ∅ where X ′ ⊂ X is the scheme theoretic closure of X \ C ,
(2) the scheme theoretic interesection C ∩X ′ has degree 2 over H0(C,OC), and
(3) C has genus zero.

Set k′ = H0(C,OC) and k′′ = H0(C ∩X ′,OC∩X′). Then k′ is a field (Varieties, Lemma
9.3) and dimk′(k′′) = 2. Since there are at least two irreducible components ofX passing
through each point ofC∩X ′, we conclude these points are nodes ofX and smooth points
on both C and X ′ (Lemma 19.17). Hence k′/k is a finite separable extension of fields and
k′′/k′ is either a degree 2 separable extension of fields or k′′ = k′ × k′ (Lemma 19.7). By
Section 14 there exists a pushout

C ∩X ′ //

��

X ′

a

��
Spec(k′) // Y

with many good properties (all of which we will use below without futher mention). Let
y ∈ Y be the image of Spec(k′)→ Y . Then

O∧
Y,y
∼= k′[[s, t]]/(st) or O∧

Y,y
∼= {f ∈ k′′[[s]] : f(0) ∈ k′}

depending on whether C ∩X ′ has 2 or 1 points. This follows from Lemma 14.1 and the
fact thatOX′,p

∼= κ(p)[[t]] for p ∈ C ∩X ′ by More on Algebra, Lemma 38.4. Thus we see
that y ∈ Y is a node, see Lemmas 19.7 and 19.4 and in particular the discussion of Case II
in the proof of (2)⇒ (1) in Lemma 19.4. Thus the singularities of Y are at-worst-nodal.

We can extend the commutative diagram above to a diagram

C ∩X ′ //

��

X ′

a

��

// X

c
zz

C

{{

oo

Spec(k′) // Y Spec(k′)oo

where the two lower horizontal arrows are the same. Namely, X is the scheme theoretic
union ofX ′ andC (thus a pushout by Morphisms, Lemma 4.6) and the morphismsC → Y
and X ′ → Y agree on C ∩X ′. Finally, we claim that

c∗OX = OY and R1c∗OX = 0

To see this use the exact sequence

0→ OX → OC ⊕OX′ → OC∩X′ → 0

of Morphisms, Lemma 4.6. The long exact sequence of higher direct images is

0→ c∗OX → c∗OC ⊕ c∗OX′ → c∗OC∩X′ → R1c∗OX → R1c∗OC ⊕R1c∗OX′
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Since c|X′ = a is affine we see that R1c∗OX′ = 0. Since c|C factors as C → Spec(k′)→
X and since C has genus zero, we find that R1c∗OC = 0. Since OX′ → OC∩X′ is
surjective and since c|X′ is affine, we see that c∗OX′ → c∗OC∩X′ is surjective. This
proves that R1c∗OX = 0. Finally, we have OY = c∗OX by the exact sequence and the
description of the structure sheaf of the pushout in More on Morphisms, Proposition 67.3.

All of this means thatY is also a proper scheme over k having dimension 1 andH0(Y,OY ) =
k whose singularities are at-worst-nodal (Lemma 19.17) and that Y has the same genus as
X . We will say c : X → Y is the contraction of a rational bridge.

Lemma 23.2. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let C ⊂ X be a
rational bridge (Example 23.1). Then deg(ωX |C) = 0.

Proof. Let X ′ ⊂ X be as in the example. Then we have a short exact sequence

0→ ωC → ωX |C → OC∩X′ → 0

See Lemmas 4.6, 19.16, and 19.17. With k′′/k′/k as in the example we see that deg(ωC) =
−2[k′ : k] as C has genus 0 (Lemma 5.2) and deg(C ∩X ′) = [k′′ : k] = 2[k′ : k]. Hence
deg(ωX |C) = 0. �

Lemma 23.3. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Assume the singularities of X are at-worst-nodal. Let C ⊂ X be a
rational bridge (Example 23.1). For any field extension K/k the base change CK ⊂ XK

is a finite disjoint union of rational bridges.

Proof. Let k′′/k′/k be as in the example. Since k′/k is finite separable, we see that
k′ ⊗k K = K ′

1 × . . . ×K ′
n is a finite product of finite separable extensions K ′

i/K. The
corresponding product decomposition k′′⊗kK =

∏
K ′′
i gives degree 2 separable algebra

extensions K ′′
i /K

′
i. Set Ci = CK′

i
. Then CK =

∐
Ci and therefore each Ci has genus 0

(viewed as a curve over K ′
i), because H1(CK ,OCK ) = 0 by flat base change. Finally, we

have X ′
K ∩ Ci = Spec(K ′′

i ) has degree 2 over K ′
i as desired. �

Lemma 23.4. Let c : X → Y be the contraction of a rational bridge (Example 23.1).
Then c∗ωY ∼= ωX .

Proof. You can prove this by direct computation, but we prefer to use the character-
ization ofωX as the coherentOX -module which represents the functor Coh(OX)→ Sets,
F 7→ Homk(H1(X,F), k) = H1(X,F)∨, see Lemma 4.2 or Duality for Schemes, Lemma
22.5.

To be precise, denote CY the category whose objects are invertibleOY -modules and whose
maps areOY -module homomorphisms. Denote CX the category whose objects are invert-
ible OX -modules L with L|C ∼= OC and whose maps are OY -module homomorphisms.
We claim that the functor

c∗ : CY → CX
is an equivalence of categories. Namely, by More on Morphisms, Lemma 72.8 it is essen-
tially surjective. Then the projection formula (Cohomology, Lemma 54.2) shows c∗c

∗N =
N and hence c∗ is an equivalence with quasi-inverse given by c∗.

We claim ωX is an object of CX . Namely, we have a short exact sequence

0→ ωC → ωX |C → OC∩X′ → 0
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See Lemma 4.6. Taking degrees we find deg(ωX |C) = 0 (small detail omitted). Thus
ωX |C is trivial by Lemma 10.1 and ωX is an object of CX .

Since R1c∗OX = 0 the projection formula shows that R1c∗c
∗N = 0 for N ∈ Ob(CY ).

Therefore the Leray spectral sequence (Cohomology, Lemma 13.6) the diagram

CY
c∗

//

H1(Y,−)∨ !!

CX

H1(X,−)∨}}
Sets

of categories and functors is commutative. Since ωY ∈ Ob(CY ) represents the south-east
arrow and ωX ∈ Ob(CX) represents the south-east arrow we conclude by the Yoneda
lemma (Categories, Lemma 3.5). �

Lemma 23.5. Let k be a field. Let X be a proper scheme over k having dimension 1
and H0(X,OX) = k. Assume

(1) the singularities of X are at-worst-nodal,
(2) X does not have a rational tail (Example 22.1),
(3) X does not have a rational bridge (Example 23.1),
(4) the genus g of X is ≥ 2.

Then ωX is ample.

Proof. It suffices to show that deg(ωX |C) > 0 for every irreducible component C
of X , see Varieties, Lemma 44.15. If X = C is irreducible, this follows from g ≥ 2 and
Lemma 8.3. Otherwise, set k′ = H0(C,OC). This is a field and a finite extension of k and
[k′ : k] divides all numerical invariants below associated to C and coherent sheaves on C ,
see Varieties, Lemma 44.10. Let X ′ ⊂ X be the closure of X \ C as in Lemma 4.6. We
will use the results of this lemma and of Lemmas 19.16 and 19.17 without further mention.
Then we get a short exact sequence

0→ ωC → ωX |C → OC∩X′ → 0

See Lemma 4.6. We conclude that

deg(ωX |C) = deg(C ∩X ′) + deg(ωC) = deg(C ∩X ′)− 2χ(C,OC)

Hence, if the lemma is false, then

2[k′ : k] ≥ deg(C ∩X ′) + 2 dimkH
1(C,OC)

Since C ∩X ′ is nonempty and by the divisiblity mentioned above, this can happen only
if either

(a) C ∩X ′ is a single k′-rational point of C and H1(C,OC) = 0, and
(b) C ∩X ′ has degree 2 over k′ and H1(C,OC) = 0.

The first possibility means C is a rational tail and the second that C is a rational bridge.
Since both are excluded the proof is complete. �

Lemma 23.6. Let k be a field. Let X be a proper scheme over k of dimension 1 with
H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are at-worst-nodal
and that X has no rational tails. Consider a sequence

X = X0 → X1 → . . .→ Xn = X ′



24. CONTRACTING TO A STABLE CURVE 4375

of contractions of rational bridges (Example 23.1) until none are left. Then ωX′ ample.
The morphism X → X ′ is independent of choices and formation of this morphism com-
mutes with base field extensions.

Proof. We proceed by contracting rational bridges until there are none left. Then
ωX′ is ample by Lemma 23.5.

Denote f : X → X ′ the composition. By Lemma 23.4 and induction we see that f∗ωX′ =
ωX . We have f∗OX = OX′ because this is true for contraction of a rational bridge. Thus
the projection formula says that f∗f

∗L = L for all invertibleOX′ -modules L. Hence

Γ(X ′, ω⊗m
X′ ) = Γ(X,ω⊗m

X )

for all m. Since X ′ is the Proj of the direct sum of these by Morphisms, Lemma 43.17 we
conclude that the morphism X → X ′ is completely canonical.

Let K/k be an extension of fields, then ωXK is the pullback of ωX (Lemma 4.4) and we
have Γ(X,ω⊗m

X )⊗k K is equal to Γ(XK , ω
⊗m
XK

) by Cohomology of Schemes, Lemma 5.2.
Thus formation of f : X → X ′ commutes with base change by K/k by the arguments
given above. Some details omitted. �

24. Contracting to a stable curve

In this section we combine the contraction morphisms found in Sections 22 and 23. Namely,
suppose that k is a field and letX be a proper scheme over k of dimension 1 withH0(X,OX) =
k having genus g ≥ 2. Assume the singularities of X are at-worst-nodal. Composing the
morphism of Lemma 22.6 with the morphism of Lemma 23.6 we get a morphism

c : X −→ Y

such that Y also is a proper scheme over k of dimension 1 whose singularities are at worst
nodal, with k = H0(Y,OY ) and having genus g, such that OY = c∗OX and R1c∗OX =
0, and such that ωY is ample on Y . Lemma 24.2 shows these conditions in fact characterize
this morphism.

Lemma 24.1. Let k be a field. Let c : X → Y be a morphism of proper schemes over
k Assume

(1) OY = c∗OX and R1c∗OX = 0,
(2) X and Y are reduced, Gorenstein, and have dimension 1,
(3) ∃m ∈ Z with H1(X,ω⊗m

X ) = 0 and ω⊗m
X generated by global sections.

Then c∗ωY ∼= ωX .

Proof. The fibres of c are geometrically connected by More on Morphisms, Theorem
53.4. In particular c is surjective. There are finitely many closed points y = y1, . . . , yr
of Y where Xy has dimension 1 and over Y \ {y1, . . . , yr} the morphism c is an isomor-
phism. Some details omitted; hint: outside of {y1, . . . , yr} the morphism c is finite, see
Cohomology of Schemes, Lemma 21.1.

Let us carefully construct a map b : c∗ωY → ωX . Denote f : X → Spec(k) and g : Y →
Spec(k) the structure morphisms. We have f !k = ωX [1] and g!k = ωY [1], see Lemma
4.1 and its proof. Then f ! = c! ◦ g! and hence c!ωY = ωX . Thus there is a functorial
isomorphism

HomD(OX)(F , ωX) −→ HomD(OY )(Rc∗F , ωY )
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for coherent OX -modules F by definition of c!7. This isomorphism is induced by a trace
map t : Rc∗ωX → ωY (the counit of the adjunction). By the projection formula (Coho-
mology, Lemma 54.2) the canonical map a : ωY → Rc∗c

∗ωY is an isomorphism. Com-
bining the above we see there is a canonical map b : c∗ωY → ωX such that

t ◦Rc∗(b) = a−1

In particular, if we restrict b to c−1(Y \ {y1, . . . , yr}) then it is an isomorphism (because
it is a map between invertible modules whose composition with another gives the isomor-
phism a−1).

Choose m ∈ Z as in (3) consider the map

b⊗m : Γ(Y, ω⊗m
Y ) −→ Γ(X,ω⊗m

X )
This map is injective because Y is reduced and by the last property of b mentioned in its
construction. By Riemann-Roch (Lemma 5.2) we have χ(X,ω⊗m

X ) = χ(Y, ω⊗m
Y ). Thus

dimk Γ(Y, ω⊗m
Y ) ≥ dimk Γ(X,ω⊗m

X ) = χ(X,ω⊗m
X )

and we conclude b⊗m induces an isomorphism on global sections. So b⊗m : c∗ω⊗m
Y →

ω⊗m
X is surjective as generators of ω⊗m

X are in the image. Hence b⊗m is an isomorphism.
Thus b is an isomorphism. �

Lemma 24.2. Let k be a field. Let X be a proper scheme over k of dimension 1 with
H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are at-worst-nodal.
There is a unique morphism (up to unique isomorphism)

c : X −→ Y

of schemes over k having the following properties:
(1) Y is proper over k, dim(Y ) = 1, the singularities of Y are at-worst-nodal,
(2) OY = c∗OX and R1c∗OX = 0, and
(3) ωY is ample on Y .

Proof. Existence: A morphism with all the properties listed exists by combining
Lemmas 22.6 and 23.6 as discussed in the introduction to this section. Moreover, we see
that it can be written as a composition

X → X1 → X2 . . .→ Xn → Xn+1 → . . .→ Xn+n′

where the first n morphisms are contractions of rational tails and the last n′ morphisms
are contractions of rational bridges. Note that property (2) holds for each contraction of a
rational tail (Example 22.1) and contraction of a rational bridge (Example 23.1). It is easy
to see that this property is inherited by compositions of morphisms.

Uniqueness: Let c : X → Y be a morphism satisfying conditions (1), (2), and (3). We will
show that there is a unique isomorphism Xn+n′ → Y compatible with the morphisms
X → Xn+n′ and c.

Before we start the proof we make some observations about c. We first observe that the fi-
bres of c are geometrically connected by More on Morphisms, Theorem 53.4. In particular
c is surjective. For a closed point y ∈ Y the fibre Xy satisfies

H1(Xy,OXy ) = 0 and H0(Xy,OXy ) = κ(y)

7As the restriction of the right adjoint of Duality for Schemes, Lemma 3.1 to D+
QCoh(OY ).
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The first equality by More on Morphisms, Lemma 72.1 and the second by More on Mor-
phisms, Lemma 72.4. Thus either Xy = x where x is the unique point of X mapping to
y and has the same residue field as y, or Xy is a 1-dimensional proper scheme over κ(y).
Observe that in the second case Xy is Cohen-Macaulay (Lemma 6.1). However, since X
is reduced, we see that Xy must be reduced at all of its generic points (details omitted),
and hence Xy is reduced by Properties, Lemma 12.4. It follows that the singularities of
Xy are at-worst-nodal (Lemma 19.17). Note that the genus of Xy is zero (see above). Fi-
nally, there are only a finite number of points y where the fibre Xy has dimension 1, say
{y1, . . . , yr}, and c−1(Y \ {y1, . . . , yr}) maps isomorphically to Y \ {y1, . . . , yr} by c.
Some details omitted; hint: outside of {y1, . . . , yr} the morphism c is finite, see Cohomol-
ogy of Schemes, Lemma 21.1.

Let C ⊂ X be a rational tail. We claim that c maps C to a point. Assume that this is
not the case to get a contradiction. Then the image of C is an irreducible component
D ⊂ Y . Recall that H0(C,OC) = k′ is a finite separable extension of k and that C has
a k′-rational point x which is also the unique intersection of C with the “rest” of X . We
conclude from the general discussion above that C \ {x} ⊂ c−1(Y \ {y1, . . . , yr}) maps
isomorphically to an open V of D. Let y = c(x) ∈ D. Observe that y is the only point
of D meeting the “rest” of Y . If y 6∈ {y1, . . . , yr}, then C ∼= D and it is clear that D
is a rational tail of Y which is a contradiction with the ampleness of ωY (Lemma 22.2).
Thus y ∈ {y1, . . . , yr} and dim(Xy) = 1. Then x ∈ Xy ∩ C and x is a smooth point of
Xy and C (Lemma 19.17). If y ∈ D is a singular point of D, then y is a node and then
Y = D (because there cannot be another component of Y passing through y by Lemma
19.17). Then X = Xy ∪ C which means g = 0 because it is equal to the genus of Xy by
the discussion in Example 22.1; a contradiction. If y ∈ D is a smooth point of D, then
C → D is an isomorphism (because the nonsingular projective model is unique andC and
D are birational, see Section 2). Then D is a rational tail of Y which is a contradiction
with ampleness of ωY .

Assume n ≥ 1. If C ⊂ X is the rational tail contracted by X → X1, then we see that C
is mapped to a point of Y by the previous paragraph. Hence c : X → Y factors through
X → X1 (because X is the pushout of C and X1, see discussion in Example 22.1). After
replacing X by X1 we have decreased n. By induction we may assume n = 0, i.e., X does
not have a rational tail.

Assume n = 0, i.e., X does not have any rational tails. Then ω⊗2
X and ω⊗3

X are globally
generated by Lemma 22.5. It follows thatH1(X,ω⊗3

X ) = 0 by Lemma 6.4. By Lemma 24.1
applied withm = 3 we find that c∗ωY ∼= ωX . We also have thatωX = (X → Xn′)∗ωXn′

by Lemma 23.4 and induction. Applying the projection formula for both c andX → Xn′

we conclude that
Γ(Xn′ , ω⊗m

Xn′ ) = Γ(X,ω⊗m
X ) = Γ(Y, ω⊗m

Y )
for all m. Since Xn′ and Y are the Proj of the direct sum of these by Morphisms, Lemma
43.17 we conclude that there is a canonical isomorphism Xn′ = Y as desired. We omit
the verification that this is the unique isomorphism making the diagram commute. �

Lemma 24.3. Let k be a field. Let X be a proper scheme over k of dimension 1 with
H0(X,OX) = k having genus g ≥ 2. Assume the singularities of X are at-worst-nodal
and ωX is ample. Then ω⊗3

X is very ample and H1(X,ω⊗3
X ) = 0.

Proof. Combining Varieties, Lemma 44.15 and Lemmas 22.2 and 23.2 we see that X
contains no rational tails or bridges. Then we see thatω⊗3

X is globally generated by Lemma
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22.6. Choose a k-basis s0, . . . , sn of H0(X,ω⊗3
X ). We get a morphism

ϕω⊗3
X
,(s0,...,sn) : X −→ Pn

k

See Constructions, Section 13. The lemma asserts that this morphism is a closed immersion.
To check this we may replace k by its algebraic closure, see Descent, Lemma 23.19. Thus
we may assume k is algebraically closed.
Assume k is algebraically closed. We will use Varieties, Lemma 23.2 to prove the lemma.
Let Z ⊂ X be a closed subscheme of degree 2 over Z with ideal sheaf I ⊂ OX . We have
to show that

H0(X,L)→ H0(Z,L|Z)
is surjective. Thus it suffices to show that H1(X, IL) = 0. To do this we will use Lemma
21.6. Thus it suffices to show that

3 deg(ωX |Y ) > −2χ(Y,OY ) + deg(Z ∩ Y )
for every reduced connected closed subscheme Y ⊂ X . Since k is algebraically closed
and Y connected and reduced we have H0(Y,OY ) = k (Varieties, Lemma 9.3). Hence
χ(Y,OY ) = 1− dimH1(Y,OY ). Thus we have to show

3 deg(ωX |Y ) > −2 + 2 dimH1(Y,OY ) + deg(Z ∩ Y )
which is true by Lemma 22.4 except possibly if Y = X or if deg(ωX |Y ) = 0. Since ωX is
ample the second possibility does not occur (see first lemma cited in this proof). Finally,
if Y = X we can use Riemann-Roch (Lemma 5.2) and the fact that g ≥ 2 to see that the
inquality holds. The same argument with Z = ∅ shows that H1(X,ω⊗3

X ) = 0. �

25. Vector fields

In this section we study the space of vector fields on a curve. Vector fields correspond to
infinitesimal automorphisms, see More on Morphisms, Section 9, hence play an important
role in moduli theory.
Let k be an algebraically closed field. Let X be a finite type scheme over k. Let x ∈ X be
a closed point. We will say an element D ∈ Derk(OX ,OX) fixes x if D(I) ⊂ I where
I ⊂ OX is the ideal sheaf of x.

Lemma 25.1. Let k be an algebraically closed field. Let X be a smooth, proper, con-
nected curve over k. Let g be the genus of X .

(1) If g ≥ 2, then Derk(OX ,OX) is zero,
(2) if g = 1 and D ∈ Derk(OX ,OX) is nonzero, then D does not fix any closed

point of X , and
(3) if g = 0 and D ∈ Derk(OX ,OX) is nonzero, then D fixes at most 2 closed

points of X .

Proof. Recall that we have a universal k-derivation d : OX → ΩX/k and hence
D = θ ◦ d for someOX -linear map θ : ΩX/k → OX . Recall that ΩX/k ∼= ωX , see Lemma
4.1. By Riemann-Roch we have deg(ωX) = 2g − 2 (Lemma 5.2). Thus we see that θ is
forced to be zero if g > 1 by Varieties, Lemma 44.12. This proves part (1). If g = 1, then a
nonzero θ does not vanish anywhere and if g = 0, then a nonzero θ vanishes in a divisor
of degree 2. Thus parts (2) and (3) follow if we show that vanishing of θ at a closed point
x ∈ X is equivalent to the statement that D fixes x (as defined above). Let z ∈ OX,x be
a uniformizer. Then dz is a basis element for ΩX,x, see Lemma 12.3. Since D(z) = θ(dz)
we conclude. �
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Lemma 25.2. Let k be an algebraically closed field. LetX be an at-worst-nodal, proper,
connected 1-dimensional scheme over k. Let ν : Xν → X be the normalization. Let
S ⊂ Xν be the set of points where ν is not an isomorphism. Then

Derk(OX ,OX) = {D′ ∈ Derk(OXν ,OXν ) | D′ fixes every xν ∈ S}

Proof. Let x ∈ X be a node. Let x′, x′′ ∈ Xν be the inverse images of x. (Every
node is a split node since k is algebriacally closed, see Definition 19.10 and Lemma 19.11.)
Let u ∈ OXν ,x′ and v ∈ OXν ,x′′ be uniformizers. Observe that we have an exact sequence

0→ OX,x → OXν ,x′ ×OXν ,x′′ → k → 0
This follows from Lemma 16.3. Thus we can view u and v as elements of OX,x with
uv = 0.
Let D ∈ Derk(OX ,OX). Then 0 = D(uv) = vD(u) + uD(v). Since (u) is annihilator
of v inOX,x and vice versa, we see thatD(u) ∈ (u) andD(v) ∈ (v). AsOXν ,x′ = k+(u)
we conclude that we can extend D to OXν ,x′ and moreover the extension fixes x′. This
produces a D′ in the right hand side of the equality. Conversely, given a D′ fixing x′ and
x′′ we find that D′ preserves the subring OX,x ⊂ OXν ,x′ × OXν ,x′′ and this is how we
go from right to left in the equality. �

Lemma 25.3. Let k be an algebraically closed field. LetX be an at-worst-nodal, proper,
connected 1-dimensional scheme over k. Assume the genus of X is at least 2 and that X
has no rational tails or bridges. Then Derk(OX ,OX) = 0.

Proof. Let D ∈ Derk(OX ,OX). Let Xν be the normalization of X . Let D′ ∈
Derk(OXν ,OXν ) be the element corresponding to D via Lemma 25.2. Let C ⊂ Xν be an
irreducible component. If the genus of C is > 1, then D′|OC

= 0 by Lemma 25.1 part (1).
If the genus of C is 1, then there is at least one closed point c of C which maps to a node
on X (since otherwise X ∼= C would have genus 1). By the correspondence this means
that D′|OC

fixes c hence is zero by Lemma 25.1 part (2). Finally, if the genus of C is zero,
then there are at least 3 pairwise distinct closed points c1, c2, c3 ∈ C mapping to nodes
in X , since otherwise either X is C with two points glued (two points of C mapping to
the same node), or C is a rational bridge (two points mapping to different nodes of X), or
C is a rational tail (one point mapping to a node of X). These three possibilities are not
permitted since C has genus ≥ 2 and has no rational bridges, or rational tails. Whence
D′|OC

fixes c1, c2, c3 hence is zero by Lemma 25.1 part (3). �
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CHAPTER 54

Resolution of Surfaces

1. Introduction

This chapter discusses resolution of singularities of surfaces following Lipman [?] and
mostly following the exposition of Artin in [?]. The main result (Theorem 14.5) tells
us that a Noetherian 2-dimensional scheme Y has a resolution of singularities when it has
a finite normalization Y ν → Y with finitely many singular points yi ∈ Y ν and for each
i the completionO∧

Y ν ,yi
is normal.

To be sure, if Y is a 2-dimensional scheme of finite type over a quasi-excellent base ring
R (for example a field or a Dedekind domain with fraction field of characteristic 0 such
as Z) then the normalization of Y is finite, has finitely many singular points, and the
completions of the local rings are normal. See the discussion in More on Algebra, Sections
47, 50, and 52 and More on Algebra, Lemma 42.2. Thus such a Y has a resolution of
singularities.

A rough outline of the proof is as follows. LetA be a Noetherian local domain of dimension
2. The steps of the proof are as follows

N replace A by its normalization,
V prove Grauert-Riemenschneider,
B show there is a maximum g of the lengths of H1(X,OX) over all normal mod-

ifications X → Spec(A) and reduce to the case g = 0,
R we say A defines a rational singularity if g = 0 and in this case after a finite

number of blowups we may assume A is Gorenstein and g = 0,
D we sayA defines a rational double point if g = 0 andA is Gorenstein and in this

case we explicitly resolve singularities.
Each of these steps needs assumptions on the ringA. We will discuss each of these in turn.

Ad N: Here we need to assume that A has a finite normalization (this is not automatic).
Throughout most of the chapter we will assume that our scheme is Nagata if we need to
know some normalization is finite. However, being Nagata is a slightly stronger condition
than is given to us in the statement of the theorem. A solution to this (slight) problem
would have been to use that our ring A is formally unramified (i.e., its completion is re-
duced) and to use Lemma 11.5. However, the way our proof works, it turns out it is easier
to use Lemma 11.6 to lift finiteness of the normalization over the completion to finiteness
of the normalization over A.

Ad V: This is Proposition 7.8 and it roughly states that for a normal modification f :
X → Spec(A) one has R1f∗ωX = 0 where ωX is the dualizing module of X/A (Remark
7.7). In fact, by duality the result is equivalent to a statement (Lemma 7.6) about the object
Rf∗OX in the derived category D(A). Having said this, the proof uses the standard fact
that components of the special fibre have positive conormal sheaves (Lemma 7.4).

4383
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Ad B: This is in some sense the most subtle part of the proof. In the end we only need to use
the output of this step when A is a complete Noetherian local ring, although the writeup
is a bit more general. The terminology is set in Definition 8.3. If g (as defined above) is
bounded, then a straightforward argument shows that we can find a normal modification
X → Spec(A) such that all singular points ofX are rational singularities, see Lemma 8.5.
We show that given a finite extensionA ⊂ B, then g is bounded forB if it is bounded for
A in the following two cases: (1) if the fraction field extension is separable, see Lemma 8.5
and (2) if the fraction field extension has degree p, the characteristic is p, and A is regular
and complete, see Lemma 8.10.

Ad R: Here we reduce the case g = 0 to the Gorenstein case. A marvellous fact, which
makes everything work, is that the blowing up of a rational surface singularity is normal,
see Lemma 9.4.

Ad D: The resolution of rational double points proceeds more or less by hand, see Section
12. A rational double point is a hypersurface singularity (this is true but we don’t prove it
as we don’t need it). The local equation looks like

a11x
2
1 + a12x1x2 + a13x1x3 + a22x

2
2 + a23x2x3 + a33x

2
3 =

∑
aijkxixjxk

Using that the quadratic part cannot be zero because the multiplicity is 2 and remains 2
after any blowup and the fact that every blowup is normal one quickly achieves a resolu-
tion. One twist is that we do not have an invariant which decreases every blowup, but we
rely on the material on formal arcs from Section 10 to demonstrate that the process stops.

To put everything together some additional work has to be done. The main kink is that
we want to lift a resolution of the completion A∧ to a resolution of Spec(A). In order
to do this we first show that if a resolution exists, then there is a resolution by normal-
ized blowups (Lemma 14.3). A sequence of normalized blowups can be lifted from the
completion by Lemma 11.7. We then use this even in the proof of resolution of complete
local rings A because our strategy works by induction on the degree of a finite inclusion
A0 ⊂ A with A0 regular, see Lemma 14.4. With a stronger result in B (such as is proved
in Lipman’s paper) this step could be avoided.

2. A trace map in positive characteristic

Some of the results in this section can be deduced from the much more general discussion
on traces on differential forms in de Rham Cohomology, Section 19. See Remark 2.3 for a
discussion.

We fix a prime number p. LetR be an Fp-algebra. Given an a ∈ R set S = R[x]/(xp−a).
Define an R-linear map

Trx : ΩS/R −→ ΩR
by the rule

xidx 7−→
{

0 if 0 ≤ i ≤ p− 2,
da if i = p− 1

This makes sense as ΩS/R is a free R-module with basis xidx, 0 ≤ i ≤ p − 1. The
following lemma implies that the trace map is well defined, i.e., independent of the choice
of the coordinate x.

Lemma 2.1. Letϕ : R[x]/(xp−a)→ R[y]/(yp−b) be anR-algebra homomorphism.
Then Trx = Try ◦ ϕ.
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Proof. Say ϕ(x) = λ0 + λ1y + . . . + λp−1y
p−1 with λi ∈ R. The condition that

mapping x toλ0+λ1y+. . .+λp−1y
p−1 induces anR-algebra homomorphismR[x]/(xp−

a)→ R[y]/(yp − b) is equivalent to the condition that

a = λp0 + λp1b+ . . .+ λpp−1b
p−1

in the ring R. Consider the polynomial ring
Runiv = Fp[b, λ0, . . . , λp−1]

with the element a = λp0 + λp1b + . . . + λpp−1b
p−1 Consider the universal algebra map

ϕuniv : Runiv[x]/(xp−a)→ Runiv[y]/(yp− b) given by mapping x to λ0 +λ1y+ . . .+
λp−1y

p−1. We obtain a canonical map
Runiv −→ R

sending b, λi to b, λi. By construction we get a commutative diagram

Runiv[x]/(xp − a) //

ϕuniv

��

R[x]/(xp − a)

ϕ

��
Runiv[y]/(yp − b) // R[y]/(yp − b)

and the horizontal arrows are compatible with the trace maps. Hence it suffices to prove
the lemma for the map ϕuniv . Thus we may assume R = Fp[b, λ0, . . . , λp−1] is a polyno-
mial ring. We will check the lemma holds in this case by evaluating Try(ϕ(x)idϕ(x)) for
i = 0, . . . , p− 1.
The case 0 ≤ i ≤ p− 2. Expand

(λ0 + λ1y + . . .+ λp−1y
p−1)i(λ1 + 2λ2y + . . .+ (p− 1)λp−1y

p−2)
in the ringR[y]/(yp− b). We have to show that the coefficient of yp−1 is zero. For this it
suffices to show that the expression above as a polynomial in y has vanishing coefficients
in front of the powers ypk−1. Then we write our polynomial as

d
(i+ 1)dy

(λ0 + λ1y + . . .+ λp−1y
p−1)i+1

and indeed the coefficients of ykp−1 are all zero.
The case i = p− 1. Expand

(λ0 + λ1y + . . .+ λp−1y
p−1)p−1(λ1 + 2λ2y + . . .+ (p− 1)λp−1y

p−2)
in the ringR[y]/(yp− b). To finish the proof we have to show that the coefficient of yp−1

times db is da. Here we use thatR is S/pS where S = Z[b, λ0, . . . , λp−1]. Then the above,
as a polynomial in y, is equal to

d
pdy

(λ0 + λ1y + . . .+ λp−1y
p−1)p

Since d
dy (ypk) = pkypk−1 it suffices to understand the coefficients of ypk in the polynomial

(λ0 + λ1y + . . .+ λp−1y
p−1)p modulo p. The sum of these terms gives

λp0 + λp1y
p + . . .+ λpp−1y

p(p−1) mod p

Whence we see that we obtain after applying the operator d
pdy and after reducing modulo

yp − b the value
λp1 + 2λp2b+ . . .+ (p− 1)λp−1b

p−2
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for the coefficient of yp−1 we wanted to compute. Now because a = λp0 + λp1b + . . . +
λpp−1b

p−1 in R we obtain that

da = (λp1 + 2λp2b+ . . .+ (p− 1)λpp−1b
p−2)db

in R. This proves that the coefficient of yp−1 is as desired. �

Lemma 2.2. Let Fp ⊂ Λ ⊂ R ⊂ S be ring extensions and assume thatS is isomorphic
to R[x]/(xp − a) for some a ∈ R. Then there are canonical R-linear maps

Tr : Ωt+1
S/Λ −→ Ωt+1

R/Λ

for t ≥ 0 such that

η1 ∧ . . . ∧ ηt ∧ xidx 7−→
{

0 if 0 ≤ i ≤ p− 2,
η1 ∧ . . . ∧ ηt ∧ da if i = p− 1

for ηi ∈ ΩR/Λ and such that Tr annihilates the image of S ⊗R Ωt+1
R/Λ → Ωt+1

S/Λ.

Proof. For t = 0 we use the composition

ΩS/Λ → ΩS/R → ΩR → ΩR/Λ

where the second map is Lemma 2.1. There is an exact sequence

H1(LS/R) δ−→ ΩR/Λ ⊗R S → ΩS/Λ → ΩS/R → 0

(Algebra, Lemma 134.4). The module ΩS/R is free over S with basis dx and the module
H1(LS/R) is free over S with basis xp − a which δ maps to −da ⊗ 1 in ΩR/Λ ⊗R S. In
particular, if we set

M = Coker(R→ ΩR/Λ, 1 7→ −da)
then we see that Coker(δ) = M ⊗R S. We obtain a canonical map

Ωt+1
S/Λ → ∧

t
S(Coker(δ))⊗S ΩS/R = ∧tR(M)⊗R ΩS/R

Now, since the image of the map Tr : ΩS/R → ΩR/Λ of Lemma 2.1 is contained inRdawe
see that wedging with an element in the image annihilates da. Hence there is a canonical
map

∧tR(M)⊗R ΩS/R → Ωt+1
R/Λ

mapping η1 ∧ . . . ∧ ηt ∧ ω to η1 ∧ . . . ∧ ηt ∧ Tr(ω). �

Remark 2.3. Let Fp ⊂ Λ ⊂ R ⊂ S and Tr be as in Lemma 2.2. By de Rham
Cohomology, Proposition 19.3 there is a canonical map of complexes

ΘS/R : Ω•
S/Λ −→ Ω•

R/Λ

The computation in de Rham Cohomology, Example 19.4 shows that ΘS/R(xidx) =
Trx(xidx) for all i. Since TraceS/R = Θ0

S/R is identically zero and since

ΘS/R(a ∧ b) = a ∧ΘS/R(b)

for a ∈ ΩiR/Λ and b ∈ ΩjS/Λ it follows that Tr = ΘS/R. The advantage of using Tr is that
it is a good deal more elementary to construct.

Lemma 2.4. Let S be a scheme over Fp. Let f : Y → X be a finite morphism of
Noetherian normal integral schemes over S. Assume

(1) the extension of function fields is purely inseparable of degree p, and
(2) ΩX/S is a coherentOX -module (for example if X is of finite type over S).
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For i ≥ 1 there is a canonical map

Tr : f∗ΩiY/S −→ (ΩiX/S)∗∗

whose stalk in the generic point of X recovers the trace map of Lemma 2.2.

Proof. The exact sequence f∗ΩX/S → ΩY/S → ΩY/X → 0 shows that ΩY/S and
hence f∗ΩY/S are coherent modules as well. Thus it suffices to prove the trace map in the
generic point extends to stalks at x ∈ X with dim(OX,x) = 1, see Divisors, Lemma 12.14.
Thus we reduce to the case discussed in the next paragraph.
Assume X = Spec(A) and Y = Spec(B) with A a discrete valuation ring and B finite
over A. Since the induced extension L/K of fraction fields is purely inseparable, we see
that B is local too. Hence B is a discrete valuation ring too. Then either

(1) B/A has ramification index p and hence B = A[x]/(xp − a) where a ∈ A is a
uniformizer, or

(2) mB = mAB and the residue fieldB/mAB is purely inseparable of degree p over
κA = A/mA. Choose any x ∈ B whose residue class is not in κA and then we’ll
have B = A[x]/(xp − a) where a ∈ A is a unit.

Let Spec(Λ) ⊂ S be an affine open such that X maps into Spec(Λ). Then we can apply
Lemma 2.2 to see that the trace map extends to ΩiB/Λ → ΩiA/Λ for all i ≥ 1. �

3. Quadratic transformations

In this section we study what happens when we blow up a nonsingular point on a sur-
face. We hesitate the formally define such a morphism as a quadratic transformation as
on the one hand often other names are used and on the other hand the phrase “quadratic
transformation” is sometimes used with a different meaning.

Lemma 3.1. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m wotj exceptional divisor E. There is a closed im-
mersion

r : X −→ P1
S

over S such that
(1) r|E : E → P1

κ is an isomorphism,
(2) OX(E) = OX(−1) = r∗OP1(−1), and
(3) CE/X = (r|E)∗OP1(1) andNE/X = (r|E)∗OP1(−1).

Proof. AsA is regular of dimension 2 we can write m = (x, y). Then x and y placed
in degree 1 generate the Rees algebra

⊕
n≥0 m

n overA. Recall thatX = Proj(
⊕

n≥0 m
n),

see Divisors, Lemma 32.2. Thus the surjection

A[T0, T1] −→
⊕

n≥0
mn, T0 7→ x, T1 7→ y

of gradedA-algebras induces a closed immersion r : X → P1
S = Proj(A[T0, T1]) such that

OX(1) = r∗OP1
S
(1), see Constructions, Lemma 11.5. This proves (2) because OX(E) =

OX(−1) by Divisors, Lemma 32.4.
To prove (1) note that(⊕

n≥0
mn
)
⊗A κ =

⊕
n≥0

mn/mn+1 ∼= κ[x, y]

a polynomial algebra, see Algebra, Lemma 106.1. This proves that the fibre ofX → S over
Spec(κ) is equal to Proj(κ[x, y]) = P1

κ, see Constructions, Lemma 11.6. Recall that E is



4388 54. RESOLUTION OF SURFACES

the closed subscheme ofX defined by mOX , i.e.,E = Xκ. By our choice of the morphism
r we see that r|E in fact produces the identification of E = Xκ with the special fibre of
P1
S → S.

Part (3) follows from (1) and (2) and Divisors, Lemma 14.2. �

Lemma 3.2. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. Then X is an irreducible regular scheme.

Proof. Observe that X is integral by Divisors, Lemma 32.9 and Algebra, Lemma
106.2. To seeX is regular it suffices to check thatOX,x is regular for closed points x ∈ X ,
see Properties, Lemma 9.2. Let x ∈ X be a closed point. Since f is proper x maps to m,
i.e., x is a point of the exceptional divisor E. Then E is an effective Cartier divisor and
E ∼= P1

κ. Thus if g ∈ mx ⊂ OX,x is a local equation for E , then OX,x/(g) ∼= OP1
κ,x

.
Since P1

κ is covered by two affine opens which are the spectrum of a polynomial ring over
κ, we see thatOP1

κ,x
is regular by Algebra, Lemma 114.1. We conclude by Algebra, Lemma

106.7. �

Lemma 3.3. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. Then Pic(X) = Z generated byOX(E).

Proof. Recall that E = P1
κ has Picard group Z with generator O(1), see Divisors,

Lemma 28.5. By Lemma 3.1 the invertibleOX -moduleOX(E) restricts toO(−1). Hence
OX(E) generates an infinite cyclic group in Pic(X). Since A is regular it is a UFD, see
More on Algebra, Lemma 121.2. Then the punctured spectrum U = S \ {m} = X \E has
trivial Picard group, see Divisors, Lemma 28.4. Hence for every invertible OX -module L
there is an isomorphism s : OU → L|U . Then s is a regular meromorphic section ofL and
we see that divL(s) = nE for somen ∈ Z (Divisors, Definition 27.4). By Divisors, Lemma
27.6 (and the fact that X is normal by Lemma 3.2) we conclude that L = OX(nE). �

Lemma 3.4. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. Let F be a quasi-coherentOX -module.

(1) Hp(X,F) = 0 for p 6∈ {0, 1},
(2) H1(X,OX(n)) = 0 for n ≥ −1,
(3) H1(X,F) = 0 if F or F(1) is globally generated,
(4) H0(X,OX(n)) = mmax(0,n),
(5) lengthAH

1(X,OX(n)) = −n(−n− 1)/2 if n < 0.

Proof. If m = (x, y), then X is covered by the spectra of the affine blowup algebras
A[mx ] and A[my ] because x and y placed in degree 1 generate the Rees algebra

⊕
mn over

A. See Divisors, Lemma 32.2 and Constructions, Lemma 8.9. Since X is separated by
Constructions, Lemma 8.8 we see that cohomology of quasi-coherent sheaves vanishes in
degrees ≥ 2 by Cohomology of Schemes, Lemma 4.2.

Let i : E → X be the exceptional divisor, see Divisors, Definition 32.1. Recall that
OX(−E) = OX(1) is f -relatively ample, see Divisors, Lemma 32.4. Hence we know
that H1(X,OX(−nE)) = 0 for some n > 0, see Cohomology of Schemes, Lemma 16.2.
Consider the filtration

OX(−nE) ⊂ OX(−(n− 1)E) ⊂ . . . ⊂ OX(−E) ⊂ OX ⊂ OX(E)
The successive quotients are the sheaves

OX(−tE)/OX(−(t+ 1)E) = OX(t)/I(t) = i∗OE(t)



3. QUADRATIC TRANSFORMATIONS 4389

where I = OX(−E) is the ideal sheaf of E. By Lemma 3.1 we have E = P1
κ and OE(1)

indeed corresponds to the usual Serre twist of the structure sheaf on P1. Hence the coho-
mology of OE(t) vanishes in degree 1 for t ≥ −1, see Cohomology of Schemes, Lemma
8.1. Since this is equal to H1(X, i∗OE(t)) (by Cohomology of Schemes, Lemma 2.4) we
find that H1(X,OX(−(t+ 1)E))→ H1(X,OX(−tE)) is surjective for t ≥ −1. Hence

0 = H1(X,OX(−nE)) −→ H1(X,OX(−tE)) = H1(X,OX(t))

is surjective for t ≥ −1 which proves (2).

Let F be globally generated. This means there exists a short exact sequence

0→ G →
⊕

i∈I
OX → F → 0

Note thatH1(X,
⊕

i∈I OX) =
⊕

i∈I H
1(X,OX) by Cohomology, Lemma 19.1. By part

(2) we have H1(X,OX) = 0. If F(1) is globally generated, then we can find a surjection⊕
i∈I OX(−1)→ F and argue in a similar fashion. In other words, part (3) follows from

part (2).

For part (4) we note that for all n large enough we have Γ(X,OX(n)) = mn, see Coho-
mology of Schemes, Lemma 14.3. If n ≥ 0, then we can use the short exact sequence

0→ OX(n)→ OX(n− 1)→ i∗OE(n− 1)→ 0

and the vanishing of H1 for the sheaf on the left to get a commutative diagram

0 // mmax(0,n) //

��

mmax(0,n−1) //

��

mmax(0,n)/mmax(0,n−1) //

��

0

0 // Γ(X,OX(n)) // Γ(X,OX(n− 1)) // Γ(E,OE(n− 1)) // 0

with exact rows. In fact, the rows are exact also for n < 0 because in this case the groups
on the right are zero. In the proof of Lemma 3.1 we have seen that the right vertical arrow
is an isomorphism (details omitted). Hence if the left vertical arrow is an isomorphism, so
is the middle one. In this way we see that (4) holds by descending induction on n.

Finally, we prove (5) by descending induction on n and the sequences

0→ OX(n)→ OX(n− 1)→ i∗OE(n− 1)→ 0

Namely, for n ≥ −1 we already know H1(X,OX(n)) = 0. Since

H1(X, i∗OE(−2)) = H1(E,OE(−2)) = H1(P1
κ,O(−2)) ∼= κ

by Cohomology of Schemes, Lemma 8.1 which has length 1 as an A-module, we conclude
from the long exact cohomology sequence that (5) holds for n = −2. And so on and so
forth. �

Lemma 3.5. Let (A,m) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. Let mn ⊂ I ⊂ m be an ideal. Let d ≥ 0 be the
largest integer such that

IOX ⊂ OX(−dE)
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where E is the exceptional divisor. Set I ′ = IOX(dE) ⊂ OX . Then d > 0, the sheaf
OX/I ′ is supported in finitely many closed points x1, . . . , xr of X , and

lengthA(A/I) > lengthAΓ(X,OX/I ′)

≥
∑

i=1,...,r
lengthOX,xi

(OX,xi/I ′
xi)

Proof. Since I ⊂ m we see that every element of I vanishes on E. Thus we see that
d ≥ 1. On the other hand, since mn ⊂ I we see that d ≤ n. Consider the short exact
sequence

0→ IOX → OX → OX/IOX → 0
Since IOX is globally generated, we see that H1(X, IOX) = 0 by Lemma 3.4. Hence we
obtain a surjection A/I → Γ(X,OX/IOX). Consider the short exact sequence

0→ OX(−dE)/IOX → OX/IOX → OX/OX(−dE)→ 0
By Divisors, Lemma 15.8 we see thatOX(−dE)/IOX is supported in finitely many closed
points of X . In particular, this coherent sheaf has vanishing higher cohomology groups
(detail omitted). Thus in the following diagram

A/I

��
0 // Γ(X,OX(−dE)/IOX) // Γ(X,OX/IOX) // Γ(X,OX/OX(−dE)) // 0

the bottom row is exact and the vertical arrow surjective. We have
lengthAΓ(X,OX(−dE)/IOX) < lengthA(A/I)

since Γ(X,OX/OX(−dE)) is nonzero. Namely, the image of 1 ∈ Γ(X,OX) is nonzero
as d > 0.
To finish the proof we translate the results above into the statements of the lemma. Since
OX(dE) is invertible we have

OX/I ′ = OX(−dE)/IOX ⊗OX
OX(dE).

Thus OX/I ′ and OX(−dE)/IOX are supported in the same set of finitely many closed
points, say x1, . . . , xr ∈ E ⊂ X . Moreover we obtain

Γ(X,OX(−dE)/IOX) =
⊕
OX(−dE)xi/IOX,xi ∼=

⊕
OX,xi/I ′

xi = Γ(X,OX/I ′)

because an invertible module over a local ring is trivial. Thus we obtain the strict inequal-
ity. We also get the second because

lengthA(OX,xi/I ′
xi) ≥ lengthOX,xi

(OX,xi/I ′
xi)

as is immediate from the definition of length. �

Lemma 3.6. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. Then ΩX/S = i∗ΩE/κ, where i : E → X is the
immersion of the exceptional divisor.

Proof. Writing P1 = P1
S , let r : X → P1 be as in Lemma 3.1. Then we have an

exact sequence
CX/P1 → r∗ΩP1/S → ΩX/S → 0

see Morphisms, Lemma 32.15. Since ΩP1/S |E = ΩE/κ by Morphisms, Lemma 32.10 it
suffices to see that the first arrow defines a surjection onto the kernel of the canonical map
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r∗ΩP1/S → i∗ΩE/κ. This we can do locally. With notation as in the proof of Lemma 3.1
on an affine open of X the morphism f corresponds to the ring map

A→ A[t]/(xt− y)
where x, y ∈ m are generators. Thus d(xt − y) = xdt and ydt = t · xdt which proves
what we want. �

4. Dominating by quadratic transformations

Using the result above we can prove that blowups in points dominate any modification of
a regular 2 dimensional scheme.

Let X be a scheme. Let x ∈ X be a closed point. As usual, we view i : x = Spec(κ(x))→
X as a closed subscheme. The blowing up X ′ → X of X at x is the blowing up of X in
the closed subscheme x ⊂ X . Observe that if X is locally Noetherian, then X ′ → X is
projective (in particular proper) by Divisors, Lemma 32.13.

Lemma 4.1. LetX be a Noetherian scheme. Let T ⊂ X be a finite set of closed points
x such that OX,x is regular of dimension 2 for x ∈ T . Let I ⊂ OX be a quasi-coherent
sheaf of ideals such thatOX/I is supported on T . Then there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

whereXi+1 → Xi is the blowing up ofXi at a closed point lying above a point of T such
that IOXn is an invertible ideal sheaf.

Proof. Say T = {x1, . . . , xr}. Denote Ii the stalk of I at xi. Set

ni = lengthOX,xi
(OX,xi/Ii)

This is finite asOX/I is supported on T and henceOX,xi/Ii has support equal to {mxi}
(see Algebra, Lemma 62.3). We are going to use induction on

∑
ni. If ni = 0 for all i,

then I = OX and we are done.

Suppose ni > 0. Let X ′ → X be the blowing up of X in xi (see discussion above the
lemma). Since Spec(OX,xi) → X is flat we see that X ′ ×X Spec(OX,xi) is the blowup
of the ringOX,xi in the maximal ideal, see Divisors, Lemma 32.3. Hence the square in the
commutative diagram

Proj(
⊕

d≥0 m
d
xi) //

��

X ′

��
Spec(OX,xi) // X

is cartesian. LetE ⊂ X ′ andE′ ⊂ Proj(
⊕

d≥0 m
d
xi) be the exceptional divisors. Let d ≥ 1

be the integer found in Lemma 3.5 for the ideal Ii ⊂ OX,xi . Since the horizontal arrows
in the diagram are flat, since E′ → E is surjective, and since E′ is the pullback of E , we
see that

IOX′ ⊂ OX′(−dE)
(some details omitted). Set I ′ = IOX′(dE) ⊂ OX′ . Then we see that OX′/I ′ is sup-
ported in finitely many closed points T ′ ⊂ |X ′| because this holds over X \ {xi} and for
the pullback to Proj(

⊕
d≥0 m

d
xi). The final assertion of Lemma 3.5 tells us that the sum of

the lengths of the stalks OX′,x′/I ′OX′,x′ for x′ lying over xi is < ni. Hence the sum of
the lengths has decreased.
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By induction hypothesis, there exists a sequence

X ′
n → . . .→ X ′

1 → X ′

of blowups at closed points lying overT ′ such thatI ′OX′
n

is invertible. SinceI ′OX′(−dE) =
IOX′ , we see that IOX′

n
= I ′OX′

n
(−d(f ′)−1E) where f ′ : X ′

n → X ′ is the composi-
tion. Note that (f ′)−1E is an effective Cartier divisor by Divisors, Lemma 32.11. Thus we
are done by Divisors, Lemma 13.7. �

Lemma 4.2. LetX be a Noetherian scheme. Let T ⊂ X be a finite set of closed points
x such that OX,x is a regular local ring of dimension 2. Let f : Y → X be a proper
morphism of schemes which is an isomorphism over U = X \ T . Then there exists a
sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point of T
and a factorization Xn → Y → X of the composition.

Proof. By More on Flatness, Lemma 31.4 there exists a U -admissible blowup X ′ →
X which dominates Y → X . Hence we may assume there exists an ideal sheaf I ⊂ OX
such thatOX/I is supported on T and such that Y is the blowing up ofX in I . By Lemma
4.1 there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point of
T such that IOXn is an invertible ideal sheaf. By the universal property of blowing up
(Divisors, Lemma 32.5) we find the desired factorization. �

Lemma 4.3. Let S be a scheme. Let X be a scheme over S which is regular and has
dimension 2. Let Y be a proper scheme over S. Given an S-rational map f : U → Y from
X to Y there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

and an S-morphism fn : Xn → Y such that Xi+1 → Xi is the blowing up of Xi at a
closed point not lying over U and fn and f agree.

Proof. We may assume U contains every point of codimension 1, see Morphisms,
Lemma 42.5. Hence the complement T ⊂ X of U is a finite set of closed points whose
local rings are regular of dimension 2. Applying Divisors, Lemma 36.2 we find a proper
morphism p : X ′ → X which is an isomorphism over U and a morphism f ′ : X ′ → Y
agreeing with f overU . Apply Lemma 4.2 to the morphism p : X ′ → X . The composition
Xn → X ′ → Y is the desired morphism. �

5. Dominating by normalized blowups

In this section we prove that a modification of a surface can be dominated by a sequence
of normalized blowups in points.

Definition 5.1. Let X be a scheme such that every quasi-compact open has finitely
many irreducible components. Let x ∈ X be a closed point. The normalized blowup of
X at x is the composition X ′′ → X ′ → X where X ′ → X is the blowup of X in x and
X ′′ → X ′ is the normalization of X ′.
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Here the normalization X ′′ → X ′ is defined as the scheme X ′ has an open covering by
opens which have finitely many irreducible components by Divisors, Lemma 32.10. See
Morphisms, Definition 54.1 for the definition of the normalization.

In general the normalized blowing up need not be proper even when X is Noetherian.
Recall that a scheme is Nagata if it has an open covering by affines which are spectra of
Nagata rings (Properties, Definition 13.1).

Lemma 5.2. In Definition 5.1 if X is Nagata, then the normalized blowing up of X
at x is normal, Nagata, and proper over X .

Proof. The blowup morphismX ′ → X is proper (asX is locally Noetherian we may
apply Divisors, Lemma 32.13). Thus X ′ is Nagata (Morphisms, Lemma 18.1). Therefore
the normalization X ′′ → X ′ is finite (Morphisms, Lemma 54.10) and we conclude that
X ′′ → X is proper as well (Morphisms, Lemmas 44.11 and 41.4). It follows that the
normalized blowing up is a normal (Morphisms, Lemma 54.5) Nagata algebraic space. �

In the following lemma we need to assume X is Noetherian in order to make sure that it
has finitely many irreducible components. Then the properness of f : Y → X assures
that Y has finitely many irreducible components too and it makes sense to require f to be
birational (Morphisms, Definition 50.1).

Lemma 5.3. LetX be a scheme which is Noetherian, Nagata, and has dimension 2. Let
f : Y → X be a proper birational morphism. Then there exists a commutative diagram

Xn
//

��

Xn−1 // . . . // X1 // X0

��
Y // X

where X0 → X is the normalization and where Xi+1 → Xi is the normalized blowing
up of Xi at a closed point.

Proof. We will use the results of Morphisms, Sections 18, 52, and 54 without further
mention. We may replace Y by its normalization. Let X0 → X be the normalization.
The morphism Y → X factors through X0. Thus we may assume that both X and Y are
normal.

Assume X and Y are normal. The morphism f : Y → X is an isomorphism over an
open which contains every point of codimension 0 and 1 in Y and every point of Y over
which the fibre is finite, see Varieties, Lemma 17.3. Hence there is a finite set of closed
points T ⊂ X such that f is an isomorphism over X \ T . For each x ∈ T the fibre
Yx is a proper geometrically connected scheme of dimension 1 over κ(x), see More on
Morphisms, Lemma 53.6. Thus

BadCurves(f) = {C ⊂ Y closed | dim(C) = 1, f(C) = a point}

is a finite set. We will prove the lemma by induction on the number of elements of
BadCurves(f). The base case is the case where BadCurves(f) is empty, and in that
case f is an isomorphism.
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Fix x ∈ T . Let X ′ → X be the normalized blowup of X at x and let Y ′ be the normal-
ization of Y ×X X ′. Picture

Y ′
f ′
//

��

X ′

��
Y

f // X

Let x′ ∈ X ′ be a closed point lying over x such that the fibre Y ′
x′ has dimension ≥ 1. Let

C ′ ⊂ Y ′ be an irreducible component of Y ′
x′ , i.e., C ′ ∈ BadCurves(f ′). Since Y ′ →

Y ×X X ′ is finite we see that C ′ must map to an irreducible component C ⊂ Yx. If is
clear that C ∈ BadCurves(f). Since Y ′ → Y is birational and hence an isomorphism
over points of codimension 1 in Y , we see that we obtain an injective map

BadCurves(f ′) −→ BadCurves(f)

Thus it suffices to show that after a finite number of these normalized blowups we get rid
at of at least one of the bad curves, i.e., the displayed map is not surjective.

We will get rid of a bad curve using an argument due to Zariski. PickC ∈ BadCurves(f)
lying over our x. Denote OY,C the local ring of Y at the generic point of C. Choose an
element u ∈ OX,C whose image in the residue fieldR(C) is transcendental over κ(x) (we
can do this becauseR(C) has transcendence degree 1 over κ(x) by Varieties, Lemma 20.3).
We can write u = a/b with a, b ∈ OX,x as OY,C and OX,x have the same fraction fields.
By our choice of u it must be the case that a, b ∈ mx. Hence

Nu,a,b = min{ordOY,C
(a), ordOY,C

(b)} > 0

Thus we can do descending induction on this integer. Let X ′ → X be the normalized
blowing up of x and let Y ′ be the normalization of X ′ ×X Y as above. We will show
that if C is the image of some bad curve C ′ ⊂ Y ′ lying over x′ ∈ X ′, then there exists
a choice of a′, b′OX′,x′ such that Nu,a′,b′ < Nu,a,b. This will finish the proof. Namely,
sinceX ′ → X factors through the blowing up, we see that there exists a nonzero element
d ∈ mx′ such that a = a′d and b = b′d (namely, take d to be the local equation for
the exceptional divisor of the blowup). Since Y ′ → Y is an isomorphism over an open
containing the generic point of C (seen above) we see thatOY ′,C′ = OY,C . Hence

ordOY,C
(a) = ordOY ′,C′ (a′d) = ordOY ′,C′ (a′) + ordOY ′,C′ (d) > ordOY ′,C′ (a′)

Similarly for b and the proof is complete. �

Lemma 5.4. Let S be a scheme. Let X be a scheme over S which is Noetherian,
Nagata, and has dimension 2. Let Y be a proper scheme over S. Given an S-rational map
f : U → Y from X to Y there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 → X

and an S-morphism fn : Xn → Y such that X0 → X is the normalization, Xi+1 → Xi

is the normalized blowing up of Xi at a closed point, and fn and f agree.

Proof. Applying Divisors, Lemma 36.2 we find a proper morphism p : X ′ → X
which is an isomorphism over U and a morphism f ′ : X ′ → Y agreeing with f over U .
Apply Lemma 5.3 to the morphism p : X ′ → X . The composition Xn → X ′ → Y is the
desired morphism. �
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6. Modifying over local rings

Let S be a scheme. Let s1, . . . , sn ∈ S be pairwise distinct closed points. Assume that the
open embedding

U = S \ {s1, . . . , sn} −→ S

is quasi-compact. Denote FPS,{s1,...,sn} the category of morphisms f : X → S of finite
presentation which induce an isomorphism f−1(U) → U . Morphisms are morphisms
of schemes over S. For each i set Si = Spec(OS,si) and let Vi = Si \ {si}. Denote
FPSi,si the category of morphisms gi : Yi → Si of finite presentation which induce an
isomorphism g−1

i (Vi) → Vi. Morphisms are morphisms over Si. Base change defines an
functor

(6.0.1) F : FPS,{s1,...,sn} −→ FPS1,s1 × . . .× FPSn,sn
To reduce at least some of the problems in this chapter to the case of local rings we have
the following lemma.

Lemma 6.1. The functor F (6.0.1) is an equivalence.

Proof. For n = 1 this is Limits, Lemma 21.1. For n > 1 the lemma can be proved in
exactly the same way or it can be deduced from it. For example, suppose that gi : Yi → Si
are objects of FPSi,si . Then by the case n = 1 we can find f ′

i : X ′
i → S of finite

presentation which are isomorphisms over S \ {si} and whose base change to Si is gi.
Then we can set

f : X = X ′
1 ×S . . .×S X ′

n → S

This is an object of FPS,{s1,...,sn} whose base change by Si → S recovers gi. Thus the
functor is essentially surjective. We omit the proof of fully faithfulness. �

Lemma 6.2. Let S, si, Si be as in (6.0.1). If f : X → S corresponds to gi : Yi → Si
under F , then f is separated, proper, finite, if and only if gi is so for i = 1, . . . , n.

Proof. Follows from Limits, Lemma 21.2. �

Lemma 6.3. Let S, si, Si be as in (6.0.1). If f : X → S corresponds to gi : Yi → Si
under F , then Xsi

∼= (Yi)si as schemes over κ(si).

Proof. This is clear. �

Lemma 6.4. Let S, si, Si be as in (6.0.1) and assume f : X → S corresponds to
gi : Yi → Si under F . Then there exists a factorization

X = Zm → Zm−1 → . . .→ Z1 → Z0 = S

of f whereZj+1 → Zj is the blowing up ofZj at a closed point zj lying over {s1, . . . , sn}
if and only if for each i there exists a factorization

Yi = Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Si

of gi where Zi,j+1 → Zi,j is the blowing up of Zi,j at a closed point zi,j lying over si.

Proof. Let’s start with a sequence of blowupsZm → Zm−1 → . . .→ Z1 → Z0 = S.
The first morphism Z1 → S is given by blowing up one of the si, say s1. Applying F
to Z1 → S we find a blowup Z1,1 → S1 at s1 is the blowing up at s1 and otherwise
Zi,0 = Si for i > 1. In the next step, we either blow up one of the si, i ≥ 2 on Z1 or we
pick a closed point z1 of the fibre of Z1 → S over s1. In the first case it is clear what to
do and in the second case we use that (Z1)s1

∼= (Z1,1)s1 (Lemma 6.3) to get a closed point
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z1,1 ∈ Z1,1 corresponding to z1. Then we set Z1,2 → Z1,1 equal to the blowing up in
z1,1. Continuing in this manner we construct the factorizations of each gi.

Conversely, given sequences of blowups Zi,mi → Zi,mi−1 → . . . → Zi,1 → Zi,0 = Si
we construct the sequence of blowing ups of S in exactly the same manner. �

Here is the analogue of Lemma 6.4 for normalized blowups.

Lemma 6.5. Let S, si, Si be as in (6.0.1) and assume f : X → S corresponds to gi :
Yi → Si under F . Assume every quasi-compact open of S has finitely many irreducible
components. Then there exists a factorization

X = Zm → Zm−1 → . . .→ Z1 → Z0 = S

of f where Zj+1 → Zj is the normalized blowing up of Zj at a closed point zj lying over
{x1, . . . , xn} if and only if for each i there exists a factorization

Yi = Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Si

of gi whereZi,j+1 → Zi,j is the normalized blowing up ofZi,j at a closed point zi,j lying
over si.

Proof. The assumption on S is used to assure us (successively) that the schemes we
are normalizing have locally finitely many irreducible components so that the statement
makes sense. Having said this the lemma follows by the exact same argument as used to
prove Lemma 6.4. �

7. Vanishing

In this section we will often work in the following setting. Recall that a modification is a
proper birational morphism between integral schemes (Morphisms, Definition 51.11).

Situation 7.1. Here (A,m, κ) be a local Noetherian normal domain of dimension
2. Let s be the closed point of S = Spec(A) and U = S \ {s}. Let f : X → S be a
modification. We denote C1, . . . , Cr the irreducible components of the special fibre Xs

of f .

By Varieties, Lemma 17.3 the morphism f defines an isomorphism f−1(U) → U . The
special fibre Xs is proper over Spec(κ) and has dimension at most 1 by Varieties, Lemma
19.3. By Stein factorization (More on Morphisms, Lemma 53.6) we have f∗OX = OS
and the special fibre Xs is geometrically connected over κ. If Xs has dimension 0, then
f is finite (More on Morphisms, Lemma 44.2) and hence an isomorphism (Morphisms,
Lemma 54.8). We will discard this uninteresting case and we conclude that dim(Ci) = 1
for i = 1, . . . , r.

Lemma 7.2. In Situation 7.1 there exists aU -admissible blowupX ′ → S which dom-
inates X .

Proof. This is a special case of More on Flatness, Lemma 31.4. �

Lemma 7.3. In Situation 7.1 there exists a nonzero f ∈ m such that for every i =
1, . . . , r there exist

(1) a closed point xi ∈ Ci with xi 6∈ Cj for j 6= i,
(2) a factorization f = gifi of f in OX,xi such that gi ∈ mxi maps to a nonzero

element ofOCi,xi .
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Proof. We will use the observations made following Situation 7.1 without further
mention. Pick a closed point xi ∈ Ci which is not in Cj for j 6= i. Pick gi ∈ mxi which
maps to a nonzero element of OCi,xi . Since the fraction field of A is the fraction field of
OXi,xi we can write gi = ai/bi for some ai, bi ∈ A. Take f =

∏
ai. �

Lemma 7.4. In Situation 7.1 assumeX is normal. LetZ ⊂ X be a nonempty effective
Cartier divisor such that Z ⊂ Xs set theoretically. Then the conormal sheaf of Z is not
trivial. More precisely, there exists an i such that Ci ⊂ Z and deg(CZ/X |Ci) > 0.

Proof. We will use the observations made following Situation 7.1 without further
mention. Let f be a function as in Lemma 7.3. Let ξi ∈ Ci be the generic point. LetOi be
the local ring of X at ξi. ThenOi is a discrete valuation ring. Let ei be the valuation of f
in Oi, so ei > 0. Let hi ∈ Oi be a local equation for Z and let di be its valuation. Then
di ≥ 0. Choose and fix i with di/ei maximal (then di > 0 as Z is not empty). Replace
f by fdi and Z by eiZ. This is permissible, by the relation OX(eiZ) = OX(Z)⊗ei , the
relation between the conormal sheaf andOX(Z) (see Divisors, Lemmas 14.4 and 14.2, and
since the degree gets multiplied by ei, see Varieties, Lemma 44.7. Let I be the ideal sheaf
of Z so that CZ/X = I|Z . Consider the image f of f in Γ(Z,OZ). By our choices above
we see that f vanishes in the generic points of irreducible components of Z (these are all
generic points of Cj as Z is contained in the special fibre). On the other hand, Z is (S1)
by Divisors, Lemma 15.6. Thus the scheme Z has no embedded associated points and we
conclude that f = 0 (Divisors, Lemmas 4.3 and 5.6). Hence f is a global section of I
which generates Iξi by construction. Thus the image si of f in Γ(Ci, I|Ci) is nonzero.
However, our choice of f guarantees that si has a zero at xi. Hence the degree of I|Ci is
> 0 by Varieties, Lemma 44.12. �

Lemma 7.5. In Situation 7.1 assume X is normal and A Nagata. The map

H1(X,OX) −→ H1(f−1(U),OX)
is injective.

Proof. Let 0→ OX → E → OX → 0 be the extension corresponding to a nontriv-
ial element ξ of H1(X,OX) (Cohomology, Lemma 5.1). Let π : P = P(E) → X be the
projective bundle associated to E . The surjection E → OX defines a section σ : X → P
whose conormal sheaf is isomorphic to OX (Divisors, Lemma 31.6). If the restriction of
ξ to f−1(U) is trivial, then we get a map E|f−1(U) → Of−1(U) splitting the injection
OX → E . This defines a second section σ′ : f−1(U)→ P disjoint from σ. Since ξ is non-
trivial we conclude that σ′ cannot extend to all of X and be disjoint from σ. Let X ′ ⊂ P
be the scheme theoretic image of σ′ (Morphisms, Definition 6.2). Picture

X ′

g
  

// P

π

��
f−1(U)

σ′

;;

// X

σ

VV

The morphismP \σ(X)→ X is affine. IfX ′∩σ(X) = ∅, thenX ′ → X is both affine and
proper, hence finite (Morphisms, Lemma 44.11), hence an isomorphism (as X is normal,
see Morphisms, Lemma 54.8). This is impossible as mentioned above.
Let Xν be the normalization of X ′. Since A is Nagata, we see that Xν → X ′ is finite
(Morphisms, Lemmas 54.10 and 18.2). LetZ ⊂ Xν be the pullback of the effective Cartier
divisor σ(X) ⊂ P . By the above we see that Z is not empty and is contained in the
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closed fibre of Xν → S. Since P → X is smooth, we see that σ(X) is an effective Cartier
divisor (Divisors, Lemma 22.8). Hence Z ⊂ Xν is an effective Cartier divisor too. Since
the conormal sheaf of σ(X) in P isOX , the conormal sheaf of Z in Xν (which is a priori
invertible) is OZ by Morphisms, Lemma 31.4. This is impossible by Lemma 7.4 and the
proof is complete. �

Lemma 7.6. In Situation 7.1 assume X is normal and A Nagata. Then

HomD(A)(κ[−1], Rf∗OX)

is zero. This uses D(A) = DQCoh(OS) to think of Rf∗OX as an object of D(A).

Proof. By adjointness of Rf∗ and Lf∗ such a map is the same thing as a map α :
Lf∗κ[−1]→ OX . Note that

Hi(Lf∗κ[−1]) =

 0 if i > 1
OXs if i = 1

someOXs -module if i ≤ 0

Since Hom(H0(Lf∗κ[−1]),OX) = 0 asOX is torsion free, the spectral sequence for Ext
(Cohomology on Sites, Example 32.1) implies that HomD(OX)(Lf∗κ[−1],OX) is equal
to Ext1

OX
(OXs ,OX). We conclude that α : Lf∗κ[−1]→ OX is given by an extension

0→ OX → E → OXs → 0

By Lemma 7.5 the pullback of this extension via the surjection OX → OXs is zero (since
this pullback is clearly split over f−1(U)). Thus 1 ∈ OXs lifts to a global section s of E .
Multiplying s by the ideal sheaf I of Xs we obtain an OX -module map cs : I → OX .
Applying f∗ we obtain an A-linear map f∗cs : m → A. Since A is a Noetherian normal
local domain this map is given by multiplication by an element a ∈ A. Changing s into
s− a we find that s is annihilated by I and the extension is trivial as desired. �

Remark 7.7. LetX be an integral Noetherian normal scheme of dimension 2. In this
case the following are equivalent

(1) X has a dualizing complex ω•
X ,

(2) there is a coherentOX -moduleωX such thatωX [n] is a dualizing complex, where
n can be any integer.

This follows from the fact that X is Cohen-Macaulay (Properties, Lemma 12.7) and Du-
ality for Schemes, Lemma 23.1. In this situation we will say that ωX is a dualizing module
in accordance with Duality for Schemes, Section 22. In particular, when A is a Noether-
ian normal local domain of dimension 2, then we say A has a dualizing module ωA if the
above is true. In this case, if X → Spec(A) is a normal modification, then X has a du-
alizing module too, see Duality for Schemes, Example 22.1. In this situation we always
denote ωX the dualizing module normalized with respect to ωA, i.e., such that ωX [2] is
the dualizing complex normalized relative to ωA[2]. See Duality for Schemes, Section 20.

The Grauert-Riemenschneider vanishing of the next proposition is a formal consequence
of Lemma 7.6 and the general theory of duality.

Proposition 7.8 (Grauert-Riemenschneider). In Situation 7.1 assume
(1) X is a normal scheme,
(2) A is Nagata and has a dualizing complex ω•

A.
Let ωX be the dualizing module of X (Remark 7.7). Then R1f∗ωX = 0.
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Proof. In this proof we will use the identification D(A) = DQCoh(OS) to iden-
tify quasi-coherent OS-modules with A-modules. Moreover, we may assume that ω•

A

is normalized, see Dualizing Complexes, Section 16. Since X is a Noetherian normal 2-
dimensional scheme it is Cohen-Macaulay (Properties, Lemma 12.7). Thus ω•

X = ωX [2]
(Duality for Schemes, Lemma 23.1 and the normalization in Duality for Schemes, Example
22.1). If the proposition is false, then we can find a nonzero map R1f∗ωX → κ. In other
words we obtain a nonzero map α : Rf∗ω

•
X → κ[1]. Applying RHomA(−, ω•

A) we get a
nonzero map

β : κ[−1] −→ Rf∗OX
which is impossible by Lemma 7.6. To see that RHomA(−, ω•

A) does what we said, first
note that

RHomA(κ[1], ω•
A) = RHomA(κ, ω•

A)[−1] = κ[−1]
as ω•

A is normalized and we have

RHomA(Rf∗ω
•
X , ω

•
A) = Rf∗RHomOX

(ω•
X , ω

•
X) = Rf∗OX

The first equality by Duality for Schemes, Example 3.9 and the fact that ω•
X = f !ω•

A by
construction, and the second equality because ω•

X is a dualizing complex for X (which
goes back to Duality for Schemes, Lemma 17.7). �

8. Boundedness

In this section we begin the discussion which will lead to a reduction to the case of rational
singularities for 2-dimensional schemes.

Lemma 8.1. Let (A,m, κ) be a Noetherian normal local domain of dimension 2. Con-
sider a commutative diagram

X ′

f ′
##

g
// X

f{{
Spec(A)

where f and f ′ are modifications as in Situation 7.1 and X normal. Then we have a short
exact sequence

0→ H1(X,OX)→ H1(X ′,OX′)→ H0(X,R1g∗OX′)→ 0

Also dim(Supp(R1g∗OX′)) = 0 and R1g∗OX′ is generated by global sections.

Proof. We will use the observations made following Situation 7.1 without further
mention. As X is normal and g is dominant and birational, we have g∗OX′ = OX , see
for example More on Morphisms, Lemma 53.6. Since the fibres of g have dimension ≤ 1,
we have Rpg∗OX′ = 0 for p > 1, see for example Cohomology of Schemes, Lemma 20.9.
The support ofR1g∗OX′ is contained in the set of points ofX where the fibres of g′ have
dimension ≥ 1. Thus it is contained in the set of images of those irreducible components
C ′ ⊂ X ′

s which map to points ofXs which is a finite set of closed points (recall thatX ′
s →

Xs is a morphism of proper 1-dimensional schemes over κ). Then R1g∗OX′ is globally
generated by Cohomology of Schemes, Lemma 9.10. Using the morphism f : X → S and
the references above we find that Hp(X,F) = 0 for p > 1 for any coherent OX -module
F . Hence the short exact sequence of the lemma is a consequence of the Leray spectral
sequence for g andOX′ , see Cohomology, Lemma 13.4. �
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Lemma 8.2. Let (A,m, κ) be a local normal Nagata domain of dimension 2. Let a ∈ A
be nonzero. There exists an integerN such that for every modification f : X → Spec(A)
with X normal the A-module

MX,a = Coker(A −→ H0(Z,OZ))
where Z ⊂ X is cut out by a has length bounded by N .

Proof. By the short exact sequence 0→ OX
a−→ OX → OZ → 0 we see that

(8.2.1) MX,a = H1(X,OX)[a]
Here N [a] = {n ∈ N | an = 0} for an A-module N . Thus if a divides b, then MX,a ⊂
MX,b. Suppose that for some c ∈ A the modules MX,c have bounded length. Then for
every X we have an exact sequence

0→MX,c →MX,c2 →MX,c

where the second arrow is given by multiplication by c. Hence we see that MX,c2 has
bounded length as well. Thus it suffices to find a c ∈ A for which the lemma is true such
that a divides cn for some n > 0. By More on Algebra, Lemma 125.6 we may assume
A/(a) is a reduced ring.
Assume that A/(a) is reduced. Let A/(a) ⊂ B be the normalization of A/(a) in its
quotient ring. Because A is Nagata, we see that Coker(A → B) is finite. We claim the
length of this finite module is a bound. To see this, consider f : X → Spec(A) as in
the lemma and let Z ′ ⊂ Z be the scheme theoretic closure of Z ∩ f−1(U). Then Z ′ →
Spec(A/(a)) is finite for example by Varieties, Lemma 17.2. Hence Z ′ = Spec(B′) with
A/(a) ⊂ B′ ⊂ B. On the other hand, we claim the map

H0(Z,OZ)→ H0(Z ′,OZ′)
is injective. Namely, if s ∈ H0(Z,OZ) is in the kernel, then the restriction of s to
f−1(U) ∩ Z is zero. Hence the image of s in H1(X,OX) vanishes in H1(f−1(U),OX).
By Lemma 7.5 we see that s comes from an element s̃ of A. But by assumption s̃ maps to
zero in B′ which implies that s = 0. Putting everything together we see that MX,a is a
subquotient of B′/A, namely not every element of B′ extends to a global section of OZ ,
but in any case the length of MX,a is bounded by the length of B/A. �

In some cases, resolution of singularities reduces to the case of rational singularities.

Definition 8.3. Let (A,m, κ) be a local normal Nagata domain of dimension 2.
(1) We say A defines a rational singularity if for every normal modification X →

Spec(A) we have H1(X,OX) = 0.
(2) We say that reduction to rational singularities is possible for A if the length of

the A-modules
H1(X,OX)

is bounded for all modifications X → Spec(A) with X normal.

The meaning of the language in (2) is explained by Lemma 8.5. The following lemma says
roughly speaking that local rings of modifications of Spec(A) with A defining a rational
singularity also define rational singularities.

Lemma 8.4. Let (A,m, κ) be a local normal Nagata domain of dimension 2 which
defines a rational singularity. Let A ⊂ B be a local extension of domains with the same
fraction field which is essentially of finite type such that dim(B) = 2 and B normal.
Then B defines a rational singularity.
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Proof. Choose a finite type A-algebra C such that B = Cq for some prime q ⊂ C.
After replacingC by the image ofC inB we may assume thatC is a domain with fraction
field equal to the fraction field of A. Then we can choose a closed immersion Spec(C)→
An
A and take the closure in Pn

A to conclude that B is isomorphic toOX,x for some closed
point x ∈ X of a projective modification X → Spec(A). (Morphisms, Lemma 52.1,
shows that κ(x) is finite over κ and then Morphisms, Lemma 20.2 shows that x is a closed
point.) Let ν : Xν → X be the normalization. Since A is Nagata the morphism ν is
finite (Morphisms, Lemma 54.10). Thus Xν is projective over A by More on Morphisms,
Lemma 50.2. Since B = OX,x is normal, we see that OX,x = (ν∗OXν )x. Hence there is
a unique point xν ∈ Xν lying over x and OXν ,xν = OX,x. Thus we may assume X is
normal and projective over A. Let Y → Spec(OX,x) = Spec(B) be a modification with
Y normal. We have to show that H1(Y,OY ) = 0. By Limits, Lemma 21.1 we can find
a morphism of schemes g : X ′ → X which is an isomorphism over X \ {x} such that
X ′×X Spec(OX,x) is isomorphic to Y . Then g is a modification as it is proper by Limits,
Lemma 21.2. The local ring of X ′ at a point of x′ is either isomorphic to the local ring of
X at g(x′) if g(x′) 6= x and if g(x′) = x, then the local ring of X ′ at x′ is isomorphic to
the local ring of Y at the corresponding point. Hence we see that X ′ is normal as both X
and Y are normal. Thus H1(X ′,OX′) = 0 by our assumption on A. By Lemma 8.1 we
have R1g∗OX′ = 0. Clearly this means that H1(Y,OY ) = 0 as desired. �

Lemma 8.5. Let (A,m, κ) be a local normal Nagata domain of dimension 2. If re-
duction to rational singularities is possible for A, then there exists a finite sequence of
normalized blowups

X = Xn → Xn−1 → . . .→ X1 → X0 = Spec(A)
in closed points such that for any closed point x ∈ X the local ringOX,x defines a rational
singularity. In particular X → Spec(A) is a modification and X is a normal scheme
projective over A.

Proof. We choose a modification X → Spec(A) with X normal which maximizes
the length of H1(X,OX). By Lemma 8.1 for any further modification g : X ′ → X with
X ′ normal we have R1g∗OX′ = 0 and H1(X,OX) = H1(X ′,OX′).
Let x ∈ X be a closed point. We will show that OX,x defines a rational singularity. Let
Y → Spec(OX,x) be a modification with Y normal. We have to show thatH1(Y,OY ) =
0. By Limits, Lemma 21.1 we can find a morphism of schemes g : X ′ → X which is an
isomorphism over X \ {x} such that X ′ ×X Spec(OX,x) is isomorphic to Y . Then g is
a modification as it is proper by Limits, Lemma 21.2. The local ring of X ′ at a point of x′

is either isomorphic to the local ring of X at g(x′) if g(x′) 6= x and if g(x′) = x, then
the local ring of X ′ at x′ is isomorphic to the local ring of Y at the corresponding point.
Hence we see that X ′ is normal as both X and Y are normal. By maximality we have
R1g∗OX′ = 0 (see first paragraph). Clearly this means that H1(Y,OY ) = 0 as desired.
The conclusion is that we’ve found one normal modification X of Spec(A) such that the
local rings ofX at closed points all define rational singularities. Then we choose a sequence
of normalized blowups Xn → . . . → X1 → Spec(A) such that Xn dominates X , see
Lemma 5.3. For a closed point x′ ∈ Xn mapping to x ∈ X we can apply Lemma 8.4 to
the ring mapOX,x → OXn,x′ to see thatOXn,x′ defines a rational singularity. �

Lemma 8.6. Let A → B be a finite injective local ring map of local normal Nagata
domains of dimension 2. Assume that the induced extension of fraction fields is separable.
If reduction to rational singularities is possible for A then it is possible for B.
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Proof. Let n be the degree of the fraction field extension L/K. Let TraceL/K :
L → K be the trace. Since the extension is finite separable the trace pairing (h, g) 7→
TraceL/K(fg) is a nondegenerate bilinear form onL overK. See Fields, Lemma 20.7. Pick
b1, . . . , bn ∈ B which form a basis ofL overK. By the above d = det(TraceL/K(bibj)) ∈
A is nonzero.

Let Y → Spec(B) be a modification with Y normal. We can find a U -admissible blowup
X ′ of Spec(A) such that the strict transformY ′ ofY is finite overX ′, see More on Flatness,
Lemma 31.2. Picture

Y ′

��

// Y // Spec(B)

��
X ′ // Spec(A)

After replacing X ′ and Y ′ by their normalizations we may assume that X ′ and Y ′ are
normal modifications of Spec(A) and Spec(B). In this way we reduce to the case where
there exists a commutative diagram

Y

π

��

g
// Spec(B)

��
X

f // Spec(A)

with X and Y normal modifications of Spec(A) and Spec(B) and π finite.

The trace map on L over K extends to a map of OX -modules Trace : π∗OY → OX .
Consider the map

Φ : π∗OY −→ O⊕n
X , s 7−→ (Trace(b1s), . . . ,Trace(bns))

This map is injective (because it is injective in the generic point) and there is a map

O⊕n
X −→ π∗OY , (s1, . . . , sn) 7−→

∑
bisi

whose composition with Φ has matrix Trace(bibj). Hence the cokernel of Φ is annihilated
by d. Thus we see that we have an exact sequence

H0(X,Coker(Φ))→ H1(Y,OY )→ H1(X,OX)⊕n

Since the right hand side is bounded by assumption, it suffices to show that the d-torsion
in H1(Y,OY ) is bounded. This is the content of Lemma 8.2 and (8.2.1). �

Lemma 8.7. Let A be a Nagata regular local ring of dimension 2. Then A defines a
rational singularity.

Proof. (The assumption that A be Nagata is not necessary for this proof, but we’ve
only defined the notion of rational singularity in the case of Nagata 2-dimensional normal
local domains.) Let X → Spec(A) be a modification with X normal. By Lemma 4.2 we
can dominate X by a scheme Xn which is the last in a sequence

Xn → Xn−1 → . . .→ X1 → X0 = Spec(A)
of blowing ups in closed points. By Lemma 3.2 the schemes Xi are regular, in particular
normal (Algebra, Lemma 157.5). By Lemma 8.1 we have H1(X,OX) ⊂ H1(Xn,OXn).
Thus it suffices to proveH1(Xn,OXn) = 0. Using Lemma 8.1 again, we see that it suffices
to prove R1(Xi → Xi−1)∗OXi = 0 for i = 1, . . . , n. This follows from Lemma 3.4. �
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Lemma 8.8. LetA be a local normal Nagata domain of dimension 2 which has a dual-
izing complex ω•

A. If there exists a nonzero d ∈ A such that for all normal modifications
X → Spec(A) the cokernel of the trace map

Γ(X,ωX)→ ωA

is annihilated by d, then reduction to rational singularities is possible for A.

Proof. For X → Spec(A) as in the statement we have to bound H1(X,OX). Let
ωX be the dualizing module ofX as in the statement of Grauert-Riemenschneider (Propo-
sition 7.8). The trace map is the mapRf∗ωX → ωA described in Duality for Schemes, Sec-
tion 7. By Grauert-Riemenschneider we have Rf∗ωX = f∗ωX thus the trace map indeed
produces a map Γ(X,ωX)→ ωA. By duality we have Rf∗ωX = RHomA(Rf∗OX , ωA)
(this uses that ωX [2] is the dualizing complex on X normalized relative to ωA[2], see Du-
ality for Schemes, Lemma 20.9 or more directly Section 19 or even more directly Example
3.9). The distinguished triangle

A→ Rf∗OX → R1f∗OX [−1]→ A[1]
is transformed by RHomA(−, ωA) into the short exact sequence

0→ f∗ωX → ωA → Ext2
A(R1f∗OX , ωA)→ 0

(and ExtiA(R1f∗OX , ωA) = 0 for i 6= 2; this will follow from the discussion below as
well). Since R1f∗OX is supported in {m}, the local duality theorem tells us that

Ext2
A(R1f∗OX , ωA) = Ext0

A(R1f∗OX , ωA[2]) = HomA(R1f∗OX , E)
is the Matlis dual of R1f∗OX (and the other ext groups are zero), see Dualizing Com-
plexes, Lemma 18.4. By the equivalence of categories inherent in Matlis duality (Dualizing
Complexes, Proposition 7.8), if R1f∗OX is not annihilated by d, then neither is the Ext2

above. Hence we see thatH1(X,OX) is annihilated by d. Thus the required boundedness
follows from Lemma 8.2 and (8.2.1). �

Lemma 8.9. Let p be a prime number. Let A be a regular local ring of dimension 2
and characteristic p. Let A0 ⊂ A be a subring such that ΩA/A0 is free of rank r <∞. Set
ωA = ΩrA/A0

. If X → Spec(A) is the result of a sequence of blowups in closed points,
then there exists a map

ϕX : (ΩrX/ Spec(A0))∗∗ −→ ωX

extending the given identification in the generic point.

Proof. Observe thatA is Gorenstein (Dualizing Complexes, Lemma 21.3) and hence
the invertible module ωA does indeed serve as a dualizing module. Moreover, any X as
in the lemma has an invertible dualizing module ωX as X is regular (hence Gorenstein)
and proper over A, see Remark 7.7 and Lemma 3.2. Suppose we have constructed the map
ϕX : (ΩrX/A0

)∗∗ → ωX and suppose that b : X ′ → X is a blowup in a closed point. Set
ΩrX = (ΩrX/A0

)∗∗ and ΩrX′ = (ΩrX′/A0
)∗∗. Since ωX′ = b!(ωX) a map ΩrX′ → ωX′ is

the same thing as a map Rb∗(ΩrX′) → ωX . See discussion in Remark 7.7 and Duality for
Schemes, Section 19. Thus in turn it suffices to produce a map

Rb∗(ΩrX′) −→ ΩrX
The sheaves ΩrX′ and ΩrX are invertible, see Divisors, Lemma 12.15. Consider the exact
sequence

b∗ΩX/A0 → ΩX′/A0 → ΩX′/X → 0
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A local calculation shows that ΩX′/X is isomorphic to an invertible module on the excep-
tional divisor E , see Lemma 3.6. It follows that either

ΩrX′ ∼= (b∗ΩrX)(E) or ΩrX′ ∼= b∗ΩrX
see Divisors, Lemma 15.13. (The second possibility never happens in characteristic zero,
but can happen in characteristic p.) In both cases we see thatR1b∗(ΩrX′) = 0 and b∗(ΩrX′) =
ΩrX by Lemma 3.4. �

Lemma 8.10. Let p be a prime number. Let A be a complete regular local ring of
dimension 2 and characteristic p. Let L/K be a degree p inseparable extension of the
fraction field K of A. Let B ⊂ L be the integral closure of A. Then reduction to rational
singularities is possible for B.

Proof. We have A = k[[x, y]]. Write L = K[x]/(xp − f) for some f ∈ A and
denote g ∈ B the congruence class of x, i.e., the element such that gp = f . By Algebra,
Lemma 158.2 we see that df is nonzero in ΩK/Fp . By More on Algebra, Lemma 46.5 there
exists a subfield kp ⊂ k′ ⊂ k with pe = [k : k′] < ∞ such that df is nonzero in ΩK/K0

where K0 is the fraction field of A0 = k′[[xp, yp]] ⊂ A. Then

ΩA/A0 = A⊗k Ωk/k′ ⊕Adx⊕Ady

is finite free of rank e+ 2. Set ωA = Ωe+2
A/A0

. Consider the canonical map

Tr : Ωe+2
B/A0

−→ Ωe+2
A/A0

= ωA

of Lemma 2.4. By duality this determines a map

c : Ωe+2
B/A0

→ ωB = HomA(B,ωA)

Claim: the cokernel of c is annihilated by a nonzero element of B.

Since df is nonzero in ΩA/A0 we can find η1, . . . , ηe+1 ∈ ΩA/A0 such that θ = η1 ∧ . . .∧
ηe+1 ∧ df is nonzero in ωA = Ωe+2

A/A0
. To prove the claim we will construct elements

ωi of Ωe+2
B/A0

, i = 0, . . . , p − 1 which are mapped to ϕi ∈ ωB = HomA(B,ωA) with
ϕi(gj) = δijθ for j = 0, . . . , p− 1. Since {1, g, . . . , gp−1} is a basis for L/K this proves
the claim. We set η = η1 ∧ . . . ∧ ηe+1 so that θ = η ∧ df . Set ωi = η ∧ gp−1−idg. Then
by construction we have

ϕi(gj) = Tr(gjη ∧ gp−1−idg) = Tr(η ∧ gp−1−i+jdg) = δijθ

by the explicit description of the trace map in Lemma 2.2.

Let Y → Spec(B) be a normal modification. Exactly as in the proof of Lemma 8.6 we
can reduce to the case where Y is finite over a modification X of Spec(A). By Lemma 4.2
we may even assume X → Spec(A) is the result of a sequence of blowing ups in closed
points. Picture:

Y

π

��

g
// Spec(B)

��
X

f // Spec(A)
We may apply Lemma 2.4 to π and we obtain the first arrow in

π∗(Ωe+2
Y/A0

) Tr−→ (Ωe+2
X/A0

)∗∗ ϕX−−→ ωX
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and the second arrow is from Lemma 8.9 (because f is a sequence of blowups in closed
points). By duality for the finite morphism π this corresponds to a map

cY : Ωe+2
Y/A0

−→ ωY

extending the map c above. Hence we see that the image of Γ(Y, ωY )→ ωB contains the
image of c. By our claim we see that the cokernel is annihilated by a fixed nonzero element
of B. We conclude by Lemma 8.8. �

9. Rational singularities

In this section we reduce from rational singular points to Gorenstein rational singular
points. See [?] and [?].

Situation 9.1. Here (A,m, κ) be a local normal Nagata domain of dimension 2 which
defines a rational singularity. Let s be the closed point of S = Spec(A) and U = S \ {s}.
Let f : X → S be a modification with X normal. We denote C1, . . . , Cr the irreducible
components of the special fibre Xs of f .

Lemma 9.2. In Situation 9.1. Let F be a quasi-coherentOX -module. Then
(1) Hp(X,F) = 0 for p 6∈ {0, 1}, and
(2) H1(X,F) = 0 if F is globally generated.

Proof. Part (1) follows from Cohomology of Schemes, Lemma 20.9. If F is globally
generated, then there is a surjection

⊕
i∈I OX → F . By part (1) and the long exact

sequence of cohomology this induces a surjection on H1. Since H1(X,OX) = 0 as S
has a rational singularity, and since H1(X,−) commutes with direct sums (Cohomology,
Lemma 19.1) we conclude. �

Lemma 9.3. In Situation 9.1 assume E = Xs is an effective Cartier divisor. Let I be
the ideal sheaf of E. Then H0(X, In) = mn and H1(X, In) = 0.

Proof. We have H0(X,OX) = A, see discussion following Situation 7.1. Then
m ⊂ H0(X, I) ⊂ H0(X,OX). The second inclusion is not an equality as Xs 6= ∅. Thus
H0(X, I) = m. As In = mnOX our Lemma 9.2 shows that H1(X, In) = 0.

Choose generators x1, . . . , xµ+1 of m. These define global sections of I which generate
it. Hence a short exact sequence

0→ F → O⊕µ+1
X → I → 0

Then F is a finite locally free OX -module of rank µ and F ⊗ I is globally generated by
Constructions, Lemma 13.9. Hence F ⊗ In is globally generated for all n ≥ 1. Thus for
n ≥ 2 we can consider the exact sequence

0→ F ⊗ In−1 → (In−1)⊕µ+1 → In → 0

Applying the long exact sequence of cohomology using that H1(X,F ⊗ In−1) = 0 by
Lemma 9.2 we obtain that every element of H0(X, In) is of the form

∑
xiai for some

ai ∈ H0(X, In−1). This shows that H0(X, In) = mn by induction. �

Lemma 9.4. In Situation 9.1 the blowup of Spec(A) in m is normal.

Proof. Let X ′ → Spec(A) be the blowup, in other words

X ′ = Proj(A⊕m⊕m2 ⊕ . . .).
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is the Proj of the Rees algebra. This in particular shows thatX ′ is integral and thatX ′ →
Spec(A) is a projective modification. LetX be the normalization ofX ′. SinceA is Nagata,
we see that ν : X → X ′ is finite (Morphisms, Lemma 54.10). Let E′ ⊂ X ′ be the
exceptional divisor and let E ⊂ X be the inverse image. Let I ′ ⊂ OX′ and I ⊂ OX
be their ideal sheaves. Recall that I ′ = OX′(1) (Divisors, Lemma 32.13). Observe that
I = ν∗I ′ and thatE is an effective Cartier divisor (Divisors, Lemma 13.13). We are trying
to show that ν is an isomorphism. As ν is finite, it suffices to show that OX′ → ν∗OX is
an isomorphism. If not, then we can find an n ≥ 0 such that

H0(X ′, (I ′)n) 6= H0(X ′, (ν∗OX)⊗ (I ′)n)
for example because we can recover quasi-coherent OX′ -modules from their associated
graded modules, see Properties, Lemma 28.3. By the projection formula we have

H0(X ′, (ν∗OX)⊗ (I ′)n) = H0(X, ν∗(I ′)n) = H0(X, In) = mn

the last equality by Lemma 9.3. On the other hand, there is clearly an injection mn →
H0(X ′, (I ′)n). Since H0(X ′, (I ′)n) is torsion free we conclude equality holds for all n,
hence X = X ′. �

Lemma 9.5. In Situation 9.1. Let X be the blowup of Spec(A) in m. Let E ⊂ X be
the exceptional divisor. WithOX(1) = I as usual andOE(1) = OX(1)|E we have

(1) E is a proper Cohen-Macaulay curve over κ.
(2) OE(1) is very ample
(3) deg(OE(1)) ≥ 1 and equality holds only if A is a regular local ring,
(4) H1(E,OE(n)) = 0 for n ≥ 0, and
(5) H0(E,OE(n)) = mn/mn+1 for n ≥ 0.

Proof. Since OX(1) is very ample by construction, we see that its restriction to the
special fibre E is very ample as well. By Lemma 9.4 the scheme X is normal. Then E is
Cohen-Macaulay by Divisors, Lemma 15.6. Lemma 9.3 applies and we obtain (4) and (5)
from the exact sequences

0→ In+1 → In → i∗OE(n)→ 0
and the long exact cohomology sequence. In particular, we see that

deg(OE(1)) = χ(E,OE(1))− χ(E,OE) = dim(m/m2)− 1
by Varieties, Definition 44.1. Thus (3) follows as well. �

Lemma 9.6. In Situation 9.1 assume A has a dualizing complex ω•
A. With ωX the

dualizing module of X , the trace map H0(X,ωX) → ωA is an isomorphism and conse-
quently there is a canonical map f∗ωA → ωX .

Proof. By Grauert-Riemenschneider (Proposition 7.8) we see thatRf∗ωX = f∗ωX .
By duality we have a short exact sequence

0→ f∗ωX → ωA → Ext2
A(R1f∗OX , ωA)→ 0

(for example see proof of Lemma 8.8) and since A defines a rational singularity we obtain
f∗ωX = ωA. �

Lemma 9.7. In Situation 9.1 assumeA has a dualizing complex ω•
A and is not regular.

Let X be the blowup of Spec(A) in m with exceptional divisor E ⊂ X . Let ωX be the
dualizing module of X . Then

(1) ωE = ωX |E ⊗OE(−1),
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(2) H1(X,ωX(n)) = 0 for n ≥ 0,
(3) the map f∗ωA → ωX of Lemma 9.6 is surjective.

Proof. We will use the results of Lemma 9.5 without further mention. Observe that
ωE = ωX |E ⊗ OE(−1) by Duality for Schemes, Lemmas 14.2 and 9.7. Thus ωX |E =
ωE(1). Consider the short exact sequences

0→ ωX(n+ 1)→ ωX(n)→ i∗ωE(n+ 1)→ 0

By Algebraic Curves, Lemma 6.4 we see that H1(E,ωE(n+ 1)) = 0 for n ≥ 0. Thus we
see that the maps

. . .→ H1(X,ωX(2))→ H1(X,ωX(1))→ H1(X,ωX)

are surjective. Since H1(X,ωX(n)) is zero for n � 0 (Cohomology of Schemes, Lemma
16.2) we conclude that (2) holds.

By Algebraic Curves, Lemma 6.7 we see that ωX |E = ωE ⊗OE(1) is globally generated.
Since we seen above that H1(X,ωX(1)) = 0 the map H0(X,ωX) → H0(E,ωX |E) is
surjective. We conclude thatωX is globally generated hence (3) holds because Γ(X,ωX) =
ωA is used in Lemma 9.6 to define the map. �

Lemma 9.8. Let (A,m, κ) be a local normal Nagata domain of dimension 2 which
defines a rational singularity. Assume A has a dualizing complex. Then there exists a
finite sequence of blowups in singular closed points

X = Xn → Xn−1 → . . .→ X1 → X0 = Spec(A)

such thatXi is normal for each i and such that the dualizing sheafωX ofX is an invertible
OX -module.

Proof. The dualizing moduleωA is a finiteA-module whose stalk at the generic point
is invertible. Namely, ωA⊗AK is a dualizing module for the fraction fieldK ofA, hence
has rank 1. Thus there exists a blowup b : Y → Spec(A) such that the strict transform
of ωA with respect to b is an invertibleOY -module, see Divisors, Lemma 35.3. By Lemma
5.3 we can choose a sequence of normalized blowups

Xn → Xn−1 → . . .→ X1 → Spec(A)

such that Xn dominates Y . By Lemma 9.4 and arguing by induction each Xi → Xi−1 is
simply a blowing up.

We claim that ωXn is invertible. Since ωXn is a coherent OXn -module, it suffices to see
its stalks are invertible modules. If x ∈ Xn is a regular point, then this is clear from the
fact that regular schemes are Gorenstein (Dualizing Complexes, Lemma 21.3). If x is a
singular point ofXn, then each of the images xi ∈ Xi of x is a singular point (because the
blowup of a regular point is regular by Lemma 3.2). Consider the canonical map f∗

nωA →
ωXn of Lemma 9.6. For each i the morphism Xi+1 → Xi is either a blowup of xi or an
isomorphism at xi. Since xi is always a singular point, it follows from Lemma 9.7 and
induction that the maps f∗

i ωA → ωXi is always surjective on stalks at xi. Hence

(f∗
nωA)x −→ ωXn,x

is surjective. On the other hand, by our choice of b the quotient of f∗
nωA by its torsion sub-

module is an invertible moduleL. Moreover, the dualizing module is torsion free (Duality
for Schemes, Lemma 22.3). It follows that Lx ∼= ωXn,x and the proof is complete. �
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10. Formal arcs

Let X be a locally Noetherian scheme. In this section we say that a formal arc in X is a
morphism a : T → X where T is the spectrum of a complete discrete valuation ring R
whose residue field κ is identified with the residue field of the image p of the closed point
of Spec(R). Let us say that the formal arc a is centered at p in this case. We say the formal
arc T → X is nonsingular if the induced map mp/m

2
p → mR/m

2
R is surjective.

Let a : T → X , T = Spec(R) be a nonsingular formal arc centered at a closed point p of
X . Assume X is locally Noetherian. Let b : X1 → X be the blowing up of X at x. Since
a is nonsingular, we see that there is an element f ∈ mp which maps to a uniformizer in
R. In particular, we find that the generic point of T maps to a point of X not equal to
p. In other words, with K the fraction field of R, the restriction of a defines a morphism
Spec(K)→ X \ {p}. Since the morphism b is proper and an isomorphism over X \ {x}
we can apply the valuative criterion of properness to obtain a unique morphism a1 making
the following diagram commute

T
a1
//

a
  

X1

b

��
X

Let p1 ∈ X1 be the image of the closed point of T . Observe that p1 is a closed point as it is
a κ = κ(p)-rational point on the fibre of X1 → X over x. Since we have a factorization

OX,x → OX1,p1 → R

we see that a1 is a nonsingular formal arc as well.

We can repeat the process and obtain a sequence of blowing ups

T

a

�� a1 %% a2
**

a3

,,(X, p) (X1, p1)oo (X2, p2)oo (X3, p3)oo . . .oo

This kind of sequence of blowups can be characterized as follows.

Lemma 10.1. Let X be a locally Noetherian scheme. Let

(X, p) = (X0, p0)← (X1, p1)← (X2, p2)← (X3, p3)← . . .

be a sequence of blowups such that
(1) pi is closed, maps to pi−1, and κ(pi) = κ(pi−1),
(2) there exists anx1 ∈ mp whose image inmpi , i > 0 defines the exceptional divisor

Ei ⊂ Xi.
Then the sequence is obtained from a nonsingular arc a : T → X as above.

Proof. Let us write On = OXn,pn and O = OX,p. Denote m ⊂ O and mn ⊂ On
the maximal ideals.

We claim that xt1 6∈ mt+1
n . Namely, if this were the case, then in the local ring On+1 the

element xt1 would be in the ideal of (t+ 1)En+1. This contradicts the assumption that x1
defines En+1.

For every n choose generators yn,1, . . . , yn,tn for mn. As mnOn+1 = x1On+1 by assump-
tion (2), we can write yn,i = an,ix1 for some an,i ∈ On+1. Since the map On → On+1
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defines an isomorphism on residue fields by (1) we can choose cn,i ∈ On having the same
residue class as an,i. Then we see that

mn = (x1, zn,1, . . . , zn,tn), zn,i = yn,i − cn,ix1

and the elements zn,i map to elements of m2
n+1 inOn+1.

Let us consider
Jn = Ker(O → On/mn+1

n )
We claim thatO/Jn has length n+ 1 and thatO/(x1) + Jn equals the residue field. For
n = 0 this is immediate. Assume the statement holds for n. Let f ∈ Jn. Then in On we
have

f = axn+1
1 + xn1A1(zn,i) + xn−1

1 A2(zn,i) + . . .+An+1(zn,i)
for some a ∈ On and some Ai homogeneous of degree i with coefficients in On. Since
O → On identifies residue fields, we may choose a ∈ O (argue as in the construction
of zn,i above). Taking the image in On+1 we see that f and axn+1

1 have the same image
modulo mn+2

n+1. Since xn+1
n 6∈ mn+2

n+1 it follows that Jn/Jn+1 has length 1 and the claim is
true.

Consider R = limO/Jn. This is a quotient of the m-adic completion of O hence it is a
complete Noetherian local ring. On the other hand, it is not finite length and x1 generates
the maximal ideal. Thus R is a complete discrete valuation ring. The map O → R lifts
to a local homomorphism On → R for every n. There are two ways to show this: (1)
for every n one can use a similar procedure to construct On → Rn and then one can
show that O → On → Rn factors through an isomorphism R → Rn, or (2) one can use
Divisors, Lemma 32.6 to show thatOn is a localization of a repeated affine blowup algebra
to explicitly construct a map On → R. Having said this it is clear that our sequence of
blowups comes from the nonsingular arc a : T = Spec(R)→ X . �

The following lemma is a kind of Néron desingularization lemma.

Lemma 10.2. Let (A,m, κ) be a Noetherian local domain of dimension 2. LetA→ R
be a surjection onto a complete discrete valuation ring. This defines a nonsingular arc
a : T = Spec(R)→ Spec(A). Let

Spec(A) = X0 ← X1 ← X2 ← X3 ← . . .

be the sequence of blowing ups constructed from a. If Ap is a regular local ring where
p = Ker(A→ R), then for some i the scheme Xi is regular at xi.

Proof. Let x1 ∈ mmap to a uniformizer ofR. Observe that κ(p) = K is the fraction
field of R. Write p = (x2, . . . , xr) with r minimal. If r = 2, then m = (x1, x2) and A
is regular and the lemma is true. Assume r > 2. After renumbering if necessary, we may
assume that x2 maps to a uniformizer of Ap. Then p/p2 + (x2) is annihilated by a power
of x1. For i > 2 we can find ni ≥ 0 and ai ∈ A such that

xni1 xi − aix2 =
∑

2≤j≤k
ajkxjxk

for some ajk ∈ A. If ni = 0 for some i, then we can remove xi from the list of generators
of p and we win by induction on r. If for some i the element ai is a unit, then we can
remove x2 from the list of generators of p and we win in the same manner. Thus either
ai ∈ p or ai = uix

m1
1 mod p for some m1 > 0 and unit ui ∈ A. Thus we have either

xni1 xi =
∑

2≤j≤k
ajkxjxk or xni1 xi − uix

mi
1 x2 =

∑
2≤j≤k

ajkxjxk
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We will prove that after blowing up the integers ni, mi decrease which will finish the
proof.
Let us see what happens with these equations on the affine blowup algebraA′ = A[m/x1].
As m = (x1, . . . , xr) we see that A′ is generated over R by yi = xi/x1 for i ≥ 2. Clearly
A→ R extends to A′ → R with kernel (y2, . . . , yr). Then we see that either

xni−1
1 yi =

∑
2≤j≤k

ajkyjyk or xni−1
1 yi − uixm1−1

1 y2 =
∑

2≤j≤k
ajkyjyk

and the proof is complete. �

11. Base change to the completion

The following simple lemma will turn out to be a useful tool in what follows.

Lemma 11.1. Let (A,m, κ) be a local ring with finitely generated maximal idealm. Let
X be a scheme overA. Let Y = X×Spec(A) Spec(A∧) whereA∧ is the m-adic completion
of A. For a point q ∈ Y with image p ∈ X lying over the closed point of Spec(A) the
local ring mapOX,p → OY,q induces an isomorphism on completions.

Proof. We may assumeX is affine. Then we may writeX = Spec(B). Let q ⊂ B′ =
B⊗AA∧ be the prime corresponding to q and let p ⊂ B be the prime ideal corresponding
to p. By Algebra, Lemma 96.3 we have

B′/(m∧)nB′ = A∧/(m∧)n ⊗A B = A/mn ⊗A B = B/mnB

for all n. Since mB ⊂ p and m∧B′ ⊂ q we see thatB/pn andB′/qn are both quotients of
the ring displayed above by the nth power of the same prime ideal. The lemma follows.

�

Lemma 11.2. Let (A,m, κ) be a Noetherian local ring. Let X → Spec(A) be a mor-
phism which is locally of finite type. Set Y = X ×Spec(A) Spec(A∧). Let y ∈ Y with
image x ∈ X . Then

(1) ifOY,y is regular, thenOX,x is regular,
(2) if y is in the closed fibre, thenOY,y is regular⇔ OX,x is regular, and
(3) If X is proper over A, then X is regular if and only if Y is regular.

Proof. SinceA→ A∧ is faithfully flat (Algebra, Lemma 97.3), we see that Y → X is
flat. Hence (1) by Algebra, Lemma 164.4. Lemma 11.1 shows the morphismY → X induces
an isomorphism on complete local rings at points of the special fibres. Thus (2) by More
on Algebra, Lemma 43.4. If X is proper over A, then Y is proper over A∧ (Morphisms,
Lemma 41.5) and we see every closed point of X and Y lies in the closed fibre. Thus we
see that Y is a regular scheme if and only if X is so by Properties, Lemma 9.2. �

Lemma 11.3. Let (A,m) be a Noetherian local ring with completion A∧. Let U ⊂
Spec(A) and U∧ ⊂ Spec(A∧) be the punctured spectra. If Y → Spec(A∧) is a U∧-
admissible blowup, then there exists a U -admissible blowup X → Spec(A) such that
Y = X ×Spec(A) Spec(A∧).

Proof. By definition there exists an ideal J ⊂ A∧ such that V (J) = {mA∧} and
such that Y is the blowup of S∧ in the closed subscheme defined by J , see Divisors,
Definition 34.1. Since A∧ is Noetherian this implies mnA∧ ⊂ J for some n. Since
A∧/mnA∧ = A/mn we find an ideal mn ⊂ I ⊂ A such that J = IA∧. Let X → S
be the blowup in I . Since A → A∧ is flat we conclude that the base change of X is Y by
Divisors, Lemma 32.3. �
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Lemma 11.4. Let (A,m, κ) be a Nagata local normal domain of dimension 2. Assume
A defines a rational singularity and that the completion A∧ of A is normal. Then

(1) A∧ defines a rational singularity, and
(2) if X → Spec(A) is the blowing up in m, then for a closed point x ∈ X the

completionOX,x is normal.

Proof. Let Y → Spec(A∧) be a modification with Y normal. We have to show
that H1(Y,OY ) = 0. By Varieties, Lemma 17.3 Y → Spec(A∧) is an isomorphism over
the punctured spectrum U∧ = Spec(A∧) \ {m∧}. By Lemma 7.2 there exists a U∧-
admissible blowup Y ′ → Spec(A∧) dominating Y . By Lemma 11.3 we find there exists a
U -admissible blowup X → Spec(A) whose base change to A∧ dominates Y . Since A is
Nagata, we can replaceX by its normalization after whichX → Spec(A) is a normal mod-
ification (but possibly no longer a U -admissible blowup). Then H1(X,OX) = 0 as A de-
fines a rational singularity. It follows thatH1(X×Spec(A)Spec(A∧),OX×Spec(A)Spec(A∧)) =
0 by flat base change (Cohomology of Schemes, Lemma 5.2 and flatness of A → A∧ by
Algebra, Lemma 97.2). We find that H1(Y,OY ) = 0 by Lemma 8.1.

Finally, let X → Spec(A) be the blowing up of Spec(A) in m. Then Y = X ×Spec(A)
Spec(A∧) is the blowing up of Spec(A∧) in m∧. By Lemma 9.4 we see that both Y andX
are normal. On the other hand,A∧ is excellent (More on Algebra, Proposition 52.3) hence
every affine open in Y is the spectrum of an excellent normal domain (More on Algebra,
Lemma 52.2). Thus for y ∈ Y the ring map OY,y → O∧

Y,y is regular and by More on
Algebra, Lemma 42.2 we find thatO∧

Y,y is normal. If x ∈ X is a closed point of the special
fibre, then there is a unique closed point y ∈ Y lying over x. SinceOX,x → OY,y induces
an isomorphism on completions (Lemma 11.1) we conclude. �

Lemma 11.5. Let (A,m) be a local Noetherian ring. LetX be a scheme overA. Assume
(1) A is analytically unramified (Algebra, Definition 162.9),
(2) X is locally of finite type over A, and
(3) X → Spec(A) is étale at the generic points of irreducible components of X .

Then the normalization of X is finite over X .

Proof. Since A is analytically unramified it is reduced by Algebra, Lemma 162.10.
Since the normalization of X depends only on the reduction of X , we may replace X
by its reduction Xred; note that Xred → X is an isomorphism over the open U where
X → Spec(A) is étale because U is reduced (Descent, Lemma 18.1) hence condition (3)
remains true after this replacement. In addition we may and do assume thatX = Spec(B)
is affine.

The map
K =

∏
p⊂A minimal

κ(p) −→ K∧ =
∏

p∧⊂A∧ minimal
κ(p∧)

is injective because A → A∧ is faithfully flat (Algebra, Lemma 97.3) hence induces a
surjective map between sets of minimal primes (by going down for flat ring maps, see
Algebra, Section 41). Both sides are finite products of fields as our rings are Noetherian.
Let L =

∏
q⊂B minimal κ(q). Our assumption (3) implies that L = B ⊗A K and that

K → L is a finite étale ring map (this is true because A → B is generically finite, for
example use Algebra, Lemma 122.10 or the more detailed results in Morphisms, Section
51). Since B is reduced we see that B ⊂ L. This implies that

C = B ⊗A A∧ ⊂ L⊗A A∧ = L⊗K K∧ = M
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ThenM is the total ring of fractions ofC and is a finite product of fields as a finite separable
algebra overK∧. It follows thatC is reduced and that its normalizationC ′ is the integral
closure ofC inM . The normalizationB′ ofB is the integral closure ofB inL. By flatness
of A→ A∧ we obtain an injective map B′ ⊗A A∧ →M whose image is contained in C ′.
Picture

B′ ⊗A A∧ −→ C ′

As A∧ is Nagata (by Algebra, Lemma 162.8), we see that C ′ is finite over C = B ⊗A A∧

(see Algebra, Lemmas 162.8 and 162.2). As C is Noetherian, we conclude that B′ ⊗A A∧

is finite over C = B ⊗A A∧. Therefore by faithfully flat descent (Algebra, Lemma 83.2)
we see that B′ is finite over B which is what we had to show. �

Lemma 11.6. Let (A,m, κ) be a Noetherian local ring. Let X → Spec(A) be a mor-
phism which is locally of finite type. Set Y = X ×Spec(A) Spec(A∧). If the complement
of the special fibre in Y is normal, then the normalization Xν → X is finite and the base
change of Xν to Spec(A∧) recovers the normalization of Y .

Proof. There is an immediate reduction to the case where X = Spec(B) is affine
with B a finite type A-algebra. Set C = B ⊗A A∧ so that Y = Spec(C). Since A→ A∧

is faithfully flat, for any prime q ⊂ B there exists a prime r ⊂ C lying over q. Then
Bq → Cr is faithfully flat. Hence if q does not lie overm, thenCr is normal by assumption
on Y and we conclude thatBq is normal by Algebra, Lemma 164.3. In this way we see that
X is normal away from the special fibre.

Recall that the complete Noetherian local ring A∧ is Nagata (Algebra, Lemma 162.8).
Hence the normalization Y ν → Y is finite (Morphisms, Lemma 54.10) and an isomor-
phism away from the special fibre. Say Y ν = Spec(C ′). Then C → C ′ is finite and
an isomorphism away from V (mC). Since B → C is flat and induces an isomorphism
B/mB → C/mC there exists a finite ring mapB → B′ whose base change to C recovers
C → C ′. See More on Algebra, Lemma 89.16 and Remark 89.19. Thus we find a finite
morphism X ′ → X which is an isomorphism away from the special fibre and whose base
change recovers Y ν → Y . By the discussion in the first paragraph we see that X ′ is nor-
mal at points not on the special fibre. For a point x ∈ X ′ on the special fibre we have
a corresponding point y ∈ Y ν and a flat map OX′,x → OY ν ,y . Since OY ν ,y is normal,
so is OX′,x, see Algebra, Lemma 164.3. Thus X ′ is normal and it follows that it is the
normalization of X . �

Lemma 11.7. Let (A,m, κ) be a Noetherian local domain whose completion A∧ is
normal. Then given any sequence

Yn → Yn−1 → . . .→ Y1 → Spec(A∧)
of normalized blowups, there exists a sequence of (proper) normalized blowups

Xn → Xn−1 → . . .→ X1 → Spec(A)
whose base change to A∧ recovers the given sequence.

Proof. Given the sequence Yn → . . . → Y1 → Y0 = Spec(A∧) we inductively
construct Xn → . . . → X1 → X0 = Spec(A). The base case is i = 0. Given Xi whose
base change is Yi, let Y ′

i → Yi be the blowing up in the closed point yi ∈ Yi such that Yi+1
is the normalization of Yi. Since the closed fibres of Yi and Xi are isomorphic, the point
yi corresponds to a closed point xi on the special fibre ofXi. LetX ′

i → Xi be the blowup
ofXi in xi. Then the base change ofX ′

i to Spec(A∧) is isomorphic to Y ′
i . By Lemma 11.6
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the normalization Xi+1 → X ′
i is finite and its base change to Spec(A∧) is isomorphic to

Yi+1. �

12. Rational double points

In Section 9 we argued that resolution of 2-dimensional rational singularities reduces to
the Gorenstein case. A Gorenstein rational surface singularity is a rational double point.
We will resolve them by explicit computations.
According to the discussion in Examples, Section 19 there exists a normal Noetherian local
domain A whose completion is isomorphic to C[[x, y, z]]/(z2). In this case one could say
that A has a rational double point singularity, but on the other hand, Spec(A) does not
have a resolution of singularities. This kind of behaviour cannot occur if A is a Nagata
ring, see Algebra, Lemma 162.13.
However, it gets worse as there exists a local normal Nagata domainAwhose completion is
C[[x, y, z]]/(yz) and another whose completion is C[[x, y, z]]/(y2−z3). This is Example
2.5 of [?]. This is why we need to assume the completion of our ring is normal in this
section.

Situation 12.1. Here (A,m, κ) be a Nagata local normal domain of dimension 2
which defines a rational singularity, whose completion is normal, and which is Gorenstein.
We assume A is not regular.

The arguments in this section will show that repeatedly blowing up singular points re-
solves Spec(A) in this situation. We will need the following lemma in the course of the
proof.

Lemma 12.2. Let κ be a field. Let I ⊂ κ[x, y] be an ideal. Let
a+ bx+ cy + dx2 + exy + fy2 ∈ I2

for some a, b, c, d, e, f ∈ k not all zero. If the colength of I in κ[x, y] is> 1, then a+bx+
cy + dx2 + exy + fy2 = j(g + hx+ iy)2 for some j, g, h, i ∈ κ.

Proof. Consider the partial derivatives b + 2dx + ey and c + ex + 2fy. By the
Leibniz rules these are contained in I . If one of these is nonzero, then after a linear change
of coordinates, i.e., of the form x 7→ α + βx+ γy and y 7→ δ + εx+ ζy, we may assume
that x ∈ I . Then we see that I = (x) or I = (x, F ) with F a monic polynomial of degree
≥ 2 in y. In the first case the statement is clear. In the second case observe that we can
write any element in I2 in the form

A(x, y)x2 +B(y)xF + C(y)F 2

for some A(x, y) ∈ κ[x, y] and B,C ∈ κ[y]. Thus
a+ bx+ cy + dx2 + exy + fy2 = A(x, y)x2 +B(y)xF + C(y)F 2

and by degree reasons we see that B = C = 0 and A is a constant.
To finish the proof we need to deal with the case that both partial derivatives are zero.
This can only happen in characteristic 2 and then we get

a+ dx2 + fy2 ∈ I2

We may assume f is nonzero (if not, then switch the roles of x and y). After dividing by
f we obtain the case where the characteristic of κ is 2 and

a+ dx2 + y2 ∈ I2
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If a and d are squares in κ, then we are done. If not, then there exists a derivation θ : κ→ κ
with θ(a) 6= 0 or θ(d) 6= 0, see Algebra, Lemma 158.2. We can extend this to a derivation
of κ[x, y] by setting θ(x) = θ(y) = 0. Then we find that

θ(a) + θ(d)x2 ∈ I

The case θ(d) = 0 is absurd. Thus we may assume that α + x2 ∈ I for some α ∈ κ.
Combining with the above we find that a+ αd+ y2 ∈ I . Hence

J = (α+ x2, a+ αd+ y2) ⊂ I

with codimension at most 2. Observe that J/J2 is free over κ[x, y]/J with basis α + x2

and a+αd+y2. Thus a+dx2 +y2 = 1 ·(a+αd+y2)+d ·(α+x2) ∈ I2 implies that the
inclusion J ⊂ I is strict. Thus we find a nonzero element of the form g + hx+ iy + jxy
in I . If j = 0, then I contains a linear form and we can conclude as in the first paragraph.
Thus j 6= 0 and dimκ(I/J) = 1 (otherwise we could find an element as above in I with
j = 0). We conclude that I has the form (α+x2, β+y2, g+hx+iy+jxy) with j 6= 0 and
has colength 3. In this case a+dx2 +y2 ∈ I2 is impossible. This can be shown by a direct
computation, but we prefer to argue as follows. Namely, to prove this statement we may
assume that κ is algebraically closed. Then we can do a coordinate change x 7→

√
α + x

and y 7→
√
β + y and assume that I = (x2, y2, g′ + h′x + i′y + jxy) with the same j.

Then g′ = h′ = i′ = 0 otherwise the colength of I is not 3. Thus we get I = (x2, y2, xy)
and the result is clear. �

Let (A,m, κ) be as in Situation 12.1. LetX → Spec(A) be the blowing up ofm in Spec(A).
By Lemma 9.4 we see that X is normal. All singularities of X are rational singularities
by Lemma 8.4. Since ωA = A we see from Lemma 9.7 that ωX ∼= OX (see discussion
in Remark 7.7 for conventions). Thus all singularities of X are Gorenstein. Moreover,
the local rings of X at closed point have normal completions by Lemma 11.4. In other
words, by blowing up Spec(A) we obtain a normal surfaceX whose singular points are as
in Situation 12.1. We will use this below without further mention. (Note: we will see in
the course of the discussion below that there are finitely many of these singular points.)

LetE ⊂ X be the exceptional divisor. We have ωE = OE(−1) by Lemma 9.7. By Lemma
9.5 we have κ = H0(E,OE). Thus E is a Gorenstein curve and by Riemann-Roch as
discussed in Algebraic Curves, Section 5 we have

χ(E,OE) = 1− g = −(1/2) deg(ωE) = (1/2) deg(OE(1))

where g = dimκH
1(E,OE) ≥ 0. Since deg(OE(1)) is positive by Varieties, Lemma

44.15 we find that g = 0 and deg(OE(1)) = 2. It follows that we have

dimκ(mn/mn+1) = 2n+ 1

by Lemma 9.5 and Riemann-Roch on E.

Choose x1, x2, x3 ∈ m which map to a basis of m/m2. Because dimκ(m2/m3) = 5 the
images of xixj , i ≥ j in this κ-vector space satisfy a relation. In other words, we can find
aij ∈ A, i ≥ j , not all contained in m, such that

a11x
2
1 + a12x1x2 + a13x1x3 + a22x

2
2 + a23x2x3 + a33x

2
3 =

∑
aijkxixjxk

for some aijk ∈ A where i ≤ j ≤ k. Denote a 7→ a the map A → κ. The quadratic
form q =

∑
aijtitj ∈ κ[t1, t2, t3] is well defined up to multiplication by an element of κ∗

by our choices. If during the course of our arguments we find that aij = 0 in κ, then we
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can subsume the term aijxixj in the right hand side and assume aij = 0; this operation
changes the aijk but not the other ai′j′ .
The blowing up is covered by 3 affine charts corresponding to the “variables” x1, x2, x3.
By symmetry it suffices to study one of the charts. To do this let

A′ = A[m/x1]
be the affine blowup algebra (as in Algebra, Section 70). Since x1, x2, x3 generate m we
see that A′ is generated by y2 = x2/x1 and y3 = x3/x1 over A. We will occasionally use
y1 = 1 to simplify formulas. Moreover, looking at our relation above we find that

a11 + a12y2 + a13y3 + a22y
2
2 + a23y2y3 + a33y

2
3 = x1(

∑
aijkyiyjyk)

inA′. Recall that x1 ∈ A′ defines the exceptional divisorE on our affine open ofX which
is therefore scheme theoretically given by

κ[y2, y3]/(a11 + a12y2 + a13y3 + a22y
2
2 + a23y2y3 + a33y

2
3)

In other words, E ⊂ P2
κ = Proj(κ[t1, t2, t3]) is the zero scheme of the quadratic form q

introduced above.
The quadratic form q is an important invariant of the singularity defined by A. Let us
say we are in case II if q is a square of a linear form times an element of κ∗ and in case I
otherwise. Observe that we are in case II exactly if, after changing our choice of x1, x2, x3,
we have

x2
3 =

∑
aijkxixjxk

in the local ring A.
Let m′ ⊂ A′ be a maximal ideal lying over m with residue field κ′. In other words, m′

corresponds to a closed point p ∈ E of the exceptional divisor. Recall that the surjection
κ[y2, y3]→ κ′

has kernel generated by two elements f2, f3 ∈ κ[y2, y3] (see for example Algebra, Example
27.3 or the proof of Algebra, Lemma 114.1). Let z2, z3 ∈ A′ map to f2, f3 inκ[y2, y3]. Then
we see that m′ = (x1, z2, z3) because x2 and x3 become divisible by x1 in A′.
Claim. IfX is singular at p, thenκ′ = κ or we are in case II. Namely, ifA′

m′ is singular, then
dimκ′ m′/(m′)2 = 3 which implies that dimκ′ m′/(m′)2 = 2 where m′ is the maximal
ideal ofOE,p = OX,p/x1OX,p. This implies that

q(1, y2, y3) = a11 + a12y2 + a13y3 + a22y
2
2 + a23y2y3 + a33y

2
3 ∈ (f2, f3)2

otherwise there would be a relation between the classes of z2 and z3 in m′/(m′)2. The
claim now follows from Lemma 12.2.
Resolution in case I. By the claim any singular point ofX isκ-rational. Pick such a singular
point p. We may choose our x1, x2, x3 ∈ m such that p lies on the chart described above
and has coordinates y2 = y3 = 0. Since it is a singular point arguing as in the proof of
the claim we find that q(1, y2, y3) ∈ (y2, y3)2. Thus we can choose a11 = a12 = a13 = 0
and q(t1, t2, t3) = q(t2, t3). It follows that

E = V (q) ⊂ P1
κ

either is the union of two distinct lines meeting at p or is a degree 2 curve with a unique
κ-rational point (small detail omitted; use that q is not a square of a linear form up to
a scalar). In both cases we conclude that X has a unique singular point p which is κ-
rational. We need a bit more information in this case. First, looking at higher terms in
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the expression above, we find that a111 = 0 because p is singular. Then we can write
a111 = b111x1 mod (x2, x3) for some b111 ∈ A. Then the quadratic form at p for the
generators x1, y2, y3 of m′ is

q′ = b111t
2
1 + a112t1t2 + a113t1t3 + a22t

2
2 + a23t2t3 + a33t

2
3

We see that E′ = V (q′) intersects the line t1 = 0 in either two points or one point of
degree 2. We conclude that p lies in case I.

Suppose that the blowing up X ′ → X of X at p again has a singular point p′. Then we
see that p′ is a κ-rational point and we can blow up to get X ′′ → X ′. If this process does
not stop we get a sequence of blowings up

Spec(A)← X ← X ′ ← X ′′ ← . . .

We want to show that Lemma 10.1 applies to this situation. To do this we have to say
something about the choice of the element x1 of m. Suppose that A is in case I and that
X has a singular point. Then we will say that x1 ∈ m is a good coordinate if for any
(equivalently some) choice of x2, x3 the quadratic form q(t1, t2, t3) has the property that
q(0, t2, t3) is not a scalar times a square. We have seen above that a good coordinate ex-
ists. If x1 is a good coordinate, then the singular point p ∈ E of X does not lie on the
hypersurface t1 = 0 because either this does not have a rational point or if it does, then it
is not singular onX . Observe that this is equivalent to the statement that the image of x1
inOX,p cuts out the exceptional divisor E. Now the computations above show that if x1
is a good coordinate for A, then x1 ∈ m′OX,p is a good coordinate for p. This of course
uses that the notion of good coordinate does not depend on the choice of x2, x3 used to
do the computation. Hence x1 maps to a good coordinate at p′, p′′, etc. Thus Lemma 10.1
applies and our sequence of blowing ups comes from a nonsingular arc A→ R. Then the
mapA∧ → R is a surjection. Since the completion ofA is normal, we conclude by Lemma
10.2 that after a finite number of blowups

Spec(A∧)← X∧ ← (X ′)∧ ← . . .

the resulting scheme (X(n))∧ is regular. Since (X(n))∧ → X(n) induces isomorphisms
on complete local rings (Lemma 11.1) we conclude that the same is true for X(n).

Resolution in case II. Here we have

x2
3 =

∑
aijkxixjxk

in A for some choice of generators x1, x2, x3 of m. Then q = t23 and E = 2C where C is
a line. Recall that in A′ we get

y2
3 = x1(

∑
aijkyiyjyk)

Since we know that X is normal, we get a discrete valuation ring OX,ξ at the generic
point ξ of C. The element y3 ∈ A′ maps to a uniformizer of OX,ξ . Since x1 scheme
theoretically cuts out E which is C with multiplicity 2, we see that x1 is a unit times y2

3
inOX,ξ . Looking at our equality above we conclude that

h(y2) = a111 + a112y2 + a122y
2
2 + a222y

3
2

must be nonzero in the residue field of ξ. Now, suppose that p ∈ C defines a singular
point. Then y3 is zero at p and p must correspond to a zero of h by the reasoning used in
proving the claim above. If h does not have a double zero at p, then the quadratic form
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q′ at p is not a square and we conclude that p falls in case I which we have treated above1.
Since the degree of h is 3 we get at most one singular point p ∈ C falling into case II
which is moreover κ-rational. After changing our choice of x1, x2, x3 we may assume this
is the point y2 = y3 = 0. Then h = a122y

2
2 + a222y

3
2 . Moreover, it still has to be the case

that a113 = 0 for the quadratic form q′ to have the right shape. Thus the local ringOX,p
defines a singularity as in the next paragraph.

The final case we treat is the case where we can choose our generators x1, x2, x3 of m such
that

x2
3 + x1(ax2

2 + bx2x3 + cx2
3) ∈ m4

for some a, b, c ∈ A. This is a subclass of case II. If a = 0, then we can write a = a1x1 +
a2x2 + a3x3 and we get after blowing up

y2
3 + x1(a1x1y

2
2 + a2x1y

3
2 + a3x1y

2
2y3 + by2y3 + cy2

3) = x2
1(
∑

aijklyiyjykyl)

This means thatX is not normal2 a contradiction. By the result of the previous paragraph,
if the blowup X has a singular point p which falls in case II, then there is only one and
it is κ-rational. Computing the affine blowup algebras A[ m

x2
] and A[ m

x3
] the reader easily

sees that p cannot be contained the corresponding opens of X . Thus p is in the spectrum
ofA[ m

x1
]. Doing the blowing up as before we see that pmust be the point with coordinates

y2 = y3 = 0 and the new equation looks like

y2
3 + x1(ay2

2 + by2y3 + cy2
3) ∈ (m′)4

which has the same shape as before and has the property that x1 defines the exceptional
divisor. Thus if the process does not stop we get an infinite sequence of blowups and on
each of these x1 defines the exceptional divisor in the local ring of the singular point. Thus
we can finish the proof using Lemmas 10.1 and 10.2 and the same reasoning as before.

Lemma 12.3. Let (A,m, κ) be a local normal Nagata domain of dimension 2 which
defines a rational singularity, whose completion is normal, and which is Gorenstein. Then
there exists a finite sequence of blowups in singular closed points

Xn → Xn−1 → . . .→ X1 → X0 = Spec(A)

such thatXn is regular and such that each intervening schemesXi is normal with finitely
many singular points of the same type.

Proof. This is exactly what was proved in the discussion above. �

13. Implied properties

In this section we prove that for a Noetherian integral scheme the existence of a regu-
lar alteration has quite a few consequences. This section should be skipped by those not
interested in “bad” Noetherian rings.

1The maximal ideal at p in A′ is generated by y3, x1 and a third element g whose image in κ[y2] is the
prime divisor of h corresponding to p. If this prime divisor doesn’t divide h twice, then we see that the quadratic
form at p looks like

y2
3 − x1((something)x1 + (something)y3 + (unit)g)

and this can never be a square in κ[y3, x1, g].
2Namely, the equation shows that you get something singular along the 1-dimensional locus x1 = y3 = 0

which cannot happen for a normal surface.
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Lemma 13.1. LetY be a Noetherian integral scheme. Assume there exists an alteration
f : X → Y with X regular. Then the normalization Y ν → Y is finite and Y has a dense
open which is regular.

Proof. It suffices to prove this when Y = Spec(A) whereA is a Noetherian domain.
LetB be the integral closure ofA in its fraction field. SetC = Γ(X,OX). By Cohomology
of Schemes, Lemma 19.2 we see that C is a finite A-module. As X is normal (Properties,
Lemma 9.4) we see that C is normal domain (Properties, Lemma 7.9). Thus B ⊂ C and
we conclude that B is finite over A as A is Noetherian.
There exists a nonempty open V ⊂ Y such that f−1V → V is finite, see Morphisms,
Definition 51.12. After shrinking V we may assume that f−1V → V is flat (Morphisms,
Proposition 27.1). Thus f−1V → V is faithfully flat. Then V is regular by Algebra,
Lemma 164.4. �

Lemma 13.2. Let (A,m) be a local Noetherian ring. Let B ⊂ C be finite A-algebras.
Assume that (a) B is a normal ring, and (b) the m-adic completion C∧ is a normal ring.
Then B∧ is a normal ring.

Proof. Consider the commutative diagram

B //

��

C

��
B∧ // C∧

Recall that m-adic completion on the category of finite A-modules is exact because it is
given by tensoring with the flat A-algebra A∧ (Algebra, Lemma 97.2). We will use Serre’s
criterion (Algebra, Lemma 157.4) to prove that the Noetherian ring B∧ is normal. Let
q ⊂ B∧ be a prime lying over p ⊂ B. If dim(Bp) ≥ 2, then depth(Bp) ≥ 2 and since
Bp → B∧

q is flat we find that depth(B∧
q ) ≥ 2 (Algebra, Lemma 163.2). If dim(Bp) ≤ 1,

then Bp is either a discrete valuation ring or a field. In that case Cp is faithfully flat over
Bp (because it is finite and torsion free). Hence B∧

p → C∧
p is faithfully flat and the same

holds after localizing at q. AsC∧ and hence any localization is (S2) we conclude thatB∧
p is

(S2) by Algebra, Lemma 164.5. All in all we find that (S2) holds forB∧. To prove thatB∧

is (R1) we only have to consider primes q ⊂ B∧ with dim(B∧
q ) ≤ 1. Since dim(B∧

q ) =
dim(Bp)+dim(B∧

q /pB
∧
q ) by Algebra, Lemma 112.6 we find that dim(Bp) ≤ 1 and we see

that B∧
q → C∧

q is faithfully flat as before. We conclude using Algebra, Lemma 164.6. �

Lemma 13.3. Let (A,m, κ) be a local Noetherian domain. Assume there exists an
alteration f : X → Spec(A) with X regular. Then

(1) there exists a nonzero f ∈ A such that Af is regular,
(2) the integral closure B of A in its fraction field is finite over A,
(3) the m-adic completion of B is a normal ring, i.e., the completions of B at its

maximal ideals are normal domains, and
(4) the generic formal fibre of A is regular.

Proof. Parts (1) and (2) follow from Lemma 13.1. We have to redo part of the proof
of that lemma in order to set up notation for the proof of (3). Set C = Γ(X,OX). By
Cohomology of Schemes, Lemma 19.2 we see that C is a finite A-module. As X is normal
(Properties, Lemma 9.4) we see that C is normal domain (Properties, Lemma 7.9). Thus
B ⊂ C and we conclude that B is finite over A as A is Noetherian. By Lemma 13.2 in
order to prove (3) it suffices to show that the m-adic completion C∧ is normal.
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By Algebra, Lemma 97.8 the completion C∧ is the product of the completions of C at the
prime ideals ofC lying over m. There are finitely many of these and these are the maximal
ideals m1, . . . ,mr of C. (The corresponding result for B explains the final statement of
the lemma.) Thus replacing A by Cmi and X by Xi = X ×Spec(C) Spec(Cmi) we reduce
to the case discussed in the next paragraph. (Note that Γ(Xi,O) = Cmi by Cohomology
of Schemes, Lemma 5.2.)

Here A is a Noetherian local normal domain and f : X → Spec(A) is a regular alter-
ation with Γ(X,OX) = A. We have to show that the completion A∧ of A is a normal
domain. By Lemma 11.2 Y = X ×Spec(A) Spec(A∧) is regular. Since Γ(Y,OY ) = A∧ by
Cohomology of Schemes, Lemma 5.2, we conclude that A∧ is normal as before. Namely,
Y is normal by Properties, Lemma 9.4. It is connected because Γ(Y,OY ) = A∧ is local.
Hence Y is normal and integral (as connected and normal implies integral for Noether-
ian schemes). Thus Γ(Y,OY ) = A∧ is a normal domain by Properties, Lemma 7.9. This
proves (3).

Proof of (4). Let η ∈ Spec(A) denote the generic point and denote by a subscript η the
base change to η. Since f is an alteration, the scheme Xη is finite and faithfully flat over
η. Since Y = X ×Spec(A) Spec(A∧) is regular by Lemma 11.2 we see that Yη is regular
(as a limit of opens in Y ). Then Yη → Spec(A∧ ⊗A κ(η)) is finite faithfully flat onto the
generic formal fibre. We conclude by Algebra, Lemma 164.4. �

14. Resolution

Here is a definition.

Definition 14.1. LetY be a Noetherian integral scheme. A resolution of singularities
of Y is a modification f : X → Y such that X is regular.

In the case of surfaces we sometimes want a bit more information.

Definition 14.2. Let Y be a 2-dimensional Noetherian integral scheme. We say Y
has a resolution of singularities by normalized blowups if there exists a sequence

Yn → Yn−1 → . . .→ Y1 → Y0 → Y

where
(1) Yi is proper over Y for i = 0, . . . , n,
(2) Y0 → Y is the normalization,
(3) Yi → Yi−1 is a normalized blowup for i = 1, . . . , n, and
(4) Yn is regular.

Observe that condition (1) implies that the normalization Y0 of Y is finite over Y and that
the normalizations used in the normalized blowing ups are finite as well.

Lemma 14.3. Let (A,m, κ) be a Noetherian local ring. Assume A is normal and has
dimension 2. If Spec(A) has a resolution of singularities, then Spec(A) has a resolution
by normalized blowups.

Proof. By Lemma 13.3 the completionA∧ ofA is normal. By Lemma 11.2 we see that
Spec(A∧) has a resolution. By Lemma 11.7 any sequence Yn → Yn−1 → . . .→ Spec(A∧)
of normalized blowups of comes from a sequence of normalized blowups Xn → . . . →
Spec(A). Moreover if Yn is regular, then Xn is regular by Lemma 11.2. Thus it suffices to
prove the lemma in case A is complete.
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Assume in addition A is a complete. We will use that A is Nagata (Algebra, Proposition
162.16), excellent (More on Algebra, Proposition 52.3), and has a dualizing complex (Du-
alizing Complexes, Lemma 22.4). Moreover, the same is true for any ring essentially of
finite type over A. If B is a excellent local normal domain, then the completion B∧ is
normal (as B → B∧ is regular and More on Algebra, Lemma 42.2 applies). We will use
this without further mention in the rest of the proof.

Let X → Spec(A) be a resolution of singularities. Choose a sequence of normalized
blowing ups

Yn → Yn−1 → . . .→ Y1 → Spec(A)
dominating X (Lemma 5.3). The morphism Yn → X is an isomorphism away from
finitely many points of X . Hence we can apply Lemma 4.2 to find a sequence of blow-
ing ups

Xm → Xm−1 → . . .→ X

in closed points such that Xm dominates Yn. Diagram

Yn

��

// Spec(A)

Xm
//

==

X

;;

To prove the lemma it suffices to show that a finite number of normalized blowups of Yn
produce a regular scheme. By our diagram above we see that Yn has a resolution (namely
Xm). As Yn is a normal surface this implies that Yn has at most finitely many singularities
y1, . . . , yt (because Xm → Yn is an isomorphism away from the fibres of dimension 1, see
Varieties, Lemma 17.3).

Let xa ∈ X be the image of ya. Then OX,xa is regular and hence defines a rational sin-
gularity (Lemma 8.7). Apply Lemma 8.4 to OX,xa → OYn,ya to see that OYn,ya defines
a rational singularity. By Lemma 9.8 there exists a finite sequence of blowups in singular
closed points

Ya,na → Ya,na−1 → . . .→ Spec(OYn,ya)
such that Ya,na is Gorenstein, i.e., has an invertible dualizing module. By (the essentially
trivial) Lemma 6.4 with n′ =

∑
na these sequences correspond to a sequence of blowups

Yn+n′ → Yn+n′−1 → . . .→ Yn

such thatYn+n′ is normal and the local rings ofYn+n′ are Gorenstein. Using the references
given above we can dominate Yn+n′ by a sequence of blowups Xm+m′ → . . . → Xm

dominating Yn+n′ as in the following

Yn+n′ // Yn

��

// Spec(A)

Xm+m′

::

// Xm
//

>>

X

;;

Thus again Yn+n′ has a finite number of singular points y′
1, . . . , y

′
s, but this time the sin-

gularities are rational double points, more precisely, the local rings OYn+n′ ,y′
b

are as in
Lemma 12.3. Arguing exactly as above we conclude that the lemma is true. �

Lemma 14.4. Let (A,m, κ) be a Noetherian complete local ring. AssumeA is a normal
domain of dimension 2. Then Spec(A) has a resolution of singularities.
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Proof. A Noetherian complete local ring is J-2 (More on Algebra, Proposition 48.7),
Nagata (Algebra, Proposition 162.16), excellent (More on Algebra, Proposition 52.3), and
has a dualizing complex (Dualizing Complexes, Lemma 22.4). Moreover, the same is true
for any ring essentially of finite type overA. IfB is a excellent local normal domain, then
the completion B∧ is normal (as B → B∧ is regular and More on Algebra, Lemma 42.2
applies). In other words, the local rings which we encounter in the rest of the proof will
have the required “excellency” properties required of them.

Choose A0 ⊂ A with A0 a regular complete local ring and A0 → A finite, see Algebra,
Lemma 160.11. This induces a finite extension of fraction fields K/K0. We will argue by
induction on [K : K0]. The base case is when the degree is 1 in which case A0 = A and
the result is true.

Suppose there is an intermediate field K0 ⊂ L ⊂ K , K0 6= L 6= K. Let B ⊂ A
be the integral closure of A0 in L. By induction we choose a resolution of singularities
Y → Spec(B). Let X be the normalization of Y ×Spec(B) Spec(A). Picture:

X //

��

Spec(A)

��
Y // Spec(B)

Since A is J-2 the regular locus of X is open. Since X is a normal surface we conclude
thatX has at worst finitely many singular points x1, . . . , xn which are closed points with
dim(OX,xi) = 2. For each i let yi ∈ Y be the image. Since O∧

Y,yi
→ O∧

X,xi
is finite of

smaller degree than before we conclude by induction hypothesis thatO∧
X,xi

has resolution
of singularities. By Lemma 14.3 there is a sequence

Z∧
i,ni → . . .→ Z∧

i,1 → Spec(O∧
X,xi)

of normalized blowups with Z∧
i,ni

regular. By Lemma 11.7 there is a corresponding se-
quence of normalized blowing ups

Zi,ni → . . .→ Zi,1 → Spec(OX,xi)
Then Zi,ni is a regular scheme by Lemma 11.2. By Lemma 6.5 we can fit these normalized
blowing ups into a corresponding sequence

Zn → Zn−1 → . . .→ Z1 → X

and of course Zn is regular too (look at the local rings). This proves the induction step.

Assume there is no intermediate field K0 ⊂ L ⊂ K with K0 6= L 6= K. Then either
K/K0 is separable or the characteristic to K is p and [K : K0] = p. Then either Lemma
8.6 or 8.10 implies that reduction to rational singularities is possible. By Lemma 8.5 we
conclude that there exists a normal modification X → Spec(A) such that for every sin-
gular point x ofX the local ringOX,x defines a rational singularity. SinceA is J-2 we find
that X has finitely many singular points x1, . . . , xn. By Lemma 9.8 there exists a finite
sequence of blowups in singular closed points

Xi,ni → Xi,ni−1 → . . .→ Spec(OX,xi)
such that Xi,ni is Gorenstein, i.e., has an invertible dualizing module. By (the essentially
trivial) Lemma 6.4 with n =

∑
na these sequences correspond to a sequence of blowups

Xn → Xn−1 → . . .→ X
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such that Xn is normal and the local rings of Xn are Gorenstein. Again Xn has a finite
number of singular points x′

1, . . . , x
′
s, but this time the singularities are rational double

points, more precisely, the local rings OXn,x′
i

are as in Lemma 12.3. Arguing exactly as
above we conclude that the lemma is true. �

We finally come to the main theorem of this chapter.

Theorem 14.5 (Lipman). Let Y be a two dimensional integral Noetherian scheme.
The following are equivalent

(1) there exists an alteration X → Y with X regular,
(2) there exists a resolution of singularities of Y ,
(3) Y has a resolution of singularities by normalized blowups,
(4) the normalizationY ν → Y is finite,Y ν has finitely many singular points y1, . . . , ym,

and for each yi the completion ofOY ν ,yi is normal.

Proof. The implications (3)⇒ (2)⇒ (1) are immediate.

Let X → Y be an alteration with X regular. Then Y ν → Y is finite by Lemma 13.1.
Consider the factorization f : X → Y ν from Morphisms, Lemma 54.5. The morphism
f is finite over an open V ⊂ Y ν containing every point of codimension ≤ 1 in Y ν by
Varieties, Lemma 17.2. Then f is flat over V by Algebra, Lemma 128.1 and the fact that
a normal local ring of dimension ≤ 2 is Cohen-Macaulay by Serre’s criterion (Algebra,
Lemma 157.4). Then V is regular by Algebra, Lemma 164.4. As Y ν is Noetherian we
conclude that Y ν \ V = {y1, . . . , ym} is finite. By Lemma 13.3 the completion ofOY ν ,yi
is normal. In this way we see that (1)⇒ (4).

Assume (4). We have to prove (3). We may immediately replace Y by its normalization.
Let y1, . . . , ym ∈ Y be the singular points. Applying Lemmas 14.4 and 14.3 we find there
exists a finite sequence of normalized blowups

Yi,ni → Yi,ni−1 → . . .→ Spec(O∧
Y,yi)

such that Yi,ni is regular. By Lemma 11.7 there is a corresponding sequence of normalized
blowing ups

Xi,ni → . . .→ Xi,1 → Spec(OY,yi)
ThenXi,ni is a regular scheme by Lemma 11.2. By Lemma 6.5 we can fit these normalized
blowing ups into a corresponding sequence

Xn → Xn−1 → . . .→ X1 → Y

and of course Xn is regular too (look at the local rings). This completes the proof. �

15. Embedded resolution

Given a curve on a surface there is a blowing up which turns the curve into a strict normal
crossings divisor. In this section we will use that a one dimensional locally Noetherian
scheme is normal if and only if it is regular (Algebra, Lemma 119.7). We will also use that
any point on a locally Noetherian scheme specializes to a closed point (Properties, Lemma
5.9).

Lemma 15.1. Let Y be a one dimensional integral Noetherian scheme. The following
are equivalent

(1) there exists an alteration X → Y with X regular,
(2) there exists a resolution of singularities of Y ,
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(3) there exists a finite sequence Yn → Yn−1 → . . . → Y1 → Y of blowups in
closed points with Yn regular, and

(4) the normalization Y ν → Y is finite.

Proof. The implications (3)⇒ (2)⇒ (1) are immediate. The implication (1)⇒ (4)
follows from Lemma 13.1. Observe that a normal one dimensional scheme is regular hence
the implication (4) ⇒ (2) is clear as well. Thus it remains to show that the equivalent
conditions (1), (2), and (4) imply (3).
Let f : X → Y be a resolution of singularities. Since the dimension of Y is one we see
that f is finite by Varieties, Lemma 17.2. We will construct factorizations

X → . . .→ Y2 → Y1 → Y

where Yi → Yi−1 is a blowing up of a closed point and not an isomorphism as long as
Yi−1 is not regular. Each of these morphisms will be finite (by the same reason as above)
and we will get a corresponding system

f∗OX ⊃ . . . ⊃ f2,∗OY2 ⊃ f1,∗OY1 ⊃ OY
where fi : Yi → Y is the structure morphism. Since Y is Noetherian, this increasing
sequence of coherent submodules must stabilize (Cohomology of Schemes, Lemma 10.1)
which proves that for some n the scheme Yn is regular as desired. To construct Yi given
Yi−1 we pick a singular closed point yi−1 ∈ Yi−1 and we let Yi → Yi−1 be the corre-
sponding blowup. Since X is regular of dimension 1 (and hence the local rings at closed
points are discrete valuation rings and in particular PIDs), the ideal sheaf myi−1 · OX is
invertible. By the universal property of blowing up (Divisors, Lemma 32.5) this gives us
a factorization X → Yi. Finally, Yi → Yi−1 is not an isomorphism as myi−1 is not an
invertible ideal. �

Lemma 15.2. Let X be a Noetherian scheme. Let Y ⊂ X be an integral closed sub-
scheme of dimension 1 satisfying the equivalent conditions of Lemma 15.1. Then there
exists a finite sequence

Xn → Xn−1 → . . .→ X1 → X

of blowups in closed points such that the strict transform of Y in Xn is a regular curve.

Proof. Let Yn → Yn−1 → . . . → Y1 → Y be the sequence of blowups given to us
by Lemma 15.1. Let Xn → Xn−1 → . . . → X1 → X be the corresponding sequence of
blowups of X . This works because the strict transform is the blowup by Divisors, Lemma
33.2. �

LetX be a locally Noetherian scheme. Let Y, Z ⊂ X be closed subschemes. Let p ∈ Y ∩Z
be a closed point. Assume that Y is integral of dimension 1 and that the generic point of
Y is not contained in Z. In this situation we can consider the invariant
(15.2.1) mp(Y ∩ Z) = lengthOX,p

(OY ∩Z,p)

This is an integer ≥ 1. Namely, if I, J ⊂ OX,p are the ideals corresponding to Y, Z , then
we see that OY ∩Z,p = OX,p/I + J has support equal to {mp} because we assumed that
Y ∩Z does not contain the unique point of Y specializing to p. Hence the length is finite
by Algebra, Lemma 62.3.

Lemma 15.3. In the situation above let X ′ → X be the blowing up of X in p. Let
Y ′, Z ′ ⊂ X ′ be the strict transforms of Y, Z. IfOY,p is regular, then

(1) Y ′ → Y is an isomorphism,
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(2) Y ′ meets the exceptional fibre E ⊂ X ′ in one point q and mq(Y ∩ E) = 1,
(3) if q ∈ Z ′ too, then mq(Y ∩ Z ′) < mp(Y ∩ Z).

Proof. SinceOX,p → OY,p is surjective andOY,p is a discrete valuation ring, we can
pick an element x1 ∈ mp mapping to a uniformizer in OY,p. Choose an affine open U =
Spec(A) containing p such thatx1 ∈ A. Letm ⊂ A be the maximal ideal corresponding to
p. Let I, J ⊂ A be the ideals defining Y, Z in Spec(A). After shrinking U we may assume
that m = I + (x1), in other words, that V (x1) ∩ U ∩ Y = {p} scheme theoretically. We
conclude that p is an effective Cartier divisor on Y and since Y ′ is the blowing up of Y in
p (Divisors, Lemma 33.2) we see that Y ′ → Y is an isomorphism by Divisors, Lemma 32.7.
The relationship m = I + (x1) implies that mn ⊂ I + (xn1 ) hence we can define a map

ψ : A[ m
x1

] −→ A/I

by sending y/xn1 ∈ A[ m
x1

] to the class of a in A/I where a is chosen such that y ≡
axn1 mod I . Then ψ corresponds to the morphism of Y ∩ U into X ′ over U given by
Y ′ ∼= Y . Since the image of x1 inA[ m

x1
] cuts out the exceptional divisor we conclude that

mq(Y ′, E) = 1. Finally, since J ⊂ m implies that the ideal J ′ ⊂ A[ m
x1

] certainly contains
the elements f/x1 for f ∈ J . Thus if we choose f ∈ J whose image f inA/I has minimal
valuation equal to mp(Y ∩ Z), then we see that ψ(f/x1) = f/x1 in A/I has valuation
one less proving the last part of the lemma. �

Lemma 15.4. LetX be a Noetherian scheme. Let Yi ⊂ X , i = 1, . . . , n be an integral
closed subschemes of dimension 1 each satisfying the equivalent conditions of Lemma 15.1.
Then there exists a finite sequence

Xn → Xn−1 → . . .→ X1 → X

of blowups in closed points such that the strict transformY ′
i ⊂ Xn ofYi inXn are pairwise

disjoint regular curves.

Proof. It follows from Lemma 15.2 that we may assume Yi is a regular curve for
i = 1, . . . , n. For every i 6= j and p ∈ Yi ∩Yj we have the invariantmp(Yi ∩Yj) (15.2.1).
If the maximum of these numbers is> 1, then we can decrease it (Lemma 15.3) by blowing
up in all the points p where the maximum is attained. If the maximum is 1 then we can
separate the curves using the same lemma by blowing up in all these points p. �

When our curve is contained on a regular surface we often want to turn it into a divisor
with normal crossings.

Lemma 15.5. Let X be a regular scheme of dimension 2. Let Z ⊂ X be a proper
closed subscheme. There exists a sequence

Xn → . . .→ X1 → X

of blowing ups in closed points such that the inverse image Zn of Z in Xn is an effective
Cartier divisor.

Proof. LetD ⊂ Z be the largest effective Cartier divisor contained inZ. Then IZ ⊂
ID and the quotient is supported in closed points by Divisors, Lemma 15.8. Thus we can
write IZ = IZ′ID where Z ′ ⊂ X is a closed subscheme which set theoretically consists
of finitely many closed points. Applying Lemma 4.1 we find a sequence of blowups as in
the statement of our lemma such that IZ′OXn is invertible. This proves the lemma. �
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Lemma 15.6. Let X be a regular scheme of dimension 2. Let Z ⊂ X be a proper
closed subscheme such that every irreducible component Y ⊂ Z of dimension 1 satisfies
the equivalent conditions of Lemma 15.1. Then there exists a sequence

Xn → . . .→ X1 → X

of blowups in closed points such that the inverse image Zn of Z in Xn is an effective
Cartier divisor supported on a strict normal crossings divisor.

Proof. LetX ′ → X be a blowup in a closed point p. Then the inverse imageZ ′ ⊂ X ′

ofZ is supported on the strict transform ofZ and the exceptional divisor. The exceptional
divisor is a regular curve (Lemma 3.1) and the strict transform Y ′ of each irreducible com-
ponent Y is either equal to Y or the blowup of Y at p. Thus in this process we do not
produce additional singular components of dimension 1. Thus it follows from Lemmas
15.5 and 15.4 that we may assume Z is an effective Cartier divisor and that all irreducible
components Y of Z are regular. (Of course we cannot assume the irreducible components
are pairwise disjoint because in each blowup of a point of Z we add a new irreducible
component to Z , namely the exceptional divisor.)

AssumeZ is an effective Cartier divisor whose irreducible components Yi are regular. For
every i 6= j and p ∈ Yi ∩ Yj we have the invariant mp(Yi ∩ Yj) (15.2.1). If the maximum
of these numbers is > 1, then we can decrease it (Lemma 15.3) by blowing up in all the
points p where the maximum is attained (note that the “new” invariants mqi(Y ′

i ∩E) are
always 1). If the maximum is 1 then, if p ∈ Y1 ∩ . . . ∩ Yr for some r > 2 and not any of
the others (for example), then after blowing up p we see that Y ′

1 , . . . , Y
′
r do not meet in

points above p and mqi(Y ′
i , E) = 1 where Y ′

i ∩ E = {qi}. Thus continuing to blowup
points where more than 3 of the components of Z meet, we reach the situation where for
every closed point p ∈ X there is either (a) no curves Yi passing through p, (b) exactly one
curve Yi passing through p and OYi,p is regular, or (c) exactly two curves Yi, Yj passing
through p, the local ringsOYi,p,OYj ,p are regular and mp(Yi ∩ Yj) = 1. This means that∑
Yi is a strict normal crossings divisor on the regular surface X , see Étale Morphisms,

Lemma 21.2. �

16. Contracting exceptional curves

Let X be a Noetherian scheme. Let E ⊂ X be a closed subscheme with the following
properties

(1) E is an effective Cartier divisor on X ,
(2) there exists a field k and an isomorphism P1

k → E of schemes,
(3) the normal sheafNE/X pulls back toOP1(−1).

Such a closed subscheme is called an exceptional curve of the first kind.

LetX ′ be a Noetherian scheme and let x ∈ X ′ be a closed point such thatOX′,x is regular
of dimension 2. Let b : X → X ′ be the blowing up ofX ′ at x. In this case the exceptional
fibre E ⊂ X is an exceptional curve of the first kind. This follows from Lemma 3.1.

Question: Is every exceptional curve of the first kind obtained as the fibre of a blowing up
as above? In other words, does there always exist a proper morphism of schemesX → X ′

such thatE maps to a closed point x ∈ X ′, such thatOX′,x is regular of dimension 2, and
such that X is the blowing up of X ′ at x. If true we say there exists a contraction of E.

Lemma 16.1. Let X be a Noetherian scheme. Let E ⊂ X be an exceptional curve of
the first kind. If a contraction X → X ′ of E exists, then it has the following universal
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property: for every morphism ϕ : X → Y such that ϕ(E) is a point, there is a unique
factorization X → X ′ → Y of ϕ.

Proof. Let b : X → X ′ be a contraction of E. As a topological space X ′ is the quo-
tient of X by the relation identifying all points of E to one point. Namely, b is proper
(Divisors, Lemma 32.13 and Morphisms, Lemma 43.5) and surjective, hence defines a sub-
mersive map of topological spaces (Topology, Lemma 6.5). On the other hand, the canon-
ical map OX′ → b∗OX is an isomorphism. Namely, this is clear over the complement of
the image point x ∈ X ′ of E and on stalks at x the map is an isomorphism by part (4) of
Lemma 3.4. Thus the pair (X ′,OX′) is constructed from X by taking the quotient as a
topological space and endowing this with b∗OX as structure sheaf.

Given ϕ we can let ϕ′ : X ′ → Y be the unique map of topological spaces such that
ϕ = ϕ′ ◦ b. Then the map

ϕ] : ϕ−1OY = b−1((ϕ′)−1OY )→ OX
is adjoint to a map

(ϕ′)] : (ϕ′)−1OY → b∗OX = OX′

Then (ϕ′, (ϕ′)]) is a morphism of ringed spaces fromX ′ to Y such that we get the desired
factorization. Since ϕ is a morphism of locally ringed spaces, it follows that ϕ′ is too.
Namely, the only thing to check is that the map OY,y → OX′,x is local, where y ∈ Y is
the image of E under ϕ. This is true because an element f ∈ my pulls back to a function
onX which is zero in every point ofE hence the pull back of f toX ′ is a function defined
on a neighbourhood of x inX ′ with the same property. Then it is clear that this function
must vanish at x as desired. �

Lemma 16.2. Let X be a Noetherian scheme. Let E ⊂ X be an exceptional curve of
the first kind. If there exists a contraction of E , then it is unique up to unique isomor-
phism.

Proof. This is immediate from the universal property of Lemma 16.1. �

Lemma 16.3. Let X be a Noetherian scheme. Let E ⊂ X be an exceptional curve of
the first kind. Let En = nE and denoteOn its structure sheaf. Then

A = limH0(En,On)
is a complete local Noetherian regular local ring of dimension 2 and Ker(A→ H0(En,On))
is the nth power of its maximal ideal.

Proof. Recall that there exists an isomorphism P1
k → E such that the normal sheaf

of E in X pulls back to O(−1). Then H0(E,OE) = k. We will denote On(iE) the
restriction of the invertible sheaf OX(iE) to En for all n ≥ 1 and i ∈ Z. Recall that
OX(−nE) is the ideal sheaf of En. Hence for d ≥ 0 we obtain a short exact sequence

0→ OE(−(d+ n)E)→ On+1(−dE)→ On(−dE)→ 0
SinceOE(−(d+ n)E) = OP1

k
(d+ n) the first cohomology group vanishes for all d ≥ 0

and n ≥ 1. We conclude that the transition maps of the system H0(En,On(−dE)) are
surjective. For d = 0 we get an inverse system of surjections of rings such that the kernel
of each transition map is a nilpotent ideal. Hence A = limH0(En,On) is a local ring
with residue field k and maximal ideal

lim Ker(H0(En,On)→ H0(E,OE)) = limH0(En,On(−E))
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Pick x, y in this kernel mapping to a k-basis of H0(E,OE(−E)) = H0(P1
k,O(1)).

Then xd, xd−1y, . . . , yd are elements of limH0(En,On(−dE)) which map to a basis of
H0(E,OE(−dE)) = H0(P1

k,O(d)). In this way we see thatA is separated and complete
with respect to the linear topology defined by the kernels

In = Ker(A −→ H0(En,On))

We have x, y ∈ I1, IdId′ ⊂ Id+d′ and Id/Id+1 is a free k-module on xd, xd−1y, . . . , yd.
We will show that Id = (x, y)d. Namely, if ze ∈ Ie with e ≥ d, then we can write

ze = ae,0x
d + ae,1x

d−1y + . . .+ ae,dy
d + ze+1

where ae,j ∈ (x, y)e−d and ze+1 ∈ Ie+1 by our description of Id/Id+1. Thus starting
with some z = zd ∈ Id we can do this inductively

z =
∑

e≥d

∑
j
ae,jx

d−jyj

with some ae,j ∈ (x, y)e−d. Then aj =
∑
e≥d ae,j exists (by completeness and the fact

that ae,j ∈ Ie−d) and we have z =
∑
ae,jx

d−jyj . Hence Id = (x, y)d. Thus A is
(x, y)-adically complete. Then A is Noetherian by Algebra, Lemma 97.5. It is clear that
the dimension is 2 by the description of (x, y)d/(x, y)d+1 and Algebra, Proposition 60.9.
Since the maximal ideal is generated by two elements it is regular. �

Lemma 16.4. Let X be a Noetherian scheme. Let E ⊂ X be an exceptional curve of
the first kind. If there exists a morphism f : X → Y such that

(1) Y is Noetherian,
(2) f is proper,
(3) f maps E to a point y of Y ,
(4) f is quasi-finite at every point not in E ,

Then there exists a contraction of E and it is the Stein factorization of f .

Proof. We apply More on Morphisms, Theorem 53.4 to get a Stein factorization
X → X ′ → Y . Then X → X ′ satisfies all the hypotheses of the lemma (some details
omitted). Thus after replacing Y byX ′ we may in addition assume that f∗OX = OY and
that the fibres of f are geometrically connected.

Assume that f∗OX = OY and that the fibres of f are geometrically connected. Note that
y ∈ Y is a closed point as f is closed and E is closed. The restriction f−1(Y \ {y}) →
Y \{y} of f is a finite morphism (More on Morphisms, Lemma 44.1). Hence this restriction
is an isomorphism since f∗OX = OY since finite morphisms are affine. To prove thatOY,y
is regular of dimension 2 we consider the isomorphism

O∧
Y,y −→ limH0(X ×Y Spec(OY,y/mny ),O)

of Cohomology of Schemes, Lemma 20.7. Let En = nE as in Lemma 16.3. Observe that

En ⊂ X ×Y Spec(OY,y/mny )

because E ⊂ Xy = X ×Y Spec(κ(y)). On the other hand, since E = f−1({y}) set
theoretically (because the fibres of f are geometrically connected), we see that the scheme
theoretic fibreXy is scheme theoretically contained inEn for some n > 0. Namely, apply
Cohomology of Schemes, Lemma 10.2 to the coherentOX -moduleF = OXy and the ideal
sheaf I of E and use that In is the ideal sheaf of En. This shows that

X ×Y Spec(OY,y/mmy ) ⊂ Enm
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Thus the inverse limit displayed above is equal to limH0(En,On) which is a regular two
dimensional local ring by Lemma 16.3. HenceOY,y is a two dimensional regular local ring
because its completion is so (More on Algebra, Lemma 43.4 and 43.1).
We still have to prove that f : X → Y is the blowup b : Y ′ → Y of Y at y. We encourage
the reader to find her own proof. First, we note that Lemma 16.3 also implies thatXy = E
scheme theoretically. Since the ideal sheaf ofE is invertible, this shows that f−1my · OX
is invertible. Hence we obtain a factorization

X → Y ′ → Y

of the morphism f by the universal property of blowing up, see Divisors, Lemma 32.5.
Recall that the exceptional fibre of E′ ⊂ Y ′ is an exceptional curve of the first kind
by Lemma 3.1. Let g : E → E′ be the induced morphism. Because for both E′ and
E the conormal sheaf is generated by (pullbacks of) a and b, we see that the canonical
map g∗CE′/Y ′ → CE/X (Morphisms, Lemma 31.3) is surjective. Since both are invertible,
this map is an isomorphism. Since CE/X has positive degree, it follows that g cannot be a
constant morphism. Hence g has finite fibres. Hence g is a finite morphism (same reference
as above). However, since Y ′ is regular (and hence normal) at all points of E′ and since
X → Y ′ is birational and an isomorphism away from E′, we conclude that X → Y ′ is an
isomorphism by Varieties, Lemma 17.3. �

Lemma 16.5. Let b : X → X ′ be the contraction of an exceptional curve of the first
kind E ⊂ X . Then there is a short exact sequence

0→ Pic(X ′)→ Pic(X)→ Z→ 0
where the first map is pullback by b and the second map sends L to the degree of L on the
exceptional curve E. The sequence is split by the map n 7→ OX(−nE).

Proof. Since E = P1
k we see that the Picard group of E is Z, see Divisors, Lemma

28.5. Hence we can think of the last map as L 7→ L|E . The degree of the restriction of
OX(E) to E is−1 by definition of exceptional curves of the first kind. Combining these
remarks we see that it suffices to show that Pic(X ′)→ Pic(X) is injective with image the
invertible sheaves restricting toOE on E.
Given an invertible OX′ -module L′ we claim the map L′ → b∗b

∗L′ is an isomorphism.
This is clear everywhere except possibly at the image point x ∈ X ′ ofE. To check it is an
isomorphism on stalks at xwe may replaceX ′ by an open neighbourhood at x and assume
L′ is OX′ . Then we have to show that the map OX′ → b∗OX is an isomorphism. This
follows from Lemma 3.4 part (4).
Let L be an invertible OX -module with L|E = OE . Then we claim (1) b∗L is invertible
and (2) b∗b∗L → L is an isomorphism. Statements (1) and (2) are clear over X ′ \ {x}.
Thus it suffices to prove (1) and (2) after base change to Spec(OX′,x). Computing b∗
commutes with flat base change (Cohomology of Schemes, Lemma 5.2) and similarly for
b∗ and formation of the adjunction map. But if X ′ is the spectrum of a regular local ring
then L is trivial by the description of the Picard group in Lemma 3.3. Thus the claim is
proved.
Combining the claims proved in the previous two paragraphs we see that the map L 7→
b∗L is an inverse to the map

Pic(X ′) −→ Ker(Pic(X)→ Pic(E))
and the lemma is proved. �
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Remark 16.6. Let b : X → X ′ be the contraction of an exceptional curve of the first
kind E ⊂ X . From Lemma 16.5 we obtain an identification

Pic(X) = Pic(X ′)⊕ Z
where L corresponds to the pair (L′, n) if and only if L = (b∗L′)(−nE), i.e., L(nE) =
b∗L′. In fact the proof of Lemma 16.5 shows thatL′ = b∗L(nE). Of course the assignment
L 7→ L′ is a group homomorphism.

Lemma 16.7. Let X be a Noetherian scheme. Let E ⊂ X be an exceptional curve of
the first kind. Let L be an invertible OX -module. Let n be the integer such that L|E has
degree n viewed as an invertible module on P1. Then

(1) If H1(X,L) = 0 and n ≥ 0, then H1(X,L(iE)) = 0 for 0 ≤ i ≤ n+ 1.
(2) If n ≤ 0, then H1(X,L) ⊂ H1(X,L(E)).

Proof. Observe that L|E = O(n) by Divisors, Lemma 28.5. Use induction, the long
exact cohomology sequence associated to the short exact sequence

0→ L → L(E)→ L(E)|E → 0,
and use the fact that H1(P1,O(d)) = 0 for d ≥ −1 and H0(P1,O(d)) = 0 for d ≤ −1.
Some details omitted. �

Lemma 16.8. Let S = Spec(R) be an affine Noetherian scheme. Let X → S be a
proper morphism. Let L be an ample invertible sheaf onX . LetE ⊂ X be an exceptional
curve of the first kind. Then

(1) there exists a contraction b : X → X ′ of E ,
(2) X ′ is proper over S , and
(3) the invertibleOX′ -module L′ is ample with L′ as in Remark 16.6.

Proof. Let n be the degree of L|E as in Lemma 16.7. Observe that n > 0 as L is
ample on E (Varieties, Lemma 44.14 and Properties, Lemma 26.3). After replacing L by
a power we may assume Hi(X,L⊗e) = 0 for all i > 0 and e > 0, see Cohomology of
Schemes, Lemma 17.1. Finally, after replacing L by another power we may assume there
exist global sections t0, . . . , tn of L which define a closed immersion ψ : X → Pn

S , see
Morphisms, Lemma 39.4.

SetM = L(nE). ThenM|E ∼= OE . Since we have the short exact sequence

0→M(−E)→M→ OE → 0
and since H1(X,M(−E)) is zero (by Lemma 16.7 and the fact that n > 0) we can pick a
section sn+1 ofMwhich generatesM|E . Finally, denote s0, . . . , sn the sections ofMwe
get from the sections t0, . . . , tn of L chosen above via L ⊂ L(nE) =M. Combined the
sections s0, . . . , sn, sn+1 generateM in every point ofX and therefore define a morphism

ϕ : X −→ Pn+1
S

over S , see Constructions, Lemma 13.1.

Below we will check the conditions of Lemma 16.4. Once this is done we see that the
Stein factorization X → X ′ → Pn+1

S of ϕ is the desired contraction which proves (1).
Moreover, the morphism X ′ → Pn+1

S is finite hence X ′ is proper over S (Morphisms,
Lemmas 44.11 and 41.4). This proves (2). Observe that X ′ has an ample invertible sheaf.
Namely the pullbackM′ ofOPn+1

S
(1) is ample by Morphisms, Lemma 37.7. Observe that

M′ pulls back toM onX (by Constructions, Lemma 13.1). Finally,M = L(nE). Since in
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the arguments above we have replaced the originalL by a positive power we conclude that
the invertibleOX′ -moduleL′ mentioned in (3) of the lemma is ample onX ′ by Properties,
Lemma 26.2.
Easy observations: Pn+1

S is Noetherian and ϕ is proper. Details omitted.
Next, we observe that any point of U = X \ E is mapped to the open subscheme W of
Pn+1
S where one of the first n + 1 homogeneous coordinates is nonzero. On the other

hand, any point ofE is mapped to a point where the first n+ 1 homogeneous coordinates
are all zero, in particular into the complement of W . Moreover, it is clear that there is a
factorization

U = ϕ−1(W ) ϕ|U−−→W
pr−→ Pn

S

of ψ|U where pr is the projection using the first n+ 1 coordinates and ψ : X → Pn
S is the

embedding chosen above. It follows that ϕ|U : U →W is quasi-finite.

Finally, we consider the map ϕ|E : E → Pn+1
S . Observe that for any point x ∈ E the

image ϕ(x) has its first n + 1 coordinates equal to zero, i.e., the morphism ϕ|E factors
through the closed subscheme P0

S
∼= S. The morphism E → S = Spec(R) factors

as E → Spec(H0(E,OE)) → Spec(R) by Schemes, Lemma 6.4. Since by assumption
H0(E,OE) is a field we conclude thatE maps to a point in S ⊂ Pn+1

S which finishes the
proof. �

Lemma 16.9. Let S be a Noetherian scheme. Let f : X → S be a morphism of finite
type. Let E ⊂ X be an exceptional curve of the first kind which is in a fibre of f .

(1) If X is projective over S , then there exists a contraction X → X ′ of E and X ′

is projective over S.
(2) IfX is quasi-projective over S , then there exists a contractionX → X ′ ofE and

X ′ is quasi-projective over S.

Proof. Both cases follow from Lemma 16.8 using standard results on ample invertible
modules and (quasi-)projective morphisms.
Proof of (1). Projectivity of f means that f is proper and there exists an f -ample invertible
module L, see Morphisms, Lemma 43.13 and Definition 40.1. Let U ⊂ S be an affine open
containing the image of E. By Lemma 16.8 there exists a contraction c : f−1(U) → V ′

of E and an ample invertible module N ′ on V ′ whose pullback to f−1(U) is equal to
L(nE)|f−1(U). Let v ∈ V ′ be the closed point such that c is the blowing up of v. Then
we can glue V ′ and X \ E along f−1(U) \ E = V ′ \ {v} to get a scheme X ′ over S.
The morphisms c and idX\E glue to a morphism b : X → X ′ which is the contraction
of E. The inverse image of U in X ′ is proper over U . On the other hand, the restriction
of X ′ → S to the complement of the image of v in S is isomorphic to the restriction
of X → S to that open. Hence X ′ → S is proper (as being proper is local on the base
by Morphisms, Lemma 41.3). Finally, N ′ and L|X\E restrict to isomorphic invertible
modules over f−1(U) \ E = V ′ \ {v} and hence glue to an invertible module L′ over
X ′. The restriction of L′ to the inverse image of U in X ′ is ample because this is true for
N ′. For affine opens of S avoiding the image of v, we see that the same is true because it
holds for L. Thus L′ is (X ′ → S)-relatively ample by Morphisms, Lemma 37.4 and (1) is
proved.

Proof of (2). We can write X as an open subscheme of a scheme X projective over S by
Morphisms, Lemma 43.12. By (1) there is a contraction b : X → X

′ and X ′ is projec-
tive over S. Then we let X ′ ⊂ X be the image of X → X

′; this is an open as b is an
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isomorphism away from E. Then X → X ′ is the desired contraction. Note that X ′ is
quasi-projective over S as it has an S-relatively ample invertible module by the construc-
tion in the proof of part (1). �

Lemma 16.10. LetS be a Noetherian scheme. Let f : X → S be a separated morphism
of finite type with X regular of dimension 2. Then X is quasi-projective over S.

Proof. By Chow’s lemma (Cohomology of Schemes, Lemma 18.1) there exists a proper
morphism π : X ′ → X which is an isomorphism over a dense open U ⊂ X such that
X ′ → S is H-quasi-projective. By Lemma 4.3 there exists a sequence of blowups in closed
points

Xn → . . .→ X1 → X0 = X

and an S-morphismXn → X ′ extending the rational map U → X ′. Observe thatXn →
X is projective by Divisors, Lemma 32.13 and Morphisms, Lemma 43.14. This implies that
Xn → X ′ is projective by Morphisms, Lemma 43.15. Hence Xn → S is quasi-projective
by Morphisms, Lemma 40.3 (and the fact that a projective morphism is quasi-projective,
see Morphisms, Lemma 43.10). By Lemma 16.9 (and uniqueness of contractions Lemma
16.2) we conclude that Xn−1, . . . , X0 = X are quasi-projective over S as desired. �

Lemma 16.11. Let S be a Noetherian scheme. Let f : X → S be a proper morphism
with X regular of dimension 2. Then X is projective over S.

Proof. This follows from Lemma 16.10 and Morphisms, Lemma 43.13. �

17. Factorization birational maps

Proper birational morphisms between nonsingular surfaces are given by sequences of qua-
dratic transforms.

Lemma 17.1. Let f : X → Y be a proper birational morphism between integral
Noetherian schemes regular of dimension 2. Then f is a sequence of blowups in closed
points.

Proof. Let V ⊂ Y be the maximal open over which f is an isomorphism. Then V
contains all codimension 1 points ofV (Varieties, Lemma 17.3). Let y ∈ Y be a closed point
not contained in V . Then we want to show that f factors through the blowup b : Y ′ → Y
of Y at y. Namely, if this is true, then at least one (and in fact exactly one) component of
the fibre f−1(y) will map isomorphically onto the exceptional curve inY ′ and the number
of curves in fibres of X → Y ′ will be strictly less that the number of curves in fibres of
X → Y , so we conclude by induction. Some details omitted.
By Lemma 4.3 we know that there exists a sequence of blowing ups

X ′ = Xn → Xn−1 → . . .→ X1 → X0 = X

in closed points lying over the fibre f−1(y) and a morphism X ′ → Y ′ such that

X ′

f ′

��

// X

f

��
Y ′ // Y

is commutative. We want to show that the morphism X ′ → Y ′ factors through X and
hence we can use induction on n to reduce to the case where X ′ → X is the blowup of X
in a closed point x ∈ X mapping to y.
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Let E ⊂ X ′ be the exceptional fibre of the blowing up X ′ → X . If E maps to a point in
Y ′, then we obtain the desired factorization by Lemma 16.1. We will prove that if this is
not the case we obtain a contradiction. Namely, if f ′(E) is not a point, then E′ = f ′(E)
must be the exceptional curve in Y ′. Picture

E //

g

��

X ′

f ′

��

// X

f

��
E′ // Y ′ // Y

Arguing as before f ′ is an isomorphism in an open neighbourhood of the generic point
of E′. Hence g : E → E′ is a finite birational morphism. Then the inverse of g (a
rational map) is everywhere defined by Morphisms, Lemma 42.5 and g is an isomorphism.
Consider the map

g∗CE′/Y ′ −→ CE/X′

of Morphisms, Lemma 31.3. Since the source and target are invertible modules of degree
1 on E = E′ = P1

κ and since the map is nonzero (as f ′ is an isomorphism in the generic
point of E) we conclude it is an isomorphism. By Morphisms, Lemma 32.18 we conclude
that ΩX′/Y ′ |E = 0. This means that f ′ is unramified at every point of E (Morphisms,
Lemma 35.14). Hence f ′ is quasi-finite at every point of E (Morphisms, Lemma 35.10).
Hence the maximal open V ′ ⊂ Y ′ over which f ′ is an isomorphism contains E′ by Va-
rieties, Lemma 17.3. This in turn implies that the inverse image of y in X ′ is E′. Hence
the inverse image of y in X is x. Hence x ∈ X is in the maximal open over which f is an
isomorphism by Varieties, Lemma 17.3. This is a contradiction as we assumed that y is not
in this open. �

Lemma 17.2. Let S be a Noetherian scheme. LetX and Y be proper integral schemes
over S which are regular of dimension 2. Then X and Y are S-birational if and only if
there exists a diagram of S-morphisms

X = X0 ← X1 ← . . .← Xn = Ym → . . .→ Y1 → Y0 = Y

where each morphism is a blowup in a closed point.

Proof. Let U ⊂ X be open and let f : U → Y be the given S-rational map (which
is invertible as an S-rational map). By Lemma 4.3 we can factor f as Xn → . . .→ X1 →
X0 = X and fn : Xn → Y . Since Xn is proper over S and Y separated over S the
morphism fn is proper. Clearly fn is birational. Hence fn is a composition of contractions
by Lemma 17.1. We omit the proof of the converse. �
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CHAPTER 55

Semistable Reduction

1. Introduction

In this chapter we prove the semistable reduction theorem for curves. We will use the
method of Artin and Winters from their paper [?].
It turns out that one can prove the semistable reduction theorem for curves without any
results on desingularization. Namely, there is a way to establish the existence and projec-
tivity of moduli of semistable curves using Geometric Invariant Theory (GIT) as devel-
oped by Mumford, see [?]. This method was championed by Gieseker who proved the full
result in his lecture notes [?]1. This is quite an amazing feat: it seems somewhat counter
intuitive that one can prove such a result without ever truly studying families of curves
over a positive dimensional base.
Historically the first proof of the semistable reduction theorem for curves can be found in
the paper [?] by Deligne and Mumford. It proves the theorem by reducing the problem to
the case of Abelian varieties which was already known at the time thanks to Grothendieck
and others, see [?] and [?]). The semistable reduction theorem for abelian varieties uses the
theory of Néron models which in turn rests on a treatment of birational group laws over
a base.
The method in the paper by Artin and Winters relies on desingularization of singularities
of surfaces to obtain regular models. Given the existence of regular models, the proof con-
sists in analyzing the possibilities for the special fibre and concluding using an inequality
for torsion in the Picard group of a 1-dimensional scheme over a field. A similar argument
can be found in a paper [?] of Saito who uses étale cohomology directly and who obtains
a stronger result in that he can characterize semistable reduction in terms of the action of
the inertia on `-adic étale cohomology.
A different approach one can use to prove the theorem is to use rigid analytic geometry
techniques. Here we refer the reader to [?] and [?].
The paper [?] by Temkin uses valuation theoretic techniques (and proves a lot more be-
sides); also Appendix A of this paper gives a nice overview of the different proofs and the
relationship with desingularizations of 2 dimensional schemes.
Another overview paper that the reader may wish to consult is [?] written by Ahmed
Abbes.

2. Linear algebra

A couple of lemmas we will use later on.

Lemma 2.1. Let A = (aij) be a complex n× n matrix.

1Gieseker’s lecture notes are written over an algebraically closed field, but the same method works over Z.

4435



4436 55. SEMISTABLE REDUCTION

(1) If |aii| >
∑
j 6=i |aij | for each i, then det(A) is nonzero.

(2) If there exists a real vectorm = (m1, . . . ,mn) withmi > 0 such that |aiimi| >∑
j 6=i |aijmj | for each i, then det(A) is nonzero.

Proof. IfA is as in (1) and det(A) = 0, then there is a nonzero vector z withAz = 0.
Choose r with |zr| maximal. Then

|arrzr| = |
∑

k 6=r
arkzk| ≤

∑
k 6=r
|ark||zk| ≤ |zr|

∑
k 6=r
|ark| < |arr||zr|

which is a contradiction. To prove (2) apply (1) to the matrix (aijmj) whose determinant
is m1 . . .mn det(A). �

Lemma 2.2. Let A = (aij) be a real n × n matrix with aij ≥ 0 for i 6= j. Let
m = (m1, . . . ,mn) be a real vector with mi > 0. For I ⊂ {1, . . . , n} let xI ∈ Rn be the
vector whose ith coordinate is mi if i ∈ I and 0 otherwise. If

(2.2.1) −aiimi ≥
∑

j 6=i
aijmj

for each i, then Ker(A) is the vector space spanned by the vectors xI such that
(1) aij = 0 for i ∈ I , j 6∈ I , and
(2) equality holds in (2.2.1) for i ∈ I .

Proof. After replacing aij by aijmj we may assume mi = 1 for all i. If I ⊂
{1, . . . , n} such that (1) and (2) are true, then a simple computation shows that xI is in
the kernel ofA. Conversely, let x = (x1, . . . , xn) ∈ Rn be a nonzero vector in the kernel
of A. We will show by induction on the number of nonzero coordinates of x that x is in
the span of the vectors xI satisfying (1) and (2). Let I ⊂ {1, . . . , n} be the set of indices r
with |xr| maximal. For r ∈ I we have

|arrxr| = |
∑

k 6=r
arkxk| ≤

∑
k 6=r

ark|xk| ≤ |xr|
∑

k 6=r
ark ≤ |arr||xr|

Thus equality holds everywhere. In particular, we see that ark = 0 if r ∈ I , k 6∈ I and
equality holds in (2.2.1) for r ∈ I . Then we see that we can substract a suitable multiple
of xI from x to decrease the number of nonzero coordinates. �

Lemma 2.3. Let A = (aij) be a symmetric real n× n matrix with aij ≥ 0 for i 6= j.
Let m = (m1, . . . ,mn) be a real vector with mi > 0. Assume

(1) Am = 0,
(2) there is no proper nonempty subset I ⊂ {1, . . . , n} such that aij = 0 for i ∈ I

and j 6∈ I .
Then xtAx ≤ 0 with equality if and only if x = qm for some q ∈ R.

First proof. After replacing aij by aijmimj we may assume mi = 1 for all i. Con-
dition (1) means −aii =

∑
j 6=i aij for all i. Recall that xtAx =

∑
i,j xiaijxj . Then∑

i 6=j
−aij(xj − xi)2 =

∑
i6=j
−aijx2

j + 2aijxixi − aijx2
i

=
∑

j
ajjx

2
j +

∑
i 6=j

2aijxixi +
∑

j
ajjx

2
i

= 2xtAx
This is clearly≤ 0. If equality holds, then let I be the set of indices i with xi 6= x1. Then
aij = 0 for i ∈ I and j 6∈ I . Thus I = {1, . . . , n} by condition (2) and x is a multiple of
m = (1, . . . , 1). �
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Second proof. The matrixA has real eigenvalues by the spectral theorem. We claim
all the eigenvalues are ≤ 0. Namely, since property (1) means −aiimi =

∑
j 6=i aijmj for

all i, we find that the matrix A′ = A − λI for λ > 0 satisfies |a′
iimi| >

∑
a′
ijmj =∑

|a′
ijmj | for all i. HenceA′ is invertible by Lemma 2.1. This implies that the symmetric

bilinear form xtAy is semi-negative definite, i.e., xtAx ≤ 0 for all x. It follows that the
kernel of A is equal to the set of vectors x with xtAx = 0. The description of the kernel
in Lemma 2.2 gives the final statement of the lemma. �

Lemma 2.4. Let L be a finite free Z-module endowed with an integral symmetric
bilinear positive definite form 〈 , 〉 : L × L → Z. Let A ⊂ L be a submodule with L/A
torsion free. Set B = {b ∈ L | 〈a, b〉 = 0, ∀a ∈ A}. Then we have injective maps

A#/A← L/(A⊕B)→ B#/B

whose cokernels are quotients of L#/L. HereA# = {a′ ∈ A⊗Q | 〈a, a′〉 ∈ Z, ∀a ∈ A}
and similarly for B and L.

Proof. Observe that L⊗Q = A⊗Q⊕ B ⊗Q because the form is nondegenerate
on A (by positivity). We denote πB : L ⊗ Q → B ⊗ Q the projection. Observe that
πB(x) ∈ B# for x ∈ L because the form is integral. This gives an exact sequence

0→ A→ L
πB−−→ B# → Q→ 0

where Q is the cokernel of L → B#. Observe that Q is a quotient of L#/L as the map
L# → B# is surjective since it is the Z-linear dual to B → L which is split as a map of
Z-modules. Dividing by A⊕B we get a short exact sequence

0→ L/(A⊕B)→ B#/B → Q→ 0

This proves the lemma. �

Lemma 2.5. Let L0, L1 be a finite free Z-modules endowed with integral symmetric
bilinear positive definite forms 〈 , 〉 : Li × Li → Z. Let d : L0 → L1 and d∗ : L1 → L0
be adjoint. If 〈 , 〉 on L0 is unimodular, then there is an isomorphism

Φ : Coker(d∗d)torsion −→ Im(d)#/ Im(d)

with notation as in Lemma 2.4.

Proof. Let x ∈ L0 be an element representing a torsion class in Coker(d∗d). Then
for some a > 0 we can write ax = d∗d(y). For any z ∈ Im(d), say z = d(y′), we have

〈(1/a)d(y), z〉 = 〈(1/a)d(y), d(y′)〉 = 〈x, y′〉 ∈ Z

Hence (1/a)d(y) ∈ Im(d)#. We define Φ(x) = (1/a)d(y) mod Im(d). We omit the
proof that Φ is well defined, additive, and injective.

To prove Φ is surjective, let z ∈ Im(d)#. Then z defines a linear map L0 → Z by the
rule x 7→ 〈z, d(x)〉. Since the pairing on L0 is unimodular by assumption we can find an
x′ ∈ L0 with 〈x′, x〉 = 〈z, d(x)〉 for all x ∈ L0. In particular, we see that x′ pairs to zero
with Ker(d). Since Im(d∗d)⊗Q is the orthogonal complement of Ker(d)⊗Q this means
that x′ defines a torsion class in Coker(d∗d). We claim that Φ(x′) = z. Namely, write
ax′ = d∗d(y) for some y ∈ L0 and a > 0. For any x ∈ L0 we get

〈z, d(x)〉 = 〈x′, x〉 = 〈(1/a)d∗d(y), x〉 = 〈(1/a)d(y), d(x)〉

Hence z = Φ(x′) and the proof is complete. �
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Lemma 2.6. Let A = (aij) be a symmetric n × n integer matrix with aij ≥ 0 for
i 6= j. Let m = (m1, . . . ,mn) be an integer vector with mi > 0. Assume

(1) Am = 0,
(2) there is no proper nonempty subset I ⊂ {1, . . . , n} such that aij = 0 for i ∈ I

and j 6∈ I .
Let e be the number of pairs (i, j) with i < j and aij > 0. Then for ` a prime number
coprime with all aij and mi we have

dimF`(Coker(A)[`]) ≤ 1− n+ e

Proof. By Lemma 2.3 the rank of A is n− 1. The composition

Z⊕n diag(m1,...,mn)−−−−−−−−−→ Z⊕n (aij)−−−→ Z⊕n diag(m1,...,mn)−−−−−−−−−→ Z⊕n

has matrix aijmimj . Since the cokernel of the first and last maps are torsion of order
prime to ` by our restriction on ` we see that it suffices to prove the lemma for the matrix
with entries aijmimj . Thus we may assume m = (1, . . . , 1).

Assume m = (1, . . . , 1). Set V = {1, . . . , n} and E = {(i, j) | i < j and aij > 0}.
For e = (i, j) ∈ E set ae = aij . Define maps s, t : E → V by setting s(i, j) = i and
t(i, j) = j. Set Z(V ) =

⊕
i∈V Zi and Z(E) =

⊕
e∈E Ze. We define symmetric positive

definite integer valued pairings on Z(V ) and Z(E) by setting

〈i, i〉 = 1 for i ∈ V, 〈e, e〉 = ae for e ∈ E
and all other pairings zero. Consider the maps

d : Z(V )→ Z(E), i 7−→
∑

e∈E, s(e)=i
e−

∑
e∈E, t(e)=i

e

and
d∗(e) = ae(s(e)− t(e))

A computation shows that
〈d(x), y〉 = 〈x, d∗(y)〉

in other words, d and d∗ are adjoint. Next we compute

d∗d(i) = d∗(
∑

e∈E, s(e)=i
e−

∑
e∈E, t(e)=i

e)

=
∑

e∈E, s(e)=i
ae(s(e)− t(e))−

∑
e∈E, t(e)=i

ae(s(e)− t(e))

The coefficient of i in d∗d(i) is∑
e∈E, s(e)=i

ae +
∑

e∈E, t(e)=i
ae = −aii

because
∑
j aij = 0 and the coefficient of j 6= i in d∗d(i) is −aij . Hence Coker(A) =

Coker(d∗d).

Consider the inclusion
Im(d)⊕Ker(d∗) ⊂ Z(E)

The left hand side is an orthogonal direct sum. Clearly Z(E)/Ker(d∗) is torsion free. We
claim Z(E)/ Im(d) is torsion free as well. Namely, say x =

∑
xee ∈ Z(E) and a > 1 are

such that ax = dy for some y =
∑
yii ∈ Z(V ). Then axe = ys(e) − yt(e). By property

(2) we conclude that all yi have the same congruence class modulo a. Hence we can write
y = ay′ +(y1, y1, . . . , y1). Since d(y1, y1, . . . , y1) = 0 we conclude that x = d(y′) which
is what we had to show.
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Hence we may apply Lemma 2.4 to get injective maps

Im(d)#/ Im(d)← Z(E)/(Im(d)⊕Ker(d∗))→ Ker(d∗)#/Ker(d∗)
whose cokernels are annihilated by the product of the ae (which is prime to `). Since
Ker(d∗) is a lattice of rank 1 − n + e we see that the proof is complete if we prove that
there exists an isomorphism

Φ : Mtorsion −→ Im(d)#/ Im(d)
This is proved in Lemma 2.5. �

3. Numerical types

Part of the arguments will involve the combinatorics of the following data structures.

Definition 3.1. A numerical type T is given by
n,mi, aij , wi, gi

where n ≥ 1 is an integer and mi, aij , wi, gi are integers for 1 ≤ i, j ≤ n subject to the
following conditions

(1) mi > 0, wi > 0, gi ≥ 0,
(2) the matrix A = (aij) is symmetric and aij ≥ 0 for i 6= j ,
(3) there is no proper nonempty subset I ⊂ {1, . . . , n} such that aij = 0 for i ∈ I ,

j 6∈ I ,
(4) for each i we have

∑
j aijmj = 0, and

(5) wi|aij .
This is obviously a somewhat annoying type of structure to work with, but it is exactly
what shows up in special fibres of proper regular models of smooth geometrically con-
nected curves. Of course we only care about these types up to reordering the indices.

Definition 3.2. We say two numerical types n,mi, aij , wi, gi and n′,m′
i, a

′
ij , w

′
i, g

′
i

are equivalent types if there exists a permutation σ of {1, . . . , n} such that mi = m′
σ(i),

aij = a′
σ(i)σ(j), wi = w′

σ(i), and gi = g′
σ(i).

A numerical type has a genus.

Lemma 3.3. Let n,mi, aij , wi, gi be a numerical type. Then the expression

g = 1 +
∑

mi(wi(gi − 1)− 1
2aii)

is an integer.

Proof. To prove g is an integer we have to show that
∑
aiimi is even. This we can

see by computing modulo 2 as follows∑
i
aiimi ≡

∑
i, mi odd

aiimi

≡
∑

i, mi odd

∑
j 6=i

aijmj

≡
∑

i, mi odd

∑
j 6=i, mj odd

aijmj

≡
∑

i<j, mi andmj odd
aij(mi +mj)

≡ 0
where we have used that aij = aji and that

∑
j aijmj = 0 for all i. �
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Definition 3.4. We say n,mi, aij , wi, gi is a numerical type of genus g if g = 1 +∑
mi(wi(gi − 1)− 1

2aii) is the integer from Lemma 3.3.

We will prove below (Lemma 3.14) that the genus is almost always≥ 0. But you can have
numerical types with negative genus.

Lemma 3.5. Let n,mi, aij , wi, gi be a numerical type of genus g. If n = 1, then
a11 = 0 and g = 1 + m1w1(g1 − 1). Moreover, we can classify all such numerical types
as follows

(1) If g < 0, then g1 = 0 and there are finitely many possible numerical types of
genus g with n = 1 corresponding to factorizations m1w1 = 1− g.

(2) If g = 0, then m1 = 1, w1 = 1, g1 = 0 as in Lemma 6.1.
(3) If g = 1, then we conclude g1 = 1 butm1, w1 can be arbitrary positive integers;

this is case (1) of Lemma 6.2.
(4) If g > 1, then g1 > 1 and there are finitely many possible numerical types of

genus g with n = 1 corresponding to factorizations m1w1(g1 − 1) = g − 1.

Proof. The lemma proves itself. �

Lemma 3.6. Let n,mi, aij , wi, gi be a numerical type of genus g. If n > 1, then
aii < 0 for all i.

Proof. Lemma 2.3 applies to the matrix A. �

Lemma 3.7. Let n,mi, aij , wi, gi be a numerical type of genus g. Assume n > 1. If
i is such that the contribution mi(wi(gi − 1) − 1

2aii) to the genus g is < 0, then gi = 0
and aii = −wi.

Proof. Follows immediately from Lemma 3.6 and wi > 0, gi ≥ 0, and wi|aii. �

Definition 3.8. Let n,mi, aij , wi, gi be a numerical type. We say i is a (−1)-index
if gi = 0 and aii = −wi.

We can “contract” (−1)-indices.

Lemma 3.9. Let n,mi, aij , wi, gi be a numerical type T . Assume n is a (−1)-index.
Then there is a numerical type T ′ given by n′,m′

i, a
′
ij , w

′
i, g

′
i with

(1) n′ = n− 1,
(2) m′

i = mi,
(3) a′

ij = aij − ainajn/ann,
(4) w′

i = wi/2 if ain/wn even and ain/wi odd and w′
i = wi else,

(5) g′
i = wi

w′
i
(gi − 1) + 1 + a2

in−wnain
2w′

i
wn

.
Moreover, we have g = g′.

Proof. Observe that n > 1 for example by Lemma 3.5 and hence n′ ≥ 1. We check
conditions (1) – (5) of Definition 3.1 for n′,m′

i, a
′
ij , w

′
i, g

′
i.

Condition (1) is immediate.
Condition (2). Symmetry ofA′ = (a′

ij) is immediate and since ann < 0 by Lemma 3.6 we
see that a′

ij ≥ aij ≥ 0 if i 6= j.

Condition (3). Suppose that I ⊂ {1, . . . , n − 1} such that a′
ii′ = 0 for i ∈ I and i′ ∈

{1, . . . , n− 1} \ I . Then we see that for each i ∈ I and i′ ∈ I ′ we have ainai′n = 0. Thus
either ain = 0 for all i ∈ I and I ⊂ {1, . . . , n} is a contradiction for property (3) for T ,
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or ai′n = 0 for all i′ ∈ {1, . . . , n− 1} \ I and I ∪{n} ⊂ {1, . . . , n} is a contradiction for
property (3) of T . Hence (3) holds for T ′.
Condition (4). We compute∑n−1

j=1
a′
ijmj =

∑n−1

j=1
(aijmj −

ainajnmj

ann
) = −ainmn −

ain
ann

(−annmn) = 0

as desired.
Condition (5). We have to show that w′

i divides ainajn/ann. This is clear because ann =
−wn and wn|ajn and wi|ain.
To show that g = g′ we first write

g = 1 +
∑n

i=1
mi(wi(gi − 1)− 1

2aii)

= 1 +
∑n−1

i=1
mi(wi(gi − 1)− 1

2aii)−
1
2mnwn

= 1 +
∑n−1

i=1
mi(wi(gi − 1)− 1

2aii −
1
2ain)

Comparing with the expression for g′ we see that it suffices if

w′
i(g′

i − 1)− 1
2a

′
ii = wi(gi − 1)− 1

2ain −
1
2aii

for i ≤ n− 1. In other words, we have

g′
i = 2wi(gi − 1)− ain − aii + a′

ii + 2w′
i

2w′
i

= wi
w′
i

(gi − 1) + 1 + a2
in − wnain

2w′
iwn

It is elementary to check that this is an integer ≥ 0 if we choose w′
i as in (4). �

Lemma 3.10. Let n,mi, aij , wi, gi be a numerical type. Let e be the number of pairs
(i, j) with i < j and aij > 0. Then the expression gtop = 1− n+ e is ≥ 0.

Proof. If not, then e < n− 1 which means there exists an i such that aij = 0 for all
j 6= i. This contradicts assumption (3) of Definition 3.1. �

Definition 3.11. Let n,mi, aij , wi, gi be a numerical type T . The topological genus
of T is the nonnegative integer gtop = 1− n+ e from Lemma 3.10.

We want to bound the genus by the topological genus. However, this will not always be
the case, for example for numerical types with n = 1 as in Lemma 3.5. But it will be true
for minimal numerical types which are defined as follows.

Definition 3.12. We say the numerical type n,mi, aij , wi, gi of genus g is minimal
if there does not exist an i with gi = 0 and aii = −wi, in other words, if there does not
exist a (−1)-index.

We will prove that the genus g of a minimal type with n > 1 is greater than or equal to
max(1, gtop).

Lemma 3.13. If n,mi, aij , wi, gi is a minimal numerical type with n > 1, then g ≥ 1.

Proof. This is true because g = 1 +
∑

Φi with Φi = mi(wi(gi − 1) − 1
2aii) non-

negative by Lemma 3.7 and the definition of minimal types. �

Lemma 3.14. If n,mi, aij , wi, gi is a minimal numerical type with n > 1, then g ≥
gtop.



4442 55. SEMISTABLE REDUCTION

Proof. The reader who is only interested in the case of numerical types associated to
proper regular models can skip this proof as we will reprove this in the geometric situation
later. We can write

gtop = 1− n+ 1
2
∑

aij>0
1 = 1 +

∑
i
(−1 + 1

2
∑

j 6=i, aij>0
1)

On the other hand, we have

g = 1 +
∑

mi(wi(gi − 1)− 1
2aii)

= 1 +
∑

miwigi −
∑

miwi + 1
2
∑

i 6=j
aijmj

= 1 +
∑

i
miwi(−1 + gi + 1

2
∑

j 6=i

aij
wi

)

The first equality is the definition, the second equality uses that
∑
aijmj = 0, and the

last equality uses that uses aij = aji and switching order of summation. Comparing with
the formula for gtop we conclude that the lemma holds if

Ψi = miwi(−1 + gi + 1
2
∑

j 6=i

aij
wi

)− (−1 + 1
2
∑

j 6=i, aij>0
1)

is ≥ 0 for each i. However, this may not be the case. Let us analyze for which indices we
can have Ψi < 0. First, observe that

(−1 + gi + 1
2
∑

j 6=i

aij
wi

) ≥ (−1 + 1
2
∑

j 6=i, aij>0
1)

because aij/wi is a nonnegative integer. Sincemiwi is a positive integer we conclude that
Ψi ≥ 0 as soon as either miwi = 1 or the left hand side of the inequality is ≥ 0 which
happens if gi > 0, or aij > 0 for at least two indices j , or if there is a j with aij > wi.
Thus

P = {i : Ψi < 0}
is the set of indices i such that miwi > 1, gi = 0, aij > 0 for a unique j , and aij = wi for
this j. Moreover

i ∈ P ⇒ Ψi = 1
2(−miwi + 1)

The strategy of proof is to show that given i ∈ P we can borrow a bit from Ψj where j
is the neighbour of i, i.e., aij > 0. However, this won’t quite work because j may be an
index with Ψj = 0.

Consider the set

Z = {j : gj = 0 and j has exactly two neighbours i, k with aij = wj = ajk}

For j ∈ Z we have Ψj = 0. We will consider sequences M = (i, j1, . . . , js) where s ≥ 0,
i ∈ P , j1, . . . , js ∈ Z , and aij1 > 0, aj1j2 > 0, . . . , ajs−1js > 0. If our numerical type
consists of two indices which are in P or more generally if our numerical type consists of
two indices which are in P and all other indices inZ , then gtop = 0 and we win by Lemma
3.13. We may and do discard these cases.

Let M = (i, j1, . . . , js) be a maximal sequence and let k be the second neighbour of js.
(If s = 0, then k is the unique neighbour of i.) By maximality k 6∈ Z and by what we just
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said k 6∈ P . Observe that wi = aij1 = wj1 = aj1j2 = . . . = wjs = ajsk. Looking at the
definition of a numerical type we see that

miaii +mj1wi = 0,
miwi +mj1aj1j1 +mj2wi = 0,

. . . . . .

mjs−1wi +mjsajsjs +mkwi = 0

The first equality implies mj1 ≥ 2mi because the numerical type is minimal. Then the
second equality implies mj2 ≥ 3mi, and so on. In any case, we conclude that mk ≥ 2mi

(including when s = 0).

Let k be an index such that we have a t > 0 and pairwise distinct maximal sequences
M1, . . . ,Mt as above, with Mb = (ib, jb,1, . . . , jb,sb) such that k is a neighbour of jb,sb
for b = 1, . . . , t. We will show that Φj +

∑
b=1,...,t Φib ≥ 0. This will finish the proof

of the lemma by what we said above. Let M be the union of the indices occurring in Mb,
b = 1, . . . , t. We write

Ψk = −
∑

b=1,...,t
Ψib + Ψ′

k

where

Ψ′
k = mkwk

(
−1 + gk + 1

2
∑

b=1,...t
(
akjb,sb
wk

− mibwib
mkwk

) + 1
2
∑

l 6=k, l 6∈M

akl
wk

)
−
(
−1 + 1

2
∑

l 6=k, l 6∈M, akl>0
1
)

Assume Ψ′
k < 0 to get a contradiction. If the set {l : l 6= k, l 6∈ M, akl > 0} is empty,

then {1, . . . , n} = M ∪ {k} and gtop = 0 because e = n − 1 in this case and the result
holds by Lemma 3.13. Thus we may assume there is at least one such l which contributes
(1/2)akl/wk ≥ 1/2 to the sum inside the first brackets. For each b = 1, . . . , t we have

akjb,sb
wk

− mibwib
mkwk

= wib
wk

(1− mib

mk
)

This expression is ≥ 1
2 because mk ≥ 2mib by the previous paragraph and is ≥ 1 if

wk < wib . It follows that Ψ′
k < 0 implies gk = 0. If t ≥ 2 or t = 1 and wk < wi1 , then

Ψ′
k ≥ 0 (here we use the existence of an l as shown above) which is a contradiction too.

Thus t = 1 and wk = wi1 . If there at least two nonzero terms in the sum over l or if there
is one such k and akl > wk , then Ψ′

k ≥ 0 as well. The final possibility is that t = 1 and
there is one l with akl = wk. This is disallowed as this would mean k ∈ Z contradicting
the maximality of M1. �

Lemma 3.15. Let n,mi, aij , wi, gi be a numerical type of genus g. Assume n > 1. If
i is such that the contribution mi(wi(gi − 1)− 1

2aii) to the genus g is 0, then gi = 0 and
aii = −2wi.

Proof. Follows immediately from Lemma 3.6 and wi > 0, gi ≥ 0, and wi|aii. �

It turns out that the indices satisfying this relation play an important role in the structure
of minimal numerical types. Hence we give them a name.

Definition 3.16. Let n,mi, aij , wi, gi be a numerical type of genus g. We say i is a
(−2)-index if gi = 0 and aii = −2wi.
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Given a minimal numerical type of genus g the (−2)-indices are exactly the indices which
do not contribute a positive number to the genus in the formula

g = 1 +
∑

mi(wi(gi − 1)− 1
2aii)

Thus it will be somewhat tricky to bound the quantities associated with (−2)-indices as
we will see later.

Remark 3.17. Letn,mi, aij , wi, gi be a minimal numerical type withn > 1. Equality
g = gtop can hold in Lemma 3.14. For example, if mi = wi = 1 and gi = 0 for all i and
aij ∈ {0, 1} for i < j.

4. The Picard group of a numerical type

Here is the definition.

Definition 4.1. Let n,mi, aij , wi, gi be a numerical type T . The Picard group of T
is the cokernel of the matrix (aij/wi), more precisely

Pic(T ) = Coker
(

Z⊕n → Z⊕n, ei 7→
∑ aij

wj
ej

)
where ei denotes the ith standard basis vector for Z⊕n.

Lemma 4.2. Let n,mi, aij , wi, gi be a numerical type T . The Picard group of T is a
finitely generated abelian group of rank 1.

Proof. If n = 1, then A = (aij) is the zero matrix and the result is clear. For n > 1
the matrix A has rank n− 1 by either Lemma 2.2 or Lemma 2.3. Of course the rank is not
affected by scaling the rows by 1/wi. This proves the lemma. �

Lemma 4.3. Let n,mi, aij , wi, gi be a numerical type T . Then Pic(T ) ⊂ Coker(A)
where A = (aij).

Proof. Since Pic(T ) is the cokernel of (aij/wi) we see that there is a commutative
diagram

0 // Z⊕n
A

// Z⊕n // Coker(A) // 0

0 // Z⊕n (aij/wi) //

id

OO

Z⊕n //

diag(w1,...,wn)

OO

Pic(T ) //

OO

0

with exact rows. By the snake lemma we conclude that Pic(T ) ⊂ Coker(A). �

Lemma 4.4. Let n,mi, aij , wi, gi be a numerical type T . Assume n is a (−1)-index.
Let T ′ be the numerical type constructed in Lemma 3.9. There exists an injective map

Pic(T )→ Pic(T ′)
whose cokernel is an elementary abelian 2-group.

Proof. Recall that n′ = n − 1. Let ei, resp., e′
i be the ith basis vector of Z⊕n, resp.

Z⊕n−1. First we denote
q : Z⊕n → Z⊕n−1, en 7→ 0 and ei 7→ e′

i for i ≤ n− 1
and we set

p : Z⊕n → Z⊕n−1, en 7→
∑n−1

j=1

anj
w′
j

e′
j and ei 7→

wi
w′
i

e′
i for i ≤ n− 1
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A computation (which we omit) shows there is a commutative diagram

Z⊕n
(aij/wi)

//

q
��

Z⊕n

p
��

Z⊕n′ (a′
ij/w

′
i) // Z⊕n′

Since the cokernel of the top arrow is Pic(T ) and the cokernel of the bottom arrow is
Pic(T ′), we obtain the desired homomorphism of Picard groups. Since wi

w′
i
∈ {1, 2} we

see that the cokernel of Pic(T )→ Pic(T ′) is annihilated by 2 (because 2e′
i is in the image

of p for all i ≤ n − 1). Finally, we show Pic(T ) → Pic(T ′) is injective. Let L =
(l1, . . . , ln) be a representative of an element of Pic(T ) mapping to zero in Pic(T ′). Since
q is surjective, a diagram chase shows that we can assume L is in the kernel of p. This
means that lnani/w′

i + liwi/w
′
i = 0, i.e., li = −ani/wiln. Thus L is the image of −lnen

under the map (aij/wj) and the lemma is proved. �

Lemma 4.5. Let n,mi, aij , wi, gi be a numerical type T . If the genus g of T is ≤ 0,
then Pic(T ) = Z.

Proof. By induction on n. If n = 1, then the assertion is clear. If n > 1, then T is
not minimal by Lemma 3.13. After replacing T by an equivalent type we may assume n is
a (−1)-index. By Lemma 4.4 we find Pic(T ) ⊂ Pic(T ′). By Lemma 3.9 we see that the
genus of T ′ is equal to the genus of T and we conclude by induction. �

5. Classification of proper subgraphs

In this section we assume given a numerical type n,mi, aij , wi, gi of genus g. We will
find a complete list of possible “subgraphs” consisting entirely of (−2)-indices (Definition
3.16) and at the same time we classify all possible minimal numerical types of genus 1. In
other words, in this section we prove Proposition 5.17 and Lemma 6.2

Our strategy will be as follows. Let n,mi, aij , wi, gi be a numerical type of genus g. Let
I ⊂ {1, . . . , n} be a subset consisting of (−2)-indices such that there does not exist a
nonempty proper subset J ⊂ I with ajj′ = 0 for j ∈ J , j′ ∈ I \J . We work by induction
on the cardinality |I| of I . If I = {i} consists of 1 index, then the only constraints on
mi, aii, and wi are wi|aii from Definition 3.1 and aii < 0 from Lemma 3.6 and this will
serve as our base case. In the induction step we first apply the induction hypothesis to
subsets I ′ ⊂ I of size |I ′| < |I|. This will put some constraints on the possiblemi, aij , wi,
i, j ∈ I . In particular, since |I ′| < |I| ≤ n it will follow from

∑
aijmj = 0 and

Lemma 2.3 that the sub matrices (aij)i,j∈I′ are negative definite and their determinant will
have sign (−1)m. For each possibility left over we compute the determinant of (aij)i,j∈I .
If the determinant has sign −(−1)|I| then this case can be discarded because Sylvester’s
theorem tells us the matrix (aij)i,j∈I is not negative semi-definite. If the determinant has
sign (−1)|I|, then |I| < n and we (tentatively) conclude this case can occur as a possible
proper subgraph and we list it in one of the lemmas in this section. If the determinant is
0, then we must have |I| = n (by Lemma 2.3 again) and g = 0. In these cases we actually
find all possible mi, aij , wi, i, j ∈ I and list them in Lemma 6.2. After completing the
argument we obtain all possible minimal numerical types of genus 1 with n > 1 because
each of these necessarily consists entirely of (−2)-indices (and hence will show up in the
induction process) by the formula for the genus and the remarks in the previous section.
At the very end of the day the reader can go through the list of possibilities given in Lemma



4446 55. SEMISTABLE REDUCTION

6.2 to see that all configurations of proper subgraphs listed in this section as possible do in
fact occur already for numerical types of genus 1.

Suppose that i and j are (−2)-indices with aij > 0. Since the matrix A = (aij) is semi-
negative definite by Lemma 2.3 we see that the matrix(

−2wi aij
aij −2wj

)
is negative definite unless n = 2. The case n = 2 can happen: then the determinant
4w1w2 − a2

12 is zero. Using that lcm(w1, w2) divides a12 the reader easily finds that the
only possibilities are

(w1, w2, a12) = (w,w, 2w), (w, 4w, 4w), or (4w,w, 4w)

Observe that the case (4w,w, 4w) is obtained from the case (w, 4w, 4w) by switching the
indices i, j. In these cases g = 1. This leads to cases (2) and (3) of Lemma 6.2. Assuming
n > 2 we see that the determinant 4wiwj − a2

ij of the displayed matrix is > 0 and we
conclude that a2

ij/wiwj < 4. On the other hand, we know that lcm(wi, wj)|aij and hence
a2
ij/wiwj is an integer. Thus a2

ij/wiwj ∈ {1, 2, 3} and wi|wj or vice versa. This leads to
the following possibilities

(w1, w2, a12) = (w,w,w), (w, 2w, 2w), (w, 3w, 3w), (2w,w, 2w), or (3w,w, 3w)

Observe that the case (2w,w, 2w) is obtained from the case (w, 2w, 2w) by switching
the indices i, j and similarly for the cases (3w,w, 3w) and (w, 3w, 3w). The first three
solutions lead to cases (1), (2), and (3) of Lemma 5.1. In this lemma we wrote out the
consequences for the integersmi andmj using that

∑
l aklml = 0 for each k in particular

implies aiimi + aijmj ≤ 0 for k = i and aijmi + ajjmj ≤ 0 for k = j.

Lemma 5.1. Classification of proper subgraphs of the form

• •

If n > 2, then given a pair i, j of (−2)-indices with aij > 0, then up to ordering we have
the m’s, a’s, w’s

(1) are given by (
m1
m2

)
,

(
−2w w
w −2w

)
,

(
w
w

)
with w arbitrary and 2m1 ≥ m2 and 2m2 ≥ m1, or

(2) are given by (
m1
m2

)
,

(
−2w 2w
2w −4w

)
,

(
w
2w

)
with w arbitrary and m1 ≥ m2 and 2m2 ≥ m1, or

(3) are given by (
m1
m2

)
,

(
−2w 3w
3w −6w

)
,

(
w
3w

)
with w arbitrary and 2m1 ≥ 3m2 and 2m2 ≥ m1.

Proof. See discussion above. �
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Suppose that i, j , and k are three (−2)-indices with aij > 0 and ajk > 0. In other
words, the index i “meets” j and j “meets” k. We will use without further mention that
each pair (i, j), (i, k), and (j, k) is as listed in Lemma 5.1. Since the matrix A = (aij) is
semi-negative definite by Lemma 2.3 we see that the matrix−2wi aij aik

aij −2wj ajk
aik ajk −2wk


is negative definite unless n = 3. The case n = 3 can happen: then the determinant2 of
the matrix is zero and we obtain the equation

4 =
a2
ij

wiwj
+

a2
jk

wjwk
+ a2

ik

wiwk
+ aijaikajk

wiwjwk

of integers. The last term on the right in this equation is determined by the others because(
aijaikajk
wiwjwk

)2
=

a2
ij

wiwj

a2
jk

wjwk

a2
ik

wiwk

Since we have seen above that a2
ij

wiwj
,
a2
jk

wjwk
are in {1, 2, 3} and a2

ik

wiwk
in {0, 1, 2, 3}, we

conclude that the only possibilities are

(
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
ik

wiwk
) = (1, 1, 1), (1, 3, 0), (2, 2, 0), or (3, 1, 0)

Observe that the case (3, 1, 0) is obtained from the case (1, 3, 0) by reversing the order the
indices i, j, k. In each of these cases g = 1; the reader can find these as cases (4), (5), (6),
(7), (8), (9) of Lemma 6.2 with one case corresponding to (1, 1, 1), two cases corresponding
to (1, 3, 0), and three cases corresponding to (2, 2, 0). Assuming n > 3 we obtain the
inequality

4 >
a2
ij

wiwj
+ a2

ik

wiwk
+

a2
jk

wjwk
+ aijaikajk

wiwjwk

of integers. Using the restrictions on the numbers given above we see that the only possi-
bilities are

(
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
ik

wiwk
) = (1, 1, 0), (1, 2, 0), or (2, 1, 0)

in particular aik = 0 (recall we are assuming aij > 0 and ajk > 0). Observe that the case
(2, 1, 0) is obtained from the case (1, 2, 0) by reversing the ordering of the indices i, j, k.
The first two solutions lead to cases (1), (2), and (3) of Lemma 5.2 where we also wrote out
the consequences for the integers mi, mj , and mk.

Lemma 5.2. Classification of proper subgraphs of the form

• • •

If n > 3, then given a triple i, j, k of (−2)-indices with at least two aij , aik, ajk nonzero,
then up to ordering we have the m’s, a’s, w’s

2It is −8wiwjwk + 2a2
ijwk + 2a2

jkwi + 2a2
ikwj + 2aijajkaik .
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(1) are given bym1
m2
m3

 ,

−2w w 0
w −2w w
0 w −2w

 ,

ww
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2, or

(2) are given bym1
m2
m3

 ,

−2w w 0
w −2w 2w
0 2w −4w

 ,

 w
w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 + 2m3, 2m3 ≥ m2, or

(3) are given bym1
m2
m3

 ,

−4w 2w 0
2w −4w 2w
0 2w −2w

 ,

2w
2w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, m3 ≥ m2.

Proof. See discussion above. �

Suppose that i, j , k, and l are four (−2)-indices with aij > 0, ajk > 0, and akl > 0. In
other words, the index i “meets” j , j “meets” k, and k “meets” l. Then we see from Lemma
5.2 that aik = ajl = 0. Since the matrix A = (aij) is semi-negative definite we see that
the matrix 

−2wi aij 0 ail
aij −2wj ajk 0
0 ajk −2wk akl
ail 0 akl −2wl


is negative definite unless n = 4. The case n = 4 can happen: then the determinant3 of
the matrix is zero and we obtain the equation

16+
a2
ij

wiwj

a2
kl

wkwl
+

a2
jk

wjwk

a2
il

wiwl
= 4

a2
ij

wiwj
+4

a2
jk

wjwk
+4 a2

kl

wkwl
+4 a2

il

wiwl
+2aijailajkakl

wiwjwkwl

of nonnegative integers. The last term on the right in this equation is determined by the
others because (

aijailajkakl
wiwjwkwl

)2
=

a2
ij

wiwj

a2
jk

wjwk

a2
kl

wkwl

a2
il

wiwl

Since we have seen above that a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
are in {1, 2} and a2

il

wiwl
in {0, 1, 2}, we

conclude that the only possible solutions are

(
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
,
a2
il

wiwl
) = (1, 1, 1, 1) or (2, 1, 2, 0)

and case g = 1; the reader can find these as cases (10), (11), (12), and (13) of Lemma 6.2.
Assuming n > 4 we obtain the inequality

16+
a2
ij

wiwj

a2
kl

wkwl
+

a2
jk

wjwk

a2
il

wiwl
> 4

a2
ij

wiwj
+4

a2
jk

wjwk
+4 a2

kl

wkwl
+4 a2

il

wiwl
+2aijailajkakl

wiwjwkwl

3It is 16wiwjwkwl − 4a2
ijwkwl − 4a2

jkwiwl − 4a2
klwiwj − 4a2

ilwjwk + a2
ija

2
kl + a2

jka
2
il −

2aijailajkakl.
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of nonnegative integers. Using the restrictions on the numbers given above we see that
the only possibilities are

(
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
,
a2
il

wiwl
) = (1, 1, 1, 0), (1, 1, 2, 0), (1, 2, 1, 0), or (2, 1, 1, 0)

in particular ail = 0 (recall that we assumed the other three to be nonzero). Observe that
the case (2, 1, 1, 0) is obtained from the case (1, 1, 2, 0) by reversing the ordering of the
indices i, j, k, l. The first three solutions lead to cases (1), (2), (3), and (4) of Lemma 5.3
where we also wrote out the consequences for the integers mi, mj , mk , and ml.

Lemma 5.3. Classification of proper subgraphs of the form

• • • •

If n > 4, then given four (−2)-indices i, j, k, l with aij , ajk, akl nonzero, then up to
ordering we have the m’s, a’s, w’s

(1) are given by
m1
m2
m3
m4

 ,


−2w w 0 0
w −2w w 0
0 w −2w w
0 0 w −2w

 ,


w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, and 2m4 ≥ m3, or

(2) are given by
m1
m2
m3
m4

 ,


−2w w 0 0
w −2w w 0
0 w −2w 2w
0 0 2w −4w

 ,


w
w
w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 + 2m4, and 2m4 ≥ m3, or

(3) are given by
m1
m2
m3
m4

 ,


−4w 2w 0 0
2w −4w 2w 0
0 2w −4w 2w
0 0 2w −2w

 ,


2w
2w
2w
w


with 2m1 ≥ m2, 2m2 ≥ m1 +m3, 2m3 ≥ m2 +m4, and m4 ≥ m3, or

(4) are given by
m1
m2
m3
m4

 ,


−2w w 0 0
w −2w 2w 0
0 2w −4w 2w
0 0 2w −4w

 ,


w
w
2w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 + 2m3, 2m3 ≥ m2 +m4, and 2m4 ≥ m3.

Proof. See discussion above. �

Suppose that i, j , k, and l are four (−2)-indices with aij > 0, aij > 0, and ail > 0. In
other words, the index i “meets” the indices j , k, l. Then we see from Lemma 5.2 that
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ajk = ajl = akl = 0. Since the matrixA = (aij) is semi-negative definite we see that the
matrix 

−2wi aij aik ail
aij −2wj 0 0
aik 0 −2wk 0
ail 0 0 −2wl


is negative definite unless n = 4. The case n = 4 can happen: then the determinant4 of
the matrix is zero and we obtain the equation

4 =
a2
ij

wiwj
+ a2

ik

wiwk
+ a2

il

wjwl

of nonnegative integers. Since we have seen above that a2
ij

wiwj
,
a2
ik

wiwk
,
a2
il

wiwl
are in {1, 2}, we

conclude that the only possibilities are up to reordering: 4 = 1 + 1 + 2. In each of these
cases g = 1; the reader can find these as cases (14) and (15) of Lemma 6.2. Assuming n > 4
we obtain the inequality

4 >
a2
ij

wiwj
+ a2

ik

wiwk
+ a2

il

wjwl

of nonnegative integers. This implies that a2
ij

wiwj
= a2

ik

wiwk
= a2

il

wjwl
= 1 and thatwi = wj =

wk = wl. This leads to case (1) of Lemma 5.4 where we also wrote out the consequences
for the integers mi, mj , mk , and ml.

Lemma 5.4. Classification of proper subgraphs of the form

• • •

•

If n > 4, then given four (−2)-indices i, j, k, l with aij , aik, ail nonzero, then up to or-
dering we have the m’s, a’s, w’s

(1) are given by
m1
m2
m3
m4

 ,


−2w w w w
w −2w 0 0
w 0 −2w 0
w 0 0 −2w

 ,


w
w
w
w


with 2m1 ≥ m2 +m3 +m4, 2m2 ≥ m1, 2m3 ≥ m1, 2m4 ≥ m1. Observe that
this implies m1 ≥ max(m2,m3,m4).

Proof. See discussion above. �

Suppose that h, i, j , k, and l are five (−2)-indices with ahi > 0, aij > 0, ajk > 0, and
akl > 0. In other words, the index h “meets” i, i “meets” j , j “meets” k, and k “meets” l.
Then we can apply Lemmas 5.2 and 5.3 to see that ahj = ahk = aik = ail = ajl = 0 and
that the fractions a2

hi

whwi
,
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
are in {1, 2} and the fraction a2

hl

whwl
∈ {0, 1, 2}.

4It is 16wiwjwkwl − 4a2
ijwkwl − 4a2

ikwjwl − 4a2
ilwjwk .



5. CLASSIFICATION OF PROPER SUBGRAPHS 4451

Since the matrix A = (aij) is semi-negative definite we see that the matrix
−2wh ahi 0 0 ahl
ahi −2wi aij 0 0
0 aij −2wj ajk 0
0 0 ajk −2wk akl
ahl 0 0 akl −2wl


is negative definite unless n = 5. The case n = 5 can happen: then the determinant5 of
the matrix is zero and we obtain the equation

16 + a2
hi

whwi

a2
jk

wjwk
+ a2

hi

whwi

a2
kl

wkwl
+

a2
ij

wiwj

a2
kl

wkwl
+ a2

hl

whwl

a2
ij

wiwj
+ a2

hl

whwl

a2
jk

wjwk

= 4 a2
hi

whwi
+ 4

a2
ij

wiwj
+ 4

a2
jk

wjwk
+ 4 a2

kl

wkwl
+ 4 a2

hl

whwl
+ ahiaijajkaklahl

whwiwjwkwl

of nonnegative integers. The last term on the right in this equation is determined by the
others because (

ahiaijajkaklahl
whwiwjwkwl

)2
= a2

hi

whwi

a2
ij

wiwj

a2
jk

wjwk

a2
kl

wkwl

a2
hl

whwl

We conclude the only possible solutions are

( a2
hi

whwi
,
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
,
a2
hl

whwl
) = (1, 1, 1, 1, 1), (1, 1, 2, 1, 0), (1, 2, 1, 1, 0), or (2, 1, 1, 2, 0)

Observe that the case (1, 2, 1, 1, 0) is obtained from the case (1, 1, 2, 1, 0) by reversing the
order of the indices h, i, j, k, l. In these cases g = 1; the reader can find these as cases (16),
(17), (18), (19), (20), and (21) of Lemma 6.2 with one case corresponding to (1, 1, 1, 1, 1),
two cases corresponding to (1, 1, 2, 1, 0), and three cases corresponding to (2, 1, 1, 2, 0).
Assuming n > 5 we obtain the inequality

16 + a2
hi

whwi

a2
jk

wjwk
+ a2

hi

whwi

a2
kl

wkwl
+

a2
ij

wiwj

a2
kl

wkwl
+ a2

hl

whwl

a2
ij

wiwj
+ a2

hl

whwl

a2
jk

wjwk

> 4 a2
hi

whwi
+ 4

a2
ij

wiwj
+ 4

a2
jk

wjwk
+ 4 a2

kl

wkwl
+ 4 a2

hl

whwl
+ ahiaijajkaklahl

whwiwjwkwl

of nonnegative integers. Using the restrictions on the numbers given above we see that
the only possibilities are

( a2
hi

whwi
,
a2
ij

wiwj
,
a2
jk

wjwk
,
a2
kl

wkwl
,
a2
hl

whwl
) = (1, 1, 1, 1, 0), (1, 1, 1, 2, 0), or (2, 1, 1, 1, 0)

in particular ahl = 0 (recall that we assumed the other four to be nonzero). Observe that
the case (1, 1, 1, 2, 0) is obtained from the case (2, 1, 1, 1, 0) by reversing the order of the
indices h, i, j, k, l. The first two solutions lead to cases (1), (2), and (3) of Lemma 5.5 where
we also wrote out the consequences for the integers mh, mi, mj , mk , and ml.

Lemma 5.5. Classification of proper subgraphs of the form

• • • • •

5It is −32whwiwjwkwl + 8a2
hiwjwkwl + 8a2

ijwhwkwl + 8a2
jkwhwiwl + 8a2

klwhwiwj +
8a2
hlwiwjwk − 2a2

hia
2
jkwl − 2a2

hia
2
klwj − 2a2

ija
2
klwh − 2a2

hla
2
ijwk − 2a2

hla
2
jkwi + 2ahiaijajkaklahl .
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If n > 5, then given five (−2)-indices h, i, j, k, l with ahi, aij , ajk, akl nonzero, then up
to ordering we have the m’s, a’s, w’s

(1) are given by
m1
m2
m3
m4
m5

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w w 0
0 0 w −2w w
0 0 0 w −2w

 ,


w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4, 2m4 ≥ m3 + m5, and
2m5 ≥ m4, or

(2) are given by
m1
m2
m3
m4
m5

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w w 0
0 0 w −2w 2w
0 0 0 2w −4w

 ,


w
w
w
w
2w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + 2m4, 2m4 ≥ m3 + m5, and
2m5 ≥ m4, or

(3) are given by
m1
m2
m3
m4
m5

 ,


−4w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −4w 2w
0 0 0 2w −2w

 ,


2w
2w
2w
2w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4, 2m4 ≥ m3 + m5, and
m4 ≥ m3.

Proof. See discussion above. �

Suppose that h, i, j , k, and l are five (−2)-indices with ahi > 0, ahj > 0, ahk > 0, and
ahl > 0. In other words, the index h “meets” the indices i, j , k, l. Then we see from Lemma
5.2 that aij = aik = ail = ajk = ajl = akl = 0 and by Lemma 5.4 that wh = wi =
wj = wk = wl = w for some integer w > 0 and ahi = ahj = ahk = ahl = −2w. The
corresponding matrix 

−2w w w w w
w −2w 0 0 0
w 0 −2w 0 0
w 0 0 −2w 0
w 0 0 0 −2w


is singular. Hence this can only happen if n = 5 and g = 1. The reader can find this as
case (22) Lemma 6.2.

Lemma 5.6. Nonexistence of proper subgraphs of the form
• • •

• •
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If n > 5, there do not exist five (−2)-indices h, i, j , k with ahi > 0, ahj > 0, ahk > 0, and
ahl > 0.

Proof. See discussion above. �

Suppose that h, i, j , k, and l are five (−2)-indices with ahi > 0, aij > 0, ajk > 0, and
ajl > 0. In other words, the index h “meets” i and the index j “meets” the indices i, k,
l. Then we see from Lemma 5.4 that aik = ail = akl = 0, wi = wj = wk = wl = w,
and aij = ajk = ajl = w for some integer w. Applying Lemma 5.3 to the four tuples
h, i, j, k and h, i, j, l we see that ahj = ahk = ahl = 0, that wh = 1

2w, w, or 2w, and
that correspondingly ahi = w, w, or 2w. Since A is semi-negative definite we see that the
matrix 

−2wh ahi 0 0 0
ahi −2w w 0 0
0 w −2w w w
0 0 w −2w 0
0 0 w 0 −2w


is negative definite unless n = 5. The reader computes that the determinant of the matrix
is 0 when wh = 1

2w or 2w. This leads to cases (23) and (24) of Lemma 6.2. For wh = w

we obtain case (1) of Lemma 5.7.

Lemma 5.7. Classification of proper subgraphs of the form

• • • •

•
If n > 5, then given five (−2)-indices h, i, j, k, l with ahi, aij , ajk, ajl nonzero, then up
to ordering we have the m’s, a’s, w’s

(1) are given by
m1
m2
m3
m4
m5

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w w w
0 0 w −2w 0
0 0 w 0 −2w

 ,


w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4 + m5, 2m4 ≥ m3, and
2m5 ≥ m3.

Proof. See discussion above. �

Suppose that t > 5 and i1, . . . , it are t distinct (−2)-indices such that aijij+1 is nonzero
for j = 1, . . . , t−1. We will prove by induction on t that if n = t this leads to possibilities
(25), (26), (27), (28) of Lemma 6.2 and if n > t to cases (1), (2), and (3) of Lemma 5.8. First,
if ai1it is nonzero, then it is clear from the result of Lemma 5.5 that wi1 = . . . = wit = w
and that aijij+1 = w for j = 1, . . . , t− 1 and ai1it = w. Then the vector (1, . . . , 1) is in
the kernel of the corresponding t×tmatrix. Thus we must have n = t and we see that the
genus is 1 and that we are in case (25) of Lemma 6.2. Thus we may assume ai1it = 0. By
induction hypothesis (or Lemma 5.5 if t = 6) we see that aijik = 0 if k > j+1. Moreover,
we have wi1 = . . . = wit−1 = w for some integer w and wi1 , wit ∈ { 1

2w,w, 2w}.
Moreover, the value of wi1 , resp. wit being 1

2w, w, or 2w implies that the value of ai1i2 ,
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resp. ait−1it is w, w, or 2w. This gives 9 possibilities. In each case it is easy to decide what
happens:

(1) if (wi1 , wit) = ( 1
2w,

1
2w), then we are in case (27) of Lemma 6.2,

(2) if (wi1 , wit) = ( 1
2w,w) or (w, 1

2w) then we are in case (3) of Lemma 5.8,
(3) if (wi1 , wit) = ( 1

2w, 2w) or (2w, 1
2w) then we are in case (26) of Lemma 6.2,

(4) if (wi1 , wit) = (w,w) then we are in case (1) of Lemma 5.8,
(5) if (wi1 , wit) = (w, 2w) or (2w,w) then we are in case (2) of Lemma 5.8, and
(6) if (wi1 , wit) = (2w, 2w) then we are in case (28) of Lemma 6.2.

Lemma 5.8. Classification of proper subgraphs of the form
• • • • • •

Let t > 5 and n > t. Then given t distinct (−2)-indices i1, . . . , it such that aijij+1 is
nonzero for j = 1, . . . , t − 1, then up to reversing the order of these indices we have the
a’s and w’s

(1) are given by wi1 = wi2 = . . . = wit = w, aijij+1 = w, and aijik = 0 if
k > j + 1, or

(2) are given by wi1 = wi2 = . . . = wit−1 = w, wjt = 2w, aijij+1 = w for
j < t− 1, ait−1it = 2w, and aijik = 0 if k > j + 1, or

(3) are given by wi1 = wi2 = . . . = wit−1 = 2w, wjt = w, aijij+1 = 2w, and
ait−1it = 2w, and aijik = 0 if k > j + 1.

Proof. See discussion above. �

Suppose that t > 4 and i1, . . . , it+1 are t + 1 distinct (−2)-indices such that aijij+1 > 0
for j = 1, . . . , t−1 and such that ajt−1jt+1 > 0. See picture in Lemma 5.9. We will prove
by induction on t that if n = t+1 this leads to possibilities (29) and (30) of Lemma 6.2 and
if n > t+1 to case (1) of Lemma 5.9. By induction hypothesis (or Lemma 5.7 in case t = 5)
we see that aijik is zero outside of the required nonvanishing ones for j, k ≥ 2. Moreover,
we see that w2 = . . . = wt+1 = w for some integer w and that the nonvanishing aijik
for j, k ≥ 2 are equal to w. Applying Lemma 5.8 (or Lemma 5.5 if t = 5) to the sequence
i1, . . . , it and to the sequence i1, . . . , it−1, it+1 we conclude that ai1ij = 0 for j ≥ 3 and
that w1 is equal to 1

2w, w, or 2w and that correspondingly ai1i2 is w,w, 2w. This gives 3
possibilities. In each case it is easy to decide what happens:

(1) If w1 = 1
2w, then we are in case (30) of Lemma 6.2.

(2) If w1 = w, then we are in case (1) of Lemma 5.9.
(3) If w1 = 2w, then we are in case (29) of Lemma 6.2.

Lemma 5.9. Classification of proper subgraphs of the form
• • • • •

•
Let t > 4 and n > t + 1. Then given t + 1 distinct (−2)-indices i1, . . . , it+1 such that
aijij+1 is nonzero for j = 1, . . . , t− 1 and ait−1it+1 is nonzero, then we have the a’s and
w’s

(1) are given by wi1 = wi2 = . . . = wit+1 = w, aijij+1 = w for j = 1, . . . , t − 1,
ait−1it+1 = w and aijik = 0 for other pairs (j, k) with j > k.

Proof. See discussion above. �
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Suppose we are given 6 distinct (−2)-indices g, h, i, j, k, l such that agh, ahi, aij , ajk, ail
are nonzero. See picture in Lemma 5.10. Then we can apply Lemma 5.7 to see that we must
be in the situation of Lemma 5.10. Since the determinant is 3w6 > 0 we conclude that in
this case it never happens that n = 6!

Lemma 5.10. Classification of proper subgraphs of the form

• • • • •

•

Let n > 6. Then given 6 distinct (−2)-indices i1, . . . , i6 such that a12, a23, a34, a45, a36
are nonzero, then we have the m’s, a’s, and w’s

(1) are given by


m1
m2
m3
m4
m5
m6

 ,


−2w w 0 0 0 0
w −2w w 0 0 0
0 w −2w w 0 w
0 0 w −2w w 0
0 0 0 w −2w 0
0 0 w 0 0 −2w

 ,


w
w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4 + m6, 2m4 ≥ m3 + m5,
2m5 ≥ m3, and 2m6 ≥ m3.

Proof. See discussion above. �

Suppose that t ≥ 4 and i0, . . . , it+1 are t + 2 distinct (−2)-indices such that aijij+1 > 0
for j = 1, . . . , t− 1 and ai0i2 > 0 and ait−1it+1 > 0. See picture in Lemma 5.11. Then we
can apply Lemmas 5.7 and 5.9 to see that all other aijik for j < k are zero and that wi0 =
. . . = wit+1 = w for some integer w and that the required nonzero off diagonal entries of
A are equal tow. A computation shows that the determinant of the corresponding matrix
is zero. Hence n = t+ 2 and we are in case (31) of Lemma 6.2.

Lemma 5.11. Nonexistence of proper subgraphs of the form

• • • •

• •

Assume t ≥ 4 and n > t + 2. There do not exist t + 2 distinct (−2)-indices i0, . . . , it+1
such that aijij+1 > 0 for j = 1, . . . , t− 1 and ai0i2 > 0 and ait−1it+1 > 0.

Proof. See discussion above. �
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Suppose we are given 7 distinct (−2)-indices f, g, h, i, j, k, l such that the numbersafg, agh, aij , ajh, akl, alh
are nonzero. See picture in Lemma 5.12. Then we can apply Lemma 5.7 to see that the cor-
responding matrix is

−2w w 0 0 0 0 0
w −2w w 0 0 0 0
0 w −2w 0 w 0 w
0 0 0 −2w w 0 0
0 0 w w −2w 0 0
0 0 0 0 0 −2w w
0 0 w 0 0 w −2w


Since the determinant is 0 we conclude that we must have n = 7 and g = 1 and we get
case (32) of Lemma 6.2.

Lemma 5.12. Nonexistence of proper subgraphs of the form
• • • • •

•

•
Assume n > 7. There do not exist 7 distinct (−2)-indices f, g, h, i, j, k, l such that
afg, agh, aij , ajh, akl, alh are nonzero.

Proof. See discussion above. �

Suppose we are given 7 distinct (−2)-indices f, g, h, i, j, k, l such that the numbersafg, agh, ahi, aij , ajk, ail
are nonzero. See picture in Lemma 5.13. Then we can apply Lemmas 5.7 and 5.9 to see that
we must be in the situation of Lemma 5.13. Since the determinant is −8w7 > 0 we con-
clude that in this case it never happens that n = 7!

Lemma 5.13. Classification of proper subgraphs of the form
• • • • • •

•
Letn > 7. Then given 7 distinct (−2)-indices i1, . . . , i7 such thata12, a23, a34, a45, a56, a47
are nonzero, then we have the m’s, a’s, and w’s

(1) are given by

m1
m2
m3
m4
m5
m6
m7


,



−2w w 0 0 0 0 0
w −2w w 0 0 0 0
0 w −2w w 0 0 0
0 0 w −2w w 0 w
0 0 0 w −2w w 0
0 0 0 0 w −2w 0
0 0 0 w 0 0 −2w


,



w
w
w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4, 2m4 ≥ m3 + m5 + m7,
2m5 ≥ m4 +m6, 2m6 ≥ m5, and 2m7 ≥ m4.
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Proof. See discussion above. �

Suppose we are given 8 distinct (−2)-indices whose pattern of nonzero entries aij of the
matrix A looks like

• • • • • • •

•
or like

• • • • • • •

•
Arguing exactly as in the proof of Lemma 5.13 we see that the first pattern leads to case
(1) in Lemma 5.14 and does not lead to a new case in Lemma 6.2. Arguing exactly as in the
proof of Lemma 5.12 we see that the second pattern does not occur if n > 8, but leads to
case (33) in Lemma 6.2 when n = 8.

Lemma 5.14. Classification of proper subgraphs of the form

• • • • • • •

•
Letn > 8. Then given 8 distinct (−2)-indices i1, . . . , i8 such thata12, a23, a34, a45, a56, a65, a57
are nonzero, then we have the m’s, a’s, and w’s

(1) are given by

m1
m2
m3
m4
m5
m6
m7
m8


,



−2w w 0 0 0 0 0 0
w −2w w 0 0 0 0 0
0 w −2w w 0 0 0 0
0 0 w −2w w 0 0 0
0 0 0 w −2w w 0 w
0 0 0 0 w −2w w 0
0 0 0 0 0 w −2w 0
0 0 0 0 w 0 0 −2w


,



w
w
w
w
w
w
w
w


with 2m1 ≥ m2, 2m2 ≥ m1 + m3, 2m3 ≥ m2 + m4, 2m4 ≥ m3 + m5,
2m5 ≥ m4 +m6 +m8, 2m6 ≥ m5 +m7, 2m7 ≥ m6, and 2m8 ≥ m5.

Proof. See discussion above. �

Lemma 5.15. Nonexistence of proper subgraphs of the form

• • • • • • •

•
Assume n > 8. There do not exist 8 distinct (−2)-indices e, f, g, h, i, j, k, l such that
aef , afg, agh, ahi, aij , ajk, alh are nonzero.

Proof. See discussion above. �
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Suppose we are given 9 distinct (−2)-indices whose pattern of nonzero entries aij of the
matrix A looks like

• • • • • • • •

•
Arguing exactly as in the proof of Lemma 5.12 we see that this pattern does not occur if
n > 9, but leads to case (34) in Lemma 6.2 when n = 9.

Lemma 5.16. Nonexistence of proper subgraphs of the form

• • • • • • • •

•
Assume n > 9. There do not exist 9 distinct (−2)-indices d, e, f, g, h, i, j, k, l such that
ade, aef , afg, agh, ahi, aij , ajk, alh are nonzero.

Proof. See discussion above. �

Collecting all the information together we find the following.

Proposition 5.17. Let n,mi, aij , wi, gi be a numerical type of genus g. Let I ⊂
{1, . . . , n} be a proper subset of cardinality≥ 2 consisting of (−2)-indices such that there
does not exist a nonempty proper subset I ′ ⊂ I with ai′i = 0 for i′ ∈ I , i ∈ I \ I ′. Then
up to reordering the mi’s, aij ’s, wi’s for i, j ∈ I are as listed in Lemmas 5.1, 5.2, 5.3, 5.4,
5.5, 5.7, 5.8, 5.9, 5.10, 5.13, or 5.14.

Proof. This follows from the discussion above; see discussion at the start of Section
5. �

6. Classification of minimal type for genus zero and one

The title of the section explains it all.

Lemma 6.1 (Genus zero). The only minimal numerical type of genus zero is n = 1,
m1 = 1, a11 = 0, w1 = 1, g1 = 0.

Proof. Follows from Lemmas 3.13 and 3.5. �

Lemma 6.2 (Genus one). The minimal numerical types of genus one are up to equiv-
alence

(1) n = 1, a11 = 0, g1 = 1, m1, w1 ≥ 1 arbitrary,
(2) n = 2, and mi, aij , wi, gi given by(

m
m

)
,

(
−2w 2w
2w −2w

)
,

(
w
w

)
,

(
0
0

)
with w and m arbitrary,

(3) n = 2, and mi, aij , wi, gi given by(
2m
m

)
,

(
−2w 4w
4w −8w

)
,

(
w
4w

)
,

(
0
0

)
with w and m arbitrary,
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(4) n = 3, and mi, aij , wi, gi given bymm
m

 ,

−2w w w
w −2w w
w w −2w

 ,

ww
w

 ,

0
0
0


with w and m arbitrary,

(5) n = 3, and mi, aij , wi, gi given bym
2m
m

 ,

−2w w 0
w −2w 3w
0 3w −6w

 ,

 w
w
3w

 ,

0
0
0


with w and m arbitrary,

(6) n = 3, and mi, aij , wi, gi given bym
2m
3m

 ,

−6w 3w 0
3w −6w 3w
0 3w −2w

 ,

3w
3w
w

 ,

0
0
0


with w and m arbitrary,

(7) n = 3, and mi, aij , wi, gi given by2m
2m
m

 ,

−2w 2w 0
2w −4w 4w
0 4w −8w

 ,

 w
2w
4w

 ,

0
0
0


with w and m arbitrary,

(8) n = 3, and mi, aij , wi, gi given bymm
m

 ,

−2w 2w 0
2w −4w 2w
0 2w −2w

 ,

 w
2w
w

 ,

0
0
0


with w and m arbitrary,

(9) n = 3, and mi, aij , wi, gi given bym
2m
m

 ,

−4w 2w 0
2w −2w 2w
0 2w −4w

 ,

2w
w
2w

 ,

0
0
0


with w and m arbitrary,

(10) n = 4, and mi, aij , wi, gi given by
m
m
m
m

 ,


−2w w 0 w
w −2w w 0
0 w −2w w
w 0 w −2w

 ,


w
w
w
w

 ,


0
0
0
0


with w and m arbitrary,

(11) n = 4, and mi, aij , wi, gi given by
2m
2m
2m
m

 ,


−2w 2w 0 0
2w −4w 2w 0
0 2w −4w 4w
0 0 4w −8w

 ,


w
2w
2w
4w

 ,


0
0
0
0


with w and m arbitrary,



4460 55. SEMISTABLE REDUCTION

(12) n = 4, and mi, aij , wi, gi given by
m
m
m
m

 ,


−2w 2w 0 0
2w −4w 2w 0
0 2w −4w 2w
0 0 2w −2w

 ,


w
2w
2w
w

 ,


0
0
0
0


with w and m arbitrary,

(13) n = 4, and mi, aij , wi, gi given by
m
2m
2m
m

 ,


−4w 2w 0 0
2w −2w w 0
0 w −2w 2w
0 0 2w −4w

 ,


2w
w
w
2w

 ,


0
0
0
0


with w and m arbitrary,

(14) n = 4, and mi, aij , wi, gi given by
2m
m
m
m

 ,


−2w w w 2w
w −2w 0 0
w 0 −2w 0
2w 0 0 −4w

 ,


w
w
w
2w

 ,


0
0
0
0


with w and m arbitrary,

(15) n = 4, and mi, aij , wi, gi given by
2m
m
m
2m

 ,


−4w 2w 2w 2w
2w −4w 0 0
2w 0 −4w 0
2w 0 0 −2w

 ,


2w
2w
2w
w

 ,


0
0
0
0


with w and m arbitrary,

(16) n = 5, and mi, aij , wi, gi given by
m
m
m
m
m

 ,


−2w w 0 0 w
w −2w w 0 0
0 w −2w w 0
0 0 w −2w w
w 0 0 w −2w

 ,


w
w
w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(17) n = 5, and mi, aij , wi, gi given by
m
2m
3m
2m
m

 ,


−2w w 0 0 0
w −2w w 0 0
0 w −2w 2w 0
0 0 2w −4w 2w
0 0 0 2w −4w

 ,


w
w
w
2w
2w

 ,


0
0
0
0
0


with w and m arbitrary,

(18) n = 5, and mi, aij , wi, gi given by
m
2m
3m
4m
2m

 ,


−4w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −2w w
0 0 0 w −2w

 ,


2w
2w
2w
w
w

 ,


0
0
0
0
0
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with w and m arbitrary,
(19) n = 5, and mi, aij , wi, gi given by

2m
2m
2m
2m
m

 ,


−2w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −4w 4w
0 0 0 4w −8w

 ,


w
2w
2w
2w
4w

 ,


0
0
0
0
0


with w and m arbitrary,

(20) n = 5, and mi, aij , wi, gi given by
m
m
m
m
m

 ,


−2w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 0
0 0 2w −4w 2w
0 0 0 2w −2w

 ,


w
2w
2w
2w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(21) n = 5, and mi, aij , wi, gi given by
m
2m
2m
2m
m

 ,


−4w 2w 0 0 0
2w −2w w 0 0
0 w −2w w 0
0 0 w −2w 2w
0 0 0 2w −4w

 ,


2w
w
w
w
2w

 ,


0
0
0
0
0


with w and m arbitrary,

(22) n = 5, and mi, aij , wi, gi given by
2m
m
m
m
m

 ,


−2w w w w w
w −2w 0 0 0
w 0 −2w 0 0
w 0 0 −2w 0
w 0 0 0 −2w

 ,


w
w
w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(23) n = 5, and mi, aij , wi, gi given by
m
2m
2m
m
m

 ,


−4w 2w 0 0 0
2w −2w w 0 0
0 w −2w w w
0 0 w −2w 0
0 0 w 0 −2w

 ,


2w
w
w
w
w

 ,


0
0
0
0
0


with w and m arbitrary,

(24) n = 5, and mi, aij , wi, gi given by
2m
2m
2m
m
m

 ,


−2w 2w 0 0 0
2w −4w 2w 0 0
0 2w −4w 2w 2w
0 0 2w −4w 0
0 0 2w 0 −4w

 ,


w
2w
2w
2w
2w

 ,


0
0
0
0
0


with w and m arbitrary,

(25) n ≥ 6 and we have an n-cycle generalizing (16):
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(a) m1 = . . . = mn = m,
(b) a12 = . . . = a(n−1)n = w, a1n = w, and for other i < j we have aij = 0,
(c) w1 = . . . = wn = w

with w and m arbitrary,
(26) n ≥ 6 and we have a chain generalizing (19):

(a) m1 = . . . = mn−1 = 2m, mn = m,
(b) a12 = . . . = a(n−2)(n−1) = 2w, a(n−1)n = 4w, and for other i < j we

have aij = 0,
(c) w1 = w, w2 = . . . = wn−1 = 2w, wn = 4w

with w and m arbitrary,
(27) n ≥ 6 and we have a chain generalizing (20):

(a) m1 = . . . = mn = m,
(b) a12 = . . . = a(n−1)n = w, and for other i < j we have aij = 0,
(c) w1 = w, w2 = . . . = wn−1 = 2w, wn = w

with w and m arbitrary,
(28) n ≥ 6 and we have a chain generalizing (21):

(a) m1 = w, w2 = . . . = mn−1 = 2m, mn = m,
(b) a12 = 2w, a23 = . . . = a(n−2)(n−1) = w, a(n−1)n = 2w, and for other

i < j we have aij = 0,
(c) w1 = 2w, w2 = . . . = wn−1 = w, wn = 2w

with w and m arbitrary,
(29) n ≥ 6 and we have a type generalizing (23):

(a) m1 = m, m2 = . . . = mn−3 = 2m, mn−1 = mn = m,
(b) a12 = 2w, a23 = . . . = a(n−2)(n−1) = w, a(n−2)n = w, and for other i < j

we have aij = 0,
(c) w1 = 2w, w2 = . . . = wn = w

with w and m arbitrary,
(30) n ≥ 6 and we have a type generalizing (24):

(a) m1 = . . . = mn−3 = 2m, mn−1 = mn = m,
(b) a12 = . . . = a(n−2)(n−1) = 2w, a(n−2)n = 2w, and for other i < j we

have aij = 0,
(c) w1 = w, w2 = . . . = wn = 2w

with w and m arbitrary,
(31) n ≥ 6 and we have a type generalizing (22):

(a) m1 = m2 = m, m3 = . . . = mn−2 = 2m, mn−1 = mn = m,
(b) a13 = w, a23 = . . . = a(n−2)(n−1) = w, a(n−2)n = w, and for other i < j

we have aij = 0,
(c) w1 = . . . = wn = w,

with w and m arbitrary,
(32) n = 7, and mi, aij , wi, gi given by

m
2m
3m
m
2m
m
2m


,



−2w w 0 0 0 0 0
w −2w w 0 0 0 0
0 w −2w 0 w 0 w
0 0 0 −2w w 0 0
0 0 w w −2w 0 0
0 0 0 0 0 −2w w
0 0 w 0 0 w −2w


,



w
w
w
w
w
w
w


,



0
0
0
0
0
0
0


with w and m arbitrary,
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(33) n = 8, and mi, aij , wi, gi given by

m
2m
3m
4m
3m
2m
m
2m


,



−2w w 0 0 0 0 0 0
w −2w w 0 0 0 0 0
0 w −2w w 0 0 0 0
0 0 w −2w w 0 0 w
0 0 0 w −2w w 0 0
0 0 0 0 w −2w w 0
0 0 0 0 0 w −2w 0
0 0 0 w 0 0 0 −2w


,



w
w
w
w
w
w
w
w


,



0
0
0
0
0
0
0
0


with w and m arbitrary,

(34) n = 9, and mi, aij , wi, gi given by

m
2m
3m
4m
5m
6m
4m
2m
3m


,



−2w w 0 0 0 0 0 0 0
w −2w w 0 0 0 0 0 0
0 w −2w w 0 0 0 0 0
0 0 w −2w w 0 0 0 0
0 0 0 w −2w w 0 0 0
0 0 0 0 w −2w w 0 w
0 0 0 0 0 w −2w w 0
0 0 0 0 0 0 w −2w 0
0 0 0 0 0 w 0 0 −2w


,



w
w
w
w
w
w
w
w
w


,



0
0
0
0
0
0
0
0
0


with w and m arbitrary.

Proof. This is proved in Section 5. See discussion at the start of Section 5. �

7. Bounding invariants of numerical types

In our proof of semistable reduction for curves we’ll use a bound on Picard groups of
numerical types of genus g which we will prove in this section.

Lemma 7.1. Let n,mi, aij , wi, gi be a numerical type of genus g. Given i, j with
aij > 0 we have miaij ≤ mj |ajj | and miwi ≤ mj |ajj |.

Proof. For every index j we have mjajj +
∑
i6=jmiaij = 0. Thus if we have an

upper bound on |ajj | andmj , then we also get an upper bound on the nonzero (and hence
positive) aij as well as mi. Recalling that wi divides aij , the reader easily sees the lemma
is correct. �

Lemma 7.2. Fix g ≥ 2. For every minimal numerical type n,mi, aij , wi, gi of genus
g with n > 1 we have

(1) the set J ⊂ {1, . . . , n} of non-(−2)-indices has at most 2g − 2 elements,
(2) for j ∈ J we have gj < g,
(3) for j ∈ J we have mj |ajj | ≤ 6g − 6, and
(4) for j ∈ J and i ∈ {1, . . . , n} we have miaij ≤ 6g − 6.

Proof. Recall that g = 1 +
∑
mj(wj(gj − 1)− 1

2ajj). For j ∈ J the contribution
mj(wj(gj − 1) − 1

2ajj) to the genus g is > 0 and hence ≥ 1/2. This uses Lemma 3.7,
Definition 3.8, Definition 3.12, Lemma 3.15, and Definition 3.16; we will use these results
without further mention in the following. Thus J has at most 2(g − 1) elements. This
proves (1).
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Recall that−aii > 0 for all i by Lemma 3.6. Hence for j ∈ J the contributionmj(wj(gj−
1)− 1

2ajj) to the genus g is > mjwj(gj − 1). Thus

g − 1 > mjwj(gj − 1)⇒ gj < (g − 1)/mjwj + 1

This indeed implies gj < g which proves (2).

For j ∈ J if gj > 0, then the contribution mj(wj(gj − 1) − 1
2ajj) to the genus g is ≥

− 1
2mjajj and we immediately conclude thatmj |ajj | ≤ 2(g−1). Otherwise ajj = −kwj

for some integer k ≥ 3 (because j ∈ J) and we get

mjwj(−1 + k

2 ) ≤ g − 1⇒ mjwj ≤
2(g − 1)
k − 2

Plugging this back into ajj = −kmjwj we obtain

mj |ajj | ≤ 2(g − 1) k

k − 2 ≤ 6(g − 1)

This proves (3).

Part (4) follows from Lemma 7.1 and (3). �

Lemma 7.3. Fix g ≥ 2. For every minimal numerical type n,mi, aij , wi, gi of genus
g we have mi|aij | ≤ 768g.

Proof. By Lemma 7.1 it suffices to showmi|aii| ≤ 768g for all i. Let J ⊂ {1, . . . , n}
be the set of non-(−2)-indices as in Lemma 7.2. Observe that J is nonempty as g ≥ 2. Also
mj |ajj | ≤ 6g for j ∈ J by the lemma.

Suppose we have j ∈ J and a sequence i1, . . . , i7 of (−2)-indices such that aji1 and ai1i2 ,
ai2i3 , ai3i4 , ai4i5 , ai5i6 , and ai6i7 are nonzero. Then we see from Lemma 7.1 thatmi1wi1 ≤
6g and mi1aji1 ≤ 6g. Because i1 is a (−2)-index, we have ai1i1 = −2wi1 and we con-
clude that mi1 |ai1i1 | ≤ 12g. Repeating the argument we conclude that mi2wi2 ≤ 12g
and mi2ai1i2 ≤ 12g. Then mi2 |ai2i2 | ≤ 24g and so on. Eventually we conclude that
mik |aikik | ≤ 2k(6g) ≤ 768g for k = 1, . . . , 7.

Let I ⊂ {1, . . . , n} \ J be a maximal connected subset. In other words, there does not
exist a nonempty proper subset I ′ ⊂ I such that ai′i = 0 for i′ ∈ I ′ and i ∈ I \ I ′

and I is maximal with this property. In particular, since a numerical type is connected
by definition, we see that there exists a j ∈ J and i ∈ I with aij > 0. Looking at the
classification of such I in Proposition 5.17 and using the result of the previous paragraph,
we see that wi|aii| ≤ 768g for all i ∈ I unless I is as described in Lemma 5.8 or Lemma
5.9. Thus we may assume the nonvanishing of aii′ , i, i′ ∈ I has either the shape

• • • • • •

(which has 3 subcases as detailed in Lemma 5.8) or the shape

• • • • • •

•

We will prove the bound holds for the first subcase of Lemma 5.8 and leave the other cases
to reader (the argument is almost exactly the same in those cases).
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After renumbering we may assume I = {1, . . . , t} ⊂ {1, . . . , n} and there is an integer w
such that

w = w1 = . . . = wt = a12 = . . . = a(t−1)t = −1
2ai1i2 = . . . = −1

2a(t−1)t

The equalities aiimi +
∑
j 6=i aijmj = 0 imply that we have

2m2 ≥ m1 +m3, . . . , 2mt−1 ≥ mt−2 +mt

Equality holds in 2mi ≥ mi−1 +mi+1 if and only if i does not “meet” any indices besides
i− 1 and i+ 1. And if i does meet another index, then this index is in J (by maximality
of I). In particular, the map {1, . . . , t} → Z, i 7→ mi is concave.
Letm = max(mi, i ∈ {1, . . . , t}). Thenmi|aii| ≤ 2mw for i ≤ t and our goal is to show
that 2mw ≤ 768g. Let s, resp. s′ in {1, . . . , t} be the smallest, resp. biggest index with
ms = m = ms′ . By concavity we see that mi = m for s ≤ i ≤ s′. If s > 1, then we
do not have equality in 2ms ≥ ms−1 + ms+1 and we see that s meets an index from J .
In this case 2mw ≤ 12g by the result of the second paragraph of the proof. Similarly, if
s′ < t, then s′ meets an index from J and we get 2mw ≤ 12g as well. But if s = 1 and
s′ = t, then we conclude that aij = 0 for all j ∈ J and i ∈ {2, . . . , t − 1}. But as we’ve
seen that there must be a pair (i, j) ∈ I × J with aij > 0, we conclude that this happens
either with i = 1 or with i = t and we conclude 2mw ≤ 12g in the same manner as before
(as m1 = m = mt in this case). �

Proposition 7.4. Let g ≥ 2. For every numerical type T of genus g and prime
number ` > 768g we have

dimF` Pic(T )[`] ≤ g
where Pic(T ) is as in Definition 4.1. If T is minimal, then we even have

dimF` Pic(T )[`] ≤ gtop ≤ g
where gtop as in Definition 3.11.

Proof. Say T is given by n,mi, aij , wi, gi. If T is not minimal, then there exists a
(−1)-index. After replacing T by an equivalent type we may assume n is a (−1)-index.
Applying Lemma 4.4 we find Pic(T ) ⊂ Pic(T ′) where T ′ is a numerical type of genus g
(Lemma 3.9) with n− 1 indices. Thus we conclude by induction on n provided we prove
the lemma for minimal numerical types.
Assume that T is a minimal numerical type of genus≥ 2. Observe that gtop ≤ g by Lemma
3.14. IfA = (aij) then since Pic(T ) ⊂ Coker(A) by Lemma 4.3. Thus it suffices to prove
the lemma for Coker(A). By Lemma 7.3 we see thatmi|aij | ≤ 768g for all i, j. Hence the
result by Lemma 2.6. �

8. Models

In this chapterRwill be a discrete valuation ring andK will be its fraction field. If needed
we will denote π ∈ R a uniformizer and k = R/(π) its residue field.
Let V be an algebraic K-scheme (Varieties, Definition 20.1). A model for V will mean a
flat finite type6 morphism X → Spec(R) endowed with an isomorphism V → XK =
X ×Spec(R) Spec(K). We often will identify V and the generic fibre XK of X and just
write V = XK . The special fibre is Xk = X ×Spec(R) Spec(k). A morphism of models

6Occasionally it is useful to allow models to be locally of finite type over R, but we’ll cross that bridge
when we come to it.
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X → X ′ for V is a morphism X → X ′ of schemes over R which induces the identity on
V .
We will say X is a proper model of V if X is a model of V and the structure morphism
X → Spec(R) is proper. Similarly for separated models, smooth models, and add more
here. We will sayX is a regular model of V ifX is a model of V andX is a regular scheme.
Similarly for normal models, reduced models, and add more here.
LetR ⊂ R′ be an extension of discrete valuation rings (More on Algebra, Definition 111.1).
This induces an extension K ′/K of fraction fields. Given an algebraic scheme V over K ,
denote V ′ the base change V ×Spec(K) Spec(K ′). Then there is a functor

models for V over R −→ models for V ′ over R′

sending X to X ×Spec(R) Spec(R′).

Lemma 8.1. Let V1 → V2 be a closed immersion of algebraic schemes over K. If X2
is a model for V2, then the scheme theoretic image of V1 → X2 is a model for V1.

Proof. Using Morphisms, Lemma 6.3 and Example 6.4 this boils down to the follow-
ing algebra statement. Let A1 be a finite type R-algebra flat over R. Let A1 ⊗R K → B2
be a surjection. ThenA2 = A1/Ker(A1 → B2) is a finite typeR-algebra flat overR such
that B2 = A2 ⊗R K. We omit the detailed proof; use More on Algebra, Lemma 22.11 to
prove that A2 is flat. �

Lemma 8.2. LetX be a model of a geometrically normal variety V overK. Then the
normalization ν : Xν → X is finite and the base change of Xν to the completion R∧ is
the normalization of the base change ofX . Moreover, for each x ∈ Xν the completion of
OXν ,x is normal.

Proof. Observe thatR∧ is a discrete valuation ring (More on Algebra, Lemma 43.5).
Set Y = X ×Spec(R) Spec(R∧). Since R∧ is a discrete valuation ring, we see that

Y \ Yk = Y ×Spec(R∧) Spec(K∧) = V ×Spec(K) Spec(K∧)
whereK∧ is the fraction field ofR∧. Since V is geometrically normal, we find that this is
a normal scheme. Hence the first part of the lemma follows from Resolution of Surfaces,
Lemma 11.6.
To prove the second part we may assume X and Y are normal (by the first part). If x is
in the generic fibre, then OX,x = OV,x is a normal local ring essentially of finite type
over a field. Such a ring is excellent (More on Algebra, Proposition 52.3). If x is a point of
the special fibre with image y ∈ Y , then O∧

X,x = O∧
Y,y by Resolution of Surfaces, Lemma

11.1. In this case OY,y is a excellent normal local domain by the same reference as before
as R∧ is excellent. If B is a excellent local normal domain, then the completion B∧ is
normal (as B → B∧ is regular and More on Algebra, Lemma 42.2 applies). This finishes
the proof. �

Lemma 8.3. Let X be a model of a smooth curve C over K. Then there exists a
resolution of singularities of X and any resolution is a model of C.

Proof. We check condition (4) of Lipman’s theorem (Resolution of Surfaces, Theo-
rem 14.5) hold. This is clear from Lemma 8.2 except for the statement thatXν has finitely
many singular points. To see this we can use that R is J-2 by More on Algebra, Proposi-
tion 48.7 and hence the nonsingular locus is open inXν . SinceXν is normal of dimension
≤ 2, the singular points are closed, hence closedness of the singular locus means there are



9. THE GEOMETRY OF A REGULAR MODEL 4467

finitely many of them (asX is quasi-compact). Observe that any resolution ofX is a mod-
ification ofX (Resolution of Surfaces, Definition 14.1). This will be an isomorphism over
the normal locus of X by Varieties, Lemma 17.3. Since the set of normal points includes
C = XK we conclude any resolution is a model of C. �

Definition 8.4. Let C be a smooth projective curve over K with H0(C,OC) = K.
A minimal model will be a regular, proper model X for C such that X does not contain
an exceptional curve of the first kind (Resolution of Surfaces, Section 16).

Really such a thing should be called a minimal regular proper model or even a relatively
minimal regular projective model. But as long as we stick to models over discrete valuation
rings (as we will in this chapter), no confusion should arise.

Minimal models always exist (Proposition 8.6) and are unique when the genus is > 0
(Lemma 10.1).

Lemma 8.5. Let C be a smooth projective curve overK withH0(C,OC) = K. IfX
is a regular proper model for C , then there exists a sequence of morphisms

X = Xm → Xm−1 → . . .→ X1 → X0

of proper regular models ofC , such that each morphism is a contraction of an exceptional
curve of the first kind, and such that X0 is a minimal model.

Proof. By Resolution of Surfaces, Lemma 16.11 we see that X is projective over R.
Hence X has an ample invertible sheaf by More on Morphisms, Lemma 50.1 (we will use
this below). Let E ⊂ X be an exceptional curve of the first kind. See Resolution of Sur-
faces, Section 16. By Resolution of Surfaces, Lemma 16.8 we can contractE by a morphism
X → X ′ such that X ′ is regular and is projective over R. Clearly, the number of irre-
ducible components of X ′

k is exactly one less than the number of irreducible components
of Xk. Thus we can only perform a finite number of these contractions until we obtain a
minimal model. �

Proposition 8.6. LetC be a smooth projective curve overK withH0(C,OC) = K.
A minimal model exists.

Proof. Choose a closed immersion C → Pn
K . Let X be the scheme theoretic image

of C → Pn
R. Then X → Spec(R) is a projective model of C by Lemma 8.1. By Lemma

8.3 there exists a resolution of singularities X ′ → X and X ′ is a model for C. Then
X ′ → Spec(R) is proper as a composition of proper morphisms. Then we may apply
Lemma 8.5 to obtain a minimal model. �

9. The geometry of a regular model

In this section we describe the geometry of a proper regular modelX of a smooth projective
curve C over K with H0(C,OC) = K.

Lemma 9.1. Let X be a regular model of a smooth curve C over K.
(1) the special fibre Xk is an effective Cartier divisor on X ,
(2) each irreducible component Ci of Xk is an effective Cartier divisor on X ,
(3) Xk =

∑
miCi (sum of effective Cartier divisors) where mi is the multiplicity

of Ci in Xk ,
(4) OX(Xk) ∼= OX .
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Proof. Recall thatR is a discrete valuation ring with uniformizer π and residue field
k = R/(π). BecauseX → Spec(R) is flat, the element π is a nonzerodivisor affine locally
on X (see More on Algebra, Lemma 22.11). Thus if U = Spec(A) ⊂ X is an affine open,
then

XK ∩ U = Uk = Spec(A⊗R k) = Spec(A/πA)
and π is a nonzerodivisor in A. Hence Xk = V (π) is an effective Cartier divisor by
Divisors, Lemma 13.2. Hence (1) is true.

The discussion above shows that the pair (OX(Xk), 1) is isomorphic to the pair (OX , π)
which proves (4).

By Divisors, Lemma 15.11 there exist pairwise distinct integral effective Cartier divisors
Di ⊂ X and integers ai ≥ 0 such that Xk =

∑
aiDi. We can throw out those divisors

Di such that ai = 0. Then it is clear (from the definition of addition of effective Cartier
divisors) thatXk =

⋃
Di set theoretically. ThusCi = Di are the irreducible components

ofXk which proves (2). Let ξi be the generic point ofCi. ThenOX,ξi is a discrete valuation
ring (Divisors, Lemma 15.4). The uniformizer πi ∈ OX,ξi is a local equation for Ci and
the image of π is a local equation for Xk. Since Xk =

∑
aiCi we see that π and πaii

generate the same ideal inOX,ξi . On the other hand, the multiplicity of Ci in Xk is

mi = lengthOCi,ξi
OXk,ξi = lengthOCi,ξi

OX,ξi/(π) = lengthOCi,ξi
OX,ξi/(π

ai
i ) = ai

See Chow Homology, Definition 9.2. Thus ai = mi and (3) is proved. �

Lemma 9.2. Let X be a regular model of a smooth curve C over K. Then
(1) X → Spec(R) is a Gorenstein morphism of relative dimension 1,
(2) each of the irreducible components Ci of Xk is Gorenstein.

Proof. Since X → Spec(R) is flat, to prove (1) it suffices to show that the fibres are
Gorenstein (Duality for Schemes, Lemma 25.3). The generic fibre is a smooth curve, which
is regular and hence Gorenstein (Duality for Schemes, Lemma 24.3). For the special fibre
Xk we use that it is an effective Cartier divisor on a regular (hence Gorenstein) scheme
and hence Gorenstein for example by Dualizing Complexes, Lemma 21.6. The curves Ci
are Gorenstein by the same argument. �

Situation 9.3. Let R be a discrete valuation ring with fraction field K , residue field
k, and uniformizer π. Let C be a smooth projective curve over K with H0(C,OC) = K.
Let X be a regular proper model of C. Let C1, . . . , Cn be the irreducible components of
the special fibre Xk. Write Xk =

∑
miCi as in Lemma 9.1.

Lemma 9.4. In Situation 9.3 the special fibre Xk is connected.

Proof. Consequence of More on Morphisms, Lemma 53.6. �

Lemma 9.5. In Situation 9.3 there is an exact sequence

0→ Z→ Z⊕n → Pic(X)→ Pic(C)→ 0
where the first map sends 1 to (m1, . . . ,mn) and the second maps sends the ith basis vector
toOX(Ci).

Proof. Observe that C ⊂ X is an open subscheme. The restriction map Pic(X) →
Pic(C) is surjective by Divisors, Lemma 28.3. LetL be an invertibleOX -module such that
there is an isomorphism s : OC → L|C . Then s is a regular meromorphic section ofL and
we see that divL(s) =

∑
aiCi for some ai ∈ Z (Divisors, Definition 27.4). By Divisors,
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Lemma 27.6 (and the fact thatX is normal) we conclude that L = OX(
∑
aiCi). Finally,

suppose thatOX(
∑
aiCi) ∼= OX . Then there exists an element g of the function field of

X with divX(g) =
∑
aiCi. In particular the rational function g has no zeros or poles on

the generic fibre C of X . Since C is a normal scheme this implies g ∈ H0(C,OC) = K.
Thus g = πau for some a ∈ Z and u ∈ R∗. We conclude that divX(g) = a

∑
miCi and

the proof is complete. �

In Situation 9.3 for every invertibleOX -module L and every i we get an integer
deg(L|Ci) = χ(Ci,L|Ci)− χ(Ci,OCi)

by taking the degree of the restriction of L to Ci relative to the ground field k7 as in
Varieties, Section 44.

Lemma 9.6. In Situation 9.3 givenL an invertibleOX -module anda = (a1, . . . , an) ∈
Z⊕n we define

〈a,L〉 =
∑

ai deg(L|Ci)
Then 〈, 〉 is bilinear and for b = (b1, . . . , bn) ∈ Z⊕n we have〈

a,OX(
∑

biCi)
〉

=
〈
b,OX(

∑
aiCi)

〉
Proof. Bilinearity is immediate from the definition and Varieties, Lemma 44.7. To

prove symmetry it suffices to assume a and b are standard basis vectors in Z⊕n. Hence it
suffices to prove that

deg(OX(Cj)|Ci) = deg(OX(Ci)|Cj )
for all 1 ≤ i, j ≤ n. If i = j there is nothing to prove. If i 6= j , then the canonical
section 1 of OX(Cj) restricts to a nonzero (hence regular) section of OX(Cj)|Ci whose
zero scheme is exactly Ci ∩Cj (scheme theoretic intersection). In other words, Ci ∩Cj is
an effective Cartier divisor on Ci and

deg(OX(Cj)|Ci) = deg(Ci ∩ Cj)
by Varieties, Lemma 44.9. By symmetry we obtain the same (!) formula for the other side
and the proof is complete. �

In Situation 9.3 it is often convenient to think of Z⊕n as the free abelian group on the
set {C1, . . . , Cn}. We will indicate an element of this group as

∑
aiCi; here we think of

this as a formal sum although equivalently we may (and we sometimes do) think of such
a sum as a Weil divisor on X supported on the special fibre Xk. Now Lemma 9.6 allows
us to define a symmetric bilinear form ( · ) on this free abelian group by the rule

(9.6.1)
(∑

aiCi ·
∑

bjCj

)
=
〈
a,OX(

∑
bjCj)

〉
=
〈
b,OX(

∑
aiCi)

〉
We will prove some properties of this bilinear form.

Lemma 9.7. In Situation 9.3 the symmetric bilinear form (9.6.1) has the following
properties

(1) (Ci · Cj) ≥ 0 if i 6= j with equality if and only if Ci ∩ Cj = ∅,
(2) (

∑
miCi · Cj) = 0,

(3) there is no nonempty proper subset I ⊂ {1, . . . , n} such that (Ci · Cj) = 0 for
i ∈ I , j 6∈ I .

7Observe that it may happen that the field κi = H0(Ci,OCi ) is strictly bigger than k. In this case every
invertible module on Ci has degree (as defined above) divisible by [κi : k].
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(4) (
∑
aiCi ·

∑
aiCi) ≤ 0 with equality if and only if there exists a q ∈ Q such

that ai = qmi for i = 1, . . . , n,

Proof. In the proof of Lemma 9.6 we saw that (Ci · Cj) = deg(Ci ∩ Cj) if i 6= j.
This is ≥ 0 and > 0 if and only if Ci ∩ Cj 6= ∅. This proves (1).
Proof of (2). This is true because by Lemma 9.1 the invertible sheaf associated to

∑
miCi

is trivial and the trivial sheaf has degree zero.
Proof of (3). This is expressing the fact thatXk is connected (Lemma 9.4) via the descrip-
tion of the intersection products given in the proof of (1).
Part (4) follows from (1), (2), and (3) by Lemma 2.3. �

Lemma 9.8. In Situation 9.3 set d = gcd(m1, . . . ,mn) and let D =
∑

(mi/d)Ci as
an effective Cartier divisor. Then OX(D) has order dividing d in Pic(X) and CD/X an
invertibleOD-module of order dividing d in Pic(D).

Proof. We have
OX(D)⊗d = OX(dD) = OX(Xk) = OX

by Lemma 9.1. We conclude as CD/X is the pullback ofOX(−D). �

Lemma 9.9. In Situation 9.3 let d = gcd(m1, . . . ,mn). Let D =
∑

(mi/d)Ci as an
effective Cartier divisor. Then there exists a sequence of effective Cartier divisors

(Xk)red = Z0 ⊂ Z1 ⊂ . . . ⊂ Zm = D

such that Zj = Zj−1 + Cij for some ij ∈ {1, . . . , n} for j = 1, . . . ,m and such that
H0(Zj ,OZj ) is a field finite over k for j = 0, . . .m.

Proof. The reduction Dred = (Xk)red =
∑
Ci is connected (Lemma 9.4) and

proper over k. Hence H0(Dred,O) is a field and a finite extension of k by Varieties,
Lemma 9.3. Thus the result for Z0 = Dred = (Xk)red is true. Suppose that we have
already constructed

(Xk)red = Z0 ⊂ Z1 ⊂ . . . ⊂ Zt ⊂ D
withZj = Zj−1+Cij for some ij ∈ {1, . . . , n} for j = 1, . . . , t and such thatH0(Zj ,OZj )
is a field finite over k for j = 0, . . . , t. Write Zt =

∑
aiCi with 1 ≤ ai ≤ mi/d. If

ai = mi/d for all i, then Zt = D and the lemma is proved. If not, then ai < mi/d for
some i and it follows that (Zt ·Zt) < 0 by Lemma 9.7. This means that (D−Zt ·Zt) > 0
because (D · Zt) = 0 by the lemma. Thus we can find an i with ai < mi/d such that
(Ci · Zt) > 0. Set Zt+1 = Zt + Ci and it+1 = i. Consider the short exact sequence

0→ OX(−Zt)|Ci → OZt+1 → OZt → 0
of Divisors, Lemma 14.3. By our choice of i we see that OX(−Zt)|Ci is an invertible
sheaf of negative degree on the proper curve Ci, hence it has no nonzero global sections
(Varieties, Lemma 44.12). We conclude thatH0(OZt+1) ⊂ H0(OZt) is a field (this is clear
but also follows from Algebra, Lemma 36.18) and a finite extension of k. Thus we have
extended the sequence. Since the process must stop, for example because t ≤

∑
(mi/d−1),

this finishes the proof. �

Lemma 9.10. In Situation 9.3 let d = gcd(m1, . . . ,mn). LetD =
∑

(mi/d)Ci as an
effective Cartier divisor on X . Then

1− gC = d[κ : k](1− gD)
where gC is the genus of C , gD is the genus of D, and κ = H0(D,OD).
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Proof. By Lemma 9.9 we see that κ is a field and a finite extension of k. Since also
H0(C,OC) = K we see that the genus of C and D are defined (see Algebraic Curves,
Definition 8.1) and we have gC = dimK H

1(C,OC) and gD = dimκH
1(D,OD). By

Derived Categories of Schemes, Lemma 32.2 we have

1− gC = χ(C,OC) = χ(Xk,OXk) = dimkH
0(Xk,OXk)− dimkH

1(Xk,OXk)

We claim that
χ(Xk,OXk) = dχ(D,OD)

This will prove the lemma because

χ(D,OD) = dimkH
0(D,OD)− dimkH

1(D,OD) = [κ : k](1− gD)

Observe that Xk = dD as an effective Cartier divisor. To prove the claim we prove by
induction on 1 ≤ r ≤ d that χ(rD,OrD) = rχ(D,OD). The base case r = 1 is trivial.
If 1 ≤ r < d, then we consider the short exact sequence

0→ OX(rD)|D → O(r+1)D → OrD → 0

of Divisors, Lemma 14.3. By additivity of Euler characteristics (Varieties, Lemma 33.2) it
suffices to prove that χ(D,OX(rD)|D) = χ(D,OD). This is true becauseOX(rD)|D is a
torsion element of Pic(D) (Lemma 9.8) and because the degree of a line bundle is additive
(Varieties, Lemma 44.7) hence zero for torsion invertible sheaves. �

Lemma 9.11. In Situation 9.3 given a pair of indices i, j such that Ci and Cj are
exceptional curves of the first kind and Ci ∩ Cj 6= ∅, then n = 2, m1 = m2 = 1,
C1 ∼= P1

k , C2 ∼= P1
k , C1 and C2 meet in a k-rational point, and C has genus 0.

Proof. Choose isomorphisms Ci = P1
κi and Cj = P1

κj . The scheme Ci ∩ Cj is a
nonempty effective Cartier divisor in both Ci and Cj . Hence

(Ci · Cj) = deg(Ci ∩ Cj) ≥ max([κi : k], [κj : k])

The first equality was shown in the proof of Lemma 9.6. On the other hand, the self
intersection (Ci · Ci) is equal to the degree of OX(Ci) on Ci which is −[κi : k] as Ci is
an exceptional curve of the first kind. Similarly for Cj . By Lemma 9.7

0 ≥ (Ci + Cj)2 = −[κi : k] + 2(Ci · Cj)− [κj : k]

This implies that [κi : k] = deg(Ci ∩ Cj) = [κj : k] and that we have (Ci + Cj)2 = 0.
Looking at the lemma again we conclude that n = 2, {1, 2} = {i, j}, and m1 = m2.
Moreover, the scheme theoretic intersection Ci ∩ Cj consists of a single point p with
residue field κ and κi → κ← κj are isomorphisms. LetD = C1 +C2 as effective Cartier
divisor on X . Observe that D is the scheme theoretic union of C1 and C2 (Divisors,
Lemma 13.10) hence we have a short exact sequence

0→ OD → OC1 ⊕OC2 → Op → 0

by Morphisms, Lemma 4.6. Since we know the cohomology of Ci ∼= P1
κ (Cohomol-

ogy of Schemes, Lemma 8.1) we conclude from the long exact cohomology sequence that
H0(D,OD) = κ and H1(D,OD) = 0. By Lemma 9.10 we conclude

1− gC = d[κ : k](1− 0)

where d = m1 = m2. It follows that gC = 0 and d = m1 = m2 = 1 and κ = k. �
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10. Uniqueness of the minimal model

If the genus of the generic fibre is positive, then minimal models are unique (Lemma 10.1)
and consequently have a suitable mapping property (Lemma 10.2).

Lemma 10.1. Let C be a smooth projective curve over K with H0(C,OC) = K and
genus > 0. There is a unique minimal model for C.

Proof. We have already proven the hard part of the lemma which is the existence of
a minimal model (whose proof relies on resolution of surface singularities), see Proposition
8.6. To prove uniqueness, suppose that X and Y are two minimal models. By Resolution
of Surfaces, Lemma 17.2 there exists a diagram of S-morphisms

X = X0 ← X1 ← . . .← Xn = Ym → . . .→ Y1 → Y0 = Y

where each morphism is a blowup in a closed point. The exceptional fibre of the morphism
Xn → Xn−1 is an exceptional curve of the first kindE. We claim thatE is contracted to
a point under the morphismXn = Ym → Y . If this is true, thenXn → Y factors through
Xn−1 by Resolution of Surfaces, Lemma 16.1. In this case the morphism Xn−1 → Y is
still a sequence of contractions of exceptional curves by Resolution of Surfaces, Lemma
17.1. Hence by induction on n we conclude. (The base case n = 0 means that there is a
sequence of contractions X = Ym → . . . → Y1 → Y0 = Y ending with Y . However as
X is a minimal model it contains no exceptional curves of the first kind, hencem = 0 and
X = Y .)

Proof of the claim. We will show by induction on m that any exceptional curve of the
first kind E ⊂ Ym is mapped to a point by the morphism Ym → Y . If m = 0 this is
clear because Y is a minimal model. If m > 0, then either Ym → Ym−1 contracts E (and
we’re done) or the exceptional fibre E′ ⊂ Ym of Ym → Ym−1 is a second exceptional
curve of the first kind. Since both E and E′ are irreducible components of the special
fibre and since gC > 0 by assumption, we conclude thatE∩E′ = ∅ by Lemma 9.11. Then
the image of E in Ym−1 is an exceptional curve of the first kind (this is clear because the
morphism Ym → Ym−1 is an isomorphism in a neighbourhood of E). By induction we
see that Ym−1 → Y contracts this curve and the proof is complete. �

Lemma 10.2. Let C be a smooth projective curve over K with H0(C,OC) = K and
genus > 0. Let X be the minimal model for C (Lemma 10.1). Let Y be a regular proper
model for C. Then there is a unique morphism of models Y → X which is a sequence of
contractions of exceptional curves of the first kind.

Proof. The existence and properties of the morphism X → Y follows immediately
from Lemma 8.5 and the uniqueness of the minimal model. The morphism Y → X is
unique because C ⊂ Y is scheme theoretically dense and X is separated (see Morphisms,
Lemma 7.10). �

Example 10.3. If the genus of C is 0, then minimal models are indeed nonunique.
Namely, consider the closed subscheme

X ⊂ P2
R

defined by T1T2 − πT 2
0 = 0. More precisely X is defined as Proj(R[T0, T1, T2]/(T1T2 −

πT 2
0 )). Then the special fibre Xk is a union of two exceptional curves C1, C2 both iso-

morphic to P1
k (exactly as in Lemma 9.11). Projection from (0 : 1 : 0) defines a morphism

X → P1
R contracting C2 and inducing an isomorphism of C1 with the special fiber of
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P1
R. Projection from (0 : 0 : 1) defines a morphism X → P1

R contracting C1 and induc-
ing an isomorphism of C2 with the special fiber of P1

R. More precisely, these morphisms
correspond to the graded R-algebra maps

R[T0, T1] −→ R[T0, T1, T2]/(T1T2 − πT 2
0 )←− R[T0, T2]

In Lemma 12.4 we will study this phenomenon.

11. A formula for the genus

There is one more restriction on the combinatorial structure coming from a proper regular
model.

Lemma 11.1. In Situation 9.3 suppose we have an effective Cartier divisors D,D′ ⊂
X such that D′ = D + Ci for some i ∈ {1, . . . , n} and D′ ⊂ Xk. Then

χ(Xk,OD′)− χ(Xk,OD) = χ(Xk,OX(−D)|Ci) = −(D · Ci) + χ(Ci,OCi)

Proof. The second equality follows from the definition of the bilinear form ( · )
in (9.6.1) and Lemma 9.6. To see the first equality we distinguish two cases. Namely, if
Ci 6⊂ D, then D′ is the scheme theoretic union of D and Ci (by Divisors, Lemma 13.10)
and we get a short exact sequence

0→ OD′ → OD ×OCi → OD∩Ci → 0

by Morphisms, Lemma 4.6. Since we also have an exact sequence

0→ OX(−D)|Ci → OCi → OD∩Ci → 0

(Divisors, Remark 14.11) we conclude that the claim holds by additivity of euler charac-
teristics (Varieties, Lemma 33.2). On the other hand, if Ci ⊂ D then we get an exact
sequence

0→ OX(−D)|Ci → OD′ → OD → 0

by Divisors, Lemma 14.3 and we immediately see the lemma holds. �

Lemma 11.2. In Situation 9.3 we have

gC = 1 +
∑

i=1,...,n
mi

(
[κi : k](gi − 1)− 1

2(Ci · Ci)
)

where κi = H0(Ci,OCi), gi is the genus of Ci, and gC is the genus of C.

Proof. Our basic tool will be Derived Categories of Schemes, Lemma 32.2 which
shows that

1− gC = χ(C,OC) = χ(Xk,OXk)

Choose a sequence of effective Cartier divisors

Xk = Dm ⊃ Dm−1 ⊃ . . . ⊃ D1 ⊃ D0 = ∅

such that Dj+1 = Dj + Cij for each j. (It is clear that we can choose such a sequence by
decreasing one nonzero multiplicity of Dj+1 one step at a time.) Applying Lemma 11.1
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starting with χ(OD0) = 0 we get

1− gC = χ(Xk,OXk)

=
∑

j

(
−(Dj · Cij ) + χ(Cij ,OCij )

)
= −

∑
j
(Ci1 + Ci2 + . . .+ Cij−1 · Cij ) +

∑
j
χ(Cij ,OCij )

= −1
2
∑

j 6=j′
(Cij′ · Cij ) +

∑
miχ(Ci,OCi)

= 1
2
∑

mi(Ci · Ci) +
∑

miχ(Ci,OCi)

Perhaps the last equality deserves some explanation. Namely, since
∑
j Cij =

∑
miCi

we have (
∑
j Cij ·

∑
j Cij ) = 0 by Lemma 9.7. Thus we see that

0 =
∑

j 6=j′
(Cij′ · Cij ) +

∑
mi(Ci · Ci)

by splitting this product into “nondiagonal” and “diagonal” terms. Note that κi is a field
finite over k by Varieties, Lemma 26.2. Hence the genus of Ci is defined and we have
χ(Ci,OCi) = [κi : k](1− gi). Putting everything together and rearranging terms we get

gC = −1
2
∑

mi(Ci · Ci) +
∑

mi[κi : k](gi − 1) + 1

which is what the lemma says too. �

Lemma 11.3. In Situation 9.3 with κi = H0(Ci,OCi) and gi the genus ofCi the data

n,mi, (Ci · Cj), [κi : k], gi
is a numerical type of genus equal to the genus of C.

Proof. (In the proof of Lemma 11.2 we have seen that the quantities used in the state-
ment of the lemma are well defined.) We have to verify the conditions (1) – (5) of Defini-
tion 3.1.

Condition (1) is immediate.

Condition (2). Symmetry of the matrix (Ci ·Cj) follows from Equation (9.6.1) and Lemma
9.6. Nonnegativity of (Ci · Cj) for i 6= j is part (1) of Lemma 9.7.

Condition (3) is part (3) of Lemma 9.7.

Condition (4) is part (2) of Lemma 9.7.

Condition (5) follows from the fact that (Ci ·Cj) is the degree of an invertible module on
Ci which is divisible by [κi : k], see Varieties, Lemma 44.10.

The genus formula proved in Lemma 11.2 tells us that the numerical type has the genus as
stated, see Definition 3.4. �

Definition 11.4. In Situation 9.3 the numerical type associated toX is the numerical
type described in Lemma 11.3.

Now we match minimality of the model with minimality of the type.

Lemma 11.5. In Situation 9.3. The following are equivalent
(1) X is a minimal model, and
(2) the numerical type associated to X is minimal.
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Proof. If the numerical type is minimal, then there is no i with gi = 0 and (Ci ·
Ci) = −[κi : k], see Definition 3.12. Certainly, this implies that none of the curvesCi are
exceptional curves of the first kind.

Conversely, suppose that the numerical type is not minimal. Then there exists an i such
that gi = 0 and (Ci · Ci) = −[κi : k]. We claim this implies that Ci is an exceptional
curve of the first kind. Namely, the invertible sheafOX(−Ci)|Ci has degree−(Ci ·Ci) =
[κi : k] when Ci is viewed as a proper curve over k, hence has degree 1 when Ci is viewed
as a proper curve over κi. Applying Algebraic Curves, Proposition 10.4 we conclude that
Ci ∼= P1

κi as schemes over κi. Since the Picard group of P1 over a field is Z, we see that
the normal sheaf of Ci in X is isomorphic toOPκi (−1) and the proof is complete. �

Remark 11.6. Not every numerical type comes from a model for the silly reason that
there exist numerical types whose genus is negative. There exist a minimal numerical
types of positive genus which are not the numerical type associated to a model (over some
dvr) of a smooth projective geometrically irreducible curve (over the fraction field of the
dvr). A simple example is n = 1, m1 = 1, a11 = 0, w1 = 6, g1 = 1. Namely, in this
case the special fibre Xk would not be geometrically connected because it would live over
an extension κ of k of degree 6. This is a contradiction with the fact that the generic
fibre is geometrically connected (see More on Morphisms, Lemma 53.6). Similarly, n = 2,
m1 = m2 = 1, −a11 = −a22 = a12 = a21 = 6, w1 = w2 = 6, g1 = g2 = 1 would be
an example for the same reason (details omitted). But if the gcd of the wi is 1 we do not
have an example.

Lemma 11.7. In Situation 9.3 assume C has a K-rational point. Then
(1) Xk has a k-rational point x which is a smooth point of Xk over k,
(2) if x ∈ Ci, then H0(Ci,OCi) = k and mi = 1, and
(3) H0(Xk,OXk) = k and Xk has genus equal to the genus of C.

Proof. Since X → Spec(R) is proper, the K-rational point extends to a morphism
a : Spec(R) → X by the valuative criterion of properness (Morphisms, Lemma 42.1).
Let x ∈ X be the image under a of the closed point of Spec(R). Then a corresponds
to an R-algebra homomorphism ψ : OX,x → R (see Schemes, Section 13). It follows
that π 6∈ m2

x (since the image of π in R is not in m2
R). Hence OXk,x = OX,x/πOX,x is

regular (Algebra, Lemma 106.3). Then Xk → Spec(k) is smooth at x by Algebra, Lemma
140.5. It follows that x is contained in a unique irreducible component Ci of Xk , that
OCi,x = OXk,x, and that mi = 1. The fact that Ci has a k-rational point implies that the
field κi = H0(Ci,OCi) (Varieties, Lemma 26.2) is equal to k. This proves (1). We have
H0(Xk,OXk) = k because H0(Xk,OXk) is a field extension of k (Lemma 9.9) which
maps to H0(Ci,OCi) = k. The genus equality follows from Lemma 9.10. �

Lemma 11.8. In Situation 9.3 assume X is a minimal model, gcd(m1, . . . ,mn) = 1,
and H0((Xk)red,O) = k. Then the map

H1(Xk,OXk)→ H1((Xk)red,O(Xk)red)

is surjective and has a nontrivial kernel as soon as (Xk)red 6= Xk.

Proof. By vanishing of cohomology in degrees ≥ 2 over Xk (Cohomology, Propo-
sition 20.7) any surjection of abelian sheaves on Xk induces a surjection on H1. Consider
the sequence

(Xk)red = Z0 ⊂ Z1 ⊂ . . . ⊂ Zm = Xk
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of Lemma 9.9. Since the field maps H0(Zj ,OZj ) → H0((Xk)red,O(Xk)red) = k are in-
jective we conclude thatH0(Zj ,OZj ) = k for j = 0, . . . ,m. It follows thatH0(Xk,OXk)→
H0(Zm−1,OZm−1) is surjective. Let C = Cim . Then Xk = Zm−1 + C. Let L =
OX(−Zm−1)|C . Then L is an invertibleOC -module. As in the proof of Lemma 9.9 there
is an exact sequence

0→ L → OXk → OZm−1 → 0
of coherent sheaves on Xk. We conclude that we get a short exact sequence

0→ H1(C,L)→ H1(Xk,OXk)→ H1(Zm−1,OZm−1)→ 0

The degree of L on C over k is

(C · −Zm−1) = (C · C −Xk) = (C · C)

Set κ = H0(C,OC) and w = [κ : k]. By definition of the degree of an invertible sheaf
we see that

χ(C,L) = χ(C,OC) + (C · C) = w(1− gC) + (C · C)
where gC is the genus of C. This expression is < 0 as X is minimal and hence C is not an
exceptional curve of the first kind (see proof of Lemma 11.5). Thus dimkH

1(C,L) > 0
which finishes the proof. �

Lemma 11.9. In Situation 9.3 assume Xk has a k-rational point x which is a smooth
point of Xk → Spec(k). Then

dimkH
1((Xk)red,O(Xk)red) ≥ gtop + ggeom(Xk/k)

where ggeom is as in Algebraic Curves, Section 18 and gtop is the topological genus (Defi-
nition 3.11) of the numerical type associated to Xk (Definition 11.4).

Proof. We are going to prove the inequality

dimkH
1(D,OD) ≥ gtop(D) + ggeom(D/k)

for all connected reduced effective Cartier divisors D ⊂ (Xk)red containing x by induc-
tion on the number of irreducible components ofD. Here gtop(D) = 1−m+ e wherem
is the number of irreducible components of D and e is the number of unordered pairs of
components of D which meet.

Base case: D has one irreducible component. Then D = Ci is the unique irreducible
component containing x. In this case dimkH

1(D,OD) = gi and gtop(D) = 0. Since
Ci has a k-rational smooth point it is geometrically integral (Varieties, Lemma 25.10). It
follows that gi is the genus of Ci,k (Algebraic Curves, Lemma 8.2). It also follows that
ggeom(D/k) is the genus of the normalization Cν

i,k
of Ci,k. Applying Algebraic Curves,

Lemma 18.4 to the normalization morphism Cν
i,k
→ Ci,k we get

(11.9.1) genus of Ci,k ≥ genus of Cν
i,k

Combining the above we conclude that dimkH
1(D,OD) ≥ gtop(D) + ggeom(D/k) in

this case.

Induction step. Suppose we have D with more than 1 irreducible component. Then we
can write D = Ci + D′ where x ∈ D′ and D′ is still connected. This is an exercise in
graph theory we leave to the reader (hint: let Ci be the component ofD which is farthest
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from x). We compute how the invariants change. As x ∈ D′ we have H0(D,OD) =
H0(D′,OD′) = k. Looking at the short exact sequence of sheaves

0→ OD → OCi ⊕OD′ → OCi∩D′ → 0

(Morphisms, Lemma 4.6) and using additivity of euler characteristics we find

dimkH
1(D,OD)− dimkH

1(D′,OD′) = −χ(OCi) + χ(OCi∩D′)

= wi(gi − 1) +
∑

Cj⊂D′
aij

Here as in Lemma 11.3 we set wi = [κi : k], κi = H0(Ci,OCi), gi is the genus of Ci, and
aij = (Ci · Cj). We have

gtop(D)− gtop(D′) = −1 +
∑

Cj⊂D′ meetingCi
1

We have
ggeom(D/k)− ggeom(D′/k) = ggeom(Ci/k)

by Algebraic Curves, Lemma 18.1. Combining these with our induction hypothesis, we
conclude that it suffices to show that

wigi − ggeom(Ci/k) +
∑

Cj⊂D′ meetsCi
(aij − 1)− (wi − 1)

is nonnegative. In fact, we have

(11.9.2) wigi ≥ [κi : k]sgi ≥ ggeom(Ci/k)

The second inequality by Algebraic Curves, Lemma 18.5. On the other hand, since wi
divides aij (Varieties, Lemma 44.10) it is clear that

(11.9.3)
∑

Cj⊂D′ meetsCi
(aij − 1)− (wi − 1) ≥ 0

because there is at least one Cj ⊂ D′ which meets Ci. �

Lemma 11.10. If equality holds in Lemma 11.9 then
(1) the unique irreducible component of Xk containing x is a smooth projective

geometrically irreducible curve over k,
(2) if C ⊂ Xk is another irreducible component, then κ = H0(C,OC) is a finite

separable extension of k, C has a κ-rational point, and C is smooth over κ

Proof. Looking over the proof of Lemma 11.9 we see that in order to get equality,
the inequalities (11.9.1), (11.9.2), and (11.9.3) have to be equalities.

LetCi be the irreducible component containing x. Equality in (11.9.1) shows via Algebraic
Curves, Lemma 18.4 that Cν

i,k
→ Ci,k is an isomorphism. Hence Ci,k is smooth and part

(1) holds.

Next, let Ci ⊂ Xk be another irreducible component. Then we may assume we have
D = D′ + Ci as in the induction step in the proof of Lemma 11.9. Equality in (11.9.2)
immediately implies that κi/k is finite separable. Equality in (11.9.3) implies either aij =
1 for some j or that there is a unique Cj ⊂ D′ meeting Ci and aij = wi. In both cases we
find thatCi has a κi-rational point c and c = Ci∩Cj scheme theoretically. SinceOX,c is a
regular local ring, this implies that the local equations ofCi andCj form a regular system
of parameters in the local ring OX,c. Then OCi,c is regular by (Algebra, Lemma 106.3).
We conclude that Ci → Spec(κi) is smooth at c (Algebra, Lemma 140.5). It follows that
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Ci is geometrically integral over κi (Varieties, Lemma 25.10). To finish we have to show
that Ci is smooth over κi. Observe that

Ci,k = Ci ×Spec(k) Spec(k) =
∐

κi→k
Ci ×Spec(κi) Spec(k)

where there are [κi : k]-summands. Thus if Ci is not smooth over κi, then each of these
curves is not smooth, then these curves are not normal and the normalization morphism
drops the genus (Algebraic Curves, Lemma 18.4) which is disallowed because it would drop
the geometric genus of Ci/k contradicting [κi : k]gi = ggeom(Ci/k). �

12. Blowing down exceptional curves

The following lemma tells us what happens with the intersection numbers when we con-
tract an exceptional curve of the first kind in a regular proper model. We put this here
mostly to compare with the numerical contractions introduced in Lemma 3.9. We will
compare the geometric and numerical contractions in Remark 12.3.

Lemma 12.1. In Situation 9.3 assume thatCn is an exceptional curve of the first kind.
Let f : X → X ′ be the contraction of Cn. Let C ′

i = f(Ci). Write X ′
k =

∑
m′
iC

′
i. Then

X ′, C ′
i , i = 1, . . . , n′ = n− 1, and m′

i = mi is as in Situation 9.3 and we have
(1) for i, j < n we have (C ′

i · C ′
j) = (Ci · Cj)− (Ci · Cn)(Cj · Cn)/(Cn · Cn),

(2) for i < n if Ci ∩ Cn 6= ∅, then there are maps κi ← κ′
i → κn.

Here κi = H0(Ci,OCi) and κ′
i = H0(C ′

i,OC′
i
).

Proof. By Resolution of Surfaces, Lemma 16.8 we can contract Cn by a morphism
f : X → X ′ such that X ′ is regular and is projective over R. Thus we see that X ′ is
as in Situation 9.3. Let x ∈ X ′ be the image of Cn. Since f defines an isomorphism
X \ Cn → X ′ \ {x} it is clear that m′

i = mi for i < n.

Part (2) of the lemma is immediately clear from the existence of the morphisms Ci → C ′
i

and Cn → x→ C ′
i.

By Divisors, Lemma 32.11 the pullback f−1C ′
i is defined. By Divisors, Lemma 15.11 we

see that f−1C ′
i = Ci + eiCn for some ei ≥ 0. Since OX(Ci + eiCn) = OX(f−1C ′

i) =
f∗OX′(C ′

i) (Divisors, Lemma 14.5) and since the pullback of an invertible sheaf restricts
to the trivial invertible sheaf on Cn we see that

0 = degCn(OX(Ci + eiCn)) = (Ci + eiCn · Cn) = (Ci · Cn) + ei(Cn · Cn)

As fj = f |Cj : Cj → Cj is a proper birational morphism of proper curves over k, we see
that degC′

j
(OX′(C ′

i)|C′
j
) is the same as degCj (f

∗
jOX′(C ′

i)|C′
j
) (Varieties, Lemma 44.4).

Looking at the commutative diagram

Cj //

fj

��

X

f

��
C ′
j

// X ′

and using Divisors, Lemma 14.5 we see that

(C ′
i · C ′

j) = degC′
j
(OX′(C ′

i)|C′
j
) = degCj (OX(Ci + eiCn)) = (Ci + eiCn · Cj)

Plugging in the formula for ei found above we see that (1) holds. �
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Remark 12.2. In the situation of Lemma 12.1 we can also say exactly how the genus
gi of Ci and the genus g′

i of C ′
i are related. The formula is

g′
i = wi

w′
i

(gi − 1) + 1 + (Ci · Cn)2 − wn(Ci · Cn)
2w′

iwn

where wi = [κi : k], wn = [κn : k], and w′
i = [κ′

i : k]. To prove this we consider the
short exact sequence

0→ OX′(−C ′
i)→ OX′ → OC′

i
→ 0

and its pullback to X which reads
0→ OX(−C ′

i − eiCn)→ OX → OCi+eiCn → 0
with ei as in the proof of Lemma 12.1. SinceRf∗f

∗L = L for any invertible module L on
X ′ (details omitted), we conclude that

Rf∗OCi+eiCn = OC′
i

as complexes of coherent sheaves on X ′
k. Hence both sides have the same Euler charac-

teristic and this agrees with the Euler characteristic of OCi+eiCn on Xk. Using the exact
sequence

0→ OCi+eiCn → OCi ⊕OeiCn → OCi∩eiCn → 0
and further filteringOeiCn (details omitted) we find

χ(OC′
i
) = χ(OCi)−

(
ei + 1

2

)
(Cn · Cn)− ei(Ci · Cn)

Since ei = −(Ci ·Cn)/(Cn ·Cn) and (Cn ·Cn) = −wn this leads to the formula stated at
the start of this remark. If we ever need this we will formulate this as a lemma and provide
a detailed proof.

Remark 12.3. Let f : X → X ′ be as in Lemma 12.1. Let n,mi, aij , wi, gi be the
numerical type associated to X and let n′,m′

i, a
′
ij , w

′
i, g

′
i be the numerical type associated

to X ′. It is clear from Lemma 12.1 and Remark 12.2 that this agrees with the contraction
of numerical types in Lemma 3.9 except for the value of w′

i. In the geometric situation w′
i

is some positive integer dividing both wi and wn. In the numerical case we chose w′
i to be

the largest possible integer dividingwi such that g′
i (as given by the formula) is an integer.

This works well in the numerical setting in that it helps compare the Picard groups of the
numerical types, see Lemma 4.4 (although only injectivity is every used in the following
and this injectivity works as well for smaller w′

i).

Lemma 12.4. Let C be a smooth projective curve over K with H0(C,OC) = K and
genus 0. If there is more than one minimal model for C , then the special fibre of every
minimal model is isomorphic to P1

k.

This lemma can be improved to say that the birational transformation between two non-
isomorphic minimal models can be factored as a sequence of elementary transformations
as in Example 10.3. If we ever need this, we will precisely formulate and prove this here.

Proof. Let X be some minimal model of C. The numerical type associated to X has
genus 0 and is minimal (Definition 11.4 and Lemma 11.5). Hence by Lemma 6.1 we see that
Xk is reduced, irreducible, has H0(Xk,OXk) = k, and has genus 0. Let Y be a second
minimal model for C which is not isomorphic to X . By Resolution of Surfaces, Lemma
17.2 there exists a diagram of S-morphisms

X = X0 ← X1 ← . . .← Xn = Ym → . . .→ Y1 → Y0 = Y
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where each morphism is a blowup in a closed point. We will prove the lemma by induction
on m. The base case is m = 0; it is true in this case because we assumed that Y is minimal
hence this would mean n = 0, but X is not isomorphic to Y , so this does not happen, i.e.,
there is nothing to check.

Before we continue, note that n + 1 = m + 1 is equal to the number of irreducible com-
ponents of the special fibre ofXn = Ym because bothXk and Yk are irreducible. Another
observation we will use below is that ifX ′ → X ′′ is a morphism of regular proper models
for C , then X ′ → X ′′ is an isomorphism over an open set of X ′′ whose complement is
a finite set of closed points of the special fibre of X ′′, see Varieties, Lemma 17.3. In fact,
any such X ′ → X ′′ is a sequence of blowing ups in closed points (Resolution of Surfaces,
Lemma 17.1) and the number of blowups is the difference in the number of irreducible
components of the special fibres of X ′ and X ′′.

Let Ei ⊂ Yi, m ≥ i ≥ 1 be the curve which is contracted by the morphism Yi → Yi−1.
Let i be the biggest index such thatEi has multiplicity> 1 in the special fibre of Yi. Then
the further blowups Ym → . . . → Yi+1 → Yi are isomorphisms over Ei since otherwise
Ej for some j > i would have multiplicity > 1. Let E ⊂ Ym be the inverse image of Ei.
By what we just said E ⊂ Ym is an exceptional curve of the first kind. Let Ym → Y ′ be
the contraction ofE (which exists by Resolution of Surfaces, Lemma 16.9). The morphism
Ym → X has to contract E , because Xk is reduced. Hence there are morphisms Y ′ → Y
and Y ′ → X (by Resolution of Surfaces, Lemma 16.1) which are compositions of at most
n − 1 = m − 1 contractions of exceptional curves (see discussion above). We win by
induction onm. Upshot: we may assume that the special fibres of all of the curvesXi and
Yi are reduced.

Since the fibres ofXi and Yi are reduced, it has to be the case that the blowupsXi → Xi−1
and Yi → Yi−1 happen in closed points which are regular points of the special fibres.
Namely, ifX ′′ is a regular model for C and if x ∈ X ′′ is a closed point of the special fibre,
and π ∈ m2

x, then the exceptional fibreE of the blowupX ′ → X ′′ at x has multiplicity at
least 2 in the special fibre of X ′ (local computation omitted). Hence OX′′

k
,x = OX′′,x/π

is regular (Algebra, Lemma 106.3) as claimed. In particular x is a Cartier divisor on the
unique irreducible component Z ′ of X ′′

k it lies on (Varieties, Lemma 43.8). It follows that
the strict transform Z ⊂ X ′ of Z ′ maps isomorphically to Z ′ (use Divisors, Lemmas 33.2
and 32.7). In other words, if an irreducible component Z of Xi is not contracted under
the map Xi → Xj (i > j) then it maps isomorphically to its image.

Now we are ready to prove the lemma. Let E ⊂ Ym be the exceptional curve of the
first kind which is contracted by the morphism Ym → Ym−1. If E is contracted by the
morphism Ym = Xn → X , then there is a factorization Ym−1 → X (Resolution of
Surfaces, Lemma 16.1) and moreover Ym−1 → X is a sequence of blowups in closed points
(Resolution of Surfaces, Lemma 17.1). In this case we lower m and we win by induction.
Finally, assume that E is not contracted by the morphism Ym → X . Then E → Xk is
surjective as Xk is irreducible and by the above this means it is an isomorphism. Hence
Xk is isomorphic to a projective line as desired. �

13. Picard groups of models

Assume R,K, k, π, C,X, n,C1, . . . , Cn,m1, . . . ,mn are as in Situation 9.3. In Lemma
9.5 we found an exact sequence

0→ Z→ Z⊕n → Pic(X)→ Pic(C)→ 0
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We want to use this sequence to study the `-torsion in the Picard groups for suitable primes
`.

Lemma 13.1. In Situation 9.3 let d = gcd(m1, . . . ,mn). If L is an invertible OX -
module which

(1) restricts to the trivial invertible module on C , and
(2) has degree 0 on each Ci,

then L⊗d ∼= OX .

Proof. By Lemma 9.5 we have L ∼= OX(
∑
aiCi) for some ai ∈ Z. The degree of

L|Cj is
∑
j aj(Ci ·Cj). In particular (

∑
aiCi ·

∑
aiCi) = 0. Hence we see from Lemma

9.7 that (a1, . . . , an) = q(m1, . . . ,mn) for some q ∈ Q. Thus L = OX(lD) for some
l ∈ Z where D =

∑
(mi/d)Ci is as in Lemma 9.8 and we conclude. �

Lemma 13.2. In Situation 9.3 let T be the numerical type associated to X . There
exists a canonical map

Pic(C)→ Pic(T )
whose kernel is exactly those invertible modules on C which are the restriction of invert-
ible modules L on X with degCi(L|Ci) = 0 for i = 1, . . . , n.

Proof. Recall thatwi = [κi : k] where κi = H0(Ci,OCi)) and recall that the degree
of any invertible module on Ci is divisible by wi (Varieties, Lemma 44.10). Thus we can
consider the map

deg
w

: Pic(X)→ Z⊕n, L 7→ (deg(L|C1)
w1

, . . . ,
deg(L|Cn)

wn
)

The image ofOX(Cj) under this map is
((Cj · C1)/w1, . . . , (Cj · Cn)/wn) = (a1j/w1, . . . , anj/wn)

which is exactly the image of the jth basis vector under the map (aij/wi) : Z⊕n → Z⊕n

defining the Picard group of T , see Definition 4.1. Thus the canonical map of the lemma
comes from the commutative diagram

Z⊕n //

id
��

Pic(X) //

deg
w

��

Pic(C) //

��

0

Z⊕n (aij/wi) // Z⊕n // Pic(T ) // 0

with exact rows (top row by Lemma 9.5). The description of the kernel is clear. �

Lemma 13.3. In Situation 9.3 let d = gcd(m1, . . . ,mn) and let T be the numerical
type associated to X . Let h ≥ 1 be an integer prime to d. There exists an exact sequence

0→ Pic(X)[h]→ Pic(C)[h]→ Pic(T )[h]

Proof. Taking h-torsion in the exact sequence of Lemma 9.5 we obtain the exactness
of 0→ Pic(X)[h]→ Pic(C)[h] because h is prime to d. Using the map of Lemma 13.2 we
get a map Pic(C)[h]→ Pic(T )[h] which annihilates elements of Pic(X)[h]. Conversely,
if ξ ∈ Pic(C)[h] maps to zero in Pic(T )[h], then we can find an invertibleOX -module L
with deg(L|Ci) = 0 for all iwhose restriction toC is ξ. Then L⊗h is d-torsion by Lemma
13.1. Let d′ be an integer such that dd′ ≡ 1 mod h. Such an integer exists because h and
d are coprime. Then L⊗dd′

is an h-torsion invertible sheaf on X whose restriction to C is
ξ. �
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Lemma 13.4. In Situation 9.3 let h be an integer prime to the characteristic of k.
Then the map

Pic(X)[h] −→ Pic((Xk)red)[h]
is injective.

Proof. Observe thatX×Spec(R) Spec(R/πn) is a finite order thickening of (Xk)red
(this follows for example from Cohomology of Schemes, Lemma 10.2). Thus the canonical
map Pic(X×Spec(R) Spec(R/πn))→ Pic((Xk)red) identifies h torsion by More on Mor-
phisms, Lemma 4.2 and our assumption on h. Thus if L is an h-torsion invertible sheaf on
X which restricts to the trivial sheaf on (Xk)red then L restricts to the trivial sheaf on
X ×Spec(R) Spec(R/πn) for all n. We find

H0(X,L)∧ = limH0(X ×Spec(R) Spec(R/πn),L|X×Spec(R)Spec(R/πn))
∼= limH0(X ×Spec(R) Spec(R/πn),OX×Spec(R)Spec(R/πn))
= R∧

using the theorem on formal functions (Cohomology of Schemes, Theorem 20.5) for the
first and last equality and for example More on Algebra, Lemma 100.5 for the middle iso-
morphism. Since H0(X,L) is a finite R-module and R is a discrete valuation ring, this
means that H0(X,L) is free of rank 1 as an R-module. Let s ∈ H0(X,L) be a basis ele-
ment. Then tracing back through the isomorphisms above we see that s|X×Spec(R)Spec(R/πn)
is a trivialization for all n. Since the vanishing locus of s is closed inX andX → Spec(R)
is proper we conclude that the vanishing locus of s is empty as desired. �

14. Semistable reduction

In this section we carefully define what we mean by semistable reduction.

Example 14.1. Let R be a discrete valuation ring with uniformizer π. Given n ≥ 0,
consider the ring map

R −→ A = R[x, y]/(xy − πn)
Set X = Spec(A) and S = Spec(R). If n = 0, then X → S is smooth. For all n
the morphism X → S is at-worst-nodal of relative dimension 1 as defined in Algebraic
Curves, Section 20. If n = 1, then X is regular, but if n > 1, then X is not regular as
(x, y) no longer generate the maximal ideal m = (π, x, y). To ameliorate the situation
in case n > 1 we consider the blowup b : X ′ → X of X in m. See Divisors, Section 32.
By constructionX ′ is covered by three affine pieces corresponding to the blowup algebras
A[mπ ], A[mx ], and A[my ].

The algebra A[mπ ] has generators x′ = x/π and y′ = y/π and x′y′ = πn−2. Thus this
part of X ′ is the spectrum of R[x′, y′](x′y′ − πn−2).

The algebraA[mx ] has generators x, u = π/x subject to the relation xu−π. Note that this
ring contains y/x = πn/x2 = u2πn−2. Thus this part of X ′ is regular.

By symmetry the case of the algebra A[my ] is the same as the case of A[mx ].

Thus we see thatX ′ → S is at-worst-nodal of relative dimension 1 and thatX ′ is regular,
except for one point which has an affine open neighbourhood exactly as above but with n
replaced by n− 2. Using induction on n we conclude that there is a sequence of blowing
ups in closed points

Xbn/2c → . . .→ X1 → X0 = X
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such that Xbn/2c → S is at-worst-nodal of relative dimension 1 and Xbn/2c is regular.

Lemma 14.2. LetR be a discrete valuation ring. LetX be a scheme which is at-worst-
nodal of relative dimension 1 over R. Let x ∈ X be a point of the special fibre of X over
R. Then there exists a commutative diagram

X

��

U //

��

oo Spec(A)

yy
Spec(R) Spec(R′)oo

where R ⊂ R′ is an étale extension of discrete valuation rings, the morphism U → X is
étale, the morphism U → Spec(A) is étale, there is a point x′ ∈ U mapping to x, and

A = R′[u, v]/(uv) or A = R′[u, v]/(uv − πn)

where n ≥ 0 and π ∈ R′ is a uniformizer.

Proof. We have already proved this lemma in much greater generality, see Algebraic
Curves, Lemma 20.12. All we have to do here is to translate the statement given there into
the statement given above.

First, if the morphism X → Spec(R) is smooth at x, then we can find an étale morphism
U → A1

R = Spec(R[u]) for some affine open neighbourhood U ⊂ X of x. This is
Morphisms, Lemma 36.20. After replacing the coordinate u by u+ 1 if necessary, we may
assume that x maps to a point in the standard open D(u) ⊂ A1

R. Then D(u) = Spec(A)
with A = R[u, v]/(uv − 1) and we see that the result is true in this case.

Next, assume that x is a singular point of the fibre. Then we may apply Algebraic Curves,
Lemma 20.12 to get a diagram

X

��

U //oo

��

W //

��

Spec(Z[u, v, a]/(uv − a))

��
Spec(R) Voo // Spec(Z[a])

with all the properties mentioned in the statement of the cited lemma. Let x′ ∈ U be the
point mapping to x promised by the lemma. First we shrink V to an affine neighbourhood
of the image of x′. Say V = Spec(R′). Then R → R′ is étale. Since R is a discrete
valuation ring, we see that R′ is a finite product of quasi-local Dedekind domains (use
More on Algebra, Lemma 44.4). Hence (for example using prime avoidance) we find a
standard openD(f) ⊂ V = Spec(R′) containing the image ofx′ such thatR′

f is a discrete
valuation ring. Replacing R′ by R′

f we reach the situation where V = Spec(R′) with
R ⊂ R′ an étale extension of discrete valuation rings (extensions of discrete valuation
rings are defined in More on Algebra, Definition 111.1).

The morphism V → Spec(Z[a]) is determined by the image h of a in R′. Then W =
Spec(R′[u, v]/(uv − h)). Thus the lemma holds with A = R′[u, v]/(uv − h). If h = 0
then we clearly obtain the first case mentioned in the lemma. If h 6= 0 then we may write
h = επn for some n ≥ 0 where ε is a unit of R′. Changing coordinates unew = εu and
vnew = v we obtain the second isomorphism type of A listed in the lemma. �
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Lemma 14.3. Let R be a discrete valuation ring. Let X be a quasi-compact scheme
which is at-worst-nodal of relative dimension 1 with smooth generic fibre over R. Then
there exists m ≥ 0 and a sequence

Xm → . . .→ X1 → X0 = X

such that
(1) Xi+1 → Xi is the blowing up of a closed point xi where Xi is singular,
(2) Xi → Spec(R) is at-worst-nodal of relative dimension 1,
(3) Xm is regular.

A slightly stronger statement (also true) would be that no matter how you blow up in
singular points you eventually end up with a resolution and all the intermediate blowups
are at-worst-nodal of relative dimension 1 over R.

Proof. Since X is quasi-compact we see that the special fibre Xk is quasi-compact.
Since the singularities of Xk are at-worst-nodal, we see that Xk has a finite number of
nodes and is otherwise smooth over k. As X → Spec(R) is flat with smooth generic
fibre it follows that X is smooth over R except at the finite number of nodes of Xk (use
Morphisms, Lemma 34.14). It follows that X is regular at every point except for possibly
the nodes of its special fibre (see Algebra, Lemma 163.10). Let x ∈ X be such a node.
Choose a diagram

X

��

U //

��

oo Spec(A)

yy
Spec(R) Spec(R′)oo

as in Lemma 14.2. Observe that the case A = R′[u, v]/(uv) cannot occur, as this would
mean that the generic fibre ofX/R is singular (tiny detail omitted). ThusA = R′[u, v]/(uv−
πn) for some n ≥ 0. Since x is a singular point, we have n ≥ 2, see discussion in Example
14.1.

After shrinking U we may assume there is a unique point u ∈ U mapping to x. Let w ∈
Spec(A) be the image of u. We may also assume that u is the unique point ofU mapping to
w. Since the two horizontal arrows are étale we see that u, viewed as a closed subscheme of
U , is the scheme theoretic inverse image of x ∈ X and the scheme theoretic inverse image
of w ∈ Spec(A). Since blowing up commutes with flat base change (Divisors, Lemma
32.3) we find a commutative diagram

X ′

��

U ′oo

��

// W ′

��
X Uoo // Spec(A)

with cartesian squares where the vertical arrows are the blowing up ofx, u, w inX,U,Spec(A).
The scheme W ′ was described in Example 14.1. We saw there that W ′ at-worst-nodal of
relative dimension 1 over R′. Thus W ′ is at-worst-nodal of relative dimension 1 over R
(Algebraic Curves, Lemma 20.7). Hence U ′ is at-worst-nodal of relative dimension 1 over
R (see Algebraic Curves, Lemma 20.8). Since X ′ → X is an isomorphism over the com-
plement of x, we conclude the same thing is true of X ′/R (by Algebraic Curves, Lemma
20.8 again).
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Finally, we need to argue that after doing a finite number of these blowups we arrive at
a regular model Xm. This is rather clear because the “invariant” n decreases by 2 under
the blowup described above, see computation in Example 14.1. However, as we want to
avoid precisely defining this invariant and establishing its properties, we in stead argue
as follows. If n = 2, then W ′ is regular and hence X ′ is regular at all points lying over
x and we have decreased the number of singular points of X by 1. If n > 2, then the
unique singular point w′ of W ′ lying over w has κ(w) = κ(w′). Hence U ′ has a unique
singular point u′ lying over u with κ(u) = κ(u′). Clearly, this implies that X ′ has a
unique singular point x′ lying over x, namely the image of u′. Thus we can argue exactly
as above that we get a commutative diagram

X ′′

��

U ′′oo

��

// W ′′

��
X ′ U ′oo // W ′

with cartesian squares where the vertical arrows are the blowing up ofx′, u′, w′ inX ′, U ′,W ′.
Continuing like this we get a compatible sequence of blowups which stops after bn/2c
steps. At the completion of this process the schemeX(bn/2c) will have one fewer singular
point than X . Induction on the number of singular points completes the proof. �

Lemma 14.4. Let R be a discrete valuation ring with fraction field K and residue
field k. Assume X → Spec(R) is at-worst-nodal of relative dimension 1 over R. Let
X → X ′ be the contraction of an exceptional curve E ⊂ X of the first kind. Then X ′ is
at-worst-nodal of relative dimension 1 over R.

Proof. Namely, let x′ ∈ X ′ be the image of E. Then the only issue is to see that
X ′ → Spec(R) is at-worst-nodal of relative dimension 1 in a neighbourhood of x′. The
closed fibre of X → Spec(R) is reduced, hence π ∈ R vanishes to order 1 on E. This
immediately implies that π viewed as an element of mx′ ⊂ OX′,x′ but is not in m2

x′ . Since
OX′,x′ is regular of dimension 2 (by definition of contractions in Resolution of Surfaces,
Section 16), this implies thatOX′

k
,x′ is regular of dimension 1 (Algebra, Lemma 106.3). On

the other hand, the curve E has to meet at least one other component, say C of the closed
fibreXk. Say x ∈ E∩C. Then x is a node of the special fibreXk and hence κ(x)/k is finite
separable, see Algebraic Curves, Lemma 19.7. Since x 7→ x′ we conclude that κ(x′)/k is
finite separable. By Algebra, Lemma 140.5 we conclude that X ′

k → Spec(k) is smooth in
an open neighbourhood of x′. Combined with flatness, this proves that X ′ → Spec(R)
is smooth in a neighbourhood of x′ (Morphisms, Lemma 34.14). This finishes the proof
as a smooth morphism of relative dimension 1 is at-worst-nodal of relative dimension 1
(Algebraic Curves, Lemma 20.3). �

Lemma 14.5. Let R be a discrete valuation ring with fraction field K. Let C be a
smooth projective curve over K with H0(C,OC) = K. The following are equivalent

(1) there exists a proper model of C which is at-worst-nodal of relative dimension
1 over R,

(2) there exists a minimal model ofC which is at-worst-nodal of relative dimension
1 over R, and

(3) any minimal model of C is at-worst-nodal of relative dimension 1 over R.

Proof. To make sense out of this statement, recall that a minimal model is defined as
a regular proper model without exceptional curves of the first kind (Definition 8.4), that
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minimal models exist (Proposition 8.6), and that minimal models are unique if the genus
of C is > 0 (Lemma 10.1). Keeping this in mind the implications (2)⇒ (1) and (3)⇒ (2)
are clear.

Assume (1). Let X be a proper model of C which is at-worst-nodal of relative dimension
1 over R. Applying Lemma 14.3 we see that we may assume X is regular as well. Let

X = Xm → Xm−1 → . . .→ X1 → X0

be as in Lemma 8.5. By Lemma 14.4 and induction this implies X0 is at-worst-nodal of
relative dimension 1 over R.

To finish the proof we have to show that (2) implies (3). This is clear if the genus of C is
> 0, since then the minimal model is unique (see discussion above). On the other hand,
if the minimal model is not unique, then the morphism X → Spec(R) is smooth for any
minimal model as its special fibre will be isomorphic to P1

k by Lemma 12.4. �

Definition 14.6. Let R be a discrete valuation ring with fraction field K. Let C be
a smooth projective curve over K with H0(C,OC) = K. We say that C has semistable
reduction if the equivalent conditions of Lemma 14.5 are satisfied.

Lemma 14.7. Let R be a discrete valuation ring with fraction field K. Let C be a
smooth projective curve over K with H0(C,OC) = K. The following are equivalent

(1) there exists a proper smooth model for C ,
(2) there exists a minimal model for C which is smooth over R,
(3) any minimal model is smooth over R.

Proof. If X is a smooth proper model, then the special fibre is connected (Lemma
9.4) and smooth, hence irreducible. This immediately implies that it is minimal. Thus (1)
implies (2). To finish the proof we have to show that (2) implies (3). This is clear if the
genus of C is > 0, since then the minimal model is unique (Lemma 10.1). On the other
hand, if the minimal model is not unique, then the morphism X → Spec(R) is smooth
for any minimal model as its special fibre will be isomorphic to P1

k by Lemma 12.4. �

Definition 14.8. LetR be a discrete valuation ring with fraction fieldK. LetC be a
smooth projective curve overK withH0(C,OC) = K. We say thatC has good reduction
if the equivalent conditions of Lemma 14.7 are satisfied.

15. Semistable reduction in genus zero

In this section we prove the semistable reduction theorem (Theorem 18.1) for genus zero
curves.

LetR be a discrete valuation ring with fraction fieldK. LetC be a smooth projective curve
over K with H0(C,OC) = K. If the genus of C is 0, then C is isomorphic to a conic,
see Algebraic Curves, Lemma 10.3. Thus there exists a finite separable extensionK ′/K of
degree at most 2 such that C(K ′) 6= ∅, see Algebraic Curves, Lemma 9.4. Let R′ ⊂ K ′ be
the integral closure of R, see discussion in More on Algebra, Remark 111.6. We will show
that CK′ has semistable reduction over R′

m for each maximal ideal m of R′ (of course in
the current case there are at most two such ideals). After replacing R by R′

m and C by
CK′ we reduce to the case discussed in the next paragraph.

In this paragraph R is a discrete valuation ring with fraction field K , C is a smooth pro-
jective curve over K with H0(C,OC) = K , of genus 0, and C has a K-rational point. In
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this case C ∼= P1
K by Algebraic Curves, Proposition 10.4. Thus we can use P1

R as a model
and we see that C has both good and semistable reduction.

Example 15.1. Let R = R[[π]] and consider the scheme

X = V (T 2
1 + T 2

2 − πT 2
0 ) ⊂ P2

R

The base change of X to C[[π]] is isomorphic to the scheme defined in Example 10.3 be-
cause we have the factorization T 2

1 +T 2
2 = (T1 +iT2)(T1−iT2) over C. ThusX is regular

and its special fibre is irreducible yet singular, henceX is the unique minimal model of its
generic fibre (use Lemma 12.4). It follows that an extension is needed even in genus 0.

16. Semistable reduction in genus one

In this section we prove the semistable reduction theorem (Theorem 18.1) for curves of
genus one. We suggest the reader first read the proof in the case of genus≥ 2 (Section 17).
We are going to use as much as possible the classification of minimal numerical types of
genus 1 given in Lemma 6.2.

Let R be a discrete valuation ring with fraction field K. Let C be a smooth projective
curve over K with H0(C,OC) = K. Assume the genus of C is 1. Choose a prime ` ≥ 7
different from the characteristic of k. Choose a finite separable extension K ′/K of such
that C(K ′) 6= ∅ and such that Pic(CK′)[`] ∼= (Z/`Z)⊕2. See Algebraic Curves, Lemma
17.2. LetR′ ⊂ K ′ be the integral closure ofR, see discussion in More on Algebra, Remark
111.6. We may replace R by R′

m for some maximal ideal m in R′ and C by CK′ . This
reduces us to the case discussed in the next paragraph.

In the rest of this sectionR is a discrete valuation ring with fraction fieldK ,C is a smooth
projective curve over K with H0(C,OC) = K , with genus 1, having a K-rational point,
and with Pic(C)[`] ∼= (Z/`Z)⊕2 for some prime ` ≥ 7 different from the characteristic
of k. We will prove that C has semistable reduction.

Let X be a minimal model for C , see Proposition 8.6. Let T = (n,mi, (aij), wi, gi) be
the numerical type associated toX (Definition 11.4). Then T is a minimal numerical type
(Lemma 11.5). AsC has a rational point, there exists an i such thatmi = wi = 1 by Lemma
11.7. Looking at the classification of minimal numerical types of genus 1 in Lemma 6.2 we
see that m = w = 1 and that cases (3), (6), (7), (9), (11), (13), (15), (18), (19), (21), (24), (26),
(28), (30) are disallowed (because there is no index where both wi and mi is equal to 1).
Let e be the number of pairs (i, j) with i < j and aij > 0. For the remaining cases we
have

(A) e = n− 1 for cases (1), (2), (5), (8), (12), (14), (17), (20), (22), (23), (27), (29), (31),
(32), (33), and (34), and

(B) e = n for cases (4), (10), (16), and (25).
We will argue these cases separately.

Case (A). In this case Pic(T )[`] is trivial (the Picard group of a numerical type is defined in
Section 4). The vanishing follows as Pic(T ) ⊂ Coker(A) (Lemma 4.3) and Coker(A)[`] =
0 by Lemma 2.6 and the fact that `was chosen relatively prime to aij andmi. By Lemmas
13.3 and 13.4 we conclude that there is an embedding

(Z/`Z)⊕2 ⊂ Pic((Xk)red)[`].
By Algebraic Curves, Lemma 18.6 we obtain

2 ≤ dimkH
1((Xk)red,O(Xk)red) + ggeom((Xk)red/k)
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By Algebraic Curves, Lemmas 18.1 and 18.5 we see that ggeom((Xk)red/k) ≤
∑
wigi. The

assumptions of Lemma 11.8 hold by Lemma 11.7 and we conclude that we have dimkH
1((Xk)red,O(Xk)red) ≤

g = 1. Combining these we see

2 ≤ 1 +
∑

wigi

Looking at the list we conclude that the numerical type is given by n = 1, w1 = m1 =
g1 = 1. Because we have equality everywhere we see that ggeom(C1/k) = 1. On the other
hand, we know thatC1 has a k-rational point x such thatC1 → Spec(k) is smooth at x. It
follows thatC1 is geometrically integral (Varieties, Lemma 25.10). Thus ggeom(C1/k) = 1
is both equal to the genus of the normalization of C1,k and the genus of C1,k. It follows
that the normalization morphism Cν

1,k
→ C1,k is an isomorphism (Algebraic Curves,

Lemma 18.4). We conclude that C1 is smooth over k as desired.

Case (B). Here we only conclude that there is an embedding

Z/`Z ⊂ Pic(Xk)[`]
From the classification of types we see thatmi = wi = 1 and gi = 0 for each i. Thus each
Ci is a genus zero curve over k. Moreover, for each i there is a j such that Ci ∩ Cj is a
k-rational point. Then it follows that Ci ∼= P1

k by Algebraic Curves, Proposition 10.4. In
particular, since Xk is the scheme theoretic union of the Ci we see that Xk is the scheme
theoretic union of theCi,k. HenceXk is a reduced connected proper scheme of dimension
1 over k with dimkH

1(Xk,OXk) = 1. Also, by Varieties, Lemma 30.3 and the above we
still have

dimF`(Pic(Xk) ≥ 1
By Algebraic Curves, Proposition 17.3 we see thatXk has at only multicross singularities.
But since Xk is Gorenstein (Lemma 9.2), so is Xk (Duality for Schemes, Lemma 25.1). We
conclude Xk is at-worst-nodal by Algebraic Curves, Lemma 16.4. This finishes the proof
in case (B).

Example 16.1. Let k be an algebraically closed field. Let Z be a smooth projective
curve over k of positive genus g. Let n ≥ 1 be an integer prime to the characteristic of k.
Let L be an invertible OZ -module of order n, see Algebraic Curves, Lemma 17.1. Pick an
isomorphism ϕ : L⊗n → OZ . Set R = k[[π]] with fraction field K = k((π)). Denote
ZR the base change of Z toR. Let LR be the pullback of L to ZR. Consider the finite flat
morphism

p : X −→ ZR

such that

p∗OX = Sym∗
OZR

(LR)/(ϕ− π) = OZR ⊕ LR ⊕ L⊗2
R ⊕ . . .⊕ L

⊗n−1
R

More precisely, if U = Spec(A) ⊂ Z is an affine open such that L|U is trivialized by a
section s with ϕ(s⊗n) = f (with f a unit), then

p−1(UR) = Spec ((A⊗R R[[π]])[x]/(xn − πf))
The reader verifies that the morphismXK → ZK of generic fibres is finite étale. Looking
at the description of the structure sheaf we see thatH0(X,OX) = R andH0(XK ,OXK ) =
K. By Riemann-Hurwitz (Algebraic Curves, Lemma 12.4) the genus ofXK is n(g−1)+1.
In particularXK has genus 1, ifZ has genus 1. On the other hand, the schemeX is regular
by the local equation above and the special fibre Xk is n times the reduced special fibre
as an effective Cartier divisor. It follows that any finite extension K ′/K over which XK
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attains semistable reduction has to ramify with ramification index at least n (some details
omitted). Thus there does not exist a universal bound for the degree of an extension over
which a genus 1 curve attains semistable reduction.

17. Semistable reduction in genus at least two

In this section we prove the semistable reduction theorem (Theorem 18.1) for curves of
genus ≥ 2. Fix g ≥ 2.

LetR be a discrete valuation ring with fraction fieldK. LetC be a smooth projective curve
over K with H0(C,OC) = K. Assume the genus of C is g. Choose a prime ` > 768g
different from the characteristic of k. Choose a finite separable extension K ′/K of such
that C(K ′) 6= ∅ and such that Pic(CK′)[`] ∼= (Z/`Z)⊕2g . See Algebraic Curves, Lemma
17.2. LetR′ ⊂ K ′ be the integral closure ofR, see discussion in More on Algebra, Remark
111.6. We may replace R by R′

m for some maximal ideal m in R′ and C by CK′ . This
reduces us to the case discussed in the next paragraph.

In the rest of this sectionR is a discrete valuation ring with fraction fieldK ,C is a smooth
projective curve over K with H0(C,OC) = K , with genus g, having a K-rational point,
and with Pic(C)[`] ∼= (Z/`Z)⊕2g for some prime ` ≥ 768g different from the character-
istic of k. We will prove that C has semistable reduction.

In the rest of this section we will use without further mention that the conclusions of
Lemma 11.7 are true.

LetX be a minimal model for C , see Proposition 8.6. Let T = (n,mi, (aij), wi, gi) be the
numerical type associated to X (Definition 11.4). Then T is a minimal numerical type of
genus g (Lemma 11.5). By Proposition 7.4 we have

dimF` Pic(T )[`] ≤ gtop
By Lemmas 13.3 and 13.4 we conclude that there is an embedding

(Z/`Z)⊕2g−gtop ⊂ Pic((Xk)red)[`].

By Algebraic Curves, Lemma 18.6 we obtain

2g − gtop ≤ dimkH
1((Xk)red,O(Xk)red) + ggeom(Xk/k)

By Lemmas 11.8 and 11.9 we have

g ≥ dimkH
1((Xk)red,O(Xk)red) ≥ gtop + ggeom(Xk/k)

Elementary number theory tells us that the only way these 3 inequalities can hold is if
they are all equalities. Looking at Lemma 11.8 we conclude that mi = 1 for all i. Looking
at Lemma 11.10 we conclude that every irreducible component of Xk is smooth over k.

In particular, since Xk is the scheme theoretic union of its irreducible components Ci we
see that Xk is the scheme theoretic union of the Ci,k. Hence Xk is a reduced connected
proper scheme of dimension 1 over k with dimkH

1(Xk,OXk) = g. Also, by Varieties,
Lemma 30.3 and the above we still have

dimF`(Pic(Xk)[`]) ≥ 2g − gtop = dimkH
1(Xk,OXk) + ggeom(Xk)

By Algebraic Curves, Proposition 17.3 we see thatXk has at only multicross singularities.
But since Xk is Gorenstein (Lemma 9.2), so is Xk (Duality for Schemes, Lemma 25.1). We
conclude Xk is at-worst-nodal by Algebraic Curves, Lemma 16.4. This finishes the proof.



4490 55. SEMISTABLE REDUCTION

18. Semistable reduction for curves

In this section we finish the proof of the theorem. For g ≥ 2 let 768g < `′ < ` be the first
two primes > 768g and set
(18.0.1) Bg = (2g − 2)(`2g)!
The precise form of Bg is unimportant; the point we are trying to make is that it depends
only on g.

Theorem 18.1. Let R be a discrete valuation ring with fraction field K. Let C be a
smooth projective curve over K with H0(C,OC) = K. Then there exists an extension
of discrete valuation rings R ⊂ R′ which induces a finite separable extension of fraction
fields K ′/K such that CK′ has semistable reduction. More precisely, we have the follow-
ing

(1) If the genus of C is zero, then there exists a degree 2 separable extension K ′/K
such that CK′ ∼= P1

K′ and hence CK′ is isomorphic to the generic fibre of the
smooth projective scheme P1

R′ over the integral closure R′ of R in K ′.
(2) If the genus of C is one, then there exists a finite separable extension K ′/K

such that CK′ has semistable reduction over R′
m for every maximal ideal m of

the integral closure R′ of R in K ′. Moreover, the special fibre of the (unique)
minimal model of CK′ over R′

m is either a smooth genus one curve or a cycle of
rational curves.

(3) If the genus g of C is greater than one, then there exists a finite separable exten-
sionK ′/K of degree at mostBg (18.0.1) such thatCK′ has semistable reduction
over R′

m for every maximal ideal m of the integral closure R′ of R in K ′.

Proof. For the case of genus zero, see Section 15. For the case of genus one, see Section
16. For the case of genus greater than one, see Section 17. To see that we have a bound on
the degree [K ′ : K] you can use the bound on the degree of the extension needed to make
all ` or `′ torsion visible proved in Algebraic Curves, Lemma 17.2. (The reason for using `
and `′ is that we need to avoid the characteristic of the residue field k.) �

Remark 18.2 (Improving the bound). Results in the literature suggest that one can
improve the bound given in the statement of Theorem 18.1. For example, in [?] it is shown
that semistable reduction of C and its Jacobian are the same thing if the residue field is
perfect and presumably this is true for general residue fields as well. For an abelian variety
we have semistable reduction if the action of Galois on the `-torsion is trivial for any
` ≥ 3 not equal to the residue characteristic. Thus we can presumably choose ` = 5 in the
formula (18.0.1) forBg (but the proof would take a lot more work; if we ever need this we
will make a precise statement and provide a proof here).
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CHAPTER 56

Functors and Morphisms

1. Introduction

Let X and Y be schemes. This chapter circles around the relationship between functors
QCoh(OY ) → QCoh(OX) and morphisms of schemes X → Y . More broadly speaking
we study the relationship between QCoh(OX) andX or, ifX is Noetherian, the relation-
ship between Coh(OX) and X . This relationship was studied in [?].

2. Functors on module categories

For a ring A let us denote ModfpA the category of finitely presented A-modules.
Lemma 2.1. Let A be a ring. Let B be a category having filtered colimits. Let F :

ModfpA → B be a functor. Then F extends uniquely to a functor F ′ : ModA → B which
commutes with filtered colimits.

Proof. This follows from Categories, Lemma 26.2. To see that the lemma applies
observe that finitely presented A-modules are categorically compact objects of ModA by
Algebra, Lemma 11.4. Also, every A-module is a filtered colimit of finitely presented A-
modules by Algebra, Lemma 11.3. �

If a category B is additive and has filtered colimits, then B has arbitrary direct sums: any
direct sum can be written as a filtered colimit of finite direct sums.

Lemma 2.2. Let A, B, F be as in Lemma 2.1. Assume B is additive and F is additive.
Then F ′ is additive and commutes with arbitrary direct sums.

Proof. To show that F ′ is additive it suffices to show that F ′(M) ⊕ F ′(M ′) →
F ′(M ⊕M ′) is an isomorphism for any A-modules M , M ′, see Homology, Lemma 7.1.
Write M = colimiMi and M ′ = colimjM

′
j as filtered colimits of finitely presented

A-modules Mi. Then F ′(M) = colimi F (Mi), F ′(M ′) = colimj F (M ′
j), and

F ′(M ⊕M ′) = F ′(colimi,jMi ⊕M ′
j)

= colimi,j F (Mi ⊕M ′
j)

= colimi,j F (Mi)⊕ F (M ′
j)

= F ′(M)⊕ F ′(M ′)
as desired. To show that F ′ commutes with direct sums, assume we have M =

⊕
i∈IMi.

Then M = colimI′⊂I finite
⊕

i∈I′ Mi is a filtered colimit. We obtain

F ′(M) = colimI′⊂I finite F
′(
⊕

i∈I′
Mi)

= colimI′⊂I finite
⊕

i∈I′
F ′(Mi)

=
⊕

i∈I
F ′(Mi)

4493
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The second equality holds by the additivity of F ′ already shown. �

If a category B is additive, has filtered colimits, and has cokernels, then B has arbitrary
colimits, see discussion above and Categories, Lemma 14.12.

Lemma 2.3. Let A, B, F be as in Lemma 2.1. Assume B is additive, has cokernels,
and F is right exact. Then F ′ is additive, right exact, and commutes with arbitrary direct
sums.

Proof. SinceF is right exact, F commutes with coproducts of pairs, which are repre-
sented by direct sums. Hence F is additive by Homology, Lemma 7.1. Hence F ′ is additive
and commutes with direct sums by Lemma 2.2. We urge the reader to prove that F ′ is
right exact themselves instead of reading the proof below.

To show that F ′ is right exact, it suffices to show that F ′ commutes with coequalizers,
see Categories, Lemma 23.3. Now, if a, b : K → L are maps of A-modules, then the
coequalizer of a and b is the cokernel of a− b : K → L. Thus let K → L → M → 0 be
an exact sequence of A-modules. We have to show that in

F ′(K)→ F ′(L)→ F ′(M)→ 0
the second arrow is a cokernel for the first arrow in B (if B were abelian we would say that
the displayed sequence is exact). Write M = colimi∈IMi as a filtered colimit of finitely
presented A-modules, see Algebra, Lemma 11.3. Let Li = L ×M Mi. We obtain a system
of exact sequences K → Li → Mi → 0 over I . Since colimits commute with colimits
by Categories, Lemma 14.10 and since cokernels are a type of coequalizer, it suffices to
show that F ′(Li) → F (Mi) is a cokernel of F ′(K) → F ′(Li) in B for all i ∈ I . In
other words, we may assume M is finitely presented. Write L = colimi∈I Li as a filtered
colimit of finitely presented A-modules with the property that each Li surjects onto M .
Let Ki = K ×L Li. We obtain a system of short exact sequences Ki → Li → M → 0
over I . Repeating the argument already given, we reduce to showing F (Li)→ F (Mi) is
a cokernel of F ′(K) → F (Li) in B for all i ∈ I . In other words, we may assume both L
and M are finitely presented A-modules. In this case the module Ker(L → M) is finite
(Algebra, Lemma 5.3). Thus we can writeK = colimi∈I Ki as a filtered colimit of finitely
presented A-modules each surjecting onto Ker(L → M). We obtain a system of short
exact sequences Ki → L → M → 0 over I . Repeating the argument already given, we
reduce to showing F (L) → F (M) is a cokernel of F (Ki) → F (L) in B for all i ∈ I .
In other words, we may assume K , L, and M are finitely presented A-modules. This final
case follows from the assumption that F is right exact. �

If a categoryB is additive and has kernels, thenB has finite limits. Namely, finite products
are direct sums which exist and the equalizer of a, b : L→M is the kernel of a−b : K →
L which exists. Thus all finite limits exist by Categories, Lemma 18.4.

Lemma 2.4. Let A, B, F be as in Lemma 2.1. Assume A is a coherent ring (Algebra,
Definition 90.1), B is additive, has kernels, filtered colimits commute with taking kernels,
and F is left exact. Then F ′ is additive, left exact, and commutes with arbitrary direct
sums.

Proof. Since A is coherent, the category ModfpA is abelian with same kernels and
cokernels as in ModA, see Algebra, Lemmas 90.4 and 90.3. Hence all finite limits exist
in ModfpA and Categories, Definition 23.1 applies. Since F is left exact, F commutes with
products of pairs, which are represented by direct sums. HenceF is additive by Homology,
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Lemma 7.1. Hence F ′ is additive and commutes with direct sums by Lemma 2.2. We urge
the reader to prove that F ′ is left exact themselves instead of reading the proof below.

To show that F ′ is left exact, it suffices to show that F ′ commutes with equalizers, see
Categories, Lemma 23.2. Now, if a, b : L→M are maps of A-modules, then the equalizer
of a and b is the kernel of a − b : L → M . Thus let 0 → K → L → M be an exact
sequence of A-modules. We have to show that in

0→ F ′(K)→ F ′(L)→ F ′(M)

the arrow F ′(K) → F ′(L) is a kernel for F ′(L) → F ′(M) in B (if B were abelian we
would say that the displayed sequence is exact). Write M = colimi∈IMi as a filtered
colimit of finitely presented A-modules, see Algebra, Lemma 11.3. Let Li = L ×M Mi.
We obtain a system of exact sequences 0→ K → Li →Mi over I . Since filtered colimits
commute with taking kernels inB by assumption, it suffices to show thatF ′(K)→ F ′(Li)
is a kernel of F ′(Li) → F (Mi) in B for all i ∈ I . In other words, we may assume M is
finitely presented. Write L = colimi∈I Li as a filtered colimit of finitely presented A-
modules. Let Ki = K ×L Li. We obtain a system of short exact sequences 0 → Ki →
Li →M over I . Repeating the argument already given, we reduce to showing F ′(Ki)→
F (Li) is a kernel of F (Li) → F (M) in B for all i ∈ I . In other words, we may assume
both L and M are finitely presented A-modules. Since A is coherent, the A-module K =
Ker(L → M) is of finite presentation as the category of finitely presented A-modules is
abelian (see references given above). In other words, all three modules K , L, and M are
finitely presented A-modules. This final case follows from the assumption that F is left
exact. �

If a category B is additive and has cokernels, then B has finite colimits. Namely, finite
coproducts are direct sums which exist and the coequalizer of a, b : K → L is the cokernel
of a− b : K → L which exists. Thus all finite colimits exist by Categories, Lemma 18.7.

Lemma 2.5. Let A be a ring. Let B be an additive category with cokernels. There is
an equivalence of categories between

(1) the category of functors F : ModfpA → B which are right exact, and
(2) the category of pairs (K,κ) where K ∈ Ob(B) and κ : A→ EndB(K) is a ring

homomorphism
given by the rule sending F to F (A) with its natural A-action.

Proof. Let (K,κ) be as in (2). We will construct a functor F : ModfpA → B such
that F (A) = K endowed with the given A-action κ. Namely, given an integer n ≥ 0 let
us set

F (A⊕n) = K⊕n

Given an A-linear map ϕ : A⊕m → A⊕n with matrix (aij) ∈Mat(n×m,A) we define

F (ϕ) : F (A⊕m) = K⊕m −→ K⊕n = F (A⊕n)

to be the map with matrix (κ(aij)). This defines an additive functor F from the full
subcategory of ModfpA with objects 0, A, A⊕2, . . . to B; we omit the verification.

For each object M of ModfpA choose a presentation

A⊕mM ϕM−−→ A⊕nM →M → 0
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of M as an A-module. Let us use the trivial presentation 0→ A⊕n 1−→ A⊕n → 0 if M =
A⊕n (this isn’t necessary but simplifies the exposition). For each morphism f : M → N

of ModfpA we can choose a commutative diagram

(2.5.1)

A⊕mM
ϕM
//

ψf
��

A⊕nM //

χf

��

M //

f

��

0

A⊕mN ϕN // A⊕nN // N // 0

Having made these choices we can define: for an object M of ModfpA we set

F (M) = Coker(F (ϕM ) : F (A⊕mM )→ F (A⊕nM ))

and for a morphism f : M → N of ModfpA we set

F (f) = the map F (M)→ F (N) induced by F (ψf ) and F (χf ) on cokernels

Note that this rule extends the given functor F on the full subcategory consisting of the
free modules A⊕n. We still have to show that F is a functor, that F is additive, and that
F is right exact.

Let f : M → N be a morphism ModfpA . We claim that the map F (f) defined above is
independent of the choices of ψf and χf in (2.5.1). Namely, say

A⊕mM
ϕM
//

ψ

��

A⊕nM //

χ

��

M //

f

��

0

A⊕mN ϕN // A⊕nN // N // 0
is also commutative. Denote F (f)′ : F (M) → F (N) the map induced by F (ψ) and
F (χ). Looking at the commutative diagrams, by elementary commutative algebra there
exists a map ω : A⊕nM → A⊕mN such that χ = χf + ϕN ◦ ω. Applying F we find that
F (χ) = F (χf ) + F (ϕN ) ◦ F (ω). As F (N) is the cokernel of F (ϕN ) we find that the
map F (A⊕nM )→ F (M) equalizes F (f) and F (f)′. Since a cokernel is an epimorphism,
we conclude that F (f) = F (f)′.

Let us prove F is a functor. First, observe that F (idM ) = idF (M) because we may pick
the identities for ψf and χf in the diagram above in case f = idM . Second, suppose we
have f : M → N and g : L → M . Then we see that ψ = ψf ◦ ψg and χ = χf ◦ χg
fit into (2.5.1) for f ◦ g. Hence these induce the correct map which exactly says that
F (f) ◦ F (g) = F (f ◦ g).

Let us prove that F is additive. Namely, suppose we have f, g : M → N . Then we see
that ψ = ψf + ψg and χ = χf + χg fit into (2.5.1) for f + g. Hence these induce the
correct map which exactly says that F (f) + F (g) = F (f + g).

Finally, let us prove that F is right exact. It suffices to show that F commutes with co-
equalizers, see Categories, Lemma 23.3. For this, it suffices to prove that F commutes with
cokernels. Let K → L → M → 0 be an exact sequence of A-modules with K , L, M
finitely presented. Since F is an additive functor, this certainly gives a complex

F (K)→ F (L)→ F (M)→ 0

and we have to show that the second arrow is the cokernel of the first in B. In any case,
we obtain a map Coker(F (K)→ F (L))→ F (M). By elementary commutative algebra
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there exists a commutative diagram

A⊕mM
ϕM
//

ψ

��

A⊕nM //

χ

��

M //

1
��

0

K // L // M // 0

ApplyingF to this diagram and using the construction ofF (M) as the cokernel ofF (ϕM )
we find there exists a map F (M) → Coker(F (K) → F (L)) which is a right inverse to
the map Coker(F (K) → F (L)) → F (M). This first implies that F (L) → F (M) is an
epimorphism always. Next, the above shows we have

Coker(F (K)→ F (L)) = F (M)⊕ E

where the direct sum decomposition is compatible with both F (M) → Coker(F (K) →
F (L)) and Coker(F (K) → F (L)) → F (M). However, then the epimorphism p :
F (L) → E becomes zero both after composition with F (K) → F (L) and after com-
position with F (AnM ) → F (L). However, since K ⊕ AnM → L is surjective (algebra
argument omitted), we conclude that F (K ⊕ AnM ) → F (L) is an epimorphism (by the
above) whence E = 0. This finishes the proof. �

Lemma 2.6. LetA be a ring. Let B be an additive category with arbitrary direct sums
and cokernels. There is an equivalence of categories between

(1) the category of functors F : ModA → B which are right exact and commute
with arbitrary direct sums, and

(2) the category of pairs (K,κ) where K ∈ Ob(B) and κ : A→ EndB(K) is a ring
homomorphism

given by the rule sending F to F (A) with its natural A-action.

Proof. Combine Lemmas 2.5 and 2.3. �

3. Functors between categories of modules

The following lemma is archetypical of the results in this chapter.

Lemma 3.1. Let A and B be rings. Let F : ModA → ModB be a functor. The
following are equivalent

(1) F is isomorphic to the functor M 7→M ⊗A K for some A⊗Z B-module K ,
(2) F is right exact and commutes with all direct sums,
(3) F commutes with all colimits,
(4) F has a right adjoint G.

Proof. If (1), then (4) as a right adjoint for M 7→ M ⊗A K is N 7→ HomB(K,N),
see Differential Graded Algebra, Lemma 30.3. If (4), then (3) by Categories, Lemma 24.5.
The implication (3)⇒ (2) is immediate from the definitions.

Assume (2). We will prove (1). By the discussion in Homology, Section 7 the functor F
is additive. Hence F induces a ring map A → EndB(F (M)), a 7→ F (a · idM ) for every
A-module M . We conclude that F (M) is an A ⊗Z B-module functorially in M . Set
K = F (A). Define

M ⊗A K = M ⊗A F (A) −→ F (M), m⊗ k 7−→ F (ϕm)(k)
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Here ϕm : A → M sends a → am. The rule (m, k) 7→ F (ϕm)(k) is A-bilinear (and
B-linear on the right) as required to obtain the displayed A ⊗Z B-linear map. This con-
struction is functorial inM , hence defines a transformation of functors−⊗AK → F (−)
which is an isomorphism when evaluated onA. For everyA-moduleM we can choose an
exact sequence ⊕

j∈J
A→

⊕
i∈I

A→M → 0

Using the maps constructed above we find a commutative diagram

(
⊕

j∈J A)⊗A K //

��

(
⊕

i∈I A)⊗A K //

��

M ⊗A K //

��

0

F (
⊕

j∈J A) // F (
⊕

i∈I A) // F (M) // 0

The lower row is exact as F is right exact. The upper row is exact as tensor product with
K is right exact. Since F commutes with direct sums the left two vertical arrows are
bijections. Hence we conclude. �

Example 3.2. LetR be a ring. LetA andB beR-algebras. LetK be aA⊗RB-module.
Then we can consider the functor

(3.2.1) F : ModA −→ModB , M 7−→M ⊗A K

This functor isR-linear, right exact, commutes with arbitrary direct sums, commutes with
all colimits, has a right adjoint (Lemma 3.1).

Lemma 3.3. Let R be a ring. Let A and B be R-algebras. There is an equivalence of
categories between

(1) the category of R-linear functors F : ModA → ModB which are right exact
and commute with arbitrary direct sums, and

(2) the category ModA⊗RB .
given by sending K to the functor F in (3.2.1).

Proof. LetF be an object of the first category. By Lemma 3.1 we may assumeF (M) =
M⊗AK functorially inM for someA⊗ZB-moduleK. TheR-linearity ofF immediately
implies that the A⊗Z B-module structure on K comes from a (unique) A⊗R B-module
structure on K. Thus we see that sending K to F as in (3.2.1) is essentially surjective.

To prove that our functor is fully faithful, we have to show that given A⊗R B-modules
K and K ′ any transformation t : F → F ′ between the corresponding functors, comes
from a unique ϕ : K → K ′. Since K = F (A) and K ′ = F ′(A) we can take ϕ to be the
value tA : F (A)→ F ′(A) of t at A. This maps is A⊗R B-linear by the definition of the
A⊗B-module structure on F (A) and F ′(A) given in the proof of Lemma 3.1. �

Remark 3.4. Let R be a ring. Let A, B, C be R-algebras. Let F : ModA → ModB
andF ′ : ModB →ModC beR-linear, right exact functors which commute with arbitrary
direct sums. If by the equivalence of Lemma 3.3 the objectK in ModA⊗RB corresponds to
F and the object K ′ in ModB⊗RC corresponds to F ′, then K ⊗B K ′ viewed as an object
of ModA⊗RC corresponds to F ′ ◦ F .

Remark 3.5. In the situation of Lemma 3.3 suppose that F corresponds to K. Then
F is exact⇔K is flat over A.
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Remark 3.6. In the situation of Lemma 3.3 suppose that F corresponds to K. Then
F sends finite A-modules to finite B-modules⇔K is finite as a B-module.

Remark 3.7. In the situation of Lemma 3.3 suppose that F corresponds to K. Then
F sends finitely presented A-modules to finitely presented B-modules ⇔ K is finitely
presented as a B-module.

Lemma 3.8. Let A and B be rings. If

F : ModA −→ModB
is an equivalence of categories, then there exists an isomorphism A → B of rings and an
invertible B-module L such that F is isomorphic to the functor M 7→ (M ⊗A B)⊗B L.

Proof. Since an equivalence commutes with all colimits, we see that Lemmas 3.1 ap-
plies. Let K be the A ⊗Z B-module such that F is isomorphic to the functor M 7→
M ⊗A K. Let K ′ be the B ⊗Z A-module such that a quasi-inverse of F is isomorphic to
the functor N 7→ N ⊗B K ′. By Remark 3.4 and Lemma 3.3 we have an isomorphism

ψ : K ⊗B K ′ −→ A

of A⊗Z A-modules. Similarly, we have an isomorphism

ψ′ : K ′ ⊗A K −→ B

of B ⊗Z B-modules. Choose an element ξ =
∑
i=1,...,n xi ⊗ yi ∈ K ⊗B K ′ such that

ψ(ξ) = 1. Consider the isomorphisms

K
ψ−1⊗idK−−−−−−→ K ⊗B K ′ ⊗A K

idK⊗ψ′

−−−−−→ K

The composition is an isomorphism and given by

k 7−→
∑

xiψ
′(yi ⊗ k)

We conclude this automorphism factors as

K → B⊕n → K

as a map of B-modules. It follows that K is finite projective as a B-module.

We claim that K is invertible as a B-module. This is equivalent to asking the rank of
K as a B-module to have the constant value 1, see More on Algebra, Lemma 117.2 and
Algebra, Lemma 78.2. If not, then there exists a maximal ideal m ⊂ B such that either
(a) K ⊗B B/m = 0 or (b) there is a surjection K → (B/m)⊕2 of B-modules. Case (a)
is absurd as K ′ ⊗A K ⊗B N = N for all B-modules N . Case (b) would imply we get a
surjection

A = K ⊗B K ′ −→ (B/m⊗B K ′)⊕2

of (right) A-modules. This is impossible as the target is an A-module which needs at least
two generators: B/m ⊗B K ′ is nonzero as the image of the nonzero module B/m under
the quasi-inverse of F .

SinceK is invertible as aB-module we see that HomB(K,K) = B. SinceK = F (A) the
action of A on K defines a ring isomorphism A→ B. The lemma follows. �

Lemma 3.9. Let R be a ring. Let A and B be R-algebras. If

F : ModA −→ModB
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is an R-linear equivalence of categories, then there exists an isomorphism A → B of R-
algebras and an invertible B-module L such that F is isomorphic to the functor M 7→
(M ⊗A B)⊗B L.

Proof. We getA→ B and L from Lemma 3.8. To finish the proof, we need to show
that theR-linearity of F forcesA→ B to be anR-algebra map. We omit the details. �

Remark 3.10. Let A and B be rings. Let us endow ModA and ModB with the usual
monoidal structure given by tensor products of modules. Let F : ModA → ModB be a
functor of monoidal categories, see Categories, Definition 43.2. Here are some comments:

(1) Since F (A) is a unit (by our definitions) we have F (A) = B.
(2) We obtain a multiplicative map ϕ : A → B by sending a ∈ A to its action on

F (A) = B.
(3) Take A = B and F (M) = M ⊗AM . In this case ϕ(a) = a2.
(4) If F is additive, then ϕ is a ring map.
(5) Take A = B = Z and F (M) = M/torsion. Then ϕ = idZ but F is not the

identity functor.
(6) If F is right exact and commutes with direct sums, then F (M) = M ⊗A,ϕB by

Lemma 3.1.
In other words, ring mapsA→ B are in bijection with isomorphism classes of functors of
monoidal categories ModA →ModB which commute with all colimits.

4. Extending functors on categories of modules

For a ring A let us denote ModfpA the category of finitely presented A-modules.

Lemma 4.1. Let A and B be rings. Let F : ModfpA → ModfpB be a functor. Then
F extends uniquely to a functor F ′ : ModA → ModB which commutes with filtered
colimits.

Proof. Special case of Lemma 2.1. �

Remark 4.2. WithA,B, F , andF ′ as in Lemma 4.1. Observe that the tensor product
of two finitely presented modules is finitely presented, see Algebra, Lemma 12.14. Thus we
may endow ModfpA , ModfpB , ModA, and ModB with the usual monoidal structure given
by tensor products of modules. In this case, if F is a functor of monoidal categories, so
is F ′. This follows immediately from the fact that tensor products of modules commutes
with filtered colimits.

Lemma 4.3. With A, B, F , and F ′ as in Lemma 4.1.
(1) If F is additive, then F ′ is additive and commutes with arbitrary direct sums,

and
(2) if F is right exact, then F ′ is right exact.

Proof. Follows from Lemmas 2.2 and 2.3. �

Remark 4.4. Combining Remarks 3.10 and 4.2 and Lemma 4.3 we find the follow-
ing. Given rings A and B the set of ring maps A → B is in bijection with the set of
isomorphism classes of functors of monoidal categories ModfpA →ModfpB which are right
exact.

Lemma 4.5. With A, B, F , and F ′ as in Lemma 4.1. Assume A is a coherent ring
(Algebra, Definition 90.1). If F is left exact, then F ′ is left exact.
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Proof. Special case of Lemma 2.4. �

For a ring A let us denote ModfgA the category of finitely generated A-modules (AKA
finite A-modules).

Lemma 4.6. LetA andB be Noetherian rings. LetF : ModfgA →ModfgB be a functor.
ThenF extends uniquely to a functorF ′ : ModA →ModB which commutes with filtered
colimits. If F is additive, then F ′ is additive and commutes with arbitrary direct sums. If
F is exact, left exact, or right exact, so is F ′.

Proof. See Lemmas 4.3 and 4.5. Also, use the finiteA-modules are finitely presented
A-modules, see Algebra, Lemma 31.4, and use that Noetherian rings are coherent, see Al-
gebra, Lemma 90.5. �

5. Functors between categories of quasi-coherent modules

In this section we briefly study functors between categories of quasi-coherent modules.

Example 5.1. LetR be a ring. LetX and Y be schemes overRwithX quasi-compact
and quasi-separated. Let K be a quasi-coherent OX×RY -module. Then we can consider
the functor
(5.1.1) F : QCoh(OX) −→ QCoh(OY ), F 7−→ pr2,∗(pr∗

1F ⊗OX×RY
K)

The morphism pr2 is quasi-compact and quasi-separated (Schemes, Lemmas 19.3 and 21.12).
Hence pushforward along this morphism preserves quasi-coherent modules, see Schemes,
Lemma 24.1. Moreover, our functor is R-linear and commutes with arbitrary direct sums,
see Cohomology of Schemes, Lemma 6.1.

The following lemma is a natural generalization of Lemma 3.3.

Lemma 5.2. Let R be a ring. Let X and Y be schemes over R with X affine. There is
an equivalence of categories between

(1) the category of R-linear functors F : QCoh(OX) → QCoh(OY ) which are
right exact and commute with arbitrary direct sums, and

(2) the category QCoh(OX×RY )
given by sending K to the functor F in (5.1.1).

Proof. Let K be an object of QCoh(OX×RY ) and FK the functor (5.1.1). By the
discussion in Example 5.1 we already know thatF isR-linear and commutes with arbitrary
direct sums. Since pr2 : X×RY → Y is affine (Morphisms, Lemma 11.8) the functor pr2,∗
is exact, see Cohomology of Schemes, Lemma 2.3. Hence F is right exact as well, in other
words F is as in (1).
Let F be as in (1). Say X = Spec(A). Consider the quasi-coherent OY -module G =
F (OX). The functor F induces anR-linear mapA→ EndOY

(G), a 7→ F (a · id). Thus G
is a sheaf of modules over

A⊗R OY = pr2,∗OX×RY

By Morphisms, Lemma 11.6 we find that there is a unique quasi-coherent module K on
X ×R Y such that F (OX) = G = pr2,∗K compatible with action of A and OY . Denote
FK the functor given by (5.1.1). There is an equivalence ModA → QCoh(OX) sending
A to OX , see Schemes, Lemma 7.5. Hence we find an isomorphism F ∼= FK by Lemma
2.6 because we have an isomorphism F (OX) ∼= FK(OX) compatible with A-action by
construction.
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This shows that the functor sending K to FK is essentially surjective. We omit the verifi-
cation of fully faithfulness. �

Remark 5.3. Below we will use that for an affine morphism h : T → S we have
h∗G ⊗OS

H = h∗(G ⊗OT
h∗H) for G ∈ QCoh(OT ) andH ∈ QCoh(OS). This follows

immediately on translating into algebra.

Lemma 5.4. In Lemma 5.2 let F correspond to K in QCoh(OX×RY ). We have
(1) If f : X ′ → X is an affine morphism, then F ◦ f∗ corresponds to (f × idY )∗K.
(2) If g : Y ′ → Y is a flat morphism, then g∗ ◦ F corresponds to (idX × g)∗K.
(3) If j : V → Y is an open immersion, then j∗ ◦ F corresponds to K|X×RV .

Proof. Proof of (1). Consider the commutative diagram

X ′ ×R Y
pr′

2

**
f×idY &&

pr′
1

��

X ×R Y pr2
//

pr1

��

Y

X ′ f // X

Let F ′ be a quasi-coherent module on X ′. We have

pr2,∗(pr∗
1f∗F ′ ⊗OX×RY

K) = pr2,∗((f × idY )∗(pr′
1)∗F ′ ⊗OX×RY

K)

= pr2,∗(f × idY )∗

(
(pr′

1)∗F ′ ⊗OX′×RY
(f × idY )∗K)

)
= pr′

2,∗((pr′
1)∗F ′ ⊗OX′×RY

(f × idY )∗K)

Here the first equality is affine base change for the left hand square in the diagram, see
Cohomology of Schemes, Lemma 5.1. The second equality hold by Remark 5.3. The third
equality is functoriality of pushforwards for modules. This proves (1).

Proof of (2). Consider the commutative diagram

X ×R Y ′
pr′

2

//

idX×g

&&

pr′
1

��

Y ′

g

��
X ×R Y pr2

//

pr1

��

Y

X

We have

g∗pr2,∗(pr∗
1F ⊗OX×RY

K) = pr′
2,∗((idX × g)∗(pr∗

1F ⊗OX×RY
K))

= pr′
2,∗((pr′

1)∗F ⊗OX×RY ′ (idX × g)∗K)

The first equality by flat base change for the square in the diagram, see Cohomology of
Schemes, Lemma 5.2. The second equality by functoriality of pullback and the fact that a
pullback of tensor products it the tensor product of the pullbacks.

Part (3) is a special case of (2). �
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Lemma 5.5. Let R be a ring. Let X and Y be schemes over R. Assume X is quasi-
compact with affine diagonal. Let F : QCoh(OX) → QCoh(OY ) be an R-linear, right
exact functor which commutes with arbitrary direct sums. Then we can construct

(1) a quasi-coherent module K on X ×R Y , and
(2) a natural transformation t : F → FK where FK denotes the functor (5.1.1)

such that t : F ◦f∗ → FK ◦f∗ is an isomorphism for every morphism f : X ′ → X whose
source is an affine scheme.

Proof. Consider a morphism f ′ : X ′ → X with X ′ affine. Since the diagonal
of X is affine, we see that f ′ is an affine morphism (Morphisms, Lemma 11.11). Thus
f ′

∗ : QCoh(OX′) → QCoh(OX) is an R-linear exact functor (Cohomology of Schemes,
Lemma 2.3) which commutes with direct sums (Cohomology of Schemes, Lemma 6.1).
ThusF ◦f ′

∗ is anR-linear, right exact functor which commutes with arbitrary direct sums.
WhenceF◦f ′

∗ = FK′ for someK′ onX ′×RY by Lemma 5.2. Moreover, given a morphism
f ′′ : X ′′ → X ′ with X ′′ affine we obtain a canonical identification (f ′′ × idY )∗K′ = K′′

by the references already given combined with Lemma 5.4. These identifications satisfy
a cocycle condition given another morphism f ′′′ : X ′′′ → X ′′ which we leave it to the
reader to spell out.

Choose an affine open covering X =
⋃
i=1,...,n Ui. Since the diagonal of X is affine, we

see that the intersections Ui0...ip = Ui0 ∩ . . . ∩ Uip are affine. As above the inclusion
morphisms ji0...ip : Ui0...ip → X are affine. DenoteKi0...ip the quasi-coherent module on
Ui0...ip×RY corresponding toF ◦ji0...ip∗ as above. By the above we obtain identifications

Ki0...ip = Ki0...̂ij ...ip |Ui0...ip×RY

which satisfy the usual compatibilites for glueing. In other words, we obtain a unique
quasi-coherent module K on X ×R Y whose restriction to Ui0...ip ×R Y is Ki0...ip com-
patible with the displayed identifications.

Next, we construct the transformation t. Given a quasi-coherent OX -module F denote
Fi0...ip the restriction of F to Ui0...ip and denote (pr∗

1F ⊗ K)i0...ip the restriction of
pr∗

1F ⊗K to Ui0...ip ×R Y . Observe that

F (ji0...ip∗Fi0...ip) = pri0...ip,2,∗(pr∗
i0...ip,1Fi0...ip ⊗Ki0...ip)

= pri0...ip,2,∗(pr∗
1F ⊗K)i0...ip

where pri0...ip,2 : Ui0...ip ×R Y → Y is the projection and similarly for the other projec-
tion. Moreover, these identifications are compatible with the displayed identifications in
the previous paragraph. Recall, from Cohomology of Schemes, Lemma 7.1 that the relative
Čech complex⊕

pri0,2,∗(pr∗
1F⊗K)i0 →

⊕
pri0i1,2,∗(pr∗

1F⊗K)i0i1 →
⊕

pri0i1i2,2,∗(pr∗
1F⊗K)i0i1i2 → . . .

computesRpr2,∗(pr∗
1F⊗K). Hence the cohomology sheaf in degree 0 is FK(F). Thus we

obtain the desired map t : F (F)→ FK(F) by contemplating the following commutative
diagram

F (F) //

��

⊕
F (ji0∗Fi0) //

��

⊕
F (ji0i1∗Fi0i1)

��
0 // FK(F) //⊕ pri0,2,∗(pr∗

1F ⊗K)i0 //⊕ pri0i1,2,∗(pr∗
1F ⊗K)i0i1
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We obtain the top row by applying F to the (exact) complex 0 → F →
⊕
ji0∗Fi0 →⊕

ji0i1∗Fi0i1 (but since F is not exact, the top row is just a complex and not necessarily
exact). The solid vertical arrows are the identifications above. This does indeed define the
dotted arrow as desired. The arrow is functorial in F ; we omit the details.

We still have to prove the final assertion. Let f : X ′ → X be as in the statement of
the lemma and let K′ be the quasi-coherent module on X ′ ×R Y constructed in the first
paragraph of the proof. If the morphism f : X ′ → X maps into one of the opens Ui, then
the result follows from Lemma 5.4 because in this case we know thatKi = K|Ui×RY pulls
back to K. In general, we obtain an affine open covering X ′ =

⋃
U ′
i with U ′

i = f−1(Ui)
and we obtain isomorphismsK′|U ′

i
= f∗

i Ki where fi : U ′
i → Ui is the induced morphism.

These morphisms satisfy the compatibility conditions needed to glue to an isomorphism
K′ = f∗K and we conclude. Some details omitted. �

Lemma 5.6. In Lemma 5.2 or in Lemma 5.5 if F is an exact functor, then the corre-
sponding object K of QCoh(OX×RY ) is flat over X .

Proof. We may assumeX is affine, so we are in the case of Lemma 5.2. By Lemma 5.4
we may assume Y is affine. In the affine case the statement translates into Remark 3.5. �

Lemma 5.7. Let R be a ring. Let X and Y be schemes over R. Assume X is quasi-
compact with affine diagonal. There is an equivalence of categories between

(1) the category of R-linear exact functors F : QCoh(OX) → QCoh(OY ) which
commute with arbitrary direct sums, and

(2) the full subcategory of QCoh(OX×RY ) consisting of K such that
(a) K is flat over X ,
(b) for F ∈ QCoh(OX) we have Rqpr2,∗(pr∗

1F ⊗OX×RY
K) = 0 for q > 0.

given by sending K to the functor F in (5.1.1).

Proof. LetK be as in (2). The functor F in (5.1.1) commutes with direct sums. Since
by (1) (a) the modules K is X-flat, we see that given a short exact sequence 0 → F1 →
F2 → F3 → 0 we obtain a short exact sequence

0→ pr∗
1F1 ⊗OX×RY

K → pr∗
1F2 ⊗OX×RY

K → pr∗
1F3 ⊗OX×RY

K → 0

Since by (2)(b) the higher direct image R1pr2,∗ on the first term is zero, we conclude that
0→ F (F1)→ F (F2)→ F (F3)→ 0 is exact and we see that F is as in (1).

Let F be as in (1). Let K and t : F → FK be as in Lemma 5.5. By Lemma 5.6 we see that
K is flat over X . To finish the proof we have to show that t is an isomorphism and the
statement on higher direct images. Both of these follow from the fact that the relative
Čech complex⊕

pri0,2,∗(pr∗
1F⊗K)i0 →

⊕
pri0i1,2,∗(pr∗

1F⊗K)i0i1 →
⊕

pri0i1i2,2,∗(pr∗
1F⊗K)i0i1i2 → . . .

computesRpr2,∗(pr∗
1F⊗K). Please see proof of Lemma 5.5 for notation and for the reason

why this is so. In the proof of Lemma 5.5 we also found that this complex is equal to F
applied to the complex⊕

ji0∗Fi0 →
⊕

ji0i1∗Fi0i1 →
⊕

ji0i1i2∗Fi0i1i2 → . . .

This complex is exact except in degree zero with cohomology sheaf equal to F . Hence
since F is an exact functor we conclude F = FK and that (2)(b) holds.
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We omit the proof that the construction that sendsF toK is functorial and a quasi-inverse
to the functor sending K to the functor FK determined by (5.1.1). �

Remark 5.8. Let R be a ring. Let X and Y be schemes over R. Assume X is quasi-
compact with affine diagonal. Lemma 5.7 may be generalized as follows: the functors
(5.1.1) associated to quasi-coherent modules onX×RY are exactly thoseF : QCoh(OX)→
QCoh(OY ) which have the following properties

(1) F is R-linear and commutes with arbitrary direct sums,
(2) F ◦ j∗ is right exact when j : U → X is the inclusion of an affine open, and
(3) 0 → F (F) → F (G) → F (H) is exact whenever 0 → F → G → H → 0 is an

exact sequence such that for all x ∈ X the sequence on stalks 0→ Fx → Gx →
Hx → 0 is a split short exact sequence.

Namely, these assumptions are enough to get construct a transformation t : F → FK as in
Lemma 5.5 and to show that it is an isomorphism. Moreover, properties (1), (2), and (3) do
hold for functors (5.1.1). If we ever need this we will carefully state and prove this here.

Lemma 5.9. Let R be a ring. Let X , Y , Z be schemes over R. Assume X and Y are
quasi-compact and have affine diagonal. Let

F : QCoh(OX)→ QCoh(OY ) and G : QCoh(OY )→ QCoh(OZ)

beR-linear exact functors which commute with arbitrary direct sums. LetK in QCoh(OX×RY )
and L in QCoh(OY×RZ) be the corresponding “kernels”, see Lemma 5.7. ThenG◦F cor-
responds to pr13,∗(pr∗

12K ⊗OX×RY×RZ
pr∗

23L) in QCoh(OX×RZ).

Proof. Since G ◦ F : QCoh(OX) → QCoh(OZ) is R-linear, exact, and commutes
with arbitrary direct sums, we find by Lemma 5.7 that there exists anM in QCoh(OX×RZ)
corresponding toG◦F . On the other hand, denote E = pr13,∗(pr∗

12K⊗pr∗
23L). Here and

in the rest of the proof we omit the subscript from the tensor products. Let U ⊂ X and
W ⊂ Z be affine open subschemes. To prove the lemma, we will construct an isomorphism

Γ(U ×RW, E) ∼= Γ(U ×RW,M)

compatible with restriction mappings for varying U and W .

First, we observe that

Γ(U ×RW, E) = Γ(U ×R Y ×RW, pr∗
12K ⊗ pr∗

23L)

by construction. Thus we have to show that the same thing is true forM.

Write U = Spec(A) and denote j : U → X the inclusion morphism. Recall from the
construction ofM in the proof of Lemma 5.2 that

Γ(U ×RW,M) = Γ(W,G(F (j∗OU )))

where the A-module action on the right hand side is given by the action of A on OU .
The correspondence between F and K tells us that F (j∗OU ) = b∗(a∗j∗OU ⊗ K) where
a : X×R Y → X and b : X×R Y → Y are the projection morphisms. Since j is an affine
morphism, we have a∗j∗OU = (j × idY )∗OU×RY by Cohomology of Schemes, Lemma
5.1. Next, we have (j × idY )∗OU×RY ⊗ K = (j × idY )∗K|U×RY by Remark 5.3 for
example. Putting what we have found together we find

F (j∗OU ) = (U ×R Y → Y )∗K|U×RY
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with obvious A-action. (This formula is implicit in the proof of Lemma 5.2.) Applying
the functor G we obtain

G(F (j∗OU )) = t∗(s∗((U ×R Y → Y )∗K|U×RY )⊗ L)

where s : Y ×R Z → Y and t : Y ×R Z → Z are the projection morphisms. Again using
affine base change (Cohomology of Schemes, Lemma 5.1) but this time for the square

U ×R Y ×R Z //

��

U ×R Y

��
Y ×R Z // Y

we obtain

s∗((U ×R Y → Y )∗K|U×RY ) = (U ×R Y ×R Z → Y ×R Z)∗pr∗
12K|U×RY×RZ

Using Remark 5.3 again we find

(U ×R Y ×R Z → Y ×R Z)∗pr∗
12K|U×RY×RZ ⊗ L

= (U ×R Y ×R Z → Y ×R Z)∗
(
pr∗

12K ⊗ pr∗
23L
)
|U×RY×RZ

Applying the functor Γ(W, t∗(−)) = Γ(Y ×RW,−) to this we obtain

Γ(U ×RW,M) = Γ(W,G(F (j∗OU )))
= Γ(Y ×RW, (U ×R Y ×R Z → Y ×R Z)∗(pr∗

12K ⊗ pr∗
23L)|U×RY×RZ)

= Γ(U ×R Y ×RW, pr∗
12K ⊗ pr∗

23L)

as desired. We omit the verication that these isomorphisms are compatible with restriction
mappings. �

Lemma 5.10. Let R, X , Y , and K be as in Lemma 5.7 part (2). Then for any scheme
T over R we have

Rqpr13,∗(pr∗
12F ⊗OT×RX×RY

pr∗
23K) = 0

for F quasi-coherent on T ×R X and q > 0.

Proof. The question is local on T hence we may assume T is affine. In this case we
can consider the diagram

T ×R X

��

T ×R X ×R Y

��

oo // T ×R Y

��
X X ×R Yoo // Y

whose vertical arrows are affine. In particular the pushforward along T ×R Y → Y is
faithful and exact (Cohomology of Schemes, Lemma 2.3 and Morphisms, Lemma 11.6).
Chasing around in the diagram using that higher direct images along affine morphisms
vanish (see reference above) we see that it suffices to prove

Rqpr2,∗(pr23,∗(pr∗
12F ⊗OT×RX×RY

pr∗
23K)) = Rqpr2,∗(pr23,∗(pr∗

12F)⊗OX×RY
K))

is zero which is true by assumption on K. The equality holds by Remark 5.3. �

Lemma 5.11. In Lemma 5.7 let F and K correspond. If X is separated and flat over
R, then there is a surjectionOX � F (OX)→ K.
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Proof. Let ∆ : X → X ×R X be the diagonal morphism and set O∆ = ∆∗OX .
Since ∆ is a closed immersion have a short exact sequence

0→ I → OX×RX → O∆ → 0
Since K is flat over X , the pullback pr∗

23K to X ×R X ×R Y is flat over X ×R X . We
obtain a short exact sequence

0→ pr∗
12I ⊗ pr∗

23K → pr∗
23K → pr∗

12O∆ ⊗ pr∗
23K → 0

onX×RX×R Y , see Modules, Lemma 20.4. Thus, by Lemma 5.10 we obtain a surjection
pr13,∗(pr∗

23K)→ pr13,∗(pr∗
12O∆ ⊗ pr∗

23K)

By flat base change (Cohomology of Schemes, Lemma 5.2) the source of this arrow is equal
to pr∗

2pr2,∗K = OX � F (OX). On the other hand the target is equal to

pr13,∗(pr∗
12O∆ ⊗ pr∗

23K) = pr13,∗(∆× idY )∗K = K
which finishes the proof. The first equality holds for example by Cohomology, Lemma
54.4 and the fact that pr∗

12O∆ = (∆× idY )∗OX×RY . �

6. Gabriel-Rosenberg reconstruction

The title of this section refers to results like Proposition 6.6. Besides Gabriel’s original
paper [?], please consult [?] which has a proof of the result for quasi-separated schemes
and discusses the literature. In this section we will only prove Gabriel-Rosenberg recon-
struction for quasi-compact and quasi-separated schemes.

Lemma 6.1. Let X be a quasi-compact and quasi-separated scheme. Let F be a quasi-
coherentOX -module. ThenF is a categorically compact object of QCoh(OX) if and only
if F is of finite presentation.

Proof. See Categories, Definition 26.1 for our notion of categorically compact ob-
jects in a category. If F is of finite presentation then it is categorically compact by Mod-
ules, Lemma 22.8. Conversely, any quasi-coherent module F can be written as a filtered
colimitF = colimFi of finitely presented (hence quasi-coherent)OX -modules, see Prop-
erties, Lemma 22.7. If F is categorically compact, then we find some i and a morphism
F → Fi which is a right inverse to the given map Fi → F . We conclude that F is a
direct summand of a finitely presented module, and hence finitely presented itself. �

Lemma 6.2. Let X be an affine scheme. Let F be a finitely presented OX -module.
Let E be a nonzero quasi-coherent OX -module. If Supp(E) ⊂ Supp(F), then there exists
a nonzero map F → E .

Proof. Let us translate the statement into algebra. LetA be a ring. LetM be a finitely
presented A-module. Let N be a nonzero A-module. Assume Supp(N) ⊂ Supp(M). To
show: HomA(M,N) is nonzero. We may assume N = A/I is cyclic (replace N by any
nonzero cyclic submodule). Choose a presentation

A⊕m T−→ A⊕n →M → 0
Recall that Supp(M) is cut out by Fit0(M) which is the ideal generated by the n × n
minors of the matrix T . See More on Algebra, Lemma 8.4. The assumption Supp(N) ⊂
Supp(M) now means that the elements of Fit0(M) are nilpotent in A/I . Consider the
exact sequence

0→ HomA(M,A/I)→ (A/I)⊕n T t−→ (A/I)⊕m
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We have to show that T t cannot be injective; we urge the reader to find their own proof of
this using the nilpotency of elements of Fit0(M) inA/I . Here is our proof. Since Fit0(M)
is finitely generated, the nilpotency means that the annihilator J ⊂ A/I of Fit0(M) in
A/I is nonzero. To show the non-injectivity of T t we may localize at a prime. Choosing
a suitable prime we may assume A is local and J is still nonzero. Then T t has a nonzero
kernel by More on Algebra, Lemma 15.6. �

Lemma 6.3. LetX be a quasi-compact and quasi-separated scheme. LetF be a finitely
presentedOX -module. The following two subcategories of QCoh(OX) are equal

(1) the full subcategoryA ⊂ QCoh(OX) whose objects are the quasi-coherent mod-
ules whose support is (set theoretically) contained in Supp(F),

(2) the smallest Serre subcategory B ⊂ QCoh(OX) containing F closed under ex-
tensions and arbitrary direct sums.

Proof. Observe that the statement makes sense as finitely presentedOX -modules are
quasi-coherent. SinceA is a Serre subcategory closed under extensions and direct sums and
since F is an object ofA we see that B ⊂ A. Thus it remains to show thatA is contained
in B.

Let E be an object ofA. There exists a maximal submodule E ′ ⊂ E which is in B. Namely,
suppose Ei ⊂ E , i ∈ I is the set of subobjects which are objects of B. Then

⊕
Ei is in B

and so is
E ′ = Im(

⊕
Ei −→ E)

This is clearly the maximal submodule we were looking for.

Now suppose that we have a nonzero map G → E/E ′ with G in B. Then G′ = E ×E/E′ G
is in B as an extension of E ′ and G. Then the image G′ → E would be strictly bigger than
E ′, contradicting the maximality of E ′. Thus it suffices to show the claim in the following
paragraph.

Let E be an nonzero object of A. We claim that there is a nonzero map G → E with G
in B. We will prove this by induction on the minimal number n of affine opens Ui of X
such that Supp(E) ⊂ U1 ∪ . . . ∪ Un. Set U = Un and denote j : U → X the inclusion
morphism. Denote E ′ = Im(E → j∗E|U ). Then the kernel E ′′ of the surjection E → E ′

has support contained in U1 ∪ . . . ∪ Un−1. Thus if E ′′ is nonzero, then we win. In other
words, we may assume that E ⊂ j∗E|U . In particular, we see that E|U is nonzero. By
Lemma 6.2 there exists a nonzero map F|U → E|U . This corresponds to a map

ϕ : F −→ j∗(E|U )
whose restriction to U is nonzero. Setting G = ϕ−1(E) we conclude. �

Lemma 6.4. Let X be a quasi-compact and quasi-separated scheme. Let Z ⊂ X be
a closed subset such that U = X \ Z is quasi-compact. Let A ⊂ QCoh(OX) be the
full subcategory whose objects are the quasi-coherent modules supported on Z. Then the
restriction functor QCoh(OX)→ QCoh(OU ) induces an equivalence QCoh(OX)/A ∼=
QCoh(OU ).

Proof. By the universal property of the quotient construction (Homology, Lemma
10.6) we certainly obtain an induced functor QCoh(OX)/A ∼= QCoh(OU ). Denote j :
U → X the inclusion morphism. Since j is quasi-compact and quasi-separated we obtain
a functor j∗ : QCoh(OU ) → QCoh(OX). The reader shows that this defines a quasi-
inverse; details omitted. �
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Lemma 6.5. Let X be a quasi-compact and quasi-separated scheme. If QCoh(OX) is
equivalent to the category of modules over a ring, then X is affine.

Proof. Say F : ModR → QCoh(OX) is an equivalence. Then F = F (R) has the
following properties:

(1) it is a finitely presentedOX -module (Lemma 6.1),
(2) HomX(F ,−) is exact,
(3) HomX(F ,F) is a commutative ring,
(4) every object of QCoh(OX) is a quotient of a direct sum of copies of F .

Let x ∈ X be a closed point. Consider the surjection
OX → i∗κ(x)

where the target is the pushforward of κ(x) by the inclusion morphism i : x → X . We
have

HomX(F , i∗κ(x)) = HomOX,x
(Fx, κ(x))

This first by (4) implies thatFx is nonzero. From (2) we deduce that every mapFx → κ(x)
lifts to a map Fx → OX,x (as it even lifts to a global map F → OX ). Since Fx is a finite
OX,x-module, this implies that Fx is a (nonzero) finite free OX,x-module. Then since
F is of finite presentation, this implies that F is finite free of positive rank in an open
neighbourhood of x (Modules, Lemma 11.6). Since every closed subset of X contains a
closed point (Topology, Lemma 12.8) this implies that F is finite locally free of positive
rank. Similarly, the map

HomX(F ,F)→ HomX(F , i∗i∗F) = Homκ(x)(Fx/mxFx,Fx/mxFx)
is surjective. By property (3) we conclude that the rank Fx must be 1. Hence F is an
invertibleOX -module. But then we conclude that the functor

H 7−→ Γ(X,H) = HomX(OX ,H) = HomX(F ,H⊗OX
F)

on QCoh(OX) is exact too. This implies that the first Ext group

Ext1
QCoh(OX)(OX ,H) = 0

computed in the abelian category QCoh(OX) vanishes for all H in QCoh(OX). How-
ever, since QCoh(OX) ⊂ Mod(OX) is closed under extensions (Schemes, Section 24) we
see that Ext1 between quasi-coherent modules computed in QCoh(OX) is the same as
computed in Mod(OX). Hence we conclude that

H1(X,H) = Ext1
Mod(OX)(OX ,H) = 0

for all H in QCoh(OX). This implies that X is affine for example by Cohomology of
Schemes, Lemma 3.1. �

Proposition 6.6. Let X and Y be quasi-compact and quasi-separated schemes. If
F : QCoh(OX) → QCoh(OY ) is an equivalence, then there exists an isomorphism f :
Y → X of schemes and an invertibleOY -module L such that F (F) = f∗F ⊗ L.

Proof. Of course F is additive, exact, commutes with all limits, commutes with all
colimits, commutes with direct sums, etc. LetU ⊂ X be an affine open subscheme. Let I ⊂
OX be a finite type quasi-coherent sheaf of ideals such that Z = V (I) is the complement
of U in X , see Properties, Lemma 24.1. Then OX/I is a finitely presented OX -module.
Hence G = F (OX/I) is a finitely presented OY -module by Lemma 6.1. Denote T ⊂ Y
the support of G and set V = Y \ T . Since G is of finite presentation, the scheme V is a
quasi-compact open of Y . By Lemma 6.3 we see that F induces an equivalence between
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(1) the full subcategory of QCoh(OX) consisting of modules supported on Z , and
(2) the full subcategory of QCoh(OY ) consisting of modules supported on T .

By Lemma 6.4 we obtain a commutative diagram

QCoh(OX)
F
//

��

QCoh(OY )

��
QCoh(OU ) FU // QCoh(OV )

where the vertical arrows are the restruction functors and the horizontal arrows are equiv-
alences. By Lemma 6.5 we conclude that V is affine. For the affine case we have Lemma
3.8. Thus we find that there is an isomorphism fU : V → U and an invertibleOV -module
LU such that FU is the functor F 7→ f∗

UF ⊗ LU .
The proof can be finished by noticing that the diagrams above satisfy an obvious compati-
bility with regards to inclusions of affine open subschemes of X . Thus the morphisms fU
and the invertible modules LU glue. We omit the details. �

7. Functors between categories of coherent modules

The following lemma guarantees that we can use the material on functors between cate-
gories of quasi-coherent modules when we are given a functor between categories of co-
herent modules.

Lemma 7.1. LetX and Y be Noetherian schemes. Let F : Coh(OX)→ Coh(OY ) be
a functor. Then F extends uniquely to a functor QCoh(OX)→ QCoh(OY ) which com-
mutes with filtered colimits. If F is additive, then its extension commutes with arbitrary
direct sums. If F is exact, left exact, or right exact, so is its extension.

Proof. The existence and uniqueness of the extension is a general fact, see Categories,
Lemma 26.2. To see that the lemma applies observe that coherent modules are of finite
presentation (Modules, Lemma 12.2) and hence categorically compact objects of Mod(OX)
by Modules, Lemma 22.8. Finally, every quasi-coherent module is a filtered colimit of
coherent ones for example by Properties, Lemma 22.3.
AssumeF is additive. IfF =

⊕
j∈J Hj withHj quasi-coherent, thenF = colimJ′⊂J finite

⊕
j∈J′ Hj .

Denoting the extension of F also by F we obtain

F (F) = colimJ′⊂J finite F (
⊕

j∈J′
Hj)

= colimJ′⊂J finite
⊕

j∈J′
F (Hj)

=
⊕

j∈J
F (Hj)

Thus F commutes with arbitrary direct sums.
Suppose 0 → F → F ′ → F ′′ → 0 is a short exact sequence of quasi-coherent OX -
modules. Then we write F ′ =

⋃
F ′
i as the union of its coherent submodules, see Prop-

erties, Lemma 22.3. Denote F ′′
i ⊂ F ′′ the image of F ′

i and denote Fi = F ∩ F ′
i =

Ker(F ′
i → F ′′

i ). Then it is clear that F =
⋃
Fi and F ′′ =

⋃
F ′′
i and that we have short

exact sequences
0→ Fi → F ′

i → F ′′
i → 0

Since the extension commutes with filtered colimits we have F (F) = colimi∈I F (Fi),
F (F ′) = colimi∈I F (F ′

i), and F (F ′′) = colimi∈I F (F ′′
i ). Since filtered colimits are
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exact (Modules, Lemma 3.2) we conclude that exactness properties of F are inherited by
its extension. �

Lemma 7.2. LetX and Y be Noetherian schemes. Let F : Coh(OX)→ Coh(OY ) be
an equivalence of categories. Then there is an isomorphism f : Y → X and an invertible
OY -module L such that F (F) = f∗F ⊗ L.

Proof. By Lemma 7.1 we obtain a unique functor F ′ : QCoh(OX) → QCoh(OY )
extending F . The same is true for the quasi-inverse of F and by the uniqueness we con-
clude that F ′ is an equivalence. By Proposition 6.6 we find an isomorphism f : Y → X
and an invertibleOY -module L such that F ′(F) = f∗F ⊗ L. Then f and L work for F
as well. �

Remark 7.3. In Lemma 7.2 if X and Y are defined over a common base ring R and
F is R-linear, then the isomorphism f will be a morphism of schemes over R.

Lemma 7.4. Let f : V → X be a quasi-finite separated morphism of Noetherian
schemes. If there exists a coherent OV -module K whose support is V such that f∗K is
coherent and Rqf∗K = 0, then f is finite.

Proof. By Zariski’s main theorem we can find an open immersion j : V → Y over
X with π : Y → X finite, see More on Morphisms, Lemma 43.3. Since π is affine the
functor π∗ is exact and faithful on the category of coherent OX -modules. Hence we see
that j∗K is coherent and that Rqj∗K is zero for q > 0. In other words, we reduce to the
case discussed in the next paragraph.

Assume f is an open immersion. We may replace X by the scheme theoretic closure of
V . Assume X \ V is nonempty to get a contradiction. Choose a generic point ξ ∈ X \ V
of an irreducible component of X \ V . Looking at the situation after base change by
Spec(OX,ξ) → X using flat base change and using Local Cohomology, Lemma 8.2 we
reduce to the algebra problem discussed in the next paragraph.

Let (A,m) be a Noetherian local ring. Let M be a finite A-module whose support is
Spec(A). Then Hi

m(M) 6= 0 for some i. This is true by Dualizing Complexes, Lemma
11.1 and the fact that M is not zero hence has finite depth. �

The next lemma can be generalized to the case where k is a Noetherian ring and X flat
over k (all other assumptions stay the same).

Lemma 7.5. Let k be a field. LetX , Y be finite type schemes over k withX separated.
There is an equivalence of categories between

(1) the category of k-linear exact functors F : Coh(OX)→ Coh(OY ), and
(2) the category of coherentOX×Y -modulesK which are flat overX and have sup-

port finite over Y
given by sending K to the restriction of the functor (5.1.1) to Coh(OX).

Proof. Let K be as in (2). By Lemma 5.7 the functor F given by (5.1.1) is exact and
k-linear. Moreover, F sends Coh(OX) into Coh(OY ) for example by Cohomology of
Schemes, Lemma 26.10.

Let us construct the quasi-inverse to the construction. Let F be as in (1). By Lemma 7.1
we can extend F to a k-linear exact functor on the categories of quasi-coherent modules
which commutes with arbitrary direct sums. By Lemma 5.7 the extension corresponds to
a unique quasi-coherent module K, flat over X , such that Rqpr2,∗(pr∗

1F ⊗OX×Y K) = 0
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for q > 0 for all quasi-coherent OX -modules F . Since F (OX) is a coherent OY -module,
we conclude from Lemma 5.11 that K is coherent.

For a closed point x ∈ X denoteOx the skyscraper sheaf at x with value the residue field
of x. We have

F (Ox) = pr2,∗(pr∗
1Ox ⊗K) = (x× Y → Y )∗(K|x×Y )

Since x × Y → Y is finite, we see that the pushforward along this morphism is faithful.
Hence if y ∈ Y is in the image of the support ofK|x×Y , then y is in the support of F (Ox).

Let Z ⊂ X × Y be the scheme theoretic support Z of K, see Morphisms, Definition 5.5.
We first prove that Z → Y is quasi-finite, by proving that its fibres over closed points
are finite. Namely, if the fibre of Z → Y over a closed point y ∈ Y has dimension > 0,
then we can find infinitely many pairwise distinct closed points x1, x2, . . . in the image of
Zy → X . Since we have a surjectionOX →

⊕
i=1,...,nOxi we obtain a surjection

F (OX)→
⊕

i=1,...,n
F (Oxi)

By what we said above, the point y is in the support of each of the coherent modules
F (Oxi). Since F (OX) is a coherent module, this will lead to a contradiction because the
stalk ofF (OX) at y will be generated by< n elements if n is large enough. HenceZ → Y
is quasi-finite. Since pr2,∗K is coherent and Rqpr2,∗K = 0 for q > 0 we conclude that
Z → Y is finite by Lemma 7.4. �

Lemma 7.6. Let f : X → Y be a finite type separated morphism of schemes. LetF be
a finite type quasi-coherent module on X with support finite over Y and with L = f∗F
an invertibleOX -module. Then there exists a section s : Y → X such that F ∼= s∗L.

Proof. Looking affine locally this translates into the following algebra problem. Let
A→ B be a ring map and letN be aB-module which is invertible as anA-module. Then
the annihilator J ofN inB has the property thatA→ B/J is an isomorphism. We omit
the details. �

Lemma 7.7. Let f : X → Y be a finite type separated morphism of schemes with a
section s : Y → X . Let F be a finite type quasi-coherent module on X , set theoretically
supported on s(Y ) with L = f∗F an invertible OX -module. If Y is reduced, then F ∼=
s∗L.

Proof. By Lemma 7.6 there exists a section s′ : Y → X such that F = s′
∗L. Since

s′(Y ) and s(Y ) have the same underlying closed subset and since both are reduced closed
subschemes of X , they have to be equal. Hence s = s′ and the lemma holds. �

Lemma 7.8. Let k be a field. LetX , Y be finite type schemes over k withX separated
and Y reduced. If there is a k-linear equivalenceF : Coh(OX)→ Coh(OY ) of categories,
then there is an isomorphism f : Y → X over k and an invertible OY -module L such
that F (F) = f∗F ⊗ L.

Proof using Gabriel-Rosenberg reconstruction. This lemma is a weak form
of the results discussed in Lemma 7.2 and Remark 7.3. �

Proof not relying on Gabriel-Rosenberg reconstruction. By Lemma 7.5 we
obtain a coherent OX×Y -module K which is flat over X with support finite over Y such
that F is given by the restriction of the functor (5.1.1) to Coh(OX). If we can show that
F (OX) is an invertible OY -module, then by Lemma 7.6 we see that K = s∗L for some
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section s : Y → X × Y of pr2 and some invertibleOY -module L. This will show that F
has the form indicated with f = pr1 ◦ s. Some details omitted.
It remains to show that F (OX) is invertible. We only sketch the proof and we omit some
of the details. For a closed point x ∈ X we denoteOx in Coh(OX) the skyscraper sheaf at
xwith value κ(x). First we observe that the only simple objects of the category Coh(OX)
are these skyscraper sheaves Ox. The same is true for Y . Hence for every closed point
y ∈ Y there exists a closed point x ∈ X such that Oy ∼= F (Ox). Moreover, looking at
endomorphisms we find that κ(x) ∼= κ(y) as finite extensions of k. Then

HomY (F (OX),Oy) ∼= HomY (F (OX), F (Ox)) ∼= HomX(OX ,Ox) ∼= κ(x) ∼= κ(y)
This implies that the stalk of the coherentOY -module F (OX) at y ∈ Y can be generated
by 1 generator (and no less) for each closed point y ∈ Y . It follows immediately that
F (OX) is locally generated by 1 element (and no less) and since Y is reduced this indeed
tells us it is an invertible module. �
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CHAPTER 57

Derived Categories of Varieties

1. Introduction

In this chapter we continue the discussion started in Derived Categories of Schemes, Sec-
tion 1. We will discuss Fourier-Mukai transforms, first studied by Mukai in [?]. We will
prove Orlov’s theorem on derived equivalences ([?]). We also discuss the countability of
derived equivalence classes proved by Anel and Toën in [?].

A good introduction to this material is the book [?] by Daniel Huybrechts. Some other
papers which helped popularize this topic are

(1) the paper by Bondal and Kapranov, see [?]
(2) the paper by Bondal and Orlov, see [?]
(3) the paper by Bondal and Van den Bergh, see [?]
(4) the papers by Beilinson, see [?] and [?]
(5) the paper by Orlov, see [?]
(6) the paper by Orlov, see [?]
(7) the paper by Rouquier, see [?]
(8) there are many more we could mention here.

2. Conventions and notation

Let k be a field. A k-linear triangulated category T is a triangulated category (Derived
Categories, Section 3) which is endowed with a k-linear structure (Differential Graded
Algebra, Section 24) such that the translation functors [n] : T → T are k-linear for all
n ∈ Z.

Let k be a field. We denote Vectk the category of k-vector spaces. For a k-vector space V
we denote V ∨ the k-linear dual of V , i.e., V ∨ = Homk(V, k).

Let X be a scheme. We denote Dperf (OX) the full subcategory of D(OX) consisting
of perfect complexes (Cohomology, Section 49). If X is Noetherian then Dperf (OX) ⊂
Db

Coh(OX), see Derived Categories of Schemes, Lemma 11.6. If X is Noetherian and regu-
lar, then Dperf (OX) = Db

Coh(OX), see Derived Categories of Schemes, Lemma 11.8.

Let k be a field. Let X and Y be schemes over k. In this situation we will write X × Y
instead of X ×Spec(k) Y .

Let S be a scheme. Let X , Y be schemes over S. Let F be a OX -module and let G be a
OY -module. We set

F � G = pr∗
1F ⊗OX×SY

pr∗
2G

asOX×SY -modules. If K ∈ D(OX) and M ∈ D(OY ) then we set

K �M = Lpr∗
1K ⊗

L
OX×SY

Lpr∗
2M

4515
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as an object of D(OX×SY ). Thus our notation is potentially ambiguous, but context
should make it clear which of the two is meant.

3. Serre functors

The material in this section is taken from [?].
Lemma 3.1. Let k be a field. Let T be a k-linear triangulated category such that

dimk HomT (X,Y ) <∞ for all X,Y ∈ Ob(T ). The following are equivalent
(1) there exists a k-linear equivalence S : T → T and k-linear isomorphisms cX,Y :

HomT (X,Y )→ HomT (Y, S(X))∨ functorial in X,Y ∈ Ob(T ),
(2) for everyX ∈ Ob(T ) the functor Y 7→ HomT (X,Y )∨ is representable and the

functor Y 7→ HomT (Y,X)∨ is corepresentable.
Proof. Condition (1) implies (2) since given (S, c) andX ∈ Ob(T ) the object S(X)

represents the functor Y 7→ HomT (X,Y )∨ and the objectS−1(X) corepresents the func-
tor Y 7→ HomT (Y,X)∨.
Assume (2). We will repeatedly use the Yoneda lemma, see Categories, Lemma 3.5. For
every X denote S(X) the object representing the functor Y 7→ HomT (X,Y )∨. Given
ϕ : X → X ′, we obtain a unique arrow S(ϕ) : S(X) → S(X ′) determined by the
corresponding transformation of functors HomT (X,−)∨ → HomT (X ′,−)∨. Thus S
is a functor and we obtain the isomorphisms cX,Y by construction. It remains to show
that S is an equivalence. For everyX denote S′(X) the object corepresenting the functor
Y 7→ HomT (Y,X)∨. Arguing as above we find that S′ is a functor. We claim that S′ is
quasi-inverse to S. To see this observe that

HomT (X,Y ) = HomT (Y, S(X))∨ = HomT (S′(S(X)), Y )
bifunctorially, i.e., we find S′ ◦ S ∼= idT . Similarly, we have

HomT (Y,X) = HomT (S′(X), Y )∨ = HomT (Y, S(S′(X)))
and we find S ◦ S′ ∼= idT . �

Definition 3.2. Let k be a field. Let T be a k-linear triangulated category such that
dimk HomT (X,Y ) < ∞ for all X,Y ∈ Ob(T ). We say a Serre functor exists if the
equivalent conditions of Lemma 3.1 are satisfied. In this case a Serre functor is a k-linear
equivalence S : T → T endowed with k-linear isomorphisms cX,Y : HomT (X,Y ) →
HomT (Y, S(X))∨ functorial in X,Y ∈ Ob(T ).

Lemma 3.3. In the situation of Definition 3.2. If a Serre functor exists, then it is
unique up to unique isomorphism and it is an exact functor of triangulated categories.

Proof. Given a Serre functorS the objectS(X) represents the functorY 7→ HomT (X,Y )∨.
Thus the objectS(X) together with the functorial identification HomT (X,Y )∨ = HomT (Y, S(X))
is determined up to unique isomorphism by the Yoneda lemma (Categories, Lemma 3.5).
Moreover, for ϕ : X → X ′, the arrow S(ϕ) : S(X)→ S(X ′) is uniquely determined by
the corresponding transformation of functors HomT (X,−)∨ → HomT (X ′,−)∨.
For objects X,Y of T we have

Hom(Y, S(X)[1])∨ = Hom(Y [−1], S(X))∨

= Hom(X,Y [−1])
= Hom(X[1], Y )
= Hom(Y, S(X[1]))∨
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By the Yoneda lemma we conclude that there is a unique isomorphismS(X[1])→ S(X)[1]
inducing the isomorphism from top left to bottom right. Since each of the isomorphisms
above is functorial in both X and Y we find that this defines an isomorphism of functors
S ◦ [1]→ [1] ◦ S.

Let (A,B,C, f, g, h) be a distinguished triangle in T . We have to show that the triangle
(S(A), S(B), S(C), S(f), S(g), S(h)) is distinguished. Here we use the canonical iso-
morphism S(A[1]) → S(A)[1] constructed above to identify the target S(A[1]) of S(h)
withS(A)[1]. We first observe that for anyX inT the triangle (S(A), S(B), S(C), S(f), S(g), S(h))
induces a long exact sequence

. . .→ Hom(X,S(A))→ Hom(X,S(B))→ Hom(X,S(C))→ Hom(X,S(A)[1])→ . . .

of finite dimensional k-vector spaces. Namely, this sequence is k-linear dual of the se-
quence

. . .← Hom(A,X)← Hom(B,X)← Hom(C,X)← Hom(A[1], X)← . . .

which is exact by Derived Categories, Lemma 4.2. Next, we choose a distinguished trian-
gle (S(A), E, S(C), i, p, S(h)) which is possible by axioms TR1 and TR2. We want to
construct the dotted arrow making following diagram commute

S(C)[−1]
S(h[−1])

// S(A)
S(f)
// S(B)

S(g)
// S(C)

S(h)
// S(A)[1]

S(C)[−1]
S(h[−1])// S(A) i // E

p //

ϕ

OO

S(C)
S(h) // S(A)[1]

Namely, if we haveϕ, then we claim for anyX the resulting map Hom(X,E)→ Hom(X,S(B))
will be an isomorphism of k-vector spaces. Namely, we will obtain a commutative diagram

Hom(X,S(C)[−1]) // Hom(X,S(A)) // Hom(X,S(B)) // Hom(X,S(C)) // Hom(X,S(A)[1])

Hom(X,S(C)[−1]) // Hom(X,S(A)) // Hom(X,E) //

ϕ

OO

Hom(X,S(C)) // Hom(X,S(A)[1])

with exact rows (see above) and we can apply the 5 lemma (Homology, Lemma 5.20) to see
that the middle arrow is an isomorphism. By the Yoneda lemma we conclude that ϕ is an
isomorphism. To find ϕ consider the following diagram

Hom(E,S(C)) // Hom(S(A), S(C))

Hom(E,S(B))

OO

// Hom(S(A), S(B))

OO

The elements p and S(f) in positions (0, 1) and (1, 0) define a cohomology class ξ in the
total complex of this double complex. The existence of ϕ is equivalent to whether ξ is
zero. If we take k-linear duals of this and we use the defining property of S we obtain

Hom(C,E)

��

Hom(C,S(A))oo

��
Hom(B,E) Hom(B,S(A))oo
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Since bothA→ B → C andS(A)→ E → S(C) are distinguished triangles, we know by
TR3 that given elements α ∈ Hom(C,E) and β ∈ Hom(B,S(A)) mapping to the same
element in Hom(B,E), there exists an element in Hom(C,S(A)) mapping to both α and
β. In other words, the cohomology of the total complex associated to this double complex
is zero in degree 1, i.e., the degree corresponding to Hom(C,E)⊕Hom(B,S(A)). Taking
duals the same must be true for the previous one which concludes the proof. �

4. Examples of Serre functors

The lemma below is the standard example.

Lemma 4.1. Let k be a field. Let X be a proper scheme over k which is Gorenstein.
Consider the complex ω•

X of Duality for Schemes, Lemmas 27.1. Then the functor

S : Dperf (OX) −→ Dperf (OX), K 7−→ S(K) = ω•
X ⊗L

OX
K

is a Serre functor.

Proof. The statement make sense because dim HomX(K,L) <∞ forK,L ∈ Dperf (OX)
by Derived Categories of Schemes, Lemma 11.7. SinceX is Gorenstein the dualizing com-
plex ω•

X is an invertible object ofD(OX), see Duality for Schemes, Lemma 24.4. In partic-
ular, locally onX the complex ω•

X has one nonzero cohomology sheaf which is an invert-
ible module, see Cohomology, Lemma 52.2. Thus S(K) lies in Dperf (OX). On the other
hand, the invertibility of ω•

X clearly implies that S is a self-equivalence of Dperf (OX).
Finally, we have to find an isomorphism

cK,L : HomX(K,L) −→ HomX(L, ω•
X ⊗L

OX
K)∨

bifunctorially in K,L. To do this we use the canonical isomorphisms

HomX(K,L) = H0(X,L⊗L
OX

K∨)

and
HomX(L, ω•

X ⊗L
OX

K) = H0(X,ω•
X ⊗L

OX
K ⊗L

OX
L∨)

given in Cohomology, Lemma 50.5. Since (L ⊗L
OX

K∨)∨ = (K∨)∨ ⊗L
OX

L∨ and since
there is a canonical isomorphism K → (K∨)∨ we find these k-vector spaces are canon-
ically dual by Duality for Schemes, Lemma 27.4. This produces the isomorphisms cK,L.
We omit the proof that these isomorphisms are functorial. �

5. Characterizing coherent modules

This section is in some sense a continuation of the discussion in Derived Categories of
Schemes, Section 34 and More on Morphisms, Section 69.

Before we can state the result we need some notation. Let k be a field. Let n ≥ 0 be
an integer. Let S = k[X0, . . . , Xn]. For an integer e denote Se ⊂ S the homogeneous
polynomials of degree e. Consider the (noncommutative) k-algebra

R =


S0 S1 S2 . . . . . .
0 S0 S1 . . . . . .
0 0 S0 . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . . . . S0


(with n+ 1 rows and columns) with obvious multiplication and addition.
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Lemma 5.1. With k, n, and R as above, for an object K of D(R) the following are
equivalent

(1)
∑
i∈Z dimkH

i(K) <∞, and
(2) K is a compact object.

Proof. If K is a compact object, then K can be represented by a complex M• which
is finite projective as a graded R-module, see Differential Graded Algebra, Lemma 36.6.
Since dimk R <∞we conclude

∑
dimkM

i <∞ and a fortiori
∑

dimkH
i(M•) <∞.

(One can also easily deduce this implication from the easier Differential Graded Algebra,
Proposition 36.4.)

Assume K satisfies (1). Consider the distinguished triangle of trunctions τ≤mK → K →
τ≥m+1K , see Derived Categories, Remark 12.4. It is clear that both τ≤mK and τ≥m+1K
satisfy (1). If we can show both are compact, then so is K , see Derived Categories, Lemma
37.2. Hence, arguing on the number of nonzero cohomology modules ofK we may assume
Hi(K) is nonzero only for one i. Shifting, we may assume K is given by the complex
consisting of a single finite dimensional R-module M sitting in degree 0.

Since dimk(M) <∞ we see that M is Artinian as an R-module. Thus it suffices to show
that every simple R-module represents a compact object of D(R). Observe that

I =


0 S1 S2 . . . . . .
0 0 S1 . . . . . .
0 0 0 . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . . . . 0


is a nilpotent two sided ideal of R and that R/I is a commutative k-algebra isomorphic
to a product of n+ 1 copies of k (placed along the diagonal in the matrix, i.e., R/I can be
lifted to a k-subalgebra of R). It follows that R has exactly n+ 1 isomorphism classes of
simple modules M0, . . . ,Mn (sitting along the diagonal). Consider the right R-module
Pi of row vectors

Pi =
(
0 . . . 0 S0 . . . Si−1 Si

)
with obvious multiplication Pi×R→ Pi. Then we see thatR ∼= P0⊕ . . .⊕Pn as a right
R-module. Since clearly R is a compact object of D(R), we conclude each Pi is a compact
object ofD(R). (We of course also conclude each Pi is projective as anR-module, but this
isn’t what we have to show in this proof.) Clearly, P0 = M0 is the first of our simple
R-modules. For P1 we have a short exact sequence

0→ P⊕n+1
0 → P1 →M1 → 0

which proves thatM1 fits into a distinguished triangle whose other members are compact
objects and hence M1 is a compact object of D(R). More generally, there exists a short
exact sequence

0→ Ci → Pi →Mi → 0
where Ci is a finite dimensional R-module whose simple constituents are isomorphic to
Mj for j < i. By induction, we first conclude that Ci determines a compact object of
D(R) whereupon we conclude that Mi does too as desired. �

Lemma 5.2. Let k be a field. Let n ≥ 0. Let K ∈ DQCoh(OPn
k
). The following are

equivalent
(1) K is in Db

Coh(OPn
k
),
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(2)
∑
i∈Z dimkH

i(Pn
k , E ⊗L K) <∞ for each perfect object E of D(OPn

k
),

(3)
∑
i∈Z dimk ExtiPn

k
(E,K) <∞ for each perfect object E of D(OPn

k
),

(4)
∑
i∈Z dimkH

i(Pn
k ,K ⊗L OPn

k
(d)) <∞ for d = 0, 1, . . . , n.

Proof. Parts (2) and (3) are equivalent by Cohomology, Lemma 50.5. If (1) is true,
then for E perfect the derived tensor product E ⊗L K is in Db

Coh(OPn
k
) and we see that

(2) holds by Derived Categories of Schemes, Lemma 11.3. It is clear that (2) implies (4) as
OPn

k
(d) can be viewed as a perfect object of the derived category of Pn

k . Thus it suffices
to prove that (4) implies (1).

Assume (4). Let R be as in Lemma 5.1. Let P =
⊕

d=0,...,nOPn
k
(−d). Recall that R =

EndPn
k
(P ) whereas all other self-Exts of P are zero and that P determines an equivalence

−⊗L P : D(R)→ DQCoh(OPn
k
) by Derived Categories of Schemes, Lemma 20.1. SayK

corresponds to L in D(R). Then

Hi(L) = ExtiD(R)(R,L)

= ExtiPn
k
(P,K)

= Hi(Pn
k ,K ⊗ P∨)

=
⊕

d=0,...,n
Hi(Pn

k ,K ⊗O(d))

by Differential Graded Algebra, Lemma 35.4 (and the fact that−⊗L P is an equivalence)
and Cohomology, Lemma 50.5. Thus our assumption (4) implies thatL satisfies condition
(2) of Lemma 5.1 and hence is a compact object of D(R). Therefore K is a compact object
of DQCoh(OPn

k
). Thus K is perfect by Derived Categories of Schemes, Proposition 17.1.

Since Dperf (OPn
k
) = Db

Coh(OPn
k
) by Derived Categories of Schemes, Lemma 11.8 we

conclude (1) holds. �

Lemma 5.3. Let X be a scheme proper over a field k. Let K ∈ Db
Coh(OX) and let E

in D(OX) be perfect. Then
∑
i∈Z dimk ExtiX(E,K) <∞.

Proof. This follows for example by combining Derived Categories of Schemes, Lem-
mas 11.7 and 18.2. Alternative proof: combine Derived Categories of Schemes, Lemmas
11.6 and 11.3. �

Lemma 5.4. Let X be a proper scheme over a field k. Let K ∈ Ob(DQCoh(OX)).
The following are equivalent

(1) K ∈ Db
Coh(OX), and

(2)
∑
i∈Z dimk ExtiX(E,K) <∞ for all perfect E in D(OX).

Proof. The implication (1)⇒ (2) follows from Lemma 5.3. The implication (2)⇒
(1) follows from More on Morphisms, Lemma 69.6 (see Derived Categories of Schemes,
Example 35.2 for the meaning of a relatively perfect object over a field); the easier proof
in the projective case is in the next paragraph.

Assume (2) andX projective over k. Choose a closed immersion i : X → Pn
k . It suffices to

show that Ri∗K is in Db
Coh(Pn

k ) since a quasi-coherent module F on X is coherent, resp.
zero if and only if i∗F is coherent, resp. zero. For a perfect object E of D(OPn

k
), Li∗E is

a perfect object of D(OX) and

ExtqPn
k
(E,Ri∗K) = ExtqX(Li∗E,K)
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Hence by our assumption we see that
∑
q∈Z dimk ExtqPn

k
(E,Ri∗K) < ∞. We conclude

by Lemma 5.2. �

6. A representability theorem

The material in this section is taken from [?].

Let T be a k-linear triangulated category. In this section we consider k-linear cohomolog-
ical functors H from T to the category of k-vector spaces. This will mean H is a functor

H : T opp −→ Vectk
which is k-linear such that for any distinguished triangleX → Y → Z in T the sequence
H(Z)→ H(Y )→ H(X) is an exact sequence of k-vector spaces. See Derived Categories,
Definition 3.5 and Differential Graded Algebra, Section 24.

Lemma 6.1. Let D be a triangulated category. Let D′ ⊂ D be a full triangulated
subcategory. Let X ∈ Ob(D). The category of arrows E → X with E ∈ Ob(D′) is
filtered.

Proof. We check the conditions of Categories, Definition 19.1. The category is nonempty
because it contains 0 → X . If Ei → X , i = 1, 2 are objects, then E1 ⊕ E2 → X is
an object and there are morphisms (Ei → X) → (E1 ⊕ E2 → X). Finally, suppose
that a, b : (E → X) → (E′ → X) are morphisms. Choose a distinguished triangle
E

a−b−−→ E′ → E′′ in D′. By Axiom TR3 we obtain a morphism of triangles

E
a−b
//

��

E′

��

// E′′

��
0 // X // X

and we find that the resulting arrow (E′ → X)→ (E′′ → X) equalizes a and b. �

Lemma 6.2. Let k be a field. LetD be a k-linear triangulated category which has direct
sums and is compactly generated. DenoteDc the full subcategory of compact objects. Let
H : Doppc → Vectk be a k-linear cohomological functor such that dimkH(X) < ∞
for all X ∈ Ob(Dc). Then H is isomorphic to the functor X 7→ Hom(X,Y ) for some
Y ∈ Ob(D).

Proof. We will use Derived Categories, Lemma 37.2 without further mention. De-
note G : Dc → Vectk the k-linear homological functor which sends X to H(X)∨. For
any object Y of D we set

G′(Y ) = colimX→Y,X∈Ob(Dc) G(X)

The colimit is filtered by Lemma 6.1. We claim that G′ is a k-linear homological functor,
the restriction of G′ to Dc is G, and G′ sends direct sums to direct sums.

Namely, suppose that Y1 → Y2 → Y3 is a distinguished triangle. Let ξ ∈ G′(Y2) map to
zero in G′(Y3). Since the colimit is filtered ξ is represented by some X → Y2 with X ∈
Ob(Dc) and g ∈ G(X). The fact that ξ maps to zero in G′(Y3) means the composition
X → Y2 → Y3 factors as X → X ′ → Y3 with X ′ ∈ Dc and g mapping to zero in
G(X ′). Choose a distinguished triangle X ′′ → X → X ′. Then X ′′ ∈ Ob(Dc). Since
G is homological we find that g is the image of some g′′ ∈ G′(X ′′). By Axiom TR3 the
maps X → Y2 and X ′ → Y3 fit into a morphism of distinguished triangles (X ′′ → X →
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X ′)→ (Y1 → Y2 → Y3) and we find that indeed ξ is the image of the element of G′(Y1)
represented by X ′′ → Y1 and g′′ ∈ G(X ′′).

If Y ∈ Ob(Dc), then id : Y → Y is the final object in the category of arrows X → Y
with X ∈ Ob(Dc). Hence we see that G′(Y ) = G(Y ) in this case and the statement on
restriction holds. Let Y =

⊕
i∈I Yi be a direct sum. Let a : X → Y with X ∈ Ob(Dc)

and g ∈ G(X) represent an element ξ of G′(Y ). The morphism a : X → Y can be
uniquely written as a sum of morphisms ai : X → Yi almost all zero as X is a compact
object of D. Let I ′ = {i ∈ I | ai 6= 0}. Then we can factor a as the composition

X
(1,...,1)−−−−−→

⊕
i∈I′

X

⊕
i∈I′ ai−−−−−−→

⊕
i∈I

Yi = Y

We conclude that ξ =
∑
i∈I′ ξi is the sum of the images of the elements ξi ∈ G′(Yi)

corresponding to ai : X → Yi and g ∈ G(X). Hence
⊕
G′(Yi) → G′(Y ) is surjective.

We omit the (trivial) verification that it is injective.

It follows that the functor Y 7→ G′(Y )∨ is cohomological and sends direct sums to direct
products. Hence by Brown representability, see Derived Categories, Proposition 38.2 we
conclude that there exists a Y ∈ Ob(D) and an isomorphism G′(Z)∨ = Hom(Z, Y )
functorially in Z. For X ∈ Ob(Dc) we have G′(X)∨ = G(X)∨ = (H(X)∨)∨ = H(X)
because dimkH(X) <∞ and the proof is complete. �

Theorem 6.3. Let X be a proper scheme over a field k. Let F : Dperf (OX)opp →
Vectk be a k-linear cohomological functor such that∑

n∈Z
dimk F (E[n]) <∞

for allE ∈ Dperf (OX). ThenF is isomorphic to a functor of the formE 7→ HomX(E,K)
for some K ∈ Db

Coh(OX).

Proof. The derived category DQCoh(OX) has direct sums, is compactly generated,
and Dperf (OX) is the full subcategory of compact objects, see Derived Categories of
Schemes, Lemma 3.1, Theorem 15.3, and Proposition 17.1. By Lemma 6.2 we may assume
F (E) = HomX(E,K) for some K ∈ Ob(DQCoh(OX)). Then it follows that K is in
Db

Coh(OX) by Lemma 5.4. �

Lemma 6.4. Let X be a proper scheme over a field k which is regular. Let G :
Dperf (OX)→ Vectk be a k-linear homological functor such that∑

n∈Z
dimkG(E[n]) <∞

for allE ∈ Dperf (OX). ThenG is isomorphic to a functor of the formE 7→ HomX(K,E)
for some K ∈ Dperf (OX).

Proof. Consider the contravariant functor E 7→ E∨ on Dperf (OX), see Cohomol-
ogy, Lemma 50.5. This functor is an exact anti-self-equivalence ofDperf (OX). Hence we
may apply Theorem 6.3 to the functorF (E) = G(E∨) to findK ∈ Dperf (OX) such that
G(E∨) = HomX(E,K). It follows thatG(E) = HomX(E∨,K) = HomX(K∨, E) and
we conclude that taking K∨ works. �
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7. Existence of adjoints

As a consequence of the results in the paper of Bondal and van den Bergh we get the
following automatic existence of adjoints.

Lemma 7.1. Let k be a field. Let X and Y be proper schemes over k. If X is regular,
then any k-linear exact functor F : Dperf (OX)→ Dperf (OY ) has an exact right adjoint
and an exact left adjoint.

Proof. If an adjoint exists it is an exact functor by the very general Derived Cate-
gories, Lemma 7.1.

Let us prove the existence of a right adjoint. To see existence, it suffices to show that for
M ∈ Dperf (OY ) the contravariant functor K 7→ HomY (F (K),M) is representable.
This functor is contravariant, k-linear, and cohomological. Hence by Theorem 6.3 it suf-
fices to show that ∑

i∈Z
dimk ExtiY (F (K),M) <∞

This follows from Lemma 5.3.

For the existence of the left adjoint we argue in the same manner using Lemma 6.4 in stead
of Theorem 6.3. �

8. Fourier-Mukai functors

These functors were first introduced in [?].

Definition 8.1. Let S be a scheme. Let X and Y be schemes over S. Let K ∈
D(OX×SY ). The exact functor

ΦK : D(OX) −→ D(OY ), M 7−→ Rpr2,∗(Lpr∗
1M ⊗

L
OX×SY

K)

of triangulated categories is called a Fourier-Mukai functor and K is called a Fourier-
Mukai kernel for this functor. Moreover,

(1) if ΦK sends DQCoh(OX) into DQCoh(OY ) then the resulting exact functor
ΦK : DQCoh(OX)→ DQCoh(OY ) is called a Fourier-Mukai functor,

(2) if ΦK sends Dperf (OX) into Dperf (OY ) then the resulting exact functor ΦK :
Dperf (OX)→ Dperf (OY ) is called a Fourier-Mukai functor, and

(3) if X and Y are Noetherian and ΦK sends Db
Coh(OX) into Db

Coh(OY ) then the
resulting exact functor ΦK : Db

Coh(OX)→ Db
Coh(OY ) is called a Fourier-Mukai

functor. Similarly for DCoh, D+
Coh, D−

Coh.

Lemma 8.2. LetS be a scheme. LetX andY be schemes overS. LetK ∈ D(OX×SY ).
The corresponding Fourier-Mukai functor ΦK sendsDQCoh(OX) intoDQCoh(OY ) ifK
is in DQCoh(OX×SY ) and X → S is quasi-compact and quasi-separated.

Proof. This follows from the fact that derived pullback preserves DQCoh (Derived
Categories of Schemes, Lemma 3.8), derived tensor products preserve DQCoh (Derived
Categories of Schemes, Lemma 3.9), the projection pr2 : X ×S Y → Y is quasi-compact
and quasi-separated (Schemes, Lemmas 19.3 and 21.12), and total direct image along a quasi-
separated and quasi-compact morphism preservesDQCoh (Derived Categories of Schemes,
Lemma 4.1). �
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Lemma 8.3. Let S be a scheme. Let X,Y, Z be schemes over S. Assume X → S ,
Y → S , and Z → S are quasi-compact and quasi-separated. Let K ∈ DQCoh(OX×SY ).
Let K ′ ∈ DQCoh(OY×SZ). Consider the Fourier-Mukai functors ΦK : DQCoh(OX) →
DQCoh(OY ) and ΦK′ : DQCoh(OY ) → DQCoh(OZ). If X and Z are tor independent
over S and Y → S is flat, then

ΦK′ ◦ ΦK = ΦK′′ : DQCoh(OX) −→ DQCoh(OZ)
where

K ′′ = Rpr13,∗(Lpr∗
12K ⊗

L
OX×SY×SZ

Lpr∗
23K

′)
in DQCoh(OX×SZ).

Proof. The statement makes sense by Lemma 8.2. We are going to use Derived Cat-
egories of Schemes, Lemmas 3.8, 3.9, and 4.1 and Schemes, Lemmas 19.3 and 21.12 without
further mention. By Derived Categories of Schemes, Lemma 22.4 we see that X ×S Y
and Y ×S Z are tor independent over Y . This means that we have base change for the
cartesian diagram

X ×S Y ×S Z

��

// Y ×S Z

pY ZY
��

X ×S Y
pXYY // Y

for complexes with quasi-coherent cohomology sheaves, see Derived Categories of Schemes,
Lemma 22.5. Abbreviating p∗ = Lp∗, p∗ = Rp∗ and ⊗ = ⊗L we have for M ∈
DQCoh(OX) the sequence of equalities

ΦK′(ΦK(M)) = pY ZZ,∗(pY Z,∗Y pXYY,∗ (pXY,∗X M ⊗K)⊗K ′)

= pY ZZ,∗(pr23,∗pr∗
12(pXY,∗X M ⊗K)⊗K ′)

= pY ZZ,∗(pr23,∗(pr∗
1M ⊗ pr∗

12K)⊗K ′)

= pY ZZ,∗(pr23,∗(pr∗
1M ⊗ pr∗

12K ⊗ pr∗
23K

′))
= pr3,∗(pr∗

1M ⊗ pr∗
12K ⊗ pr∗

23K
′)

= pXZZ,∗ pr13,∗(pr∗
1M ⊗ pr∗

12K ⊗ pr∗
23K

′)

= pXZZ,∗ (pXZ,∗X M ⊗ pr13,∗(pr∗
12K ⊗ pr∗

23K
′))

as desired. Here we have used the remark on base change in the second equality and we
have use Derived Categories of Schemes, Lemma 22.1 in the 4th and last equality. �

Lemma 8.4. LetS be a scheme. LetX andY be schemes overS. LetK ∈ D(OX×SY ).
The corresponding Fourier-Mukai functor ΦK sends Dperf (OX) into Dperf (OY ) if at
least one of the following conditions is satisfied:

(1) S is Noetherian,X → S and Y → S are of finite type,K ∈ Db
Coh(OX×SY ), the

support of Hi(K) is proper over Y for all i, and K has finite tor dimension as
an object of D(pr−1

2 OY ),
(2) X → S is of finite presentation andK can be represented by a bounded complex
K• of finitely presentedOX×SY -modules, flat over Y , with support proper over
Y ,

(3) X → S is a proper flat morphism of finite presentation and K is perfect,
(4) S is Noetherian, X → S is flat and proper, and K is perfect
(5) X → S is a proper flat morphism of finite presentation and K is Y -perfect,
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(6) S is Noetherian, X → S is flat and proper, and K is Y -perfect.

Proof. If M is perfect on X , then Lpr∗
1M is perfect on X ×S Y , see Cohomology,

Lemma 49.6. We will use this without further mention below. We will also use that if
X → S is of finite type, or proper, or flat, or of finite presentation, then the same thing is
true for the base change pr2 : X ×S Y → Y , see Morphisms, Lemmas 15.4, 41.5, 25.8, and
21.4.

Part (1) follows from Derived Categories of Schemes, Lemma 27.1 combined with Derived
Categories of Schemes, Lemma 11.6.

Part (2) follows from Derived Categories of Schemes, Lemma 30.1.

Part (3) follows from Derived Categories of Schemes, Lemma 30.4.

Part (4) follows from part (3) and the fact that a finite type morphism of Noetherian
schemes is of finite presentation by Morphisms, Lemma 21.9.

Part (5) follows from Derived Categories of Schemes, Lemma 35.10 combined with De-
rived Categories of Schemes, Lemma 35.5.

Part (6) follows from part (5) in the same way that part (4) follows from part (3). �

Lemma 8.5. Let S be a Noetherian scheme. Let X and Y be schemes of finite type
over S. Let K ∈ Db

Coh(OX×SY ). The corresponding Fourier-Mukai functor ΦK sends
Db

Coh(OX) into Db
Coh(OY ) if at least one of the following conditions is satisfied:

(1) the support of Hi(K) is proper over Y for all i, and K has finite tor dimension
as an object of D(pr−1

1 OX),
(2) K can be represented by a bounded complex K• of coherent OX×SY -modules,

flat over X , with support proper over Y ,
(3) the support of Hi(K) is proper over Y for all i and X is a regular scheme,
(4) K is perfect, the support of Hi(K) is proper over Y for all i, and Y → S is flat.

Furthermore in each case the support condition is automatic if X → S is proper.

Proof. LetM be an object ofDb
Coh(OX). In each case we will use Derived Categories

of Schemes, Lemma 11.3 to show that

ΦK(M) = Rpr2,∗(Lpr∗
1M ⊗

L
OX×SY

K)

is inDb
Coh(OY ). The derived tensor product Lpr∗

1M ⊗
L
OX×SY

K is a pseudo-coherent ob-
ject ofD(OX×SY ) (by Cohomology, Lemma 47.3, Derived Categories of Schemes, Lemma
10.3, and Cohomology, Lemma 47.5) whence has coherent cohomology sheaves (by De-
rived Categories of Schemes, Lemma 10.3 again). In each case the supports of the coho-
mology sheavesHi(Lpr∗

1M ⊗
L
OX×SY

K) is proper over Y as these supports are contained
in the union of the supports of theHi(K). Hence in each case it suffices to prove that this
tensor product is bounded below.

Case (1). By Cohomology, Lemma 27.4 we have

Lpr∗
1M ⊗

L
OX×SY

K ∼= pr−1
1 M ⊗L

pr−1
1 OX

K

with obvious notation. Hence the assumption on tor dimension and the fact that M has
only a finite number of nonzero cohomology sheaves, implies the bound we want.

Case (2) follows because here the assumption implies thatK has finite tor dimension as an
object of D(pr−1

1 OX) hence the argument in the previous paragraph applies.
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In Case (3) it is also the case that K has finite tor dimension as an object of D(pr−1
1 OX).

Namely, choose affine opens U = Spec(A) and V = Spec(B) of X and Y mapping into
the affine openW = Spec(R) of S. ThenK|U×V is given by a bounded complex of finite
A⊗RB-modulesM•. SinceA is a regular ring of finite dimension we see that eachM i has
finite projective dimension as an A-module (Algebra, Lemma 110.8) and hence finite tor
dimension as an A-module. ThusM• has finite tor dimension as a complex ofA-modules
(More on Algebra, Lemma 66.8). Since X × Y is quasi-compact we conclude there exist
[a, b] such that for every point z ∈ X × Y the stalk Kz has tor amplitude in [a, b] over
OX,pr1(z). This implies K has bounded tor dimension as an object of D(pr−1

1 OX), see
Cohomology, Lemma 48.5. We conclude as in the previous to paragraphs.

Case (4). With notation as above, the ring map R → B is flat. Hence the ring map
A → A ⊗R B is flat. Hence any projective A ⊗R B-module is A-flat. Thus any perfect
complex of A⊗R B-modules has finite tor dimension as a complex of A-modules and we
conclude as before. �

Example 8.6. Let X → S be a separated morphism of schemes. Then the diagonal
∆ : X → X ×S X is a closed immersion and hence O∆ = ∆∗OX = R∆∗OX is a quasi-
coherent OX×SX -module of finite type which is flat over X (under either projection).
The Fourier-Mukai functor ΦO∆ is equal to the identity in this case. Namely, for any
M ∈ D(OX) we have

Lpr∗
1M ⊗

L
OX×SX

O∆ = Lpr∗
1M ⊗

L
OX×SX

R∆∗OX
= R∆∗(L∆∗Lpr∗

1M ⊗
L
OX
OX)

= R∆∗(M)

The first equality we discussed above. The second equality is Cohomology, Lemma 54.4.
The third because pr1◦∆ = idX and we have Cohomology, Lemma 27.2. If we push this to
X usingRpr2,∗ we obtainM by Cohomology, Lemma 28.2 and the fact that pr2◦∆ = idX .

Lemma 8.7. Let X → S and Y → S be morphisms of quasi-compact and quasi-
separated schemes. Let Φ : DQCoh(OX)→ DQCoh(OY ) be a Fourier-Mukai functor with
pseudo-coherent kernelK ∈ DQCoh(OX×SY ). Let a : DQCoh(OY )→ DQCoh(OX×SY )
be the right adjoint to Rpr2,∗, see Duality for Schemes, Lemma 3.1. Denote

K ′ = (Y ×S X → X ×S Y )∗RHomOX×SY
(K, a(OY )) ∈ DQCoh(OY×SX)

and denote Φ′ : DQCoh(OY ) → DQCoh(OX) the corresponding Fourier-Mukai trans-
form. There is a canonical map

HomX(M,Φ′(N)) −→ HomY (Φ(M), N)

functorial in M in DQCoh(OX) and N in DQCoh(OY ) which is an isomorphism if
(1) N is perfect, or
(2) K is perfect and X → S is proper flat and of finite presentation.

Proof. By Lemma 8.2 we obtain a functor Φ as in the statement. Observe that a(OY )
is inD+

QCoh(OX×SY ) by Duality for Schemes, Lemma 3.5. Hence forK pseudo-coherent
we have K ′ ∈ DQCoh(OY×SX) by Derived Categories of Schemes, Lemma 10.8 we we
obtain Φ′ as indicated.
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We abbreviate⊗L = ⊗L
OX×SY

andHom = RHomOX×SY
. LetM be inDQCoh(OX) and

let N be in DQCoh(OY ). We have

HomY (Φ(M), N) = HomY (Rpr2,∗(Lpr∗
1M ⊗

L K), N)

= HomX×SY (Lpr∗
1M ⊗

L K, a(N))
= HomX×SY (Lpr∗

1M,RHom(K, a(N)))
= HomX(M,Rpr1,∗RHom(K, a(N)))

where we have used Cohomology, Lemmas 42.2 and 28.1. There are canonical maps

Lpr∗
2N ⊗

L RHom(K, a(OY )) α−→ RHom(K,Lpr∗
2N ⊗

L a(OY )) β−→ RHom(K, a(N))
Here α is Cohomology, Lemma 42.6 and β is Duality for Schemes, Equation (8.0.1). Com-
bining all of these arrows we obtain the functorial displayed arrow in the statement of the
lemma.
The arrow α is an isomorphism by Derived Categories of Schemes, Lemma 10.9 as soon as
either K or N is perfect. The arrow β is an isomorphism if N is perfect by Duality for
Schemes, Lemma 8.1 or in general ifX → S is flat proper of finite presentation by Duality
for Schemes, Lemma 12.3. �

Lemma 8.8. Let S be a Noetherian scheme. Let Y → S be a flat proper Gorenstein
morphism and let X → S be a finite type morphism. Denote ω•

Y/S the relative dualizing
complex of Y over S. Let Φ : DQCoh(OX) → DQCoh(OY ) be a Fourier-Mukai functor
with perfect kernel K ∈ DQCoh(OX×SY ). Denote

K ′ = (Y ×S X → X ×S Y )∗(K∨ ⊗L
OX×SY

Lpr∗
2ω

•
Y/S) ∈ DQCoh(OY×SX)

and denote Φ′ : DQCoh(OY ) → DQCoh(OX) the corresponding Fourier-Mukai trans-
form. There is a canonical isomorphism

HomY (N,Φ(M)) −→ HomX(Φ′(N),M)
functorial in M in DQCoh(OX) and N in DQCoh(OY ).

Proof. By Lemma 8.2 we obtain a functor Φ as in the statement.
Observe that formation of the relative dualizing complex commutes with base change in
our setting, see Duality for Schemes, Remark 12.5. Thus Lpr∗

2ω
•
Y/S = ω•

X×SY/X . More-
over, we observe that ω•

Y/S is an invertible object of the derived category, see Duality for
Schemes, Lemma 25.10, and a fortiori perfect.
To actually prove the lemma we’re going to cheat. Namely, we will show that if we replace
the roles of X and Y and K and K ′ then these are as in Lemma 8.7 and we get the result.
It is clear that K ′ is perfect as a tensor product of perfect objects so that the discussion
in Lemma 8.7 applies to it. To show that the procedure of Lemma 8.7 applied to K ′ on
Y ×S X produces a complex isomorphic to K it suffices (details omitted) to show that

RHom(RHom(K,ω•
X×SY/X), ω•

X×SY/X) = K

This is clear becauseK is perfect andω•
X×SY/X is invertible; details omitted. Thus Lemma

8.7 produces a map
HomY (N,Φ(M)) −→ HomX(Φ′(N),M)

functorial in M in DQCoh(OX) and N in DQCoh(OY ) which is an isomorphism because
K ′ is perfect. This finishes the proof. �
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Lemma 8.9. Let S be a Noetherian scheme.
(1) For X , Y proper and flat over S and K in Dperf (OX×SY ) we obtain a Fourier-

Mukai functor ΦK : Dperf (OX)→ Dperf (OY ).
(2) ForX , Y ,Z proper and flat overS ,K ∈ Dperf (OX×SY ),K ′ ∈ Dperf (OY×SZ)

the composition ΦK′ ◦ ΦK : Dperf (OX) → Dperf (OZ) is equal to ΦK′′ with
K ′′ ∈ Dperf (OX×SZ) computed as in Lemma 8.3,

(3) For X , Y , K , ΦK as in (1) if X → S is Gorenstein, then ΦK′ : Dperf (OY ) →
Dperf (OX) is a right adjoint to ΦK whereK ′ ∈ Dperf (OY×SX) is the pullback
of Lpr∗

1ω
•
X/S ⊗

L
OX×SY

K∨ by Y ×S X → X ×S Y .
(4) For X , Y , K , ΦK as in (1) if Y → S is Gorenstein, then ΦK′′ : Dperf (OY ) →

Dperf (OX) is a left adjoint to ΦK whereK ′′ ∈ Dperf (OY×SX) is the pullback
of Lpr∗

2ω
•
Y/S ⊗

L
OX×SY

K∨ by Y ×S X → X ×S Y .

Proof. Part (1) is immediate from Lemma 8.4 part (4).

Part (2) follows from Lemma 8.3 and the fact that K ′′ = Rpr13,∗(Lpr∗
12K ⊗

L
OX×SY×SZ

Lpr∗
23K

′) is perfect for example by Derived Categories of Schemes, Lemma 27.4.

The adjointness in part (3) on all complexes with quasi-coherent cohomology sheaves fol-
lows from Lemma 8.7 with K ′ equal to the pullback of RHomOX×SY

(K, a(OY )) by
Y ×S X → X ×S Y where a is the right adjoint to Rpr2,∗ : DQCoh(OX×SY ) →
DQCoh(OY ). Denote f : X → S the structure morphism of X . Since f is proper
the functor f ! : D+

QCoh(OS) → D+
QCoh(OX) is the restriction to D+

QCoh(OS) of the
right adjoint to Rf∗ : DQCoh(OX)→ DQCoh(OS), see Duality for Schemes, Section 16.
Hence the relative dualizing complexω•

X/S as defined in Duality for Schemes, Remark 12.5
is equal to ω•

X/S = f !OS . Since formation of the relative dualizing complex commutes
with base change (see Duality for Schemes, Remark 12.5) we see that a(OY ) = Lpr∗

1ω
•
X/S .

Thus
RHomOX×SY

(K, a(OY )) ∼= Lpr∗
1ω

•
X/S ⊗

L
OX×SY

K∨

by Cohomology, Lemma 50.5. Finally, since X → S is assumed Gorenstein the relative
dualizing complex is invertible: this follows from Duality for Schemes, Lemma 25.10.
We conclude that ω•

X/S is perfect (Cohomology, Lemma 52.2) and hence K ′ is perfect.
Therefore ΦK′ does indeed mapDperf (OY ) intoDperf (OX) which finishes the proof of
(3).

The proof of (4) is the same as the proof of (3) except one uses Lemma 8.8 instead of Lemma
8.7. �

9. Resolutions and bounds

The diagonal of a smooth proper scheme has a nice resolution.

Lemma 9.1. Let R be a Noetherian ring. Let X , Y be finite type schemes over R
having the resolution property. For any coherentOX×RY -module F there exist a surjec-
tion E � G → F where E is a finite locally free OX -module and G is a finite locally free
OY -module.

Proof. Let U ⊂ X and V ⊂ Y be affine open subschemes. Let I ⊂ OX be the ideal
sheaf of the reduced induced closed subscheme structure onX \U . Similarly, let I ′ ⊂ OY
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be the ideal sheaf of the reduced induced closed subscheme structure on Y \ V . Then the
ideal sheaf

J = Im(pr∗
1I ⊗OX×RY

pr∗
2I

′ → OX×RY )
satisfies V (J ) = X ×R Y \ U ×R V . For any section s ∈ F(U ×R V ) we can find an
integer n > 0 and a map J n → F whose restriction to U ×R V gives s, see Cohomology
of Schemes, Lemma 10.5. By assumption we can choose surjections E → I and G → I ′.
These produce corresponding surjections

E � G → J and E⊗n � G⊗n → J n

and hence a map E⊗n�G⊗n → F whose image contains the section s overU×RV . Since
we can cover X ×R Y by a finite number of affine opens of the form U ×R V and since
F|U×RV is generated by finitely many sections (Properties, Lemma 16.1) we conclude that
there exists a surjection ⊕

j=1,...,N
E⊗nj
j � G⊗nj

j → F

where Ej is finite locally free onX and Gj is finite locally free on Y . Setting E =
⊕
E⊗nj
j

and G =
⊕
G⊗nj
j we conclude that the lemma is true. �

Lemma 9.2. LetR be a ring. LetX , Y be quasi-compact and quasi-separated schemes
overRhaving the resolution property. For any finite type quasi-coherentOX×RY -module
F there exist a surjection E � G → F where E is a finite locally freeOX -module and G is
a finite locally freeOY -module.

Proof. Follows from Lemma 9.1 by a limit argument. We urge the reader to skip
the proof. Since X ×R Y is a closed subscheme of X ×Z Y it is harmless if we replace R
by Z. We can write F as the quotient of a finitely presented OX×RY -module by Prop-
erties, Lemma 22.8. Hence we may assume F is of finite presentation. Next we can write
X = limXi with Xi of finite presentation over Z and similarly Y = lim Yj , see Limits,
Proposition 5.4. Then F will descend to Fij on someXi×R Yj (Limits, Lemma 10.2) and
so does the property of having the resolution property (Derived Categories of Schemes,
Lemma 36.9). Then we apply Lemma 9.1 to Fij and we pullback. �

Lemma 9.3. LetR be a Noetherian ring. LetX be a separated finite type scheme over
R which has the resolution property. Set O∆ = ∆∗(OX) where ∆ : X → X ×R X is
the diagonal of X/k. There exists a resolution

. . .→ E2 � G2 → E1 � G1 → E0 � G0 → O∆ → 0

where each Ei and Gi is a finite locally freeOX -module.

Proof. Since X is separated, the diagonal morphism ∆ is a closed immersion and
henceO∆ is a coherentOX×RX -module (Cohomology of Schemes, Lemma 9.8). Thus the
lemma follows immediately from Lemma 9.1. �

Lemma 9.4. Let X be a regular Noetherian scheme of dimension d <∞. Then
(1) for F , G coherentOX -modules we have ExtnX(F ,G) = 0 for n > d, and
(2) for K,L ∈ Db

Coh(OX) and a ∈ Z if Hi(K) = 0 for i < a + d and Hi(L) = 0
for i ≥ a then HomX(K,L) = 0.

Proof. To prove (1) we use the spectral sequence

Hp(X, Extq(F ,G))⇒ Extp+q
X (F ,G)
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of Cohomology, Section 43. Let x ∈ X . We have
Extq(F ,G)x = ExtqOX,x

(Fx,Gx)

see Cohomology, Lemma 51.4 (this also uses that F is pseudo-coherent by Derived Cat-
egories of Schemes, Lemma 10.3). Set dx = dim(OX,x). Since OX,x is regular the ring
OX,x has global dimension dx, see Algebra, Proposition 110.1. Thus ExtqOX,x

(Fx,Gx) is
zero for q > dx. It follows that the modules Extq(F ,G) have support of dimension at most
d− q. Hence we haveHp(X, Extq(F ,G)) = 0 for p > d− q by Cohomology, Proposition
20.7. This proves (1).
Proof of (2). We may use induction on the number of nonzero cohomology sheaves of K
and L. The case where these numbers are 0, 1 follows from (1). If the number of nonzero
cohomology sheaves of K is > 1, then we let i ∈ Z be minimal such that Hi(K) is
nonzero. We obtain a distinguished triangle

Hi(K)[−i]→ K → τ≥i+1K

(Derived Categories, Remark 12.4) and we get the vanishing of Hom(K,L) from the van-
ishing of Hom(Hi(K)[−i], L) and Hom(τ≥i+1K,L) by Derived Categories, Lemma 4.2.
Simlarly if L has more than one nonzero cohomology sheaf. �

Lemma 9.5. Let X be a regular Noetherian scheme of dimension d < ∞. Let K ∈
Db

Coh(OX) and a ∈ Z. If Hi(K) = 0 for a < i < a+ d, then K = τ≤aK ⊕ τ≥a+dK.

Proof. We have τ≤aK = τ≤a+d−1K by the assumed vanishing of cohomology
sheaves. By Derived Categories, Remark 12.4 we have a distinguished triangle

τ≤aK → K → τ≥a+dK
δ−→ (τ≤aK)[1]

By Derived Categories, Lemma 4.11 it suffices to show that the morphism δ is zero. This
follows from Lemma 9.4. �

Lemma 9.6. Let k be a field. LetX be a quasi-compact separated smooth scheme over
k. There exist finite locally freeOX -modules E and G such that

O∆ ∈ 〈E � G〉
in D(OX×X) where the notation is as in Derived Categories, Section 36.

Proof. Recall that X is regular by Varieties, Lemma 25.3. Hence X has the resolu-
tion property by Derived Categories of Schemes, Lemma 36.8. Hence we may choose a
resolution as in Lemma 9.3. Say dim(X) = d. SinceX ×X is smooth over k it is regular.
Hence X ×X is a regular Noetherian scheme with dim(X ×X) = 2d. The object

K = (E2d � G2d → . . .→ E0 � G0)
ofDperf (OX×X) has cohomology sheavesO∆ in degree 0 and Ker(E2d�G2d → E2d−1�
G2d−1) in degree −2d and zero in all other degrees. Hence by Lemma 9.5 we see that O∆
is a summand of K in Dperf (OX×X). Clearly, the object K is in〈⊕

i=0,...,2d
Ei � Gi

〉
⊂
〈(⊕

i=0,...,2d
Ei
)
�
(⊕

i=0,...,2d
Gi
)〉

which finishes the proof. (The reader may consult Derived Categories, Lemmas 36.1 and
35.7 to see that our object is contained in this category.) �

Lemma 9.7. Let k be a field. Let X be a scheme proper and smooth over k. Then
Dperf (OX) has a strong generator.
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Proof. Using Lemma 9.6 choose finite locally free OX -modules E and G such that
O∆ ∈ 〈E�G〉 inD(OX×X). We claim that G is a strong generator forDperf (OX). With
notation as in Derived Categories, Section 35 choose m,n ≥ 1 such that

O∆ ∈ smd(add(E � G[−m,m])?n)

This is possible by Derived Categories, Lemma 36.2. Let K be an object of Dperf (OX).
Since Lpr∗

1K ⊗
L
OX×X

− is an exact functor and since

Lpr∗
1K ⊗

L
OX×X

(E � G) = (K ⊗L
OX
E)� G

we conclude from Derived Categories, Remark 35.5 that

Lpr∗
1K ⊗

L
OX×X

O∆ ∈ smd(add((K ⊗L
OX
E)� G[−m,m])?n)

Applying the exact functor Rpr2,∗ and observing that

Rpr2,∗
(
(K ⊗L

OX
E)� G

)
= RΓ(X,K ⊗L

OX
E)⊗k G

by Derived Categories of Schemes, Lemma 22.1 we conclude that

K = Rpr2,∗(Lpr∗
1K ⊗

L
OX×X

O∆) ∈ smd(add(RΓ(X,K ⊗L
OX
E)⊗k G[−m,m])?n)

The equality follows from the discussion in Example 8.6. Since K is perfect, there ex-
ist a ≤ b such that Hi(X,K) is nonzero only for i ∈ [a, b]. Since X is proper, each
Hi(X,K) is finite dimensional. We conclude that the right hand side is contained in
smd(add(G[−m+a,m+b])?n) which is itself contained in 〈G〉n by one of the references
given above. This finishes the proof. �

Lemma 9.8. Let k be a field. Let X be a proper smooth scheme over k. There exists
integers m,n ≥ 1 and a finite locally free OX -module G such that every coherent OX -
module is contained in smd(add(G[−m,m])?n) with notation as in Derived Categories,
Section 35.

Proof. In the proof of Lemma 9.7 we have shown that there exist m′, n ≥ 1 such
that for any coherentOX -module F ,

F ∈ smd(add(G[−m′ + a,m′ + b])?n)

for any a ≤ b such that Hi(X,F) is nonzero only for i ∈ [a, b]. Thus we can take a = 0
and b = dim(X). Taking m = max(m′,m′ + b) finishes the proof. �

The following lemma is the boundedness result referred to in the title of this section.

Lemma 9.9. Let k be a field. Let X be a smooth proper scheme over k. Let A be an
abelian category. LetH : Dperf (OX)→ A be a homological functor (Derived Categories,
Definition 3.5) such that for all K in Dperf (OX) the object Hi(K) is nonzero for only a
finite number of i ∈ Z. Then there exists an integer m ≥ 1 such that Hi(F) = 0 for any
coherentOX -module F and i 6∈ [−m,m]. Similarly for cohomological functors.

Proof. Combine Lemma 9.8 with Derived Categories, Lemma 35.8. �

Lemma 9.10. Let k be a field. Let X , Y be finite type schemes over k. Let K0 →
K1 → K2 → . . . be a system of objects of Dperf (OX×Y ) and m ≥ 0 an integer such that

(1) Hq(Ki) is nonzero only for q ≤ m,
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(2) for every coherentOX -module F with dim(Supp(F)) = 0 the object

Rpr2,∗(pr∗
1F ⊗

L
OX×Y

Kn)

has vanishing cohomology sheaves in degrees outside [−m,m]∪ [−m−n,m−
n] and for n > 2m the transition maps induce isomorphisms on cohomology
sheaves in degrees in [−m,m].

ThenKn has vanishing cohomology sheaves in degrees outside [−m,m]∪[−m−n,m−n]
and for n > 2m the transition maps induce isomorphisms on cohomology sheaves in
degrees in [−m,m]. Moreover, ifX and Y are smooth over k, then for n large enough we
find Kn = K ⊕Cn in Dperf (OX×Y ) where K has cohomology only indegrees [−m,m]
and Cn only in degrees [−m − n,m − n] and the transition maps define isomorphisms
between various copies of K.

Proof. Let Z be the scheme theoretic support of an F as in (2). Then Z → Spec(k)
is finite, hence Z × Y → Y is finite. It follows that for an object M of DQCoh(OX×Y )
with cohomology sheaves supported on Z × Y we have Hi(Rpr2,∗(M)) = pr2,∗H

i(M)
and the functor pr2,∗ is faithful on quasi-coherent modules supported on Z × Y ; details
omitted. Hence we see that the objects

pr∗
1F ⊗

L
OX×Y

Kn

inDperf (OX×Y ) have vanishing cohomology sheaves outside [−m,m]∪[−m−n,m−n]
and for n > 2m the transition maps induce isomorphisms on cohomology sheaves in
[−m,m]. Let z ∈ X × Y be a closed point mapping to the closed point x ∈ X . Then we
know that

Kn,z ⊗L
OX×Y,z

OX×Y,z/m
t
xOX×Y,z

has nonzero cohomology only in the intervals [−m,m]∪ [−m−n,m−n]. We conclude
by More on Algebra, Lemma 100.2 that Kn,z only has nonzero cohomology in degrees
[−m,m]∪ [−m−n,m−n]. Since this holds for all closed points ofX ×Y , we conclude
Kn only has nonzero cohomology sheaves in degrees [−m,m] ∪ [−m − n,m − n]. In
exactly the same way we see that the mapsKn → Kn+1 are isomorphisms on cohomology
sheaves in degrees [−m,m] for n > 2m.

IfX and Y are smooth over k, thenX×Y is smooth over k and hence regular by Varieties,
Lemma 25.3. Thus we will obtain the direct sum decomposition of Kn as soon as n >
2m+ dim(X × Y ) from Lemma 9.5. The final statement is clear from this. �

10. Sibling functors

In this section we prove some categorical result on the following notion.

Definition 10.1. LetA be an abelian category. LetD be a triangulated category. We
say two exact functors of triangulated categories

F, F ′ : Db(A) −→ D

are siblings, or we say F ′ is a sibling of F , if the following two conditions are satisfied
(1) the functorsF ◦i andF ′◦i are isomorphic where i : A → Db(A) is the inclusion

functor, and
(2) F (K) ∼= F ′(K) for any K in Db(A).

Sometimes the second condition is a consequence of the first.
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Lemma 10.2. Let A be an abelian category. Let D be a triangulated category. Let
F, F ′ : Db(A) −→ D be exact functors of triangulated categories. Assume

(1) the functorsF ◦i andF ′◦i are isomorphic where i : A → Db(A) is the inclusion
functor, and

(2) for allX,Y ∈ Ob(A) we have ExtqD(F (X), F (Y )) = 0 for q < 0 (for example
if F is fully faithful).

Then F and F ′ are siblings.

Proof. Let K ∈ Db(A). We will show F (K) is isomorphic to F ′(K). We can
representK by a bounded complexA• of objects ofA. After replacingK by a translation
we may assumeAi = 0 for i > 0. Choose n ≥ 0 such thatA−i = 0 for i > n. The objects

Mi = (A−i → . . .→ A0)[−i], i = 0, . . . , n
form a Postnikov system in Db(A) for the complex A• = A−n → . . . → A0 in Db(A).
See Derived Categories, Example 41.2. Since both F and F ′ are exact functors of triangu-
lated categories both

F (Mi) and F ′(Mi)
form a Postnikov system in D for the complex

F (A−n)→ . . .→ F (A0) = F ′(A−n)→ . . .→ F ′(A0)
Since all negative Exts between these objects vanish by assumption we conclude by unique-
ness of Postnikov systems (Derived Categories, Lemma 41.6) that F (K) = F (Mn[n]) ∼=
F ′(Mn[n]) = F ′(K). �

Lemma 10.3. Let F and F ′ be siblings as in Definition 10.1. Then
(1) if F is essentially surjective, then F ′ is essentially surjective,
(2) if F is fully faithful, then F ′ is fully faithful.

Proof. Part (1) is immediate from property (2) for siblings.

Assume F is fully faithful. DenoteD′ ⊂ D the essential image of F so that F : Db(A)→
D′ is an equivalence. Since the functor F ′ factors throughD′ by property (2) for siblings,
we can consider the functor H = F−1 ◦ F ′ : Db(A) → Db(A). Observe that H is a
sibling of the identity functor. Since it suffices to prove thatH is fully faithful, we reduce
to the problem discussed in the next paragraph.

Set D = Db(A). We have to show a sibling F : D → D of the identity functor is fully
faithful. Denote aX : X → F (X) the functorial isomorphism for X ∈ Ob(A) given to
us by Definition 10.1. For any K in D and distinguished triangle K1 → K2 → K3 of D
if the maps

F : Hom(K,Ki[n])→ Hom(F (K), F (Ki[n]))
are isomorphisms for all n ∈ Z and i = 1, 3, then the same is true for i = 2 and all n ∈ Z.
This uses the 5-lemma Homology, Lemma 5.20 and Derived Categories, Lemma 4.2; details
omitted. Similarly, if the maps

F : Hom(Ki[n],K)→ Hom(F (Ki[n]), F (K))
are isomorphisms for all n ∈ Z and i = 1, 3, then the same is true for i = 2 and all n ∈ Z.
Using the canonical truncations and induction on the number of nonzero cohomology
objects, we see that it is enough to show

F : Extq(X,Y )→ Extq(F (X), F (Y ))
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is bijective for all X,Y ∈ Ob(A) and all q ∈ Z. Since F is a sibling of id we have
F (X) ∼= X and F (Y ) ∼= Y hence the right hand side is zero for q < 0. The case q = 0 is
OK by our assumption that F is a sibling of the identity functor. It remains to prove the
cases q > 0.

The case q = 1: Injectivity. An element ξ of Ext1(X,Y ) gives rise to a distinguished
triangle

Y → E → X
ξ−→ Y [1]

Observe that E ∈ Ob(A). Since F is a sibling of the identity functor we obtain a com-
mutative diagram

E

��

// X

��
F (E) // F (X)

whose vertical arrows are the isomorphisms aE and aX . By TR3 the distinguished triangle
associated to ξ we started with is isomorphic to the distinguished triangle

F (Y )→ F (E)→ F (X) F (ξ)−−−→ F (Y [1]) = F (Y )[1]

Thus ξ = 0 if and only ifF (ξ) is zero, i.e., we see thatF : Ext1(X,Y )→ Ext1(F (X), F (Y ))
is injective.

The case q = 1: Surjectivity. Let θ be an element of Ext1(F (X), F (Y )). This defines an
extension of F (X) by F (Y ) in A which we may write as F (E) as F is a sibling of the
identity functor. We thus get a distinguished triangle

F (Y ) F (α)−−−→ F (E) F (β)−−−→ F (X) θ−→ F (Y [1]) = F (Y )[1]

for some morphisms α : Y → E and β : E → X . Since F is a sibling of the identity
functor, the sequence 0 → Y → E → X → 0 is a short exact sequence in A! Hence we
obtain a distinguished triangle

Y
α−→ E

β−→ X
δ−→ Y [1]

for some morphism δ : X → Y [1]. Applying the exact functor F we obtain the distin-
guished triangle

F (Y ) F (α)−−−→ F (E) F (β)−−−→ F (X) F (δ)−−−→ F (Y )[1]

Arguing as above, we see that these triangles are isomorphic. Hence there exists a commu-
tative diagram

F (X)

γ

��

F (δ)
// F (Y [1])

ε

��
F (X) θ // F (Y [1])

for some isomorphisms γ, ε (we can say more but we won’t need more information). We
may write γ = F (γ′) and ε = F (ε′). Then we have θ = F (ε′ ◦ δ ◦ (γ′)−1) and we see the
surjectivity holds.
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The case q > 1: surjectivity. Using Yoneda extensions, see Derived Categories, Sec-
tion 27, we find that for any element ξ in Extq(F (X), F (Y )) we can find F (X) =
B0, B1, . . . , Bq−1, Bq = F (Y ) ∈ Ob(A) and elements

ξi ∈ Ext1(Bi−1, Bi)
such that ξ is the composition ξq ◦ . . .◦ξ1. WriteBi = F (Ai) (of course we haveAi = Bi
but we don’t need to use this) so that

ξi = F (ηi) ∈ Ext1(F (Ai−1), F (Ai)) with ηi ∈ Ext1(Ai−1, Ai)
by surjectivity for q = 1. Then η = ηq ◦ . . . ◦ η1 is an element of Extq(X,Y ) with
F (η) = ξ.

The case q > 1: injectivity. An element ξ of Extq(X,Y ) gives rise to a distinguished
triangle

Y [q − 1]→ E → X
ξ−→ Y [q]

Applying F we obtain a distinguished triangle

F (Y )[q − 1]→ F (E)→ F (X) F (ξ)−−−→ F (Y )[q]
If F (ξ) = 0, then F (E) ∼= F (Y )[q − 1] ⊕ F (X) in D, see Derived Categories, Lemma
4.11. Since F is a sibling of the identity functor we have E ∼= F (E) and hence

E ∼= F (E) ∼= F (Y )[q − 1]⊕ F (X) ∼= Y [q − 1]⊕X
In other words, E is isomorphic to the direct sum of its cohomology objects. This implies
that the initial distinguished triangle is split, i.e., ξ = 0. �

Let us make a nonstandard definition. Let A be an abelian category. Let us say A has
enough negative objects if given any X ∈ Ob(A) there exists an object N such that

(1) there is a surjection N → X and
(2) Hom(X,N) = 0.

Let us prove a couple of lemmas about this notion in order to help with the proof of Propo-
sition 10.6.

Lemma 10.4. Let A be an abelian category with enough negative objects. Let X ∈
Db(A). Let b ∈ Z with Hi(X) = 0 for i > b. Then there exists a map N [−b]→ X such
that the induced map N → Hb(X) is surjective and Hom(Hb(X), N) = 0.

Proof. Using the truncation functors we can representX by a complexAa → Aa+1 →
. . . → Ab of objects of A. Choose N in A such that there exists a surjection t : N → Ab

and such that Hom(Ab, N) = 0. Then the surjection t defines a map N [−b] → X as
desired. �

Lemma 10.5. Let A be an abelian category with enough negative objects. Let f :
X → X ′ be a morphism of Db(A). Let b ∈ Z such that Hi(X) = 0 for i > b and
Hi(X ′) = 0 for i ≥ b. Then there exists a map N [−b] → X such that the induced map
N → Hb(X) is surjective, such that Hom(Hb(X), N) = 0, and such that the composition
N [−b]→ X → X ′ is zero.

Proof. We can represent f by a map f• : A• → B• of bounded complexes of objects
ofA, see for example Derived Categories, Lemma 11.6. Consider the object

C = Ker(Ab → Ab+1)×Ker(Bb→Bb+1) B
b−1
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of A. Since Hb(B•) = 0 we see that C → Hb(A•) is surjective. On the other hand, the
map C → Ab → Bb is the same as the map C → Bb−1 → Bb and hence the composition
C[−b]→ X → X ′ is zero. Since A has enough negative objects, we can find an object N
which has a surjection N → C ⊕Hb(X) such that Hom(C ⊕Hb(X), N) = 0. Then N
together with the map N [−b]→ X is a solution to the problem posed by the lemma. �

We encourage the reader to read the original [?, Proposition 2.16] for the marvellous ideas
that go into the proof of the following proposition.

Proposition 10.6. Let F and F ′ be siblings as in Definition 10.1. Assume that F
is fully faithful and that A has enough negative objects (see above). Then F and F ′ are
isomorphic functors.

Proof. By part (2) of Definition 10.1 the image of the functor F ′ is contained in the
essential image of the functor F . Hence the functor H = F−1 ◦ F ′ is a sibling of the
identity functor. This reduces us to the case described in the next paragraph.

Let D = Db(A). We have to show a sibling F : D → D of the identity functor is
isomorphic to the identity functor. Given an object X of D let us say X has width w =
w(X) if w ≥ 0 is minimal such that there exists an integer a ∈ Z with Hi(X) = 0 for
i 6∈ [a, a+ w − 1]. Since F is a sibling of the identity and since F ◦ [n] = [n] ◦ F we are
aready given isomorphisms

cX : X → F (X)
for w(X) ≤ 1 compatible with shifts. Moreover, if X = A[−a] and X ′ = A′[−a] for
some A,A′ ∈ Ob(A) then for any morphism f : X → X ′ the diagram

(10.6.1)

X

cX

��

f
// X ′

cX′

��
F (X)

F (f) // F (X ′)

is commutative.

Next, let us show that for any morphism f : X → X ′ withw(X), w(X ′) ≤ 1 the diagram
(10.6.1) commutes. IfX orX ′ is zero, this is clear. If not then we can writeX = A[−a] and
X ′ = A′[−a′] for uniqueA,A′ inA and a, a′ ∈ Z. The case a = a′ was discussed above. If
a′ > a, then f = 0 (Derived Categories, Lemma 27.3) and the result is clear. If a′ < a then
f corresponds to an element ξ ∈ Extq(A,A′) with q = a− a′. Using Yoneda extensions,
see Derived Categories, Section 27, we can findA = A0, A1, . . . , Aq−1, Aq = A′ ∈ Ob(A)
and elements

ξi ∈ Ext1(Ai−1, Ai)
such that ξ is the composition ξq ◦ . . . ◦ ξ1. In other words, setting Xi = Ai[−a + i] we
obtain morphisms

X = X0
f1−→ X1 → . . .→ Xq−1

fq−→ Xq = X ′

whose compostion is f . Since the commutativity of (10.6.1) for f1, . . . , fq implies it for
f , this reduces us to the case q = 1. In this case after shifting we may assume we have a
distinguished triangle

A′ → E → A
f−→ A′[1]
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Observe that E is an object ofA. Consider the following diagram

E

cE

��

// A

cA

��

f
// A′[1]

cA′ [1]
��

γ

��
ε

zz

// E[1]

cE [1]
��

F (E) // F (A)
F (f) // F (A′)[1] // F (E)[1]

whose rows are distinguished triangles. The square on the right commutes already but we
don’t yet know that the middle square does. By the axioms of a triangulated category we
can find a morphism γ which does make the diagram commute. Then γ−cA′ [1] composed
with F (A′)[1] → F (E)[1] is zero hence we can find ε : A′[1] → F (A) such that γ −
cA′ [1] = F (f) ◦ ε. However, any arrow A′[1] → F (A) is zero as it is a negative ext class
between objects ofA. Hence γ = cA′ [1] and we conclude the middle square commutes too
which is what we wanted to show.
To finish the proof we are going to argue by induction onw that there exist isomorphisms
cX : X → F (X) for all X with w(X) ≤ w compatible with all morphisms between
such objects. The base case w = 1 was shown above. Assume we know the result for some
w ≥ 1.
Let X be an object with w(X) = w + 1. Pick a ∈ Z with Hi(X) = 0 for i 6∈ [a, a+ w].
Set b = a+ w so that Hb(X) is nonzero. Choose N [−b]→ X as in Lemma 10.4. Choose
a distinguished diagram

N [−b]→ X → Y → N [−b+ 1]
Computing the long exact cohomology sequence we find w(Y ) ≤ w. Hence by induction
we find the solid arrows in the following diagram

N [−b] //

cN [−b]
��

X //

cN[−b]→X

��

Y //

cY

��

N [−b+ 1]

cN [−b+1]
��

F (N)[−b] // F (X) // F (Y ) // F (N)[−b+ 1]

We obtain the dotted arrow cN [−b]→X . By Derived Categories, Lemma 4.8 the dotted
arrow is unique because Hom(X,F (N)[−b]) ∼= Hom(X,N [−b]) = 0 by our choice
of N . In fact, cN [−b]→X is the unique dotted arrow making the square with vertices
X,Y, F (X), F (Y ) commute.
Let N ′[−b] → X be another map as in Lemma 10.4 and let us prove that cN [−b]→X =
cN ′[−b]→X . Observe that the map (N ⊕ N ′)[−b] → X also satisfies the conditions of
Lemma 10.4. Thus we may assume N ′[−b] → X factors as N ′[−b] → N [−b] → X
for some morphism N ′ → N . Choose distinguished triangles N [−b] → X → Y →
N [−b + 1] and N ′[−b] → X → Y ′ → N ′[−b + 1]. By axiom TR3 we can find a
morphism g : Y ′ → Y which joint with idX andN ′ → N forms a morphism of triangles.
Since we have (10.6.1) for g we conclude that

(F (X)→ F (Y )) ◦ cN ′[−b]→X = (F (X)→ F (Y )) ◦ cN [−b]→X

The uniqueness of cN [−b]→X pointed out in the construction above now shows that cN ′[−b]→X =
cN [−b]→X .
Thus we can now define for X of width w + 1 the isomorphism cX : X → F (X) as
the common value of the maps cN [−b]→X where N [−b] → X is as in Lemma 10.4. To
finish the proof, we have to show that the diagrams (10.6.1) commute for all morphisms
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f : X → X ′ between objects with w(X) ≤ w + 1 and w(X ′) ≤ w + 1. Choose
a ≤ b ≤ a + w such that Hi(X) = 0 for i 6∈ [a, b] and a′ ≤ b′ ≤ a′ + w such that
Hi(X ′) = 0 for i 6∈ [a′, b′]. We will use induction on (b′ − a′) + (b − a) to show the
claim. (The base case is when this number is zero which is OK because w ≥ 1.) We
distinguish two cases.

Case I: b′ < b. In this case, by Lemma 10.5 we may choose N [−b]→ X as in Lemma 10.4
such that the composition N [−b] → X → X ′ is zero. Choose a distuiguished triangle
N [−b] → X → Y → N [−b + 1]. Since N [−b] → X ′ is zero, we find that f factors
as X → Y → X ′. Since Hi(Y ) is nonzero only for i ∈ [a, b − 1] we see by induction
that (10.6.1) commutes for Y → X ′. The diagram (10.6.1) commutes for X → Y by
construction ifw(X) = w+1 and by our first induction hypothesis ifw(X) ≤ w. Hence
(10.6.1) commutes for f .

Case II: b′ ≥ b. In this case we choose N ′[−b′] → X ′ as in Lemma 10.4. We may also
assume that Hom(Hb′(X), N ′) = 0 (this is relevant only if b′ = b), for example be-
cause we can replace N ′ by an object N ′′ which surjects onto N ′ ⊕Hb′(X) and such that
Hom(N ′ ⊕ Hb′(X), N ′′) = 0. We choose a distinguished triangle N ′[−b′] → X ′ →
Y ′ → N ′[−b′ + 1]. Since Hom(X,X ′) → Hom(X,Y ′) is injective by our choice of
N ′ (details omitted) the same is true for Hom(X,F (X ′)) → Hom(X,F (Y ′)). Hence it
suffices in this case to check that (10.6.1) commutes for the composition X → Y ′ of the
morphismsX → X ′ → Y ′. SinceHi(Y ′) is nonzero only for i ∈ [a′, b′− 1] we conclude
by induction hypothesis. �

11. Deducing fully faithfulness

It will be useful for us to know when a functor is fully faithful we offer the following
variant of [?, Lemma 2.15].

Lemma 11.1. Let F : D → D′ be an exact functor of triangulated categories. Let
S ⊂ Ob(D) be a set of objects. Assume

(1) F has both right and left adjoints,
(2) for K ∈ D if Hom(E,K[i]) = 0 for all E ∈ S and i ∈ Z then K = 0,
(3) for K ∈ D if Hom(K,E[i]) = 0 for all E ∈ S and i ∈ Z then K = 0,
(4) the map Hom(E,E′[i])→ Hom(F (E), F (E′)[i]) induced by F is bijective for

all E,E′ ∈ S and i ∈ Z.
Then F is fully faithful.

Proof. Denote Fr and Fl the right and left adjoints of F . For E ∈ S choose a
distinguished triangle

E → Fr(F (E))→ C → E[1]
where the first arrow is the unit of the adjunction. For E′ ∈ S we have

Hom(E′, Fr(F (E))[i]) = Hom(F (E′), F (E)[i]) = Hom(E′, E[i])
The last equality holds by assumption (4). Hence applying the homological functor Hom(E′,−)
(Derived Categories, Lemma 4.2) to the distinguished triangle above we conclude that
Hom(E′, C[i]) = 0 for all i ∈ Z and E′ ∈ S. By assumption (2) we conclude that C = 0
and E = Fr(F (E)).

For K ∈ Ob(D) choose a distinguished triangle

Fl(F (K))→ K → C → Fl(F (K))[1]
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where the first arrow is the counit of the adjunction. For E ∈ S we have

Hom(Fl(F (K)), E[i]) = Hom(F (K), F (E)[i]) = Hom(K,Fr(F (E))[i]) = Hom(K,E[i])

where the last equality holds by the result of the first paragraph. Thus we conclude as
before that Hom(C,E[i]) = 0 for all E ∈ S and i ∈ Z. Hence C = 0 by assumption (3).
Thus F is fully faithful by Categories, Lemma 24.4. �

Lemma 11.2. Let k be a field. LetX be a scheme of finite type over k which is regular.
Let x ∈ X be a closed point. For a coherent OX -module F supported at x choose a
coherentOX -module F ′ supported at x such that Fx and F ′

x are Matlis dual. Then there
is an isomorphism

HomX(F ,M) = H0(X,M ⊗L
OX
F ′[−dx])

where dx = dim(OX,x) functorial in M in Dperf (OX).

Proof. Since F is supported at x we have

HomX(F ,M) = HomOX,x
(Fx,Mx)

and similarly we have

H0(X,M ⊗L
OX
F ′[−dx]) = TorOX,x

dx
(Mx,F ′

x)

Thus it suffices to show that given a Noetherian regular local ring A of dimension d and
a finite length A-module N , if N ′ is the Matlis dual to N , then there exists a functorial
isomorphism

HomA(N,K) = TorAd (K,N ′)
for K in Dperf (A). We can write the left hand side as H0(RHomA(N,A) ⊗L

A K) by
More on Algebra, Lemma 74.15 and the fact that N determines a perfect object of D(A).
Hence the formula holds because

RHomA(N,A) = RHomA(N,A[d])[−d] = N ′[−d]

by Dualizing Complexes, Lemma 16.4 and the fact that A[d] is a normalized dualizing
complex over A (A is Gorenstein by Dualizing Complexes, Lemma 21.3). �

Lemma 11.3. Let k be a field. LetX be a scheme of finite type over k which is regular.
Let x ∈ X be a closed point and denoteOx the skyscraper sheaf at x with value κ(x). Let
K in Dperf (OX).

(1) If ExtiX(Ox,K) = 0 then there exists an open neighbourhood U of x such that
Hi−dx(K)|U = 0 where dx = dim(OX,x).

(2) If HomX(Ox,K[i]) = 0 for all i ∈ Z, thenK is zero in an open neighbourhood
of x.

(3) If ExtiX(K,Ox) = 0 then there exists an open neighbourhood U of x such that
Hi(K∨)|U = 0.

(4) If HomX(K,Ox[i]) = 0 for all i ∈ Z, thenK is zero in an open neighbourhood
of x.

(5) IfHi(X,K⊗L
OX
Ox) = 0 then there exists an open neighbourhood U of x such

that Hi(K)|U = 0.
(6) If Hi(X,K ⊗L

OX
Ox) = 0 for i ∈ Z then K is zero in an open neighbourhood

of x.
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Proof. Observe that Hi(X,K ⊗L
OX
Ox) is equal to Kx ⊗L

OX,x
κ(x). Hence part

(5) follows from More on Algebra, Lemma 76.4. Part (6) follows from part (5). Part (1)
follows from part (5), Lemma 11.2, and the fact that the Matlis dual of κ(x) is κ(x). Part
(2) follows from part (1). Part (3) follows from part (5) and the fact that Exti(K,Ox) =
Hi(X,K∨⊗L

OX
Ox) by Cohomology, Lemma 50.5. Part (4) follows from part (3) and the

fact that K ∼= (K∨)∨ by the lemma just cited. �

Lemma 11.4. LetX be a Noetherian scheme. Let x ∈ X be a closed point and denote
Ox the skyscraper sheaf at x with value κ(x). Let K in Db

Coh(OX). Let b ∈ Z. The
following are equivalent

(1) Hi(K)x = 0 for all i > b and
(2) HomX(K,Ox[−i]) = 0 for all i > b.

Proof. Consider the complex Kx in Db
Coh(OX,x). There exist an integer bx ∈ Z

such that Kx can be represented by a bounded above complex

. . .→ O⊕nbx−2
X,x → O⊕nbx−1

X,x → O⊕nbx
X,x → 0→ . . .

with O⊕ni
X,x sitting in degree i where all the transition maps are given by matrices whose

coefficients are in mx. See More on Algebra, Lemma 75.5. The result follows easily from
this (and the equivalent conditions hold if and only if b ≥ bx). �

Lemma 11.5. Let k be a field. Let X and Y be proper schemes over k. Assume X is
regular. Then a k-linear exact functor F : Dperf (OX) → Dperf (OY ) is fully faithful if
and only if for any closed points x, x′ ∈ X the maps

F : ExtiX(Ox,Ox′) −→ ExtiY (F (Ox), F (Ox′))

are isomorphisms for all i ∈ Z. HereOx is the skyscraper sheaf at x with value κ(x).

Proof. By Lemma 7.1 the functor F has both a left and a right adjoint. Thus we may
apply the criterion of Lemma 11.1 because assumptions (2) and (3) of that lemma follow
from Lemma 11.3. �

Lemma 11.6. Let k be a field. Let X be a proper scheme over k which is regular. Let
F : Dperf (OX) → Dperf (OX) be a k-linear exact functor. Assume for every coherent
OX -module F with dim(Supp(F)) = 0 there is an isomorphism F ∼= F (F). Then F is
fully faithful.

Proof. By Lemma 11.5 it suffices to show that the maps

F : ExtiX(Ox,Ox′) −→ ExtiX(F (Ox), F (Ox′))

are isomorphisms for all i ∈ Z and all closed points x, x′ ∈ X . By assumption, the source
and the target are isomorphic. If x 6= x′, then both sides are zero and the result is true. If
x = x′, then it suffices to prove that the map is either injective or surjective. For i < 0
both sides are zero and the result is true. For i = 0 any nonzero mapα : Ox → Ox ofOX -
modules is an isomorphism. Hence F (α) is an isomorphism too and so F (α) is nonzero.
Thus the result for i = 0. For i = 1 a nonzero element ξ in Ext1(Ox,Ox) corresponds to
a nonsplit short exact sequence

0→ Ox → F → Ox → 0
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Since F (F) ∼= F we see that F (F) is a nonsplit extension of Ox by Ox as well. Since
Ox ∼= F (Ox) is a simple OX -module and F ∼= F (F) has length 2, we see that in the
distinguished triangle

F (Ox)→ F (F)→ F (Ox) F (ξ)−−−→ F (Ox)[1]
the first two arrows must form a short exact sequence which must be isomorphic to the
above short exact sequence and hence is nonsplit. It follows that F (ξ) is nonzero and we
conclude for i = 1. For i > 1 composition of ext classes defines a surjection

Ext1(F (Ox), F (Ox))⊗ . . .⊗ Ext1(F (Ox), F (Ox)) −→ Exti(F (Ox), F (Ox))
See Duality for Schemes, Lemma 15.4. Hence surjectivity in degree 1 implies surjectivity
for i > 0. This finishes the proof. �

12. Special functors

In this section we prove some results on functors of a special type that we will use later in
this chapter.

Definition 12.1. Let k be a field. LetX , Y be finite type schemes over k. Recall that
Db

Coh(OX) = Db(Coh(OX)) by Derived Categories of Schemes, Proposition 11.2. We say
two k-linear exact functors

F, F ′ : Db
Coh(OX) = Db(Coh(OX)) −→ Db

Coh(OY )
are siblings, or we say F ′ is a sibling of F if F and F ′ are siblings in the sense of Definition
10.1 with abelian category being Coh(OX). IfX is regular thenDperf (OX) = Db

Coh(OX)
by Derived Categories of Schemes, Lemma 11.6 and we use the same terminology for k-
linear exact functors F, F ′ : Dperf (OX)→ Dperf (OY ).

Lemma 12.2. Let k be a field. Let X , Y be finite type schemes over k with X sepa-
rated. Let F : Db

Coh(OX)→ Db
Coh(OY ) be a k-linear exact functor sending Coh(OX) ⊂

Db
Coh(OX) into Coh(OY ) ⊂ Db

Coh(OY ). Then there exists a Fourier-Mukai functor
F ′ : Db

Coh(OX) → Db
Coh(OY ) whose kernel is a coherent OX×Y -module K flat over

X and with support finite over Y which is a sibling of F .

Proof. DenoteH : Coh(OX)→ Coh(OY ) the restriction of F . Since F is an exact
functor of triangulated categories, we see that H is an exact functor of abelian categories.
Of course H is k-linear as F is. By Functors and Morphisms, Lemma 7.5 we obtain a
coherent OX×Y -module K which is flat over X and has support finite over Y . Let F ′ be
the Fourier-Mukai functor defined using K so that F ′ restricts to H on Coh(OX). The
functor F ′ sendsDb

Coh(OX) intoDb
Coh(OY ) by Lemma 8.5. Observe that F and F ′ satisfy

the first and second condition of Lemma 10.2 and hence are siblings. �

Remark 12.3. If F, F ′ : Db
Coh(OX) → D are siblings, F is fully faithful, and X

is reduced and projective over k then F ∼= F ′; this follows from Proposition 10.6 via
the argument given in the proof of Theorem 13.3. However, in general we do not know
whether siblings are isomorphic. Even in the situation of Lemma 12.2 it seems difficult to
prove that the siblings F and F ′ are isomorphic functors. IfX is smooth and proper over
k and F is fully faithful, then F ∼= F ′ as is shown in [?]. If you have a proof or a counter
example in more general situations, please email stacks.project@gmail.com.

Lemma 12.4. Let k be a field. Let X , Y be proper schemes over k. Assume X is
regular. Let F,G : Dperf (OX)→ Dperf (OY ) be k-linear exact functors such that

mailto:stacks.project@gmail.com
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(1) F (F) ∼= G(F) for any coherentOX -module F with dim(Supp(F)) = 0,
(2) F is fully faithful.

Then the essential image of G is contained in the essential image of F .
Proof. Recall that F and G have both adjoints, see Lemma 7.1. In particular the

essential image A ⊂ Dperf (OY ) of F satisfies the equivalent conditions of Derived Cat-
egories, Lemma 40.7. We claim that G factors through A. Since A = ⊥(A⊥) by De-
rived Categories, Lemma 40.7 it suffices to show that HomY (G(M), N) = 0 for all M in
Dperf (OX) and N ∈ A⊥. We have

HomY (G(M), N) = HomX(M,Gr(N))
where Gr is the right adjoint to G. Thus it suffices to prove that Gr(N) = 0. Since
G(F) ∼= F (F) for F as in (1) we see that

HomX(F , Gr(N)) = HomY (G(F), N) = HomY (F (F), N) = 0
asN is in the right orthogonal to the essential imageA ofF . Of course, the same vanishing
holds for HomX(F , Gr(N)[i]) for any i ∈ Z. Thus Gr(N) = 0 by Lemma 11.3 and we
win. �

Lemma 12.5. Let k be a field. Let X be a proper scheme over k which is regular. Let
F : Dperf (OX) → Dperf (OX) be a k-linear exact functor. Assume for every coherent
OX -module F with dim(Supp(F)) = 0 there is an isomorphism F ∼= F (F). Then there
exists an automorphism f : X → X over k which induces the identity on the underlying
topological space1 and an invertibleOX -moduleL such thatF andF ′(M) = f∗M⊗L

OX
L

are siblings.
Proof. By Lemma 11.6 the functor F is fully faithful. By Lemma 12.4 the essential

image of the identity functor is contained in the essential image of F , i.e., we see that F
is essentially surjective. Thus F is an equivalence. Observe that the quasi-inverse F−1

satisfies the same assumptions as F .
Let M ∈ Dperf (OX) and say Hi(M) = 0 for i > b. Since F is fully faithful, we see that

HomX(M,Ox[−i]) = HomX(F (M), F (Ox)[−i]) ∼= HomX(F (M),Ox[−i])
for any i ∈ Z for any closed point x of X . Thus by Lemma 11.4 we see that F (M) has
vanishing cohomology sheaves in degrees > b.
Let F be a coherent OX -module. By the above F (F) has nonzero cohomology sheaves
only in degrees ≤ 0. Set G = H0(F (F)). Choose a distinguished triangle

K → F (F)→ G → K[1]
Then K has nonvanishing cohomology sheaves only in degrees≤ −1. Applying F−1 we
obtain a distinguished triangle

F−1(K)→ F → F−1(G)→ F−1(K ′)[1]
Since F−1(K) has nonvanishing cohomology sheaves only in degrees ≤ −1 (by the pre-
vious paragraph applied to F−1) we see that the arrow F−1(K) → F is zero (Derived
Categories, Lemma 27.3). HenceK → F (F) is zero, which implies that F (F) = G by our
choice of the first distinguished triangle.
From the preceding paragraph, we deduce that F preserves Coh(OX) and indeed defines
an equivalence H : Coh(OX) → Coh(OX). By Functors and Morphisms, Lemma 7.8

1This often forces f to be the identity, see Varieties, Lemma 32.1.
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we get an automorphism f : X → X over k and an invertible OX -module L such that
H(F) = f∗F ⊗ L. Set F ′(M) = f∗M ⊗L

OX
L. Using Lemma 10.2 we see that F and F ′

are siblings. To see that f is the identity on the underlying topological space ofX , we use
that F (Ox) ∼= Ox and that the support ofOx is {x}. This finishes the proof. �

Lemma 12.6. Let k be a field. LetX , Y be proper schemes over k. AssumeX regular.
Let F,G : Dperf (OX)→ Dperf (OY ) be k-linear exact functors such that

(1) F (F) ∼= G(F) for any coherentOX -module F with dim(Supp(F)) = 0,
(2) F is fully faithful, and
(3) G is a Fourier-Mukai functor whose kernel is in Dperf (OX×Y ).

Then there exists a Fourier-Mukai functor F ′ : Dperf (OX)→ Dperf (OY ) whose kernel
is in Dperf (OX×Y ) such that F and F ′ are siblings.

Proof. The essential image of G is contained in the essential image of F by Lemma
12.4. Consider the functor H = F−1 ◦ G which makes sense as F is fully faithful. By
Lemma 12.5 we obtain an automorphism f : X → X and an invertible OX -module L
such that the functor H ′ : K 7→ f∗K ⊗ L is a sibling of H . In particular H is an
auto-equivalence by Lemma 10.3 and H induces an auto-equivalence of Coh(OX) (as this
is true for its sibling functor H ′). Thus the quasi-inverses H−1 and (H ′)−1 exist, are
siblings (small detail omitted), and (H ′)−1 sends M to (f−1)∗(M ⊗L

OX
L⊗−1) which is

a Fourier-Mukai functor (details omitted). Then of course F = G ◦ H−1 is a sibling of
G ◦ (H ′)−1. Since compositions of Fourier-Mukai functors are Fourier-Mukai by Lemma
8.3 we conclude. �

13. Fully faithful functors

Our goal is to prove fully faithful functors between derived categories are siblings of
Fourier-Mukai functors, following [?] and [?].

Situation 13.1. Here k is a field. We have proper smooth schemes X and Y over k.
We have a k-linear, exact, fully faithful functor F : Dperf (OX)→ Dperf (OY ).

Before reading on, it makes sense to read at least some of Derived Categories, Section 41.

Recall thatX is regular and hence has the resolution property (Varieties, Lemma 25.3 and
Derived Categories of Schemes, Lemma 36.8). Thus onX×X we may choose a resolution

. . .→ E2 � G2 → E1 � G1 → E0 � G0 → O∆ → 0

where each Ei and Gi is a finite locally freeOX -module, see Lemma 9.3. Using the complex

(13.1.1) . . .→ E2 � G2 → E1 � G1 → E0 � G0

in Dperf (OX×X) as in Derived Categories, Example 41.2 if for each n we denote

Mn = (En � Gn → . . .→ E0 � G0)[−n]

we obtain an infinite Postnikov system for the complex (13.1.1). This means the mor-
phisms M0 →M1[1]→M2[2]→ . . . and Mn → En � Gn and En � Gn →Mn−1 satisfy
certain conditions documented in Derived Categories, Definition 41.1. Set

Fn = Ker(En � Gn → En−1 � Gn−1)
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Observe that since O∆ is flat over X via pr1 the same is true for Fn for all n (this is a
convenient though not essential observation). We have

Hq(Mn[n]) =

O∆ if q = 0
Fn if q = −n
0 if q 6= 0,−n

Thus for n ≥ dim(X ×X) we have

Mn[n] ∼= O∆ ⊕Fn[n]
in Dperf (OX×X) by Lemma 9.5.

We are interested in the complex

(13.1.2) . . .→ E2 � F (G2)→ E1 � F (G1)→ E0 � F (G0)
in Dperf (OX×Y ) as the “totalization” of this complex should give us the kernel of the
Fourier-Mukai functor we are trying to construct. For all i, j ≥ 0 we have

ExtqX×Y (Ei � F (Gi), Ej � F (Gj)) =
⊕

p
Extq+p

X (Ei, Ej)⊗k Ext−p
Y (F (Gi), F (Gj))

=
⊕

p
Extq+p

X (Ei, Ej)⊗k Ext−p
X (Gi,Gj)

The second equality holds becauseF is fully faithful and the first by Derived Categories of
Schemes, Lemma 25.1. We find these Extq are zero for q < 0. Hence by Derived Categories,
Lemma 41.6 we can build an infinite Postnikov system K0,K1,K2, . . . in Dperf (OX×Y )
for the complex (13.1.2). Parallel to what happens with M0,M1,M2, . . . this means we
obtain morphisms K0 → K1[1] → K2[2] → . . . and Kn → En � F (Gn) and En �
F (Gn) → Kn−1 in Dperf (OX×Y ) satisfying certain conditions documented in Derived
Categories, Definition 41.1.

Let F be a coherent OX -module whose support has a finite number of points, i.e., with
dim(Supp(F)) = 0. Consider the exact functor of triangulated categories

Dperf (OX×Y ) −→ Dperf (OY ), N 7−→ Rpr2,∗(pr∗
1F ⊗

L
OX×Y

N)

It follows that the objectsRpr2,∗(pr∗
1F⊗

L
OX×Y

Ki) form a Postnikov system for the com-
plex in Dperf (OY ) with terms

Rpr2,∗((F ⊗ Ei)� F (Gi)) = Γ(X,F ⊗ Ei)⊗k F (Gi) = F (Γ(X,F ⊗ Ei)⊗k Gi)

Here we have used thatF⊗Ei has vanishing higher cohomology as its support has dimen-
sion 0. On the other hand, applying the exact functor

Dperf (OX×X) −→ Dperf (OY ), N 7−→ F (Rpr2,∗(pr∗
1F ⊗

L
OX×X

N))

we find that the objects F (Rpr2,∗(pr∗
1F ⊗

L
OX×X

Mn)) form a second infinite Postnikov
system for the complex in Dperf (OY ) with terms

F (Rpr2,∗((F ⊗ Ei)� Gi)) = F (Γ(X,F ⊗ Ei)⊗k Gi)

This is the same as before! By uniqueness of Postnikov systems (Derived Categories,
Lemma 41.6) which applies because

ExtqY (F (Γ(X,F ⊗ Ei)⊗k Gi), F (Γ(X,F ⊗ Ej)⊗k Gj)) = 0, q < 0
as F is fully faithful, we find a system of isomorphisms

F (Rpr2,∗(pr∗
1F ⊗

L
OX×X

Mn[n])) ∼= Rpr2,∗(pr∗
1F ⊗

L
OX×Y

Kn[n])
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in Dperf (OY ) compatible with the morphisms in Dperf (OY ) induced by the morphisms

Mn−1[n− 1]→Mn[n] and Kn−1[n− 1]→ Kn[n]

Mn → En � Gn and Kn → En � F (Gn)
En � Gn →Mn−1 and En � F (Gn)→ Kn−1

which are part of the structure of Postnikov systems. For n sufficiently large we obtain a
direct sum decomposition

F (Rpr2,∗(pr∗
1F ⊗

L
OX×X

Mn[n])) = F (F)⊕ F (Rpr2,∗(pr∗
1F ⊗OX×Y Fn))[n]

corresponding to the direct sum decomposition ofMn constructed above (we are using the
flatness ofFn overX via pr1 to write a usual tensor product in the formula above, but this
isn’t essential for the argument). By Lemma 9.9 we find there exists an integerm ≥ 0 such
that the first summand in this direct sum decomposition has nonzero cohomology sheaves
only in the interval [−m,m] and the second summand in this direct sum decomposition
has nonzero cohomology sheaves only in the interval [−m − n,m + dim(X) − n]. We
conclude the system K0 → K1[1]→ K2[2]→ . . . in Dperf (OX×Y ) satisfies the assump-
tions of Lemma 9.10 after possibly replacing m by a larger integer. We conclude we can
write

Kn[n] = K ⊕ Cn
for n � 0 compatible with transition maps and with Cn having nonzero cohomology
sheaves only in the range [−m− n,m− n]. Denote G the Fourier-Mukai functor corre-
sponding to K. Putting everything together we find

G(F)⊕Rpr2,∗(pr∗
1F ⊗

L
OX×Y

Cn) ∼=
Rpr2,∗(pr∗

1F ⊗
L
OX×Y

Kn[n]) ∼=
F (Rpr2,∗(pr∗

1F ⊗
L
OX×X

Mn[n])) ∼=
F (F)⊕ F (Rpr2,∗(pr∗

1F ⊗OX×Y Fn))[n]

Looking at the degrees that objects live in we conclude that for n � m we obtain an
isomorphism

F (F) ∼= G(F)
Moreover, recall that this holds for every coherent F on X whose support has dimension
0.

Lemma 13.2. Let k be a field. Let X and Y be smooth proper schemes over k. Given
a k-linear, exact, fully faithful functor F : Dperf (OX) → Dperf (OY ) there exists a
Fourier-Mukai functorF ′ : Dperf (OX)→ Dperf (OY ) whose kernel is inDperf (OX×Y )
which is a sibling to F .

Proof. Apply Lemma 12.6 to F and the functor G constructed above. �

The following theorem is also true without assuming X is projective, see [?].

Theorem 13.3 (Orlov). Let k be a field. LetX and Y be smooth proper schemes over
k with X projective over k. Any k-linear fully faithful exact functor F : Dperf (OX)→
Dperf (OY ) is a Fourier-Mukai functor for some kernel in Dperf (OX×Y ).

Proof. LetF ′ be the Fourier-Mukai functor which is a sibling ofF as in Lemma 13.2.
By Proposition 10.6 we have F ∼= F ′ provided we can show that Coh(OX) has enough
negative objects. However, ifX = Spec(k) for example, then this isn’t true. Thus we first
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decomposeX =
∐
Xi into its connected (and irreducible) components and we argue that

it suffices to prove the result for each of the (fully faithful) composition functors
Fi : Dperf (OXi)→ Dperf (OX)→ Dperf (OY )

Details omitted. Thus we may assume X is irreducible.
The case dim(X) = 0. Here X is the spectrum of a finite (separable) extension k′/k and
hence Dperf (OX) is equivalent to the category of graded k′-vector spaces such that OX
corresponds to the trivial 1-dimensional vector space in degree 0. It is straightforward to
see that any two siblings F, F ′ : Dperf (OX) → Dperf (OY ) are isomorphic. Namely,
we are given an isomorphism F (OX) ∼= F ′(OX) compatible the action of the k-algebra
k′ = EndDperf (OX)(OX) which extends canonically to an isomorphism on any graded
k′-vector space.
The case dim(X) > 0. Here X is a projective smooth variety of dimension > 1. Let F be
a coherentOX -module. We have to show there exists a coherent moduleN such that

(1) there is a surjectionN → F and
(2) Hom(F ,N ) = 0.

Choose an ample invertible OX -module L. We claim that N = (L⊗n)⊕r will work for
n � 0 and r large enough. Condition (1) follows from Properties, Proposition 26.13.
Finally, we have

Hom(F ,L⊗n) = H0(X,Hom(F ,L⊗n)) = H0(X,Hom(F ,OX)⊗ L⊗n)
Since the dualHom(F ,OX) is torsion free, this vanishes for n � 0 by Varieties, Lemma
48.1. This finishes the proof. �

Proposition 13.4. Let k be a field. LetX and Y be smooth proper schemes over k. If
F : Dperf (OX) → Dperf (OY ) is a k-linear exact equivalence of triangulated categories
then there exists a Fourier-Mukai functor F ′ : Dperf (OX)→ Dperf (OY ) whose kernel
is in Dperf (OX×Y ) which is an equivalence and a sibling of F .

Proof. The functor F ′ of Lemma 13.2 is an equivalence by Lemma 10.3. �

Lemma 13.5. Let k be a field. Let X be a smooth proper scheme over k. Let K ∈
Dperf (OX×X). If the Fourier-Mukai functor ΦK : Dperf (OX) → Dperf (OX) is iso-
morphic to the identity functor, then K ∼= ∆∗OX in perf (OX×X).

Proof. Let i be the minimal integer such that the cohomology sheafHi(K) is nonzero.
Let E and G be finite locally freeOX -modules. Then

Hi(X ×X,K ⊗L
OX×X

(E � G)) = Hi(X,Rpr2,∗(K ⊗L
OX×X

(E � G)))

= Hi(X,ΦK(E)⊗L
OX
G)

∼= Hi(X, E ⊗ G)
which is zero if i < 0. On the other hand, we can choose E and G such that there is
a surjection E∨ � G∨ → Hi(K) by Lemma 9.1. In this case the left hand side of the
equalities is nonzero. Hence we conclude that Hi(K) = 0 for i < 0.
Let i be the maximal integer such thatHi(K) is nonzero. The same argument with E and
G support of dimension 0 shows that i ≤ 0. Hence we conclude thatK is given by a single
coherentOX×X -module K sitting in degree 0.
Since Rpr2,∗(pr∗

1F ⊗ K) is F , by taking F supported at closed points we see that the
support of K is finite over X via pr2. Since Rpr2,∗(K) ∼= OX we conclude by Functors
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and Morphisms, Lemma 7.6 that K = s∗OX for some section s : X → X × X of the
second projection. Then ΦK(M) = f∗M where f = pr1 ◦ s and this can happen only if
s is the diagonal morphism as desired. �

14. A category of Fourier-Mukai kernels

Let S be a scheme. We claim there is a category with
(1) Objects are proper smooth schemes over S.
(2) Morphisms from X to Y are isomorphism classes of objects of Dperf (OX×SY ).
(3) Composition of the isomorphism class of K ∈ Dperf (OX×SY ) and the isomor-

phism class of K ′ in Dperf (OY×SZ) is the isomorphism class of

Rpr13,∗(Lpr∗
12K ⊗

L
OX×SY×SZ

Lpr∗
23K

′)

which is in Dperf (OX×SZ) by Derived Categories of Schemes, Lemma 30.4.
(4) The identity morphism from X to X is the isomorphism class of ∆X/S,∗OX

which is in Dperf (OX×SX) by More on Morphisms, Lemma 61.12 and the fact
that ∆X/S is a perfect morphism by Divisors, Lemma 22.11 and More on Mor-
phisms, Lemma 61.7.

Let us check that associativity of composition of morphisms holds; we omit verifying that
the identity morphisms are indeed identities. To see this suppose we haveX,Y, Z,W and
c ∈ Dperf (OX×SY ), c′ ∈ Dperf (OY×SZ), and c′′ ∈ Dperf (OZ×SW ). Then we have

c′′ ◦ (c′ ◦ c) ∼= pr134
14,∗(pr134,∗

13 pr123
13,∗(pr123,∗

12 c⊗ pr123,∗
23 c′)⊗ pr134,∗

34 c′′)
∼= pr134

14,∗(pr1234
134,∗pr1234,∗

123 (pr123,∗
12 c⊗ pr123,∗

23 c′)⊗ pr134,∗
34 c′′)

∼= pr134
14,∗(pr1234

134,∗(pr1234,∗
12 c⊗ pr1234,∗

23 c′)⊗ pr134,∗
34 c′′)

∼= pr134
14,∗pr1234

134,∗((pr1234,∗
12 c⊗ pr1234,∗

23 c′)⊗ pr1234,∗
34 c′′)

∼= pr1234
14,∗ ((pr1234,∗

12 c⊗ pr1234,∗
23 c′)⊗ pr1234,∗

34 c′′)

Here we use the notation

p1234
134 : X×S Y ×S Z×SW → X×S Z×SW and p134

14 : X×S Z×SW → X×SW

the projections and similarly for other indices. We also write pr∗ instead of Rpr∗ and
pr∗ instead of Lpr∗ and we drop all super and sub scripts on ⊗. The first equality is
the definition of the composition. The second equality holds because pr134,∗

13 pr123
13,∗ =

pr1234
134,∗pr1234,∗

123 by base change (Derived Categories of Schemes, Lemma 22.5). The third
equality holds because pullbacks compose correctly and pass through tensor products, see
Cohomology, Lemmas 27.2 and 27.3. The fourth equality follows from the “projection
formula” for p1234

134 , see Derived Categories of Schemes, Lemma 22.1. The fifth equality is
that proper pushforward is compatible with composition, see Cohomology, Lemma 28.2.
Since tensor product is associative this concludes the proof of associativity of composition.

Lemma 14.1. Let S′ → S be a morphism of schemes. The rule which sends
(1) a smooth proper scheme X over S to X ′ = S′ ×S X , and
(2) the isomorphism class of an object K of Dperf (OX×SY ) to the isomorphism

class of L(X ′ ×S′ Y ′ → X ×S Y )∗K in Dperf (OX′×S′Y ′)
is a functor from the category defined for S to the category defined for S′.
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Proof. To see this suppose we have X,Y, Z and K ∈ Dperf (OX×SY ) and M ∈
Dperf (OY×SZ). Denote K ′ ∈ Dperf (OX′×S′Y ′) and M ′ ∈ Dperf (OY ′×S′Z′) their
pullbacks as in the statement of the lemma. The diagram

X ′ ×S′ Y ′ ×S′ Z ′ //

pr′
13
��

X ×S Y ×S Z

pr13

��
X ′ ×S′ Z ′ // X ×S Z

is cartesian and pr13 is proper and smooth. By Derived Categories of Schemes, Lemma
30.4 we see that the derived pullback by the lower horizontal arrow of the composition

Rpr13,∗(Lpr∗
12K ⊗

L
OX×SY×SZ

Lpr∗
23M)

indeed is (canonically) isomorphic to

Rpr′
13,∗(L(pr′

12)∗K ′ ⊗L
OX′×

S′Y ′×
S′Z′ L(pr′

23)∗M ′)

as desired. Some details omitted. �

15. Relative equivalences

In this section we prove some lemmas about the following concept.

Definition 15.1. Let S be a scheme. Let X → S and Y → S be smooth proper
morphisms. An object K ∈ Dperf (OX×SY ) is said to be the Fourier-Mukai kernel of a
relative equivalence from X to Y over S if there exist an object K ′ ∈ Dperf (OX×SY )
such that

∆X/S,∗OX ∼= Rpr13,∗(Lpr∗
12K ⊗

L
OX×SY×SX

Lpr∗
23K

′)
in D(OX×SX) and

∆Y/S,∗OY ∼= Rpr13,∗(Lpr∗
12K

′ ⊗L
OY×SX×SY

Lpr∗
23K)

inD(OY×SY ). In other words, the isomorphism class ofK defines an invertible arrow in
the category defined in Section 14.

The language is intentionally cumbersome.

Lemma 15.2. With notation as in Definition 15.1 let K be the Fourier-Mukai kernel
of a relative equivalence from X to Y over S. Then the corresponding Fourier-Mukai
functors ΦK : DQCoh(OX) → DQCoh(OY ) (Lemma 8.2) and ΦK : Dperf (OX) →
Dperf (OY ) (Lemma 8.4) are equivalences.

Proof. Immediate from Lemma 8.3 and Example 8.6. �

Lemma 15.3. With notation as in Definition 15.1 let K be the Fourier-Mukai kernel
of a relative equivalence from X to Y over S. Let S1 → S be a morphism of schemes. Let
X1 = S1×SX and Y1 = S1×SY . Then the pullbackK1 = L(X1×S1Y1 → X×SY )∗K
is the Fourier-Mukai kernel of a relative equivalence from X1 to Y1 over S1.

Proof. Let K ′ ∈ Dperf (OY×SX) be the object assumed to exist in Definition 15.1.
Denote K ′

1 the pullback of K ′ by Y1 ×S1 X1 → Y ×S X . Then it suffices to prove that
we have

∆X1/S1,∗OX ∼= Rpr13,∗(Lpr∗
12K1 ⊗L

OX1×S1Y1×S1X1
Lpr∗

23K
′
1)
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in D(OX1×S1X1) and similarly for the other condition. Since

X1 ×S1 Y1 ×S1 X1 //

pr13

��

X ×S Y ×S X

pr13

��
X1 ×S1 X1 // X ×S X

is cartesian it suffices by Derived Categories of Schemes, Lemma 30.4 to prove that

∆X1/S1,∗OX1
∼= L(X1 ×S1 X1 → X ×S X)∗∆X/S,∗OX

This in turn will be true if X and X1 ×S1 X1 are tor independent over X ×S X , see
Derived Categories of Schemes, Lemma 22.5. This tor independence can be seen directly
but also follows from the more general More on Morphisms, Lemma 69.1 applied to the
square with corners X,X,X, S and its base change by S1 → S. �

Lemma 15.4. Let S = limi∈I Si be a limit of a directed system of schemes with
affine transition morphisms gi′i : Si′ → Si. We assume that Si is quasi-compact and
quasi-separated for all i ∈ I . Let 0 ∈ I . Let X0 → S0 and Y0 → S0 be smooth proper
morphisms. We set Xi = Si ×S0 X0 for i ≥ 0 and X = S ×S0 X0 and similarly for Y0.
If K is the Fourier-Mukai kernel of a relative equivalence from X to Y over S then for
some i ≥ 0 there exists a Fourier-Mukai kernel of a relative equivalence from Xi to Yi
over Si.

Proof. Let K ′ ∈ Dperf (OY×SX) be the object assumed to exist in Definition 15.1.
SinceX×SY = limXi×SiYi there exists an i and objectsKi andK ′

i inDperf (OYi×SiXi)
whose pullbacks to Y ×S X give K and K ′. See Derived Categories of Schemes, Lemma
29.3. By Derived Categories of Schemes, Lemma 30.4 the object

Rpr13,∗(Lpr∗
12Ki ⊗L

OXi×SiYi×SiXi
Lpr∗

23K
′
i)

is perfect and its pullback to X ×S X is equal to

Rpr13,∗(Lpr∗
12K ⊗

L
OX×SY×SX

Lpr∗
23K

′) ∼= ∆X/S,∗OX

See proof of Lemma 15.3. On the other hand, since Xi → S is smooth and separated the
object

∆i,∗OXi

of D(OXi×SiXi) is also perfect (by More on Morphisms, Lemmas 62.18 and 61.13) and its
pullback to X ×S X is equal to

∆X/S,∗OX

See proof of Lemma 15.3. Thus by Derived Categories of Schemes, Lemma 29.3 after in-
creasing i we may assume that

∆i,∗OXi ∼= Rpr13,∗(Lpr∗
12Ki ⊗L

OXi×SiYi×SiXi
Lpr∗

23K
′
i)

as desired. The same works for the roles of K and K ′ reversed. �
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16. No deformations

The title of this section refers to Lemma 16.4

Lemma 16.1. Let (R,m, κ)→ (A, n, λ) be a flat local ring homorphism of local rings
which is essentially of finite presentation. Let f1, . . . , fr ∈ n/mA ⊂ A/mA be a regular
sequence. Let K ∈ D(A). Assume

(1) K is perfect,
(2) K ⊗L

A A/mA is isomorphic in D(A/mA) to the Koszul complex on f1, . . . , fr.
ThenK is isomorphic inD(A) to a Koszul complex on a regular sequence f1, . . . , fr ∈ A
lifting the given elements f1, . . . , fr. Moreover, A/(f1, . . . , fr) is flat over R.

Proof. Let us use chain complexes in the proof of this lemma. The Koszul com-
plexK•(f1, . . . , fr) is defined in More on Algebra, Definition 28.2. By More on Algebra,
Lemma 75.4 we can represent K by a complex

K• : A→ A⊕r → . . .→ A⊕r → A

whose tensor product with A/mA is equal (!) to K•(f1, . . . , fr). Denote f1, . . . , fr ∈ A
the components of the arrow A⊕r → A. These fi are lifts of the f i. By Algebra, Lemma
128.6 f1, . . . , fr form a regular sequence in A and A/(f1, . . . , fr) is flat over R. Let J =
(f1, . . . , fr) ⊂ A. Consider the diagram

K•

!!

ϕ•
// K•(f1, . . . , fr)

xx
A/J

Since f1, . . . , fr is a regular sequence the south-west arrow is a quasi-isomorphism (see
More on Algebra, Lemma 30.2). Hence we can find the dotted arrow making the diagram
commute for example by Algebra, Lemma 71.4. Reducing modulo m we obtain a commu-
tative diagram

K•(f1, . . . , fr)

))

ϕ•

// K•(f1, . . . , fr)

uu
(A/mA)/(f1, . . . , fr)

by our choice of K•. Thus ϕ is an isomorphism in the derived category D(A/mA). It
follows that ϕ⊗L

A/mA λ is an isomorphism. Since f i ∈ n/mA we see that

TorA/mAi (K•(f1, . . . , fr), λ) = Ki(f1, . . . , fr)⊗A/mA λ
Hence ϕi mod n is invertible. Since A is local this means that ϕi is an isomorphism and
the proof is complete. �

Lemma 16.2. Let R → S be a finite type flat ring map of Noetherian rings. Let
q ⊂ S be a prime ideal lying over p ⊂ R. Let K ∈ D(S) be perfect. Let f1, . . . , fr ∈ qSq

be a regular sequence such that Sq/(f1, . . . , fr) is flat over R and such that K ⊗L
S Sq is

isomorphic to the Koszul complex on f1, . . . , fr. Then there exists a g ∈ S , g 6∈ q such
that

(1) f1, . . . , fr are the images of f ′
1, . . . , f

′
r ∈ Sg ,

(2) f ′
1, . . . , f

′
r form a regular sequence in Sg ,
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(3) Sg/(f ′
1, . . . , f

′
r) is flat over R,

(4) K ⊗L
S Sg is isomorphic to the Koszul complex on f1, . . . , fr.

Proof. We can find g ∈ S , g 6∈ q with property (1) by the definition of localizations.
After replacing g by gg′ for some g′ ∈ S , g′ 6∈ q we may assume (2) holds, see Algebra,
Lemma 68.6. By Algebra, Theorem 129.4 we find that Sg/(f ′

1, . . . , f
′
r) is flat over R in

an open neighbourhood of q. Hence after once more replacing g by gg′ for some g′ ∈ S ,
g′ 6∈ q we may assume (3) holds as well. Finally, we get (4) for a further replacement by
More on Algebra, Lemma 74.17. �

For a generalization of the following lemma, please see More on Morphisms of Spaces,
Lemma 49.6.

Lemma 16.3. LetS be a Noetherian scheme. Let s ∈ S. Let p : X → Y be a morphism
of schemes over S. Assume

(1) Y → S and X → S proper,
(2) X is flat over S ,
(3) Xs → Ys an isomorphism.

Then there exists an open neighbourhoodU ⊂ S of s such that the base changeXU → YU
is an isomorphism.

Proof. The morphism p is proper by Morphisms, Lemma 41.6. By Cohomology of
Schemes, Lemma 21.2 there is an open Ys ⊂ V ⊂ Y such that p|p−1(V ) : p−1(V ) → V
is finite. By More on Morphisms, Theorem 16.1 there is an open Xs ⊂ U ⊂ X such that
p|U : U → Y is flat. After removing the images of X \ U and Y \ V (which are closed
subsets not containing s) we may assume p is flat and finite. Then p is open (Morphisms,
Lemma 25.10) and Ys ⊂ p(X) ⊂ Y hence after shrinking S we may assume p is surjective.
As ps : Xs → Ys is an isomorphism, the map

p] : OY −→ p∗OX
of coherent OY -modules (p is finite) becomes an isomorphism after pullback by i : Ys →
Y (by Cohomology of Schemes, Lemma 5.1 for example). By Nakayama’s lemma, this
implies that OY,y → (p∗OX)y is surjective for all y ∈ Ys. Hence there is an open Ys ⊂
V ⊂ Y such that p]|V is surjective (Modules, Lemma 9.4). Hence after shrinking S once
more we may assume p] is surjective which means that p is a closed immersion (as p is
already finite). Thus now p is a surjective flat closed immersion of Noetherian schemes
and hence an isomorphism, see Morphisms, Section 26. �

Lemma 16.4. Let k be a field. Let S be a finite type scheme over k with k-rational
point s. Let Y → S be a smooth proper morphism. Let X = Ys × S → S be the constant
family with fibre Ys. LetK be the Fourier-Mukai kernel of a relative equivalence fromX
to Y over S. Assume the restriction

L(Ys ×S Ys → X ×S Y )∗K ∼= ∆Ys/k,∗OYs
in D(OYs×Ys). Then there is an open neighbourhood s ∈ U ⊂ S such that Y |U is
isomorphic to Ys × U over U .

Proof. Denote i : Ys × Ys = Xs × Ys → X ×S Y the natural closed immersion.
(We will write Ys and not Xs for the fibre of X over s from now on.) Let z ∈ Ys × Ys =
(X×S Y )s ⊂ X×S Y be a closed point. As indicated we think of z both as a closed point
of Ys × Ys as well as a closed point of X ×S Y .
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Case I: z 6∈ ∆Ys/k(Ys). Denote Oz the coherent OYs×Ys -module supported at z whose
value is κ(z). Then i∗Oz is the coherent OX×SY -module supported at z whose value is
κ(z). Our assumption means that

K ⊗L
OX×SY

i∗Oz = Li∗K ⊗L
OYs×Ys

Oz = 0

Hence by Lemma 11.3 we find an open neighbourhood U(z) ⊂ X ×S Y of z such that
K|U(z) = 0. In this case we set Z(z) = ∅ as closed subscheme of U(z).

Case II: z ∈ ∆Ys/k(Ys). Since Ys is smooth over k we know that ∆Ys/k : Ys → Ys × Ys
is a regular immersion, see More on Morphisms, Lemma 62.18. Choose a regular sequence
f1, . . . , fr ∈ OYs×Ys,z cutting out the ideal sheaf of ∆Ys/k(Ys). Since a regular sequence
is Koszul-regular (More on Algebra, Lemma 30.2) our assumption means that

Kz ⊗L
OX×SY,z

OYs×Ys,z ∈ D(OYs×Ys,z)

is represented by the Koszul complex on f1, . . . , fr over OYs×Ys,z . By Lemma 16.1 ap-
plied to OS,s → OX×SY,z we conclude that Kz ∈ D(OX×SY,z) is represented by the
Koszul complex on a regular sequence f1, . . . , fr ∈ OX×SY,z lifting the regular sequence
f1, . . . , fr such that moreoverOX×SY /(f1, . . . , fr) is flat overOS,s. By some limit argu-
ments (Lemma 16.2) we conclude that there exists an affine open neighbourhood U(z) ⊂
X ×S Y of z and a closed subscheme Z(z) ⊂ U(z) such that

(1) Z(z)→ U(z) is a regular closed immersion,
(2) K|U(z) is quasi-isomorphic toOZ(z),
(3) Z(z)→ S is flat,
(4) Z(z)s = ∆Ys/k(Ys) ∩ U(z)s as closed subschemes of U(z)s.

By property (2), for z, z′ ∈ Ys × Ys, we find that Z(z) ∩ U(z′) = Z(z′) ∩ U(z) as closed
subschemes. Hence we obtain an open neighbourhood

U =
⋃

z∈Ys×Ys closed
U(z)

of Ys × Ys in X ×S Y and a closed subscheme Z ⊂ U such that (1) Z → U is a regular
closed immersion, (2) Z → S is flat, and (3) Zs = ∆Ys/k(Ys). Since X ×S Y → S is
proper, after replacing S by an open neighbourhood of s we may assume U = X ×S Y .
Since the projections Zs → Ys and Zs → Xs are isomorphisms, we conclude that after
shrinking S we may assume Z → Y and Z → X are isomorphisms, see Lemma 16.3. This
finishes the proof. �

Lemma 16.5. Let k be an algebraically closed field. LetX be a smooth proper scheme
over k. Let f : Y → S be a smooth proper morphism with S of finite type over k. Let K
be the Fourier-Mukai kernel of a relative equivalence fromX×S to Y overS. ThenS can
be covered by open subschemes U such that there is a U -isomorphism f−1(U) ∼= Y0 × U
for some Y0 proper and smooth over k.

Proof. Choose a closed point s ∈ S. Since k is algebraically closed this is a k-rational
point. Set Y0 = Ys. The restriction K0 of K to X × Y0 is the Fourier-Mukai kernel of a
relative equivalence fromX to Y0 over Spec(k) by Lemma 15.3. LetK ′

0 inDperf (OY0×X)
be the object assumed to exist in Definition 15.1. Then K ′

0 is the Fourier-Mukai kernel of
a relative equivalence from Y0 toX over Spec(k) by the symmetry inherent in Definition
15.1. Hence by Lemma 15.3 we see that the pullback

M = (Y0 ×X × S → Y0 ×X)∗K ′
0
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on (Y0×S)×S (X×S) = Y0×X×S is the Fourier-Mukai kernel of a relative equivalence
from Y0 × S to X × S over S. Now consider the kernel

Knew = Rpr13,∗(Lpr∗
12M ⊗

L
O(Y0×S)×S(X×S)×SY

Lpr∗
23K)

on (Y0×S)×SY . This is the Fourier-Mukai kernel of a relative equivalence fromY0×S to
Y overS since it is the composition of two invertible arrows in the category constructed in
Section 14. Moreover, this composition passes through base change (Lemma 14.1). Hence
we see that the pullback ofKnew to ((Y0×S)×SY )s = Y0×Y0 is equal to the composition
of K0 and K ′

0 and hence equal to the identity in this category. In other words, we have
L(Y0 × Y0 → (Y0 × S)×S Y )∗Knew

∼= ∆Y0/k,∗OY0

Thus by Lemma 16.4 we conclude that Y → S is isomorphic to Y0 × S in an open neigh-
bourhood of s. This finishes the proof. �

17. Countability

In this section we prove some elementary lemmas about countability of certain sets. Let C
be a category. In this section we will say that C is countable if

(1) for any X,Y ∈ Ob(C) the set MorC(X,Y ) is countable, and
(2) the set of isomorphism classes of objects of C is countable.

Lemma 17.1. LetR be a countable Noetherian ring. Then the category of schemes of
finite type over R is countable.

Proof. Omitted. �

Lemma 17.2. LetA be a countable abelian category. Then Db(A) is countable.

Proof. It suffices to prove the statement forD(A) as the others are full subcategories
of this one. Since every object in D(A) is a complex of objects of A it is immediate that
the set of isomorphism classes of objects of Db(A) is countable. Moreover, for bounded
complexes A• and B• ofA it is clear that HomKb(A)(A•, B•) is countable. We have

HomDb(A)(A•, B•) = colims:(A′)•→A• qis and (A′)• bounded HomKb(A)((A′)•, B•)
by Derived Categories, Lemma 11.6. Thus this is a countable set as a countable colimit
of �

Lemma 17.3. LetX be a scheme of finite type over a countable Noetherian ring. Then
the categories Dperf (OX) and Db

Coh(OX) are countable.

Proof. Observe thatX is Noetherian by Morphisms, Lemma 15.6. HenceDperf (OX)
is a full subcategory of Db

Coh(OX) by Derived Categories of Schemes, Lemma 11.6. Thus
it suffices to prove the result for Db

Coh(OX). Recall that Db
Coh(OX) = Db(Coh(OX)) by

Derived Categories of Schemes, Proposition 11.2. Hence by Lemma 17.2 it suffices to prove
that Coh(OX) is countable. This we omit. �

Lemma 17.4. LetK be an algebraically closed field. Let S be a finite type scheme over
K. Let X → S and Y → S be finite type morphisms. There exists a countable set I and
for i ∈ I a pair (Si → S, hi) with the following properties

(1) Si → S is a morphism of finite type, set Xi = X ×S Si and Yi = Y ×S Si,
(2) hi : Xi → Yi is an isomorphism over Si, and
(3) for any closed point s ∈ S(K) ifXs

∼= Ys overK = κ(s) then s is in the image
of Si → S for some i.
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Proof. The field K is the filtered union of its countable subfields. Dually, Spec(K)
is the cofiltered limit of the spectra of the countable subfields ofK. Hence Limits, Lemma
10.1 guarantees that we can find a countable subfield k and morphisms X0 → S0 and
Y0 → S0 of schemes of finite type over k such that X → S and Y → S are the base
changes of these.

By Lemma 17.1 there is a countable set I and pairs (S0,i → S0, h0,i) such that
(1) S0,i → S0 is a morphism of finite type, set X0,i = X0 ×S0 S0,i and Y0,i =

Y0 ×S0 S0,i,
(2) h0,i : X0,i → Y0,i is an isomorphism over S0,i.

such that every pair (T → S0, hT ) with T → S0 of finite type and hT : X0 ×S0 T →
Y0 ×S0 T an isomorphism is isomorphic to one of these. Denote (Si → S, hi) the base
change of (S0,i → S0, h0,i) by Spec(K)→ Spec(k). We claim this works.

Let s ∈ S(K) and let hs : Xs → Ys be an isomorphism over K = κ(s). We can write K
as the filtered union of its finitely generated k-subalgebras. Hence by Limits, Proposition
6.1 and Lemma 10.1 we can find such a finitely generated k-subalgebra K ⊃ A ⊃ k such
that

(1) there is a commutative diagram

Spec(K)

s

��

// Spec(A)

s′

��
S // S0

for some morphism s′ : Spec(A)→ S0 over k,
(2) hs is the base change of an isomorphism hs′ : X0 ×S0,s′ Spec(A)→ X0 ×S0,s′

Spec(A) over A.
Of course, then (s′ : Spec(A) → S0, hs′) is isomorphic to the pair (S0,i → S0, h0,i) for
some i ∈ I . This concludes the proof because the commutative diagram in (1) shows that
s is in the image of the base change of s′ to Spec(K). �

Lemma 17.5. Let K be an algebraically closed field. There exists a countable set I
and for i ∈ I a pair (Si/K,Xi → Si, Yi → Si,Mi) with the following properties

(1) Si is a scheme of finite type over K ,
(2) Xi → Si and Yi → Si are proper smooth morphisms of schemes,
(3) Mi ∈ Dperf (OXi×SiYi) is the Fourier-Mukai kernel of a relative equivalence

from Xi to Yi over Si, and
(4) for any smooth proper schemes X and Y over K such that there is a K-linear

exact equivalence Dperf (OX) → Dperf (OY ) there exists an i ∈ I and a s ∈
Si(K) such that X ∼= (Xi)s and Y ∼= (Yi)s.

Proof. Choose a countable subfield k ⊂ K for example the prime field. By Lemmas
17.1 and 17.3 there exists a countable set of isomorphism classes of systems over k satisfying
parts (1), (2), (3) of the lemma. Thus we can choose a countable set I and for each i ∈ I
such a system

(S0,i/k,X0,i → S0,i, Y0,i → S0,i,M0,i)
over k such that each isomorphism class occurs at least once. Denote (Si/K,Xi → Si, Yi →
Si,Mi) the base change of the displayed system to K. This system has properties (1), (2),
(3), see Lemma 15.3. Let us prove property (4).
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Consider smooth proper schemes X and Y over K such that there is a K-linear exact
equivalence F : Dperf (OX) → Dperf (OY ). By Proposition 13.4 we may assume that
there exists an object M ∈ Dperf (OX×Y ) such that F = ΦM is the corresponding
Fourier-Mukai functor. By Lemma 8.9 there is an M ′ in Dperf (OY×X) such that ΦM ′

is the right adjoint to ΦM . Since ΦM is an equivalence, this means that ΦM ′ is the quasi-
inverse to ΦM . By Lemma 8.9 we see that the Fourier-Mukai functors defined by the
objects

A = Rpr13,∗(Lpr∗
12M ⊗

L
OX×Y×X

Lpr∗
23M

′)
in Dperf (OX×X) and

B = Rpr13,∗(Lpr∗
12M

′ ⊗L
OY×X×Y

Lpr∗
23M)

inDperf (OY×Y ) are isomorphic to id : Dperf (OX)→ Dperf (OX) and id : Dperf (OY )→
Dperf (OY ) Hence A ∼= ∆X/K,∗OX and B ∼= ∆Y/K,∗OY by Lemma 13.5. Hence we see
that M is the Fourier-Mukai kernel of a relative equivalence from X to Y over K by
definition.

We can write K as the filtered colimit of its finite type k-subalgebras A ⊂ K. By Limits,
Lemma 10.1 we can find X0, Y0 of finite type over A whose base changes to K produces
X and Y . By Limits, Lemmas 13.1 and 8.9 after enlarging A we may assume X0 and Y0
are smooth and proper over A. By Lemma 15.4 after enlarging A we may assume M is
the pullback of some M0 ∈ Dperf (OX0×Spec(A)Y0) which is the Fourier-Mukai kernel
of a relative equivalence from X0 to Y0 over Spec(A). Thus we see that (S0/k,X0 →
S0, Y0 → S0,M0) is isomorphic to (S0,i/k,X0,i → S0,i, Y0,i → S0,i,M0,i) for some i ∈
I . Since Si = S0,i×Spec(k) Spec(K) we conclude that (4) is true with s : Spec(K)→ Si
induced by the morphism Spec(K)→ Spec(A) ∼= S0,i we get from A ⊂ K. �

18. Countability of derived equivalent varieties

In this section we prove a result of Anel and Toën, see [?].

Definition 18.1. Let k be a field. Let X and Y be smooth projective schemes over
k. We say X and Y are derived equivalent if there exists a k-linear exact equivalence
Dperf (OX)→ Dperf (OY ).

Here is the result

Theorem 18.2. Let K be an algebraically closed field. Let X be a smooth proper
scheme overK. There are at most countably many isomorphism classes of smooth proper
schemes Y over K which are derived equivalent to X.

Proof. Choose a countable set I and for i ∈ I systems (Si/K,Xi → Si, Yi →
Si,Mi) satisfying properties (1), (2), (3), and (4) of Lemma 17.5. Pick i ∈ I and set S = Si,
X = Xi, Y = Yi, and M = Mi. Clearly it suffice to show that the set of isomorphism
classes of fibres Ys for s ∈ S(K) such that Xs

∼= X is countable. This we prove in the
next paragraph.

LetS be a finite type scheme overK , letX → S and Y → S be proper smooth morphisms,
and let M ∈ Dperf (OX×SY ) be the Fourier-Mukai kernel of a relative equivalence from
X to Y over S. We will show the set of isomorphism classes of fibres Ys for s ∈ S(K)
such that Xs

∼= X is countable. By Lemma 17.4 applied to the families X × S → S and
X → S there exists a countable set I and for i ∈ I a pair (Si → S, hi) with the following
properties
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(1) Si → S is a morphism of finite type, set Xi = X ×S Si,
(2) hi : X× Si → Xi is an isomorphism over Si, and
(3) for any closed point s ∈ S(K) if X ∼= Xs over K = κ(s) then s is in the image

of Si → S for some i.
Set Yi = Y ×S Si. Denote Mi ∈ Dperf (OXi×SiYi) the pullback of M . By Lemma 15.3
Mi is the Fourier-Mukai kernel of a relative equivalence fromXi to Yi over Si. Since I is
countable, by property (3) it suffices to prove that the set of isomorphism classes of fibres
Yi,s for s ∈ Si(K) is countable. In fact, this number is finite by Lemma 16.5 and the proof
is complete. �
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CHAPTER 58

Fundamental Groups of Schemes

1. Introduction

In this chapter we discuss Grothendieck’s fundamental group of a scheme and applications.
A foundational reference is [?]. A nice introduction is [?]. Other references [?] and [?].

2. Schemes étale over a point

In this section we describe schemes étale over the spectrum of a field. Before we state the
result we introduce the category of G-sets for a topological group G.

Definition 2.1. Let G be a topological group. A G-set, sometimes called a discrete
G-set, is a set X endowed with a left action a : G × X → X such that a is continuous
when X is given the discrete topology and G×X the product topology. A morphism of
G-sets f : X → Y is simply anyG-equivariant map fromX to Y . The category ofG-sets
is denoted G-Sets.

The condition that a : G × X → X is continuous signifies simply that the stabilizer of
any x ∈ X is open in G. If G is an abstract group G (i.e., a group but not a topological
group) then this agrees with our preceding definition (see for example Sites, Example 6.5)
provided we endow G with the discrete topology.
Recall that if L/K is an infinite Galois extension then the Galois group G = Gal(L/K)
comes endowed with a canonical topology, see Fields, Section 22.

Lemma 2.2. Let K be a field. Let Ksep be a separable closure of K. Consider the
profinite group G = Gal(Ksep/K). The functor

schemes étale over K −→ G-Sets
X/K 7−→ MorSpec(K)(Spec(Ksep), X)

is an equivalence of categories.

Proof. A scheme X over K is étale over K if and only if X ∼=
∐
i∈I Spec(Ki) with

each Ki a finite separable extension of K (Morphisms, Lemma 36.7). The functor of the
lemma associates to X the G-set ∐

i
HomK(Ki,K

sep)

with its natural left G-action. Each element has an open stabilizer by definition of the
topology on G. Conversely, any G-set S is a disjoint union of its orbits. Say S =

∐
Si.

Pick si ∈ Si and denote Gi ⊂ G its open stabilizer. By Galois theory (Fields, Theorem
22.4) the fields (Ksep)Gi are finite separable field extensions of K , and hence the scheme∐

i
Spec((Ksep)Gi)

is étale over K. This gives an inverse to the functor of the lemma. Some details omitted.
�

4559
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Remark 2.3. Under the correspondence of Lemma 2.2, the coverings in the small étale
site Spec(K)étale of K correspond to surjective families of maps in G-Sets.

3. Galois categories

In this section we discuss some of the material the reader can find in [?, Exposé V, Sections
4, 5, and 6].

Let F : C → Sets be a functor. Recall that by our conventions categories have a set of
objects and for any pair of objects a set of morphisms. There is a canonical injective map

(3.0.1) Aut(F ) −→
∏

X∈Ob(C)
Aut(F (X))

For a set E we endow Aut(E) with the compact open topology, see Topology, Example
30.2. Of course this is the discrete topology when E is finite, which is the case of interest
in this section1. We endow Aut(F ) with the topology induced from the product topology
on the right hand side of (3.0.1). In particular, the action maps

Aut(F )× F (X) −→ F (X)
are continuous whenF (X) is given the discrete topology because this is true for the action
maps Aut(E)×E → E for any setE. The universal property of our topology on Aut(F )
is the following: suppose that G is a topological group and G → Aut(F ) is a group ho-
momorphism such that the induced actions G × F (X) → F (X) are continuous for all
X ∈ Ob(C) where F (X) has the discrete topology. Then G→ Aut(F ) is continuous.

The following lemma tells us that the group of automorphisms of a functor to the category
of finite sets is automatically a profinite group.

Lemma 3.1. Let C be a category and let F : C → Sets be a functor. The map (3.0.1)
identifies Aut(F ) with a closed subgroup of

∏
X∈Ob(C) Aut(F (X)). In particular, ifF (X)

is finite for all X , then Aut(F ) is a profinite group.

Proof. Let ξ = (γX) ∈
∏

Aut(F (X)) be an element not in Aut(F ). Then there
exists a morphism f : X → X ′ of C and an element x ∈ F (X) such that F (f)(γX(x)) 6=
γX′(F (f)(x)). Consider the open neighbourhood U = {γ ∈ Aut(F (X)) | γ(x) =
γX(x)} of γX and the open neighbourhood U ′ = {γ′ ∈ Aut(F (X ′)) | γ′(F (f)(x)) =
γX′(F (f)(x))}. Then U × U ′ ×

∏
X′′ 6=X,X′ Aut(F (X ′′)) is an open neighbourhood of

ξ not meeting Aut(F ). The final statement follows from the fact that
∏

Aut(F (X)) is a
profinite space if each F (X) is finite. �

Example 3.2. Let G be a topological group. An important example will be the for-
getful functor

(3.2.1) Finite-G-Sets −→ Sets

where Finite-G-Sets is the full subcategory of G-Sets whose objects are the finite G-sets.
The category G-Sets of G-sets is defined in Definition 2.1.

Let G be a topological group. The profinite completion of G will be the profinite group

G∧ = limU⊂G open, normal, finite index G/U

with its profinite topology. Observe that the limit is cofiltered as a finite intersection of
open, normal subgroups of finite index is another. The universal property of the profinite

1When we discuss the pro-étale fundamental group the general case will be of interest.
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completion is that any continuous mapG→ H to a profinite groupH factors canonically
as G→ G∧ → H .

Lemma 3.3. Let G be a topological group. The automorphism group of the functor
(3.2.1) endowed with its profinite topology from Lemma 3.1 is the profinite completion of
G.

Proof. Denote FG the functor (3.2.1). Any morphism X → Y in Finite-G-Sets
commutes with the action of G. Thus any g ∈ G defines an automorphism of FG and we
obtain a canonical homomorphism G → Aut(FG) of groups. Observe that any finite G-
setX is a finite disjoint union ofG-sets of the formG/Hi with canonicalG-action where
Hi ⊂ G is an open subgroup of finite index. Then Ui =

⋂
gHig

−1 is open, normal,
and has finite index. Moreover Ui acts trivially on G/Hi hence U =

⋂
Ui acts trivially

on FG(X). Hence the action G × FG(X) → FG(X) is continuous. By the universal
property of the topology on Aut(FG) the map G → Aut(FG) is continuous. By Lemma
3.1 and the universal property of profinite completion there is an induced continuous
group homomorphism

G∧ −→ Aut(FG)
Moreover, since G/U acts faithfully on G/U this map is injective. If the image is dense,
then the map is surjective and hence a homeomorphism by Topology, Lemma 17.8.

Let γ ∈ Aut(FG) and let X ∈ Ob(C). We will show there is a g ∈ G such that γ and g
induce the same action on FG(X). This will finish the proof. As before we see thatX is a
finite disjoint union ofG/Hi. WithUi andU as above, the finiteG-set Y = G/U surjects
onto G/Hi for all i and hence it suffices to find g ∈ G such that γ and g induce the same
action onFG(G/U) = G/U . Let e ∈ G be the neutral element and say that γ(eU) = g0U
for some g0 ∈ G. For any g1 ∈ G the morphism

Rg1 : G/U −→ G/U, gU 7−→ gg1U

of Finite-G-Sets commutes with the action of γ. Hence

γ(g1U) = γ(Rg1(eU)) = Rg1(γ(eU)) = Rg1(g0U) = g0g1U

Thus we see that g = g0 works. �

Recall that an exact functor is one which commutes with all finite limits and finite colim-
its. In particular such a functor commutes with equalizers, coequalizers, fibred products,
pushouts, etc.

Lemma 3.4. Let G be a topological group. Let F : Finite-G-Sets → Sets be an exact
functor with F (X) finite for all X . Then F is isomorphic to the functor (3.2.1).

Proof. Let X be a nonempty object of Finite-G-Sets. The diagram

X //

��

{∗}

��
{∗} // {∗}

is cocartesian. Hence we conclude that F (X) is nonempty. LetU ⊂ G be an open, normal
subgroup with finite index. Observe that

G/U ×G/U =
∐

gU∈G/U
G/U
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where the summand corresponding to gU corresponds to the orbit of (eU, gU) on the left
hand side. Then we see that

F (G/U)× F (G/U) = F (G/U ×G/U) =
∐

gU∈G/U
F (G/U)

Hence |F (G/U)| = |G/U | as F (G/U) is nonempty. Thus we see that

limU⊂G open, normal, finite idex F (G/U)

is nonempty (Categories, Lemma 21.7). Pick γ = (γU ) an element in this limit. Denote
FG the functor (3.2.1). We can identify FG with the functor

X 7−→ colimU Mor(G/U,X)

where f : G/U → X corresponds to f(eU) ∈ X = FG(X) (details omitted). Hence the
element γ determines a well defined map

t : FG −→ F

Namely, given x ∈ X chooseU and f : G/U → X sending eU to x and then set tX(x) =
F (f)(γU ). We will show that t induces a bijective map tG/U : FG(G/U) → F (G/U)
for any U . This implies in a straightforward manner that t is an isomorphism (details
omitted). Since |FG(G/U)| = |F (G/U)| it suffices to show that tG/U is surjective. The
image contains at least one element, namely tG/U (eU) = F (idG/U )(γU ) = γU . For
g ∈ G denote Rg : G/U → G/U right multiplication. Then set of fixed points of
F (Rg) : F (G/U) → F (G/U) is equal to F (∅) = ∅ if g 6∈ U because F commutes with
equalizers. It follows that if g1, . . . , g|G/U | is a system of representatives for G/U , then
the elements F (Rgi)(γU ) are pairwise distinct and hence fill out F (G/U). Then

tG/U (giU) = F (Rgi)(γU )

and the proof is complete. �

Example 3.5. Let C be a category and let F : C → Sets be a functor such that F (X)
is finite for all X ∈ Ob(C). By Lemma 3.1 we see that G = Aut(F ) comes endowed with
the structure of a profinite topological group in a canonical manner. We obtain a functor

(3.5.1) C −→ Finite-G-Sets, X 7−→ F (X)

where F (X) is endowed with the induced action of G. This action is continuous by our
construction of the topology on Aut(F ).

The purpose of defining Galois categories is to single out those pairs (C, F ) for which the
functor (3.5.1) is an equivalence. Our definition of a Galois category is as follows.

Definition 3.6. Let C be a category and let F : C → Sets be a functor. The pair
(C, F ) is a Galois category if

(1) C has finite limits and finite colimits,
(2) every object of C is a finite (possibly empty) coproduct of connected objects,
(3) F (X) is finite for all X ∈ Ob(C), and
(4) F reflects isomorphisms2 and is exact3.

Here we say X ∈ Ob(C) is connected if it is not initial and for any monomorphism Y →
X either Y is initial or Y → X is an isomorphism.

2Namely, given a morphism f of C if F (f) is an isomorphism, then f is an isomorphism.
3This means that F commutes with finite limits and colimits, see Categories, Section 23.
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Warning: This definition is not the same (although eventually we’ll see it is equivalent) as
the definition given in most references. Namely, in [?, Exposé V, Definition 5.1] a Galois
category is defined to be a category equivalent to Finite-G-Sets for some profinite groupG.
Then Grothendieck characterizes Galois categories by a list of axioms (G1) – (G6) which
are weaker than our axioms above. The motivation for our choice is to stress the existence
of finite limits and finite colimits and exactness of the functor F . The price we’ll pay for
this later is that we’ll have to work a bit harder to apply the results of this section.

Lemma 3.7. Let (C, F ) be a Galois category. Let X → Y ∈ Arrows(C). Then
(1) F is faithful,
(2) X → Y is a monomorphism⇔ F (X)→ F (Y ) is injective,
(3) X → Y is an epimorphism⇔ F (X)→ F (Y ) is surjective,
(4) an object A of C is initial if and only if F (A) = ∅,
(5) an object Z of C is final if and only if F (Z) is a singleton,
(6) if X and Y are connected, then X → Y is an epimorphism,
(7) if X is connected and a, b : X → Y are two morphisms then a = b as soon as

F (a) and F (b) agree on one element of F (X),
(8) if X =

∐
i=1,...,nXi and Y =

∐
j=1,...,m Yj where Xi, Yj are connected, then

there is map α : {1, . . . , n} → {1, . . . ,m} such that X → Y comes from a
collection of morphisms Xi → Yα(i).

Proof. Proof of (1). Suppose a, b : X → Y with F (a) = F (b). Let E be the
equalizer of a and b. Then F (E) = F (X) and we see that E = X because F reflects
isomorphisms.

Proof of (2). This is true because F turns the morphism X → X ×Y X into the map
F (X)→ F (X)×F (Y ) F (X) and F reflects isomorphisms.

Proof of (3). This is true because F turns the morphism Y qX Y → Y into the map
F (Y )qF (X) F (Y )→ F (Y ) and F reflects isomorphisms.

Proof of (4). There exists an initial object A and certainly F (A) = ∅. On the other
hand, if X is an object with F (X) = ∅, then the unique map A → X induces a bijection
F (A)→ F (X) and hence A→ X is an isomorphism.

Proof of (5). There exists a final object Z and certainly F (Z) is a singleton. On the other
hand, if X is an object with F (X) a singleton, then the unique map X → Z induces a
bijection F (X)→ F (Z) and hence X → Z is an isomorphism.

Proof of (6). The equalizer E of the two maps Y → Y qX Y is not an initial object of C
because X → Y factors through E and F (X) 6= ∅. Hence E = Y and we conclude.

Proof of (7). The equalizer E of a and b comes with a monomorphism E → X and
F (E) ⊂ F (X) is the set of elements where F (a) and F (b) agree. To finish use that either
E is initial or E = X .

Proof of (8). For each i, j we see that Eij = Xi ×Y Yj is either initial or equal to Xi.
Picking s ∈ F (Xi) we see that Eij = Xi if and only if s maps to an element of F (Yj) ⊂
F (Y ), hence this happens for a unique j = α(i). �

By the lemma above we see that, given a connected object X of a Galois category (C, F ),
the automorphism group Aut(X) has order at most |F (X)|. Namely, given s ∈ F (X)
and g ∈ Aut(X) we see that g(s) = s if and only if g = idX by (7). We say X is Galois
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if equality holds. Equivalently,X is Galois if it is connected and Aut(X) acts transitively
on F (X).

Lemma 3.8. Let (C, F ) be a Galois category. For any connected object X of C there
exists a Galois object Y and a morphism Y → X .

Proof. We will use the results of Lemma 3.7 without further mention. Let n =
|F (X)|. Consider Xn endowed with its natural action of Sn. Let

Xn =
∐

t∈T
Zt

be the decomposition into connected objects. Pick a t such thatF (Zt) contains (s1, . . . , sn)
with si pairwise distinct. If (s′

1, . . . , s
′
n) ∈ F (Zt) is another element, then we claim s′

i are
pairwise distinct as well. Namely, if not, say s′

i = s′
j , then Zt is the image of an connected

component of Xn−1 under the diagonal morphism

∆ij : Xn−1 −→ Xn

Since morphisms of connected objects are epimorphisms and induce surjections after ap-
plying F it would follow that si = sj which is not the case.

LetG ⊂ Sn be the subgroup of elements with g(Zt) = Zt. Looking at the action of Sn on

F (X)n = F (Xn) =
∐

t′∈T
F (Zt′)

we see that G = {g ∈ Sn | g(s1, . . . , sn) ∈ F (Zt)}. Now pick a second element
(s′

1, . . . , s
′
n) ∈ F (Zt). Above we have seen that s′

i are pairwise distinct. Thus we can
find a g ∈ Sn with g(s1, . . . , sn) = (s′

1, . . . , s
′
n). In other words, the action of G on

F (Zt) is transitive and the proof is complete. �

Here is a key lemma.

Lemma 3.9. Let (C, F ) be a Galois category. Let G = Aut(F ) be as in Example 3.5.
For any connected X in C the action of G on F (X) is transitive.

Proof. We will use the results of Lemma 3.7 without further mention. Let I be the
set of isomorphism classes of Galois objects in C. For each i ∈ I let Xi be a representa-
tive of the isomorphism class. Choose γi ∈ F (Xi) for each i ∈ I . We define a partial
ordering on I by setting i ≥ i′ if and only if there is a morphism fii′ : Xi → Xi′ . Given
such a morphism we can post-compose by an automorphism Xi′ → Xi′ to assure that
F (fii′)(γi) = γi′ . With this normalization the morphism fii′ is unique. Observe that I
is a directed partially ordered set: (Categories, Definition 21.1) if i1, i2 ∈ I there exists a
Galois object Y and a morphism Y → Xi1 × Xi2 by Lemma 3.8 applied to a connected
component of Xi1 ×Xi2 . Then Y ∼= Xi for some i ∈ I and i ≥ i1, i ≥ I2.

We claim that the functor F is isomorphic to the functor F ′ which sends X to

F ′(X) = colimI MorC(Xi, X)

via the transformation of functors t : F ′ → F defined as follows: given f : Xi → X
we set tX(f) = F (f)(γi). Using (7) we find that tX is injective. To show surjectivity,
let γ ∈ F (X). Then we can immediately reduce to the case where X is connected by the
definition of a Galois category. Then we may assume X is Galois by Lemma 3.8. In this
case X is isomorphic to Xi for some i and we can choose the isomorphism Xi → X such
that γi maps to γ (by definition of Galois objects). We conclude that t is an isomorphism.
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Set Ai = Aut(Xi). We claim that for i ≥ i′ there is a canonical map hii′ : Ai → Ai′ such
that for all a ∈ Ai the diagram

Xi

a

��

fii′
// Xi′

hii′ (a)
��

Xi

fii′ // Xi′

commutes. Namely, just let hii′(a) = a′ : Xi′ → Xi′ be the unique automorphism
such that F (a′)(γi′) = F (fii′ ◦ a)(γi). As before this makes the diagram commute and
moreover the choice is unique. It follows that hi′i′′ ◦ hii′ = hii′′ if i ≥ i′ ≥ i′′. Since
F (Xi)→ F (Xi′) is surjective we see thatAi → Ai′ is surjective. Taking the inverse limit
we obtain a group

A = limI Ai

This is a profinite group since the automorphism groups are finite. The map A → Ai is
surjective for all i by Categories, Lemma 21.7.

Since elements ofA act on the inverse systemXi we get an action ofA (on the right) onF ′

by pre-composing. In other words, we get a homomorphism Aopp → G. Since A→ Ai is
surjective we conclude that G acts transitively on F (Xi) for all i. Since every connected
object is dominated by one of the Xi we conclude the lemma is true. �

Proposition 3.10. Let (C, F ) be a Galois category. LetG = Aut(F ) be as in Example
3.5. The functor F : C → Finite-G-Sets (3.5.1) an equivalence.

Proof. We will use the results of Lemma 3.7 without further mention. In particular
we know the functor is faithful. By Lemma 3.9 we know that for any connected X the
action of G on F (X) is transitive. Hence F preserves the decomposition into connected
components (existence of which is an axiom of a Galois category). LetX and Y be objects
and let s : F (X) → F (Y ) be a map. Then the graph Γs ⊂ F (X) × F (Y ) of s is a
union of connected components. Hence there exists a union of connected components Z
of X × Y , which comes equipped with a monomorphism Z → X × Y , with F (Z) = Γs.
Since F (Z)→ F (X) is bijective we see that Z → X is an isomorphism and we conclude
that s = F (f) where f : X ∼= Z → Y is the composition. Hence F is fully faithful.

To finish the proof we show that F is essentially surjective. It suffices to show that G/H
is in the essential image for any open subgroup H ⊂ G of finite index. By definition of
the topology on G there exists a finite collection of objects Xi such that

Ker(G −→
∏

i
Aut(F (Xi)))

is contained inH . We may assumeXi is connected for all i. We can choose a Galois object
Y mapping to a connected component of

∏
Xi using Lemma 3.8. Choose an isomorphism

F (Y ) = G/U in G-sets for some open subgroup U ⊂ G. As Y is Galois, the group
Aut(Y ) = AutG-Sets(G/U) acts transitively on F (Y ) = G/U . This implies that U is
normal. Since F (Y ) surjects onto F (Xi) for each i we see that U ⊂ H . LetM ⊂ Aut(Y )
be the finite subgroup corresponding to

(H/U)opp ⊂ (G/U)opp = AutG-Sets(G/U) = Aut(Y ).

Set X = Y/M , i.e., X is the coequalizer of the arrows m : Y → Y , m ∈ M . Since F is
exact we see that F (X) = G/H and the proof is complete. �
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Lemma 3.11. Let (C, F ) and (C′, F ′) be Galois categories. Let H : C → C′ be an
exact functor. There exists an isomorphism t : F ′ ◦H → F . The choice of t determines
a continuous homomorphism h : G′ = Aut(F ′) → Aut(F ) = G and a 2-commutative
diagram

C
H

//

��

C′

��
Finite-G-Sets h // Finite-G′-Sets

The map h is independent of t up to an inner automorphism of G. Conversely, given a
continuous homomorphism h : G′ → G there is an exact functor H : C → C′ and an
isomorphism t recovering h as above.

Proof. By Proposition 3.10 and Lemma 3.3 we may assume C = Finite-G-Sets and F
is the forgetful functor and similarly for C′. Thus the existence of t follows from Lemma
3.4. The map h comes from transport of structure via t. The commutativity of the diagram
is obvious. Uniqueness ofh up to inner conjugation by an element ofG comes from the fact
that the choice of t is unique up to an element ofG. The final statement is straightforward.

�

4. Functors and homomorphisms

Let (C, F ), (C′, F ′), (C′′, F ′′) be Galois categories. Set G = Aut(F ), G′ = Aut(F ′), and
G′′ = Aut(F ′′). Let H : C → C′ and H ′ : C′ → C′′ be exact functors. Let h : G′ → G
and h′ : G′′ → G′ be the corresponding continuous homomorphism as in Lemma 3.11. In
this section we consider the corresponding 2-commutative diagram

(4.0.1)

C
H

//

��

C′
H′

//

��

C′′

��
Finite-G-Sets h // Finite-G′-Sets h′

// Finite-G′′-Sets

and we relate exactness properties of the sequence 1→ G′′ → G′ → G→ 1 to properties
of the functors H and H ′.

Lemma 4.1. In diagram (4.0.1) the following are equivalent
(1) h : G′ → G is surjective,
(2) H : C → C′ is fully faithful,
(3) if X ∈ Ob(C) is connected, then H(X) is connected,
(4) if X ∈ Ob(C) is connected and there is a morphism ∗′ → H(X) in C′, then

there is a morphism ∗ → X , and
(5) for any object X of C the map MorC(∗, X)→ MorC′(∗′,H(X)) is bijective.

Here ∗ and ∗′ are final objects of C and C′.

Proof. The implications (5)⇒ (4) and (2)⇒ (5) are clear.

Assume (3). Let X be a connected object of C and let ∗′ → H(X) be a morphism. Since
H(X) is connected by (3) we see that ∗′ → H(X) is an isomorphism. Hence the G′-set
corresponding to H(X) has exactly one element, which means the G-set corresponding
to X has one element which means X is isomorphic to the final object of C , in particular
there is a map ∗ → X . In this way we see that (3)⇒ (4).
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If (1) is true, then the functor Finite-G-Sets→ Finite-G′-Sets is fully faithful: in this case
a map ofG-sets commutes with the action ofG if and only if it commutes with the action
of G′. Thus (1)⇒ (2).

If (1) is true, then for a G-set X the G-orbits and G′-orbits agree. Thus (1)⇒ (3).

To finish the proof it suffices to show that (4) implies (1). If (1) is false, i.e., if h is not
surjective, then there is an open subgroup U ⊂ G containing h(G′) which is not equal to
G. Then the finite G-set M = G/U has a transitive action but G′ has a fixed point. The
object X of C corresponding to M would contradict (3). In this way we see that (3)⇒ (1)
and the proof is complete. �

Lemma 4.2. In diagram (4.0.1) the following are equivalent
(1) h ◦ h′ is trivial, and
(2) the image of H ′ ◦H consists of objects isomorphic to finite coproducts of final

objects.

Proof. We may replaceH andH ′ by the canonical functors Finite-G-Sets→ Finite-G′-Sets→
Finite-G′′-Sets determined by h and h′. Then we are saying that the action ofG′′ on every
G-set is trivial if and only if the homomorphism G′′ → G is trivial. This is clear. �

Lemma 4.3. In diagram (4.0.1) the following are equivalent

(1) the sequenceG′′ h′

−→ G′ h−→ G→ 1 is exact in the following sense: h is surjective,
h ◦ h′ is trivial, and Ker(h) is the smallest closed normal subgroup containing
Im(h′),

(2) H is fully faithful and an object X ′ of C′ is in the essential image of H if and
only if H ′(X ′) is isomorphic to a finite coproduct of final objects, and

(3) H is fully faithful,H ◦H ′ sends every object to a finite coproduct of final objects,
and for an object X ′ of C′ such that H ′(X ′) is a finite coproduct of final objects
there exists an object X of C and an epimorphism H(X)→ X ′.

Proof. By Lemmas 4.1 and 4.2 we may assume that H is fully faithful, h is surjec-
tive, H ′ ◦ H maps objects to disjoint unions of the final object, and h ◦ h′ is trivial. Let
N ⊂ G′ be the smallest closed normal subgroup containing the image of h′. It is clear
that N ⊂ Ker(h). We may assume the functors H and H ′ are the canonical functors
Finite-G-Sets→ Finite-G′-Sets→ Finite-G′′-Sets determined by h and h′.

Suppose that (2) holds. This means that for a finite G′-set X ′ such that G′′ acts trivially,
the action ofG′ factors throughG. Apply this toX ′ = G′/U ′N where U ′ is a small open
subgroup ofG′. Then we see that Ker(h) ⊂ U ′N for all U ′. SinceN is closed this implies
Ker(h) ⊂ N , i.e., (1) holds.

Suppose that (1) holds. This means that N = Ker(h). Let X ′ be a finite G′-set such
that G′′ acts trivially. This means that Ker(G′ → Aut(X ′)) is a closed normal subgroup
containing Im(h′). Hence N = Ker(h) is contained in it and the G′-action on X ′ factors
through G, i.e., (2) holds.

Suppose that (3) holds. This means that for a finite G′-set X ′ such that G′′ acts trivially,
there is a surjection of G′-sets X → X ′ where X is a G-set. Clearly this means the action
of G′ on X ′ factors through G, i.e., (2) holds.

The implication (2)⇒ (3) is immediate. This finishes the proof. �

Lemma 4.4. In diagram (4.0.1) the following are equivalent
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(1) h′ is injective, and
(2) for every connected objectX ′′ of C′′ there exists an objectX ′ of C′ and a diagram

X ′′ ← Y ′′ → H(X ′)

in C′′ where Y ′′ → X ′′ is an epimorphism and Y ′′ → H(X ′) is a monomor-
phism.

Proof. We may replace H ′ by the corresponding functor between the categories of
finite G′-sets and finite G′′-sets.

Assume h′ : G′′ → G′ is injective. LetH ′′ ⊂ G′′ be an open subgroup. Since the topology
on G′′ is the induced topology from G′ there exists an open subgroup H ′ ⊂ G′ such that
(h′)−1(H ′) ⊂ H ′′. Then the desired diagram is

G′′/H ′′ ← G′′/(h′)−1(H ′)→ G′/H ′

Conversely, assume (2) holds for the functor Finite-G′-Sets → Finite-G′′-Sets. Let g′′ ∈
Ker(h′). Pick any open subgroup H ′′ ⊂ G′′. By assumption there exists a finite G′-set
X ′ and a diagram

G′′/H ′′ ← Y ′′ → X ′

of G′′-sets with the left arrow surjective and the right arrow injective. Since g′′ is in the
kernel of h′ we see that g′′ acts trivially on X ′. Hence g′′ acts trivially on Y ′′ and hence
trivially on G′′/H ′′. Thus g′′ ∈ H ′′. As this holds for all open subgroups we conclude
that g′′ is the identity element as desired. �

Lemma 4.5. In diagram (4.0.1) the following are equivalent
(1) the image of h′ is normal, and
(2) for every connected objectX ′ of C′ such that there is a morphism from the final

object of C′′ to H ′(X ′) we have that H ′(X ′) is isomorphic to a finite coproduct
of final objects.

Proof. This translates into the following statement for the continuous group homo-
morphism h′ : G′′ → G′: the image of h′ is normal if and only if every open subgroup
U ′ ⊂ G′ which contains h′(G′′) also contains every conjugate of h′(G′′). The result fol-
lows easily from this; some details omitted. �

5. Finite étale morphisms

In this section we prove enough basic results on finite étale morphisms to be able to con-
struct the étale fundamental group.

LetX be a scheme. We will use the notation FÉtX to denote the category of schemes finite
and étale over X . Thus

(1) an object of FÉtX is a finite étale morphism Y → X with target X , and
(2) a morphism in FÉtX from Y → X to Y ′ → X is a morphism Y → Y ′ making

the diagram
Y //

  

Y ′

~~
X

commute.
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We will often call an object of FÉtX a finite étale cover ofX (even if Y is empty). It turns
out that there is a stack p : FÉt → Sch over the category of schemes whose fibre over X
is the category FÉtX just defined. See Examples of Stacks, Section 6.

Example 5.1. Let k be an algebraically closed field and X = Spec(k). In this case
FÉtX is equivalent to the category of finite sets. This works more generally when k is
separably algebraically closed. The reason is that a scheme étale over k is the disjoint
union of spectra of fields finite separable over k, see Morphisms, Lemma 36.7.

Lemma 5.2. LetX be a scheme. The category FÉtX has finite limits and finite colimits
and for any morphism X ′ → X the base change functor FÉtX → FÉtX′ is exact.

Proof. Finite limits and left exactness. By Categories, Lemma 18.4 it suffices to show
that FÉtX has a final object and fibred products. This is clear because the category of all
schemes overX has a final object (namelyX) and fibred products. Also, fibred products of
schemes finite étale over X are finite étale over X . Moreover, it is clear that base change
commutes with these operations and hence base change is left exact (Categories, Lemma
23.2).

Finite colimits and right exactness. By Categories, Lemma 18.7 it suffices to show that
FÉtX has finite coproducts and coequalizers. Finite coproducts are given by disjoint unions
(the empty coproduct is the empty scheme). Let a, b : Z → Y be two morphisms of FÉtX .
Since Z → X and Y → X are finite étale we can write Z = Spec(C) and Y = Spec(B)
for some finite locally free OX -algebras C and B. The morphisms a, b induce two maps
a], b] : B → C. LetA = Eq(a], b]) be their equalizer. If

Spec(A) −→ X

is finite étale, then it is clear that this is the coequalizer (after all we can write any object of
FÉtX as the relative spectrum of a sheaf ofOX -algebras). This we may do after replacing
X by the members of an étale covering (Descent, Lemmas 23.23 and 23.29). Thus by Étale
Morphisms, Lemma 18.3 we may assume that Y =

∐
i=1,...,nX and Z =

∐
j=1,...,mX .

Then
C =

∏
1≤j≤m

OX and B =
∏

1≤i≤n
OX

After a further replacement by the members of an open covering we may assume that
a, b correspond to maps as, bs : {1, . . . ,m} → {1, . . . , n}, i.e., the summand X of Z
corresponding to the index j maps into the summand X of Y corresponding to the index
as(j), resp. bs(j) under the morphism a, resp. b. Let {1, . . . , n} → T be the coequalizer
of as, bs. Then we see that

A =
∏

t∈T
OX

whose spectrum is certainly finite étale overX . We omit the verification that this is com-
patible with base change. Thus base change is a right exact functor. �

Remark 5.3. Let X be a scheme. Consider the natural functors F1 : FÉtX → Sch
and F2 : FÉtX → Sch/X . Then

(1) The functors F1 and F2 commute with finite colimits.
(2) The functor F2 commutes with finite limits,
(3) The functor F1 commutes with connected finite limits, i.e., with equalizers and

fibre products.
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The results on limits are immediate from the discussion in the proof of Lemma 5.2 and
Categories, Lemma 16.2. It is clear that F1 and F2 commute with finite coproducts. By
the dual of Categories, Lemma 23.2 we need to show that F1 and F2 commute with co-
equalizers. In the proof of Lemma 5.2 we saw that coequalizers in FÉtX look étale locally
like this ∐

j∈J U
a //

b
//
∐
i∈I U

// ∐
t∈Coeq(a,b) U

which is certainly a coequalizer in the category of schemes. Hence the statement follows
from the fact that being a coequalizer is fpqc local as formulated precisely in Descent,
Lemma 13.8.

Lemma 5.4. Let X be a scheme. Given U, V finite étale over X there exists a scheme
W finite étale over X such that

MorX(X,W ) = MorX(U, V )
and such that the same remains true after any base change.

Proof. By More on Morphisms, Lemma 68.4 there exists a scheme W representing
MorX(U, V ). (Use that an étale morphism is locally quasi-finite by Morphisms, Lemmas
36.6 and that a finite morphism is separated.) This scheme clearly satisfies the formula af-
ter any base change. To finish the proof we have to show thatW → X is finite étale. This
we may do after replacingX by the members of an étale covering (Descent, Lemmas 23.23
and 23.6). Thus by Étale Morphisms, Lemma 18.3 we may assume that U =

∐
i=1,...,nX

and V =
∐
j=1,...,mX . In this case W =

∐
α:{1,...,n}→{1,...,m} X by inspection (details

omitted) and the proof is complete. �

Let X be a scheme. A geometric point of X is a morphism Spec(k) → X where k is
algebraically closed. Such a point is usually denoted x, i.e., by an overlined small case
letter. We often use x to denote the scheme Spec(k) as well as the morphism, and we use
κ(x) to denote k. We say x lies over x to indicate that x ∈ X is the image of x. We
will discuss this further in Étale Cohomology, Section 29. Given x and an étale morphism
U → X we can consider

|Ux| : the underlying set of points of the scheme Ux = U ×X x

Since Ux as a scheme over x is a disjoint union of copies of x (Morphisms, Lemma 36.7)
we can also describe this set as

|Ux| =

commutative
diagrams

x

x ��

u
// U

��
X


The assignment U 7→ |Ux| is a functor which is often denoted Fx.

Lemma 5.5. Let X be a connected scheme. Let x be a geometric point. The functor

Fx : FÉtX −→ Sets, Y 7−→ |Yx|
defines a Galois category (Definition 3.6).

Proof. After identifying FÉtx with the category of finite sets (Example 5.1) we see
that our functor Fx is nothing but the base change functor for the morphism x → X .
Thus we see that FÉtX has finite limits and finite colimits and that Fx is exact by Lemma
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5.2. We will also use that finite limits in FÉtX agree with the corresponding finite limits
in the category of schemes over X , see Remark 5.3.

If Y ′ → Y is a monomorphism in FÉtX then we see that Y ′ → Y ′ ×Y Y ′ is an isomor-
phism, and hence Y ′ → Y is a monomorphism of schemes. It follows that Y ′ → Y is an
open immersion (Étale Morphisms, Theorem 14.1). Since Y ′ is finite over X and Y sep-
arated over X , the morphism Y ′ → Y is finite (Morphisms, Lemma 44.14), hence closed
(Morphisms, Lemma 44.11), hence it is the inclusion of an open and closed subscheme of
Y . It follows that Y is a connected objects of the category FÉtX (as in Definition 3.6) if
and only if Y is connected as a scheme. Then it follows from Topology, Lemma 7.7 that
Y is a finite coproduct of its connected components both as a scheme and in the sense of
Definition 3.6.

Let Y → Z be a morphism in FÉtX which induces a bijection Fx(Y )→ Fx(Z). We have
to show that Y → Z is an isomorphism. By the above we may assume Z is connected.
Since Y → Z is finite étale and hence finite locally free it suffices to show that Y → Z
is finite locally free of degree 1. This is true in a neighbourhood of any point of Z lying
over x and since Z is connected and the degree is locally constant we conclude. �

6. Fundamental groups

In this section we define Grothendieck’s algebraic fundamental group. The following def-
inition makes sense thanks to Lemma 5.5.

Definition 6.1. LetX be a connected scheme. Let x be a geometric point ofX . The
fundamental group of X with base point x is the group

π1(X,x) = Aut(Fx)
of automorphisms of the fibre functor Fx : FÉtX → Sets endowed with its canonical
profinite topology from Lemma 3.1.

Combining the above with the material from Section 3 we obtain the following theorem.

Theorem 6.2. Let X be a connected scheme. Let x be a geometric point of X .
(1) The fibre functor Fx defines an equivalence of categories

FÉtX −→ Finite-π1(X,x)-Sets

(2) Given a second geometric point x′ of X there exists an isomorphism t : Fx →
Fx′ . This gives an isomorphism π1(X,x) → π1(X,x′) compatible with the
equivalences in (1). This isomorphism is independent of t up to inner conjuga-
tion.

(3) Given a morphism f : X → Y of connected schemes denote y = f ◦ x. There
is a canonical continuous homomorphism

f∗ : π1(X,x)→ π1(Y, y)
such that the diagram

FÉtY base change
//

Fy

��

FÉtX

Fx

��
Finite-π1(Y, y)-Sets

f∗ // Finite-π1(X,x)-Sets

is commutative.
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Proof. Part (1) follows from Lemma 5.5 and Proposition 3.10. Part (2) is a special
case of Lemma 3.11. For part (3) observe that the diagram

FÉtY //

Fy

��

FÉtX

Fx

��
Sets Sets

is commutative (actually commutative, not just 2-commutative) because y = f ◦x. Hence
we can apply Lemma 3.11 with the implied transformation of functors to get (3). �

Lemma 6.3. Let K be a field and set X = Spec(K). Let K be an algebraic closure
and denote x : Spec(K)→ X the corresponding geometric point. Let Ksep ⊂ K be the
separable algebraic closure.

(1) The functor of Lemma 2.2 induces an equivalence

FÉtX −→ Finite-Gal(Ksep/K)-Sets.

compatible with Fx and the functor Finite-Gal(Ksep/K)-Sets→ Sets.
(2) This induces a canonical isomorphism

Gal(Ksep/K) −→ π1(X,x)

of profinite topological groups.

Proof. The functor of Lemma 2.2 is the same as the functor Fx because for any Y
étale over X we have

MorX(Spec(K), Y ) = MorX(Spec(Ksep), Y )

Namely, as seen in the proof of Lemma 2.2 we have Y =
∐
i∈I Spec(Li) with Li/K finite

separable over K. Hence any K-algebra homomorphism Li → K factors through Ksep.
Also, note that Fx(Y ) is finite if and only if I is finite if and only if Y → X is finite étale.
This proves (1).

Part (2) is a formal consequence of (1), Lemma 3.11, and Lemma 3.3. (Please also see the
remark below.) �

Remark 6.4. In the situation of Lemma 6.3 let us give a more explicit construction of
the isomorphism Gal(Ksep/K) → π1(X,x) = Aut(Fx). Observe that Gal(Ksep/K) =
Aut(K/K) as K is the perfection of Ksep. Since Fx(Y ) = MorX(Spec(K), Y ) we may
consider the map

Aut(K/K)× Fx(Y )→ Fx(Y ), (σ, y) 7→ σ · y = y ◦ Spec(σ)

This is an action because

στ · y = y ◦ Spec(στ) = y ◦ Spec(τ) ◦ Spec(σ) = σ · (τ · y)

The action is functorial in Y ∈ FÉtX and we obtain the desired map.
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7. Galois covers of connected schemes

Let X be a connected scheme with geometric point x. Since Fx : FÉtX → Sets is a Galois
category (Lemma 5.5) the material in Section 3 applies. In this section we explicity transfer
some of the terminology and results to the setting of schemes and finite étale morphisms.

We will say a finite étale morphism Y → X is a Galois cover if Y defines a Galois object
of FÉtX . For a finite étale morphism Y → X with G = AutX(Y ) the following are
equivalent

(1) Y is a Galois cover of X ,
(2) Y is connected and |G| is equal to the degree of Y → X ,
(3) Y is connected and G acts transitively on Fx(Y ), and
(4) Y is connected and G acts simply transitively on Fx(Y ).

This follows immediately from the discussion in Section 3.

For any finite étale morphism f : Y → X with Y connected, there is a finite étale Galois
cover Y ′ → X which dominates Y (Lemma 3.8).

The Galois objects of FÉtX correspond, via the equivalence

Fx : FÉtX → Finite-π1(X,x)-Sets

of Theorem 6.2, with the finite π1(X,x)-Sets of the form G = π1(X,x)/H where H
is a normal open subgroup. Equivalently, if G is a finite group and π1(X,x) → G is a
continuous surjection, then G viewed as a π1(X,x)-set corresponds to a Galois covering.

If Yi → X , i = 1, 2 are finite étale Galois covers with Galois groups Gi, then there exists
a finite étale Galois cover Y → X whose Galois group is a subgroup ofG1×G2. Namely,
take the corresponding continuous homomorphisms π1(X,x) → Gi and let G be the
image of the induced continuous homomorphism π1(X,x)→ G1 ×G2.

8. Topological invariance of the fundamental group

The main result of this section is that a universal homeomorphism of connected schemes
induces an isomorphism on fundamental groups. See Proposition 8.4.

Instead of directly proving two schemes have the same fundamental group, we often prove
that their categories of finite étale coverings are the same. This of course implies that their
fundamental groups are equal provided they are connected.

Lemma 8.1. Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes such that the base change functor FÉtY → FÉtX is an equivalence of categories.
In this case

(1) f induces a homeomorphism π0(X)→ π0(Y ),
(2) if X or equivalently Y is connected, then π1(X,x) = π1(Y, y).

Proof. Let Y = Y0 q Y1 be a decomposition into nonempty open and closed sub-
schemes. We claim that f(X) meets both Yi. Namely, if not, say f(X) ⊂ Y1, then we
can consider the finite étale morphism V = Y1 → Y . This is not an isomorphism but
V ×Y X → X is an isomorphism, which is a contradiction.

Suppose thatX = X0qX1 is a decomposition into open and closed subschemes. Consider
the finite étale morphism U = X1 → X . Then U = X ×Y V for some finite étale
morphism V → Y . The degree of the morphism V → Y is locally constant, hence we
obtain a decomposition Y =

∐
d≥0 Yd into open and closed subschemes such that V → Y
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has degree d over Yd. Since f−1(Yd) = ∅ for d > 1 we conclude that Yd = ∅ for d > 1 by
the above. And we conclude that f−1(Yi) = Xi for i = 0, 1.

It follows that f−1 induces a bijection between the set of open and closed subsets of Y
and the set of open and closed subsets of X . Note that X and Y are spectral spaces, see
Properties, Lemma 2.4. By Topology, Lemma 12.10 the lattice of open and closed subsets
of a spectral space determines the set of connected components. Hence π0(X)→ π0(Y ) is
bijective. Sinceπ0(X) andπ0(Y ) are profinite spaces (Topology, Lemma 22.5) we conclude
that π0(X) → π0(Y ) is a homeomorphism by Topology, Lemma 17.8. This proves (1).
Part (2) is immediate. �

The following lemma tells us that the fundamental group of a henselian pair is the funda-
mental group of the closed subset.

Lemma 8.2. Let (A, I) be a henselian pair. Set X = Spec(A) and Z = Spec(A/I).
The functor

FÉtX −→ FÉtZ , U 7−→ U ×X Z

is an equivalence of categories.

Proof. This is a translation of More on Algebra, Lemma 13.2. �

The following lemma tells us that the fundamental group of a thickening is the same as the
fundamental group of the original. We will use this in the proof of the strong proposition
concerning universal homeomorphisms below.

Lemma 8.3. Let X ⊂ X ′ be a thickening of schemes. The functor

FÉtX′ −→ FÉtX , U ′ 7−→ U ′ ×X′ X

is an equivalence of categories.

Proof. For a discussion of thickenings see More on Morphisms, Section 2. Let U ′ →
X ′ be an étale morphism such that U = U ′ ×X′ X → X is finite étale. Then U ′ → X ′ is
finite étale as well. This follows for example from More on Morphisms, Lemma 3.4. Now,
if X ⊂ X ′ is a finite order thickening then this remark combined with Étale Morphisms,
Theorem 15.2 proves the lemma. Below we will prove the lemma for general thickenings,
but we suggest the reader skip the proof.

Let X ′ =
⋃
X ′
i be an affine open covering. Set Xi = X ×X′ X ′

i , X ′
ij = X ′

i ∩ X ′
j ,

Xij = X ×X′ X ′
ij , X ′

ijk = X ′
i ∩ X ′

j ∩ X ′
k , Xijk = X ×X′ X ′

ijk. Suppose that we can
prove the theorem for each of the thickenings Xi ⊂ X ′

i , Xij ⊂ X ′
ij , and Xijk ⊂ X ′

ijk.
Then the result follows for X ⊂ X ′ by relative glueing of schemes, see Constructions,
Section 2. Observe that the schemes X ′

i , X ′
ij , X ′

ijk are each separated as open subschemes
of affine schemes. Repeating the argument one more time we reduce to the case where the
schemes X ′

i , X ′
ij , X ′

ijk are affine.

In the affine case we have X ′ = Spec(A′) and X = Spec(A′/I ′) where I ′ is a locally
nilpotent ideal. Then (A′, I ′) is a henselian pair (More on Algebra, Lemma 11.2) and the
result follows from Lemma 8.2 (which is much easier in this case). �

The “correct” way to prove the following proposition would be to deduce it from the
invariance of the étale site, see Étale Cohomology, Theorem 45.2.
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Proposition 8.4. Let f : X → Y be a universal homeomorphism of schemes. Then

FÉtY −→ FÉtX , V 7−→ V ×Y X
is an equivalence. Thus ifX andY are connected, then f induces an isomorphismπ1(X,x)→
π1(Y, y) of fundamental groups.

Proof. Recall that a universal homeomorphism is the same thing as an integral, uni-
versally injective, surjective morphism, see Morphisms, Lemma 45.5. In particular, the
diagonal ∆ : X → X ×Y X is a thickening by Morphisms, Lemma 10.2. Thus by Lemma
8.3 we see that given a finite étale morphism U → X there is a unique isomorphism

ϕ : U ×Y X → X ×Y U
of schemes finite étale over X ×Y X which pulls back under ∆ to id : U → U over X .
SinceX → X×Y X×Y X is a thickening as well (it is bijective and a closed immersion) we
conclude that (U,ϕ) is a descent datum relative toX/Y . By Étale Morphisms, Proposition
20.6 we conclude thatU = X×Y V for some V → Y quasi-compact, separated, and étale.
We omit the proof that V → Y is finite (hints: the morphism U → V is surjective and
U → Y is integral). We conclude that FÉtY → FÉtX is essentially surjective.

Arguing in the same manner as above we see that given V1 → Y and V2 → Y in FÉtY any
morphism a : X×Y V1 → X×Y V2 overX is compatible with the canonical descent data.
Thus a descends to a morphism V1 → V2 over Y by Étale Morphisms, Lemma 20.3. �

9. Finite étale covers of proper schemes

In this section we show that the fundamental group of a connected proper scheme over
a henselian local ring is the same as the fundamental group of its special fibre. We also
prove a variant of this result for a henselian pair.

We also show that the fundamental group of a connected proper scheme over an alge-
braically closed field k does not change if we replace k by an algebraically closed exten-
sion.

Instead of stating and proving the results in the connected case we prove the results in
general and we leave it to the reader to deduce the result for fundamental groups using
Lemma 8.1.

Lemma 9.1. Let A be a henselian local ring. Let X be a proper scheme over A with
closed fibre X0. Then the functor

FÉtX → FÉtX0 , U 7−→ U0 = U ×X X0

is an equivalence of categories.

Proof. The proof given here is an example of applying algebraization and approxi-
mation. We proceed in a number of stages.

Essential surjectivity when A is a complete local Noetherian ring. Let Xn = X ×Spec(A)
Spec(A/mn+1). By Étale Morphisms, Theorem 15.2 the inclusions

X0 → X1 → X2 → . . .

induce equivalence of categories between the category of schemes étale over X0 and the
category of schemes étale over Xn. Moreover, if Un → Xn corresponds to a finite étale
morphism U0 → X0, then Un → Xn is finite too, for example by More on Morphisms,
Lemma 3.3. In this case the morphism U0 → Spec(A/m) is proper as X0 is proper over
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A/m. Thus we may apply Grothendieck’s algebraization theorem (in the form of Coho-
mology of Schemes, Lemma 28.2) to see that there is a finite morphism U → X whose
restriction to X0 recovers U0. By More on Morphisms, Lemma 12.3 we see that U → X
is étale at every point of U0. However, since every point of U specializes to a point of U0
(as U is proper over A), we conclude that U → X is étale. In this way we conclude the
functor is essentially surjective.

Fully faithfulness when A is a complete local Noetherian ring. Let U → X and V → X
be finite étale morphisms and let ϕ0 : U0 → V0 be a morphism over X0. Look at the
morphism

Γϕ0 : U0 −→ U0 ×X0 V0

This morphism is both finite étale and a closed immersion. By essential surjectivity applied
to X = U ×X V we find a finite étale morphism W → U ×X V whose special fibre is
isomorphic to Γϕ0 . Consider the projectionW → U . It is finite étale and an isomorphism
over U0 by construction. By Étale Morphisms, Lemma 14.2W → U is an isomorphism in
an open neighbourhood of U0. Thus it is an isomorphism and the composition ϕ : U ∼=
W → V is the desired lift of ϕ0.

Essential surjectivity when A is a henselian local Noetherian G-ring. Let U0 → X0 be a
finite étale morphism. Let A∧ be the completion of A with respect to the maximal ideal.
Let X∧ be the base change of X to A∧. By the result above there exists a finite étale
morphism V → X∧ whose special fibre is U0. Write A∧ = colimAi with A → Ai of
finite type. By Limits, Lemma 10.1 there exists an i and a finitely presented morphism
Ui → XAi whose base change to X∧ is V . After increasing i we may assume that Ui →
XAi is finite and étale (Limits, Lemmas 8.3 and 8.10). Writing

Ai = A[x1, . . . , xn]/(f1, . . . , fm)

the ring mapAi → A∧ can be reinterpreted as a solution (a1, . . . , an) inA∧ for the system
of equations fj = 0. By Smoothing Ring Maps, Theorem 13.1 we can approximate this
solution (to order 11 for example) by a solution (b1, . . . , bn) in A. Translating back we
find an A-algebra map Ai → A which gives the same closed point as the original map
Ai → A∧ (as 11 > 1). The base change U → X of V → XAi by this ring map will
therefore be a finite étale morphism whose special fibre is isomorphic to U0.

Fully faithfulness when A is a henselian local Noetherian G-ring. This can be deduced
from essential surjectivity in exactly the same manner as was done in the case that A is
complete Noetherian.

General case. Let (A,m) be a henselian local ring. Set S = Spec(A) and denote s ∈ S
the closed point. By Limits, Lemma 13.3 we can write X → Spec(A) as a cofiltered limit
of proper morphisms Xi → Si with Si of finite type over Z. For each i let si ∈ Si be
the image of s. Since S = limSi and A = OS,s we have A = colimOSi,si . The ring
Ai = OSi,si is a Noetherian local G-ring (More on Algebra, Proposition 50.12). By More
on Algebra, Lemma 12.5 we see that A = colimAhi . By More on Algebra, Lemma 50.8 the
rings Ahi are G-rings. Thus we see that A = colimAhi and

X = lim(Xi ×Si Spec(Ahi ))

as schemes. The category of schemes finite étale over X is the limit of the category of
schemes finite étale over Xi ×Si Spec(Ahi ) (by Limits, Lemmas 10.1, 8.3, and 8.10) The
same thing is true for schemes finite étale over X0 = lim(Xi ×Si si). Thus we formally
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deduce the result for X/Spec(A) from the result for the (Xi ×Si Spec(Ahi ))/ Spec(Ahi )
which we dealt with above. �

Lemma 9.2. Let (A, I) be a henselian pair. Let X be a proper scheme over A. Set
X0 = X ×Spec(A) Spec(A/I). Then the functor

FÉtX → FÉtX0 , U 7−→ U0 = U ×X X0

is an equivalence of categories.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 9.1.

Essential surjectivity whenA is Noetherian and I-adically complete. LetXn = X×Spec(A)
Spec(A/In+1). By Étale Morphisms, Theorem 15.2 the inclusions

X0 → X1 → X2 → . . .

induce equivalence of categories between the category of schemes étale over X0 and the
category of schemes étale over Xn. Moreover, if Un → Xn corresponds to a finite étale
morphism U0 → X0, then Un → Xn is finite too, for example by More on Morphisms,
Lemma 3.3. In this case the morphism U0 → Spec(A/I) is proper as X0 is proper over
A/I . Thus we may apply Grothendieck’s algebraization theorem (in the form of Coho-
mology of Schemes, Lemma 28.2) to see that there is a finite morphism U → X whose
restriction to X0 recovers U0. By More on Morphisms, Lemma 12.3 we see that U → X
is étale at every point of U0. However, since every point of U specializes to a point of U0
(as U is proper over A), we conclude that U → X is étale. In this way we conclude the
functor is essentially surjective.

Fully faithfulness whenA is Noetherian and I-adically complete. LetU → X andV → X
be finite étale morphisms and let ϕ0 : U0 → V0 be a morphism over X0. Look at the
morphism

Γϕ0 : U0 −→ U0 ×X0 V0

This morphism is both finite étale and a closed immersion. By essential surjectivity applied
to X = U ×X V we find a finite étale morphism W → U ×X V whose special fibre is
isomorphic to Γϕ0 . Consider the projectionW → U . It is finite étale and an isomorphism
over U0 by construction. By Étale Morphisms, Lemma 14.2W → U is an isomorphism in
an open neighbourhood of U0. Thus it is an isomorphism and the composition ϕ : U ∼=
W → V is the desired lift of ϕ0.

Essential surjectivity when (A, I) is a henselian pair and A is a Noetherian G-ring. Let
U0 → X0 be a finite étale morphism. Let A∧ be the completion of A with respect to I .
Observe thatA∧ is a Noetherian ring which is IA∧-adically complete, see Algebra, Lemmas
97.4 and 97.6. Let X∧ be the base change of X to A∧. By the result above there exists
a finite étale morphism V → X∧ whose special fibre is U0. Write A∧ = colimAi with
A → Ai of finite type. By Limits, Lemma 10.1 there exists an i and a finitely presented
morphism Ui → XAi whose base change to X∧ is V . After increasing i we may assume
that Ui → XAi is finite and étale (Limits, Lemmas 8.3 and 8.10). Writing

Ai = A[x1, . . . , xn]/(f1, . . . , fm)

the ring map Ai → A∧ can be reinterpreted as a solution (a1, . . . , an) in A∧ for the
system of equations fj = 0. By Smoothing Ring Maps, Lemma 14.1 we can approximate
this solution (to order 11 for example) by a solution (b1, . . . , bn) in A. Translating back
we find an A-algebra map Ai → A which gives the same closed point as the original map
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Ai → A∧ (as 11 > 1). The base change U → X of V → XAi by this ring map will
therefore be a finite étale morphism whose special fibre is isomorphic to U0.

Fully faithfulness when (A, I is a henselian pair and A is a Noetherian G-ring. This can
be deduced from essential surjectivity in exactly the same manner as was done in the case
that A is complete Noetherian.

General case. Let (A, I) be a henselian pair. SetS = Spec(A) and denoteS0 = Spec(A/I).
By Limits, Lemma 13.3 we can write X → Spec(A) as a cofiltered limit of proper mor-
phisms Xi → Si with Si affine and of finite type over Z. Write Si = Spec(Ai) and
denote Ii ⊂ Ai the inverse image of I by the map Ai → A. Set Si,0 = Spec(Ai/Ii).
Since S = limSi we have A = colimAi. Thus we also have I = colim Ii and A/I =
colimAi/Ii. The ring Ai is a Noetherian G-ring (More on Algebra, Proposition 50.12).
Denote (Ahi , Ihi ) the henselization of the pair (Ai, Ii). By More on Algebra, Lemma 12.5
we see that A = colimAhi . By More on Algebra, Lemma 50.15 the rings Ahi are G-rings.
Thus we see that A = colimAhi and

X = lim(Xi ×Si Spec(Ahi ))

as schemes. The category of schemes finite étale over X is the limit of the category of
schemes finite étale over Xi ×Si Spec(Ahi ) (by Limits, Lemmas 10.1, 8.3, and 8.10) The
same thing is true for schemes finite étale overX0 = lim(Xi×Si Si,0). Thus we formally
deduce the result for X/Spec(A) from the result for the (Xi ×Si Spec(Ahi ))/ Spec(Ahi )
which we dealt with above. �

Lemma 9.3. Let k′/k be an extension of algebraically closed fields. LetX be a proper
scheme over k. Then the functor

U 7−→ Uk′

is an equivalence of categories between schemes finite étale overX and schemes finite étale
over Xk′ .

Proof. Let us prove the functor is essentially surjective. Let U ′ → Xk′ be a finite
étale morphism. Write k′ = colimAi as a filtered colimit of finite type k-algebras. By
Limits, Lemma 10.1 there exists an i and a finitely presented morphism Ui → XAi whose
base change to Xk′ is U ′. After increasing i we may assume that Ui → XAi is finite
and étale (Limits, Lemmas 8.3 and 8.10). Since k is algebraically closed we can find a k-
valued point t in Spec(Ai). Let U = (Ui)t be the fibre of Ui over t. Let Ahi be the
henselization of (Ai)m where m is the maximal ideal corresponding to the point t. By
Lemma 9.1 we see that (Ui)Ah

i
= U × Spec(Ahi ) as schemes over XAh

i
. Now since Ahi

is algebraic over Ai (see for example discussion in Smoothing Ring Maps, Example 13.3)
and since k′ is algebraically closed we can find a ring map Ahi → k′ extending the given
inclusionAi ⊂ k′. Hence we conclude that U ′ is isomorphic to the base change of U . The
proof of fully faithfulness is exactly the same. �

10. Local connectedness

In this section we ask when π1(U)→ π1(X) is surjective for U a dense open of a scheme
X . We will see that this is the case (roughly) whenU ∩B is connected for any small “ball”
B around a point x ∈ X \ U .

Lemma 10.1. Let f : X → Y be a morphism of schemes. If f(X) is dense in Y then
the base change functor FÉtY → FÉtX is faithful.
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Proof. Since the category of finite étale coverings has an internal hom (Lemma 5.4) it
suffices to prove the following: Given W finite étale over Y and a morphism s : X →W
overX there is at most one section t : Y →W such that s = t ◦ f . Consider two sections
t1, t2 : Y → W such that s = t1 ◦ f = t2 ◦ f . Since the equalizer of t1 and t2 is closed
in Y (Schemes, Lemma 21.5) and since f(X) is dense in Y we see that t1 and t2 agree on
Yred. Then it follows that t1 and t2 have the same image which is an open and closed
subscheme of W mapping isomorphically to Y (Étale Morphisms, Proposition 6.1) hence
they are equal. �

The condition in the following lemma that the punctured spectrum of the strict henseliza-
tion is connected follows for example from the assumption that the local ring is geomet-
rically unibranch, see More on Algebra, Lemma 106.5. There is a partial converse in Prop-
erties, Lemma 15.3.

Lemma 10.2. Let (A,m) be a local ring. Set X = Spec(A) and let U = X \ {m}. If
the punctured spectrum of the strict henselization of A is connected, then

FÉtX −→ FÉtU , Y 7−→ Y ×X U

is a fully faithful functor.

Proof. Assume A is strictly henselian. In this case any finite étale cover Y of X is
isomorphic to a finite disjoint union of copies of X . Thus it suffices to prove that any
morphism U → U q . . .qU over U , extends uniquely to a morphismX → X q . . .qX
over X . If U is connected (in particular nonempty), then this is true.

The general case. Since the category of finite étale coverings has an internal hom (Lemma
5.4) it suffices to prove the following: Given Y finite étale overX any morphism s : U →
Y over X extends to a morphism t : X → Y over X . Let Ash be the strict henselization
of A and denote Xsh = Spec(Ash), Ush = U ×X Xsh, Y sh = Y ×X Xsh. By the first
paragraph and our assumption on A, we can extend the base change ssh : Ush → Y sh of
s to tsh : Xsh → Y sh. Set A′ = Ash ⊗A Ash. Then the two pullbacks t′1, t′2 of tsh to
X ′ = Spec(A′) are extensions of the pullback s′ of s toU ′ = U×XX ′. AsA→ A′ is flat
we see that U ′ ⊂ X ′ is (topologically) dense by going down forA→ A′ (Algebra, Lemma
39.19). Thus t′1 = t′2 by Lemma 10.1. Hence tsh descends to a morphism t : X → Y for
example by Descent, Lemma 13.7. �

In view of Lemma 10.2 it is interesting to know when the punctured spectrum of a ring
(and of its strict henselization) is connected. There is a famous lemma due to Hartshorne
which gives a sufficient condition, see Local Cohomology, Lemma 3.1.

Lemma 10.3. Let X be a scheme. Let U ⊂ X be a dense open. Assume
(1) the underlying topological space of X is Noetherian, and
(2) for every x ∈ X \U the punctured spectrum of the strict henselization ofOX,x

is connected.
Then FÉtX → FétU is fully faithful.

Proof. Let Y1, Y2 be finite étale over X and let ϕ : (Y1)U → (Y2)U be a morphism
over U . We have to show that ϕ lifts uniquely to a morphism Y1 → Y2 over X . Unique-
ness follows from Lemma 10.1.

Let x ∈ X \ U be a generic point of an irreducible component of X \ U . Set V =
U ×X Spec(OX,x). By our choice of x this is the punctured spectrum of Spec(OX,x).
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By Lemma 10.2 we can extend the morphism ϕV : (Y1)V → (Y2)V uniquely to a mor-
phism (Y1)Spec(OX,x) → (Y2)Spec(OX,x). By Limits, Lemma 20.3 we find an open U ⊂ U ′

containing x and an extension ϕ′ : (Y1)U ′ → (Y2)U ′ of ϕ. Since the underlying topo-
logical space of X is Noetherian this finishes the proof by Noetherian induction on the
complement of the open over which ϕ is defined. �

Lemma 10.4. Let X be a scheme. Let U ⊂ X be a dense open. Assume
(1) U → X is quasi-compact,
(2) every point of X \ U is closed, and
(3) for every x ∈ X \U the punctured spectrum of the strict henselization ofOX,x

is connected.
Then FÉtX → FétU is fully faithful.

Proof. Let Y1, Y2 be finite étale over X and let ϕ : (Y1)U → (Y2)U be a morphism
over U . We have to show that ϕ lifts uniquely to a morphism Y1 → Y2 over X . Unique-
ness follows from Lemma 10.1.
Let x ∈ X \ U . Set V = U ×X Spec(OX,x). Since every point of X \ U is closed V
is the punctured spectrum of Spec(OX,x). By Lemma 10.2 we can extend the morphism
ϕV : (Y1)V → (Y2)V uniquely to a morphism (Y1)Spec(OX,x) → (Y2)Spec(OX,x). By
Limits, Lemma 20.3 (this uses that U is retrocompact in X) we find an open U ⊂ U ′

x

containing x and an extension ϕ′
x : (Y1)U ′

x
→ (Y2)U ′

x
of ϕ. Note that given two points

x, x′ ∈ X \ U the morphisms ϕ′
x and ϕ′

x′ agree over U ′
x ∩ U ′

x′ as U is dense in that open
(Lemma 10.1). Thus we can extend ϕ to

⋃
U ′
x = X as desired. �

Lemma 10.5. Let X be a scheme. Let U ⊂ X be a dense open. Assume
(1) every quasi-compact open of X has finitely many irreducible components,
(2) for every x ∈ X \U the punctured spectrum of the strict henselization ofOX,x

is connected.
Then FÉtX → FétU is fully faithful.

Proof. Let Y1, Y2 be finite étale over X and let ϕ : (Y1)U → (Y2)U be a morphism
over U . We have to show that ϕ lifts uniquely to a morphism Y1 → Y2 over X . Unique-
ness follows from Lemma 10.1. We will prove existence by showing that we can enlarge
U if U 6= X and using Zorn’s lemma to finish the proof.
Let x ∈ X \ U be a generic point of an irreducible component of X \ U . Set V =
U ×X Spec(OX,x). By our choice of x this is the punctured spectrum of Spec(OX,x). By
Lemma 10.2 we can extend the morphism ϕV : (Y1)V → (Y2)V (uniquely) to a morphism
(Y1)Spec(OX,x) → (Y2)Spec(OX,x). Choose an affine neighbourhood W ⊂ X of x. Since
U ∩W is dense in W it contains the generic points η1, . . . , ηn of W . Choose an affine
open W ′ ⊂ W ∩ U containing η1, . . . , ηn. Set V ′ = W ′ ×X Spec(OX,x). By Limits,
Lemma 20.3 applied to x ∈ W ⊃ W ′ we find an open W ′ ⊂ W ′′ ⊂ W with x ∈ W ′′

and a morphism ϕ′′ : (Y1)W ′′ → (Y2)W ′′ agreeing with ϕ over W ′. Since W ′ is dense in
W ′′ ∩U , we see by Lemma 10.1 that ϕ and ϕ′′ agree over U ∩W ′. Thus ϕ and ϕ′′ glue to
a morphism ϕ′ over U ′ = U ∪W ′′ agreeing with ϕ over U . Observe that x ∈ U ′ so that
we’ve extended ϕ to a strictly larger open.
Consider the set S of pairs (U ′, ϕ′) where U ⊂ U ′ and ϕ′ is an extension of ϕ. We endow
S with a partial ordering in the obvious manner. If (U ′

i , ϕ
′
i) is a totally ordered subset,

then it has a maximum (U ′, ϕ′). Just take U ′ =
⋃
U ′
i and let ϕ′ : (Y1)U ′ → (Y2)U ′ be

the morphism agreeing with ϕ′
i over U ′

i . Thus Zorn’s lemma applies and S has a maximal
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element. By the argument above we see that this maximal element is an extension of ϕ
over all of X . �

Lemma 10.6. Let (A,m) be a local ring. Set X = Spec(A) and U = X \ {m}. Let
Ush be the punctured spectrum of the strict henselization Ash of A. Assume U is quasi-
compact and Ush is connected. Then the sequence

π1(Ush, u)→ π1(U, u)→ π1(X,u)→ 1
is exact in the sense of Lemma 4.3 part (1).

Proof. The map π1(U)→ π1(X) is surjective by Lemmas 10.2 and 4.1.
Write Xsh = Spec(Ash). Let Y → X be a finite étale morphism. Then Y sh = Y ×X
Xsh → Xsh is a finite étale morphism. Since Ash is strictly henselian we see that Y sh is
isomorphic to a disjoint union of copies of Xsh. Thus the same is true for Y ×X Ush. It
follows that the composition π1(Ush)→ π1(U)→ π1(X) is trivial, see Lemma 4.2.
To finish the proof, it suffices according to Lemma 4.3 to show the following: Given a finite
étale morphism V → U such that V ×U Ush is a disjoint union of copies of Ush, we can
find a finite étale morphism Y → X with V ∼= Y ×X U over U . The assumption implies
that there exists a finite étale morphism Y sh → Xsh and an isomorphism V ×U Ush ∼=
Y sh ×Xsh Ush. Consider the following diagram

U

��

Ush

��

oo Ush ×U Ush

��

oo
oo

Ush ×U Ush ×U Ush

��

oooo
oo

X Xshoo Xsh ×X Xshoo
oo

Xsh ×X Xsh ×X Xshoooo
oo

SinceU ⊂ X is quasi-compact by assumption, all the downward arrows are quasi-compact
open immersions. Let ξ ∈ Xsh ×X Xsh be a point not in Ush ×U Ush. Then ξ lies over
the closed point xsh of Xsh. Consider the local ring homomorphism

Ash = OXsh,xsh → OXsh×XXsh,ξ

determined by the first projection Xsh ×X Xsh. This is a filtered colimit of local ho-
momorphisms which are localizations étale ring maps. Since Ash is strictly henselian,
we conclude that it is an isomorphism. Since this holds for every ξ in the complement
it follows there are no specializations among these points and hence every such ξ is a
closed point (you can also prove this directly). As the local ring at ξ is isomorphic to
Ash, it is strictly henselian and has connected punctured spectrum. Similarly for points
ξ of Xsh ×X Xsh ×X Xsh not in Ush ×U Ush ×U Ush. It follows from Lemma 10.4
that pullback along the vertical arrows induce fully faithful functors on the categories of
finite étale schemes. Thus the canonical descent datum on V ×U Ush relative to the fpqc
covering {Ush → U} translates into a descent datum for Y sh relative to the fpqc cover-
ing {Xsh → X}. Since Y sh → Xsh is finite hence affine, this descent datum is effective
(Descent, Lemma 37.1). Thus we get an affine morphism Y → X and an isomorphism
Y ×X Xsh → Y sh compatible with descent data. By fully faithfulness of descent data
(as in Descent, Lemma 35.11) we get an isomorphism V → U ×X Y . Finally, Y → X is
finite étale as Y sh → Xsh is, see Descent, Lemmas 23.29 and 23.23. �

LetX be an irreducible scheme. Let η ∈ X be the generic point. The canonical morphism
η → X induces a canonical map
(10.6.1) Gal(κ(η)sep/κ(η)) = π1(η, η) −→ π1(X, η)



4582 58. FUNDAMENTAL GROUPS OF SCHEMES

The identification on the left hand side is Lemma 6.3.

Lemma 10.7. Let X be an irreducible, geometrically unibranch scheme. For any
nonempty open U ⊂ X the canonical map

π1(U, u) −→ π1(X,u)

is surjective. The map (10.6.1) π1(η, η)→ π1(X, η) is surjective as well.

Proof. By Lemma 8.3 we may replace X by its reduction. Thus we may assume that
X is an integral scheme. By Lemma 4.1 the assertion of the lemma translates into the
statement that the functors FÉtX → FÉtU and FÉtX → FÉtη are fully faithful.

The result for FÉtX → FÉtU follows from Lemma 10.5 and the fact that for a local ringA
which is geometrically unibranch its strict henselization has an irreducible spectrum. See
More on Algebra, Lemma 106.5.

Observe that the residue field κ(η) = OX,η is the filtered colimit ofOX(U) over U ⊂ X
nonempty open affine. Hence FÉtη is the colimit of the categories FÉtU over such U , see
Limits, Lemmas 10.1, 8.3, and 8.10. A formal argument then shows that fully faithfulness
for FÉtX → FÉtη follows from the fully faithfulness of the functors FÉtX → FÉtU . �

Lemma 10.8. Let X be a scheme. Let x1, . . . , xn ∈ X be a finite number of closed
points such that

(1) U = X \ {x1, . . . , xn} is connected and is a retrocompact open of X , and
(2) for each i the punctured spectrum Ushi of the strict henselization of OX,xi is

connected.

Then the map π1(U) → π1(X) is surjective and the kernel is the smallest closed normal
subgroup of π1(U) containing the image of π1(Ushi )→ π1(U) for i = 1, . . . , n.

Proof. Surjectivity follows from Lemmas 10.4 and 4.1. We can consider the sequence
of maps

π1(U)→ . . .→ π1(X \ {x1, x2})→ π1(X \ {x1})→ π1(X)

A group theory argument then shows it suffices to prove the statement on the kernel in
the case n = 1 (details omitted). Write x = x1, Ush = Ush1 , set A = OX,x, and let Ash
be the strict henselization. Consider the diagram

U

��

Spec(A) \ {m}oo

��

Ush

��

oo

X Spec(A)oo Spec(Ash)oo

By Lemma 4.3 we have to show finite étale morphisms V → U which pull back to triv-
ial coverings of Ush extend to finite étale schemes over X . By Lemma 10.6 we know the
corresponding statement for finite étale schemes over the punctured spectrum ofA. How-
ever, by Limits, Lemma 20.1 schemes of finite presentation over X are the same thing as
schemes of finite presentation overU andA glued over the punctured spectrum ofA. This
finishes the proof. �
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11. Fundamental groups of normal schemes

Let X be an integral, geometrically unibranch scheme. In the previous section we have
seen that the fundamental group of X is a quotient of the Galois group of the function
field K of X . Since the map is continuous the kernel is a normal closed subgroup of the
Galois group. Hence this kernel corresponds to a Galois extensionM/K by Galois theory
(Fields, Theorem 22.4). In this section we will determine M when X is a normal integral
scheme.
LetX be an integral normal scheme with function fieldK. Let L/K be a finite extension.
Consider the normalization Y → X of X in the morphism Spec(L) → X as defined in
Morphisms, Section 53. We will say (in this setting) that X is unramified in L if Y → X
is an unramified morphism of schemes. In Lemma 13.4 we will elucidate this condition.
Observe that the scheme theoretic fibre of Y → X over Spec(K) is Spec(L). Hence the
field extension L/K is separable if X is unramified in L, see Morphisms, Lemmas 35.11.

Lemma 11.1. In the situation above the following are equivalent
(1) X is unramified in L,
(2) Y → X is étale, and
(3) Y → X is finite étale.

Proof. Observe that Y → X is an integral morphism. In each case the morphism
Y → X is locally of finite type by definition. Hence we find that in each case Y → X
is finite by Morphisms, Lemma 44.4. In particular we see that (2) is equivalent to (3). An
étale morphism is unramified, hence (2) implies (1).
Conversely, assume Y → X is unramified. Since a normal scheme is geometrically uni-
branch (Properties, Lemma 15.2), we see that the morphism Y → X is étale by More on
Morphisms, Lemma 37.2. We also give a direct proof in the next paragraph.
Let x ∈ X . We can choose an étale neighbourhood (U, u)→ (X,x) such that

Y ×X U =
∐

Vj −→ U

is a disjoint union of closed immersions, see Étale Morphisms, Lemma 17.3. Shrinking we
may assume U is quasi-compact. Then U has finitely many irreducible components (De-
scent, Lemma 16.3). Since U is normal (Descent, Lemma 18.2) the irreducible components
of U are open and closed (Properties, Lemma 7.5) and we may assume U is irreducible.
Then U is an integral scheme whose generic point ξ maps to the generic point of X . On
the other hand, we know that Y ×X U is the normalization of U in Spec(L) ×X U by
More on Morphisms, Lemma 19.2. Every point of Spec(L)×X U maps to ξ. Thus every
Vj contains a point mapping to ξ by Morphisms, Lemma 53.9. Thus Vj → U is an isomor-
phism as U = {ξ}. Thus Y ×X U → U is étale. By Descent, Lemma 23.29 we conclude
that Y → X is étale over the image of U → X (an open neighbourhood of x). �

Lemma 11.2. Let X be a normal integral scheme with function field K. Let Y → X
be a finite étale morphism. If Y is connected, then Y is an integral normal scheme and Y
is the normalization of X in the function field of Y .

Proof. The scheme Y is normal by Descent, Lemma 18.2. Since Y → X is flat every
generic point of Y maps to the generic point of X by Morphisms, Lemma 25.9. Since
Y → X is finite we see that Y has a finite number of irreducible components. Thus Y
is the disjoint union of a finite number of integral normal schemes by Properties, Lemma
7.5. Thus if Y is connected, then Y is an integral normal scheme.
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Let L be the function field of Y and let Y ′ → X be the normalization of X in L. By
Morphisms, Lemma 53.4 we obtain a factorization Y ′ → Y → X and Y ′ → Y is the
normalization of Y in L. Since Y is normal it is clear that Y ′ = Y (this can also be
deduced from Morphisms, Lemma 54.8). �

Proposition 11.3. Let X be a normal integral scheme with function field K. Then
the canonical map (10.6.1)

Gal(Ksep/K) = π1(η, η) −→ π1(X, η)
is identified with the quotient map Gal(Ksep/K)→ Gal(M/K) whereM ⊂ Ksep is the
union of the finite subextensions L such that X is unramified in L.

Proof. The normal scheme X is geometrically unibranch (Properties, Lemma 15.2).
Hence Lemma 10.7 applies toX . Thus π1(η, η)→ π1(X, η) is surjective and top horizon-
tal arrow of the commutative diagram

FÉtX //

��
c

**

FÉtη

��
Finite-π1(X, η)-sets // Finite-Gal(Ksep/K)-sets

is fully faithful. The left vertical arrow is the equivalence of Theorem 6.2 and the right
vertical arrow is the equivalence of Lemma 6.3. The lower horizontal arrow is induced by
the map of the proposition. By Lemmas 11.1 and 11.2 we see that the essential image of c
consists of Gal(Ksep/K)-Sets isomorphic to sets of the form

S = HomK(
∏

i=1,...,n
Li,K

sep) =
∐

i=1,...,n
HomK(Li,Ksep)

with Li/K finite separable such that X is unramified in Li. Thus if M ⊂ Ksep is as in
the statement of the lemma, then Gal(Ksep/M) is exactly the subgroup of Gal(Ksep/K)
acting trivially on every object in the essential image of c. On the other hand, the essential
image of c is exactly the category of S such that the Gal(Ksep/K)-action factors through
the surjection Gal(Ksep/K)→ π1(X, η). We conclude that Gal(Ksep/M) is the kernel.
Hence Gal(Ksep/M) is a normal subgroup, M/K is Galois, and we have a short exact
sequence

1→ Gal(Ksep/M)→ Gal(Ksep/K)→ Gal(M/K)→ 1
by Galois theory (Fields, Theorem 22.4 and Lemma 22.5). The proof is done. �

Lemma 11.4. Let (A,m) be a normal local ring. Set X = Spec(A). Let Ash be the
strict henselization of A. Let K and Ksh be the fraction fields of A and Ash. Then the
sequence

π1(Spec(Ksh))→ π1(Spec(K))→ π1(X)→ 1
is exact in the sense of Lemma 4.3 part (1).

Proof. Note that Ash is a normal domain, see More on Algebra, Lemma 45.6. The
map π1(Spec(K))→ π1(X) is surjective by Proposition 11.3.

Write Xsh = Spec(Ash). Let Y → X be a finite étale morphism. Then Y sh = Y ×X
Xsh → Xsh is a finite étale morphism. Since Ash is strictly henselian we see that Y sh
is isomorphic to a disjoint union of copies of Xsh. Thus the same is true for Y ×X
Spec(Ksh). It follows that the composition π1(Spec(Ksh)) → π1(X) is trivial, see
Lemma 4.2.
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To finish the proof, it suffices according to Lemma 4.3 to show the following: Given a
finite étale morphism V → Spec(K) such that V ×Spec(K) Spec(Ksh) is a disjoint union
of copies of Spec(Ksh), we can find a finite étale morphism Y → X with V ∼= Y ×X
Spec(K) over Spec(K). Write V = Spec(L), so L is a finite product of finite separable
extensions of K. Let B ⊂ L be the integral closure of A in L. If A→ B is étale, then we
can take Y = Spec(B) and the proof is complete. By Algebra, Lemma 147.4 (and a limit
argument we omit) we see thatB⊗AAsh is the integral closure ofAsh inLsh = L⊗KKsh.
Our assumption is that Lsh is a product of copies of Ksh and hence Bsh is a product of
copies of Ash. Thus Ash → Bsh is étale. As A → Ash is faithfully flat it follows that
A→ B is étale (Descent, Lemma 23.29) as desired. �

12. Group actions and integral closure

In this section we continue the discussion of More on Algebra, Section 110. Recall that a
normal local ring is a domain by definition.

Lemma 12.1. Let A be a normal domain whose fraction field K is separably alge-
braically closed. Let p ⊂ A be a nonzero prime ideal. Then the residue field κ(p) is
algebraically closed.

Proof. Assume the lemma is not true to get a contradiction. Then there exists a
monic irreducible polynomial P (T ) ∈ κ(p)[T ] of degree d > 1. After replacing P by
adP (a−1T ) for suitable a ∈ A (to clear denominators) we may assume that P is the
image of a monic polynomial Q in A[T ]. Observe that Q is irreducible in K[T ]. Namely
a factorization over K leads to a factorization over A by Algebra, Lemma 38.5 which we
could reduce modulo p to get a factorization of P . As K is separably closed, Q is not a
separable polynomial (Fields, Definition 12.2). Then the characteristic of K is p > 0 and
Q has vanishing linear term (Fields, Definition 12.2). However, then we can replace Q by
Q+ aT where a ∈ p is nonzero to get a contradiction. �

Lemma 12.2. A normal local ring with separably closed fraction field is strictly henselian.

Proof. Let (A,m, κ) be normal local with separably closed fraction field K. If A =
K , then we are done. If not, then the residue field κ is algebraically closed by Lemma 12.1
and it suffices to check thatA is henselian. Let f ∈ A[T ] be monic and let a0 ∈ κ be a root
of multiplicity 1 of the reduction f ∈ κ[T ]. Let f =

∏
fi be the factorization in K[T ].

By Algebra, Lemma 38.5 we have fi ∈ A[T ]. Thus a0 is a root of fi for some i. After
replacing f by fi we may assume f is irreducible. Then, since the derivative f ′ cannot be
zero in A[T ] as a0 is a single root, we conclude that f is linear due to the fact that K is
separably algebraically closed. Thus A is henselian, see Algebra, Definition 153.1. �

Lemma 12.3. Let G be a finite group acting on a ring R. Let RG → A be a ring map.
Let q′ ⊂ A⊗RG R be a prime lying over the prime q ⊂ R. Then

Iq = {σ ∈ G | σ(q) = q and σ mod q = idκ(q)}

is equal to
Iq′ = {σ ∈ G | σ(q′) = q′ and σ mod q′ = idκ(q′)}

Proof. Since q is the inverse image of q′ and since κ(q) ⊂ κ(q′), we get Iq′ ⊂ Iq.
Conversely, if σ ∈ Iq, the σ acts trivially on the fibre ring A ⊗RG κ(q). Thus σ fixes all
the primes lying over q and induces the identity on their residue fields. �
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Lemma 12.4. Let G be a finite group acting on a ring R. Let q ⊂ R be a prime. Set

I = {σ ∈ G | σ(q) = q and σ mod q = idq}

Then RG → RI is étale at RI ∩ q.

Proof. The strategy of the proof is to use étale localization to reduce to the case where
R → RI is a local isomorphism at RI ∩ p. Let RG → A be an étale ring map. We claim
that if the result holds for the action of G on A ⊗RG R and some prime q′ of A ⊗RG R
lying over q, then the result is true.

To check this, note that since RG → A is flat we have A = (A ⊗RG R)G, see More
on Algebra, Lemma 110.7. By Lemma 12.3 the group I does not change. Then a second
application of More on Algebra, Lemma 110.7 shows that A ⊗RG RI = (A ⊗RG R)I
(because RI → A⊗RG RI is flat). Thus

Spec((A⊗RG R)I)

��

// Spec(RI)

��
Spec(A) // Spec(RG)

is cartesian and the horizontal arrows are étale. Thus if the left vertical arrow is étale in
some open neighbourhoodW of (A⊗RG R)I ∩ q′, then the right vertical arrow is étale at
the points of the (open) image of W in Spec(RI), see Descent, Lemma 14.5. In particular
the morphism Spec(RI)→ Spec(RG) is étale at RI ∩ q.

Let p = RG∩q. By More on Algebra, Lemma 110.8 the fibre of Spec(R)→ Spec(RG) over
p is finite. Moreover the residue field extensions at these points are algebraic, normal, with
finite automorphism groups by More on Algebra, Lemma 110.9. Thus we may apply More
on Morphisms, Lemma 42.1 to the integral ring mapRG → R and the prime p. Combined
with the claim above we reduce to the case whereR = A1× . . .×An with eachAi having
a single prime qi lying over p such that the residue field extensions κ(qi)/κ(p) are purely
inseparable. Of course q is one of these primes, say q = q1.

It may not be the case thatG permutes the factorsAi (this would be true if the spectrum of
Ai were connected, for example ifRG was local). This we can fix as follows; we suggest the
reader think this through for themselves, perhaps using idempotents instead of topology.
Recall that the product decomposition gives a corresponding disjoint union decomposition
of Spec(R) by open and closed subsets Ui. Since G is finite, we can refine this covering
by a finite disjoint union decomposition Spec(R) =

∐
j∈JWj by open and closed subsets

Wj , such that for all j ∈ J there exists a j′ ∈ J with σ(Wj) = Wj′ . The union of the
Wj not meeting {q1, . . . , qn} is a closed subset not meeting the fibre over p hence maps
to a closed subset of Spec(RG) not meeting p as Spec(R) → Spec(RG) is closed. Hence
after replacing RG by a principal localization (permissible by the claim) we may assume
eachWj meets one of the points qi. Then we set Ui = Wj if qi ∈Wj . The corresponding
product decomposition R = A1 × . . .×An is one where G permutes the factors Ai.

Thus we may assume we have a product decomposition R = A1 × . . . × An compatible
with G-action, where each Ai has a single prime qi lying over p and the field extensions
κ(qi)/κ(p) are purely inseparable. Write A′ = A2 × . . .×An so that

R = A1 ×A′
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Since q = q1 we find that every σ ∈ I preserves the product decomposition above. Hence

RI = (A1)I × (A′)I

Observe that I = D = {σ ∈ G | σ(q) = q} because κ(q)/κ(p) is purely inseparable.
Since the action of G on primes over p is transitive (More on Algebra, Lemma 110.8) we
conclude that, the index of I inG is n and we can writeG = eI qσ2I q . . .qσnI so that
Ai = σi(A1) for i = 2, . . . , n. It follows that

RG = (A1)I .

Thus the map RG → RI is étale at RI ∩ q and the proof is complete. �

The following lemma generalizes More on Algebra, Lemma 112.8.

Lemma 12.5. LetA be a normal domain with fraction fieldK. LetL/K be a (possibly
infinite) Galois extension. Let G = Gal(L/K) and let B be the integral closure of A in
L. Let q ⊂ B. Set

I = {σ ∈ G | σ(q) = q and σ mod q = idκ(q)}

Then (BI)BI∩q is a filtered colimit of étale A-algebras.

Proof. We can writeL as the filtered colimit of finite Galois extensions ofK. Hence
it suffices to prove this lemma in caseL/K is a finite Galois extension, see Algebra, Lemma
154.3. Since A = BG as A is integrally closed in K = LG the result follows from Lemma
12.4. �

13. Ramification theory

In this section we continue the discussion of More on Algebra, Section 112 and we relate
it to our discussion of the fundamental groups of schemes.

Let (A,m, κ) be a normal local ring with fraction field K. Choose a separable algebraic
closureKsep. LetAsep be the integral closure ofA inKsep. Choose maximal idealmsep ⊂
Asep. Let A ⊂ Ah ⊂ Ash be the henselization and strict henselization. Observe that Ah
and Ash are normal rings as well (More on Algebra, Lemma 45.6). Denote Kh and Ksh

their fraction fields. Since (Asep)msep is strictly henselian by Lemma 12.2 we can choose
an A-algebra map Ash → (Asep)msep . Namely, first choose a κ-embedding4 κ(msh) →
κ(msep) and then extend (uniquely) to an A-algebra homomorphism by Algebra, Lemma
155.10. We get the following diagram

Ksep Kshoo Khoo Koo

(Asep)msep

OO

Ash

OO

oo Ah

OO

oo A

OO

oo

We can take the fundamental groups of the spectra of these rings. Of course, since Ksep,
(Asep)msep , and Ash are strictly henselian, for them we obtain trivial groups. Thus the

4This is possible because κ(msh) is a separable algebraic closure of κ and κ(msep) is an algebraic closure
of κ by Lemma 12.1.
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interesting part is the following

(13.0.1)

π1(Ush) //

1 %%

π1(Uh)

��

// π1(U)

��
π1(Xh) // π1(X)

Here Xh and X are the spectra of Ah and A and Ush, Uh, U are the spectra of Ksh, Kh,
and K. The label 1 means that the map is trivial; this follows as it factors through the
trivial group π1(Xsh). On the other hand, the profinite group G = Gal(Ksep/K) acts
on Asep and we can make the following definitions

D = {σ ∈ G | σ(msep) = msep} ⊃ I = {σ ∈ D | σ mod msep = idκ(msep)}

These groups are sometimes called the decomposition group and the inertia group espe-
cially when A is a discrete valuation ring.

Lemma 13.1. In the situation described above, via the isomorphismπ1(U) = Gal(Ksep/K)
the diagram (13.0.1) translates into the diagram

I //

1 %%

D

��

// Gal(Ksep/K)

��
Gal(κ(msh)/κ) // Gal(M/K)

whereKsep/M/K is the maximal subextension unramified with respect toA. Moreover,
the vertical arrows are surjective, the kernel of the left vertical arrow is I and the ker-
nel of the right vertical arrow is the smallest closed normal subgroup of Gal(Ksep/K)
containing I .

Proof. By construction the group D acts on (Asep)msep over A. By the uniqueness
ofAsh → (Asep)msep given the map on residue fields (Algebra, Lemma 155.10) we see that
the image ofAsh → (Asep)msep is contained in ((Asep)msep)I . On the other hand, Lemma
12.5 shows that ((Asep)msep)I is a filtered colimit of étale extensions ofA. SinceAsh is the
maximal such extension, we conclude thatAsh = ((Asep)msep)I . HenceKsh = (Ksep)I .

Recall that I is the kernel of a surjective mapD → Aut(κ(msep)/κ), see More on Algebra,
Lemma 110.10. We have Aut(κ(msep)/κ) = Gal(κ(msh)/κ) as we have seen above that
these fields are the algebraic and separable algebraic closures of κ. On the other hand, any
automorphism of Ash over A is an automorphism of Ash over Ah by the uniqueness in
Algebra, Lemma 155.6. Furthermore,Ash is the colimit of finite étale extensionsAh ⊂ A′

which correspond 1-to-1 with finite separable extension κ′/κ, see Algebra, Remark 155.4.
Thus

Aut(Ash/A) = Aut(Ash/Ah) = Gal(κ(msh)/κ)
Let κ′/κ be a finite Galois extension with Galois group G. Let Ah ⊂ A′ be the finite
étale extension corresponding to κ ⊂ κ′ by Algebra, Lemma 153.7. Then it follows that
(A′)G = Ah by looking at fraction fields and degrees (small detail omitted). Taking the
colimit we conclude that (Ash)Gal(κ(msh)/κ) = Ah. Combining all of the above, we find
Ah = ((Asep)msep)D. Hence Kh = (Ksep)D.

Since U , Uh, Ush are the spectra of the fields K , Kh, Ksh we see that the top lines of the
diagrams correspond via Lemma 6.3. By Lemma 8.2 we have π1(Xh) = Gal(κ(msh)/κ).
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The exactness of the sequence 1 → I → D → Gal(κ(msh)/κ) → 1 was pointed out
above. By Proposition 11.3 we see that π1(X) = Gal(M/K). Finally, the statement on
the kernel of Gal(Ksep/K) → Gal(M/K) = π1(X) follows from Lemma 11.4. This
finishes the proof. �

Let X be a normal integral scheme with function field K. Let Ksep be a separable al-
gebraic closure of K. Let Xsep → X be the normalization of X in Ksep. Since G =
Gal(Ksep/K) acts on Ksep we obtain a right action of G on Xsep. For y ∈ Xsep define

Dy = {σ ∈ G | σ(y) = y} ⊃ Iy = {σ ∈ D | σ mod my = idκ(y)}

similarly to the above. On the other hand, for x ∈ X let OshX,x be a strict henselization,
let Ksh

x be the fraction field ofOshX,x and choose a K-embedding Ksh
x → Ksep.

Lemma 13.2. Let X be a normal integral scheme with function field K. With nota-
tion as above, the following three subgroups of Gal(Ksep/K) = π1(Spec(K)) are equal

(1) the kernel of the surjection Gal(Ksep/K) −→ π1(X),
(2) the smallest normal closed subgroup containing Iy for all y ∈ Xsep, and
(3) the smallest normal closed subgroup containing Gal(Ksep/Ksh

x ) for all x ∈ X .

Proof. The equivalence of (2) and (3) follows from Lemma 13.1 which tells us that Iy
is conjugate to Gal(Ksep/Ksh

x ) if y lies overx. By Lemma 11.4 we see that Gal(Ksep/Ksh
x )

maps trivially to π1(Spec(OX,x)) and therefore the subgroup N ⊂ G = Gal(Ksep/K)
of (2) and (3) is contained in the kernel of G −→ π1(X).
To prove the other inclusion, since N is normal, it suffices to prove: given N ⊂ U ⊂
G with U open normal, the quotient map G → G/U factors through π1(X). In other
words, if L/K is the Galois extension corresponding to U , then we have to show that X
is unramified in L (Section 11, especially Proposition 11.3). It suffices to do this whenX is
affine (we do this so we can refer to algebra results in the rest of the proof). Let Y → X be
the normalization ofX inL. The inclusionL ⊂ Ksep induces a morphismπ : Xsep → Y .
For y ∈ Xsep the inertia group of π(y) in Gal(L/K) is the image of Iy in Gal(L/K); this
follows from More on Algebra, Lemma 110.11. Since N ⊂ U all these inertia groups are
trivial. We conclude that Y → X is étale by applying Lemma 12.4. (Alternative: you can
use Lemma 11.4 to see that the pullback of Y to Spec(OX,x) is étale for all x ∈ X and
then conclude from there with a bit more work.) �

Example 13.3. LetX be a normal integral Noetherian scheme with function fieldK.
Purity of branch locus (see below) tells us that if X is regular, then it suffices in Lemma
13.2 to consider the inertia groups I = π1(Spec(Ksh

x )) for points x of codimension 1 in
X . In general this is not enough however. Namely, let Y = An

k = Spec(k[t1, . . . , tn])
where k is a field not of characteristic 2. Let G = {±1} be the group of order 2 acting on
Y by multiplication on the coordinates. Set

X = Spec(k[titj , i, j ∈ {1, . . . , n}])
The embedding k[titj ] ⊂ k[t1, . . . , tn] defines a degree 2 morphism Y → X which is
unramified everywhere except over the maximal ideal m = (titj) which is a point of
codimension n in X .

Lemma 13.4. Let X be an integral normal scheme with function field K. Let L/K
be a finite extension. Let Y → X be the normalization of X in L. The following are
equivalent

(1) X is unramified in L as defined in Section 11,
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(2) Y → X is an unramified morphism of schemes,
(3) Y → X is an étale morphism of schemes,
(4) Y → X is a finite étale morphism of schemes,
(5) for x ∈ X the projection Y ×X Spec(OX,x)→ Spec(OX,x) is unramified,
(6) same as in (5) but withOhX,x,
(7) same as in (5) but withOshX,x,
(8) for x ∈ X the scheme theoretic fibre Yx is étale over x of degree ≥ [L : K].

If L/K is Galois with Galois group G, then these are also equivalent to
(9) for y ∈ Y the group Iy = {g ∈ G | g(y) = y and g mod my = idκ(y)} is

trivial.

Proof. The equivalence of (1) and (2) is the definition of (1). The equivalence of (2),
(3), and (4) is Lemma 11.1. It is straightforward to prove that (4)⇒ (5), (5)⇒ (6), (6)⇒
(7).

Assume (7). Observe thatOshX,x is a normal local domain (More on Algebra, Lemma 45.6).
Let Lsh = L⊗K Ksh

x where Ksh
x is the fraction field ofOshX,x. Then Lsh =

∏
i=1,...,n Li

with Li/Ksh
x finite separable. By Algebra, Lemma 147.4 (and a limit argument we omit)

we see that Y ×X Spec(OshX,x) is the integral closure of Spec(OshX,x) in Lsh. Hence
by Lemma 11.1 (applied to the factors Li of Lsh) we see that Y ×X Spec(OshX,x) →
Spec(OshX,x) is finite étale. Looking at the generic point we see that the degree is equal
to [L : K] and hence we see that (8) is true.

Assume (8). Assume that x ∈ X and that the scheme theoretic fibre Yx is étale over x of
degree ≥ [L : K]. Observe that this means that Y has ≥ [L : K] geometric points lying
over x. We will show that Y → X is finite étale over a neighbourhood of x. This will
prove (1) holds. To prove this we may assume X = Spec(R), the point x corresponds to
the prime p ⊂ R, and Y = Spec(S). We apply More on Morphisms, Lemma 42.1 and we
find an étale neighbourhood (U, u) → (X,x) such that Y ×X U = V1 q . . . q Vm such
that Vi has a unique point vi lying over u with κ(vi)/κ(u) purely inseparable. Shrinking
U if necessary we may assume U is a normal integral scheme with generic point ξ (use
Descent, Lemmas 16.3 and 18.2 and Properties, Lemma 7.5). By our remark on geometric
points we see that m ≥ [L : K]. On the other hand, by More on Morphisms, Lemma 19.2
we see that

∐
Vi → U is the normalization of U in Spec(L)×X U . AsK ⊂ κ(ξ) is finite

separable, we can write Spec(L) ×X U = Spec(
∏
i=1,...,n Li) with Li/κ(ξ) finite and

[L : K] =
∑

[Li : κ(ξ)]. Since Vj is nonempty for each j and m ≥ [L : K] we conclude
that m = n and [Li : κ(ξ)] = 1 for all i. Then Vj → U is an isomorphism in particular
étale, hence Y ×X U → U is étale. By Descent, Lemma 23.29 we conclude that Y → X is
étale over the image of U → X (an open neighbourhood of x).

Assume L/K is Galois and (9) holds. Then Y → X is étale by Lemma 12.5. We omit the
proof that (1) implies (9). �

In the case of infinite Galois extensions of discrete valuation rings we can say a tiny bit
more. To do so we introduce the following notation. A subset S ⊂ N of integers is
multiplicativity directed if 1 ∈ S and for n,m ∈ S there exists k ∈ S with n|k and m|k.
Define a partial ordering on S by the rule n ≥S m if and only if m|n. Given a field κ we
obtain an inverse system of finite groups {µn(κ)}n∈S with transition maps

µn(κ) −→ µm(κ), ζ 7−→ ζn/m
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for n ≥S m. Then we can form the profinite group
limn∈S µn(κ)

Observe that the limit is cofiltered (as S is directed). The construction is functorial in κ.
In particular Aut(κ) acts on this profinite group. For example, if S = {1, n}, then this
gives µn(κ). If S = {1, `, `2, `3, . . .} for some prime ` different from the characteristic
of κ this produces limn µ`n(κ) which is sometimes called the `-adic Tate module of the
multiplicative group of κ (compare with More on Algebra, Example 93.5).

Lemma 13.5. Let A be a discrete valuation ring with fraction field K. Let L/K be a
(possibly infinite) Galois extension. Let B be the integral closure of A in L. Let m be a
maximal ideal of B. Let G = Gal(L/K), D = {σ ∈ G | σ(m) = m}, and I = {σ ∈ D |
σ mod m = idκ(m)}. The decomposition group D fits into a canonical exact sequence

1→ I → D → Aut(κ(m)/κA)→ 1
The inertia group I fits into a canonical exact sequence

1→ P → I → It → 1
such that

(1) P is a normal subgroup of D,
(2) P is a pro-p-group if the characteristic of κA is p > 1 and P = {1} if the

characteristic of κA is zero,
(3) there is a multiplicatively directed S ⊂ N such that κ(m) contains a primitive

nth root of unity for each n ∈ S (elements of S are prime to p),
(4) there exists a canonical surjective map

θcan : I → limn∈S µn(κ(m))
whose kernel is P , which satisfies θcan(τστ−1) = τ(θcan(σ)) for τ ∈ D, σ ∈ I ,
and which induces an isomorphism It → limn∈S µn(κ(m)).

Proof. This is mostly a reformulation of the results on finite Galois extensions proved
in More on Algebra, Section 112. The surjectivity of the map D → Aut(κ(m)/κ) is More
on Algebra, Lemma 110.10. This gives the first exact sequence.
To construct the second short exact sequence let Λ be the set of finite Galois subexten-
sions, i.e., λ ∈ Λ corresponds to L/Lλ/K. SetGλ = Gal(Lλ/K). Recall thatGλ is an in-
verse system of finite groups with surjective transition maps and thatG = limλ∈Λ Gλ, see
Fields, Lemma 22.3. We letBλ be the integral closure ofA inLλ. Then we setmλ = m∩Bλ
and we denote Pλ, Iλ, Dλ the wild inertia, inertia, and decomposition group of mλ, see
More on Algebra, Lemma 112.5. For λ ≥ λ′ the restriction defines a commutative diagram

Pλ

��

// Iλ

��

// Dλ

��

// Gλ

��
Pλ′ // Iλ′ // Dλ′ // Gλ′

with surjective vertical maps, see More on Algebra, Lemma 112.10.
From the definitions it follows immediately that I = lim Iλ and D = limDλ under
the isomorphism G = limGλ above. Since L = colimLλ we have B = colimBλ and
κ(m) = colim κ(mλ). Since the transition maps of the system Dλ are compatible with
the mapsDλ → Aut(κ(mλ)/κ) (see More on Algebra, Lemma 112.10) we see that the map
D → Aut(κ(m)/κ) is the limit of the maps Dλ → Aut(κ(mλ)/κ).



4592 58. FUNDAMENTAL GROUPS OF SCHEMES

There exist canonical maps
θλ,can : Iλ −→ µnλ(κ(mλ))

where nλ = |Iλ|/|Pλ|, where µnλ(κ(mλ)) has order nλ, such that θλ,can(τστ−1) =
τ(θλ,can(σ)) for τ ∈ Dλ and σ ∈ Iλ, and such that we get commutative diagrams

Iλ
θλ,can

//

��

µnλ(κ(mλ))

(−)nλ/nλ′

��
Iλ′

θλ′,can// µnλ′ (κ(mλ′))

see More on Algebra, Remark 112.11.
Let S ⊂ N be the collection of integers nλ. Since Λ is directed, we see that S is multi-
plicatively directed. By the displayed commutative diagrams above we can take the limits
of the maps θλ,can to obtain

θcan : I → limn∈S µn(κ(m)).
This map is continuous (small detail omitted). Since the transition maps of the system of
Iλ are surjective and Λ is directed, the projections I → Iλ are surjective. For every λ the
diagram

I

��

θcan

// limn∈S µn(κ(m))

��
Iλ

θλ,can // µnλ(κ(mλ))
commutes. Hence the image of θcan surjects onto the finite groupµnλ(κ(m)) = µnλ(κ(mλ))
of order nλ (see above). It follows that the image of θcan is dense. On the other hand θcan
is continuous and the source is a profinite group. Hence θcan is surjective by a topological
argument.
The property θcan(τστ−1) = τ(θcan(σ)) for τ ∈ D, σ ∈ I follows from the correspond-
ing properties of the maps θλ,can and the compatibility of the mapD → Aut(κ(m)) with
the maps Dλ → Aut(κ(mλ)). Setting P = Ker(θcan) this implies that P is a normal
subgroup of D. Setting It = I/P we obtain the isomorphism It → limn∈S µn(κ(m))
from the surjectivity of θcan.
To finish the proof we show that P = limPλ which proves that P is a pro-p-group.
Recall that the tame inertia group Iλ,t = Iλ/Pλ has order nλ. Since the transition maps
Pλ → Pλ′ are surjective and Λ is directed, we obtain a short exact sequence

1→ limPλ → I → lim Iλ,t → 1
(details omitted). Since for eachλ the map θλ,can induces an isomorphism Iλ,t ∼= µnλ(κ(m))
the desired result follows. �

Lemma 13.6. Let A be a discrete valuation ring with fraction field K. Let Ksep be
a separable closure of K. Let Asep be the integral closure of A in Ksep. Let msep be a
maximal ideal of Asep. Let m = msep ∩ A, let κ = A/m, and let κ = Asep/msep. Then
κ is an algebraic closure of κ. Let G = Gal(Ksep/K), D = {σ ∈ G | σ(msep) = msep},
and I = {σ ∈ D | σ mod msep = idκ(msep)}. The decomposition group D fits into a
canonical exact sequence

1→ I → D → Gal(κsep/κ)→ 1
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where κsep ⊂ κ is the separable closure of κ. The inertia group I fits into a canonical
exact sequence

1→ P → I → It → 1
such that

(1) P is a normal subgroup of D,
(2) P is a pro-p-group if the characteristic of κA is p > 1 and P = {1} if the

characteristic of κA is zero,
(3) there exists a canonical surjective map

θcan : I → limn prime to p µn(κsep)

whose kernel is P , which satisfies θcan(τστ−1) = τ(θcan(σ)) for τ ∈ D, σ ∈ I ,
and which induces an isomorphism It → limn prime to p µn(κsep).

Proof. The fieldκ is the algebraic closure ofκ by Lemma 12.1. Most of the statements
immediately follow from the corresponding parts of Lemma 13.5. For example because
Aut(κ/κ) = Gal(κsep/κ) we obtain the first sequence. Then the only other assertion that
needs a proof is the fact that with S as in Lemma 13.5 the limit limn∈S µn(κ) is equal
to limn prime to p µn(κsep). To see this it suffices to show that every integer n prime to p
divides an element of S. Let π ∈ A be a uniformizer and consider the splitting field L of
the polynomial Xn − π. Since the polynomial is separable we see that L is a finite Galois
extension of K. Choose an embedding L → Ksep. Observe that if B is the integral
closure of A in L, then the ramification index of A→ Bmsep∩B is divisible by n (because
π has an nth root in B; in fact the ramification index equals n but we do not need this).
Then it follows from the construction of the S in the proof of Lemma 13.5 that n divides
an element of S. �

14. Geometric and arithmetic fundamental groups

In this section we work out what happens when comparing the fundamental group of a
schemeX over a field kwith the fundamental group ofXk where k is the algebraic closure
of k.

Lemma 14.1. Let I be a directed set. Let Xi be an inverse system of quasi-compact
and quasi-separated schemes over I with affine transition morphisms. Let X = limXi as
in Limits, Section 2. Then there is an equivalence of categories

colim FÉtXi = FÉtX

If Xi is connected for all sufficiently large i and x is a geometric point of X , then

π1(X,x) = lim π1(Xi, x)

Proof. The equivalence of categories follows from Limits, Lemmas 10.1, 8.3, and 8.10.
The second statement is formal given the statement on categories. �

Lemma 14.2. Let k be a field with perfection kperf . Let X be a connected scheme
over k. Then Xkperf is connected and π1(Xkperf )→ π1(X) is an isomorphism.

Proof. Special case of topological invariance of the fundamental group. See Propo-
sition 8.4. To see that Spec(kperf ) → Spec(k) is a universal homeomorphism you can
use Algebra, Lemma 46.10. �
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Lemma 14.3. Let k be a field with algebraic closure k. Let X be a quasi-compact and
quasi-separated scheme over k. If the base change Xk is connected, then there is a short
exact sequence

1→ π1(Xk)→ π1(X)→ π1(Spec(k))→ 1
of profinite topological groups.

Proof. Connected objects of FÉtSpec(k) are of the form Spec(k′) → Spec(k) with
k′/k a finite separable extension. Then XSpec k′ is connected, as the morphism Xk →
XSpec(k′) is surjective and Xk is connected by assumption. Thus π1(X) → π1(Spec(k))
is surjective by Lemma 4.1.
Before we go on, note that we may assume that k is a perfect field. Namely, we have
π1(Xkperf ) = π1(X) and π1(Spec(kperf )) = π1(Spec(k)) by Lemma 14.2.

It is clear that the composition of the functors FÉtSpec(k) → FÉtX → FÉtX
k

sends objects
to disjoint unions of copies of XSpec(k). Therefore the composition π1(Xk)→ π1(X)→
π1(Spec(k)) is the trivial homomorphism by Lemma 4.2.
Let U → X be a finite étale morphism with U connected. Observe that U ×X Xk = Uk.
Suppose that Uk → Xk has a section s : Xk → Uk. Then s(Xk) is an open connected
component of Uk. For σ ∈ Gal(k/k) denote sσ the base change of s by Spec(σ). Since
Uk → Xk is finite étale it has only a finite number of sections. Thus

T =
⋃
sσ(Xk)

is a finite union and we see that T is a Gal(k/k)-stable open and closed subset. By Varieties,
Lemma 7.10 we see that T is the inverse image of a closed subset T ⊂ U . Since Uk → U is
open (Morphisms, Lemma 23.4) we conclude that T is open as well. As U is connected we
see that T = U . Hence Uk is a (finite) disjoint union of copies of Xk. By Lemma 4.5 we
conclude that the image of π1(Xk)→ π1(X) is normal.

Let V → Xk be a finite étale cover. Recall that k is the union of finite separable extensions
of k. By Lemma 14.1 we find a finite separable extension k′/k and a finite étale morphism
U → Xk′ such that V = Xk ×Xk′ U = U ×Spec(k′) Spec(k). Then the composition
U → Xk′ → X is finite étale and U ×Spec(k) Spec(k) contains V = U ×Spec(k′) Spec(k)
as an open and closed subscheme. (Because Spec(k) is an open and closed subscheme of
Spec(k′) ×Spec(k) Spec(k) via the multiplication map k′ ⊗k k → k.) By Lemma 4.4 we
conclude that π1(Xk)→ π1(X) is injective.
Finally, we have to show that for any finite étale morphism U → X such that Uk is
a disjoint union of copies of Xk there is a finite étale morphism V → Spec(k) and a
surjection V ×Spec(k)X → U . See Lemma 4.3. Arguing as above using Lemma 14.1 we find
a finite separable extension k′/k such that there is an isomorphism Uk′ ∼=

∐
i=1,...,nXk′ .

Thus setting V =
∐
i=1,...,n Spec(k′) we conclude. �

15. Homotopy exact sequence

In this section we discuss the following result. Let f : X → S be a flat proper morphism
of finite presentation whose geometric fibres are connected and reduced. Assume S is
connected and let s be a geometric point of S. Then there is an exact sequence

π1(Xs)→ π1(X)→ π1(S)→ 1
of fundamental groups. See Proposition 15.2.
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Lemma 15.1. Let f : X → S be a proper morphism of schemes. Let X → S′ → S
be the Stein factorization of f , see More on Morphisms, Theorem 53.5. If f is of finite
presentation, flat, with geometrically reduced fibres, then S′ → S is finite étale.

Proof. This follows from Derived Categories of Schemes, Lemma 32.8 and the infor-
mation contained in More on Morphisms, Theorem 53.5. �

Proposition 15.2. Let f : X → S be a flat proper morphism of finite presentation
whose geometric fibres are connected and reduced. Assume S is connected and let s be a
geometric point of S. Then there is an exact sequence

π1(Xs)→ π1(X)→ π1(S)→ 1

of fundamental groups.

Proof. Let Y → X be a finite étale morphism. Consider the Stein factorization

Y

��

// X

��
T // S

of Y → S. By Lemma 15.1 the morphism T → S is finite étale. In this way we obtain
a functor FÉtX → FÉtS . For any finite étale morphism U → S a morphism Y →
U ×S X over X is the same thing as a morphism Y → U over S and such a morphism
factors uniquely through the Stein factorization, i.e., corresponds to a unique morphism
T → U (by the construction of the Stein factorization as a relative normalization in More
on Morphisms, Lemma 53.1 and factorization by Morphisms, Lemma 53.4). Thus we see
that the functors FÉtX → FÉtS and FÉtS → FÉtX are adjoints. Note that the Stein
factorization of U ×S X → S is U , because the fibres of U ×S X → U are geometrically
connected.

By the discussion above and Categories, Lemma 24.4 we conclude that FÉtS → FÉtX is
fully faithful, i.e., π1(X)→ π1(S) is surjective (Lemma 4.1).

It is immediate that the composition FÉtS → FÉtX → FÉtXs sends any U to a disjoint
union of copies of Xs. Hence π1(Xs)→ π1(X)→ π1(S) is trivial by Lemma 4.2.

Let Y → X be a finite étale morphism with Y connected such that Y ×X Xs contains a
connected component Z isomorphic to Xs. Consider the Stein factorization T as above.
Let t ∈ Ts be the point corresponding to the fibre Z. Observe that T is connected (as the
image of a connected scheme) and by the surjectivity above T ×S X is connected. Now
consider the factorization

π : Y −→ T ×S X

Let x ∈ Xs be any closed point. Note that κ(t) = κ(s) = κ(x) is an algebraically
closed field. Then the fibre of π over (t, x) consists of a unique point, namely the unique
point z ∈ Z corresponding to x ∈ Xs via the isomorphism Z → Xs. We conclude that
the finite étale morphism π has degree 1 in a neighbourhood of (t, x). Since T ×S X is
connected it has degree 1 everywhere and we find that Y ∼= T ×S X . Thus Y ×X Xs

splits completely. Combining all of the above we see that Lemmas 4.3 and 4.5 both apply
and the proof is complete. �
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16. Specialization maps

In this section we construct specialization maps. Let f : X → S be a proper morphism of
schemes with geometrically connected fibres. Let s′  s be a specialization of points in
S. Let s and s′ be geometric points lying over s and s′. Then there is a specialization map

sp : π1(Xs′) −→ π1(Xs)

The construction of this map is as follows. Let A be the strict henselization of OS,s with
respect to κ(s) ⊂ κ(s)sep ⊂ κ(s), see Algebra, Definition 155.3. Since s′  s the point s′

corresponds to a point of Spec(OS,s) and hence there is at least one point (and potentially
many points) of Spec(A) over s′ whose residue field is a separable algebraic extension of
κ(s′). Since κ(s′) is algebraically closed we can choose a morphism ϕ : s′ → Spec(A)
giving rise to a commutative diagram

s′
ϕ
//

##

Spec(A)

��

soo

{{
S

The specialization map is the composition

π1(Xs′) −→ π1(XA) = π1(Xκ(s)sep) = π1(Xs)

where the first equality is Lemma 9.1 and the second follows from Lemmas 14.2 and 9.3.
By construction the specialization map fits into a commutative diagram

π1(Xs′)
sp

//

$$

π1(Xs)

zz
π1(X)

provided that X is connected. The specialization map depends on the choice of ϕ : s′ →
Spec(A) above and we will write spϕ if we want to indicate this.

Lemma 16.1. Consider a commutative diagram

Y

g

��

// X

f

��
T // S

of schemes where f and g are proper with geometrically connected fibres. Let t′  t be a
specialization of points in T and consider a specialization map sp : π1(Yt′) → π1(Yt) as
above. Then there is a commutative diagram

π1(Yt′) sp
//

��

π1(Yt)

��
π1(Xs′) sp // π1(Xs)

of specialization maps where s and s′ are the images of t and t′.
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Proof. Let B be the strict henselization of OT,t with respect to κ(t) ⊂ κ(t)sep ⊂
κ(t). Pick ψ : t′ → Spec(B) lifting t′ → T as in the construction of the specialization
map. Let s and s′ denote the images of t and t′ in S. Let A be the strict henselization of
OS,s with respect to κ(s) ⊂ κ(s)sep ⊂ κ(s). Since κ(s) = κ(t), by the functoriality of
strict henselization (Algebra, Lemma 155.10) we obtain a ring mapA→ B fitting into the
commutative diagram

t
′

ψ
//

��

Spec(B)

��

// T

��
s′ ϕ // Spec(A) // S

Here the morphism ϕ : s′ → Spec(A) is simply taken to be the composition t
′ →

Spec(B)→ Spec(A). Applying base change we obtain a commutative diagram

Yt′
//

��

YB

��
Xs′ // XA

and from the construction of the specialization map the commutativity of this diagram
implies the commutativity of the diagram of the lemma. �

Lemma 16.2. Let f : X → S be a proper morphism with geometrically connected
fibres. Let s′′  s′  s be specializations of points of S. A composition of specialization
maps π1(Xs′′)→ π1(Xs′)→ π1(Xs) is a specialization map π1(Xs′′)→ π1(Xs).

Proof. Let OS,s → A be the strict henselization constructed using κ(s) → κ(s).
Let A → κ(s′) be the map used to construct the first specialization map. Let OS,s′ → A′

be the strict henselization constructed using κ(s′) ⊂ κ(s′). By functoriality of strict
henselization, there is a map A → A′ such that the composition with A′ → κ(s′) is the
given map (Algebra, Lemma 154.6). Next, let A′ → κ(s′′) be the map used to construct
the second specialization map. Then it is clear that the composition of the first and second
specialization maps is the specialization map π1(Xs′′)→ π1(Xs) constructed using A→
A′ → κ(s′′). �

LetX → S be a proper morphism with geometrically connected fibres. LetR be a strictly
henselian valuation ring with algebraically closed fraction field and let Spec(R) → S be
a morphism. Let η, s ∈ Spec(R) be the generic and closed point. Then we can consider
the specialization map

spR : π1(Xη)→ π1(Xs)
for the base change XR/Spec(R). Note that this makes sense as both η and s have alge-
braically closed residue fields.

Lemma 16.3. Let f : X → S be a proper morphism with geometrically connected
fibres. Let s′  s be a specialization of points of S and let sp : π1(Xs′) → π1(Xs) be
a specialization map. Then there exists a strictly henselian valuation ring R over S with
algebraically closed fraction field such that sp is isomorphic to spR defined above.

Proof. Let OS,s → A be the strict henselization constructed using κ(s) → κ(s).
Let A → κ(s′) be the map used to construct sp. Let R ⊂ κ(s′) be a valuation ring with
fraction field κ(s′) dominating the image of A. See Algebra, Lemma 50.2. Observe that
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R is strictly henselian for example by Lemma 12.2 and Algebra, Lemma 50.3. Then the
lemma is clear. �

LetX → S be a proper morphism with geometrically connected fibres. LetR be a strictly
henselian discrete valuation ring and let Spec(R)→ S be a morphism. Let η, s ∈ Spec(R)
be the generic and closed point. Then we can consider the specialization map

spR : π1(Xη)→ π1(Xs)
for the base changeXR/Spec(R). Note that this makes sense as s has algebraically closed
residue field.

Lemma 16.4. Let f : X → S be a proper morphism with geometrically connected
fibres. Let s′  s be a specialization of points of S and let sp : π1(Xs′) → π1(Xs)
be a specialization map. If S is Noetherian, then there exists a strictly henselian discrete
valuation ring R over S such that sp is isomorphic to spR defined above.

Proof. LetOS,s → A be the strict henselization constructed using κ(s)→ κ(s). Let
A → κ(s′) be the map used to construct sp. Let R ⊂ κ(s′) be a discrete valuation ring
dominating the image of A, see Algebra, Lemma 119.13. Choose a diagram of fields

κ(s) // k

A/mA //

OO

R/mR

OO

with k algebraically closed. Let Rsh be the strict henselization of R constructed using
R→ k. Then Rsh is a discrete valuation ring by More on Algebra, Lemma 45.11. Denote
η, o the generic and closed point of Spec(Rsh). Since the diagram of schemes

η

��

// Spec(Rsh)

��

Spec(k)

��

oo

s′ // Spec(A) soo

commutes, we obtain a commutative diagram

π1(Xη)

��

sp
Rsh

// π1(Xo)

��
π1(Xs′) sp // Xs

of specialization maps by the construction of these maps. Since the vertical arrows are
isomorphisms (Lemma 9.3), this proves the lemma. �

17. Restriction to a closed subscheme

In this section we prove some results about the restriction functor

FÉtX −→ FÉtY , U 7−→ V = U ×X Y

whereX is a scheme and Y is a closed subscheme. Using the topological invariance of the
fundamental group, we can relate the study of this functor to the completion functor on
finite locally free modules.
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In the following lemmas we use the concept of coherent formal modules defined in Coho-
mology of Schemes, Section 23. Given a Noetherian scheme and a quasi-coherent sheaf of
ideals I ⊂ OX we will say an object (Fn) of Coh(X, I) is finite locally free if each Fn is
a finite locally freeOX/In-module.

Lemma 17.1. Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Assume the completion functor

Coh(OX) −→ Coh(X, I), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects (see above). Then the
restriction functor FÉtX → FÉtY is fully faithful.

Proof. Since the category of finite étale coverings has an internal hom (Lemma 5.4)
it suffices to prove the following: Given U finite étale overX and a morphism t : Y → U
over X there exists a unique section s : X → U such that t = s|Y . Picture

U

f

��
Y //

>>

X

BB

Finding the dotted arrow s is the same thing as finding anOX -algebra map

s] : f∗OU −→ OX
which reduces modulo the ideal sheaf of Y to the given algebra map t] : f∗OU → OY .
By Lemma 8.3 we can lift t uniquely to a compatible system of maps tn : Yn → U and
hence a map

lim t]n : f∗OU −→ limOYn
of sheaves of algebras on X . Since f∗OU is a finite locally free OX -module, we conclude
that we get a unique OX -module map σ : f∗OU → OX whose completion is lim t]n. To
see that σ is an algebra homomorphism, we need to check that the diagram

f∗OU ⊗OX
f∗OU //

σ⊗σ
��

f∗OU

σ

��
OX ⊗OX

OX // OX

commutes. For every n we know this diagram commutes after restricting to Yn, i.e., the
diagram commutes after applying the completion functor. Hence by faithfulness of the
completion functor we conclude. �

Lemma 17.2. Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Assume the completion functor

Coh(OX) −→ Coh(X, I), F 7−→ F∧

is an equivalence on full subcategories of finite locally free objects (see above). Then the
restriction functor FÉtX → FÉtY is an equivalence.

Proof. The restriction functor is fully faithful by Lemma 17.1.

Let U1 → Y be a finite étale morphism. To finish the proof we will show that U1 is in the
essential image of the restriction functor.
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For n ≥ 1 let Yn be the nth infinitesimal neighbourhood of Y . By Lemma 8.3 there is
a unique finite étale morphism πn : Un → Yn whose base change to Y = Y1 recovers
U1 → Y1. Consider the sheaves Fn = πn,∗OUn . We may and do view Fn as an OX -
module onX wich is locally isomorphic to (OX/fn+1OX)⊕r. This (Fn) is a finite locally
free object of Coh(X, I). By assumption there exists a finite locally free OX -module F
and a compatible system of isomorphisms

F/InF → Fn
ofOX -modules.

To construct an algebra structure on F consider the multiplication maps Fn ⊗OX
Fn →

Fn coming from the fact that Fn = πn,∗OUn are sheaves of algebras. These define a map

(F ⊗OX
F)∧ −→ F∧

in the category Coh(X, I). Hence by assumption we may assume there is a mapµ : F⊗OX

F → F whose restriction to Yn gives the multiplication maps above. By faithfulness of
the functor in the statement of the lemma, we conclude that µ defines a commutative
OX -algebra structure on F compatible with the given algebra structures on Fn. Setting

U = Spec
X

((F , µ))

we obtain a finite locally free scheme π : U → X whose restriction to Y is isomorphic to
U1. The the discriminant of π is the zero set of the section

det(Qπ) : OX −→ ∧top(π∗OU )⊗−2

constructed in Discriminants, Section 3. Since the restriction of this to Yn is an isomor-
phism for all n by Discriminants, Lemma 3.1 we conclude that it is an isomorphism. Thus
π is étale by Discriminants, Lemma 3.1. �

Lemma 17.3. Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Let V be the set of open subschemes V ⊂ X containing Y
ordered by reverse inclusion. Assume the completion functor

colimV Coh(OV ) −→ Coh(X, I), F 7−→ F∧

defines is fully faithful on the full subcategory of finite locally free objects (see above).
Then the restriction functor colimV FÉtV → FÉtY is fully faithful.

Proof. Observe that V is a directed set, so the colimits are as in Categories, Section
19. The rest of the argument is almost exactly the same as the argument in the proof of
Lemma 17.1; we urge the reader to skip it.

Since the category of finite étale coverings has an internal hom (Lemma 5.4) it suffices to
prove the following: Given U finite étale over V ∈ V and a morphism t : Y → U over V
there exists a V ′ ≥ V and a morphism s : V ′ → U over V such that t = s|Y . Picture

U

f

��
Y //

77

V ′

>>

// V

Finding the dotted arrow s is the same thing as finding anOV ′ -algebra map

s] : f∗OU |V ′ −→ OV ′
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which reduces modulo the ideal sheaf of Y to the given algebra map t] : f∗OU → OY .
By Lemma 8.3 we can lift t uniquely to a compatible system of maps tn : Yn → U and
hence a map

lim t]n : f∗OU −→ limOYn
of sheaves of algebras on V . Observe that f∗OU is a finite locally freeOV -module. Hence
we get a V ′ ≥ V a map σ : f∗OU |V ′ → OV ′ whose completion is lim t]n. To see that σ is
an algebra homomorphism, we need to check that the diagram

(f∗OU ⊗OV
f∗OU )|V ′ //

σ⊗σ
��

f∗OU |V ′

σ

��
OV ′ ⊗OV ′ OV ′ // OV ′

commutes. For every n we know this diagram commutes after restricting to Yn, i.e., the
diagram commutes after applying the completion functor. Hence by faithfulness of the
completion functor we deduce that there exists a V ′′ ≥ V ′ such that σ|V ′′ is an algebra
homomorphism as desired. �

Lemma 17.4. Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme
with ideal sheaf I ⊂ OX . Let V be the set of open subschemes V ⊂ X containing Y
ordered by reverse inclusion. Assume the completion functor

colimV Coh(OV ) −→ Coh(X, I), F 7−→ F∧

defines an equivalence of the full subcategories of finite locally free objects (see explanation
above). Then the restriction functor

colimV FÉtV → FÉtY
is an equivalence.

Proof. Observe that V is a directed set, so the colimits are as in Categories, Section
19. The rest of the argument is almost exactly the same as the argument in the proof of
Lemma 17.2; we urge the reader to skip it.
The restriction functor is fully faithful by Lemma 17.3.
Let U1 → Y be a finite étale morphism. To finish the proof we will show that U1 is in the
essential image of the restriction functor.
For n ≥ 1 let Yn be the nth infinitesimal neighbourhood of Y . By Lemma 8.3 there is
a unique finite étale morphism πn : Un → Yn whose base change to Y = Y1 recovers
U1 → Y1. Consider the sheaves Fn = πn,∗OUn . We may and do view Fn as an OX -
module onX wich is locally isomorphic to (OX/fn+1OX)⊕r. This (Fn) is a finite locally
free object of Coh(X, I). By assumption there exists a V ∈ V and a finite locally freeOV -
module F and a compatible system of isomorphisms

F/InF → Fn
ofOV -modules.
To construct an algebra structure on F consider the multiplication maps Fn ⊗OV

Fn →
Fn coming from the fact that Fn = πn,∗OUn are sheaves of algebras. These define a map

(F ⊗OV
F)∧ −→ F∧

in the category Coh(X, I). Hence by assumption after shrinking V we may assume there
is a map µ : F ⊗OV

F → F whose restriction to Yn gives the multiplication maps
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above. After possibly shrinking further we may assume µ defines a commutative OV -
algebra structure on F compatible with the given algebra structures on Fn. Setting

U = Spec
V

((F , µ))

we obtain a finite locally free scheme over V whose restriction to Y is isomorphic to U1.
It follows that U → V is étale at all points lying over Y , see More on Morphisms, Lemma
12.3. Thus after shrinkingV once more we may assumeU → V is finite étale. This finishes
the proof. �

Lemma 17.5. Let X be a scheme and let Y ⊂ X be a closed subscheme. If every con-
nected component of X meets Y , then the restriction functor FÉtX → FÉtY is faithful.

Proof. Let a, b : U → U ′ be two morphisms of schemes finite étale over X whose
restriction to Y are the same. The image of a connected component of U is an connected
component of X ; this follows from Topology, Lemma 7.7 applied to the restriction of
U → X to a connected component ofX . Hence the image of every connected component
of U meets Y by assumption. We conclude that a = b after restriction to each connected
component of U by Étale Morphisms, Proposition 6.3. Since the equalizer of a and b is an
open subscheme of U (as the diagonal of U ′ over X is open) we conclude. �

Lemma 17.6. LetX be a Noetherian scheme and letY ⊂ X be a closed subscheme. Let
Yn ⊂ X be the nth infinitesimal neighbourhood of Y inX . Assume one of the following
holds

(1) X is quasi-affine and Γ(X,OX)→ lim Γ(Yn,OYn) is an isomorphism, or
(2) X has an ample invertible module L and Γ(X,L⊗m) → lim Γ(Yn,L⊗m|Yn) is

an isomorphism for all m� 0, or
(3) for every finite locally free OX -module E the map Γ(X, E) → lim Γ(Yn, E|Yn)

is an isomorphism.
Then the restriction functor FÉtX → FÉtY is fully faithful.

Proof. This lemma follows formally from Lemma 17.1 and Algebraic and Formal
Geometry, Lemma 15.1. �

Lemma 17.7. Let X be a Noetherian scheme and let Y ⊂ X be a closed subscheme.
Let Yn ⊂ X be the nth infinitesimal neighbourhood of Y in X . Let V be the set of
open subschemes V ⊂ X containing Y ordered by reverse inclusion. Assume one of the
following holds

(1) X is quasi-affine and

colimV Γ(V,OV ) −→ lim Γ(Yn,OYn)

is an isomorphism, or
(2) X has an ample invertible module L and

colimV Γ(V,L⊗m) −→ lim Γ(Yn,L⊗m|Yn)

is an isomorphism for all m� 0, or
(3) for every V ∈ V and every finite locally freeOV -module E the map

colimV ′≥V Γ(V ′, E|V ′) −→ lim Γ(Yn, E|Yn)

is an isomorphism.



19. FINITE ÉTALE COVERS OF PUNCTURED SPECTRA, I 4603

Then the functor
colimV FÉtV → FÉtY

is fully faithful.

Proof. This lemma follows formally from Lemma 17.3 and Algebraic and Formal
Geometry, Lemma 15.2. �

18. Pushouts and fundamental groups

Here is the main result.

Lemma 18.1. In More on Morphisms, Situation 67.1, for example if Z → Y and
Z → X are closed immersions of schemes, there is an equivalence of categories

FÉtYqZX −→ FÉtY ×FÉtZ FÉtX

Proof. The pushout exists by More on Morphisms, Proposition 67.3. The functor
is given by sending a scheme U finite étale over the pushout to the base changes Y ′ =
U ×YqZX Y andX ′ = U ×YqZX X and the natural isomorphism Y ′×Y Z → X ′×X Z
over Z. To prove this functor is an equivalence we use More on Morphisms, Lemma 67.7
to construct a quasi-inverse functor. The only thing left to prove is to show that given
a morphism U → Y qZ X which is separated, quasi-finite and étale such that X ′ → X
and Y ′ → Y are finite, then U → Y qZ X is finite. This can either be deduced from the
corresponding algebra fact (More on Algebra, Lemma 6.7) or it can be seen because

X ′ q Y ′ → U

is surjective and X ′ and Y ′ are proper over Y qZ X (this uses the description of the
pushout in More on Morphisms, Proposition 67.3) and then we can apply Morphisms,
Lemma 41.10 to conclude that U is proper over Y qZ X . Since a quasi-finite and proper
morphism is finite (More on Morphisms, Lemma 44.1) we win. �

19. Finite étale covers of punctured spectra, I

We first prove some results á la Lefschetz.

Situation 19.1. Let (A,m) be a Noetherian local ring and f ∈ m. We set X =
Spec(A) and X0 = Spec(A/fA) and we let U = X \ {m} and U0 = X0 \ {m} be the
punctured spectrum of A and A/fA.

Recall that for a scheme X the category of schemes finite étale over X is denoted FÉtX ,
see Section 5. In Situation 19.1 we will study the base change functors

FÉtX

��

// FÉtU

��
FÉtX0

// FÉtU0

In many case the right vertical arrow is faithful.

Lemma 19.2. In Situation 19.1. Assume one of the following holds
(1) dim(A/p) ≥ 2 for every minimal prime p ⊂ A with f 6∈ p, or
(2) every connected component of U meets U0.
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Then
FÉtU −→ FÉtU0 , V 7−→ V0 = V ×U U0

is a faithful functor.

Proof. Case (2) is immediate from Lemma 17.5. Assumption (1) implies every ir-
reducible component of U meets U0, see Algebra, Lemma 60.13. Hence (1) follows from
(2). �

Before we prove something more interesting, we need a couple of lemmas.

Lemma 19.3. In Situation 19.1. Let V → U be a finite morphism. Let A∧ be the
m-adic completion of A, let X ′ = Spec(A∧) and let U ′ and V ′ be the base changes of U
and V toX ′. If Y ′ → X ′ is a finite morphism such that V ′ = Y ′×X′ U ′, then there exists
a finite morphism Y → X such that V = Y ×X U and Y ′ = Y ×X X ′.

Proof. This is a straightforward application of More on Algebra, Proposition 89.15.
Namely, choose generators f1, . . . , ft of m. For each i write V ×U D(fi) = Spec(Bi).
For 1 ≤ i, j ≤ n we obtain an isomorphism αij : (Bi)fj → (Bj)fi of Afifj -algebras
because the spectrum of both represent V ×U D(fifj). Write Y ′ = Spec(B′). Since
V ×U U ′ = Y ×X′ U ′ we get isomorphisms αi : B′

fi
→ Bi ⊗A A∧. A straightforward

argument shows that (B′, Bi, αi, αij) is an object of Glue(A→ A∧, f1, . . . , ft), see More
on Algebra, Remark 89.10. Applying the proposition cited above (and using More on
Algebra, Remark 89.19 to obtain the algebra structure) we find an A-algebra B such that
Can(B) is isomorphic to (B′, Bi, αi, αij). Setting Y = Spec(B) we see that Y → X
is a morphism which comes equipped with compatible isomorphisms V ∼= Y ×X U and
Y ′ = Y ×X X ′ as desired. �

Lemma 19.4. In Situation 19.1 assumeA is henselian or more generally that (A, (f))
is a henselian pair. Let A∧ be the m-adic completion of A, let X ′ = Spec(A∧) and let U ′

and U ′
0 be the base changes of U and U0 to X ′. If FÉtU ′ → FÉtU ′

0
is fully faithful, then

FÉtU → FÉtU0 is fully faithful.

Proof. Assume FÉtU ′ −→ FÉtU ′
0

is a fully faithful. SinceX ′ → X is faithfully flat,
it is immediate that the functor V → V0 = V ×U U0 is faithful. Since the category of
finite étale coverings has an internal hom (Lemma 5.4) it suffices to prove the following:
Given V finite étale over U we have

MorU (U, V ) = MorU0(U0, V0)
The we assume we have a morphism s0 : U0 → V0 over U0 and we will produce a mor-
phism s : U → V over U .

By our assumption there does exist a morphism s′ : U ′ → V ′ whose restriction to V ′
0 is

the base change s′
0 of s0. Since V ′ → U ′ is finite étale this means that V ′ = s′(U ′)qW ′

for some W ′ → U ′ finite and étale. Choose a finite morphism Z ′ → X ′ such that W ′ =
Z ′ ×X′ U ′. This is possible by Zariski’s main theorem in the form stated in More on
Morphisms, Lemma 43.3 (small detail omitted). Then

V ′ = s′(U ′)qW ′ −→ X ′ q Z ′ = Y ′

is an open immersion such that V ′ = Y ′ ×X′ U ′. By Lemma 19.3 we can find Y → X
finite such that V = Y ×X U and Y ′ = Y ×X X ′. Write Y = Spec(B) so that Y ′ =
Spec(B ⊗A A∧). Then B ⊗A A∧ has an idempotent e′ corresponding to the open and
closed subscheme X ′ of Y ′ = X ′ q Z ′.
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The case A is henselian (slightly easier). The image e of e′ in B ⊗A κ(m) = B/mB
lifts to an idempotent e of B as A is henselian (because B is a product of local rings by
Algebra, Lemma 153.3). Then we see that emaps to e′ by uniqueness of lifts of idempotents
(using that B ⊗A A∧ is a product of local rings). Let Y1 ⊂ Y be the open and closed
subscheme corresponding to e. Then Y1 ×X X ′ = s′(X ′) which implies that Y1 → X is
an isomorphism (by faithfully flat descent) and gives the desired section.

The case where (A, (f)) is a henselian pair. Here we use that s′ is a lift of s′
0. Namely,

let Y0,1 ⊂ Y0 = Y ×X X0 be the closure of s0(U0) ⊂ V0 = Y0 ×X0 U0. As X ′ → X
is flat, the base change Y ′

0,1 ⊂ Y ′
0 is the closure of s′

0(U ′
0) which is equal to X ′

0 ⊂ Y ′
0

(see Morphisms, Lemma 25.16). Since Y ′
0 → Y0 is submersive (Morphisms, Lemma 25.12)

we conclude that Y0,1 is open and closed in Y0. Let e0 ∈ B/fB be the corresponding
idempotent. By More on Algebra, Lemma 11.6 we can lift e0 to an idempotent e ∈ B.
Then we conclude as before. �

In Situation 19.1 fully faithfulness of the restriction functor FÉtU −→ FÉtU0 holds under
fairly mild assumptions. In particular, the assumptions often do not implyU is a connected
scheme, but the conclusion guarantees that U and U0 have the same number of connected
components.

Lemma 19.5. In Situation 19.1. Assume
(a) A has a dualizing complex,
(b) the pair (A, (f)) is henselian,
(c) one of the following is true

(i) Af is (S2) and every irreducible component of X not contained in X0 has
dimension ≥ 3, or

(ii) for every prime p ⊂ A, f 6∈ p we have depth(Ap) + dim(A/p) > 2.
Then the restriction functor FÉtU −→ FÉtU0 is fully faithful.

Proof. Let A′ be the m-adic completion of A. We will show that the hypotheses
remain true forA′. This is clear for conditions (a) and (b). Condition (c)(ii) is preserved by
Local Cohomology, Lemma 11.3. Next, assume (c)(i) holds. SinceA is universally catenary
(Dualizing Complexes, Lemma 17.4) we see that every irreducible component of Spec(A′)
not contained in V (f) has dimension≥ 3, see More on Algebra, Proposition 109.5. Since
A → A′ is flat with Gorenstein fibres, the condition that Af is (S2) implies that A′

f is
(S2). References used: Dualizing Complexes, Section 23, More on Algebra, Section 51,
and Algebra, Lemma 163.4. Thus by Lemma 19.4 we may assume that A is a Noetherian
complete local ring.

Assume A is a complete local ring in addition to the other assumptions. By Lemma 17.1
the result follows from Algebraic and Formal Geometry, Lemma 15.6. �

Lemma 19.6. In Situation 19.1. Assume
(1) H1

m(A) and H2
m(A) are annihilated by a power of f , and

(2) A is henselian or more generally (A, (f)) is a henselian pair.
Then the restriction functor FÉtU −→ FÉtU0 is fully faithful.

Proof. By Lemma 19.4 we may assume that A is a Noetherian complete local ring.
(The assumptions carry over; use Dualizing Complexes, Lemma 9.3.) By Lemma 17.1 the
result follows from Algebraic and Formal Geometry, Lemma 15.5. �
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Lemma 19.7. In Situation 19.1 assume A has depth ≥ 3 and A is henselian or more
generally (A, (f)) is a henselian pair. Then the restriction functor FÉtU → FÉtU0 is fully
faithful.

Proof. The assumption of depth forces H1
m(A) = H2

m(A) = 0, see Dualizing Com-
plexes, Lemma 11.1. Hence Lemma 19.6 applies. �

20. Purity in local case, I

Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let U = X \ {m} be the
punctured spectrum. We say purity holds for (A,m) if the restriction functor

FÉtX −→ FÉtU
is essentially surjective. In this section we try to understand how the question changes
when one passes from X to a hypersurface X0 in X , in other words, we study a kind of
local Lefschetz property for the fundamental groups of punctured spectra. These results
will be useful to proceed by induction on dimension in the proofs of our main results on
local purity, namely, Lemma 21.3, Proposition 25.3, and Proposition 26.4.

Lemma 20.1. Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let U =
X \ {m}. Let π : Y → X be a finite morphism such that depth(OY,y) ≥ 2 for all closed
points y ∈ Y . Then Y is the spectrum of B = OY (π−1(U)).

Proof. Set V = π−1(U) and denote π′ : V → U the restriction of π. Consider the
OX -module map

π∗OY −→ j∗π
′
∗OV

where j : U → X is the inclusion morphism. We claim Divisors, Lemma 5.11 applies to
this map. If so, then B = Γ(Y,OY ) and we see that the lemma holds. Let x ∈ X be the
closed point. It suffices to show that depth((π∗OY )x) ≥ 2. Let y1, . . . , yn ∈ Y be the
points mapping to x. By Algebra, Lemma 72.11 it suffices to show that depth(OY,yi) ≥ 2
for i = 1, . . . , n. Since this is the assumption of the lemma the proof is complete. �

Lemma 20.2. Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let U =
X \ {m}. Let V be finite étale over U . Assume A has depth ≥ 2. The following are
equivalent

(1) V = Y ×X U for some Y → X finite étale,
(2) B = Γ(V,OV ) is finite étale over A.

Proof. Denote π : V → U the given finite étale morphism. Assume Y as in (1)
exists. Let x ∈ X be the point corresponding to m. Let y ∈ Y be a point mapping to
x. We claim that depth(OY,y) ≥ 2. This is true because Y → X is étale and hence
A = OX,x and OY,y have the same depth (Algebra, Lemma 163.2). Hence Lemma 20.1
applies and Y = Spec(B).
The implication (2)⇒ (1) is easier and the details are omitted. �

Lemma 20.3. Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let U =
X \ {m}. Assume A is normal of dimension ≥ 2. The functor

FÉtU −→
{

finite normal A-algebras B such
that Spec(B)→ X is étale over U

}
, V 7−→ Γ(V,OV )

is an equivalence. Moreover, V = Y ×X U for some Y → X finite étale if and only if
B = Γ(V,OV ) is finite étale over A.
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Proof. Observe that depth(A) ≥ 2 because A is normal (Serre’s criterion for nor-
mality, Algebra, Lemma 157.4). Thus the final statement follows from Lemma 20.2. Given
π : V → U finite étale, setB = Γ(V,OV ). If we can show thatB is normal and finite over
A, then we obtain the displayed functor. Since there is an obvious quasi-inverse functor,
this is also all that we have to show.
Since A is normal, the scheme V is normal (Descent, Lemma 18.2). Hence V is a finite
disjoint union of integral schemes (Properties, Lemma 7.6). Thus we may assume V is
integral. In this case the function fieldL of V (Morphisms, Section 49) is a finite separable
extension of the fraction field of A (because we get it by looking at the generic fibre of
V → U and using Morphisms, Lemma 36.7). By Algebra, Lemma 161.8 the integral closure
B′ ⊂ L of A in L is finite over A. By More on Algebra, Lemma 23.20 we see that B′ is
a reflexive A-module, which in turn implies that depthA(B′) ≥ 2 by More on Algebra,
Lemma 23.18.
Let f ∈ m. Then Bf = Γ(V ×U D(f),OV ) (Properties, Lemma 17.1). Hence B′

f = Bf
because Bf is normal (see above), finite over Af with fraction field L. It follows that
V = Spec(B′) ×X U . Then we conclude that B = B′ from Lemma 20.1 applied to
Spec(B′) → X . This lemma applies because the localizations B′

m′ of B′ at maximal
ideals m′ ⊂ B′ lying over m have depth ≥ 2 by Algebra, Lemma 72.11 and the remark on
depth in the preceding paragraph. �

Lemma 20.4. Let (A,m) be a Noetherian local ring. Set X = Spec(A) and let U =
X \ {m}. Let V be finite étale over U . Let A∧ be the m-adic completion of A, let X ′ =
Spec(A∧) and let U ′ and V ′ be the base changes of U and V to X ′. The following are
equivalent

(1) V = Y ×X U for some Y → X finite étale, and
(2) V ′ = Y ′ ×X′ U ′ for some Y ′ → X ′ finite étale.

Proof. The implication (1)⇒ (2) follows from taking the base change of a solution
Y → X . Let Y ′ → X ′ be as in (2). By Lemma 19.3 we can find Y → X finite such that
V = Y ×X U and Y ′ = Y ×X X ′. By descent we see that Y → X is finite étale (Algebra,
Lemmas 83.2 and 143.3). This finishes the proof. �

The point of the following two lemmas is that the assumptions do not force A to have
depth ≥ 3. For example if A is a complete normal local domain of dimension ≥ 3 and
f ∈ m is nonzero, then the assumptions are satisfied.

Lemma 20.5. In Situation 19.1. Let V be finite étale over U . Assume
(a) A has a dualizing complex,
(b) the pair (A, (f)) is henselian,
(c) one of the following is true

(i) Af is (S2) and every irreducible component of X not contained in X0 has
dimension ≥ 3, or

(ii) for every prime p ⊂ A, f 6∈ p we have depth(Ap) + dim(A/p) > 2.
(d) V0 = V ×U U0 is equal to Y0 ×X0 U0 for some Y0 → X0 finite étale.

Then V = Y ×X U for some Y → X finite étale.

Proof. We reduce to the complete case using Lemma 20.4. (The assumptions carry
over; see proof of Lemma 19.5.)
In the complete case we can lift Y0 → X0 to a finite étale morphism Y → X by More on
Algebra, Lemma 13.2; observe that (A, fA) is a henselian pair by More on Algebra, Lemma
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11.4. Then we can use Lemma 19.5 to see that V is isomorphic to Y ×X U and the proof
is complete. �

Lemma 20.6. In Situation 19.1. Let V be finite étale over U . Assume
(1) H1

m(A) and H2
m(A) are annihilated by a power of f ,

(2) V0 = V ×U U0 is equal to Y0 ×X0 U0 for some Y0 → X0 finite étale.
Then V = Y ×X U for some Y → X finite étale.

Proof. We reduce to the complete case using Lemma 20.4. (The assumptions carry
over; use Dualizing Complexes, Lemma 9.3.)

In the complete case we can lift Y0 → X0 to a finite étale morphism Y → X by More on
Algebra, Lemma 13.2; observe that (A, fA) is a henselian pair by More on Algebra, Lemma
11.4. Then we can use Lemma 19.6 to see that V is isomorphic to Y ×X U and the proof
is complete. �

Lemma 20.7. In Situation 19.1. Let V be finite étale over U . Assume
(1) A has depth ≥ 3,
(2) V0 = V ×U U0 is equal to Y0 ×X0 U0 for some Y0 → X0 finite étale.

Then V = Y ×X U for some Y → X finite étale.

Proof. The assumption of depth forces H1
m(A) = H2

m(A) = 0, see Dualizing Com-
plexes, Lemma 11.1. Hence Lemma 20.6 applies. �

21. Purity of branch locus

We will use the discriminant of a finite locally free morphism. See Discriminants, Section
3.

Lemma 21.1. Let (A,m) be a Noetherian local ring with dim(A) ≥ 1. Let f ∈ m.
Then there exist a p ∈ V (f) with dim(Ap) = 1.

Proof. By induction on dim(A). If dim(A) = 1, then p = m works. If dim(A) > 1,
then letZ ⊂ Spec(A) be an irreducible component of dimension> 1. Then V (f)∩Z has
dimension> 0 (Algebra, Lemma 60.13). Pick a prime q ∈ V (f)∩Z , q 6= m corresponding
to a closed point of the punctured spectrum of A; this is possible by Properties, Lemma
6.4. Then q is not the generic point of Z. Hence 0 < dim(Aq) < dim(A) and f ∈ qAq.
By induction on the dimension we can find f ∈ p ⊂ Aq with dim((Aq)p) = 1. Then
p ∩A works. �

Lemma 21.2. Let f : X → Y be a morphism of locally Noetherian schemes. Let
x ∈ X . Assume

(1) f is flat,
(2) f is quasi-finite at x,
(3) x is not a generic point of an irreducible component of X ,
(4) for specializations x′  x with dim(OX,x′) = 1 our f is unramified at x′.

Then f is étale at x.

Proof. Observe that the set of points where f is unramified is the same as the set of
points where f is étale and that this set is open. See Morphisms, Definitions 35.1 and 36.1
and Lemma 36.16. To check f is étale at xwe may work étale locally on the base and on the
target (Descent, Lemmas 23.29 and 31.1). Thus we can apply More on Morphisms, Lemma
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41.1 and assume that f : X → Y is finite and that x is the unique point of X lying over
y = f(x). Then it follows that f is finite locally free (Morphisms, Lemma 48.2).
Assume f is finite locally free and that x is the unique point of X lying over y = f(x).
By Discriminants, Lemma 3.1 we find a locally principal closed subscheme Dπ ⊂ Y such
that y′ ∈ Dπ if and only if there exists an x′ ∈ X with f(x′) = y′ and f ramified at x′.
Thus we have to prove that y 6∈ Dπ . Assume y ∈ Dπ to get a contradiction.
By condition (3) we have dim(OX,x) ≥ 1. We have dim(OX,x) = dim(OY,y) by Algebra,
Lemma 112.7. By Lemma 21.1 we can find y′ ∈ Dπ specializing to y with dim(OY,y′) = 1.
Choose x′ ∈ X with f(x′) = y′ where f is ramified. Since f is finite it is closed, and hence
x′  x. We have dim(OX,x′) = dim(OY,y′) = 1 as before. This contradicts property
(4). �

Lemma 21.3. Let (A,m) be a regular local ring of dimension d ≥ 2. SetX = Spec(A)
and U = X \ {m}. Then

(1) the functor FÉtX → FÉtU is essentially surjective, i.e., purity holds for A,
(2) any finite A → B with B normal which induces a finite étale morphism on

punctured spectra is étale.

Proof. Recall that a regular local ring is normal by Algebra, Lemma 157.5. Hence (1)
and (2) are equivalent by Lemma 20.3. We prove the lemma by induction on d.
The case d = 2. In this case A → B is flat. Namely, we have going down for A → B by
Algebra, Proposition 38.7. Then dim(Bm′) = 2 for all maximal idealsm′ ⊂ B by Algebra,
Lemma 112.7. Then Bm′ is Cohen-Macaulay by Algebra, Lemma 157.4. Hence and this is
the important step Algebra, Lemma 128.1 applies to show A→ Bm′ is flat. Then Algebra,
Lemma 39.18 shows A → B is flat. Thus we can apply Lemma 21.2 (or you can directly
argue using the easier Discriminants, Lemma 3.1) to see that A→ B is étale.
The case d ≥ 3. Let V → U be finite étale. Let f ∈ mA, f 6∈ m2

A. Then A/fA is a regular
local ring of dimension d − 1 ≥ 2, see Algebra, Lemma 106.3. Let U0 be the punctured
spectrum of A/fA and let V0 = V ×U U0. By Lemma 20.7 it suffices to show that V0
is in the essential image of FÉtSpec(A/fA) → FÉtU0 . This follows from the induction
hypothesis. �

Lemma 21.4 (Purity of branch locus). Let f : X → Y be a morphism of locally
Noetherian schemes. Let x ∈ X and set y = f(x). Assume

(1) OX,x is normal,
(2) OY,y is regular,
(3) f is quasi-finite at x,
(4) dim(OX,x) = dim(OY,y) ≥ 1
(5) for specializations x′  x with dim(OX,x′) = 1 our f is unramified at x′.

Then f is étale at x.

Proof. We will prove the lemma by induction on d = dim(OX,x) = dim(OY,y).
An uninteresting case is when d = 1. In that case we are assuming that f is unramified
at x and that OY,y is a discrete valuation ring (Algebra, Lemma 119.7). Then OX,x is flat
overOY,y (otherwise the map would not be quasi-finite at x) and we see that f is flat at x.
Since flat + unramified is étale we conclude (some details omitted).
The case d ≥ 2. We will use induction on d to reduce to the case discussed in Lemma 21.3.
To check f is étale at x we may work étale locally on the base and on the target (Descent,
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Lemmas 23.29 and 31.1). Thus we can apply More on Morphisms, Lemma 41.1 and assume
that f : X → Y is finite and that x is the unique point of X lying over y. Here we use
that étale extensions of local rings do not change dimension, normality, and regularity,
see More on Algebra, Section 44 and Étale Morphisms, Section 19.
Next, we can base change by Spec(OY,y) and assume that Y is the spectrum of a regular
local ring. It follows that X = Spec(OX,x) as every point of X necessarily specializes to
x.
The ring mapOY,y → OX,x is finite and necessarily injective (by equality of dimensions).
We conclude we have going down for OY,y → OX,x by Algebra, Proposition 38.7 (and
the fact that a regular ring is a normal ring by Algebra, Lemma 157.5). Pick x′ ∈ X ,
x′ 6= x with image y′ = f(x′). Then OX,x′ is normal as a localization of a normal
domain. Similarly, OY,y′ is regular (see Algebra, Lemma 110.6). We have dim(OX,x′) =
dim(OY,y′) by Algebra, Lemma 112.7 (we checked going down above). Of course these
dimensions are strictly less than d as x′ 6= x and by induction on d we conclude that f is
étale at x′.
Thus we arrive at the following situation: We have a finite local homomorphism A→ B
of Noetherian local rings of dimension d ≥ 2, with A regular, B normal, which induces a
finite étale morphism V → U on punctured spectra. Our goal is to show that A → B is
étale. This follows from Lemma 21.3 and the proof is complete. �

The following lemma is sometimes useful to find the maximal open subset over which a
finite étale morphism extends.

Lemma 21.5. Let j : U → X be an open immersion of locally Noetherian schemes
such that depth(OX,x) ≥ 2 for x 6∈ U . Let π : V → U be finite étale. Then

(1) B = j∗π∗OV is a reflexive coherentOX -algebra, set Y = Spec
X

(B),
(2) Y → X is the unique finite morphism such thatV = Y×XU and depth(OY,y) ≥

2 for y ∈ Y \ V ,
(3) Y → X is étale at y if and only if Y → X is flat at y, and
(4) Y → X is étale if and only if B is finite locally free as anOX -module.

Moreover, (a) the construction of B and Y → X commutes with base change by flat
morphisms X ′ → X of locally Noetherian schemes, and (b) if V ′ → U ′ is a finite étale
morphism with U ⊂ U ′ ⊂ X open which restricts to V → U over U , then there is a
unique isomorphism Y ′ ×X U ′ = V ′ over U ′.

Proof. Observe that π∗OV is a finite locally freeOU -module, in particular reflexive.
By Divisors, Lemma 12.12 the module j∗π∗OV is the unique reflexive coherent module on
X restricting to π∗OV over U . This proves (1).
By construction Y ×X U = V . Since B is coherent, we see that Y → X is finite. We
have depth(Bx) ≥ 2 for x ∈ X \ U by Divisors, Lemma 12.11. Hence depth(OY,y) ≥ 2
for y ∈ Y \ V by Algebra, Lemma 72.11. Conversely, suppose that π′ : Y ′ → X is a finite
morphism such that V = Y ′×X U and depth(OY ′,y′) ≥ 2 for y′ ∈ Y ′ \ V . Then π′

∗OY ′

restricts to π∗OV over U and satisfies depth((π′
∗OY ′)x) ≥ 2 for x ∈ X \ U by Algebra,

Lemma 72.11. Then π′
∗OY ′ is canonically isomorphic to j∗π∗OV for example by Divisors,

Lemma 5.11. This proves (2).
If Y → X is étale at y, then Y → X is flat at y. Conversely, suppose that Y → X is
flat at y. If y ∈ V , then Y → X is étale at y. If y 6∈ V , then we check (1), (2), (3), and
(4) of Lemma 21.2 hold to see that Y → X is étale at y. Parts (1) and (2) are clear and
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so is (3) since depth(OY,y) ≥ 2. If y′  y is a specialization and dim(OY,y′) = 1, then
y′ ∈ V since otherwise the depth of this local ring would be 2 a contradiction by Algebra,
Lemma 72.3. Hence Y → X is étale at y′ and we conclude (4) of Lemma 21.2 holds too.
This finishes the proof of (3).

Part (4) follows from (3) and the fact that ((Y → X)∗OY )x is a flat OX,x-module if and
only ifOY,y is a flatOX,x-module for all y ∈ Y mapping to x, see Algebra, Lemma 39.18.
Here we also use that a finite flat module over a Noetherian ring is finite locally free, see
Algebra, Lemma 78.2 (and Algebra, Lemma 31.4).

As to the final assertions of the lemma, part (a) follows from flat base change, see Coho-
mology of Schemes, Lemma 5.2 and part (b) follows from the uniqueness in (2) applied to
the restriction Y ×X U ′. �

Lemma 21.6. Let j : U → X be an open immersion of Noetherian schemes such that
purity holds forOX,x for all x 6∈ U . Then

FÉtX −→ FÉtU
is essentially surjective.

Proof. Let V → U be a finite étale morphism. By Noetherian induction it suffices
to extend V → U to a finite étale morphism to a strictly larger open subset of X . Let x ∈
X \U be the generic point of an irreducible component ofX \U . Then the inverse image
Ux ofU in Spec(OX,x) is the punctured spectrum ofOX,x. By assumption Vx = V ×UUx
is the restriction of a finite étale morphism Yx → Spec(OX,x) to Ux. By Limits, Lemma
20.3 we find an open subscheme U ⊂ U ′ ⊂ X containing x and a morphism V ′ → U ′

of finite presentation whose restriction to U recovers V → U and whose restriction to
Spec(OX,x) recovering Yx. Finally, the morphism V ′ → U ′ is finite étale after possible
shrinking U ′ to a smaller open by Limits, Lemma 20.4. �

22. Finite étale covers of punctured spectra, II

In this section we prove some variants of the material discussed in Section 19. Suppose
we have a Noetherian local ring (A,m) and f ∈ m. We set X = Spec(A) and X0 =
Spec(A/fA) and we let U = X \ {m} and U0 = X0 \ {m} be the punctured spectrum
of A and A/fA. All of this is exactly as in Situation 19.1. The difference is that we will
consider the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

In other words, we will not try to lift finite étale coverings of U0 to all of U , but just to
some open neighbourhood U ′ of U0 in U .

Lemma 22.1. In Situation 19.1. Let U ′ ⊂ U be open and contain U0. Assume for
p ⊂ A minimal with p ∈ U ′, p 6∈ U0 we have dim(A/p) ≥ 2. Then

FÉtU ′ −→ FÉtU0 , V ′ 7−→ V0 = V ′ ×U ′ U0

is a faithful functor. Moreover, there exists aU ′ satisfying the assumption and any smaller
open U ′′ ⊂ U ′ containing U0 also satisfies this assumption. In particular, the restriction
functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is faithful.
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Proof. By Algebra, Lemma 60.13 we see that V (p) meets U0 for every prime p of A
with dim(A/p) ≥ 2. Thus the displayed functor is faithful for a U as in the statement by
Lemma 17.5. To see the existence of such a U ′ note that for p ⊂ A with p ∈ U , p 6∈ U0
with dim(A/p) = 1 then p corresponds to a closed point of U and hence V (p) ∩ U0 = ∅.
Thus we can take U ′ to be the complement of the irreducible components of X which do
not meet U0 and have dimension 1. �

Lemma 22.2. In Situation 19.1 assume
(1) A has a dualizing complex and is f -adically complete,
(2) every irreducible component of X not contained in X0 has dimension ≥ 3.

Then the restriction functor
colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is fully faithful.

Proof. To prove this we may replaceA by its reduction by the topological invariance
of the fundamental group, see Lemma 8.3. Then the result follows from Lemma 17.3 and
Algebraic and Formal Geometry, Lemma 15.7. �

Lemma 22.3. In Situation 19.1 assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor.
(3) H1

m(A/fA) is a finite A-module.
Then the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is fully faithful.

Proof. Follows from Lemma 17.3 and Algebraic and Formal Geometry, Lemma 15.8.
�

23. Finite étale covers of punctured spectra, III

In this section we study when in Situation 19.1. the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is an equivalence of categories.

Lemma 23.1. In Situation 19.1 assume
(1) A has a dualizing complex and is f -adically complete,
(2) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in X0 has
dimension ≥ 4, or

(b) if p 6∈ V (f) and V (p) ∩ V (f) 6= {m}, then depth(Ap) + dim(A/p) > 3.
Then the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is an equivalence.

Proof. This follows from Lemma 17.4 and Algebraic and Formal Geometry, Lemma
24.1. �

Lemma 23.2. In Situation 19.1 assume
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(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules.

Then the restriction functor

colimU0⊂U ′⊂U open FÉtU ′ −→ FÉtU0

is an equivalence.

Proof. This follows from Lemma 17.4 and Algebraic and Formal Geometry, Lemma
24.2. �

Remark 23.3. Let (A,m) be a complete local Noetherian ring and f ∈ m nonzero.
Suppose thatAf is (S2) and every irreducible component of Spec(A) has dimension≥ 4.
Then Lemma 23.1 tells us that the category

colimU ′⊂U open, U0⊂U category of schemes finite étale over U ′

is equivalent to the category of schemes finite étale over U0. For example this holds if A
is a normal domain of dimension ≥ 4!

24. Finite étale covers of punctured spectra, IV

LetX,X0, U, U0 be as in Situation 19.1. In this section we ask when the restriction functor

FÉtU −→ FÉtU0

is essentially surjective. We will do this by taking results from Section 23 and then filling
in the gaps using purity. Recall that we say purity holds for a Noetherian local ring (A,m)
if the restriction functor FÉtX → FÉtU is essentially surjective where X = Spec(A) and
U = X \ {m}.

Lemma 24.1. In Situation 19.1 assume
(1) A has a dualizing complex and is f -adically complete,
(2) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in X0 has
dimension ≥ 4, or

(b) if p 6∈ V (f) and V (p) ∩ V (f) 6= {m}, then depth(Ap) + dim(A/p) > 3.
(3) for every maximal ideal p ⊂ Af purity holds for (Af )p.

Then the restriction functor FÉtU → FÉtU0 is essentially surjective.

Proof. Let V0 → U0 be a finite étale morphism. By Lemma 23.1 there exists an open
U ′ ⊂ U containing U0 and a finite étale morphism V ′ → U whose base change to U0 is
isomorphic toV0 → U0. SinceU ′ ⊃ U0 we see thatU\U ′ consists of points corresponding
to prime ideals p1, . . . , pn as in (3). By assumption we can find finite étale morphisms
V ′
i → Spec(Api) agreeing with V ′ → U ′ over U ′ ×U Spec(Api). By Limits, Lemma 20.1

applied n times we see that V ′ → U ′ extends to a finite étale morphism V → U . �

Lemma 24.2. Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules,

(4) for every maximal ideal p ⊂ Af purity holds for (Af )p.
Then the restriction functor FÉtU → FÉtU0 is essentially surjective.
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Proof. The proof is identical to the proof of Lemma 24.1 using Lemma 23.2 in stead
of Lemma 23.1. �

25. Purity in local case, II

This section is the continuation of Section 20. Recall that we say purity holds for a Noe-
therian local ring (A,m) if the restriction functor FÉtX → FÉtU is essentially surjective
where X = Spec(A) and U = X \ {m}.

Lemma 25.1. Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
(1) A has a dualizing complex and is f -adically complete,
(2) one of the following is true

(a) Af is (S2) and every irreducible component of X not contained in X0 has
dimension ≥ 4, or

(b) if p 6∈ V (f) and V (p) ∩ V (f) 6= {m}, then depth(Ap) + dim(A/p) > 3.
(3) for every maximal ideal p ⊂ Af purity holds for (Af )p, and
(4) purity holds for A.

Then purity holds for A/fA.

Proof. Denote X = Spec(A) and U = X \ {m} the punctured spectrum. Simi-
larly we have X0 = Spec(A/fA) and U0 = X0 \ {m}. Let V0 → U0 be a finite étale
morphism. By Lemma 24.1 we find a finite étale morphism V → U whose base change
to U0 is isomorphic to V0 → U0. By assumption (5) we find that V → U extends to a
finite étale morphism Y → X . Then the restriction of Y to X0 is the desired extension
of V0 → U0. �

Lemma 25.2. Let (A,m) be a Noetherian local ring. Let f ∈ m. Assume
(1) A is f -adically complete,
(2) f is a nonzerodivisor,
(3) H1

m(A/fA) and H2
m(A/fA) are finite A-modules,

(4) for every maximal ideal p ⊂ Af purity holds for (Af )p,
(5) purity holds for A.

Then purity holds for A/fA.

Proof. The proof is identical to the proof of Lemma 25.1 using Lemma 24.2 in stead
of Lemma 24.1. �

Now we can bootstrap the earlier results to prove that purity holds for complete intersec-
tions of dimension≥ 3. Recall that a Noetherian local ring is called a complete intersection
if its completion is the quotient of a regular local ring by the ideal generated by a regular
sequence. See the discussion in Divided Power Algebra, Section 8.

Proposition 25.3. Let (A,m) be a Noetherian local ring. IfA is a complete intersec-
tion of dimension ≥ 3, then purity holds for A in the sense that any finite étale cover of
the punctured spectrum extends.

Proof. By Lemma 20.4 we may assume thatA is a complete local ring. By assumption
we can write A = B/(f1, . . . , fr) where B is a complete regular local ring and f1, . . . , fr
is a regular sequence. We will finish the proof by induction on r. The base case is r = 0
which follows from Lemma 21.3 which applies to regular rings of dimension ≥ 2.
Assume that A = B/(f1, . . . , fr) and that the proposition holds for r − 1. Set A′ =
B/(f1, . . . , fr−1) and apply Lemma 25.2 to fr ∈ A′. This is permissible: condition (1)
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holds as f1, . . . , fr is a regular sequence, condition (2) holds as B and hence A′ is com-
plete, condition (3) holds as A = A′/frA

′ is Cohen-Macaulay of dimension dim(A) ≥ 3,
see Dualizing Complexes, Lemma 11.1, condition (4) holds by induction hypothesis as
dim((A′

fr
)p) ≥ 3 for a maximal prime p of A′

fr
and as (A′

fr
)p = Bq/(f1, . . . , fr−1)

for some q ⊂ B, condition (5) holds by induction hypothesis. �

26. Purity in local case, III

In this section is a continuation of the discussion in Sections 20 and 25.

Lemma 26.1. Let (A,m) be a Noetherian local ring of depth≥ 2. LetB = A[[x1, . . . , xd]]
with d ≥ 1. Set Y = Spec(B) and Y0 = V (x1, . . . , xd). For any open subscheme V ⊂ Y
with V0 = V ∩ Y0 equal to Y0 \ {mB} the restriction functor

FÉtV −→ FÉtV0

is fully faithful.

Proof. Set I = (x1, . . . , xd). Set X = Spec(A). If we use the map Y → X to
identify Y0 with X , then V0 is identified with the punctured spectrum U of A. Pushing
forward modules by this affine morphism we get

limn Γ(V0,OV /InOV ) = limn Γ(V0,OY /InOY )
= limn Γ(U,OU [x1, . . . , xd]/(x1, . . . , xd)n)
= limnA[x1, . . . , xd]/(x1, . . . , xd)n

= B

Namely, as the depth of A is ≥ 2 we have Γ(U,OU ) = A, see Local Cohomology, Lemma
8.2. Thus for any V ⊂ Y open as in the lemma we get

B = Γ(Y,OY )→ Γ(V,OV )→ limn Γ(V0,OY /InOY ) = B

which implies both arrows are isomorphisms (small detail omitted). By Algebraic and For-
mal Geometry, Lemma 15.1 we conclude that Coh(OV )→ Coh(V, IOV ) is fully faithful
on the full subcategory of finite locally free objects. Thus we conclude by Lemma 17.1. �

Lemma 26.2. Let (A,m) be a Noetherian local ring of depth≥ 2. LetB = A[[x1, . . . , xd]]
with d ≥ 1. For any open V ⊂ Y = Spec(B) which contains

(1) any prime q ⊂ B such that q ∩A 6= m,
(2) the prime mB

the functor FÉtY → FÉtV is an equivalence. In particular purity holds for B.

Proof. A prime q ⊂ B which is not contained in V lies over m. In this caseA→ Bq

is a flat local homomorphism and hence depth(Bq) ≥ 2 (Algebra, Lemma 163.2). Thus the
functor is fully faithful by Lemma 10.3 combined with Local Cohomology, Lemma 3.1.

Let W → V be a finite étale morphism. Let B → C be the unique finite ring map such
that Spec(C)→ Y is the finite morphism extendingW → V constructed in Lemma 21.5.
Observe that C = Γ(W,OW ).

Set Y0 = V (x1, . . . , xd) and V0 = V ∩ Y0. Set X = Spec(A). If we use the map Y → X
to identify Y0 with X , then V0 is identified with the punctured spectrum U of A. Thus
we may view W0 = W ×Y Y0 as a finite étale scheme over U . Then

W0 ×U (U ×X Y ) and W ×V (U ×X Y )
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are schemes finite étale over U ×X Y which restrict to isomorphic finite étale schemes
over V0. By Lemma 26.1 applied to the open U ×X Y we obtain an isomorphism

W0 ×U (U ×X Y ) −→W ×V (U ×X Y )
over U ×X Y .
Observe that C0 = Γ(W0,OW0) is a finite A-algebra by Lemma 21.5 applied to W0 →
U ⊂ X (exactly as we did for B → C above). Since the construction in Lemma 21.5 is
compatible with flat base change and with change of opens, the isomorphism above induces
an isomorphism

Ψ : C −→ C0 ⊗A B
of finite B-algebras. However, we know that Spec(C) → Y is étale at all points above
at least one point of Y lying over m ∈ X . Since Ψ is an isomorphism, we conclude that
Spec(C0)→ X is étale above m (small detail omitted). Of course this means thatA→ C0
is finite étale and hence B → C is finite étale. �

Lemma 26.3. Let f : X → S be a morphism of schemes. Let U ⊂ X be an open
subscheme. Assume

(1) f is smooth,
(2) S is Noetherian,
(3) for s ∈ S with depth(OS,s) ≤ 1 we have Xs = Us,
(4) Us ⊂ Xs is dense for all s ∈ S.

Then FÉtX → FÉtU is an equivalence.

Proof. The functor is fully faithful by Lemma 10.3 combined with Local Cohomol-
ogy, Lemma 3.1 (plus an application of Algebra, Lemma 163.2 to check the depth condi-
tion).
Let π : V → U be a finite étale morphism. Let Y → X be the finite morphism constructed
in Lemma 21.5. We have to show that Y → X is finite étale. To show that this is true for
all points x ∈ X mapping to a given point s ∈ S we may perform a base change by a flat
morphism S′ → S of Noetherian schemes such that s is in the image. This follows from
the compatibility of the construction in Lemma 21.5 with flat base change.
After enlarging U we may assume U ⊂ X is the maximal open over which Y → X is
finite étale. Let Z ⊂ X be the complement of U . To get a contradiction, assume Z 6= ∅.
Let s ∈ S be a point in the image of Z → S such that no strict generalization of s
is in the image. Then after base change to Spec(OS,s) we see that S = Spec(A) with
(A,m, κ) a local Noetherian ring of depth≥ 2 and Z contained in the closed fibreXs and
nowhere dense in Xs. Choose a closed point z ∈ Z. Then κ(z)/κ is finite (by the Hilbert
Nullstellensatz, see Algebra, Theorem 34.1). Choose a finite flat morphism (S′, s′) →
(S, s) of local schemes realizing the residue field extension κ(z)/κ, see Algebra, Lemma
159.3. After doing a base change by S′ → S we reduce to the case where κ(z) = κ.
By More on Morphisms, Lemma 38.5 there exists a locally closed subscheme S′ ⊂ X
passing through z such that S′ → S is étale at z. After performing the base change by
S′ → S , we may assume there is a section σ : S → X such that σ(s) = z. Choose an
affine neighbourhood Spec(B) ⊂ X of s. Then A → B is a smooth ring map which
has a section σ : B → A. Denote I = Ker(σ) and denote B∧ the I-adic completion of
B. Then B∧ ∼= A[[x1, . . . , xd]] for some d ≥ 0, see Algebra, Lemma 139.4. Observe that
d > 0 since otherwise we see that X → S is étale at z which would imply that z is a
generic point of Xs and hence z ∈ U by assumption (4). Similarly, if d > 0, then mB∧
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maps into U via the morphism Spec(B∧) → X . It suffices prove Y → X is finite étale
after base change to Spec(B∧). Since B → B∧ is flat (Algebra, Lemma 97.2) this follows
from Lemma 26.2 and the uniqueness in the construction of Y → X . �

Proposition 26.4. Let A→ B be a local homomorphism of local Noetherian rings.
Assume A has depth ≥ 2, A → B is formally smooth for the mB-adic topology, and
dim(B) > dim(A). For any open V ⊂ Y = Spec(B) which contains

(1) any prime q ⊂ B such that q ∩A 6= mA,
(2) the prime mAB

the functor FÉtY → FÉtV is an equivalence. In particular purity holds for B.

Proof. A prime q ⊂ Bwhich is not contained inV lies overmA. In this caseA→ Bq

is a flat local homomorphism and hence depth(Bq) ≥ 2 (Algebra, Lemma 163.2). Thus the
functor is fully faithful by Lemma 10.3 combined with Local Cohomology, Lemma 3.1.

Denote A∧ and B∧ the completions of A and B with respect to their maximal ideals.
Observe that the assumptions of the proposition hold forA∧ → B∧, see More on Algebra,
Lemmas 43.1, 43.2, and 37.4. By the uniqueness and compatibility with flat base change of
the construction of Lemma 21.5 it suffices to prove the essential surjectivity forA∧ → B∧

and the inverse image of V (details omitted; compare with Lemma 20.4 for the case where
V is the punctured spectrum). By More on Algebra, Proposition 49.2 this means we may
assume A→ B is regular.

Let W → V be a finite étale morphism. By Popescu’s theorem (Smoothing Ring Maps,
Theorem 12.1) we can write B = colimBi as a filtered colimit of smooth A-algebras.
We can pick an i and an open Vi ⊂ Spec(Bi) whose inverse image is V (Limits, Lemma
4.11). After increasing i we may assume there is a finite étale morphism Wi → Vi whose
base change to V is W → V , see Limits, Lemmas 10.1, 8.3, and 8.10. We may assume the
complement ofVi is contained in the closed fibre of Spec(Bi)→ Spec(A) as this is true for
V (either chooseVi this way or use the lemma above to show this is true for i large enough).
Let η be the generic point of the closed fibre of Spec(B) → Spec(A). Since η ∈ V , the
image of η is in Vi. Hence after replacing Vi by an affine open neighbourhood of the
image of the closed point of Spec(B), we may assume that the closed fibre of Spec(Bi)→
Spec(A) is irreducible and that its generic point is contained inVi (details omitted; use that
a scheme smooth over a field is a disjoint union of irreducible schemes). At this point we
may apply Lemma 26.3 to see thatWi → Vi extends to a finite étale morphism Spec(Ci)→
Spec(Bi) and pulling back to Spec(B) we conclude that W is in the essential image of
the functor FÉtY → FÉtV as desired. �

27. Lefschetz for the fundamental group

Of course we have already proven a bunch of results of this type in the local case. In this
section we discuss the projective case.

Proposition 27.1. Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX -module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero scheme of s.
Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 1

Then the restriction functor FÉtX → FÉtY is fully faithful. In fact, for any open sub-
scheme V ⊂ X containing Y the restriction functor FÉtV → FÉtY is fully faithful.
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Proof. The first statement is a formal consequence of Lemma 17.6 and Algebraic and
Formal Geometry, Proposition 28.1. The second statement follows from Lemma 17.6 and
Algebraic and Formal Geometry, Lemma 28.2. �

Proposition 27.2. Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX -module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero scheme of
s. Let V be the set of open subschemes of X containing Y ordered by reverse inclusion.
Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 2
Then the restriction functor

colimV FÉtV → FÉtY
is an equivalence.

Proof. This is a formal consequence of Lemma 17.4 and Algebraic and Formal Ge-
ometry, Proposition 28.7. �

Proposition 27.3. Let k be a field. Let X be a proper scheme over k. Let L be an
ample invertible OX -module. Let s ∈ Γ(X,L). Let Y = Z(s) be the zero scheme of s.
Assume that for all x ∈ X \ Y we have

depth(OX,x) + dim({x}) > 2

and that forx ∈ X\Y closed purity holds forOX,x. Then the restriction functor FÉtX →
FÉtY is an equivalence. If X or equivalently Y is connected, then

π1(Y, y)→ π1(X, y)
is an isomorphism for any geometric point y of Y .

Proof. Fully faithfulness holds by Proposition 27.1. By Proposition 27.2 any object
of FÉtY is isomorphic to the fibre productU×V Y for some finite étale morphismU → V
where V ⊂ X is an open subscheme containing Y . The complement T = X \V is5 a finite
set of closed points of X \ Y . Say T = {x1, . . . , xn}. By assumption we can find finite
étale morphisms V ′

i → Spec(OX,xi) agreeing with U → V over V ×X Spec(OX,xi). By
Limits, Lemma 20.1 applied n times we see that U → V extends to a finite étale morphism
U ′ → X as desired. See Lemma 8.1 for the final statement. �

28. Purity of ramification locus

In this section we discuss the analogue of purity of branch locus for generically finite
morphisms. Apparently, this result is due to Gabber. A special case is van der Waerden’s
purity theorem for the locus where a birational morphism from a normal variety to a
smooth variety is not an isomorphism.

Lemma 28.1. Let A be a Noetherian normal local domain of dimension 2. Assume
A is Nagata, has a dualizing module ωA, and has a resolution of singularities f : X →
Spec(A). Let ωX be as in Resolution of Surfaces, Remark 7.7. If ωX ∼= OX(E) for some
effective Cartier divisor E ⊂ X supported on the exceptional fibre, then A defines a
rational singularity. If f is a minimal resolution, then E = 0.

5Namely, T is proper over k (being closed in X) and affine (being closed in the affine scheme X \ Y , see
Morphisms, Lemma 43.18) and hence finite over k (Morphisms, Lemma 44.11). Thus T is a finite set of closed
points.
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Proof. There is a trace map Rf∗ωX → ωA, see Duality for Schemes, Section 7. By
Grauert-Riemenschneider (Resolution of Surfaces, Proposition 7.8) we haveR1f∗ωX = 0.
Thus the trace map is a map f∗ωX → ωA. Then we can consider

OSpec(A) = f∗OX → f∗ωX → ωA

where the first map comes from the mapOX → OX(E) = ωX which is assumed to exist
in the statement of the lemma. The composition is an isomorphism by Divisors, Lemma
2.11 as it is an isomorphism over the punctured spectrum of A (by the assumption in the
lemma and the fact that f is an isomorphism over the punctured spectrum) andA and ωA
are A-modules of depth 2 (by Algebra, Lemma 157.4 and Dualizing Complexes, Lemma
17.5). Hence f∗ωX → ωA is surjective whence an isomorphism. Thus Rf∗ωX = ωA
which by duality implies Rf∗OX = OSpec(A). Whence H1(X,OX) = 0 which implies
that A defines a rational singularity (see discussion in Resolution of Surfaces, Section 8 in
particular Lemmas 8.7 and 8.1). If f is minimal, thenE = 0 because the map f∗ωA → ωX
is surjective by a repeated application of Resolution of Surfaces, Lemma 9.7 and ωA ∼= A
as we’ve seen above. �

Lemma 28.2. Let f : X → Spec(A) be a finite type morphism. Let x ∈ X be a point.
Assume

(1) A is an excellent regular local ring,
(2) OX,x is normal of dimension 2,
(3) f is étale outside of {x}.

Then f is étale at x.

Proof. We first replaceX by an affine open neighbourhood of x. Observe thatOX,x
is an excellent local ring (More on Algebra, Lemma 52.2). Thus we can choose a minimal
resolution of singularities W → Spec(OX,x), see Resolution of Surfaces, Theorem 14.5.
After possibly replacing X by an affine open neighbourhood of x we can find a proper
morphism b : X ′ → X such thatX ′×X Spec(OX,x) = W , see Limits, Lemma 20.1. After
shrinking X further, we may assume X ′ is regular. Namely, we know W is regular and
X ′ is excellent and the regular locus of the spectrum of an excellent ring is open. Since
W → Spec(OX,x) is projective (as a sequence of normalized blowing ups), we may assume
after shrinking X that b is projective (details omitted). Let U = X \ {x}. Since W →
Spec(OX,x) is an isomorphism over the punctured spectrum, we may assume b : X ′ → X
is an isomorphism over U . Thus we may and will think of U as an open subscheme of X ′

as well. Set f ′ = f ◦ b : X ′ → Spec(A).

Since A is regular we see that OY is a dualizing complex for Y . Hence f !OY is a dualz-
ing complex onX (Duality for Schemes, Lemma 17.7). The Cohen-Macaulay locus ofX is
open by Duality for Schemes, Lemma 23.1 (this can also be proven using excellency). Since
OX,x is Cohen-Macaulay, after shrinking X we may assume X is Cohen-Macaulay. Ob-
serve that an étale morphism is a local complete intersection. Thus Duality for Schemes,
Lemma 29.3 applies with r = 0 and we get a map

OX −→ ωX/Y = H0(f !OY )

which is an isomorphism overX\{x}. SinceωX/Y is (S2) by Duality for Schemes, Lemma
21.5 we find this map is an isomorphism by Divisors, Lemma 2.11. This already shows that
X and in particularOX,x is Gorenstein.
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Set ωX′/Y = H0((f ′)!OY ). Arguing in exactly the same manner as above we find that
(f ′)!OY = ωX′/Y [0] is a dualizing complex for X ′. Since X ′ is regular the morphism
X ′ → Y is a local complete intersection morphism, see More on Morphisms, Lemma
62.11. By Duality for Schemes, Lemma 29.2 there exists a map

OX′ −→ ωX′/Y

which is an isomorphism over U . We conclude ωX′/Y = OX′(E) for some effective
Cartier divisor E ⊂ X ′ disjoint from U .
SinceωX/Y = OY we see thatωX′/Y = b!f !OY = b!OX . Returning toW → Spec(OX,x)
we see that ωW = OW (E|W ). By Lemma 28.1 we find E|W = 0. This means that
f ′ : X ′ → Y is étale by (the already used) Duality for Schemes, Lemma 29.2. This imme-
diately finishes the proof, as étaleness of f ′ forces b to be an isomorphism. �

Lemma 28.3 (Purity of ramification locus). Let f : X → Y be a morphism of locally
Noetherian schemes. Let x ∈ X and set y = f(x). Assume

(1) OX,x is normal of dimension ≥ 1,
(2) OY,y is regular,
(3) f is locally of finite type, and
(4) for specializations x′  x with dim(OX,x′) = 1 our f is étale at x′.

Then f is étale at x.

Proof. We will prove the lemma by induction on d = dim(OX,x).
An uninteresting case is d = 1 since in that case the morphism f is étale atx by assumption.
Assume d ≥ 2.
We can base change by Spec(OY,y)→ Y without affecting the conclusion of the lemma,
see Morphisms, Lemma 36.17. Thus we may assume Y = Spec(A) where A is a regular
local ring and y corresponds to the maximal ideal m of A.
Let x′  x be a specialization with x′ 6= x. Then OX,x′ is normal as a localization of
OX,x. If x′ is not a generic point of X , then 1 ≤ dim(OX,x′) < d and we conclude that
f is étale at x′ by induction hypothesis. Thus we may assume that f is étale at all points
specializing to x. Since the set of points where f is étale is open in X (by definition)
we may after replacing X by an open neighbourhood of x assume that f is étale away
from {x}. In particular, we see that f is étale except at points lying over the closed point
y ∈ Y = Spec(A).
Let X ′ = X ×Spec(A) Spec(A∧). Let x′ ∈ X ′ be the unique point lying over x. By the
above we see that X ′ is étale over Spec(A∧) away from the closed fibre and hence X ′ is
normal away from the closed fibre. Since X is normal we conclude that X ′ is normal by
Resolution of Surfaces, Lemma 11.6. Then if we can show X ′ → Spec(A∧) is étale at x′,
then f is étale at x (by the aforementioned Morphisms, Lemma 36.17). Thus we may and
do assume A is a regular complete local ring.
The case d = 2 now follows from Lemma 28.2.
Assume d > 2. Let t ∈ m, t 6∈ m2. Set Y0 = Spec(A/tA) andX0 = X×Y Y0. ThenX0 →
Y0 is étale away from the fibre over the closed point. Since d > 2 we have dim(OX0,x) =
d − 1 is ≥ 2. The normalization X ′

0 → X0 is surjective and finite (as we’re working
over a complete local ring and such rings are Nagata). Let x′ ∈ X ′

0 be a point mapping
to x. By induction hypothesis the morphism X ′

0 → Y is étale at x′. From the inclusions
κ(y) ⊂ κ(x) ⊂ κ(x′) we conclude that κ(x) is finite over κ(y). Hence x is a closed point
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of the fibre of X → Y over y. But since x is also a generic point of this fibre, we conclude
that f is quasi-finite at x and we reduce to the case of purity of branch locus, see Lemma
21.4. �

29. Affineness of complement of ramification locus

Let f : X → Y be a finite type morphism of Noetherian schemes with X normal and Y
regular. Let V ⊂ X be the maximal open subscheme where f is étale. The discussion in [?,
Chapter IV, Section 21.12] suggests that V → X might be an affine morphism. Observe
that if V → X is affine, then we deduce purity of ramification locus (Lemma 28.3) by
using Divisors, Lemma 16.4. Thus affineness of V → X is a “strong” form of purity for
the ramification locus. In this section we prove V → X is affine when X and Y are
equicharacteristic and excellent, see Theorem 29.3. It seems reasonable to guess the result
remains true for X and Y of mixed characteristic (but still excellent).

Lemma 29.1. Let (A,m) be a regular local ring which contains a field. Let f : V →
Spec(A) be étale and quasi-compact. Assume that m 6∈ f(V ) and assume that g : V →
Spec(A) \ {m} is affine. Then Hi(V,OV ), i > 0 is isomorphic to a direct sum of copies
of the injective hull of the residue field of A.

Proof. Denote U = Spec(A) \ {m} the punctured spectrum. Thus g : V → U
is affine. We have Hi(V,OV ) = Hi(U, g∗OV ) by Cohomology of Schemes, Lemma 2.4.
TheOU -module g∗OV is quasi-coherent by Schemes, Lemma 24.1. For any quasi-coherent
OU -moduleF the cohomologyHi(U,F), i > 0 is m-power torsion, see for example Local
Cohomology, Lemma 2.2. In particular, the A-modules Hi(V,OV ), i > 0 are m-power
torsion. For any flat ring mapA→ A′ we haveHi(V,OV )⊗AA′ = Hi(V ′,OV ′) where
V ′ = V ×Spec(A) Spec(A′) by flat base change Cohomology of Schemes, Lemma 5.2. If
we take A′ to be the completion of A (flat by More on Algebra, Section 43), then we see
that

Hi(V,OV ) = Hi(V,OV )⊗A A′ = Hi(V ′,OV ′), for i > 0
The first equality by the torsion property we just proved and More on Algebra, Lemma
89.3. Moreover, the injective hull of the residue field k is the same for A and A′, see
Dualizing Complexes, Lemma 7.4. In this way we reduce to the case A = k[[x1, . . . , xd]],
see Algebra, Section 160.

Assume the characteristic of k is p > 0. Since F : A→ A, a 7→ ap is flat (Local Cohomol-
ogy, Lemma 17.6) and since V ×Spec(A),Spec(F ) Spec(A) ∼= V as schemes over Spec(A) by
Étale Morphisms, Lemma 14.3 the above gives Hi(V,OV ) ⊗A,F A ∼= Hi(V,OV ). Thus
we get the result by Local Cohomology, Lemma 18.2.

Assume the characteristic of k is 0. By Local Cohomology, Lemma 19.3 there are additive
operators Dj , j = 1, . . . , d on Hi(V,OV ) satisfying the Leibniz rule with respect to ∂j =
∂/∂xj . Thus we get the result by Local Cohomology, Lemma 18.1. �

Lemma 29.2. In the situation of Lemma 29.1 assume that Hi(V,OV ) = 0 for i ≥
dim(A)− 1. Then V is affine.

Proof. Let k = A/m. Since V ×Spec(A) Spec(k) = ∅, by cohomology and base
change we have

RΓ(V,OV )⊗L
A k = 0
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See Derived Categories of Schemes, Lemma 22.5. Thus there is a spectral sequence (More
on Algebra, Example 62.4)

Ep,q2 = Tor−p(k,Hq(V,OV )), dp,q2 : Ep,q2 → Ep+2,q−1
2

and dp,qr : Ep,qr → Ep+r,q−r+1
r converging to zero. By Lemma 29.1, Dualizing Com-

plexes, Lemma 21.9, and our assumptionHi(V,OV ) = 0 for i ≥ dim(A)− 1 we conclude
that there is no nonzero differential entering or leaving the (p, q) = (0, 0) spot. Thus
H0(V,OV ) ⊗A k = 0. This means that if m = (x1, . . . , xd) then we have an open cov-
ering V =

⋃
V ×Spec(A) Spec(Axi) by affine open subschemes V ×Spec(A) Spec(Axi)

(because V is affine over the punctured spectrum of A) such that x1, . . . , xd generate the
unit ideal in Γ(V,OV ). This implies V is affine by Properties, Lemma 27.3. �

Theorem 29.3. Let Y be an excellent regular scheme over a field. Let f : X → Y
be a finite type morphism of schemes with X normal. Let V ⊂ X be the maximal open
subscheme where f is étale. Then the inclusion morphism V → X is affine.

Proof. Let x ∈ X with image y ∈ Y . It suffices to prove that V ∩W is affine for
some affine open neighbourhood W of x. Since Spec(OX,x) is the limit of the schemes
W , this holds if and only if

Vx = V ×X Spec(OX,x)
is affine (Limits, Lemma 4.13). Thus, if the theorem holds for the morphismX×Y Spec(OY,y)→
Spec(OY,y), then the theorem holds. In particular, we may assume Y is regular of finite
dimension, which allows us to do induction on the dimension d = dim(Y ). Combining
this with the same argument again, we may assume that Y is local with closed point y and
that V ∩ (X \ f−1({y})→ X \ f−1({y}) is affine.
Let x ∈ X be a point lying over y. If x ∈ V , then there is nothing to prove. Observe that
f−1({y})∩ V is a finite set of closed points (the fibres of an étale morphism are discrete).
Thus after replacing X by an affine open neighbourhood of x we may assume y 6∈ f(V ).
We have to prove that V is affine.
Let e(V ) be the maximum i with Hi(V,OV ) 6= 0. As X is affine the integer e(V ) is the
maximum of the numbers e(Vx) where x ∈ X \ V , see Local Cohomology, Lemma 4.6
and the characterization of cohomological dimension in Local Cohomology, Lemma 4.1.
We have e(Vx) ≤ dim(OX,x)− 1 by Local Cohomology, Lemma 4.7. If dim(OX,x) ≥ 2
then purity of ramification locus (Lemma 28.3) shows that Vx is strictly smaller than the
punctured spectrum of OX,x. Since OX,x is normal and excellent, this implies e(Vx) ≤
dim(OX,x)−2 by Hartshorne-Lichtenbaum vanishing (Local Cohomology, Lemma 16.7).
On the other hand, since X → Y is of finite type and V ⊂ X is dense (after possibly
replacing X by the closure of V ), we see that dim(OX,x) ≤ d by the dimension formula
(Morphisms, Lemma 52.1). Whence e(V ) ≤ max(0, d − 2). Thus V is affine by Lemma
29.2 if d ≥ 2. If d = 1 or d = 0, then the punctured spectrum of OY,y is affine and hence
V is affine. �

30. Specialization maps in the smooth proper case

In this section we discuss the following result. Let f : X → S be a proper smooth mor-
phism of schemes. Let s  s′ be a specialization of points in S. Then the specialization
map

sp : π1(Xs) −→ π1(Xs′)
of Section 16 is surjective and
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(1) if the characteristic of κ(s′) is zero, then it is an isomorphism, or
(2) if the characteristic of κ(s′) is p > 0, then it induces an isomorphism on maximal

prime-to-p quotients.

Lemma 30.1. Let f : X → S be a flat proper morphism with geometrically con-
nected fibres. Let s′  s be a specialization. If Xs is geometrically reduced, then the
specialization map sp : π1(Xs′)→ π1(Xs) is surjective.

Proof. SinceXs is geometrically reduced, we may assume all fibres are geometrically
reduced after possibly shrinking S , see More on Morphisms, Lemma 26.7. Let OS,s →
A → κ(s′) be as in the construction of the specialization map, see Section 16. Thus it
suffices to show that

π1(Xs′)→ π1(XA)
is surjective. This follows from Proposition 15.2 and π1(Spec(A)) = {1}. �

Proposition 30.2. Let f : X → S be a smooth proper morphism with geometrically
connected fibres. Let s′  s be a specialization. If the characteristic to κ(s) is zero, then
the specialization map

sp : π1(Xs′)→ π1(Xs)
is an isomorphism.

Proof. The map is surjective by Lemma 30.1. Thus we have to show it is injective.

We may assume S is affine. Then S is a cofiltered limit of affine schemes of finite type over
Z. Hence we can assumeX → S is the base change ofX0 → S0 where S0 is the spectrum
of a finite type Z-algebra andX0 → S0 is smooth and proper. See Limits, Lemma 10.1, 8.9,
and 13.1. By Lemma 16.1 we reduce to the case where the base is Noetherian.

Applying Lemma 16.4 we reduce to the case where the base S is the spectrum of a strictly
henselian discrete valuation ring A and we are looking at the specialization map over A.
Let K be the fraction field of A. Choose an algebraic closure K which corresponds to a
geometric generic point η of Spec(A). For K/L/K finite separable, let B ⊂ L be the
integral closure of A in L. This is a discrete valuation ring by More on Algebra, Remark
111.6.

Let X → Spec(A) be as in the previous paragraph. To show injectivity of the special-
ization map it suffices to prove that every finite étale cover V of Xη is the base change of
a finite étale cover Y → X . Namely, then π1(Xη) → π1(X) = π1(Xs) is injective by
Lemma 4.4.

Given V we can first descend V to V ′ → XKsep by Lemma 14.2 and then to V ′′ → XL by
Lemma 14.1. Let Z → XB be the normalization of XB in V ′′. Observe that Z is normal
and that ZL = V ′′ as schemes over XL. Hence Z → XB is finite étale over the generic
fibre. The problem is that we do not know that Z → XB is everywhere étale. Since
X → Spec(A) has geometrically connected smooth fibres, we see that the special fibreXs

is geometrically irreducible. Hence the special fibre of XB → Spec(B) is irreducible; let
ξB be its generic point. Let ξ1, . . . , ξr be the points of Z mapping to ξB . Our first (and it
will turn out only) problem is now that the extensions

OXB ,ξB ⊂ OZ,ξi
of discrete valuation rings may be ramified. Let ei be the ramification index of this exten-
sion. Note that since the characteristic of κ(s) is zero, the ramification is tame!
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To get rid of the ramification we are going to choose a further finite separable extension
Ksep/L′/L/K such that the ramification index e of the induced extensions B′/B is di-
visible by ei. Consider the normalized base change Z ′ of Z with respect to Spec(B′) →
Spec(B), see discussion in More on Morphisms, Section 65. Let ξi,j be the points of Z ′

mapping to ξB′ and to ξi in Z. Then the local rings

OZ′,ξi,j

are localizations of the integral closure ofOZ,ξi in L′ ⊗L Fi where Fi is the fraction field
of OZ,ξi ; details omitted. Hence Abhyankar’s lemma (More on Algebra, Lemma 114.4)
tells us that

OXB′ ,ξB′ ⊂ OZ′,ξi,j

is unramified. We conclude that the morphismZ ′ → XB′ is étale away from codimension
1. Hence by purity of branch locus (Lemma 21.4) we see that Z ′ → XB′ is finite étale!

However, since the residue field extension induced by A → B′ is trivial (as the residue
field ofA is algebraically closed being separably closed of characteristic zero) we conclude
thatZ ′ is the base change of a finite étale cover Y → X by applying Lemma 9.1 twice (first
to get Y over A, then to prove that the pullback to B is isomorphic to Z ′). This finishes
the proof. �

Let G be a profinite group. Let p be a prime number. The maximal prime-to-p quotient is
by definition

G′ = limU⊂G open, normal, index prime to pG/U

IfX is a connected scheme and p is given, then the maximal prime-to-p quotient of π1(X)
is denoted π′

1(X).

Theorem 30.3. Let f : X → S be a smooth proper morphism with geometrically
connected fibres. Let s′  s be a specialization. If the characteristic of κ(s) is p, then the
specialization map

sp : π1(Xs′)→ π1(Xs)
is surjective and induces an isomorphism

π′
1(Xs′) ∼= π′

1(Xs)

of the maximal prime-to-p quotients

Proof. This is proved in exactly the same manner as Proposition 30.2 with the fol-
lowing differences

(1) Given X/A we no longer show that the functor FÉtX → FÉtXη is essentially
surjective. We show only that Galois objects whose Galois group has order prime
to p are in the essential image. This will be enough to conclude the injectivity
of π′

1(Xs′)→ π′
1(Xs) by exactly the same argument.

(2) The extensionsOXB ,ξB ⊂ OZ,ξi are tamely ramified as the associated extension
of fraction fields is Galois with group of order prime to p. See More on Algebra,
Lemma 112.2.

(3) The extension κB/κA is no longer necessarily trivial, but it is purely inseparable.
Hence the morphism XκB → XκA is a universal homeomorphism and induces
an isomorphism of fundamental groups by Proposition 8.4.

�
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31. Tame ramification

Let X → Y be a finite étale morphism of schemes of finite type over Z. There are many
ways to define what it means for f to be tamely ramified at∞. The article [?] discusses to
what extent these notions agree.

In this section we discuss a different more elementary question which precedes the no-
tion of tameness at infinity. Please compare with the (slightly different) discussion in [?].
Assume we are given

(1) a locally Noetherian scheme X ,
(2) a dense open U ⊂ X ,
(3) a finite étale morphism f : Y → U

such that for every prime divisor Z ⊂ X with Z ∩U = ∅ the local ringOX,ξ of X at the
generic point ξ of Z is a discrete valuation ring. Setting Kξ equal to the fraction field of
OX,ξ we obtain a cartesian square

Spec(Kξ) //

��

U

��
Spec(OX,ξ) // X

of schemes. In particular, we see that Y ×U Spec(Kξ) is the spectrum of a finite separable
algebra Lξ/Kξ . Then we say Y is unramified over X in codimension 1, resp. Y is tamely
ramified over X in codimension 1 if Lξ/Kξ is unramified, resp. tamely ramified with
respect to OX,ξ for every (Z, ξ) as above, see More on Algebra, Definition 111.7. More
precisely, we decompose Lξ into a product of finite separable field extensions of Kξ and
we require each of these to be unramified, resp. tamely ramified with respect toOX,ξ .

Lemma 31.1. LetX ′ → X be a morphism of locally Noetherian schemes. LetU ⊂ X
be a dense open. Assume

(1) U ′ = f−1(U) is dense open in X ′,
(2) for every prime divisor Z ⊂ X with Z ∩U = ∅ the local ringOX,ξ of X at the

generic point ξ of Z is a discrete valuation ring,
(3) for every prime divisor Z ′ ⊂ X ′ with Z ′ ∩ U ′ = ∅ the local ring OX′,ξ′ of X ′

at the generic point ξ′ of Z ′ is a discrete valuation ring,
(4) if ξ′ ∈ X ′ is as in (3), then ξ = f(ξ′) is as in (2).

Then if f : Y → U is finite étale and Y is unramified, resp. tamely ramified over X in
codimension 1, then Y ′ = Y ×XX ′ → U ′ is finite étale and Y ′ is unramified, resp. tamely
ramified over X ′ in codimension 1.

Proof. The only interesting fact in this lemma is the commutative algebra result
given in More on Algebra, Lemma 114.9. �

Using the terminology introduced above, we can reformulate our purity results obtained
earlier in the following pleasing manner.

Lemma 31.2. Let X be a locally Noetherian scheme. Let U ⊂ X be open and dense.
Let Y → U be a finite étale morphism. Assume

(1) Y is unramified over X in codimension 1, and
(2) OX,x is regular for all x ∈ X \ U .

Then there exists a finite étale morphism Y ′ → X whose restriction to X \D is Y .
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Proof. Let ξ ∈ X \ U be a generic point of an irreducible component of X \ U
of codimension 1. Then OX,ξ is a discrete valuation ring. As in the discussion above,
write Y ×U Spec(Kξ) = Spec(Lξ). Denote Bξ the integral closure of OX,ξ in Lξ . Our
assumption that Y is unramified over X in codimension 1 signifies that OX,ξ → Bξ is
finite étale. Thus we get Yξ → Spec(OX,ξ) finite étale and an isomorphism

Y ×U Spec(Kξ) ∼= Yξ ×Spec(OX,ξ) Spec(Kξ)
over Spec(Kξ). By Limits, Lemma 20.3 we find an open subscheme U ⊂ U ′ ⊂ X con-
taining ξ and a morphism Y ′ → U ′ of finite presentation whose restriction to U recovers
Y and whose restriction to Spec(OX,ξ) recovers Yξ . Finally, the morphism Y ′ → U ′ is
finite étale after possible shrinkingU ′ to a smaller open by Limits, Lemma 20.4. Repeating
the argument with the other generic points of X \ U of codimension 1 we may assume
that we have a finite étale morphism Y ′ → U ′ extending Y → U to an open subscheme
containing U ′ ⊂ X containing U and all codimension 1 points of X \ U . We finish by
applying Lemma 21.6 to Y ′ → U ′. Namely, all local ringsOX,x for x ∈ X \U ′ are regular
and have dim(OX,x) ≥ 2. Hence we have purity forOX,x by Lemma 21.3. �

Lemma 31.3. Let X be a locally Noetherian scheme. Let D ⊂ X be an effective
Cartier divisor such thatD is a regular scheme. Let Y → X \D be a finite étale morphism.
If Y is unramified over X in codimension 1, then there exists a finite étale morphism
Y ′ → X whose restriction to X \D is Y .

Proof. This is a special case of Lemma 31.2. First, D is nowhere dense in X (see
discussion in Divisors, Section 13) and hence X \D is dense in X . Second, the ringOX,x
is a regular local ring for all x ∈ D by Algebra, Lemma 106.7 and our assumption that
OD,x is regular. �

Example 31.4 (Standard tamely ramified morphism). LetA be a Noetherian ring. Let
f ∈ A be a nonzerodivisor such that A/fA is reduced. This implies that Ap is a discrete
valuation ring with uniformizer f for any minimal prime p over f . Let e ≥ 1 be an integer
which is invertible in A. Set

C = A[x]/(xe − f)
Then Spec(C) → Spec(A) is a finite locally free morphism which is étale over the spec-
trum of Af . The finite étale morphism

Spec(Cf ) −→ Spec(Af )
is tamely ramified over Spec(A) in codimension 1. The tameness follows immediately
from the characterization of tamely ramified extensions in More on Algebra, Lemma 114.7.

Here is a version of Abhyankar’s lemma for regular divisors.

Lemma 31.5 (Abhyankar’s lemma for regular divisor). LetX be a locally Noetherian
scheme. Let D ⊂ X be an effective Cartier divisor such that D is a regular scheme. Let
Y → X \ D be a finite étale morphism. If Y is tamely ramified over X in codimension
1, then étale locally on X the morphism Y → X is as given as a finite disjoint union of
standard tamely ramified morphisms as described in Example 31.4.

Proof. Before we start we note that OX,x is a regular local ring for all x ∈ D. This
follows from Algebra, Lemma 106.7 and our assumption that OD,x is regular. Below we
will also use that regular rings are normal, see Algebra, Lemma 157.5.
To prove the lemma we may work locally on X . Thus we may assume X = Spec(A) and
D ⊂ X is given by a nonzerodivisor f ∈ A. Then Y = Spec(B) as a finite étale scheme
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over Af . Let p1, . . . , pr be the minimal primes of A over f . Then Ai = Api is a discrete
valuation ring; denote its fraction field Ki. By assumption

Ki ⊗Af B =
∏

Lij

is a finite product of fields each tamely ramified with respect to Ai. Choose e ≥ 1 suffi-
ciently divisible (namely, divisible by all ramification indices for Lij over Ai as in More
on Algebra, Remark 111.6). Warning: at this point we do not know that e is invertible on
A.
Consider the finite free A-algebra

A′ = A[x]/(xe − f)
Observe that f ′ = x is a nonzerodivisor inA′ and thatA′/f ′A′ ∼= A/fA is a regular ring.
SetB′ = B⊗AA′ = B⊗AfA′

f ′ . By Abhyankar’s lemma (More on Algebra, Lemma 114.4)
we see that Spec(B′) is unramified over Spec(A′) in codimension 1. Namely, by Lemma
31.1 we see that Spec(B′) is still at least tamely ramified over Spec(A′) in codimension
1. But Abhyankar’s lemma tells us that the ramification indices have all become equal
to 1. By Lemma 31.3 we conclude that Spec(B′) → Spec(A′

f ′) extends to a finite étale
morphism Spec(C)→ Spec(A′).

For a point x ∈ D corresponding to p ∈ V (f) denote Ash a strict henselization of Ap =
OX,x. Observe thatAsh andAsh/fAsh = (A/fA)sh (Algebra, Lemma 156.4) are regular
local rings, see More on Algebra, Lemma 45.10. Observe that A′ has a unique prime p′

lying over p with identical residue field. Thus

(A′)sh = Ash ⊗A A′ = Ash[x]/(xe − f)
is a strictly henselian local ring finite over Ash (Algebra, Lemma 156.3). Since f ′ is a
nonzerodivisor in (A′)sh and since (A′)sh/f ′(A′)sh = Ash/fAsh is regular, we conclude
that (A′)sh is a regular local ring (see above). Observe that the induced extension

Q(Ash) ⊂ Q((A′)sh) = Q(Ash)[x]/(xe − f)
of fraction fields has degree e (and not less). Since A′ → C is finite étale we see that
Ash ⊗A C is a finite product of copies of (A′)sh (Algebra, Lemma 153.6). We have the
inclusions

Ashf ⊂ Ash ⊗A B ⊂ Ash ⊗A B′ = Ash ⊗A Cf ′

and each of these rings is Noetherian and normal; this follows from Algebra, Lemma 163.9
for the ring in the middle. Taking total quotient rings, using the product decomposition
of Ash ⊗A C and using Fields, Lemma 24.3 we conclude that there is an isomorphism

Q(Ash)⊗A B ∼=
∏

i∈I
Fi, Fi ∼= Q(Ash)[x]/(xei − f)

of Q(Ash)-algebras for some finite set I and integers ei|e. Since Ash ⊗A B is a normal
ring, it must be the integral closure ofAsh in its total quotient ring. We conclude that we
have an isomorphism

Ash ⊗A B ∼=
∏

Ashf [x]/(xei − f)

over Ashf because the algebras Ash[x]/(xei − f) are regular and hence normal. The dis-
criminant of Ash[x]/(xei − f) over Ash is eeii fei−1 (up to sign; calculation omitted).
Since Af → B is finite étale we see that ei must be invertible in Ashf . On the other
hand, since Af → B is tamely ramified over Spec(A) in codimension 1, by Lemma 31.1
the ring map Ashf → Ash ⊗A B is tamely ramified over Spec(Ash) in codimension 1.
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This implies ei is nonzero in Ash/fAsh (as it must map to an invertible element of the
fraction field of this domain by definition of tamely ramified extensions). We conclude
that V (ei) ⊂ Spec(Ash) has codimension ≥ 2 which is absurd unless it is empty. In
other words, ei is an invertible element of Ash. We conclude that the pullback of Y to
Spec(Ash) is indeed a finite disjoint union of standard tamely ramified morphisms.

To finish the proof, we write Ash = colimAλ as a filtered colimit of étale A-algebras Aλ.
The isomorphism

Ash ⊗A B ∼=
∏

i∈I
Ashf [x]/(xei − f)

descends to an isomorphism

Aλ ⊗A B ∼=
∏

i∈I
(Aλ)f [x]/(xei − f)

for suitably large λ. After increasing λ a bit more we may assume ei is invertible in Aλ.
Then Spec(Aλ) → Spec(A) is the desired étale neighbourhood of x and the proof is
complete. �

Lemma 31.6. In the situation of Lemma 31.5 the normalization of X in Y is a finite
locally free morphism π : Y ′ → X such that

(1) the restriction of Y ′ to X \D is isomorphic to Y ,
(2) D′ = π−1(D)red is an effective Cartier divisor on Y ′, and
(3) D′ is a regular scheme.

Moreover, étale locally on X the morphism Y ′ → X is a finite disjoint union of mor-
phisms

Spec(A[x]/(xe − f))→ Spec(A)
where A is a Noetherian ring, f ∈ A is a nonzerodivisor with A/fA regular, and e ≥ 1 is
invertible in A.

Proof. This is just an addendum to Lemma 31.5 and in fact the truth of this lemma
follows almost immediately if you’ve read the proof of that lemma. But we can also deduce
the lemma from the result of Lemma 31.5. Namely, taking the normalization of X in Y
commutes with étale base change, see More on Morphisms, Lemma 19.2. Hence we see
that we may prove the statements on the local structure of Y ′ → X étale locally on X .
Thus, by Lemma 31.5 we may assume that X = Spec(A) where A is a Noetherian ring,
that we have a nonzerodivisor f ∈ A such that A/fA is regular, and that Y is a finite
disjoint union of spectra of rings Af [x]/(xe − f) where e is invertible in A. We omit the
verification that the integral closure ofA inAf [x]/(xe−f) is equal toA′ = A[x]/(xe−f).
(To see this argue that the localizations of A′ at primes lying over (f) are regular.) We
omit the details. �

Lemma 31.7. In the situation of Lemma 31.5 let Y ′ → X be as in Lemma 31.6. Let R
be a discrete valuation ring with fraction field K. Let

t : Spec(R)→ X

be a morphism such that the scheme theoretic inverse image t−1D is the reduced closed
point of Spec(R).

(1) If t|Spec(K) lifts to a point of Y , then we get a lift t′ : Spec(R) → Y ′ such that
Y ′ → X is étale along t′(Spec(R)).

(2) If Spec(K) ×X Y is isomorphic to a disjoint union of copies of Spec(K), then
Y ′ → X is finite étale over an open neighbourhood of t(Spec(R)).
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Proof. By the valuative criterion of properness applied to the finite morphism Y ′ →
X we see that Spec(K)-valued points ofY matching t|Spec(K) as maps intoX lift uniquely
to morphisms t′ : Spec(R)→ Y ′. Thus statement (1) make sense.

Choose an étale neighbourhood (U, u) → (X, t(mR)) such that U = Spec(A) and such
that Y ′×XU → U has a description as in Lemma 31.6 for some f ∈ A. Then Spec(R)×X
U → Spec(R) is étale and surjective. IfR′ denotes the local ring of Spec(R)×X U lying
over the closed point of Spec(R), then R′ is a discrete valuation ring and R ⊂ R′ is an
unramified extension of discrete valuation rings (More on Algebra, Lemma 44.4). The
assumption on t signifies that the map A→ R′ corresponding to

Spec(R′)→ Spec(R)×X U → U

maps f to a uniformizer π ∈ R′. Now suppose that

Y ′ ×X U =
∐

i∈I
Spec(A[x]/(xei − f))

for some ei ≥ 1. Then we see that

Spec(R′)×U (Y ′ ×X U) =
∐

i∈I
Spec(R′[x]/(xei − π))

The rings R′[x]/(xei − f) are discrete valuation rings (More on Algebra, Lemma 114.2)
and hence have no map into the fraction field of R′ unless ei = 1.

Proof of (1). In this case the map t′ : Spec(R) → Y ′ base changes to determine a corre-
sponding map t′′ : Spec(R′)→ Y ′×XU which must map into a summand corresponding
to i ∈ I with ei = 1 by the discussion above. Thus clearly we see that Y ′ ×X U → U is
étale along the image of t′′. Since being étale is a property one can check after étale base
chamge, this proves (1).

Proof of (2). In this case the assumption implies that ei = 1 for all i ∈ I . Thus Y ′×XU →
U is finite étale and we conclude as before. �

Lemma 31.8. LetS be an integral normal Noetherian scheme with generic point η. Let
f : X → S be a smooth morphism with geometrically connected fibres. Let σ : S → X
be a section of f . Let Z → Xη be a finite étale Galois cover (Section 7) with group G of
order invertible on S such that Z has a κ(η)-rational point mapping to σ(η). Then there
exists a finite étale Galois cover Y → X with group G whose restriction to Xη is Z.

Proof. First assumeS = Spec(R) is the spectrum of a discrete valuation ringRwith
closed point s ∈ S. Then Xs is an effective Cartier divisor in X and Xs is regular as a
scheme smooth over a field. Moreover the generic fibreXη is the open subschemeX \Xs.
It follows from More on Algebra, Lemma 112.2 and the assumption on G that Z is tamely
ramified over X in codimension 1. Let Z ′ → X be as in Lemma 31.6. Observe that the
action of G on Z extends to an action of G on Z ′. By Lemma 31.7 we see that Z ′ → X
is finite étale over an open neighbourhood of σ(y). Since Xs is irreducible, this implies
Z → Xη is unramified over X in codimension 1. Then we get a finite étale morphism
Y → X whose restriction to Xη is Z by Lemma 31.3. Of course Y ∼= Z ′ (details omitted;
hint: compute étale locally) and hence Y is a Galois cover with group G.

General case. Let U ⊂ S be a maximal open subscheme such that there exists a finite étale
Galois cover Y → X ×S U with group G whose restriction to Xη is isomorphic to Z.
Assume U 6= S to get a contradiction. Let s ∈ S \ U be a generic point of an irreducible
component of S \ U . Then the inverse image Us of U in Spec(OS,s) is the punctured
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spectrum ofOS,s. We claim Y ×S Us → X×S Us is the restriction of a finite étale Galois
cover Y ′

s → X ×S Spec(OS,s) with group G.
Let us first prove the claim produces the desired contradiction. By Limits, Lemma 20.3 we
find an open subschemeU ⊂ U ′ ⊂ S containing s and a morphism Y ′′ → U ′ of finite pre-
sentation whose restriction to U recovers Y ′ → U and whose restriction to Spec(OS,s)
recovers Y ′

s . Moreover, by the equivalence of categories given in the lemma, we may as-
sume after shrinkingU ′ there is a morphism Y ′′ → U ′×SX and there is an action ofG on
Y ′′ overU ′×SX compatible with the given morphisms and actions after base change toU
and Spec(OS,s). After shrinking U ′ further if necessary, we may assume Y ′′ → U ×S X
is finite étale, see Limits, Lemma 20.4. This means we have found a strictly larger open
of S over which Y extends to a finite étale Galois cover with group G which gives the
contradiction we were looking for.
Proof of the claim. We may and do replace S by Spec(OS,s). Then S = Spec(A) where
(A,m) is a local normal domain. Also U ⊂ S is the punctured spectrum and we have
a finite étale Galois cover Y → X ×S U with group G. If dim(A) = 1, then we can
construct the extension of Y to a Galois covering ofX by the first paragraph of the proof.
Thus we may assume dim(A) ≥ 2 and hence depth(A) ≥ 2 as S is normal, see Algebra,
Lemma 157.4. Since X → S is flat, we conclude that depth(OX,x) ≥ 2 for every point
x ∈ X mapping to s, see Algebra, Lemma 163.2. Let

Y ′ −→ X

be the finite morphism constructed in Lemma 21.5 using Y → X ×S U . Observe that we
obtain a canonical G-action on Y . Thus all that remains is to show that Y ′ is étale over
X . In fact, by Lemma 26.3 (for example) it even suffices to show that Y ′ → X is étale over
the (unique) generic point of the fibre Xs. This we do by a local calculation in a (formal)
neighbourhood of σ(s).
Choose an affine open Spec(B) ⊂ X containing σ(s). ThenA→ B is a smooth ring map
which has a section σ : B → A. Denote I = Ker(σ) and denoteB∧ the I-adic completion
of B. Then B∧ ∼= A[[x1, . . . , xd]] for some d ≥ 0, see Algebra, Lemma 139.4. Of course
B → B∧ is flat (Algebra, Lemma 97.2) and the image of Spec(B∧) → X contains the
generic point of Xs. Let V ⊂ Spec(B∧) be the inverse image of U . Consider the finite
étale morphism

W = Y ×(X×SU) V −→ V

By the compatibility of the construction of Y ′ with flat base change in Lemma 21.5 we
find that the base chang Y ′ ×X Spec(B∧) → Spec(B∧) is constructed from W → V
over Spec(B∧) by the procedure in Lemma 21.5. Set V0 = V ∩ V (x1, . . . , xd) ⊂ V and
W0 = W×V V0. This is a normal integral scheme which maps into σ(S) by the morphism
Spec(B∧)→ X and in fact is identified with σ(U). Hence we know that W0 → V0 = U
completely decomposes as this is true for its generic fibre by our assumption on Z → Xη

having a κ(η)-rational point lying over σ(η) (and of course theG-action then implies the
whole fibre Zσ(η) is a disjoint union of copies of the scheme η = Spec(κ(η))). Finally, by
Lemma 26.1 we have

W0 ×U V ∼= W

This shows that W is a disjoint union of copies of V and hence Y ′ ×X Spec(B∧) is a
disjoint union of copies of Spec(B∧) and the proof is complete. �

Lemma 31.9. Let S be a quasi-compact and quasi-separated integral normal scheme
with generic point η. Let f : X → S be a quasi-compact and quasi-separated smooth
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morphism with geometrically connected fibres. Let σ : S → X be a section of f . Let
Z → Xη be a finite étale Galois cover (Section 7) with group G of order invertible on
S such that Z has a κ(η)-rational point mapping to σ(η). Then there exists a finite étale
Galois cover Y → X with group G whose restriction to Xη is Z.

Proof. If S is Noetherian, then this is the result of Lemma 31.8. The general case
follows from this by a standard limit argument. We strongly urge the reader to skip the
proof.

We can write S = limSi as a directed limit of a system of schemes with affine transition
morphisms and with Si of finite type over Z, see Limits, Proposition 5.4. For each i let
S → S′

i → Si be the normalization of Si in S , see Morphisms, Section 53. Combining
Algebra, Proposition 162.16 Morphisms, Lemmas 53.15 and 53.13 we conclude that S′

i is
of finite type over Z, finite over Si, and that S′

i is an integral normal scheme such that
S → S′

i is dominant. By Morphisms, Lemma 53.5 we obtain transition morphisms S′
i′ →

S′
i compatible with the transition morphisms Si′ → Si and with the morphisms with

source S. We claim that S = limS′
i. Proof of claim omitted (hint: look on affine opens

over a chosen affine open in Si for some i to translate this into a straightforward algebra
problem). We conclude that we may write S = limSi as a directed limit of a system of
normal integral schemes Si with affine transition morphisms and with Si of finite type
over Z.

For some i we can find a smooth morphism Xi → Si of finite presentation whose base
change to S is X → S. See Limits, Lemmas 10.1 and 8.9. After increasing i we may
assume the section σ lifts to a section σi : Si → Xi (by the equivalence of categories in
Limits, Lemma 10.1). We may replaceXi by the open subschemeX0

i of it studied in More
on Morphisms, Section 29 since the image of X → Xi clearly maps into it (openness
by More on Morphisms, Lemma 29.6). Thus we may assume the fibres of Xi → Si are
geometrically connected. After increasing i we may assume |G| is invertible on Si. Let
ηi ∈ Si be the generic point. Since Xη is the limit of the schemes Xi,ηi we can use the
exact same arguments to descent Z → Xη to some finite étale Galois cover Zi → Xi,ηi

after possibly increasing i. See Lemma 14.1. After possibly increasing i once more we may
assume Zi has a κ(ηi)-rational point mapping to σi(ηi). Then we apply the lemma in the
Noetherian case and we pullback to X to conclude. �

32. Tricks in positive characteristic

In Piotr Achinger’s paper [?] it is shown that an affine scheme in positive characteristic is
always aK(π, 1). In this section we explain the more elementary parts of [?]. Namely, we
show that for a field k of positive characteristic an affine scheme étale over An

k is actually
finite étale over An

k (by a different morphism). We also show that a closed immersion
of connected affine schemes in positive characteristic induces an injective map on étale
fundamental groups.

Let k be a field of characteristic p > 0. Let

k[x1, . . . , xn] −→ A

be a surjection of finite type k-algebras whose source is the polynomial algebra onx1, . . . , xn.
Denote I ⊂ k[x1, . . . , xn] the kernel so that we have A = k[x1, . . . , xn]/I . We do not
assume A is nonzero (in other words, we allow the case where A is the zero ring and
I = k[x1, . . . , xn]). Finally, we assume given a finite étale ring map π : A→ B.
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Suppose given k, n, k[x1, . . . , xn] → A, I, π : A → B. Let C be a k-algebra. Consider
commutative diagrams

B

C // C/ϕ(I)C

τ

OO

k[x1, . . . , xn]

ϕ

OO

// A

OO
π

cc

where ϕ is an étale k-algebra map and τ is a surjective k-algebra map. Let C,ϕ, τ be
given. For any r ≥ 0 and y1, . . . , yr ∈ C which generate C as an algebra over Im(ϕ)
let s = s(r, y1, . . . , yr) ∈ {0, . . . , r} be the maximal element such that yi is integral over
Im(ϕ) for 1 ≤ i ≤ s. We define NF (C,ϕ, τ) to be the minimum value of r − s =
r−s(r, y1, . . . , yr) for all choices of r and y1, . . . , yr as above. Observe thatNF (C,ϕ, τ)
is 0 if and only if ϕ is finite.

Lemma 32.1. In the situation above, if NF (C,ϕ, τ) > 0, then there exist an étale
k-algebra map ϕ′ and a surjective k-algebra map τ ′ fitting into the commutative diagram

B

C // C/ϕ′(I)C

τ ′

OO

k[x1, . . . , xn]

ϕ′

OO

// A

OO
π

cc

with NF (C,ϕ′, τ ′) < NF (C,ϕ, τ).

Proof. Choose r ≥ 0 and y1, . . . , yr ∈ C which generate C over Im(ϕ) and let 0 ≤
s ≤ r be such that y1, . . . , ys are integral over Im(ϕ) such that r−s = NF (C,ϕ, τ) > 0.
SinceB is finite overA, the image of ys+1 inB satisfies a monic polynomial overA. Hence
we can find d ≥ 1 and f1, . . . , fd ∈ k[x1, . . . , xn] such that

z = yds+1 + ϕ(f1)yd−1
s+1 + . . .+ ϕ(fd) ∈ J = Ker(C → C/ϕ(I)C τ−→ B)

Since ϕ : k[x1, . . . , xn]→ C is étale, we can find a nonzero and nonconstant polynomial
g ∈ k[T1, . . . , Tn+1] such that

g(ϕ(x1), . . . , ϕ(xn), z) = 0 in C

To see this you can use for example that C ⊗ϕ,k[x1,...,xn] k(x1, . . . , xn) is a finite product
of finite separable field extensions of k(x1, . . . , xn) (see Algebra, Lemmas 143.4) and hence
z satisfies a monic polynomial over k(x1, . . . , xn). Clearing denominators we obtain g.

The existence of g and Algebra, Lemma 115.2 produce integers e1, e2, . . . , en ≥ 1 such
that z is integral over the subring C ′ of C generated by t1 = ϕ(x1) + zpe1 , . . . , tn =
ϕ(xn) + zpen . Of course, the elements ϕ(x1), . . . , ϕ(xn) are also integral over C ′ as are
the elements y1, . . . , ys. Finally, by our choice of z the element ys+1 is integral over C ′

too.
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Consider the ring map

ϕ′ : k[x1, . . . , xn] −→ C, xi 7−→ ti

with image C ′. Since d(ϕ(xi)) = d(ti) = d(ϕ′(xi)) in ΩC/k (and this is where we use
the characteristic of k is p > 0) we conclude that ϕ′ is étale because ϕ is étale, see Algebra,
Lemma 151.9. Observe that ϕ′(xi)− ϕ(xi) = ti − ϕ(xi) = zpei is in the kernel J of the
map C → C/ϕ(I)C → B by our choice of z as an element of J . Hence for f ∈ I the
element

ϕ′(f) = f(t1, . . . , tn) = f(ϕ(x1) + zpe1 , . . . , ϕ(xn) + zpen) = ϕ(f) + element of (z)

is in J as well. In other words, ϕ′(I)C ⊂ J and we obtain a surjection

τ ′ : C/ϕ′(I)C −→ C/J ∼= B

of algebras étale overA. Finally, the algebraC is generated by the elementsϕ(x1), . . . , ϕ(xn), y1, . . . , yr
over C ′ = Im(ϕ′) with ϕ(x1), . . . , ϕ(xn), y1, . . . , ys+1 integral over C ′ = Im(ϕ′).
Hence NF (C,ϕ′, τ ′) < r − s = NF (C,ϕ, τ). This finishes the proof. �

Lemma 32.2. Let k be a field of characteristic p > 0. Let X → An
k be an étale

morphism with X affine. Then there exists a finite étale morphism X → An
k .

Proof. Write X = Spec(C). Set A = 0 and denote I = k[x1, . . . , xn]. By as-
sumption there exists some étale k-algebra map ϕ : k[x1, . . . , xn] → C. Denote τ :
C/ϕ(I)C → 0 the unique surjection. We may choose ϕ and τ such that N(C,ϕ, τ) is
minimal. By Lemma 32.1 we get N(C,ϕ, τ) = 0. Hence ϕ is finite étale. �

Lemma 32.3. Let k be a field of characteristic p > 0. Let Z ⊂ An
k be a closed sub-

scheme. Let Y → Z be finite étale. There exists a finite étale morphism f : U → An
k such

that there is an open and closed immersion Y → f−1(Z) over Z.

Proof. Let us turn the problem into algebra. Write An
k = Spec(k[x1, . . . , xn]).

Then Z = Spec(A) where A = k[x1, . . . , xn]/I for some ideal I ⊂ k[x1, . . . , xn]. Write
Y = Spec(B) so that Y → Z corresponds to the finite étale k-algebra map A→ B.

By Algebra, Lemma 143.10 there exists an étale ring map

ϕ : k[x1, . . . , xn]→ C

and a surjectiveA-algebra map τ : C/ϕ(I)C → B. (We can even chooseC,ϕ, τ such that
τ is an isomorphism, but we won’t use this). We may choose ϕ and τ such thatN(C,ϕ, τ)
is minimal. By Lemma 32.1 we get N(C,ϕ, τ) = 0. Hence ϕ is finite étale.

Let f : U = Spec(C) → An
k be the finite étale morphism corresponding to ϕ. The

morphism Y → f−1(Z) = Spec(C/ϕ(I)C) induced by τ is a closed immersion as τ is
surjective and open as it is an étale morphism by Morphisms, Lemma 36.18. This finishes
the proof. �

Here is the main result.

Proposition 32.4. Let p be a prime number. Let i : Z → X be a closed immersion
of connected affine schemes over Fp. For any geometric point z of Z the map

π1(Z, z)→ π1(X, z)

is injective.
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Proof. Let Y → Z be a finite étale morphism. It suffices to construct a finite étale
morphism f : U → X such that Y is isomorphic to an open and closed subscheme of
f−1(Z), see Lemma 4.4. Write Y = Spec(A) and X = Spec(R) so the closed immersion
Y → X is given by a surjection R → A. We may write A = colimAi as the filtered
colimit of its Fp-subalgebras of finite type. By Lemma 14.1 we can find an i and a finite
étale morphism Yi → Zi = Spec(Ai) such that Y = Z ×Zi Yi.
Choose a surjection Fp[x1, . . . , xn]→ Ai. This determines a closed immersion

Zi = Spec(Ai) −→ Xi = An
Fp = Spec(Fp[x1, . . . , xn])

By the universal property of polynomial algebras and since R → A is surjective, we can
find a commutative diagram

Fp[x1, . . . , xn] //

��

Ai

��
R // A

of Fp-algebras. Thus we have a commutative diagram

Yi // Zi // Xi

Y

OO

// Z

OO

// X

OO

whose right square is cartesian. Clearly, if we can find fi : Ui → Xi finite étale such
that Yi is isomorphic to an open and closed subscheme of f−1

i (Zi), then the base change
f : U → X of fi byX → Xi is a solution to our problem. Thus we conclude by applying
Lemma 32.3 to Yi → Zi → Xi = An

Fp . �
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CHAPTER 59

Étale Cohomology

1. Introduction

This chapter is the first in a series of chapter on the étale cohomology of schemes. In this
chapter we discuss the very basics of the étale topology and cohomology of abelian sheaves
in this topology. Many of the topics discussed may be safely skipped on a first reading;
please see the advice in the next section as to how to decide what to skip.

The initial version of this chapter was formed by the notes of the first part of a course on
étale cohomology taught by Johan de Jong at Columbia University in the Fall of 2009.
The original note takers were Thibaut Pugin, Zachary Maddock and Min Lee. The second
part of the course can be found in the chapter on the trace formula, see The Trace Formula,
Section 1.

2. Which sections to skip on a first reading?

We want to use the material in this chapter for the development of theory related to al-
gebraic spaces, Deligne-Mumford stacks, algebraic stacks, etc. Thus we have added some
pretty technical material to the original exposition of étale cohomology for schemes. The
reader can recognize this material by the frequency of the word “topos”, or by discussions
related to set theory, or by proofs dealing with very general properties of morphisms of
schemes. Some of these discussions can be skipped on a first reading.

In particular, we suggest that the reader skip the following sections:
(1) Comparing big and small topoi, Section 99.
(2) Recovering morphisms, Section 40.
(3) Push and pull, Section 41.
(4) Property (A), Section 42.
(5) Property (B), Section 43.
(6) Property (C), Section 44.
(7) Topological invariance of the small étale site, Section 45.
(8) Integral universally injective morphisms, Section 47.
(9) Big sites and pushforward, Section 48.

(10) Exactness of big lower shriek, Section 49.
Besides these sections there are some sporadic results that may be skipped that the reader
can recognize by the keywords given above.

3. Prologue

These lectures are about another cohomology theory. The first thing to remark is that the
Zariski topology is not entirely satisfactory. One of the main reasons that it fails to give
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the results that we would want is that if X is a complex variety and F is a constant sheaf
then

Hi(X,F) = 0, for all i > 0.
The reason for that is the following. In an irreducible scheme (a variety in particular),
any two nonempty open subsets meet, and so the restriction mappings of a constant sheaf
are surjective. We say that the sheaf is flasque. In this case, all higher Čech cohomology
groups vanish, and so do all higher Zariski cohomology groups. In other words, there are
“not enough” open sets in the Zariski topology to detect this higher cohomology.

On the other hand, if X is a smooth projective complex variety, then

H2 dimX
Betti (X(C),Λ) = Λ for Λ = Z, Z/nZ,

where X(C) means the set of complex points of X . This is a feature that would be nice
to replicate in algebraic geometry. In positive characteristic in particular.

4. The étale topology

It is very hard to simply “add” extra open sets to refine the Zariski topology. One efficient
way to define a topology is to consider not only open sets, but also some schemes that lie
over them. To define the étale topology, one considers all morphisms ϕ : U → X which
are étale. If X is a smooth projective variety over C, then this means

(1) U is a disjoint union of smooth varieties, and
(2) ϕ is (analytically) locally an isomorphism.

The word “analytically” refers to the usual (transcendental) topology over C. So the sec-
ond condition means that the derivative of ϕ has full rank everywhere (and in particular
all the components of U have the same dimension as X).

A double cover – loosely defined as a finite degree 2 map between varieties – for example

Spec(C[t]) −→ Spec(C[t]), t 7−→ t2

will not be an étale morphism if it has a fibre consisting of a single point. In the example
this happens when t = 0. For a finite map between varieties over C to be étale all the
fibers should have the same number of points. Removing the point t = 0 from the source
of the map in the example will make the morphism étale. But we can remove other points
from the source of the morphism also, and the morphism will still be étale. To consider
the étale topology, we have to look at all such morphisms. Unlike the Zariski topology,
these need not be merely open subsets of X , even though their images always are.

Definition 4.1. A family of morphisms {ϕi : Ui → X}i∈I is called an étale covering
if each ϕi is an étale morphism and their images cover X , i.e., X =

⋃
i∈I ϕi(Ui).

This “defines” the étale topology. In other words, we can now say what the sheaves are.
An étale sheaf F of sets (resp. abelian groups, vector spaces, etc) on X is the data:

(1) for each étale morphism ϕ : U → X a set (resp. abelian group, vector space, etc)
F(U),

(2) for each pair U, U ′ of étale schemes over X , and each morphism U → U ′ over
X (which is automatically étale) a restriction map ρU

′

U : F(U ′)→ F(U)
These data have to satisfy the condition that ρUU = id in case of the identity morphism
U → U and that ρU

′

U ◦ ρU
′′

U ′ = ρU
′′

U when we have morphisms U → U ′ → U ′′ of schemes
étale over X as well as the following sheaf axiom:
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(*) for every étale covering {ϕi : Ui → U}i∈I , the diagram

∅ // F(U) // Πi∈IF(Ui)
//
// Πi,j∈IF(Ui ×U Uj)

is exact in the category of sets (resp. abelian groups, vector spaces, etc).

Remark 4.2. In the last statement, it is essential not to forget the case where i = j
which is in general a highly nontrivial condition (unlike in the Zariski topology). In fact,
frequently important coverings have only one element.

Since the identity is an étale morphism, we can compute the global sections of an étale
sheaf, and cohomology will simply be the corresponding right-derived functors. In other
words, once more theory has been developed and statements have been made precise, there
will be no obstacle to defining cohomology.

5. Feats of the étale topology

For a natural number n ∈ N = {1, 2, 3, 4, . . .} it is true that
H2
étale(P1

C,Z/nZ) = Z/nZ.
More generally, ifX is a complex variety, then its étale Betti numbers with coefficients in
a finite field agree with the usual Betti numbers of X(C), i.e.,

dimFq H
2i
étale(X,Fq) = dimFq H

2i
Betti(X(C),Fq).

This is extremely satisfactory. However, these equalities only hold for torsion coefficients,
not in general. For integer coefficients, one has

H2
étale(P1

C,Z) = 0.
By contrast H2

Betti(P1(C),Z) = Z as the topological space P1(C) is homeomorphic to
a 2-sphere. There are ways to get back to nontorsion coefficients from torsion ones by a
limit procedure which we will come to shortly.

6. A computation

How do we compute the cohomology of P1
C with coefficients Λ = Z/nZ? We use Čech

cohomology. A covering of P1
C is given by the two standard opens U0, U1, which are

both isomorphic to A1
C, and whose intersection is isomorphic to A1

C \ {0} = Gm,C. It
turns out that the Mayer-Vietoris sequence holds in étale cohomology. This gives an exact
sequence

Hi−1
étale(U0∩U1,Λ)→ Hi

étale(P1
C ,Λ)→ Hi

étale(U0,Λ)⊕Hi
étale(U1,Λ)→ Hi

étale(U0∩U1,Λ).
To get the answer we expect, we would need to show that the direct sum in the third term
vanishes. In fact, it is true that, as for the usual topology,

Hq
étale(A

1
C,Λ) = 0 for q ≥ 1,

and
Hq
étale(A

1
C \ {0},Λ) =

{
Λ if q = 1, and
0 for q ≥ 2.

These results are already quite hard (what is an elementary proof?). Let us explain how
we would compute this once the machinery of étale cohomology is at our disposal.
Higher cohomology. This is taken care of by the following general fact: if X is an affine
curve over C, then

Hq
étale(X,Z/nZ) = 0 for q ≥ 2.
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This is proved by considering the generic point of the curve and doing some Galois coho-
mology. So we only have to worry about the cohomology in degree 1.

Cohomology in degree 1. We use the following identifications:

H1
étale(X,Z/nZ) =

{
sheaves of sets F on the étale site Xétale endowed with an

action Z/nZ×F → F such that F is a Z/nZ-torsor.

}/
∼=

=
{

morphisms Y → X which are finite étale together
with a free Z/nZ action such that X = Y/(Z/nZ).

}/
∼= .

The first identification is very general (it is true for any cohomology theory on a site) and
has nothing to do with the étale topology. The second identification is a consequence of
descent theory. The last set describes a collection of geometric objects on which we can
get our hands.

The curve A1
C has no nontrivial finite étale covering and hence H1

étale(A1
C,Z/nZ) = 0.

This can be seen either topologically or by using the argument in the next paragraph.

Let us describe the finite étale coverings ϕ : Y → A1
C \ {0}. It suffices to consider the

case where Y is connected, which we assume. We are going to find out what Y can be by
applying the Riemann-Hurwitz formula (of course this is a bit silly, and you can go ahead
and skip the next section if you like). Say that this morphism is n to 1, and consider a
projective compactification

Y �
� //

ϕ

��

Ȳ

ϕ̄

��
A1

C \ {0}
� � // P1

C

Even though ϕ is étale and does not ramify, ϕ̄ may ramify at 0 and ∞. Say that the
preimages of 0 are the points y1, . . . , yr with indices of ramification e1, . . . er , and that
the preimages of ∞ are the points y′

1, . . . , y
′
s with indices of ramification d1, . . . ds. In

particular,
∑
ei = n =

∑
dj . Applying the Riemann-Hurwitz formula, we get

2gY − 2 = −2n+
∑

(ei − 1) +
∑

(dj − 1)

and therefore gY = 0, r = s = 1 and e1 = d1 = n. Hence Y ∼= A1
C \ {0}, and it is easy

to see that ϕ(z) = λzn for some λ ∈ C∗. After reparametrizing Y we may assume λ = 1.
Thus our covering is given by taking the nth root of the coordinate on A1

C \ {0}.

Remember that we need to classify the coverings of A1
C \ {0} together with free Z/nZ-

actions on them. In our case any such action corresponds to an automorphism ofY sending
z to ζnz, where ζn is a primitive nth root of unity. There are φ(n) such actions (here φ(n)
means the Euler function). Thus there are exactly φ(n) connected finite étale coverings
with a given free Z/nZ-action, each corresponding to a primitive nth root of unity. We
leave it to the reader to see that the disconnected finite étale degreen coverings of A1

C\{0}
with a given free Z/nZ-action correspond one-to-one with nth roots of 1 which are not
primitive. In other words, this computation shows that

H1
étale(A1

C \ {0},Z/nZ) = Hom(µn(C),Z/nZ) ∼= Z/nZ.

The first identification is canonical, the second isn’t, see Remark 69.5. Since the proof
of Riemann-Hurwitz does not use the computation of cohomology, the above actually
constitutes a proof (provided we fill in the details on vanishing, etc).
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7. Nontorsion coefficients

To study nontorsion coefficients, one makes the following definition:

Hi
étale(X,Q`) :=

(
limnH

i
étale(X,Z/`nZ)

)
⊗Z` Q`.

The symbol limn denote the limit of the system of cohomology groupsHi
étale(X,Z/`nZ)

indexed by n, see Categories, Section 21. Thus we will need to study systems of sheaves
satisfying some compatibility conditions.

8. Sheaf theory

At this point we start talking about sites and sheaves in earnest. There is an amazing
amount of useful abstract material that could fit in the next few sections. Some of this
material is worked out in earlier chapters, such as the chapter on sites, modules on sites,
and cohomology on sites. We try to refrain from adding too much material here, just
enough so the material later in this chapter makes sense.

9. Presheaves

A reference for this section is Sites, Section 2.

Definition 9.1. Let C be a category. A presheaf of sets (respectively, an abelian
presheaf) on C is a functor Copp → Sets (resp. Ab).

Terminology. If U ∈ Ob(C), then elements of F(U) are called sections of F over U . For
ϕ : V → U in C , the map F(ϕ) : F(U) → F(V ) is called the restriction map and is
often denoted s 7→ s|V or sometimes s 7→ ϕ∗s. The notation s|V is ambiguous since
the restriction map depends on ϕ, but it is a standard abuse of notation. We also use the
notation Γ(U,F) = F(U).
Saying that F is a functor means that if W → V → U are morphisms in C and s ∈
Γ(U,F) then (s|V )|W = s|W , with the abuse of notation just seen. Moreover, the restric-
tion mappings corresponding to the identity morphisms idU : U → U are the identity.
The category of presheaves of sets (respectively of abelian presheaves) on C is denoted
PSh(C) (resp. PAb(C)). It is the category of functors from Copp to Sets (resp. Ab), which is
to say that the morphisms of presheaves are natural transformations of functors. We only
consider the categories PSh(C) and PAb(C) when the category C is small. (Our convention
is that a category is small unless otherwise mentioned, and if it isn’t small it should be listed
in Categories, Remark 2.2.)

Example 9.2. Given an object X ∈ Ob(C), we consider the functor
hX : Copp −→ Sets

U 7−→ hX(U) = MorC(U,X)
V

ϕ−→ U 7−→ ϕ ◦ − : hX(U)→ hX(V ).
It is a presheaf, called the representable presheaf associated to X . It is not true that repre-
sentable presheaves are sheaves in every topology on every site.

Lemma 9.3 (Yoneda). Let C be a category, and X,Y ∈ Ob(C). There is a natural
bijection

MorC(X,Y ) −→ MorPSh(C)(hX , hY )
ψ 7−→ hψ = ψ ◦ − : hX → hY .

Proof. See Categories, Lemma 3.5. �
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10. Sites

Definition 10.1. Let C be a category. A family of morphisms with fixed target U =
{ϕi : Ui → U}i∈I is the data of

(1) an object U ∈ C ,
(2) a set I (possibly empty), and
(3) for all i ∈ I , a morphism ϕi : Ui → U of C with target U .

There is a notion of a morphism of families of morphisms with fixed target. A special case
of that is the notion of a refinement. A reference for this material is Sites, Section 8.

Definition 10.2. A site1 consists of a category C and a set Cov(C) consisting of fam-
ilies of morphisms with fixed target called coverings, such that

(1) (isomorphism) if ϕ : V → U is an isomorphism in C , then {ϕ : V → U} is a
covering,

(2) (locality) if {ϕi : Ui → U}i∈I is a covering and for all i ∈ I we are given a
covering {ψij : Uij → Ui}j∈Ii , then

{ϕi ◦ ψij : Uij → U}(i,j)∈
∏

i∈I
{i}×Ii

is also a covering, and
(3) (base change) if {Ui → U}i∈I is a covering and V → U is a morphism in C , then

(a) for all i ∈ I the fibre product Ui ×U V exists in C , and
(b) {Ui ×U V → V }i∈I is a covering.

For us the category underlying a site is always “small”, i.e., its collection of objects form
a set, and the collection of coverings of a site is a set as well (as in the definition above).
We will mostly, in this chapter, leave out the arguments that cut down the collection of
objects and coverings to a set. For further discussion, see Sites, Remark 6.3.

Example 10.3. IfX is a topological space, then it has an associated siteXZar defined
as follows: the objects of XZar are the open subsets of X , the morphisms between these
are the inclusion mappings, and the coverings are the usual topological (surjective) cover-
ings. Observe that if U, V ⊂ W ⊂ X are open subsets then U ×W V = U ∩ V exists:
this category has fiber products. All the verifications are trivial and everything works as
expected.

11. Sheaves

Definition 11.1. A presheafF of sets (resp. abelian presheaf) on a site C is said to be
a separated presheaf if for all coverings {ϕi : Ui → U}i∈I ∈ Cov(C) the map

F(U) −→
∏

i∈I
F(Ui)

is injective. Here the map is s 7→ (s|Ui)i∈I . The presheaf F is a sheaf if for all coverings
{ϕi : Ui → U}i∈I ∈ Cov(C), the diagram

(11.1.1) F(U) // ∏
i∈I F(Ui)

//
//
∏
i,j∈I F(Ui ×U Uj),

where the first map is s 7→ (s|Ui)i∈I and the two maps on the right are (si)i∈I 7→
(si|Ui×UUj ) and (si)i∈I 7→ (sj |Ui×UUj ), is an equalizer diagram in the category of sets
(resp. abelian groups).

1What we call a site is a called a category endowed with a pretopology in [?, Exposé II, Définition 1.3]. In
[?] it is called a category with a Grothendieck topology.
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Remark 11.2. For the empty covering (where I = ∅), this implies that F(∅) is an
empty product, which is a final object in the corresponding category (a singleton, for both
Sets and Ab).

Example 11.3. Working this out for the site XZar associated to a topological space,
see Example 10.3, gives the usual notion of sheaves.

Definition 11.4. We denote Sh(C) (resp. Ab(C)) the full subcategory of PSh(C)
(resp. PAb(C)) whose objects are sheaves. This is the category of sheaves of sets (resp.
abelian sheaves) on C.

12. The example of G-sets

Let G be a group and define a site TG as follows: the underlying category is the category
of G-sets, i.e., its objects are sets endowed with a left G-action and the morphisms are
equivariant maps; and the coverings of TG are the families {ϕi : Ui → U}i∈I satisfying
U =

⋃
i∈I ϕi(Ui).

There is a special object in the site TG, namely theG-setG endowed with its natural action
by left translations. We denote it GG. Observe that there is a natural group isomorphism

ρ : Gopp −→ AutG-Sets(GG)
g 7−→ (h 7→ hg).

In particular, for any presheaf F , the set F(GG) inherits a G-action via ρ. (Note that by
contravariance of F , the set F(GG) is again a left G-set.) In fact, the functor

Sh(TG) −→ G-Sets
F 7−→ F(GG)

is an equivalence of categories. Its quasi-inverse is the functor X 7→ hX . Without giving
the complete proof (which can be found in Sites, Section 9) let us try to explain why this
is true.

(1) If S is a G-set, we can decompose it into orbits S =
∐
i∈I Oi. The sheaf axiom

for the covering {Oi → S}i∈I says that

F(S) // ∏
i∈I F(Oi)

//
//
∏
i,j∈I F(Oi ×S Oj)

is an equalizer. Observing that fibered products in G-Sets are induced from
fibered products in Sets, and using the fact that F(∅) is a G-singleton, we get
that ∏

i,j∈I
F(Oi ×S Oj) =

∏
i∈I
F(Oi)

and the two maps above are in fact the same. Therefore the sheaf axiom merely
says that F(S) =

∏
i∈I F(Oi).

(2) If S is the G-set S = G/H and F is a sheaf on TG, then we claim that

F(G/H) = F(GG)H

and in particular F({∗}) = F(GG)G. To see this, let’s use the sheaf axiom for
the covering {GG→ G/H} of S. We have

GG×G/H GG ∼= G×H
(g1, g2) 7−→ (g1, g

−1
1 g2)
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is a disjoint union of copies of GG (as a G-set). Hence the sheaf axiom reads

F(G/H) // F(GG) //
//
∏
h∈H F(GG)

where the two maps on the right are s 7→ (s)h∈H and s 7→ (hs)h∈H . Therefore
F(G/H) = F(GG)H as claimed.

This doesn’t quite prove the claimed equivalence of categories, but it shows at least that
a sheaf F is entirely determined by its sections over GG. Details (and set theoretical re-
marks) can be found in Sites, Section 9.

13. Sheafification

Definition 13.1. Let F be a presheaf on the site C and U = {Ui → U} ∈ Cov(C).
We define the zeroth Čech cohomology group of F with respect to U by

Ȟ0(U ,F) =
{

(si)i∈I ∈
∏

i∈I
F(Ui) such that si|Ui×UUj = sj |Ui×UUj

}
.

There is a canonical map F(U)→ Ȟ0(U ,F), s 7→ (s|Ui)i∈I . We say that a morphism of
coverings from a coveringV = {Vj → V }j∈J toU is a triple (χ, α, χj), whereχ : V → U
is a morphism, α : J → I is a map of sets, and for all j ∈ J the morphism χj fits into a
commutative diagram

Vj χj
//

��

Uα(j)

��
V

χ // U.

Given the data χ, α, {χj}j∈J we define

Ȟ0(U ,F) −→ Ȟ0(V,F)
(si)i∈I 7−→

(
χ∗
j

(
sα(j)

))
j∈J .

We then claim that
(1) the map is well-defined, and
(2) depends only on χ and is independent of the choice of α, {χj}j∈J .

We omit the proof of the first fact. To see part (2), consider another triple (ψ, β, ψj) with
χ = ψ. Then we have the commutative diagram

Vj (χj ,ψj)
//

��

Uα(j) ×U Uβ(j)

xx &&
Uα(j)

''

Uβ(j)

ww
V

χ=ψ // U.

Given a section s ∈ F(U), its image in F(Vj) under the map given by (χ, α, {χj}j∈J) is
χ∗
jsα(j), and its image under the map given by (ψ, β, {ψj}j∈J) is ψ∗

j sβ(j). These two are
equal since by assumption s ∈ Ȟ0(U ,F) and hence both are equal to the pullback of the
common value

sα(j)|Uα(j)×UUβ(j) = sβ(j)|Uα(j)×UUβ(j)

pulled back by the map (χj , ψj) in the diagram.
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Theorem 13.2. Let C be a site and F a presheaf on C.
(1) The rule

U 7→ F+(U) := colimU covering of U Ȟ
0(U ,F)

is a presheaf. And the colimit is a directed one.
(2) There is a canonical map of presheaves F → F+.
(3) If F is a separated presheaf then F+ is a sheaf and the map in (2) is injective.
(4) F+ is a separated presheaf.
(5) F# = (F+)+ is a sheaf, and the canonical map induces a functorial isomorphism

HomPSh(C)(F ,G) = HomSh(C)(F#,G)
for any G ∈ Sh(C).

Proof. See Sites, Theorem 10.10. �

In other words, this means that the natural map F → F# is a left adjoint to the forgetful
functor Sh(C)→ PSh(C).

14. Cohomology

The following is the basic result that makes it possible to define cohomology for abelian
sheaves on sites.

Theorem 14.1. The category of abelian sheaves on a site is an abelian category which
has enough injectives.

Proof. See Modules on Sites, Lemma 3.1 and Injectives, Theorem 7.4. �

So we can define cohomology as the right-derived functors of the sections functor: if U ∈
Ob(C) and F ∈ Ab(C),

Hp(U,F) := RpΓ(U,F) = Hp(Γ(U, I•))
where F → I• is an injective resolution. To do this, we should check that the functor
Γ(U,−) is left exact. This is true and is part of why the category Ab(C) is abelian, see
Modules on Sites, Lemma 3.1. For more general discussion of cohomology on sites (in-
cluding the global sections functor and its right derived functors), see Cohomology on
Sites, Section 2.

15. The fpqc topology

Before doing étale cohomology we study a bit the fpqc topology, since it works well for
quasi-coherent sheaves.

Definition 15.1. Let T be a scheme. An fpqc covering of T is a family {ϕi : Ti →
T}i∈I such that

(1) each ϕi is a flat morphism and
⋃
i∈I ϕi(Ti) = T , and

(2) for each affine open U ⊂ T there exists a finite set K , a map i : K → I and
affine opens Ui(k) ⊂ Ti(k) such that U =

⋃
k∈K ϕi(k)(Ui(k)).

Remark 15.2. The first condition corresponds to fp, which stands for fidèlement plat,
faithfully flat in french, and the second to qc, quasi-compact. The second part of the first
condition is unnecessary when the second condition holds.

Example 15.3. Examples of fpqc coverings.
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(1) Any Zariski open covering of T is an fpqc covering.
(2) A family {Spec(B) → Spec(A)} is an fpqc covering if and only if A → B is a

faithfully flat ring map.
(3) If f : X → Y is flat, surjective and quasi-compact, then {f : X → Y } is an fpqc

covering.
(4) The morphism ϕ :

∐
x∈A1

k
Spec(OA1

k
,x) → A1

k , where k is a field, is flat and
surjective. It is not quasi-compact, and in fact the family {ϕ} is not an fpqc
covering.

(5) Write A2
k = Spec(k[x, y]). Denote ix : D(x) → A2

k and iy : D(y) →
A2
k the standard opens. Then the families {ix, iy, Spec(k[[x, y]]) → A2

k} and
{ix, iy, Spec(OA2

k
,0)→ A2

k} are fpqc coverings.

Lemma 15.4. The collection of fpqc coverings on the category of schemes satisfies
the axioms of site.

Proof. See Topologies, Lemma 9.7. �

It seems that this lemma allows us to define the fpqc site of the category of schemes. How-
ever, there is a set theoretical problem that comes up when considering the fpqc topology,
see Topologies, Section 9. It comes from our requirement that sites are “small”, but that
no small category of schemes can contain a cofinal system of fpqc coverings of a given
nonempty scheme. Although this does not strictly speaking prevent us from defining
“partial” fpqc sites, it does not seem prudent to do so. The work-around is to allow the no-
tion of a sheaf for the fpqc topology (see below) but to prohibit considering the category
of all fpqc sheaves.

Definition 15.5. Let S be a scheme. The category of schemes over S is denoted
Sch/S. Consider a functor F : (Sch/S)opp → Sets, in other words a presheaf of sets.
We say F satisfies the sheaf property for the fpqc topology if for every fpqc covering
{Ui → U}i∈I of schemes over S the diagram (11.1.1) is an equalizer diagram.

We similarly say that F satisfies the sheaf property for the Zariski topology if for every
open covering U =

⋃
i∈I Ui the diagram (11.1.1) is an equalizer diagram. See Schemes,

Definition 15.3. Clearly, this is equivalent to saying that for every scheme T over S the
restriction of F to the opens of T is a (usual) sheaf.

Lemma 15.6. Let F be a presheaf on Sch/S. Then F satisfies the sheaf property for
the fpqc topology if and only if

(1) F satisfies the sheaf property with respect to the Zariski topology, and
(2) for every faithfully flat morphism Spec(B) → Spec(A) of affine schemes over

S , the sheaf axiom holds for the covering {Spec(B)→ Spec(A)}. Namely, this
means that

F(Spec(A)) // F(Spec(B)) //
// F(Spec(B ⊗A B))

is an equalizer diagram.

Proof. See Topologies, Lemma 9.13. �

An alternative way to think of a presheaf F on Sch/S which satisfies the sheaf condition
for the fpqc topology is as the following data:

(1) for each T/S , a usual (i.e., Zariski) sheaf FT on TZar ,
(2) for every map f : T ′ → T over S , a restriction mapping f−1FT → FT ′
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such that
(a) the restriction mappings are functorial,
(b) if f : T ′ → T is an open immersion then the restriction mapping f−1FT → FT ′

is an isomorphism, and
(c) for every faithfully flat morphism Spec(B)→ Spec(A) over S , the diagram

FSpec(A)(Spec(A)) // FSpec(B)(Spec(B)) //
// FSpec(B⊗AB)(Spec(B ⊗A B))

is an equalizer.
Data (1) and (2) and conditions (a), (b) give the data of a presheaf on Sch/S satisfying the
sheaf condition for the Zariski topology. By Lemma 15.6 condition (c) then suffices to get
the sheaf condition for the fpqc topology.

Example 15.7. Consider the presheaf
F : (Sch/S)opp −→ Ab

T/S 7−→ Γ(T,ΩT/S).
The compatibility of differentials with localization implies thatF is a sheaf on the Zariski
site. However, it does not satisfy the sheaf condition for the fpqc topology. Namely,
consider the case S = Spec(Fp) and the morphism

ϕ : V = Spec(Fp[v])→ U = Spec(Fp[u])
given by mapping u to vp. The family {ϕ} is an fpqc covering, yet the restriction mapping
F(U)→ F(V ) sends the generator du to d(vp) = 0, so it is the zero map, and the diagram

F(U) 0 // F(V ) //
// F(V ×U V )

is not an equalizer. We will see later that F does in fact give rise to a sheaf on the étale
and smooth sites.

Lemma 15.8. Any representable presheaf on Sch/S satisfies the sheaf condition for
the fpqc topology.

Proof. See Descent, Lemma 13.7. �

We will return to this later, since the proof of this fact uses descent for quasi-coherent
sheaves, which we will discuss in the next section. A fancy way of expressing the lemma
is to say that the fpqc topology is weaker than the canonical topology, or that the fpqc
topology is subcanonical. In the setting of sites this is discussed in Sites, Section 12.

Remark 15.9. The fpqc is finer than the Zariski, étale, smooth, syntomic, and fppf
topologies. Hence any presheaf satisfying the sheaf condition for the fpqc topology will be
a sheaf on the Zariski, étale, smooth, syntomic, and fppf sites. In particular representable
presheaves will be sheaves on the étale site of a scheme for example.

Example 15.10. Let S be a scheme. Consider the additive group scheme Ga,S = A1
S

over S , see Groupoids, Example 5.3. The associated representable presheaf is given by
hGa,S

(T ) = MorS(T,Ga,S) = Γ(T,OT ).
By the above we now know that this is a presheaf of sets which satisfies the sheaf condition
for the fpqc topology. On the other hand, it is clearly a presheaf of rings as well. Hence
we can think of this as a functor

O : (Sch/S)opp −→ Rings
T/S 7−→ Γ(T,OT )
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which satisfies the sheaf condition for the fpqc topology. Correspondingly there is a no-
tion ofO-module, and so on and so forth.

16. Faithfully flat descent

In this section we discuss faithfully flat descent for quasi-coherent modules. More pre-
cisely, we will prove quasi-coherent modules satisfy effective descent with respect to fpqc
coverings.

Definition 16.1. Let U = {ti : Ti → T}i∈I be a family of morphisms of schemes
with fixed target. A descent datum for quasi-coherent sheaves with respect to U is a col-
lection ((Fi)i∈I , (ϕij)i,j∈I) where

(1) Fi is a quasi-coherent sheaf on Ti, and
(2) ϕij : pr∗

0Fi → pr∗
1Fj is an isomorphism of modules on Ti ×T Tj ,

such that the cocycle condition holds: the diagrams

pr∗
0Fi

pr∗
02ϕik ##

pr∗
01ϕij // pr∗

1Fj

pr∗
12ϕjk{{

pr∗
2Fk

commute on Ti ×T Tj ×T Tk. This descent datum is called effective if there exist a quasi-
coherent sheaf F over T and OTi -module isomorphisms ϕi : t∗iF ∼= Fi compatible with
the maps ϕij , namely

ϕij = pr∗
1(ϕj) ◦ pr∗

0(ϕi)−1.

In this and the next section we discuss some ingredients of the proof of the following
theorem, as well as some related material.

Theorem 16.2. If V = {Ti → T}i∈I is an fpqc covering, then all descent data for
quasi-coherent sheaves with respect to V are effective.

Proof. See Descent, Proposition 5.2. �

In other words, the fibered category of quasi-coherent sheaves is a stack on the fpqc site.
The proof of the theorem is in two steps. The first one is to realize that for Zariski coverings
this is easy (or well-known) using standard glueing of sheaves (see Sheaves, Section 33) and
the locality of quasi-coherence. The second step is the case of an fpqc covering of the form
{Spec(B) → Spec(A)} where A → B is a faithfully flat ring map. This is a lemma in
algebra, which we now present.
Descent of modules. If A→ B is a ring map, we consider the complex

(B/A)• : B → B ⊗A B → B ⊗A B ⊗A B → . . .

where B is in degree 0, B ⊗A B in degree 1, etc, and the maps are given by
b 7→ 1⊗ b− b⊗ 1,

b0 ⊗ b1 7→ 1⊗ b0 ⊗ b1 − b0 ⊗ 1⊗ b1 + b0 ⊗ b1 ⊗ 1,
etc.

Lemma 16.3. IfA→ B is faithfully flat, then the complex (B/A)• is exact in positive
degrees, and H0((B/A)•) = A.

Proof. See Descent, Lemma 3.6. �
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Grothendieck proves this in three steps. Firstly, he assumes that the map A → B has a
section, and constructs an explicit homotopy to the complex whereA is the only nonzero
term, in degree 0. Secondly, he observes that to prove the result, it suffices to do so after a
faithfully flat base change A→ A′, replacing B with B′ = B ⊗A A′. Thirdly, he applies
the faithfully flat base change A → A′ = B and remark that the map A′ = B → B′ =
B ⊗A B has a natural section.

The same strategy proves the following lemma.

Lemma 16.4. If A → B is faithfully flat and M is an A-module, then the complex
(B/A)• ⊗AM is exact in positive degrees, and H0((B/A)• ⊗AM) = M .

Proof. See Descent, Lemma 3.6. �

Definition 16.5. LetA→ B be a ring map andN aB-module. A descent datum for
N with respect toA→ B is an isomorphism ϕ : N ⊗AB ∼= B⊗AN ofB⊗AB-modules
such that the diagram of B ⊗A B ⊗A B-modules

N ⊗A B ⊗A B

ϕ02 ((

ϕ01 // B ⊗A N ⊗A B

ϕ12vv
B ⊗A B ⊗A N

commutes where ϕ01 = ϕ⊗ idB and similarly for ϕ12 and ϕ02.

If N ′ = B ⊗AM for some A-module M, then it has a canonical descent datum given by
the map

ϕcan : N ′ ⊗A B → B ⊗A N ′

b0 ⊗m⊗ b1 7→ b0 ⊗ b1 ⊗m.

Definition 16.6. A descent datum (N,ϕ) is called effective if there exists an A-
module M such that (N,ϕ) ∼= (B ⊗AM,ϕcan), with the obvious notion of isomorphism
of descent data.

Theorem 16.2 is a consequence the following result.

Theorem 16.7. IfA→ B is faithfully flat then descent data with respect to A→ B
are effective.

Proof. See Descent, Proposition 3.9. See also Descent, Remark 3.11 for an alternative
view of the proof. �

Remarks 16.8. The results on descent of modules have several applications:
(1) The exactness of the Čech complex in positive degrees for the covering {Spec(B)→

Spec(A)} where A → B is faithfully flat. This will give some vanishing of co-
homology.

(2) If (N,ϕ) is a descent datum with respect to a faithfully flat map A → B, then
the corresponding A-module is given by

M = Ker
(
N −→ B ⊗A N
n 7−→ 1⊗ n− ϕ(n⊗ 1)

)
.

See Descent, Proposition 3.9.
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17. Quasi-coherent sheaves

We can apply the descent of modules to study quasi-coherent sheaves.

Proposition 17.1. For any quasi-coherent sheaf F on S the presheaf

Fa : Sch/S → Ab
(f : T → S) 7→ Γ(T, f∗F)

is anO-module which satisfies the sheaf condition for the fpqc topology.

Proof. This is proved in Descent, Lemma 8.1. We indicate the proof here. As estab-
lished in Lemma 15.6, it is enough to check the sheaf property on Zariski coverings and
faithfully flat morphisms of affine schemes. The sheaf property for Zariski coverings is
standard scheme theory, since Γ(U, i∗F) = F(U) when i : U ↪→ S is an open immersion.

For {Spec(B)→ Spec(A)} with A → B faithfully flat and F|Spec(A) = M̃ this corre-
sponds to the fact that M = H0 ((B/A)• ⊗AM), i.e., that

0→M → B ⊗AM → B ⊗A B ⊗AM
is exact by Lemma 16.4. �

There is an abstract notion of a quasi-coherent sheaf on a ringed site. We briefly introduce
this here. For more information please consult Modules on Sites, Section 23. Let C be a
category, and let U be an object of C. Then C/U indicates the category of objects over U ,
see Categories, Example 2.13. If C is a site, then C/U is a site as well, namely the coverings
of V/U are families {Vi/U → V/U} of morphisms of C/U with fixed target such that
{Vi → V } is a covering of C. Moreover, given any sheaf F on C the restriction F|C/U
(defined in the obvious manner) is a sheaf as well. See Sites, Section 25 for details.

Definition 17.2. Let C be a ringed site, i.e., a site endowed with a sheaf of rings O.
A sheaf of O-modules F on C is called quasi-coherent if for all U ∈ Ob(C) there exists a
covering {Ui → U}i∈I of C such that the restrictionF|C/Ui is isomorphic to the cokernel
of anO-linear map of freeO-modules⊕

k∈K
O|C/Ui −→

⊕
l∈L
O|C/Ui .

The direct sum over K is the sheaf associated to the presheaf V 7→
⊕

k∈K O(V ) and
similarly for the other.

Although it is useful to be able to give a general definition as above this notion is not well
behaved in general.

Remark 17.3. In the case where C has a final object, e.g. S , it suffices to check the
condition of the definition for U = S in the above statement. See Modules on Sites,
Lemma 23.3.

Theorem 17.4 (Meta theorem on quasi-coherent sheaves). Let S be a scheme. Let C
be a site. Assume that

(1) the underlying category C is a full subcategory of Sch/S ,
(2) any Zariski covering of T ∈ Ob(C) can be refined by a covering of C ,
(3) S/S is an object of C ,
(4) every covering of C is an fpqc covering of schemes.

Then the presheafO is a sheaf on C and any quasi-coherentO-module on (C,O) is of the
form Fa for some quasi-coherent sheaf F on S.
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Proof. After some formal arguments this is exactly Theorem 16.2. Details omitted.
In Descent, Proposition 8.9 we prove a more precise version of the theorem for the big
Zariski, fppf, étale, smooth, and syntomic sites of S , as well as the small Zariski and étale
sites of S. �

In other words, there is no difference between quasi-coherent modules on the scheme S
and quasi-coherent O-modules on sites C as in the theorem. More precise statements for
the big and small sites (Sch/S)fppf , Sétale, etc can be found in Descent, Sections 8, 9,
and 10. In this chapter we will sometimes refer to a “site as in Theorem 17.4” in order to
conveniently state results which hold in any of those situations.

18. Čech cohomology

Our next goal is to use descent theory to show thatHi(C,Fa) = Hi
Zar(S,F) for all quasi-

coherent sheaves F on S , and any site C as in Theorem 17.4. To this end, we introduce
Čech cohomology on sites. See [?] and Cohomology on Sites, Sections 8, 9 and 10 for more
details.

Definition 18.1. Let C be a category, U = {Ui → U}i∈I a family of morphisms of
C with fixed target, and F ∈ PAb(C) an abelian presheaf. We define the Čech complex
Č•(U ,F) by∏

i0∈I
F(Ui0)→

∏
i0,i1∈I

F(Ui0 ×U Ui1)→
∏

i0,i1,i2∈I
F(Ui0 ×U Ui1 ×U Ui2)→ . . .

where the first term is in degree 0, and the maps are the usual ones. Again, it is essential
to allow the case i0 = i1 etc. The Čech cohomology groups are defined by

Ȟp(U ,F) = Hp(Č•(U ,F)).

Lemma 18.2. The functor Č•(U ,−) is exact on the category PAb(C).

In other words, if 0 → F1 → F2 → F3 → 0 is a short exact sequence of presheaves of
abelian groups, then

0→ Č• (U ,F1)→ Č•(U ,F2)→ Č•(U ,F3)→ 0
is a short exact sequence of complexes.

Proof. This follows at once from the definition of a short exact sequence of presheaves.
Namely, as the category of abelian presheaves is the category of functors on some category
with values in Ab, it is automatically an abelian category: a sequence F1 → F2 → F3 is
exact in PAb if and only if for all U ∈ Ob(C), the sequence F1(U) → F2(U) → F3(U)
is exact in Ab. So the complex above is merely a product of short exact sequences in each
degree. See also Cohomology on Sites, Lemma 9.1. �

This shows that Ȟ•(U ,−) is a δ-functor. We now proceed to show that it is a universal
δ-functor. We thus need to show that it is an effaceable functor. We start by recalling the
Yoneda lemma.

Lemma 18.3 (Yoneda Lemma). For any presheaf F on a category C there is a functo-
rial isomorphism

HomPSh(C)(hU ,F) = F(U).

Proof. See Categories, Lemma 3.5. �
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Given a set E we denote (in this section) Z[E] the free abelian group on E. In a formula
Z[E] =

⊕
e∈E Z, i.e., Z[E] is a free Z-module having a basis consisting of the elements of

E. Using this notation we introduce the free abelian presheaf on a presheaf of sets.

Definition 18.4. Let C be a category. Given a presheaf of sets G , we define the free
abelian presheaf on G , denoted ZG , by the rule

ZG(U) = Z[G(U)]

for U ∈ Ob(C) with restriction maps induced by the restriction maps of G. In the special
case G = hU we write simply ZU = ZhU .

The functor G 7→ ZG is left adjoint to the forgetful functor PAb(C)→ PSh(C). Thus, for
any presheaf F , there is a canonical isomorphism

HomPAb(C)(ZU ,F) = HomPSh(C)(hU ,F) = F(U)

the last equality by the Yoneda lemma. In particular, we have the following result.

Lemma 18.5. The Čech complex Č•(U ,F) can be described explicitly as follows

Č•(U ,F) =

∏
i0∈I

HomPAb(C)(ZUi0 ,F)→
∏

i0,i1∈I
HomPAb(C)(ZUi0 ×UUi1 ,F)→ . . .


= HomPAb(C)

⊕
i0∈I

ZUi0 ←
⊕
i0,i1∈I

ZUi0 ×UUi1 ← . . .

 ,F


Proof. This follows from the formula above. See Cohomology on Sites, Lemma 9.3.

�

This reduces us to studying only the complex in the first argument of the last Hom.

Lemma 18.6. The complex of abelian presheaves

Z•
U :

⊕
i0∈I

ZUi0 ←
⊕
i0,i1∈I

ZUi0 ×UUi1 ←
⊕

i0,i1,i2∈I
ZUi0 ×UUi1 ×UUi2 ← . . .

is exact in all degrees except 0 in PAb(C).

Proof. For any V ∈ Ob(C) the complex of abelian groups Z•
U (V ) is

Z
[∐

i0∈I MorC(V,Ui0)
]
← Z

[∐
i0,i1∈I MorC(V,Ui0 ×U Ui1)

]
← . . . =⊕

ϕ:V→U

(
Z
[∐

i0∈I Morϕ(V,Ui0)
]
← Z

[∐
i0,i1∈I Morϕ(V,Ui0)×Morϕ(V,Ui1)

]
← . . .

)
where

Morϕ(V,Ui) = {V → Ui such that V → Ui → U equals ϕ}.
Set Sϕ =

∐
i∈I Morϕ(V,Ui), so that

Z•
U (V ) =

⊕
ϕ:V→U

(Z[Sϕ]← Z[Sϕ × Sϕ]← Z[Sϕ × Sϕ × Sϕ]← . . .) .

Thus it suffices to show that for each S = Sϕ, the complex

Z[S]← Z[S × S]← Z[S × S × S]← . . .
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is exact in negative degrees. To see this, we can give an explicit homotopy. Fix s ∈ S and
define K : n(s0,...,sp) 7→ n(s,s0,...,sp). One easily checks that K is a nullhomotopy for the
operator

δ : η(s0,...,sp) 7→
∑p

i=0
(−1)pη(s0,...,ŝi,...,sp).

See Cohomology on Sites, Lemma 9.4 for more details. �

Lemma 18.7. Let C be a category. If I is an injective object of PAb(C) and U is a
family of morphisms with fixed target in C , then Ȟp(U , I) = 0 for all p > 0.

Proof. The Čech complex is the result of applying the functor HomPAb(C)(−, I) to
the complex Z•

U , i.e.,

Ȟp(U , I) = Hp(HomPAb(C)(Z•
U , I)).

But we have just seen that Z•
U is exact in negative degrees, and the functor HomPAb(C)(−, I)

is exact, hence HomPAb(C)(Z•
U , I) is exact in positive degrees. �

Theorem 18.8. On PAb(C) the functors Ȟp(U ,−) are the right derived functors of
Ȟ0(U ,−).

Proof. By the Lemma 18.7, the functors Ȟp(U ,−) are universal δ-functors since they
are effaceable. So are the right derived functors of Ȟ0(U ,−). Since they agree in degree
0, they agree by the universal property of universal δ-functors. For more details see Co-
homology on Sites, Lemma 9.6. �

Remark 18.9. Observe that all of the preceding statements are about presheaves so
we haven’t made use of the topology yet.

19. The Čech-to-cohomology spectral sequence

This spectral sequence is fundamental in proving foundational results on cohomology of
sheaves.

Lemma 19.1. The forgetful functor Ab(C) → PAb(C) transforms injectives into in-
jectives.

Proof. This is formal using the fact that the forgetful functor has a left adjoint,
namely sheafification, which is an exact functor. For more details see Cohomology on
Sites, Lemma 10.1. �

Theorem 19.2. Let C be a site. For any covering U = {Ui → U}i∈I of U ∈ Ob(C)
and any abelian sheaf F on C there is a spectral sequence

Ep,q2 = Ȟp(U ,Hq(F))⇒ Hp+q(U,F),
where Hq(F) is the abelian presheaf V 7→ Hq(V,F).

Proof. Choose an injective resolution F → I• in Ab(C), and consider the double
complex Č•(U , I•) and the maps

Γ(U, I•) // Č•(U , I•)

Č•(U ,F)

OO
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Here the horizontal map is the natural map Γ(U, I•)→ Č0(U , I•) to the left column, and
the vertical map is induced by F → I0 and lands in the bottom row. By assumption, I•

is a complex of injectives in Ab(C), hence by Lemma 19.1, it is a complex of injectives in
PAb(C). Thus, the rows of the double complex are exact in positive degrees (Lemma 18.7),
and the kernel of Č0(U , I•) → Č1(U , I•) is equal to Γ(U, I•), since I• is a complex of
sheaves. In particular, the cohomology of the total complex is the standard cohomology
of the global sections functor H0(U,F).

For the vertical direction, the qth cohomology group of the pth column is∏
i0,...,ip

Hq(Ui0 ×U . . .×U Uip ,F) =
∏

i0,...,ip

Hq(F)(Ui0 ×U . . .×U Uip)

in the entryEp,q1 . So this is a standard double complex spectral sequence, and theE2-page
is as prescribed. For more details see Cohomology on Sites, Lemma 10.6. �

Remark 19.3. This is a Grothendieck spectral sequence for the composition of func-
tors

Ab(C) −→ PAb(C) Ȟ0

−−→ Ab.

20. Big and small sites of schemes

Let S be a scheme. Let τ be one of the topologies we will be discussing. Thus τ ∈
{fppf, syntomic, smooth, étale, Zariski}. Of course if you are only interested in the
étale topology, then you can simply assume τ = étale throughout. Moreover, we will
discuss étale morphisms, étale coverings, and étale sites in more detail starting in Section
25. In order to proceed with the discussion of cohomology of quasi-coherent sheaves it is
convenient to introduce the big τ -site and in case τ ∈ {étale, Zariski}, the small τ -site
of S. In order to do this we first introduce the notion of a τ -covering.

Definition 20.1. (See Topologies, Definitions 7.1, 6.1, 5.1, 4.1, and 3.1.) Let τ ∈
{fppf, syntomic, smooth, étale, Zariski}. A family of morphisms of schemes {fi :
Ti → T}i∈I with fixed target is called a τ -covering if and only if each fi is flat of finite pre-
sentation, syntomic, smooth, étale, resp. an open immersion, and we have

⋃
fi(Ti) = T .

The class of all τ -coverings satisfies the axioms (1), (2) and (3) of Definition 10.2 (our
definition of a site), see Topologies, Lemmas 7.3, 6.3, 5.3, 4.3, and 3.2.

Let us introduce the sites we will be working with. Contrary to what happens in [?], we
do not want to choose a universe. Instead we pick a “partial universe” (which is a suitably
large set as in Sets, Section 5), and consider all schemes contained in this set. Of course
we make sure that our favorite base scheme S is contained in the partial universe. Having
picked the underlying category we pick a suitably large set of τ -coverings which turns
this into a site. The details are in the chapter on topologies on schemes; there is a lot of
freedom in the choices made, but in the end the actual choices made will not affect the étale
(or other) cohomology ofS (just as in [?] the actual choice of universe doesn’t matter at the
end). Moreover, the way the material is written the reader who is happy using strongly
inaccessible cardinals (i.e., universes) can do so as a substitute.

Definition 20.2. Let S be a scheme. Let τ ∈ {fppf, syntomic, smooth, étale,
Zariski}.

(1) A big τ -site of S is any of the sites (Sch/S)τ constructed as explained above and
in more detail in Topologies, Definitions 7.8, 6.8, 5.8, 4.8, and 3.7.
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(2) If τ ∈ {étale, Zariski}, then the small τ -site of S is the full subcategory Sτ of
(Sch/S)τ whose objects are schemesT overS whose structure morphismT → S
is étale, resp. an open immersion. A covering in Sτ is a covering {Ui → U} in
(Sch/S)τ such that U is an object of Sτ .

The underlying category of the site (Sch/S)τ has reasonable “closure” properties, i.e.,
given a scheme T in it any locally closed subscheme of T is isomorphic to an object of
(Sch/S)τ . Other such closure properties are: closed under fibre products of schemes, tak-
ing countable disjoint unions, taking finite type schemes over a given scheme, given an
affine scheme Spec(R) one can complete, localize, or take the quotient of R by an ideal
while staying inside the category, etc. On the other hand, for example arbitrary disjoint
unions of schemes in (Sch/S)τ will take you outside of it. Also note that, given an object
T of (Sch/S)τ there will exist τ -coverings {Ti → T}i∈I (as in Definition 20.1) which
are not coverings in (Sch/S)τ for example because the schemes Ti are not objects of the
category (Sch/S)τ . But our choice of the sites (Sch/S)τ is such that there always does
exist a covering {Uj → T}j∈J of (Sch/S)τ which refines the covering {Ti → T}i∈I , see
Topologies, Lemmas 7.7, 6.7, 5.7, 4.7, and 3.6. We will mostly ignore these issues in this
chapter.

If F is a sheaf on (Sch/S)τ or Sτ , then we denote

Hp
τ (U,F), in particular Hp

τ (S,F)

the cohomology groups of F over the object U of the site, see Section 14. Thus we have
Hp
fppf (S,F), Hp

syntomic(S,F), Hp
smooth(S,F), Hp

étale(S,F), and Hp
Zar(S,F). The last

two are potentially ambiguous since they might refer to either the big or small étale or
Zariski site. However, this ambiguity is harmless by the following lemma.

Lemma 20.3. Let τ ∈ {étale, Zariski}. IfF is an abelian sheaf defined on (Sch/S)τ ,
then the cohomology groups ofF over S agree with the cohomology groups ofF|Sτ over
S.

Proof. By Topologies, Lemmas 3.14 and 4.14 the functors Sτ → (Sch/S)τ satisfy
the hypotheses of Sites, Lemma 21.8. Hence our lemma follows from Cohomology on Sites,
Lemma 7.2. �

The category of sheaves on the big or small étale site of S depends only on the full subcate-
gory of (Sch/S)étale orSétale consisting of affines and one only needs to consider the stan-
dard étale coverings between them (as defined below). This gives rise to sites (Aff/S)étale
and Saffine,étale, see Topologies, Definition 4.8. The comparison results are proven in
Topologies, Lemmas 4.11 and 4.12. Here is our definition of standard coverings in some of
the topologies we will consider in this chapter.

Definition 20.4. (See Topologies, Definitions 7.5, 6.5, 5.5, 4.5, and 3.4.) Let τ ∈
{fppf, syntomic, smooth, étale, Zariski}. Let T be an affine scheme. A standard τ -
covering of T is a family {fj : Uj → T}j=1,...,m with each Uj is affine, and each fj flat
and of finite presentation, standard syntomic, standard smooth, étale, resp. the immersion
of a standard principal open in T and T =

⋃
fj(Uj).

Lemma 20.5. Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. Any τ -covering
of an affine scheme can be refined by a standard τ -covering.

Proof. See Topologies, Lemmas 7.4, 6.4, 5.4, 4.4, and 3.3. �
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For completeness we state and prove the invariance under choice of partial universe of
the cohomology groups we are considering. We will prove invariance of the small étale
topos in Lemma 21.2 below. For notation and terminology used in this lemma we refer to
Topologies, Section 12.

Lemma 20.6. Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. LetS be a scheme.
Let (Sch/S)τ and (Sch′/S)τ be two big τ -sites of S , and assume that the first is contained
in the second. In this case

(1) for any abelian sheafF ′ defined on (Sch′/S)τ and any objectU of (Sch/S)τ we
have

Hp
τ (U,F ′|(Sch/S)τ ) = Hp

τ (U,F ′)
In words: the cohomology of F ′ over U computed in the bigger site agrees with
the cohomology of F ′ restricted to the smaller site over U .

(2) for any abelian sheaf F on (Sch/S)τ there is an abelian sheaf F ′ on (Sch/S)′
τ

whose restriction to (Sch/S)τ is isomorphic to F .

Proof. By Topologies, Lemma 12.2 the inclusion functor (Sch/S)τ → (Sch′/S)τ
satisfies the assumptions of Sites, Lemma 21.8. This implies (2) and (1) follows from Co-
homology on Sites, Lemma 7.2. �

21. The étale topos

A topos is the category of sheaves of sets on a site, see Sites, Definition 15.1. Hence it is
customary to refer to the use the phrase “étale topos of a scheme” to refer to the category
of sheaves on the small étale site of a scheme. Here is the formal definition.

Definition 21.1. Let S be a scheme.
(1) The étale topos, or the small étale topos ofS is the category Sh(Sétale) of sheaves

of sets on the small étale site of S.
(2) The Zariski topos, or the small Zariski topos of S is the category Sh(SZar) of

sheaves of sets on the small Zariski site of S.
(3) For τ ∈ {fppf, syntomic, smooth, étale, Zariski} a big τ -topos is the cate-

gory of sheaves of set on a big τ -topos of S.

Note that the small Zariski topos of S is simply the category of sheaves of sets on the
underlying topological space of S , see Topologies, Lemma 3.12. Whereas the small étale
topos does not depend on the choices made in the construction of the small étale site, in
general the big topoi do depend on those choices.
It turns out that the big or small étale topos only depends on the full subcategory of
(Sch/S)étale or Sétale consisting of affines, see Topologies, Lemmas 4.11 and 4.12. We
will use this for example in the proof of the following lemma.

Lemma 21.2. Let S be a scheme. The étale topos of S is independent (up to canonical
equivalence) of the construction of the small étale site in Definition 20.2.

Proof. We have to show, given two big étale sites Schétale and Sch′
étale contain-

ing S , then Sh(Sétale) ∼= Sh(S′
étale) with obvious notation. By Topologies, Lemma 12.1

we may assume Schétale ⊂ Sch′
étale. By Sets, Lemma 9.9 any affine scheme étale over

S is isomorphic to an object of both Schétale and Sch′
étale. Thus the induced functor

Saffine,étale → S′
affine,étale is an equivalence. Moreover, it is clear that both this functor

and a quasi-inverse map transform standard étale coverings into standard étale coverings.
Hence the result follows from Topologies, Lemma 4.12. �
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22. Cohomology of quasi-coherent sheaves

We start with a simple lemma (which holds in greater generality than stated). It says that
the Čech complex of a standard covering is equal to the Čech complex of an fpqc covering
of the form {Spec(B)→ Spec(A)} with A→ B faithfully flat.

Lemma 22.1. Let τ ∈ {fppf, syntomic, smooth, étale, Zariski}. LetS be a scheme.
Let F be an abelian sheaf on (Sch/S)τ , or on Sτ in case τ = étale, and let U = {Ui →
U}i∈I be a standard τ -covering of this site. Let V =

∐
i∈I Ui. Then

(1) V is an affine scheme,
(2) V = {V → U} is an fpqc covering and also a τ -covering unless τ = Zariski,
(3) the Čech complexes Č•(U ,F) and Č•(V,F) agree.

Proof. The defintion of a standard τ -covering is given in Topologies, Definition 3.4,
4.5, 5.5, 6.5, and 7.5. By definition each of the schemes Ui is affine and I is a finite set.
Hence V is an affine scheme. It is clear that V → U is flat and surjective, hence V is
an fpqc covering, see Example 15.3. Excepting the Zariski case, the covering V is also a
τ -covering, see Topologies, Definition 4.1, 5.1, 6.1, and 7.1.

Note that U is a refinement of V and hence there is a map of Čech complexes Č•(V,F)→
Č•(U ,F), see Cohomology on Sites, Equation (8.2.1). Next, we observe that ifT =

∐
j∈J Tj

is a disjoint union of schemes in the site on which F is defined then the family of mor-
phisms with fixed target {Tj → T}j∈J is a Zariski covering, and so

(22.1.1) F(T ) = F(
∐

j∈J
Tj) =

∏
j∈J
F(Tj)

by the sheaf condition of F . This implies the map of Čech complexes above is an isomor-
phism in each degree because

V ×U . . .×U V =
∐

i0,...ip
Ui0 ×U . . .×U Uip

as schemes. �

Note that Equality (22.1.1) is false for a general presheaf. Even for sheaves it does not hold
on any site, since coproducts may not lead to coverings, and may not be disjoint. But it
does for all the usual ones (at least all the ones we will study).

Remark 22.2. In the statement of Lemma 22.1 the covering U is a refinement of V
but not the other way around. Coverings of the form {V → U} do not form an initial
subcategory of the category of all coverings of U . Yet it is still true that we can compute
Čech cohomology Ȟn(U,F) (which is defined as the colimit over the opposite of the
category of coverings U of U of the Čech cohomology groups of F with respect to U ) in
terms of the coverings {V → U}. We will formulate a precise lemma (it only works for
sheaves) and add it here if we ever need it.

Lemma 22.3 (Locality of cohomology). Let C be a site, F an abelian sheaf on C , U an
object of C , p > 0 an integer and ξ ∈ Hp(U,F). Then there exists a covering U = {Ui →
U}i∈I of U in C such that ξ|Ui = 0 for all i ∈ I .

Proof. Choose an injective resolution F → I•. Then ξ is represented by a cocycle
ξ̃ ∈ Ip(U) with dp(ξ̃) = 0. By assumption, the sequence Ip−1 → Ip → Ip+1 in
exact in Ab(C), which means that there exists a covering U = {Ui → U}i∈I such that
ξ̃|Ui = dp−1(ξi) for some ξi ∈ Ip−1(Ui). Since the cohomology class ξ|Ui is represented
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by the cocycle ξ̃|Ui which is a coboundary, it vanishes. For more details see Cohomology
on Sites, Lemma 7.3. �

Theorem 22.4. LetS be a scheme andF a quasi-coherentOS-module. Let C be either
(Sch/S)τ for τ ∈ {fppf, syntomic, smooth, étale, Zariski} or Sétale. Then

Hp(S,F) = Hp
τ (S,Fa)

for all p ≥ 0 where
(1) the left hand side indicates the usual cohomology of the sheaf F on the under-

lying topological space of the scheme S , and
(2) the right hand side indicates cohomology of the abelian sheaf Fa (see Proposi-

tion 17.1) on the site C.

Proof. We are going to show that Hp(U, f∗F) = Hp
τ (U,Fa) for any object f :

U → S of the site C. The result is true for p = 0 by the sheaf property.

Assume that U is affine. Then we want to prove that Hp
τ (U,Fa) = 0 for all p > 0. We

use induction on p.
p = 1 Pick ξ ∈ H1

τ (U,Fa). By Lemma 22.3, there exists an fpqc covering U = {Ui →
U}i∈I such that ξ|Ui = 0 for all i ∈ I . Up to refining U , we may assume that U
is a standard τ -covering. Applying the spectral sequence of Theorem 19.2, we see
that ξ comes from a cohomology class ξ̌ ∈ Ȟ1(U ,Fa). Consider the covering
V = {

∐
i∈I Ui → U}. By Lemma 22.1, Ȟ•(U ,Fa) = Ȟ•(V,Fa). On the other

hand, since V is a covering of the form {Spec(B) → Spec(A)} and f∗F = M̃

for some A-module M , we see the Čech complex Č•(V,F) is none other than
the complex (B/A)• ⊗AM . Now by Lemma 16.4, Hp((B/A)• ⊗AM) = 0 for
p > 0, hence ξ̌ = 0 and so ξ = 0.

p > 1 Pick ξ ∈ Hp
τ (U,Fa). By Lemma 22.3, there exists an fpqc covering U = {Ui →

U}i∈I such that ξ|Ui = 0 for all i ∈ I . Up to refining U , we may assume that
U is a standard τ -covering. We apply the spectral sequence of Theorem 19.2.
Observe that the intersections Ui0 ×U . . .×U Uip are affine, so that by induction
hypothesis the cohomology groups

Ep,q2 = Ȟp(U ,Hq(Fa))

vanish for all 0 < q < p. We see that ξ must come from a ξ̌ ∈ Ȟp(U ,Fa). Re-
placing U with the covering V containing only one morphism and using Lemma
16.4 again, we see that the Čech cohomology class ξ̌ must be zero, hence ξ = 0.

Next, assume that U is separated. Choose an affine open covering U =
⋃
i∈I Ui of U .

The family U = {Ui → U}i∈I is then an fpqc covering, and all the intersections Ui0 ×U
. . .×U Uip are affine since U is separated. So all rows of the spectral sequence of Theorem
19.2 are zero, except the zeroth row. Therefore

Hp
τ (U,Fa) = Ȟp(U ,Fa) = Ȟp(U ,F) = Hp(U,F)

where the last equality results from standard scheme theory, see Cohomology of Schemes,
Lemma 2.6.

The general case is technical and (to extend the proof as given here) requires a discussion
about maps of spectral sequences, so we won’t treat it. It follows from Descent, Proposition
9.3 (whose proof takes a slightly different approach) combined with Cohomology on Sites,
Lemma 7.1. �
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Remark 22.5. Comment on Theorem 22.4. Since S is a final object in the category
C , the cohomology groups on the right-hand side are merely the right derived functors of
the global sections functor. In fact the proof shows that Hp(U, f∗F) = Hp

τ (U,Fa) for
any object f : U → S of the site C.

23. Examples of sheaves

Let S and τ be as in Section 20. We have already seen that any representable presheaf is a
sheaf on (Sch/S)τ or Sτ , see Lemma 15.8 and Remark 15.9. Here are some special cases.

Definition 23.1. On any of the sites (Sch/S)τ or Sτ of Section 20.
(1) The sheaf T 7→ Γ(T,OT ) is denoted OS , or Ga, or Ga,S if we want to indicate

the base scheme.
(2) Similarly, the sheaf T 7→ Γ(T,O∗

T ) is denoted O∗
S , or Gm, or Gm,S if we want

to indicate the base scheme.
(3) The constant sheaf Z/nZ on any site is the sheafification of the constant presheaf

U 7→ Z/nZ.

The first is a sheaf by Theorem 17.4 for example. The second is a sub presheaf of the first,
which is easily seen to be a sheaf itself. The third is a sheaf by definition. Note that each
of these sheaves is representable. The first and second by the schemes Ga,S and Gm,S ,
see Groupoids, Section 4. The third by the finite étale group scheme Z/nZS sometimes
denoted (Z/nZ)S which is just n copies of S endowed with the obvious group scheme
structure over S , see Groupoids, Example 5.6 and the following remark.

Remark 23.2. LetG be an abstract group. On any of the sites (Sch/S)τ or Sτ of Sec-
tion 20 the sheafificationG of the constant presheaf associated toG in the Zariski topology
of the site already gives

Γ(U,G) = {Zariski locally constant maps U → G}

This Zariski sheaf is representable by the group scheme GS according to Groupoids, Ex-
ample 5.6. By Lemma 15.8 any representable presheaf satisfies the sheaf condition for the
τ -topology as well, and hence we conclude that the Zariski sheafification G above is also
the τ -sheafification.

Definition 23.3. Let S be a scheme. The structure sheaf of S is the sheaf of rings
OS on any of the sites SZar , Sétale, or (Sch/S)τ discussed above.

If there is some possible confusion as to which site we are working on then we will indicate
this by using indices. For example we may useOSétale to stress the fact that we are working
on the small étale site of S.

Remark 23.4. In the terminology introduced above a special case of Theorem 22.4 is

Hp
fppf (X,Ga) = Hp

étale(X,Ga) = Hp
Zar(X,Ga) = Hp(X,OX)

for all p ≥ 0. Moreover, we could use the notation Hp
fppf (X,OX) to indicate the coho-

mology of the structure sheaf on the big fppf site of X .

24. Picard groups

The following theorem is sometimes called “Hilbert 90”.
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Theorem 24.1. For any scheme X we have canonical identifications

H1
fppf (X,Gm) = H1

syntomic(X,Gm)
= H1

smooth(X,Gm)
= H1

étale(X,Gm)
= H1

Zar(X,Gm)
= Pic(X)
= H1(X,O∗

X)

Proof. Let τ be one of the topologies considered in Section 20. By Cohomology on
Sites, Lemma 6.1 we see that H1

τ (X,Gm) = H1
τ (X,O∗

τ ) = Pic(Oτ ) where Oτ is the
structure sheaf of the site (Sch/X)τ . Now an invertible Oτ -module is a quasi-coherent
Oτ -module. By Theorem 17.4 or the more precise Descent, Proposition 8.9 we see that
Pic(Oτ ) = Pic(X). The last equality is proved in the same way. �

25. The étale site

At this point we start exploring the étale site of a scheme in more detail. As a first step we
discuss a little the notion of an étale morphism.

26. Étale morphisms

For more details, see Morphisms, Section 36 for the formal definition and Étale Morphisms,
Sections 11, 12, 13, 14, 16, and 19 for a survey of interesting properties of étale morphisms.

Recall that an algebra A over an algebraically closed field k is smooth if it is of finite type
and the module of differentials ΩA/k is finite locally free of rank equal to the dimension.
A scheme X over k is smooth over k if it is locally of finite type and each affine open is
the spectrum of a smooth k-algebra. If k is not algebraically closed then a k-algebra A is
a smooth k-algebra if A ⊗k k is a smooth k-algebra. A ring map A → B is smooth if it
is flat, finitely presented, and for all primes p ⊂ A the fibre ring κ(p) ⊗A B is smooth
over the residue field κ(p). More generally, a morphism of schemes is smooth if it is flat,
locally of finite presentation, and the geometric fibers are smooth.

For these facts please see Morphisms, Section 34. Using this we may define an étale mor-
phism as follows.

Definition 26.1. A morphism of schemes is étale if it is smooth of relative dimension
0.

In particular, a morphism of schemes X → S is étale if it is smooth and ΩX/S = 0.

Proposition 26.2. Facts on étale morphisms.
(1) Let k be a field. A morphism of schemes U → Spec(k) is étale if and only if

U ∼=
∐
i∈I Spec(ki) such that for each i ∈ I the ring ki is a field which is a

finite separable extension of k.
(2) Let ϕ : U → S be a morphism of schemes. The following conditions are equiv-

alent:
(a) ϕ is étale,
(b) ϕ is locally finitely presented, flat, and all its fibres are étale,
(c) ϕ is flat, unramified and locally of finite presentation.
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(3) A ring map A→ B is étale if and only if B ∼= A[x1, . . . , xn]/(f1, . . . , fn) such
that ∆ = det

(
∂fi
∂xj

)
is invertible in B.

(4) The base change of an étale morphism is étale.
(5) Compositions of étale morphisms are étale.
(6) Fibre products and products of étale morphisms are étale.
(7) An étale morphism has relative dimension 0.
(8) Let Y → X be an étale morphism. IfX is reduced (respectively regular) then so

is Y .
(9) Étale morphisms are open.

(10) If X → S and Y → S are étale, then any S-morphism X → Y is also étale.

Proof. We have proved these facts (and more) in the preceding chapters. Here is a
list of references: (1) Morphisms, Lemma 36.7. (2) Morphisms, Lemmas 36.8 and 36.16.
(3) Algebra, Lemma 143.2. (4) Morphisms, Lemma 36.4. (5) Morphisms, Lemma 36.3. (6)
Follows formally from (4) and (5). (7) Morphisms, Lemmas 36.6 and 29.5. (8) See Algebra,
Lemmas 163.7 and 163.5, see also more results of this kind in Étale Morphisms, Section 19.
(9) See Morphisms, Lemma 25.10 and 36.12. (10) See Morphisms, Lemma 36.18. �

Definition 26.3. A ring map A → B is called standard étale if B ∼= (A[t]/(f))g
with f, g ∈ A[t], with f monic, and df/dt invertible in B.

It is true that a standard étale ring map is étale. Namely, suppose that B = (A[t]/(f))g
with f, g ∈ A[t], with f monic, and df/dt invertible inB. ThenA[t]/(f) is a finite freeA-
module of rank equal to the degree of the monic polynomial f . Hence B, as a localization
of this free algebra is finitely presented and flat overA. To finish the proof thatB is étale
it suffices to show that the fibre rings

κ(p)⊗A B ∼= κ(p)⊗A (A[t]/(f))g ∼= κ(p)[t, 1/g]/(f)

are finite products of finite separable field extensions. Here f, g ∈ κ(p)[t] are the images
of f and g. Let

f = f1 . . . faf
e1
a+1 . . . f

eb
a+b

be the factorization of f into powers of pairwise distinct irreducible monic factors f i with
e1, . . . , eb > 0. By assumption df/dt is invertible in κ(p)[t, 1/g]. Hence we see that at
least all the f i, i > a are invertible. We conclude that

κ(p)[t, 1/g]/(f) ∼=
∏

i∈I
κ(p)[t]/(f i)

where I ⊂ {1, . . . , a} is the subset of indices i such that f i does not divide g. Moreover,
the image of df/dt in the factor κ(p)[t]/(f i) is clearly equal to a unit times df i/dt. Hence
we conclude that κi = κ(p)[t]/(f i) is a finite field extension of κ(p) generated by one
element whose minimal polynomial is separable, i.e., the field extension κi/κ(p) is finite
separable as desired.

It turns out that any étale ring map is locally standard étale. To formulate this we intro-
duce the following notation. A ring map A → B is étale at a prime q of B if there exists
h ∈ B, h 6∈ q such that A→ Bh is étale. Here is the result.

Theorem 26.4. A ring map A → B is étale at a prime q if and only if there exists
g ∈ B, g 6∈ q such that Bg is standard étale over A.

Proof. See Algebra, Proposition 144.4. �
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27. Étale coverings

We recall the definition.

Definition 27.1. An étale covering of a schemeU is a family of morphisms of schemes
{ϕi : Ui → U}i∈I such that

(1) each ϕi is an étale morphism,
(2) the Ui cover U , i.e., U =

⋃
i∈I ϕi(Ui).

Lemma 27.2. Any étale covering is an fpqc covering.

Proof. (See also Topologies, Lemma 9.6.) Let {ϕi : Ui → U}i∈I be an étale covering.
Since an étale morphism is flat, and the elements of the covering should cover its target,
the property fp (faithfully flat) is satisfied. To check the property qc (quasi-compact), let
V ⊂ U be an affine open, and write ϕ−1

i (V ) =
⋃
j∈Ji Vij for some affine opens Vij ⊂

Ui. Since ϕi is open (as étale morphisms are open), we see that V =
⋃
i∈I
⋃
j∈Ji ϕi(Vij)

is an open covering of V . Further, since V is quasi-compact, this covering has a finite
refinement. �

So any statement which is true for fpqc coverings remains true a fortiori for étale cover-
ings. For instance, the étale site is subcanonical.

Definition 27.3. (For more details see Section 20, or Topologies, Section 4.) Let S
be a scheme. The big étale site over S is the site (Sch/S)étale, see Definition 20.2. The
small étale site over S is the site Sétale, see Definition 20.2. We define similarly the big
and small Zariski sites on S , denoted (Sch/S)Zar and SZar.

Loosely speaking the big étale site of S is made up out of schemes over S and coverings
the étale coverings. The small étale site of S is made up out of schemes étale over S with
coverings the étale coverings. Actually any morphism between objects of Sétale is étale,
in virtue of Proposition 26.2, hence to check that {Ui → U}i∈I in Sétale is a covering it
suffices to check that

∐
Ui → U is surjective.

The small étale site has fewer objects than the big étale site, it contains only the “opens”
of the étale topology on S. It is a full subcategory of the big étale site, and its topology
is induced from the topology on the big site. Hence it is true that the restriction functor
from the big étale site to the small one is exact and maps injectives to injectives. This has
the following consequence.

Proposition 27.4. Let S be a scheme and F an abelian sheaf on (Sch/S)étale. Then
F|Sétale is a sheaf on Sétale and

Hp
étale(S,F|Sétale) = Hp

étale(S,F)
for all p ≥ 0.

Proof. This is a special case of Lemma 20.3. �

In accordance with the general notation introduced in Section 20 we write Hp
étale(S,F)

for the above cohomology group.

28. Kummer theory

Let n ∈ N and consider the functor µn defined by
Schopp −→ Ab
S 7−→ µn(S) = {t ∈ Γ(S,O∗

S) | tn = 1}.
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By Groupoids, Example 5.2 this is a representable functor, and the scheme representing
it is denoted µn also. By Lemma 15.8 this functor satisfies the sheaf condition for the
fpqc topology (in particular, it also satisfies the sheaf condition for the étale, Zariski, etc
topology).

Lemma 28.1. If n ∈ O∗
S then

0→ µn,S → Gm,S
(·)n−−→ Gm,S → 0

is a short exact sequence of sheaves on both the small and big étale site of S.

Proof. By definition the sheaf µn,S is the kernel of the map (·)n. Hence it suffices
to show that the last map is surjective. Let U be a scheme over S. Let f ∈ Gm(U) =
Γ(U,O∗

U ). We need to show that we can find an étale cover of U over the members of
which the restriction of f is an nth power. Set

U ′ = Spec
U

(OU [T ]/(Tn − f)) π−→ U.

(See Constructions, Section 3 or 4 for a discussion of the relative spectrum.) Let Spec(A) ⊂
U be an affine open, and say f |Spec(A) corresponds to the unita ∈ A∗. Thenπ−1(Spec(A)) =
Spec(B) with B = A[T ]/(Tn − a). The ring map A→ B is finite free of rank n, hence
it is faithfully flat, and hence we conclude that Spec(B) → Spec(A) is surjective. Since
this holds for every affine open in U we conclude that π is surjective. In addition, n and
Tn−1 are invertible in B, so nTn−1 ∈ B∗ and the ring map A → B is standard étale, in
particular étale. Since this holds for every affine open of U we conclude that π is étale.
Hence U = {π : U ′ → U} is an étale covering. Moreover, f |U ′ = (f ′)n where f ′ is the
class of T in Γ(U ′,O∗

U ′), so U has the desired property. �

Remark 28.2. Lemma 28.1 is false when “étale” is replaced with “Zariski”. Since the
étale topology is coarser than the smooth topology, see Topologies, Lemma 5.2 it follows
that the sequence is also exact in the smooth topology.

By Theorem 24.1 and Lemma 28.1 and general properties of cohomology we obtain the
long exact cohomology sequence

0 // H0
étale(S, µn,S) // Γ(S,O∗

S)
(·)n // Γ(S,O∗

S)

yy
H1
étale(S, µn,S) // Pic(S)

(·)n // Pic(S)

yy
H2
étale(S, µn,S) // . . .

at least if n is invertible on S. When n is not invertible on S we can apply the following
lemma.

Lemma 28.3. For any n ∈ N the sequence

0→ µn,S → Gm,S
(·)n−−→ Gm,S → 0

is a short exact sequence of sheaves on the site (Sch/S)fppf and (Sch/S)syntomic.
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Proof. By definition the sheaf µn,S is the kernel of the map (·)n. Hence it suffices to
show that the last map is surjective. Since the syntomic topology is weaker than the fppf
topology, see Topologies, Lemma 7.2, it suffices to prove this for the syntomic topology.
Let U be a scheme over S. Let f ∈ Gm(U) = Γ(U,O∗

U ). We need to show that we can
find a syntomic cover ofU over the members of which the restriction of f is an nth power.
Set

U ′ = Spec
U

(OU [T ]/(Tn − f)) π−→ U.

(See Constructions, Section 3 or 4 for a discussion of the relative spectrum.) Let Spec(A) ⊂
U be an affine open, and say f |Spec(A) corresponds to the unita ∈ A∗. Thenπ−1(Spec(A)) =
Spec(B) with B = A[T ]/(Tn − a). The ring map A→ B is finite free of rank n, hence
it is faithfully flat, and hence we conclude that Spec(B) → Spec(A) is surjective. Since
this holds for every affine open in U we conclude that π is surjective. In addition, B is a
global relative complete intersection overA, so the ring mapA→ B is standard syntomic,
in particular syntomic. Since this holds for every affine open of U we conclude that π is
syntomic. Hence U = {π : U ′ → U} is a syntomic covering. Moreover, f |U ′ = (f ′)n
where f ′ is the class of T in Γ(U ′,O∗

U ′), so U has the desired property. �

Remark 28.4. Lemma 28.3 is false for the smooth, étale, or Zariski topology.

By Theorem 24.1 and Lemma 28.3 and general properties of cohomology we obtain the
long exact cohomology sequence

0 // H0
fppf (S, µn,S) // Γ(S,O∗

S)
(·)n // Γ(S,O∗

S)

yy
H1
fppf (S, µn,S) // Pic(S)

(·)n // Pic(S)

yy
H2
fppf (S, µn,S) // . . .

for any scheme S and any integer n. Of course there is a similar sequence with syntomic
cohomology.
Let n ∈ N and let S be any scheme. There is another more direct way to describe the first
cohomology group with values in µn. Consider pairs (L, α) whereL is an invertible sheaf
on S and α : L⊗n → OS is a trivialization of the nth tensor power of L. Let (L′, α′) be a
second such pair. An isomorphism ϕ : (L, α) → (L′, α′) is an isomorphism ϕ : L → L′

of invertible sheaves such that the diagram

L⊗n

ϕ⊗n

��

α
// OS

1
��

(L′)⊗n α′
// OS

commutes. Thus we have

(28.4.1) IsomS((L, α), (L′, α′)) =
{

∅ if they are not isomorphic
H0(S, µn,S) · ϕ if ϕ isomorphism of pairs

Moreover, given two pairs (L, α), (L′, α′) the tensor product
(L, α)⊗ (L′, α′) = (L ⊗ L′, α⊗ α′)
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is another pair. The pair (OS , 1) is an identity for this tensor product operation, and an
inverse is given by

(L, α)−1 = (L⊗−1, α⊗−1).
Hence the collection of isomorphism classes of pairs forms an abelian group. Note that

(L, α)⊗n = (L⊗n, α⊗n) α−→ (OS , 1)
is an isomorphism hence every element of this group has order dividing n. We warn the
reader that this group is in general not the n-torsion in Pic(S).

Lemma 28.5. Let S be a scheme. There is a canonical identification
H1
étale(S, µn) = group of pairs (L, α) up to isomorphism as above

if n is invertible on S. In general we have

H1
fppf (S, µn) = group of pairs (L, α) up to isomorphism as above.

The same result holds with fppf replaced by syntomic.

Proof. We first prove the second isomorphism. Let (L, α) be a pair as above. Choose
an affine open covering S =

⋃
Ui such that L|Ui ∼= OUi . Say si ∈ L(Ui) is a generator.

Then α(s⊗n
i ) = fi ∈ O∗

S(Ui). Writing Ui = Spec(Ai) we see there exists a global
relative complete intersection Ai → Bi = Ai[T ]/(Tn − fi) such that fi maps to an
nth power in Bi. In other words, setting Vi = Spec(Bi) we obtain a syntomic covering
V = {Vi → S}i∈I and trivializations ϕi : (L, α)|Vi → (OVi , 1).
We will use this result (the existence of the covering V) to associate to this pair a coho-
mology class in H1

syntomic(S, µn,S). We give two (equivalent) constructions.

First construction: using Čech cohomology. Over the double overlaps Vi ×S Vj we have
the isomorphism

(OVi×SVj , 1)
pr∗

0ϕ
−1
i−−−−→ (L|Vi×SVj , α|Vi×SVj )

pr∗
1ϕj−−−→ (OVi×SVj , 1)

of pairs. By (28.4.1) this is given by an element ζij ∈ µn(Vi ×S Vj). We omit the ver-
ification that these ζij ’s give a 1-cocycle, i.e., give an element (ζi0i1) ∈ Č(V, µn) with
d(ζi0i1) = 0. Thus its class is an element in Ȟ1(V, µn) and by Theorem 19.2 it maps to a
cohomology class in H1

syntomic(S, µn,S).

Second construction: Using torsors. Consider the presheaf
µn(L, α) : U 7−→ IsomU ((OU , 1), (L, α)|U )

on (Sch/S)syntomic. We may view this as a subpresheaf of HomO(O,L) (internal hom
sheaf, see Modules on Sites, Section 27). Since the conditions defining this subpresheaf are
local, we see that it is a sheaf. By (28.4.1) this sheaf has a free action of the sheaf µn,S .
Hence the only thing we have to check is that it locally has sections. This is true because
of the existence of the trivializing cover V . Hence µn(L, α) is a µn,S-torsor and by Coho-
mology on Sites, Lemma 4.3 we obtain a corresponding element of H1

syntomic(S, µn,S).

Ok, now we have to still show the following
(1) The two constructions give the same cohomology class.
(2) Isomorphic pairs give rise to the same cohomology class.
(3) The cohomology class of (L, α)⊗ (L′, α′) is the sum of the cohomology classes

of (L, α) and (L′, α′).
(4) If the cohomology class is trivial, then the pair is trivial.
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(5) Any element of H1
syntomic(S, µn,S) is the cohomology class of a pair.

We omit the proof of (1). Part (2) is clear from the second construction, since isomorphic
torsors give the same cohomology classes. Part (3) is clear from the first construction, since
the resulting Čech classes add up. Part (4) is clear from the second construction since a
torsor is trivial if and only if it has a global section, see Cohomology on Sites, Lemma 4.2.

Part (5) can be seen as follows (although a direct proof would be preferable). Suppose
ξ ∈ H1

syntomic(S, µn,S). Then ξ maps to an element ξ ∈ H1
syntomic(S,Gm,S) with

nξ = 0. By Theorem 24.1 we see that ξ corresponds to an invertible sheaf L whose nth
tensor power is isomorphic to OS . Hence there exists a pair (L, α′) whose cohomology
class ξ′ has the same image ξ′ in H1

syntomic(S,Gm,S). Thus it suffices to show that ξ − ξ′

is the class of a pair. By construction, and the long exact cohomology sequence above, we
see that ξ − ξ′ = ∂(f) for some f ∈ H0(S,O∗

S). Consider the pair (OS , f). We omit the
verification that the cohomology class of this pair is ∂(f), which finishes the proof of the
first identification (with fppf replaced with syntomic).

To see the first, note that if n is invertible on S , then the covering V constructed in the
first part of the proof is actually an étale covering (compare with the proof of Lemma 28.1).
The rest of the proof is independent of the topology, apart from the very last argument
which uses that the Kummer sequence is exact, i.e., uses Lemma 28.1. �

29. Neighborhoods, stalks and points

We can associate to any geometric point of S a stalk functor which is exact. A map of
sheaves on Sétale is an isomorphism if and only if it is an isomorphism on all these stalks.
A complex of abelian sheaves is exact if and only if the complex of stalks is exact at all
geometric points. Altogether this means that the small étale site of a scheme S has enough
points. It also turns out that any point of the small étale topos of S (an abstract notion) is
given by a geometric point. Thus in some sense the small étale topos ofS can be understood
in terms of geometric points and neighbourhoods.

Definition 29.1. Let S be a scheme.
(1) A geometric point of S is a morphism Spec(k) → S where k is algebraically

closed. Such a point is usually denoted s, i.e., by an overlined small case letter.
We often use s to denote the scheme Spec(k) as well as the morphism, and we
use κ(s) to denote k.

(2) We say s lies over s to indicate that s ∈ S is the image of s.
(3) An étale neighborhood of a geometric point s of S is a commutative diagram

U

ϕ

��
s

s //

ū

??

S

where ϕ is an étale morphism of schemes. We write (U, u)→ (S, s).
(4) A morphism of étale neighborhoods (U, u) → (U ′, u′) is an S-morphism h :

U → U ′ such that u′ = h ◦ u.

Remark 29.2. SinceU andU ′ are étale over S , any S-morphism between them is also
étale, see Proposition 26.2. In particular all morphisms of étale neighborhoods are étale.
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Remark 29.3. Let S be a scheme and s ∈ S a point. In More on Morphisms, Defini-
tion 35.1 we defined the notion of an étale neighbourhood (U, u)→ (S, s) of (S, s). If s is
a geometric point of S lying over s, then any étale neighbourhood (U, u) → (S, s) gives
rise to an étale neighbourhood (U, u) of (S, s) by taking u ∈ U to be the unique point of
U such that u lies over u. Conversely, given an étale neighbourhood (U, u) of (S, s) the
residue field extension κ(u)/κ(s) is finite separable (see Proposition 26.2) and hence we
can find an embedding κ(u) ⊂ κ(s) over κ(s). In other words, we can find a geometric
point u of U lying over u such that (U, u) is an étale neighbourhood of (S, s). We will
use these observations to go between the two types of étale neighbourhoods.

Lemma 29.4. Let S be a scheme, and let s be a geometric point of S. The category of
étale neighborhoods is cofiltered. More precisely:

(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of s in S. Then there exists a third
étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neighborhoods
of s. Then there exist an étale neighborhood (U ′′, u′′) and a morphism h :
(U ′′, u′′)→ (U, u) which equalizes h1 and h2, i.e., such that h1 ◦ h = h2 ◦ h.

Proof. For part (1), consider the fibre productU = U1×SU2. It is étale over bothU1
andU2 because étale morphisms are preserved under base change, see Proposition 26.2. The
map s → U defined by (u1, u2) gives it the structure of an étale neighborhood mapping
to both U1 and U2. For part (2), define U ′′ as the fibre product

U ′′ //

��

U

(h1,h2)
��

U ′ ∆ // U ′ ×S U ′.

Since u and u′ agree over S with s, we see that u′′ = (u, u′) is a geometric point of
U ′′. In particular U ′′ 6= ∅. Moreover, since U ′ is étale over S , so is the fibre product
U ′ ×S U ′ (see Proposition 26.2). Hence the vertical arrow (h1, h2) is étale by Remark
29.2 above. Therefore U ′′ is étale over U ′ by base change, and hence also étale over S
(because compositions of étale morphisms are étale). Thus (U ′′, u′′) is a solution to the
problem. �

Lemma 29.5. Let S be a scheme. Let s be a geometric point of S. Let (U, u) be an
étale neighborhood of s. Let U = {ϕi : Ui → U}i∈I be an étale covering. Then there
exist i ∈ I and ui : s → Ui such that ϕi : (Ui, ui) → (U, u) is a morphism of étale
neighborhoods.

Proof. As U =
⋃
i∈I ϕi(Ui), the fibre product s×u,U,ϕi Ui is not empty for some i.

Then look at the cartesian diagram

s×u,U,ϕi Ui
pr1

��

pr2
// Ui

ϕi

��
Spec(k) = s

σ

DD

u // U

The projection pr1 is the base change of an étale morphisms so it is étale, see Proposition
26.2. Therefore, s ×u,U,ϕi Ui is a disjoint union of finite separable extensions of k, by
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Proposition 26.2. Here s = Spec(k). But k is algebraically closed, so all these exten-
sions are trivial, and there exists a section σ of pr1. The composition pr2 ◦ σ gives a map
compatible with u. �

Definition 29.6. Let S be a scheme. Let F be a presheaf on Sétale. Let s be a geo-
metric point of S. The stalk of F at s is

Fs = colim(U,u) F(U)
where (U, u) runs over all étale neighborhoods of s in S.
By Lemma 29.4, this colimit is over a filtered index category, namely the opposite of the
category of étale neighbourhoods. In other words, an element of Fs can be thought of
as a triple (U, u, σ) where σ ∈ F(U). Two triples (U, u, σ), (U ′, u′, σ′) define the same
element of the stalk if there exists a third étale neighbourhood (U ′′, u′′) and morphisms
of étale neighbourhoods h : (U ′′, u′′) → (U, u), h′ : (U ′′, u′′) → (U ′, u′) such that
h∗σ = (h′)∗σ′ in F(U ′′). See Categories, Section 19.

Lemma 29.7. LetS be a scheme. Let s be a geometric point ofS. Consider the functor
u : Sétale −→ Sets,

U 7−→ |Us| = {u such that (U, u) is an étale neighbourhood of s}.
Here |Us| denotes the underlying set of the geometric fibre. Then u defines a point p of the
site Sétale (Sites, Definition 32.2) and its associated stalk functorF 7→ Fp (Sites, Equation
32.1.1) is the functor F 7→ Fs defined above.

Proof. In the proof of Lemma 29.5 we have seen that the scheme Us is a disjoint
union of schemes isomorphic to s. Thus we can also think of |Us| as the set of geometric
points of U lying over s, i.e., as the collection of morphisms u : s → U fitting into
the diagram of Definition 29.1. From this it follows that u(S) is a singleton, and that
u(U ×V W ) = u(U) ×u(V ) u(W ) whenever U → V and W → V are morphisms in
Sétale. And, given a covering {Ui → U}i∈I in Sétale we see that

∐
u(Ui) → u(U) is

surjective by Lemma 29.5. Hence Sites, Proposition 33.3 applies, so p is a point of the site
Sétale. Finally, our functor F 7→ Fs is given by exactly the same colimit as the functor
F 7→ Fp associated to p in Sites, Equation 32.1.1 which proves the final assertion. �

Remark 29.8. Let S be a scheme and let s : Spec(k) → S and s′ : Spec(k′) → S
be two geometric points of S. A morphism a : s → s′ of geometric points is simply a
morphism a : Spec(k) → Spec(k′) such that s′ ◦ a = s. Given such a morphism we
obtain a functor from the category of étale neighbourhoods of s′ to the category of étale
neighbourhoods of s by the rule (U, u′) 7→ (U, u′ ◦ a). Hence we obtain a canonical map

Fs′ = colim(U,u′) F(U) −→ colim(U,u) F(U) = Fs
from Categories, Lemma 14.8. Using the description of elements of stalks as triples this
maps the element of Fs′ represented by the triple (U, u′, σ) to the element of Fs repre-
sented by the triple (U, u′ ◦ a, σ). Since the functor above is clearly an equivalence we
conclude that this canonical map is an isomorphism of stalk functors.
Let us make sure we have the map of stalks corresponding to a pointing in the correct
direction. Note that the above means, according to Sites, Definition 37.2, that a defines a
morphism a : p→ p′ between the points p, p′ of the siteSétale associated to s, s′ by Lemma
29.7. There are more general morphisms of points (corresponding to specializations of
points of S) which we will describe later, and which will not be isomorphisms, see Section
75.
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Lemma 29.9. Let S be a scheme. Let s be a geometric point of S.
(1) The stalk functor PAb(Sétale)→ Ab, F 7→ Fs is exact.
(2) We have (F#)s = Fs for any presheaf of sets F on Sétale.
(3) The functor Ab(Sétale)→ Ab, F 7→ Fs is exact.
(4) Similarly the functors PSh(Sétale) → Sets and Sh(Sétale) → Sets given by the

stalk functor F 7→ Fx are exact (see Categories, Definition 23.1) and commute
with arbitrary colimits.

Proof. Before we indicate how to prove this by direct arguments we note that the
result follows from the general material in Modules on Sites, Section 36. This is true
because F 7→ Fs comes from a point of the small étale site of S , see Lemma 29.7. We
will only give a direct proof of (1), (2) and (3), and omit a direct proof of (4).
Exactness as a functor on PAb(Sétale) is formal from the fact that directed colimits com-
mute with all colimits and with finite limits. The identification of the stalks in (2) is via
the map

κ : Fs −→ (F#)s
induced by the natural morphism F → F#, see Theorem 13.2. We claim that this map
is an isomorphism of abelian groups. We will show injectivity and omit the proof of
surjectivity.
Let σ ∈ Fs. There exists an étale neighborhood (U, u) → (S, s) such that σ is the image
of some section s ∈ F(U). If κ(σ) = 0 in (F#)s then there exists a morphism of étale
neighborhoods (U ′, u′)→ (U, u) such that s|U ′ is zero in F#(U ′). It follows there exists
an étale covering {U ′

i → U ′}i∈I such that s|U ′
i

= 0 in F(U ′
i) for all i. By Lemma 29.5

there exist i ∈ I and a morphism u′
i : s→ U ′

i such that (U ′
i , u

′
i)→ (U ′, u′)→ (U, u) are

morphisms of étale neighborhoods. Hence σ = 0 since (U ′
i , u

′
i) → (U, u) is a morphism

of étale neighbourhoods such that we have s|U ′
i

= 0. This proves κ is injective.

To show that the functor Ab(Sétale)→ Ab is exact, consider any short exact sequence in
Ab(Sétale): 0→ F → G → H → 0. This gives us the exact sequence of presheaves

0→ F → G → H → H/pG → 0,
where /p denotes the quotient in PAb(Sétale). Taking stalks at s, we see that (H/pG)s̄ =
(H/G)s̄ = 0, since the sheafification ofH/pG is 0. Therefore,

0→ Fs → Gs → Hs → 0 = (H/pG)s
is exact, since taking stalks is exact as a functor from presheaves. �

Theorem 29.10. Let S be a scheme. A map a : F → G of sheaves of sets is injective
(resp. surjective) if and only if the map on stalks as : Fs → Gs is injective (resp. surjective)
for all geometric points of S. A sequence of abelian sheaves on Sétale is exact if and only
if it is exact on all stalks at geometric points of S.

Proof. The necessity of exactness on stalks follows from Lemma 29.9. For the con-
verse, it suffices to show that a map of sheaves is surjective (respectively injective) if and
only if it is surjective (respectively injective) on all stalks. We prove this in the case of
surjectivity, and omit the proof in the case of injectivity.
Let α : F → G be a map of sheaves such that Fs → Gs is surjective for all geometric
points. Fix U ∈ Ob(Sétale) and s ∈ G(U). For every u ∈ U choose some u → U lying
over u and an étale neighborhood (Vu, vu) → (U, u) such that s|Vu = α(sVu) for some
sVu ∈ F(Vu). This is possible since α is surjective on stalks. Then {Vu → U}u∈U is an
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étale covering on which the restrictions of s are in the image of the map α. Thus, α is
surjective, see Sites, Section 11. �

Remarks 29.11. On points of the geometric sites.
(1) Theorem 29.10 says that the family of points of Sétale given by the geometric

points of S (Lemma 29.7) is conservative, see Sites, Definition 38.1. In particular
Sétale has enough points.

(2) Suppose F is a sheaf on the big étale site of S. Let T → S be an object of the
big étale site of S , and let t be a geometric point of T . Then we define Ft as
the stalk of the restriction F|Tétale of F to the small étale site of T . In other
words, we can define the stalk ofF at any geometric point of any scheme T/S ∈
Ob((Sch/S)étale).

(3) The big étale site ofS also has enough points, by considering all geometric points
of all objects of this site, see (2).

The following lemma should be skipped on a first reading.

Lemma 29.12. Let S be a scheme.
(1) Let p be a point of the small étale site Sétale of S given by a functor u : Sétale →

Sets. Then there exists a geometric point s of S such that p is isomorphic to the
point of Sétale associated to s in Lemma 29.7.

(2) Let p : Sh(pt) → Sh(Sétale) be a point of the small étale topos of S. Then p
comes from a geometric point of S , i.e., the stalk functor F 7→ Fp is isomorphic
to a stalk functor as defined in Definition 29.6.

Proof. By Sites, Lemma 32.7 there is a one to one correspondence between points of
the site and points of the associated topos, hence it suffices to prove (1). By Sites, Proposi-
tion 33.3 the functor u has the following properties: (a) u(S) = {∗}, (b) u(U ×V W ) =
u(U) ×u(V ) u(W ), and (c) if {Ui → U} is an étale covering, then

∐
u(Ui) → u(U) is

surjective. In particular, if U ′ ⊂ U is an open subscheme, then u(U ′) ⊂ u(U). Moreover,
by Sites, Lemma 32.7 we can write u(U) = p−1(h#

U ), in other words u(U) is the stalk of
the representable sheaf hU . If U = V qW , then we see that hU = (hV q hW )# and we
get u(U) = u(V )q u(W ) since p−1 is exact.

Consider the restriction of u to SZar. By Sites, Examples 33.5 and 33.6 there exists a
unique point s ∈ S such that for S′ ⊂ S open we have u(S′) = {∗} if s ∈ S′ and
u(S′) = ∅ if s 6∈ S′. Note that if ϕ : U → S is an object of Sétale then ϕ(U) ⊂ S is
open (see Proposition 26.2) and {U → ϕ(U)} is an étale covering. Hence we conclude
that u(U) = ∅ ⇔ s ∈ ϕ(U).

Pick a geometric point s : s → S lying over s, see Definition 29.1 for customary abuse
of notation. Suppose that ϕ : U → S is an object of Sétale with U affine. Note that ϕ is
separated, and that the fibre Us of ϕ over s is an affine scheme over Spec(κ(s)) which is
the spectrum of a finite product of finite separable extensions ki of κ(s). Hence we may
apply Étale Morphisms, Lemma 18.2 to get an étale neighbourhood (V, v) of (S, s) such
that

U ×S V = U1 q . . .q Un qW
with Ui → V an isomorphism and W having no point lying over v. Thus we conclude
that

u(U)× u(V ) = u(U ×S V ) = u(U1)q . . .q u(Un)q u(W )
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and of course also u(Ui) = u(V ). After shrinking V a bit we can assume that V has
exactly one point lying over s, and hence W has no point lying over s. By the above this
then gives u(W ) = ∅. Hence we obtain

u(U)× u(V ) = u(U1)q . . .q u(Un) =
∐

i=1,...,n
u(V )

Note that u(V ) 6= ∅ as s is in the image of V → S. In particular, we see that in this
situation u(U) is a finite set with n elements.
Consider the limit

lim(V,v) u(V )
over the category of étale neighbourhoods (V, v) of s. It is clear that we get the same
value when taking the limit over the subcategory of (V, v) with V affine. By the previous
paragraph (applied with the roles of V and U switched) we see that in this case u(V ) is
always a finite nonempty set. Moreover, the limit is cofiltered, see Lemma 29.4. Hence
by Categories, Section 20 the limit is nonempty. Pick an element x from this limit. This
means we obtain axV,v ∈ u(V ) for every étale neighbourhood (V, v) of (S, s) such that for
every morphism of étale neighbourhoods ϕ : (V ′, v′) → (V, v) we have u(ϕ)(xV ′,v′) =
xV,v .
We will use the choice of x to construct a functorial bijective map

c : |Us| −→ u(U)
for U ∈ Ob(Sétale) which will conclude the proof. See Lemma 29.7 and its proof for
a description of |Us|. First we claim that it suffices to construct the map for U affine.
We omit the proof of this claim. Assume U → S in Sétale with U affine, and let u :
s → U be an element of |Us|. Choose a (V, v) such that U ×S V decomposes as in the
third paragraph of the proof. Then the pair (u, v) gives a geometric point of U ×S V
lying over v and determines one of the components Ui of U ×S V . More precisely, there
exists a section σ : V → U ×S V of the projection prU such that (u, v) = σ ◦ v. Set
c(u) = u(prU )(u(σ)(xV,v)) ∈ u(U). We have to check this is independent of the choice
of (V, v). By Lemma 29.4 the category of étale neighbourhoods is cofiltered. Hence it
suffice to show that given a morphism of étale neighbourhood ϕ : (V ′, v′) → (V, v) and
a choice of a section σ′ : V ′ → U ×S V ′ of the projection such that (u, v′) = σ′ ◦ v′ we
have u(σ′)(xV ′,v′) = u(σ)(xV,v). Consider the diagram

V ′

σ′

��

ϕ
// V

σ

��
U ×S V ′ 1×ϕ // U ×S V

Now, it may not be the case that this diagram commutes. The reason is that the schemes
V ′ and V may not be connected, and hence the decompositions used to construct σ′ and σ
above may not be unique. But we do know that σ◦ϕ◦v′ = (1×ϕ)◦σ′◦v′ by construction.
Hence, since U ×S V is étale over S , there exists an open neighbourhood V ′′ ⊂ V ′ of v′

such that the diagram does commute when restricted to V ′′, see Morphisms, Lemma 35.17.
This means we may extend the diagram above to

V ′′ //

σ′|V ′′

��

V ′

σ′

��

ϕ
// V

σ

��
U ×S V ′′ // U ×S V ′ 1×ϕ // U ×S V
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such that the left square and the outer rectangle commute. Since u is a functor this implies
thatxV ′′,v′ maps to the same element inu(U×SV ) no matter which route we take through
the diagram. On the other hand, it maps to the elements xV ′,v′ and xV,v in u(V ′) and
u(V ). This implies the desired equality u(σ′)(xV ′,v′) = u(σ)(xV,v).

In a similar manner one proves that the construction c : |Us| → u(U) is functorial in U ;
details omitted. And finally, by the results of the third paragraph it is clear that the map
c is bijective which ends the proof of the lemma. �

30. Points in other topologies

In this section we briefly discuss the existence of points for some sites other than the étale
site of a scheme. We refer to Sites, Section 38 and Topologies, Section 2 ff for the termi-
nology used in this section. All of the geometric sites have enough points.

Lemma 30.1. LetS be a scheme. All of the following sites have enough pointsSaffine,Zar ,
SZar ,Saffine,étale,Sétale, (Sch/S)Zar , (Aff/S)Zar , (Sch/S)étale, (Aff/S)étale, (Sch/S)smooth,
(Aff/S)smooth, (Sch/S)syntomic, (Aff/S)syntomic, (Sch/S)fppf , and (Aff/S)fppf .

Proof. For each of the big sites the associated topos is equivalent to the topos defined
by the site (Aff/S)τ , see Topologies, Lemmas 3.10, 4.11, 5.9, 6.9, and 7.11. The result for
the sites (Aff/S)τ follows immediately from Deligne’s result Sites, Lemma 39.4.

The result for SZar is clear. The result for Saffine,Zar follows from Deligne’s result. The
result for Sétale either follows from (the proof of) Theorem 29.10 or from Topologies,
Lemma 4.12 and Deligne’s result applied to Saffine,étale. �

The lemma above guarantees the existence of points, but it doesn’t tell us what these points
look like. We can explicitly construct some points as follows. Suppose s : Spec(k) → S
is a geometric point with k algebraically closed. Consider the functor

u : (Sch/S)fppf −→ Sets, u(U) = U(k) = MorS(Spec(k), U).
Note that U 7→ U(k) commutes with finite limits as S(k) = {s} and (U1 ×U U2)(k) =
U1(k)×U(k)U2(k). Moreover, if {Ui → U} is an fppf covering, then

∐
Ui(k)→ U(k) is

surjective. By Sites, Proposition 33.3 we see that u defines a point p of (Sch/S)fppf with
stalks

Fp = colim(U,x) F(U)
where the colimit is over pairs U → S , x ∈ U(k) as usual. But... this category has an
initial object, namely (Spec(k), id), hence we see that

Fp = F(Spec(k))
which isn’t terribly interesting! In fact, in general these points won’t form a conservative
family of points. A more interesting type of point is described in the following remark.

Remark 30.2. Let S = Spec(A) be an affine scheme. Let (p, u) be a point of the site
(Aff/S)fppf , see Sites, Sections 32 and 33. Let B = Op be the stalk of the structure sheaf
at the point p. Recall that

B = colim(U,x)O(U) = colim(Spec(C),xC) C

where xC ∈ u(Spec(C)). It can happen that Spec(B) is an object of (Aff/S)fppf and that
there is an element xB ∈ u(Spec(B)) mapping to the compatible system xC . In this case
the system of neighbourhoods has an initial object and it follows that Fp = F(Spec(B))
for any sheaf F on (Aff/S)fppf . It is straightforward to see that if F 7→ F(Spec(B))
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defines a point of Sh((Aff/S)fppf ), thenB has to be a localA-algebra such that for every
faithfully flat, finitely presented ring mapB → B′ there is a sectionB′ → B. Conversely,
for any such A-algebra B the functor F 7→ F(Spec(B)) is the stalk functor of a point.
Details omitted. It is not clear what a general point of the site (Aff/S)fppf looks like.

31. Supports of abelian sheaves

First we talk about supports of local sections.

Lemma 31.1. Let S be a scheme. Let F be a subsheaf of the final object of the étale
topos of S (see Sites, Example 10.2). Then there exists a unique open W ⊂ S such that
F = hW .

Proof. The condition means that F(U) is a singleton or empty for all ϕ : U → S
in Ob(Sétale). In particular local sections always glue. If F(U) 6= ∅, then F(ϕ(U)) 6= ∅
because {ϕ : U → ϕ(U)} is a covering. Hence we can take W =

⋃
ϕ:U→S,F(U)6=∅ ϕ(U).

�

Lemma 31.2. Let S be a scheme. Let F be an abelian sheaf on Sétale. Let σ ∈ F(U)
be a local section. There exists an open subset W ⊂ U such that

(1) W ⊂ U is the largest Zariski open subset of U such that σ|W = 0,
(2) for every ϕ : V → U in Sétale we have

σ|V = 0⇔ ϕ(V ) ⊂W,
(3) for every geometric point u of U we have

(U, u, σ) = 0 in Fs ⇔ u ∈W
where s = (U → S) ◦ u.

Proof. SinceF is a sheaf in the étale topology the restriction ofF to UZar is a sheaf
on U in the Zariski topology. Hence there exists a Zariski open W having property (1),
see Modules, Lemma 5.2. Let ϕ : V → U be an arrow of Sétale. Note that ϕ(V ) ⊂ U is
an open subset and that {V → ϕ(V )} is an étale covering. Hence if σ|V = 0, then by the
sheaf condition for F we see that σ|ϕ(V ) = 0. This proves (2). To prove (3) we have to
show that if (U, u, σ) defines the zero element ofFs, then u ∈W . This is true because the
assumption means there exists a morphism of étale neighbourhoods (V, v)→ (U, u) such
that σ|V = 0. Hence by (2) we see that V → U maps into W , and hence u ∈W . �

Let S be a scheme. Let s ∈ S. LetF be a sheaf on Sétale. By Remark 29.8 the isomorphism
class of the stalk of the sheaf F at a geometric points lying over s is well defined.

Definition 31.3. Let S be a scheme. Let F be an abelian sheaf on Sétale.
(1) The support of F is the set of points s ∈ S such that Fs 6= 0 for any (some)

geometric point s lying over s.
(2) Let σ ∈ F(U) be a section. The support of σ is the closed subset U \W , where

W ⊂ U is the largest open subset of U on which σ restricts to zero (see Lemma
31.2).

In general the support of an abelian sheaf is not closed. For example, suppose that S =
Spec(A1

C). Let it : Spec(C) → S be the inclusion of the point t ∈ C. We will see later
that Ft = it,∗(Z/2Z) is an abelian sheaf whose support is exactly {t}, see Section 46.
Then ⊕

n∈N
Fn
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is an abelian sheaf with support {1, 2, 3, . . .} ⊂ S. This is true because taking stalks
commutes with colimits, see Lemma 29.9. Thus an example of an abelian sheaf whose
support is not closed. Here are some basic facts on supports of sheaves and sections.

Lemma 31.4. Let S be a scheme. Let F be an abelian sheaf on Sétale. Let U ∈
Ob(Sétale) and σ ∈ F(U).

(1) The support of σ is closed in U .
(2) The support of σ+σ′ is contained in the union of the supports of σ, σ′ ∈ F(U).
(3) If ϕ : F → G is a map of abelian sheaves on Sétale, then the support of ϕ(σ) is

contained in the support of σ ∈ F(U).
(4) The support of F is the union of the images of the supports of all local sections

of F .
(5) If F → G is surjective then the support of G is a subset of the support of F .
(6) If F → G is injective then the support of F is a subset of the support of G.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds for the
restriction of F and G to UZar , see Modules, Lemma 5.2. Part (4) is a direct consequence
of Lemma 31.2 part (3). Parts (5) and (6) follow from the other parts. �

Lemma 31.5. The support of a sheaf of rings on Sétale is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only if
1 = 0, and hence the support of a sheaf of rings is the support of the unit section. �

32. Henselian rings

We begin by stating a theorem which has already been used many times in the Stacks
project. There are many versions of this result; here we just state the algebraic version.

Theorem 32.1. Let A → B be finite type ring map and p ⊂ A a prime ideal. Then
there exist an étale ring map A→ A′ and a prime p′ ⊂ A′ lying over p such that

(1) κ(p) = κ(p′),
(2) B ⊗A A′ = B1 × . . .×Br × C ,
(3) A′ → Bi is finite and there exists a unique prime qi ⊂ Bi lying over p′, and
(4) all irreducible components of the fibre Spec(C ⊗A′ κ(p′)) of C over p′ have

dimension at least 1.

Proof. See Algebra, Lemma 145.3, or see [?, Théorème 18.12.1]. For a slew of versions
in terms of morphisms of schemes, see More on Morphisms, Section 41. �

Recall Hensel’s lemma. There are many versions of this lemma. Here are two:
(f) if f ∈ Zp[T ] monic and f mod p = g0h0 with gcd(g0, h0) = 1 then f factors

as f = gh with ḡ = g0 and h̄ = h0,
(r) if f ∈ Zp[T ], monic a0 ∈ Fp, f̄(a0) = 0 but f̄ ′(a0) 6= 0 then there exists a ∈ Zp

with f(a) = 0 and ā = a0.
Both versions are true (we will see this later). The first version asks for lifts of factoriza-
tions into coprime parts, and the second version asks for lifts of simple roots modulo the
maximal ideal. It turns out that requiring these conditions for a general local ring are
equivalent, and are equivalent to many other conditions. We use the root lifting property
as the definition of a henselian local ring as it is often the easiest one to check.
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Definition 32.2. (See Algebra, Definition 153.1.) A local ring (R,m, κ) is called
henselian if for all f ∈ R[T ] monic, for all a0 ∈ κ such that f̄(a0) = 0 and f̄ ′(a0) 6= 0,
there exists an a ∈ R such that f(a) = 0 and a mod m = a0.

A good example of henselian local rings to keep in mind is complete local rings. Recall
(Algebra, Definition 160.1) that a complete local ring is a local ring (R,m) such that R ∼=
limnR/m

n, i.e., it is complete and separated for the m-adic topology.

Theorem 32.3. Complete local rings are henselian.

Proof. Newton’s method. See Algebra, Lemma 153.9. �

Theorem 32.4. Let (R,m, κ) be a local ring. The following are equivalent:
(1) R is henselian,
(2) for any f ∈ R[T ] and any factorization f̄ = g0h0 in κ[T ] with gcd(g0, h0) = 1,

there exists a factorization f = gh in R[T ] with ḡ = g0 and h̄ = h0,
(3) any finite R-algebra S is isomorphic to a finite product of local rings finite over

R,
(4) any finite type R-algebra A is isomorphic to a product A ∼= A′ × C where

A′ ∼= A1× . . .×Ar is a product of finite localR-algebras and all the irreducible
components of C ⊗R κ have dimension at least 1,

(5) if A is an étale R-algebra and n is a maximal ideal of A lying over m such that
κ ∼= A/n, then there exists an isomorphism ϕ : A ∼= R × A′ such that ϕ(n) =
m×A′ ⊂ R×A′.

Proof. This is just a subset of the results from Algebra, Lemma 153.3. Note that
part (5) above corresponds to part (8) of Algebra, Lemma 153.3 but is formulated slightly
differently. �

Lemma 32.5. If R is henselian and A is a finite R-algebra, then A is a finite product
of henselian local rings.

Proof. See Algebra, Lemma 153.4. �

Definition 32.6. A local ring R is called strictly henselian if it is henselian and its
residue field is separably closed.

Example 32.7. In the case R = C[[t]], the étale R-algebras are finite products of
the trivial extension R → R and the extensions R → R[X,X−1]/(Xn − t). The latter
ones factor through the open D(t) ⊂ Spec(R), so any étale covering can be refined by
the covering {id : Spec(R) → Spec(R)}. We will see below that this is a somewhat
general fact on étale coverings of spectra of henselian rings. This will show that higher
étale cohomology of the spectrum of a strictly henselian ring is zero.

Theorem 32.8. Let (R,m, κ) be a local ring and κ ⊂ κsep a separable algebraic clo-
sure. There exist canonical flat local ring maps R→ Rh → Rsh where

(1) Rh, Rsh are filtered colimits of étale R-algebras,
(2) Rh is henselian, Rsh is strictly henselian,
(3) mRh (resp. mRsh) is the maximal ideal of Rh (resp. Rsh), and
(4) κ = Rh/mRh, and κsep = Rsh/mRsh as extensions of κ.

Proof. The structure ofRh andRsh is described in Algebra, Lemmas 155.1 and 155.2.
�
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The rings constructed in Theorem 32.8 are called respectively the henselization and the
strict henselization of the local ring R, see Algebra, Definition 155.3. Many of the prop-
erties of R are reflected in its (strict) henselization, see More on Algebra, Section 45.

33. Stalks of the structure sheaf

In this section we identify the stalk of the structure sheaf at a geometric point with the
strict henselization of the local ring at the corresponding “usual” point.

Lemma 33.1. Let S be a scheme. Let s be a geometric point of S lying over s ∈ S.
Let κ = κ(s) and let κ ⊂ κsep ⊂ κ(s) denote the separable algebraic closure of κ in κ(s).
Then there is a canonical identification

(OS,s)sh ∼= (OS)s
where the left hand side is the strict henselization of the local ring OS,s as described in
Theorem 32.8 and right hand side is the stalk of the structure sheaf OS on Sétale at the
geometric point s.

Proof. Let Spec(A) ⊂ S be an affine neighbourhood of s. Let p ⊂ A be the prime
ideal corresponding to s. With these choices we have canonical isomorphismsOS,s = Ap

and κ(s) = κ(p). Thus we have κ(p) ⊂ κsep ⊂ κ(s). Recall that

(OS)s = colim(U,u)O(U)

where the limit is over the étale neighbourhoods of (S, s). A cofinal system is given
by those étale neighbourhoods (U, u) such that U is affine and U → S factors through
Spec(A). In other words, we see that

(OS)s = colim(B,q,φ) B

where the colimit is over étale A-algebras B endowed with a prime q lying over p and a
κ(p)-algebra map φ : κ(q) → κ(s). Note that since κ(q) is finite separable over κ(p) the
image of φ is contained in κsep. Via these translations the result of the lemma is equivalent
to the result of Algebra, Lemma 155.11. �

Definition 33.2. Let S be a scheme. Let s be a geometric point of S lying over the
point s ∈ S.

(1) The étale local ring of S at s is the stalk of the structure sheafOS on Sétale at s.
We sometimes call this the strict henselization ofOS,s relative to the geometric
point s. Notation used: OshS,s.

(2) The henselization of OS,s is the henselization of the local ring of S at s. See
Algebra, Definition 155.3, and Theorem 32.8. Notation: OhS,s.

(3) The strict henselization of S at s is the scheme Spec(OshS,s).
(4) The henselization of S at s is the scheme Spec(OhS,s).

Let f : T → S be a morphism of schemes. Let t be a geometric point of T with image s in
S. Let t ∈ T and s ∈ S be their images. Then we obtain a canonical commutative diagram

Spec(OhT,t) //

��

Spec(Osh
T,t

) //

��

T

f

��
Spec(OhS,s) // Spec(OshS,s) // S
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of henselizations and strict henselizations of T and S. You can prove this by choosing
affine neighbourhoods of t and s and using the functoriality of (strict) henselizations given
by Algebra, Lemmas 155.8 and 155.12.

Lemma 33.3. Let S be a scheme. Let s ∈ S. Then we have
OhS,s = colim(U,u)O(U)

where the colimit is over the filtered category of étale neighbourhoods (U, u) of (S, s)
such that κ(s) = κ(u).

Proof. This lemma is a copy of More on Morphisms, Lemma 35.5. �

Remark 33.4. Let S be a scheme. Let s ∈ S. If S is locally Noetherian then OhS,s is
also Noetherian and it has the same completion:

ÔS,s ∼= ÔhS,s.

In particular, OS,s ⊂ OhS,s ⊂ ÔS,s. The henselization of OS,s is in general much smaller
than its completion and inherits many of its properties. For example, if OS,s is reduced,
then so isOhS,s, but this is not true for the completion in general. Insert future references
here.

Lemma 33.5. LetS be a scheme. The small étale siteSétale endowed with its structure
sheafOS is a locally ringed site, see Modules on Sites, Definition 40.4.

Proof. This follows because the stalks (OS)s = OshS,s are local, and because Sétale
has enough points, see Lemma 33.1, Theorem 29.10, and Remarks 29.11. See Modules on
Sites, Lemmas 40.2 and 40.3 for the fact that this implies the small étale site is locally
ringed. �

34. Functoriality of small étale topos

So far we haven’t yet discussed the functoriality of the étale site, in other words what
happens when given a morphism of schemes. A precise formal discussion can be found
in Topologies, Section 4. In this and the next sections we discuss this material briefly
specifically in the setting of small étale sites.
Let f : X → Y be a morphism of schemes. We obtain a functor
(34.0.1) u : Yétale −→ Xétale, V/Y 7−→ X ×Y V/X.
This functor has the following important properties

(1) u(final object) = final object,
(2) u preserves fibre products,
(3) if {Vj → V } is a covering in Yétale, then {u(Vj) → u(V )} is a covering in

Xétale.
Each of these is easy to check (omitted). As a consequence we obtain what is called a
morphism of sites

fsmall : Xétale −→ Yétale,

see Sites, Definition 14.1 and Sites, Proposition 14.7. It is not necessary to know about
the abstract notion in detail in order to work with étale sheaves and étale cohomology. It
usually suffices to know that there are functors fsmall,∗ (pushforward) and f−1

small (pull-
back) on étale sheaves, and to know some of their simple properties. We will discuss these
properties in the next sections, but we will sometimes refer to the more abstract material
for proofs since that is often the natural setting to prove them.
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35. Direct images

Let us define the pushforward of a presheaf.

Definition 35.1. Let f : X → Y be a morphism of schemes. LetF a presheaf of sets
on Xétale. The direct image, or pushforward of F (under f ) is

f∗F : Y oppétale −→ Sets, (V/Y ) 7−→ F(X ×Y V/X).

We sometimes write f∗ = fsmall,∗ to distinguish from other direct image functors (such
as usual Zariski pushforward or fbig,∗).

This is a well-defined étale presheaf since the base change of an étale morphism is again
étale. A more categorical way of saying this is that f∗F is the composition of functorsF◦u
where u is as in Equation (34.0.1). This makes it clear that the construction is functorial
in the presheaf F and hence we obtain a functor

f∗ = fsmall,∗ : PSh(Xétale) −→ PSh(Yétale)
Note that ifF is a presheaf of abelian groups, then f∗F is also a presheaf of abelian groups
and we obtain

f∗ = fsmall,∗ : PAb(Xétale) −→ PAb(Yétale)
as before (i.e., defined by exactly the same rule).

Remark 35.2. We claim that the direct image of a sheaf is a sheaf. Namely, if {Vj →
V } is an étale covering in Yétale then {X×Y Vj → X×Y V } is an étale covering inXétale.
Hence the sheaf condition for F with respect to {X ×Y Vi → X ×Y V } is equivalent to
the sheaf condition for f∗F with respect to {Vi → V }. Thus if F is a sheaf, so is f∗F .

Definition 35.3. Let f : X → Y be a morphism of schemes. Let F a sheaf of sets
on Xétale. The direct image, or pushforward of F (under f ) is

f∗F : Y oppétale −→ Sets, (V/Y ) 7−→ F(X ×Y V/X)
which is a sheaf by Remark 35.2. We sometimes write f∗ = fsmall,∗ to distinguish from
other direct image functors (such as usual Zariski pushforward or fbig,∗).

The exact same discussion as above applies and we obtain functors

f∗ = fsmall,∗ : Sh(Xétale) −→ Sh(Yétale)
and

f∗ = fsmall,∗ : Ab(Xétale) −→ Ab(Yétale)
called direct image again.

The functor f∗ on abelian sheaves is left exact. (See Homology, Section 7 for what it means
for a functor between abelian categories to be left exact.) Namely, if 0→ F1 → F2 → F3
is exact on Xétale, then for every U/X ∈ Ob(Xétale) the sequence of abelian groups
0 → F1(U) → F2(U) → F3(U) is exact. Hence for every V/Y ∈ Ob(Yétale) the
sequence of abelian groups 0 → f∗F1(V ) → f∗F2(V ) → f∗F3(V ) is exact, because this
is the previous sequence with U = X ×Y V .

Definition 35.4. Let f : X → Y be a morphism of schemes. The right derived
functors {Rpf∗}p≥1 of f∗ : Ab(Xétale)→ Ab(Yétale) are called higher direct images.

The higher direct images and their derived category variants are discussed in more detail
in (insert future reference here).
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36. Inverse image

In this section we briefly discuss pullback of sheaves on the small étale sites. The precise
construction of this is in Topologies, Section 4.

Definition 36.1. Let f : X → Y be a morphism of schemes. The inverse image, or
pullback2 functors are the functors

f−1 = f−1
small : Sh(Yétale) −→ Sh(Xétale)

and
f−1 = f−1

small : Ab(Yétale) −→ Ab(Xétale)
which are left adjoint to f∗ = fsmall,∗. Thus f−1 is characterized by the fact that

HomSh(Xétale)(f−1G,F) = HomSh(Yétale)(G, f∗F)

functorially, for any F ∈ Sh(Xétale) and G ∈ Sh(Yétale). We similarly have

HomAb(Xétale)(f−1G,F) = HomAb(Yétale)(G, f∗F)

for F ∈ Ab(Xétale) and G ∈ Ab(Yétale).

It is not trivial that such an adjoint exists. On the other hand, it exists in a fairly general
setting, see Remark 36.3 below. The general machinery shows that f−1G is the sheaf
associated to the presheaf

(36.1.1) U/X 7−→ colimU→X×Y V G(V/Y )

where the colimit is over the category of pairs (V/Y, ϕ : U/X → X×Y V/X). To see this
apply Sites, Proposition 14.7 to the functor u of Equation (34.0.1) and use the description
of us = (up )# in Sites, Sections 13 and 5. We will occasionally use this formula for the
pullback in order to prove some of its basic properties.

Lemma 36.2. Let f : X → Y be a morphism of schemes.
(1) The functor f−1 : Ab(Yétale)→ Ab(Xétale) is exact.
(2) The functor f−1 : Sh(Yétale) → Sh(Xétale) is exact, i.e., it commutes with

finite limits and colimits, see Categories, Definition 23.1.
(3) Let x → X be a geometric point. Let G be a sheaf on Yétale. Then there is a

canonical identification

(f−1G)x = Gy.

where y = f ◦ x.
(4) For any V → Y étale we have f−1hV = hX×Y V .

Proof. The exactness of f−1 on sheaves of sets is a consequence of Sites, Proposition
14.7 applied to our functor u of Equation (34.0.1). In fact the exactness of pullback is part
of the definition of a morphism of topoi (or sites if you like). Thus we see (2) holds. It
implies part (1) since given an abelian sheaf G on Yétale the underlying sheaf of sets of
f−1F is the same as f−1 of the underlying sheaf of sets ofF , see Sites, Section 44. See also
Modules on Sites, Lemma 31.2. In the literature (1) and (2) are sometimes deduced from
(3) via Theorem 29.10.

2We use the notation f−1 for pullbacks of sheaves of sets or sheaves of abelian groups, and we reserve f∗

for pullbacks of sheaves of modules via a morphism of ringed sites/topoi.
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Part (3) is a general fact about stalks of pullbacks, see Sites, Lemma 34.2. We will also prove
(3) directly as follows. Note that by Lemma 29.9 taking stalks commutes with sheafifica-
tion. Now recall that f−1G is the sheaf associated to the presheaf

U −→ colimU→X×Y V G(V ),

see Equation (36.1.1). Thus we have

(f−1G)x = colim(U,u) f
−1G(U)

= colim(U,u) colima:U→X×Y V G(V )
= colim(V,v) G(V )
= Gy

in the third equality the pair (U, u) and the map a : U → X ×Y V corresponds to the
pair (V, a ◦ u).

Part (4) can be proved in a similar manner by identifying the colimits which define f−1hV .
Or you can use Yoneda’s lemma (Categories, Lemma 3.5) and the functorial equalities

MorSh(Xétale)(f−1hV ,F) = MorSh(Yétale)(hV , f∗F) = f∗F(V ) = F(X ×Y V )

combined with the fact that representable presheaves are sheaves. See also Sites, Lemma
13.5 for a completely general result. �

The pair of functors (f∗, f
−1) define a morphism of small étale topoi

fsmall : Sh(Xétale) −→ Sh(Yétale)

Many generalities on cohomology of sheaves hold for topoi and morphisms of topoi. We
will try to point out when results are general and when they are specific to the étale topos.

Remark 36.3. More generally, let C1, C2 be sites, and assume they have final objects
and fibre products. Let u : C2 → C1 be a functor satisfying:

(1) if {Vi → V } is a covering of C2, then {u(Vi) → u(V )} is a covering of C1 (we
say that u is continuous), and

(2) u commutes with finite limits (i.e., u is left exact, i.e., u preserves fibre products
and final objects).

Then one can define f∗ : Sh(C1)→ Sh(C2) by f∗F(V ) = F(u(V )). Moreover, there ex-
ists an exact functor f−1 which is left adjoint to f∗, see Sites, Definition 14.1 and Proposi-
tion 14.7. Warning: It is not enough to require simply that u is continuous and commutes
with fibre products in order to get a morphism of topoi.

37. Functoriality of big topoi

Given a morphism of schemes f : X → Y there are a whole host of morphisms of topoi
associated to f , see Topologies, Section 11 for a list. Perhaps the most used ones are the
morphisms of topoi

fbig = fbig,τ : Sh((Sch/X)τ ) −→ Sh((Sch/Y )τ )

where τ ∈ {Zariski, étale, smooth, syntomic, fppf}. These each correspond to a con-
tinuous functor

(Sch/Y )τ −→ (Sch/X)τ , V/Y 7−→ X ×Y V/X
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which preserves final objects, fibre products and covering, and hence defines a morphism
of sites

fbig : (Sch/X)τ −→ (Sch/Y )τ .
See Topologies, Sections 3, 4, 5, 6, and 7. In particular, pushforward along fbig is given by
the rule

(fbig,∗F)(V/Y ) = F(X ×Y V/X)
It turns out that these morphisms of topoi have an inverse image functor f−1

big which is
very easy to describe. Namely, we have

(f−1
bigG)(U/X) = G(U/Y )

where the structure morphism ofU/Y is the composition of the structure morphismU →
X with f , see Topologies, Lemmas 3.16, 4.16, 5.10, 6.10, and 7.12.

38. Functoriality and sheaves of modules

In this section we are going to reformulate some of the material explained in Descent,
Sections 8, 9, and 10 in the setting of étale topologies. Let f : X → Y be a morphism
of schemes. We have seen above, see Sections 34, 35, and 36 that this induces a morphism
fsmall of small étale sites. In Descent, Remark 8.4 we have seen that f also induces a
natural map

f ]small : OYétale −→ fsmall,∗OXétale
of sheaves of rings on Yétale such that (fsmall, f ]small) is a morphism of ringed sites. See
Modules on Sites, Definition 6.1 for the definition of a morphism of ringed sites. Let us
just recall here that f ]small is defined by the compatible system of maps

pr]V : O(V ) −→ O(X ×Y V )
for V varying over the objects of Yétale.
It is clear that this construction is compatible with compositions of morphisms of schemes.
More precisely, if f : X → Y and g : Y → Z are morphisms of schemes, then we have

(gsmall, g]small) ◦ (fsmall, f ]small) = ((g ◦ f)small, (g ◦ f)]small)
as morphisms of ringed topoi. Moreover, by Modules on Sites, Definition 13.1 we see that
given a morphism f : X → Y of schemes we get well defined pullback and direct image
functors

f∗
small : Mod(OYétale) −→Mod(OXétale),

fsmall,∗ : Mod(OXétale) −→Mod(OYétale)
which are adjoint in the usual way. If g : Y → Z is another morphism of schemes, then
we have (g ◦ f)∗

small = f∗
small ◦ g∗

small and (g ◦ f)small,∗ = gsmall,∗ ◦ fsmall,∗ because of
what we said about compositions.
There is quite a bit of difference between the category of all OX modules on X and the
category between allOXétale -modules on Xétale. But the results of Descent, Sections 8, 9,
and 10 tell us that there is not much difference between considering quasi-coherent mod-
ules on S and quasi-coherent modules on Sétale. (We have already seen this in Theorem
17.4 for example.) In particular, if f : X → Y is any morphism of schemes, then the
pullback functors f∗

small and f∗ match for quasi-coherent sheaves, see Descent, Proposi-
tion 9.4. Moreover, the same is true for pushforward provided f is quasi-compact and
quasi-separated, see Descent, Lemma 9.5.
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A few words about functoriality of the structure sheaf on big sites. Let f : X → Y
be a morphism of schemes. Choose any of the topologies τ ∈ {Zariski, étale, smooth,
syntomic, fppf}. Then the morphism fbig : (Sch/X)τ → (Sch/Y )τ becomes a mor-
phism of ringed sites by a map

f ]big : OY −→ fbig,∗OX

see Descent, Remark 8.4. In fact it is given by the same construction as in the case of small
sites explained above.

39. Comparing topologies

In this section we start studying what happens when you compare sheaves with respect to
different topologies.

Lemma 39.1. Let S be a scheme. Let F be a sheaf of sets on Sétale. Let s, t ∈ F(S).
Then there exists an open W ⊂ S characterized by the following property: A morphism
f : T → S factors through W if and only if s|T = t|T (restriction is pullback by fsmall).

Proof. Consider the presheaf which assigns to U ∈ Ob(Sétale) the empty set if
s|U 6= t|U and a singleton else. It is clear that this is a subsheaf of the final object of
Sh(Sétale). By Lemma 31.1 we find an open W ⊂ S representing this presheaf. For a
geometric point x of S we see that x ∈ W if and only if the stalks of s and t at x agree.
By the description of stalks of pullbacks in Lemma 36.2 we see that W has the desired
property. �

Lemma 39.2. Let S be a scheme. Let τ ∈ {Zariski, étale}. Consider the morphism

πS : (Sch/S)τ −→ Sτ

of Topologies, Lemma 3.14 or 4.14. Let F be a sheaf on Sτ . Then π−1
S F is given by the

rule

(π−1
S F)(T ) = Γ(Tτ , f−1

smallF)

where f : T → S. Moreover, π−1
S F satisfies the sheaf condition with respect to fpqc

coverings.

Proof. Observe that we have a morphism if : Sh(Tτ ) → Sh(Sch/S)τ ) such that
πS ◦ if = fsmall as morphisms Tτ → Sτ , see Topologies, Lemmas 3.13, 3.17, 4.13, and 4.17.
Since pullback is transitive we see that i−1

f π−1
S F = f−1

smallF as desired.

Let {gi : Ti → T}i∈I be an fpqc covering. The final statement means the following: Given
a sheafG on Tτ and given sections si ∈ Γ(Ti, g−1

i,smallG) whose pullbacks to Ti×T Tj agree,
there is a unique section s of G over T whose pullback to Ti agrees with si.

Let V → T be an object of Tτ and let t ∈ G(V ). For every i there is a largest open
Wi ⊂ Ti×T V such that the pullbacks of si and t agree as sections of the pullback of G to
Wi ⊂ Ti ×T V , see Lemma 39.1. Because si and sj agree over Ti ×T Tj we find that Wi

and Wj pullback to the same open over Ti ×T Tj ×T V . By Descent, Lemma 13.6 we find
an open W ⊂ V whose inverse image to Ti ×T V recovers Wi.
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By construction of g−1
i,smallG there exists a τ -covering {Tij → Ti}j∈Ji , for each j an open

immersion or étale morphism Vij → T , a section tij ∈ G(Vij), and commutative diagrams

Tij //

��

Vij

��
Ti // T

such that si|Tij is the pullback of tij . In other words, after replacing the covering {Ti →
T} by {Tij → T} we may assume there are factorizations Ti → Vi → T with Vi ∈
Ob(Tτ ) and sections ti ∈ G(Vi) pulling back to si over Ti. By the result of the previous
paragraph we find opens Wi ⊂ Vi such that ti|Wi “agrees with” every sj over Tj ×T Wi.
Note that Ti → Vi factors through Wi. Hence {Wi → T} is a τ -covering and the lemma
is proven. �

Lemma 39.3. Let S be a scheme. Let f : T → S be a morphism such that
(1) f is flat and quasi-compact, and
(2) the geometric fibres of f are connected.

Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(T, f−1
smallF).

Proof. There is a canonical map Γ(S,F) → Γ(T, f−1
smallF). Since f is surjective

(because its fibres are connected) we see that this map is injective.

To show that the map is surjective, let α ∈ Γ(T, f−1
smallF). Since {T → S} is an fpqc

covering we can use Lemma 39.2 to see that suffices to prove that α pulls back to the same
section over T ×S T by the two projections. Let s→ S be a geometric point. It suffices to
show the agreement holds over (T×S T )s as every geometric point of T×S T is contained
in one of these geometric fibres. In other words, we are trying to show that α|Ts pulls back
to the same section over

(T ×S T )s = Ts ×s Ts
by the two projections to Ts. However, since F|Ts is the pullback of F|s it is a constant
sheaf with value Fs. Since Ts is connected by assumption, any section of a constant sheaf
is constant. Hence α|Ts corresponds to an element of Fs. Thus the two pullbacks to
(T ×S T )s both correspond to this same element and we conclude. �

Here is a version of Lemma 39.3 where we do not assume that the morphism is flat.

Lemma 39.4. Let S be a scheme. Let f : X → S be a morphism such that
(1) f is submersive, and
(2) the geometric fibres of f are connected.

Let F be a sheaf on Sétale. Then Γ(S,F) = Γ(X, f−1
smallF).

Proof. There is a canonical map Γ(S,F) → Γ(X, f−1
smallF). Since f is surjective

(because its fibres are connected) we see that this map is injective.

To show that the map is surjective, let τ ∈ Γ(X, f−1
smallF). It suffices to find an étale

covering {Ui → S} and sections σi ∈ F(Ui) such that σi pulls back to τ |X×SUi . Namely,
the injectivity shown above guarantees that σi and σj restrict to the same section of F
over Ui ×S Uj . Thus we obtain a unique section σ ∈ F(S) which restricts to σi over Ui.
Then the pullback of σ to X is τ because this is true locally.
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Let x be a geometric point of X with image s in S. Consider the image of τ in the stalk

(f−1
smallF)x = Fs

See Lemma 36.2. We can find an étale neighbourhoodU → S of s and a section σ ∈ F(U)
mapping to this image in the stalk. Thus after replacing S by U and X by X ×S U we
may assume there exits a section σ of F over S whose image in (f−1

smallF)x is the same as
τ .

By Lemma 39.1 there exists a maximal open W ⊂ X such that f−1
smallσ and τ agree over

W and the formation ofW commutes with further pullback. Observe that the pullback of
F to the geometric fibreXs is the pullback ofFs viewed as a sheaf on s byXs → s. Hence
we see that τ and σ give sections of the constant sheaf with value Fs on Xs which agree
in one point. SinceXs is connected by assumption, we conclude thatW containsXs. The
same argument for different geometric fibres shows that W contains every fibre it meets.
Since f is submersive, we conclude thatW is the inverse image of an open neighbourhood
of s in S. This finishes the proof. �

Lemma 39.5. LetK/k be an extension of fields with k separably algebraically closed.
Let S be a scheme over k. Denote p : SK = S ×Spec(k) Spec(K)→ S the projection. Let
F be a sheaf on Sétale. Then Γ(S,F) = Γ(SK , p−1

smallF).

Proof. Follows from Lemma 39.3. Namely, it is clear that p is flat and quasi-compact
as the base change of Spec(K) → Spec(k). On the other hand, if s : Spec(L) → S is a
geometric point, then the fibre of p over s is the spectrum of K ⊗k L which is irreducible
hence connected by Algebra, Lemma 47.2. �

40. Recovering morphisms

In this section we prove that the rule which associates to a scheme its locally ringed small
étale topos is fully faithful in a suitable sense, see Theorem 40.5.

Lemma 40.1. Let f : X → Y be a morphism of schemes. The morphism of ringed
sites (fsmall, f ]small) associated to f is a morphism of locally ringed sites, see Modules on
Sites, Definition 40.9.

Proof. Note that the assertion makes sense since we have seen that (Xétale,OXétale)
and (Yétale,OYétale) are locally ringed sites, see Lemma 33.5. Moreover, we know that
Xétale has enough points, see Theorem 29.10 and Remarks 29.11. Hence it suffices to prove
that (fsmall, f ]small) satisfies condition (3) of Modules on Sites, Lemma 40.8. To see this
take a point p of Xétale. By Lemma 29.12 p corresponds to a geometric point x of X . By
Lemma 36.2 the point q = fsmall ◦ p corresponds to the geometric point y = f ◦ x of Y .
Hence the assertion we have to prove is that the induced map of stalks

(OY )y −→ (OX)x
is a local ring map. Suppose that a ∈ (OY )y is an element of the left hand side which maps
to an element of the maximal ideal of the right hand side. Suppose that a is the equivalence
class of a triple (V, v, a) with V → Y étale, v : x → V over Y , and a ∈ O(V ). It maps
to the equivalence class of (X ×Y V, x × v, pr]V (a)) in the local ring (OX)x. But it is
clear that being in the maximal ideal means that pulling back pr]V (a) to an element of
κ(x) gives zero. Hence also pulling back a to κ(x) is zero. Which means that a lies in the
maximal ideal of (OY )y . �
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Lemma 40.2. Let X , Y be schemes. Let f : X → Y be a morphism of schemes. Let t
be a 2-morphism from (fsmall, f ]small) to itself, see Modules on Sites, Definition 8.1. Then
t = id.

Proof. This means that t : f−1
small → f−1

small is a transformation of functors such that
the diagram

f−1
smallOY

f]
small $$

f−1
smallOYt

oo

f]
smallzz

OX
is commutative. Suppose V → Y is étale with V affine. By Morphisms, Lemma 39.2 we
may choose an immersion i : V → An

Y over Y . In terms of sheaves this means that i
induces an injection hi : hV →

∏
j=1,...,nOY of sheaves. The base change i′ of i to X

is an immersion (Schemes, Lemma 18.2). Hence i′ : X ×Y V → An
X is an immersion,

which in turn means that hi′ : hX×Y V →
∏
j=1,...,nOX is an injection of sheaves. Via

the identification f−1
smallhV = hX×Y V of Lemma 36.2 the map hi′ is equal to

f−1
smallhV

f−1hi // ∏
j=1,...,n f

−1
smallOY

∏
f]

// ∏
j=1,...,nOX

(verification omitted). This means that the map t : f−1
smallhV → f−1

smallhV fits into the
commutative diagram

f−1
smallhV

f−1hi //

t

��

∏
j=1,...,n f

−1
smallOY

∏
f]

//∏
t

��

∏
j=1,...,nOX

id
��

f−1
smallhV

f−1hi // ∏
j=1,...,n f

−1
smallOY

∏
f]

// ∏
j=1,...,nOX

The commutativity of the right square holds by our assumption on t explained above.
Since the composition of the horizontal arrows is injective by the discussion above we
conclude that the left vertical arrow is the identity map as well. Any sheaf of sets on
Yétale admits a surjection from a (huge) coproduct of sheaves of the form hV with V
affine (combine Topologies, Lemma 4.12 with Sites, Lemma 12.5). Thus we conclude that
t : f−1

small → f−1
small is the identity transformation as desired. �

Lemma 40.3. LetX , Y be schemes. Any two morphisms a, b : X → Y of schemes for
which there exists a 2-isomorphism (asmall, a]small) ∼= (bsmall, b]small) in the 2-category
of ringed topoi are equal.

Proof. Let us argue this carefuly since it is a bit confusing. Let t : a−1
small → b−1

small

be the 2-isomorphism. Consider any open V ⊂ Y . Note that hV is a subsheaf of the final
sheaf ∗. Thus both a−1

smallhV = ha−1(V ) and b−1
smallhV = hb−1(V ) are subsheaves of the

final sheaf. Thus the isomorphism

t : a−1
smallhV = ha−1(V ) → b−1

smallhV = hb−1(V )

has to be the identity, and a−1(V ) = b−1(V ). It follows that a and b are equal on un-
derlying topological spaces. Next, take a section f ∈ OY (V ). This determines and is
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determined by a map of sheaves of sets f : hV → OY . Pull this back and apply t to get a
commutative diagram

hb−1(V ) b−1
smallhV

b−1
small

(f)
��

a−1
smallhV

a−1
small

(f)
��

t
oo ha−1(V )

b−1
smallOY

b] $$

a−1
smallOYt

oo

a]zz
OX

where the triangle is commutative by definition of a 2-isomorphism in Modules on Sites,
Section 8. Above we have seen that the composition of the top horizontal arrows comes
from the identity a−1(V ) = b−1(V ). Thus the commutativity of the diagram tells us that
a]small(f) = b]small(f) in OX(a−1(V )) = OX(b−1(V )). Since this holds for every open
V and every f ∈ OY (V ) we conclude that a = b as morphisms of schemes. �

Lemma 40.4. Let X , Y be affine schemes. Let
(g, g#) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

be a morphism of locally ringed topoi. Then there exists a unique morphism of schemes
f : X → Y such that (g, g#) is 2-isomorphic to (fsmall, f ]small), see Modules on Sites,
Definition 8.1.

Proof. In this proof we writeOX for the structure sheaf of the small étale siteXétale,
and similarly for OY . Say Y = Spec(B) and X = Spec(A). Since B = Γ(Yétale,OY ),
A = Γ(Xétale,OX) we see that g] induces a ring map ϕ : B → A. Let f = Spec(ϕ) :
X → Y be the corresponding morphism of affine schemes. We will show this f does the
job.
Let V → Y be an affine scheme étale over Y . Thus we may write V = Spec(C) with C
an étale B-algebra. We can write

C = B[x1, . . . , xn]/(P1, . . . , Pn)
with Pi polynomials such that ∆ = det(∂Pi/∂xj) is invertible in C , see for example
Algebra, Lemma 143.2. If T is a scheme over Y , then a T -valued point of V is given by
n sections of Γ(T,OT ) which satisfy the polynomial equations P1 = 0, . . . , Pn = 0. In
other words, the sheaf hV on Yétale is the equalizer of the two maps∏

i=1,...,nOY
a //

b
//
∏
j=1,...,nOY

where b(h1, . . . , hn) = 0 and a(h1, . . . , hn) = (P1(h1, . . . , hn), . . . , Pn(h1, . . . , hn)).
Since g−1 is exact we conclude that the top row of the following solid commutative dia-
gram is an equalizer diagram as well:

g−1hV //

��

∏
i=1,...,n g

−1OY
g−1a //

g−1b

//∏
g]

��

∏
j=1,...,n g

−1OY∏
g]

��
hX×Y V

// ∏
i=1,...,nOX

a′
//

b′
//
∏
j=1,...,nOX
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Here b′ is the zero map anda′ is the map defined by the imagesP ′
i = ϕ(Pi) ∈ A[x1, . . . , xn]

via the same rule a′(h1, . . . , hn) = (P ′
1(h1, . . . , hn), . . . , P ′

n(h1, . . . , hn)). that a was
defined by. The commutativity of the diagram follows from the fact that ϕ = g] on
global sections. The lower row is an equalizer diagram also, by exactly the same argu-
ments as before since X ×Y V is the affine scheme Spec(A ⊗B C) and A ⊗B C =
A[x1, . . . , xn]/(P ′

1, . . . , P
′
n). Thus we obtain a unique dotted arrow g−1hV → hX×Y V

fitting into the diagram

We claim that the map of sheaves g−1hV → hX×Y V is an isomorphism. Since the small
étale site ofX has enough points (Theorem 29.10) it suffices to prove this on stalks. Hence
let x be a geometric point of X , and denote p the associate point of the small étale topos
of X . Set q = g ◦ p. This is a point of the small étale topos of Y . By Lemma 29.12 we see
that q corresponds to a geometric point y of Y . Consider the map of stalks

(g])p : (OY )y = OY,q = (g−1OY )p −→ OX,p = (OX)x
Since (g, g]) is a morphism of locally ringed topoi (g])p is a local ring homomorphism of
strictly henselian local rings. Applying localization to the big commutative diagram above
and Algebra, Lemma 153.12 we conclude that (g−1hV )p → (hX×Y V )p is an isomorphism
as desired.

We claim that the isomorphisms g−1hV → hX×Y V are functorial. Namely, suppose that
V1 → V2 is a morphism of affine schemes étale over Y . Write Vi = Spec(Ci) with

Ci = B[xi,1, . . . , xi,ni ]/(Pi,1, . . . , Pi,ni)

The morphism V1 → V2 is given by a B-algebra map C2 → C1 which in turn is given by
some polynomialsQj ∈ B[x1,1, . . . , x1,n1 ] for j = 1, . . . , n2. Then it is an easy matter to
show that the diagram of sheaves

hV1

��

// ∏
i=1,...,n1

OY

Q1,...,Qn2

��
hV2

// ∏
i=1,...,n2

OY

is commutative, and pulling back to Xétale we obtain the solid commutative diagram

g−1hV1

��

++

// ∏
i=1,...,n1

g−1OY

g]

��

Q1,...,Qn2

++
g−1hV2

��

// ∏
i=1,...,n2

g−1OY

g]

��

hX×Y V1
//

++

∏
i=1,...,n1

OX
Q′

1,...,Q
′
n2

++
hX×Y V2

// ∏
i=1,...,n2

OX

where Q′
j ∈ A[x1,1, . . . , x1,n1 ] is the image of Qj via ϕ. Since the dotted arrows exist,

make the two squares commute, and the horizontal arrows are injective we see that the
whole diagram commutes. This proves functoriality (and also that the construction of
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g−1hV → hX×Y V is independent of the choice of the presentation, although we strictly
speaking do not need to show this).

At this point we are able to show that fsmall,∗ ∼= g∗. Namely, let F be a sheaf on Xétale.
For every V ∈ Ob(Xétale) affine we have

(g∗F)(V ) = MorSh(Yétale)(hV , g∗F)
= MorSh(Xétale)(g−1hV ,F)
= MorSh(Xétale)(hX×Y V ,F)
= F(X ×Y V )
= fsmall,∗F(V )

where in the third equality we use the isomorphism g−1hV ∼= hX×Y V constructed above.
These isomorphisms are clearly functorial in F and functorial in V as the isomorphisms
g−1hV ∼= hX×Y V are functorial. Now any sheaf on Yétale is determined by the restriction
to the subcategory of affine schemes (Topologies, Lemma 4.12), and hence we obtain an
isomorphism of functors fsmall,∗ ∼= g∗ as desired.

Finally, we have to check that, via the isomorphism fsmall,∗ ∼= g∗ above, the maps f ]small
and g] agree. By construction this is already the case for the global sections of OY , i.e.,
for the elements of B. We only need to check the result on sections over an affine V étale
over Y (by Topologies, Lemma 4.12 again). Writing V = Spec(C), C = B[xi]/(Pj) as
before it suffices to check that the coordinate functions xi are mapped to the same sections
ofOX over X ×Y V . And this is exactly what it means that the diagram

g−1hV //

��

∏
i=1,...,n g

−1OY∏
g]

��
hX×Y V

// ∏
i=1,...,nOX

commutes. Thus the lemma is proved. �

Here is a version for general schemes.

Theorem 40.5. Let X , Y be schemes. Let

(g, g#) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

be a morphism of locally ringed topoi. Then there exists a unique morphism of schemes
f : X → Y such that (g, g#) is isomorphic to (fsmall, f ]small). In other words, the
construction

Sch −→ Locally ringed topoi, X −→ (Xétale,OX)

is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. You can prove this theorem by carefuly adjusting the arguments of the proof
of Lemma 40.4 to the global setting. However, we want to indicate how we can glue the
result of that lemma to get a global morphism due to the rigidity provided by the result
of Lemma 40.2. Unfortunately, this is a bit messy.

Let us prove existence when Y is affine. In this case choose an affine open covering X =⋃
Ui. For each i the inclusion morphism ji : Ui → X induces a morphism of locally
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ringed topoi (ji,small, j]i,small) : (Sh(Ui,étale),OUi) → (Sh(Xétale),OX) by Lemma
40.1. We can compose this with (g, g]) to obtain a morphism of locally ringed topoi

(g, g]) ◦ (ji,small, j]i,small) : (Sh(Ui,étale),OUi)→ (Sh(Yétale),OY )
see Modules on Sites, Lemma 40.10. By Lemma 40.4 there exists a unique morphism of
schemes fi : Ui → Y and a 2-isomorphism

ti : (fi,small, f ]i,small) −→ (g, g]) ◦ (ji,small, j]i,small).
Set Ui,i′ = Ui ∩ Ui′ , and denote ji,i′ : Ui,i′ → Ui the inclusion morphism. Since we have
ji ◦ ji,i′ = ji′ ◦ ji′,i we see that

(g, g]) ◦ (ji,small, j]i,small) ◦ (ji,i′,small, j]i,i′,small) =

(g, g]) ◦ (ji′,small, j]i′,small) ◦ (ji′,i,small, j]i′,i,small)

Hence by uniqueness (see Lemma 40.3) we conclude that fi ◦ ji,i′ = fi′ ◦ ji′,i, in other
words the morphisms of schemes fi = f ◦ ji are the restrictions of a global morphism
of schemes f : X → Y . Consider the diagram of 2-isomorphisms (where we drop the
components ] to ease the notation)

g ◦ ji,small ◦ ji,i′,small
ti?idj

i,i′,small// fsmall ◦ ji,small ◦ ji,i′,small

g ◦ ji′,small ◦ ji′,i,small
ti′?idj

i′,i,small// fsmall ◦ ji′,small ◦ ji′,i,small

The notation ? indicates horizontal composition, see Categories, Definition 29.1 in general
and Sites, Section 36 for our particular case. By the result of Lemma 40.2 this diagram
commutes. Hence for any sheaf G on Yétale the isomorphisms ti : f−1

smallG|Ui → g−1G|Ui
agree over Ui,i′ and we obtain a global isomorphism t : f−1

smallG → g−1G. It is clear that
this isomorphism is functorial in G and is compatible with the maps f ]small and g] (because
it is compatible with these maps locally). This proves the theorem in case Y is affine.

In the general case, let V ⊂ Y be an affine open. Then hV is a subsheaf of the final sheaf
∗ on Yétale. As g is exact we see that g−1hV is a subsheaf of the final sheaf on Xétale.
Hence by Lemma 31.1 there exists an open subscheme W ⊂ X such that g−1hV = hW .
By Modules on Sites, Lemma 40.12 there exists a commutative diagram of morphisms of
locally ringed topoi

(Sh(Wétale),OW ) //

g′

��

(Sh(Xétale),OX)

g

��
(Sh(Vétale),OV ) // (Sh(Yétale),OY )

where the horizontal arrows are the localization morphisms (induced by the inclusion
morphisms V → Y and W → X) and where g′ is induced from g. By the result of the
preceding paragraph we obtain a morphism of schemes f ′ : W → V and a 2-isomorphism
t : (f ′

small, (f ′
small)]) → (g′, (g′)]). Exactly as before these morphisms f ′ (for varying

affine opens V ⊂ Y ) agree on overlaps by uniqueness, so we get a morphism f : X → Y .
Moreover, the 2-isomorphisms t are compatible on overlaps by Lemma 40.2 again and we
obtain a global 2-isomorphism (fsmall, (fsmall)]) → (g, (g)]). as desired. Some details
omitted. �
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41. Push and pull

Let f : X → Y be a morphism of schemes. Here is a list of conditions we will consider in
the following:

(A) For every étale morphism U → X and u ∈ U there exist an étale morphism
V → Y and a disjoint union decompositionX×Y V = WqW ′ and a morphism
h : W → U over X with u in the image of h.

(B) For every V → Y étale, and every étale covering {Ui → X ×Y V } there exists
an étale covering {Vj → V } such that for each j we have X ×Y Vj =

∐
Wij

where Wij → X ×Y V factors through Ui → X ×Y V for some i.
(C) For every U → X étale, there exists a V → Y étale and a surjective morphism

X ×Y V → U over X .
It turns out that each of these properties has meaning in terms of the behaviour of the
functor fsmall,∗. We will work this out in the next few sections.

42. Property (A)

Please see Section 41 for the definition of property (A).

Lemma 42.1. Let f : X → Y be a morphism of schemes. Assume (A).
(1) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) reflects injections and surjections,
(2) f−1

smallfsmall,∗F → F is surjective for any abelian sheaf F on Xétale,
(3) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is faithful.

Proof. LetF be an abelian sheaf onXétale. LetU be an object ofXétale. By assump-
tion we can find a covering {Wi → U} in Xétale such that each Wi is an open and closed
subscheme of X ×Y Vi for some object Vi of Yétale. The sheaf condition shows that

F(U) ⊂
∏
F(Wi)

and that F(Wi) is a direct summand of F(X ×Y Vi) = fsmall,∗F(Vi). Hence it is clear
that fsmall,∗ reflects injections.

Next, suppose that a : G → F is a map of abelian sheaves such that fsmall,∗a is surjective.
Let s ∈ F(U) with U as above. With Wi, Vi as above we see that it suffices to show
that s|Wi

is étale locally the image of a section of G under a. Since F(Wi) is a direct
summand of F(X ×Y Vi) it suffices to show that for any V ∈ Ob(Yétale) any element
s ∈ F(X ×Y V ) is étale locally on X ×Y V the image of a section of G under a. Since
F(X×Y V ) = fsmall,∗F(V ) we see by assumption that there exists a covering {Vj → V }
such that s is the image of sj ∈ fsmall,∗G(Vj) = G(X×Y Vj). This proves fsmall,∗ reflects
surjections.

Parts (2), (3) follow formally from part (1), see Modules on Sites, Lemma 15.1. �

Lemma 42.2. Let f : X → Y be a separated locally quasi-finite morphism of schemes.
Then property (A) above holds.

Proof. Let U → X be an étale morphism and u ∈ U . The geometric statement
(A) reduces directly to the case where U and Y are affine schemes. Denote x ∈ X and
y ∈ Y the images of u. Since X → Y is locally quasi-finite, and U → X is locally
quasi-finite (see Morphisms, Lemma 36.6) we see that U → Y is locally quasi-finite (see
Morphisms, Lemma 20.12). Moreover bothX → Y andU → Y are separated. Thus More
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on Morphisms, Lemma 41.5 applies to both morphisms. This means we may pick an étale
neighbourhood (V, v)→ (Y, y) such that

X ×Y V = W qR, U ×Y V = W ′ qR′

and points w ∈W , w′ ∈W ′ such that
(1) W , R are open and closed in X ×Y V ,
(2) W ′, R′ are open and closed in U ×Y V ,
(3) W → V and W ′ → V are finite,
(4) w, w′ map to v,
(5) κ(v) ⊂ κ(w) and κ(v) ⊂ κ(w′) are purely inseparable, and
(6) no other point of W or W ′ maps to v.

Here is a commutative diagram

U

��

U ×Y Voo

��

W ′ qR′

��

oo

X

��

X ×Y Voo

��

W qRoo

Y Voo

After shrinkingV we may assume thatW ′ maps intoW : just remove the image the inverse
image of R in W ′; this is a closed set (as W ′ → V is finite) not containing v. Then
W ′ → W is finite because both W → V and W ′ → V are finite. Hence W ′ → W is
finite étale, and there is exactly one point in the fibre over w with κ(w) = κ(w′). Hence
W ′ → W is an isomorphism in an open neighbourhood W ◦ of w, see Étale Morphisms,
Lemma 14.2. Since W → V is finite the image of W \ W ◦ is a closed subset T of V
not containing v. Thus after replacing V by V \ T we may assume that W ′ → W is an
isomorphism. Now the decomposition X ×Y V = W q R and the morphism W → U
are as desired and we win. �

Lemma 42.3. Let f : X → Y be an integral morphism of schemes. Then property
(A) holds.

Proof. Let U → X be étale, and let u ∈ U be a point. We have to find V → Y
étale, a disjoint union decomposition X ×Y V = W qW ′ and an X-morphism W → U
with u in the image. We may shrink U and Y and assume U and Y are affine. In this case
also X is affine, since an integral morphism is affine by definition. Write Y = Spec(A),
X = Spec(B) andU = Spec(C). ThenA→ B is an integral ring map, andB → C is an
étale ring map. By Algebra, Lemma 143.3 we can find a finite A-subalgebra B′ ⊂ B and
an étale ring map B′ → C ′ such that C = B ⊗B′ C ′. Thus the question reduces to the
étale morphism U ′ = Spec(C ′) → X ′ = Spec(B′) over the finite morphism X ′ → Y .
In this case the result follows from Lemma 42.2. �

Lemma 42.4. Let f : X → Y be a morphism of schemes. Denote fsmall : Sh(Xétale)→
Sh(Yétale) the associated morphism of small étale topoi. Assume at least one of the fol-
lowing

(1) f is integral, or
(2) f is separated and locally quasi-finite.

Then the functor fsmall,∗ : Ab(Xétale)→ Ab(Yétale) has the following properties
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(1) the map f−1
smallfsmall,∗F → F is always surjective,

(2) fsmall,∗ is faithful, and
(3) fsmall,∗ reflects injections and surjections.

Proof. Combine Lemmas 42.2, 42.3, and 42.1. �

43. Property (B)

Please see Section 41 for the definition of property (B).

Lemma 43.1. Let f : X → Y be a morphism of schemes. Assume (B) holds. Then
the functor fsmall,∗ : Sh(Xétale)→ Sh(Yétale) transforms surjections into surjections.

Proof. This follows from Sites, Lemma 41.2. �

Lemma 43.2. Let f : X → Y be a morphism of schemes. Suppose
(1) V → Y is an étale morphism of schemes,
(2) {Ui → X ×Y V } is an étale covering, and
(3) v ∈ V is a point.

Assume that for any such data there exists an étale neighbourhood (V ′, v′) → (V, v), a
disjoint union decompositionX×Y V ′ =

∐
W ′
i , and morphismsW ′

i → Ui overX×Y V .
Then property (B) holds.

Proof. Omitted. �

Lemma 43.3. Let f : X → Y be a finite morphism of schemes. Then property (B)
holds.

Proof. Consider V → Y étale, {Ui → X ×Y V } an étale covering, and v ∈ V . We
have to find a V ′ → V and decomposition and maps as in Lemma 43.2. We may shrink
V and Y , hence we may assume that V and Y are affine. Since X is finite over Y , this
also implies that X is affine. During the proof we may (finitely often) replace (V, v) by
an étale neighbourhood (V ′, v′) and correspondingly the covering {Ui → X ×Y V } by
{V ′ ×V Ui → X ×Y V ′}.

SinceX×Y V → V is finite there exist finitely many (pairwise distinct) pointsx1, . . . , xn ∈
X×Y V mapping to v. We may apply More on Morphisms, Lemma 41.5 toX×Y V → V
and the points x1, . . . , xn lying over v and find an étale neighbourhood (V ′, v′)→ (V, v)
such that

X ×Y V ′ = R q
∐

Ta

with Ta → V ′ finite with exactly one point pa lying over v′ and moreover κ(v′) ⊂ κ(pa)
purely inseparable, and such that R → V ′ has empty fibre over v′. Because X → Y is
finite, also R → V ′ is finite. Hence after shrinking V ′ we may assume that R = ∅. Thus
we may assume thatX×Y V = X1q . . .qXn with exactly one point xl ∈ Xl lying over
v with moreover κ(v) ⊂ κ(xl) purely inseparable. Note that this property is preserved
under refinement of the étale neighbourhood (V, v).

For each l choose an il and a point ul ∈ Uil mapping to xl. Now we apply property (A)
for the finite morphism X ×Y V → V and the étale morphisms Uil → X ×Y V and the
points ul. This is permissible by Lemma 42.3 This gives produces an étale neighbourhood
(V ′, v′)→ (V, v) and decompositions

X ×Y V ′ = Wl qRl
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and X-morphisms al : Wl → Uil whose image contains uil . Here is a picture:

Uil

��
Wl

22

// Wl qRl X ×Y V ′ //

��

X ×Y V //

��

X

��
V ′ // V // Y

After replacing (V, v) by (V ′, v′) we conclude that each xl is contained in an open and
closed neighbourhood Wl such that the inclusion morphism Wl → X ×Y V factors
through Ui → X ×Y V for some i. Replacing Wl by Wl ∩ Xl we see that these open
and closed sets are disjoint and moreover that {x1, . . . , xn} ⊂ W1 ∪ . . . ∪ Wn. Since
X ×Y V → V is finite we may shrink V and assume that X ×Y V = W1 q . . . qWn as
desired. �

Lemma 43.4. Let f : X → Y be an integral morphism of schemes. Then property
(B) holds.

Proof. Consider V → Y étale, {Ui → X ×Y V } an étale covering, and v ∈ V . We
have to find a V ′ → V and decomposition and maps as in Lemma 43.2. We may shrink V
and Y , hence we may assume that V and Y are affine. SinceX is integral over Y , this also
implies thatX andX×Y V are affine. We may refine the covering {Ui → X×Y V }, and
hence we may assume that {Ui → X ×Y V }i=1,...,n is a standard étale covering. Write
Y = Spec(A), X = Spec(B), V = Spec(C), and Ui = Spec(Bi). Then A → B is
an integral ring map, and B ⊗A C → Bi are étale ring maps. By Algebra, Lemma 143.3
we can find a finite A-subalgebra B′ ⊂ B and an étale ring map B′ ⊗A C → B′

i for
i = 1, . . . , n such that Bi = B ⊗B′ B′

i. Thus the question reduces to the étale covering
{Spec(B′

i)→ X ′×Y V }i=1,...,n withX ′ = Spec(B′) finite over Y . In this case the result
follows from Lemma 43.3. �

Lemma 43.5. Let f : X → Y be a morphism of schemes. Assume f is integral (for
example finite). Then

(1) fsmall,∗ transforms surjections into surjections (on sheaves of sets and on abelian
sheaves),

(2) f−1
smallfsmall,∗F → F is surjective for any abelian sheaf F on Xétale,

(3) fsmall,∗ : Ab(Xétale) → Ab(Yétale) is faithful and reflects injections and sur-
jections, and

(4) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is exact.

Proof. Parts (2), (3) we have seen in Lemma 42.4. Part (1) follows from Lemmas 43.4
and 43.1. Part (4) is a consequence of part (1), see Modules on Sites, Lemma 15.2. �

44. Property (C)

Please see Section 41 for the definition of property (C).

Lemma 44.1. Let f : X → Y be a morphism of schemes. Assume (C) holds. Then
the functor fsmall,∗ : Sh(Xétale)→ Sh(Yétale) reflects injections and surjections.
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Proof. Follows from Sites, Lemma 41.4. We omit the verification that property (C)
implies that the functor Yétale → Xétale, V 7→ X ×Y V satisfies the assumption of Sites,
Lemma 41.4. �

Remark 44.2. Property (C) holds if f : X → Y is an open immersion. Namely,
if U ∈ Ob(Xétale), then we can view U also as an object of Yétale and U ×Y X = U .
Hence property (C) does not imply that fsmall,∗ is exact as this is not the case for open
immersions (in general).

Lemma 44.3. Let f : X → Y be a morphism of schemes. Assume that for any
V → Y étale we have that

(1) X ×Y V → V has property (C), and
(2) X ×Y V → V is closed.

Then the functor Yétale → Xétale, V 7→ X ×Y V is almost cocontinuous, see Sites,
Definition 42.3.

Proof. Let V → Y be an object of Yétale and let {Ui → X ×Y V }i∈I be a covering
of Xétale. By assumption (1) for each i we can find an étale morphism hi : Vi → V and a
surjective morphism X ×Y Vi → Ui over X ×Y V . Note that

⋃
hi(Vi) ⊂ V is an open

set containing the closed set Z = Im(X ×Y V → V ). Let h0 : V0 = V \ Z → V be the
open immersion. It is clear that {Vi → V }i∈I∪{0} is an étale covering such that for each
i ∈ I ∪ {0} we have either Vi ×Y X = ∅ (namely if i = 0), or Vi ×Y X → V ×Y X
factors through Ui → X ×Y V (if i 6= 0). Hence the functor Yétale → Xétale is almost
cocontinuous. �

Lemma 44.4. Let f : X → Y be an integral morphism of schemes which defines a
homeomorphism of X with a closed subset of Y . Then property (C) holds.

Proof. Let g : U → X be an étale morphism. We need to find an object V → Y of
Yétale and a surjective morphism X ×Y V → U over X . Suppose that for every u ∈ U
we can find an object Vu → Y of Yétale and a morphism hu : X ×Y Vu → U overX with
u ∈ Im(hu). Then we can take V =

∐
Vu and h =

∐
hu and we win. Hence given a point

u ∈ U we find a pair (Vu, hu) as above. To do this we may shrink U and assume that U is
affine. In this case g : U → X is locally quasi-finite. Let g−1(g({u})) = {u, u2, . . . , un}.
Since there are no specializations ui  u we may replace U by an affine neighbourhood
so that g−1(g({u})) = {u}.
The image g(U) ⊂ X is open, hence f(g(U)) is locally closed in Y . Choose an open V ⊂
Y such that f(g(U)) = f(X)∩V . It follows that g factors throughX×Y V and that the
resulting {U → X×Y V } is an étale covering. Since f has property (B) , see Lemma 43.4,
we see that there exists an étale covering {Vj → V } such thatX×Y Vj → X×Y V factor
through U . This implies that V ′ =

∐
Vj is étale over Y and that there is a morphism

h : X ×Y V ′ → U whose image surjects onto g(U). Since u is the only point in its fibre
it must be in the image of h and we win. �

We urge the reader to think of the following lemma as a way station3 on the journey
towards the ultimate truth regarding fsmall,∗ for integral universally injective morphisms.

Lemma 44.5. Let f : X → Y be a morphism of schemes. Assume that f is universally
injective and integral (for example a closed immersion). Then

(1) fsmall,∗ : Sh(Xétale)→ Sh(Yétale) reflects injections and surjections,

3A way station is a place where people stop to eat and rest when they are on a long journey.
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(2) fsmall,∗ : Sh(Xétale) → Sh(Yétale) commutes with pushouts and coequalizers
(and more generally finite connected colimits),

(3) fsmall,∗ transforms surjections into surjections (on sheaves of sets and on abelian
sheaves),

(4) the map f−1
smallfsmall,∗F → F is surjective for any sheaf (of sets or of abelian

groups) F on Xétale,
(5) the functor fsmall,∗ is faithful (on sheaves of sets and on abelian sheaves),
(6) fsmall,∗ : Ab(Xétale)→ Ab(Yétale) is exact, and
(7) the functor Yétale → Xétale, V 7→ X ×Y V is almost cocontinuous.

Proof. By Lemmas 42.3, 43.4 and 44.4 we know that the morphism f has properties
(A), (B), and (C). Moreover, by Lemma 44.3 we know that the functor Yétale → Xétale is
almost cocontinuous. Now we have

(1) property (C) implies (1) by Lemma 44.1,
(2) almost continuous implies (2) by Sites, Lemma 42.6,
(3) property (B) implies (3) by Lemma 43.1.

Properties (4), (5), and (6) follow formally from the first three, see Sites, Lemma 41.1 and
Modules on Sites, Lemma 15.2. Property (7) we saw above. �

45. Topological invariance of the small étale site

In the following theorem we show that the small étale site is a topological invariant in
the following sense: If f : X → Y is a morphism of schemes which is a universal home-
omorphism, then Xétale

∼= Yétale as sites. This improves the result of Étale Morphisms,
Theorem 15.2. We first prove the result for morphisms and then we state the result for
categories.

Theorem 45.1. Let X and Y be two schemes over a base scheme S. Let S′ → S be a
universal homeomorphism. Denote X ′ (resp. Y ′) the base change to S′. If X is étale over
S , then the map

MorS(Y,X) −→ MorS′(Y ′, X ′)
is bijective.

Proof. After base changing via Y → S , we may assume that Y = S. Thus we may
and do assume both X and Y are étale over S. In other words, the theorem states that the
base change functor is a fully faithful functor from the category of schemes étale over S
to the category of schemes étale over S′.

Consider the forgetful functor

(45.1.1) descent data (X ′, ϕ′) relative to S′/S
with X ′ étale over S′ −→ schemes X ′ étale over S′

We claim this functor is an equivalence. On the other hand, the functor

(45.1.2) schemes X étale over S −→ descent data (X ′, ϕ′) relative to S′/S
with X ′ étale over S′

is fully faithful by Étale Morphisms, Lemma 20.3. Thus the claim implies the theorem.

Proof of the claim. Recall that a universal homeomorphism is the same thing as an integral,
universally injective, surjective morphism, see Morphisms, Lemma 45.5. In particular, the
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diagonal ∆ : S′ → S′ ×S S′ is a thickening by Morphisms, Lemma 10.2. Thus by Étale
Morphisms, Theorem 15.1 we see that givenX ′ → S′ étale there is a unique isomorphism

ϕ′ : X ′ ×S S′ → S′ ×S X ′

of schemes étale over S′ ×S S′ which pulls back under ∆ to id : X ′ → X ′ over S′. Since
S′ → S′ ×S S′ ×S S′ is a thickening as well (it is bijective and a closed immersion) we
conclude that (X ′, ϕ′) is a descent datum relative to S′/S. The canonical nature of the
construction ofϕ′ shows that it is compatible with morphisms between schemes étale over
S′. In other words, we obtain a quasi-inverse X ′ 7→ (X ′, ϕ′) of the functor (45.1.1). This
proves the claim and finishes the proof of the theorem. �

Theorem 45.2. Let f : X → Y be a morphism of schemes. Assume f is integral,
universally injective and surjective (i.e., f is a universal homeomorphism, see Morphisms,
Lemma 45.5). The functor

V 7−→ VX = X ×Y V
defines an equivalence of categories

{schemes V étale over Y } ↔ {schemes U étale over X}

We give two proofs. The first uses effectivity of descent for quasi-compact, separated,
étale morphisms relative to surjective integral morphisms. The second uses the material
on properties (A), (B), and (C) discussed earlier in the chapter.

First proof. By Theorem 45.1 we see that the functor is fully faithful. It remains
to show that the functor is essentially surjective. Let U → X be an étale morphism of
schemes.

Suppose that the result holds if U and Y are affine. In that case, we choose an affine open
coveringU =

⋃
Ui such that eachUi maps into an affine open of Y . By assumption (affine

case) we can find étale morphisms Vi → Y such that X ×Y Vi ∼= Ui as schemes over X .
Let Vi,i′ ⊂ Vi be the open subscheme whose underlying topological space corresponds to
Ui ∩ Ui′ . Because we have isomorphisms

X ×Y Vi,i′ ∼= Ui ∩ Ui′ ∼= X ×Y Vi′,i
as schemes overX we see by fully faithfulness that we obtain isomorphisms θi,i′ : Vi,i′ →
Vi′,i of schemes over Y . We omit the verification that these isomorphisms satisfy the
cocycle condition of Schemes, Section 14. Applying Schemes, Lemma 14.2 we obtain a
scheme V → Y by glueing the schemes Vi along the identifications θi,i′ . It is clear that
V → Y is étale and X ×Y V ∼= U by construction.

Thus it suffices to show the lemma in case U and Y are affine. Recall that in the proof
of Theorem 45.1 we showed that U comes with a unique descent datum (U,ϕ) relative
to X/Y . By Étale Morphisms, Proposition 20.6 (which applies because U → X is quasi-
compact and separated as well as étale by our reduction to the affine case) there exists an
étale morphism V → Y such that X ×Y V ∼= U and the proof is complete. �

Second proof. By Theorem 45.1 we see that the functor is fully faithful. It remains
to show that the functor is essentially surjective. Let U → X be an étale morphism of
schemes.

Suppose that the result holds if U and Y are affine. In that case, we choose an affine open
coveringU =

⋃
Ui such that eachUi maps into an affine open of Y . By assumption (affine

case) we can find étale morphisms Vi → Y such that X ×Y Vi ∼= Ui as schemes over X .
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Let Vi,i′ ⊂ Vi be the open subscheme whose underlying topological space corresponds to
Ui ∩ Ui′ . Because we have isomorphisms

X ×Y Vi,i′ ∼= Ui ∩ Ui′ ∼= X ×Y Vi′,i

as schemes overX we see by fully faithfulness that we obtain isomorphisms θi,i′ : Vi,i′ →
Vi′,i of schemes over Y . We omit the verification that these isomorphisms satisfy the
cocycle condition of Schemes, Section 14. Applying Schemes, Lemma 14.2 we obtain a
scheme V → Y by glueing the schemes Vi along the identifications θi,i′ . It is clear that
V → Y is étale and X ×Y V ∼= U by construction.

Thus it suffices to prove that the functor

(45.2.1) {affine schemes V étale over Y } ↔ {affine schemes U étale over X}

is essentially surjective when X and Y are affine.

Let U → X be an affine scheme étale over X . We have to find V → Y étale (and affine)
such that X ×Y V is isomorphic to U over X . Note that an étale morphism of affines
has universally bounded fibres, see Morphisms, Lemmas 36.6 and 57.9. Hence we can do
induction on the integer n bounding the degree of the fibres of U → X . See Morphisms,
Lemma 57.8 for a description of this integer in the case of an étale morphism. If n = 1,
then U → X is an open immersion (see Étale Morphisms, Theorem 14.1), and the result is
clear. Assume n > 1.

By Lemma 44.4 there exists an étale morphism of schemes W → Y and a surjective mor-
phismWX → U overX . As U is quasi-compact we may replace W by a disjoint union of
finitely many affine opens of W , hence we may assume that W is affine as well. Here is a
diagram

U

��

U ×Y Woo

��

WX qR

X

��

WX
oo

��
Y Woo

The disjoint union decomposition arises because by construction the étale morphism of
affine schemes U ×Y W → WX has a section. OK, and now we see that the morphism
R→ X×Y W is an étale morphism of affine schemes whose fibres have degree universally
bounded by n − 1. Hence by induction assumption there exists a scheme V ′ → W étale
such that R ∼= WX ×W V ′. Taking V ′′ = W q V ′ we find a scheme V ′′ étale over W
whose base change to WX is isomorphic to U ×Y W over X ×Y W .

At this point we can use descent to find V over Y whose base change to X is isomorphic
to U over X . Namely, by the fully faithfulness of the functor (45.2.1) corresponding to
the universal homeomorphism X ×Y (W ×Y W ) → (W ×Y W ) there exists a unique
isomorphism ϕ : V ′′ ×Y W →W ×Y V ′′ whose base change to X ×Y (W ×Y W ) is the
canonical descent datum for U ×Y W over X ×Y W . In particular ϕ satisfies the cocycle
condition. Hence by Descent, Lemma 37.1 we see that ϕ is effective (recall that all schemes
above are affine). Thus we obtain V → Y and an isomorphism V ′′ ∼= W ×Y V such that
the canonical descent datum onW ×Y V/W/Y agrees with ϕ. Note that V → Y is étale,
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by Descent, Lemma 23.29. Moreover, there is an isomorphism VX ∼= U which comes from
descending the isomorphism
VX ×XWX = X×Y V ×Y W = (X×Y W )×W (W ×Y V ) ∼= WX ×W V ′′ ∼= U ×Y W
which we have by construction. Some details omitted. �

Remark 45.3. In the situation of Theorem 45.2 it is also true that V 7→ VX induces
an equivalence between those étale morphisms V → Y with V affine and those étale
morphisms U → X with U affine. This follows for example from Limits, Proposition
11.2.

Proposition 45.4 (Topological invariance of étale cohomology). Let X0 → X be
a universal homeomorphism of schemes (for example the closed immersion defined by a
nilpotent sheaf of ideals). Then

(1) the étale sites Xétale and (X0)étale are isomorphic,
(2) the étale topoi Sh(Xétale) and Sh((X0)étale) are equivalent, and
(3) Hq

étale(X,F) = Hq
étale(X0,F|X0) for all q and for any abelian sheaf F on

Xétale.

Proof. The equivalence of categoriesXétale → (X0)étale is given by Theorem 45.2.
We omit the proof that under this equivalence the étale coverings correspond. Hence (1)
holds. Parts (2) and (3) follow formally from (1). �

46. Closed immersions and pushforward

Before stating and proving Proposition 46.4 in its correct generality we briefly state and
prove it for closed immersions. Namely, some of the preceding arguments are quite a bit
easier to follow in the case of a closed immersion and so we repeat them here in their
simplified form.
In the rest of this section i : Z → X is a closed immersion. The functor

Sch/X −→ Sch/Z, U 7−→ UZ = Z ×X U

will be denoted U 7→ UZ as indicated. Since being a closed immersion is preserved under
arbitrary base change the scheme UZ is a closed subscheme of U .

Lemma 46.1. Let i : Z → X be a closed immersion of schemes. Let U,U ′ be schemes
étale over X . Let h : UZ → U ′

Z be a morphism over Z. Then there exists a diagram

U W
aoo b // U ′

such that aZ : WZ → UZ is an isomorphism and h = bZ ◦ (aZ)−1.

Proof. Consider the schemeM = U×X U ′. The graph Γh ⊂MZ of h is open. This
is true for example as Γh is the image of a section of the étale morphism pr1,Z : MZ → UZ ,
see Étale Morphisms, Proposition 6.1. Hence there exists an open subscheme W ⊂ M
whose intersection with the closed subset MZ is Γh. Set a = pr1|W and b = pr2|W . �

Lemma 46.2. Let i : Z → X be a closed immersion of schemes. LetV → Z be an étale
morphism of schemes. There exist étale morphisms Ui → X and morphisms Ui,Z → V
such that {Ui,Z → V } is a Zariski covering of V .

Proof. Since we only have to find a Zariski covering of V consisting of schemes of
the form UZ with U étale over X , we may Zariski localize on X and V . Hence we may
assume X and V affine. In the affine case this is Algebra, Lemma 143.10. �
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If x : Spec(k) → X is a geometric point of X , then either x factors (uniquely) through
the closed subscheme Z , or Zx = ∅. If x factors through Z we say that x is a geometric
point of Z (because it is) and we use the notation “x ∈ Z” to indicate this.

Lemma 46.3. Let i : Z → X be a closed immersion of schemes. Let G be a sheaf of
sets on Zétale. Let x be a geometric point of X . Then

(ismall,∗G)x =
{
∗ if x 6∈ Z
Gx if x ∈ Z

where ∗ denotes a singleton set.

Proof. Note that ismall,∗G|Uétale = ∗ is the final object in the category of étale
sheaves on U , i.e., the sheaf which associates a singleton set to each scheme étale over
U . This explains the value of (ismall,∗G)x if x 6∈ Z.

Next, suppose that x ∈ Z. Note that

(ismall,∗G)x = colim(U,u) G(UZ)

and on the other hand
Gx = colim(V,v) G(V ).

Let C1 = {(U, u)}opp be the opposite of the category of étale neighbourhoods of x in X ,
and let C2 = {(V, v)}opp be the opposite of the category of étale neighbourhoods of x in
Z. The canonical map

Gx −→ (ismall,∗G)x
corresponds to the functor F : C1 → C2, F (U, u) = (UZ , x). Now Lemmas 46.2 and 46.1
imply that C1 is cofinal in C2, see Categories, Definition 17.1. Hence it follows that the
displayed arrow is an isomorphism, see Categories, Lemma 17.2. �

Proposition 46.4. Let i : Z → X be a closed immersion of schemes.
(1) The functor

ismall,∗ : Sh(Zétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of setsF onXétale whose
restriction to X \ Z is isomorphic to ∗, and

(2) the functor

ismall,∗ : Ab(Zétale) −→ Ab(Xétale)

is fully faithful and its essential image is those abelian sheaves on Xétale whose
support is contained in Z.

In both cases i−1
small is a left inverse to the functor ismall,∗.

Proof. Let’s discuss the case of sheaves of sets. For any sheaf G on Z the mor-
phism i−1

smallismall,∗G → G is an isomorphism by Lemma 46.3 (and Theorem 29.10).
This implies formally that ismall,∗ is fully faithful, see Sites, Lemma 41.1. It is clear that
ismall,∗G|Uétale ∼= ∗ where U = X \ Z. Conversely, suppose that F is a sheaf of sets on
X such that F|Uétale ∼= ∗. Consider the adjunction mapping

F −→ ismall,∗i
−1
smallF

Combining Lemmas 46.3 and 36.2 we see that it is an isomorphism. This finishes the proof
of (1). The proof of (2) is identical. �
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47. Integral universally injective morphisms

Here is the general version of Proposition 46.4.

Proposition 47.1. Let f : X → Y be a morphism of schemes which is integral and
universally injective.

(1) The functor
fsmall,∗ : Sh(Xétale) −→ Sh(Yétale)

is fully faithful and its essential image is those sheaves of sets F on Yétale whose
restriction to Y \ f(X) is isomorphic to ∗, and

(2) the functor
fsmall,∗ : Ab(Xétale) −→ Ab(Yétale)

is fully faithful and its essential image is those abelian sheaves on Yétale whose
support is contained in f(X).

In both cases f−1
small is a left inverse to the functor fsmall,∗.

Proof. We may factor f as

X
h // Z

i // Y

where h is integral, universally injective and surjective and i : Z → Y is a closed immer-
sion. Apply Proposition 46.4 to i and apply Theorem 45.2 to h. �

48. Big sites and pushforward

In this section we prove some technical results on fbig,∗ for certain types of morphisms of
schemes.

Lemma 48.1. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let f : X → Y
be a monomorphism of schemes. Then the canonical map f−1

big fbig,∗F → F is an isomor-
phism for any sheaf F on (Sch/X)τ .

Proof. In this case the functor (Sch/X)τ → (Sch/Y )τ is continuous, cocontinuous
and fully faithful. Hence the result follows from Sites, Lemma 21.7. �

Remark 48.2. In the situation of Lemma 48.1 it is true that the canonical map F →
f−1
big fbig!F is an isomorphism for any sheaf of sets F on (Sch/X)τ . The proof is the

same. This also holds for sheaves of abelian groups. However, note that the functor fbig!
for sheaves of abelian groups is defined in Modules on Sites, Section 16 and is in general
different from fbig! on sheaves of sets. The result for sheaves of abelian groups follows
from Modules on Sites, Lemma 16.4.

Lemma 48.3. Let f : X → Y be a closed immersion of schemes. Let U → X be a
syntomic (resp. smooth, resp. étale) morphism. Then there exist syntomic (resp. smooth,
resp. étale) morphisms Vi → Y and morphisms Vi×Y X → U such that {Vi×Y X → U}
is a Zariski covering of U .

Proof. Let us prove the lemma when τ = syntomic. The question is local on U .
Thus we may assume that U is an affine scheme mapping into an affine of Y . Hence we
reduce to proving the following case: Y = Spec(A),X = Spec(A/I), andU = Spec(B),
whereA/I → B be a syntomic ring map. By Algebra, Lemma 136.18 we can find elements
gi ∈ B such that Bgi = Ai/IAi for certain syntomic ring maps A → Ai. This proves
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the lemma in the syntomic case. The proof of the smooth case is the same except it uses
Algebra, Lemma 137.20. In the étale case use Algebra, Lemma 143.10. �

Lemma 48.4. Let f : X → Y be a closed immersion of schemes. Let {Ui → X} be a
syntomic (resp. smooth, resp. étale) covering. There exists a syntomic (resp. smooth, resp.
étale) covering {Vj → Y } such that for each j , either Vj ×Y X = ∅, or the morphism
Vj ×Y X → X factors through Ui for some i.

Proof. For each iwe can choose syntomic (resp. smooth, resp. étale) morphisms gij :
Vij → Y and morphisms Vij×Y X → Ui overX , such that {Vij×Y X → Ui} are Zariski
coverings, see Lemma 48.3. This in particular implies that

⋃
ij gij(Vij) contains the closed

subset f(X). Hence the family of syntomic (resp. smooth, resp. étale) maps gij together
with the open immersion Y \ f(X)→ Y forms the desired syntomic (resp. smooth, resp.
étale) covering of Y . �

Lemma 48.5. Let f : X → Y be a closed immersion of schemes. Let τ ∈ {syntomic, smooth, étale}.
The functor V 7→ X ×Y V defines an almost cocontinuous functor (see Sites, Definition
42.3) (Sch/Y )τ → (Sch/X)τ between big τ sites.

Proof. We have to show the following: given a morphism V → Y and any syntomic
(resp. smooth, resp. étale) covering {Ui → X ×Y V }, there exists a smooth (resp. smooth,
resp. étale) covering {Vj → V } such that for each j , either X ×Y Vj is empty, or X ×Y
Vj → Z×Y V factors through one of theUi. This follows on applying Lemma 48.4 above
to the closed immersion X ×Y V → V . �

Lemma 48.6. Let f : X → Y be a closed immersion of schemes. Let τ ∈ {syntomic, smooth, étale}.
(1) The pushforward fbig,∗ : Sh((Sch/X)τ ) → Sh((Sch/Y )τ ) commutes with

coequalizers and pushouts.
(2) The pushforward fbig,∗ : Ab((Sch/X)τ )→ Ab((Sch/Y )τ ) is exact.

Proof. This follows from Sites, Lemma 42.6, Modules on Sites, Lemma 15.3, and
Lemma 48.5 above. �

Remark 48.7. In Lemma 48.6 the case τ = fppf is missing. The reason is that
given a ring A, an ideal I and a faithfully flat, finitely presented ring map A/I → B,
there is no reason to think that one can find any flat finitely presented ring map A →
B with B/IB 6= 0 such that A/I → B/IB factors through B. Hence the proof of
Lemma 48.5 does not work for the fppf topology. In fact it is likely false that fbig,∗ :
Ab((Sch/X)fppf ) → Ab((Sch/Y )fppf ) is exact when f is a closed immersion. If you
know an example, please email stacks.project@gmail.com.

49. Exactness of big lower shriek

This is just the following technical result. Note that the functor fbig! has nothing what-
soever to do with cohomology with compact support in general.

Lemma 49.1. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let f : X → Y
be a morphism of schemes. Let

fbig : Sh((Sch/X)τ ) −→ Sh((Sch/Y )τ )

be the corresponding morphism of topoi as in Topologies, Lemma 3.16, 4.16, 5.10, 6.10, or
7.12.

mailto:stacks.project@gmail.com
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(1) The functor f−1
big : Ab((Sch/Y )τ )→ Ab((Sch/X)τ ) has a left adjoint

fbig! : Ab((Sch/X)τ )→ Ab((Sch/Y )τ )

which is exact.
(2) The functor f∗

big : Mod((Sch/Y )τ ,O)→Mod((Sch/X)τ ,O) has a left adjoint

fbig! : Mod((Sch/X)τ ,O)→Mod((Sch/Y )τ ,O)

which is exact.
Moreover, the two functors fbig! agree on underlying sheaves of abelian groups.

Proof. Recall that fbig is the morphism of topoi associated to the continuous and
cocontinuous functor u : (Sch/X)τ → (Sch/Y )τ , U/X 7→ U/Y . Moreover, we have
f−1
bigO = O. Hence the existence of fbig! follows from Modules on Sites, Lemma 16.2,

respectively Modules on Sites, Lemma 41.1. Note that if U is an object of (Sch/X)τ then
the functor u induces an equivalence of categories

u′ : (Sch/X)τ/U −→ (Sch/Y )τ/U

because both sides of the arrow are equal to (Sch/U)τ . Hence the agreement of fbig! on
underlying abelian sheaves follows from the discussion in Modules on Sites, Remark 41.2.
The exactness of fbig! follows from Modules on Sites, Lemma 16.3 as the functor u above
which commutes with fibre products and equalizers. �

Next, we prove a technical lemma that will be useful later when comparing sheaves of
modules on different sites associated to algebraic stacks.

Lemma 49.2. LetX be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}.
Let C1 ⊂ C2 ⊂ (Sch/X)τ be full subcategories with the following properties:

(1) For an object U/X of Ct,
(a) if {Ui → U} is a covering of (Sch/X)τ , then Ui/X is an object of Ct,
(b) U ×A1/X is an object of Ct.

(2) X/X is an object of Ct.
We endow Ct with the structure of a site whose coverings are exactly those coverings
{Ui → U} of (Sch/X)τ with U ∈ Ob(Ct). Then

(a) The functor C1 → C2 is fully faithful, continuous, and cocontinuous.
Denote g : Sh(C1) → Sh(C2) the corresponding morphism of topoi. Denote Ot the
restriction ofO to Ct. Denote g! the functor of Modules on Sites, Definition 16.1.

(b) The canonical map g!O1 → O2 is an isomorphism.

Proof. Assertion (a) is immediate from the definitions. In this proof all schemes are
schemes over X and all morphisms of schemes are morphisms of schemes over X . Note
that g−1 is given by restriction, so that for an object U of C1 we haveO1(U) = O2(U) =
O(U). Recall that g!O1 is the sheaf associated to the presheaf gp!O1 which associates to
V in C2 the group

colimV→U O(U)
where U runs over the objects of C1 and the colimit is taken in the category of abelian
groups. Below we will use frequently that if

V → U → U ′
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are morphisms with U,U ′ ∈ Ob(C1) and if f ′ ∈ O(U ′) restricts to f ∈ O(U), then
(V → U, f) and (V → U ′, f ′) define the same element of the colimit. Also, g!O1 → O2
maps the element (V → U, f) simply to the pullback of f to V .
Surjectivity. Let V be a scheme and let h ∈ O(V ). Then we obtain a morphism V →
X ×A1 induced by h and the structure morphism V → X . Writing A1 = Spec(Z[x])
we see the element x ∈ O(X ×A1) pulls back to h. Since X ×A1 is an object of C1 by
assumptions (1)(b) and (2) we obtain the desired surjectivity.
Injectivity. Let V be a scheme. Let s =

∑
i=1,...,n(V → Ui, fi) be an element of the

colimit displayed above. For any iwe can use the morphism fi : Ui → X×A1 to see that
(V → Ui, fi) defines the same element of the colimit as (fi : V → X ×A1, x). Then we
can consider

f1 × . . .× fn : V → X ×An

and we see that s is equivalent in the colimit to∑
i=1,...,n

(f1×. . .×fn : V → X×An, xi) = (f1×. . .×fn : V → X×An, x1+. . .+xn)

Now, if x1 + . . .+xn restricts to zero on V , then we see that f1× . . .×fn factors through
X×An−1 = V (x1+. . .+xn). Hence we see that s is equivalent to zero in the colimit. �

50. Étale cohomology

In the following sections we prove some basic results on étale cohomology. Here is an
example of something we know for cohomology of topological spaces which also holds
for étale cohomology.

Lemma 50.1 (Mayer-Vietoris for étale cohomology). Let X be a scheme. Suppose
that X = U ∪ V is a union of two opens. For any abelian sheaf F on Xétale there exists
a long exact cohomology sequence

0→ H0
étale(X,F)→ H0

étale(U,F)⊕H0
étale(V,F)→ H0

étale(U ∩ V,F)
→ H1

étale(X,F)→ H1
étale(U,F)⊕H1

étale(V,F)→ H1
étale(U ∩ V,F)→ . . .

This long exact sequence is functorial in F .

Proof. Observe that if I is an injective abelian sheaf, then
0→ I(X)→ I(U)⊕ I(V )→ I(U ∩ V )→ 0

is exact. This is true in the first and middle spots as I is a sheaf. It is true on the right,
because I(U) → I(U ∩ V ) is surjective by Cohomology on Sites, Lemma 12.6. Another
way to prove it would be to show that the cokernel of the map I(U)⊕I(V )→ I(U ∩V )
is the first Čech cohomology group of I with respect to the covering X = U ∪ V which
vanishes by Lemmas 18.7 and 19.1. Thus, if F → I• is an injective resolution, then

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0
is a short exact sequence of complexes and the associated long exact cohomology sequence
is the sequence of the statement of the lemma. �

Lemma 50.2 (Relative Mayer-Vietoris). Let f : X → Y be a morphism of schemes.
Suppose that X = U ∪ V is a union of two open subschemes. Denote a = f |U : U → Y ,
b = f |V : V → Y , and c = f |U∩V : U ∩ V → Y . For every abelian sheaf F on Xétale

there exists a long exact sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .
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on Yétale. This long exact sequence is functorial in F .

Proof. Let F → I• be an injective resolution of F on Xétale. We claim that we get
a short exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.

Namely, for any W in Yétale, and for any n ≥ 0 the corresponding sequence of groups of
sections over W

0→ In(W ×Y X)→ In(W ×Y U)⊕ In(W ×Y V )→ In(W ×Y (U ∩ V ))→ 0

was shown to be short exact in the proof of Lemma 50.1. The lemma follows by taking
cohomology sheaves and using the fact that I•|U is an injective resolution of F|U and
similarly for I•|V , I•|U∩V . �

51. Colimits

We recall that if (Fi, ϕii′) is a diagram of sheaves on a site C its colimit (in the category of
sheaves) is the sheafification of the presheaf U 7→ colimi Fi(U). See Sites, Lemma 10.13.
If the system is directed, U is a quasi-compact object of C which has a cofinal system of
coverings by quasi-compact objects, thenF(U) = colimFi(U), see Sites, Lemma 17.7. See
Cohomology on Sites, Lemma 16.1 for a result dealing with higher cohomology groups of
colimits of abelian sheaves.

In Cohomology on Sites, Lemma 16.5 we generalize this result to a system of sheaves on
an inverse system of sites. Here is the corresponding notion in the case of a system of étale
sheaves living on an inverse system of schemes.

Definition 51.1. Let I be a preordered set. Let (Xi, fi′i) be an inverse system of
schemes over I . A system (Fi, ϕi′i) of sheaves on (Xi, fi′i) is given by

(1) a sheaf Fi on (Xi)étale for all i ∈ I ,
(2) for i′ ≥ i a map ϕi′i : f−1

i′i Fi → Fi′ of sheaves on (Xi′)étale
such that ϕi′′i = ϕi′′i′ ◦ f−1

i′′i′ϕi′i whenever i′′ ≥ i′ ≥ i.

In the situation of Definition 51.1, assume I is a directed set and the transition morphisms
fi′i affine. Let X = limXi be the limit in the category of schemes, see Limits, Section 2.
Denote fi : X → Xi the projection morphisms and consider the maps

f−1
i Fi = f−1

i′ f−1
i′i Fi

f−1
i′
ϕi′i−−−−−→ f−1

i′ Fi′

This turns f−1
i Fi into a system of sheaves on Xétale over I (it is a good exercise to check

this). We often want to know whether there is an isomorphism

Hq
étale(X, colim f−1

i Fi) = colimHq
étale(Xi,Fi)

It will turn out this is true ifXi is quasi-compact and quasi-separated for all i, see Theorem
51.3.

Lemma 51.2. Let I be a directed set. Let (Xi, fi′i) be an inverse system of schemes over
I with affine transition morphisms. Let X = limi∈I Xi. With notation as in Topologies,
Lemma 4.12 we have

Xaffine,étale = colim(Xi)affine,étale
as sites in the sense of Sites, Lemma 18.2.
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Proof. Let us first prove this whenX andXi are quasi-compact and quasi-separated
for all i (as this is true in all cases of interest). In this case any object ofXaffine,étale, resp.
(Xi)affine,étale is of finite presentation over X . Moreover, the category of schemes of
finite presentation overX is the colimit of the categories of schemes of finite presentation
over Xi, see Limits, Lemma 10.1. The same holds for the subcategories of affine objects
étale over X by Limits, Lemmas 4.13 and 8.10. Finally, if {U j → U} is a covering of
Xaffine,étale and if U ji → Ui is morphism of affine schemes étale over Xi whose base
change to X is U j → U , then we see that the base change of {U ji → Ui} to some Xi′ is a
covering for i′ large enough, see Limits, Lemma 8.15.
In the general case, letU be an object ofXaffine,étale. ThenU → X is étale and separated
(as U is separated) but in general not quasi-compact. Still, U → X is locally of finite
presentation and hence by Limits, Lemma 10.5 there exists an i, a quasi-compact and quasi-
separated scheme Ui, and a morphism Ui → Xi which is locally of finite presentation
whose base change toX isU → X . ThenU = limi′≥i Ui′ whereUi′ = Ui×XiXi′ . After
increasing iwe may assume Ui is affine, see Limits, Lemma 4.13. To check that Ui → Xi is
étale for i sufficiently large, choose a finite affine open coveringUi = Ui,1∪. . .∪Ui,m such
that Ui,j → Ui → Xi maps into an affine open Wi,j ⊂ Xi. Then we can apply Limits,
Lemma 8.10 to see that Ui,j → Wi,j is étale after possibly increasing i. In this way we
see that the functor colim(Xi)affine,étale → Xaffine,étale is essentially surjective. Fully
faithfulness follows directly from the already used Limits, Lemma 10.5. The statement
on coverings is proved in exactly the same manner as done in the first paragraph of the
proof. �

Using the above we get the following general result on colimits and cohomology.

Theorem 51.3. Let X = limi∈I Xi be a limit of a directed system of schemes with
affine transition morphisms fi′i : Xi′ → Xi. We assume that Xi is quasi-compact and
quasi-separated for all i ∈ I . Let (Fi, ϕi′i) be a system of abelian sheaves on (Xi, fi′i).
Denote fi : X → Xi the projection and set F = colim f−1

i Fi. Then
colimi∈I H

p
étale(Xi,Fi) = Hp

étale(X,F).
for all p ≥ 0.

Proof. By Topologies, Lemma 4.12 we can compute the cohomology ofF onXaffine,étale.
Thus the result by a combination of Lemma 51.2 and Cohomology on Sites, Lemma 16.5.

�

The following two results are special cases of the theorem above.

Lemma 51.4. Let X be a quasi-compact and quasi-separated scheme. Let I be a di-
rected set. Let (Fi, ϕij) be a system of abelian sheaves on Xétale over I . Then

colimi∈I H
p
étale(X,Fi) = Hp

étale(X, colimi∈I Fi).

Proof. This is a special case of Theorem 51.3. We also sketch a direct proof. We
prove it for all X at the same time, by induction on p.

(1) For any quasi-compact and quasi-separated scheme X and any étale covering U
of X , show that there exists a refinement V = {Vj → X}j∈J with J finite and
each Vj quasi-compact and quasi-separated such that all Vj0 ×X . . .×X Vjp are
also quasi-compact and quasi-separated.

(2) Using the previous step and the definition of colimits in the category of sheaves,
show that the theorem holds for p = 0 and all X .
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(3) Using the locality of cohomology (Lemma 22.3), the Čech-to-cohomology spec-
tral sequence (Theorem 19.2) and the fact that the induction hypothesis ap-
plies to all Vj0 ×X . . . ×X Vjp in the above situation, prove the induction step
p→ p+ 1.

�

Lemma 51.5. Let A be a ring, (I,≤) a directed set and (Bi, ϕij) a system of A-
algebras. SetB = colimi∈I Bi. LetX → Spec(A) be a quasi-compact and quasi-separated
morphism of schemes. Let F an abelian sheaf on Xétale. Denote Yi = X ×Spec(A)
Spec(Bi), Y = X ×Spec(A) Spec(B), Gi = (Yi → X)−1F and G = (Y → X)−1F .
Then

Hp
étale(Y,G) = colimi∈I H

p
étale(Yi,Gi).

Proof. This is a special case of Theorem 51.3. We also outline a direct proof as fol-
lows.

(1) Given V → Y étale with V quasi-compact and quasi-separated, there exist i ∈ I
and Vi → Yi such that V = Vi ×Yi Y . If all the schemes considered were affine,
this would correspond to the following algebra statement: if B = colimBi and
B → C is étale, then there exist i ∈ I and Bi → Ci étale such that C ∼=
B ⊗Bi Ci. This is proved in Algebra, Lemma 143.3.

(2) In the situation of (1) show that G(V ) = colimi′≥i Gi′(Vi′) where Vi′ is the base
change of Vi to Yi′ .

(3) By (1), we see that for every étale covering V = {Vj → Y }j∈J with J finite
and the Vjs quasi-compact and quasi-separated, there exists i ∈ I and an étale
covering Vi = {Vij → Yi}j∈J such that V ∼= Vi ×Yi Y .

(4) Show that (2) and (3) imply

Ȟ∗(V,G) = colimi∈I Ȟ
∗(Vi,Gi).

(5) Cleverly use the Čech-to-cohomology spectral sequence (Theorem 19.2).
�

Lemma 51.6. Let f : X → Y be a morphism of schemes and F ∈ Ab(Xétale). Then
Rpf∗F is the sheaf associated to the presheaf

(V → Y ) 7−→ Hp
étale(X ×Y V,F|X×Y V ).

More generally, for K ∈ D(Xétale) we have that Rpf∗K is the sheaf associated to the
presheaf

(V → Y ) 7−→ Hp
étale(X ×Y V,K|X×Y V ).

Proof. This lemma is valid for topological spaces, and the proof in this case is the
same. See Cohomology on Sites, Lemma 7.4 for the case of a sheaf and see Cohomology
on Sites, Lemma 20.3 for the case of a complex of abelian sheaves. �

Lemma 51.7. Let S be a scheme. Let X = limi∈I Xi be a limit of a directed system
of schemes over S with affine transition morphisms fi′i : Xi′ → Xi. We assume the
structure morphisms gi : Xi → S and g : X → S are quasi-compact and quasi-separated.
Let (Fi, ϕi′i) be a system of abelian sheaves on (Xi, fi′i). Denote fi : X → Xi the
projection and set F = colim f−1

i Fi. Then

colimi∈I R
pgi,∗Fi = Rpg∗F

for all p ≥ 0.
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Proof. Recall (Lemma 51.6) that Rpgi,∗Fi is the sheaf associated to the presheaf
U 7→ Hp

étale(U ×S Xi,Fi) and similarly for Rpg∗F . Moreover, the colimit of a sys-
tem of sheaves is the sheafification of the colimit on the level of presheaves. Note that
every object of Sétale has a covering by quasi-compact and quasi-separated objects (e.g.,
affine schemes). Moreover, if U is a quasi-compact and quasi-separated object, then we
have

colimHp
étale(U ×S Xi,Fi) = Hp

étale(U ×S X,F)
by Theorem 51.3. Thus the lemma follows. �

Lemma 51.8. Let I be a directed set. Let gi : Xi → Si be an inverse system of
morphisms of schemes over I . Assume gi is quasi-compact and quasi-separated and for
i′ ≥ i the transition morphisms fi′i : Xi′ → Xi and hi′i : Si′ → Si are affine. Let
g : X → S be the limit of the morphisms gi, see Limits, Section 2. Denote fi : X → Xi

and hi : S → Si the projections. Let (Fi, ϕi′i) be a system of sheaves on (Xi, fi′i). Set
F = colim f−1

i Fi. Then

Rpg∗F = colimi∈I h
−1
i Rpgi,∗Fi

for all p ≥ 0.

Proof. How is the map of the lemma constructed? For i′ ≥ iwe have a commutative
diagram

X
fi′
//

g

��

Xi′
fi′i

//

gi′

��

Xi

gi

��
S

hi′ // Si′
hi′i // Si

If we combine the base change map h−1
i′i Rgi,∗Fi → Rgi′,∗f

−1
i′i Fi (Cohomology on Sites,

Lemma 15.1 or Remark 19.3) with the mapRgi′,∗ϕi′i, then we obtainψi′i : h−1
i′i R

pgi,∗Fi →
Rpgi′,∗Fi′ . Similarly, using the left square in the diagram we obtain mapsψi : h−1

i Rpgi,∗Fi →
Rpg∗F . The maps h−1

i′ ψi′i and ψi are the maps used in the statement of the lemma. For
this to make sense, we have to check that ψi′′i = ψi′′i′ ◦ h−1

i′′i′ψi′i and ψi′ ◦ h−1
i′ ψi′i = ψi;

this follows from Cohomology on Sites, Remark 19.5.

Proof of the equality. First proof using dimension shifting4. For any U affine and étale
over X by Theorem 51.3 we have

g∗F(U) = H0(U ×S X,F) = colimH0(Ui ×Si Xi,Fi) = colim gi,∗Fi(Ui)

where the colimit is over i large enough such that there exists an i and Ui affine étale
over Si whose base change is U over S (see Lemma 51.2). The right hand side is equal to
(colim h−1

i gi,∗Fi)(U) by Sites, Lemma 18.4. This proves the lemma for p = 0. If (Gi, ϕi′i)
is a system with G = colim f−1

i Gi such that Gi is an injective abelian sheaf onXi for all i,
then for any U affine and étale over X by Theorem 51.3 we have

Hp(U ×S X,G) = colimHp(Ui ×Si Xi,Gi) = 0

for p > 0 (same colimit as before). Hence Rpg∗G = 0 and we get the result for p > 0 for
such a system. In general we may choose a short exact sequence of systems

0→ (Fi, ϕi′i)→ (Gi, ϕi′i)→ (Qi, ϕi′i)→ 0

4You can also use this method to produce the maps in the lemma.
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where (Gi, ϕi′i) is as above, see Cohomology on Sites, Lemma 16.4. By induction the
lemma holds for p− 1 and by the above we have vanishing for p and (Gi, ϕi′i). Hence the
result for p and (Fi, ϕi′i) by the long exact sequence of cohomology.
Second proof. Recall that Saffine,étale = colim(Si)affine,étale, see Lemma 51.2. Thus if
U is an object of Saffine,étale, then we can write U = Ui ×Si S for some i and some Ui
in (Si)affine,étale and

(colimi∈I h
−1
i Rpgi,∗Fi)(U) = colimi′≥i(Rpgi′,∗Fi′)(Ui ×Si Si′)

by Sites, Lemma 18.4 and the construction of the transition maps in the system described
above. SinceRpgi′,∗Fi′ is the sheaf associated to the presheafUi′ 7→ Hp(Ui′×Si′ Xi′ ,Fi′)
and since Rpg∗F is the sheaf associated to the presheaf U 7→ Hp(U ×S X,F) (Lemma
51.6) we obtain a canonical commutative diagram

colimi′≥iH
p(Ui ×Si Xi′ ,Fi′) //

��

colimi′≥i(Rpgi′,∗Fi′)(Ui ×Si Si′)

��
Hp(U ×S X,F) // Rpg∗F(U)

Observe that the left hand vertical arrow is an isomorphism by Theorem 51.3. We’re trying
to show that the right hand vertical arrow is an isomorphism. However, we already know
that the source and target of this arrow are sheaves on Saffine,étale. Hence it suffices
to show: (1) an element in the target, locally comes from an element in the source and
(2) an element in the source which maps to zero in the target locally vanishes. Part (1)
follows immediately from the above and the fact that the lower horizontal arrow comes
from a map of presheaves which becomes an isomorphism after sheafification. For part
(2), say ξ ∈ colimi′≥i(Rpgi′,∗Fi′)(Ui ×Si Si′) is in the kernel. Choose an i′ ≥ i and
ξi′ ∈ (Rpgi′,∗Fi′)(Ui×Si Si′) representing ξ. Choose a standard étale covering {Ui′,k →
Ui ×Si Si′}k=1,...,m such that ξi′ |Ui′,k comes from ξi′,k ∈ Hp(Ui′,k ×Si′ Xi′ ,Fi′). Since
it is enough to prove that ξ dies locally, we may replace U by the members of the étale
covering {Ui′,k ×Si′ S → U = Ui ×Si S}. After this replacement we see that ξ is the
image of an element ξ′ of the group colimi′≥iH

p(Ui ×Si Xi′ ,Fi′) in the diagram above.
Since ξ′ maps to zero in Rpg∗F(U) we can do another replacement and assume that ξ′

maps to zero inHp(U×SX,F). However, since the left vertical arrow is an isomorphism
we then conclude ξ′ = 0 hence ξ = 0 as desired. �

Lemma 51.9. LetX = limi∈I Xi be a directed limit of schemes with affine transition
morphisms fi′i and projection morphisms fi : X → Xi. LetF be a sheaf onXétale. Then

(1) there are canonical maps ϕi′i : f−1
i′i fi,∗F → fi′,∗F such that (fi,∗F , ϕi′i) is a

system of sheaves on (Xi, fi′i) as in Definition 51.1, and
(2) F = colim f−1

i fi,∗F .

Proof. Via Topologies, Lemma 4.12 and Lemma 51.2 this is a special case of Sites,
Lemma 18.5. �

Lemma 51.10. Let I be a directed set. Let gi : Xi → Si be an inverse system of
morphisms of schemes over I . Assume gi is quasi-compact and quasi-separated and for
i′ ≥ i the transition morphisms Xi′ → Xi and Si′ → Si are affine. Let g : X → S be the
limit of the morphisms gi, see Limits, Section 2. Denote fi : X → Xi and hi : S → Si
the projections. Let F be an abelian sheaf on X . Then we have

Rpg∗F = colimi∈I h
−1
i Rpgi,∗(fi,∗F)
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Proof. Formal combination of Lemmas 51.8 and 51.9. �

52. Colimits and complexes

In this section we discuss taking cohomology of systems of complexes in various settings,
continuing the discussion for sheaves started in Section 51. We strongly urge the reader
not to read this section unless absolutely necessary.

Lemma 52.1. Let X = limi∈I Xi be a limit of a directed system of schemes with
affine transition morphisms fi′i : Xi′ → Xi. We assume that Xi is quasi-compact and
quasi-separated for all i ∈ I . Let F•

i be a complex of abelian sheaves on Xi,étale. Let
ϕi′i : f−1

i′i F•
i → F•

i′ be a map of complexes on Xi,étale such that ϕi′′i = ϕi′′i′ ◦ f−1
i′′i′ϕi′i

whenever i′′ ≥ i′ ≥ i. Assume there is an integer a such that Fni = 0 for n < a and all
i ∈ I . Then we have

Hp
étale(X, colim f−1

i F
•
i ) = colimHp

étale(Xi,F•
i )

where fi : X → Xi is the projection.

Proof. This is a consequence of Theorem 51.3. SetF• = colim f−1
i F•

i . The theorem
tells us that

colimi∈I H
p
étale(Xi,Fni ) = Hp

étale(X,F
n)

for all n, p ∈ Z. Let us use the spectral sequences

Es,t1,i = Ht
étale(Xi,Fsi )⇒ Hs+t

étale(Xi,F•
i )

and
Es,t1 = Ht

étale(X,Fs)⇒ Hs+t
étale(X,F

•)
of Derived Categories, Lemma 21.3. SinceFni = 0 for n < a (with a independent of i) we
see that only a fixed finite number of termsEs,t1,i (independent of i) andEs,t1 contribute to
Hq
étale(Xi,F•

i ) and Hq
étale(X,F•) and Es,t1 = colimEs,ti,i . This implies what we want.

Some details omitted. (There is an alternative argument using “stupid” truncations of
complexes which avoids using spectral sequences.) �

Lemma 52.2. LetX be a quasi-compact and quasi-sepated scheme. LetKi ∈ D(Xétale),
i ∈ I be a family of objects. Assume given a ∈ Z such that Hn(Ki) = 0 for n < a and
i ∈ I . Then RΓ(X,

⊕
iKi) =

⊕
iRΓ(X,Ki).

Proof. We have to show that Hp(X,
⊕

iKi) =
⊕

iH
p(X,Ki) for all p ∈ Z.

Choose complexes F•
i representing Ki such that Fni = 0 for n < a. The direct sum

of the complexes F•
i represents the object

⊕
Ki by Injectives, Lemma 13.4. Since

⊕
F•

is the filtered colimit of the finite direct sums, the result follows from Lemma 52.1. �

Lemma 52.3. Let S be a scheme. Let X = limi∈I Xi be a limit of a directed system
of schemes over S with affine transition morphisms fi′i : Xi′ → Xi. We assume that Xi

is quasi-compact and quasi-separated for all i ∈ I . Let K ∈ D+(Sétale). Then
colimi∈I H

p
étale(Xi,K|Xi) = Hp

étale(X,K|X).
for all p ∈ Z where K|Xi and K|X are the pullbacks of K to Xi and X .

Proof. We may represent K by a bounded below complex G• of abelian sheaves on
Sétale. Say Gn = 0 for n < a. DenoteF•

i andF• the pullbacks of this complex ofXi and
X . These complexes represent the objectsK|Xi andK|X and we haveF• = colim f−1

i F•
i

termwise. Hence the lemma follows from Lemma 52.1. �
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Lemma 52.4. Let I , gi : Xi → Si, g : X → S , fi, gi, hi be as in Lemma 51.8. Let
0 ∈ I and K0 ∈ D+(X0,étale). For i ≥ 0 denote Ki the pullback of K0 to Xi. Denote K
the pullback of K to X . Then

Rpg∗K = colimi≥0 h
−1
i Rpgi,∗Ki

for all p ∈ Z.

Proof. Fix an integer p0 ∈ Z. Let a be an integer such that Hj(K0) = 0 for j < a.
We will prove the formula holds for all p ≤ p0 by descending induction on a. If a >
p0, then we see that the left and right hand side of the formula are zero for p ≤ p0 by
trivial vanishing, see Derived Categories, Lemma 16.1. Assume a ≤ p0. Consider the
distinguished triangle

Ha(K0)[−a]→ K0 → τ≥a+1K0

Pulling back this distinguished triangle to Xi and X gives compatible distinguished tri-
angles for Ki and K. For p ≤ p0 we consider the commutative diagram

colimi≥0 h
−1
i Rp−1gi,∗(τ≥a+1Ki) α

//

��

Rp−1g∗(τ≥a+1K)

��
colimi≥0 h

−1
i Rpgi,∗(Ha(Ki)[−a])

β
//

��

Rpg∗(Ha(K)[−a])

��
colimi≥0 h

−1
i Rpgi,∗Ki γ

//

��

Rpg∗K

��
colimi≥0 R

pgi,∗τ≥a+1Ki
δ

//

��

Rpg∗τ≥a+1K

��
colimi≥0 R

p+1gi,∗(Ha(Ki)[−a]) ε // Rp+1g∗(Ha(K)[−a])

with exact columns. The arrows β and ε are isomorphisms by Lemma 51.8. The arrows α
and δ are isomorphisms by induction hypothesis. Hence γ is an isomorphism as desired.

�

Lemma 52.5. Let I , gi : Xi → Si, g : X → S , fii′ , fi, gi, hi be as in Lemma 51.8.
Let F•

i be a complex of abelian sheaves on Xi,étale. Let ϕi′i : f−1
i′i F•

i → F•
i′ be a map of

complexes on Xi,étale such that ϕi′′i = ϕi′′i′ ◦ f−1
i′′i′ϕi′i whenever i′′ ≥ i′ ≥ i. Assume

there is an integer a such that Fni = 0 for n < a and all i ∈ I . Then

Rpg∗(colim f−1
i F

•
i ) = colimi≥0 h

−1
i Rpgi,∗F•

i

for all p ∈ Z.

Proof. This is a consequence of Lemma 51.8. Set F• = colim f−1
i F•

i . The lemma
tells us that

colimi∈I h
−1
i Rpgi,∗Fni = Rpg∗Fn

for all n, p ∈ Z. Let us use the spectral sequences

Es,t1,i = Rtgi,∗Fsi ⇒ Rs+tgi,∗F•
i
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and
Es,t1 = Rtg∗Fs ⇒ Rs+tg∗F•

of Derived Categories, Lemma 21.3. SinceFni = 0 for n < a (with a independent of i) we
see that only a fixed finite number of terms Es,t1,i (independent of i) and Es,t1 contribute
and Es,t1 = colimEs,ti,i . This implies what we want. Some details omitted. (There is an
alternative argument using “stupid” truncations of complexes which avoids using spectral
sequences.) �

Lemma 52.6. Let f : X → Y be a quasi-compact and quasi-sepated morphism of
schemes. Let Ki ∈ D(Xétale), i ∈ I be a family of objects. Assume given a ∈ Z such that
Hn(Ki) = 0 for n < a and i ∈ I . Then Rf∗(

⊕
iKi) =

⊕
iRf∗Ki.

Proof. We have to show that Rpf∗(
⊕

iKi) =
⊕

iR
pf∗Ki for all p ∈ Z. Choose

complexes F•
i representing Ki such that Fni = 0 for n < a. The direct sum of the

complexes F•
i represents the object

⊕
Ki by Injectives, Lemma 13.4. Since

⊕
F• is the

filtered colimit of the finite direct sums, the result follows from Lemma 52.5. �

53. Stalks of higher direct images

The stalks of higher direct images can often be computed as follows.

Theorem 53.1. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes, F an abelian sheaf on Xétale, and s a geometric point of S lying over s ∈ S.
Then

(Rnf∗F)s = Hn
étale(X ×S Spec(OshS,s), p−1F)

where p : X ×S Spec(OshS,s)→ X is the projection. For K ∈ D+(Xétale) and n ∈ Z we
have

(Rnf∗K)s = Hn
étale(X ×S Spec(OshS,s), p−1K)

In fact, we have
(Rf∗K)s = RΓétale(X ×S Spec(OshS,s), p−1K)

in D+(Ab).

Proof. Let I be the category of étale neighborhoods of s on S. By Lemma 51.6 we
have

(Rnf∗F)s = colim(V,v)∈Iopp H
n
étale(X ×S V,F|X×SV ).

We may replace I by the initial subcategory consisting of affine étale neighbourhoods of
s. Observe that

Spec(OshS,s) = lim(V,v)∈I V

by Lemma 33.1 and Limits, Lemma 2.1. Since fibre products commute with limits we also
obtain

X ×S Spec(OshS,s) = lim(V,v)∈I X ×S V
We conclude by Lemma 51.5. For the second variant, use the same argument using Lemma
52.3 instead of Lemma 51.5.
To see that the last statement is true, it suffices to produce a map (Rf∗K)s → RΓétale(X×S
Spec(OshS,s), p−1K) in D+(Ab) which realizes the ismorphisms on cohomology groups
in degree n above for all n. To do this, choose a bounded below complex J • of injective
abelian sheaves on Xétale representing K. The complex f∗J • represents Rf∗K. Thus
the complex

(f∗J •)s = colim(V,v)∈Iopp(f∗J •)(V )
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represents (Rf∗K)s. For each V we have maps

(f∗J •)(V ) = Γ(X ×S V,J •) −→ Γ(X ×S Spec(OshS,s), p−1J •)

and the target complex representsRΓétale(X×S Spec(OshS,s), p−1K) inD+(Ab). Taking
the colimit of these maps we obtain the result. �

Remark 53.2. Let f : X → S be a morphism of schemes. Let K ∈ D(Xétale). Let s
be a geometric point of S. There are always canonical maps

(Rf∗K)s −→ RΓ(X ×S Spec(OshS,s), p−1K) −→ RΓ(Xs,K|Xs)

where p : X ×S Spec(OshS,s) → X is the projection. Namely, consider the commutative
diagram

Xs
//

fs

��

X ×S Spec(OshS,s) p
//

f ′

��

X

f

��
s

i // Spec(OshS,s)
j // S

We have the base change maps

i−1Rf ′
∗(p−1K)→ Rfs,∗(K|Xs) and j−1Rf∗K → Rf ′

∗(p−1K)

(Cohomology on Sites, Remark 19.3) for the two squares in this diagram. Taking global
sections we obtain the desired maps. By Cohomology on Sites, Remark 19.5 the composi-
tion of these two maps is the usual (base change) map (Rf∗K)s → RΓ(Xs,K|Xs).

54. The Leray spectral sequence

Lemma 54.1. Let f : X → Y be a morphism and I an injective object of Ab(Xétale).
Let V ∈ Ob(Yétale). Then

(1) for any covering V = {Vj → V }j∈J we have Ȟp(V, f∗I) = 0 for all p > 0,
(2) f∗I is acyclic for the functor Γ(V,−), and
(3) if g : Y → Z , then f∗I is acyclic for g∗.

Proof. Observe that Č•(V, f∗I) = Č•(V ×Y X, I) which has vanishing higher co-
homology groups by Lemma 18.7. This proves (1). The second statement follows as a
sheaf which has vanishing higher Čech cohomology groups for any covering has vanishing
higher cohomology groups. This a wonderful exercise in using the Čech-to-cohomology
spectral sequence, but see Cohomology on Sites, Lemma 10.9 for details and a more pre-
cise and general statement. Part (3) is a consequence of (2) and the description of Rpg∗ in
Lemma 51.6. �

Using the formalism of Grothendieck spectral sequences, this gives the following.

Proposition 54.2 (Leray spectral sequence). Let f : X → Y be a morphism of
schemes and F an étale sheaf on X . Then there is a spectral sequence

Ep,q2 = Hp
étale(Y,R

qf∗F)⇒ Hp+q
étale(X,F).

Proof. See Lemma 54.1 and see Derived Categories, Section 22. �
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55. Vanishing of finite higher direct images

The next goal is to prove that the higher direct images of a finite morphism of schemes
vanish.

Lemma 55.1. Let R be a strictly henselian local ring. Set S = Spec(R) and let s be
its closed point. Then the global sections functor Γ(S,−) : Ab(Sétale)→ Ab is exact. In
fact we have Γ(S,F) = Fs for any sheaf of sets F . In particular

∀p ≥ 1, Hp
étale(S,F) = 0

for all F ∈ Ab(Sétale).

Proof. If we show that Γ(S,F) = Fs then Γ(S,−) is exact as the stalk functor
is exact. Let (U, u) be an étale neighbourhood of s. Pick an affine open neighborhood
Spec(A) of u in U . Then R→ A is étale and κ(s) = κ(u). By Theorem 32.4 we see that
A ∼= R×A′ as anR-algebra compatible with maps to κ(s) = κ(u). Hence we get a section

Spec(A) // U

��
S

cc

It follows that in the system of étale neighbourhoods of s the identity map (S, s)→ (S, s)
is cofinal. Hence Γ(S,F) = Fs. The final statement of the lemma follows as the higher
derived functors of an exact functor are zero, see Derived Categories, Lemma 16.9. �

Proposition 55.2. Let f : X → Y be a finite morphism of schemes.
(1) For any geometric point y : Spec(k)→ Y we have

(f∗F)y =
∏

x:Spec(k)→X, f(x)=y
Fx.

for F in Sh(Xétale) and

(f∗F)y =
⊕

x:Spec(k)→X, f(x)=y
Fx.

for F in Ab(Xétale).
(2) For any q ≥ 1 we have Rqf∗F = 0 for F in Ab(Xétale).

Proof. Let Xsh
y denote the fiber product X ×Y Spec(OshY,y). By Theorem 53.1 the

stalk of Rqf∗F at y is computed by Hq
étale(Xsh

y ,F). Since f is finite, Xsh
ȳ is finite over

Spec(OshY,y), thus Xsh
ȳ = Spec(A) for some ring A finite over OshY,ȳ . Since the latter is

strictly henselian, Lemma 32.5 implies that A is a finite product of henselian local rings
A = A1 × . . . × Ar. Since the residue field of OshY,y is separably closed the same is true
for each Ai. Hence Ai is strictly henselian. This implies that Xsh

y =
∐r
i=1 Spec(Ai).

The vanishing of Lemma 55.1 implies that (Rqf∗F)y = 0 for q > 0 which implies (2) by
Theorem 29.10. Part (1) follows from the corresponding statement of Lemma 55.1. �

Lemma 55.3. Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y
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of schemes with f a finite morphism. For any sheaf of setsF onXétale we have f ′
∗(g′)−1F =

g−1f∗F .

Proof. In great generality there is a pullback map g−1f∗F → f ′
∗(g′)−1F , see Sites,

Section 45. It suffices to check on stalks (Theorem 29.10). Let y′ : Spec(k) → Y ′ be a
geometric point. We have

(f ′
∗(g′)−1F)y′ =

∏
x′:Spec(k)→X′, f ′◦x′=y′

((g′)−1F)x′

=
∏

x′:Spec(k)→X′, f ′◦x′=y′
Fg′◦x′

=
∏

x:Spec(k)→X, f◦x=g◦y′
Fx

= (f∗F)g◦y′

= (g−1f∗F)y′

The first equality by Proposition 55.2. The second equality by Lemma 36.2. The third
equality holds because the diagram is a cartesian square and hence the map

{x′ : Spec(k)→ X ′, f ′ ◦ x′ = y′} −→ {x : Spec(k)→ X, f ◦ x = g ◦ y′}

sending x′ to g′ ◦ x′ is a bijection. The fourth equality by Proposition 55.2. The fifth
equality by Lemma 36.2. �

Lemma 55.4. Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f an integral morphism. For any sheaf of sets F on Xétale we have
f ′

∗(g′)−1F = g−1f∗F .

Proof. The question is local on Y and hence we may assume Y is affine. Then we
can write X = limXi with fi : Xi → Y finite (this is easy in the affine case, but see
Limits, Lemma 7.3 for a reference). Denote pi′i : Xi′ → Xi the transition morphisms and
pi : X → Xi the projections. Setting Fi = pi,∗F we obtain from Lemma 51.9 a system
(Fi, ϕi′i) with F = colim p−1

i Fi. We get f∗F = colim fi,∗Fi from Lemma 51.7. Set
X ′
i = Y ′ ×Y Xi with projections f ′

i and g′
i. Then X ′ = limX ′

i as limits commute with
limits. Denote p′

i : X ′ → X ′
i the projections. We have

g−1f∗F = g−1 colim fi,∗Fi
= colim g−1fi,∗Fi
= colim f ′

i,∗(g′
i)−1Fi

= f ′
∗(colim(p′

i)−1(g′
i)−1Fi)

= f ′
∗(colim(g′)−1p−1

i Fi)
= f ′

∗(g′)−1 colim p−1
i Fi

= f ′
∗(g′)−1F

as desired. For the first equality see above. For the second use that pullback commutes
with colimits. For the third use the finite case, see Lemma 55.3. For the fourth use Lemma
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51.7. For the fifth use that g′
i ◦ p′

i = pi ◦ g′. For the sixth use that pullback commutes
with colimits. For the seventh use F = colim p−1

i Fi. �

The following lemma is a case of cohomological descent dealing with étale sheaves and
finite surjective morphisms. We will significantly generalize this result once we prove the
proper base change theorem.

Lemma 55.5. Let f : X → Y be a surjective finite morphism of schemes. Set fn :
Xn → Y equal to the (n + 1)-fold fibre product of X over Y . For F ∈ Ab(Yétale) set
Fn = fn,∗f

−1
n F . There is an exact sequence

0→ F → F0 → F1 → F2 → . . .

on Xétale. Moreover, there is a spectral sequence

Ep,q1 = Hq
étale(Xp, f

−1
p F)

converging to Hp+q(Yétale,F). This spectral sequence is functorial in F .

Proof. If we prove the first statement of the lemma, then we obtain a spectral se-
quence withEp,q1 = Hq

étale(Y,F) converging toHp+q(Yétale,F), see Derived Categories,
Lemma 21.3. On the other hand, since Rifp,∗f−1

p F = 0 for i > 0 (Proposition 55.2) we
get

Hq
étale(Xp, f

−1
p F) = Hq

étale(Y, fp,∗f
−1
p F) = Hq

étale(Y,Fp)
by Proposition 54.2 and we get the spectral sequence of the lemma.

To prove the first statement of the lemma, observe that Xn forms a simplicial scheme
over Y , see Simplicial, Example 3.5. Observe moreover, that for each of the projections
dj : Xn+1 → Xn there is a map d−1

j f−1
n F → f−1

n+1F . These maps induce maps

δj : Fn → Fn+1

for j = 0, . . . , n+ 1. We use the alternating sum of these maps to define the differentials
Fn → Fn+1. Similarly, there is a canonical augmentation F → F0, namely this is just
the canonical map F → f∗f

−1F . To check that this sequence of sheaves is an exact
complex it suffices to check on stalks at geometric points (Theorem 29.10). Thus we let
y : Spec(k) → Y be a geometric point. Let E = {x : Spec(k) → X | f(x) = y}. Then
E is a finite nonempty set and we see that

(Fn)y =
⊕

e∈En+1
Fy

by Proposition 55.2 and Lemma 36.2. Thus we have to see that given an abelian group M
the sequence

0→M →
⊕

e∈E
M →

⊕
e∈E2

M → . . .

is exact. Here the first map is the diagonal map and the map
⊕

e∈En+1 M →
⊕

e∈En+2 M

is the alternating sum of the maps induced by the (n + 2) projections En+2 → En+1.
This can be shown directly or deduced by applying Simplicial, Lemma 26.9 to the map
E → {∗}. �

Remark 55.6. In the situation of Lemma 55.5 if G is a sheaf of sets on Yétale, then we
have

Γ(Y,G) = Equalizer( Γ(X0, f
−1
0 G) //

// Γ(X1, f
−1
1 G) )

This is proved in exactly the same way, by showing that the sheaf G is the equalizer of the
two maps f0,∗f

−1
0 G → f1,∗f

−1
1 G.
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56. Galois action on stalks

In this section we define an action of the absolute Galois group of a residue field of a point
s of S on the stalk functor at any geometric point lying over s.
Galois action on stalks. Let S be a scheme. Let s be a geometric point of S. Let σ ∈
Aut(κ(s)/κ(s)). Define an action of σ on the stalk Fs of a sheaf F as follows

(56.0.1) Fs −→ Fs
(U, u, t) 7−→ (U, u ◦ Spec(σ), t).

where we use the description of elements of the stalk in terms of triples as in the discussion
following Definition 29.6. This is a left action, since if σi ∈ Aut(κ(s)/κ(s)) then

σ1 · (σ2 · (U, u, t)) = σ1 · (U, u ◦ Spec(σ2), t)
= (U, u ◦ Spec(σ2) ◦ Spec(σ1), t)
= (U, u ◦ Spec(σ1 ◦ σ2), t)
= (σ1 ◦ σ2) · (U, u, t)

It is clear that this action is functorial in the sheafF . We note that we could have defined
this action by referring directly to Remark 29.8.

Definition 56.1. Let S be a scheme. Let s be a geometric point lying over the point
s of S. Let κ(s) ⊂ κ(s)sep ⊂ κ(s) denote the separable algebraic closure of κ(s) in the
algebraically closed field κ(s).

(1) In this situation the absolute Galois group of κ(s) is Gal(κ(s)sep/κ(s)). It is
sometimes denoted Galκ(s).

(2) The geometric point s is called algebraic if κ(s) ⊂ κ(s) is an algebraic closure
of κ(s).

Example 56.2. The geometric point Spec(C)→ Spec(Q) is not algebraic.

Let κ(s) ⊂ κ(s)sep ⊂ κ(s) be as in the definition. Note that as κ(s) is algebraically closed
the map

Aut(κ(s)/κ(s)) −→ Gal(κ(s)sep/κ(s)) = Galκ(s)

is surjective. Suppose (U, u) is an étale neighbourhood of s, and say u lies over the point u
of U . Since U → S is étale, the residue field extension κ(u)/κ(s) is finite separable. This
implies the following

(1) If σ ∈ Aut(κ(s)/κ(s)sep) then σ acts trivially on Fs.
(2) More precisely, the action of Aut(κ(s)/κ(s)) determines and is determined by

an action of the absolute Galois group Galκ(s) on Fs.
(3) Given (U, u, t) representing an element ξ ofFs any element of Gal(κ(s)sep/K)

acts trivially, where κ(s) ⊂ K ⊂ κ(s)sep is the image of u] : κ(u)→ κ(s).
Altogether we see thatFs becomes a Galκ(s)-set (see Fundamental Groups, Definition 2.1).
Hence we may think of the stalk functor as a functor

Sh(Sétale) −→ Galκ(s)-Sets, F 7−→ Fs
and from now on we usually do think about the stalk functor in this way.

Theorem 56.3. Let S = Spec(K) with K a field. Let s be a geometric point of S.
Let G = Galκ(s) denote the absolute Galois group. Taking stalks induces an equivalence
of categories

Sh(Sétale) −→ G-Sets, F 7−→ Fs.
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Proof. Let us construct the inverse to this functor. In Fundamental Groups, Lemma
2.2 we have seen that given a G-set M there exists an étale morphism X → Spec(K)
such that MorK(Spec(Ksep), X) is isomorphic toM as aG-set. Consider the sheaf F on
Spec(K)étale defined by the rule U 7→ MorK(U,X). This is a sheaf as the étale topology
is subcanonical. Then we see that Fs = MorK(Spec(Ksep), X) = M as G-sets (details
omitted). This gives the inverse of the functor and we win. �

Remark 56.4. Another way to state the conclusion of Theorem 56.3 and Fundamen-
tal Groups, Lemma 2.2 is to say that every sheaf on Spec(K)étale is representable by a
schemeX étale over Spec(K). This does not mean that every sheaf is representable in the
sense of Sites, Definition 12.3. The reason is that in our construction of Spec(K)étale we
chose a sufficiently large set of schemes étale over Spec(K), whereas sheaves on Spec(K)étale
form a proper class.

Lemma 56.5. Assumptions and notations as in Theorem 56.3. There is a functorial
bijection

Γ(S,F) = (Fs)G

Proof. We can prove this using formal arguments and the result of Theorem 56.3 as
follows. Given a sheaf F corresponding to the G-set M = Fs we have

Γ(S,F) = MorSh(Sétale)(hSpec(K),F)
= MorG-Sets({∗},M)
= MG

Here the first identification is explained in Sites, Sections 2 and 12, the second results from
Theorem 56.3 and the third is clear. We will also give a direct proof5.

Suppose that t ∈ Γ(S,F) is a global section. Then the triple (S, s, t) defines an element
of Fs which is clearly invariant under the action of G. Conversely, suppose that (U, u, t)
defines an element of Fs which is invariant. Then we may shrink U and assume U =
Spec(L) for some finite separable field extension of K , see Proposition 26.2. In this case
the map F(U) → Fs is injective, because for any morphism of étale neighbourhoods
(U ′, u′) → (U, u) the restriction map F(U) → F(U ′) is injective since U ′ → U is
a covering of Sétale. After enlarging L a bit we may assume K ⊂ L is a finite Galois
extension. At this point we use that

Spec(L)×Spec(K) Spec(L) =
∐

σ∈Gal(L/K)
Spec(L)

where the maps Spec(L) → Spec(L ⊗K L) come from the ring maps a ⊗ b 7→ aσ(b).
Hence we see that the condition that (U, u, t) is invariant under all of G implies that t ∈
F(Spec(L)) maps to the same element of F(Spec(L) ×Spec(K) Spec(L)) via restriction
by either projection (this uses the injectivity mentioned above; details omitted). Hence
the sheaf condition of F for the étale covering {Spec(L) → Spec(K)} kicks in and we
conclude that t comes from a unique section of F over Spec(K). �

Remark 56.6. Let S be a scheme and let s : Spec(k) → S be a geometric point of
S. By definition this means that k is algebraically closed. In particular the absolute Ga-
lois group of k is trivial. Hence by Theorem 56.3 the category of sheaves on Spec(k)étale
is equivalent to the category of sets. The equivalence is given by taking sections over

5For the doubting Thomases out there.
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Spec(k). This finally provides us with an alternative definition of the stalk functor.
Namely, the functor

Sh(Sétale) −→ Sets, F 7−→ Fs
is isomorphic to the functor

Sh(Sétale) −→ Sh(Spec(k)étale) = Sets, F 7−→ s∗F

To prove this rigorously one can use Lemma 36.2 part (3) with f = s. Moreover, having
said this the general case of Lemma 36.2 part (3) follows from functoriality of pullbacks.

57. Group cohomology

In the following, if we writeHi(G,M) we will mean thatG is a topological group andM
a discreteG-module with continuousG-action andHi(G,−) is the ith right derived func-
tor on the category ModG of suchG-modules, see Definitions 57.1 and 57.2. This includes
the case of an abstract group G, which simply means that G is viewed as a topological
group with the discrete topology.

When the module has a nondiscrete topology, we will use the notation Hi
cont(G,M) to

indicate the continuous cohomology groups introduced in [?], see Section 58.

Definition 57.1. Let G be a topological group.
(1) A G-module, sometimes called a discrete G-module, is an abelian group M en-

dowed with a left action a : G×M →M by group homomorphisms such that
a is continuous when M is given the discrete topology.

(2) A morphism ofG-modules f : M → N is aG-equivariant homomorphism from
M to N .

(3) The category of G-modules is denoted ModG.
Let R be a ring.

(1) An R-G-module is an R-module M endowed with a left action a : G ×M →
M by R-linear maps such that a is continuous when M is given the discrete
topology.

(2) A morphism of R-G-modules f : M → N is a G-equivariant R-module map
from M to N .

(3) The category of R-G-modules is denoted ModR,G.

The condition that a : G×M → M is continuous is equivalent with the condition that
the stabilizer of any x ∈ M is open in G. If G is an abstract group then this corresponds
to the notion of an abelian group endowed with a G-action provided we endow G with
the discrete topology. Observe that ModZ,G = ModG.

The category ModG has enough injectives, see Injectives, Lemma 3.1. Consider the left
exact functor

ModG −→ Ab, M 7−→MG = {x ∈M | g · x = x ∀g ∈ G}

We sometimes denote MG = H0(G,M) and sometimes we write MG = ΓG(M). This
functor has a total right derived functorRΓG(M) and ith right derived functorRiΓG(M) =
Hi(G,M) for any i ≥ 0.

The same construction works for H0(G,−) : ModR,G → ModR. We will see in Lemma
57.3 that this agrees with the cohomology of the underlying G-module.
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Definition 57.2. Let G be a topological group. Let M be a discrete G-module with
continuous G-action. In other words, M is an object of the category ModG introduced in
Definition 57.1.

(1) The right derived functors Hi(G,M) of H0(G,M) on the category ModG are
called the continuous group cohomology groups of M .

(2) IfG is an abstract group endowed with the discrete topology then theHi(G,M)
are called the group cohomology groups of M .

(3) IfG is a Galois group, then the groupsHi(G,M) are called the Galois cohomol-
ogy groups of M .

(4) If G is the absolute Galois group of a field K , then the groups Hi(G,M) are
sometimes called the Galois cohomology groups ofK with coefficients inM . In
this case we sometimes write Hi(K,M) instead of Hi(G,M).

Lemma 57.3. Let G be a topological group. Let R be a ring. For every i ≥ 0 the
diagram

ModR,G
Hi(G,−)

//

��

ModR

��
ModG

Hi(G,−) // Ab

whose vertical arrows are the forgetful functors is commutative.

Proof. Let us denote the forgetful functor F : ModR,G →ModG. Then F has a left
adjoint H : ModG →ModR,G given by H(M) = M ⊗Z R. Observe that every object of
ModG is a quotient of a direct sum of modules of the form Z[G/U ] whereU ⊂ G is an open
subgroup. Here Z[G/U ] denotes theG-modules of finite Z-linear combinations of rightU
congruence classes inG endowed with leftG-action. Thus every bounded above complex
in ModG is quasi-isomorphic to a bounded above complex in ModG whose underlying
terms are flat Z-modules (Derived Categories, Lemma 15.4). Thus it is clear thatLH exists
onD−(ModG) and is computed by evaluatingH on any complex whose terms are flat Z-
modules; this follows from Derived Categories, Lemma 15.7 and Proposition 16.8. We
conclude from Derived Categories, Lemma 30.2 that

Exti(Z, F (M)) = Exti(R,M)

forM in ModR,G. Observe thatH0(G,−) = Hom(Z,−) on ModG where Z denotes the
G-module with trivial action. Hence Hi(G,−) = Exti(Z,−) on ModG. Similarly we
have Hi(G,−) = Exti(R,−) on ModR,G. Combining everything we see that the lemma
is true. �

Lemma 57.4. Let G be a topological group. Let R be a ring. Let M , N be R-G-
modules. IfM is finite projective as anR-module, then Exti(M,N) = Hi(G,M∨⊗RN)
(for notation see proof).

Proof. The module M∨ = HomR(M,R) endowed with the contragredient action
of G. Namely (g · λ)(m) = λ(g−1 ·m) for g ∈ G, λ ∈M∨, m ∈M . The action of G on
M∨ ⊗R N is the diagonal one, i.e., given by g · (λ ⊗ n) = g · λ ⊗ g · n. Note that for a
thirdR-G-moduleE we have Hom(E,M∨⊗RN) = Hom(M⊗RE,N). Namely, this is
true on the level ofR-modules by Algebra, Lemmas 12.8 and 78.9 and the definitions ofG-
actions are chosen such that it remains true for R-G-modules. It follows that M∨ ⊗R N
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is an injective R-G-module if N is an injective R-G-module. Hence if N → N• is an
injective resolution, then M∨ ⊗R N →M∨ ⊗R N• is an injective resolution. Then

Hom(M,N•) = Hom(R,M∨ ⊗R N•) = (M∨ ⊗R N•)G

Since the left hand side computes Exti(M,N) and the right hand side computesHi(G,M∨⊗R
N) the proof is complete. �

Lemma 57.5. Let G be a topological group. Let k be a field. Let V be a k-G-module.
If G is topologically finitely generated and dimk(V ) <∞, then dimkH

1(G,V ) <∞.
Proof. Let g1, . . . , gr ∈ G be elements which topologically generate G, i.e., this

means that the subgroup generated by g1, . . . , gr is dense. By Lemma 57.4 we see that
H1(G,V ) is the k-vector space of extensions

0→ V → E → k → 0
of k-G-modules. Choose e ∈ E mapping to 1 ∈ k. Write

gi · e = vi + e

for some vi ∈ V . This is possible because gi · 1 = 1. We claim that the list of elements
v1, . . . , vr ∈ V determine the isomorphism class of the extension E. Once we prove this
the lemma follows as this means that our Ext vector space is isomorphic to a subquotient of
the k-vector space V ⊕r ; some details omitted. SinceE is an object of the category defined
in Definition 57.1 we know there is an open subgroup U such that u · e = e for all u ∈ U .
Now pick any g ∈ G. Then gU contains a wordw in the elements g1, . . . , gr. Say gu = w.
Since the element w · e is determined by v1, . . . , vr , we see that g · e = (gu) · e = w · e is
too. �

Lemma 57.6. Let G be a profinite topological group. Then
(1) Hi(G,M) is torsion for i > 0 and any G-module M , and
(2) Hi(G,M) = 0 if M is a Q-vector space.

Proof. Proof of (1). By dimension shifting we see that it suffices to show thatH1(G,M)
is torsion for everyG-moduleM . Choose an exact sequence 0→M → I → N → 0 with
I an injective object of the category ofG-modules. Then any element ofH1(G,M) is the
image of an element y ∈ NG. Choose x ∈ I mapping to y. The stabilizer U ⊂ G of x is
open, hence has finite index r. Let g1, . . . , gr ∈ G be a system of representatives forG/U .
Then

∑
gi(x) is an invariant element of I which maps to ry. Thus r kills the element of

H1(G,M) we started with. Part (2) follows as then Hi(G,M) is both a Q-vector space
and torsion. �

58. Tate’s continuous cohomology

Tate’s continuous cohomology ([?]) is defined by the complex of continuous inhomoge-
neous cochains. We can define this when M is an arbitrary topological abelian group
endowed with a continuous G-action. Namely, we consider the complex

C•
cont(G,M) : M →Mapscont(G,M)→Mapscont(G×G,M)→ . . .

where the boundary map is defined for n ≥ 1 by the rule
d(f)(g1, . . . , gn+1) = g1(f(g2, . . . , gn+1))

+
∑

j=1,...,n
(−1)jf(g1, . . . , gjgj+1, . . . , gn+1)

+ (−1)n+1f(g1, . . . , gn)
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and for n = 0 sends m ∈M to the map g 7→ g(m)−m. We define

Hi
cont(G,M) = Hi(C•

cont(G,M))

Since the terms of the complex involve continuous maps from G and self products of G
into the topological module M , it is not clear that this turns a short exact sequence of
topological modules into a long exact cohomology sequence. Another difficulty is that
the category of topological abelian groups isn’t an abelian category!

However, a short exact sequence of discrete G-modules does give rise to a short exact se-
quence of complexes of continuous cochains and hence a long exact cohomology sequence
of continuous cohomology groups Hi

cont(G,−). Therefore, on the category ModG of
Definition 57.1 the functors Hi

cont(G,M) form a cohomological δ-functor as defined in
Homology, Section 12. Since the cohomology Hi(G,M) of Definition 57.2 is a universal
δ-functor (Derived Categories, Lemma 16.6) we obtain canonical maps

Hi(G,M) −→ Hi
cont(G,M)

forM ∈ModG. It is known that these maps are isomorphisms whenG is an abstract group
(i.e., G has the discrete topology) or when G is a profinite group (insert future reference
here). If you know an example showing this map is not an isomorphism for a topological
group G and M ∈ Ob(ModG) please email stacks.project@gmail.com.

59. Cohomology of a point

As a consequence of the discussion in the preceding sections we obtain the equivalence of
étale cohomology of the spectrum of a field with Galois cohomology.

Lemma 59.1. Let S = Spec(K) with K a field. Let s be a geometric point of S. Let
G = Galκ(s) denote the absolute Galois group. The stalk functor induces an equivalence
of categories

Ab(Sétale) −→ModG, F 7−→ Fs.

Proof. In Theorem 56.3 we have seen the equivalence between sheaves of sets and
G-sets. The current lemma follows formally from this as an abelian sheaf is just a sheaf
of sets endowed with a commutative group law, and a G-module is just a G-set endowed
with a commutative group law. �

Lemma 59.2. Notation and assumptions as in Lemma 59.1. Let F be an abelian sheaf
on Spec(K)étale which corresponds to the G-module M . Then

(1) in D(Ab) we have a canonical isomorphism RΓ(S,F) = RΓG(M),
(2) H0

étale(S,F) = MG, and
(3) Hq

étale(S,F) = Hq(G,M).

Proof. Combine Lemma 59.1 with Lemma 56.5. �

Example 59.3. Sheaves on Spec(K)étale. Let G = Gal(Ksep/K) be the absolute
Galois group of K.

(1) The constant sheaf Z/nZ corresponds to the module Z/nZ with trivialG-action,
(2) the sheaf Gm|Spec(K)étale corresponds to (Ksep)∗ with its G-action,
(3) the sheaf Ga|Spec(Ksep) corresponds to (Ksep,+) with its G-action, and
(4) the sheaf µn|Spec(Ksep) corresponds to µn(Ksep) with its G-action.

mailto:stacks.project@gmail.com
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By Remark 23.4 and Theorem 24.1 we have the following identifications for cohomology
groups:

H0
étale(Sétale,Gm) = Γ(S,O∗

S)
H1
étale(Sétale,Gm) = H1

Zar(S,O∗
S) = Pic(S)

Hi
étale(Sétale,Ga) = Hi

Zar(S,OS)
Also, for any quasi-coherent sheaf F on Sétale we have

Hi(Sétale,F) = Hi
Zar(S,F),

see Theorem 22.4. In particular, this gives the following sequence of equalities

0 = Pic(Spec(K)) = H1
étale(Spec(K)étale,Gm) = H1(G, (Ksep)∗)

which is none other than Hilbert’s 90 theorem. Similarly, for i ≥ 1,
0 = Hi(Spec(K),O) = Hi

étale(Spec(K)étale,Ga) = Hi(G,Ksep)
where theKsep indicatesKsep as a Galois module with addition as group law. In this way
we may consider the work we have done so far as a complicated way of computing Galois
cohomology groups.

The following result is a curiosity and should be skipped on a first reading.

Lemma 59.4. Let R be a local ring of dimension 0. Let S = Spec(R). Then every
OS-module on Sétale is quasi-coherent.

Proof. Let F be anOS-module on Sétale. We have to show that F is determined by
the R-module M = Γ(S,F). More precisely, if π : X → S is étale we have to show that
Γ(X,F) = Γ(X,π∗M̃).
Let m ⊂ R be the maximal ideal and let κ be the residue field. By Algebra, Lemma 153.10
the local ring R is henselian. If X → S is étale, then the underlying topological space of
X is discrete by Morphisms, Lemma 36.7 and henceX is a disjoint union of affine schemes
each having one point. Moreover, ifX = Spec(A) is affine and has one point, thenR→ A
is finite étale by Algebra, Lemma 153.5. We have to show that Γ(X,F) = M ⊗RA in this
case.
The functor A 7→ A/mA defines an equivalence of the category of finite étale R-algebras
with the category of finite separable κ-algebras by Algebra, Lemma 153.7. Let us first con-
sider the case whereA/mA is a Galois extension of κwith Galois groupG. For each σ ∈ G
let σ : A → A denote the corresponding automorphism of A over R. Let N = Γ(X,F).
Then Spec(σ) : X → X is an automorphism over S and hence pullback by this defines a
map σ : N → N which is a σ-linear map: σ(an) = σ(a)σ(n) for a ∈ A and n ∈ N . We
will apply Galois descent to the quasi-coherent module Ñ on X endowed with the iso-
morphisms coming from the action on σ onN . See Descent, Lemma 6.2. This lemma tells
us there is an isomorphism N = NG ⊗R A. On the other hand, it is clear that NG = M
by the sheaf property for F . Thus the required isomorphism holds.
The general case (with A local and finite étale over R) is deduced from the Galois case as
follows. Choose A → B finite étale such that B is local with residue field Galois over κ.
Let G = Aut(B/R) = Gal(κB/κ). Let H ⊂ G be the Galois group corresponding to the
Galois extension κB/κA. Then as above one shows that Γ(X,F) = Γ(Spec(B),F)H .
By the result for Galois extensions (used twice) we get

Γ(X,F) = (M ⊗R B)H = M ⊗R A
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as desired. �

60. Cohomology of curves

The next task at hand is to compute the étale cohomology of a smooth curve over an
algebraically closed field with torsion coefficients, and in particular show that it vanishes
in degree at least 3. To prove this, we will compute cohomology at the generic point,
which amounts to some Galois cohomology.

61. Brauer groups

Brauer groups of fields are defined using finite central simple algebras. In this section we
review the relevant facts about Brauer groups, most of which are discussed in the chapter
Brauer Groups, Section 1. For other references, see [?], [?] or [?].

Theorem 61.1. Let K be a field. For a unital, associative (not necessarily commuta-
tive) K-algebra A the following are equivalent

(1) A is finite central simple K-algebra,
(2) A is a finite dimensional K-vector space, K is the center of A, and A has no

nontrivial two-sided ideal,
(3) there exists d ≥ 1 such that A⊗K K̄ ∼= Mat(d× d, K̄),
(4) there exists d ≥ 1 such that A⊗K Ksep ∼= Mat(d× d,Ksep),
(5) there exist d ≥ 1 and a finite Galois extension K ′/K such that A ⊗K K ′ ∼=

Mat(d× d,K ′),
(6) there existn ≥ 1 and a finite central skew fieldD overK such thatA ∼= Mat(n×

n,D).
The integer d is called the degree of A.

Proof. This is a copy of Brauer Groups, Lemma 8.6. �

Lemma 61.2. Let A be a finite central simple algebra over K. Then

A⊗K Aopp −→ EndK(A)
a⊗ a′ 7−→ (x 7→ axa′)

is an isomorphism of algebras over K.

Proof. See Brauer Groups, Lemma 4.10. �

Definition 61.3. Two finite central simple algebras A1 and A2 over K are called
similar, or equivalent if there existm,n ≥ 1 such that Mat(n×n,A1) ∼= Mat(m×m,A2).
We write A1 ∼ A2.

By Brauer Groups, Lemma 5.1 this is an equivalence relation.

Definition 61.4. LetK be a field. The Brauer group ofK is the set Br(K) of similar-
ity classes of finite central simple algebras overK , endowed with the group law induced by
tensor product (over K). The class of A in Br(K) is denoted by [A]. The neutral element
is [K] = [Mat(d× d,K)] for any d ≥ 1.

The previous lemma implies that inverses exist and that−[A] = [Aopp]. The Brauer group
of a field is always torsion. In fact, we will see that [A] has order dividing deg(A) for any
finite central simple algebraA (see Lemma 62.2). In general the Brauer group is not finitely
generated, for example the Brauer group of a non-Archimedean local field is Q/Z. The
Brauer group of C(x, y) is uncountable.
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Lemma 61.5. LetK be a field and letKsep be a separable algebraic closure. Then the
set of isomorphism classes of central simple algebras of degree d overK is in bijection with
the non-abelian cohomology H1(Gal(Ksep/K),PGLd(Ksep)).

Sketch of proof. The Skolem-Noether theorem (see Brauer Groups, Theorem 6.1)
implies that for any field L the group AutL-Algebras(Matd(L)) equals PGLd(L). By The-
orem 61.1, we see that central simple algebras of degree d correspond to forms of the K-
algebra Matd(K). Combined we see that isomorphism classes of degree d central simple
algebras correspond to elements ofH1(Gal(Ksep/K),PGLd(Ksep)). For more details on
twisting, see for example [?]. �

If A is a finite central simple algebra of degree d over a field K , we denote ξA the cor-
responding cohomology class in H1(Gal(Ksep/K),PGLd(Ksep)). Consider the short
exact sequence

1→ (Ksep)∗ → GLd(Ksep)→ PGLd(Ksep)→ 1,

which gives rise to a long exact cohomology sequence (up to degree 2) with coboundary
map

δd : H1(Gal(Ksep/K),PGLd(Ksep)) −→ H2(Gal(Ksep/K), (Ksep)∗).

Explicitly, this is given as follows: if ξ is a cohomology class represented by the 1-cocycle
(gσ), then δd(ξ) is the class of the 2-cocycle

(61.5.1) (σ, τ) 7−→ g̃−1
σ g̃στσ(g̃−1

τ ) ∈ (Ksep)∗

where g̃σ ∈ GLd(Ksep) is a lift of gσ . Using this we can make explicit the map

δ : Br(K) −→ H2(Gal(Ksep/K), (Ksep)∗), [A] 7−→ δdegA(ξA)

as follows. Assume A has degree d over K. Choose an isomorphism ϕ : Matd(Ksep) →
A ⊗K Ksep. For σ ∈ Gal(Ksep/K) choose an element g̃σ ∈ GLd(Ksep) such that
ϕ−1 ◦ σ(ϕ) is equal to the map x 7→ g̃σxg̃

−1
σ . The class in H2 is defined by the two

cocycle (61.5.1).

Theorem 61.6. Let K be a field with separable algebraic closure Ksep. The map
δ : Br(K)→ H2(Gal(Ksep/K), (Ksep)∗) defined above is a group isomorphism.

Sketch of proof. To prove that δ defines a group homomorphism, i.e., that δ(A⊗K
B) = δ(A) + δ(B), one computes directly with cocycles.

Injectivity of δ. In the abelian case (d = 1), one has the identification

H1(Gal(Ksep/K),GLd(Ksep)) = H1
étale(Spec(K),GLd(O))

the latter of which is trivial by fpqc descent. If this were true in the non-abelian case, this
would readily imply injectivity of δ. (See [?].) Rather, to prove this, one can reinterpret
δ([A]) as the obstruction to the existence of aK-vector spaceV with a leftA-module struc-
ture and such that dimK V = degA. In the case where V exists, one has A ∼= EndK(V ).

For surjectivity, pick a cohomology class ξ ∈ H2(Gal(Ksep/K), (Ksep)∗), then there ex-
ists a finite Galois extensionKsep/K ′/K such that ξ is the image of some ξ′ ∈ H2(Gal(K ′|K), (K ′)∗).
Then write down an explicit central simple algebra over K using the data K ′, ξ′. �
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62. The Brauer group of a scheme

LetS be a scheme. AnOS-algebraA is called Azumaya if it is étale locally a matrix algebra,
i.e., if there exists an étale covering U = {ϕi : Ui → S}i∈I such that ϕ∗

iA ∼= Matdi(OUi)
for some di ≥ 1. Two such A and B are called equivalent if there exist finite locally free
OS-modules F and G which have positive rank at every s ∈ S such that

A⊗OS
HomOS

(F ,F) ∼= B ⊗OS
HomOS

(G,G)

asOS-algebras. The Brauer group of S is the set Br(S) of equivalence classes of Azumaya
OS-algebras with the operation induced by tensor product (overOS).

Lemma 62.1. Let S be a scheme. Let F and G be finite locally free sheaves of OS-
modules of positive rank. If there exists an isomorphismHomOS

(F ,F) ∼= HomOS
(G,G)

of OS-algebras, then there exists an invertible sheaf L on S such that F ⊗OS
L ∼= G and

such that this isomorphism induces the given isomorphism of endomorphism algebras.

Proof. Fix an isomorphism HomOS
(F ,F) → HomOS

(G,G). Consider the sheaf
L ⊂ Hom(F ,G) generated as an OS-module by the local isomorphisms ϕ : F → G
such that conjugation by ϕ is the given isomorphism of endomorphism algebras. A local
calculation (reducing to the case that F and G are finite free and S is affine) shows that L
is invertible. Another local calculation shows that the evaluation map

F ⊗OS
L −→ G

is an isomorphism. �

The argument given in the proof of the following lemma can be found in [?].

Lemma 62.2. Let S be a scheme. Let A be an Azumaya algebra which is locally free
of rank d2 over S. Then the class ofA in the Brauer group of S is annihilated by d.

Proof. Choose an étale covering {Ui → S} and choose isomorphisms A|Ui →
Hom(Fi,Fi) for some locally free OUi -modules Fi of rank d. (We may assume Fi is
free.) Consider the composition

pi : F⊗d
i → ∧d(Fi)→ F⊗d

i

The first arrow is the usual projection and the second arrow is the isomorphism of the top
exterior power ofFi with the submodule of sections ofF⊗d

i which transform according to
the sign character under the action of the symmetric group on d letters. Then p2

i = d!pi
and the rank of pi is 1. Using the given isomorphism A|Ui → Hom(Fi,Fi) and the
canonical isomorphism

Hom(Fi,Fi)⊗d = Hom(F⊗d
i ,F⊗d

i )

we may think of pi as a section of A⊗d over Ui. We claim that pi|Ui×SUj = pj |Ui×SUj
as sections ofA⊗d. Namely, applying Lemma 62.1 we obtain an invertible sheaf Lij and a
canonical isomorphism

Fi|Ui×SUj ⊗ Lij −→ Fj |Ui×SUj .

Using this isomorphism we see that pi maps to pj . SinceA⊗d is a sheaf on Sétale (Propo-
sition 17.1) we find a canonical global section p ∈ Γ(S,A⊗d). A local calculation shows
that

H = Im(A⊗d → A⊗d, f 7→ fp)
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is a locally free module of rank dd and that (left) multiplication by A⊗d induces an iso-
morphism A⊗d → Hom(H,H). In other words, A⊗d is the trivial element of the Brauer
group of S as desired. �

In this setting, the analogue of the isomorphism δ of Theorem 61.6 is a map

δS : Br(S)→ H2
étale(S,Gm).

It is true that δS is injective. If S is quasi-compact or connected, then Br(S) is a torsion
group, so in this case the image of δS is contained in the cohomological Brauer group of S

Br′(S) := H2
étale(S,Gm)torsion.

So if S is quasi-compact or connected, there is an inclusion Br(S) ⊂ Br′(S). This is not
always an equality: there exists a nonseparated singular surface S for which Br(S) ⊂
Br′(S) is a strict inclusion. If S is quasi-projective, then Br(S) = Br′(S). However, it is
not known whether this holds for a smooth proper variety over C, say.

63. The Artin-Schreier sequence

Let p be a prime number. LetS be a scheme in characteristic p. The Artin-Schreier sequence
is the short exact sequence

0 −→ Z/pZ
S
−→ Ga,S

F−1−−−→ Ga,S −→ 0

where F − 1 is the map x 7→ xp − x.

Lemma 63.1. Let p be a prime. Let S be a scheme of characteristic p.
(1) If S is affine, then Hq

étale(S,Z/pZ) = 0 for all q ≥ 2.
(2) IfS is a quasi-compact and quasi-separated scheme of dimension d, thenHq

étale(S,Z/pZ) =
0 for all q ≥ 2 + d.

Proof. Recall that the étale cohomology of the structure sheaf is equal to its coho-
mology on the underlying topological space (Theorem 22.4). The first statement follows
from the Artin-Schreier exact sequence and the vanishing of cohomology of the structure
sheaf on an affine scheme (Cohomology of Schemes, Lemma 2.2). The second statement
follows by the same argument from the vanishing of Cohomology, Proposition 22.4 and
the fact that S is a spectral space (Properties, Lemma 2.4). �

Lemma 63.2. Let k be an algebraically closed field of characteristic p > 0. Let V be
a finite dimensional k-vector space. Let F : V → V be a frobenius linear map, i.e., an
additive map such that F (λv) = λpF (v) for all λ ∈ k and v ∈ V . Then F − 1 : V → V
is surjective with kernel a finite dimensional Fp-vector space of dimension ≤ dimk(V ).

Proof. If F = 0, then the statement holds. If we have a filtration of V by F -stable
subvector spaces such that the statement holds for each graded piece, then it holds for
(V, F ). Combining these two remarks we may assume the kernel of F is zero.

Choose a basis v1, . . . , vn of V and write F (vi) =
∑
aijvj . Observe that v =

∑
λivi is

in the kernel if and only if
∑
λpi aijvj = 0. Since k is algebraically closed this implies the

matrix (aij) is invertible. Let (bij) be its inverse. Then to see that F − 1 is surjective we
pick w =

∑
µivi ∈ V and we try to solve

(F − 1)(
∑

λivi) =
∑

λpi aijvj −
∑

λjvj =
∑

µjvj
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This is equivalent to ∑
λpjvj −

∑
bijλivj =

∑
bijµivj

in other words

λpj −
∑

bijλi =
∑

bijµi, j = 1, . . . , dim(V ).

The algebra
A = k[x1, . . . , xn]/(xpj −

∑
bijxi −

∑
bijµi)

is standard smooth over k (Algebra, Definition 137.6) because the matrix (bij) is invertible
and the partial derivatives of xpj are zero. A basis of A over k is the set of monomials
xe1

1 . . . xenn with ei < p, hence dimk(A) = pn. Since k is algebraically closed we see that
Spec(A) has exactly pn points. It follows that F − 1 is surjective and every fibre has pn
points, i.e., the kernel of F − 1 is a group with pn elements. �

Lemma 63.3. Let X be a separated scheme of finite type over a field k. Let F be a
coherent sheaf ofOX -modules. Then dimkH

d(X,F) <∞ where d = dim(X).

Proof. We will prove this by induction on d. The case d = 0 holds because in that
case X is the spectrum of a finite dimensional k-algebra A (Varieties, Lemma 20.2) and
every coherent sheaf F corresponds to a finite A-module M = H0(X,F) which has
dimkM <∞.

Assume d > 0 and the result has been shown for separated schemes of finite type of di-
mension< d. The schemeX is Noetherian. Consider the property P of coherent sheaves
on X defined by the rule

P(F)⇔ dimkH
d(X,F) <∞

We are going to use the result of Cohomology of Schemes, Lemma 12.4 to prove that P
holds for every coherent sheaf on X .

Let
0→ F1 → F → F2 → 0

be a short exact sequence of coherent sheaves on X . Consider the long exact sequence of
cohomology

Hd(X,F1)→ Hd(X,F)→ Hd(X,F2)
Thus if P holds for F1 and F2, then it holds for F .

Let Z ⊂ X be an integral closed subscheme. Let I be a coherent sheaf of ideals on Z. To
finish the proof we have to show that Hd(X, i∗I) = Hd(Z, I) is finite dimensional. If
dim(Z) < d, then the result holds because the cohomology group will be zero (Cohomol-
ogy, Proposition 20.7). In this way we reduce to the situation discussed in the following
paragraph.

Assume X is a variety of dimension d and F = I is a coherent ideal sheaf. In this case we
have a short exact sequence

0→ I → OX → i∗OZ → 0

where i : Z → X is the closed subscheme defined by I . By induction hypothesis we see
that Hd−1(Z,OZ) = Hd−1(X, i∗OZ) is finite dimensional. Thus we see that it suffices
to prove the result for the structure sheaf.
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We can apply Chow’s lemma (Cohomology of Schemes, Lemma 18.1) to the morphism
X → Spec(k). Thus we get a diagram

X

g
""

X ′

g′

��

π
oo

i
// Pn

k

{{
Spec(k)

as in the statement of Chow’s lemma. Also, let U ⊂ X be the dense open subscheme
such that π−1(U) → U is an isomorphism. We may assume X ′ is a variety as well, see
Cohomology of Schemes, Remark 18.2. The morphism i′ = (i, π) : X ′ → Pn

X is a closed
immersion (loc. cit.). Hence

L = i∗OPn
k
(1) ∼= (i′)∗OPn

X
(1)

is π-relatively ample (for example by Morphisms, Lemma 39.7). Hence by Cohomology
of Schemes, Lemma 16.2 there exists an n ≥ 0 such that Rpπ∗L⊗n = 0 for all p > 0. Set
G = π∗L⊗n. Choose any nonzero global section s of L⊗n. Since G = π∗L⊗n, the section
s corresponds to section of G , i.e., a map OX → G. Since s|U 6= 0 as X ′ is a variety and
L invertible, we see thatOX |U → G|U is nonzero. As G|U = L⊗n|π−1(U) is invertible we
conclude that we have a short exact sequence

0→ OX → G → Q→ 0

whereQ is coherent and supported on a proper closed subscheme ofX . Arguing as before
using our induction hypothesis, we see that it suffices to prove dimHd(X,G) <∞.

By the Leray spectral sequence (Cohomology, Lemma 13.6) we see thatHd(X,G) = Hd(X ′,L⊗n).
Let X ′ ⊂ Pn

k be the closure of X ′. Then X ′ is a projective variety of dimension d over k
and X ′ ⊂ X

′ is a dense open. The invertible sheaf L is the restriction of O
X

′(n) to X .
By Cohomology, Proposition 22.4 the map

Hd(X ′
,O

X
′(n)) −→ Hd(X ′,L⊗n)

is surjective. Since the cohomology group on the left has finite dimension by Cohomology
of Schemes, Lemma 14.1 the proof is complete. �

Lemma 63.4. Let X be separated of finite type over an algebraically closed field k of
characteristic p > 0. Then Hq

étale(X,Z/pZ) = 0 for q ≥ dim(X) + 1.

Proof. Let d = dim(X). By the vanishing established in Lemma 63.1 it suffices
to show that Hd+1

étale(X,Z/pZ) = 0. By Lemma 63.3 we see that Hd(X,OX) is a finite
dimensional k-vector space. Hence the long exact cohomology sequence associated to the
Artin-Schreier sequence ends with

Hd(X,OX) F−1−−−→ Hd(X,OX)→ Hd+1
étale(X,Z/pZ)→ 0

By Lemma 63.2 the map F − 1 in this sequence is surjective. This proves the lemma. �

Lemma 63.5. Let X be a proper scheme over an algebraically closed field k of char-
acteristic p > 0. Then

(1) Hq
étale(X,Z/pZ) is a finite Z/pZ-module for all q, and

(2) Hq
étale(X,Z/pZ)→ Hq

étale(Xk′ ,Z/pZ)) is an isomorphism if k′/k is an exten-
sion of algebraically closed fields.
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Proof. By Cohomology of Schemes, Lemma 19.2) and the comparison of cohomol-
ogy of Theorem 22.4 the cohomology groups Hq

étale(X,Ga) = Hq(X,OX) are finite
dimensional k-vector spaces. Hence by Lemma 63.2 the long exact cohomology sequence
associated to the Artin-Schreier sequence, splits into short exact sequences

0→ Hq
étale(X,Z/pZ)→ Hq(X,OX) F−1−−−→ Hq(X,OX)→ 0

and moreover the Fp-dimension of the cohomology groups Hq
étale(X,Z/pZ) is equal to

the k-dimension of the vector space Hq(X,OX). This proves the first statement. The
second statement follows as Hq(X,OX) ⊗k k′ → Hq(Xk′ ,OXk′ ) is an isomorphism by
flat base change (Cohomology of Schemes, Lemma 5.2). �

64. Locally constant sheaves

This section is the analogue of Modules on Sites, Section 43 for the étale site.

Definition 64.1. Let X be a scheme. Let F be a sheaf of sets on Xétale.
(1) Let E be a set. We say F is the constant sheaf with value E if F is the sheafifi-

cation of the presheaf U 7→ E. Notation: EX or E.
(2) We say F is a constant sheaf if it is isomorphic to a sheaf as in (1).
(3) We sayF is locally constant if there exists a covering {Ui → X} such thatF|Ui

is a constant sheaf.
(4) We say thatF is finite locally constant if it is locally constant and the values are

finite sets.
Let F be a sheaf of abelian groups on Xétale.

(1) Let A be an abelian group. We say F is the constant sheaf with value A if F is
the sheafification of the presheaf U 7→ A. Notation: AX or A.

(2) We say F is a constant sheaf if it is isomorphic as an abelian sheaf to a sheaf as
in (1).

(3) We sayF is locally constant if there exists a covering {Ui → X} such thatF|Ui
is a constant sheaf.

(4) We say thatF is finite locally constant if it is locally constant and the values are
finite abelian groups.

Let Λ be a ring. Let F be a sheaf of Λ-modules on Xétale.
(1) Let M be a Λ-module. We say F is the constant sheaf with value M if F is the

sheafification of the presheaf U 7→M . Notation: MX or M .
(2) We sayF is a constant sheaf if it is isomorphic as a sheaf of Λ-modules to a sheaf

as in (1).
(3) We sayF is locally constant if there exists a covering {Ui → X} such thatF|Ui

is a constant sheaf.

Lemma 64.2. Let f : X → Y be a morphism of schemes. If G is a locally constant
sheaf of sets, abelian groups, or Λ-modules on Yétale, the same is true for f−1G on Xétale.

Proof. Holds for any morphism of topoi, see Modules on Sites, Lemma 43.2. �

Lemma 64.3. Let f : X → Y be a finite étale morphism of schemes. If F is a (finite)
locally constant sheaf of sets, (finite) locally constant sheaf of abelian groups, or (finite
type) locally constant sheaf of Λ-modules on Xétale, the same is true for f∗F on Yétale.
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Proof. The construction of f∗ commutes with étale localization. A finite étale mor-
phism is locally isomorphic to a disjoint union of isomorphisms, see Étale Morphisms,
Lemma 18.3. Thus the lemma says that if Fi, i = 1, . . . , n are (finite) locally constant
sheaves of sets, then

∏
i=1,...,n Fi is too. This is clear. Similarly for sheaves of abelian

groups and modules. �

Lemma 64.4. LetX be a scheme and F a sheaf of sets onXétale. Then the following
are equivalent

(1) F is finite locally constant, and
(2) F = hU for some finite étale morphism U → X .

Proof. A finite étale morphism is locally isomorphic to a disjoint union of isomor-
phisms, see Étale Morphisms, Lemma 18.3. Thus (2) implies (1). Conversely, if F is finite
locally constant, then there exists an étale covering {Xi → X} such that F|Xi is repre-
sentable by Ui → Xi finite étale. Arguing exactly as in the proof of Descent, Lemma 39.1
we obtain a descent datum for schemes (Ui, ϕij) relative to {Xi → X} (details omitted).
This descent datum is effective for example by Descent, Lemma 37.1 and the resulting
morphism of schemes U → X is finite étale by Descent, Lemmas 23.23 and 23.29. �

Lemma 64.5. Let X be a scheme.
(1) Let ϕ : F → G be a map of locally constant sheaves of sets on Xétale. If F is

finite locally constant, there exists an étale covering {Ui → X} such that ϕ|Ui
is the map of constant sheaves associated to a map of sets.

(2) Let ϕ : F → G be a map of locally constant sheaves of abelian groups onXétale.
IfF is finite locally constant, there exists an étale covering {Ui → X} such that
ϕ|Ui is the map of constant abelian sheaves associated to a map of abelian groups.

(3) Let Λ be a ring. Letϕ : F → G be a map of locally constant sheaves of Λ-modules
on Xétale. If F is of finite type, then there exists an étale covering {Ui → X}
such that ϕ|Ui is the map of constant sheaves of Λ-modules associated to a map
of Λ-modules.

Proof. This holds on any site, see Modules on Sites, Lemma 43.3. �

Lemma 64.6. Let X be a scheme.
(1) The category of finite locally constant sheaves of sets is closed under finite limits

and colimits inside Sh(Xétale).
(2) The category of finite locally constant abelian sheaves is a weak Serre subcategory

of Ab(Xétale).
(3) Let Λ be a Noetherian ring. The category of finite type, locally constant sheaves

of Λ-modules on Xétale is a weak Serre subcategory of Mod(Xétale,Λ).

Proof. This holds on any site, see Modules on Sites, Lemma 43.5. �

Lemma 64.7. Let X be a scheme. Let Λ be a ring. The tensor product of two locally
constant sheaves of Λ-modules on Xétale is a locally constant sheaf of Λ-modules.

Proof. This holds on any site, see Modules on Sites, Lemma 43.6. �

Lemma 64.8. Let X be a connected scheme. Let Λ be a ring and let F be a locally
constant sheaf of Λ-modules. Then there exists a Λ-module M and an étale covering
{Ui → X} such that F|Ui ∼= M |Ui .
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Proof. Choose an étale covering {Ui → X} such that F|Ui is constant, say F|Ui ∼=
MiUi

. Observe that Ui ×X Uj is empty if Mi is not isomorphic to Mj . For each Λ-
module M let IM = {i ∈ I | Mi

∼= M}. As étale morphisms are open we see that
UM =

⋃
i∈IM Im(Ui → X) is an open subset of X . Then X =

∐
UM is a disjoint open

covering of X . As X is connected only one UM is nonempty and the lemma follows. �

65. Locally constant sheaves and the fundamental group

We can relate locally constant sheaves to the fundamental group of a scheme in some cases.

Lemma 65.1. Let X be a connected scheme. Let x be a geometric point of X .
(1) There is an equivalence of categories{

finite locally constant
sheaves of sets on Xétale

}
←→

{
finite π1(X,x)-sets

}
(2) There is an equivalence of categories{

finite locally constant
sheaves of abelian groups on Xétale

}
←→

{
finite π1(X,x)-modules

}
(3) Let Λ be a finite ring. There is an equivalence of categories{

finite type, locally constant
sheaves of Λ-modules on Xétale

}
←→

{
finite π1(X,x)-modules endowed

with commuting Λ-module structure

}
Proof. We observe that π1(X,x) is a profinite topological group, see Fundamental

Groups, Definition 6.1. The left hand categories are defined in Section 64. The notation
used in the right hand categories is taken from Fundamental Groups, Definition 2.1 for
sets and Definition 57.1 for abelian groups. This explains the notation.

Assertion (1) follows from Lemma 64.4 and Fundamental Groups, Theorem 6.2. Parts
(2) and (3) follow immediately from this by endowing the underlying (sheaves of) sets
with additional structure. For example, a finite locally constant sheaf of abelian groups
onXétale is the same thing as a finite locally constant sheaf of sets F together with a map
+ : F × F → F satisfying the usual axioms. The equivalence in (1) sends products to
products and hence sends + to an addition on the corresponding finite π1(X,x)-set. Since
π1(X,x)-modules are the same thing as π1(X,x)-sets with a compatible abelian group
structure we obtain (2). Part (3) is proved in exactly the same way. �

Lemma 65.2. Let X be an irreducible, geometrically unibranch scheme. Let x be a
geometric point of X . Let Λ be a ring. There is an equivalence of categories{

finite type, locally constant
sheaves of Λ-modules on Xétale

}
←→

{
finite Λ-modules M endowed

with a continuous π1(X,x)-action

}
Proof. The proof given in Lemma 65.1 does not work as a finite Λ-module M may

not have a finite underlying set.

Let ν : Xν → X be the normalization morphism. By Morphisms, Lemma 54.11 this
is a universal homeomorphism. By Fundamental Groups, Proposition 8.4 this induces
an isomorphism π1(Xν , x) → π1(X,x) and by Theorem 45.2 we get an equivalence of
category between finite type, locally constant Λ-modules on Xétale and on Xν

étale. This
reduces us to the case where X is an integral normal scheme.
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Assume X is an integral normal scheme. Let η ∈ X be the generic point. Let η be a
geometric point lying over η. By Fundamental Groups, Proposition 11.3 have a continuous
surjection

Gal(κ(η)sep/κ(η)) = π1(η, η) −→ π1(X, η)
whose kernel is described in Fundamental Groups, Lemma 13.2. Let F be a finite type,
locally constant sheaf of Λ-modules on Xétale. Let M = Fη be the stalk of F at η. We
obtain a continuous action of Gal(κ(η)sep/κ(η)) on M by Section 56. Our goal is to
show that this action factors through the displayed surjection. Since F is of finite type,
M is a finite Λ-module. Since F is locally constant, for every x ∈ X the restriction of
F to Spec(OshX,x) is constant. Hence the action of Gal(Ksep/Ksh

x ) (with notation as in
Fundamental Groups, Lemma 13.2) onM is trivial. We conclude we have the factorization
as desired.

On the other hand, suppose we have a finite Λ-module M with a continuous action of
π1(X, η). We are going to construct an F such that M ∼= Fη as Λ[π1(X, η)]-modules.
Choose generators m1, . . . ,mr ∈ M . Since the action of π1(X, η) on M is continuous,
for each i there exists an open subgroup Ni of the profinite group π1(X, η) such that
every γ ∈ Hi fixes mi. We conclude that every element of the open subgroup H =⋂
i=1,...,rHi fixes every element of M . After shrinking H we may assume H is an open

normal subgroup ofπ1(X, η). SetG = π1(X, η)/H . Let f : Y → X be the corresponding
Galois finite étaleG-cover. We can view f∗Z as a sheaf of Z[G]-modules onXétale. Then
we just take

F = f∗Z⊗Z[G] M

We leave it to the reader to compute Fη . We also omit the verification that this construc-
tion is the inverse to the construction in the previous paragraph. �

Remark 65.3. The equivalences of Lemmas 65.1 and 65.2 are compatible with pull-
backs. For example, suppose f : Y → X is a morphism of connected schemes. Let y be
geometric point of Y and set x = f(y). Then the diagram

finite locally constant sheaves of sets on Yétale // finite π1(Y, y)-sets

finite locally constant sheaves of sets on Xétale
//

f−1

OO

finite π1(X,x)-sets

OO

is commutative, where the vertical arrow on the right comes from the continuous ho-
momorphism π1(Y, y) → π1(X,x) induced by f . This follows immediately from the
commutative diagram in Fundamental Groups, Theorem 6.2. A similar result holds for
the other cases.

66. Méthode de la trace

A reference for this section is [?, Exposé IX, §5]. The material here will be used in the
proof of Lemma 83.9 below.

Let f : Y → X be an étale morphism of schemes. There is a sequence

f!, f
−1, f∗

of adjoint functors between Ab(Xétale) and Ab(Yétale). The functor f! is discussed in
Section 70. The adjunction map id → f∗f

−1 is called restriction. The adjunction map
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f!f
−1 → id is often called the trace map. If f is finite étale, then f∗ = f! (Lemma 70.7)

and we can view this as a map f∗f
−1 → id.

Definition 66.1. Let f : Y → X be a finite étale morphism of schemes. The map
f∗f

−1 → id described above and explicitly below is called the trace.

Let f : Y → X be a finite étale morphism of schemes. The trace map is characterized by
the following two properties:

(1) it commutes with étale localization on X and
(2) if Y =

∐d
i=1 X then the trace map is the sum map f∗f

−1F = F⊕d → F .
By Étale Morphisms, Lemma 18.3 every finite étale morphism f : Y → X is étale locally
on X of the form given in (2) for some integer d ≥ 0. Hence we can define the trace map
using the characterization given; in particular we do not need to know about the existence
of f! and the agreement of f! with f∗ in order to construct the trace map. This description
shows that if f has constant degree d, then the composition

F res−−→ f∗f
−1F trace−−−→ F

is multiplication by d. The “méthode de la trace” is the following observation: if F is an
abelian sheaf on Xétale such that multiplication by d on F is an isomorphism, then the
map

Hn
étale(X,F) −→ Hn

étale(Y, f−1F)
is injective. Namely, we have

Hn
étale(Y, f−1F) = Hn

étale(X, f∗f
−1F)

by the vanishing of the higher direct images (Proposition 55.2) and the Leray spectral
sequence (Proposition 54.2). Thus we can consider the maps

Hn
étale(X,F)→ Hn

étale(Y, f−1F) = Hn
étale(X, f∗f

−1F) trace−−−→ Hn
étale(X,F)

and the composition is an isomorphism (under our assumption onF and f ). In particular,
if Hq

étale(Y, f−1F) = 0 then Hq
étale(X,F) = 0 as well. Indeed, multiplication by d

induces an isomorphism on Hq
étale(X,F) which factors through Hq

étale(Y, f−1F) = 0.
This is often combined with the following.

Lemma 66.2. Let S be a connected scheme. Let ` be a prime number. LetF be a finite
type, locally constant sheaf of F`-vector spaces on Sétale. Then there exists a finite étale
morphism f : T → S of degree prime to ` such that f−1F has a finite filtration whose
successive quotients are Z/`Z

T
.

Proof. Choose a geometric point s of S. Via the equivalence of Lemma 65.1 the
sheafF corresponds to a finite dimensional F`-vector space V with a continuous π1(S, s)-
action. Let G ⊂ Aut(V ) be the image of the homomorphism ρ : π1(S, s) → Aut(V )
giving the action. Observe that G is finite. The surjective continuous homomorphism
ρ : π1(S, s) → G corresponds to a Galois object Y → S of FÉtS with automorphism
group G = Aut(Y/S), see Fundamental Groups, Section 7. Let H ⊂ G be an `-Sylow
subgroup. We claim that T = Y/H → S works. Namely, let t ∈ T be a geometric
point over s. The image of π1(T, t) → π1(S, s) is (ρ)−1(H) as follows from the functo-
rial nature of fundamental groups. Hence the action of π1(T, t) on V corresponding to
f−1F is through the map π1(T, t) → H , see Remark 65.3. As H is a finite `-group, the
irreducible constituents of the representation ρ|π1(T,t) are each trivial of rank 1 (this is
a simple lemma on representation theory of finite groups; insert future reference here).
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Via the equivalence of Lemma 65.1 this means f−1F is a successive extension of constant
sheaves with value Z/`Z

T
. Moreover the degree of T = Y/H → S is prime to ` as it is

equal to the index of H in G. �

Lemma 66.3. Let Λ be a Noetherian ring. Let ` be a prime number and n ≥ 1. Let
H be a finite `-group. Let M be a finite Λ[H]-module annihilated by `n. Then there is a
finite filtration 0 = M0 ⊂ M1 ⊂ . . . ⊂ Mt = M by Λ[H]-submodules such that H acts
trivially on Mi+1/Mi for all i = 0, . . . , t− 1.

Proof. Omitted. Hint: Show that the augmentation ideal m of the noncommutative
ring Z/`nZ[H] is nilpotent. �

Lemma 66.4. Let S be an irreducible, geometrically unibranch scheme. Let ` be a
prime number and n ≥ 1. Let Λ be a Noetherian ring. Let F be a finite type, locally
constant sheaf of Λ-modules on Sétale which is annihilated by `n. Then there exists a
finite étale morphism f : T → S of degree prime to ` such that f−1F has a finite filtration
whose successive quotients are of the form MT for some finite Λ-modules M .

Proof. Choose a geometric point s of S. Via the equivalence of Lemma 65.2 the
sheaf F corresponds to a finite Λ-module M with a continuous π1(S, s)-action. Let G ⊂
Aut(V ) be the image of the homomorphism ρ : π1(S, s) → Aut(M) giving the action.
Observe thatG is finite asM is a finite Λ-module (see proof of Lemma 65.2). The surjective
continuous homomorphism ρ : π1(S, s) → G corresponds to a Galois object Y → S of
FÉtS with automorphism group G = Aut(Y/S), see Fundamental Groups, Section 7. Let
H ⊂ G be an `-Sylow subgroup. We claim that T = Y/H → S works. Namely, let
t ∈ T be a geometric point over s. The image of π1(T, t) → π1(S, s) is (ρ)−1(H) as
follows from the functorial nature of fundamental groups. Hence the action of π1(T, t)
on M corresponding to f−1F is through the map π1(T, t) → H , see Remark 65.3. Let
0 = M0 ⊂ M1 ⊂ . . . ⊂ Mt = M be as in Lemma 66.3. This induces a filtration
0 = F0 ⊂ F1 ⊂ . . . ⊂ Ft = f−1F such that the successive quotients are constant with
value Mi+1/Mi. Finally, the degree of T = Y/H → S is prime to ` as it is equal to the
index of H in G. �

67. Galois cohomology

In this section we prove a result on Galois cohomology (Proposition 67.4) using étale
cohomology and the trick from Section 66. This will allow us to prove vanishing of higher
étale cohomology groups over the spectrum of a field.

Lemma 67.1. Let ` be a prime number and n an integer> 0. Let S be a quasi-compact
and quasi-separated scheme. Let X = limi∈I Xi be the limit of a directed system of S-
schemes each Xi → S being finite étale of constant degree relatively prime to `. The
following are equivalent:

(1) there exists an `-power torsion sheaf G on S such that Hn
étale(S,G) 6= 0 and

(2) there exists an `-power torsion sheaf F on X such that Hn
étale(X,F) 6= 0.

In fact, given G we can take F = g−1F and given F we can take G = g∗F .

Proof. Let g : X → S and gi : Xi → S denote the structure morphisms. Fix an
`-power torsion sheaf G on S with Hn

étale(S,G) 6= 0. The system given by Gi = g−1
i G

satisify the conditions of Theorem 51.3 with colimit sheaf given by g−1G. This tells us
that:

colimi∈I H
n
étale(Xi, g

−1
i G) = Hn

étale(X,G)
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By virtue of the gi being finite étale morphism of degree prime to ` we can apply “la
méthode de la trace” and we find the maps

Hn
étale(S,G)→ Hn

étale(Xi, g
−1
i G)

are all injective (and compatible with the transition maps). See Section 66. Thus, the
colimit is non-zero, i.e., Hn(X, g−1G) 6= 0, giving us the desired result with F = g−1G.

Conversely, suppose given an `-power torsion sheaf F on X with Hn
étale(X,F) 6= 0. We

note that since the gi are finite morphisms the higher direct images vanish (Proposition
55.2). Then, by applying Lemma 51.7 we may also conclude the same for g. The vanish-
ing of the higher direct images tells us that Hn

étale(X,F) = Hn(S, g∗F) 6= 0 by Leray
(Proposition 54.2) giving us what we want with G = g∗F . �

Lemma 67.2. Let ` be a prime number and n an integer > 0. Let K be a field with
G = Gal(Ksep/K) and let H ⊂ G be a maximal pro-` subgroup with L/K being the
corresponding field extension. Then Hn

étale(Spec(K),F) = 0 for all `-power torsion F
if and only if Hn

étale(Spec(L),Z/`Z) = 0.

Proof. Write L =
⋃
Li as the union of its finite subextensions over K. Our choice

of H implies that [Li : K] is prime to `. Thus Spec(L) = limi∈I Spec(Li) as in Lemma
67.1. Thus we may replace K by L and assume that the absolute Galois group G of K is a
profinite pro-` group.

Assume Hn(Spec(K),Z/`Z) = 0. Let F be an `-power torsion sheaf on Spec(K)étale.
We will show that Hn

étale(Spec(K),F) = 0. By the correspondence specified in Lemma
59.1 our sheaf F corresponds to an `-power torsion G-module M . Any finite set of el-
ements x1, . . . , xm ∈ M must be fixed by an open subgroup U by continuity. Let M ′

be the module spanned by the orbits of x1, . . . , xm. This is a finite abelian `-group as
each xi is killed by a power of ` and the orbits are finite. SinceM is the filtered colimit of
these submodulesM ′, we see thatF is the filtered colimit of the corresponding subsheaves
F ′ ⊂ F . Applying Theorem 51.3 to this colimit, we reduce to the case where F is a finite
locally constant sheaf.

LetM be a finite abelian `-group with a continuous action of the profinite pro-` groupG.
Then there is a G-invariant filtration

0 = M0 ⊂M1 ⊂ . . . ⊂Mr = M

such that Mi+1/Mi
∼= Z/`Z with trivial G-action (this is a simple lemma on representa-

tion theory of finite groups; insert future reference here). Thus the corresponding sheaf
F has a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fr = F
with successive quotients isomorphic to Z/`Z. Thus by induction and the long exact
cohomology sequence we conclude. �

Lemma 67.3. Let ` be a prime number and n an integer > 0. Let K be a field with
G = Gal(Ksep/K) and let H ⊂ G be a maximal pro-` subgroup with L/K being the
corresponding field extension. ThenHq

étale(Spec(K),F) = 0 for q ≥ n and all `-torsion
sheaves F if and only if Hn

étale(Spec(L),Z/`Z) = 0.

Proof. The forward direction is trivial, so we need only prove the reverse direction.
We proceed by induction on q. The case of q = n is Lemma 67.2. Now let F be an `-
power torsion sheaf on Spec(K). Let f : Spec(Ksep) → Spec(K) be the inclusion of a
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geometric point. Then consider the exact sequence:

0→ F res−−→ f∗f
−1F → f∗f

−1F/F → 0
Note that Ksep may be written as the filtered colimit of finite separable extensions. Thus
f is the limit of a directed system of finite étale morphisms. We may, as was seen in the
proof of Lemma 67.1, conclude that f has vanishing higher direct images. Thus, we may
express the higher cohomology of f∗f

−1F as the higher cohomology on the geometric
point which clearly vanishes. Hence, as everything here is still `-torsion, we may use the
inductive hypothesis in conjunction with the long-exact cohomology sequence to con-
clude the result for q + 1. �

Proposition 67.4. Let K be a field with separable algebraic closure Ksep. Assume
that for any finite extension K ′ of K we have Br(K ′) = 0. Then

(1) Hq(Gal(Ksep/K), (Ksep)∗) = 0 for all q ≥ 1, and
(2) Hq(Gal(Ksep/K),M) = 0 for any torsion Gal(Ksep/K)-module M and any

q ≥ 2,

Proof. Set p = char(K). By Lemma 59.2, Theorem 61.6, and Example 59.3 the
proposition is equivalent to showing that if H2(Spec(K ′),Gm|Spec(K′)étale) = 0 for all
finite extensions K ′/K then:

• Hq(Spec(K),Gm|Spec(K)étale) = 0 for all q ≥ 1, and
• Hq(Spec(K),F) = 0 for any torsion sheaf F and any q ≥ 2.

We prove the second part first. Since F is a torsion sheaf, we may use the `-primary
decomposition as well as the compatibility of cohomology with colimits (i.e, direct sums,
see Theorem 51.3) to reduce to showing Hq(Spec(K),F) = 0, q ≥ 2 for all `-power
torsion sheaves for every prime `. This allows us to analyze each prime individually.

Suppose that ` 6= p. For any extension K ′/K consider the Kummer sequence (Lemma
28.1)

0→ µ`,SpecK′ → Gm,SpecK′
(·)`−−→ Gm,SpecK′ → 0

SinceHq(SpecK ′,Gm|Spec(K′)étale) = 0 for q = 2 by assumption and for q = 1 by The-
orem 24.1 combined with Pic(K) = (0). Thus, by the long-exact cohomology sequence
we may conclude that H2(SpecK ′, µ`) = 0 for any separable K ′/K. Now let H be a
maximal pro-` subgroup of the absolute Galois group ofK and letL be the corresponding
extension. We can write L as the colimit of finite extensions, applying Theorem 51.3 to
this colimit we see that H2(Spec(L), µ`) = 0. Now µ` must be the constant sheaf. If it
weren’t, that would imply there exists a Galois extension of degree relatively prime to `
of L which is not true by definition of L (namely, the extension one gets by adjoining the
`th roots of unity to L). Hence, via Lemma 67.3, we conclude the result for ` 6= p.

Now suppose that ` = p. We consider the Artin-Schrier exact sequence (Section 63)

0 −→ Z/pZ
SpecK

−→ Ga,SpecK
F−1−−−→ Ga,SpecK −→ 0

where F −1 is the map x 7→ xp−x. Then note that the higher Cohomology of Ga,SpecK
vanishes, by Remark 23.4 and the vanishing of the higher cohomology of the structure
sheaf of an affine scheme (Cohomology of Schemes, Lemma 2.2). Note this can be applied to
any field of characteristic p. In particular, we can apply it to the field extension L defined
by a maximal pro-p subgroupH . This allows us to concludeHn(SpecL,Z/pZ

SpecL
) = 0

for n ≥ 2, from which the result follows for ` = p, by Lemma 67.3.
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To finish the proof we still have to show that Hq(Gal(Ksep/K), (Ksep)∗) = 0 for all
q ≥ 1. Set G = Gal(Ksep/K) and set M = (Ksep)∗ viewed as a G-module. We have
already shown (above) that H1(G,M) = 0 and H2(G,M) = 0. Consider the exact
sequence

0→ A→M →M ⊗Q→ B → 0
of G-modules. By the above we have Hi(G,A) = 0 and Hi(G,B) = 0 for i > 1 since A
and B are torsion G-modules. By Lemma 57.6 we have Hi(G,M ⊗Q) = 0 for i > 0. It
is a pleasant exercise to see that this implies that Hi(G,M) = 0 also for i ≥ 3. �

Definition 67.5. A field K is called Cr if for every 0 < dr < n and every f ∈
K[T1, . . . , Tn] homogeneous of degree d, there exist α = (α1, . . . , αn), αi ∈ K not all
zero, such that f(α) = 0. Such an α is called a nontrivial solution of f .

Example 67.6. An algebraically closed field is Cr.

In fact, we have the following simple lemma.

Lemma 67.7. Let k be an algebraically closed field. Let f1, . . . , fs ∈ k[T1, . . . , Tn] be
homogeneous polynomials of degree d1, . . . , ds with di > 0. If s < n, then f1 = . . . =
fs = 0 have a common nontrivial solution.

Proof. This follows from dimension theory, for example in the form of Varieties,
Lemma 34.2 applied s− 1 times. �

The following result computes the Brauer group of C1 fields.

Theorem 67.8. Let K be a C1 field. Then Br(K) = 0.

Proof. Let D be a finite dimensional division algebra over K with center K. We
have seen that

D ⊗K Ksep ∼= Matd(Ksep)
uniquely up to inner isomorphism. Hence the determinant det : Matd(Ksep)→ Ksep is
Galois invariant and descends to a homogeneous degree d map

det = Nred : D −→ K

called the reduced norm. Since K is C1, if d > 1, then there exists a nonzero x ∈ D with
Nred(x) = 0. This clearly implies that x is not invertible, which is a contradiction. Hence
Br(K) = 0. �

Definition 67.9. Let k be a field. A variety is separated, integral scheme of finite
type over k. A curve is a variety of dimension 1.

Theorem 67.10 (Tsen’s theorem). The function field of a variety of dimension r over
an algebraically closed field k is Cr.

Proof. For projective space one can show directly that the field k(x1, . . . , xr) is Cr
(exercise).
General case. Without loss of generality, we may assume X to be projective. Let f ∈
k(X)[T1, . . . , Tn]d with 0 < dr < n. Say the coefficients of f are in Γ(X,OX(H)) for
some ample H ⊂ X . Let α = (α1, . . . , αn) with αi ∈ Γ(X,OX(eH)). Then f(α) ∈
Γ(X,OX((de+ 1)H)). Consider the system of equations f(α) = 0. Then by asymptotic
Riemann-Roch (Varieties, Proposition 45.13) there exists a c > 0 such that

• the number of variables is n dimk Γ(X,OX(eH)) ∼ nerc, and
• the number of equations is dimk Γ(X,OX((de+ 1)H)) ∼ (de+ 1)rc.
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Since n > dr , there are more variables than equations. The equations are homogeneous
hence there is a solution by Lemma 67.7. �

Lemma 67.11. Let C be a curve over an algebraically closed field k. Then the Brauer
group of the function field of C is zero: Br(k(C)) = 0.

Proof. This is clear from Tsen’s theorem, Theorem 67.10 and Theorem 67.8. �

Lemma 67.12. Let k be an algebraically closed field and K/k a field extension of
transcendence degree 1. Then for all q ≥ 1, Hq

étale(Spec(K),Gm) = 0.

Proof. Recall thatHq
étale(Spec(K),Gm) = Hq(Gal(Ksep/K), (Ksep)∗) by Lemma

59.2. Thus by Proposition 67.4 it suffices to show that if K ′/K is a finite field exten-
sion, then Br(K ′) = 0. Now observe that K ′ = colimK ′′, where K ′′ runs over the
finitely generated subextensions of k contained in K ′ of transcendence degree 1. Note
that Br(K ′) = colim Br(K ′′) which reduces us to a finitely generated field extension
K ′′/k of transcendence degree 1. Such a field is the function field of a curve over k, hence
has trivial Brauer group by Lemma 67.11. �

68. Higher vanishing for the multiplicative group

In this section, we fix an algebraically closed field k and a smooth curve X over k. We
denote ix : x ↪→ X the inclusion of a closed point of X and j : η ↪→ X the inclusion of
the generic point. We also denote X0 the set of closed points of X .

Theorem 68.1 (The Fundamental Exact Sequence). There is a short exact sequence
of étale sheaves on X

0 −→ Gm,X −→ j∗Gm,η −→
⊕

x∈X0
ix∗Z −→ 0.

Proof. Letϕ : U → X be an étale morphism. Then by properties of étale morphisms
(Proposition 26.2), U =

∐
i Ui where eachUi is a smooth curve mapping toX . The above

sequence for U is a product of the corresponding sequences for each Ui, so it suffices to
treat the case where U is connected, hence irreducible. In this case, there is a well known
exact sequence

1 −→ Γ(U,O∗
U ) −→ k(U)∗ −→

⊕
y∈U0

Zy.

This amounts to a sequence

0 −→ Γ(U,O∗
U ) −→ Γ(η ×X U,O∗

η×XU ) −→
⊕

x∈X0
Γ(x×X U,Z)

which, unfolding definitions, is nothing but a sequence

0 −→ Gm(U) −→ j∗Gm,η(U) −→
(⊕

x∈X0
ix∗Z

)
(U).

This defines the maps in the Fundamental Exact Sequence and shows it is exact except
possibly at the last step. To see surjectivity, let us recall that if U is a nonsingular curve
and D is a divisor on U , then there exists a Zariski open covering {Uj → U} of U such
that D|Uj = div(fj) for some fj ∈ k(U)∗. �

Lemma 68.2. For any q ≥ 1, Rqj∗Gm,η = 0.
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Proof. We need to show that (Rqj∗Gm,η)x̄ = 0 for every geometric point x̄ of X .

Assume that x̄ lies over a closed point x of X . Let Spec(A) be an affine open neighbour-
hood of x in X , and K the fraction field of A. Then

Spec(OshX,x̄)×X η = Spec(OshX,x̄ ⊗A K).

The ring OshX,x̄ ⊗A K is a localization of the discrete valuation ring OshX,x̄, so it is either
OshX,x̄ again, or its fraction field Ksh

x̄ . But since some local uniformizer gets inverted, it
must be the latter. Hence

(Rqj∗Gm,η)(X,x̄) = Hq
étale(SpecKsh

x̄ ,Gm).

Now recall that OshX,x̄ = colim(U,ū)→x̄O(U) = colimA⊂B B where A → B is étale,
hence Ksh

x̄ is an algebraic extension of K = k(X), and we may apply Lemma 67.12 to get
the vanishing.

Assume that x̄ = η̄ lies over the generic point η of X (in fact, this case is superfluous).
ThenOshX,η̄ = κ(η)sep and thus

(Rqj∗Gm,η)η̄ = Hq
étale(Spec(κ(η)sep)×X η,Gm)

= Hq
étale(Spec(κ(η)sep),Gm)

= 0 for q ≥ 1

since the corresponding Galois group is trivial. �

Lemma 68.3. For all p ≥ 1, Hp
étale(X, j∗Gm,η) = 0.

Proof. The Leray spectral sequence reads

Ep,q2 = Hp
étale(X,R

qj∗Gm,η)⇒ Hp+q
étale(η,Gm,η),

which vanishes for p+q ≥ 1 by Lemma 67.12. Taking q = 0, we get the desired vanishing.
�

Lemma 68.4. For all q ≥ 1, Hq
étale(X,

⊕
x∈X0

ix∗Z) = 0.

Proof. For X quasi-compact and quasi-separated, cohomology commutes with col-
imits, so it suffices to show the vanishing of Hq

étale(X, ix∗Z). But then the inclusion ix
of a closed point is finite so Rpix∗Z = 0 for all p ≥ 1 by Proposition 55.2. Applying the
Leray spectral sequence, we see that Hq

étale(X, ix∗Z) = Hq
étale(x,Z). Finally, since x is

the spectrum of an algebraically closed field, all higher cohomology on x vanishes. �

Concluding this series of lemmata, we get the following result.

Theorem 68.5. Let X be a smooth curve over an algebraically closed field. Then

Hq
étale(X,Gm) = 0 for all q ≥ 2.

Proof. See discussion above. �

We also get the cohomology long exact sequence

0→ H0
étale(X,Gm)→ H0

étale(X, j∗Gmη)→ H0
étale(X,

⊕
ix∗Z)→ H1

étale(X,Gm)→ 0

although this is the familiar

0→ H0
Zar(X,O∗

X)→ k(X)∗ → Div(X)→ Pic(X)→ 0.
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69. Picard groups of curves

Our next step is to use the Kummer sequence to deduce some information about the co-
homology group of a curve with finite coefficients. In order to get vanishing in the long
exact sequence, we review some facts about Picard groups.
LetX be a smooth projective curve over an algebraically closed field k. Let g = dimkH

1(X,OX)
be the genus of X . There exists a short exact sequence

0→ Pic0(X)→ Pic(X) deg−−→ Z→ 0.
The abelian group Pic0(X) can be identified with Pic0(X) = Pic0

X/k(k), i.e., the k-valued
points of an abelian variety Pic0

X/k over k of dimension g. Consequently, if n ∈ k∗ then
Pic0(X)[n] ∼= (Z/nZ)2g as abelian groups. See Picard Schemes of Curves, Section 6 and
Groupoids, Section 9. This key fact, namely the description of the torsion in the Picard
group of a smooth projective curve over an algebraically closed field does not appear to
have an elementary proof.

Lemma 69.1. Let X be a smooth projective curve of genus g over an algebraically
closed field k and let n ≥ 1 be invertible in k. Then there are canonical identifications

Hq
étale(X,µn) =


µn(k) if q = 0,

Pic0(X)[n] if q = 1,
Z/nZ if q = 2,

0 if q ≥ 3.
Since µn ∼= Z/nZ, this gives (noncanonical) identifications

Hq
étale(X,Z/nZ) ∼=


Z/nZ if q = 0,

(Z/nZ)2g if q = 1,
Z/nZ if q = 2,

0 if q ≥ 3.
Proof. Theorems 24.1 and 68.5 determine the étale cohomology of Gm on X in

terms of the Picard group ofX . The Kummer sequence 0→ µn,X → Gm,X → Gm,X →
0 (Lemma 28.1) then gives us the long exact cohomology sequence

0 // µn(k) // k∗ (·)n // k∗

zz
H1
étale(X,µn) // Pic(X)

(·)n // Pic(X)

zz
H2
étale(X,µn) // 0 // 0 . . .

The nth power map k∗ → k∗ is surjective since k is algebraically closed. So we need
to compute the kernel and cokernel of the map n : Pic(X) → Pic(X). Consider the
commutative diagram with exact rows

0 // Pic0(X) //

(·)n
����

Pic(X)
deg
//

(·)n

��

Z //� _

n

��

0

0 // Pic0(X) // Pic(X) deg // Z // 0
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The group Pic0(X) is the k-points of the group scheme Pic0
X/k , see Picard Schemes of

Curves, Lemma 6.7. The same lemma tells us that Pic0
X/k is a g-dimensional abelian variety

over k as defined in Groupoids, Definition 9.1. Hence the left vertical map is surjective by
Groupoids, Proposition 9.11. Applying the snake lemma gives canonical identifications as
stated in the lemma.

To get the noncanonical identifications of the lemma we need to show the kernel of n :
Pic0(X)→ Pic0(X) is isomorphic to (Z/nZ)⊕2g . This is also part of Groupoids, Propo-
sition 9.11. �

Lemma 69.2. Let π : X → Y be a nonconstant morphism of smooth projective
curves over an algebraically closed field k and let n ≥ 1 be invertible in k. The map

π∗ : H2
étale(Y, µn) −→ H2

étale(X,µn)
is given by multiplication by the degree of π.

Proof. Observe that the statement makes sense as we have identified both cohomol-
ogy groups H2

étale(Y, µn) and H2
étale(X,µn) with Z/nZ in Lemma 69.1. In fact, if L is

a line bundle of degree 1 on Y with class [L] ∈ H1
étale(Y,Gm), then the coboundary of

[L] is the generator of H2
étale(Y, µn). Here the coboundary is the coboundary of the long

exact sequence of cohomology associated to the Kummer sequence. Thus the result of the
lemma follows from the fact that the degree of the line bundle π∗L onX is deg(π). Some
details omitted. �

Lemma 69.3. LetX be an affine smooth curve over an algebraically closed field k and
n ∈ k∗. LetX ⊂ X be a smooth projective compactification (Varieties, Remark 43.9). Let
g be the genus of X and let r be the number of points of X \X . Then

(1) H0
étale(X,µn) = µn(k);

(2) H1
étale(X,µn) ∼= (Z/nZ)2g+r−1, and

(3) Hq
étale(X,µn) = 0 for all q ≥ 2.

Proof. Write X = X − {x1, . . . , xr}. Then Pic(X) = Pic(X)/R, where R is the
subgroup generated by OX(xi), 1 ≤ i ≤ r. Since r ≥ 1, we see that Pic0(X) → Pic(X)
is surjective, hence Pic(X) is divisible (see discussion in proof of Lemma 69.1). Applying
the Kummer sequence, we get (1) and (3). For (2), recall that

H1
étale(X,µn) = {(L, α)|L ∈ Pic(X), α : L⊗n → OX}/ ∼=

= {(L̄, D, ᾱ)}/R̃

where L̄ ∈ Pic0(X), D is a divisor on X supported on {x1, . . . , xr} and ᾱ : L̄⊗n ∼=
OX̄(D) is an isomorphism. Note that D must have degree 0. Further R̃ is the subgroup
of triples of the form (OX(D′), nD′, 1⊗n) whereD′ is supported on {x1, . . . , xr} and has
degree 0. Thus, we get an exact sequence

0 −→ H1
étale(X,µn) −→ H1

étale(X,µn) −→
r⊕
i=1

Z/nZ
∑
−−−→ Z/nZ −→ 0

where the middle map sends the class of a triple (L̄, D, ᾱ) with D =
∑r
i=1 ai(xi) to the

r-tuple (ai)ri=1. It now suffices to use Lemma 69.1 to count ranks. �

Remark 69.4. The “natural” way to prove the previous corollary is to exciseX from
X̄ . This is possible, we just haven’t developed that theory.
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Remark 69.5. Let k be an algebraically closed field. Let n be an integer prime to the
characteristic of k. Recall that

Gm,k = A1
k \ {0} = P1

k \ {0,∞}

We claim there is a canonical isomorphism

H1
étale(Gm,k, µn) = Z/nZ

What does this mean? This means there is an element 1k in H1
étale(Gm,k, µn) such that

for every morphism Spec(k′) → Spec(k) the pullback map on étale cohomology for
the map Gm,k′ → Gm,k maps 1k to 1k′ . (In particular this element is fixed under all
automorphisms of k.) To see this, consider the µn,Z-torsor Gm,Z → Gm,Z, x 7→ xn. By
the identification of torsors with first cohomology, this pulls back to give our canonical
elements 1k. Twisting back we see that there are canonical identifications

H1
étale(Gm,k,Z/nZ) = Hom(µn(k),Z/nZ),

i.e., these isomorphisms are compatible with respect to maps of algebraically closed fields,
in particular with respect to automorphisms of k.

70. Extension by zero

The general material in Modules on Sites, Section 19 allows us to make the following
definition.

Definition 70.1. Let j : U → X be an étale morphism of schemes.
(1) The restriction functor j−1 : Sh(Xétale) → Sh(Uétale) has a left adjoint jSh! :

Sh(Uétale)→ Sh(Xétale).
(2) The restriction functor j−1 : Ab(Xétale)→ Ab(Uétale) has a left adjoint which

is denoted j! : Ab(Uétale)→ Ab(Xétale) and called extension by zero.
(3) Let Λ be a ring. The restriction functor j−1 : Mod(Xétale,Λ)→Mod(Uétale,Λ)

has a left adjoint which is denoted j! : Mod(Uétale,Λ) → Mod(Xétale,Λ) and
called extension by zero.

If F is an abelian sheaf on Xétale, then j!F 6= jSh! F in general. On the other hand j!
for sheaves of Λ-modules agrees with j! on underlying abelian sheaves (Modules on Sites,
Remark 19.6). The functor j! is characterized by the functorial isomorphism

HomX(j!F ,G) = HomU (F , j−1G)

for all F ∈ Ab(Uétale) and G ∈ Ab(Xétale). Similarly for sheaves of Λ-modules.

To describe the functors in Definition 70.1 more explicitly, recall that j−1 is just the re-
striction via the functorUétale → Xétale. In other words, j−1G(U ′) = G(U ′) forU ′ étale
over U . On the other hand, for F ∈ Ab(Uétale) we consider the presheaf

(70.1.1) jp!F : Xétale −→ Ab, V 7−→
⊕

V→U
F(V → U)

Then j!F is the sheafification of jp!F . This is proven in Modules on Sites, Lemma 19.2;
more generally see the discussion in Modules on Sites, Sections 19 and 16.

Exercise 70.2. Prove directly that the functor j! defined as the sheafification of the
functor jp! given in (70.1.1) is a left adjoint to j−1.
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Proposition 70.3. Let j : U → X be an étale morphism of schemes. Let F in
Ab(Uétale). If x : Spec(k)→ X is a geometric point of X , then

(j!F)x =
⊕

u:Spec(k)→U, j(u)=x
Fū.

In particular, j! is an exact functor.

Proof. Exactness of j! is very general, see Modules on Sites, Lemma 19.3. Of course
it does also follow from the description of stalks. The formula for the stalk follows from
Modules on Sites, Lemma 38.1 and the description of points of the small étale site in terms
of geometric points, see Lemma 29.12.

For later use we note that the isomorphism

(j!F)x = (jp!F)x
= colim(V,v) jp!F(V )

= colim(V,v)
⊕

ϕ:V→U
F(V ϕ−→ U)

→
⊕

u:Spec(k)→U, j(u)=x
Fū.

constructed in Modules on Sites, Lemma 38.1 sends (V, v, ϕ, s) to the class of s in the stalk
of F at u = ϕ(v). �

Lemma 70.4. Let j : U → X be an open immersion of schemes. For any abelian sheaf
F on Uétale, the adjunction mappings j−1j∗F → F and F → j−1j!F are isomorphisms.
In fact, j!F is the unique abelian sheaf on Xétale whose restriction to U is F and whose
stalks at geometric points of X \ U are zero.

Proof. We encourage the reader to prove the first statement by working through
the definitions, but here we just use that it is a special case of the very general Modules
on Sites, Lemma 19.8. For the second statement, observe that if G is an abelian sheaf on
Xétale whose restriction to U is F , then we obtain by adjointness a map j!F → G. This
map is then an isomorphism at stalks of geometric points of U by Proposition 70.3. Thus
if G has vanishing stalks at geometric points of X \ U , then j!F → G is an isomorphism
by Theorem 29.10. �

Lemma 70.5 (Extension by zero commutes with base change). Let f : Y → X be a
morphism of schemes. Let j : V → X be an étale morphism. Consider the fibre product

V ′ = Y ×X V

f ′

��

j′
// Y

f

��
V

j // X

Then we have j′
!f

′−1 = f−1j! on abelian sheaves and on sheaves of modules.

Proof. This is true because j′
!f

′−1 is left adjoint to f ′
∗(j′)−1 and f−1j! is left adjoint

to j−1f∗. Further f ′
∗(j′)−1 = j−1f∗ because f∗ commutes with étale localization (by

construction). In fact, the lemma holds very generally in the setting of a morphism of
sites, see Modules on Sites, Lemma 20.1. �

Lemma 70.6. Let j : U → X be separated and étale. Then there is a functorial
injective map j!F → j∗F on abelian sheaves and sheaves of Λ-modules.
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Proof. We prove this in the case of abelian sheaves. Let us construct a canonical map

jp!F → j∗F

of abelian presheaves onXétale for any abelian sheafF onUétale where jp! is as in (70.1.1).
Sheafification of this map will be the desired map j!F → j∗F . Evaluating both sides on
V → X étale we obtain

jp!F(V ) =
⊕

ϕ:V→U
F(V ϕ−→ U) and j∗F(V ) = F(V ×X U)

For each ϕ we have an open and closed immersion

Γϕ = (1, ϕ) : V −→ V ×X U

over U . It is open as it is a morphism between schemes étale over U and it is closed as
it is a section of a scheme separated over V (Schemes, Lemma 21.11). Thus for a section
sϕ ∈ F(V ϕ−→ U) there exists a unique section s′

ϕ in F(V ×X U) which pulls back to sϕ
by Γϕ and which restricts to zero on the complement of the image of Γϕ.

To show that our map is injective suppose that
∑
i=1,...,n sϕi is an element of jp!F(V ) in

the formula above maps to zero in j∗F(V ). Our task is to show that
∑
i=1,...,n sϕi restricts

to zero on the members of an étale covering of V . Looking at all pairwise equalizers (which
are open and closed in V ) of the morphisms ϕi : V → U and working locally on V , we
may assume the images of the morphisms Γϕ1 , . . . ,Γϕn are pairwise disjoint. Since our
assumption is that

∑
i=1,...,n s

′
ϕi = 0 we then immediately conclude that s′

ϕi = 0 for
each i (by the disjointness of the supports of these sections), whence sϕi = 0 for all i as
desired. �

Lemma 70.7. Let j : U → X be finite and étale. Then the map j! → j∗ of Lemma
70.6 is an isomorphism on abelian sheaves and sheaves of Λ-modules.

Proof. It suffices to check j!F → j∗F is an isomorphism étale locally on X . Thus
we may assume U → X is a finite disjoint union of isomorphisms, see Étale Morphisms,
Lemma 18.3. We omit the proof in this case. �

Lemma 70.8. Let X be a scheme. Let Z ⊂ X be a closed subscheme and let U ⊂ X
be the complement. Denote i : Z → X and j : U → X the inclusion morphisms. For
every abelian sheaf F on Xétale there is a canonical short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

on Xétale.

Proof. We obtain the maps by the adjointness properties of the functors involved.
For a geometric point x inX we have either x ∈ U in which case the map on the left hand
side is an isomorphism on stalks and the stalk of i∗i−1F is zero or x ∈ Z in which case the
map on the right hand side is an isomorphism on stalks and the stalk of j!j

−1F is zero.
Here we have used the description of stalks of Lemma 46.3 and Proposition 70.3. �

Lemma 70.9. Consider a cartesian diagram of schemes

U

g

��

j′
// X

f

��
V

j // Y
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where f is finite, g is étale, and j is an open immersion. Then f∗ ◦ j′
! = j! ◦ g∗ as functors

Ab(Uétale)→ Ab(Yétale).

Proof. Let F be an object of Ab(Uétale). Let y be a geometric point of Y not con-
tained in the open V . Then

(f∗j
′
!F)y =

⊕
x, f(x)=y

(j′
!F)x = 0

by Proposition 55.2 and because the stalk of j′
!F at x 6∈ U are zero by Lemma 70.4. On

the other hand, we have
j−1f∗j

′
!F = g∗(j′)−1j′

!F = g∗F
by Lemmas 55.3 and Lemma 70.4. Hence by the characterization of j! in Lemma 70.4 we
see that f∗j

′
!F = j!g∗F . We omit the verification that this identification is functorial in

F . �

71. Constructible sheaves

Let X be a scheme. A constructible locally closed subscheme of X is a locally closed sub-
scheme T ⊂ X such that the underlying topological space of T is a constructible subset
of X . If T, T ′ ⊂ X are locally closed subschemes with the same underlying topologi-
cal space, then Tétale ∼= T ′

étale by the topological invariance of the étale site (Theorem
45.2). Thus in the following definition we may assume our locally closed subschemes are
reduced.

Definition 71.1. Let X be a scheme.
(1) A sheaf of sets on Xétale is constructible if for every affine open U ⊂ X there

exists a finite decomposition of U into constructible locally closed subschemes
U =

∐
i Ui such that F|Ui is finite locally constant for all i.

(2) A sheaf of abelian groups on Xétale is constructible if for every affine open
U ⊂ X there exists a finite decomposition of U into constructible locally closed
subschemes U =

∐
i Ui such that F|Ui is finite locally constant for all i.

(3) Let Λ be a Noetherian ring. A sheaf of Λ-modules on Xétale is constructible
if for every affine open U ⊂ X there exists a finite decomposition of U into
constructible locally closed subschemes U =

∐
i Ui such that F|Ui is of finite

type and locally constant for all i.

It seems that this is the accepted definition. An alternative, which lends itself more read-
ily to generalizations beyond the étale site of a scheme, would have been to define con-
structible sheaves by starting with hU , jU !Z/nZ, and jU !Λ where U runs over all quasi-
compact and quasi-separated objects ofXétale, and then take the smallest full subcategory
of Sh(Xétale), Ab(Xétale), and Mod(Xétale,Λ) containing these and closed under finite
limits and colimits. It follows from Lemma 71.6 and Lemmas 73.5, 73.7, and 73.6 that this
produces the same category ifX is quasi-compact and quasi-separated. In general this does
not produce the same category however.
A disjoint union decomposition U =

∐
Ui of a scheme by locally closed subschemes will

be called a partition of U (compare with Topology, Section 28).

Lemma 71.2. Let X be a quasi-compact and quasi-separated scheme. Let F be a sheaf
of sets on Xétale. The following are equivalent

(1) F is constructible,
(2) there exists an open covering X =

⋃
Ui such that F|Ui is constructible, and
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(3) there exists a partition X =
⋃
Xi by constructible locally closed subschemes

such that F|Xi is finite locally constant.
A similar statement holds for abelian sheaves and sheaves of Λ-modules if Λ is Noetherian.

Proof. It is clear that (1) implies (2).

Assume (2). For every x ∈ X we can find an i and an affine open neighbourhood Vx ⊂ Ui
of x. Hence we can find a finite affine open covering X =

⋃
Vj such that for each j there

exists a finite decomposition Vj =
∐
Vj,k by locally closed constructible subsets such that

F|Vj,k is finite locally constant. By Topology, Lemma 15.5 each Vj,k is constructible as a
subset of X . By Topology, Lemma 28.7 we can find a finite stratification X =

∐
Xl with

constructible locally closed strata such that each Vj,k is a union of Xl. Thus (3) holds.

Assume (3) holds. Let U ⊂ X be an affine open. Then U ∩ Xi is a constructible locally
closed subset ofU (for example by Properties, Lemma 2.1) andU =

∐
U∩Xi is a partition

of U as in Definition 71.1. Thus (1) holds. �

Lemma 71.3. Let X be a quasi-compact and quasi-separated scheme. Let F be a sheaf
of sets, abelian groups, Λ-modules (with Λ Noetherian) on Xétale. If there exist con-
structible locally closed subschemes Ti ⊂ X such that (a) X =

⋃
Tj and (b) F|Tj is

constructible, then F is constructible.

Proof. First, we can assume the covering is finite as X is quasi-compact in the spec-
tral topology (Topology, Lemma 23.2 and Properties, Lemma 2.4). Observe that each Ti
is a quasi-compact and quasi-separated scheme in its own right (because it is constructible
in X ; details omitted). Thus we can find a finite partition Ti =

∐
Ti,j into locally closed

constructible parts of Ti such thatF|Ti,j is finite locally constant (Lemma 71.2). By Topol-
ogy, Lemma 15.12 we see that Ti,j is a constructible locally closed subscheme of X . Then
we can apply Topology, Lemma 28.7 toX =

⋃
Ti,j to find the desired partition ofX . �

Lemma 71.4. LetX be a scheme. Checking constructibility of a sheaf of sets, abelian
groups, Λ-modules (with Λ Noetherian) can be done Zariski locally on X .

Proof. The statement means if X =
⋃
Ui is an open covering such that F|Ui is

constructible, then F is constructible. If U ⊂ X is affine open, then U =
⋃
U ∩ Ui

and F|U∩Ui is constructible (it is trivial that the restriction of a constructible sheaf to an
open is constructible). It follows from Lemma 71.2 thatF|U is constructible, i.e., a suitable
partition of U exists. �

Lemma 71.5. Let f : X → Y be a morphism of schemes. If F is a constructible sheaf
of sets, abelian groups, or Λ-modules (with Λ Noetherian) on Yétale, the same is true for
f−1F on Xétale.

Proof. By Lemma 71.4 this reduces to the case whereX and Y are affine. By Lemma
71.2 it suffices to find a finite partition of X by constructible locally closed subschemes
such that f−1F is finite locally constant on each of them. To find it we just pull back the
partition of Y adapted to F and use Lemma 64.2. �

Lemma 71.6. Let X be a scheme.
(1) The category of constructible sheaves of sets is closed under finite limits and

colimits inside Sh(Xétale).
(2) The category of constructible abelian sheaves is a weak Serre subcategory of

Ab(Xétale).
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(3) Let Λ be a Noetherian ring. The category of constructible sheaves of Λ-modules
on Xétale is a weak Serre subcategory of Mod(Xétale,Λ).

Proof. We prove (3). We will use the criterion of Homology, Lemma 10.3. Suppose
that ϕ : F → G is a map of constructible sheaves of Λ-modules. We have to show that
K = Ker(ϕ) and Q = Coker(ϕ) are constructible. Similarly, suppose that 0 → F →
E → G → 0 is a short exact sequence of sheaves of Λ-modules withF , G constructible. We
have to show that E is constructible. In both cases we can replace X with the members of
an affine open covering. Hence we may assume X is affine. Then we may further replace
X by the members of a finite partition ofX by constructible locally closed subschemes on
whichF and G are of finite type and locally constant. Thus we may apply Lemma 64.6 to
conclude.
The proofs of (1) and (2) are very similar and are omitted. �

Lemma 71.7. Let X be a quasi-compact and quasi-separated scheme.
(1) Let F → G be a map of constructible sheaves of sets on Xétale. Then the set of

points x ∈ X where Fx → Gx is surjective, resp. injective, resp. is isomorphic to
a given map of sets, is constructible in X .

(2) Let F be a constructible abelian sheaf on Xétale. The support of F is con-
structible.

(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules on
Xétale. The support of F is constructible.

Proof. Proof of (1). LetX =
∐
Xi be a partition ofX by locally closed constructible

subschemes such that both F and G are finite locally constant over the parts (use Lemma
71.2 for both F and G and choose a common refinement). Then apply Lemma 64.5 to the
restriction of the map to each part.
The proof of (2) and (3) is omitted. �

The following lemma will turn out to be very useful later on. It roughly says that the
category of constructible sheaves has a kind of weak “Noetherian” property.

Lemma 71.8. LetX be a quasi-compact and quasi-separated scheme. LetF = colimi∈I Fi
be a filtered colimit of sheaves of sets, abelian sheaves, or sheaves of modules.

(1) IfF andFi are constructible sheaves of sets, then the ind-objectFi is essentially
constant with value F .

(2) IfF andFi are constructible sheaves of abelian groups, then the ind-objectFi is
essentially constant with value F .

(3) Let Λ be a Noetherian ring. If F and Fi are constructible sheaves of Λ-modules,
then the ind-object Fi is essentially constant with value F .

Proof. Proof of (1). We will use without further mention that finite limits and col-
imits of constructible sheaves are constructible (Lemma 64.6). For each i let Ti ⊂ X be
the set of points x ∈ X where Fi,x → Fx is not surjective. Because Fi and F are con-
structible Ti is a constructible subset of X (Lemma 71.7). Since the stalks of F are finite
and since F = colimi∈I Fi we see that for all x ∈ X we have x 6∈ Ti for i large enough.
Since X is a spectral space by Properties, Lemma 2.4 the constructible topology on X is
quasi-compact by Topology, Lemma 23.2. Thus Ti = ∅ for i large enough. Thus Fi → F
is surjective for i large enough. Assume now that Fi → F is surjective for all i. Choose
i ∈ I . For i′ ≥ i denote Si′ ⊂ X the set of points x such that the number of elements
in Im(Fi,x → Fx) is equal to the number of elements in Im(Fi,x → Fi′,x). Because Fi,
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Fi′ and F are constructible Si′ is a constructible subset of X (details omitted; hint: use
Lemma 71.7). Since the stalks of Fi and F are finite and since F = colimi′≥i Fi′ we see
that for all x ∈ X we have x 6∈ Si′ for i′ large enough. By the same argument as above
we can find a large i′ such that Si′ = ∅. Thus Fi → Fi′ factors through F as desired.

Proof of (2). Observe that a constructible abelian sheaf is a constructible sheaf of sets.
Thus case (2) follows from (1).

Proof of (3). We will use without further mention that the category of constructible
sheaves of Λ-modules is abelian (Lemma 64.6). For each i let Qi be the cokernel of the
map Fi → F . The support Ti of Qi is a constructible subset of X as Qi is constructible
(Lemma 71.7). Since the stalks of F are finite Λ-modules and since F = colimi∈I Fi we
see that for all x ∈ X we have x 6∈ Ti for i large enough. Since X is a spectral space
by Properties, Lemma 2.4 the constructible topology onX is quasi-compact by Topology,
Lemma 23.2. Thus Ti = ∅ for i large enough. This proves the first assertion. For the
second, assume now that Fi → F is surjective for all i. Choose i ∈ I . For i′ ≥ i denote
Ki′ the image of Ker(Fi → F) in Fi′ . The support Si′ of Ki′ is a constructible subset of
X asKi′ is constructible. Since the stalks of Ker(Fi → F) are finite Λ-modules and since
F = colimi′≥i Fi′ we see that for all x ∈ X we have x 6∈ Si′ for i′ large enough. By the
same argument as above we can find a large i′ such that Si′ = ∅. Thus Fi → Fi′ factors
through F as desired. �

Lemma 71.9. Let X be a scheme. Let Λ be a Noetherian ring. The tensor product of
two constructible sheaves of Λ-modules on Xétale is a constructible sheaf of Λ-modules.

Proof. The question immediately reduces to the case where X is affine. Since any
two partitions of X with constructible locally closed strata have a common refinement
of the same type and since pullbacks commute with tensor product we reduce to Lemma
64.7. �

Lemma 71.10. Let Λ → Λ′ be a homomorphism of Noetherian rings. Let X be a
scheme. Let F be a constructible sheaf of Λ-modules on Xétale. Then F ⊗Λ Λ′ is a con-
structible sheaf of Λ′-modules.

Proof. Omitted. Hint: affine locally you can use the same stratification. �

72. Auxiliary lemmas on morphisms

Some lemmas that are useful for proving functoriality properties of constructible sheaves.

Lemma 72.1. LetU → X be an étale morphism of quasi-compact and quasi-separated
schemes (for example an étale morphism of Noetherian schemes). Then there exists a
partitionX =

∐
iXi by constructible locally closed subschemes such thatXi×XU → Xi

is finite étale for all i.

Proof. If U → X is separated, then this is More on Morphisms, Lemma 45.4. In
general, we may assume X is affine. Choose a finite affine open covering U =

⋃
Uj .

Apply the previous case to all the morphisms Uj → X and Uj ∩ Uj′ → X and choose a
common refinement X =

∐
Xi of the resulting partitions. After refining the partition

further we may assume Xi affine as well. Fix i and set V = U ×X Xi. The morphisms
Vj = Uj ×X Xi → Xi and Vjj′ = (Uj ∩Uj′)×X Xi → Xi are finite étale. Hence Vj and
Vjj′ are affine schemes andVjj′ ⊂ Vj is closed as well as open (sinceVjj′ → Xi is proper, so
Morphisms, Lemma 41.7 applies). Then V =

⋃
Vj is separated becauseO(Vj)→ O(Vjj′)
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is surjective, see Schemes, Lemma 21.7. Thus the previous case applies to V → Xi and we
can further refine the partition if needed (it actually isn’t but we don’t need this). �

In the Noetherian case one can prove the preceding lemma by Noetherian induction and
the following amusing lemma.

Lemma 72.2. Let f : X → Y be a morphism of schemes which is quasi-compact,
quasi-separated, and locally of finite type. If η is a generic point of an irreducible compo-
nent of Y such that f−1(η) is finite, then there exists an open V ⊂ Y containing η such
that f−1(V )→ V is finite.

Proof. This is Morphisms, Lemma 51.1. �

The statement of the following lemma can be strengthened a bit.

Lemma 72.3. Let f : Y → X be a quasi-finite and finitely presented morphism of
affine schemes.

(1) There exists a surjective morphism of affine schemes X ′ → X and a closed sub-
scheme Z ′ ⊂ Y ′ = X ′ ×X Y such that
(a) Z ′ ⊂ Y ′ is a thickening, and
(b) Z ′ → X ′ is a finite étale morphism.

(2) There exists a finite partition X =
∐
Xi by locally closed, constructible, affine

strata, and surjective finite locally free morphisms X ′
i → Xi such that the re-

duction of Y ′
i = X ′

i ×X Y → X ′
i is isomorphic to

∐ni
j=1(X ′

i)red → (X ′
i)red for

some ni.

Proof. Setting X ′ =
∐
X ′
i we see that (2) implies (1). Write X = Spec(A) and

Y = Spec(B). Write A as a filtered colimit of finite type Z-algebras Ai. Since B is an
A-algebra of finite presentation, we see that there exists 0 ∈ I and a finite type ring map
A0 → B0 such that B = colimBi with Bi = Ai ⊗A0 B0, see Algebra, Lemma 127.8. For
i sufficiently large we see that Ai → Bi is quasi-finite, see Limits, Lemma 18.2. Thus we
reduce to the case of finite type algebras over Z, in particular we reduce to the Noetherian
case. (Details omitted.)

Assume X and Y Noetherian. In this case any locally closed subset of X is constructible.
By Lemma 72.2 and Noetherian induction we see that there is a finite partitionX =

∐
Xi

ofX by locally closed strata such thatY ×XXi → Xi is finite. We can refine this partition
to get affine strata. Thus after replacingX byX ′ =

∐
Xi we may assumeY → X is finite.

AssumeX and Y Noetherian and Y → X finite. Suppose that we can prove (2) after base
change by a surjective, flat, quasi-finite morphism U → X . Thus we have a partition U =∐
Ui and finite locally free morphismsU ′

i → Ui such thatU ′
i×XY → U ′

i is isomorphic to∐ni
j=1(U ′

i)red → (U ′
i)red for some ni. Then, by the argument in the previous paragraph,

we can find a partitionX =
∐
Xj with locally closed affine strata such thatXj×X Ui →

Xj is finite for all i, j. By Morphisms, Lemma 48.2 each Xj ×X Ui → Xj is finite locally
free. Hence Xj ×X U ′

i → Xj is finite locally free (Morphisms, Lemma 48.3). It follows
that X =

∐
Xj and X ′

j =
∐
iXj ×X U ′

i is a solution for Y → X . Thus it suffices to
prove the result (in the Noetherian case) after a surjective flat quasi-finite base change.

Applying Morphisms, Lemma 48.6 we see we may assume that Y is a closed subscheme
of an affine scheme Z which is (set theoretically) a finite union Z =

⋃
i∈I Zi of closed

subschemes mapping isomorphically to X . In this case we will find a finite partition of
X =

∐
Xj with affine locally closed strata that works (in other words X ′

j = Xj). Set
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Ti = Y ∩ Zi. This is a closed subscheme of X . As X is Noetherian we can find a finite
partition of X =

∐
Xj by affine locally closed subschemes, such that each Xj ×X Ti is

(set theoretically) a union of strata Xj ×X Zi. Replacing X by Xj we see that we may
assume I = I1 q I2 with Zi ⊂ Y for i ∈ I1 and Zi ∩ Y = ∅ for i ∈ I2. Replacing Z
by
⋃
i∈I1

Zi we see that we may assume Y = Z. Finally, we can replace X again by the
members of a partition as above such that for every i, i′ ⊂ I the intersection Zi ∩ Zi′ is
either empty or (set theoretically) equal to Zi and Zi′ . This clearly means that Y is (set
theoretically) equal to a disjoint union of the Zi which is what we wanted to show. �

73. More on constructible sheaves

Let Λ be a Noetherian ring. Let X be a scheme. We often consider Xétale as a ringed site
with sheaf of rings Λ. In case of abelian sheaves we often take Λ = Z/nZ for a suitable
integer n.

Lemma 73.1. Let j : U → X be an étale morphism of quasi-compact and quasi-
separated schemes.

(1) The sheaf hU is a constructible sheaf of sets.
(2) The sheaf j!M is a constructible abelian sheaf for a finite abelian group M .
(3) If Λ is a Noetherian ring andM is a finite Λ-module, then j!M is a constructible

sheaf of Λ-modules on Xétale.

Proof. By Lemma 72.1 there is a partition
∐
iXi such that πi : j−1(Xi) → Xi is

finite étale. The restriction of hU to Xi is hj−1(Xi) which is finite locally constant by
Lemma 64.4. For cases (2) and (3) we note that

j!(M)|Xi = πi!(M) = πi∗(M)
by Lemmas 70.5 and 70.7. Thus it suffices to show the lemma for π : Y → X finite étale.
This is Lemma 64.3. �

Lemma 73.2. Let X be a quasi-compact and quasi-separated scheme.
(1) Let F be a sheaf of sets on Xétale. Then F is a filtered colimit of constructible

sheaves of sets.
(2) Let F be a torsion abelian sheaf on Xétale. Then F is a filtered colimit of con-

structible abelian sheaves.
(3) Let Λ be a Noetherian ring and F a sheaf of Λ-modules on Xétale. Then F is a

filtered colimit of constructible sheaves of Λ-modules.

Proof. LetB be the collection of quasi-compact and quasi-separated objects ofXétale.
By Modules on Sites, Lemma 30.7 any sheaf of sets is a filtered colimit of sheaves of the
form

Coequalizer
( ∐

j=1,...,m hVj
//
//
∐
i=1,...,n hUi

)
with Vj and Ui quasi-compact and quasi-separated objects of Xétale. By Lemmas 73.1 and
71.6 these coequalizers are constructible. This proves (1).

Let Λ be a Noetherian ring. By Modules on Sites, Lemma 30.7 Λ-modules F is a filtered
colimit of modules of the form

Coker
(⊕

j=1,...,m
jVj !ΛVj −→

⊕
i=1,...,n

jUi!ΛUi
)

with Vj and Ui quasi-compact and quasi-separated objects of Xétale. By Lemmas 73.1 and
71.6 these cokernels are constructible. This proves (3).
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Proof of (2). First write F =
⋃
F [n] where F [n] is the n-torsion subsheaf. Then we can

view F [n] as a sheaf of Z/nZ-modules and apply (3). �

Lemma 73.3. Let f : X → Y be a surjective morphism of quasi-compact and quasi-
separated schemes.

(1) Let F be a sheaf of sets on Yétale. Then F is constructible if and only if f−1F is
constructible.

(2) LetF be an abelian sheaf on Yétale. ThenF is constructible if and only if f−1F
is constructible.

(3) Let Λ be a Noetherian ring. Let F be sheaf of Λ-modules on Yétale. Then F is
constructible if and only if f−1F is constructible.

Proof. One implication follows from Lemma 71.5. For the converse, assume f−1F
is constructible. WriteF = colimFi as a filtered colimit of constructible sheaves (of sets,
abelian groups, or modules) using Lemma 73.2. Since f−1 is a left adjoint it commutes with
colimits (Categories, Lemma 24.5) and we see that f−1F = colim f−1Fi. By Lemma 71.8
we see that f−1Fi → f−1F is surjective for all i large enough. Since f is surjective
we conclude (by looking at stalks using Lemma 36.2 and Theorem 29.10) that Fi → F
is surjective for all i large enough. Thus F is the quotient of a constructible sheaf G.
Applying the argument once more to G ×F G or the kernel of G → F we conclude using
that f−1 is exact and that the category of constructible sheaves (of sets, abelian groups, or
modules) is preserved under finite (co)limits or (co)kernels inside Sh(Yétale), Sh(Xétale),
Ab(Yétale), Ab(Xétale), Mod(Yétale,Λ), and Mod(Xétale,Λ), see Lemma 71.6. �

Lemma 73.4. Let f : X → Y be a finite étale morphism of schemes. Let Λ be a
Noetherian ring. IfF is a constructible sheaf of sets, constructible sheaf of abelian groups,
or constructible sheaf of Λ-modules on Xétale, the same is true for f∗F on Yétale.

Proof. By Lemma 71.4 it suffices to check this Zariski locally on Y and by Lemma
73.3 we may replace Y by an étale cover (the construction of f∗ commutes with étale
localization). A finite étale morphism is étale locally isomorphic to a disjoint union of
isomorphisms, see Étale Morphisms, Lemma 18.3. Thus, in the case of sheaves of sets, the
lemma says that if Fi, i = 1, . . . , n are constructible sheaves of sets, then

∏
i=1,...,n Fi is

too. This is clear. Similarly for sheaves of abelian groups and modules. �

Lemma 73.5. LetX be a quasi-compact and quasi-separated scheme. The category of
constructible sheaves of sets is the full subcategory of Sh(Xétale) consisting of sheaves F
which are coequalizers

F1
//
// F0 // F

such that Fi, i = 0, 1 is a finite coproduct of sheaves of the form hU with U a quasi-
compact and quasi-separated object of Xétale.

Proof. In the proof of Lemma 73.2 we have seen that sheaves of this form are con-
structible. For the converse, suppose that for every constructible sheaf of sets F we can
find a surjection F0 → F with F0 as in the lemma. Then we find our surjection F1 →
F0 ×F F0 because the latter is constructible by Lemma 71.6.

By Topology, Lemma 28.7 we may choose a finite stratification X =
∐
i∈I Xi such that

F is finite locally constant on each stratum. We will prove the result by induction on the
cardinality of I . Let i ∈ I be a minimal element in the partial ordering of I . Then Xi ⊂
X is closed. By induction, there exist finitely many quasi-compact and quasi-separated
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objects Uα of (X \ Xi)étale and a surjective map
∐
hUα → F|X\Xi . These determine a

map ∐
hUα → F

which is surjective after restricting to X \ Xi. By Lemma 64.4 we see that F|Xi = hV
for some scheme V finite étale over Xi. Let v be a geometric point of V lying over x ∈
Xi. We may think of v as an element of the stalk Fx = Vx. Thus we can find an étale
neighbourhood (U, u) of x and a section s ∈ F(U) whose stalk at x gives v. Thinking of
s as a map s : hU → F , restricting to Xi we obtain a morphism s|Xi : U ×X Xi → V
over Xi which maps u to v. Since V is quasi-compact (finite over the closed subscheme
Xi of the quasi-compact scheme X) a finite number s(1), . . . , s(m) of these sections of F
over U (1), . . . , U (m) will determine a jointly surjective map∐

s(j)|Xi :
∐

U (j) ×X Xi −→ V

Then we obtain the surjection ∐
hUα q

∐
hU(j) → F

as desired. �

Lemma 73.6. Let X be a quasi-compact and quasi-separated scheme. Let Λ be a Noe-
therian ring. The category of constructible sheaves of Λ-modules is exactly the category
of modules of the form

Coker
(⊕

j=1,...,m
jVj !ΛVj −→

⊕
i=1,...,n

jUi!ΛUi
)

with Vj and Ui quasi-compact and quasi-separated objects of Xétale. In fact, we can even
assume Ui and Vj affine.

Proof. In the proof of Lemma 73.2 we have seen modules of this form are constructible.
Since the category of constructible modules is abelian (Lemma 71.6) it suffices to prove that
given a constructible module F there is a surjection⊕

i=1,...,n
jUi!ΛUi −→ F

for some affine objects Ui inXétale. By Modules on Sites, Lemma 30.7 there is a surjection

Ψ :
⊕

i∈I
jUi!ΛUi −→ F

with Ui affine and the direct sum over a possibly infinite index set I . For every finite
subset I ′ ⊂ I set

TI′ = Supp(Coker(
⊕

i∈I′
jUi!ΛUi −→ F))

By the very definition of constructible sheaves, the set TI′ is a constructible subset of X .
We want to show that TI′ = ∅ for some I ′. Since every stalk Fx is a finite type Λ-module
and since Ψ is surjective, for every x ∈ X there is an I ′ such that x 6∈ TI′ . In other words
we have ∅ =

⋂
I′⊂I finite TI′ . Since X is a spectral space by Properties, Lemma 2.4 the

constructible topology on X is quasi-compact by Topology, Lemma 23.2. Thus TI′ = ∅
for some I ′ ⊂ I finite as desired. �

Lemma 73.7. LetX be a quasi-compact and quasi-separated scheme. The category of
constructible abelian sheaves is exactly the category of abelian sheaves of the form

Coker
(⊕

j=1,...,m
jVj !Z/mjZ

Vj
−→

⊕
i=1,...,n

jUi!Z/niZUi
)
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with Vj and Ui quasi-compact and quasi-separated objects of Xétale and mj , ni positive
integers. In fact, we can even assume Ui and Vj affine.

Proof. This follows from Lemma 73.6 applied with Λ = Z/nZ and the fact that,
sinceX is quasi-compact, every constructible abelian sheaf is annihilated by some positive
integer n (details omitted). �

Lemma 73.8. Let X be a quasi-compact and quasi-separated scheme. Let Λ be a Noe-
therian ring. LetF be a constructible sheaf of sets, abelian groups, or Λ-modules onXétale.
Let G = colimGi be a filtered colimit of sheaves of sets, abelian groups, or Λ-modules.
Then

Mor(F ,G) = colim Mor(F ,Gi)
in the category of sheaves of sets, abelian groups, or Λ-modules on Xétale.

Proof. The case of sheaves of sets. By Lemma 73.5 it suffices to prove the lemma for
hU whereU is a quasi-compact and quasi-separated object ofXétale. Recall that Mor(hU ,G) =
G(U). Hence the result follows from Sites, Lemma 17.7.
In the case of abelian sheaves or sheaves of modules, the result follows in the same way us-
ing Lemmas 73.7 and 73.6. For the case of abelian sheaves, we add that Mor(jU !Z/nZ,G)
is equal to the n-torsion elements of G(U). �

Lemma 73.9. Let f : X → Y be a finite and finitely presented morphism of schemes.
Let Λ be a Noetherian ring. If F is a constructible sheaf of sets, abelian groups, or Λ-
modules on Xétale, then f∗F is too.

Proof. It suffices to prove this whenX and Y are affine by Lemma 71.4. By Lemmas
55.3 and 73.3 we may base change to any affine scheme surjective over X . By Lemma 72.3
this reduces us to the case of a finite étale morphism (because a thickening leads to an
equivalence of étale topoi and even small étale sites, see Theorem 45.2). The finite étale
case is Lemma 73.4. �

Lemma 73.10. Let X = limi∈I Xi be a limit of a directed system of schemes with
affine transition morphisms. We assume that Xi is quasi-compact and quasi-separated for
all i ∈ I .

(1) The category of constructible sheaves of sets on Xétale is the colimit of the cat-
egories of constructible sheaves of sets on (Xi)étale.

(2) The category of constructible abelian sheaves onXétale is the colimit of the cat-
egories of constructible abelian sheaves on (Xi)étale.

(3) Let Λ be a Noetherian ring. The category of constructible sheaves of Λ-modules
on Xétale is the colimit of the categories of constructible sheaves of Λ-modules
on (Xi)étale.

Proof. Proof of (1). Denote fi : X → Xi the projection maps. There are 3 parts to
the proof corresponding to “faithful”, “fully faithful”, and “essentially surjective”.
Faithful. Choose 0 ∈ I and let F0, G0 be constructible sheaves on X0. Suppose that
a, b : F0 → G0 are maps such that f−1

0 a = f−1
0 b. LetE ⊂ X0 be the set of points x ∈ X0

such that ax = bx. By Lemma 71.7 the subset E ⊂ X0 is constructible. By assumption
X → X0 maps intoE. By Limits, Lemma 4.10 we find an i ≥ 0 such thatXi → X0 maps
into E. Hence f−1

i0 a = f−1
i0 b.

Fully faithful. Choose 0 ∈ I and let F0, G0 be constructible sheaves on X0. Suppose that
a : f−1

0 F0 → f−1
0 G0 is a map. We claim there is an i and a map ai : f−1

i0 F0 → f−1
i0 G0
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which pulls back to a on X . By Lemma 73.5 we can replace F0 by a finite coproduct of
sheaves represented by quasi-compact and quasi-separated objects of (X0)étale. Thus we
have to show: If U0 → X0 is such an object of (X0)étale, then

f−1
0 G(U) = colimi≥0 f

−1
i0 G(Ui)

where U = X ×X0 U0 and Ui = Xi ×X0 U0. This is a special case of Theorem 51.3.

Essentially surjective. We have to show every constructible F on X is isomorphic to
f−1
i F for some constructible Fi on Xi. Applying Lemma 73.5 and using the results of

the previous two paragraphs, we see that it suffices to prove this for hU for some quasi-
compact and quasi-separated object U ofXétale. In this case we have to show that U is the
base change of a quasi-compact and quasi-separated scheme étale over Xi for some i. This
follows from Limits, Lemmas 10.1 and 8.10.

Proof of (3). The argument is very similar to the argument for sheaves of sets, but using
Lemma 73.6 instead of Lemma 73.5. Details omitted. Part (2) follows from part (3) because
every constructible abelian sheaf over a quasi-compact scheme is a constructible sheaf of
Z/nZ-modules for some n. �

Lemma 73.11. Let X = limi∈I Xi be a limit of a directed system of schemes with
affine transition morphisms. We assume that Xi is quasi-compact and quasi-separated for
all i ∈ I .

(1) The category of finite locally constant sheaves on Xétale is the colimit of the
categories of finite locally constant sheaves on (Xi)étale.

(2) The category of finite locally constant abelian sheaves on Xétale is the colimit
of the categories of finite locally constant abelian sheaves on (Xi)étale.

(3) Let Λ be a Noetherian ring. The category of finite type, locally constant sheaves
of Λ-modules on Xétale is the colimit of the categories of finite type, locally
constant sheaves of Λ-modules on (Xi)étale.

Proof. By Lemma 73.10 the functor in each case is fully faithful. By the same lemma,
all we have to show to finish the proof in case (1) is the following: given a constructible
sheafFi onXi whose pullbackF toX is finite locally constant, there exists an i′ ≥ i such
that the pullback Fi′ of Fi to Xi′ is finite locally constant. By assumption there exists an
étale covering U = {Uj → X}j∈J such that F|Uj ∼= Sj for some finite set Sj . We may
assume Uj is affine for all j ∈ J . Since X is quasi-compact, we may assume J finite. By
Lemma 51.2 we can find an i′ ≥ i and an étale covering Ui′ = {Ui′,j → Xi′}j∈J whose
base change to X is U . Then Fi′ |Ui′,j and Sj are constructible sheaves on (Ui′,j)étale
whose pullbacks to Uj are isomorphic. Hence after increasing i′ we get that Fi′ |Ui′,j and
Sj are isomorphic. Thus Fi′ is finite locally constant. The proof in cases (2) and (3) is
exactly the same. �

Lemma 73.12. Let X be an irreducible scheme with generic point η.
(1) Let S′ ⊂ S be an inclusion of sets. If we have S′ ⊂ G ⊂ S in Sh(Xétale) and

S′ = Gη , then G = S′.
(2) Let A′ ⊂ A be an inclusion of abelian groups. If we have A′ ⊂ G ⊂ A in

Ab(Xétale) and A′ = Gη , then G = A′.
(3) LetM ′ ⊂M be an inclusion of modules over a ring Λ. If we haveM ′ ⊂ G ⊂M

in Mod(Xétale,Λ) and M ′ = Gη , then G = M ′.
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Proof. This is true because for every étale morphism U → X with U 6= ∅ the point
η is in the image. �

Lemma 73.13. Let X be an integral normal scheme with function field K. Let E be
a set.

(1) Let g : Spec(K)→ X be the inclusion of the generic point. Then g∗E = E.
(2) Let j : U → X be the inclusion of a nonempty open. Then j∗E = E.

Proof. Proof of (1). Let x ∈ X be a point. Let OshX,x be a strict henselization of
OX,x. By More on Algebra, Lemma 45.6 we see that OshX,x is a normal domain. Hence
Spec(K)×X Spec(OshX,x) is irreducible. It follows that the stalk (g∗Ex is equal to E , see
Theorem 53.1.

Proof of (2). Since g factors through j there is a map j∗E → g∗E. This map is injective
because for every scheme V étale over X the set Spec(K)×X V is dense in U ×X V . On
the other hand, we have a map E → j∗E and we conclude. �

Lemma 73.14. LetX be a quasi-compact and quasi-separated scheme. Let η ∈ X be a
generic point of an irreducible component of X .

(1) Let F be a torsion abelian sheaf on Xétale whose stalk Fη is zero. Then F =
colimFi is a filtered colimit of constructible abelian sheaves Fi such that for
each i the support of Fi is contained in a closed subscheme not containing η.

(2) Let Λ be a Noetherian ring and F a sheaf of Λ-modules on Xétale whose stalk
Fη is zero. Then F = colimFi is a filtered colimit of constructible sheaves
of Λ-modules Fi such that for each i the support of Fi is contained in a closed
subscheme not containing η.

Proof. Proof of (1). We can write F = colimi∈I Fi with Fi constructible abelian
by Lemma 73.2. Choose i ∈ I . SinceF|η is zero by assumption, we see that there exists an
i′(i) ≥ i such that Fi|η → Fi′(i)|η is zero, see Lemma 71.8. Then Gi = Im(Fi → Fi′(i))
is a constructible abelian sheaf (Lemma 71.6) whose stalk at η is zero. Hence the support
Ei of Gi is a constructible subset of X not containing η. Since η is a generic point of an
irreducible component of X , we see that η 6∈ Zi = Ei by Topology, Lemma 15.15. Define
a new directed set I ′ by using the set I with ordering defined by the rule i1 is bigger or
equal to i2 if and only if i1 ≥ i′(i2). Then the sheaves Gi form a system over I ′ with
colimit F and the proof is complete.

The proof in case (2) is exactly the same and we omit it. �

74. Constructible sheaves on Noetherian schemes

IfX is a Noetherian scheme then any locally closed subset is a constructible locally closed
subset (Topology, Lemma 16.1). Hence an abelian sheafF onXétale is constructible if and
only if there exists a finite partition X =

∐
Xi such that F|Xi is finite locally constant.

(By convention a partition of a topological space has locally closed parts, see Topology,
Section 28.) In other words, we can omit the adjective “constructible” in Definition 71.1.
Actually, the category of constructible sheaves on Noetherian schemes has some additional
properties which we will catalogue in this section.

Proposition 74.1. Let X be a Noetherian scheme. Let Λ be a Noetherian ring.
(1) Any sub or quotient sheaf of a constructible sheaf of sets is constructible.
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(2) The category of constructible abelian sheaves on Xétale is a (strong) Serre sub-
category of Ab(Xétale). In particular, every sub and quotient sheaf of a con-
structible abelian sheaf on Xétale is constructible.

(3) The category of constructible sheaves of Λ-modules onXétale is a (strong) Serre
subcategory of Mod(Xétale,Λ). In particular, every submodule and quotient
module of a constructible sheaf of Λ-modules on Xétale is constructible.

Proof. Proof of (1). Let G ⊂ F with F a constructible sheaf of sets on Xétale. Let
η ∈ X be a generic point of an irreducible component of X . By Noetherian induction it
suffices to find an open neighbourhoodU of η such that G|U is locally constant. To do this
we may replace X by an étale neighbourhood of η. Hence we may assume F is constant
and X is irreducible.

Say F = S for some finite set S. Then S′ = Gη ⊂ S say S′ = {s1, . . . , st}. Pick an étale
neighbourhood (U, u) of η and sections σ1, . . . , σt ∈ G(U) which map to si in Gη ⊂ S.
Since σi maps to an element si ∈ S′ ⊂ S = Γ(X,F) we see that the two pullbacks of
σi to U ×X U are the same as sections of G. By the sheaf condition for G we find that σi
comes from a section of G over the open Im(U → X) of X . Shrinking X we may assume
S′ ⊂ G ⊂ S. Then we see that S′ = G by Lemma 73.12.

Let F → Q be a surjection with F a constructible sheaf of sets on Xétale. Then set G =
F×QF . By the first part of the proof we see that G is constructible as a subsheaf ofF×F .
This in turn implies thatQ is constructible, see Lemma 71.6.

Proof of (3). we already know that constructible sheaves of modules form a weak Serre
subcategory, see Lemma 71.6. Thus it suffices to show the statement on submodules.

Let G ⊂ F be a submodule of a constructible sheaf of Λ-modules on Xétale. Let η ∈ X be
a generic point of an irreducible component of X . By Noetherian induction it suffices to
find an open neighbourhood U of η such that G|U is locally constant. To do this we may
replace X by an étale neighbourhood of η. Hence we may assume F is constant and X is
irreducible.

Say F = M for some finite Λ-module M . Then M ′ = Gη ⊂ M . Pick finitely many
elements s1, . . . , st generatingM ′ as a Λ-module. (This is possible as Λ is Noetherian and
M is finite.) Pick an étale neighbourhood (U, u) of η and sections σ1, . . . , σt ∈ G(U)
which map to si in Gη ⊂ M . Since σi maps to an element si ∈ M ′ ⊂ M = Γ(X,F)
we see that the two pullbacks of σi to U ×X U are the same as sections of G. By the sheaf
condition for G we find that σi comes from a section of G over the open Im(U → X) of
X . Shrinking X we may assume M ′ ⊂ G ⊂ M . Then we see that M ′ = G by Lemma
73.12.

Proof of (2). This follows in the usual manner from (3). Details omitted. �

The following lemma tells us that every object of the abelian category of constructible
sheaves on X is “Noetherian”, i.e., satisfies a.c.c. for subobjects.

Lemma 74.2. Let X be a Noetherian scheme. Let Λ be a Noetherian ring. Consider
inclusions

F1 ⊂ F2 ⊂ F3 ⊂ . . . ⊂ F
in the category of sheaves of sets, abelian groups, or Λ-modules. IfF is constructible, then
for some n we have Fn = Fn+1 = Fn+2 = . . ..
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Proof. By Proposition 74.1 we see that Fi and colimFi are constructible. Then the
lemma follows from Lemma 71.8. �

Lemma 74.3. Let X be a Noetherian scheme.
(1) Let F be a constructible sheaf of sets on Xétale. There exist an injective map of

sheaves
F −→

∏
i=1,...,n

fi,∗Ei

where fi : Yi → X is a finite morphism and Ei is a finite set.
(2) Let F be a constructible abelian sheaf on Xétale. There exist an injective map of

abelian sheaves
F −→

⊕
i=1,...,n

fi,∗Mi

where fi : Yi → X is a finite morphism and Mi is a finite abelian group.
(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules on

Xétale. There exist an injective map of sheaves of modules

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite morphism and Mi is a finite Λ-module.
Moreover, we may assume each Yi is irreducible, reduced, maps onto an irreducible and
reduced closed subscheme Zi ⊂ X such that Yi → Zi is finite étale over a nonempty open
of Zi.

Proof. Proof of (1). Because we have the ascending chain condition for subsheaves
of F (Lemma 74.2), it suffices to show that for every point x ∈ X we can find a map
ϕ : F → f∗E where f : Y → X is finite and E is a finite set such that ϕx : Fx →
(f∗S)x is injective. (This argument can be avoided by picking a partition ofX as in Lemma
71.2 and constructing a Yi → X for each irreducible component of each part.) Let Z ⊂
X be the induced reduced scheme structure (Schemes, Definition 12.5) on {x}. Since F
is constructible, there is a finite separable extension K/κ(x) such that F|Spec(K) is the
constant sheaf with value E for some finite set E. Let Y → Z be the normalization of
Z in Spec(K). By Morphisms, Lemma 53.13 we see that Y is a normal integral scheme.
As K/κ(x) is a finite extension, it is clear that K is the function field of Y . Denote g :
Spec(K)→ Y the inclusion. The mapF|Spec(K) → E is adjoint to a mapF|Y → g∗E =
E (Lemma 73.13). This in turn is adjoint to a map ϕ : F → f∗E. Observe that the stalk of
ϕ at a geometric point x is injective: we may take a lift y ∈ Y of x and the commutative
diagram

Fx

��

(F|Y )y

(f∗E)x // Ey

proves the injectivity. We are not yet done, however, as the morphism f : Y → Z is
integral but in general not finite6.
To fix the problem stated in the last sentence of the previous paragraph, we write Y =
limi∈I Yi withYi irreducible, integral, and finite overZ. Namely, apply Properties, Lemma
22.13 to f∗OY viewed as a sheaf of OZ -algebras and apply the functor Spec

Z
. Then

f∗E = colim fi,∗E by Lemma 51.7. By Lemma 73.8 the map F → f∗E factors through

6If X is a Nagata scheme, for example of finite type over a field, then Y → Z is finite.
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fi,∗E for some i. SinceYi → Z is a finite morphism of integral schemes and since the func-
tion field extension induced by this morphism is finite separable, we see that the morphism
is finite étale over a nonempty open ofZ (use Algebra, Lemma 140.9; details omitted). This
finishes the proof of (1).
The proofs of (2) and (3) are identical to the proof of (1). �

In the following lemma we use a standard trick to reduce a very general statement to the
Noetherian case.

Lemma 74.4. Let X be a quasi-compact and quasi-separated scheme.
(1) Let F be a constructible sheaf of sets on Xétale. There exist an injective map of

sheaves
F −→

∏
i=1,...,n

fi,∗Ei

where fi : Yi → X is a finite and finitely presented morphism and Ei is a finite
set.

(2) Let F be a constructible abelian sheaf on Xétale. There exist an injective map of
abelian sheaves

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite and finitely presented morphism andMi is a finite
abelian group.

(3) Let Λ be a Noetherian ring. Let F be a constructible sheaf of Λ-modules on
Xétale. There exist an injective map of sheaves of modules

F −→
⊕

i=1,...,n
fi,∗Mi

where fi : Yi → X is a finite and finitely presented morphism andMi is a finite
Λ-module.

Proof. We will reduce this lemma to the Noetherian case by absolute Noetherian ap-
proximation. Namely, by Limits, Proposition 5.4 we can write X = limt∈T Xt with each
Xt of finite type over Spec(Z) and with affine transition morphisms. By Lemma 73.10 the
category of constructible sheaves (of sets, abelian groups, or Λ-modules) on Xétale is the
colimit of the corresponding categories forXt. Thus our constructible sheafF is the pull-
back of a similar constructible sheafFt overXt for some t. Then we apply the Noetherian
case (Lemma 74.3) to find an injection

Ft −→
∏

i=1,...,n
fi,∗Ei or Ft −→

⊕
i=1,...,n

fi,∗Mi

over Xt for some finite morphisms fi : Yi → Xt. Since Xt is Noetherian the morphisms
fi are of finite presentation. Since pullback is exact and since formation of fi,∗ commutes
with base change (Lemma 55.3), we conclude. �

Lemma 74.5. Let X be a Noetherian scheme. Let E ⊂ X be a subset closed under
specialization.

(1) LetF be a torsion abelian sheaf onXétale whose support is contained inE. Then
F = colimFi is a filtered colimit of constructible abelian sheaves Fi such that
for each i the support of Fi is contained in a closed subset contained in E.

(2) Let Λ be a Noetherian ring andF a sheaf of Λ-modules onXétale whose support
is contained in E. Then F = colimFi is a filtered colimit of constructible
sheaves of Λ-modules Fi such that for each i the support of Fi is contained in a
closed subset contained in E.
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Proof. Proof of (1). We can writeF = colimi∈I Fi withFi constructible abelian by
Lemma 73.2. By Proposition 74.1 the image F ′

i ⊂ F of the map Fi → F is constructible.
Thus F = colimF ′

i and the support of F ′
i is contained in E. Since the support of F ′

i

is constructible (by our definition of constructible sheaves), we see that its closure is also
contained in E , see for example Topology, Lemma 23.6.

The proof in case (2) is exactly the same and we omit it. �

75. Specializations and étale sheaves

Topological picture: Let X be a topological space and let x′  x be a specialization of
points in X . Then every open neighbourhood of x contains x′. Hence for any sheaf F on
X there is a specialization map

sp : Fx −→ Fx′

of stalks sending the equivalence class of the pair (U, s) in Fx to the equivalence class of
the pair (U, s) inFx′ ; see Sheaves, Section 11 for the description of stalks in terms of equiv-
alence classes of pairs. Of course this map is functorial in F , i.e., sp is a transformation of
functors.

For sheaves in the étale topology we can mimick this construction, see [?, Exposee VII, 7.7,
page 397]. To do this suppose we have a schemeS , a geometric point s ofS , and a geometric
point t of Spec(OshS,s). For any sheafF on Sétale we will construct the specialization map

sp : Fs −→ Ft
Here we have abused language: instead of writing Ft we should write Fp(t) where p :
Spec(OshS,s)→ S is the canonical morphism. Recall that

Fs = colim(U,u) F(U)

where the colimit is over all étale neighbourhoods (U, u) of (S, s), see Section 29. Since
OshS,s is the stalk of the structure sheaf, we find for every étale neighbourhood (U, u) of
(S, s) a canonical mapOU,u → OshS,s. Hence we get a unique factorization

Spec(OshS,s)→ U → S

If v denotes the image of t inU , then we see that (U, v) is an étale neighbourhood of (S, t).
This construction defines a functor from the category of étale neighbourhoods of (S, s) to
the category of étale neighbourhoods of (S, t). Thus we may define the map sp : Fs → Ft
by sending the equivalence class of (U, u, σ) where σ ∈ F(U) to the equivalence class of
(U, v, σ).

Let K ∈ D(Sétale). With s and t as above we have the specialization map

sp : Ks −→ Kt in D(Ab)

Namely, if K is represented by the complex F• of abelian sheaves, then we simply that
the map

Ks = F•
s −→ F•

t
= Kt

which is termwise given by the specialization maps for sheaves constructed above. This is
independent of the choice of complex representingK by the exactness of the stalk functors
(i.e., taking stalks of complexes is well defined on the derived category).
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Clearly the construction is functorial in the sheaf F on Sétale. If we think of the stalk
functors as morphisms of topoi s, t : Sets → Sh(Sétale), then we may think of sp as a
2-morphism

Sets
t ,,

s

22�� sp Sh(Sétale)

of topoi.

Remark 75.1 (Alternative description of sp). Let S , s, and t be as above. Another
way to describe the specialization map is to use that

Fs = Γ(Spec(OshS,s), p−1F) and Ft = Γ(t, t−1
p−1F)

The first equality follows from Theorem 53.1 applied to idS : S → S and the second
equality follows from Lemma 36.2. Then we can think of sp as the map

sp : Fs = Γ(Spec(OshS,s), p−1F) pullback by t−−−−−−−→ Γ(t, t−1
p−1F) = Ft

Remark 75.2 (Yet another description of sp). Let S , s, and t be as above. Another
alternative is to use the unique morphism

c : Spec(Osh
S,t

) −→ Spec(OshS,s)

over S which is compatible with the given morphism t→ Spec(OshS,s) and the morphism
t→ Spec(Osh

t,t
). The uniqueness and existence of the displayed arrow follows from Alge-

bra, Lemma 154.6 applied toOS,s,OshS,t, andOshS,s → κ(t). We obtain

sp : Fs = Γ(Spec(OshS,s),F) pullback by c−−−−−−−→ Γ(Spec(Osh
S,t

),F) = Ft
(with obvious notational conventions). In fact this procedure also works for objects K in
D(Sétale): the specialization map for K is equal to the map

sp : Ks = RΓ(Spec(OshS,s),K) pullback by c−−−−−−−→ RΓ(Spec(Osh
S,t

),K) = Kt

The equality signs are valid as taking global sections over the striclty henselian schemes
Spec(OshS,s) and Spec(Osh

S,t
) is exact (and the same as taking stalks at s and t) and hence

no subtleties related to the fact that K may be unbounded arise.

Remark 75.3 (Lifting specializations). LetS be a scheme and let t s be a specializa-
tion of point onS. Choose geometric points t and s lying over t and s. Since t corresponds
to a point of Spec(OS,s) by Schemes, Lemma 13.2 and sinceOS,s → OshS,s is faithfully flat,
we can find a point t′ ∈ Spec(OshS,s) mapping to t. As Spec(OshS,s) is a limit of schemes
étale over S we see that κ(t′)/κ(t) is a separable algebraic extension (usually not finite of
course). Since κ(t) is algebraically closed, we can choose an embedding κ(t′) → κ(t) as
extensions of κ(t). This choice gives us a commutative diagram

t

��

// Spec(OshS,s)

��

soo

��
t // S soo

of points and geometric points. Thus if t  s we can always “lift” t to a geometric point
of the strict henselization of S at s and get specialization maps as above.
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Lemma 75.4. Let g : S′ → S be a morphism of schemes. Let F be a sheaf on Sétale.
Let s′ be a geometric point of S′, and let t′ be a geometric point of Spec(OshS′,s′). De-
note s = g(s′) and t = h(t′) where h : Spec(OshS′,s′) → Spec(OshS,s) is the canonical
morphism. For any sheaf F on Sétale the specialization map

sp : (f−1F)s′ −→ (f−1F)t′

is equal to the specialization map sp : Fs → Ft via the identifications (f−1F)s′ = Fs
and (f−1F)t′ = Ft of Lemma 36.2.

Proof. Omitted. �

Lemma 75.5. Let S be a scheme such that every quasi-compact open of S has finite
number of irreducible components (for example ifS has a Noetherian underlying topolog-
ical space, or if S is locally Noetherian). Let F be a sheaf of sets on Sétale. The following
are equivalent

(1) F is finite locally constant, and
(2) all stalks of F are finite sets and all specialization maps sp : Fs → Ft are bijec-

tive.

Proof. Assume (2). Let s be a geometric point of S lying over s ∈ S. In order to
prove (1) we have to find an étale neighbourhood (U, u) of (S, s) such thatF|U is constant.
We may and do assume S is affine.

SinceFs is finite, we can choose (U, u), n ≥ 0, and pairwise distinct elements σ1, . . . , σn ∈
F(U) such that {σ1, . . . , σn} ⊂ F(U) maps bijectively to Fs via the map F(U) → Fs.
Consider the map

ϕ : {1, . . . , n} −→ F|U
onUétale defined by σ1, . . . , σn. This map is a bijection on stalks at u by construction. Let
us consider the subset

E = {u′ ∈ U | ϕu′ is bijective} ⊂ U

Here u′ is any geometric point of U lying over u′ (the condition is independent of the
choice by Remark 29.8). The image u ∈ U of u is in E. By our assumption on the spe-
cialization maps for F , by Remark 75.3, and by Lemma 75.4 we see that E is closed under
specializations and generalizations in the topological space U .

After shrinking U we may assume U is affine too. By Descent, Lemma 16.3 we see that
U has a finite number of irreducible components. After removing the irreducible com-
ponents which do not pass through u, we may assume every irreducible component of
U passes through u. Since U is a sober topological space it follows that E = U and we
conclude that ϕ is an isomorphism by Theorem 29.10. Thus (1) follows.

We omit the proof that (1) implies (2). �

Lemma 75.6. Let S be a scheme such that every quasi-compact open of S has finite
number of irreducible components (for example if S has a Noetherian underlying topo-
logical space, or if S is locally Noetherian). Let Λ be a Noetherian ring. Let F be a sheaf
of Λ-modules on Sétale. The following are equivalent

(1) F is a finite type, locally constant sheaf of Λ-modules, and
(2) all stalks ofF are finite Λ-modules and all specialization maps sp : Fs → Ft are

bijective.
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Proof. The proof of this lemma is the same as the proof of Lemma 75.5. Assume (2).
Let s be a geometric point of S lying over s ∈ S. In order to prove (1) we have to find an
étale neighbourhood (U, u) of (S, s) such that F|U is constant. We may and do assume S
is affine.

Since M = Fs is a finite Λ-module and Λ is Noetherian, we can choose a presentation

Λ⊕m A−→ Λ⊕n →M → 0

for some matrix A = (aji) with coefficients in Λ. We can choose (U, u) and elements
σ1, . . . , σn ∈ F(U) such that

∑
ajiσi = 0 in F(U) and such that the images of σi in

Fs = M are the images of the standard basis element of Λn in the presentation of M
given above. Consider the map

ϕ : M −→ F|U
onUétale defined by σ1, . . . , σn. This map is a bijection on stalks at u by construction. Let
us consider the subset

E = {u′ ∈ U | ϕu′ is bijective} ⊂ U

Here u′ is any geometric point of U lying over u′ (the condition is independent of the
choice by Remark 29.8). The image u ∈ U of u is in E. By our assumption on the spe-
cialization maps for F , by Remark 75.3, and by Lemma 75.4 we see that E is closed under
specializations and generalizations in the topological space U .

After shrinking U we may assume U is affine too. By Descent, Lemma 16.3 we see that
U has a finite number of irreducible components. After removing the irreducible com-
ponents which do not pass through u, we may assume every irreducible component of
U passes through u. Since U is a sober topological space it follows that E = U and we
conclude that ϕ is an isomorphism by Theorem 29.10. Thus (1) follows.

We omit the proof that (1) implies (2). �

Lemma 75.7. Let f : X → S be a quasi-compact and quasi-separated morphism of
schemes. Let K ∈ D+(Xétale). Let s be a geometric point of S and let t be a geometric
point of Spec(OshS,s). We have a commutative diagram

(Rf∗K)s sp
// (Rf∗K)t

RΓ(X ×S Spec(OshS,s),K) // RΓ(X ×S Spec(Osh
S,t

),K)

where the bottom horizontal arrow arises as pullback by the morphism idX × c where
c : Spec(Osh

S,t
) → Spec(Osh

S,S
) is the morphism introduced in Remark 75.2. The vertical

arrows are given by Theorem 53.1.

Proof. This follows immediately from the description of sp in Remark 75.2. �

Remark 75.8. Let f : X → S be a morphism of schemes. Let K ∈ D(Xétale). Let
s be a geometric point of S and let t be a geometric point of Spec(OshS,s). Let c be as in



76. COMPLEXES WITH CONSTRUCTIBLE COHOMOLOGY 4763

Remark 75.2. We can always make a commutative diagram

(Rf∗K)s //

sp

��

RΓ(X ×S Spec(OshS,s),K) //

(idX×c)−1

��

RΓ(Xs,K)

(Rf∗K)t // RΓ(X ×S Spec(Osh
S,t

),K) // RΓ(Xt,K)

where the horizontal arrows are those of Remark 53.2. In general there won’t be a vertical
map on the right between the cohomologies of K on the fibres fitting into this diagram,
even in the case of Lemma 75.7.

76. Complexes with constructible cohomology

Let Λ be a ring. Denote D(Xétale,Λ) the derived category of sheaves of Λ-modules on
Xétale. We denote byDb(Xétale,Λ) (respectivelyD+,D−) the full subcategory of bounded
(resp. above, below) complexes in D(Xétale,Λ).

Definition 76.1. LetX be a scheme. Let Λ be a Noetherian ring. We denoteDc(Xétale,Λ)
the full subcategory of D(Xétale,Λ) of complexes whose cohomology sheaves are con-
structible sheaves of Λ-modules.

This definition makes sense by Lemma 71.6 and Derived Categories, Section 17. Thus we
see thatDc(Xétale,Λ) is a strictly full, saturated triangulated subcategory ofD(Xétale,Λ).

Lemma 76.2. Let Λ be a Noetherian ring. If j : U → X is an étale morphism of
schemes, then

(1) K|U ∈ Dc(Uétale,Λ) if K ∈ Dc(Xétale,Λ), and
(2) j!M ∈ Dc(Xétale,Λ) if M ∈ Dc(Uétale,Λ) and the morphism j is quasi-

compact and quasi-separated.

Proof. The first assertion is clear. The second follows from the fact that j! is exact
and Lemma 73.1. �

Lemma 76.3. Let Λ be a Noetherian ring. Let f : X → Y be a morphism of schemes.
If K ∈ Dc(Yétale,Λ) then Lf∗K ∈ Dc(Xétale,Λ).

Proof. This follows as f−1 = f∗ is exact and Lemma 71.5. �

Lemma 76.4. Let X be a quasi-compact and quasi-separated scheme. Let Λ be a Noe-
therian ring. Let K ∈ D(Xétale,Λ) and b ∈ Z such that Hb(K) is constructible. Then
there exist a sheaf F which is a finite direct sum of jU !Λ with U ∈ Ob(Xétale) affine and
a map F [−b]→ K in D(Xétale,Λ) inducing a surjection F → Hb(K).

Proof. RepresentK by a complexK• of sheaves of Λ-modules. Consider the surjec-
tion

Ker(Kb → Kb+1) −→ Hb(K)
By Modules on Sites, Lemma 30.6 we may choose a surjection

⊕
i∈I jUi!Λ→ Ker(Kb →

Kb+1) with Ui affine. For I ′ ⊂ I finite, denoteHI′ ⊂ Hb(K) the image of
⊕

i∈I′ jUi!Λ.
By Lemma 71.8 we see that HI′ = Hb(K) for some I ′ ⊂ I finite. The lemma follows
taking F =

⊕
i∈I′ jUi!Λ. �

Lemma 76.5. Let X be a quasi-compact and quasi-separated scheme. Let Λ be a Noe-
therian ring. Let K ∈ D−(Xétale,Λ). Then the following are equivalent
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(1) K is in Dc(Xétale,Λ),
(2) K can be represented by a bounded above complex whose terms are finite direct

sums of jU !Λ with U ∈ Ob(Xétale) affine,
(3) K can be represented by a bounded above complex of flat constructible sheaves

of Λ-modules.

Proof. It is clear that (2) implies (3) and that (3) implies (1). AssumeK is inD−
c (Xétale,Λ).

SayHi(K) = 0 for i > b. By induction on awe will construct a complexFa → . . .→ Fb
such that each F i is a finite direct sum of jU !Λ with U ∈ Ob(Xétale) affine and a map
F• → K which induces an isomorphism Hi(F•) → Hi(K) for i > a and a surjection
Ha(F•) → Ha(K). For a = b this can be done by Lemma 76.4. Given such a datum
choose a distinguished triangle

F• → K → L→ F•[1]
Then we see that Hi(L) = 0 for i ≥ a. Choose Fa−1[−a + 1] → L as in Lemma 76.4.
The composition Fa−1[−a+ 1]→ L→ F• corresponds to a map Fa−1 → Fa such that
the composition with Fa → Fa+1 is zero. By TR4 we obtain a map

(Fa−1 → . . .→ Fb)→ K

in D(Xétale,Λ). This finishes the induction step and the proof of the lemma. �

Lemma 76.6. LetX be a scheme. Let Λ be a Noetherian ring. LetK,L ∈ D−
c (Xétale,Λ).

Then K ⊗L
Λ L is in D−

c (Xétale,Λ).

Proof. This follows from Lemmas 76.5 and 71.9. �

77. Tor finite with constructible cohomology

LetX be a scheme and let Λ be a Noetherian ring. An often used subcategory of the derived
category Dc(Xétale,Λ) defined in Section 76 is the full subcategory consisting of objects
having (locally) finite tor dimension. Here is the formal definition.

Definition 77.1. LetX be a scheme. Let Λ be a Noetherian ring. We denoteDctf (Xétale,Λ)
the full subcategory ofDc(Xétale,Λ) consisting of objects having locally finite tor dimen-
sion.

This is a strictly full, saturated triangulated subcategory ofDc(Xétale,Λ) andD(Xétale,Λ).
By our conventions, see Cohomology on Sites, Definition 46.1, we see that

Dctf (Xétale,Λ) ⊂ Db
c(Xétale,Λ) ⊂ Db(Xétale,Λ)

if X is quasi-compact. A good way to think about objects of Dctf (Xétale,Λ) is given in
Lemma 77.3.

Remark 77.2. Objects in the derived category Dctf (Xétale,Λ) in some sense have
better global properties than the perfect objects in D(OX). Namely, it can happen that
a complex ofOX -modules is locally quasi-isomorphic to a finite complex of finite locally
free OX -modules, without being globally quasi-isomorphic to a bounded complex of lo-
cally free OX -modules. The following lemma shows this does not happen for Dctf on a
Noetherian scheme.

Lemma 77.3. Let Λ be a Noetherian ring. Let X be a quasi-compact and quasi-
separated scheme. Let K ∈ D(Xétale,Λ). The following are equivalent

(1) K ∈ Dctf (Xétale,Λ), and
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(2) K can be represented by a finite complex of constructible flat sheaves of Λ-
modules.

In fact, ifK has tor amplitude in [a, b] then we can representK by a complexFa → . . .→
Fb with Fp a constructible flat sheaf of Λ-modules.

Proof. It is clear that a finite complex of constructible flat sheaves of Λ-modules has
finite tor dimension. It is also clear that it is an object of Dc(Xétale,Λ). Thus we see that
(2) implies (1).

Assume (1). Choose a, b ∈ Z such that Hi(K ⊗L
Λ G) = 0 if i 6∈ [a, b] for all sheaves of

Λ-modules G. We will prove the final assertion holds by induction on b−a. If a = b, then
K = Ha(K)[−a] is a flat constructible sheaf and the result holds. Next, assume b > a.
Represent K by a complex K• of sheaves of Λ-modules. Consider the surjection

Ker(Kb → Kb+1) −→ Hb(K)

By Lemma 73.6 we can find finitely many affine schemes Ui étale over X and a surjection⊕
jUi!ΛUi → Hb(K). After replacing Ui by standard étale coverings {Uij → Ui} we

may assume this surjection lifts to a map F =
⊕
jUi!ΛUi → Ker(Kb → Kb+1). This

map determines a distinguished triangle

F [−b]→ K → L→ F [−b+ 1]

inD(Xétale,Λ). SinceDctf (Xétale,Λ) is a triangulated subcategory we see that L is in it
too. In factL has tor amplitude in [a, b−1] asF surjects ontoHb(K) (details omitted). By
induction hypothesis we can find a finite complexFa → . . .→ Fb−1 of flat constructible
sheaves of Λ-modules representing L. The map L → F [−b + 1] corresponds to a map
Fb → F annihilating the image of Fb−1 → Fb. Then it follows from axiom TR3 that
K is represented by the complex

Fa → . . .→ Fb−1 → Fb

which finishes the proof. �

Remark 77.4. Let Λ be a Noetherian ring. LetX be a scheme. For a bounded complex
K• of constructible flat Λ-modules onXétale each stalkKp

x is a finite projective Λ-module.
Hence the stalks of the complex are perfect complexes of Λ-modules.

Lemma 77.5. Let Λ be a Noetherian ring. If j : U → X is an étale morphism of
schemes, then

(1) K|U ∈ Dctf (Uétale,Λ) if K ∈ Dctf (Xétale,Λ), and
(2) j!M ∈ Dctf (Xétale,Λ) if M ∈ Dctf (Uétale,Λ) and the morphism j is quasi-

compact and quasi-separated.

Proof. Perhaps the easiest way to prove this lemma is to reduce to the case where X
is affine and then apply Lemma 77.3 to translate it into a statement about finite complexes
of flat constructible sheaves of Λ-modules where the result follows from Lemma 73.1. �

Lemma 77.6. Let Λ be a Noetherian ring. Let f : X → Y be a morphism of schemes.
If K ∈ Dctf (Yétale,Λ) then Lf∗K ∈ Dctf (Xétale,Λ).

Proof. Apply Lemma 77.3 to reduce this to a question about finite complexes of flat
constructible sheaves of Λ-modules. Then the statement follows as f−1 = f∗ is exact and
Lemma 71.5. �
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Lemma 77.7. Let X be a connected scheme. Let Λ be a Noetherian ring. Let K ∈
Dctf (Xétale,Λ) have locally constant cohomology sheaves. Then there exists a finite
complex of finite projective Λ-modules M• and an étale covering {Ui → X} such that
K|Ui ∼= M•|Ui in D(Ui,étale,Λ).

Proof. Choose an étale covering {Ui → X} such that K|Ui is constant, say K|Ui ∼=
M•
i Ui

for some finite complex of finite Λ-modulesM•
i . See Cohomology on Sites, Lemma

53.1. Observe that Ui ×X Uj is empty if M•
i is not isomorphic to M•

j in D(Λ). For
each complex of Λ-modules M• let IM• = {i ∈ I | M•

i
∼= M• in D(Λ)}. As étale

morphisms are open we see that UM• =
⋃
i∈IM• Im(Ui → X) is an open subset of X .

Then X =
∐
UM• is a disjoint open covering of X . As X is connected only one UM• is

nonempty. AsK is inDctf (Xétale,Λ) we see thatM• is a perfect complex of Λ-modules,
see More on Algebra, Lemma 74.2. Hence we may assume M• is a finite complex of finite
projective Λ-modules. �

78. Torsion sheaves

A brief section on torsion abelian sheaves and their étale cohomology. Let C be a site. We
have shown in Cohomology on Sites, Lemma 19.8 that any object in D(C) whose coho-
mology sheaves are torsion sheaves, can be represented by a complex all of whose terms
are torsion.

Lemma 78.1. Let X be a quasi-compact and quasi-separated scheme.
(1) If F is a torsion abelian sheaf on Xétale, then Hn

étale(X,F) is a torsion abelian
group for all n.

(2) If K in D+(Xétale) has torsion cohomology sheaves, then Hn
étale(X,K) is a

torsion abelian group for all n.

Proof. To prove (1) we write F =
⋃
F [n] where F [d] is the d-torsion subsheaf. By

Lemma 51.4 we haveHn
étale(X,F) = colimHn

étale(X,F [d]). This proves (1) asHn
étale(X,F [d])

is annihilated by d.

To prove (2) we can use the spectral sequence Ep,q2 = Hp
étale(X,Hq(K)) converging to

Hn
étale(X,K) (Derived Categories, Lemma 21.3) and the result for sheaves. �

Lemma 78.2. Let f : X → Y be a quasi-compact and quasi-separated morphism of
schemes.

(1) If F is a torsion abelian sheaf on Xétale, then Rnf∗F is a torsion abelian sheaf
on Yétale for all n.

(2) If K in D+(Xétale) has torsion cohomology sheaves, then Rf∗K is an object of
D+(Yétale) whose cohomology sheaves are torsion abelian sheaves.

Proof. Proof of (1). Recall that Rnf∗F is the sheaf associated to the presheaf V 7→
Hn
étale(X×Y V,F) on Yétale. See Cohomology on Sites, Lemma 7.4. If we choose V affine,

thenX×Y V is quasi-compact and quasi-separated because f is, hence we can apply Lemma
78.1 to see that Hn

étale(X ×Y V,F) is torsion.

Proof of (2). Recall thatRnf∗K is the sheaf associated to the presheaf V 7→ Hn
étale(X×Y

V,K) on Yétale. See Cohomology on Sites, Lemma 20.6. If we choose V affine, thenX×Y
V is quasi-compact and quasi-separated because f is, hence we can apply Lemma 78.1 to
see that Hn

étale(X ×Y V,K) is torsion. �
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79. Cohomology with support in a closed subscheme

Let X be a scheme and let Z ⊂ X be a closed subscheme. Let F be an abelian sheaf on
Xétale. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the sections with support in Z (Definition 31.3). This is a left exact functor which is
not exact in general. Hence we obtain a derived functor

RΓZ(X,−) : D(Xétale) −→ D(Ab)

and cohomology groups with support in Z defined by Hq
Z(X,F) = RqΓZ(X,F).

Let I be an injective abelian sheaf on Xétale. Let U = X \ Z. Then the restriction map
I(X)→ I(U) is surjective (Cohomology on Sites, Lemma 12.6) with kernel ΓZ(X, I). It
immediately follows that for K ∈ D(Xétale) there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]

in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D(Xétale).

For an abelian sheaf F onXétale we can consider the subsheaf of sections with support in
Z , denotedHZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ×X Z}

Here we use the support of a section from Definition 31.3. Using the equivalence of Propo-
sition 46.4 we may viewHZ(F) as an abelian sheaf on Zétale. Thus we obtain a functor

Ab(Xétale) −→ Ab(Zétale), F 7−→ HZ(F)

which is left exact, but in general not exact.

Lemma 79.1. Let i : Z → X be a closed immersion of schemes. Let I be an injective
abelian sheaf on Xétale. ThenHZ(I) is an injective abelian sheaf on Zétale.

Proof. Observe that for any abelian sheaf G on Zétale we have

HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Section 46) and as
I is injective on Xétale we conclude thatHZ(I) is injective on Zétale. �

Denote
RHZ : D(Xétale) −→ D(Zétale)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q
Z (X,F)

Lemma 79.2. Let i : Z → X be a closed immersion of schemes. Let G be an injective
abelian sheaf on Zétale. ThenHpZ(i∗G) = 0 for p > 0.

Proof. This is true because the functor i∗ is exact and transforms injective abelian
sheaves into injective abelian sheaves (Cohomology on Sites, Lemma 14.2). �



4768 59. ÉTALE COHOMOLOGY

Lemma 79.3. Let i : Z → X be a closed immersion of schemes. Let j : U → X
be the inclusion of the complement of Z. Let F be an abelian sheaf on Xétale. There is a
distinguished triangle

i∗RHZ(F)→ F → Rj∗(F|U )→ i∗RHZ(F)[1]

in D(Xétale). This produces an exact sequence

0→ i∗HZ(F)→ F → j∗(F|U )→ i∗H1
Z(F)→ 0

and isomorphisms Rpj∗(F|U ) ∼= i∗Hp+1
Z (F) for p ≥ 1.

Proof. To get the distinguished triangle, choose an injective resolution F → I•.
Then we obtain a short exact sequence of complexes

0→ i∗HZ(I•)→ I• → j∗(I•|U )→ 0

by the discussion above. Thus the distinguished triangle by Derived Categories, Section
12. �

Let X be a scheme and let Z ⊂ X be a closed subscheme. We denote DZ(Xétale) the
strictly full saturated triangulated subcategory ofD(Xétale) consisting of complexes whose
cohomology sheaves are supported on Z. Note that DZ(Xétale) only depends on the un-
derlying closed subset of X .

Lemma 79.4. Let i : Z → X be a closed immersion of schemes. The mapRismall,∗ =
ismall,∗ : D(Zétale)→ D(Xétale) induces an equivalenceD(Zétale)→ DZ(Xétale) with
quasi-inverse

i−1
small|DZ(Xétale) = RHZ |DZ(Xétale)

Proof. Recall that i−1
small and ismall,∗ is an adjoint pair of exact functors such that

i−1
smallismall,∗ is isomorphic to the identify functor on abelian sheaves. See Proposition

46.4 and Lemma 36.2. Thus ismall,∗ : D(Zétale) → DZ(Xétale) is fully faithful and
i−1
small determines a left inverse. On the other hand, suppose thatK is an object ofDZ(Xétale)

and consider the adjunction map K → ismall,∗i
−1
smallK. Using exactness of ismall,∗ and

i−1
small this induces the adjunction maps Hn(K)→ ismall,∗i

−1
smallH

n(K) on cohomology
sheaves. Since these cohomology sheaves are supported onZ we see these adjunction maps
are isomorphisms and we conclude that D(Zétale)→ DZ(Xétale) is an equivalence.

To finish the proof we have to show that RHZ(K) = i−1
smallK if K is an object of

DZ(Xétale). To do this we can use that K = ismall,∗i
−1
smallK as we’ve just proved this is

the case. Then we can choose a K-injective representative I• for i−1
smallK. Since ismall,∗ is

the right adjoint to the exact functor i−1
small, the complex ismall,∗I• is K-injective (Derived

Categories, Lemma 31.9). We see that RHZ(K) is computed byHZ(ismall,∗I•) = I• as
desired. �

Lemma 79.5. LetX be a scheme. LetZ ⊂ X be a closed subscheme. LetF be a quasi-
coherentOX -module and denoteFa the associated quasi-coherent sheaf on the small étale
site of X (Proposition 17.1). Then

(1) Hq
Z(X,F) agrees with Hq

Z(Xétale,Fa),
(2) if the complement ofZ is retrocompact inX , then i∗HqZ(Fa) is a quasi-coherent

sheaf ofOX -modules equal to (i∗HqZ(F))a.
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Proof. Let j : U → X be the inclusion of the complement ofZ. The statement (1) on
cohomology groups follows from the long exact sequences for cohomology with supports
and the agreements Hq(Xétale,Fa) = Hq(X,F) and Hq(Uétale,Fa) = Hq(U,F), see
Theorem 22.4. If j : U → X is a quasi-compact morphism, i.e., if U ⊂ X is retrocompact,
thenRqj∗ transforms quasi-coherent sheaves into quasi-coherent sheaves (Cohomology of
Schemes, Lemma 4.5) and commutes with taking associated sheaf on étale sites (Descent,
Lemma 9.5). We conclude by applying Lemma 79.3. �

80. Schemes with strictly henselian local rings

In this section we collect some results about the étale cohomology of schemes whose local
rings are strictly henselian. For example, here is a fun generalization of Lemma 55.1.

Lemma 80.1. Let S be a scheme all of whose local rings are strictly henselian. Then
for any abelian sheaf F on Sétale we have Hi(Sétale,F) = Hi(SZar,F).

Proof. Let ε : Sétale → SZar be the morphism of sites given by the inclusion func-
tor. The Zariski sheaf Rpε∗F is the sheaf associated to the presheaf U 7→ Hp

étale(U,F).
Thus the stalk at x ∈ X is colimHp

étale(U,F) = Hp
étale(Spec(OX,x),Gx) where Gx de-

notes the pullback of F to Spec(OX,x), see Lemma 51.5. Thus the higher direct images of
Rpε∗F are zero by Lemma 55.1 and we conclude by the Leray spectral sequence. �

Lemma 80.2. Let R be a ring all of whose local rings are strictly henselian. Let F be
a sheaf on Spec(R)étale. Assume that for all f, g ∈ R the kernel of

H1
étale(D(f + g),F) −→ H1

étale(D(f(f + g)),F)⊕H1
étale(D(g(f + g)),F)

is zero. Then Hq
étale(Spec(R),F) = 0 for q > 0.

Proof. By Lemma 80.1 we see that étale cohomology of F agrees with Zariski co-
homology on any open of Spec(R). We will prove by induction on i the statement: for
h ∈ Rwe haveHq

étale(D(h),F) = 0 for 1 ≤ q ≤ i. The base case i = 0 is trivial. Assume
i ≥ 1.

Let ξ ∈ Hq
étale(D(h),F) for some 1 ≤ q ≤ i and h ∈ R. If q < i then we are

done by induction, so we assume q = i. After replacing R by Rh we may assume ξ ∈
Hi
étale(Spec(R),F); some details omitted. Let I ⊂ R be the set of elements f ∈ R such

that ξ|D(f) = 0. Since ξ is Zariski locally trivial, it follows that for every prime p of R
there exists an f ∈ I with f 6∈ p. Thus if we can show that I is an ideal, then 1 ∈ I and
we’re done. It is clear that f ∈ I , r ∈ R implies rf ∈ I . Thus we assume that f, g ∈ I and
we show that f + g ∈ I . If q = i = 1, then this is exactly the assumption of the lemma!
Whence the result for i = 1. For q = i > 1, note that

D(f + g) = D(f(f + g)) ∪D(g(f + g))
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By Mayer-Vietoris (Cohomology, Lemma 8.2 which applies as étale cohomology on open
subschemes of Spec(R) equals Zariski cohomology) we have an exact sequence

Hi−1
étale(D(fg(f + g)),F)

��
Hi
étale(D(f + g),F)

��
Hi
étale(D(f(f + g)),F)⊕Hi

étale(D(g(f + g)),F)

and the result follows as the first group is zero by induction. �

Lemma 80.3. Let S be an affine scheme such that (1) all points are closed, and (2) all
residue fields are separably algebraically closed. Then for any abelian sheaf F on Sétale
we have Hi(Sétale,F) = 0 for i > 0.

Proof. Condition (1) implies that the underlying topological space of S is profinite,
see Algebra, Lemma 26.5. Thus the higher cohomology groups of an abelian sheaf on the
topological spaceS (i.e., Zariski cohomology) is trivial, see Cohomology, Lemma 22.3. The
local rings are strictly henselian by Algebra, Lemma 153.10. Thus étale cohomology of S
is computed by Zariski cohomology by Lemma 80.1 and the proof is done. �

The spectrum of an absolutely integrally closed ring is an example of a scheme all of whose
local rings are strictly henselian, see More on Algebra, Lemma 14.7. It turns out that nor-
mal domains with separably closed fraction fields have an even stronger property as ex-
plained in the following lemma.

Lemma 80.4. Let X be an integral normal scheme with separably closed function
field.

(1) A separated étale morphism U → X is a disjoint union of open immersions.
(2) All local rings of X are strictly henselian.

Proof. Let R be a normal domain whose fraction field is separably algebraically
closed. Let R → A be an étale ring map. Then A ⊗R K is as a K-algebra a finite prod-
uct
∏
i=1,...,nK of copies of K. Let ei, i = 1, . . . , n be the corresponding idempotents

of A ⊗R K. Since A is normal (Algebra, Lemma 163.9) the idempotents ei are in A (Al-
gebra, Lemma 37.12). Hence A =

∏
Aei and we may assume A ⊗R K = K. Since

A ⊂ A ⊗R K = K (by flatness of R → A and since R ⊂ K) we conclude that A is a
domain. By the same argument we conclude that A ⊗R A ⊂ (A ⊗R A) ⊗R K = K. It
follows that the map A⊗R A→ A is injective as well as surjective. Thus R→ A defines
an open immersion by Morphisms, Lemma 10.2 and Étale Morphisms, Theorem 14.1.

Let f : U → X be a separated étale morphism. Let η ∈ X be the generic point and let
f−1({η}) = {ξi}i∈I . The result of the previous paragraph shows the following: For any
affine open U ′ ⊂ U whose image in X is contained in an affine we have U ′ =

∐
i∈I U

′
i

whereU ′
i is the set of point ofU ′ which are specializations of ξi. Moreover, the morphism

U ′
i → X is an open immersion. It follows thatUi = {ξi} is an open and closed subscheme

of U and that Ui → X is locally on the source an isomorphism. By Morphisms, Lemma
49.7 the fact that Ui → X is separated, implies that Ui → X is injective and we conclude
that Ui → X is an open immersion, i.e., (1) holds.
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Part (2) follows from part (1) and the description of the strict henselization of OX,x as
the local ring at x on the étale site of X (Lemma 33.1). It can also be proved directly, see
Fundamental Groups, Lemma 12.2. �

Lemma 80.5. Let f : X → Y be a morphism of schemes where X is an integral
normal scheme with separably closed function field. ThenRqf∗M = 0 for q > 0 and any
abelian group M .

Proof. Recall thatRqf∗M is the sheaf associated to the presheaf V 7→ Hq
étale(V ×Y

X,M) on Yétale, see Lemma 51.6. If V is affine, then V ×Y X → X is separated and
étale. Hence V ×Y X =

∐
Ui is a disjoint union of open subschemes Ui of X , see Lemma

80.4. By Lemma 80.1 we see that Hq
étale(Ui,M) is equal to Hq

Zar(Ui,M). This vanishes
by Cohomology, Lemma 20.2. �

Lemma 80.6. Let X be an affine integral normal scheme with separably closed func-
tion field. Let Z ⊂ X be a closed subscheme. Let V → Z be an étale morphism with V
affine. Then V is a finite disjoint union of open subschemes of Z. If V → Z is surjective
and finite étale, then V → Z has a section.

Proof. By Algebra, Lemma 143.10 we can lift V to an affine scheme U étale over X .
Apply Lemma 80.4 to U → X to get the first statement.

The final statement is a consequence of the first. Let V =
∐
i=1,...,n Vi be a finite decom-

position into open and closed subschemes with Vi → Z an open immersion. As V → Z
is finite we see that Vi → Z is also closed. Let Ui ⊂ Z be the image. Then we have a
decomposition into open and closed subschemes

Z =
∐

(A,B)

⋂
i∈A

Ui ∩
⋂

i∈B
U ci

where the disjoint union is over {1, . . . , n} = A q B where A has at least one element.
Each of the strata is contained in a single Ui and we find our section. �

Lemma 80.7. Let X be a normal integral affine scheme with separably closed func-
tion field. Let Z ⊂ X be a closed subscheme. For any finite abelian group M we have
H1
étale(Z,M) = 0.

Proof. By Cohomology on Sites, Lemma 4.3 an element ofH1
étale(Z,M) corresponds

to a M -torsor F on Zétale. Such a torsor is clearly a finite locally constant sheaf. Hence
F is representable by a scheme V finite étale over Z , Lemma 64.4. Of course V → Z is
surjective as a torsor is locally trivial. Since V → Z has a section by Lemma 80.6 we are
done. �

Lemma 80.8. Let X be a normal integral affine scheme with separably closed func-
tion field. Let Z ⊂ X be a closed subscheme. For any finite abelian group M we have
Hq
étale(Z,M) = 0 for q ≥ 1.

Proof. WriteX = Spec(R) andZ = Spec(R′) so that we have a surjection of rings
R → R′. All local rings of R′ are strictly henselian by Lemma 80.4 and Algebra, Lemma
156.4. Furthermore, we see that for any f ′ ∈ R′ there is a surjection Rf → R′

f ′ where
f ∈ R is a lift of f ′. Since Rf is a normal domain with separably closed fraction field
we see that H1

étale(D(f ′),M) = 0 by Lemma 80.7. Thus we may apply Lemma 80.2 to
Z = Spec(R′) to conclude. �

Lemma 80.9. Let X be an affine scheme.
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(1) There exists an integral surjective morphismX ′ → X such that for every closed
subscheme Z ′ ⊂ X ′, every finite abelian group M , and every q ≥ 1 we have
Hq
étale(Z ′,M) = 0.

(2) For any closed subscheme Z ⊂ X , finite abelian group M , q ≥ 1, and ξ ∈
Hq
étale(Z,M) there exists a finite surjective morphism X ′ → X of finite pre-

sentation such that ξ pulls back to zero in Hq
étale(X ′ ×X Z,M).

Proof. Write X = Spec(A). Write A = Z[xi]/J for some ideal J . Let R be the
integral closure of Z[xi] in an algebraic closure of the fraction field of Z[xi]. Let A′ =
R/JR and set X ′ = Spec(A′). This gives an example as in (1) by Lemma 80.8.

Proof of (2). LetX ′ → X be the integral surjective morphism we found above. Certainly,
ξ maps to zero in Hq

étale(X ′ ×X Z,M). We may write X ′ as a limit X ′ = limX ′
i of

schemes finite and of finite presentation over X ; this is easy to do in our current affine
case, but it is a special case of the more general Limits, Lemma 7.3. By Lemma 51.5 we see
that ξ maps to zero in Hq

étale(X ′
i ×X Z,M) for some i large enough. �

81. Absolutely integrally closed vanishing

Recall that we say a ringR is absolutely integrally closed if every monic polynomial overR
has a root in R (More on Algebra, Definition 14.1). In this section we prove that the étale
cohomology of Spec(R) with coefficients in a finite torsion group vanishes in positive
degrees (Proposition 81.5) thereby slightly improving the earlier Lemma 80.8. We suggest
the reader skip this section.

Lemma 81.1. Let A be a ring. Let a, b ∈ A such that aA+ bA = A and a mod bA is
a root of unity. Then there exists a monogenic extension A ⊂ B and an element y ∈ B
such that u = a− by is a unit.

Proof. Say an ≡ 1 mod bA. In particular ai is a unit modulo bmA for all i,m ≥ 1.
We claim there exist a1, . . . , an ∈ A such that

1 = an + a1a
n−1b+ a2a

n−2b2 + . . .+ anb
n

Namely, since 1− an ∈ bA we can find an element a1 ∈ A such that 1− an− a1a
n−1b ∈

b2A using the unit property of an−1 modulo bA. Next, we can find an element a2 ∈ A such
that 1−an−a1a

n−1b−a2a
n−2b2 ∈ b3A. And so on. Eventually we find a1, . . . , an−1 ∈

A such that 1− (an + a1a
n−1b+ a2a

n−2b2 + . . .+ an−1ab
n−1) ∈ bnA. This allows us

to find an ∈ A such that the displayed equality holds.

With a1, . . . , an as above we claim that setting

B = A[y]/(yn + a1y
n−1 + a2y

n−2 + . . .+ an)
works. Namely, suppose that q ⊂ B is a prime ideal lying over p ⊂ A. To get a contra-
diction assume u = a − by is in q. If b ∈ p then a 6∈ p as aA + bA = A and hence u
is not in q. Thus we may assume b 6∈ p, i.e., b 6∈ q. This implies that y mod q is equal to
a/b mod q. However, then we obtain

0 = yn+a1y
n−1+a2y

n−2+. . .+an = b−n(an+a1a
n−1b+a2a

n−2b2+. . .+anbn) = b−n

a contradiction. This finishes the proof. �

In order to explain the proof we need to introduce some group schemes. Fix a prime
number `. Let

A = Z[ζ] = Z[x]/(x`−1 + x`−2 + . . .+ 1)
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In other words A is the monogenic extension of Z generated by a primitive `th root of
unity ζ . We set

π = ζ − 1
A calculation (omitted) shows that ` is divisible by π`−1 in A. Our first group scheme
over A is

G = Spec(A[s, 1
πs+ 1])

with group law given by the comultiplication

µ : A[s, 1
πs+ 1] −→ A[s, 1

πs+ 1]⊗A A[s, 1
πs+ 1], s 7−→ πs⊗ s+ s⊗ 1 + 1⊗ s

With this choice we have
µ(πs+ 1) = (πs+ 1)⊗ (πs+ 1)

and hence we indeed have an A-algebra map as indicated. We omit the verification that
this indeed defines a group law. Our second group scheme over A is

H = Spec(A[t, 1
π`t+ 1])

with group law given by the comultiplication

µ : A[t, 1
π`t+ 1] −→ A[t, 1

π`t+ 1]⊗A A[t, 1
π`t+ 1], t 7−→ π`t⊗ t+ t⊗ 1 + 1⊗ t

The same verification as before shows that this defines a group law. Next, we observe that
the polynomial

Φ(s) = (πs+ 1)` − 1
π`

is in A[s] and of degree ` and monic in s. Namely, the coefficicient of si for 0 < i < ` is
equal to

(
`
i

)
πi−` and since π`−1 divides ` in A this is an element of A. We obtain a ring

map

A[t, 1
π`t+ 1] −→ A[s, 1

πs+ 1], t 7−→ Φ(s)

which the reader easily verifies is compatible with the comultiplications. Thus we get a
morphism of group schemes

f : G→ H

The following lemma in particular shows that this morphism is faithfully flat (in fact we
will see that it is finite étale surjective).

Lemma 81.2. We have

A[s, 1
πs+ 1] =

(
A[t, 1

π`t+ 1]
)

[s]/(Φ(s)− t)

In particular, the Hopf algebra of G is a monogenic extension of the Hopf algebra of H .

Proof. Follows from the discussion above and the shape of Φ(s). In particular, note
that using Φ(s) = t the element 1

π`t+1 becomes the element 1
(πs+1)` . �

Next, let us compute the kernel of f . Since the origin of H is given by t = 0 in H we
see that the kernel of f is given by Φ(s) = 0. Now observe that the A-valued points
σ0, . . . , σ`−1 of G given by

σi : s = ζi − 1
π

= ζi − 1
ζ − 1 = ζi−1 + ζi−2 + . . .+ 1, i = 0, 1, . . . , `− 1
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are certainly contained in Ker(f). Moreover, these are all pairwise distinct in all fibres of
G → Spec(A). Also, the reader computes that σi +G σj = σi+j mod `. Hence we find a
closed immersion of group schemes

Z/`Z
A
−→ Ker(f)

sending i to σi. However, by construction Ker(f) is finite flat over Spec(A) of degree `.
Hence we conclude that this map is an isomorphism. All in all we conclude that we have
a short exact sequence
(81.2.1) 0→ Z/`Z

A
→ G→ H → 0

of group schemes over A.

Lemma 81.3. Let R be an A-algebra which is absolutely integrally closed. Then
G(R)→ H(R) is surjective.

Proof. Let h ∈ H(R) correspond to the A-algebra map A[t, 1
π`t+1 ] → R sending

t to a ∈ A. Since Φ(s) is monic we can find b ∈ A with Φ(b) = a. By Lemma 81.2
sending s to b we obtain a unique A-algebra map A[s, 1

πs+1 ] → R compatible with the
map A[t, 1

π`t+1 ]→ R above. This in turn corresponds to an element g ∈ G(R) mapping
to h ∈ H(R). �

Lemma 81.4. LetR be anA-algebra which is absolutely integrally closed. Let I, J ⊂
R be ideals with I + J = R. There exists a g ∈ G(R) such that g mod I = σ0 and
g mod J = σ1.

Proof. Choose x ∈ I such that x ≡ 1 mod J . We may and do replace I by xR and
J by (x− 1)R. Then we are looking for an s ∈ R such that

(1) 1 + πs is a unit,
(2) s ≡ 0 mod xR, and
(3) s ≡ 1 mod (x− 1)R.

The last two conditions say that s = x+ x(x− 1)y for some y ∈ R. The first condition
says that 1 + πs = 1 + πx + πx(x − 1)y needs to be a unit of R. However, note that
1 + πx and πx(x − 1) generate the unit ideal of R and that 1 + πx is an `th root of 1
moduloπx(x−1)7. Thus we win by Lemma 81.1 and the fact thatR is absolutely integrally
closed. �

Proposition 81.5. Let R be an absolutely integrally closed ring. Let M be a finite
abelian group. Then Hi

étale(Spec(R),M) = 0 for i > 0.

Proof. Since any finite abelian group has a finite filtration whose subquotients are
cyclic of prime order, we may assume M = Z/`Z where ` is a prime number.
Observe that all local rings of R are strictly henselian, see More on Algebra, Lemma 14.7.
Furthermore, any localization ofR is also absolutely integrally closed by More on Algebra,
Lemma 14.3. Thus Lemma 80.2 tells us it suffices to show that the kernel of
H1
étale(D(f + g),Z/`Z) −→ H1

étale(D(f(f + g)),Z/`Z)⊕H1
étale(D(g(f + g)),Z/`Z)

is zero for any f, g ∈ R. After replacing R by Rf+g we reduce to the following claim:
given ξ ∈ H1

étale(Spec(R),Z/`Z) and an affine open covering Spec(R) = U ∪ V such
that ξ|U and ξ|V are trivial, then ξ = 0.

7Because 1 + πx is congruent to 1 modulo π, congruent to 1 modulo x, and congruent to 1 + π = ζ

modulo x− 1 and because we have (π) ∩ (x) ∩ (x− 1) = (πx(x− 1)) in A[x].
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Let A = Z[ζ] as above. Since Z ⊂ A is monogenic, we can find a ring map A→ R. From
now on we think ofR as anA-algebra and we think of Spec(R) as a scheme over Spec(A).
If we base change the short exact sequence (81.2.1) to Spec(R) and take étale cohomology
we obtain

G(R)→ H(R)→ H1
étale(Spec(R),Z/`Z)→ H1

étale(Spec(R), G)
Please keep this in mind during the rest of the proof.

Let τ ∈ Γ(U ∩ V,Z/`Z) be a section whose boundary in the Mayer-Vietoris sequence
(Lemma 50.1) gives ξ. For i = 0, 1, . . . , ` − 1 let Ai ⊂ U ∩ V be the open and closed
subset where τ has the value i mod `. Thus we have a finite disjoint union decomposition

U ∩ V = A0 q . . .qA`−1

such that τ is constant on each Ai. For i = 0, 1, . . . , `− 1 denote τi ∈ H0(U ∩ V,Z/`Z)
the element which is equal to 1 on Ai and equal to 0 on Aj for j 6= i. Then τ is a sum of
multiples of the τi8. Hence it suffices to show that the cohomology class corresponding to
τi is trivial. This reduces us to the case where τ takes only two distinct values, namely 1
and 0.

Assume τ takes only the values 1 and 0. Write

U ∩ V = AqB
where A is the locus where τ = 0 and B is the locus where τ = 1. Then A and B are
disjoint closed subsets. Denote A and B the closures of A and B in Spec(R). Then we
have a “banana”: namely we have

A ∩B = Z1 q Z2

with Z1 ⊂ U and Z2 ⊂ V disjoint closed subsets. Set T1 = Spec(R) \ V and T2 =
Spec(R) \U . Observe that Z1 ⊂ T1 ⊂ U , Z2 ⊂ T2 ⊂ V , and T1 ∩T2 = ∅. Topologically
we can write

Spec(R) = A ∪B ∪ T1 ∪ T2

We suggest drawing a picture to visualize this. In order to prove that ξ is zero, we may
and do replace R by its reduction (Proposition 45.4). Below, we think of A, A, B, B, T1,
T2 as reduced closed subschemes of Spec(R). Next, as scheme structures on Z1 and Z2 we
use

Z1 = A ∩ (B ∪ T1) and Z2 = A ∩ (B ∪ T2)
(scheme theoretic unions and intersections as in Morphisms, Definition 4.4).

DenoteX theG-torsor over Spec(R) corresponding to the image of ξ inH1(Spec(R), G).
IfX is trivial, then ξ comes from an element h ∈ H(R) (see exact sequence of cohomology
above). However, then by Lemma 81.3 the element h lifts to an element of G(R) and we
conclude ξ = 0 as desired. Thus our goal is to prove that X is trivial.

Recall that the embedding Z/`Z → G(R) sends i mod ` to σi ∈ G(R). Observe that A
is the spectrum of an absolutely integrally closed ring (namely a qotient ofR). By Lemma
81.4 we can find g ∈ G(A) with g|A∩Z1

= σ0 and g|A∩Z2
= σ1 (scheme theoretically).

Then we can define
(1) g1 ∈ G(U) which is g on A ∩ U , which is σ0 on B ∩ U , and σ0 on T1, and
(2) g2 ∈ G(V ) which is g on A ∩ V , which is σ1 on B ∩ V , and σ1 on T2.

8Modulo calculation errors we have τ =
∑

iτi.
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Namely, to find g1 as in (1) we glue the section σ0 on Ω = (B ∪ T1)∩U to the restriction
of the section g on Ω′ = A ∩ U . Note that U = Ω ∪ Ω′ (scheme theoretically) because
U is reduced and Ω ∩ Ω′ = Z1 (scheme theoretically) by our choice of Z1. Hence by
Morphisms, Lemma 4.6 we have that U is the pushout of Ω and Ω′ along Z1. Thus we can
find g1. Similarly for the existence of g2 in (2). Then we have

τ = g2|A∪B − g1|A∪B (addition in group law)

and we see that X is trivial thereby finishing the proof. �

82. Affine analog of proper base change

In this section we discuss a result by Ofer Gabber, see [?]. This was also proved by Roland
Huber, see [?]. We have already done some of the work needed for Gabber’s proof in
Section 80.

Lemma 82.1. Let X be an affine scheme. Let F be a torsion abelian sheaf on Xétale.
Let Z ⊂ X be a closed subscheme. Let ξ ∈ Hq

étale(Z,F|Z) for some q > 0. Then there
exists an injective map F → F ′ of torsion abelian sheaves on Xétale such that the image
of ξ in Hq

étale(Z,F ′|Z) is zero.

Proof. By Lemmas 73.2 and 51.4 we can find a map G → F with G a constructible
abelian sheaf and ξ coming from an element ζ of Hq

étale(Z,G|Z). Suppose we can find an
injective map G → G′ of torsion abelian sheaves on Xétale such that the image of ζ in
Hq
étale(Z,G′|Z) is zero. Then we can take F ′ to be the pushout

F ′ = G′ qG F

and we conclude the result of the lemma holds. (Observe that restriction to Z is exact,
so commutes with finite limits and colimits and moreover it commutes with arbitrary
colimits as a left adjoint to pushforward.) Thus we may assume F is constructible.

Assume F is constructible. By Lemma 74.4 it suffices to prove the result when F is of
the form f∗M where M is a finite abelian group and f : Y → X is a finite morphism of
finite presentation (such sheaves are still constructible by Lemma 73.9 but we won’t need
this). Since formation of f∗ commutes with any base change (Lemma 55.3) we see that the
restriction of f∗M to Z is equal to the pushforward ofM via Y ×X Z → Z. By the Leray
spectral sequence (Proposition 54.2) and vanishing of higher direct images (Proposition
55.2), we find

Hq
étale(Z, f∗M |Z) = Hq

étale(Y ×X Z,M).
By Lemma 80.9 we can find a finite surjective morphism Y ′ → Y of finite presentation
such that ξ maps to zero in Hq(Y ′ ×X Z,M). Denoting f ′ : Y ′ → X the composition
Y ′ → Y → X we claim the map

f∗M −→ f ′
∗M

is injective which finishes the proof by what was said above. To see the desired injectivity
we can look at stalks. Namely, if x : Spec(k)→ X is a geometric point, then

(f∗M)x =
⊕

f(y)=x
M

by Proposition 55.2 and similarly for the other sheaf. Since Y ′ → Y is surjective and
finite we see that the induced map on geometric points lifting x is surjective too and we
conclude. �
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The lemma above will take care of higher cohomology groups in Gabber’s result. The
following lemma will be used to deal with global sections.

Lemma 82.2. Let X be a quasi-compact and quasi-separated scheme. Let i : Z → X
be a closed immersion. Assume that

(1) for any sheaf F on XZar the map Γ(X,F)→ Γ(Z, i−1F) is bijective, and
(2) for any finite morphism X ′ → X assumption (1) holds for Z ×X X ′ → X ′.

Then for any sheaf F on Xétale we have Γ(X,F) = Γ(Z, i−1
smallF).

Proof. Let F be a sheaf on Xétale. There is a canonical (base change) map

i−1(F|XZar ) −→ (i−1
smallF)|ZZar

of sheaves on ZZar. We will show this map is injective by looking at stalks. The stalk
on the left hand side at z ∈ Z is the stalk of F|XZar at z. The stalk on the right hand
side is the colimit over all elementary étale neighbourhoods (U, u) → (X, z) such that
U ×X Z → Z has a section over a neighbourhood of z. As étale morphisms are open, the
image of U → X is an open neighbourhood U0 of z in X . The map F(U0) → F(U) is
injective by the sheaf condition for F with respect to the étale covering U → U0. Taking
the colimit over all U and U0 we obtain injectivity on stalks.

It follows from this and assumption (1) that the map Γ(X,F) → Γ(Z, i−1
smallF) is injec-

tive. By (2) the same thing is true on all X ′ finite over X .

Let s ∈ Γ(Z, i−1
smallF). By construction of i−1

smallF there exists an étale covering {Vj →
Z}, étale morphismsUj → X , sections sj ∈ F(Uj) and morphisms Vj → Uj overX such
that s|Vj is the pullback of sj . Observe that every nonempty closed subscheme T ⊂ X

meets Z by assumption (1) applied to the sheaf (T → X)∗Z for example. Thus we see
that

∐
Uj → X is surjective. By More on Morphisms, Lemma 45.7 we can find a finite

surjective morphismX ′ → X such thatX ′ → X Zariski locally factors through
∐
Uj →

X . It follows that s|Z′ Zariski locally comes from a section of F|X′ . In other words, s|Z′

comes from t′ ∈ Γ(X ′,F|X′) by assumption (2). By injectivity we conclude that the two
pullbacks of t′ to X ′ ×X X ′ are the same (after all this is true for the pullbacks of s to
Z ′ ×Z Z ′). Hence we conclude t′ comes from a section of F over X by Remark 55.6. �

Lemma 82.3. Let Z ⊂ X be a closed subset of a topological space X . Assume
(1) X is a spectral space (Topology, Definition 23.1), and
(2) for x ∈ X the intersection Z ∩ {x} is connected (in particular nonempty).

If Z = Z1 q Z2 with Zi closed in Z , then there exists a decomposition X = X1 q X2
with Xi closed in X and Zi = Z ∩Xi.

Proof. Observe that Zi is quasi-compact. Hence the set of points Wi specializing
to Zi is closed in the constructible topology by Topology, Lemma 24.7. Assumption (2)
implies that X = W1 qW2. Let x ∈ W1. By Topology, Lemma 23.6 part (1) there exists
a specialization x1  x with x1 ∈ W1. Thus {x} ⊂ {x1} and we see that x ∈ W1. In
other words, setting Xi = Wi does the job. �

Lemma 82.4. Let Z ⊂ X be a closed subset of a topological space X . Assume
(1) X is a spectral space (Topology, Definition 23.1), and
(2) for x ∈ X the intersection Z ∩ {x} is connected (in particular nonempty).

Then for any sheaf F on X we have Γ(X,F) = Γ(Z,F|Z).
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Proof. If x  x′ is a specialization of points, then there is a canonical map Fx′ →
Fx compatible with sections over opens and functorial in F . Since every point of X
specializes to a point of Z it follows that Γ(X,F)→ Γ(Z,F|Z) is injective. The difficult
part is to show that it is surjective.

Denote B be the set of all quasi-compact opens of X . Write F as a filtered colimit F =
colimFi where each Fi is as in Modules, Equation (19.2.1). See Modules, Lemma 19.2.
Then F|Z = colimFi|Z as restriction to Z is a left adjoint (Categories, Lemma 24.5 and
Sheaves, Lemma 21.8). By Sheaves, Lemma 29.1 the functors Γ(X,−) and Γ(Z,−) com-
mute with filtered colimits. Hence we may assume our sheaf F is as in Modules, Equation
(19.2.1).

Suppose that we have an embedding F ⊂ G. Then we have

Γ(X,F) = Γ(Z,F|Z) ∩ Γ(X,G)

where the intersection takes place in Γ(Z,G|Z). This follows from the first remark of the
proof because we can check whether a global section of G is in F by looking at the stalks
and because every point of X specializes to a point of Z.

By Modules, Lemma 19.4 there is an injection F →
∏

(Zi → X)∗Si where the product
is finite, Zi ⊂ X is closed, and Si is finite. Thus it suffices to prove surjectivity for the
sheaves (Zi → X)∗Si. Observe that

Γ(X, (Zi → X)∗Si) = Γ(Zi, Si) and Γ(X, (Zi → X)∗Si|Z) = Γ(Z ∩ Zi, Si)

Moreover, conditions (1) and (2) are inherited by Zi; this is clear for (2) and follows from
Topology, Lemma 23.5 for (1). Thus it suffices to prove the lemma in the case of a (finite)
constant sheaf. This case is a restatement of Lemma 82.3 which finishes the proof. �

Example 82.5. Lemma 82.4 is false if X is not spectral. Here is an example: Let Y be
a T1 topological space, and y ∈ Y a non-open point. Let X = Y q {x}, endowed with
the topology whose closed sets are ∅, {y}, and all F q {x}, where F is a closed subset of
Y . Then Z = {x, y} is a closed subset of X , which satisfies assumption (2) of Lemma
82.4. But X is connected, while Z is not. The conclusion of the lemma thus fails for the
constant sheaf with value {0, 1} on X .

Lemma 82.6. Let (A, I) be a henselian pair. Set X = Spec(A) and Z = Spec(A/I).
For any sheaf F on Xétale we have Γ(X,F) = Γ(Z,F|Z).

Proof. Recall that the spectrum of any ring is a spectral space, see Algebra, Lemma
26.2. By More on Algebra, Lemma 11.16 we see that {x}∩Z is connected for every x ∈ X .
By Lemma 82.4 we see that the statement is true for sheaves on XZar. For any finite
morphism X ′ → X we have X ′ = Spec(A′) and Z ×X X ′ = Spec(A′/IA′) with
(A′, IA′) a henselian pair, see More on Algebra, Lemma 11.8 and we get the same statement
for sheaves on (X ′)Zar. Thus we can apply Lemma 82.2 to conclude. �

Finally, we can state and prove Gabber’s theorem.

Theorem 82.7 (Gabber). Let (A, I) be a henselian pair. Set X = Spec(A) and
Z = Spec(A/I). For any torsion abelian sheaf F on Xétale we have Hq

étale(X,F) =
Hq
étale(Z,F|Z).

Proof. The result holds for q = 0 by Lemma 82.6. Let q ≥ 1. Suppose the result
has been shown in all degrees < q. Let F be a torsion abelian sheaf. Let F → F ′ be an
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injective map of torsion abelian sheaves (to be chosen later) with cokernel Q so that we
have the short exact sequence

0→ F → F ′ → Q→ 0
of torsion abelian sheaves onXétale. This gives a map of long exact cohomology sequences
over X and Z part of which looks like

Hq−1
étale(X,F ′)

��

// Hq−1
étale(X,Q)

��

// Hq
étale(X,F)

��

// Hq
étale(X,F ′)

��
Hq−1
étale(Z,F ′|Z) // Hq−1

étale(Z,Q|Z) // Hq
étale(Z,F|Z) // Hq

étale(Z,F ′|Z)

Using this commutative diagram of abelian groups with exact rows we will finish the
proof.

Injectivity for F . Let ξ be a nonzero element of Hq
étale(X,F). By Lemma 82.1 applied

with Z = X (!) we can find F ⊂ F ′ such that ξ maps to zero to the right. Then ξ is the
image of an element of Hq−1

étale(X,Q) and bijectivity for q − 1 implies ξ does not map to
zero in Hq

étale(Z,F|Z).

Surjectivity for F . Let ξ be an element of Hq
étale(Z,F|Z). By Lemma 82.1 applied with

Z = Z we can find F ⊂ F ′ such that ξ maps to zero to the right. Then ξ is the image
of an element of Hq−1

étale(Z,Q|Z) and bijectivity for q − 1 implies ξ is in the image of the
vertical map. �

Lemma 82.8. Let X be a scheme with affine diagonal which can be covered by n+ 1
affine opens. LetZ ⊂ X be a closed subscheme. LetA be a torsion sheaf of rings onXétale

and let I be an injective sheaf of A-modules on Xétale. Then Hq
étale(Z, I|Z) = 0 for

q > n.

Proof. We will prove this by induction on n. If n = 0, then X is affine. Say
X = Spec(A) and Z = Spec(A/I). Let Ah be the filtered colimit of étale A-algebras
B such that A/I → B/IB is an isomorphism. Then (Ah, IAh) is a henselian pair and
A/I = Ah/IAh, see More on Algebra, Lemma 12.1 and its proof. Set Xh = Spec(Ah).
By Theorem 82.7 we see that

Hq
étale(Z, I|Z) = Hq

étale(X
h, I|Xh)

By Theorem 51.3 we have

Hq
étale(X

h, I|Xh) = colimA→B H
q
étale(Spec(B), I|Spec(B))

where the colimit is over the A-algebras B as above. Since the morphisms Spec(B) →
Spec(A) are étale, the restriction I|Spec(B) is an injective sheaf ofA|Spec(B)-modules (Co-
homology on Sites, Lemma 7.1). Thus the cohomology groups on the right are zero and
we get the result in this case.

Induction step. We can use Mayer-Vietoris to do the induction step. Namely, suppose
thatX = U ∪V where U is a union of n affine opens and V is affine. Then, using that the
diagonal of X is affine, we see that U ∩ V is the union of n affine opens. Mayer-Vietoris
gives an exact sequence

Hq−1
étale(U ∩ V ∩Z, I|Z)→ Hq

étale(Z, I|Z)→ Hq
étale(U ∩Z, I|Z)⊕Hq

étale(V ∩Z, I|Z)
and by our induction hypothesis we obtain vanishing for q > n as desired. �
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83. Cohomology of torsion sheaves on curves

The goal of this section is to prove the basic finiteness and vanishing results for coho-
mology of torsion sheaves on curves, see Theorem 83.10. In Section 84 we will discuss
constructible sheaves of torsion modules over a Noetherian ring.

Situation 83.1. Here k is an algebraically closed field, X is a separated, finite type
scheme of dimension ≤ 1 over k, and F is a torsion abelian sheaf on Xétale.

In Situation 83.1 we want to prove the following statements
(1) Hq

étale(X,F) = 0 for q > 2,
(2) Hq

étale(X,F) = 0 for q > 1 if X is affine,
(3) Hq

étale(X,F) = 0 for q > 1 if p = char(k) > 0 and F is p-power torsion,
(4) Hq

étale(X,F) is finite if F is constructible and torsion prime to char(k),
(5) Hq

étale(X,F) is finite if X is proper and F constructible,
(6) Hq

étale(X,F)→ Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension k′/k

of algebraically closed fields if F is torsion prime to char(k),
(7) Hq

étale(X,F)→ Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension k′/k

of algebraically closed fields if X is proper,
(8) H2

étale(X,F)→ H2
étale(U,F) is surjective for all U ⊂ X open.

Given any Situation 83.1 we will say that “statements (1) – (8) hold” if those statements
that apply to the given situation are true. We start the proof with the following conse-
quence of our computation of cohomology with constant coefficients.

Lemma 83.2. In Situation 83.1 assume X is smooth and F = Z/`Z for some prime
number `. Then statements (1) – (8) hold for F .

Proof. Since X is smooth, we see that X is a finite disjoint union of smooth curves.
Hence we may assume X is a smooth curve.

Case I: ` different from the characteristic of k. This case follows from Lemma 69.1 (pro-
jective case) and Lemma 69.3 (affine case). Statement (6) on cohomology and extension
of algebraically closed ground field follows from the fact that the genus g and the num-
ber of “punctures” r do not change when passing from k to k′. Statement (8) follows as
H2
étale(U,F) is zero as soon as U 6= X , because then U is affine (Varieties, Lemmas 43.2

and 43.10).

Case II: ` is equal to the characteristic of k. Vanishing by Lemma 63.4. Statements (5) and
(7) follow from Lemma 63.5. �

Remark 83.3 (Invariance under extension of algebraically closed ground field). Let
k be an algebraically closed field of characteristic p > 0. In Section 63 we have seen that
there is an exact sequence

k[x]→ k[x]→ H1
étale(A1

k,Z/pZ)→ 0
where the first arrow maps f(x) to fp − f . A set of representatives for the cokernel is
formed by the polynomials ∑

p 6|n
λnx

n

with λn ∈ k. (If k is not algebraically closed you have to add some constants to this as
well.) In particular when k′/k is an algebraically closed extension, then the map

H1
étale(A1

k,Z/pZ)→ H1
étale(A1

k′ ,Z/pZ)
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is not an isomorphism in general. In particular, the map π1(A1
k′)→ π1(A1

k) between étale
fundamental groups (insert future reference here) is not an isomorphism either. Thus
the étale homotopy type of the affine line depends on the algebraically closed ground
field. From Lemma 83.2 above we see that this is a phenomenon which only happens in
characteristic p with p-power torsion coefficients.

Lemma 83.4. Let k be an algebraically closed field. Let X be a separated finite type
scheme over k of dimension ≤ 1. Let 0→ F1 → F → F2 → 0 be a short exact sequence
of torsion abelian sheaves onX . If statements (1) – (8) hold forF1 andF2, then they hold
for F .

Proof. This is mostly immediate from the definitions and the long exact sequence
of cohomology. Also observe that F is constructible (resp. of torsion prime to the charac-
teristic of k) if and only if both F1 and F2 are constructible (resp. of torsion prime to the
characteristic of k). See Proposition 74.1. Some details omitted. �

Lemma 83.5. Let k be an algebraically closed field. Let f : X → Y be a finite
morphism of separated finite type schemes over k of dimension ≤ 1. Let F be a torsion
abelian sheaf on X . If statements (1) – (8) hold for F , then they hold for f∗F .

Proof. Namely, we have Hq
étale(X,F) = Hq

étale(Y, f∗F) by the vanishing of Rqf∗
for q > 0 (Proposition 55.2) and the Leray spectral sequence (Cohomology on Sites,
Lemma 14.6). For (8) use that formation of f∗ commutes with arbitrary base change
(Lemma 55.3). �

Lemma 83.6. In Situation 83.1 assume F constructible. Let j : X ′ → X be the
inclusion of a dense open subscheme. Then statements (1) – (8) hold for F if and only if
they hold for j!j

−1F .

Proof. Since X ′ is dense, we see that Z = X \ X ′ has dimension 0 and hence is a
finite set Z = {x1, . . . , xn} of k-rational points. Consider the short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

of Lemma 70.8. Observe that Hq
étale(X, i∗i−1F) = Hq

étale(Z, i∗F). Namely, i : Z → X
is a closed immersion, hence finite, hence we have the vanishing of Rqi∗ for q > 0 by
Proposition 55.2, and hence the equality follows from the Leray spectral sequence (Coho-
mology on Sites, Lemma 14.6). SinceZ is a disjoint union of spectra of algebraically closed
fields, we conclude that Hq

étale(Z, i∗F) = 0 for q > 0 and

H0
étale(Z, i−1F) =

⊕
i=1,...,n

Fxi

which is finite as Fxi is finite due to the assumption that F is constructible. The long
exact cohomology sequence gives an exact sequence

0→ H0
étale(X, j!j

−1F)→ H0
étale(X,F)→ H0

étale(Z, i−1F)→ H1
étale(X, j!j

−1F)→ H1
étale(X,F)→ 0

and isomorphisms Hq
étale(X, j!j

−1F)→ Hq
étale(X,F) for q > 1.

At this point it is easy to deduce each of (1) – (8) holds for F if and only if it holds for
j!j

−1F . We make a few small remarks to help the reader: (a) if F is torsion prime to
the characteristic of k, then so is j!j

−1F , (b) the sheaf j!j
−1F is constructible, (c) we have

H0
étale(Z, i−1F) = H0

étale(Zk′ , i−1F|Zk′ ), and (d) ifU ⊂ X is an open, thenU ′ = U∩X ′

is dense in U . �
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Lemma 83.7. In Situation 83.1 assume X is smooth. Let j : U → X an open im-
mersion. Let ` be a prime number. Let F = j!Z/`Z. Then statements (1) – (8) hold for
F .

Proof. Since X is smooth, it is a disjoint union of smooth curves and hence we may
assumeX is a curve (i.e., irreducible). Then either U = ∅ and there is nothing to prove or
U ⊂ X is dense. In this case the lemma follows from Lemmas 83.2 and 83.6. �

Lemma 83.8. In Situation 83.1 assumeX reduced. Let j : U → X an open immersion.
Let ` be a prime number and F = j!Z/`Z. Then statements (1) – (8) hold for F .

Proof. The difference with Lemma 83.7 is that here we do not assume X is smooth.
Let ν : Xν → X be the normalization morphism. Then ν is finite (Varieties, Lemma
27.1) and Xν is smooth (Varieties, Lemma 43.8). Let jν : Uν → Xν be the inverse image
of U . By Lemma 83.7 the result holds for jν! Z/`Z. By Lemma 83.5 the result holds for
ν∗j

ν
! Z/`Z. In general it won’t be true that ν∗j

ν
! Z/`Z is equal to j!Z/`Z but we can work

around this as follows. As X is reduced the morphism ν : Xν → X is an isomorphism
over a dense open j′ : X ′ → X (Varieties, Lemma 27.1). Over this open we have agreement

(j′)−1(ν∗j
ν
! Z/`Z) = (j′)−1(j!Z/`Z)

Using Lemma 83.6 twice for j′ : X ′ → X and the sheaves above we conclude. �

Lemma 83.9. In Situation 83.1 assumeX reduced. Let j : U → X an open immersion
with U connected. Let ` be a prime number. Let G a finite locally constant sheaf of F`-
vector spaces on U . Let F = j!G. Then statements (1) – (8) hold for F .

Proof. Let f : V → U be a finite étale morphism of degree prime to ` as in Lemma
66.2. The discussion in Section 66 gives maps

G → f∗f
−1G → G

whose composition is an isomorphism. Hence it suffices to prove the lemma with F =
j!f∗f

−1G. By Zariski’s Main theorem (More on Morphisms, Lemma 43.3) we can choose
a diagram

V
j′
//

f

��

Y

f
��

U
j // X

with f : Y → X finite and j′ an open immersion with dense image. We may replace Y
by its reduction (this does not change V as V is reduced being étale over U ). Since f is
finite and V dense in Y we have V = U ×X Y . By Lemma 70.9 we have

j!f∗f
−1G = f∗j

′
!f

−1G
By Lemma 83.5 it suffices to consider j′

!f
−1G. The existence of the filtration given by

Lemma 66.2, the fact that j′
! is exact, and Lemma 83.4 reduces us to the case F = j′

!Z/`Z
which is Lemma 83.8. �

Theorem 83.10. If k is an algebraically closed field, X is a separated, finite type
scheme of dimension ≤ 1 over k, and F is a torsion abelian sheaf on Xétale, then

(1) Hq
étale(X,F) = 0 for q > 2,

(2) Hq
étale(X,F) = 0 for q > 1 if X is affine,

(3) Hq
étale(X,F) = 0 for q > 1 if p = char(k) > 0 and F is p-power torsion,
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(4) Hq
étale(X,F) is finite if F is constructible and torsion prime to char(k),

(5) Hq
étale(X,F) is finite if X is proper and F constructible,

(6) Hq
étale(X,F)→ Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension k′/k
of algebraically closed fields if F is torsion prime to char(k),

(7) Hq
étale(X,F)→ Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for any extension k′/k
of algebraically closed fields if X is proper,

(8) H2
étale(X,F)→ H2

étale(U,F) is surjective for all U ⊂ X open.

Proof. The theorem says that in Situation 83.1 statements (1) – (8) hold. Our first
step is to replaceX by its reduction, which is permissible by Proposition 45.4. By Lemma
73.2 we can writeF as a filtered colimit of constructible abelian sheaves. Taking cohomol-
ogy commutes with colimits, see Lemma 51.4. Moreover, pullback viaXk′ → X commutes
with colimits as a left adjoint. Thus it suffices to prove the statements for a constructible
sheaf.

In this paragraph we use Lemma 83.4 without further mention. WritingF = F1⊕. . .⊕Fr
where Fi is `i-primary for some prime `i, we may assume that `n kills F for some prime
`. Now consider the exact sequence

0→ F [`]→ F → F/F [`]→ 0.
Thus we see that it suffices to assume that F is `-torsion. This means that F is a con-
structible sheaf of F`-vector spaces for some prime number `.

By definition this means there is a dense open U ⊂ X such that F|U is finite locally
constant sheaf of F`-vector spaces. Since dim(X) ≤ 1 we may assume, after shrinking U ,
that U = U1 q . . .qUn is a disjoint union of irreducible schemes (just remove the closed
points which lie in the intersections of≥ 2 components of U ). By Lemma 83.6 we reduce
to the case F = j!G where G is a finite locally constant sheaf of F`-vector spaces on U .

Since we chose U = U1 q . . .q Un with Ui irreducible we have

j!G = j1!(G|U1)⊕ . . .⊕ jn!(G|Un)
where ji : Ui → X is the inclusion morphism. The case of ji!(G|Ui) is handled in Lemma
83.9. �

Theorem 83.11. Let X be a finite type, dimension 1 scheme over an algebraically
closed field k. Let F be a torsion sheaf on Xétale. Then

Hq
étale(X,F) = 0, ∀q ≥ 3.

If X affine then also H2
étale(X,F) = 0.

Proof. If X is separated, this follows immediately from the more precise Theorem
83.10. If X is nonseparated, choose an affine open covering X = X1 ∪ . . . ∪ Xn. By
induction on n we may assume the vanishing holds over U = X1 ∪ . . . ∪ Xn−1. Then
Mayer-Vietoris (Lemma 50.1) gives

H2
étale(U,F)⊕H2

étale(Xn,F)→ H2
étale(U ∩Xn,F)→ H3

étale(X,F)→ 0
However, since U ∩Xn is an open of an affine scheme and hence affine by our dimension
assumption, the group H2

étale(U ∩Xn,F) vanishes by Theorem 83.10. �

Lemma 83.12. Let k′/k be an extension of separably closed fields. Let X be a proper
scheme over k of dimension ≤ 1. Let F be a torsion abelian sheaf on X . Then the map
Hq
étale(X,F)→ Hq

étale(Xk′ ,F|Xk′ ) is an isomorphism for q ≥ 0.
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Proof. We have seen this for algebraically closed fields in Theorem 83.10. Given
k ⊂ k′ as in the statement of the lemma we can choose a diagram

k′ // k
′

k

OO

// k

OO

where k ⊂ k and k′ ⊂ k′ are the algebraic closures. Since k and k′ are separably closed the
field extensions k/k and k′

/k′ are algebraic and purely inseparable. In this case the mor-
phisms Xk → X and X

k
′ → Xk′ are universal homeomorphisms. Thus the cohomology

ofF may be computed onXk and the cohomology ofF|Xk′ may be computed onX
k

′ , see
Proposition 45.4. Hence we deduce the general case from the case of algebraically closed
fields. �

84. Cohomology of torsion modules on curves

In this section we repeat the arguments of Section 83 for constructible sheaves of modules
over a Noetherian ring which are torsion. We start with the most interesting step.

Lemma 84.1. Let Λ be a Noetherian ring, let M be a finite Λ-module which is anni-
hilated by an integer n > 0, let k be an algebraically closed field, and letX be a separated,
finite type scheme of dimension ≤ 1 over k. Then

(1) Hq
étale(X,M) is a finite Λ-module if n is prime to char(k),

(2) Hq
étale(X,M) is a finite Λ-module if X is proper.

Proof. If n = `n′ for some prime number `, then we get a short exact sequence
0 → M [`] → M → M ′ → 0 of finite Λ-modules and M ′ is annihilated by n′. This
produces a corresponding short exact sequence of constant sheaves, which in turn gives
rise to an exact sequence of cohomology modules

Hq
étale(X,M [n])→ Hq

étale(X,M)→ Hq
étale(X,M

′)
Thus, if we can show the result in case M is annihilated by a prime number, then by
induction on n we win.
Let ` be a prime number such that ` annihilates M . Then we can replace Λ by the F`-
algebra Λ/`Λ. Namely, the cohomology ofF as a sheaf of Λ-modules is the same as the co-
homology ofF as a sheaf of Λ/`Λ-modules, for example by Cohomology on Sites, Lemma
12.4.
Assume ` be a prime number such that ` annihilates M and Λ. Let us reduce to the case
where M is a finite free Λ-module. Namely, choose a short exact sequence

0→ N → Λ⊕m →M → 0
This determines an exact sequence

Hq
étale(X,Λ

⊕m)→ Hq
étale(X,M)→ Hq+1

étale(X,N)
By descending induction on q we get the result forM if we know the result for Λ⊕m. Here
we use that we know that our cohomology groups vanish in degrees> 2 by Theorem 83.10.
Let ` be a prime number and assume that ` annihilates Λ. It remains to show that the
cohomology groups Hq

étale(X,Λ) are finite Λ-modules. We will use a trick to show this;
the “correct” argument uses a coefficient theorem which we will show later. Choose a basis
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Λ =
⊕

i∈I F`ei such that e0 = 1 for some 0 ∈ I . The choice of this basis determines an
isomorphism

Λ =
⊕

F`ei
of sheaves on Xétale. Thus we see that

Hq
étale(X,Λ) = Hq

étale(X,
⊕

F`ei) =
⊕

Hq
étale(X,F`)ei

since taking cohomology overX commutes with direct sums by Theorem 51.3 (or Lemma
51.4 or Lemma 52.2). Since we already know that Hq

étale(X,F`) is a finite dimensional
F`-vector space (by Theorem 83.10), we see that Hq

étale(X,Λ) is free over Λ of the same
rank. Namely, given a basis ξ1, . . . , ξm of Hq

étale(X,F`) we see that ξ1e0, . . . , ξme0 form
a Λ-basis for Hq

étale(X,Λ). �

Lemma 84.2. Let Λ be a Noetherian ring, let k be an algebraically closed field, let
f : X → Y be a finite morphism of separated finite type schemes over k of dimension
≤ 1, and let F be a sheaf of Λ-modules on Xétale. If Hq

étale(X,F) is a finite Λ-module,
then so is Hq

étale(Y, f∗F).

Proof. Namely, we have Hq
étale(X,F) = Hq

étale(Y, f∗F) by the vanishing of Rqf∗
for q > 0 (Proposition 55.2) and the Leray spectral sequence (Cohomology on Sites,
Lemma 14.6). �

Lemma 84.3. Let Λ be a Noetherian ring, let k be an algebraically closed field, letX be
a separated finite type scheme over k of dimension≤ 1, letF be a constructible sheaf of Λ-
modules onXétale, and let j : X ′ → X be the inclusion of a dense open subscheme. Then
Hq
étale(X,F) is a finite Λ-module if and only if Hq

étale(X, j!j
−1F) is a finite Λ-module.

Proof. Since X ′ is dense, we see that Z = X \ X ′ has dimension 0 and hence is a
finite set Z = {x1, . . . , xn} of k-rational points. Consider the short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

of Lemma 70.8. Observe that Hq
étale(X, i∗i−1F) = Hq

étale(Z, i∗F). Namely, i : Z → X
is a closed immersion, hence finite, hence we have the vanishing of Rqi∗ for q > 0 by
Proposition 55.2, and hence the equality follows from the Leray spectral sequence (Coho-
mology on Sites, Lemma 14.6). SinceZ is a disjoint union of spectra of algebraically closed
fields, we conclude that Hq

étale(Z, i∗F) = 0 for q > 0 and

H0
étale(Z, i−1F) =

⊕
i=1,...,n

Fxi

which is a finite Λ-module Fxi is finite due to the assumption that F is a constructible
sheaf of Λ-modules. The long exact cohomology sequence gives an exact sequence

0→ H0
étale(X, j!j

−1F)→ H0
étale(X,F)→ H0

étale(Z, i−1F)→ H1
étale(X, j!j

−1F)→ H1
étale(X,F)→ 0

and isomorphisms H0
étale(X, j!j

−1F) → H0
étale(X,F) for q > 1. The lemma follows

easily from this. �

Lemma 84.4. Let Λ be a Noetherian ring, letM be a finite Λ-module which is annihi-
lated by an integer n > 0, let k be an algebraically closed field, let X be a separated, finite
type scheme of dimension ≤ 1 over k, and let j : U → X be an open immersion. Then

(1) Hq
étale(X, j!M) is a finite Λ-module if n is prime to char(k),

(2) Hq
étale(X, j!M) is a finite Λ-module if X is proper.
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Proof. Since dim(X) ≤ 1 there is an open V ⊂ X which is disjoint from U such
that X ′ = U ∪ V is dense open in X (details omitted). If j′ : X ′ → X denotes the
inclusion morphism, then we see that j!M is a direct summand of j′

!M . Hence it suffices
to prove the lemma in case U is open and dense inX . This case follows from Lemmas 84.3
and 84.1. �

Lemma 84.5. Let Λ be a Noetherian ring, let k be an algebraically closed field, letX be
a separated finite type scheme over k of dimension ≤ 1, and let 0→ F1 → F → F2 → 0
be a short exact sequence of sheaves of Λ-modules on Xétale. If Hq

étale(X,Fi), i = 1, 2
are finite Λ-modules then Hq

étale(X,F) is a finite Λ-module.

Proof. Immediate from the long exact sequence of cohomology. �

Lemma 84.6. Let Λ be a Noetherian ring, let k be an algebraically closed field, let X
be a separated, finite type scheme of dimension ≤ 1 over k, let j : U → X be an open
immersion with U connected, let ` be a prime number, let n > 0, and let G be a finite type,
locally constant sheaf of Λ-modules on Uétale annihilated by `n. Then

(1) Hq
étale(X, j!G) is a finite Λ-module if ` is prime to char(k),

(2) Hq
étale(X, j!G) is a finite Λ-module if X is proper.

Proof. Let f : V → U be a finite étale morphism of degree prime to ` as in Lemma
66.4. The discussion in Section 66 gives maps

G → f∗f
−1G → G

whose composition is an isomorphism. Hence it suffices to prove the finiteness ofHq
étale(X, j!f∗f

−1G).
By Zariski’s Main theorem (More on Morphisms, Lemma 43.3) we can choose a diagram

V
j′
//

f

��

Y

f
��

U
j // X

with f : Y → X finite and j′ an open immersion with dense image. Since f is finite and
V dense in Y we have V = U ×X Y . By Lemma 70.9 we have

j!f∗f
−1G = f∗j

′
!f

−1G
By Lemma 84.2 it suffices to consider j′

!f
−1G. The existence of the filtration given by

Lemma 66.4, the fact that j′
! is exact, and Lemma 84.5 reduces us to the case F = j′

!M for
a finite Λ-module M which is Lemma 84.4. �

Theorem 84.7. Let Λ be a Noetherian ring, let k be an algebraically closed field, let
X be a separated, finite type scheme of dimension≤ 1 over k, and let F be a constructible
sheaf of Λ-modules on Xétale which is torsion. Then

(1) Hq
étale(X,F) is a finite Λ-module if F is torsion prime to char(k),

(2) Hq
étale(X,F) is a finite Λ-module if X is proper.

Proof. without further mention. WriteF = F1⊕ . . .⊕Fr whereFi is annihilated
by `nii for some prime `i and integer ni > 0. By Lemma 84.5 it suffices to prove the
theorem for Fi. Thus we may and do assume that `n kills F for some prime ` and integer
n > 0.

Since F is constructible as a sheaf of Λ-modules, there is a dense open U ⊂ X such that
F|U is a finite type, locally constant sheaf of Λ-modules. Since dim(X) ≤ 1 we may
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assume, after shrinking U , that U = U1 q . . . q Un is a disjoint union of irreducible
schemes (just remove the closed points which lie in the intersections of ≥ 2 components
of U ). By Lemma 84.3 we reduce to the case F = j!G where G is a finite type, locally
constant sheaf of Λ-modules on U (and annihilated by `n).

Since we chose U = U1 q . . .q Un with Ui irreducible we have

j!G = j1!(G|U1)⊕ . . .⊕ jn!(G|Un)

where ji : Ui → X is the inclusion morphism. The case of ji!(G|Ui) is handled in Lemma
84.6. �

85. First cohomology of proper schemes

In Fundamental Groups, Section 9 we have seen, in some sense, that taking R1f∗G com-
mutes with base change if f : X → Y is a proper morphism and G is a finite group (not
necessarily commutative). In this section we deduce a useful consequence of these results.

Lemma 85.1. Let A be a henselian local ring. Let X be a proper scheme over A with
closed fibre X0. Let M be a finite abelian group. Then H1

étale(X,M) = H1
étale(X0,M).

Proof. By Cohomology on Sites, Lemma 4.3 an element of H1
étale(X,M) corre-

sponds to a M -torsor F on Xétale. Such a torsor is clearly a finite locally constant sheaf.
Hence F is representable by a scheme V finite étale over X , Lemma 64.4. Conversely,
a scheme V finite étale over X with an M -action which turns it into an M -torsor over
X gives rise to a cohomology class. The same translation between cohomology classes
over X0 and torsors finite étale over X0 holds. Thus the lemma is a consequence of the
equivalence of categories of Fundamental Groups, Lemma 9.1. �

The following technical lemma is a key ingredient in the proof of the proper base change
theorem. The argument works word for word for any proper scheme overAwhose special
fibre has dimension ≤ 1, but in fact the conclusion will be a consequence of the proper
base change theorem and we only need this particular version in its proof.

Lemma 85.2. LetA be a henselian local ring. LetX = P1
A. LetX0 ⊂ X be the closed

fibre. Let ` be a prime number. Let I be an injective sheaf of Z/`Z-modules on Xétale.
Then Hq

étale(X0, I|X0) = 0 for q > 0.

Proof. Observe thatX is a separated scheme which can be covered by 2 affine opens.
Hence for q > 1 this follows from Gabber’s affine variant of the proper base change theo-
rem, see Lemma 82.8. Thus we may assume q = 1. Let ξ ∈ H1

étale(X0, I|X0). Goal: show
that ξ is 0. By Lemmas 73.2 and 51.4 we can find a map F → I with F a constructible
sheaf of Z/`Z-modules and ξ coming from an element ζ ofH1

étale(X0,F|X0). Suppose we
have an injective mapF → F ′ of sheaves of Z/`Z-modules onXétale. Since I is injective
we can extend the given map F → I to a map F ′ → I . In this situation we may replace
F by F ′ and ζ by the image of ζ in H1

étale(X0,F ′|X0). Also, if F = F1 ⊕ F2 is a direct
sum, then we may replace F by Fi and ζ by the image of ζ in H1

étale(X0,Fi|X0).

By Lemma 74.4 and the remarks above we may assume F is of the form f∗M where M
is a finite Z/`Z-module and f : Y → X is a finite morphism of finite presentation (such
sheaves are still constructible by Lemma 73.9 but we won’t need this). Since formation of
f∗ commutes with any base change (Lemma 55.3) we see that the restriction of f∗M toX0
is equal to the pushforward of M via the induced morphism Y0 → X0 of special fibres.
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By the Leray spectral sequence (Proposition 54.2) and vanishing of higher direct images
(Proposition 55.2), we find

H1
étale(X0, f∗M |X0) = H1

étale(Y0,M).

Since Y → Spec(A) is proper we can use Lemma 85.1 to see that the H1
étale(Y0,M) is

equal to H1
étale(Y,M). Thus we see that our cohomology class ζ lifts to a cohomology

class
ζ̃ ∈ H1

étale(Y,M) = H1
étale(X, f∗M)

However, ζ̃ maps to zero in H1
étale(X, I) as I is injective and by commutativity of

H1
étale(X, f∗M) //

��

H1
étale(X, I)

��
H1
étale(X0, (f∗M)|X0) // H1

étale(X0, I|X0)

we conclude that the image ξ of ζ is zero as well. �

86. Preliminaries on base change

If you are interested in either the smooth base change theorem or the proper base change
theorem, you should skip directly to the corresponding sections. In this section and the
next few sections we consider commutative diagrams

X

f

��

Y
h
oo

e

��
S T

goo

of schemes; we usually assume this diagram is cartesian, i.e., Y = X×S T . A commutative
diagram as above gives rise to a commutative diagram

Xétale

fsmall

��

Yétale

esmall

��

hsmall

oo

Sétale Tétale
gsmalloo

of small étale sites. Let us use the notation

f−1 = f−1
small, g∗ = gsmall,∗, e−1 = e−1

small, and h∗ = hsmall,∗.

By Sites, Section 45 we get a base change or pullback map

f−1g∗F −→ h∗e
−1F

for a sheafF on Tétale. IfF is an abelian sheaf on Tétale, then we get a derived base change
map

f−1Rg∗F −→ Rh∗e
−1F

see Cohomology on Sites, Lemma 15.1. Finally, if K is an arbitrary object of D(Tétale)
there is a base change map

f−1Rg∗K −→ Rh∗e
−1K

see Cohomology on Sites, Remark 19.3.
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Lemma 86.1. Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Let {Ui → X} be an étale covering such that Ui → S factors as Ui → Vi → S with
Vi → S étale and consider the cartesian diagrams

Ui

fi

��

Ui ×X Y
hi

oo

ei

��
Vi Vi ×S T

gioo

Let F be a sheaf on Tétale. Let K in D(Tétale). Set Ki = K|Vi×ST and Fi = F|Vi×ST .
(1) If f−1

i gi,∗Fi = hi,∗e
−1
i Fi for all i, then f−1g∗F = h∗e

−1F .
(2) If f−1

i Rgi,∗Ki = Rhi,∗e
−1
i Ki for all i, then f−1Rg∗K = Rh∗e

−1K.
(3) IfF is an abelian sheaf and f−1

i Rqgi,∗Fi = Rqhi,∗e
−1
i Fi for all i, then f−1Rqg∗F =

Rqh∗e
−1F .

Proof. Proof of (1). First we observe that

(f−1g∗F)|Ui = f−1
i (g∗F|Vi) = f−1

i gi,∗Fi
The first equality because Ui → X → S is equal to Ui → Vi → S and the second equality
because g∗F|Vi = gi,∗Fi by Sites, Lemma 28.2. Similarly we have

(h∗e
−1F)|Ui = hi,∗(e−1F|Ui×XY ) = hi,∗e

−1
i Fi

Thus if the base change maps f−1
i gi,∗Fi → hi,∗e

−1
i Fi are isomorphisms for all i, then the

base change map f−1g∗F → h∗e
−1F restricts to an isomorphism over Ui for all i and we

conclude it is an isomorphism as {Ui → X} is an étale covering.

For the other two statements we replace the appeal to Sites, Lemma 28.2 by an appeal to
Cohomology on Sites, Lemma 20.4. �

Lemma 86.2. Consider a tower of cartesian diagrams of schemes

W

i

��

Z
j
oo

k
��

X

f

��

Y
h
oo

e

��
S T

goo

Let K in D(Tétale). If

f−1Rg∗K → Rh∗e
−1K and i−1Rh∗e

−1K → Rj∗k
−1e−1K

are isomorphisms, then (f ◦ i)−1Rg∗K → Rj∗(e ◦ k)−1K is an isomorphism. Similarly,
if F is an abelian sheaf on Tétale and if

f−1Rqg∗F → Rqh∗e
−1F and i−1Rqh∗e

−1F → Rqj∗k
−1e−1F

are isomorphisms, then (f ◦ i)−1Rqg∗F → Rqj∗(e ◦ k)−1F is an isomorphism.
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Proof. This is formal, provided one checks that the composition of these base change
maps is the base change maps for the outer rectangle, see Cohomology on Sites, Remark
19.5. �

Lemma 86.3. Let I be a directed set. Consider an inverse system of cartesian diagrams
of schemes

Xi

fi

��

Yi
hi

oo

ei

��
Si Ti

gioo

with affine transition morphisms and with gi quasi-compact and quasi-separated. SetX =
limXi, S = limSi, T = limTi and Y = lim Yi to obtain the cartesian diagram

X

f

��

Y
h
oo

e

��
S T

goo

Let (Fi, ϕi′i) be a system of sheaves on (Ti) as in Definition 51.1. Set F = colim p−1
i Fi

on T where pi : T → Ti is the projection. Then we have the following
(1) If f−1

i gi,∗Fi = hi,∗e
−1
i Fi for all i, then f−1g∗F = h∗e

−1F .
(2) If Fi is an abelian sheaf for all i and f−1

i Rqgi,∗Fi = Rqhi,∗e
−1
i Fi for all i, then

f−1Rqg∗F = Rqh∗e
−1F .

Proof. We prove (2) and we omit the proof of (1). We will use without further
mention that pullback of sheaves commutes with colimits as it is a left adjoint. Observe
that hi is quasi-compact and quasi-separated as a base change of gi. Denoting qi : Y → Yi
the projections, observe that e−1F = colim e−1p−1

i Fi = colim q−1
i e−1

i Fi. By Lemma
51.8 this gives

Rqh∗e
−1F = colim r−1

i Rqhi,∗e
−1
i Fi

where ri : X → Xi is the projection. Similarly, we have

f−1Rg∗F = f−1 colim s−1
i Rqgi,∗Fi = colim r−1

i f−1
i Rqgi,∗Fi

where si : S → Si is the projection. The lemma follows. �

Lemma 86.4. Let I , Xi, Yi, Si, Ti, fi, hi, ei, gi, X , Y , S , T , f , h, e, g be as in the
statement of Lemma 86.3. Let 0 ∈ I and let K0 ∈ D+(T0,étale). For i ∈ I , i ≥ 0
denoteKi the pullback ofK0 to Ti. DenoteK the pullback ofK0 to T . If f−1

i Rgi,∗Ki =
Rhi,∗e

−1
i Ki for all i ≥ 0, then f−1Rg∗K = Rh∗e

−1K.

Proof. It suffices to show that the base change map f−1Rg∗K → Rh∗e
−1K in-

duces an isomorphism on cohomology sheaves. In other words, we have to show that
f−1Rpg∗K → Rph∗e

−1K is an isomorphism for all p ∈ Z if we are given that f−1
i Rpgi,∗Ki →

Rphi,∗e
−1
i Ki is an isomorphism for all i ≥ 0 and p ∈ Z. At this point we can argue ex-

actly as in the proof of Lemma 86.3 replacing reference to Lemma 51.8 by a reference to
Lemma 52.4. �
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Lemma 86.5. Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

where g : T → S is quasi-compact and quasi-separated. Let F be an abelian sheaf on
Tétale. Let q ≥ 0. The following are equivalent

(1) For every geometric point x of X with image s = f(x) we have

Hq(Spec(OshX,x)×S T,F) = Hq(Spec(OshS,s)×S T,F)

(2) f−1Rqg∗F → Rqh∗e
−1F is an isomorphism.

Proof. Since Y = X ×S T we have Spec(OshX,x)×X Y = Spec(OshX,x)×S T . Thus
the map in (1) is the map of stalks at x for the map in (2) by Theorem 53.1 (and Lemma
36.2). Thus the result by Theorem 29.10. �

Lemma 86.6. Let f : X → S be a morphism of schemes. Let x be a geometric point
of X with image s in S. Let Spec(K) → Spec(OshS,s) be a morphism with K a separably
closed field. Let F be an abelian sheaf on Spec(K)étale. Let q ≥ 0. The following are
equivalent

(1) Hq(Spec(OshX,x)×S Spec(K),F) = Hq(Spec(OshS,s)×S Spec(K),F)
(2) Hq(Spec(OshX,x)×Spec(Osh

S,s
) Spec(K),F) = Hq(Spec(K),F)

Proof. Observe that Spec(K)×S Spec(OshS,s) is the spectrum of a filtered colimit of
étale algebras overK. SinceK is separably closed, each étaleK-algebra is a finite product
of copies of K. Thus we can write

Spec(K)×S Spec(OshS,s) = limi∈I
∐

a∈Ai
Spec(K)

as a cofiltered limit where each term is a disjoint union of copies of Spec(K) over a finite
setAi. Note thatAi is nonempty as we are given Spec(K)→ Spec(OshS,s). It follows that

Spec(OshX,x)×S Spec(K) = Spec(OshX,x)×Spec(Osh
S,s

)
(
Spec(OshS,s)×S Spec(K)

)
= limi∈I

∐
a∈Ai

Spec(OshX,x)×Spec(Osh
S,s

) Spec(K)

Since taking cohomology in our setting commutes with limits of schemes (Theorem 51.3)
we conclude. �

87. Base change for pushforward

This section is preliminary and should be skipped on a first reading. In this section we
discuss for what morphisms f : X → S we have f−1g∗ = h∗e

−1 on all sheaves (of sets)
for every cartesian diagram

X

f

��

Y
h
oo

e

��
S T

goo

with g quasi-compact and quasi-separated.
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Lemma 87.1. Consider the cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Assume that f is flat and every object U of Xétale has a covering {Ui → U} such that
Ui → S factors as Ui → Vi → S with Vi → S étale and Ui → Vi quasi-compact with
geometrically connected fibres. Then for any sheafF of sets on Tétale we have f−1g∗F =
h∗e

−1F .
Proof. Let U → X be an étale morphism such that U → S factors as U → V →

S with V → S étale and U → V quasi-compact with geometrically connected fibres.
Observe that U → V is flat (More on Flatness, Lemma 2.3). We claim that

f−1g∗F(U) = g∗F(V )
= F(V ×S T )
= e−1F(U ×X Y )
= h∗e

−1F(U)
Namely, thinking of U as an object of Xétale and V as an object of Sétale we see that the
first equality follows from Lemma 39.39. Thinking of V ×S T as an object of Tétale the
second equality follows from the definition of g∗. Observe that U ×X Y = U ×S T
(because Y = X×S T ) and hence U ×X Y → V ×S T has geometrically connected fibres
as a base change of U → V . Thinking of U ×X Y as an object of Yétale, we see that the
third equality follows from Lemma 39.3 as before. Finally, the fourth equality follows
from the definition of h∗.
Since by assumption every object of Xétale has an étale covering to which the argument
of the previous paragraph applies we see that the lemma is true. �

Lemma 87.2. Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

where f is flat and locally of finite presentation with geometrically reduced fibres. Then
f−1g∗F = h∗e

−1F for any sheaf F on Tétale.
Proof. Combine Lemma 87.1 with More on Morphisms, Lemma 46.3. �

Lemma 87.3. Consider the cartesian diagrams of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Assume that S is the spectrum of a separably closed field. Then f−1g∗F = h∗e
−1F for

any sheaf F on Tétale.
9Strictly speaking, we are also using that the restriction of f−1g∗F to Uétale is the pullback via U → V

of the restriction of g∗F to Vétale. See Sites, Lemma 28.2.
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Proof. We may work locally on X . Hence we may assume X is affine. Then we
can write X as a cofiltered limit of affine schemes of finite type over S. By Lemma 86.3
we may assume that X is of finite type over S. Then Lemma 87.1 applies because any
scheme of finite type over a separably closed field is a finite disjoint union of connected
and geometrically connected schemes (see Varieties, Lemma 7.6). �

Lemma 87.4. Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

Assume that
(1) f is flat and open,
(2) the residue fields of S are separably algebraically closed,
(3) given an étale morphismU → X withU affine we can writeU as a finite disjoint

union of open subschemes of X (for example if X is a normal integral scheme
with separably closed function field),

(4) any nonempty open of a fibre Xs of f is connected (for example if Xs is irre-
ducible or empty).

Then for any sheaf F of sets on Tétale we have f−1g∗F = h∗e
−1F .

Proof. Omitted. Hint: the assumptions almost trivially imply the condition of Lemma
87.1. The for example in part (3) follows from Lemma 80.4. �

The following lemma doesn’t really belong here but there does not seem to be a good place
for it anywhere.

Lemma 87.5. Let f : X → S be a morphism of schemes which is flat and lo-
cally of finite presentation with geometrically reduced fibres. Then f−1 : Sh(Sétale) →
Sh(Xétale) commutes with products.

Proof. Let I be a set and let Gi be a sheaf on Sétale for i ∈ I . Let U → X be an étale
morphism such that U → S factors as U → V → S with V → S étale and U → V flat
of finite presentation with geometrically connected fibres. Then we have

f−1(
∏
Gi)(U) = (

∏
Gi)(V )

=
∏
Gi(V )

=
∏

f−1Gi(U)

= (
∏

f−1Gi)(U)

where we have used Lemma 39.3 in the first and third equality (we are also using that the
restriction of f−1G to Uétale is the pullback via U → V of the restriction of G to Vétale,
see Sites, Lemma 28.2). By More on Morphisms, Lemma 46.3 every object U of Xétale has
an étale covering {Ui → U} such that the discussion in the previous paragraph applies to
Ui. The lemma follows. �

Lemma 87.6. Let f : X → S be a flat morphism of schemes such that for every
geometric point x of X the map

OshS,f(x) −→ O
sh
X,x
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has geometrically connected fibres. Then for every cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

with g quasi-compact and quasi-separated we have f−1g∗F = h∗e
−1F for any sheaf F

of sets on Tétale.

Proof. It suffices to check equality on stalks, see Theorem 29.10. By Theorem 53.1
we have

(h∗e
−1F)x = Γ(Spec(OshX,x)×X Y, e−1F)

and we have similarly

(f−1g−1
∗ F)x = (g−1

∗ F)f(x) = Γ(Spec(OshS,f(x))×S T,F)

These sets are equal by an application of Lemma 39.3 to the morphism

Spec(OshX,x)×X Y −→ Spec(OshS,f(x))×S T

which is a base change of Spec(OshX,x)→ Spec(OshS,f(x)) because Y = X ×S T . �

88. Base change for higher direct images

This section is the analogue of Section 87 for higher direct images. This section is prelim-
inary and should be skipped on a first reading.

Remark 88.1. Let f : X → S be a morphism of schemes. Let n be an integer. We
will say BC(f, n, q0) is true if for every commutative diagram

X

f

��

X ′oo

f ′

��

Y
h
oo

e

��
S S′oo T

goo

with X ′ = X ×S S′ and Y = X ′ ×S′ T and g quasi-compact and quasi-separated, and
every abelian sheaf F on Tétale annihilated by n the base change map

(f ′)−1Rqg∗F −→ Rqh∗e
−1F

is an isomorphism for q ≤ q0.

Lemma 88.2. With f : X → S and n as in Remark 88.1 assume for some q ≥ 1 we
have BC(f, n, q − 1). Then for every commutative diagram

X

f

��

X ′oo

f ′

��

Y
h
oo

e

��
S S′oo T

goo

with X ′ = X ×S S′ and Y = X ′ ×S′ T and g quasi-compact and quasi-separated, and
every abelian sheaf F on Tétale annihilated by n

(1) the base change map (f ′)−1Rqg∗F → Rqh∗e
−1F is injective,

(2) if F ⊂ G where G on Tétale is annihilated by n, then

Coker
(
(f ′)−1Rqg∗F → Rqh∗e

−1F
)
⊂ Coker

(
(f ′)−1Rqg∗G → Rqh∗e

−1G
)



88. BASE CHANGE FOR HIGHER DIRECT IMAGES 4795

(3) if in (2) the sheaf G is an injective sheaf of Z/nZ-modules, then
Coker

(
(f ′)−1Rqg∗F → Rqh∗e

−1F
)
⊂ Rqh∗e

−1G

Proof. Choose a short exact sequence 0→ F → I → Q → 0 where I is an injective
sheaf of Z/nZ-modules. Consider the induced diagram

(f ′)−1Rq−1g∗I

∼=
��

// (f ′)−1Rq−1g∗Q

∼=
��

// (f ′)−1Rqg∗F

��

// 0

��
Rq−1h∗e

−1I // Rq−1h∗e
−1Q // Rqh∗e

−1F // Rqh∗e
−1I

with exact rows. We have the zero in the right upper corner as I is injective. The left two
vertical arrows are isomorphisms by BC(f, n, q − 1). We conclude that part (1) holds.
The above also shows that

Coker
(
(f ′)−1Rqg∗F → Rqh∗e

−1F
)
⊂ Rqh∗e

−1I
hence part (3) holds. To prove (2) choose F ⊂ G ⊂ I . �

Lemma 88.3. With f : X → S and n as in Remark 88.1 assume for some q ≥ 1 we
have BC(f, n, q − 1). Consider commutative diagrams

X

f

��

X ′

f ′

��

oo Y
h
oo

e

��

Y ′
π′
oo

e′

��
S S′oo T

goo T ′πoo

and

X ′

f ′

��

Y ′
h′=h◦π′

oo

e′

��
S′ T ′g′=g◦πoo

where all squares are cartesian, g quasi-compact and quasi-separated, and π is integral sur-
jective. Let F be an abelian sheaf on Tétale annihilated by n and set F ′ = π−1F . If the
base change map

(f ′)−1Rqg′
∗F ′ −→ Rqh′

∗(e′)−1F ′

is an isomorphism, then the base change map (f ′)−1Rqg∗F → Rqh∗e
−1F is an isomor-

phism.

Proof. Observe that F → π∗π
−1F ′ is injective as π is surjective (check on stalks).

Thus by Lemma 88.2 we see that it suffices to show that the base change map

(f ′)−1Rqg∗π∗F ′ −→ Rqh∗e
−1π∗F ′

is an isomorphism. This follows from the assumption because we have Rqg∗π∗F ′ =
Rqg′

∗F ′, we have e−1π∗F ′ = π′
∗(e′)−1F ′, and we haveRqh∗π

′
∗(e′)−1F ′ = Rqh′

∗(e′)−1F ′.
This follows from Lemmas 55.4 and 43.5 and the relative leray spectral sequence (Coho-
mology on Sites, Lemma 14.7). �

Lemma 88.4. With f : X → S and n as in Remark 88.1 assume for some q ≥ 1 we
have BC(f, n, q − 1). Consider commutative diagrams

X

f

��

X ′

f ′

��

oo X ′′
π′
oo

f ′′

��

Y
h′
oo

e

��
S S′oo S′′πoo T

g′
oo

and

X ′

f ′

��

Y
h=h′◦π′

oo

e

��
S′ T

g=g′◦πoo

where all squares are cartesian, g′ quasi-compact and quasi-separated, and π is integral. Let
F be an abelian sheaf on Tétale annihilated by n. If the base change map

(f ′)−1Rqg∗F −→ Rqh∗e
−1F
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is an isomorphism, then the base change map (f ′′)−1Rqg′
∗F → Rqh′

∗e
−1F is an isomor-

phism.

Proof. Sinceπ andπ′ are integral we haveRπ∗ = π∗ andRπ′
∗ = π′

∗, see Lemma 43.5.
We also have (f ′)−1π∗ = π′

∗(f ′′)−1. Thus we see that π′
∗(f ′′)−1Rqg′

∗F = (f ′)−1Rqg∗F
and π′

∗R
qh′

∗e
−1F = Rqh∗e

−1F . Thus the assumption means that our map becomes an
isomorphism after applying the functor π′

∗. Hence we see that it is an isomorphism by
Lemma 43.5. �

Lemma 88.5. Let T be a quasi-compact and quasi-separated scheme. Let P be a prop-
erty for quasi-compact and quasi-separated schemes over T . Assume

(1) If T ′′ → T ′ is a thickening of quasi-compact and quasi-separated schemes over
T , then P (T ′′) if and only if P (T ′).

(2) IfT ′ = limTi is a limit of an inverse system of quasi-compact and quasi-separated
schemes over T with affine transition morphisms and P (Ti) holds for all i, then
P (T ′) holds.

(3) If Z ⊂ T ′ is a closed subscheme with quasi-compact complement V ⊂ T ′ and
P (T ′) holds, then either P (V ) or P (Z) holds.

Then P (T ) implies P (Spec(K)) for some morphism Spec(K)→ T where K is a field.

Proof. Consider the setT of closed subschemes T ′ ⊂ T such thatP (T ′). By assump-
tion (2) this set has a minimal element, say T ′. By assumption (1) we see that T ′ is reduced.
Let η ∈ T ′ be the generic point of an irreducible component of T ′. Then η = Spec(K) for
some field K and η = limV where the limit is over the affine open subschemes V ⊂ T ′

containing η. By assumption (3) and the minimality of T ′ we see that P (V ) holds for all
these V . Hence P (η) by (2) and the proof is complete. �

Lemma 88.6. With f : X → S and n as in Remark 88.1 assume for some q ≥ 1 we
have that BC(f, n, q− 1) is true, but BC(f, n, q) is not. Then there exist a commutative
diagram

X

f

��

X ′

f ′

��

oo Y
h

oo

e

��
S S′oo Spec(K)goo

where X ′ = X ×S S′, Y = X ′ ×S′ Spec(K), K is a field, and F is an abelian sheaf on
Spec(K) annihilated by n such that (f ′)−1Rqg∗F → Rqh∗e

−1F is not an isomorphism.

Proof. Choose a commutative diagram

X

f

��

X ′oo

f ′

��

Y
h
oo

e

��
S S′oo T

goo

with X ′ = X ×S S′ and Y = X ′ ×S′ T and g quasi-compact and quasi-separated, and an
abelian sheafF onTétale annihilated byn such that the base change map (f ′)−1Rqg∗F →
Rqh∗e

−1F is not an isomorphism. Of course we may and do replace S′ by an affine
open of S′; this implies that T is quasi-compact and quasi-separated. By Lemma 88.2
we see (f ′)−1Rqg∗F → Rqh∗e

−1F is injective. Pick a geometric point x of X ′ and
an element ξ of (Rqh∗q

−1F)x which is not in the image of the map ((f ′)−1Rqg∗F)x →
(Rqh∗e

−1F)x.



88. BASE CHANGE FOR HIGHER DIRECT IMAGES 4797

Consider a morphism π : T ′ → T with T ′ quasi-compact and quasi-separated and denote
F ′ = π−1F . Denote π′ : Y ′ = Y ×T T ′ → Y the base change of π and e′ : Y ′ → T ′ the
base change of e. Picture

X ′

f ′

��

Y
h
oo

e

��

Y ′
π′
oo

e′

��
S′ T

goo T ′πoo

and

X ′

f ′

��

Y ′
h′=h◦π′

oo

e′

��
S′ T ′g′=g◦πoo

Using pullback maps we obtain a canonical commutative diagram

(f ′)−1Rqg∗F //

��

(f ′)−1Rqg′
∗F ′

��
Rqh∗e

−1F // Rqh′
∗(e′)−1F ′

of abelian sheaves on X ′. Let P (T ′) be the property
• The image ξ′ of ξ in (Rh′

∗(e′)−1F ′)x is not in the image of the map (f−1Rqg′
∗F ′)x →

(Rqh′
∗(e′)−1F ′)x.

We claim that hypotheses (1), (2), and (3) of Lemma 88.5 hold for P which proves our
lemma.

Condition (1) of Lemma 88.5 holds for P because the étale topology of a scheme and a
thickening of the scheme is the same. See Proposition 45.4.

Suppose that I is a directed set and that Ti is an inverse system over I of quasi-compact
and quasi-separated schemes over T with affine transition morphisms. Set T ′ = limTi.
Denote F ′ and Fi the pullback of F to T ′, resp. Ti. Consider the diagrams

X

f ′

��

Y
h
oo

e

��

Yi
π′
i

oo

ei

��
S T

goo Ti
πioo

and

X

f ′

��

Yi
hi=h◦π′

i

oo

ei

��
S Ti

gi=g◦πioo

as in the previous paragraph. It is clear that F ′ on T ′ is the colimit of the pullbacks of Fi
to T ′ and that (e′)−1F ′ is the colimit of the pullbacks of e−1

i Fi to Y ′. By Lemma 51.8 we
have

Rqh′
∗(e′)−1F ′ = colimRqhi,∗e

−1
i Fi and (f ′)−1Rqg′

∗F ′ = colim(f ′)−1Rqgi,∗Fi

It follows that if P (Ti) is true for all i, then P (T ′) holds. Thus condition (2) of Lemma
88.5 holds for P .

The most interesting is condition (3) of Lemma 88.5. Assume T ′ is a quasi-compact and
quasi-separated scheme over T such that P (T ′) is true. Let Z ⊂ T ′ be a closed subscheme
with complement V ⊂ T ′ quasi-compact. Consider the diagram

Y ′ ×T ′ Z

eZ

��

i′
// Y ′

e′

��

Y ′ ×T ′ V
j′

oo

eV

��
Z

i // T ′ V
joo
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Choose an injective map j−1F ′ → J where J is an injective sheaf of Z/nZ-modules on
V . Looking at stalks we see that the map

F ′ → G = j∗J ⊕ i∗i−1F ′

is injective. Thus ξ′ maps to a nonzero element of

Coker
(
((f ′)−1Rqg′

∗G)x → (Rqh′
∗(e′)−1G)x

)
=

Coker
(
((f ′)−1Rqg′

∗j∗J )x → (Rqh′
∗(e′)−1j∗J )x

)
⊕

Coker
(
((f ′)−1Rqg′

∗i∗i
−1F ′)x → (Rqh′

∗(e′)−1i∗i
−1F ′)x

)
by part (2) of Lemma 88.2. If ξ′ does not map to zero in the second summand, then we use

(f ′)−1Rqg′
∗i∗i

−1F ′ = (f ′)−1Rq(g′ ◦ i)∗i
−1F ′

(because Ri∗ = i∗ by Proposition 55.2) and

Rqh′
∗(e′)−1i∗i

−1F = Rqh′
∗i

′
∗e

−1
Z i−1F = Rq(h′ ◦ i′)∗e

−1
Z i−1F ′

(first equality by Lemma 55.3 and the second becauseRi′∗ = i′∗ by Proposition 55.2) to we
see that we have P (Z). Finally, suppose ξ′ does not map to zero in the first summand. We
have

(e′)−1j∗J = j′
∗e

−1
V J and Raj′

∗e
−1
V J = 0, a = 1, . . . , q − 1

by BC(f, n, q − 1) applied to the diagram

X

f

��

Y ′oo

e′

��

Y
j′
oo

eV

��
S T ′oo V

joo

and the fact that J is injective. By the relative Leray spectral sequence for h′ ◦ j′ (Coho-
mology on Sites, Lemma 14.7) we deduce that

Rqh′
∗(e′)−1j∗J = Rqh′

∗j
′
∗e

−1
V J −→ Rq(h′ ◦ j′)∗e

−1
V J

is injective. Thus ξ maps to a nonzero element of (Rq(h′ ◦ j′)∗e
−1
V J )x. Applying part (3)

of Lemma 88.2 to the injection j−1F ′ → J we conclude that P (V ) holds. �

Lemma 88.7. With f : X → S and n as in Remark 88.1 assume for some q ≥ 1 we
have that BC(f, n, q− 1) is true, but BC(f, n, q) is not. Then there exist a commutative
diagram

X

f

��

X ′

��

oo Y
h

oo

��
S S′oo Spec(K)oo

with both squares cartesian, where
(1) S′ is affine, integral, and normal with algebraically closed function field,
(2) K is algebraically closed and Spec(K) → S′ is dominant (in other words K is

an extension of the function field of S′)
and there exists an integer d|n such that Rqh∗(Z/dZ) is nonzero.

Conversely, nonvanishing of Rqh∗(Z/dZ) in the lemma implies BC(f, n, q) isn’t true as
Lemma 80.5 shows that Rq(Spec(K)→ S′)∗Z/dZ = 0.
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Proof. First choose a diagram and F as in Lemma 88.6. We may and do assume S′

is affine (this is obvious, but see proof of the lemma in case of doubt). By Lemma 88.3
we may assume K is algebraically closed. Then F corresponds to a Z/nZ-module. Such
a modules is a direct sum of copies of Z/dZ for varying d|n hence we may assume F is
constant with value Z/dZ. By Lemma 88.4 we may replace S′ by the normalization of S′

in Spec(K) which finishes the proof. �

89. Smooth base change

In this section we prove the smooth base change theorem.

Lemma 89.1. Let K/k be an extension of fields. Let X be a smooth affine curve over
k with a rational point x ∈ X(k). Let F be an abelian sheaf on Spec(K) annihilated by
an integer n invertible in k. Let q > 0 and

ξ ∈ Hq(XK , (XK → Spec(K))−1F)
There exist

(1) finite extensions K ′/K and k′/k with k′ ⊂ K ′,
(2) a finite étale Galois cover Z → Xk′ with group G

such that the order of G divides a power of n, such that Z → Xk′ is split over xk′ , and
such that ξ dies in Hq(ZK′ , (ZK′ → Spec(K))−1F).

Proof. For q > 1 we know that ξ dies in Hq(XK , (XK → Spec(K))−1F) (Theo-
rem 83.10). By Lemma 51.5 we see that this means there is a finite extension K ′/K such
that ξ dies in Hq(XK′ , (XK′ → Spec(K))−1F). Thus we can take k′ = k and Z = X
in this case.

Assume q = 1. Recall that F corresponds to a discrete module M with continuous GalK -
action, see Lemma 59.1. Since M is n-torsion, it is the uninon of finite GalK -stable sub-
groups. Thus we reduce to the case where M is a finite abelian group annihilated by n,
see Lemma 51.4. After replacing K by a finite extension we may assume that the action
of GalK on M is trivial. Thus we may assume F = M is the constant sheaf with value a
finite abelian group M annihilated by n.

We can write M as a direct sum of cyclic groups. Any two finite étale Galois coverings
whose Galois groups have order invertible in k, can be dominated by a third one whose
Galois group has order invertible in k (Fundamental Groups, Section 7). Thus it suffices
to prove the lemma when M = Z/dZ where d|n.

Assume M = Z/dZ where d|n. In this case ξ = ξ|X
K

is an element of

H1(Xk,Z/dZ) = H1(XK ,Z/dZ)
See Theorem 83.10. This group classifies Z/dZ-torsors, see Cohomology on Sites, Lemma
4.3. The torsor corresponding to ξ (viewed as a sheaf on Xk,étale) in turn gives rise to a
finite étale morphism T → Xk endowed an action of Z/dZ transitive on the fibre of T
over xk , see Lemma 64.4. Choose a connected component T ′ ⊂ T (if ξ has order d, then T
is already connected). Then T ′ → Xk is a finite étale Galois cover whose Galois group is a
subgroup G ⊂ Z/dZ (small detail omitted). Moreover the element ξ maps to zero under
the map H1(Xk,Z/dZ)→ H1(T ′,Z/dZ) as this is one of the defining properties of T .

Next, we use a limit argument to choose a finite extension k′/k contained in k such that
T ′ → Xk descends to a finite étale Galois cover Z → Xk′ with group G. See Limits,
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Lemmas 10.1, 8.3, and 8.10. After increasing k′ we may assume that Z splits over xk′ . The
image of ξ in H1(ZK ,Z/dZ) is zero by construction. Thus by Lemma 51.5 we can find a
finite subextension K/K ′/K containing k′ such that ξ dies in H1(ZK′ ,Z/dZ) and this
finishes the proof. �

Theorem 89.2 (Smooth base change). Consider a cartesian diagram of schemes

X

f

��

Y
h
oo

e

��
S T

goo

where f is smooth and g quasi-compact and quasi-separated. Then

f−1Rqg∗F = Rqh∗e
−1F

for any q and any abelian sheaf F on Tétale all of whose stalks at geometric points are
torsion of orders invertible on S.

First proof of smooth base change. This proof is very long but more direct (us-
ing less general theory) than the second proof given below.

The theorem is local on Xétale. More precisely, suppose we have U → X étale such that
U → S factors as U → V → S with V → S étale. Then we can consider the cartesian
square

U

f ′

��

U ×X Y
h′

oo

e′

��
V V ×S T

g′
oo

and setting F ′ = F|V×ST we have f−1Rqg∗F|U = (f ′)−1Rqg′
∗F ′ and Rqh∗e

−1F|U =
Rqh′

∗(e′)−1F ′ (as follows from the compatibility of localization with morphisms of sites,
see Sites, Lemma 28.2 and and Cohomology on Sites, Lemma 20.4). Thus it suffices to
produce an étale covering of X by U → X and factorizations U → V → S as above such
that the theorem holds for the diagram with f ′, h′, g′, e′.

By the local structure of smooth morphisms, see Morphisms, Lemma 36.20, we may assume
X and S are affine and X → S factors through an étale morphism X → Ad

S . If we have
a tower of cartesian diagrams

W

i

��

Z
j
oo

k
��

X

f

��

Y
h
oo

e

��
S T

goo

and the theorem holds for the bottom and top squares, then the theorem holds for the
outer rectangle; this is formal. Writing X → S as the composition

X → Ad−1
S → Ad−2

S → . . .→ A1
S → S

we conclude that it suffices to prove the theorem whenX and S are affine andX → S has
relative dimension 1.
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For every n ≥ 1 invertible on S , let F [n] be the subsheaf of sections of F annihilated
by n. Then F = colimF [n] by our assumption on the stalks of F . The functors e−1

and f−1 commute with colimits as they are left adjoints. The functors Rqh∗ and Rqg∗
commute with filtered colimits by Lemma 51.7. Thus it suffices to prove the theorem for
F [n]. From now on we fix an integer n, we work with sheaves of Z/nZ-modules and we
assume S is a scheme over Spec(Z[1/n]).
Next, we reduce to the case where T is affine. Since g is quasi-compact and quasi-separate
and S is affine, the scheme T is quasi-compact and quasi-separated. Thus we can use the
induction principle of Cohomology of Schemes, Lemma 4.1. Hence it suffices to show that
if T = W ∪W ′ is an open covering and the theorem holds for the squares

X

��

e−1(W )
i

oo

��
S W

aoo

X

��

e−1(W ′)
j

oo

��
S W ′boo

X

��

e−1(W ∩W ′)
k
oo

��
S W ∩W ′coo

then the theorem holds for the original diagram. To see this we consider the diagram

f−1Rq−1c∗F|W∩W ′

∼=
��

// f−1Rqg∗F

��

// f−1Rqa∗F|W ⊕ f−1Rqb∗F|W ′

∼=
��

Rqk∗e
−1F|e−1(W∩W ′) // Rqh∗e

−1F // Rqi∗e−1F|e−1(W ) ⊕Rqj∗e
−1F|e−1(W ′)

whose rows are the long exact sequences of Lemma 50.2. Thus the 5-lemma gives the
desired conclusion.
Summarizing, we may assume S , X , T , and Y affine, F is n torsion, X → S is smooth
of relative dimension 1, and S is a scheme over Z[1/n]. We will prove the theorem by
induction on q. The base case q = 0 is handled by Lemma 87.2. Assume q > 0 and the
theorem holds for all smaller degrees. Choose a short exact sequence 0 → F → I →
Q → 0 where I is an injective sheaf of Z/nZ-modules. Consider the induced diagram

f−1Rq−1g∗I

∼=
��

// f−1Rq−1g∗Q

∼=
��

// f−1Rqg∗F

��

// 0

��
Rq−1h∗e

−1I // Rq−1h∗e
−1Q // Rqh∗e

−1F // Rqh∗e
−1I

with exact rows. We have the zero in the right upper corner as I is injective. The left two
vertical arrows are isomorphisms by induction hypothesis. Thus it suffices to prove that
Rqh∗e

−1I = 0.
Write S = Spec(A) and T = Spec(B) and say the morphism T → S is given by the
ring map A → B. We can write A → B = colimi∈I(Ai → Bi) as a filtered colimit of
maps of rings of finite type over Z[1/n] (see Algebra, Lemma 127.14). For i ∈ I we set
Si = Spec(Ai) and Ti = Spec(Bi). For i large enough we can find a smooth morphism
Xi → Si of relative dimension 1 such that X = Xi ×Si S , see Limits, Lemmas 10.1, 8.9,
and 18.4. Set Yi = Xi ×Si Ti to get squares

Xi

fi

��

Yi
hi

oo

ei

��
Si Ti

gioo
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Observe that Ii = (T → Ti)∗I is an injective sheaf of Z/nZ-modules on Ti, see Coho-
mology on Sites, Lemma 14.2. We have I = colim(T → Ti)−1Ii by Lemma 51.9. Pulling
back by e we get e−1I = colim(Y → Yi)−1e−1

i Ii. By Lemma 51.8 applied to the system
of morphisms Yi → Xi with limit Y → X we have

Rqh∗e
−1I = colim(X → Xi)−1Rqhi,∗e

−1
i Ii

This reduces us to the case where T and S are affine of finite type over Z[1/n].

Summarizing, we have an integer q ≥ 1 such that the theorem holds in degrees < q, the
schemes S and T affine of finite type type over Z[1/n], we haveX → S smooth of relative
dimension 1 with X affine, and I is an injective sheaf of Z/nZ-modules and we have to
show that Rqh∗e

−1I = 0. We will do this by induction on dim(T ).

The base case is T = ∅, i.e., dim(T ) < 0. If you don’t like this, you can take as your base
case the case dim(T ) = 0. In this case T → S is finite (in fact even T → Spec(Z[1/n]) is
finite as the target is Jacobson; details omitted), so h is finite too and hence has vanishing
higher direct images (see references below).

Assume dim(T ) = d ≥ 0 and we know the result for all situations where T has lower
dimension. Pick U affine and étale over X and a section ξ of Rqh∗q

−1I over U . We
have to show that ξ is zero. Of course, we may replace X by U (and correspondingly
Y by U ×X Y ) and assume ξ ∈ H0(X,Rqh∗e

−1I). Moreover, since Rqh∗e
−1I is a

sheaf, it suffices to prove that ξ is zero locally on X . Hence we may replace X by the
members of an étale covering. In particular, using Lemma 51.6 we may assume that ξ is
the image of an element ξ̃ ∈ Hq(Y, e−1I). In terms of ξ̃ our task is to show that ξ̃ dies in
Hq(Ui ×X Y, e−1I) for some étale covering {Ui → X}.

By More on Morphisms, Lemma 38.8 we may assume thatX → S factors asX → V → S
where V → S is étale and X → V is a smooth morphism of affine schemes of relative
dimension 1, has a section, and has geometrically connected fibres. Observe that dim(V ×S
T ) ≤ dim(T ) = d for example by More on Algebra, Lemma 44.2. Hence we may then
replace S by V and T by V ×S T (exactly as in the discussion in the first paragraph of
the proof). Thus we may assumeX → S is smooth of relative dimension 1, geometrically
connected fibres, and has a section σ : S → X .

Let π : T ′ → T be a finite surjective morphism. We will use below that dim(T ′) ≤
dim(T ) = d, see Algebra, Lemma 112.3. Choose an injective map π−1I → I ′ into an
injective sheaf of Z/nZ-modules. Then I → π∗I ′ is injective and hence has a splitting
(as I is an injective sheaf of Z/nZ-modules). Denote π′ : Y ′ = Y ×T T ′ → Y the base
change of π and e′ : Y ′ → T ′ the base change of e. Picture

X

f

��

Y
h
oo

e

��

Y ′
π′
oo

e′

��
S T

goo T ′πoo

By Proposition 55.2 and Lemma 55.3 we haveRπ′
∗(e′)−1I ′ = e−1π∗I ′. Thus by the Leray

spectral sequence (Cohomology on Sites, Lemma 14.5) we have

Hq(Y ′, (e′)−1I ′) = Hq(Y, e−1π∗I ′) ⊃ Hq(Y, e−1I)

and this remains true after base change by any U → X étale. Thus we may replace T by
T ′, I by I ′ and ξ̃ by its image in Hq(Y ′, (e′)−1I ′).
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Suppose we have a factorization T → S′ → S where π : S′ → S is finite. Setting
X ′ = S′ ×S X we can consider the induced diagram

X

f

��

X ′
π′
oo

f ′

��

Y
h′
oo

e

��
S S′πoo T

goo

Since π′ has vanishing higher direct images we see thatRqh∗e
−1I = π′

∗R
qh′

∗e
−1I by the

Leray spectral sequence. HenceH0(X,Rqh∗e
−1I) = H0(X ′, Rqh′

∗e
−1I). Thus ξ is zero

if and only if the corresponding section ofRqh′
∗e

−1I is zero10. Thus we may replace S by
S′ and X by X ′. Observe that σ : S → X base changes to σ′ : S′ → X ′ and hence after
this replacement it is still true that X → S has a section σ and geometrically connected
fibres.

We will use that S and T are Nagata schemes, see Algebra, Proposition 162.16 which will
guarantee that various normalizations are finite, see Morphisms, Lemmas 53.15 and 54.10.
In particular, we may first replace T by its normalization and then replace S by the nor-
malization of S in T . Then T → S is a disjoint union of dominant morphisms of integral
normal schemes, see Morphisms, Lemma 53.13. Clearly we may argue one connnected
component at a time, hence we may assume T → S is a dominant morphism of integral
normal schemes.

Let s ∈ S and t ∈ T be the generic points. By Lemma 89.1 there exist finite field extensions
K/κ(t) and k/κ(s) such that k is contained in K and a finite étale Galois covering Z →
Xk with Galois group G of order dividing a power of n split over σ(Spec(k)) such that
ξ̃ maps to zero in Hq(ZK , e−1I|ZK ). Let T ′ → T be the normalization of T in Spec(K)
and let S′ → S be the normalization of S in Spec(k). Then we obtain a commutative
diagram

S′

��

T ′oo

��
S Too

whose vertical arrows are finite. By the arguments given above we may and do replace S
and T by S′ and T ′ (and correspondingly X by X ×S S′ and Y by Y ×T T ′). After this
replacement we conclude we have a finite étale Galois covering Z → Xs of the generic
fibre of X → S with Galois group G of order dividing a power of n split over σ(s) such
that ξ̃maps to zero inHq(Zt, (Zt → Y )−1e−1I). HereZt = Z×S t = Z×st = Z×XsYt.
Since n is invertible on S , by Fundamental Groups, Lemma 31.8 we can find a finite étale
morphism U → X whose restriction to Xs is Z.

At this point we replace X by U and Y by U ×X Y . After this replacement it may no
longer be the case that the fibres of X → S are geometrically connected (there still is a
section but we won’t use this), but what we gain is that after this replacement ξ̃ maps to
zero in Hq(Yt, e−1I), i.e., ξ̃ restricts to zero on the generic fibre of Y → T .

10This step can also be seen another way. Namely, we have to show that there is an étale covering {Ui →
X} such that ξ̃ dies in Hq(Ui ×X Y, e−1I). However, if we prove there is an étale covering {U ′

j → X′}
such that ξ̃ dies inHq(U ′

i ×X′ Y, e−1I), then by property (B) forX′ → X (Lemma 43.3) there exists an étale
covering {Ui → X} such that Ui ×X X′ is a disjoint union of schemes overX′ each of which factors through
U ′
j for some j. Thus we see that ξ̃ dies in Hq(Ui ×X Y, e−1I) as desired.
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Recall that t is the spectrum of the function field of T , i.e., as a scheme t is the limit of
the nonempty affine open subschemes of T . By Lemma 51.5 we conclude there exists a
nonempty open subscheme V ⊂ T such that ξ̃ maps to zero inHq(Y ×T V, e−1I|Y×TV ).

Denote Z = T \ V . Consider the diagram

Y ×T Z

eZ

��

i′
// Y

e

��

Y ×T V
j′

oo

eV

��
Z

i // T V
joo

Choose an injection i−1I → I ′ into an injective sheaf of Z/nZ-modules on Z. Looking
at stalks we see that the map

I → j∗I|V ⊕ i∗I ′

is injective and hence splits as I is an injective sheaf of Z/nZ-modules. Thus it suffices to
show that ξ̃ maps to zero in

Hq(Y, e−1j∗I|V )⊕Hq(Y, e−1i∗I ′)
at least after replacing X by the members of an étale covering. Observe that

e−1j∗I|V = j′
∗e

−1
V I|V , e−1i∗I ′ = i′∗e

−1
Z I

′

By induction hypothesis on q we see that

Raj′
∗e

−1
V I|V = 0, a = 1, . . . , q − 1

By the Leray spectral sequence for j′ and the vanishing above it follows that

Hq(Y, j′
∗(e−1

V I|V )) −→ Hq(Y ×T V, e−1
V IV ) = Hq(Y ×T V, e−1I|Y×TV )

is injective. Thus the vanishing of the image of ξ̃ in the first summand above because we
know ξ̃ vanishes inHq(Y ×T V, e−1I|Y×TV ). Since dim(Z) < dim(T ) = d by induction
the image of ξ̃ in the second summand

Hq(Y, e−1i∗I ′) = Hq(Y, i′∗e−1
Z I

′) = Hq(Y ×T Z, e−1
Z I

′)
dies after replacingX by the members of a suitable étale covering. This finishes the proof
of the smooth base change theorem. �

Second proof of smooth base change. This proof is the same as the longer first
proof; it is shorter only in that we have split out the arguments used in a number of lem-
mas.

The case of q = 0 is Lemma 87.2. Thus we may assume q > 0 and the result is true for all
smaller degrees.

For every n ≥ 1 invertible on S , let F [n] be the subsheaf of sections of F annihilated by
n. ThenF = colimF [n] by our assumption on the stalks ofF . The functors e−1 and f−1

commute with colimits as they are left adjoints. The functors Rqh∗ and Rqg∗ commute
with filtered colimits by Lemma 51.7. Thus it suffices to prove the theorem forF [n]. From
now on we fix an integer n invertible on S and we work with sheaves of Z/nZ-modules.

By Lemma 86.1 the question is étale local on X and S. By the local structure of smooth
morphisms, see Morphisms, Lemma 36.20, we may assumeX and S are affine andX → S
factors through an étale morphism X → Ad

S . Writing X → S as the composition

X → Ad−1
S → Ad−2

S → . . .→ A1
S → S
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we conclude from Lemma 86.2 that it suffices to prove the theorem when X and S are
affine and X → S has relative dimension 1.

By Lemma 88.7 it suffices to show thatRqh∗Z/dZ = 0 for d|n whenever we have a carte-
sian diagram

X

��

Y

��

h
oo

S Spec(K)oo

where X → S is affine and smooth of relative dimension 1, S is the spectrum of a normal
domain A with algebraically closed fraction field L, and K/L is an extension of alge-
braically closed fields.

Recall that Rqh∗Z/dZ is the sheaf associated to the presheaf

U 7−→ Hq(U ×X Y,Z/dZ) = Hq(U ×S Spec(K),Z/dZ)
onXétale (Lemma 51.6). Thus it suffices to show: givenU and ξ ∈ Hq(U×SSpec(K),Z/dZ)
there exists an étale covering {Ui → U} such that ξ dies in Hq(Ui ×S Spec(K),Z/dZ).

Of course we may take U affine. Then U ×S Spec(K) is a (smooth) affine curve over K
and hence we have vanishing for q > 1 by Theorem 83.10.

Final case: q = 1. We may replace U by the members of an étale covering as in More
on Morphisms, Lemma 38.8. Then U → S factors as U → V → S where U → V has
geometrically connected fibres, U , V are affine, V → S is étale, and there is a section
σ : V → U . By Lemma 80.4 we see that V is isomorphic to a (finite) disjoint union
of (affine) open subschemes of S. Clearly we may replace S by one of these and X by
the corresponding component of U . Thus we may assume X → S has geometrically
connected fibres, has a section σ, and ξ ∈ H1(Y,Z/dZ). Since K and L are algebraically
closed we have

H1(XL,Z/dZ) = H1(Y,Z/dZ)
See Lemma 83.12. Thus there is a finite étale Galois covering Z → XL with Galois group
G ⊂ Z/dZ which annihilates ξ. You can either see this by looking at the statement or
proof of Lemma 89.1 or by using directly that ξ corresponds to a Z/dZ-torsor over XL.
Finally, by Fundamental Groups, Lemma 31.9 we find a (necessarily surjective) finite étale
morphism X ′ → X whose restriction to XL is Z → XL. Since ξ dies in X ′

K this finishes
the proof. �

The following immediate consquence of the smooth base change theorem is what is often
used in practice.

Lemma 89.3. LetS be a scheme. LetS′ = limSi be a directed inverse limit of schemes
Si smooth over S with affine transition morphisms. Let f : X → S be quasi-compact and
quasi-separated and form the fibre square

X ′

f ′

��

g′
// X

f

��
S′ g // S

Then
g−1Rf∗E = R(f ′)∗(g′)−1E
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for anyE ∈ D+(Xétale) whose cohomology sheavesHq(E) have stalks which are torsion
of orders invertible on S.

Proof. Consider the spectral sequences

Ep,q2 = Rpf∗H
q(E) and E′p,q

2 = Rpf ′
∗H

q((g′)−1E) = Rpf ′
∗(g′)−1Hq(E)

converging to Rnf∗E and Rnf ′
∗(g′)−1E. These spectral sequences are constructed in

Derived Categories, Lemma 21.3. Combining the smooth base change theorem (Theorem
89.2) with Lemma 86.3 we see that

g−1Rpf∗H
q(E) = Rp(f ′)∗(g′)−1Hq(E)

Combining all of the above we get the lemma. �

90. Applications of smooth base change

In this section we discuss some more or less immediate consequences of the smooth base
change theorem.

Lemma 90.1. Let L/K be an extension of fields. Let g : T → S be a quasi-compact
and quasi-separated morphism of schemes overK. Denote gL : TL → SL the base change
of g to Spec(L). Let E ∈ D+(Tétale) have cohomology sheaves whose stalks are torsion
of orders invertible inK. LetEL be the pullback of E to (TL)étale. ThenRgL,∗EL is the
pullback of Rg∗E to SL.

Proof. If L/K is separable, then L is a filtered colimit of smooth K-algebras, see
Algebra, Lemma 158.11. Thus the lemma in this case follows immediately from Lemma
89.3. In the general case, let K ′ and L′ be the perfect closures (Algebra, Definition 45.5)
of K and L. Then Spec(K ′) → Spec(K) and Spec(L′) → Spec(L) are universal
homeomorphisms as K ′/K and L′/L are purely inseparable (see Algebra, Lemma 46.7).
Thus we have (TK′)étale = Tétale, (SK′)étale = Sétale, (TL′)étale = (TL)étale, and
(SL′)étale = (SL)étale by the topological invariance of étale cohomology, see Proposition
45.4. This reduces the lemma to the case of the field extension L′/K ′ which is separable
(by definition of perfect fields, see Algebra, Definition 45.1). �

Lemma 90.2. Let K/k be an extension of separably closed fields. Let X be a quasi-
compact and quasi-separated scheme over k. Let E ∈ D+(Xétale) have cohomology
sheaves whose stalks are torsion of orders invertible in k. Then

(1) the maps Hq
étale(X,E)→ Hq

étale(XK , E|XK ) are isomorphisms, and
(2) E → R(XK → X)∗E|XK is an isomorphism.

Proof. Proof of (1). First let k andK be the algebraic closures of k andK. The mor-
phisms Spec(k) → Spec(k) and Spec(K) → Spec(K) are universal homeomorphisms
as k/k andK/K are purely inseparable (see Algebra, Lemma 46.7). ThusHq

étale(X,F) =
Hq
étale(Xk,FXk) by the topological invariance of étale cohomology, see Proposition 45.4.

Similarly for XK and XK . Thus we may assume k and K are algebraically closed. In this
caseK is a limit of smooth k-algebras, see Algebra, Lemma 158.11. We conclude our lemma
is a special case of Theorem 89.2 as reformulated in Lemma 89.3.

Proof of (2). For any quasi-compact and quasi-separated U inXétale the above shows that
the restriction of the map E → R(XK → X)∗E|XK determines an isomorphism on
cohomology. Since every object of Xétale has an étale covering by such U this proves the
desired statement. �
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Lemma 90.3. With f : X → S and n as in Remark 88.1 assume n is invertible on
S and that for some q ≥ 1 we have that BC(f, n, q − 1) is true, but BC(f, n, q) is not.
Then there exist a commutative diagram

X

f

��

X ′

��

oo Y
h

oo

��
S S′oo Spec(K)oo

with both squares cartesian, where S′ is affine, integral, and normal with algebraically
closed function fieldK and there exists an integer d|n such thatRqh∗(Z/dZ) is nonzero.

Proof. First choose a diagram and F as in Lemma 88.7. We may and do assume S′ is
affine (this is obvious, but see proof of the lemma in case of doubt). LetK ′ be the function
field of S′ and let Y ′ = X ′ ×S′ Spec(K ′) to get the diagram

X

f

��

X ′

��

oo Y ′
h′

oo

��

Yoo

��
S S′oo Spec(K ′)oo Spec(K)oo

By Lemma 90.2 the total direct image R(Y → Y ′)∗Z/dZ is isomorphic to Z/dZ in
D(Y ′

étale); here we use that n is invertible on S. Thus Rh′
∗Z/dZ = Rh∗Z/dZ by the

relative Leray spectral sequence. This finishes the proof. �

91. The proper base change theorem

The proper base change theorem is stated and proved in this section. Our approach follows
roughly the proof in [?, XII, Theorem 5.1] using Gabber’s ideas (from the affine case) to
slightly simplify the arguments.

Lemma 91.1. Let (A, I) be a henselian pair. Let f : X → Spec(A) be a proper mor-
phism of schemes. Let Z = X ×Spec(A) Spec(A/I). For any sheaf F on the topological
space associated to X we have Γ(X,F) = Γ(Z,F|Z).

Proof. We will use Lemma 82.4 to prove this. First observe that the underlying
topological space of X is spectral by Properties, Lemma 2.4. Let Y ⊂ X be an irreducible
closed subscheme. To finish the proof we show that Y ∩ Z = Y ×Spec(A) Spec(A/I) is
connected. Replacing X by Y we may assume that X is irreducible and we have to show
that Z is connected. LetX → Spec(B)→ Spec(A) be the Stein factorization of f (More
on Morphisms, Theorem 53.5). Then A → B is integral and (B, IB) is a henselian pair
(More on Algebra, Lemma 11.8). Thus we may assume the fibres of X → Spec(A) are
geometrically connected. On the other hand, the image T ⊂ Spec(A) of f is irreducible
and closed as X is proper over A. Hence T ∩ V (I) is connected by More on Algebra,
Lemma 11.16. Now Y ×Spec(A) Spec(A/I) → T ∩ V (I) is a surjective closed map with
connected fibres. The result now follows from Topology, Lemma 7.5. �

Lemma 91.2. Let (A, I) be a henselian pair. Let f : X → Spec(A) be a proper
morphism of schemes. Let i : Z → X be the closed immersion of X ×Spec(A) Spec(A/I)
into X . For any sheaf F on Xétale we have Γ(X,F) = Γ(Z, i−1

smallF).

Proof. This follows from Lemma 82.2 and 91.1 and the fact that any scheme finite
over X is proper over Spec(A). �
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Lemma 91.3. Let A be a henselian local ring. Let f : X → Spec(A) be a proper
morphism of schemes. Let X0 ⊂ X be the fibre of f over the closed point. For any sheaf
F on Xétale we have Γ(X,F) = Γ(X0,F|X0).

Proof. This is a special case of Lemma 91.2. �

Let f : X → S be a morphism of schemes. Let s : Spec(k) → S be a geometric point.
The fibre of f at s is the scheme Xs = Spec(k)×s,S X viewed as a scheme over Spec(k).
If F is a sheaf on Xétale, then denote Fs = p−1

smallF the pullback of F to (Xs)étale. In
the following we will consider the set

Γ(Xs,Fs)
Let s ∈ S be the image point of s. Let κ(s)sep be the separable algebraic closure of κ(s) in
k as in Definition 56.1. By Lemma 39.5 pullback defines a bijection

Γ(Xκ(s)sep , p
−1
sepF) −→ Γ(Xs,Fs)

where psep : Xκ(s)sep = Spec(κ(s)sep)×S X → X is the projection.

Lemma 91.4. Let f : X → S be a proper morphism of schemes. Let s → S be a
geometric point. For any sheaf F on Xétale the canonical map

(f∗F)s −→ Γ(Xs,Fs)
is bijective.

Proof. By Theorem 53.1 (for sheaves of sets) we have

(f∗F)s = Γ(X ×S Spec(OshS,s), p−1
smallF)

where p : X ×S Spec(OshS,s)→ X is the projection. Since the residue field of the strictly
henselian local ringOshS,s is κ(s)sep we conclude from the discussion above the lemma and
Lemma 91.3. �

Lemma 91.5. Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes. Set X ′ = Y ′ ×Y X with projections f ′ : X ′ → Y ′ and
g′ : X ′ → X . Let F be any sheaf on Xétale. Then g−1f∗F = f ′

∗(g′)−1F .

Proof. There is a canonical map g−1f∗F → f ′
∗(g′)−1F . Namely, it is adjoint to the

map
f∗F −→ g∗f

′
∗(g′)−1F = f∗g

′
∗(g′)−1F

which is f∗ applied to the canonical map F → g′
∗(g′)−1F . To check this map is an iso-

morphism we can compute what happens on stalks. Let y′ : Spec(k)→ Y ′ be a geometric
point with image y in Y . By Lemma 91.4 the stalks are Γ(X ′

y′ ,Fy′) and Γ(Xy,Fy) respec-
tively. Here the sheavesFy andFy′ are the pullbacks ofF by the projectionsXy → X and
X ′
y′ → X . Thus we see that the groups agree by Lemma 39.5. We omit the verification

that this isomorphism is compatible with our map. �

At this point we start discussing the proper base change theorem. To do so we introduce
some notation. consider a commutative diagram

(91.5.1)

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y
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of morphisms of schemes. Then we obtain a commutative diagram of sites

X ′
étale g′

small

//

f ′
small

��

Xétale

fsmall

��
Y ′
étale

gsmall // Yétale

For any object E of D(Xétale) we obtain a canonical base change map

(91.5.2) g−1
smallRfsmall,∗E −→ Rf ′

small,∗(g′
small)−1E

inD(Y ′
étale). See Cohomology on Sites, Remark 19.3 where we use the constant sheaf Z as

our sheaf of rings. We will usually omit the subscripts small in this formula. For example,
if E = F [0] where F is an abelian sheaf on Xétale, the base change map is a map

(91.5.3) g−1Rf∗F −→ Rf ′
∗(g′)−1F

in D(Y ′
étale).

The map (91.5.2) has no chance of being an isomorphism in the generality given above.
The goal is to show it is an isomorphism if the diagram (91.5.1) is cartesian, f : X → Y
proper, the cohomology sheaves of E are torsion, and E is bounded below. To study this
question we introduce the following terminology. Let us say that cohomology commutes
with base change for f : X → Y if (91.5.3) is an isomorphism for every diagram (91.5.1)
where X ′ = Y ′ ×Y X and every torsion abelian sheaf F .

Lemma 91.6. Let f : X → Y be a proper morphism of schemes. The following are
equivalent

(1) cohomology commutes with base change for f (see above),
(2) for every prime number ` and every injective sheaf of Z/`Z-modules I onXétale

and every diagram (91.5.1) where X ′ = Y ′ ×Y X the sheaves Rqf ′
∗(g′)−1I are

zero for q > 0.

Proof. It is clear that (1) implies (2). Conversely, assume (2) and let F be a torsion
abelian sheaf on Xétale. Let Y ′ → Y be a morphism of schemes and let X ′ = Y ′ ×Y X
with projections g′ : X ′ → X and f ′ : X ′ → Y ′ as in diagram (91.5.1). We want to show
the maps of sheaves

g−1Rqf∗F −→ Rqf ′
∗(g′)−1F

are isomorphisms for all q ≥ 0.

For every n ≥ 1, let F [n] be the subsheaf of sections of F annihilated by n. Then
F = colimF [n]. The functors g−1 and (g′)−1 commute with arbitrary colimits (as left
adjoints). Taking higher direct images along f or f ′ commutes with filtered colimits by
Lemma 51.7. Hence we see that

g−1Rqf∗F = colim g−1Rqf∗F [n] and Rqf ′
∗(g′)−1F = colimRqf ′

∗(g′)−1F [n]
Thus it suffices to prove the result in case F is annihilated by a positive integer n.

If n = `n′ for some prime number `, then we obtain a short exact sequence

0→ F [`]→ F → F/F [`]→ 0
Observe that F/F [`] is annihilated by n′. Moreover, if the result holds for both F [`] and
F/F [`], then the result holds by the long exact sequence of higher direct images (and the
5 lemma). In this way we reduce to the case that F is annihilated by a prime number `.
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Assume F is annihilated by a prime number `. Choose an injective resolution F → I• in
D(Xétale,Z/`Z). Applying assumption (2) and Leray’s acyclicity lemma (Derived Cate-
gories, Lemma 16.7) we see that

f ′
∗(g′)−1I•

computes Rf ′
∗(g′)−1F . We conclude by applying Lemma 91.5. �

Lemma 91.7. Let f : X → Y and g : Y → Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f ,
(2) cohomology commutes with base change for g ◦ f , and
(3) f is surjective.

Then cohomology commutes with base change for g.

Proof. We will use the equivalence of Lemma 91.6 without further mention. Let `
be a prime number. Let I be an injective sheaf of Z/`Z-modules on Yétale. Choose an
injective map of sheaves f−1I → J where J is an injective sheaf of Z/`Z-modules on
Zétale. Since f is surjective the map I → f∗J is injective (look at stalks in geometric
points). Since I is injective we see that I is a direct summand of f∗J . Thus it suffices to
prove the desired vanishing for f∗J .

Let Z ′ → Z be a morphism of schemes and set Y ′ = Z ′ ×Z Y and X ′ = Z ′ ×Z X =
Y ′ ×Y X . Denote a : X ′ → X , b : Y ′ → Y , and c : Z ′ → Z the projections. Similarly
for f ′ : X ′ → Y ′ and g′ : Y ′ → Z ′. By Lemma 91.5 we have b−1f∗J = f ′

∗a
−1J . On the

other hand, we know that Rqf ′
∗a

−1J and Rq(g′ ◦ f ′)∗a
−1J are zero for q > 0. Using

the spectral sequence (Cohomology on Sites, Lemma 14.7)

Rpg′
∗R

qf ′
∗a

−1J ⇒ Rp+q(g′ ◦ f ′)∗a
−1J

we conclude that Rpg′
∗(b−1f∗J ) = Rpg′

∗(f ′
∗a

−1J ) = 0 for p > 0 as desired. �

Lemma 91.8. Let f : X → Y and g : Y → Z be proper morphisms of schemes.
Assume

(1) cohomology commutes with base change for f , and
(2) cohomology commutes with base change for g.

Then cohomology commutes with base change for g ◦ f .

Proof. We will use the equivalence of Lemma 91.6 without further mention. Let `
be a prime number. Let I be an injective sheaf of Z/`Z-modules on Xétale. Then f∗I is
an injective sheaf of Z/`Z-modules on Yétale (Cohomology on Sites, Lemma 14.2). The
result follows formally from this, but we will also spell it out.

Let Z ′ → Z be a morphism of schemes and set Y ′ = Z ′ ×Z Y and X ′ = Z ′ ×Z X =
Y ′ ×Y X . Denote a : X ′ → X , b : Y ′ → Y , and c : Z ′ → Z the projections. Similarly
for f ′ : X ′ → Y ′ and g′ : Y ′ → Z ′. By Lemma 91.5 we have b−1f∗I = f ′

∗a
−1I . On the

other hand, we know that Rqf ′
∗a

−1I and Rq(g′)∗b
−1f∗I are zero for q > 0. Using the

spectral sequence (Cohomology on Sites, Lemma 14.7)

Rpg′
∗R

qf ′
∗a

−1I ⇒ Rp+q(g′ ◦ f ′)∗a
−1I

we conclude that Rp(g′ ◦ f ′)∗a
−1I = 0 for p > 0 as desired. �

Lemma 91.9. Let f : X → Y be a finite morphism of schemes. Then cohomology
commutes with base change for f .
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Proof. Observe that a finite morphism is proper, see Morphisms, Lemma 44.11. More-
over, the base change of a finite morphism is finite, see Morphisms, Lemma 44.6. Thus the
result follows from Lemma 91.6 combined with Proposition 55.2. �

Lemma 91.10. To prove that cohomology commutes with base change for every
proper morphism of schemes it suffices to prove it holds for the morphism P1

S → S for
every scheme S.

Proof. Let f : X → Y be a proper morphism of schemes. Let Y =
⋃
Yi be an affine

open covering and set Xi = f−1(Yi). If we can prove cohomology commutes with base
change for Xi → Yi, then cohomology commutes with base change for f . Namely, the
formation of the higher direct images commutes with Zariski (and even étale) localization
on the base, see Lemma 51.6. Thus we may assume Y is affine.

Let Y be an affine scheme and letX → Y be a proper morphism. By Chow’s lemma there
exists a commutative diagram

X

  

X ′

��

π
oo // Pn

Y

}}
Y

where X ′ → Pn
Y is an immersion, and π : X ′ → X is proper and surjective, see Limits,

Lemma 12.1. SinceX → Y is proper, we find thatX ′ → Y is proper (Morphisms, Lemma
41.4). Hence X ′ → Pn

Y is a closed immersion (Morphisms, Lemma 41.7). It follows that
X ′ → X ×Y Pn

Y = Pn
X is a closed immersion (as an immersion with closed image).

By Lemma 91.7 it suffices to prove cohomology commutes with base change for π and
X ′ → Y . These morphisms both factor as a closed immersion followed by a projection
Pn
S → S (for some S). By Lemma 91.9 the result holds for closed immersions (as closed

immersions are finite). By Lemma 91.8 it suffices to prove the result for projections Pn
S →

S.

For every n ≥ 1 there is a finite surjective morphism

P1
S ×S . . .×S P1

S −→ Pn
S

given on coordinates by

((x1 : y1), (x2 : y2), . . . , (xn : yn)) 7−→ (F0 : . . . : Fn)

where F0, . . . , Fn in x1, . . . , yn are the polynomials with integer coefficients such that∏
(xit+ yi) = F0t

n + F1t
n−1 + . . .+ Fn

Applying Lemmas 91.7, 91.9, and 91.8 one more time we conclude that the lemma is true.
�

Theorem 91.11. Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes. Set X ′ = Y ′ ×Y X and consider the cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y
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Let F be an abelian torsion sheaf on Xétale. Then the base change map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism.

Proof. In the terminology introduced above, this means that cohomology commutes
with base change for every proper morphism of schemes. By Lemma 91.10 it suffices to
prove that cohomology commutes with base change for the morphism P1

S → S for every
scheme S.

Let S be the spectrum of a strictly henselian local ring with closed point s. Set X = P1
S

and X0 = Xs = P1
s. Let F be a sheaf of Z/`Z-modules on Xétale. The key to our proof

is that
Hq
étale(X,F) = Hq

étale(X0,F|X0).
Namely, choose a resolution F → I• by injective sheaves of Z/`Z-modules. Then I•|X0

is a resolution of F|X0 by right H0
étale(X0,−)-acyclic objects, see Lemma 85.2. Leray’s

acyclicity lemma tells us the right hand side is computed by the complexH0
étale(X0, I•|X0)

which is equal toH0
étale(X, I•) by Lemma 91.3. This complex computes the left hand side.

Assume S is general and F is a sheaf of Z/`Z-modules onXétale. Let s : Spec(k)→ S be
a geometric point of S lying over s ∈ S. We have

(Rqf∗F)s = Hq
étale(P

1
Osh
S,s

,F|P1
Osh
S,s

) = Hq
étale(P

1
κ(s)sep ,F|P1

κ(s)sep
)

where κ(s)sep is the residue field ofOshS,s, i.e., the separable algebraic closure of κ(s) in k.
The first equality by Theorem 53.1 and the second equality by the displayed formula in
the previous paragraph.

Finally, consider any morphism of schemes g : T → S where S and F are as above. Set
f ′ : P1

T → T the projection and let g′ : P1
T → P1

S the morphism induced by g. Consider
the base change map

g−1Rqf∗F −→ Rqf ′
∗(g′)−1F

Let t be a geometric point of T with image s = g(t). By our discussion above the map on
stalks at t is the map

Hq
étale(P

1
κ(s)sep ,F|P1

κ(s)sep
) −→ Hq

étale(P
1
κ(t)sep ,F|P1

κ(t)sep
)

Since κ(s)sep ⊂ κ(t)sep this map is an isomorphism by Lemma 83.12.

This proves cohomology commutes with base change for P1
S → S and sheaves of Z/`Z-

modules. In particular, for an injective sheaf of Z/`Z-modules the higher direct images
of any base change are zero. In other words, condition (2) of Lemma 91.6 holds and the
proof is complete. �

Lemma 91.12. Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y be
a morphism of schemes. Set X ′ = Y ′ ×Y X and denote f ′ : X ′ → Y ′ and g′ : X ′ → X
the projections. Let E ∈ D+(Xétale) have torsion cohomology sheaves. Then the base
change map (91.5.2) g−1Rf∗E → Rf ′

∗(g′)−1E is an isomorphism.

Proof. This is a simple consequence of the proper base change theorem (Theorem
91.11) using the spectral sequences

Ep,q2 = Rpf∗H
q(E) and E′p,q

2 = Rpf ′
∗(g′)−1Hq(E)
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converging to Rnf∗E and Rnf ′
∗(g′)−1E. The spectral sequences are constructed in De-

rived Categories, Lemma 21.3. Some details omitted. �

Lemma 91.13. Let f : X → Y be a proper morphism of schemes. Let y → Y be a
geometric point.

(1) For a torsion abelian sheaf F on Xétale we have (Rnf∗F)y = Hn
étale(Xy,Fy).

(2) For E ∈ D+(Xétale) with torsion cohomology sheaves we have (Rnf∗E)y =
Hn
étale(Xy, E|Xy ).

Proof. In the statement, Fy denotes the pullback of F to the scheme theoretic fibre
Xy = y ×Y X . Since pulling back by y → Y produces the stalk of F , the first statement
of the lemma is a special case of Theorem 91.11. The second one is a special case of Lemma
91.12. �

92. Applications of proper base change

In this section we discuss some more or less immediate consequences of the proper base
change theorem.

Lemma 92.1. Let K/k be an extension of separably closed fields. Let X be a proper
scheme over k. LetF be a torsion abelian sheaf onXétale. Then the mapHq

étale(X,F)→
Hq
étale(XK ,F|XK ) is an isomorphism for q ≥ 0.

Proof. Looking at stalks we see that this is a special case of Theorem 91.11. �

Lemma 92.2. Let f : X → Y be a proper morphism of schemes all of whose fibres
have dimension≤ n. Then for any abelian torsion sheafF onXétale we haveRqf∗F = 0
for q > 2n.

Proof. We will prove this by induction on n for all proper morphisms.
If n = 0, then f is a finite morphism (More on Morphisms, Lemma 44.1) and the result is
true by Proposition 55.2.
If n > 0, then using Lemma 91.13 we see that it suffices to prove Hi

étale(X,F) = 0 for
i > 2n and X a proper scheme, dim(X) ≤ n over an algebraically closed field k and F is
a torsion abelian sheaf on X .
If n = 1 this follows from Theorem 83.11. Assume n > 1. By Proposition 45.4 we may
replace X by its reduction. Let ν : Xν → X be the normalization. This is a surjective
birational finite morphism (see Varieties, Lemma 27.1) and hence an isomorphism over a
dense open U ⊂ X (Morphisms, Lemma 50.5). Then we see that c : F → ν∗ν

−1F is
injective (as ν is surjective) and an isomorphism over U . Denote i : Z → X the inclu-
sion of the complement of U . Since U is dense in X we have dim(Z) < dim(X) = n.
By Proposition 46.4 have Coker(c) = i∗G for some abelian torsion sheaf G on Zétale.
Then Hq

étale(X,Coker(c)) = Hq
étale(Z,F) (by Proposition 55.2 and the Leray spectral

sequence) and by induction hypothesis we conclude that the cokernel of c has cohomology
in degrees ≤ 2(n− 1). Thus it suffices to prove the result for ν∗ν

−1F . As ν is finite this
reduces us to showing that Hi

étale(Xν , ν−1F) is zero for i > 2n. This case is treated in
the next paragraph.
AssumeX is integral normal proper scheme over k of dimension n. Choose a nonconstant
rational function f on X . The graph X ′ ⊂ X ×P1

k of f sits into a diagram

X
b←− X ′ f−→ P1

k
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Observe that b is an isomorphism over an open subscheme U ⊂ X whose complement is
a closed subscheme Z ⊂ X of codimension ≥ 2. Namely, U is the domain of definition
of f which contains all codimension 1 points ofX , see Morphisms, Lemmas 49.9 and 42.5
(combined with Serre’s criterion for normality, see Properties, Lemma 12.5). Moreover the
fibres of b have dimension≤ 1 (as closed subschemes of P1). Hence Rib∗b

−1F is nonzero
only if i ∈ {0, 1, 2} by induction. Choose a distinguished triangle

F → Rb∗b
−1F → Q→ F [1]

Using that F → b∗b
−1F is injective as before and using what we just said, we see that

Q has nonzero cohomology sheaves only in degrees 0, 1, 2 sitting on Z. Moreover, these
cohomology sheaves are torsion by Lemma 78.2. By induction we see that Hi(X,Q) is
zero for i > 2 + 2 dim(Z) ≤ 2 + 2(n − 2) = 2n − 2. Thus it suffices to prove that
Hi(X ′, b−1F) = 0 for i > 2n. At this point we use the morphism

f : X ′ → P1
k

whose fibres have dimension < n. Hence by induction we see that Rif∗b
−1F = 0 for

i > 2(n− 1). We conclude by the Leray spectral seqence

Hi(P1
k, R

jf∗b
−1F)⇒ Hi+j(X ′, b−1F)

and the fact that dim(P1
k) = 1. �

When working with mod n coefficients we can do proper base change for unbounded
complexes.

Lemma 92.3. Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y be a
morphism of schemes. SetX ′ = Y ′×Y X and denote f ′ : X ′ → Y ′ and g′ : X ′ → X the
projections. Let n ≥ 1 be an integer. Let E ∈ D(Xétale,Z/nZ). Then the base change
map (91.5.2) g−1Rf∗E → Rf ′

∗(g′)−1E is an isomorphism.

Proof. It is enough to prove this when Y and Y ′ are quasi-compact. By Morphisms,
Lemma 28.5 we see that the dimension of the fibres of f : X → Y and f ′ : X ′ → Y ′ are
bounded. Thus Lemma 92.2 implies that

f∗ : Mod(Xétale,Z/nZ) −→Mod(Yétale,Z/nZ)
and

f ′
∗ : Mod(X ′

étale,Z/nZ) −→Mod(Y ′
étale,Z/nZ)

have finite cohomological dimension in the sense of Derived Categories, Lemma 32.2.
Choose a K-injective complex I• of Z/nZ-modules each of whose terms In is an injective
sheaf of Z/nZ-modules representingE. See Injectives, Theorem 12.6. By the usual proper
base change theorem we find thatRqf ′

∗(g′)−1In = 0 for q > 0, see Theorem 91.11. Hence
we conclude by Derived Categories, Lemma 32.2 that we may compute Rf ′

∗(g′)−1E by
the complex f ′

∗(g′)−1I•. Another application of the usual proper base change theorem
shows that this is equal to g−1f∗I• as desired. �

Lemma 92.4. LetX be a quasi-compact and quasi-separated scheme. LetE ∈ D+(Xétale)
and K ∈ D+(Z). Then

RΓ(X,E ⊗L
Z K) = RΓ(X,E)⊗L

Z K

Proof. Say Hi(E) = 0 for i ≥ a and Hj(K) = 0 for j ≥ b. We may represent K
by a bounded below complexK• of torsion free Z-modules. (Choose a K-flat complex L•

representingK and then takeK• = τ≥b−1L
•. This works because Z has global dimension
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1. See More on Algebra, Lemma 66.2.) We may represent E by a bounded below complex
E•. Then E ⊗L

Z K is represented by

Tot(E• ⊗Z K
•)

Using distinguished triangles

σ≥−b+n+1K
• → K• → σ≤−b+nK

•

and the trivial vanishing

Hn(X,Tot(E• ⊗Z σ≥−a+n+1K
•) = 0

and
Hn(RΓ(X,E)⊗L

Z σ≥−a+n+1K
•) = 0

we reduce to the case where K• is a bounded complex of flat Z-modules. Repeating the
argument we reduce to the case whereK• is equal to a single flat Z-module sitting in some
degree. Next, using the stupid trunctions for E• we reduce in exactly the same manner to
the case where E• is a single abelian sheaf sitting in some degree. Thus it suffices to show
that

Hn(X, E ⊗Z M) = Hn(X, E)⊗Z M

when M is a flat Z-module and E is an abelian sheaf on X . In this case we write M is
a filtered colimit of finite free Z-modules (Lazard’s theorem, see Algebra, Theorem 81.4).
By Theorem 51.3 this reduces us to the case of finite free Z-module M in which case the
result is trivially true. �

Lemma 92.5. Let f : X → Y be a proper morphism of schemes. LetE ∈ D+(Xétale)
have torsion cohomology sheaves. Let K ∈ D+(Yétale). Then

Rf∗E ⊗L
Z K = Rf∗(E ⊗L

Z f
−1K)

in D+(Yétale).

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
50. We will check the equality on stalks. Recall that computing derived tensor products
commutes with pullbacks. See Cohomology on Sites, Lemma 18.4. Thus we have

(E ⊗L
Z f

−1K)x = Ex ⊗L
Z Ky

where y is the image of x in Y . Since Z has global dimension 1 we see that this complex
has vanishing cohomology in degree< −1+a+b ifHi(E) = 0 for i ≥ a andHj(K) = 0
for j ≥ b. Moreover, since Hi(E) is a torsion abelian sheaf for each i, the same is true for
the cohomology sheaves of the complex E ⊗L

Z K. Namely, we have

(E ⊗L
Z f

−1K)⊗L
Z Q = (E ⊗L

Z Q)⊗L
Q (f−1K ⊗L

Z Q)

which is zero in the derived category. In this way we see that Lemma 91.13 applies to both
sides to see that it suffices to show

RΓ(Xy, E|Xy ⊗
L
Z (Xy → y)−1Ky) = RΓ(Xy, E|Xy )⊗L

Z Ky

This is shown in Lemma 92.4. �
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93. Local acyclicity

In this section we deduce local acyclicity of smooth morphisms from the smooth base
change theorem. In SGA 4 or SGA 4.5 the authors first prove a version of local acyclicity
for smooth morphisms and then deduce the smooth base change theorem.

We will use the formulation of local acyclicity given by Deligne [?, Definition 2.12, page
242]. Let f : X → S be a morphism of schemes. Let x be a geometric point of X with
image s = f(x) in S. Let t be a geometric point of Spec(OshS,s). We obtain a commutative
diagram

Fx,t = t×Spec(Osh
S,s

) Spec(OshX,x) //

��

Spec(OshX,x) //

��

X

��
t // Spec(OshS,s) // S

The scheme Fx,t is called a variety of vanishing cycles of f at x. Let K be an object of
D(Xétale). For any morphism of schemes g : Y → X we write RΓ(Y,K) instead of
RΓ(Yétale, g−1

smallK). SinceOshX,x is strictly henselian we haveKx = RΓ(Spec(OshX,x),K).
Thus we obtain a canonical map

(93.0.1) αK,x,t : Kx −→ RΓ(Fx,t,K)

by pulling back cohomology along Fx,t → Spec(OshX,x).

Definition 93.1. Let f : X → S be a morphism of schemes. Let K be an object of
D(Xétale).

(1) Let x be a geometric point ofX with image s = f(x). We say f is locally acyclic
at x relative to K if for every geometric point t of Spec(OshS,s) the map (93.0.1)
is an isomorphism11.

(2) We say f is locally acyclic relative to K if f is locally acyclic at x relative to K
for every geometric point x of X .

(3) We say f is universally locally acyclic relative toK if for any morphism S′ → S
of schemes the base change f ′ : X ′ → S′ is locally acyclic relative to the pullback
of K to X ′.

(4) We say f is locally acyclic if for all geometric points x of X and any integer n
prime to the characteristic of κ(x), the morphism f is locally acyclic at x relative
to the constant sheaf with value Z/nZ.

(5) We say f is universally locally acyclic if for any morphism S′ → S of schemes
the base change f ′ : X ′ → S′ is locally acyclic.

Let M be an abelian group. Then local acyclicity of f : X → S with respect to the
constant sheaf M boils down to the requirement that

Hq(Fx,t,M) =
{
M if q = 0
0 if q 6= 0

for any geometric point x of X and any geometric point t of Spec(OshS,f(x)). In this way
we see that being locally acyclic corresponds to the vanishing of the higher cohomology

11We do not assume t is an algebraic geometric point of Spec(Osh
S,s

). Often using Lemma 90.2 one may
reduce to this case.
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groups of the geometric fibres Fx,t of the maps between the strict henselizations at x and
s.

Proposition 93.2. Let f : X → S be a smooth morphism of schemes. Then f is
universally locally acyclic.

Proof. Since the base change of a smooth morphism is smooth, it suffices to show
that smooth morphisms are locally acyclic. Let x be a geometric point of X with image
s = f(x). Let t be a geometric point of Spec(OshS,f(x)). Since we are trying to prove a
property of the ring mapOshS,s → OshX,x (see discussion following Definition 93.1) we may
and do replace f : X → S by the base change X ×S Spec(OshS,s) → Spec(OshS,s). Thus
we may and do assume that S is the spectrum of a strictly henselian local ring and that s
lies over the closed point of S.

We will apply Lemma 86.5 to the diagram

X

f

��

Xth
oo

e

��
S t

goo

and the sheafF = M whereM = Z/nZ for some integer n prime to the characteristic of
the residue field ofx. We know that the map f−1Rqg∗F → Rqh∗e

−1F is an isomorphism
by smooth base change, see Theorem 89.2 (the assumption on torsion holds by our choice
of n). Thus Lemma 86.5 gives us the middle equality in

Hq(Fx,t,M) = Hq(Spec(OshX,x)×S t,M) = Hq(Spec(OshS,s)×S t,M) = Hq(t,M)

For the outer two equalities we use that S = Spec(OshS,s). Since t is the spectrum of a
separably closed field we conclude that

Hq(Fx,t,M) =
{
M if q = 0
0 if q 6= 0

which is what we had to show (see discussion following Definition 93.1). �

Lemma 93.3. Let f : X → S be a morphism of schemes. Let F be a locally constant
abelian sheaf onXétale such that for every geometric point x ofX the abelian groupFx is
a torsion group all of whose elements have order prime to the characteristic of the residue
field of x. If f is locally acyclic, then f is locally acyclic relative to F .

Proof. Namely, let x be a geometric point of X . Since F is locally constant we
see that the restriction of F to Spec(OshX,x) is isomorphic to the constant sheaf M with
M = Fx. By assumption we can write M = colimMi as a filtered colimit of finite
abelian groups Mi of order prime to the characteristic of the residue field of x. Consider
a geometric point t of Spec(OshS,f(x)). Since Fx,t is affine, we have

Hq(Fx,t,M) = colimHq(Fx,t,Mi)

by Lemma 51.4. For each i we can write Mi =
⊕

Z/ni,jZ as a finite direct sum for some
integers ni,j prime to the characteristic of the residue field of x. Since f is locally acyclic
we see that

Hq(Fx,t,Z/ni,jZ) =
{

Z/ni,jZ if q = 0
0 if q 6= 0
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See discussion following Definition 93.1. Taking the direct sums and the colimit we con-
clude that

Hq(Fx,t,M) =
{
M if q = 0
0 if q 6= 0

and we win. �

Lemma 93.4. Let
X ′

g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of schemes. Let K be an object of D(Xétale). Let x′ be a geometric
point of X ′ with image x in X . If

(1) f is locally acyclic at x relative to K and
(2) g is locally quasi-finite, or S′ = limSi is a directed inverse limit of schemes

locally quasi-finite over S with affine transition morphisms, or g : S′ → S is
integral,

then f ′ locally acyclic at x′ relative to (g′)−1K.

Proof. Denote s′ and s the images of x′ and x in S′ and S. Let t′ be a geometric
point of the spectrum of Spec(OshS′,s′) and denote t the image in Spec(OshS,s). By Algebra,
Lemma 156.6 and our assumptions on g we have

OshX,x ⊗Osh
S,s
OshS′,s′ −→ OshX′,x′

is an isomorphism. Since by our conventions κ(t) = κ(t′) we conclude that

Fx′,t
′ = Spec

(
OshX′,x′ ⊗Osh

S′,s′
κ(t′)

)
= Spec

(
OshX,x ⊗Osh

S,s
κ(t)

)
= Fx,t

In other words, the varieties of vanishing cycles of f ′ at x′ are examples of varieties of
vanishing cycles of f at x. The lemma follows immediately from this and the definitions.

�

94. The cospecialization map

Let f : X → S be a morphism of schemes. Let x be a geometric point of X with image
s = f(x) in S. Let t be a geometric point of Spec(OshS,s). Let K ∈ D(Xétale). For any
morphism g : Y → X of schemes we writeK|Y instead of g−1

smallK andRΓ(Y,K) instead
of RΓ(Yétale, g−1

smallK). We claim that if
(1) K is bounded below, i.e., K ∈ D+(Xétale),
(2) f is locally acyclic relative to K

then there is a cospecialization map

cosp : RΓ(Xt,K) −→ RΓ(Xs,K)

which will be closely related to the specialization map considered in Section 75 and espe-
cially Remark 75.8.

To construct the map we consider the morphisms

Xt
h−→ X ×S Spec(OshS,s)

i←− Xs
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The unit of the adjunction between h−1 and Rh∗ gives a map

βK,s,t : K|X×SSpec(Osh
S,s

) −→ Rh∗(K|X
t
)

in D((X ×S Spec(OshS,s))étale). Lemma 94.1 below shows that the pullback i−1βK,s,t is
an isomorphism under the assumptions above. Thus we can define the cospecialization
map as the composition

RΓ(Xt,K) = RΓ(X ×S Spec(OshS,s), Rh∗(K|X
t
))

i−1

−−→ RΓ(Xs, i
−1Rh∗(K|X

t
))

(i−1β
K,s,t

)−1

−−−−−−−−−→ RΓ(Xs, i
−1(K|X×SSpec(Osh

S,s
)))

= RΓ(Xs,K)

Lemma 94.1. The map i−1βK,s,t is an isomorphism.

Proof. The construction of the maps h, i, βK,s,t only depends on the base change of
X andK to Spec(OshS,s). Thus we may and do assume that S is a strictly henselian scheme
with closed point s. Observe that the local acyclicity of f relative toK is preserved by this
base change (for example by Lemma 93.4 or just directly by comparing strictly henselian
rings in this very special case).

Let x be a geometric point ofXs. Or equivalently, let x be a geometric point whose image
by f is s. Let us compute the stalk of i−1βK,s,t at x. First, we have

(i−1βK,s,t)x = (βK,s,t)x

since pullback preserves stalks, see Lemma 36.2. Since we are in the situationS = Spec(OshS,s)
we see that h : Xt → X has the property that Xt ×X Spec(OshX,x) = Fx,t. Thus we see
that

(βK,s,t)x : Kx −→ Rh∗(K|X
t
)x = RΓ(Fx,t,K)

where the equal sign is Theorem 53.1. It follows that the map (βK,s,t)x is none other than
the map αK,x,t used in Definition 93.1. The result follows as we may check whether a
map is an isomorphism in stalks by Theorem 29.10. �

The cospecialization map when it exists is trying to be the inverse of the specialization
map.

Lemma 94.2. In the situation above, if in addition f is quasi-compact and quasi-
separated, then the diagram

(Rf∗K)s //

sp

��

RΓ(Xs,K)

(Rf∗K)t // RΓ(Xt,K)

cosp

OO

is commutative.

Proof. As in the proof of Lemma 94.1 we may replace S by Spec(OshS,s). Then our
maps simplify to h : Xt → X , i : Xs → X , and βK,s,t : K → Rh∗(K|X

t
). Using that

(Rf∗K)s = RΓ(X,K) by Theorem 53.1 the composition of spwith the base change map
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(Rf∗K)t → RΓ(Xt,K) is just pullback of cohomology along h. This is the same as the
map

RΓ(X,K)
β
K,s,t−−−−→ RΓ(X,Rh∗(K|X

t
)) = RΓ(Xt,K)

Now the map cospfirst inverts the = sign in this displayed formula, then pulls back along i,
and finally applies the inverse of i−1βK,s,t. Hence we get the desired commutativity. �

Lemma 94.3. Let f : X → S be a morphism of schemes. Let K ∈ D(Xétale).
Assume

(1) K is bounded below, i.e., K ∈ D+(Xétale),
(2) f is locally acyclic relative to K ,
(3) f is proper, and
(4) K has torsion cohomology sheaves.

Then for every geometric point s of S and every geometric point t of Spec(OshS,s) both
the specialization map sp : (Rf∗K)s → (Rf∗K)t and the cospecialization map cosp :
RΓ(Xt,K)→ RΓ(Xs,K) are isomorphisms.

Proof. By the proper base change theorem (in the form of Lemma 91.13) we have
(Rf∗K)s = RΓ(Xs,K) and similarly for t. The “correct” proof would be to show that
the argument in Lemma 94.2 shows that sp and cosp are inverse isomorphisms in this case.
Instead we will show directly that cosp is an isomorphism. From the discussion above we
see that cosp is an isomorphism if and only if pullback by i

RΓ(X ×S Spec(OshS,s), Rh∗(K|X
t
)) −→ RΓ(Xs, i

−1Rh∗(K|X
t
))

is an isomorphism in D+(Ab). This is true by the proper base change theorem for the
proper morphism f ′ : X×SSpec(OshS,s)→ Spec(OshS,s) by the morphism s→ Spec(OshS,s)
and the complex K ′ = Rh∗(K|X

t
). The complex K ′ is bounded below and has torsion

cohomology sheaves by Lemma 78.2. Since Spec(OshS,s) is strictly henselian with s lying
over the closed point, we see that the source of the displayed arrow equals (Rf ′

∗K
′)s and

the target equals RΓ(Xs,K
′) and the displayed map is an isomorphism by the already

used Lemma 91.13. Thus we see that three out of the four arrows in the diagram of Lemma
94.2 are isomorphisms and we conclude. �

Lemma 94.4. Let f : X → S be a morphism of schemes. Let F be an abelian sheaf
on Xétale. Assume

(1) f is smooth and proper
(2) F is locally constant, and
(3) Fx is a torsion group all of whose elements have order prime to the residue char-

acteristic of x for every geometric point x of X .
Then for every geometric point s of S and every geometric point t of Spec(OshS,s) the
specialization map sp : (Rf∗F)s → (Rf∗F)t is an isomorphism.

Proof. This follows from Lemmas 94.3 and 93.3 and Proposition 93.2. �

95. Cohomological dimension

We can deduce some bounds on the cohomological dimension of schemes and on the coho-
mological dimension of fields using the results in Section 83 and one, seemingly innocuous,
application of the proper base change theorem (in the proof of Proposition 95.6).
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Definition 95.1. Let X be a quasi-compact and quasi-separated scheme. The coho-
mological dimension of X is the smallest element

cd(X) ∈ {0, 1, 2, . . .} ∪ {∞}
such that for any abelian torsion sheaf F on Xétale we have Hi

étale(X,F) = 0 for i >
cd(X). If X = Spec(A) we sometimes call this the cohomological dimension of A.

If the scheme is in characteristic p, then we often can obtain sharper bounds for the van-
ishing of cohomology of p-power torsion sheaves. We will address this elsewhere (insert
future reference here).

Lemma 95.2. Let X = limXi be a directed limit of a system of quasi-compact and
quasi-separated schemes with affine transition morphisms. Then cd(X) ≤ max cd(Xi).

Proof. Denote fi : X → Xi the projections. Let F be an abelian torsion sheaf
on Xétale. Then we have F = lim f−1

i fi,∗F by Lemma 51.9. Thus Hq
étale(X,F) =

colimHq
étale(Xi, fi,∗F) by Theorem 51.3. The lemma follows. �

Lemma 95.3. Let K be a field. Let X be a 1-dimensional affine scheme of finite type
over K. Then cd(X) ≤ 1 + cd(K).

Proof. Let F be an abelian torsion sheaf on Xétale. Consider the Leray spectral se-
quence for the morphism f : X → Spec(K). We obtain

Ep,q2 = Hp(Spec(K), Rqf∗F)
converging toHp+q

étale(X,F). The stalk ofRqf∗F at a geometric point Spec(K)→ Spec(K)
is the cohomology of the pullback of F to XK . Hence it vanishes in degrees ≥ 2 by The-
orem 83.10. �

Lemma 95.4. LetL/K be a field extension. Then we have cd(L) ≤ cd(K)+trdegK(L).

Proof. If trdegK(L) = ∞, then this is clear. If not then we can find a sequence
of extensions L = Lr/Lr−1/ . . . /L1/L0 = K such that trdegLi(Li+1) = 1 and r =
trdegK(L). Hence it suffices to prove the lemma in the case that r = 1. In this case we can
write L = colimAi as a filtered colimit of its finite type K-subalgebras. By Lemma 95.2
it suffices to prove that cd(Ai) ≤ 1 + cd(K). This follows from Lemma 95.3. �

Lemma 95.5. Let K be a field. Let X be a scheme of finite type over K. Let x ∈ X .
Set a = trdegK(κ(x)) and d = dimx(X). Then there is a map

K(t1, . . . , ta)sep −→ OshX,x
such that

(1) the residue field ofOshX,x is a purely inseparable extension of K(t1, . . . , ta)sep,
(2) OshX,x is a filtered colimit of finite type K(t1, . . . , ta)sep-algebras of dimension
≤ d− a.

Proof. We may assumeX is affine. By Noether normalization, after possibly shrink-
ing X again, we can choose a finite morphism π : X → Ad

K , see Algebra, Lemma 115.5.
Since κ(x) is a finite extension of the residue field of π(x), this residue field has transcen-
dence degree a over K as well. Thus we can find a finite morphism π′ : Ad

K → Ad
K such

that π′(π(x)) corresponds to the generic point of the linear subspace Aa
K ⊂ Ad

K given by
setting the last d− a coordinates equal to zero. Hence the composition

X
π′◦π−−−→ Ad

K
p−→ Aa

K



4822 59. ÉTALE COHOMOLOGY

of π′ ◦ π and the projection p onto the first a coordinates maps x to the generic point
η ∈ Aa

K . The induced map

K(t1, . . . , ta)sep = OshAa
k
,η −→ OshX,x

on étale local rings satisfies (1) since it is clear that the residue field of OshX,x is an al-
gebraic extension of the separably closed field K(t1, . . . , ta)sep. On the other hand, if
X = Spec(B), then OshX,x = colimBj is a filtered colimit of étale B-algebras Bj . Ob-
serve that Bj is quasi-finite over K[t1, . . . , td] as B is finite over K[t1, . . . , td]. We may
similarly write K(t1, . . . , ta)sep = colimAi as a filtered colimit of étale K[t1, . . . , ta]-
algebras. For every i we can find an j such that Ai → K(t1, . . . , ta)sep → OshX,x factors
through a map ψi,j : Ai → Bj . Then Bj is quasi-finite over Ai[ta+1, . . . , td]. Hence

Bi,j = Bj ⊗ψi,j ,Ai K(t1, . . . , ta)sep

has dimension≤ d− a as it is quasi-finite over K(t1, . . . , ta)sep[ta+1, . . . , td]. The proof
of (2) is now finished as OshX,x is a filtered colimit12 of the algebras Bi,j . Some details
omitted. �

Proposition 95.6. Let K be a field. Let X be an affine scheme of finite type over K.
Then we have cd(X) ≤ dim(X) + cd(K).

Proof. We will prove this by induction on dim(X). Let F be an abelian torsion
sheaf on Xétale.

The case dim(X) = 0. In this case the structure morphism f : X → Spec(K) is finite.
Hence we see that Rif∗F = 0 for i > 0, see Proposition 55.2. Thus Hi

étale(X,F) =
Hi
étale(Spec(K), f∗F) by the Leray spectral sequence for f (Cohomology on Sites, Lemma

14.5) and the result is clear.

The case dim(X) = 1. This is Lemma 95.3.

Assume d = dim(X) > 1 and the proposition holds for finite type affine schemes of
dimension < d over fields. By Noether normalization, see for example Varieties, Lemma
18.2, there exists a finite morphism f : X → Ad

K . Recall that Rif∗F = 0 for i > 0
by Proposition 55.2. By the Leray spectral sequence for f (Cohomology on Sites, Lemma
14.5) we conclude that it suffices to prove the result for π∗F on Ad

K .

Interlude I. Let j : X → Y be an open immersion of smooth d-dimensional varieties over
K (not necessarily affine) whose complement is the support of an effective Cartier divisor
D. The sheaves Rqj∗F for q > 0 are supported on D. We claim that (Rqj∗F)y = 0 for
a = trdegK(κ(y)) > d− q. Namely, by Theorem 53.1 we have

(Rqj∗F)y = Hq(Spec(OshY,y)×Y X,F)
Choose a local equation f ∈ my = OY,y for D. Then we have

Spec(OshY,y)×Y X = Spec(OshY,y[1/f ])
Using Lemma 95.5 we get an embedding

K(t1, . . . , ta)sep(x) = K(t1, . . . , ta)sep[x](x)[1/x] −→ OshY,y[1/f ]

12Let R be a ring. Let A = colimi∈I Ai be a filtered colimit of finitely presented R-algebras. Let B =
colimj∈J Bj be a filtered colimit of R-algebras. Let A → B be an R-algebra map. Assume that for all i ∈ I
there is a j ∈ J and an R-algebra map ψi,j : Ai → Bj . Say (i′, j′, ψi′,j′ ) ≥ (i, j, ψi,j) if i′ ≥ i, j′ ≥ j , and
ψi,j andψi′,j′ are compatible. Then the collection of triples forms a directed set andB = colimBj⊗ψi,jAiA.
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Since the transcendence degree over K of the fraction field of OshY,y is d, we see that
OshY,y[1/f ] is a filtered colimit of (d − a − 1)-dimensional finite type algebras over the
field K(t1, . . . , ta)sep(x) which itself has cohomological dimension 1 by Lemma 95.4.
Thus by induction hypothesis and Lemma 95.2 we obtain the desired vanishing.
Interlude II. Let Z be a smooth variety over K of dimension d− 1. Let Ea ⊂ Z be the set
of points z ∈ Z with trdegK(κ(z)) ≤ a. Observe that Ea is closed under specialization,
see Varieties, Lemma 20.3. Suppose that G is a torsion abelian sheaf on Z whose support is
contained in Ea. Then we claim that Hb

étale(Z,G) = 0 for b > a + cd(K). Namely, we
can write G = colimGi with Gi a torsion abelian sheaf supported on a closed subscheme
Zi contained inEa, see Lemma 74.5. Then the induction hypothesis kicks in to imply the
desired vanishing for Gi13. Finally, we conclude by Theorem 51.3.
Consider the commutative diagram

Ad
K

f ""

j
// P1

K ×K Ad−1
K

g
xx

Ad−1
K

Observe that j is an open immersion of smooth d-dimensional varieties whose complement
is an effective Cartier divisor D. Thus we may use the results obtained in interlude I. We
are going to study the relative Leray spectral sequence

Ep,q2 = Rpg∗R
qj∗F ⇒ Rp+qf∗F

Since Rqj∗F for q > 0 is supported on D and since g|D : D → Ad−1
K is an isomorphism,

we find Rpg∗R
qj∗F = 0 for p > 0 and q > 0. Moreover, we have Rqj∗F = 0 for q > d.

On the other hand, g is a proper morphism of relative dimension 1. Hence by Lemma 92.2
we see that Rpg∗j∗F = 0 for p > 2. Thus the E2-page of the spectral sequence looks like
this

g∗R
dj∗F 0 0
. . . . . . . . .

g∗R
2j∗F 0 0

g∗R
1j∗F 0 0

g∗j∗F R1g∗j∗F R2g∗j∗F
We conclude that Rqf∗F = g∗R

qj∗F for q > 2. By interlude I we see that the support
of Rqf∗F for q > 2 is contained in the set of points of Ad−1

K whose residue field has
transcendence degree ≤ d− q. By interlude II

Hp(Ad−1
K , Rqf∗F) = 0 for p > d− q + cd(K) and q > 2

On the other hand, by Theorem 53.1 we have R2f∗Fη = H2(A1
η,F) = 0 (vanishing by

the case of dimension 1) where η is the generic point of Ad−1
K . Hence by interlude II again

we see
Hp(Ad−1

K , R2f∗F) = 0 for p > d− 2 + cd(K)
Finally, we have

Hp(Ad−1
K , Rqf∗F) = 0 for p > d− 1 + cd(K) and q = 0, 1

13Here we first use Proposition 46.4 to write Gi as the pushforward of a sheaf onZi , the induction hypoth-
esis gives the vanishing for this sheaf on Zi , and the Leray spectral sequence for Zi → Z gives the vanishing
for Gi.
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by induction hypothesis. Combining everything we just said with the Leray spectral se-
quence Hp(Ad−1

K , Rqf∗F)⇒ Hp+q(Ad
K ,F) we conclude. �

Lemma 95.7. Let K be a field. Let X be an affine scheme of finite type over K.
Let Ea ⊂ X be the set of points x ∈ X with trdegK(κ(x)) ≤ a. Let F be an abelian
torsion sheaf on Xétale whose support is contained in Ea. Then Hb

étale(X,F) = 0 for
b > a+ cd(K).

Proof. We can write F = colimFi with Fi a torsion abelian sheaf supported on a
closed subscheme Zi contained in Ea, see Lemma 74.5. Then Proposition 95.6 gives the
desired vanishing for Fi. Details omitted; hints: first use Proposition 46.4 to write Fi
as the pushforward of a sheaf on Zi, use the vanishing for this sheaf on Zi, and use the
Leray spectral sequence for Zi → Z to get the vanishing for Fi. Finally, we conclude by
Theorem 51.3. �

Lemma 95.8. Let f : X → Y be an affine morphism of schemes of finite type over
a field K. Let Ea(X) be the set of points x ∈ X with trdegK(κ(x)) ≤ a. Let F be
an abelian torsion sheaf on Xétale whose support is contained in Ea. Then Rqf∗F has
support contained in Ea−q(Y ).

Proof. The question is local on Y hence we can assume Y is affine. Then X is affine
too and we can choose a diagram

X

f

��

i
// An+m

K

pr

��
Y

j // An
K

where the horizontal arrows are closed immersions and the vertical arrow on the right
is the projection (details omitted). Then j∗R

qf∗F = Rqpr∗i∗F by the vanishing of the
higher direct images of i and j , see Proposition 55.2. Moreover, the description of the
stalks of j∗ in the proposition shows that it suffices to prove the vanishing for j∗R

qf∗F .
Thus we may assume f is the projection morphism pr : An+m

K → An
K and an abelian

torsion sheaf F on An+m
K satisfying the assumption in the statement of the lemma.

Let y be a point in An
K . By Theorem 53.1 we have

(Rqpr∗F)y = Hq(An+m
K ×An

K
Spec(OshY,y),F) = Hq(Am

Osh
Y,y
,F)

Say b = trdegK(κ(y)). From Lemma 95.5 we get an embedding

L = K(t1, . . . , tb)sep −→ OshY,y
Write OshY,y = colimBi as the filtered colimit of finite type L-subalgebras Bi ⊂ OshY,y
containing the ring K[T1, . . . , Tn] of regular functions on An

K . Then we get
Am

Osh
Y,y

= lim Am
Bi

If z ∈ Am
Bi

is a point in the support of F , then the image x of z in Am+n
K satisfies

trdegK(κ(x)) ≤ a by our assumption on F in the lemma. Since OshY,y is a filtered col-
imit of étale algebras over K[T1, . . . , Tn] and since Bi ⊂ OshY,y we see that κ(z)/κ(x) is
algebraic (some details omitted). Then trdegK(κ(z)) ≤ a and hence trdegL(κ(z)) ≤ a−b.
By Lemma 95.7 we see that

Hq(Am
Bi ,F) = 0 for q > a− b
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Thus by Theorem 51.3 we get (Rf∗F)y = 0 for q > a− b as desired. �

96. Finite cohomological dimension

We continue the discussion started in Section 95.

Definition 96.1. Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. The cohomological dimension of f is the smallest element

cd(f) ∈ {0, 1, 2, . . .} ∪ {∞}
such that for any abelian torsion sheaf F on Xétale we have Rif∗F = 0 for i > cd(f).

Lemma 96.2. Let K be a field.
(1) If f : X → Y is a morphism of finite type schemes over K , then cd(f) <∞.
(2) If cd(K) <∞, then cd(X) <∞ for any finite type scheme X over K.

Proof. Proof of (1). We may assume Y is affine. We will use the induction principle
of Cohomology of Schemes, Lemma 4.1 to prove this. If X is affine too, then the result
holds by Lemma 95.8. Thus it suffices to show that if X = U ∪ V and the result is true
for U → Y , V → Y , and U ∩V → Y , then it is true for f . This follows from the relative
Mayer-Vietoris sequence, see Lemma 50.2.

Proof of (2). We will use the induction principle of Cohomology of Schemes, Lemma 4.1
to prove this. If X is affine, then the result holds by Proposition 95.6. Thus it suffices to
show that if X = U ∪ V and the result is true for U , V , and U ∩ V , then it is true for X .
This follows from the Mayer-Vietoris sequence, see Lemma 50.1. �

Lemma 96.3. Cohomology and direct sums. Let n ≥ 1 be an integer.
(1) Let f : X → Y be a quasi-compact and quasi-separated morphism of schemes

with cd(f) <∞. Then the functor

Rf∗ : D(Xétale,Z/nZ) −→ D(Yétale,Z/nZ)
commutes with direct sums.

(2) Let X be a quasi-compact and quasi-separated scheme with cd(X) < ∞. Then
the functor

RΓ(X,−) : D(Xétale,Z/nZ) −→ D(Z/nZ)
commutes with direct sums.

Proof. Proof of (1). Since cd(f) <∞ we see that

f∗ : Mod(Xétale,Z/nZ) −→Mod(Yétale,Z/nZ)
has finite cohomological dimension in the sense of Derived Categories, Lemma 32.2. Let I
be a set and for i ∈ I let Ei be an object of D(Xétale,Z/nZ). Choose a K-injective com-
plex I•

i of Z/nZ-modules each of whose terms Ini is an injective sheaf of Z/nZ-modules
representing Ei. See Injectives, Theorem 12.6. Then

⊕
Ei is represented by the complex⊕

I•
i (termwise direct sum), see Injectives, Lemma 13.4. By Lemma 51.7 we have

Rqf∗(
⊕
Ini ) =

⊕
Rqf∗(Ini ) = 0

for q > 0 and any n. Hence we conclude by Derived Categories, Lemma 32.2 that we may
compute Rf∗(

⊕
Ei) by the complex

f∗(
⊕
I•
i ) =

⊕
f∗(I•

i )
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(equality again by Lemma 51.7) which represents
⊕
Rf∗Ei by the already used Injectives,

Lemma 13.4.

Proof of (2). This is identical to the proof of (1) and we omit it. �

Lemma 96.4. Let f : X → Y be a proper morphism of schemes. Let n ≥ 1 be an
integer. Then the functor

Rf∗ : D(Xétale,Z/nZ) −→ D(Yétale,Z/nZ)

commutes with direct sums.

Proof. It is enough to prove this when Y is quasi-compact. By Morphisms, Lemma
28.5 we see that the dimension of the fibres of f : X → Y is bounded. Thus Lemma 92.2
implies that cd(f) <∞. Hence the result by Lemma 96.3. �

Lemma 96.5. LetX be a quasi-compact and quasi-separated scheme such that cd(X) <
∞. Let Λ be a torsion ring. Let E ∈ D(Xétale,Λ) and K ∈ D(Λ). Then

RΓ(X,E ⊗L
Λ K) = RΓ(X,E)⊗L

Λ K

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
50. Let T (K) be the property that the statement of the lemma holds for K ∈ D(Λ).
We will check conditions (1), (2), and (3) of More on Algebra, Remark 59.11 hold for T to
conclude. Property (1) holds because both sides of the equality commute with direct sums,
see Lemma 96.3. Property (2) holds because we are comparing exact functors between
triangulated categories and we can use Derived Categories, Lemma 4.3. Property (3) says
the lemma holds when K = Λ[k] for any shift k ∈ Z and this is obvious. �

Lemma 96.6. Let f : X → Y be a proper morphism of schemes. Let Λ be a torsion
ring. Let E ∈ D(Xétale,Λ) and K ∈ D(Yétale,Λ). Then

Rf∗E ⊗L
Λ K = Rf∗(E ⊗L

Λ f
−1K)

in D(Yétale,Λ).

Proof. There is a canonical map from left to right by Cohomology on Sites, Section
50. We will check the equality on stalks at y. By the proper base change (in the form
of Lemma 92.3 where Y ′ = y) this reduces to the case where Y is the spectrum of an
algebraically closed field. This is shown in Lemma 96.5 where we use that cd(X) <∞ by
Lemma 92.2. �

97. Künneth in étale cohomology

We first prove a Künneth formula in case one of the factors is proper. Then we use this
formula to prove a base change property for open immersions. This then gives a “base
change by morphisms towards spectra of fields” (akin to smooth base change). Finally we
use this to get a more general Künneth formula.

Remark 97.1. Consider a cartesian diagram in the category of schemes:

X ×S Y

p

��

q
//

c
##

Y

g

��
X

f // S
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Let Λ be a ring and letE ∈ D(Xétale,Λ) andK ∈ D(Yétale,Λ). Then there is a canonical
map

Rf∗E ⊗L
Λ Rg∗K −→ Rc∗(p−1E ⊗L

Λ q
−1K)

For example we can define this using the canonical mapsRf∗E → Rc∗p
−1E andRg∗K →

Rc∗q
−1K and the relative cup product defined in Cohomology on Sites, Remark 19.7. Or

you can use the adjoint to the map

c−1(Rf∗E ⊗L
Λ Rg∗K) = p−1f−1Rf∗E ⊗L

Λ q
−1g−1Rg∗K → p−1E ⊗L

Λ q
−1K

which uses the adjunction maps f−1Rf∗E → E and g−1Rg∗K → K.

Lemma 97.2. Let k be a separably closed field. Let X be a proper scheme over k. Let
Y be a quasi-compact and quasi-separated scheme over k.

(1) If E ∈ D+(Xétale) has torsion cohomology sheaves and K ∈ D+(Yétale), then

RΓ(X ×Spec(k) Y, pr−1
1 E ⊗L

Z pr−1
2 K) = RΓ(X,E)⊗L

Z RΓ(Y,K)

(2) If n ≥ 1 is an integer, Y is of finite type over k, E ∈ D(Xétale,Z/nZ), and
K ∈ D(Yétale,Z/nZ), then

RΓ(X ×Spec(k) Y, pr−1
1 E ⊗L

Z/nZ pr−1
2 K) = RΓ(X,E)⊗L

Z/nZ RΓ(Y,K)

Proof. Proof of (1). By Lemma 92.5 we have

Rpr2,∗(pr−1
1 E ⊗L

Z pr−1
2 K) = Rpr2,∗(pr−1

1 E)⊗L
Z K

By proper base change (in the form of Lemma 91.12) this is equal to the object

RΓ(X,E)⊗L
Z K

ofD(Yétale). TakingRΓ(Y,−) on this object reproduces the left hand side of the equality
in (1) by the Leray spectral sequence for pr2. Thus we conclude by Lemma 92.4.

Proof of (2). This is exactly the same as the proof of (1) except that we use Lemmas 96.6,
92.3, and 96.5 as well as cd(Y ) <∞ by Lemma 96.2. �

Lemma 97.3. LetK be a separably closed field. LetX be a scheme of finite type over
K. Let F be an abelian sheaf on Xétale whose support is contained in the set of closed
points of X . Then Hq(X,F) = 0 for q > 0 and F is globally generated.

Proof. (If F is torsion, then the vanishing follows immediately from Lemma 95.7.)
By Lemma 74.5 we can write F as a filtered colimit of constructible sheaves Fi of Z-
modules whose supports Zi ⊂ X are finite sets of closed points. By Proposition 46.4 such
a sheaf is of the form (Zi → X)∗Gi where Gi is a sheaf on Zi. As K is separably closed,
the scheme Zi is a finite disjoint union of spectra of separably closed fields. Recall that
Hq(Zi,Gi) = Hq(X,Fi) by the Leray spectral sequence for Zi → X and vanising of
higher direct images for this morphism (Proposition 55.2). By Lemmas 59.1 and 59.2 we
see that Hq(Zi,Gi) is zero for q > 0 and that H0(Zi,Gi) generates Gi. We conclude the
vanishing ofHq(X,Fi) for q > 0 and thatFi is generated by global sections. By Theorem
51.3 we see thatHq(X,F) = 0 for q > 0. The proof is now done because a filtered colimit
of globally generated sheaves of abelian groups is globally generated (details omitted). �

Lemma 97.4. LetK be a separably closed field. LetX be a scheme of finite type over
K. Let Q ∈ D(Xétale). Assume that Qx is nonzero only if x is a closed point of X . Then

Q = 0⇔ Hi(X,Q) = 0 for all i
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Proof. The implication from left to right is trivial. Thus we need to prove the reverse
implication.
AssumeQ is bounded below; this cases suffices for almost all applications. IfQ is not zero,
then we can look at the smallest i such that the cohomology sheaf Hi(Q) is nonzero. By
Lemma 97.3 we have Hi(X,Q) = H0(X,Hi(Q)) 6= 0 and we conclude.
General case. Let B ⊂ Ob(Xétale) be the quasi-compact objects. By Lemma 97.3 the as-
sumptions of Cohomology on Sites, Lemma 23.11 are satisfied. We conclude thatHq(U,Q) =
H0(U,Hq(Q)) for all U ∈ B. In particular, this holds for U = X . Thus the conclusion
by Lemma 97.3 as Q is zero in D(Xétale) if and only if Hq(Q) is zero for all q. �

Lemma 97.5. Let K be a field. Let j : U → X be an open immersion of schemes of
finite type over K. Let Y be a scheme of finite type over K. Consider the diagram

Y ×Spec(K) X

q

��

Y ×Spec(K) U
h
oo

p

��
X U

joo

Then the base change map q−1Rj∗F → Rh∗p
−1F is an isomorphism for F an abelian

sheaf on Uétale whose stalks are torsion of orders invertible in K.

Proof. Write F = colimF [n] where the colimit is over the multiplicative system
of integers invertible in K. Since cohomology commutes with filtered colimits in our
situation (for a precise reference see Lemma 86.3), it suffices to prove the lemma for F [n].
Thus we may assumeF is a sheaf of Z/nZ-modules for some n invertible inK (we will use
this at the very end of the proof). In the proof we use the short handX×K Y for the fibre
product over Spec(K). We will prove the lemma by induction on dim(X) + dim(Y ).
The lemma is trivial if dim(X) ≤ 0, since in this case U is an open and closed subscheme
of X . Choose a point z ∈ X ×K Y . We will show the stalk at z is an isomorphism.
Suppose that z 7→ x ∈ X and assume trdegK(κ(x)) > 0. Set X ′ = Spec(OshX,x) and
denote U ′ ⊂ X ′ the inverse image of U . Consider the base change

Y ×K X ′

q′

��

Y ×K U ′
h′
oo

p′

��
X ′ U ′j′
oo

of our diagram byX ′ → X . Observe thatX ′ → X is a filtered colimit of étale morphisms.
By smooth base change in the form of Lemma 89.3 the pullback of q−1Rj∗F → Rh∗p

−1F
to X ′ to Y ×K X ′ is the map (q′)−1Rj′

∗F ′ → Rj′
∗(p′)−1F ′ where F ′ is the pullback of

F to U ′. (In this step it would suffice to use étale base change which is an essentially
trivial result.) So it suffices to show that (q′)−1Rj′

∗F ′ → Rj′
∗(p′)−1F ′ is an isomorphism

in order to prove that our original map is an isomorphism on stalks at z. By Lemma
95.5 there is a separably closed field L/K such that X ′ = limXi with Xi affine of finite
type over L and dim(Xi) < dim(X). For i large enough there exists an open Ui ⊂ Xi

restricting to U ′ in X ′. We may apply the induction hypothesis to the diagram

Y ×K Xi

qi

��

Y ×K Ui
hi

oo

pi

��
Xi Ui

jioo

equal to

YL ×L Xi

qi

��

YL ×L Ui
hi

oo

pi

��
Xi Ui

jioo
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over the fieldL and the pullback ofF to these diagrams. By Lemma 86.3 we conclude that
the map (q′)−1Rj′

∗F ′ → Rj′
∗(p′)−1F is an isomorphism.

Suppose that z 7→ y ∈ Y and assume trdegK(κ(y)) > 0. Let Y ′ = Spec(OshX,x). By
Lemma 95.5 there is a separably closed field L/K such that Y ′ = lim Yi with Yi affine of
finite type over L and dim(Yi) < dim(Y ). In particular Y ′ is a scheme over L. Denote
with a subscript L the base change from schemes over K to schemes over L. Consider the
commutative diagrams

Y ′ ×K X

f

��

Y ′ ×K U
h′
oo

f ′

��
Y ×K X

q

��

Y ×K U
h

oo

p

��
X U

joo

and

Y ′ ×L XL

q′

��

Y ′ ×L UL
h′
oo

p′

��
XL

��

UL
jL

oo

��
X U

joo

and observe the top and bottom rows are the same on the left and the right. By smooth
base change we see that f−1Rh∗p

−1F = Rh′
∗(f ′)−1p−1F (similarly to the previous

paragraph). By smooth base change for Spec(L) → Spec(K) (Lemma 90.1) we see that
RjL,∗FL is the pullback ofRj∗F toXL. Combining these two observations, we conclude
that it suffices to prove the base change map for the upper square in the diagram on the
right is an isomorphism in order to prove that our original map is an isomorphism on stalks
at z14. Then using that Y ′ = lim Yi and argueing exactly as in the previous paragraph we
see that the induction hypothesis forces our map over Y ′ ×K X to be an isomorphism.
Thus any counter example with dim(X)+dim(Y ) minimal would only have nonisomor-
phisms q−1Rj∗F → Rh∗p

−1F on stalks at closed points ofX×K Y (because a point z of
X×KY is a closed point if and only if both the image of z inX and in Y are closed). Since
it is enough to prove the isomorphism locally, we may assume X and Y are affine. How-
ever, then we can choose an open dense immersion Y → Y ′ with Y ′ projective. (Choose a
closed immersion Y → An

K and let Y ′ be the scheme theoretic closure of Y in Pn
K .) Then

dim(Y ′) = dim(Y ) and hence we get a “minimal” counter example with Y projective
over K. In the next paragraph we show that this can’t happen.
Consider a diagram as in the statement of the lemma such that q−1Rj∗F → Rh∗p

−1F
is an isomorphism at all non-closed points of X ×K Y and such that Y is projective. The
restriction of the map to (X ×K Y )Ksep is the corresponding map for the diagram of the
lemma base changed to Ksep. Thus we may and do assume K is separably algebraically
closed. Choose a distinguished triangle

q−1Rj∗F → Rh∗p
−1F → Q→ (q−1Rj∗F)[1]

inD((X×K Y )étale). SinceQ is supported in closed points we see that it suffices to prove
Hi(X ×K Y,Q) = 0 for all i, see Lemma 97.4. Thus it suffices to prove that q−1Rj∗F →
Rh∗p

−1F induces an isomorphism on cohomology. Recall that F is annihilated by n
invertible in K. By the Künneth formula of Lemma 97.2 we have

RΓ(X ×K Y, q−1Rj∗F) = RΓ(X,Rj∗F)⊗L
Z/nZ RΓ(Y,Z/nZ)

= RΓ(U,F)⊗L
Z/nZ RΓ(Y,Z/nZ)

14Here we use that a “vertical composition” of base change maps is a base change map as explained in
Cohomology on Sites, Remark 19.4.



4830 59. ÉTALE COHOMOLOGY

and
RΓ(X ×K Y,Rh∗p

−1F) = RΓ(U ×K Y, p−1F) = RΓ(U,F)⊗L
Z/nZ RΓ(Y,Z/nZ)

This finishes the proof. �

Lemma 97.6. Let K be a field. For any commutative diagram

X

��

X ′oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

of schemes over K with X ′ = X ×Spec(K) S
′ and Y = X ′ ×S′ T and g quasi-compact

and quasi-separated, and every abelian sheafF on Tétale whose stalks are torsion of orders
invertible in K the base change map

(f ′)−1Rg∗F −→ Rh∗e
−1F

is an isomorphism.

Proof. The question is local on X , hence we may assume X is affine. By Limits,
Lemma 7.2 we can writeX = limXi as a cofiltered limit with affine transition morphisms
of schemesXi of finite type overK. DenoteX ′

i = Xi×Spec(K)S
′ and Yi = X ′

i×S′ T . By
Lemma 86.3 it suffices to prove the statement for the squares with corners Xi, Yi, Si, Ti.
Thus we may assumeX is of finite type overK. Similarly, we may writeF = colimF [n]
where the colimit is over the multiplicative system of integers invertible in K. The same
lemma used above reduces us to the case where F is a sheaf of Z/nZ-modules for some n
invertible in K.
We may replace K by its algebraic closure K. Namely, formation of direct image com-
mutes with base change to K according to Lemma 90.1 (works for both g and h). And
it suffices to prove the agreement after restriction to X ′

K
. Next, we may replace X by

its reduction as we have the topological invariance of étale cohomology, see Proposition
45.4. After this replacement the morphism X → Spec(K) is flat, finite presentation,
with geometrically reduced fibres and the same is true for any base change, in particular
for X ′ → S′. Hence (f ′)−1g∗F → Rh∗e

−1F is an isomorphism by Lemma 87.2.
At this point we may apply Lemma 90.3 to see that it suffices to prove: given a commuta-
tive diagram

X

f

��

X ′

��

oo Y
h

oo

��
Spec(K) S′oo Spec(L)oo

with both squares cartesian, where S′ is affine, integral, and normal with algebraically
closed function field K , then Rqh∗(Z/dZ) is zero for q > 0 and d|n. Observe that this
vanishing is equivalent to the statement that

(f ′)−1Rq(Spec(L)→ S′)∗Z/dZ −→ Rqh∗Z/dZ
is an isomorphism, because the left hand side is zero for example by Lemma 80.5.
Write S′ = Spec(B) so thatL is the fraction field ofB. WriteB =

⋃
i∈I Bi as the union

of its finite type K-subalgebras Bi. Let J be the set of pairs (i, g) where i ∈ I and g ∈ Bi
nonzero with ordering (i′, g′) ≥ (i, g) if and only if i′ ≥ i and g maps to an invertible
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element of (Bi′)g′ . Then L = colim(i,g)∈J(Bi)g . For j = (i, g) ∈ J set Sj = Spec(Bi)
and Uj = Spec((Bi)g). Then

X ′

��

Y
h

oo

��
S′ Spec(L)oo

is the colimit of

X ×K Sj

��

X ×K Uj
hj

oo

��
Sj Ujoo

Thus we may apply Lemma 86.3 to see that it suffices to prove base change holds in the
diagrams on the right which is what we proved in Lemma 97.5. �

Lemma 97.7. LetK be a field. Let n ≥ 1 be invertible inK. Consider a commutative
diagram

X

��

X ′
p

oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

of schemes with X ′ = X ×Spec(K) S
′ and Y = X ′ ×S′ T and g quasi-compact and

quasi-separated. The canonical map

p−1E ⊗L
Z/nZ (f ′)−1Rg∗F −→ Rh∗(h−1p−1E ⊗L

Z/nZ e
−1F )

is an isomorphism if E in D+(Xétale,Z/nZ) has tor amplitude in [a,∞] for some a ∈ Z
and F in D+(Tétale,Z/nZ).

Proof. This lemma is a generalization of Lemma 97.6 to objects of the derived cate-
gory; the assertion of our lemma is true because in Lemma 97.6 the scheme X over K is
arbitrary. We strongly urge the reader to skip the laborious proof (alternative: read only
the last paragraph).
We may represent E by a bounded below K-flat complex E• consisting of flat Z/nZ-
modules. See Cohomology on Sites, Lemma 46.4. Choose an integer b such thatHi(F ) =
0 for i < b. Choose a large integer N and consider the short exact sequence

0→ σ≥N+1E• → E• → σ≤NE• → 0
of stupid truncations. This produces a distinguished triangle E′′ → E → E′ → E′′[1] in
D(Xétale,Z/nZ). For fixed F both sides of the arrow in the statement of the lemma are
exact functors in E. Observe that

p−1E′′ ⊗L
Z/nZ (f ′)−1Rg∗F and Rh∗(h−1p−1E′′ ⊗L

Z/nZ e
−1F )

are sitting in degrees≥ N+b. Hence, if we can prove the lemma for the objectE′, then we
see that the lemma holds in degrees≤ N + b and we will conclude. Some details omitted.
Thus we may assumeE is represented by a bounded complex of flat Z/nZ-modules. Doing
another argument of the same nature, we may assume E is given by a single flat Z/nZ-
module E .
Next, we use the same arguments for the variable F to reduce to the case where F is given
by a single sheaf of Z/nZ-modules F . Say F is annihilated by an integer m|n. If ` is
a prime number dividing m and m > `, then we can look at the short exact sequence
0 → F [`] → F → F/F [`] → 0 and reduce to smaller m. This finally reduces us to the
case where F is annihilated by a prime number ` dividing n. In this case observe that

p−1E ⊗L
Z/nZ (f ′)−1Rg∗F = p−1(E/`E)⊗L

F` (f ′)−1Rg∗F
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by the flatness of E . Similarly for the other term. This reduces us to the case where we are
working with sheaves of F`-vector spaces which is discussed

Assume ` is a prime number invertible inK. Assume E , F are sheaves of F`-vector spaces
on Xétale and Tétale. We want to show that

p−1E ⊗F` (f ′)−1Rqg∗F −→ Rqh∗(h−1p−1E ⊗F` e
−1F)

is an isomorphism for every q ≥ 0. This question is local onX hence we may assumeX is
affine. We can write E as a filtered colimit of constructible sheaves of F`-vector spaces on
Xétale, see Lemma 73.2. Since tensor products commute with filtered colimits and since
higher direct images do too (Lemma 51.7) we may assume E is a constructible sheaf of F`-
vector spaces onXétale. Then we can choose an integerm and finite and finitely presented
morphisms πi : Xi → X , i = 1, . . . ,m such that there is an injective map

E →
⊕

i=1,...,m
πi,∗F`

See Lemma 74.4. Observe that the direct sum is a constructible sheaf as well (Lemma 73.9).
Thus the cokernel is constructible too (Lemma 71.6). By dimension shifting, i.e., induction
on q, on the category of constructible sheaves of F`-vector spaces on Xétale, it suffices to
prove the result for the sheavesπi,∗F` (details omitted; hint: start with proving injectivity
for q = 0 for all constructible E). To prove this case we extend the diagram of the lemma
to

Xi

πi

��

X ′
ipi

oo

π′
i

��

Yi
hi

oo

ρi

��
X

��

X ′
p

oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

with all squares cartesian. In the equations below we are going to use that Rπi,∗ = πi,∗
and similarly for π′

i, ρi, we are going to use the Leray spectral sequence, we are going to use
Lemma 55.3, and we are going to use Lemma 96.6 (although this lemma is almost trivial
for finite morphisms) for πi, π′

i, ρi. Doing so we see that

p−1πi,∗F` ⊗F` (f ′)−1Rqg∗F = π′
i,∗F` ⊗F` (f ′)−1Rqg∗F

= π′
i,∗((π′

i)−1(f ′)−1Rqg∗F)

Similarly, we have

Rqh∗(h−1p−1πi,∗F` ⊗F` e
−1F) = Rqh∗(ρi,∗F` ⊗F` e

−1F)
= Rqh∗(ρ−1

i e−1F)
= π′

i,∗R
qhi,∗ρ

−1
i e−1F)

Simce Rqhi,∗ρ−1
i e−1F = (π′

i)−1(f ′)−1Rqg∗F by Lemma 97.6 we conclude. �
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Lemma 97.8. LetK be a field. Let n ≥ 1 be invertible inK. Consider a commutative
diagram

X

��

X ′
p

oo

f ′

��

Y
h
oo

e

��
Spec(K) S′oo T

goo

of schemes of finite type over K with X ′ = X ×Spec(K) S
′ and Y = X ′ ×S′ T . The

canonical map

p−1E ⊗L
Z/nZ (f ′)−1Rg∗F −→ Rh∗(h−1p−1E ⊗L

Z/nZ e
−1F )

is an isomorphism for E in D(Xétale,Z/nZ) and F in D(Tétale,Z/nZ).

Proof. We will reduce this to Lemma 97.7 using that our functors commute with
direct sums. We suggest the reader skip the proof. Recall that derived tensor product
commutes with direct sums. Recall that (derived) pullback commutes with direct sums.
Recall that Rh∗ and Rg∗ commute with direct sums, see Lemmas 96.2 and 96.3 (this is
where we use our schemes are of finite type over K).
To finish the proof we can argue as follows. First we write E = hocolimτ≤NE. Since
our functors commute with direct sums, they commute with homotopy colimits. Hence
it suffices to prove the lemma for E bounded above. Similarly for F we may assume F is
bounded above. Then we can represent E by a bounded above complex E• of sheaves of
Z/nZ-modules. Then

E• = colim σ≥−NE•

(stupid truncations). Thus we may assume E• is a bounded complex of sheaves of Z/nZ-
modules. For F we choose a bounded above complex of flat(!) sheaves of Z/nZ-modules.
Then we reduce to the case where F is represented by a bounded complex of flat sheaves
of Z/nZ-modules. At this point Lemma 97.7 kicks in and we conclude. �

Lemma 97.9. Let k be a separably closed field. Let X and Y be finite type schemes
over k. Let n ≥ 1 be an integer invertible in k. Then for E ∈ D(Xétale,Z/nZ) and
K ∈ D(Yétale,Z/nZ) we have

RΓ(X ×Spec(k) Y, pr−1
1 E ⊗L

Z/nZ pr−1
2 K) = RΓ(X,E)⊗L

Z/nZ RΓ(Y,K)

Proof. By Lemma 97.8 we have

Rpr1,∗(pr−1
1 E ⊗L

Z/nZ pr−1
2 K) = E ⊗L

Z/nZ RΓ(Y,K)

We conclude by Lemma 96.5 which we may use because cd(X) <∞ by Lemma 96.2. �

98. Comparing chaotic and Zariski topologies

When constructing the structure sheaf of an affine scheme, we first construct the values
on affine opens, and then we extend to all opens. A similar construction is often useful for
constructing complexes of abelian groups on a schemeX . Recall thatXaffine,Zar denotes
the category of affine opens of X with topology given by standard Zariski coverings, see
Topologies, Definition 3.7. We remind the reader that the topos of Xaffine,Zar is the
small Zariski topos of X , see Topologies, Lemma 3.11. In this section we denote Xaffine

the same underlying category with the chaotic topology, i.e., such that sheaves agree with
presheaves. We obtain a morphisms of sites

ε : Xaffine,Zar −→ Xaffine
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as in Cohomology on Sites, Section 27.

Lemma 98.1. In the situation above let K be an object of D+(Xaffine). Then K is
in the essential image of the (fully faithful) functorRε∗;D(Xaffine,Zar)→ D(Xaffine)
if and only if the following two conditions hold

(1) RΓ(∅,K) is zero in D(Ab), and
(2) if U = V ∪W with U, V,W ⊂ X affine open and V,W ⊂ U standard open

(Algebra, Definition 17.3), then the map cKU,V,W,V ∩W of Cohomology on Sites,
Lemma 26.1 is a quasi-isomorphism.

Proof. (The functor Rε∗ is fully faithful by the discussion in Cohomology on Sites,
Section 27.) Except for a snafu having to do with the empty set, this follows from the very
general Cohomology on Sites, Lemma 29.2 whose hypotheses hold by Schemes, Lemma 11.7
and Cohomology on Sites, Lemma 29.3.
To get around the snafu, denote Xaffine,almost−chaotic the site where the empty object ∅
has two coverings, namely, {∅ → ∅} and the empty covering (see Sites, Example 6.4 for a
discussion). Then we have morphisms of sites

Xaffine,Zar → Xaffine,almost−chaotic → Xaffine

The argument above works for the first arrow. Then we leave it to the reader to see
that an object K of D+(Xaffine) is in the essential image of the (fully faithful) functor
D(Xaffine,almost−chaotic)→ D(Xaffine) if and only ifRΓ(∅,K) is zero inD(Ab). �

99. Comparing big and small topoi

Let S be a scheme. In Topologies, Lemma 4.14 we have introduced comparison morphisms
πS : (Sch/S)étale → Sétale and iS : Sh(Sétale) → Sh((Sch/S)étale) with πS ◦ iS = id
and πS,∗ = i−1

S . More generally, if f : T → S is an object of (Sch/S)étale, then there is a
morphism if : Sh(Tétale)→ Sh((Sch/S)étale) such that fsmall = πS◦if , see Topologies,
Lemmas 4.13 and 4.17. In Descent, Remark 8.4 we have extended these to a morphism of
ringed sites

πS : ((Sch/S)étale,O)→ (Sétale,OS)
and morphisms of ringed topoi

iS : (Sh(Sétale),OS)→ (Sh((Sch/S)étale),O)
and

if : (Sh(Tétale),OT )→ (Sh((Sch/S)étale,O))
Note that the restriction i−1

S = πS,∗ (see Topologies, Definition 4.15) transforms O into
OS . Similarly, i−1

f transforms O into OT . See Descent, Remark 8.4. Hence i∗SF = i−1
S F

and i∗fF = i−1
f F for anyO-module F on (Sch/S)étale. In particular i∗S and i∗f are exact

functors. The functor i∗S is often denoted F 7→ F|Sétale (and this does not conflict with
the notation in Topologies, Definition 4.15).

Lemma 99.1. Let S be a scheme. Let T be an object of (Sch/S)étale.
(1) If I is injective in Ab((Sch/S)étale), then

(a) i−1
f I is injective in Ab(Tétale),

(b) I|Sétale is injective in Ab(Sétale),
(2) If I• is a K-injective complex in Ab((Sch/S)étale), then

(a) i−1
f I• is a K-injective complex in Ab(Tétale),

(b) I•|Sétale is a K-injective complex in Ab(Sétale),
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The corresponding statements for modules do not hold.

Proof. Parts (1)(b) and (2)(b) follow formally from the fact that the restriction func-
tor πS,∗ = i−1

S is a right adjoint of the exact functor π−1
S , see Homology, Lemma 29.1 and

Derived Categories, Lemma 31.9.

Parts (1)(a) and (2)(a) can be seen in two ways. First proof: We can use that i−1
f is a right

adjoint of the exact functor if,!. This functor is constructed in Topologies, Lemma 4.13
for sheaves of sets and for abelian sheaves in Modules on Sites, Lemma 16.2. It is shown in
Modules on Sites, Lemma 16.3 that it is exact. Second proof. We can use that if = iT ◦fbig
as is shown in Topologies, Lemma 4.17. Since fbig is a localization, we see that pullback
by it preserves injectives and K-injectives, see Cohomology on Sites, Lemmas 7.1 and 20.1.
Then we apply the already proved parts (1)(b) and (2)(b) to the functor i−1

T to conclude.

Let S = Spec(Z) and consider the map 2 : OS → OS . This is an injective map of OS-
modules on Sétale. However, the pullback π∗

S(2) : O → O is not injective as we see by
evaluating on Spec(F2). Now choose an injection α : O → I into an injectiveO-module
I on (Sch/S)étale. Then consider the diagram

OS

2
��

α|Sétale
// I|Sétale

OS

77

Then the dotted arrow cannot exist in the category ofOS-modules because it would mean
(by adjunction) that the injective map α factors through the noninjective map π∗

S(2)
which cannot be the case. Thus I|Sétale is not an injectiveOS-module. �

Let f : T → S be a morphism of schemes. The commutative diagram of Topologies,
Lemma 4.17 (3) leads to a commutative diagram of ringed sites

(Tétale,OT )

fsmall

��

((Sch/T )étale,O)

fbig

��

πT
oo

(Sétale,OS) ((Sch/S)étale,O)πSoo

as one easily sees by writing out the definitions of f ]small, f
]
big , π]S , and π]T . In particular

this means that

(99.1.1) (fbig,∗F)|Sétale = fsmall,∗(F|Tétale)

for any sheaf F on (Sch/T )étale and if F is a sheaf of O-modules, then (99.1.1) is an
isomorphism ofOS-modules on Sétale.

Lemma 99.2. Let f : T → S be a morphism of schemes.

(1) ForK inD((Sch/T )étale) we have (Rfbig,∗K)|Sétale = Rfsmall,∗(K|Tétale) in
D(Sétale).

(2) ForK inD((Sch/T )étale,O) we have (Rfbig,∗K)|Sétale = Rfsmall,∗(K|Tétale)
in D(Mod(Sétale,OS)).
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More generally, let g : S′ → S be an object of (Sch/S)étale. Consider the fibre product

T ′
g′
//

f ′

��

T

f

��
S′ g // S

Then
(3) ForK inD((Sch/T )étale) we have i−1

g (Rfbig,∗K) = Rf ′
small,∗(i−1

g′ K) inD(S′
étale).

(4) For K in D((Sch/T )étale,O) we have i∗g(Rfbig,∗K) = Rf ′
small,∗(i∗g′K) in

D(Mod(S′
étale,OS′)).

(5) For K in D((Sch/T )étale) we have g−1
big(Rfbig,∗K) = Rf ′

big,∗((g′
big)−1K) in

D((Sch/S′)étale).
(6) For K in D((Sch/T )étale,O) we have g∗

big(Rfbig,∗K) = Rf ′
big,∗((g′

big)∗K) in
D(Mod(S′

étale,OS′)).

Proof. Part (1) follows from Lemma 99.1 and (99.1.1) on choosing a K-injective com-
plex of abelian sheaves representing K.
Part (3) follows from Lemma 99.1 and Topologies, Lemma 4.19 on choosing a K-injective
complex of abelian sheaves representing K.
Part (5) is Cohomology on Sites, Lemma 21.1.
Part (6) is Cohomology on Sites, Lemma 21.2.
Part (2) can be proved as follows. Above we have seen that πS ◦ fbig = fsmall ◦ πT as
morphisms of ringed sites. Hence we obtain RπS,∗ ◦ Rfbig,∗ = Rfsmall,∗ ◦ RπT,∗ by
Cohomology on Sites, Lemma 19.2. Since the restriction functors πS,∗ and πT,∗ are exact,
we conclude.
Part (4) follows from part (6) and part (2) applied to f ′ : T ′ → S′. �

Let S be a scheme and letH be an abelian sheaf on (Sch/S)étale. Recall thatHn
étale(U,H)

denotes the cohomology ofH over an object U of (Sch/S)étale.

Lemma 99.3. Let f : T → S be a morphism of schemes. Then
(1) For K in D(Sétale) we have Hn

étale(S, π
−1
S K) = Hn(Sétale,K).

(2) For K in D(Sétale,OS) we have Hn
étale(S,Lπ∗

SK) = Hn(Sétale,K).
(3) For K in D(Sétale) we have Hn

étale(T, π
−1
S K) = Hn(Tétale, f−1

smallK).
(4) For K in D(Sétale,OS) we have Hn

étale(T,Lπ∗
SK) = Hn(Tétale, Lf∗

smallK).
(5) For M in D((Sch/S)étale) we have Hn

étale(T,M) = Hn(Tétale, i−1
f M).

(6) For M in D((Sch/S)étale,O) we have Hn
étale(T,M) = Hn(Tétale, i∗fM).

Proof. To prove (5) represent M by a K-injective complex of abelian sheaves and
apply Lemma 99.1 and work out the definitions. Part (3) follows from this as i−1

f π−1
S =

f−1
small. Part (1) is a special case of (3).

Part (6) follows from the very general Cohomology on Sites, Lemma 37.5. Then part (4)
follows because Lf∗

small = i∗f ◦ Lπ∗
S . Part (2) is a special case of (4). �

Lemma 99.4. Let S be a scheme. For K ∈ D(Sétale) the map

K −→ RπS,∗π
−1
S K

is an isomorphism.
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Proof. This is true because both π−1
S and πS,∗ = i−1

S are exact functors and the
composition πS,∗ ◦ π−1

S is the identity functor. �

Lemma 99.5. Let f : T → S be a proper morphism of schemes. Then we have
(1) π−1

S ◦ fsmall,∗ = fbig,∗ ◦ π−1
T as functors Sh(Tétale)→ Sh((Sch/S)étale),

(2) π−1
S Rfsmall,∗K = Rfbig,∗π

−1
T K forK inD+(Tétale) whose cohomology sheaves

are torsion,
(3) π−1

S Rfsmall,∗K = Rfbig,∗π
−1
T K for K in D(Tétale,Z/nZ), and

(4) π−1
S Rfsmall,∗K = Rfbig,∗π

−1
T K for all K in D(Tétale) if f is finite.

Proof. Proof of (1). Let F be a sheaf on Tétale. Let g : S′ → S be an object of
(Sch/S)étale. Consider the fibre product

T ′
f ′
//

g′

��

S′

g

��
T

f // S

Then we have

(fbig,∗π−1
T F)(S′) = (π−1

T F)(T ′) = ((g′
small)−1F)(T ′) = (f ′

small,∗(g′
small)−1F)(S′)

the second equality by Lemma 39.2. On the other hand

(π−1
S fsmall,∗F)(S′) = (g−1

smallfsmall,∗F)(S′)

again by Lemma 39.2. Hence by proper base change for sheaves of sets (Lemma 91.5) we
conclude the two sets are canonically isomorphic. The isomorphism is compatible with
restriction mappings and defines an isomorphism π−1

S fsmall,∗F = fbig,∗π
−1
T F . Thus an

isomorphism of functors π−1
S ◦ fsmall,∗ = fbig,∗ ◦ π−1

T .

Proof of (2). There is a canonical base change map π−1
S Rfsmall,∗K → Rfbig,∗π

−1
T K for

any K in D(Tétale), see Cohomology on Sites, Remark 19.3. To prove it is an isomor-
phism, it suffices to prove the pull back of the base change map by ig : Sh(S′

étale) →
Sh((Sch/S)étale) is an isomorphism for any object g : S′ → S of (Sch/S)étale. Let
T ′, g′, f ′ be as in the previous paragraph. The pullback of the base change map is

g−1
smallRfsmall,∗K = i−1

g π−1
S Rfsmall,∗K

→ i−1
g Rfbig,∗π

−1
T K

= Rf ′
small,∗(i−1

g′ π
−1
T K)

= Rf ′
small,∗((g′

small)−1K)

where we have used πS ◦ ig = gsmall, πT ◦ ig′ = g′
small, and Lemma 99.2. This map is an

isomorphism by the proper base change theorem (Lemma 91.12) provided K is bounded
below and the cohomology sheaves of K are torsion.

The proof of part (3) is the same as the proof of part (2), except we use Lemma 92.3 instead
of Lemma 91.12.

Proof of (4). If f is finite, then the functors fsmall,∗ and fbig,∗ are exact. This follows
from Proposition 55.2 for fsmall. Since any base change f ′ of f is finite too, we conclude
from Lemma 99.2 part (3) that fbig,∗ is exact too (as the higher derived functors are zero).
Thus this case follows from part (1). �
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100. Comparing fppf and étale topologies

A model for this section is the section on the comparison of the usual topology and the
qc topology on locally compact topological spaces as discussed in Cohomology on Sites,
Section 31. We first review some material from Topologies, Sections 11 and 4.

LetS be a scheme and let (Sch/S)fppf be an fppf site. On the same underlying category we
have a second topology, namely the étale topology, and hence a second site (Sch/S)étale.
The identity functor (Sch/S)étale → (Sch/S)fppf is continuous and defines a morphism
of sites

εS : (Sch/S)fppf −→ (Sch/S)étale
See Cohomology on Sites, Section 27. Please note that εS,∗ is the identity functor on
underlying presheaves and that ε−1

S associates to an étale sheaf the fppf sheafification. Let
Sétale be the small étale site. There is a morphism of sites

πS : (Sch/S)étale −→ Sétale

given by the continuous functor Sétale → (Sch/S)étale, U 7→ U . Namely, Sétale has
fibre products and a final object and the functor above commutes with these and Sites,
Proposition 14.7 applies.

Lemma 100.1. With notation as above. Let F be a sheaf on Sétale. The rule

(Sch/S)fppf −→ Sets, (f : X → S) 7−→ Γ(X, f−1
smallF)

is a sheaf and a fortiori a sheaf on (Sch/S)étale. In fact this sheaf is equal to π−1
S F on

(Sch/S)étale and ε−1
S π−1

S F on (Sch/S)fppf .

Proof. The statement about the étale topology is the content of Lemma 39.2. To
finish the proof it suffices to show that π−1

S F is a sheaf for the fppf topology. This is
shown in Lemma 39.2 as well. �

In the situation of Lemma 100.1 the composition of εS and πS and the equality determine
a morphism of sites

aS : (Sch/S)fppf −→ Sétale

Lemma 100.2. With notation as above. Let f : X → Y be a morphism of (Sch/S)fppf .
Then there are commutative diagrams of topoi

Sh((Sch/X)fppf )
fbig,fppf

//

εX

��

Sh((Sch/Y )fppf )

εY

��
Sh((Sch/X)étale)

fbig,étale // Sh((Sch/Y )étale)

and
Sh((Sch/X)fppf )

fbig,fppf

//

aX

��

Sh((Sch/Y )fppf )

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)
with aX = πX ◦ εX and aY = πX ◦ εX .

Proof. The commutativity of the diagrams follows from the discussion in Topolo-
gies, Section 11. �
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Lemma 100.3. In Lemma 100.2 if f is proper, then we have a−1
Y ◦fsmall,∗ = fbig,fppf,∗◦

a−1
X .

Proof. You can prove this by repeating the proof of Lemma 99.5 part (1); we will in-
stead deduce the result from this. As εY,∗ is the identity functor on underlying presheaves,
it reflects isomorphisms. The description in Lemma 100.1 shows that εY,∗ ◦ a−1

Y = π−1
Y

and similarly for X . To show that the canonical map a−1
Y fsmall,∗F → fbig,fppf,∗a

−1
X F

is an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = εY,∗a

−1
Y fsmall,∗F

→ εY,∗fbig,fppf,∗a
−1
X F

= fbig,étale,∗εX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 99.5. �

Lemma 100.4. In Lemma 100.2 assume f is flat, locally of finite presentation, and
surjective. Then the functor

Sh(Yétale) −→
{

(G,H, α)
∣∣∣∣G ∈ Sh(Xétale), H ∈ Sh((Sch/Y )fppf ),
α : a−1

X G → f−1
big,fppfH an isomorphism

}
sending F to (f−1

smallF , a
−1
Y F , can) is an equivalence.

Proof. The functor a−1
X is fully faithful (as aX,∗a−1

X = id by Lemma 100.1). Hence
the forgetful functor (G,H, α) 7→ H identifies the category of triples with a full subcate-
gory of Sh((Sch/Y )fppf ). Moreover, the functor a−1

Y is fully faithful, hence the functor
in the lemma is fully faithful as well.

Suppose that we have an étale covering {Yi → Y }. Let fi : Xi → Yi be the base change
of f . Denote fij = fi × fj : Xi ×X Xj → Yi ×Y Yj . Claim: if the lemma is true
for fi and fij for all i, j , then the lemma is true for f . To see this, note that the given
étale covering determines an étale covering of the final object in each of the four sites
Yétale, Xétale, (Sch/Y )fppf , (Sch/X)fppf . Thus the category of sheaves is equivalent to
the category of glueing data for this covering (Sites, Lemma 26.5) in each of the four cases.
A huge commutative diagram of categories then finishes the proof of the claim. We omit
the details. The claim shows that we may work étale locally on Y .

Note that {X → Y } is an fppf covering. Working étale locally on Y , we may assume
there exists a morphism s : X ′ → X such that the composition f ′ = f ◦ s : X ′ → Y is
surjective finite locally free, see More on Morphisms, Lemma 48.1. Claim: if the lemma is
true for f ′, then it is true for f . Namely, given a triple (G,H, α) for f , we can pullback
by s to get a triple (s−1

smallG,H, s
−1
big,fppfα) for f ′. A solution for this triple gives a sheaf

F on Yétale with a−1
Y F = H. By the first paragraph of the proof this means the triple is

in the essential image. This reduces us to the case described in the next paragraph.

Assume f is surjective finite locally free. Let (G,H, α) be a triple. In this case consider the
triple

(G1,H1, α1) = (f−1
smallfsmall,∗G, fbig,fppf,∗f

−1
big,fppfH, α1)
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where α1 comes from the identifications

a−1
X f−1

smallfsmall,∗G = f−1
big,fppfa

−1
Y fsmall,∗G

= f−1
big,fppffbig,fppf,∗a

−1
X G

→ f−1
big,fppffbig,fppf,∗f

−1
big,fppfH

where the third equality is Lemma 100.3 and the arrow is given by α. This triple is in the
image of our functor because F1 = fsmall,∗F is a solution (to see this use Lemma 100.3
again; details omitted). There is a canonical map of triples

(G,H, α)→ (G1,H1, α1)

which uses the unit id→ fbig,fppf,∗f
−1
big,fppf on the second entry (it is enough to prescribe

morphisms on the second entry by the first paragraph of the proof). Since {f : X → Y }
is an fppf covering the mapH → H1 is injective (details omitted). Set

G2 = G1 qG G1 H2 = H1 qH H1

and let α2 be the induced isomorphism (pullback functors are exact, so this makes sense).
Then H is the equalizer of the two maps H1 → H2. Repeating the arguments above for
the triple (G2,H2, α2) we find an injective morphism of triples

(G2,H2, α2)→ (G3,H3, α3)

such that this last triple is in the image of our functor. Say it corresponds to F3 in
Sh(Yétale). By fully faithfulness we obtain two maps F1 → F3 and we can let F be
the equalizer of these two maps. By exactness of the pullback functors involved we find
that a−1

Y F = H as desired. �

Lemma 100.5. Consider the comparison morphism ε : (Sch/S)fppf → (Sch/S)étale.
Let P denote the class of finite morphisms of schemes. For X in (Sch/S)étale denote
A′
X ⊂ Ab((Sch/X)étale) the full subcategory consisting of sheaves of the form π−1

X F
with F in Ab(Xétale). Then Cohomology on Sites, Properties (1), (2), (3), (4), and (5) of
Cohomology on Sites, Situation 30.1 hold.

Proof. We first show that A′
X ⊂ Ab((Sch/X)étale) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 10.3. Parts (1), (2), (3) are
immediate as π−1

X is exact and fully faithful for example by Lemma 99.4. If 0→ π−1
X F →

G → π−1
X F ′ → 0 is a short exact sequence in Ab((Sch/X)étale) then 0→ F → πX,∗G →

F ′ → 0 is exact by Lemma 99.4. Hence G = π−1
X πX,∗G is in A′

X which checks the final
condition.

Cohomology on Sites, Property (1) holds by the existence of fibre products of schemes
and the fact that the base change of a finite morphism of schemes is a finite morphism of
schemes, see Morphisms, Lemma 44.6.

Cohomology on Sites, Property (2) follows from the commutative diagram (3) in Topolo-
gies, Lemma 4.17.

Cohomology on Sites, Property (3) is Lemma 100.1.

Cohomology on Sites, Property (4) holds by Lemma 99.5 part (4).

Cohomology on Sites, Property (5) is implied by More on Morphisms, Lemma 48.1. �

Lemma 100.6. With notation as above.
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(1) ForX ∈ Ob((Sch/S)fppf ) and an abelian sheafF onXétale we have εX,∗a−1
X F =

π−1
X F and RiεX,∗(a−1

X F) = 0 for i > 0.
(2) For a finite morphism f : X → Y in (Sch/S)fppf and abelian sheafF onX we

have a−1
Y (Rifsmall,∗F) = Rifbig,fppf,∗(a−1

X F) for all i.
(3) For a scheme X and K in D+(Xétale) the map π−1

X K → RεX,∗(a−1
X K) is an

isomorphism.
(4) For a finite morphism f : X → Y of schemes and K in D+(Xétale) we have

a−1
Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1

X K).
(5) For a proper morphism f : X → Y of schemes and K in D+(Xétale) with

torsion cohomology sheaves we have a−1
Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1

X K).

Proof. By Lemma 100.5 the lemmas in Cohomology on Sites, Section 30 all apply to
our current setting. To translate the results observe that the categoryAX of Cohomology
on Sites, Lemma 30.2 is the essential image of a−1

X : Ab(Xétale)→ Ab((Sch/X)fppf ).

Part (1) is equivalent to (Vn) for all n which holds by Cohomology on Sites, Lemma 30.8.

Part (2) follows by applying ε−1
Y to the conclusion of Cohomology on Sites, Lemma 30.3.

Part (3) follows from Cohomology on Sites, Lemma 30.8 part (1) because π−1
X K is in

D+
A′
X

((Sch/X)étale) and a−1
X = ε−1

X ◦ a
−1
X .

Part (4) follows from Cohomology on Sites, Lemma 30.8 part (2) for the same reason.

Part (5). We use that

RεY,∗Rfbig,fppf,∗a
−1
X K = Rfbig,étale,∗RεX,∗a

−1
X K

= Rfbig,étale,∗π
−1
X K

= π−1
Y Rfsmall,∗K

= RεY,∗a
−1
Y Rfsmall,∗K

The first equality by the commutative diagram in Lemma 100.2 and Cohomology on Sites,
Lemma 19.2. The second equality is (3). The third is Lemma 99.5 part (2). The fourth is
(3) again. Thus the base change map a−1

Y (Rfsmall,∗K) → Rfbig,fppf,∗(a−1
X K) induces

an isomorphism

RεY,∗a
−1
Y Rfsmall,∗K → RεY,∗Rfbig,fppf,∗a

−1
X K

The proof is finished by the following remark: a mapα : a−1
Y L→M withL inD+(Yétale)

and M in D+((Sch/Y )fppf ) such that RεY,∗α is an isomorphism, is an isomorphism.
Namely, we show by induction on i that Hi(α) is an isomorphism. This is true for all
sufficiently small i. If it holds for i ≤ i0, then we see that RjεY,∗Hi(M) = 0 for j > 0
and i ≤ i0 by (1) because Hi(M) = a−1

Y Hi(L) in this range. Hence εY,∗Hi0+1(M) =
Hi0+1(RεY,∗M) by a spectral sequence argument. Thus εY,∗Hi0+1(M) = π−1

Y Hi0+1(L) =
εY,∗a

−1
Y Hi0+1(L). This impliesHi0+1(α) is an isomorphism (because εY,∗ reflects isomor-

phisms as it is the identity on underlying presheaves) as desired. �

Lemma 100.7. Let X be a scheme. For K ∈ D+(Xétale) the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh((Sch/X)fppf )→ Sh(Xétale) as above.
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Proof. We first reduce the statement to the case whereK is given by a single abelian
sheaf. Namely, representK by a bounded below complexF•. By the case of a sheaf we see
thatFn = aX,∗a

−1
X Fn and that the sheavesRqaX,∗a−1

X Fn are zero for q > 0. By Leray’s
acyclicity lemma (Derived Categories, Lemma 16.7) applied to a−1

X F• and the functor
aX,∗ we conclude. From now on assume K = F .

By Lemma 100.1 we have aX,∗a−1
X F = F . Thus it suffices to show thatRqaX,∗a−1

X F = 0
for q > 0. For this we can use aX = εX◦πX and the Leray spectral sequence (Cohomology
on Sites, Lemma 14.7). By Lemma 100.6 we have RiεX,∗(a−1

X F) = 0 for i > 0 and
εX,∗a

−1
X F = π−1

X F . By Lemma 99.4 we have RjπX,∗(π−1
X F) = 0 for j > 0. This

concludes the proof. �

Lemma 100.8. For a scheme X and aX : Sh((Sch/X)fppf )→ Sh(Xétale) as above:
(1) Hq(Xétale,F) = Hq

fppf (X, a−1
X F) for an abelian sheaf F on Xétale,

(2) Hq(Xétale,K) = Hq
fppf (X, a−1

X K) for K ∈ D+(Xétale).
Example: if A is an abelian group, then Hq

étale(X,A) = Hq
fppf (X,A).

Proof. This follows from Lemma 100.7 by Cohomology on Sites, Remark 14.4. �

101. Comparing fppf and étale topologies: modules

We continue the discussion in Section 100 but in this section we briefly discuss what hap-
pens for sheaves of modules.
Let S be a scheme. The morphisms of sites εS , πS , and their composition aS introduced in
Section 100 have natural enhancements to morphisms of ringed sites. The first is written
as

εS : ((Sch/S)fppf ,O) −→ ((Sch/S)étale,O)
Note that we can use the same symbol for the structure sheaf as indeed the sheaves have
the same underlying presheaf. The second is

πS : ((Sch/S)étale,O) −→ (Sétale,OS)
The third is the morphism

aS : ((Sch/S)fppf ,O) −→ (Sétale,OS)
We already know that the category of quasi-coherent modules on the scheme S is the same
as the category of quasi-coherent modules on (Sétale,OS), see Descent, Proposition 8.9.
Since we are interested in stating a comparison between étale and fppf cohomology, we
will in the rest of this section think of quasi-coherent sheaves in terms of the small étale
site. Let us review what we already know about quasi-coherent modules on these sites.

Lemma 101.1. Let S be a scheme. Let F be a quasi-coherentOS-module on Sétale.
(1) The rule

Fa : (Sch/S)étale −→ Ab, (f : T → S) 7−→ Γ(T, f∗
smallF)

satisfies the sheaf condition for fppf and a fortiori étale coverings,
(2) Fa = π∗

SF on (Sch/S)étale,
(3) Fa = a∗

SF on (Sch/S)fppf ,
(4) the rule F 7→ Fa defines an equivalence between quasi-coherent OS-modules

and quasi-coherent modules on ((Sch/S)étale,O),
(5) the rule F 7→ Fa defines an equivalence between quasi-coherent OS-modules

and quasi-coherent modules on ((Sch/S)fppf ,O),



101. COMPARING FPPF AND ÉTALE TOPOLOGIES: MODULES 4843

(6) we have εS,∗a∗
SF = π∗

SF and aS,∗a∗
SF = F ,

(7) we have RiεS,∗(a∗
SF) = 0 and RiaS,∗(a∗

SF) = 0 for i > 0.

Proof. We urge the reader to find their own proof of these results based on the ma-
terial in Descent, Sections 8, 9, and 10.

We first explain why the notation in this lemma is consistent with our earlier use of the
notationFa in Sections 17 and 22 and in Descent, Section 8. Namely, we know by Descent,
Proposition 8.9 that there exists a quasi-coherent module F0 on the scheme S (in other
words on the small Zariski site) such that F is the restriction of the rule

Fa0 : (Sch/S)étale −→ Ab, (f : T → S) 7−→ Γ(T, f∗F)

to the subcategory Sétale ⊂ (Sch/S)étale where here f∗ denotes usual pullback of sheaves
of modules on schemes. Since Fa0 is pullback by the morphism of ringed sites

((Sch/S)étale,O) −→ (SZar,OSZar )

by Descent, Remark 8.6 it follows immediately (from composition of pullbacks) thatFa =
Fa0 . This proves the sheaf property even for fpqc coverings by Descent, Lemma 8.1 (see
also Proposition 17.1). Then (2) and (3) follow again by Descent, Remark 8.6 and (4) and
(5) follow from Descent, Proposition 8.9 (see also the meta result Theorem 17.4).

Part (6) is immediate from the description of the sheaf Fa = π∗
SF = a∗

SF .

For any abelianH on (Sch/S)fppf the higher direct imageRpεS,∗H is the sheaf associated
to the presheafU 7→ Hp

fppf (U,H) on (Sch/S)étale. See Cohomology on Sites, Lemma 7.4.
Hence to proveRpεS,∗a∗

SF = RpεS,∗Fa = 0 for p > 0 it suffices to show that any scheme
U over S has an étale covering {Ui → U}i∈I such that Hp

fppf (Ui,Fa) = 0 for p > 0. If
we take an open covering by affines, then the required vanishing follows from comparison
with usual cohomology (Descent, Proposition 9.3 or Theorem 22.4) and the vanishing
of cohomology of quasi-coherent sheaves on affine schemes afforded by Cohomology of
Schemes, Lemma 2.2.

To show that RpaS,∗a−1
S F = RpaS,∗Fa = 0 for p > 0 we argue in exactly the same

manner. This finishes the proof. �

Lemma 101.2. Let S be a scheme. For F a quasi-coherent OS-module on Sétale the
maps

π∗
SF −→ RεS,∗(a∗

SF) and F −→ RaS,∗(a∗
SF)

are isomorphisms with aS : Sh((Sch/S)fppf )→ Sh(Sétale) as above.

Proof. This is an immediate consequence of parts (6) and (7) of Lemma 101.1. �

Lemma 101.3. Let S = Spec(A) be an affine scheme. Let M• be a complex of A-
modules. Consider the complex F• of presheaves ofO-modules on (Aff/S)fppf given by
the rule

(U/S) = (Spec(B)/Spec(A)) 7−→M• ⊗A B
Then this is a complex of modules and the canonical map

M• −→ RΓ((Aff/S)fppf ,F•)

is a quasi-isomorphism.



4844 59. ÉTALE COHOMOLOGY

Proof. Each Fn is a sheaf of modules as it agrees with the restriction of the module
Gn = (M̃n)a of Lemma 101.1 to (Aff/S)fppf ⊂ (Sch/S)fppf . Since this inclusion defines
an equivalence of ringed topoi (Topologies, Lemma 7.11), we have

RΓ((Aff/S)fppf ,F•) = RΓ((Sch/S)fppf ,G•)

We observe thatM• = RΓ(S, M̃•) for example by Derived Categories of Schemes, Lemma
3.5. Hence we are trying to show the comparison map

RΓ(S, M̃•) −→ RΓ((Sch/S)fppf , (M̃•)a)
is an isomorphism. If M• is bounded below, then this holds by Descent, Proposition 9.3
and the first spectral sequence of Derived Categories, Lemma 21.3. For the general case,
let us write M• = limM•

n with M•
n = τ≥−nM

•. Whence the system Mp
n is eventually

constant with value Mp. We claim that
(M̃•)a = R lim(M̃•

n)a

Namely, it suffices to show that the natural map from left to right induces an isomorphism
on cohomology over any affine object U = Spec(B) of (Sch/S)fppf . For i ∈ Z and
n > |i| we have

Hi(U, (M̃•
n)a) = Hi(τ≥−nM

• ⊗A B) = Hi(M• ⊗A B)
The first equality holds by the bounded below case treated above. Thus we see from Co-
homology on Sites, Lemma 23.2 that the claim holds. Then we finally get

RΓ((Sch/S)fppf , (M̃•)a) = RΓ((Sch/S)fppf , R lim(M̃•
n)a)

= R limRΓ((Sch/S)fppf , (M̃•
n)a)

= R limM•
n

= M•

as desired. The second equality holds becauseR lim commutes with RΓ, see Cohomology
on Sites, Lemma 23.2. �

102. Comparing ph and étale topologies

A model for this section is the section on the comparison of the usual topology and the
qc topology on locally compact topological spaces as discussed in Cohomology on Sites,
Section 31. We first review some material from Topologies, Sections 11 and 4.
Let S be a scheme and let (Sch/S)ph be a ph site. On the same underlying category we
have a second topology, namely the étale topology, and hence a second site (Sch/S)étale.
The identity functor (Sch/S)étale → (Sch/S)ph is continuous (by More on Morphisms,
Lemma 48.7 and Topologies, Lemma 7.2) and defines a morphism of sites

εS : (Sch/S)ph −→ (Sch/S)étale
See Cohomology on Sites, Section 27. Please note that εS,∗ is the identity functor on
underlying presheaves and that ε−1

S associates to an étale sheaf the ph sheafification. Let
Sétale be the small étale site. There is a morphism of sites

πS : (Sch/S)étale −→ Sétale

given by the continuous functor Sétale → (Sch/S)étale, U 7→ U . Namely, Sétale has
fibre products and a final object and the functor above commutes with these and Sites,
Proposition 14.7 applies.
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Lemma 102.1. With notation as above. Let F be a sheaf on Sétale. The rule

(Sch/S)ph −→ Sets, (f : X → S) 7−→ Γ(X, f−1
smallF)

is a sheaf and a fortiori a sheaf on (Sch/S)étale. In fact this sheaf is equal to π−1
S F on

(Sch/S)étale and ε−1
S π−1

S F on (Sch/S)ph.

Proof. The statement about the étale topology is the content of Lemma 39.2. To
finish the proof it suffices to show that π−1

S F is a sheaf for the ph topology. By Topologies,
Lemma 8.15 it suffices to show that given a proper surjective morphism V → U of schemes
over S we have an equalizer diagram

(π−1
S F)(U) // (π−1

S F)(V ) //
// (π−1

S F)(V ×U V )

Set G = π−1
S F|Uétale . Consider the commutative diagram

V ×U V //

g
##��

V

f

��
V

f // U

We have
(π−1
S F)(V ) = Γ(V, f−1G) = Γ(U, f∗f

−1G)
where we use f∗ and f−1 to denote functorialities between small étale sites. Second, we
have

(π−1
S F)(V ×U V ) = Γ(V ×U V, g−1G) = Γ(U, g∗g

−1G)
The two maps in the equalizer diagram come from the two maps

f∗f
−1G −→ g∗g

−1G

Thus it suffices to proveG is the equalizer of these two maps of sheaves. Letu be a geometric
point of U . Set Ω = Gu. Taking stalks at u by Lemma 91.4 we obtain the two maps

H0(Vu,Ω) −→ H0((V ×U V )u,Ω) = H0(Vu ×u Vu,Ω)

where Ω indicates the constant sheaf with value Ω. Of course these maps are the pullback
by the projection maps. Then it is clear that the sections coming from pullback by pro-
jection onto the first factor are constant on the fibres of the first projection, and sections
coming from pullback by projection onto the first factor are constant on the fibres of the
first projection. The sections in the intersection of the images of these pullback maps are
constant on all of Vu ×u Vu, i.e., these come from elements of Ω as desired. �

In the situation of Lemma 102.1 the composition of εS and πS and the equality determine
a morphism of sites

aS : (Sch/S)ph −→ Sétale

Lemma 102.2. With notation as above. Let f : X → Y be a morphism of (Sch/S)ph.
Then there are commutative diagrams of topoi

Sh((Sch/X)ph)
fbig,ph

//

εX

��

Sh((Sch/Y )ph)

εY

��
Sh((Sch/X)étale)

fbig,étale // Sh((Sch/Y )étale)
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and
Sh((Sch/X)ph)

fbig,ph

//

aX

��

Sh((Sch/Y )ph)

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)

with aX = πX ◦ εX and aY = πX ◦ εX .

Proof. The commutativity of the diagrams follows from the discussion in Topolo-
gies, Section 11. �

Lemma 102.3. In Lemma 102.2 if f is proper, then we have a−1
Y ◦fsmall,∗ = fbig,ph,∗◦

a−1
X .

Proof. You can prove this by repeating the proof of Lemma 99.5 part (1); we will in-
stead deduce the result from this. As εY,∗ is the identity functor on underlying presheaves,
it reflects isomorphisms. The description in Lemma 102.1 shows that εY,∗ ◦ a−1

Y = π−1
Y

and similarly for X . To show that the canonical map a−1
Y fsmall,∗F → fbig,ph,∗a

−1
X F is

an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = εY,∗a

−1
Y fsmall,∗F

→ εY,∗fbig,ph,∗a
−1
X F

= fbig,étale,∗εX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 99.5. �

Lemma 102.4. Consider the comparison morphism ε : (Sch/S)ph → (Sch/S)étale.
Let P denote the class of proper morphisms of schemes. For X in (Sch/S)étale denote
A′
X ⊂ Ab((Sch/X)étale) the full subcategory consisting of sheaves of the form π−1

X F
where F is a torsion abelian sheaf on Xétale Then Cohomology on Sites, Properties (1),
(2), (3), (4), and (5) of Cohomology on Sites, Situation 30.1 hold.

Proof. We first show that A′
X ⊂ Ab((Sch/X)étale) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 10.3. Parts (1), (2), (3) are
immediate as π−1

X is exact and fully faithful for example by Lemma 99.4. If 0→ π−1
X F →

G → π−1
X F ′ → 0 is a short exact sequence in Ab((Sch/X)étale) then 0→ F → πX,∗G →

F ′ → 0 is exact by Lemma 99.4. In particular we see that πX,∗G is an abelian torsion sheaf
on Xétale. Hence G = π−1

X πX,∗G is inA′
X which checks the final condition.

Cohomology on Sites, Property (1) holds by the existence of fibre products of schemes and
the fact that the base change of a proper morphism of schemes is a proper morphism of
schemes, see Morphisms, Lemma 41.5.

Cohomology on Sites, Property (2) follows from the commutative diagram (3) in Topolo-
gies, Lemma 4.17.

Cohomology on Sites, Property (3) is Lemma 102.1.

Cohomology on Sites, Property (4) holds by Lemma 99.5 part (2) and the fact thatRifsmallF
is torsion if F is an abelian torsion sheaf on Xétale, see Lemma 78.2.
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Cohomology on Sites, Property (5) follows from More on Morphisms, Lemma 48.1 com-
bined with the fact that a finite morphism is proper and a surjective proper morphism
defines a ph covering, see Topologies, Lemma 8.6. �

Lemma 102.5. With notation as above.
(1) For X ∈ Ob((Sch/S)ph) and an abelian torsion sheaf F on Xétale we have

εX,∗a
−1
X F = π−1

X F and RiεX,∗(a−1
X F) = 0 for i > 0.

(2) For a proper morphism f : X → Y in (Sch/S)ph and abelian torsion sheaf F
on X we have a−1

Y (Rifsmall,∗F) = Rifbig,ph,∗(a−1
X F) for all i.

(3) For a schemeX andK inD+(Xétale) with torsion cohomology sheaves the map
π−1
X K → RεX,∗(a−1

X K) is an isomorphism.
(4) For a proper morphism f : X → Y of schemes and K in D+(Xétale) with

torsion cohomology sheaves we have a−1
Y (Rfsmall,∗K) = Rfbig,ph,∗(a−1

X K).

Proof. By Lemma 102.4 the lemmas in Cohomology on Sites, Section 30 all apply to
our current setting. To translate the results observe that the categoryAX of Cohomology
on Sites, Lemma 30.2 is the full subcategory of Ab((Sch/X)ph) consisting of sheaves of
the form a−1

X F where F is an abelian torsion sheaf on Xétale.
Part (1) is equivalent to (Vn) for all n which holds by Cohomology on Sites, Lemma 30.8.

Part (2) follows by applying ε−1
Y to the conclusion of Cohomology on Sites, Lemma 30.3.

Part (3) follows from Cohomology on Sites, Lemma 30.8 part (1) because π−1
X K is in

D+
A′
X

((Sch/X)étale) and a−1
X = ε−1

X ◦ a
−1
X .

Part (4) follows from Cohomology on Sites, Lemma 30.8 part (2) for the same reason. �

Lemma 102.6. Let X be a scheme. For K ∈ D+(Xétale) with torsion cohomology
sheaves the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh((Sch/X)ph)→ Sh(Xétale) as above.

Proof. We first reduce the statement to the case whereK is given by a single abelian
sheaf. Namely, represent K by a bounded below complex F• of torsion abelian sheaves.
This is possible by Cohomology on Sites, Lemma 19.8. By the case of a sheaf we see that
Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are zero for q > 0. By Leray’s
acyclicity lemma (Derived Categories, Lemma 16.7) applied to a−1

X F• and the functor
aX,∗ we conclude. From now on assume K = F where F is a torsion abelian sheaf.

By Lemma 102.1 we have aX,∗a−1
X F = F . Thus it suffices to show thatRqaX,∗a−1

X F = 0
for q > 0. For this we can use aX = εX◦πX and the Leray spectral sequence (Cohomology
on Sites, Lemma 14.7). By Lemma 102.5 we have RiεX,∗(a−1

X F) = 0 for i > 0 and
εX,∗a

−1
X F = π−1

X F . By Lemma 99.4 we have RjπX,∗(π−1
X F) = 0 for j > 0. This

concludes the proof. �

Lemma 102.7. For a scheme X and aX : Sh((Sch/X)ph)→ Sh(Xétale) as above:
(1) Hq(Xétale,F) = Hq

ph(X, a−1
X F) for a torsion abelian sheaf F on Xétale,

(2) Hq(Xétale,K) = Hq
ph(X, a−1

X K) for K ∈ D+(Xétale) with torsion cohomol-
ogy sheaves.

Example: if A is a torsion abelian group, then Hq
étale(X,A) = Hq

ph(X,A).

Proof. This follows from Lemma 102.6 by Cohomology on Sites, Remark 14.4. �
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103. Comparing h and étale topologies

A model for this section is the section on the comparison of the usual topology and the qc
topology on locally compact topological spaces as discussed in Cohomology on Sites, Sec-
tion 31. Moreover, this section is almost word for word the same as the section comparing
the ph and étale topologies. We first review some material from Topologies, Sections 11
and 4 and More on Flatness, Section 34.

Let S be a scheme and let (Sch/S)h be an h site. On the same underlying category we have
a second topology, namely the étale topology, and hence a second site (Sch/S)étale. The
identity functor (Sch/S)étale → (Sch/S)h is continuous (by More on Flatness, Lemma
34.6 and Topologies, Lemma 7.2) and defines a morphism of sites

εS : (Sch/S)h −→ (Sch/S)étale
See Cohomology on Sites, Section 27. Please note that εS,∗ is the identity functor on
underlying presheaves and that ε−1

S associates to an étale sheaf the h sheafification. Let
Sétale be the small étale site. There is a morphism of sites

πS : (Sch/S)étale −→ Sétale

given by the continuous functor Sétale → (Sch/S)étale, U 7→ U . Namely, Sétale has
fibre products and a final object and the functor above commutes with these and Sites,
Proposition 14.7 applies.

Lemma 103.1. With notation as above. Let F be a sheaf on Sétale. The rule

(Sch/S)h −→ Sets, (f : X → S) 7−→ Γ(X, f−1
smallF)

is a sheaf and a fortiori a sheaf on (Sch/S)étale. In fact this sheaf is equal to π−1
S F on

(Sch/S)étale and ε−1
S π−1

S F on (Sch/S)h.

Proof. The statement about the étale topology is the content of Lemma 39.2. To
finish the proof it suffices to show that π−1

S F is a sheaf for the h topology. However, in
Lemma 102.1 we have shown that π−1

S F is a sheaf even in the stronger ph topology. �

In the situation of Lemma 103.1 the composition of εS and πS and the equality determine
a morphism of sites

aS : (Sch/S)h −→ Sétale

Lemma 103.2. With notation as above. Let f : X → Y be a morphism of (Sch/S)h.
Then there are commutative diagrams of topoi

Sh((Sch/X)h)
fbig,h

//

εX

��

Sh((Sch/Y )h)

εY

��
Sh((Sch/X)étale)

fbig,étale // Sh((Sch/Y )étale)

and
Sh((Sch/X)h)

fbig,h

//

aX

��

Sh((Sch/Y )h)

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)
with aX = πX ◦ εX and aY = πX ◦ εX .
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Proof. The commutativity of the diagrams follows similarly to what was said in
Topologies, Section 11. �

Lemma 103.3. In Lemma 103.2 if f is proper, then we have a−1
Y ◦fsmall,∗ = fbig,h,∗ ◦

a−1
X .

Proof. You can prove this by repeating the proof of Lemma 99.5 part (1); we will in-
stead deduce the result from this. As εY,∗ is the identity functor on underlying presheaves,
it reflects isomorphisms. The description in Lemma 103.1 shows that εY,∗ ◦ a−1

Y = π−1
Y

and similarly for X . To show that the canonical map a−1
Y fsmall,∗F → fbig,h,∗a

−1
X F is

an isomorphism, it suffices to show that

π−1
Y fsmall,∗F = εY,∗a

−1
Y fsmall,∗F

→ εY,∗fbig,h,∗a
−1
X F

= fbig,étale,∗εX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 99.5. �

Lemma 103.4. Consider the comparison morphism ε : (Sch/S)h → (Sch/S)étale.
LetP denote the class of proper morphisms. ForX in (Sch/S)étale denoteA′

X ⊂ Ab((Sch/X)étale)
the full subcategory consisting of sheaves of the form π−1

X F where F is a torsion abelian
sheaf on Xétale Then Cohomology on Sites, Properties (1), (2), (3), (4), and (5) of Coho-
mology on Sites, Situation 30.1 hold.

Proof. We first show that A′
X ⊂ Ab((Sch/X)étale) is a weak Serre subcategory by

checking conditions (1), (2), (3), and (4) of Homology, Lemma 10.3. Parts (1), (2), (3) are
immediate as π−1

X is exact and fully faithful for example by Lemma 99.4. If 0→ π−1
X F →

G → π−1
X F ′ → 0 is a short exact sequence in Ab((Sch/X)étale) then 0→ F → πX,∗G →

F ′ → 0 is exact by Lemma 99.4. In particular we see that πX,∗G is an abelian torsion sheaf
on Xétale. Hence G = π−1

X πX,∗G is inA′
X which checks the final condition.

Cohomology on Sites, Property (1) holds by the existence of fibre products of schemes,
the fact that the base change of a proper morphism of schemes is a proper morphism of
schemes, see Morphisms, Lemma 41.5, and the fact that the base change of a morphism of
finite presentation is a morphism of finite presentation, see Morphisms, Lemma 21.4.
Cohomology on Sites, Property (2) follows from the commutative diagram (3) in Topolo-
gies, Lemma 4.17.
Cohomology on Sites, Property (3) is Lemma 103.1.
Cohomology on Sites, Property (4) holds by Lemma 99.5 part (2) and the fact thatRifsmallF
is torsion if F is an abelian torsion sheaf on Xétale, see Lemma 78.2.
Cohomology on Sites, Property (5) is implied by More on Morphisms, Lemma 48.1 com-
bined with the fact that a surjective finite locally free morphism is surjective, proper, and of
finite presentation and hence defines a h-covering by More on Flatness, Lemma 34.7. �

Lemma 103.5. With notation as above.
(1) For X ∈ Ob((Sch/S)h) and an abelian torsion sheaf F on Xétale we have

εX,∗a
−1
X F = π−1

X F and RiεX,∗(a−1
X F) = 0 for i > 0.

(2) For a proper morphism f : X → Y in (Sch/S)h and abelian torsion sheaf F on
X we have a−1

Y (Rifsmall,∗F) = Rifbig,h,∗(a−1
X F) for all i.
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(3) For a schemeX andK inD+(Xétale) with torsion cohomology sheaves the map
π−1
X K → RεX,∗(a−1

X K) is an isomorphism.
(4) For a proper morphism f : X → Y of schemes and K in D+(Xétale) with

torsion cohomology sheaves we have a−1
Y (Rfsmall,∗K) = Rfbig,h,∗(a−1

X K).

Proof. By Lemma 103.4 the lemmas in Cohomology on Sites, Section 30 all apply to
our current setting. To translate the results observe that the categoryAX of Cohomology
on Sites, Lemma 30.2 is the full subcategory of Ab((Sch/X)h) consisting of sheaves of the
form a−1

X F where F is an abelian torsion sheaf on Xétale.

Part (1) is equivalent to (Vn) for all n which holds by Cohomology on Sites, Lemma 30.8.

Part (2) follows by applying ε−1
Y to the conclusion of Cohomology on Sites, Lemma 30.3.

Part (3) follows from Cohomology on Sites, Lemma 30.8 part (1) because π−1
X K is in

D+
A′
X

((Sch/X)étale) and a−1
X = ε−1

X ◦ a
−1
X .

Part (4) follows from Cohomology on Sites, Lemma 30.8 part (2) for the same reason. �

Lemma 103.6. Let X be a scheme. For K ∈ D+(Xétale) with torsion cohomology
sheaves the map

K −→ RaX,∗a
−1
X K

is an isomorphism with aX : Sh((Sch/X)h)→ Sh(Xétale) as above.

Proof. We first reduce the statement to the case whereK is given by a single abelian
sheaf. Namely, represent K by a bounded below complex F• of torsion abelian sheaves.
This is possible by Cohomology on Sites, Lemma 19.8. By the case of a sheaf we see that
Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are zero for q > 0. By Leray’s
acyclicity lemma (Derived Categories, Lemma 16.7) applied to a−1

X F• and the functor
aX,∗ we conclude. From now on assume K = F where F is a torsion abelian sheaf.

By Lemma 103.1 we have aX,∗a−1
X F = F . Thus it suffices to show thatRqaX,∗a−1

X F = 0
for q > 0. For this we can use aX = εX◦πX and the Leray spectral sequence (Cohomology
on Sites, Lemma 14.7). By Lemma 103.5 we have RiεX,∗(a−1

X F) = 0 for i > 0 and
εX,∗a

−1
X F = π−1

X F . By Lemma 99.4 we have RjπX,∗(π−1
X F) = 0 for j > 0. This

concludes the proof. �

Lemma 103.7. For a scheme X and aX : Sh((Sch/X)h)→ Sh(Xétale) as above:
(1) Hq(Xétale,F) = Hq

h(X, a−1
X F) for a torsion abelian sheaf F on Xétale,

(2) Hq(Xétale,K) = Hq
h(X, a−1

X K) for K ∈ D+(Xétale) with torsion cohomol-
ogy sheaves.

Example: if A is a torsion abelian group, then Hq
étale(X,A) = Hq

h(X,A).

Proof. This follows from Lemma 103.6 by Cohomology on Sites, Remark 14.4. �

104. Descending étale sheaves

We prove that étale sheaves “glue” in the fppf and h topology and related results. We have
already shown the following related results

(1) Lemma 39.2 tells us that a sheaf on the small étale site of a scheme S determines
a sheaf on the big étale site of S satisfying the sheaf condition for fpqc coverings
(and a fortiori for Zariski, étale, smooth, syntomic, and fppf coverings),

(2) Lemma 100.1 is a restatement of the previous point for the fppf topology,
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(3) Lemma 102.1 proves the same for the ph topology,
(4) Lemma 103.1 proves the same for the h topology,
(5) Lemma 100.4 is a version of fppf descent for étale sheaves, and
(6) Remark 55.6 tells us that we have descent of étale sheaves for finite surjective

morphisms (we will clarify and strengthen this below).
In the chapter on simplicial spaces we will prove some additional results on this, see for
example Simplicial Spaces, Sections 33 and 36.

In order to conveniently express our results we need some notation. Let U = {fi : Xi →
X} be a family of morphisms of schemes with fixed target. A descent datum for étale
sheaves with respect to U is a family ((Fi)i∈I , (ϕij)i,j∈I) where

(1) Fi is in Sh(Xi,étale), and
(2) ϕij : pr−1

0,smallFi −→ pr−1
1,smallFj is an isomorphism in Sh((Xi ×X Xj)étale)

such that the cocycle condition holds: the diagrams

pr−1
0,smallFi

pr−1
02,smallϕik &&

pr−1
01,smallϕij // pr−1

1,smallFj

pr−1
12,smallϕjkxx

pr−1
2,smallFk

commute in Sh((Xi×XXj×XXk)étale). There is an obvious notion of morphisms of de-
scent data and we obtain a category of descent data. A descent datum ((Fi)i∈I , (ϕij)i,j∈I)
is called effective if there exist a F in Sh(Xétale) and isomorphisms ϕi : f−1

i,smallF → Fi
in Sh(Xi,étale) compatible with the ϕij , i.e., such that

ϕij = pr−1
1,small(ϕj) ◦ pr−1

0,small(ϕ
−1
i )

Another way to say this is the following. Given an object F of Sh(Xétale) we obtain the
canonical descent datum (f−1

i,smallFi, cij) where cij is the canonical isomorphism

cij : pr−1
0,smallf

−1
i,smallF −→ pr−1

1,smallf
−1
j,smallF

The descent datum ((Fi)i∈I , (ϕij)i,j∈I) is effective if and only if it is isomorphic to the
canonical descent datum associated to some F in Sh(Xétale).

If the family consists of a single morphism {X → Y }, then we think of a descent datum
as a pair (F , ϕ) where F is an object of Sh(Xétale) and ϕ is an isomorphism

pr−1
0,smallF −→ pr−1

1,smallF

in Sh((X ×Y X)étale) such that the cocycle condition holds:

pr−1
0,smallF

pr−1
02,smallϕ &&

pr−1
01,smallϕ // pr−1

1,smallF

pr−1
12,smallϕxx

pr−1
2,smallF

commutes in Sh((X ×Y X ×Y X)étale). There is a notion of morphisms of descent data
and effectivity exactly as before.

We first prove effective descent for surjective integral morphisms.
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Lemma 104.1. Let f : X → Y be a morphism of schemes which has a section. Then
the functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

sending G in Sh(Yétale) to the canonical descent datum is an equivalence of categories.

Proof. This is formal and depends only on functoriality of the pullback functors.
We omit the details. Hint: If s : Y → X is a section, then a quasi-inverse is the functor
sending (F , ϕ) to s−1

smallF . �

Lemma 104.2. Let f : X → Y be a surjective integral morphism of schemes. The
functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. In this proof we drop the subscript small from our pullback and pushforward
functors. DenoteX1 = X×Y X and denote f1 : X1 → Y the morphism f ◦pr0 = f ◦pr1.
Let (F , ϕ) be a descent datum for {X → Y }. Let us set F1 = pr−1

0 F . We may think of ϕ
as defining an isomorphism F1 → pr−1

1 F . We claim that the rule which sends a descent
datum (F , ϕ) to the sheaf

G = Equalizer
(
f∗F

//
// f1,∗F1

)
is a quasi-inverse to the functor in the statement of the lemma. The first of the two arrows
comes from the map

f∗F → f∗pr0,∗pr−1
0 F = f1,∗F1

and the second arrow comes from the map

f∗F → f∗pr1,∗pr−1
1 F

ϕ←− f∗pr0,∗pr−1
0 F = f1,∗F1

where the arrow pointing left is invertible. To prove this works we have to show that the
canonical map f−1G → F is an isomorphism; details omitted. In order to prove this it
suffices to check after pulling back by any collection of morphisms Spec(k) → Y where
k is an algebraically closed field. Namely, the corresponing base changes Xk → X are
jointly surjective and we can check whether a map of sheaves onXétale is an isomorphism
by looking at stalks on geometric points, see Theorem 29.10. By Lemma 55.4 the construc-
tion of G from the descent datum (F , ϕ) commutes with any base change. Thus we may
assume Y is the spectrum of an algebraically closed point (note that base change preserves
the properties of the morphism f , see Morphisms, Lemma 9.4 and 44.6). In this case the
morphismX → Y has a section, so we know that the functor is an equivalence by Lemma
104.1. However, the reader may show that the functor is an equivalence if and only if the
construction above is a quasi-inverse; details omitted. This finishes the proof. �

Lemma 104.3. Let f : X → Y be a surjective proper morphism of schemes. The
functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. The exact same proof as given in Lemma 104.2 works, except the appeal to
Lemma 55.4 should be replaced by an appeal to Lemma 91.5. �
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Lemma 104.4. Let f : X → Y be a morphism of schemes. Let Z → Y be a surjective
integral morphism of schemes or a surjective proper morphism of schemes. If the functors

Sh(Zétale) −→ descent data for étale sheaves wrt {X ×Y Z → Z}
and
Sh((Z×Y Z)étale) −→ descent data for étale sheaves wrt {X×Y (Z×Y Z)→ Z×Y Z}
are equivalences of categories, then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence.

Proof. Formal consequence of the definitions and Lemmas 104.2 and 104.3. Details
omitted. �

Lemma 104.5. Let f : X → Y be a morphism of schemes which is surjective, flat,
locally of finite presentation. The functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. Exactly as in the proof of Lemma 104.2 we claim a quasi-inverse is given by
the functor sending (F , ϕ) to

G = Equalizer
(
f∗F

//
// f1,∗F1

)
and in order to prove this it suffices to show that f−1G → F is an isomorphism. This
we may check locally, hence we may and do assume Y is affine. Then we can find a finite
surjective morphism Z → Y such that there exists an open covering Z =

⋃
Wi such that

Wi → Y factors through X . See More on Morphisms, Lemma 48.6. Applying Lemma
104.4 we see that it suffices to prove the lemma after replacing Y by Z and Z ×Y Z and
f by its base change. Thus we may assume f has sections Zariski locally. Of course, using
that the problem is local on Y we reduce to the case where we have a section which is
Lemma 104.1. �

Lemma 104.6. Let {fi : Xi → X} be an fppf covering of schemes. The functor
Sh(Xétale) −→ descent data for étale sheaves wrt {fi : Xi → X}

is an equivalence of categories.
Proof. We have Lemma 104.5 for the morphism f :

∐
Xi → X . Then a formal

argument shows that descent data for f are the same thing as descent data for the covering,
compare with Descent, Lemma 34.5. Details omitted. �

Lemma 104.7. Let f : X ′ → X be a proper morphism of schemes. Let i : Z → X be
a closed immersion. Set E = Z ×X X ′. Picture

E

g

��

j
// X ′

f

��
Z

i // X

If f is an isomorphism over X \ Z , then the functor
Sh(Xétale) −→ Sh(X ′

étale)×Sh(Eétale) Sh(Zétale)
is an equivalence of categories.
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Proof. We will work with the 2-fibre product category as constructed in Categories,
Example 31.3. The functor sends F to the triple (f−1F , i−1F , c) where c : j−1f−1F →
g−1i−1F is the canonical isomorphism. We will construct a quasi-inverse functor. Let
(F ′,G, α) be an object of the right hand side of the arrow. We obtain an isomorphism

i−1f∗F ′ = g∗j
−1F ′ g∗α−−→ g∗g

−1G

The first equality is Lemma 91.5. Using this we obtain maps i∗G → i∗g∗g
−1G and f ′

∗F ′ →
i∗g∗g

−1G. We set
F = f∗F ′ ×i∗g∗g−1G i∗G

and we claim thatF is an object of the left hand side of the arrow whose image in the right
hand side is isomorphic to the triple we started out with. Let us compute the stalk of F at
a geometric point x of X .

If x is not in Z , then on the one hand x comes from a unique geometric point x′ ofX ′ and
F ′
x′ = (f∗F ′)x and on the other hand we have (i∗G)x and (i∗g∗g

−1G)x are singletons.
Hence we see that Fx equals F ′

x′ .

If x is in Z , i.e., x is the image of a geometric point z of Z , then we obtain (i∗G)x = Gz
and

(i∗g∗g
−1G)x = (g∗g

−1G)z = Γ(Ez, g−1G|Ez )
(by the proper base change for pushforward used above) and similarly

(f∗F ′)x = Γ(X ′
x,F ′|X′

x
)

Since we have the identification Ez = X ′
x and since α defines an isomorphism between

the sheaves F ′|X′
x

and g−1G|Ez we conclude that we get

Fx = Gz
in this case.

To finish the proof, we observe that there are canonical maps i−1F → G and f−1F → F ′

compatible with α which on stalks produce the isomorphisms we saw above. We omit the
careful construction of these maps. �

Lemma 104.8. Let S be a scheme. Then the category fibred in groupoids

p : S −→ (Sch/S)h
whose fibre category over U is the category Sh(Uétale) of sheaves on the small étale site
of U is a stack in groupoids.

Proof. To prove the lemma we will check conditions (1), (2), and (3) of More on
Flatness, Lemma 37.13.

Condition (1) holds because we have glueing for sheaves (and Zariski coverings are étale
coverings). See Sites, Lemma 26.4.

To see condition (2), suppose that f : X → Y is a surjective, flat, proper morphism of
finite presentation over S with Y affine. Then we have descent for {X → Y } by either
Lemma 104.5 or Lemma 104.3.

Condition (3) follows immediately from the more general Lemma 104.7. �
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105. Blow up squares and étale cohomology

Blow up squares are introduced in More on Flatness, Section 36. Using the proper base
change theorem we can see that we have a Mayer-Vietoris type result for blow up squares.

Lemma 105.1. Let X be a scheme and let Z ⊂ X be a closed subscheme cut out by a
quasi-coherent ideal of finite type. Consider the corresponding blow up square

E

π

��

j
// X ′

b

��
Z

i // X

For K ∈ D+(Xétale) with torsion cohomology sheaves we have a distinguished triangle

K → Ri∗(K|Z)⊕Rb∗(K|X′)→ Rc∗(K|E)→ K[1]
in D(Xétale) where c = i ◦ π = b ◦ j.

Proof. The notationK|X′ stands for b−1
smallK. Choose a bounded below complexF•

of abelian sheaves representing K. Observe that i∗(F•|Z) represents Ri∗(K|Z) because
i∗ is exact (Proposition 55.2). Choose a quasi-isomorphism b−1

smallF• → I• where I• is
a bounded below complex of injective abelian sheaves on X ′

étale. This map is adjoint to a
map F• → b∗(I•) and b∗(I•) represents Rb∗(K|X′). We have π∗(I•|E) = (b∗I•)|Z by
Lemma 91.5 and by Lemma 91.12 this complex represents Rπ∗(K|E). Hence the map

Ri∗(K|Z)⊕Rb∗(K|X′)→ Rc∗(K|E)
is represented by the surjective map of bounded below complexes

i∗(F•|Z)⊕ b∗(I•)→ i∗ (b∗(I•)|Z)
To get our distinguished triangle it suffices to show that the canonical mapF• → i∗(F•|Z)⊕
b∗(I•) maps quasi-isomorphically onto the kernel of the map of complexes displayed
above (namely a short exact sequence of complexes determines a distinguished triangle
in the derived category, see Derived Categories, Section 12). We may check this on stalks
at a geometric point x of X . If x is not in Z , then X ′ → X is an isomorphism over an
open neighbourhood of x. Thus, if x′ denotes the corresponding geometric point ofX ′ in
this case, then we have to show that

F•
x → I•

x′

is a quasi-isomorphism. This is true by our choice of I•. If x is in Z , then b(I•)x →
i∗ (b∗(I•)|Z)x is an isomorphism of complexes of abelian groups. Hence the kernel is
equal to i∗(F•|Z)x = F•

x as desired. �

Lemma 105.2. LetX be a scheme and letK ∈ D+(Xétale) have torsion cohomology
sheaves. Let Z ⊂ X be a closed subscheme cut out by a quasi-coherent ideal of finite type.
Consider the corresponding blow up square

E

��

// X ′

b

��
Z // X

Then there is a canonical long exact sequence

Hp
étale(X,K)→ Hp

étale(X
′,K|X′)⊕Hp

étale(Z,K|Z)→ Hp
étale(E,K|E)→ Hp+1

étale(X,K)
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First proof. This follows immediately from Lemma 105.1 and the fact that

RΓ(X,Rb∗(K|X′)) = RΓ(X ′,K|X′)

(see Cohomology on Sites, Section 14) and similarly for the others. �

Second proof. By Lemma 102.7 these cohomology groups are the cohomology of
X,X ′, E, Z with values in some complex of abelian sheaves on the site (Sch/X)ph. (Namely,
the object a−1

X K of the derived category, see Lemma 102.1 above and recall that K|X′ =
b−1
smallK.) By More on Flatness, Lemma 36.1 the ph sheafification of the diagram of repre-

sentable presheaves is cocartesian. Thus the lemma follows from the very general Coho-
mology on Sites, Lemma 26.3 applied to the site (Sch/X)ph and the commutative diagram
of the lemma. �

Lemma 105.3. Let X be a scheme and let Z ⊂ X be a closed subscheme cut out by a
quasi-coherent ideal of finite type. Consider the corresponding blow up square

E

π

��

j
// X ′

b

��
Z

i // X

Suppose given
(1) an object K ′ of D+(X ′

étale) with torsion cohomology sheaves,
(2) an object L of D+(Zétale) with torsion cohomology sheaves, and
(3) an isomorphism γ : K ′|E → L|E .

Then there exists an object K of D+(Xétale) and isomorphisms f : K|X′ → K ′, g :
K|Z → L such that γ = g|E ◦ f−1|E . Moreover, given

(1) an object M of D+(Xétale) with torsion cohomology sheaves,
(2) a morphism α : K ′ →M |X′ of D(X ′

étale),
(3) a morphism β : L→M |Z of D(Zétale),

such that
α|E = β|E ◦ γ.

Then there exists a morphism M → K in D(Xétale) whose restriction to X ′ is a ◦ f and
whose restriction to Z is b ◦ g.

Proof. If K exists, then Lemma 105.1 tells us a distinguished triangle that it fits in.
Thus we simply choose a distinguished triangle

K → Ri∗(L)⊕Rb∗(K ′)→ Rc∗(L|E)→ K[1]

where c = i ◦ π = b ◦ j. Here the map Ri∗(L) → Rc∗(L|E) is Ri∗ applied to the
adjunction mappingE → Rπ∗(L|E). The mapRb∗(K ′)→ Rc∗(L|E) is the composition
of the canonical map Rb∗(K ′) → Rc∗(K ′|E)) = R and Rc∗(γ). The maps g and f of
the statement of the lemma are the adjoints of these maps. If we restrict this distinguished
triangle to Z then the map Rb∗(K) → Rc∗(L|E) becomes an isomorphism by the base
change theorem (Lemma 91.12) and hence the map g : K|Z → L is an isomorphism.
Looking at the distinguished triangle we see that f : K|X′ → K ′ is an isomorphism over
X ′ \E = X \ Z. Moreover, we have γ ◦ f |E = g|E by construction. Then since γ and g
are isomorphisms we conclude that f induces isomorphisms on stalks at geometric points
of E as well. Thus f is an isomorphism.
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For the final statement, we may replace K ′ by K|X′ , L by K|Z , and γ by the canonical
identification. Observe that α and β induce a commutative square

K //

��

Ri∗(K|Z)⊕Rb∗(K|X′) //

β⊕α
��

Rc∗(K|E) //

α|E
��

K[1]

��
M // Ri∗(M |Z)⊕Rb∗(M |X′) // Rc∗(M |E) // M [1]

Thus by the axioms of a derived category we get a dotted arrow producing a morphism of
distinguished triangles. �

106. Almost blow up squares and the h topology

In this section we continue the discussion in More on Flatness, Section 37. For the conve-
nience of the reader we recall that an almost blow up square is a commutative diagram

(106.0.1)

E

��

// X ′

b

��
Z // X

of schemes satisfying the following conditions:
(1) Z → X is a closed immersion of finite presentation,
(2) E = b−1(Z) is a locally principal closed subscheme of X ′,
(3) b is proper and of finite presentation,
(4) the closed subscheme X ′′ ⊂ X ′ cut out by the quasi-coherent ideal of sections

ofOX′ supported on E (Properties, Lemma 24.5) is the blow up of X in Z.
It follows that the morphism b induces an isomorphism X ′ \ E → X \ Z.

We are going to give a criterion for “h sheafiness” for objects in the derived category of
the big fppf site (Sch/S)fppf of a scheme S. On the same underlying category we have a
second topology, namely the h topology (More on Flatness, Section 34). Recall that fppf
coverings are h coverings (More on Flatness, Lemma 34.6). Hence we may consider the
morphism

ε : (Sch/S)h −→ (Sch/S)fppf
See Cohomology on Sites, Section 27. In particular, we have a fully faithful functor

Rε∗ : D((Sch/S)h) −→ D((Sch/S)fppf )
and we can ask: what is the essential image of this functor?

Lemma 106.1. With notation as above, ifK is in the essential image ofRε∗, then the
maps cKX,Z,X′,E of Cohomology on Sites, Lemma 26.1 are quasi-isomorphisms.

Proof. Denote # sheafification in the h topology. We have seen in More on Flatness,
Lemma 37.7 that h#

X = h#
Z qh#

E
h#
X′ . On the other hand, the map h#

E → h#
X′ is injective

as E → X ′ is a monomorphism. Thus this lemma is a special case of Cohomology on
Sites, Lemma 29.3 (which itself is a formal consequence of Cohomology on Sites, Lemma
26.3). �

Proposition 106.2. Let K be an object of D+((Sch/S)fppf ). Then K is in the es-
sential image of Rε∗ : D((Sch/S)h) → D((Sch/S)fppf ) if and only if cKX,X′,Z,E is a
quasi-isomorphism for every almost blow up square (106.0.1) in (Sch/S)h with X affine.
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Proof. We prove this by applying Cohomology on Sites, Lemma 29.2 whose hy-
potheses hold by Lemma 106.1 and More on Flatness, Proposition 37.9. �

Lemma 106.3. Let K be an object of D+((Sch/S)fppf ). Then K is in the essential
image of Rε∗ : D((Sch/S)h) → D((Sch/S)fppf ) if and only if cKX,X′,Z,E is a quasi-
isomorphism for every almost blow up square as in More on Flatness, Examples 37.10 and
37.11.

Proof. We prove this by applying Cohomology on Sites, Lemma 29.2 whose hy-
potheses hold by Lemma 106.1 and More on Flatness, Lemma 37.12 �

107. Cohomology of the structure sheaf in the h topology

Let p be a prime number. Let (C,O) be a ringed site with pO = 0. Then we set colimF O
equal to the colimit in the category of sheaves of rings of the system

O F−→ O F−→ O F−→ . . .

where F : O → O, f 7→ fp is the Frobenius endomorphism.

Lemma 107.1. Let p be a prime number. Let S be a scheme over Fp. Consider the
sheaf Operf = colimF O on (Sch/S)fppf . Then Operf is in the essential image of Rε∗ :
D((Sch/S)h)→ D((Sch/S)fppf ).

Proof. We prove this using the criterion of Lemma 106.3. Before check the condi-
tions, we note that for a quasi-compact and quasi-separated object X of (Sch/S)fppf we
have

Hi
fppf (X,Operf ) = colimF H

i
fppf (X,O)

See Cohomology on Sites, Lemma 16.1. We will also use that Hi
fppf (X,O) = Hi(X,O),

see Descent, Proposition 9.3.

Let A, f, J be as in More on Flatness, Example 37.10 and consider the associated almost
blow up square. SinceX ,X ′, Z ,E are affine, we have no higher cohomology ofO. Hence
we only have to check that

0→ Operf (X)→ Operf (X ′)⊕Operf (Z)→ Operf (E)→ 0

is a short exact sequence. This was shown in (the proof of) More on Flatness, Lemma 38.2.

LetX,X ′, Z,E be as in More on Flatness, Example 37.11. SinceX andZ are affine we have
Hp(X,OX) = Hp(Z,OX) = 0 for p > 0. By More on Flatness, Lemma 38.1 we have
Hp(X ′,OX′) = 0 for p > 0. SinceE = P1

Z and Z is affine we also haveHp(E,OE) = 0
for p > 0. As in the previous paragraph we reduce to checking that

0→ Operf (X)→ Operf (X ′)⊕Operf (Z)→ Operf (E)→ 0

is a short exact sequence. This was shown in (the proof of) More on Flatness, Lemma
38.2. �

Proposition 107.2. Let p be a prime number. Let S be a quasi-compact and quasi-
separated scheme over Fp. Then

Hi((Sch/S)h,Oh) = colimF H
i(S,O)

Here on the left hand side byOh we mean the h sheafification of the structure sheaf.
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Proof. This is just a reformulation of Lemma 107.1. Recall that Oh = Operf =
colimF O, see More on Flatness, Lemma 38.7. By Lemma 107.1 we see that Operf viewed
as an object of D((Sch/S)fppf ) is of the form Rε∗K for some K ∈ D((Sch/S)h). Then
K = ε−1Operf which is actually equal to Operf because Operf is an h sheaf. See Coho-
mology on Sites, Section 27. Hence Rε∗Operf = Operf (with apologies for the confusing
notation). Thus the lemma now follows from Leray

RΓh(S,Operf ) = RΓfppf (S,Rε∗Operf ) = RΓfppf (S,Operf )
and the fact that

Hi
fppf (S,Operf ) = Hi

fppf (S, colimF O) = colimF H
i
fppf (S,O)

as S is quasi-compact and quasi-separated (see proof of Lemma 107.1). �
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CHAPTER 60

Crystalline Cohomology

1. Introduction

This chapter is based on a lecture series given by Johan de Jong held in 2012 at Columbia
University. The goals of this chapter are to give a quick introduction to crystalline coho-
mology. A reference is the book [?].

We have moved the more elementary purely algebraic discussion of divided power rings
to a preliminary chapter as it is also useful in discussing Tate resolutions in commutative
algebra. Please see Divided Power Algebra, Section 1.

2. Divided power envelope

The construction of the following lemma will be dubbed the divided power envelope. It
will play an important role later.

Lemma 2.1. Let (A, I, γ) be a divided power ring. Let A → B be a ring map. Let
J ⊂ B be an ideal with IB ⊂ J . There exists a homomorphism of divided power rings

(A, I, γ) −→ (D, J̄, γ̄)
such that

Hom(A,I,γ)((D, J̄, γ̄), (C,K, δ)) = Hom(A,I)((B, J), (C,K))
functorially in the divided power algebra (C,K, δ) over (A, I, γ). Here the LHS is mor-
phisms of divided power rings over (A, I, γ) and the RHS is morphisms of (ring, ideal)
pairs over (A, I).

Proof. Denote C the category of divided power rings (C,K, δ). Consider the func-
tor F : C −→ Sets defined by

F (C,K, δ) =
{

(ϕ,ψ)
∣∣∣∣ ϕ : (A, I, γ)→ (C,K, δ) homomorphism of divided power rings
ψ : (B, J)→ (C,K) an A-algebra homomorphism with ψ(J) ⊂ K

}
We will show that Divided Power Algebra, Lemma 3.3 applies to this functor which will
prove the lemma. Suppose that (ϕ,ψ) ∈ F (C,K, δ). LetC ′ ⊂ C be the subring generated
by ϕ(A), ψ(B), and δn(ψ(f)) for all f ∈ J . LetK ′ ⊂ K∩C ′ be the ideal ofC ′ generated
by ϕ(I) and δn(ψ(f)) for f ∈ J . Then (C ′,K ′, δ|K′) is a divided power ring and C ′ has
cardinality bounded by the cardinalκ = |A|⊗|B|ℵ0 . Moreover,ϕ factors asA→ C ′ → C
and ψ factors as B → C ′ → C. This proves assumption (1) of Divided Power Algebra,
Lemma 3.3 holds. Assumption (2) is clear as limits in the category of divided power rings
commute with the forgetful functor (C,K, δ) 7→ (C,K), see Divided Power Algebra,
Lemma 3.2 and its proof. �

Definition 2.2. Let (A, I, γ) be a divided power ring. Let A → B be a ring map.
Let J ⊂ B be an ideal with IB ⊂ J . The divided power algebra (D, J̄, γ̄) constructed

4861
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in Lemma 2.1 is called the divided power envelope of J in B relative to (A, I, γ) and is
denoted DB(J) or DB,γ(J).
Let (A, I, γ) → (C,K, δ) be a homomorphism of divided power rings. The universal
property of DB,γ(J) = (D, J̄, γ̄) is

ring maps B → C
which map J into K ←→

divided power homomorphisms
(D, J̄, γ̄)→ (C,K, δ)

and the correspondence is given by precomposing with the map B → D which corre-
sponds to idD. Here are some properties of (D, J̄, γ̄) which follow directly from the uni-
versal property. There are A-algebra maps
(2.2.1) B −→ D −→ B/J

The first arrow maps J into J̄ and J̄ is the kernel of the second arrow. The elements γ̄n(x)
where n > 0 and x is an element in the image of J → D generate J̄ as an ideal in D and
generate D as a B-algebra.

Lemma 2.3. Let (A, I, γ) be a divided power ring. Let ϕ : B′ → B be a surjection of
A-algebras with kernelK. Let IB ⊂ J ⊂ B be an ideal. Let J ′ ⊂ B′ be the inverse image
of J . Write DB′,γ(J ′) = (D′, J̄ ′, γ̄). Then DB,γ(J) = (D′/K ′, J̄ ′/K ′, γ̄) where K ′ is
the ideal generated by the elements γ̄n(k) for n ≥ 1 and k ∈ K.

Proof. Write DB,γ(J) = (D, J̄, γ̄). The universal property of D′ gives us a homo-
morphism D′ → D of divided power algebras. As B′ → B and J ′ → J are surjective, we
see that D′ → D is surjective (see remarks above). It is clear that γ̄n(k) is in the kernel
for n ≥ 1 and k ∈ K , i.e., we obtain a homomorphism D′/K ′ → D. Conversely, there
exists a divided power structure on J̄ ′/K ′ ⊂ D′/K ′, see Divided Power Algebra, Lemma
4.3. Hence the universal property of D gives an inverse D → D′/K ′ and we win. �

In the situation of Definition 2.2 we can choose a surjection P → B where P is a poly-
nomial algebra over A and let J ′ ⊂ P be the inverse image of J . The previous lemma
describes DB,γ(J) in terms of DP,γ(J ′). Note that γ extends to a divided power struc-
ture γ′ on IP by Divided Power Algebra, Lemma 4.2. Hence DP,γ(J ′) = DP,γ′(J ′) is an
example of a special case of divided power envelopes we describe in the following lemma.

Lemma 2.4. Let (B, I, γ) be a divided power algebra. Let I ⊂ J ⊂ B be an ideal.
Let (D, J̄, γ̄) be the divided power envelope of J relative to γ. Choose elements ft ∈ J ,
t ∈ T such that J = I + (ft). Then there exists a surjection

Ψ : B〈xt〉 −→ D

of divided power rings mapping xt to the image of ft in D. The kernel of Ψ is generated
by the elements xt − ft and all

δn

(∑
rtxt − r0

)
whenever

∑
rtft = r0 in B for some rt ∈ B, r0 ∈ I .

Proof. In the statement of the lemma we think of B〈xt〉 as a divided power ring
with ideal J ′ = IB〈xt〉+B〈xt〉+, see Divided Power Algebra, Remark 5.2. The existence
of Ψ follows from the universal property of divided power polynomial rings. Surjectivity
of Ψ follows from the fact that its image is a divided power subring of D, hence equal to
D by the universal property of D. It is clear that xt − ft is in the kernel. Set

R = {(r0, rt) ∈ I ⊕
⊕

t∈T
B |

∑
rtft = r0 in B}
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If (r0, rt) ∈ R then it is clear that
∑
rtxt−r0 is in the kernel. As Ψ is a homomorphism of

divided power rings and
∑
rtxt− r0 ∈ J ′ it follows that δn(

∑
rtxt− r0) is in the kernel

as well. LetK ⊂ B〈xt〉 be the ideal generated by xt−ft and the elements δn(
∑
rtxt−r0)

for (r0, rt) ∈ R. To show thatK = Ker(Ψ) it suffices to show that δ extends toB〈xt〉/K.
Namely, if so the universal property ofD gives a mapD → B〈xt〉/K inverse to Ψ. Hence
we have to show that K ∩ J ′ is preserved by δn, see Divided Power Algebra, Lemma 4.3.
Let K ′ ⊂ B〈xt〉 be the ideal generated by the elements

(1) δm(
∑
rtxt − r0) where m > 0 and (r0, rt) ∈ R,

(2) x[m]
t′ (xt − ft) where m > 0 and t′, t ∈ I .

We claim that K ′ = K ∩ J ′. The claim proves that K ∩ J ′ is preserved by δn, n > 0 by
the criterion of Divided Power Algebra, Lemma 4.3 (2)(c) and a computation of δn of the
elements listed which we leave to the reader. To prove the claim note that K ′ ⊂ K ∩ J ′.
Conversely, if h ∈ K ∩ J ′ then, modulo K ′ we can write

h =
∑

rt(xt − ft)

for some rt ∈ B. As h ∈ K ∩ J ′ ⊂ J ′ we see that r0 =
∑
rtft ∈ I . Hence (r0, rt) ∈ R

and we see that
h =

∑
rtxt − r0

is in K ′ as desired. �

Lemma 2.5. Let (A, I, γ) be a divided power ring. Let B be an A-algebra and IB ⊂
J ⊂ B an ideal. Let xi be a set of variables. Then

DB[xi],γ(JB[xi] + (xi)) = DB,γ(J)〈xi〉

Proof. One possible proof is to deduce this from Lemma 2.4 as any relation between
xi in B[xi] is trivial. On the other hand, the lemma follows from the universal property
of the divided power polynomial algebra and the universal property of divided power
envelopes. �

Conditions (1) and (2) of the following lemma hold if B → B′ is flat at all primes of
V (IB′) ⊂ Spec(B′) and is very closely related to that condition, see Algebra, Lemma 99.8.
It in particular says that taking the divided power envelope commutes with localization.

Lemma 2.6. Let (A, I, γ) be a divided power ring. Let B → B′ be a homomorphism
of A-algebras. Assume that

(1) B/IB → B′/IB′ is flat, and
(2) TorB1 (B′, B/IB) = 0.

Then for any ideal IB ⊂ J ⊂ B the canonical map

DB(J)⊗B B′ −→ DB′(JB′)
is an isomorphism.

Proof. Set D = DB(J) and denote J̄ ⊂ D its divided power ideal with divided
power structure γ̄. The universal property ofD produces aB-algebra mapD → DB′(JB′),
whence a map as in the lemma. It suffices to show that the divided powers γ̄ extend to
D⊗BB′ since then the universal property ofDB′(JB′) will produce a mapDB′(JB′)→
D ⊗B B′ inverse to the one in the lemma.

Choose a surjectionP → B′ whereP is a polynomial algebra overB. In particularB → P
is flat, hence D → D ⊗B P is flat by Algebra, Lemma 39.7. Then γ̄ extends to D ⊗B P
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by Divided Power Algebra, Lemma 4.2; we will denote this extension γ̄ also. Set a =
Ker(P → B′) so that we have the short exact sequence

0→ a→ P → B′ → 0
Thus TorB1 (B′, B/IB) = 0 implies that a ∩ IP = Ia. Now we have the following
commutative diagram

B/J ⊗B a
β
// B/J ⊗B P // B/J ⊗B B′

D ⊗B a
α //

OO

D ⊗B P //

OO

D ⊗B B′

OO

J̄ ⊗B a //

OO

J̄ ⊗B P //

OO

J̄ ⊗B B′

OO

This diagram is exact even with 0’s added at the top and the right. We have to show the
divided powers on the ideal J̄⊗BP preserve the ideal Im(α)∩ J̄⊗BP , see Divided Power
Algebra, Lemma 4.3. Consider the exact sequence

0→ a/Ia→ P/IP → B′/IB′ → 0
(which uses that a ∩ IP = Ia as seen above). As B′/IB′ is flat over B/IB this sequence
remains exact after applying B/J ⊗B/IB −, see Algebra, Lemma 39.12. Hence

Ker(B/J ⊗B/IB a/Ia→ B/J ⊗B/IB P/IP ) = Ker(a/Ja→ P/JP )

is zero. Thus β is injective. It follows that Im(α) ∩ J̄ ⊗B P is the image of J̄ ⊗ a. Now
if f ∈ J̄ and a ∈ a, then γ̄n(f ⊗ a) = γ̄n(f)⊗ an hence the result is clear. �

The following lemma is a special case of [?, Proposition 2.1.7] which in turn is a general-
ization of [?, Proposition 2.8.2].

Lemma 2.7. Let (B, I, γ)→ (B′, I ′, γ′) be a homomorphism of divided power rings.
Let I ⊂ J ⊂ B and I ′ ⊂ J ′ ⊂ B′ be ideals. Assume

(1) B/I → B′/I ′ is flat, and
(2) J ′ = JB′ + I ′.

Then the canonical map
DB,γ(J)⊗B B′ −→ DB′,γ′(J ′)

is an isomorphism.

Proof. Set D = DB,γ(J). Choose elements ft ∈ J which generate J/I . Set R =
{(r0, rt) ∈ I ⊕

⊕
t∈T B |

∑
rtft = r0 in B} as in the proof of Lemma 2.4. This lemma

shows that
D = B〈xt〉/K

whereK is generated by the elements xt−ft and δn(
∑
rtxt− r0) for (r0, rt) ∈ R. Thus

we see that
(2.7.1) D ⊗B B′ = B′〈xt〉/K ′

where K ′ is generated by the images in B′〈xt〉 of the generators of K listed above. Let
f ′
t ∈ B′ be the image of ft. By assumption (1) we see that the elements f ′

t ∈ J ′ generate
J ′/I ′ and we see that xt − f ′

t ∈ K ′. Set

R′ = {(r′
0, r

′
t) ∈ I ′ ⊕

⊕
t∈T

B′ |
∑

r′
tf

′
t = r′

0 in B′}
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To finish the proof we have to show that δ′
n(
∑
r′
txt− r′

0) ∈ K ′ for (r′
0, r

′
t) ∈ R′, because

then the presentation (2.7.1) of D ⊗B B′ is identical to the presentation of DB′,γ′(J ′)
obtain in Lemma 2.4 from the generators f ′

t . Suppose that (r′
0, r

′
t) ∈ R′. Then

∑
r′
tf

′
t = 0

inB′/I ′. AsB/I → B′/I ′ is flat by assumption (1) we can apply the equational criterion
of flatness (Algebra, Lemma 39.11) to see that there exist an m > 0 and rjt ∈ B and
cj ∈ B′, j = 1, . . . ,m such that

rj0 =
∑

t
rjtft ∈ I for j = 1, . . . ,m

and
i′t = r′

t −
∑

j
cjrjt ∈ I ′ for all t

Note that this also implies that r′
0 =

∑
t i

′
tft +

∑
j cjrj0. Then we have

δ′
n(
∑

t
r′
txt − r′

0) = δ′
n(
∑

t
i′txt +

∑
t,j
cjrjtxt −

∑
t
i′tft −

∑
j
cjrj0)

= δ′
n(
∑

t
i′t(xt − ft) +

∑
j
cj(
∑

t
rjtxt − rj0))

Since δn(a+ b) =
∑
m=0,...,n δm(a)δn−m(b) and since δm(

∑
i′t(xt − ft)) is in the ideal

generated by xt − ft ∈ K ′ for m > 0, it suffices to prove that δn(
∑
cj(
∑
rjtxt − rj0))

is in K ′. For this we use

δn(
∑

j
cj(
∑

t
rjtxt−rj0)) =

∑
cn1

1 . . . cnmm δn1(
∑

r1txt−r10) . . . δnm(
∑

rmtxt−rm0)

where the sum is over n1 + . . .+ nm = n. This proves what we want. �

3. Some explicit divided power thickenings

The constructions in this section will help us to define the connection on a crystal in
modules on the crystalline site.

Lemma 3.1. Let (A, I, γ) be a divided power ring. Let M be an A-module. Let B =
A⊕M as an A-algebra where M is an ideal of square zero and set J = I ⊕M . Set

δn(x+ z) = γn(x) + γn−1(x)z

for x ∈ I and z ∈M . Then δ is a divided power structure andA→ B is a homomorphism
of divided power rings from (A, I, γ) to (B, J, δ).

Proof. We have to check conditions (1) – (5) of Divided Power Algebra, Definition
2.1. We will prove this directly for this case, but please see the proof of the next lemma
for a method which avoids calculations. Conditions (1) and (3) are clear. Condition (2)
follows from

δn(x+ z)δm(x+ z) = (γn(x) + γn−1(x)z)(γm(x) + γm−1(x)z)
= γn(x)γm(x) + γn(x)γm−1(x)z + γn−1(x)γm(x)z

= (n+m)!
n!m! γn+m(x) +

(
(n+m− 1)!
n!(m− 1)! + (n+m− 1)!

(n− 1)!m!

)
γn+m−1(x)z

= (n+m)!
n!m! δn+m(x+ z)
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Condition (5) follows from

δn(δm(x+ z)) = δn(γm(x) + γm−1(x)z)
= γn(γm(x)) + γn−1(γm(x))γm−1(x)z

= (nm)!
n!(m!)n γnm(x) + ((n− 1)m)!

(n− 1)!(m!)n−1 γ(n−1)m(x)γm−1(x)z

= (nm)!
n!(m!)n (γnm(x) + γnm−1(x)z)

by elementary number theory. To prove (4) we have to see that

δn(x+ x′ + z + z′) = γn(x+ x′) + γn−1(x+ x′)(z + z′)
is equal to ∑n

i=0
(γi(x) + γi−1(x)z)(γn−i(x′) + γn−i−1(x′)z′)

This follows easily on collecting the coefficients of 1, z, and z′ and using condition (4) for
γ. �

Lemma 3.2. Let (A, I, γ) be a divided power ring. Let M , N be A-modules. Let
q : M ×M → N be an A-bilinear map. Let B = A ⊕M ⊕ N as an A-algebra with
multiplication

(x, z, w) · (x′, z′, w′) = (xx′, xz′ + x′z, xw′ + x′w + q(z, z′) + q(z′, z))
and set J = I ⊕M ⊕N . Set

δn(x, z, w) = (γn(x), γn−1(x)z, γn−1(x)w + γn−2(x)q(z, z))
for (x, z, w) ∈ J . Then δ is a divided power structure and A→ B is a homomorphism of
divided power rings from (A, I, γ) to (B, J, δ).

Proof. Suppose we want to prove that property (4) of Divided Power Algebra, Def-
inition 2.1 is satisfied. Pick (x, z, w) and (x′, z′, w′) in J . Pick a map

A0 = Z〈s, s′〉 −→ A, s 7−→ x, s′ 7−→ x′

which is possible by the universal property of divided power polynomial rings. SetM0 =
A0 ⊕ A0 and N0 = A0 ⊕ A0 ⊕M0 ⊗A0 M0. Let q0 : M0 ×M0 → N0 be the obvious
map. Define M0 →M as the A0-linear map which sends the basis vectors of M0 to z and
z′. Define N0 → N as the A0 linear map which sends the first two basis vectors of N0 to
w and w′ and uses M0 ⊗A0 M0 → M ⊗A M

q−→ N on the last summand. Then we see
that it suffices to prove the identity (4) for the situation (A0,M0, N0, q0). Similarly for
the other identities. This reduces us to the case of a Z-torsion free ring A and A-torsion
free modules. In this case all we have to do is show that

n!δn(x, z, w) = (x, z, w)n

in the ring A, see Divided Power Algebra, Lemma 2.2. To see this note that

(x, z, w)2 = (x2, 2xz, 2xw + 2q(z, z))
and by induction

(x, z, w)n = (xn, nxn−1z, nxn−1w + n(n− 1)xn−2q(z, z))
On the other hand,

n!δn(x, z, w) = (n!γn(x), n!γn−1(x)z, n!γn−1(x)w + n!γn−2(x)q(z, z))
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which matches. This finishes the proof. �

4. Compatibility

This section isn’t required reading; it explains how our discussion fits with that of [?].
Consider the following technical notion.

Definition 4.1. Let (A, I, γ) and (B, J, δ) be divided power rings. Let A → B be
a ring map. We say δ is compatible with γ if there exists a divided power structure γ̄ on
J + IB such that

(A, I, γ)→ (B, J + IB, γ̄) and (B, J, δ)→ (B, J + IB, γ̄)

are homomorphisms of divided power rings.

Let p be a prime number. Let (A, I, γ) be a divided power ring. Let A→ C be a ring map
with p nilpotent in C. Assume that γ extends to IC (see Divided Power Algebra, Lemma
4.2). In this situation, the (big affine) crystalline site of Spec(C) over Spec(A) as defined
in [?] is the opposite of the category of systems

(B, J, δ, A→ B,C → B/J)

where
(1) (B, J, δ) is a divided power ring with p nilpotent in B,
(2) δ is compatible with γ, and
(3) the diagram

B // B/J

A

OO

// C

OO

is commutative.
The conditions “γ extends toC and δ compatible with γ” are used in [?] to ensure that the
crystalline cohomology of Spec(C) is the same as the crystalline cohomology of Spec(C/IC).
We will avoid this issue by working exclusively with C such that IC = 01. In this case,
for a system (B, J, δ, A → B,C → B/J) as above, the commutativity of the displayed
diagram above implies IB ⊂ J and compatibility is equivalent to the condition that
(A, I, γ)→ (B, J, δ) is a homomorphism of divided power rings.

5. Affine crystalline site

In this section we discuss the algebraic variant of the crystalline site. Our basic situation
in which we discuss this material will be as follows.

Situation 5.1. Here p is a prime number, (A, I, γ) is a divided power ring such that
A is a Z(p)-algebra, andA→ C is a ring map such that IC = 0 and such that p is nilpotent
in C.

Usually the prime number p will be contained in the divided power ideal I .

Definition 5.2. In Situation 5.1.

1Of course there will be a price to pay.
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(1) A divided power thickening of C over (A, I, γ) is a homomorphism of divided
power algebras (A, I, γ) → (B, J, δ) such that p is nilpotent in B and a ring
map C → B/J such that

B // B/J

C

OO

A

OO

// A/I

OO

is commutative.
(2) A homomorphism of divided power thickenings

(B, J, δ, C → B/J) −→ (B′, J ′, δ′, C → B′/J ′)

is a homomorphism ϕ : B → B′ of divided power A-algebras such that C →
B/J → B′/J ′ is the given map C → B′/J ′.

(3) We denote CRIS(C/A, I, γ) or simply CRIS(C/A) the category of divided power
thickenings of C over (A, I, γ).

(4) We denote Cris(C/A, I, γ) or simply Cris(C/A) the full subcategory consisting
of (B, J, δ, C → B/J) such thatC → B/J is an isomorphism. We often denote
such an object (B → C, δ) with J = Ker(B → C) being understood.

Note that for a divided power thickening (B, J, δ) as above the ideal J is locally nilpotent,
see Divided Power Algebra, Lemma 2.6. There is a canonical functor

(5.2.1) CRIS(C/A) −→ C-algebras, (B, J, δ) 7−→ B/J

This category does not have equalizers or fibre products in general. It also doesn’t have an
initial object (= empty colimit) in general.

Lemma 5.3. In Situation 5.1.

(1) CRIS(C/A) has finite products (but not infinite ones),
(2) CRIS(C/A) has all finite nonempty colimits and (5.2.1) commutes with these,

and
(3) Cris(C/A) has all finite nonempty colimits and Cris(C/A)→ CRIS(C/A) com-

mutes with them.

Proof. The empty product, i.e., the final object in the category of divided power
thickenings of C over (A, I, γ), is the zero ring viewed as an A-algebra endowed with
the zero ideal and the unique divided powers on the zero ideal and finally endowed with
the unique homomorphism of C to the zero ring. If (Bt, Jt, δt)t∈T is a family of objects
of CRIS(C/A) then we can form the product (

∏
tBt,

∏
t Jt,

∏
t δt) as in Divided Power

Algebra, Lemma 3.2. The map C →
∏
Bt/

∏
Jt =

∏
Bt/Jt is clear. However, we are

only guaranteed that p is nilpotent in
∏
tBt if T is finite.
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Given two objects (B, J, γ) and (B′, J ′, γ′) of CRIS(C/A) we can form a cocartesian di-
agram

(B, J, δ) // (B′′, J ′′, δ′′)

(A, I, γ) //

OO

(B′, J ′, δ′)

OO

in the category of divided power rings. Then we see that we have
B′′/J ′′ = B/J ⊗A/I B′/J ′ ←− C ⊗A/I C

see Divided Power Algebra, Remark 3.5. Denote J ′′ ⊂ K ⊂ B′′ the ideal such that

B′′/J ′′ // B′′/K

C ⊗A/I C //

OO

C

OO

is a pushout, i.e.,B′′/K ∼= B/J⊗CB′/J ′. LetDB′′(K) = (D, K̄, δ̄) be the divided power
envelope of K in B′′ relative to (B′′, J ′′, δ′′). Then it is easily verified that (D, K̄, δ̄) is a
coproduct of (B, J, δ) and (B′, J ′, δ′) in CRIS(C/A).
Next, we come to coequalizers. Let α, β : (B, J, δ) → (B′, J ′, δ′) be morphisms of
CRIS(C/A). Consider B′′ = B′/(α(b) − β(b)). Let J ′′ ⊂ B′′ be the image of J ′. Let
DB′′(J ′′) = (D, J̄, δ̄) be the divided power envelope of J ′′ in B′′ relative to (B′, J ′, δ′).
Then it is easily verified that (D, J̄, δ̄) is the coequalizer of (B, J, δ) and (B′, J ′, δ′) in
CRIS(C/A).
By Categories, Lemma 18.6 we have all finite nonempty colimits in CRIS(C/A). The
constructions above shows that (5.2.1) commutes with them. This formally implies part
(3) as Cris(C/A) is the fibre category of (5.2.1) over C. �

Remark 5.4. In Situation 5.1 we denote Cris∧(C/A) the category whose objects are
pairs (B → C, δ) such that

(1) B is a p-adically complete A-algebra,
(2) B → C is a surjection of A-algebras,
(3) δ is a divided power structure on Ker(B → C),
(4) A→ B is a homomorphism of divided power rings.

Morphisms are defined as in Definition 5.2. Then Cris(C/A) ⊂ Cris∧(C/A) is the full
subcategory consisting of those B such that p is nilpotent in B. Conversely, any object
(B → C, δ) of Cris∧(C/A) is equal to the limit

(B → C, δ) = lime(B/peB → C, δ)
where for e� 0 the object (B/peB → C, δ) lies in Cris(C/A), see Divided Power Alge-
bra, Lemma 4.5. In particular, we see that Cris∧(C/A) is a full subcategory of the category
of pro-objects of Cris(C/A), see Categories, Remark 22.5.

Lemma 5.5. In Situation 5.1. Let P → C be a surjection ofA-algebras with kernel J .
WriteDP,γ(J) = (D, J̄, γ̄). Let (D∧, J∧, γ̄∧) be the p-adic completion ofD, see Divided
Power Algebra, Lemma 4.5. For every e ≥ 1 set Pe = P/peP and Je ⊂ Pe the image of
J and write DPe,γ(Je) = (De, J̄e, γ̄). Then for all e large enough we have

(1) peD ⊂ J̄ and peD∧ ⊂ J̄∧ are preserved by divided powers,
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(2) D∧/peD∧ = D/peD = De as divided power rings,
(3) (De, J̄e, γ̄) is an object of Cris(C/A),
(4) (D∧, J̄∧, γ̄∧) is equal to lime(De, J̄e, γ̄), and
(5) (D∧, J̄∧, γ̄∧) is an object of Cris∧(C/A).

Proof. Part (1) follows from Divided Power Algebra, Lemma 4.5. It is a general
property of p-adic completion that D/peD = D∧/peD∧. Since D/peD is a divided
power ring and since P → D/peD factors through Pe, the universal property of De

produces a map De → D/peD. Conversely, the universal property of D produces a map
D → De which factors through D/peD. We omit the verification that these maps are
mutually inverse. This proves (2). If e is large enough, then peC = 0, hence we see (3)
holds. Part (4) follows from Divided Power Algebra, Lemma 4.5. Part (5) is clear from
the definitions. �

Lemma 5.6. In Situation 5.1. Let P be a polynomial algebra over A and let P →
C be a surjection of A-algebras with kernel J . With (De, J̄e, γ̄) as in Lemma 5.5: for
every object (B, JB , δ) of CRIS(C/A) there exists an e and a morphism De → B of
CRIS(C/A).

Proof. We can find an A-algebra homomorphism P → B lifting the map C →
B/JB . By our definition of CRIS(C/A) we see that peB = 0 for some e hence P → B
factors as P → Pe → B. By the universal property of the divided power envelope we
conclude that Pe → B factors through De. �

Lemma 5.7. In Situation 5.1. Let P be a polynomial algebra over A and let P → C

be a surjection of A-algebras with kernel J . Let (D, J̄, γ̄) be the p-adic completion of
DP,γ(J). For every object (B → C, δ) of Cris∧(C/A) there exists a morphism D → B
of Cris∧(C/A).

Proof. We can find an A-algebra homomorphism P → B compatible with maps to
C. By our definition of Cris(C/A) we see that P → B factors as P → DP,γ(J)→ B. As
B is p-adically complete we can factor this map through D. �

6. Module of differentials

In this section we develop a theory of modules of differentials for divided power rings.

Definition 6.1. Let A be a ring. Let (B, J, δ) be a divided power ring. Let A → B
be a ring map. Let M be an B-module. A divided power A-derivation into M is a map
θ : B → M which is additive, annihilates the elements of A, satisfies the Leibniz rule
θ(bb′) = bθ(b′) + b′θ(b) and satisfies

θ(δn(x)) = δn−1(x)θ(x)
for all n ≥ 1 and all x ∈ J .

In the situation of the definition, just as in the case of usual derivations, there exists a
universal divided power A-derivation

dB/A,δ : B → ΩB/A,δ
such that any divided powerA-derivation θ : B →M is equal to θ = ξ ◦dB/A,δ for some
unique B-linear map ξ : ΩB/A,δ → M . If (A, I, γ) → (B, J, δ) is a homomorphism of
divided power rings, then we can forget the divided powers onA and consider the divided
power derivations of B over A. Here are some basic properties of the universal module of
(divided power) differentials.
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Lemma 6.2. LetA be a ring. Let (B, J, δ) be a divided power ring and A→ B a ring
map.

(1) ConsiderB[x] with divided power ideal (JB[x], δ′) where δ′ is the extension of
δ to B[x]. Then

ΩB[x]/A,δ′ = ΩB/A,δ ⊗B B[x]⊕B[x]dx.

(2) Consider B〈x〉 with divided power ideal (JB〈x〉+B〈x〉+, δ′). Then

ΩB〈x〉/A,δ′ = ΩB/A,δ ⊗B B〈x〉 ⊕B〈x〉dx.

(3) Let K ⊂ J be an ideal preserved by δn for all n > 0. Set B′ = B/K and
denote δ′ the induced divided power on J/K. Then ΩB′/A,δ′ is the quotient of
ΩB/A,δ ⊗B B′ by the B′-submodule generated by dk for k ∈ K.

Proof. These are proved directly from the construction of ΩB/A,δ as the free B-
module on the elements db modulo the relations

(1) d(b+ b′) = db+ db′, b, b′ ∈ B,
(2) da = 0, a ∈ A,
(3) d(bb′) = bdb′ + b′db, b, b′ ∈ B,
(4) dδn(f) = δn−1(f)df , f ∈ J , n > 1.

Note that the last relation explains why we get “the same” answer for the divided power
polynomial algebra and the usual polynomial algebra: in the first case x is an element of
the divided power ideal and hence dx[n] = x[n−1]dx. �

Let (A, I, γ) be a divided power ring. In this setting the correct version of the powers of
I is given by the divided powers

I [n] = ideal generated by γe1(x1) . . . γet(xt) with
∑

ej ≥ n and xj ∈ I.

Of course we have In ⊂ I [n]. Note that I [1] = I . Sometimes we also set I [0] = A.

Lemma 6.3. Let (A, I, γ) → (B, J, δ) be a homomorphism of divided power rings.
Let (B(1), J(1), δ(1)) be the coproduct of (B, J, δ) with itself over (A, I, γ), i.e., such that

(B, J, δ) // (B(1), J(1), δ(1))

(A, I, γ) //

OO

(B, J, δ)

OO

is cocartesian. DenoteK = Ker(B(1)→ B). ThenK ∩ J(1) ⊂ J(1) is preserved by the
divided power structure and

ΩB/A,δ = K/
(
K2 + (K ∩ J(1))[2]

)
canonically.

Proof. The fact that K ∩ J(1) ⊂ J(1) is preserved by the divided power structure
follows from the fact that B(1)→ B is a homomorphism of divided power rings.

Recall that K/K2 has a canonical B-module structure. Denote s0, s1 : B → B(1) the
two coprojections and consider the map d : B → K/K2 + (K ∩ J(1))[2] given by b 7→
s1(b)− s0(b). It is clear that d is additive, annihilatesA, and satisfies the Leibniz rule. We
claim that d is a divided power A-derivation. Let x ∈ J . Set y = s1(x) and z = s0(x).
Denote δ the divided power structure on J(1). We have to show that δn(y) − δn(z) =
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δn−1(y)(y − z) modulo K2 + (K ∩ J(1))[2] for n ≥ 1. The equality holds for n = 1.
Assume n > 1. Note that δi(y − z) lies in (K ∩ J(1))[2] for i > 1. Calculating modulo
K2 + (K ∩ J(1))[2] we have

δn(z) = δn(z − y + y) =
∑n

i=0
δi(z − y)δn−i(y) = δn−1(y)δ1(z − y) + δn(y)

This proves the desired equality.

LetM be aB-module. Let θ : B →M be a divided powerA-derivation. SetD = B⊕M
where M is an ideal of square zero. Define a divided power structure on J ⊕M ⊂ D
by setting δn(x + m) = δn(x) + δn−1(x)m for n > 1, see Lemma 3.1. There are two
divided power algebra homomorphisms B → D: the first is given by the inclusion and
the second by the map b 7→ b+θ(b). Hence we get a canonical homomorphismB(1)→ D
of divided power algebras over (A, I, γ). This induces a map K → M which annihilates
K2 (as M is an ideal of square zero) and (K ∩ J(1))[2] as M [2] = 0. The composition
B → K/K2 + (K ∩ J(1))[2] → M equals θ by construction. It follows that d is a
universal divided power A-derivation and we win. �

Remark 6.4. Let A → B be a ring map and let (J, δ) be a divided power structure
on B. The universal module ΩB/A,δ comes with a little bit of extra structure, namely the
B-submoduleN of ΩB/A,δ generated by dB/A,δ(J). In terms of the isomorphism given in
Lemma 6.3 this corresponds to the image of K ∩ J(1) in ΩB/A,δ . Consider the A-algebra
D = B ⊕ Ω1

B/A,δ with ideal J̄ = J ⊕ N and divided powers δ̄ as in the proof of the
lemma. Then (D, J̄, δ̄) is a divided power ring and the two maps B → D given by b 7→ b
and b 7→ b+ dB/A,δ(b) are homomorphisms of divided power rings overA. Moreover,N
is the smallest submodule of ΩB/A,δ such that this is true.

Lemma 6.5. In Situation 5.1. Let (B, J, δ) be an object of CRIS(C/A). Let (B(1), J(1), δ(1))
be the coproduct of (B, J, δ) with itself in CRIS(C/A). Denote K = Ker(B(1) → B).
Then K ∩ J(1) ⊂ J(1) is preserved by the divided power structure and

ΩB/A,δ = K/
(
K2 + (K ∩ J(1))[2]

)
canonically.

Proof. Word for word the same as the proof of Lemma 6.3. The only point that has
to be checked is that the divided power ring D = B ⊕M is an object of CRIS(C/A) and
that the two maps B → C are morphisms of CRIS(C/A). Since D/(J ⊕M) = B/J we
can useC → B/J to viewD as an object of CRIS(C/A) and the statement on morphisms
is clear from the construction. �

Lemma 6.6. Let (A, I, γ) be a divided power ring. Let A→ B be a ring map and let
IB ⊂ J ⊂ B be an ideal. Let DB,γ(J) = (D, J̄, γ̄) be the divided power envelope. Then
we have

ΩD/A,γ̄ = ΩB/A ⊗B D

First proof. Let M be a D-module. We claim that an A-derivation ϑ : B → M
is the same thing as a divided power A-derivation θ : D → M . The claim implies the
statement by the Yoneda lemma.

Consider the square zero thickeningD⊕M ofD. There is a divided power structure δ on
J̄ ⊕M if we set the higher divided power operations zero on M . In other words, we set
δn(x+m) = γ̄n(x)+ γ̄n−1(x)m for any x ∈ J̄ andm ∈M , see Lemma 3.1. Consider the
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A-algebra mapB → D⊕M whose first component is given by the mapB → D and whose
second component is ϑ. By the universal property we get a corresponding homomorphism
D → D ⊕M of divided power algebras whose second component is the divided power
A-derivation θ corresponding to ϑ. �

Second proof. We will prove this first when B is flat over A. In this case γ extends
to a divided power structure γ′ on IB, see Divided Power Algebra, Lemma 4.2. HenceD =
DB,γ′(J) is equal to a quotient of the divided power ring (D′, J ′, δ) where D′ = B〈xt〉
and J ′ = IB〈xt〉+B〈xt〉+ by the elements xt − ft and δn(

∑
rtxt − r0), see Lemma 2.4

for notation and explanation. Write d : D′ → ΩD′/A,δ for the universal derivation. Note
that

ΩD′/A,δ = ΩB/A ⊗B D′ ⊕
⊕

D′dxt,

see Lemma 6.2. We conclude that ΩD/A,γ̄ is the quotient of ΩD′/A,δ ⊗D′ D by the sub-
module generated by d applied to the generators of the kernel of D′ → D listed above,
see Lemma 6.2. Since d(xt − ft) = −dft + dxt we see that we have dxt = dft in the
quotient. In particular we see that ΩB/A⊗B D → ΩD/A,γ is surjective with kernel given
by the images of d applied to the elements δn(

∑
rtxt − r0). However, given a relation∑

rtft − r0 = 0 in B with rt ∈ B and r0 ∈ IB we see that

dδn(
∑

rtxt − r0) = δn−1(
∑

rtxt − r0)d(
∑

rtxt − r0)

= δn−1(
∑

rtxt − r0)
(∑

rtd(xt − ft) +
∑

(xt − ft)drt
)

because
∑
rtft − r0 = 0 in B. Hence this is already zero in ΩB/A ⊗A D and we win in

the case that B is flat over A.

In the general case we write B as a quotient of a polynomial ring P → B and let J ′ ⊂ P
be the inverse image of J . Then D = D′/K ′ with notation as in Lemma 2.3. By the
case handled in the first paragraph of the proof we have ΩD′/A,γ̄′ = ΩP/A ⊗P D′. Then
ΩD/A,γ̄ is the quotient of ΩP/A ⊗P D by the submodule generated by dγ̄′

n(k) where k is
an element of the kernel of P → B, see Lemma 6.2 and the description ofK ′ from Lemma
2.3. Since dγ̄′

n(k) = γ̄′
n−1(k)dk we see again that it suffices to divided by the submodule

generated by dk with k ∈ Ker(P → B) and since ΩB/A is the quotient of ΩP/A ⊗A B
by these elements (Algebra, Lemma 131.9) we win. �

Remark 6.7. LetA→ B be a ring map and let (J, δ) be a divided power structure on
B. Set ΩiB/A,δ = ∧iBΩB/A,δ where ΩB/A,δ is the target of the universal divided powerA-
derivation d = dB/A : B → ΩB/A,δ . Note that ΩB/A,δ is the quotient of ΩB/A by theB-
submodule generated by the elements dδn(x)− δn−1(x)dx for x ∈ J . We claim Algebra,
Lemma 132.1 applies. To see this it suffices to verify the elements dδn(x)− δn−1(x)dx of
ΩB are mapped to zero in Ω2

B/A,δ . We observe that

d(δn−1(x)) ∧ dx = δn−2(x)dx ∧ dx = 0

in Ω2
B/A,δ as desired. Hence we obtain a divided power de Rham complex

Ω0
B/A,δ → Ω1

B/A,δ → Ω2
B/A,δ → . . .

which will play an important role in the sequel.
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Remark 6.8. Let A→ B be a ring map. Let ΩB/A → Ω be a quotient satisfying the
assumptions of Algebra, Lemma 132.1. Let M be a B-module. A connection is an additive
map

∇ : M −→M ⊗B Ω
such that ∇(bm) = b∇(m) + m ⊗ db for b ∈ B and m ∈ M . In this situation we can
define maps

∇ : M ⊗B Ωi −→M ⊗B Ωi+1

by the rule∇(m⊗ ω) = ∇(m) ∧ ω +m⊗ dω. This works because if b ∈ B, then

∇(bm⊗ ω)−∇(m⊗ bω) = ∇(bm) ∧ ω + bm⊗ dω −∇(m) ∧ bω −m⊗ d(bω)
= b∇(m) ∧ ω +m⊗ db ∧ ω + bm⊗ dω
− b∇(m) ∧ ω − bm⊗ d(ω)−m⊗ db ∧ ω = 0

As is customary we say the connection is integrable if and only if the composition

M
∇−→M ⊗B Ω1 ∇−→M ⊗B Ω2

is zero. In this case we obtain a complex

M
∇−→M ⊗B Ω1 ∇−→M ⊗B Ω2 ∇−→M ⊗B Ω3 ∇−→M ⊗B Ω4 → . . .

which is called the de Rham complex of the connection.

Remark 6.9. Consider a commutative diagram of rings

B
ϕ
// B′

A

OO

// A′

OO

Let ΩB/A → Ω and ΩB′/A′ → Ω′ be quotients satisfying the assumptions of Algebra,
Lemma 132.1. Assume there is a map ϕ : Ω→ Ω′ which fits into a commutative diagram

ΩB/A //

��

ΩB′/A′

��
Ω ϕ // Ω′

where the top horizontal arrow is the canonical map ΩB/A → ΩB′/A′ induced by ϕ :
B → B′. In this situation, given any pair (M,∇) where M is a B-module and∇ : M →
M ⊗B Ω is a connection we obtain a base change (M ⊗B B′,∇′) where

∇′ : M ⊗B B′ −→ (M ⊗B B′)⊗B′ Ω′ = M ⊗B Ω′

is defined by the rule

∇′(m⊗ b′) =
∑

mi ⊗ b′dϕ(bi) +m⊗ db′

if∇(m) =
∑
mi⊗dbi. If∇ is integrable, then so is∇′, and in this case there is a canonical

map of de Rham complexes (Remark 6.8)

(6.9.1) M ⊗B Ω• −→ (M ⊗B B′)⊗B′ (Ω′)• = M ⊗B (Ω′)•

which maps m⊗ η to m⊗ ϕ(η).
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Lemma 6.10. Let A → B be a ring map and let (J, δ) be a divided power structure
on B. Let p be a prime number. Assume that A is a Z(p)-algebra and that p is nilpotent in
B/J . Then we have

lime ΩBe/A,δ̄ = lime ΩB/A,δ/peΩB/A,δ = lime ΩB∧/A,δ∧/peΩB∧/A,δ∧

see proof for notation and explanation.

Proof. By Divided Power Algebra, Lemma 4.5 we see that δ extends toBe = B/peB
for all sufficiently large e. Hence the first limit make sense. The lemma also produces
a divided power structure δ∧ on the completion B∧ = limeBe, hence the last limit
makes sense. By Lemma 6.2 and the fact that dpe = 0 (always) we see that the surjec-
tion ΩB/A,δ → ΩBe/A,δ̄ has kernel peΩB/A,δ . Similarly for the kernel of ΩB∧/A,δ∧ →
ΩBe/A,δ̄ . Hence the lemma is clear. �

7. Divided power schemes

Some remarks on how to globalize the previous notions.

Definition 7.1. Let C be a site. Let O be a sheaf of rings on C. Let I ⊂ O be a sheaf
of ideals. A divided power structure γ on I is a sequence of maps γn : I → I , n ≥ 1 such
that for any object U of C the triple

(O(U), I(U), γ)
is a divided power ring.

To be sure this applies in particular to sheaves of rings on topological spaces. But it’s
good to be a little bit more general as the structure sheaf of the crystalline site lives on
a... site! A triple (C, I, γ) as in the definition above is sometimes called a divided power
topos in this chapter. Given a second (C′, I ′, γ′) and given a morphism of ringed topoi
(f, f ]) : (Sh(C),O) → (Sh(C′),O′) we say that (f, f ]) induces a morphism of divided
power topoi if f ](f−1I ′) ⊂ I and the diagrams

f−1I ′

f−1γ′
n

��

f]
// I

γn

��
f−1I ′ f] // I

are commutative for all n ≥ 1. If f comes from a morphism of sites induced by a functor
u : C′ → C then this just means that

(O′(U ′), I ′(U ′), γ′) −→ (O(u(U ′)), I(u(U ′)), γ)
is a homomorphism of divided power rings for all U ′ ∈ Ob(C′).

In the case of schemes we require the divided power ideal to be quasi-coherent. But apart
from this the definition is exactly the same as in the case of topoi. Here it is.

Definition 7.2. A divided power scheme is a triple (S, I, γ) where S is a scheme, I
is a quasi-coherent sheaf of ideals, and γ is a divided power structure on I . A morphism
of divided power schemes (S, I, γ) → (S′, I ′, γ′) is a morphism of schemes f : S → S′

such that f−1I ′OS ⊂ I and such that

(OS′(U ′), I ′(U ′), γ′) −→ (OS(f−1U ′), I(f−1U ′), γ)
is a homomorphism of divided power rings for all U ′ ⊂ S′ open.
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Recall that there is a 1-to-1 correspondence between quasi-coherent sheaves of ideals and
closed immersions, see Morphisms, Section 2. Thus given a divided power scheme (T,J , γ)
we get a canonical closed immersion U → T defined by J . Conversely, given a closed
immersion U → T and a divided power structure γ on the sheaf of ideals J associated to
U → T we obtain a divided power scheme (T,J , γ). In many situations we only want to
consider such triples (U, T, γ) when the morphism U → T is a thickening, see More on
Morphisms, Definition 2.1.

Definition 7.3. A triple (U, T, γ) as above is called a divided power thickening if
U → T is a thickening.

Fibre products of divided power schemes exist when one of the three is a divided power
thickening. Here is a formal statement.

Lemma 7.4. Let (U ′, T ′, δ′) → (S′
0, S

′, γ′) and (S0, S, γ) → (S′
0, S

′, γ′) be mor-
phisms of divided power schemes. If (U ′, T ′, δ′) is a divided power thickening, then there
exists a divided power scheme (T0, T, δ) and

T //

��

T ′

��
S // S′

which is a cartesian diagram in the category of divided power schemes.

Proof. Omitted. Hints: If T exists, then T0 = S0 ×S′
0
U ′ (argue as in Divided

Power Algebra, Remark 3.5). Since T ′ is a divided power thickening, we see that T (if it
exists) will be a divided power thickening too. Hence we can define T as the scheme with
underlying topological space the underlying topological space of T0 = S0 ×S′

0
U ′ and as

structure sheaf on affine pieces the ring given by Lemma 5.3. �

We make the following observation. Suppose that (U, T, γ) is triple as above. Assume that
T is a scheme over Z(p) and that p is locally nilpotent on U . Then

(1) p locally nilpotent on T ⇔ U → T is a thickening (see Divided Power Algebra,
Lemma 2.6), and

(2) peOT is locally on T preserved by γ for e � 0 (see Divided Power Algebra,
Lemma 4.5).

This suggest that good results on divided power thickenings will be available under the
following hypotheses.

Situation 7.5. Here p is a prime number and (S, I, γ) is a divided power scheme
over Z(p). We set S0 = V (I) ⊂ S. Finally, X → S0 is a morphism of schemes such that
p is locally nilpotent on X .

It is in this situation that we will define the big and small crystalline sites.

8. The big crystalline site

We first define the big site. Given a divided power scheme (S, I, γ) we say (T,J , δ) is
a divided power scheme over (S, I, γ) if T comes endowed with a morphism T → S of
divided power schemes. Similarly, we say a divided power thickening (U, T, δ) is a divided
power thickening over (S, I, γ) if T comes endowed with a morphism T → S of divided
power schemes.
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Definition 8.1. In Situation 7.5.
(1) A divided power thickening ofX relative to (S, I, γ) is given by a divided power

thickening (U, T, δ) over (S, I, γ) and an S-morphism U → X .
(2) A morphism of divided power thickenings of X relative to (S, I, γ) is defined

in the obvious manner.
The category of divided power thickenings ofX relative to (S, I, γ) is denoted CRIS(X/S, I, γ)
or simply CRIS(X/S).

For any (U, T, δ) in CRIS(X/S) we have that p is locally nilpotent on T , see discussion
preceding Situation 7.5. A good way to visualize all the data associated to (U, T, δ) is the
commutative diagram

T

��

Uoo

��
X

��
S S0oo

where S0 = V (I) ⊂ S. Morphisms of CRIS(X/S) can be similarly visualized as huge
commutative diagrams. In particular, there is a canonical forgetful functor

(8.1.1) CRIS(X/S) −→ Sch/X, (U, T, δ) 7−→ U

as well as its one sided inverse (and left adjoint)

(8.1.2) Sch/X −→ CRIS(X/S), U 7−→ (U,U, ∅)
which is sometimes useful.

Lemma 8.2. In Situation 7.5. The category CRIS(X/S) has all finite nonempty lim-
its, in particular products of pairs and fibre products. The functor (8.1.1) commutes with
limits.

Proof. Omitted. Hint: See Lemma 5.3 for the affine case. See also Divided Power
Algebra, Remark 3.5. �

Lemma 8.3. In Situation 7.5. Let

(U3, T3, δ3)

��

// (U2, T2, δ2)

��
(U1, T1, δ1) // (U, T, δ)

be a fibre square in the category of divided power thickenings of X relative to (S, I, γ).
If T2 → T is flat and U2 = T2 ×T U , then T3 = T1 ×T T2 (as schemes).

Proof. This is true because a divided power structure extends uniquely along a flat
ring map. See Divided Power Algebra, Lemma 4.2. �

The lemma above means that the base change of a flat morphism of divided power thick-
enings is another flat morphism, and in fact is the “usual” base change of the morphism.
This implies that the following definition makes sense.

Definition 8.4. In Situation 7.5.



4878 60. CRYSTALLINE COHOMOLOGY

(1) A family of morphisms {(Ui, Ti, δi)→ (U, T, δ)} of divided power thickenings
of X/S is a Zariski, étale, smooth, syntomic, or fppf covering if and only if
(a) Ui = U ×T Ti for all i and
(b) {Ti → T} is a Zariski, étale, smooth, syntomic, or fppf covering.

(2) The big crystalline site ofX over (S, I, γ), is the category CRIS(X/S) endowed
with the Zariski topology.

(3) The topos of sheaves on CRIS(X/S) is denoted (X/S)CRIS or sometimes (X/S, I, γ)CRIS
2.

There are some obvious functorialities concerning these topoi.

Remark 8.5 (Functoriality). Let p be a prime number. Let (S, I, γ) → (S′, I ′, γ′)
be a morphism of divided power schemes over Z(p). Set S0 = V (I) and S′

0 = V (I ′). Let

X
f
//

��

Y

��
S0 // S′

0

be a commutative diagram of morphisms of schemes and assume p is locally nilpotent on
X and Y . Then we get a continuous and cocontinuous functor

CRIS(X/S) −→ CRIS(Y/S′)

by letting (U, T, δ) correspond to (U, T, δ) with U → X → Y as the S′-morphism from
U to Y . Hence we get a morphism of topoi

fCRIS : (X/S)CRIS −→ (Y/S′)CRIS

see Sites, Section 21.

Remark 8.6 (Comparison with Zariski site). In Situation 7.5. The functor (8.1.1) is
cocontinuous (details omitted) and commutes with products and fibred products (Lemma
8.2). Hence we obtain a morphism of topoi

UX/S : (X/S)CRIS −→ Sh((Sch/X)Zar)

from the big crystalline topos of X/S to the big Zariski topos of X . See Sites, Section 21.

Remark 8.7 (Structure morphism). In Situation 7.5. Consider the closed subscheme
S0 = V (I) ⊂ S. If we assume that p is locally nilpotent on S0 (which is always the case
in practice) then we obtain a situation as in Definition 8.1 with S0 instead of X . Hence
we get a site CRIS(S0/S). If f : X → S0 is the structure morphism ofX over S , then we
get a commutative diagram of morphisms of ringed topoi

(X/S)CRIS
fCRIS

//

UX/S

��

(S0/S)CRIS

US0/S

��
Sh((Sch/X)Zar)

fbig // Sh((Sch/S0)Zar)

))
Sh((Sch/S)Zar)

2This clashes with our convention to denote the topos associated to a site C by Sh(C).
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by Remark 8.5. We think of the composition (X/S)CRIS → Sh((Sch/S)Zar) as the struc-
ture morphism of the big crystalline site. Even if p is not locally nilpotent on S0 the
structure morphism

(X/S)CRIS −→ Sh((Sch/S)Zar)
is defined as we can take the lower route through the diagram above. Thus it is the mor-
phism of topoi corresponding to the cocontinuous functor CRIS(X/S) → (Sch/S)Zar
given by the rule (U, T, δ)/S 7→ U/S , see Sites, Section 21.

Remark 8.8 (Compatibilities). The morphisms defined above satisfy numerous com-
patibilities. For example, in the situation of Remark 8.5 we obtain a commutative diagram
of ringed topoi

(X/S)CRIS

��

// (Y/S′)CRIS

��
Sh((Sch/S)Zar) // Sh((Sch/S′)Zar)

where the vertical arrows are the structure morphisms.

9. The crystalline site

Since (8.1.1) commutes with products and fibre products, we see that looking at those
(U, T, δ) such that U → X is an open immersion defines a full subcategory preserved
under fibre products (and more generally finite nonempty limits). Hence the following
definition makes sense.

Definition 9.1. In Situation 7.5.
(1) The (small) crystalline site of X over (S, I, γ), denoted Cris(X/S, I, γ) or sim-

ply Cris(X/S) is the full subcategory of CRIS(X/S) consisting of those (U, T, δ)
in CRIS(X/S) such that U → X is an open immersion. It comes endowed with
the Zariski topology.

(2) The topos of sheaves on Cris(X/S) is denoted (X/S)cris or sometimes (X/S, I, γ)cris
3.

For any (U, T, δ) in Cris(X/S) the morphism U → X defines an object of the small
Zariski site XZar of X . Hence a canonical forgetful functor
(9.1.1) Cris(X/S) −→ XZar, (U, T, δ) 7−→ U

and a left adjoint
(9.1.2) XZar −→ Cris(X/S), U 7−→ (U,U, ∅)
which is sometimes useful.
We can compare the small and big crystalline sites, just like we can compare the small and
big Zariski sites of a scheme, see Topologies, Lemma 3.14.

Lemma 9.2. Assumptions as in Definition 8.1. The inclusion functor
Cris(X/S)→ CRIS(X/S)

commutes with finite nonempty limits, is fully faithful, continuous, and cocontinuous.
There are morphisms of topoi

(X/S)cris
i−→ (X/S)CRIS

π−→ (X/S)cris

3This clashes with our convention to denote the topos associated to a site C by Sh(C).
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whose composition is the identity and of which the first is induced by the inclusion func-
tor. Moreover, π∗ = i−1.

Proof. For the first assertion see Lemma 8.2. This gives us a morphism of topoi i :
(X/S)cris → (X/S)CRIS and a left adjoint i! such that i−1i! = i−1i∗ = id, see Sites,
Lemmas 21.5, 21.6, and 21.7. We claim that i! is exact. If this is true, then we can define π
by the rules π−1 = i! and π∗ = i−1 and everything is clear. To prove the claim, note that
we already know that i! is right exact and preserves fibre products (see references given).
Hence it suffices to show that i!∗ = ∗ where ∗ indicates the final object in the category
of sheaves of sets. To see this it suffices to produce a set of objects (Ui, Ti, δi), i ∈ I of
Cris(X/S) such that ∐

i∈I
h(Ui,Ti,δi) → ∗

is surjective in (X/S)CRIS (details omitted; hint: use that Cris(X/S) has products and
that the functor Cris(X/S)→ CRIS(X/S) commutes with them). In the affine case this
follows from Lemma 5.6. We omit the proof in general. �

Remark 9.3 (Functoriality). Let p be a prime number. Let (S, I, γ) → (S′, I ′, γ′)
be a morphism of divided power schemes over Z(p). Let

X
f
//

��

Y

��
S0 // S′

0

be a commutative diagram of morphisms of schemes and assume p is locally nilpotent on
X and Y . By analogy with Topologies, Lemma 3.17 we define

fcris : (X/S)cris −→ (Y/S′)cris

by the formula fcris = πY ◦ fCRIS ◦ iX where iX and πY are as in Lemma 9.2 for X and Y
and where fCRIS is as in Remark 8.5.

Remark 9.4 (Comparison with Zariski site). In Situation 7.5. The functor (9.1.1) is
continuous, cocontinuous, and commutes with products and fibred products. Hence we
obtain a morphism of topoi

uX/S : (X/S)cris −→ Sh(XZar)

relating the small crystalline topos of X/S with the small Zariski topos of X . See Sites,
Section 21.

Lemma 9.5. In Situation 7.5. Let X ′ ⊂ X and S′ ⊂ S be open subschemes such that
X ′ maps into S′. Then there is a fully faithful functor Cris(X ′/S′)→ Cris(X/S) which
gives rise to a morphism of topoi fitting into the commutative diagram

(X ′/S′)cris //

uX′/S′

��

(X/S)cris

uX/S

��
Sh(X ′

Zar) // Sh(XZar)

Moreover, this diagram is an example of localization of morphisms of topoi as in Sites,
Lemma 31.1.
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Proof. The fully faithful functor comes from thinking of objects of Cris(X ′/S′) as
divided power thickenings (U, T, δ) of X where U → X factors through X ′ ⊂ X (since
then automatically T → S will factor through S′). This functor is clearly cocontinuous
hence we obtain a morphism of topoi as indicated. Let hX′ ∈ Sh(XZar) be the repre-
sentable sheaf associated to X ′ viewed as an object of XZar. It is clear that Sh(X ′

Zar) is
the localization Sh(XZar)/hX′ . On the other hand, the category Cris(X/S)/u−1

X/ShX′

(see Sites, Lemma 30.3) is canonically identified with Cris(X ′/S′) by the functor above.
This finishes the proof. �

Remark 9.6 (Structure morphism). In Situation 7.5. Consider the closed subscheme
S0 = V (I) ⊂ S. If we assume that p is locally nilpotent on S0 (which is always the case
in practice) then we obtain a situation as in Definition 8.1 with S0 instead of X . Hence
we get a site Cris(S0/S). If f : X → S0 is the structure morphism of X over S , then we
get a commutative diagram of ringed topoi

(X/S)cris
fcris

//

uX/S

��

(S0/S)cris

uS0/S

��
Sh(XZar)

fsmall // Sh(S0,Zar)

&&
Sh(SZar)

see Remark 9.3. We think of the composition (X/S)cris → Sh(SZar) as the structure
morphism of the crystalline site. Even if p is not locally nilpotent on S0 the structure
morphism

τX/S : (X/S)cris −→ Sh(SZar)
is defined as we can take the lower route through the diagram above.

Remark 9.7 (Compatibilities). The morphisms defined above satisfy numerous com-
patibilities. For example, in the situation of Remark 9.3 we obtain a commutative diagram
of ringed topoi

(X/S)cris

��

// (Y/S′)cris

��
Sh((Sch/S)Zar) // Sh((Sch/S′)Zar)

where the vertical arrows are the structure morphisms.

10. Sheaves on the crystalline site

Notation and assumptions as in Situation 7.5. In order to discuss the small and big crys-
talline sites of X/S simultaneously in this section we let

C = CRIS(X/S) or C = Cris(X/S).

A sheaf F on C gives rise to a restriction FT for every object (U, T, δ) of C. Namely, FT
is the Zariski sheaf on the scheme T defined by the rule

FT (W ) = F(U ∩W,W, δ|W )
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forW ⊂ T is open. Moreover, if f : T → T ′ is a morphism between objects (U, T, δ) and
(U ′, T ′, δ′) of C , then there is a canonical comparison map

(10.0.1) cf : f−1FT ′ −→ FT .
Namely, if W ′ ⊂ T ′ is open then f induces a morphism

f |f−1W ′ : (U ∩ f−1(W ′), f−1W ′, δ|f−1W ′) −→ (U ′ ∩W ′,W ′, δ|W ′)
of C , hence we can use the restriction mapping (f |f−1W ′)∗ ofF to define a mapFT ′(W ′)→
FT (f−1W ′). These maps are clearly compatible with further restriction, hence define an
f -map from FT ′ to FT (see Sheaves, Section 21 and especially Sheaves, Definition 21.7).
Thus a map cf as in (10.0.1). Note that if f is an open immersion, then cf is an isomor-
phism, because in that case FT is just the restriction of FT ′ to T .
Conversely, given Zariski sheavesFT for every object (U, T, δ) of C and comparison maps
cf as above which (a) are isomorphisms for open immersions, and (b) satisfy a suitable
cocycle condition, we obtain a sheaf on C. This is proved exactly as in Topologies, Lemma
3.20.
The structure sheaf on C is the sheafOX/S defined by the rule

OX/S : (U, T, δ) 7−→ Γ(T,OT )
This is a sheaf by the definition of coverings in C. Suppose that F is a sheaf of OX/S-
modules. In this case the comparison mappings (10.0.1) define a comparison map
(10.0.2) cf : f∗FT ′ −→ FT
ofOT -modules.
Another type of example comes by starting with a sheaf G on (Sch/X)Zar or XZar (de-
pending on whether C = CRIS(X/S) or C = Cris(X/S)). Then G defined by the rule

G : (U, T, δ) 7−→ G(U)
is a sheaf on C. In particular, if we take G = Ga = OX , then we obtain

Ga : (U, T, δ) 7−→ Γ(U,OU )
There is a surjective map of sheavesOX/S → Ga defined by the canonical maps Γ(T,OT )→
Γ(U,OU ) for objects (U, T, δ). The kernel of this map is denotedJX/S , hence a short exact
sequence

0→ JX/S → OX/S → Ga → 0
Note that JX/S comes equipped with a canonical divided power structure. After all, for
each object (U, T, δ) the third component δ is a divided power structure on the kernel of
OT → OU . Hence the (big) crystalline topos is a divided power topos.

11. Crystals in modules

It turns out that a crystal is a very general gadget. However, the definition may be a bit
hard to parse, so we first give the definition in the case of modules on the crystalline sites.

Definition 11.1. In Situation 7.5. Let C = CRIS(X/S) or C = Cris(X/S). Let F
be a sheaf ofOX/S-modules on C.

(1) We sayF is locally quasi-coherent if for every object (U, T, δ) of C the restriction
FT is a quasi-coherentOT -module.

(2) We say F is quasi-coherent if it is quasi-coherent in the sense of Modules on
Sites, Definition 23.1.
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(3) We say F is a crystal in OX/S-modules if all the comparison maps (10.0.2) are
isomorphisms.

It turns out that we can relate these notions as follows.

Lemma 11.2. With notation X/S, I, γ, C,F as in Definition 11.1. The following are
equivalent

(1) F is quasi-coherent, and
(2) F is locally quasi-coherent and a crystal inOX/S-modules.

Proof. Assume (1). Let f : (U ′, T ′, δ′) → (U, T, δ) be an object of C. We have to
prove (a)FT is a quasi-coherentOT -module and (b) cf : f∗FT → FT ′ is an isomorphism.
The assumption means that we can find a covering {(Ti, Ui, δi)→ (T,U, δ)} and for each
i the restriction of F to C/(Ti, Ui, δi) has a global presentation. Since it suffices to prove
(a) and (b) Zariski locally, we may replace f : (T ′, U ′, δ′)→ (T,U, δ) by the base change
to (Ti, Ui, δi) and assume that F restricted to C/(T,U, δ) has a global presentation⊕

j∈J
OX/S |C/(U,T,δ) −→

⊕
i∈I
OX/S |C/(U,T,δ) −→ F|C/(U,T,δ) −→ 0

It is clear that this gives a presentation⊕
j∈J
OT −→

⊕
i∈I
OT −→ FT −→ 0

and hence (a) holds. Moreover, the presentation restricts to T ′ to give a similar presenta-
tion of FT ′ , whence (b) holds.

Assume (2). Let (U, T, δ) be an object of C. We have to find a covering of (U, T, δ) such that
F has a global presentation when we restrict to the localization of C at the members of the
covering. Thus we may assume that T is affine. In this case we can choose a presentation⊕

j∈J
OT −→

⊕
i∈I
OT −→ FT −→ 0

as FT is assumed to be a quasi-coherent OT -module. Then by the crystal property of F
we see that this pulls back to a presentation of FT ′ for any morphism f : (U ′, T ′, δ′) →
(U, T, δ) of C. Thus the desired presentation of F|C/(U,T,δ). �

Definition 11.3. If F satisfies the equivalent conditions of Lemma 11.2, then we say
that F is a crystal in quasi-coherent modules. We say that F is a crystal in finite locally
free modules if, in addition, F is finite locally free.

Of course, as Lemma 11.2 shows, this notation is somewhat heavy since a quasi-coherent
module is always a crystal. But it is standard terminology in the literature.

Remark 11.4. To formulate the general notion of a crystal we use the language of
stacks and strongly cartesian morphisms, see Stacks, Definition 4.1 and Categories, Defi-
nition 33.1. In Situation 7.5 let p : C → Cris(X/S) be a stack. A crystal in objects of C
on X relative to S is a cartesian section σ : Cris(X/S) → C , i.e., a functor σ such that
p ◦ σ = id and such that σ(f) is strongly cartesian for all morphisms f of Cris(X/S).
Similarly for the big crystalline site.

12. Sheaf of differentials

In this section we will stick with the (small) crystalline site as it seems more natural. We
globalize Definition 6.1 as follows.
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Definition 12.1. In Situation 7.5 let F be a sheaf of OX/S-modules on Cris(X/S).
An S-derivation D : OX/S → F is a map of sheaves such that for every object (U, T, δ)
of Cris(X/S) the map

D : Γ(T,OT ) −→ Γ(T,F)
is a divided power Γ(V,OV )-derivation whereV ⊂ S is any open such thatT → S factors
through V .

This means thatD is additive, satisfies the Leibniz rule, annihilates functions coming from
S , and satisfies D(f [n]) = f [n−1]D(f) for a local section f of the divided power ideal
JX/S . This is a special case of a very general notion which we now describe.
Please compare the following discussion with Modules on Sites, Section 33. Let C be a site,
let A → B be a map of sheaves of rings on C , let J ⊂ B be a sheaf of ideals, let δ be a
divided power structure on J , and let F be a sheaf of B-modules. Then there is a notion
of a divided power A-derivation D : B → F . This means that D is A-linear, satisfies
the Leibniz rule, and satisfies D(δn(x)) = δn−1(x)D(x) for local sections x of J . In this
situation there exists a universal divided powerA-derivation

dB/A,δ : B −→ ΩB/A,δ

Moreover, dB/A,δ is the composition
B −→ ΩB/A −→ ΩB/A,δ

where the first map is the universal derivation constructed in the proof of Modules on
Sites, Lemma 33.2 and the second arrow is the quotient by the submodule generated by the
local sections dB/A(δn(x))− δn−1(x)dB/A(x).

We translate this into a relative notion as follows. Suppose (f, f ]) : (Sh(C),O) →
(Sh(C′),O′) is a morphism of ringed topoi, J ⊂ O a sheaf of ideals, δ a divided power
structure on J , and F a sheaf of O-modules. In this situation we say D : O → F is a
divided power O′-derivation if D is a divided power f−1O′-derivation as defined above.
Moreover, we write

ΩO/O′,δ = ΩO/f−1O′,δ

which is the receptacle of the universal divided powerO′-derivation.
Applying this to the structure morphism

(X/S)Cris −→ Sh(SZar)
(see Remark 9.6) we recover the notion of Definition 12.1 above. In particular, there is a
universal divided power derivation

dX/S : OX/S → ΩX/S
Note that we omit from the notation the decoration indicating the module of differentials
is compatible with divided powers (it seems unlikely anybody would ever consider the
usual module of differentials of the structure sheaf on the crystalline site).

Lemma 12.2. Let (T,J , δ) be a divided power scheme. Let T → S be a morphism of
schemes. The quotient ΩT/S → ΩT/S,δ described above is a quasi-coherent OT -module.
For W ⊂ T affine open mapping into V ⊂ S affine open we have

Γ(W,ΩT/S,δ) = ΩΓ(W,OW )/Γ(V,OV ),δ

where the right hand side is as constructed in Section 6.

Proof. Omitted. �
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Lemma 12.3. In Situation 7.5. For (U, T, δ) in Cris(X/S) the restriction (ΩX/S)T
to T is ΩT/S,δ and the restriction dX/S |T is equal to dT/S,δ .

Proof. Omitted. �

Lemma 12.4. In Situation 7.5. For any affine object (U, T, δ) of Cris(X/S) mapping
into an affine open V ⊂ S we have

Γ((U, T, δ),ΩX/S) = ΩΓ(T,OT )/Γ(V,OV ),δ

where the right hand side is as constructed in Section 6.

Proof. Combine Lemmas 12.2 and 12.3. �

Lemma 12.5. In Situation 7.5. Let (U, T, δ) be an object of Cris(X/S). Let

(U(1), T (1), δ(1)) = (U, T, δ)× (U, T, δ)
in Cris(X/S). Let K ⊂ OT (1) be the quasi-coherent sheaf of ideals corresponding to the
closed immersion ∆ : T → T (1). Then K ⊂ JT (1) is preserved by the divided structure
on JT (1) and we have

(ΩX/S)T = K/K[2]

Proof. Note thatU = U(1) asU → X is an open immersion and as (9.1.1) commutes
with products. Hence we see that K ⊂ JT (1). Given this fact the lemma follows by
working affine locally on T and using Lemmas 12.4 and 6.5. �

It turns out that ΩX/S is not a crystal in quasi-coherentOX/S-modules. But it does satisfy
two closely related properties (compare with Lemma 11.2).

Lemma 12.6. In Situation 7.5. The sheaf of differentials ΩX/S has the following two
properties:

(1) ΩX/S is locally quasi-coherent, and
(2) for any morphism (U, T, δ)→ (U ′, T ′, δ′) of Cris(X/S) where f : T → T ′ is a

closed immersion the map cf : f∗(ΩX/S)T ′ → (ΩX/S)T is surjective.

Proof. Part (1) follows from a combination of Lemmas 12.2 and 12.3. Part (2) follows
from the fact that (ΩX/S)T = ΩT/S,δ is a quotient of ΩT/S and that f∗ΩT ′/S → ΩT/S
is surjective. �

13. Two universal thickenings

The constructions in this section will help us define a connection on a crystal in modules
on the crystalline site. In some sense the constructions here are the “sheafified, universal”
versions of the constructions in Section 3.

Remark 13.1. In Situation 7.5. Let (U, T, δ) be an object of Cris(X/S). Write ΩT/S,δ =
(ΩX/S)T , see Lemma 12.3. We explicitly describe a first order thickeningT ′ ofT . Namely,
set

OT ′ = OT ⊕ ΩT/S,δ
with algebra structure such that ΩT/S,δ is an ideal of square zero. LetJ ⊂ OT be the ideal
sheaf of the closed immersion U → T . Set J ′ = J ⊕ ΩT/S,δ . Define a divided power
structure on J ′ by setting

δ′
n(f, ω) = (δn(f), δn−1(f)ω),
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see Lemma 3.1. There are two ring maps

p0, p1 : OT → OT ′

The first is given by f 7→ (f, 0) and the second by f 7→ (f, dT/S,δf). Note that both
are compatible with the divided power structures on J and J ′ and so is the quotient map
OT ′ → OT . Thus we get an object (U, T ′, δ′) of Cris(X/S) and a commutative diagram

T

id

~~
i
��

id

  
T T ′p0oo p1 // T

of Cris(X/S) such that i is a first order thickening whose ideal sheaf is identified with
ΩT/S,δ and such that p∗

1 − p∗
0 : OT → OT ′ is identified with the universal derivation

dT/S,δ composed with the inclusion ΩT/S,δ → OT ′ .

Remark 13.2. In Situation 7.5. Let (U, T, δ) be an object of Cris(X/S). Write
ΩT/S,δ = (ΩX/S)T , see Lemma 12.3. We also write Ω2

T/S,δ for its second exterior power.
We explicitly describe a second order thickening T ′′ of T . Namely, set

OT ′′ = OT ⊕ ΩT/S,δ ⊕ ΩT/S,δ ⊕ Ω2
T/S,δ

with algebra structure defined in the following way

(f, ω1, ω2, η)·(f ′, ω′
1, ω

′
2, η

′) = (ff ′, fω′
1+f ′ω1, fω

′
2+f ′ω2, fη

′+f ′η+ω1∧ω′
2+ω′

1∧ω2).

Let J ⊂ OT be the ideal sheaf of the closed immersion U → T . Let J ′′ be the inverse
image of J under the projectionOT ′′ → OT . Define a divided power structure on J ′′ by
setting

δ′′
n(f, ω1, ω2, η) = (δn(f), δn−1(f)ω1, δn−1(f)ω2, δn−1(f)η + δn−2(f)ω1 ∧ ω2)

see Lemma 3.2. There are three ring maps q0, q1, q2 : OT → OT ′′ given by

q0(f) = (f, 0, 0, 0),
q1(f) = (f, df, 0, 0),
q2(f) = (f, df, df, 0)

where d = dT/S,δ . Note that all three are compatible with the divided power structures
on J and J ′′. There are three ring maps q01, q12, q02 : OT ′ → OT ′′ where OT ′ is as in
Remark 13.1. Namely, set

q01(f, ω) = (f, ω, 0, 0),
q12(f, ω) = (f, df, ω, dω),
q02(f, ω) = (f, ω, ω, 0)

These are also compatible with the given divided power structures. Let’s do the verifica-
tions for q12: Note that q12 is a ring homomorphism as

q12(f, ω)q12(g, η) = (f, df, ω, dω)(g, dg, η, dη)
= (fg, fdg + gdf, fη + gω, fdη + gdω + df ∧ η + dg ∧ ω)
= q12(fg, fη + gω) = q12((f, ω)(g, η))
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Note that q12 is compatible with divided powers because
δ′′
n(q12(f, ω)) = δ′′

n((f, df, ω, dω))
= (δn(f), δn−1(f)df, δn−1(f)ω, δn−1(f)dω + δn−2(f)d(f) ∧ ω)
= q12((δn(f), δn−1(f)ω)) = q12(δ′

n(f, ω))
The verifications for q01 and q02 are easier. Note that q0 = q01 ◦ p0, q1 = q01 ◦ p1,
q1 = q12 ◦p0, q2 = q12 ◦p1, q0 = q02 ◦p0, and q2 = q02 ◦p1. Thus (U, T ′′, δ′′) is an object
of Cris(X/S) and we get morphisms

T ′′
//
//
//
T ′ //

// T

of Cris(X/S) satisfying the relations described above. In applications we will use qi :
T ′′ → T and qij : T ′′ → T ′ to denote the morphisms associated to the ring maps described
above.

14. The de Rham complex

In Situation 7.5. Working on the (small) crystalline site, we define ΩiX/S = ∧iOX/S
ΩX/S

for i ≥ 0. The universal S-derivation dX/S gives rise to the de Rham complex

OX/S → Ω1
X/S → Ω2

X/S → . . .

on Cris(X/S), see Lemma 12.4 and Remark 6.7.

15. Connections

In Situation 7.5. Given anOX/S-moduleF on Cris(X/S) a connection is a map of abelian
sheaves

∇ : F −→ F ⊗OX/S
ΩX/S

such that ∇(fs) = f∇(s) + s ⊗ df for local sections s, f of F and OX/S . Given a
connection there are canonical maps ∇ : F ⊗OX/S

ΩiX/S −→ F ⊗OX/S
Ωi+1
X/S defined

by the rule ∇(s ⊗ ω) = ∇(s) ∧ ω + s ⊗ dω as in Remark 6.8. We say the connection is
integrable if∇ ◦∇ = 0. If∇ is integrable we obtain the de Rham complex

F → F ⊗OX/S
Ω1
X/S → F ⊗OX/S

Ω2
X/S → . . .

on Cris(X/S). It turns out that any crystal in OX/S-modules comes equipped with a
canonical integrable connection.

Lemma 15.1. In Situation 7.5. Let F be a crystal in OX/S-modules on Cris(X/S).
Then F comes equipped with a canonical integrable connection.

Proof. Say (U, T, δ) is an object of Cris(X/S). Let (U, T ′, δ′) be the infinitesimal
thickening of T by (ΩX/S)T = ΩT/S,δ constructed in Remark 13.1. It comes with projec-
tions p0, p1 : T ′ → T and a diagonal i : T → T ′. By assumption we get isomorphisms

p∗
0FT

c0−→ FT ′
c1←− p∗

1FT
of OT ′ -modules. Pulling c = c−1

1 ◦ c0 back to T by i we obtain the identity map of FT .
Hence if s ∈ Γ(T,FT ) then∇(s) = p∗

1s− c(p∗
0s) is a section of p∗

1FT which vanishes on
pulling back by i. Hence∇(s) is a section of

FT ⊗OT
ΩT/S,δ

because this is the kernel of p∗
1FT → FT as OT ′ = OT ⊕ ΩT/S,δ by construction. It is

easily verified that∇(fs) = f∇(s) + s⊗ d(f) using the description of d in Remark 13.1.
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The collection of maps

∇ : Γ(T,FT )→ Γ(T,FT ⊗OT
ΩT/S,δ)

so obtained is functorial in T because the construction of T ′ is functorial in T . Hence we
obtain a connection.

To show that the connection is integrable we consider the object (U, T ′′, δ′′) constructed
in Remark 13.2. Because F is a sheaf we see that

q∗
0FT q∗

01c
//

q∗
02c ##

q∗
1FT

q∗
12c{{

q∗
2FT

is a commutative diagram of OT ′′ -modules. For s ∈ Γ(T,FT ) we have c(p∗
0s) = p∗

1s −
∇(s). Write∇(s) =

∑
p∗

1si ·ωi where si is a local section of FT and ωi is a local section
of ΩT/S,δ . We think of ωi as a local section of the structure sheaf of OT ′ and hence we
write product instead of tensor product. On the one hand

q∗
12c ◦ q∗

01c(q∗
0s) = q∗

12c(q∗
1s−

∑
q∗

1si · q∗
01ωi)

= q∗
2s−

∑
q∗

2si · q∗
12ωi −

∑
q∗

2si · q∗
01ωi +

∑
q∗

12∇(si) · q∗
01ωi

and on the other hand

q∗
02c(q∗

0s) = q∗
2s−

∑
q∗

2si · q∗
02ωi.

From the formulae of Remark 13.2 we see that q∗
01ωi + q∗

12ωi − q∗
02ωi = dωi. Hence the

difference of the two expressions above is∑
q∗

2si · dωi −
∑

q∗
12∇(si) · q∗

01ωi

Note that q∗
12ω · q∗

01ω
′ = ω′ ∧ ω = −ω ∧ ω′ by the definition of the multiplication on

OT ′′ . Thus the expression above is∇2(s) viewed as a section of the subsheafFT ⊗Ω2
T/S,δ

of q∗
2F . Hence we get the integrability condition. �

16. Cosimplicial algebra

This section should be moved somewhere else. A cosimplicial ring is a cosimplicial object
in the category of rings. Given a ring R, a cosimplicial R-algebra is a cosimplicial object
in the category ofR-algebras. A cosimplicial ideal in a cosimplicial ringA∗ is given by an
ideal In ⊂ An for all n such that A(f)(In) ⊂ Im for all f : [n]→ [m] in ∆.

LetA∗ be a cosimplicial ring. Let C be the category of pairs (A,M) whereA is a ring andM
is a module over A. A morphism (A,M)→ (A′,M ′) consists of a ring map A→ A′ and
anA-module mapM →M ′ whereM ′ is viewed as anA-module viaA→ A′ and theA′-
module structure onM ′. Having said this we can define a cosimplicial moduleM∗ overA∗
as a cosimplicial object (A∗,M∗) of C whose first entry is equal to A∗. A homomorphism
ϕ∗ : M∗ → N∗ of cosimplicial modules over A∗ is a morphism (A∗,M∗)→ (A∗, N∗) of
cosimplicial objects in C whose first component is 1A∗ .

A homotopy between homomorphisms ϕ∗, ψ∗ : M∗ → N∗ of cosimplicial modules over
A∗ is a homotopy between the associated maps (A∗,M∗)→ (A∗, N∗) whose first compo-
nent is the trivial homotopy (dual to Simplicial, Example 26.3). We spell out what this
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means. Such a homotopy is a homotopy
h : M∗ −→ Hom(∆[1], N∗)

between ϕ∗ and ψ∗ as homomorphisms of cosimplicial abelian groups such that for each
n the map hn : Mn →

∏
α∈∆[1]n Nn is An-linear. The following lemma is a version of

Simplicial, Lemma 28.4 for cosimplicial modules.

Lemma 16.1. Let A∗ be a cosimplicial ring. Let ϕ∗, ψ∗ : K∗ → M∗ be homomor-
phisms of cosimplicial A∗-modules.

(1) If ϕ∗ and ψ∗ are homotopic, then
ϕ∗ ⊗ 1, ψ∗ ⊗ 1 : K∗ ⊗A∗ L∗ −→M∗ ⊗A∗ L∗

are homotopic for any cosimplicial A∗-module L∗.
(2) If ϕ∗ and ψ∗ are homotopic, then

∧i(ϕ∗),∧i(ψ∗) : ∧i(K∗) −→ ∧i(M∗)
are homotopic.

(3) If ϕ∗ and ψ∗ are homotopic, and A∗ → B∗ is a homomorphism of cosimplicial
rings, then

ϕ∗ ⊗ 1, ψ∗ ⊗ 1 : K∗ ⊗A∗ B∗ −→M∗ ⊗A∗ B∗

are homotopic as homomorphisms of cosimplicial B∗-modules.
(4) If I∗ ⊂ A∗ is a cosimplicial ideal, then the induced maps

ϕ∧
∗ , ψ

∧
∗ : K∧

∗ −→M∧
∗

between completions are homotopic.
(5) Add more here as needed, for example symmetric powers.

Proof. Let h : M∗ −→ Hom(∆[1], N∗) be the given homotopy. In degree nwe have

hn = (hn,α) : Kn −→
∏

α∈∆[1]n
Kn

see Simplicial, Section 28. In order for a collection of hn,α to form a homotopy, it is
necessary and sufficient if for every f : [n]→ [m] we have

hm,α ◦M∗(f) = N∗(f) ◦ hn,α◦f

see Simplicial, Equation (28.1.1). We also should have that ψn = hn,0:[n]→[1] and ϕn =
hn,1:[n]→[1].

In each of the cases of the lemma we can produce the corresponding maps. Case (1). We
can use the homotopy h⊗ 1 defined in degree n by setting

(h⊗ 1)n,α = hn,α ⊗ 1Ln : Kn ⊗An Ln −→Mn ⊗An Ln.
Case (2). We can use the homotopy ∧ih defined in degree n by setting

∧i(h)n,α = ∧i(hn,α) : ∧An(Kn) −→ ∧iAn(Mn).
Case (3). We can use the homotopy h⊗ 1 defined in degree n by setting

(h⊗ 1)n,α = hn,α ⊗ 1 : Kn ⊗An Bn −→Mn ⊗An Bn.
Case (4). We can use the homotopy h∧ defined in degree n by setting

(h∧)n,α = h∧
n,α : K∧

n −→M∧
n .

This works because each hn,α is An-linear. �
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17. Crystals in quasi-coherent modules

In Situation 5.1. Set X = Spec(C) and S = Spec(A). We are going to classify crystals in
quasi-coherent modules on Cris(X/S). Before we do so we fix some notation.
Choose a polynomial ring P = A[xi] over A and a surjection P → C of A-algebras with
kernel J = Ker(P → C). Set
(17.0.1) D = limeDP,γ(J)/peDP,γ(J)
for the p-adically completed divided power envelope. This ring comes with a divided
power ideal J̄ and divided power structure γ̄, see Lemma 5.5. Set De = D/peD and
denote J̄e the image of J̄ in De. We will use the short hand
(17.0.2) ΩD = lime ΩDe/A,γ̄ = lime ΩD/A,γ̄/peΩD/A,γ̄
for the p-adic completion of the module of divided power differentials, see Lemma 6.10. It
is also the p-adic completion of ΩDP,γ(J)/A,γ̄ which is free on dxi, see Lemma 6.6. Hence
any element of ΩD can be written uniquely as a sum

∑
fidxi with for all e only finitely

many fi not in peD. Moreover, the maps dDe/A,γ̄ : De → ΩDe/A,γ̄ fit together to define
a divided power A-derivation
(17.0.3) d : D −→ ΩD
on p-adic completions.
We will also need the “products Spec(D(n)) of Spec(D)”, see Proposition 21.1 and its
proof for an explanation. Formally these are defined as follows. For n ≥ 0 let J(n) =
Ker(P ⊗A . . .⊗A P → C) where the tensor product has n+ 1 factors. We set
(17.0.4) D(n) = limeDP⊗A...⊗AP,γ(J(n))/peDP⊗A...⊗AP,γ(J(n))

equal to the p-adic completion of the divided power envelope. We denote J̄(n) its divided
power ideal and γ̄(n) its divided powers. We also introduce D(n)e = D(n)/peD(n) as
well as the p-adically completed module of differentials
(17.0.5) ΩD(n) = lime ΩD(n)e/A,γ̄ = lime ΩD(n)/A,γ̄/p

eΩD(n)/A,γ̄

and derivation
(17.0.6) d : D(n) −→ ΩD(n)

Of course we have D = D(0). Note that the rings D(0), D(1), D(2), . . . form a cosim-
plicial object in the category of divided power rings.

Lemma 17.1. Let D and D(n) be as in (17.0.1) and (17.0.4). The coprojection P →
P ⊗A . . .⊗A P , f 7→ f ⊗ 1⊗ . . .⊗ 1 induces an isomorphism
(17.1.1) D(n) = limeD〈ξi(j)〉/peD〈ξi(j)〉
of algebras over D with

ξi(j) = xi ⊗ 1⊗ . . .⊗ 1− 1⊗ . . .⊗ 1⊗ xi ⊗ 1⊗ . . .⊗ 1
for j = 1, . . . , n where the second xi is placed in the j + 1st slot; recall that D(n) is
constructed starting with the n+ 1-fold tensor product of P over A.

Proof. We have
P ⊗A . . .⊗A P = P [ξi(j)]

and J(n) is generated by J and the elements ξi(j). Hence the lemma follows from Lemma
2.5. �
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Lemma 17.2. Let D and D(n) be as in (17.0.1) and (17.0.4). Then (D, J̄, γ̄) and
(D(n), J̄(n), γ̄(n)) are objects of Cris∧(C/A), see Remark 5.4, and

D(n) =
∐

j=0,...,n
D

in Cris∧(C/A).

Proof. The first assertion is clear. For the second, if (B → C, δ) is an object of
Cris∧(C/A), then we have

MorCris∧(C/A)(D,B) = HomA((P, J), (B,Ker(B → C)))

and similarly for D(n) replacing (P, J) by (P ⊗A . . . ⊗A P, J(n)). The property on
coproducts follows as P ⊗A . . .⊗A P is a coproduct. �

In the lemma below we will consider pairs (M,∇) satisfying the following conditions
(1) M is a p-adically complete D-module,
(2) ∇ : M →M ⊗∧

D ΩD is a connection, i.e.,∇(fm) = m⊗ df + f∇(m),
(3) ∇ is integrable (see Remark 6.8), and
(4) ∇ is topologically quasi-nilpotent: If we write ∇(m) =

∑
θi(m)dxi for some

operators θi : M →M , then for any m ∈M there are only finitely many pairs
(i, k) such that θki (m) 6∈ pM .

The operators θi are sometimes denoted∇∂/∂xi in the literature. In the following lemma
we construct a functor from crystals in quasi-coherent modules on Cris(X/S) to the cat-
egory of such pairs. We will show this functor is an equivalence in Proposition 17.4.

Lemma 17.3. In the situation above there is a functor

crystals in quasi-coherent
OX/S-modules on Cris(X/S) −→

pairs (M,∇) satisfying
(1), (2), (3), and (4)

Proof. Let F be a crystal in quasi-coherent modules onX/S. Set Te = Spec(De) so
that (X,Te, γ̄) is an object of Cris(X/S) for e� 0. We have morphisms

(X,Te, γ̄)→ (X,Te+1, γ̄)→ . . .

which are closed immersions. We set

M = lime Γ((X,Te, γ̄),F) = lime Γ(Te,FTe) = limeMe

Note that since F is locally quasi-coherent we have FTe = M̃e. Since F is a crystal we
have Me = Me+1/p

eMe+1. Hence we see that Me = M/peM and that M is p-adically
complete, see Algebra, Lemma 98.2.

By Lemma 15.1 we know that F comes endowed with a canonical integrable connection
∇ : F → F ⊗ ΩX/S . If we evaluate this connection on the objects Te constructed above
we obtain a canonical integrable connection

∇ : M −→M ⊗∧
D ΩD

To see that this is topologically nilpotent we work out what this means.

Now we can do the same procedure for the ringsD(n). This produces a p-adically complete
D(n)-module M(n). Again using the crystal property of F we obtain isomorphisms

M ⊗∧
D,p0

D(1)→M(1)←M ⊗∧
D,p1

D(1)
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compare with the proof of Lemma 15.1. Denote c the composition from left to right. Pick
m ∈M . Write ξi = xi ⊗ 1− 1⊗ xi. Using (17.1.1) we can write uniquely

c(m⊗ 1) =
∑

K
θK(m)⊗

∏
ξ

[ki]
i

for some θK(m) ∈ M where the sum is over multi-indices K = (ki) with ki ≥ 0 and∑
ki <∞. Set θi = θK where K has a 1 in the ith spot and zeros elsewhere. We have

∇(m) =
∑

θi(m)dxi.

as can be seen by comparing with the definition of ∇. Namely, the defining equation is
p∗

1m = ∇(m)−c(p∗
0m) in Lemma 15.1 but the sign works out because in the Stacks project

we consistently use df = p1(f) − p0(f) modulo the ideal of the diagonal squared, and
hence ξi = xi ⊗ 1− 1⊗ xi maps to −dxi modulo the ideal of the diagonal squared.

Denote qi : D → D(2) and qij : D(1) → D(2) the coprojections corresponding to the
indices i, j. As in the last paragraph of the proof of Lemma 15.1 we see that

q∗
02c = q∗

12c ◦ q∗
01c.

This means that∑
K′′

θK′′(m)⊗
∏

ζ ′′
i

[k′′
i ] =

∑
K′,K

θK′(θK(m))⊗
∏

ζ ′
i
[k′
i]
∏

ζ
[ki]
i

in M ⊗∧
D,q2

D(2) where

ζi = xi ⊗ 1⊗ 1− 1⊗ xi ⊗ 1,
ζ ′
i = 1⊗ xi ⊗ 1− 1⊗ 1⊗ xi,

ζ ′′
i = xi ⊗ 1⊗ 1− 1⊗ 1⊗ xi.

In particular ζ ′′
i = ζi + ζ ′

i and we have that D(2) is the p-adic completion of the divided
power polynomial ring in ζi, ζ ′

i over q2(D), see Lemma 17.1. Comparing coefficients in the
expression above it follows immediately that θi ◦θj = θj ◦θi (this provides an alternative
proof of the integrability of∇) and that

θK(m) = (
∏

θkii )(m).

In particular, as the sum expressing c(m⊗1) above has to converge p-adically we conclude
that for each i and each m ∈M only a finite number of θki (m) are allowed to be nonzero
modulo p. �

Proposition 17.4. The functor

crystals in quasi-coherent
OX/S-modules on Cris(X/S) −→

pairs (M,∇) satisfying
(1), (2), (3), and (4)

of Lemma 17.3 is an equivalence of categories.

Proof. Let (M,∇) be given. We are going to construct a crystal in quasi-coherent
modulesF . Write∇(m) =

∑
θi(m)dxi. Then θi ◦ θj = θj ◦ θi and we can set θK(m) =

(
∏
θkii )(m) for any multi-index K = (ki) with ki ≥ 0 and

∑
ki <∞.

Let (U, T, δ) be any object of Cris(X/S) with T affine. Say T = Spec(B) and the ideal of
U → T is JB ⊂ B. By Lemma 5.6 there exists an integer e and a morphism

f : (U, T, δ) −→ (X,Te, γ̄)
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where Te = Spec(De) as in the proof of Lemma 17.3. Choose such an e and f ; denote
f : D → B also the corresponding divided power A-algebra map. We will set FT equal
to the quasi-coherent sheaf ofOT -modules associated to the B-module

M ⊗D,f B.

However, we have to show that this is independent of the choice of f . Suppose that g :
D → B is a second such morphism. Since f and g are morphisms in Cris(X/S) we see
that the image of f − g : D → B is contained in the divided power ideal JB . Write ξi =
f(xi)− g(xi) ∈ JB . By analogy with the proof of Lemma 17.3 we define an isomorphism

cf,g : M ⊗D,f B −→M ⊗D,g B

by the formula
m⊗ 1 7−→

∑
K
θK(m)⊗

∏
ξ

[ki]
i

which makes sense by our remarks above and the fact that∇ is topologically quasi-nilpotent
(so the sum is finite!). A computation shows that

cg,h ◦ cf,g = cf,h

if given a third morphism h : (U, T, δ) −→ (X,Te, γ̄). It is also true that cf,f = 1.
Hence these maps are all isomorphisms and we see that the module FT is independent of
the choice of f .

If a : (U ′, T ′, δ′)→ (U, T, δ) is a morphism of affine objects of Cris(X/S), then choosing
f ′ = f ◦ a it is clear that there exists a canonical isomorphism a∗FT → FT ′ . We omit
the verification that this map is independent of the choice of f . Using these maps as the
restriction maps it is clear that we obtain a crystal in quasi-coherent modules on the full
subcategory of Cris(X/S) consisting of affine objects. We omit the proof that this extends
to a crystal on all of Cris(X/S). We also omit the proof that this procedure is a functor
and that it is quasi-inverse to the functor constructed in Lemma 17.3. �

Lemma 17.5. In Situation 5.1. Let A→ P ′ → C be ring maps with A→ P ′ smooth
and P ′ → C surjective with kernel J ′. Let D′ be the p-adic completion of DP ′,γ(J ′).
There are homomorphisms of divided power A-algebras

a : D −→ D′, b : D′ −→ D

compatible with the maps D → C and D′ → C such that a ◦ b = idD′ . These maps
induce an equivalence of categories of pairs (M,∇) satisfying (1), (2), (3), and (4) over D
and pairs (M ′,∇′) satisfying (1), (2), (3), and (4)4 over D′. In particular, the equivalence
of categories of Proposition 17.4 also holds for the corresponding functor towards pairs
over D′.

Proof. First, suppose that P ′ = A[y1, . . . , ym] is a polynomial algebra over A. In
this case, we can find ring maps P → P ′ and P ′ → P compatible with the maps to C
which induce maps a : D → D′ and b : D′ → D as in the lemma. Using completed
base change along a and b we obtain functors between the categories of modules with
connection satisfying properties (1), (2), (3), and (4) simply because these these categories
are equivalent to the category of quasi-coherent crystals by Proposition 17.4 (and this
equivalence is compatible with the base change operation as shown in the proof of the
proposition).

4This condition is tricky to formulate for (M ′,∇′) over D′. See proof.



4894 60. CRYSTALLINE COHOMOLOGY

Proof for general smooth P ′. By the first paragraph of the proof we may assume P =
A[y1, . . . , ym] which gives us a surjection P → P ′ compatible with the map to C. Hence
we obtain a surjective map a : D → D′ by functoriality of divided power envelopes
and completion. Pick e large enough so that De is a divided power thickening of C over
A. Then De → C is a surjection whose kernel is locally nilpotent, see Divided Power
Algebra, Lemma 2.6. SettingD′

e = D′/peD′ we see that the kernel ofDe → D′
e is locally

nilpotent. Hence by Algebra, Lemma 138.17 we can find a lift βe : P ′ → De of the map
P ′ → D′

e. Note thatDe+i+1 → De+i×D′
e+i

D′
e+i+1 is surjective with square zero kernel

for any i ≥ 0 because pe+iD → pe+iD′ is surjective. Applying the usual lifting property
(Algebra, Proposition 138.13) successively to the diagrams

P ′ // De+i ×D′
e+i

D′
e+i+1

A

OO

// De+i+1

OO

we see that we can find an A-algebra map β : P ′ → D whose composition with a is the
given map P ′ → D′. By the universal property of the divided power envelope we obtain
a map DP ′,γ(J ′) → D. As D is p-adically complete we obtain b : D′ → D such that
a ◦ b = idD′ .

Consider the base change functors

F : (M,∇) 7−→ (M ⊗∧
D,a D

′,∇′) and G : (M ′,∇′) 7−→ (M ′ ⊗∧
D′,b D,∇)

on modules with connections satisfying (1), (2), and (3). See Remark 6.9. Since a◦b = idD′

we see that F ◦G is the identity functor. Let us say that (M ′,∇′) has property (4) if this
is true forG(M ′,∇′). A formal argument now shows that to finish the proof it suffices to
show that G(F (M,∇)) is isomorphic to (M,∇) in the case that (M,∇) satisfies all four
conditions (1), (2), (3), and (4). For this we use the functorial isomorphism

cidD,b◦a : M ⊗D,idD D −→M ⊗D,b◦a D
of the proof of Proposition 17.4 (which requires the topological quasi-nilpotency of ∇
which we have assumed). It remains to prove that this map is horizontal, i.e., compatible
with connections, which we omit.

The last statement of the proof now follows. �

Remark 17.6. The equivalence of Proposition 17.4 holds if we start with a surjection
P → C where P/A satisfies the strong lifting property of Algebra, Lemma 138.17. To
prove this we can argue as in the proof of Lemma 17.5. (Details will be added here if we
ever need this.) Presumably there is also a direct proof of this result, but the advantage
of using polynomial rings is that the rings D(n) are p-adic completions of divided power
polynomial rings and the algebra is simplified.

18. General remarks on cohomology

In this section we do a bit of work to translate the cohomology of modules on the cristalline
site of an affine scheme into an algebraic question.

Lemma 18.1. In Situation 7.5. Let F be a locally quasi-coherent OX/S-module on
Cris(X/S). Then we have

Hp((U, T, δ),F) = 0
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for all p > 0 and all (U, T, δ) with T or U affine.

Proof. As U → T is a thickening we see that U is affine if and only if T is affine, see
Limits, Lemma 11.1. Having said this, let us apply Cohomology on Sites, Lemma 10.9 to the
collection B of affine objects (U, T, δ) and the collection Cov of affine open coverings U =
{(Ui, Ti, δi)→ (U, T, δ)}. The Čech complex Č∗(U ,F) for such a covering is simply the
Čech complex of the quasi-coherent OT -module FT (here we are using the assumption
thatF is locally quasi-coherent) with respect to the affine open covering {Ti → T} of the
affine scheme T . Hence the Čech cohomology is zero by Cohomology of Schemes, Lemma
2.6 and 2.2. Thus the hypothesis of Cohomology on Sites, Lemma 10.9 are satisfied and
we win. �

Lemma 18.2. In Situation 7.5. Assume moreover X and S are affine schemes. Con-
sider the full subcategory C ⊂ Cris(X/S) consisting of divided power thickenings (X,T, δ)
endowed with the chaotic topology (see Sites, Example 6.6). For any locally quasi-coherent
OX/S-module F we have

RΓ(C,F|C) = RΓ(Cris(X/S),F)

Proof. Denote AffineCris(X/S) the fully subcategory of Cris(X/S) consisting of
those objects (U, T, δ) with U and T affine. We turn this into a site by saying a family of
morphisms {(Ui, Ti, δi) → (U, T, δ)}i∈I of AffineCris(X/S) is a covering if and only if
it is a covering of Cris(X/S). With this definition the inclusion functor

AffineCris(X/S) −→ Cris(X/S)

is a special cocontinuous functor as defined in Sites, Definition 29.2. The proof of this is
exactly the same as the proof of Topologies, Lemma 3.10. Thus we see that the topos of
sheaves on Cris(X/S) is the same as the topos of sheaves on AffineCris(X/S) via restric-
tion by the displayed inclusion functor. Therefore we have to prove the corresponding
statement for the inclusion C ⊂ AffineCris(X/S).

We will use without further mention that C and AffineCris(X/S) have products and fibre
products (details omitted, see Lemma 8.2). The inclusion functoru : C → AffineCris(X/S)
is fully faithful, continuous, and commutes with products and fibre products. We claim it
defines a morphism of ringed sites

f : (AffineCris(X/S),OX/S) −→ (Sh(C),OX/S |C)

To see this we will use Sites, Lemma 14.6. Note that C has fibre products and u commutes
with them so the categories Iu(U,T,δ) are disjoint unions of directed categories (by Sites,
Lemma 5.1 and Categories, Lemma 19.8). Hence it suffices to show that Iu(U,T,δ) is con-
nected. Nonempty follows from Lemma 5.6: since U and T are affine that lemma says
there is at least one object (X,T ′, δ′) of C and a morphism (U, T, δ) → (X,T ′, δ′) of di-
vided power thickenings. Connectedness follows from the fact that C has products and
that u commutes with them (compare with the proof of Sites, Lemma 5.2).

Note that f∗F = F|C . Hence the lemma follows if Rpf∗F = 0 for p > 0, see Cohomol-
ogy on Sites, Lemma 14.6. By Cohomology on Sites, Lemma 7.4 it suffices to show that
Hp(AffineCris(X/S)/(X,T, δ),F) = 0 for all (X,T, δ). This follows from Lemma 18.1
because the topos of the site AffineCris(X/S)/(X,T, δ) is equivalent to the topos of the
site Cris(X/S)/(X,T, δ) used in the lemma. �
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Lemma 18.3. In Situation 5.1. Set C = (Cris(C/A))opp and C∧ = (Cris∧(C/A))opp
endowed with the chaotic topology, see Remark 5.4 for notation. There is a morphism of
topoi

g : Sh(C) −→ Sh(C∧)
such that if F is a sheaf of abelian groups on C , then

Rpg∗F(B → C, δ) =

 lime F(Be → C, δ) if p = 0
R1 lime F(Be → C, δ) if p = 1

0 else
where Be = B/peB for e� 0.

Proof. Any functor between categories defines a morphism between chaotic topoi in
the same direction, for example because such a functor can be considered as a cocontinuous
functor between sites, see Sites, Section 21. Proof of the description of g∗F is omitted.
Note that in the statement we take (Be → C, δ) is an object of Cris(C/A) only for e large
enough. Let I be an injective abelian sheaf on C. Then the transition maps

I(Be → C, δ)← I(Be+1 → C, δ)
are surjective as the morphisms

(Be → C, δ) −→ (Be+1 → C, δ)
are monomorphisms in the category C. Hence for an injective abelian sheaf both sides of
the displayed formula of the lemma agree. Taking an injective resolution of F one easily
obtains the result (sheaves are presheaves, so exactness is measured on the level of groups
of sections over objects). �

Lemma 18.4. Let C be a category endowed with the chaotic topology. Let X be an
object of C such that every object of C has a morphism towards X . Assume that C has
products of pairs. Then for every abelian sheaf F on C the total cohomology RΓ(C,F) is
represented by the complex

F(X)→ F(X ×X)→ F(X ×X ×X)→ . . .

associated to the cosimplicial abelian group [n] 7→ F(Xn).

Proof. Note that Hq(Xp,F) = 0 for all q > 0 as any presheaf is a sheaf on C. The
assumption on X is that hX → ∗ is surjective. Using that Hq(X,F) = Hq(hX ,F) and
Hq(C,F) = Hq(∗,F) we see that our statement is a special case of Cohomology on Sites,
Lemma 13.2. �

19. Cosimplicial preparations

In this section we compare crystalline cohomology with de Rham cohomology. We follow
[?].

Example 19.1. Suppose that A∗ is any cosimplicial ring. Consider the cosimplicial
module M∗ defined by the rule

Mn =
⊕

i=0,...,n
Anei

For a map f : [n] → [m] define M∗(f) : Mn → Mm to be the unique A∗(f)-linear
map which maps ei to ef(i). We claim the identity on M∗ is homotopic to 0. Namely, a
homotopy is given by a map of cosimplicial modules

h : M∗ −→ Hom(∆[1],M∗)
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see Section 16. For j ∈ {0, . . . , n+1}we letαnj : [n]→ [1] be the map defined byαnj (i) =
0 ⇔ i < j. Then ∆[1]n = {αn0 , . . . , αnn+1} and correspondingly Hom(∆[1],M∗)n =∏
j=0,...,n+1 Mn, see Simplicial, Sections 26 and 28. Instead of using this product repre-

sentation, we think of an element in Hom(∆[1],M∗)n as a function ∆[1]n →Mn. Using
this notation, we define h in degree n by the rule

hn(ei)(αnj ) =
{
ei if i < j
0 else

We first check h is a morphism of cosimplicial modules. Namely, for f : [n] → [m] we
will show that
(19.1.1) hm ◦M∗(f) = Hom(∆[1],M∗)(f) ◦ hn
The left hand side of (19.1.1) evaluated at ei and then in turn evaluated at αmj is

hm(ef(i))(αmj ) =
{
ef(i) if f(i) < j

0 else
Note that αmj ◦ f = αnj′ where 0 ≤ j′ ≤ n + 1 is the unique index such that f(i) < j if
and only if i < j′. Thus the right hand side of (19.1.1) evaluated at ei and then in turn
evaluated at αmj is

M∗(f)(hn(ei)(αmj ◦ f) = M∗(f)(hn(ei)(αnj′)) =
{
ef(i) if i < j′

0 else
It follows from our description of j′ that the two answers are equal. Hence h is a map of
cosimplicial modules. Let 0 : ∆[0]→ ∆[1] and 1 : ∆[0]→ ∆[1] be the obvious maps, and
denote ev0, ev1 : Hom(∆[1],M∗)→M∗ the corresponding evaluation maps. The reader
verifies readily that the compositions

ev0 ◦ h, ev1 ◦ h : M∗ −→M∗

are 0 and 1 respectively, whence h is the desired homotopy between 0 and 1.

Lemma 19.2. With notation as in (17.0.5) the complex
ΩD(0) → ΩD(1) → ΩD(2) → . . .

is homotopic to zero as a D(∗)-cosimplicial module.

Proof. We are going to use the principle of Simplicial, Lemma 28.4 and more specif-
ically Lemma 16.1 which tells us that homotopic maps between (co)simplicial objects are
transformed by any functor into homotopic maps. The complex of the lemma is equal to
the p-adic completion of the base change of the cosimplicial module

M∗ =
(
ΩP/A → ΩP⊗AP/A → ΩP⊗AP⊗AP/A → . . .

)
via the cosimplicial ring map P ⊗A . . . ⊗A P → D(n). This follows from Lemma 6.6,
see comments following (17.0.2). Hence it suffices to show that the cosimplicial module
M∗ is homotopic to zero (uses base change and p-adic completion). We can even assume
A = Z and P = Z[{xi}i∈I ] as we can use base change with Z → A. In this case P⊗n+1

is the polynomial algebra on the elements
xi(e) = 1⊗ . . .⊗ xi ⊗ . . .⊗ 1

with xi in the eth slot. The modules of the complex are free on the generators dxi(e).
Note that if f : [n]→ [m] is a map then we see that

M∗(f)(dxi(e)) = dxi(f(e))
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Hence we see that M∗ is a direct sum over I of copies of the module studied in Example
19.1 and we win. �

Lemma 19.3. With notation as in (17.0.4) and (17.0.5), given any cosimplicial module
M∗ over D(∗) and i > 0 the cosimplicial module

M0 ⊗∧
D(0) ΩiD(0) →M1 ⊗∧

D(1) ΩiD(1) →M2 ⊗∧
D(2) ΩiD(2) → . . .

is homotopic to zero, where ΩiD(n) is the p-adic completion of the ith exterior power of
ΩD(n).

Proof. By Lemma 19.2 the endomorphisms 0 and 1 of ΩD(∗) are homotopic. If we
apply the functor ∧i we see that the same is true for the cosimplicial module ∧iΩD(∗),
see Lemma 16.1. Another application of the same lemma shows the p-adic completion
ΩiD(∗) is homotopy equivalent to zero. Tensoring with M∗ we see that M∗ ⊗D(∗) ΩiD(∗)
is homotopic to zero, see Lemma 16.1 again. A final application of the p-adic completion
functor finishes the proof. �

20. Divided power Poincaré lemma

Just the simplest possible version.

Lemma 20.1. Let A be a ring. Let P = A〈xi〉 be a divided power polynomial ring
over A. For any A-module M the complex

0→M →M ⊗A P →M ⊗A Ω1
P/A,δ →M ⊗A Ω2

P/A,δ → . . .

is exact. Let D be the p-adic completion of P . Let ΩiD be the p-adic completion of the ith
exterior power of ΩD/A,δ . For any p-adically complete A-module M the complex

0→M →M ⊗∧
A D →M ⊗∧

A Ω1
D →M ⊗∧

A Ω2
D → . . .

is exact.

Proof. It suffices to show that the complex

E : (0→ A→ P → Ω1
P/A,δ → Ω2

P/A,δ → . . .)

is homotopy equivalent to zero as a complex of A-modules. For every multi-index K =
(ki) we can consider the subcomplex E(K) which in degree j consists of⊕

I={i1,...,ij}⊂Supp(K)
A
∏

i6∈I
x

[ki]
i

∏
i∈I

x
[ki−1]
i dxi1 ∧ . . . ∧ dxij

Since E =
⊕
E(K) we see that it suffices to prove each of the complexes E(K) is homo-

topic to zero. If K = 0, then E(K) : (A→ A) is homotopic to zero. If K has nonempty
(finite) support S , then the complex E(K) is isomorphic to the complex

0→ A→
⊕

s∈S
A→ ∧2(

⊕
s∈S

A)→ . . .→ ∧#S(
⊕

s∈S
A)→ 0

which is homotopic to zero, for example by More on Algebra, Lemma 28.5. �

An alternative (more direct) approach to the following lemma is explained in Example
25.2.
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Lemma 20.2. Let A be a ring. Let (B, I, δ) be a divided power ring. Let P = B〈xi〉
be a divided power polynomial ring over B with divided power ideal J = IP + B〈xi〉+
as usual. Let M be a B-module endowed with an integrable connection∇ : M →M ⊗B
Ω1
B/A,δ . Then the map of de Rham complexes

M ⊗B Ω∗
B/A,δ −→M ⊗P Ω∗

P/A,δ

is a quasi-isomorphism. Let D, resp. D′ be the p-adic completion of B, resp. P and let
ΩiD , resp. ΩiD′ be the p-adic completion of ΩiB/A,δ , resp. ΩiP/A,δ . Let M be a p-adically
complete D-module endowed with an integral connection ∇ : M → M ⊗∧

D Ω1
D. Then

the map of de Rham complexes
M ⊗∧

D Ω∗
D −→M ⊗∧

D Ω∗
D′

is a quasi-isomorphism.

Proof. Consider the decreasing filtration F ∗ on Ω∗
B/A,δ given by the subcomplexes

F i(Ω∗
B/A,δ) = σ≥iΩ∗

B/A,δ . See Homology, Section 15. This induces a decreasing filtration
F ∗ on Ω∗

P/A,δ by setting

F i(Ω∗
P/A,δ) = F i(Ω∗

B/A,δ) ∧ Ω∗
P/A,δ.

We have a split short exact sequence

0→ Ω1
B/A,δ ⊗B P → Ω1

P/A,δ → Ω1
P/B,δ → 0

and the last module is free on dxi. It follows from this that F i(Ω∗
P/A,δ) → Ω∗

P/A,δ is a
termwise split injection and that

griF (Ω∗
P/A,δ) = ΩiB/A,δ ⊗B Ω∗

P/B,δ

as complexes. Thus we can define a filtration F ∗ on M ⊗B Ω∗
B/A,δ by setting

F i(M ⊗B Ω∗
P/A,δ) = M ⊗B F i(Ω∗

P/A,δ)
and we have

griF (M ⊗B Ω∗
P/A,δ) = M ⊗B ΩiB/A,δ ⊗B Ω∗

P/B,δ

as complexes. By Lemma 20.1 each of these complexes is quasi-isomorphic toM⊗BΩiB/A,δ
placed in degree 0. Hence we see that the first displayed map of the lemma is a morphism
of filtered complexes which induces a quasi-isomorphism on graded pieces. This implies
that it is a quasi-isomorphism, for example by the spectral sequence associated to a filtered
complex, see Homology, Section 24.
The proof of the second quasi-isomorphism is exactly the same. �

21. Cohomology in the affine case

Let’s go back to the situation studied in Section 17. We start with (A, I, γ) and A/I → C
and set X = Spec(C) and S = Spec(A). Then we choose a polynomial ring P over A
and a surjection P → C with kernel J . We obtain D and D(n) see (17.0.1) and (17.0.4).
Set T (n)e = Spec(D(n)/peD(n)) so that (X,T (n)e, δ(n)) is an object of Cris(X/S). Let
F be a sheaf ofOX/S-modules and set

M(n) = lime Γ((X,T (n)e, δ(n)),F)
forn = 0, 1, 2, 3, . . .. This forms a cosimplicial module over the cosimplicial ringD(0), D(1), D(2), . . ..

Proposition 21.1. With notations as above assume that
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(1) F is locally quasi-coherent, and
(2) for any morphism (U, T, δ)→ (U ′, T ′, δ′) of Cris(X/S) where f : T → T ′ is a

closed immersion the map cf : f∗FT ′ → FT is surjective.
Then the complex

M(0)→M(1)→M(2)→ . . .

computes RΓ(Cris(X/S),F).

Proof. Using assumption (1) and Lemma 18.2 we see that RΓ(Cris(X/S),F) is iso-
morphic to RΓ(C,F). Note that the categories C used in Lemmas 18.2 and 18.3 agree. Let
f : T → T ′ be a closed immersion as in (2). Surjectivity of cf : f∗FT ′ → FT is equivalent
to surjectivity of FT ′ → f∗FT . Hence, if F satisfies (1) and (2), then we obtain a short
exact sequence

0→ K → FT ′ → f∗FT → 0
of quasi-coherent OT ′ -modules on T ′, see Schemes, Section 24 and in particular Lemma
24.1. Thus, if T ′ is affine, then we conclude that the restriction map F(U ′, T ′, δ′) →
F(U, T, δ) is surjective by the vanishing ofH1(T ′,K), see Cohomology of Schemes, Lemma
2.2. Hence the transition maps of the inverse systems in Lemma 18.3 are surjective. We
conclude that Rpg∗(F|C) = 0 for all p ≥ 1 where g is as in Lemma 18.3. The object D of
the category C∧ satisfies the assumption of Lemma 18.4 by Lemma 5.7 with

D × . . .×D = D(n)
in C becauseD(n) is the n+ 1-fold coproduct ofD in Cris∧(C/A), see Lemma 17.2. Thus
we win. �

Lemma 21.2. Assumptions and notation as in Proposition 21.1. Then

Hj(Cris(X/S),F ⊗OX/S
ΩiX/S) = 0

for all i > 0 and all j ≥ 0.

Proof. Using Lemma 12.6 it follows thatH = F ⊗OX/S
ΩiX/S also satisfies assump-

tions (1) and (2) of Proposition 21.1. Write M(n)e = Γ((X,T (n)e, δ(n)),F) so that
M(n) = limeM(n)e. Then

lime Γ((X,T (n)e, δ(n)),H) = limeM(n)e ⊗D(n)e ΩD(n)/p
eΩD(n)

= limeM(n)e ⊗D(n) ΩD(n)

By Lemma 19.3 the cosimplicial modules

M(0)e ⊗D(0) ΩiD(0) →M(1)e ⊗D(1) ΩiD(1) →M(2)e ⊗D(2) ΩiD(2) → . . .

are homotopic to zero. Because the transition mapsM(n)e+1 →M(n)e are surjective, we
see that the inverse limit of the associated complexes are acyclic5. Hence the vanishing of
cohomology ofH by Proposition 21.1. �

Proposition 21.3. Assumptions as in Proposition 21.1 but now assume that F is a
crystal in quasi-coherent modules. Let (M,∇) be the corresponding module with connec-
tion over D, see Proposition 17.4. Then the complex

M ⊗∧
D Ω∗

D

5Actually, they are even homotopic to zero as the homotopies fit together, but we don’t need this.
The reason for this roundabout argument is that the limit limeM(n)e ⊗D(n) Ωi

D(n) isn’t the p-adic com-
pletion of M(n) ⊗D(n) Ωi

D(n) as with the assumptions of the lemma we don’t know that M(n)e =
M(n)e+1/peM(n)e+1. If F is a crystal then this does hold.
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computes RΓ(Cris(X/S),F).

Proof. We will prove this using the two spectral sequences associated to the double
complex K∗,∗ with terms

Ka,b = M ⊗∧
D ΩaD(b)

What do we know so far? Well, Lemma 19.3 tells us that each column Ka,∗, a > 0
is acyclic. Proposition 21.1 tells us that the first column K0,∗ is quasi-isomorphic to
RΓ(Cris(X/S),F). Hence the first spectral sequence associated to the double complex
shows that there is a canonical quasi-isomorphism ofRΓ(Cris(X/S),F) with Tot(K∗,∗).

Next, let’s consider the rows K∗,b. By Lemma 17.1 each of the b + 1 maps D → D(b)
presents D(b) as the p-adic completion of a divided power polynomial algebra over D.
Hence Lemma 20.2 shows that the map

M ⊗∧
D Ω∗

D −→M ⊗∧
D(b) Ω∗

D(b) = K∗,b

is a quasi-isomorphism. Note that each of these maps defines the same map on cohomology
(and even the same map in the derived category) as the inverse is given by the co-diagonal
map D(b)→ D (corresponding to the multiplication map P ⊗A . . .⊗A P → P ). Hence
if we look at the E1 page of the second spectral sequence we obtain

Ea,b1 = Ha(M ⊗∧
D Ω∗

D)
with differentials

Ea,01
0−→ Ea,11

1−→ Ea,21
0−→ Ea,31

1−→ . . .

as each of these is the alternation sum of the given identifications Ha(M ⊗∧
D Ω∗

D) =
Ea,01 = Ea,11 = . . .. Thus we see that the E2 page is equal Ha(M ⊗∧

D Ω∗
D) on the first

row and zero elsewhere. It follows that the identification ofM ⊗∧
D Ω∗

D with the first row
induces a quasi-isomorphism of M ⊗∧

D Ω∗
D with Tot(K∗,∗). �

Lemma 21.4. Assumptions as in Proposition 21.3. Let A → P ′ → C be ring maps
withA→ P ′ smooth and P ′ → C surjective with kernel J ′. LetD′ be the p-adic comple-
tion of DP ′,γ(J ′). Let (M ′,∇′) be the pair over D′ corresponding to F , see Lemma 17.5.
Then the complex

M ′ ⊗∧
D′ Ω∗

D′

computes RΓ(Cris(X/S),F).

Proof. Choose a : D → D′ and b : D′ → D as in Lemma 17.5. Note that the
base change M = M ′ ⊗D′,b D with its connection∇ corresponds to F . Hence we know
thatM ⊗∧

D Ω∗
D computes the crystalline cohomology of F , see Proposition 21.3. Hence it

suffices to show that the base change maps (induced by a and b)

M ′ ⊗∧
D′ Ω∗

D′ −→M ⊗∧
D Ω∗

D and M ⊗∧
D Ω∗

D −→M ′ ⊗∧
D′ Ω∗

D′

are quasi-isomorphisms. Since a ◦ b = idD′ we see that the composition one way around
is the identity on the complex M ′ ⊗∧

D′ Ω∗
D′ . Hence it suffices to show that the map

M ⊗∧
D Ω∗

D −→M ⊗∧
D Ω∗

D

induced by b ◦ a : D → D is a quasi-isomorphism. (Note that we have the same complex
on both sides asM = M ′⊗∧

D′,bD, henceM⊗∧
D,b◦aD = M ′⊗∧

D′,b◦a◦bD = M ′⊗∧
D′,bD =

M .) In fact, we claim that for any divided power A-algebra homomorphism ρ : D → D
compatible with the augmentation to C the induced map M ⊗∧

D Ω∗
D →M ⊗∧

D,ρ Ω∗
D is a

quasi-isomorphism.
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Write ρ(xi) = xi + zi. The elements zi are in the divided power ideal of D because ρ is
compatible with the augmentation to C. Hence we can factor the map ρ as a composition

D
σ−→ D〈ξi〉∧

τ−→ D

where the first map is given by xi 7→ xi + ξi and the second map is the divided power
D-algebra map which maps ξi to zi. (This uses the universal properties of polynomial alge-
bra, divided power polynomial algebras, divided power envelopes, and p-adic completion.)
Note that there exists an automorphism α ofD〈ξi〉∧ with α(xi) = xi−ξi and α(ξi) = ξi.
Applying Lemma 20.2 toα◦σ (which mapsxi toxi) and using thatα is an isomorphism we
conclude that σ induces a quasi-isomorphism ofM⊗∧

DΩ∗
D withM⊗∧

D,σΩ∗
D〈xi〉∧ . On the

other hand the map τ has as a left inverse the mapD → D〈xi〉∧, xi 7→ xi and we conclude
(using Lemma 20.2 once more) that τ induces a quasi-isomorphism of M ⊗∧

D,σ Ω∗
D〈xi〉∧

with M ⊗∧
D,τ◦σ Ω∗

D. Composing these two quasi-isomorphisms we obtain that ρ induces
a quasi-isomorphism M ⊗∧

D Ω∗
D →M ⊗∧

D,ρ Ω∗
D as desired. �

22. Two counter examples

Before we turn to some of the successes of crystalline cohomology, let us give two examples
which explain why crystalline cohomology does not work very well if the schemes in
question are either not proper over the base, or singular. The first example can be found
in [?].

Example 22.1. Let A = Zp with divided power ideal (p) endowed with its unique
divided powers γ. Let C = Fp[x, y]/(x2, xy, y2). We choose the presentation

C = P/J = Zp[x, y]/(x2, xy, y2, p)
Let D = DP,γ(J)∧ with divided power ideal (J̄ , γ̄) as in Section 17. We will denote x, y
also the images of x and y in D. Consider the element

τ = γ̄p(x2)γ̄p(y2)− γ̄p(xy)2 ∈ D
We note that pτ = 0 as

p!γ̄p(x2)γ̄p(y2) = x2pγ̄p(y2) = γ̄p(x2y2) = xpypγ̄p(xy) = p!γ̄p(xy)2

in D. We also note that dτ = 0 in ΩD as
d(γ̄p(x2)γ̄p(y2)) = γ̄p−1(x2)γ̄p(y2)dx2 + γ̄p(x2)γ̄p−1(y2)dy2

= 2xγ̄p−1(x2)γ̄p(y2)dx+ 2yγ̄p(x2)γ̄p−1(y2)dy

= 2/(p− 1)!(x2p−1γ̄p(y2)dx+ y2p−1γ̄p(x2)dy)
= 2/(p− 1)!(xp−1γ̄p(xy2)dx+ yp−1γ̄p(x2y)dy)
= 2/(p− 1)!(xp−1ypγ̄p(xy)dx+ xpyp−1γ̄p(xy)dy)
= 2γ̄p−1(xy)γ̄p(xy)(ydx+ xdy)
= d(γ̄p(xy)2)

Finally, we claim that τ 6= 0 in D. To see this it suffices to produce an object (B →
Fp[x, y]/(x2, xy, y2), δ) of Cris(C/S) such that τ does not map to zero in B. To do this
take

B = Fp[x, y, u, v]/(x3, x2y, xy2, y3, xu, yu, xv, yv, u2, v2)
with the obvious surjection to C. Let K = Ker(B → C) and consider the map

δp : K −→ K, ax2 + bxy + cy2 + du+ ev + fuv 7−→ apu+ cpv
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One checks this satisfies the assumptions (1), (2), (3) of Divided Power Algebra, Lemma 5.3
and hence defines a divided power structure. Moreover, we see that τ maps to uv which is
not zero in B. Set X = Spec(C) and S = Spec(A). We draw the following conclusions

(1) H0(Cris(X/S),OX/S) has p-torsion, and
(2) pulling back by FrobeniusF ∗ : H0(Cris(X/S),OX/S)→ H0(Cris(X/S),OX/S)

is not injective.
Namely, τ defines a nonzero torsion element of H0(Cris(X/S),OX/S) by Proposition
21.3. Similarly, F ∗(τ) = σ(τ) where σ : D → D is the map induced by any lift of
Frobenius on P . If we choose σ(x) = xp and σ(y) = yp, then an easy computation shows
that F ∗(τ) = 0.

The next example shows that even for affine n-space crystalline cohomology does not give
the correct thing.

Example 22.2. Let A = Zp with divided power ideal (p) endowed with its unique
divided powers γ. Let C = Fp[x1, . . . , xr]. We choose the presentation

C = P/J = P/pP with P = Zp[x1, . . . , xr]
Note that pP has divided powers by Divided Power Algebra, Lemma 4.2. Hence setting
D = P∧ with divided power ideal (p) we obtain a situation as in Section 17. We conclude
that RΓ(Cris(X/S),OX/S) is represented by the complex

D → Ω1
D → Ω2

D → . . .→ ΩrD
see Proposition 21.3. Assuming r > 0 we conclude the following

(1) The cristalline cohomology of the cristalline structure sheaf of X = Ar
Fp over

S = Spec(Zp) is zero except in degrees 0, . . . , r.
(2) We have H0(Cris(X/S),OX/S) = Zp.
(3) The cohomology group Hr(Cris(X/S),OX/S) is infinite and is not a torsion

abelian group.
(4) The cohomology group Hr(Cris(X/S),OX/S) is not separated for the p-adic

topology.
While the first two statements are reasonable, parts (3) and (4) are disconcerting! The truth
of these statements follows immediately from working out what the complex displayed
above looks like. Let’s just do this in case r = 1. Then we are just looking at the two term
complex of p-adically complete modules

d : D =
(⊕

n≥0
Zpxn

)∧
−→ Ω1

D =
(⊕

n≥1
Zpxn−1dx

)∧

The map is given by diag(0, 1, 2, 3, 4, . . .) except that the first summand is missing on the
right hand side. Now it is clear that

⊕
n>0 Zp/nZp is a subgroup of the cokernel, hence

the cokernel is infinite. In fact, the element

ω =
∑

e>0
pexp

2e−1dx

is clearly not a torsion element of the cokernel. But it gets worse. Namely, consider the
element

η =
∑

e>0
pexp

e−1dx

For every t > 0 the element η is congruent to
∑
e>t p

exp
e−1dx modulo the image of d

which is divisible by pt. But η is not in the image of d because it would have to be the image
of a +

∑
e>0 x

pe for some a ∈ Zp which is not an element of the left hand side. In fact,
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pNη is similarly not in the image of d for any integer N . This implies that η “generates”
a copy of Qp inside of H1

cris(A1
Fp/ Spec(Zp)).

23. Applications

In this section we collect some applications of the material in the previous sections.

Proposition 23.1. In Situation 7.5. Let F be a crystal in quasi-coherent modules on
Cris(X/S). The truncation map of complexes

(F → F ⊗OX/S
Ω1
X/S → F ⊗OX/S

Ω2
X/S → . . .) −→ F [0],

while not a quasi-isomorphism, becomes a quasi-isomorphism after applying RuX/S,∗. In
fact, for any i > 0, we have

RuX/S,∗(F ⊗OX/S
ΩiX/S) = 0.

Proof. By Lemma 15.1 we get a de Rham complex as indicated in the lemma. We
abbreviateH = F ⊗ΩiX/S . LetX ′ ⊂ X be an affine open subscheme which maps into an
affine open subscheme S′ ⊂ S. Then

(RuX/S,∗H)|X′
Zar

= RuX′/S′,∗(H|Cris(X′/S′)),

see Lemma 9.5. Thus Lemma 21.2 shows that RuX/S,∗H is a complex of sheaves on XZar

whose cohomology on any affine open is trivial. AsX has a basis for its topology consisting
of affine opens this implies that RuX/S,∗H is quasi-isomorphic to zero. �

Remark 23.2. The proof of Proposition 23.1 shows that the conclusion

RuX/S,∗(F ⊗OX/S
ΩiX/S) = 0

for i > 0 is true for any OX/S-module F which satisfies conditions (1) and (2) of Propo-
sition 21.1. This applies to the following non-crystals: ΩiX/S for all i, and any sheaf of
the form F , where F is a quasi-coherentOX -module. In particular, it applies to the sheaf
OX = Ga. But note that we need something like Lemma 15.1 to produce a de Rham
complex which requires F to be a crystal. Hence (currently) the collection of sheaves of
modules for which the full statement of Proposition 23.1 holds is exactly the category of
crystals in quasi-coherent modules.

In Situation 7.5. LetF be a crystal in quasi-coherent modules on Cris(X/S). Let (U, T, δ)
be an object of Cris(X/S). Proposition 23.1 allows us to construct a canonical map

(23.2.1) RΓ(Cris(X/S),F) −→ RΓ(T,FT ⊗OT
Ω∗
T/S,δ)

Namely, we have RΓ(Cris(X/S),F) = RΓ(Cris(X/S),F ⊗ Ω∗
X/S), we can restrict

global cohomology classes to T , and ΩX/S restricts to ΩT/S,δ by Lemma 12.3.

24. Some further results

In this section we mention some results whose proof is missing. We will formulate these
as a series of remarks and we will convert them into actual lemmas and propositions only
when we add detailed proofs.
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Remark 24.1 (Higher direct images). Let p be a prime number. Let (S, I, γ) →
(S′, I ′, γ′) be a morphism of divided power schemes over Z(p). Let

X
f
//

��

X ′

��
S0 // S′

0

be a commutative diagram of morphisms of schemes and assume p is locally nilpotent on
X and X ′. Let F be anOX/S-module on Cris(X/S). Then Rfcris,∗F can be computed as
follows.

Given an object (U ′, T ′, δ′) of Cris(X ′/S′) set U = X ×X′ U ′ = f−1(U ′) (an open
subscheme of X). Denote (T0, T, δ) the divided power scheme over S such that

T //

��

T ′

��
S // S′

is cartesian in the category of divided power schemes, see Lemma 7.4. There is an induced
morphism U → T0 and we obtain a morphism (U/T )cris → (X/S)cris, see Remark 9.3.
Let FU be the pullback of F . Let τU/T : (U/T )cris → TZar be the structure morphism.
Then we have

(24.1.1) (Rfcris,∗F)T ′ = R(T → T ′)∗
(
RτU/T,∗FU

)
where the left hand side is the restriction (see Section 10).

Hints: First, show that Cris(U/T ) is the localization (in the sense of Sites, Lemma 30.3)
of Cris(X/S) at the sheaf of sets f−1

cris h(U ′,T ′,δ′). Next, reduce the statement to the case
where F is an injective module and pushforward of modules using that the pullback of
an injectiveOX/S-module is an injectiveOU/T -module on Cris(U/T ). Finally, check the
result holds for plain pushforward.

Remark 24.2 (Mayer-Vietoris). In the situation of Remark 24.1 suppose we have an
open covering X = X ′ ∪ X ′′. Denote X ′′′ = X ′ ∩ X ′′. Let f ′, f ′′, and f ′′ be the
restriction of f to X ′, X ′′, and X ′′′. Moreover, let F ′, F ′′, and F ′′′ be the restriction of
F to the crystalline sites of X ′, X ′′, and X ′′′. Then there exists a distinguished triangle

Rfcris,∗F −→ Rf ′
cris,∗F ′ ⊕Rf ′′

cris,∗F ′′ −→ Rf ′′′
cris,∗F ′′′ −→ Rfcris,∗F [1]

in D(OX′/S′).

Hints: This is a formal consequence of the fact that the subcategories Cris(X ′/S), Cris(X ′′/S),
Cris(X ′′′/S) correspond to open subobjects of the final sheaf on Cris(X/S) and that the
last is the intersection of the first two.

Remark 24.3 (Čech complex). Let p be a prime number. Let (A, I, γ) be a divided
power ring with A a Z(p)-algebra. Set S = Spec(A) and S0 = Spec(A/I). Let X be
a separated6 scheme over S0 such that p is locally nilpotent on X . Let F be a crystal in
quasi-coherentOX/S-modules.

6This assumption is not strictly necessary, as using hypercoverings the construction of the remark can be
extended to the general case.
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Choose an affine open covering X =
⋃
λ∈Λ Uλ of X . Write Uλ = Spec(Cλ). Choose a

polynomial algebra Pλ over A and a surjection Pλ → Cλ. Having fixed these choices we
can construct a Čech complex which computes RΓ(Cris(X/S),F).
Given n ≥ 0 and λ0, . . . , λn ∈ Λ write Uλ0...λn = Uλ0 ∩ . . . ∩ Uλn . This is an affine
scheme by assumption. Write Uλ0...λn = Spec(Cλ0...λn). Set

Pλ0...λn = Pλ0 ⊗A . . .⊗A Pλn
which comes with a canonical surjection onto Cλ0...λn . Denote the kernel Jλ0...λn and
set Dλ0...λn the p-adically completed divided power envelope of Jλ0...λn in Pλ0...λn rel-
ative to γ. Let Mλ0...λn be the Pλ0...λn -module corresponding to the restriction of F to
Cris(Uλ0...λn/S) via Proposition 17.4. By construction we obtain a cosimplicial divided
power ring D(∗) having in degree n the ring

D(n) =
∏

λ0...λn
Dλ0...λn

(use that divided power envelopes are functorial and the trivial cosimplicial structure
on the ring P (∗) defined similarly). Since Mλ0...λn is the “value” of F on the objects
Spec(Dλ0...λn) we see that M(∗) defined by the rule

M(n) =
∏

λ0...λn
Mλ0...λn

forms a cosimplicial D(∗)-module. Now we claim that we have
RΓ(Cris(X/S),F) = s(M(∗))

Here s(−) denotes the cochain complex associated to a cosimplicial module (see Simplicial,
Section 25).
Hints: The proof of this is similar to the proof of Proposition 21.1 (in particular the result
holds for any module satisfying the assumptions of that proposition).

Remark 24.4 (Alternating Čech complex). Let p be a prime number. Let (A, I, γ) be
a divided power ring with A a Z(p)-algebra. Set S = Spec(A) and S0 = Spec(A/I). Let
X be a separated quasi-compact scheme over S0 such that p is locally nilpotent on X . Let
F be a crystal in quasi-coherentOX/S-modules.

Choose a finite affine open coveringX =
⋃
λ∈Λ Uλ ofX and a total ordering on Λ. Write

Uλ = Spec(Cλ). Choose a polynomial algebra Pλ over A and a surjection Pλ → Cλ.
Having fixed these choices we can construct an alternating Čech complex which computes
RΓ(Cris(X/S),F).
We are going to use the notation introduced in Remark 24.3. Denote Ωλ0...λn the p-
adically completed module of differentials ofDλ0...λn overA compatible with the divided
power structure. Let∇ be the integrable connection onMλ0...λn coming from Proposition
17.4. Consider the double complex M•,• with terms

Mn,m =
⊕

λ0<...<λn
Mλ0...λn ⊗∧

Dλ0...λn
ΩmDλ0...λn

.

For the differential d1 (increasing n) we use the usual Čech differential and for the differ-
ential d2 we use the connection, i.e., the differential of the de Rham complex. We claim
that

RΓ(Cris(X/S),F) = Tot(M•,•)
Here Tot(−) denotes the total complex associated to a double complex, see Homology,
Definition 18.3.
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Hints: We have

RΓ(Cris(X/S),F) = RΓ(Cris(X/S),F ⊗OX/S
Ω•
X/S)

by Proposition 23.1. The right hand side of the formula is simply the alternating Čech
complex for the covering X =

⋃
λ∈Λ Uλ (which induces an open covering of the final

sheaf of Cris(X/S)) and the complex F ⊗OX/S
Ω•
X/S , see Proposition 21.3. Now the

result follows from a general result in cohomology on sites, namely that the alternating
Čech complex computes the cohomology provided it gives the correct answer on all the
pieces (insert future reference here).

Remark 24.5 (Quasi-coherence). In the situation of Remark 24.1 assume that S →
S′ is quasi-compact and quasi-separated and that X → S0 is quasi-compact and quasi-
separated. Then for a crystal in quasi-coherent OX/S-modules F the sheaves Rifcris,∗F
are locally quasi-coherent.

Hints: We have to show that the restrictions to T ′ are quasi-coherentOT ′ -modules, where
(U ′, T ′, δ′) is any object of Cris(X ′/S′). It suffices to do this when T ′ is affine. We use
the formula (24.1.1), the fact that T → T ′ is quasi-compact and quasi-separated (as T is
affine over the base change of T ′ by S → S′), and Cohomology of Schemes, Lemma 4.5
to see that it suffices to show that the sheaves RiτU/T,∗FU are quasi-coherent. Note that
U → T0 is also quasi-compact and quasi-separated, see Schemes, Lemmas 21.14 and 21.14.

This reduces us to proving that RiτX/S,∗F is quasi-coherent on S in the case that p lo-
cally nilpotent on S. Here τX/S is the structure morphism, see Remark 9.6. We may
work locally on S , hence we may assume S affine (see Lemma 9.5). Induction on the num-
ber of affines covering X and Mayer-Vietoris (Remark 24.2) reduces the question to the
case where X is also affine (as in the proof of Cohomology of Schemes, Lemma 4.5). Say
X = Spec(C) and S = Spec(A) so that (A, I, γ) and A → C are as in Situation 5.1.
Choose a polynomial algebra P over A and a surjection P → C as in Section 17. Let
(M,∇) be the module corresponding to F , see Proposition 17.4. Applying Proposition
21.3 we see that RΓ(Cris(X/S),F) is represented by M ⊗D Ω∗

D. Note that completion
isn’t necessary as p is nilpotent in A! We have to show that this is compatible with taking
principal opens in S = Spec(A). Suppose that g ∈ A. Then we conclude that similarly
RΓ(Cris(Xg/Sg),F) is computed byMg⊗DgΩ∗

Dg
(again this uses that p-adic completion

isn’t necessary). Hence we conclude because localization is an exact functor onA-modules.

Remark 24.6 (Boundedness). In the situation of Remark 24.1 assume that S → S′ is
quasi-compact and quasi-separated and that X → S0 is of finite type and quasi-separated.
Then there exists an integer i0 such that for any crystal in quasi-coherentOX/S-modules
F we have Rifcris,∗F = 0 for all i > i0.

Hints: Arguing as in Remark 24.5 (using Cohomology of Schemes, Lemma 4.5) we reduce
to proving that Hi(Cris(X/S),F) = 0 for i � 0 in the situation of Proposition 21.3
when C is a finite type algebra over A. This is clear as we can choose a finite polynomial
algebra and we see that ΩiD = 0 for i� 0.

Remark 24.7 (Specific boundedness). In Situation 7.5 let F be a crystal in quasi-
coherentOX/S-modules. Assume that S0 has a unique point and thatX → S0 is of finite
presentation.

(1) If dimX = d andX/S0 has embedding dimension e, thenHi(Cris(X/S),F) =
0 for i > d+ e.
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(2) If X is separated and can be covered by q affines, and X/S0 has embedding di-
mension e, then Hi(Cris(X/S),F) = 0 for i > q + e.

Hints: In case (1) we can use that
Hi(Cris(X/S),F) = Hi(XZar, RuX/S,∗F)

and that RuX/S,∗F is locally calculated by a de Rham complex constructed using an em-
bedding of X into a smooth scheme of dimension e over S (see Lemma 21.4). These de
Rham complexes are zero in all degrees> e. Hence (1) follows from Cohomology, Propo-
sition 20.7. In case (2) we use the alternating Čech complex (see Remark 24.4) to reduce
to the case X affine. In the affine case we prove the result using the de Rham complex
associated to an embedding of X into a smooth scheme of dimension e over S (it takes
some work to construct such a thing).

Remark 24.8 (Base change map). In the situation of Remark 24.1 assumeS = Spec(A)
and S′ = Spec(A′) are affine. Let F ′ be an OX′/S′ -module. Let F be the pullback of F ′.
Then there is a canonical base change map

L(S′ → S)∗RτX′/S′,∗F ′ −→ RτX/S,∗F
where τX/S and τX′/S′ are the structure morphisms, see Remark 9.6. On global sections
this gives a base change map

(24.8.1) RΓ(Cris(X ′/S′),F ′)⊗L
A′ A −→ RΓ(Cris(X/S),F)

in D(A).
Hint: Compose the very general base change map of Cohomology on Sites, Remark 19.3
with the canonical map Lf∗

crisF ′ → f∗
crisF ′ = F .

Remark 24.9 (Base change isomorphism). The map (24.8.1) is an isomorphism pro-
vided all of the following conditions are satisfied:

(1) p is nilpotent in A′,
(2) F ′ is a crystal in quasi-coherentOX′/S′ -modules,
(3) X ′ → S′

0 is a quasi-compact, quasi-separated morphism,
(4) X = X ′ ×S′

0
S0,

(5) F ′ is a flatOX′/S′ -module,
(6) X ′ → S′

0 is a local complete intersection morphism (see More on Morphisms,
Definition 62.2; this holds for example if X ′ → S′

0 is syntomic or smooth),
(7) X ′ and S0 are Tor independent over S′

0 (see More on Algebra, Definition 61.1;
this holds for example if either S0 → S′

0 or X ′ → S′
0 is flat).

Hints: Condition (1) means that in the arguments below p-adic completion does nothing
and can be ignored. Using condition (3) and Mayer Vietoris (see Remark 24.2) this reduces
to the case where X ′ is affine. In fact by condition (6), after shrinking further, we can as-
sume thatX ′ = Spec(C ′) and we are given a presentationC ′ = A′/I ′[x1, . . . , xn]/(f̄ ′

1, . . . , f̄
′
c)

where f̄ ′
1, . . . , f̄

′
c is a Koszul-regular sequence in A′/I ′. (This means that smooth locally

f̄ ′
1, . . . , f̄

′
c forms a regular sequence, see More on Algebra, Lemma 30.17.) We choose a

lift of f̄ ′
i to an element f ′

i ∈ A′[x1, . . . , xn]. By (4) we see that X = Spec(C) with
C = A/I[x1, . . . , xn]/(f̄1, . . . , f̄c) where fi ∈ A[x1, . . . , xn] is the image of f ′

i . By
property (7) we see that f̄1, . . . , f̄c is a Koszul-regular sequence in A/I[x1, . . . , xn]. The
divided power envelope of I ′A′[x1, . . . , xn]+(f ′

1, . . . , f
′
c) inA′[x1, . . . , xn] relative to γ′

is
D′ = A′[x1, . . . , xn]〈ξ1, . . . , ξc〉/(ξi − f ′

i)
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see Lemma 2.4. Then you check that ξ1−f ′
1, . . . , ξn−f ′

n is a Koszul-regular sequence in the
ringA′[x1, . . . , xn]〈ξ1, . . . , ξc〉. Similarly the divided power envelope of IA[x1, . . . , xn]+
(f1, . . . , fc) in A[x1, . . . , xn] relative to γ is

D = A[x1, . . . , xn]〈ξ1, . . . , ξc〉/(ξi − fi)

and ξ1−f1, . . . , ξn−fn is a Koszul-regular sequence in the ringA[x1, . . . , xn]〈ξ1, . . . , ξc〉.
It follows that D′ ⊗L

A′ A = D. Condition (2) implies F ′ corresponds to a pair (M ′,∇)
consisting of a D′-module with connection, see Proposition 17.4. Then M = M ′ ⊗D′ D
corresponds to the pullback F . By assumption (5) we see that M ′ is a flat D′-module,
hence

M = M ′ ⊗D′ D = M ′ ⊗D′ D′ ⊗L
A′ A = M ′ ⊗L

A′ A

Since the modules of differentials ΩD′ and ΩD (as defined in Section 17) are free D′-
modules on the same generators we see that

M ⊗D Ω•
D = M ′ ⊗D′ Ω•

D′ ⊗D′ D = M ′ ⊗D′ Ω•
D′ ⊗L

A′ A

which proves what we want by Proposition 21.3.

Remark 24.10 (Rlim). Let p be a prime number. Let (A, I, γ) be a divided power
ring with A an algebra over Z(p) with p nilpotent in A/I . Set S = Spec(A) and S0 =
Spec(A/I). Let X be a scheme over S0 with p locally nilpotent on X . Let F be any
OX/S-module. For e� 0 we have (pe) ⊂ I is preserved by γ, see Divided Power Algebra,
Lemma 4.5. Set Se = Spec(A/peA) for e� 0. Then Cris(X/Se) is a full subcategory of
Cris(X/S) and we denote Fe the restriction of F to Cris(X/Se). Then

RΓ(Cris(X/S),F) = R limeRΓ(Cris(X/Se),Fe)

Hints: Suffices to prove this for F injective. In this case the sheaves Fe are injective mod-
ules too, the transition maps Γ(Fe+1) → Γ(Fe) are surjective, and we have Γ(F) =
lime Γ(Fe) because any object of Cris(X/S) is locally an object of one of the categories
Cris(X/Se) by definition of Cris(X/S).

Remark 24.11 (Comparison). Let p be a prime number. Let (A, I, γ) be a divided
power ring with p nilpotent in A. Set S = Spec(A) and S0 = Spec(A/I). Let Y be
a smooth scheme over S and set X = Y ×S S0. Let F be a crystal in quasi-coherent
OX/S-modules. Then

(1) γ extends to a divided power structure on the ideal of X in Y so that (X,Y, γ)
is an object of Cris(X/S),

(2) the restriction FY (see Section 10) comes endowed with a canonical integrable
connection∇ : FY → FY ⊗OY

ΩY/S , and
(3) we have

RΓ(Cris(X/S),F) = RΓ(Y,FY ⊗OY
Ω•
Y/S)

in D(A).
Hints: See Divided Power Algebra, Lemma 4.2 for (1). See Lemma 15.1 for (2). For Part
(3) note that there is a map, see (23.2.1). This map is an isomorphism when X is affine,
see Lemma 21.4. This shows that RuX/S,∗F and FY ⊗ Ω•

Y/S are quasi-isomorphic as
complexes on YZar = XZar. Since RΓ(Cris(X/S),F) = RΓ(XZar, RuX/S,∗F) the
result follows.
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Remark 24.12 (Perfectness). Let p be a prime number. Let (A, I, γ) be a divided
power ring with p nilpotent in A. Set S = Spec(A) and S0 = Spec(A/I). Let X be
a proper smooth scheme over S0. Let F be a crystal in finite locally free quasi-coherent
OX/S-modules. Then RΓ(Cris(X/S),F) is a perfect object of D(A).

Hints: By Remark 24.9 we have

RΓ(Cris(X/S),F)⊗L
A A/I

∼= RΓ(Cris(X/S0),F|Cris(X/S0))

By Remark 24.11 we have

RΓ(Cris(X/S0),F|Cris(X/S0)) = RΓ(X,FX ⊗ Ω•
X/S0

)

Using the stupid filtration on the de Rham complex we see that the last displayed complex
is perfect in D(A/I) as soon as the complexes

RΓ(X,FX ⊗ ΩqX/S0
)

are perfect complexes in D(A/I), see More on Algebra, Lemma 74.4. This is true by stan-
dard arguments in coherent cohomology using that FX ⊗ ΩqX/S0

is a finite locally free
sheaf and X → S0 is proper and flat (insert future reference here). Applying More on
Algebra, Lemma 78.4 we see that

RΓ(Cris(X/S),F)⊗L
A A/I

n

is a perfect object of D(A/In) for all n. This isn’t quite enough unless A is Noether-
ian. Namely, even though I is locally nilpotent by our assumption that p is nilpotent,
see Divided Power Algebra, Lemma 2.6, we cannot conclude that In = 0 for some n.
A counter example is Fp〈x〉. To prove it in general when F = OX/S the argument of
https://math.columbia.edu/~dejong/wordpress/?p=2227 works. When the co-
efficients F are non-trivial the argument of [?] seems to be as follows. Reduce to the case
pA = 0 by More on Algebra, Lemma 78.4. In this case the Frobenius mapA→ A, a 7→ ap

factors as A → A/I
ϕ−→ A (as xp = 0 for x ∈ I). Set X(1) = X ⊗A/I,ϕ A. The absolute

Frobenius morphism of X factors through a morphism FX : X → X(1) (a kind of rela-
tive Frobenius). Affine locally if X = Spec(C) then X(1) = Spec(C ⊗A/I,ϕ A) and FX
corresponds to C ⊗A/I,ϕ A→ C , c⊗ a 7→ cpa. This defines morphisms of ringed topoi

(X/S)cris
(FX)cris−−−−→ (X(1)/S)cris

u
X(1)/S−−−−−→ Sh(X(1)

Zar)

whose composition is denoted FrobX . One then shows that RFrobX,∗F is representable
by a perfect complex ofOX(1) -modules(!) by a local calculation.

Remark 24.13 (Complete perfectness). Let p be a prime number. Let (A, I, γ) be a
divided power ring with A a p-adically complete ring and p nilpotent in A/I . Set S =
Spec(A) and S0 = Spec(A/I). Let X be a proper smooth scheme over S0. Let F be a
crystal in finite locally free quasi-coherent OX/S-modules. Then RΓ(Cris(X/S),F) is a
perfect object of D(A).

Hints: We know that K = RΓ(Cris(X/S),F) is the derived limit K = R limKe of the
cohomologies overA/peA, see Remark 24.10. EachKe is a perfect complex ofD(A/peA)
by Remark 24.12. SinceA is p-adically complete the result follows from More on Algebra,
Lemma 97.4.

Remark 24.14 (Complete comparison). Let p be a prime number. Let (A, I, γ) be a
divided power ring withA a Noetherian p-adically complete ring and p nilpotent inA/I .

https://math.columbia.edu/~dejong/wordpress/?p=2227


25. PULLING BACK ALONG PURELY INSEPARABLE MAPS 4911

Set S = Spec(A) and S0 = Spec(A/I). Let Y be a proper smooth scheme over S and set
X = Y ×S S0. Let F be a finite type crystal in quasi-coherentOX/S-modules. Then

(1) there exists a coherentOY -module FY endowed with integrable connection

∇ : FY −→ FY ⊗OY
ΩY/S

such that FY /peFY is the module with connection over A/peA found in Re-
mark 24.11, and

(2) we have

RΓ(Cris(X/S),F) = RΓ(Y,FY ⊗OY
Ω•
Y/S)

in D(A).
Hints: The existence of FY is Grothendieck’s existence theorem (insert future reference
here). The isomorphism of cohomologies follows as both sides are computed as R lim of
the versions modulo pe (see Remark 24.10 for the left hand side; use the theorem on formal
functions, see Cohomology of Schemes, Theorem 20.5 for the right hand side). Each of the
versions modulo pe are isomorphic by Remark 24.11.

25. Pulling back along purely inseparable maps

By an αp-cover we mean a morphism of the form

X ′ = Spec(C[z]/(zp − c)) −→ Spec(C) = X

whereC is an Fp-algebra and c ∈ C. Equivalently,X ′ is an αp-torsor overX . An iterated
αp-cover7 is a morphism of schemes in characteristic p which is locally on the target a
composition of finitely many αp-covers. In this section we prove that pullback along such
a morphism induces a quasi-isomorphism on crystalline cohomology after inverting the
prime p. In fact, we prove a precise version of this result. We begin with a preliminary
lemma whose formulation needs some notation.

Assume we have a ring map B → B′ and quotients ΩB → Ω and ΩB′ → Ω′ satisfying
the assumptions of Remark 6.9. Thus (6.9.1) provides a canonical map of complexes

c•
M : M ⊗B Ω• −→M ⊗B (Ω′)•

for all B-modules M endowed with integrable connection∇ : M →M ⊗B ΩB .

Suppose we have a ∈ B, z ∈ B′, and a map θ : B′ → B′ satisfying the following
assumptions

(1) d(a) = 0,
(2) Ω′ = B′⊗B Ω⊕B′dz; we write d(f) = d1(f) +∂z(f)dz with d1(f) ∈ B′⊗Ω

and ∂z(f) ∈ B′ for all f ∈ B′,
(3) θ : B′ → B′ is B-linear,
(4) ∂z ◦ θ = a,
(5) B → B′ is universally injective (and hence Ω→ Ω′ is injective),
(6) af − θ(∂z(f)) ∈ B for all f ∈ B′,
(7) (θ⊗ 1)(d1(f))− d1(θ(f)) ∈ Ω for all f ∈ B′ where θ⊗ 1 : B′ ⊗Ω→ B′ ⊗Ω

These conditions are not logically independent. For example, assumption (4) implies that
∂z(af − θ(∂z(f))) = 0. Hence if the image of B → B′ is the collection of elements
annihilated by ∂z , then (6) follows. A similar argument can be made for condition (7).

7This is nonstandard notation.
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Lemma 25.1. In the situation above there exists a map of complexes

e•
M : M ⊗B (Ω′)• −→M ⊗B Ω•

such that c•
M ◦ e•

M and e•
M ◦ c•

M are homotopic to multiplication by a.

Proof. In this proof all tensor products are over B. Assumption (2) implies that

M ⊗ (Ω′)i = (B′ ⊗M ⊗ Ωi)⊕ (B′dz ⊗M ⊗ Ωi−1)
for all i ≥ 0. A collection of additive generators for M ⊗ (Ω′)i is formed by elements
of the form fω and elements of the form fdz ∧ η where f ∈ B′, ω ∈ M ⊗ Ωi, and
η ∈M ⊗ Ωi−1.

For f ∈ B′ we write

ε(f) = af − θ(∂z(f)) and ε′(f) = (θ ⊗ 1)(d1(f))− d1(θ(f))
so that ε(f) ∈ B and ε′(f) ∈ Ω by assumptions (6) and (7). We define e•

M by the rules
eiM (fω) = ε(f)ω and eiM (fdz ∧ η) = ε′(f)∧ η. We will see below that the collection of
maps eiM is a map of complexes.

We define
hi : M ⊗B (Ω′)i −→M ⊗B (Ω′)i−1

by the rules hi(fω) = 0 and hi(fdz ∧ η) = θ(f)η for elements as above. We claim that

d ◦ h+ h ◦ d = a− c•
M ◦ e•

M

Note that multiplication by a is a map of complexes by (1). Hence, since c•
M is an injective

map of complexes by assumption (5), we conclude that e•
M is a map of complexes. To

prove the claim we compute

(d ◦ h+ h ◦ d)(fω) = h (d(f) ∧ ω + f∇(ω))
= θ(∂z(f))ω
= afω − ε(f)ω
= afω − ciM (eiM (fω))

The second equality because dz does not occur in∇(ω) and the third equality by assump-
tion (6). Similarly, we have

(d ◦ h+ h ◦ d)(fdz ∧ η) = d(θ(f)η) + h (d(f) ∧ dz ∧ η − fdz ∧∇(η))
= d(θ(f)) ∧ η + θ(f)∇(η)− (θ ⊗ 1)(d1(f)) ∧ η − θ(f)∇(η)
= d1(θ(f)) ∧ η + ∂z(θ(f))dz ∧ η − (θ ⊗ 1)(d1(f)) ∧ η
= afdz ∧ η − ε′(f) ∧ η
= afdz ∧ η − ciM (eiM (fdz ∧ η))

The second equality because d(f) ∧ dz ∧ η = −dz ∧ d1(f) ∧ η. The fourth equality by
assumption (4). On the other hand it is immediate from the definitions that eiM (ciM (ω)) =
ε(1)ω = aω. This proves the lemma. �

Example 25.2. A standard example of the situation above occurs when B′ = B〈z〉
is the divided power polynomial ring over a divided power ring (B, J, δ) with divided
powers δ′ on J ′ = B′

+ + JB′ ⊂ B′. Namely, we take Ω = ΩB,δ and Ω′ = ΩB′,δ′ . In this
case we can take a = 1 and

θ(
∑

bmz
[m]) =

∑
bmz

[m+1]
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Note that
f − θ(∂z(f)) = f(0)

equals the constant term. It follows that in this case Lemma 25.1 recovers the crystalline
Poincaré lemma (Lemma 20.2).

Lemma 25.3. In Situation 5.1. Assume D and ΩD are as in (17.0.1) and (17.0.2). Let
λ ∈ D. Let D′ be the p-adic completion of

D[z]〈ξ〉/(ξ − (zp − λ))

and let ΩD′ be the p-adic completion of the module of divided power differentials of D′

over A. For any pair (M,∇) over D satisfying (1), (2), (3), and (4) the canonical map of
complexes (6.9.1)

c•
M : M ⊗∧

D Ω•
D −→M ⊗∧

D Ω•
D′

has the following property: There exists a map e•
M in the opposite direction such that

both c•
M ◦ e•

M and e•
M ◦ c•

M are homotopic to multiplication by p.

Proof. We will prove this using Lemma 25.1 with a = p. Thus we have to find
θ : D′ → D′ and prove (1), (2), (3), (4), (5), (6), (7). We first collect some information
about the rings D and D′ and the modules ΩD and ΩD′ .

Writing
D[z]〈ξ〉/(ξ − (zp − λ)) = D〈ξ〉[z]/(zp − ξ − λ)

we see that D′ is the p-adic completion of the free D-module⊕
i=0,...,p−1

⊕
n≥0

ziξ[n]D

where ξ[0] = 1. It follows that D → D′ has a continuous D-linear section, in particular
D → D′ is universally injective, i.e., (5) holds. We think ofD′ as a divided power algebra
overAwith divided power ideal J ′ = JD′ +(ξ). ThenD′ is also the p-adic completion of
the divided power envelope of the ideal generated by zp − λ in D, see Lemma 2.4. Hence

ΩD′ = ΩD ⊗∧
D D′ ⊕D′dz

by Lemma 6.6. This proves (2). Note that (1) is obvious.

At this point we construct θ. (We wrote a PARI/gp script theta.gp verifying some of the
formulas in this proof which can be found in the scripts subdirectory of the Stacks project.)
Before we do so we compute the derivative of the elements ziξ[n]. We have dzi = izi−1dz.
For n ≥ 1 we have

dξ[n] = ξ[n−1]dξ = −ξ[n−1]dλ+ pzp−1ξ[n−1]dz

because ξ = zp − λ. For 0 < i < p and n ≥ 1 we have

d(ziξ[n]) = izi−1ξ[n]dz + ziξ[n−1]dξ

= izi−1ξ[n]dz + ziξ[n−1]d(zp − λ)

= −ziξ[n−1]dλ+ (izi−1ξ[n] + pzi+p−1ξ[n−1])dz

= −ziξ[n−1]dλ+ (izi−1ξ[n] + pzi−1(ξ + λ)ξ[n−1])dz

= −ziξ[n−1]dλ+ ((i+ pn)zi−1ξ[n] + pλzi−1ξ[n−1])dz
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the last equality because ξξ[n−1] = nξ[n]. Thus we see that

∂z(zi) = izi−1

∂z(ξ[n]) = pzp−1ξ[n−1]

∂z(ziξ[n]) = (i+ pn)zi−1ξ[n] + pλzi−1ξ[n−1]

Motivated by these formulas we define θ by the rules

θ(zj) = p z
j+1

j+1 j = 0, . . . p− 1,
θ(zp−1ξ[m]) = ξ[m+1] m ≥ 1,
θ(zjξ[m]) = pzj+1ξ[m]−θ(pλzjξ[m−1])

(j+1+pm) 0 ≤ j < p− 1,m ≥ 1

where in the last line we use induction on m to define our choice of θ. Working this out
we get (for 0 ≤ j < p− 1 and 1 ≤ m)

θ(zjξ[m]) = pzj+1ξ[m]

(j+1+pm) −
p2λzj+1ξ[m−1]

(j+1+pm)(j+1+p(m−1)) + . . .+ (−1)mpm+1λmzj+1

(j+1+pm)...(j+1)

although we will not use this expression below. It is clear that θ extends uniquely to a p-
adically continuous D-linear map on D′. By construction we have (3) and (4). It remains
to prove (6) and (7).
Proof of (6) and (7). As θ is D-linear and continuous it suffices to prove that p − θ ◦ ∂z ,
resp. (θ⊗1)◦d1−d1 ◦θ gives an element ofD, resp. ΩD when evaluated on the elements
ziξ[n]8. Set D0 = Z(p)[λ] and D′

0 = Z(p)[z, λ]〈ξ〉/(ξ − zp + λ). Observe that each of the
expressions above is an element of D′

0 or ΩD′
0
. Hence it suffices to prove the result in the

case of D0 → D′
0. Note that D0 and D′

0 are torsion free rings and that D0 ⊗Q = Q[λ]
andD′

0⊗Q = Q[z, λ]. HenceD0 ⊂ D′
0 is the subring of elements annihilated by ∂z and

(6) follows from (4), see the discussion directly preceding Lemma 25.1. Similarly, we have
d1(f) = ∂λ(f)dλ hence

((θ ⊗ 1) ◦ d1 − d1 ◦ θ) (f) = (θ(∂λ(f))− ∂λ(θ(f))) dλ
Applying ∂z to the coefficient we obtain

∂z (θ(∂λ(f))− ∂λ(θ(f))) = p∂λ(f)− ∂z(∂λ(θ(f)))
= p∂λ(f)− ∂λ(∂z(θ(f)))
= p∂λ(f)− ∂λ(pf) = 0

whence the coefficient does not depend on z as desired. This finishes the proof of the
lemma. �

Note that an iterated αp-cover X ′ → X (as defined in the introduction to this section)
is finite locally free. Hence if X is connected the degree of X ′ → X is constant and is a
power of p.

Lemma 25.4. Let p be a prime number. Let (S, I, γ) be a divided power scheme over
Z(p) with p ∈ I . We set S0 = V (I) ⊂ S. Let f : X ′ → X be an iterated αp-cover of
schemes over S0 with constant degree q. Let F be any crystal in quasi-coherent sheaves
on X and set F ′ = f∗

crisF . In the distinguished triangle
RuX/S,∗F −→ f∗RuX′/S,∗F ′ −→ E −→ RuX/S,∗F [1]

8This can be done by direct computation: It turns out that p−θ ◦∂z evaluated on ziξ[n] gives zero except
for 1 which is mapped to p and ξ which is mapped to −pλ. It turns out that (θ⊗ 1) ◦ d1 − d1 ◦ θ evaluated on
ziξ[n] gives zero except for zp−1ξ which is mapped to −λ.
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the object E has cohomology sheaves annihilated by q.

Proof. Note that X ′ → X is a homeomorphism hence we can identify the under-
lying topological spaces of X and X ′. The question is clearly local on X , hence we may
assume X , X ′, and S affine and X ′ → X given as a composition

X ′ = Xn → Xn−1 → Xn−2 → . . .→ X0 = X

where each morphism Xi+1 → Xi is an αp-cover. Denote Fi the pullback of F to Xi. It
suffices to prove that each of the maps

RΓ(Cris(Xi/S),Fi) −→ RΓ(Cris(Xi+1/S),Fi+1)

fits into a triangle whose third member has cohomology groups annihilated by p. (This
uses axiom TR4 for the triangulated category D(X). Details omitted.)

Hence we may assume that S = Spec(A), X = Spec(C), X ′ = Spec(C ′) and C ′ =
C[z]/(zp − c) for some c ∈ C. Choose a polynomial algebra P over A and a surjection
P → C. Let D be the p-adically completed divided power envelop of Ker(P → C) in
P as in (17.0.1). Set P ′ = P [z] with surjection P ′ → C ′ mapping z to the class of z in
C ′. Choose a lift λ ∈ D of c ∈ C. Then we see that the p-adically completed divided
power envelope D′ of Ker(P ′ → C ′) in P ′ is isomorphic to the p-adic completion of
D[z]〈ξ〉/(ξ− (zp−λ)), see Lemma 25.3 and its proof. Thus we see that the result follows
from this lemma by the computation of cohomology of crystals in quasi-coherent modules
in Proposition 21.3. �

The bound in the following lemma is probably not optimal.

Lemma 25.5. With notations and assumptions as in Lemma 25.4 the map

f∗ : Hi(Cris(X/S),F) −→ Hi(Cris(X ′/S),F ′)

has kernel and cokernel annihilated by qi+1.

Proof. This follows from the fact that E has nonzero cohomology sheaves in de-
grees −1 and up, so that the spectral sequence Ha(Hb(E))⇒ Ha+b(E) converges. This
combined with the long exact cohomology sequence associated to a distinguished triangle
gives the bound. �

In Situation 7.5 assume that p ∈ I . Set

X(1) = X ×S0,FS0
S0.

Denote FX/S0 : X → X(1) the relative Frobenius morphism.

Lemma 25.6. In the situation above, assume that X → S0 is smooth of relative di-
mension d. Then FX/S0 is an iterated αp-cover of degree pd. Hence Lemmas 25.4 and
25.5 apply to this situation. In particular, for any crystal in quasi-coherent modules G on
Cris(X(1)/S) the map

F ∗
X/S0

: Hi(Cris(X(1)/S),G) −→ Hi(Cris(X/S), F ∗
X/S0,crisG)

has kernel and cokernel annihilated by pd(i+1).
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Proof. It suffices to prove the first statement. To see this we may assume that X is
étale over Ad

S0
, see Morphisms, Lemma 36.20. Denote ϕ : X → Ad

S0
this étale morphism.

In this case the relative Frobenius of X/S0 fits into a diagram

X

��

// X(1)

��
Ad
S0

// Ad
S0

where the lower horizontal arrow is the relative frobenius morphism of Ad
S0

overS0. This
is the morphism which raises all the coordinates to the pth power, hence it is an iterated
αp-cover. The proof is finished by observing that the diagram is a fibre square, see Étale
Morphisms, Lemma 14.3. �

26. Frobenius action on crystalline cohomology

In this section we prove that Frobenius pullback induces a quasi-isomorphism on crys-
talline cohomology after inverting the prime p. But in order to even formulate this we
need to work in a special situation.

Situation 26.1. In Situation 7.5 assume the following
(1) S = Spec(A) for some divided power ring (A, I, γ) with p ∈ I ,
(2) there is given a homomorphism of divided power rings σ : A → A such that

σ(x) = xp mod pA for all x ∈ A.

In Situation 26.1 the morphism Spec(σ) : S → S is a lift of the absolute Frobenius
FS0 : S0 → S0 and since the diagram

X

��

FX

// X

��
S0

FS0 // S0

is commutative where FX : X → X is the absolute Frobenius morphism of X . Thus we
obtain a morphism of crystalline topoi

(FX)cris : (X/S)cris −→ (X/S)cris

see Remark 9.3. Here is the terminology concerning F -crystals following the notation of
Saavedra, see [?].

Definition 26.2. In Situation 26.1 an F -crystal on X/S (relative to σ) is a pair
(E , FE) given by a crystal in finite locally freeOX/S-modules E together with a map

FE : (FX)∗
crisE −→ E

An F -crystal is called nondegenerate if there exists an integer i ≥ 0 a map V : E →
(FX)∗

crisE such that V ◦ FE = piid.

Remark 26.3. Let (E , F ) be an F -crystal as in Definition 26.2. In the literature the
nondegeneracy condition is often part of the definition of an F -crystal. Moreover, often
it is also assumed that F ◦ V = pnid. What is needed for the result below is that there
exists an integer j ≥ 0 such that Ker(F ) and Coker(F ) are killed by pj . If the rank of E
is bounded (for example ifX is quasi-compact), then both of these conditions follow from
the nondegeneracy condition as formulated in the definition. Namely, supposeR is a ring,
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r ≥ 1 is an integer and K,L ∈ Mat(r × r,R) are matrices with KL = pi1r×r. Then
det(K) det(L) = pri. Let L′ be the adjugate matrix of L, i.e., L′L = LL′ = det(L). Set
K ′ = priK and j = ri+ i. Then we have K ′L = pj1r×r as KL = pi and

LK ′ = LK det(L) det(M) = LKLL′ det(M) = LpiL′ det(M) = pj1r×r

It follows that if V is as in Definition 26.2 then setting V ′ = pNV whereN > i · rank(E)
we get V ′ ◦ F = pN+i and F ◦ V ′ = pN+i.

Theorem 26.4. In Situation 26.1 let (E , FE) be a nondegenerate F -crystal. Assume
A is a p-adically complete Noetherian ring and that X → S0 is proper smooth. Then the
canonical map

FE ◦ (FX)∗
cris : RΓ(Cris(X/S), E)⊗L

A,σ A −→ RΓ(Cris(X/S), E)
becomes an isomorphism after inverting p.

Proof. We first write the arrow as a composition of three arrows. Namely, set

X(1) = X ×S0,FS0
S0

and denote FX/S0 : X → X(1) the relative Frobenius morphism. Denote E(1) the base
change of E by Spec(σ), in other words the pullback of E to Cris(X(1)/S) by the mor-
phism of crystalline topoi associated to the commutative diagram

X(1) //

��

X

��
S

Spec(σ) // S

Then we have the base change map

(26.4.1) RΓ(Cris(X/S), E)⊗L
A,σ A −→ RΓ(Cris(X(1)/S), E(1))

see Remark 24.8. Note that the composition of FX/S0 : X → X(1) with the projection
X(1) → X is the absolute Frobenius morphism FX . Hence we see that F ∗

X/S0
E(1) =

(FX)∗
crisE . Thus pullback by FX/S0 is a map

(26.4.2) F ∗
X/S0

: RΓ(Cris(X(1)/S), E(1)) −→ RΓ(Cris(X/S), (FX)∗
crisE)

Finally we can use FE to get a map
(26.4.3) RΓ(Cris(X/S), (FX)∗

crisE) −→ RΓ(Cris(X/S), E)
The map of the theorem is the composition of the three maps (26.4.1), (26.4.2), and (26.4.3)
above. The first is a quasi-isomorphism modulo all powers of p by Remark 24.9. Hence
it is a quasi-isomorphism since the complexes involved are perfect in D(A) see Remark
24.13. The third map is a quasi-isomorphism after inverting p simply because FE has an
inverse up to a power of p, see Remark 26.3. Finally, the second is an isomorphism after
inverting p by Lemma 25.6. �
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CHAPTER 61

Pro-étale Cohomology

1. Introduction

The material in this chapter and more can be found in the preprint [?].

The goal of this chapter is to introduce the pro-étale topology and to develop the basic
theory of cohomology of abelian sheaves in this topology. A secondary goal is to show how
using the pro-étale topology simplifies the introduction of `-adic cohomology in algebraic
geometry.

Here is a brief overview of the history of `-adic étale cohomology as we have understood
it. In [?, Exposés V and VI] Grothendieck et al developed a theory for dealing with `-adic
sheaves as inverse systems of sheaves of Z/`nZ-modules. In his second paper on the Weil
conjectures ([?]) Deligne introduced a derived category of `-adic sheaves as a certain 2-
limit of categories of complexes of sheaves of Z/`nZ-modules on the étale site of a scheme
X . This approach is used in the paper by Beilinson, Bernstein, and Deligne ([?]) as the
basis for their beautiful theory of perverse sheaves. In a paper entitled “Continuous Étale
Cohomology” ([?]) Uwe Jannsen discusses an important variant of the cohomology of a `-
adic sheaf on a variety over a field. His paper is followed up by a paper of Torsten Ekedahl
([?]) who discusses the adic formalism needed to work comfortably with derived categories
defined as limits.

It turns out that, working with the pro-étale site of a scheme, one can avoid some of the
technicalities these authors encountered. This comes at the expense of having to work
with non-Noetherian schemes, even when one is only interested in working with `-adic
sheaves and cohomology of such on varieties over an algebraically closed field.

A very important and remarkable feature of the (small) pro-étale site of a scheme is that it
has enough quasi-compact w-contractible objects. The existence of these objects implies a
number of useful and (perhaps) unusual consequences for the derived category of abelian
sheaves and for inverse systems of sheaves. This is exactly the feature that will allow us
to handle the intricacies of working with `-adic sheaves, but as we will see it has a number
of other benefits as well.

2. Some topology

Some preliminaries. We have defined spectral spaces and spectral maps of spectral spaces
in Topology, Section 23. The spectrum of a ring is a spectral space, see Algebra, Lemma
26.2.

Lemma 2.1. Let X be a spectral space. Let X0 ⊂ X be the set of closed points. The
following are equivalent

(1) Every open covering ofX can be refined by a finite disjoint union decomposition
X =

∐
Ui with Ui open and closed in X .

4921
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(2) The composition X0 → X → π0(X) is bijective.
Moreover, if X0 is closed in X and every point of X specializes to a unique point of X0,
then these conditions are satisfied.

Proof. We will use without further mention that X0 is quasi-compact (Topology,
Lemma 12.9) and π0(X) is profinite (Topology, Lemma 23.9). Picture

X0

f ""

// X

π

��
π0(X)

If (2) holds, the continuous bijective map f : X0 → π0(X) is a homeomorphism by
Topology, Lemma 17.8. Given an open covering X =

⋃
Ui, we get an open covering

π0(X) =
⋃
f(X0 ∩ Ui). By Topology, Lemma 22.4 we can find a finite open covering of

the form π0(X) =
∐
Vj which refines this covering. SinceX0 → π0(X) is bijective each

connected component of X has a unique closed point, whence is equal to the set of points
specializing to this closed point. Hence π−1(Vj) is the set of points specializing to the
points of f−1(Vj). Now, if f−1(Vj) ⊂ X0 ∩ Ui ⊂ Ui, then it follows that π−1(Vj) ⊂ Ui
(because the open set Ui is closed under generalizations). In this way we see that the open
covering X =

∐
π−1(Vj) refines the covering we started out with. In this way we see

that (2) implies (1).

Assume (1). Let x, y ∈ X be closed points. Then we have the open covering X = (X \
{x}) ∪ (X \ {y}). It follows from (1) that there exists a disjoint union decomposition
X = U q V with U and V open (and closed) and x ∈ U and y ∈ V . In particular
we see that every connected component of X has at most one closed point. By Topology,
Lemma 12.8 every connected component (being closed) also does have a closed point. Thus
X0 → π0(X) is bijective. In this way we see that (1) implies (2).

Assume X0 is closed in X and every point specializes to a unique point of X0. Then
X0 is a spectral space (Topology, Lemma 23.5) consisting of closed points, hence profinite
(Topology, Lemma 23.8). Let x, y ∈ X0 be distinct. By Topology, Lemma 22.4 we can
find a disjoint union decomposition X0 = U0 q V0 with U0 and V0 open and closed and
x ∈ U0 and y ∈ V0. Let U ⊂ X , resp. V ⊂ X be the set of points specializing to U0, resp.
V0. Observe that X = U q V . By Topology, Lemma 24.7 we see that U is an intersection
of quasi-compact open subsets. Hence U is closed in the constructible topology. Since
U is closed under specialization, we see that U is closed by Topology, Lemma 23.6. By
symmetry V is closed and hence U and V are both open and closed. This proves that
x, y are not in the same connected component of X . In other words, X0 → π0(X) is
injective. The map is also surjective by Topology, Lemma 12.8 and the fact that connected
components are closed. In this way we see that the final condition implies (2). �

Example 2.2. Let T be a profinite space. Let t ∈ T be a point and assume that T \{t}
is not quasi-compact. Let X = T × {0, 1}. Consider the topology on X with a subbase
given by the sets U × {0, 1} for U ⊂ T open, X \ {(t, 0)}, and U × {1} for U ⊂ T open
with t 6∈ U . The set of closed points of X is X0 = T × {0} and (t, 1) is in the closure of
X0. Moreover, X0 → π0(X) is a bijection. This example shows that conditions (1) and
(2) of Lemma 2.1 do no imply the set of closed points is closed.
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It turns out it is more convenient to work with spectral spaces which have the slightly
stronger property mentioned in the final statement of Lemma 2.1. We give this property
a name.

Definition 2.3. A spectral space X is w-local if the set of closed points X0 is closed
and every point of X specializes to a unique closed point. A continuous map f : X → Y
of w-local spaces is w-local if it is spectral and maps any closed point ofX to a closed point
of Y .

We have seen in the proof of Lemma 2.1 that in this caseX0 → π0(X) is a homeomorphism
and that X0 ∼= π0(X) is a profinite space. Moreover, a connected component of X is
exactly the set of points specializing to a given x ∈ X0.

Lemma 2.4. Let X be a w-local spectral space. If Y ⊂ X is closed, then Y is w-local.

Proof. The subset Y0 ⊂ Y of closed points is closed because Y0 = X0 ∩ Y . Since
X is w-local, every y ∈ Y specializes to a unique point of X0. This specialization is in Y ,
and hence also in Y0, because {y} ⊂ Y . In conclusion, Y is w-local. �

Lemma 2.5. Let X be a spectral space. Let

Y //

��

T

��
X // π0(X)

be a cartesian diagram in the category of topological spaces with T profinite. Then Y is
spectral and T = π0(Y ). If moreover X is w-local, then Y is w-local, Y → X is w-local,
and the set of closed points of Y is the inverse image of the set of closed points of X .

Proof. Note that Y is a closed subspace ofX×T as π0(X) is a profinite space hence
Hausdorff (use Topology, Lemmas 23.9 and 3.4). SinceX×T is spectral (Topology, Lemma
23.10) it follows that Y is spectral (Topology, Lemma 23.5). Let Y → π0(Y )→ T be the
canonical factorization (Topology, Lemma 7.9). It is clear that π0(Y ) → T is surjective.
The fibres of Y → T are homeomorphic to the fibres of X → π0(X). Hence these fibres
are connected. It follows that π0(Y )→ T is injective. We conclude that π0(Y )→ T is a
homeomorphism by Topology, Lemma 17.8.

Next, assume that X is w-local and let X0 ⊂ X be the set of closed points. The inverse
image Y0 ⊂ Y of X0 in Y maps bijectively onto T as X0 → π0(X) is a bijection by
Lemma 2.1. Moreover, Y0 is quasi-compact as a closed subset of the spectral space Y . Hence
Y0 → π0(Y ) = T is a homeomorphism by Topology, Lemma 17.8. It follows that all
points of Y0 are closed in Y . Conversely, if y ∈ Y is a closed point, then it is closed in
the fibre of Y → π0(Y ) = T and hence its image x inX is closed in the (homeomorphic)
fibre of X → π0(X). This implies x ∈ X0 and hence y ∈ Y0. Thus Y0 is the collection
of closed points of Y and for each y ∈ Y0 the set of generalizations of y is the fibre of
Y → π0(Y ). The lemma follows. �

3. Local isomorphisms

We start with a definition.

Definition 3.1. Let ϕ : A→ B be a ring map.
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(1) We say A → B is a local isomorphism if for every prime q ⊂ B there exists
a g ∈ B, g 6∈ q such that A → Bg induces an open immersion Spec(Bg) →
Spec(A).

(2) We sayA→ B identifies local rings if for every prime q ⊂ B the canonical map
Aϕ−1(q) → Bq is an isomorphism.

We list some elementary properties.

Lemma 3.2. Let A → B and A → A′ be ring maps. Let B′ = B ⊗A A′ be the base
change of B.

(1) If A→ B is a local isomorphism, then A′ → B′ is a local isomorphism.
(2) If A→ B identifies local rings, then A′ → B′ identifies local rings.

Proof. Omitted. �

Lemma 3.3. Let A→ B and B → C be ring maps.
(1) If A → B and B → C are local isomorphisms, then A → C is a local isomor-

phism.
(2) If A→ B and B → C identify local rings, then A→ C identifies local rings.

Proof. Omitted. �

Lemma 3.4. Let A be a ring. Let B → C be an A-algebra homomorphism.
(1) If A → B and A → C are local isomorphisms, then B → C is a local isomor-

phism.
(2) If A→ B and A→ C identify local rings, then B → C identifies local rings.

Proof. Omitted. �

Lemma 3.5. Let A→ B be a local isomorphism. Then
(1) A→ B is étale,
(2) A→ B identifies local rings,
(3) A→ B is quasi-finite.

Proof. Omitted. �

Lemma 3.6. LetA→ B be a local isomorphism. Then there existn ≥ 0, g1, . . . , gn ∈
B, f1, . . . , fn ∈ A such that (g1, . . . , gn) = B and Afi ∼= Bgi .

Proof. Omitted. �

Lemma 3.7. Let p : (Y,OY )→ (X,OX) and q : (Z,OZ)→ (X,OX) be morphisms
of locally ringed spaces. IfOY = p−1OX , then

MorLRS/(X,OX)((Z,OZ), (Y,OY )) −→ MorTop/X(Z, Y ), (f, f ]) 7−→ f

is bijective. Here LRS/(X,OX) is the category of locally ringed spaces overX and Top/X
is the category of topological spaces over X .

Proof. This is immediate from the definitions. �

Lemma 3.8. Let A be a ring. Set X = Spec(A). The functor

B 7−→ Spec(B)
from the category of A-algebras B such that A→ B identifies local rings to the category
of topological spaces over X is fully faithful.
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Proof. This follows from Lemma 3.7 and the fact that if A → B identifies local
rings, then the pullback of the structure sheaf of Spec(A) via p : Spec(B)→ Spec(A) is
equal to the structure sheaf of Spec(B). �

4. Ind-Zariski algebra

We start with a definition; please see Remark 6.9 for a comparison with the corresponding
definition of the article [?].

Definition 4.1. A ring map A→ B is said to be ind-Zariski if B can be written as a
filtered colimit B = colimBi with each A→ Bi a local isomorphism.

An example of an Ind-Zariski map is a localization A → S−1A, see Algebra, Lemma 9.9.
The category of ind-Zariski algebras is closed under several natural operations.

Lemma 4.2. Let A → B and A → A′ be ring maps. Let B′ = B ⊗A A′ be the base
change of B. If A→ B is ind-Zariski, then A′ → B′ is ind-Zariski.

Proof. Omitted. �

Lemma 4.3. Let A → B and B → C be ring maps. If A → B and B → C are
ind-Zariski, then A→ C is ind-Zariski.

Proof. Omitted. �

Lemma 4.4. LetA be a ring. LetB → C be anA-algebra homomorphism. IfA→ B
and A→ C are ind-Zariski, then B → C is ind-Zariski.

Proof. Omitted. �

Lemma 4.5. A filtered colimit of ind-Zariski A-algebras is ind-Zariski over A.

Proof. Omitted. �

Lemma 4.6. Let A→ B be ind-Zariski. Then A→ B identifies local rings,

Proof. Omitted. �

5. Constructing w-local affine schemes

An affine scheme X is called w-local if its underlying topological space is w-local (Defi-
nition 2.3). It turns out given any ring A there is a canonical faithfully flat ind-Zariski
ring map A → Aw such that Spec(Aw) is w-local. The key to constructing Aw is the
following simple lemma.

Lemma 5.1. Let A be a ring. Set X = Spec(A). Let Z ⊂ X be a locally closed
subscheme which is of the form D(f) ∩ V (I) for some f ∈ A and ideal I ⊂ A. Then

(1) there exists a multiplicative subset S ⊂ A such that Spec(S−1A) maps by a
homeomorphism to the set of points of X specializing to Z ,

(2) theA-algebraA∼
Z = S−1A depends only on the underlying locally closed subset

Z ⊂ X ,
(3) Z is a closed subscheme of Spec(A∼

Z ),
If A → A′ is a ring map and Z ′ ⊂ X ′ = Spec(A′) is a locally closed subscheme of the
same form which maps into Z , then there is a unique A-algebra map A∼

Z → (A′)∼
Z′ .
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Proof. Let S ⊂ A be the multiplicative set of elements which map to invertible
elements of Γ(Z,OZ) = (A/I)f . If p is a prime ofA which does not specialize to Z , then
p generates the unit ideal in (A/I)f . Hence we can write fn = g + h for some n ≥ 0,
g ∈ p, h ∈ I . Then g ∈ S and we see that p is not in the spectrum of S−1A. Conversely,
if p does specialize to Z , say p ⊂ q ⊃ I with f 6∈ q, then we see that S−1A maps to Aq

and hence p is in the spectrum of S−1A. This proves (1).

The isomorphism class of the localizationS−1A depends only on the corresponding subset
Spec(S−1A) ⊂ Spec(A), whence (2) holds. By construction S−1A maps surjectively
onto (A/I)f , hence (3). The final statement follows as the multiplicative subset S′ ⊂ A′

corresponding to Z ′ contains the image of the multiplicative subset S. �

Let A be a ring. Let E ⊂ A be a finite subset. We get a stratification of X = Spec(A)
into locally closed subschemes by looking at the vanishing behaviour of the elements of
E. More precisely, given a disjoint union decomposition E = E′ q E′′ we set

(5.1.1) Z(E′, E′′) =
⋂

f∈E′
D(f)∩

⋂
f∈E′′

V (f) = D(
∏

f∈E′
f)∩ V (

∑
f∈E′′

fA)

The points of Z(E′, E′′) are exactly those x ∈ X such that f ∈ E′ maps to a nonzero
element in κ(x) and f ∈ E′′ maps to zero in κ(x). Thus it is clear that

(5.1.2) X =
∐

E=E′qE′′
Z(E′, E′′)

set theoretically. Observe that each stratum is constructible.

Lemma 5.2. LetX = Spec(A) as above. Given any finite stratificationX =
∐
Ti by

constructible subsets, there exists a finite subset E ⊂ A such that the stratification (5.1.2)
refines X =

∐
Ti.

Proof. We may write Ti =
⋃
j Ui,j ∩ V ci,j as a finite union for some Ui,j and Vi,j

quasi-compact open inX . Then we may write Ui,j =
⋃
D(fi,j,k) and Vi,j =

⋃
D(gi,j,l).

Then we set E = {fi,j,k} ∪ {gi,j,l}. This does the job, because the stratification (5.1.2)
is the one whose strata are labeled by the vanishing pattern of the elements of E which
clearly refines the given stratification. �

We continue the discussion. Given a finite subset E ⊂ A we set

(5.2.1) AE =
∏

E=E′qE′′
A∼
Z(E′,E′′)

with notation as in Lemma 5.1. This makes sense because (5.1.1) shows that eachZ(E′, E′′)
has the correct shape. We take the spectrum of this ring and denote it

(5.2.2) XE = Spec(AE) =
∐

E=E′qE′′
XE′,E′′

with XE′,E′′ = Spec(A∼
Z(E′,E′′)). Note that

(5.2.3) ZE =
∐

E=E′qE′′
Z(E′, E′′) −→ XE

is a closed subscheme. By construction the closed subscheme ZE contains all the closed
points of the affine schemeXE as every point ofXE′,E′′ specializes to a point ofZ(E′, E′′).

Let I(A) be the partially ordered set of all finite subsets of A. This is a directed partially
ordered set. For E1 ⊂ E2 there is a canonical transition map AE1 → AE2 of A-algebras.
Namely, given a decompositionE2 = E′

2qE′′
2 we setE′

1 = E1 ∩E′
2 andE′′

1 = E1 ∩E′′
2 .

Then observe that Z(E′
1, E

′′
1 ) ⊂ Z(E′

2, E
′′
2 ) hence a uniqueA-algebra mapA∼

Z(E′
1,E

′′
1 ) →
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A∼
Z(E′

2,E
′′
2 ) by Lemma 5.1. Using these maps collectively we obtain the desired ring map

AE1 → AE2 . Observe that the corresponding map of affine schemes

(5.2.4) XE2 −→ XE1

maps ZE2 into ZE1 . By uniqueness we obtain a system of A-algebras over I(A) and we
set

(5.2.5) Aw = colimE∈I(A) AE

This A-algebra is ind-Zariski and faithfully flat over A. Finally, we set Xw = Spec(Aw)
and endow it with the closed subscheme Z = limE∈I(A) ZE . In a formula

(5.2.6) Xw = limE∈I(A) XE ⊃ Z = limE∈I(A) ZE

Lemma 5.3. LetX = Spec(A) be an affine scheme. WithA→ Aw ,Xw = Spec(Aw),
and Z ⊂ Xw as above.

(1) A→ Aw is ind-Zariski and faithfully flat,
(2) Xw → X induces a bijection Z → X ,
(3) Z is the set of closed points of Xw ,
(4) Z is a reduced scheme, and
(5) every point of Xw specializes to a unique point of Z.

In particular, Xw is w-local (Definition 2.3).

Proof. The mapA→ Aw is ind-Zariski by construction. For everyE the morphism
ZE → X is a bijection, hence (2). As Z ⊂ Xw we conclude Xw → X is surjective and
A→ Aw is faithfully flat by Algebra, Lemma 39.16. This proves (1).

Suppose that y ∈ Xw , y 6∈ Z. Then there exists anE such that the image of y inXE is not
contained in ZE . Then for all E ⊂ E′ also y maps to an element of XE′ not contained in
ZE′ . Let TE′ ⊂ XE′ be the reduced closed subscheme which is the closure of the image
of y. It is clear that T = limE⊂E′ TE′ is the closure of y in Xw. For every E ⊂ E′ the
scheme TE′ ∩ZE′ is nonempty by construction ofXE′ . Hence limTE′ ∩ZE′ is nonempty
and we conclude that T ∩ Z is nonempty. Thus y is not a closed point. It follows that
every closed point of Xw is in Z.

Suppose that y ∈ Xw specializes to z, z′ ∈ Z. We will show that z = z′ which will finish
the proof of (3) and will imply (5). Let x, x′ ∈ X be the images of z and z′. Since Z → X
is bijective it suffices to show that x = x′. If x 6= x′, then there exists an f ∈ A such that
x ∈ D(f) and x′ ∈ V (f) (or vice versa). Set E = {f} so that

XE = Spec(Af )q Spec(A∼
V (f))

Then we see that z and z′ map xE and x′
E which are in different parts of the given de-

composition of XE above. But then it impossible for xE and x′
E to be specializations of a

common point. This is the desired contradiction.

Recall that given a finite subsetE ⊂ Awe haveZE is a disjoint union of the locally closed
subschemes Z(E′, E′′) each isomorphic to the spectrum of (A/I)f where I is the ideal
generated by E′′ and f the product of the elements of E′. Any nilpotent element b of
(A/I)f is the class of g/fn for some g ∈ A. Then settingE′ = E∪{g} the reader verifies
that b is pulls back to zero under the transition mapZE′ → ZE of the system. This proves
(4). �
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Remark 5.4. Let A be a ring. Let κ be an infinite cardinal bigger or equal than the
cardinality of A. Then the cardinality of Aw (Lemma 5.3) is at most κ. Namely, each AE
has cardinality at most κ and the set of finite subsets ofA has cardinality at most κ as well.
Thus the result follows as κ⊗ κ = κ, see Sets, Section 6.

Lemma 5.5 (Universal property of the construction). Let A be a ring. Let A → Aw
be the ring map constructed in Lemma 5.3. For any ring map A→ B such that Spec(B)
is w-local, there is a unique factorizationA→ Aw → B such that Spec(B)→ Spec(Aw)
is w-local.

Proof. Denote Y = Spec(B) and Y0 ⊂ Y the set of closed points. Denote f : Y →
X the given morphism. Recall that Y0 is profinite, in particular every constructible subset
of Y0 is open and closed. Let E ⊂ A be a finite subset. Recall that Aw = colimAE and
that the set of closed points of Spec(Aw) is the limit of the closed subsets ZE ⊂ XE =
Spec(AE). Thus it suffices to show there is a unique factorization A → AE → B such
that Y → XE maps Y0 into ZE . Since ZE → X = Spec(A) is bijective, and since the
strata Z(E′, E′′) are constructible we see that

Y0 =
∐

f−1(Z(E′, E′′)) ∩ Y0

is a disjoint union decomposition into open and closed subsets. As Y0 = π0(Y ) we obtain
a corresponding decomposition of Y into open and closed pieces. Thus it suffices to con-
struct the factorization in case f(Y0) ⊂ Z(E′, E′′) for some decompositionE = E′qE′′.
In this case f(Y ) is contained in the set of points ofX specializing to Z(E′, E′′) which is
homeomorphic to XE′,E′′ . Thus we obtain a unique continuous map Y → XE′,E′′ over
X . By Lemma 3.7 this corresponds to a unique morphism of schemes Y → XE′,E′′ over
X . This finishes the proof. �

Recall that the spectrum of a ring is profinite if and only if every point is closed. There
are in fact a whole slew of equivalent conditions that imply this. See Algebra, Lemma 26.5
or Topology, Lemma 23.8.

Lemma 5.6. Let A be a ring such that Spec(A) is profinite. Let A → B be a ring
map. Then Spec(B) is profinite in each of the following cases:

(1) if q, q′ ⊂ B lie over the same prime of A, then neither q ⊂ q′, nor q′ ⊂ q,
(2) A→ B induces algebraic extensions of residue fields,
(3) A→ B is a local isomorphism,
(4) A→ B identifies local rings,
(5) A→ B is weakly étale,
(6) A→ B is quasi-finite,
(7) A→ B is unramified,
(8) A→ B is étale,
(9) B is a filtered colimit of A-algebras as in (1) – (8),

(10) etc.

Proof. By the references mentioned above (Algebra, Lemma 26.5 or Topology, Lemma
23.8) there are no specializations between distinct points of Spec(A) and Spec(B) is profi-
nite if and only if there are no specializations between distinct points of Spec(B). These
specializations can only happen in the fibres of Spec(B) → Spec(A). In this way we see
that (1) is true.
The assumption in (2) implies all primes ofB are maximal by Algebra, Lemma 35.9. Thus
(2) holds. If A→ B is a local isomorphism or identifies local rings, then the residue field
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extensions are trivial, so (3) and (4) follow from (2). If A→ B is weakly étale, then More
on Algebra, Lemma 104.17 tells us it induces separable algebraic residue field extensions, so
(5) follows from (2). IfA→ B is quasi-finite, then the fibres are finite discrete topological
spaces. Hence (6) follows from (1). Hence (3) follows from (1). Cases (7) and (8) follow
from this as unramified and étale ring map are quasi-finite (Algebra, Lemmas 151.6 and
143.6). If B = colimBi is a filtered colimit of A-algebras, then Spec(B) = lim Spec(Bi)
in the category of topological spaces by Limits, Lemma 4.2. Hence if each Spec(Bi) is
profinite, so is Spec(B) by Topology, Lemma 22.3. This proves (9). �

Lemma 5.7. Let A be a ring. Let V (I) ⊂ Spec(A) be a closed subset which is a
profinite topological space. Then there exists an ind-Zariski ring map A → B such that
Spec(B) is w-local, the set of closed points is V (IB), and A/I ∼= B/IB.

Proof. Let A → Aw and Z ⊂ Y = Spec(Aw) as in Lemma 5.3. Let T ⊂ Z be the
inverse image of V (I). Then T → V (I) is a homeomorphism by Topology, Lemma 17.8.
Let B = (Aw)∼

T , see Lemma 5.1. It is clear that B is w-local with closed points V (IB).
The ring mapA/I → B/IB is ind-Zariski and induces a homeomorphism on underlying
topological spaces. Hence it is an isomorphism by Lemma 3.8. �

Lemma 5.8. Let A be a ring such that X = Spec(A) is w-local. Let I ⊂ A be the
radical ideal cutting out the set X0 of closed points in X . Let A → B be a ring map
inducing algebraic extensions on residue fields at primes. Then

(1) every point of Z = V (IB) is a closed point of Spec(B),
(2) there exists an ind-Zariski ring map B → C such that

(a) B/IB → C/IC is an isomorphism,
(b) the space Y = Spec(C) is w-local,
(c) the induced map p : Y → X is w-local, and
(d) p−1(X0) is the set of closed points of Y .

Proof. By Lemma 5.6 applied toA/I → B/IB all points ofZ = V (IB) = Spec(B/IB)
are closed, in fact Spec(B/IB) is a profinite space. To finish the proof we apply Lemma
5.7 to IB ⊂ B. �

6. Identifying local rings versus ind-Zariski

An ind-Zariski ring map A → B identifies local rings (Lemma 4.6). The converse does
not hold (Examples, Section 45). However, it turns out that there is a kind of structure
theorem for ring maps which identify local rings in terms of ind-Zariski ring maps, see
Proposition 6.6.

Let A be a ring. Let X = Spec(A). The space of connected components π0(X) is a
profinite space by Topology, Lemma 23.9 (and Algebra, Lemma 26.2).

Lemma 6.1. Let A be a ring. Let X = Spec(A). Let T ⊂ π0(X) be a closed subset.
There exists a surjective ind-Zariski ring map A → B such that Spec(B) → Spec(A)
induces a homeomorphism of Spec(B) with the inverse image of T in X .

Proof. Let Z ⊂ X be the inverse image of T . Then Z is the intersection Z =
⋂
Zα

of the open and closed subsets of X containing Z , see Topology, Lemma 12.12. For each
α we have Zα = Spec(Aα) where A → Aα is a local isomorphism (a localization at an
idempotent). Setting B = colimAα proves the lemma. �
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Lemma 6.2. Let A be a ring and let X = Spec(A). Let T be a profinite space and let
T → π0(X) be a continuous map. There exists an ind-Zariski ring map A→ B such that
with Y = Spec(B) the diagram

Y //

��

π0(Y )

��
X // π0(X)

is cartesian in the category of topological spaces and such that π0(Y ) = T as spaces over
π0(X).

Proof. Namely, write T = limTi as the limit of an inverse system finite discrete
spaces over a directed set (see Topology, Lemma 22.2). For each i let Zi = Im(T →
π0(X)×Ti). This is a closed subset. Observe thatX×Ti is the spectrum ofAi =

∏
t∈Ti A

and that A → Ai is a local isomorphism. By Lemma 6.1 we see that Zi ⊂ π0(X ×
Ti) = π0(X) × Ti corresponds to a surjection Ai → Bi which is ind-Zariski such that
Spec(Bi) = X×π0(X)Zi as subsets ofX×Ti. The transition maps Ti → Ti′ induce maps
Zi → Zi′ and X ×π0(X) Zi → X ×π0(X) Zi′ . Hence ring maps Bi′ → Bi (Lemmas 3.8
and 4.6). SetB = colimBi. Because T = limZi we haveX×π0(X)T = limX×π0(X)Zi
and hence Y = Spec(B) = lim Spec(Bi) fits into the cartesian diagram

Y //

��

T

��
X // π0(X)

of topological spaces. By Lemma 2.5 we conclude that T = π0(Y ). �

Example 6.3. Let k be a field. Let T be a profinite topological space. There exists
an ind-Zariski ring map k → A such that Spec(A) is homeomorphic to T . Namely, just
apply Lemma 6.2 to T → π0(Spec(k)) = {∗}. In fact, in this case we have

A = colim Map(Ti, k)
whenever we write T = limTi as a filtered limit with each Ti finite.

Lemma 6.4. Let A→ B be ring map such that
(1) A→ B identifies local rings,
(2) the topological spaces Spec(B), Spec(A) are w-local,
(3) Spec(B)→ Spec(A) is w-local, and
(4) π0(Spec(B))→ π0(Spec(A)) is bijective.

Then A→ B is an isomorphism

Proof. Let X0 ⊂ X = Spec(A) and Y0 ⊂ Y = Spec(B) be the sets of closed
points. By assumption Y0 maps into X0 and the induced map Y0 → X0 is a bijection. As
a space Spec(A) is the disjoint union of the spectra of the local rings ofA at closed points.
Similarly for B. Hence X → Y is a bijection. Since A → B is flat we have going down
(Algebra, Lemma 39.19). Thus Algebra, Lemma 41.11 shows for any prime q ⊂ B lying
over p ⊂ A we have Bq = Bp. Since Bq = Ap by assumption, we see that Ap = Bp for
all primes p of A. Thus A = B by Algebra, Lemma 23.1. �

Lemma 6.5. Let A→ B be ring map such that
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(1) A→ B identifies local rings,
(2) the topological spaces Spec(B), Spec(A) are w-local, and
(3) Spec(B)→ Spec(A) is w-local.

Then A→ B is ind-Zariski.

Proof. Set X = Spec(A) and Y = Spec(B). Let X0 ⊂ X and Y0 ⊂ Y be the set of
closed points. Let A → A′ be the ind-Zariski morphism of affine schemes such that with
X ′ = Spec(A′) the diagram

X ′ //

��

π0(X ′)

��
X // π0(X)

is cartesian in the category of topological spaces and such that π0(X ′) = π0(Y ) as spaces
over π0(X), see Lemma 6.2. By Lemma 2.5 we see that X ′ is w-local and the set of closed
points X ′

0 ⊂ X ′ is the inverse image of X0.

We obtain a continuous map Y → X ′ of underlying topological spaces overX identifying
π0(Y ) with π0(X ′). By Lemma 3.8 (and Lemma 4.6) this corresponds to a morphism of
affine schemes Y → X ′ over X . Since Y → X maps Y0 into X0 we see that Y → X ′

maps Y0 into X ′
0, i.e., Y → X ′ is w-local. By Lemma 6.4 we see that Y ∼= X ′ and we

win. �

The following proposition is a warm up for the type of result we will prove later.

Proposition 6.6. Let A→ B be a ring map which identifies local rings. Then there
exists a faithfully flat, ind-Zariski ring map B → B′ such that A→ B′ is ind-Zariski.

Proof. Let A → Aw , resp. B → Bw be the faithfully flat, ind-Zariski ring map
constructed in Lemma 5.3 for A, resp. B. Since Spec(Bw) is w-local, there exists a unique
factorization A → Aw → Bw such that Spec(Bw) → Spec(Aw) is w-local by Lemma
5.5. Note that Aw → Bw identifies local rings, see Lemma 3.4. By Lemma 6.5 this means
Aw → Bw is ind-Zariski. Since B → Bw is faithfully flat, ind-Zariski (Lemma 5.3) and
the compositionA→ B → Bw is ind-Zariski (Lemma 4.3) the proposition is proved. �

The proposition above allows us to characterize the affine, weakly contractible objects in
the pro-Zariski site of an affine scheme.

Lemma 6.7. Let A be a ring. The following are equivalent
(1) every faithfully flat ring map A→ B identifying local rings has a retraction,
(2) every faithfully flat ind-Zariski ring map A→ B has a retraction, and
(3) A satisfies

(a) Spec(A) is w-local, and
(b) π0(Spec(A)) is extremally disconnected.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 6.6.

Assume (3)(a) and (3)(b). Let A → B be faithfully flat and ind-Zariski. We will use
without further mention the fact that a flat map A → B is faithfully flat if and only if
every closed point of Spec(A) is in the image of Spec(B)→ Spec(A). We will show that
A→ B has a retraction.
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Let I ⊂ A be an ideal such that V (I) ⊂ Spec(A) is the set of closed points of Spec(A).
We may replace B by the ring C constructed in Lemma 5.8 for A→ B and I ⊂ A. Thus
we may assume Spec(B) is w-local such that the set of closed points of Spec(B) is V (IB).

Assume Spec(B) is w-local and the set of closed points of Spec(B) is V (IB). Choose a
continuous section to the surjective continuous map V (IB) → V (I). This is possible as
V (I) ∼= π0(Spec(A)) is extremally disconnected, see Topology, Proposition 26.6. The
image is a closed subspace T ⊂ π0(Spec(B)) ∼= V (IB) mapping homeomorphically onto
π0(A). Replacing B by the ind-Zariski quotient ring constructed in Lemma 6.1 we see
that we may assume π0(Spec(B)) → π0(Spec(A)) is bijective. At this point A → B is
an isomorphism by Lemma 6.4.

Assume (1) or equivalently (2). Let A → Aw be the ring map constructed in Lemma 5.3.
By (1) there is a retractionAw → A. Thus Spec(A) is homeomorphic to a closed subset of
Spec(Aw). By Lemma 2.4 we see (3)(a) holds. Finally, let T → π0(A) be a surjective map
with T an extremally disconnected, quasi-compact, Hausdorff topological space (Topol-
ogy, Lemma 26.9). Choose A → B as in Lemma 6.2 adapted to T → π0(Spec(A)). By
(1) there is a retraction B → A. Thus we see that T = π0(Spec(B))→ π0(Spec(A)) has
a section. A formal categorical argument, using Topology, Proposition 26.6, implies that
π0(Spec(A)) is extremally disconnected. �

Lemma 6.8. Let A be a ring. There exists a faithfully flat, ind-Zariski ring map A→
B such that B satisfies the equivalent conditions of Lemma 6.7.

Proof. We first apply Lemma 5.3 to see that we may assume that Spec(A) is w-
local. Choose an extremally disconnected space T and a surjective continuous map T →
π0(Spec(A)), see Topology, Lemma 26.9. Note that T is profinite. Apply Lemma 6.2 to
find an ind-Zariski ring map A → B such that π0(Spec(B)) → π0(Spec(A)) realizes
T → π0(Spec(A)) and such that

Spec(B) //

��

π0(Spec(B))

��
Spec(A) // π0(Spec(A))

is cartesian in the category of topological spaces. Note that Spec(B) is w-local, that
Spec(B) → Spec(A) is w-local, and that the set of closed points of Spec(B) is the in-
verse image of the set of closed points of Spec(A), see Lemma 2.5. Thus condition (3) of
Lemma 6.7 holds for B. �

Remark 6.9. In each of Lemmas 6.1, 6.2, Proposition 6.6, and Lemma 6.8 we find an
ind-Zariski ring map with some properties. In the paper [?] the authors use the notion
of an ind-(Zariski localization) which is a filtered colimit of finite products of principal
localizations. It is possible to replace ind-Zariski by ind-(Zariski localization) in each of
the results listed above. However, we do not need this and the notion of an ind-Zariski
homomorphism of rings as defined here has slightly better formal properties. Moreover,
the notion of an ind-Zariski ring map is the natural analogue of the notion of an ind-étale
ring map defined in the next section.

7. Ind-étale algebra

We start with a definition.
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Definition 7.1. A ring map A → B is said to be ind-étale if B can be written as a
filtered colimit of étale A-algebras.

The category of ind-étale algebras is closed under a number of natural operations.

Lemma 7.2. Let A → B and A → A′ be ring maps. Let B′ = B ⊗A A′ be the base
change of B. If A→ B is ind-étale, then A′ → B′ is ind-étale.

Proof. This is Algebra, Lemma 154.1. �

Lemma 7.3. Let A → B and B → C be ring maps. If A → B and B → C are
ind-étale, then A→ C is ind-étale.

Proof. This is Algebra, Lemma 154.2. �

Lemma 7.4. A filtered colimit of ind-étale A-algebras is ind-étale over A.

Proof. This is Algebra, Lemma 154.3. �

Lemma 7.5. LetA be a ring. LetB → C be anA-algebra map of ind-étaleA-algebras.
Then C is an ind-étale B-algebra.

Proof. This is Algebra, Lemma 154.5. �

Lemma 7.6. LetA→ B be ind-étale. ThenA→ B is weakly étale (More on Algebra,
Definition 104.1).

Proof. This follows from More on Algebra, Lemma 104.14. �

Lemma 7.7. Let A be a ring and let I ⊂ A be an ideal. The base change functor
ind-étale A-algebras −→ ind-étale A/I-algebras, C 7−→ C/IC

has a fully faithful right adjoint v. In particular, given an ind-étale A/I-algebra C there
exists an ind-étale A-algebra C = v(C) such that C = C/IC.

Proof. Let C be an ind-étale A/I-algebra. Consider the category C of factorizations
A → B → C where A → B is étale. (We ignore some set theoretical issues in this
proof.) We will show that this category is directed and that C = colimC B is an ind-étale
A-algebra such that C = C/IC.
We first prove that C is directed (Categories, Definition 19.1). The category is nonempty
as A → A → C is an object. Suppose that A → B → C and A → B′ → C are two
objects of C. Then A → B ⊗A B′ → C is another (use Algebra, Lemma 143.3). Suppose
that f, g : B → B′ are two maps between objects A → B → C and A → B′ → C of C.
Then a coequalizer is A→ B′ ⊗f,B,g B′ → C. This is an object of C by Algebra, Lemmas
143.3 and 143.8. Thus the category C is directed.

Write C = colimBi as a filtered colimit with Bi étale over A/I . For every i there exists
A→ Bi étale with Bi = Bi/IBi, see Algebra, Lemma 143.10. Thus C → C is surjective.
SinceC/IC → C is ind-étale (Lemma 7.5) we see that it is flat. HenceC is a localization of
C/IC at some multiplicative subset S ⊂ C/IC (Algebra, Lemma 108.2). Take an f ∈ C
mapping to an element of S ⊂ C/IC. Choose A→ B → C in C and g ∈ B mapping to
f in the colimit. Then we see that A → Bg → C is an object of C as well. Thus f is an
invertible element of C. It follows that C/IC = C.
Next, we claim that for an ind-étale algebra D over A we have

MorA(D,C) = MorA/I(D/ID,C)
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Namely, let D/ID → C be an A/I-algebra map. Write D = colimi∈I Di as a colimit
over a directed set I with Di étale over A. By choice of C we obtain a transformation
I → C and hence a map D → C compatible with maps to C. Whence the claim.

It follows that the functor v defined by the rule

C 7−→ v(C) = colimA→B→C B

is a right adjoint to the base change functor u as required by the lemma. The functor v is
fully faithful because u ◦ v = id by construction, see Categories, Lemma 24.4. �

8. Constructing ind-étale algebras

LetA be a ring. Recall that any étale ring mapA→ B is isomorphic to a standard smooth
ring map of relative dimension 0. Such a ring map is of the form

A −→ A[x1, . . . , xn]/(f1, . . . , fn)
where the determinant of the n× n-matrix with entries ∂fi/∂xj is invertible in the quo-
tient ring. See Algebra, Lemma 143.2.

Let S(A) be the set of all faithfully flat1 standard smoothA-algebras of relative dimension
0. Let I(A) be the partially ordered (by inclusion) set of finite subsets E of S(A). Note
that I(A) is a directed partially ordered set. For E = {A→ B1, . . . , A→ Bn} set

BE = B1 ⊗A . . .⊗A Bn
Observe that BE is a faithfully flat étale A-algebra. For E ⊂ E′, there is a canonical
transition map BE → BE′ of étale A-algebras. Namely, say E = {A → B1, . . . , A →
Bn} and E′ = {A → B1, . . . , A → Bn+m} then BE → BE′ sends b1 ⊗ . . . ⊗ bn to the
element b1⊗ . . .⊗bn⊗1⊗ . . .⊗1 ofBE′ . This construction defines a system of faithfully
flat étale A-algebras over I(A) and we set

T (A) = colimE∈I(A) BE

Observe that T (A) is a faithfully flat ind-étale A-algebra (Algebra, Lemma 39.20). By
construction given any faithfully flat étaleA-algebraB there is a (non-unique)A-algebra
map B → T (A). Namely, pick some (A → B0) ∈ S(A) and an isomorphism B ∼= B0.
Then the canonical coprojection

B → B0 → T (A) = colimE∈I(A) BE

is the desired map.

Lemma 8.1. Given a ring A there exists a faithfully flat ind-étale A-algebra C such
that every faithfully flat étale ring map C → B has a retraction.

Proof. Set T 1(A) = T (A) and Tn+1(A) = T (Tn(A)). Let

C = colimTn(A)
This algebra is faithfully flat over eachTn(A) and in particular overA, see Algebra, Lemma
39.20. Moreover, C is ind-étale overA by Lemma 7.4. IfC → B is étale, then there exists
an n and an étale ring map Tn(A) → B′ such that B = C ⊗Tn(A) B

′, see Algebra,
Lemma 143.3. If C → B is faithfully flat, then Spec(B)→ Spec(C)→ Spec(Tn(A)) is
surjective, hence Spec(B′)→ Spec(Tn(A)) is surjective. In other words, Tn(A)→ B′ is

1In the presence of flatness, e.g., for smooth or étale ring maps, this just means that the induced map on
spectra is surjective. See Algebra, Lemma 39.16.
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faithfully flat. By our construction, there is a Tn(A)-algebra map B′ → Tn+1(A). This
induces a C-algebra map B → C which finishes the proof. �

Remark 8.2. Let A be a ring. Let κ be an infinite cardinal bigger or equal than the
cardinality of A. Then the cardinality of T (A) is at most κ. Namely, each BE has cardi-
nality at most κ and the index set I(A) has cardinality at most κ as well. Thus the result
follows as κ⊗ κ = κ, see Sets, Section 6. It follows that the ring constructed in the proof
of Lemma 8.1 has cardinality at most κ as well.

Remark 8.3. The construction A 7→ T (A) is functorial in the following sense: If
A→ A′ is a ring map, then we can construct a commutative diagram

A //

��

T (A)

��
A′ // T (A′)

Namely, given (A → A[x1, . . . , xn]/(f1, . . . , fn)) in S(A) we can use the ring map
ϕ : A → A′ to obtain a corresponding element (A′ → A′[x1, . . . , xn]/(fϕ1 , . . . , fϕn ))
of S(A′) where fϕ means the polynomial obtained by applying ϕ to the coefficients of
the polynomial f . Moreover, there is a commutative diagram

A //

��

A[x1, . . . , xn]/(f1, . . . , fn)

��
A′ // A′[x1, . . . , xn]/(fϕ1 , . . . , fϕn )

which is a in the category of rings. ForE ⊂ S(A) finite, setE′ = ϕ(E) and defineBE →
BE′ in the obvious manner. Taking the colimit gives the desired map T (A)→ T (A′), see
Categories, Lemma 14.8.

Lemma 8.4. LetA be a ring such that every faithfully flat étale ring mapA→ B has
a retraction. Then the same is true for every quotient ring A/I .

Proof. LetA/I → B be faithfully flat étale. By Algebra, Lemma 143.10 we can write
B = B/IB for some étale ring map A → B′. The image U of Spec(B) → Spec(A) is
open and contains V (I). Hence the complement Z = Spec(A) \ U is quasi-compact and
disjoint from V (I). Hence Z ⊂ D(f1) ∪ . . . ∪ D(fr) for some r ≥ 0 and fi ∈ I . Then
A → B′ = B ×

∏
Afi is faithfully flat étale and B = B′/IB′. Hence the retraction

B′ → A to A→ B′, induces a retraction to A/I → B. �

Lemma 8.5. LetA be a ring such that every faithfully flat étale ring mapA→ B has
a retraction. Then every local ring of A at a maximal ideal is strictly henselian.

Proof. Let m be a maximal ideal ofA. LetA→ B be an étale ring map and let q ⊂ B
be a prime lying over m. By the description of the strict henselization Ashm in Algebra,
Lemma 155.11 it suffices to show that Am = Bq. Note that there are finitely many primes
q = q1, q2, . . . , qn lying over m and there are no specializations between them as an étale
ring map is quasi-finite, see Algebra, Lemma 143.6. Thus qi is a maximal ideal and we can
find g ∈ q2∩ . . .∩qn, g 6∈ q (Algebra, Lemma 15.2). After replacingB byBg we see that q
is the only prime of B lying over m. The image U ⊂ Spec(A) of Spec(B)→ Spec(A) is
open (Algebra, Proposition 41.8). Thus the complement Spec(A)\U is closed and we can
find f ∈ A, f 6∈ p such that Spec(A) = U∪D(f). The ring mapA→ B×Af is faithfully
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flat and étale, hence has a retraction σ : B ×Af → A by assumption on A. Observe that
σ is étale, hence flat as a map between étale A-algebras (Algebra, Lemma 143.8). Since q is
the only prime of B × Af lying over A we find that Ap → Bq has a retraction which is
also flat. ThusAp → Bq → Ap are flat local ring maps whose composition is the identity.
Since a flat local homomorphism of local rings is injective we conclude these maps are
isomorphisms as desired. �

Lemma 8.6. LetA be a ring such that every faithfully flat étale ring mapA→ B has
a retraction. Let Z ⊂ Spec(A) be a closed subscheme. Let A → A∼

Z be as constructed in
Lemma 5.1. Then every faithfully flat étale ring map A∼

Z → C has a retraction.

Proof. There exists an étale ring map A → B′ such that C = B′ ⊗A A∼
Z as A∼

Z -
algebras. The image U ′ ⊂ Spec(A) of Spec(B′) → Spec(A) is open and contains V (I),
hence we can find f ∈ I such that Spec(A) = U ′∪D(f). ThenA→ B′×Af is étale and
faithfully flat. By assumption there is a retraction B′ × Af → A. Localizing we obtain
the desired retraction C → A∼

Z . �

Lemma 8.7. LetA→ B be a ring map inducing algebraic extensions on residue fields.
There exists a commutative diagram

B // D

A //

OO

C

OO

with the following properties:
(1) A→ C is faithfully flat and ind-étale,
(2) B → D is faithfully flat and ind-étale,
(3) Spec(C) is w-local,
(4) Spec(D) is w-local,
(5) Spec(D)→ Spec(C) is w-local,
(6) the set of closed points of Spec(D) is the inverse image of the set of closed points

of Spec(C),
(7) the set of closed points of Spec(C) surjects onto Spec(A),
(8) the set of closed points of Spec(D) surjects onto Spec(B),
(9) for m ⊂ C maximal the local ring Cm is strictly henselian.

Proof. There is a faithfully flat, ind-Zariski ring mapA→ A′ such that Spec(A′) is
w-local and such that the set of closed points of Spec(A′) maps onto Spec(A), see Lemma
5.3. Let I ⊂ A′ be the ideal such that V (I) is the set of closed points of Spec(A′). Choose
A′ → C ′ as in Lemma 8.1. Note that the local rings C ′

m′ at maximal ideals m′ ⊂ C ′

are strictly henselian by Lemma 8.5. We apply Lemma 5.8 to A′ → C ′ and I ⊂ A′ to get
C ′ → C withC ′/IC ′ ∼= C/IC. Note that sinceA′ → C ′ is faithfully flat, Spec(C ′/IC ′)
surjects onto the set of closed points of A′ and in particular onto Spec(A). Moreover,
as V (IC) ⊂ Spec(C) is the set of closed points of C and C ′ → C is ind-Zariski (and
identifies local rings) we obtain properties (1), (3), (7), and (9).

Denote J ⊂ C the ideal such that V (J) is the set of closed points of Spec(C). Set D′ =
B ⊗A C. The ring map C → D′ induces algebraic residue field extensions. Keep in mind
that since V (J) → Spec(A) is surjective the map T = V (JD) → Spec(B) is surjective
too. Apply Lemma 5.8 toC → D′ and J ⊂ C to getD′ → DwithD′/JD′ ∼= D/JD. All
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of the remaining properties given in the lemma are immediate from the results of Lemma
5.8. �

9. Weakly étale versus pro-étale

Recall that a ring homomorphismA→ B is weakly étale ifA→ B is flat andB⊗AB →
B is flat. We have proved some properties of such ring maps in More on Algebra, Section
104. In particular, if A→ B is a local homomorphism, and A is a strictly henselian local
rings, then A = B, see More on Algebra, Theorem 104.24. Using this theorem and the
work we’ve done above we obtain the following structure theorem for weakly étale ring
maps.

Proposition 9.1. Let A → B be a weakly étale ring map. Then there exists a faith-
fully flat, ind-étale ring map B → B′ such that A→ B′ is ind-étale.

Proof. The ring map A → B induces (separable) algebraic extensions of residue
fields, see More on Algebra, Lemma 104.17. Thus we may apply Lemma 8.7 and choose a
diagram

B // D

A //

OO

C

OO

with the properties as listed in the lemma. Note that C → D is weakly étale by More on
Algebra, Lemma 104.11. Pick a maximal ideal m ⊂ D. By construction this lies over a
maximal ideal m′ ⊂ C. By More on Algebra, Theorem 104.24 the ring mapCm′ → Dm is
an isomorphism. As every point of Spec(C) specializes to a closed point we conclude that
C → D identifies local rings. Thus Proposition 6.6 applies to the ring map C → D. Pick
D → D′ faithfully flat and ind-Zariski such that C → D′ is ind-Zariski. Then B → D′

is a solution to the problem posed in the proposition. �

10. The V topology and the pro-h topology

The V topology was introduced in Topologies, Section 10. The h topology was introduced
in More on Flatness, Section 34. A kind of intermediate topology, namely the ph topology,
was introduced in Topologies, Section 8.
Given a topology τ on a suitable category C of schemes, we can introduce a “pro-τ topol-
ogy” on C as follows. Recall that forX in C we use hX to denote the representable presheaf
associated to X . Let us temporarily say a morphism X → Y of C is a τ -cover2 if the τ -
sheafification of hX → hY is surjective. Then we can define the pro-τ topology as the
coarsest topology such that

(1) the pro-τ topology is finer than the τ topology, and
(2) X → Y is a pro-τ -cover if Y is affine and X = limXλ is a directed limit of

affine schemes Xλ over Y such that hXλ → hY is a τ -cover for all λ.
We use this pedantic formulation because we do not want to specify a choice of pro-τ
coverings: for different τ different choices of collections of coverings are suitable. For
example, in Section 12 we will see that in order to define the pro-étale topology looking
at families of weakly étale morphisms with some finiteness property works well. More

2This should not be confused with the notion of a covering. For example if τ = étale, any morphism
X → Y which has a section is a τ -covering. But our definition of étale coverings {Vi → Y }i∈I forces each
Vi → Y to be étale.
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generally, the proposed construction given in this paragraph is meant mainly to motivate
the results in this section and we will never implicitly define a pro-τ topology using this
method.
The following lemma tells us that the pro-V topology is equal to the V topology.

Lemma 10.1. Let Y be an affine scheme. Let X = limXi be a directed limit of affine
schemes over Y . The following are equivalent

(1) {X → Y } is a standard V covering (Topologies, Definition 10.1), and
(2) {Xi → Y } is a standard V covering for all i.

Proof. A singleton {X → Y } is a standard V covering if and only if given a mor-
phism g : Spec(V ) → Y there is an extension of valuation rings V ⊂ W and a commu-
tative diagram

Spec(W ) //

��

X

��
Spec(V ) g // Y

Thus (1) ⇒ (2) is immediate from the definition. Conversely, assume (2) and let g :
Spec(V )→ Y as above be given. Write Spec(V )×Y Xi = Spec(Ai). Since {Xi → Y }
is a standard V covering, we may choose a valuation ring Wi and a ring map Ai → Wi

such that the composition V → Ai →Wi is an extension of valuation rings. In particular,
the quotient A′

i of Ai by its V -torsion is a faitfhully flat V -algebra. Flatness by More on
Algebra, Lemma 22.10 and surjectivity on spectra because Ai → Wi factors through A′

i.
Thus

A = colimA′
i

is a faithfully flat V -algebra (Algebra, Lemma 39.20). Since {Spec(A) → Spec(V )} is
a standard fpqc cover, it is a standard V cover (Topologies, Lemma 10.2) and hence we
can choose Spec(W ) → Spec(A) such that V → W is an extension of valuation rings.
Since we can compose with the morphism Spec(A)→ X = Spec(colimAi) the proof is
complete. �

The following lemma tells us that the pro-h topology is equal to the pro-ph topology is
equal to the V topology.

Lemma 10.2. LetX → Y be a morphism of affine schemes. The following are equiv-
alent

(1) {X → Y } is a standard V covering (Topologies, Definition 10.1),
(2) X = limXi is a directed limit of affine schemes over Y such that {Xi → Y } is

a ph covering for each i, and
(3) X = limXi is a directed limit of affine schemes over Y such that {Xi → Y } is

an h covering for each i.

Proof. Proof of (2)⇒ (1). Recall that a V covering given by a single arrow between
affines is a standard V covering, see Topologies, Definition 10.7 and Lemma 10.6. Recall
that any ph covering is a V covering, see Topologies, Lemma 10.10. Hence if X = limXi

as in (2), then {Xi → Y } is a standard V covering for each i. Thus by Lemma 10.1 we see
that (1) is true.
Proof of (3)⇒ (2). This is clear because an h covering is always a ph covering, see More
on Flatness, Definition 34.2.
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Proof of (1) ⇒ (3). This is the interesting direction, but the interesting content in this
proof is hidden in More on Flatness, Lemma 34.1. WriteX = Spec(A) andY = Spec(R).
We can write A = colimAi with Ai of finite presentation over R, see Algebra, Lemma
127.2. Set Xi = Spec(Ai). Then {Xi → Y } is a standard V covering for all i by (1)
and Topologies, Lemma 10.6. Hence {Xi → Y } is an h covering by More on Flatness,
Definition 34.2. This finishes the proof. �

The following lemma tells us, roughly speaking, that an h sheaf which is limit preserving
satisfies the sheaf condition for V coverings. Please also compare with Remark 10.4.

Lemma 10.3. Let S be a scheme. Let F be a contravariant functor defined on the
category of all schemes over S. If

(1) F satisfies the sheaf property for the h topology, and
(2) F is limit preserving (Limits, Remark 6.2),

then F satisfies the sheaf property for the V topology.

Proof. We will prove this by verifying (1) and (2’) of Topologies, Lemma 10.12. The
sheaf property for Zariski coverings follows from the fact that F has the sheaf property
for all h coverings. Finally, suppose that X → Y is a morphism of affine schemes over
S such that {X → Y } is a V covering. By Lemma 10.2 we can write X = limXi as a
directed limit of affine schemes over Y such that {Xi → Y } is an h covering for each i.
We obtain

Equalizer( F (X) //
// F (X ×Y X) )

= Equalizer( colimF (Xi)
//
// colimF (Xi ×Y Xi) )

= colim Equalizer( F (Xi)
//
// F (Xi ×Y Xi) )

= colimF (Y ) = F (Y )
which is what we wanted to show. The first equality because F is limit preserving and
X = limXi andX ×Y X = limXi×Y Xi. The second equality because filtered colimits
are exact. The third equality because F satisfies the sheaf property for h coverings. �

Remark 10.4. Let S be a scheme contained in a big site Schh. Let F be a sheaf of
sets on (Sch/S)h such that F (T ) = colimF (Ti) whenever T = limTi is a directed limit
of affine schemes in (Sch/S)h. In this situation F extends uniquely to a contravariant
functorF ′ on the category of all schemes overS such that (a)F ′ satisfies the sheaf property
for the h topology and (b) F ′ is limit preserving. See More on Flatness, Lemma 35.4. In
this situation Lemma 10.3 tells us that F ′ satisfies the sheaf property for the V topology.

11. Constructing w-contractible covers

In this section we construct w-contractible covers of affine schemes.

Definition 11.1. Let A be a ring. We say A is w-contractible if every faithfully flat
weakly étale ring map A→ B has a retraction.

We remark that by Proposition 9.1 an equivalent definition would be to ask that every
faithfully flat, ind-étale ring map A→ B has a retraction. Here is a key observation that
will allow us to construct w-contractible rings.

Lemma 11.2. Let A be a ring. The following are equivalent
(1) A is w-contractible,
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(2) every faithfully flat, ind-étale ring map A→ B has a retraction, and
(3) A satisfies

(a) Spec(A) is w-local,
(b) π0(Spec(A)) is extremally disconnected, and
(c) for every maximal ideal m ⊂ A the local ring Am is strictly henselian.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 9.1.

Assume (3)(a), (3)(b), and (3)(c). Let A → B be faithfully flat and ind-étale. We will use
without further mention the fact that a flat map A → B is faithfully flat if and only if
every closed point of Spec(A) is in the image of Spec(B)→ Spec(A) We will show that
A→ B has a retraction.

Let I ⊂ A be an ideal such that V (I) ⊂ Spec(A) is the set of closed points of Spec(A).
We may replace B by the ring C constructed in Lemma 5.8 for A→ B and I ⊂ A. Thus
we may assume Spec(B) is w-local such that the set of closed points of Spec(B) is V (IB).
In this case A → B identifies local rings by condition (3)(c) as it suffices to check this at
maximal ideals ofB which lie over maximal ideals ofA. ThusA→ B has a retraction by
Lemma 6.7.

Assume (1) or equivalently (2). We have (3)(c) by Lemma 8.5. Properties (3)(a) and (3)(b)
follow from Lemma 6.7. �

Proposition 11.3. For every ring A there exists a faithfully flat, ind-étale ring map
A→ D such that D is w-contractible.

Proof. Applying Lemma 8.7 to idA : A→ A we find a faithfully flat, ind-étale ring
map A → C such that C is w-local and such that every local ring at a maximal ideal
of C is strictly henselian. Choose an extremally disconnected space T and a surjective
continuous map T → π0(Spec(C)), see Topology, Lemma 26.9. Note that T is profinite.
Apply Lemma 6.2 to find an ind-Zariski ring map C → D such that π0(Spec(D)) →
π0(Spec(C)) realizes T → π0(Spec(C)) and such that

Spec(D) //

��

π0(Spec(D))

��
Spec(C) // π0(Spec(C))

is cartesian in the category of topological spaces. Note that Spec(D) is w-local, that
Spec(D)→ Spec(C) is w-local, and that the set of closed points of Spec(D) is the inverse
image of the set of closed points of Spec(C), see Lemma 2.5. Thus it is still true that the
local rings of D at its maximal ideals are strictly henselian (as they are isomorphic to the
local rings at the corresponding maximal ideals of C). It follows from Lemma 11.2 thatD
is w-contractible. �

Remark 11.4. Let A be a ring. Let κ be an infinite cardinal bigger or equal than the
cardinality of A. Then the cardinality of the ring D constructed in Proposition 11.3 is at
most

κ222κ

.

Namely, the ring map A→ D is constructed as a composition

A→ Aw = A′ → C ′ → C → D.
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Here the first three steps of the construction are carried out in the first paragraph of the
proof of Lemma 8.7. For the first step we have |Aw| ≤ κ by Remark 5.4. We have |C ′| ≤ κ
by Remark 8.2. Then |C| ≤ κ because C is a localization of (C ′)w (it is constructed from
C ′ by an application of Lemma 5.7 in the proof of Lemma 5.8). Thus C has at most 2κ
maximal ideals. Finally, the ring map C → D identifies local rings and the cardinality
of the set of maximal ideals of D is at most 222κ

by Topology, Remark 26.10. Since D ⊂∏
m⊂DDm we see that D has at most the size displayed above.

Lemma 11.5. Let A → B be a quasi-finite and finitely presented ring map. If the
residue fields of A are separably algebraically closed and Spec(A) is Hausdorff and ex-
tremally disconnected, then Spec(B) is extremally disconnected.

Proof. Set X = Spec(A) and Y = Spec(B). Choose a finite partition X =
∐
Xi

and X ′
i → Xi as in Étale Cohomology, Lemma 72.3. The map of topological spaces∐

Xi → X (where the source is the disjoint union in the category of topological spaces)
has a section by Topology, Proposition 26.6. Hence we see that X is topologically the
disjoint union of the strataXi. Thus we may replaceX by theXi and assume there exists
a surjective finite locally free morphism X ′ → X such that (X ′ ×X Y )red is isomorphic
to a finite disjoint union of copies of X ′

red. Picture∐
i=1,...,rX

′ //

��

Y

��
X ′ // X

The assumption on the residue fields of A implies that this diagram is a fibre product
diagram on underlying sets of points (details omitted). SinceX is extremally disconnected
and X ′ is Hausdorff (Lemma 5.6), the continuous map X ′ → X has a continuous section
σ. Then

∐
i=1,...,r σ(X) → Y is a bijective continuous map. By Topology, Lemma 17.8

we see that it is a homeomorphism and the proof is done. �

Lemma 11.6. Let A → B be a finite and finitely presented ring map. If A is w-
contractible, so is B.

Proof. We will use the criterion of Lemma 11.2. SetX = Spec(A) andY = Spec(B)
and denote f : Y → X the induced morphism. As f : Y → X is a finite morphism, we
see that the set of closed points Y0 of Y is the inverse image of the set of closed points X0
of X . Let y ∈ Y with image x ∈ X . Then x specializes to a unique closed point x0 ∈ X .
Say f−1({x0}) = {y1, . . . , yn}with yi closed in Y . SinceR = OX,x0 is strictly henselian
and since f is finite, we see that Y ×f,X Spec(R) is equal to

∐
i=1,...,n Spec(Ri) where

each Ri is a local ring finite over R whose maximal ideal corresponds to yi, see Algebra,
Lemma 153.3 part (10). Then y is a point of exactly one of these Spec(Ri) and we see that y
specializes to exactly one of the yi. In other words, every point of Y specializes to a unique
point of Y0. Thus Y is w-local. For every y ∈ Y0 with image x ∈ X0 we see that OY,y is
strictly henselian by Algebra, Lemma 153.4 applied toOX,x → B⊗AOX,x. It remains to
show that Y0 is extremally disconnected. To do this we look at X0 ×X Y → X0 where
X0 ⊂ X is the reduced induced scheme structure. Note that the underlying topological
space of X0 ×X Y agrees with Y0. Now the desired result follows from Lemma 11.5. �

Lemma 11.7. Let A be a ring. Let Z ⊂ Spec(A) be a closed subset of the form Z =
V (f1, . . . , fr). Set B = A∼

Z , see Lemma 5.1. If A is w-contractible, so is B.
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Proof. Let A∼
Z → B be a weakly étale faithfully flat ring map. Consider the ring

map
A −→ Af1 × . . .×Afr ×B

this is faithful flat and weakly étale. If A is w-contractible, then there is a retraction σ.
Consider the morphism

Spec(A∼
Z )→ Spec(A) Spec(σ)−−−−−→

∐
Spec(Afi)q Spec(B)

Every point of Z ⊂ Spec(A∼
Z ) maps into the component Spec(B). Since every point

of Spec(A∼
Z ) specializes to a point of Z we find a morphism Spec(A∼

Z ) → Spec(B) as
desired. �

12. The pro-étale site

In this section we only discuss the actual definition and construction of the various pro-
étale sites and the morphisms between them. The existence of weakly contractible objects
will be done in Section 13.

The pro-étale topology is a bit like the fpqc topology (see Topologies, Section 9) in that
the topos of sheaves on the small pro-étale site of a scheme depends on the choice of the
underlying category of schemes. Thus we cannot speak of the pro-étale topos of a scheme.
However, it will be true that the cohomology groups of a sheaf are unchanged if we enlarge
our underlying category of schemes, see Section 31.

We will define pro-étale coverings using weakly étale morphisms of schemes, see More on
Morphisms, Section 64. The reason is that, on the one hand, it is somewhat awkward to
define the notion of a pro-étale morphism of schemes, and on the other, Proposition 9.1
assures us that we obtain the same sheaves3 with the definition that follows.

Definition 12.1. Let T be a scheme. A pro-étale covering of T is a family of mor-
phisms {fi : Ti → T}i∈I of schemes such that each fi is weakly-étale and such that for
every affine open U ⊂ T there exists n ≥ 0, a map a : {1, . . . , n} → I and affine opens
Vj ⊂ Ta(j), j = 1, . . . , n with

⋃n
j=1 fa(j)(Vj) = U .

To be sure this condition implies that T =
⋃
fi(Ti). Here is a lemma that will allow us to

recognize pro-étale coverings. It will also allow us to reduce many lemmas about pro-étale
coverings to the corresponding results for fpqc coverings.

Lemma 12.2. Let T be a scheme. Let {fi : Ti → T}i∈I be a family of morphisms of
schemes with target T . The following are equivalent

(1) {fi : Ti → T}i∈I is a pro-étale covering,
(2) each fi is weakly étale and {fi : Ti → T}i∈I is an fpqc covering,
(3) each fi is weakly étale and for every affine openU ⊂ T there exist quasi-compact

opens Ui ⊂ Ti which are almost all empty, such that U =
⋃
fi(Ui),

(4) each fi is weakly étale and there exists an affine open covering T =
⋃
α∈A Uα

and for each α ∈ A there exist iα,1, . . . , iα,n(α) ∈ I and quasi-compact opens
Uα,j ⊂ Tiα,j such that Uα =

⋃
j=1,...,n(α) fiα,j (Uα,j).

If T is quasi-separated, these are also equivalent to

3To be precise the pro-étale topology we obtain using our choice of coverings is the same as the one gotten
from the general procedure explained in Section 10 starting with τ = étale.
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(5) each fi is weakly étale, and for every t ∈ T there exist i1, . . . , in ∈ I and quasi-
compact opens Uj ⊂ Tij such that

⋃
j=1,...,n fij (Uj) is a (not necessarily open)

neighbourhood of t in T .

Proof. The equivalence of (1) and (2) is immediate from the definitions. Hence the
lemma follows from Topologies, Lemma 9.2. �

Lemma 12.3. Any étale covering and any Zariski covering is a pro-étale covering.

Proof. This follows from the corresponding result for fpqc coverings (Topologies,
Lemma 9.6), Lemma 12.2, and the fact that an étale morphism is a weakly étale morphism,
see More on Morphisms, Lemma 64.9. �

Lemma 12.4. Let T be a scheme.
(1) If T ′ → T is an isomorphism then {T ′ → T} is a pro-étale covering of T .
(2) If {Ti → T}i∈I is a pro-étale covering and for each iwe have a pro-étale covering
{Tij → Ti}j∈Ji , then {Tij → T}i∈I,j∈Ji is a pro-étale covering.

(3) If {Ti → T}i∈I is a pro-étale covering and T ′ → T is a morphism of schemes
then {T ′ ×T Ti → T ′}i∈I is a pro-étale covering.

Proof. This follows from the fact that composition and base changes of weakly étale
morphisms are weakly étale (More on Morphisms, Lemmas 64.5 and 64.6), Lemma 12.2,
and the corresponding results for fpqc coverings, see Topologies, Lemma 9.7. �

Lemma 12.5. Let T be an affine scheme. Let {Ti → T}i∈I be a pro-étale covering
of T . Then there exists a pro-étale covering {Uj → T}j=1,...,n which is a refinement of
{Ti → T}i∈I such that each Uj is an affine scheme. Moreover, we may choose each Uj to
be open affine in one of the Ti.

Proof. This follows directly from the definition. �

Thus we define the corresponding standard coverings of affines as follows.

Definition 12.6. Let T be an affine scheme. A standard pro-étale covering of T
is a family {fi : Ti → T}i=1,...,n where each Tj is affine, each fi is weakly étale, and
T =

⋃
fi(Ti).

We follow the general outline given in Topologies, Section 2 for constructing the big pro-
étale site we will be working with. However, because we need a bit larger rings to accom-
modate for the size of certain constructions we modify the constructions slightly.

Definition 12.7. A big pro-étale site is any site Schpro-étale as in Sites, Definition
6.2 constructed as follows:

(1) Choose any set of schemes S0, and any set of pro-étale coverings Cov0 among
these schemes.

(2) Change the function Bound of Sets, Equation (9.1.1) into

Bound(κ) = max{κ222κ

, κℵ0 , κ+}.

(3) As underlying category take any category Schα constructed as in Sets, Lemma
9.2 starting with the set S0 and the function Bound.

(4) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category
Schα and the class of pro-étale coverings, and the set Cov0 chosen above.
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See the remarks following Topologies, Definition 3.5 for motivation and explanation re-
garding the definition of big sites.
It will turn out, see Lemma 31.1, that the topology on a big pro-étale site Schpro-étale is in
some sense induced from the pro-étale topology on the category of all schemes.

Definition 12.8. LetS be a scheme. Let Schpro-étale be a big pro-étale site containing
S.

(1) The big pro-étale site of S , denoted (Sch/S)pro-étale, is the site Schpro-étale/S
introduced in Sites, Section 25.

(2) The small pro-étale site of S , which we denote Spro-étale, is the full subcategory
of (Sch/S)pro-étale whose objects are those U/S such that U → S is weakly
étale. A covering of Spro-étale is any covering {Ui → U} of (Sch/S)pro-étale
with U ∈ Ob(Spro-étale).

(3) The big affine pro-étale site ofS , denoted (Aff/S)pro-étale, is the full subcategory
of (Sch/S)pro-étale whose objects are affineU/S. A covering of (Aff/S)pro-étale
is any covering {Ui → U} of (Sch/S)pro-étale which is a standard pro-étale
covering.

It is not completely clear that the small pro-étale site and the big affine pro-étale site are
sites. We check this now.

Lemma 12.9. Let S be a scheme. Let Schpro-étale be a big pro-étale site containing S.
Both Spro-étale and (Aff/S)pro-étale are sites.

Proof. Let us show that Spro-étale is a site. It is a category with a given set of fam-
ilies of morphisms with fixed target. Thus we have to show properties (1), (2) and (3)
of Sites, Definition 6.2. Since (Sch/S)pro-étale is a site, it suffices to prove that given
any covering {Ui → U} of (Sch/S)pro-étale with U ∈ Ob(Spro-étale) we also have
Ui ∈ Ob(Spro-étale). This follows from the definitions as the composition of weakly
étale morphisms is weakly étale.
To show that (Aff/S)pro-étale is a site, reasoning as above, it suffices to show that the col-
lection of standard pro-étale coverings of affines satisfies properties (1), (2) and (3) of Sites,
Definition 6.2. This follows from Lemma 12.2 and the corresponding result for standard
fpqc coverings (Topologies, Lemma 9.10). �

Lemma 12.10. Let S be a scheme. Let Schpro-étale be a big pro-étale site containing
S. Let Sch be the category of all schemes.

(1) The categories Schpro-étale, (Sch/S)pro-étale,Spro-étale, and (Aff/S)pro-étale have
fibre products agreeing with fibre products in Sch.

(2) The categories Schpro-étale, (Sch/S)pro-étale, Spro-étale have equalizers agreeing
with equalizers in Sch.

(3) The categories (Sch/S)pro-étale, and Spro-étale both have a final object, namely
S/S.

(4) The category Schpro-étale has a final object agreeing with the final object of Sch,
namely Spec(Z).

Proof. The category Schpro-étale contains Spec(Z) and is closed under products and
fibre products by construction, see Sets, Lemma 9.9. Suppose we have U → S , V → U ,
W → U morphisms of schemes with U, V,W ∈ Ob(Schpro-étale). The fibre product
V ×U W in Schpro-étale is a fibre product in Sch and is the fibre product of V/S with
W/S over U/S in the category of all schemes over S , and hence also a fibre product in
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(Sch/S)pro-étale. This proves the result for (Sch/S)pro-étale. If U → S , V → U and
W → U are weakly étale then so is V ×U W → S (see More on Morphisms, Section 64)
and hence we get fibre products for Spro-étale. If U, V,W are affine, so is V ×U W and
hence we get fibre products for (Aff/S)pro-étale.

Let a, b : U → V be two morphisms in Schpro-étale. In this case the equalizer of a and b
(in the category of schemes) is

V ×∆V/ Spec(Z),V×Spec(Z)V,(a,b) (U ×Spec(Z) U)

which is an object of Schpro-étale by what we saw above. Thus Schpro-étale has equalizers.
If a and b are morphisms over S , then the equalizer (in the category of schemes) is also
given by

V ×∆V/S ,V×SV,(a,b) (U ×S U)

hence we see that (Sch/S)pro-étale has equalizers. Moreover, if U and V are weakly-étale
over S , then so is the equalizer above as a fibre product of schemes weakly étale over S.
Thus Spro-étale has equalizers. The statements on final objects is clear. �

Next, we check that the big affine pro-étale site defines the same topos as the big pro-étale
site.

Lemma 12.11. Let S be a scheme. Let Schpro-étale be a big pro-étale site containing S.
The functor (Aff/S)pro-étale → (Sch/S)pro-étale is a special cocontinuous functor. Hence
it induces an equivalence of topoi from Sh((Aff/S)pro-étale) to Sh((Sch/S)pro-étale).

Proof. The notion of a special cocontinuous functor is introduced in Sites, Defini-
tion 29.2. Thus we have to verify assumptions (1) – (5) of Sites, Lemma 29.1. Denote
the inclusion functor u : (Aff/S)pro-étale → (Sch/S)pro-étale. Being cocontinuous just
means that any pro-étale covering of T/S , T affine, can be refined by a standard pro-étale
covering of T . This is the content of Lemma 12.5. Hence (1) holds. We see u is continu-
ous simply because a standard pro-étale covering is a pro-étale covering. Hence (2) holds.
Parts (3) and (4) follow immediately from the fact that u is fully faithful. And finally
condition (5) follows from the fact that every scheme has an affine open covering. �

Lemma 12.12. Let Schpro-étale be a big pro-étale site. Let f : T → S be a morphism
in Schpro-étale. The functor Tpro-étale → (Sch/S)pro-étale is cocontinuous and induces a
morphism of topoi

if : Sh(Tpro-étale) −→ Sh((Sch/S)pro-étale)

For a sheaf G on (Sch/S)pro-étale we have the formula (i−1
f G)(U/T ) = G(U/S). The

functor i−1
f also has a left adjoint if,! which commutes with fibre products and equalizers.

Proof. Denote the functor u : Tpro-étale → (Sch/S)pro-étale. In other words, given
a weakly étale morphism j : U → T corresponding to an object of Tpro-étale we set
u(U → T ) = (f ◦ j : U → S). This functor commutes with fibre products, see Lemma
12.10. Moreover, Tpro-étale has equalizers and u commutes with them by Lemma 12.10.
It is clearly cocontinuous. It is also continuous as u transforms coverings to coverings
and commutes with fibre products. Hence the lemma follows from Sites, Lemmas 21.5 and
21.6. �
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Lemma 12.13. Let S be a scheme. Let Schpro-étale be a big pro-étale site containing
S. The inclusion functor Spro-étale → (Sch/S)pro-étale satisfies the hypotheses of Sites,
Lemma 21.8 and hence induces a morphism of sites

πS : (Sch/S)pro-étale −→ Spro-étale

and a morphism of topoi

iS : Sh(Spro-étale) −→ Sh((Sch/S)pro-étale)

such that πS ◦ iS = id. Moreover, iS = iidS with iidS as in Lemma 12.12. In particular the
functor i−1

S = πS,∗ is described by the rule i−1
S (G)(U/S) = G(U/S).

Proof. In this case the functor u : Spro-étale → (Sch/S)pro-étale, in addition to the
properties seen in the proof of Lemma 12.12 above, also is fully faithful and transforms the
final object into the final object. The lemma follows from Sites, Lemma 21.8. �

Definition 12.14. In the situation of Lemma 12.13 the functor i−1
S = πS,∗ is often

called the restriction to the small pro-étale site, and for a sheaf F on the big pro-étale site
we denote F|Spro-étale this restriction.

With this notation in place we have for a sheaf F on the big site and a sheaf G on the big
site that

MorSh(Spro-étale)(F|Spro-étale ,G) = MorSh((Sch/S)pro-étale)(F , iS,∗G)
MorSh(Spro-étale)(G,F|Spro-étale) = MorSh((Sch/S)pro-étale)(π−1

S G,F)

Moreover, we have (iS,∗G)|Spro-étale = G and we have (π−1
S G)|Spro-étale = G.

Lemma 12.15. Let Schpro-étale be a big pro-étale site. Let f : T → S be a morphism
in Schpro-étale. The functor

u : (Sch/T )pro-étale −→ (Sch/S)pro-étale, V/T 7−→ V/S

is cocontinuous, and has a continuous right adjoint

v : (Sch/S)pro-étale −→ (Sch/T )pro-étale, (U → S) 7−→ (U ×S T → T ).

They induce the same morphism of topoi

fbig : Sh((Sch/T )pro-étale) −→ Sh((Sch/S)pro-étale)

We have f−1
big (G)(U/T ) = G(U/S). We have fbig,∗(F)(U/S) = F(U ×S T/T ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous, and commutes with fibre prod-
ucts and equalizers (details omitted; compare with proof of Lemma 12.12). Hence Sites,
Lemmas 21.5 and 21.6 apply and we deduce the formula for f−1

big and the existence of
fbig!. Moreover, the functor v is a right adjoint because given U/T and V/S we have
MorS(u(U), V ) = MorT (U, V ×S T ) as desired. Thus we may apply Sites, Lemmas 22.1
and 22.2 to get the formula for fbig,∗. �

Lemma 12.16. Let Schpro-étale be a big pro-étale site. Let f : T → S be a morphism
in Schpro-étale.

(1) We have if = fbig ◦ iT with if as in Lemma 12.12 and iT as in Lemma 12.13.
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(2) The functor Spro-étale → Tpro-étale, (U → S) 7→ (U ×S T → T ) is continuous
and induces a morphism of topoi

fsmall : Sh(Tpro-étale) −→ Sh(Spro-étale).

We have fsmall,∗(F)(U/S) = F(U ×S T/T ).
(3) We have a commutative diagram of morphisms of sites

Tpro-étale

fsmall

��

(Sch/T )pro-étale

fbig

��

πT
oo

Spro-étale (Sch/S)pro-étale
πSoo

so that fsmall ◦ πT = πS ◦ fbig as morphisms of topoi.
(4) We have fsmall = πS ◦ fbig ◦ iT = πS ◦ if .

Proof. The equality if = fbig ◦ iT follows from the equality i−1
f = i−1

T ◦f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

The functor u : Spro-étale → Tpro-étale, u(U → S) = (U ×S T → T ) transforms cover-
ings into coverings and commutes with fibre products, see Lemmas 12.4 and 12.10. More-
over, both Spro-étale, Tpro-étale have final objects, namely S/S and T/T and u(S/S) =
T/T . Hence by Sites, Proposition 14.7 the functor u corresponds to a morphism of sites
Tpro-étale → Spro-étale. This in turn gives rise to the morphism of topoi, see Sites, Lemma
15.2. The description of the pushforward is clear from these references.

Part (3) follows because πS and πT are given by the inclusion functors and fsmall and fbig
by the base change functors U 7→ U ×S T .

Statement (4) follows from (3) by precomposing with iT . �

In the situation of the lemma, using the terminology of Definition 12.14 we have: for F a
sheaf on the big pro-étale site of T

(12.16.1) (fbig,∗F)|Spro-étale = fsmall,∗(F|Tpro-étale),

This equality is clear from the commutativity of the diagram of sites of the lemma, since
restriction to the small pro-étale site of T , resp. S is given by πT,∗, resp. πS,∗. A similar
formula involving pullbacks and restrictions is false.

Lemma 12.17. Given schemes X , Y , Y in Schpro-étale and morphisms f : X → Y ,
g : Y → Z we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 12.15. For the functors on the small sites this
follows from the description of the pushforward functors in Lemma 12.16. �

Lemma 12.18. Let Schpro-étale be a big pro-étale site. Consider a cartesian diagram

T ′
g′
//

f ′

��

T

f

��
S′ g // S

in Schpro-étale. Then i−1
g ◦fbig,∗ = f ′

small,∗ ◦ (ig′)−1 and g−1
big ◦fbig,∗ = f ′

big,∗ ◦ (g′
big)−1.
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Proof. Since the diagram is cartesian, we have for U ′/S′ that U ′×S′ T ′ = U ′×S T .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Sch/T )pro-étale to the

sheafU ′ 7→ F(U ′×S′ T ′) on S′
pro-étale (use Lemmas 12.12 and 12.15). The second equality

can be proved in the same manner or can be deduced from the very general Sites, Lemma
28.1. �

We can think about a sheaf on the big pro-étale site of S as a collection of sheaves on the
small pro-étale site on schemes over S.

Lemma 12.19. Let S be a scheme contained in a big pro-étale site Schpro-étale. A sheaf
F on the big pro-étale site (Sch/S)pro-étale is given by the following data:

(1) for every T/S ∈ Ob((Sch/S)pro-étale) a sheaf FT on Tpro-étale,
(2) for every f : T ′ → T in (Sch/S)pro-étale a map cf : f−1

smallFT → FT ′ .
These data are subject to the following conditions:

(a) given any f : T ′ → T and g : T ′′ → T ′ in (Sch/S)pro-étale the composition
cg ◦ g−1

smallcf is equal to cf◦g , and
(b) if f : T ′ → T in (Sch/S)pro-étale is weakly étale then cf is an isomorphism.

Proof. Identical to the proof of Topologies, Lemma 4.20. �

Lemma 12.20. Let S be a scheme. Let Saffine,pro-étale denote the full subcategory
of Spro-étale consisting of affine objects. A covering of Saffine,pro-étale will be a standard
pro-étale covering, see Definition 12.6. Then restriction

F 7−→ F|Saffine,étale
defines an equivalence of topoi Sh(Spro-étale) ∼= Sh(Saffine,pro-étale).

Proof. This you can show directly from the definitions, and is a good exercise. But
it also follows immediately from Sites, Lemma 29.1 by checking that the inclusion functor
Saffine,pro-étale → Spro-étale is a special cocontinuous functor (see Sites, Definition 29.2).

�

Lemma 12.21. Let S be an affine scheme. Let Sapp denote the full subcategory of
Spro-étale consisting of affine objects U such that O(S)→ O(U) is ind-étale. A covering
of Sapp will be a standard pro-étale covering, see Definition 12.6. Then restriction

F 7−→ F|Sapp
defines an equivalence of topoi Sh(Spro-étale) ∼= Sh(Sapp).

Proof. By Lemma 12.20 we may replace Spro-étale by Saffine,pro-étale. The lemma
follows from Sites, Lemma 29.1 by checking that the inclusion functorSapp → Saffine,pro-étale
is a special cocontinuous functor, see Sites, Definition 29.2. The conditions of Sites, Lemma
29.1 follow immediately from the definition and the facts (a) any objectU ofSaffine,pro-étale
has a covering {V → U} with V ind-étale over X (Proposition 9.1) and (b) the functor u
is fully faithful. �

Lemma 12.22. LetS be a scheme. The topology on each of the pro-étale sites Schpro-étale,
Spro-étale, (Sch/S)pro-étale, Saffine,pro-étale, and (Aff/S)pro-étale is subcanonical.

Proof. Combine Lemma 12.2 and Descent, Lemma 13.7. �
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13. Weakly contractible objects

In this section we prove the key fact that our pro-étale sites contain many weakly con-
tractible objects. In fact, the proof of Lemma 13.3 is the reason for the shape of the function
Bound in Definition 12.7 (although for readers who are ignoring set theoretical questions,
this information is without content).
We first express the notion of w-contractible rings in terms of pro-étale coverings.

Lemma 13.1. Let T = Spec(A) be an affine scheme. The following are equivalent
(1) A is w-contractible, and
(2) every pro-étale covering of T can be refined by a Zariski covering of the form

T =
∐
i=1,...,n Ui.

Proof. AssumeA is w-contractible. By Lemma 12.5 it suffices to prove we can refine
every standard pro-étale covering {fi : Ti → T}i=1,...,n by a Zariski covering of T . The
morphism

∐
Ti → T is a surjective weakly étale morphism of affine schemes. Hence by

Definition 11.1 there exists a morphism σ : T →
∐
Ti over T . Then the Zariski covering

T =
∐
σ−1(Ti) refines {fi : Ti → T}.

Conversely, assume (2). IfA→ B is faithfully flat and weakly étale, then {Spec(B)→ T}
is a pro-étale covering. Hence there exists a Zariski covering T =

∐
Ui and morphisms

Ui → Spec(B) over T . Since T =
∐
Ui we obtain T → Spec(B), i.e., an A-algebra map

B → A. This means A is w-contractible. �

Lemma 13.2. Let Schpro-étale be a big pro-étale site as in Definition 12.7. Let T =
Spec(A) be an affine object of Schpro-étale. The following are equivalent

(1) A is w-contractible,
(2) T is a weakly contractible (Sites, Definition 40.2) object of Schpro-étale, and
(3) every pro-étale covering of T can be refined by a Zariski covering of the form

T =
∐
i=1,...,n Ui.

Proof. We have seen the equivalence of (1) and (3) in Lemma 13.1.

Assume (3) and let F → G be a surjection of sheaves on Schpro-étale. Let s ∈ G(T ). To
prove (2) we will show that s is in the image of F(T ) → G(T ). We can find a covering
{Ti → T} of Schpro-étale such that s lifts to a section ofF over Ti (Sites, Definition 11.1).
By (3) we may assume we have a finite covering T =

∐
j=1,...,m Uj by open and closed

subsets and we have tj ∈ F(Uj) mapping to s|Uj . Since Zariski coverings are coverings in
Schpro-étale (Lemma 12.3) we conclude that F(T ) =

∏
F(Uj). Thus t = (t1, . . . , tm) ∈

F(T ) is a section mapping to s.

Assume (2). Let A → D be as in Proposition 11.3. Then {V → T} is a covering of
Schpro-étale. (Note that V = Spec(D) is an object of Schpro-étale by Remark 11.4 com-
bined with our choice of the function Bound in Definition 12.7 and the computation
of the size of affine schemes in Sets, Lemma 9.5.) Since the topology on Schpro-étale is
subcanonical (Lemma 12.22) we see that hV → hT is a surjective map of sheaves (Sites,
Lemma 12.4). Since T is assumed weakly contractible, we see that there is an element
f ∈ hV (T ) = Mor(T, V ) whose image in hT (T ) is idT . Thus A → D has a retraction
σ : D → A. Now if A → B is faithfully flat and weakly étale, then D → D ⊗A B has
the same properties, hence there is a retraction D ⊗A B → D and combined with σ we
get a retraction B → D ⊗A B → D → A of A → B. Thus A is w-contractible and (1)
holds. �
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Lemma 13.3. Let Schpro-étale be a big pro-étale site as in Definition 12.7. For every
object T of Schpro-étale there exists a covering {Ti → T} in Schpro-étale with each Ti
affine and the spectrum of a w-contractible ring. In particular, Ti is weakly contractible
in Schpro-étale.

Proof. For those readers who do not care about set-theoretical issues this lemma is a
trivial consequence of Lemma 13.2 and Proposition 11.3. Here are the details. Choose an
affine open covering T =

⋃
Ui. Write Ui = Spec(Ai). Choose faithfully flat, ind-étale

ring maps Ai → Di such that Di is w-contractible as in Proposition 11.3. The family of
morphisms {Spec(Di)→ T} is a pro-étale covering. If we can show that Spec(Di) is iso-
morphic to an object, sayTi, of Schpro-étale, then {Ti → T}will be combinatorially equiv-
alent to a covering of Schpro-étale by the construction of Schpro-étale in Definition 12.7
and more precisely the application of Sets, Lemma 11.1 in the last step. To prove Spec(Di)
is isomorphic to an object of Schpro-étale, it suffices to prove that |Di| ≤ Bound(size(T ))
by the construction of Schpro-étale in Definition 12.7 and more precisely the application
of Sets, Lemma 9.2 in step (3). Since |Ai| ≤ size(Ui) ≤ size(T ) by Sets, Lemmas 9.4 and
9.7 we get |Di| ≤ κ222κ

where κ = size(T ) by Remark 11.4. Thus by our choice of the
function Bound in Definition 12.7 we win. �

Lemma 13.4. Let S be a scheme. The pro-étale sites Spro-étale, (Sch/S)pro-étale,
Saffine,pro-étale, and (Aff/S)pro-étale and if S is affine Sapp have enough (affine) quasi-
compact, weakly contractible objects, see Sites, Definition 40.2.

Proof. Follows immediately from Lemma 13.3. �

Lemma 13.5. LetS be a scheme. The pro-étale sites Schpro-étale,Spro-étale, (Sch/S)pro-étale
have the following property: for any object U there exists a covering {V → U} with V a
weakly contractible object. IfU is quasi-compact, then we may choose V affine and weakly
contractible.

Proof. Suppose that V =
∐
j∈J Vj is an object of (Sch/S)pro-étale which is the

disjoint union of weakly contractible objects Vj . Since a disjoint union decomposition
is a pro-étale covering we see that F(V ) =

∏
j∈J F(Vj) for any pro-étale sheaf F . Let

F → G be a surjective map of sheaves of sets. Since Vj is weakly contractible, the map
F(Vj)→ G(Vj) is surjective, see Sites, Definition 40.2. Thus F(V )→ G(V ) is surjective
as a product of surjective maps of sets and we conclude that V is weakly contractible.
Choose a covering {Ui → U}i∈I withUi affine and weakly contractible as in Lemma 13.3.
Take V =

∐
i∈I Ui (there is a set theoretic issue here which we will address below). Then

{V → U} is the desired pro-étale covering by a weakly contractible object (to check it is a
covering use Lemma 12.2). IfU is quasi-compact, then it follows immediately from Lemma
12.2 that we can choose a finite subset I ′ ⊂ I such that {Ui → U}i∈I′ is still a covering
and then {

∐
i∈I′ Ui → U} is the desired covering by an affine and weakly contractible

object.
In this paragraph, which we urge the reader to skip, we address set theoretic problems. In
order to know that the disjoint union lies in our partial universe, we need to bound the
cardinality of the index set I . It is seen immediately from the construction of the covering
{Ui → U}i∈I in the proof of Lemma 13.3 that |I| ≤ size(U) where the size of a scheme
is as defined in Sets, Section 9. Moreover, for each i we have size(Ui) ≤ Bound(size(U));
this follows for the bound of the cardinality of Γ(Ui,OUi) in the proof of Lemma 13.3
and Sets, Lemma 9.4. Thus size(

∐
i∈I Ui)) ≤ Bound(size(U)) by Sets, Lemma 9.5. Hence
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by construction of the big pro-étale site through Sets, Lemma 9.2 we see that
∐
i∈I Ui is

isomorphic to an object of our site and the proof is complete. �

14. Weakly contractible hypercoverings

The results of Section 13 leads to the existence of hypercoverings made up out weakly
contractible objects.

Lemma 14.1. Let X be a scheme.
(1) For every objectU ofXpro-étale there exists a hypercoveringK ofU inXpro-étale

such that each termKn consists of a single weakly contractible object ofXpro-étale
covering U .

(2) For every quasi-compact and quasi-separated object U of Xpro-étale there exists
a hypercoveringK ofU inXpro-étale such that each termKn consists of a single
affine and weakly contractible object of Xpro-étale covering U .

Proof. LetB ⊂ Ob(Xpro-étale) be the set of weakly contractible objects ofXpro-étale.
Every object T of Xpro-étale has a covering {Ti → T}i∈I with I finite and Ti ∈ B by
Lemma 13.5. By Hypercoverings, Lemma 12.6 we get a hypercovering K of U such that
Kn = {Un,i}i∈In with In finite and Un,i weakly contractible. Then we can replace K
by the hypercovering of U given by {Un} in degree n where Un =

∐
i∈In Un,i This is

allowed by Hypercoverings, Remark 12.9.
Let Xqcqs,pro-étale ⊂ Xpro-étale be the full subcategory consisting of quasi-compact and
quasi-separated objects. A covering of Xqcqs,pro-étale will be a finite pro-étale covering.
ThenXqcqs,pro-étale is a site, has fibre products, and the inclusion functorXqcqs,pro-étale →
Xpro-étale is continuous and commutes with fibre products. In particular, if K is a hyper-
covering of an object U inXqcqs,pro-étale thenK is a hypercovering of U inXpro-étale by
Hypercoverings, Lemma 12.5. Let B ⊂ Ob(Xqcqs,pro-étale) be the set of affine and weakly
contractible objects. By Lemma 13.3 and the fact that finite unions of affines are affine,
for every object U of Xqcqs,pro-étale there exists a covering {V → U} of Xqcqs,pro-étale
with V ∈ B. By Hypercoverings, Lemma 12.6 we get a hypercovering K of U such that
Kn = {Un,i}i∈In with In finite and Un,i affine and weakly contractible. Then we can
replaceK by the hypercovering of U given by {Un} in degree nwhereUn =

∐
i∈In Un,i.

This is allowed by Hypercoverings, Remark 12.9. �

In the following lemma we use the Čech complex s(F(K)) associated to a hypercovering
K in a site. See Hypercoverings, Section 5. IfK is a hypercovering ofU andKn = {Un →
U}, then the Čech complex looks like this:

s(F(K)) = (F(U0)→ F(U1)→ F(U2)→ . . .)
where s(F(Un)) is placed in cohomological degree n.

Lemma 14.2. Let X be a scheme. Let E ∈ D+(Xpro-étale) be represented by a
bounded below complexE• of abelian sheaves. LetK be a hypercovering ofU ∈ Ob(Xpro-étale)
with Kn = {Un → U} where Un is a weakly contractible object of Xpro-étale. Then

RΓ(U,E) = Tot(s(E•(K)))
in D(Ab).

Proof. If E is an abelian sheaf onXpro-étale, then the spectral sequence of Hypercov-
erings, Lemma 5.3 implies that

RΓ(Xpro-étale, E) = s(E(K))
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because the higher cohomology groups of any sheaf over Un vanish, see Cohomology on
Sites, Lemma 51.1.
If E• is bounded below, then we can choose an injective resolution E• → I• and consider
the map of complexes

Tot(s(E•(K))) −→ Tot(s(I•(K)))
For every n the map E•(Un) → I•(Un) is a quasi-isomorphism because taking sections
over Un is exact. Hence the displayed map is a quasi-isomorphism by one of the spectral
sequences of Homology, Lemma 25.3. Using the result of the first paragraph we see that
for every p the complex s(Ip(K)) is acyclic in degrees n > 0 and computes Ip(U) in de-
gree 0. Thus the other spectral sequence of Homology, Lemma 25.3 shows Tot(s(I•(K)))
computes RΓ(U,E) = I•(U). �

Lemma 14.3. Let X be a quasi-compact and quasi-separated scheme. The functor
RΓ(X,−) : D+(Xpro-étale)→ D(Ab) commutes with direct sums and homotopy colim-
its.

Proof. The statement means the following: Suppose we have a family of objects Ei
ofD+(Xpro-étale) such that

⊕
Ei is an object ofD+(Xpro-étale). ThenRΓ(X,

⊕
Ei) =⊕

RΓ(X,Ei). To see this choose a hypercoveringK ofX withKn = {Un → X}where
Un is an affine and weakly contractible scheme, see Lemma 14.1. Let N be an integer such
that Hp(Ei) = 0 for p < N . Choose a complex of abelian sheaves E•

i representing Ei
with Epi = 0 for p < N . The termwise direct sum

⊕
E•
i represents

⊕
Ei inD(Xpro-étale),

see Injectives, Lemma 13.4. By Lemma 14.2 we have

RΓ(X,
⊕

Ei) = Tot(s((
⊕
E•
i )(K)))

and
RΓ(X,Ei) = Tot(s(E•

i (K)))
Since each Un is quasi-compact we see that

Tot(s((
⊕
E•
i )(K))) =

⊕
Tot(s(E•

i (K)))

by Modules on Sites, Lemma 30.3. The statement on homotopy colimits is a formal conse-
quence of the fact that RΓ is an exact functor of triangulated categories and the fact (just
proved) that it commutes with direct sums. �

Remark 14.4. LetX be a scheme. BecauseXpro-étale has enough weakly contractible
objects for all K in D(Xpro-étale) we have K = R lim τ≥−nK by Cohomology on Sites,
Proposition 51.2. Since RΓ commutes with R lim by Injectives, Lemma 13.6 we see that

RΓ(X,K) = R limRΓ(X, τ≥−nK)
inD(Ab). This will sometimes allow us to extend results from bounded below complexes
to all complexes.

15. Compact generation

In this section we prove that various derived categories associated to our pro-étale sites are
compactly generated as defined in Derived Categories, Definition 37.5.

Lemma 15.1. Let S be a scheme. Let Λ be a ring.
(1) D(Spro-étale) is compactly generated,
(2) D(Spro-étale,Λ) is compactly generated,
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(3) D(Spro-étale,A) is compactly generated for any sheaf of ringsA on Spro-étale,
(4) D((Sch/S)pro-étale) is compactly generated,
(5) D((Sch/S)pro-étale,Λ) is compactly generated, and
(6) D((Sch/S)pro-étale,A) is compactly generated for any sheaf of ringsA on (Sch/S)pro-étale,

Proof. Proof of (3). Let U be an affine object of Spro-étale which is weakly con-
tractible. Then jU !AU is a compact object of the derived category D(Spro-étale,A), see
Cohomology on Sites, Lemma 52.6. Choose a set I and for each i ∈ I an affine weakly
contractible object Ui of Spro-étale such that every affine weakly contractible object of
Spro-étale is isomorphic to one of theUi. This is possible because Ob(Spro-étale) is a set. To
finish the proof of (3) it suffices to show that

⊕
jUi,!AUi is a generator ofD(Spro-étale,A),

see Derived Categories, Definition 36.3. To see this, letK be a nonzero object ofD(Spro-étale,A).
Then there exists an object T of our site Spro-étale and a nonzero element ξ ofHn(K)(T ).
In other words, ξ is a nonzero section of the nth cohomology sheaf ofK. We may assume
K is represented by a complex K• of sheaves of A-modules and ξ is the class of a section
s ∈ Kn(T ) with d(s) = 0. Namely, ξ is locally represented as the class of a section (so
you get the result after replacing T by a member of a covering of T ). Next, we choose a
covering {Tj → T}j∈J as in Lemma 13.3. Since Hn(K) is a sheaf, we see that for some j
the restriction ξ|Tj remains nonzero. Thus s|Tj defines a nonzero map jTj ,!ATj → K in
D(Spro-étale,A). Since Tj ∼= Ui for some i ∈ I we conclude.
The exact same argument works for the big pro-étale site of S. �

16. Comparing topologies

This section is the analogue of Étale Cohomology, Section 39.

Lemma 16.1. Let X be a scheme. Let F be a presheaf of sets on Xpro-étale which
sends finite disjoint unions to products. Then F#(W ) = F(W ) if W is an affine weakly
contractible object of Xpro-étale.

Proof. Recall that F# is equal to (F+)+, see Sites, Theorem 10.10, where F+ is the
presheaf which sends an objectU ofXpro-étale to colimH0(U ,F) where the colimit is over
all pro-étale coverings U of U . Thus it suffices to prove that (a) F+ sends finite disjoint
unions to products and (b) sends W to F(W ). If U = U1 q U2, then given a pro-étale
covering U = {fj : Vj → U} of U we obtain pro-étale coverings Ui = {f−1

j (Ui)→ Ui}
and we clearly have

H0(U ,F) = H0(U1,F)×H0(U2,F)
becauseF sends finite disjoint unions to products (this includes the condition thatF sends
the empty scheme to the singleton). This proves (a). Finally, any pro-étale covering of
W can be refined by a finite disjoint union decomposition W = W1 q . . .Wn by Lemma
13.2. Hence F+(W ) = F(W ) exactly because the value of F on W is the product of the
values of F on the Wj . This proves (b). �

Lemma 16.2. Let f : X → Y be a morphism of schemes. Let F be a sheaf of sets on
Xpro-étale. If W is an affine weakly contractible object of Xpro-étale, then

f−1
smallF(W ) = colimW→V F(V )

where the colimit is over morphisms W → V over Y with V ∈ Ypro-étale.

Proof. Recall that f−1
smallF is the sheaf associated to the presheaf

upF : U 7→ colimU→V F(V )
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onXétale, see Sites, Sections 14 and 13; we’ve surpressed from the notation that the colimit
is over the opposite of the category {U → V, V ∈ Ypro-étale}. By Lemma 16.1 it suffices
to prove that upF sends finite disjoint unions to products. Suppose that U = U1 q U2 is
a disjoint union of open and closed subschemes. There is a functor

{U1 → V1} × {U2 → V2} −→ {U → V }, (U1 → V1, U2 → V2) 7−→ (U → V1 q V2)
which is initial (Categories, Definition 17.3). Hence the corresponding functor on opposite
categories is cofinal and by Categories, Lemma 17.2 we see that upF on U is the colimit
of the values F(V1 q V2) over the product category. Since F is a sheaf it sends disjoint
unions to products and we conclude upF does too. �

Lemma 16.3. Let S be a scheme. Consider the morphism

πS : (Sch/S)pro-étale −→ Spro-étale

of Lemma 12.13. Let F be a sheaf on Spro-étale. Then π−1
S F is given by the rule

(π−1
S F)(T ) = Γ(Tpro-étale, f

−1
smallF)

where f : T → S. Moreover, π−1
S F satisfies the sheaf condition with respect to fpqc

coverings.

Proof. Observe that we have a morphism if : Sh(Tpro-étale)→ Sh(Sch/S)pro-étale)
such that πS ◦ if = fsmall as morphisms Tpro-étale → Spro-étale, see Lemma 12.12. Since
pullback is transitive we see that i−1

f π−1
S F = f−1

smallF as desired.

Let {gi : Ti → T}i∈I be an fpqc covering. The final statement means the following:
Given a sheaf G on Tpro-étale and given sections si ∈ Γ(Ti, g−1

i,smallG) whose pullbacks to
Ti ×T Tj agree, there is a unique section s of G over T whose pullback to Ti agrees with
si. We will prove this statement when T is affine and the covering is given by a single
surjective flat morphism T ′ → T of affines and omit the reduction of the general case to
this case.

Let g : T ′ → T be a surjective flat morphism of affines and let s′ ∈ g−1
smallG(T ′) be a section

with pr∗
0s

′ = pr∗
1s

′ onT ′×T T ′. Choose a surjective weakly étale morphismW → T ′ with
W affine and weakly contractible, see Lemma 13.5. By Lemma 16.2 the restriction s′|W is
an element of colimW→U G(U). Choose φ : W → U0 and s0 ∈ G(U0) corresponding to
s′. Choose a surjective weakly étale morphism V → W ×T W with V affine and weakly
contractible. Denote a, b : V → W the induced morphisms. Since a∗(s′|W ) = b∗(s′|W )
and since the category {V → U,U ∈ Tpro-étale} is cofiltered (this is clear but see Sites,
Lemma 14.6 if in doubt), we see that the two morphisms φ ◦ a, φ ◦ b : V → U0 have to
be equal. By the results in Descent, Section 13 (especially Descent, Lemma 13.7) it follows
there is a unique morphism T → U0 such that φ is the composition of this morphism with
the structure morphismW → T (small detail omitted). Then we can let s be the pullback
of s0 by this morphism. We omit the verification that s pulls back to s′ on T ′. �

17. Comparing big and small topoi

This section is the analogue of Étale Cohomology, Section 99. In the following we will
often denote F 7→ F|Spro-étale the pullback functor i−1

S corresponding to the morphism
of topoi iS : Sh(Spro-étale)→ Sh((Sch/S)pro-étale) of Lemma 12.13.

Lemma 17.1. Let S be a scheme. Let T be an object of (Sch/S)pro-étale.
(1) If I is injective in Ab((Sch/S)pro-étale), then
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(a) i−1
f I is injective in Ab(Tpro-étale),

(b) I|Spro-étale is injective in Ab(Spro-étale),
(2) If I• is a K-injective complex in Ab((Sch/S)pro-étale), then

(a) i−1
f I• is a K-injective complex in Ab(Tpro-étale),

(b) I•|Spro-étale is a K-injective complex in Ab(Spro-étale),

Proof. Proof of (1)(a) and (2)(a): i−1
f is a right adjoint of an exact functor if,!.

Namely, recall that if corresponds to a cocontinuous functoru : Tpro-étale → (Sch/S)pro-étale
which is continuous and commutes with fibre products and equalizers, see Lemma 12.12 and
its proof. Hence we obtain if,! by Modules on Sites, Lemma 16.2. It is shown in Modules on
Sites, Lemma 16.3 that it is exact. Then we conclude (1)(a) and (2)(a) hold by Homology,
Lemma 29.1 and Derived Categories, Lemma 31.9.

Parts (1)(b) and (2)(b) are special cases of (1)(a) and (2)(a) as iS = iidS . �

Lemma 17.2. Let f : T → S be a morphism of schemes. ForK inD((Sch/T )pro-étale)
we have

(Rfbig,∗K)|Spro-étale = Rfsmall,∗(K|Tpro-étale)
inD(Spro-étale). More generally, letS′ ∈ Ob((Sch/S)pro-étale) with structure morphism
g : S′ → S. Consider the fibre product

T ′
g′
//

f ′

��

T

f

��
S′ g // S

Then for K in D((Sch/T )pro-étale) we have

i−1
g (Rfbig,∗K) = Rf ′

small,∗(i−1
g′ K)

in D(S′
pro-étale) and

g−1
big(Rfbig,∗K) = Rf ′

big,∗((g′
big)−1K)

in D((Sch/S′)pro-étale).

Proof. The first equality follows from Lemma 17.1 and (12.16.1) on choosing a K-
injective complex of abelian sheaves representing K. The second equality follows from
Lemma 17.1 and Lemma 12.18 on choosing a K-injective complex of abelian sheaves repre-
senting K. The third equality follows similarly from Cohomology on Sites, Lemmas 7.1
and 20.1 and Lemma 12.18 on choosing a K-injective complex of abelian sheaves represent-
ing K. �

LetS be a scheme and letH be an abelian sheaf on (Sch/S)pro-étale. Recall thatHn
pro-étale(U,H)

denotes the cohomology ofH over an object U of (Sch/S)pro-étale.

Lemma 17.3. Let f : T → S be a morphism of schemes. For K in D(Spro-étale) we
have

Hn
pro-étale(S, π−1

S K) = Hn(Spro-étale,K)
and

Hn
pro-étale(T, π−1

S K) = Hn(Tpro-étale, f
−1
smallK).

For M in D((Sch/S)pro-étale) we have

Hn
pro-étale(T,M) = Hn(Tpro-étale, i

−1
f M).
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Proof. To prove the last equality represent M by a K-injective complex of abelian
sheaves and apply Lemma 17.1 and work out the definitions. The second equality follows
from this as i−1

f ◦ π
−1
S = f−1

small. The first equality is a special case of the second one. �

Lemma 17.4. Let S be a scheme. For K ∈ D(Spro-étale) the map

K −→ RπS,∗π
−1
S K

is an isomorphism.

Proof. This is true because both π−1
S and πS,∗ = i−1

S are exact functors and the
composition πS,∗ ◦ π−1

S is the identity functor. �

18. Points of the pro-étale site

We first apply Deligne’s criterion to show that there are enough points.

Lemma 18.1. LetS be a scheme. The pro-étale sites Schpro-étale,Spro-étale, (Sch/S)pro-étale,
Saffine,pro-étale, and (Aff/S)pro-étale have enough points.

Proof. The big pro-étale topos ofS is equivalent to the topos defined by (Aff/S)pro-étale,
see Lemma 12.11. The topos of sheaves on Spro-étale is equivalent to the topos associ-
ated to Saffine,pro-étale, see Lemma 12.20. The result for the sites (Aff/S)pro-étale and
Saffine,pro-étale follows immediately from Deligne’s result Sites, Lemma 39.4. The case
Schpro-étale is handled because it is equal to (Sch/ Spec(Z))pro-étale. �

Let S be a scheme. Let s : Spec(k) → S be a geometric point. We define a pro-étale
neighbourhood of s to be a commutative diagram

Spec(k)
u
//

s
##

U

��
S

with U → S weakly étale.

Lemma 18.2. Let S be a scheme and let s : Spec(k) → S be a geometric point. The
category of pro-étale neighbourhoods of s is cofiltered.

Proof. The proof is identitical to the proof of Étale Cohomology, Lemma 29.4 but
using the corresponding facts about weakly étale morphisms proven in More on Mor-
phisms, Lemmas 64.5, 64.6, and 64.13. �

Lemma 18.3. Let S be a scheme. Let s be a geometric point of S. Let U = {ϕi :
Si → S}i∈I be a pro-étale covering. Then there exist i ∈ I and geometric point si of Si
mapping to s.

Proof. Immediate from the fact that
∐
ϕi is surjective and that residue field exten-

sions induced by weakly étale morphisms are separable algebraic (see for example More
on Morphisms, Lemma 64.11. �

Let S be a scheme and let s be a geometric point of S. For F in Sh(Spro-étale) define the
stalk of F at s by the formula

Fs = colim(U,u) F(U)
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where the colimit is over all pro-étale neighbourhoods (U, u) of swithU ∈ Ob(Spro-étale).
It follows from the two lemmas above that the functor

Spro-étaleSets, U 7−→ {u geometric point of U mapping to s}
defines a point of the site Spro-étale, see Sites, Definition 32.2 and Lemma 33.1. Hence the
functor F 7→ Fs defines a point of the topos Sh(Spro-étale), see Sites, Definition 32.1 and
Lemma 32.7. In particular this functor is exact and commutes with arbitrary colimits. In
fact, this functor has another description.

Lemma 18.4. In the situation above the scheme Spec(OshS,s) is an object ofXpro-étale
and there is a canonical isomorphism

F(Spec(OshS,s)) = Fs
functorial in F .

Proof. The first statement is clear from the construction of the strict henselization
as a filtered colimit of étale algebras over S , or by the characterization of weakly étale
morphisms of More on Morphisms, Lemma 64.11. The second statement follows as by
Olivier’s theorem (More on Algebra, Theorem 104.24) the scheme Spec(OshS,s) is an initial
object of the category of pro-étale neighbourhoods of s. �

Contrary to the situation with the étale topos of S it is not true that every point of
Sh(Spro-étale) is of this form, and it is not true that the collection of points associated
to geometric points is conservative. Namely, suppose that S = Spec(k) where k is an
algebraically closed field. Let A be a nonzero abelian group. Consider the sheaf F on
Spro-étale defined by the

F(U) = {functions U → A}
{locally constant functions}

for U affine and by sheafification in general, see Example 19.12. Then F(U) = 0 if
U = S = Spec(k) but in general F is not zero. Namely, Spro-étale contains affine ob-
jects with infinitely many points. For example, let E = limEn be an inverse limit of
finite sets with surjective transition maps, e.g., E = Zp = lim Z/pnZ. The scheme U =
Spec(colim Map(En, k)) is an object of Spro-étale because colim Map(En, k) is weakly
étale (even ind-Zariski) over k. Thus F(U) is nonzero as there exist maps E → A which
aren’t locally constant. Thus F is a nonzero abelian sheaf whose stalk at the unique geo-
metric point of S is zero. Since we know that Spro-étale has enough points, we conclude
there must be a point of the pro-étale site which does not come from the construction
explained above.
The replacement for arguments using points, is to use affine weakly contractible objects.
First, there are enough affine weakly contractible objects by Lemma 13.4. Second, if W ∈
Ob(Spro-étale) is affine weakly contractible, then the functor

Sh(Spro-étale) −→ Sets, F 7−→ F(W )
is an exact functor Sh(Spro-étale)→ Sets which commutes with all limits. The functor

Ab(Spro-étale) −→ Ab, F 7−→ F(W )
is exact and commutes with direct sums (as W is quasi-compact, see Sites, Lemma 17.7),
hence commutes with all limits and colimits. Moreover, we can check exactness of a
complex of abelian sheaves by evaluation at these affine weakly contractible objects of
Spro-étale, see Cohomology on Sites, Proposition 51.2.
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A final remark is that the functorF 7→ F(W ) forW affine weakly contractible in general
isn’t a stalk functor of a point ofSpro-étale because it doesn’t preserve coproducts of sheaves
of sets if W is disconnected. And in fact, W is disconnected as soon as W has more than 1
closed point, i.e., when W is not the spectrum of a strictly henselian local ring (which is
the special case discussed above).

19. Comparison with the étale site

Let X be a scheme. With suitable choices of sites4 the functor u : Xétale → Xpro-étale
sending U/X to U/X defines a morphism of sites

ε : Xpro-étale −→ Xétale

This follows from Sites, Proposition 14.7.

Lemma 19.1. With notation as above. Let F be a sheaf on Xétale. The rule

Xpro-étale −→ Sets, (f : Y → X) 7−→ Γ(Yétale, f−1
étaleF)

is a sheaf and is equal to ε−1F . Here fétale : Yétale → Xétale is the morphism of small
étale sites constructed in Étale Cohomology, Section 34.

Proof. By Lemma 12.2 any pro-étale covering is an fpqc covering. Hence the formula
defines a sheaf on Xpro-étale by Étale Cohomology, Lemma 39.2. Let a : Sh(Xétale) →
Sh(Xpro-étale) be the functor sending F to the sheaf given by the formula in the lemma.
To show that a = ε−1 it suffices to show that a is a left adjoint to ε∗.

Let G be an object of Sh(Xpro-étale). Recall that ε∗G is simply given by the restriction of G
to the full subcategory Xétale. Let f : Y → X be an object of Xpro-étale. We view Yétale
as a subcategory of Xpro-étale. The restriction maps of the sheaf G define a map

ε∗G = G|Xétale −→ fétale,∗(G|Yétale)
Namely, for U in Xétale the value of fétale,∗(G|Yétale) on U is G(Y ×X U) and there is a
restriction map G(U)→ G(Y ×X U). By adjunction this determines a map

f−1
étale(ε∗G)→ G|Yétale

Putting these together for all f : Y → X in Xpro-étale we obtain a canonical map
a(ε∗G)→ G.

Let F be an object of Sh(Xétale). It is immediately clear that F = ε∗a(F).

We claim the mapsF → ε∗a(F) and a(ε∗G)→ G are the unit and counit of the adjunction
(see Categories, Section 24). To see this it suffices to show that the corresponding maps

MorSh(Xpro-étale)(a(F),G)→ MorSh(Xétale)(F , ε−1G)
and

MorSh(Xétale)(F , ε−1G)→ MorSh(Xpro-étale)(a(F),G)
are mutually inverse. We omit the detailed verification. �

Lemma 19.2. Let X be a scheme. For every sheaf F on Xétale the adjunction map
F → ε∗ε

−1F is an isomorphism, i.e., ε−1F(U) = F(U) for U in Xétale.
4Choose a big pro-étale site Schpro-étale containingX as in Definition 12.7. Then let Schétale be the site

having the same underlying category as Schpro-étale but whose coverings are exactly those pro-étale coverings
which are also étale coverings. With these choices let Xétale and Xpro-étale be the subcategories defined in
Definition 12.8 and Topologies, Definition 4.8. Compare with Topologies, Remark 11.1.
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Proof. Follows immediately from the description of ε−1 in Lemma 19.1. �

Lemma 19.3. Let X be a scheme. Let Y = lim Yi be the limit of a directed inverse
system of quasi-compact and quasi-separated objects of Xpro-étale with affine transition
morphisms. For any sheaf F on Xétale we have

ε−1F(Y ) = colim ε−1F(Yi)
Moreover, if Yi is in Xétale we have ε−1F(Y ) = colimF(Yi).

Proof. By the description of ε−1F in Lemma 19.1, the displayed formula is a special
case of Étale Cohomology, Theorem 51.3. (When X , Y , and the Yi are all affine, see the
easier to parse Étale Cohomology, Lemma 51.5.) The final statement follows immediately
from this and Lemma 19.2. �

Lemma 19.4. Let X be an affine scheme. For injective abelian sheaf I on Xétale we
have Hp(Xpro-étale, ε

−1I) = 0 for p > 0.

Proof. We are going to use Cohomology on Sites, Lemma 10.9 to prove this. Let
B ⊂ Ob(Xpro-étale) be the set of affine objects U of Xpro-étale such that O(X)→ O(U)
is ind-étale. Let Cov be the set of pro-étale coverings {Ui → U}i=1,...,n with U ∈ B such
that O(U) → O(Ui) is ind-étale for i = 1, . . . , n. Properties (1) and (2) of Cohomology
on Sites, Lemma 10.9 hold for B and Cov by Lemmas 7.3, 7.2, and 12.5 and Proposition 9.1.
To check condition (3) suppose that U = {Ui → U}i=1,...,n is an element of Cov. We
have to show that the higher Cech cohomology groups of ε−1I with respect to U are zero.
First we write Ui = lima∈Ai Ui,a as a directed inverse limit with Ui,a → U étale and Ui,a
affine. We think ofA1×. . .×An as a direct set with ordering (a1, . . . , an) ≥ (a′

1, . . . , a
′
n)

if and only if ai ≥ a′
i for i = 1, . . . , n. Observe that U(a1,...,an) = {Ui,ai → U}i=1,...,n is

an étale covering for all a1, . . . , an ∈ A1 × . . .×An. Observe that
Ui0×U Ui1×U . . .×U Uip = lim(a1,...,an)∈A1×...×An Ui0,ai0 ×U Ui1,ai1 ×U . . .×U Uip,aip
for all i0, . . . , ip ∈ {1, . . . , n} because limits commute with fibred products. Hence by
Lemma 19.3 and exactness of filtered colimits we have

Ȟp(U , ε−1I) = colim Ȟp(U(a1,...,an), ε
−1I)

Thus it suffices to prove the vanishing for étale coverings of U !
Let U = {Ui → U}i=1,...,n be an étale covering with Ui affine. Write U = limb∈B Ub as
a directed inverse limit with Ub affine and Ub → X étale. By Limits, Lemmas 10.1, 4.13,
and 8.10 we can choose a b0 ∈ B such that for i = 1, . . . , n there is an étale morphism
Ui,b0 → Ub0 of affines such that Ui = U ×Ub0

Ui,b0 . Set Ui,b = Ub ×Ub0
Ui,b0 for b ≥ b0.

For b large enough the family Ub = {Ui,b → Ub}i=1,...,n is an étale covering, see Limits,
Lemma 8.15. Exactly as before we find that

Ȟp(U , ε−1I) = colim Ȟp(Ub, ε−1I) = colim Ȟp(Ub, I)
the final equality by Lemma 19.2. Since each of the Čech complexes on the right hand side
is acyclic in positive degrees (Cohomology on Sites, Lemma 10.2) it follows that the one
on the left is too. This proves condition (3) of Cohomology on Sites, Lemma 10.9. Since
X ∈ B the lemma follows. �

Lemma 19.5. Let X be a scheme.
(1) For an abelian sheaf F on Xétale we have Rε∗(ε−1F) = F .
(2) For K ∈ D+(Xétale) the map K → Rε∗ε

−1K is an isomorphism.
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Proof. Let I be an injective abelian sheaf on Xétale. Recall that Rqε∗(ε−1I) is the
sheaf associated to U 7→ Hq(Upro-étale, ε

−1I), see Cohomology on Sites, Lemma 7.4. By
Lemma 19.4 we see that this is zero for q > 0 and U affine and étale over X . Since every
object ofXétale has a covering by affine objects, it follows thatRqε∗(ε−1I) = 0 for q > 0.
LetK ∈ D+(Xétale). Choose a bounded below complex I• of injective abelian sheaves on
Xétale representingK. Then ε−1K is represented by ε−1I•. By Leray’s acyclicity lemma
(Derived Categories, Lemma 16.7) we see that Rε∗ε−1K is represented by ε∗ε−1I•. By
Lemma 19.2 we conclude thatRε∗ε−1I• = I• and the proof of (2) is complete. Part (1) is
a special case of (2). �

Lemma 19.6. Let X be a scheme.
(1) For an abelian sheaf F on Xétale we have

Hi(Xétale,F) = Hi(Xpro-étale, ε
−1F)

for all i.
(2) For K ∈ D+(Xétale) we have

RΓ(Xétale,K) = RΓ(Xpro-étale, ε
−1K)

Proof. Immediate consequence of Lemma 19.5 and the Leray spectral sequence (Co-
homology on Sites, Lemma 14.6). �

Lemma 19.7. Let X be a scheme. Let G be a sheaf of (possibly noncommutative)
groups on Xétale. We have

H1(Xétale,G) = H1(Xpro-étale, ε
−1G)

whereH1 is defined as the set of isomorphism classes of torsors (see Cohomology on Sites,
Section 4).

Proof. Since the functor ε−1 is fully faithful by Lemma 19.2 it is clear that the map
H1(Xétale,G) → H1(Xpro-étale, ε

−1G) is injective. To show surjectivity it suffices to
show that any ε−1G-torsor F is étale locally trivial. To do this we may assume that X is
affine. Thus we reduce to proving surjectivity for X affine.
Choose a covering {U → X} with (a) U affine, (b) O(X) → O(U) ind-étale, and (c)
F(U) nonempty. We can do this by Proposition 9.1 and the fact that standard pro-étale
coverings of X are cofinal among all pro-étale coverings of X (Lemma 12.5). Write U =
limUi as a limit of affine schemes étale over X . Pick s ∈ F(U). Let g ∈ ε−1G(U ×X U)
be the unique section such that g ·pr∗

1s = pr∗
2s inF(U×XU). Then g satisfies the cocycle

condition
pr∗

12g · pr∗
23g = pr∗

13g

in ε−1G(U ×X U ×X U). By Lemma 19.3 we have

ε−1G(U ×X U) = colimG(Ui ×X Ui)
and

ε−1G(U ×X U ×X U) = colimG(Ui ×X Ui ×X Ui)
hence we can find an i and an element gi ∈ G(Ui ×X Ui) mapping to g satisfying the
cocycle condition. The cocycle gi then defines a torsor for G on Xétale whose pullback is
isomorphic toF by construction. Some details omitted (namely, the relationship between
torsors and 1-cocycles which should be added to the chapter on cohomology on sites). �

Lemma 19.8. Let X be a scheme. Let Λ be a ring.
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(1) The essential image of the fully faithful functor ε−1 : Mod(Xétale,Λ)→Mod(Xpro-étale,Λ)
is a weak Serre subcategory C.

(2) The functor ε−1 defines an equivalence of categories of D+(Xétale,Λ) with
D+

C (Xpro-étale,Λ) with question inverse given by Rε∗.

Proof. To prove (1) we will prove conditions (1) – (4) of Homology, Lemma 10.3.
Since ε−1 is fully faithful (Lemma 19.2) and exact, everything is clear except for condition
(4). However, if

0→ ε−1F1 → G → ε−1F2 → 0
is a short exact sequence of sheaves of Λ-modules on Xpro-étale, then we get

0→ ε∗ε
−1F1 → ε∗G → ε∗ε

−1F2 → R1ε∗ε
−1F1

which by Lemma 19.5 is the same as a short exact sequence

0→ F1 → ε∗G → F2 → 0

Pulling pack we find that G = ε−1ε∗G. This proves (1).

Part (2) follows from part (1) and Cohomology on Sites, Lemma 28.5. �

Let Λ be a ring. In Modules on Sites, Section 43 we have defined the notion of a locally
constant sheaf of Λ-modules on a site. IfM is a Λ-module, thenM is of finite presentation
as a sheaf of Λ-modules if and only if M is a finitely presented Λ-module, see Modules on
Sites, Lemma 42.5.

Lemma 19.9. Let X be a scheme. Let Λ be a ring. The functor ε−1 defines an equiva-
lence of categorieslocally constant sheaves

of Λ-modules on Xétale

of finite presentation

←→
 locally constant sheaves

of Λ-modules on Xpro-étale
of finite presentation


Proof. Let F be a locally constant sheaf of Λ-modules onXpro-étale of finite presen-

tation. Choose a pro-étale covering {Ui → X} such that F|Ui is constant, say F|Ui ∼=
MiUi

. Observe thatUi×X Uj is empty ifMi is not isomorphic toMj . For each Λ-module
M let IM = {i ∈ I | Mi

∼= M}. As pro-étale coverings are fpqc coverings and by De-
scent, Lemma 13.6 we see that UM =

⋃
i∈IM Im(Ui → X) is an open subset of X . Then

X =
∐
UM is a disjoint open covering of X . We may replace X by UM for some M and

assume that Mi = M for all i.

Consider the sheaf I = Isom(M,F). This sheaf is a torsor for G = Isom(M,M). By
Modules on Sites, Lemma 43.4 we have G = G where G = IsomΛ(M,M). Since torsors
for the étale topology and the pro-étale topology agree by Lemma 19.7 it follows that I
has sections étale locally on X . Thus F is étale locally a constant sheaf which is what we
had to show. �

Lemma 19.10. Let X be a scheme. Let Λ be a Noetherian ring. Let Dflc(Xétale,Λ),
resp. Dflc(Xpro-étale,Λ) be the full subcategory of D(Xétale,Λ), resp. D(Xpro-étale,Λ)
consisting of those complexes whose cohomology sheaves are locally constant sheaves of
Λ-modules of finite type. Then

ε−1 : D+
flc(Xétale,Λ) −→ D+

flc(Xpro-étale,Λ)

is an equivalence of categories.
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Proof. The categories Dflc(Xétale,Λ) and Dflc(Xpro-étale,Λ) are strictly full, sat-
urated, triangulated subcategories of D(Xétale,Λ) and D(Xpro-étale,Λ) by Modules on
Sites, Lemma 43.5 and Derived Categories, Section 17. The statement of the lemma fol-
lows by combining Lemmas 19.8 and 19.9. �

Lemma 19.11. Let X be a scheme. Let Λ be a Noetherian ring. Let K be an object of
D(Xpro-étale,Λ). Set Kn = K ⊗L

Λ Λ/In. If K1 is
(1) in the essential image of ε−1 : D(Xétale,Λ/I)→ D(Xpro-étale,Λ/I), and
(2) has tor amplitude in [a,∞) for some a ∈ Z,

then (1) and (2) hold for Kn as an object of D(Xpro-étale,Λ/In).

Proof. Assertion (2) for Kn follows from the more general Cohomology on Sites,
Lemma 46.9. Assertion (1) for Kn follows by induction on n from the distinguished tri-
angles

K ⊗L
Λ I

n/In+1 → Kn+1 → Kn → K ⊗L
Λ I

n/In+1[1]
and the isomorphism

K ⊗L
Λ I

n/In+1 = K1 ⊗L
Λ/I I

n/In+1

and the fact proven in Lemma 19.8 that the essential image of ε−1 is a triangulated subcat-
egory of D+(Xpro-étale,Λ/In). �

Example 19.12. Let X be a scheme. Let A be an abelian group. Denote fun(−, A)
the sheaf on Xpro-étale which maps U to the set of all maps U → A (of sets of points).
Consider the sequence of sheaves

0→ A→ fun(−, A)→ F → 0
on Xpro-étale. Since the constant sheaf is the pullback from the final topos we see that
A = ε−1A. However, if A has more than one element, then neither fun(−, A) nor F are
pulled back from the étale site of X . To work out the values of F in some cases, assume
that all points of X are closed with separably closed residue fields and U is affine. Then
all points of U are closed with separably closed residue fields and we have

H1
pro-étale(U,A) = H1

étale(U,A) = 0

by Lemma 19.6 and Étale Cohomology, Lemma 80.3. Hence in this case we have

F(U) = fun(U,A)/A(U)

20. Derived completion in the constant Noetherian case

We continue the discussion started in Algebraic and Formal Geometry, Section 6; we as-
sume the reader has read at least some of that section.

Let C be a site. Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Recall from Modules
on Sites, Lemma 42.4 that

Λ∧ = lim Λ/In

is a flat Λ-algebra and that the map Λ → Λ∧ identifies quotients by I . Hence Algebraic
and Formal Geometry, Lemma 6.17 tells us that

Dcomp(C,Λ) = Dcomp(C,Λ∧)
In particular the cohomology sheaves Hi(K) of an object K of Dcomp(C,Λ) are sheaves
of Λ∧-modules. For notational convenience we often work with Dcomp(C,Λ).
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Lemma 20.1. Let C be a site. Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal.
The left adjoint to the inclusion functorDcomp(C,Λ)→ D(C,Λ) of Algebraic and Formal
Geometry, Proposition 6.12 sends K to

K∧ = R lim(K ⊗L
Λ Λ/In)

In particular, K is derived complete if and only if K = R lim(K ⊗L
Λ Λ/In).

Proof. Choose generators f1, . . . , fr of I . By Algebraic and Formal Geometry, Lemma
6.9 we have

K∧ = R lim(K ⊗L
Λ Kn)

where Kn = K(Λ, fn1 , . . . , fnr ). In More on Algebra, Lemma 94.1 we have seen that the
pro-systems {Kn} and {Λ/In} of D(Λ) are isomorphic. Thus the lemma follows. �

Lemma 20.2. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Let f : Sh(D) →
Sh(C) be a morphism of topoi. Then

(1) Rf∗ sends Dcomp(D,Λ) into Dcomp(C,Λ),
(2) the mapRf∗ : Dcomp(D,Λ)→ Dcomp(C,Λ) has a left adjointLf∗

comp : Dcomp(C,Λ)→
Dcomp(D,Λ) which is Lf∗ followed by derived completion,

(3) Rf∗ commutes with derived completion,
(4) for K in Dcomp(D,Λ) we have Rf∗K = R limRf∗(K ⊗L

Λ Λ/In).
(5) for M in Dcomp(C,Λ) we have Lf∗

compM = R limLf∗(M ⊗L
Λ Λ/In).

Proof. We have seen (1) and (2) in Algebraic and Formal Geometry, Lemma 6.18.
Part (3) follows from Algebraic and Formal Geometry, Lemma 6.19. For (4) let K be
derived complete. Then

Rf∗K = Rf∗(R limK ⊗L
Λ Λ/In) = R limRf∗(K ⊗L

Λ Λ/In)

the first equality by Lemma 20.1 and the second because Rf∗ commutes with R lim (Co-
homology on Sites, Lemma 23.3). This proves (4). To prove (5), by Lemma 20.1 we have

Lf∗
compM = R lim(Lf∗M ⊗L

Λ Λ/In)
Since Lf∗ commutes with derived tensor product by Cohomology on Sites, Lemma 18.4
and since Lf∗Λ/In = Λ/In we get (5). �

21. Derived completion and weakly contractible objects

We continue the discussion in Section 20. In this section we will see how the existence of
weakly contractible objects simplifies the study of derived complete modules.
Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Although the general
theory concerning Dcomp(C,Λ) is quite satisfactory it is hard to explicitly give examples
of derived complete complexes. We know that

(1) every objectM ofD(C,Λ/In) restricts to a derived complete object ofD(C,Λ),
and

(2) for every K ∈ D(C,Λ) the derived completion K∧ = R lim(K ⊗L
Λ Λ/In) is

derived complete.
The first type of objects are trivially complete and perhaps not interesting. The problem
with (2) is that derived completion in general is somewhat mysterious, even in caseK = Λ.
Namely, by definition of homotopy limits there is a distinguished triangle

R lim(Λ/In)→
∏

Λ/In →
∏

Λ/In → R lim(Λ/In)[1]
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inD(C,Λ) where the products are inD(C,Λ). These are computed by taking products of
injective resolutions (Injectives, Lemma 13.4), so we see that the sheaf Hp(

∏
Λ/In) is the

sheafification of the presheaf

U 7−→
∏

Hp(U,Λ/In).

As an explicit example, if X = Spec(C[t, t−1]), C = Xétale, Λ = Z, I = (2), and p = 1,
then we get the sheafification of the presheaf

U 7→
∏

H1(Uétale,Z/2nZ)

for U étale over X . Note that H1(Xétale,Z/mZ) is cyclic of order m with generator
αm given by the finite étale Z/mZ-covering given by the equation t = sm (see Étale
Cohomology, Section 6). Then the section

α = (α2n) ∈
∏

H1(Xétale,Z/2nZ)

of the presheaf above does not restrict to zero on any nonempty étale scheme over X ,
whence the sheaf associated to the presheaf is not zero.
However, on the pro-étale site this phenomenon does not occur. The reason is that we
have enough (quasi-compact) weakly contractible objects. In the following proposition
we collect some results about derived completion in the Noetherian constant case for sites
having enough weakly contractible objects (see Sites, Definition 40.2).

Proposition 21.1. Let C be a site. Assume C has enough weakly contractible objects.
Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal.

(1) The category of derived complete sheaves Λ-modules is a weak Serre subcategory
of Mod(C,Λ).

(2) A sheaf F of Λ-modules satisfies F = limF/InF if and only if F is derived
complete and

⋂
InF = 0.

(3) The sheaf Λ∧ is derived complete.
(4) If . . . → F3 → F2 → F1 is an inverse system of derived complete sheaves of

Λ-modules, then limFn is derived complete.
(5) An objectK ∈ D(C,Λ) is derived complete if and only if each cohomology sheaf

Hp(K) is derived complete.
(6) An object K ∈ Dcomp(C,Λ) is bounded above if and only if K ⊗L

Λ Λ/I is
bounded above.

(7) An object K ∈ Dcomp(C,Λ) is bounded if K ⊗L
Λ Λ/I has finite tor dimension.

Proof. Let B ⊂ Ob(C) be a subset such that every U ∈ B is weakly contractible and
every object of C has a covering by elements of B. We will use the results of Cohomology
on Sites, Lemma 51.1 and Proposition 51.2 without further mention.
Recall that R lim commutes with RΓ(U,−), see Injectives, Lemma 13.6. Let f ∈ I . Recall
that T (K, f) is the homotopy limit of the system

. . .
f−→ K

f−→ K
f−→ K

in D(C,Λ). Thus
RΓ(U, T (K, f)) = T (RΓ(U,K), f).

Since we can test isomorphisms of maps between objects ofD(C,Λ) by evaluating atU ∈ B
we conclude an object K of D(C,Λ) is derived complete if and only if for every U ∈ B
the object RΓ(U,K) is derived complete as an object of D(Λ).
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The remark above implies that items (1), (5) follow from the corresponding results for
modules over rings, see More on Algebra, Lemmas 91.1 and 91.6. In the same way (2) can
be deduced from More on Algebra, Proposition 91.5 as (InF)(U) = In · F(U) for U ∈ B
(by exactness of evaluating at U ).

Proof of (4). The homotopy limit R limFn is in Dcomp(X,Λ) (see discussion following
Algebraic and Formal Geometry, Definition 6.4). By part (5) just proved we conclude that
limFn = H0(R limFn) is derived complete. Part (3) is a special case of (4).

Proof of (6) and (7). Follows from Lemma 20.1 and Cohomology on Sites, Lemma 46.9
and the computation of homotopy limits in Cohomology on Sites, Proposition 51.2. �

22. Cohomology of a point

Let Λ be a Noetherian ring complete with respect to an ideal I ⊂ Λ. Let k be a field. In
this section we “compute”

Hi(Spec(k)pro-étale,Λ∧)
where Λ∧ = limm Λ/Im as before. Let ksep be a separable algebraic closure of k. Then

U = {Spec(ksep)→ Spec(k)}
is a pro-étale covering of Spec(k). We will use the Čech to cohomology spectral sequence
with respect to this covering. Set U0 = Spec(ksep) and

Un = Spec(ksep)×Spec(k) Spec(ksep)×Spec(k) . . .×Spec(k) Spec(ksep)
= Spec(ksep ⊗k ksep ⊗k . . .⊗k ksep)

(n + 1 factors). Note that the underlying topological space |U0| of U0 is a singleton and
for n ≥ 1 we have

|Un| = G× . . .×G (n factors)
as profinite spaces where G = Gal(ksep/k). Namely, every point of Un has residue field
ksep and we identify (σ1, . . . , σn) with the point corresponding to the surjection

ksep ⊗k ksep ⊗k . . .⊗k ksep −→ ksep, λ0 ⊗ λ1 ⊗ . . . λn 7−→ λ0σ1(λ1) . . . σn(λn)
Then we compute

RΓ((Un)pro-étale,Λ∧) = R limmRΓ((Un)pro-étale,Λ/Im)
= R limmRΓ((Un)étale,Λ/Im)
= limmH

0(Un,Λ/Im)
= Mapscont(G× . . .×G,Λ)

The first equality becauseRΓ commutes with derived limits and as Λ∧ is the derived limit
of the sheaves Λ/Im by Proposition 21.1. The second equality by Lemma 19.6. The third
equality by Étale Cohomology, Lemma 80.3. The fourth equality uses Étale Cohomology,
Remark 23.2 to identify sections of the constant sheaf Λ/Im. Then it uses the fact that Λ
is complete with respect to I and hence equal to limm Λ/Im as a topological space, to see
that limm Mapcont(G,Λ/Im) = Mapcont(G,Λ) and similarly for higher powers of G.
At this point Cohomology on Sites, Lemmas 10.3 and 10.7 tell us that

Λ→Mapscont(G,Λ)→Mapscont(G×G,Λ)→ . . .

computes the pro-étale cohomology. In other words, we see that

Hi(Spec(k)pro-étale,Λ∧) = Hi
cont(G,Λ)
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where the right hand side is Tate’s continuous cohomology, see Étale Cohomology, Section
58. Of course, this is as it should be.

Lemma 22.1. Let k be a field. Let G = Gal(ksep/k) be its absolute Galois group.
Further,

(1) let M be a profinite abelian group with a continuous G-action, or
(2) let Λ be a Noetherian ring and I ⊂ Λ an ideal an letM be an I-adically complete

Λ-module with continuous G-action.
Then there is a canonical sheaf M∧ on Spec(k)pro-étale associated to M such that

Hi(Spec(k),M∧) = Hi
cont(G,M)

as abelian groups or Λ-modules.

Proof. Proof in case (2). Set Mn = M/InM . Then M = limMn as M is assumed
I-adically complete. Since the action of G is continuous we get continuous actions of G
on Mn. By Étale Cohomology, Theorem 56.3 this action corresponds to a (locally con-
stant) sheaf Mn of Λ/In-modules on Spec(k)étale. Pull back to Spec(k)pro-étale by the
comparison morphism ε and take the limit

M∧ = lim ε−1Mn

to get the sheaf promised in the lemma. Exactly the same argument as given in the in-
troduction of this section gives the comparison with Tate’s continuous Galois cohomol-
ogy. �

23. Functoriality of the pro-étale site

Let f : X → Y be a morphism of schemes. The functor Ypro-étale → Xpro-étale,
V 7→ X ×Y V induces a morphism of sites fpro-étale : Xpro-étale → Ypro-étale, see Sites,
Proposition 14.7. In fact, we obtain a commutative diagram of morphisms of sites

Xpro-étale ε
//

fpro-étale

��

Xétale

fétale

��
Ypro-étale

ε // Yétale

where ε is as in Section 19. In particular we have ε−1f−1
étale = f−1

pro-étaleε
−1. Here is the

corresponding result for pushforward.

Lemma 23.1. Let f : X → Y be a morphism of schemes.
(1) LetF be a sheaf of sets onXétale. Then we have fpro-étale,∗ε

−1F = ε−1fétale,∗F .
(2) LetF be an abelian sheaf onXétale. Then we haveRfpro-étale,∗ε

−1F = ε−1Rfétale,∗F .

Proof. Proof of (1). Let F be a sheaf of sets on Xétale. There is a canonical map
ε−1fétale,∗F → fpro-étale,∗ε

−1F , see Sites, Section 45. To show it is an isomorphism we
may work (Zariski) locally on Y , hence we may assume Y is affine. In this case every
object of Ypro-étale has a covering by objects V = limVi which are limits of affine schemes
Vi étale over Y (by Proposition 9.1 for example). Evaluating the map ε−1fétale,∗F →
fpro-étale,∗ε

−1F on V we obtain a map
colim Γ(X ×Y Vi,F) −→ Γ(X ×Y V, ε∗F).

see Lemma 19.3 for the left hand side. By Lemma 19.3 we have
Γ(X ×Y V, ε∗F) = Γ(X ×Y V,F)
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Hence the result holds by Étale Cohomology, Lemma 51.5.
Proof of (2). Arguing in exactly the same manner as above we see that it suffices to show
that

colimHi
étale(X ×Y Vi,F) −→ Hi

étale(X ×Y V,F)
which follows once more from Étale Cohomology, Lemma 51.5. �

24. Finite morphisms and pro-étale sites

It is not clear that a finite morphism of schemes determines an exact pushforward on
abelian pro-étale sheaves.

Lemma 24.1. Let f : Z → X be a finite morphism of schemes which is locally of
finite presentation. Then fpro-étale,∗ : Ab(Zpro-étale)→ Ab(Xpro-étale) is exact.

Proof. The prove this we may work (Zariski) locally on X and assume that X is
affine, say X = Spec(A). Then Z = Spec(B) for some finite A-algebra B of finite
presentation. The construction in the proof of Proposition 11.3 produces a faithfully flat,
ind-étale ring mapA→ D withD w-contractible. We may check exactness of a sequence
of sheaves by evaluating onU = Spec(D) be such an object. Then fpro-étale,∗F evaluated
at U is equal to F evaluated at V = Spec(D ⊗A B). Since D ⊗A B is w-contractible by
Lemma 11.6 evaluation at V is exact. �

25. Closed immersions and pro-étale sites

It is not clear (and likely false) that a closed immersion of schemes determines an exact
pushforward on abelian pro-étale sheaves.

Lemma 25.1. Let i : Z → X be a closed immersion morphism of affine schemes.
Denote Xapp and Zapp the sites introduced in Lemma 12.21. The base change functor

u : Xapp → Zapp, U 7−→ u(U) = U ×X Z

is continuous and has a fully faithful left adjoint v. For V in Zapp the morphism V →
v(V ) is a closed immersion identifying V with u(v(V )) = v(V ) ×X Z and every point
of v(V ) specializes to a point of V . The functor v is cocontinuous and sends coverings to
coverings.

Proof. The existence of the adjoint follows immediately from Lemma 7.7 and the
definitions. It is clear that u is continuous from the definition of coverings in Xapp.

Write X = Spec(A) and Z = Spec(A/I). Let V = Spec(C) be an object of Zapp
and let v(V ) = Spec(C). We have seen in the statement of Lemma 7.7 that V equals
v(V )×X Z = Spec(C/IC). Any g ∈ C which maps to an invertible element ofC/IC =
C is invertible in C. Namely, we have the A-algebra maps C → Cg → C/IC and by
adjointness we obtain an C-algebra map Cg → C. Thus every point of v(V ) specializes
to a point of V .
Suppose that {Vi → V } is a covering in Zapp. Then {v(Vi)→ v(V )} is a finite family of
morphisms of Zapp such that every point of V ⊂ v(V ) is in the image of one of the maps
v(Vi)→ v(V ). As the morphisms v(Vi)→ v(V ) are flat (since they are weakly étale) we
conclude that {v(Vi)→ v(V )} is jointly surjective. This proves that v sends coverings to
coverings.
Let V be an object of Zapp and let {Ui → v(V )} be a covering in Xapp. Then we see that
{u(Ui) → u(v(V )) = V } is a covering of Zapp. By adjointness we obtain morphisms
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v(u(Ui)) → Ui. Thus the family {v(u(Ui)) → v(V )} refines the given covering and we
conclude that v is cocontinuous. �

Lemma 25.2. Let Z → X be a closed immersion morphism of affine schemes. The
corresponding morphism of topoi i = ipro-étale is equal to the morphism of topoi asso-
ciated to the fully faithful cocontinuous functor v : Zapp → Xapp of Lemma 25.1. It
follows that

(1) i−1F is the sheaf associated to the presheaf V 7→ F(v(V )),
(2) for a weakly contractible object V of Zapp we have i−1F(V ) = F(v(V )),
(3) i−1 : Sh(Xpro-étale)→ Sh(Zpro-étale) has a left adjoint iSh! ,
(4) i−1 : Ab(Xpro-étale)→ Ab(Zpro-étale) has a left adjoint i!,
(5) id→ i−1iSh! , id→ i−1i!, and i−1i∗ → id are isomorphisms, and
(6) i∗, iSh! and i! are fully faithful.

Proof. By Lemma 12.21 we may describe ipro-étale in terms of the morphism of sites
u : Xapp → Zapp, V 7→ V ×X Z. The first statement of the lemma follows from Sites,
Lemma 22.2 (but with the roles of u and v reversed).

Proof of (1). By the description of i as the morphism of topoi associated to v this holds by
the construction, see Sites, Lemma 21.1.

Proof of (2). Since the functor v sends coverings to coverings by Lemma 25.1 we see that
the presheaf G : V 7→ F(v(V )) is a separated presheaf (Sites, Definition 10.9). Hence the
sheafification of G is G+, see Sites, Theorem 10.10. Next, let V be a weakly contractible
object of Zapp. Let V = {Vi → V }i=1,...,n be any covering in Zapp. Set V ′ = {

∐
Vi →

V }. Since v commutes with finite disjoint unions (as a left adjoint or by the construction)
and since F sends finite disjoint unions into products, we see that

H0(V,G) = H0(V ′,G)
(notation as in Sites, Section 10; compare with Étale Cohomology, Lemma 22.1). Thus we
may assume the covering is given by a single morphism, like so {V ′ → V }. Since V is
weakly contractible, this covering can be refined by the trivial covering {V → V }. It
therefore follows that the value of G+ = i−1F on V is simplyF(v(V )) and (2) is proved.

Proof of (3). Every object of Zapp has a covering by weakly contractible objects (Lemma
13.4). By the above we see that we would have iSh! hV = hv(V ) for V weakly contractible
if iSh! existed. The existence of iSh! then follows from Sites, Lemma 24.1.

Proof of (4). Existence of i! follows in the same way by setting i!ZV = Zv(V ) forV weakly
contractible in Zapp, using similar for direct sums, and applying Homology, Lemma 29.6.
Details omitted.

Proof of (5). Let V be a contractible object of Zapp. Then i−1iSh! hV = i−1hv(V ) =
hu(v(V )) = hV . (It is a general fact that i−1hU = hu(U).) Since the sheaves hV for
V contractible generate Sh(Zapp) (Sites, Lemma 12.5) we conclude id → i−1iSh! is an
isomorphism. Similarly for the map id → i−1i!. Then (i−1i∗H)(V ) = i∗H(v(V )) =
H(u(v(V ))) = H(V ) and we find that i−1i∗ → id is an isomorphism.

The fully faithfulness statements of (6) now follow from Categories, Lemma 24.4. �

Lemma 25.3. Let i : Z → X be a closed immersion of schemes. Then
(1) i−1

pro-étale commutes with limits,
(2) ipro-étale,∗ is fully faithful, and
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(3) i−1
pro-étaleipro-étale,∗ ∼= idSh(Zpro-étale).

Proof. Assertions (2) and (3) are equivalent by Sites, Lemma 41.1. Parts (1) and (3)
are (Zariski) local on X , hence we may assume that X is affine. In this case the result
follows from Lemma 25.2. �

Lemma 25.4. Let i : Z → X be an integral universally injective and surjective mor-
phism of schemes. Then ipro-étale,∗ and i−1

pro-étale are quasi-inverse equivalences of cate-
gories of pro-étale topoi.

Proof. There is an immediate reduction to the case thatX is affine. Then Z is affine
too. SetA = O(X) andB = O(Z). Then the categories of étale algebras overA andB are
equivalent, see Étale Cohomology, Theorem 45.2 and Remark 45.3. Thus the categories
of ind-étale algebras overA andB are equivalent. In other words the categoriesXapp and
Zapp of Lemma 12.21 are equivalent. We omit the verification that this equivalence sends
coverings to coverings and vice versa. Thus the result as Lemma 12.21 tells us the pro-étale
topos is the topos of sheaves on Xapp. �

Lemma 25.5. Let i : Z → X be a closed immersion of schemes. Let U → X be an
object of Xpro-étale such that

(1) U is affine and weakly contractible, and
(2) every point of U specializes to a point of U ×X Z.

Then i−1
pro-étaleF(U ×X Z) = F(U) for all abelian sheaves on Xpro-étale.

Proof. Since pullback commutes with restriction, we may replace X by U . Thus we
may assume thatX is affine and weakly contractible and that every point ofX specializes
to a point ofZ. By Lemma 25.2 part (1) it suffices to show that v(Z) = X in this case. Thus
we have to show: If A is a w-contractible ring, I ⊂ A an ideal contained in the Jacobson
radical of A and A → B → A/I is a factorization with A → B ind-étale, then there is a
unique retractionB → A compatible with maps toA/I . Observe thatB/IB = A/I×R
as A/I-algebras. After replacing B by a localization we may assume B/IB = A/I . Note
that Spec(B) → Spec(A) is surjective as the image contains V (I) and hence all closed
points and is closed under specialization. Since A is w-contractible there is a retraction
B → A. SinceB/IB = A/I this retraction is compatible with the map toA/I . We omit
the proof of uniqueness (hint: use that A and B have isomorphic local rings at maximal
ideals of A). �

Lemma 25.6. Let i : Z → X be a closed immersion of schemes. If X \ i(Z) is a
retrocompact open of X , then ipro-étale,∗ is exact.

Proof. The question is local on X hence we may assume X is affine. Say X =
Spec(A) and Z = Spec(A/I). There exist f1, . . . , fr ∈ I such that Z = V (f1, . . . , fr)
set theoretically, see Algebra, Lemma 29.1. By Lemma 25.4 we may assume that Z =
Spec(A/(f1, . . . , fr)). In this case the functor ipro-étale,∗ is exact by Lemma 24.1. �

26. Extension by zero

The general material in Modules on Sites, Section 19 allows us to make the following
definition.

Definition 26.1. Let j : U → X be a weakly étale morphism of schemes.
(1) The restriction functor j−1 : Sh(Xpro-étale)→ Sh(Upro-étale) has a left adjoint

jSh! : Sh(Xpro-étale)→ Sh(Upro-étale).
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(2) The restriction functor j−1 : Ab(Xpro-étale)→ Ab(Upro-étale) has a left adjoint
which is denoted j! : Ab(Upro-étale) → Ab(Xpro-étale) and called extension by
zero.

(3) Let Λ be a ring. The functor j−1 : Mod(Xpro-étale,Λ) → Mod(Upro-étale,Λ)
has a left adjoint j! : Mod(Upro-étale,Λ) → Mod(Xpro-étale,Λ) and called ex-
tension by zero.

As usual we compare this to what happens in the étale case.

Lemma 26.2. Let j : U → X be an étale morphism of schemes. Let G be an abelian
sheaf on Uétale. Then ε−1j!G = j!ε

−1G as sheaves on Xpro-étale.

Proof. This is true because both are left adjoints to jpro-étale,∗ε
−1 = ε−1jétale,∗, see

Lemma 23.1. �

Lemma 26.3. Let j : U → X be a weakly étale morphism of schemes. Let i : Z → X
be a closed immersion such that U ×X Z = ∅. Let V → X be an affine object ofXpro-étale
such that every point of V specializes to a point of VZ = Z ×X V . Then j!F(V ) = 0 for
all abelian sheaves on Upro-étale.

Proof. Let {Vi → V } be a pro-étale covering. The lemma follows if we can refine
this covering to a covering where the members have no morphisms into U over X (see
construction of j! in Modules on Sites, Section 19). First refine the covering to get a finite
covering with Vi affine. For each i let Vi = Spec(Ai) and letZi ⊂ Vi be the inverse image
of Z. Set Wi = Spec(A∼

i,Zi
) with notation as in Lemma 5.1. Then

∐
Wi → V is weakly

étale and the image contains all points of VZ . Hence the image contains all points of V by
our assumption on specializations. Thus {Wi → V } is a pro-étale covering refining the
given one. But each point in Wi specializes to a point lying over Z , hence there are no
morphisms Wi → U over X . �

Lemma 26.4. Let j : U → X be an open immersion of schemes. Then id ∼= j−1j!
and j−1j∗ ∼= id and the functors j! and j∗ are fully faithful.

Proof. See Modules on Sites, Lemma 19.8 (and Sites, Lemma 27.4 for the case of
sheaves of sets) and Categories, Lemma 24.4. �

Here is the relationship between extension by zero and restriction to the complementary
closed subscheme.

Lemma 26.5. Let X be a scheme. Let Z ⊂ X be a closed subscheme and let U ⊂ X
be the complement. Denote i : Z → X and j : U → X the inclusion morphisms.
Assume that j is a quasi-compact morphism. For every abelian sheaf on Xpro-étale there
is a canonical short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0

on Xpro-étale where all the functors are for the pro-étale topology.

Proof. We obtain the maps by the adjointness properties of the functors involved.
It suffices to show that Xpro-étale has enough objects (Sites, Definition 40.2) on which
the sequence evaluates to a short exact sequence. Let V = Spec(A) be an affine object
of Xpro-étale such that A is w-contractible (there are enough objects of this type). Then
V ×X Z is cut out by an ideal I ⊂ A. The assumption that j is quasi-compact implies
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there exist f1, . . . , fr ∈ I such that V (I) = V (f1, . . . , fr). We obtain a faithfully flat,
ind-Zariski ring map

A −→ Af1 × . . .×Afr ×A∼
V (I)

with A∼
V (I) as in Lemma 5.1. Since Vi = Spec(Afi)→ X factors through U we have

j!j
−1F(Vi) = F(Vi) and i∗i

−1F(Vi) = 0

On the other hand, for the scheme V ∼ = Spec(A∼
V (I)) we have

j!j
−1F(V ∼) = 0 and F(V ∼) = i∗i

−1F(V ∼)

the first equality by Lemma 26.3 and the second by Lemmas 25.5 and 11.7. Thus the se-
quence evaluates to an exact sequence on Spec(Af1 × . . .×Afr ×A∼

V (I)) and the lemma
is proved. �

Lemma 26.6. Let j : U → X be a quasi-compact open immersion morphism of
schemes. The functor j! : Ab(Upro-étale)→ Ab(Xpro-étale) commutes with limits.

Proof. Since j! is exact it suffices to show that j! commutes with products. The ques-
tion is local on X , hence we may assume X affine. Let G be an abelian sheaf on Upro-étale.
We have j−1j∗G = G. Hence applying the exact sequence of Lemma 26.5 we get

0→ j!G → j∗G → i∗i
−1j∗G → 0

where i : Z → X is the inclusion of the reduced induced scheme structure on the com-
plement Z = X \ U . The functors j∗ and i∗ commute with products as right adjoints.
The functor i−1 commutes with products by Lemma 25.3. Hence j! does because on the
pro-étale site products are exact (Cohomology on Sites, Proposition 51.2). �

27. Constructible sheaves on the pro-étale site

We stick to constructible sheaves of Λ-modules for a Noetherian ring. In the future we
intend to discuss constructible sheaves of sets, groups, etc.

Definition 27.1. Let X be a scheme. Let Λ be a Noetherian ring. A sheaf of Λ-
modules on Xpro-étale is constructible if for every affine open U ⊂ X there exists a finite
decomposition of U into constructible locally closed subschemes U =

∐
i Ui such that

F|Ui is of finite type and locally constant for all i.

Again this does not give anything “new”.

Lemma 27.2. LetX be a scheme. Let Λ be a Noetherian ring. The functor ε−1 defines
an equivalence of categories{

constructible sheaves of
Λ-modules on Xétale

}
←→

{
constructible sheaves of
Λ-modules on Xpro-étale

}
between constructible sheaves of Λ-modules on Xétale and constructible sheaves of Λ-
modules on Xpro-étale.

Proof. By Lemma 19.2 the functor ε−1 is fully faithful and commutes with pullback
(restriction) to the strata. Hence ε−1 of a constructible étale sheaf is a constructible pro-
étale sheaf. To finish the proof let F be a constructible sheaf of Λ-modules on Xpro-étale
as in Definition 27.1. There is a canonical map

ε−1ε∗F −→ F
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We will show this map is an isomorphism. This will prove thatF is in the essential image
of ε−1 and finish the proof (details omitted).
To prove this we may assume that X is affine. In this case we have a finite partition X =∐
iXi by constructible locally closed strata such that F|Xi is locally constant of finite

type. Let U ⊂ X be one of the open strata in the partition and let Z ⊂ X be the reduced
induced structure on the complement. By Lemma 26.5 we have a short exact sequence

0→ j!j
−1F → F → i∗i

−1F → 0
on Xpro-étale. Functoriality gives a commutative diagram

0 // ε−1ε∗j!j
−1F //

��

ε−1ε∗F //

��

ε−1ε∗i∗i
−1F //

��

0

0 // j!j
−1F // F // i∗i−1F // 0

By induction on the length of the partition we know that on the one hand ε−1ε∗i
−1F →

i−1F and ε−1ε∗j
−1F → j−1F are isomorphisms and on the other that i−1F = ε−1A

and j−1F = ε−1B for some constructible sheaves of Λ-modules A on Zétale and B on
Uétale. Then

ε−1ε∗j!j
−1F = ε−1ε∗j!ε

−1B = ε−1ε∗ε
−1j!B = ε−1j!B = j!ε

−1B = j!j
−1F

the second equality by Lemma 26.2, the third equality by Lemma 19.2, and the fourth
equality by Lemma 26.2 again. Similarly, we have

ε−1ε∗i∗i
−1F = ε−1ε∗i∗ε

−1A = ε−1ε∗ε
−1i∗A = ε−1i∗A = i∗ε

−1A = i∗i
−1F

this time using Lemma 23.1. By the five lemma we conclude the vertical map in the middle
of the big diagram is an isomorphism. �

Lemma 27.3. Let X be a scheme. Let Λ be a Noetherian ring. The category of con-
structible sheaves of Λ-modules onXpro-étale is a weak Serre subcategory of Mod(Xpro-étale,Λ).

Proof. This is a formal consequence of Lemmas 27.2 and 19.8 and the result for the
étale site (Étale Cohomology, Lemma 71.6). �

Lemma 27.4. Let X be a scheme. Let Λ be a Noetherian ring. Let Dc(Xétale,Λ),
resp. Dc(Xpro-étale,Λ) be the full subcategory of D(Xétale,Λ), resp. D(Xpro-étale,Λ)
consisting of those complexes whose cohomology sheaves are constructible sheaves of Λ-
modules. Then

ε−1 : D+
c (Xétale,Λ) −→ D+

c (Xpro-étale,Λ)
is an equivalence of categories.

Proof. The categories Dc(Xétale,Λ) and Dc(Xpro-étale,Λ) are strictly full, satu-
rated, triangulated subcategories of D(Xétale,Λ) and D(Xpro-étale,Λ) by Étale Coho-
mology, Lemma 71.6 and Lemma 27.3 and Derived Categories, Section 17. The statement
of the lemma follows by combining Lemmas 19.8 and 27.2. �

Lemma 27.5. LetX be a scheme. Let Λ be a Noetherian ring. LetK,L ∈ D−
c (Xpro-étale,Λ).

Then K ⊗L
Λ L is in D−

c (Xpro-étale,Λ).

Proof. Note thatHi(K⊗L
ΛL) is the same asHi(τ≥i−1K⊗L

Λ τ≥i−1L). Thus we may
assume K and L are bounded. In this case we can apply Lemma 27.4 to reduce to the case
of the étale site, see Étale Cohomology, Lemma 76.6. �
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Lemma 27.6. Let X be a scheme. Let Λ be a Noetherian ring. Let K be an object of
D(Xpro-étale,Λ). Set Kn = K ⊗L

Λ Λ/In. If K1 is in D−
c (Xpro-étale,Λ/I), then Kn is in

D−
c (Xpro-étale,Λ/In) for all n.

Proof. Consider the distinguished triangles

K ⊗L
Λ I

n/In+1 → Kn+1 → Kn → K ⊗L
Λ I

n/In+1[1]

and the isomorphisms

K ⊗L
Λ I

n/In+1 = K1 ⊗L
Λ/I I

n/In+1

By Lemma 27.5 we see that this tensor product has constructible cohomology sheaves (and
vanishing when K1 has vanishing cohomology). Hence by induction on n using Lemma
27.3 we see that each Kn has constructible cohomology sheaves. �

28. Constructible adic sheaves

In this section we define the notion of a constructible Λ-sheaf as well as some variants.

Definition 28.1. Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Let X be a
scheme. Let F be a sheaf of Λ-modules on Xpro-étale.

(1) We say F is a constructible Λ-sheaf if F = limF/InF and each F/InF is a
constructible sheaf of Λ/In-modules.

(2) If F is a constructible Λ-sheaf, then we say F is lisse if each F/InF is locally
constant.

(3) We say F is adic lisse5 if there exists a I-adically complete Λ-module M with
M/IM finite such that F is locally isomorphic to

M∧ = limM/InM.

(4) We say F is adic constructible6 if for every affine open U ⊂ X there exists a
decompositionU =

∐
Ui into constructible locally closed subschemes such that

F|Ui is adic lisse.

The definition of a constructible Λ-sheaf is equivalent to the one in [?, Exposé VI, Defini-
tion 1.1.1] when Λ = Z` and I = (`). It is clear that we have the implications

lisse adic +3

��

adic constructible

��
lisse constructible Λ-sheaf +3 constructible Λ-sheaf

The vertical arrows can be inverted in some cases (see Lemmas 28.2 and 28.5). In general
neither the category of adic constructible sheaves nor the category of constructible Λ-
sheaves is closed under kernels and cokernels.

Namely, let X be an affine scheme whose underlying topological space |X| is homeomor-
phic to Λ = Z`, see Example 6.3. Denote f : |X| → Z` = Λ a homeomorphism. We
can think of f as a section of Λ∧ over X and multiplication by f then defines a two term
complex

Λ∧ f−→ Λ∧

5This may be nonstandard notation.
6This may be nonstandard notation.
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on Xpro-étale. The sheaf Λ∧ is adic lisse. However, the cokernel of the map above, is not
adic constructible, as the isomorphism type of the stalks of this cokernel attains infinitely
many values: Z/`nZ and Z`. The cokernel is a constructible Z`-sheaf. However, the
kernel is not even a constructible Z`-sheaf as it is zero a non-quasi-compact open but not
zero.

Lemma 28.2. Let X be a Noetherian scheme. Let Λ be a Noetherian ring and let
I ⊂ Λ be an ideal. Let F be a constructible Λ-sheaf on Xpro-étale. Then there exists a
finite partition X =

∐
Xi by locally closed subschemes such that the restriction F|Xi is

lisse.

Proof. Let R =
⊕
In/In+1. Observe that R is a Noetherian ring. Since each of

the sheaves F/InF is a constructible sheaf of Λ/InΛ-modules also InF/In+1F is a con-
structible sheaf of Λ/I-modules and hence the pullback of a constructible sheaf Gn on
Xétale by Lemma 27.2. Set G =

⊕
Gn. This is a sheaf of R-modules on Xétale and the

map
G0 ⊗Λ/I R −→ G

is surjective because the maps

F/IF ⊗ In/In+1 → InF/In+1F

are surjective. HenceG is a constructible sheaf ofR-modules by Étale Cohomology, Propo-
sition 74.1. Choose a partition X =

∐
Xi such that G|Xi is a locally constant sheaf of

R-modules of finite type (Étale Cohomology, Lemma 71.2). We claim this is a partition as
in the lemma. Namely, replacingX byXi we may assume G is locally constant. It follows
that each of the sheaves InF/In+1F is locally constant. Using the short exact sequences

0→ InF/In+1F → F/In+1F → F/InF → 0

induction and Modules on Sites, Lemma 43.5 the lemma follows. �

Lemma 28.3. Let X be a weakly contractible affine scheme. Let Λ be a Noetherian
ring and I ⊂ Λ be an ideal. Let F be a sheaf of Λ-modules on Xpro-étale such that

(1) F = limF/InF ,
(2) F/InF is a constant sheaf of Λ/In-modules,
(3) F/IF is of finite type.

Then F ∼= M∧ where M is a finite Λ∧-module.

Proof. Pick a Λ/In-module Mn such that F/InF ∼= Mn. Since we have the sur-
jections F/In+1F → F/InF we conclude that there exist surjections Mn+1 → Mn

inducing isomorphisms Mn+1/I
nMn+1 → Mn. Fix a choice of such surjections and set

M = limMn. Then M is an I-adically complete Λ-module with M/InM = Mn, see
Algebra, Lemma 98.2. Since M1 is a finite type Λ-module (Modules on Sites, Lemma 42.5)
we see that M is a finite Λ∧-module. Consider the sheaves

In = Isom(Mn,F/InF)

on Xpro-étale. Modding out by In defines a transition map

In+1 −→ In
By our choice of Mn the sheaf In is a torsor under

Isom(Mn,Mn) = IsomΛ(Mn,Mn)
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(Modules on Sites, Lemma 43.4) since F/InF is (étale) locally isomorphic to Mn. It fol-
lows from More on Algebra, Lemma 100.4 that the system of sheaves (In) is Mittag-Leffler.
For each n let I ′

n ⊂ In be the image of IN → In for all N � n. Then

. . .→ I ′
3 → I ′

2 → I ′
1 → ∗

is a sequence of sheaves of sets onXpro-étale with surjective transition maps. Since ∗(X) is
a singleton (not empty) and since evaluating atX transforms surjective maps of sheaves of
sets into surjections of sets, we can pick s ∈ lim I ′

n(X). The sections define isomorphisms
M∧ → limF/InF = F and the proof is done. �

Lemma 28.4. LetX be a connected scheme. Let Λ be a Noetherian ring and let I ⊂ Λ
be an ideal. If F is a lisse constructible Λ-sheaf on Xpro-étale, then F is adic lisse.

Proof. By Lemma 19.9 we haveF/InF = ε−1Gn for some locally constant sheaf Gn
of Λ/In-modules. By Étale Cohomology, Lemma 64.8 there exists a finite Λ/In-module
Mn such that Gn is locally isomorphic to Mn. Choose a covering {Wt → X}t∈T with
each Wt affine and weakly contractible. Then F|Wt

satisfies the assumptions of Lemma
28.3 and hence F|Wt

∼= Nt
∧ for some finite Λ∧-module Nt. Note that Nt/InNt ∼= Mn

for all t and n. Hence Nt ∼= Nt′ for all t, t′ ∈ T , see More on Algebra, Lemma 100.5. This
proves that F is adic lisse. �

Lemma 28.5. LetX be a Noetherian scheme. Let Λ be a Noetherian ring and let I ⊂ Λ
be an ideal. Let F be a constructible Λ-sheaf on Xpro-étale. Then F is adic constructible.

Proof. This is a consequence of Lemmas 28.2 and 28.4, the fact that a Noetherian
scheme is locally connected (Topology, Lemma 9.6), and the definitions. �

It will be useful to identify the constructible Λ-sheaves inside the category of derived
complete sheaves of Λ-modules. It turns out that the naive analogue of More on Algebra,
Lemma 94.5 is wrong in this setting. However, here is the analogue of More on Algebra,
Lemma 91.7.

Lemma 28.6. LetX be a scheme. Let Λ be a ring and let I ⊂ Λ be a finitely generated
ideal. Let F be a sheaf of Λ-modules onXpro-étale. If F is derived complete and F/IF =
0, then F = 0.

Proof. Assume that F/IF is zero. Let I = (f1, . . . , fr). Let i < r be the largest
integer such thatG = F/(f1, . . . , fi)F is nonzero. If i does not exist, thenF = 0 which is
what we want to show. Then G is derived complete as a cokernel of a map between derived
complete modules, see Proposition 21.1. By our choice of i we have that fi+1 : G → G is
surjective. Hence

lim(. . .→ G fi+1−−−→ G fi+1−−−→ G)

is nonzero, contradicting the derived completeness of G. �

Lemma 28.7. LetX be a weakly contractible affine scheme. Let Λ be a Noetherian ring
and let I ⊂ Λ be an ideal. Let F be a derived complete sheaf of Λ-modules on Xpro-étale
with F/IF a locally constant sheaf of Λ/I-modules of finite type. Then there exists an
integer t and a surjective map

(Λ∧)⊕t → F
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Proof. Since X is weakly contractible, there exists a finite disjoint open covering
X =

∐
Ui such that F/IF|Ui is isomorphic to the constant sheaf associated to a finite

Λ/I-module Mi. Choose finitely many generators mij of Mi. We can find sections sij ∈
F(X) restricting to mij viewed as a section of F/IF over Ui. Let t be the total number
of sij . Then we obtain a map

α : Λ⊕t −→ F
which is surjective modulo I by construction. By Lemma 20.1 the derived completion of
Λ⊕t is the sheaf (Λ∧)⊕t. Since F is derived complete we see that α factors through a map

α∧ : (Λ∧)⊕t −→ F

Then Q = Coker(α∧) is a derived complete sheaf of Λ-modules by Proposition 21.1. By
construction Q/IQ = 0. It follows from Lemma 28.6 that Q = 0 which is what we
wanted to show. �

29. A suitable derived category

Let X be a scheme. It will turn out that for many schemes X a suitable derived cate-
gory of `-adic sheaves can be gotten by considering the derived complete objects K of
D(Xpro-étale,Λ) with the property that K ⊗L

Λ F` is bounded with constructible coho-
mology sheaves. Here is the general definition.

Definition 29.1. Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal. Let X be a
scheme. An object K of D(Xpro-étale,Λ) is called constructible if

(1) K is derived complete with respect to I ,
(2) K ⊗L

Λ Λ/I has constructible cohomology sheaves and locally has finite tor di-
mension.

We denote Dcons(X,Λ) the full subcategory of constructible K in D(Xpro-étale,Λ).

Recall that with our conventions a complex of finite tor dimension is bounded (Cohomol-
ogy on Sites, Definition 46.1). In fact, let’s collect everything proved so far in a lemma.

Lemma 29.2. In the situation above suppose K is in Dcons(X,Λ) and X is quasi-
compact. Set Kn = K ⊗L

Λ Λ/In. There exist a, b such that

(1) K = R limKn and Hi(K) = 0 for i 6∈ [a, b],
(2) each Kn has tor amplitude in [a, b],
(3) each Kn has constructible cohomology sheaves,
(4) each Kn = ε−1Ln for some Ln ∈ Dctf (Xétale,Λ/In) (Étale Cohomology,

Definition 77.1).

Proof. By definition of local having finite tor dimension, we can find a, b such that
K1 has tor amplitude in [a, b]. Part (2) follows from Cohomology on Sites, Lemma 46.9.
Then (1) follows as K is derived complete by the description of limits in Cohomology
on Sites, Proposition 51.2 and the fact that Hb(Kn+1) → Hb(Kn) is surjective as Kn =
Kn+1⊗L

Λ Λ/In. Part (3) follows from Lemma 27.6, Part (4) follows from Lemma 27.4 and
the fact that Ln has finite tor dimension because Kn does (small argument omitted). �

Lemma 29.3. LetX be a weakly contractible affine scheme. Let Λ be a Noetherian ring
and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X,Λ) such that the cohomology
sheaves ofK⊗L

Λ Λ/I are locally constant. Then there exists a finite disjoint open covering
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X =
∐
Ui and for each i a finite collection of finite projective Λ∧-modules Ma, . . . ,Mb

such that K|Ui is represented by a complex

(Ma)∧ → . . .→ (M b)∧

in D(Ui,pro-étale,Λ) for some maps of sheaves of Λ-modules (M i)∧ → (M i+1)∧.

Proof. We freely use the results of Lemma 29.2. Choose a, b as in that lemma. We
will prove the lemma by induction on b − a. Let F = Hb(K). Note that F is a derived
complete sheaf of Λ-modules by Proposition 21.1. Moreover F/IF is a locally constant
sheaf of Λ/I-modules of finite type. Apply Lemma 28.7 to get a surjection ρ : (Λ∧)⊕t →
F .

If a = b, then K = F [−b]. In this case we see that

F ⊗L
Λ Λ/I = F/IF

AsX is weakly contractible andF/IF locally constant, we can find a finite disjoint union
decomposition X =

∐
Ui by affine opens Ui and Λ/I-modules M i such that F/IF re-

stricts to M i on Ui. After refining the covering we may assume the map

ρ|Ui mod I : Λ/I⊕t −→M i

is equal to αi for some surjective module map αi : Λ/I⊕t → M i, see Modules on Sites,
Lemma 43.3. Note that eachM i is a finite Λ/I-module. SinceF/IF has tor amplitude in
[0, 0] we conclude that M i is a flat Λ/I-module. Hence M i is finite projective (Algebra,
Lemma 78.2). Hence we can find a projector pi : (Λ/I)⊕t → (Λ/I)⊕t whose image maps
isomorphically to M i under the map αi. We can lift pi to a projector pi : (Λ∧)⊕t →
(Λ∧)⊕t7. Then Mi = Im(pi) is a finite I-adically complete Λ∧-module with Mi/IMi =
M i. Over Ui consider the maps

Mi
∧ → (Λ∧)⊕t → F|Ui

By construction the composition induces an isomorphism modulo I . The source and target
are derived complete, hence so are the cokernelQ and the kernel K. We haveQ/IQ = 0
by construction henceQ is zero by Lemma 28.6. Then

0→ K/IK →M i → F/IF → 0

is exact by the vanishing of Tor1 see at the start of this paragraph; also use that Λ∧/IΛ∧

by Modules on Sites, Lemma 42.4 to see that Mi
∧/IMi

∧ = M i. Hence K/IK = 0 by
construction and we conclude that K = 0 as before. This proves the result in case a = b.

If b > a, then we lift the map ρ to a map

ρ̃ : (Λ∧)⊕t[−b] −→ K

inD(Xpro-étale,Λ). This is possible as we can think of K as a complex of Λ∧-modules by
discussion in the introduction to Section 20 and because Xpro-étale is weakly contractible
hence there is no obstruction to lifting the elements ρ(es) ∈ H0(X,F) to elements of
Hb(X,K). Fitting ρ̃ into a distinguished triangle

(Λ∧)⊕t[−b]→ K → L→ (Λ∧)⊕t[−b+ 1]

7Proof: by Algebra, Lemma 32.7 we can lift pi to a compatible system of projectors pi,n : (Λ/In)⊕t →
(Λ/In)⊕t and then we set pi = lim pi,n which works because Λ∧ = lim Λ/In.
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we see thatL is an object ofDcons(X,Λ) such thatL⊗L
Λ Λ/I has tor amplitude contained

in [a, b − 1] (details omitted). By induction we can describe L locally as stated in the
lemma, say L is isomorphic to

(Ma)∧ → . . .→ (M b−1)∧

The map L → (Λ∧)⊕t[−b + 1] corresponds to a map (M b−1)∧ → (Λ∧)⊕t which allows
us to extend the complex by one. The corresponding complex is isomorphic to K in the
derived category by the properties of triangulated categories. This finishes the proof. �

Motivated by what happens for constructible Λ-sheaves we introduce the following no-
tion.

Definition 29.4. Let X be a scheme. Let Λ be a Noetherian ring and let I ⊂ Λ be
an ideal. Let K ∈ D(Xpro-étale,Λ).

(1) We say K is adic lisse8 if there exists a finite complex of finite projective Λ∧-
modules M• such that K is locally isomorphic to

Ma∧ → . . .→M b∧

(2) We say K is adic constructible9 if for every affine open U ⊂ X there exists a
decompositionU =

∐
Ui into constructible locally closed subschemes such that

K|Ui is adic lisse.
The difference between the local structure obtained in Lemma 29.3 and the structure of an
adic lisse complex is that the maps M i∧ → M i+1∧ in Lemma 29.3 need not be constant,
whereas in the definition above they are required to be constant.

Lemma 29.5. Let X be a weakly contractible affine scheme. Let Λ be a Noetherian
ring and let I ⊂ Λ be an ideal. Let K be an object of Dcons(X,Λ) such that K ⊗L

Λ Λ/In
is isomorphic in D(Xpro-étale,Λ/In) to a complex of constant sheaves of Λ/In-modules.
Then

H0(X,K ⊗L
Λ Λ/In)

has the Mittag-Leffler condition.
Proof. Say K ⊗L

Λ Λ/In is isomorphic to En for some object En of D(Λ/In). Since
K ⊗L

Λ Λ/I has finite tor dimension and has finite type cohomology sheaves we see that
E1 is perfect (see More on Algebra, Lemma 74.2). The transition maps

K ⊗L
Λ Λ/In+1 → K ⊗L

Λ Λ/In

locally come from (possibly many distinct) maps of complexesEn+1 → En inD(Λ/In+1)
see Cohomology on Sites, Lemma 53.3. For each n choose one such map and observe that
it induces an isomorphism En+1 ⊗L

Λ/In+1 Λ/In → En in D(Λ/In). By More on Al-
gebra, Lemma 97.4 we can find a finite complex M• of finite projective Λ∧-modules and
isomorphisms M•/InM• → En in D(Λ/In) compatible with the transition maps.
Now observe that for each finite collection of indices n > m > k the triple of maps

H0(X,K ⊗L
Λ Λ/In)→ H0(X,K ⊗L

Λ Λ/Im)→ H0(X,K ⊗L
Λ Λ/Ik)

is isomorphic to

H0(X,M•/InM•)→ H0(X,M•/ImM•)→ H0(X,M•/IkM•)

8This may be nonstandard notation
9This may be nonstandard notation.
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Namely, choose any isomorphism

M•/InM• → K ⊗L
Λ Λ/In

induces similar isomorphisms module Im and Ik and we see that the assertion is true. Thus
to prove the lemma it suffices to show that the system H0(X,M•/InM•) has Mittag-
Leffler. Since taking sections over X is exact, it suffices to prove that the system of Λ-
modules

H0(M•/InM•)
has Mittag-Leffler. Set A = Λ∧ and consider the spectral sequence

TorA−p(Hq(M•), A/InA)⇒ Hp+q(M•/InM•)

By More on Algebra, Lemma 27.3 the pro-systems {TorA−p(Hq(M•), A/InA)} are zero for
p > 0. Thus the pro-system {H0(M•/InM•)} is equal to the pro-system {H0(M•)/InH0(M•)}
and the lemma is proved. �

Lemma 29.6. LetX be a connected scheme. Let Λ be a Noetherian ring and let I ⊂ Λ
be an ideal. IfK is inDcons(X,Λ) such thatK ⊗Λ Λ/I has locally constant cohomology
sheaves, then K is adic lisse (Definition 29.4).

Proof. WriteKn = K⊗L
Λ Λ/In. We will use the results of Lemma 29.2 without fur-

ther mention. By Cohomology on Sites, Lemma 53.5 we see that Kn has locally constant
cohomology sheaves for alln. We haveKn = ε−1Ln someLn inDctf (Xétale,Λ/In) with
locally constant cohomology sheaves. By Étale Cohomology, Lemma 77.7 there exist per-
fect Mn ∈ D(Λ/In) such that Ln is étale locally isomorphic to Mn. The maps Ln+1 →
Ln corresponding to Kn+1 → Kn induces isomorphisms Ln+1 ⊗L

Λ/In+1 Λ/In → Ln.
Looking locally on X we conclude that there exist maps Mn+1 → Mn in D(Λ/In+1)
inducing isomorphisms Mn+1 ⊗Λ/In+1 Λ/In → Mn, see Cohomology on Sites, Lemma
53.3. Fix a choice of such maps. By More on Algebra, Lemma 97.4 we can find a finite
complex M• of finite projective Λ∧-modules and isomorphisms M•/InM• → Mn in
D(Λ/In) compatible with the transition maps. To finish the proof we will show that K
is locally isomorphic to

M•∧ = limM•/InM• = R limM•/InM•

Let E• be the dual complex to M•, see More on Algebra, Lemma 74.15 and its proof.
Consider the objects

Hn = RHomΛ/In(M•/InM•,Kn) = E•/InE• ⊗L
Λ/In Kn

of D(Xpro-étale,Λ/In). Modding out by In defines a transition map Hn+1 → Hn. Set
H = R limHn. ThenH is an object ofDcons(X,Λ) (details omitted) withH⊗L

Λ Λ/In =
Hn. Choose a covering {Wt → X}t∈T with each Wt affine and weakly contractible. By
our choice of M• we see that

Hn|Wt
∼= RHomΛ/In(M•/InM•,M•/InM•)
= Tot(E•/InE• ⊗Λ/In M

•/InM•)

Thus we may apply Lemma 29.5 toH = R limHn. We conclude the systemH0(Wt,Hn)
satisfies Mittag-Leffler. Since for all n � 1 there is an element of H0(Wt,Hn) which
maps to an isomorphism in

H0(Wt,H1) = Hom(M•/IM•,K1)
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we find an element (ϕt,n) in the inverse limit which produces an isomorphism mod I .
Then

R limϕt,n : M•∧|Wt = R limM•/InM•|Wt −→ R limKn|Wt = K|Wt

is an isomorphism. This finishes the proof. �

Proposition 29.7. Let X be a Noetherian scheme. Let Λ be a Noetherian ring and
let I ⊂ Λ be an ideal. Let K be an object of Dcons(X,Λ). Then K is adic constructible
(Definition 29.4).

Proof. This is a consequence of Lemma 29.6 and the fact that a Noetherian scheme
is locally connected (Topology, Lemma 9.6), and the definitions. �

30. Proper base change

In this section we explain how to prove the proper base change theorem for derived com-
plete objects on the pro-étale site using the proper base change theorem for étale coho-
mology following the general theme that we use the pro-étale topology only to deal with
“limit issues” and we use results proved for the étale topology to handle everything else.

Theorem 30.1. Let f : X → Y be a proper morphism of schemes. Let g : Y ′ → Y
be a morphism of schemes giving rise to the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

Let Λ be a Noetherian ring and let I ⊂ Λ be an ideal such that Λ/I is torsion. LetK be an
object of D(Xpro-étale) such that

(1) K is derived complete, and
(2) K ⊗L

Λ Λ/In is bounded below with cohomology sheaves coming from Xétale,
(3) Λ/In is a perfect Λ-module10.

Then the base change map

Lg∗
compRf∗K −→ Rf ′

∗L(g′)∗
compK

is an isomorphism.

Proof. We omit the construction of the base change map (this uses only formal
properties of derived pushforward and completed derived pullback, compare with Co-
homology on Sites, Remark 19.3). Write Kn = K ⊗L

Λ Λ/In. By Lemma 20.1 we have
K = R limKn because K is derived complete. By Lemmas 20.2 and 20.1 we can unwind
the left hand side

Lg∗
compRf∗K = R limLg∗(Rf∗K)⊗L

Λ Λ/In = R limLg∗Rf∗Kn

the last equality because Λ/In is a perfect module and the projection formula (Cohomol-
ogy on Sites, Lemma 50.1). Using Lemma 20.2 we can unwind the right hand side

Rf ′
∗L(g′)∗

compK = Rf ′
∗R limL(g′)∗Kn = R limRf ′

∗L(g′)∗Kn

10This assumption can be removed if K is a constructible complex, see [?].
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the last equality because Rf ′
∗ commutes with R lim (Cohomology on Sites, Lemma 23.3).

Thus it suffices to show the maps

Lg∗Rf∗Kn −→ Rf ′
∗L(g′)∗Kn

are isomorphisms. By Lemma 19.8 and our second condition we can write Kn = ε−1Ln
for some Ln ∈ D+(Xétale,Λ/In). By Lemma 23.1 and the fact that ε−1 commutes with
pullbacks we obtain

Lg∗Rf∗Kn = Lg∗Rf∗ε
∗Ln = Lg∗ε−1Rf∗Ln = ε−1Lg∗Rf∗Ln

and

Rf ′
∗L(g′)∗Kn = Rf ′

∗L(g′)∗ε−1Ln = Rf ′
∗ε

−1L(g′)∗Ln = ε−1Rf ′
∗L(g′)∗Ln

(this also uses that Ln is bounded below). Finally, by the proper base change theorem for
étale cohomology (Étale Cohomology, Theorem 91.11) we have

Lg∗Rf∗Ln = Rf ′
∗L(g′)∗Ln

(again using that Ln is bounded below) and the theorem is proved. �

31. Change of partial universe

We advise the reader to skip this section: here we show that cohomology of sheaves in the
pro-étale topology is independent of the choice of partial universe. Namely, the functor
g∗ of Lemma 31.2 below is an embedding of small pro-étale topoi which does not change
cohomology. For big pro-étale sites we have Lemmas 31.3 and 31.4 saying essentially the
same thing.

But first, as promised in Section 12 we prove that the topology on a big pro-étale site
Schpro-étale is in some sense induced from the pro-étale topology on the category of all
schemes.

Lemma 31.1. Let Schpro-étale be a big pro-étale site as in Definition 12.7. Let T ∈
Ob(Schpro-étale). Let {Ti → T}i∈I be an arbitrary pro-étale covering of T . There exists
a covering {Uj → T}j∈J of T in the site Schpro-étale which refines {Ti → T}i∈I .

Proof. Namely, we first let {Vk → T} be a covering as in Lemma 13.3. Then the
pro-étale coverings {Ti ×T Vk → Vk} can be refined by a finite disjoint open covering
Vk = Vk,1 q . . . q Vk,nk , see Lemma 13.1. Then {Vk,i → T} is a covering of Schpro-étale
which refines {Ti → T}i∈I . �

We first state and prove the comparison for the small pro-étale sites. Note that we are
not claiming that the small pro-étale topos of a scheme is independent of the choice of
partial universe; this isn’t true in contrast with the case of the small étale topos (Étale
Cohomology, Lemma 21.2).

Lemma 31.2. LetS be a scheme. LetSpro-étale ⊂ S′
pro-étale be two small pro-étale sites

ofS as constructed in Definition 12.8. Then the inclusion functor satisfies the assumptions
of Sites, Lemma 21.8. Hence there exist morphisms of topoi

Sh(Spro-étale)
g // Sh(S′

pro-étale)
f // Sh(Spro-étale)

whose composition is isomorphic to the identity and with f∗ = g−1. Moreover,
(1) for F ′ ∈ Ab(S′

pro-étale) we have Hp(S′
pro-étale,F ′) = Hp(Spro-étale, g

−1F ′),
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(2) for F ∈ Ab(Spro-étale) we have

Hp(Spro-étale,F) = Hp(S′
pro-étale, g∗F) = Hp(S′

pro-étale, f
−1F).

Proof. The inclusion functor is fully faithful and continuous. We have seen that
Spro-étale and S′

pro-étale have fibre products and final objects and that our functor com-
mutes with these (Lemma 12.10). It follows from Lemma 31.1 that the inclusion func-
tor is cocontinuous. Hence the existence of f and g follows from Sites, Lemma 21.8.
The equality in (1) is Cohomology on Sites, Lemma 7.2. Part (2) follows from (1) as
F = g−1g∗F = g−1f−1F . �

Next, we prove a corresponding result for the big pro-étale topoi.

Lemma 31.3. Suppose given big sites Schpro-étale and Sch′
pro-étale as in Definition

12.7. Assume that Schpro-étale is contained in Sch′
pro-étale. The inclusion functor Schpro-étale →

Sch′
pro-étale satisfies the assumptions of Sites, Lemma 21.8. There are morphisms of topoi

g : Sh(Schpro-étale) −→ Sh(Sch′
pro-étale)

f : Sh(Sch′
pro-étale) −→ Sh(Schpro-étale)

such that f◦g ∼= id. For any objectS of Schpro-étale the inclusion functor (Sch/S)pro-étale →
(Sch′/S)pro-étale satisfies the assumptions of Sites, Lemma 21.8 also. Hence similarly we
obtain morphisms

g : Sh((Sch/S)pro-étale) −→ Sh((Sch′/S)pro-étale)
f : Sh((Sch′/S)pro-étale) −→ Sh((Sch/S)pro-étale)

with f ◦ g ∼= id.

Proof. Assumptions (b), (c), and (e) of Sites, Lemma 21.8 are immediate for the func-
tors Schpro-étale → Sch′

pro-étale and (Sch/S)pro-étale → (Sch′/S)pro-étale. Property
(a) holds by Lemma 31.1. Property (d) holds because fibre products in the categories
Schpro-étale, Sch′

pro-étale exist and are compatible with fibre products in the category of
schemes. �

Lemma 31.4. Let S be a scheme. Let (Sch/S)pro-étale and (Sch′/S)pro-étale be two
big pro-étale sites of S as in Definition 12.8. Assume that the first is contained in the
second. In this case

(1) for any abelian sheafF ′ defined on (Sch′/S)pro-étale and any objectU of (Sch/S)pro-étale
we have

Hp(U,F ′|(Sch/S)pro-étale) = Hp(U,F ′)
In words: the cohomology of F ′ over U computed in the bigger site agrees with
the cohomology of F ′ restricted to the smaller site over U .

(2) for any abelian sheaf F on (Sch/S)pro-étale there is an abelian sheaf F ′ on
(Sch/S)′

pro-étale whose restriction to (Sch/S)pro-étale is isomorphic to F .

Proof. By Lemma 31.3 the inclusion functor (Sch/S)pro-étale → (Sch′/S)pro-étale
satisfies the assumptions of Sites, Lemma 21.8. This implies (2) and (1) follows from Co-
homology on Sites, Lemma 7.2. �

32. Other chapters

Preliminaries (1) Introduction
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CHAPTER 62

Relative Cycles

1. Introduction

A foundational reference is [?].
In this chapter we only define what are called the universally integral relative cycles in
[?]. This choice makes the theory somewhat simpler to develop than in the original, but
of course we also lose something.
Fix a morphism X → S of finite type between Noetherian schemes. A family α of r-
cycles on fibres of X/S is simply a collection α = (αs)s∈S where αs ∈ Zr(Xs). It is
immediately clear how to base change g∗α of α along any morphism g : S′ → S. Then
we say α is a relative r-cycle on X/S if α is compatible with specializations, i.e., for any
morphism g : S′ → S where S′ is the spectrum of a discrete valuation ring, we require
the generic fibre of g∗α to specialize to the closed fibre of g∗α. See Section 6.

2. Conventions and notation

Please consult the chapter on Chow Homology and Chern Classes for our conventions
and notation regarding cycles on schemes locally of finite type over a fixed Noetherian
base, see Chow Homology, Section 7 ff.
In particular, if X is locally of finite type over a field k, then Zr(X) denotes the group of
cycles of dimension r, see Chow Homology, Example 7.2 and Section 8. Given an integral
closed subscheme Z ⊂ X with dim(Z) = r we have [Z] ∈ Zr(X) and if X is quasi-
compact, then Zr(X) is free abelian on these classes.

3. Cycles relative to fields

Let k be a field. Let X be a locally algebraic scheme over k. Let r ≥ 0 be an integer. In
this setting we have the group Zr(X) of r-cycles on X , see Section 2.
Base change. For any field extension k′/k there is a base change map Zr(X)→ Zr(Xk′),
see Chow Homology, Section 67. Namely, given an integral closed subscheme Z ⊂ X
of dimension r we send [Z] ∈ Zr(X) to the r-cycle [Zk′ ]r ∈ Zr(Xk′) associated to the
closed subscheme Zk′ ⊂ Xk′ (of course in general Zk′ is neither irreducible nor reduced).
The base change map Zr(X)→ Zr(Xk′) is always injective.

Lemma 3.1. LetK/k be a field extension. LetZ be an integral locally algebraic scheme
over k. The multiplicity mZ′,ZK of an irreducible component Z ′ ⊂ ZK is 1 or a power
of the characteristic of k.

Proof. If the characteristic of k is zero, then k is perfect and the multiplicity is always
1 since XK is reduced by Varieties, Lemma 6.4. Assume the characteristic of k is p > 0.
LetL be the function field ofZ. SinceZ is locally algebraic over k, the field extensionL/k
is finitely generated. The ring K ⊗k L is Noetherian (Algebra, Lemma 31.8). Translated

4985
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into algebra, we have to show that the length of the artinian local ring (K ⊗k L)q is a
power of p for every minimal prime ideal q.

LetL′/L be a finite purely inseparable extension, say of degree pn. ThenK⊗kL ⊂ K⊗kL′

is a finite free ring map of degree pn which induces a homeomorphism on spectra and
purely inseparable residue field extensions. Hence for every minimal prime q as above
there is a unique minimal prime q′ ⊂ K ⊗k L′ lying over it and

pnlength((K ⊗k L)q) = [κ(q′) : κ(q)]length((K ⊗k L′)q′)

by Algebra, Lemma 52.12 applied toM = (K⊗kL′)q′ ∼= (K⊗kL)⊕pn
q . Since [κ(q′) : κ(q)]

is a power of p we conclude that it suffices to prove the statement for L′ and q′.

By the previous paragraph and Algebra, Lemma 45.3 we may assume that we have a subfield
L/k′/k such that L/k′ is separable and k′/k is finite purely inseparable. Then K ⊗k k′ is
an Artinian local ring. The argument of the preceding paragraph (applied to L = k and
L′ = k′) shows that length(K ⊗k k′) is a power of p. Since L/k′ is the localization of a
smooth k′-algebra (Algebra, Lemma 158.10). Hence S = (K ⊗k L)q is the localization
of a smooth R = K ⊗k k′-algebra at a minimal prime. Thus R → S is a flat local
homomorphism of Artinian local rings and mRS = mS . It follows from Algebra, Lemma
52.13 that length(K ⊗k k′) = length(R) = length(S) = length((K ⊗k L)q) and the
proof is finished. �

Lemma 3.2. Let k be a field of characteristic p > 0 with perfect closure kperf . Let X
be an algebraic scheme over k. Let r ≥ 0 be an integer. The cokernel of the injective map
Zr(X)→ Zr(Xkperf ) is a p-power torsion module (More on Algebra, Definition 88.1).

Proof. SinceX is quasi-compact, the abelian groupZr(X) is free with basis given by
the integral closed subschemes of dimension r. Similarly forZr(Xkperf ). SinceXkperf →
X is a homeomorphism, it follows that Zr(X) → Zr(Xkperf ) is injective with torsion
cokernel. Every element in the cokernel is p-power torsion by Lemma 3.1. �

4. Specialization of cycles

Let R be a discrete valuation ring with fraction field K and residue field κ. Let X be a
scheme locally of finite type over R. Let r ≥ 0. There is a specialization map

spX/R : Zr(XK) −→ Zr(Xκ)

defined as follows. For an integral closed subscheme Z ⊂ XK of dimension r we denote
Z the scheme theoretic image of Z → X . Then we let spX/R be the unique Z-linear map
such that

spX/R([Z]) = [Zκ]r
We briefly discuss why this is well defined. First, observe that the morphism XK → X is
quasi-compact and hence the morphismZ → X is quasi-compact. Thus taking the scheme
theoretic image of Z → X commutes with flat base change by Morphisms, Lemma 25.16.
In particular, base changing back toXK we see thatZ = ZK . SinceZ is integral, of course
Z is integral too and in fact is equal to the unique integral closed subscheme whose generic
point is the (image of the) generic point of Z. It follows from Varieties, Lemma 19.2 that
Zκ is equidimensional of dimension r.
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Lemma 4.1. LetR be a discrete valuation ring with fraction fieldK and residue field
κ. Let X be a scheme locally of finite type over R. Let r ≥ 0. Let F be a coherent
OX -module flat over R. Assume dim(Supp(FK)) ≤ r. Then dim(Supp(Fκ)) ≤ r and

spX/R([FK ]r) = [Fκ]r

Proof. The statement on dimension follows from More on Morphisms, Lemma 18.4.
Let x be a generic point of an integral closed subschemeZ ⊂ Xκ of dimension r. To finish
the proof we wil show that the coefficient of [Z] in the left (L) and right hand side (R) of
equality are the same.

Let A = OX,x and M = Fx. Observe that M is a finite A-module flat over R. Let π ∈ R
be a uniformizer so that A/πA = OXκ,x. By Chow Homology, Lemma 3.2 we have∑

i
lengthA(A/(π, qi))lengthAqi

(Mqi) = lengthA(M/πM)

where the sum is over the minimal primes qi in the support of M . Since π is a nonzerodi-
visor on M we see that π 6∈ qi and hence these primes correspond to those generic points
yi ∈ XK of the support ofFK which specialize to our chosen x ∈ Xκ. Thus the left hand
side is the coefficient of [Z] in (L). Of course lengthA(M/πM) is the coefficient of [Z] in
(R). This finishes the proof. �

Lemma 4.2. LetR be a discrete valuation ring with fraction fieldK and residue field
κ. Let X be a scheme locally of finite type over R. Let r ≥ 0. Let W ⊂ X be a closed
subscheme flat over R. Assume dim(WK) ≤ r. Then dim(Wκ) ≤ r and

spX/R([WK ]r) = [Wκ]r

Proof. Taking F = OW this is a special case of Lemma 4.1. See Chow Homology,
Lemma 10.3. �

Lemma 4.3. Let R′/R be an extension of discrete valuation rings inducing fraction
field extensionK ′/K and residue field extensionκ′/κ (More on Algebra, Definition 111.1).
Let X be locally of finite type over R. Denote X ′ = XR′ . Then the diagram

Zr(X ′
K′) spX′/R′

// Zr(X ′
κ′)

Zr(XK)
spX/R //

OO

Zr(Xκ)

OO

commutes where r ≥ 0 and the vertical arrows are base change maps.

Proof. Observe thatX ′
K′ = XK′ = XK×Spec(K)Spec(K ′) and similarly for closed

fibres, so that the vertical arrows indeed make sense (see Section 3). Now if Z ⊂ XK

is an integral closed subscheme with scheme theoretic image Z ⊂ X , then we see that
ZK′ ⊂ XK′ is a closed subscheme with scheme theoretic image ZR′ ⊂ XR′ . The base
change of [Z] is [ZK′ ]r = [ZK′ ]r by definition. We have

spX/R([Z]) = [Zκ]r and spX′/R′([ZK′ ]r) = [(ZR′)κ′ ]r

by Lemma 4.1. Since (ZR′)κ′ = (Zκ)κ′ we conclude. �



4988 62. RELATIVE CYCLES

Lemma 4.4. LetR be a discrete valuation ring with fraction fieldK and residue field
κ. Let X be a scheme locally of finite type over R. Let f : X ′ → X be a morphism which
is locally of finite type, flat, and of relative dimension e. Then the diagram

Zr+e(X ′
K)

spX′/R
// Zr+e(X ′

κ)

Zr(XK)
spX/R //

OO

Zr(Xκ)

OO

commutes where r ≥ 0 and the vertical arrows are given by flat pullback.

Proof. Let Z ⊂ X be an integral closed subscheme dominating R. By the construc-
tion of spX/R we have spX/R([ZK ]) = [Zκ]r and this characterizes the specialization
map. Set Z ′ = f−1(Z) = X ′ ×X Z. Since R is a valuation ring, Z is flat over R. Hence
Z ′ is flat overR and spX′/R([Z ′

K ]r+e) = [Z ′
κ]r+e by Lemma 4.2. Since by Chow Homol-

ogy, Lemma 14.4 we have f∗
K [ZK ] = [Z ′

K ]r+e and f∗
κ [Zκ]r = [Z ′

κ]r+e we win. �

Lemma 4.5. LetR be a discrete valuation ring with fraction fieldK and residue field
κ. Let f : X → Y be a proper morphism of schemes locally of finite type over R. Then
the diagram

Zr(XK)
spX/R

//

��

Zr(Xκ)

��
Zr(YK)

spY/R // Zr(Yκ)

commutes where r ≥ 0 and the vertical arrows are given by proper pushforward.

Proof. Let Z ⊂ X be an integral closed subscheme dominating R. By the construc-
tion of spX/R we have spX/R([ZK ]) = [Zκ]r and this characterizes the specialization
map. Set Z ′ = f(Z) ⊂ Y . Then Z ′ is an integral closed subscheme of Y dominating R.
Thus spY/R([Z ′

K ]) = [Z ′
κ]r.

We can think of [Z] as an element of Zr+1(X). By definition we have f∗[Z] = 0 if
dim(Z ′) < r + 1 and f∗[Z] = d[Z ′] if Z → Z ′ is generically finite of degree d. Since
proper pushforward commutes with flat pullback by YK → Y (Chow Homology, Lemma
15.1) we see that correspondingly fK,∗[ZK ] = 0 or fK,∗[ZK ] = d[Z ′

K ]. Let us apply
Chow Homology, Lemma 29.8 to the commutative diagram

Xκ

��

i
// X

��
Yκ

j // Y

We obtain that fκ,∗[Zκ]r = 0 or fκ,∗[Zκ] = d[Z ′
κ]r because clearly i∗[Z] = [Zk]r and

j∗[Z ′] = [Z ′
κ]r. Putting everything together we conclude. �

5. Families of cycles on fibres

Let f : X → S be a morphism of schemes which is locally of finite type. Let r ≥ 0 be an
integer. A family α of r-cycles on fibres of X/S is a family

α = (αs)s∈S
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indexed by the points s of the scheme S where αs ∈ Zr(Xs) is an r cycle on the scheme
theoretic fibre Xs of f at s. There are various constructions we can perform on families
of r-cycles on fibres.
Base change. Let

X ′ //

��

X

f

��
S′ g // S

be a catesian square of morphisms of schemes with f locally of finite type. Let r ≥ 0 be
an integer. Given a family α of r-cycles on fibres of X/S we define the base change g∗α
of α to be the family

g∗α = (α′
s′)s′∈S′

where α′
s′ ∈ Zr(X ′

s′) is the base change of the cycle αs with s′ = g(s) as in Section 3 via
the identitification X ′

s′ = Xs ×Spec(κ(s)) Spec(κ(s′)) of scheme theoretic fibres.
Restriction. Let f : X → S be a morphism of schemes which is locally of finite type. Let
r ≥ 0 be an integer. Let U ⊂ X and V ⊂ S be open subschemes with f(U) ⊂ V . Given
a family α of r-cycles on fibres of X/S we can define the restriction α|U of α to be the
family of r-cycles on fibres of U/V

α|U = (αs|Us)s∈V

of restrictions to scheme theoretic fibres.
Flat pullback. Let X → S be a morphism of schemes which is locally of finite type. Let
r, e ≥ 0 be integers. Let f : X ′ → X be a flat morphism, locally of finite type, and of
relative dimension e. Given a family α of r-cycles on fibres of X/S we define the flat
pullback f∗α of α to be the family of (r + e)-cycles on fibres

f∗α = (f∗
sαs)s∈S

where f∗
sαs ∈ Zr+e(X ′

s) is the flat pullback of the cycle αs in Zr(Xs) by the flat mor-
phism fs : X ′

s → Xs of relative dimension e of scheme theoretic fibres.
Proper pushforward. Let

X
f

//

��

Y

��
S

be a commutative diagram of morphisms of schemes with X and Y locally of finite type
over S and f proper. Let r ≥ 0 be an integer. Given a family α of r-cycles on fibres of
X/S we define the proper pushforward f∗α of α to be the family of r-cycles on fibres of
Y/S by

f∗α = (fs,∗αs)s∈S

where fs,∗αs ∈ Zr(Ys) is the proper pushforward of the cycleαs inZr(Xs) by the proper
morphism fs : Xs → Ys of scheme theoretic fibres.

Lemma 5.1. We have the following compatibilities between the operations above:
(1) base change is functorial, (2) restriction is a combination of base change and (a special
case of) flat pullback, (3) flat pullback commutes with base change, (4) flat pullback is
functorial, (5) proper pushforward commutes with base change, (6) proper pushforward
is functorial, and (7) proper pushforward commutes with flat pullback.
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Proof. Each of these compatibilities follows directly from the corresponding results
proved in the chapter on Chow homology applied to the fibres over S of the schemes
in question. We omit the precise statements and the detailed proofs. Here are some ref-
erences. Part (1): Chow Homology, Lemma 67.9. Part (2): Obvious. Part (3): Chow
Homology, Lemma 67.5. Part (4): Chow Homology, Lemma 14.3. Part (5): Chow Homol-
ogy, Lemma 67.6. Part (6): Chow Homology, Lemma 12.2. Part (7): Chow Homology,
Lemma 15.1. �

Example 5.2. Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let F be a quasi-coherent OX -module of finite type. For
s ∈ S denote Fs the pullback of F to Xs. Assume dim(Supp(Fs)) ≤ r for all s ∈ S.
Then we can associate to F the family [F/X/S]r of r-cycles on fibres of X/S defined by
the formula

[F/X/S]r = ([Fs]r)s∈S

where [Fs]r is given by Chow Homology, Definition 10.2.

Lemma 5.3. The construction in Example 5.2 is compatible with base change, restric-
tion, and flat pullback.

Proof. See Chow Homology, Lemmas 67.3 and 14.4. �

Example 5.4. Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let Z ⊂ X be a closed subscheme. For s ∈ S denote Zs the
inverse image of Z in Xs or equivalently the scheme theoretic fibre of Z at s viewed as a
closed subscheme of Xs. Assume dim(Zs) ≤ r for all s ∈ S. Then we can associate to Z
the family [Z/X/S]r of r-cycles on fibres of X/S defined by the formula

[Z/X/S]r = ([Zs]r)s∈S

where [Zs]r is given by Chow Homology, Definition 9.2.

Lemma 5.5. The construction in Example 5.4 is compatible with base change, restric-
tion, and flat pullback.

Proof. Taking F = (Z → X)∗OZ this is a special case of Lemma 5.3. See Chow
Homology, Lemma 10.3. �

Remark 5.6 (Support). Let f : X → S be a morphism of schemes which is locally
of finite type. Let r ≥ 0 be an integer. Let α be a family of r-cycles on fibres of X/S. We
define the support of α to be

Supp(α) =
⋃

s∈S
Supp(αs) ⊂ X

Here Supp(αs) ⊂ Xs is the support of the cycle αs, see Chow Homology, Definition 8.3.
The support Supp(α) is rarely a closed subset of X .

Lemma 5.7. Taking the support as in Remark 5.6 is compatible with base change,
restriction, and flat pullback.

Proof. Omitted. �

Lemma 5.8. Let f : X → S be a morphism of schemes which is locally of finite
type. Let r ≥ 0 be an integer. Let g : S′ → S be a surjective morphism of schemes. Set
S′′ = S′ ×S S′ and let f ′ : X ′ → S′ and f ′′ : X ′′ → S′′ be the base changes of f . Let
x ∈ X with trdegκ(f(x))(κ(x)) = r.
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(1) There exists an x′ ∈ X ′ mapping to x with trdegκ(f ′(x′))(κ(x′)) = r.
(2) Ifx′

1, x
′
2 ∈ X ′ are both as in (1), then there exists anx′′ ∈ X ′′ with trdegκ(f ′′(x′′))(κ(x′′)) =

r and pri(x′′) = x′
i.

Proof. Part (1) is Morphisms, Lemma 28.3. Let x′
1, x

′
2 be as in (2). Then since X ′′ =

X ′×X X ′ we see that there exists a x′′ ∈ X ′′ mapping to both x′
1 and x′

2 (see for example
Descent, Lemma 13.1). Denote s′′ ∈ S′′, s′

i ∈ S′, and s ∈ S the images of x′′, x′
i, and x.

Denote k = κ(s) and let Z ⊂ Xk be the integral closed subscheme whose generic point is
x. Then x′

i is a generic point of an irreducible component ofZκ(s′
i
). LetZ ′′ ⊂ Zκ(s′′) be an

irreducible component containing x′′. Denote ξ′′ ∈ Z ′′ the generic point. Since ξ′′  x′′

we see that ξ′′ must also map to x′
i under the two projections. On the other hand, we see

that trdegκ(s′′)(κ(ξ′′)) = r because it is a generic point of an irreducible component of
the base change of Z. �

Lemma 5.9. Let f : X → S be a morphism of schemes which is locally of finite type.
Let r ≥ 0 be an integer. Let g : S′ → S be a morphism of schemes and X ′ = S′ ×S X .
Assume that for every s ∈ S there exists a point s′ ∈ S′ with g(s′) = s and such that
κ(s′)/κ(s) is a separable extension of fields. Then

(1) For families α1 and α2 of r-cycles on fibres of X/S if g∗α1 = g∗α2, then α1 =
α2.

(2) Given a family α′ of r-cycles on fibres of X ′/S′ if pr∗
1α

′ = pr∗
2α

′ as families of
r-cycles on fibres of (S′ ×S S′)×S X/(S′ ×S S′), then there is a unique family
α of r-cycles on fibres of X/S such that g∗α = α′.

Proof. Part (1) follows from the injectivity of the base change map discussed in Sec-
tion 3. (This argument works as long as S′ → S is surjective.)

Let α′ be as in (2). Denote α′′ = pr∗
1α

′ = pr∗
2α

′ the common value.

Let (X/S)(r) be the set of x ∈ X with trdegκ(f(x))(κ(x)) = r and similarly define
(X ′/S′)(r) and (X ′′/S′′)(r) Taking coefficients, we may think of α′ and α′′ as functions
α′ : (X ′/S′)(r) → Z and α′′ : (X ′′/S′′)(r) → Z. Given a function

ϕ : (X/S)(r) → Z

we define g∗ϕ : (X ′/S′)(r) → Z by analogy with our base change operation. Namely,
say x′ ∈ (X ′/S′)(r) maps to x ∈ X , s′ ∈ S′, and s ∈ Z. Denote Z ′ ⊂ X ′

s′ and Z ⊂ Xs

the integral closed subschemes with generic points x′ and x. Note that dim(Z ′) = r.
If dim(Z) < r, then we set (g∗ϕ)(x′) = 0. If dim(Z) = r, then Z ′ is an irreducible
component of Zs′ and hence has a multiplicity mZ′,Zs′ . Call this m(x′, g). Then we
define

(g∗ϕ)(x′) = m(x′, g)ϕ(x)
Note that the coefficients m(x′, g) are always positive integers (see for example Lemma
3.1). We similarly have base change maps

pr∗
1, pr∗

2 : Map((X ′/S′)(r),Z) −→Map((X ′′/S′′)(r),Z)

It follows from the associativity of base change that we have pr∗
1 ◦ g

∗ = pr∗
2 ◦ g

∗ (small
detail omitted). To be explicity, in terms of the maps of sets this equality just means that
for x′′ ∈ (X ′′/S′′)(r) we have

m(x′′, pr1)m(pr1(x′′), g) = m(x′′, pr2)m(pr2(x′′), g)
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provided that pr1(x′′) and pr2(x′′) are in (X ′′/S′′)(r). By Lemma 5.8 and an elementary
argument1 using the previous displayed equation, it follows that there exists a unique map

α : (X/S)(r) → Q
such that g∗α = α′. To finish the proof it suffices to show that α has integer values
(small detail omitted: one needs to see that α determines a locally finite sum on each fibre
which follows from the corresponding fact for α′). Given any x ∈ (X/S)(r) with image
s ∈ S we can pick a point s′ ∈ S′ such that κ(s′)/κ(s) is separable. Then we may choose
x′ ∈ (X ′/S′)(r) mapping to s and x and we see that m(x′, g) = 1 because Zs′ is reduced
in this case. Whence α(x) = α′(x′) is an integer. �

Lemma 5.10. Let g : S′ → S be a bijective morphism of schemes which induces
isomorphisms of residue fields. Let f : X → S be locally of finite type. SetX ′ = S′×SX .
Let r ≥ 0. Then base change by g determines a bijection between the group of families of
r-cycles on fibres of X/S and the group of families of r-cycles on fibres of X ′/S′.

Proof. Omitted. �

6. Relative cycles

Here is the definition we will work with; see Section 15 for a comparison with the defini-
tions in [?].

Definition 6.1. LetS be a locally Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let r ≥ 0 be an integer. A relative r-cycle on
X/S is a family α of r-cycles on fibres of X/S such that for every morphism g : S′ → S
where S′ is the spectrum of a discrete valuation ring we have

spX′/S′(αη) = α0

where spX′/S′ is as in Section 4 and αη (resp. α0) is the value of the base change g∗α of
α at the generic (resp. closed) point of S′. The group of all relative r-cycles on X/S is
denoted z(X/S, r).

Lemma 6.2. Let α be a relative r-cycle onX/S as in Definition 6.1. Then any restric-
tion, base change, flat pullback, or proper pushforward of α is a relative r-cycle.

Proof. For flat pullback use Lemma 4.4. Restriction is a special case of flat pullback.
To see it holds for base change use that base change is transitive. For proper pushforward
use Lemma 4.5. �

Lemma 6.3. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r ≥ 0 be an integer. Let α be a family of r-cycles on fibres
of X/S. Let {gi : Si → S} be a h covering (More on Flatness, Definition 34.2). Then α
is a relative r-cycle if and only if each base change g∗

i α is a relative r-cycle.

Proof. If α is a relative r-cycle, then each base change g∗
i α is a relative r-cycle by

Lemma 6.2. Assume each g∗
i α is a relative r-cycle. Let g : S′ → S be a morphism where S′

is the spectrum of a discrete valuation ring. After replacing S by S′,X byX ′ = X×S S′,
and α by α′ = g∗α and using that the base change of a h covering is a h covering (More
on Flatness, Lemma 34.9) we reduce to the problem studied in the next paragraph.

1Given x ∈ (X/S)(r) pick x′ ∈ (X′/S′)(r) mapping to x and set α(x) = α′(x′)/m(x′, g). This is
well defined by the formula and the lemma.
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Assume S is the spectrum of a discrete valuation ring with closed point 0 and generic
point η. We have to show that spX/S(αη) = α0. Since a h covering is a V covering
(by definition), there is an i and a specialization s′  s of points of Si with gi(s′) = η
and gi(s) = 0, see Topologies, Lemma 10.13. By Properties, Lemma 5.10 we can find a
morphism h : S′ → Si from the spectrum S′ of a discrete valuation ring which maps
the generic point η′ to s′ and maps the closed point 0′ to s. Denote α′ = h∗g∗

i α. By
assumption we have spX′/S′(α′

η′) = α′
0′ . Since g = gi ◦ h : S′ → S is the morphism of

schemes induced by an extension of discrete valuation rings we conclude that spX/S and
spX′/S′ are compatible with base change maps on the fibres, see Lemma 4.3. We conclude
that spX/S(αη) = α0 because the base change map Zr(X0) → Zr(X ′

0′) is injective as
discussed in Section 3. �

Lemma 6.4. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a family of r-cycles on fibres
of X/S. Let {fi : Xi → X} be a jointly surjective family of flat morphisms, locally of
finite type, and of relative dimension e. Then α is a relative r-cycle if and only if each flat
pullback f∗

i α is a relative r-cycle.

Proof. If α is a relative r-cycle, then each pull back f∗
i α is a relative r-cycle by

Lemma 6.2. Assume each f∗
i α is a relative r-cycle. Let g : S′ → S be a morphism where S′

is the spectrum of a discrete valuation ring. After replacing S by S′,X byX ′ = X×S S′,
and α by α′ = g∗α we reduce to the problem studied in the next paragraph.

AssumeS is the spectrum of a discrete valuation ring with closed point 0 and generic point
η. We have to show that spX/S(αη) = α0. Denote fi,0 : Xi,0 → X0 the base change of
fi to the closed point of S. Similarly for fi,η . Observe that

f∗
i,0spX/S(αη) = spXi/S(f∗

i,ηαη) = f∗
i,0α0

Namely, the first equality holds by Lemma 4.4 and the second by assumption. Since the
family of maps f∗

i,0 : Zr(X0) → Zr(Xi,0) is jointly injective (due to the fact that fi,0 is
jointly surjective), we conclude what we want. �

Lemma 6.5. Let S be a locally Noetherian scheme. Let i : X → Y be a closed
immersion of schemes locally of finite type over S. Let r ≥ 0. Let α be a family of r-
cycles on fibres ofX/S. Then α is a relative r-cycle onX/S if and only if i∗α is a relative
r-cycle on Y/S.

Proof. Since base change commutes with i∗ (Lemma 5.1) it suffices to prove the fol-
lowing: if S is the spectrum of a discrete valuation ring with generic point η and closed
point 0, then spX/S(αη) = α0 if and only if spY/S(iη,∗αη) = i0,∗α0. This is true be-
cause i0,∗ : Zr(X0) → Zr(Y0) is injective and because i0,∗spX/S(αη) = spY/S(iη,∗αη)
by Lemma 4.5. �

The following lemma will be strengthened in Lemma 6.12.

Lemma 6.6. Let f : X → S be a morphism of schemes. Assume S is locally Noether-
ian and f locally of finite type. Let r ≥ 0. Let α and β be relative r-cycles on X/S. The
following are equivalent

(1) α = β, and
(2) αη = βη for any generic point η ∈ S of an irreducible component of S.
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Proof. The implication (1) ⇒ (2) is immediate. Assume (2). For every s ∈ S we
can find an η as in (2) which specializes to s. By Properties, Lemma 5.10 we can find a
morphism g : S′ → S from the spectrum S′ of a discrete valuation ring which maps the
generic point η′ to η and maps the closed point 0 to s. Then αs and βs are elements of
Zr(Xs) which base change to the same element of Zr(X0′), namely spXS′/S′(αη′) where
αη′ is the base change of αη . Since the base change map Zr(Xs) → Zr(X0′) is injective
as discussed in Section 3 we conclude αs = βs. �

Lemma 6.7. In the situation of Example 5.2 assume S is locally Noetherian and F is
flat over S in dimensions ≥ r (More on Flatness, Definition 20.10). Then [F/X/S]r is a
relative r-cycle on X/S.

Proof. By More on Flatness, Lemma 20.9 the hypothesis on F is preserved by any
base change. Also, formation of [F/X/S]r is compatible with any base change by Lemma
5.3. Since the condition of being compatible with specializations is checked after base
change to the spectrum of a discrete valuation ring, this reduces us to the case where S is
the spectrum of a valuation ring. In this case the set U = {x ∈ X | F flat at x over S}
is open in X by More on Flatness, Lemma 13.11. Since the complement of U in X has
fibres of dimension < r over S by assumption, we see that restriction along the inclusion
U ⊂ X induces an isomorphism on the groups of r-cycles on fibres after any base change,
compatible with specialization maps and with formation of the relative cycle associated to
F . Thus it suffices to show compability with specializations for [F|U/U/S]r. Since F|U
is flat over S , this follows from Lemma 4.1 and the definitions. �

Lemma 6.8. In the situation of Example 5.4 assume S is locally Noetherian and Z is
flat over S in dimensions ≥ r. Then [Z/X/S]r is a relative r-cycle on X/S.

Proof. The assumption means that OZ is flat over S in dimensions ≥ r. Thus ap-
plying Lemma 6.7 with F = (Z → X)∗OZ we conclude. �

Let S be a locally Noetherian scheme. Let f : X → S be a morphism which is of finite
type. Let r ≥ 0. Denote Hilb(X/S, r) the set of closed subschemes Z ⊂ X such that
Z → S is flat and of relative dimension ≤ r. By Lemma 6.8 for each Z ∈ Hilb(X/S, r)
we have an element [Z/X/S]r ∈ z(X/S, r). Thus we obtain a group homomorphism

(6.8.1) free abelian group on Hilb(X/S, r) −→ z(X/S, r)

sending
∑
ni[Zi] to

∑
ni[Zi/X/S]r. A key feature of relative r-cycles is that they are

locally (on X and S in suitable topologies) in the image of this map.

Lemma 6.9. Let f : X → S be a finite type morphism of schemes with S Noether-
ian. Let r ≥ 0. Let α be a relative r-cycle on X/S. Then there is a proper, completely
decomposed (More on Morphisms, Definition 78.1) morphism g : S′ → S such that g∗α
is in the image of (6.8.1).

Proof. By Noetherian induction, we may assume the result holds for the pullback of
α by any closed immersion g : S′ → S which is not an isomorphism.

Let S1 ⊂ S be an irreducible component (viewed as an integral closed subscheme). Let
S2 ⊂ S be the closure of the complement of S′ (viewed as a reduced closed subscheme).
If S2 6= ∅, then the result holds for the pullback of α by S1 → S and S2 → S. If
g1 : S′

1 → S1 and g2 : S′
2 → S2 are the corresponding completely decomposed proper

morphisms, then S′ = S′
1 q S′

2 → S is a completely decomposed proper morphism and
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we see the result holds for S2 . Thus we may assume S′ → S is bijective and we reduce to
the case described in the next paragraph.

Assume S is integral. Let η ∈ S be the generic point and let K = κ(η) be the function
field of S. Then αη is an r-cycle on XK . Write αη =

∑
ni[Yi]. Taking the closure of Yi

we obtain integral closed subschemes Zi ⊂ X whose base change to η is Yi. By generic
flatness (for example Morphisms, Proposition 27.1), we see that Zi is flat over a nonempty
openU ofS for each i. Applying More on Flatness, Lemma 31.1 we can find aU -admissible
blowing up g : S′ → S such that the strict transformZ ′

i ⊂ XS′ ofZi is flat over S′. Then
β =

∑
ni[Z ′

i/XS′/S′]r is in the image of (6.8.1) and β = g∗α by Lemma 6.6.

However, this does not finish the proof as S′ → S may not be completely decomposed.
This is easily fixed: denoting T ⊂ S the complement ofU (viewed as a closed subscheme),
by Noetherian induction we can find a completely decomposed proper morphism T ′ → T
such that (T ′ → S)∗α is in the image of (6.8.1). Then S′ q T ′ → S does the job. �

Lemma 6.10. Let f : X → S be a finite type morphism of schemes with S the
spectrum of a discrete valuation ring. Let r ≥ 0. Then (6.8.1) is surjective.

Proof. This of course follows from Lemma 6.9 but we can also see it directly as fol-
lows. Say α is a relative r-cycle onX/S. Write αη =

∑
ni[Zi] (the sum is finite). Denote

Zi ⊂ X the closure of Zi as in Section 4. Then α =
∑
ni[Zi/X/S]. �

Lemma 6.11. Let f : X → S be a morphism of schemes. Let r ≥ 0. Assume S locally
Noetherian and f smooth of relative dimension r. Let α ∈ z(X/S, r). Then the support
of α is open and closed in X (see proof for a more precise result).

Proof. Let x ∈ X with image s ∈ S. Since f is smooth, there is a unique irreducible
component Z(x) ofXs which contains x. Then dim(Z(x)) = r. Let nx be the coefficient
of Z(x) in the cycle αs. We will show the function x 7→ nx is locally constant on X .

Let g : S′ → S be a morphism of locally Noetherian schemes. Let X ′ be the base change
of X and let α′ = g∗α be the base change of α. Let x′ ∈ X ′ map to s′ ∈ S′, x ∈ X ,
and s ∈ S. We claim nx′ = nx. Namely, since Z(x) is smooth over κ(s) we see that
Z(x)×Spec(κ(s)) Spec(κ(s′)) is reduced. Since Z(x′) is an irreducible component of this
scheme, we see that the coefficient nx′ of Z(x′) in α′

s′ is the same as the coefficient nx of
Z(x) in αs by the definition of base change in Section 3 thereby proving the claim.

SinceX is locally Noetherian, to show that x 7→ nx is locally constant, it suffices to show:
if x′  x is a specialization in X , then nx′ = nx. Choose a morphism S′ → X where
S′ is the spectrum of a discrete valuation ring mapping the generic point η to x′ and the
closed point 0 to x. See Properties, Lemma 5.10. Then the base change X ′ → S′ of f by
S′ → S has a section σ : S′ → X ′ such that σ(η)  σ(0) is a specialization of points of
X ′ mapping to x′  x in X . Thus we reduce to the claim in the next paragraph.

Let S be the spectrum of a discrete valuation ring with generic point η and closed point 0
and we have a section σ : S → X . Claim: nσ(η) = nσ(0). By the discussion in More on
Morphisms, Section 29 and especially More on Morphisms, Lemma 29.6 after replacingX
by an open subscheme, we may assume the fibres of X → S are connected. Since these
fibres are smooth, they are irreducible. Then we see that αη = n[Xη] with n = nσ(η) and
the relation spX/S(αη) = α0 implies α0 = n[X0], i.e., nσ(0) = n as desired. �

2Namely, any closed subscheme of S′
1 ×S X flat and of relative dimension ≤ r over S′

1 may be viewed as
a closed subscheme of S′ ×S X flat and of relative dimension ≤ r over S′.
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Lemma 6.12. Let f : X → S be a morphism of schemes. AssumeS locally Noetherian
and f locally of finite type. Let r ≥ 0 and α, β ∈ z(X/S, r). The set E = {s ∈ S : αs =
βs} is closed in S.

Proof. The question is local on S , thus we may assume S is affine. Let X =
⋃
Ui be

an affine open covering. Let Ei = {s ∈ S : αs|Ui,s = βs|Ui,s}. Then E =
⋂
Ei. Hence it

suffices to prove the lemma for Ui → S and the restriction of α and β to Ui. This reduces
us to the case discussed in the next paragraph.

Assume X and S are quasi-compact. Set γ = α − β. Then E = {s ∈ S : γs = 0}. By
Lemma 6.8 there exists a jointly surjective finite family of proper morphisms {gi : Si →
S} such that g∗

i γ is in the image of (6.8.1). Observe that Ei = g−1
i (E) is the set of point

t ∈ Si such that (g∗
i γ)t = 0. If Ei is closed for all i, then E =

⋃
gi(Ei) is closed as well.

This reduces us to the case discussed in the next paragraph.

AssumeX and S are quasi-compact and γ =
∑
ni[Zi/X/S]r for a finite number of closed

subschemes Zi ⊂ X flat and of relative dimension ≤ r over S. Set X ′ =
⋃
Zi (scheme

theoretic union). Then i : X ′ → X is a closed immersion and X ′ has relative dimension
≤ r over S. Also γ = i∗γ

′ where γ′ =
∑
ni[Zi/X ′/S]r. Since clearly E = E′ = {s ∈

S : γ′
s = 0} we reduce to the case discussed in the next paragraph.

Assume X has relative dimension ≤ r over S. Let s ∈ S , s 6∈ E. We will show that there
exists an open neighbourhood V ⊂ S of s such that E ∩ V is empty. The assumption
s 6∈ E means there exists an integral closed subscheme Z ⊂ Xs of dimension r such that
the coefficient n of [Z] in γs is nonzero. Let x ∈ Z be the generic point. Since dim(Z) = r
we see that x is a generic point of an irreducible component (namely Z) ofXs. Thus after
replacingX by an open neighbourhood of x, we may assume thatZ is the only irreducible
component of Xs. In particular, we have γs = n[Z].

At this point we apply More on Morphisms, Lemma 47.1 and we obtain a diagram

X

��

X ′
g

oo

π

��

x_

��

x′�oo
_

��
Y

h

��

y_

��
S S s s

with all the properties listed there. Let γ′ = g∗γ be the flat pullback. Note that E ⊂
E′ = {s ∈ S : γ′

s = 0} and that s 6∈ E′ because the coefficient of Z ′ in γ′
s is nonzero,

where Z ′ ⊂ X ′
s is the closure of x′. Similarly, set γ′′ = π∗γ

′. Then we have E′ ⊂ E′′ =
{s ∈ S : γ′′

s = 0} and s 6∈ E′′ because the coefficient of Z ′′ in γ′′
s is nonzero, where

Z ′′ ⊂ Ys is the closure of y. By Lemma 6.11 and openess of Y → S we see that an open
neighbourhood of s is disjoint from E′′ and the proof is complete. �

Lemma 6.13. Let S = limi∈I Si be the limit of a directed inverse system of Noether-
ian schemes with affine transition morphisms. Let 0 ∈ I and let X0 → S0 be a finite type
morphism of schemes. For i ≥ 0 set Xi = Si ×S0 X0 and set X = S ×S0 X0. If S is
Noetherian too, then

z(X/S, r) = colimi≥0 z(Xi/Si, r)
where the transition maps are given by base change of relative r-cycles.
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Proof. Suppose that i ≥ 0 and αi, βi ∈ z(Xi/Si, r) map to the same element of
z(X/S, r). Then S → Si maps into the closed subset E ⊂ Si of Lemma 6.12. Hence for
some j ≥ i the morphism Sj → Si maps into E , see Limits, Lemma 4.10. It follows that
the base change of αi and βi to Sj agree. Thus the map is injective.
Let α ∈ z(X/S, r). Applying Lemma 6.9 a completely decomposed proper morphism
g : S′ → S such that g∗α is in the image of (6.8.1). Set X ′ = S′ ×S X . We write g∗α =∑
na[Za/X ′/S′]r for someZa ⊂ X ′ closed subscheme flat and of relative dimension≤ r

over S′.
Now we bring the machinery of Limits, Section 10 ff to bear. We can find an i ≥ 0 such
that there exist

(1) a completely decomposed proper morphism gi : S′
i → Si whose base change to

S is g : S′ → S ,
(2) setting X ′

i = S′
i ×Si Xi closed subschemes Zai ⊂ X ′

i flat and of relative dimen-
sion ≤ r over S′

i whose base change to S′ is Za.
To do this one uses Limits, Lemmas 10.1, 8.5, 8.7, 13.1, and 18.1 and More on Morphisms,
Lemma 78.5. Consider α′

i =
∑
na[Zai/X ′

i/S
′
i]r ∈ z(X ′

i/S
′
i, r). The image of α′

i in
z(X ′/S′, r) agrees with the base change g∗α by construction.
Set S′′

i = S′
i×Si S′

i andX ′′
i = S′′

i ×SiXi and set S′′ = S′×S S′ andX ′′ = S′′×SX . We
denote pr1, pr2 : S′′ → S′ and pr1, pr2 : S′′

i → S′
i the projections. The two base changes

pr∗
1α

′
i and pr∗

1α
′
i map to the same element of z(X ′′/S′′, r) because pr∗

1g
∗α = pr∗

1g
∗α.

Hence after increasing i we may assume that pr∗
1α

′
i = pr∗

1α
′
i by the first paragraph of the

proof. By Lemma 5.9 we obtain a unique family αi of r-cycles on fibres of Xi/Si with
g∗
i αi = α′

i (this uses that S′
i → Si is completely decomposed). By Lemma 6.3 we see that

αi ∈ z(Xi/Si, r). The uniqueness in Lemma 5.9 implies that the image ofαi in z(X/S, r)
is α and the proof is complete. �

Lemma 6.14. Let S be a locally Noetherian scheme. Let i : X → X ′ be a thickening
of schemes locally of finite type over S. Let r ≥ 0. Then i∗ : z(X/S, r)→ z(X ′/S, r) is
a bijection.

Proof. Since is : Xs → X ′
s is a thickening it is clear that i∗ induces a bijection

between families of r-cycles on the fibres of X/S and families of r-cycles on the fibres of
X ′/S. Also, given a family α of r-cycles on the fibres of X/S α ∈ z(X/S, r) ⇔ i∗α ∈
z(X ′/S, r) by Lemma 6.5. The lemma follows. �

Lemma 6.15. LetS be a locally Noetherian scheme. LetX be a scheme locally of finite
type over S. Let r ≥ 0. Let U ⊂ X be an open such that X \ U has relative dimension
< r over S , i.e., dim(Xs \ Us) < r for all s ∈ S. Then restriction defines a bijection
z(X/S, r)→ z(U/S, r).

Proof. Since Zr(Xs) → Zr(Us) is a bijection by the dimension assumption, we see
that restriction induces a bijection between families of r-cycles on the fibres of X/S and
families of r-cycles on the fibres of U/S. These restriction maps Zr(Xs) → Zr(Us) are
compatible with base change and with specializations, see Lemma 5.1 and 4.4. The lemma
follows easily from this; details omitted. �

Lemma 6.16. Let g : S′ → S be a universal homeomorphism of locally Noetherian
schemes which induces isomorphisms of residue fields. Let f : X → S be locally of finite
type. Set X ′ = S′ ×S X . Let r ≥ 0. Then base change by g determines a bijection
z(X/S, r)→ z(X ′/S′, r).
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Proof. By Lemma 5.10 we have a bijection between the group of families of r-cycles
on fibres ofX/S and the group of families of r-cycles on fibres ofX ′/S′. Sayα is a families
of r-cycles on fibres of X/S and α′ = g∗α is the base change. If R is a discrete valuation
ring, then any morphism h : Spec(R) → S factors as g ◦ h′ for some unique morphism
h′ : Spec(R) → S′. Namely, the morphism S′ ×S Spec(R) → Spec(R) is a univeral
homomorphism inducing bijections on residue fields, and hence has a section (for example
because R is a seminormal ring, see Morphisms, Section 47). Thus the condition that α
is compatible with specializations (i.e., is a relative r-cycle) is equivalent to the condition
that α′ is compatible with specializations. �

7. Equidimensional relative cycles

Here is the definition.

Definition 7.1. Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. We say a relative r-
cycle α on X/S equidimensional if the support of α (Remark 5.6) is contained in a closed
subsetW ⊂ X whose relative dimension over S is≤ r. The group of all equidimensional
relative r-cycles on X/S is denoted zequi(X/S, r).

Example 7.2. There exist relative r-cycles which are not equidimensional. Namely,
let k be a field and let X = Spec(k[x, y, t]) over S = Spec(k[x, y]). Let s be a point of S
and denote a, b ∈ κ(s) the images of x and y. Consider the family α of 0-cycles on X/S
defined by

(1) αs = 0 if b = 0 and otherwise
(2) αs = [p] − [q] where p, resp. q is the κ(s)-rational point of Spec(κ(s)[t]) with

t = a/b, resp. t = (a+ b2)/b.
We leave it to the reader to show that this is compatible with specializations; the idea is
that a/b and (a+ b2)/b = a/b+ b limit to the same point in P1 over the residue field of
any valuation v on κ(s) with v(b) > 0. On the other hand, the closure of the support of
α containes the whole fibre over (0, 0).

Lemma 7.3. Let f : X → S be a morphism of schemes. Assume S is locally Noe-
therian and f is locally of finite type. Let r ≥ 0 be an integer. Let α be a relative r-cycle
onX/S. If α is equidimensional, then any restriction, base change, or flat pullback of α is
equidimensional.

Proof. Omitted. �

Lemma 7.4. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative r-cycle on X/S.
Then to check that α is equidimensional we may work Zariski locally on X and S.

Proof. Namely, the condition that α is equidimensional just means that the closure
of the support of α has relative dimension ≤ r over S. Since taking closures commutes
with restriction to opens, the lemma follows (small detail omitted). �

Lemma 7.5. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative r-cycle on X/S.
Let {gi : Si → S} be an fppf covering. Then α is equidimensional if and only if each base
change g∗

i α is equidimensional.
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Proof. If α is equidimensional, then each g∗
i α is too by Lemma 7.3. Assume each

g∗
i α is equidimensional. Denote W the closure of Supp(α) in X . Since gi : Si → S is

universally open (being flat and locally of finite presentation), so is the morphism fi :
Xi = Si ×S X → X . Denote αi = g∗

i α. We have Supp(αi) = f−1
i (Supp(α)) by Lemma

5.7. Since fi is open, we see that Wi = f−1
i (W ) is the closure of Supp(αi). Hence by

assumption the morphism Wi → Si has relative dimension ≤ r. By Morphisms, Lemma
28.3 (and the fact that the morphisms Si → S are jointly surjective) we conclude that
W → S has relative dimension ≤ r. �

Lemma 7.6. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative r-cycle on X/S.
Let {fi : Xi → X} be a jointly surjective family of flat morphisms, locally of finite type,
and of relative dimension e. Then α is equidimensional if and only if each flat pullback
f∗
i α is equidimensional.

Proof. Omitted. Hint: As in the proof of Lemma 7.5 one shows that the inverse
image by fi of the closure W of the support of α is the closure Wi of the support of f∗

i α.
ThenW → S has relative dimension≤ r holds ifWi → S has relative dimension≤ r+e
for all i. �

Let S be a locally Noetherian scheme. Let f : X → S be a locally quasi-finite morphism
of schemes. Then we have z(X/S, 0) = zequi(X/S, 0) and z(X/S, r) = 0 for r > 0.
Given α ∈ z(X/S, 0) let us define a map

wα : X −→ Z, x 7→ α(x)[κ(x) : κ(s)]i where s = f(x)

Here α(x) denotes the coefficient of x in the 0-cycle αs on the fibre Xs and [K : k]i
denotes the inseparable degree of a finite field extension. The following lemma shows
that this map is a weighting of f (More on Morphisms, Definition 75.2) and that every
weighting is of this form up to taking a multiple.

Lemma 7.7. Let S be a locally Noetherian scheme. Let f : X → S be a locally quasi-
finite morphism of schemes. Letα ∈ z(X/S, 0). The mapwα : X → Z constructed above
is a weighting. Conversely, if X is quasi-compact, then given a weighting w : X → Z
there exists an integer n > 0 such that nw = wα for some α ∈ z(X/S, 0). Finally, the
integer n may be chosen to be a power of the prime p if S is a scheme over Fp.

Proof. First, let us show that the construction is compatible with base change: if
g : S′ → S is a morphism of locally Noetherian schemes, then wg∗α = wα ◦ g′ where
g′ : X ′ → X is the projection X ′ = S′ ×S X → X . Namely, let x′ ∈ X ′ with images
s′, s, x in S′, S,X . Then the coefficient of [x′] in the base change of [x] by κ(s′)/κ(s) is
the length of the local ring (κ(s′) ⊗κ(s) κ(x))q. Here q is the prime ideal corresponding
to x′. Thus compatibility with base change follows if

[κ(x) : κ(s)]i = length((κ(s′)⊗κ(s) κ(x))q)[κ(x′) : κ(s′)]i
Let k/κ(s′) be an algebraically closure. Choose a prime p ⊂ k ⊗κ(s) κ(x) lying over q.
Suppose we can show that

[κ(x) : κ(s)]i = length((k⊗κ(s)κ(x))p) and [κ(x′) : κ(s′)]i = length((k⊗κ(s′)κ(x′))p)

Then we win because

length((κ(s′)⊗κ(s) κ(x))q)length((k ⊗κ(s′) κ(x′))p) = length((k ⊗κ(s) κ(x))p)
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by Algebra, Lemma 52.13 and flatness of κ(s′) ⊗κ(s) κ(x) → k ⊗κ(s) κ(x). To show the
two equalities, it suffices to prove the first. Let κ(x)/κ/κ(s) be the subfield constructed in
Fields, Lemma 14.6. Then we see that

k ⊗κ(s) κ(x) =
∏

σ:κ→k
k ⊗σ,κ κ(x)

and each of the factors is local of degree [κ(x) : κ] = [κ(x) : κ(s)]i as desired.

Let α ∈ z(X/S, 0) and choose a diagram

X

f

��

U
h
oo

π

��
Y V

goo

as in More on Morphisms, Definition 75.2. Denote β ∈ z(U/V, 0) the restriction of the
base change g∗α. By the compatibility with base change above we have wβ = wα ◦ h and
it suffices to show that

∫
π
wβ is locally constant on V . Next, note that(∫

π

wβ

)
(v) =

∑
u∈U,π(u)=v

β(u)[κ(u) : κ(v)]i[κ(u) : κ(v)]s

=
∑

u∈U,π(u)=v
β(u)[κ(u) : κ(v)]

This last expression is the coefficient of v in π∗β ∈ z(V/V, 0). By Lemma 6.11 this func-
tion is locally constand on V .

Conversely, let w : X → S be a weighting and X quasi-compact. Choose a sufficiently
divisible integer n. Let α be the family of 0-cycles on fibres of X/S such that for s ∈ S
we have

αs =
∑

f(x)=s

nw(x)
[κ(x) : κ(s)]i

[x]

as a zero cycle on Xs. This makes sense since the fibres of f are universally bounded
(Morphisms, Lemma 57.9) hence we can find n such that the right hand side is an integer
for all s ∈ S. The final statement of the lemma also follows, provided we show α is a
relative 0-cycle. To do this we have to show thatα is compatible with specializations along
discrete valuation rings. By the first paragraph of the proof our construction is compatible
with base change (small detail omitted; it is the “inverse” construction we are discussing
here). Also, the base change of a weighting is a weighting, see More on Morphisms, Lemma
75.3. Thus we reduce to the problem studied in the next paragraph.

Assume S is the spectrum of a discrete valuation ring with generic point η and closed
point 0. Let w : X → S be a weighting with X quasi-finite over S. Let α be the family
of 0-cycles on fibres of X/S constructed in the previous paragraph (for a suitable n). We
have to show that spX/S(αη) = α0. Let β ∈ z(X/S, 0) be the relative 0-cycle on X/S
with βη = αη and β0 = spX/S(αη). Then w′ = wβ −nw : X → Z is a weighting (using
the result above) and zero in the points of X which map to η. Now it is easy to see that a
weighting which is zero on all points of X mapping to η has to be zero; details omitted.
Hence w′ = 0, i.e., wβ = nw, hence α = β as desired. �
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8. Effective relative cycles

Here is the definition.

Definition 8.1. Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. We say a relative r-
cycle α on X/S effective if αs is an effective cycle (Chow Homology, Definition 8.4) for
all s ∈ S. The monoid of all effective relative r-cycles on X/S is denoted zeff (X/S, r).

Below we will show that an effective relative cycle is equidimensional, see Lemma 8.7.

Lemma 8.2. Let f : X → S be a morphism of schemes. Assume S is locally Noether-
ian and f is locally of finite type. Let r ≥ 0 be an integer. Let α be a relative r-cycle on
X/S. If α is effective, then any restriction, base change, flat pullback, or proper pushfor-
ward of α is effective.

Proof. Omitted. �

Lemma 8.3. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative r-cycle on X/S.
Then to check that α is effective we may work Zariski locally on X and S.

Proof. Omitted. �

Lemma 8.4. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative r-cycle on X/S.
Let g : S′ → S be a surjective morphism. Then α is effective if and only if the base change
g∗α is effective.

Proof. Omitted. �

Lemma 8.5. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative r-cycle on X/S.
Let {fi : Xi → X} be a jointly surjective family of flat morphisms, locally of finite type,
and of relative dimension e. Then α is effective if and only if each flat pullback f∗

i α is
effective.

Proof. Omitted. �

Lemma 8.6. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative r-cycle onX/S. If
α is effective, then Supp(α) is closed in X .

Proof. Let g : S′ → S be the inclusion of an irreducible component viewed as an
integral closed subscheme. By Lemmas 8.2 and 5.7 it suffices to show that the support of
the base change g∗α is closed in S′ ×S S. Thus we may assume S is an integral scheme
with generic point η. We will show that Supp(α) is the closure of Supp(αη). To do this,
pick any s ∈ S. We can find a morphism g : S′ → S where S′ is the spectrum of a discrete
valuation ring mapping the generic point η′ ∈ S′ to η and the closed point 0 ∈ S′ to s,
see Properties, Lemma 5.10. Then it suffices to prove that the support of g∗α is equal to
the closure of Supp((gα)η′). This reduces us to the case discussed in the next paragraph.
Here S is the spectrum of a discrete valuation ring with generic point η and closed point
0. We have to show that Supp(α) is the closure of Supp(αη). Since α is effective we may
write αη =

∑
ni[Zi] with ni > 0 and Zi ⊂ Xη integral closed of dimension r. Since

α0 = spX/S(αη) we know that α0 =
∑
ni[Zi,0]r where Zi is the closure of Zi. By
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Varieties, Lemma 19.2 we see that Zi,0 is equidimensional of dimension r. Since ni > 0
we conclude that Supp(α0) is equal to the union of the Zi,0 which is the fibre over 0 of⋃
Zi which in turn is the closure of

⋃
Zi as desired. �

Lemma 8.7. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r, e ≥ 0 be integers. Let α be a relative r-cycle onX/S. If
α is effective, then α is equidimensional.

Proof. Assume α is effective. By Lemma 8.6 the support Supp(α) is closed in X .
Thus α is equidimensional as the fibres of Supp(α)→ S are the supports of the cycles αs
and hence have dimension r. �

Remark 8.8. Let f : X → S be a morphism of schemes with S locally Noetherian
and f locally of finite type. We can ask if the contravariant functor

schemes S′ locally
of finite type over S −→ zeff (X ′/S′, r) where X ′ = S′ ×S X

is representable. Since z(X ′/S′, r) = z(X ′
red/S

′
red, r) this cannot be true (we leave it

to the reader to make an actual counter example). A better question would be if we can
find a subcategory of the left hand side on which the functor is representable. Lemma 6.16
suggests we should restrict at least to the category of seminormal schemes over S.

If S/ Spec(Q) is Nagata and f is a projective morphism, then it turns out that S′ 7→
zeff (X ′/S′, r) is representable on the category of seminormal S′. Roughly speaking this
is the content of [?, Theorem 3.21].

If S has points of positive characteristic, then this no longer works even if we replace
seminormality with weak normality; a locally Noetherian scheme T is weakly normal if
any birational universal homeomorphism T ′ → T has a section. An example is to consider
0-cycles of degree 2 on X = A2

k over S = Spec(k) where k is a field of characteristic 2.
Namely, overW = X×SX we have a canonical relative 0-cycleα ∈ zeff (XW /W, 0): for
w = (x1, x2) ∈W = X2 we have the cycleαw = [x1]+[x2]. This cycle is invariant under
the involution σ : W → W switching the factors. Since W is smooth (hence normal,
hence weakly normal), if z(−/−, r) was representable by M on the category of weakly
normal schemes of finite type over k we would get a σ-invariant morphism fromW toM .
This in turn would define a morphism from the quotient scheme Sym2

S(X) = W/〈σ〉 to
M . Since Sym2

S(X) is normal, we would by the moduli property of M obtain a relative
0-cycle β on X ×S Sym2

S(X)/Sym2
S(X) whose pullback to W is α. However, there is no

such cycle β. Namely, writing X = Spec(k[u, v]) the scheme Sym2
S(X) is the spectrum

of
k[u1 + u2, u1u2, v1 + v2, v1v2, u1v1 + u2v2] ⊂ k[u1, u2, v1, v2]

The image of the diagonal u1 = u2, v1 = v2 in Sym2
S(X) is the closed subscheme V =

Spec(k[u2
1, v

2
1 ]); here we use that the characteristic of k is 2. Looking at the generic point

η of V , the cycle βη would be a zero cycle of degree 2 on A2
k(u2

1,v
2
1) whose pullback to

A2
k(u1,u2) whould be 2[the point with coordinates(u1, v2)]. This is clearly impossible.

The discussion above does not contradict [?, Theorem 4.13] as the Chow variety in that
theorem only coarsely represents a functor (in fact 2 distinct functors, only one of which
agrees with ours for projective X as one can see with some work). Similarly, in [?, Sec-
tion 4.4] it is shown that for projective X/S the h-sheafification of the presheaf S′ 7→
zeff (S′ ×S X/S′, r) is equal to the h-sheafification of a representable functor.
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Remark 8.9. Let f : X → S be a morphism of schemes. Let r ≥ 0. Let Z ⊂ X be a
closed subscheme. Assume

(1) S is Noetherian and geometrically unibranch,
(2) f is of finite type, and
(3) Z → S has relative dimension ≤ r.

Then for all sufficiently divisible integers n ≥ 1 there exists a unique effective relative
r-cycle α on X/S such that αη = n[Zη]r for every generic point η of S. This is a re-
formulation of [?, Theorem 3.4.2]. If we ever need this result, we will precisely state and
prove it here.

9. Proper relative cycles

In our setting, the following is probably the correct definition.

Definition 9.1. Let f : X → S be a morphism of schemes. Assume S is locally
Noetherian and f is locally of finite type. Let r ≥ 0 be an integer. We say a relative
r-cycle α on X/S is a proper relative cycle if the support of α (Remark 5.6) is contained
in a closed subset W ⊂ X proper over S (Cohomology of Schemes, Definition 26.2). The
group of all proper relative r-cycles on X/S is denoted c(X/S, r).

By Cohomology of Schemes, Lemma 26.3 this just means that the closure of the support is
proper over the base. To see that these form a group, use Cohomology of Schemes, Lemma
26.6.

Lemma 9.2. Let f : X → S be a morphism of schemes. Assume S is locally Noether-
ian and f is locally of finite type. Let r ≥ 0 be an integer. Let α be a relative r-cycle on
X/S. If α is proper, then any base change α is proper.

Proof. Omitted. �

Lemma 9.3. Let f : X → S be a morphism of schemes. Assume S locally Noetherian
and f locally of finite type. Let r ≥ 0 be an integer. Let α be a relative r-cycle on X/S.
Let {gi : Si → S} be a h covering. Then α is proper if and only if each base change g∗

i α
is proper.

Proof. Ifα is proper, then each g∗
i α is too by Lemma 9.2. Assume each g∗

i α is proper.
To prove that α is proper, it clearly suffices to work affine locally on S. Thus we may
and do assume that S is affine. Then we can refine our covering {Si → S} by a family
{Tj → S} where g : T → S is a proper surjective morphism and T =

⋃
Tj is an open

covering. It follows that β = g∗α is proper on Y = T ×S X over T . By Lemma 5.7
we find that the support of β is the inverse image of the support of α by the morphism
f : Y → X . Hence the closure W ⊂ Y of f−1Supp(α) is proper over T . Since the
morphism T → S is proper, it follows that W is proper over S. Then by Cohomology of
Schemes, Lemma 26.5 the image f(W ) ⊂ X is a closed subset proper over S. Since f(W )
contains Supp(α) we conclude α is proper. �

10. Proper and equidimensional relative cycles

Let f : X → S be a morphism of schemes. Assume S is locally Noetherian and f is locally
of finite type. Let r ≥ 0 be an integer. We say a relative r-cycle α on X/S is a proper and
equidimensional relative cycle if α is both equidimensional (Definition 7.1) and proper
(Definition 9.1). The group of all proper, equidimensional relative r-cycles on X/S is
denoted cequi(X/S, r).
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Similarly we say a relative r-cycle α on X/S is a proper and effective relative cycle if α
is both effective (Definition 8.1) and proper (Definition 9.1). The monoid of all proper,
effective relative r-cycles onX/S is denoted ceff (X/S, r). Observe that these are equidi-
mensional by Lemma 8.7.

Thus we have the following diagram of inclusion maps

ceff (X/S, r) //

��

cequi(X/S, r) //

��

c(X/S, r)

��
zeff (X/S, r) // zequi(X/S, r) // z(X/S, r)

11. Action on cycles

Let S be a locally Noetherian, universally catenary scheme endowed with a dimension
function δ, see Chow Homology, Section 7. Let X → Y be a morphism of schemes over
S , both locally of finite type over S. Let r ≥ 0. Finally, let α be a family of r-cycles on
fibres of X/Y . For e ∈ Z we will construct an operation

α ∩ − : Ze(Y ) −→ Zr+e(X)

Namely, given β ∈ Ze(Y ) write β =
∑
ni[Zi] where Zi ⊂ Y is an integral closed

subscheme of δ-dimension e and the familyZi is locally finite in the schemeY . Let yi ∈ Zi
be the generic point. Write αyi =

∑
mij [Vij ]. Thus Vij ⊂ Xyi is an integral closed

subscheme of dimension r and the family Vij is locally finite in the scheme Xyi . Then we
set

α ∩ β =
∑

nimij [V ij ] ∈ Zr+e(X)

Here V ij ⊂ X is the scheme theoretic image of the morphism Vij → Xyi → X or
equivalently, V ij ⊂ X is an integral closed subscheme mapping dominantly to Zi ⊂ Y

whose generic fibre is Vij . It follows readily that dimδ(V ij) = r + e and that the family
of closed subschemes V ij ⊂ X is locally finite (we omit the verifications). Hence α∩ β is
indeed an element of Zr+e(X).

Lemma 11.1. The construction above is bilinear, i.e., we have (α1 + α2) ∩ β = α1 ∩
β + α2 ∩ β and α ∩ (β1 + β2) = α ∩ β1 + α ∩ β2.

Proof. Omitted. �

Lemma 11.2. If U ⊂ X and V ⊂ Y are open and f(U) ⊂ V , then (α ∩ β)|U is equal
to α|U ∩ β|V .

Proof. Immediate from the explict description of α ∩ β given above. �

Lemma 11.3. Forming α∩β is compatible with flat base change and flat pullback (see
proof for elucidation).

Proof. Let (S, δ), (S′, δ′), g : S′ → S , and c ∈ Z be as in Chow Homology, Situation
67.1. LetX → Y be a morphism of schemes locally of finite type overS. DenoteX ′ → Y ′

the base change of X → Y by g. Let α be a family of r-cycles on the fibres of X/Y . Let
β ∈ Ze(Y ). Denote α′ the base change of α by Y ′ → Y . Denote β′ = g∗β ∈ Ze+c(Y ′)
the pullback of β by g, see Chow Homology, Section 67. Compatibility with base change
means α′ ∩ β′ is the base change of α ∩ β.
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Proof of compatibility with base change. Since we are proving an equality of cycles on
X ′, we may work locally on Y , see Lemma 11.2. Thus we may assume Y is affine. In
particular β is a finite linear combination of prime cycles. Since − ∩ − is linear in the
second variable (Lemma 11.1), it suffices to prove the equality when β = [Z] for some
integral closed subscheme Z ⊂ Y of δ-dimension e.

Let y ∈ Z be the generic point. Write αy =
∑
mj [Vj ]. Let V j be the closure of Vj in X .

Then we have
α ∩ β =

∑
mj [V j ]

The base change of β is β′ =
∑

[Z×SS′]e+c as a cycle onY ′ = Y ×SS′. LetZ ′
a ⊂ Z×SS′

be the irreducible components, denote y′
a ∈ Z ′

a their generic points, and denote na the
multiplicity of Z ′

a in Z ×S S′. We have

β′ =
∑

[Z ×S S′]e+c =
∑

na[Z ′
a]

We have α′
y′
a

=
∑
mj [Vj,κ(y′

a)]r because α′ is the base change of α by Y ′ → Y . Let
V ′
jab ⊂ Vj,κ(y′

a) be the irreducible components and denote mjab the multiplicity of V ′
jab

in Vj,κ(y′
a). We have

α′
y′
a

=
∑

mj [Vj,κ(y′
a)]r =

∑
mjmjab[V ′

jab]

Thus we we have
α′ ∩ β′ =

∑
namjmjab[V

′
jab]

where V ′
jab is the closure of V ′

jab in X ′. Thus to prove the desired equality it suffices to
prove

(1) the irreducible components of V j ×S S′ are the schemes V ′
jab and

(2) the multiplicity of V ′
jab in V j ×S S′ is equal to namjab.

Note that Vj → V j is a birational morphism of integral schemes. The morphisms Vj ×S
S′ → Vj and V j×S S′ → V j are flat and hence map generic points of irreducible compo-
nents to the (unique) generic points of Vj and V j . It follows that Vj×S S′ → V j×S S′ is
a birational morphisms hence induces a bijection on irreducible components and identifies
their multiplicities. This means that it suffices to prove that the irreducible components of
Vj×S S′ are the schemes V ′

jab and the multiplicity of V ′
jab in Vj×S S′ is equal to namjab.

However, then we are just saying that the diagram

Zr(Vj) // Zr+c(Vj ×S S′)

Z0(Spec(κ(y))) //

OO

Zc(Spec(κ(y))×S S′)

OO

is commutative where the horizontal arrows are base change by Spec(κ(y)) ×S S′ →
Spec(κ(y)) and the vertical arrows are flat pullback. This was shown in Chow Homology,
Lemma 67.5.
The statement in the lemma on flat pullback means the following. Let (S, δ), X → Y , α,
and β be as in the constuction of α ∩ β above. Let Y ′ → Y be a flat morphism, locally
of finite type, and of relative dimension c. Then we can let α′ be the base change of α by
Y ′ → Y and β′ the flat pullback of β. Compatibility with flat pullback means α′ ∩ β′ is
the flat pullback ofα∩β byX×Y Y ′ → Y . This is actually a special case of the discussion
above if we set S = Y and S′ = Y ′. �
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Lemma 11.4. Let (S, δ) and f : X → Y be as above. Let F be a coherent OX -
module with dim(Supp(Fy)) ≤ r for all y ∈ Y . Let G be a coherent OY -module with
dimδ(Supp(G)) ≤ e. Set α = [F/X/Y ]r (Example 5.2) and β = [G]e (Chow Homology,
Definition 10.2). If F is flat over Y , then α ∩ β = [F ⊗OX

f∗G]r+e.

Proof. Observe that
Supp(F ⊗OX

f∗G) = Supp(F) ∩ f−1Supp(G) =
⋃

y∈Supp(G)
Supp(Fy)

It follows that this is a closed subset of δ-dimension ≤ r + e. Whence the expression
[F ⊗OX

f∗G]r+e makes sense.
We will use the notation β =

∑
ni[Zi], yi ∈ Zi,αyi =

∑
mij [Vij ], andV ij introduced in

the construction ofα∩β. Since β = [G]e we see that theZi are the irreducible components
of Supp(G) which have δ-dimension e. Similarly, theVij are the irreducible components of
Supp(Fyi) having dimension r. It follows from this and the equation in the first paragraph
that V ij are the irreducible components of Supp(F ⊗OX

f∗G) having δ-dimension r+ e.
Thus to prove the lemma it now suffices to show that

lengthOX,ξij
((F ⊗OX

f∗G)ξij ) = lengthOXyi
,ξij

((Fyi)ξij ) · lengthOY,yi
(Gyi)

By the first paragraph of the proof the left hand side is equal to the lenth of the B =
OX,ξij -module

Gyi ⊗OY,yi
Fξij = M ⊗A N

Here M = Gyi is a finite length A = OY,yi -module and N = Fξij is a finite B-module
such that N/mAN has finite length. Since F is flat over Y the module N is A-flat. The
right hand side of the formula is equal to

lengthB(N/mAN) · lengthA(M)
Thus the right and left hand side of the formula are additive in M (use flatness of N over
A). Thus it suffices to prove the formula with M = κA is the residue field in which case
it is immediate. �

Lemma 11.5. Let (S, δ) and f : X → Y be as above. LetZ ⊂ X be a closed subscheme
of relative dimension ≤ r over Y . Set α = [Z/X/Y ]r (Example 5.4). Let W ⊂ Y be a
closed subscheme of δ-dimension ≤ e. Set β = [W ]e (Chow Homology, Definition 9.2).
If Z is flat over Y , then α ∩ β = [Z ×Y W ]r+e.

Proof. This is a special case of Lemma 11.4 if we take F = OZ and F = OW . �

Lemma 11.6. Let (S, δ) be as above. Let

X ′
f
//

��

X

��
Y ′ g // Y

be a cartesian diagram of schemes locally of finite type over S with g proper. Let r, e ≥ 0.
Let α be a family of r-cycles on the fibres of X/Y . Let β′ ∈ Ze(Y ′). Then we have
f∗(g∗α ∩ β′) = α ∩ g∗β

′.

Proof. Since we are proving an equality of cycles on X , we may work locally on Y ,
see Lemma 11.2. Thus we may assume Y is affine. Thus Y ′ is quasi-compact. In particular
β′ is a finite linear combination of prime cycles. Since − ∩ − is linear in the second
variable (Lemma 11.1), it suffices to prove the equality when β′ = [Z ′] for some integral
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closed subscheme Z ′ ⊂ Y ′ of δ-dimension e. Set Z = g(Z ′). This is an integral closed
subscheme of Y of δ-dimension ≤ e. For simplicity we are going to assume Z has δ-
dimension equal to e and leave the other case (which is easier) to the reader. Let y ∈ Z
and y′ ∈ Z ′ be the generic points. Write αy =

∑
mj [Vj ] with Vj ⊂ Xy integral closed

subschemes of dimension r.

Assume first g is a closed immersion. Then g∗β
′ = [Z] and (g∗α)y′ =

∑
nj [Vj ]; this

makes sense because Vj is contained in the closed subscheme X ′
y′ of Xy . Thus in this case

the equality is obvious: in both cases we obtain
∑
mj [V j ] where V j is the closure of Vj

in the closed subscheme X ′ ⊂ X .

Back to the general case with β′ = [Z ′] as above. SetW = Z×X Y andW ′ = Z ′×X′ Y ′.
Consider the cartesian squares

W //

��

X

��
Z // Y

W ′ //

��

X ′

��
Z ′ // Y ′

W ′ //

��

W

��
Z ′ // Z

Since we know the result for the first two squares with by the previous paragraph, a formal
argument shows that it suffices to prove the result for the last square and the element
β′ = [Z ′] ∈ Ze(Z ′). This reduces us to the case discussed in the next paragraph.

Assume Y ′ → Y is a generically finite morphism of integral schemes of δ-dimension e
and β′ = [Y ′]. In this case both f∗(g∗α∩β′) and α∩g∗β

′ are cycles which can be written
as a sum of prime cycles dominant over Y . Thus we may replace Y by a nonempty open
subscheme in order to check the equality. After such a replacement we may assume g is
finite and flat, say of degree d ≥ 1. Of course, this means that g∗β

′ = g∗[Y ′] = d[Y ]. Also
β′ = [Y ′] = g∗[Y ]. Hence

f∗(g∗α ∩ β′) = f∗(g∗α ∩ g∗[Y ]) = f∗f
∗(α ∩ [Y ]) = d(α ∩ [Y ]) = α ∩ g∗β

′)

as desired. The second equality is Lemma 11.3 and the third equality is Chow Homology,
Lemma 15.2. �

12. Action on chow groups

When α is a relative r-cycle, the operation α ∩ − of Section 11 factors through rational
equivalence and defines a bivariant class.

Lemma 12.1. Let (S, δ) be as in Section 11. Let f : X ′ → X be a proper morphism
of schemes locally of finite type over S. Let (L, s, i : D → X) be as in Chow Homology,
Definition 29.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Chow Homology, Remark 29.7. If L|D ∼= OD , then i∗f∗α
′ = g∗(i′)∗α′ in Zk(D)

for any α′ ∈ Zk+1(X ′).

Proof. The statement makes sense as all operations are defined on the level of cycles,
see Chow Homology, Remark 29.6 for the gysin maps. Supposeα = [W ′] for some integral
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closed subscheme W ′ ⊂ X ′. Let W = f(W ′) ⊂ X . In case W ′ 6⊂ D′, then W 6⊂ D and
we see that

[W ′ ∩D′]k = divL′|W ′ (s′|W ′) and [W ∩D]k = divL|W (s|W )

and hence f∗ of the first cycle equals the second cycle by Chow Homology, Lemma 26.3.
Hence the equality holds as cycles. In caseW ′ ⊂ D′, thenW ⊂ D and both sides are zero
by construction. �

Lemma 12.2. Let (S, δ) be as in Section 11. Let X → Y be a morphism of schemes
locally of finite type over S. Let r ≥ 0 and let α ∈ z(X/Y, r) be a relative r-cycle
on X/Y . Let (L, s, i : D → Y ) be as in Chow Homology, Definition 29.1. Form the
cartesian diagram

E

��

j
// X

��
D

i // Y

See Chow Homology, Remark 29.7. If L|D ∼= OD , then for e ∈ Z the diagram

Ze(D)
i∗α∩−

// Ze+r(E)

Ze+1(Y )

i∗

OO

α∩− // Zr+e+1(X)

j∗

OO

commutes where the vertical arrows i∗ and j∗ are the gysin maps on cycles as in Chow
Homology, Remark 29.6.

Proof. Preliminary remark. Suppose that g : Y ′ → Y is an envelope (Chow Homol-
ogy, Definition 22.1). DenoteD′, i′, E′, j′, X ′, α′ the base changes ofD, i, E, j,X, α by g
and denote f : X ′ → X the projection. Assume the lemma holds forD′, i′, E′, j′, X ′, Y ′, α′.
Then, if β′ ∈ Ze+1(Y ′), we have

i∗α ∩ i∗g∗β
′ = i∗α ∩ f∗(i′)∗β′

= f∗(f∗i∗α ∩ (i′)∗β′)
= f∗((i′)∗α′ ∩ (i′)∗β′)
= f∗((j′)∗(α′ ∩ β′))
= j∗(f∗(f∗α ∩ β′))
= j∗(α ∩ g∗β

′)

Here the first equality is Lemma 12.1, the second equality is Lemma 11.6, the third equality
is the definition of α′, the fourth equality is the assumption that our lemma holds for
D′, i′, E′, j′, X ′, α′, the fifth equality is Lemma 12.1, and the sixth equality is Lemma 11.6.
Thus we see that our lemma holds for the image of g∗ : Ze+1(Y ′) → Ze(Y ). However,
since g is completely decomposed this map is surjective and we conclude the lemma holds
for D, i, E, j,X, Y, α.

Let β ∈ Ze+1(Y ). We have to show that (D → Y )∗α ∩ i∗β = j∗(α ∩ β) as cycles
on E. This question is local on E hence we can replace X and Y by open subschemes.
(This uses that formation of the operators i∗, j∗, α ∩ − and (D → Y )∗α ∩ − commute
with localization. This is obvious for the gysin maps and follows from Lemma 11.2 for the
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others.) Thus we may assume that X and Y are affine and we reduce to the case discussed
in the next paragraph.
Assume X and Y are quasi-compact. By the first paragraph of the proof and Lemma 6.9
we may in addition assume that α is in the image of (6.8.1). By linearity of the operations
in question, we may assume thatα = [Z/X/Y ]r for some closed subschemeZ ⊂ X which
is flat and of relative dimension ≤ r over Y . Also, as Y is quasi-compact, the cycle β is
a finite linear combination of prime cycles. Since the operations in question are linear, it
suffices to prove the equality when β = [W ] for some integral closed subscheme W ⊂ Y
of δ-dimension e+ 1.
If W ⊂ D, then on the one hand i∗[W ] = 0 and on the other hand α ∩ [W ] is supported
on E so also j∗(α ∩ [W ]) = 0. Thus the equality holds in this case.
Say W 6⊂ D. Then i∗[W ] = [D ∩W ]e. Note that the pullback i∗α of α = [Z/X/Y ]r by
i is [(E ∩ Z)/E/D]r and that (E ∩ Z) = E ×Y Z = D ×Y Z is flat over D. Hence by
Lemma 11.5 used twice we have
i∗α ∩ i∗[W ] = [(E ∩ Z)×D (D ∩W )]r+e = [E ∩ (Z ×Y W )]r+e = j∗(α ∩ [W ])

as desired. �

Proposition 12.3. Let (S, δ) be as in Section 11. Let X → Y be a morphism of
schemes locally of finite type over S. Let r ≥ 0 and let α ∈ z(X/Y, r) be a relative r-
cycle on X/Y . The rule that to every morphism g : Y ′ → Y locally of finite type and
every e ∈ Z associates the operation

g∗α ∩ − : Ze(Y ′)→ Zr+e(X ′)
where X ′ = Y ′ ×Y X factors through rational equivalence to define a bivariant class
c(α) ∈ A−r(X → Y ).

Proof. The operation factors through rational equivalence by Lemma 12.2 and Chow
Homology, Lemma 35.1. The resulting operation on chow groups is a bivariant class by
Chow Homology, Lemma 35.2 and Lemmas 11.6, 11.3, and 12.2. �

Remark 12.4. Let (S, δ) be as in Section 11. Let X → Y be a morphism of schemes
locally of finite type over S. Let r ≥ 0. Let c be a rule that to every morphism g : Y ′ → Y
locally of finite type and every e ∈ Z associates an operation

c ∩ − : Ze(Y ′)→ Zr+e(X ′)
compatible with proper pushforward, flat pullback, and gysin maps as in Lemma 12.2.
Then we claim there is a relative r-cycle α on X/Y such that c∩ = g∗α ∩ − for every g
as above. If we ever need this, we will carefully state and prove this here.

13. Composition of families of cycles on fibres

LetX → Y → S be morphisms of schemes, both locally of finite type. Let r, e ≥ 0. Let α
be a family of r-cycles on fibres ofX/Y and let β be a family of e-cycles on fibres of Y/S.
Then we obtain a family of of (r + e)-cycles α ◦ β on the fibres of X/S by setting

(α ◦ β)s = (Ys → Y )∗α ∩ βs
More precisely, the expression (Ys → Y )∗α denotes the base change of α by Ys → Y to a
family of r-cycles on the fibres ofXs/Ys and the operation−∩−was defined and studied
in Section 113.

3To be sure, we use s = Spec(κ(s)) as the base scheme with δ(s) = 0.
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Lemma 13.1. The construction above is bilinear, i.e., we have (α1 + α2) ◦ βα1 ◦ β +
α1 ◦ β and α ◦ (β1 + β2) = α ◦ β1 + α ◦ β2.

Proof. Omitted. Hint: on fibres the construction is bilinear by Lemma 11.1. �

Lemma 13.2. If U ⊂ X and V ⊂ Y are open and f(U) ⊂ V , then (α ◦ β)|U is equal
to α|U ◦ β|V .

Proof. Omitted. Hint: on fibres use Lemma 11.2. �

Lemma 13.3. The formation of α ◦ β is compatible with base change.

Proof. Let g : S′ → S be a morphism of schemes. DenoteX ′ → Y ′ the base change
of X → Y by g. Denote α′ the base change of α with respect to Y ′ → Y . Denote β′

the base change of β with respect to S′ → S. The assertion means that α′ ◦ β′ is the base
change of α ◦ β by g : S′ → S.
Let s′ ∈ S′ be a point with image s ∈ S. Then

(α′ ◦ β′)s′ = (Y ′
s′ → Y ′)∗α′ ∩ β′

s′

We observe that
(Y ′
s′ → Y ′)∗α′ = (Y ′

s′ → Y ′)∗(Y ′ → Y )∗α = (Y ′
s′ → Ys)∗(Ys → Y )∗α

and that β′
s′ is the base change of βs by s′ = Spec(κ(s′)) → Spec(κ(s)) = s. Hence

the result follows from Lemma 11.3 applied to (Ys → Y )∗α, βs, Xs → Ys → s, and base
change by s′ → s. �

Lemma 13.4. Let f : X → Y and Y → S be morphisms of schemes, both locally
of finite type. Let r, e ≥ 0. Let F be a quasi-coherent OX -module of finite type, with
dim(Supp(Fy)) ≤ r for all y ∈ Y . Let G be a quasi-coherent OY -module of finite type,
with dim(Supp(Gs)) ≤ e for all s ∈ S. If α = [F/X/Y ]r and β = [G/Y/S]e (Example
5.2) and F is flat over Y , then α ◦ β = [F ⊗OX

f∗G/X/S]r+e.

Proof. First we observe that F ⊗OX
f∗G is a quasi-coherent OX -module of finite

type. Let s ∈ S. Observe that
(F ⊗OX

f∗G)s = Fs ⊗OXs
f∗
s Gs

by right exactness of tensor products. MoreoverFs is flat over Ys as a base change of a flat
module. Thus the equality (α◦β)s = [(F ⊗OX

f∗G)s]r+e follows from Lemma 11.4. �

Lemma 13.5. Let f : X → Y and Y → S be morphisms of schemes, both locally of
finite type. Let r, e ≥ 0. Let Z ⊂ X be a closed subscheme of relative dimension≤ r over
Y . LetW ⊂ Y be a closed subscheme of relative dimension≤ e over S. If α = [Z/X/Y ]r
and β = [W/Y/S]e (Example 5.4) and Z is flat over Y , then α◦β = [Z×Y W/X/S]r+e.

Proof. This is a special case of Lemma 13.4 if we take F = OZ and F = OW . �

Lemma 13.6. Let S be a scheme. Let

X ′
f
//

��

X

��
Y ′ g // Y

be a cartesian diagram of schemes locally of finite type over S with g proper. Let r, e ≥ 0.
Let α be a family of r-cycles on the fibres of X/Y . Let β′ be a family of e-cycles on the
fibres of Y ′/S. Then we have f∗(g∗(α) ◦ β′) = α ◦ g∗β

′.
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Proof. Unwinding the definitions, this follows from Lemma 11.6. �

Lemma 13.7. Let (S, δ) be as in Chow Homology, Situation 7.1. LetX → Y → Z be
morphisms of schemes locally of finite type over S. Let r, s, e ≥ 0. Then

(α ◦ β) ∩ γ = α ∩ (β ∩ γ) in Zr+s+e(X)
where α is a family of r-cycles on fibres ofX/Y , β is a family of s-cycles on fibres of Y/Z ,
and γ ∈ Ze(Z).

Proof. Since we are proving an equality of cycles on X , we may work locally on
Z , see Lemma 11.2. Thus we may assume Z is affine. In particular γ is a finite linear
combination of prime cycles. Since−∩− is linear in the second variable (Lemma 11.1), it
suffices to prove the equality when γ = [W ] for some integral closed subscheme W ⊂ Z
of δ-dimension e.
Let z ∈ W be the generic point. Write βz =

∑
mj [Vj ] in Zs(Yz). Then β ∩ γ is equal

to
∑
mj [V j ] where V j ⊂ Y is an integral closed subscheme mapped by Y → Z into W

with generic fibre Vj . Let yj ∈ Vj be the generic point. We may and do view also as the
generic point of V j (mapping to z in W ). Write αyj =

∑
njk[Wjk] in Zr(Xyj ). Then

α ∩ (β ∩ γ) is equal to ∑
mjnjk[W jk]

whereW jk ⊂ X is an integral closed subscheme mapped byX → Y into V j with generic
fibre Wjk.
On the other hand, let us consider

(α ◦ β)z = (Yz → Y )∗α ∩ βz = (Yz → Y )∗α ∩ (
∑

mj [Vj ])

By the construction of − ∩− this is equal to the cycle∑
mjnjk[(W jk)z]

on Xz . Thus by definition we obtain

(α ◦ β) ∩ [W ] =
∑

mjnjk[W̃jk]

where W̃jk ⊂ X is an integral closed subscheme which is mapped byX → Z intoW with
generic fibre (W jk)z . Clearly, we must have W̃jk = W jk and the proof is complete. �

14. Composition of relative cycles

Let S be a locally Noetherian scheme. Let X → Y be a morphism of schemes locally of
finite type over S. We are going to define a map

z(X/Y, r)⊗Z z(Y/S, e) −→ z(X/S, r + e), α⊗ β 7−→ α ◦ β
using the construction in Section 13. We already know the construction is bilinear (Lemma
13.1) hence we obtain the displayed arrow once we show the following.

Lemma 14.1. If α and β are relative cycles, then so is α ◦ β.

Proof. The formation of α ◦β is compatible with base change by Lemma 13.3. Thus
we may assume S is the spectrum of a discrete valuation ring with generic point η and
closed point 0 and we have to show that spX/S((α ◦β)η) = (α ◦β)0. Since we are trying
to prove an equality of cycles, we may work locally on Y and X (this uses Lemmas 13.2
and 4.4 to see that the constructions commute with restriction). Thus we may assume X
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and Y are affine. By Lemma 6.9 we can find a completely decomposed proper morphism
g : Y ′ → Y such that g∗α is in the image of (6.8.1).

Since the family of morphisms gη : Y ′
η → Yη is completely decomposed, we can find β′

η ∈
Ze(Y ′

η) such thatβη =
∑
gη,∗β

′
η , see Chow Homology, Lemma 22.4. Setβ′

0 = spY ′/S(β′
η)

so that β′ = (β′
η, β

′
0) is a relative e-cycle on Y ′/S. Then g∗β

′ and β are relative e-cycles
on Y/S (Lemma 6.2) which have the same value at η and hence are equal (Lemma 6.6). By
linearity (Lemma 13.1) it suffices to show that α ◦ g∗β

′ is a relative (r + e)-cycle.

Set X ′ = X ×Y Y ′ and denote f : X ′ → X the projection. By Lemma 13.6 we see that
α ◦ g∗β

′ = f∗(g∗α ◦ β′). By Lemma 6.2 it suffices to show that g∗α ◦ β′ is a relative
(r + e)-cycle. Using Lemma 6.10 and bilinearity this reduces us to the case discussed in
the next paragraph.

Assume α = [Z/X/Y ]r and β = [W/Y/S] where Z ⊂ X is a closed subscheme flat and
of relative dimension ≤ r over Y and W ⊂ Y is a closed subscheme flat and of relative
dimension ≤ e over S. By Lemma 13.5 we see that

α ◦ β = [Z ×X W/X/S]r+e

and Z ×X W ⊂ X is a closed subscheme flat over S of relative dimension ≤ r + e. This
is a relative (r + e)-cycle by Lemma 6.8. �

Lemma 14.2. Let f : X → Y and g : Y → S be a morphisms of schemes. Assume
S locally Noetherian, g locally of finite type and flat of relative dimension e ≥ 0, and f
locally of finite type and flat of relative dimension r ≥ 0. Then [X/X/Y ]r ◦ [Y/Y/S]e =
[X/X/S]r+e in z(X/S, r + e).

Proof. Special case of Lemma 13.5. �

15. Comparison with Suslin and Voevodsky

We have tried to use the same notation as in [?], except that our notation for cycles is taken
from Chow Homology, Section 8 ff. Here is a comparison:

(1) In [?, Section 3.1] there is a notion of a “relative cycle”, of a “relative cycle of di-
mension r”, and of a “equidimensional relative cycle of dimension r”. There is no
corresponding notion in this chapter. Consequently, the groups Cycl(X/S, r),
Cyclequi(X/S, r),PropCycl(X/S, r), andPropCyclequi(X/S, r), have no counter
parts in this chapter.

(2) On the bottom of [?, page 36] the groups z(X/S, r), c(X/S, r), zequi(X/S, r),
cequi(X/S, r) are defined. These agree with our notions when S is separated
Noetherian and X → S is separated and of finite type.

(3) In [?] the symbol z(X/S, r) is sometimes used for the presheaf S′ 7→ z(S′ ×S
X/S′, r) on the category of schemes of finite type overS. Similarly for c(X/S, r),
zequi(X/S, r), and cequi(X/S, r).

(4) Base change, flat pullback, and proper pushforward as defined in [?] agrees with
ours when both apply.

(5) For α ∈ z(X/S, r) the operation α∩− : Ze(S)→ Ze+r(X) defined in Section
11 agrees with the operationCor(α,−) in [?, Section 3.7] when both are defined.

(6) ForX → Y → S the composition law z(X/Y, r)⊗Zz(Y/S, e) −→ z(X/S, r+
e) defined in Section 14 agrees with the oprationCorX/Y (−,−) in [?, Corollary
3.7.5].
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16. Relative cycles in the non-Noetherian case

We urge the reader to skip this section.

Let f : X → S be a morphism of schemes of finite presentation. Let r ≥ 0. Denote
Hilb(X/S, r) the set of closed subschemes Z ⊂ X such that Z → S is flat, of finite
presentation, and of relative dimension ≤ r. We consider the group homomorphism

(16.0.1) free abelian group
on Hilb(X/S, r) −→

families of r-cycles
on fibres of X/S

sending
∑
ni[Zi] to

∑
ni[Zi/X/S]r.

Lemma 16.1. Let S be a quasi-compact and quasi-separated scheme. Let f : X → S
be a morphism of finite presentation. Let r ≥ 0 and let α be a family of r-cycles on fibres
of X/S. The following are equivalent

(1) there exists a cartesian diagram

X //

��

X0

��
S // S0

where X0 → S0 is a finite type morphism of Noetherian schemes and α0 ∈
z(X0/S0, r) such that α is the base change of α0 by S → S0

(2) there exists a completely decomposed proper morphism g : S′ → S of finite
presentation such that g∗α is in the image of (16.0.1).

Proof. Let a diagram and α0 ∈ z(X0/S0, r) as in (1) be given. By Lemma 6.9 there
exists a proper surjective morphism g0 : S′

0 → S0 such that g∗
0α0 is in the image of

(16.0.1). Namely, since S′
0 is Noetherian, every closed subscheme of S′

0×S0 X0 is of finite
presentation over S′

0. Setting S′ = S ×S0 S
′
0 and using base change by S′ → S′

0 we see
that (2) holds.

Conversely, assume that (2) holds. Choose a surjective proper morphism g : S′ → S of
finite presentation such that g∗α is in the image of (16.0.1). Set X ′ = S′ ×S X . Write
g∗α =

∑
na[Za/X ′/S′]r for some Za ⊂ X ′ closed subscheme flat, of finite presentation,

and of relative dimension ≤ r over S′.

Write S = limSi as a directed limit with affine transition morphisms with Si of finite
type over Z, see Limits, Proposition 5.4. We can find an i large enough such that there
exist

(1) a completely decomposed proper morphism gi : S′
i → Si whose base change to

S is g : S′ → S ,
(2) setting X ′

i = S′
i ×Si Xi closed subschemes Zai ⊂ X ′

i flat and of relative dimen-
sion ≤ r over S′

i whose base change to S′ is Za.
To do this one uses Limits, Lemmas 10.1, 8.5, 8.7, 8.15, 13.1, and 18.1 and and More on
Morphisms, Lemma 78.5. Consider α′

i =
∑
na[Zai/X ′

i/Si]r ∈ z(X ′
i/S

′
i, r). The base

change of α′
i to a family of r-cycles on fibres ofX ′/S′ agrees with the base change g∗α by

construction.

Set S′′
i = S′

i×Si S′
i andX ′′

i = S′′
i ×SiXi and set S′′ = S′×S S′ andX ′′ = S′′×SX . We

denote pr1, pr2 : S′′ → S′ and pr1, pr2 : S′′
i → S′

i the projections. The relative r-cycles
pr∗

1α
′
i and pr∗

1α
′
i onX ′′

i /S
′′
i base change to the same family of r-cycles on fibres ofX ′′/S′′
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because pr∗
1g

∗α = pr∗
1g

∗α. Hence the morphism S′′ → S′′
i maps into E = {s ∈ S′′

i :
(pr∗

1α
′
i)s = (pr∗

1α
′
i)s}. By Lemma 6.12 this is a closed subset. Since S′′ = limi′≥i S

′′
i′ we

see from Limits, Lemma 4.10 that for some i′ ≥ i the morphism S′′
i′ → S′′

i maps into E.
Therefore, after replacing i by i′, we may assume that pr∗

1α
′
i = pr∗

1α
′
i. By Lemma 5.9 we

obtain a unique family αi of r-cycles on fibres of Xi/Si with g∗
i αi = α′

i (this uses that
S′
i → Si is completely decomposed). By Lemma 6.3 we see that αi ∈ z(Xi/Si, r). The

uniqueness in Lemma 5.9 implies that the base change of αi is α and we see (1) holds. �

Discussion. If f : X → S , r, and α are as in Lemma 16.1, then it makes sense to say that
α is a relative r-cycle onX/S if the equivalent conditions (1) and (2) of Lemma 16.1 hold.
This definition has many good properties; for example it doesn’t conflict with the earlier
definition in case S is Noetherian and most of the results of Section 6 generalize to this
setting.
We may still generalize further as follows. Assume S is arbitrary and f : X → S is locally
of finite presentation. Let r ≥ 0 and let α be a family of r-cycles α on fibres ofX/S. Then
α is an relative r-cycle on X/S if for U ⊂ X and V ⊂ S affine open with f(U) ⊂ V the
restriction α|U is a relative r-cycle on U/V as defined in the previous paragraph. Again
many of the earlier results generalize to this setting.
If we ever need these generalizations we will carefully state and prove them here.
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CHAPTER 63

More Étale Cohomology

1. Introduction

This chapter is the second in a series of chapter on the étale cohomology of schemes. To
read the first chapter, please visit Étale Cohomology, Section 1.
The split with the previous chapter is roughly speaking that anything concerning “shriek
functors” (cohomology with compact support and its right adjoint) and anything using
this material goes into this chapter.

2. Growing sections

In this section we discuss results of the following type.

Lemma 2.1. LetX be a scheme. Let F be an abelian sheaf onXétale. Let ϕ : U ′ → U
be a morphism of Xétale. Let Z ′ ⊂ U ′ be a closed subscheme such that Z ′ → U ′ → U is
a closed immersion with image Z ⊂ U . Then there is a canonical bijection

{s ∈ F(U) | Supp(s) ⊂ Z} = {s′ ∈ F(U ′) | Supp(s′) ⊂ Z ′}
which is given by restriction if ϕ−1(Z) = Z ′.

Proof. Consider the closed subscheme Z ′′ = ϕ−1(Z) of U ′. Then Z ′ ⊂ Z ′′ is
closed because Z ′ is closed in U ′. On the other hand, Z ′ → Z ′′ is an étale morphism (as a
morphism between schemes étale over Z) and hence open. Thus Z ′′ = Z ′ q T for some
closed subset T . The open covering U ′ = (U ′ \ T ) ∪ (U ′ \ Z ′) shows that

{s′ ∈ F(U ′) | Supp(s′) ⊂ Z ′} = {s′ ∈ F(U ′ \ T ) | Supp(s′) ⊂ Z ′}
and the étale covering {U ′ \ T → U,U \ Z → U} shows that

{s ∈ F(U) | Supp(s) ⊂ Z} = {s′ ∈ F(U ′ \ T ) | Supp(s′) ⊂ Z ′}
This finishes the proof. �

Lemma 2.2. Let X be a scheme. Let Z ⊂ X be a locally closed subscheme. Let F be
an abelian sheaf on Xétale. Given U,U ′ ⊂ X open containing Z as a closed subscheme,
there is a canonical bijection

{s ∈ F(U) | Supp(s) ⊂ Z} = {s ∈ F(U ′) | Supp(s) ⊂ Z}
which is given by restriction if U ′ ⊂ U .

Proof. Since Z is a closed subscheme of U ∩U ′, it suffices to prove the lemma when
U ′ ⊂ U . Then it is a special case of Lemma 2.1. �

Let us introduce a bit of nonstandard notation which will stand us in good stead later.
Namely, in the situation of Lemma 2.2 above, let us denote

HZ(F) = {s ∈ F(U) | Supp(s) ⊂ Z}

5017
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where U ⊂ X is any choice of open subscheme containing Z as a closed subscheme. The
reader who is troubled by the lack of precision this entails may chooseU = X \∂Z where
∂Z = Z \ Z is the “boundary” of Z in X . However, in many of the arguments below the
flexibility of choosing different opens will play a role. Here are some properties of this
construction:

(1) If Z ⊂ Z ′ are locally closed subschemes ofX and Z is closed in Z ′, then there is
a natural injective map

HZ(F)→ HZ′(F).
(2) If f : Y → X is a morphism of schemes andZ ⊂ X is a locally closed subscheme,

then there is a natural pullback map f∗ : HZ(F)→ Hf−1Z(f−1F).
It will be convenient to extend our notation to the following situation: suppose that we
have W ∈ Xétale and a locally closed subscheme Z ⊂W . Then we will denote

HZ(F) = {s ∈ F(U) | Supp(s) ⊂ Z} = HZ(F|Wétale
)

where U ⊂ W is any choice of open subscheme containing Z as a closed subscheme,
exactly as above1.

3. Sections with compact support

A reference for this section is [?, Exposee XVII, Section 6]. Let f : X → Y be a morphism
of schemes which is separated and locally of finite type. In this section we define a functor
f! : Ab(Xétale)→ Ab(Yétale) by taking f!F ⊂ f∗F to be the subsheaf of sections which
have proper support relative to Y (suitably defined).

Warning: The functor f! is the zeroth cohomology sheaf of a functor Rf! on the derived
category (insert future reference), but Rf! is not the derived functor of f!.

Lemma 3.1. Let f : X → Y be a morphism of schemes which is locally of finite type.
Let F be an abelian sheaf on Xétale. The rule

Yétale −→ Ab, V 7−→ {s ∈ f∗F(V ) = F(XV ) | Supp(s) ⊂ XV is proper over V }
is an abelian subsheaf of f∗F .

Warning: This sheaf isn’t the “correct one” if f is not separated.

Proof. Recall that the support of a section is closed (Étale Cohomology, Lemma 31.4)
hence the material in Cohomology of Schemes, Section 26 applies. By the lemma above and
Cohomology of Schemes, Lemma 26.6 we find that our subset of f∗F(V ) is a subgroup. By
Cohomology of Schemes, Lemma 26.4 we see that our rule defines a sub presheaf. Finally,
suppose that we have s ∈ f∗F(V ) and an étale covering {Vi → V } such that s|Vi has
support proper overVi. Observe that the support of s|Vi is the inverse image of the support
of s|V (use the characterization of the support in terms of stalks and Étale Cohomology,
Lemma 36.2). Whence the support of s is proper over V by Descent, Lemma 25.5. This
proves that our rule satisfies the sheaf condition. �

Lemma 3.2. Let j : U → X be a separated étale morphism. Let F be an abelian sheaf
on Uétale. The image of the injective map j!F → j∗F of Étale Cohomology, Lemma 70.6
is the subsheaf of Lemma 3.1.

1In fact, Lemma 2.1 shows, givenZ overX which is isomorphic to a locally closed subscheme of some object
W of Xétale , that the choice of W is irrelevant.
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An alternative would be to move this lemma later and prove this using the descrition of
the stalks of both sheaves.

Proof. The construction of j!F → j∗F in the proof of Étale Cohomology, Lemma
70.6 is via the construction of a map jp!F → j∗F of presheaves whose image is clearly
contained in the subsheaf of Lemma 3.1. Hence since j!F is the sheafification of jp!F we
conclude the image of j!F → j∗F is contained in this subsheaf. Conversely, let s ∈
j∗F(V ) have support Z proper over V . Then Z → V is finite with closed image Z ′ ⊂ V ,
see More on Morphisms, Lemma 44.1. The restriction of s to V \ Z ′ is zero and the zero
section is contained in the image of j!F → j∗F . On the other hand, if v ∈ Z ′, then we can
find an étale neighbourhood (V ′, v′)→ (V, v) such that we have a decomposition UV ′ =
W qU ′

1 q . . .qU ′
n into open and closed subschemes with U ′

i → V ′ an isomorphism and
with TV ′ ⊂ U ′

1q . . .qU ′
n, see Étale Morphisms, Lemma 18.2. Inverting the isomorphisms

U ′
i → V ′ we obtain n morphisms ϕ′

i : V ′ → U and sections s′
i over V ′ by pulling back

s. Then the section
∑

(ϕ′
i, s

′
i) of jp!F over V ′, see formula for jp!F(V ′) in proof of Étale

Cohomology, Lemma 70.6, maps to the restriction of s toV ′ by construction. We conclude
that s is étale locally in the image of j!F → j∗F and the proof is complete. �

Definition 3.3. Let f : X → Y be a morphism of schemes which is separated (!)
and locally of finite type. Let F be an abelian sheaf on Xétale. The subsheaf f!F ⊂ f∗F
constructed in Lemma 3.1 is called the direct image with compact support.

By Lemma 3.2 this does not conflict with Étale Cohomology, Definition 70.1 as we have
agreement when both definitions apply. Here is a sanity check.

Lemma 3.4. Let f : X → Y be a proper morphism of schemes. Then f! = f∗.

Proof. Immediate from the construction of f!. �

A very useful observation is the following.

Remark 3.5 (Covariance with respect to open embeddings). Let f : X → Y be
morphism of schemes which is separated and locally of finite type. Let F be an abelian
sheaf on Xétale. Let X ′ ⊂ X be an open subscheme. Denote f ′ : X ′ → Y the restriction
of f . There is a canonical injective map

f ′
! (F|X′) −→ f!F

Namely, let V ∈ Yétale and consider a section s′ ∈ f ′
∗(F|X′)(V ) = F(X ′ ×Y V ) with

support Z ′ proper over V . Then Z ′ is closed in X ×Y V as well, see Cohomology of
Schemes, Lemma 26.5. Thus there is a unique section s ∈ F(X ×Y V ) = f∗F(V ) whose
restriction to X ′ ×Y V is s′ and whose restriction to X ×Y V \ Z ′ is zero, see Lemma
2.2. This construction is compatible with restriction maps and hence induces the desired
map of sheaves f ′

! (F|X′) → f!F which is clearly injective. By construction we obtain a
commutative diagram

f ′
! (F|X′) //

��

f!F

��
f ′

∗(F|X′) f∗Foo

functorial in F . It is clear that for X ′′ ⊂ X ′ open with f ′′ = f |X′′ : X ′′ → Y the
composition of the canonical maps f ′′

! F|X′′ → f ′
!F|X′ → f!F just constructed is the

canonical map f ′′
! F|X′′ → f!F .
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Lemma 3.6. Let Y be a scheme. Let j : X → X be an open immersion of schemes
over Y with X proper over Y . Denote f : X → Y and f : X → Y the structure
morphisms. For F ∈ Ab(Xétale) there is a canonical isomorphism (see proof)

f!F −→ f !j!F

As we have f ! = f∗ by Lemma 3.4 we obtain f∗ ◦ j! = f! as functors Ab(Xétale) →
Ab(Yétale).

Proof. We have (j!F)|X = F , see Étale Cohomology, Lemma 70.4. Thus the dis-
played arrow is the injective map f!(G|X) → f !G of Remark 3.5 for G = j!F . The
explicit nature of this map implies that it now suffices to show: if V ∈ Yétale and s ∈
f !G(V ) = f∗G(V ) = G(XV ) is a section, then the support of s is contained in the open
XV ⊂ XV . This is immediate from the fact that the stalks of G are zero at geometric
points of X \X . �

We want to relate the stalks of f!F to sections with compact support on fibres. In order
to state this, we need a definition.

Definition 3.7. LetX be a separated scheme locally of finite type over a field k. Let
F be an abelian sheaf on Xétale. We let H0

c (X,F) ⊂ H0(X,F) be the set of sections
whose support is proper over k. Elements of H0

c (X,F) are called sections with compact
support.

Warning: This definition isn’t the “correct one” if X isn’t separated over k.

Lemma 3.8. Let X be a proper scheme over a field k. Then H0
c (X,F) = H0(X,F).

Proof. Immediate from the construction of H0
c . �

Remark 3.9 (Open embeddings and compactly supported sections). Let X be a sep-
arated scheme locally of finite type over a field k. Let F be an abelian sheaf on Xétale.
Exactly as in Remark 3.5 for X ′ ⊂ X open there is an injective map

H0
c (X ′,F|X′) −→ H0

c (X,F)
and these maps turn H0

c into a “cosheaf” on the Zariski site of X .

Lemma 3.10. Let k be a field. Let j : X → X be an open immersion of schemes over
k withX proper over k. ForF ∈ Ab(Xétale) there is a canonical isomorphism (see proof)

H0
c (X,F) −→ H0

c (X, j!F) = H0(X, j!F)
where we have the equality on the right by Lemma 3.8.

Proof. We have (j!F)|X = F , see Étale Cohomology, Lemma 70.4. Thus the dis-
played arrow is the injective map H0

c (X,G|X)→ H0
c (X,G) of Remark 3.9 for G = j!F .

The explicit nature of this map implies that it now suffices to show: if s ∈ H0(X,G) is a
section, then the support of s is contained in the open X . This is immediate from the fact
that the stalks of G are zero at geometric points of X \X . �

Lemma 3.11. Let f : X → Y be a morphism of schemes which is separated and locally
of finite type. LetF be an abelian sheaf onXétale. Then there is a canonical isomorphism

(f!F)y −→ H0
c (Xy,F|Xy )

for any geometric point y : Spec(k)→ Y .
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Proof. Recall that (f∗F)y = colim f∗F(V ) where the colimit is over the étale
neighbourhoods (V, v) of y. If s ∈ f∗F(V ) = F(XV ), then we can pullback s to a
section of F over (XV )v = Xy . Thus we obtain a canonical map

cy : (f∗F)y −→ H0(Xy,F|Xy )

We claim that this map induces a bijection between the subgroups (f!F)y andH0
c (Xy,F|Xy ).

The claim implies the lemma, but is a little bit more precise in that it describes the iden-
tification of the lemma as given by pullbacks of sections of F to the geometric fibre of
f .

Observe that any element s ∈ (f!F)y ⊂ (f∗F)y is mapped by cy to an element of
H0
c (Xy,F|Xy ) ⊂ H0(Xy,F|Xy ). This is true because taking the support of a section

commutes with pullback and because properness is preserved by base change. This at least
produces the map in the statement of the lemma. To prove that it is an isomorphism we
may work Zariski locally on Y and hence we may and do assume Y is affine.

An observation that we will use below is that given an open subscheme X ′ ⊂ X and if
f ′ = f |X′ , then we obtain a commutative diagram

(f ′
! (F|X′))y //

��

H0
c (X ′

y,F|X′
y
)

��
(f!F)y // H0

c (Xy,F|Xy )

where the horizontal arrows are the maps constructed above and the vertical arrows are
given in Remarks 3.5 and 3.9. The reason is that given an étale neighbourhood (V, v) of
y and a section s ∈ f∗F(V ) = F(XV ) whose support Z happens to be contained in X ′

V

and is proper over V , so that s gives rise to an element of both (f ′
! (F|X′))y and (f!F)y

which correspond via the vertical arrow of the diagram, then these elements are mapped
via the horizontal arrows to the pullback s|Xy of s toXy whose supportZy is contained in
X ′
y and hence this restriction gives rise to a compatible pair of elements ofH0

c (X ′
y,F|X′

y
)

and H0
c (Xy,F|Xy ).

Suppose s ∈ (f!F)y maps to zero in H0
c (Xy,F|Xy ). Say s corresponds to s ∈ f∗F(V ) =

F(XV ) with support Z proper over V . We may assume that V is affine and hence Z is
quasi-compact. Then we may choose a quasi-compact openX ′ ⊂ X containing the image
ofZ. ThenZ is contained inX ′

V and hence s is the image of an element s′ ∈ f ′
! (F|X′)(V )

where f ′ = f |X′ as in the previous paragraph. Then s′ maps to zero in H0
c (X ′

y,F|X′
y
).

Hence in order to prove injectivity, we may replace X by X ′, i.e., we may assume X is
quasi-compact. We will prove this case below.

Suppose that t ∈ H0
c (Xy,F|Xy ). Then the support of t is contained in a quasi-compact

open subscheme W ⊂ Xy . Hence we can find a quasi-compact open subscheme X ′ ⊂ X
such that X ′

y contains W . Then it is clear that t is contained in the image of the injective
map H0

c (X ′
y,F|X′

y
) → H0

c (Xy,F|Xy ). Hence in order to show surjectivity, we may
replace X by X ′, i.e., we may assume X is quasi-compact. We will prove this case below.

In this last paragraph of the proof we prove the lemma in caseX is quasi-compact and Y is
affine. By More on Flatness, Theorem 33.8 there exists a compactification j : X → X over
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Y . Set G = j!F so that F = G|X by Étale Cohomology, Lemma 70.4. By the disussion
above we get a commutative diagram

(f!F)y //

��

H0
c (Xy,F|Xy )

��
(f !G)y // H0

c (Xy,G|Xy )

By Lemmas 3.6 and 3.10 the vertical maps are isomorphisms. This reduces us to the case
of the proper morphism X → Y . For a proper morphism our map is an isomorphism
by Lemmas 3.4 and 3.8 and proper base change for pushforwards, see Étale Cohomology,
Lemma 91.4. �

Lemma 3.12. Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f separated and locally of finite type. For any abelian sheaf F on Xétale

we have f ′
! (g′)−1F = g−1f!F .

Proof. In great generality there is a pullback map g−1f∗F → f ′
∗(g′)−1F , see Sites,

Section 45. We claim that this map sends g−1f!F into the subsheaf f ′
! (g′)−1F and induces

the isomorphism in the lemma.

Choose a geometric point y′ : Spec(k)→ Y ′ and denote y = g ◦y′ the image in Y . There
is a commutative diagram

(f∗F)y //

��

H0(Xy,F|Xy )

��
(f ′

∗(g′)−1F)y′ // H0(X ′
y′ , (g′)−1F|X′

y′
)

where the horizontal maps were used in the proof of Lemma 3.11 and the vertical maps are
the pullback maps above. The diagram commutes because each of the four maps in question
is given by pulling back local sections along a morphism of schemes and the underlying
diagram of morphisms of schemes commutes. Since the diagram in the statement of the
lemma is cartesian we have X ′

y′ = Xy . Hence by Lemma 3.11 and its proof we obtain a



3. SECTIONS WITH COMPACT SUPPORT 5023

commutative diagram

(f∗F)y //

��

H0(Xy,F|Xy )

��

(f!F)y //

��

gg

H0
c (Xy,F|Xy )

��

55

(f ′
! (g′)−1F)y′ //

ww

H0
c (X ′

y′ , (g′)−1F|X′
y′

)

))
(f ′

∗(g′)−1F)y′ // H0(X ′
y′ , (g′)−1F|X′

y′
)

where the horizontal arrows of the inner square are isomorphisms and the two right
vertical arrows are equalities. Also, the se, sw, ne, nw arrows are injective. It follows
that there is a unique bijective dotted arrow fitting into the diagram. We conclude that
g−1f!F ⊂ g−1f∗F → f ′

∗(g′)−1F is mapped into the subsheaf f ′
! (g′)−1F ⊂ f ′

∗(g′)−1F
because this is true on stalks, see Étale Cohomology, Theorem 29.10. The same theorem
then implies that the induced map is an isomorphism and the proof is complete. �

Lemma 3.13. Let f : X → Y and g : Y → Z be composable morphisms of schemes
which are separated and locally of finite type. Let F be an abelian sheaf on Xétale. Then
g!f!F = (g ◦ f)!F as subsheaves of (g ◦ f)∗F .

Proof. We strongly urge the reader to prove this for themselves. Let W ∈ Zétale
and s ∈ (g ◦ f)∗F(W ) = F(XW ). Denote T ⊂ XW the support of s; this is a closed
subset. Observe that s is a section of (g ◦ f)!F if and only if T is proper overW . We have
f!F ⊂ f∗F and hence g!f!F ⊂ g!f∗F ⊂ g∗f∗F . On the other hand, s is a section of g!f!F
if and only if (a) T is proper over YW and (b) the support T ′ of s viewed as section of f!F
is proper over W . If (a) holds, then the image of T in YW is closed and since f!F ⊂ f∗F
we see that T ′ ⊂ YW is the image of T (details omitted; look at stalks).

The conclusion is that we have to show a closed subset T ⊂ XW is proper over W if
and only if T is proper over YW and the image of T in YW is proper over W . Let us
endow T with the reduced induced closed subscheme structure. If T is proper over W ,
then T → YW is proper by Morphisms, Lemma 41.7 and the image of T in YW is proper
over W by Cohomology of Schemes, Lemma 26.5. Conversely, if T is proper over YW
and the image of T in YW is proper over W , then the morphism T → W is proper as
a composition of proper morphisms (here we endow the closed image of T in YW with
its reduced induced scheme structure to turn the question into one about morphisms of
schemes), see Morphisms, Lemma 41.4. �

Remark 3.14. The isomorphisms between functors constructed above satisfy the fol-
lowing two properties:
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(1) Let f : X → Y , g : Y → Z , and h : Z → T be composable morphisms of
schemes which are separated and locally of finite type. Then the diagram

(h ◦ g ◦ f)! //

��

(h ◦ g)! ◦ f!

��
h! ◦ (g ◦ f)! // h! ◦ g! ◦ f!

commutes where the arrows are those of Lemma 3.13.
(2) Suppose that we have a diagram of schemes

X ′

f ′

��

c
// X

f

��
Y ′

g′

��

b
// Y

g

��
Z ′ a // Z

with both squares cartesian and f and g separated and locally of finite type. Then
the diagram

a−1 ◦ (g ◦ f)!

��

// (g′ ◦ f ′)! ◦ c−1

��
a−1 ◦ g! ◦ f! // g′

! ◦ b−1 ◦ f! // g′
! ◦ f ′

! ◦ c−1

commutes where the horizontal arrows are those of Lemma 3.12 the arrows are
those of Lemma 3.13.

Part (1) holds true because we have a similar commutative diagram for pushforwards. Part
(2) holds by the very general compatibility of base change maps for pushforwards (Sites,
Remark 45.3) and the fact that the isomorphisms in Lemmas 3.12 and 3.13 are constructed
using the corresponding maps fo pushforwards.

Lemma 3.15. Let f : X → Y be morphism of schemes which is separated and locally
of finite type. Let X =

⋃
i∈I Xi be an open covering such that for all i, j ∈ I there exists

a k with Xi ∪Xj ⊂ Xk. Denote fi : Xi → Y the restriction of f . Then

f!F = colimi∈I fi,!(F|Xi)

functorially in F ∈ Ab(Xétale) where the transition maps are the ones constructed in
Remark 3.5.

Proof. It suffices to show that the canonical map from right to left is a bijection when
evaluated on a quasi-compact object V of Yétale. Observe that the colimit on the right
hand side is directed and has injective transition maps. Thus we can use Sites, Lemma 17.7
to evaluate the colimit. Hence, the statement comes down to the observation that a closed
subset Z ⊂ XV proper over V is quasi-compact and hence is contained in Xi,V for some
i. �

Lemma 3.16. Let f : X → Y be a morphism of schemes which is separated and
locally of finite type. Then functor f! commutes with direct sums.
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Proof. Let F =
⊕
Fi. To show that the map

⊕
f!Fi → f!F is an isomorphism,

it suffices to show that these sheaves have the same sections over a quasi-compact object
V of Yétale. Replacing Y by V it suffices to show H0(Y, f!F) ⊂ H0(X,F) is equal to⊕
H0(Y, f!Fi) ⊂

⊕
H0(X,Fi) ⊂ H0(X,

⊕
Fi). In this case, by writing X as the

union of its quasi-compact opens and using Lemma 3.15 we reduce to the case where X is
quasi-compact as well. ThenH0(X,F) =

⊕
H0(X,Fi) by Étale Cohomology, Theorem

51.3. Looking at supports of sections the reader easily concludes. �

Lemma 3.17. Let f : X → Y be a morphism of schemes which is separated and
locally quasi-finite. Then

(1) for F in Ab(Xétale) and a geometric point y : Spec(k)→ Y we have

(f!F)y =
⊕

f(x)=y
Fx

functorially in F , and
(2) the functor f! is exact.

Proof. The functor f! is left exact by construction. Right exactness may be checked
on stalks (Étale Cohomology, Theorem 29.10). Thus it suffices to prove part (1).

Let y : Spec(k) → Y be a geometric point. The scheme Xy has a discrete underlying
topological space (Morphisms, Lemma 20.8) and all the residue fields at the points are
equal to k (as finite extensions of k). Hence {x : Spec(k) → X : f(x) = y} is equal to
the set of points of Xy . Thus the computation of the stalk follows from the more general
Lemma 3.11. �

4. Sections with finite support

In this section we extend the construction of Section 3 to not necessarily separated locally
quasi-finite morphisms.

Let f : X → Y be a locally quasi-finite morphism of schemes. Let F be an abelian sheaf
on Xétale. Given V in Yétale denote XV = X ×Y V the base change. We are going to
consider the group of finite formal sums

(4.0.1) s =
∑

i=1,...,n
(Zi, si)

where Zi ⊂ XV is a locally closed subscheme such that the morphism Zi → V is finite2

and where si ∈ HZi(F). Here, as in Section 2, we set

HZi(F) = {si ∈ F(Ui) | Supp(si) ⊂ Zi}

where Ui ⊂ XV is an open subscheme containing Zi as a closed subscheme. We are going
to consider these formal sums modulo the following relations

(1) (Z, s) + (Z, s′) = (Z, s+ s′),
(2) (Z, s) = (Z ′, s) if Z ⊂ Z ′.

Observe that the second relation makes sense: since Z → V is finite and Z ′ → V is
separated, the inclusion Z → Z ′ is closed and we can use the map discussed in (1).

Let us denote fp!F(V ) the quotient of the abelian group of formal sums (4.0.1) by these
relations. The first relation tells us that fp!F(V ) is a quotient of the direct sum of the

2Since f is locally quasi-finite, the morphism Zi → V is finite if and only if it is proper.



5026 63. MORE ÉTALE COHOMOLOGY

abelian groups HZ(F) over all locally closed subschemes Z ⊂ XV finite over V . The
second relation tells us that we are really taking the colimit

(4.0.2) fp!F(V ) = colimZ HZ(F)

This formula will be a convenient abstract way to think about our construction.

Next, we observe that there is a natural way to turn this construction into a presheaf fp!F
of abelian groups on Yétale. Namely, given V ′ → V in Yétale we obtain the base change
morphism XV ′ → XV . If Z ⊂ XV is a locally closed subscheme finite over V , then the
scheme theoretic inverse image Z ′ ⊂ XV ′ is finite over V ′. Moreover, if U ⊂ XV is an
open such that Z is closed in U , then the inverse image U ′ ⊂ XV ′ is an open such that Z ′

is closed in U ′. Hence the restriction mapping F(U) → F(U ′) of F sends HZ(F) into
HZ′(F); this is a special case of the functoriality discussed in (2) above. Clearly, these
maps are compatible with inclusions Z1 ⊂ Z2 of such locally closed subschemes of XV

and we obtain a map

fp!F(V ) = colimZ HZ(F) −→ colimZ′ HZ′(F) = fp!F(V ′)

These maps indeed turn fp!F into a presheaf of abelian groups on Yétale. We omit the
details.

A final observation is that the construction of fp!F is functorial in F in Ab(Xétale). We
conclude that given a locally quasi-finite morphism f : X → Y we have constructed a
functor

fp! : Ab(Xétale) −→ PAb(Yétale)
from the category of abelian sheaves on Xétale to the category of abelian presheaves on
Yétale. Before we define f! as the sheafification of this functor, let us check that it agrees
with the construction in Section 3 and with the construction in Étale Cohomology, Section
70 when both apply.

Lemma 4.1. Let f : X → Y be a separated and locally quasi-finite morphism of
schemes. Functorially in F ∈ Ab(Xétale) there is a canonical isomorphism(!)

fp!F −→ f!F

of abelian presheaves which identifies the sheaf f!F of Definition 3.3 with the presheaf
fp!F constructed above.

Proof. Let V be an object of Yétale. If Z ⊂ XV is locally closed and finite over
V , then, since f is separated, we see that the morphism Z → XV is a closed immersion.
Moreover, ifZi, i = 1, . . . , n are closed subschemes ofXV finite over V , thenZ1∪. . .∪Zn
(scheme theoretic union) is a closed subscheme finite over V . Hence in this case the colimit
(4.0.2) defining fp!F(V ) is directed and we find that f!pF(V ) is simply equal to the set of
sections ofF(XV ) whose support is finite over V . Since any closed subset ofXV which is
proper over V is actually finite over V (as f is locally quasi-finite) we conclude that this
is equal to f!F(V ) by its very definition. �

Lemma 4.2. Let f : X → Y be a morphism of schemes which is locally quasi-finite.
Let y : Spec(k)→ Y be a geometric point. Functorially in F in Ab(Xétale) we have

(fp!F)y =
⊕

f(x)=y
Fx
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Proof. Recall that the stalk at y of a presheaf is defined by the usual colimit over
étale neighbourhoods (V, v) of y, see Étale Cohomology, Definition 29.6. Accordingly
suppose s =

∑
i=1,...,n(Zi, si) as in (4.0.1) is an element of fp!F(V ) where (V, v) is an

étale neighbourhood of y. Then since

Xy = (XV )v ⊃ Zi,v
and since si is a section of F on an open neighbourhood of Zi in XV we can send s to∑

i=1,...,n

∑
x∈Zi,v

(class of si in Fx) ∈
⊕

f(x)=y
Fx

We omit the verification that this is compatible with restriction maps and that the rela-
tions (1) (Z, s) + (Z, s′)− (Z, s+ s′) and (2) (Z, s)− (Z ′, s) if Z ⊂ Z ′ are sent to zero.
Thus we obtain a map

(fp!F)y −→
⊕

f(x)=y
Fx

Let us prove this arrow is surjective. For this it suffices to pick an x with f(x) = y and
prove that an element s in the summandFx is in the image. Let s correspond to the element
s ∈ F(U) where (U, u) is an étale neighbourhood of x. Since f is locally quasi-finite, the
morphism U → Y is locally quasi-finite too. By More on Morphisms, Lemma 41.3 we can
find an étale neighbourhood (V, v) of y, an open subscheme

W ⊂ U ×Y V,

and a geometric point w mapping to u and v such that W → V is finite and w is the
only geometric point ofW mapping to v. (We omit the translation between the language
of geometric points we are currently using and the language of points and residue field
extensions used in the statement of the lemma.) Observe that W → XV = X ×Y V is
étale. Choose an affine open neighbourhood W ′ ⊂ XV of the image w′ of w. Since w
is the only point of W over v and since W → V is closed, after replacing V by an open
neighbourhood of v, we may assumeW → XV maps intoW ′. ThenW →W ′ is finite and
étale and there is a unique geometric pointw ofW lying overw′. It follows thatW →W ′

is an open immersion over an open neighbourhood of w′ in W ′, see Étale Morphisms,
Lemma 14.2. Shrinking V and W ′ we may assume W → W ′ is an isomorphism. Thus
s may be viewed as a section s′ of F over the open subscheme W ′ ⊂ XV which is finite
over V . Hence by definition (W ′, s′) defines an element of jp!F(V ) which maps to s as
desired.

Let us prove the arrow is injective. To do this, let s =
∑
i=1,...,n(Zi, si) as in (4.0.1) be an

element of fp!F(V ) where (V, v) is an étale neighbourhood of y. Assume s maps to zero
under the map constructed above. First, after replacing (V, v) by an étale neighbourhood
of itself, we may assume there exist decompositions Zi = Zi,1q . . .qZi,mi into open and
closed subschemes such that each Zi,j has exactly one geometric point over v. Say under
the obvious direct sum decomposition

HZi(F) =
⊕

HZi,j (F)

the element si corresponds to
∑
si,j . We may use relations (1) and (2) to replace s by∑

i=1,...,n
∑
j=1,...,mi(Zi,j , si,j). In other words, we may assumeZi has a unique geomet-

ric point lying over v. Let x1, . . . , xm be the geometric points of X over y corresponding
to the geometric points of our Zi over v; note that for one j ∈ {1, . . . ,m} there may
be multiple indices i for which xj corresponds to a point of Zi. By More on Morphisms,
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Lemma 41.3 applied to bothXV → V after replacing (V, v) by an étale neighbourhood of
itself we may assume there exist open subschemes

Wj ⊂ X ×Y V, j = 1, . . . ,m
and a geometric point wj of Wj mapping to xj and v such that Wj → V is finite and
wj is the only geometric point of Wj mapping to v. After shrinking V we may assume
Zi ⊂ Wj for some j and we have the map HZi(F)→ HWj

(F). Thus by the relation (2)
we see that our element is equivalent to an element of the form∑

j=1,...,m
(Wj , tj)

for some tj ∈ HWj (F). Clearly, this element is mapped simply to the class of tj in the
summandFxj . Since smaps to zero, we find that tj maps to zero inFxj . This implies that
tj restricts to zero on an open neighbourhood ofwj inWj , see Étale Cohomology, Lemma
31.2. Shrinking V once more we obtain tj = 0 for all j as desired. �

Lemma 4.3. Let f = j : U → X be an étale of schemes. Denote jp! the construction
of Étale Cohomology, Equation (70.1.1) and denote fp! the construction above. Functori-
ally in F ∈ Ab(Xétale) there is a canonical map

jp!F −→ fp!F

of abelian presheaves which identifies the sheaf j!F = (jp!F)# of Étale Cohomology,
Definition 70.1 with (fp!F)#.

Proof. Please read the proof of Étale Cohomology, Lemma 70.6 before reading the
proof of this lemma. Let V be an object of Xétale. Recall that

jp!F(V ) =
⊕

ϕ:V→U
F(V ϕ−→ U)

Given ϕ we obtain an open subscheme Zϕ ⊂ UV = U ×X V , namely, the image of the
graph of ϕ. Via ϕ we obtain an isomorphism V → Zϕ over U and we can think of an
element

sϕ ∈ F(V ϕ−→ U) = F(Zϕ) = HZϕ(F)
as a section of F over Zϕ. Since Zϕ ⊂ UV is open, we actually have HZϕ(F) = F(Zϕ)
and we can think of sϕ as an element ofHZϕ(F). Having said this, our map jp!F → fp!F
is defined by the rule ∑

i=1,...,n
sϕi 7−→

∑
i=1,...,n

(Zϕi , sϕi)

with right hand side a sum as in (4.0.1). We omit the verification that this is compatible
with restriction mappings and functorial in F .

To finish the proof, we claim that given a geometric point y : Spec(k) → Y there is a
commutative diagram

(jp!F)y //

��

⊕
j(x)=y Fx

(fp!F)y //⊕
f(x)=y Fx

where the top horizontal arrow is constructed in the proof of Étale Cohomology, Proposi-
tion 70.3, the bottom horizontal arrow is constructed in the proof of Lemma 4.2, the right
vertical arrow is the obvious equality, and the left veritical arrow is the map defined in
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the previous paragraph on stalks. The claim follows in a straightforward manner from the
explicit description of all of the arrows involved here and in the references given. Since
the horizontal arrows are isomorphisms we conclude so is the left vertical arrow. Hence
we find that our map induces an isomorphism on sheafifications by Étale Cohomology,
Theorem 29.10. �

Definition 4.4. Let f : X → Y be a locally quasi-finite morphism of schemes. We
define the direct image with compact support to be the functor

f! : Ab(Xétale) −→ Ab(Yétale)
defined by the formula f!F = (fp!F)#, i.e., f!F is the sheafification of the presheaf fp!F
constructed above.

By Lemma 4.1 this does not conflict with Definition 3.3 (when both definitions apply) and
by Lemma 4.3 this does not conflict with Étale Cohomology, Definition 70.1 (when both
definitions apply).

Lemma 4.5. Let f : X → Y be a locally quasi-finite morphism of schemes. Then
(1) for F in Ab(Xétale) and a geometric point y : Spec(k)→ Y we have

(f!F)y =
⊕

f(x)=y
Fx

functorially in F , and
(2) the functor f! : Ab(Xétale) → Ab(Yétale) is exact and commutes with direct

sums.

Proof. The formula for the stalks is immediate (and in fact equivalent) to Lemma 4.2.
The exactness of the functor follows immediately from this and the fact that exactness may
be checked on stalks, see Étale Cohomology, Theorem 29.10. �

Remark 4.6 (Covariance with respect to open embeddings). Let f : X → Y be
locally quasi-finite morphism of schemes. LetF be an abelian sheaf onXétale. LetX ′ ⊂ X
be an open subscheme and denote f ′ : X ′ → Y the restriction of f . We claim there is a
canonical map

f ′
! (F|X′) −→ f!F

Namely, this map will be the sheafification of a canonical map

f ′
p!(F|X′)→ fp!F

constructed as follows. Let V ∈ Yétale and consider a section s′ =
∑
i=1,...,n(Z ′

i, s
′
i) as

in (4.0.1) defining an element of f ′
p!(F|X′)(V ). Then Z ′

i ⊂ X ′
V may also be viewed as a

locally closed subscheme of XV and we have HZ′
i
(F|X′) = HZ′

i
(F). We will map s′ to

the exact same sum s =
∑
i=1,...,n(Z ′

i, s
′
i) but now viewed as an element of fp!F(V ). We

omit the verification that this construction is compatible with restriction mappings and
functorial in F . This construction has the following properties:

(1) The maps f ′
p!F ′ → fp!F and f ′

!F ′ → f!F are compatible with the description
of stalks given in Lemmas 4.2 and 4.5.

(2) If f is separated, then the map f ′
p!F ′ → fp!F is the same as the map constructed

in Remark 3.5 via the isomorphism in Lemma 4.1.
(3) IfX ′′ ⊂ X ′ is another open, then the composition of f ′′

p!(F|X′′)→ f ′
p!(F|X′)→

fp!F is the map f ′′
p!(F|X′′) → fp!F for the inclusion X ′′ ⊂ X . Sheafifying we

conclude the same holds true for f ′′
! (F|X′′)→ f ′

! (F|X′)→ f!F .
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(4) The map f ′
!F ′ → f!F is injective because we can check this on stalks.

All of these statements are easily proven by representing elements as finite sums as above
and considering what happens to these elements.

Lemma 4.7. Let f : X → Y be a locally quasi-finite morphism of schemes. Let
X =

⋃
i∈I Xi be an open covering. Then there exists an exact complex

. . .→
⊕

i0,i1,i2
fi0i1i2,!F|Xi0i1i2 →

⊕
i0,i1

fi0i1,!F|Xi0i1 →
⊕

i0
fi0,!F|Xi0 → f!F → 0

functorial in F ∈ Ab(Xétale), see proof for details.

Proof. Here as usual we set Xi0...ip = Xi0 ∩ . . . ∩ Xip and we denote fi0...ip the
restriction of f to Xi0...ip . The maps in the complex are the maps constructed in Remark
4.6 with sign rules as in the Čech complex. Exactness follows easily from the description
of stalks in Lemma 4.5. Details omitted. �

Remark 4.8 (Alternative construction). Lemma 4.7 gives an alternative construction
of the functor f! for locally quasi-finite morphisms f . Namely, given a locally quasi-finite
morphism f : X → Y of schemes we can choose an open covering X =

⋃
i∈I Xi such

that each fi : Xi → Y is separated. For example choose an affine open covering of X .
Then we can define f!F as the cokernel of the penultimate map of the complex of the
lemma, i.e.,

f!F = Coker
(⊕

i0,i1
fi0i1,!F|Xi0i1 →

⊕
i0
fi0,!F|Xi0

)
where we can use the construction of fi0,! and fi0i1,! in Section 3 because the morphisms
fi0 and fi0i1 are separated. One can then compute the stalks of f! (using the separated
case, namely Lemma 3.17) and obtain the result of Lemma 4.5. Having done so all the
other results of this section can be deduced from this as well.

Remark 4.9. Let g : Y ′ → Y be a morphism of schemes. For an abelian presheaf G′

on Y ′
étale let us denote g∗G′ the presheaf V 7→ G′(Y ′ ×Y V ). If α : G → g∗G′ is a map of

abelian presheaves on Yétale, then there is a unique map α# : G# → g∗((G′)#) of abelian
sheaves on Yétale such that the diagram

G

��

α
// g∗G′

��
G# α#

// g∗((G′)#)

is commutative where the vertical maps come from the canonical maps G → G# and
G′ → (G′)#. If α′ : g−1G# → (G′)# is the map adjoint to α#, then for a geometric point
y′ : Spec(k)→ Y ′ with image y = g ◦ y′ in Y , the map

α′
y′ : Gy = (G#)y = (g−1G#)y′ −→ (G′)#

y′ = G′
y′

is given by mapping the class in the stalk of a section s of G over an étale neighbourhood
(V, v) to the class of the section α(s) in g∗G′(V ) = G′(Y ′ ×Y V ) over the étale neigh-
bourhood (Y ′ ×Y V, (y′, v)) in the stalk of G′ at y′.
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Lemma 4.10. Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f locally quasi-finite. There is an isomorphism g−1f!F → f ′
! (g′)−1F

functorial for F in Ab(Xétale) which is compatible with the descriptions of stalks given
in Lemma 4.5 (see proof for the precise statement).

Proof. With conventions as in Remark 4.9 we will explicitly construct a map

c : fp!F −→ g∗f
′
p!(g′)−1F

of abelian presheaves on Yétale. By the discussion in Remark 4.9 this will determine a
canonical map g−1f!F → f ′

! (g′)−1F . Finally, we will show this map induces isomor-
phisms on stalks and conclude by Étale Cohomology, Theorem 29.10.

Construction of the map c. Let V ∈ Yétale and consider a section s =
∑
i=1,...,n(Zi, si) as

in (4.0.1) defining an element of fp!F(V ). The value of g∗f
′
p!(g′)−1F atV is f ′

p!(g′)−1F(V ′)
where V ′ = V ×Y Y ′. Denote Z ′

i ⊂ X ′
V ′ the base change of Zi to V ′. By (2) there is

a pullback map HZi(F) → HZ′
i
((g′)−1F). Denoting s′

i ∈ HZ′
i
((g′)−1F) the image of

si under pullback, we set c(s) =
∑
i=1,...,n(Z ′

i, s
′
i) as in (4.0.1) defining an element of

f ′
p!(g′)−1F(V ′). We omit the verification that this construction is compatible the rela-

tions (1) and (2) and compatible with restriction mappings. The construction is clearly
functorial in F .

Let y′ : Spec(k) → Y ′ be a geometric point with image y = g ◦ y′ in Y . Observe that
X ′
y′ = Xy by transitivity of fibre products. Hence g′ produces a bijection {f ′(x′) =

y′} → {f(x) = y} and if x′ maps to x, then ((g′)−1F)x′ = Fx by Étale Cohomology,
Lemma 36.2. Now we claim that the diagram

(g−1f!F)y′

��

(f!F)y //

xx

⊕
f(x)=y Fx

��
(f ′

! (g′)−1F)y′ //⊕
f ′(x′)=y′(g′)−1Fx′

commutes where the horizontal arrows are given in the proof of Lemma 4.2 and where
the right vertical arrow is an equality by what we just said above. The southwest arrow
is described in Remark 4.9 as the pullback map, i.e., simply given by our construction c
above. Then the simple description of the image of a sum

∑
(Zi, zi) in the stalk at x given

in the proof of Lemma 4.2 immediately shows the diagram commutes. This finishes the
proof of the lemma. �

Lemma 4.11. Let f ′ : X → Y ′ and g : Y ′ → Y be composable morphisms of schemes
with f ′ and f = g ◦ f ′ locally quasi-finite and g separated and locally of finite type. Then
there is a canonical isomorphism of functors g! ◦ f ′

! = f!. This isomorphism is compatible
with

(a) covariance with respect to open embeddings as in Remarks 3.5 and 4.6,
(b) the base change isomorphisms of Lemmas 4.10 and 3.12, and
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(c) equal to the isomorphism of Lemma 3.13 via the identifications of Lemma 4.1 in
case f ′ is separated.

Proof. Let F be an abelian sheaf on Xétale. With conventions as in Remark 4.9 we
will explicitly construct a map

c : fp!F −→ g∗f
′
p!F

of abelian presheaves on Yétale. By the discussion in Remark 4.9 this will determine a
canonical map c# : f!F → g∗f

′
!F . We will show that c# has image contained in the

subsheaf g!f
′
!F , thereby obtaining a map c′ : f!F → g!f

′
!F . Next, we will prove (a), (b),

and (c) that. Finally, part (b) will allow us to show that c′ is an isomorphism.

Construction of the map c. Let V ∈ Yétale and let s =
∑

(Zi, si) be a sum as in (4.0.1)
defining an element of fp!F(V ). Recall that Zi ⊂ XV = X ×Y V is a locally closed
subscheme finite over V . Setting V ′ = Y ′ ×Y V we get XV ′ = X ×Y ′ V ′ = XV . Hence
Zi ⊂ XV ′ is locally closed and Zi is finite over V ′ because g is separated (Morphisms,
Lemma 44.14). Hence we may set c(s) =

∑
(Zi, si) but now viewed as an element of

f ′
p!F(V ′) = (g∗f

′
p!F)(V ). The construction is clearly compatible with relations (1) and

(2) and compatible with restriction mappings and hence we obtain the map c.

Observe that in the discussion above our section c(s) =
∑

(Zi, si) of f ′
!F over V ′ restricts

to zero on V ′ \ Im(
∐
Zi → V ′). Since Im(

∐
Zi → V ′) is proper over V (for example

by Morphisms, Lemma 41.10) we conclude that c(s) defines a section of g!f
′
!F ⊂ g∗f

′
!F

over V . Since every local section of f!F locally comes from a local section of fp!F we
conclude that the image of c# is contained in g!f

′
!F . Thus we obtain an induced map

c′ : f!F → g!f
′
!F factoring c# as predicted in the first paragraph of the proof.

Proof of (a). Let Y ′
1 ⊂ Y ′ be an open subscheme and set X1 = (f ′)−1(W ′). We obtain a

diagram
X1

f ′
1
��

a
//

f1

��

X

f ′

��
f

��

Y ′
1

g1

��

b′
// Y ′

g

��
Y Y

where the horizontal arrows are open immersions. Then our claim is that the diagram

f1,!F|X1
c′

1

//

��

g1,!f
′
1,!F|X1

g1,!(f ′
!F)|Y ′

1

��
f!F

c′
// g!f

′
!F // g∗f

′
!F

commutes where the left vertical arrow is Remark 4.6 and the right vertical arrow is Re-
mark 3.5. The equality sign in the diagram comes about because f ′

1 is the restriction of f ′

to Y ′
1 and our construction of f ′

! is local on the base. Finally, to prove the commutativ-
ity we choose an object V of Yétale and a formal sum s1 =

∑
(Z1,i, s1,i) as in (4.0.1)
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defining an element of f1,p!F|X1(V ). Recall this means Z1,i ⊂ X1 ×Y V is locally
closed finite over V and s1,i ∈ HZ1,i(F). Then we chase this section across the maps
involved, but we only need to show we end up with the same element of g∗f

′
!F(V ) =

f ′
!F(Y ′ ×Y V ). Going around both sides of the diagram the reader immediately sees we

end up with the element
∑

(Z1,i, s1,i) where now Z1,i is viewed as a locally closed sub-
scheme of X ×Y ′ (Y ′ ×Y V ) = X ×Y V finite over Y ′ ×Y V .
Proof of (b). Let b : Y1 → Y be a morphism of schemes. Let us form the commutative
diagram

X1

f ′
1
��

a
//

f1

��

X

f ′

��
f

��

Y ′
1

g1

��

b′
// Y ′

g

��
Y1

b // Y

with cartesian squares. We claim that our construction is compatible with the base change
maps of Lemmas 4.10 and 3.12, i.e., that the top rectangle of the diagram

b−1f!F //

b−1c′

��

f1,!a
−1F

c′
1
��

b−1g!f
′
!F //

��

g1,!(b′)−1f ′
!F //

��

g1,!f
′
1,!a

−1F

��
b−1g∗f

′
!F // g1,∗(b′)−1f ′

!F // g1,∗f
′
1,!a

−1F

commutes. The verification of this is completely routine and we urge the reader to skip
it. Since the arrows going from the middle row down to the bottom row are injective,
it suffices to show that the outer diagram commutes. To show this it suffices to take a
local section of b−1f!F and show we end up with the same local section of g1,∗f

′
1,!a

−1F
going around either way. However, in fact it suffices to check this for local sections which
are of the the pullback by b of a section s =

∑
(Zi, si) of fp!F(V ) as above (since such

pullbacks generate the abelian sheaf b−1f!F ). Denote V1, V ′
1 , and Z1,i the base change

of V , V ′ = Y ′ ×Y V , Zi by Y1 → Y . Recall that Zi is a locally closed subscheme of
XV = XV ′ and hence Z1,i is a locally closed subscheme of (X1)V1 = (X1)V ′

1
. Then

b−1c′ sends the pullback of s to the pullback of the local section c(s)
∑

(Zi, si) viewed
as an element of f ′

p!F(V ′) = (g∗f
′
p!F)(V ). The composition of the bottom two base

change maps simply maps this to
∑

(Zi,1, s1,i) viewed as an element of f ′
1,p!a

−1F(V ′
1) =

g1,∗f
′
1,p!a

−1F(V1). On the other hand, the base change map at the top of the diagram
sends the pullback of s to

∑
(Z1,i, s1,i) viewed as an element of f1,!a

−1F(V1). Then
finally c′

1 by its very construction does indeed map this to
∑

(Zi,1, s1,i) viewed as an
element of f ′

1,p!a
−1F(V ′

1) = g1,∗f
′
1,p!a

−1F(V1) and the commutativity has been verified.

Proof of (c). This follows from comparing the definitions for both maps; we omit the
details.
To finish the proof it suffices to show that the pullback of c′ via any geometric point
y : Spec(k) → Y is an isomorphism. Namely, pulling back by y is the same thing as



5034 63. MORE ÉTALE COHOMOLOGY

taking stalks and y (Étale Cohomology, Remark 56.6) and hence we can invoke Étale Co-
homology, Theorem 29.10. By the compatibility (b) just shown, we conclude that we may
assume Y is the spectrum of k and we have to show that c′ is an isomorphism. To do this
it suffices to show that the induced map⊕

x∈X
Fx = H0(Y, f!F) −→ H0(Y, g!f

′
!F) = H0

c (Y ′, f ′
!F)

is an isomorphism. The equalities hold by Lemmas 4.5 and 3.11. Recall thatX is a disjoint
union of spectra of Artinian local rings with residue field k, see Varieties, Lemma 20.2.
Since the left and right hand side commute with direct sums (details omitted) we may
assume that F is a skyscraper sheaf x∗A supported at some x ∈ X . Then f ′

!F is the
skyscraper sheaf at the image y′ of x in Y by Lemma 4.5. In this case it is obvious that our
construction produces the identity map A→ H0

c (Y ′, y′
∗A) = A as desired. �

Lemma 4.12. Let f : X → Y and g : Y → Z be composable locally quasi-finite
morphisms of schemes. Then there is a canonical isomorphism of functors

(g ◦ f)! −→ g! ◦ f!

These isomorphisms satisfy the following properties:

(1) If f and g are separated, then the isomorphism agrees with Lemma 3.13.
(2) If g is separated, then the isomorphism agrees with Lemma 4.11.
(3) For a geometric point z : Spec(k)→ Z the diagram

((g ◦ f)!F)z

��

//⊕
g(f(x))=z Fx

(g!f!F)z //⊕
g(y)=z(f!F)y //⊕

g(f(x))=z Fx

is commutative where the horizontal arrows are given by Lemma 4.5.
(4) Let h : Z → T be a third locally quasi-finite morphism of schemes. Then the

diagram

(h ◦ g ◦ f)! //

��

(h ◦ g)! ◦ f!

��
h! ◦ (g ◦ f)! // h! ◦ g! ◦ f!

commutes.
(5) Suppose that we have a diagram of schemes

X ′

f ′

��

c
// X

f

��
Y ′

g′

��

b
// Y

g

��
Z ′ a // Z
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with both squares cartesian and f and g locally quasi-finite. Then the diagram

a−1 ◦ (g ◦ f)!

��

// (g′ ◦ f ′)! ◦ c−1

��
a−1 ◦ g! ◦ f! // g′

! ◦ b−1 ◦ f! // g′
! ◦ f ′

! ◦ c−1

commutes where the horizontal arrows are those of Lemma 4.10.

Proof. If f and g are separated, then this is a special case of Lemma 3.13. If g is
separated, then this is a special case of Lemma 4.11 which moreover agrees with the case
where f and g are separated.

Construction in the general case. Choose an open covering Y =
⋃
Yi such that the re-

striction gi : Yi → Z of g is separated. Set Xi = f−1(Yi) and denote fi : Xi → Yi the
restriction of f . Also denote h = g ◦ f and hi : Xi → Z the restriction of h. Consider
the following diagram⊕

i0,i1
hi0i1,!F|Xi0i1 //

��

⊕
i0
hi0,!F|Xi0 //

��

h!F //

��

0

⊕
i0,i1

gi0i1,!fi0i1,!F|Xi0i1 //

��

⊕
i0
gi0,!fi0,!F|Xi0

��⊕
i0,i1

gi0i1,!(f!F)|Yi0i1 //⊕
i0
gi0,!(f!F)|Yi0 // g!f!F // 0

By Lemma 4.7 the top and bottom row in the diagram are exact. By Lemma 4.11 the top
left square commutes. The vertical arrows in the lower left square come about because
(f!F)|Yi0i1 = fi0i1,!F|Xi0i1 and (f!F)|Yi0 = fi0,!F|Xi0 as the construction of f! is local
on the base. Moreover, these equalities are (of course) compatible with the identifications
((f!F)|Yi0 )|Yi0i1 = (f!F)|Yi0i1 and (fi0,!F|Xi0 )|Yi0i1 = fi0i1,!F|Xi0i1 which are used
(together with the covariance for open embeddings for Yi0i1 ⊂ Yi0 ) to define the hori-
zontal maps of the lower left square. Thus this square commutes as well. In this way we
conclude there is a unique dotted arrow as indicated in the diagram and moreover this
arrow is an isomorphism.

Proof of properties (1) – (5). Fix the open covering Y =
⋃
Yi. Observe that if Y → Z

happens to be separated, then we get a dotted arrow fitting into the huge diagram above
by using the map of Lemma 4.11 (by the very properties of that lemma). This proves
(2) and hence also (1) by the compatibility of the maps of Lemma 4.11 and Lemma 3.13.
Next, for any scheme Z ′ over Z , we obtain the compatibility in (5) for the map (g′ ◦
f ′)! → g′

! ◦ f ′
! constructed using the open covering Y ′ =

⋃
b−1(Yi). This is clear from

the corresponding compatibility of the maps constructed in Lemma 4.11. In particular,
we can consider a geometric point z : Spec(k) → Z. Since Xz → Yz → Spec(k) are
separated maps, we find that the base change of (g ◦ f)!F → g!f!F by z is equal to the
map of Lemma 3.13. The reader then immediately sees that we obtain property (3). Of
course, property (3) guarantees that our transformation of functors (g ◦ f)! → g! ◦ f!
constructed using the open covering Y =

⋃
Yi doesn’t depend on the choice of this open

covering. Finally, property (4) follows by looking at what happens on stalks using the
already proven property (3). �
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5. Weightings and trace maps for locally quasi-finite morphisms

A reference for this section is [?, Exposee XVII, Proposition 6.2.5].

Let f : X → Y be a locally quasi-finite morphism of schemes. Let w : X → Z be a
weighting of f , see More on Morphisms, Definition 75.2. Let F be an abelian sheaf on
Yétale. In this section we will show that there exists map

Trf,w,F : f!f
−1F −→ F

of abelian sheaves on Yétale characterized by the following property: on stalks at a geo-
metric point y of Y we obtain the map⊕

f(x)=y
w(x) : (f!f

−1F)y =
⊕

f(x)=y
Fy −→ Fy

Here as indicated the arrow is given by multiplication by the integer w(x) on the sum-
mand corresponding to x. The equality on the left of the arrow follows from Lemma 4.5
combined with Étale Cohomology, Lemma 36.2.

If the morphism f : X → Y is flat, locally quasi-finite, and locally of finite presenta-
tion, then there exists a canonical weighting and we obtain a canonical trace map whose
formation is compatible with base change, see Example 5.5. If Y is a locally Noetherian
unibranch scheme and f : X → Y is locally quasi-finite, then we can also define a (natu-
ral) weighting for f and we have trace maps in this case as well, see Example 5.7.

Lemma 5.1. Let f : X → Y be a locally quasi-finite morphism of schemes. Let Λ be a
ring. Let F be a sheaf of Λ-modules on Xétale and let G be a sheaf of Λ-modues on Yétale.
There is a canonical isomorphism

can : f!F ⊗Λ G −→ f!(F ⊗Λ f
−1G)

of sheaves of Λ-modules on Yétale.

Proof. Recall that f!F = (fp!F)# by Definition 4.4 where fp!F is the presheaf
constructed in Section 4. Thus in order to construct the arrow it suffices to construct a
map

fp!F ⊗p,Λ G −→ fp!(F ⊗Λ f
−1G)

of presheaves on Yétale. Here the symbol ⊗p,Λ denotes the presheaf tensor product, see
Modules on Sites, Section 26. Let V be an object of Yétale. Recall that

fp!F(V ) = colimZ HZ(F) and fp!(F ⊗Λ f
−1G)(V ) = colimZ HZ(F ⊗Λ f

−1G)
See Section 4. Our map will be defined on pure tensors by the rule

(Z, s)⊗ t 7−→ (Z, s⊗ f−1t)
(for notation see below) and extended by linearity to all of (fp!F⊗p,ΛG)(V ) = fp!F(V )⊗Λ
G(V ). Here the notation used is as follows

(1) Z ⊂ XV is a locally closed subscheme finite over V ,
(2) s ∈ HZ(F) which means that s ∈ F(U) with Supp(s) ⊂ Z for some U ⊂ XV

open such that Z ⊂ U is closed, and
(3) t ∈ G(V ) with image f−1t ∈ f−1G(U).

Since the support of s ∈ F(U) is contained in Z it is clear that the support of s⊗ f−1t is
contained inZ as well. Thus considering the pair (Z, s⊗f−1t) makes sense. It is immedi-
ate that the construction commutes with the transition maps in the colimit colimZ HZ(F)
and that it is compatible with restriction mappings. Finally, it is equally clear that the
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construction is compatible with the identifications of stalks of f! in Lemma 4.5. In other
words, the map canwe’ve produced on stalks at a geometric point y fits into a commutative
diagram

(f!F ⊗Λ G)y cany
//

��

f!(F ⊗Λ f
−1G)y

��
(
⊕
Fx)⊗Λ Gy //⊕(Fx ⊗Λ Gy)

where the direct sums are over the geometric points x lying over y, where the vertical
arrows are the identifications of Lemma 4.5, and where the lower horizontal arrow is the
obvious isomorphism. We conclude that can is an isomorphism as desired. �

Lemma 5.2. Let f : X → Y be a locally quasi-finite morphism of schemes. Let
w : X → Z be a weighting of f . For any abelian sheaf F on Y there exists a unique trace
map Trf,w,F : f!f

−1F → F having the prescribed behaviour on stalks.

Proof. By Lemma 5.1 we have an identification f!f
−1F = f!Z⊗F compatible with

the description of stalks of these sheaves at geometric points. Hence it suffices to produce
the map

Trf,w,Z : f!Z −→ Z
having the prescribed behaviour on stalks. By Definition 4.4 we have f!Z = (fp!Z)#

where fp!Z is the presheaf constructed in Section 4. Thus it suffices to construct a map

fp!Z −→ Z

of presheaves on Yétale. Let V be an object of Yétale. Recall from Section 4 that

fp!Z(V ) = colimZ HZ(Z)

Here the colimit is over the (partially ordered) collection of locally closed subschemes
Z ⊂ XV which are finite over V . For each such Z we will define a map

HZ(Z) −→ Z(V )

compatible with the maps defining the colimit.

LetZ ⊂ XV be locally closed and finite over V . Choose an openU ⊂ XV containingZ as
a closed subset. An element s of HZ(Z) is a section s ∈ Z(U) whose support is contained
in Z. Let Un ⊂ U be the open and closed subset where the value of s is n ∈ Z. By the
support condition we see that Z ∩ Un = Un for n 6= 0. Hence for n 6= 0, the open Un
is also closed in Z (as the complement of all the others) and we conclude that Un → V is
finite as Z is finite over V . By the very definition of a weighting this means the function∫
Un→V

w|Un is locally constant on V and we may view it as an element of Z(V ). Our
construction sends (Z, s) to the element∑

n∈Z, n 6=0
n

(∫
Un→V

w|Un
)

∈ Z(V )

The sum is locally finite on V and hence makes sense; details omitted (in the whole dis-
cussion the reader may first choose affine opens and make sure all the schemes occuring in
the argument are quasi-compact so the sum is finite). We omit the verification that this
construction is compatible with the maps in the colimit and with the restriction mappings
defining fp!Z.
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Let y be a geometric point of Y lying over the point y ∈ Y . Taking stalks at y the con-
struction above determines a map

(f!Z)y =
⊕

f(x)=y
Z −→ Z = Zy

To finish the proof we will show this map is given by multiplication by w(x) on the sum-
mand corresponding to x. Namely, pick x lying over y. We can find an étale neighbour-
hood (V, v) → (Y, y) such that XV contains an open U finite over V such that only the
geometric point x is in U and not the other geometric points of X lifting y. This fol-
lows from More on Morphisms, Lemma 41.3; some details omitted. Then (U, 1) defines a
section of f!Z over V which maps to 1 in the summand corresponding to x and zero in
the other summands (see proof of Lemma 4.2) and our construction above sends (U, 1) to∫
U→V

w|U which is constant with value w(x) in a neighbourhood of v as desired. �

Lemma 5.3. Let f : X → Y be a locally quasi-finite morphism of schemes. Let
w : X → Z be a weighting of f . The trace maps constructed above have the following
properties:

(1) Trf,w,F is functorial in F ,
(2) Trf,w,F is compatible with arbitrary base change,
(3) given a ring Λ and K in D(Yétale,Λ) we obtain Trf,w,K : f!f

−1K → K func-
torial in K and compatible with arbitrary base change.

Proof. Part (1) either follows from the construction of the trace map in the proof of
Lemma 5.2 or more simply because the characterization of the map forces it to be true on
all stalks. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of schemes. Then the functionw′ = w◦g′ : X ′ → Z is a weighting
of f ′ by More on Morphisms, Lemma 75.3. Statement (2) means that the diagram

g−1f!f
−1F

g−1Trf,w,F
// g−1F

f ′
! (f ′)−1g−1F

Trf′,w′,g−1F // g−1F

is commutative where the left vertical equality is given by

g−1f!f
−1F = f ′

! (g′)−1f−1F = f ′
! (f ′)−1g−1F

with first equality sign given by Lemma 4.10 (base change for lower shriek). The commu-
tativity of this diagram follows from the characterization of the action of our trace maps
on stalks and the fact that the base change map of Lemma 4.10 respects the descriptions of
stalks.

Given parts (1) and (2), part (3) follows as the functors f−1 : D(Yétale,Λ)→ D(Xétale,Λ)
and f! : D(Xétale,Λ) → D(Yétale,Λ) are obtained by applying f−1 and f! to any com-
plexes of modules representing the objects in question. �
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Lemma 5.4. Let f : X → Y and g : Y → Z be locally quasi-finite morphisms.
Let wf : X → Z be a weighting of f and let wg : Y → Z be a weighting of g. For
K ∈ D(Zétale,Λ) the composition

(g ◦ f)!(g ◦ f)−1K = g!f!f
−1g−1K

g!Trf,wf ,g−1K
−−−−−−−−−→ g!g

−1K
Trg,wg,K−−−−−→ K

is equal to Trg◦f,wg◦f ,K where wg◦f (x) = wf (x)wg(f(x)).

Proof. We have (g ◦ f)! = g! ◦ f! by Lemma 4.12. In More on Morphisms, Lemma
75.5 we have seen that wg◦f is a weighting for g ◦ f so the statement makes sense. To
check equality compute on stalks. Details omitted. �

Example 5.5 (Trace for flat quasi-finite). Let f : X → Y be a morphism of schemes
which is flat, locally quasi-finite, and locally of finite presentation. Then we obtain a
canonical positive weighting w : X → Z by setting

w(x) = lengthOX,x
(OX,x/mf(x)OX,x)[κ(x) : κ(f(x))]i

See More on Morphisms, Lemma 75.7. Thus by Lemmas 5.2 and 5.3 for f we obtain trace
maps

Trf,K : f!f
−1K −→ K

functorial for K in D(Yétale,Λ) and compatible with arbitrary base change. Note that
any base change f ′ : X ′ → Y ′ of f satisfies the same properties and that w restricts to the
canonical weighting for f ′.

Remark 5.6. Let j : U → X be an étale morphism of schemes. Then the trace map
Tr : j!j

−1K → K of Example 5.5 is equal to the counit for the adjunction between j!
and j−1. We already used the terminology “trace” for this counit in Étale Cohomology,
Section 66.

Example 5.7 (Trace for quasi-finite over normal). LetY be a geometrically unibranch
and locally Noetherian scheme, for example Y could be a normal variety. Let f : X → Y
be a locally quasi-finite morphism of schemes. Then there exists a positive weighting
w : X → Z for f which is roughly defined by sending x to the “generic separable degree”
ofOshX,x overOshY,f(x). See More on Morphisms, Lemma 75.8. Thus by Lemmas 5.2 and 5.3
for f and w we obtain trace maps

Trf,w,K : f!f
−1K −→ K

functorial for K in D(Yétale,Λ) and compatible with arbitrary base change. However, in
this case, given a base change f ′ : X ′ → Y ′ of f the restriction of w toX ′ in general does
not have a “natural” interpretation in terms of the morphism f ′.

6. Upper shriek for locally quasi-finite morphisms

For a locally quasi-finite morphism f : X → Y of schemes, the functor f! : Ab(Xétale)→
Ab(Yétale) commutes with direct sums and is exact, see Lemma 4.5. This suggests that it
has a right adjoint which we will denote f !.
Warning: This functor is the non-derived version!

Lemma 6.1. Let f : X → Y be a locally quasi-finite morphism of schemes.
(1) The functor f! : Ab(Xétale)→ Ab(Yétale) has a right adjoint f ! : Ab(Yétale)→

Ab(Xétale).
(2) We have f !(y∗A) =

∏
f(x)=y x∗A.
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(3) If Λ is a ring, then the functor f! : Mod(Xétale,Λ) → Mod(Yétale,Λ) has a
right adjoint f ! : Mod(Yétale,Λ) → Mod(Xétale,Λ) which agrees with f ! on
underlying abelian sheaves.

Proof. Proof of (1). Let E ⊂ Ob(Ab(Yétale)) be the class consisting of products of
skyscraper sheaves. We claim that

(a) every G in Ab(Yétale) is a subsheaf of an element of E , and
(b) for everyG ∈ E there exists an objectH of Ab(Xétale) such that Hom(f!F ,G) =

Hom(F ,H) functorially in F .
Once the claim has been verified, the dual of Homology, Lemma 29.6 produces the adjoint
functor f !.

Part (a) is true because we can map G to the sheaf
∏
y∗Gy where the product is over all

geometric points of Y . This is an injection by Étale Cohomology, Theorem 29.10. (This
is the first step in the Godement resolution when done in the setting of abelian sheaves on
topological spaces.)

Part (b) and part (2) of the lemma can be seen as follows. Suppose that G =
∏
y∗Ay for

some abelian groups Ay . Then

Hom(f!F ,G) =
∏

Hom(f!F , y∗Ay)

Thus it suffices to find abelian sheaves Hy on Xétale representing the functors F 7→
Hom(f!F , y∗Ay) and to take H =

∏
Hy . This reduces us to the case H = y∗A for

some fixed geometric point y : Spec(k) → Y and some fixed abelian group A. We claim
that in this case H =

∏
f(x)=y x∗A works. This will finish the proof of parts (1) and (2)

of the lemma. Namely, we have

Hom(f!F , y∗A) = HomAb((f!F)y, A) = HomAb(
⊕

f(x)=y
Fx, A)

by the description of stalks in Lemma 4.5 on the one hand and on the other hand we have

Hom(F ,H) =
∏

f(x)=y
Hom(F , x∗A) =

∏
f(x)=y

HomAb(Fx, A)

We leave it to the reader to identify these as functors of F .

Proof of part (3). Observe that an object Mod(Xétale,Λ) is the same thing as an object
F of Ab(Xétale) together with a map Λ → End(F). Hence the functors f! and f ! in (1)
define functors f! and f ! as in (3). A straightforward computation shows that they are
adjoints. �

Lemma 6.2. Let j : U → X be an étale morphism. Then j! = j−1.

Proof. This is true because j! as defined in Section 4 agrees with j! as defined in
Étale Cohomology, Section 70, see Lemma 4.3. Finally, in Étale Cohomology, Section 70
the functor j! is defined as the left adjoint of j−1 and hence we conclude by uniqueness of
adjoint functors. �

Lemma 6.3. Let f : X → Y and g : Y → Z be separated and locally quasi-finite
morphisms. There is a canonical isomorphism (g ◦ f)! → f ! ◦ g!. Given a third locally
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quasi-finite morphism h : Z → T the diagram

(h ◦ g ◦ f)! //

��

f ! ◦ (h ◦ g)!

��
(g ◦ f)! ◦ h! // f ! ◦ g! ◦ h!

commutes.

Proof. By uniqueness of adjoint functors, this immediately translates into the cor-
responding (dual) statement for the functors f!. See Lemma 4.12. �

Lemma 6.4. Let j : U → X and j′ : V → U be étale morphisms. The isomorphism
(j ◦ j′)−1 = (j′)−1 ◦ j−1 and the isomorphism (j ◦ j′)! = (j′)! ◦ j! of Lemma 6.3 agree
via the isomorphism of Lemma 6.2.

Proof. Omitted. �

Lemma 6.5. Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes with f locally quasi-finite. For any abelian sheafF onY ′
étale we have (g′)∗(f ′)!F =

f !g∗F .

Proof. By uniqueness of adjoint functors, this follows from the corresponding (dual)
statement for the functors f!. See Lemma 4.10. �

Remark 6.6. The material in this section can be generalized to sheaves of pointed
sets. Namely, for a site C denote Sh∗(C) the category of sheaves of pointed sets. The
constructions in this and the preceding section apply, mutatis mutandis, to sheaves of
pointed sets. Thus given a locally quasi-finite morphism f : X → Y of schemes we
obtain an adjoint pair of functors

f! : Sh∗(Xétale) −→ Sh∗(Yétale) and f ! : Sh∗(Yétale) −→ Sh∗(Xétale)
such that for every geometric point y of Y there are isomorphisms

(f!F)y =
∐

f(x)=y
Fx

(coproduct taken in the category of pointed sets) functorial in F ∈ Sh∗(Xétale) and iso-
morphisms

f !(y∗S) =
∏

f(x)=y
x∗S

functorial in the pointed set S. If F : Ab(Xétale)→ Sh∗(Xétale) and F : Ab(Yétale)→
Sh∗(Yétale) denote the forgetful functors, compatibility between the constructions will
guarantee the existence of canonical maps

f!F (F) −→ F (f!F)
functorial in F ∈ Ab(Xétale) and

F (f !G) −→ f !F (G)



5042 63. MORE ÉTALE COHOMOLOGY

functorial in G ∈ Ab(Yétale) which produce the obvious maps on stalks, resp. skyscraper
sheaves. In fact, the transformation F ◦ f ! → f ! ◦ F is an isomorphism (because f !

commutes with products).

7. Derived upper shriek for locally quasi-finite morphisms

We can take the derived versions of the functors in Section 6 and obtain the following.

Lemma 7.1. Let f : X → Y be a locally quasi-finite morphism of schemes. Let Λ be
a ring. The functors f! and f ! of Definition 4.4 and Lemma 6.1 induce adjoint functors
f! : D(Xétale,Λ) → D(Yétale,Λ) and Rf ! : D(Yétale,Λ) → D(Xétale,Λ) on derived
categories.

In the separated case the functor f! is defined in Section 3.

Proof. This follows immediately from Derived Categories, Lemma 30.3, the fact that
f! is exact (Lemma 4.5) and hence Lf! = f! and the fact that we have enough K-injective
complexes of Λ-modules on Yétale so that Rf ! is defined. �

Remark 7.2. Let f : X → Y be a locally quasi-finite morphism of schemes. Let Λ
be a ring. The functor f! : D(Xétale,Λ) → D(Yétale,Λ) of Lemma 7.1 sends complexes
with torsion cohomology sheaves to complexes with torsion cohomology sheaves. This is
immediate from the description of the stalks of f!, see Lemma 4.5.

Lemma 7.3. LetX be a scheme. LetX = U ∪V with U and V open. Let Λ be a ring.
Let K ∈ D(Xétale,Λ). There is a distinguished triangle

jU∩V !K|U∩V → jU !K|U ⊕ jV !K|V → K → jU∩V !K|U∩V [1]

in D(Xétale,Λ) with obvious notation.

Proof. Since the restriction functors and the lower shriek functors we use are exact,
it suffices to show for any abelian sheaf F on Xétale the sequence

0→ jU∩V !F|U∩V → jU !F|U ⊕ jV !F|V → F → 0

is exact. This can be seen by looking at stalks. �

Lemma 7.4. Let X be a scheme. Let Z ⊂ X be a closed subscheme and let U ⊂ X be
the complement. Denote i : Z → X and j : U → X the inclusion morphisms. Let Λ be a
ring. Let K ∈ D(Xétale,Λ). There is a distinguished triangle

j!j
−1K → K → i∗i

−1K → j!j
−1K[1]

in D(Xétale,Λ).

Proof. Immediate consequence of Étale Cohomology, Lemma 70.8 and the fact that
the functors j!, j−1, i∗, i−1 are exact and hence their derived versions are computed by
applying these functors to any complex of sheaves representing K. �

8. Preliminaries to derived lower shriek via compactifications

In this section we prove some lemmas on the existence of certain natural isomorphisms of
functors which follow immediately from proper base change.
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Lemma 8.1. Consider a commutative diagram of schemes

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

with f and f ′ proper and g and g′ separated and locally quasi-finite. Let Λ be a ring.
Functorially in K ∈ D(X ′

étale,Λ) there is a canonical map

g!Rf
′
∗K −→ Rf∗(g′

!K)
in D(Yétale,Λ). This map is an isomorphism if (a) K is bounded below and has torsion
cohomology sheaves, or (b) Λ is a torsion ring.

Proof. RepresentK by a K-injective complexJ • of sheaves of Λ-modules onX ′
étale.

Choose a quasi-isomorphism g′
!J • → I• to a K-injective complex I• of sheaves of Λ-

modules on Xétale. Then we can consider the map

g!f
′
∗J • = g!f

′
!J • = f!g

′
!J • = f∗g

′
!J • → f∗I•

where the first and third equality come from Lemma 3.4 and the second equality comes
from Lemma 3.13 which tells us that both g! ◦f ′

! and f! ◦g′
! are equal to (g◦f ′)! = (f ◦g′)!

as subsheaves of (g ◦ f ′)∗ = (f ◦ g′)∗.

Assume Λ is torsion, i.e., we are in case (b). With notation as above, it suffices to show that
f∗g

′
!J • → f∗I• is an isomorphism. The question is local on Y . Hence we may assume

that the dimension of fibres of f is bounded, see Morphisms, Lemma 28.5. Then we see
that Rf∗ has finite cohomological dimension, see Étale Cohomology, Lemma 92.2. Hence
by Derived Categories, Lemma 32.2, if we show that Rqf∗(g′

!J ) = 0 for q > 0 and any
injective sheaf of Λ-modules J on X ′

étale, then the result follows.

The stalk of Rqf∗(g′
!J ) at a geometric point y is equal to Hq(Xy, (g′

!J )|Xy ) by Étale
Cohomology, Lemma 91.13. Since formation of g′

! commutes with base change (Lemma
3.12) this is equal to

Hq(Xy, g
′
y,!(J |X′

y
))

where g′
y : X ′

y → Xy is the induced morphism between geometric fibres. Since Y ′ → Y is
locally quasi-finite, we see thatX ′

y is a disjoint union of the fibresX ′
y′ at geometric points

y′ of Y ′ lying over y. Denote g′
y′ : X ′

y′ → Xy the restriction of g′
y to X ′

y′ . Thus the
previous cohomology group is equal to

Hq(Xy,
⊕

y′/y
g′
y′,!(J |X′

y′
))

for example by Lemma 3.15 (but it is also obvious from the definition of g′
y,! in Section 3).

Since taking étale cohomology over Xy commutes with direct sums (Étale Cohomology,
Theorem 51.3) we conclude it suffices to show that

Hq(Xy, g
′
y′,!(J |X′

y′
))

is zero. Observe that gy′ : X ′
y′ → Xy is a morphism between proper scheme over y and

hence is proper itself. As it is locally quasi-finite as well we conclude that gy′ is finite.
Thus we see that g′

y′,! = g′
y′,∗ = Rg′

y′,∗. By Leray we conlude that we have to show

Hq(X ′
y′ ,J |X′

y′
)
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is zero. As Λ is torsion, this follows from proper base change (Étale Cohomology, Lemma
91.13) as the higher direct images of J under f ′ are zero.

Proof in case (a). We will deduce this from case (b) by standard arguments. We will show
that the induced map g!R

pf ′
∗K → Rpf∗(g′

!K) is an isomorphism for all p ∈ Z. Fix an
integer p0 ∈ Z. Let a be an integer such that Hj(K) = 0 for j < a. We will prove
g!R

pf ′
∗K → Rpf∗(g′

!K) is an isomorphism for p ≤ p0 by descending induction on a.
If a > p0, then we see that the left and right hand side of the map are zero for p ≤ p0
by trivial vanishing, see Derived Categories, Lemma 16.1 (and use that g! and g′

! are exact
functors). Assume a ≤ p0. Consider the distinguished triangle

Ha(K)[−a]→ K → τ≥a+1K

By induction we have the result for τ≥a+1K. In the next paragraph, we will prove the
result for Ha(K)[−a]. Then five lemma applied to the map between long exact sequence
of cohomology sheaves associated to the map of distinguished triangles

g!Rf
′
∗(Ha(K)[−a])

��

// g!Rf
′
∗K //

��

g!Rf
′
∗τ≥a+1K

��
Rf∗(g′

!(Ha(K)[−a])) // Rf∗(g′
!K) // Rf∗(g′

!τ|geqa+1K)

gives the result for K. Some details omitted.

Let F be a torsion abelian sheaf on X ′
étale. To finish the proof we show that g!Rf

′
∗F →

Rpf∗(g′
!F) is an isomorphism for all p. We can writeF =

⋃
F [n] whereF [n] = Ker(n :

F → F). We have the isomorphism for F [n] by case (b). Since the functors g!, g′
! , Rpf∗,

Rpf ′
∗ commute with filtered colimits (follows from Lemma 3.17 and Étale Cohomology,

Lemma 51.8) the proof is complete. �

Lemma 8.2. Consider a commutative diagram of schemes

X ′
k
//

f ′

��

X

f

��
Y ′

l
//

g′

��

Y

g

��
Z ′ m // Z

with f , f ′, g and g′ proper and k, l, and m separated and locally quasi-finite. Then the
isomorphisms of Lemma 8.1 for the two squares compose to give the isomorphism for the
outer rectangle (see proof for a precise statement).

Proof. The statement means that if we writeR(g◦f)∗ = Rg∗◦Rf∗ andR(g′◦f ′)∗ =
Rg′

∗ ◦Rf ′
∗, then the isomorphismm! ◦Rg′

∗ ◦Rf ′
∗ → Rg∗ ◦Rf∗ ◦k! of the outer rectangle

is equal to the composition

m! ◦Rg′
∗ ◦Rf ′

∗ → Rg∗ ◦ l! ◦Rf ′
∗ → Rg∗ ◦Rf∗ ◦ k!

of the two maps of the squares in the diagram. To prove this choose a K-injective complex
J • of Λ-modules onX ′

étale and a quasi-isomorphism k!J • → I• to a K-injective complex
I• of Λ-modules on Xétale. The proof of Lemma 8.1 shows that the canonical map

a : l!f ′
∗J • → f∗I•
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is a quasi-isomorphism and this quasi-isomorphism produces the second arrow on applying
Rg∗. By Cohomology on Sites, Lemma 20.10 the complex f∗I•, resp. f ′

∗J • is a K-injective
complex of Λ-modules onYétale, resp.Y ′

étale. (Using this is cheating and could be avoided.)
In particular, the same reasoning gives that the canonical map

b : m!g
′
∗f

′
∗J • → g∗f∗I•

is a quasi-isomorphism and this quasi-isomorphism represents the first arrow. Finally,
the proof of Lemma 8.1 show that g∗l!f

′
!J • represents Rg∗(l!f ′

∗J •) because f ′
∗J • is K-

injective. HenceRg∗(a) = g∗(a) and the composition g∗(a) ◦ b is the arrow of Lemma 8.1
for the rectangle. �

Lemma 8.3. Consider a commutative diagram of schemes

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

with f , f ′, and f ′′ proper and g, g′, h, and h′ separated and locally quasi-finite. Then the
isomorphisms of Lemma 8.1 for the two squares compose to give the isomorphism for the
outer rectangle (see proof for a precise statement).

Proof. The statement means that if we write (h◦h′)! = h! ◦h′
! and (g ◦g′)! = g! ◦g′

!
using the equalities of Lemma 3.13, then the isomorphism h! ◦ h′

! ◦ Rf ′′
∗ → Rf∗ ◦ g! ◦ g′

!
of the outer rectangle is equal to the composition

h! ◦ h′
! ◦Rf ′′

∗ → h! ◦Rf ′
∗ ◦ g′

! → Rf∗ ◦ g! ◦ g′
!

of the two maps of the squares in the diagram. To prove this choose a K-injective com-
plex I• of Λ-modules on X ′′

étale and a quasi-isomorphism g′
!I• → J • to a K-injective

complex J • of Λ-modules on X ′
étale. Next, choose a quasi-isomorphism g!J • → K• to a

K-injective complex K• of Λ-modules on Xétale. The proof of Lemma 8.1 shows that the
canonical maps

h′
!f

′′
∗ I• → f ′

∗J • and h!f
′
∗J • → f∗K•

are quasi-isomorphisms and these quasi-isomorphisms define the first and second arrow
above. Since g! is an exact functor (Lemma 3.17) we find that g!g

′
!I• → K• is a quasi-

ismorphism and hence the canonical map

h!h
′
!f

′′
∗ I• → f∗K•

is a quasi-isomorphism and represents the map for the outer rectangle in the derived cate-
gory. Clearly this map is the composition of the other two and the proof is complete. �

Remark 8.4. Consider a commutative diagram

X ′′
k′
//

f ′′

��

X ′
k
//

f ′

��

X

f

��
Y ′′ l′ //

g′′

��

Y ′ l //

g′

��

Y

g

��
Z ′′ m′

// Z ′ m // Z
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of schemes whose vertical arrows are proper and whose horizontal arrows are separated
and locally quasi-finite. Let us label the squares of the diagram A, B, C , D as follows

A B
C D

Then the maps of Lemma 8.1 for the squares are (where we use Rf∗ = f∗, etc)

γA : l′! ◦ f ′′
∗ → f ′

∗ ◦ k′
! γB : l! ◦ f ′

∗ → f∗ ◦ k!
γC : m′

! ◦ g′′
∗ → g′

∗ ◦ l′! γD : m! ◦ g′
∗ → g∗ ◦ l!

For the 2× 1 and 1× 2 rectangles we have four further maps

γA+B : (l ◦ l′)! ◦ f ′′
∗ → f∗ ◦ (k ◦ k′)∗

γC+D : (m ◦m′)! ◦ g′′
∗ → g∗ ◦ (l ◦ l′)!

γA+C : m′
! ◦ (g′′ ◦ f ′′)∗ → (g′ ◦ f ′)∗ ◦ k′

!
γB+D : m! ◦ (g′ ◦ f ′)∗ → (g ◦ f)∗ ◦ k!

By Lemma 8.3 we have

γA+B = γB ◦ γA, γC+D = γD ◦ γC
and by Lemma 8.2 we have

γA+C = γA ◦ γC , γB+D = γB ◦ γD
Here it would be more correct to write γA+B = (γB ? idk′

!
) ◦ (idl! ? γA) with notation

as in Categories, Section 28 and similarly for the others. Having said all of this we find (a
priori) two transformations

m! ◦m′
! ◦ g′′

∗ ◦ f ′′
∗ −→ g∗ ◦ f∗ ◦ k! ◦ k′

!

namely
γB ◦ γD ◦ γA ◦ γC = γB+D ◦ γA+C

and
γB ◦ γA ◦ γD ◦ γC = γA+B ◦ γC+D

The point of this remark is to point out that these transformations are equal. Namely, to
see this it suffices to show that

m! ◦ g′
∗ ◦ l′! ◦ f ′′

∗ γD
//

γA

��

g∗ ◦ l! ◦ l′! ◦ f ′′
∗

γA

��
m! ◦ g′

∗ ◦ f ′
∗ ◦ k′

!
γD // g∗ ◦ l! ◦ f ′

∗ ◦ k′
!

commutes. This is true because the squaresA andDmeet in only one point, more precisely
by Categories, Lemma 28.2 or more simply the discussion preceding Categories, Definition
28.1.

Lemma 8.5. Let b : Y1 → Y be a morphism of schemes. Consider a commutative
diagram of schemes

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

and let

X ′
1

g′
1

//

f ′
1
��

X1

f1

��
Y ′

1
g1 // Y1
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be the base change by b. Assume f and f ′ proper and g and g′ separated and locally quasi-
finite. For a ring Λ and K in D(X ′

étale,Λ) there is commutative diagram

b−1g!Rf
′
∗K

��

// g1,!(b′)−1Rf ′
∗K // g1,!Rf

′
1,∗(a′)−1K

��
b−1Rf∗g

′
!K

// Rf1,∗a
−1g′

!K
// Rf1,∗g

′
1,!(a′)−1K

inD(Y1,étale,Λ) where a : X1 → X , a′ : X ′
1 → X ′, b′ : Y ′

1 → Y ′ are the projections, the
vertical maps are the arrows of Lemma 8.1 and the horizontal arrows are the base change
map (from Étale Cohomology, Section 86) and the base change map of Lemma 3.12.

Proof. RepresentK by a K-injective complexJ • of sheaves of Λ-modules onX ′
étale.

Choose a quasi-isomorphism g′
!J • → I• to a K-injective complex I• of sheaves of Λ-

modules on Xétale. The proof of Lemma 8.1 constructs g!Rf
′
∗K → Rf∗g

′
!K as

g!f
′
∗J • = g!f

′
!J • = f!g

′
!J • = f∗g

′
!J • → f∗I•

Choose a quasi-isomorphism (a′)−1J • → J •
1 to a K-injective complex J •

1 of sheaves of
Λ-modules on X ′

1,étale. Then we can pick a diagram of complexes

g′
1,!J •

1
// I•

1

g′
1,!(a′)−1J •

OO

a−1g′
!J • // a−1I•

OO

commuting up to homotopy where all arrows are quasi-isomorphisms, the equality comes
from Lemma 3.4, and I•

1 is a K-injective complex of sheaves of Λ-modules on X1,étale.
The map g1,!Rf

′
1,∗(a′)−1K → Rf1,∗g

′
1,!(a′)−1K is given by

g1,!f
′
1,∗J •

1 = g1,!f
′
1,!J •

1 = f1,!g
′
1,!J •

1 = f1,∗g
′
1,!J •

1 → f1,∗I•
1

The identifications across the 3 equal signs in both arrows are compatible with pullback
maps, i.e., the diagram

b−1g!f
′
∗J • // g1,!(b′)−1f ′

∗J • // g1,!f
′
1,∗(a′)−1J •

b−1f∗g
′
!J • // f1,∗a

−1g′
!J • // f1,∗g

′
1,!(a′)−1J •

of complexes of abelian sheaves commutes. To show this it is enough to show the diagram
commutes with g!, g1,!, g

′
! , g

′
1,! replaced by g∗, g1,∗, g

′
∗, g

′
1,∗ (because the shriek functors are

defined as subfunctors of the ∗ functors and the base change maps are defined in a manner
compatible with this, see proof of Lemma 3.12). For this new diagram the commutativity
follows from the compatibility of pullback maps with horizontal and vertical stacking
of diagrams, see Sites, Remarks 45.3 and 45.4 so that going around the diagram in either
direction is the pullback map for the base change of f ◦ g′ = g ◦ f ′ by b. Since of course

g1,!f
′
1,∗(a′)−1J • // g1,!f

′
1,∗J •

1

f1,∗g
′
1,!(a′)−1J • // f1,∗g

′
1,!J •

1
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commutes, to finish the proof it suffices to show that

b−1f∗g
′
!J • //

��

f1,∗a
−1g′

!J • //

��

f1,∗g
′
1,!(a′)−1J • // f1,∗g

′
1,!J •

1

��
b−1f∗I• // f1,∗a

−1I• // f1,∗I•
1

commutes in the derived category, which holds by our choice of maps earlier. �

Lemma 8.6. Consider a commutative diagram of schemes

X
f
//

g
  

Y

h
��
Z

with f and g locally quasi-finite and h proper. Let Λ be a ring. Funtorially in K ∈
D(Xétale,Λ) there is a canonical map

g!K −→ Rh∗(f!K)

in D(Zétale,Λ). This map is an isomorphism if (a) K is bounded below and has torsion
cohomology sheaves, or (b) Λ is a torsion ring.

Proof. This is a special case of Lemma 8.1 if f and g are separated. We urge the
reader to skip the proof in the general case as we’ll mainly use the case where f and g are
separated.

RepresentK by a complexK• of sheaves of Λ-modules onXétale. Choose a quasi-isomorphism
f!K• → I• into a K-injective complex I• of sheaves of Λ-modules on Yétale. Consider
the map

g!K• = h!f!K• = h∗f!K• −→ h∗I•

where the equalities are Lemmas 4.11 and 3.4. This map of complexes determines the map
g!K → Rh∗(f!K) of the statement of the lemma.

Assume Λ is torsion, i.e., we are in case (b). To check the map is an isomorphism we may
work locally on Z. Hence we may assume that the dimension of fibres of h is bounded,
see Morphisms, Lemma 28.5. Then we see that Rh∗ has finite cohomological dimension,
see Étale Cohomology, Lemma 92.2. Hence by Derived Categories, Lemma 32.2, if we
show that Rqh∗(f!F) = 0 for q > 0 and any sheaf F of Λ-modules on Xétale, then
h∗f!K• → h∗I• is a quasi-isomorphism.

Observe thatG = f!F is a sheaf of Λ-modules onY whose stalks are nonzero only at points
y ∈ Y such that κ(y)/κ(h(y)) is a finite extension. This follows from the description of
stalks of f!F in Lemma 4.5 and the fact that both f and g are locally quasi-finite. Hence by
the proper base change theorem (Étale Cohomology, Lemma 91.13) it suffices to show that
Hq(Yz,H) = 0 where H is a sheaf on the proper scheme Yz over κ(z) whose support is
contained in the set of closed points. Thus the required vanishing by Étale Cohomology,
Lemma 97.3.

Case (a) follows from case (b) by the exact same argument as used in the proof of Lemma
8.1 (using Lemma 4.5 instead of Lemma 3.17). �
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9. Derived lower shriek via compactifications

Let f : X → Y be a finite type separated morphism of schemes with Y quasi-compact
and quasi-separated. Choose a compactification j : X → X over Y , see More on Flatness,
Theorem 33.8. Let Λ be a ring. Denote D+

tors(Xétale,Λ) the strictly full saturated tri-
angulated subcategory of D(Xétale,Λ) consisting of objects K which are bounded below
and whose cohomology sheaves are torsion. We will consider the functor

Rf! = Rf∗ ◦ j! : D+
tors(Xétale,Λ) −→ D+

tors(Yétale,Λ)
where f : X → Y is the structure morphism. This makes sense: the functor j! sends
D+
tors(Xétale,Λ) into D+

tors(X étale,Λ) by Remark 7.2 and Rf∗ sends D+
tors(X étale,Λ)

into D+
tors(Yétale,Λ) by Étale Cohomology, Lemma 78.2. If Λ is a torsion ring, then we

define
Rf! = Rf∗ ◦ j! : D(Xétale,Λ) −→ D(Yétale,Λ)

Here is the obligatory lemma.

Lemma 9.1. Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. The functors Rf! constructed above are, up to canonical
isomorphism, independent of the choice of the compactification.

Proof. We will prove this for the functorRf! : D(Xétale,Λ)→ D(Yétale,Λ) when
Λ is a torsion ring; the case of the functor Rf! : D+

tors(Xétale,Λ) → D+
tors(Yétale,Λ) is

proved in exactly the same way.
Consider the category of compactifications of X over Y , which is cofiltered according to
More on Flatness, Theorem 33.8 and Lemmas 32.1 and 32.2. To every choice of a compact-
ification

j : X → X, f : X → Y

the construction above associates the functor Rf∗ ◦ j! : D(Xétale,Λ) → D(Yétale,Λ).
Let’s be a little more explicit. Given a complex K• of sheaves of Λ-modules on Xétale,
we choose a quasi-isomorphism j!K• → I• into a K-injective complex of sheaves of Λ-
modules on X étale. Then our functor sends K• to f∗I•.

Suppose given a morphism g : X1 → X2 between compactifications ji : X → Xi over
Y . Then we get an isomorphism

Rf2,∗ ◦ j2,! = Rf2,∗ ◦Rg∗ ◦ j1,! = Rf1,∗ ◦ j1,!

using Lemma 8.6 in the first equality.
To finish the proof, since the category of compactifications of X over Y is cofiltered, it
suffices to show compositions of morphisms of compactifications of X over Y are turned
into compositions of isomorphisms of functors3. To do this, suppose that j3 : X → X3 is
a third compactification and that h : X2 → X3 is a morphism of compactifications. Then
we have to show that the composition

Rf3,∗ ◦ j3,! = Rf3,∗ ◦Rh∗ ◦ j2,! = Rf2,∗ ◦ j2,! = Rf2,∗ ◦Rg∗ ◦ j1,! = Rf1,∗ ◦ j1,!

is equal to the isomorphism of functors constructed using simply j3, g ◦ h, and j1. A
calculation shows that it suffices to prove that the composition of the maps

j3,! → Rh∗ ◦ j2,! → Rh∗ ◦Rg∗ ◦ j1,!

3Namely, if α, β : F → G are morphisms of functors and γ : G → H is an isomorphism of functors such
that γ ◦ α = γ ◦ β, then we conclude α = β.
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of Lemma 8.6 agrees with the corresponding map j3,! → R(h ◦ g)∗ ◦ j1,! via the identifi-
cationR(h ◦ g)∗ = Rh∗ ◦Rg∗. Since the map of Lemma 8.6 is a special case of the map of
Lemma 8.1 (as j1 and j2 are separated) this follows immediately from Lemma 8.2. �

Lemma 9.2. Let f : X → Y and g : Y → Z be separated morphisms of finite type
of quasi-compact and quasi-separated schemes. Then there is a canonical isomorphism
Rg! ◦Rf! → R(g ◦ f)!.

Proof. Choose a compactification i : Y → Y of Y over Z. Choose a compactifica-
tion X → X of X over Y . This uses More on Flatness, Theorem 33.8 and Lemma 32.2
twice. Let U be the inverse image of Y in X so that we get the commutative diagram

X
j
//

f

��

U

f ′
��

j′
// X

f��
Y

i
//

g

��

Y

g��
Z

Then we have

R(g ◦ f)! = R(g ◦ f)∗ ◦ (j′ ◦ j)!

= Rg∗ ◦Rf∗ ◦ j′
! ◦ j!

= Rg∗ ◦ i! ◦Rf ′
∗ ◦ j!

= Rg! ◦Rf!

The first equality is the definition ofR(g◦f)!. The second equality uses the identifications
R(g◦f)∗ = Rg∗◦Rf∗ and (j′◦j)! = j′

! ◦j! of Lemma 3.13. The identification i!◦Rf ′
∗ →

Rf∗ ◦j! used in the third equality is Lemma 8.1. The final fourth equality is the definition
of Rg! and Rf!. To finish the proof we show that this isomorphism is independent of
choices made.

Suppose we have two diagrams

X
j1

//

��

U1

f1��

j′
1

// X1

f1~~
Y

i1
//

��

Y 1

g1~~
Z

and

X
j2

//

��

U2

f2��

j′
2

// X2

f2~~
Y

i2
//

��

Y 2

g2~~
Z

We can first choose a compactification i : Y → Y of Y over Z which dominates both
Y 1 and Y 2, see More on Flatness, Lemma 32.1. By More on Flatness, Lemma 32.3 and
Categories, Lemmas 27.13 and 27.14 we can choose a compactification X → X of X over
Y with morphismsX → X1 andX → X2 and such that the compositionX → Y → Y 1
is equal to the compositionX → X1 → Y 1 and such that the compositionX → Y → Y 2
is equal to the composition X → X2 → Y 2. Thus we see that it suffices to compare the
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maps determined by our diagrams when we have a commutative diagram as follows

X
j1

// U1

h′

��

��

j′
1

// X1

h
��

��

X
j2 //

��

U2

��

j′
2 // X2

��

Y
i1 // Y 1

k
��

Y
i2 //

��

Y 2

xx
Z

Each of the squares

X
j1

//

id
��

A

U1

h′

��
X

j2 // U2

U2
j′

2

//

f2

��
B

X2

f2
��

Y
i2 // Y 2

U1
j′

1

//

f1

��
C

X1

f1
��

Y
i1 // Y 1

Y
i1
//

id
��

D

Y 1

k
��

Y
i2 // Y 2

X
j′

1◦j1

//

id
��

E

X1

h
��

X
j2 // X2

gives rise to an isomorphism as follows

γA : j2,! → Rh′
∗ ◦ j1,!

γB : i2,! ◦Rf2,∗ → Rf2,∗ ◦ j′
2,!

γC : i1,! ◦Rf1,∗ → Rf1,∗ ◦ j′
1,!

γD : i2,! → Rk∗ ◦ i1,!
γE : j2,! → Rh∗ ◦ (j′

1 ◦ j1)!

by applying the map from Lemma 8.1 (which is the same as the map in Lemma 8.6 in case
the left vertical arrow is the identity). Let us write

F1 = Rf1,∗ ◦ j1,!

F2 = Rf2,∗ ◦ j2,!

G1 = Rg1,∗ ◦ i1,!
G2 = Rg2,∗ ◦ i2,!
C1 = R(g1 ◦ f1)∗ ◦ (j′

1 ◦ j1)!

C2 = R(g2 ◦ f2)∗ ◦ (j′
2 ◦ j2)!

The construction given in the first paragraph of the proof and in Lemma 9.1 uses
(1) γC for the map G1 ◦ F1 → C1,
(2) γB for the map G2 ◦ F2 → C2,
(3) γA for the map F2 → F1,
(4) γD for the map G2 → G1, and
(5) γE for the map C2 → C1.
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This implies that we have to show that the diagram

C2 γE
// C1

G2 ◦ F2
γD◦γA //

γB

OO

G1 ◦ F1

γC

OO

is commutative. We will use Lemmas 8.2 and 8.3 and with (abuse of) notation as in Remark
8.4 (in particular dropping ? products with identity transformations from the notation).
We can write γE = γF ◦ γA where

U1
j′

1

//

h′

��
F

X1

h
��

U2
j′

2 // X2

Thus we see that

γE ◦ γB = γF ◦ γA ◦ γB = γF ◦ γB ◦ γA

the last equality because the two squares A and B only intersect in one point (similar to
the last argument in Remark 8.4). Thus it suffices to prove that γC ◦ γD = γF ◦ γB . Since
both of these are equal to the map for the square

U1 //

��

X1

��
Y // Y 2

we conclude. �

Lemma 9.3. Let f : X → Y , g : Y → Z , h : Z → T be separated morphisms of
finite type of quasi-compact and quasi-separated schemes. Then the diagram

Rh! ◦Rg! ◦Rf! γC
//

γA

��

R(h ◦ g)! ◦Rf!

γA+B

��
Rh! ◦R(g ◦ f)!

γB+C // R(h ◦ g ◦ f)!

of isomorphisms of Lemma 9.2 commutes (for the meaning of the γ’s see proof).

Proof. To do this we choose a compactification Z of Z over T , then a compactifi-
cation Y of Y over Z , and then a compactification X of X over Y . This uses More on
Flatness, Theorem 33.8 and Lemma 32.2. Let W ⊂ Y be the inverse image of Z under
Y → Z and let U ⊂ V ⊂ X be the inverse images of Y ⊂ W under X → Y . This
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produces the following diagram

X

f

��

// U //

��
A

V

��

//

B

X

��
Y

g

��

// Y //

��

W //

��
C

Y

��
Z

h

��

// Z

��

// Z

��

// Z

��
T // T // T // T

Without introducing tons of notation but arguing exactly as in the proof of Lemma 9.2
we see that the maps in the first displayed diagram use the maps of Lemma 8.1 for the
rectangles A + B, B + C , A, and C as indicated in the diagram in the statement of the
lemma. Since by Lemmas 8.2 and 8.3 we have γA+B = γB ◦ γA and γB+C = γB ◦ γC
we conclude that the desired equality holds provided γA ◦ γC = γC ◦ γA. This is true
because the two squares A and C only intersect in one point (similar to the last argument
in Remark 8.4). �

Lemma 9.4. Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes with f separated and of finite type. Then
there is a canonical isomorphism

g−1 ◦Rf! → Rf ′
! ◦ (g′)−1

Moreover, these isomorphisms are compatible with the isomorphisms of Lemma 9.2.

Proof. Choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Let j′ : X ′ → X

′ and f ′ : X ′ → Y ′ denote the base changes of j
and f . SinceRf! = Rf∗ ◦ j! andRf ′

! = Rf
′
∗ ◦ j′

! the isomorphism can be constructed via

g−1 ◦Rf∗ ◦ j! → Rf
′
∗ ◦ (g′)−1 ◦ j! → Rf

′
∗ ◦ j′

! ◦ (g′)−1

where the first arrow is the isomorphism given to us by the proper base change theorem
(Étale Cohomology, Lemma 91.12 in the bounded below torsion case and Étale Cohomol-
ogy, Lemma 92.3 in the case that Λ is torsion) and the second arrow is the isomorphism of
Lemma 3.12.

To finish the proof we have to show two things: first we have to show that the isomor-
phism of functors so obtained does not depend on the choice of the compactification and
second we have to show that if we vertically stack two base change diagrams as in the
lemma, then these base change isomorphisms are compatible with the isomorphisms of
Lemma 9.2. A straightforward argument which we omit shows that both follow if we can
show that the isomorphisms

(1) Rg∗ ◦Rf∗ = R(g ◦ f)∗ for f : X → Y and g : Y → Z proper,
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(2) g! ◦ f! = (g ◦ f)! for f : X → Y and g : Y → Z separated and quasi-finite, and
(3) g! ◦ Rf ′

∗ = Rf∗ ◦ g′
! for f : X → Y and f ′ : X ′ → Y ′ proper and g : Y ′ → Y

and g′ : X ′ → X separated and quasi-finite with f ◦ g′ = g ◦ f ′

are compatible with base change. This holds for (1) by Cohomology on Sites, Remark 19.4,
for (2) by Remark 3.14, and (3) by Lemma 8.5. �

Remark 9.5. Let f : X → Y be a finite type separated morphism of schemes with Y
quasi-compact and quasi-separated. Below we will construct a map

Rf!K −→ Rf∗K

functorial forK inD+
tors(Xétale,Λ) orD(Xétale,Λ) if Λ is torsion. This transformation

of functors in both cases is compatible with
(1) the isomorphism Rg! ◦ Rf! → R(g ◦ f)! of Lemma 9.2 and the isomorphism

Rg∗ ◦Rf∗ → R(g ◦ f)∗ of Cohomology on Sites, Lemma 19.2 and
(2) the isomorphism g−1 ◦ Rf! → Rf ′

! ◦ (g′)−1 of Lemma 9.4 and the base change
map of Cohomology on Sites, Remark 19.3.

Namely, choose a compactification j : X → X over Y and denote f : X → Y the
structure morphism. Since Rf! = Rf∗ ◦ j! and Rf∗ = Rf∗ ◦Rj∗ it suffices to construct
a transformation of functors j! → Rj∗. For this we use the canonical transformation
j! → j∗ of Étale Cohomology, Lemma 70.6. We omit the proof that the resulting trans-
formation is independent of the choice of compactification and we omit the proof of the
compatibilities (1) and (2).

10. Properties of derived lower shriek

Here are some properties of derived lower shriek.

Lemma 10.1. Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let Λ be a ring.

(1) Let Ki ∈ D+
tors(Xétale,Λ), i ∈ I be a family of objects. Assume given a ∈ Z

such that Hn(Ki) = 0 for n < a and i ∈ I . Then Rf!(
⊕

iKi) =
⊕

iRf!Ki.
(2) If Λ is torsion, then the functor Rf! : D(Xétale,Λ) → D(Yétale,Λ) commutes

with direct sums.

Proof. By construction it suffices to prove this when f is an open immersion and
when f is a proper morphism. For any open immersion j : U → X of schemes, the functor
j! : D(Uétale) → D(Xétale) is a left adjoint to pullback j−1 : D(Xétale) → D(Uétale)
and hence commutes with direct sums, see Cohomology on Sites, Lemma 20.8. In the
proper case we have Rf! = Rf∗ and we get the result from Étale Cohomology, Lemma
52.6 in the bounded belo case and from Étale Cohomology, Lemma 96.4 in the case that
our coefficient ring Λ is a torsion ring. �

Lemma 10.2. Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let Λ be a ring. The functorsRf! constructed in Section 9 are
bounded in the following sense: There exists an integerN such that forE ∈ D+

tors(Xétale,Λ)
or E ∈ D(Xétale,Λ) if Λ is torsion, we have

(1) Hi(Rf!(τ≤aE)→ Hi(Rf!(E)) is an isomorphism for i ≤ a,
(2) Hi(Rf!(E))→ Hi(Rf!(τ≥b−NE)) is an isomorphism for i ≥ b,
(3) if Hi(E) = 0 for i 6∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then Hi(Rf!(E)) = 0

for i 6∈ [a, b+N ].
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Proof. Assume Λ is torsion and consider the functorRf! : D(Xétale,Λ)→ D(Yétale,Λ).
By construction it suffices to prove this when f is an open immersion and when f is
a proper morphism. For any open immersion j : U → X of schemes, the functor
j! : D(Uétale) → D(Xétale) is exact and hence the statement holds with N = 0 in this
case. If f is proper then Rf! = Rf∗, i.e., it is a right derived functor. Hence the bound on
the left by Derived Categories, Lemma 16.1. Moreover in this case f∗ : Mod(Xétale,Λ)→
Mod(Yétale,Λ) has bounded cohomological dimension by Morphisms, Lemma 28.5 and
Étale Cohomology, Lemma 92.2. Thus we conclude by Derived Categories, Lemma 32.2.

Next, assume Λ is arbitrary and let us consider the functor Rf! : D+
tors(Xétale,Λ) →

D+
tors(Yétale,Λ). Again we immediately reduce to the case where f is proper and Rf! =

Rf∗. Again part (1) is immediate. To show part (3) we can use induction on b − a, the
distinguished triangles of trunctions, and Étale Cohomology, Lemma 92.2. Part (2) follows
from (3). Details omitted. �

Lemma 10.3. Let f : X → Y be a quasi-finite separated morphism of quasi-compact
and quasi-separated schemes. Then the functors Rf! constructed in Section 9 agree with
the restriction of the functor f! : D(Xétale,Λ) → D(Yétale,Λ) constructed in Section 7
to their common domains of definition.

Proof. By Zariski’s main theorem (More on Morphisms, Lemma 43.3) we can find
an open immersion j : X → X and a finite morphism f : X → Y with f = f ◦ j.
By construction we have Rf! = Rf∗ ◦ j!. Since f is finite, we have Rf∗ = f∗ by Étale
Cohomology, Proposition 55.2. The lemma follows because f∗ ◦ j! = f! for example by
Lemma 3.6. �

Lemma 10.4. Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let U and V be quasi-compact opens of X such that X =
U ∪ V . Denote a : U → Y , b : V → Y and c : U ∩ V → Y the restrictions of f . Let
Λ be a ring. For K in D+

tors(Xétale,Λ) or K ∈ D(Xétale,Λ) if Λ is torsion, we have a
distinguished triangle

Rc!(K|U∩V )→ Ra!(K|U )⊕Rb!(K|V )→ Rf!K → Rc!(K|U∩V )[1]
in D(Yétale,Λ).

Proof. This follows from Lemma 7.3, the fact thatRf! ◦RjU ! = Ra! by Lemma 9.2,
and the fact that RjU ! = jU ! by Lemma 10.3. �

Lemma 10.5. Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let U be a quasi-compact open of X with complement Z ⊂
X . Denote g : U → Y and h : Z → Y the restrictions of f . Let Λ be a ring. For K in
D+
tors(Xétale,Λ) or K ∈ D(Xétale,Λ) if Λ is torsion, we have a distinguished triangle

Rg!(K|U )→ Rf!K → Rh!(K|Z)→ Rg!(K|U )[1]
in D(Yétale,Λ).

Proof. This follows from Lemma 7.4, the fact that Rf! ◦ Rj! = Rg! and Rf! ◦ Ri!
by Lemma 9.2, and the fact that Rj! = j! and Ri! = i! = i∗ by Lemma 10.3. �

Lemma 10.6. Let f ′ : X ′ → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let i : X → X ′ be a thickening and denote f = f ′ ◦ i. Let
Λ be a ring. For K ′ in D+

tors(X ′
étale,Λ) or K ′ ∈ D(X ′

étale,Λ) if Λ is torsion, we have
Rf!i

−1K ′ = Rf ′
!K

′.
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Proof. This is true because i−1 and i∗ = i! inverse equivalences of categories by the
topological invariance of the small étale topos (Étale Cohomology, Theorem 45.2) and we
can apply Lemma 9.2. �

Lemma 10.7. Let f : X → Y be a separated finite type morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion ring. Let E ∈ D(Xétale,Λ) and K ∈
D(Yétale,Λ). Then

Rf!E ⊗L
Λ K = Rf!(E ⊗L

Λ f
−1K)

in D(Yétale,Λ).

Proof. Choose j : X → X and f : X → Y as in the construction of Rf!. We have
j!E⊗L

Λ f
−1
K = j!(E⊗L

Λ f
−1K) by Cohomology on Sites, Lemma 20.9. Then we get the

result by applying Étale Cohomology, Lemma 96.6 and using that f−1 = j−1 ◦ f−1 and
Rf! = Rf∗j!. �

Remark 10.8. Let Λ1 → Λ2 be a homomorphism of torsion rings. Let f : X → Y
be a separated finite type morphism of quasi-compact and quasi-separated schemes. The
diagram

D(Xétale,Λ2)
res
//

Rf!

��

D(Xétale,Λ1)

Rf!

��
D(Yétale,Λ2) res // D(Yétale,Λ1)

commutes where res is the “restriction” functor which turns a Λ2-module into a Λ1-
module using the given ring map. WritingRf! = Rf∗ ◦ j! for a factorization f = f ◦ j as
in Section 9, we see that the result holds for j! by inspection and forRf∗ by Cohomology
on Sites, Lemma 20.7. On the other hand, also the diagram

D(Xétale,Λ1)
−⊗L

Λ1
Λ2

//

Rf!

��

D(Xétale,Λ2)

Rf!

��
D(Yétale,Λ1)

−⊗L
Λ1

Λ2
// D(Yétale,Λ2)

is commutative as follows from Lemma 10.7.

Remark 10.9. Let f : X → Y be a separated finite type morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion coefficient ring and letK and L be objects
of D(Xétale,Λ). We claim there is a canonical map

α : Rf∗RHomΛ(K,L) −→ RHomΛ(Rf!K,Rf!L)

functorial inK andL. Namely, choose j : X → X and f : X → Y as in the construction
of Rf!. We first define a map

β : Rj∗RHomΛ(K,L) −→ RHomΛ(j!K, j!L)

By the construction of internal hom in the derived category, this is the same thing as
defining a map

β′ : Rj∗RHomΛ(K,L)⊗L
Λ j!K −→ j!L

See Cohomology on Sites, Section 35. The source of β′ is equal to

j!
(
RHomΛ(K,L)⊗L

Λ K
)
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by Cohomology on Sites, Lemma 20.9. Hence we can setβ′ = j!β
′′ whereβ′′ : RHomΛ(K,L)⊗L

Λ
K → L corresponds to the identity on RHomΛ(K,L) via the universal property of in-
ternal hom mentioned above. By Cohomology on Sites, Remark 35.10 we have a canonical
map

γ : Rf∗RHomΛ(j!K, j!L) −→ RHomΛ(Rf∗j!K,Rf∗j!L)
Since Rf! = Rf∗j! and Rf∗ = Rf∗Rj∗ (by Leray) we obtain the desired map α =
γ ◦Rf∗β.

11. Derived upper shriek

We obtain Rf ! by a Brown representability theorem.

Lemma 11.1. Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion coefficient ring. The functorRf! : D(Xétale,Λ)→
D(Yétale,Λ) has a right adjoint Rf ! : D(Yétale,Λ)→ D(Xétale,Λ).

Proof. This follows from Injectives, Proposition 15.2 and Lemma 10.1 above. �

Lemma 11.2. Let f : X → Y be a separated quasi-finite morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion coefficient ring. The functor Rf ! :
D(Yétale,Λ) → D(Xétale,Λ) of Lemma 11.1 is the same as the functor Rf ! of Lemma
7.1.

Proof. Follows from uniqueness of adjoints as Rf! = f! by Lemma 10.3. �

Lemma 11.3. Let j : U → X be a separated étale morphism of quasi-compact and
quasi-separated schemes. Let Λ be a torsion coefficient ring. The functorRj! : D(Xétale,Λ)→
D(Uétale,Λ) is equal to j−1.

Proof. This is true because both Rj! and j−1 are right adjoints to Rj! = j!. See for
example Lemmas 11.2 and 6.2. �

Lemma 11.4. Let f : X → Y be a finite type separated morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion ring. The functorRf ! sendsD+(Yétale,Λ)
into D+(Xétale,Λ). More precisely, there exists an integer N ≥ 0 such that if K ∈
D(Yétale,Λ) has Hi(K) = 0 for i < a then Hi(Rf !K) = 0 for i < a−N .

Proof. LetN be the integer found in Lemma 10.2. By construction, forK ∈ D(Yétale,Λ)
andL ∈∈ D(Xétale,Λ) we have HomX(L,Rf !K) = HomY (Rf!L,K). SupposeHi(K) =
0 for i < a. Then we take L = τ≤a−N−1Rf

!K. By Lemma 10.2 the complex Rf!L has
vanishing cohomology sheaves in degrees ≤ a − 1. Hence HomY (Rf!L,K) = 0 by De-
rived Categories, Lemma 27.3. Hence the canonical map τ≤a−N−1Rf

!K → Rf !K is zero
which implies Hi(Rf !K) = 0 for i ≤ a−N − 1. �

Let f : X → Y be a separated finite type morphism of quasi-separated and quasi-compact
schemes. Let Λ be a torsion coefficient ring. For every K ∈ D(Yétale,Λ) and L ∈
D(Xétale,Λ) we obtain a canonical map

(11.4.1) Rf∗RHomΛ(L,Rf !K) −→ RHomΛ(Rf!L,K)
Namely, this map is constructed as the composition

Rf∗RHomΛ(L,Rf !K)→ RHomΛ(Rf!L,Rf!Rf
!K)→ RHomΛ(Rf!L,K)

where the first arrow is Remark 10.9 and the second arrow is the counit Rf!Rf
!K → K

of the adjunction.
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Lemma 11.5. Let f : X → Y be a separated finite type morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion ring. For every K ∈ D(Yétale,Λ) and
L ∈ D(Xétale,Λ) the map (11.4.1)

Rf∗RHomΛ(L,Rf !K) −→ RHomΛ(Rf!L,K)

is an isomorphism.

Proof. To prove the lemma we have to show that for anyM ∈ D(Yétale,Λ) the map
(11.4.1) induces an bijection

HomY (M,Rf∗RHomΛ(L,Rf !K)) −→ HomY (M,RHomΛ(Rf!L,K))

To see this we use the following string of equalities

HomY (M,Rf∗RHomΛ(L,Rf !K)) = HomX(f−1M,RHomΛ(L,Rf !K))
= HomX(f−1M ⊗L

Λ L,Rf
!K)

= HomY (Rf!(f−1M ⊗L
Λ L),K)

= HomY (M ⊗L
Λ Rf!L,K)

= HomY (M,RHomΛ(Rf!L,K))

The first equality holds by Cohomology on Sites, Lemma 19.1. The second equality by
Cohomology on Sites, Lemma 35.2. The third equality by construction ofRf !. The fourth
equality by Lemma 10.7 (this is the important step). The fifth by Cohomology on Sites,
Lemma 35.2. �

Lemma 11.6. Let f : X → Y be a separated finite type morphism of quasi-separated
and quasi-compact schemes. Let Λ be a torsion ring. For every K ∈ D(Yétale,Λ) and
L ∈ D(Xétale,Λ) the map (11.4.1) induces an isomorphism

RHomX(L,Rf !K) −→ RHomY (Rf!L,K)

of global derived homs.

Proof. By the construction in Cohomology on Sites, Section 36 we have

RHomX(L,Rf !K) = RΓ(X,RHomΛ(L,Rf !K)) = RΓ(Y,Rf∗RHomΛ(L,Rf !K))

(the second equality by Leray) and

RHomY (Rf!L,K) = RΓ(Y,RHomΛ(Rf!L,K))

Thus the lemma is a consequence of Lemma 11.5. �

Lemma 11.7. Consider a cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of quasi-compact and quasi-separated schemes with f separated and of finite type. Then
we have Rf ! ◦Rg∗ = Rg′

∗ ◦R(f ′)!.

Proof. By uniqueness of adjoint functors this follows from base change for derived
lower shriek: we have g−1 ◦Rf! = Rf ′

! ◦ (g′)−1 by Lemma 9.4. �
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Remark 11.8. Let Λ1 → Λ2 be a homomorphism of torsion rings. Let f : X → Y
be a separated finite type morphism of quasi-compact and quasi-separated schemes. The
diagram

D(Xétale,Λ2)
res
// D(Xétale,Λ1)

D(Yétale,Λ2) res //

Rf !

OO

D(Yétale,Λ1)

Rf !

OO

commutes where res is the “restriction” functor which turns a Λ2-module into a Λ1-
module using the given ring map. This holds by uniquenss of adjoints, the second com-
mutative diagram of Remark 10.8 and because we have

HomΛ2(K1 ⊗L
Λ1

Λ2,K2) = HomΛ1(K1, res(K2))

This equality either for objects living over Xétale or on Yétale is a very special case of
Cohomology on Sites, Lemma 19.1.

12. Compactly supported cohomology

Let k be a field. Let Λ be a ring. Let X be a separated scheme of finite type over k
with structure morphism f : X → Spec(k). In Section 9 we have defined the functor
Rf! : D+

tors(Xétale,Λ) → D+
tors(Spec(k),Λ) and the functor Rf! : D(Xétale,Λ) →

D(Spec(k),Λ) if Λ is a torsion ring. Composing with the global sections functor on
Spec(k) we obtain what we will call the compactly supported cohomology.

Definition 12.1. LetX be a separated scheme of finite type over a field k. Let Λ be a
ring. Let K be an object of D+

tors(Xétale,Λ) or of D(Xétale,Λ) in case Λ is torsion. The
cohomology ofK with compact support or the compactly supported cohomology ofK is

RΓc(X,K) = RΓ(Spec(k), Rf!K)

where f : X → Spec(k) is the structure morphism. We will writeHi
c(X,K) = Hi(RΓc(X,K)).

We will check that this definition doesn’t conflict with Definition 3.7 by Lemma 12.3. The
utility of this definition lies in the following result.

Lemma 12.2. Let f : X → Y be a finite type separated morphism of schemes
with Y quasi-compact and quasi-separated. Let K be an object of D+

tors(Xétale,Λ) or
of D(Xétale,Λ) in case Λ is torsion. Then there is a canonical isomorphism

(Rf!K)y −→ RΓc(Xy,K|Xy )

in D(Λ) for any geometric point y : Spec(k)→ Y .

Proof. Immediate consequence of Lemma 9.4 and the definitions. �

Lemma 12.3. LetX be a separated scheme of finite type over a field k. IfF is a torsion
abelian sheaf, then the abelian group H0

c (X,F) defined in Definition 3.7 agrees with the
abelian group H0

c (X,F) defined in Definition 12.1.

Proof. Choose a compactification j : X → X over k. In both cases the group is
defined asH0(X, j!F). This is true for the first version by Lemma 3.10 and for the second
version by construction. �
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Lemma 12.4. Let k be an algebraically closed field. Let X be a separated scheme
of finite type type over k of dimension ≤ 1. Let Λ be a Noetherian ring. Let F be a
constructible sheaf of Λ-modules on X which is torsion. Then Hq

c (X,F) is a finite Λ-
module.

Proof. This is a consequence of Étale Cohomology, Theorem 84.7. Namely, choose a
compactification j : X → X . After replacingX by the scheme theoretic closure ofX , we
see that we may assume dim(X) ≤ 1. Then Hq

c (X,F) = Hq(X, j!F) and the theorem
applies. �

Remark 12.5 (Covariance of compactly supported cohomology). Let k be a field. Let
f : X → Y be a morphism of separated schemes of finite type over k. If X , Y , and f
satisfies one of the following conditions

(1) f is étale, or
(2) f is flat and quasi-finite, or
(3) f is quasi-finite and Y is geometrically unibranch, or
(4) f is quasi-finite and there exists a weighting w : X → Z of f

then compactly supported cohomology is covariant with respect to f . More precisely, let
Λ be a ring. Let K be an object of D+

tors(Yétale,Λ) or of D(Yétale,Λ) in case Λ is torsion.
Under one of the assumptions (1) – (4) there is a canonical map

Trf,w,K : f!f
−1K −→ K

See Section 5 for the existence of the trace map and Examples 5.5 and 5.7 for cases (2) and
(3). If p : X → Spec(k) and q : Y → Spec(k) denote the structure morphisms, then we
haveRq! ◦f! = Rp! by Lemma 9.2 and the fact thatRf! = f! for the quasi-finite separated
morphism f by Lemma 10.3. Hence we can look at the map

RΓc(X, f−1K) = RΓ(Spec(k), Rp!f
−1K)

= RΓ(Spec(k), Rq!f!f
−1K)

Rq!Trf,w,K−−−−−−−→ RΓ(Spec(k), Rq!K)
= RΓc(Y,K)

In particular, if Λ is a torsion ring, then we obtain an arrow
Trf : RΓc(X,Λ) −→ RΓc(Y,Λ)

This map has lots of additional properties, for example it is compatible with taking ground
field extensions.

13. A constructibility result

We “compute” the cohomology of a smooth projective family of curves with constant
coefficients.

Lemma 13.1. Let p be a prime number. Let S be a scheme over Fp. Let E be a finite
locally free OS-module viewed as an OS-module on Sétale. Let F : E → E be a homo-
morphism of abelian sheaves on Sétale such that F (ae) = apF (e) for local sections a, e
ofOS , E on Sétale. Then

Coker(F − 1 : E → E)
is zero and

Ker(F − 1 : E → E)
is a constructible abelian sheaf on Sétale.
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This lemma is a generalization of Étale Cohomology, Lemma 63.2.

Proof. We may assume S = Spec(A) where A is an Fp-algebra and that E is the
quasi-coherent module associated to the freeA-moduleAe1⊕. . .⊕Aen. We writeF (ei) =∑
aijej .

Surjectivity of F − 1. It suffices to show that any element
∑
aiei, ai ∈ A is in the image

of F − 1 after replacing A by a faithfully flat étale extension. Observe that

F (
∑

xiei)−
∑

xiei =
∑

xpi aijej −
∑

xiei

Consider the A-algebra

A′ = A[x1, . . . , xn]/(ai + xi −
∑

j
ajix

p
j )

A computation shows that dxi is zero in ΩA′/A and hence ΩA′/A = 0. Since A′ is of
finite type over A, this implies that Spec(A′) → Spec(A) is unramified and hence is
quasi-finite. Since A′ is generated by n elements and cut out by n equations, we conclude
that A′ is a global relative complete intersection over A. Thus A′ is flat over A and we
conclude that A → A′ is étale (as a flat and unramified ring map). Finally, the reader
can show that A → A′ is faithfully flat by verifying directly that all geometric fibres of
Spec(A′) → Spec(A) are nonempty, however this also follows from Étale Cohomology,
Lemma 63.2. Finally, the element

∑
xiei ∈ A′e1 ⊕ . . .⊕A′en maps to

∑
aiei by F − 1.

Constructibility of the kernel. The calculations above show that Ker(F−1) is represented
by the scheme

Spec(A[x1, . . . , xn]/(xi −
∑

j
ajix

p
j ))

over S = Spec(A). Since this is a scheme affine and étale over S we obtain the result from
Étale Cohomology, Lemma 73.1. �

Lemma 13.2. Let f : X → S be a proper smooth morphism of schemes with geomet-
rically connected fibres of dimension 1. Let ` be a prime number. Then Rqf∗Z/`Z is a
constructible.

Proof. We may assume S is affine. Say S = Spec(A). Then, if we write A =
⋃
Ai

as the union of its finite type Z-subalgebras, we can find an i and a morphism fi : Xi →
Si = Spec(Ai) of finite type whose base change to S is f : X → S , see Limits, Lemma
10.1. After increasing i we may assume fi : Xi → Si is smooth, proper, and of relative
dimension 1, see Limits, Lemmas 13.1 8.9, and 18.4. By More on Morphisms, Lemma 53.8
we obtain an open subscheme Ui ⊂ Si such that the fibres of fi : Xi → Si over Ui
are geometrically connected. Then S → Si maps into Ui. We may replace X → S by
fi : f−1

i (Ui)→ Ui to reduce to the case discussed in the next paragraph.

Assume S is Noetherian. We may write S = U ∪ Z where U is the open subscheme
defined by the nonvanishing of ` and Z = V (`) ⊂ S. Since the formation of Rqf∗Z/`Z
commutes with arbtrary base change (Étale Cohomology, Theorem 91.11), it suffices to
prove the result over U and over Z. Thus we reduce to the following two cases: (a) ` is
invertible on S and (b) ` is zero on S.

Case (a). We claim that in this case the sheaves Rqf∗Z/`Z are finite locally constant on
S. First, by proper base change (in the form of Étale Cohomology, Lemma 91.13) and
by finiteness (Étale Cohomology, Theorem 83.10) we see that the stalks of Rqf∗Z/`Z are
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finite. By Étale Cohomology, Lemma 94.4 all specialization maps are isomorphisms. We
conclude the claim holds by Étale Cohomology, Lemma 75.6.

Case (b). Here ` = p is a prime and S is a scheme over Spec(Fp). By the same references
as above we already know that the stalks of Rqf∗Z/pZ are finite and zero for q ≥ 2. It
follows from Étale Cohomology, Lemma 39.3 that f∗Z/pZ = Z/pZ. It remains to prove
that R1f∗Z/pZ is constructible. Consider the Artin-Schreyer sequence

0→ Z/pZ→ OX
F−1−−−→ OX → 0

See Étale Cohomology, Section 63. Recall that f∗OX = OS andR1f∗OX is a finite locally
freeOS-module of rank equal to the genera of the fibres of X → S , see Algebraic Curves,
Lemma 20.13. We conclude that we have a short exact sequence

0→ Coker(F−1 : OS → OS)→ R1f∗Z/pZ→ Ker(F−1 : R1f∗OX → R1f∗OX)→ 0

Applying Lemma 13.1 we win. �

Lemma 13.3. Let f : X → S be a proper smooth morphism of schemes with ge-
ometrically connected fibres of dimension 1. Let Λ be a Noetherian ring. Let M be a
finite Λ-module annihilated by an integer n > 0. ThenRqf∗M is a constructible sheaf of
Λ-modules on S.

Proof. If n = `n′ for some prime number `, then we get a short exact sequence
0 → M [`] → M → M ′ → 0 of finite Λ-modules and M ′ is annihilated by n′. This
produces a corresponding short exact sequence of constant sheaves, which in turn gives
rise to an exact sequence

Rq−1f∗M
′ → Rqf∗M [n]→ Rqf∗M → Rqf∗M

′ → Rq+1f∗M [n]

Thus, if we can show the result in case M is annihilated by a prime number, then by
induction on n we win by Étale Cohomology, Lemma 71.6.

Let ` be a prime number such that ` annihilates M . Then we can replace Λ by the F`-
algebra Λ/`Λ. Namely, the sheaf Rqf∗M where M is viewed as a sheaf of Λ-modules is
the same as the sheaf Rqf∗M computed by viewing M as a sheaf of Λ/`Λ-modules, see
Cohomology on Sites, Lemma 20.7.

Assume ` be a prime number such that ` annihilates M and Λ. Let us reduce to the case
where M is a finite free Λ-module. Namely, choose a resolution

. . .→ Λ⊕m2 → Λ⊕m1 → Λ⊕m0 →M → 0

Recall that f∗ has finite cohomological dimension on sheaves of Λ-modules, see Étale Co-
homology, Lemma 92.2 and Derived Categories, Lemma 32.2. Thus we see that Rqf∗M is
the qth cohomology sheaf of the object

Rf∗(Λ⊕ma → . . .→ Λ⊕m0)

in D(Sétale,Λ) for some integer a large enough. Using the first spectral sequence of De-
rived Categories, Lemma 21.3 (or alternatively using an argument with truncations) we
conclude that it suffices to prove that Rqf∗Λ) is constructible.

At this point we can finally use that

(Rf∗Z/`Z)⊗L
Z/`Z Λ = Rf∗Λ
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by Étale Cohomology, Lemma 96.6. Since any module over the field Z/`Z is flat we obtain

(Rqf∗Z/`Z)⊗Z/`Z Λ = Rqf∗Λ

Hence it suffices to prove the result for Rqf∗Z/`Z by Étale Cohomology, Lemma 71.10.
This case is Lemma 13.2. �

14. Complexes with constructible cohomology

We continue the discussion started in Étale Cohomology, Section 76. In particular, for
a scheme X and a Noetherian ring Λ we denote Dc(Xétale,Λ) the strictly full saturated
triangulated subcategory ofD(Xétale,Λ) consisting of objects whose cohomology sheaves
are constructible sheaves of Λ-modules.

Lemma 14.1. Let f : X → Y be a morphism of schemes which is locally quasi-finite
and of finite presentation. The functor f! : D(Xétale,Λ) → D(Yétale,Λ) of Lemma 7.1
sends Dc(Xétale,Λ) into Dc(Yétale,Λ).

Proof. Since the functor f! is exact, it suffices to show that f!F is constructible for
any constructible sheaf F of Λ-modules on Xétale. The question is local on Y and hence
we may and do assume Y is affine. Then X is quasi-compact and quasi-separated, see
Morphisms, Definition 21.1. Say X =

⋃
i=1,...,nXi is a finite affine open covering. By

Lemma 4.7 we see that it suffices to show that fi,!F|Xi and fii′,!F|Xi∩Xi′ are constructible
where fi : Xi → Y and fii′ : Xi ∩ Xi′ → Y are the restrictions of f . Since Xi and
Xi ∩ Xi′ are quasi-compact and separated this means we may assume f is separated. By
Zariski’s main theorem (in the form of More on Morphisms, Lemma 43.4) we can choose
a factorization f = g ◦ j where j : X → X ′ is an open immersion and g : X ′ → Y is
finite and of finite presentation. Then f! = g! ◦ j! by Lemma 3.13. By Étale Cohomology,
Lemma 73.1 we see that j!F is constructible onX ′. The morphism g is finite hence g! = g∗
by Lemma 3.4. Thus f!F = g!j!F = g∗j!F is constructible by Étale Cohomology, Lemma
73.9. �

Lemma 14.2. Let S be a Noetherian affine scheme of finite dimension. Let f : X → S
be a separated, affine, smooth morphism of relative dimension 1. Let Λ be a Noetherian ring
which is torsion. Let M be a finite Λ-module. Then Rf!M has constructible cohomology
sheaves.

Proof. We will prove the result by induction on d = dim(S).

Base case. If d = 0, then the only thing to show is that the stalks of Rqf!M are finite
Λ-modules. If s is a geometric point of S , then we have (Rqf!M)s = Hq

c (Xs,M) by
Lemma 12.2. This is a finite Λ-module by Lemma 12.4.

Induction step. It suffices to find a dense openU ⊂ S such thatRf!M |U has constructible
cohomology sheaves. Namely, the restriction of Rf!M to the complement S \ U will
have constructible cohomology sheaves by induction and the fact that formation ofRf!M
commutes with all base change (Lemma 9.4). In fact, let η ∈ S be a generic point of an
irreducible component of S. Then it suffices to find an open neighbourhood U of η such
that the restriction of Rf!M to U is constructible. This is what we will do in the next
paragraph.
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Given a generic point η ∈ S we choose a diagram

Y 1 q . . .q Y n

((

Y1 q . . .q Yn ν
//

��

j
oo XV

//

��

XU
//

��

X

f

��
T1 q . . .q Tn // V // U // S

as in More on Morphisms, Lemma 56.1. We will show thatRf!M |U is constructible. First,
since V → U is finite and surjective, it suffices to show that the pullback to V is con-
structible, see Étale Cohomology, Lemma 73.3. Since formation of Rf! commutes with
base change, we see that it suffices to show that R(XV → V )!M is constructible. Let
W ⊂ XV be the open subscheme given to us by More on Morphisms, Lemma 56.1 part
(4). Let Z ⊂ XV be the reduced induced scheme structure on the complement of W in
XV . Then the fibres of Z → V have dimension 0 (as W is dense in the fibres) and hence
Z → V is quasi-finite. From the distinguished triangle

R(W → V )!M → R(XV → V )!M → R(Z → V )!M → . . .

of Lemma 10.5 and from Lemma 14.1 we conclude that it suffices to show that R(W →
V )!M has constructible cohomology sheaves. Next, we have

R(W → V )!M = R(ν−1(W )→ V )!M

because the morphism ν : ν−1(W )→ W is a thickening and we may apply Lemma 10.6.
Next, we let Z ′ ⊂

∐
Y i denote the complement of the open j(ν−1(W )). Again Z ′ → V

is quasi-finite. Again use the distinguished triangle

R(ν−1(W )→ V )!M → R(
∐

Y i → V )!M → R(Z ′ → V )!M → . . .

to conclude that it suffices to prove

R(
∐

Y i → V )!M =
⊕

i
R(Y i → V )!M =

⊕
i
R(Ti → V )!R(Y i → Ti)!M

has constructible cohomology sheaves (second equality by Lemma 9.2). The result for
R(Y i → Ti)!M is Lemma 13.3 and we win because Ti → V is finite étale and we can
apply Lemma 14.1. �

Lemma 14.3. Let Y be a Noetherian affine scheme of finite dimension. Let Λ be a
Noetherian ring which is torsion. Let F be a finite type, locally constant sheaf of Λ-
modules on an open subscheme U ⊂ A1

Y . Then Rf!F has constructible cohomology
sheaves where f : U → Y is the structure morphism.

Proof. We may decompose Λ as a product Λ = Λ1× . . .×Λr where Λi is `i-primary
for some prime `i. Thus we may assume there exists a prime ` and an integer n > 0 such
that `n annihilates Λ (and hence F ).
Since U is Noetherian, we see that U has finitely many connected components. Thus we
may assume U is connected. Let g : U ′ → U be the finite étale covering constructed in
Étale Cohomology, Lemma 66.4. The discussion in Étale Cohomology, Section 66 gives
maps

F → g∗g
−1F → F

whose composition is an isomorphism. Hence it suffices to prove the result for g∗g
−1F .

On the other hand, we have Rf!g∗g
−1F = R(f ◦ g)!g

−1F by Lemma 9.2. Since g−1F
has a finite filtration by constant sheaves of Λ-modules of the form M for some finite
Λ-module M (by our choice of g) this reduces us to the case proved in Lemma 14.2. �



14. COMPLEXES WITH CONSTRUCTIBLE COHOMOLOGY 5065

Lemma 14.4. Let Y be an affine scheme. Let Λ be a Noetherian ring. Let F be a
constructible sheaf of Λ-modules on A1

Y which is torsion. Then Rf!F has constructible
cohomology sheaves where f : A1

Y → Y is the structure morphism.

Proof. Say F is annihilated by n > 0. Then we can replace Λ by Λ/nΛ without
changing Rf!F . Thus we may and do assume Λ is a torsion ring.
Say Y = Spec(R). Then, if we write R =

⋃
Ri as the union of its finite type Z-

subalgebras, we can find an i such that F is the pullback of a constructible sheaf of Λ-
modules on A1

Ri
, see Étale Cohomology, Lemma 73.10. Hence we may assume Y is a Noe-

therian scheme of finite dimension.
Assume Y is a Noetherian scheme of finite dimension d = dim(Y ) and Λ is torsion. We
will prove the result by induction on d.
Base case. If d = 0, then the only thing to show is that the stalks of Rqf!F are finite Λ-
modules. If y is a geometric point of Y , then we have (Rqf!F)y = Hq

c (Xy,F) by Lemma
12.2. This is a finite Λ-module by Lemma 12.4.
Induction step. It suffices to find a dense open V ⊂ Y such thatRf!F|V has constructible
cohomology sheaves. Namely, the restriction of Rf!F to the complement Y \ V will
have constructible cohomology sheaves by induction and the fact that formation ofRf!F
commutes with all base change (Lemma 9.4). By definition of constructible sheaves of Λ-
modules, there is a dense open subscheme U ⊂ A1

Y such that F|U is a finite type, locally
constant sheaf of Λ-modules. Denote Z ⊂ A1

Y the complement (viewed as a reduced
closed subscheme). Note that U contains all the generic points of the fibres of A1

Y → Y
over the generic points ξ1, . . . , ξn of the irreducible components of Y . Hence Z → Y
has finite fibres over ξ1, . . . , ξn. After replacing Y by a dense open (which is allowed), we
may assumeZ → Y is finite, see Morphisms, Lemma 51.1. By the distinguished triangle of
Lemma 10.5 and the result for Z → Y (Lemma 14.1) we reduce to showing that R(U →
Y )!F has constructible cohomology sheaves. This is Lemma 14.3. �

Theorem 14.5. Let f : X → Y be a separated morphism of finite presentation
of quasi-compact and quasi-separated schemes. Let Λ be a Noetherian ring. Let K be
an object of D+

tors,c(Xétale,Λ) or of Dc(Xétale,Λ) in case Λ is torsion. Then Rf!K has
constructible cohomology sheaves, i.e., Rf!K is in D+

tors,c(Yétale,Λ) or in Dc(Yétale,Λ)
in case Λ is torsion.

Proof. The question is local on Y hence we may and do assume Y is affine. By the
induction principle and Lemma 10.4 we reduce to the case where X is also affine.
Assume X and Y are affine. Since X is of finite presentation, we can choose a closed
immersion i : X → An

Y which is of finite presentation. If p : An
Y → Y denotes the

structure morphism, then we see that Rf! = Rp! ◦ Ri! by Lemma 9.2. By Lemma 14.1
we have the result for Ri! = i!. Hence we may assume f is the projection morphism
An
Y → Y . Since we can view f as the composition

X = An
Y → An−1

Y → An−2
S → . . .→ A1

Y → Y

we may assume n = 1.
Assume Y is affine and X = A1

Y . Since Rf! has finite cohomological dimension (Lemma
10.2) we may assume K is bounded below. Using the first spectral sequence of Derived
Categories, Lemma 21.3 (or alternatively using an argument with truncations), we reduce
to showing the result of Lemma 14.4. �
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15. Applications

In this section we give some applications of Theorem 14.5.

Lemma 15.1. Let k be an algebraically closed field. Let X be a finite type separated
scheme over k. Let Λ be a Noetherian ring. Let K be an object of D+

tors,c(Xétale,Λ) or of
Dc(Xétale,Λ) in case Λ is torsion. Then Hi

c(X,K) is a finite Λ-module for all i ∈ Z.

Proof. Immediate consequence of Theorem 14.5 and the definition of compactly sup-
ported cohomology in Section 12. �

Proposition 15.2. Let f : X → S be a smooth proper morphism of schemes. Let Λ
be a Noetherian ring. LetF be a finite type, locally constant sheaf of Λ-modules onXétale

such that for every geometric point x ofX the stalkFx is annihilated by an integer n > 0
prime to the residue characteristic of x. ThenRif∗F is a finite type, locally constant sheaf
of Λ-modules on Sétale for all i ∈ Z.

Proof. The question is local on S and hence we may assume S is affine. For a point
x of X denote nx ≥ 1 the smallest integer annihilating Fx for some (equivalently any)
geometric point x of X lying over x. Since X is quasi-compact (being proper over affine)
there exists a finite étale covering {Uj → X}j=1,...,m such that F|Uj is constant. Since
Uj → X is open, we conclude that the function x 7→ nx is locally constant and takes
finitely many values. Accordingly we obtain a finite decomposition X = X1 q . . .qXN

into open and closed subschemes such that nx = n if and only if x ∈ Xn. Then it suffices
to prove the lemma for the induced morphisms Xn → S and the restriction of F to Xn.
Thus we may and do assume there exists an integer n > 0 such that F is annihilated by n
and such that n is prime to the residue characteristics of all residue fields of X .

Since f is smooth and proper the image f(X) ⊂ S is open and closed. Hence we may
replace S by f(X) and assume f(X) = S. In particular, we see that we may assume n is
invertible in the ring defining the affine scheme S.

In this paragraph we reduce to the case where S is Noetherian. Write S = Spec(A)
for some Z[1/n]-algebra A. Write A =

⋃
Ai as the union of its finite type Z[1/n]-

subalgebras. We can find an i and a morphism fi : Xi → Si = Spec(Ai) of finite type
whose base change to S is f : X → S , see Limits, Lemma 10.1. After increasing i we may
assume fi : Xi → Si is smooth and proper, see Limits, Lemmas 13.1 8.9, and 18.4. By Étale
Cohomology, Lemma 73.11 we see that there exists an i and a finite type, locally constant
sheaf of Λ-modules Fi whose pullback toX is isomorphic to F . As F is annihilated by n,
we may replace Fi by Ker(n : Fi → Fi) and assume the same thing is true for Fi. This
reduces us to the case discussed in the next paragraph.

Assume we have an integer n ≥ 1, the base scheme S is Noetherian and lives over Z[1/n],
and F is n-torsion. By Theorem 14.5 the sheaves Rif∗F are constructible sheaves of Λ-
modules. By Étale Cohomology, Lemma 94.3 the specialization maps ofRif∗F are always
isomorphisms. We conclude by Étale Cohomology, Lemma 75.6. �
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16. More on derived upper shriek

Let Λ be a torsion ring. Consider a commutative diagram

U
j

//

g
��

U ′

g′
~~

Y

of quasi-compact and quasi-separated schemes with g and g′ separated and of finite type
and with j étale. This induces a canonical map

Rg!Λ −→ Rg′
!Λ

in D(Yétale,Λ). Namely, by Lemmas 9.2 and 10.3 we have Rg! = Rg′
! ◦ j!. On the other

hand, since j! is left adjoint to j−1 we have the counit Trj : j!Λ = j!j
−1Λ → Λ; we

also call this the trace map for j , see Remark 5.6. The map above is constructed as the
composition

Rg!Λ = Rg′
!j!Λ

Rg′
! Trj−−−−→ Rg′

!Λ
Given a second étale morphism j′ : U ′ → U ′′ for some g′′ : U ′′ → Y separated and of
finite type the composition

Rg!Λ −→ Rg′
!Λ −→ Rg′′

! Λ
of the maps for j and j′ is equal to the map Rg!Λ −→ Rg′′

! Λ constructed for j′ ◦ j. This
follows from the corresponding statement on trace maps, see Lemma 5.4 for a more general
case.
Let f : X → Y be a separated finite type morphism of quasi-compact and quasi-separated
schemes. Then we obtain a functor

Xaffine,étale −→
{

schemes separated of finite type over Y
with étale morphisms between them

}
Thus the construction above determines a functor Xopp

affine,étale → D(Yétale,Λ) sending
U to R(U → Y )!Λ.

Lemma 16.1. Let f : X → Y be a separated finite type morphism of quasi-compact
and quasi-separated schemes. Let Λ be a torsion ring. Let K ∈ D(Yétale,Λ). For n ∈ Z
the cohomology sheafHn(Rf !K) restricted toXaffine,étale is the sheaf associated to the
presheaf

U 7−→ HomY (R(U → Y )!Λ,K[n])
See discussion above for the functorial nature of R(U → Y )!Λ.

Proof. Let j : U → X be an object of Xaffine,étale and set g = f ◦ j. Recall that
HomX(j!Λ,M [n]) = Hn(U,M) for any M in D(Xétale,Λ). Then Hn(Rf !K) is the
sheaf associated to the presheaf

U 7→ Hn(U,Rf !K) = HomX(j!Λ, Rf !K[n]) = HomY (Rf!j!Λ,K[n] = HomY (Rg!Λ,K[n])
We omit the verification that the transition maps are given by the transition maps between
the objects Rg!Λ = R(U → Y )!Λ we constructed above. �
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CHAPTER 64

The Trace Formula

1. Introduction

These are the notes of the second part of a course on étale cohomology taught by Johan de
Jong at Columbia University in the Fall of 2009. The original note takers were Thibaut
Pugin, Zachary Maddock and Min Lee. Over time we will add references to background
material in the rest of the Stacks project and provide rigorous proofs of all the statements.

2. The trace formula

A typical course in étale cohomology would normally state and prove the proper and
smooth base change theorems, purity and Poincaré duality. All of these can be found in [?,
Arcata]. Instead, we are going to study the trace formula for the frobenius, following the
account of Deligne in [?, Rapport]. We will only look at dimension 1, but using proper base
change this is enough for the general case. Since all the cohomology groups considered
will be étale, we drop the subscript étale. Let us now describe the formula we are after. Let
X be a finite type scheme of dimension 1 over a finite field k, ` a prime number and F a
constructible, flat Z/`nZ sheaf. Then

(2.0.1)
∑

x∈X(k)
Tr(Frob|Fx̄) =

∑2

i=0
(−1)iTr(π∗

X |Hi
c(X ⊗k k̄,F))

as elements of Z/`nZ. As we will see, this formulation is slightly wrong as stated. Let us
nevertheless describe the symbols that occur therein.

3. Frobenii

In this section we will prove a “baffling” theorem. A topological analogue of the baffling
theorem is the following.

Exercise 3.1. Let X be a topological space and g : X → X a continuous map such
that g−1(U) = U for all opens U of X . Then g induces the identity on cohomology on
X (for any coefficients).

We now turn to the statement for the étale site.

Lemma 3.2. Let X be a scheme and g : X → X a morphism. Assume that for all
ϕ : U → X étale, there is an isomorphism

U

ϕ
��

∼ // U ×ϕ,X,g X

pr2
yy

X

functorial in U . Then g induces the identity on cohomology (for any sheaf).

Proof. The proof is formal and without difficulty. �

5071
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Please see Varieties, Section 36 for a discussion of different variants of the Frobenius mor-
phism.

Theorem 3.3 (The Baffling Theorem). Let X be a scheme in characteristic p > 0.
Then the absolute frobenius induces (by pullback) the trivial map on cohomology, i.e., for
all integers j ≥ 0,

F ∗
X : Hj(X,Z/nZ) −→ Hj(X,Z/nZ)

is the identity.

This theorem is purely formal. It is a good idea, however, to review how to compute the
pullback of a cohomology class. Let us simply say that in the case where cohomology
agrees with Čech cohomology, it suffices to pull back (using the fiber products on a site)
the Čech cocycles. The general case is quite technical, see Hypercoverings, Theorem 10.1.
To prove the theorem, we merely verify that the assumption of Lemma 3.2 holds for the
frobenius.

Proof of Theorem 3.3. We need to verify the existence of a functorial isomorphism
as above. For an étale morphism ϕ : U → X , consider the diagram

U

%%

FU

$$

ϕ

&&

U ×ϕ,X,FX X pr1
//

pr2

��

U

ϕ

��
X

FX // X.

The dotted arrow is an étale morphism and a universal homeomorphism, so it is an iso-
morphism. See Étale Morphisms, Lemma 14.3. �

Definition 3.4. Let k be a finite field with q = pf elements. LetX be a scheme over
k. The geometric frobenius of X is the morphism πX : X → X over Spec(k) which
equals F fX .

SinceπX is a morphism over k, we can base change it to any scheme over k. In particular we
can base change it to the algebraic closure k̄ and get a morphism πX : Xk̄ → Xk̄. Using
πX also for this base change should not be confusing as Xk̄ does not have a geometric
frobenius of its own.

Lemma 3.5. Let F be a sheaf on Xétale. Then there are canonical isomorphisms
π−1
X F ∼= F and F ∼= πX∗F .

This is false for the fppf site.

Proof. Let ϕ : U → X be étale. Recall that πX∗F(U) = F(U ×ϕ,X,πX X). Since
πX = F fX , it follows from the proof of Theorem 3.3 that there is a functorial isomorphism

U

ϕ
��

γU
// U ×ϕ,X,πX X

pr2
yy

X
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where γU = (ϕ,F fU ). Now we define an isomorphism

F(U) −→ πX∗F(U) = F(U ×ϕ,X,πX X)

by taking the restriction map of F along γ−1
U . The other isomorphism is analogous. �

Remark 3.6. It may or may not be the case that F fU equals πU .

We continue discussion cohomology of sheaves on our scheme X over the finite field k
with q = pf elements. Fix an algebraic closure k̄ of k and write Gk = Gal(k̄/k) for
the absolute Galois group of k. Let F be an abelian sheaf on Xétale. We will define a
left Gk-module structure cohomology group Hj(Xk̄,F|Xk̄) as follows: if σ ∈ Gk , the
diagram

Xk̄

  

Spec(σ)×idX // Xk̄

~~
X

commutes. Thus we can set, for ξ ∈ Hj(Xk̄,F|Xk̄)

σ · ξ := (Spec(σ)× idX)∗ξ ∈ Hj(Xk̄, (Spec(σ)× idX)−1F|Xk̄) = Hj(Xk̄,F|Xk̄),

where the last equality follows from the commutativity of the previous diagram. This
endows the latter group with the structure of a Gk-module.

Lemma 3.7. In the situation above denoteα : X → Spec(k) the structure morphism.
Consider the stalk (Rjα∗F)Spec(k̄) endowed with its natural Galois action as in Étale
Cohomology, Section 56. Then the identification

(Rjα∗F)Spec(k̄)
∼= Hj(Xk̄,F|Xk̄)

from Étale Cohomology, Theorem 53.1 is an isomorphism of Gk-modules.

A similar result holds comparing (Rjα!F)Spec(k̄) with Hj
c (Xk̄,F|Xk̄).

Proof. Omitted. �

Definition 3.8. The arithmetic frobenius is the map frobk : k̄ → k̄, x 7→ xq of Gk.

Theorem 3.9. Let F be an abelian sheaf on Xétale. Then for all j ≥ 0, frobk acts on
the cohomology group Hj(Xk̄,F|Xk̄) as the inverse of the map π∗

X .

The map π∗
X is defined by the composition

Hj(Xk̄,F|Xk̄)
πX

∗
k̄−−−→ Hj(Xk̄, (π

−1
X F)|Xk̄) ∼= Hj(Xk̄,F|Xk̄).

where the last isomorphism comes from the canonical isomorphism π−1
X F ∼= F of Lemma

3.5.

Proof. The composition Xk̄

Spec(frobk)−−−−−−−→ Xk̄
πX−−→ Xk̄ is equal to F fXk̄ , hence the re-

sult follows from the baffling theorem suitably generalized to nontrivial coefficients. Note
that the previous composition commutes in the sense that F fXk̄ = πX ◦ Spec(frobk) =
Spec(frobk) ◦ πX . �



5074 64. THE TRACE FORMULA

Definition 3.10. Ifx ∈ X(k) is a rational point and x̄ : Spec(k̄)→ X the geometric
point lying over x, we let πx : Fx̄ → Fx̄ denote the action by frob−1

k and call it the
geometric frobenius1

We can now make a more precise statement (albeit a false one) of the trace formula (2.0.1).
Let X be a finite type scheme of dimension 1 over a finite field k, ` a prime number and F
a constructible, flat Z/`nZ sheaf. Then

(3.10.1)
∑

x∈X(k)
Tr(πx|Fx̄) =

∑2

i=0
(−1)iTr(π∗

X |Hi
c(Xk̄,F))

as elements of Z/`nZ. The reason this equation is wrong is that the trace in the right-hand
side does not make sense for the kind of sheaves considered. Before addressing this issue,
we try to motivate the appearance of the geometric frobenius (apart from the fact that it
is a natural morphism!).

Let us consider the case whereX = P1
k andF = Z/`Z. For any point, the Galois module

Fx̄ is trivial, hence for any morphism ϕ acting on Fx̄, the left-hand side is∑
x∈X(k)

Tr(ϕ|Fx̄) = #P1
k(k) = q + 1.

Now P1
k is proper, so compactly supported cohomology equals standard cohomology, and

so for a morphism π : P1
k → P1

k , the right-hand side equals

Tr(π∗|H0(P1
k̄
,Z/`Z)) + Tr(π∗|H2(P1

k̄
,Z/`Z)).

The Galois module H0(P1
k̄
,Z/`Z) = Z/`Z is trivial, since the pullback of the identity

is the identity. Hence the first trace is 1, regardless of π. For the second trace, we need
to compute the pullback π∗ : H2(P1

k̄
,Z/`Z)) for a map π : P1

k̄
→ P1

k̄
. This is a good

exercise and the answer is multiplication by the degree of π (for a proof see Étale Coho-
mology, Lemma 69.2). In other words, this works as in the familiar situation of complex
cohomology. In particular, if π is the geometric frobenius we get

Tr(π∗
X |H2(P1

k̄
,Z/`Z)) = q

and if π is the arithmetic frobenius then we get

Tr(frob∗
k|H2(P1

k̄
,Z/`Z)) = q−1.

The latter option is clearly wrong.

Remark 3.11. The computation of the degrees can be done by lifting (in some obvious
sense) to characteristic 0 and considering the situation with complex coefficients. This
method almost never works, since lifting is in general impossible for schemes which are
not projective space.

The question remains as to why we have to consider compactly supported cohomology.
In fact, in view of Poincaré duality, it is not strictly necessary for smooth varieties, but
it involves adding in certain powers of q. For example, let us consider the case where
X = A1

k and F = Z/`Z. The action on stalks is again trivial, so we only need look at
the action on cohomology. But then π∗

X acts as the identity on H0(A1
k̄
,Z/`Z) and as

multiplication by q on H2
c (A1

k̄
,Z/`Z).

1This notation is not standard. This operator is denoted Fx in [?]. We will likely change this notation in
the future.
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4. Traces

We now explain how to take the trace of an endomorphism of a module over a noncom-
mutative ring. Fix a finite ring Λ with cardinality prime to p. Typically, Λ is the group
ring (Z/`nZ)[G] for some finite group G. By convention, all the Λ-modules considered
will be left Λ-modules.

We introduce the following notation: We set Λ\ to be the quotient of Λ by its additive
subgroup generated by the commutators (i.e., the elements of the form ab− ba, a, b ∈ Λ).
Note that Λ\ is not a ring.

For instance, the module (Z/`nZ)[G]\ is the dual of the class functions, so

(Z/`nZ)[G]\ =
⊕

conjugacy classes ofG
Z/`nZ.

For a free Λ-module, we have EndΛ(Λ⊕m) = Matn(Λ). Note that since the modules
are left modules, representation of endomorphism by matrices is a right action: if a ∈
End(Λ⊕m) has matrix A and v ∈ Λ, then a(v) = vA.

Definition 4.1. The trace of the endomorphism a is the sum of the diagonal entries
of a matrix representing it. This defines an additive map Tr : EndΛ(Λ⊕m)→ Λ\.

Exercise 4.2. Given maps

Λ⊕m a−→ Λ⊕n and Λ⊕n b−→ Λ⊕m

show that Tr(ab) = Tr(ba).

We extend the definition of the trace to a finite projective Λ-module P and an endomor-
phism ϕ of P as follows. Write P as the summand of a free Λ-module, i.e., consider maps
P

a−→ Λ⊕n b−→ P with
(1) Λ⊕n = Im(a)⊕Ker(b); and
(2) b ◦ a = idP .

Then we set Tr(ϕ) = Tr(aϕb). It is easy to check that this is well-defined, using the
previous exercise.

5. Why derived categories?

With this definition of the trace, let us now discuss another issue with the formula as
stated. LetC be a smooth projective curve over k. Then there is a correspondence between
finite locally constant sheavesF onCétale whose stalks are isomorphic to (Z/`nZ)⊕m on
the one hand, and continuous representations ρ : π1(C, c̄) → GLm(Z/`nZ)) (for some
fixed choice of c̄) on the other hand. We denote Fρ the sheaf corresponding to ρ. Then
H2(Ck̄,Fρ) is the group of coinvariants for the action of ρ(π1(C, c̄)) on (Z/`nZ)⊕m, and
there is a short exact sequence

0 −→ π1(Ck̄, c̄) −→ π1(C, c̄) −→ Gk −→ 0.
For instance, let Z = Zσ act on Z/`2Z via σ(x) = (1 + `)x. The coinvariants are
(Z/`2Z)σ = Z/`Z, which is not a flat Z/`2Z-module. Hence we cannot take the trace of
some action on H2(Ck̄,Fρ), at least not in the sense of the previous section.

In fact, our goal is to consider a trace formula for `-adic coefficients. But Q` = Z`[1/`]
and Z` = lim Z/`nZ, and even for a flat Z/`nZ sheaf, the individual cohomology groups
may not be flat, so we cannot compute traces. One possible remedy is consider the total
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derived complex RΓ(Ck̄,Fρ) in the derived category D(Z/`nZ) and show that it is a
perfect object, which means that it is quasi-isomorphic to a finite complex of finite free
module. For such complexes, we can define the trace, but this will require an account of
derived categories.

6. Derived categories

To set up notation, let A be an abelian category. Let Comp(A) be the abelian category
of complexes in A. Let K(A) be the category of complexes up to homotopy, with ob-
jects equal to complexes in A and morphisms equal to homotopy classes of morphisms
of complexes. This is not an abelian category. Loosely speaking, D(A) is defined to be
the category obtained by inverting all quasi-isomorphisms in Comp(A) or, equivalently,
in K(A). Moreover, we can define Comp+(A),K+(A), D+(A) analogously using only
bounded below complexes. Similarly, we can define Comp−(A),K−(A), D−(A) using
bounded above complexes, and we can define Compb(A),Kb(A), Db(A) using bounded
complexes.

Remark 6.1. Notes on derived categories.
(1) There are some set-theoretical problems when A is somewhat arbitrary, which

we will happily disregard.
(2) The categoriesK(A) andD(A) are endowed with the structure of a triangulated

category.
(3) The categories Comp(A) and K(A) can also be defined when A is an additive

category.

The homology functor Hi : Comp(A) → A taking a complex K• 7→ Hi(K•) extends
to functors Hi : K(A)→ A and Hi : D(A)→ A.

Lemma 6.2. An object E of D(A) is contained in D+(A) if and only if Hi(E) = 0
for all i� 0. Similar statements hold for D− and D+.

Proof. Hint: use truncation functors. See Derived Categories, Lemma 11.5. �

Lemma 6.3. Morphisms between objects in the derived category.
(1) Let I• ∈ Comp+(A) with In injective for all n ∈ Z. Then

HomD(A)(K•, I•) = HomK(A)(K•, I•).

(2) Let P • ∈ Comp−(A) with Pn is projective for all n ∈ Z. Then

HomD(A)(P •,K•) = HomK(A)(P •,K•).

(3) If A has enough injectives and I ⊂ A is the additive subcategory of injectives,
then D+(A) ∼= K+(I) (as triangulated categories).

(4) IfA has enough projectives andP ⊂ A is the additive subcategory of projectives,
then D−(A) ∼= K−(P).

Proof. Omitted. �

Definition 6.4. LetF : A → B be a left exact functor and assume thatA has enough
injectives. We define the total right derived functor of F as the functor RF : D+(A)→
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D+(B) fitting into the diagram

D+(A) RF // D+(B)

K+(I)

OO

F // K+(B).

OO

This is possible since the left vertical arrow is invertible by the previous lemma. Similarly,
let G : A → B be a right exact functor and assume that A has enough projectives. We
define the total left derived functor of G as the functor LG : D−(A) → D−(B) fitting
into the diagram

D−(A) LG // D−(B)

K−(P)

OO

G // K−(B).

OO

This is possible since the left vertical arrow is invertible by the previous lemma.
Remark 6.5. In these cases, it is true that RiF (K•) = Hi(RF (K•)), where the left

hand side is defined to be ith homology of the complex F (K•).

7. Filtered derived category

It turns out we have to do it all again and build the filtered derived category also.
Definition 7.1. LetA be an abelian category.

(1) Let Fil(A) be the category of filtered objects (A,F ) ofA, where F is a filtration
of the form

A ⊃ . . . ⊃ FnA ⊃ Fn+1A ⊃ . . . ⊃ 0.
This is an additive category.

(2) We denote Filf (A) the full subcategory of Fil(A) whose objects (A,F ) have
finite filtration. This is also an additive category.

(3) An object I ∈ Filf (A) is called filtered injective (respectively projective) pro-
vided that grp(I) = grpF (I) = F pI/F p+1I is injective (resp. projective) in A
for all p.

(4) The category of complexes Comp(Filf (A)) ⊃ Comp+(Filf (A)) and its homo-
topy category K(Filf (A)) ⊃ K+(Filf (A)) are defined as before.

(5) A morphism α : K• → L• of complexes in Comp(Filf (A)) is called a filtered
quasi-isomorphism provided that

grp(α) : grp(K•)→ grp(L•)
is a quasi-isomorphism for all p ∈ Z.

(6) We defineDF (A) (resp. DF+(A)) by inverting the filtered quasi-isomorphisms
in K(Filf (A)) (resp. K+(Filf (A))).

Lemma 7.2. IfA has enough injectives, thenDF+(A) ∼= K+(I), where I is the full
additive subcategory of Filf (A) consisting of filtered injective objects. Similarly, ifA has
enough projectives, thenDF−(A) ∼= K+(P), where P is the full additive subcategory of
Filf (A) consisting of filtered projective objects.

Proof. Omitted. �
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8. Filtered derived functors

And then there are the filtered derived functors.

Definition 8.1. Let T : A → B be a left exact functor and assume thatA has enough
injectives. Define RT : DF+(A)→ DF+(B) to fit in the diagram

DF+(A) RT // DF+(B)

K+(I)

OO

T // K+(Filf (B)).

OO

This is well-defined by the previous lemma. Let G : A → B be a right exact functor and
assume that A has enough projectives. Define LG : DF+(A) → DF+(B) to fit in the
diagram

DF−(A) LG // DF−(B)

K−(P)

OO

G // K−(Filf (B)).

OO

Again, this is well-defined by the previous lemma. The functors RT , resp. LG, are called
the filtered derived functor of T , resp. G.

Proposition 8.2. In the situation above, we have

grp ◦RT = RT ◦ grp

where the RT on the left is the filtered derived functor while the one on the right is the
total derived functor. That is, there is a commuting diagram

DF+(A) RT //

grp

��

DF+(B)

grp

��
D+(A) RT // D+(B).

Proof. Omitted. �

Given K• ∈ DF+(B), we get a spectral sequence

Ep,q1 = Hp+q(grpK•)⇒ Hp+q(forget filt(K•)).

9. Application of filtered complexes

LetA be an abelian category with enough injectives, and 0→ L→M → N → 0 a short
exact sequence inA. Consider M̃ ∈ Filf (A) to beM along with the filtration defined by

F 1M = L, FnM = M for n ≤ 0, and FnM = 0 for n ≥ 2.

By definition, we have

forget filt(M̃) = M, gr0(M̃) = N, gr1(M̃) = L
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and grn(M̃) = 0 for all other n 6= 0, 1. Let T : A → B be a left exact functor. Assume
thatA has enough injectives. Then RT (M̃) ∈ DF+(B) is a filtered complex with

grp(RT (M̃)) qis=

 0 if p 6= 0, 1,
RT (N) if p = 0,
RT (L) if p = 1.

and forget filt(RT (M̃)) qis= RT (M). The spectral sequence applied to RT (M̃) gives

Ep,q1 = Rp+qT (grp(M̃))⇒ Rp+qT (forget filt(M̃)).

Unwinding the spectral sequence gives us the long exact sequence

0 // T (L) // T (M) // T (N)

{{
R1T (L) // R1T (M) // . . .

This will be used as follows. LetX/k be a scheme of finite type. LetF be a flat constructible
Z/`nZ-module. Then we want to show that the trace

Tr(π∗
X |RΓc(Xk̄,F)) ∈ Z/`nZ

is additive on short exact sequences. To see this, it will not be enough to work with
RΓc(Xk̄,−) ∈ D+(Z/`nZ), but we will have to use the filtered derived category.

10. Perfectness

Let Λ be a (possibly noncommutative) ring, ModΛ the category of left Λ-modules,K(Λ) =
K(ModΛ) its homotopy category, and D(Λ) = D(ModΛ) the derived category.

Definition 10.1. We denote by Kperf (Λ) the category whose objects are bounded
complexes of finite projective Λ-modules, and whose morphisms are morphisms of com-
plexes up to homotopy. The functor Kperf (Λ) → D(Λ) is fully faithful (Derived Cat-
egories, Lemma 19.8). Denote Dperf (Λ) its essential image. An object of D(Λ) is called
perfect if it is in Dperf (Λ).

Proposition 10.2. LetK ∈ Dperf (Λ) and f ∈ EndD(Λ)(K). Then the trace Tr(f) ∈
Λ\ is well defined.

Proof. We will use Derived Categories, Lemma 19.8 without further mention in this
proof. Let P • be a bounded complex of finite projective Λ-modules and let α : P • → K
be an isomorphism in D(Λ). Then α−1 ◦ f ◦ α corresponds to a morphism of complexes
f• : P • → P • well defined up to homotopy. Set

Tr(f) =
∑
i

(−1)iTr(f i : P i → P i) ∈ Λ\.
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Given P • and α, this is independent of the choice of f•. Namely, any other choice is of
the form f̃• = f• + dh+ hd for some hi : P i → P i−1(i ∈ Z). But

Tr(dh) =
∑
i

(−1)iTr(P i dh−→ P i)

=
∑
i

(−1)iTr(P i−1 hd−→ P i−1)

= −
∑
i

(−1)i−1Tr(P i−1 hd−→ P i−1)

= −Tr(hd)
and so

∑
i(−1)iTr((dh+ hd)|P i) = 0. Furthermore, this is independent of the choice of

(P •, α): suppose (Q•, β) is another choice. The compositions

Q• β−→ K
α−1

−−→ P • and P • α−→ K
β−1

−−→ Q•

are representable by morphisms of complexes γ•
1 and γ•

2 respectively, such that γ•
1 ◦ γ•

2 is
homotopic to the identity. Thus, the morphism of complexes γ•

2 ◦ f• ◦ γ•
1 : Q• → Q•

represents the morphism β−1 ◦ f ◦ β in D(Λ). Now

Tr(γ•
2 ◦ f• ◦ γ•

1 |Q•) = Tr(γ•
1 ◦ γ•

2 ◦ f•|P•)
= Tr(f•|P•)

by the fact that γ•
1 ◦ γ•

2 is homotopic to the identity and the independence of the choice
of f• we saw above. �

11. Filtrations and perfect complexes

We now present a filtered version of the category of perfect complexes. An object (M,F )
of Filf (ModΛ) is called filtered finite projective if for all p, grpF (M) is finite and projective.
We then consider the homotopy category KFperf(Λ) of bounded complexes of filtered
finite projective objects of Filf (ModΛ). We have a diagram of categories

KF (Λ) ⊃ KFperf(Λ)
↓ ↓

DF (Λ) ⊃ DFperf(Λ)
where the vertical functor on the right is fully faithful and the category DFperf(Λ) is its
essential image, as before.

Lemma 11.1 (Additivity). Let K ∈ DFperf(Λ) and f ∈ EndDF (K). Then

Tr(f |K) =
∑

p∈Z
Tr(f |grpK).

Proof. By Proposition 10.2, we may assume we have a bounded complex P • of fil-
tered finite projectives of Filf (ModΛ) and a map f• : P • → P • in Comp(Filf (ModΛ)).
So the lemma follows from the following result, which proof is left to the reader. �

Lemma 11.2. Let P ∈ Filf (ModΛ) be filtered finite projective, and f : P → P an
endomorphism in Filf (ModΛ). Then

Tr(f |P ) =
∑

p
Tr(f |grp(P )).

Proof. Omitted. �
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12. Characterizing perfect objects

For the commutative case see More on Algebra, Sections 64, 66, and 74.

Definition 12.1. Let Λ be a (possibly noncommutative) ring. An object K ∈ D(Λ)
has finite Tor-dimension if there exist a, b ∈ Z such that for any right Λ-module N , we
have Hi(N ⊗L

Λ K) = 0 for all i 6∈ [a, b].

This in particular means that K ∈ Db(Λ) as we see by taking N = Λ.

Lemma 12.2. Let Λ be a left Noetherian ring and K ∈ D(Λ). Then K is perfect if
and only if the two following conditions hold:

(1) K has finite Tor-dimension, and
(2) for all i ∈ Z, Hi(K) is a finite Λ-module.

Proof. See More on Algebra, Lemma 74.2 for the proof in the commutative case. �

The reader is strongly urged to try and prove this. The proof relies on the fact that a finite
module on a finitely left-presented ring is flat if and only if it is projective.

Remark 12.3. A variant of this lemma is to consider a Noetherian scheme X and
the categoryDperf (OX) of complexes which are locally quasi-isomorphic to a finite com-
plex of finite locally freeOX -modules. Objects K of Dperf (OX) can be characterized by
having coherent cohomology sheaves and bounded tor dimension.

13. Cohomology of nice complexes

The following is a special case of a more general result about compactly supported coho-
mology of objects of Dctf (X,Λ).

Proposition 13.1. Let X be a projective curve over a field k, Λ a finite ring and
K ∈ Dctf (X,Λ). Then RΓ(Xk̄,K) ∈ Dperf (Λ).

Sketch of proof. The first step is to show:
(1) The cohomology of RΓ(Xk̄,K) is bounded.

Consider the spectral sequence

Hi(Xk̄,H
j(K))⇒ Hi+j(RΓ(Xk̄,K)).

Since K is bounded and Λ is finite, the sheaves Hj(K) are torsion. Moreover, Xk̄ has
finite cohomological dimension, so the left-hand side is nonzero for finitely many i and j
only. Therefore, so is the right-hand side.

(2) The cohomology groups Hi+j(RΓ(Xk̄,K)) are finite.
Since the sheaves Hj(K) are constructible, the groups Hi(Xk̄,H

j(K)) are finite (Étale
Cohomology, Section 83) so it follows by the spectral sequence again.

(3) RΓ(Xk̄,K) has finite Tor-dimension.
Let N be a right Λ-module (in fact, since Λ is finite, it suffices to assume that N is finite).
By the projection formula (change of module),

N ⊗L
Λ RΓ(Xk̄,K) = RΓ(Xk̄, N ⊗

L
Λ K).

Therefore,
Hi(N ⊗L

Λ RΓ(Xk̄,K)) = Hi(RΓ(Xk̄, N ⊗
L
Λ K)).

Now consider the spectral sequence

Hi(Xk̄,H
j(N ⊗L

Λ K))⇒ Hi+j(RΓ(Xk̄, N ⊗
L
Λ K)).
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Since K has finite Tor-dimension, Hj(N ⊗L
Λ K) vanishes universally for j small enough,

and the left-hand side vanishes whenever i < 0. Therefore RΓ(Xk̄,K) has finite Tor-
dimension, as claimed. So it is a perfect complex by Lemma 12.2. �

14. Lefschetz numbers

The fact that the total cohomology of a constructible complex of finite tor dimension is a
perfect complex is the key technical reason why cohomology behaves well, and allows us
to define rigorously the traces occurring in the trace formula.

Definition 14.1. Let Λ be a finite ring, X a projective curve over a finite field k and
K ∈ Dctf (X,Λ) (for instance K = Λ). There is a canonical map cK : π−1

X K → K , and
its base change cK |Xk̄ induces an action denotedπ∗

X on the perfect complexRΓ(Xk̄,K|Xk̄).
The global Lefschetz number of K is the trace Tr(π∗

X |RΓ(Xk̄,K)) of that action. It is an
element of Λ\.

Definition 14.2. With Λ, X, k,K as in Definition 14.1. SinceK ∈ Dctf (X,Λ), for
any geometric point x̄ of X , the complex Kx̄ is a perfect complex (in Dperf (Λ)). As we
have seen in Section 3, the Frobenius πX acts on Kx̄. The local Lefschetz number of K is
the sum ∑

x∈X(k)
Tr(πX |Kx)

which is again an element of Λ\.

At last, we can formulate precisely the trace formula.

Theorem 14.3 (Lefschetz Trace Formula). Let X be a projective curve over a finite
field k, Λ a finite ring and K ∈ Dctf (X,Λ). Then the global and local Lefschetz numbers
of K are equal, i.e.,

(14.3.1) Tr(π∗
X |RΓ(Xk̄,K)) =

∑
x∈X(k)

Tr(πX |Kx̄)

in Λ\.

Proof. See discussion below. �

We will use, rather than prove, the trace formula. Nevertheless, we will give quite a few de-
tails of the proof of the theorem as given in [?] (some of the things that are not adequately
explained are listed in Section 21).

We only stated the formula for curves, and in some weak sense it is a consequence of the
following result.

Theorem 14.4 (Weil). Let C be a nonsingular projective curve over an algebraically
closed field k, and ϕ : C → C a k-endomorphism of C distinct from the identity. Let
V (ϕ) = ∆C · Γϕ, where ∆C is the diagonal, Γϕ is the graph of ϕ, and the intersection
number is taken on C × C. Let J = Pic0

C/k be the jacobian of C and denote ϕ∗ : J → J
the action induced by ϕ by taking pullbacks. Then

V (ϕ) = 1− TrJ(ϕ∗) + degϕ.

Proof. The number V (ϕ) is the number of fixed points of ϕ, it is equal to

V (ϕ) =
∑

c∈|C|:ϕ(c)=c
mFix(ϕ)(c)
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where mFix(ϕ)(c) is the multiplicity of c as a fixed point of ϕ, namely the order or van-
ishing of the image of a local uniformizer under ϕ − idC . Proofs of this theorem can be
found in [?] and [?]. �

Example 14.5. Let C = E be an elliptic curve and ϕ = [n] be multiplication by n.
Then ϕ∗ = ϕt is multiplication by n on the jacobian, so it has trace 2n and degree n2. On
the other hand, the fixed points of ϕ are the points p ∈ E such that np = p, which is the
(n− 1)-torsion, which has cardinality (n− 1)2. So the theorem reads

(n− 1)2 = 1− 2n+ n2.

Jacobians. We now discuss without proofs the correspondence between a curve and its
jacobian which is used in Weil’s proof. Let C be a nonsingular projective curve over an
algebraically closed field k and choose a base point c0 ∈ C(k). Denote by A1(C × C)
(or Pic(C ×C), or CaCl(C ×C)) the abelian group of codimension 1 divisors of C ×C.
Then

A1(C × C) = pr∗
1(A1(C))⊕ pr∗

2(A1(C))⊕R
where

R = {Z ∈ A1(C × C) | Z|C×{c0} ∼rat 0 and Z|{c0}×C ∼rat 0}.
In other words, R is the subgroup of line bundles which pull back to the trivial one under
either projection. Then there is a canonical isomorphism of abelian groups R ∼= End(J)
which maps a divisor Z in R to the endomorphism

J → J
[OC(D)] 7→ (pr1|Z)∗(pr2|Z)∗(D).

The aforementioned correspondence is the following. We denote by σ the automorphism
of C × C that switches the factors.

End(J) R

composition of α, β pr13∗(pr12
∗(α) ◦ pr23

∗(β))

idJ ∆C − {c0} × C − C × {c0}

ϕ∗ Γϕ − C × {ϕ(c0)} −
∑
ϕ(c)=c0

{c} × C

the trace form
α, β 7→ Tr(αβ) α, β 7→ −

∫
C×C α.σ

∗β

the Rosati involution
α 7→ α† α 7→ σ∗α

positivity of Rosati
Tr(αα†) > 0

Hodge index theorem on C × C
−
∫
C×C ασ

∗α > 0.

In fact, in light of the Kunneth formula, the subgroup R corresponds to the 1, 1 hodge
classes in H1(C)⊗H1(C).
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Weil’s proof. Using this correspondence, we can prove the trace formula. We have

V (ϕ) =
∫
C×C

Γϕ.∆

=
∫
C×C

Γϕ. (∆C − {c0} × C − C × {c0}) +
∫
C×C

Γϕ. ({c0} × C + C × {c0}) .

Now, on the one hand∫
C×C

Γϕ. ({c0} × C + C × {c0}) = 1 + degϕ

and on the other hand, sinceR is the orthogonal of the ample divisor {c0}×C+C×{c0},∫
C×C

Γϕ. (∆C − {c0} × C − C × {c0})

=
∫
C×C

Γϕ − C × {ϕ(c0)} −
∑

ϕ(c)=c0

{c} × C

 . (∆C − {c0} × C − C × {c0})

= −TrJ(ϕ∗ ◦ idJ).

Recapitulating, we have
V (ϕ) = 1− TrJ(ϕ∗) + degϕ

which is the trace formula.

Lemma 14.6. Consider the situation of Theorem 14.4 and let ` be a prime number
invertible in k. Then∑2

i=0
(−1)iTr(ϕ∗|Hi(C,Z/`nZ)) = V (ϕ) mod `n.

Sketch of proof. Observe first that the assumption makes sense becauseHi(C,Z/`nZ)
is a free Z/`nZ-module for all i. The trace of ϕ∗ on the 0th degree cohomology is 1. The
choice of a primitive `nth root of unity in k gives an isomorphism

Hi(C,Z/`nZ) ∼= Hi(C, µ`n)

compatibly with the action of the geometric Frobenius. On the other hand,H1(C, µ`n) =
J [`n]. Therefore,

Tr(ϕ∗|H1(C,Z/`nZ))) = TrJ(ϕ∗) mod `n

= TrZ/`nZ(ϕ∗ : J [`n]→ J [`n]).

Moreover, H2(C, µ`n) = Pic(C)/`n Pic(C) ∼= Z/`nZ where ϕ∗ is multiplication by
degϕ. Hence

Tr(ϕ∗|H2(C,Z/`nZ)) = degϕ.

Thus we have
2∑
i=0

(−1)iTr(ϕ∗|Hi(C,Z/`nZ)) = 1− TrJ(ϕ∗) + degϕ mod `n

and the corollary follows from Theorem 14.4. �
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An alternative way to prove this corollary is to show that

X 7→ H∗(X,Q`) = Q` ⊗ limnH
∗(X,Z/`nZ)

defines a Weil cohomology theory on smooth projective varieties over k. Then the trace
formula

V (ϕ) =
2∑
i=0

(−1)iTr(ϕ∗|Hi(C,Q`))

is a formal consequence of the axioms (it’s an exercise in linear algebra, the proof is the
same as in the topological case).

15. Preliminaries and sorites

Notation: We fix the notation for this section. We denote by A a commutative ring, Λ a
(possibly noncommutative) ring with a ring map A → Λ which image lies in the center
of Λ. We let G be a finite group, Γ a monoid extension of G by N, meaning that there is
an exact sequence

1→ G→ Γ̃→ Z→ 1
and Γ consists of those elements of Γ̃ which image is nonnegative. Finally, we let P be
an A[Γ]-module which is finite and projective as an A[G]-module, and M a Λ[Γ]-module
which is finite and projective as a Λ-module.

Our goal is to compute the trace of 1 ∈ N acting over Λ on the coinvariants of G on
P ⊗AM , that is, the number

TrΛ (1; (P ⊗AM)G) ∈ Λ\.
The element 1 ∈ N will correspond to the Frobenius.

Lemma 15.1. Let e ∈ G denote the neutral element. The map

Λ[G] −→ Λ\∑
λg · g 7−→ λe

factors through Λ[G]\. We denote ε : Λ[G]\ → Λ\ the induced map.

Proof. We have to show the map annihilates commutators. One has(∑
λgg
)(∑

µgg
)
−
(∑

µgg
)(∑

λgg
)

=
∑
g

( ∑
g1g2=g

λg1µg2 − µg1λg2

)
g

The coefficient of e is∑
g

(
λgµg−1 − µgλg−1

)
=
∑
g

(
λgµg−1 − µg−1λg

)
which is a sum of commutators, hence it zero in Λ\. �

Definition 15.2. Let f : P → P be an endomorphism of a finite projective Λ[G]-
module P . We define

TrGΛ (f ;P ) := ε
(
TrΛ[G](f ;P )

)
to be the G-trace of f on P .

Lemma 15.3. Let f : P → P be an endomorphism of the finite projective Λ[G]-
module P . Then

TrΛ(f ;P ) = #G · TrGΛ (f ;P ).
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Proof. By additivity, reduce to the case P = Λ[G]. In that case, f is given by right
multiplication by some element

∑
λg · g of Λ[G]. In the basis (g)g∈G, the matrix of f has

coefficient λg−1
2 g1

in the (g1, g2) position. In particular, all diagonal coefficients are λe,
and there are #G such coefficients. �

Lemma 15.4. The map A→ Λ defines an A-module structure on Λ\.

Proof. This is clear. �

Lemma 15.5. Let P be a finite projective A[G]-module and M a Λ[G]-module, finite
projective as a Λ-module. Then P ⊗AM is a finite projective Λ[G]-module, for the struc-
ture induced by the diagonal action of G.

Note that P ⊗A M is naturally a Λ-module since M is. Explicitly, together with the
diagonal action this reads(∑

λgg
)

(p⊗m) =
∑

gp⊗ λggm.

Proof. For any Λ[G]-module N one has
HomΛ[G] (P ⊗AM,N) = HomA[G] (P,HomΛ(M,N))

where the G-action on HomΛ(M,N) is given by (g · ϕ)(m) = gϕ(g−1m). Now it suf-
fices to observe that the right-hand side is a composition of exact functors, because of the
projectivity of P and M . �

Lemma 15.6. With assumptions as in Lemma 15.5, let u ∈ EndA[G](P ) and v ∈
EndΛ[G](M). Then

TrGΛ (u⊗ v;P ⊗AM) = TrGA(u;P ) · TrΛ(v;M).

Sketch of proof. Reduce to the case P = A[G]. In that case, u is right multiplica-
tion by some element a =

∑
agg of A[G], which we write u = Ra. There is an isomor-

phism of Λ[G]-modules

ϕ : A[G]⊗AM ∼= (A[G]⊗AM)′

g ⊗m 7−→ g ⊗ g−1m

where (A[G]⊗AM)′ has the module structure given by the left G-action, together with
the Λ-linearity on M . This transport of structure changes u ⊗ v into

∑
g agRg ⊗ g−1v.

In other words,
ϕ ◦ (u⊗ v) ◦ ϕ−1 =

∑
g

agRg ⊗ g−1v.

Working out explicitly both sides of the equation, we have to show

TrGΛ

(∑
g

agRg ⊗ g−1v

)
= ae · TrΛ(v;M).

This is done by showing that

TrGΛ
(
agRg ⊗ g−1v

)
=
{

0 if g 6= e
aeTrΛ (v;M) if g = e

by reducing to M = Λ. �

Notation: Consider the monoid extension 1 → G → Γ → N → 1 and let γ ∈ Γ. Then
we write Zγ = {g ∈ G|gγ = γg}.
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Lemma 15.7. Let P be a Λ[Γ]-module, finite and projective as a Λ[G]-module, and
γ ∈ Γ. Then

TrΛ(γ, P ) = #Zγ · TrZγΛ (γ, P ) .
Proof. This follows readily from Lemma 15.3. �

Lemma 15.8. Let P be anA[Γ]-module, finite projective asA[G]-module. LetM be a
Λ[Γ]-module, finite projective as a Λ-module. Then

TrZγΛ (γ, P ⊗AM) = TrZγA (γ, P ) · TrΛ(γ,M).
Proof. This follows directly from Lemma 15.6. �

Lemma 15.9. Let P be a Λ[Γ]-module, finite projective as Λ[G]-module. Then the
coinvariants PG = Λ⊗Λ[G] P form a finite projective Λ-module, endowed with an action
of Γ/G = N. Moreover, we have

TrΛ(1;PG) =
∑′

γ 7→1
TrZγΛ (γ, P )

where
∑′
γ 7→1 means taking the sum over the G-conjugacy classes in Γ.

Sketch of proof. We first prove this after multiplying by #G.

#G · TrΛ(1;PG) = TrΛ(
∑

γ 7→1
γ, PG) = TrΛ(

∑
γ 7→1

γ, P )

where the second equality follows by considering the commutative triangle

PG

a
  

PGc
oo

P

b

>>

where a is the canonical inclusion, b the canonical surjection and c =
∑
γ 7→1 γ. Then we

have
(
∑

γ 7→1
γ)|P = a ◦ c ◦ b and (

∑
γ 7→1

γ)|PG = b ◦ a ◦ c

hence they have the same trace. We then have

#G · TrΛ(1;PG) =
∑
γ 7→1

′ #G
#Zγ

TrΛ(γ, P ) = #G
∑
γ 7→1

′
TrZγΛ (γ, P ).

To finish the proof, reduce to case Λ torsion-free by some universality argument. See [?]
for details. �

Remark 15.10. Let us try to illustrate the content of the formula of Lemma 15.8.
Suppose that Λ, viewed as a trivial Γ-module, admits a finite resolution 0→ Pr → . . .→
P1 → P0 → Λ → 0 by some Λ[Γ]-modules Pi which are finite and projective as Λ[G]-
modules. In that case

H∗ ((P•)G) = TorΛ[G]
∗ (Λ,Λ) = H∗(G,Λ)

and
TrZγΛ (γ, P•) = 1

#Zγ
TrΛ(γ, P•) = 1

#Zγ
Tr(γ,Λ) = 1

#Zγ
.

Therefore, Lemma 15.8 says

TrΛ(1, PG) = Tr
(
1|H∗(G,Λ)

)
=
∑
γ 7→1

′ 1
#Zγ

.
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This can be interpreted as a point count on the stack BG. If Λ = F` with ` prime to #G,
then H∗(G,Λ) is F` in degree 0 (and 0 in other degrees) and the formula reads

1 =
∑

σ-conjugacy
classes〈γ〉

1
#Zγ

mod `.

This is in some sense a “trivial” trace formula for G. Later we will see that (14.3.1) can in
some cases be viewed as a highly nontrivial trace formula for a certain type of group, see
Section 30.

16. Proof of the trace formula

Theorem 16.1. Let k be a finite field andX a finite type, separated scheme of dimen-
sion at most 1 over k. Let Λ be a finite ring whose cardinality is prime to that of k, and
K ∈ Dctf (X,Λ). Then

(16.1.1) Tr(π∗
X |RΓc(Xk̄,K)) =

∑
x∈X(k)

Tr(πx|Kx̄)

in Λ\.

Please see Remark 16.2 for some remarks on the statement. Notation: For short, we write

T ′(X,K) =
∑

x∈X(k)
Tr(πx|Kx̄)

for the right-hand side of (16.1.1) and

T ′′(X,K) = Tr(π∗
x|RΓc(Xk̄,K))

for the left-hand side.

Proof of Theorem 16.1. The proof proceeds in a number of steps.

Step 1. Let j : U ↪→ X be an open immersion with complement Y = X −U and i : Y ↪→
X . Then T ′′(X,K) = T ′′(U , j−1K) + T ′′(Y, i−1K) and T ′(X,K) = T ′(U , j−1K) +
T ′(Y, i−1K).

This is clear for T ′. For T ′′ use the exact sequence

0→ j!j
−1K → K → i∗i

−1K → 0

to get a filtration on K. This gives rise to an object K̃ ∈ DF (X,Λ) whose graded pieces
are j!j

−1K and i∗i
−1K , both of which lie in Dctf (X,Λ). Then, by filtered derived

abstract nonsense (INSERT REFERENCE), RΓc(Xk̄,K) ∈ DFperf (Λ), and it comes
equipped with π∗

x in DFperf (Λ). By the discussion of traces on filtered complexes (IN-
SERT REFERENCE) we get

Tr(π∗
X |RΓc(Xk̄,K)) = Tr(π∗

X |RΓc(Xk̄,j!j−1K)) + Tr(π∗
X |RΓc(Xk̄,i∗i−1K))

= T ′′(U, i−1K) + T ′′(Y, i−1K).
Step 2. The theorem holds if dimX ≤ 0.

Indeed, in that case

RΓc(Xk̄,K) = RΓ(Xk̄,K) = Γ(Xk̄,K) =
⊕

x̄∈Xk̄
Kx̄ ← πX ∗ .

Since the fixed points of πX : Xk̄ → Xk̄ are exactly the points x̄ ∈ Xk̄ which lie over a
k-rational point x ∈ X(k) we get

Tr
(
π∗
X |RΓc(Xk̄,K)

)
=
∑

x∈X(k)
Tr(πx̄|Kx̄).
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Step 3. It suffices to prove the equality T ′(U ,F) = T ′′(U ,F) in the case where
• U is a smooth irreducible affine curve over k,
• U(k) = ∅,
• K = F is a finite locally constant sheaf of Λ-modules on U whose stalk(s) are

finite projective Λ-modules, and
• Λ is killed by a power of a prime ` and ` ∈ k∗.

Indeed, because of Step 2, we can throw out any finite set of points. But we have only
finitely many rational points, so we may assume there are none2. We may assume that U
is smooth irreducible and affine by passing to irreducible components and throwing away
the bad points if necessary. The assumptions ofF come from unwinding the definition of
Dctf (X,Λ) and those on Λ from considering its primary decomposition.
For the remainder of the proof, we consider the situation

V

f

��

// Y

f̄
��

U // X

where U is as above, f is a finite étale Galois covering, V is connected and the horizontal
arrows are projective completions. Denoting G = Aut(V|U), we also assume (as we may)
that f−1F = M is constant, where the moduleM = Γ(V, f−1F) is a Λ[G]-module which
is finite and projective over Λ. This corresponds to the trivial monoid extension

1→ G→ Γ = G×N→ N→ 1.
In that context, using the reductions above, we need to show that T ′′(U ,F) = 0.
Step 4. There is a natural action ofG on f∗f

−1F and the trace map f∗f
−1F → F defines

an isomorphism
(f∗f

−1F)⊗Λ[G] Λ = (f∗f
−1F)G ∼= F .

To prove this, simply unwind everything at a geometric point.
Step 5. Let A = Z/`nZ with n � 0. Then f∗f

−1F ∼= (f∗A) ⊗A M with diagonal
G-action.
Step 6. There is a canonical isomorphism (f∗A⊗AM)⊗Λ[G] Λ ∼= F .
In fact, this is a derived tensor product, because of the projectivity assumption on F .
Step 7. There is a canonical isomorphism

RΓc(Uk̄,F) = (RΓc(Uk̄, f∗A)⊗L
AM)⊗L

Λ[G] Λ,
compatible with the action of π∗

U .
This comes from the universal coefficient theorem, i.e., the fact that RΓc commutes with
⊗L, and the flatness of F as a Λ-module.
We have

Tr(π∗
U |RΓc(Uk̄,F)) =

∑
g∈G

′
TrZgΛ

(
(g, π∗

U )|RΓc(Uk̄,f∗A)⊗L
A
M

)
=

∑
g∈G

′
TrZgA ((g, π∗

U )|RΓc(Uk̄,f∗A)) · TrΛ(g|M )

2At this point, there should be an evil laugh in the background.
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where Γ acts on RΓc(Uk̄,F) by G and (e, 1) acts via π∗
U . So the monoidal extension is

given by Γ = G ×N → N, γ 7→ 1. The first equality follows from Lemma 15.9 and the
second from Lemma 15.8.

Step 8. It suffices to show that TrZgA ((g, π∗
U )|RΓc(Uk̄,f∗A)) ∈ A maps to zero in Λ.

Recall that

#Zg · TrZgA ((g, π∗
U )|RΓc(Uk̄,f∗A)) = TrA((g, π∗

U )|RΓc(Uk̄,f∗A))
= TrA((g−1πV)∗|RΓc(Vk̄,A)).

The first equality is Lemma 15.7, the second is the Leray spectral sequence, using the finite-
ness of f and the fact that we are only taking traces over A. Now since A = Z/`nZ with
n� 0 and #Zg = `a for some (fixed) a, it suffices to show the following result.

Step 9. We have TrA((g−1πV)∗|RΓc(V,A)) = 0 in A.

By additivity again, we have

TrA((g−1πV)∗|RΓc(Vk̄A)) + TrA((g−1πV)∗|RΓc(Y−V)k̄,A))
= TrA((g−1πY )∗|RΓ(Yk̄,A))

The latter trace is the number of fixed points of g−1πY on Y , by Weil’s trace formula
Theorem 14.4. Moreover, by the 0-dimensional case already proven in step 2,

TrA((g−1πV)∗|RΓc(Y−V)k̄,A))

is the number of fixed points of g−1πY on (Y − V)k̄. Therefore,

TrA((g−1πV)∗|RΓc(Vk̄,A))

is the number of fixed points of g−1πY on Vk̄. But there are no such points: if ȳ ∈ Yk̄
is fixed under g−1πY , then f̄(ȳ) ∈ Xk̄ is fixed under πX . But U has no k-rational point,
so we must have f̄(ȳ) ∈ (X − U)k̄ and so ȳ /∈ Vk̄ , a contradiction. This finishes the
proof. �

Remark 16.2. Remarks on Theorem 16.1.
(1) This formula holds in any dimension. By a dévissage lemma (which uses proper

base change etc.) it reduces to the current statement – in that generality.
(2) The complex RΓc(Xk̄,K) is defined by choosing an open immersion j : X ↪→

X̄ with X̄ projective over k of dimension at most 1 and setting

RΓc(Xk̄,K) := RΓ(X̄k̄, j!K).

This is independent of the choice of X̄ follows from (insert reference here). We
define Hi

c(Xk̄,K) to be the ith cohomology group of RΓc(Xk̄,K).

Remark 16.3. Even though all we did are reductions and mostly algebra, the trace
formula Theorem 16.1 is much stronger than Weil’s geometric trace formula (Theorem
14.4) because it applies to coefficient systems (sheaves), not merely constant coefficients.

17. Applications

OK, having indicated the proof of the trace formula, let’s try to use it for something.



18. ON L-ADIC SHEAVES 5091

18. On l-adic sheaves

Definition 18.1. Let X be a Noetherian scheme. A Z`-sheaf on X , or simply an
`-adic sheaf F is an inverse system {Fn}n≥1 where

(1) Fn is a constructible Z/`nZ-module on Xétale, and
(2) the transition mapsFn+1 → Fn induce isomorphismsFn+1⊗Z/`n+1ZZ/`nZ ∼=
Fn.

We say that F is lisse if each Fn is locally constant. A morphism of such is merely a
morphism of inverse systems.

Lemma 18.2. Let {Gn}n≥1 be an inverse system of constructible Z/`nZ-modules.
Suppose that for all k ≥ 1, the maps

Gn+1/`
kGn+1 → Gn/`kGn

are isomorphisms for all n� 0 (where the bound possibly depends on k). In other words,
assume that the system {Gn/`kGn}n≥1 is eventually constant, and callFk the correspond-
ing sheaf. Then the system {Fk}k≥1 forms a Z`-sheaf on X .

Proof. The proof is obvious. �

Lemma 18.3. The category of Z`-sheaves on X is abelian.

Proof. Let Φ = {ϕn}n≥1 : {Fn} → {Gn} be a morphism of Z`-sheaves. Set

Coker(Φ) =
{

Coker
(
Fn

ϕn−−→ Gn
)}

n≥1

and Ker(Φ) is the result of Lemma 18.2 applied to the inverse system ⋂
m≥n

Im (Ker(ϕm)→ Ker(ϕn))


n≥1

.

That this defines an abelian category is left to the reader. �

Example 18.4. Let X = Spec(C) and Φ : Z` → Z` be multiplication by `. More
precisely,

Φ =
{

Z/`nZ `−→ Z/`nZ
}
n≥1

.

To compute the kernel, we consider the inverse system

. . .→ Z/`Z 0−→ Z/`Z 0−→ Z/`Z.

Since the images are always zero, Ker(Φ) is zero as a system.

Remark 18.5. If F = {Fn}n≥1 is a Z`-sheaf on X and x̄ is a geometric point then
Mn = {Fn,x̄} is an inverse system of finite Z/`nZ-modules such that Mn+1 → Mn is
surjective and Mn = Mn+1/`

nMn+1. It follows that

M = limnMn = limFn,x̄
is a finite Z`-module. Indeed, M/`M = M1 is finite over F`, so by Nakayama M is finite
over Z`. Therefore, M ∼= Z⊕r

` ⊕ ⊕ti=1Z`/`eiZ` for some r, t ≥ 0, ei ≥ 1. The module
M = Fx̄ is called the stalk of F at x̄.
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Definition 18.6. A Z`-sheaf F is torsion if `n : F → F is the zero map for some
n. The abelian category of Q`-sheaves on X is the quotient of the abelian category of
Z`-sheaves by the Serre subcategory of torsion sheaves. In other words, its objects are
Z`-sheaves on X , and if F ,G are two such, then

HomQ`
(F ,G) = HomZ` (F ,G)⊗Z` Q`.

We denote by F 7→ F ⊗ Q` the quotient functor (right adjoint to the inclusion). If
F = F ′ ⊗Q` where F ′ is a Z`-sheaf and x̄ is a geometric point, then the stalk of F at x̄
is Fx̄ = F ′

x̄ ⊗Q`.

Remark 18.7. Since a Z`-sheaf is only defined on a Noetherian scheme, it is torsion
if and only if its stalks are torsion.

Definition 18.8. IfX is a separated scheme of finite type over an algebraically closed
field k and F = {Fn}n≥1 is a Z`-sheaf on X , then we define

Hi(X,F) := limnH
i(X,Fn) and Hi

c(X,F) := limnH
i
c(X,Fn).

If F = F ′ ⊗Q` for a Z`-sheaf F ′ then we set
Hi
c(X,F) := Hi

c(X,F ′)⊗Z` Q`.

We call these the `-adic cohomology of X with coefficients F .

19. L-functions

Definition 19.1. Let X be a scheme of finite type over a finite field k. Let Λ be a
finite ring of order prime to the characteristic of k and F a constructible flat Λ-module
on Xétale. Then we set

L(X,F) :=
∏

x∈|X|
det(1− π∗

xT
deg x|Fx̄)−1 ∈ Λ[[T ]]

where |X| is the set of closed points of X , deg x = [κ(x) : k] and x̄ is a geometric point
lying over x. This definition clearly generalizes to the case where F is replaced by a K ∈
Dctf (X,Λ). We call this the L-function of F .

Remark 19.2. Intuitively, T should be thought of as T = tf where pf = #k. The
definitions are then independent of the size of the ground field.

Definition 19.3. Now assume that F is a Q`-sheaf on X . In this case we define

L(X,F) :=
∏

x∈|X|
det(1− π∗

xT
deg x|Fx̄)−1 ∈ Q`[[T ]].

Note that this product converges since there are finitely many points of a given degree.
We call this the L-function of F .

20. Cohomological interpretation

This is how Grothendieck interpreted the L-function.

Theorem 20.1 (Finite Coefficients). LetX be a scheme of finite type over a finite field
k. Let Λ be a finite ring of order prime to the characteristic of k and F a constructible flat
Λ-module on Xétale. Then

L(X,F) = det(1− π∗
X T |RΓc(Xk̄,F))−1 ∈ Λ[[T ]].

Proof. Omitted. �

Thus far, we don’t even know whether each cohomology group Hi
c(Xk̄,F) is free.
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Theorem 20.2 (Adic sheaves). Let X be a scheme of finite type over a finite field k,
and F a Q`-sheaf on X . Then

L(X,F) =
∏

i
det(1− π∗

XT |Hic(Xk̄,F))(−1)i+1
∈ Q`[[T ]].

Proof. This is sketched below. �

Remark 20.3. Since we have only developed some theory of traces and not of de-
terminants, Theorem 20.1 is harder to prove than Theorem 20.2. We will only prove the
latter, for the former see [?]. Observe also that there is no version of this theorem more
general for Z` coefficients since there is no `-torsion.

We reduce the proof of Theorem 20.2 to a trace formula. Since Q` has characteristic 0,
it suffices to prove the equality after taking logarithmic derivatives. More precisely, we
apply T d

dT log to both sides. We have on the one hand

T
d

dT
logL(X,F) = T

d

dT
log

∏
x∈|X|

det(1− π∗
xT

deg x|Fx̄)−1

=
∑
x∈|X|

T
d

dT
log(det(1− π∗

xT
deg x|Fx̄)−1)

=
∑
x∈|X|

deg x
∑
n≥1

Tr((πnx )∗|Fx̄)Tn deg x

where the last equality results from the formula

T
d

dT
log
(

det (1− fT |M )−1
)

=
∑
n≥1

Tr(fn|M )Tn

which holds for any commutative ring Λ and any endomorphism f of a finite projective
Λ-module M . On the other hand, we have

T
d

dT
log
(∏

i
det(1− π∗

XT |Hic(Xk̄,F))(−1)i+1
)

=
∑

i
(−1)i

∑
n≥1

Tr
(
(πnX)∗|Hic(Xk̄,F)

)
Tn

by the same formula again. Now, comparing powers of T and using the Mobius inversion
formula, we see that Theorem 20.2 is a consequence of the following equality∑

d|n

d
∑
x∈|X|

deg x=d

Tr((πn/dX )∗|Fx̄) =
∑
i

(−1)iTr((πnX)∗|Hic(Xk̄,F)).

Writing kn for the degree n extension of k, Xn = X ×Spec k Spec(kn) and nF = F|Xn ,
this boils down to∑

x∈Xn(kn)

Tr(π∗
X |nFx̄) =

∑
i

(−1)iTr((πnX)∗|Hic((Xn)k̄,nF))

which is a consequence of Theorem 20.5.

Theorem 20.4. Let X/k be as above, let Λ be a finite ring with #Λ ∈ k∗ and K ∈
Dctf (X,Λ). Then RΓc(Xk̄,K) ∈ Dperf (Λ) and∑

x∈X(k)

Tr (πx|Kx̄) = Tr
(
π∗
X |RΓc(Xk̄,K)

)
.
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Proof. Note that we have already proved this (REFERENCE) when dimX ≤ 1.
The general case follows easily from that case together with the proper base change theo-
rem. �

Theorem 20.5. LetX be a separated scheme of finite type over a finite field k and F
be a Q`-sheaf on X . Then dimQ`

Hi
c(Xk̄,F) is finite for all i, and is nonzero for 0 ≤ i ≤

2 dimX only. Furthermore, we have∑
x∈X(k)

Tr (πx|Fx̄) =
∑
i

(−1)iTr
(
π∗
X |Hic(Xk̄,F)

)
.

Proof. We explain how to deduce this from Theorem 20.4. We first use some étale
cohomology arguments to reduce the proof to an algebraic statement which we subse-
quently prove.

Let F be as in the theorem. We can write F as F ′ ⊗Q` where F ′ = {F ′
n} is a Z`-sheaf

without torsion, i.e., ` : F ′ → F ′ has trivial kernel in the category of Z`-sheaves. Then
each F ′

n is a flat constructible Z/`nZ-module on Xétale, so F ′
n ∈ Dctf (X,Z/`nZ) and

F ′
n+1 ⊗L

Z/`n+1Z Z/`nZ = F ′
n. Note that the last equality holds also for standard (non-

derived) tensor product, since F ′
n is flat (it is the same equality). Therefore,

(1) the complex Kn = RΓc (Xk̄,F ′
n) is perfect, and it is endowed with an endo-

morphism πn : Kn → Kn in D(Z/`nZ),
(2) there are identifications

Kn+1 ⊗L
Z/`n+1Z Z/`nZ = Kn

in Dperf (Z/`nZ), compatible with the endomorphisms πn+1 and πn (see [?,
Rapport 4.12]),

(3) the equality Tr (π∗
X |Kn) =

∑
x∈X(k) Tr

(
πx|(F ′

n)x̄
)

holds, and
(4) for each x ∈ X(k), the elements Tr(πx|F ′

n,x̄
) ∈ Z/`nZ form an element of Z`

which is equal to Tr(πx|Fx̄) ∈ Q`.
It thus suffices to prove the following algebra lemma. �

Lemma 20.6. Suppose we have Kn ∈ Dperf (Z/`nZ), πn : Kn → Kn and isomor-
phisms ϕn : Kn+1 ⊗L

Z/`n+1Z Z/`nZ→ Kn compatible with πn+1 and πn. Then
(1) the elements tn = Tr(πn|Kn) ∈ Z/`nZ form an element t∞ = {tn} of Z`,
(2) the Z`-module Hi

∞ = limnH
i(kn) is finite and is nonzero for finitely many i

only, and
(3) the operators Hi(πn) : Hi(Kn) → Hi(Kn) are compatible and define πi∞ :

Hi
∞ → Hi

∞ satisfying∑
(−1)iTr(πi∞|Hi∞⊗Z`Q`

) = t∞.

Proof. Since Z/`nZ is a local ring andKn is perfect, eachKn can be represented by
a finite complex K•

n of finite free Z/`nZ-modules such that the map Kp
n → Kp+1

n has
image contained in `Kp+1

n . It is a fact that such a complex is unique up to isomorphism.
Moreover πn can be represented by a morphism of complexes π•

n : K•
n → K•

n (which
is unique up to homotopy). By the same token the isomorphism ϕn : Kn+1 ⊗L

Z/`n+1Z
Z/`nZ→ Kn is represented by a map of complexes

ϕ•
n : K•

n+1 ⊗Z/`n+1Z Z/`nZ→ K•
n.

In fact, ϕ•
n is an isomorphism of complexes, thus we see that
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• there exist a, b ∈ Z independent of n such that Ki
n = 0 for all i /∈ [a, b], and

• the rank of Ki
n is independent of n.

Therefore, the moduleKi
∞ = limn{Ki

n, ϕ
i
n} is a finite free Z`-module andK•

∞ is a finite
complex of finite free Z`-modules. By induction on the number of nonzero terms, one
can prove that Hi (K•

∞) = limnH
i (K•

n) (this is not true for unbounded complexes).
We conclude that Hi

∞ = Hi (K•
∞) is a finite Z`-module. This proves ii. To prove the

remainder of the lemma, we need to overcome the possible noncommutativity of the dia-
grams

K•
n+1

π•
n+1

��

ϕ•
n // K•

n

π•
n

��
K•
n+1

ϕ•
n

// K•
n.

However, this diagram does commute in the derived category, hence it commutes up to
homotopy. We inductively replace π•

n forn ≥ 2 by homotopic maps of complexes making
these diagrams commute. Namely, if hi : Ki

n+1 → Ki−1
n is a homotopy, i.e.,

π•
n ◦ ϕ•

n − ϕ•
n ◦ π•

n+1 = dh+ hd,

then we choose h̃i : Ki
n+1 → Ki−1

n+1 lifting hi. This is possible because Ki
n+1 free and

Ki−1
n+1 → Ki−1

n is surjective. Then replace π•
n by π̃•

n defined by

π̃•
n+1 = π•

n+1 + dh̃+ h̃d.

With this choice of {π•
n}, the above diagrams commute, and the maps fit together to

define an endomorphism π•
∞ = limn π

•
n of K•

∞. Then part i is clear: the elements
tn =

∑
(−1)iTr

(
πin|Ki

n

)
fit into an element t∞ of Z`. Moreover

t∞ =
∑

(−1)iTrZ`(πi∞|Ki
∞

)

=
∑

(−1)iTrQ`
(πi∞|Ki

∞⊗Z`Q`
)

=
∑

(−1)iTr(π∞|Hi(K•
∞⊗Q`))

where the last equality follows from the fact that Q` is a field, so the complexK•
∞⊗Q` is

quasi-isomorphic to its cohomologyHi(K•
∞⊗Q`). The latter is also equal toHi(K•

∞)⊗Z
Q` = Hi

∞⊗Q`, which finishes the proof of the lemma, and also that of Theorem 20.5. �

21. List of things which we should add above

What did we skip the proof of in the lectures so far:
(1) curves and their Jacobians,
(2) proper base change theorem,
(3) inadequate discussion of RΓc,
(4) more generally, given f : X → S finite type, separated S quasi-projective, dis-

cussion of Rf! on étale sheaves.
(5) discussion of ⊗L

(6) discussion of why RΓc commutes with ⊗L

22. Examples of L-functions

We use Theorem 20.2 for curves to give examples of L-functions
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23. Constant sheaves

Let k be a finite field,X a smooth, geometrically irreducible curve over k andF = Q` the
constant sheaf. If x̄ is a geometric point of X , the Galois module Fx̄ = Q` is trivial, so

det(1− π∗
x T

deg x|Fx̄)−1 = 1
1− T deg x .

Applying Theorem 20.2, we get

L(X,F) =
2∏
i=0

det(1− π∗
XT |Hic(Xk̄,Q`))

(−1)i+1

=
det(1− π∗

XT |H1
c (Xk̄,Q`))

det(1− π∗
XT |H0

c (Xk̄,Q`)) · det(1− π∗
XT |H2

c (Xk̄,Q`))
.

To compute the latter, we distinguish two cases.

Projective case. Assume that X is projective, so Hi
c(Xk̄,Q`) = Hi(Xk̄,Q`), and we have

Hi(Xk̄,Q`) =


Q` π∗

X = 1 if i = 0,
Q2g
` π∗

X =? if i = 1,
Q` π∗

X = q if i = 2.

The identification of the action of π∗
X onH2 comes from Étale Cohomology, Lemma 69.2

and the fact that the degree of πX is q = #(k). We do not know much about the action
of π∗

X on the degree 1 cohomology. Let us call α1, . . . , α2g its eigenvalues in Q̄`. Putting
everything together, Theorem 20.2 yields the equality∏

x∈|X|

1
1− T deg x =

det(1− π∗
XT |H1(Xk̄,Q`))

(1− T )(1− qT ) = (1− α1T ) . . . (1− α2gT )
(1− T )(1− qT )

from which we deduce the following result.

Lemma 23.1. Let X be a smooth, projective, geometrically irreducible curve over a
finite field k. Then

(1) the L-function L(X,Q`) is a rational function,
(2) the eigenvalues α1, . . . , α2g of π∗

X on H1(Xk̄,Q`) are algebraic integers inde-
pendent of `,

(3) the number of rational points of X on kn, where [kn : k] = n, is

#X(kn) = 1−
∑2g

i=1
αni + qn,

(4) for each i, |αi| < q.

Proof. Part (3) is Theorem 20.5 applied to F = Q` onX ⊗ kn. For part (4), use the
following result. �

Exercise 23.2. Let α1, . . . , αn ∈ C. Then for any conic sector containing the posi-
tive real axis of the form Cε = {z ∈ C | | arg z| < ε} with ε > 0, there exists an integer
k ≥ 1 such that αk1 , . . . , αkn ∈ Cε.

Then prove that |αi| ≤ q for all i. Then, use elementary considerations on complex
numbers to prove (as in the proof of the prime number theorem) that |αi| < q. In fact,
the Riemann hypothesis says that for all |αi| = √q for all i. We will come back to this
later.
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Affine case. Assume now that X is affine, say X = X̄ − {x1, . . . , xn} where j : X ↪→
X̄ is a projective nonsingular completion. Then H0

c (Xk̄,Q`) = 0 and H2
c (Xk̄,Q`) =

H2(X̄k̄,Q`) so Theorem 20.2 reads

L(X,Q`) =
∏
x∈|X|

1
1− T deg x =

det(1− π∗
XT |H1

c (Xk̄,Q`))
1− qT .

On the other hand, the previous case gives

L(X,Q`) = L(X̄,Q`)
n∏
i=1

(
1− T deg xi

)
=

∏n
i=1(1− T deg xi)

∏2g
j=1(1− αjT )

(1− T )(1− qT ) .

Therefore, we see that dimH1
c (Xk̄,Q`) = 2g +

∑n
i=1 deg(xi) − 1, and the eigenvalues

α1, . . . , α2g of π∗
X̄

acting on the degree 1 cohomology are roots of unity. More precisely,
each xi gives a complete set of deg(xi)th roots of unity, and one occurrence of 1 is omitted.
To see this directly using coherent sheaves, consider the short exact sequence on X̄

0→ j!Q` → Q` →
n⊕
i=1

Q`,xi → 0.

The long exact cohomology sequence reads

0→ Q` →
n⊕
i=1

Q⊕ deg xi
` → H1

c (Xk̄,Q`)→ H1
c (X̄k̄,Q`)→ 0

where the action of Frobenius on
⊕n

i=1 Q⊕ deg xi
` is by cyclic permutation of each term;

and H2
c (Xk̄,Q`) = H2

c (X̄k̄,Q`).

24. The Legendre family

Let k be a finite field of odd characteristic, X = Spec(k[λ, 1
λ(λ−1) ]), and consider the

family of elliptic curves f : E → X on P2
X whose affine equation is y2 = x(x−1)(x−λ).

We set F = Rf1
∗ Q` =

{
R1f∗Z/`nZ

}
n≥1 ⊗Q`. In this situation, the following is true

• for each n ≥ 1, the sheaf R1f∗(Z/`nZ) is finite locally constant – in fact, it is
free of rank 2 over Z/`nZ,

• the system {R1f∗Z/`nZ}n≥1 is a lisse `-adic sheaf, and
• for all x ∈ |X|, det(1 − πx T deg x|Fx̄) = (1 − αxT deg x)(1 − βxT deg x) where
αx, βx are the eigenvalues of the geometric frobenius ofEx acting onH1(Ex̄,Q`).

Note that Ex is only defined over κ(x) and not over k. The proof of these facts uses the
proper base change theorem and the local acyclicity of smooth morphisms. For details, see
[?]. It follows that

L(E/X) := L(X,F) =
∏
x∈|X|

1
(1− αxT deg x)(1− βxT deg x) .

Applying Theorem 20.2 we get

L(E/X) =
2∏
i=0

det
(
1− π∗

XT |Hic(Xk̄,F)
)(−1)i+1

,
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and we see in particular that this is a rational function. Furthermore, it is relatively easy
to show that H0

c (Xk̄,F) = H2
c (Xk̄,F) = 0, so we merely have

L(E/X) = det(1− π∗
XT |H1

c (X,F)).
To compute this determinant explicitly, consider the Leray spectral sequence for the proper
morphism f : E → X over Q`, namely

Hi
c(Xk̄, R

jf∗Q`)⇒ Hi+j
c (Ek̄,Q`)

which degenerates. We have f∗Q` = Q` and R1f∗Q` = F . The sheaf R2f∗Q` =
Q`(−1) is the Tate twist of Q`, i.e., it is the sheaf Q` where the Galois action is given by
multiplication by #κ(x) on the stalk at x̄. It follows that, for all n ≥ 1,

#E(kn) =
∑

i
(−1)iTr(πnE

∗|Hic(Ek̄,Q`))

=
∑

i,j
(−1)i+jTr(πnX

∗|Hic(Xk̄,Rjf∗Q`))

= (qn − 2) + Tr(πnX
∗|H1

c (Xk̄,F)) + qn(qn − 2)
= q2n − qn − 2 + Tr(πnX

∗|H1
c (Xk̄,F))

where the first equality follows from Theorem 20.5, the second one from the Leray spectral
sequence and the third one by writing down the higher direct images of Q` under f .
Alternatively, we could write

#E(kn) =
∑

x∈X(kn)

#Ex(kn)

and use the trace formula for each curve. We can also find the number of kn-rational
points simply by counting. The zero section contributes qn−2 points (we omit the points
where λ = 0, 1) hence

#E(kn) = qn − 2 + #{y2 = x(x− 1)(x− λ), λ 6= 0, 1}.
Now we have

#{y2 = x(x− 1)(x− λ), λ 6= 0, 1}

= #{y2 = x(x− 1)(x− λ) in A3} −#{y2 = x2(x− 1)} −#{y2 = x(x− 1)2}

= #{λ = −y2

x(x−1) + x, x 6= 0, 1}+ #{y2 = x(x− 1)(x− λ), x = 0, 1} − 2(qn − εn)

= qn(qn − 2) + 2qn − 2(qn − εn)

= q2n − 2qn + 2εn
where εn = 1 if −1 is a square in kn, 0 otherwise, i.e.,

εn = 1
2

(
1 +

(
−1
kn

))
= 1

2

(
1 + (−1)

qn−1
2

)
.

Thus #E(kn) = q2n − qn − 2 + 2εn. Comparing with the previous formula, we find

Tr(πnX
∗|H1

c (Xk̄,F)) = 2εn = 1 + (−1)
qn−1

2 ,

which implies, by elementary algebra of complex numbers, that if −1 is a square in k∗
n,

then dimH1
c (Xk̄,F) = 2 and the eigenvalues are 1 and 1. Therefore, in that case we have

L(E/X) = (1− T )2.
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25. Exponential sums

A standard problem in number theory is to evaluate sums of the form

Sa,b(p) =
∑

x∈Fp−{0,1}

e
2πixa(x−1)b

p .

In our context, this can be interpreted as a cohomological sum as follows. Consider the
base scheme S = Spec(Fp[x, 1

x(x−1) ]) and the affine curve f : X → P1−{0, 1,∞} over
S given by the equation yp−1 = xa(x− 1)b. This is a finite étale Galois cover with group
F∗
p and there is a splitting

f∗(Q̄∗
` ) =

⊕
χ:F∗

p→Q̄∗
`

Fχ

where χ varies over the characters of F∗
p and Fχ is a rank 1 lisse Q`-sheaf on which F∗

p

acts via χ on stalks. We get a corresponding decomposition

H1
c (Xk̄,Q`) =

⊕
χ

H1(P1
k̄
− {0, 1,∞},Fχ)

and the cohomological interpretation of the exponential sum is given by the trace formula
applied to Fχ over P1 − {0, 1,∞} for some suitable χ. It reads

Sa,b(p) = −Tr(π∗
X |H1(P1

k̄
−{0,1,∞},Fχ)).

The general yoga of Weil suggests that there should be some cancellation in the sum. Ap-
plying (roughly) the Riemann-Hurwitz formula, we see that

2gX − 2 ≈ −2(p− 1) + 3(p− 2) ≈ p

so gX ≈ p/2, which also suggests that the χ-pieces are small.

26. Trace formula in terms of fundamental groups

In the following sections we reformulate the trace formula completely in terms of the
fundamental group of a curve, except if the curve happens to be P1.

27. Fundamental groups

This material is discussed in more detail in the chapter on fundamental groups. See Fun-
damental Groups, Section 1. Let X be a connected scheme and let x → X be a geometric
point. Consider the functor

Fx : finite étale
schemes overX −→ finite sets
Y/X 7−→ Fx(Y ) =

{
geom points y

of Y lying over x

}
= Yx

Set
π1(X,x) = Aut(Fx) = set of automorphisms of the functor Fx

Note that for every finite étale Y → X there is an action

π1(X,x)× Fx(Y )→ Fx(Y )

Definition 27.1. A subgroup of the form Stab(y ∈ Fx(Y )) ⊂ π1(X,x) is called
open.

Theorem 27.2 (Grothendieck). Let X be a connected scheme.
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(1) There is a topology on π1(X,x) such that the open subgroups form a fundamen-
tal system of open nbhds of e ∈ π1(X,x).

(2) With topology of (1) the group π1(X,x) is a profinite group.
(3) The functor

schemes finite
étale overX → finite discrete continuous

π1(X,x)-sets
Y/X 7→ Fx(Y ) with its natural action

is an equivalence of categories.

Proof. See [?]. �

Proposition 27.3. Let X be an integral normal Noetherian scheme. Let y → X be
an algebraic geometric point lying over the generic point η ∈ X . Then

πx(X, η) = Gal(M/κ(η))
(κ(η), function field of X) where

κ(η) ⊃M ⊃ κ(η) = k(X)
is the max sub-extension such that for every finite sub extension M ⊃ L ⊃ κ(η) the
normalization of X in L is finite étale over X .

Proof. Omitted. �

Change of base point. For any x1, x2 geom. points of X there exists an isom. of fibre
functions

Fx1
∼= Fx2

(This is a path from x1 to x2.) Conjugation by this path gives isom

π1(X,x1) ∼= π1(X,x2)
well defined up to inner actions.

Functoriality. For any morphism X1 → X2 of connected schemes any x ∈ X1 there is a
canonical map

π1(X1, x)→ π1(X2, x)
(Why? because the fibre functor ...)

Base field. Let X be a variety over a field k. Then we get

π1(X,x)→ π1(Spec(k), x) =prop Gal(ksep/k)
This map is surjective if and only if X is geometrically connected over k. So in the geo-
metrically connected case we get s.e.s. of profinite groups

1→ π1(Xk, x)→ π1(X,x)→ Gal(ksep/k)→ 1

(π1(Xk, x): geometric fundamental group ofX , π1(X,x): arithmetic fundamental group
of X)

Comparison. If X is a variety over C then

π1(X,x) = profinite completion of π1(X(C)( usual topology), x)
(have x ∈ X(C))

Frobenii. X variety over k, #k <∞. For any x ∈ X closed point, let

Fx ∈ π1(x, x) = Gal(κ(x)sep/κ(x))
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be the geometric frobenius. Let η be an alg. geom. gen. pt. Then

π1(X, η)←∼= π1(X,x) functoriality
←

π1(x, x)

Easy fact:
π1(X, η) →deg π1(Spec(k), η)∗ = Gal(ksep/k)

||
Ẑ · FSpec(k)

Fx 7→ deg(x) · FSpec(k)

Recall: deg(x) = [κ(x) : k]

Fundamental groups and lisse sheaves. Let X be a connected scheme, x geom. pt. There
are equivalences of categories

(Λ finite ring) fin. loc. const. sheaves of
Λ-modules ofXétale ↔ finite (discrete) Λ-modules

with continuous π1(X,x)-action

(` a prime) lisse `-adic
sheaves ↔ finitely generated Z`-modulesM with continuous

π1(X,x)-action where we use `-adic topology onM

In particular lisse Ql-sheaves correspond to continuous homomorphisms

π1(X,x)→ GLr(Ql), r ≥ 0

Notation: A module with action (M,ρ) corresponds to the sheaf Fρ.

Trace formulas. X variety over k, #k <∞.
(1) Λ finite ring (#Λ,#k) = 1

ρ : π1(X,x)→ GLr(Λ)

continuous. For every n ≥ 1 we have

∑
d|n

d

 ∑
x∈|X|,

deg(x)=d

Tr(ρ(Fn/dx ))

 = Tr
(

(πnx )∗|RΓc(X
k
,Fρ)

)
(2) l 6= char(k) prime, ρ : π1(X,x)→ GLr(Ql). For any n ≥ 1

∑
d|n

d

 ∑
x∈|X|

deg(x)=d

Tr
(
ρ(Fn/dx )

) =
2 dimX∑
i=0

(−1)iTr
(
π∗
X |Hic(X

k
,Fρ)

)
Weil conjectures. (Deligne-Weil I, 1974) X smooth proj. over k, #k = q, then the eigen-
values of π∗

X on Hi(Xk,Ql) are algebraic integers α with |α| = q1/2.

Deligne’s conjectures. (almost completely proved by Lafforgue + . . .) Let X be a normal
variety over k finite

ρ : π1(X,x) −→ GLr(Ql)
continuous. Assume: ρ irreducible det(ρ) of finite order. Then

(1) there exists a number field E such that for all x ∈ |X|(closed points) the char.
poly of ρ(Fx) has coefficients in E.

(2) for any x ∈ |X| the eigenvalues αx,i, i = 1, . . . , r of ρ(Fx) have complex abso-
lute value 1. (these are algebraic numbers not necessary integers)
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(3) for every finite place λ( not dividing p), of E (maybe after enlarging E a bit)
there exists

ρλ : π1(X,x)→ GLr(Eλ)
compatible with ρ. (some char. polys of Fx’s)

Theorem 27.4 (Deligne, Weil II). For a sheaf Fρ with ρ satisfying the conclusions
of the conjecture above then the eigenvalues of π∗

X on Hi
c(Xk,Fρ) are algebraic numbers

α with absolute values
|α| = qw/2, for w ∈ Z, w ≤ i

Moreover, if X smooth and proj. then w = i.

Proof. See [?]. �

28. Profinite groups, cohomology and homology

Let G be a profinite group.

Cohomology. Consider the category of discrete modules with continuous G-action. This
category has enough injectives and we can define

Hi(G,M) = RiH0(G,M) = Ri(M 7→MG)

Also there is a derived version RH0(G,−).

Homology. Consider the category of compact abelian groups with continuous G-action.
This category has enough projectives and we can define

Hi(G,M) = LiH0(G,M) = Li(M 7→MG)

and there is also a derived version.

Trivial duality. The functor M 7→ M∧ = Homcont(M,S1) exchanges the categories
above and

Hi(G,M)∧ = Hi(G,M∧)
Moreover, this functor maps torsion discreteG-modules to profinite continuousG-modules
and vice versa, and ifM is either a discrete or profinite continuousG-module, thenM∧ =
Hom(M,Q/Z).

Notes on Homology.
(1) If we look at Λ-modules for a finite ring Λ then we can identify

Hi(G,M) = Tor
Λ[[G]]
i (M,Λ)

where Λ[[G]] is the limit of the group algebras of the finite quotients of G.
(2) If G is a normal subgroup of Γ, and Γ is also profinite then

• H0(G,−): discrete Γ-module→ discrete Γ/G-modules
• H0(G,−): compact Γ-modules→ compact Γ/G-modules

and hence the profinite group Γ/G acts on the cohomology groups of G with
values in a Γ-module. In other words, there are derived functors

RH0(G,−) : D+(discrete Γ-modules) −→ D+(discrete Γ/G-modules)

and similarly for LH0(G,−).



29. COHOMOLOGY OF CURVES, REVISITED 5103

29. Cohomology of curves, revisited

Let k be a field, X be geometrically connected, smooth curve over k. We have the funda-
mental short exact sequence

1→ π1(Xk, η)→ π1(X, η)→ Gal(k
sep

/k)→ 1
If Λ is a finite ring with #Λ ∈ k∗ and M a finite Λ-module, and we are given

ρ : π1(X, η)→ AutΛ(M)
continuous, then Fρ denotes the associated sheaf on Xétale.

Lemma 29.1. There is a canonical isomorphism

H2
c (Xk,Fρ) = (M)π1(X

k
,η)(−1)

as Gal(ksep/k)-modules.

Here the subscript π1(X
k
,η) indicates co-invariants, and (−1) indicates the Tate twist i.e.,

σ ∈ Gal(ksep/k) acts via
χcycl(σ)−1.σ on RHS

where
χcycl : Gal(k

sep

/k)→
∏

l 6=char(k)
Z∗
l

is the cyclotomic character.
Reformulation (Deligne, Weil II, page 338). For any finite locally constant sheaf F on X
there is a maximal quotient F → F ′′ with F ′′/Xk a constant sheaf, hence

F ′′ = (X → Spec(k))−1F ′′

where F ′′ is a sheaf Spec(k), i.e., a Gal(ksep/k)-module. Then

H2
c (Xk,F)→ H2

c (Xk,F
′′)→ F ′′(−1)

is an isomorphism.

Proof of Lemma 29.1. Let Y →ϕ X be the finite étale Galois covering correspond-
ing to Ker(ρ) ⊂ π1(X, η). So

Aut(Y/X) = Ind(ρ)
is Galois group. Then ϕ∗Fρ = MY and

ϕ∗ϕ
∗Fρ → Fρ

which gives

H2
c (Xk, ϕ∗ϕ

∗Fρ)→ H2
c (Xk,Fρ)

= H2
c (Yk, ϕ

∗Fρ)
= H2

c (Yk,M) = ⊕ irred. comp. of
Y
k

M

Im(ρ)→ H2
c (Yk,M) = ⊕ irred. comp. of

Y
k

M →Im(ρ)equivalent H
2
c (Xk,Fρ)→

trivial Im(ρ)
action

irreducible curve C/k, H2
c (C,M) = M .

Since
set of irreducible
components of Yk

= Im(ρ)
Im(ρ|π1(X

k
,η))
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We conclude that H2
c (Xk,Fρ) is a quotient of Mπ1(X

k
,η). On the other hand, there is a

surjection

Fρ → F ′′ = sheaf on X associated to
(M)π1(X

k
,η) ← π1(X, η)

H2
c (Xk,Fρ)→Mπ1(X

k
,η)

The twist in Galois action comes from the fact that H2
c (Xk, µn) =can Z/nZ. �

Remark 29.2. Thus we conclude that ifX is also projective then we have functorially
in the representation ρ the identifications

H0(Xk,Fρ) = Mπ1(X
k
,η)

and
H2
c (Xk,Fρ) = Mπ1(X

k
,η)(−1)

Of course if X is not projective, then H0
c (Xk,Fρ) = 0.

Proposition 29.3. LetX/k as before butXk 6= P1
k

The functors (M,ρ) 7→ H2−i
c (Xk,Fρ)

are the left derived functor of (M,ρ) 7→ H2
c (Xk,Fρ) so

H2−i
c (Xk,Fρ) = Hi(π1(Xk, η),M)(−1)

Moreover, there is a derived version, namely

RΓc(Xk,Fρ) = LH0(π1(Xk, η),M(−1)) = M(−1)⊗L
Λ[[π1(X

k
,η)]] Λ

inD(Λ[[Ẑ]]). Similarly, the functors (M,ρ) 7→ Hi(Xk,Fρ) are the right derived functor
of (M,ρ) 7→Mπ1(X

k
,η) so

Hi(Xk,Fρ) = Hi(π1(Xk, η),M)

Moreover, in this case there is a derived version too.

Proof. (Idea) Show both sides are universal δ-functors. �

Remark 29.4. By the proposition and Trivial duality then you get

H2−i
c (Xk,Fρ)×H

i(Xk,F
∧
ρ (1))→ Q/Z

a perfect pairing. If X is projective then this is Poincare duality.

30. Abstract trace formula

Suppose given an extension of profinite groups,

1→ G→ Γ deg−−→ Ẑ→ 1

We say Γ has an abstract trace formula if and only if there exist
(1) an integer q ≥ 1, and
(2) for every d ≥ 1 a finite set Sd and for each x ∈ Sd a conjugacy class Fx ∈ Γ

with deg(Fx) = d

such that the following hold
(1) for all ` not dividing q have cd`(G) <∞, and
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(2) for all finite rings Λ with q ∈ Λ∗, for all finite projective Λ-modules M with
continuous Γ-action, for all n > 0 we have∑

d|n
d
(∑

x∈Sd
Tr(Fn/dx |M )

)
= qnTr(Fn|M⊗L

Λ[[G]]Λ
)

in Λ\.
Here M ⊗L

Λ[[G]] Λ = LH0(G,M) denotes derived homology, and F = 1 in Γ/G = Ẑ.

Remark 30.1. Here are some observations concerning this notion.
(1) If modeling projective curves then we can use cohomology and we don’t need

factor qn.
(2) The only examples I know are Γ = π1(X, η) where X is smooth, geometrically

irreducible and K(π, 1) over finite field. In this case q = (#k)dimX . Modulo
the proposition, we proved this for curves in this course.

(3) Given the integer q then the sets Sd are uniquely determined. (You can multiple
q by an integerm and then replace Sd bymd copies of Sd without changing the
formula.)

Example 30.2. Fix an integer q ≥ 1

1 → G = Ẑ(q) → Γ → Ẑ → 1
=
∏
l 6|q Zl F 7→ 1

with FxF−1 = ux, u ∈ (Ẑ(q))∗. Just using the trivial modules Z/mZ we see

qn − (qu)n ≡
∑

d|n
d#Sd

in Z/mZ for all (m, q) = 1 (up to u → u−1) this implies qu = a ∈ Z and |a| < q. The
special case a = 1 does occur with

Γ = πt1(Gm,Fp , η), #S1 = q − 1, and #S2 = (q2 − 1)− (q − 1)
2

31. Automorphic forms and sheaves

References: See especially the amazing papers [?], [?] and [?] by Drinfeld.
Unramified cusp forms. Let k be a finite field of characteristic p. Let X geometrically
irreducible projective smooth curve over k. Set K = k(X) equal to the function field of
X . Let v be a place of K which is the same thing as a closed point x ∈ X . Let Kv be the
completion of K at v, which is the same thing as the fraction field of the completion of
the local ring of X at x. Denote Ov ⊂ Kv the ring of integers. We further set

O =
∏

v
Ov ⊂ A =

′∏
v

Kv

and we let Λ be any ring with p invertible in Λ.
Definition 31.1. An unramified cusp form on GL2(A) with values in Λ3 is a function

f : GL2(A)→ Λ
such that

(1) f(xγ) = f(x) for all x ∈ GL2(A) and all γ ∈ GL2(K)
(2) f(ux) = f(x) for all x ∈ GL2(A) and all u ∈ GL2(O)

3This is likely nonstandard notation.
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(3) for all x ∈ GL2(A),∫
A mod K

f

(
x

(
1 z
0 1

))
dz = 0

see [?, Section 4.1] for an explanation of how to make sense out of this for a
general ring Λ in which p is invertible.

Hecke Operators. For v a place of K and f an unramified cusp form we set

Tv(f)(x) =
∫
g∈Mv

f(g−1x)dg,

and

Uv(f)(x) = f

((
π−1
v 0
0 π−1

v

)
x

)
Notations used: here πv ∈ Ov is a uniformizer

Mv = {h ∈Mat(2× 2, Ov)| deth = πvO
∗
v}

and dg = is the Haar measure on GL2(Kv) with
∫

GL2(Ov) dg = 1. Explicitly we have

Tv(f)(x) = f

((
π−1
v 0
0 1

)
x

)
+

qv∑
i=1

f

((
1 0

−π−1
v λi π−1

v

)
x

)
with λi ∈ Ov a set of representatives of Ov/(πv) = κv , qv = #κv .

Eigenforms. An eigenform f is an unramified cusp form such that some value of f is a
unit and Tvf = tvf and Uvf = uvf for some (uniquely determined) tv, uv ∈ Λ.

Theorem 31.2. Given an eigenform f with values in Ql and eigenvalues uv ∈ Z∗
l

then there exists
ρ : π1(X)→ GL2(E)

continuous, absolutely irreducible where E is a finite extension of Q` contained in Ql

such that tv = Tr(ρ(Fv)), and uv = q−1
v det (ρ(Fv)) for all places v.

Proof. See [?]. �

Theorem 31.3. Suppose Ql ⊂ E finite, and

ρ : π1(X)→ GL2(E)

absolutely irreducible, continuous. Then there exists an eigenform f with values in Ql

whose eigenvalues tv , uv satisfy the equalities tv = Tr(ρ(Fv)) and uv = q−1
v det(ρ(Fv)).

Proof. See [?]. �

Remark 31.4. We now have, thanks to Lafforgue and many other mathematicians,
complete theorems like this two above for GLn and allowing ramification! In other words,
the full global Langlands correspondence for GLn is known for function fields of curves
over finite fields. At the same time this does not mean there aren’t a lot of interesting
questions left to answer about the fundamental groups of curves over finite fields, as we
shall see below.
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Central character. If f is an eigenform then

χf : O∗\A∗/K∗ → Λ∗

(1, . . . , πv, 1, . . . , 1) 7→ u−1
v

is called the central character. If corresponds to the determinant of ρ via normalizations
as above. Set

C(Λ) =
{

unr. cusp forms f with coefficients in Λ
such that Uvf = ϕ−1

v f∀v

}
Proposition 31.5. If Λ is Noetherian then C(Λ) is a finitely generated Λ-module.

Moreover, if Λ is a field with prime subfield F ⊂ Λ then
C(Λ) = (C(F))⊗F Λ

compatibly with Tv acting.

Proof. See [?, Proposition 4.7]. �

This proposition trivially implies the following lemma.

Lemma 31.6. Algebraicity of eigenvalues. If Λ is a field then the eigenvalues tv for
f ∈ C(Λ) are algebraic over the prime subfield F ⊂ Λ.

Proof. Follows from Proposition 31.5. �

Combining all of the above we can do the following very useful trick.

Lemma 31.7. Switching l. Let E be a number field. Start with
ρ : π1(X)→ SL2(Eλ)

absolutely irreducible continuous, where λ is a place ofE not lying above p. Then for any
second place λ′ of E not lying above p there exists a finite extension E′

λ′ and a absolutely
irreducible continuous representation

ρ′ : π1(X)→ SL2(E′
λ′)

which is compatible with ρ in the sense that the characteristic polynomials of all Frobenii
are the same.

Note how this is an instance of Deligne’s conjecture!

Proof. To prove the switching lemma use Theorem 31.3 to obtain f ∈ C(Ql) eigen-
form ass. to ρ. Next, use Proposition 31.5 to see that we may choose f ∈ C(E′) with
E ⊂ E′ finite. Next we may complete E′ to see that we get f ∈ C(E′

λ′) eigenform with
E′
λ′ a finite extension of Eλ′ . And finally we use Theorem 31.2 to obtain ρ′ : π1(X) →

SL2(E′
λ′) abs. irred. and continuous after perhaps enlarging E′

λ′ a bit again. �

Speculation: If for a (topological) ring Λ we have(
ρ : π1(X)→ SL2(Λ)

abs irred

)
↔ eigen forms in C(Λ)

then all eigenvalues of ρ(Fv) algebraic (won’t work in an easy way if Λ is a finite ring.
Based on the speculation that the Langlands correspondence works more generally than
just over fields one arrives at the following conjecture.
Conjecture. (See [?]) For any continuous

ρ : π1(X)→ GLn(Fl[[t]])
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we have #ρ(π1(Xk)) <∞.

A rephrasing in the language of sheaves: ”For any lisse sheaf of Fl((t))-modules the geom
monodromy is finite.”

Theorem 31.8. The Conjecture holds if n ≤ 2.

Proof. See [?]. �

Theorem 31.9. Conjecture holds if l > 2n modulo some unproven things.

Proof. See [?]. �

It turns out the conjecture is useful for something. See work of Drinfeld on Kashiwara’s
conjectures. But there is also the much more down to earth application as follows.

Theorem 31.10. (See [?, Theorem 3.5]) Suppose

ρ0 : π1(X)→ GLn(Fl)

is a continuous, l 6= p. Assume
(1) Conj. holds for X ,
(2) ρ0|π1(X

k
) abs. irred., and

(3) l does not divide n.
Then the universal deformation ring Runiv of ρ0 is finite flat over Zl.

Explanation: There is a representation ρuniv : π1(X) → GLn(Runiv) (Univ. Defo ring)
Runiv loc. complete, residue field Fl and (Runiv → Fl) ◦ ρuniv ∼= ρ0. And given any
R → Fl, R local complete and ρ : π1(X) → GLn(R) then there exists ψ : Runiv → R
such that ψ ◦ ρuniv ∼= ρ. The theorem says that the morphism

Spec(Runiv) −→ Spec(Zl)

is finite and flat. In particular, such a ρ0 lifts to a ρ : π1(X)→ GLn(Ql).

Notes:
(1) The theorem on deformations is easy.
(2) Any result towards the conjecture seems hard.
(3) It would be interesting to have more conjectures on π1(X)!

32. Counting points

Let X be a smooth, geometrically irreducible, projective curve over k and q = #k. The
trace formula gives: there exists algebraic integers w1, . . . , w2g such that

#X(kn) = qn −
∑2gX

i=1
wni + 1.

If σ ∈ Aut(X) then for all i, there exists j such that σ(wi) = wj .

Riemann-Hypothesis. For all i we have |ωi| =
√
q.

This was formulated by Emil Artin, in 1924, for hyperelliptic curves. Proved by Weil
1940. Weil gave two proofs

• using intersection theory on X ×X , using the Hodge index theorem, and
• using the Jacobian of X .
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There is another proof whose initial idea is due to Stephanov, and which was given by
Bombieri: it uses the function field k(X) and its Frobenius operator (1969). The starting
point is that given f ∈ k(X) one observes that fq−f is a rational function which vanishes
in all the Fq-rational points of X , and that one can try to use this idea to give an upper
bound for the number of points.

33. Precise form of Chebotarev

As a first application let us prove a precise form of Chebotarev for a finite étale Galois
covering of curves. Let ϕ : Y → X be a finite étale Galois covering with group G. This
corresponds to a homomorphism

π1(X) −→ G = Aut(Y/X)
Assume Yk = irreducible. If C ⊂ G is a conjugacy class then for all n > 0, we have

|#{x ∈ X(kn) | Fx ∈ C} −
#C
#G ·#X(kn)| ≤ (#C)(2g − 2)

√
qn

(Warning: Please check the coefficient #C on the right hand side carefuly before using.)

Sketch. Write
ϕ∗(Ql) = ⊕

π∈ĜFπ
where Ĝ is the set of isomorphism classes of irred representations ofG over Ql. For π ∈ Ĝ
let χπ : G→ Ql be the character of π. Then

H∗(Yk,Ql) = ⊕
π∈ĜH

∗(Yk,Ql)π =(ϕ finite ) ⊕π∈ĜH
∗(Xk,Fπ)

If π 6= 1 then we have

H0(Xk,Fπ) = H2(Xk,Fπ) = 0, dimH1(Xk,Fπ) = (2gX − 2)d2
π

(can get this from trace formula for acting on ...) and we see that

|
∑

x∈X(kn)

χπ(Fx)| ≤ (2gX − 2)d2
π

√
qn

Write 1C =
∑
π aπχπ , then aπ = 〈1C , χπ〉, and a1 = 〈1C , χ1〉 = #C

#G where

〈f, h〉 = 1
#G

∑
g∈G

f(g)h(g)

Thus we have the relation
#C
#G = ||1C ||2 =

∑
|aπ|2

Final step:

# {x ∈ X(kn) | Fx ∈ C} =
∑

x∈X(kn)

1C(x)

=
∑

x∈X(kn)

∑
π

aπχπ(Fx)

= #C
#G#X(kn)︸ ︷︷ ︸

term for π=1

+
∑
π 6=1

aπ
∑

x∈X(kn)

χπ(Fx)

︸ ︷︷ ︸
error term (to be bounded byE)
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We can bound the error term by

|E| ≤
∑
π∈Ĝ,
π 6=1

|aπ|(2g − 2)d2
π

√
qn

≤
∑
π 6=1

#C
#G (2gX − 2)d3

π

√
qn

By Weil’s conjecture, #X(kn) ∼ qn. �

34. How many primes decompose completely?

This section gives a second application of the Riemann Hypothesis for curves over a finite
field. For number theorists it may be nice to look at the paper by Ihara, entitled “How
many primes decompose completely in an infinite unramified Galois extension of a global
field?”, see [?]. Consider the fundamental exact sequence

1→ π1(Xk)→ π1(X) deg−−→ Ẑ→ 1

Proposition 34.1. There exists a finite set x1, . . . , xn of closed points ofX such that
set of all frobenius elements corresponding to these points topologically generate π1(X).

Another way to state this is: There exist x1, . . . , xn ∈ |X| such that the smallest normal
closed subgroup Γ of π1(X) containing 1 frobenius element for each xi is all of π1(X).
i.e., Γ = π1(X).

Proof. Pick N � 0 and let

{x1, . . . , xn} = set of all closed points of
X of degree ≤ N over k

Let Γ ⊂ π1(X) be as in the variant statement for these points. Assume Γ 6= π1(X). Then
we can pick a normal open subgroup U of π1(X) containing Γ with U 6= π1(X). By
R.H. for X our set of points will have some xi1 of degree N , some xi2 of degree N − 1.
This shows deg : Γ → Ẑ is surjective and so the same holds for U . This exactly means if
Y → X is the finite étale Galois covering corresponding to U , then Yk irreducible. Set
G = Aut(Y/X). Picture

Y →G X, G = π1(X)/U
By construction all points of X of degree ≤ N , split completely in Y . So, in particular

#Y (kN ) ≥ (#G)#X(kN )
Use R.H. on both sides. So you get

qN + 1 + 2gY qN/2 ≥ #G#X(kN ) ≥ #G(qN + 1− 2gXqN/2)
Since 2gY − 2 = (#G)(2gX − 2), this means

qN + 1 + (#G)(2gX − 1) + 1)qN/2 ≥ #G(qN + 1− 2gXqN/2)
Thus we see that G has to be the trivial group if N is large enough. �

Weird Question. SetWX = deg−1(Z) ⊂ π1(X). Is it true that for some finite set of closed
points x1, . . . , xn of X the set of all frobenii corresponding to these points algebraically
generate WX?

By a Baire category argument this translates into the same question for all Frobenii.
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35. How many points are there really?

If the genus of the curve is large relative to q, then the main term in the formula #X(k) =
q−
∑
ωi+1 is not q but the second term

∑
ωi which can (a priori) have size about 2gX

√
q.

In the paper [?] the authors Drinfeld and Vladut show that this maximum is (as predicted
by Ihara earlier) actually at most about g√q.

Fix q and let k be a field with k elements. Set

A(q) = lim sup
gX→∞

#X(k)
gX

where X runs over geometrically irreducible smooth projective curves over k. With this
definition we have the following results:

• RH⇒ A(q) ≤ 2√q
• Ihara⇒ A(q) ≤

√
2q

• DV⇒ A(q) ≤ √q − 1 (actually this is sharp if q is a square)

Proof. Given X let w1, . . . , w2g and g = gX be as before. Set αi = wi√
q , so |αi| = 1.

If αi occurs then αi = α−1
i also occurs. Then

N = #X(k) ≤ X(kr) = qr + 1− (
∑
i

αri )qr/2

Rewriting we see that for every r ≥ 1

−
∑
i

αri ≥ Nq−r/2 − qr/2 − q−r/2

Observe that

0 ≤ |αni + αn−1
i + . . .+ αi + 1|2 = (n+ 1) +

n∑
j=1

(n+ 1− j)(αji + α−j
i )

So

2g(n+ 1) ≥ −
∑
i

 n∑
j=1

(n+ 1− j)(αji + α−j
i )


= −

n∑
j=1

(n+ 1− j)
(∑

i

αji +
∑
i

α−j
i

)
Take half of this to get

g(n+ 1) ≥ −
n∑
j=1

(n+ 1− j)(
∑
i

αji )

≥ N
n∑
j=1

(n+ 1− j)q−j/2 −
n∑
j=1

(n+ 1− j)(qj/2 + q−j/2)

This gives

N

g
≤

 n∑
j=1

n+ 1− j
n+ 1 q−j/2

−1

·

1 + 1
g

n∑
j=1

n+ 1− j
n+ 1 (qj/2 + q−j/2)
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Fix n let g →∞

A(q) ≤

 n∑
j=1

n+ 1− j
n+ 1 q−j/2

−1

So

A(q) ≤ limn→∞(. . .) =

 ∞∑
j=1

q−j/2

−1

= √q − 1

�

36. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes

(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory

(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces

(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces



36. OTHER CHAPTERS 5113

(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index





Part 4

Algebraic Spaces





CHAPTER 65

Algebraic Spaces

1. Introduction

Algebraic spaces were first introduced by Michael Artin, see [?], [?], [?], [?], [?], [?], [?], and
[?]. Some of the foundational material was developed jointly with Knutson, who produced
the book [?]. Artin defined (see [?, Definition 1.3]) an algebraic space as a sheaf for the étale
topology which is locally in the étale topology representable. In most of Artin’s work the
categories of schemes considered are schemes locally of finite type over a fixed excellent
Noetherian base.

Our definition is slightly different from Artin’s original definition. Namely, our algebraic
spaces are sheaves for the fppf topology whose diagonal is representable and which have an
étale “cover” by a scheme. Working with the fppf topology instead of the étale topology is
just a technical point and scarcely makes any difference; we will show in Bootstrap, Section
12 that we would have gotten the same category of algebraic spaces if we had worked with
the étale topology. In that same chapter we will prove that the condition on the diagonal
can in some sense be removed, see Bootstrap, Section 6.

After defining algebraic spaces we make some foundational observations. The main result
in this chapter is that with our definitions an algebraic space is the same thing as an étale
equivalence relation, see the discussion in Section 9 and Theorem 10.5. The analogue of
this theorem in Artin’s setting is [?, Theorem 1.5], or [?, Proposition II.1.7]. In other words,
the sheaf defined by an étale equivalence relation has a representable diagonal. It follows
that our definition agrees with Artin’s original definition in a broad sense. It also means
that one can give examples of algebraic spaces by simply writing down an étale equivalence
relation.

In Section 13 we introduce various separation axioms on algebraic spaces that we have
found in the literature. Finally in Section 14 we give some weird and not so weird examples
of algebraic spaces.

2. General remarks

We work in a suitable big fppf site Schfppf as in Topologies, Definition 7.6. So, if not
explicitly stated otherwise all schemes will be objects of Schfppf . In Section 15 we discuss
what changes if you change the big fppf site.

We will always work relative to a base S contained in Schfppf . And we will then work
with the big fppf site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute case can
be recovered by taking S = Spec(Z).

If U, T are schemes over S , then we denote U(T ) for the set of T -valued points over S. In
a formula: U(T ) = MorS(T,U).

5117
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Note that any fpqc covering is a universal effective epimorphism, see Descent, Lemma
13.7. Hence the topology on Schfppf is weaker than the canonical topology and all rep-
resentable presheaves are sheaves.

3. Representable morphisms of presheaves

Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf → Sets. Let a : F → G

be a representable transformation of functors, see Categories, Definition 8.2. This means
that for every U ∈ Ob((Sch/S)fppf ) and any ξ ∈ G(U) the fiber product hU ×ξ,G F
is representable. Choose a representing object Vξ and an isomorphism hVξ → hU ×G F .
By the Yoneda lemma, see Categories, Lemma 3.5, the projection hVξ → hU ×G F → hU
comes from a unique morphism of schemes aξ : Vξ → U . Suggestively we could represent
this by the diagram

Vξ //

aξ

��

hVξ

��

// F

a

��
U // hU

ξ // G

where the squiggly arrows represent the Yoneda embedding. Here are some lemmas about
this notion that work in great generality.

Lemma 3.1. Let S be a scheme contained in Schfppf and let X , Y be objects of
(Sch/S)fppf . Let f : X → Y be a morphism of schemes. Then

hf : hX −→ hY

is a representable transformation of functors.

Proof. This is formal and relies only on the fact that the category (Sch/S)fppf has
fibre products. �

Lemma 3.2. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G→ H be representable transformations of functors. Then

b ◦ a : F −→ H

is a representable transformation of functors.

Proof. This is entirely formal and works in any category. �

Lemma 3.3. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G be a representable transformation of functors. Let b : H → G be any
transformation of functors. Consider the fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

Then the base change a′ is a representable transformation of functors.

Proof. This is entirely formal and works in any category. �
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Lemma 3.4. Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of functors.
Then

a1 × a2 : F1 × F2 −→ G1 ×G2

is a representable transformation of functors.

Proof. Write a1×a2 as the composition F1×F2 → G1×F2 → G1×G2. The first
arrow is the base change of a1 by the map G1 × F2 → G1, and the second arrow is the
base change of a2 by the map G1 ×G2 → G2. Hence this lemma is a formal consequence
of Lemmas 3.2 and 3.3. �

Lemma 3.5. LetS be a scheme contained in Schfppf . LetF,G : (Sch/S)oppfppf → Sets.
Let a : F → G be a representable transformation of functors. If G is a sheaf, then so is F .

Proof. Let {ϕi : Ti → T} be a covering of the site (Sch/S)fppf . Let si ∈ F (Ti)
which satisfy the sheaf condition. Then σi = a(si) ∈ G(Ti) satisfy the sheaf condition
also. Hence there exists a unique σ ∈ G(T ) such that σi = σ|Ti . By assumption F ′ =
hT ×σ,G,a F is a representable presheaf and hence (see remarks in Section 2) a sheaf. Note
that (ϕi, si) ∈ F ′(Ti) satisfy the sheaf condition also, and hence come from some unique
(idT , s) ∈ F ′(T ). Clearly s is the section of F we are looking for. �

Lemma 3.6. LetS be a scheme contained in Schfppf . LetF,G : (Sch/S)oppfppf → Sets.
Let a : F → G be a representable transformation of functors. Then ∆F/G : F → F ×GF
is representable.

Proof. Let U ∈ Ob((Sch/S)fppf ). Let ξ = (ξ1, ξ2) ∈ (F ×G F )(U). Set ξ′ =
a(ξ1) = a(ξ2) ∈ G(U). By assumption there exist a scheme V and a morphism V → U
representing the fibre product hU ×ξ′,G F . In particular, the elements ξ1, ξ2 give mor-
phisms f1, f2 : U → V over U . Because V represents the fibre product hU ×ξ′,G F and
because ξ′ = a ◦ ξ1 = a ◦ ξ2 we see that if g : U ′ → U is a morphism then

g∗ξ1 = g∗ξ2 ⇔ f1 ◦ g = f2 ◦ g.
In other words, we see that hU ×ξ,F×GF F is represented by V ×∆,V×V,(f1,f2) U which
is a scheme. �

4. Lists of useful properties of morphisms of schemes

For ease of reference we list in the following remarks the properties of morphisms which
possess some of the properties required of them in later results.

Remark 4.1. Here is a list of properties/types of morphisms which are stable under
arbitrary base change:

(1) closed, open, and locally closed immersions, see Schemes, Lemma 18.2,
(2) quasi-compact, see Schemes, Lemma 19.3,
(3) universally closed, see Schemes, Definition 20.1,
(4) (quasi-)separated, see Schemes, Lemma 21.12,
(5) monomorphism, see Schemes, Lemma 23.5
(6) surjective, see Morphisms, Lemma 9.4,
(7) universally injective, see Morphisms, Lemma 10.2,
(8) affine, see Morphisms, Lemma 11.8,
(9) quasi-affine, see Morphisms, Lemma 13.5,

(10) (locally) of finite type, see Morphisms, Lemma 15.4,
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(11) (locally) quasi-finite, see Morphisms, Lemma 20.13,
(12) (locally) of finite presentation, see Morphisms, Lemma 21.4,
(13) locally of finite type of relative dimension d, see Morphisms, Lemma 29.2,
(14) universally open, see Morphisms, Definition 23.1,
(15) flat, see Morphisms, Lemma 25.8,
(16) syntomic, see Morphisms, Lemma 30.4,
(17) smooth, see Morphisms, Lemma 34.5,
(18) unramified (resp. G-unramified), see Morphisms, Lemma 35.5,
(19) étale, see Morphisms, Lemma 36.4,
(20) proper, see Morphisms, Lemma 41.5,
(21) H-projective, see Morphisms, Lemma 43.8,
(22) (locally) projective, see Morphisms, Lemma 43.9,
(23) finite or integral, see Morphisms, Lemma 44.6,
(24) finite locally free, see Morphisms, Lemma 48.4,
(25) universally submersive, see Morphisms, Lemma 24.2,
(26) universal homeomorphism, see Morphisms, Lemma 45.2.

Add more as needed.

Remark 4.2. Of the properties of morphisms which are stable under base change (as
listed in Remark 4.1) the following are also stable under compositions:

(1) closed, open and locally closed immersions, see Schemes, Lemma 24.3,
(2) quasi-compact, see Schemes, Lemma 19.4,
(3) universally closed, see Morphisms, Lemma 41.4,
(4) (quasi-)separated, see Schemes, Lemma 21.12,
(5) monomorphism, see Schemes, Lemma 23.4,
(6) surjective, see Morphisms, Lemma 9.2,
(7) universally injective, see Morphisms, Lemma 10.5,
(8) affine, see Morphisms, Lemma 11.7,
(9) quasi-affine, see Morphisms, Lemma 13.4,

(10) (locally) of finite type, see Morphisms, Lemma 15.3,
(11) (locally) quasi-finite, see Morphisms, Lemma 20.12,
(12) (locally) of finite presentation, see Morphisms, Lemma 21.3,
(13) universally open, see Morphisms, Lemma 23.3,
(14) flat, see Morphisms, Lemma 25.6,
(15) syntomic, see Morphisms, Lemma 30.3,
(16) smooth, see Morphisms, Lemma 34.4,
(17) unramified (resp. G-unramified), see Morphisms, Lemma 35.4,
(18) étale, see Morphisms, Lemma 36.3,
(19) proper, see Morphisms, Lemma 41.4,
(20) H-projective, see Morphisms, Lemma 43.7,
(21) finite or integral, see Morphisms, Lemma 44.5,
(22) finite locally free, see Morphisms, Lemma 48.3,
(23) universally submersive, see Morphisms, Lemma 24.3,
(24) universal homeomorphism, see Morphisms, Lemma 45.3.

Add more as needed.

Remark 4.3. Of the properties mentioned which are stable under base change (as
listed in Remark 4.1) the following are also fpqc local on the base (and a fortiori fppf local
on the base):
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(1) for immersions we have this for
(a) closed immersions, see Descent, Lemma 23.19,
(b) open immersions, see Descent, Lemma 23.16, and
(c) quasi-compact immersions, see Descent, Lemma 23.21,

(2) quasi-compact, see Descent, Lemma 23.1,
(3) universally closed, see Descent, Lemma 23.3,
(4) (quasi-)separated, see Descent, Lemmas 23.2, and 23.6,
(5) monomorphism, see Descent, Lemma 23.31,
(6) surjective, see Descent, Lemma 23.7,
(7) universally injective, see Descent, Lemma 23.8,
(8) affine, see Descent, Lemma 23.18,
(9) quasi-affine, see Descent, Lemma 23.20,

(10) (locally) of finite type, see Descent, Lemmas 23.10, and 23.12,
(11) (locally) quasi-finite, see Descent, Lemma 23.24,
(12) (locally) of finite presentation, see Descent, Lemmas 23.11, and 23.13,
(13) locally of finite type of relative dimension d, see Descent, Lemma 23.25,
(14) universally open, see Descent, Lemma 23.4,
(15) flat, see Descent, Lemma 23.15,
(16) syntomic, see Descent, Lemma 23.26,
(17) smooth, see Descent, Lemma 23.27,
(18) unramified (resp. G-unramified), see Descent, Lemma 23.28,
(19) étale, see Descent, Lemma 23.29,
(20) proper, see Descent, Lemma 23.14,
(21) finite or integral, see Descent, Lemma 23.23,
(22) finite locally free, see Descent, Lemma 23.30,
(23) universally submersive, see Descent, Lemma 23.5,
(24) universal homeomorphism, see Descent, Lemma 23.9.

Note that the property of being an “immersion” may not be fpqc local on the base, but in
Descent, Lemma 24.1 we proved that it is fppf local on the base.

5. Properties of representable morphisms of presheaves

Here is the definition that makes this work.

Definition 5.1. With S , and a : F → G representable as above. LetP be a property
of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 18.3, and
(2) is fppf local on the base, see Descent, Definition 22.1.

In this case we say that a has property P if for every U ∈ Ob((Sch/S)fppf ) and any
ξ ∈ G(U) the resulting morphism of schemes Vξ → U has property P .

It is important to note that we will only use this definition for properties of morphisms
that are stable under base change, and local in the fppf topology on the base. This is not
because the definition doesn’t make sense otherwise; rather it is because we may want to
give a different definition which is better suited to the property we have in mind.

Remark 5.2. Consider the propertyP =“surjective”. In this case there could be some
ambiguity if we say “let F → G be a surjective map”. Namely, we could mean the notion
defined in Definition 5.1 above, or we could mean a surjective map of presheaves, see Sites,
Definition 3.1, or, if both F andG are sheaves, we could mean a surjective map of sheaves,
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see Sites, Definition 11.1. If not mentioned otherwise when discussing morphisms of al-
gebraic spaces we will always mean the first. See Lemma 5.9 for a case where surjectivity
implies surjectivity as a map of sheaves.

Here is a sanity check.

Lemma 5.3. Let S , X , Y be objects of Schfppf . Let f : X → Y be a morphism of
schemes. Let P be as in Definition 5.1. Then hX −→ hY has property P if and only if f
has property P .

Proof. Note that the lemma makes sense by Lemma 3.1. Proof omitted. �

Lemma 5.4. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 5.1 which is stable under composition. Let
a : F → G, b : G → H be representable transformations of functors. If a and b have
property P so does b ◦ a : F −→ H .

Proof. Note that the lemma makes sense by Lemma 3.2. Proof omitted. �

Lemma 5.5. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 5.1. Let a : F → G be a representable trans-
formations of functors. Let b : H → G be any transformation of functors. Consider the
fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

If a has property P then also the base change a′ has property P .

Proof. Note that the lemma makes sense by Lemma 3.3. Proof omitted. �

Lemma 5.6. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let P be a property as in Definition 5.1. Let a : F → G be a representable trans-
formations of functors. Let b : H → G be any transformation of functors. Consider the
fibre product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

Assume that b induces a surjective map of fppf sheaves H# → G#. In this case, if a′ has
property P , then also a has property P .

Proof. First we remark that by Lemma 3.3 the transformation a′ is representable. Let
U ∈ Ob((Sch/S)fppf ), and let ξ ∈ G(U). By assumption there exists an fppf covering
{Ui → U}i∈I and elements ξi ∈ H(Ui) mapping to ξ|U via b. From general category
theory it follows that for each i we have a fibre product diagram

Ui ×ξi,H,a′ (H ×b,G,a F ) //

��

U ×ξ,G,a F

��
Ui // U
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By assumption the left vertical arrow is a morphism of schemes which has property P .
Since P is local in the fppf topology this implies that also the right vertical arrow has
property P as desired. �

Lemma 5.7. Let S be a scheme contained in Schfppf . Let Fi, Gi : (Sch/S)oppfppf →
Sets, i = 1, 2. Let ai : Fi → Gi, i = 1, 2 be representable transformations of functors. Let
P be a property as in Definition 5.1 which is stable under composition. If a1 and a2 have
property P so does a1 × a2 : F1 × F2 −→ G1 ×G2.

Proof. Note that the lemma makes sense by Lemma 3.4. Proof omitted. �

Lemma 5.8. LetS be a scheme contained in Schfppf . LetF,G : (Sch/S)oppfppf → Sets.
Let a : F → G be a representable transformation of functors. Let P , P ′ be properties
as in Definition 5.1. Suppose that for any morphism of schemes f : X → Y we have
P(f)⇒ P ′(f). If a has property P then a has property P ′.

Proof. Formal. �

Lemma 5.9. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets be sheaves. Let
a : F → G be representable, flat, locally of finite presentation, and surjective. Then
a : F → G is surjective as a map of sheaves.

Proof. Let T be a scheme over S and let g : T → G be a T -valued point of G. By
assumption T ′ = F ×G T is (representable by) a scheme and the morphism T ′ → T is
a flat, locally of finite presentation, and surjective. Hence {T ′ → T} is an fppf covering
such that g|T ′ ∈ G(T ′) comes from an element of F (T ′), namely the map T ′ → F . This
proves the map is surjective as a map of sheaves, see Sites, Definition 11.1. �

Here is a characterization of those functors for which the diagonal is representable.

Lemma 5.10. Let S be a scheme contained in Schfppf . Let F be a presheaf of sets on
(Sch/S)fppf . The following are equivalent:

(1) the diagonal F → F × F is representable,
(2) for U ∈ Ob((Sch/S)fppf ) and any a ∈ F (U) the map a : hU → F is repre-

sentable,
(3) for every pair U, V ∈ Ob((Sch/S)fppf ) and any a ∈ F (U), b ∈ F (V ) the fibre

product hU ×a,F,b hV is representable.

Proof. This is completely formal, see Categories, Lemma 8.4. It depends only on the
fact that the category (Sch/S)fppf has products of pairs of objects and fibre products, see
Topologies, Lemma 7.10. �

In the situation of the lemma, for any morphism ξ : hU → F as in the lemma, it makes
sense to say that ξ has property P , for any property as in Definition 5.1. In particular this
holds forP = “surjective” andP = “étale”, see Remark 4.3 above. We will use this remark
in the definition of algebraic spaces below.

Lemma 5.11. Let S be a scheme contained in Schfppf . Let F be a presheaf of sets on
(Sch/S)fppf . LetP be a property as in Definition 5.1. If for everyU, V ∈ Ob((Sch/S)fppf )
and a ∈ F (U), b ∈ F (V ) we have

(1) hU ×a,F,b hV is representable, say by the scheme W , and
(2) the morphism W → U ×S V corresponding to hU ×a,F,b hV → hU × hV has

property P ,
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then ∆ : F → F × F is representable and has property P .

Proof. Observe that ∆ is representable by Lemma 5.10. We can formulate condition
(2) as saying that the transformation hU ×a,F,b hV → hU×SV has property P , see Lemma
5.3. Consider T ∈ Ob((Sch/S)fppf ) and (a, b) ∈ (F ×F )(T ). Observe that we have the
commutative diagram

F ×∆,F×F,(a,b) hT

��

// hT

∆T/S

��
hT ×a,F,b hT //

��

hT×ST

(a,b)
��

F
∆ // F × F

both of whose squares are cartesian. In this way we see that the morphism F ×F×F hT →
hT is the base change of a morphism having property P by ∆T/S . Since P is preserved
under base change this finishes the proof. �

6. Algebraic spaces

Here is the definition.

Definition 6.1. Let S be a scheme contained in Schfppf . An algebraic space over S
is a presheaf

F : (Sch/S)oppfppf −→ Sets
with the following properties

(1) The presheaf F is a sheaf.
(2) The diagonal morphism F → F × F is representable.
(3) There exists a scheme U ∈ Ob((Sch/S)fppf ) and a map hU → F which is

surjective, and étale.

There are two differences with the “usual” definition, for example the definition in Knut-
son’s book [?].

The first is that we require F to be a sheaf in the fppf topology. One reason for doing this
is that many natural examples of algebraic spaces satisfy the sheaf condition for the fppf
coverings (and even for fpqc coverings). Also, one of the reasons that algebraic spaces have
been so useful is via Michael Artin’s results on algebraic spaces. Built into his method is a
condition which guarantees the result is locally of finite presentation over S. Combined
it somehow seems to us that the fppf topology is the natural topology to work with. In
the end the category of algebraic spaces ends up being the same. See Bootstrap, Section 12.

The second is that we only require the diagonal map for F to be representable, whereas
in [?] it is required that it also be quasi-compact. If F = hU for some scheme U over S
this corresponds to the condition that U be quasi-separated. Our point of view is to try to
prove a certain number of the results that follow only assuming that the diagonal of F be
representable, and simply add an additional hypothesis wherever this is necessary. In any
case it has the pleasing consequence that the following lemma is true.

Lemma 6.2. A scheme is an algebraic space. More precisely, given a scheme T ∈
Ob((Sch/S)fppf ) the representable functor hT is an algebraic space.
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Proof. The functor hT is a sheaf by our remarks in Section 2. The diagonal hT →
hT × hT = hT×T is representable because (Sch/S)fppf has fibre products. The identity
map hT → hT is surjective étale. �

Definition 6.3. Let F , F ′ be algebraic spaces over S. A morphism f : F → F ′ of
algebraic spaces over S is a transformation of functors from F to F ′.

The category of algebraic spaces over S contains the category (Sch/S)fppf as a full sub-
category via the Yoneda embedding T/S 7→ hT . From now on we no longer distin-
guish between a scheme T/S and the algebraic space it represents. Thus when we say “Let
f : T → F be a morphism from the scheme T to the algebraic space F ”, we mean that
T ∈ Ob((Sch/S)fppf ), that F is an algebraic space over S , and that f : hT → F is a
morphism of algebraic spaces over S.

7. Fibre products of algebraic spaces

The category of algebraic spaces over S has both products and fibre products.

Lemma 7.1. Let S be a scheme contained in Schfppf . Let F,G be algebraic spaces
over S. Then F × G is an algebraic space, and is a product in the category of algebraic
spaces over S.

Proof. It is clear that H = F × G is a sheaf. The diagonal of H is simply the
product of the diagonals of F and G. Hence it is representable by Lemma 3.4. Finally, if
U → F and V → G are surjective étale morphisms, with U, V ∈ Ob((Sch/S)fppf ), then
U × V → F ×G is surjective étale by Lemma 5.7. �

Lemma 7.2. LetS be a scheme contained in Schfppf . LetH be a sheaf on (Sch/S)fppf
whose diagonal is representable. Let F,G be algebraic spaces over S. Let F → H ,G→ H
be maps of sheaves. Then F ×H G is an algebraic space.

Proof. We check the 3 conditions of Definition 6.1. A fibre product of sheaves is a
sheaf, hence F ×H G is a sheaf. The diagonal of F ×H G is the left vertical arrow in

F ×H G //

∆
��

F ×G

∆F×∆G

��
(F × F )×(H×H) (G×G) // (F × F )× (G×G)

which is cartesian. Hence ∆ is representable as the base change of the morphism on the
right which is representable, see Lemmas 3.4 and 3.3. Finally, letU, V ∈ Ob((Sch/S)fppf )
and a : U → F , b : V → G be surjective and étale. As ∆H is representable, we see that
U ×H V is a scheme. The morphism

U ×H V −→ F ×H G

is surjective and étale as a composition of the base changes U ×H V → U ×H G and
U ×H G→ F ×H G of the étale surjective morphisms U → F and V → G, see Lemmas
3.2 and 3.3. This proves the last condition of Definition 6.1 holds and we conclude that
F ×H G is an algebraic space. �

Lemma 7.3. Let S be a scheme contained in Schfppf . Let F → H , G → H be
morphisms of algebraic spaces over S. Then F ×H G is an algebraic space, and is a fibre
product in the category of algebraic spaces over S.
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Proof. It follows from the stronger Lemma 7.2 that F ×H G is an algebraic space.
It is clear that F ×H G is a fibre product in the category of algebraic spaces over S since
that is a full subcategory of the category of (pre)sheaves of sets on (Sch/S)fppf . �

8. Glueing algebraic spaces

In this section we really start abusing notation and not distinguish between schemes and
the spaces they represent.

Lemma 8.1. Let S ∈ Ob(Schfppf ). Let F and G be sheaves on (Sch/S)oppfppf and de-
noteFqG the coproduct in the category of sheaves. The mapF → FqG is representable
by open and closed immersions.

Proof. Let U be a scheme and let ξ ∈ (F q G)(U). Recall the coproduct in the
category of sheaves is the sheafification of the coproduct presheaf (Sites, Lemma 10.13).
Thus there exists an fppf covering {gi : Ui → U}i∈I and a disjoint union decomposition
I = I ′ q I ′′ such that Ui → U → F qG factors through F , resp. G if and only if i ∈ I ′,
resp. i ∈ I ′′. Since F andG have empty intersection in F qGwe conclude that Ui×U Uj
is empty if i ∈ I ′ and j ∈ I ′′. Hence U ′ =

⋃
i∈I′ gi(Ui) and U ′′ =

⋃
i∈I′′ gi(Ui) are

disjoint open (Morphisms, Lemma 25.10) subschemes of U with U = U ′ q U ′′. We omit
the verification that U ′ = U ×FqG F . �

Lemma 8.2. Let S ∈ Ob(Schfppf ). Let U ∈ Ob((Sch/S)fppf ). Given a set I and
sheaves Fi on Ob((Sch/S)fppf ), if U ∼=

∐
i∈I Fi as sheaves, then each Fi is representable

by an open and closed subscheme Ui and U ∼=
∐
Ui as schemes.

Proof. By Lemma 8.1 the map Fi → U is representable by open and closed im-
mersions. Hence Fi is representable by an open and closed subscheme Ui of U . We
have U =

∐
Ui because we have U ∼=

∐
Fi as sheaves and we can test the equality on

points. �

Lemma 8.3. Let S ∈ Ob(Schfppf ). Let F be an algebraic space over S. Given a
set I and sheaves Fi on Ob((Sch/S)fppf ), if F ∼=

∐
i∈I Fi as sheaves, then each Fi is an

algebraic space over S.

Proof. The representability of F → F × F implies that each diagonal morphism
Fi → Fi×Fi is representable (immediate from the definitions and the fact thatF×(F×F )
(Fi × Fi) = Fi). Choose a scheme U in (Sch/S)fppf and a surjective étale morphism
U → F (this exist by hypothesis). The base change U ×F Fi → Fi is surjective and étale
by Lemma 5.5. On the other hand, U ×F Fi is a scheme by Lemma 8.1. Thus we have
verified all the conditions in Definition 6.1 and Fi is an algebraic space. �

The condition on the size of I and the Fi in the following lemma may be ignored by those
not worried about set theoretic questions.

Lemma 8.4. Let S ∈ Ob(Schfppf ). Suppose given a set I and algebraic spaces Fi,
i ∈ I . Then F =

∐
i∈I Fi is an algebraic space provided I , and the Fi are not too “large”:

for example if we can choose surjective étale morphisms Ui → Fi such that
∐
i∈I Ui is

isomorphic to an object of (Sch/S)fppf , then F is an algebraic space.

Proof. By construction F is a sheaf. We omit the verification that the diagonal
morphism of F is representable. Finally, if U is an object of (Sch/S)fppf isomorphic to∐
i∈I Ui then it is straightforward to verify that the resulting mapU →

∐
Fi is surjective

and étale. �
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Here is the analogue of Schemes, Lemma 15.4.

Lemma 8.5. Let S ∈ Ob(Schfppf ). Let F be a presheaf of sets on (Sch/S)fppf .
Assume

(1) F is a sheaf,
(2) there exists an index set I and subfunctors Fi ⊂ F such that

(a) each Fi is an algebraic space,
(b) each Fi → F is representable,
(c) each Fi → F is an open immersion (see Definition 5.1),
(d) the map

∐
Fi → F is surjective as a map of sheaves, and

(e)
∐
Fi is an algebraic space (set theoretic condition, see Lemma 8.4).

Then F is an algebraic space.

Proof. Let T be an object of (Sch/S)fppf . Let T → F be a morphism. By assump-
tion (2)(b) and (2)(c) the fibre product Fi ×F T is representable by an open subscheme
Vi ⊂ T . It follows that (

∐
Fi) ×F T is represented by the scheme

∐
Vi over T . By as-

sumption (2)(d) there exists an fppf covering {Tj → T}j∈J such that Tj → T → F fac-
tors through Fi, i = i(j). Hence Tj → T factors through the open subscheme Vi(j) ⊂ T .
Since {Tj → T} is jointly surjective, it follows that T =

⋃
Vi is an open covering. In

particular, the transformation of functors
∐
Fi → F is representable and surjective in

the sense of Definition 5.1 (see Remark 5.2 for a discussion).

Next, let T ′ → F be a second morphism from an object in (Sch/S)fppf . Write as above
T ′ =

⋃
V ′
i with V ′

i = T ′ ×F Fi. To show that the diagonal F → F × F is representable
we have to show that G = T ×F T ′ is representable, see Lemma 5.10. Consider the
subfunctorsGi = G×F Fi. Note thatGi = Vi×Fi V ′

i , and hence is representable as Fi is
an algebraic space. By the above the Gi form a Zariski covering of G. Hence by Schemes,
Lemma 15.4 we see G is representable.

Choose a schemeU ∈ Ob((Sch/S)fppf ) and a surjective étale morphismU →
∐
Fi (this

exists by hypothesis). We may writeU =
∐
Ui withUi the inverse image ofFi, see Lemma

8.2. We claim that U → F is surjective and étale. Surjectivity follows as
∐
Fi → F is

surjective (see first paragraph of the proof) by applying Lemma 5.4. Consider the fibre
product U ×F T where T → F is as above. We have to show that U ×F T → T is
étale. Since U ×F T =

∐
Ui ×F T it suffices to show each Ui ×F T → T is étale. Since

Ui ×F T = Ui ×Fi Vi this follows from the fact that Ui → Fi is étale and Vi → T is an
open immersion (and Morphisms, Lemmas 36.9 and 36.3). �

9. Presentations of algebraic spaces

Given an algebraic space we can find a “presentation” of it.

Lemma 9.1. Let F be an algebraic space over S. Let f : U → F be a surjective étale
morphism from a scheme to F . Set R = U ×F U . Then

(1) j : R → U ×S U defines an equivalence relation on U over S (see Groupoids,
Definition 3.1).

(2) the morphisms s, t : R→ U are étale, and
(3) the diagram

R
//
// U // F

is a coequalizer diagram in Sh((Sch/S)fppf ).
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Proof. Let T/S be an object of (Sch/S)fppf . Then R(T ) = {(a, b) ∈ U(T ) ×
U(T ) | f ◦ a = f ◦ b} which defines an equivalence relation on U(T ). The morphisms
s, t : R→ U are étale because the morphism U → F is étale.
To prove (3) we first show that U → F is a surjection of sheaves, see Sites, Definition 11.1.
Let ξ ∈ F (T ) with T as above. Let V = T ×ξ,F,f U . By assumption V is a scheme and
V → T is surjective étale. Hence {V → T} is a covering for the fppf topology. Since ξ|V
factors through U by construction we conclude U → F is surjective. Surjectivity implies
that F is the coequalizer of the diagram by Sites, Lemma 11.3. �

This lemma suggests the following definitions.

Definition 9.2. Let S be a scheme. Let U be a scheme over S. An étale equivalence
relation on U over S is an equivalence relation j : R → U ×S U such that s, t : R → U
are étale morphisms of schemes.

Definition 9.3. Let F be an algebraic space over S. A presentation of F is given by
a scheme U over S and an étale equivalence relation R on U over S , and a surjective étale
morphism U → F such that R = U ×F U .

Equivalently we could ask for the existence of an isomorphism
U/R ∼= F

where the quotient U/R is as defined in Groupoids, Section 20. To construct algebraic
spaces we will study the converse question, namely, for which equivalence relations the
quotient sheaf U/R is an algebraic space. It will finally turn out this is always the case if
R is an étale equivalence relation on U over S , see Theorem 10.5.

10. Algebraic spaces and equivalence relations

Suppose given a scheme U over S and an étale equivalence relation R on U over S. We
would like to show this defines an algebraic space. We will produce a series of lemmas
that prove the quotient sheaf U/R (see Groupoids, Definition 20.1) has all the properties
required of it in Definition 6.1.

Lemma 10.1. LetS be a scheme. LetU be a scheme overS. Let j = (s, t) : R→ U×S
U be an étale equivalence relation on U over S. Let U ′ → U be an étale morphism. LetR′

be the restriction of R to U ′, see Groupoids, Definition 3.3. Then j′ : R′ → U ′ ×S U ′ is
an étale equivalence relation also.

Proof. It is clear from the description of s′, t′ in Groupoids, Lemma 18.1 that s′, t′ :
R′ → U ′ are étale as compositions of base changes of étale morphisms (see Morphisms,
Lemma 36.4 and 36.3). �

We will often use the following lemma to find open subspaces of algebraic spaces. A slight
improvement (with more general hypotheses) of this lemma is Bootstrap, Lemma 7.1.

Lemma 10.2. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) : R →
U ×S U be a pre-relation. Let g : U ′ → U be a morphism. Assume

(1) j is an equivalence relation,
(2) s, t : R→ U are surjective, flat and locally of finite presentation,
(3) g is flat and locally of finite presentation.

Let R′ = R|U ′ be the restriction of R to U ′. Then U ′/R′ → U/R is representable, and is
an open immersion.
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Proof. By Groupoids, Lemma 3.2 the morphism j′ = (s′, t′) : R′ → U ′ ×S U ′

defines an equivalence relation. Since g is flat and locally of finite presentation we see
that g is universally open as well (Morphisms, Lemma 25.10). For the same reason s, t are
universally open as well. LetW 1 = g(U ′) ⊂ U , and letW = t(s−1(W 1)). ThenW 1 and
W are open in U . Moreover, as j is an equivalence relation we have t(s−1(W )) = W (see
Groupoids, Lemma 19.2 for example).

By Groupoids, Lemma 20.5 the map of sheaves F ′ = U ′/R′ → F = U/R is injective. Let
a : T → F be a morphism from a scheme into U/R. We have to show that T ×F F ′ is
representable by an open subscheme of T .

The morphism a is given by the following data: an fppf covering {ϕj : Tj → T}j∈J of
T and morphisms aj : Tj → U such that the maps

aj × aj′ : Tj ×T Tj′ −→ U ×S U

factor through j : R → U ×S U via some (unique) maps rjj′ : Tj ×T Tj′ → R. The
system (aj) corresponds to a in the sense that the diagrams

Tj aj
//

��

U

��
T

a // F

commute.

Consider the open subsets Wj = a−1
j (W ) ⊂ Tj . Since t(s−1(W )) = W we see that

Wj ×T Tj′ = r−1
jj′ (t−1(W )) = r−1

jj′ (s−1(W )) = Tj ×T Wj′ .

By Descent, Lemma 13.6 this means there exists an open WT ⊂ T such that ϕ−1
j (WT ) =

Wj for all j ∈ J . We claim that WT → T represents T ×F F ′ → T .

First, let us show that WT → T → F is an element of F ′(WT ). Since {Wj → WT }j∈J
is an fppf covering of WT , it is enough to show that each Wj → U → F is an element of
F ′(Wj) (as F ′ is a sheaf for the fppf topology). Consider the commutative diagram

W ′
j

//

��

##

U ′

g

��
s−1(W 1)

s
//

t

��

W 1

��
Wj

aj |Wj // W // F

where W ′
j = Wj ×W s−1(W 1) ×W 1 U ′. Since t and g are surjective, flat and locally of

finite presentation, so is W ′
j → Wj . Hence the restriction of the element Wj → U → F

to W ′
j is an element of F ′ as desired.

Suppose that f : T ′ → T is a morphism of schemes such that a|T ′ ∈ F ′(T ′). We have to
show that f factors through the open WT . Since {T ′×T Tj → T ′} is an fppf covering of
T ′ it is enough to show each T ′ ×T Tj → T factors through WT . Hence we may assume
f factors as ϕj ◦ fj : T ′ → Tj → T for some j. In this case the condition a|T ′ ∈ F ′(T ′)
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means that there exists some fppf covering {ψi : T ′
i → T ′}i∈I and some morphisms

bi : T ′
i → U ′ such that

T ′
i bi

//

fj◦ψi
��

U ′
g
// U

��
Tj

aj // U // F

is commutative. This commutativity means that there exists a morphism r′
i : T ′

i → R
such that t ◦ r′

i = aj ◦ fj ◦ ψi, and s ◦ r′
i = g ◦ bi. This implies that Im(fj ◦ ψi) ⊂ Wj

and we win. �

The following lemma is not completely trivial although it looks like it should be trivial.

Lemma 10.3. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) : R →
U ×S U be an étale equivalence relation on U over S. If the quotient U/R is an algebraic
space, then U → U/R is étale and surjective. Hence (U,R,U → U/R) is a presentation
of the algebraic space U/R.

Proof. Denote c : U → U/R the morphism in question. Let T be a scheme and
let a : T → U/R be a morphism. We have to show that the morphism (of schemes)
π : T ×a,U/R,c U → T is étale and surjective. The morphism a corresponds to an fppf
covering {ϕi : Ti → T} and morphisms ai : Ti → U such that ai × ai′ : Ti ×T Ti′ →
U ×S U factors through R, and such that c ◦ ai = a ◦ ϕi. Hence

Ti ×ϕi,T T ×a,U/R,c U = Ti ×c◦ai,U/R,c U = Ti ×ai,U U ×c,U/R,c U = Ti ×ai,U,t R.

Since t is étale and surjective we conclude that the base change of π to Ti is surjective
and étale. Since the property of being surjective and étale is local on the base in the fpqc
topology (see Remark 4.3) we win. �

Lemma 10.4. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) : R →
U ×S U be an étale equivalence relation on U over S. Assume that U is affine. Then the
quotient F = U/R is an algebraic space, and U → F is étale and surjective.

Proof. Since j : R → U ×S U is a monomorphism we see that j is separated (see
Schemes, Lemma 23.3). Since U is affine we see that U ×S U (which comes equipped with
a monomorphism into the affine scheme U × U ) is separated. Hence we see that R is
separated. In particular the morphisms s, t are separated as well as étale.

Since the composition R → U ×S U → U is locally of finite type we conclude that j is
locally of finite type (see Morphisms, Lemma 15.8). As j is also a monomorphism it has
finite fibres and we see that j is locally quasi-finite by Morphisms, Lemma 20.7. Altogether
we see that j is separated and locally quasi-finite.

Our first step is to show that the quotient map c : U → F is representable. Consider a
scheme T and a morphism a : T → F . We have to show that the sheafG = T ×a,F,c U is
representable. As seen in the proofs of Lemmas 10.2 and 10.3 there exists an fppf covering
{ϕi : Ti → T}i∈I and morphisms ai : Ti → U such that ai × ai′ : Ti ×T Ti′ → U ×S U
factors through R, and such that c ◦ ai = a ◦ ϕi. As in the proof of Lemma 10.3 we see
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that

Ti ×ϕi,T G = Ti ×ϕi,T T ×a,U/R,c U
= Ti ×c◦ai,U/R,c U
= Ti ×ai,U U ×c,U/R,c U
= Ti ×ai,U,t R

Since t is separated and étale, and in particular separated and locally quasi-finite (by Mor-
phisms, Lemmas 35.10 and 36.16) we see that the restriction of G to each Ti is repre-
sentable by a morphism of schemes Xi → Ti which is separated and locally quasi-finite.
By Descent, Lemma 39.1 we obtain a descent datum (Xi, ϕii′) relative to the fppf-covering
{Ti → T}. Since each Xi → Ti is separated and locally quasi-finite we see by More on
Morphisms, Lemma 57.1 that this descent datum is effective. Hence by Descent, Lemma
39.1 (2) we conclude that G is representable as desired.

The second step of the proof is to show that U → F is surjective and étale. This is clear
from the above since in the first step above we saw that G = T ×a,F,c U is a scheme over
T which base changes to schemes Xi → Ti which are surjective and étale. Thus G → T
is surjective and étale (see Remark 4.3). Alternatively one can reread the proof of Lemma
10.3 in the current situation.

The third and final step is to show that the diagonal map F → F × F is representable.
We first observe that the diagram

R //

j

��

F

∆
��

U ×S U // F × F

is a fibre product square. By Lemma 3.4 the morphism U ×S U → F ×F is representable
(note that hU×hU = hU×SU ). Moreover, by Lemma 5.7 the morphismU×SU → F×F
is surjective and étale (note also that étale and surjective occur in the lists of Remarks 4.3
and 4.2). It follows either from Lemma 3.3 and the diagram above, or by writing R→ F
as R → U → F and Lemmas 3.1 and 3.2 that R → F is representable as well. Let T be a
scheme and let a : T → F ×F be a morphism. We have to show thatG = T ×a,F×F,∆F
is representable. By what was said above the morphism (of schemes)

T ′ = (U ×S U)×F×F,a T −→ T

is surjective and étale. Hence {T ′ → T} is an étale covering of T . Note also that

T ′ ×T G = T ′ ×U×SU,j R
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as can be seen contemplating the following cube

R //

��

F

��

T ′ ×T G //

��

88

G

��

<<

U ×S U // F × F

T ′ //

88

T

<<

Hence we see that the restriction ofG to T ′ is representable by a schemeX , and moreover
that the morphism X → T ′ is a base change of the morphism j. Hence X → T ′ is
separated and locally quasi-finite (see second paragraph of the proof). By Descent, Lemma
39.1 we obtain a descent datum (X,ϕ) relative to the fppf-covering {T ′ → T}. Since
X → T ′ is separated and locally quasi-finite we see by More on Morphisms, Lemma 57.1
that this descent datum is effective. Hence by Descent, Lemma 39.1 (2) we conclude that
G is representable as desired. �

Theorem 10.5. Let S be a scheme. Let U be a scheme over S. Let j = (s, t) :
R→ U ×S U be an étale equivalence relation on U over S. Then the quotient U/R is an
algebraic space, and U → U/R is étale and surjective, in other words (U,R,U → U/R)
is a presentation of U/R.

Proof. By Lemma 10.3 it suffices to prove thatU/R is an algebraic space. LetU ′ → U
be a surjective, étale morphism. Then {U ′ → U} is in particular an fppf covering. Let
R′ be the restriction of R to U ′, see Groupoids, Definition 3.3. According to Groupoids,
Lemma 20.6 we see that U/R ∼= U ′/R′. By Lemma 10.1R′ is an étale equivalence relation
on U ′. Thus we may replace U by U ′.

We apply the previous remark to U ′ =
∐
Ui, where U =

⋃
Ui is an affine open covering

of U . Hence we may and do assume that U =
∐
Ui where each Ui is an affine scheme.

Consider the restrictionRi ofR toUi. By Lemma 10.1 this is an étale equivalence relation.
Set Fi = Ui/Ri and F = U/R. It is clear that

∐
Fi → F is surjective. By Lemma 10.2

each Fi → F is representable, and an open immersion. By Lemma 10.4 applied to (Ui, Ri)
we see that Fi is an algebraic space. Then by Lemma 10.3 we see that Ui → Fi is étale
and surjective. From Lemma 8.4 it follows that

∐
Fi is an algebraic space. Finally, we

have verified all hypotheses of Lemma 8.5 and it follows that F = U/R is an algebraic
space. �

11. Algebraic spaces, retrofitted

We start building our arsenal of lemmas dealing with algebraic spaces. The first result says
that in Definition 6.1 we can weaken the condition on the diagonal as follows.

Lemma 11.1. LetS be a scheme contained in Schfppf . LetF be a sheaf on (Sch/S)fppf
such that there exists U ∈ Ob((Sch/S)fppf ) and a map U → F which is representable,
surjective, and étale. Then F is an algebraic space.
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Proof. Set R = U ×F U . This is a scheme as U → F is assumed representable. The
projections s, t : R → U are étale as U → F is assumed étale. The map j = (t, s) : R →
U ×S U is a monomorphism and an equivalence relation as R = U ×F U . By Theorem
10.5 the quotient sheafF ′ = U/R is an algebraic space andU → F ′ is surjective and étale.
Again sinceR = U ×F U we obtain a canonical factorization U → F ′ → F and F ′ → F
is an injective map of sheaves. On the other hand, U → F is surjective as a map of sheaves
by Lemma 5.9. Thus F ′ → F is also surjective and we conclude F ′ = F is an algebraic
space. �

Lemma 11.2. Let S be a scheme contained in Schfppf . Let G be an algebraic space
over S , let F be a sheaf on (Sch/S)fppf , and letG→ F be a representable transformation
of functors which is surjective and étale. Then F is an algebraic space.

Proof. Pick a scheme U and a surjective étale morphism U → G. Since G is an
algebraic space U → G is representable. Hence the composition U → G → F is repre-
sentable, surjective, and étale. See Lemmas 3.2 and 5.4. Thus F is an algebraic space by
Lemma 11.1. �

Lemma 11.3. Let S be a scheme contained in Schfppf . Let F be an algebraic space
over S. Let G→ F be a representable transformation of functors. Then G is an algebraic
space.

Proof. By Lemma 3.5 we see that G is a sheaf. The diagram

G×F G //

��

F

∆F

��
G×G // F × F

is cartesian. Hence we see thatG×FG→ G×G is representable by Lemma 3.3. By Lemma
3.6 we see that G→ G×F G is representable. Hence ∆G : G→ G×G is representable
as a composition of representable transformations, see Lemma 3.2. Finally, let U be an
object of (Sch/S)fppf and let U → F be surjective and étale. By assumption U ×F G
is representable by a scheme U ′. By Lemma 5.5 the morphism U ′ → G is surjective and
étale. This verifies the final condition of Definition 6.1 and we win. �

Lemma 11.4. Let S be a scheme contained in Schfppf . Let F , G be algebraic spaces
over S. Let G → F be a representable morphism. Let U ∈ Ob((Sch/S)fppf ), and q :
U → F surjective and étale. Set V = G×F U . Finally, let P be a property of morphisms
of schemes as in Definition 5.1. Then G → F has property P if and only if V → U has
property P .

Proof. (This lemma follows from Lemmas 5.5 and 5.6, but we give a direct proof
here also.) It is clear from the definitions that if G → F has property P , then V → U
has property P . Conversely, assume V → U has property P . Let T → F be a morphism
from a scheme to F . Let T ′ = T ×F G which is a scheme since G → F is representable.
We have to show that T ′ → T has property P . Consider the commutative diagram of
schemes

V

��

T ×F V

��

oo // T ×F G

��

T ′

U T ×F Uoo // T
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where both squares are fibre product squares. Hence we conclude the middle arrow has
property P as a base change of V → U . Finally, {T ×F U → T} is a fppf covering as it
is surjective étale, and hence we conclude that T ′ → T has property P as it is local on the
base in the fppf topology. �

Lemma 11.5. LetS be a scheme contained in Schfppf . LetG→ F be a transformation
of presheaves on (Sch/S)fppf . Let P be a property of morphisms of schemes. Assume

(1) P is preserved under any base change, fppf local on the base, and morphisms of
type P satisfy descent for fppf coverings, see Descent, Definition 36.1,

(2) G is a sheaf,
(3) F is an algebraic space,
(4) there exists a U ∈ Ob((Sch/S)fppf ) and a surjective étale morphism U → F

such that V = G×F U is representable, and
(5) V → U has P .

Then G is an algebraic space, G→ F is representable and has property P .

Proof. Let R = U ×F U , and denote t, s : R → U the projection morphisms as
usual. Let T be a scheme and let T → F be a morphism. Then U ×F T → T is surjective
étale, hence {U ×F T → T} is a covering for the étale topology. Consider

W = G×F (U ×F T ) = V ×F T = V ×U (U ×F T ).
It is a scheme since F is an algebraic space. The morphism W → U ×F T has property P
since it is a base change of V → U . There is an isomorphism

W ×T (U ×F T ) = (G×F (U ×F T ))×T (U ×F T )
= (U ×F T )×T (G×F (U ×F T ))
= (U ×F T )×T W

over (U×FT )×T (U×FT ). The middle equality maps ((g, (u1, t)), (u2, t)) to ((u1, t), (g, (u2, t))).
This defines a descent datum for W/U ×F T/T , see Descent, Definition 34.1. This fol-
lows from Descent, Lemma 39.1. Namely we have a sheaf G ×F T , whose base change to
U ×F T is represented byW and the isomorphism above is the one from the proof of De-
scent, Lemma 39.1. By assumption on P the descent datum above is representable. Hence
by the last statement of Descent, Lemma 39.1 we see that G ×F T is representable. This
proves that G→ F is a representable transformation of functors.

As G → F is representable, we see that G is an algebraic space by Lemma 11.3. The fact
that G→ F has property P now follows from Lemma 11.4. �

Lemma 11.6. Let S be a scheme contained in Schfppf . Let F,G be algebraic spaces
over S. Let a : F → G be a morphism. Given any V ∈ Ob((Sch/S)fppf ) and a surjective
étale morphism q : V → G there exists a U ∈ Ob((Sch/S)fppf ) and a commutative
diagram

U

p

��

α
// V

q

��
F

a // G

with p surjective and étale.

Proof. First choose W ∈ Ob((Sch/S)fppf ) with surjective étale morphism W →
F . Next, put U = W ×G V . Since G is an algebraic space we see that U is isomorphic
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to an object of (Sch/S)fppf . As q is surjective étale, we see that U → W is surjective
étale (see Lemma 5.5). Thus U → F is surjective étale as a composition of surjective étale
morphisms (see Lemma 5.4). �

12. Immersions and Zariski coverings of algebraic spaces

At this point an interesting phenomenon occurs. We have already defined the notion of
an open immersion of algebraic spaces (through Definition 5.1) but we have yet to define
the notion of a point1. Thus the Zariski topology of an algebraic space has already been
defined, but there is no space yet!
Perhaps superfluously we formally introduce immersions as follows.

Definition 12.1. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S.

(1) A morphism of algebraic spaces over S is called an open immersion if it is repre-
sentable, and an open immersion in the sense of Definition 5.1.

(2) An open subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic space
and F ′ → F is an open immersion.

(3) A morphism of algebraic spaces over S is called a closed immersion if it is repre-
sentable, and a closed immersion in the sense of Definition 5.1.

(4) A closed subspace of F is a subfunctor F ′ ⊂ F such that F ′ is an algebraic space
and F ′ → F is a closed immersion.

(5) A morphism of algebraic spaces over S is called an immersion if it is repre-
sentable, and an immersion in the sense of Definition 5.1.

(6) A locally closed subspace ofF is a subfunctorF ′ ⊂ F such thatF ′ is an algebraic
space and F ′ → F is an immersion.

We note that these definitions make sense since an immersion is in particular a monomor-
phism (see Schemes, Lemma 23.8 and Lemma 5.8), and hence the image of an immersion
G→ F of algebraic spaces is a subfunctorF ′ ⊂ F which is (canonically) isomorphic toG.
Thus some of the discussion of Schemes, Section 10 carries over to the setting of algebraic
spaces.

Lemma 12.2. Let S ∈ Ob(Schfppf ) be a scheme. A composition of (closed, resp.
open) immersions of algebraic spaces overS is a (closed, resp. open) immersion of algebraic
spaces over S.

Proof. See Lemma 5.4 and Remarks 4.3 (see very last line of that remark) and 4.2. �

Lemma 12.3. Let S ∈ Ob(Schfppf ) be a scheme. A base change of a (closed, resp.
open) immersion of algebraic spaces over S is a (closed, resp. open) immersion of algebraic
spaces over S.

Proof. See Lemma 5.5 and Remark 4.3 (see very last line of that remark). �

Lemma 12.4. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space over S.
Let F1, F2 be locally closed subspaces of F . If F1 ⊂ F2 as subfunctors of F , then F1 is a
locally closed subspace of F2. Similarly for closed and open subspaces.

Proof. Let T → F2 be a morphism with T a scheme. Since F2 → F is a monomor-
phism, we see that T ×F2 F1 = T ×F F1. The lemma follows formally from this. �

1We will associate a topological space to an algebraic space in Properties of Spaces, Section 4, and its opens
will correspond exactly to the open subspaces defined below.
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Let us formally define the notion of a Zariski open covering of algebraic spaces. Note that
in Lemma 8.5 we have already encountered such open coverings as a method for construct-
ing algebraic spaces.

Definition 12.5. Let S ∈ Ob(Schfppf ) be a scheme. Let F be an algebraic space
over S. A Zariski covering {Fi ⊂ F}i∈I of F is given by a set I and a collection of open
subspaces Fi ⊂ F such that

∐
Fi → F is a surjective map of sheaves.

Note that if T is a schemes, and a : T → F is a morphism, then each of the fibre products
T×FFi is identified with an open subschemeTi ⊂ T . The final condition of the definition
signifies exactly that T =

⋃
i∈I Ti.

It is clear that the collection FZar of open subspaces of F is a set (as (Sch/S)fppf is a
site, hence a set). Moreover, we can turn FZar into a category by letting the morphisms
be inclusions of subfunctors (which are automatically open immersions by Lemma 12.4).
Finally, Definition 12.5 provides the notion of a Zariski covering {Fi → F ′}i∈I in the
category FZar. Hence, just as in the case of a topological space (see Sites, Example 6.4) by
suitably choosing a set of coverings we may obtain a Zariski site of the algebraic space F .

Definition 12.6. LetS ∈ Ob(Schfppf ) be a scheme. LetF be an algebraic space over
S. A small Zariski site FZar of an algebraic space F is one of the sites described above.

Hence this gives a notion of what it means for something to be true Zariski locally on an
algebraic space, which is how we will use this notion. In general the Zariski topology is
not fine enough for our purposes. For example we can consider the category of Zariski
sheaves on an algebraic space. It will turn out that this is not the correct thing to consider,
even for quasi-coherent sheaves. One only gets the desired result when using the étale or
fppf site of F to define quasi-coherent sheaves.

13. Separation conditions on algebraic spaces

A separation condition on an algebraic space F is a condition on the diagonal morphism
F → F ×F . Let us first list the properties the diagonal has automatically. Since the diag-
onal is representable by definition the following lemma makes sense (through Definition
5.1).

Lemma 13.1. Let S be a scheme contained in Schfppf . Let F be an algebraic space
over S. Let ∆ : F → F × F be the diagonal morphism. Then

(1) ∆ is locally of finite type,
(2) ∆ is a monomorphism,
(3) ∆ is separated, and
(4) ∆ is locally quasi-finite.

Proof. Let F = U/R be a presentation of F . As in the proof of Lemma 10.4 the
diagram

R //

j

��

F

∆
��

U ×S U // F × F
is cartesian. Hence according to Lemma 11.4 it suffices to show that j has the properties
listed in the lemma. (Note that each of the properties (1) – (4) occur in the lists of Remarks
4.1 and 4.3.) Since j is an equivalence relation it is a monomorphism. Hence it is separated
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by Schemes, Lemma 23.3. As R is an étale equivalence relation we see that s, t : R → U
are étale. Hence s, t are locally of finite type. Then it follows from Morphisms, Lemma
15.8 that j is locally of finite type. Finally, as it is a monomorphism its fibres are finite.
Thus we conclude that it is locally quasi-finite by Morphisms, Lemma 20.7. �

Here are some common types of separation conditions, relative to the base schemeS. There
is also an absolute notion of these conditions which we will discuss in Properties of Spaces,
Section 3. Moreover, we will discuss separation conditions for a morphism of algebraic
spaces in Morphisms of Spaces, Section 4.

Definition 13.2. Let S be a scheme contained in Schfppf . Let F be an algebraic
space over S. Let ∆ : F → F × F be the diagonal morphism.

(1) We say F is separated over S if ∆ is a closed immersion.
(2) We say F is locally separated over S2 if ∆ is an immersion.
(3) We say F is quasi-separated over S if ∆ is quasi-compact.
(4) We say F is Zariski locally quasi-separated over S3 if there exists a Zariski cov-

ering F =
⋃
i∈I Fi such that each Fi is quasi-separated.

Note that if the diagonal is quasi-compact (when F is separated or quasi-separated) then
the diagonal is actually quasi-finite and separated, hence quasi-affine (by More on Mor-
phisms, Lemma 43.2).

14. Examples of algebraic spaces

In this section we construct some examples of algebraic spaces. Some of these were sug-
gested by B. Conrad. Since we do not yet have a lot of theory at our disposal the discussion
is a bit awkward in some places.

Example 14.1. Let k be a field of characteristic 6= 2. Let U = A1
k. Set

j : R = ∆q Γ −→ U ×k U
where ∆ = {(x, x) | x ∈ A1

k} and Γ = {(x,−x) | x ∈ A1
k, x 6= 0}. It is clear

that s, t : R → U are étale, and hence j is an étale equivalence relation. The quotient
X = U/R is an algebraic space by Theorem 10.5. Since R is quasi-compact we see that X
is quasi-separated. On the other hand, X is not locally separated because the morphism j
is not an immersion.

Example 14.2. Let k be a field. Let k′/k be a degree 2 Galois extension with Gal(k′/k) =
{1, σ}. Let S = Spec(k[x]) and U = Spec(k′[x]). Note that

U ×S U = Spec((k′ ⊗k k′)[x]) = ∆(U)q∆′(U)
where ∆′ = (1, σ) : U → U ×S U . Take

R = ∆(U)q∆′(U \ {0U})
where 0U ∈ U denotes the k′-rational point whose x-coordinate is zero. It is easy to see
that R is an étale equivalence relation on U over S and hence X = U/R is an algebraic
space by Theorem 10.5. Here are some properties ofX (some of which will not make sense
until later):

(1) X → S is an isomorphism over S \ {0S},
(2) the morphism X → S is étale (see Properties of Spaces, Definition 16.2)

2In the literature this often refers to quasi-separated and locally separated algebraic spaces.
3This definition was suggested by B. Conrad.
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(3) the fibre 0X of X → S over 0S is isomorphic to Spec(k′) = 0U ,
(4) X is not a scheme because if it were, thenOX,0X would be a local domain (O,m, κ)

with fraction field k(x), with x ∈ m and residue field κ = k′ which is impossible,
(5) X is not separated, but it is locally separated and quasi-separated,
(6) there exists a surjective, finite, étale morphism S′ → S such that the base change

X ′ = S′ ×S X is a scheme (namely, if we base change to S′ = Spec(k′[x]) then
U splits into two copies of S′ andX ′ becomes isomorphic to the affine line with
0 doubled, see Schemes, Example 14.3), and

(7) if we think ofX as a finite type algebraic space over Spec(k), then similarly the
base change Xk′ is a scheme but X is not a scheme.

In particular, this gives an example of a descent datum for schemes relative to the covering
{Spec(k′)→ Spec(k)} which is not effective.

See also Examples, Lemma 65.1, which shows that descent data need not be effective even
for a projective morphism of schemes. That example gives a smooth separated algebraic
space of dimension 3 over C which is not a scheme.

We will use the following lemma as a convenient way to construct algebraic spaces as
quotients of schemes by free group actions.

Lemma 14.3. Let U → S be a morphism of Schfppf . Let G be an abstract group. Let
G→ AutS(U) be a group homomorphism. Assume

(*) if u ∈ U is a point, and g(u) = u for some non-identity element g ∈ G, then g
induces a nontrivial automorphism of κ(u).

Then
j : R =

∐
g∈G

U −→ U ×S U, (g, x) 7−→ (g(x), x)

is an étale equivalence relation and hence

F = U/R

is an algebraic space by Theorem 10.5.

Proof. In the statement of the lemma the symbol AutS(U) denotes the group of
automorphisms of U over S. Assume (∗) holds. Let us show that

j : R =
∐

g∈G
U −→ U ×S U, (g, x) 7−→ (g(x), x)

is a monomorphism. This signifies that if T is a nonempty scheme, and h : T → U is a
T -valued point such that g ◦ h = g′ ◦ h then g = g′. Suppose T 6= ∅, h : T → U and
g ◦ h = g′ ◦ h. Let t ∈ T . Consider the composition Spec(κ(t))→ Spec(κ(h(t)))→ U .
Then we conclude that g−1 ◦ g′ fixes u = h(t) and acts as the identity on its residue field.
Hence g = g′ by (∗).

Thus if (∗) holds we see that j is a relation (see Groupoids, Definition 3.1). Moreover, it
is an equivalence relation since on T -valued points for a connected scheme T we see that
R(T ) = G×U(T )→ U(T )×U(T ) (recall that we always work over S). Moreover, the
morphisms s, t : R→ U are étale sinceR is a disjoint product of copies of U . This proves
that j : R→ U ×S U is an étale equivalence relation. �

Given a scheme U and an action of a group G on U we say the action of G on U is free
if condition (∗) of Lemma 14.3 holds. This is equivalent to the notion of a free action of
the constant group schemeGS on U as defined in Groupoids, Definition 10.2. The lemma
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can be interpreted as saying that quotients of schemes by free actions of groups exist in
the category of algebraic spaces.

Definition 14.4. Notation U → S , G, R as in Lemma 14.3. If the action of G on U
satisfies (∗) we say G acts freely on the scheme U . In this case the algebraic space U/R is
denoted U/G and is called the quotient of U by G.

This notation is consistent with the notation U/G introduced in Groupoids, Definition
20.1. We will later make sense of the quotient as an algebraic stack without any assump-
tions on the action whatsoever; when we do this we will use the notation [U/G]. Before
we discuss the examples we prove some more lemmas to facilitate the discussion. Here is
a lemma discussing the various separation conditions for this quotient when G is finite.

Lemma 14.5. Notation and assumptions as in Lemma 14.3. Assume G is finite. Then
(1) if U → S is quasi-separated, then U/G is quasi-separated over S , and
(2) if U → S is separated, then U/G is separated over S.

Proof. In the proof of Lemma 13.1 we saw that it suffices to prove the corresponding
properties for the morphism j : R → U ×S U . If U → S is quasi-separated, then for
every affine open V ⊂ U which maps into an affine of S the opens g(V ) ∩ V are quasi-
compact. It follows that j is quasi-compact. If U → S is separated, the diagonal ∆U/S is
a closed immersion. Hence j : R → U ×S U is a finite coproduct of closed immersions
with disjoint images. Hence j is a closed immersion. �

Lemma 14.6. Notation and assumptions as in Lemma 14.3. If Spec(k) → U/G is a
morphism, then there exist

(1) a finite Galois extension k′/k,
(2) a finite subgroup H ⊂ G,
(3) an isomorphism H → Gal(k′/k), and
(4) an H-equivariant morphism Spec(k′)→ U .

Conversely, such data determine a morphism Spec(k)→ U/G.

Proof. Consider the fibre product V = Spec(k)×U/G U . Here is a diagram

V //

��

U

��
Spec(k) // U/G

Then V is a nonempty scheme étale over Spec(k) and hence is a disjoint union V =∐
i∈I Spec(ki) of spectra of fields ki finite separable over k (Morphisms, Lemma 36.7).

We have
V ×Spec(k) V = (Spec(k)×U/G U)×Spec(k) (Spec(k)×U/G U)

= Spec(k)×U/G U ×U/G U
= Spec(k)×U/G U ×G
= V ×G

The action ofG on U induces an action of a : G×V → V . The displayed equality means
thatG×V → V ×Spec(k) V , (g, v) 7→ (a(g, v), v) is an isomorphism. In particular we see
that for every iwe have an isomorphismHi×Spec(ki)→ Spec(ki⊗k ki) whereHi ⊂ G
is the subgroup of elements fixing i ∈ I . ThusHi is finite and is the Galois group of ki/k.
We omit the converse construction. �
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It follows from this lemma for example that if k′/k is a finite Galois extension, then
Spec(k′)/Gal(k′/k) ∼= Spec(k). What happens if the extension is infinite? Here is an
example.

Example 14.7. Let S = Spec(Q). Let U = Spec(Q). Let G = Gal(Q/Q) with
obvious action on U . Then by construction property (∗) of Lemma 14.3 holds and we
obtain an algebraic space

X = Spec(Q)/G −→ S = Spec(Q).
Of course this is totally ridiculous as an approximation of S! Namely, by the Artin-
Schreier theorem, see [?, Theorem 17, page 316], the only finite subgroups of Gal(Q/Q) are
{1} and the conjugates of the order two group Gal(Q/Q ∩R). Hence, if Spec(k) → X
is a morphism with k algebraic over Q, then it follows from Lemma 14.6 and the theorem
just mentioned that either k is Q or isomorphic to Q ∩R.

What is wrong with the example above is that the Galois group comes equipped with a
topology, and this should somehow be part of any construction of a quotient of Spec(Q).
The following example is much more reasonable in my opinion and may actually occur in
“nature”.

Example 14.8. Let k be a field of characteristic zero. Let U = A1
k and let G = Z. As

action we take n(x) = x+n, i.e., the action of Z on the affine line by translation. The only
fixed point is the generic point and it is clearly the case that Z injects into the automor-
phism group of the field k(x). (This is where we use the characteristic zero assumption.)
Consider the morphism

γ : Spec(k(x)) −→ X = A1
k/Z

of the generic point of the affine line into the quotient. We claim that this morphism
does not factor through any monomorphism Spec(L) → X of the spectrum of a field
to X . (Contrary to what happens for schemes, see Schemes, Section 13.) In fact, since Z
does not have any nontrivial finite subgroups we see from Lemma 14.6 that for any such
factorization k(x) = L. Finally, γ is not a monomorphism since

Spec(k(x))×γ,X,γ Spec(k(x)) ∼= Spec(k(x))× Z.

This example suggests that in order to define points of an algebraic space X we should
consider equivalence classes of morphisms from spectra of fields into X and not the set of
monomorphisms from spectra of fields.
We finish with a truly awful example.

Example 14.9. Let k be a field. Let A =
∏
n∈N k be the infinite product. Set U =

Spec(A) seen as a scheme over S = Spec(k). Note that the projection maps prn : A→ k
define open and closed immersions fn : S → U . Set

R = U q
∐

(n,m)∈N2, n 6=m
S

with morphism j equal to ∆U/S on the componentU and j = (fn, fm) on the component
S corresponding to (n,m). It is clear from the remark above that s, t are étale. It is also
clear that j is an equivalence relation. Hence we obtain an algebraic space

X = U/R.

To see what this means we specialize to the case where the field k is finite with q elements.
Let us first discuss the topological space |U | associated to the scheme U a little bit. All



15. CHANGE OF BIG SITE 5141

elements of A satisfy xq = x. Hence every residue field of A is isomorphic to k, and all
points of U are closed. But the topology on U isn’t the discrete topology. Let un ∈ |U |
be the point corresponding to fn. As mentioned above the points un are the open points
(and hence isolated). This implies there have to be other points since we know U is quasi-
compact, see Algebra, Lemma 17.10 (hence not equal to an infinite discrete set). Another
way to see this is because the (proper) ideal

I = {x = (xn) ∈ A | all but a finite number of xn are zero}

is contained in a maximal ideal. Note also that every element x ofA is of the form x = ue
where u is a unit and e is an idempotent. Hence a basis for the topology of A consists
of open and closed subsets (see Algebra, Lemma 21.1.) So the topology on |U | is totally
disconnected, but nontrivial. Finally, note that {un} is dense in |U |.

We will later define a topological space |X| associated to X , see Properties of Spaces, Sec-
tion 4. What can we say about |X|? It turns out that the map |U | → |X| is surjective
and continuous. All the points un map to the same point x0 of |X|, and none of the other
points get identified. Since {un} is dense in |U |we conclude that the closure of x0 in |X| is
|X|. In other words |X| is irreducible and x0 is a generic point of |X|. This seems bizarre
since also x0 is the image of a section S → X of the structure morphism X → S (and in
the case of schemes this would imply it was a closed point, see Morphisms, Lemma 20.2).

Whatever you think is actually going on in this example, it certainly shows that some care
has to be exercised when defining irreducible components, connectedness, etc of algebraic
spaces.

15. Change of big site

In this section we briefly discuss what happens when we change big sites. The upshot is
that we can always enlarge the big site at will, hence we may assume any set of schemes
we want to consider is contained in the big fppf site over which we consider our algebraic
space. Here is a precise statement of the result.

Lemma 15.1. Suppose given big sites Schfppf and Sch′
fppf . Assume that Schfppf is

contained in Sch′
fppf , see Topologies, Section 12. Let S be an object of Schfppf . Let

g : Sh((Sch/S)fppf ) −→ Sh((Sch′/S)fppf ),
f : Sh((Sch′/S)fppf ) −→ Sh((Sch/S)fppf )

be the morphisms of topoi of Topologies, Lemma 12.2. LetF be a sheaf of sets on (Sch/S)fppf .
Then

(1) if F is representable by a scheme X ∈ Ob((Sch/S)fppf ) over S , then f−1F is
representable too, in fact it is representable by the same scheme X , now viewed
as an object of (Sch′/S)fppf , and

(2) if F is an algebraic space over S , then f−1F is an algebraic space over S also.

Proof. Let X ∈ Ob((Sch/S)fppf ). Let us write hX for the representable sheaf on
(Sch/S)fppf associated toX , and h′

X for the representable sheaf on (Sch′/S)fppf associ-
ated to X . By the description of f−1 in Topologies, Section 12 we see that f−1hX = h′

X .
This proves (1).

Next, suppose that F is an algebraic space over S. By Lemma 9.1 this means that F =
hU/hR for some étale equivalence relationR→ U ×S U in (Sch/S)fppf . Since f−1 is an
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exact functor we conclude that f−1F = h′
U/h

′
R. Hence f−1F is an algebraic space over

S by Theorem 10.5. �

Note that this lemma is purely set theoretical and has virtually no content. Moreover, it
is not true (in general) that the restriction of an algebraic space over the bigger site is an
algebraic space over the smaller site (simply by reasons of cardinality). Hence we can only
ever use a simple lemma of this kind to enlarge the base category and never to shrink it.

Lemma 15.2. Suppose Schfppf is contained in Sch′
fppf . LetS be an object of Schfppf .

Denote Spaces/S the category of algebraic spaces overS defined using Schfppf . Similarly,
denote Spaces′/S the category of algebraic spaces over S defined using Sch′

fppf . The
construction of Lemma 15.1 defines a fully faithful functor

Spaces/S −→ Spaces′/S

whose essential image consists of those X ′ ∈ Ob(Spaces′/S) such that there exist U,R ∈
Ob((Sch/S)fppf )4 and morphisms

U −→ X ′ and R −→ U ×X′ U

in Sh((Sch′/S)fppf ) which are surjective as maps of sheaves (for example if the displayed
morphisms are surjective and étale).

Proof. In Sites, Lemma 21.8 we have seen that the functor f−1 : Sh((Sch/S)fppf )→
Sh((Sch′/S)fppf ) is fully faithful (see discussion in Topologies, Section 12). Hence we see
that the displayed functor of the lemma is fully faithful.

Suppose that X ′ ∈ Ob(Spaces′/S) such that there exists U ∈ Ob((Sch/S)fppf ) and a
map U → X ′ in Sh((Sch′/S)fppf ) which is surjective as a map of sheaves. Let U ′ → X ′

be a surjective étale morphism with U ′ ∈ Ob((Sch′/S)fppf ). Let κ = size(U), see Sets,
Section 9. Then U has an affine open covering U =

⋃
i∈I Ui with |I| ≤ κ. Observe

that U ′ ×X′ U → U is étale and surjective. For each i we can pick a quasi-compact open
U ′
i ⊂ U ′ such that U ′

i ×X′ Ui → Ui is surjective (because the scheme U ′ ×X′ Ui is the
union of the Zariski opens W ×X′ Ui for W ⊂ U ′ affine and because U ′ ×X′ Ui → Ui
is étale hence open). Then

∐
i∈I U

′
i → X is surjective étale because of our assumption

that U → X and hence
∐
Ui → X is a surjection of sheaves (details omitted). Because

U ′
i ×X′ U → U ′

i is a surjection of sheaves and because U ′
i is quasi-compact, we can find a

quasi-compact open Wi ⊂ U ′
i ×X′ U such that Wi → U ′

i is surjective as a map of sheaves
(details omitted). ThenWi → U is étale and we conclude that size(Wi) ≤ size(U), see Sets,
Lemma 9.7. By Sets, Lemma 9.11 we conclude that size(U ′

i) ≤ size(U). Hence
∐
i∈I U

′
i is

isomorphic to an object of (Sch/S)fppf by Sets, Lemma 9.5.

Now let X ′, U → X ′ and R → U ×X′ U be as in the statement of the lemma. In the
previous paragraph we have seen that we can findU ′ ∈ Ob((Sch/S)fppf ) and a surjective
étale morphism U ′ → X ′ in Sh((Sch′/S)fppf ). Then U ′ ×X′ U → U ′ is a surjection of
sheaves, i.e., we can find an fppf covering {U ′

i → U ′} such that U ′
i → U ′ factors through

U ′ ×X′ U → U ′. By Sets, Lemma 9.12 we can find Ũ → U ′ which is surjective, flat, and

4Requiring the existence of R is necessary because of our choice of the function Bound in Sets, Equation
(9.1.1). The size of the fibre product U ×X′ U can grow faster than Bound in terms of the size of U . We can
illustrate this by setting S = Spec(A), U = Spec(A[xi, i ∈ I]) and R =

∐
(λi)∈AI Spec(A[xi, yi]/(xi −

λiyi)). In this case the size of R grows like κκ where κ is the size of U .
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locally of finite presentation, with size(Ũ) ≤ size(U ′), such that Ũ → U ′ factors through
U ′ ×X′ U → U ′. Then we consider

U ′ ×X′ U ′

��

Ũ ×X′ Ũoo

��

// U ×X′ U

��
U ′ ×S U ′ Ũ ×S Ũoo // U ×S U

The squares are cartesian. We know the objects of the bottom row are represented by
objects of (Sch/S)fppf . By the result of the argument of the previous paragraph, the same
is true for U ×X′ U (as we have the surjection of sheaves R→ U ×X′ U by assumption).
Since (Sch/S)fppf is closed under fibre products (by construction), we see that Ũ ×X′ Ũ

is represented by an object of (Sch/S)fppf . Finally, the map Ũ ×X′ Ũ → U ′ ×X′ U ′ is
a surjection of fppf sheaves as Ũ → U ′ is so. Thus we can once more apply the result of
the previous paragraph to conclude that R′ = U ′ ×X′ U ′ is represented by an object of
(Sch/S)fppf . At this point Lemma 9.1 and Theorem 10.5 imply that X = hU ′/hR′ is an
object of Spaces/S such that f−1X ∼= X ′ as desired. �

16. Change of base scheme

In this section we briefly discuss what happens when we change base schemes. The upshot
is that given a morphism S → S′ of base schemes, any algebraic space over S can be
viewed as an algebraic space over S′. And, given an algebraic space F ′ over S′ there is a
base change F ′

S which is an algebraic space over S. We explain only what happens in case
S → S′ is a morphism of the big fppf site under consideration, if only S or S′ is contained
in the big site, then one first enlarges the big site as in Section 15.

Lemma 16.1. Suppose given a big site Schfppf . Let g : S → S′ be morphism of
Schfppf . Let j : (Sch/S)fppf → (Sch/S′)fppf be the corresponding localization func-
tor. Let F be a sheaf of sets on (Sch/S)fppf . Then

(1) for a scheme T ′ over S′ we have j!F (T ′/S′) =
∐
ϕ:T ′→S F (T ′ ϕ−→ S),

(2) if F is representable by a scheme X ∈ Ob((Sch/S)fppf ), then j!F is repre-
sentable by j(X) which is X viewed as a scheme over S′, and

(3) if F is an algebraic space over S , then j!F is an algebraic space over S′, and if
F = U/R is a presentation, then j!F = j(U)/j(R) is a presentation.

Let F ′ be a sheaf of sets on (Sch/S′)fppf . Then
(4) for a scheme T over S we have j−1F ′(T/S) = F ′(T/S′),
(5) if F ′ is representable by a scheme X ′ ∈ Ob((Sch/S′)fppf ), then j−1F ′ is rep-

resentable, namely by X ′
S = S ×S′ X ′, and

(6) if F ′ is an algebraic space, then j−1F ′ is an algebraic space, and if F ′ = U ′/R′

is a presentation, then j−1F ′ = U ′
S/R

′
S is a presentation.

Proof. The functors j!, j∗ and j−1 are defined in Sites, Lemma 25.8 where it is also
shown that j = jS/S′ is the localization of (Sch/S′)fppf at the object S/S′. Hence all of
the material on localization functors is available for j. The formula in (1) is Sites, Lemma
27.1. By definition j! is the left adjoint to restriction j−1, hence j! is right exact. By Sites,
Lemma 25.5 it also commutes with fibre products and equalizers. By Sites, Lemma 25.3 we
see that j!hX = hj(X) hence (2) holds. If F is an algebraic space over S , then we can write
F = U/R (Lemma 9.1) and we get

j!F = j(U)/j(R)



5144 65. ALGEBRAIC SPACES

because j! being right exact commutes with coequalizers, and moreover j(R) = j(U)×j!F

j(U) as j! commutes with fibre products. Since the morphisms j(s), j(t) : j(R) → j(U)
are simply the morphisms s, t : R → U (but viewed as morphisms of schemes over S′),
they are still étale. Thus (j(U), j(R), s, t) is an étale equivalence relation. Hence by The-
orem 10.5 we conclude that j!F is an algebraic space.

Proof of (4), (5), and (6). The description of j−1 is in Sites, Section 25. The restriction of
the representable sheaf associated to X ′/S′ is the representable sheaf associated to X ′

S =
S ×S′ Y ′ by Sites, Lemma 27.2. The restriction functor j−1 is exact, hence j−1F ′ =
U ′
S/R

′
S . Again by exactness the sheaf R′

S is still an equivalence relation on U ′
S . Finally

the two mapsR′
S → U ′

S are étale as base changes of the étale morphismsR′ → U ′. Hence
j−1F ′ = U ′

S/R
′
S is an algebraic space by Theorem 10.5 and we win. �

Note how the presentation j!F = j(U)/j(R) is just the presentation of F but viewed as
a presentation by schemes over S′. Hence the following definition makes sense.

Definition 16.2. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site.

(1) IfF ′ is an algebraic space over S′, then the base change ofF ′ to S is the algebraic
space j−1F ′ described in Lemma 16.1. We denote it F ′

S .
(2) If F is an algebraic space over S , then F viewed as an algebraic space over S′ is

the algebraic space j!F overS′ described in Lemma 16.1. We often simply denote
this F ; if not then we will write j!F .

The algebraic space j!F comes equipped with a canonical morphism j!F → S of algebraic
spaces over S′. This is true simply because the sheaf j!F maps to hS (see for example the
explicit description in Lemma 16.1). In fact, in Sites, Lemma 25.4 we have seen that the
category of sheaves on (Sch/S)fppf is equivalent to the category of pairs (F ′,F ′ → hS)
consisting of a sheaf on (Sch/S′)fppf and a map of sheaves F ′ → hS . The equivalence
assigns to the sheaf F the pair (j!F , j!F → hS). This, combined with the above, leads to
the following result for categories of algebraic spaces.

Lemma 16.3. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this site.
The construction above give an equivalence of categories{

category of algebraic
spaces over S

}
↔

 category of pairs (F ′, F ′ → S) consisting
of an algebraic space F ′ over S′ and a

morphism F ′ → S of algebraic spaces over S′


Proof. Let F be an algebraic space over S. The functor from left to right assigns the

pair (j!F, j!F → S) ot F which is an object of the right hand side by Lemma 16.1. Since
this defines an equivalence of categories of sheaves by Sites, Lemma 25.4 to finish the proof
it suffices to show: if F is a sheaf and j!F is an algebraic space, then F is an algebraic space.
To do this, write j!F = U ′/R′ as in Lemma 9.1 with U ′, R′ ∈ Ob((Sch/S′)fppf ). Then
the compositions U ′ → j!F → S and R′ → j!F → S are morphisms of schemes over S′.
DenoteU,R the corresponding objects of (Sch/S)fppf . The two morphismsR′ → U ′ are
morphisms over S and hence correspond to morphisms R → U . Since these are simply
the same morphisms (but viewed over S) we see that we get an étale equivalence relation
over S. As j! defines an equivalence of categories of sheaves (see reference above) we see
that F = U/R and by Theorem 10.5 we see that F is an algebraic space. �

The following lemma is a slight rephrasing of the above.
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Lemma 16.4. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this site.
Let F ′ be a sheaf on (Sch/S′)fppf . The following are equivalent:

(1) The restriction F ′|(Sch/S)fppf is an algebraic space over S , and
(2) the sheaf hS × F ′ is an algebraic space over S′.

Proof. The restriction and the product match under the equivalence of categories of
Sites, Lemma 25.4 so that Lemma 16.3 above gives the result. �

We finish this section with a lemma on a compatibility.

Lemma 16.5. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this site.
Let F be an algebraic space over S. Let T be a scheme over S and let f : T → F be a
morphism over S. Let f ′ : T ′ → F ′ be the morphism over S′ we get from f by applying
the equivalence of categories described in Lemma 16.3. For any propertyP as in Definition
5.1 we have P(f ′)⇔ P(f).

Proof. Suppose thatU is a scheme overS , andU → F is a surjective étale morphism.
Denote U ′ the scheme U viewed as a scheme over S′. In Lemma 16.1 we have seen that
U ′ → F ′ is surjective étale. Since

j(T ×f,F U) = T ′ ×f ′,F ′ U ′

the morphism of schemes T ×f,F U → U is identified with the morphism of schemes
T ′ ×f ′,F ′ U ′ → U ′. It is the same morphism, just viewed over different base schemes.
Hence the lemma follows from Lemma 11.4. �
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CHAPTER 66

Properties of Algebraic Spaces

1. Introduction

Please see Spaces, Section 1 for a brief introduction to algebraic spaces, and please read some
of that chapter for our basic definitions and conventions concerning algebraic spaces. In
this chapter we start introducing some basic notions and properties of algebraic spaces. A
fundamental reference for the case of quasi-separated algebraic spaces is [?].

The discussion is somewhat awkward at times since we made the design decision to first
talk about properties of algebraic spaces by themselves, and only later about properties
of morphisms of algebraic spaces. We make an exception for this rule regarding étale
morphisms of algebraic spaces, which we introduce in Section 16. But until that section
whenever we say a morphism has a certain property, it automatically means the source of
the morphism is a scheme (or perhaps the morphism is representable).

Some of the material in the chapter (especially regarding points) will be improved upon
in the chapter on decent algebraic spaces.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead ofX ×X . The reason is that we want to avoid confusion when changing
base schemes, as in Spaces, Section 16.

3. Separation axioms

In this section we collect all the “absolute” separation conditions of algebraic spaces. Since
in our language any algebraic space is an algebraic space over some definite base scheme,
any absolute property of X over S corresponds to a conditions imposed on X viewed as
an algebraic space over Spec(Z). Here is the precise formulation.

Definition 3.1. (Compare Spaces, Definition 13.2.) Consider a big fppf site Schfppf =
(Sch/ Spec(Z))fppf . Let X be an algebraic space over Spec(Z). Let ∆ : X → X ×X be
the diagonal morphism.

(1) We say X is separated if ∆ is a closed immersion.
(2) We say X is locally separated1 if ∆ is an immersion.
(3) We say X is quasi-separated if ∆ is quasi-compact.

1In the literature this often refers to quasi-separated and locally separated algebraic spaces.

5147
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(4) We say X is Zariski locally quasi-separated2 if there exists a Zariski covering
X =

⋃
i∈I Xi (see Spaces, Definition 12.5) such that each Xi is quasi-separated.

Let S is a scheme contained in Schfppf , and let X be an algebraic space over S. Then we
say X is separated, locally separated, quasi-separated, or Zariski locally quasi-separated if
X viewed as an algebraic space over Spec(Z) (see Spaces, Definition 16.2) has the corre-
sponding property.

It is true that an algebraic spaceX over S which is separated (in the absolute sense above)
is separated over S (and similarly for the other absolute separation properties above). This
will be discussed in great detail in Morphisms of Spaces, Section 4. We will see in Lemma
6.6 that being Zariski locally separated is independent of the base scheme (hence equivalent
to the absolute notion).

Lemma 3.2. Let S be a scheme. Let X be an algebraic space over S. We have the
following implications among the separation axioms of Definition 3.1:

(1) separated implies all the others,
(2) quasi-separated implies Zariski locally quasi-separated.

Proof. Omitted. �

Lemma 3.3. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is a quasi-separated algebraic space,
(2) forU → X , V → X withU , V quasi-compact schemes the fibre productU×XV

is quasi-compact,
(3) forU → X , V → X withU , V affine the fibre productU×XV is quasi-compact.

Proof. Using Spaces, Lemma 16.3 we see that we may assume S = Spec(Z). Since
U ×X V = X×X×X (U ×V ) and since U ×V is quasi-compact if U and V are so, we see
that (1) implies (2). It is clear that (2) implies (3). Assume (3). Choose a scheme W and a
surjective étale morphism W → X . Then W ×W → X ×X is surjective étale. Hence it
suffices to show that

j : W ×X W = X ×(X×X) (W ×W )→W ×W

is quasi-compact, see Spaces, Lemma 5.6. If U ⊂ W and V ⊂ W are affine opens, then
j−1(U × V ) = U ×X V is quasi-compact by assumption. Since the affine opens U × V
form an affine open covering of W ×W (Schemes, Lemma 17.4) we conclude by Schemes,
Lemma 19.2. �

Lemma 3.4. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is a separated algebraic space,
(2) for U → X , V → X with U , V affine the fibre product U ×X V is affine and

O(U)⊗Z O(V ) −→ O(U ×X V )

is surjective.

Proof. Using Spaces, Lemma 16.3 we see that we may assume S = Spec(Z). Since
U ×X V = X ×X×X (U × V ) and since U × V is affine if U and V are so, we see that (1)

2This notion was suggested by B. Conrad.
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implies (2). Assume (2). Choose a scheme W and a surjective étale morphism W → X .
Then W ×W → X ×X is surjective étale. Hence it suffices to show that

j : W ×X W = X ×(X×X) (W ×W )→W ×W
is a closed immersion, see Spaces, Lemma 5.6. If U ⊂ W and V ⊂ W are affine opens,
then j−1(U ×V ) = U ×X V is affine by assumption and the map U ×X V → U ×V is a
closed immersion because the corresponding ring map is surjective. Since the affine opens
U × V form an affine open covering of W ×W (Schemes, Lemma 17.4) we conclude by
Morphisms, Lemma 2.1. �

4. Points of algebraic spaces

As is clear from Spaces, Example 14.8 a point of an algebraic space should not be defined
as a monomorphism from the spectrum of a field. Instead we define them as equivalence
classes of morphisms of spectra of fields exactly as explained in Schemes, Section 13.
Let S be a scheme. Let F be a presheaf on (Sch/S)fppf . Let K be a field. Consider a
morphism

Spec(K) −→ F.

By the Yoneda Lemma this is given by an element p ∈ F (Spec(K)). We say that two
such pairs (Spec(K), p) and (Spec(L), q) are equivalent if there exists a third field Ω and
a commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K) p // F.

In other words, there are field extensionsK → Ω andL→ Ω such that p and q map to the
same element of F (Spec(Ω)). We omit the verification that this defines an equivalence
relation.

Definition 4.1. Let S be a scheme. Let X be an algebraic space over S. A point of
X is an equivalence class of morphisms from spectra of fields into X . The set of points of
X is denoted |X|.
Note that if f : X → Y is a morphism of algebraic spaces over S , then there is an induced
map |f | : |X| → |Y |which maps a representative x : Spec(K)→ X to the representative
f ◦ x : Spec(K)→ Y .

Lemma 4.2. Let S be a scheme. Let X be a scheme over S. The points of X as a
scheme are in canonical 1-1 correspondence with the points of X as an algebraic space.

Proof. This is Schemes, Lemma 13.3. �

Lemma 4.3. Let S be a scheme. Let

Z ×Y X //

��

X

��
Z // Y

be a cartesian diagram of algebraic spaces over S. Then the map of sets of points
|Z ×Y X| −→ |Z| ×|Y | |X|

is surjective.
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Proof. Namely, suppose given fieldsK ,L and morphisms Spec(K)→ X , Spec(L)→
Z , then the assumption that they agree as elements of |Y | means that there is a com-
mon extension M/K and M/L such that Spec(M) → Spec(K) → X → Y and
Spec(M) → Spec(L) → Z → Y agree. And this is exactly the condition which says
you get a morphism Spec(M)→ Z ×Y X . �

Lemma 4.4. Let S be a scheme. Let X be an algebraic space over S. Let f : T → X
be a morphism from a scheme to X . The following are equivalent

(1) f : T → X is surjective (according to Spaces, Definition 5.1), and
(2) |f | : |T | → |X| is surjective.

Proof. Assume (1). Let x : Spec(K) → X be a morphism from the spectrum of
a field into X . By assumption the morphism of schemes Spec(K) ×X T → Spec(K)
is surjective. Hence there exists a field extension K ′/K and a morphism Spec(K ′) →
Spec(K)×X T such that the left square in the diagram

Spec(K ′) //

��

Spec(K)×X T

��

// T

��
Spec(K) Spec(K) x // X

is commutative. This shows that |f | : |T | → |X| is surjective.

Assume (2). Let Z → X be a morphism where Z is a scheme. We have to show that the
morphism of schemes Z ×X T → T is surjective, i.e., that |Z ×X T | → |Z| is surjective.
This follows from (2) and Lemma 4.3. �

Lemma 4.5. Let S be a scheme. LetX be an algebraic space over S. LetX = U/R be
a presentation of X , see Spaces, Definition 9.3. Then the image of |R| → |U | × |U | is an
equivalence relation and |X| is the quotient of |U | by this equivalence relation.

Proof. The assumption means that U is a scheme, p : U → X is a surjective, étale
morphism, R = U ×X U is a scheme and defines an étale equivalence relation on U such
that X = U/R as sheaves. By Lemma 4.4 we see that |U | → |X| is surjective. By Lemma
4.3 the map

|R| −→ |U | ×|X| |U |
is surjective. Hence the image of |R| → |U | × |U | is exactly the set of pairs (u1, u2) ∈
|U |×|U | such thatu1 andu2 have the same image in |X|. Combining these two statements
we get the result of the lemma. �

Lemma 4.6. Let S be a scheme. There exists a unique topology on the sets of points
of algebraic spaces over S with the following properties:

(1) if X is a scheme over S , then the topology on |X| is the usual one (via the iden-
tification of Lemma 4.2),

(2) for every morphism of algebraic spaces X → Y over S the map |X| → |Y | is
continuous, and

(3) for every étale morphismU → X withU a scheme the map of topological spaces
|U | → |X| is continuous and open.

Proof. Let X be an algebraic space over S. Let p : U → X be a surjective étale
morphism whereU is a scheme overS. We defineW ⊂ |X| is open if and only if |p|−1(W )



4. POINTS OF ALGEBRAIC SPACES 5151

is an open subset of |U |. This is a topology on |X| (it is the quotient topology on |X|, see
Topology, Lemma 6.2).

Let us prove that the topology is independent of the choice of the presentation. To do
this it suffices to show that if U ′ is a scheme, and U ′ → X is an étale morphism, then
the map |U ′| → |X| (with topology on |X| defined using U → X as above) is open and
continuous; which in addition will prove that (3) holds. Set U ′′ = U ×X U ′, so that we
have the commutative diagram

U ′′ //

��

U ′

��
U // X

As U → X and U ′ → X are étale we see that both U ′′ → U and U ′′ → U ′ are étale
morphisms of schemes. Moreover, U ′′ → U ′ is surjective. Hence we get a commutative
diagram of maps of sets

|U ′′| //

��

|U ′|

��
|U | // |X|

The lower horizontal arrow is surjective (see Lemma 4.4 or Lemma 4.5) and continuous
by definition of the topology on |X|. The top horizontal arrow is surjective, continuous,
and open by Morphisms, Lemma 36.13. The left vertical arrow is continuous and open (by
Morphisms, Lemma 36.13 again.) Hence it follows formally that the right vertical arrow
is continuous and open.

To finish the proof we prove (2). Let a : X → Y be a morphism of algebraic spaces.
According to Spaces, Lemma 11.6 we can find a diagram

U

p

��

α
// V

q

��
X

a // Y

where U and V are schemes, and p and q are surjective and étale. This gives rise to the
diagram

|U |

p

��

α
// |V |

q

��
|X| a // |Y |

where all but the lower horizontal arrows are known to be continuous and the two vertical
arrows are surjective and open. It follows that the lower horizontal arrow is continuous
as desired. �

Definition 4.7. Let S be a scheme. LetX be an algebraic space over S. The underly-
ing topological space ofX is the set of points |X| endowed with the topology constructed
in Lemma 4.6.

It turns out that this topological space carries the same information as the small Zariski
site XZar of Spaces, Definition 12.6.
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Lemma 4.8. Let S be a scheme. Let X be an algebraic space over S.
(1) The ruleX ′ 7→ |X ′| defines an inclusion preserving bijection between open sub-

spaces X ′ (see Spaces, Definition 12.1) of X , and opens of the topological space
|X|.

(2) A family {Xi ⊂ X}i∈I of open subspaces of X is a Zariski covering (see Spaces,
Definition 12.5) if and only if |X| =

⋃
|Xi|.

In other words, the small Zariski site XZar of X is canonically identified with a site asso-
ciated to the topological space |X| (see Sites, Example 6.4).

Proof. In order to prove (1) let us construct the inverse of the rule. Namely, suppose
that W ⊂ |X| is open. Choose a presentation X = U/R corresponding to the surjective
étale map p : U → X and étale maps s, t : R→ U . By construction we see that |p|−1(W )
is an open of U . DenoteW ′ ⊂ U the corresponding open subscheme. It is clear thatR′ =
s−1(W ′) = t−1(W ′) is a Zariski open of R which defines an étale equivalence relation
on W ′. By Spaces, Lemma 10.2 the morphism X ′ = W ′/R′ → X is an open immersion.
HenceX ′ is an algebraic space by Spaces, Lemma 11.3. By construction |X ′| = W , i.e., X ′

is a subspace of X corresponding to W . Thus (1) is proved.
To prove (2), note that if {Xi ⊂ X}i∈I is a collection of open subspaces, then it is a Zariski
covering if and only if the U =

⋃
U ×X Xi is an open covering. This follows from the

definition of a Zariski covering and the fact that the morphism U → X is surjective as a
map of presheaves on (Sch/S)fppf . On the other hand, we see that |X| =

⋃
|Xi| if and

only if U =
⋃
U ×X Xi by Lemma 4.5 (and the fact that the projections U ×X Xi → Xi

are surjective and étale). Thus the equivalence of (2) follows. �

Lemma 4.9. Let S be a scheme. Let X , Y be algebraic spaces over S. Let X ′ ⊂ X
be an open subspace. Let f : Y → X be a morphism of algebraic spaces over S. Then f
factors through X ′ if and only if |f | : |Y | → |X| factors through |X ′| ⊂ |X|.

Proof. By Spaces, Lemma 12.3 we see thatY ′ = Y ×XX ′ → Y is an open immersion.
If |f |(|Y |) ⊂ |X ′|, then clearly |Y ′| = |Y |. Hence Y ′ = Y by Lemma 4.8. �

Lemma 4.10. Let S be a scheme. Let X be an algebraic spaces over S. Let U be a
scheme and let f : U → X be an étale morphism. Let X ′ ⊂ X be the open subspace
corresponding to the open |f |(|U |) ⊂ |X| via Lemma 4.8. Then f factors through a
surjective étale morphism f ′ : U → X ′. Moreover, if R = U ×X U , then R = U ×X′ U
and X ′ has the presentation X ′ = U/R.

Proof. The existence of the factorization follows from Lemma 4.9. The morphism
f ′ is surjective according to Lemma 4.4. To see f ′ is étale, suppose that T → X ′ is a
morphism where T is a scheme. Then T×XU = T×X′U asX ′ → X is a monomorphism
of sheaves. Thus the projection T ×X′ U → T is étale as we assumed f étale. We have
U ×X U = U ×X′ U as X ′ → X is a monomorphism. Then X ′ = U/R follows from
Spaces, Lemma 9.1. �

Lemma 4.11. LetS be a scheme. LetX be an algebraic space overS. Let p : Spec(K)→
X and q : Spec(L)→ X be morphisms where K and L are fields. Assume p and q deter-
mine the same point of |X| and p is a monomorphism. Then q factors uniquely through
p.

Proof. Since p and q define the same point of |X|, we see that the scheme
Y = Spec(K)×p,X,q Spec(L)
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is nonempty. Since the base change of a monomorphism is a monomorphism this means
that the projection morphism Y → Spec(L) is a monomorphism. Hence Y = Spec(L),
see Schemes, Lemma 23.11. We conclude that q factors through p. Uniqueness comes from
the fact that p is a monomorphism. �

Lemma 4.12. Let S be a scheme. Let X be an algebraic space over S. Consider the
map

{Spec(k)→ X monomorphism where k is a field} −→ |X|
This map is injective.

Proof. This follows from Lemma 4.11. �

We will see in Decent Spaces, Lemma 11.1 that the map of Lemma 4.12 is a bijection when
X is decent.

5. Quasi-compact spaces

Definition 5.1. Let S be a scheme. Let X be an algebraic space over S. We say X is
quasi-compact if there exists a surjective étale morphism U → X with U quasi-compact.

Lemma 5.2. Let S be a scheme. Let X be an algebraic space over S. Then X is quasi-
compact if and only if |X| is quasi-compact.

Proof. Choose a scheme U and an étale surjective morphism U → X . We will use
Lemma 4.4. IfU is quasi-compact, then since |U | → |X| is surjective we conclude that |X|
is quasi-compact. If |X| is quasi-compact, then since |U | → |X| is open we see that there
exists a quasi-compact open U ′ ⊂ U such that |U ′| → |X| is surjective (and still étale).
Hence we win. �

Lemma 5.3. A finite disjoint union of quasi-compact algebraic spaces is a quasi-compact
algebraic space.

Proof. This is clear from Lemma 5.2 and the corresponding topological fact. �

Example 5.4. The space A1
Q/Z is a quasi-compact algebraic space.

Lemma 5.5. Let S be a scheme. Let X be an algebraic space over S. Every point of
|X| has a fundamental system of open quasi-compact neighbourhoods. In particular |X|
is locally quasi-compact in the sense of Topology, Definition 13.1.

Proof. This follows formally from the fact that there exists a scheme U and a sur-
jective, open, continuous map U → |X| of topological spaces. To be a bit more precise,
if u ∈ U maps to x ∈ |X|, then the images of the affine neighbourhoods of u will give a
fundamental system of quasi-compact open neighbourhoods of x. �

6. Special coverings

In this section we collect some straightforward lemmas on the existence of étale surjective
coverings of algebraic spaces.

Lemma 6.1. Let S be a scheme. Let X be an algebraic space over S. There exists a
surjective étale morphism U → X where U is a disjoint union of affine schemes. We may
in addition assume each of these affines maps into an affine open of S.
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Proof. Let V → X be a surjective étale morphism. Let V =
⋃
i∈I Vi be a Zariski

open covering such that each Vi maps into an affine open of S. Then set U =
∐
i∈I Vi

with induced morphism U → V → X . This is étale and surjective as a composition of
étale and surjective representable transformations of functors (via the general principle
Spaces, Lemma 5.4 and Morphisms, Lemmas 9.2 and 36.3). �

Lemma 6.2. Let S be a scheme. Let X be an algebraic space over S. There exists
a Zariski covering X =

⋃
Xi such that each algebraic space Xi has a surjective étale

covering by an affine scheme. We may in addition assume each Xi maps into an affine
open of S.

Proof. By Lemma 6.1 we can find a surjective étale morphismU =
∐
Ui → X , with

Ui affine and mapping into an affine open of S. Let Xi ⊂ X be the open subspace of X
such that Ui → X factors through an étale surjective morphism Ui → Xi, see Lemma
4.10. Since U =

⋃
Ui we see that X =

⋃
Xi. As Ui → Xi is surjective it follows that

Xi → S maps into an affine open of S. �

Lemma 6.3. Let S be a scheme. Let X be an algebraic space over S. Then X is quasi-
compact if and only if there exists an étale surjective morphism U → X with U an affine
scheme.

Proof. If there exists an étale surjective morphism U → X with U affine then X
is quasi-compact by Definition 5.1. Conversely, if X is quasi-compact, then |X| is quasi-
compact. Let U =

∐
i∈I Ui be a disjoint union of affine schemes with an étale and sur-

jective map ϕ : U → X (Lemma 6.1). Then |X| =
⋃
ϕ(|Ui|) and by quasi-compactness

there is a finite subset i1, . . . , in such that |X| =
⋃
ϕ(|Uij |). Hence Ui1 ∪ . . . ∪ Uin is an

affine scheme with a finite surjective morphism towards X . �

The following lemma will be obsoleted by the discussion of separated morphisms in the
chapter on morphisms of algebraic spaces.

Lemma 6.4. Let S be a scheme. Let X be an algebraic space over S. Let U be a
separated scheme and U → X étale. Then U → X is separated, and R = U ×X U is a
separated scheme.

Proof. Let X ′ ⊂ X be the open subscheme such that U → X factors through an
étale surjection U → X ′, see Lemma 4.10. If U → X ′ is separated, then so is U → X ,
see Spaces, Lemma 5.4 (as the open immersion X ′ → X is separated by Spaces, Lemma
5.8 and Schemes, Lemma 23.8). Moreover, since U ×X′ U = U ×X U it suffices to prove
the result after replacing X by X ′, i.e., we may assume U → X surjective. Consider the
commutative diagram

R = U ×X U //

��

U

��
U // X

In the proof of Spaces, Lemma 13.1 we have seen that j : R → U ×S U is separated. The
morphism of schemes U → S is separated as U is a separated scheme, see Schemes, Lemma
21.13. Hence U ×S U → U is separated as a base change, see Schemes, Lemma 21.12. Hence
the scheme U ×S U is separated (by the same lemma). Since j is separated we see in the
same way thatR is separated. HenceR→ U is a separated morphism (by Schemes, Lemma
21.13 again). Thus by Spaces, Lemma 11.4 and the diagram above we conclude thatU → X
is separated. �
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Lemma 6.5. Let S be a scheme. Let X be an algebraic space over S. If there exists a
quasi-separated scheme U and a surjective étale morphism U → X such that either of the
projections U ×X U → U is quasi-compact, then X is quasi-separated.

Proof. We may think of X as an algebraic space over Z. Consider the cartesian
diagram

U ×X U //

j

��

X

∆
��

U × U // X ×X
SinceU is quasi-separated the projectionU×U → U is quasi-separated (as a base change of
a quasi-separated morphism of schemes, see Schemes, Lemma 21.12). Hence the assumption
in the lemma implies j is quasi-compact by Schemes, Lemma 21.14. By Spaces, Lemma 11.4
we see that ∆ is quasi-compact as desired. �

Lemma 6.6. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is Zariski locally quasi-separated over S ,
(2) X is Zariski locally quasi-separated,
(3) there exists a Zariski open covering X =

⋃
Xi such that for each i there exists

an affine scheme Ui and a quasi-compact surjective étale morphism Ui → Xi,
and

(4) there exists a Zariski open covering X =
⋃
Xi such that for each i there exists

an affine scheme Ui which maps into an affine open of S and a quasi-compact
surjective étale morphism Ui → Xi.

Proof. Assume Ui → Xi ⊂ X are as in (3). To prove (4) choose for each i a finite
affine open covering Ui = Ui1 ∪ . . . ∪ Uini such that each Uij maps into an affine open
of S. The compositions Uij → Ui → Xi are étale and quasi-compact (see Spaces, Lemma
5.4). Let Xij ⊂ Xi be the open subspace corresponding to the image of |Uij | → |Xi|, see
Lemma 4.10. Note that Uij → Xij is quasi-compact asXij ⊂ Xi is a monomorphism and
as Uij → X is quasi-compact. Then X =

⋃
Xij is a covering as in (4). The implication

(4)⇒ (3) is immediate.

Assume (4). To show that X is Zariski locally quasi-separated over S it suffices to show
that Xi is quasi-separated over S. Hence we may assume there exists an affine scheme U
mapping into an affine open of S and a quasi-compact surjective étale morphism U → X .
Consider the fibre product square

U ×X U //

��

U ×S U

��
X

∆X/S // X ×S X

The right vertical arrow is surjective étale (see Spaces, Lemma 5.7) andU ×S U is affine (as
U maps into an affine open of S , see Schemes, Section 17), and U ×X U is quasi-compact
because the projection U ×X U → U is quasi-compact as a base change of U → X . It
follows from Spaces, Lemma 11.4 that ∆X/S is quasi-compact as desired.

Assume (1). To prove (3) there is an immediate reduction to the case where X is quasi-
separated over S. By Lemma 6.2 we can find a Zariski open coveringX =

⋃
Xi such that
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each Xi maps into an affine open of S , and such that there exist affine schemes Ui and
surjective étale morphisms Ui → Xi. Since Ui → S maps into an affine open of S we
see that Ui ×S Ui is affine, see Schemes, Section 17. As X is quasi-separated over S , the
morphisms

Ri = Ui ×Xi Ui = Ui ×X Ui −→ Ui ×S Ui
as base changes of ∆X/S are quasi-compact. Hence we conclude thatRi is a quasi-compact
scheme. This in turn implies that each projection Ri → Ui is quasi-compact. Hence,
applying Spaces, Lemma 11.4 to the covering Ui → Xi and the morphism Ui → Xi we
conclude that the morphisms Ui → Xi are quasi-compact as desired.

At this point we see that (1), (3), and (4) are equivalent. Since (3) does not refer to the base
scheme we conclude that these are also equivalent with (2). �

The following lemma will turn out to be quite useful.

Lemma 6.7. Let S be a scheme. LetX be an algebraic space over S. LetU be a scheme.
Let ϕ : U → X be an étale morphism such that the projections R = U ×X U → U are
quasi-compact; for example if ϕ is quasi-compact. Then the fibres of

|U | → |X| and |R| → |X|

are finite.

Proof. Denote R = U ×X U , and s, t : R → U the projections. Let u ∈ U be a
point, and let x ∈ |X| be its image. The fibre of |U | → |X| over x is equal to s(t−1({u}))
by Lemma 4.3, and the fibre of |R| → |X| over x is t−1(s(t−1({u}))). Since t : R → U
is étale and quasi-compact, it has finite fibres (as its fibres are disjoint unions of spectra of
fields by Morphisms, Lemma 36.7 and quasi-compact). Hence we win. �

7. Properties of Spaces defined by properties of schemes

Any étale local property of schemes gives rise to a corresponding property of algebraic
spaces via the following lemma.

Lemma 7.1. LetS be a scheme. LetX be an algebraic space overS. LetP be a property
of schemes which is local in the étale topology, see Descent, Definition 15.1. The following
are equivalent

(1) for some scheme U and surjective étale morphism U → X the scheme U has
property P , and

(2) for every scheme U and every étale morphism U → X the scheme U has prop-
erty P .

If X is representable this is equivalent to P(X).

Proof. The implication (2)⇒ (1) is immediate. For the converse, choose a surjective
étale morphismU → X withU a scheme that hasP and let V be an étaleX-scheme. Then
U ×X V → V is an étale surjection of schemes, so V inherits P from U ×X V , which in
turn inherits P from U (see discussion following Descent, Definition 15.1). The last claim
is clear from (1) and Descent, Definition 15.1. �

Definition 7.2. Let P be a property of schemes which is local in the étale topology.
Let S be a scheme. LetX be an algebraic space over S. We sayX has property P if any of
the equivalent conditions of Lemma 7.1 hold.
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Remark 7.3. Here is a list of properties which are local for the étale topology (keep
in mind that the fpqc, fppf, syntomic, and smooth topologies are stronger than the étale
topology):

(1) locally Noetherian, see Descent, Lemma 16.1,
(2) Jacobson, see Descent, Lemma 16.2,
(3) locally Noetherian and (Sk), see Descent, Lemma 17.1,
(4) Cohen-Macaulay, see Descent, Lemma 17.2,
(5) Gorenstein, see Duality for Schemes, Lemma 24.6,
(6) reduced, see Descent, Lemma 18.1,
(7) normal, see Descent, Lemma 18.2,
(8) locally Noetherian and (Rk), see Descent, Lemma 18.3,
(9) regular, see Descent, Lemma 18.4,

(10) Nagata, see Descent, Lemma 18.5.

Any étale local property of germs of schemes gives rise to a corresponding property of
algebraic spaces. Here is the obligatory lemma.

Lemma 7.4. LetP be a property of germs of schemes which is étale local, see Descent,
Definition 21.1. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X| be a
point of X . Consider étale morphisms a : U → X where U is a scheme. The following
are equivalent

(1) for any U → X as above and u ∈ U with a(u) = x we have P(U, u), and
(2) for some U → X as above and u ∈ U with a(u) = x we have P(U, u).

If X is representable, then this is equivalent to P(X,x).

Proof. Omitted. �

Definition 7.5. Let S be a scheme. LetX be an algebraic space over S. Let x ∈ |X|.
Let P be a property of germs of schemes which is étale local. We say X has property P at
x if any of the equivalent conditions of Lemma 7.4 hold.

Remark 7.6. Let P be a property of local rings. Assume that for any étale ring map
A→ B and q is a prime ofB lying over the prime p ofA, thenP (Ap)⇔ P (Bq). Then we
obtain an étale local property of germs (U, u) of schemes by setting P(U, u) = P (OU,u).
In this situation we will use the terminology “the local ring of X at x has P ” to mean X
has property P at x. Here is a list of such properties P :

(1) Noetherian, see More on Algebra, Lemma 44.1,
(2) dimension d, see More on Algebra, Lemma 44.2,
(3) regular, see More on Algebra, Lemma 44.3,
(4) discrete valuation ring, follows from (2), (3), and Algebra, Lemma 119.7,
(5) reduced, see More on Algebra, Lemma 45.4,
(6) normal, see More on Algebra, Lemma 45.6,
(7) Noetherian and depth k, see More on Algebra, Lemma 45.8,
(8) Noetherian and Cohen-Macaulay, see More on Algebra, Lemma 45.9,
(9) Noetherian and Gorenstein, see Dualizing Complexes, Lemma 21.8.

There are more properties for which this holds, for example G-ring and Nagata. If we
every need these we will add them here as well as references to detailed proofs of the
corresponding algebra facts.
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8. Constructible sets

Lemma 8.1. Let S be a scheme. Let X be an algebraic space over S. Let E ⊂ |X| be a
subset. The following are equivalent

(1) for every étale morphism U → X where U is a scheme the inverse image of E
in U is a locally constructible subset of U ,

(2) for every étale morphism U → X where U is an affine scheme the inverse image
of E in U is a constructible subset of U ,

(3) for some surjective étale morphism U → X where U is a scheme the inverse
image of E in U is a locally constructible subset of U .

Proof. By Properties, Lemma 2.1 we see that (1) and (2) are equivalent. It is immedi-
ate that (1) implies (3). Thus we assume we have a surjective étale morphism ϕ : U → X
where U is a scheme such that ϕ−1(E) is locally constructible. Let ϕ′ : U ′ → X be
another étale morphism where U ′ is a scheme. Then we have

E′′ = pr−1
1 (ϕ−1(E)) = pr−1

2 ((ϕ′)−1(E))
where pr1 : U ×X U ′ → U and pr2 : U ×X U ′ → U ′ are the projections. By Morphisms,
Lemma 22.1 we see that E′′ is locally constructible in U ×X U ′. Let W ′ ⊂ U ′ be an
affine open. Since pr2 is étale and hence open, we can choose a quasi-compact openW ′′ ⊂
U ×X U ′ with pr2(W ′′) = W ′. Then pr2|W ′′ : W ′′ → W ′ is quasi-compact. We
have W ′ ∩ (ϕ′)−1(E) = pr2(E′′ ∩W ′′) as ϕ is surjective, see Lemma 4.3. Thus W ′ ∩
(ϕ′)−1(E) = pr2(E′′ ∩ W ′′) is locally constructible by Morphisms, Theorem 22.3 as
desired. �

Definition 8.2. Let S be a scheme. LetX be an algebraic space over S. LetE ⊂ |X|
be a subset. We say E is étale locally constructible if the equivalent conditions of Lemma
8.1 are satisfied.

Of course, if X is representable, i.e., X is a scheme, then this just means E is a locally
constructible subset of the underlying topological space.

9. Dimension at a point

We can use Descent, Lemma 21.2 to define the dimension of an algebraic spaceX at a point
x. This will give us a different notion than the topological one (i.e., the dimension of |X|
at x).

Definition 9.1. Let S be a scheme. Let X be an algebraic space over S. Let x ∈
|X| be a point of X . We define the dimension of X at x to be the element dimx(X) ∈
{0, 1, 2, . . . ,∞} such that dimx(X) = dimu(U) for any (equivalently some) pair (a :
U → X,u) consisting of an étale morphism a : U → X from a scheme to X and a point
u ∈ U with a(u) = x. See Definition 7.5, Lemma 7.4, and Descent, Lemma 21.2.

Warning: It is not the case that dimx(X) = dimx(|X|) in general. A counter example is
the algebraic space X of Spaces, Example 14.9. Namely, let x ∈ |X| be a point not equal
to the generic point x0 of |X|. Then we have dimx(X) = 0 but dimx(|X|) = 1. In
particular, the dimension of X (as defined below) is different from the dimension of |X|.

Definition 9.2. Let S be a scheme. Let X be an algebraic space over S. The dimen-
sion dim(X) of X is defined by the rule

dim(X) = supx∈|X| dimx(X)
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By Properties, Lemma 10.2 we see that this is the usual notion if X is a scheme. There is
another integer that measures the dimension of a scheme at a point, namely the dimension
of the local ring. This invariant is compatible with étale morphisms also, see Section 10.

10. Dimension of local rings

The dimension of the local ring of an algebraic space is a well defined concept.

Lemma 10.1. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X| be
a point. Let d ∈ {0, 1, 2, . . . ,∞}. The following are equivalent

(1) for some scheme U and étale morphism a : U → X and point u ∈ U with
a(u) = x we have dim(OU,u) = d,

(2) for any scheme U , any étale morphism a : U → X , and any point u ∈ U with
a(u) = x we have dim(OU,u) = d.

If X is a scheme, this is equivalent to dim(OX,x) = d.

Proof. Combine Lemma 7.4 and Descent, Lemma 21.3. �

Definition 10.2. Let S be a scheme. LetX be an algebraic space over S. Let x ∈ |X|
be a point. The dimension of the local ring of X at x is the element d ∈ {0, 1, 2, . . . ,∞}
satisfying the equivalent conditions of Lemma 10.1. In this case we will also say x is a point
of codimension d on X .

Besides the lemma below we also point the reader to Lemmas 22.4 and 22.5.

Lemma 10.3. Let S be a scheme. Let X be an algebraic space over S. The following
quantities are equal:

(1) The dimension of X .
(2) The supremum of the dimensions of the local rings of X .
(3) The supremum of dimx(X) for x ∈ |X|.

Proof. The numbers in (1) and (3) are equal by Definition 9.2. Let U → X be a
surjective étale morphism from a scheme U . The supremum of dimx(X) for x ∈ |X| is
the same as the supremum of dimu(U) for points u of U by definition. This is the same
as the supremum of dim(OU,u) by Properties, Lemma 10.2. This in turn is the same as (2)
by definition. �

11. Generic points

Let T be a topological space. According to the second edition of EGA I, a maximal point of
T is a generic point of an irreducible component of T . If T = |X| is the topological space
associated to an algebraic space X , there are at least two notions of maximal points: we
can look at maximal points of T viewed as a topological space, or we can look at images of
maximal points of U where U → X is an étale morphism and U is a scheme. The second
notion corresponds to the set of points of codimension 0 (Lemma 11.1). The codimension
0 points are easier to work with for general algebraic spaces; the two notions agree for
quasi-separated and more generally decent algebraic spaces (Decent Spaces, Lemma 20.1).

Lemma 11.1. Let S be a scheme and let X be an algebraic space over S. Let x ∈ |X|.
Consider étale morphisms a : U → X where U is a scheme. The following are equivalent

(1) x is a point of codimension 0 on X ,
(2) for some U → X as above and u ∈ U with a(u) = x, the point u is the generic

point of an irreducible component of U , and
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(3) for any U → X as above and any u ∈ U mapping to x, the point u is the generic
point of an irreducible component of U .

If X is representable, this is equivalent to x being a generic point of an irreducible com-
ponent of |X|.

Proof. Observe that a point u of a scheme U is a generic point of an irreducible
component of U if and only if dim(OU,u) = 0 (Properties, Lemma 10.4). Hence this
follows from the definition of the codimension of a point on X (Definition 10.2). �

Lemma 11.2. Let S be a scheme and let X be an algebraic space over S. The set of
codimension 0 points of X is dense in |X|.

Proof. If U is a scheme, then the set of generic points of irreducible components is
dense in U (holds for any quasi-sober topological space). Thus if U → X is a surjective
étale morphism, then the set of codimension 0 points of X is the image of a dense subset
of |U | (Lemma 11.1). Since |X| has the quotient topology for |U | → |X|we conclude. �

12. Reduced spaces

We have already defined reduced algebraic spaces in Section 7. Here we just prove some
simple lemmas regarding reduced algebraic spaces.

Lemma 12.1. Let S be a scheme. Let Z → X be an immersion of algebraic spaces.
Then |Z| → |X| is a homeomorphism of |Z| onto a locally closed subset of |X|.

Proof. LetU be a scheme andU → X a surjective étale morphism. ThenZ×XU →
U is an immersion of schemes, hence gives a homeomorphism of |Z ×X U | with a locally
closed subset T ′ of |U |. By Lemma 4.3 the subset T ′ is the inverse image of the image T
of |Z| → |X|. The map |Z| → |X| is injective because the transformation of functors
Z → X is injective, see Spaces, Section 12. By Topology, Lemma 6.4 we see that T is
locally closed in |X|. Moreover, the continuous map |Z| → T is a homeomorphism as the
map |Z ×X U | → T ′ is a homeomorphism and |Z ×Y U | → |Z| is submersive. �

The following lemma will help us construct (locally) closed subspaces.

Lemma 12.2. Let S be a scheme. Let j : R → U ×S U be an étale equivalence
relation. Let X = U/R be the associated algebraic space (Spaces, Theorem 10.5). There is
a canonical bijection

R-invariant locally closed subschemes Z ′ of U ↔ locally closed subspaces Z of X
Moreover, if Z → X is closed (resp. open) if and only if Z ′ → U is closed (resp. open).

Proof. Denote ϕ : U → X the canonical map. The bijection sends Z → X to
Z ′ = Z ×X U → U . It is immediate from the definition that Z ′ → U is an immersion,
resp. closed immersion, resp. open immersion if Z → X is so. It is also clear that Z ′ is
R-invariant (see Groupoids, Definition 19.1).
Conversely, assume that Z ′ → U is an immersion which is R-invariant. Let R′ be the
restriction ofR toZ ′, see Groupoids, Definition 18.2. SinceR′ = R×s,UZ ′ = Z ′×U,tR in
this case we see thatR′ is an étale equivalence relation on Z ′. By Spaces, Theorem 10.5 we
seeZ = Z ′/R′ is an algebraic space. By construction we haveU×XZ = Z ′, soU×XZ →
Z is an immersion. Note that the property “immersion” is preserved under base change
and fppf local on the base (see Spaces, Section 4). Moreover, immersions are separated
and locally quasi-finite (see Schemes, Lemma 23.8 and Morphisms, Lemma 20.16). Hence



13. THE SCHEMATIC LOCUS 5161

by More on Morphisms, Lemma 57.1 immersions satisfy descent for fppf covering. This
means all the hypotheses of Spaces, Lemma 11.5 are satisfied forZ → X ,P =“immersion”,
and the étale surjective morphism U → X . We conclude that Z → X is representable
and an immersion, which is the definition of a subspace (see Spaces, Definition 12.1).

It is clear that these constructions are inverse to each other and we win. �

Lemma 12.3. Let S be a scheme. LetX be an algebraic space over S. Let T ⊂ |X| be a
closed subset. There exists a unique closed subspaceZ ⊂ X with the following properties:
(a) we have |Z| = T , and (b) Z is reduced.

Proof. Let U → X be a surjective étale morphism, where U is a scheme. Set R =
U ×X U , so that X = U/R, see Spaces, Lemma 9.1. As usual we denote s, t : R →
U the two projection morphisms. By Lemma 4.5 we see that T corresponds to a closed
subset T ′ ⊂ |U | such that s−1(T ′) = t−1(T ′). Let Z ′ ⊂ U be the reduced induced
scheme structure on T ′. In this case the fibre products Z ′×U,tR and Z ′×U,sR are closed
subschemes ofR (Schemes, Lemma 18.2) which are étale overZ ′ (Morphisms, Lemma 36.4),
and hence reduced (because being reduced is local in the étale topology, see Remark 7.3).
Since they have the same underlying topological space (see above) we conclude thatZ ′×U,t
R = Z ′×U,sR. Thus we can apply Lemma 12.2 to obtain a closed subspace Z ⊂ X whose
pullback to U is Z ′. By construction |Z| = T and Z is reduced. This proves existence.
We omit the proof of uniqueness. �

Lemma 12.4. Let S be a scheme. LetX , Y be algebraic spaces over S. Let Z ⊂ X be a
closed subspace. Assume Y is reduced. A morphism f : Y → X factors through Z if and
only if f(|Y |) ⊂ |Z|.

Proof. Assume f(|Y |) ⊂ |Z|. Choose a diagram

V

b
��

h
// U

a

��
Y

f // X

where U , V are schemes, and the vertical arrows are surjective and étale. The scheme V
is reduced, see Lemma 7.1. Hence h factors through a−1(Z) by Schemes, Lemma 12.7. So
a ◦ h factors through Z. As Z ⊂ X is a subsheaf, and V → Y is a surjection of sheaves on
(Sch/S)fppf we conclude that X → Y factors through Z. �

Definition 12.5. Let S be a scheme, and let X be an algebraic space over S. Let
Z ⊂ |X| be a closed subset. An algebraic space structure onZ is given by a closed subspace
Z ′ of X with |Z ′| equal to Z. The reduced induced algebraic space structure on Z is the
one constructed in Lemma 12.3. The reductionXred ofX is the reduced induced algebraic
space structure on |X|.

13. The schematic locus

Every algebraic space has a largest open subspace which is a scheme; this is more or less
clear but we also write out the proof below. Of course this subspace may be empty, for
example if X = A1

Q/Z (the universal counter example). On the other hand, if X is for
example quasi-separated, then this largest open subscheme is actually dense in X !

Lemma 13.1. Let S be a scheme. Let X be an algebraic space over S. There exists a
largest open subspace X ′ ⊂ X which is a scheme.
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Proof. Let U → X be an étale surjective morphism, where U is a scheme. Let R =
U ×X U . The open subspaces of X correspond 1 − 1 with open subschemes of U which
are R-invariant. Hence there is a set of them. Let Xi, i ∈ I be the set of open subspaces of
X which are schemes, i.e., are representable. Consider the open subspace X ′ ⊂ X whose
underlying set of points is the open

⋃
|Xi| of |X|. By Lemma 4.4 we see that∐
Xi −→ X ′

is a surjective map of sheaves on (Sch/S)fppf . But since eachXi → X ′ is representable by
open immersions we see that in fact the map is surjective in the Zariski topology. Namely,
if T → X ′ is a morphism from a scheme into X ′, then Xi ×X′ T is an open subscheme of
T . Hence we can apply Schemes, Lemma 15.4 to see that X ′ is a scheme. �

In the rest of this section we say that an open subspaceX ′ of an algebraic spaceX is dense
if the corresponding open subset |X ′| ⊂ |X| is dense.

Lemma 13.2. Let S be a scheme. Let X be an algebraic space over S. If there exists
a finite, étale, surjective morphism U → X where U is a quasi-separated scheme, then
there exists a dense open subspaceX ′ ofX which is a scheme. More precisely, every point
x ∈ |X| of codimension 0 in X is contained in X ′.

Proof. Let X ′ ⊂ X be the maximal open subspace which is a scheme (Lemma 13.1).
Let x ∈ |X| be a point of codimension 0 on X . By Lemma 11.2 it suffices to show x ∈ X ′.
LetU → X be as in the statement of the lemma. WriteR = U×XU and denote s, t : R→
U the projections as usual. Note that s, t are surjective, finite and étale. By Lemma 6.7 the
fibre of |U | → |X| over x is finite, say {η1, . . . , ηn}. By Lemma 11.1 each ηi is the generic
point of an irreducible component of U . By Properties, Lemma 29.1 we can find an affine
open W ⊂ U containing {η1, . . . , ηn} (this is where we use that U is quasi-separated).
By Groupoids, Lemma 24.1 we may assume that W is R-invariant. Since W ⊂ U is an R-
invariant affine open, the restrictionRW ofR toW equalsRW = s−1(W ) = t−1(W ) (see
Groupoids, Definition 19.1 and discussion following it). In particular the mapsRW →W
are finite étale also. It follows that RW is affine. Thus we see that W/RW is a scheme, by
Groupoids, Proposition 23.9. On the other hand, W/RW is an open subspace of X by
Spaces, Lemma 10.2 and it contains x by construction. �

We will improve the following proposition to the case of decent algebraic spaces in Decent
Spaces, Theorem 10.2.

Proposition 13.3. Let S be a scheme. Let X be an algebraic space over S. If X is
Zariski locally quasi-separated (for example if X is quasi-separated), then there exists a
dense open subspace X ′ of X which is a scheme. More precisely, every point x ∈ |X| of
codimension 0 on X is contained in X ′.

Proof. The question is local on X by Lemma 13.1. Thus by Lemma 6.6 we may as-
sume that there exists an affine scheme U and a surjective, quasi-compact, étale morphism
U → X . Moreover U → X is separated (Lemma 6.4). Set R = U ×X U and denote
s, t : R → U the projections as usual. Then s, t are surjective, quasi-compact, separated,
and étale. Hence s, t are also quasi-finite and have finite fibres (Morphisms, Lemmas 36.6,
20.9, and 20.10). By Morphisms, Lemma 51.1 for every η ∈ U which is the generic point
of an irreducible component of U , there exists an open neighbourhood V ⊂ U of η such
that s−1(V )→ V is finite. By Descent, Lemma 23.23 being finite is fpqc (and in particu-
lar étale) local on the target. Hence we may apply More on Groupoids, Lemma 6.4 which
says that the largest open W ⊂ U over which s is finite is R-invariant. By the above W
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contains every generic point of an irreducible component of U . The restriction RW of R
to W equals RW = s−1(W ) = t−1(W ) (see Groupoids, Definition 19.1 and discussion
following it). By construction sW , tW : RW → W are finite étale. Consider the open
subspace X ′ = W/RW ⊂ X (see Spaces, Lemma 10.2). By construction the inclusion
map X ′ → X induces a bijection on points of codimension 0. This reduces us to Lemma
13.2. �

14. Obtaining a scheme

We have used in the previous section that the quotient U/R of an affine scheme U by an
equivalence relation R is a scheme if the morphisms s, t : R → U are finite étale. This is
a special case of the following result.

Proposition 14.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Assume

(1) s, t : R→ U finite locally free,
(2) j = (t, s) is an equivalence, and
(3) for a dense set of points u ∈ U theR-equivalence class t(s−1({u})) is contained

in an affine open of U .
Then there exists a finite locally free morphism U → M of schemes over S such that
R = U ×M U and such that M represents the quotient sheaf U/R in the fppf topology.

Proof. By assumption (3) and Groupoids, Lemma 24.1 we can find an open covering
U =

⋃
Ui such that each Ui is an R-invariant affine open of U . Set Ri = R|Ui . Consider

the fppf sheaves F = U/R and Fi = Ui/Ri. By Spaces, Lemma 10.2 the morphisms
Fi → F are representable and open immersions. By Groupoids, Proposition 23.9 the
sheaves Fi are representable by affine schemes. If T is a scheme and T → F is a morphism,
then Vi = Fi ×F T is open in T and we claim that T =

⋃
Vi. Namely, fppf locally on T

we can lift T → F to a morphism f : T → U and in that case f−1(Ui) ⊂ Vi. Hence we
conclude that F is representable by a scheme, see Schemes, Lemma 15.4. �

For example, if U is isomorphic to a locally closed subscheme of an affine scheme or iso-
morphic to a locally closed subscheme of Proj(A) for some graded ring A, then the third
assumption holds by Properties, Lemma 29.5. In particular we can apply this to free ac-
tions of finite groups and finite group schemes on quasi-affine or quasi-projective schemes.
For example, the quotient X/G of a quasi-projective variety X by a free action of a finite
group G is a scheme. Here is a detailed statement.

Lemma 14.2. Let S be a scheme. Let G → S be a group scheme. Let X → S be a
morphism of schemes. Let a : G×S X → X be an action. Assume that

(1) G→ S is finite locally free,
(2) the action a is free,
(3) X → S is affine, or quasi-affine, or projective, or quasi-projective, orX is isomor-

phic to an open subscheme of an affine scheme, or X is isomorphic to an open
subscheme of Proj(A) for some graded ring A, or G→ S is radicial.

Then the fppf quotient sheaf X/G is a scheme and X → X/G is an fppf G-torsor.

Proof. We first show that X/G is a scheme. Since the action is free the morphism
j = (a, pr) : G×S X → X ×S X is a monomorphism and hence an equivalence relation,
see Groupoids, Lemma 10.3. The maps s, t : G×S X → X are finite locally free as we’ve
assumed that G → S is finite locally free. To conclude it now suffices to prove the last
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assumption of Proposition 14.1 holds. Since the action of G is over S it suffices to prove
that any finite set of points in a fibre ofX → S is contained in an affine open ofX . IfX is
isomorphic to an open subscheme of an affine scheme or isomorphic to an open subscheme
of Proj(A) for some graded ring A this follows from Properties, Lemma 29.5. If X → S
is affine, or quasi-affine, or projective, or quasi-projective, we may replace S by an affine
open and we get back to the case we just dealt with. IfG→ S is radicial, then the orbits of
points on X under the action of G are singletons and the condition trivially holds. Some
details omitted.

To see that X → X/G is an fppf G-torsor (Groupoids, Definition 11.3) we have to show
that G ×S X → X ×X/G X is an isomorphism and that X → X/G fppf locally has
sections. The second part is clear from the fact that X → X/G is surjective as a map of
fppf sheaves (by construction). The first part follows from the isomorphismR = U×M U
in the conclusion of Proposition 14.1 (note that R = G×S X in our case). �

Lemma 14.3. Notation and assumptions as in Proposition 14.1. Then
(1) if U is quasi-separated over S , then U/R is quasi-separated over S ,
(2) if U is quasi-separated, then U/R is quasi-separated,
(3) if U is separated over S , then U/R is separated over S ,
(4) if U is separated, then U/R is separated, and
(5) add more here.

Similar results hold in the setting of Lemma 14.2.

Proof. Since M represents the quotient sheaf we have a cartesian diagram

R
j
//

��

U ×S U

��
M // M ×S M

of schemes. Since U ×S U → M ×S M is surjective finite locally free, to show that
M → M ×S M is quasi-compact, resp. a closed immersion, it suffices to show that j :
R → U ×S U is quasi-compact, resp. a closed immersion, see Descent, Lemmas 23.1 and
23.19. Since j : R → U ×S U is a morphism over U and since R is finite over U , we
see that j is quasi-compact as soon as the projection U ×S U → U is quasi-separated
(Schemes, Lemma 21.14). Since j is a monomorphism and locally of finite type, we see that
j is a closed immersion as soon as it is proper (Étale Morphisms, Lemma 7.2) which will
be the case as soon as the projection U ×S U → U is separated (Morphisms, Lemma 41.7).
This proves (1) and (3). To prove (2) and (4) we replace S by Spec(Z), see Definition 3.1.
Since Lemma 14.2 is proved through an application of Proposition 14.1 the final statement
is clear too. �

15. Points on quasi-separated spaces

Points can behave very badly on algebraic spaces in the generality introduced in the Stacks
project. However, for quasi-separated spaces their behaviour is mostly like the behaviour
of points on schemes. We prove a few results on this in this section; the chapter on decent
spaces contains many more results on this, see for example Decent Spaces, Section 12.

Lemma 15.1. Let S be a scheme. Let X be a Zariski locally quasi-separated algebraic
space over S. Then the topological space |X| is sober (see Topology, Definition 8.6).
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Proof. Combining Topology, Lemma 8.8 and Lemma 6.6 we see that we may assume
that there exists an affine scheme U and a surjective, quasi-compact, étale morphism U →
X . Set R = U ×X U with projection maps s, t : R → U . Applying Lemma 6.7 we see
that the fibres of s, t are finite. It follows all the assumptions of Topology, Lemma 19.8 are
met, and we conclude that |X| is Kolmogorov3.
It remains to show that every irreducible closed subset T ⊂ |X| has a generic point. By
Lemma 12.3 there exists a closed subspace Z ⊂ X with |Z| = |T |. Note that U ×X Z →
Z is a quasi-compact, surjective, étale morphism from an affine scheme to Z , hence Z
is Zariski locally quasi-separated by Lemma 6.6. By Proposition 13.3 we see that there
exists an open dense subspace Z ′ ⊂ Z which is a scheme. This means that |Z ′| ⊂ T
is open dense. Hence the topological space |Z ′| is irreducible, which means that Z ′ is an
irreducible scheme. By Schemes, Lemma 11.1 we conclude that |Z ′| is the closure of a single
point η ∈ |Z ′| ⊂ T and hence also T = {η}, and we win. �

Lemma 15.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. The topological space |X| is a spectral space.

Proof. By Topology, Definition 23.1 we have to check that |X| is sober, quasi-compact,
has a basis of quasi-compact opens, and the intersection of any two quasi-compact opens is
quasi-compact. By Lemma 15.1 we see that |X| is sober. By Lemma 5.2 we see that |X| is
quasi-compact. By Lemma 6.3 there exists an affine scheme U and a surjective étale mor-
phism f : U → X . Since |f | : |U | → |X| is open and continuous and since |U | has a basis
of quasi-compact opens, we conclude that |X| has a basis of quasi-compact opens. Finally,
suppose thatA,B ⊂ |X| are quasi-compact open. ThenA = |X ′| andB = |X ′′| for some
open subspacesX ′, X ′′ ⊂ X (Lemma 4.8) and we can choose affine schemes V andW and
surjective étale morphisms V → X ′ andW → X ′′ (Lemma 6.3). ThenA∩B is the image
of |V ×XW | → |X| (Lemma 4.3). Since V ×XW is quasi-compact asX is quasi-separated
(Lemma 3.3) we conclude that A ∩B is quasi-compact and the proof is finished. �

The following lemma can be used to prove that an algebraic space is isomorphic to the
spectrum of a field.

Lemma 15.3. Let S be a scheme. Let k be a field. Let X be an algebraic space over
S and assume that there exists a surjective étale morphism Spec(k) → X . If X is quasi-
separated, then X ∼= Spec(k′) where k/k′ is a finite separable extension.

Proof. Set R = Spec(k)×X Spec(k), so that we have a fibre product diagram

R
s

//

t

��

Spec(k)

��
Spec(k) // X

By Spaces, Lemma 9.1 we knowX = Spec(k)/R is the quotient sheaf. Because Spec(k)→
X is étale, the morphisms s and t are étale. Hence R =

∐
i∈I Spec(ki) is a disjoint union

of spectra of fields, and both s and t induce finite separable field extensions s, t : k ⊂ ki,
see Morphisms, Lemma 36.7. Because

R = Spec(k)×X Spec(k) = (Spec(k)×S Spec(k))×X×SX,∆ X

3Actually we use here also Schemes, Lemma 11.1 (soberness schemes), Morphisms, Lemmas 36.12 and 25.9
(generalizations lift along étale morphisms), Lemma 4.5 (points on an algebraic space in terms of a presentation),
and Lemma 4.6 (openness quotient map).
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and since ∆ is quasi-compact by assumption we conclude that R→ Spec(k)×S Spec(k)
is quasi-compact. HenceR is quasi-compact as Spec(k)×S Spec(k) is affine. We conclude
that I is finite. This implies that s and t are finite locally free morphisms. Hence by
Groupoids, Proposition 23.9 we conclude that Spec(k)/R is represented by Spec(k′), with
k′ ⊂ k finite locally free where

k′ = {x ∈ k | si(x) = ti(x) for all i ∈ I}

It is easy to see that k′ is a field. �

Remark 15.4. Lemma 15.3 holds for decent algebraic spaces, see Decent Spaces, Lemma
12.8. In fact a decent algebraic space with one point is a scheme, see Decent Spaces, Lemma
14.2. This also holds when X is locally separated, because a locally separated algebraic
space is decent, see Decent Spaces, Lemma 15.2.

16. Étale morphisms of algebraic spaces

This section really belongs in the chapter on morphisms of algebraic spaces, but we need
the notion of an algebraic space étale over another in order to define the small étale site
of an algebraic space. Thus we need to do some preliminary work on étale morphisms
from schemes to algebraic spaces, and étale morphisms between algebraic spaces. For more
about étale morphisms of algebraic spaces, see Morphisms of Spaces, Section 39.

Lemma 16.1. Let S be a scheme. Let X be an algebraic space over S. Let U , U ′ be
schemes over S.

(1) IfU → U ′ is an étale morphism of schemes, and ifU ′ → X is an étale morphism
from U ′ toX , then the composition U → X is an étale morphism from U toX .

(2) If ϕ : U → X and ϕ′ : U ′ → X are étale morphisms towardsX , and if χ : U →
U ′ is a morphism of schemes such that ϕ = ϕ′ ◦ χ, then χ is an étale morphism
of schemes.

(3) If χ : U → U ′ is a surjective étale morphism of schemes and ϕ′ : U ′ → X is a
morphism such that ϕ = ϕ′ ◦ χ is étale, then ϕ′ is étale.

Proof. Recall that our definition of an étale morphism from a scheme into an al-
gebraic space comes from Spaces, Definition 5.1 via the fact that any morphism from a
scheme into an algebraic space is representable.

Part (1) of the lemma follows from this, the fact that étale morphisms are preserved under
composition (Morphisms, Lemma 36.3) and Spaces, Lemmas 5.4 and 5.3 (which are formal).

To prove part (2) choose a scheme W over S and a surjective étale morphism W → X .
Consider the base change χW : W ×X U →W ×X U ′ of χ. As W ×X U and W ×X U ′

are étale overW , we conclude that χW is étale, by Morphisms, Lemma 36.18. On the other
hand, in the commutative diagram

W ×X U //

��

W ×X U ′

��
U // U ′

the two vertical arrows are étale and surjective. Hence by Descent, Lemma 14.4 we con-
clude that U → U ′ is étale.
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To prove part (3) choose a scheme W over S and a morphism W → X . As above we
consider the diagram

W ×X U //

��

W ×X U ′

��

// W

��
U // U ′ // X

Now we know thatW ×X U →W ×X U ′ is surjective étale (as a base change of U → U ′)
and that W ×X U →W is étale. Thus W ×X U ′ →W is étale by Descent, Lemma 14.4.
By definition this means that ϕ′ is étale. �

Definition 16.2. Let S be a scheme. A morphism f : X → Y between algebraic
spaces over S is called étale if and only if for every étale morphism ϕ : U → X where U
is a scheme, the composition f ◦ ϕ is étale also.

If X and Y are schemes, then this agree with the usual notion of an étale morphism of
schemes. In fact, whenever X → Y is a representable morphism of algebraic spaces, then
this agrees with the notion defined via Spaces, Definition 5.1. This follows by combining
Lemma 16.3 below and Spaces, Lemma 11.4.

Lemma 16.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is étale,
(2) there exists a surjective étale morphism ϕ : U → X , where U is a scheme, such

that the composition f ◦ ϕ is étale (as a morphism of algebraic spaces),
(3) there exists a surjective étale morphism ψ : V → Y , where V is a scheme, such

that the base change V ×X Y → V is étale (as a morphism of algebraic spaces),
(4) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and the left vertical arrow
is surjective such that the horizontal arrow is étale.

Proof. Let us prove that (4) implies (1). Assume a diagram as in (4) given. LetW →
X be an étale morphism withW a scheme. Then we see thatW×XU → U is étale. Hence
W×XU → V is étale as the composition of the étale morphisms of schemesW×XU → U
andU → V . ThereforeW×XU → Y is étale by Lemma 16.1 (1). Since also the projection
W ×X U → W is surjective and étale, we conclude from Lemma 16.1 (3) that W → Y is
étale.

Let us prove that (1) implies (4). Assume (1). Choose a commutative diagram

U

��

// V

��
X // Y

whereU → X and V → Y are surjective and étale, see Spaces, Lemma 11.6. By assumption
the morphism U → Y is étale, and hence U → V is étale by Lemma 16.1 (2).
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We omit the proof that (2) and (3) are also equivalent to (1). �

Lemma 16.4. The composition of two étale morphisms of algebraic spaces is étale.

Proof. This is immediate from the definition. �

Lemma 16.5. The base change of an étale morphism of algebraic spaces by any mor-
phism of algebraic spaces is étale.

Proof. Let X → Y be an étale morphism of algebraic spaces over S. Let Z → Y
be a morphism of algebraic spaces. Choose a scheme U and a surjective étale morphism
U → X . Choose a scheme W and a surjective étale morphism W → Z. Then U → Y is
étale, hence in the diagram

W ×Y U

��

// W

��
Z ×Y X // Z

the top horizontal arrow is étale. Moreover, the left vertical arrow is surjective and étale
(verification omitted). Hence we conclude that the lower horizontal arrow is étale by
Lemma 16.3. �

Lemma 16.6. Let S be a scheme. Let X,Y, Z be algebraic spaces. Let g : X → Z ,
h : Y → Z be étale morphisms and let f : X → Y be a morphism such that h ◦ f = g.
Then f is étale.

Proof. Choose a commutative diagram

U

��

χ
// V

��
X // Y

whereU → X and V → Y are surjective and étale, see Spaces, Lemma 11.6. By assumption
the morphisms ϕ : U → X → Z and ψ : V → Y → Z are étale. Moreover, ψ ◦ χ = ϕ
by our assumption on f, g, h. Hence U → V is étale by Lemma 16.1 part (2). �

Lemma 16.7. Let S be a scheme. If X → Y is an étale morphism of algebraic spaces
over S , then the associated map |X| → |Y | of topological spaces is open.

Proof. This is clear from the diagram in Lemma 16.3 and Lemma 4.6. �

Finally, here is a fun lemma. It is not true that an algebraic space with an étale morphism
towards a scheme is a scheme, see Spaces, Example 14.2. But it is true if the target is the
spectrum of a field.

Lemma 16.8. Let S be a scheme. Let X → Spec(k) be étale morphism over S , where
k is a field. Then X is a scheme.

Proof. Let U be an affine scheme, and let U → X be an étale morphism. By Defini-
tion 16.2 we see that U → Spec(k) is an étale morphism. Hence U =

∐
i=1,...,n Spec(ki)

is a finite disjoint union of spectra of finite separable extensions ki of k, see Morphisms,
Lemma 36.7. TheR = U ×X U → U ×Spec(k)U is a monomorphism and U ×Spec(k)U is
also a finite disjoint union of spectra of finite separable extensions of k. Hence by Schemes,
Lemma 23.11 we see that R is similarly a finite disjoint union of spectra of finite separable
extensions of k. This U and R are affine and both projections R → U are finite locally
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free. Hence U/R is a scheme by Groupoids, Proposition 23.9. By Spaces, Lemma 10.2 it is
also an open subspace of X . By Lemma 13.1 we conclude that X is a scheme. �

17. Spaces and fpqc coverings

Let S be a scheme. An algebraic space over S is defined as a sheaf in the fppf topology
with additional properties. Hence it is not immediately clear that it satisfies the sheaf
property for the fpqc topology (see Topologies, Definition 9.12). In this section we give
Gabber’s argument showing this is true. However, when we say that the algebraic spaceX
satisfies the sheaf property for the fpqc topology we really only consider fpqc coverings
{fi : Ti → T}i∈I such that T, Ti are objects of the big site (Sch/S)fppf (as per our
conventions, see Section 2).

Proposition 17.1 (Gabber). Let S be a scheme. Let X be an algebraic space over S.
Then X satisfies the sheaf property for the fpqc topology.

Proof. Since X is a sheaf for the Zariski topology it suffices to show the following.
Given a surjective flat morphism of affines f : T ′ → T we have: X(T ) is the equalizer
of the two maps X(T ′) → X(T ′ ×T T ′). See Topologies, Lemma 9.13 (there is a little
argument omitted here because the lemma cited is formulated for functors defined on the
category of all schemes).

Let a, b : T → X be two morphisms such that a ◦ f = b ◦ f . We have to show a = b.
Consider the fibre product

E = X ×∆X/S ,X×SX,(a,b) T.

By Spaces, Lemma 13.1 the morphism ∆X/S is a representable monomorphism. Hence
E → T is a monomorphism of schemes. Our assumption that a ◦ f = b ◦ f implies that
T ′ → T factors (uniquely) through E. Consider the commutative diagram

T ′ ×T E //

��

E

��
T ′ //

:: ;;

T

Since the projection T ′ ×T E → T ′ is a monomorphism with a section we conclude it is
an isomorphism. Hence we conclude that E → T is an isomorphism by Descent, Lemma
23.17. This means a = b as desired.

Next, let c : T ′ → X be a morphism such that the two compositions T ′×T T ′ → T ′ → X
are the same. We have to find a morphism a : T → X whose composition with T ′ → T
is c. Choose an affine scheme U and an étale morphism U → X such that the image of
|U | → |X| contains the image of |c| : |T ′| → |X|. This is possible by Lemmas 4.6 and 6.1,
the fact that a finite disjoint union of affines is affine, and the fact that |T ′| is quasi-compact
(small argument omitted). Since U → X is separated (Lemma 6.4), we see that

V = U ×X,c T ′ −→ T ′

is a surjective, étale, separated morphism of schemes (to see that it is surjective use Lemma
4.3 and our choice of U → X). The fact that c ◦ pr0 = c ◦ pr1 means that we obtain a
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descent datum on V/T ′/T (Descent, Definition 34.1) because

V ×T ′ (T ′ ×T T ′) = U ×X,c◦pr0
(T ′ ×T T ′)

= (T ′ ×T T ′)×c◦pr1,X
U

= (T ′ ×T T ′)×T ′ V

The morphism V → T ′ is ind-quasi-affine by More on Morphisms, Lemma 66.8 (be-
cause étale morphisms are locally quasi-finite, see Morphisms, Lemma 36.6). By More
on Groupoids, Lemma 15.3 the descent datum is effective. Say W → T is a morphism
such that there is an isomorphism α : T ′ ×T W → V compatible with the given descent
datum on V and the canonical descent datum on T ′ ×T W . Then W → T is surjective
and étale (Descent, Lemmas 23.7 and 23.29). Consider the composition

b′ : T ′ ×T W −→ V = U ×X,c T ′ −→ U

The two compositions b′◦(pr0, 1), b′◦(pr1, 1) : (T ′×T T ′)×TW → T ′×TW → U agree
by our choice of α and the corresponding property of c (computation omitted). Hence b′

descends to a morphism b : W → U by Descent, Lemma 13.7. The diagram

T ′ ×T W //

��

W
b
// U

��
T ′ c // X

is commutative. What this means is that we have proved the existence of a étale locally
on T , i.e., we have an a′ : W → X . However, since we have proved uniqueness in the
first paragraph, we find that this étale local solution satisfies the glueing condition, i.e.,
we have pr∗

0a
′ = pr∗

1a
′ as elements of X(W ×T W ). Since X is an étale sheaf we find a

unique a ∈ X(T ) restricting to a′ on W . �

18. The étale site of an algebraic space

In this section we define the small étale site of an algebraic space. This is the analogue of
the small étale site Sétale of a scheme. Lemma 16.1 implies that in the definition below any
morphism between objects of the étale site ofX is étale, and that any scheme étale over an
object of Xétale is also an object of Xétale.

Definition 18.1. Let S be a scheme. Let Schfppf be a big fppf site containing S , and
let Schétale be the corresponding big étale site (i.e., having the same underlying category).
Let X be an algebraic space over S. The small étale site Xétale of X is defined as follows:

(1) An object of Xétale is a morphism ϕ : U → X where U ∈ Ob((Sch/S)étale) is
a scheme and ϕ is an étale morphism,

(2) a morphism (ϕ : U → X)→ (ϕ′ : U ′ → X) is given by a morphism of schemes
χ : U → U ′ such that ϕ = ϕ′ ◦ χ, and

(3) a family of morphisms {(Ui → X) → (U → X)}i∈I of Xétale is a covering if
and only if {Ui → U}i∈I is a covering of (Sch/S)étale.

A consequence of our choice is that the étale site of an algebraic space in general does not
have a final object! On the other hand, if X happens to be a scheme, then the definition
above agrees with Topologies, Definition 4.8.

The above is our default site, but there are a couple of variants which we will also use.
Namely, we can consider all algebraic spaces U which are étale over X and this produces
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the site Xspaces,étale we define below or we can consider all affine schemes U which are
étale over X and this produces the site Xaffine,étale we define below. The first of these
two notions is used when discussing functoriality of the small étale site, see Lemma 18.8.

Definition 18.2. Let S be a scheme. Let Schfppf be a big fppf site containing S , and
let Schétale be the corresponding big étale site (i.e., having the same underlying category).
Let X be an algebraic space over S. The site Xspaces,étale of X is defined as follows:

(1) An object of Xspaces,étale is a morphism ϕ : U → X where U is an algebraic
space over S and ϕ is an étale morphism of algebraic spaces over S ,

(2) a morphism (ϕ : U → X) → (ϕ′ : U ′ → X) of Xspaces,étale is given by a
morphism of algebraic spaces χ : U → U ′ such that ϕ = ϕ′ ◦ χ, and

(3) a family of morphisms {ϕi : (Ui → X) → (U → X)}i∈I of Xspaces,étale is a
covering if and only if |U | =

⋃
ϕi(|Ui|).

As usual we choose a set of coverings of this type, including at least the coverings inXétale,
as in Sets, Lemma 11.1 to turn Xspaces,étale into a site.

Since the identity morphism of X is étale it is clear that Xspaces,étale does have a final
object. Let us show right away that the corresponding topos equals the small étale topos
of X .

Lemma 18.3. The functor

Xétale −→ Xspaces,étale, U/X 7−→ U/X

is a special cocontinuous functor (Sites, Definition 29.2) and hence induces an equivalence
of topoi Sh(Xétale)→ Sh(Xspaces,étale).

Proof. We have to show that the functor satisfies the assumptions (1) – (5) of Sites,
Lemma 29.1. It is clear that the functor is continuous and cocontinuous, which proves
assumptions (1) and (2). Assumptions (3) and (4) hold simply because the functor is fully
faithful. Assumption (5) holds, because an algebraic space by definition has a covering by
a scheme. �

Remark 18.4. Let us explain the meaning of Lemma 18.3. Let S be a scheme, and let
X be an algebraic space over S. Let F be a sheaf on the small étale site Xétale of X . The
lemma says that there exists a unique sheaf F ′ on Xspaces,étale which restricts back to F
on the subcategory Xétale. If U → X is an étale morphism of algebraic spaces, then how
do we compute F ′(U)? Well, by definition of an algebraic space there exists a scheme U ′

and a surjective étale morphism U ′ → U . Then {U ′ → U} is a covering in Xspaces,étale

and hence we get an equalizer diagram

F ′(U) // F(U ′) //
// F(U ′ ×U U ′).

Note that U ′ ×U U ′ is a scheme, and hence we may write F and not F ′. Thus we see how
to compute F ′ when given the sheaf F .

Definition 18.5. Let S be a scheme. Let Schfppf be a big fppf site containing S , and
let Schétale be the corresponding big étale site (i.e., having the same underlying category).
Let X be an algebraic space over S. The site Xaffine,étale of X is defined as follows:

(1) An object ofXaffine,étale is a morphismϕ : U → X whereU ∈ Ob((Sch/S)étale)
is an affine scheme and ϕ is an étale morphism,

(2) a morphism (ϕ : U → X) → (ϕ′ : U ′ → X) of Xaffine,étale is given by a
morphism of schemes χ : U → U ′ such that ϕ = ϕ′ ◦ χ, and
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(3) a family of morphisms {ϕi : (Ui → X) → (U → X)}i∈I of Xaffine,étale is a
covering if and only if {Ui → U} is a standard étale covering, see Topologies,
Definition 4.5.

As usual we choose a set of coverings of this type, as in Sets, Lemma 11.1 to turnXaffine,étale

into a site.

Lemma 18.6. Let S be a scheme. Let X be an algebraic space over S. The functor
Xaffine,étale → Xétale is special cocontinuous and induces an equivalence of topoi from
Sh(Xaffine,étale) to Sh(Xétale).

Proof. Omitted. Hint: compare with the proof of Topologies, Lemma 4.11. �

Definition 18.7. Let S be a scheme. Let X be an algebraic space over S. The étale
topos of X , or more precisely the small étale topos of X is the category Sh(Xétale) of
sheaves of sets on Xétale.

By Lemma 18.3 we have Sh(Xétale) = Sh(Xspaces,étale), so we can also think of this
as the category of sheaves of sets on Xspaces,étale. Similarly, by Lemma 18.6 we see that
Sh(Xétale) = Sh(Xaffine,étale). It turns out that the topos is functorial with respect to
morphisms of algebraic spaces. Here is a precise statement.

Lemma 18.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S.

(1) The continuous functor

Yspaces,étale −→ Xspaces,étale, V 7−→ X ×Y V

induces a morphism of sites

fspaces,étale : Xspaces,étale → Yspaces,étale.

(2) The rule f 7→ fspaces,étale is compatible with compositions, in other words (f ◦
g)spaces,étale = fspaces,étale ◦ gspaces,étale (see Sites, Definition 14.5).

(3) The morphism of topoi associated to fspaces,étale induces, via Lemma 18.3, a mor-
phism of topoi fsmall : Sh(Xétale) → Sh(Yétale) whose construction is com-
patible with compositions.

(4) If f is a representable morphism of algebraic spaces, then fsmall comes from a
morphism of sites Xétale → Yétale, corresponding to the continuous functor
V 7→ X ×Y V .

Proof. Let us show that the functor described in (1) satisfies the assumptions of Sites,
Proposition 14.7. Thus we have to show that Yspaces,étale has a final object (namely Y )
and that the functor transforms this into a final object in Xspaces,étale (namely X). This
is clear asX×Y Y = X in any category. Next, we have to show that Yspaces,étale has fibre
products. This is true since the category of algebraic spaces has fibre products, and since
V ×Y V ′ is étale over Y if V and V ′ are étale over Y (see Lemmas 16.4 and 16.5 above).
OK, so the proposition applies and we see that we get a morphism of sites as described in
(1).

Part (2) you get by unwinding the definitions. Part (3) is clear by using the equivalences
for X and Y from Lemma 18.3 above. Part (4) follows, because if f is representable, then
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the functors above fit into a commutative diagram

Xétale
// Xspaces,étale

Yétale //

OO

Yspaces,étale

OO

of categories. �

We can do a little bit better than the lemma above in describing the relationship between
sheaves on X and sheaves on Y . Namely, we can formulate this in turns of f -maps, com-
pare Sheaves, Definition 21.7, as follows.

Definition 18.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a sheaf of sets on Xétale and let G be a sheaf of sets on Yétale.
An f -map ϕ : G → F is a collection of maps ϕ(U,V,g) : G(V ) → F(U) indexed by
commutative diagrams

U

g

��

// X

f

��
V // Y

where U ∈ Xétale, V ∈ Yétale such that whenever given an extended diagram

U ′ //

g′

��

U

g

��

// X

f

��
V ′ // V // Y

with V ′ → V and U ′ → U étale morphisms of schemes the diagram

G(V )
ϕ(U,V,g)

//

restriction of G
��

F(U)

restriction of F
��

G(V ′)
ϕ(U′,V ′,g′) // F(U ′)

commutes.

Lemma 18.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a sheaf of sets on Xétale and let G be a sheaf of sets on Yétale. There are
canonical bijections between the following three sets:

(1) The set of maps G → fsmall,∗F .
(2) The set of maps f−1

smallG → F .
(3) The set of f -maps ϕ : G → F .

Proof. Note that (1) and (2) are the same because the functors fsmall,∗ and f−1
small are

a pair of adjoint functors. Suppose that α : f−1
smallG → F is a map of sheaves on Yétale.

Let a diagram
U

g

��

jU
// X

f

��
V

jV // Y
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as in Definition 18.9 be given. By the commutativity of the diagram we also get a map
g−1
small(jV )−1G → (jU )−1F (compare Sites, Section 25 for the description of the local-

ization functors). Hence we certainly get a map ϕ(V,U,g) : G(V ) = (jV )−1G(V ) →
(jU )−1F(U) = F(U). We omit the verification that this rule is compatible with further
restrictions and defines an f -map from G to F .

Conversely, suppose that we are given an f -map ϕ = (ϕ(U,V,g)). Let G′ (resp. F ′) denote
the extension of G (resp.F ) to Yspaces,étale (resp.Xspaces,étale), see Lemma 18.3. Then we
have to construct a map of sheaves

G′ −→ (fspaces,étale)∗F ′

To do this, let V → Y be an étale morphism of algebraic spaces. We have to construct a
map of sets

G′(V )→ F ′(X ×Y V )

Choose an étale surjective morphism V ′ → V with V ′ a scheme, and after that choose
an étale surjective morphism U ′ → X ×U V ′ with U ′ a scheme. We get a morphism of
schemes g′ : U ′ → V ′ and also a morphism of schemes

g′′ : U ′ ×X×Y V U
′ −→ V ′ ×V V ′

Consider the following diagram

F ′(X ×Y V ) // F(U ′) //
// F(U ′ ×X×Y V U

′)

G′(X ×Y V ) //

OO

G(V ′) //
//

ϕ(U′,V ′,g′)

OO

G(V ′ ×V V ′)

ϕ(U′′,V ′′,g′′)

OO

The compatibility of the maps ϕ... with restriction shows that the two right squares com-
mute. The definition of coverings in Xspaces,étale shows that the horizontal rows are
equalizer diagrams. Hence we get the dotted arrow. We leave it to the reader to show that
these arrows are compatible with the restriction mappings. �

If the morphism of algebraic spacesX → Y is étale, then the morphism of topoi Sh(Xétale)→
Sh(Yétale) is a localization. Here is a statement.

Lemma 18.11. Let S be a scheme, and let f : X → Y be a morphism of algebraic
spaces over S. Assume f is étale. In this case there is a functor

j : Xétale → Yétale, (ϕ : U → X) 7→ (f ◦ ϕ : U → Y )

which is cocontinuous. The morphism of topoi fsmall is the morphism of topoi associated
to j , see Sites, Lemma 21.1. Moreover, j is continuous as well, hence Sites, Lemma 21.5
applies. In particular f−1

smallG(U) = G(jU) for all sheaves G on Yétale.

Proof. Note that by our very definition of an étale morphism of algebraic spaces
(Definition 16.2) it is indeed the case that the rule given defines a functor j as indicated.
It is clear that j is cocontinuous and continuous, simply because a covering {Ui → U}
of j(ϕ : U → X) in Yétale is the same thing as a covering of (ϕ : U → X) in Xétale.
It remains to show that j induces the same morphism of topoi as fsmall. To see this we
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consider the diagram
Xétale

//

j

��

Xspaces,étale

jspaces

��
Yétale // Yspaces,étale

v:V 7→X×Y V

UU

of categories. Here the functor jspaces is the obvious extension of j to the categoryXspaces,étale.
Thus the inner square is commutative. In fact jspaces can be identified with the localiza-
tion functor jX : Yspaces,étale/X → Yspaces,étale discussed in Sites, Section 25. Hence,
by Sites, Lemma 27.2 the cocontinuous functor jspaces and the functor v of the diagram
induce the same morphism of topoi. By Sites, Lemma 21.2 the commutativity of the inner
square (consisting of cocontinuous functors between sites) gives a commutative diagram
of associated morphisms of topoi. Hence, by the construction of fsmall in Lemma 18.8 we
win. �

The lemma above says that the pullback of G via an étale morphism f : X → Y of
algebraic spaces is simply the restriction of G to the category Xétale. We will often use
the short hand

(18.11.1) G|Xétale = f−1
smallG

to indicate this. Note that the functor j : Xétale → Yétale of the lemma in this situation is
faithful, but not fully faithful in general. We will discuss this in a more technical fashion
in Section 27.

Lemma 18.12. Let S be a scheme. Let

X ′ //

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Let F be a sheaf on Xétale. If g is étale,
then

(1) f ′
small,∗(F|X′) = (fsmall,∗F)|Y ′ in Sh(Y ′

étale)4, and
(2) if F is an abelian sheaf, then Rif ′

small,∗(F|X′) = (Rifsmall,∗F)|Y ′ .

Proof. Consider the following diagram of functors

X ′
spaces,étale j

// Xspaces,étale

Y ′
spaces,étale

j //

V ′ 7→V ′×Y ′X′

OO

Yspaces,étale

V 7→V×YX

OO

The horizontal arrows are localizations and the vertical arrows induce morphisms of sites.
Hence the last statement of Sites, Lemma 28.1 gives (1). To see (2) apply (1) to an injective
resolution of F and use that restriction is exact and preserves injectives (see Cohomology
on Sites, Lemma 7.1). �

4Also (f ′)−1
small

(G|Y ′ ) = (f−1
small

G)|X′ because of commutativity of the diagram and (18.11.1)
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The following lemma says that you can think of a sheaf on the small étale site of an alge-
braic space as a compatible collection of sheaves on the small étale sites of schemes étale
over the space. Please note that all the comparison mappings cf in the lemma are isomor-
phisms, which is compatible with Topologies, Lemma 4.20 and the fact that all morphisms
between objects of Xétale are étale.

Lemma 18.13. Let S be a scheme. Let X be an algebraic space over S. A sheaf F on
Xétale is given by the following data:

(1) for every U ∈ Ob(Xétale) a sheaf FU on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f−1

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′ in
Xétale the composition cg ◦ g−1

smallcf is equal to cf◦g .

Proof. We may interpret g−1
small as in Lemma 18.11. Then the lemma follows from a

general fact about sites, see Sites, Lemma 26.6. �

Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a presentation
of X coming from any surjective étale morphism ϕ : U → X , see Spaces, Definition 9.3.
In particular, we obtain a groupoid (U,R, s, t, c, e, i) such that j = (t, s) : R→ U ×S U ,
see Groupoids, Lemma 13.3.

Lemma 18.14. With S , ϕ : U → X , and (U,R, s, t, c, e, i) as above. For any sheaf F
on Xétale the sheaf5 G = ϕ−1F comes equipped with a canonical isomorphism

α : t−1G −→ s−1G

such that the diagram

pr−1
1 t−1G

pr−1
1 α

// pr−1
1 s−1G

pr−1
0 s−1G c−1s−1G

pr−1
0 t−1G

pr−1
0 α

ff

c−1t−1G
c−1α

99

is a commutative. The functor F 7→ (G, α) defines an equivalence of categories between
sheaves on Xétale and pairs (G, α) as above.

First proof of Lemma 18.14. Let C = Xspaces,étale. By Lemma 18.11 and its proof
we have Uspaces,étale = C/U and the pullback functor ϕ−1 is just the restriction functor.
Moreover, {U → X} is a covering of the site C and R = U ×X U . The isomorphism α is
just the canonical identification(

F|C/U
)
|C/U×XU =

(
F|C/U

)
|C/U×XU

and the commutativity of the diagram is the cocycle condition for glueing data. Hence
this lemma is a special case of glueing of sheaves, see Sites, Section 26. �

5In this lemma and its proof we write simply ϕ−1 instead of ϕ−1
small

and similarly for all the other pull-
backs.
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Second proof of Lemma 18.14. The existence of α comes from the fact that ϕ◦ t =
ϕ ◦ s and that pullback is functorial in the morphism, see Lemma 18.8. In exactly the
same way, i.e., by functoriality of pullback, we see that the isomorphism α fits into the
commutative diagram. The construction F 7→ (ϕ−1F , α) is clearly functorial in the
sheaf F . Hence we obtain the functor.

Conversely, suppose that (G, α) is a pair. Let V → X be an object of Xétale. In this case
the morphism V ′ = U ×X V → V is a surjective étale morphism of schemes, and hence
{V ′ → V } is an étale covering of V . Set G′ = (V ′ → V )−1G. Since R = U ×X U
with t = pr0 and s = pr0 we see that V ′ ×V V ′ = R ×X V with projection maps
s′, t′ : V ′ ×V V ′ → V ′ equal to the pullbacks of t and s. Hence α pulls back to an
isomorphism α′ : (t′)−1G′ → (s′)−1G′. Having said this we simply define

F(V ) Equalizer(G(V ′) //
// G(V ′ ×V V ′).

We omit the verification that this defines a sheaf. To see that G(V ) = F(V ) if there exists
a morphism V → U note that in this case the equalizer isH0({V ′ → V },G) = G(V ). �

19. Points of the small étale site

This section is the analogue of Étale Cohomology, Section 29.

Definition 19.1. Let S be a scheme. Let X be an algebraic space over S.
(1) A geometric point of X is a morphism x : Spec(k) → X , where k is an alge-

braically closed field. We often abuse notation and write x = Spec(k).
(2) For every geometric point x we have the corresponding “image” point x ∈ |X|.

We say that x is a geometric point lying over x.

It turns out that we can take stalks of sheaves onXétale at geometric points exactly in the
same way as was done in the case of the small étale site of a scheme. In order to do this we
define the notion of an étale neighbourhood as follows.

Definition 19.2. Let S be a scheme. Let X be an algebraic space over S. Let x be a
geometric point of X .

(1) An étale neighborhood of x of X is a commutative diagram

U

ϕ

��
x̄

x̄ //

ū

??

X

whereϕ is an étale morphism of algebraic spaces overS. We will use the notation
ϕ : (U, u)→ (X,x) to indicate this situation.

(2) A morphism of étale neighborhoods (U, u) → (U ′, u′) is an X-morphism h :
U → U ′ such that u′ = h ◦ u.

Note that we allowU to be an algebraic space. When we take stalks of a sheaf onXétale we
have to restrict to thoseU which are inXétale, and so in this case we will only consider the
case where U is a scheme. Alternately we can work with the siteXspace,étale and consider
all étale neighbourhoods. And there won’t be any difference because of the last assertion
in the following lemma.

Lemma 19.3. Let S be a scheme. Let X be an algebraic space over S. Let x be a
geometric point of X . The category of étale neighborhoods is cofiltered. More precisely:
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(1) Let (Ui, ui)i=1,2 be two étale neighborhoods of x inX . Then there exists a third
étale neighborhood (U, u) and morphisms (U, u)→ (Ui, ui), i = 1, 2.

(2) Let h1, h2 : (U, u) → (U ′, u′) be two morphisms between étale neighborhoods
of s. Then there exist an étale neighborhood (U ′′, u′′) and a morphism h :
(U ′′, u′′)→ (U, u) which equalizes h1 and h2, i.e., such that h1 ◦ h = h2 ◦ h.

Moreover, given any étale neighbourhood (U, u) → (X,x) there exists a morphism of
étale neighbourhoods (U ′, u′)→ (U, u) where U ′ is a scheme.

Proof. For part (1), consider the fibre product U = U1 ×X U2. It is étale over both
U1 and U2 because étale morphisms are preserved under base change and composition, see
Lemmas 16.5 and 16.4. The map u → U defined by (u1, u2) gives it the structure of an
étale neighborhood mapping to both U1 and U2.

For part (2), define U ′′ as the fibre product

U ′′ //

��

U

(h1,h2)
��

U ′ ∆ // U ′ ×X U ′.

Since u and u′ agree overX with x, we see that u′′ = (u, u′) is a geometric point ofU ′′. In
particularU ′′ 6= ∅. Moreover, sinceU ′ is étale overX , so is the fibre productU ′×X U ′ (as
seen above in the case of U1 ×X U2). Hence the vertical arrow (h1, h2) is étale by Lemma
16.6. Therefore U ′′ is étale over U ′ by base change, and hence also étale over X (because
compositions of étale morphisms are étale). Thus (U ′′, u′′) is a solution to the problem
posed by (2).

To see the final assertion, choose any surjective étale morphism U ′ → U where U ′ is a
scheme. Then U ′ ×U u is a scheme surjective and étale over u = Spec(k) with k alge-
braically closed. It follows (see Morphisms, Lemma 36.7) that U ′ ×U u→ u has a section
which gives us the desired u′. �

Lemma 19.4. LetS be a scheme. LetX be an algebraic space overS. Letx : Spec(k)→
X be a geometric point of X lying over x ∈ |X|. Let ϕ : U → X be an étale morphism
of algebraic spaces and let u ∈ |U | with ϕ(u) = x. Then there exists a geometric point
u : Spec(k)→ U lying over u with x = ϕ ◦ u.

Proof. Choose an affine scheme U ′ with u′ ∈ U ′ and an étale morphism U ′ → U
which maps u′ to u. If we can prove the lemma for (U ′, u′)→ (X,x) then the lemma fol-
lows. Hence we may assume thatU is a scheme, in particular thatU → X is representable.
Then look at the cartesian diagram

Spec(k)×x,X,ϕ U

pr1

��

pr2
// U

ϕ

��
Spec(k) x // X

The projection pr1 is the base change of an étale morphisms so it is étale, see Lemma 16.5.
Therefore, the scheme Spec(k)×x,X,ϕ U is a disjoint union of finite separable extensions
of k, see Morphisms, Lemma 36.7. But k is algebraically closed, so all these extensions are
trivial, so Spec(k) ×x,X,ϕ U is a disjoint union of copies of Spec(k) and each of these
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corresponds to a geometric point u with ϕ ◦ u = x. By Lemma 4.3 the map
| Spec(k)×x,X,ϕ U | −→ | Spec(k)| ×|X| |U |

is surjective, hence we can pick u to lie over u. �

Lemma 19.5. Let S be a scheme. Let X be an algebraic space over S. Let x be a
geometric point of X . Let (U, u) an étale neighborhood of x. Let {ϕi : Ui → U}i∈I be
an étale covering in Xspaces,étale. Then there exist i ∈ I and ui : x → Ui such that
ϕi : (Ui, ui)→ (U, u) is a morphism of étale neighborhoods.

Proof. Let u ∈ |U | be the image of u. As |U | =
⋃
i∈I ϕi(|Ui|) there exists an i and

a point ui ∈ Ui mapping to x. Apply Lemma 19.4 to (Ui, ui) → (U, u) and u to get the
desired geometric point. �

Definition 19.6. Let S be a scheme. Let X be an algebraic space over S. Let F be a
presheaf on Xétale. Let x be a geometric point of X . The stalk of F at x is

Fx̄ = colim(U,u) F(U)
where (U, u) runs over all étale neighborhoods of x in X with U ∈ Ob(Xétale).

By Lemma 19.3, this colimit is over a filtered index category, namely the opposite of the
category of étale neighborhoods in Xétale. More precisely Lemma 19.3 says the opposite
of the category of all étale neighbourhoods is filtered, and the full subcategory of those
which are in Xétale is a cofinal subcategory hence also filtered.
This means an element ofFx can be thought of as a triple (U, u, σ) whereU ∈ Ob(Xétale)
and σ ∈ F(U). Two triples (U, u, σ), (U ′, u′, σ′) define the same element of the stalk
if there exists a third étale neighbourhood (U ′′, u′′), U ′′ ∈ Ob(Xétale) and morphisms
of étale neighbourhoods h : (U ′′, u′′) → (U, u), h′ : (U ′′, u′′) → (U ′, u′) such that
h∗σ = (h′)∗σ′ in F(U ′′). See Categories, Section 19.
This also implies that if F ′ is the sheaf on Xspaces,étale corresponding to F on Xétale,
then
(19.6.1) Fx = colim(U,u) F ′(U)
where now the colimit is over all the étale neighbourhoods of x. We will often jump
between the point of view of using Xétale and Xspaces,étale without further mention.
In particular this means that if F is a presheaf of abelian groups, rings, etc then Fx is
an abelian group, ring, etc simply by the usual way of defining the group structure on a
directed colimit of abelian groups, rings, etc.

Lemma 19.7. Let S be a scheme. Let X be an algebraic space over S. Let x be a
geometric point of X . Consider the functor

u : Xétale −→ Sets, U 7−→ |Ux|
Then u defines a point p of the site Xétale (Sites, Definition 32.2) and its associated stalk
functor F 7→ Fp (Sites, Equation 32.1.1) is the functor F 7→ Fx defined above.

Proof. In the proof of Lemma 19.5 we have seen that the scheme Ux is a disjoint
union of schemes isomorphic to x. Thus we can also think of |Ux| as the set of geometric
points of U lying over x, i.e., as the collection of morphisms u : x → U fitting into
the diagram of Definition 19.2. From this it follows that u(X) is a singleton, and that
u(U ×V W ) = u(U) ×u(V ) u(W ) whenever U → V and W → V are morphisms in
Xétale. And, given a covering {Ui → U}i∈I in Xétale we see that

∐
u(Ui) → u(U) is
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surjective by Lemma 19.5. Hence Sites, Proposition 33.3 applies, so p is a point of the site
Xétale. Finally, the our functorF 7→ Fs is given by exactly the same colimit as the functor
F 7→ Fp associated to p in Sites, Equation 32.1.1 which proves the final assertion. �

Lemma 19.8. Let S be a scheme. Let X be an algebraic space over S. Let x be a
geometric point of X .

(1) The stalk functor PAb(Xétale)→ Ab, F 7→ Fx is exact.
(2) We have (F#)x = Fx for any presheaf of sets F on Xétale.
(3) The functor Ab(Xétale)→ Ab, F 7→ Fx is exact.
(4) Similarly the functors PSh(Xétale)→ Sets and Sh(Xétale)→ Sets given by the

stalk functor F 7→ Fx are exact (see Categories, Definition 23.1) and commute
with arbitrary colimits.

Proof. This result follows from the general material in Modules on Sites, Section 36.
This is true because F 7→ Fx comes from a point of the small étale site of X , see Lemma
19.7. See the proof of Étale Cohomology, Lemma 29.9 for a direct proof of some of these
statements in the setting of the small étale site of a scheme. �

We will see below that the stalk functorF 7→ Fx is really the pullback along the morphism
x. In that sense the following lemma is a generalization of the lemma above.

Lemma 19.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S.

(1) The functor f−1
small : Ab(Yétale)→ Ab(Xétale) is exact.

(2) The functor f−1
small : Sh(Yétale) → Sh(Xétale) is exact, i.e., it commutes with

finite limits and colimits, see Categories, Definition 23.1.
(3) For any étale morphismV → Y of algebraic spaces we have f−1

smallhV = hX×Y V .
(4) Let x → X be a geometric point. Let G be a sheaf on Yétale. Then there is a

canonical identification

(f−1
smallG)x = Gy.

where y = f ◦ x.

Proof. Recall that fsmall is defined via fspaces,small in Lemma 18.8. Parts (1), (2) and
(3) are general consequences of the fact that fspaces,étale : Xspaces,étale → Yspaces,étale
is a morphism of sites, see Sites, Definition 14.1 for (2), Modules on Sites, Lemma 31.2 for
(1), and Sites, Lemma 13.5 for (3).

Proof of (4). This statement is a special case of Sites, Lemma 34.2 via Lemma 19.7. We
also provide a direct proof. Note that by Lemma 19.8. taking stalks commutes with sheafi-
fication. Let G′ be the sheaf on Yspaces,étale whose restriction to Yétale is G. Recall that
f−1
spaces,étaleG′ is the sheaf associated to the presheaf

U −→ colimU→X×Y V G′(V ),

see Sites, Sections 13 and 5. Thus we have

(f−1
spaces,étaleG

′)x = colim(U,u) f
−1
spaces,étaleG

′(U)
= colim(U,u) colima:U→X×Y V G′(V )
= colim(V,v) G′(V )
= G′

y
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in the third equality the pair (U, u) and the map a : U → X ×Y V corresponds to the
pair (V, a ◦ u). Since the stalk of G′ (resp. f−1

spaces,étaleG′) agrees with the stalk of G (resp.
f−1
smallG), see Equation (19.6.1) the result follows. �

Remark 19.10. This remark is the analogue of Étale Cohomology, Remark 56.6. Let
S be a scheme. Let X be an algebraic space over S. Let x : Spec(k) → X be a geometric
point ofX . By Étale Cohomology, Theorem 56.3 the category of sheaves on Spec(k)étale
is equivalent to the category of sets (by taking a sheaf to its global sections). Hence it
follows from Lemma 19.9 part (4) applied to the morphism x that the functor

Sh(Xétale) −→ Sets, F 7−→ Fx
is isomorphic to the functor

Sh(Xétale) −→ Sh(Spec(k)étale) = Sets, F 7−→ x∗F

Hence we may view the stalk functors as pullback functors along geometric morphisms
(and not just some abstract morphisms of topoi as in the result of Lemma 19.7).

Remark 19.11. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
We claim that for any pair of geometric points x and x′ lying over x the stalk functors
are isomorphic. By definition of |X| we can find a third geometric point x′′ so that there
exists a commutative diagram

x′′ //

��

x′′

  

x′

x′

��
x

x // X.

Since the stalk functorF 7→ Fx is given by pullback along the morphism x (and similarly
for the others) we conclude by functoriality of pullbacks.

The following theorem says that the small étale site of an algebraic space has enough
points.

Theorem 19.12. Let S be a scheme. Let X be an algebraic space over S. A map
a : F → G of sheaves of sets is injective (resp. surjective) if and only if the map on stalks
ax : Fx → Gx is injective (resp. surjective) for all geometric points of X . A sequence of
abelian sheaves on Xétale is exact if and only if it is exact on all stalks at geometric points
of S.

Proof. We know the theorem is true if X is a scheme, see Étale Cohomology, The-
orem 29.10. Choose a surjective étale morphism f : U → X where U is a scheme. Since
{U → X} is a covering (in Xspaces,étale) we can check whether a map of sheaves is injec-
tive, or surjective by restricting to U . Now if u : Spec(k)→ U is a geometric point of U ,
then (F|U )u = Fx where x = f ◦ u. (This is clear from the colimits defining the stalks
at u and x, but it also follows from Lemma 19.9.) Hence the result for U implies the result
for X and we win. �

The following lemma should be skipped on a first reading.

Lemma 19.13. LetS be a scheme. LetX be an algebraic space overS. Let p : Sh(pt)→
Sh(Xétale) be a point of the small étale topos ofX . Then there exists a geometric point x
of X such that the stalk functor F 7→ Fp is isomorphic to the stalk functor F 7→ Fx.
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Proof. By Sites, Lemma 32.7 there is a one to one correspondence between points
of the site and points of the associated topos. Hence we may assume that p is given by a
functor u : Xétale → Sets which defines a point of the siteXétale. LetU ∈ Ob(Xétale) be
an object whose structure morphism j : U → X is surjective. Note thathU is a sheaf which
surjects onto the final sheaf. Since taking stalks is exact we see that (hU )p = u(U) is not
empty (use Sites, Lemma 32.3). Pick x ∈ u(U). By Sites, Lemma 35.1 we obtain a point
q : Sh(pt) → Sh(Uétale) such that p = jsmall ◦ q, so that Fp = (F|U )q functorially.
By Étale Cohomology, Lemma 29.12 there is a geometric point u of U and a functorial
isomorphism Gq = Gu for G ∈ Sh(Uétale). Set x = j ◦ u. Then we see that Fx ∼= (F|U )u
functorially in F on Xétale by Lemma 19.9 and we win. �

20. Supports of abelian sheaves

First we talk about supports of local sections.

Lemma 20.1. Let S be a scheme. Let X be an algebraic space over S. Let F be a
subsheaf of the final object of the étale topos of X (see Sites, Example 10.2). Then there
exists a unique open W ⊂ X such that F = hW .

Proof. The condition means thatF(U) is a singleton or empty for all ϕ : U → X in
Ob(Xspaces,étale). In particular local sections always glue. IfF(U) 6= ∅, thenF(ϕ(U)) 6=
∅ becauseϕ(U) ⊂ X is an open subspace (Lemma 16.7) and {ϕ : U → ϕ(U)} is a covering
in Xspaces,étale. Take W =

⋃
ϕ:U→S,F(U)6=∅ ϕ(U) to conclude. �

Lemma 20.2. Let S be a scheme. Let X be an algebraic space over S. Let F be an
abelian sheaf on Xspaces,étale. Let σ ∈ F(U) be a local section. There exists an open
subspace W ⊂ U such that

(1) W ⊂ U is the largest open subspace of U such that σ|W = 0,
(2) for every ϕ : V → U in Xétale we have

σ|V = 0⇔ ϕ(V ) ⊂W,
(3) for every geometric point u of U we have

(U, u, σ) = 0 in Fs ⇔ u ∈W
where s = (U → S) ◦ u.

Proof. SinceF is a sheaf in the étale topology the restriction ofF to UZar is a sheaf
on U in the Zariski topology. Hence there exists a Zariski open W having property (1),
see Modules, Lemma 5.2. Let ϕ : V → U be an arrow of Xétale. Note that ϕ(V ) ⊂ U
is an open subspace (Lemma 16.7) and that {V → ϕ(V )} is an étale covering. Hence if
σ|V = 0, then by the sheaf condition for F we see that σ|ϕ(V ) = 0. This proves (2). To
prove (3) we have to show that if (U, u, σ) defines the zero element of Fs, then u ∈ W .
This is true because the assumption means there exists a morphism of étale neighbourhoods
(V, v) → (U, u) such that σ|V = 0. Hence by (2) we see that V → U maps into W , and
hence u ∈W . �

Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|. Let F be a sheaf on
Xétale. By Remark 19.11 the isomorphism class of the stalk of the sheaf F at a geometric
points lying over x is well defined.

Definition 20.3. Let S be a scheme. LetX be an algebraic space over S. LetF be an
abelian sheaf on Xétale.
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(1) The support of F is the set of points x ∈ |X| such that Fx 6= 0 for any (some)
geometric point x lying over x.

(2) Let σ ∈ F(U) be a section. The support of σ is the closed subset U \W , where
W ⊂ U is the largest open subset of U on which σ restricts to zero (see Lemma
20.2).

Lemma 20.4. Let S be a scheme. Let X be an algebraic space over S. Let F be an
abelian sheaf on Xétale. Let U ∈ Ob(Xétale) and σ ∈ F(U).

(1) The support of σ is closed in |X|.
(2) The support of σ+σ′ is contained in the union of the supports of σ, σ′ ∈ F(X).
(3) If ϕ : F → G is a map of abelian sheaves on Xétale, then the support of ϕ(σ) is

contained in the support of σ ∈ F(U).
(4) The support of F is the union of the images of the supports of all local sections

of F .
(5) If F → G is surjective then the support of G is a subset of the support of F .
(6) If F → G is injective then the support of F is a subset of the support of G.

Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds for the
restriction of F and G to UZar , see Modules, Lemma 5.2. Part (4) is a direct consequence
of Lemma 20.2 part (3). Parts (5) and (6) follow from the other parts. �

Lemma 20.5. The support of a sheaf of rings on the small étale site of an algebraic
space is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only if
1 = 0, and hence the support of a sheaf of rings is the support of the unit section. �

21. The structure sheaf of an algebraic space

The structure sheaf of an algebraic space is the sheaf of rings of the following lemma.

Lemma 21.1. Let S be a scheme. Let X be an algebraic space over S. The rule U 7→
Γ(U,OU ) defines a sheaf of rings on Xétale.

Proof. Immediate from the definition of a covering and Descent, Lemma 8.1. �

Definition 21.2. LetS be a scheme. LetX be an algebraic space overS. The structure
sheaf ofX is the sheaf of ringsOX on the small étale siteXétale described in Lemma 21.1.

According to Lemma 18.13 the sheaf OX corresponds to a system of étale sheaves (OX)U
for U ranging through the objects of Xétale. It is clear from the proof of that lemma and
our definition that we have simply (OX)U = OU where OU is the structure sheaf of
Uétale as introduced in Descent, Definition 8.2. In particular, if X is a scheme we recover
the sheafOX on the small étale site of X .

Via the equivalence Sh(Xétale) = Sh(Xspaces,étale) of Lemma 18.3 we may also think of
OX as a sheaf of rings on Xspaces,étale. It is explained in Remark 18.4 how to compute
OX(Y ), and in particularOX(X), when Y → X is an object of Xspaces,étale.

Lemma 21.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then there is a canonical map f ] : f−1

smallOY → OX such that

(fsmall, f ]) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )
is a morphism of ringed topoi. Furthermore,
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(1) The construction f 7→ (fsmall, f ]) is compatible with compositions.
(2) If f is a morphism of schemes, then f ] is the map described in Descent, Remark

8.4.

Proof. By Lemma 18.10 it suffices to give an f -map fromOY toOX . In other words,
for every commutative diagram

U

g

��

// X

f

��
V // Y

where U ∈ Xétale, V ∈ Yétale we have to give a map of rings (f ])(U,V,g) : Γ(V,OV ) →
Γ(U,OU ). Of course we just take (f ])(U,V,g) = g]. It is clear that this is compatible with
restriction mappings and hence indeed gives an f -map. We omit checking compatibility
with compositions and agreement with the construction in Descent, Remark 8.4. �

Lemma 21.4. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is reduced,
(2) for every x ∈ |X| the local ring of X at x is reduced (Remark 7.6).

In this case Γ(X,OX) is a reduced ring and if f ∈ Γ(X,OX) has X = V (f), then f = 0.

Proof. The equivalence of (1) and (2) follows from Properties, Lemma 3.2 applied to
affine schemes étale over X . The final statements follow the cited lemma and fact that
Γ(X,OX) is a subring of Γ(U,OU ) for some reduced scheme U étale over X . �

22. Stalks of the structure sheaf

This section is the analogue of Étale Cohomology, Section 33.

Lemma 22.1. Let S be a scheme. Let X be an algebraic space over S. Let x be a
geometric point of X . Let (U, u) be an étale neighbourhood of x where U is a scheme.
Then we have

OX,x = OU,u = OshU,u
where the left hand side is the stalk of the structure sheaf of X , and the right hand side is
the strict henselization of the local ring of U at the point u at which u is centered.

Proof. We know that the structure sheafOU onUétale is the restriction of the struc-
ture sheaf of X . Hence the first equality follows from Lemma 19.9 part (4). The second
equality is explained in Étale Cohomology, Lemma 33.1. �

Definition 22.2. Let S be a scheme. Let X be an algebraic space over S. Let x be a
geometric point of X lying over the point x ∈ |X|.

(1) The étale local ring of X at x is the stalk of the structure sheafOX on Xétale at
x. Notation: OX,x.

(2) The strict henselization of X at x is the scheme Spec(OX,x).

The isomorphism type of the strict henselization of X at x (as a scheme over X) depends
only on the point x ∈ |X| and not on the choice of the geometric point lying over x, see
Remark 19.11.

Lemma 22.3. Let S be a scheme. Let X be an algebraic space over S. The small étale
site Xétale endowed with its structure sheaf OX is a locally ringed site, see Modules on
Sites, Definition 40.4.
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Proof. This follows because the stalksOX,x are local, and because Sétale has enough
points, see Lemmas 22.1 and Theorem 19.12. See Modules on Sites, Lemma 40.2 and 40.3
for the fact that this implies the small étale site is locally ringed. �

Lemma 22.4. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X| be
a point. Let d ∈ {0, 1, 2, . . . ,∞}. The following are equivalent

(1) the dimension of the local ring of X at x (Definition 10.2) is d,
(2) dim(OX,x) = d for some geometric point x lying over x, and
(3) dim(OX,x) = d for any geometric point x lying over x.

Proof. The equivalence of (2) and (3) follows from the fact that the isomorphism
type of OX,x only depends on x ∈ |X|, see Remark 19.11. Using Lemma 22.1 the equiva-
lence of (1) and (2)+(3) comes down to the following statement: Given any local ring R
we have dim(R) = dim(Rsh). This is More on Algebra, Lemma 45.7. �

Lemma 22.5. Let S be a scheme. Let f : X → Y be an étale morphism of algebraic
spaces over S. Let x ∈ X . Then (1) dimx(X) = dimf(x)(Y ) and (2) the dimension of the
local ring of X at x equals the dimension of the local ring of Y at f(x). If f is surjective,
then (3) dim(X) = dim(Y ).

Proof. Choose a schemeU and a point u ∈ U and an étale morphismU → X which
maps u to x. Then the composition U → Y is also étale and maps u to f(x). Thus the
statements (1) and (2) follow as the relevant integers are defined in terms of the behaviour
of the scheme U at u. See Definition 9.1 for (1). Part (3) is an immediate consequence of
(1), see Definition 9.2. �

Lemma 22.6. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X| be
a point. The following are equivalent

(1) the local ring of X at x is reduced (Remark 7.6),
(2) OX,x is reduced for some geometric point x lying over x, and
(3) OX,x is reduced for any geometric point x lying over x.

Proof. The equivalence of (2) and (3) follows from the fact that the isomorphism
type of OX,x only depends on x ∈ |X|, see Remark 19.11. Using Lemma 22.1 the equiva-
lence of (1) and (2)+(3) comes down to the following statement: a local ring is reduced if
and only if its strict henselization is reduced. This is More on Algebra, Lemma 45.4. �

23. Local irreducibility

A point on an algebraic space has a well defined étale local ring, which corresponds to the
strict henselization of the local ring in the case of a scheme. In general we cannot see how
many irreducible components of a scheme or an algebraic space pass through the given
point from the étale local ring. We can only count the number of geometric branches.

Lemma 23.1. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X| be
a point. The following are equivalent

(1) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ringOU,u has a unique minimal prime,

(2) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
there is a unique irreducible component of U through u,

(3) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ringOU,u is unibranch,
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(4) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the local ringOU,u is geometrically unibranch,

(5) OX,x has a unique minimal prime for any geometric point x lying over x.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1-1 correspondence with minimal primes of the
local ring of U at u. Let a : U → X and u ∈ U be as in (1). Then OX,x is the strict
henselization ofOU,u by Lemma 22.1. In particular (4) and (5) are equivalent by More on
Algebra, Lemma 106.5. The equivalence of (2), (3), and (4) follows from More on Mor-
phisms, Lemma 36.2. �

Definition 23.2. Let S be a scheme. LetX be an algebraic space over S. Let x ∈ |X|.
We say thatX is geometrically unibranch at x if the equivalent conditions of Lemma 23.1
hold. We say that X is geometrically unibranch if X is geometrically unibranch at every
x ∈ |X|.

This is consistent with the definition for schemes (Properties, Definition 15.1).

Lemma 23.3. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X| be
a point. Let n ∈ {1, 2, . . .} be an integer. The following are equivalent

(1) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number of minimal primes of the local ringOU,u is ≤ n and for at least one
choice of U, a, u it is n,

(2) for any schemeU and étale morphism a : U → X and u ∈ U with a(u) = x the
number irreducible components of U passing through u is ≤ n and for at least
one choice of U, a, u it is n,

(3) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number of branches of U at u is ≤ n and for at least one choice of U, a, u it
is n,

(4) for any scheme U and étale morphism a : U → X and u ∈ U with a(u) = x
the number of geometric branches of U at u is n, and

(5) the number of minimal prime ideals ofOX,x is n.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible compo-
nents of U passing through u are in 1-1 correspondence with minimal primes of the local
ring ofU at u. Let a : U → X and u ∈ U be as in (1). ThenOX,x is the strict henselization
of OU,u by Lemma 22.1. Recall that the (geometric) number of branches of U at u is the
number of minimal prime ideals of the (strict) henselization ofOU,u. In particular (4) and
(5) are equivalent. The equivalence of (2), (3), and (4) follows from More on Morphisms,
Lemma 36.2. �

Definition 23.4. Let S be a scheme. LetX be an algebraic space over S. Let x ∈ |X|.
The number of geometric branches of X at x is either n ∈ N if the equivalent conditions
of Lemma 23.3 hold, or else∞.

24. Noetherian spaces

We have already defined locally Noetherian algebraic spaces in Section 7.

Definition 24.1. Let S be a scheme. Let X be an algebraic space over S. We say X
is Noetherian if X is quasi-compact, quasi-separated and locally Noetherian.
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Note that a Noetherian algebraic spaceX is not just quasi-compact and locally Noetherian,
but also quasi-separated. This does not conflict with the definition of a Noetherian scheme,
as a locally Noetherian scheme is quasi-separated, see Properties, Lemma 5.4. This does
not hold for algebraic spaces. Namely, X = A1

k/Z, see Spaces, Example 14.8 is locally
Noetherian and quasi-compact but not quasi-separated (hence not Noetherian according
to our definitions).

A consequence of the choice made above is that an algebraic space of finite type over a Noe-
therian algebraic space is not automatically Noetherian, i.e., the analogue of Morphisms,
Lemma 15.6 does not hold. The correct statement is that an algebraic space of finite presen-
tation over a Noetherian algebraic space is Noetherian (see Morphisms of Spaces, Lemma
28.6).

A Noetherian algebraic space X is very close to being a scheme. In the rest of this section
we collect some lemmas to illustrate this.

Lemma 24.2. Let S be a scheme. Let X be an algebraic space over S.
(1) If X is locally Noetherian then |X| is a locally Noetherian topological space.
(2) IfX is quasi-compact and locally Noetherian, then |X| is a Noetherian topolog-

ical space.

Proof. Assume X is locally Noetherian. Choose a scheme U and a surjective étale
morphism U → X . As X is locally Noetherian we see that U is locally Noetherian. By
Properties, Lemma 5.5 this means that |U | is a locally Noetherian topological space. Since
|U | → |X| is open and surjective we conclude that |X| is locally Noetherian by Topology,
Lemma 9.3. This proves (1). If X is quasi-compact and locally Noetherian, then |X| is
quasi-compact and locally Noetherian. Hence |X| is Noetherian by Topology, Lemma
12.14. �

Lemma 24.3. Let S be a scheme. LetX be an algebraic space over S. IfX is Noether-
ian, then |X| is a sober Noetherian topological space.

Proof. A quasi-separated algebraic space has an underlying sober topological space,
see Lemma 15.1. It is Noetherian by Lemma 24.2. �

Lemma 24.4. Let S be a scheme. LetX be a Noetherian algebraic space over S. Let x
be a geometric point of X . ThenOX,x is a Noetherian local ring.

Proof. Choose an étale neighbourhood (U, u) of xwhere U is a scheme. ThenOX,x
is the strict henselization of the local ring of U at u, see Lemma 22.1. By our definition
of Noetherian spaces the scheme U is locally Noetherian. Hence we conclude by More on
Algebra, Lemma 45.3. �

25. Regular algebraic spaces

We have already defined regular algebraic spaces in Section 7.

Lemma 25.1. Let S be a scheme. Let X be a locally Noetherian algebraic space over
S. The following are equivalent

(1) X is regular, and
(2) every étale local ringOX,x is regular.
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Proof. Let U be a scheme and let U → X be a surjective étale morphism. By as-
sumption U is locally Noetherian. Moreover, every étale local ring OX,x is the strict
henselization of a local ring on U and conversely, see Lemma 22.1. Thus by More on Alge-
bra, Lemma 45.10 we see that (2) is equivalent to every local ring ofU being regular, i.e.,U
being a regular scheme (see Properties, Lemma 9.2). This equivalent to (1) by Definition
7.2. �

We can use Descent, Lemma 21.4 to define what it means for an algebraic space X to be
regular at a point x.

Definition 25.2. Let S be a scheme. LetX be an algebraic space over S. Let x ∈ |X|
be a point. We say X is regular at x if OU,u is a regular local ring for any (equivalently
some) pair (a : U → X,u) consisting of an étale morphism a : U → X from a scheme to
X and a point u ∈ U with a(u) = x.

See Definition 7.5, Lemma 7.4, and Descent, Lemma 21.4.

Lemma 25.3. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X| be
a point. The following are equivalent

(1) X is regular at x, and
(2) the étale local ringOX,x is regular for any (equivalently some) geometric point

x lying over x.

Proof. Let U be a scheme, u ∈ U a point, and let a : U → X be an étale morphism
mapping u to x. For any geometric point x of X lying over x, the étale local ring OX,x
is the strict henselization of a local ring on U at u, see Lemma 22.1. Thus we conclude by
More on Algebra, Lemma 45.10. �

Lemma 25.4. A regular algebraic space is normal.

Proof. This follows from the definitions and the case of schemes See Properties,
Lemma 9.4. �

26. Sheaves of modules on algebraic spaces

If X is an algebraic space, then a sheaf of modules on X is a sheaf of OX -modules on the
small étale site of X where OX is the structure sheaf of X . The category of sheaves of
modules is denoted Mod(OX).

Given a morphism f : X → Y of algebraic spaces, by Lemma 21.3 we get a morphism of
ringed topoi and hence by Modules on Sites, Definition 13.1 we get well defined pullback
and direct image functors

(26.0.1) f∗ : Mod(OY ) −→Mod(OX), f∗ : Mod(OX) −→Mod(OY )

which are adjoint in the usual way. If g : Y → Z is another morphism of algebraic spaces
over S , then we have (g ◦ f)∗ = f∗ ◦ g∗ and (g ◦ f)∗ = g∗ ◦ f∗ simply because the
morphisms of ringed topoi compose in the corresponding way (by the lemma).

Lemma 26.1. Let S be a scheme. Let f : X → Y be an étale morphism of algebraic
spaces over S. Then f−1OY = OX , and f∗G = f−1

smallG for any sheaf ofOY -modules G.
In particular, f∗ : Mod(OY )→Mod(OX) is exact.
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Proof. By the description of inverse image in Lemma 18.11 and the definition of the
structure sheaves it is clear that f−1

smallOY = OX . Since the pullback

f∗G = f−1
smallG ⊗f−1

small
OY
OX

by definition we conclude that f∗G = f−1
smallG. The exactness is clear because f−1

small is
exact, as fsmall is a morphism of topoi. �

We continue our abuse of notation introduced in Equation (18.11.1) by writing

(26.1.1) G|Xétale = f∗G = f−1
smallG

in the situation of the lemma above. We will discuss this in a more technical fashion in
Section 27.

Lemma 26.2. Let S be a scheme. Let

X ′ //

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Let F ∈ Mod(OX). If g is étale, then
f ′

∗(F|X′) = (f∗F)|Y ′ 6 and Rif ′
∗(F|X′) = (Rif∗F)|Y ′ in Mod(OY ′).

Proof. This is a reformulation of Lemma 18.12 in the case of modules. �

Lemma 26.3. Let S be a scheme. Let X be an algebraic space over S. A sheaf F of
OX -modules is given by the following data:

(1) for every U ∈ Ob(Xétale) a sheaf FU ofOU -modules on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f∗

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′ in
Xétale the composition cg ◦ g∗

smallcf is equal to cf◦g .

Proof. Combine Lemmas 26.1 and 18.13, and use the fact that any morphism between
objects of Xétale is an étale morphism of schemes. �

27. Étale localization

Reading this section should be avoided at all cost.

Let X → Y be an étale morphism of algebraic spaces. Then X is an object of Yspaces,étale
and it is immediate from the definitions, see also the proof of Lemma 18.11, that

(27.0.1) Xspaces,étale = Yspaces,étale/X

where the right hand side is the localization of the site Yspaces,étale at the object X , see
Sites, Definition 25.1. Moreover, this identification is compatible with the structure sheaves
by Lemma 26.1. Hence the ringed site (Xspaces,étale,OX) is identified with the localiza-
tion of the ringed site (Yspaces,étale,OY ) at the object X :

(27.0.2) (Xspaces,étale,OX) = (Yspaces,étale/X,OY |Yspaces,étale/X)
The localization of a ringed site used on the right hand side is defined in Modules on Sites,
Definition 19.1.

6Also (f ′)∗(G|Y ′ ) = (f∗G)|X′ by commutativity of the diagram and (26.1.1)
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Assume nowX → Y is an étale morphism of algebraic spaces andX is a scheme. ThenX
is an object of Yétale and it follows that

(27.0.3) Xétale = Yétale/X

and

(27.0.4) (Xétale,OX) = (Yétale/X,OY |Yétale/X)
as above.

Finally, ifX → Y is an étale morphism of algebraic spaces andX is an affine scheme, then
X is an object of Yaffine,étale and

(27.0.5) Xaffine,étale = Yaffine,étale/X

and

(27.0.6) (Xaffine,étale,OX) = (Yaffine,étale/X,OY |Yaffine,étale/X)
as above.

Next, we show that these localizations are compatible with morphisms.

Lemma 27.1. Let S be a scheme. Let

U

p

��

g
// V

q

��
X

f // Y

be a commutative diagram of algebraic spaces over S with p and q étale. Via the identifi-
cations (27.0.2) for U → X and V → Y the morphism of ringed topoi

(gspaces,étale, g]) : (Sh(Uspaces,étale),OU ) −→ (Sh(Vspaces,étale),OV )

is 2-isomorphic to the morphism (fspaces,étale,c, f ]c ) constructed in Modules on Sites,
Lemma 20.2 starting with the morphism of ringed sites (fspaces,étale, f ]) and the map
c : U → V ×Y X corresponding to g.

Proof. The morphism (fspaces,étale,c, f ]c ) is defined as a composition f ′ ◦ j of a
localization and a base change map. Similarly g is a composition U → V ×Y X →
V . Hence it suffices to prove the lemma in the following two cases: (1) f = id, and
(2) U = X ×Y V . In case (1) the morphism g : U → V is étale, see Lemma 16.6.
Hence (gspaces,étale, g]) is a localization morphism by the discussion surrounding Equa-
tions (27.0.1) and (27.0.2) which is exactly the content of the lemma in this case. In case (2)
the morphism gspaces,étale comes from the morphism of ringed sites given by the functor
Vspaces,étale → Uspaces,étale, V ′/V 7→ V ′ ×V U/U which is also what the morphism f ′

is defined by, see Sites, Lemma 28.1. We omit the verification that (f ′)] = g] in this case
(both are the restriction of f ] to Uspaces,étale). �

Lemma 27.2. Same notation and assumptions as in Lemma 27.1 except that we also
assume U and V are schemes. Via the identifications (27.0.4) for U → X and V → Y the
morphism of ringed topoi

(gsmall, g]) : (Sh(Uétale),OU ) −→ (Sh(Vétale),OV )
is 2-isomorphic to the morphism (fsmall,s, f ]s) constructed in Modules on Sites, Lemma
22.3 starting with (fsmall, f ]) and the map s : hU → f−1

smallhV corresponding to g.
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Proof. Note that (gsmall, g]) is 2-isomorphic as a morphism of ringed topoi to the
morphism of ringed topoi associated to the morphism of ringed sites (gspaces,étale, g]).
Hence we conclude by Lemma 27.1 and Modules on Sites, Lemma 22.4. �

Finally, we discuss the relationship between sheaves of sets on the small étale site Yétale
of an algebraic space Y and algebraic spaces étale over Y . Let S be a scheme and let Y be
an algebraic space over S. Let F be an object of Sh(Yétale). Consider the functor

X : (Sch/S)oppfppf −→ Sets

defined by the rule

X(T ) = {(y, s) | y : T → Y is a morphism over S and s ∈ Γ(T, y−1
smallF)}

Given a morphism g : T ′ → T the restriction map sends (y, s) to (y ◦ g, g−1
smalls). This

makes sense as ysmall ◦ gsmall = (y ◦ g)small by Lemma 18.8.

Lemma 27.3. Let S be a scheme and let Y be an algebraic space over S. Let F be a
sheaf of sets on Yétale. Provided a set theoretic condition is satisfied (see proof) the functor
X associated to F above is an algebraic space and there is an étale morphism f : X → Y
of algebraic spaces such that F = fsmall,∗∗ where ∗ is the final object of the category
Sh(Xétale) (constant sheaf with value a singleton).

Proof. Let us prove that X is a sheaf for the fppf topology. Namely, suppose that
{gi : Ti → T} is a covering of (Sch/S)fppf and (yi, si) ∈ X(Ti) satisfy the glueing
condition, i.e., the restriction of (yi, si) and (yj , sj) to Ti ×T Tj agree. Then since Y is a
sheaf for the fppf topology, we see that the yi give rise to a unique morphism y : T → Y

such that yi = y ◦ gi. Then we see that y−1
i,smallF = g−1

i,smally
−1
smallF . Hence the sections

si glue uniquely to a section of y−1
smallF by Étale Cohomology, Lemma 39.2.

The construction that sends F ∈ Ob(Sh(Yétale)) to X ∈ Ob((Sch/S)fppf ) preserves
finite limits and all colimits since each of the functors y−1

small have this property. Of course,
if V ∈ Ob(Yétale), then the construction sends the representable sheaf hV on Yétale to the
representable functor represented by V .

By Sites, Lemma 12.5 we can find a set I , for each i ∈ I an objectVi ofYétale and a surjective
map of sheaves ∐

hVi −→ F
on Yétale. The set theoretic condition we need is that the index set I is not too large7.
Then V =

∐
Vi is an object of (Sch/S)fppf and therefore an object of Yétale and we have

a surjective map hV → F .

Observe that the product of hV with itself in Sh(Yétale) is hV×Y V . Consider the fibre
product

hV ×F hV ⊂ hV×Y V

There is an open subscheme R of V ×Y V such that hV ×F hV = hR, see Lemma 20.1
(small detail omitted). By the Yoneda lemma we obtain two morphisms s, t : R → V in
Yétale and we find a coequalizer diagram

hR
//
// hV // F

7It suffices if the supremum of the cardinalities of the stalks of F at geometric points of Y is bounded by
the size of some object of (Sch/S)fppf .
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in Sh(Yétale). Of course the morphisms s, t are étale and define an étale equivalence rela-
tion (t, s) : R→ V ×S V .

By the discussion in the preceding two paragraphs we find a coequalizer diagram

R
//
// V // X

in (Sch/S)fppf . ThusX = V/R is an algebraic space by Spaces, Theorem 10.5. The other
statements follow readily from this; details omitted. �

28. Recovering morphisms

In this section we prove that the rule which associates to an algebraic space its locally
ringed small étale topos is fully faithful in a suitable sense, see Theorem 28.4.

Lemma 28.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
overS. The morphism of ringed topoi (fsmall, f ]) associated to f is a morphism of locally
ringed topoi, see Modules on Sites, Definition 40.9.

Proof. Note that the assertion makes sense since we have seen that (Xétale,OXétale)
and (Yétale,OYétale) are locally ringed sites, see Lemma 22.3. Moreover, we know that
Xétale has enough points, see Theorem 19.12. Hence it suffices to prove that (fsmall, f ])
satisfies condition (3) of Modules on Sites, Lemma 40.8. To see this take a point p of
Xétale. By Lemma 19.13 p corresponds to a geometric point x of X . By Lemma 19.9 the
point q = fsmall ◦ p corresponds to the geometric point y = f ◦ x of Y . Hence the
assertion we have to prove is that the induced map of étale local rings

OY,y −→ OX,x

is a local ring map. You can prove this directly, but instead we deduce it from the corre-
sponding result for schemes. To do this choose a commutative diagram

U

��

ψ
// V

��
X // Y

whereU and V are schemes, and the vertical arrows are surjective étale (see Spaces, Lemma
11.6). Choose a lift u : x → U (possible by Lemma 19.5). Set v = ψ ◦ u. We obtain a
commutative diagram of étale local rings

OU,u OV,voo

OX,x

OO

OY,y.oo

OO

By Étale Cohomology, Lemma 40.1 the top horizontal arrow is a local ring map. Finally
by Lemma 22.1 the vertical arrows are isomorphisms. Hence we win. �

Lemma 28.2. Let S be a scheme. LetX , Y be algebraic spaces over S. Let f : X → Y
be a morphism of algebraic spaces over S. Let t be a 2-morphism from (fsmall, f ]) to itself,
see Modules on Sites, Definition 8.1. Then t = id.
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Proof. Let X ′, resp. Y ′ be X viewed as an algebraic space over Spec(Z), see Spaces,
Definition 16.2. It is clear from the construction that (Xsmall,O) is equal to (X ′

small,O)
and similarly for Y . Hence we may work withX ′ and Y ′. In other words we may assume
that S = Spec(Z).

AssumeS = Spec(Z), f : X → Y and t are as in the lemma. This means that t : f−1
small →

f−1
small is a transformation of functors such that the diagram

f−1
smallOY

f] $$

f−1
smallOYt

oo

f]zz
OX

is commutative. Suppose V → Y is étale with V affine. Write V = Spec(B). Choose
generators bj ∈ B, j ∈ J for B as a Z-algebra. Set T = Spec(Z[{xj}j∈J ]). In the
following we will use that MorSch(U, T ) =

∏
j∈J Γ(U,OU ) for any scheme U without

further mention. The surjective ring map Z[xj ] → B, xj 7→ bj corresponds to a closed
immersion V → T . We obtain a monomorphism

i : V −→ TY = T × Y

of algebraic spaces over Y . In terms of sheaves on Yétale the morphism i induces an injec-
tion hi : hV →

∏
j∈J OY of sheaves. The base change i′ : X ×Y V → TX of i to X is a

monomorphism too (Spaces, Lemma 5.5). Hence i′ : X ×Y V → TX is a monomorphism,
which in turn means that hi′ : hX×Y V →

∏
j∈J OX is an injection of sheaves. Via the

identification f−1
smallhV = hX×Y V of Lemma 19.9 the map hi′ is equal to

f−1
smallhV

f−1hi // ∏
j∈J f

−1
smallOY

∏
f]

// ∏
j∈J OX

(verification omitted). This means that the map t : f−1
smallhV → f−1

smallhV fits into the
commutative diagram

f−1
smallhV

f−1hi //

t

��

∏
j∈J f

−1
smallOY

∏
f]

//∏
t

��

∏
j∈J OX

id
��

f−1
smallhV

f−1hi // ∏
j∈J f

−1
smallOY

∏
f]

// ∏
j∈J OX

The commutativity of the right square holds by our assumption on t explained above.
Since the composition of the horizontal arrows is injective by the discussion above we
conclude that the left vertical arrow is the identity map as well. Any sheaf of sets on
Yétale admits a surjection from a (huge) coproduct of sheaves of the form hV with V affine
(combine Lemma 18.6 with Sites, Lemma 12.5). Thus we conclude that t : f−1

small → f−1
small

is the identity transformation as desired. �

Lemma 28.3. Let S be a scheme. Let X , Y be algebraic spaces over S. Any two
morphisms a, b : X → Y of algebraic spaces overS for which there exists a 2-isomorphism
(asmall, a]) ∼= (bsmall, b]) in the 2-category of ringed topoi are equal.

Proof. Let t : a−1
small → b−1

small be the 2-isomorphism. We may equivalently think of
t as a transformation t : a−1

spaces,étale → b−1
spaces,étale since there is not difference between



5194 66. PROPERTIES OF ALGEBRAIC SPACES

sheaves on Xétale and sheaves on Xspaces,étale. Choose a commutative diagram

U

p

��

α
// V

q

��
X

a // Y

where U and V are schemes, and p and q are surjective étale. Consider the diagram

hU α
// a−1
spaces,étalehV

t

��
hU // b−1

spaces,étalehV

Since the sheaf b−1
spaces,étalehV is isomorphic to hV×Y,bX we see that the dotted arrow

comes from a morphism of schemes β : U → V fitting into a commutative diagram

U

p

��

β
// V

q

��
X

b // Y

We claim that there exists a sequence of 2-isomorphisms

(αsmall, α]) ∼= (αspaces,étale, α])
∼= (aspaces,étale,c, a]c)
∼= (bspaces,étale,d, b]d)
∼= (βspaces,étale, β])
∼= (βsmall, β])

The first and the last 2-isomorphisms come from the identifications between sheaves on
Uspaces,étale and sheaves onUétale and similarly forV . The second and fourth 2-isomorphisms
are those of Lemma 27.1 with c : U → X ×a,Y V induced by α and d : U → X ×b,Y V
induced by β. The middle 2-isomorphism comes from the transformation t. Namely, the
functor a−1

spaces,étale,c corresponds to the functor

(H → hV ) 7−→ (a−1
spaces,étaleH×a−1

spaces,étale
hV ,α

hU → hU )

and similarly for b−1
spaces,étale,d, see Sites, Lemma 28.3. This uses the identification of

sheaves on Yspaces,étale/V as arrows (H → hV ) in Sh(Yspaces,étale) and similarly for
U/X , see Sites, Lemma 25.4. Via this identification the structure sheafOV corresponds to
the pair (OY ×hV → hV ) and similarly forOU , see Modules on Sites, Lemma 21.3. Since
t switches α and β we see that t induces an isomorphism

t : a−1
spaces,étaleH×a−1

spaces,étale
hV ,α

hU −→ b−1
spaces,étaleH×b−1

spaces,étale
hV ,β

hU

over hU functorially in (H → hV ). Also, t is compatible with a]c and b]d as t is compatible
with a] and b] by our description of the structure sheaves OU and OV above. Hence,
the morphisms of ringed topoi (αsmall, α]) and (βsmall, β]) are 2-isomorphic. By Étale
Cohomology, Lemma 40.3 we conclude α = β! Since p : U → X is a surjection of sheaves
it follows that a = b. �
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Here is the main result of this section.

Theorem 28.4. Let X , Y be algebraic spaces over Spec(Z). Let

(g, g]) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

be a morphism of locally ringed topoi. Then there exists a unique morphism of algebraic
spaces f : X → Y such that (g, g]) is isomorphic to (fsmall, f ]). In other words, the
construction

Spaces/ Spec(Z) −→ Locally ringed topoi, X −→ (Xétale,OX)

is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. The uniqueness we have seen in Lemma 28.3. Thus it suffices to prove exis-
tence. In this proof we will freely use the identifications of Equation (27.0.4) as well as
the result of Lemma 27.2.

Let U ∈ Ob(Xétale), let V ∈ Ob(Yétale) and let s ∈ g−1hV (U) be a section. We may
think of s as a map of sheaves s : hU → g−1hV . By Modules on Sites, Lemma 22.3 we
obtain a commutative diagram of morphisms of ringed topoi

(Sh(Xétale/U),OU )
(j,j])

//

(gs,g]s)
��

(Sh(Xétale),OX)

(g,g])
��

(Sh(Vétale),OV ) // (Sh(Yétale),OY ).

By Étale Cohomology, Theorem 40.5 we obtain a unique morphism of schemes fs : U →
V such that (gs, g]s) is 2-isomorphic to (fs,small, f ]s). The construction (U, V, s)  fs
just explained satisfies the following functoriality property: Suppose given morphisms
a : U ′ → U in Xétale and b : V ′ → V in Yétale and a map s′ : hU ′ → g−1hV ′ such that
the diagram

hU ′

a

��

s′
// g−1hV ′

g−1b

��
hU

s // g−1hV

commutes. Then the diagram
U ′

fs′
//

a

��

u(V ′)

u(b)
��

U
fs // u(V )

of schemes commutes. The reason this is true is that the same condition holds for the
morphisms (gs, g]s) constructed in Modules on Sites, Lemma 22.3 and the uniqueness in
Étale Cohomology, Theorem 40.5.

The problem is to glue the morphisms fs to a morphism of algebraic spaces. To do this
first choose a scheme V and a surjective étale morphism V → Y . This means that hV → ∗
is surjective and hence g−1hV → ∗ is surjective too. This means there exists a scheme U
and a surjective étale morphism U → X and a morphism s : hU → g−1hV . Next, set
R = V ×Y V andR′ = U ×X U . Then we get g−1hR = g−1hV ×g−1hV as g−1 is exact.
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Thus s induces a morphism s× s : hR′ → g−1hR. Applying the constructions above we
see that we get a commutative diagram of morphisms of schemes

R′

����

fs×s

// R

����
U

fs // V

Since we have X = U/R′ and Y = V/R (see Spaces, Lemma 9.1) we conclude that this
diagram defines a morphism of algebraic spaces f : X → Y fitting into an obvious com-
mutative diagram. Now we still have to show that (fsmall, f ]) is 2-isomorphic to (g, g]).
Let tV : f−1

s,small → g−1
s and tR : f−1

s×s,small → g−1
s×s be the 2-isomorphisms which are

given to us by the construction above. Let G be a sheaf on Yétale. Then we see that tV
defines an isomorphism

f−1
smallG|Uétale = f−1

s,smallG|Vétale
tV−→ g−1

s G|Vétale = g−1G|Uétale .

Moreover, this isomorphism pulled back to R′ via either projection R′ → U is the iso-
morphism

f−1
smallG|R′

étale
= f−1

s×s,smallG|Rétale
tR−→ g−1

s×sG|Rétale = g−1G|R′
étale

.

Since {U → X} is a covering in the siteXspaces,étale this means the first displayed isomor-
phism descends to an isomorphism t : f−1

smallG → g−1G of sheaves (small detail omitted).
The isomorphism is functorial in G since tV and tR are transformations of functors. Fi-
nally, t is compatible with f ] and g] as tV and tR are (some details omitted). This finishes
the proof of the theorem. �

Lemma 28.5. Let X , Y be algebraic spaces over Z. If

(g, g]) : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

is an isomorphism of ringed topoi, then there exists a unique morphism f : X → Y
of algebraic spaces such that (g, g]) is isomorphic to (fsmall, f ]) and moreover f is an
isomorphism of algebraic spaces.

Proof. By Theorem 28.4 it suffices to show that (g, g]) is a morphism of locally
ringed topoi. By Modules on Sites, Lemma 40.8 (and since the site Xétale has enough
points) it suffices to check that the map OY,q → OX,p induced by g] is a local ring map
where q = f ◦ p and p is any point of Xétale. As it is an isomorphism this is clear. �

29. Quasi-coherent sheaves on algebraic spaces

In Descent, Sections 8, 9, and 10 we have seen that for a scheme U , there is no difference
between a quasi-coherent OU -module on U , or a quasi-coherent O-module on the small
étale site of U . Hence the following definition is compatible with our original notion of
a quasi-coherent sheaf on a scheme (Schemes, Section 24), when applied to a representable
algebraic space.

Definition 29.1. Let S be a scheme. Let X be an algebraic space over S. A quasi-
coherent OX -module is a quasi-coherent module on the ringed site (Xétale,OX) in the
sense of Modules on Sites, Definition 23.1. The category of quasi-coherent sheaves on X
is denoted QCoh(OX).
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Note that as being quasi-coherent is an intrinsic notion (see Modules on Sites, Lemma 23.2)
this is equivalent to saying that the corresponding OX -module on Xspaces,étale is quasi-
coherent.

As usual, quasi-coherent sheaves behave well with respect to pullback.

Lemma 29.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The pullback functor f∗ : Mod(OY ) → Mod(OX) preserves quasi-coherent
sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 23.4. �

Note that this pullback functor agrees with the usual pullback functor between quasi-
coherent sheaves of modules if X and Y happen to be schemes, see Descent, Proposition
9.4. Here is the obligatory lemma comparing this with quasi-coherent sheaves on the
objects of the small étale site of X .

Lemma 29.3. Let S be a scheme. LetX be an algebraic space over S. A quasi-coherent
OX -module F is given by the following data:

(1) for every U ∈ Ob(Xétale) a quasi-coherentOU -module FU on Uétale,
(2) for every f : U ′ → U in Xétale an isomorphism cf : f∗

smallFU → FU ′ .
These data are subject to the condition that given any f : U ′ → U and g : U ′′ → U ′ in
Xétale the composition cg ◦ g∗

smallcf is equal to cf◦g .

Proof. Combine Lemmas 29.2 and 26.3. �

Lemma 29.4. Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherent OX -module. Let x ∈ |X| be a point and let x be a geometric point lying
over x. Finally, let ϕ : (U, u) → (X,x) be an étale neighbourhood where U is a scheme.
Then

(ϕ∗F)u ⊗OU,u
OX,x = Fx

where u ∈ U is the image of u.

Proof. Note thatOX,x = OshU,u by Lemma 22.1 hence the tensor product makes sense.
Moreover, from Definition 19.6 it is clear that

Fu = colim(ϕ∗F)u
where the colimit is over ϕ : (U, u)→ (X,x) as in the lemma. Hence there is a canonical
map from left to right in the statement of the lemma. We have a similar colimit description
forOX,x and by Lemma 29.3 we have

((ϕ′)∗F)u′ = (ϕ∗F)u ⊗OU,u
OU ′,u′

whenever (U ′, u′) → (U, u) is a morphism of étale neighbourhoods. To complete the
proof we use that ⊗ commutes with colimits. �

Lemma 29.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let G be a quasi-coherent OY -module. Let x be a geometric point of X and let
y = f ◦ x be the image in Y . Then there is a canonical isomorphism

(f∗G)x = Gy ⊗OY,y
OX,x

of the stalk of the pullback with the tensor product of the stalk with the local ring of X
at x.
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Proof. Since f∗G = f−1
smallG ⊗f−1

small
OY
OX this follows from the description of

stalks of pullbacks in Lemma 19.9 and the fact that taking stalks commutes with tensor
products. A more direct way to see this is as follows. Choose a commutative diagram

U

p

��

α
// V

q

��
X

a // Y

whereU and V are schemes, and p and q are surjective étale. By Lemma 19.4 we can choose
a geometric point u of U such that x = p ◦ u. Set v = α ◦ u. Then we see that

(f∗G)x = (p∗f∗G)u ⊗OU,u
OX,x

= (α∗q∗G)u ⊗OU,u
OX,x

= (q∗G)v ⊗OV,v
OU,u ⊗OU,u

OX,x
= (q∗G)v ⊗OV,v

OX,x
= (q∗G)v ⊗OV,v

OY,y ⊗OY,y
OX,x

= Gy ⊗OY,y
OX,x

Here we have used Lemma 29.4 (twice) and the corresponding result for pullbacks of quasi-
coherent sheaves on schemes, see Sheaves, Lemma 26.4. �

Lemma 29.6. Let S be a scheme. LetX be an algebraic space over S. Let F be a sheaf
ofOX -modules. The following are equivalent

(1) F is a quasi-coherentOX -module,
(2) there exists an étale morphism f : Y → X of algebraic spaces over S with
|f | : |Y | → |X| surjective such that f∗F is quasi-coherent on Y ,

(3) there exists a scheme U and a surjective étale morphism ϕ : U → X such that
ϕ∗F is a quasi-coherentOU -module, and

(4) for every affine scheme U and étale morphism ϕ : U → X the restriction ϕ∗F
is a quasi-coherentOU -module.

Proof. It is clear that (1) implies (2) by considering idX . Assume f : Y → X is as
in (2), and let V → Y be a surjective étale morphism from a scheme towards Y . Then the
composition V → X is surjective étale as well and by Lemma 29.2 the pullback of F to V
is quasi-coherent as well. Hence we see that (2) implies (3).
LetU → X be as in (3). Let us use the abuse of notation introduced in Equation (26.1.1). As
F|Uétale is quasi-coherent there exists an étale covering {Ui → U} such thatF|Ui,étale has
a global presentation, see Modules on Sites, Definition 17.1 and Lemma 23.3. LetV → X be
an object ofXétale. Since U → X is surjective and étale, the family of maps {Ui×X V →
V } is an étale covering of V . Via the morphisms Ui ×X V → Ui we can restrict the
global presentations ofF|Ui,étale to get a global presentation ofF|(Ui×XV )étale Hence the
sheaf F onXétale satisfies the condition of Modules on Sites, Definition 23.1 and hence is
quasi-coherent.
The equivalence of (3) and (4) comes from the fact that any scheme has an affine open
covering. �

Lemma 29.7. Let S be a scheme. Let X be an algebraic space over S. The category
QCoh(OX) of quasi-coherent sheaves on X has the following properties:

(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.
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(2) Any colimit of quasi-coherent sheaves is quasi-coherent.
(3) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-coherent.
(4) Given a short exact sequence of OX -modules 0→ F1 → F2 → F3 → 0 if two

out of three are quasi-coherent so is the third.
(5) Given two quasi-coherentOX -modules the tensor product is quasi-coherent.
(6) Given two quasi-coherentOX -modulesF , G such thatF is of finite presentation

(see Section 30), then the internal homHomOX
(F ,G) is quasi-coherent.

Proof. IfX is a scheme, then this is Descent, Lemma 10.3. We will reduce the lemma
to this case by étale localization.

Choose a scheme U and a surjective étale morphism ϕ : U → X . Our notation will
be that Mod(OU ) = Mod(Uétale,OU ) and QCoh(OU ) = QCoh(Uétale,OU ); in other
words, even though U is a scheme we think of quasi-coherent modules on U as modules
on the small étale site of U . By Lemma 29.2 we have a commutative diagram

QCoh(OX)
ϕ∗
//

��

QCoh(OU )

��
Mod(OX) ϕ∗

// Mod(OU )

The bottom horizontal arrow is the restriction functor (26.1.1) G 7→ G|Uétale . This func-
tor has both a left adjoint and a right adjoint, see Modules on Sites, Section 19, hence
commutes with all limits and colimits. Moreover, we know that an object of Mod(OX) is
in QCoh(OX) if and only if its restriction to U is in QCoh(OU ), see Lemma 29.6. With
these preliminaries out of the way we can start the proof.

Proof of (1). Let Fi, i ∈ I be a family of quasi-coherent OX -modules. By the discussion
above we have (⊕

Fi
)
|Uétale =

⊕
Fi|Uétale

Each of the modules Fi|Uétale is quasi-coherent. Hence the direct sum is quasi-coherent
by the case of schemes. Hence

⊕
Fi is quasi-coherent as a module restricting to a quasi-

coherent module on U .

Proof of (2). Let I → QCoh(OX), i 7→ Fi be a diagram. Then

(colimFi)|Uétale = colimFi|Uétale
by the discussion above and we conclude in the same manner.

Proof of (3). Let a : F → F ′ be an arrow of QCoh(OX). Then we have Ker(a)|Uétale =
Ker(a|Uétale) and Coker(a)|Uétale = Coker(a|Uétale) and we conclude in the same man-
ner.

Proof of (4). The restriction 0→ F1|Uétale → F2|Uétale → F3|Uétale → 0 is short exact.
Hence we have the 2-out-of-3 property for this sequence and we conclude as before.

Proof of (5). Let F and G be in QCoh(OX). Then we have

(F ⊗OX
G)Uétale = F|Uétale ⊗OU

G|Uétale
and we conclude as before.

Proof of (6). Let F and G be in QCoh(OX) with F of finite presentation. We have

HomOX
(F ,G)|Uétale = HomOU

(F|Uétale ,G|Uétale)
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Namely, restriction is a localization, see Section 27, especially formula (27.0.4)) and for-
mation of internal hom commutes with localization, see Modules on Sites, Lemma 27.2.
Thus we conclude as before. �

It is in general not the case that the pushforward of a quasi-coherent sheaf along a mor-
phism of algebraic spaces is quasi-coherent. We will return to this issue in Morphisms of
Spaces, Section 11.

30. Properties of modules

In Modules on Sites, Sections 17, 23, and Definition 28.1 we have defined a number of
intrinsic properties of modules of O-module on any ringed topos. If X is an algebraic
space, we will apply these notions freely to modules on the ringed site (Xétale,OX), or
equivalently on the ringed site (Xspaces,étale,OX).

Global properties P :
(a) free,
(b) finite free,
(c) generated by global sections,
(d) generated by finitely many global sections,
(e) having a global presentation, and
(f) having a global finite presentation.

Local properties P :
(g) locally free,
(f) finite locally free,
(h) locally generated by sections,
(i) locally generated by r sections,
(j) finite type,

(k) quasi-coherent (see Section 29),
(l) of finite presentation,

(m) coherent, and
(n) flat.

Here are some results which follow immediately from the definitions:
(1) In each case, except forP =“coherent”, the property is preserved under pullback,

see Modules on Sites, Lemmas 17.2, 23.4, and 39.1.
(2) Each of the properties above (including coherent) are preserved under pullbacks

by étale morphisms of algebraic spaces (because in this case pullback is given by
restriction, see Lemma 18.11).

(3) Assume f : Y → X is a surjective étale morphism of algebraic spaces. For each
of the local properties (g) – (m), the fact that f∗F has P implies that F has P .
This follows as {Y → X} is a covering in Xspaces,étale and Modules on Sites,
Lemma 23.3.

(4) If X is a scheme, F is a quasi-coherent module on Xétale, and P any property
except “coherent” or “locally free”, then P for F on Xétale is equivalent to the
corresponding property for F|XZar , i.e., it corresponds to P for F when we
think of it as a quasi-coherent sheaf on the scheme X . See Descent, Lemma 8.10.

(5) IfX is a locally Noetherian scheme,F is a quasi-coherent module onXétale, then
F is coherent on Xétale if and only if F|XZar is coherent, i.e., it corresponds
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to the usual notion of a coherent sheaf on the scheme X being coherent. See
Descent, Lemma 8.10.

31. Locally projective modules

Recall that in Properties, Section 21 we defined the notion of a locally projective quasi-
coherent module.

Lemma 31.1. Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherentOX -module. The following are equivalent

(1) for some scheme U and surjective étale morphism U → X the restrictionF|U is
locally projective on U , and

(2) for any scheme U and any étale morphism U → X the restrictionF|U is locally
projective on U .

Proof. Let U → X be as in (1) and let V → X be étale where V is a scheme. Then
{U ×X V → V } is an fppf covering of schemes. Hence if F|U is locally projective,
then F|U×XV is locally projective (see Properties, Lemma 21.3) and hence F|V is locally
projective, see Descent, Lemma 7.7. �

Definition 31.2. Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherentOX -module. We say F is locally projective if the equivalent conditions of
Lemma 31.1 are satisfied.

Lemma 31.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let G be a quasi-coherentOY -module. If G is locally projective on Y , then f∗G is
locally projective on X .

Proof. Choose a surjective étale morphism V → Y with V a scheme. Choose a
surjective étale morphism U → V ×Y X with U a scheme. Denote ψ : U → V the
induced morphism. Then

f∗G|U = ψ∗(G|V )
Hence the lemma follows from the definition and the result in the case of schemes, see
Properties, Lemma 21.3. �

32. Quasi-coherent sheaves and presentations

Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a presentation
of X coming from any surjective étale morphism ϕ : U → X , see Spaces, Definition 9.3.
In particular, we obtain a groupoid (U,R, s, t, c), such that j = (t, s) : R→ U ×S U , see
Groupoids, Lemma 13.3. In Groupoids, Definition 14.1 we have the defined the notion of
a quasi-coherent sheaf on an arbitrary groupoid. With these notions in place we have the
following observation.

Proposition 32.1. With S , ϕ : U → X , and (U,R, s, t, c) as above. For any quasi-
coherentOX -module F the sheaf ϕ∗F comes equipped with a canonical isomorphism

α : t∗ϕ∗F −→ s∗ϕ∗F
which satisfies the conditions of Groupoids, Definition 14.1 and therefore defines a quasi-
coherent sheaf on (U,R, s, t, c). The functor F 7→ (ϕ∗F , α) defines an equivalence of
categories

Quasi-coherent
OX -modules ←→

Quasi-coherent modules
on (U,R, s, t, c)
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Proof. In the statement of the proposition, and in this proof we think of a quasi-
coherent sheaf on a scheme as a quasi-coherent sheaf on the small étale site of that scheme.
This is permissible by the results of Descent, Sections 8, 9, and 10.
The existence of α comes from the fact that ϕ ◦ t = ϕ ◦ s and that pullback is functorial
in the morphism, see discussion surrounding Equation (26.0.1). In exactly the same way,
i.e., by functoriality of pullback, we see that the isomorphism α satisfies condition (1) of
Groupoids, Definition 14.1. To see condition (2) of the definition it suffices to see that α is
an isomorphism which is clear. The construction F 7→ (ϕ∗F , α) is clearly functorial in
the quasi-coherent sheafF . Hence we obtain the functor from left to right in the displayed
formula of the lemma.
Conversely, suppose that (F , α) is a quasi-coherent sheaf on (U,R, s, t, c). Let V → X
be an object of Xétale. In this case the morphism V ′ = U ×X V → V is a surjective étale
morphism of schemes, and hence {V ′ → V } is an étale covering of V . Moreover, the
quasi-coherent sheafF pulls back to a quasi-coherent sheafF ′ on V ′. SinceR = U ×X U
with t = pr0 and s = pr0 we see that V ′ ×V V ′ = R ×X V with projection maps
V ′ ×V V ′ → V ′ equal to the pullbacks of t and s. Hence α pulls back to an isomorphism
α′ : pr∗

0F
′ → pr∗

1F
′, and the pair (F ′, α′) is a descend datum for quasi-coherent sheaves

with respect to {V ′ → V }. By Descent, Proposition 5.2 this descent datum is effective,
and we obtain a quasi-coherent OV -module FV on Vétale. To see that this gives a quasi-
coherent sheaf on Xétale we have to show (by Lemma 29.3) that for any morphism f :
V1 → V2 in Xétale there is a canonical isomorphism cf : FV1 → FV2 compatible with
compositions of morphisms. We omit the verification. We also omit the verification that
this defines a functor from the category on the right to the category on the left which is
inverse to the functor described above. �

Proposition 32.2. Let S be a scheme. Let X be an algebraic space over S.
(1) The category QCoh(OX) is a Grothendieck abelian category. Consequently,

QCoh(OX) has enough injectives and all limits.
(2) The inclusion functor QCoh(OX)→Mod(OX) has a right adjoint8

Q : Mod(OX) −→ QCoh(OX)
such that for every quasi-coherent sheaf F the adjunction mapping Q(F)→ F
is an isomorphism.

Proof. This proof is a repeat of the proof in the case of schemes, see Properties,
Proposition 23.4. We advise the reader to read that proof first.
Part (1) means QCoh(OX) (a) has all colimits, (b) filtered colimits are exact, and (c) has
a generator, see Injectives, Section 10. By Lemma 29.7 colimits in QCoh(OX) exist and
agree with colimits in Mod(OX). By Modules on Sites, Lemma 14.2 filtered colimits are
exact. Hence (a) and (b) hold.
To construct a generator, choose a presentationX = U/R so that (U,R, s, t, c) is an étale
groupoid scheme and in particular s and t are flat morphisms of schemes. Pick a cardinal κ
as in Groupoids, Lemma 15.7. Pick a collection (Et, αt)t∈T of κ-generated quasi-coherent
modules on (U,R, s, t, c) as in Groupoids, Lemma 15.6. LetFt be the quasi-coherent mod-
ule on X which corresponds to the quasi-coherent module (Et, αt) via the equivalence of
categories of Proposition 32.1. Then we see that every quasi-coherent module H is the
directed colimit of its quasi-coherent submodules which are isomorphic to one of the Ft.

8This functor is sometimes called the coherator.
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Thus
⊕

t Ft is a generator of QCoh(OX) and we conclude that (c) holds. The assertions
on limits and injectives hold in any Grothendieck abelian category, see Injectives, Theorem
11.7 and Lemma 13.2.

Proof of (2). To construct Q we use the following general procedure. Given an object F
of Mod(OX) we consider the functor

QCoh(OX)opp −→ Sets, G 7−→ HomX(G,F)
This functor transforms colimits into limits, hence is representable, see Injectives, Lemma
13.1. Thus there exists a quasi-coherent sheafQ(F) and a functorial isomorphism HomX(G,F) =
HomX(G, Q(F)) for G in QCoh(OX). By the Yoneda lemma (Categories, Lemma 3.5)
the constructionF  Q(F) is functorial inF . By constructionQ is a right adjoint to the
inclusion functor. The fact that Q(F)→ F is an isomorphism when F is quasi-coherent
is a formal consequence of the fact that the inclusion functor QCoh(OX) → Mod(OX)
is fully faithful. �

33. Morphisms towards schemes

Here is the analogue of Schemes, Lemma 6.4.

Lemma 33.1. LetX be an algebraic space over Z. Let T be an affine scheme. The map

Mor(X,T ) −→ Hom(Γ(T,OT ),Γ(X,OX))
which maps f to f ] (on global sections) is bijective.

Proof. We construct the inverse of the map. Let ϕ : Γ(T,OT ) → Γ(X,OX) be
a ring map. Choose a presentation X = U/R, see Spaces, Definition 9.3. By Schemes,
Lemma 6.4 the composition

Γ(T,OT )→ Γ(X,OX)→ Γ(U,OU )
corresponds to a unique morphism of schemes g : U → T . By the same lemma the two
compositions R → U → T are equal. Hence we obtain a morphism f : X = U/R → T
such that U → X → T equals g. By construction the diagram

Γ(U,OU ) Γ(X,OX)oo

Γ(T,OT )
g]

ff
ϕ f]

OO

commutes. Hence f ] equals ϕ because U → X is an étale covering and OX is a sheaf on
Xétale. The uniqueness of f follows from the uniqueness of g. �

34. Quotients by free actions

Let S be a scheme. Let X be an algebraic space over S. Let G be an abstract group. Let
a : G → Aut(X) be a homomorphism, i.e., a is an action of G on X . We will say the
action is free if for every scheme T over S the map

G×X(T ) −→ X(T )
is free. (We cannot use a criterion as in Spaces, Lemma 14.3 because points may not have
well defined residue fields.) In case the action is free we’re going to construct the quotient
X/G as an algebraic space. This is a special case of the general Bootstrap, Lemma 11.7 that
we will prove later.
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Lemma 34.1. Let S be a scheme. Let X be an algebraic space over S. Let G be an
abstract group with a free action on X . Then the quotient sheaf X/G is an algebraic
space.

Proof. The statement means that the sheaf F associated to the presheaf
T 7−→ X(T )/G

is an algebraic space. To see this we will construct a presentation. Namely, choose a scheme
U and a surjective étale morphism ϕ : U → X . Set V =

∐
g∈G U and set ψ : V → X

equal to a(g)◦ϕ on the component corresponding to g ∈ G. LetG act on V by permuting
the components, i.e., g0 ∈ G maps the component corresponding to g to the component
corresponding to g0g via the identity morphism of U . Then ψ is a G-equivariant mor-
phism, i.e., we reduce to the case dealt with in the next paragraph.
Assume that there exists a G-action on U and that U → X is surjective, étale and G-
equivariant. In this case there is an induced action ofG onR = U ×X U compatible with
the projection mappings t, s : R→ U . Now we claim that

X/G = U/
∐

g∈G
R

where the map
j :
∐

g∈G
R −→ U ×S U

is given by (r, g) 7→ (t(r), g(s(r))). Note that j is a monomorphism: If (t(r), g(s(r))) =
(t(r′), g′(s(r′))), then t(r) = t(r′), hence r and r′ have the same image in X under both
s and t, hence g = g′ (as G acts freely on X), hence s(r) = s(r′), hence r = r′ (as R is an
equivalence relation on U ). Moreover j is an equivalence relation (details omitted). Both
projections

∐
g∈GR → U are étale, as s and t are étale. Thus j is an étale equivalence

relation and U/
∐
g∈GR is an algebraic space by Spaces, Theorem 10.5. There is a map

U/
∐

g∈G
R −→ X/G

induced by the map U → X . We omit the proof that it is an isomorphism of sheaves. �
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CHAPTER 67

Morphisms of Algebraic Spaces

1. Introduction

In this chapter we introduce some types of morphisms of algebraic spaces. A reference is
[?].
The goal is to extend the definition of each of the types of morphisms of schemes defined
in the chapters on schemes, and on morphisms of schemes to the category of algebraic
spaces. Each case is slightly different and it seems best to treat them all separately.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.
Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Properties of representable morphisms

Let S be a scheme. Let f : X → Y be a representable morphism of algebraic spaces. In
Spaces, Section 5 we defined what it means for f to have propertyP in caseP is a property
of morphisms of schemes which

(1) is preserved under any base change, see Schemes, Definition 18.3, and
(2) is fppf local on the base, see Descent, Definition 22.1.

Namely, in this case we say f has property P if and only if for every scheme U and any
morphism U → Y the morphism of schemes X ×Y U → U has property P .
According to the lists in Spaces, Section 4 this applies to the following properties: (1)(a)
closed immersions, (1)(b) open immersions, (1)(c) quasi-compact immersions, (2) quasi-
compact, (3) universally-closed, (4) (quasi-)separated, (5) monomorphism, (6) surjective,
(7) universally injective, (8) affine, (9) quasi-affine, (10) (locally) of finite type, (11) (lo-
cally) quasi-finite, (12) (locally) of finite presentation, (13) locally of finite type of relative
dimension d, (14) universally open, (15) flat, (16) syntomic, (17) smooth, (18) unramified
(resp. G-unramified), (19) étale, (20) proper, (21) finite or integral, (22) finite locally free,
(23) universally submersive, (24) universal homeomorphism, and (25) immersion.
In this chapter we will redefine these notions for not necessarily representable morphisms
of algebraic spaces. Whenever we do this we will make sure that the new definition agrees
with the old one, in order to avoid ambiguity.
Note that the definition above applies whenever X is a scheme, since a morphism from a
scheme to an algebraic space is representable. And in particular it applies when both X

5207



5208 67. MORPHISMS OF ALGEBRAIC SPACES

and Y are schemes. In Spaces, Lemma 5.3 we have seen that in this case the definitions
match, and no ambiguity arise.

Furthermore, in Spaces, Lemma 5.5 we have seen that the property of representable mor-
phisms of algebraic spaces so defined is stable under arbitrary base change by a morphism
of algebraic spaces. And finally, in Spaces, Lemmas 5.4 and 5.7 we have seen that if P is
stable under compositions, which holds for the properties (1)(a), (1)(b), (1)(c), (2) – (25),
except (13) above, then taking products of representable morphisms preserves property P
and compositions of representable morphisms preserves property P .

We will use these facts below, and whenever we do we will simply refer to this section as
a reference.

4. Separation axioms

It makes sense to list some a priori properties of the diagonal of a morphism of algebraic
spaces.

Lemma 4.1. Let S be a scheme contained in Schfppf . Let f : X → Y be a morphism
of algebraic spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal morphism. Then

(1) ∆X/Y is representable,
(2) ∆X/Y is locally of finite type,
(3) ∆X/Y is a monomorphism,
(4) ∆X/Y is separated, and
(5) ∆X/Y is locally quasi-finite.

Proof. We are going to use the fact that ∆X/S is representable (by definition of an
algebraic space) and that it satisfies properties (2) – (5), see Spaces, Lemma 13.1. Note that
we have a factorization

X −→ X ×Y X −→ X ×S X

of the diagonal ∆X/S : X → X×SX . SinceX×YX → X×SX is a monomorphism, and
since ∆X/S is representable, it follows formally that ∆X/Y is representable. In particular,
the rest of the statements now make sense, see Section 3.

Choose a surjective étale morphism U → X , with U a scheme. Consider the diagram

R = U ×X U //

��

U ×Y U

��

// U ×S U

��
X // X ×Y X // X ×S X

Both squares are cartesian, hence so is the outer rectangle. The top row consists of schemes,
and the vertical arrows are surjective étale morphisms. By Spaces, Lemma 11.4 the prop-
erties (2) – (5) for ∆X/Y are equivalent to those of R→ U ×Y U . In the proof of Spaces,
Lemma 13.1 we have seen that R → U ×S U has properties (2) – (5). The morphism
U×Y U → U×S U is a monomorphism of schemes. These facts imply thatR→ U×Y U
have properties (2) – (5).

Namely: For (3), note that R → U ×Y U is a monomorphism as the composition R →
U×SU is a monomorphism. For (2), note thatR→ U×Y U is locally of finite type, as the
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compositionR→ U×SU is locally of finite type (Morphisms, Lemma 15.8). A monomor-
phism which is locally of finite type is locally quasi-finite because it has finite fibres (Mor-
phisms, Lemma 20.7), hence (5). A monomorphism is separated (Schemes, Lemma 23.3),
hence (4). �

Definition 4.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal morphism.

(1) We say f is separated if ∆X/Y is a closed immersion.
(2) We say f is locally separated1 if ∆X/Y is an immersion.
(3) We say f is quasi-separated if ∆X/Y is quasi-compact.

This definition makes sense since ∆X/Y is representable, and hence we know what it means
for it to have one of the properties described in the definition. We will see below (Lemma
4.13) that this definition matches the ones we already have for morphisms of schemes and
representable morphisms.

Lemma 4.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is separated, then f is locally separated and f is quasi-separated.

Proof. This is true, via the general principle Spaces, Lemma 5.8, because a closed
immersion of schemes is an immersion and is quasi-compact. �

Lemma 4.4. All of the separation axioms listed in Definition 4.2 are stable under base
change.

Proof. Let f : X → Y andY ′ → Y be morphisms of algebraic spaces. Let f ′ : X ′ →
Y ′ be the base change of f by Y ′ → Y . Then ∆X′/Y ′ is the base change of ∆X/Y by the
morphismX ′×Y ′ X ′ → X×Y X . By the results of Section 3 each of the properties of the
diagonal used in Definition 4.2 is stable under base change. Hence the lemma is true. �

Lemma 4.5. LetS be a scheme. Let f : X → Z , g : Y → Z andZ → T be morphisms
of algebraic spaces over S. Consider the induced morphism i : X×Z Y → X×T Y . Then

(1) i is representable, locally of finite type, locally quasi-finite, separated and a monomor-
phism,

(2) if Z → T is locally separated, then i is an immersion,
(3) if Z → T is separated, then i is a closed immersion, and
(4) if Z → T is quasi-separated, then i is quasi-compact.

Proof. By general category theory the following diagram

X ×Z Y
i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z
is a fibre product diagram. Hence i is the base change of the diagonal morphism ∆Z/T .
Thus the lemma follows from Lemma 4.1, and the material in Section 3. �

Lemma 4.6. Let S be a scheme. Let T be an algebraic space over S. Let g : X → Y be
a morphism of algebraic spaces over T . Consider the graph i : X → X ×T Y of g. Then

(1) i is representable, locally of finite type, locally quasi-finite, separated and a monomor-
phism,

1In the literature this term often refers to quasi-separated and locally separated morphisms.
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(2) if Y → T is locally separated, then i is an immersion,
(3) if Y → T is separated, then i is a closed immersion, and
(4) if Y → T is quasi-separated, then i is quasi-compact.

Proof. This is a special case of Lemma 4.5 applied to the morphismX = X×Y Y →
X ×T Y . �

Lemma 4.7. Let S be a scheme. Let f : X → T be a morphism of algebraic spaces
over S. Let s : T → X be a section of f (in a formula f ◦ s = idT ). Then

(1) s is representable, locally of finite type, locally quasi-finite, separated and a monomor-
phism,

(2) if f is locally separated, then s is an immersion,
(3) if f is separated, then s is a closed immersion, and
(4) if f is quasi-separated, then s is quasi-compact.

Proof. This is a special case of Lemma 4.6 applied to g = s so the morphism i = s :
T → T ×T X . �

Lemma 4.8. All of the separation axioms listed in Definition 4.2 are stable under
composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of algebraic spaces to which
the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X.

Our separation axiom is defined by requiring the diagonal to have some property P . By
Lemma 4.5 above we see that the second arrow also has this property. Hence the lemma
follows since the composition of (representable) morphisms with propertyP also is a mor-
phism with property P , see Section 3. �

Lemma 4.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S.

(1) If Y is separated and f is separated, then X is separated.
(2) If Y is quasi-separated and f is quasi-separated, then X is quasi-separated.
(3) If Y is locally separated and f is locally separated, then X is locally separated.
(4) If Y is separated over S and f is separated, then X is separated over S.
(5) If Y is quasi-separated over S and f is quasi-separated, thenX is quasi-separated

over S.
(6) If Y is locally separated over S and f is locally separated, then X is locally sep-

arated over S.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 4.8 and Spaces, Defi-
nition 13.2. Parts (1), (2), and (3) reduce to parts (4), (5), and (6) by thinking of X and Y
as algebraic spaces over Spec(Z), see Properties of Spaces, Definition 3.1. �

Lemma 4.10. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
algebraic spaces over S.

(1) If g ◦ f is separated then so is f .
(2) If g ◦ f is locally separated then so is f .
(3) If g ◦ f is quasi-separated then so is f .
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Proof. Consider the factorization

X → X ×Y X → X ×Z X
of the diagonal morphism of g ◦ f . In any case the last morphism is a monomorphism.
Hence for any scheme T and morphism T → X ×Y X we have the equality

X ×(X×YX) T = X ×(X×ZX) T.

Hence the result is clear. �

Lemma 4.11. Let S be a scheme. Let X be an algebraic space over S.
(1) If X is separated then X is separated over S.
(2) If X is locally separated then X is locally separated over S.
(3) If X is quasi-separated then X is quasi-separated over S.

Let f : X → Y be a morphism of algebraic spaces over S.
(4) If X is separated over S then f is separated.
(5) If X is locally separated over S then f is locally separated.
(6) If X is quasi-separated over S then f is quasi-separated.

Proof. Parts (4), (5), and (6) follow immediately from Lemma 4.10 and Spaces, Def-
inition 13.2. Parts (1), (2), and (3) follow from parts (4), (5), and (6) by thinking of X and
Y as algebraic spaces over Spec(Z), see Properties of Spaces, Definition 3.1. �

Lemma 4.12. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let P be any of the separation axioms of Definition 4.2. The following are equiv-
alent

(1) f is P ,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z of f

is P ,
(3) for every affine scheme Z and every morphism Z → Y the base change Z ×Y

X → Z of f is P ,
(4) for every affine schemeZ and every morphismZ → Y the algebraic spaceZ×Y

X is P (see Properties of Spaces, Definition 3.1),
(5) there exists a scheme V and a surjective étale morphism V → Y such that the

base change V ×Y X → V has P , and
(6) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi has P .

Proof. We will repeatedly use Lemma 4.4 without further mention. In particular, it
is clear that (1) implies (2) and (2) implies (3).

Let us prove that (3) and (4) are equivalent. Note that if Z is an affine scheme, then the
morphism Z → Spec(Z) is a separated morphism as a morphism of algebraic spaces over
Spec(Z). If Z ×Y X → Z is P , then Z ×Y X → Spec(Z) is P as a composition (see
Lemma 4.8). Hence the algebraic space Z ×Y X is P . Conversely, if the algebraic space
Z ×Y X is P , then Z ×Y X → Spec(Z) is P , and hence by Lemma 4.10 we see that
Z ×Y X → Z is P .

Let us prove that (3) implies (5). Assume (3). Let V be a scheme and let V → Y be étale
surjective. We have to show that V ×Y X → V has property P . In other words, we have
to show that the morphism

V ×Y X −→ (V ×Y X)×V (V ×Y X) = V ×Y X ×Y X
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has the corresponding property (i.e., is a closed immersion, immersion, or quasi-compact).
Let V =

⋃
Vj be an affine open covering of V . By assumption we know that each of the

morphisms
Vj ×Y X −→ Vj ×Y X ×Y X

does have the corresponding property. Since being a closed immersion, immersion, quasi-
compact immersion, or quasi-compact is Zariski local on the target, and since the Vj cover
V we get the desired conclusion.

Let us prove that (5) implies (1). Let V → Y be as in (5). Then we have the fibre product
diagram

V ×Y X //

��

X

��
V ×Y X ×Y X // X ×Y X

By assumption the left vertical arrow is a closed immersion, immersion, quasi-compact
immersion, or quasi-compact. It follows from Spaces, Lemma 5.6 that also the right vertical
arrow is a closed immersion, immersion, quasi-compact immersion, or quasi-compact.

It is clear that (1) implies (6) by taking the covering Y = Y . Assume Y =
⋃
Yi is as in

(6). Choose schemes Vi and surjective étale morphisms Vi → Yi. Note that the morphisms
Vi ×Y X → Vi have P as they are base changes of the morphisms f−1(Yi) → Yi. Set
V =

∐
Vi. Then V → Y is a morphism as in (5) (details omitted). Hence (6) implies (5)

and we are done. �

Lemma 4.13. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S.

(1) The morphism f is locally separated.
(2) The morphism f is (quasi-)separated in the sense of Definition 4.2 above if and

only if f is (quasi-)separated in the sense of Section 3.
In particular, if f : X → Y is a morphism of schemes over S , then f is (quasi-)separated in
the sense of Definition 4.2 if and only if f is (quasi-)separated as a morphism of schemes.

Proof. This is the equivalence of (1) and (2) of Lemma 4.12 combined with the fact
that any morphism of schemes is locally separated, see Schemes, Lemma 21.2. �

5. Surjective morphisms

We have already defined in Section 3 what it means for a representable morphism of alge-
braic spaces to be surjective.

Lemma 5.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Then f is surjective (in the sense of Section 3) if and only if
|f | : |X| → |Y | is surjective.

Proof. Namely, if f : X → Y is representable, then it is surjective if and only if for
every scheme T and every morphism T → Y the base change fT : T ×Y X → T of f
is a surjective morphism of schemes, in other words, if and only if |fT | is surjective. By
Properties of Spaces, Lemma 4.3 the map |T ×Y X| → |T | ×|Y | |X| is always surjective.
Hence |fT | : |T ×Y X| → |T | is surjective if |f | : |X| → |Y | is surjective. Conversely, if
|fT | is surjective for every T → Y as above, then by taking T to be the spectrum of a field
we conclude that |X| → |Y | is surjective. �
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This clears the way for the following definition.

Definition 5.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is surjective if the map |f | : |X| → |Y | of associated topological
spaces is surjective.

Lemma 5.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is surjective,
(2) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

surjective,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is surjective,
(4) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is a surjective morphism,
(5) there exists a scheme U and a surjective étale morphism ϕ : U → X such that

the composition f ◦ ϕ is surjective,
(6) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are surjective étale such that the
top horizontal arrow is surjective, and

(7) there exists a Zariski coveringY =
⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is surjective.

Proof. Omitted. �

Lemma 5.4. The composition of surjective morphisms is surjective.

Proof. This is immediate from the definition. �

Lemma 5.5. The base change of a surjective morphism is surjective.

Proof. Follows immediately from Properties of Spaces, Lemma 4.3. �

6. Open morphisms

For a representable morphism of algebraic spaces we have already defined (in Section 3)
what it means to be universally open. Hence before we give the natural definition we
check that it agrees with this in the representable case.

Lemma 6.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally open (in the sense of Section 3), and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is open.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
étale morphism V → Y . By assumption the morphism of schemes V ×Y X → V is
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universally open. By Properties of Spaces, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|
is surjective. Hence as the left vertical arrow is open it follows that the right vertical arrow
is open. This proves (2). The implication (2)⇒ (1) is immediate from the definitions. �

Thus we may use the following natural definition.

Definition 6.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is open if the map of topological spaces |f | : |X| → |Y | is open.
(2) We say f is universally open if for every morphism of algebraic spaces Z → Y

the morphism of topological spaces

|Z ×Y X| → |Z|
is open, i.e., the base change Z ×Y X → Z is open.

Note that an étale morphism of algebraic spaces is universally open, see Properties of
Spaces, Definition 16.2 and Lemmas 16.7 and 16.5.

Lemma 6.3. The base change of a universally open morphism of algebraic spaces by
any morphism of algebraic spaces is universally open.

Proof. This is immediate from the definition. �

Lemma 6.4. The composition of a pair of (universally) open morphisms of algebraic
spaces is (universally) open.

Proof. Omitted. �

Lemma 6.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f is universally open,
(2) for every schemeZ and every morphismZ → Y the projection |Z×Y X| → |Z|

is open,
(3) for every affine scheme Z and every morphism Z → Y the projection |Z ×Y

X| → |Z| is open, and
(4) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is a universally open morphism of algebraic spaces, and
(5) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is universally open.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism V → Y . We are going to show that
V ×Y X → V is a universally open morphism of algebraic spaces. Let Z → V be a
morphism from an algebraic space to V . Let W → Z be a surjective étale morphism



7. SUBMERSIVE MORPHISMS 5215

where W =
∐
Wi is a disjoint union of affine schemes, see Properties of Spaces, Lemma

6.1. Then we have the following commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X)|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is open. The middle horizontal arrows are surjective
and open (Properties of Spaces, Lemma 16.7). By assumption (3), and the fact that Wi is
affine we see that the left vertical arrows are open. Hence it follows that the right vertical
arrow is open.

Assume V → Y is as in (4). We will show that f is universally open. Let Z → Y be a
morphism of algebraic spaces. Consider the diagram

|(V ×Y Z)×V (V ×Y X)|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is open by assumption. The horizontal arrows are surjective and
open because the corresponding morphisms of algebraic spaces are étale (see Properties of
Spaces, Lemma 16.7). It follows that the right vertical arrow is open.

Of course (1) implies (5) by taking the covering Y = Y . Assume Y =
⋃
Yi is as in

(5). Then for any Z → Y we get a corresponding Zariski covering Z =
⋃
Zi such that

the base change of f to Zi is open. By a simple topological argument this implies that
Z ×Y X → Z is open. Hence (1) holds. �

Lemma 6.6. Let S be a scheme. Let p : X → Spec(k) be a morphism of algebraic
spaces over S where k is a field. Then p : X → Spec(k) is universally open.

Proof. Choose a scheme U and a surjective étale morphism U → X . The composi-
tion U → Spec(k) is universally open (as a morphism of schemes) by Morphisms, Lemma
23.4. Let Z → Spec(k) be a morphism of schemes. Then U ×Spec(k) Z → X ×Spec(k) Z
is surjective, see Lemma 5.5. Hence the first of the maps

|U ×Spec(k) Z| → |X ×Spec(k) Z| → |Z|
is surjective. Since the composition is open by the above we conclude that the second map
is open as well. Whence p is universally open by Lemma 6.5. �

7. Submersive morphisms

For a representable morphism of algebraic spaces we have already defined (in Section 3)
what it means to be universally submersive. Hence before we give the natural definition
we check that it agrees with this in the representable case.

Lemma 7.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally submersive (in the sense of Section 3), and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is submersive.
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Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
étale morphism V → Y . By assumption the morphism of schemes V ×Y X → V is
universally submersive. By Properties of Spaces, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is submersive it follows that the right vertical
arrow is submersive. This proves (2). The implication (2) ⇒ (1) is immediate from the
definitions. �

Thus we may use the following natural definition.

Definition 7.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is submersive2 if the continuous map |X| → |Y | is submersive, see
Topology, Definition 6.3.

(2) We say f is universally submersive if for every morphism of algebraic spaces
Y ′ → Y the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

Lemma 7.3. The base change of a universally submersive morphism of algebraic
spaces by any morphism of algebraic spaces is universally submersive.

Proof. This is immediate from the definition. �

Lemma 7.4. The composition of a pair of (universally) submersive morphisms of
algebraic spaces is (universally) submersive.

Proof. Omitted. �

8. Quasi-compact morphisms

By Section 3 we know what it means for a representable morphism of algebraic spaces to
be quasi-compact. In order to formulate the definition for a general morphism of algebraic
spaces we make the following observation.

Lemma 8.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. The following are equivalent:

(1) f is quasi-compact (in the sense of Section 3), and
(2) for every quasi-compact algebraic space Z and any morphism Z → Y the alge-

braic space Z ×Y X is quasi-compact.

Proof. Assume (1), and let Z → Y be a morphism of algebraic spaces with Z quasi-
compact. By Properties of Spaces, Definition 5.1 there exists a quasi-compact scheme U
and a surjective étale morphismU → Z. Since f is representable and quasi-compact we see
by definition that U ×Y X is a scheme, and that U ×Y X → U is quasi-compact. Hence

2This is very different from the notion of a submersion of differential manifolds.
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U ×Y X is a quasi-compact scheme. The morphism U ×Y X → Z ×Y X is étale and
surjective (as the base change of the representable étale and surjective morphism U → Z ,
see Section 3). Hence by definition Z ×Y X is quasi-compact.
Assume (2). Let Z → Y be a morphism, where Z is a scheme. We have to show that
p : Z ×Y X → Z is quasi-compact. Let U ⊂ Z be affine open. Then p−1(U) = U ×Y Z
and the schemeU ×Y Z is quasi-compact by assumption (2). Hence p is quasi-compact, see
Schemes, Section 19. �

This motivates the following definition.

Definition 8.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is quasi-compact if for every quasi-compact algebraic space Z and
morphism Z → Y the fibre product Z ×Y X is quasi-compact.

By Lemma 8.1 above this agrees with the already existing notion for representable mor-
phisms of algebraic spaces.

Lemma 8.3. Let S be a scheme. If f : X → Y is a quasi-compact morphism of
algebraic spaces over S , then the underlying map |f | : |X| → |Y | of topological space is
quasi-compact.

Proof. Let V ⊂ |Y | be quasi-compact open. By Properties of Spaces, Lemma 4.8
there is an open subspace Y ′ ⊂ Y with V = |Y ′|. Then Y ′ is a quasi-compact algebraic
space by Properties of Spaces, Lemma 5.2 and hence X ′ = Y ′ ×Y X is a quasi-compact
algebraic space by Definition 8.2. On the other hand,X ′ ⊂ X is an open subspace (Spaces,
Lemma 12.3) and |X ′| = |f |−1(|X ′|) = |f |−1(V ) by Properties of Spaces, Lemma 4.3. We
conclude using Properties of Spaces, Lemma 5.2 again that |X ′| is a quasi-compact open of
|X| as desired. �

Lemma 8.4. The base change of a quasi-compact morphism of algebraic spaces by any
morphism of algebraic spaces is quasi-compact.

Proof. Omitted. Hint: Transitivity of fibre products. �

Lemma 8.5. The composition of a pair of quasi-compact morphisms of algebraic
spaces is quasi-compact.

Proof. Omitted. Hint: Transitivity of fibre products. �

Lemma 8.6. Let S be a scheme.
(1) If X → Y is a surjective morphism of algebraic spaces over S , and X is quasi-

compact then Y is quasi-compact.
(2) If

X
f

//

p
  

Y

q
��

Z

is a commutative diagram of morphisms of algebraic spaces over S and f is sur-
jective and p is quasi-compact, then q is quasi-compact.

Proof. Assume X is quasi-compact and X → Y is surjective. By Definition 5.2
the map |X| → |Y | is surjective, hence we see Y is quasi-compact by Properties of Spaces,
Lemma 5.2 and the topological fact that the image of a quasi-compact space under a contin-
uous map is quasi-compact, see Topology, Lemma 12.7. Let f, p, q be as in (2). Let T → Z
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be a morphism whose source is a quasi-compact algebraic space. By assumption T ×Z X
is quasi-compact. By Lemma 5.5 the morphism T ×Z X → T ×Z Y is surjective. Hence
by part (1) we see T ×Z Y is quasi-compact too. Thus q is quasi-compact. �

Lemma 8.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let g : Y ′ → Y be a universally open and surjective morphism of algebraic spaces
such that the base change f ′ : X ′ → Y ′ is quasi-compact. Then f is quasi-compact.

Proof. Let Z → Y be a morphism of algebraic spaces with Z quasi-compact. As g
is universally open and surjective, we see that Y ′ ×Y Z → Z is open and surjective. As
every point of |Y ′×Y Z| has a fundamental system of quasi-compact open neighbourhoods
(see Properties of Spaces, Lemma 5.5) we can find a quasi-compact open W ⊂ |Y ′ ×Y Z|
which surjects onto Z. Denote f ′′ : W ×Y X → W the base change of f ′ by W →
Y ′. By assumption W ×Y X is quasi-compact. As W → Z is surjective we see that
W ×Y X → Z ×Y X is surjective. Hence Z ×Y X is quasi-compact by Lemma 8.6. Thus
f is quasi-compact. �

Lemma 8.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is quasi-compact,
(2) for every schemeZ and any morphismZ → Y the morphism of algebraic spaces

Z ×Y X → Z is quasi-compact,
(3) for every affine schemeZ and any morphismZ → Y the algebraic spaceZ×Y X

is quasi-compact,
(4) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is a quasi-compact morphism of algebraic spaces, and
(5) there exists a surjective étale morphism Y ′ → Y of algebraic spaces such that

Y ′ ×Y X → Y ′ is a quasi-compact morphism of algebraic spaces, and
(6) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is quasi-compact.

Proof. We will use Lemma 8.4 without further mention. It is clear that (1) implies
(2) and that (2) implies (3). Assume (3). Let Z be a quasi-compact algebraic space over
S , and let Z → Y be a morphism. By Properties of Spaces, Lemma 6.3 there exists an
affine scheme U and a surjective étale morphism U → Z. Then U ×Y X → Z ×Y X is a
surjective morphism of algebraic spaces, see Lemma 5.5. By assumption |U×Y X| is quasi-
compact. It surjects onto |Z ×Y X|, hence we conclude that |Z ×Y X| is quasi-compact,
see Topology, Lemma 12.7. This proves that (3) implies (1).
The implications (1)⇒ (4), (4)⇒ (5) are clear. The implication (5)⇒ (1) follows from
Lemma 8.7 and the fact that an étale morphism of algebraic spaces is universally open (see
discussion following Definition 6.2).
Of course (1) implies (6) by taking the covering Y = Y . Assume Y =

⋃
Yi is as in (6).

Let Z be affine and let Z → Y be a morphism. Then there exists a finite standard affine
covering Z = Z1 ∪ . . . ∪ Zn such that each Zj → Y factors through Yij for some ij .
Hence the algebraic space

Zj ×Y X = Zj ×Yij f
−1(Yij )

is quasi-compact. Since Z ×Y X =
⋃
j=1,...,n Zj ×Y X is a Zariski covering we see that

|Z ×Y X| =
⋃
j=1,...,n |Zj ×Y X| (see Properties of Spaces, Lemma 4.8) is a finite union

of quasi-compact spaces, hence quasi-compact. Thus we see that (6) implies (3). �
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The following (and the next) lemma guarantees in particular that a morphism X →
Spec(A) is quasi-compact as soon as X is a quasi-compact algebraic space

Lemma 8.9. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of algebraic spaces over S. If g ◦ f is quasi-compact and g is quasi-separated then f is
quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y .
The first map is quasi-compact by Lemma 4.7 because it is a section of the quasi-separated
morphism X ×Z Y → X (a base change of g, see Lemma 4.4). The second map is quasi-
compact as it is the base change of f , see Lemma 8.4. And compositions of quasi-compact
morphisms are quasi-compact, see Lemma 8.5. �

Lemma 8.10. Let f : X → Y be a morphism of algebraic spaces over a scheme S.
(1) If X is quasi-compact and Y is quasi-separated, then f is quasi-compact.
(2) If X is quasi-compact and quasi-separated and Y is quasi-separated, then f is

quasi-compact and quasi-separated.
(3) A fibre product of quasi-compact and quasi-separated algebraic spaces is quasi-

compact and quasi-separated.
Proof. Part (1) follows from Lemma 8.9 with Z = S = Spec(Z). Part (2) follows

from (1) and Lemma 4.10. For (3) letX → Y andZ → Y be morphisms of quasi-compact
and quasi-separated algebraic spaces. Then X ×Y Z → Z is quasi-compact and quasi-
separated as a base change ofX → Y using (2) and Lemmas 8.4 and 4.4. HenceX×Y Z is
quasi-compact and quasi-separated as an algebraic space quasi-compact and quasi-separated
over Z , see Lemmas 4.9 and 8.5. �

9. Universally closed morphisms

For a representable morphism of algebraic spaces we have already defined (in Section 3)
what it means to be universally closed. Hence before we give the natural definition we
check that it agrees with this in the representable case.

Lemma 9.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally closed (in the sense of Section 3), and
(2) for every morphism of algebraic spaces Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is closed.
Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective

étale morphism V → Y . By assumption the morphism of schemes V ×Y X → V is
universally closed. By Properties of Spaces, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover
|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is closed it follows that the right vertical
arrow is closed. This proves (2). The implication (2)⇒ (1) is immediate from the defini-
tions. �
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Thus we may use the following natural definition.

Definition 9.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is closed if the map of topological spaces |X| → |Y | is closed.
(2) We say f is universally closed if for every morphism of algebraic spaces Z → Y

the morphism of topological spaces

|Z ×Y X| → |Z|

is closed, i.e., the base change Z ×Y X → Z is closed.

Lemma 9.3. The base change of a universally closed morphism of algebraic spaces by
any morphism of algebraic spaces is universally closed.

Proof. This is immediate from the definition. �

Lemma 9.4. The composition of a pair of (universally) closed morphisms of algebraic
spaces is (universally) closed.

Proof. Omitted. �

Lemma 9.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f is universally closed,
(2) for every schemeZ and every morphismZ → Y the projection |Z×Y X| → |Z|

is closed,
(3) for every affine scheme Z and every morphism Z → Y the projection |Z ×Y

X| → |Z| is closed,
(4) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is a universally closed morphism of algebraic spaces, and
(5) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is universally closed.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective étale morphism V → Y . We are going to show that
V ×Y X → V is a universally closed morphism of algebraic spaces. Let Z → V be
a morphism from an algebraic space to V . Let W → Z be a surjective étale morphism
where W =

∐
Wi is a disjoint union of affine schemes, see Properties of Spaces, Lemma

6.1. Then we have the following commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X)|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is closed. The middle horizontal arrows are sur-
jective and open (Properties of Spaces, Lemma 16.7). By assumption (3), and the fact that
Wi is affine we see that the left vertical arrows are closed. Hence it follows that the right
vertical arrow is closed.
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Assume (4). We will show that f is universally closed. Let Z → Y be a morphism of
algebraic spaces. Consider the diagram

|(V ×Y Z)×V (V ×Y X)|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is closed by assumption. The horizontal arrows are surjective and
open because the corresponding morphisms of algebraic spaces are étale (see Properties of
Spaces, Lemma 16.7). It follows that the right vertical arrow is closed.

Of course (1) implies (5) by taking the covering Y = Y . Assume Y =
⋃
Yi is as in

(5). Then for any Z → Y we get a corresponding Zariski covering Z =
⋃
Zi such that

the base change of f to Zi is closed. By a simple topological argument this implies that
Z ×Y X → Z is closed. Hence (1) holds. �

Example 9.6. Strange example of a universally closed morphism. Let Q ⊂ k be a
field of characteristic zero. Let X = A1

k/Z as in Spaces, Example 14.8. We claim the
structure morphism p : X → Spec(k) is universally closed. Namely, if Z/k is a scheme,
and T ⊂ |X ×k Z| is closed, then T corresponds to a Z-invariant closed subset of T ′ ⊂
|A1×Z|. It is easy to see that this implies that T ′ is the inverse image of a subset T ′′ ofZ.
By Morphisms, Lemma 25.12 we have that T ′′ ⊂ Z is closed. Of course T ′′ is the image of
T . Hence p is universally closed by Lemma 9.5.

Lemma 9.7. Let S be a scheme. A universally closed morphism of algebraic spaces
over S is quasi-compact.

Proof. This proof is a repeat of the proof in the case of schemes, see Morphisms,
Lemma 41.8. Let f : X → Y be a morphism of algebraic spaces over S. Assume that f
is not quasi-compact. Our goal is to show that f is not universally closed. By Lemma 8.8
there exists an affine scheme Z and a morphism Z → Y such that Z ×Y X → Z is not
quasi-compact. To achieve our goal it suffices to show thatZ×Y X → Z is not universally
closed, hence we may assume that Y = Spec(B) for some ring B.

Write X =
⋃
i∈I Xi where the Xi are quasi-compact open subspaces of X . For example,

choose a surjective étale morphism U → X where U is a scheme, choose an affine open
covering U =

⋃
Ui and let Xi ⊂ X be the image of Ui. We will use later that the

morphisms Xi → Y are quasi-compact, see Lemma 8.9. Let T = Spec(B[ai; i ∈ I]). Let
Ti = D(ai) ⊂ T . Let Z ⊂ T ×Y X be the reduced closed subspace whose underlying
closed set of points is |T ×Y Z| \

⋃
i∈I |Ti ×Y Xi|, see Properties of Spaces, Lemma 12.3.

(Note that Ti ×Y Xi is an open subspace of T ×Y X as Ti → T and Xi → X are open
immersions, see Spaces, Lemmas 12.3 and 12.2.) Here is a diagram

Z //

##

T ×Y X

fT
��

q
// X

f

��
T

p // Y

It suffices to prove that the image fT (|Z|) is not closed in |T |.

We claim there exists a point y ∈ Y such that there is no affine open neighborhood V
of y in Y such that XV is quasi-compact. If not then we can cover Y with finitely many
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such V and for each V the morphism YV → V is quasi-compact by Lemma 8.9 and then
Lemma 8.8 implies f quasi-compact, a contradiction. Fix a y ∈ Y as in the claim.

Let t ∈ T be the point lying over y with κ(t) = κ(y) such that ai = 1 in κ(t) for all
i. Suppose z ∈ |Z| with fT (z) = t. Then q(t) ∈ Xi for some i. Hence fT (z) 6∈ Ti by
construction of Z , which contradicts the fact that t ∈ Ti by construction. Hence we see
that t ∈ |T | \ fT (|Z|).

Assume fT (|Z|) is closed in |T |. Then there exists an element g ∈ B[ai; i ∈ I] with
fT (|Z|) ⊂ V (g) but t 6∈ V (g). Hence the image of g in κ(t) is nonzero. In particular
some coefficient of g has nonzero image in κ(y). Hence this coefficient is invertible on
some affine open neighborhood V of y. Let J be the finite set of j ∈ I such that the
variable aj appears in g. Since XV is not quasi-compact and each Xi,V is quasi-compact,
we may choose a point x ∈ |XV | \

⋃
j∈J |Xj,V |. In other words, x ∈ |X| \

⋃
j∈J |Xj |

and x lies above some v ∈ V . Since g has a coefficient that is invertible on V , we can find
a point t′ ∈ T lying above v such that t′ 6∈ V (g) and t′ ∈ V (ai) for all i /∈ J . This is true
because V (ai; i ∈ I \ J) = Spec(B[aj ; j ∈ J ]) and the set of points of this scheme lying
over v is bijective with Spec(κ(v)[aj ; j ∈ J ]) and g restricts to a nonzero element of this
polynomial ring by construction. In other words t′ 6∈ Ti for each i 6∈ J . By Properties
of Spaces, Lemma 4.3 we can find a point z of X ×Y T mapping to x ∈ X and to t′ ∈ T .
Since x 6∈ |Xj | for j ∈ J and t′ 6∈ Ti for i ∈ I \ J we see that z ∈ |Z|. On the other hand
fT (z) = t′ 6∈ V (g) which contradicts fT (Z) ⊂ V (g). Thus the assumption “fT (|Z|)
closed” is wrong and we conclude indeed that fT is not closed as desired. �

The target of a separated algebraic space under a surjective universally closed morphism
is separated.

Lemma 9.8. Let S be a scheme. Let B be an algebraic space over S. Let f : X → Y
be a surjective universally closed morphism of algebraic spaces over B.

(1) If X is quasi-separated, then Y is quasi-separated.
(2) If X is separated, then Y is separated.
(3) If X is quasi-separated over B, then Y is quasi-separated over B.
(4) If X is separated over B, then Y is separated over B.

Proof. Parts (1) and (2) are a consequence of (3) and (4) for S = B = Spec(Z) (see
Properties of Spaces, Definition 3.1). Consider the commutative diagram

X

��

∆X/B

// X ×B X

��
Y

∆Y/B // Y ×B Y

The left vertical arrow is surjective (i.e., universally surjective). The right vertical arrow
is universally closed as a composition of the universally closed morphisms X ×B X →
X ×B Y → Y ×B Y . Hence it is also quasi-compact, see Lemma 9.7.

Assume X is quasi-separated over B, i.e., ∆X/B is quasi-compact. Then if Z is quasi-
compact andZ → Y ×B Y is a morphism, thenZ×Y×BY X → Z×Y×BY Y is surjective
and Z ×Y×BY X is quasi-compact by our remarks above. We conclude that ∆Y/B is
quasi-compact, i.e., Y is quasi-separated over B.

Assume X is separated over B, i.e., ∆X/B is a closed immersion. Then if Z is affine, and
Z → Y ×BY is a morphism, thenZ×Y×BY X → Z×Y×BY Y is surjective andZ×Y×BY
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X → Z is universally closed by our remarks above. We conclude that ∆Y/B is universally
closed. It follows that ∆Y/B is representable, locally of finite type, a monomorphism (see
Lemma 4.1) and universally closed, hence a closed immersion, see Étale Morphisms, Lemma
7.2 (and also the abstract principle Spaces, Lemma 5.8). Thus Y is separated over B. �

10. Monomorphisms

A representable morphism X → Y of algebraic spaces is a monomorphism according to
Section 3 if for every scheme Z and morphism Z → Y the morphism Z ×Y X → Z is
representable by a monomorphism of schemes. This means exactly that Z ×Y X → Z
is an injective map of sheaves on (Sch/S)fppf . Since this is supposed to hold for all Z
and all maps Z → Y this is in turn equivalent to the map X → Y being an injective
map of sheaves on (Sch/S)fppf . Thus we may define a monomorphism of a (possibly
nonrepresentable3) morphism of algebraic spaces as follows.

Definition 10.1. Let S be a scheme. A morphism of algebraic spaces over S is called
a monomorphism if it is an injective map of sheaves, i.e., a monomorphism in the category
of sheaves on (Sch/S)fppf .

The following lemma shows that this also means that it is a monomorphism in the category
of algebraic spaces over S.

Lemma 10.2. Let S be a scheme. Let j : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) j is a monomorphism (as in Definition 10.1),
(2) j is a monomorphism in the category of algebraic spaces over S , and
(3) the diagonal morphism ∆X/Y : X → X ×Y X is an isomorphism.

Proof. Note that X ×Y X is both the fibre product in the category of sheaves on
(Sch/S)fppf and the fibre product in the category of algebraic spaces over S , see Spaces,
Lemma 7.3. The equivalence of (1) and (3) is a general characterization of injective maps of
sheaves on any site. The equivalence of (2) and (3) is a characterization of monomorphisms
in any category with fibre products. �

Lemma 10.3. A monomorphism of algebraic spaces is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma 10.2
above. �

Lemma 10.4. A composition of monomorphisms is a monomorphism.

Proof. True because a composition of injective sheaf maps is injective. �

Lemma 10.5. The base change of a monomorphism is a monomorphism.

Proof. This is a general fact about fibre products in a category of sheaves. �

Lemma 10.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f is a monomorphism,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z of f

is a monomorphism,

3We do not know whether any monomorphism of algebraic spaces is representable. For a discussion see
More on Morphisms of Spaces, Section 4.



5224 67. MORPHISMS OF ALGEBRAIC SPACES

(3) for every affine scheme Z and every morphism Z → Y the base change Z ×Y
X → Z of f is a monomorphism,

(4) there exists a scheme V and a surjective étale morphism V → Y such that the
base change V ×Y X → V is a monomorphism, and

(5) there exists a Zariski coveringY =
⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is a monomorphism.

Proof. We will use without further mention that a base change of a monomorphism
is a monomorphism, see Lemma 10.5. In particular it is clear that (1) ⇒ (2) ⇒ (3) ⇒
(4) (by taking V to be a disjoint union of affine schemes étale over Y , see Properties of
Spaces, Lemma 6.1). Let V be a scheme, and let V → Y be a surjective étale morphism.
If V ×Y X → V is a monomorphism, then it follows that X → Y is a monomorphism.
Namely, given any cartesian diagram of sheaves

F
a
//

b

��

G

c

��
H d // I

F = H×I G

if c is a surjection of sheaves, and a is injective, then also d is injective. Thus (4) implies
(1). Proof of the equivalence of (5) and (1) is omitted. �

Lemma 10.7. An immersion of algebraic spaces is a monomorphism. In particular,
any immersion is separated.

Proof. Let f : X → Y be an immersion of algebraic spaces. For any morphismZ →
Y with Z representable the base change Z ×Y X → Z is an immersion of schemes, hence
a monomorphism, see Schemes, Lemma 23.8. Hence f is representable, and a monomor-
phism. �

We will improve on the following lemma in Decent Spaces, Lemma 19.1.

Lemma 10.8. Let S be a scheme. Let k be a field and let Z → Spec(k) be a monomor-
phism of algebraic spaces over S. Then either Z = ∅ or Z = Spec(k).

Proof. By Lemmas 10.3 and 4.9 we see that Z is a separated algebraic space. Hence
there exists an open dense subspace Z ′ ⊂ Z which is a scheme, see Properties of Spaces,
Proposition 13.3. By Schemes, Lemma 23.11 we see that either Z ′ = ∅ or Z ′ ∼= Spec(k).
In the first case we conclude that Z = ∅ and in the second case we conclude that Z ′ =
Z = Spec(k) as Z → Spec(k) is a monomorphism which is an isomorphism over Z ′. �

Lemma 10.9. Let S be a scheme. If X → Y is a monomorphism of algebraic spaces
over S , then |X| → |Y | is injective.

Proof. Immediate from the definitions. �

11. Pushforward of quasi-coherent sheaves

We first prove a simple lemma that relates pushforward of sheaves of modules for a mor-
phism of algebraic spaces to pushforward of sheaves of modules for a morphism of schemes.

Lemma 11.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let U → X be a surjective étale morphism from a scheme toX . SetR = U ×X U
and denote t, s : R → U the projection morphisms as usual. Denote a : U → Y and
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b : R → Y the induced morphisms. For any object F of Mod(OX) there exists an exact
sequence

0→ f∗F → a∗(F|U )→ b∗(F|R)
where the second arrow is the difference t∗ − s∗.

Proof. We denote F also its extension to a sheaf of modules on Xspaces,étale, see
Properties of Spaces, Remark 18.4. Let V → Y be an object of Yétale. Then V ×Y X
is an object of Xspaces,étale, and by definition f∗F(V ) = F(V ×Y X). Since U →
X is surjective étale, we see that {V ×Y U → V ×Y X} is a covering. Also, we have
(V ×Y U)×X (V ×Y U) = V ×Y R. Hence, by the sheaf condition ofF onXspaces,étale

we have a short exact sequence

0→ F(V ×Y X)→ F(V ×Y U)→ F(V ×Y R)

where the second arrow is the difference of restricting via t or s. This exact sequence is
functorial in V and hence we obtain the lemma. �

Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-separated morphism of
representable algebraic spaces X and Y over S. By Descent, Proposition 9.4 the functor
f∗ : QCoh(OX)→ QCoh(OY ) agrees with the usual functor if we think of X and Y as
schemes.

More generally, suppose f : X → Y is a representable, quasi-compact, and quasi-separated
morphism of algebraic spaces over S. Let V be a scheme and let V → Y be an étale
surjective morphism. Let U = V ×Y X and let f ′ : U → V be the base change of f . Then
for any quasi-coherentOX -module F we have

(11.1.1) f ′
∗(F|U ) = (f∗F)|V ,

see Properties of Spaces, Lemma 26.2. And because f ′ : U → V is a quasi-compact and
quasi-separated morphism of schemes, by the remark of the preceding paragraph we may
compute f ′

∗(F|U ) by thinking of F|U as a quasi-coherent sheaf on the scheme U , and f ′

as a morphism of schemes. We will frequently use this without further mention.

The next level of generality is to consider an arbitrary quasi-compact and quasi-separated
morphism of algebraic spaces.

Lemma 11.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is quasi-compact and quasi-separated, then f∗ transforms quasi-coherentOX -
modules into quasi-coherentOY -modules.

Proof. Let F be a quasi-coherent sheaf on X . We have to show that f∗F is a quasi-
coherent sheaf on Y . For this it suffices to show that for any affine scheme V and étale
morphism V → Y the restriction of f∗F to V is quasi-coherent, see Properties of Spaces,
Lemma 29.6. Let f ′ : V ×Y X → V be the base change of f by V → Y . Note that f ′ is
also quasi-compact and quasi-separated, see Lemmas 8.4 and 4.4. By (11.1.1) we know that
the restriction of f∗F to V is f ′

∗ of the restriction ofF to V ×Y X . Hence we may replace
f by f ′, and assume that Y is an affine scheme.

Assume Y is an affine scheme. Since f is quasi-compact we see that X is quasi-compact.
Thus we may choose an affine scheme U and a surjective étale morphism U → X , see
Properties of Spaces, Lemma 6.3. By Lemma 11.1 we get an exact sequence

0→ f∗F → a∗(F|U )→ b∗(F|R).
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where R = U ×X U . As X → Y is quasi-separated we see that R → U ×Y U is a
quasi-compact monomorphism. This implies that R is a quasi-compact separated scheme
(as U and Y are affine at this point). Hence a : U → Y and b : R → Y are quasi-
compact and quasi-separated morphisms of schemes. Thus by Descent, Proposition 9.4
the sheaves a∗(F|U ) and b∗(F|R) are quasi-coherent (see also the discussion preceding
this lemma). This implies that f∗F is a kernel of quasi-coherent modules, and hence itself
quasi-coherent, see Properties of Spaces, Lemma 29.7. �

Higher direct images are discussed in Cohomology of Spaces, Section 3.

12. Immersions

Open, closed and locally closed immersions of algebraic spaces were defined in Spaces, Sec-
tion 12. Namely, a morphism of algebraic spaces is a closed immersion (resp. open immer-
sion, resp. immersion) if it is representable and a closed immersion (resp. open immersion,
resp. immersion) in the sense of Section 3.
In particular these types of morphisms are stable under base change and compositions of
morphisms in the category of algebraic spaces over S , see Spaces, Lemmas 12.2 and 12.3.

Lemma 12.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is a closed immersion (resp. open immersion, resp. immersion),
(2) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

a closed immersion (resp. open immersion, resp. immersion),
(3) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is a closed immersion (resp. open immersion, resp. immersion),
(4) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is a closed immersion (resp. open immersion, resp. immersion), and
(5) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is a closed immersion (resp. open immersion, resp. immersion).

Proof. Using that a base change of a closed immersion (resp. open immersion, resp.
immersion) is another one it is clear that (1) implies (2) and (2) implies (3). Also (3) implies
(4) since we can take V to be a disjoint union of affines, see Properties of Spaces, Lemma
6.1.
AssumeV → Y is as in (4). LetP be the property closed immersion (resp. open immersion,
resp. immersion) of morphisms of schemes. Note that property P is preserved under any
base change and fppf local on the base (see Section 3). Moreover, morphisms of type P are
separated and locally quasi-finite (in each of the three cases, see Schemes, Lemma 23.8, and
Morphisms, Lemma 20.16). Hence by More on Morphisms, Lemma 57.1 the morphisms of
type P satisfy descent for fppf covering. Thus Spaces, Lemma 11.5 applies and we see that
X → Y is representable and has property P , in other words (1) holds.
The equivalence of (1) and (5) follows from the fact that P is Zariski local on the target
(since we saw above that P is in fact fppf local on the target). �

Lemma 12.2. Let S be a scheme. Let Z → Y → X be morphisms of algebraic spaces
over S.

(1) If Z → X is representable, locally of finite type, locally quasi-finite, separated,
and a monomorphism, thenZ → Y is representable, locally of finite type, locally
quasi-finite, separated, and a monomorphism.
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(2) If Z → X is an immersion and Y → X is locally separated, then Z → Y is an
immersion.

(3) If Z → X is a closed immersion and Y → X is separated, then Z → Y is a
closed immersion.

Proof. In each case the proof is to contemplate the commutative diagram

Z //

##

Y ×X Z //

��

Z

��
Y // X

where the composition of the top horizontal arrows is the identity. Let us prove (1). The
first horizontal arrow is a section of Y ×X Z → Z , whence representable, locally of finite
type, locally quasi-finite, separated, and a monomorphism by Lemma 4.7. The arrow Y ×X
Z → Y is a base change of Z → X hence is representable, locally of finite type, locally
quasi-finite, separated, and a monomorphism (as each of these properties of morphisms
of schemes is stable under base change, see Spaces, Remark 4.1). Hence the same is true
for the composition (as each of these properties of morphisms of schemes is stable under
composition, see Spaces, Remark 4.2). This proves (1). The other results are proved in
exactly the same manner. �

Lemma 12.3. Let S be a scheme. Let i : Z → X be an immersion of algebraic spaces
over S. Then |i| : |Z| → |X| is a homeomorphism onto a locally closed subset, and i is a
closed immersion if and only if the image |i|(|Z|) ⊂ |X| is a closed subset.

Proof. The first statement is Properties of Spaces, Lemma 12.1. Let U be a scheme
and let U → X be a surjective étale morphism. By assumption T = U ×X Z is a scheme
and the morphism j : T → U is an immersion of schemes. By Lemma 12.1 the morphism
i is a closed immersion if and only if j is a closed immersion. By Schemes, Lemma 10.4
this is true if and only if j(T ) is closed in U . However, the subset j(T ) ⊂ U is the inverse
image of |i|(|Z|) ⊂ |X|, see Properties of Spaces, Lemma 4.3. This finishes the proof. �

Remark 12.4. Let S be a scheme. Let i : Z → X be an immersion of algebraic spaces
over S. Since i is a monomorphism we may think of |Z| as a subset of |X|; in the rest of
this remark we do so. Let ∂|Z| be the boundary of |Z| in the topological space |X|. In a
formula

∂|Z| = |Z| \ |Z|.
Let ∂Z be the reduced closed subspace of X with |∂Z| = ∂|Z| obtained by taking the
reduced induced closed subspace structure, see Properties of Spaces, Definition 12.5. By
construction we see that |Z| is closed in |X| \ |∂Z| = |X \ ∂Z|. Hence it is true that any
immersion of algebraic spaces can be factored as a closed immersion followed by an open
immersion (but not the other way in general, see Morphisms, Example 3.4).

Remark 12.5. Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X|
be a locally closed subset. Let ∂T be the boundary of T in the topological space |X|. In a
formula

∂T = T \ T.
Let U ⊂ X be the open subspace of X with |U | = |X| \ ∂T , see Properties of Spaces,
Lemma 4.8. Let Z be the reduced closed subspace of U with |Z| = T obtained by taking
the reduced induced closed subspace structure, see Properties of Spaces, Definition 12.5.
By construction Z → U is a closed immersion of algebraic spaces and U → X is an open
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immersion, hence Z → X is an immersion of algebraic spaces over S (see Spaces, Lemma
12.2). Note that Z is a reduced algebraic space and that |Z| = T as subsets of |X|. We
sometimes say Z is the reduced induced subspace structure on T .

Lemma 12.6. Let S be a scheme. LetZ → X be an immersion of algebraic spaces over
S. Assume Z → X is quasi-compact. There exists a factorization Z → Z → X where
Z → Z is an open immersion and Z → X is a closed immersion.

Proof. Let U be a scheme and let U → X be surjective étale. As usual denote
R = U ×X U with projections s, t : R → U . Set T = Z ×U X . Let T ⊂ U be the
scheme theoretic image of T → U . Note that s−1T = t−1T as taking scheme theo-
retic images of quasi-compact morphisms commute with flat base change, see Morphisms,
Lemma 25.16. Hence we obtain a closed subspace Z ⊂ X whose pullback to U is T , see
Properties of Spaces, Lemma 12.2. By Morphisms, Lemma 7.7 the morphism T → T is an
open immersion. It follows that Z → Z is an open immersion and we win. �

13. Closed immersions

In this section we elucidate some of the results obtained previously on immersions of al-
gebraic spaces. See Spaces, Section 12 and Section 12 in this chapter. This section is the
analogue of Morphisms, Section 2 for algebraic spaces.

Lemma 13.1. Let S be a scheme. Let X be an algebraic space over S. For every
closed immersion i : Z → X the sheaf i∗OZ is a quasi-coherent OX -module, the map
i] : OX → i∗OZ is surjective and its kernel is a quasi-coherent sheaf of ideals. The rule
Z 7→ Ker(OX → i∗OZ) defines an inclusion reversing bijection

closed subspaces
Z ⊂ X −→ quasi-coherent sheaves

of ideals I ⊂ OX
Moreover, given a closed subschemeZ corresponding to the quasi-coherent sheaf of ideals
I ⊂ OX a morphism of algebraic spaces h : Y → X factors through Z if and only if the
map h∗I → h∗OX = OY is zero.

Proof. Let U → X be a surjective étale morphism whose source is a scheme. Con-
sider the diagram

U ×X Z //

i′

��

Z

i

��
U // X

By Lemma 12.1 we see that i is a closed immersion if and only if i′ is a closed immersion.
By Properties of Spaces, Lemma 26.2 we see that i′∗OU×XZ is the restriction of i∗OZ to
U . Hence the assertions on OX → i∗OZ are equivalent to the corresponding assertions
on OU → i′∗OU×XZ . And since i′ is a closed immersion of schemes, these results follow
from Morphisms, Lemma 2.1.
Let us prove that given a quasi-coherent sheaf of ideals I ⊂ OX the formula

Z(T ) = {h : T → X | h∗I → OT is zero}
defines a closed subspace of X . It is clearly a subfunctor of X . To show that Z → X is
representable by closed immersions, letϕ : U → X be a morphism from a scheme towards
X . Then Z ×X U is represented by the analogous subfunctor of U corresponding to the
sheaf of ideals Im(ϕ∗I → OU ). By Properties of Spaces, Lemma 29.2 the OU -module
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ϕ∗I is quasi-coherent on U , and hence Im(ϕ∗I → OU ) is a quasi-coherent sheaf of ideals
on U . By Schemes, Lemma 4.6 we conclude that Z ×X U is represented by the closed
subscheme of U associated to Im(ϕ∗I → OU ). Thus Z is a closed subspace of X .

In the formula for Z above the inputs T are schemes since algebraic spaces are sheaves
on (Sch/S)fppf . We omit the verification that the same formula remains true if T is an
algebraic space. �

Definition 13.2. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a closed subspace. The inverse image f−1(Z) of the closed
subspace Z is the closed subspace Z ×X Y of Y .

This definition makes sense by Lemma 12.1. If I ⊂ OX is the quasi-coherent sheaf of
ideals corresponding to Z via Lemma 13.1 then f−1IOY = Im(f∗I → OY ) is the sheaf
of ideals corresponding to f−1(Z).

Lemma 13.3. A closed immersion of algebraic spaces is quasi-compact.

Proof. This follows from Schemes, Lemma 19.5 by general principles, see Spaces,
Lemma 5.8. �

Lemma 13.4. A closed immersion of algebraic spaces is separated.

Proof. This follows from Schemes, Lemma 23.8 by general principles, see Spaces,
Lemma 5.8. �

Lemma 13.5. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S.

(1) The functor

ismall,∗ : Sh(Zétale) −→ Sh(Xétale)
is fully faithful and its essential image is those sheaves of setsF onXétale whose
restriction to X \ Z is isomorphic to ∗, and

(2) the functor

ismall,∗ : Ab(Zétale) −→ Ab(Xétale)
is fully faithful and its essential image is those abelian sheaves on Xétale whose
support is contained in |Z|.

In both cases i−1
small is a left inverse to the functor ismall,∗.

Proof. LetU be a scheme and letU → X be surjective étale. Set V = Z×X U . Then
V is a scheme and i′ : V → U is a closed immersion of schemes. By Properties of Spaces,
Lemma 18.12 for any sheaf G on Z we have

(i−1
smallismall,∗G)|V = (i′)−1

smalli
′
small,∗(G|V )

By Étale Cohomology, Proposition 46.4 the map (i′)−1
smalli

′
small,∗(G|V )→ G|V is an iso-

morphism. Since V → Z is surjective and étale this implies that i−1
smallismall,∗G → G is

an isomorphism. This clearly implies that ismall,∗ is fully faithful, see Sites, Lemma 41.1.
To prove the statement on the essential image, consider a sheaf of sets F on Xétale whose
restriction toX \Z is isomorphic to ∗. As in the proof of Étale Cohomology, Proposition
46.4 we consider the adjunction mapping

F −→ ismall,∗i
−1
smallF .
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As in the first part we see that the restriction of this map to U is an isomorphism by the
corresponding result for the case of schemes. SinceU is an étale covering ofX we conclude
it is an isomorphism. �

Lemma 13.6. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces overS. Let z be a geometric point ofZ with image x inX . Then (ismall,∗F)z = Fx
for any sheaf F on Zétale.

Proof. Choose an étale neighbourhood (U, u) of x. Then the stalk (ismall,∗F)z is
the stalk of ismall,∗F|U at u. By Properties of Spaces, Lemma 18.12 we may replace X by
U and Z by Z ×X U . Then Z → X is a closed immersion of schemes and the result is
Étale Cohomology, Lemma 46.3. �

The following lemma holds more generally in the setting of a closed immersion of topoi
(insert future reference here).

Lemma 13.7. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. LetA be a sheaf of rings on Xétale. Let B be a sheaf of rings on Zétale. Let
ϕ : A → ismall,∗B be a homomorphism of sheaves of rings so that we obtain a morphism
of ringed topoi

f : (Sh(Zétale),B) −→ (Sh(Xétale),A).
For a sheaf ofA-modules F and a sheaf of B-modules G the canonical map

F ⊗A f∗G −→ f∗(f∗F ⊗B G).
is an isomorphism.

Proof. The map is the map adjoint to the map
f∗F ⊗B f

∗f∗G = f∗(F ⊗A f∗G) −→ f∗F ⊗B G
coming from id : f∗F → f∗F and the adjunction map f∗f∗G → G. To see this map
is an isomorphism, we may check on stalks (Properties of Spaces, Theorem 19.12). Let
z : Spec(k) → Z be a geometric point with image x = i ◦ z : Spec(k) → X . Working
out what our maps does on stalks, we see that we have to show

Fx ⊗Ax
Gz = (Fx ⊗Ax

Bz)⊗Bz Gz
which holds true. Here we have used that taking tensor products commutes with taking
stalks, the behaviour of stalks under pullback Properties of Spaces, Lemma 19.9, and the
behaviour of stalks under pushforward along a closed immersion Lemma 13.6. �

14. Closed immersions and quasi-coherent sheaves

This section is the analogue of Morphisms, Section 4.

Lemma 14.1. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. Let I ⊂ OX be the quasi-coherent sheaf of ideals cutting out Z.

(1) For anyOX -moduleF the adjunction mapF → i∗i
∗F induces an isomorphism

F/IF ∼= i∗i
∗F .

(2) The functor i∗ is a left inverse to i∗, i.e., for any OZ -module G the adjunction
map i∗i∗G → G is an isomorphism.

(3) The functor
i∗ : QCoh(OZ) −→ QCoh(OX)

is exact, fully faithful, with essential image those quasi-coherentOX -modulesF
such that IF = 0.
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Proof. During this proof we work exclusively with sheaves on the small étale sites,
and we use i∗, i−1, . . . to denote pushforward and pullback of sheaves of abelian groups
instead of ismall,∗, i−1

small.

Let F be anOX -module. By Lemma 13.7 applied withA = OX and G = B = OZ we see
that i∗i∗F = F ⊗OX

OZ . By Lemma 13.1 we see that we have a short exact sequence

0→ I → OX → i∗OZ → 0
It follows from properties of the tensor product thatF ⊗OX

i∗OZ = F/IF . This proves
(1) (except that we omit the verification that the map is induced by the adjunction map-
ping).

Let G be any OZ -module. By Lemma 13.5 we see that i−1i∗G = G. Hence to prove (2)
we have to show that the canonical map G ⊗i−1OX

OZ → G is an isomorphism. This
follows from general properties of tensor products if we can show that i−1OX → OZ is
surjective. By Lemma 13.5 it suffices to prove that i∗i−1OX → i∗OZ is surjective. Since
the surjective mapOX → i∗OZ factors through this map we see that (2) holds.

Finally we prove the most interesting part of the lemma, namely part (3). A closed immer-
sion is quasi-compact and separated, see Lemmas 13.3 and 13.4. Hence Lemma 11.2 applies
and the pushforward of a quasi-coherent sheaf on Z is indeed a quasi-coherent sheaf on
X . Thus we obtain our functor iQCoh∗ : QCoh(OZ)→ QCoh(OX). It is clear from part
(2) that iQCoh∗ is fully faithful since it has a left inverse, namely i∗.

Now we turn to the description of the essential image of the functor i∗. It is clear that
I(i∗G) = 0 for any OZ -module, since I is the kernel of the map OX → i∗OZ which
is the map we use to put an OX -module structure on i∗G. Next, suppose that F is any
quasi-coherent OX -module such that IF = 0. Then we see that F is an i∗OZ -module
because i∗OZ = OX/I . Hence in particular its support is contained in |Z|. We apply
Lemma 13.5 to see that F ∼= i∗G for some OZ -module G. The only small detail left over
is to see why G is quasi-coherent. This is true because G ∼= i∗F by part (2) and Properties
of Spaces, Lemma 29.2. �

Let i : Z → X be a closed immersion of algebraic spaces. Because of the lemma above we
often, by abuse of notation, denote F the sheaf i∗F on X .

Lemma 14.2. Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherentOX -module. Let G ⊂ F be aOX -submodule. There exists a unique quasi-
coherent OX -submodule G′ ⊂ G with the following property: For every quasi-coherent
OX -moduleH the map

HomOX
(H,G′) −→ HomOX

(H,G)
is bijective. In particular G′ is the largest quasi-coherent OX -submodule of F contained
in G.

Proof. Let Ga, a ∈ A be the set of quasi-coherent OX -submodules contained in G.
Then the image G′ of ⊕

a∈A
Ga −→ F

is quasi-coherent as the image of a map of quasi-coherent sheaves on X is quasi-coherent
and since a direct sum of quasi-coherent sheaves is quasi-coherent, see Properties of Spaces,
Lemma 29.7. The module G′ is contained in G. Hence this is the largest quasi-coherent
OX -module contained in G.
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To prove the formula, let H be a quasi-coherent OX -module and let α : H → G be an
OX -module map. The image of the composition H → G → F is quasi-coherent as the
image of a map of quasi-coherent sheaves. Hence it is contained in G′. Hence α factors
through G′ as desired. �

Lemma 14.3. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. There is a functor4 i! : QCoh(OX)→ QCoh(OZ) which is a right adjoint
to i∗. (Compare Modules, Lemma 6.3.)

Proof. Given quasi-coherentOX -module G we consider the subsheafHZ(G) of G of
local sections annihilated by I . By Lemma 14.2 there is a canonical largest quasi-coherent
OX -submoduleHZ(G)′. By construction we have

HomOX
(i∗F ,HZ(G)′) = HomOX

(i∗F ,G)

for any quasi-coherentOZ -module F . Hence we can set i!G = i∗(HZ(G)′). Details omit-
ted. �

Using the 1-to-1 corresponding between quasi-coherent sheaves of ideals and closed sub-
spaces (see Lemma 13.1) we can define scheme theoretic intersections and unions of closed
subschemes.

Definition 14.4. Let S be a scheme. LetX be an algebraic space over S. Let Z, Y ⊂
X be closed subspaces corresponding to quasi-coherent ideal sheaves I,J ⊂ OX . The
scheme theoretic intersection of Z and Y is the closed subspace of X cut out by I + J .
Then scheme theoretic union of Z and Y is the closed subspace of X cut out by I ∩ J .

It is clear that formation of scheme theoretic intersection commutes with étale localization
and the same is true for scheme theoretic union.

Lemma 14.5. Let S be a scheme. Let X be an algebraic space over S. Let Z, Y ⊂ X
be closed subspaces. Let Z ∩ Y be the scheme theoretic intersection of Z and Y . Then
Z ∩ Y → Z and Z ∩ Y → Y are closed immersions and

Z ∩ Y //

��

Z

��
Y // X

is a cartesian diagram of algebraic spaces over S , i.e., Z ∩ Y = Z ×X Y .

Proof. The morphisms Z ∩ Y → Z and Z ∩ Y → Y are closed immersions by
Lemma 13.1. Since formation of the scheme theoretic intersection commutes with étale
localization we conclude the diagram is cartesian by the case of schemes. See Morphisms,
Lemma 4.5. �

Lemma 14.6. Let S be a scheme. Let X be an algebraic space over S. Let Y, Z ⊂ X
be closed subspaces. Let Y ∪ Z be the scheme theoretic union of Y and Z. Let Y ∩ Z be
the scheme theoretic intersection of Y and Z. Then Y → Y ∪ Z and Z → Y ∪ Z are
closed immersions, there is a short exact sequence

0→ OY ∪Z → OY ×OZ → OY ∩Z → 0

4This is likely nonstandard notation.



15. SUPPORTS OF MODULES 5233

ofOZ -modules, and the diagram

Y ∩ Z //

��

Y

��
Z // Y ∪ Z

is cocartesian in the category of algebraic spaces over S , i.e., Y ∪ Z = Y qY ∩Z Z.

Proof. The morphisms Y → Y ∪ Z and Z → Y ∪ Z are closed immersions by
Lemma 13.1. In the short exact sequence we use the equivalence of Lemma 14.1 to think
of quasi-coherent modules on closed subspaces ofX as quasi-coherent modules onX . For
the first map in the sequence we use the canonical maps OY ∪Z → OY and OY ∪Z → OZ
and for the second map we use the canonical map OY → OY ∩Z and the negative of the
canonical map OZ → OY ∩Z . Then to check exactness we may work étale locally and
deduce exactness from the case of schemes (Morphisms, Lemma 4.6).

To show the diagram is cocartesian, suppose we are given an algebraic space T over S and
morphisms f : Y → T , g : Z → T agreeing as morphisms Y ∩ Z → T . Goal: Show
there exists a unique morphism h : Y ∪ Z → T agreeing with f and g. To construct
h we may work étale locally on Y ∪ Z (as Y ∪ Z is an étale sheaf being an algebraic
space). Hence we may assume that X is a scheme. In this case we know that Y ∪ Z is
the pushout of Y and Z along Y ∩ Z in the category of schemes by Morphisms, Lemma
4.6. Choose a scheme T ′ and a surjective étale morphism T ′ → T . Set Y ′ = T ′ ×T,f Y
and Z ′ = T ′ ×T,g Z. Then Y ′ and Z ′ are schemes and we have a canonical isomorphism
ϕ : Y ′ ×Y (Y ∩ Z)→ Z ′ ×Z (Y ∩ Z) of schemes. By More on Morphisms, Lemma 67.8
the pushoutW ′ = Y ′qY ′×Y (Y ∩Z),ϕZ

′ exists in the category of schemes. The morphism
W ′ → Y ∪Z is étale by More on Morphisms, Lemma 67.9. It is surjective as Y ′ → Y and
Z ′ → Z are surjective. The morphisms f ′ : Y ′ → T ′ and g′ : Z ′ → T ′ glue to a unique
morphism of schemes h′ : W ′ → T ′. By uniqueness the composition W ′ → T ′ → T
descends to the desired morphism h : Y ∪ Z → T . Some details omitted. �

15. Supports of modules

In this section we collect some elementary results on supports of quasi-coherent modules
on algebraic spaces. LetX be an algebraic space. The support of an abelian sheaf onXétale

has been defined in Properties of Spaces, Section 20. We use the same definition for sup-
ports of modules. The following lemma tells us this agrees with the notion as defined for
quasi-coherent modules on schemes.

Lemma 15.1. Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherentOX -module. Let U be a scheme and let ϕ : U → X be an étale morphism.
Then

Supp(ϕ∗F) = |ϕ|−1(Supp(F))
where the left hand side is the support of ϕ∗F as a quasi-coherent module on the scheme
U .

Proof. Let u ∈ U be a (usual) point and let x be a geometric point lying over u. By
Properties of Spaces, Lemma 29.4 we have (ϕ∗F)u⊗OU,u

OX,x = Fx. SinceOU,u → OX,x
is the strict henselization by Properties of Spaces, Lemma 22.1 we see that it is faithfully
flat (see More on Algebra, Lemma 45.1). Thus we see that (ϕ∗F)u = 0 if and only if
Fx = 0. This proves the lemma. �
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For finite type quasi-coherent modules the support is closed, can be checked on fibres, and
commutes with base change.

Lemma 15.2. Let S be a scheme. LetX be an algebraic space over S. Let F be a finite
type quasi-coherentOX -module. Then

(1) The support of F is closed.
(2) For a geometric point x lying over x ∈ |X| we have

x ∈ Supp(F)⇔ Fx 6= 0⇔ Fx ⊗OX,x
κ(x) 6= 0.

(3) For any morphism of algebraic spaces f : Y → X the pullback f∗F is of finite
type as well and we have Supp(f∗F) = f−1(Supp(F)).

Proof. Choose a scheme U and a surjective étale morphism ϕ : U → X . By Lemma
15.1 the inverse image of the support of F is the support of ϕ∗F which is closed by Mor-
phisms, Lemma 5.3. Thus (1) follows from the definition of the topology on |X|.
The first equivalence in (2) is the definition of support. The second equivalence follows
from Nakayama’s lemma, see Algebra, Lemma 20.1.

Let f : Y → X be as in (3). Note that f∗F is of finite type by Properties of Spaces, Section
30. For the final assertion, let y be a geometric point of Y mapping to the geometric point
x on X . Recall that

(f∗F)y = Fx ⊗OX,x
OY,y,

see Properties of Spaces, Lemma 29.5. Hence (f∗F)y ⊗ κ(y) is nonzero if and only if
Fx ⊗ κ(x) is nonzero. By (2) this implies x ∈ Supp(F) if and only if y ∈ Supp(f∗F),
which is the content of assertion (3). �

Our next task is to show that the scheme theoretic support of a finite type quasi-coherent
module (see Morphisms, Definition 5.5) also makes sense for finite type quasi-coherent
modules on algebraic spaces.

Lemma 15.3. Let S be a scheme. LetX be an algebraic space over S. Let F be a finite
type quasi-coherent OX -module. There exists a smallest closed subspace i : Z → X such
that there exists a quasi-coherentOZ -module G with i∗G ∼= F . Moreover:

(1) IfU is a scheme andϕ : U → X is an étale morphism thenZ×XU is the scheme
theoretic support of ϕ∗F .

(2) The quasi-coherent sheaf G is unique up to unique isomorphism.
(3) The quasi-coherent sheaf G is of finite type.
(4) The support of G and of F is |Z|.

Proof. Choose a scheme U and a surjective étale morphism ϕ : U → X . Let R =
U ×X U with projections s, t : R→ U . Let i′ : Z ′ → U be the scheme theoretic support
of ϕ∗F and let G′ be the (unique up to unique isomorphism) finite type quasi-coherent
OZ′ -module with i′∗G′ = ϕ∗F , see Morphisms, Lemma 5.4. As s∗ϕ∗F = t∗ϕ∗F we see
that R′ = s−1Z ′ = t−1Z ′ as closed subschemes of R by Morphisms, Lemma 25.14. Thus
we may apply Properties of Spaces, Lemma 12.2 to find a closed subspace i : Z → X whose
pullback to U is Z ′. Writing s′, t′ : R′ → Z ′ the projections and j′ : R′ → R the given
closed immersion, we see that

j′
∗(s′)∗G′ = s∗i′∗G′ = s∗ϕ∗F = t∗ϕ∗F = t∗i′∗G′ = j′

∗(t′)∗G′

(the first and the last equality by Cohomology of Schemes, Lemma 5.2). Hence the unique-
ness of Morphisms, Lemma 25.14 applied to R′ → R gives an isomorphism α : (t′)∗G′ →
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(s′)∗G′ compatible with the canonical isomorphism t∗ϕ∗F = s∗ϕ∗F via j′
∗. Clearly α

satisfies the cocycle condition, hence we may apply Properties of Spaces, Proposition 32.1
to obtain a quasi-coherent module G on Z whose restriction to Z ′ is G′ compatible with
α. Again using the equivalence of the proposition mentioned above (this time for X) we
conclude that i∗G ∼= F .

This proves existence. The other properties of the lemma follow by comparing with the
result for schemes using Lemma 15.1. Detailed proofs omitted. �

Definition 15.4. Let S be a scheme. Let X be an algebraic space over S. Let F be
a finite type quasi-coherentOX -module. The scheme theoretic support of F is the closed
subspace Z ⊂ X constructed in Lemma 15.3.

In this situation we often think of F as a quasi-coherent sheaf of finite type on Z (via the
equivalence of categories of Lemma 14.1).

16. Scheme theoretic image

Caution: Some of the material in this section is ultra-general and behaves differently from
what you might expect.

Lemma 16.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. There exists a closed subspace Z ⊂ Y such that f factors through Z and such that
for any other closed subspace Z ′ ⊂ Y such that f factors through Z ′ we have Z ⊂ Z ′.

Proof. Let I = Ker(OY → f∗OX). If I is quasi-coherent then we just take Z to be
the closed subscheme determined by I , see Lemma 13.1. In general the lemma requires us
to show that there exists a largest quasi-coherent sheaf of ideals I ′ contained in I . This
follows from Lemma 14.2. �

Suppose that in the situation of Lemma 16.1 above X and Y are representable. Then the
closed subspace Z ⊂ Y found in the lemma agrees with the closed subscheme Z ⊂ Y
found in Morphisms, Lemma 6.1. The reason is that closed subspaces (or subschemes) are
in a inclusion reversing correspondence with quasi-coherent ideal sheaves on Xétale and
X . As the category of quasi-coherent modules on Xétale and X are the same (Properties
of Spaces, Section 29) we conclude. Thus the following definition agrees with the earlier
definition for morphisms of schemes.

Definition 16.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The scheme theoretic image of f is the smallest closed subspace Z ⊂ Y
through which f factors, see Lemma 16.1 above.

We often just denote f : X → Z the factorization of f . If the morphism f is not quasi-
compact, then (in general) the construction of the scheme theoretic image does not com-
mute with restriction to open subspaces of Y .

Lemma 16.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let Z ⊂ Y be the scheme theoretic image of f . If f is quasi-compact then

(1) the sheaf of ideals I = Ker(OY → f∗OX) is quasi-coherent,
(2) the scheme theoretic image Z is the closed subspace corresponding to I ,
(3) for any étale morphism V → Y the scheme theoretic image of X ×Y V → V is

equal to Z ×Y V , and
(4) the image |f |(|X|) ⊂ |Z| is a dense subset of |Z|.
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Proof. To prove (3) it suffices to prove (1) and (2) since the formation of I commutes
with étale localization. If (1) holds then in the proof of Lemma 16.1 we showed (2). Let us
prove that I is quasi-coherent. Since the property of being quasi-coherent is étale local we
may assume Y is an affine scheme. As f is quasi-compact, we can find an affine scheme U
and a surjective étale morphism U → X . Denote f ′ the composition U → X → Y . Then
f∗OX is a subsheaf of f ′

∗OU , and hence I = Ker(OY → OX′). By Lemma 11.2 the sheaf
f ′

∗OU is quasi-coherent on Y . Hence I is quasi-coherent as a kernel of a map between
coherent modules. Finally, part (4) follows from parts (1), (2), and (3) as the ideal I will
be the unit ideal in any point of |Y |which is not contained in the closure of |f |(|X|). �

Lemma 16.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume X is reduced. Then

(1) the scheme theoretic image Z of f is the reduced induced algebraic space struc-
ture on |f |(|X|), and

(2) for any étale morphism V → Y the scheme theoretic image of X ×Y V → V is
equal to Z ×Y V .

Proof. Part (1) is true because the reduced induced algebraic space structure on |f |(|X|)
is the smallest closed subspace of Y through which f factors, see Properties of Spaces,
Lemma 12.4. Part (2) follows from (1), the fact that |V | → |Y | is open, and the fact that
being reduced is preserved under étale localization. �

Lemma 16.5. Let S be a scheme. Let f : X → Y be a quasi-compact morphism of
algebraic spaces over S. Let Z be the scheme theoretic image of f . Let z ∈ |Z|. There
exists a valuation ring A with fraction field K and a commutative diagram

Spec(K) //

��

X

����
Spec(A) // Z // Y

such that the closed point of Spec(A) maps to z.

Proof. Choose an affine scheme V with a point z′ ∈ V and an étale morphism V →
Y mapping z′ to z. Let Z ′ ⊂ V be the scheme theoretic image of X ×Y V → V . By
Lemma 16.3 we have Z ′ = Z ×Y V . Thus z′ ∈ Z ′. Since f is quasi-compact and V is
affine we see that X ×Y V is quasi-compact. Hence there exists an affine scheme W and
a surjective étale morphism W → X ×Y V . Then Z ′ ⊂ V is also the scheme theoretic
image of W → V . By Morphisms, Lemma 6.5 we can choose a diagram

Spec(K) //

��

W //

��

X ×Y V

��

// X

��
Spec(A) // Z ′ // V // Y

such that the closed point of Spec(A) maps to z′. Composing with Z ′ → Z and W →
X ×Y V → X we obtain a solution. �
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Lemma 16.6. Let S be a scheme. Let
X1

��

f1

// Y1

��
X2

f2 // Y2

be a commutative diagram of algebraic spaces over S. Let Zi ⊂ Yi, i = 1, 2 be the scheme
theoretic image of fi. Then the morphism Y1 → Y2 induces a morphism Z1 → Z2 and a
commutative diagram

X1 //

��

Z1

��

// Y1

��
X2 // Z2 // Y2

Proof. The scheme theoretic inverse image of Z2 in Y1 is a closed subspace of Y1
through which f1 factors. Hence Z1 is contained in this. This proves the lemma. �

Lemma 16.7. Let S be a scheme. Let f : X → Y be a separated morphism of algebraic
spaces over S. Let V ⊂ Y be an open subspace such that V → Y is quasi-compact. Let
s : V → X be a morphism such that f ◦ s = idV . Let Y ′ be the scheme theoretic image
of s. Then Y ′ → Y is an isomorphism over V .

Proof. By Lemma 8.9 the morphism s : V → X is quasi-compact. Hence the con-
struction of the scheme theoretic image Y ′ of s commutes with restriction to opens by
Lemma 16.3. In particular, we see that Y ′ ∩ f−1(V ) is the scheme theoretic image of a
section of the separated morphism f−1(V )→ V . Since a section of a separated morphism
is a closed immersion (Lemma 4.7), we conclude that Y ′∩f−1(V )→ V is an isomorphism
as desired. �

17. Scheme theoretic closure and density

This section is the analogue of Morphisms, Section 7.

Lemma 17.1. Let S be a scheme. Let W ⊂ S be a scheme theoretically dense open
subscheme (Morphisms, Definition 7.1). Let f : X → S be a morphism of schemes which
is flat, locally of finite presentation, and locally quasi-finite. Then f−1(W ) is scheme
theoretically dense in X .

Proof. We will use the characterization of Morphisms, Lemma 7.5. Assume V ⊂ X
is an open and g ∈ Γ(V,OV ) is a function which restricts to zero on f−1(W ) ∩ V . We
have to show that g = 0. Assume g 6= 0 to get a contradiction. By More on Morphisms,
Lemma 45.6 we may shrink V , find an open U ⊂ S fitting into a commutative diagram

V //

π

��

X

f

��
U // S,

a quasi-coherent subsheaf F ⊂ OU , an integer r > 0, and an injective OU -module map
F⊕r → π∗OV whose image contains g|V . Say (g1, . . . , gr) ∈ Γ(U,F⊕r) maps to g.
Then we see that gi|W∩U = 0 because g|f−1W∩V = 0. Hence gi = 0 because F ⊂
OU and W is scheme theoretically dense in S. This implies g = 0 which is the desired
contradiction. �
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Lemma 17.2. Let S be a scheme. Let X be an algebraic space over S. Let U ⊂ X be
an open subspace. The following are equivalent

(1) for every étale morphism ϕ : V → X (of algebraic spaces) the scheme theoretic
closure of ϕ−1(U) in V is equal to V ,

(2) there exists a scheme V and a surjective étale morphism ϕ : V → X such that
the scheme theoretic closure of ϕ−1(U) in V is equal to V ,

Proof. Observe that if V → V ′ is a morphism of algebraic spaces étale over X , and
Z ⊂ V , resp. Z ′ ⊂ V ′ is the scheme theoretic closure of U ×X V , resp. U ×X V ′ in
V , resp. V ′, then Z maps into Z ′. Thus if V → V ′ is surjective and étale then Z = V
implies Z ′ = V ′. Next, note that an étale morphism is flat, locally of finite presentation,
and locally quasi-finite (see Morphisms, Section 36). Thus Lemma 17.1 implies that if V
and V ′ are schemes, then Z ′ = V ′ implies Z = V . A formal argument using that every
algebraic space has an étale covering by a scheme shows that (1) and (2) are equivalent. �

It follows from Lemma 17.2 that the following definition is compatible with the definition
in the case of schemes.

Definition 17.3. Let S be a scheme. Let X be an algebraic space over S. Let U ⊂ X
be an open subspace.

(1) The scheme theoretic image of the morphism U → X is called the scheme the-
oretic closure of U in X .

(2) We say U is scheme theoretically dense in X if the equivalent conditions of
Lemma 17.2 are satisfied.

With this definition it is not the case thatU is scheme theoretically dense inX if and only
if the scheme theoretic closure of U is X . This is somewhat inelegant. But with suitable
finiteness conditions we will see that it does hold.

Lemma 17.4. Let S be a scheme. Let X be an algebraic space over S. Let U ⊂ X be
an open subspace. If U → X is quasi-compact, then U is scheme theoretically dense in X
if and only if the scheme theoretic closure of U in X is X .

Proof. Follows from Lemma 16.3 part (3). �

Lemma 17.5. Let S be a scheme. Let j : U → X be an open immersion of algebraic
spaces over S. Then U is scheme theoretically dense in X if and only if OX → j∗OU is
injective.

Proof. If OX → j∗OU is injective, then the same is true when restricted to any
algebraic space V étale over X . Hence the scheme theoretic closure of U ×X V in V is
equal to V , see proof of Lemma 16.1. Conversely, assume the scheme theoretic closure of
U ×X V is equal to V for all V étale over X . Suppose that OX → j∗OU is not injective.
Then we can find an affine, say V = Spec(A), étale over X and a nonzero element f ∈ A
such that f maps to zero in Γ(V ×X U,O). In this case the scheme theoretic closure of
V ×X U in V is clearly contained in Spec(A/(f)) a contradiction. �

Lemma 17.6. Let S be a scheme. Let X be an algebraic space over S. If U , V are
scheme theoretically dense open subspaces of X , then so is U ∩ V .

Proof. Let W → X be any étale morphism. Consider the mapO(W )→ O(W ×X
V )→ O(W ×X (V ∩U)). By Lemma 17.5 both maps are injective. Hence the composite
is injective. Hence by Lemma 17.5 U ∩ V is scheme theoretically dense in X . �
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Lemma 17.7. Let S be a scheme. Let h : Z → X be an immersion of algebraic spaces
over S. Assume eitherZ → X is quasi-compact orZ is reduced. LetZ ⊂ X be the scheme
theoretic image of h. Then the morphism Z → Z is an open immersion which identifies
Z with a scheme theoretically dense open subspace of Z. Moreover, Z is topologically
dense in Z.

Proof. In both cases the formation of Z commutes with étale localization, see Lem-
mas 16.3 and 16.4. Hence this lemma follows from the case of schemes, see Morphisms,
Lemma 7.7. �

Lemma 17.8. Let S be a scheme. LetB be an algebraic space over S. Let f, g : X → Y
be morphisms of algebraic spaces over B. Let U ⊂ X be an open subspace such that
f |U = g|U . If the scheme theoretic closure of U in X is X and Y → B is separated, then
f = g.

Proof. As Y → B is separated the fibre product Y ×∆,Y×BY,(f,g) X is a closed
subspace Z ⊂ X . As f |U = g|U we see that U ⊂ Z. Hence Z = X as U is assumed
scheme theoretically dense in X . �

18. Dominant morphisms

We copy the definition of a dominant morphism of schemes to get the notion of a domi-
nant morphism of algebraic spaces. We caution the reader that this definition is not well
behaved unless the morphism is quasi-compact and the algebraic spaces satisfy some sepa-
ration axioms.

Definition 18.1. Let S be a scheme. A morphism f : X → Y of algebraic spaces
over S is called dominant if the image of |f | : |X| → |Y | is dense in |Y |.

19. Universally injective morphisms

We have already defined in Section 3 what it means for a representable morphism of al-
gebraic spaces to be universally injective. For a field K over S (recall this means that
we are given a structure morphism Spec(K) → S) and an algebraic space X over S we
write X(K) = MorS(Spec(K), X). We first translate the condition for representable
morphisms into a condition on the functor of points.

Lemma 19.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Then f is universally injective (in the sense of Section 3) if and
only if for all fields K the map X(K)→ Y (K) is injective.

Proof. We are going to use Morphisms, Lemma 10.2 without further mention. Sup-
pose that f is universally injective. Then for any field K and any morphism Spec(K)→
Y the morphism of schemes Spec(K)×Y X → Spec(K) is universally injective. Hence
there exists at most one section of the morphism Spec(K) ×Y X → Spec(K). Hence
the map X(K) → Y (K) is injective. Conversely, suppose that for every field K the
map X(K) → Y (K) is injective. Let T → Y be a morphism from a scheme into Y , and
consider the base change fT : T ×Y X → T . For any field K we have

(T ×Y X)(K) = T (K)×Y (K) X(K)
by definition of the fibre product, and hence the injectivity ofX(K)→ Y (K) guarantees
the injectivity of (T ×Y X)(K)→ T (K) which means that fT is universally injective as
desired. �
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Next, we translate the property that the transformation between field valued points is
injective into something more geometric.

Lemma 19.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) the map X(K)→ Y (K) is injective for every field K over S
(2) for every morphism Y ′ → Y of algebraic spaces over S the induced map |Y ′×Y

X| → |Y ′| is injective, and
(3) the diagonal morphism X → X ×Y X is surjective.

Proof. Assume (1). Let g : Y ′ → Y be a morphism of algebraic spaces, and denote
f ′ : Y ′×YX → Y ′ the base change of f . LetKi, i = 1, 2 be fields and letϕi : Spec(Ki)→
Y ′ ×Y X be morphisms such that f ′ ◦ϕ1 and f ′ ◦ϕ2 define the same element of |Y ′|. By
definition this means there exists a field Ω and embeddings αi : Ki ⊂ Ω such that the two
morphisms f ′◦ϕi◦αi : Spec(Ω)→ Y ′ are equal. Here is the corresponding commutative
diagram

Spec(Ω)

..

α1

&&

α2
// Spec(K2)

ϕ2

&&
Spec(K1) ϕ1 // Y ′ ×Y X

f ′

��

g′
// X

f

��
Y ′ g // Y.

In particular the compositions g ◦ f ′ ◦ ϕi ◦ αi are equal. By assumption (1) this implies
that the morphism g′ ◦ ϕi ◦ αi are equal, where g′ : Y ′ ×Y X → X is the projection.
By the universal property of the fibre product we conclude that the morphisms ϕi ◦ αi :
Spec(Ω) → Y ′ ×Y X are equal. In other words ϕ1 and ϕ2 define the same point of
Y ′ ×Y X . We conclude that (2) holds.

Assume (2). Let K be a field over S , and let a, b : Spec(K) → X be two morphisms
such that f ◦ a = f ◦ b. Denote c : Spec(K) → Y the common value. By assump-
tion | Spec(K) ×c,Y X| → | Spec(K)| is injective. This means there exists a field Ω and
embeddings αi : K → Ω such that

Spec(Ω)
α1

//

α2

��

Spec(K)

a

��
Spec(K) b // Spec(K)×c,Y X

is commutative. Composing with the projection to Spec(K) we see thatα1 = α2. Denote
the common value α. Then we see that {α : Spec(Ω) → Spec(K)} is a fpqc covering of
Spec(K) such that the two morphisms a, b become equal on the members of the covering.
By Properties of Spaces, Proposition 17.1 we conclude that a = b. We conclude that (1)
holds.

Assume (3). Let x, x′ ∈ |X| be a pair of points such that f(x) = f(x′) in |Y |. By Prop-
erties of Spaces, Lemma 4.3 we see there exists a x′′ ∈ |X ×Y X| whose projections are x
and x′. By assumption and Properties of Spaces, Lemma 4.4 there exists a x′′′ ∈ |X| with
∆X/Y (x′′′) = x′′. Thus x = x′. In other words f is injective. Since condition (3) is stable
under base change we see that f satisfies (2).
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Assume (2). Then in particular |X ×Y X| → |X| is injective which implies immediately
that |∆X/Y | : |X| → |X ×Y X| is surjective, which implies that ∆X/Y is surjective by
Properties of Spaces, Lemma 4.4. �

By the two lemmas above the following definition does not conflict with the already de-
fined notion of a universally injective representable morphism of algebraic spaces.

Definition 19.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces overS. We say f is universally injective if for every morphismY ′ → Y the induced
map |Y ′ ×Y X| → |Y ′| is injective.
To be sure this means that any or all of the equivalent conditions of Lemma 19.2 hold.

Remark 19.4. A universally injective morphism of schemes is separated, see Mor-
phisms, Lemma 10.3. This is not the case for morphisms of algebraic spaces. Namely, the
algebraic space X = A1

k/{x ∼ −x | x 6= 0} constructed in Spaces, Example 14.1 comes
equipped with a morphismX → A1

k which maps the point with coordinate x to the point
with coordinate x2. This is an isomorphism away from 0, and there is a unique point of
X lying above 0. AsX isn’t separated this is a universally injective morphism of algebraic
spaces which is not separated.

Lemma 19.5. The base change of a universally injective morphism is universally in-
jective.

Proof. Omitted. Hint: This is formal. �

Lemma 19.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is universally injective,
(2) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

universally injective,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is universally injective,
(4) there exists a schemeZ and a surjective morphismZ → Y such thatZ×Y X →

Z is universally injective, and
(5) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is universally injective.
Proof. We will use that being universally injective is preserved under base change

(Lemma 19.5) without further mention in this proof. It is clear that (1)⇒ (2)⇒ (3)⇒
(4).
Assume g : Z → Y as in (4). Let y : Spec(K)→ Y be a morphism from the spectrum of
a field into Y . By assumption we can find an extension field α : K ⊂ K ′ and a morphism
z : Spec(K ′)→ Z such that y◦α = g◦z (with obvious abuse of notation). By assumption
the morphism Z ×Y X → Z is universally injective, hence there is at most one lift of
g ◦ z : Spec(K ′) → Y to a morphism into X . Since {α : Spec(K ′) → Spec(K)} is a
fpqc covering this implies there is at most one lift of y : Spec(K) → Y to a morphism
into X , see Properties of Spaces, Proposition 17.1. Thus we see that (1) holds.
We omit the verification that (5) is equivalent to (1). �

Lemma 19.7. A composition of universally injective morphisms is universally injec-
tive.

Proof. Omitted. �
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20. Affine morphisms

We have already defined in Section 3 what it means for a representable morphism of alge-
braic spaces to be affine.

Lemma 20.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Then f is affine (in the sense of Section 3) if and only if for all
affine schemes Z and morphisms Z → Y the scheme X ×Y Z is affine.

Proof. This follows directly from the definition of an affine morphism of schemes
(Morphisms, Definition 11.1). �

This clears the way for the following definition.

Definition 20.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is affine if for every affine scheme Z and morphism Z → Y the
algebraic space X ×Y Z is representable by an affine scheme.

Lemma 20.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is representable and affine,
(2) f is affine,
(3) for every affine scheme V and étale morphism V → Y the scheme X ×Y V is

affine,
(4) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is affine, and
(5) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is affine.

Proof. It is clear that (1) implies (2), that (2) implies (3), and that (3) implies (4) by
taking V to be a disjoint union of affines étale over Y , see Properties of Spaces, Lemma 6.1.
Assume V → Y is as in (4). Then for every affine open W of V we see that W ×Y X
is an affine open of V ×Y X . Hence by Properties of Spaces, Lemma 13.1 we conclude
that V ×Y X is a scheme. Moreover the morphism V ×Y X → V is affine. This means
we can apply Spaces, Lemma 11.5 because the class of affine morphisms satisfies all the
required properties (see Morphisms, Lemmas 11.8 and Descent, Lemmas 23.18 and 37.1).
The conclusion of applying this lemma is that f is representable and affine, i.e., (1) holds.

The equivalence of (1) and (5) follows from the fact that being affine is Zariski local on the
target (the reference above shows that being affine is in fact fpqc local on the target). �

Lemma 20.4. The composition of affine morphisms is affine.

Proof. Omitted. Hint: Transitivity of fibre products. �

Lemma 20.5. The base change of an affine morphism is affine.

Proof. Omitted. Hint: Transitivity of fibre products. �

Lemma 20.6. A closed immersion is affine.

Proof. Follows immediately from the corresponding statement for morphisms of
schemes, see Morphisms, Lemma 11.9. �
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Lemma 20.7. Let S be a scheme. Let X be an algebraic space over S. There is an
anti-equivalence of categories

algebraic spaces
affine over X ←→ quasi-coherent sheaves

ofOX -algebras

which associates to f : Y → X the sheaf f∗OY . Moreover, this equivalence is compatible
with arbitrary base change.

Proof. This lemma is the analogue of Morphisms, Lemma 11.5. Let A be a quasi-
coherent sheaf of OX -algebras. We will construct an affine morphism of algebraic spaces
π : Y = Spec

X
(A)→ X with π∗OY ∼= A. To do this, choose a schemeU and a surjective

étale morphismϕ : U → X . As usual denoteR = U×XU with projections s, t : R→ U .
Denote ψ : R → X the composition ψ = ϕ ◦ s = ϕ ◦ t. By the aforementioned
lemma there exists an affine morphisms of schemes π0 : V → U and π1 : W → R with
π0,∗OV ∼= ϕ∗A and π1,∗OW ∼= ψ∗A. Since the construction is compatible with base
change there exist morphisms s′, t′ : W → V such that the diagrams

W
s′
//

��

V

��
R

s // U

and

W
t′
//

��

V

��
R

t // U

are cartesian. It follows that s′, t′ are étale. It is a formal consequence of the above that
(t′, s′) : W → V ×S V is a monomorphism. We omit the verification thatW → V ×S V
is an equivalence relation (hint: think about the pullback of A to U ×X U ×X U =
R ×s,U,t R). The quotient sheaf Y = V/W is an algebraic space, see Spaces, Theorem
10.5. By Groupoids, Lemma 20.7 we see that Y ×X U ∼= V . Hence Y → X is affine by
Lemma 20.3. Finally, the isomorphism of

(Y ×X U → U)∗OY×XU = π0,∗OV ∼= ϕ∗A

is compatible with glueing isomorphisms, whence (Y → X)∗OY ∼= A by Properties of
Spaces, Proposition 32.1. We omit the verification that this construction is compatible
with base change. �

Definition 20.8. Let S be a scheme. Let X be an algebraic space over S. Let A be
a quasi-coherent sheaf ofOX -algebras. The relative spectrum ofA over X , or simply the
spectrum of A over X is the affine morphism Spec(A) → X corresponding to A under
the equivalence of categories of Lemma 20.7.

Forming the relative spectrum commutes with arbitrary base change.

Remark 20.9. Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Then f has a canonical factorization

Y −→ Spec
X

(f∗OY ) −→ X

This makes sense because f∗OY is quasi-coherent by Lemma 11.2. The morphism Y →
Spec

X
(f∗OY ) comes from the canonical OY -algebra map f∗f∗OY → OY which cor-

responds to a canonical morphism Y → Y ×X Spec
X

(f∗OY ) over Y (see Lemma 20.7)
whence a factorization of f as above.
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Lemma 20.10. Let S be a scheme. Let f : Y → X be an affine morphism of algebraic
spaces overS. LetA = f∗OY . The functorF 7→ f∗F induces an equivalence of categories{

category of quasi-coherent
OY -modules

}
−→

{
category of quasi-coherent

A-modules

}
Moreover, an A-module is quasi-coherent as an OX -module if and only if it is quasi-
coherent as anA-module.

Proof. Omitted. �

Lemma 20.11. Let S be a scheme. Let B be an algebraic space over S. Suppose g :
X → Y is a morphism of algebraic spaces over B.

(1) If X is affine over B and ∆ : Y → Y ×B Y is affine, then g is affine.
(2) If X is affine over B and Y is separated over B, then g is affine.
(3) A morphism from an affine scheme to an algebraic space with affine diagonal

over Z (as in Properties of Spaces, Definition 3.1) is affine.
(4) A morphism from an affine scheme to a separated algebraic space is affine.

Proof. Proof of (1). The base change X ×B Y → Y is affine by Lemma 20.5. The
morphism (1, g) : X → X ×B Y is the base change of Y → Y ×B Y by the morphism
X ×B Y → Y ×B Y . Hence it is affine by Lemma 20.5. The composition of affine
morphisms is affine (see Lemma 20.4) and (1) follows. Part (2) follows from (1) as a closed
immersion is affine (see Lemma 20.6) and Y/B separated means ∆ is a closed immersion.
Parts (3) and (4) are special cases of (1) and (2). �

Lemma 20.12. Let S be a scheme. Let X be a quasi-separated algebraic space over S.
Let A be an Artinian ring. Any morphism Spec(A)→ X is affine.

Proof. Let U → X be an étale morphism with U affine. To prove the lemma we
have to show that Spec(A)×X U is affine, see Lemma 20.3. SinceX is quasi-separated the
scheme Spec(A)×XU is quasi-compact. Moreover, the projection morphism Spec(A)×X
U → Spec(A) is étale. Hence this morphism has finite discrete fibers and moreover the
topology on Spec(A) is discrete. Thus Spec(A) ×X U is a scheme whose underlying
topological space is a finite discrete set. We are done by Schemes, Lemma 11.8. �

21. Quasi-affine morphisms

We have already defined in Section 3 what it means for a representable morphism of alge-
braic spaces to be quasi-affine.

Lemma 21.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Then f is quasi-affine (in the sense of Section 3) if and only if for
all affine schemes Z and morphisms Z → Y the scheme X ×Y Z is quasi-affine.

Proof. This follows directly from the definition of a quasi-affine morphism of schemes
(Morphisms, Definition 13.1). �

This clears the way for the following definition.

Definition 21.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is quasi-affine if for every affine scheme Z and morphism Z → Y
the algebraic space X ×Y Z is representable by a quasi-affine scheme.

Lemma 21.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:
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(1) f is representable and quasi-affine,
(2) f is quasi-affine,
(3) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is quasi-affine, and
(4) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is quasi-affine.

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to be a
disjoint union of affines étale over Y , see Properties of Spaces, Lemma 6.1. Assume V → Y
is as in (3). Then for every affine openW of V we see thatW×Y X is a quasi-affine open of
V ×Y X . Hence by Properties of Spaces, Lemma 13.1 we conclude that V ×Y X is a scheme.
Moreover the morphism V ×Y X → V is quasi-affine. This means we can apply Spaces,
Lemma 11.5 because the class of quasi-affine morphisms satisfies all the required properties
(see Morphisms, Lemmas 13.5 and Descent, Lemmas 23.20 and 38.1). The conclusion of
applying this lemma is that f is representable and quasi-affine, i.e., (1) holds.
The equivalence of (1) and (4) follows from the fact that being quasi-affine is Zariski local
on the target (the reference above shows that being quasi-affine is in fact fpqc local on the
target). �

Lemma 21.4. The composition of quasi-affine morphisms is quasi-affine.

Proof. Omitted. �

Lemma 21.5. The base change of a quasi-affine morphism is quasi-affine.

Proof. Omitted. �

Lemma 21.6. Let S be a scheme. A quasi-compact and quasi-separated morphism
of algebraic spaces f : Y → X is quasi-affine if and only if the canonical factorization
Y → Spec

X
(f∗OY ) (Remark 20.9) is an open immersion.

Proof. Let U → X be a surjective morphism where U is a scheme. Since we may
check whether f is quasi-affine after base change to U (Lemma 21.3), since f∗OY |V is
equal to (Y ×XU → U)∗OY×XU (Properties of Spaces, Lemma 26.2), and since formation
of relative spectrum commutes with base change (Lemma 20.7), we see that the assertion
reduces to the case that X is a scheme. If X is a scheme and either f is quasi-affine or
Y → Spec

X
(f∗OY ) is an open immersion, then Y is a scheme as well. Thus we reduce to

Morphisms, Lemma 13.3. �

22. Types of morphisms étale local on source-and-target

Given a property of morphisms of schemes which is étale local on the source-and-target,
see Descent, Definition 32.3 we may use it to define a corresponding property of mor-
phisms of algebraic spaces, namely by imposing either of the equivalent conditions of the
lemma below.

Lemma 22.1. LetP be a property of morphisms of schemes which is étale local on the
source-and-target. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Consider commutative diagrams

U

a

��

h
// V

b
��

X
f // Y
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whereU and V are schemes and the vertical arrows are étale. The following are equivalent
(1) for any diagram as above the morphism h has property P , and
(2) for some diagram as above with a : U → X surjective the morphism h has

property P .
If X and Y are representable, then this is also equivalent to f (as a morphism of schemes)
having property P . If P is also preserved under any base change, and fppf local on the
base, then for representable morphisms f this is also equivalent to f having propertyP in
the sense of Section 3.

Proof. Let us prove the equivalence of (1) and (2). The implication (1)⇒ (2) is im-
mediate (taking into account Spaces, Lemma 11.6). Assume

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y

are two diagrams as in the lemma. Assume U → X is surjective and h has property P . To
show that (2) implies (1) we have to prove that h′ has P . To do this consider the diagram

U

h

��

U ×X U ′oo

(h,h′)
��

// U ′

h′

��
V V ×Y V ′oo // V ′

By Descent, Lemma 32.5 we see that h hasP implies (h, h′) hasP and sinceU×XU ′ → U ′

is surjective this implies (by the same lemma) that h′ has P .
If X and Y are representable, then Descent, Lemma 32.5 applies which shows that (1) and
(2) are equivalent to f having P .
Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma, and
that P is preserved under arbitrary base change. We have to show that for any scheme
Z and morphism Z → X the base change Z ×Y X → Z has property P . Consider the
diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z

Note that the top horizontal arrow is a base change of h and hence has propertyP . The left
vertical arrow is étale and surjective and the right vertical arrow is étale. Thus Descent,
Lemma 32.5 once again kicks in and shows that Z ×Y X → Z has property P . �

Definition 22.2. Let S be a scheme. Let P be a property of morphisms of schemes
which is étale local on the source-and-target. We say a morphism f : X → Y of algebraic
spaces over S has property P if the equivalent conditions of Lemma 22.1 hold.

Here are a couple of obvious remarks.

Remark 22.3. Let S be a scheme. Let P be a property of morphisms of schemes
which is étale local on the source-and-target. Suppose that moreover P is stable under
compositions. Then the class of morphisms of algebraic spaces having propertyP is stable
under composition.
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Remark 22.4. Let S be a scheme. Let P be a property of morphisms of schemes
which is étale local on the source-and-target. Suppose that moreover P is stable under
base change. Then the class of morphisms of algebraic spaces having property P is stable
under base change.

Given a property of morphisms of germs of schemes which is étale local on the source-
and-target, see Descent, Definition 33.1 we may use it to define a corresponding property
of morphisms of algebraic spaces at a point, namely by imposing either of the equivalent
conditions of the lemma below.

Lemma 22.5. Let Q be a property of morphisms of germs which is étale local on the
source-and-target. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let x ∈ |X| be a point of X . Consider the diagrams

U

a

��

h
// V

b
��

X
f // Y

u

��

// v

��
x // y

where U and V are schemes, a, b are étale, and u, v, x, y are points of the corresponding
spaces. The following are equivalent

(1) for any diagram as above we haveQ((U, u)→ (V, v)), and
(2) for some diagram as above we haveQ((U, u)→ (V, v)).

If X and Y are representable, then this is also equivalent toQ((X,x)→ (Y, y)).

Proof. Omitted. Hint: Very similar to the proof of Lemma 22.1. �

Definition 22.6. Let Q be a property of morphisms of germs of schemes which is
étale local on the source-and-target. Let S be a scheme. Given a morphism f : X → Y
of algebraic spaces over S and a point x ∈ |X| we say that f has property Q at x if the
equivalent conditions of Lemma 22.5 hold.

The following lemma should not be used blindly to go from a property of morphisms to
a property of morphisms at a point. For example if P is the property of being flat, then
the property Q in the following lemma means “f is flat in an open neighbourhood of x”
which is not the same as “f is flat at x”.

Lemma 22.7. Let P be a property of morphisms of schemes which is étale local on
the source-and-target. Consider the propertyQ of morphisms of germs associated to P in
Descent, Lemma 33.2. Then

(1) Q is étale local on the source-and-target.
(2) given a morphism of algebraic spaces f : X → Y and x ∈ |X| the following are

equivalent
(a) f hasQ at x, and
(b) there is an open neighbourhood X ′ ⊂ X of x such that X ′ → Y has P .

(3) given a morphism of algebraic spaces f : X → Y the following are equivalent:
(a) f has P ,
(b) for every x ∈ |X| the morphism f hasQ at x.

Proof. See Descent, Lemma 33.2 for (1). The implication (1)(a)⇒ (2)(b) follows on
letting X ′ = a(U) ⊂ X given a diagram as in Lemma 22.5. The implication (2)(b) ⇒
(1)(a) is clear. The equivalence of (3)(a) and (3)(b) follows from the corresponding result
for morphisms of schemes, see Descent, Lemma 33.3. �
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Remark 22.8. We will apply Lemma 22.7 above to all cases listed in Descent, Remark
32.7 except “flat”. In each case we will do this by defining f to have property P at x if f
has P in a neighbourhood of x.

23. Morphisms of finite type

The property “locally of finite type” of morphisms of schemes is étale local on the source-
and-target, see Descent, Remark 32.7. It is also stable under base change and fpqc local
on the target, see Morphisms, Lemma 15.4, and Descent, Lemmas 23.10. Hence, by Lemma
22.1 above, we may define what it means for a morphism of algebraic spaces to be locally
of finite type as follows and it agrees with the already existing notion defined in Section
3 when the morphism is representable.

Definition 23.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f locally of finite type if the equivalent conditions of Lemma 22.1 hold
with P = locally of finite type.

(2) Let x ∈ |X|. We say f is of finite type at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally of finite type.

(3) We say f is of finite type if it is locally of finite type and quasi-compact.

Consider the algebraic space A1
k/Z of Spaces, Example 14.8. The morphism A1

k/Z →
Spec(k) is of finite type.

Lemma 23.2. The composition of finite type morphisms is of finite type. The same
holds for locally of finite type.

Proof. See Remark 22.3 and Morphisms, Lemma 15.3. �

Lemma 23.3. A base change of a finite type morphism is finite type. The same holds
for locally of finite type.

Proof. See Remark 22.4 and Morphisms, Lemma 15.4. �

Lemma 23.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is locally of finite type,
(2) for every x ∈ |X| the morphism f is of finite type at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

locally of finite type,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is locally of finite type,
(5) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is locally of finite type,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such that

the composition f ◦ ϕ is locally of finite type,
(7) for every commutative diagram

U

��

// V

��
X // Y
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whereU , V are schemes and the vertical arrows are étale the top horizontal arrow
is locally of finite type,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, U → X is surjective, and
the top horizontal arrow is locally of finite type, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is locally of finite type.

Proof. Each of the conditions (2), (3), (4), (5), (6), (7), and (9) imply condition (8)
in a straightforward manner. For example, if (5) holds, then we can choose a scheme V
which is a disjoint union of affines and a surjective morphism V → Y (see Properties of
Spaces, Lemma 6.1). Then V ×Y X → V is locally of finite type by (5). Choose a scheme
U and a surjective étale morphism U → V ×Y X . Then U → V is locally of finite type
by Lemma 23.2. Hence (8) is true.
The conditions (1), (7), and (8) are equivalent by definition.
To finish the proof, we show that (1) implies all of the conditions (2), (3), (4), (5), (6), and
(9). For (2) this is immediate. For (3), (4), (5), and (9) this follows from the fact that being
locally of finite type is preserved under base change, see Lemma 23.3. For (6) we can take
U = X and we’re done. �

Lemma 23.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite type and Y is locally Noetherian, then X is locally Noe-
therian.

Proof. Let
U

��

// V

��
X // Y

be a commutative diagram where U , V are schemes and the vertical arrows are surjective
étale. If f is locally of finite type, then U → V is locally of finite type. If Y is locally
Noetherian, then V is locally Noetherian. By Morphisms, Lemma 15.6 we see that U is
locally Noetherian, which means that X is locally Noetherian. �

Lemma 23.6. Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms of
algebraic spaces over S. If g ◦ f : X → Z is locally of finite type, then f : X → Y is
locally of finite type.

Proof. We can find a diagram

U //

��

V //

��

W

��
X // Y // Z

whereU , V ,W are schemes, the vertical arrows are étale and surjective, see Spaces, Lemma
11.6. At this point we can use Lemma 23.4 and Morphisms, Lemma 15.8 to conclude. �
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Lemma 23.7. An immersion is locally of finite type.

Proof. Follows from the general principle Spaces, Lemma 5.8 and Morphisms, Lem-
mas 15.5. �

24. Points and geometric points

In this section we make some remarks on points and geometric points (see Properties of
Spaces, Definition 19.1). One way to think about a geometric point of X is to consider a
geometric point s : Spec(k) → S of S and a lift of s to a morphism x into X . Here is a
diagram

Spec(k)
x
//

s
##

X

��
S.

We often say “let k be an algebraically closed field over S” to indicate that Spec(k) comes
equipped with a morphism Spec(k)→ S. In this situation we write

X(k) = MorS(Spec(k), X) = {x ∈ X lying over s}

for the set of k-valued points ofX . In this case the mapX(k)→ |X|maps into the subset
|Xs| ⊂ |X|. HereXs = Spec(κ(s))×SX , where s ∈ S is the point corresponding to s. As
Spec(κ(s))→ S is a monomorphism, also the base change Xs → X is a monomorphism,
and |Xs| is indeed a subset of |X|.

Lemma 24.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type. The following are equivalent:

(1) f is surjective, and
(2) for every algebraically closed field k over S the induced map X(k) → Y (k) is

surjective.

Proof. Choose a diagram
U

��

// V

��
X // Y

withU , V schemes over S and vertical arrows surjective and étale, see Spaces, Lemma 11.6.
Since f is locally of finite type we see that U → V is locally of finite type.

Assume (1) and let y ∈ Y (k). Then U → Y is surjective and locally of finite type by
Lemmas 5.4 and 23.2. Let Z = U ×Y,y Spec(k). This is a scheme. The projection Z →
Spec(k) is surjective and locally of finite type by Lemmas 5.5 and 23.3. It follows from
Varieties, Lemma 14.1 that Z has a k valued point z. The image x ∈ X(k) of z maps to y
as desired.

Assume (2). By Properties of Spaces, Lemma 4.4 it suffices to show that |X| → |Y | is sur-
jective. Let y ∈ |Y |. Choose a u ∈ U mapping to y. Let k ⊃ κ(u) be an algebraic closure.
Denote u ∈ U(k) the corresponding point and y ∈ Y (k) its image. By assumption there
exists a x ∈ X(k) mapping to y. Then it is clear that the image x ∈ |X| of x maps to
y. �
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In order to state the next lemma we introduce the following notation. Given a scheme T
we denote

λ(T ) = sup{ℵ0, |κ(t)|; t ∈ T}.
In words λ(T ) is the smallest infinite cardinal bounding all the cardinalities of residue
fields ot T . Note that if R is a ring then the cardinality of any residue field κ(p) of R
is bounded by the cardinality of R (details omitted). This implies that λ(T ) ≤ size(T )
where size(T ) is the size of the scheme T as introduced in Sets, Section 9. If L/K is a
finitely generated field extension then |K| ≤ |L| ≤ max{ℵ0, |K|}. It follows that if
T ′ → T is a morphism of schemes which is locally of finite type then λ(T ′) ≤ λ(T ), and
if T ′ → T is also surjective then equality holds. Next, suppose that S is a scheme and that
X is an algebraic space over S. In this case we define

λ(X) := λ(U)
where U is any scheme over S which has a surjective étale morphism towards X . The
reason that this is independent of the choice of U is that given a pair of such schemes U
and U ′ the fibre product U ×X U ′ is a scheme which admits a surjective étale morphism
to both U and U ′, whence λ(U) = λ(U ×X U ′) = λ(U ′) by the discussion above.

Lemma 24.2. Let S be a scheme. Let X , Y be algebraic spaces over S.
(1) As k ranges over all algebraically closed fields over S the collection of geometric

points y ∈ Y (k) cover all of |Y |.
(2) As k ranges over all algebraically closed fields over S with |k| ≥ λ(Y ) and |k| >

λ(X) the geometric points y ∈ Y (k) cover all of |Y |.
(3) For any geometric point s : Spec(k) → S where k has cardinality > λ(X) the

map
X(k) −→ |Xs|

is surjective.
(4) Let X → Y be a morphism of algebraic spaces over S. For any geometric point

s : Spec(k)→ S where k has cardinality > λ(X) the map

X(k) −→ |X| ×|Y | Y (k)
is surjective.

(5) Let X → Y be a morphism of algebraic spaces over S. The following are equiv-
alent:
(a) the map X → Y is surjective,
(b) for all algebraically closed fields k over S with |k| > λ(X), and |k| ≥ λ(Y )

the map X(k)→ Y (k) is surjective.

Proof. To prove part (1) choose a surjective étale morphism V → Y where V is a
scheme. For each v ∈ V choose an algebraic closure κ(v) ⊂ kv . Consider the morphisms
x : Spec(kv)→ V → Y . By construction of |Y | these cover |Y |.
To prove part (2) we will use the following two facts whose proofs we omit: (i) If K is a
field andK is algebraic closure then |K| ≤ max{ℵ0, |K|}. (ii) For any algebraically closed
field k and any cardinal ℵ, ℵ ≥ |k| there exists an extension of algebraically closed fields
k′/k with |k′| = ℵ. Now we set ℵ = max{λ(X), λ(Y )}+. Here λ+ > λ indicates the
next bigger cardinal, see Sets, Section 6. Now (i) implies that the fields ku constructed in
the first paragraph of the proof all have cardinality bounded byλ(X). Hence by (ii) we can
find extensions ku ⊂ k′

u such that |k′
u| = ℵ. The morphisms x′ : Spec(k′

u) → X cover
|X| as desired. To really finish the proof of (2) we need to show that the schemes Spec(k′

u)
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are (isomorphic to) objects of Schfppf because our conventions are that all schemes are
objects of Schfppf ; the rest of this paragraph should be skipped by anyone who is not
interested in set theoretical considerations. By construction there exists an object T of
Schfppf such that λ(X) and λ(Y ) are bounded by size(T ). By our construction of the
category Schfppf in Topologies, Definitions 7.6 as the category Schα constructed in Sets,
Lemma 9.2 we see that any scheme whose size is ≤ size(T )+ is isomorphic to an object
of Schfppf . See the expression for the function Bound in Sets, Equation (9.1.1). Since
ℵ ≤ size(T )+ we conclude.

The notationXs in part (3) means the fibre product Spec(κ(s))×SX , where s ∈ S is the
point corresponding to s. Hence part (2) follows from (4) with Y = Spec(κ(s)).

Let us prove (4). Let X → Y be a morphism of algebraic spaces over S. Let k be an
algebraically closed field over S of cardinality > λ(X). Let y ∈ Y (k) and x ∈ |X| which
map to the same element y of |Y |. We have to find x ∈ X(k) mapping to x and y. Choose
a commutative diagram

U

��

// V

��
X // Y

withU , V schemes over S and vertical arrows surjective and étale, see Spaces, Lemma 11.6.
Choose a u ∈ |U | which maps to x, and denote v ∈ |V | the image. We will think of
u = Spec(κ(u)) and v = Spec(κ(v)) as schemes. Note that V ×Y Spec(k) is a scheme
étale over k. Hence it is a disjoint union of spectra of finite separable extensions of k, see
Morphisms, Lemma 36.7. As v maps to y we see that v×Y Spec(k) is a nonempty scheme.
As v → V is a monomorphism, we see that v×Y Spec(k)→ V ×Y Spec(k) is a monomor-
phism. Hence v×Y Spec(k) is a disjoint union of spectra of finite separable extensions of
k, by Schemes, Lemma 23.11. We conclude that the morphism v ×Y Spec(k) → Spec(k)
has a section, i.e., we can find a morphism v : Spec(k) → V lying over v and over y.
Finally we consider the scheme

u×V,v Spec(k) = Spec(κ(u)⊗κ(v) k)

where κ(v) → k is the field map defining the morphism v. Since the cardinality of k is
larger than the cardinality of κ(u) by assumption we may apply Algebra, Lemma 35.12
to see that any maximal ideal m ⊂ κ(u) ⊗κ(v) k has a residue field which is algebraic
over k and hence equal to k. Such a maximal ideal will hence produce a morphism u :
Spec(k)→ U lying over u and mapping to v. The composition Spec(k)→ U → X will
be the desired geometric point x ∈ X(k). This concludes the proof of part (4).

Part (5) is a formal consequence of parts (2) and (4) and Properties of Spaces, Lemma 4.4.
�

25. Points of finite type

Let S be a scheme. Let X be an algebraic space over S. A finite type point x ∈ |X| is a
point which can be represented by a morphism Spec(k) → X which is locally of finite
type. Finite type points are a suitable replacement of closed points for algebraic spaces
and algebraic stacks. There are always “enough of them” for example.

Lemma 25.1. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
The following are equivalent:
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(1) There exists a morphism Spec(k) → X which is locally of finite type and rep-
resents x.

(2) There exists a scheme U , a closed point u ∈ U , and an étale morphism ϕ : U →
X such that ϕ(u) = x.

Proof. Let u ∈ U and U → X be as in (2). Then Spec(κ(u)) → U is of finite type,
and U → X is representable and locally of finite type (by the general principle Spaces,
Lemma 5.8 and Morphisms, Lemmas 36.11 and 21.8). Hence we see (1) holds by Lemma
23.2.

Conversely, assume Spec(k) → X is locally of finite type and represents x. Let U → X
be a surjective étale morphism whereU is a scheme. By assumptionU×X Spec(k)→ U is
locally of finite type. Pick a finite type point v of U ×X Spec(k) (there exists at least one,
see Morphisms, Lemma 16.4). By Morphisms, Lemma 16.5 the image u ∈ U of v is a finite
type point ofU . Hence by Morphisms, Lemma 16.4 after shrinkingU we may assume that
u is a closed point of U , i.e., (2) holds. �

Definition 25.2. Let S be a scheme. Let X be an algebraic space over S. We say
a point x ∈ |X| is a finite type point5 if the equivalent conditions of Lemma 25.1 are
satisfied. We denote Xft-pts the set of finite type points of X .

We can describe the set of finite type points as follows.

Lemma 25.3. Let S be a scheme. Let X be an algebraic space over S. We have

Xft-pts =
⋃

ϕ:U→X étale
|ϕ|(U0)

where U0 is the set of closed points of U . Here we may let U range over all schemes étale
over X or over all affine schemes étale over X .

Proof. Immediate from Lemma 25.1. �

Lemma 25.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite type, then f(Xft-pts) ⊂ Yft-pts.

Proof. Takex ∈ Xft-pts. Representx by a locally finite type morphismx : Spec(k)→
X . Then f ◦ x is locally of finite type by Lemma 23.2. Hence f(x) ∈ Yft-pts. �

Lemma 25.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite type and surjective, then f(Xft-pts) = Yft-pts.

Proof. We have f(Xft-pts) ⊂ Yft-pts by Lemma 25.4. Let y ∈ |Y | be a finite type
point. Represent y by a morphism Spec(k) → Y which is locally of finite type. As f
is surjective the algebraic space Xk = Spec(k) ×Y X is nonempty, therefore has a finite
type point x ∈ |Xk| by Lemma 25.3. Now Xk → X is a morphism which is locally of
finite type as a base change of Spec(k)→ Y (Lemma 23.3). Hence the image of x in X is
a finite type point by Lemma 25.4 which maps to y by construction. �

Lemma 25.6. Let S be a scheme. Let X be an algebraic space over S. For any locally
closed subset T ⊂ |X| we have

T 6= ∅ ⇒ T ∩Xft-pts 6= ∅.
In particular, for any closed subset T ⊂ |X| we see that T ∩Xft-pts is dense in T .

5This is a slight abuse of language as it would perhaps be more correct to say “locally finite type point”.
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Proof. Let i : Z → X be the reduced induce subspace structure on T , see Remark
12.5. Any immersion is locally of finite type, see Lemma 23.7. Hence by Lemma 25.4 we
see Zft-pts ⊂ Xft-pts ∩ T . Finally, any nonempty affine scheme U with an étale morphism
towards Z has at least one closed point. Hence Z has at least one finite type point by
Lemma 25.3. The lemma follows. �

Here is another, more technical, characterization of a finite type point on an algebraic
space.

Lemma 25.7. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
The following are equivalent:

(1) x is a finite type point,
(2) there exists an algebraic space Z whose underlying topological space |Z| is a

singleton, and a morphism f : Z → X which is locally of finite type such that
{x} = |f |(|Z|), and

(3) there exists an algebraic spaceZ and a morphism f : Z → X with the following
properties:
(a) there is a surjective étale morphism z : Spec(k)→ Z where k is a field,
(b) f is locally of finite type,
(c) f is a monomorphism, and
(d) x = f(z).

Proof. Assume x is a finite type point. Choose an affine scheme U , a closed point
u ∈ U , and an étale morphism ϕ : U → X with ϕ(u) = x, see Lemma 25.3. Set u =
Spec(κ(u)) as usual. The projection morphisms u×X u→ u are the compositions

u×X u→ u×X U → u×X X = u

where the first arrow is a closed immersion (a base change of u→ U ) and the second arrow
is étale (a base change of the étale morphism U → X). Hence u×X U is a disjoint union
of spectra of finite separable extensions of k (see Morphisms, Lemma 36.7) and therefore
the closed subscheme u ×X u is a disjoint union of finite separable extension of k, i.e.,
u×X u→ u is étale. By Spaces, Theorem 10.5 we see that Z = u/u×X u is an algebraic
space. By construction the diagram

u

��

// U

��
Z // X

is commutative with étale vertical arrows. Hence Z → X is locally of finite type (see
Lemma 23.4). By construction the morphism Z → X is a monomorphism and the image
of z is x. Thus (3) holds.

It is clear that (3) implies (2). If (2) holds then x is a finite type point ofX by Lemma 25.4
(and Lemma 25.6 to see that Zft-pts is nonempty, i.e., the unique point of Z is a finite type
point of Z). �

26. Nagata spaces

See Properties of Spaces, Section 7 for the definition of a Nagata algebraic space.

Lemma 26.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If Y is Nagata and f locally of finite type then X is Nagata.



27. QUASI-FINITE MORPHISMS 5255

Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let U be
a scheme and let U → X ×Y V be a surjective étale morphism. If Y is Nagata, then V
is a Nagata scheme. If X → Y is locally of finite type, then U → V is locally of finite
type. Hence V is a Nagata scheme by Morphisms, Lemma 18.1. Then X is Nagata by
definition. �

Lemma 26.2. The following types of algebraic spaces are Nagata.
(1) Any algebraic space locally of finite type over a Nagata scheme.
(2) Any algebraic space locally of finite type over a field.
(3) Any algebraic space locally of finite type over a Noetherian complete local ring.
(4) Any algebraic space locally of finite type over Z.
(5) Any algebraic space locally of finite type over a Dedekind ring of characteristic

zero.
(6) And so on.

Proof. The first property holds by Lemma 26.1. Thus the others hold as well, see
Morphisms, Lemma 18.2. �

27. Quasi-finite morphisms

The property “locally quasi-finite” of morphisms of schemes is étale local on the source-
and-target, see Descent, Remark 32.7. It is also stable under base change and fpqc local on
the target, see Morphisms, Lemma 20.13, and Descent, Lemma 23.24. Hence, by Lemma
22.1 above, we may define what it means for a morphism of algebraic spaces to be locally
quasi-finite as follows and it agrees with the already existing notion defined in Section 3
when the morphism is representable.

Definition 27.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is locally quasi-finite if the equivalent conditions of Lemma 22.1 hold
with P = locally quasi-finite.

(2) Let x ∈ |X|. We say f is quasi-finite at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally quasi-finite.

(3) A morphism of algebraic spaces f : X → Y is quasi-finite if it is locally quasi-
finite and quasi-compact.

The last part is compatible with the notion of quasi-finiteness for morphisms of schemes
by Morphisms, Lemma 20.9.

Lemma 27.2. Let S be a scheme. Let f : X → Y and g : Y ′ → Y be morphisms
of algebraic spaces over S. Denote f ′ : X ′ → Y ′ the base change of f by g. Denote
g′ : X ′ → X the projection. Assume f is locally of finite type. Let W ⊂ |X|, resp.
W ′ ⊂ |X ′| be the set of points where f , resp. f ′ is quasi-finite.

(1) W ⊂ |X| and W ′ ⊂ |X ′| are open,
(2) W ′ = (g′)−1(W ), i.e., formation of the locus where f is quasi-finite commutes

with base change,
(3) the base change of a locally quasi-finite morphism is locally quasi-finite, and
(4) the base change of a quasi-finite morphism is quasi-finite.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X . Choose a scheme V ′ and a
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surjective étale morphism V ′ → Y ′ ×Y V . Set U ′ = V ′ ×V U so that U ′ → X ′ is a
surjective étale morphism as well. Picture

U ′

��

// U

��
V ′ // V

lying over

X ′

��

// X

��
Y ′ // Y

Choose u ∈ |U | with image x ∈ |X|. The property of being ”locally quasi-finite” is étale
local on the source-and-target, see Descent, Remark 32.7. Hence Lemmas 22.5 and 22.7
apply and we see that f : X → Y is quasi-finite at x if and only if U → V is quasi-finite
at u. Similarly for f ′ : X ′ → Y ′ and the morphism U ′ → V ′. Hence parts (1), (2), and
(3) reduce to Morphisms, Lemmas 20.13 and 56.2. Part (4) follows from (3) and Lemma
8.4. �

Lemma 27.3. The composition of quasi-finite morphisms is quasi-finite. The same
holds for locally quasi-finite.

Proof. See Remark 22.3 and Morphisms, Lemma 20.12. �

Lemma 27.4. A base change of a quasi-finite morphism is quasi-finite. The same holds
for locally quasi-finite.

Proof. Immediate consequence of Lemma 27.2. �

The following lemma characterizes locally quasi-finite morphisms as those morphisms
which are locally of finite type and have “discrete fibres”. However, this is not the same
thing as asking |X| → |Y | to have discrete fibres as the discussion in Examples, Section
50 shows.

Lemma 27.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces.
Assume f is locally of finite type. The following are equivalent

(1) f is locally quasi-finite,
(2) for every morphism Spec(k) → Y where k is a field the space |Xk| is discrete.

Here Xk = Spec(k)×Y X .

Proof. Assume f is locally quasi-finite. Let Spec(k) → Y be as in (2). Choose a
surjective étale morphismU → X whereU is a scheme. ThenUk = Spec(k)×Y U → Xk

is an étale morphism of algebraic spaces by Properties of Spaces, Lemma 16.5. By Lemma
27.4 we see that Xk → Spec(k) is locally quasi-finite. By definition this means that
Uk → Spec(k) is locally quasi-finite. Hence |Uk| is discrete by Morphisms, Lemma 20.8.
Since |Uk| → |Xk| is surjective and open we conclude that |Xk| is discrete.
Conversely, assume (2). Choose a surjective étale morphism V → Y where V is a scheme.
Choose a surjective étale morphismU → V ×Y X whereU is a scheme. Note thatU → V
is locally of finite type as f is locally of finite type. Picture

U //

##

X ×Y V

��

// V

��
X // Y

If f is not locally quasi-finite then U → V is not locally quasi-finite. Hence there ex-
ists a specialization u  u′ for some u, u′ ∈ U lying over the same point v ∈ V ,
see Morphisms, Lemma 20.6. We claim that u, u′ do not have the same image in Xv =
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Spec(κ(v)) ×Y X which will contradict the assumption that |Xv| is discrete as desired.
Let d = trdegκ(v)(κ(u)) and d′ = trdegκ(v)(κ(u′)). Then we see that d > d′ by Mor-
phisms, Lemma 28.7. Note that Uv (the fibre of U → V over v) is the fibre product of
U and Xv over X ×Y V , hence Uv → Xv is étale (as a base change of the étale mor-
phism U → X ×Y V ). If u, u′ ∈ Uv map to the same element of |Xv| then there exists
a point r ∈ Rv = Uv ×Xv Uv with t(r) = u and s(r) = u′, see Properties of Spaces,
Lemma 4.3. Note that s, t : Rv → Uv are étale morphisms of schemes over κ(v), hence
κ(u) ⊂ κ(r) ⊃ κ(u′) are finite separable extensions of fields over κ(v) (see Morphisms,
Lemma 36.7). We conclude that the transcendence degrees are equal. This contradiction
finishes the proof. �

Lemma 27.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is locally quasi-finite,
(2) for every x ∈ |X| the morphism f is quasi-finite at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

locally quasi-finite,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is locally quasi-finite,
(5) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is locally quasi-finite,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such that

the composition f ◦ ϕ is locally quasi-finite,
(7) for every commutative diagram

U

��

// V

��
X // Y

whereU , V are schemes and the vertical arrows are étale the top horizontal arrow
is locally quasi-finite,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is surjective
such that the top horizontal arrow is locally quasi-finite, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is locally quasi-finite.

Proof. Omitted. �

Lemma 27.7. An immersion is locally quasi-finite.

Proof. Omitted. �

Lemma 27.8. Let S be a scheme. Let X → Y → Z be morphisms of algebraic spaces
over S. If X → Z is locally quasi-finite, then X → Y is locally quasi-finite.
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Proof. Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with vertical arrows étale and surjective. (See Spaces, Lemma 11.6.) Apply Morphisms,
Lemma 20.17 to the top row. �

Lemma 27.9. Let S be a scheme. Let f : X → Y be a finite type morphism of
algebraic spaces over S. Let y ∈ |Y |. There are at most finitely many points of |X| lying
over y at which f is quasi-finite.

Proof. Choose a field k and a morphism Spec(k) → Y in the equivalence class
determined by y. The fibre Xk = Spec(k) ×Y X is an algebraic space of finite type
over a field, in particular quasi-compact. The map |Xk| → |X| surjects onto the fibre of
|X| → |Y | over y (Properties of Spaces, Lemma 4.3). Moreover, the set of points where
Xk → Spec(k) is quasi-finite maps onto the set of points lying over y where f is quasi-
finite by Lemma 27.2. Choose an affine schemeU and a surjective étale morphismU → Xk

(Properties of Spaces, Lemma 6.3). Then U → Spec(k) is a morphism of finite type and
there are at most a finite number of points where this morphism is quasi-finite, see Mor-
phisms, Lemma 20.14. Since Xk → Spec(k) is quasi-finite at a point x′ if and only if it is
the image of a point of U where U → Spec(k) is quasi-finite, we conclude. �

Lemma 27.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite type and a monomorphism, then f is separated and locally
quasi-finite.

Proof. A monomorphism is separated, see Lemma 10.3. By Lemma 27.6 it suffices
to prove the lemma after performing a base change by Z → Y with Z affine. Hence we
may assume that Y is an affine scheme. Choose an affine scheme U and an étale morphism
U → X . Since X → Y is locally of finite type the morphism of affine schemes U → Y
is of finite type. Since X → Y is a monomorphism we have U ×X U = U ×Y U . In
particular the maps U ×Y U → U are étale. Let y ∈ Y . Then either Uy is empty, or
Spec(κ(u)) ×Spec(κ(y)) Uy is isomorphic to the fibre of U ×Y U → U over u for some
u ∈ U lying over y. This implies that the fibres of U → Y are finite discrete sets (as
U×Y U → U is an étale morphism of affine schemes, see Morphisms, Lemma 36.7). Hence
U → Y is quasi-finite, see Morphisms, Lemma 20.6. As U → X was an arbitrary étale
morphism with U affine this implies that X → Y is locally quasi-finite. �

28. Morphisms of finite presentation

The property “locally of finite presentation” of morphisms of schemes is étale local on
the source-and-target, see Descent, Remark 32.7. It is also stable under base change and
fpqc local on the target, see Morphisms, Lemma 21.4, and Descent, Lemma 23.11. Hence,
by Lemma 22.1 above, we may define what it means for a morphism of algebraic spaces to
be locally of finite presentation as follows and it agrees with the already existing notion
defined in Section 3 when the morphism is representable.

Definition 28.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.
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(1) We say f is locally of finite presentation if the equivalent conditions of Lemma
22.1 hold with P =“locally of finite presentation”.

(2) Let x ∈ |X|. We say f is of finite presentation at x if there exists an open
neighbourhood X ′ ⊂ X of x such that f |X′ : X ′ → Y is locally of finite
presentation6.

(3) A morphism of algebraic spaces f : X → Y is of finite presentation if it is locally
of finite presentation, quasi-compact and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism which
is locally of finite presentation.

Lemma 28.2. The composition of morphisms of finite presentation is of finite pre-
sentation. The same holds for locally of finite presentation.

Proof. See Remark 22.3 and Morphisms, Lemma 21.3. Also use the result for quasi-
compact and for quasi-separated morphisms (Lemmas 8.5 and 4.8). �

Lemma 28.3. A base change of a morphism of finite presentation is of finite presen-
tation. The same holds for locally of finite presentation.

Proof. See Remark 22.4 and Morphisms, Lemma 21.4. Also use the result for quasi-
compact and for quasi-separated morphisms (Lemmas 8.4 and 4.4). �

Lemma 28.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is locally of finite presentation,
(2) for every x ∈ |X| the morphism f is of finite presentation at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

locally of finite presentation,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is locally of finite presentation,
(5) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is locally of finite presentation,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such that

the composition f ◦ ϕ is locally of finite presentation,
(7) for every commutative diagram

U

��

// V

��
X // Y

whereU , V are schemes and the vertical arrows are étale the top horizontal arrow
is locally of finite presentation,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

6It seems awkward to use “locally of finite presentation at x”, but the current terminology may be mislead-
ing in the sense that “of finite presentation at x” does not mean that there is an open neighbourhood X′ ⊂ X

such that f |X′ is of finite presentation.
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where U , V are schemes, the vertical arrows are étale, and U → X is surjective
such that the top horizontal arrow is locally of finite presentation, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is locally of finite presentation.
Proof. Omitted. �

Lemma 28.5. A morphism which is locally of finite presentation is locally of finite
type. A morphism of finite presentation is of finite type.

Proof. Let f : X → Y be a morphism of algebraic spaces which is locally of finite
presentation. This means there exists a diagram as in Lemma 22.1 with h locally of finite
presentation and surjective vertical arrow a. By Morphisms, Lemma 21.8 h is locally of fi-
nite type. HenceX → Y is locally of finite type by definition. If f is of finite presentation
then it is quasi-compact and it follows that f is of finite type. �

Lemma 28.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is of finite presentation and Y is Noetherian, then X is Noetherian.

Proof. Assume f is of finite presentation and Y Noetherian. By Lemmas 28.5 and
23.5 we see that X is locally Noetherian. As f is quasi-compact and Y is quasi-compact
we see that X is quasi-compact. As f is of finite presentation it is quasi-separated (see
Definition 28.1) and as Y is Noetherian it is quasi-separated (see Properties of Spaces, Def-
inition 24.1). Hence X is quasi-separated by Lemma 4.9. Hence we have checked all three
conditions of Properties of Spaces, Definition 24.1 and we win. �

Lemma 28.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S.

(1) If Y is locally Noetherian and f locally of finite type then f is locally of finite
presentation.

(2) If Y is locally Noetherian and f of finite type and quasi-separated then f is of
finite presentation.

Proof. Assume f : X → Y locally of finite type and Y locally Noetherian. This
means there exists a diagram as in Lemma 22.1 with h locally of finite type and surjective
vertical arrow a. By Morphisms, Lemma 21.9 h is locally of finite presentation. Hence
X → Y is locally of finite presentation by definition. This proves (1). If f is of finite
type and quasi-separated then it is also quasi-compact and quasi-separated and (2) follows
immediately. �

Lemma 28.8. Let S be a scheme. Let Y be an algebraic space over S which is quasi-
compact and quasi-separated. IfX is of finite presentation overY , thenX is quasi-compact
and quasi-separated.

Proof. Omitted. �

Lemma 28.9. Let S be a scheme. Let f : X → Y and Y → Z be morphisms of
algebraic spaces over S. If X is locally of finite presentation over Z , and Y is locally of
finite type over Z , then f is locally of finite presentation.

Proof. Choose a schemeW and a surjective étale morphismW → Z. Then choose a
scheme V and a surjective étale morphism V →W ×Z Y . Finally choose a scheme U and
a surjective étale morphismU → V ×Y X . By definitionU is locally of finite presentation
overW and V is locally of finite type overW . By Morphisms, Lemma 21.11 the morphism
U → V is locally of finite presentation. Hence f is locally of finite presentation. �
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Lemma 28.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S with diagonal ∆ : X → X ×Y X . If f is locally of finite type then ∆ is locally
of finite presentation. If f is quasi-separated and locally of finite type, then ∆ is of finite
presentation.

Proof. Note that ∆ is a morphism overX (via the second projectionX×Y X → X).
Assume f is locally of finite type. Note thatX is of finite presentation overX andX×Y X
is of finite type over X (by Lemma 23.3). Thus the first statement holds by Lemma 28.9.
The second statement follows from the first, the definitions, and the fact that a diagonal
morphism is separated (Lemma 4.1). �

Lemma 28.11. An open immersion of algebraic spaces is locally of finite presentation.

Proof. An open immersion is by definition representable, hence we can use the gen-
eral principle Spaces, Lemma 5.8 and Morphisms, Lemma 21.5. �

Lemma 28.12. A closed immersion i : Z → X is of finite presentation if and only if
the associated quasi-coherent sheaf of ideals I = Ker(OX → i∗OZ) is of finite type (as
anOX -module).

Proof. Let U be a scheme and let U → X be a surjective étale morphism. By Lemma
28.4 we see that i′ : Z×X U → U is of finite presentation if and only if i is. By Properties
of Spaces, Section 30 we see that I is of finite type if and only if I|U = Ker(OU →
i′∗OZ×XU ) is. Hence the result follows from the case of schemes, see Morphisms, Lemma
21.7. �

29. Constructible sets

This section is the continuation of Properties of Spaces, Section 8.

Lemma 29.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let E ⊂ |Y | be a subset. If E is étale locally constructible in Y , then f−1(E) is
étale locally constructible in X .

Proof. Choose a scheme V and a surjective étale morphism ϕ : V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X . Then U → X is surjective étale
and the inverse image of f−1(E) in U is the inverse image of ϕ−1(E) by U → V . Thus
the lemma follows from the case of schemes forU → V (Morphisms, Lemma 22.1) and the
definition (Properties of Spaces, Definition 8.2). �

Theorem 29.2 (Chevalley’s Theorem). Let S be a scheme. Let f : X → Y be a
morphism of algebraic spaces over S. Assume f is quasi-compact and locally of finite
presentation. Then the image of every étale locally constructible subset of |X| is an étale
locally constructible subset of |Y |.

Proof. LetE ⊂ |X| be étale locally constructible. Let V → Y be an étale morphism
with V affine. It suffices to show that the inverse image of f(E) in V is constructible, see
Properties of Spaces, Definition 8.2. Since f is quasi-compact V ×Y X is a quasi-compact
algebraic space. Choose an affine schemeU and a surjective étale morphismU → V ×Y X
(Properties of Spaces, Lemma 6.3). By Properties of Spaces, Lemma 4.3 the inverse image
of f(E) in V is the image under U → V of the inverse image of E in U . Thus the result
follows from the case of schemes, see Morphisms, Lemma 22.2. �
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30. Flat morphisms

The property “flat” of morphisms of schemes is étale local on the source-and-target, see
Descent, Remark 32.7. It is also stable under base change and fpqc local on the target, see
Morphisms, Lemma 25.8 and Descent, Lemma 23.15. Hence, by Lemma 22.1 above, we may
define the notion of a flat morphism of algebraic spaces as follows and it agrees with the
already existing notion defined in Section 3 when the morphism is representable.

Definition 30.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is flat if the equivalent conditions of Lemma 22.1 with P =“flat”.
(2) Let x ∈ |X|. We say f is flat at x if the equivalent conditions of Lemma 22.5

hold withQ =“induced map local rings is flat”.
Note that the second part makes sense by Descent, Lemma 33.4.

We do a quick sanity check.

Lemma 30.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then f is flat if and only if f is flat at all points of |X|.

Proof. Choose a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, the vertical arrows are étale, and a is surjective. By definition
f is flat if and only if h is flat (Definition 22.2). By definition f is flat at x ∈ |X| if and
only if h is flat at some (equivalently any) u ∈ U which maps to x (Definition 22.6). Thus
the lemma follows from the fact that a morphism of schemes is flat if and only if it is flat
at all points of the source (Morphisms, Definition 25.1). �

Lemma 30.3. The composition of flat morphisms is flat.

Proof. See Remark 22.3 and Morphisms, Lemma 25.6. �

Lemma 30.4. The base change of a flat morphism is flat.

Proof. See Remark 22.4 and Morphisms, Lemma 25.8. �

Lemma 30.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is flat,
(2) for every x ∈ |X| the morphism f is flat at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

flat,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is flat,
(5) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is flat,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such that

the composition f ◦ ϕ is flat,
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(7) for every commutative diagram

U

��

// V

��
X // Y

whereU , V are schemes and the vertical arrows are étale the top horizontal arrow
is flat,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is surjective
such that the top horizontal arrow is flat, and

(9) there exists a Zariski coverings Y =
⋃
Yi and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is flat.

Proof. Omitted. �

Lemma 30.6. A flat morphism locally of finite presentation is universally open.

Proof. Let f : X → Y be a flat morphism locally of finite presentation of algebraic
spaces over S. Choose a diagram

U
α
//

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see Spaces,
Lemma 11.6. By Lemmas 30.5 and 28.4 the morphism α is flat and locally of finite pre-
sentation. Hence by Morphisms, Lemma 25.10 we see that α is universally open. Hence
X → Y is universally open according to Lemma 6.5. �

Lemma 30.7. Let S be a scheme. Let f : X → Y be a flat, quasi-compact, surjective
morphism of algebraic spaces over S. A subset T ⊂ |Y | is open (resp. closed) if and
only f−1(|T |) is open (resp. closed) in |X|. In other words f is submersive, and in fact
universally submersive.

Proof. Choose affine schemes Vi and étale morphisms Vi → Y such that V =∐
Vi → Y is surjective, see Properties of Spaces, Lemma 6.1. For each i the algebraic

space Vi ×Y X is quasi-compact. Hence we can find an affine scheme Ui and a surjective
étale morphism Ui → Vi ×Y X , see Properties of Spaces, Lemma 6.3. Then the com-
position Ui → Vi ×Y X → Vi is a surjective, flat morphism of affines. Of course then
U =

∐
Ui → X is surjective and étale and U = V ×Y X . Moreover, the morphism

U → V is the disjoint union of the morphisms Ui → Vi. Hence U → V is surjective,
quasi-compact and flat. Consider the diagram

U //

��

X

��
V // Y
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By definition of the topology on |Y | the setT is closed (resp. open) if and only if g−1(T ) ⊂
|V | is closed (resp. open). The same holds for f−1(T ) and its inverse image in |U |. Since
U → V is quasi-compact, surjective, and flat we win by Morphisms, Lemma 25.12. �

Lemma 30.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let x be a geometric point of X lying over the point x ∈ |X|. Let y = f ◦ x. The
following are equivalent

(1) f is flat at x, and
(2) the map on étale local ringsOY,y → OX,x is flat.

Proof. Choose a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, a, b are étale, and u ∈ U mapping to x. We can find a
geometric point u : Spec(k) → U lying over u with x = a ◦ u, see Properties of Spaces,
Lemma 19.4. Set v = h ◦ u with image v ∈ V . We know that

OX,x = OshU,u and OY,y = OshV,v
see Properties of Spaces, Lemma 22.1. We obtain a commutative diagram

OU,u // OX,x

OV,v

OO

// OY,y

OO

of local rings with flat horizontal arrows. We have to show that the left vertical arrow
is flat if and only if the right vertical arrow is. Algebra, Lemma 39.9 tells us OU,u is flat
over OV,v if and only if OX,x is flat over OV,v . Hence the result follows from More on
Flatness, Lemma 2.5. �

Lemma 30.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then f is flat if and only if the morphism of sites (fsmall, f ]) : (Xétale,OX)→
(Yétale,OY ) associated to f is flat.

Proof. Flatness of (fsmall, f ]) is defined in terms of flatness of OX as a f−1
smallOY -

module. This can be checked at stalks, see Modules on Sites, Lemma 39.3 and Properties of
Spaces, Theorem 19.12. But we’ve already seen that flatness of f can be checked on stalks,
see Lemma 30.8. �

Lemma 30.10. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let F be a finite type quasi-coherent OX -module with scheme theoretic support
Z ⊂ X . If f is flat, then f−1(Z) is the scheme theoretic support of f∗F .

Proof. Using the characterization of the scheme theoretic support as given in Lemma
15.3 and using the characterization of flat morphisms in terms of étale coverings in Lemma
30.5 we reduce to the case of schemes which is Morphisms, Lemma 25.14. �

Lemma 30.11. Let S be a scheme. Let f : X → Y be a flat morphism of algebraic
spaces overS. LetV → Y be a quasi-compact open immersion. IfV is scheme theoretically
dense in Y , then f−1V is scheme theoretically dense in X .
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Proof. Using the characterization of scheme theoretically dense opens in Lemma 17.2
and using the characterization of flat morphisms in terms of étale coverings in Lemma 30.5
we reduce to the case of schemes which is Morphisms, Lemma 25.15. �

Lemma 30.12. Let S be a scheme. Let f : X → Y be a flat morphism of algebraic
spaces over S. Let g : V → Y be a quasi-compact morphism of algebraic spaces. Let
Z ⊂ Y be the scheme theoretic image of g and let Z ′ ⊂ X be the scheme theoretic image
of the base change V ×Y X → X . Then Z ′ = f−1Z.

Proof. Let Y ′ → Y be a surjective étale morphism such that Y ′ is a disjoint union
of affine schemes (Properties of Spaces, Lemma 6.1). Let X ′ → X ×Y Y ′ be a surjective
étale morphism such that X ′ is a disjoint union of affine schemes. By Lemma 30.5 the
morphism X ′ → Y ′ is flat. Set V ′ = V ×Y Y ′. By Lemma 16.3 the inverse image of
Z in Y ′ is the scheme theoretic image of V ′ → Y ′ and the inverse image of Z ′ in X ′ is
the scheme theoretic image of V ′ ×Y ′ X ′ → X ′. Since X ′ → X is surjective étale, it
suffices to prove the result in the case of the morphisms X ′ → Y ′ and V ′ → Y ′. Thus
we may assume X and Y are affine schemes. In this case V is a quasi-compact algebraic
space. Choose an affine schemeW and a surjective étale morphismW → V (Properties of
Spaces, Lemma 6.3). It is clear that the scheme theoretic image of V → Y agrees with the
scheme theoretic image of W → Y and similarly for V ×Y X → Y and W ×Y X → X .
Thus we reduce to the case of schemes which is Morphisms, Lemma 25.16. �

31. Flat modules

In this section we define what it means for a module to be flat at a point. To do this we will
use the notion of the stalk of a sheaf on the small étale siteXétale of an algebraic space, see
Properties of Spaces, Definition 19.6.

Lemma 31.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherent sheaf on X . Let x ∈ |X|. The following are equivalent

(1) for some commutative diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, a, b are étale, and u ∈ U mapping to x the module
a∗F is flat at u over V ,

(2) the stalk Fx is flat over the étale local ringOY,y where x is any geometric point
lying over x and y = f ◦ x.

Proof. During this proof we fix a geometric proof x : Spec(k)→ X over x and we
denote y = f ◦ x its image in Y . Given a diagram as in (1) we can find a geometric point
u : Spec(k) → U lying over u with x = a ◦ u, see Properties of Spaces, Lemma 19.4. Set
v = h ◦ u with image v ∈ V . We know that

OX,x = OshU,u and OY,y = OshV,v
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see Properties of Spaces, Lemma 22.1. We obtain a commutative diagram

OU,u // OX,x

OV,v

OO

// OY,y

OO

of local rings. Finally, we have
Fx = (ϕ∗F)u ⊗OU,u

OX,x
by Properties of Spaces, Lemma 29.4. Thus Algebra, Lemma 39.9 tells us (ϕ∗F)u is flat
over OV,v if and only if Fx is flat over OV,v . Hence the result follows from More on
Flatness, Lemma 2.5. �

Definition 31.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X .

(1) Let x ∈ |X|. We say F is flat at x over Y if the equivalent conditions of Lemma
31.1 hold.

(2) We say F is flat over Y if F is flat over Y at all x ∈ |X|.

Having defined this we have the obligatory base change lemma. This lemma implies that
formation of the flat locus of a quasi-coherent sheaf commutes with flat base change.

Lemma 31.3. Let S be a scheme. Let

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let x′ ∈ |X ′| with image x ∈ |X|. Let
F be a quasi-coherent sheaf on X and denote F ′ = (g′)∗F .

(1) If F is flat at x over Y then F ′ is flat at x′ over Y ′.
(2) If g is flat at f ′(x′) and F ′ is flat at x′ over Y ′, then F is flat at x over Y .

In particular, if F is flat over Y , then F ′ is flat over Y ′.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → V ×Y X . Choose a scheme V ′ and a
surjective étale morphism V ′ → V ×Y Y ′. Then U ′ = V ′ ×V U is a scheme endowed
with a surjective étale morphism U ′ = V ′ ×V U → Y ′ ×Y X = X ′. Pick u′ ∈ U ′ map-
ping to x′ ∈ |X ′|. Then we can check flatness of F ′ at x′ over Y ′ in terms of flatness of
F ′|U ′ at u′ over V ′. Hence the lemma follows from More on Morphisms, Lemma 15.2. �

The following lemma discusses “composition” of flat morphisms in terms of modules. It
also shows that flatness satisfies a kind of top down descent.

Lemma 31.4. Let S be a scheme. Let X → Y → Z be morphisms of algebraic spaces
over S. Let F be a quasi-coherent sheaf on X . Let x ∈ |X| with image y ∈ |Y |.

(1) If F is flat at x over Y and Y is flat at y over Z , then F is flat at x over Z.
(2) Let x : Spec(K)→ X be a representative of x. If

(a) F is flat at x over Y ,
(b) x∗F 6= 0, and
(c) F is flat at x over Z ,
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then Y is flat at y over Z.
(3) Let x be a geometric point of X lying over x with image y in Y . If Fx is a

faithfully flatOY,y-module and F is flat at x over Z , then Y is flat at y over Z.

Proof. Pick x and y as in part (3) and denote z the induced geometric point of Z.
Via the characterization of flatness in Lemmas 31.1 and 30.8 the lemma reduces to a purely
algebraic question on the local ring mapOZ,z → OY,y and the moduleFx. Part (1) follows
from Algebra, Lemma 39.4. We remark that condition (2)(b) guarantees that Fx/myFx is
nonzero. Hence (2)(a) + (2)(b) imply thatFx is a faithfully flatOY,y-module, see Algebra,
Lemma 39.15. Thus (2) is a special case of (3). Finally, (3) follows from Algebra, Lemma
39.10. �

Sometimes the base change happens “up on top”. Here is a precise statement.

Lemma 31.5. Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms of
algebraic spaces over S. Let G be a quasi-coherent sheaf on Y . Let x ∈ |X| with image
y ∈ |Y |. If f is flat at x, then

G flat over Z at y ⇔ f∗G flat over Z at x.

In particular: If f is surjective and flat, then G is flat over Z , if and only if f∗G is flat over
Z.

Proof. Pick a geometric point x of X and denote y the image in Y and z the image
in Z. Via the characterization of flatness in Lemmas 31.1 and 30.8 and the description of
the stalk of f∗G at x of Properties of Spaces, Lemma 29.5 the lemma reduces to a purely
algebraic question on the local ring mapsOZ,z → OY,y → OX,x and the module Gy . This
algebraic statement is Algebra, Lemma 39.9. �

Lemma 31.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherentOX -module. Assume f locally finite presentation, F of
finite type, X = Supp(F), and F flat over Y . Then f is universally open.

Proof. Choose a surjective étale morphismϕ : V → Y where V is a scheme. Choose
a surjective étale morphism U → V ×Y X where U is a scheme. Then it suffices to prove
the lemma forU → V and the quasi-coherentOV -moduleϕ∗F . Hence this lemma follows
from the case of schemes, see Morphisms, Lemma 25.11. �

32. Generic flatness

This section is the analogue of Morphisms, Section 27.

Proposition 32.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf ofOX -modules. Assume

(1) Y is reduced,
(2) f is of finite type, and
(3) F is a finite typeOX -module.

Then there exists an open dense subspaceW ⊂ Y such that the base changeXW →W of
f is flat, locally of finite presentation, and quasi-compact and such that F|XW is flat over
W and of finite presentation overOXW .

Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let XV =
V ×Y X and let FV be the restriction of F to XV . Suppose that the result holds for the
morphism XV → V and the sheaf FV . Then there exists an open subscheme V ′ ⊂ V
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such thatXV ′ → V ′ is flat and of finite presentation andFV ′ is anOXV ′ -module of finite
presentation flat over V ′. Let W ⊂ Y be the image of the étale morphism V ′ → Y , see
Properties of Spaces, Lemma 4.10. Then V ′ → W is a surjective étale morphism, hence
we see that XW →W is flat, locally of finite presentation, and quasi-compact by Lemmas
28.4, 30.5, and 8.8. By the discussion in Properties of Spaces, Section 30 we see that FW
is of finite presentation as aOXW -module and by Lemma 31.3 we see that FW is flat over
W . This argument reduces the proposition to the case where Y is a scheme.

Suppose we can prove the proposition when Y is an affine scheme. Let f : X → Y be a
finite type morphism of algebraic spaces over S with Y a scheme, and letF be a finite type,
quasi-coherent OX -module. Choose an affine open covering Y =

⋃
Vj . By assumption

we can find dense openWj ⊂ Vj such thatXWj
→Wj is flat, locally of finite presentation,

and quasi-compact and such that F|XWj is flat over Wj and of finite presentation as an
OXWj -module. In this situation we simply takeW =

⋃
Wj and we win. Hence we reduce

the proposition to the case where Y is an affine scheme.

Let Y be an affine scheme over S , let f : X → Y be a finite type morphism of algebraic
spaces over S , and let F be a finite type, quasi-coherent OX -module. Since f is of finite
type it is quasi-compact, hence X is quasi-compact. Thus we can find an affine scheme U
and a surjective étale morphism U → X , see Properties of Spaces, Lemma 6.3. Note that
U → Y is of finite type (this is what it means for f to be of finite type in this case). Hence
we can apply Morphisms, Proposition 27.2 to see that there exists a dense open W ⊂ Y
such that UW → W is flat and of finite presentation and such that F|UW is flat over W
and of finite presentation as anOUW -module. According to our definitions this means that
the base change XW → W of f is flat, locally of finite presentation, and quasi-compact
and F|XW is flat over W and of finite presentation overOXW . �

We cannot improve the result of the lemma above to requiring XW → W to be of finite
presentation as A1

Q/Z → Spec(Q) gives a counter example. The problem is that the
diagonal morphism ∆X/Y may not be quasi-compact, i.e., f may not be quasi-separated.
Clearly, this is also the only problem.

Proposition 32.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf ofOX -modules. Assume

(1) Y is reduced,
(2) f is quasi-separated,
(3) f is of finite type, and
(4) F is a finite typeOX -module.

Then there exists an open dense subspace W ⊂ Y such that the base change XW → W
of f is flat and of finite presentation and such that F|XW is flat over W and of finite
presentation overOXW .

Proof. This follows immediately from Proposition 32.1 and the fact that “of finite
presentation” = “locally of finite presentation” + “quasi-compact” + “quasi-separated”.

�

33. Relative dimension

In this section we define the relative dimension of a morphism of algebraic spaces at a
point, and some closely related properties.
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Definition 33.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. Let d, r ∈ {0, 1, 2, . . . ,∞}.

(1) We say the dimension of the local ring of the fibre of f at x is d if the equivalent
conditions of Lemma 22.5 hold for the propertyPd described in Descent, Lemma
33.6.

(2) We say the transcendence degree of x/f(x) is r if the equivalent conditions of
Lemma 22.5 hold for the property Pr described in Descent, Lemma 33.7.

(3) We say f has relative dimension d at x if the equivalent conditions of Lemma
22.5 hold for the property Pd described in Descent, Lemma 33.8.

Let us spell out what this means. Namely, choose some diagrams

U

a

��

h
// V

b
��

X
f // Y

u

��

// v

��
x // y

as in Lemma 22.5. Then we have

relative dimension of f at x = dimu(Uv)
dimension of local ring of the fibre of f at x = dim(OUv,u)

transcendence degree of x/f(x) = trdegκ(v)(κ(u))

Note that if Y = Spec(k) is the spectrum of a field, then the relative dimension ofX/Y at
x is the same as dimx(X), the transcendence degree of x/f(x) is the transcendence degree
over k, and the dimension of the local ring of the fibre of f at x is just the dimension of
the local ring at x, i.e., the relative notions become absolute notions in that case.

Definition 33.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let d ∈ {0, 1, 2, . . .}.

(1) We say f has relative dimension ≤ d if f has relative dimension ≤ d at all
x ∈ |X|.

(2) We say f has relative dimension d if f has relative dimension d at all x ∈ |X|.

Having relative dimension equal to dmeans roughly speaking that all nonempty fibres are
equidimensional of dimension d.

Lemma 33.3. Let S be a scheme. Let X → Y → Z be morphisms of algebraic spaces
over S. Let x ∈ |X| and let y ∈ |Y |, z ∈ |Z| be the images. Assume X → Y is locally
quasi-finite and Y → Z locally of finite type. Then the transcendence degree of x/z is
equal to the transcendence degree of y/z.

Proof. We can choose commutative diagrams

U

��

// V

��

// W

��
X // Y // Z

u

��

// v

��

// w

��
x // y // z

where U, V,W are schemes and the vertical arrows are étale. By definition the morphism
U → V is locally quasi-finite which implies that κ(v) ⊂ κ(u) is finite, see Morphisms,
Lemma 20.5. Hence the result is clear. �
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Lemma 33.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite type, Y is Jacobson (Properties of Spaces, Remark 7.3), and
x ∈ |X| is a finite type point of X , then the transcendence degree of x/f(x) is 0.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X ×Y V . By Lemma 25.5 we can find a
finite type point u ∈ U mapping to x. After shrinking U we may assume u ∈ U is closed
(Morphisms, Lemma 16.4). Let v ∈ V be the image of u. By Morphisms, Lemma 16.8 the
extension κ(u)/κ(v) is finite. This finishes the proof. �

Lemma 33.5. Let S be a scheme. Let f : X → Y be a morphism of locally Noetherian
algebraic spaces over S which is flat, locally of finite type and of relative dimension d. For
every point x in |X| with image y in |Y | we have dimx(X) = dimy(Y ) + d.

Proof. By definition of the dimension of an algebraic space at a point (Properties of
Spaces, Definition 9.1) and by definition of having relative dimension d, this reduces to
the corresponding statement for schemes (Morphisms, Lemma 29.6). �

34. Morphisms and dimensions of fibres

This section is the analogue of Morphisms, Section 28. The formulations in this section
are a bit awkward since we do not have local rings of algebraic spaces at points.

Lemma 34.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let x ∈ |X|. Assume f is locally of finite type. Then we have

relative dimension of f at x
=

dimension of local ring of the fibre of f at x
+

transcendence degree of x/f(x)

where the notation is as in Definition 33.1.

Proof. This follows immediately from Morphisms, Lemma 28.1 applied to h : U →
V and u ∈ U as in Lemma 22.5. �

Lemma 34.2. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
algebraic spaces over S. Let x ∈ |X| and set y = f(x). Assume f and g locally of finite
type. Then

(1)
relative dimension of g ◦ f at x

≤
relative dimension of f at x

+
relative dimension of g at y

(2) equality holds in (1) if for some morphism Spec(k) → Z from the spectrum of
a field in the class of g(f(x)) = g(y) the morphism Xk → Yk is flat at x, for
example if f is flat at x,
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(3)
transcendence degree of x/g(f(x))

=
transcendence degree of x/f(x)

+
transcendence degree of f(x)/g(f(x))

Proof. Choose a diagram

U

��

// V

��

// W

��
X // Y // Z

with U, V,W schemes and vertical arrows étale and surjective. (See Spaces, Lemma 11.6.)
Choose u ∈ U mapping to x. Set v, w equal to the images of u in V,W . Apply Morphisms,
Lemma 28.2 to the top row and the points u, v, w. Details omitted. �

Lemma 34.3. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a fibre product diagram of algebraic spaces over S. Let x′ ∈ |X ′|. Set x = g′(x′).
Assume f locally of finite type. Then

(1)
relative dimension of f at x

=
relative dimension of f ′ at x′

(2) we have
dimension of local ring of the fibre of f ′ at x′

−
dimension of local ring of the fibre of f at x

=
transcendence degree of x/f(x)

−
transcendence degree of x′/f ′(x′)

and the common value is ≥ 0,
(3) given x and y′ ∈ |Y ′| mapping to the same y ∈ |Y | there exists a choice of x′

such that the integer in (2) is 0.

Proof. Choose a surjective étale morphism V → Y with V a scheme. Choose a
surjective étale morphism U → V ×Y X with U a scheme. Choose a surjective étale
morphism V ′ → V ×Y Y ′ with V ′ a scheme. Set U ′ = V ′ ×V U . Then the induced
morphism U ′ → X ′ is also surjective and étale (argument omitted). Choose u′ ∈ U ′

mapping to x′. At this point parts (1) and (2) follow by applying Morphisms, Lemma
28.3 to the diagram of schemes involving U ′, U, V ′, V and the point u′. To prove (3) first
choose v ∈ V mapping to y. Then using Properties of Spaces, Lemma 4.3 we can choose
v′ ∈ V ′ mapping to y′ and v and u ∈ U mapping to x and v. Finally, according to
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Morphisms, Lemma 28.3 we can choose u′ ∈ U ′ mapping to v′ and u such that the integer
is zero. Then taking x′ ∈ |X ′| the image of u′ works. �

Lemma 34.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let n ≥ 0. Assume f is locally of finite type. The set

Wn = {x ∈ |X| such that the relative dimension of f at x ≤ n}
is open in |X|.

Proof. Choose a diagram
U

h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see Spaces,
Lemma 11.6. By Morphisms, Lemma 28.4 the set Un of points where h has relative dimen-
sion≤ n is open in U . By our definition of relative dimension for morphisms of algebraic
spaces at points we see that Un = a−1(Wn). The lemma follows by definition of the
topology on |X|. �

Lemma 34.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S Let n ≥ 0. Assume f is locally of finite presentation. The open

Wn = {x ∈ |X| such that the relative dimension of f at x ≤ n}
of Lemma 34.4 is retrocompact in |X|. (See Topology, Definition 12.1.)

Proof. Choose a diagram
U

h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see Spaces,
Lemma 11.6. In the proof of Lemma 34.4 we have seen that a−1(Wn) = Un is the cor-
responding set for the morphism h. By Morphisms, Lemma 28.6 we see that Un is retro-
compact in U . The lemma follows by definition of the topology on |X|, compare with
Properties of Spaces, Lemma 5.5 and its proof. �

Lemma 34.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type. Then f is locally quasi-finite if and only if f
has relative dimension 0 at each x ∈ |X|.

Proof. Choose a diagram
U

h
//

a

��

V

��
X // Y

where U and V are schemes and the vertical arrows are surjective and étale, see Spaces,
Lemma 11.6. The definitions imply that h is locally quasi-finite if and only if f is locally
quasi-finite, and that f has relative dimension 0 at all x ∈ |X| if and only if h has rel-
ative dimension 0 at all u ∈ U . Hence the result follows from the result for h which is
Morphisms, Lemma 29.5. �
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Lemma 34.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type. Then there exists a canonical open subspace
X ′ ⊂ X such that f |X′ : X ′ → Y is locally quasi-finite, and such that the relative
dimension of f at any x ∈ |X|, x 6∈ |X ′| is ≥ 1. Formation of X ′ commutes with
arbitrary base change.

Proof. Combine Lemmas 34.4, 34.6, and 34.3. �

Lemma 34.8. Let S be a scheme. Consider a cartesian diagram

X

��

F
p

oo

��
Y Spec(k)oo

whereX → Y is a morphism of algebraic spaces over S which is locally of finite type and
where k is a field over S. Let z ∈ |F | be such that dimz(F ) = 0. Then, after replacing X
by an open subspace containing p(z), the morphism

X −→ Y

is locally quasi-finite.

Proof. Let X ′ ⊂ X be the open subspace over which f is locally quasi-finite found
in Lemma 34.7. Since the formation of X ′ commutes with arbitrary base change we see
that z ∈ X ′ ×Y Spec(k). Hence the lemma is clear. �

35. The dimension formula

The analog of the dimension formula (Morphisms, Lemma 52.1) is a bit tricky to formulate,
because we would have to define integral algebraic spaces (we do this later) as well as
universally catenary algebraic spaces. However, the following version is straightforward.

Lemma 35.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume Y is locally Noetherian and f locally of finite type. Let x ∈ |X| with
image y ∈ |Y |. Then we have

the dimension of the local ring of X at x ≤
the dimension of the local ring of Y at y + E−
the transcendence degree of x/y

Here E is the maximum of the transcendence degrees of ξ/f(ξ) where ξ ∈ |X| runs over
the points specializing to x at which the local ring of X has dimension 0.

Proof. Choose an affine scheme V , an étale morphism V → Y , and a point v ∈ V
mapping to y. Choose an affine scheme U , an étale morphism U → X ×Y V and a point
u ∈ U mapping to v in V and x inX . Unwinding Definition 33.1 and Properties of Spaces,
Definition 10.2 we have to show that

dim(OU,u) ≤ dim(OV,v) + E − trdegκ(v)(κ(u))

Let ξU ∈ U be a generic point of an irreducible component of U which contains u. Then
ξU maps to a point ξ ∈ |X| which is in the list used to define the quantity E and in
fact every ξ used in the definition of E occurs in this manner (small detail omitted). In
particular, there are only a finite number of these ξ and we can take the maximum (i.e.,
it really is a maximum and not a supremum). The transcendence degree of ξ over f(ξ)
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is trdegκ(ξV )(κ(ξU )) where ξV ∈ V is the image of ξU . Thus the lemma follows from
Morphisms, Lemma 52.2. �

Lemma 35.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume Y is locally Noetherian and f is locally of finite type. Then

dim(X) ≤ dim(Y ) + E

where E is the supremum of the transcendence degrees of ξ/f(ξ) where ξ runs through
the points at which the local ring of X has dimension 0.

Proof. Immediate consequence of Lemma 35.1 and Properties of Spaces, Lemma 10.3.
�

36. Syntomic morphisms

The property “syntomic” of morphisms of schemes is étale local on the source-and-target,
see Descent, Remark 32.7. It is also stable under base change and fpqc local on the target,
see Morphisms, Lemma 30.4 and Descent, Lemma 23.26. Hence, by Lemma 22.1 above, we
may define the notion of a syntomic morphism of algebraic spaces as follows and it agrees
with the already existing notion defined in Section 3 when the morphism is representable.

Definition 36.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is syntomic if the equivalent conditions of Lemma 22.1 hold with
P =“syntomic”.

(2) Let x ∈ |X|. We say f is syntomic at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is syntomic.

Lemma 36.2. The composition of syntomic morphisms is syntomic.

Proof. See Remark 22.3 and Morphisms, Lemma 30.3. �

Lemma 36.3. The base change of a syntomic morphism is syntomic.

Proof. See Remark 22.4 and Morphisms, Lemma 30.4. �

Lemma 36.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is syntomic,
(2) for every x ∈ |X| the morphism f is syntomic at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

syntomic,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is syntomic,
(5) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is a syntomic morphism,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such that

the composition f ◦ ϕ is syntomic,
(7) for every commutative diagram

U

��

// V

��
X // Y



37. SMOOTH MORPHISMS 5275

whereU , V are schemes and the vertical arrows are étale the top horizontal arrow
is syntomic,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is surjective
such that the top horizontal arrow is syntomic, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is syntomic.

Proof. Omitted. �

Lemma 36.5. A syntomic morphism is locally of finite presentation.

Proof. Follows immediately from the case of schemes (Morphisms, Lemma 30.6).
�

Lemma 36.6. A syntomic morphism is flat.

Proof. Follows immediately from the case of schemes (Morphisms, Lemma 30.7).
�

Lemma 36.7. A syntomic morphism is universally open.

Proof. Combine Lemmas 36.5, 36.6, and 30.6. �

37. Smooth morphisms

The property “smooth” of morphisms of schemes is étale local on the source-and-target,
see Descent, Remark 32.7. It is also stable under base change and fpqc local on the target,
see Morphisms, Lemma 34.5 and Descent, Lemma 23.27. Hence, by Lemma 22.1 above, we
may define the notion of a smooth morphism of algebraic spaces as follows and it agrees
with the already existing notion defined in Section 3 when the morphism is representable.

Definition 37.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is smooth if the equivalent conditions of Lemma 22.1 hold withP =“smooth”.
(2) Let x ∈ |X|. We say f is smooth at x if there exists an open neighbourhood

X ′ ⊂ X of x such that f |X′ : X ′ → Y is smooth.

Lemma 37.2. The composition of smooth morphisms is smooth.

Proof. See Remark 22.3 and Morphisms, Lemma 34.4. �

Lemma 37.3. The base change of a smooth morphism is smooth.

Proof. See Remark 22.4 and Morphisms, Lemma 34.5. �

Lemma 37.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is smooth,
(2) for every x ∈ |X| the morphism f is smooth at x,
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(3) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is
smooth,

(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →
Z is smooth,

(5) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y
X → V is a smooth morphism,

(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such that
the composition f ◦ ϕ is smooth,

(7) for every commutative diagram

U

��

// V

��
X // Y

whereU , V are schemes and the vertical arrows are étale the top horizontal arrow
is smooth,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is surjective
such that the top horizontal arrow is smooth, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is smooth.

Proof. Omitted. �

Lemma 37.5. A smooth morphism of algebraic spaces is locally of finite presentation.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition this
means there exists a diagram as in Lemma 22.1 with h smooth and surjective vertical arrow
a. By Morphisms, Lemma 34.8 h is locally of finite presentation. HenceX → Y is locally
of finite presentation by definition. �

Lemma 37.6. A smooth morphism of algebraic spaces is locally of finite type.

Proof. Combine Lemmas 37.5 and 28.5. �

Lemma 37.7. A smooth morphism of algebraic spaces is flat.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition this
means there exists a diagram as in Lemma 22.1 with h smooth and surjective vertical arrow
a. By Morphisms, Lemma 34.8 h is flat. Hence X → Y is flat by definition. �

Lemma 37.8. A smooth morphism of algebraic spaces is syntomic.

Proof. Let X → Y be a smooth morphism of algebraic spaces. By definition this
means there exists a diagram as in Lemma 22.1 with h smooth and surjective vertical arrow
a. By Morphisms, Lemma 34.7 h is syntomic. Hence X → Y is syntomic by definition.

�
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Lemma 37.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. There is a maximal open subspace U ⊂ X such that f |U : U → Y is smooth.
Moreover, formation of this open commutes with base change by

(1) morphisms which are flat and locally of finite presentation,
(2) flat morphisms provided f is locally of finite presentation.

Proof. The existence ofU follows from the fact that the property of being smooth is
Zariski (and even étale) local on the source, see Lemma 37.4. Moreover, this lemma allows
us to translate properties (1) and (2) into the case of morphisms of schemes. The case of
schemes is Morphisms, Lemma 34.15. Some details omitted. �

Lemma 37.10. Let X and Y be locally Noetherian algebraic spaces over a scheme S ,
and let f : X → Y be a smooth morphism. For every point x ∈ |X| with image y ∈ |Y |,

dimx(X) = dimy(Y ) + dimx(Xy)

where dimx(Xy) is the relative dimension of f at x as in Definition 33.1.

Proof. By definition of the dimension of an algebraic space at a point (Properties
of Spaces, Definition 9.1), this reduces to the corresponding statement for schemes (Mor-
phisms, Lemma 34.21). �

38. Unramified morphisms

The property “unramified” (resp. “G-unramified”) of morphisms of schemes is étale local
on the source-and-target, see Descent, Remark 32.7. It is also stable under base change and
fpqc local on the target, see Morphisms, Lemma 35.5 and Descent, Lemma 23.28. Hence,
by Lemma 22.1 above, we may define the notion of an unramified morphism (resp. G-
unramified morphism) of algebraic spaces as follows and it agrees with the already existing
notion defined in Section 3 when the morphism is representable.

Definition 38.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is unramified if the equivalent conditions of Lemma 22.1 hold with
P = unramified.

(2) Let x ∈ |X|. We say f is unramified at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is unramified.

(3) We say f is G-unramified if the equivalent conditions of Lemma 22.1 hold with
P = G-unramified.

(4) Letx ∈ |X|. We say f is G-unramified atx if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is G-unramified.

Because of the following lemma, from here on we will only develop theory for unramified
morphisms, and whenever we want to use a G-unramified morphism we will simply say
“an unramified morphism locally of finite presentation”.

Lemma 38.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then f is G-unramified if and only if f is unramified and locally of finite presen-
tation.

Proof. Consider any diagram as in Lemma 22.1. Then all we are saying is that the
morphism h is G-unramified if and only if it is unramified and locally of finite presenta-
tion. This is clear from Morphisms, Definition 35.1. �
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Lemma 38.3. The composition of unramified morphisms is unramified.

Proof. See Remark 22.3 and Morphisms, Lemma 35.4. �

Lemma 38.4. The base change of an unramified morphism is unramified.

Proof. See Remark 22.4 and Morphisms, Lemma 35.5. �

Lemma 38.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is unramified,
(2) for every x ∈ |X| the morphism f is unramified at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

unramified,
(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is unramified,
(5) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is an unramified morphism,
(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such that

the composition f ◦ ϕ is unramified,
(7) for every commutative diagram

U

��

// V

��
X // Y

whereU , V are schemes and the vertical arrows are étale the top horizontal arrow
is unramified,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is surjective
such that the top horizontal arrow is unramified, and

(9) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is unramified.

Proof. Omitted. �

Lemma 38.6. An unramified morphism of algebraic spaces is locally of finite type.

Proof. Via a diagram as in Lemma 22.1 this translates into Morphisms, Lemma 35.9.
�

Lemma 38.7. If f is unramified at x then f is quasi-finite at x. In particular, an
unramified morphism is locally quasi-finite.

Proof. Via a diagram as in Lemma 22.1 this translates into Morphisms, Lemma 35.10.
�

Lemma 38.8. An immersion of algebraic spaces is unramified.
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Proof. Let i : X → Y be an immersion of algebraic spaces. Choose a scheme V and a
surjective étale morphism V → Y . Then V ×Y X → V is an immersion of schemes, hence
unramified (see Morphisms, Lemmas 35.7 and 35.8). Thus by definition i is unramified.

�

Lemma 38.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S.

(1) If f is unramified, then the diagonal morphism ∆X/Y : X → X ×Y X is an
open immersion.

(2) If f is locally of finite type and ∆X/Y is an open immersion, then f is unramified.

Proof. We know in any case that ∆X/Y is a representable monomorphism, see Lemma
4.1. Choose a scheme V and a surjective étale morphism V → Y . Choose a scheme U and
a surjective étale morphism U → X ×Y V . Consider the commutative diagram

U

��

∆U/V

// U ×V U

��

// V

∆V/Y

��
X

∆X/Y // X ×Y X // V ×Y V

with cartesian right square. The left vertical arrow is surjective étale. The right vertical
arrow is étale as a morphism between schemes étale overY , see Properties of Spaces, Lemma
16.6. Hence the middle vertical arrow is étale too (but it need not be surjective).

Assume f is unramified. Then U → V is unramified, hence ∆U/V is an open immersion
by Morphisms, Lemma 35.13. Looking at the left square of the diagram above we conclude
that ∆X/Y is an étale morphism, see Properties of Spaces, Lemma 16.3. Hence ∆X/Y is a
representable étale monomorphism, which implies that it is an open immersion by Étale
Morphisms, Theorem 14.1. (See also Spaces, Lemma 5.8 for the translation from schemes
language into the language of functors.)

Assume that f is locally of finite type and that ∆X/Y is an open immersion. This implies
that U → V is locally of finite type too (by definition of a morphism of algebraic spaces
which is locally of finite type). Looking at the displayed diagram above we conclude that
∆U/V is étale as a morphism between schemes étale overX×Y X , see Properties of Spaces,
Lemma 16.6. But since ∆U/V is the diagonal of a morphism between schemes we see that
it is in any case an immersion, see Schemes, Lemma 21.2. Hence it is an open immersion,
and we conclude that U → V is unramified by Morphisms, Lemma 35.13. This in turn
means that f is unramified by definition. �

Lemma 38.10. Let S be a scheme. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces over S. Assume that X → Z is locally of finite type. Then there
exists an open subspace U(f) ⊂ X such that |U(f)| ⊂ |X| is the set of points where f is
unramified. Moreover, for any morphism of algebraic spaces Z ′ → Z , if f ′ : X ′ → Y ′

is the base change of f by Z ′ → Z , then U(f ′) is the inverse image of U(f) under the
projection X ′ → X .
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Proof. This lemma is the analogue of Morphisms, Lemma 35.15 and in fact we will
deduce the lemma from it. By Definition 38.1 the set {x ∈ |X| : f is unramified at x} is
open inX . Hence we only need to prove the final statement. By Lemma 23.6 the morphism
X → Y is locally of finite type. By Lemma 23.3 the morphismX ′ → Y ′ is locally of finite
type.
Choose a scheme W and a surjective étale morphism W → Z. Choose a scheme V and
a surjective étale morphism V → W ×Z Y . Choose a scheme U and a surjective étale
morphism U → V ×Y X . Finally, choose a scheme W ′ and a surjective étale morphism
W ′ → W ×Z Z ′. Set V ′ = W ′ ×W V and U ′ = W ′ ×W U , so that we obtain surjective
étale morphisms V ′ → Y ′ and U ′ → X ′. We will use without further mention an étale
morphism of algebraic spaces induces an open map of associated topological spaces (see
Properties of Spaces, Lemma 16.7). This combined with Lemma 38.5 implies that U(f) is
the image in |X| of the set T of points in U where the morphism U → V is unramified.
Similarly, U(f ′) is the image in |X ′| of the set T ′ of points in U ′ where the morphism
U ′ → V ′ is unramified. Now, by construction the diagram

U ′ //

��

U

��
V ′ // V

is cartesian (in the category of schemes). Hence the aforementioned Morphisms, Lemma
35.15 applies to show that T ′ is the inverse image of T . Since |U ′| → |X ′| is surjective this
implies the lemma. �

Lemma 38.11. Let S be a scheme. LetX → Y → Z be morphisms of algebraic spaces
over S. If X → Z is unramified, then X → Y is unramified.

Proof. Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with vertical arrows étale and surjective. (See Spaces, Lemma 11.6.) Apply Morphisms,
Lemma 35.16 to the top row. �

39. Étale morphisms

The notion of an étale morphism of algebraic spaces was defined in Properties of Spaces,
Definition 16.2. Here is what it means for a morphism to be étale at a point.

Definition 39.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let x ∈ |X|. We say f is étale at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is étale.

Lemma 39.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is étale,
(2) for every x ∈ |X| the morphism f is étale at x,
(3) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

étale,
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(4) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →
Z is étale,

(5) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y
X → V is an étale morphism,

(6) there exists a scheme U and a surjective étale morphism ϕ : U → X such that
the composition f ◦ ϕ is étale,

(7) for every commutative diagram

U

��

// V

��
X // Y

whereU , V are schemes and the vertical arrows are étale the top horizontal arrow
is étale,

(8) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X surjective
such that the top horizontal arrow is étale, and

(9) there exist Zariski coverings Y =
⋃
Yi and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is étale.

Proof. Combine Properties of Spaces, Lemmas 16.3, 16.5 and 16.4. Some details omit-
ted. �

Lemma 39.3. The composition of two étale morphisms of algebraic spaces is étale.

Proof. This is a copy of Properties of Spaces, Lemma 16.4. �

Lemma 39.4. The base change of an étale morphism of algebraic spaces by any mor-
phism of algebraic spaces is étale.

Proof. This is a copy of Properties of Spaces, Lemma 16.5. �

Lemma 39.5. An étale morphism of algebraic spaces is locally quasi-finite.

Proof. LetX → Y be an étale morphism of algebraic spaces, see Properties of Spaces,
Definition 16.2. By Properties of Spaces, Lemma 16.3 we see this means there exists a
diagram as in Lemma 22.1 with h étale and surjective vertical arrow a. By Morphisms,
Lemma 36.6 h is locally quasi-finite. Hence X → Y is locally quasi-finite by definition.

�

Lemma 39.6. An étale morphism of algebraic spaces is smooth.

Proof. The proof is identical to the proof of Lemma 39.5. It uses the fact that an étale
morphism of schemes is smooth (by definition of an étale morphism of schemes). �

Lemma 39.7. An étale morphism of algebraic spaces is flat.

Proof. The proof is identical to the proof of Lemma 39.5. It uses Morphisms, Lemma
36.12. �



5282 67. MORPHISMS OF ALGEBRAIC SPACES

Lemma 39.8. An étale morphism of algebraic spaces is locally of finite presentation.

Proof. The proof is identical to the proof of Lemma 39.5. It uses Morphisms, Lemma
36.11. �

Lemma 39.9. An étale morphism of algebraic spaces is locally of finite type.

Proof. An étale morphism is locally of finite presentation and a morphism locally of
finite presentation is locally of finite type, see Lemmas 39.8 and 28.5. �

Lemma 39.10. An étale morphism of algebraic spaces is unramified.

Proof. The proof is identical to the proof of Lemma 39.5. It uses Morphisms, Lemma
36.5. �

Lemma 39.11. Let S be a scheme. LetX,Y be algebraic spaces étale over an algebraic
space Z. Any morphism X → Y over Z is étale.

Proof. This is a copy of Properties of Spaces, Lemma 16.6. �

Lemma 39.12. A locally finitely presented, flat, unramified morphism of algebraic
spaces is étale.

Proof. Let X → Y be a locally finitely presented, flat, unramified morphism of
algebraic spaces. By Properties of Spaces, Lemma 16.3 we see this means there exists a
diagram as in Lemma 22.1 with h locally finitely presented, flat, unramified and surjective
vertical arrow a. By Morphisms, Lemma 36.16 h is étale. Hence X → Y is étale by
definition. �

40. Proper morphisms

The notion of a proper morphism plays an important role in algebraic geometry. Here is
the definition of a proper morphism of algebraic spaces.

Definition 40.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is proper if f is separated, finite type, and universally closed.

Lemma 40.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f is proper,
(2) for every scheme Z and every morphism Z → Y the projection Z ×Y X → Z

is proper,
(3) for every affine schemeZ and every morphismZ → Y the projectionZ×Y X →

Z is proper,
(4) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is proper, and
(5) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is proper.

Proof. Combine Lemmas 4.12, 23.4, 8.8, and 9.5. �

Lemma 40.3. A base change of a proper morphism is proper.

Proof. See Lemmas 4.4, 23.3, and 9.3. �

Lemma 40.4. A composition of proper morphisms is proper.



40. PROPER MORPHISMS 5283

Proof. See Lemmas 4.8, 23.2, and 9.4. �

Lemma 40.5. A closed immersion of algebraic spaces is a proper morphism of alge-
braic spaces.

Proof. As a closed immersion is by definition representable this follows from Spaces,
Lemma 5.8 and the corresponding result for morphisms of schemes, see Morphisms, Lemma
41.6. �

Lemma 40.6. Let S be a scheme. Consider a commutative diagram of algebraic spaces

X //

  

Y

~~
B

over S.
(1) If X → B is universally closed and Y → B is separated, then the morphism

X → Y is universally closed. In particular, the image of |X| in |Y | is closed.
(2) If X → B is proper and Y → B is separated, then the morphism X → Y is

proper.

Proof. Assume X → B is universally closed and Y → B is separated. We factor
the morphism as X → X ×B Y → Y . The first morphism is a closed immersion, see
Lemma 4.6 hence universally closed. The projectionX×B Y → Y is the base change of a
universally closed morphism and hence universally closed, see Lemma 9.3. Thus X → Y
is universally closed as the composition of universally closed morphisms, see Lemma 9.4.
This proves (1). To deduce (2) combine (1) with Lemmas 4.10, 8.9, and 23.6. �

Lemma 40.7. Let S be a scheme. Let B be an algebraic space over S. Let f : X → Y
be a morphism of algebraic spaces over B. If X is universally closed over B and f is
surjective then Y is universally closed over B. In particular, if also Y is separated and of
finite type over B, then Y is proper over B.

Proof. Assume X is universally closed and f surjective. Denote p : X → B, q :
Y → B the structure morphisms. Let B′ → B be a morphism of algebraic spaces over
S. The base change f ′ : XB′ → YB′ is surjective (Lemma 5.5), and the base change
p′ : XB′ → B′ is closed. If T ⊂ YB′ is closed, then (f ′)−1(T ) ⊂ XB′ is closed, hence
p′((f ′)−1(T )) = q′(T ) is closed. So q′ is closed. �

Lemma 40.8. Let S be a scheme. Let

X
h

//

f   

Y

g
~~

B

be a commutative diagram of morphism of algebraic spaces over S. Assume
(1) X → B is a proper morphism,
(2) Y → B is separated and locally of finite type,

Then the scheme theoretic image Z ⊂ Y of h is proper over B and X → Z is surjective.
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Proof. The scheme theoretic image of h is constructed in Section 16. Observe that h
is quasi-compact (Lemma 8.10) hence |h|(|X|) ⊂ |Z| is dense (Lemma 16.3). On the other
hand |h|(|X|) is closed in |Y | (Lemma 40.6) hence X → Z is surjective. Thus Z → B is
a proper (Lemma 40.7). �

Lemma 40.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is separated,
(2) ∆X/Y : X → X ×Y X is universally closed, and
(3) ∆X/Y : X → X ×Y X is proper.

Proof. The implication (1) ⇒ (3) follows from Lemma 40.5. We will use Spaces,
Lemma 5.8 without further mention in the rest of the proof. Recall that ∆X/Y is a rep-
resentable monomorphism which is locally of finite type, see Lemma 4.1. Since proper⇒
universally closed for morphisms of schemes we conclude that (3) implies (2). If ∆X/Y is
universally closed then Étale Morphisms, Lemma 7.2 implies that it is a closed immersion.
Thus (2)⇒ (1) and we win. �

41. Valuative criteria

The section introduces the basics on valuative criteria for morphisms of algebraic spaces.
Here is a list of references to further results

(1) the valuative criterion for universal closedness can be found in Section 42,
(2) the valuative criterion of separatedness can be found in Section 43,
(3) the valuative criterion for properness can be found in Section 44,
(4) additional converse statements can be found in Decent Spaces, Section 16 and

Decent Spaces, Lemma 17.11, and
(5) in the Noetherian case it is enough to check the criterion for discrete valuation

rings as is shown in Cohomology of Spaces, Section 19 and Limits of Spaces,
Section 21, and

(6) refined versions of the valuative criteria in the Noetherian case can be found in
Limits of Spaces, Section 22.

We first formally state the definition and then we discuss how this differs from the case of
morphisms of schemes.

Definition 41.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f satisfies the uniqueness part of the valuative criterion if given
any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K , there exists at most one dotted
arrow (without requiring existence). We say f satisfies the existence part of the valuative
criterion if given any solid diagram as above there exists an extension K ′/K of fields, a
valuation ring A′ ⊂ K ′ dominating A and a morphism Spec(A′) → X such that the
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following diagram commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

We say f satisfies the valuative criterion if f satisfies both the existence and uniqueness
part.

The formulation of the existence part of the valuative criterion is slightly different for
morphisms of algebraic spaces, since it may be necessary to extend the fraction field of the
valuation ring. In practice this difference almost never plays a role.

(1) Checking the uniqueness part of the valuative criterion never involves any frac-
tion field extensions, hence this is exactly the same as in the case of schemes.

(2) It is necessary to allow for field extensions in general, see Example 41.6.
(3) For morphisms of algebraic spaces it always suffices to take a finite separable

extensionsK ′/K in the existence part of the valuative criterion, see Lemma 41.3.
(4) If f : X → Y is a separated morphism of algebraic spaces, then we can always

take K = K ′ when we check the existence part of the valuative criterion, see
Lemma 41.5.

(5) For a quasi-compact and quasi-separated morphism f : X → Y , we get an equiv-
alence between “f is separated and universally closed” and “f satisfies the usual
valuative criterion”, see Lemma 43.3. The valuative criterion for properness is
the usual one, see Lemma 44.1.

As a first step in the theory, we show that the criterion is identical to the criterion as
formulated for morphisms of schemes in case the morphism of algebraic spaces is repre-
sentable.

Lemma 41.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is representable. The following are equivalent

(1) f satisfies the existence part of the valuative criterion as in Definition 41.1,
(2) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K , there exists a dotted ar-
row, i.e., f satisfies the existence part of the valuative criterion as in Schemes,
Definition 20.3.

Proof. It suffices to show that given a commutative diagram of the form

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

ϕ

44

Spec(A) // Y

as in Definition 41.1, then we can find a morphism Spec(A)→ X fitting into the diagram
too. Set XA = Spec(A) ×Y Y . As f is representable we see that XA is a scheme. The
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morphism ϕ gives a morphism ϕ′ : Spec(A′) → XA. Let x ∈ XA be the image of the
closed point of ϕ′ : Spec(A′)→ XA. Then we have the following commutative diagram
of rings

K ′ Koo OXA,xoo

vv
A′

OO

Aoo Aoo

OO

SinceA is a valuation ring, and sinceA′ dominatesA, we see thatK ∩A′ = A. Hence the
ring map OXA,x → K has image contained in A. Whence a morphism Spec(A) → XA

(see Schemes, Section 13) as desired. �

Lemma 41.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f satisfies the existence part of the valuative criterion as in Definition 41.1,
(2) f satisfies the existence part of the valuative criterion as in Definition 41.1 mod-

ified by requiring the extension K ′/K to be finite separable.

Proof. We have to show that (1) implies (2). Suppose given a diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

as in Definition 41.1 with K ⊂ K ′ arbitrary. Choose a scheme U and a surjective étale
morphism U → X . Then

Spec(A′)×X U −→ Spec(A′)
is surjective étale. Let p be a point of Spec(A′) ×X U mapping to the closed point of
Spec(A′). Let p′  p be a generalization of p mapping to the generic point of Spec(A′).
Such a generalization exists because generalizations lift along flat morphisms of schemes,
see Morphisms, Lemma 25.9. Then p′ corresponds to a point of the scheme Spec(K ′)×XU .
Note that

Spec(K ′)×X U = Spec(K ′)×Spec(K) (Spec(K)×X U)
Hence p′ maps to a point q′ ∈ Spec(K) ×X U whose residue field is a finite separable
extension of K. Finally, p′  p maps to a specialization u′  u on the scheme U . With
all this notation we get the following diagram of rings

κ(p′) κ(q′)oo κ(u′)oo

OSpec(A′)×XU,p

ff

OU,uoo

OO

K ′

OO

A′oo

OO

Aoo

OO

This means that the ring B ⊂ κ(q′) generated by the images of A and OU,u maps to a
subring of κ(p′) contained in the image B′ of OSpec(A′)×XU,p → κ(p′). Note that B′ is
a local ring. Let m ⊂ B be the maximal ideal. By construction A ∩ m, (resp. OU,u ∩ m,
resp. A′ ∩ m) is the maximal ideal of A (resp. OU,u, resp. A′). Set q = B ∩ m. This is
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a prime ideal such that A ∩ q is the maximal ideal of A. Hence Bq ⊂ κ(q′) is a local
ring dominating A. By Algebra, Lemma 50.2 we can find a valuation ring A1 ⊂ κ(q′)
with field of fractions κ(q′) dominating Bq. The (local) ring map OU,u → A1 gives a
morphism Spec(A1)→ U → X such that the diagram

Spec(κ(q′)) //

��

Spec(K) // X

��
Spec(A1) //

44

Spec(A) // Y

is commutative. Since the fraction field ofA1 is κ(q′) and since κ(q′)/K is finite separable
by construction the lemma is proved. �

Lemma 41.4. LetS be a scheme. Let f : X → Y be a separated morphism of algebraic
spaces over S. Suppose given a diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) //

;;

Y

as in Definition 41.1 with K ⊂ K ′ arbitrary. Then the dotted arrow exists making the
diagram commute.

Proof. We have to show that we can find a morphism Spec(A)→ X fitting into the
diagram.

Consider the base change XA = Spec(A) ×Y X of X . Then XA → Spec(A) is a sepa-
rated morphism of algebraic spaces (Lemma 4.4). Base changing all the morphisms of the
diagram above we obtain

Spec(K ′) //

��

Spec(K) // XA

��
Spec(A′) //

44

Spec(A) Spec(A)

Thus we may replace X by XA, assume that Y = Spec(A) and that we have a diagram as
above. We may and do replaceX by a quasi-compact open subspace containing the image
of | Spec(A′)| → |X|.

The morphism Spec(A′)→ X is quasi-compact by Lemma 8.9. Let Z ⊂ X be the scheme
theoretic image of Spec(A′) → X . Then Z is a reduced (Lemma 16.4), quasi-compact
(as a closed subspace of X), separated (as a closed subspace of X) algebraic space over A.
Consider the base change

Spec(K ′) = Spec(A′)×Spec(A) Spec(K)→ X ×Spec(A) Spec(K) = XK

of the morphism Spec(A′)→ X by the flat morphism of schemes Spec(K)→ Spec(A).
By Lemma 30.12 we see that the scheme theoretic image of this morphism is the base change
ZK of Z. On the other hand, by assumption (i.e., the commutative diagram above) this
morphism factors through a morphism Spec(K)→ ZK which is a section to the structure
morphismZK → Spec(K). AsZK is separated, this section is a closed immersion (Lemma
4.7). We conclude that ZK = Spec(K).
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Let V → Z be a surjective étale morphism with V an affine scheme (Properties of Spaces,
Lemma 6.3). Say V = Spec(B). Then V ×Z Spec(A′) = Spec(C) is affine as Z is
separated. Note that B → C is injective as V is the scheme theoretic image of V ×Z
Spec(A′) → V by Lemma 16.3. On the other hand, A′ → C is étale as corresponds to
the base change of V → Z. Since A′ is a torsion free A-module, the flatness of A′ → C
implies C is a torsion freeA-module, henceB is a torsion freeA-module. Note that being
torsion free as an A-module is equivalent to being flat (More on Algebra, Lemma 22.10).
Next, we write

V ×Z V = Spec(B′)
Note that the two ring mapsB → B′ are étale as V → Z is étale. The canonical surjective
map B ⊗A B → B′ becomes an isomorphism after tensoring with K over A because
ZK = Spec(K). However, B ⊗A B is torsion free as an A-module by our remarks above.
Thus B′ = B ⊗A B. It follows that the base change of the ring map A → B by the
faithfully flat ring map A → B is étale (note that Spec(B) → Spec(A) is surjective as
X → Spec(A) is surjective). Hence A → B is étale (Descent, Lemma 23.29), in other
words, V → X is étale. Since we have V ×Z V = V ×Spec(A) V we conclude that
Z = Spec(A) as algebraic spaces (for example by Spaces, Lemma 9.1) and the proof is
complete. �

Lemma 41.5. LetS be a scheme. Let f : X → Y be a separated morphism of algebraic
spaces over S. The following are equivalent

(1) f satisfies the existence part of the valuative criterion as in Definition 41.1,
(2) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K , there exists a dotted ar-
row, i.e., f satisfies the existence part of the valuative criterion as in Schemes,
Definition 20.3.

Proof. We have to show that (1) implies (2). Suppose given a commutative diagram

Spec(K) //

��

X

��
Spec(A) // Y

as in part (2). By (1) there exists a commutative diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

as in Definition 41.1 with K ⊂ K ′ arbitrary. By Lemma 41.4 we can find a morphism
Spec(A)→ X fitting into the diagram, i.e., (2) holds. �
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Example 41.6. Consider the algebraic space X constructed in Spaces, Example 14.2.
Recall that it is Galois twist of the affine line with zero doubled. The Galois twist is with
respect to a degree two Galois extension k′/k of fields. As such it comes with a morphism

π : X −→ S = A1
k

which is quasi-compact. We claim that π is universally closed. Namely, after base change
by Spec(k′)→ Spec(k) the morphism π is identified with the morphism

affine line with zero doubled −→ affine line

which is universally closed (some details omitted). Since the morphism Spec(k′) →
Spec(k) is universally closed and surjective, a diagram chase shows that π is universally
closed. On the other hand, consider the diagram

Spec(k((x))) //

��

X

π

��
Spec(k[[x]]) //

99

A1
k

Since the unique point of X above 0 ∈ A1
k corresponds to a monomorphism Spec(k′)→

X it is clear there cannot exist a dotted arrow! This shows that a finite separable field
extension is needed in general.

Lemma 41.7. The base change of a morphism of algebraic spaces which satisfies the
existence part of (resp. uniqueness part of) the valuative criterion by any morphism of
algebraic spaces satisfies the existence part of (resp. uniqueness part of) the valuative cri-
terion.

Proof. Let f : X → Y be a morphism of algebraic spaces over the scheme S. Let
Z → Y be any morphism of algebraic spaces over S. Consider a solid commutative dia-
gram of the following shape

Spec(K) //

��

Z ×Y X //

��

X

��
Spec(A) //

99 44

Z // Y

Then the set of north-west dotted arrows making the diagram commute is in 1-1 correspon-
dence with the set of west-north-west dotted arrows making the diagram commute. This
proves the lemma in the case of “uniqueness”. For the existence part, assume f satisfies
the existence part of the valuative criterion. If we are given a solid commutative diagram
as above, then by assumption there exists an extension K ′/K of fields and a valuation
ring A′ ⊂ K ′ dominating A and a morphism Spec(A′) → X fitting into the following
commutative diagram

Spec(K ′) //

��

Spec(K) // Z ×Y X // X

��
Spec(A′) //

22

Spec(A) // Z // Y

And by the remarks above the skew arrow corresponds to an arrow Spec(A′)→ Z ×Y X
as desired. �
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Lemma 41.8. The composition of two morphisms of algebraic spaces which satisfy the
(existence part of, resp. uniqueness part of) the valuative criterion satisfies the (existence
part of, resp. uniqueness part of) the valuative criterion.

Proof. Let f : X → Y , g : Y → Z be morphisms of algebraic spaces over the scheme
S. Consider a solid commutative diagram of the following shape

Spec(K)

��

// X

f

��
Y

g

��
Spec(A) //

;;

DD

Z

If we have the uniqueness part for g, then there exists at most one north-west dotted arrow
making the diagram commute. If we also have the uniqueness part for f , then we have at
most one north-north-west dotted arrow making the diagram commute. The proof in the
existence case comes from contemplating the following diagram

Spec(K ′′) //

��

Spec(K ′) // Spec(K) // X

f

��
Y

g

��
Spec(A′′) //

55

Spec(A′) //

44

Spec(A) // Z

Namely, the existence part for g gives us the extension K ′, the valuation ring A′ and the
arrow Spec(A′)→ Y , whereupon the existence part for f gives us the extension K ′′, the
valuation ring A′′ and the arrow Spec(A′′)→ X . �

42. Valuative criterion for universal closedness

The existence part of the valuative criterion implies universal closedness for quasi-compact
morphisms, see Lemma 42.1. In the case of schemes, this is an “if and only if” statement,
but for morphisms of algebraic spaces this is wrong. Example 9.6 shows that A1

k/Z →
Spec(k) is universally closed, but it is easy to see that the existence part of the valuative
criterion fails. We revisit this topic in Decent Spaces, Section 16 and show the converse
holds if the source of the morphism is a decent space (see also Decent Spaces, Lemma 17.11
for a relative version).

Lemma 42.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) f is quasi-compact, and
(2) f satisfies the existence part of the valuative criterion.

Then f is universally closed.

Proof. By Lemmas 8.4 and 41.7 properties (1) and (2) are preserved under any base
change. By Lemma 9.5 we only have to show that |T ×Y X| → |T | is closed, whenever
T is an affine scheme over S mapping into Y . Hence it suffices to prove: If Y is an affine
scheme, f : X → Y is quasi-compact and satisfies the existence part of the valuative
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criterion, then f : |X| → |Y | is closed. In this situation X is a quasi-compact algebraic
space. By Properties of Spaces, Lemma 6.3 there exists an affine scheme U and a surjective
étale morphism ϕ : U → X . Let T ⊂ |X| closed. The inverse image ϕ−1(T ) ⊂ U
is closed, and hence is the set of points of an affine closed subscheme Z ⊂ U . Thus, by
Algebra, Lemma 41.5 we see that f(T ) = f(ϕ(|Z|)) ⊂ |Y | is closed if it is closed under
specialization.

Let y′  y be a specialization in Y with y′ ∈ f(T ). Choose a point x′ ∈ T ⊂ |X|
mapping to y′ under f . We may represent x′ by a morphism Spec(K) → X for some
field K. Thus we have the following diagram

Spec(K)
x′
//

��

X

f

��
Spec(OY,y) // Y,

see Schemes, Section 13 for the existence of the left vertical map. Choose a valuation ring
A ⊂ K dominating the image of the ring map OY,y → K (this is possible since the
image is a local ring and not a field as y′ 6= y, see Algebra, Lemma 50.2). By assumption
there exists a field extension K ′/K and a valuation ring A′ ⊂ K ′ dominating A, and a
morphism Spec(A′) → X fitting into the commutative diagram. Since A′ dominates A,
and A dominates OY,y we see that the closed point of Spec(A′) maps to a point x ∈ X
with f(x) = y which is a specialization of x′. Hence x ∈ T as T is closed, and hence
y ∈ f(T ) as desired. �

The following lemma will be generalized in Decent Spaces, Lemma 17.11.

Lemma 42.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S.

(1) If f is quasi-separated and universally closed, then f satisfies the existence part
of the valuative criterion.

(2) If f is quasi-compact and quasi-separated, then f is universally closed if and only
if the existence part of the valuative criterion holds.

Proof. If (1) is true then combined with Lemma 42.1 we obtain (2). Assume f is
quasi-separated and universally closed. Assume given a diagram

Spec(K) //

��

X

��
Spec(A) // Y

as in Definition 41.1. A formal argument shows that the existence of the desired diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

follows from existence in the case of the morphism XA → Spec(A). Since being quasi-
separated and universally closed are preserved by base change, the lemma follows from the
result in the next paragraph.
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Consider a solid diagram

Spec(K)
x

//

��

X

f

��
Spec(A)

99

Spec(A)

where A is a valuation ring with field of fractions K. By Lemma 8.9 and the fact that f
is quasi-separated we have that the morphism x is quasi-compact. Since f is universally
closed, we have in particular that |f |({x}) is closed in Spec(A). Since this image contains
the generic point of Spec(A) there exists a point x′ ∈ |X| in the closure of x mapping to
the closed point of Spec(A). By Lemma 16.5 we can find a commutative diagram

Spec(K ′) //

��

Spec(K)

��
Spec(A′) // X

such that the closed point of Spec(A′) maps to x′ ∈ |X|. It follows that Spec(A′) →
Spec(A) maps the closed point to the closed point, i.e., A′ dominates A and this finishes
the proof. �

Lemma 42.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is quasi-compact and separated. Then the following are equivalent

(1) f is universally closed,
(2) the existence part of the valuative criterion holds as in Definition 41.1, and
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K , there exists a dotted ar-
row, i.e., f satisfies the existence part of the valuative criterion as in Schemes,
Definition 20.3.

Proof. Since f is separated parts (2) and (3) are equivalent by Lemma 41.5. The
equivalence of (3) and (1) follows from Lemma 42.2. �

Lemma 42.4. Let S be a scheme. Let f : X → Y be a flat morphism of algebraic
spaces over S. Let Spec(A)→ Y be a morphism whereA is a valuation ring. If the closed
point of Spec(A) maps to a point of |Y | in the image of |X| → |Y |, then there exists a
commutative diagram

Spec(A′) //

��

X

��
Spec(A) // Y

where A→ A′ is an extension of valuation rings (More on Algebra, Definition 123.1).
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Proof. The base change XA → Spec(A) is flat (Lemma 30.4) and the closed point
of Spec(A) is in the image of |XA| → | Spec(A)| (Properties of Spaces, Lemma 4.3). Thus
we may assume Y = Spec(A). Let U → X be a surjective étale morphism where U is a
scheme. Let u ∈ U map to the closed point of Spec(A). Consider the flat local ring map
A→ B = OU,u. By Algebra, Lemma 39.16 there exists a prime ideal q ⊂ B such that q lies
over (0) ⊂ A. By Algebra, Lemma 50.2 we can find a valuation ringA′ ⊂ κ(q) dominating
B/q. The induced morphism Spec(A′)→ U → X is a solution to the problem posed by
the lemma. �

Lemma 42.5. Let S be a scheme. Let f : X → Y and h : U → X be morphisms of
algebraic spaces over S. If

(1) f and h are quasi-compact,
(2) |h|(|U |) is dense in |X|, and

given any commutative solid diagram

Spec(K) //

��

U // X

��
Spec(A) //

66

Y

where A is a valuation ring with field of fractions K
(3) there exists at most one dotted arrow making the diagram commute, and
(4) there exists an extension K ′/K of fields, a valuation ring A′ ⊂ K ′ dominating

A and a morphism Spec(A′)→ X such that the following diagram commutes

Spec(K ′) //

��

Spec(K) // U // X

��
Spec(A′) //

33

Spec(A) // Y

then f is universally closed. If moreover
(5) f is quasi-separated

then f is separated and universally closed.

Proof. Assume (1), (2), (3), and (4). We will verify the existence part of the valuative
criterion for f which will imply f is universally closed by Lemma 42.1. To do this, consider
a commutative diagram

(42.5.1)

Spec(K) //

��

X

��
Spec(A) // Y

where A is a valuation ring and K is the fraction field of A. Note that since valuation
rings and fields are reduced, we may replace U ,X , and S by their respective reductions by
Properties of Spaces, Lemma 12.4. In this case the assumption that h(U) is dense means
that the scheme theoretic image of h : U → X is X , see Lemma 16.4.

Reduction to the case Y affine. Choose an étale morphism Spec(R) → Y such that the
closed point of Spec(A) maps to an element of Im(|Spec(R)| → |Y |). By Lemma 42.4
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we can find a local ring map A → A′ of valuation rings and a morphism Spec(A′) →
Spec(R) fitting into a commutative diagram

Spec(A′) //

��

Spec(R)

��
Spec(A) // Y

Since in Definition 41.1 we allow for extensions of valuation rings it is clear that we may
replace A by A′, Y by Spec(R), X by X ×Y Spec(R) and U by U ×Y Spec(R).

From now on we assume that Y = Spec(R) is an affine scheme. Let Spec(B)→ X be an
étale morphism from an affine scheme such that the morphism Spec(K) → X is in the
image of | Spec(B)| → |X|. Since we may replace K by an extension K ′ ⊃ K and A by
a valuation ring A′ ⊂ K ′ dominating A (which exists by Algebra, Lemma 50.2), we may
assume the morphism Spec(K)→ X factors through Spec(B) (by definition of |X|). In
other words, we may think ofK as aB-algebra. Choose a polynomial algebraP overB and
a B-algebra surjection P → K. Then Spec(P )→ X is flat as a composition Spec(P )→
Spec(B) → X . Hence the scheme theoretic image of the morphism U ×X Spec(P ) →
Spec(P ) is Spec(P ) by Lemma 30.12. By Lemma 16.5 we can find a commutative diagram

Spec(K ′) //

��

U ×X Spec(P )

��
Spec(A′) // Spec(P )

where A′ is a valuation ring and K ′ is the fraction field of A′ such that the closed point
of Spec(A′) maps to Spec(K) ⊂ Spec(P ). In other words, there is a B-algebra map
ϕ : K → A′/mA′ . Choose a valuation ringA′′ ⊂ A′/mA′ dominating ϕ(A) with field of
fractions K ′′ = A′/mA′ (Algebra, Lemma 50.2). We set

C = {λ ∈ A′ | λ mod mA′ ∈ A′′}.
which is a valuation ring by Algebra, Lemma 50.10. As C is an R-algebra with fraction
field K ′, we obtain a solid commutative diagram

Spec(K ′
1) //

��

Spec(K ′) //

��

U // X

��
Spec(C1) //

33

Spec(C) // Y

as in the statement of the lemma. Thus assumption (4) produces C → C1 and the dotted
arrows making the diagram commute. LetA′

1 = (C1)p be the localization ofC1 at a prime
p ⊂ C1 lying over mA′ ⊂ C. SinceC → C1 is flat by More on Algebra, Lemma 22.10 such
a prime p exists by Algebra, Lemmas 39.17 and 39.16. Note thatA′ is the localization ofC
at mA′ and that A′

1 is a valuation ring (Algebra, Lemma 50.9). In other words, A′ → A′
1

is a local ring map of valuation rings. Assumption (3) implies

Spec(A′
1) //

��

Spec(C1) // X

Spec(A′) // Spec(P ) // Spec(B)

OO
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commutes. Hence the restriction of the morphism Spec(C1)→ X to Spec(C1/p) restricts
to the composition

Spec(κ(p))→ Spec(A′/mA′) = Spec(K ′′)→ Spec(K)→ X

on the generic point of Spec(C1/p). Moreover, C1/p is a valuation ring (Algebra, Lemma
50.9) dominating A′′ which dominates A. Thus the morphism Spec(C1/p) → X wit-
nesses the existence part of the valuative criterion for the diagram (42.5.1) as desired.

Next, suppose that (5) is satisfied as well, i.e., the morphism ∆ : X → X ×S X is quasi-
compact. In this case assumptions (1) – (4) hold for h and ∆. Hence the first part of the
proof shows that ∆ is universally closed. By Lemma 40.9 we conclude that f is separated.

�

43. Valuative criterion of separatedness

First we prove a converse and then we state the criterion.

Lemma 43.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is separated, then f satisfies the uniqueness part of the valuative criterion.

Proof. Let a diagram as in Definition 41.1 be given. Suppose there are two distinct
morphisms a, b : Spec(A) → X fitting into the diagram. Let Z ⊂ Spec(A) be the
equalizer of a and b. Then Z = Spec(A) ×(a,b),X×YX,∆ X . If f is separated, then ∆ is
a closed immersion, and this is a closed subscheme of Spec(A). By assumption it contains
the generic point of Spec(A). Since A is a domain this implies Z = Spec(A). Hence
a = b as desired. �

Lemma 43.2 (Valuative criterion separatedness). Let S be a scheme. Let f : X → Y
be a morphism of algebraic spaces over S. Assume

(1) the morphism f is quasi-separated, and
(2) the morphism f satisfies the uniqueness part of the valuative criterion.

Then f is separated.

Proof. Assumption (1) means ∆X/Y is quasi-compact. We claim the morphism ∆X/Y :
X → X ×Y X satisfies the existence part of the valuative criterion. Let a solid commuta-
tive diagram

Spec(K) //

��

X

��
Spec(A) //

99

X ×Y X
be given. The lower right arrow corresponds to a pair of morphisms a, b : Spec(A)→ X
over Y . By assumption (2) we see that a = b. Hence using a as the dotted arrow works.
Hence Lemma 42.1 applies, and we see that ∆X/Y is universally closed. Since always ∆X/Y

is locally of finite type and separated, we conclude from More on Morphisms, Lemma 44.1
that ∆X/Y is a finite morphism (also, use the general principle of Spaces, Lemma 5.8). At
this point ∆X/Y is a representable, finite monomorphism, hence a closed immersion by
Morphisms, Lemma 44.15. �

Lemma 43.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
overS. Assume f is quasi-compact and quasi-separated. Then the following are equivalent

(1) f is separated and universally closed,
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(2) the valuative criterion holds as in Definition 41.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

whereA is a valuation ring with field of fractionsK , there exists a unique dotted
arrow, i.e., f satisfies the valuative criterion as in Schemes, Definition 20.3.

Proof. Since f is quasi-separated, the uniqueness part of the valutative criterion im-
plies f is separated (Lemma 43.2). Conversely, if f is separated, then it satisfies the unique-
ness part of the valuative criterion (Lemma 43.1). Having said this, we see that in each of
the three cases the morphism f is separated and satisfies the uniqueness part of the valua-
tive criterion. In this case the lemma is a formal consequence of Lemma 42.3. �

44. Valuative criterion of properness

Here is a statement.

Lemma 44.1 (Valuative criterion for properness). Let S be a scheme. Let f : X → Y
be a morphism of algebraic spaces over S. Assume f is of finite type and quasi-separated.
Then the following are equivalent

(1) f is proper,
(2) the valuative criterion holds as in Definition 41.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

whereA is a valuation ring with field of fractionsK , there exists a unique dotted
arrow, i.e., f satisfies the valuative criterion as in Schemes, Definition 20.3.

Proof. Formal consequence of Lemma 43.3 and the definitions. �

45. Integral and finite morphisms

We have already defined in Section 3 what it means for a representable morphism of alge-
braic spaces to be integral (resp. finite).

Lemma 45.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Then f is integral, resp. finite (in the sense of Section 3), if and
only if for all affine schemes Z and morphisms Z → Y the scheme X ×Y Z is affine and
integral, resp. finite, over Z.

Proof. This follows directly from the definition of an integral (resp. finite) mor-
phism of schemes (Morphisms, Definition 44.1). �

This clears the way for the following definition.

Definition 45.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.
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(1) We say that f is integral if for every affine scheme Z and morphisms Z → Y
the algebraic spaceX×Y Z is representable by an affine scheme integral over Z.

(2) We say that f is finite if for every affine scheme Z and morphisms Z → Y the
algebraic space X ×Y Z is representable by an affine scheme finite over Z.

Lemma 45.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is representable and integral (resp. finite),
(2) f is integral (resp. finite),
(3) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is integral (resp. finite), and
(4) there exists a Zariski coveringY =

⋃
Yi such that each of the morphisms f−1(Yi)→

Yi is integral (resp. finite).

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to be a
disjoint union of affines étale over Y , see Properties of Spaces, Lemma 6.1. Assume V → Y
is as in (3). Then for every affine open W of V we see that W ×Y X is an affine open
of V ×Y X . Hence by Properties of Spaces, Lemma 13.1 we conclude that V ×Y X is a
scheme. Moreover the morphism V ×Y X → V is affine. This means we can apply Spaces,
Lemma 11.5 because the class of integral (resp. finite) morphisms satisfies all the required
properties (see Morphisms, Lemmas 44.6 and Descent, Lemmas 23.22, 23.23, and 37.1). The
conclusion of applying this lemma is that f is representable and integral (resp. finite), i.e.,
(1) holds.
The equivalence of (1) and (4) follows from the fact that being integral (resp. finite) is
Zariski local on the target (the reference above shows that being integral or finite is in fact
fpqc local on the target). �

Lemma 45.4. The composition of integral (resp. finite) morphisms is integral (resp.
finite).

Proof. Omitted. �

Lemma 45.5. The base change of an integral (resp. finite) morphism is integral (resp.
finite).

Proof. Omitted. �

Lemma 45.6. A finite morphism of algebraic spaces is integral. An integral morphism
of algebraic spaces which is locally of finite type is finite.

Proof. In both cases the morphism is representable, and you can check the condition
after a base change by an affine scheme mapping into Y , see Lemmas 45.3. Hence this
lemma follows from the same lemma for the case of schemes, see Morphisms, Lemma 44.4.

�

Lemma 45.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f is integral, and
(2) f is affine and universally closed.

Proof. In both cases the morphism is representable, and you can check the condition
after a base change by an affine scheme mapping into Y , see Lemmas 45.3, 20.3, and 9.5.
Hence the result follows from Morphisms, Lemma 44.7. �
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Lemma 45.8. A finite morphism of algebraic spaces is quasi-finite.

Proof. Let f : X → Y be a morphism of algebraic spaces. By Definition 45.2 and
Lemmas 8.8 and 27.6 both properties may be checked after base change to an affine over
Y , i.e., we may assume Y affine. If f is finite then X is a scheme. Hence the result follows
from the corresponding result for schemes, see Morphisms, Lemma 44.10. �

Lemma 45.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f is finite, and
(2) f is affine and proper.

Proof. In both cases the morphism is representable, and you can check the condition
after base change to an affine scheme mapping into Y , see Lemmas 45.3, 20.3, and 40.2.
Hence the result follows from Morphisms, Lemma 44.11. �

Lemma 45.10. A closed immersion is finite (and a fortiori integral).

Proof. Omitted. �

Lemma 45.11. Let S be a scheme. Let Xi → Y , i = 1, . . . , n be finite morphisms of
algebraic spaces over S. Then X1 q . . .qXn → Y is finite too.

Proof. Follows from the case of schemes (Morphisms, Lemma 44.13) by étale local-
ization. �

Lemma 45.12. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
algebraic spaces over S.

(1) If g ◦ f is finite and g separated then f is finite.
(2) If g ◦ f is integral and g separated then f is integral.

Proof. Assume g ◦f is finite (resp. integral) and g separated. The base changeX×Z
Y → Y is finite (resp. integral) by Lemma 45.5. The morphism X → X ×Z Y is a closed
immersion as Y → Z is separated, see Lemma 4.7. A closed immersion is finite (resp.
integral), see Lemma 45.10. The composition of finite (resp. integral) morphisms is finite
(resp. integral), see Lemma 45.4. Thus we win. �

46. Finite locally free morphisms

We have already defined in Section 3 what it means for a representable morphism of alge-
braic spaces to be finite locally free.

Lemma 46.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Then f is finite locally free (in the sense of Section 3) if and only
if f is affine and the sheaf f∗OX is a finite locally freeOY -module.

Proof. Assume f is finite locally free (as defined in Section 3). This means that for
every morphism V → Y whose source is a scheme the base change f ′ : V ×Y X → V is a
finite locally free morphism of schemes. This in turn means (by the definition of a finite
locally free morphism of schemes) that f ′

∗OV×YX is a finite locally freeOV -module. We
may choose V → Y to be surjective and étale. By Properties of Spaces, Lemma 26.2 we
conclude the restriction of f∗OX to V is finite locally free. Hence by Modules on Sites,
Lemma 23.3 applied to the sheaf f∗OX on Yspaces,étale we conclude that f∗OX is finite
locally free.
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Conversely, assume f is affine and that f∗OX is a finite locally freeOY -module. Let V be
a scheme, and let V → Y be a surjective étale morphism. Again by Properties of Spaces,
Lemma 26.2 we see that f ′

∗OV×YX is finite locally free. Hence f ′ : V ×Y X → V is finite
locally free (as it is also affine). By Spaces, Lemma 11.5 we conclude that f is finite locally
free (use Morphisms, Lemma 48.4 Descent, Lemmas 23.30 and 37.1). Thus we win. �

This clears the way for the following definition.

Definition 46.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say that f is finite locally free if f is affine and f∗OX is a finite locally
free OY -module. In this case we say f is has rank or degree d if the sheaf f∗OX is finite
locally free of rank d.

Lemma 46.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is representable and finite locally free,
(2) f is finite locally free,
(3) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is finite locally free, and
(4) there exists a Zariski coveringY =

⋃
Yi such that each morphism f−1(Yi)→ Yi

is finite locally free.

Proof. It is clear that (1) implies (2) and that (2) implies (3) by taking V to be a dis-
joint union of affines étale over Y , see Properties of Spaces, Lemma 6.1. Assume V → Y
is as in (3). Then for every affine open W of V we see that W ×Y X is an affine open
of V ×Y X . Hence by Properties of Spaces, Lemma 13.1 we conclude that V ×Y X is a
scheme. Moreover the morphism V ×Y X → V is affine. This means we can apply Spaces,
Lemma 11.5 because the class of finite locally free morphisms satisfies all the required prop-
erties (see Morphisms, Lemma 48.4 Descent, Lemmas 23.30 and 37.1). The conclusion of
applying this lemma is that f is representable and finite locally free, i.e., (1) holds.

The equivalence of (1) and (4) follows from the fact that being finite locally free is Zariski
local on the target (the reference above shows that being finite locally free is in fact fpqc
local on the target). �

Lemma 46.4. The composition of finite locally free morphisms is finite locally free.

Proof. Omitted. �

Lemma 46.5. The base change of a finite locally free morphism is finite locally free.

Proof. Omitted. �

Lemma 46.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is finite locally free,
(2) f is finite, flat, and locally of finite presentation.

If Y is locally Noetherian these are also equivalent to
(3) f is finite and flat.

Proof. In each of the three cases the morphism is representable and you can check
the property after base change by a surjective étale morphism V → Y , see Lemmas 45.3,
46.3, 30.5, and 28.4. If Y is locally Noetherian, then V is locally Noetherian. Hence the
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result follows from the corresponding result in the schemes case, see Morphisms, Lemma
48.2. �

47. Rational maps

This section is the analogue of Morphisms, Section 49. We will use without further men-
tion that the intersection of dense opens of a topological space is a dense open.

Definition 47.1. Let S be a scheme. Let X , Y be algebraic spaces over S.
(1) Let f : U → Y , g : V → Y be morphisms of algebraic spaces over S defined on

dense open subspaces U , V of X . We say that f is equivalent to g if f |W = g|W
for some dense open subspace W ⊂ U ∩ V .

(2) A rational map from X to Y is an equivalence class for the equivalence relation
defined in (1).

(3) Given morphisms X → B and Y → B of algebraic spaces over S we say that
a rational map from X to Y is a B-rational map from X to Y if there exists a
representative f : U → Y of the equivalence class which is a morphism over B.

We say that two morphisms f , g as in (1) of the definition define the same rational map
instead of saying that they are equivalent. In many cases we will consider in the future,
the algebraic spaces X and Y will contain a dense open subspaces X ′ and Y ′ which are
schemes. In that case a rational map from X to Y is the same as an S-rational map from
X ′ to Y ′ in the sense of Morphisms, Definition 47.1. Then all of the theory developed for
schemes can be brought to bear.

Definition 47.2. Let S be a scheme. Let X be an algebraic space over S. A rational
function on X is a rational map from X to A1

S .

Looking at the discussion following Morphisms, Definition 49.3 we find that this is the
same as the notion defined there in case X happens to be a scheme.

Recall that we have the canonical identification

MorS(T,A1
S) = Mor(T,A1

Z) = Γ(T,OT )

for any scheme T over S , see Schemes, Example 15.2. Hence A1
S is a ring-object in the

category of schemes overS. In other words, addition and multiplication define morphisms

+ : A1
S ×S A1

S → A1
S and ∗ : A1

S ×S A1
S → A1

S

satisfying the axioms of the addition and multiplication in a ring (commutative with 1 as
always). Hence also the set of rational maps into A1

S has a natural ring structure.

Definition 47.3. Let S be a scheme. Let X be an algebraic space over S. The ring
of rational functions on X is the ring R(X) whose elements are rational functions with
addition and multiplication as just described.

We will define function fields for integral algebraic spaces later, see Spaces over Fields,
Section 4.

Definition 47.4. Let S be a scheme. Let ϕ be a rational map between two algebraic
spacesX and Y over S. We say ϕ is defined in a point x ∈ |X| if there exists a representa-
tive (U, f) of ϕ with x ∈ |U |. The domain of definition of ϕ is the set of all points where
ϕ is defined.
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The domain of definition is viewed as an open subspace of X via Properties of Spaces,
Lemma 4.8. With this definition it isn’t true in general that ϕ has a representative which
is defined on all of the domain of definition.

Lemma 47.5. Let S be a scheme. Let X and Y be algebraic spaces over S. Assume X
is reduced and Y is separated over S. Let ϕ be a rational map fromX to Y with domain of
definition U ⊂ X . Then there exists a unique morphism f : U → Y of algebraic spaces
representing ϕ.

Proof. Let (V, g) and (V ′, g′) be representatives of ϕ. Then g, g′ agree on a dense
open subspace W ⊂ V ∩ V ′. On the other hand, the equalizer E of g|V ∩V ′ and g′|V ∩V ′

is a closed subspace of V ∩ V ′ because it is the base change of ∆ : Y → Y ×S Y by the
morphism V ∩ V ′ → Y ×S Y given by g|V ∩V ′ and g′|V ∩V ′ . Now W ⊂ E implies that
|E| = |V ∩ V ′|. As V ∩ V ′ is reduced we conclude E = V ∩ V ′ scheme theoretically,
i.e., g|V ∩V ′ = g′|V ∩V ′ , see Properties of Spaces, Lemma 12.4. It follows that we can glue
the representatives g : V → Y of ϕ to a morphism f : U → Y because

∐
V → U is a

surjection of fppf sheaves and
∐
V,V ′ V ∩ V ′ = (

∐
V )×U (

∐
V ). �

In general it does not make sense to compose rational maps. The reason is that the image
of a representative of the first rational map may have empty intersection with the domain
of definition of the second. However, if we assume that our spaces are irreducible and we
look at dominant rational maps, then we can compose rational maps.

Definition 47.6. Let S be a scheme. Let X and Y be algebraic spaces over S. As-
sume |X| and |Y | are irreducible. A rational map from X to Y is called dominant if any
representative f : U → Y is a dominant morphism in the sense of Definition 18.1.

We can compose a dominant rational map ϕ between irreducible algebraic spaces X and
Y with an arbitrary rational map ψ from Y to Z. Namely, choose representatives f :
U → Y with |U | ⊂ |X| open dense and g : V → Z with |V | ⊂ |Y | open dense. Then
W = |f |−1(V ) ⊂ |X| is open nonempty (because the image of |f | is dense and hence
must meet the nonempty open V ) and hence dense as |X| is irreducible. We define ψ ◦ ϕ
as the equivalence class of g ◦ f |W : W → Z. We omit the verification that this is well
defined.
In this way we obtain a category whose objects are irreducible algebraic spaces over S and
whose morphisms are dominant rational maps.

Definition 47.7. Let S be a scheme. Let X and Y be algebraic spaces over S with
|X| and |Y | irreducible. We say X and Y are birational if X and Y are isomorphic in the
category of irreducible algebraic spaces over S and dominant rational maps.

If X and Y are birational irreducible algebraic spaces, then the set of rational maps from
X to Z is bijective with the set of rational map from Y to Z for all algebraic spaces Z
(functorially in Z). For “general” irreducible algebraic spaces this is just one possible defi-
nition. Another would be to requireX and Y have isomorphic rings of rational functions;
sometimes these two notions are equivalent (insert future reference here).

Lemma 47.8. Let S be a scheme. Let X and Y be algebraic space over S with |X|
and |Y | irreducible. Then X and Y are birational if and only if there are nonempty open
subspaces U ⊂ X and V ⊂ Y which are isomorphic as algebraic spaces over S.

Proof. Assume X and Y are birational. Let f : U → Y and g : V → X define
inverse dominant rational maps from X to Y and from Y to X . After shrinking U we
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may assume f : U → Y factors through V . As g ◦ f is the identity as a dominant rational
map, we see that the compositionU → V → X is the identity on a dense open ofU . Thus
after replacing U by a smaller open we may assume that U → V → X is the inclusion
of U into X . By symmetry we find there exists an open subspace V ′ ⊂ V such that
g|V ′ : V ′ → X factors through U ⊂ X and such that V ′ → U → Y is the identity. The
inverse image of |V ′| by |U | → |V | is an open of |U | and hence equal to |U ′| for some
open subspace U ′ ⊂ U , see Properties of Spaces, Lemma 4.8. Then U ′ ⊂ U → V factors
as U ′ → V ′. Similarly V ′ → U factors as V ′ → U ′. The reader finds that U ′ → V ′

and V ′ → U ′ are mutually inverse morphisms of algebraic spaces over S and the proof is
complete. �

48. Relative normalization of algebraic spaces

This section is the analogue of Morphisms, Section 53.

Lemma 48.1. Let S be a scheme. Let X be an algebraic space over S. Let A be a
quasi-coherent sheaf of OX -algebras. There exists a quasi-coherent sheaf of OX -algebras
A′ ⊂ A such that for any affine object U ofXétale the ringA′(U) ⊂ A(U) is the integral
closure ofOX(U) inA(U).

Proof. Let U be an object ofXétale. ThenU is a scheme. DenoteA|U the restriction
to the Zariski site. ThenA|U is a quasi-coherent sheaf ofOU -algebras hence we can apply
Morphisms, Lemma 53.1 to find a quasi-coherent subalgebra A′

U ⊂ A|U such that the
value of A′

U on any affine open W ⊂ U is as given in the statement of the lemma. If
f : U ′ → U is a morphism in Xétale, then A|U ′ = f∗(A|U ) where f∗ means pullback
by the morphism f in the Zariski topology; this holds because A is quasi-coherent (see
introduction to Properties of Spaces, Section 29 and the references to the discussion in the
chapter on descent on schemes). Since f is étale we find that More on Morphisms, Lemma
19.1 says that we get a canonical isomorphism f∗(A′

U ) = A′
U ′ . This immediately tells

us that we obtain a sub presheaf A′ ⊂ A of OX -algebras over Xétale which is a sheaf
for the Zariski topology and has the right values on affine objects. But the fact that each
A′
U is quasi-coherent on the scheme U and that for f : U ′ → U étale we have A′

U ′ =
f∗(A′

U ) implies thatA′ is quasi-coherent on Xétale as well (as this is a local property and
we have the references above describing quasi-coherent modules on Uétale in exactly this
manner). �

Definition 48.2. Let S be a scheme. Let X be an algebraic space over S. Let A
be a quasi-coherent sheaf of OX -algebras. The integral closure of OX in A is the quasi-
coherentOX -subalgebraA′ ⊂ A constructed in Lemma 48.1 above.

We will apply this in particular whenA = f∗OY for a quasi-compact and quasi-separated
morphism of algebraic spaces f : Y → X (see Lemma 11.2). We can then take the relative
spectrum of the quasi-coherent OX -algebra (Lemma 20.7) to obtain the normalization of
X in Y .

Definition 48.3. Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let O′ be the integral closure of OX in
f∗OY . The normalization of X in Y is the morphism of algebraic spaces

ν : X ′ = Spec
X

(O′)→ X

over S. It comes equipped with a natural factorization

Y
f ′

−→ X ′ ν−→ X



48. RELATIVE NORMALIZATION OF ALGEBRAIC SPACES 5303

of the initial morphism f .

To get the factorization, use Remark 20.9 and functoriality of the Spec construction.

Lemma 48.4. Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let Y → X ′ → X be the normalization
of X in Y .

(1) If W → X is an étale morphism of algebraic spaces over S , then W ×X X ′ is
the normalization of W in W ×X Y .

(2) If Y andX are representable, then Y ′ is representable and is canonically isomor-
phic to the normalization of the scheme X in the scheme Y as constructed in
Morphisms, Section 54.

Proof. It is immediate from the construction that the formation of the normalization
ofX inY commutes with étale base change, i.e., part (1) holds. On the other hand, ifX and
Y are schemes, then forU ⊂ X affine open, f∗OY (U) = OY (f−1(U)) and hence ν−1(U)
is the spectrum of exactly the same ring as we get in the corresponding construction for
schemes. �

Here is a characterization of this construction.

Lemma 48.5. Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. The factorization f = ν ◦ f ′, where ν :
X ′ → X is the normalization ofX in Y is characterized by the following two properties:

(1) the morphism ν is integral, and
(2) for any factorization f = π ◦ g, with π : Z → X integral, there exists a commu-

tative diagram
Y

f ′

��

g
// Z

π

��
X ′

h

>>

ν // X

for a unique morphism h : X ′ → Z.
Moreover, in (2) the morphism h : X ′ → Z is the normalization of Z in Y .

Proof. Let O′ ⊂ f∗OY be the integral closure of OX as in Definition 48.3. The
morphism ν is integral by construction, which proves (1). Assume given a factorization
f = π ◦ g with π : Z → X integral as in (2). By Definition 45.2 π is affine, and hence
Z is the relative spectrum of a quasi-coherent sheaf of OX -algebras B. The morphism
g : X → Z corresponds to a map of OX -algebras χ : B → f∗OY . Since B(U) is integral
overOX(U) for every affine U étale overX (by Definition 45.2) we see from Lemma 48.1
that χ(B) ⊂ O′. By the functoriality of the relative spectrum Lemma 20.7 this provides
us with a unique morphism h : X ′ → Z. We omit the verification that the diagram
commutes.

It is clear that (1) and (2) characterize the factorization f = ν◦f ′ since it characterizes it as
an initial object in a category. The morphism h in (2) is integral by Lemma 45.12. Given a
factorization g = π′ ◦g′ with π′ : Z ′ → Z integral, we get a factorization f = (π◦π′)◦g′

and we get a morphism h′ : X ′ → Z ′. Uniqueness implies that π′ ◦ h′ = h. Hence
the characterization (1), (2) applies to the morphism h : X ′ → Z which gives the last
statement of the lemma. �
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Lemma 48.6. Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let X ′ → X be the normalization of X
in Y . If Y is reduced, so is X ′.

Proof. This follows from the fact that a subring of a reduced ring is reduced. Some
details omitted. �

Lemma 48.7. Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of schemes. LetX ′ → X be the normalization ofX in Y . If x′ ∈ |X ′|
is a point of codimension 0 (Properties of Spaces, Definition 10.2), then x′ is the image of
some y ∈ |Y | of codimension 0.

Proof. By Lemma 48.4 and the definitions, we may assume that X = Spec(A) is
affine. Then X ′ = Spec(A′) where A′ is the integral closure of A in Γ(Y,OY ) and x′

corresponds to a minimal prime ofA′. Choose a surjective étale morphism V → Y where
V = Spec(B) is affine. ThenA′ → B is injective, hence every minimal prime ofA′ is the
image of a minimal prime of B, see Algebra, Lemma 30.5. The lemma follows. �

Lemma 48.8. Let S be a scheme. Let f : Y → X be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Suppose that Y = Y1 q Y2 is a disjoint
union of two algebraic spaces. Write fi = f |Yi . Let X ′

i be the normalization of X in Yi.
Then X ′

1 qX ′
2 is the normalization of X in Y .

Proof. Omitted. �

Lemma 48.9. Let S be a scheme. Let f : X → Y be a quasi-compact, quasi-separated
and universally closed morphisms of algebraic spaces over S. Then f∗OX is integral over
OY . In other words, the normalization of Y in X is equal to the factorization

X −→ Spec
Y

(f∗OX) −→ Y

of Remark 20.9.

Proof. The question is étale local on Y , hence we may reduce to the case where Y =
Spec(R) is affine. Let h ∈ Γ(X,OX). We have to show that h satisfies a monic equation
over R. Think of h as a morphism as in the following commutative diagram

X
h

//

f ��

A1
Y

~~
Y

Let Z ⊂ A1
Y be the scheme theoretic image of h, see Definition 16.2. The morphism h

is quasi-compact as f is quasi-compact and A1
Y → Y is separated, see Lemma 8.9. By

Lemma 16.3 the morphism X → Z has dense image on underlying topological spaces. By
Lemma 40.6 the morphism X → Z is closed. Hence h(X) = Z (set theoretically). Thus
we can use Lemma 40.7 to conclude that Z → Y is universally closed (and even proper).
Since Z ⊂ A1

Y , we see that Z → Y is affine and proper, hence integral by Lemma 45.7.
Writing A1

Y = Spec(R[T ]) we conclude that the ideal I ⊂ R[T ] of Z contains a monic
polynomial P (T ) ∈ R[T ]. Hence P (h) = 0 and we win. �

Lemma 48.10. Let S be a scheme. Let f : Y → X be an integral morphism of
algebraic spaces over S. Then the integral closure of X in Y is equal to Y .

Proof. By Lemma 45.7 this is a special case of Lemma 48.9. �
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Lemma 48.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume that

(1) Y is Nagata,
(2) f is quasi-separated of finite type,
(3) X is reduced.

Then the normalization ν : Y ′ → Y of Y in X is finite.

Proof. The question is étale local on Y , see Lemma 48.4. Thus we may assume Y =
Spec(R) is affine. Then R is a Noetherian Nagata ring and we have to show that the
integral closure of R in Γ(X,OX) is finite over R. Since f is quasi-compact we see that
X is quasi-compact. Choose an affine scheme U and a surjective étale morphism U → X
(Properties of Spaces, Lemma 6.3). Then Γ(X,OX) ⊂ Γ(U,OX). Since R is Noetherian
it suffices to show that the integral closure of R in Γ(U,OU ) is finite over R. As U → Y
is of finite type this follows from Morphisms, Lemma 53.15. �

49. Normalization

This section is the analogue of Morphisms, Section 54.

Lemma 49.1. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) there is a surjective étale morphismU → X whereU is a scheme such that every
quasi-compact open of U has finitely many irreducible components,

(2) for every schemeU and every étale morphismU → X every quasi-compact open
of U has finitely many irreducible components,

(3) for every quasi-compact algebraic space Y étale overX the set of codimension 0
points of Y (Properties of Spaces, Definition 10.2) is finite, and

(4) for every quasi-compact algebraic space Y étale overX the space |Y | has finitely
many irreducible components.

If X is representable this means that every quasi-compact open of X has finitely many
irreducible components.

Proof. The equivalence of (1) and (2) and the final statement follow from Descent,
Lemma 16.3 and Properties of Spaces, Lemma 7.1. It is clear that (4) implies (1) and (2) by
considering only those Y which are schemes. Similarly, (3) implies (1) and (2) since for a
scheme the codimension 0 points are the generic points of its irreducible components, see
for example Properties of Spaces, Lemma 11.1.
Conversely, assume (2) and let Y → X be an étale morphism of algebraic spaces with Y
quasi-compact. Then we can choose an affine scheme V and a surjective étale morphism
V → Y (Properties of Spaces, Lemma 6.3). Since V has finitely many irreducible compo-
nents by (2) and since |V | → |Y | is surjective and continuous, we conclude that |Y | has
finitely many irreducible components by Topology, Lemma 8.5. Thus (4) holds. Similarly,
by Properties of Spaces, Lemma 11.1 the images of the generic points of the irreducible com-
ponents of V are the codimension 0 points of Y and we conclude that there are finitely
many, i.e., (3) holds. �

Lemma 49.2. Let S be a scheme. Let X be a locally Noetherian algebraic space over
S. Then X satisfies the equivalent conditions of Lemma 49.1.

Proof. If U → X is étale and U is a scheme, then U is a locally Noetherian scheme,
see Properties of Spaces, Section 7. A locally Noetherian scheme has a locally finite set of
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irreducible components (Divisors, Lemma 26.1). Thus we conclude that X passes condi-
tion (2) of the lemma. �

Lemma 49.3. LetS be a scheme. Let f : X → Y be a flat morphism of algebraic spaces
over S. Then for x ∈ |X| we have: x has codimension 0 in X ⇒ f(x) has codimension 0
in Y .

Proof. Via Properties of Spaces, Lemma 11.1 and étale localization this translates into
the case of a morphism of schemes and generic points of irreducible components. Here
the result follows as generalizations lift along flat morphisms of schemes, see Morphisms,
Lemma 25.9. �

Lemma 49.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is flat and locally of finite type and assume Y satisfies the equivalent
conditions of Lemma 49.1. Then X satisfies the equivalent conditions of Lemma 49.1 and
for x ∈ |X| we have: x has codimension 0 in X ⇒ f(x) has codimension 0 in Y .

Proof. The last statement follows from Lemma 49.3. Choose a surjective étale mor-
phism V → Y where V is a scheme. Choose a surjective étale morphism U → X ×Y V
where U is a scheme. It suffices to show that every quasi-compact open of U has finitely
many irreducible components. We will use the results of Properties of Spaces, Lemma 11.1
without further mention. By what we’ve already shown, the codimension 0 points of U
lie above codimension 0 points in U and these are locally finite by assumption. Hence it
suffices to show that for v ∈ V of codimension 0 the codimension 0 points of the scheme
theoretic fibre Uv = U ×V v are locally finite. This is true because Uv is a scheme lo-
cally of finite type over κ(v), hence locally Noetherian and we can apply Lemma 49.2 for
example. �

Lemma 49.5. Let S be a scheme. For every algebraic space X over S satisfying the
equivalent conditions of Lemma 49.1 there exists a morphism of algebraic spaces

νX : Xν −→ X

with the following properties
(1) if X satisfies the equivalent conditions of Lemma 49.1 then Xν is normal and

νX is integral,
(2) ifX is a scheme such that every quasi-compact open has finitely many irreducible

components, then νX : Xν → X is the normalization of X constructed in
Morphisms, Section 54,

(3) if f : X → Y is a morphism of algebraic spaces over S which both satisfy the
equivalent conditions of Lemma 49.1 and every codimension 0 point of X is
mapped by f to a codimension 0 point of Y , then there is a unique morphism
fν : Xν → Y ν of algebraic spaces over S such that νY ◦ fν = f ◦ νX , and

(4) if f : X → Y is an étale or smooth morphism of algebraic spaces and Y satisfies
the equivalent conditions of Lemma 49.1, then the hypotheses of (3) hold and
the morphism fν induces an isomorphism Xν → X ×Y Y ν .

Proof. Consider the category C whose objects are the schemes U over S such that
every quasi-compact open ofU has finitely many irreducible components and whose mor-
phisms are those morphisms g : U → V of schemes overS such that every generic point of
an irreducible component ofU is mapped to the generic point of an irreducible component
of V . We have already shown that
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(a) for U ∈ Ob(C) we have a normalization morphism νU : Uν → U as in Mor-
phisms, Definition 54.1,

(b) for U ∈ Ob(C) the morphism νU is integral and Uν is a normal scheme, see
Morphisms, Lemma 54.5,

(c) for every g : U → V ∈ Arrows(C) there is a unique morphism gν : Uν → V ν

such that νV ◦ gν = g ◦ νU , see Morphisms, Lemma 54.5 part (4) applied to the
composition Xν → X → Y ,

(d) if V ∈ Ob(C) and g : U → V is étale or smooth, then U ∈ Ob(C) and g ∈
Arrows(C) and the morphism gν induces an isomorphism Uν → U ×V V ν , see
Lemma 49.4 and More on Morphisms, Lemma 19.3.

Our task is to extend this construction to the corresponding category of algebraic spaces
X over S.
Let X be an algebraic space over S satisfying the equivalent conditions of Lemma 49.1.
Let U → X be a surjective étale morphism where U is a scheme. Set R = U ×X U
with projections s, t : R → U and j = (t, s) : R → U ×S U so that X = U/R, see
Spaces, Lemma 9.1. Observe that U and R are objects of C by our assumptions on X and
that the morphisms s and t are étale morphisms of schemes over S. By (a) we have the
normalization morphisms νU : Uν → U and νR : Rν → R, by (d) we have morphisms
sν : Rν → Uν , tν : Rν → Uν which define isomorphisms Rν → R ×s,U Uν and
Rν → Uν ×U,t R. It follows that sν and tν are étale (as they are isomorphic to base
changes of étale morphisms). The induced morphism jν = (tν , sν) : Rν → Uν ×S Uν is
a monomorphism as it is equal to the composition

Rν → (Uν ×U,t R)×R (R×s,U Uν)
= Uν ×U,t R×s,U Uν

j−→ Uν ×U (U ×S U)×U Uν

= Uν ×S Uν

The first arrow is the diagonal morphism of νR. (This tells us that Rν is a subscheme of
the restriction of R to Uν .) A formal computation with fibre products using property (d)
shows thatRν×sν ,Uν ,tν Rν is the normalization ofR×s,U,tR. Hence the étale morphism
c : R ×s,U,t R → R extends uniquely to cν by (d). The morphism cν is compatible with
the projection pr13 : Uν ×S Uν ×S Uν → Uν ×S Uν . Similarly, there are morphisms
iν : Rν → Rν compatible with the morphism Uν ×S Uν → Uν ×S Uν which switches
factors and there is a morphism eν : Uν → Rν compatible with the diagonal morphism
Uν → Uν ×S Uν . All in all it follows that jν : Rν → Uν ×S Uν is an étale equivalence
relation. At this point we may and do setXν = Uν/Rν (Spaces, Theorem 10.5). Then we
see that we have Uν = Xν ×X U by Groupoids, Lemma 20.7.
What have we shown in the previous paragraph is this: for every algebraic space X over
S satisfying the equivalent conditions of Lemma 49.1 if we choose a surjective étale mor-
phism g : U → X where U is a scheme, then we obtain a cartesian diagram

Xν

νX

��

Uν
gν
oo

νU

��
X U

goo

of algebraic spaces. This immediately implies thatXν is a normal algebraic space and that
νX is a integral morphism. This gives part (1) of the lemma.
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We will show below that the morphism νX : Xν → X up to unique isomorphism is
independent of the choice of g, but for now, if X is a scheme, we choose id : X → X so
that it is clear that we have part (2) of the lemma.
We still have to prove parts (3) and (4). Let g : U → X and νX : Xν → X and
gν : Uν → Xν be as above. LetZ be a normal scheme and let h : Z → U and a : Z → Xν

be morphisms over S such that g ◦ h = νX ◦ a and such that every irreducible compoent
of Z dominates an irreducible component of U (via h). By Morphisms, Lemma 54.5 part
(4) we obtain a unique morphism hν : Z → Uν such that h = νU ◦ hν . Picture:

Xν

νX

��

Uν
gν
oo

νU

��

Z
hν
oo

a

uu

h~~
X U

goo

Observe that a = gν ◦hν . Namely, since the square with cornersXν ,X ,Uν ,U is cartesian,
this follows immediately from the fact that hν is unique (given h). In other words, given
h : Z → U as above (and not a) there is a unique morphism a : Z → Xν with νX ◦ a =
g ◦ h.
Let f : X → Y be as in part (3) of the statement of the lemma. Suppose we have chosen
surjective étale morphisms U → X and V → Y where U and V are schemes such that f
lifts to a morphism g : U → V . Then g ∈ Arrows(C) and we obtain a unique morphism
gν : Uν → V ν compatible with νU and νV . However, then the two morphisms

Rν = Uν ×Xν Uν → Uν → V ν → Y ν

must be the same by our comments in the previous paragraph (applied with Y in stead of
X). SinceXν is constructed by taking the quotient of Uν byRν it follows that we obtain
a (unique) morphism fν : Xν → Y ν as stated in (3).
To see that the construction of Xν is independent of the choice of g : U → X surjective
étale, apply the construction in the previous paragraph to id : X → X and a morphism
U ′ → U between étale coverings of X . This is enough because given any two étale cover-
ings ofX there is a third one which dominates both. The reader shows that the morphism
between the two normalizations constructed using either U ′ → X or U → X becomes an
isomorphism after base change to U ′ and hence was an isomorphism. We omit the details.
We omit the proof of (4) which is similar; hint use part (d) above. �

This leads us to the following definition.

Definition 49.6. LetS be a scheme. LetX be an algebraic space overS satisfying the
equivalent conditions of Lemma 49.1. We define the normalization ofX as the morphism

νX : Xν −→ X

constructed in Lemma 49.5.

The definition applies to locally Noetherian algebraic spaces, see Lemma 49.2. Usually the
normalization is defined only for reduced algebraic spaces. With the definition above the
normalization of X is the same as the normalization of the reduction Xred of X .

Lemma 49.7. Let S be a scheme. Let X be an algebraic space over S satisfying the
equivalent conditions of Lemma 49.1. The normalization morphism ν factors through the
reduction Xred and Xν → Xred is the normalization of Xred.
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Proof. We may check this étale locally onX and hence reduce to the case of schemes
which is Morphisms, Lemma 54.2. Some details omitted. �

Lemma 49.8. Let S be a scheme. Let X be an algebraic space over S satisfying the
equivalent conditions of Lemma 49.1.

(1) The normalization Xν is normal.
(2) The morphism ν : Xν → X is integral and surjective.
(3) The map |ν| : |Xν | → |X| induces a bijection between the sets of points of

codimension 0 (Properties of Spaces, Definition 10.2).
(4) Let Z → X be a morphism. Assume Z is a normal algebraic space and that for

z ∈ |Z| we have: z has codimension 0 in Z ⇒ f(z) has codimension 0 in X .
Then there exists a unique factorization Z → Xν → X .

Proof. Properties (1), (2), and (3) follow from the corresponding results for schemes
(Morphisms, Lemma 54.5) combined with the fact that a point of a scheme is a generic
point of an irreducible component if and only if the dimension of the local ring is zero
(Properties, Lemma 10.4).

Let Z → X be a morphism as in (4). Let U be a scheme and let U → X be a surjective
étale morphism. Choose a scheme V and a surjective étale morphism V → U ×X Z.
The condition on codimension 0 points assures us that V → U maps generic points of
irreducible components of V to generic points of irreducible components of U . Thus we
obtain a unique factorization V → Uν → U by Morphisms, Lemma 54.5. The uniqueness
guarantees us that the two maps

V ×U×XZ V → V → Uν

agree because these maps are the unique factorization of the map V ×U×XZ V → V → U .
Since the algebraic space U ×X Z is equal to the quotient V/V ×U×XZ V (see Spaces,
Section 9) we find a canonical morphism U ×X Z → Uν . Picture

U ×X Z //

��

Uν //

��

U

��
Z 22// Xν // X

To obtain the dotted arrow we note that the construction of the arrow U ×X Z → Uν is
functorial in the étale morphism U → X (precise formulation and proof omitted). Hence
if we set R = U ×X U with projections s, t : R→ U , then we obtain a morphism R ×X
Z → Rν commuting with s, t : R→ U and sν , tν : Rν → Uν . Recall thatXν = Uν/Rν ,
see proof of Lemma 49.5. Since X = U/R a simple sheaf theoretic argument shows that
Z = (U ×X Z)/(R ×X Z). Thus the morphisms U ×X Z → Uν and R ×X Z → Rν

define a morphism Z → Xν as desired. �

Lemma 49.9. Let S be a scheme. Let X be a Nagata algebraic space over S. The
normalization ν : Xν → X is a finite morphism.

Proof. SinceX being Nagata is locally Noetherian, Definition 49.6 applies. By con-
struction of Xν in Lemma 49.5 we immediately reduce to the case of schemes which is
Morphisms, Lemma 54.10. �
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50. Separated, locally quasi-finite morphisms

In this section we prove that an algebraic space which is locally quasi-finite and separated
over a scheme, is representable. This implies that a separated and locally quasi-finite mor-
phism is representable (see Lemma 51.1). But first... a lemma (which will be obsoleted by
Proposition 50.2).

Lemma 50.1. Let S be a scheme. Consider a commutative diagram

V ′ //

$$

T ′ ×T X //

��

X

��
T ′ // T

of algebraic spaces over S. Assume
(1) T ′ → T is an étale morphism of affine schemes,
(2) X → T is a separated, locally quasi-finite morphism,
(3) V ′ is an open subspace of T ′ ×T X , and
(4) V ′ → T ′ is quasi-affine.

In this situation the image U of V ′ in X is a quasi-compact open subspace of X which is
representable.

Proof. We first make some trivial observations. Note that V ′ is representable by
Lemma 21.3. It is also quasi-compact (as a quasi-affine scheme over an affine scheme, see
Morphisms, Lemma 13.2). Since T ′×T X → X is étale (Properties of Spaces, Lemma 16.5)
the map |T ′ ×T X| → |X| is open, see Properties of Spaces, Lemma 16.7. Let U ⊂ X
be the open subspace corresponding to the image of |V ′|, see Properties of Spaces, Lemma
4.8. As |V ′| is quasi-compact we see that |U | is quasi-compact, hence U is a quasi-compact
algebraic space, by Properties of Spaces, Lemma 5.2.

By Morphisms, Lemma 57.9 the morphism T ′ → T is universally bounded. Hence we can
do induction on the integern bounding the degree of the fibres of T ′ → T , see Morphisms,
Lemma 57.8 for a description of this integer in the case of an étale morphism. If n = 1,
then T ′ → T is an open immersion (see Étale Morphisms, Theorem 14.1), and the result is
clear. Assume n > 1.

Consider the affine scheme T ′′ = T ′ ×T T ′. As T ′ → T is étale we have a decomposition
(into open and closed affine subschemes) T ′′ = ∆(T ′)q T ∗. Namely ∆ = ∆T ′/T is open
by Morphisms, Lemma 35.13 and closed because T ′ → T is separated as a morphism of
affines. As a base change the degrees of the fibres of the second projection pr1 : T ′ ×T
T ′ → T ′ are bounded by n, see Morphisms, Lemma 57.5. On the other hand, pr1|∆(T ′) :
∆(T ′)→ T ′ is an isomorphism and every fibre has exactly one point. Thus, on applying
Morphisms, Lemma 57.8 we conclude the degrees of the fibres of the restriction pr1|T∗ :
T ∗ → T ′ are bounded by n− 1. Hence the induction hypothesis applied to the diagram

p−1
0 (V ′) ∩X∗ //

%%

X∗
p1|X∗

//

��

X ′

��
T ∗ pr1|T∗

// T ′

gives that p1(p−1
0 (V ′) ∩ X∗) is a quasi-compact scheme. Here we set X ′′ = T ′′ ×T X ,

X∗ = T ∗ ×T X , and X ′ = T ′ ×T X , and p0, p1 : X ′′ → X ′ are the base changes of
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pr0, pr1. Most of the hypotheses of the lemma imply by base change the corresponding
hypothesis for the diagram above. For example p−1

0 (V ′) = T ′′ ×T ′ V ′ is a scheme quasi-
affine over T ′′ as a base change. Some verifications omitted.

By Properties of Spaces, Lemma 13.1 we conclude that

p1(p−1
0 (V ′)) = V ′ ∪ p1(p−1

0 (V ′) ∩X∗)

is a quasi-compact scheme. Moreover, it is clear that p1(p−1
0 (V ′)) is the inverse image of

the quasi-compact open subspace U ⊂ X discussed in the first paragraph of the proof. In
other words, T ′×T U is a scheme! Note that T ′×T U is quasi-compact and separated and
locally quasi-finite over T ′, as T ′ ×T X → T ′ is locally quasi-finite and separated being a
base change of the original morphismX → T (see Lemmas 4.4 and 27.4). This implies by
More on Morphisms, Lemma 43.2 that T ′ ×T U → T ′ is quasi-affine.

By Descent, Lemma 39.1 this gives a descent datum on T ′ ×T U/T ′ relative to the étale
covering {T ′ → W}, where W ⊂ T is the image of the morphism T ′ → T . Because U ′

is quasi-affine over T ′ we see from Descent, Lemma 38.1 that this datum is effective, and
by the last part of Descent, Lemma 39.1 this implies that U is a scheme as desired. Some
minor details omitted. �

Proposition 50.2. Let S be a scheme. Let f : X → T be a morphism of algebraic
spaces over S. Assume

(1) T is representable,
(2) f is locally quasi-finite, and
(3) f is separated.

Then X is representable.

Proof. Let T =
⋃
Ti be an affine open covering of the scheme T . If we can show that

the open subspacesXi = f−1(Ti) are representable, thenX is representable, see Properties
of Spaces, Lemma 13.1. Note thatXi = Ti×TX and that locally quasi-finite and separated
are both stable under base change, see Lemmas 4.4 and 27.4. Hence we may assume T is an
affine scheme.

By Properties of Spaces, Lemma 6.2 there exists a Zariski covering X =
⋃
Xi such that

eachXi has a surjective étale covering by an affine scheme. By Properties of Spaces, Lemma
13.1 again it suffices to prove the proposition for each Xi. Hence we may assume there
exists an affine scheme U and a surjective étale morphism U → X . This reduces us to the
situation in the next paragraph.

Assume we have
U −→ X −→ T

where U and T are affine schemes, U → X is étale surjective, andX → T is separated and
locally quasi-finite. By Lemmas 39.5 and 27.3 the morphismU → T is locally quasi-finite.
Since U and T are affine it is quasi-finite. Set R = U ×X U . Then X = U/R, see Spaces,
Lemma 9.1. As X → T is separated the morphism R → U ×T U is a closed immersion,
see Lemma 4.5. In particular R is an affine scheme also. As U → X is étale the projection
morphisms t, s : R→ U are étale as well. In particular s and t are quasi-finite, flat and of
finite presentation (see Morphisms, Lemmas 36.6, 36.12 and 36.11).

Let (U,R, s, t, c) be the groupoid associated to the étale equivalence relation R on U . Let
u ∈ U be a point, and denote p ∈ T its image. We are going to use More on Groupoids,
Lemma 13.2 for the groupoid (U,R, s, t, c) over the scheme T with points p and u as above.
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By the discussion in the previous paragraph all the assumptions (1) – (7) of that lemma
are satisfied. Hence we get an étale neighbourhood (T ′, p′) → (T, p) and disjoint union
decompositions

UT ′ = U ′ qW, RT ′ = R′ qW ′

andu′ ∈ U ′ satisfying conclusions (a), (b), (c), (d), (e), (f), (g), and (h) of the aforementioned
More on Groupoids, Lemma 13.2. We may and do assume that T ′ is affine (after possibly
shrinking T ′). Conclusion (h) implies that R′ = U ′ ×XT ′ U

′ with projection mappings
identified with the restrictions of s′ and t′. Thus (U ′, R′, s′|R′ , t′|R′ , c′|R′×t′,U′,s′R′) of
conclusion (g) is an étale equivalence relation. By Spaces, Lemma 10.2 we conclude that
U ′/R′ is an open subspace ofXT ′ . By conclusion (d) the schemes U ′,R′ are affine and the
morphisms s′|R′ , t′|R′ are finite étale. Hence Groupoids, Proposition 23.9 kicks in and we
see that U ′/R′ is an affine scheme.

We conclude that for every pair of points (u, p) as above we can find an étale neighbour-
hood (T ′, p′) → (T, p) with κ(p) = κ(p′) and a point u′ ∈ UT ′ mapping to u such
that the image x′ of u′ in |XT ′ | has an open neighbourhood V ′ in XT ′ which is an affine
scheme. We apply Lemma 50.1 to obtain an open subspaceW ⊂ X which is a scheme, and
which contains x (the image of u in |X|). Since this works for every x we see that X is a
scheme by Properties of Spaces, Lemma 13.1. This ends the proof. �

51. Applications

An alternative proof of the following lemma is to see it as a consequence of Zariski’s main
theorem for (nonrepresentable) morphisms of algebraic spaces as discussed in More on
Morphisms of Spaces, Section 34. Namely, More on Morphisms of Spaces, Lemma 34.2
implies that a quasi-finite and separated morphism of algebraic spaces is quasi-affine and
therefore representable.

Lemma 51.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally quasi-finite and separated, then f is representable.

Proof. This is immediate from Proposition 50.2 and the fact that being locally quasi-
finite and separated is preserved under any base change, see Lemmas 27.4 and 4.4. �

Lemma 51.2. Let S be a scheme. Let f : X → Y be an étale and universally injective
morphism of algebraic spaces over S. Then f is an open immersion.

Proof. Let T → Y be a morphism from a scheme into Y . If we can show that
X×Y T → T is an open immersion, then we are done. Since being étale and being univer-
sally injective are properties of morphisms stable under base change (see Lemmas 39.4 and
19.5) we may assume that Y is a scheme. Note that the diagonal ∆X/Y : X → X ×Y X
is étale, a monomorphism, and surjective by Lemma 19.2. Hence we see that ∆X/Y is an
isomorphism (see Spaces, Lemma 5.9), in particular we see that X is separated over Y . It
follows that X is a scheme too, by Proposition 50.2. Finally, X → Y is an open immer-
sion by the fundamental theorem for étale morphisms of schemes, see Étale Morphisms,
Theorem 14.1. �

52. Zariski’s Main Theorem (representable case)

This is the version you can prove using that normalization commutes with étale localiza-
tion. Before we can prove more powerful versions (for non-representable morphisms) we
need to develop more tools. See More on Morphisms of Spaces, Section 34.
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Lemma 52.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is representable, of finite type, and separated. Let Y ′ be the normalization
of Y in X . Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then there exists an open subspace U ′ ⊂ Y ′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. Let W → Y be a surjective étale morphism where W is a scheme. Then
W ×Y X is a scheme as well. By Lemma 48.4 the algebraic spaceW ×Y Y ′ is representable
and is the normalization of the scheme W in the scheme W ×Y X . Picture

W ×Y X

(1,f) $$

(1,f ′)
// W ×Y Y ′

(1,ν)zz
W

By More on Morphisms, Lemma 43.1 the result of the lemma holds over W . Let V ′ ⊂
W ×Y Y ′ be the open subscheme such that

(1) (1, f ′)−1(V ′)→ V ′ is an isomorphism, and
(2) (1, f ′)−1(V ′) ⊂W ×Y X is the set of points at which (1, f) is quasi-finite.

By Lemma 34.7 there is a maximal open set of points U ⊂ X where f is quasi-finite and
W×Y U = (1, f ′)−1(V ′). The morphism f ′|U : U → Y ′ is an open immersion by Lemma
12.1 as its base change toW is the isomorphism (1, f ′)−1(V ′)→ V ′ followed by the open
immersion V ′ → W ×Y Y ′. Setting U ′ = Im(U → Y ′) finishes the proof (omitted: the
verification that (f ′)−1(U ′) = U ). �

In the following lemma we can drop the assumption of being representable as we’ve shown
that a locally quasi-finite separated morphism is representable.

Lemma 52.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is quasi-finite and separated. Let Y ′ be the normalization of Y in X .
Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is quasi-affine.

Proof. By Lemma 51.1 the morphism f is representable. Hence we may apply Lemma
52.1. Thus there exists an open subspace U ′ ⊂ Y ′ such that (f ′)−1(U ′) = X (!) and
X → U ′ is an isomorphism! In other words, f ′ is an open immersion. Note that f ′ is
quasi-compact as f is quasi-compact and ν : Y ′ → Y is separated (Lemma 8.9). Hence for
every affine schemeZ and morphismZ → Y the fibre productZ×Y X is a quasi-compact
open subscheme of the affine scheme Z ×Y Y ′. Hence f is quasi-affine by definition. �
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53. Universal homeomorphisms

The class of universal homeomorphisms of schemes is closed under composition and ar-
bitrary base change and is fppf local on the base. See Morphisms, Lemmas 45.3 and 45.2
and Descent, Lemma 23.9. Thus, if we apply the discussion in Section 3 to this notion we
see that we know what it means for a representable morphism of algebraic spaces to be a
universal homeomorphism.

Lemma 53.1. Let S be a scheme. Let f : X → Y be a representable morphism of
algebraic spaces over S. Then f is a universal homeomorphism (in the sense of Section
3) if and only if for every morphism of algebraic spaces Z → Y the base change map
Z ×Y X → Z induces a homeomorphism |Z ×Y X| → |Z|.

Proof. If for every morphism of algebraic spaces Z → Y the base change map Z×Y
X → Z induces a homeomorphism |Z ×Y X| → |Z|, then the same is true whenever
Z is a scheme, which formally implies that f is a universal homeomorphism in the sense
of Section 3. Conversely, if f is a universal homeomorphism in the sense of Section 3
then X → Y is integral, universally injective and surjective (by Spaces, Lemma 5.8 and
Morphisms, Lemma 45.5). Hence f is universally closed, see Lemma 45.7 and universally
injective and (universally) surjective, i.e., f is a universal homeomorphism. �

Definition 53.2. Let S be a scheme. A morphism f : X → Y of algebraic spaces
overS is called a universal homeomorphism if and only if for every morphism of algebraic
spacesZ → Y the base changeZ×Y X → Z induces a homeomorphism |Z×Y X| → |Z|.

This definition does not clash with the pre-existing definition for representable morphisms
of algebraic spaces by our Lemma 53.1. For morphisms of algebraic spaces it is not the case
that universal homeomorphisms are always integral.

Example 53.3. This is a continuation of Remark 19.4. Consider the algebraic space
X = A1

k/{x ∼ −x | x 6= 0}. There are morphisms

A1
k −→ X −→ A1

k

such that the first arrow is étale surjective, the second arrow is universally injective, and
the composition is the map x 7→ x2. Hence the composition is universally closed. Thus
it follows that the map X → A1

k is a universal homeomorphism, but X → A1
k is not

separated.

Let S be a scheme. Let f : X → Y be a universal homeomorphism of algebraic spaces over
S. Then f is universally closed, hence is quasi-compact, see Lemma 9.7. But f need not
be separated (see example above), and not even quasi-separated: an example is to take infi-
nite dimensional affine space A∞ = Spec(k[x1, x2, . . .]) modulo the equivalence relation
given by flipping finitely many signs of nonzero coordinates (details omitted).
First we state the obligatory lemmas.

Lemma 53.4. The base change of a universal homeomorphism of algebraic spaces by
any morphism of algebraic spaces is a universal homeomorphism.

Proof. This is immediate from the definition. �

Lemma 53.5. The composition of a pair of universal homeomorphisms of algebraic
spaces is a universal homeomorphism.

Proof. Omitted. �
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Lemma 53.6. Let S be a scheme. Let X be an algebraic space over S. The canonical
closed immersion Xred → X (see Properties of Spaces, Definition 12.5) is a universal
homeomorphism.

Proof. Omitted. �

We put the following result here as we do not currently have a better place to put it.

Lemma 53.7. Let S be a scheme. Let f : Y → X be a universally injective, integral
morphism of algebraic spaces over S.

(1) The functor
fsmall,∗ : Sh(Yétale) −→ Sh(Xétale)

is fully faithful and its essential image is those sheaves of setsF onXétale whose
restriction to |X| \ f(|Y |) is isomorphic to ∗, and

(2) the functor
fsmall,∗ : Ab(Yétale) −→ Ab(Xétale)

is fully faithful and its essential image is those abelian sheaves on Yétale whose
support is contained in f(|Y |).

In both cases f−1
small is a left inverse to the functor fsmall,∗.

Proof. Since f is integral it is universally closed (Lemma 45.7). In particular, f(|Y |)
is a closed subset of |X| and the statements make sense. The rest of the proof is identical to
the proof of Lemma 13.5 except that we use Étale Cohomology, Proposition 47.1 instead
of Étale Cohomology, Proposition 46.4. �
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CHAPTER 68

Decent Algebraic Spaces

1. Introduction

In this chapter we study “local” properties of general algebraic spaces, i.e., those algebraic
spaces which aren’t quasi-separated. Quasi-separated algebraic spaces are studied in [?].
It turns out that essentially new phenomena happen, especially regarding points and spe-
cializations of points, on more general algebraic spaces. On the other hand, for most basic
results on algebraic spaces, one needn’t worry about these phenomena, which is why we
have decided to have this material in a separate chapter following the standard develop-
ment of the theory.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Universally bounded fibres

We briefly discuss what it means for a morphism from a scheme to an algebraic space to
have universally bounded fibres. Please refer to Morphisms, Section 57 for similar defini-
tions and results on morphisms of schemes.

Definition 3.1. Let S be a scheme. Let X be an algebraic space over S , and let U
be a scheme over S. Let f : U → X be a morphism over S. We say the fibres of f are
universally bounded1 if there exists an integern such that for all fields k and all morphisms
Spec(k)→ X the fibre product Spec(k)×XU is a finite scheme over k whose degree over
k is ≤ n.

This definition makes sense because the fibre product Spec(k) ×Y X is a scheme. More-
over, if Y is a scheme we recover the notion of Morphisms, Definition 57.1 by virtue of
Morphisms, Lemma 57.2.

Lemma 3.2. Let S be a scheme. Let X be an algebraic space over S. Let V → U be a
morphism of schemes over S , and let U → X be a morphism from U to X . If the fibres
of V → U and U → X are universally bounded, then so are the fibres of V → X .

1This is probably nonstandard notation.

5317
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Proof. Let n be an integer which works for V → U , and let m be an integer which
works for U → X in Definition 3.1. Let Spec(k)→ X be a morphism, where k is a field.
Consider the morphisms

Spec(k)×X V −→ Spec(k)×X U −→ Spec(k).

By assumption the scheme Spec(k)×X U is finite of degree at most m over k, and n is an
integer which bounds the degree of the fibres of the first morphism. Hence by Morphisms,
Lemma 57.4 we conclude that Spec(k)×X V is finite over k of degree at most nm. �

Lemma 3.3. Let S be a scheme. Let Y → X be a representable morphism of algebraic
spaces over S. Let U → X be a morphism from a scheme to X . If the fibres of U → X
are universally bounded, then the fibres of U ×X Y → Y are universally bounded.

Proof. This is clear from the definition, and properties of fibre products. (Note that
U ×X Y is a scheme as we assumed Y → X representable, so the definition applies.) �

Lemma 3.4. Let S be a scheme. Let g : Y → X be a representable morphism of
algebraic spaces over S. Let f : U → X be a morphism from a scheme towards X . Let
f ′ : U ×X Y → Y be the base change of f . If

Im(|f | : |U | → |X|) ⊂ Im(|g| : |Y | → |X|)

and f ′ has universally bounded fibres, then f has universally bounded fibres.

Proof. Letn ≥ 0 be an integer bounding the degrees of the fibre products Spec(k)×Y
(U ×X Y ) as in Definition 3.1 for the morphism f ′. We claim that n works for f also.
Namely, suppose that x : Spec(k)→ X is a morphism from the spectrum of a field. Then
either Spec(k) ×X U is empty (and there is nothing to prove), or x is in the image of
|f |. By Properties of Spaces, Lemma 4.3 and the assumption of the lemma we see that this
means there exists a field extension k′/k and a commutative diagram

Spec(k′) //

��

Y

��
Spec(k) // X

Hence we see that

Spec(k′)×Y (U ×X Y ) = Spec(k′)×Spec(k) (Spec(k)×X U)

Since the scheme Spec(k′)×Y (U×X Y ) is assumed finite of degree≤ n over k′ it follows
that also Spec(k)×X U is finite of degree ≤ n over k as desired. (Some details omitted.)

�

Lemma 3.5. Let S be a scheme. Let X be an algebraic space over S. Consider a
commutative diagram

U

g   

f
// V

h~~
X

where U and V are schemes. If g has universally bounded fibres, and f is surjective and
flat, then also h has universally bounded fibres.
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Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
n ≥ 0 is an integer which bounds the degrees of the schemes Spec(k)×XU as in Definition
3.1. We claim n also works for h. Let Spec(k)→ X be a morphism from the spectrum of
a field to X . Consider the morphism of schemes

Spec(k)×X V −→ Spec(k)×X U

It is flat and surjective. By assumption the scheme on the left is finite of degree ≤ n over
Spec(k). It follows from Morphisms, Lemma 57.10 that the degree of the scheme on the
right is also bounded by n as desired. �

Lemma 3.6. Let S be a scheme. Let X be an algebraic space over S , and let U be a
scheme over S. Let ϕ : U → X be a morphism over S. If the fibres of ϕ are universally
bounded, then there exists an integer n such that each fibre of |U | → |X| has at most n
elements.

Proof. The integer n of Definition 3.1 works. Namely, pick x ∈ |X|. Represent x
by a morphism x : Spec(k)→ X . Then we get a commutative diagram

Spec(k)×X U //

��

U

��
Spec(k) x // X

which shows (via Properties of Spaces, Lemma 4.3) that the inverse image of x in |U | is
the image of the top horizontal arrow. Since Spec(k)×X U is finite of degree≤ n over k
it has at most n points. �

4. Finiteness conditions and points

In this section we elaborate on the question of when points can be represented by monomor-
phisms from spectra of fields into the space.

Remark 4.1. Before we give the proof of the next lemma let us recall some facts about
étale morphisms of schemes:

(1) An étale morphism is flat and hence generalizations lift along an étale morphism
(Morphisms, Lemmas 36.12 and 25.9).

(2) An étale morphism is unramified, an unramified morphism is locally quasi-finite,
hence fibres are discrete (Morphisms, Lemmas 36.16, 35.10, and 20.6).

(3) A quasi-compact étale morphism is quasi-finite and in particular has finite fibres
(Morphisms, Lemmas 20.9 and 20.10).

(4) An étale scheme over a field k is a disjoint union of spectra of finite separable
field extension of k (Morphisms, Lemma 36.7).

For a general discussion of étale morphisms, please see Étale Morphisms, Section 11.

Lemma 4.2. Let S be a scheme. LetX be an algebraic space over S. Let x ∈ |X|. The
following are equivalent:

(1) there exists a family of schemes Ui and étale morphisms ϕi : Ui → X such that∐
ϕi :

∐
Ui → X is surjective, and such that for each i the fibre of |Ui| → |X|

over x is finite, and
(2) for every affine schemeU and étale morphismϕ : U → X the fibre of |U | → |X|

over x is finite.
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Proof. The implication (2)⇒ (1) is trivial. Let ϕi : Ui → X be a family of étale
morphisms as in (1). Let ϕ : U → X be an étale morphism from an affine scheme towards
X . Consider the fibre product diagrams

U ×X Ui pi
//

qi

��

Ui

ϕi

��
U

ϕ // X

∐
U ×X Ui ∐

pi

//∐
qi

��

∐
Ui∐

ϕi

��
U

ϕ // X

Since qi is étale it is open (see Remark 4.1). Moreover, the morphism
∐
qi is surjective.

Hence there exist finitely many indices i1, . . . , in and a quasi-compact opensWij ⊂ U×X
Uij which surject onto U . The morphism pi is étale, hence locally quasi-finite (see remark
on étale morphisms above). Thus we may apply Morphisms, Lemma 57.9 to see the fibres
of pij |Wij

: Wij → Ui are finite. Hence by Properties of Spaces, Lemma 4.3 and the
assumption on ϕi we conclude that the fibre of ϕ over x is finite. In other words (2)
holds. �

Lemma 4.3. Let S be a scheme. LetX be an algebraic space over S. Let x ∈ |X|. The
following are equivalent:

(1) there exists a scheme U , an étale morphism ϕ : U → X , and points u, u′ ∈ U
mapping to x such that setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |
over (u, u′) is finite,

(2) for every scheme U , étale morphism ϕ : U → X and any points u, u′ ∈ U
mapping to x setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |
over (u, u′) is finite,

(3) there exists a morphism Spec(k) → X with k a field in the equivalence class
of x such that the projections Spec(k) ×X Spec(k) → Spec(k) are étale and
quasi-compact, and

(4) there exists a monomorphism Spec(k) → X with k a field in the equivalence
class of x.

Proof. Assume (1), i.e., let ϕ : U → X be an étale morphism from a scheme towards
X , and let u, u′ be points of U lying over x such that the fibre of |R| → |U | ×|X| |U | over
(u, u′) is a finite set. In this proof we think of a point u = Spec(κ(u)) as a scheme. Note
that u → U , u′ → U are monomorphisms (see Schemes, Lemma 23.7), hence u ×X u′ →
R = U ×X U is a monomorphism. In this language the assumption really means that
u ×X u′ is a scheme whose underlying topological space has finitely many points. Let
ψ : W → X be an étale morphism from a scheme towardsX . Let w,w′ ∈W be points of
W mapping to x. We have to show thatw×Xw′ is a scheme whose underlying topological
space has finitely many points. Consider the fibre product diagram

W ×X U
p

//

q

��

U

ϕ

��
W

ψ // X

As x is the image of u and u′ we may pick points w̃, w̃′ in W ×X U with q(w̃) = w,
q(w̃′) = w′, u = p(w̃) and u′ = p(w̃′), see Properties of Spaces, Lemma 4.3. As p, q are
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étale the field extensions κ(w) ⊂ κ(w̃) ⊃ κ(u) and κ(w′) ⊂ κ(w̃′) ⊃ κ(u′) are finite
separable, see Remark 4.1. Then we get a commutative diagram

w ×X w′

��

w̃ ×X w̃′oo

��

// u×X u′

��
w ×X w′ w̃ ×S w̃′oo // u×S u′

where the squares are fibre product squares. The lower horizontal morphisms are étale
and quasi-compact, as any scheme of the form Spec(k) ×S Spec(k′) is affine, and by our
observations about the field extensions above. Thus we see that the top horizontal arrows
are étale and quasi-compact and hence have finite fibres. We have seen above that |u×Xu′|
is finite, so we conclude that |w ×X w′| is finite. In other words, (2) holds.

Assume (2). Let U → X be an étale morphism from a scheme U such that x is in the
image of |U | → |X|. Let u ∈ U be a point mapping to x. Then we have seen in the
previous paragraph that u = Spec(κ(u))→ X has the property that u×X u has a finite
underlying topological space. On the other hand, the projection maps u ×X u → u are
the composition

u×X u −→ u×X U −→ u×X X = u,

i.e., the composition of a monomorphism (the base change of the monomorphism u→ U )
by an étale morphism (the base change of the étale morphism U → X). Hence u ×X U
is a disjoint union of spectra of fields finite separable over κ(u) (see Remark 4.1). Since
u ×X u is finite the image of it in u ×X U is a finite disjoint union of spectra of fields
finite separable over κ(u). By Schemes, Lemma 23.11 we conclude that u ×X u is a finite
disjoint union of spectra of fields finite separable over κ(u). In other words, we see that
u×X u→ u is quasi-compact and étale. This means that (3) holds.

Let us prove that (3) implies (4). Let Spec(k) → X be a morphism from the spectrum
of a field into X , in the equivalence class of x such that the two projections t, s : R =
Spec(k) ×X Spec(k) → Spec(k) are quasi-compact and étale. This means in particular
that R is an étale equivalence relation on Spec(k). By Spaces, Theorem 10.5 we know
that the quotient sheaf X ′ = Spec(k)/R is an algebraic space. By Groupoids, Lemma
20.6 the map X ′ → X is a monomorphism. Since s, t are quasi-compact, we see that R is
quasi-compact and hence Properties of Spaces, Lemma 15.3 applies to X ′, and we see that
X ′ = Spec(k′) for some field k′. Hence we get a factorization

Spec(k) −→ Spec(k′) −→ X

which shows that Spec(k′)→ X is a monomorphism mapping to x ∈ |X|. In other words
(4) holds.

Finally, we prove that (4) implies (1). Let Spec(k) → X be a monomorphism with k
a field in the equivalence class of x. Let U → X be a surjective étale morphism from a
scheme U to X . Let u ∈ U be a point over x. Since Spec(k)×X u is nonempty, and since
Spec(k)×X u→ u is a monomorphism we conclude that Spec(k)×X u = u (see Schemes,
Lemma 23.11). Hence u→ U → X factors through Spec(k)→ X , here is a picture

u //

��

U

��
Spec(k) // X
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Since the right vertical arrow is étale this implies that κ(u)/k is a finite separable exten-
sion. Hence we conclude that

u×X u = u×Spec(k) u

is a finite scheme, and we win by the discussion of the meaning of property (1) in the first
paragraph of this proof. �

Lemma 4.4. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|. Let
U be a scheme and let ϕ : U → X be an étale morphism. The following are equivalent:

(1) x is in the image of |U | → |X|, and setting R = U ×X U the fibres of both

|U | −→ |X| and |R| −→ |X|
over x are finite,

(2) there exists a monomorphism Spec(k) → X with k a field in the equivalence
class of x, and the fibre product Spec(k)×X U is a finite nonempty scheme over
k.

Proof. Assume (1). This clearly implies the first condition of Lemma 4.3 and hence
we obtain a monomorphism Spec(k)→ X in the class of x. Taking the fibre product we
see that Spec(k) ×X U → Spec(k) is a scheme étale over Spec(k) with finitely many
points, hence a finite nonempty scheme over k, i.e., (2) holds.

Assume (2). By assumption x is in the image of |U | → |X|. The finiteness of the fibre
of |U | → |X| over x is clear since this fibre is equal to | Spec(k) ×X U | by Properties of
Spaces, Lemma 4.3. The finiteness of the fibre of |R| → |X| above x is also clear since it is
equal to the set underlying the scheme

(Spec(k)×X U)×Spec(k) (Spec(k)×X U)

which is finite over k. Thus (1) holds. �

Lemma 4.5. Let S be a scheme. LetX be an algebraic space over S. Let x ∈ |X|. The
following are equivalent:

(1) for every affine schemeU , any étale morphism ϕ : U → X settingR = U×X U
the fibres of both

|U | −→ |X| and |R| −→ |X|
over x are finite,

(2) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X is

surjective and for each i, setting Ri = Ui ×X Ui the fibres of both

|Ui| −→ |X| and |Ri| −→ |X|
over x are finite,

(3) there exists a monomorphism Spec(k) → X with k a field in the equivalence
class of x, and for any affine scheme U and étale morphism U → X the fibre
product Spec(k)×X U is a finite scheme over k,

(4) there exists a quasi-compact monomorphism Spec(k)→ X with k a field in the
equivalence class of x,

(5) there exists a quasi-compact morphism Spec(k)→ X with k a field in the equiv-
alence class of x, and

(6) every morphism Spec(k) → X with k a field in the equivalence class of x is
quasi-compact.
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Proof. The equivalence of (1) and (3) follows on applying Lemma 4.4 to every étale
morphism U → X with U affine. It is clear that (3) implies (2). Assume Ui → X and
Ri are as in (2). We conclude from Lemma 4.2 that for any affine scheme U and étale
morphism U → X the fibre of |U | → |X| over x is finite. Say this fibre is {u1, . . . , un}.
Then, as Lemma 4.3 (1) applies to Ui → X for some i such that x is in the image of
|Ui| → |X|, we see that the fibre of |R = U ×X U | → |U | ×|X| |U | is finite over (ua, ub),
a, b ∈ {1, . . . , n}. Hence the fibre of |R| → |X| over x is finite. In this way we see that
(1) holds. At this point we know that (1), (2), and (3) are equivalent.

If (4) holds, then for any affine schemeU and étale morphismU → X the scheme Spec(k)×X
U is on the one hand étale over k (hence a disjoint union of spectra of finite separable
extensions of k by Remark 4.1) and on the other hand quasi-compact over U (hence quasi-
compact). Thus we see that (3) holds. Conversely, ifUi → X is as in (2) and Spec(k)→ X
is a monomorphism as in (3), then∐

Spec(k)×X Ui −→
∐

Ui

is quasi-compact (because over eachUi we see that Spec(k)×X Ui is a finite disjoint union
spectra of fields). Thus Spec(k) → X is quasi-compact by Morphisms of Spaces, Lemma
8.8.

It is immediate that (4) implies (5). Conversely, let Spec(k) → X be a quasi-compact
morphism in the equivalence class of x. Let U → X be an étale morphism with U affine.
Consider the fibre product

F //

��

U

��
Spec(k) // X

Then F → U is quasi-compact, hence F is quasi-compact. On the other hand, F →
Spec(k) is étale, henceF is a finite disjoint union of spectra of finite separable extensions of
k (Remark 4.1). Since the image of |F | → |U | is the fibre of |U | → |X| over x (Properties
of Spaces, Lemma 4.3), we conclude that the fibre of |U | → |X| over x is finite. The scheme
F ×Spec(k) F is also a finite union of spectra of fields because it is also quasi-compact and
étale over Spec(k). There is a monomorphism F ×X F → F ×Spec(k) F , hence F ×X F

is a finite disjoint union of spectra of fields (Schemes, Lemma 23.11). Thus the image of
F ×X F → U ×X U = R is finite. Since this image is the fibre of |R| → |X| over x by
Properties of Spaces, Lemma 4.3 we conclude that (1) holds. At this point we know that
(1) – (5) are equivalent.

It is clear that (6) implies (5). Conversly, assume Spec(k) → X is as in (4) and let
Spec(k′) → X be another morphism with k′ a field in the equivalence class of x. By
Properties of Spaces, Lemma 4.11 we have a factorization Spec(k′) → Spec(k) → X of
the given morphism. This is a composition of quasi-compact morphisms and hence quasi-
compact (Morphisms of Spaces, Lemma 8.5) as desired. �

Lemma 4.6. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent:

(1) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X is

surjective and each Ui → X has universally bounded fibres, and
(2) for every affine scheme U and étale morphism ϕ : U → X the fibres of U → X

are universally bounded.
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Proof. The implication (2)⇒ (1) is trivial. Assume (1). Let (ϕi : Ui → X)i∈I be a
collection of étale morphisms from schemes towardsX , coveringX , such that each ϕi has
universally bounded fibres. Let ψ : U → X be an étale morphism from an affine scheme
towards X . For each i consider the fibre product diagram

U ×X Ui pi
//

qi

��

Ui

ϕi

��
U

ψ // X

Since qi is étale it is open (see Remark 4.1). Moreover, we have U =
⋃

Im(qi), since
the family (ϕi)i∈I is surjective. Since U is affine, hence quasi-compact we can finite
finitely many i1, . . . , in ∈ I and quasi-compact opens Wj ⊂ U ×X Uij such that U =⋃
pij (Wj). The morphism pij is étale, hence locally quasi-finite (see remark on étale mor-

phisms above). Thus we may apply Morphisms, Lemma 57.9 to see the fibres of pij |Wj :
Wj → Uij are universally bounded. Hence by Lemma 3.2 we see that the fibres ofWj → X
are universally bounded. Thus also

∐
j=1,...,nWj → X has universally bounded fi-

bres. Since
∐
j=1,...,nWj → X factors through the surjective étale map

∐
qij |Wj

:∐
j=1,...,nWj → U we see that the fibres of U → X are universally bounded by Lemma

3.5. In other words (2) holds. �

Lemma 4.7. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent:

(1) there exists a Zariski coveringX =
⋃
Xi and for each i a scheme Ui and a quasi-

compact surjective étale morphism Ui → Xi, and
(2) there exist schemes Ui and étale morphisms Ui → X such that the projections

Ui ×X Ui → Ui are quasi-compact and
∐
Ui → X is surjective.

Proof. If (1) holds then the morphisms Ui → Xi → X are étale (combine Mor-
phisms, Lemma 36.3 and Spaces, Lemmas 5.4 and 5.3 ). Moreover, asUi×XUi = Ui×XiUi,
both projections Ui ×X Ui → Ui are quasi-compact.
If (2) holds then letXi ⊂ X be the open subspace corresponding to the image of the open
map |Ui| → |X|, see Properties of Spaces, Lemma 4.10. The morphisms Ui → Xi are
surjective. Hence Ui → Xi is surjective étale, and the projections Ui ×Xi Ui → Ui are
quasi-compact, becauseUi×XiUi = Ui×XUi. Thus by Spaces, Lemma 11.4 the morphisms
Ui → Xi are quasi-compact. �

5. Conditions on algebraic spaces

In this section we discuss the relationship between various natural conditions on algebraic
spaces we have seen above. Please read Section 6 to get a feeling for the meaning of these
conditions.

Lemma 5.1. Let S be a scheme. Let X be an algebraic space over S. Consider the
following conditions on X :

(α) For every x ∈ |X|, the equivalent conditions of Lemma 4.2 hold.
(β) For every x ∈ |X|, the equivalent conditions of Lemma 4.3 hold.
(γ) For every x ∈ |X|, the equivalent conditions of Lemma 4.5 hold.
(δ) The equivalent conditions of Lemma 4.6 hold.
(ε) The equivalent conditions of Lemma 4.7 hold.
(ζ) The space X is Zariski locally quasi-separated.
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(η) The space X is quasi-separated
(θ) The space X is representable, i.e., X is a scheme.
(ι) The space X is a quasi-separated scheme.

We have

(θ)

�$
(ι)

:B

�$

(ζ) +3 (ε) +3 (δ) +3 (γ) ks +3 (α) + (β)

(η)

:B

Proof. The implication (γ) ⇔ (α) + (β) is immediate. The implications in the
diamond on the left are clear from the definitions.

Assume (ζ), i.e., that X is Zariski locally quasi-separated. Then (ε) holds by Properties of
Spaces, Lemma 6.6.

Assume (ε). By Lemma 4.7 there exists a Zariski open covering X =
⋃
Xi such that for

each i there exists a scheme Ui and a quasi-compact surjective étale morphism Ui → Xi.
Choose an i and an affine open subscheme W ⊂ Ui. It suffices to show that W → X has
universally bounded fibres, since then the family of all these morphisms W → X covers
X . To do this we consider the diagram

W ×X Ui p
//

q

��

Ui

��
W // X

SinceW → X factors throughXi we see thatW×XUi = W×XiUi, and hence q is quasi-
compact. Since W is affine this implies that the scheme W ×X Ui is quasi-compact. Thus
we may apply Morphisms, Lemma 57.9 and we conclude that p has universally bounded
fibres. From Lemma 3.4 we conclude thatW → X has universally bounded fibres as well.

Assume (δ). Let U be an affine scheme, and let U → X be an étale morphism. By assump-
tion the fibres of the morphism U → X are universally bounded. Thus also the fibres of
both projections R = U ×X U → U are universally bounded, see Lemma 3.3. And by
Lemma 3.2 also the fibres of R → X are universally bounded. Hence for any x ∈ X the
fibres of |U | → |X| and |R| → |X| over x are finite, see Lemma 3.6. In other words, the
equivalent conditions of Lemma 4.5 hold. This proves that (δ)⇒ (γ). �

Lemma 5.2. Let S be a scheme. Let P be one of the properties (α), (β), (γ), (δ), (ε),
(ζ), or (θ) of algebraic spaces listed in Lemma 5.1. Then if X is an algebraic space over S ,
and X =

⋃
Xi is a Zariski open covering such that each Xi has P , then X has P .

Proof. Let X be an algebraic space over S , and let X =
⋃
Xi is a Zariski open

covering such that each Xi has P .

The caseP = (α). The condition (α) forXi means that for everyx ∈ |Xi| and every affine
scheme U , and étale morphism ϕ : U → Xi the fibre of ϕ : |U | → |Xi| over x is finite.
Consider x ∈ X , an affine scheme U and an étale morphism U → X . Since X =

⋃
Xi is

a Zariski open covering there exits a finite affine open covering U = U1 ∪ . . . ∪ Un such
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that each Uj → X factors through some Xij . By assumption the fibres of |Uj | → |Xij |
over x are finite for j = 1, . . . , n. Clearly this means that the fibre of |U | → |X| over x
is finite. This proves the result for (α).

The case P = (β). The condition (β) for Xi means that every x ∈ |Xi| is represented by
a monomorphism from the spectrum of a field towards Xi. Hence the same follows forX
as Xi → X is a monomorphism and X =

⋃
Xi.

The case P = (γ). Note that (γ) = (α) + (β) by Lemma 5.1 hence the lemma for (γ)
follows from the cases treated above.

The case P = (δ). The condition (δ) for Xi means there exist schemes Uij and étale
morphisms Uij → Xi with universally bounded fibres which cover Xi. These schemes
also give an étale surjective morphism

∐
Uij → X and Uij → X still has universally

bounded fibres.

The case P = (ε). The condition (ε) for Xi means we can find a set Ji and morphisms
ϕij : Uij → Xi such that each ϕij is étale, both projections Uij ×Xi Uij → Uij are quasi-
compact, and

∐
j∈Ji Uij → Xi is surjective. In this case the compositionsUij → Xi → X

are étale (combine Morphisms, Lemmas 36.3 and 36.9 and Spaces, Lemmas 5.4 and 5.3 ).
SinceXi ⊂ X is a subspace we see thatUij×XiUij = Uij×XUij , and hence the condition
on fibre products is preserved. And clearly

∐
i,j Uij → X is surjective. Hence X satisfies

(ε).

The case P = (ζ). The condition (ζ) for Xi means that Xi is Zariski locally quasi-
separated. It is immediately clear that this means X is Zariski locally quasi-separated.

For (θ), see Properties of Spaces, Lemma 13.1. �

Lemma 5.3. Let S be a scheme. Let P be one of the properties (β), (γ), (δ), (ε), or (θ)
of algebraic spaces listed in Lemma 5.1. Let X , Y be algebraic spaces over S. Let X → Y
be a representable morphism. If Y has property P , so does X .

Proof. Assume f : X → Y is a representable morphism of algebraic spaces, and
assume that Y has P . Let x ∈ |X|, and set y = f(x) ∈ |Y |.

The case P = (β). Condition (β) for Y means there exists a monomorphism Spec(k)→
Y representing y. The fibre productXy = Spec(k)×YX is a scheme, andx corresponds to
a point ofXy , i.e., to a monomorphism Spec(k′)→ Xy . AsXy → X is a monomorphism
also we see that x is represented by the monomorphism Spec(k′) → Xy → X . In other
words (β) holds for X .

The case P = (γ). Since (γ) ⇒ (β) we have seen in the preceding paragraph that y and
x can be represented by monomorphisms as in the following diagram

Spec(k′)
x
//

��

X

��
Spec(k) y // Y

Also, by definition of property (γ) via Lemma 4.5 (2) there exist schemes Vi and étale
morphisms Vi → Y such that

∐
Vi → Y is surjective and for each i, settingRi = Vi×Y Vi

the fibres of both
|Vi| −→ |Y | and |Ri| −→ |Y |
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over y are finite. This means that the schemes (Vi)y and (Ri)y are finite schemes over
y = Spec(k). As X → Y is representable, the fibre products Ui = Vi ×Y X are schemes.
The morphisms Ui → X are étale, and

∐
Ui → X is surjective. Finally, for each i we

have

(Ui)x = (Vi ×Y X)x = (Vi)y ×Spec(k) Spec(k′)

and

(Ui ×X Ui)x = ((Vi ×Y X)×X (Vi ×Y X))x = (Ri)y ×Spec(k) Spec(k′)

hence these are finite over k′ as base changes of the finite schemes (Vi)y and (Ri)y . This
implies that (γ) holds for X , again via the second condition of Lemma 4.5.

The case P = (δ). Let V → Y be an étale morphism with V an affine scheme. Since Y
has property (δ) this morphism has universally bounded fibres. By Lemma 3.3 the base
change V ×Y X → X also has universally bounded fibres. Hence the first part of Lemma
4.6 applies and we see that Y also has property (δ).

The case P = (ε). We will repeatedly use Spaces, Lemma 5.5. Let Vi → Y be as in Lemma
4.7 (2). SetUi = X×Y Vi. The morphismsUi → X are étale, and

∐
Ui → X is surjective.

Because Ui ×X Ui = X ×Y (Vi ×Y Vi) we see that the projections Ui ×Y Ui → Ui are
base changes of the projections Vi ×Y Vi → Vi, and so quasi-compact as well. Hence X
satisfies Lemma 4.7 (2).

The case P = (θ). In this case the result is Categories, Lemma 8.3. �

6. Reasonable and decent algebraic spaces

In Lemma 5.1 we have seen a number of conditions on algebraic spaces related to the be-
haviour of étale morphisms from affine schemes into X and related to the existence of
special étale coverings of X by schemes. We tabulate the different types of conditions
here:

(α) fibres of étale morphisms from affines are finite
(β) points come from monomorphisms of spectra of fields
(γ) points come from quasi-compact monomorphisms of spectra of fields
(δ) fibres of étale morphisms from affines are universally bounded
(ε) cover by étale morphisms from schemes quasi-compact onto their image

The conditions in the following definition are not exactly conditions on the diagonal of
X , but they are in some sense separation conditions on X .

Definition 6.1. Let S be a scheme. Let X be an algebraic space over S.
(1) We sayX is decent if for every point x ∈ X the equivalent conditions of Lemma

4.5 hold, in other words property (γ) of Lemma 5.1 holds.
(2) We sayX is reasonable if the equivalent conditions of Lemma 4.6 hold, in other

words property (δ) of Lemma 5.1 holds.
(3) We sayX is very reasonable if the equivalent conditions of Lemma 4.7 hold, i.e.,

property (ε) of Lemma 5.1 holds.
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We have the following implications among these conditions on algebraic spaces:

representable

$,
very reasonable +3 reasonable +3 decent

quasi-separated

2:

The notion of a very reasonable algebraic space is obsolete. It was introduced because
the assumption was needed to prove some results which are now proven for the class of
decent spaces. The class of decent spaces is the largest class of spaces X where one has a
good relationship between the topology of |X| and properties of X itself.

Example 6.2. The algebraic space A1
Q/Z constructed in Spaces, Example 14.8 is not

decent as its “generic point” cannot be represented by a monomorphism from the spectrum
of a field.

Remark 6.3. Reasonable algebraic spaces are technically easier to work with than
very reasonable algebraic spaces. For example, ifX → Y is a quasi-compact étale surjective
morphism of algebraic spaces andX is reasonable, then so isY , see Lemma 17.8 but we don’t
know if this is true for the property “very reasonable”. Below we give another technical
property enjoyed by reasonable algebraic spaces.

Lemma 6.4. Let S be a scheme. Let X be a quasi-compact reasonable algebraic space.
Then there exists a directed system of quasi-compact and quasi-separated algebraic spaces
Xi such thatX = colimiXi (colimit in the category of sheaves). Moreover we can arrange
it such that

(1) for every quasi-compact scheme T over S we have colimXi(T ) = X(T ),
(2) the transition morphisms Xi → Xi′ of the system and the coprojections Xi →

X are surjective and étale, and
(3) if X is a scheme, then the algebraic spaces Xi are schemes and the transition

morphisms Xi → Xi′ and the coprojections Xi → X are local isomorphisms.

Proof. We sketch the proof. By Properties of Spaces, Lemma 6.3 we haveX = U/R
with U affine. In this case, reasonable means U → X is universally bounded. Hence there
exists an integerN such that the “fibres” of U → X have degree at mostN , see Definition
3.1. Denote s, t : R→ U and c : R×s,U,t R→ R the groupoid structural maps.
Claim: for every quasi-compact open A ⊂ R there exists an open R′ ⊂ R such that

(1) A ⊂ R′,
(2) R′ is quasi-compact, and
(3) (U,R′, s|R′ , t|R′ , c|R′×s,U,tR′) is a groupoid scheme.

Note that e : U → R is open as it is a section of the étale morphism s : R→ U , see Étale
Morphisms, Proposition 6.1. Moreover U is affine hence quasi-compact. Hence we may
replaceA byA∪e(U) ⊂ R, and assume thatA contains e(U). Next, we define inductively
A1 = A, and

An = c(An−1 ×s,U,t A) ⊂ R
for n ≥ 2. Arguing inductively, we see that An is quasi-compact for all n ≥ 2, as the
image of the quasi-compact fibre product An−1 ×s,U,t A. If k is an algebraically closed
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field over S , and we consider k-points then

An(k) =
{

(u, u′) ∈ U(k) : there exist u = u1, u2, . . . , un ∈ U(k) with
(ui, ui+1) ∈ A for all i = 1, . . . , n− 1.

}
But as the fibres of U(k)→ X(k) have size at most N we see that if n > N then we get a
repeat in the sequence above, and we can shorten it provingAN = An for all n ≥ N . This
implies that R′ = AN gives a groupoid scheme (U,R′, s|R′ , t|R′ , c|R′×s,U,tR′), proving
the claim above.

Consider the map of sheaves on (Sch/S)fppf

colimR′⊂R U/R
′ −→ U/R

whereR′ ⊂ R runs over the quasi-compact open subschemes ofR which give étale equiv-
alence relations as above. Each of the quotientsU/R′ is an algebraic space (see Spaces, The-
orem 10.5). Since R′ is quasi-compact, and U affine the morphism R′ → U ×Spec(Z) U is
quasi-compact, and henceU/R′ is quasi-separated. Finally, if T is a quasi-compact scheme,
then

colimR′⊂R U(T )/R′(T ) −→ U(T )/R(T )
is a bijection, since every morphism from T intoR ends up in one of the open subrelations
R′ by the claim above. This clearly implies that the colimit of the sheaves U/R′ is U/R.
In other words the algebraic spaceX = U/R is the colimit of the quasi-separated algebraic
spaces U/R′.

Properties (1) and (2) follow from the discussion above. IfX is a scheme, then if we choose
U to be a finite disjoint union of affine opens ofX we will obtain (3). Details omitted. �

Lemma 6.5. Let S be a scheme. Let X , Y be algebraic spaces over S. Let X → Y be
a representable morphism. If Y is decent (resp. reasonable), then so is X .

Proof. Translation of Lemma 5.3. �

Lemma 6.6. Let S be a scheme. LetX → Y be an étale morphism of algebraic spaces
over S. If Y is decent, resp. reasonable, then so is X .

Proof. Let U be an affine scheme and U → X an étale morphism. Set R = U ×X U
and R′ = U ×Y U . Note that R→ R′ is a monomorphism.

Let x ∈ |X|. To show that X is decent, we have to show that the fibres of |U | → |X|
and |R| → |X| over x are finite. But if Y is decent, then the fibres of |U | → |Y | and
|R′| → |Y | are finite. Hence the result for “decent”.

To show that X is reasonable, we have to show that the fibres of U → X are universally
bounded. However, if Y is reasonable, then the fibres of U → Y are universally bounded,
which immediately implies the same thing for the fibres of U → X . Hence the result for
“reasonable”. �

7. Points and specializations

There exists an étale morphism of algebraic spaces f : X → Y and a nontrivial specializa-
tion between points in a fibre of |f | : |X| → |Y |, see Examples, Lemma 50.1. If the source
of the morphism is a scheme we can avoid this by imposing condition (α) on Y .
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Lemma 7.1. Let S be a scheme. Let X be an algebraic space over S. Let U → X be
an étale morphism from a scheme to X . Assume u, u′ ∈ |U | map to the same point x of
|X|, and u′  u. If the pair (X,x) satisfies the equivalent conditions of Lemma 4.2 then
u = u′.

Proof. Assume the pair (X,x) satisfies the equivalent conditions for Lemma 4.2. Let
U be a scheme, U → X étale, and let u, u′ ∈ |U | map to x of |X|, and u′  u. We may
and do replace U by an affine neighbourhood of u. Let t, s : R = U ×X U → U be the
étale projection maps.

Pick a point r ∈ R with t(r) = u and s(r) = u′. This is possible by Properties of Spaces,
Lemma 4.5. Because generalizations lift along the étale morphism t (Remark 4.1) we can
find a specialization r′  r with t(r′) = u′. Set u′′ = s(r′). Then u′′  u′. Thus we may
repeat and find r′′  r′ with t(r′′) = u′′. Set u′′′ = s(r′′), and so on. Here is a picture:

r′′

s

!!

t

~~ ��
u′′

��

r′

s

!!

t

~~ ��

u′′′

��
u′

��

r

s

!!

t

~~

u′′

��
u u′

In Remark 4.1 we have seen that there are no specializations among points in the fibres of
the étale morphism s. Hence if u(n+1) = u(n) for some n, then also r(n) = r(n−1) and
hence also (by taking t) u(n) = u(n−1). This then forces the whole tower to collapse, in
particular u = u′. Thus we see that if u 6= u′, then all the specializations are strict and
{u, u′, u′′, . . .} is an infinite set of points in U which map to the point x in |X|. As we
chose U affine this contradicts the second part of Lemma 4.2, as desired. �

Lemma 7.2. Let S be a scheme. Let X be an algebraic space over S. Let U → X be
an étale morphism from a scheme to X . Assume u, u′ ∈ |U | map to the same point x of
|X|, and u′  u. If X is locally Noetherian, then u = u′.

Proof. The discussion in Schemes, Section 13 shows thatOU,u′ is a localization of the
Noetherian local ring OU,u. By Properties of Spaces, Lemma 10.1 we have dim(OU,u) =
dim(OU,u′). By dimension theory for Noetherian local rings we conclude u = u′. �

Lemma 7.3. Let S be a scheme. Let X be an algebraic space over S. Let x, x′ ∈ |X|
and assume x′  x, i.e., x is a specialization of x′. Assume the pair (X,x′) satisfies the
equivalent conditions of Lemma 4.5. Then for every étale morphism ϕ : U → X from a
scheme U and any u ∈ U with ϕ(u) = x, exists a point u′ ∈ U , u′  u with ϕ(u′) = x′.

Proof. We may replace U by an affine open neighbourhood of u. Hence we may
assume that U is affine. As x is in the image of the open map |U | → |X|, so is x′. Thus we
may replaceX by the Zariski open subspace corresponding to the image of |U | → |X|, see
Properties of Spaces, Lemma 4.10. In other words we may assume thatU → X is surjective
and étale. Let s, t : R = U ×X U → U be the projections. By our assumption that (X,x′)
satisfies the equivalent conditions of Lemma 4.5 we see that the fibres of |U | → |X| and
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|R| → |X| over x′ are finite. Say {u′
1, . . . , u

′
n} ⊂ U and {r′

1, . . . , r
′
m} ⊂ R form the

complete inverse image of {x′}. Consider the closed sets

T = {u′
1} ∪ . . . ∪ {u′

n} ⊂ |U |, T ′ = {r′
1} ∪ . . . ∪ {r′

m} ⊂ |R|.

Trivially we have s(T ′) ⊂ T . Because R is an equivalence relation we also have t(T ′) =
s(T ′) as the set {r′

j} is invariant under the inverse of R by construction. Let w ∈ T be
any point. Then u′

i  w for some i. Choose r ∈ R with s(r) = w. Since generalizations
lift along s : R → U , see Remark 4.1, we can find r′  r with s(r′) = u′

i. Then r′ = r′
j

for some j and we conclude thatw ∈ s(T ′). Hence T = s(T ′) = t(T ′) is an |R|-invariant
closed set in |U |. This meansT is the inverse image of a closed (!) subsetT ′′ = ϕ(T ) of |X|,
see Properties of Spaces, Lemmas 4.5 and 4.6. Hence T ′′ = {x′}. Thus T contains some
point u1 mapping to x as x ∈ T ′′. I.e., we see that for some i there exists a specialization
u′
i  u1 which maps to the given specialization x′  x.

To finish the proof, choose a point r ∈ R such that s(r) = u and t(r) = u1 (using
Properties of Spaces, Lemma 4.3). As generalizations lift along t, and u′

i  u1 we can find
a specialization r′  r such that t(r′) = u′

i. Set u′ = s(r′). Then u′  u and ϕ(u′) = x′

as desired. �

Lemma 7.4. Let S be a scheme. Let f : Y → X be a flat morphism of algebraic spaces
over S. Let x, x′ ∈ |X| and assume x′  x, i.e., x is a specialization of x′. Assume the
pair (X,x′) satisfies the equivalent conditions of Lemma 4.5 (for example if X is decent,
X is quasi-separated, orX is representable). Then for every y ∈ |Y | with f(y) = x, there
exists a point y′ ∈ |Y |, y′  y with f(y′) = x′.

Proof. (The parenthetical statement holds by the definition of decent spaces and the
implications between the different separation conditions mentioned in Section 6.) Choose
a scheme V and a surjective étale morphism V → Y . Choose v ∈ V mapping to y. Then
we see that it suffices to prove the lemma for V → X . Thus we may assume Y is a scheme.
Choose a scheme U and a surjective étale morphism U → X . Choose u ∈ U mapping to
x. By Lemma 7.3 we may choose u′  u mapping to x′. By Properties of Spaces, Lemma
4.3 we may choose z ∈ U ×X Y mapping to y and u. Thus we reduce to the case of the
flat morphism of schemes U ×X Y → U which is Morphisms, Lemma 25.9. �

8. Stratifying algebraic spaces by schemes

In this section we prove that a quasi-compact and quasi-separated algebraic space has a
finite stratification by locally closed subspaces each of which is a scheme and such that
the glueing of the parts is by elementary distinguished squares. We first prove a slightly
weaker result for reasonable algebraic spaces.

Lemma 8.1. Let S be a scheme. Let W → X be a morphism of a scheme W to an
algebraic spaceX which is flat, locally of finite presentation, separated, locally quasi-finite
with universally bounded fibres. There exist reduced closed subspaces

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = X

such that with Xr = Zr \ Zr−1 the stratification X =
∐
r=0,...,nXr is characterized by

the following universal property: Given g : T → X the projectionW ×X T → T is finite
locally free of degree r if and only if g(|T |) ⊂ |Xr|.
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Proof. Let n be an integer bounding the degrees of the fibres of W → X . Choose a
scheme U and a surjective étale morphism U → X . Apply More on Morphisms, Lemma
45.3 to W ×X U → U . We obtain closed subsets

∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ Y2 ⊂ . . . ⊂ Yn = U

characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting R =
U ×X U with projection maps s, t : R→ U we conclude that

s−1(Yr) = t−1(Yr)

as closed subsets of R. In other words the closed subsets Yr ⊂ U are R-invariant. This
means that |Yr| is the inverse image of a closed subset Zr ⊂ |X|. Denote Zr ⊂ X also the
reduced induced algebraic space structure, see Properties of Spaces, Definition 12.5.

Let g : T → X be a morphism of algebraic spaces. Choose a scheme V and a surjective
étale morphism V → T . To prove the final assertion of the lemma it suffices to prove the
assertion for the composition V → X (by our definition of finite locally free morphisms,
see Morphisms of Spaces, Section 46). Similarly, the morphism of schemesW ×X V → V
is finite locally free of degree r if and only if the morphism of schemes

W ×X (U ×X V ) −→ U ×X V

is finite locally free of degree r (see Descent, Lemma 23.30). By construction this happens
if and only if |U ×X V | → |U | maps into |Yr|, which is true if and only if |V | → |X|
maps into |Zr|. �

Lemma 8.2. Let S be a scheme. Let W → X be a morphism of a scheme W to an
algebraic space X which is flat, locally of finite presentation, separated, and locally quasi-
finite. Then there exist open subspaces

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .

such that a morphism Spec(k) → X where k is a field factors through Xd if and only if
W ×X Spec(k) has degree ≥ d over k.

Proof. Choose a scheme U and a surjective étale morphism U → X . Apply More
on Morphisms, Lemma 45.5 to W ×X U → U . We obtain open subschemes

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .

characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting R =
U ×X U with projection maps s, t : R→ U we conclude that

s−1(Ud) = t−1(Ud)

as open subschemes of R. In other words the open subschemes Ud ⊂ U are R-invariant.
This means thatUd is the inverse image of an open subspaceXd ⊂ X (Properties of Spaces,
Lemma 12.2). �

Lemma 8.3. Let S be a scheme. Let X be a quasi-compact algebraic space over S.
There exist open subspaces

. . . ⊂ U4 ⊂ U3 ⊂ U2 ⊂ U1 = X

with the following properties:
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(1) setting Tp = Up \ Up+1 (with reduced induced subspace structure) there exists
a separated scheme Vp and a surjective étale morphism fp : Vp → Up such that
f−1
p (Tp)→ Tp is an isomorphism,

(2) if x ∈ |X| can be represented by a quasi-compact morphism Spec(k)→ X from
a field, then x ∈ Tp for some p.

Proof. By Properties of Spaces, Lemma 6.3 we can choose an affine scheme U and a
surjective étale morphism U → X . For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals

where the fibre product has p factors. Since U is separated, the morphism U → X is
separated and all fibre products U ×X . . . ×X U are separated schemes. Since U → X is
separated the diagonal U → U ×X U is a closed immersion. Since U → X is étale the
diagonal U → U ×X U is an open immersion, see Morphisms of Spaces, Lemmas 39.10
and 38.9. Similarly, all the diagonal morphisms are open and closed immersions and Wp

is an open and closed subscheme of U ×X . . .×X U . Moreover, the morphism

U ×X . . .×X U −→ U ×Spec(Z) . . .×Spec(Z) U

is locally quasi-finite and separated (Morphisms of Spaces, Lemma 4.5) and its target is an
affine scheme. Hence every finite set of points of U ×X . . .×X U is contained in an affine
open, see More on Morphisms, Lemma 45.1. Therefore, the same is true forWp. There is a
free action of the symmetric group Sp on Wp over X (because we threw out the fix point
locus from U ×X . . .×X U ). By the above and Properties of Spaces, Proposition 14.1 the
quotient Vp = Wp/Sp is a scheme. Since the action of Sp on Wp was over X , there is a
morphism Vp → X . Since Wp → X is étale and since Wp → Vp is surjective étale, it
follows that also Vp → X is étale, see Properties of Spaces, Lemma 16.3. Observe that Vp
is a separated scheme by Properties of Spaces, Lemma 14.3.

We let Up ⊂ X be the open subspace which is the image of Vp → X . By construction
a morphism Spec(k) → X with k algebraically closed, factors through Up if and only if
U ×X Spec(k) has ≥ p points; as usual observe that U ×X Spec(k) is scheme theoreti-
cally a disjoint union of (possibly infinitely many) copies of Spec(k), see Remark 4.1. It
follows that theUp give a filtration ofX as stated in the lemma. Moreover, our morphism
Spec(k) → X factors through Tp if and only if U ×X Spec(k) has exactly p points. In
this case we see that Vp ×X Spec(k) has exactly one point. Set Zp = f−1

p (Tp) ⊂ Vp.
This is a closed subscheme of Vp. Then Zp → Tp is an étale morphism between algebraic
spaces which induces a bijection on k-valued points for any algebraically closed field k.
To be sure this implies that Zp → Tp is universally injective, whence an open immersion
by Morphisms of Spaces, Lemma 51.2 hence an isomorphism and (1) has been proved.

Let x : Spec(k) → X be a quasi-compact morphism where k is a field. Then the compo-
sition Spec(k) → Spec(k) → X is quasi-compact as well (Morphisms of Spaces, Lemma
8.5). In this case the scheme U ×X Spec(k) is quasi-compact. In view of the fact (seen
above) that it is a disjoint union of copies of Spec(k) we find that it has finitely many
points. If the number of points is p, then we see that indeed x ∈ Tp and the proof is
finished. �

Lemma 8.4. Let S be a scheme. Let X be a quasi-compact, reasonable algebraic space
over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X
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with the following property: setting Tp = Up \ Up+1 (with reduced induced subspace
structure) there exists a separated schemeVp and a surjective étale morphism fp : Vp → Up
such that f−1

p (Tp)→ Tp is an isomorphism.

Proof. The proof of this lemma is identical to the proof of Lemma 8.3. Let n be an
integer bounding the degrees of the fibres of U → X which exists as X is reasonable, see
Definition 6.1. Then we see that Un+1 = ∅ and the proof is complete. �

Lemma 8.5. Let S be a scheme. Let X be a quasi-compact, reasonable algebraic space
over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

such that each Tp = Up \ Up+1 (with reduced induced subspace structure) is a scheme.

Proof. Immediate consequence of Lemma 8.4. �

The following result is almost identical to [?, Proposition 5.7.8].

Lemma 8.6. LetX be a quasi-compact and quasi-separated algebraic space over Spec(Z).
There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up \ Up+1 (with reduced induced subspace
structure) there exists a quasi-compact separated scheme Vp and a surjective étale mor-
phism fp : Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.

Proof. The proof of this lemma is identical to the proof of Lemma 8.3. Observe that
a quasi-separated space is reasonable, see Lemma 5.1 and Definition 6.1. Hence we find
that Un+1 = ∅ as in Lemma 8.4. At the end of the argument we add that since X is
quasi-separated the schemes U ×X . . . ×X U are all quasi-compact. Hence the schemes
Wp are quasi-compact. Hence the quotients Vp = Wp/Sp by the symmetric group Sp are
quasi-compact schemes. �

The following lemma probably belongs somewhere else.

Lemma 8.7. Let S be a scheme. LetX be a quasi-separated algebraic space over S. Let
E ⊂ |X| be a subset. ThenE is étale locally constructible (Properties of Spaces, Definition
8.2) if and only ifE is a locally constructible subset of the topological space |X| (Topology,
Definition 15.1).

Proof. AssumeE ⊂ |X| is a locally constructible subset of the topological space |X|.
Let f : U → X be an étale morphism where U is a scheme. We have to show that f−1(E)
is locally constructible in U . The question is local on U and X , hence we may assume
that X is quasi-compact, E ⊂ |X| is constructible, and U is affine. In this case U → X is
quasi-compact, hence f : |U | → |X| is quasi-compact. Observe that retrocompact opens
of |X|, resp. U are the same thing as quasi-compact opens of |X|, resp. U , see Topology,
Lemma 27.1. Thus f−1(E) is constructible by Topology, Lemma 15.3.

Conversely, assume E is étale locally constructible. We want to show that E is locally
constructible in the topological space |X|. The question is local on X , hence we may
assume that X is quasi-compact as well as quasi-separated. We will show that in this case
E is constructible in |X|. Choose open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X
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and surjective étale morphisms fp : Vp → Up inducing isomorphisms f−1
p (Tp) → Tp =

Up \ Up+1 where Vp is a quasi-compact separated scheme as in Lemma 8.6. By definition
the inverse image Ep ⊂ Vp of E is locally constructible in Vp. Then Ep is constructible
in Vp by Properties, Lemma 2.5. Thus Ep ∩ |f−1

p (Tp)| = E ∩ |Tp| is constructible in |Tp|
by Topology, Lemma 15.7 (observe that Vp \ f−1

p (Tp) is quasi-compact as it is the inverse
image of the quasi-compact space Up+1 by the quasi-compact morphism fp). Thus

E = (|Tn| ∩ E) ∪ (|Tn−1| ∩ E) ∪ . . . ∪ (|T1| ∩ E)

is constructible by Topology, Lemma 15.14. Here we use that |Tp| is constructible in |X|
which is clear from what was said above. �

9. Integral cover by a scheme

Here we prove that given any quasi-compact and quasi-separated algebraic space X , there
is a scheme Y and a surjective, integral morphism Y → X . After we develop some theory
about limits of algebraic spaces, we will prove that one can do this with a finite morphism,
see Limits of Spaces, Section 16.

Lemma 9.1. Let S be a scheme. Let j : V → Y be a quasi-compact open immersion
of algebraic spaces over S. Let π : Z → V be an integral morphism. Then there exists an
integral morphism ν : Y ′ → Y such that Z is V -isomorphic to the inverse image of V in
Y ′.

Proof. Since both j and π are quasi-compact and separated, so is j ◦ π. Let ν : Y ′ →
Y be the normalization of Y in Z , see Morphisms of Spaces, Section 48. Of course ν
is integral, see Morphisms of Spaces, Lemma 48.5. The final statement follows formally
from Morphisms of Spaces, Lemmas 48.4 and 48.10. �

Lemma 9.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S.

(1) There exists a surjective integral morphism Y → X where Y is a scheme,
(2) given a surjective étale morphism U → X we may choose Y → X such that for

every y ∈ Y there is an open neighbourhood V ⊂ Y such that V → X factors
through U .

Proof. Part (1) is the special case of part (2) where U = X . Choose a surjective étale
morphismU ′ → U whereU ′ is a scheme. It is clear that we may replaceU byU ′ and hence
we may assume U is a scheme. Since X is quasi-compact, there exist finitely many affine
opens Ui ⊂ U such that U ′ =

∐
Ui → X is surjective. After replacing U by U ′ again,

we see that we may assume U is affine. Since X is quasi-separated, hence reasonable, there
exists an integer d bounding the degree of the geometric fibres ofU → X (see Lemma 5.1).
We will prove the lemma by induction on d for all quasi-compact and separated schemes
U mapping surjective and étale onto X . If d = 1, then U = X and the result holds with
Y = U . Assume d > 1.

We apply Morphisms of Spaces, Lemma 52.2 and we obtain a factorization

U
j

//

  

Y

π~~
X
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with π integral and j a quasi-compact open immersion. We may and do assume that j(U)
is scheme theoretically dense in Y . Then U ×X Y is a quasi-compact, separated scheme
(being finite over U ) and we have

U ×X Y = U qW

Here the first summand is the image of U → U ×X Y (which is closed by Morphisms
of Spaces, Lemma 4.6 and open because it is étale as a morphism between algebraic spaces
étale over Y ) and the second summand is the (open and closed) complement. The image
V ⊂ Y of W is an open subspace containing Y \ U .

The étale morphism W → Y has geometric fibres of cardinality < d. Namely, this is
clear for geometric points of U ⊂ Y by inspection. Since |U | ⊂ |Y | is dense, it holds
for all geometric points of Y by Lemma 8.1 (the degree of the fibres of a quasi-compact
étale morphism does not go up under specialization). Thus we may apply the induction
hypothesis to W → V and find a surjective integral morphism Z → V with Z a scheme,
which Zariski locally factors through W . Choose a factorization Z → Z ′ → Y with
Z ′ → Y integral and Z → Z ′ open immersion (Lemma 9.1). After replacing Z ′ by the
scheme theoretic closure of Z in Z ′ we may assume that Z is scheme theoretically dense
in Z ′. After doing this we have Z ′ ×Y V = Z. Finally, let T ⊂ Y be the induced closed
subspace structure on Y \ V . Consider the morphism

Z ′ q T −→ X

This is a surjective integral morphism by construction. Since T ⊂ U it is clear that the
morphism T → X factors through U . On the other hand, let z ∈ Z ′ be a point. If z 6∈ Z ,
then z maps to a point of Y \ V ⊂ U and we find a neighbourhood of z on which the
morphism factors through U . If z ∈ Z , then we have an open neighbourhood of z in Z
(which is also an open neighbourhood of z in Z ′) which factors through W ⊂ U ×X Y
and hence through U . �

Lemma 9.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S such that |X| has finitely many irreducible components.

(1) There exists a surjective integral morphism Y → X where Y is a scheme such
that f is finite étale over a quasi-compact dense open U ⊂ X ,

(2) given a surjective étale morphism V → X we may choose Y → X such that for
every y ∈ Y there is an open neighbourhoodW ⊂ Y such thatW → X factors
through V .

Proof. The proof is the (roughly) same as the proof of Lemma 9.2 with additional
technical comments to obtain the dense quasi-compact openU (and unfortunately changes
in notation to keep track of U ).

Part (1) is the special case of part (2) where V = X .

Proof of (2). Choose a surjective étale morphism V ′ → V where V ′ is a scheme. It is
clear that we may replace V by V ′ and hence we may assume V is a scheme. Since X is
quasi-compact, there exist finitely many affine opens Vi ⊂ V such that V ′ =

∐
Vi → X

is surjective. After replacing V by V ′ again, we see that we may assume V is affine. Since
X is quasi-separated, hence reasonable, there exists an integer d bounding the degree of
the geometric fibres of V → X (see Lemma 5.1).

By induction on d ≥ 1 we will prove the following induction hypothesis (Hd):
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• for any quasi-compact and quasi-separated algebraic spaceX with finitely many
irreducible components, for any m ≥ 0, for any quasi-compact and separated
schemes Vj , j = 1, . . . ,m, for any étale morphisms ϕj : Vj → X , j = 1, . . . ,m
such that d bounds the degree of the geometric fibres of ϕj : Vj → X and
ϕ =

∐
ϕj : V =

∐
Vj → X is surjective, the statement of the lemma holds for

ϕ : V → X .
If d = 1, then each ϕj is an open immersion. Hence X is a scheme and the result holds
with Y = V . Assume d > 1, assume (Hd−1) and let m, ϕ : Vj → X , j = 1, . . . ,m be as
in (Hd).

Let η1, . . . , ηn ∈ |X| be the generic points of the irreducible components of |X|. By Prop-
erties of Spaces, Proposition 13.3 there is an open subschemeU ⊂ X with η1, . . . , ηn ∈ U .
By shrinking U we may assume U affine and by Morphisms, Lemma 51.1 we may assume
each ϕj : Vj → X is finite étale over U . Of course, we see that U is quasi-compact and
dense in X and that ϕ−1

j (U) is dense in Vj . In particular each Vj has finitely many irre-
ducible components.

Fix j ∈ {1, . . . ,m}. As in Morphisms of Spaces, Lemma 52.2 we let Yj be the normaliza-
tion of X in Vj . We obtain a factorization

Vj //

ϕj   

Yj

πj~~
X

with πj integral and Vj → Yj a quasi-compact open immersion. Since Yj is the nor-
malization of X in Vj , we see from Morphisms of Spaces, Lemmas 48.4 and 48.10 that
ϕ−1
j (U)→ π−1

j (U) is an isomorphism. Thus πj is finite étale over U . Observe that Vj is
scheme theoretically dense in Yj because Yj is the normalization ofX in Vj (follows from
the characterization of relative normalization in Morphisms of Spaces, Lemma 48.5). Since
Vj is quasi-compact we see that |Vj | ⊂ |Yj | is dense, see Morphisms of Spaces, Section 17
(and especially Morphisms of Spaces, Lemma 17.7). It follows that |Yj | has finitely many
irreducible components. Then Vj×X Yj is a quasi-compact, separated scheme (being finite
over Vj) and

Vj ×X Yj = Vj qWj

Here the first summand is the image of Vj → Vj ×X Yj (which is closed by Morphisms
of Spaces, Lemma 4.6 and open because it is étale as a morphism between algebraic spaces
étale over Y ) and the second summand is the (open and closed) complement.

The étale morphism Wj → Yj has geometric fibres of cardinality < d. Namely, this is
clear for geometric points of Vj ⊂ Yj by inspection. Since |Vj | ⊂ |Yj | is dense, it holds for
all geometric points of Yj by Lemma 8.1 (the degree of the fibres of a quasi-compact étale
morphism does not go up under specialization). By (Hd−1) applied to Vj q Wj → Yj
we find a surjective integral morphism Y ′

j → Yj with Y ′
j a scheme, which Zariski locally

factors through Vj qWj , and which is finite étale over a quasi-compact dense open Uj ⊂
Yj . After shrinking U we may and do assume that π−1

j (U) ⊂ Uj (we may and do choose
the same U for all j; some details omitted).

We claim that
Y =

∐
j=1,...,m

Y ′
j −→ X
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is the solution to our problem. First, this morphism is integral as on each summand we
have the composition Y ′

j → Y → X of integral morphisms (Morphisms of Spaces, Lemma
45.4). Second, this morphism Zariski locally factors through V =

∐
Vj because we saw

above that each Y ′
j → Yj factors Zariski locally through Vj qWj = Vj ×X Yj . Finally,

since both Y ′
j → Yj and Yj → X are finite étale over U , so is the composition. This

finishes the proof. �

10. Schematic locus

In this section we prove that a decent algebraic space has a dense open subspace which is a
scheme. We first prove this for reasonable algebraic spaces.

Proposition 10.1. Let S be a scheme. Let X be an algebraic space over S. If X is
reasonable, then there exists a dense open subspace of X which is a scheme.

Proof. By Properties of Spaces, Lemma 13.1 the question is local on X . Hence we
may assume there exists an affine scheme U and a surjective étale morphism U → X
(Properties of Spaces, Lemma 6.1). Let n be an integer bounding the degrees of the fibres
of U → X which exists asX is reasonable, see Definition 6.1. We will argue by induction
on n that whenever

(1) U → X is a surjective étale morphism whose fibres have degree ≤ n, and
(2) U is isomorphic to a locally closed subscheme of an affine scheme

then the schematic locus is dense in X .

LetXn ⊂ X be the open subspace which is the complement of the closed subspaceZn−1 ⊂
X constructed in Lemma 8.1 using the morphism U → X . Let Un ⊂ U be the inverse
image of Xn. Then Un → Xn is finite locally free of degree n. Hence Xn is a scheme by
Properties of Spaces, Proposition 14.1 (and the fact that any finite set of points of Un is
contained in an affine open of Un, see Properties, Lemma 29.5).

Let X ′ ⊂ X be the open subspace such that |X ′| is the interior of |Zn−1| in |X| (see
Topology, Definition 21.1). Let U ′ ⊂ U be the inverse image. Then U ′ → X ′ is surjective
étale and has degrees of fibres bounded by n− 1. By induction we see that the schematic
locus ofX ′ is an open denseX ′′ ⊂ X ′. By elementary topology we see thatX ′′∪Xn ⊂ X
is open and dense and we win. �

Theorem 10.2 (David Rydh). Let S be a scheme. LetX be an algebraic space over S.
If X is decent, then there exists a dense open subspace of X which is a scheme.

Proof. Assume X is a decent algebraic space for which the theorem is false. By
Properties of Spaces, Lemma 13.1 there exists a largest open subspace X ′ ⊂ X which is
a scheme. Since X ′ is not dense in X , there exists an open subspace X ′′ ⊂ X such that
|X ′′| ∩ |X ′| = ∅. ReplacingX byX ′′ we get a nonempty decent algebraic spaceX which
does not contain any open subspace which is a scheme.

Choose a nonempty affine scheme U and an étale morphism U → X . We may and do
replaceX by the open subscheme corresponding to the image of |U | → |X|. Consider the
sequence of open subspaces

X = X0 ⊃ X1 ⊃ X2 . . .

constructed in Lemma 8.2 for the morphism U → X . Note that X0 = X1 as U → X is
surjective. Let U = U0 = U1 ⊃ U2 . . . be the induced sequence of open subschemes of U .
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Choose a nonempty open affine V1 ⊂ U1 (for example V1 = U1). By induction we will
construct a sequence of nonempty affine opens V1 ⊃ V2 ⊃ . . . with Vn ⊂ Un. Namely,
having constructed V1, . . . , Vn−1 we can always choose Vn unless Vn−1 ∩ Un = ∅. But
if Vn−1 ∩ Un = ∅, then the open subspace X ′ ⊂ X with |X ′| = Im(|Vn−1| → |X|) is
contained in |X|\ |Xn|. Hence Vn−1 → X ′ is an étale morphism whose fibres have degree
bounded by n − 1. In other words, X ′ is reasonable (by definition), hence X ′ contains a
nonempty open subscheme by Proposition 10.1. This is a contradiction which shows that
we can pick Vn.
By Limits, Lemma 4.3 the limit V∞ = limVn is a nonempty scheme. Pick a morphism
Spec(k)→ V∞. The composition Spec(k)→ V∞ → U → X has image contained in all
Xd by construction. In other words, the fibred U ×X Spec(k) has infinite degree which
contradicts the definition of a decent space. This contradiction finishes the proof of the
theorem. �

Lemma 10.3. Let S be a scheme. Let X → Y be a surjective finite locally free mor-
phism of algebraic spaces over S. For y ∈ |Y | the following are equivalent

(1) y is in the schematic locus of Y , and
(2) there exists an affine open U ⊂ X containing the preimage of y.

Proof. If y ∈ Y is in the schematic locus, then it has an affine open neighbourhood
V ⊂ Y and the inverse image U of V inX is an open finite over V , hence affine. Thus (1)
implies (2).
Conversely, assume that U ⊂ X as in (2) is given. Set R = X ×Y X and denote the
projections s, t : R → X . Consider Z = R \ s−1(U) ∩ t−1(U). This is a closed subset
of R. The image t(Z) is a closed subset of X which can loosely be described as the set of
points of X which are R-equivalent to a point of X \ U . Hence U ′ = X \ t(Z) is an
R-invariant, open subspace ofX contained in U which contains the fibre ofX → Y over
y. Since X → Y is open (Morphisms of Spaces, Lemma 30.6) the image of U ′ is an open
subspace V ′ ⊂ Y . Since U ′ isR-invariant andR = X ×Y X , we see that U ′ is the inverse
image of V ′ (use Properties of Spaces, Lemma 4.3). After replacing Y by V ′ and X by U ′

we see that we may assume X is a scheme isomorphic to an open subscheme of an affine
scheme.
Assume X is a scheme isomorphic to an open subscheme of an affine scheme. In this case
the fppf quotient sheaf X/R is a scheme, see Properties of Spaces, Proposition 14.1. Since
Y is a sheaf in the fppf topology, obtain a canonical map X/R → Y factoring X → Y .
Since X → Y is surjective finite locally free, it is surjective as a map of sheaves (Spaces,
Lemma 5.9). We conclude that X/R→ Y is surjective as a map of sheaves. On the other
hand, since R = X ×Y X as sheaves we conclude that X/R→ Y is injective as a map of
sheaves. Hence X/R→ Y is an isomorphism and we see that Y is representable. �

At this point we have several different ways for proving the following lemma.

Lemma 10.4. Let S be a scheme. Let X be an algebraic space over S. If there exists a
finite, étale, surjective morphism U → X where U is a scheme, then there exists a dense
open subspace of X which is a scheme.

First proof. The morphism U → X is finite locally free. Hence there is a decom-
position ofX into open and closed subspacesXd ⊂ X such that U ×X Xd → Xd is finite
locally free of degree d. Thus we may assume U → X is finite locally free of degree d. In
this case, let Ui ⊂ U , i ∈ I be the set of affine opens. For each i the morphism Ui → X
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is étale and has universally bounded fibres (namely, bounded by d). In other words, X is
reasonable and the result follows from Proposition 10.1. �

Second proof. The question is local onX (Properties of Spaces, Lemma 13.1), hence
may assumeX is quasi-compact. ThenU is quasi-compact. Then there exists a dense open
subscheme W ⊂ U which is separated (Properties, Lemma 29.3). Set Z = U \W . Let
R = U ×X U and s, t : R → U the projections. Then t−1(Z) is nowhere dense in
R (Topology, Lemma 21.6) and hence ∆ = s(t−1(Z)) is an R-invariant closed nowhere
dense subset of U (Morphisms, Lemma 48.7). Let u ∈ U \ ∆ be a generic point of an
irreducible component. Since these points are dense in U \ ∆ and since ∆ is nowhere
dense, it suffices to show that the image x ∈ X of u is in the schematic locus ofX . Observe
that t(s−1({u})) ⊂ W is a finite set of generic points of irreducible components of W
(compare with Properties of Spaces, Lemma 11.1). By Properties, Lemma 29.1 we can find
an affine open V ⊂ W such that t(s−1({u})) ⊂ V . Since t(s−1({u})) is the fibre of
|U | → |X| over x, we conclude by Lemma 10.3. �

Third proof. (This proof is essentially the same as the second proof, but uses fewer
references.) Assume X is an algebraic space, U a scheme, and U → X is a finite étale
surjective morphism. Write R = U ×X U and denote s, t : R → U the projections as
usual. Note that s, t are surjective, finite and étale. Claim: The union of the R-invariant
affine opens of U is topologically dense in U .

Proof of the claim. Let W ⊂ U be an affine open. Set W ′ = t(s−1(W )) ⊂ U . Since
s−1(W ) is affine (hence quasi-compact) we see that W ′ ⊂ U is a quasi-compact open.
By Properties, Lemma 29.3 there exists a dense open W ′′ ⊂ W ′ which is a separated
scheme. Set ∆′ = W ′ \ W ′′. This is a nowhere dense closed subset of W ′′. Since
t|s−1(W ) : s−1(W ) → W ′ is open (because it is étale) we see that the inverse image
(t|s−1(W ))−1(∆′) ⊂ s−1(W ) is a nowhere dense closed subset (see Topology, Lemma
21.6). Hence, by Morphisms, Lemma 48.7 we see that

∆ = s
(
(t|s−1(W ))−1(∆′)

)
is a nowhere dense closed subset of W . Pick any point η ∈ W , η 6∈ ∆ which is a generic
point of an irreducible component ofW (and hence of U ). By our choices above the finite
set t(s−1({η})) = {η1, . . . , ηn} is contained in the separated scheme W ′′. Note that the
fibres of s is are finite discrete spaces, and that generalizations lift along the étale morphism
t, see Morphisms, Lemmas 36.12 and 25.9. In this way we see that each ηi is a generic point
of an irreducible component ofW ′′. Thus, by Properties, Lemma 29.1 we can find an affine
open V ⊂ W ′′ such that {η1, . . . , ηn} ⊂ V . By Groupoids, Lemma 24.1 this implies that
η is contained in an R-invariant affine open subscheme of U . The claim follows as W was
chosen as an arbitrary affine open of U and because the set of generic points of irreducible
components of W \∆ is dense in W .

Using the claim we can finish the proof. Namely, ifW ⊂ U is anR-invariant affine open,
then the restriction RW of R to W equals RW = s−1(W ) = t−1(W ) (see Groupoids,
Definition 19.1 and discussion following it). In particular the maps RW → W are finite
étale also. It follows in particular that RW is affine. Thus we see that W/RW is a scheme,
by Groupoids, Proposition 23.9. On the other hand, W/RW is an open subspace of X by
Spaces, Lemma 10.2. Hence having a dense collection of points contained in R-invariant
affine open of U certainly implies that the schematic locus of X (see Properties of Spaces,
Lemma 13.1) is open dense in X . �
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11. Residue fields and henselian local rings

For a decent algebraic space we can define the residue field and the henselian local ring at
a point. For example, the following lemma tells us the residue field of a point on a decent
space is defined.

Lemma 11.1. Let S be a scheme. Let X be an algebraic space over S. Consider the
map

{Spec(k)→ X monomorphism where k is a field} −→ |X|
This map is always injective. If X is decent then this map is a bijection.

Proof. We have seen in Properties of Spaces, Lemma 4.12 that the map is an injection
in general. By Lemma 5.1 it is surjective whenX is decent (actually one can say this is part
of the definition of being decent). �

LetS be a scheme. LetX be an algebraic space overS. If a point x ∈ |X| can be represented
by a monomorphism Spec(k)→ X , then the field k is unique up to unique isomorphism.
For a decent algebraic space such a monomorphism exists for every point by Lemma 11.1
and hence the following definition makes sense.

Definition 11.2. Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X|. The residue field of X at x is the unique field κ(x) which comes equipped with
a monomorphism Spec(κ(x))→ X representing x.

Let S be a scheme. Let f : X → Y be a morphism of decent algebraic spaces over S. Let
x ∈ |X| be a point. Set y = f(x) ∈ |Y |. Then the composition Spec(κ(x))→ Y is in the
equivalence class defining y and hence factors through Spec(κ(y))→ Y . In other words
we get a commutative diagram

Spec(κ(x))
x
//

��

X

f

��
Spec(κ(y)) y // Y

The left vertical morphism corresponds to a homomorphism κ(y) → κ(x) of fields. We
will often simply call this the homomorphism induced by f .

Lemma 11.3. Let S be a scheme. Let f : X → Y be a morphism of decent algebraic
spaces over S. Let x ∈ |X| be a point with image y = f(x) ∈ |Y |. The following are
equivalent

(1) f induces an isomorphism κ(y)→ κ(x), and
(2) the induced morphism Spec(κ(x))→ Y is a monomorphism.

Proof. Immediate from the discussion above. �

The following lemma tells us that the henselian local ring of a point on a decent algebraic
space is defined.

Lemma 11.4. Let S be a scheme. Let X be a decent algebraic space over S. For every
point x ∈ |X| there exists an étale morphism

(U, u) −→ (X,x)
where U is an affine scheme, u is the only point of U lying over x, and the induced homo-
morphism κ(x)→ κ(u) is an isomorphism.
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Proof. We may assume thatX is quasi-compact by replacingX with a quasi-compact
open containing x. Recall that x can be represented by a quasi-compact (mono)morphism
from the spectrum a field (by definition of decent spaces). Thus the lemma follows from
Lemma 8.3. �

Definition 11.5. LetS be a scheme. LetX be an algebraic space overS. Let x ∈ X be
a point. An elementary étale neighbourhood is an étale morphism (U, u)→ (X,x) where
U is a scheme, u ∈ U is a point mapping to x, and the morphism u = Spec(κ(u))→ X is
a monomorphism. A morphism of elementary étale neighbourhoods (U, u)→ (U ′, u′) is
defined as a morphism U → U ′ over X mapping u to u′.
If X is not decent then the category of elementary étale neighbourhoods may be empty.

Lemma 11.6. Let S be a scheme. Let X be a decent algebraic space over S. Let x be
a point of X . The category of elementary étale neighborhoods of (X,x) is cofiltered (see
Categories, Definition 20.1).

Proof. The category is nonempty by Lemma 11.4. Suppose that we have two ele-
mentary étale neighbourhoods (Ui, ui) → (X,x). Then consider U = U1 ×X U2. Since
Spec(κ(ui)) → X , i = 1, 2 are both monomorphisms in the class of x (Lemma 11.3) , we
see that

u = Spec(κ(u1))×X Spec(κ(u2))
is the spectrum of a fieldκ(u) such that the induced mapsκ(ui)→ κ(u) are isomorphisms.
Then u → U is a point of U and we see that (U, u) → (X,x) is an elementary étale
neighbourhood dominating (Ui, ui). If a, b : (U1, u1) → (U2, u2) are two morphisms
between our elementary étale neighbourhoods, then we consider the scheme

U = U1 ×(a,b),(U2×XU2),∆ U2

Using Properties of Spaces, Lemma 16.6 we see that U → X is étale. Moreover, in exactly
the same manner as before we see that U has a point u such that (U, u) → (X,x) is an
elementary étale neighbourhood. Finally, U → U1 equalizes a and b and the proof is
finished. �

Definition 11.7. Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X|. The henselian local ring of X at x, is

OhX,x = colim Γ(U,OU )
where the colimit is over the elementary étale neighbourhoods (U, u)→ (X,x).
Here is the analogue of Properties of Spaces, Lemma 22.1.

Lemma 11.8. LetS be a scheme. LetX be a decent algebraic space overS. Letx ∈ |X|.
Let (U, u)→ (X,x) be an elementary étale neighbourhood. Then

OhX,x = OhU,u
In words: the henselian local ring of X at x is equal to the henselizationOhU,u of the local
ringOU,u of U at u.

Proof. Since the category of elementary étale neighbourhood of (X,x) is cofiltered
(Lemma 11.6) we see that the category of elementary étale neighbourhoods of (U, u) is ini-
tial in the category of elementary étale neighbourhood of (X,x). Then the equality fol-
lows from More on Morphisms, Lemma 35.5 and Categories, Lemma 17.2 (initial is turned
into cofinal because the colimit definining henselian local rings is over the opposite of the
category of elementary étale neighbourhoods). �
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Lemma 11.9. Let S be a scheme. Let X be a decent algebraic space over S. Let x be a
geometric point of X lying over x ∈ |X|. The étale local ringOX,x of X at x (Properties
of Spaces, Definition 22.2) is the strict henselization of the henselian local ringOhX,x ofX
at x.

Proof. Follows from Lemma 11.8, Properties of Spaces, Lemma 22.1 and the fact that
(Rh)sh = Rsh for a local ring (R,m, κ) and a given separable algebraic closure κsep of κ.
This equality follows from Algebra, Lemma 154.7. �

Lemma 11.10. Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X|. The residue field of the henselian local ring of X at x (Definition 11.7) is the
residue field of X at x (Definition 11.2).

Proof. Choose an elementary étale neighbourhood (U, u) → (X,x). Then κ(u) =
κ(x) and OhX,x = OhU,u (Lemma 11.8). The residue field of OhU,u is κ(u) by Algebra,
Lemma 155.1 (the output of this lemma is the construction/definition of the henselization
of a local ring, see Algebra, Definition 155.3). �

Remark 11.11. Let S be a scheme. Let f : X → Y be a morphism of decent algebraic
spaces over S. Let x ∈ |X| with image y ∈ |Y |. Choose an elementary étale neighbour-
hood (V, v)→ (Y, y) (possible by Lemma 11.4). Then V ×Y X is an algebraic space étale
overX which has a unique point x′ mapping to x inX and to v in V . (Details omitted; use
that all points can be represented by monomorphisms from spectra of fields.) Choose an
elementary étale neighbourhood (U, u) → (V ×Y X,x′). Then we obtain the following
commutative diagram

Spec(OX,x) //

��

Spec(OhX,x) //

��

Spec(OU,u) //

��

U //

��

X

��
Spec(OY,y) // Spec(OhY,y) // Spec(OV,v) // V // Y

This comes from the identifications OX,x = OshU,u, OhX,x = OhU,u, OY,y = OshV,v , OhY,y =
OhV,v see in Lemma 11.8 and Properties of Spaces, Lemma 22.1 and the functoriality of the
(strict) henselization discussed in Algebra, Sections 154 and 155.

12. Points on decent spaces

In this section we prove some properties of points on decent algebraic spaces. The fol-
lowing lemma shows that specialization of points behaves well on decent algebraic spaces.
Spaces, Example 14.9 shows that this is not true in general.

Lemma 12.1. Let S be a scheme. LetX be a decent algebraic space over S. LetU → X
be an étale morphism from a scheme to X . If u, u′ ∈ |U | map to the same point of |X|,
and u′  u, then u = u′.

Proof. Combine Lemmas 5.1 and 7.1. �

Lemma 12.2. Let S be a scheme. LetX be a decent algebraic space over S. Let x, x′ ∈
|X| and assume x′  x, i.e., x is a specialization of x′. Then for every étale morphism
ϕ : U → X from a scheme U and any u ∈ U with ϕ(u) = x, exists a point u′ ∈ U ,
u′  u with ϕ(u′) = x′.

Proof. Combine Lemmas 5.1 and 7.3. �
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Lemma 12.3. Let S be a scheme. Let X be a decent algebraic space over S. Then |X|
is Kolmogorov (see Topology, Definition 8.6).

Proof. Letx1, x2 ∈ |X|withx1  x2 andx2  x1. We have to show thatx1 = x2.
Pick a scheme U and an étale morphism U → X such that x1, x2 are both in the image
of |U | → |X|. By Lemma 12.2 we can find a specialization u1  u2 in U mapping to
x1  x2. By Lemma 12.2 we can find u′

2  u1 mapping to x2  x1. This means
that u′

2  u2 is a specialization between points of U mapping to the same point of X ,
namely x2. This is not possible, unless u′

2 = u2, see Lemma 12.1. Hence also u1 = u2 as
desired. �

Proposition 12.4. Let S be a scheme. LetX be a decent algebraic space over S. Then
the topological space |X| is sober (see Topology, Definition 8.6).

Proof. We have seen in Lemma 12.3 that |X| is Kolmogorov. Hence it remains to
show that every irreducible closed subset T ⊂ |X| has a generic point. By Properties of
Spaces, Lemma 12.3 there exists a closed subspace Z ⊂ X with |Z| = |T |. By definition
this means that Z → X is a representable morphism of algebraic spaces. Hence Z is a
decent algebraic space by Lemma 5.3. By Theorem 10.2 we see that there exists an open
dense subspace Z ′ ⊂ Z which is a scheme. This means that |Z ′| ⊂ T is open dense. Hence
the topological space |Z ′| is irreducible, which means that Z ′ is an irreducible scheme. By
Schemes, Lemma 11.1 we conclude that |Z ′| is the closure of a single point η ∈ T and hence
also T = {η}, and we win. �

For decent algebraic spaces dimension works as expected.

Lemma 12.5. LetS be a scheme. Dimension as defined in Properties of Spaces, Section
9 behaves well on decent algebraic spaces X over S.

(1) If x ∈ |X|, then dimx(|X|) = dimx(X), and
(2) dim(|X|) = dim(X).

Proof. Proof of (1). Choose a scheme U with a point u ∈ U and an étale morphism
h : U → X mapping u to x. By definition the dimension of X at x is dimu(|U |). Thus
we may pick U such that dimx(X) = dim(|U |). Let d be an integer. If dim(U) ≥ d,
then there exists a sequence of nontrivial specializations ud  . . .  u0 in U . Taking
the image we find a corresponding sequence h(ud)  . . .  h(u0) each of which is
nontrivial by Lemma 12.1. Hence we see that the image of |U | in |X| has dimension at
least d. Conversely, suppose that xd  . . .  x0 is a sequence of specializations in |X|
with x0 in the image of |U | → |X|. Then we can lift this to a sequence of specializations
in U by Lemma 12.2.

Part (2) is an immediate consequence of part (1), Topology, Lemma 10.2, and Properties of
Spaces, Section 9. �

Lemma 12.6. Let S be a scheme. Let X → Y be a locally quasi-finite morphism of
algebraic spaces over S. Let x ∈ |X| with image y ∈ |Y |. Then the dimension of the local
ring of Y at y is ≥ to the dimension of the local ring of X at x.

Proof. The definition of the dimension of the local ring of a point on an algebraic
space is given in Properties of Spaces, Definition 10.2. Choose an étale morphism (V, v)→
(Y, y) where V is a scheme. Choose an étale morphism U → V ×Y X and a point u ∈ U
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mapping to x ∈ |X| and v ∈ V . Then U → V is locally quasi-finite and we have to prove
that

dim(OV,v) ≥ dim(OU,u)
This is Algebra, Lemma 125.4. �

Lemma 12.7. Let S be a scheme. Let X → Y be a locally quasi-finite morphism of
algebraic spaces over S. Then dim(X) ≤ dim(Y ).

Proof. This follows from Lemma 12.6 and Properties of Spaces, Lemma 10.3. �

The following lemma is a tiny bit stronger than Properties of Spaces, Lemma 15.3. We will
improve this lemma in Lemma 14.2.

Lemma 12.8. Let S be a scheme. Let k be a field. Let X be an algebraic space over S
and assume that there exists a surjective étale morphism Spec(k) → X . If X is decent,
then X ∼= Spec(k′) where k/k′ is a finite separable extension.

Proof. The assumption implies that |X| = {x} is a singleton. Since X is decent
we can find a quasi-compact monomorphism Spec(k′) → X whose image is x. Then the
projection U = Spec(k′) ×X Spec(k) → Spec(k) is a monomorphism, whence U =
Spec(k), see Schemes, Lemma 23.11. Hence the projection Spec(k) = U → Spec(k′) is
étale and we win. �

13. Reduced singleton spaces

A singleton space is an algebraic space X such that |X| is a singleton. It turns out that
these can be more interesting than just being the spectrum of a field, see Spaces, Example
14.7. We develop a tiny bit of machinery to be able to talk about these.

Lemma 13.1. Let S be a scheme. Let Z be an algebraic space over S. Let k be a field
and let Spec(k)→ Z be surjective and flat. Then any morphism Spec(k′)→ Z where k′

is a field is surjective and flat.

Proof. Consider the fibre square

T

��

// Spec(k)

��
Spec(k′) // Z

Note that T → Spec(k′) is flat and surjective hence T is not empty. On the other hand
T → Spec(k) is flat as k is a field. Hence T → Z is flat and surjective. It follows from
Morphisms of Spaces, Lemma 31.5 that Spec(k′)→ Z is flat. It is surjective as by assump-
tion |Z| is a singleton. �

Lemma 13.2. Let S be a scheme. Let Z be an algebraic space over S. The following
are equivalent

(1) Z is reduced and |Z| is a singleton,
(2) there exists a surjective flat morphism Spec(k)→ Z where k is a field, and
(3) there exists a locally of finite type, surjective, flat morphism Spec(k)→ Z where

k is a field.
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Proof. Assume (1). Let W be a scheme and let W → Z be a surjective étale mor-
phism. Then W is a reduced scheme. Let η ∈ W be a generic point of an irreducible
component of W . Since W is reduced we have OW,η = κ(η). It follows that the canon-
ical morphism η = Spec(κ(η)) → W is flat. We see that the composition η → Z is flat
(see Morphisms of Spaces, Lemma 30.3). It is also surjective as |Z| is a singleton. In other
words (2) holds.
Assume (2). Let W be a scheme and let W → Z be a surjective étale morphism. Choose
a field k and a surjective flat morphism Spec(k) → Z. Then W ×Z Spec(k) is a scheme
étale over k. HenceW ×Z Spec(k) is a disjoint union of spectra of fields (see Remark 4.1),
in particular reduced. Since W ×Z Spec(k)→ W is surjective and flat we conclude that
W is reduced (Descent, Lemma 19.1). In other words (1) holds.
It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine schemeW and an
étale morphism W → Z. Pick a closed point w ∈W and set k = κ(w). The composition

Spec(k) w−→W −→ Z

is locally of finite type by Morphisms of Spaces, Lemmas 23.2 and 39.9. It is also flat and
surjective by Lemma 13.1. Hence (3) holds. �

The following lemma singles out a slightly better class of singleton algebraic spaces than
the preceding lemma.

Lemma 13.3. Let S be a scheme. Let Z be an algebraic space over S. The following
are equivalent

(1) Z is reduced, locally Noetherian, and |Z| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism Spec(k) → Z

where k is a field.

Proof. Assume (2) holds. By Lemma 13.2 we see that Z is reduced and |Z| is a sin-
gleton. Let W be a scheme and let W → Z be a surjective étale morphism. Choose a
field k and a locally finitely presented, surjective, flat morphism Spec(k) → Z. Then
W ×Z Spec(k) is a scheme étale over k, hence a disjoint union of spectra of fields (see
Remark 4.1), hence locally Noetherian. Since W ×Z Spec(k)→W is flat, surjective, and
locally of finite presentation, we see that {W ×Z Spec(k)→W} is an fppf covering and
we conclude thatW is locally Noetherian (Descent, Lemma 16.1). In other words (1) holds.
Assume (1). Pick a nonempty affine scheme W and an étale morphism W → Z. Pick a
closed point w ∈ W and set k = κ(w). Because W is locally Noetherian the morphism
w : Spec(k) → W is of finite presentation, see Morphisms, Lemma 21.7. Hence the
composition

Spec(k) w−→W −→ Z

is locally of finite presentation by Morphisms of Spaces, Lemmas 28.2 and 39.8. It is also
flat and surjective by Lemma 13.1. Hence (2) holds. �

Lemma 13.4. Let S be a scheme. Let Z ′ → Z be a monomorphism of algebraic spaces
over S. Assume there exists a field k and a locally finitely presented, surjective, flat mor-
phism Spec(k)→ Z. Then either Z ′ is empty or Z ′ = Z.

Proof. We may assume that Z ′ is nonempty. In this case the fibre product T =
Z ′ ×Z Spec(k) is nonempty, see Properties of Spaces, Lemma 4.3. Now T is an algebraic
space and the projection T → Spec(k) is a monomorphism. Hence T = Spec(k), see Mor-
phisms of Spaces, Lemma 10.8. We conclude that Spec(k)→ Z factors throughZ ′. But as
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Spec(k)→ Z is surjective, flat and locally of finite presentation, we see that Spec(k)→ Z
is surjective as a map of sheaves on (Sch/S)fppf (see Spaces, Remark 5.2) and we conclude
that Z ′ = Z. �

The following lemma says that to each point of an algebraic space we can associate a canon-
ical reduced, locally Noetherian singleton algebraic space.

Lemma 13.5. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
Then there exists a unique monomorphism Z → X of algebraic spaces over S such that
Z is an algebraic space which satisfies the equivalent conditions of Lemma 13.3 and such
that the image of |Z| → |X| is {x}.

Proof. Choose a scheme U and a surjective étale morphism U → X . SetR = U ×X
U so that X = U/R is a presentation (see Spaces, Section 9). Set

U ′ =
∐

u∈U lying over x
Spec(κ(u)).

The canonical morphism U ′ → U is a monomorphism. Let
R′ = U ′ ×X U ′ = R×(U×SU) (U ′ ×S U ′).

Because U ′ → U is a monomorphism we see that the projections s′, t′ : R′ → U ′ factor
as a monomorphism followed by an étale morphism. Hence, as U ′ is a disjoint union of
spectra of fields, using Remark 4.1, and using Schemes, Lemma 23.11 we conclude that R′

is a disjoint union of spectra of fields and that the morphisms s′, t′ : R′ → U ′ are étale.
Hence Z = U ′/R′ is an algebraic space by Spaces, Theorem 10.5. As R′ is the restriction
of R by U ′ → U we see Z → X is a monomorphism by Groupoids, Lemma 20.6. Since
Z → X is a monomorphism we see that |Z| → |X| is injective, see Morphisms of Spaces,
Lemma 10.9. By Properties of Spaces, Lemma 4.3 we see that

|U ′| = |Z ×X U ′| → |Z| ×|X| |U ′|
is surjective which implies (by our choice of U ′) that |Z| → |X| has image {x}. We
conclude that |Z| is a singleton. Finally, by construction U ′ is locally Noetherian and
reduced, i.e., we see that Z satisfies the equivalent conditions of Lemma 13.3.
Let us prove uniqueness ofZ → X . Suppose thatZ ′ → X is a second such monomorphism
of algebraic spaces. Then the projections

Z ′ ←− Z ′ ×X Z −→ Z

are monomorphisms. The algebraic space in the middle is nonempty by Properties of
Spaces, Lemma 4.3. Hence the two projections are isomorphisms by Lemma 13.4 and we
win. �

We introduce the following terminology which foreshadows the residual gerbes we will
introduce later, see Properties of Stacks, Definition 11.8.

Definition 13.6. Let S be a scheme. LetX be an algebraic space over S. Let x ∈ |X|.
The residual space of X at x2 is the monomorphism Zx → X constructed in Lemma 13.5.

In particular we know that Zx is a locally Noetherian, reduced, singleton algebraic space
and that there exists a field and a surjective, flat, locally finitely presented morphism

Spec(k) −→ Zx.

The residual space is often given by a monomorphism from the spectrum of a field.

2This is nonstandard notation.
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Lemma 13.7. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
The residual space Zx of X at x is isomorphic to the spectrum of a field if and only if x
can be represented by a monomorphism Spec(k) → X where k is a field. If X is decent,
this holds for all x ∈ |X|.

Proof. Since Zx → X is a monomorphism, if Zx = Spec(k) for some field k, then x
is represented by the monomorphism Spec(k) = Zx → X . Conversely, if Spec(k)→ X
is a monomorphism which represents x, then Zx ×X Spec(k)→ Spec(k) is a monomor-
phism whose source is nonempty by Properties of Spaces, Lemma 4.3. Hence Zx ×X
Spec(k) = Spec(k) by Morphisms of Spaces, Lemma 10.8. Hence we get a monomorphism
Spec(k)→ Zx. This is an isomorphism by Lemma 13.4. The final statement follows from
Lemma 11.1. �

The residual space is a regular algebraic space by the following lemma.

Lemma 13.8. A reduced, locally Noetherian singleton algebraic space Z is regular.

Proof. LetZ be a reduced, locally Noetherian singleton algebraic space over a scheme
S. LetW → Z be a surjective étale morphism whereW is a scheme. Let k be a field and let
Spec(k) → Z be surjective, flat, and locally of finite presentation (see Lemma 13.3). The
scheme T = W ×Z Spec(k) is étale over k in particular regular, see Remark 4.1. Since
T → W is locally of finite presentation, flat, and surjective it follows that W is regular,
see Descent, Lemma 19.2. By definition this means that Z is regular. �

Lemma 13.9. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let x ∈ |X| be a point. Assume

(1) |f |(|Y |) is contained in {x} ⊂ |X|,
(2) Y is reduced, and
(3) X is locally Noetherian.

Then f factors through the residual space Zx of X at x.

Proof. Preliminary remark: since Zx → X is a monomorphism, it suffices to find a
surjective étale morphism Y ′ → Y such that Y ′ → X factors through Zx. A remark here
is that Y ′ is reduced as well.
Let U be an affine scheme and let U → X be an étale morphism such that x is in the image
of |U | → |X|. SinceX is locally Noetherian, U is a Noetherian affine scheme. By assump-
tion (1) we see that Y ′ = U ×X Y → Y is surjective as well as étale. Denote E ⊂ |U | the
set of points mapping to x. There are no nontrivial specializations between the elements
of E , see Lemma 7.2. The morphism Y ′ → U maps |Y ′| into E. By our construction of
Zx in the proof of Lemma 13.5 we know that

∐
u∈E u→ X factors through Zx. Hence it

suffices to prove that Y ′ → U factors through
∐
u∈E u → X . After replacing Y ′ by an

étale covering by a scheme (which we are allowed by our preliminary remark), this follows
from Morphisms, Lemma 58.2. �

Lemma 13.10. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let x ∈ |X| be a point. Assume

(1) |f |(|Y |) is contained in {x} ⊂ |X|,
(2) Y is reduced, and
(3) x can be represented by a quasi-compact monomorphism x : Spec(k) → X

where k is a field (for example if X is decent).
Then f factors through the residual space Zx = Spec(k) of X at x.
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Proof. By Lemma 13.7 we have Zx = Spec(k).

Preliminary remark: since Spec(k)→ X is a monomorphism, it suffices to find a surjective
étale morphism Y ′ → Y such that Y ′ → X factors through Zx. A remark here is that Y ′

is reduced as well.

After replacingX by a quasi-compact open neighbourhood of x, we may assumeX quasi-
compact. By Lemma 8.3, x is a point of T ⊂ U ⊂ X where T → U (resp. U → X)
is a closed (resp. open) immersion, and T is a scheme. By Properties of Spaces, Lemma
4.9, f factors through U , so we may assume U = X . Then f factors through T because
Y is reduced, see Properties of Spaces, Lemma 12.4. So we may assume that X = T is a
scheme. By our preliminary remark we may assume Y is a scheme too. This reduces us to
Morphisms, Lemma 58.1. �

Example 13.11. Here is a counter example to Lemmas 13.9 and 13.10 in caseX is nei-
ther locally Noetherian nor decent. Let k be a field. Let G be an infinite profinite group.
LetY beG viewed as a zero-dimensional affine k-group scheme, i.e., Y = Spec(locally constant maps G→
k). Let Γ be G viewed as a discrete k-group scheme, acting on X by translations. Put
X = Y/Γ. This is a one-point algebraic space, with projection q : Y → X . Let e ∈ G
be the origin (any element would do), and view it as a k-point of Y . We get a k-point
x : Spec(k) → X which is a monomorphism since it is a section of X → Spec(k). We
claim that (although Y is affine and reduced and |X| = {x}), the morphism q does not
factor through any morphism Spec(K) → X , where K is a field. Otherwise it would
factor through x by Properties of Spaces, Lemma 4.11. Now the pullback of q by x is
Γ → Spec(k), with the projection Γ → Y being the orbit map g 7→ g · e. The latter has
no section, whence the claim.

Lemma 13.12. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|
with residual space Zx ⊂ X . Assume X is locally Noetherian. Then x is a closed point of
|X| if and only if the morphism Zx → X is a closed immersion.

Proof. If Zx → X is a closed immersion, then x is a closed point of |X|, see Mor-
phisms of Spaces, Lemma 12.3. Conversely, assume x is a closed point of |X|. Let Z ⊂ X
be the reduced closed subspace with |Z| = {x} (Properties of Spaces, Lemma 12.3). Then
Z is locally Noetherian by Morphisms of Spaces, Lemmas 23.7 and 23.5. Since also Z is
reduced and |Z| = {x} it Z = Zx is the residual space by definition. �

14. Decent spaces

In this section we collect some useful facts on decent spaces.

Lemma 14.1. Any locally Noetherian decent algebraic space is quasi-separated.

Proof. Namely, letX be an algebraic space (over some base scheme, for example over
Z) which is decent and locally Noetherian. Let U → X and V → X be étale morphisms
with U and V affine schemes. We have to show that W = U ×X V is quasi-compact
(Properties of Spaces, Lemma 3.3). Since X is locally Noetherian, the schemes U , V are
Noetherian and W is locally Noetherian. Since X is decent, the fibres of the morphism
W → U are finite. Namely, we can represent any x ∈ |X| by a quasi-compact monomor-
phism Spec(k) → X . Then Uk and Vk are finite disjoint unions of spectra of finite sepa-
rable extensions of k (Remark 4.1) and we see thatWk = Uk×Spec(k) Vk is finite. Let n be
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the maximum degree of a fibre of W → U at a generic point of an irreducible component
of U . Consider the stratification

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .

associated to W → U in More on Morphisms, Lemma 45.5. By our choice of n above we
conclude that Un+1 is empty. Hence we see that the fibres of W → U are universally
bounded. Then we can apply More on Morphisms, Lemma 45.3 to find a stratification

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = U

by closed subsets such that with Sr = Zr \ Zr−1 the morphism W ×U Sr → Sr is finite
locally free. Since U is Noetherian, the schemes Sr are Noetherian, whence the schemes
W ×U Sr are Noetherian, whence W =

∐
W ×U Sr is quasi-compact as desired. �

Lemma 14.2. Let S be a scheme. Let X be a decent algebraic space over S.
(1) If |X| is a singleton then X is a scheme.
(2) If |X| is a singleton and X is reduced, then X ∼= Spec(k) for some field k.

Proof. Assume |X| is a singleton. It follows immediately from Theorem 10.2 that
X is a scheme, but we can also argue directly as follows. Choose an affine scheme U and a
surjective étale morphism U → X . Set R = U ×X U . Then U and R have finitely many
points by Lemma 4.5 (and the definition of a decent space). All of these points are closed
in U and R by Lemma 12.1. It follows that U and R are affine schemes. We may shrink U
to a singleton space. Then U is the spectrum of a henselian local ring, see Algebra, Lemma
153.10. The projections R → U are étale, hence finite étale because U is the spectrum
of a 0-dimensional henselian local ring, see Algebra, Lemma 153.3. It follows that X is a
scheme by Groupoids, Proposition 23.9.

Part (2) follows from (1) and the fact that a reduced singleton scheme is the spectrum of a
field. �

Remark 14.3. We will see in Limits of Spaces, Lemma 15.3 that an algebraic space
whose reduction is a scheme is a scheme.

Lemma 14.4. Let S be a scheme. Let X be a decent algebraic space over S. Consider
a commutative diagram

Spec(k) //

##

X

��
S

Assume that the image point s ∈ S of Spec(k)→ S is a closed point and that κ(s) ⊂ k is
algebraic. Then the image x of Spec(k)→ X is a closed point of |X|.

Proof. Suppose that x x′ for some x′ ∈ |X|. Choose an étale morphism U → X
where U is a scheme and a point u′ ∈ U ′ mapping to x′. Choose a specialization u  u′

in U with u mapping to x in X , see Lemma 12.2. Then u is the image of a point w of the
scheme W = Spec(k) ×X U . Since the projection W → Spec(k) is étale we see that
κ(w) ⊃ k is finite. Hence κ(w) ⊃ κ(s) is algebraic. Hence κ(u) ⊃ κ(s) is algebraic. Thus
u is a closed point of U by Morphisms, Lemma 20.2. Thus u = u′, whence x = x′. �
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Lemma 14.5. Let S be a scheme. Let X be a decent algebraic space over S. Consider
a commutative diagram

Spec(k) //

##

X

��
S

Assume that the image point s ∈ S of Spec(k) → S is a closed point and that the field
extension k/κ(s) is finite. Then Spec(k) → X is a finite morphism. If κ(s) = k then
Spec(k)→ X is a closed immersion.

Proof. By Lemma 14.4 the image point x ∈ |X| is closed. Let Z ⊂ X be the reduced
closed subspace with |Z| = {x} (Properties of Spaces, Lemma 12.3). Note thatZ is a decent
algebraic space by Lemma 6.5. By Lemma 14.2 we see that Z = Spec(k′) for some field
k′. Of course k ⊃ k′ ⊃ κ(s). Then Spec(k) → Z is a finite morphism of schemes and
Z → X is a finite morphism as it is a closed immersion. Hence Spec(k) → X is finite
(Morphisms of Spaces, Lemma 45.4). If k = κ(s), then Spec(k) = Z and Spec(k) → X
is a closed immersion. �

Lemma 14.6. Let S be a scheme. Suppose X is a decent algebraic space over S. Let
x ∈ |X| be a closed point. Then x can be represented by a closed immersion i : Spec(k)→
X from the spectrum of a field.

Proof. We know that x can be represented by a quasi-compact monomorphism i :
Spec(k)→ X where k is a field (Definition 6.1). Let U → X be an étale morphism where
U is an affine scheme. As x is closed andX decent, the fibreF of |U | → |X| over x consists
of closed points (Lemma 12.1). As i is a monomorphism, so is Uk = U ×X Spec(k)→ U .
In particular, the map |Uk| → F is injective. Since Uk is quasi-compact and étale over a
field, we see that Uk is a finite disjoint union of spectra of fields (Remark 4.1). Say Uk =
Spec(k1) q . . . q Spec(kr). Since Spec(ki) → U is a monomorphism, we see that its
image ui has residue field κ(ui) = ki. Since ui ∈ F is a closed point we conclude the
morphism Spec(ki)→ U is a closed immersion. As the ui are pairwise distinct, Uk → U
is a closed immersion. Hence i is a closed immersion (Morphisms of Spaces, Lemma 12.1).
This finishes the proof. �

15. Locally separated spaces

It turns out that a locally separated algebraic space is decent.

Lemma 15.1. Let A be a ring. Let k be a field. Let pn, n ≥ 1 be a sequence of pairwise
distinct primes of A. Moreover, for each n let k → κ(pn) be an embedding. Then the
closure of the image of∐

n 6=m
Spec(κ(pn)⊗k κ(pm)) −→ Spec(A⊗A)

meets the diagonal.

Proof. Set kn = κ(pn). We may assume that A =
∏
kn. Denote xn = Spec(kn)

the open and closed point corresponding to A→ kn. Then Spec(A) = Z q {xn} where
Z is a nonempty closed subset. Namely, Z = V (en;n ≥ 1) where en is the idempotent
ofA corresponding to the factor kn and Z is nonempty as the ideal generated by the en is
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not equal to A. We will show that the closure of the image contains ∆(Z). The kernel of
the map

(
∏

kn)⊗k (
∏

km) −→
∏

n 6=m
kn ⊗k km

is the ideal generated by en ⊗ en, n ≥ 1. Hence the closure of the image of the map
on spectra is V (en ⊗ en;n ≥ 1) whose intersection with ∆(Spec(A)) is ∆(Z). Thus it
suffices to show that∐

n 6=m
Spec(kn ⊗k km) −→ Spec(

∏
n 6=m

kn ⊗k km)

has dense image. This follows as the family of ring maps
∏
n 6=m kn ⊗k km → kn ⊗k km

is jointly injective. �

Lemma 15.2 (David Rydh). A locally separated algebraic space is decent.

Proof. Let S be a scheme and let X be a locally separated algebraic space over S.
We may assume S = Spec(Z), see Properties of Spaces, Definition 3.1. Unadorned fibre
products will be over Z. Let x ∈ |X|. Choose a scheme U , an étale morphism U → X ,
and a point u ∈ U mapping to x in |X|. As usual we identify u = Spec(κ(u)). As X is
locally separated the morphism

u×X u→ u× u

is an immersion (Morphisms of Spaces, Lemma 4.5). Hence More on Groupoids, Lemma
11.5 tells us that it is a closed immersion (use Schemes, Lemma 10.4). As u×X u→ u×XU
is a monomorphism (base change of u→ U ) and as u×X U → u is étale we conclude that
u×X u is a disjoint union of spectra of fields (see Remark 4.1 and Schemes, Lemma 23.11).
Since it is also closed in the affine scheme u × u we conclude u ×X u is a finite disjoint
union of spectra of fields. Thus x can be represented by a monomorphism Spec(k)→ X
where k is a field, see Lemma 4.3.

Next, letU = Spec(A) be an affine scheme and letU → X be an étale morphism. To finish
the proof it suffices to show that F = U ×X Spec(k) is finite. Write F =

∐
i∈I Spec(ki)

as the disjoint union of finite separable extensions of k. We have to show that I is finite.
SetR = U×XU . AsX is locally separated, the morphism j : R→ U×U is an immersion.
Let U ′ ⊂ U × U be an open such that j factors through a closed immersion j′ : R→ U ′.
Let e : U → R be the diagonal map. Using that e is a morphism between schemes étale
over U such that ∆ = j ◦ e is a closed immersion, we conclude that R = e(U) qW for
some open and closed subschemeW ⊂ R. Since j′ is a closed immersion we conclude that
j′(W ) ⊂ U ′ is closed and disjoint from j′(e(U)). Therefore j(W )∩∆(U) = ∅ in U ×U .
Note thatW contains Spec(ki⊗k ki′) for all i 6= i′, i, i′ ∈ I . By Lemma 15.1 we conclude
that I is finite as desired. �

16. Valuative criterion

For a quasi-compact morphism from a decent space the valuative criterion is necessary in
order for the morphism to be universally closed.

Proposition 16.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact, and X is decent. Then f is universally closed
if and only if the existence part of the valuative criterion holds.
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Proof. In Morphisms of Spaces, Lemma 42.1 we have seen one of the implications.
To prove the other, assume that f is universally closed. Let

Spec(K) //

��

X

��
Spec(A) // Y

be a diagram as in Morphisms of Spaces, Definition 41.1. Let XA = Spec(A) ×Y X , so
that we have

Spec(K) //

%%

XA

��
Spec(A)

By Morphisms of Spaces, Lemma 8.4 we see that XA → Spec(A) is quasi-compact. Since
XA → X is representable, we see thatXA is decent also, see Lemma 5.3. Moreover, as f is
universally closed, we see that XA → Spec(A) is universally closed. Hence we may and
do replace X by XA and Y by Spec(A).

Let x′ ∈ |X| be the equivalence class of Spec(K) → X . Let y ∈ |Y | = |Spec(A)| be
the closed point. Set y′ = f(x′); it is the generic point of Spec(A). Since f is universally
closed we see that f({x′}) contains {y′}, and hence contains y. Let x ∈ {x′} be a point
such that f(x) = y. Let U be a scheme, and ϕ : U → X an étale morphism such that
there exists a u ∈ U with ϕ(u) = x. By Lemma 7.3 and our assumption that X is decent
there exists a specialization u′  u on U with ϕ(u′) = x′. This means that there exists a
common field extension K ⊂ K ′ ⊃ κ(u′) such that

Spec(K ′) //

��

U

��
Spec(K) //

&&

X

��
Spec(A)

is commutative. This gives the following commutative diagram of rings

K ′ OU,uoo

K

OO

A

bb

OO

By Algebra, Lemma 50.2 we can find a valuation ring A′ ⊂ K ′ dominating the image
of OU,u in K ′. Since by construction OU,u dominates A we see that A′ dominates A
also. Hence we obtain a diagram resembling the second diagram of Morphisms of Spaces,
Definition 41.1 and the proposition is proved. �
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17. Relative conditions

This is a (yet another) technical section dealing with conditions on algebraic spaces having
to do with points. It is probably a good idea to skip this section.

Definition 17.1. LetS be a scheme. We say an algebraic spaceX overS has property
(β) if X has the corresponding property of Lemma 5.1. Let f : X → Y be a morphism of
algebraic spaces over S.

(1) We say f has property (β) if for any scheme T and morphism T → Y the fibre
product T ×Y X has property (β).

(2) We say f is decent if for any scheme T and morphism T → Y the fibre product
T ×Y X is a decent algebraic space.

(3) We say f is reasonable if for any scheme T and morphism T → Y the fibre
product T ×Y X is a reasonable algebraic space.

(4) We say f is very reasonable if for any scheme T and morphism T → Y the fibre
product T ×Y X is a very reasonable algebraic space.

We refer to Remark 17.10 for an informal discussion. It will turn out that the class of
very reasonable morphisms is not so useful, but that the classes of decent and reasonable
morphisms are useful.

Lemma 17.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. We have the following implications among the conditions on f :

representable

$,
very reasonable +3 reasonable +3 decent +3 (β)

quasi-separated

2:

Proof. This is clear from the definitions, Lemma 5.1 and Morphisms of Spaces, Lemma
4.12. �

Here is another sanity check.

Lemma 17.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If X is decent (resp. is reasonable, resp. has property (β) of Lemma 5.1), then f is
decent (resp. reasonable, resp. has property (β)).

Proof. Let T be a scheme and let T → Y be a morphism. Then T → Y is repre-
sentable, hence the base change T ×Y X → X is representable. Hence if X is decent (or
reasonable), then so is T ×Y X , see Lemma 6.5. Similarly, for property (β), see Lemma
5.3. �

Lemma 17.4. Having property (β), being decent, or being reasonable is preserved
under arbitrary base change.

Proof. This is immediate from the definition. �

Lemma 17.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let ω ∈ {β, decent, reasonable}. Suppose that Y has property (ω) and f : X →
Y has (ω). Then X has (ω).
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Proof. Let us prove the lemma in case ω = β. In this case we have to show that
any x ∈ |X| is represented by a monomorphism from the spectrum of a field into X . Let
y = f(x) ∈ |Y |. By assumption there exists a field k and a monomorphism Spec(k)→ Y
representing y. Then x corresponds to a point x′ of Spec(k) ×Y X . By assumption x′ is
represented by a monomorphism Spec(k′) → Spec(k) ×Y X . Clearly the composition
Spec(k′)→ X is a monomorphism representing x.
Let us prove the lemma in case ω = decent. Let x ∈ |X| and y = f(x) ∈ |Y |. By the
result of the preceding paragraph we can choose a diagram

Spec(k′)
x

//

��

X

f

��
Spec(k) y // Y

whose horizontal arrows monomorphisms. AsY is decent the morphism y is quasi-compact.
As f is decent the algebraic space Spec(k) ×Y X is decent. Hence the monomorphism
Spec(k′)→ Spec(k)×Y X is quasi-compact. Then the monomorphism x : Spec(k′)→
X is quasi-compact as a composition of quasi-compact morphisms (use Morphisms of
Spaces, Lemmas 8.4 and 8.5). As the point x was arbitrary this implies X is decent.
Let us prove the lemma in case ω = reasonable. Choose V → Y étale with V an affine
scheme. Choose U → V ×Y X étale with U an affine scheme. By assumption V → Y has
universally bounded fibres. By Lemma 3.3 the morphism V ×Y X → X has universally
bounded fibres. By assumption on f we see that U → V ×Y X has universally bounded
fibres. By Lemma 3.2 the composition U → X has universally bounded fibres. Hence
there exists sufficiently many étale morphisms U → X from schemes with universally
bounded fibres, and we conclude that X is reasonable. �

Lemma 17.6. Having property (β), being decent, or being reasonable is preserved
under compositions.

Proof. Let ω ∈ {β, decent, reasonable}. Let f : X → Y and g : Y → Z be
morphisms of algebraic spaces over the scheme S. Assume f and g both have property
(ω). Then we have to show that for any scheme T and morphism T → Z the space
T ×Z X has (ω). By Lemma 17.4 this reduces us to the following claim: Suppose that Y
is an algebraic space having property (ω), and that f : X → Y is a morphism with (ω).
Then X has (ω). This is the content of Lemma 17.5. �

Lemma 17.7. Let S be a scheme. Let f : X → Y , g : Z → Y be morphisms of
algebraic spaces over S. If X and Z are decent (resp. reasonable, resp. have property (β)
of Lemma 5.1), then so does X ×Y Z.

Proof. Namely, by Lemma 17.3 the morphism X → Y has the property. Then the
base change X ×Y Z → Z has the property by Lemma 17.4. And finally this implies
X ×Y Z has the property by Lemma 17.5. �

Lemma 17.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let P ∈ {(β), decent, reasonable}. Assume

(1) f is quasi-compact,
(2) f is étale,
(3) |f | : |X| → |Y | is surjective, and
(4) the algebraic space X has property P .
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Then Y has property P .

Proof. Let us prove this in case P = (β). Let y ∈ |Y | be a point. We have to show
that y can be represented by a monomorphism from a field. Choose a point x ∈ |X| with
f(x) = y. By assumption we may represent x by a monomorphism Spec(k) → X , with
k a field. By Lemma 4.3 it suffices to show that the projections Spec(k) ×Y Spec(k) →
Spec(k) are étale and quasi-compact. We can factor the first projection as

Spec(k)×Y Spec(k) −→ Spec(k)×Y X −→ Spec(k)

The first morphism is a monomorphism, and the second is étale and quasi-compact. By
Properties of Spaces, Lemma 16.8 we see that Spec(k)×Y X is a scheme. Hence it is a finite
disjoint union of spectra of finite separable field extensions of k. By Schemes, Lemma 23.11
we see that the first arrow identifies Spec(k) ×Y Spec(k) with a finite disjoint union of
spectra of finite separable field extensions of k. Hence the projection morphism is étale
and quasi-compact.

Let us prove this in case P = decent. We have already seen in the first paragraph of
the proof that this implies that every y ∈ |Y | can be represented by a monomorphism
y : Spec(k)→ Y . Pick such a y. Pick an affine scheme U and an étale morphism U → X
such that the image of |U | → |Y | contains y. By Lemma 4.5 it suffices to show that Uy is
a finite scheme over k. The fibre product Xy = Spec(k) ×Y X is a quasi-compact étale
algebraic space over k. Hence by Properties of Spaces, Lemma 16.8 it is a scheme. So it is a
finite disjoint union of spectra of finite separable extensions of k. SayXy = {x1, . . . , xn}
so xi is given by xi : Spec(ki) → X with [ki : k] < ∞. By assumption X is decent, so
the schemes Uxi = Spec(ki) ×X U are finite over ki. Finally, we note that Uy =

∐
Uxi

as a scheme and we conclude that Uy is finite over k as desired.

Let us prove this in caseP = reasonable. Pick an affine scheme V and an étale morphism
V → Y . We have the show the fibres of V → Y are universally bounded. The algebraic
space V ×Y X is quasi-compact. Thus we can find an affine scheme W and a surjective
étale morphism W → V ×Y X , see Properties of Spaces, Lemma 6.3. Here is a picture
(solid diagram)

W //

$$

V ×Y X //

��

X

f

��

Spec(k)
x

oo

y
{{

V // Y

The morphism W → X is universally bounded by our assumption that the space X is
reasonable. Let n be an integer bounding the degrees of the fibres of W → X . We claim
that the same integer works for bounding the fibres of V → Y . Namely, suppose y ∈ |Y |
is a point. Then there exists a x ∈ |X| with f(x) = y (see above). This means we can find
a field k and morphisms x, y given as dotted arrows in the diagram above. In particular
we get a surjective étale morphism

Spec(k)×x,X W → Spec(k)×x,X (V ×Y X) = Spec(k)×y,Y V

which shows that the degree of Spec(k)×y,Y V over k is less than or equal to the degree
of Spec(k) ×x,X W over k, i.e., ≤ n, and we win. (This last part of the argument is the
same as the argument in the proof of Lemma 3.4. Unfortunately that lemma is not general
enough because it only applies to representable morphisms.) �
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Lemma 17.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let P ∈ {(β), decent, reasonable, very reasonable}. The following are equiv-
alent

(1) f is P ,
(2) for every affine scheme Z and every morphism Z → Y the base change Z ×Y

X → Z of f is P ,
(3) for every affine schemeZ and every morphismZ → Y the algebraic spaceZ×Y

X is P , and
(4) there exists a Zariski coveringY =

⋃
Yi such that each morphism f−1(Yi)→ Yi

has P .
If P ∈ {(β), decent, reasonable}, then this is also equivalent to

(5) there exists a scheme V and a surjective étale morphism V → Y such that the
base change V ×Y X → V has P .

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4) are trivial. The implication (3)⇒
(1) can be seen as follows. Let Z → Y be a morphism whose source is a scheme over S.
Consider the algebraic space Z ×Y X . If we assume (3), then for any affine open W ⊂ Z ,
the open subspace W ×Y X of Z ×Y X has property P . Hence by Lemma 5.2 the space
Z×Y X has propertyP , i.e., (1) holds. A similar argument (omitted) shows that (4) implies
(1).

The implication (1)⇒ (5) is trivial. Let V → Y be an étale morphism from a scheme as in
(5). Let Z be an affine scheme, and let Z → Y be a morphism. Consider the diagram

Z ×Y V q
//

p

��

V

��
Z // Y

Since p is étale, and hence open, we can choose finitely many affine open subschemesWi ⊂
Z ×Y V such that Z =

⋃
p(Wi). Consider the commutative diagram

V ×Y X

��

(
∐
Wi)×Y Xoo

��

// Z ×Y X

��
V

∐
Wi

oo // Z

We know V ×Y X has propertyP . By Lemma 5.3 we see that (
∐
Wi)×Y X has property

P . Note that the morphism (
∐
Wi)×Y X → Z ×Y X is étale and quasi-compact as the

base change of
∐
Wi → Z. Hence by Lemma 17.8 we conclude that Z×Y X has property

P . �

Remark 17.10. An informal description of the properties (β), decent, reasonable,
very reasonable was given in Section 6. A morphism has one of these properties if (very)
loosely speaking the fibres of the morphism have the corresponding properties. Being
decent is useful to prove things about specializations of points on |X|. Being reasonable is
a bit stronger and technically quite easy to work with.

Here is a lemma we promised earlier which uses decent morphisms.

Lemma 17.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is quasi-compact and decent. (For example if f is representable, or
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quasi-separated, see Lemma 17.2.) Then f is universally closed if and only if the existence
part of the valuative criterion holds.

Proof. In Morphisms of Spaces, Lemma 42.1 we proved that any quasi-compact mor-
phism which satisfies the existence part of the valuative criterion is universally closed. To
prove the other, assume that f is universally closed. In the proof of Proposition 16.1 we
have seen that it suffices to show, for any valuation ringA, and any morphism Spec(A)→
Y , that the base change fA : XA → Spec(A) satisfies the existence part of the valuative
criterion. By definition the algebraic space XA has property (γ) and hence Proposition
16.1 applies to the morphism fA and we win. �

18. Points of fibres

Let S be a scheme. Consider a cartesian diagram

(18.0.1) W
q
//

p

��

Z

g

��
X

f // Y

of algebraic spaces over S. Let x ∈ |X| and z ∈ |Z| be points mapping to the same point
y ∈ |Y |. We may ask: When is the set

(18.0.2) Fx,z = {w ∈ |W | such that p(w) = x and q(w) = z}

finite?

Example 18.1. If X,Y, Z are schemes, then the set Fx,z is equal to the spectrum of
κ(x)⊗κ(y) κ(z) (Schemes, Lemma 17.5). Thus we obtain a finite set if either κ(y) ⊂ κ(x)
is finite or if κ(y) ⊂ κ(z) is finite. In particular, this is always the case if g is quasi-finite
at z (Morphisms, Lemma 20.5).

Example 18.2. LetK be a characteristic 0 field endowed with an automorphism σ of
infinite order. Set Y = Spec(K)/Z and X = A1

K/Z where Z acts on K via σ and on
A1
K = Spec(K[t]) via t 7→ t+ 1. Let Z = Spec(K). Then W = A1

K . Picture

A1
K q

//

p

��

Spec(K)

g

��
A1
K/Z

f // Spec(K)/Z

Take x corresponding to t = 0 and z the unique point of Spec(K). Then we see that
Fx,z = Z as a set.

Lemma 18.3. In the situation of (18.0.1) if Z ′ → Z is a morphism and z′ ∈ |Z ′|maps
to z, then the induced map Fx,z′ → Fx,z is surjective.

Proof. Set W ′ = X ×Y Z ′ = W ×Z Z ′. Then |W ′| → |W | ×|Z| |Z ′| is surjective
by Properties of Spaces, Lemma 4.3. Hence the surjectivity of Fx,z′ → Fx,z . �

Lemma 18.4. In diagram (18.0.1) the set (18.0.2) is finite if f is of finite type and f is
quasi-finite at x.

Proof. The morphism q is quasi-finite at every w ∈ Fx,z , see Morphisms of Spaces,
Lemma 27.2. Hence the lemma follows from Morphisms of Spaces, Lemma 27.9. �
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Lemma 18.5. In diagram (18.0.1) the set (18.0.2) is finite if y can be represented by a
monomorphism Spec(k)→ Y where k is a field and g is quasi-finite at z. (Special case: Y
is decent and g is étale.)

Proof. By Lemma 18.3 applied twice we may replace Z by Zk = Spec(k)×Y Z and
X by Xk = Spec(k) ×Y X . We may and do replace Y by Spec(k) as well. Note that
Zk → Spec(k) is quasi-finite at z by Morphisms of Spaces, Lemma 27.2. Choose a scheme
V , a point v ∈ V , and an étale morphism V → Zk mapping v to z. Choose a scheme U , a
point u ∈ U , and an étale morphism U → Xk mapping u to x. Again by Lemma 18.3 it
suffices to show Fu,v is finite for the diagram

U ×Spec(k) V //

��

V

��
U // Spec(k)

The morphism V → Spec(k) is quasi-finite at v (follows from the general discussion
in Morphisms of Spaces, Section 22 and the definition of being quasi-finite at a point).
At this point the finiteness follows from Example 18.1. The parenthetical remark of the
statement of the lemma follows from the fact that on decent spaces points are represented
by monomorphisms from fields and from the fact that an étale morphism of algebraic
spaces is locally quasi-finite. �

Lemma 18.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let y ∈ |Y | and assume that y is represented by a quasi-compact monomorphism
Spec(k) → Y . Then |Xk| → |X| is a homeomorphism onto f−1({y}) ⊂ |X| with
induced topology.

Proof. We will use Properties of Spaces, Lemma 16.7 and Morphisms of Spaces, Lemma
10.9 without further mention. Let V → Y be an étale morphism with V affine such that
there exists a v ∈ V mapping to y. Since Spec(k)→ Y is quasi-compact there are a finite
number of points of V mapping to y (Lemma 4.5). After shrinking V we may assume v is
the only one. Choose a scheme U and a surjective étale morphism U → X . Consider the
commutative diagram

U

��

UVoo

��

Uvoo

��
X

��

XV
oo

��

Xv
oo

��
Y Voo voo

Since Uv → UV identifies Uv with a subset of UV with the induced topology (Schemes,
Lemma 18.5), and since |UV | → |XV | and |Uv| → |Xv| are surjective and open, we see that
|Xv| → |XV | is a homeomorphism onto its image (with induced topology). On the other
hand, the inverse image of f−1({y}) under the open map |XV | → |X| is equal to |Xv|.
We conclude that |Xv| → f−1({y}) is open. The morphism Xv → X factors through
Xk and |Xk| → |X| is injective with image f−1({y}) by Properties of Spaces, Lemma 4.3.
Using |Xv| → |Xk| → f−1({y}) the lemma follows because Xv → Xk is surjective. �

Lemma 18.7. Let X be an algebraic space locally of finite type over a field k. Let
x ∈ |X|. Consider the conditions



5360 68. DECENT ALGEBRAIC SPACES

(1) dimx(|X|) = 0,
(2) x is closed in |X| and if x′  x in |X| then x′ = x,
(3) x is an isolated point of |X|,
(4) dimx(X) = 0,
(5) X → Spec(k) is quasi-finite at x.

Then (2), (3), (4), and (5) are equivalent. IfX is decent, then (1) is equivalent to the others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces, Lemmas
34.7 and 34.8.
Let U → X be an étale morphism where U is an affine scheme and let u ∈ U be a point
mapping to x. Moreover, if x is a closed point, e.g., in case (2) or (3), then we may and do
assume that u is a closed point. Observe that dimu(U) = dimx(X) by definition and that
this is equal to dim(OU,u) if u is a closed point, see Algebra, Lemma 114.6.
If dimx(X) > 0 and u is closed, by the arguments above we can choose a nontrivial spe-
cialization u′  u in U . Then the transcendence degree of κ(u′) over k exceeds the
transcendence degree of κ(u) over k. It follows that the images x and x′ in X are dis-
tinct, because the transcendence degree of x/k and x′/k are well defined, see Morphisms
of Spaces, Definition 33.1. This applies in particular in cases (2) and (3) and we conclude
that (2) and (3) imply (4).
Conversely, if X → Spec(k) is locally quasi-finite at x, then U → Spec(k) is locally
quasi-finite at u, hence u is an isolated point of U (Morphisms, Lemma 20.6). It follows
that (5) implies (2) and (3) as |U | → |X| is continuous and open.
Assume X is decent and (1) holds. Then dimx(X) = dimx(|X|) by Lemma 12.5 and the
proof is complete. �

Lemma 18.8. LetX be an algebraic space locally of finite type over a field k. Consider
the conditions

(1) |X| is a finite set,
(2) |X| is a discrete space,
(3) dim(|X|) = 0,
(4) dim(X) = 0,
(5) X → Spec(k) is locally quasi-finite,

Then (2), (3), (4), and (5) are equivalent. If X is decent, then (1) implies the others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces, Lemma
34.7.
Let U → X be a surjective étale morphism where U is a scheme.
If dim(U) > 0, then choose a nontrivial specialization u u′ inU and the transcendence
degree of κ(u) over k exceeds the transcendence degree of κ(u′) over k. It follows that
the images x and x′ in X are distinct, because the transcendence degree of x/k and x′/k
is well defined, see Morphisms of Spaces, Definition 33.1. We conclude that (2) and (3)
imply (4).
Conversely, if X → Spec(k) is locally quasi-finite, then U is locally Noetherian (Mor-
phisms, Lemma 15.6) of dimension 0 (Morphisms, Lemma 29.5) and hence is a disjoint
union of spectra of Artinian local rings (Properties, Lemma 10.5). Hence U is a discrete
topological space, and since |U | → |X| is continuous and open, the same is true for |X|.
In other words, (4) implies (2) and (3).
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Assume X is decent and (1) holds. Then we may choose U above to be affine. The fibres
of |U | → |X| are finite (this is a part of the defining property of decent spaces). Hence
U is a finite type scheme over k with finitely many points. Hence U is quasi-finite over k
(Morphisms, Lemma 20.7) which by definition means that X → Spec(k) is locally quasi-
finite. �

Lemma 18.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let x ∈ |X|with image y ∈ |Y |. Let F = f−1({y})
with induced topology from |X|. Let k be a field and let Spec(k) → Y be in the equiva-
lence class defining y. Set Xk = Spec(k)×Y X . Let x̃ ∈ |Xk| map to x ∈ |X|. Consider
the following conditions

(1) dimx(F ) = 0,
(2) x is isolated in F ,
(3) x is closed in F and if x′  x in F , then x = x′,
(4) dimx̃(|Xk|) = 0,
(5) x̃ is isolated in |Xk|,
(6) x̃ is closed in |Xk| and if x̃′  x̃ in |Xk|, then x̃ = x̃′,
(7) dimx̃(Xk) = 0,
(8) f is quasi-finite at x.

Then we have
(4)

f decent
+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)

If Y is decent, then conditions (2) and (3) are equivalent to each other and to conditions
(5), (6), (7), and (8). If Y and X are decent, then all conditions are equivalent.

Proof. By Lemma 18.7 conditions (5), (6), and (7) are equivalent to each other and
to the condition that Xk → Spec(k) is quasi-finite at x̃. Thus by Morphisms of Spaces,
Lemma 27.2 they are also equivalent to (8). If f is decent, then Xk is a decent algebraic
space and Lemma 18.7 shows that (4) implies (5).

If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y in the
equivalence class of y. In this case Lemma 18.6 tells us that |Xk′ | → F is a homeomor-
phism. Combined with the arguments given above this implies the remaining statements
of the lemma; details omitted. �

Lemma 18.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let y ∈ |Y |. Let k be a field and let Spec(k) → Y
be in the equivalence class defining y. Set Xk = Spec(k) ×Y X and let F = f−1({y})
with the induced topology from |X|. Consider the following conditions

(1) F is finite,
(2) F is a discrete topological space,
(3) dim(F ) = 0,
(4) |Xk| is a finite set,
(5) |Xk| is a discrete space,
(6) dim(|Xk|) = 0,
(7) dim(Xk) = 0,
(8) f is quasi-finite at all points of |X| lying over y.

Then we have

(1) (4)ks
f decent

+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)
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If Y is decent, then conditions (2) and (3) are equivalent to each other and to conditions
(5), (6), (7), and (8). If Y and X are decent, then (1) implies all the other conditions.

Proof. By Lemma 18.8 conditions (5), (6), and (7) are equivalent to each other and to
the condition that Xk → Spec(k) is locally quasi-finite. Thus by Morphisms of Spaces,
Lemma 27.2 they are also equivalent to (8). If f is decent, then Xk is a decent algebraic
space and Lemma 18.8 shows that (4) implies (5).
The map |Xk| → F is surjective by Properties of Spaces, Lemma 4.3 and we see (4)⇒ (1).
If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y in the
equivalence class of y. In this case Lemma 18.6 tells us that |Xk′ | → F is a homeomor-
phism. Combined with the arguments given above this implies the remaining statements
of the lemma; details omitted. �

19. Monomorphisms

Here is another case where monomorphisms are representable. Please see More on Mor-
phisms of Spaces, Section 4 for more information.

Lemma 19.1. Let S be a scheme. Let Y be a disjoint union of spectra of zero dimen-
sional local rings over S. Let f : X → Y be a monomorphism of algebraic spaces over S.
Then f is representable, i.e., X is a scheme.

Proof. This immediately reduces to the case Y = Spec(A) whereA is a zero dimen-
sional local ring, i.e., Spec(A) = {mA} is a singleton. If X = ∅, then there is nothing
to prove. If not, choose a nonempty affine scheme U = Spec(B) and an étale morphism
U → X . As |X| is a singleton (as a subset of |Y |, see Morphisms of Spaces, Lemma 10.9)
we see that U → X is surjective. Note that U ×X U = U ×Y U = Spec(B ⊗A B). Thus
we see that the ring maps B → B ⊗A B are étale. Since

(B ⊗A B)/mA(B ⊗A B) = (B/mAB)⊗A/mA (B/mAB)
we see thatB/mAB → (B⊗AB)/mA(B⊗AB) is flat and in fact free of rank equal to the
dimension ofB/mAB as aA/mA-vector space. SinceB → B⊗AB is étale, this can only
happen if this dimension is finite (see for example Morphisms, Lemmas 57.8 and 57.9).
Every prime of B lies over mA (the unique prime of A). Hence Spec(B) = Spec(B/mA)
as a topological space, and this space is a finite discrete set as B/mAB is an Artinian ring,
see Algebra, Lemmas 53.2 and 53.6. Hence all prime ideals of B are maximal and B =
B1 × . . . × Bn is a product of finitely many local rings of dimension zero, see Algebra,
Lemma 53.5. Thus B → B ⊗A B is finite étale as all the local rings Bi are henselian by
Algebra, Lemma 153.10. Thus X is an affine scheme by Groupoids, Proposition 23.9. �

20. Generic points

This section is a continuation of Properties of Spaces, Section 11.

Lemma 20.1. LetS be a scheme. LetX be a decent algebraic space overS. Letx ∈ |X|.
The following are equivalent

(1) x is a generic point of an irreducible component of |X|,
(2) for any étale morphism (Y, y)→ (X,x) of pointed algebraic spaces, y is a generic

point of an irreducible component of |Y |,
(3) for some étale morphism (Y, y) → (X,x) of pointed algebraic spaces, y is a

generic point of an irreducible component of |Y |,
(4) the dimension of the local ring of X at x is zero, and
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(5) x is a point of codimension 0 on X

Proof. Conditions (4) and (5) are equivalent for any algebraic space by definition,
see Properties of Spaces, Definition 10.2. Observe that any Y as in (2) and (3) is decent by
Lemma 6.6. Thus it suffices to prove the equivalence of (1) and (4) as then the equivalence
with (2) and (3) follows since the dimension of the local ring of Y at y is equal to the
dimension of the local ring ofX at x. Let f : U → X be an étale morphism from an affine
scheme and let u ∈ U be a point mapping to x.

Assume (1). Let u′  u be a specialization in U . Then f(u′) = f(u) = x. By Lemma 12.1
we see that u′ = u. Hence u is a generic point of an irreducible component of U . Thus
dim(OU,u) = 0 and we see that (4) holds.

Assume (4). The point x is contained in an irreducible component T ⊂ |X|. Since |X|
is sober (Proposition 12.4) we T has a generic point x′. Of course x′  x. Then we can
lift this specialization to u′  u in U (Lemma 12.2). This contradicts the assumption that
dim(OU,u) = 0 unless u′ = u, i.e., x′ = x. �

Lemma 20.2. LetS be a scheme. LetX be a decent algebraic space overS. LetT ⊂ |X|
be an irreducible closed subset. Let ξ ∈ T be the generic point (Proposition 12.4). Then
codim(T, |X|) (Topology, Definition 11.1) is the dimension of the local ring of X at ξ
(Properties of Spaces, Definition 10.2).

Proof. Choose a schemeU , a point u ∈ U , and an étale morphismU → X sending u
to ξ. Then any sequence of nontrivial specializations ξe  . . . ξ0 = ξ can be lifted to a
sequenceue  . . . u0 = u inU by Lemma 12.2. Conversely, any sequence of nontrivial
specializations ue  . . . u0 = u in U maps to a sequence of nontrivial specializations
ξe  . . .  ξ0 = ξ by Lemma 12.1. Because |X| and U are sober topological spaces we
conclude that the codimension of T in |X| and of {u} in U are the same. In this way the
lemma reduces to the schemes case which is Properties, Lemma 10.3. �

Lemma 20.3. Let S be a scheme. Let X be an algebraic space over S. Assume
(1) every quasi-compact scheme étale over X has finitely many irreducible compo-

nents, and
(2) every x ∈ |X| of codimension 0 on X can be represented by a monomorphism

Spec(k)→ X .
Then X is a reasonable algebraic space.

Proof. Let U be an affine scheme and let a : U → X be an étale morphism. We
have to show that the fibres of a are universally bounded. By assumption (1) the scheme
U has finitely many irreducible components. Let u1, . . . , un ∈ U be the generic points
of these irreducible components. Let {x1, . . . , xm} ⊂ |X| be the image of {u1, . . . , un}.
Each xj is a point of codimension 0. By assumption (2) we may choose a monomorphism
Spec(kj)→ X representing xj . By Properties of Spaces, Lemma 11.1 we have

U ×X Spec(kj) =
∐

a(ui)=xj
Spec(κ(ui))

This is a scheme finite over Spec(kj) of degree dj =
∑
a(ui)=xj [κ(ui) : kj ]. Set n =

max dj .

Observe that a is separated (Properties of Spaces, Lemma 6.4). Consider the stratification

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .
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associated to U → X in Lemma 8.2. By our choice of n above we conclude that Xn+1 is
empty. Namely, if not, then a−1(Xn+1) is a nonempty open ofU and hence would contain
one of thexi. This would mean thatXn+1 containsxj = a(ui) which is impossible. Hence
we see that the fibres of U → X are universally bounded (in fact by the integer n). �

Lemma 20.4. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is decent and |X| has finitely many irreducible components,
(2) every quasi-compact scheme étale over X has finitely many irreducible compo-

nents, there are finitely many x ∈ |X| of codimension 0 onX , and each of these
can be represented by a monomorphism Spec(k)→ X ,

(3) there exists a dense open X ′ ⊂ X which is a scheme, X ′ has finitely many
irreducible components with generic points {x′

1, . . . , x
′
m}, and the morphism

x′
j → X is quasi-compact for j = 1, . . . ,m.

Moreover, if these conditions hold, then X is reasonable and the points x′
j ∈ |X| are the

generic points of the irreducible components of |X|.

Proof. In the proof we use Properties of Spaces, Lemma 11.1 without further men-
tion. Assume (1). Then X has a dense open subscheme X ′ by Theorem 10.2. Since the
closure of an irreducible component of |X ′| is an irreducible component of |X|, we see
that |X ′| has finitely many irreducible components. Thus (3) holds.

AssumeX ′ ⊂ X is as in (3). Let {x′
1, . . . , x

′
m} be the generic points of the irreducible com-

ponents of X ′. Let a : U → X be an étale morphism with U a quasi-compact scheme. To
prove (2) it suffices to show thatU has finitely many irreducible components whose generic
points lie over {x′

1, . . . , x
′
m}. It suffices to prove this for the members of a finite affine open

cover of U , hence we may and do assume U is affine. Note that U ′ = a−1(X ′) ⊂ U is a
dense open. Since U ′ → X ′ is an étale morphism of schemes, we see the generic points of
irreducible components of U ′ are the points lying over {x′

1, . . . , x
′
m}. Since x′

j → X is
quasi-compact there are finitely many points of U lying over x′

j (Lemma 4.5). Hence U ′

has finitely many irreducible components, which implies that the closures of these irre-
ducible components are the irreducible components of U . Thus (2) holds.

Assume (2). This implies (1) and the final statement by Lemma 20.3. (We also use that a
reasonable algebraic space is decent, see discussion following Definition 6.1.) �

21. Generically finite morphisms

This section discusses for morphisms of algebraic spaces the material discussed in Mor-
phisms, Section 51 and Varieties, Section 17 for morphisms of schemes.

Lemma 21.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume that f is quasi-separated of finite type. Let y ∈ |Y | be a point of codimen-
sion 0 on Y . The following are equivalent:

(1) the space |Xk| is finite where Spec(k)→ Y represents y,
(2) X → Y is quasi-finite at all points of |X| over y,
(3) there exists an open subspace Y ′ ⊂ Y with y ∈ |Y ′| such that Y ′ ×Y X → Y ′

is finite.
If Y is decent these are also equivalent to

(4) the set f−1({y}) is finite.
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Proof. The equivalence of (1) and (2) follows from Lemma 18.10 (and the fact that a
quasi-separated morphism is decent by Lemma 17.2).

Assume the equivalent conditions of (1) and (2). Choose an affine scheme V and an étale
morphism V → Y mapping a point v ∈ V to y. Then v is a generic point of an irreducible
component of V by Properties of Spaces, Lemma 11.1. Choose an affine scheme U and a
surjective étale morphism U → V ×Y X . Then U → V is of finite type. The morphism
U → V is quasi-finite at every point lying over v by (2). It follows that the fibre ofU → V
over v is finite (Morphisms, Lemma 20.14). By Morphisms, Lemma 51.1 after shrinking V
we may assume that U → V is finite. Let

R = U ×V×YX U

Since f is quasi-separated, we see that V ×Y X is quasi-separated and hence R is a quasi-
compact scheme. Moreover the morphismsR→ V is quasi-finite as the composition of an
étale morphismR→ U and a finite morphism U → V . Hence we may apply Morphisms,
Lemma 51.1 once more and after shrinking V we may assume thatR→ V is finite as well.
This of course implies that the two projections R → V are finite étale. It follows that
V/R = V ×Y X is an affine scheme, see Groupoids, Proposition 23.9. By Morphisms,
Lemma 41.9 we conclude that V ×Y X → V is proper and by Morphisms, Lemma 44.11
we conclude that V ×Y X → V is finite. Finally, we let Y ′ ⊂ Y be the open subspace
of Y corresponding to the image of |V | → |Y |. By Morphisms of Spaces, Lemma 45.3 we
conclude that Y ′ ×Y X → Y ′ is finite as the base change to V is finite and as V → Y ′ is
a surjective étale morphism.

If Y is decent and f is quasi-separated, then we see that X is decent too; use Lemmas 17.2
and 17.5. Hence Lemma 18.10 applies to show that (4) implies (1) and (2). On the other
hand, we see that (2) implies (4) by Morphisms of Spaces, Lemma 27.9. �

Lemma 21.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume that f is quasi-separated and locally of finite type and Y quasi-separated.
Let y ∈ |Y | be a point of codimension 0 on Y . The following are equivalent:

(1) the set f−1({y}) is finite,
(2) the space |Xk| is finite where Spec(k)→ Y represents y,
(3) there exist open subspaces X ′ ⊂ X and Y ′ ⊂ Y with f(X ′) ⊂ Y ′, y ∈ |Y ′|,

and f−1({y}) ⊂ |X ′| such that f |X′ : X ′ → Y ′ is finite.

Proof. Since quasi-separated algebraic spaces are decent, the equivalence of (1) and
(2) follows from Lemma 18.10. To prove that (1) and (2) imply (3) we may and do replace
Y by a quasi-compact open containing y. Since f−1({y}) is finite, we can find a quasi-
compact open subspace of X ′ ⊂ X containing the fibre. The restriction f |X′ : X ′ → Y
is quasi-compact and quasi-separated by Morphisms of Spaces, Lemma 8.10 (this is where
we use that Y is quasi-separated). Applying Lemma 21.1 to f |X′ : X ′ → Y we see that (3)
holds. We omit the proof that (3) implies (2). �

Lemma 21.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type. LetX0 ⊂ |X|, resp. Y 0 ⊂ |Y | denote the set of
codimension 0 points of X , resp. Y . Let y ∈ Y 0. The following are equivalent

(1) f−1({y}) ⊂ X0,
(2) f is quasi-finite at all points lying over y,
(3) f is quasi-finite at all x ∈ X0 lying over y.
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Proof. Let V be a scheme and let V → Y be a surjective étale morphism. Let U be
a scheme and let U → V ×Y X be a surjective étale morphism. Then f is quasi-finite
at the image x of a point u ∈ U if and only if U → V is quasi-finite at u. Moreover,
x ∈ X0 if and only if u is the generic point of an irreducible component of U (Properties
of Spaces, Lemma 11.1). Thus the lemma reduces to the case of the morphism U → V , i.e.,
to Morphisms, Lemma 51.4. �

Lemma 21.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type. LetX0 ⊂ |X|, resp. Y 0 ⊂ |Y | denote the set of
codimension 0 points of X , resp. Y . Assume

(1) Y is decent,
(2) X0 and Y 0 are finite and f−1(Y 0) = X0,
(3) either f is quasi-compact or f is separated.

Then there exists a dense open V ⊂ Y such that f−1(V )→ V is finite.

Proof. By Lemmas 20.4 and 20.1 we may assume Y is a scheme with finitely many ir-
reducible components. Shrinking further we may assume Y is an irreducible affine scheme
with generic point y. Then the fibre of f over y is finite.

Assume f is quasi-compact and Y affine irreducible. ThenX is quasi-compact and we may
choose an affine scheme U and a surjective étale morphism U → X . Then U → Y is of
finite type and the fibre ofU → Y over y is the setU0 of generic points of irreducible com-
ponents of U (Properties of Spaces, Lemma 11.1). Hence U0 is finite (Morphisms, Lemma
20.14) and after shrinking Y we may assume that U → Y is finite (Morphisms, Lemma
51.1). Next, consider R = U ×X U . Since the projection s : R → U is étale we see that
R0 = s−1(U0) lies over y. SinceR→ U ×Y U is a monomorphism, we conclude thatR0

is finite as U ×Y U → Y is finite. And R is separated (Properties of Spaces, Lemma 6.4).
Thus we may shrink Y once more to reach the situation where R is finite over Y (Mor-
phisms, Lemma 51.5). In this case it follows that X = U/R is finite over Y by exactly the
same arguments as given in the proof of Lemma 21.1 (or we can simply apply that lemma
because it follows immediately that X is quasi-separated as well).

Assume f is separated and Y affine irreducible. Choose V ⊂ Y and U ⊂ X as in Lemma
21.2. Since f |U : U → V is finite, we see that U ⊂ f−1(V ) is closed as well as open (Mor-
phisms of Spaces, Lemmas 40.6 and 45.9). Thus f−1(V ) = UqW for some open subspace
W of X . However, since U contains all the codimension 0 points of X we conclude that
W = ∅ (Properties of Spaces, Lemma 11.2) as desired. �

22. Birational morphisms

The following definition of a birational morphism of algebraic spaces seems to be the clos-
est to our definition (Morphisms, Definition 50.1) of a birational morphism of schemes.

Definition 22.1. Let S be a scheme. Let X and Y algebraic spaces over S. Assume
X and Y are decent and that |X| and |Y | have finitely many irreducible components. We
say a morphism f : X → Y is birational if

(1) |f | induces a bijection between the set of generic points of irreducible compo-
nents of |X| and the set of generic points of the irreducible components of |Y |,
and

(2) for every generic point x ∈ |X| of an irreducible component the local ring map
OY,f(x) → OX,x is an isomorphism (see clarification below).
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Clarification: Since X and Y are decent the topological spaces |X| and |Y | are sober
(Proposition 12.4). Hence condition (1) makes sense. Moreover, because we have assumed
that |X| and |Y | have finitely many irreducible components, we see that the generic points
x1, . . . , xn ∈ |X|, resp. y1, . . . , yn ∈ |Y | are contained in any dense open of |X|, resp. |Y |.
In particular, they are contained in the schematic locus of X , resp. Y by Theorem 10.2.
Thus we can defineOX,xi , resp.OY,yi to be the local ring of this scheme at xi, resp. yi.

We conclude that if the morphism f : X → Y is birational, then there exist dense open
subspaces X ′ ⊂ X and Y ′ ⊂ Y such that

(1) f(X ′) ⊂ Y ′,
(2) X ′ and Y ′ are representable, and
(3) f |X′ : X ′ → Y ′ is birational in the sense of Morphisms, Definition 50.1.

However, we do insist thatX andY are decent with finitely many irreducible components.
Other ways to characterize decent algebraic spaces with finitely many irreducible compo-
nents are given in Lemma 20.4. In most cases birational morphisms are isomorphisms over
dense opens.

Lemma 22.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which are decent and have finitely many irreducible components. If f is birational
then f is dominant.

Proof. Follows immediately from the definitions. See Morphisms of Spaces, Defini-
tion 18.1. �

Lemma 22.3. LetS be a scheme. Let f : X → Y be a birational morphism of algebraic
spaces overS which are decent and have finitely many irreducible components. If y ∈ Y is
the generic point of an irreducible component, then the base changeX×Y Spec(OY,y)→
Spec(OY,y) is an isomorphism.

Proof. Let X ′ ⊂ X and Y ′ ⊂ Y be the maximal open subspaces which are rep-
resentable, see Lemma 20.4. By Lemma 21.3 the fibre of f over y is consists of points
of codimension 0 of X and is therefore contained in X ′. Hence X ×Y Spec(OY,y) =
X ′ ×Y ′ Spec(OY ′,y) and the result follows from Morphisms, Lemma 50.3. �

Lemma 22.4. LetS be a scheme. Let f : X → Y be a birational morphism of algebraic
spaces over S which are decent and have finitely many irreducible components. Assume
one of the following conditions is satisfied

(1) f is locally of finite type and Y reduced (i.e., integral),
(2) f is locally of finite presentation.

Then there exist dense opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V and f |U : U → V
is an isomorphism.

Proof. By Lemma 20.4 we may assume that X and Y are schemes. In this case the
result is Morphisms, Lemma 50.5. �

Lemma 22.5. LetS be a scheme. Let f : X → Y be a birational morphism of algebraic
spaces over S which are decent and have finitely many irreducible components. Assume

(1) either f is quasi-compact or f is separated, and
(2) either f is locally of finite type and Y is reduced or f is locally of finite presen-

tation.
Then there exists a dense open V ⊂ Y such that f−1(V )→ V is an isomorphism.
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Proof. By Lemma 20.4 we may assume Y is a scheme. By Lemma 21.4 we may assume
that f is finite. Then X is a scheme too and the result follows from Morphisms, Lemma
51.6. �

Lemma 22.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which are decent and have finitely many irreducible components. If f is birational
and V → Y is an étale morphism with V affine, thenX×Y V is decent with finitely many
irreducible components and X ×Y V → V is birational.

Proof. The algebraic space U = X ×Y V is decent (Lemma 6.6). The generic points
of V and U are the elements of |V | and |U | which lie over generic points of |Y | and |X|
(Lemma 20.1). Since Y is decent we conclude there are finitely many generic points on V .
Let ξ ∈ |X| be a generic point of an irreducible component. By the discussion following
Definition 22.1 we have a cartesian square

Spec(OX,ξ)

��

// X

��
Spec(OY,f(ξ)) // Y

whose horizontal morphisms are monomorphisms identifying local rings and where the
left vertical arrow is an isomorphism. It follows that in the diagram

Spec(OX,ξ)×X U

��

// U

��
Spec(OY,f(ξ))×Y V // V

the vertical arrow on the left is an isomorphism. The horizonal arrows have image con-
tained in the schematic locus of U and V and identify local rings (some details omitted).
Since the image of the horizontal arrows are the points of |U |, resp. |V | lying over ξ, resp.
f(ξ) we conclude. �

Lemma 22.7. Let S be a scheme. Let f : X → Y be a birational morphism between
algebraic spaces over S which are decent and have finitely many irreducible components.
Then the normalizationsXν → X and Y ν → Y exist and there is a commutative diagram

Xν //

��

Y ν

��
X // Y

of algebraic spaces over S. The morphism Xν → Y ν is birational.

Proof. By Lemma 20.4 we see that X and Y satisfy the equivalent conditions of
Morphisms of Spaces, Lemma 49.1 and the normalizations are defined. By Morphisms of
Spaces, Lemma 49.8 the algebraic space Xν is normal and maps codimension 0 points to
codimension 0 points. Since f maps codimension 0 points to codimension 0 points (this
is the same as generic points on decent spaces by Lemma 20.1) we obtain from Morphisms
of Spaces, Lemma 49.8 a factorization of the composition Xν → X → Y through Y ν .

Observe thatXν and Y ν are decent for example by Lemma 6.5. Moreover the mapsXν →
X and Y ν → Y induce bijections on irreducible components (see references above) hence
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Xν and Y ν both have a finite number of irreducible components and the map Xν → Y ν

induces a bijection between their generic points. To prove that Xν → Y ν is birational, it
therefore suffices to show it induces an isomorphism on local rings at these points. To do
this we may replace X and Y by open neighbourhoods of their generic points, hence we
may assume X and Y are affine irreducible schemes with generic points x and y. Since f
is birational the map OX,x → OY,y is an isomorphism. Let xν ∈ Xν and yν ∈ Y ν be the
points lying over x and y. By construction of the normalization we see that OXν ,xν =
OX,x/mx and similarly on Y . Thus the map OXν ,xν → OY ν ,yν is an isomorphism as
well. �

Lemma 22.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) X and Y are decent and have finitely many irreducible components,
(2) f is integral and birational,
(3) Y is normal, and
(4) X is reduced.

Then f is an isomorphism.

Proof. Let V → Y be an étale morphism with V affine. It suffices to show that
U = X ×Y V → V is an isomorphism. By Lemma 22.6 and its proof we see that U
and V are decent and have finitely many irreducible components and that U → V is
birational. By Properties, Lemma 7.5 V is a finite disjoint union of integral schemes. Thus
we may assume V is integral. As f is birational, we see that U is irreducible and reduced,
i.e., integral (note that U is a scheme as f is integral, hence representable). Thus we may
assume thatX and Y are integral schemes and the result follows from the case of schemes,
see Morphisms, Lemma 54.8. �

Lemma 22.9. Let S be a scheme. Let f : X → Y be an integral birational morphism
of decent algebraic spaces over S which have finitely many irreducible components. Then
there exists a factorization Y ν → X → Y and Y ν → X is the normalization of X .

Proof. Consider the map Xν → Y ν of Lemma 22.7. This map is integral by Mor-
phisms of Spaces, Lemma 45.12. Hence it is an isomorphism by Lemma 22.8. �

23. Jacobson spaces

We have defined the Jacobson property for algebraic spaces in Properties of Spaces, Remark
7.3. For representable algebraic spaces it agrees with the property discussed in Properties,
Section 6. The relationship between the Jacobson property and the behaviour of the topo-
logical space |X| is not evident for general algebraic spaces |X|. However, a decent (for
example quasi-separated or locally separated) algebraic space X is Jacobson if and only if
|X| is Jacobson (see Lemma 23.4).

Lemma 23.1. Let S be a scheme. Let X be a Jacobson algebraic space over S. Any
algebraic space locally of finite type over X is Jacobson.

Proof. Let U → X be a surjective étale morphism where U is a scheme. Then U
is Jacobson (by definition) and for a morphism of schemes V → U which is locally of
finite type we see that V is Jacobson by the corresponding result for schemes (Morphisms,
Lemma 16.9). Thus if Y → X is a morphism of algebraic spaces which is locally of finite
type, then setting V = U ×X Y we see that Y is Jacobson by definition. �
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Lemma 23.2. Let S be a scheme. Let X be a Jacobson algebraic space over S. For
x ∈ Xft-pts and g : W → X locally of finite type with W a scheme, if x ∈ Im(|g|), then
there exists a closed point of W mapping to x.

Proof. Let U → X be an étale morphism with U a scheme and with u ∈ U closed
mapping to x, see Morphisms of Spaces, Lemma 25.3. Observe that W , W ×X U , and U
are Jacobson schemes by Lemma 23.1. Hence finite type points on these schemes are the
same thing as closed points by Morphisms, Lemma 16.8. The inverse image T ⊂W ×X U
of u is a nonempty (as x in the image of W → X) closed subset. By Morphisms, Lemma
16.7 there is a closed point t of W ×X U which maps to u. As W ×X U → W is locally
of finite type the image of t in W is closed by Morphisms, Lemma 16.8. �

Lemma 23.3. Let S be a scheme. Let X be a decent Jacobson algebraic space over S.
Then Xft-pts ⊂ |X| is the set of closed points.

Proof. Ifx ∈ |X| is closed, then we can representx by a closed immersion Spec(k)→
X , see Lemma 14.6. Hence x is certainly a finite type point.
Conversely, let x ∈ |X| be a finite type point. We know that x can be represented by
a quasi-compact monomorphism Spec(k) → X where k is a field (Definition 6.1). On
the other hand, by definition, there exists a morphism Spec(k′) → X which is locally
of finite type and represents x (Morphisms, Definition 16.3). We obtain a factorization
Spec(k′) → Spec(k) → X . Let U → X be any étale morphism with U affine and
consider the morphisms

Spec(k′)×X U → Spec(k)×X U → U

The quasi-compact scheme Spec(k) ×X U is étale over Spec(k) hence is a finite disjoint
union of spectra of fields (Remark 4.1). Moreover, the first morphism is surjective and lo-
cally of finite type (Morphisms, Lemma 15.8) hence surjective on finite type points (Mor-
phisms, Lemma 16.6) and the composition (which is locally of finite type) sends finite
type points to closed points as U is Jacobson (Morphisms, Lemma 16.8). Thus the image
of Spec(k) ×X U → U is a finite set of closed points hence closed. Since this is true for
every affine U and étale morphism U → X , we conclude that x ∈ |X| is closed. �

Lemma 23.4. Let S be a scheme. Let X be a decent algebraic space over S. Then X
is Jacobson if and only if |X| is Jacobson.

Proof. Assume X is Jacobson and that T ⊂ |X| is a closed subset. By Morphisms of
Spaces, Lemma 25.6 we see that T ∩Xft-pts is dense in T . By Lemma 23.3 we see thatXft-pts
are the closed points of |X|. Thus |X| is indeed Jacobson.
Assume |X| is Jacobson. Let f : U → X be an étale morphism with U an affine scheme.
We have to show that U is Jacobson. If x ∈ |X| is closed, then the fibre F = f−1({x})
is a finite (by definition of decent) closed (by construction of the topology on |X|) subset
of U . Since there are no specializations between points of F (Lemma 12.1) we conclude
that every point of F is closed in U . If U is not Jacobson, then there exists a non-closed
point u ∈ U such that {u} is locally closed (Topology, Lemma 18.3). We will show that
f(u) ∈ |X| is closed; by the above u is closed in U which is a contradiction and finishes
the proof. To prove this we may replaceU by an affine open neighbourhood of u. Thus we
may assume that {u} is closed inU . LetR = U×XU with projections s, t : R→ U . Then
s−1({u}) = {r1, . . . , rm} is finite (by definition of decent spaces). After replacing U by a
smaller affine open neighbourhood of u we may assume that t(rj) = u for j = 1, . . . ,m.
It follows that {u} is an R-invariant closed subset of U . Hence {f(u)} is a locally closed
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subset of X as it is closed in the open |f |(|U |) of |X|. Since |X| is Jacobson we conclude
that f(u) is closed in |X| as desired. �

Lemma 23.5. Let S be a scheme. LetX be a decent locally Noetherian algebraic space
over S. Let x ∈ |X|. Then

W = {x′ ∈ |X| : x′  x, x′ 6= x}

is a Noetherian, spectral, sober, Jacobson topological space.

Proof. We may replace by any open subspace containing x. Thus we may assume
thatX is quasi-compact. Then |X| is a Noetherian topological space (Properties of Spaces,
Lemma 24.2). Thus W is a Noetherian topological space (Topology, Lemma 9.2).

Combining Lemma 14.1 with Properties of Spaces, Lemma 15.2 we see that |X| is a spectral
toplogical space. By Topology, Lemma 24.7 we see that W ∪ {x} is a spectral topological
space. NowW is a quasi-compact open ofW ∪{x} and henceW is spectral by Topology,
Lemma 23.5.

Let E ⊂ W be an irreducible closed subset. Then if Z ⊂ |X| is the closure of E we see
that x ∈ Z. There is a unique generic point η ∈ Z by Proposition 12.4. Of course η ∈W
and hence η ∈ E. We conclude that E has a unique generic point, i.e., W is sober.

Let x′ ∈ W be a point such that {x′} is locally closed in W . To finish the proof we have
to show that x′ is a closed point of W . If not, then there exists a nontrivial specialization
x′  x′

1 in W . Let U be an affine scheme, u ∈ U a point, and let U → X be an étale
morphism mapping u to x. By Lemma 12.2 we can choose specializations u′  u′

1  u
mapping to x′  x′

1  x. Let p′ ⊂ OU,u be the prime ideal corresponding to u′. The
existence of the specializations implies that dim(OU,u/p′) ≥ 2. Hence every nonempty
open of Spec(OU,u/p′) is infinite by Algebra, Lemma 61.1. By Lemma 12.1 we obtain a
continuous map

Spec(OU,u/p′) \ {mu/p′} −→W

Since the generic point of the LHS maps to x′ the image is contained in {x′}. We conclude
the inverse image of {x′} under the displayed arrow is nonempty open hence infinite.
However, the fibres of U → X are finite as X is decent and we conclude that {x′} is
infinite. This contradiction finishes the proof. �

24. Local irreducibility

We have already defined the geometric number of branches of an algebraic space at a point
in Properties of Spaces, Section 23. The number of branches of an algebraic space at a point
can only be defined for decent algebraic spaces.

Lemma 24.1. LetS be a scheme. LetX be a decent algebraic space overS. Let x ∈ |X|
be a point. The following are equivalent

(1) for any elementary étale neighbourhood (U, u) → (X,x) the local ring OU,u
has a unique minimal prime,

(2) for any elementary étale neighbourhood (U, u)→ (X,x) there is a unique irre-
ducible component of U through u,

(3) for any elementary étale neighbourhood (U, u)→ (X,x) the local ringOU,u is
unibranch,

(4) the henselian local ringOhX,x has a unique minimal prime.
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Proof. The equivalence of (1) and (2) follows from the fact that irreducible compo-
nents of U passing through u are in 1-1 correspondence with minimal primes of the local
ring of U at u. The ring OhX,x is the henselization of OU,u, see discussion following Def-
inition 11.7. In particular (3) and (4) are equivalent by More on Algebra, Lemma 106.3.
The equivalence of (2) and (3) follows from More on Morphisms, Lemma 36.2. �

Definition 24.2. Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X|. We say that X is unibranch at x if the equivalent conditions of Lemma 24.1
hold. We say that X is unibranch if X is unibranch at every x ∈ |X|.

This is consistent with the definition for schemes (Properties, Definition 15.1).

Lemma 24.3. LetS be a scheme. LetX be a decent algebraic space overS. Let x ∈ |X|
be a point. Let n ∈ {1, 2, . . .} be an integer. The following are equivalent

(1) for any elementary étale neighbourhood (U, u) → (X,x) the number of mini-
mal primes of the local ring OU,u is ≤ n and for at least one choice of (U, u) it
is n,

(2) for any elementary étale neighbourhood (U, u)→ (X,x) the number irreducible
components of U passing through u is ≤ n and for at least one choice of (U, u)
it is n,

(3) for any elementary étale neighbourhood (U, u)→ (X,x) the number of branches
of U at u is ≤ n and for at least one choice of (U, u) it is n,

(4) the number of minimal prime ideals ofOhX,x is n.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible compo-
nents of U passing through u are in 1-1 correspondence with minimal primes of the local
ring of U at u. The ring OX,x is the henselization of OU,u, see discussion following Def-
inition 11.7. In particular (3) and (4) are equivalent by More on Algebra, Lemma 106.3.
The equivalence of (2) and (3) follows from More on Morphisms, Lemma 36.2. �

Definition 24.4. Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X|. The number of branches of X at x is either n ∈ N if the equivalent conditions
of Lemma 24.3 hold, or else∞.

25. Catenary algebraic spaces

This section extends the material in Properties, Section 11 and Morphisms, Section 17 to
algebraic spaces.

Definition 25.1. Let S be a scheme. Let X be a decent algebraic space over S. We
say X is catenary if |X| is catenary (Topology, Definition 11.4).

If X is representable, then this is equivalent to the corresponding notion for the scheme
representing X .

Lemma 25.2. Let S be a locally Noetherian and universally catenary scheme. Let
δ : S → Z be a dimension function. Let X be a decent algebraic space over S such that
the structure morphism X → S is locally of finite type. Let δX : |X| → Z be the map
sending x to δ(f(x)) plus the transcendence degree of x/f(x). Then δX is a dimension
function on |X|.

Proof. Letϕ : U → X be a surjective étale morphism whereU is a scheme. Then the
similarly defined function δU is a dimension function on U by Morphisms, Lemma 52.3.
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On the other hand, by the definition of relative transcendence degree in (Morphisms of
Spaces, Definition 33.1) we see that δU (u) = δX(ϕ(u)).
Let x x′ be a specialization of points in |X|. by Lemma 12.2 we can find a specialization
u  u′ of points of U with ϕ(u) = x and ϕ(u′) = x′. Moreover, we see that x = x′ if
and only if u = u′, see Lemma 12.1. Thus the fact that δU is a dimension function implies
that δX is a dimension function, see Topology, Definition 20.1. �

Lemma 25.3. Let S be a locally Noetherian and universally catenary scheme. Let X
be an algebraic space over S such that X is decent and such that the structure morphism
X → S is locally of finite type. Then X is catenary.

Proof. The question is local on S (use Topology, Lemma 11.5). Thus we may assume
that S has a dimension function, see Topology, Lemma 20.4. Then we conclude that |X|
has a dimension function by Lemma 25.2. Since |X| is sober (Proposition 12.4) we conclude
that |X| is catenary by Topology, Lemma 20.2. �

By Lemma 25.3 the following definition is compatible with the already existing notion for
representable algebraic spaces.

Definition 25.4. Let S be a scheme. Let X be a decent and locally Noetherian alge-
braic space over S. We say X is universally catenary if for every morphism Y → X of
algebraic spaces which is locally of finite type and with Y decent, the algebraic space Y is
catenary.

If X is an algebraic space, then the condition “X is decent and locally Noetherian” is
equivalent to “X is quasi-separated and locally Noetherian”. This is Lemma 14.1. Thus
another way to understand the definition above is that X is universally catenary if and
only if Y is catenary for all morphisms Y → X which are quasi-separated and locally of
finite type.

Lemma 25.5. Let S be a scheme. Let X be a decent, locally Noetherian, and univer-
sally catenary algebraic space over S. Then any decent algebraic space locally of finite
type over X is universally catenary.

Proof. This is formal from the definitions and the fact that compositions of mor-
phisms locally of finite type are locally of finite type (Morphisms of Spaces, Lemma 23.2).

�

Lemma 25.6. Let S be a scheme. Let f : Y → X be a surjective finite morphism of
decent and locally Noetherian algebraic spaces. Let δ : |X| → Z be a function. If δ ◦ |f |
is a dimension function, then δ is a dimension function.

Proof. Let x 7→ x′, x 6= x′ be a specialization in |X|. Choose y ∈ |Y | with |f |(y) =
x. Since |f | is closed (Morphisms of Spaces, Lemma 45.9) we find a specialization y  y′

with |f |(y′) = x′. Thus we conclude that δ(x) = δ(|f |(y)) > δ(|f |(y′)) = δ(x′) (see
Topology, Definition 20.1). If x  x′ is an immediate specialization, then y  y′ is an
immediate specialization too: namely if y  y′′  y′, then |f |(y′′) must be either x or
x′ and there are no nontrivial specializations between points of fibres of |f | by Lemma
18.10. �

The discussion will be continued in More on Morphisms of Spaces, Section 32.
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CHAPTER 69

Cohomology of Algebraic Spaces

1. Introduction

In this chapter we write about cohomology of algebraic spaces. Although we prove some
results on cohomology of abelian sheaves, we focus mainly on cohomology of quasi-coherent
sheaves, i.e., we prove analogues of the results in the chapter “Cohomology of Schemes”.
Some of the results in this chapter can be found in [?].

An important missing ingredient in this chapter is the induction principle, i.e., the ana-
logue for quasi-compact and quasi-separated algebraic spaces of Cohomology of Schemes,
Lemma 4.1. This is formulated precisely and proved in detail in Derived Categories of
Spaces, Section 9. Instead of the induction principle, in this chapter we use the alternating
Čech complex, see Section 6. It is designed to prove vanishing statements such as Propo-
sition 7.2, but in some cases the induction principle is a more powerful and perhaps more
“standard” tool. We encourage the reader to take a look at the induction principle after
reading some of the material in this section.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Higher direct images

Let S be a scheme. Let X be a representable algebraic space over S. Let F be a quasi-
coherent module on X (see Properties of Spaces, Section 29). By Descent, Proposition 9.3
the cohomology groups Hi(X,F) agree with the usual cohomology group computed in
the Zariski topology of the corresponding quasi-coherent module on the scheme repre-
senting X .

More generally, let f : X → Y be a quasi-compact and quasi-separated morphism of rep-
resentable algebraic spacesX and Y . LetF be a quasi-coherent module onX . By Descent,
Lemma 9.5 the sheaf Rif∗F agrees with the usual higher direct image computed for the
Zariski topology of the quasi-coherent module on the scheme representing X mapping to
the scheme representing Y .

More generally still, suppose f : X → Y is a representable, quasi-compact, and quasi-
separated morphism of algebraic spaces over S. Let V be a scheme and let V → Y be an

5377
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étale surjective morphism. Let U = V ×Y X and let f ′ : U → V be the base change of f .
Then for any quasi-coherentOX -module F we have

(3.0.1) Rif ′
∗(F|U ) = (Rif∗F)|V ,

see Properties of Spaces, Lemma 26.2. And because f ′ : U → V is a quasi-compact and
quasi-separated morphism of schemes, by the remark of the preceding paragraph we may
compute Rif ′

∗(F|U ) by thinking of F|U as a quasi-coherent sheaf on the scheme U , and
f ′ as a morphism of schemes. We will frequently use this without further mention.

Next, we prove that higher direct images of quasi-coherent sheaves are quasi-coherent for
any quasi-compact and quasi-separated morphism of algebraic spaces. In the proof we use
a trick; a “better” proof would use a relative Čech complex, as discussed in Sheaves on
Stacks, Sections 18 and 19 ff.

Lemma 3.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is quasi-compact and quasi-separated, then Rif∗ transforms quasi-coherent
OX -modules into quasi-coherentOY -modules.

Proof. Let V → Y be an étale morphism where V is an affine scheme. Set U =
V ×Y X and denote f ′ : U → V the induced morphism. Let F be a quasi-coherent
OX -module. By Properties of Spaces, Lemma 26.2 we have Rif ′

∗(F|U ) = (Rif∗F)|V .
Since the property of being a quasi-coherent module is local in the étale topology on Y
(see Properties of Spaces, Lemma 29.6) we may replace Y by V , i.e., we may assume Y is
an affine scheme.

Assume Y is affine. Since f is quasi-compact we see thatX is quasi-compact. Thus we may
choose an affine scheme U and a surjective étale morphism g : U → X , see Properties of
Spaces, Lemma 6.3. Picture

U
g
//

f◦g   

X

f

��
Y

The morphism g : U → X is representable, separated and quasi-compact because X is
quasi-separated. Hence the lemma holds for g (by the discussion above the lemma). It also
holds for f ◦ g : U → Y (as this is a morphism of affine schemes).

In the situation described in the previous paragraph we will show by induction on n that
IHn: for any quasi-coherent sheafF onX the sheavesRifF are quasi-coherent for i ≤ n.
The case n = 0 follows from Morphisms of Spaces, Lemma 11.2. Assume IHn. In the rest
of the proof we show that IHn+1 holds.

LetH be a quasi-coherentOU -module. Consider the Leray spectral sequence

Ep,q2 = Rpf∗R
qg∗H ⇒ Rp+q(f ◦ g)∗H

Cohomology on Sites, Lemma 14.7. As Rqg∗H is quasi-coherent by IHn all the sheaves
Rpf∗R

qg∗H are quasi-coherent for p ≤ n. The sheaves Rp+q(f ◦ g)∗H are all quasi-
coherent (in fact zero for p+ q > 0 but we do not need this). Looking in degrees≤ n+ 1
the only module which we do not yet know is quasi-coherent is En+1,0

2 = Rn+1f∗g∗H.
Moreover, the differentials dn+1,0

r : En+1,0
r → En+1+r,1−r

r are zero as the target is zero.
Using that QCoh(OX) is a weak Serre subcategory of Mod(OX) (Properties of Spaces,
Lemma 29.7) it follows that Rn+1f∗g∗H is quasi-coherent (details omitted).
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Let F be a quasi-coherent OX -module. Set H = g∗F . The adjunction mapping F →
g∗g

∗F = g∗H is injective as U → X is surjective étale. Consider the exact sequence

0→ F → g∗H → G → 0

where G is the cokernel of the first map and in particular quasi-coherent. Applying the
long exact cohomology sequence we obtain

Rnf∗g∗H → Rnf∗G → Rn+1f∗F → Rn+1f∗g∗H → Rn+1f∗G

The cokernel of the first arrow is quasi-coherent and we have seen above thatRn+1f∗g∗H
is quasi-coherent. Thus Rn+1f∗F has a 2-step filtration where the first step is quasi-
coherent and the second a submodule of a quasi-coherent sheaf. Since F is an arbitrary
quasi-coherent OX -module, this result also holds for G. Thus we can choose an exact se-
quence 0 → A → Rn+1f∗G → B with A, B quasi-coherent OY -modules. Then the
kernel K of Rn+1f∗g∗H → Rn+1f∗G → B is quasi-coherent, whereupon we obtain a
map K → A whose kernel K′ is quasi-coherent too. Hence Rn+1f∗F sits in an exact
sequence

Rnf∗g∗H → Rnf∗G → Rn+1f∗F → K′ → 0
with all modules quasi-coherent except for possiblyRn+1f∗F . We conclude thatRn+1f∗F
is quasi-coherent, i.e., IHn+1 holds as desired. �

Lemma 3.2. Let S be a scheme. Let f : X → Y be a quasi-separated and quasi-
compact morphism of algebraic spaces over S. For any quasi-coherentOX -moduleF and
any affine object V of Yétale we have

Hq(V ×Y X,F) = H0(V,Rqf∗F)

for all q ∈ Z.

Proof. Since formation ofRf∗ commutes with étale localization (Properties of Spaces,
Lemma 26.2) we may replace Y by V and assume Y = V is affine. Consider the Leray
spectral sequence Ep,q2 = Hp(Y,Rqf∗F) converging to Hp+q(X,F), see Cohomology
on Sites, Lemma 14.5. By Lemma 3.1 we see that the sheaves Rqf∗F are quasi-coherent.
By Cohomology of Schemes, Lemma 2.2 we see that Ep,q2 = 0 when p > 0. Hence the
spectral sequence degenerates at E2 and we win. �

4. Finite morphisms

Here are some results which hold for all abelian sheaves (in particular also quasi-coherent
modules). We warn the reader that these lemmas do not hold for finite morphisms of
schemes and the Zariski topology.

Lemma 4.1. Let S be a scheme. Let f : X → Y be an integral (for example finite)
morphism of algebraic spaces. Then f∗ : Ab(Xétale) → Ab(Yétale) is an exact functor
and Rpf∗ = 0 for p > 0.

Proof. By Properties of Spaces, Lemma 18.12 we may compute the higher direct im-
ages on an étale cover of Y . Hence we may assume Y is a scheme. This implies that X
is a scheme (Morphisms of Spaces, Lemma 45.3). In this case we may apply Étale Coho-
mology, Lemma 43.5. For the finite case the reader may wish to consult the less technical
Étale Cohomology, Proposition 55.2. �
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Lemma 4.2. Let S be a scheme. Let f : X → Y be a finite morphism of algebraic
spaces over S. Let y be a geometric point of Y with lifts x1, . . . , xn in X . Then

(f∗F)y =
∏

i=1,...,n
Fxi

for any sheaf F on Xétale.

Proof. Choose an étale neighbourhood (V, v) of y. Then the stalk (f∗F)y is the
stalk of f∗F|V at v. By Properties of Spaces, Lemma 18.12 we may replace Y by V and
X by X ×Y V . Then Z → X is a finite morphism of schemes and the result is Étale
Cohomology, Proposition 55.2. �

Lemma 4.3. Let S be a scheme. Let π : X → Y be a finite morphism of algebraic
spaces over S. Let A be a sheaf of rings on Xétale. Let B be a sheaf of rings on Yétale. Let
ϕ : B → π∗A be a homomorphism of sheaves of rings so that we obtain a morphism of
ringed topoi

f = (π, ϕ) : (Sh(Xétale),A) −→ (Sh(Yétale),B).
For a sheaf ofA-modules F and a sheaf of B-modules G the canonical map

G ⊗B f∗F −→ f∗(f∗G ⊗A F).
is an isomorphism.

Proof. The map is the map adjoint to the map
f∗G ⊗A f∗f∗F = f∗(G ⊗B f∗F) −→ f∗G ⊗A F

coming from id : f∗G → f∗G and the adjunction map f∗f∗F → F . To see this map
is an isomorphism, we may check on stalks (Properties of Spaces, Theorem 19.12). Let y
be a geometric point of Y and let x1, . . . , xn be the geometric points of X lying over y.
Working out what our maps does on stalks, we see that we have to show

Gy ⊗By

(⊕
i=1,...,n

Fxi
)

=
⊕

i=1,...,n
(Gy ⊗Bx Axi)⊗Axi

Fxi

which holds true. Here we have used that taking tensor products commutes with taking
stalks, the behaviour of stalks under pullback Properties of Spaces, Lemma 19.9, and the
behaviour of stalks under pushforward along a closed immersion Lemma 4.2. �

We end this section with an insanely general projection formula for finite morphisms.

Lemma 4.4. With S , X , Y , π,A, B, ϕ, and f as in Lemma 4.3 we have
K ⊗L

B Rf∗M = Rf∗(Lf∗K ⊗L
A M)

in D(B) for any K ∈ D(B) and M ∈ D(A).

Proof. Since f∗ is exact (Lemma 4.1) the functorRf∗ is computed by applying f∗ to
any representative complex. Choose a complexK• of B-modules representingK which is
K-flat with flat terms, see Cohomology on Sites, Lemma 17.11. Then f∗K• is K-flat with
flat terms, see Cohomology on Sites, Lemma 18.1. Choose any complexM• ofA-modules
representing M . Then we have to show

Tot(K• ⊗B f∗M•) = f∗Tot(f∗K• ⊗AM•)
because by our choices these complexes represent the right and left hand side of the for-
mula in the lemma. Since f∗ commutes with direct sums (for example by the description
of the stalks in Lemma 4.2), this reduces to the equalities

Kn ⊗B f∗Mm = f∗(f∗Kn ⊗AMm)
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which are true by Lemma 4.3. �

5. Colimits and cohomology

The following lemma in particular applies to diagrams of quasi-coherent sheaves.

Lemma 5.1. Let S be a scheme. Let X be an algebraic space over S. If X is quasi-
compact and quasi-separated, then

colimiH
p(X,Fi) −→ Hp(X, colimi Fi)

is an isomorphism for every filtered diagram of abelian sheaves on Xétale.

Proof. This follows from Cohomology on Sites, Lemma 16.1. Namely, let B ⊂
Ob(Xspaces,étale) be the set of quasi-compact and quasi-separated spaces étale over X .
Note that if U ∈ B then, because U is quasi-compact, the collection of finite coverings
{Ui → U} with Ui ∈ B is cofinal in the set of coverings of U in Xspaces,étale. By Mor-
phisms of Spaces, Lemma 8.10 the set B satisfies all the assumptions of Cohomology on
Sites, Lemma 16.1. Since X ∈ B we win. �

Lemma 5.2. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let F = colimFi be a filtered colimit of
abelian sheaves on Xétale. Then for any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.

Proof. Recall thatRpf∗F is the sheaf on Yspaces,étale associated to V 7→ Hp(V ×Y
X,F), see Cohomology on Sites, Lemma 7.4 and Properties of Spaces, Lemma 18.8. Recall
that the colimit is the sheaf associated to the presheaf colimit. Hence we can apply Lemma
5.1 to Hp(V ×Y X,−) where V is affine to conclude (because when V is affine, then
V ×Y X is quasi-compact and quasi-separated). Strictly speaking this also uses Properties
of Spaces, Lemma 18.6 to see that there exist enough affine objects. �

The following lemma tells us that finitely presented modules behave as expected in quasi-
compact and quasi-separated algebraic spaces.

Lemma 5.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let I be a directed set and let (Fi, ϕii′) be a system over I of OX -
modules. Let G be anOX -module of finite presentation. Then we have

colimi HomX(G,Fi) = HomX(G, colimi Fi).
In particular, HomX(G,−) commutes with filtered colimits in QCoh(OX).

Proof. The displayed equality is a special case of Modules on Sites, Lemma 27.12. In
order to apply it, we need to check the hypotheses of Sites, Lemma 17.8 part (4) for the site
Xétale. In order to do this, we will check hypotheses (2)(a), (2)(b), (2)(c) of Sites, Remark
17.9. Namely, let B ⊂ Ob(Xétale) be the set of affine objects. Then

(1) Since X is quasi-compact, there exists a U ∈ B such that U → X is surjective
(Properties of Spaces, Lemma 6.3), hence h#

U → ∗ is surjective.
(2) For U ∈ B every étale covering {Ui → U}i∈I of U can be refined by a finite

étale covering {Uj → U}j=1,...,m with Uj ∈ B (Topologies, Lemma 4.4).
(3) For U,U ′ ∈ Ob(Xétale) we have h#

U × h#
U ′ = h#

U×XU ′ . If U,U ′ ∈ B, then
U×XU ′ is quasi-compact becauseX is quasi-separated, see Morphisms of Spaces,
Lemma 8.10 for example. Hence we can find a surjective étale morphism U ′′ →
U ×X U ′ with U ′′ ∈ B (Properties of Spaces, Lemma 6.3). In other words, we
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have morphisms U ′′ → U and U ′′ → U ′ such that the map h#
U ′′ → h#

U × h
#
u′ is

surjective.
For the final statement, observe that the inclusion functor QCoh(OX)→Mod(OX) com-
mutes with colimits and that finitely presented modules are quasi-coherent. See Properties
of Spaces, Lemma 29.7. �

6. The alternating Čech complex

Let S be a scheme. Let f : U → X be an étale morphism of algebraic spaces over S. The
functor

j : Uspaces,étale −→ Xspaces,étale, V/U 7−→ V/X

induces an equivalence of Uspaces,étale with the localization Xspaces,étale/U , see Proper-
ties of Spaces, Section 27. Hence there exist functors

f! : Ab(Uétale) −→ Ab(Xétale), f! : Mod(OU ) −→Mod(OX),

which are left adjoint to

f−1 : Ab(Xétale) −→ Ab(Uétale), f∗ : Mod(OX) −→Mod(OU )

see Modules on Sites, Section 19. Warning: This functor, a priori, has nothing to do with
cohomology with compact supports! We dubbed this functor “extension by zero” in the
reference above. Note that the two versions of f! agree as f∗ = f−1 for sheaves of OX -
modules.

As we are going to use this construction below let us recall some of its properties. Given
an abelian sheaf G on Uétale the sheaf f! is the sheafification of the presheaf

V/X 7−→ f!G(V ) =
⊕

ϕ∈MorX(V,U)
G(V ϕ−→ U),

see Modules on Sites, Lemma 19.2. Moreover, ifG is anOU -module, then f!G is the sheafifi-
cation of the exact same presheaf of abelian groups which is endowed with anOX -module
structure in an obvious way (see loc. cit.). Let x : Spec(k) → X be a geometric point.
Then there is a canonical identification

(f!G)x =
⊕

u
Gu

where the sum is over all u : Spec(k) → U such that f ◦ u = x, see Modules on Sites,
Lemma 38.1 and Properties of Spaces, Lemma 19.13. In the following we are going to study
the sheaf f!Z. Here Z denotes the constant sheaf on Xétale or Uétale.

Lemma 6.1. Let S be a scheme. Let fi : Ui → X be étale morphisms of algebraic
spaces over S. Then there are isomorphisms

f1,!Z⊗Z f2,!Z −→ f12,!Z

where f12 : U1 ×X U2 → X is the structure morphism and

(f1 q f2)!Z −→ f1,!Z⊕ f2,!Z

Proof. Once we have defined the map it will be an isomorphism by our description
of stalks above. To define the map it suffices to work on the level of presheaves. Thus we
have to define a map(⊕

ϕ1∈MorX(V,U1)
Z
)
⊗Z

(⊕
ϕ2∈MorX(V,U2)

Z
)
−→

⊕
ϕ∈MorX(V,U1×XU2)

Z
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We map the element 1ϕ1 ⊗ 1ϕ2 to the element 1ϕ1×ϕ2 with obvious notation. We omit
the proof of the second equality. �

Another important feature is the trace map

Trf : f!Z −→ Z.

The trace map is adjoint to the map Z→ f−1Z (which is an isomorphism). If x is above,
then Trf on stalks at x is the map

(Trf )x : (f!Z)x =
⊕

u
Z −→ Z = Zx

which sums the given integers. This is true because it is adjoint to the map 1 : Z→ f−1Z.
In particular, if f is surjective as well as étale then Trf is surjective.

Assume that f : U → X is a surjective étale morphism of algebraic spaces. Consider the
Koszul complex associated to the trace map we discussed above

. . .→ ∧3f!Z→ ∧2f!Z→ f!Z→ Z→ 0

Here the exterior powers are over the sheaf of rings Z. The maps are defined by the rule

e1 ∧ . . . ∧ en 7−→
∑

i=1,...,n
(−1)i+1Trf (ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en

where e1, . . . , en are local sections of f!Z. Let x be a geometric point of X and set Mx =
(f!Z)x =

⊕
u Z. Then the stalk of the complex above at x is the complex

. . .→ ∧3Mx → ∧2Mx →Mx → Z→ 0

which is exact because Mx → Z is surjective, see More on Algebra, Lemma 28.5. Hence
if we let K• = K•(f) be the complex with Ki = ∧i+1f!Z, then we obtain a quasi-
isomorphism

(6.1.1) K• −→ Z[0]

We use the complex K• to define what we call the alternating Čech complex associated
to f : U → X .

Definition 6.2. Let S be a scheme. Let f : U → X be a surjective étale morphism of
algebraic spaces over S. LetF be an object of Ab(Xétale). The alternating Čech complex1

Č•
alt(f,F) associated to F and f is the complex

Hom(K0,F)→ Hom(K1,F)→ Hom(K2,F)→ . . .

with Hom groups computed in Ab(Xétale).

The reader may verify that if U =
∐
Ui and f |Ui : Ui → X is the open immersion of a

subspace, then Č•
alt(f,F) agrees with the complex introduced in Cohomology, Section 23

for the Zariski coveringX =
⋃
Ui and the restriction ofF to the Zariski site ofX . What

is more important however, is to relate the cohomology of the alternating Čech complex
to the cohomology.

Lemma 6.3. Let S be a scheme. Let f : U → X be a surjective étale morphism of
algebraic spaces over S. Let F be an object of Ab(Xétale). There exists a canonical map

Č•
alt(f,F) −→ RΓ(X,F)

1This may be nonstandard notation
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in D(Ab). Moreover, there is a spectral sequence with E1-page
Ep,q1 = ExtqAb(Xétale)(K

p,F)

converging to Hp+q(X,F) where Kp = ∧p+1f!Z.

Proof. Recall that we have the quasi-isomorphismK• → Z[0], see (6.1.1). Choose an
injective resolution F → I• in Ab(Xétale). Consider the double complex Hom(K•, I•)
with terms Hom(Kp, Iq). The differential dp,q1 : Ap,q → Ap+1,q is the one coming
from the differential Kp+1 → Kp and the differential dp,q2 : Ap,q → Ap,q+1 is the one
coming from the differential Iq → Iq+1. Denote Tot(Hom(K•, I•)) the associated total
complex, see Homology, Section 18. We will use the two spectral sequences (′Er,

′dr) and
(′′Er,

′′dr) associated to this double complex, see Homology, Section 25.
Because K• is a resolution of Z we see that the complexes

Hom(K•, Iq) : Hom(K0, Iq)→ Hom(K1, Iq)→ Hom(K2, Iq)→ . . .

are acyclic in positive degrees and have H0 equal to Γ(X, Iq). Hence by Homology,
Lemma 25.4 the natural map

I•(X) −→ Tot(Hom(K•, I•))
is a quasi-isomorphism of complexes of abelian groups. In particular we conclude that
Hn(Tot(Hom(K•, I•))) = Hn(X,F).

The map Č•
alt(f,F) → RΓ(X,F) of the lemma is the composition of Č•

alt(f,F) →
Tot(Hom(K•, I•)) with the inverse of the displayed quasi-isomorphism.
Finally, consider the spectral sequence (′Er,

′dr). We have

Ep,q1 = qth cohomology of Hom(Kp, I0)→ Hom(Kp, I1)→ Hom(Kp, I2)→ . . .

This proves the lemma. �

It follows from the lemma that it is important to understand the ext groups ExtAb(Xétale)(Kp,F),
i.e., the right derived functors of F 7→ Hom(Kp,F).

Lemma 6.4. Let S be a scheme. Let f : U → X be a surjective, étale, and separated
morphism of algebraic spaces over S. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals
where the fibre product has p + 1 factors. There is a free action of Sp+1 on Wp over X
and

Hom(Kp,F) = Sp+1-anti-invariant elements of F(Wp)
functorially in F where Kp = ∧p+1f!Z.

Proof. BecauseU → X is separated the diagonalU → U×XU is a closed immersion.
Since U → X is étale the diagonal U → U ×X U is an open immersion, see Morphisms
of Spaces, Lemmas 39.10 and 38.9. Hence Wp is an open and closed subspace of Up+1 =
U ×X . . . ×X U . The action of Sp+1 on Wp is free as we’ve thrown out the fixed points
of the action. By Lemma 6.1 we see that

(f!Z)⊗p+1 = fp+1
! Z = (Wp → X)!Z⊕Rest

where fp+1 : Up+1 → X is the structure morphism. Looking at stalks over a geometric
point x of X we see that (⊕

u7→x
Z
)⊗p+1

−→ (Wp → X)!Zx
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is the quotient whose kernel is generated by all tensors 1u0 ⊗ . . .⊗ 1up where ui = uj for
some i 6= j. Thus the quotient map

(f!Z)⊗p+1 −→ ∧p+1f!Z

factors through (Wp → X)!Z, i.e., we get

(f!Z)⊗p+1 −→ (Wp → X)!Z −→ ∧p+1f!Z

This already proves that Hom(Kp,F) is (functorially) a subgroup of

Hom((Wp → X)!Z,F) = F(Wp)

To identify it with the Sp+1-anti-invariants we have to prove that the surjection (Wp →
X)!Z→ ∧p+1f!Z is the maximal Sp+1-anti-invariant quotient. In other words, we have
to show that ∧p+1f!Z is the quotient of (Wp → X)!Z by the subsheaf generated by the
local sections s − sign(σ)σ(s) where s is a local section of (Wp → X)!Z. This can be
checked on the stalks, where it is clear. �

Lemma 6.5. Let S be a scheme. Let W be an algebraic space over S. Let G be a
finite group acting freely on W . Let U = W/G, see Properties of Spaces, Lemma 34.1.
Let χ : G → {+1,−1} be a character. Then there exists a rank 1 locally free sheaf of
Z-modules Z(χ) on Uétale such that for every abelian sheaf F on Uétale we have

H0(W,F|W )χ = H0(U,F ⊗Z Z(χ))

Proof. The quotient morphism q : W → U is aG-torsor, i.e., there exists a surjective
étale morphism U ′ → U such that W ×U U ′ =

∐
g∈G U

′ as spaces with G-action over
U ′. (Namely, U ′ = W works.) Hence q∗Z is a finite locally free Z-module with an action
of G. For any geometric point u of U , then we get G-equivariant isomorphisms

(q∗Z)u =
⊕

w 7→u
Z =

⊕
g∈G

Z = Z[G]

where the second = uses a geometric point w0 lying over u and maps the summand cor-
responding to g ∈ G to the summand corresponding to g(w0). We have

H0(W,F|W ) = H0(U,F ⊗Z q∗Z)

because q∗F|W = F ⊗Z q∗Z as one can check by restricting to U ′. Let

Z(χ) = (q∗Z)χ ⊂ q∗Z

be the subsheaf of sections that transform according to χ. For any geometric point u of U
we have

Z(χ)u = Z ·
∑

g
χ(g)g ⊂ Z[G] = (q∗Z)u

It follows that Z(χ) is locally free of rank 1 (more precisely, this should be checked after
restricting to U ′). Note that for any Z-module M the χ-semi-invariants of M [G] are the
elements of the form m ·

∑
g χ(g)g. Thus we see that for any abelian sheaf F on U we

have
(F ⊗Z q∗Z)χ = F ⊗Z Z(χ)

because we have equality at all stalks. The result of the lemma follows by taking global
sections. �

Now we can put everything together and obtain the following pleasing result.
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Lemma 6.6. Let S be a scheme. Let f : U → X be a surjective, étale, and separated
morphism of algebraic spaces over S. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals
(with p + 1 factors) as in Lemma 6.4. Let χp : Sp+1 → {+1,−1} be the sign character.
Let Up = Wp/Sp+1 and Z(χp) be as in Lemma 6.5. Then the spectral sequence of Lemma
6.3 has E1-page

Ep,q1 = Hq(Up,F|Up ⊗Z Z(χp))
and converges to Hp+q(X,F).

Proof. Note that since the action of Sp+1 onWp is overX we do obtain a morphism
Up → X . Since Wp → X is étale and since Wp → Up is surjective étale, it follows that
also Up → X is étale, see Morphisms of Spaces, Lemma 39.2. Therefore an injective object
of Ab(Xétale) restricts to an injective object of Ab(Up,étale), see Cohomology on Sites,
Lemma 7.1. Moreover, the functor G 7→ G ⊗Z Z(χp)) is an auto-equivalence of Ab(Up),
whence transforms injective objects into injective objects and is exact (because Z(χp) is
an invertible Z-module). Thus given an injective resolution F → I• in Ab(Xétale) the
complex
Γ(Up, I0|Up ⊗Z Z(χp))→ Γ(Up, I1|Up ⊗Z Z(χp))→ Γ(Up, I2|Up ⊗Z Z(χp))→ . . .

computes H∗(Up,F|Up ⊗Z Z(χp)). On the other hand, by Lemma 6.5 it is equal to the
complex of Sp+1-anti-invariants in

Γ(Wp, I0)→ Γ(Wp, I1)→ Γ(Wp, I2)→ . . .

which by Lemma 6.4 is equal to the complex

Hom(Kp, I0)→ Hom(Kp, I1)→ Hom(Kp, I2)→ . . .

which computes Ext∗
Ab(Xétale)(Kp,F). Putting everything together we win. �

7. Higher vanishing for quasi-coherent sheaves

In this section we show that given a quasi-compact and quasi-separated algebraic space X
there exists an integer n = n(X) such that the cohomology of any quasi-coherent sheaf
on X vanishes beyond degree n.

Lemma 7.1. WithS ,W ,G,U ,χ as in Lemma 6.5. IfF is a quasi-coherentOU -module,
then so is F ⊗Z Z(χ).

Proof. TheOU -module structure is clear. To check thatF⊗ZZ(χ) is quasi-coherent
it suffices to check étale locally. Hence the lemma follows as Z(χ) is finite locally free as
a Z-module. �

The following proposition is interesting even ifX is a scheme. It is the natural generaliza-
tion of Cohomology of Schemes, Lemma 4.2. Before we state it, observe that given an étale
morphism f : U → X from an affine scheme towards a quasi-separated algebraic space
X the fibres of f are universally bounded, in particular there exists an integer d such that
the fibres of |U | → |X| all have size at most d; this is the implication (η)⇒ (δ) of Decent
Spaces, Lemma 5.1.

Proposition 7.2. Let S be a scheme. LetX be an algebraic space over S. AssumeX is
quasi-compact and separated. LetU be an affine scheme, and let f : U → X be a surjective
étale morphism. Let d be an upper bound for the size of the fibres of |U | → |X|. Then for
any quasi-coherentOX -module F we have Hq(X,F) = 0 for q ≥ d.
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Proof. We will use the spectral sequence of Lemma 6.6. The lemma applies since f
is separated as U is separated, see Morphisms of Spaces, Lemma 4.10. Since X is separated
the scheme U ×X . . . ×X U is a closed subscheme of U ×Spec(Z) . . . ×Spec(Z) U hence
is affine. Thus Wp is affine. Hence Up = Wp/Sp+1 is an affine scheme by Groupoids,
Proposition 23.9. The discussion in Section 3 shows that cohomology of quasi-coherent
sheaves on Wp (as an algebraic space) agrees with the cohomology of the corresponding
quasi-coherent sheaf on the underlying affine scheme, hence vanishes in positive degrees
by Cohomology of Schemes, Lemma 2.2. By Lemma 7.1 the sheaves F|Up ⊗Z Z(χp) are
quasi-coherent. HenceHq(Wp,F|Up ⊗Z Z(χp)) is zero when q > 0. By our definition of
the integer d we see that Wp = ∅ for p ≥ d. Hence also H0(Wp,F|Up ⊗Z Z(χp)) is zero
when p ≥ d. This proves the proposition. �

In the following lemma we establish that a quasi-compact and quasi-separated algebraic
space has finite cohomological dimension for quasi-coherent modules. We are explicit
about the bound only because we will use it later to prove a similar result for higher direct
images.

Lemma 7.3. Let S be a scheme. Let X be an algebraic space over S. Assume X is
quasi-compact and quasi-separated. Then we can choose

(1) an affine scheme U ,
(2) a surjective étale morphism f : U → X ,
(3) an integer d bounding the degrees of the fibres of U → X ,
(4) for every p = 0, 1, . . . , d a surjective étale morphism Vp → Up from an affine

scheme Vp where Up is as in Lemma 6.6, and
(5) an integer dp bounding the degree of the fibres of Vp → Up.

Moreover, whenever we have (1) – (5), then for any quasi-coherentOX -moduleF we have
Hq(X,F) = 0 for q ≥ max(dp + p).

Proof. Since X is quasi-compact we can find a surjective étale morphism U → X
withU affine, see Properties of Spaces, Lemma 6.3. By Decent Spaces, Lemma 5.1 the fibres
of f are universally bounded, hence we can find d. We have Up = Wp/Sp+1 and Wp ⊂
U ×X . . .×X U is open and closed. Since X is quasi-separated the schemes Wp are quasi-
compact, hence Up is quasi-compact. Since U is separated, the schemes Wp are separated,
hence Up is separated by (the absolute version of) Spaces, Lemma 14.5. By Properties of
Spaces, Lemma 6.3 we can find the morphisms Vp → Wp. By Decent Spaces, Lemma 5.1
we can find the integers dp.

At this point the proof uses the spectral sequence

Ep,q1 = Hq(Up,F|Up ⊗Z Z(χp))⇒ Hp+q(X,F)

see Lemma 6.6. By definition of the integer dwe see thatUp = 0 for p ≥ d. By Proposition
7.2 and Lemma 7.1 we see thatHq(Up,F|Up⊗Z Z(χp)) is zero for q ≥ dp for p = 0, . . . , d.
Whence the lemma. �

8. Vanishing for higher direct images

We apply the results of Section 7 to obtain vanishing of higher direct images of quasi-
coherent sheaves for quasi-compact and quasi-separated morphisms. This is useful because
it allows one to argue by descending induction on the cohomological degree in certain
situations.
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Lemma 8.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume that

(1) f is quasi-compact and quasi-separated, and
(2) Y is quasi-compact.

Then there exists an integer n(X → Y ) such that for any algebraic space Y ′, any mor-
phism Y ′ → Y and any quasi-coherent sheaf F ′ on X ′ = Y ′ ×Y X the higher direct
images Rif ′

∗F ′ are zero for i ≥ n(X → Y ).

Proof. Let V → Y be a surjective étale morphism where V is an affine scheme, see
Properties of Spaces, Lemma 6.3. Suppose we prove the result for the base change fV :
V ×Y X → V . Then the result holds for f with n(X → Y ) = n(XV → V ). Namely, if
Y ′ → Y and F ′ are as in the lemma, then Rif ′

∗F ′|V×Y Y ′ is equal to Rif ′
V,∗F ′|X′

V
where

f ′
V : X ′

V = V ×Y Y ′ ×Y X → V ×Y Y ′ = Y ′
V , see Properties of Spaces, Lemma 26.2.

Thus we may assume that Y is an affine scheme.
Moreover, to prove the vanishing for all Y ′ → Y and F ′ it suffices to do so when Y ′ is
an affine scheme. In this case, Rif ′

∗F ′ is quasi-coherent by Lemma 3.1. Hence it suffices to
prove that Hi(X ′,F ′) = 0, because Hi(X ′,F ′) = H0(Y ′, Rif ′

∗F ′) by Cohomology on
Sites, Lemma 14.6 and the vanishing of higher cohomology of quasi-coherent sheaves on
affine algebraic spaces (Proposition 7.2).
Choose U → X , d, Vp → Up and dp as in Lemma 7.3. For any affine scheme Y ′ and
morphism Y ′ → Y denote X ′ = Y ′ ×Y X , U ′ = Y ′ ×Y U , V ′

p = Y ′ ×Y Vp. Then U ′ →
X ′, d′ = d, V ′

p → U ′
p and d′

p = d is a collection of choices as in Lemma 7.3 for the algebraic
space X ′ (details omitted). Hence we see that Hi(X ′,F ′) = 0 for i ≥ max(p + dp) and
we win. �

Lemma 8.2. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Then Rif∗F = 0 for i > 0 and any quasi-coherentOX -module F .

Proof. Recall that an affine morphism of algebraic spaces is representable. Hence
this follows from (3.0.1) and Cohomology of Schemes, Lemma 2.3. �

Lemma 8.3. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Let F be a quasi-coherentOX -module. ThenHi(X,F) = Hi(Y, f∗F) for
all i ≥ 0.

Proof. Follows from Lemma 8.2 and the Leray spectral sequence. See Cohomology
on Sites, Lemma 14.6. �

9. Cohomology with support in a closed subspace

This section is the analogue of Cohomology, Sections 21 and 34 and Étale Cohomology,
Section 79 for abelian sheaves on algebraic spaces.
Let S be a scheme. LetX be an algebraic space over S and let Z ⊂ X be a closed subspace.
Let F be an abelian sheaf on Xétale. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the sections with support in Z (Properties of Spaces, Definition 20.3). This is a left
exact functor which is not exact in general. Hence we obtain a derived functor

RΓZ(X,−) : D(Xétale) −→ D(Ab)
and cohomology groups with support in Z defined by Hq

Z(X,F) = RqΓZ(X,F).
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Let I be an injective abelian sheaf onXétale. LetU ⊂ X be the open subspace which is the
complement of Z. Then the restriction map I(X)→ I(U) is surjective (Cohomology on
Sites, Lemma 12.6) with kernel ΓZ(X, I). It immediately follows that forK ∈ D(Xétale)
there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]

in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D(Xétale).

For an abelian sheaf F onXétale we can consider the subsheaf of sections with support in
Z , denotedHZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ×X Z}

Here we use the support of a section from Properties of Spaces, Definition 20.3. Using the
equivalence of Morphisms of Spaces, Lemma 13.5 we may viewHZ(F) as an abelian sheaf
on Zétale. Thus we obtain a functor

Ab(Xétale) −→ Ab(Zétale), F 7−→ HZ(F)

which is left exact, but in general not exact.

Lemma 9.1. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. Let I be an injective abelian sheaf on Xétale. Then HZ(I) is an injective
abelian sheaf on Zétale.

Proof. Observe that for any abelian sheaf G on Zétale we have

HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Lemma 4.1) and as
I is injective on Xétale we conclude thatHZ(I) is injective on Zétale. �

Denote
RHZ : D(Xétale) −→ D(Zétale)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q
Z (X,F)

Lemma 9.2. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. Let G be an injective abelian sheaf on Zétale. ThenHpZ(i∗G) = 0 for p > 0.

Proof. This is true because the functor i∗ is exact (Lemma 4.1) and transforms injec-
tive abelian sheaves into injective abelian sheaves (Cohomology on Sites, Lemma 14.2). �

Lemma 9.3. Let S be a scheme. Let f : X → Y be an étale morphism of algebraic
spaces over S. Let Z ⊂ Y be a closed subspace such that f−1(Z)→ Z is an isomorphism
of algebraic spaces. Let F be an abelian sheaf on X . Then

HqZ(F) = Hqf−1(Z)(f
−1F)

as abelian sheaves on Z = f−1(Z) and we have Hq
Z(Y,F) = Hq

f−1(Z)(X, f
−1F).
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Proof. Because f is étale an injective resolution of F pulls back to an injective res-
olution of f−1F . Hence it suffices to check the equality for HZ(−) which follows from
the definitions. The proof for cohomology with supports is the same. Some details omit-
ted. �

Let S be a scheme and let X be an algebraic space over S. Let T ⊂ |X| be a closed subset.
We denote DT (Xétale) the strictly full saturated triangulated subcategory of D(Xétale)
consisting of objects whose cohomology sheaves are supported on T .

Lemma 9.4. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. The map Ri∗ = i∗ : D(Zétale) → D(Xétale) induces an equivalence
D(Zétale)→ D|Z|(Xétale) with quasi-inverse

i−1|DZ(Xétale) = RHZ |D|Z|(Xétale)

Proof. Recall that i−1 and i∗ is an adjoint pair of exact functors such that i−1i∗ is
isomorphic to the identify functor on abelian sheaves. See Properties of Spaces, Lemma
19.9 and Morphisms of Spaces, Lemma 13.5. Thus i∗ : D(Zétale) → DZ(Xétale) is fully
faithful and i−1 determines a left inverse. On the other hand, suppose that K is an object
of DZ(Xétale) and consider the adjunction map K → i∗i

−1K. Using exactness of i∗ and
i−1 this induces the adjunction maps Hn(K) → i∗i

−1Hn(K) on cohomology sheaves.
Since these cohomology sheaves are supported on Z we see these adjunction maps are
isomorphisms and we conclude that D(Zétale)→ DZ(Xétale) is an equivalence.

To finish the proof we have to show thatRHZ(K) = i−1K ifK is an object ofDZ(Xétale).
To do this we can use that K = i∗i

−1K as we’ve just proved this is the case. Then we can
choose a K-injective representative I• for i−1K. Since i∗ is the right adjoint to the exact
functor i−1, the complex i∗I• is K-injective (Derived Categories, Lemma 31.9). We see
that RHZ(K) is computed byHZ(i∗I•) = I• as desired. �

10. Vanishing above the dimension

Let S be a scheme. Let X be a quasi-compact and quasi-separated algebraic space over
S. In this case |X| is a spectral space, see Properties of Spaces, Lemma 15.2. Moreover,
the dimension of X (as defined in Properties of Spaces, Definition 9.2) is equal to the
Krull dimension of |X|, see Decent Spaces, Lemma 12.5. We will show that for quasi-
coherent sheaves onX we have vanishing of cohomology above the dimension. This result
is already interesting for quasi-separated algebraic spaces of finite type over a field.

Lemma 10.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Assume dim(X) ≤ d for some integer d. Let F be a quasi-coherent
sheaf F on X .

(1) Hq(X,F) = 0 for q > d,
(2) Hd(X,F)→ Hd(U,F) is surjective for any quasi-compact open U ⊂ X ,
(3) Hq

Z(X,F) = 0 for q > d for any closed subspace Z ⊂ X whose complement is
quasi-compact.

Proof. By Properties of Spaces, Lemma 22.5 every algebraic space Y étale overX has
dimension≤ d. If Y is quasi-separated, the dimension of Y is equal to the Krull dimension
of |Y | by Decent Spaces, Lemma 12.5. Also, if Y is a scheme, then étale cohomology of
F over Y , resp. étale cohomology of F with support in a closed subscheme, agrees with
usual cohomology of F , resp. usual cohomology with support in the closed subscheme.
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See Descent, Proposition 9.3 and Étale Cohomology, Lemma 79.5. We will use these facts
without further mention.

By Decent Spaces, Lemma 8.6 there exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up \ Up+1 (with reduced induced subspace
structure) there exists a quasi-compact separated scheme Vp and a surjective étale mor-
phism fp : Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.

AsUn = Vn is a scheme, our initial remarks imply the cohomology ofF overUn vanishes
in degrees > d by Cohomology, Proposition 22.4. Suppose we have shown, by induction,
that Hq(Up+1,F|Up+1) = 0 for q > d. It suffices to show Hq

Tp
(Up,F) for q > d is zero

in order to conclude the vanishing of cohomology ofF over Up in degrees> d. However,
we have

Hq
Tp

(Up,F) = Hq

f−1
p (Tp)(Vp,F)

by Lemma 9.3 and as Vp is a scheme we obtain the desired vanishing from Cohomology,
Proposition 22.4. In this way we conclude that (1) is true.

To prove (2) let U ⊂ X be a quasi-compact open subspace. Consider the open subspace
U ′ = U ∪ Un. Let Z = U ′ \ U . Then g : Un → U ′ is an étale morphism such that
g−1(Z)→ Z is an isomorphism. Hence by Lemma 9.3 we haveHq

Z(U ′,F) = Hq
Z(Un,F)

which vanishes in degree > d because Un is a scheme and we can apply Cohomology,
Proposition 22.4. We conclude that Hd(U ′,F) → Hd(U,F) is surjective. Assume, by
induction, that we have reduced our problem to the case where U contains Up+1. Then
we set U ′ = U ∪ Up, set Z = U ′ \ U , and we argue using the morphism fp : Vp → U ′

which is étale and has the property that f−1
p (Z)→ Z is an isomorphism. In other words,

we again see that
Hq
Z(U ′,F) = Hq

f−1
p (Z)(Vp,F)

and we again see this vanishes in degrees> d. We conclude thatHd(U ′,F)→ Hd(U,F)
is surjective. Eventually we reach the stage where U1 = X ⊂ U which finishes the proof.

A formal argument shows that (2) implies (3). �

11. Cohomology and base change, I

Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. Let F
be a quasi-coherent sheaf on X . Suppose further that g : Y ′ → Y is a morphism of
algebraic spaces over S. Denote X ′ = XY ′ = Y ′ ×Y X the base change of X and denote
f ′ : X ′ → Y ′ the base change of f . Also write g′ : X ′ → X the projection, and set
F ′ = (g′)∗F . Here is a diagram representing the situation:

(11.0.1)

F ′ = (g′)∗F X ′
g′
//

f ′

��

X

f

��

F

Rf ′
∗F ′ Y ′ g // Y Rf∗F

Here is the simplest case of the base change property we have in mind.
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Lemma 11.1. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. In this case f∗F ∼= Rf∗F is a
quasi-coherent sheaf, and for every diagram (11.0.1) we have

g∗f∗F = f ′
∗(g′)∗F .

Proof. By the discussion surrounding (3.0.1) this reduces to the case of an affine
morphism of schemes which is treated in Cohomology of Schemes, Lemma 5.1. �

Lemma 11.2 (Flat base change). Let S be a scheme. Consider a cartesian diagram of
algebraic spaces

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

over S. Let F be a quasi-coherent OX -module with pullback F ′ = (g′)∗F . Assume that
g is flat and that f is quasi-compact and quasi-separated. For any i ≥ 0

(1) the base change map of Cohomology on Sites, Lemma 15.1 is an isomorphism

g∗Rif∗F −→ Rif ′
∗F ′,

(2) if Y = Spec(A) and Y ′ = Spec(B), then Hi(X,F)⊗A B = Hi(X ′,F ′).

Proof. The morphism g′ is flat by Morphisms of Spaces, Lemma 30.4. Note that
flatness of g and g′ is equivalent to flatness of the morphisms of small étale ringed sites,
see Morphisms of Spaces, Lemma 30.9. Hence we can apply Cohomology on Sites, Lemma
15.1 to obtain a base change map

g∗Rpf∗F −→ Rpf ′
∗F ′

To prove this map is an isomorphism we can work locally in the étale topology onY ′. Thus
we may assume that Y and Y ′ are affine schemes. Say Y = Spec(A) and Y ′ = Spec(B).
In this case we are really trying to show that the map

Hp(X,F)⊗A B −→ Hp(XB ,FB)

is an isomorphism whereXB = Spec(B)×Spec(A)X andFB is the pullback ofF toXB .
In other words, it suffices to prove (2).

Fix A → B a flat ring map and let X be a quasi-compact and quasi-separated algebraic
space over A. Note that g′ : XB → X is affine as a base change of Spec(B)→ Spec(A).
Hence the higher direct images Ri(g′)∗FB are zero by Lemma 8.2. Thus Hp(XB ,FB) =
Hp(X, g′

∗FB), see Cohomology on Sites, Lemma 14.6. Moreover, we have

g′
∗FB = F ⊗A B

where A, B denotes the constant sheaf of rings with value A, B. Namely, it is clear that
there is a map from right to left. For any affine scheme U étale over X we have

g′
∗FB(U) = FB(Spec(B)×Spec(A) U)

= Γ(Spec(B)×Spec(A) U, (Spec(B)×Spec(A) U → U)∗F|U )
= B ⊗A F(U)
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hence the map is an isomorphism. Write B = colimMi as a filtered colimit of finite free
A-modules Mi using Lazard’s theorem, see Algebra, Theorem 81.4. We deduce that

Hp(X, g′
∗FB) = Hp(X,F ⊗A B)

= Hp(X, colimi F ⊗AMi)
= colimiH

p(X,F ⊗AMi)
= colimiH

p(X,F)⊗AMi

= Hp(X,F)⊗A colimiMi

= Hp(X,F)⊗A B

The first equality because g′
∗FB = F⊗AB as seen above. The second because⊗ commutes

with colimits. The third equality because cohomology on X commutes with colimits (see
Lemma 5.1). The fourth equality because Mi is finite free (i.e., because cohomology com-
mutes with finite direct sums). The fifth because⊗ commutes with colimits. The sixth by
choice of our system. �

12. Coherent modules on locally Noetherian algebraic spaces

This section is the analogue of Cohomology of Schemes, Section 9. In Modules on Sites,
Definition 23.1 we have defined coherent modules on any ringed topos. We use this notion
to define coherent modules on locally Noetherian algebraic spaces. Although it is possible
to work with coherent modules more generally we resist the urge to do so.

Definition 12.1. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. A quasi-coherent moduleF onX is called coherent ifF is a coherentOX -module
on the site Xétale in the sense of Modules on Sites, Definition 23.1.

This definition is compatible with the already existing notion of a coherent module on a
locally Noetherian scheme; see assertion (5) of Properties of Spaces, Section 30 (or more
directly Descent, Lemma 8.10). Thus from now on, if X is a locally Noetherian scheme
over S , we will not distinguish between a coherent module on X viewed as a scheme or
a coherent module on X viewed as an algebraic space; this is compatible with the corre-
sponding identifications of categories of quasi-coherent modules discussed in Properties
of Spaces, Section 29.

Having said the above, the following lemma gives an understandable characterization of
coherent modules on locally Noetherian algebraic spaces.

Lemma 12.2. Let S be a scheme. Let X be a locally Noetherian algebraic space over
S. Let F be anOX -module. The following are equivalent

(1) F is coherent,
(2) F is a quasi-coherent, finite typeOX -module,
(3) F is a finitely presentedOX -module,
(4) for any étale morphism ϕ : U → X where U is a scheme the pullback ϕ∗F is a

coherent module on U , and
(5) there exists a surjective étale morphism ϕ : U → X where U is a scheme such

that the pullback ϕ∗F is a coherent module on U .
In particular OX is coherent, any invertible OX -module is coherent, and more generally
any finite locally freeOX -module is coherent.
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Proof. To be sure, if X is a locally Noetherian algebraic space and U → X is an
étale morphism, then U is locally Noetherian, see Properties of Spaces, Section 7. The
lemma then follows from the points (1) – (5) made in Properties of Spaces, Section 30
and the corresponding result for coherent modules on locally Noetherian schemes, see
Cohomology of Schemes, Lemma 9.1. �

Lemma 12.3. Let S be a scheme. LetX be a locally Noetherian algebraic space over S.
The category of coherentOX -modules is abelian. More precisely, the kernel and cokernel
of a map of coherent OX -modules are coherent. Any extension of coherent sheaves is
coherent.

Proof. Choose a scheme U and a surjective étale morphism f : U → X . Pullback
f∗ is an exact functor as it equals a restriction functor, see Properties of Spaces, Equation
(26.1.1). By Lemma 12.2 we can check whether anOX -module F is coherent by checking
whether f∗F is coherent. Hence the lemma follows from the case of schemes which is
Cohomology of Schemes, Lemma 9.2. �

Coherent modules form a Serre subcategory of the category of quasi-coherentOX -modules.
This does not hold for modules on a general ringed topos.

Lemma 12.4. Let S be a scheme. Let X be a locally Noetherian algebraic space over
S. LetF be a coherentOX -module. Any quasi-coherent submodule ofF is coherent. Any
quasi-coherent quotient module of F is coherent.

Proof. Choose a scheme U and a surjective étale morphism f : U → X . Pullback
f∗ is an exact functor as it equals a restriction functor, see Properties of Spaces, Equation
(26.1.1). By Lemma 12.2 we can check whether an OX -module G is coherent by checking
whether f∗H is coherent. Hence the lemma follows from the case of schemes which is
Cohomology of Schemes, Lemma 9.3. �

Lemma 12.5. Let S be a scheme. Let X be a locally Noetherian algebraic space over
S ,. Let F , G be coherent OX -modules. The OX -modules F ⊗OX

G and HomOX
(F ,G)

are coherent.

Proof. Via Lemma 12.2 this follows from the result for schemes, see Cohomology of
Schemes, Lemma 9.4. �

Lemma 12.6. Let S be a scheme. LetX be a locally Noetherian algebraic space over S.
Let F , G be coherent OX -modules. Let ϕ : G → F be a homomorphism of OX -modules.
Let x be a geometric point of X lying over x ∈ |X|.

(1) If Fx = 0 then there exists an open neighbourhood X ′ ⊂ X of x such that
F|X′ = 0.

(2) If ϕx : Gx → Fx is injective, then there exists an open neighbourhood X ′ ⊂ X
of x such that ϕ|X′ is injective.

(3) If ϕx : Gx → Fx is surjective, then there exists an open neighbourhoodX ′ ⊂ X
of x such that ϕ|X′ is surjective.

(4) If ϕx : Gx → Fx is bijective, then there exists an open neighbourhood X ′ ⊂ X
of x such that ϕ|X′ is an isomorphism.

Proof. Let ϕ : U → X be an étale morphism where U is a scheme and let u ∈ U
be a point mapping to x. By Properties of Spaces, Lemmas 29.4 and 22.1 as well as More
on Algebra, Lemma 45.1 we see that ϕx is injective, surjective, or bijective if and only if
ϕu : ϕ∗Fu → ϕ∗Gu has the corresponding property. Thus we can apply the schemes
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version of this lemma to see that (after possibly shrinking U ) the map ϕ∗F → ϕ∗G is
injective, surjective, or an isomorphism. Let X ′ ⊂ X be the open subspace corresponding
to |ϕ|(|U |) ⊂ |X|, see Properties of Spaces, Lemma 4.8. Since {U → X ′} is a covering
for the étale topology, we conclude that ϕ|X′ is injective, surjective, or an isomorphism as
desired. Finally, observe that (1) follows from (2) by looking at the map F → 0. �

Lemma 12.7. Let S be a scheme. LetX be a locally Noetherian algebraic space over S.
LetF be a coherentOX -module. Let i : Z → X be the scheme theoretic support ofF and
G the quasi-coherentOZ -module such that i∗G = F , see Morphisms of Spaces, Definition
15.4. Then G is a coherentOZ -module.

Proof. The statement of the lemma makes sense as a coherent module is in particular
of finite type. Moreover, as Z → X is a closed immersion it is locally of finite type and
hence Z is locally Noetherian, see Morphisms of Spaces, Lemmas 23.7 and 23.5. Finally, as
G is of finite type it is a coherentOZ -module by Lemma 12.2 �

Lemma 12.8. Let S be a scheme. Let i : Z → X be a closed immersion of locally
Noetherian algebraic spaces over S. Let I ⊂ OX be the quasi-coherent sheaf of ideals
cutting out Z. The functor i∗ induces an equivalence between the category of coherent
OX -modules annihilated by I and the category of coherentOZ -modules.

Proof. The functor is fully faithful by Morphisms of Spaces, Lemma 14.1. Let F be
a coherent OX -module annihilated by I . By Morphisms of Spaces, Lemma 14.1 we can
write F = i∗G for some quasi-coherent sheaf G on Z. To check that G is coherent we
can work étale locally (Lemma 12.2). Choosing an étale covering by a scheme we conclude
that G is coherent by the case of schemes (Cohomology of Schemes, Lemma 9.8). Hence
the functor is fully faithful and the proof is done. �

Lemma 12.9. Let S be a scheme. Let f : X → Y be a finite morphism of algebraic
spaces over S with Y locally Noetherian. Let F be a coherent OX -module. Assume f is
finite and Y locally Noetherian. Then Rpf∗F = 0 for p > 0 and f∗F is coherent.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Then V ×Y
X → V is a finite morphism of locally Noetherian schemes. By (3.0.1) we reduce to the
case of schemes which is Cohomology of Schemes, Lemma 9.9. �

13. Coherent sheaves on Noetherian spaces

In this section we mention some properties of coherent sheaves on Noetherian algebraic
spaces.

Lemma 13.1. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
F be a coherent OX -module. The ascending chain condition holds for quasi-coherent
submodules of F . In other words, given any sequence

F1 ⊂ F2 ⊂ . . . ⊂ F

of quasi-coherent submodules, then Fn = Fn+1 = . . . for some n ≥ 0.

Proof. Choose an affine schemeU and a surjective étale morphismU → X (see Prop-
erties of Spaces, Lemma 6.3). Then U is a Noetherian scheme (by Morphisms of Spaces,
Lemma 23.5). If Fn|U = Fn+1|U = . . . then Fn = Fn+1 = . . .. Hence the result follows
from the case of schemes, see Cohomology of Schemes, Lemma 10.1. �
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Lemma 13.2. Let S be a scheme. LetX be a Noetherian algebraic space over S. LetF
be a coherent sheaf on X . Let I ⊂ OX be a quasi-coherent sheaf of ideals corresponding
to a closed subspace Z ⊂ X . Then there is some n ≥ 0 such that InF = 0 if and only if
Supp(F) ⊂ Z (set theoretically).

Proof. Choose an affine schemeU and a surjective étale morphismU → X (see Prop-
erties of Spaces, Lemma 6.3). Then U is a Noetherian scheme (by Morphisms of Spaces,
Lemma 23.5). Note that InF|U = 0 if and only if InF = 0 and similarly for the condi-
tion on the support. Hence the result follows from the case of schemes, see Cohomology
of Schemes, Lemma 10.2. �

Lemma 13.3 (Artin-Rees). Let S be a scheme. Let X be a Noetherian algebraic space
over S. Let F be a coherent sheaf on X . Let G ⊂ F be a quasi-coherent subsheaf. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Then there exists a c ≥ 0 such that for all
n ≥ c we have

In−c(IcF ∩ G) = InF ∩ G

Proof. Choose an affine schemeU and a surjective étale morphismU → X (see Prop-
erties of Spaces, Lemma 6.3). Then U is a Noetherian scheme (by Morphisms of Spaces,
Lemma 23.5). The equality of the lemma holds if and only if it holds after restricting to
U . Hence the result follows from the case of schemes, see Cohomology of Schemes, Lemma
10.3. �

Lemma 13.4. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
F be a quasi-coherent OX -module. Let G be a coherent OX -module. Let I ⊂ OX be a
quasi-coherent sheaf of ideals. Denote Z ⊂ X the corresponding closed subspace and set
U = X \ Z. There is a canonical isomorphism

colimn HomOX
(InG,F) −→ HomOU

(G|U ,F|U ).
In particular we have an isomorphism

colimn HomOX
(In,F) −→ Γ(U,F).

Proof. Let W be an affine scheme and let W → X be a surjective étale morphism
(see Properties of Spaces, Lemma 6.3). SetR = W ×XW . ThenW andR are Noetherian
schemes, see Morphisms of Spaces, Lemma 23.5. Hence the result hold for the restrictions
of F , G , and I , U , Z to W and R by Cohomology of Schemes, Lemma 10.5. It follows
formally that the result holds over X . �

14. Devissage of coherent sheaves

This section is the analogue of Cohomology of Schemes, Section 12.

Lemma 14.1. Let S be a scheme. LetX be a Noetherian algebraic space over S. LetF
be a coherent sheaf onX . Suppose that Supp(F) = Z ∪Z ′ with Z , Z ′ closed. Then there
exists a short exact sequence of coherent sheaves

0→ G′ → F → G → 0
with Supp(G′) ⊂ Z ′ and Supp(G) ⊂ Z.

Proof. Let I ⊂ OX be the sheaf of ideals defining the reduced induced closed sub-
space structure on Z , see Properties of Spaces, Lemma 12.3. Consider the subsheaves G′

n =
InF and the quotients Gn = F/InF . For each n we have a short exact sequence

0→ G′
n → F → Gn → 0
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For every geometric point x of Z ′ \ Z we have Ix = OX,x and hence Gn,x = 0. Thus
we see that Supp(Gn) ⊂ Z. Note that X \ Z ′ is a Noetherian algebraic space. Hence by
Lemma 13.2 there exists an n such that G′

n|X\Z′ = InF|X\Z′ = 0. For such an n we see
that Supp(G′

n) ⊂ Z ′. Thus setting G′ = G′
n and G = Gn works. �

In the following we will freely use the scheme theoretic support of finite type modules as
defined in Morphisms of Spaces, Definition 15.4.

Lemma 14.2. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
F be a coherent sheaf on X . Assume that the scheme theoretic support of F is a reduced
Z ⊂ X with |Z| irreducible. Then there exist an integer r > 0, a nonzero sheaf of ideals
I ⊂ OZ , and an injective map of coherent sheaves

i∗
(
I⊕r)→ F

whose cokernel is supported on a proper closed subspace of Z.

Proof. By assumption there exists a coherentOZ -moduleG with supportZ andF ∼=
i∗G , see Lemma 12.7. Hence it suffices to prove the lemma for the case Z = X and i = id.
By Properties of Spaces, Proposition 13.3 there exists a dense open subspaceU ⊂ X which
is a scheme. Note that U is a Noetherian integral scheme. After shrinking U we may
assume that F|U ∼= O⊕r

U (for example by Cohomology of Schemes, Lemma 12.2 or by a
direct algebra argument). Let I ⊂ OX be a quasi-coherent sheaf of ideals whose associated
closed subspace is the complement ofU inX (see for example Properties of Spaces, Section
12). By Lemma 13.4 there exists an n ≥ 0 and a morphism In(O⊕r

X )→ F which recovers
our isomorphism over U . Since In(O⊕r

X ) = (In)⊕r we get a map as in the lemma. It is
injective: namely, if σ is a nonzero section of I⊕r over a scheme W étale over X , then
because X hence W is reduced the support of σ contains a nonempty open of W . But
the kernel of (In)⊕r → F is zero over a dense open, hence σ cannot be a section of the
kernel. �

Lemma 14.3. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
F be a coherent sheaf on X . There exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that for each j = 1, . . . ,m there exists a reduced closed
subspace Zj ⊂ X with |Zj | irreducible and a sheaf of ideals Ij ⊂ OZj such that

Fj/Fj−1 ∼= (Zj → X)∗Ij
Proof. Consider the collection

T =
{
T ⊂ |X| closed such that there exists a coherent sheaf F

with Supp(F) = T for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because |X| is Noetherian (Properties
of Spaces, Lemma 24.2) we can choose a minimal element T ∈ T . This means that there
exists a coherent sheafF onX whose support is T and for which the lemma does not hold.
Clearly T 6= ∅ since the only sheaf whose support is empty is the zero sheaf for which the
lemma does hold (with m = 0).
If T is not irreducible, then we can write T = Z1 ∪ Z2 with Z1, Z2 closed and strictly
smaller than T . Then we can apply Lemma 14.1 to get a short exact sequence of coherent
sheaves

0→ G1 → F → G2 → 0
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with Supp(Gi) ⊂ Zi. By minimality of T each of Gi has a filtration as in the statement
of the lemma. By considering the induced filtration on F we arrive at a contradiction.
Hence we conclude that T is irreducible.

Suppose T is irreducible. Let J be the sheaf of ideals defining the reduced induced closed
subspace structure on T , see Properties of Spaces, Lemma 12.3. By Lemma 13.2 we see there
exists an n ≥ 0 such that J nF = 0. Hence we obtain a filtration

0 = InF ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F

each of whose successive subquotients is annihilated by J . Hence if each of these subquo-
tients has a filtration as in the statement of the lemma then also F does. In other words
we may assume that J does annihilate F .

Assume T is irreducible and JF = 0 where J is as above. Then the scheme theoretic
support ofF is T , see Morphisms of Spaces, Lemma 14.1. Hence we can apply Lemma 14.2.
This gives a short exact sequence

0→ i∗(I⊕r)→ F → Q→ 0

where the support ofQ is a proper closed subset of T . Hence we see thatQ has a filtration
of the desired type by minimality of T . But then clearly F does too, which is our final
contradiction. �

Lemma 14.4. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
P be a property of coherent sheaves on X . Assume

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) For every reduced closed subspace Z ⊂ X with |Z| irreducible and every quasi-

coherent sheaf of ideals I ⊂ OZ we have P for i∗I .
Then property P holds for every coherent sheaf on X .

Proof. First note that if F is a coherent sheaf with a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F

by coherent subsheaves such that each of Fi/Fi−1 has property P , then so does F . This
follows from the property (1) for P . On the other hand, by Lemma 14.3 we can filter any
F with successive subquotients as in (2). Hence the lemma follows. �

Here is a more useful variant of the lemma above.

Lemma 14.5. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
P be a property of coherent sheaves on X . Assume

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every reduced closed subspace i : Z → X with |Z| irreducible there exists a

coherent sheaf G on Z such that
(a) Supp(G) = Z ,
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(b) for every nonzero quasi-coherent sheaf of ideals I ⊂ OZ there exists a
quasi-coherent subsheaf G′ ⊂ IG such that Supp(G/G′) is proper closed in
|Z| and such that P holds for i∗G′.

Then property P holds for every coherent sheaf on X .

Proof. Consider the collection

T =
{
T ⊂ |X| nonempty closed such that there exists a coherent sheaf

F with Supp(F) = T for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because |X| is Noetherian (Properties
of Spaces, Lemma 24.2) we can choose a minimal element T ∈ T . This means that there
exists a coherent sheafF onX whose support is T and for which the lemma does not hold.

If T is not irreducible, then we can write T = Z1 ∪ Z2 with Z1, Z2 closed and strictly
smaller than T . Then we can apply Lemma 14.1 to get a short exact sequence of coherent
sheaves

0→ G1 → F → G2 → 0
with Supp(Gi) ⊂ Zi. By minimality of T each of Gi has P . Hence F has property P by
(1), a contradiction.

Suppose T is irreducible. Let J be the sheaf of ideals defining the reduced induced closed
subspace structure on T , see Properties of Spaces, Lemma 12.3. By Lemma 13.2 we see there
exists an n ≥ 0 such that J nF = 0. Hence we obtain a filtration

0 = J nF ⊂ J n−1F ⊂ . . . ⊂ JF ⊂ F

each of whose successive subquotients is annihilated by J . Hence if each of these subquo-
tients has a filtration as in the statement of the lemma then also F does by (1). In other
words we may assume that J does annihilate F .

Assume T is irreducible and JF = 0 where J is as above. Denote i : Z → X the
closed subspace corresponding to J . Then F = i∗H for some coherent OZ -module H,
see Morphisms of Spaces, Lemma 14.1 and Lemma 12.7. Let G be the coherent sheaf on Z
satisfying (3)(a) and (3)(b). We apply Lemma 14.2 to get injective maps

I⊕r1
1 → H and I⊕r2

2 → G

where the support of the cokernels are proper closed in Z. Hence we find an nonempty
open V ⊂ Z such that

H⊕r2
V
∼= G⊕r1

V

Let I ⊂ OZ be a quasi-coherent ideal sheaf cutting out Z \ V we obtain (Lemma 13.4) a
map

InG⊕r1 −→ H⊕r2

which is an isomorphism over V . The kernel is supported on Z \ V hence annihilated by
some power of I , see Lemma 13.2. Thus after increasing n we may assume the displayed
map is injective, see Lemma 13.3. Applying (3)(b) we find G′ ⊂ InG such that

(i∗G′)⊕r1 −→ i∗H⊕r2 = F⊕r2

is injective with cokernel supported in a proper closed subset of Z and such that property
P holds for i∗G′. By (1) propertyP holds for (i∗G′)⊕r1 . By (1) and minimality of T = |Z|
propertyP holds forF⊕r2 . And finally by (2) propertyP holds forF which is the desired
contradiction. �
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Lemma 14.6. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
P be a property of coherent sheaves on X . Assume

(1) For any short exact sequence of coherent sheaves on X if two out of three have
property P so does the third.

(2) If P holds for F⊕r for some r ≥ 1, then it holds for F .
(3) For every reduced closed subspace i : Z → X with |Z| irreducible there exists

a coherent sheaf G on X whose scheme theoretic support is Z such that P holds
for G.

Then property P holds for every coherent sheaf on X .

Proof. We will show that conditions (1) and (2) of Lemma 14.4 hold. This is clear
for condition (1). To show that (2) holds, let

T =
{
i : Z → X reduced closed subspace with |Z| irreducible such

that i∗I does not have P for some quasi-coherent I ⊂ OZ

}
If T is nonempty, then sinceX is Noetherian, we can find an i : Z → X which is minimal
in T . We will show that this leads to a contradiction.

Let G be the sheaf whose scheme theoretic support is Z whose existence is assumed in
assumption (3). Let ϕ : i∗I⊕r → G be as in Lemma 14.2. Let

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = Coker(ϕ)

be a filtration as in Lemma 14.3. By minimality of Z and assumption (1) we see that
Coker(ϕ) has property P . As ϕ is injective we conclude using assumption (1) once more
that i∗I⊕r has property P . Using assumption (2) we conclude that i∗I has property P .

Finally, if J ⊂ OZ is a second quasi-coherent sheaf of ideals, setK = I ∩J and consider
the short exact sequences

0→ K → I → I/K → 0 and 0→ K → J → J /K → 0

Arguing as above, using the minimality of Z , we see that i∗I/K and i∗J /K satisfy P .
Hence by assumption (1) we conclude that i∗K and then i∗J satisfy P . In other words, Z
is not an element of T which is the desired contradiction. �

15. Limits of coherent modules

A colimit of coherent modules (on a locally Noetherian algebraic space) is typically not
coherent. But it is quasi-coherent as any colimit of quasi-coherent modules on an algebraic
space is quasi-coherent, see Properties of Spaces, Lemma 29.7. Conversely, if the algebraic
space is Noetherian, then every quasi-coherent module is a filtered colimit of coherent
modules.

Lemma 15.1. Let S be a scheme. LetX be a Noetherian algebraic space over S. Every
quasi-coherentOX -module is the filtered colimit of its coherent submodules.

Proof. Let F be a quasi-coherent OX -module. If G,H ⊂ F are coherent OX -
submodules then the image of G ⊕ H → F is another coherent OX -submodule which
contains both of them (see Lemmas 12.3 and 12.4). In this way we see that the system is
directed. Hence it now suffices to show that F can be written as a filtered colimit of co-
herent modules, as then we can take the images of these modules in F to conclude there
are enough of them.
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Let U be an affine scheme and U → X a surjective étale morphism. Set R = U ×X
U so that X = U/R as usual. By Properties of Spaces, Proposition 32.1 we see that
QCoh(OX) = QCoh(U,R, s, t, c). Hence we reduce to showing the corresponding thing
for QCoh(U,R, s, t, c). Thus the result follows from the more general Groupoids, Lemma
15.4. �

Lemma 15.2. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S with Y Noetherian. Then every quasi-coherent OX -module is a filtered
colimit of finitely presentedOX -modules.

Proof. Let F be a quasi-coherent OX -module. Write f∗F = colimHi with Hi a
coherent OY -module, see Lemma 15.1. By Lemma 12.2 the modules Hi are OY -modules
of finite presentation. Hence f∗Hi is anOX -module of finite presentation, see Properties
of Spaces, Section 30. We claim the map

colim f∗Hi = f∗f∗F → F

is surjective as f is assumed affine, Namely, choose a scheme V and a surjective étale mor-
phism V → Y . Set U = X ×Y V . Then U is a scheme, f ′ : U → V is affine, and U → X
is surjective étale. By Properties of Spaces, Lemma 26.2 we see that f ′

∗(F|U ) = f∗F|V and
similarly for pullbacks. Thus the restriction of f∗f∗F → F to U is the map

f∗f∗F|U = (f ′)∗(f∗F)|V ) = (f ′)∗f ′
∗(F|U )→ F|U

which is surjective as f ′ is an affine morphism of schemes. Hence the claim holds.

We conclude that every quasi-coherent module on X is a quotient of a filtered colimit of
finitely presented modules. In particular, we see that F is a cokernel of a map

colimj∈J Gj −→ colimi∈I Hi

with Gj and Hi finitely presented. Note that for every j ∈ I there exist i ∈ I and a
morphism α : Gj → Hi such that

Gj α
//

��

Hi

��
colimj∈J Gj // colimi∈I Hi

commutes, see Lemma 5.3. In this situation Coker(α) is a finitely presented OX -module
which comes endowed with a map Coker(α)→ F . Consider the set K of triples (i, j, α)
as above. We say that (i, j, α) ≤ (i′, j′, α′) if and only if i ≤ i′, j ≤ j′, and the diagram

Gj α
//

��

Hi

��
Gj′

α′
// Hi′

commutes. It follows from the above that K is a directed partially ordered set,

F = colim(i,j,α)∈K Coker(α),

and we win. �
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16. Vanishing of cohomology

In this section we show that a quasi-compact and quasi-separated algebraic space is affine
if it has vanishing higher cohomology for all quasi-coherent sheaves. We do this in a
sequence of lemmas all of which will become obsolete once we prove Proposition 16.7.

Situation 16.1. Here S is a scheme and X is a quasi-compact and quasi-separated
algebraic space over S with the following property: For every quasi-coherentOX -module
F we have H1(X,F) = 0. We set A = Γ(X,OX).

We would like to show that the canonical morphism

p : X −→ Spec(A)

(see Properties of Spaces, Lemma 33.1) is an isomorphism. IfM is anA-module we denote
M ⊗A OX the quasi-coherent module p∗M̃ .

Lemma 16.2. In Situation 16.1 for an A-module M we have p∗(M ⊗A OX) = M̃
and Γ(X,M ⊗A OX) = M .

Proof. The equality p∗(M ⊗A OX) = M̃ follows from the equality Γ(X,M ⊗A
OX) = M as p∗(M ⊗A OX) is a quasi-coherent module on Spec(A) by Morphisms of
Spaces, Lemma 11.2. Observe that Γ(X,

⊕
i∈I OX) =

⊕
i∈I A by Lemma 5.1. Hence the

lemma holds for free modules. Choose a short exact sequence F1 → F0 → M where
F0, F1 are free A-modules. Since H1(X,−) is zero the global sections functor is right
exact. Moreover the pullback p∗ is right exact as well. Hence we see that

Γ(X,F1 ⊗A OX)→ Γ(X,F0 ⊗A OX)→ Γ(X,M ⊗A OX)→ 0

is exact. The result follows. �

The following lemma shows that Situation 16.1 is preserved by base change of X →
Spec(A) by Spec(A′)→ Spec(A).

Lemma 16.3. In Situation 16.1.
(1) Given an affine morphismX ′ → X of algebraic spaces, we haveH1(X ′,F ′) = 0

for every quasi-coherentOX′ -module F ′.
(2) Given anA-algebraA′ settingX ′ = X×Spec(A) Spec(A′) the morphismX ′ →

X is affine and Γ(X ′,OX′) = A′.

Proof. Part (1) follows from Lemma 8.2 and the Leray spectral sequence (Cohomol-
ogy on Sites, Lemma 14.5). Let A→ A′ be as in (2). Then X ′ → X is affine because affine
morphisms are preserved under base change (Morphisms of Spaces, Lemma 20.5) and the
fact that a morphism of affine schemes is affine. The equality Γ(X ′,OX′) = A′ follows as
(X ′ → X)∗OX′ = A′ ⊗A OX by Lemma 11.1 and thus

Γ(X ′,OX′) = Γ(X, (X ′ → X)∗OX′) = Γ(X,A′ ⊗A OX) = A′

by Lemma 16.2. �

Lemma 16.4. In Situation 16.1. Let Z0, Z1 ⊂ |X| be disjoint closed subsets. Then
there exists an a ∈ A such that Z0 ⊂ V (a) and Z1 ⊂ V (a− 1).

Proof. We may and do endow Z0, Z1 with the reduced induced subspace structure
(Properties of Spaces, Definition 12.5) and we denote i0 : Z0 → X and i1 : Z1 → X the
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corresponding closed immersions. Since Z0 ∩ Z1 = ∅ we see that the canonical map of
quasi-coherentOX -modules

OX −→ i0,∗OZ0 ⊕ i1,∗OZ1

is surjective (look at stalks at geometric points). Since H1(X,−) is zero on the kernel of
this map the induced map of global sections is surjective. Thus we can find a ∈ A which
maps to the global section (0, 1) of the right hand side. �

Lemma 16.5. In Situation 16.1 the morphism p : X → Spec(A) is universally injec-
tive.

Proof. Let A → k be a ring homomorphism where k is a field. It suffices to show
that Spec(k) ×Spec(A) X has at most one point (see Morphisms of Spaces, Lemma 19.6).
Using Lemma 16.3 we may assume that A is a field and we have to show that |X| has at
most one point.

Let’s think of X as an algebraic space over Spec(k) and let’s use the notation X(K) to
denote K-valued points of X for any extension K/k, see Morphisms of Spaces, Section
24. If K/k is an algebraically closed field extension of large transcendence degree, then
we see that X(K) → |X| is surjective, see Morphisms of Spaces, Lemma 24.2. Hence,
after replacing k byK , we see that it suffices to prove thatX(k) is a singleton (in the case
A = k).

Let x, x′ ∈ X(k). By Decent Spaces, Lemma 14.4 we see that x and x′ are closed points
of |X|. Hence x and x′ map to distinct points of Spec(k) if x 6= x′ by Lemma 16.4. We
conclude that x = x′ as desired. �

Lemma 16.6. In Situation 16.1 the morphism p : X → Spec(A) is separated.

Proof. By Decent Spaces, Lemma 9.2 we can find a scheme Y and a surjective integral
morphism Y → X . Since an integral morphism is affine, we can apply Lemma 16.3 to
see that H1(Y,G) = 0 for every quasi-coherent OY -module G. Since Y → X is quasi-
compact and X is quasi-compact, we see that Y is quasi-compact. Since Y is a scheme,
we may apply Cohomology of Schemes, Lemma 3.1 to see that Y is affine. Hence Y is
separated. Note that an integral morphism is affine and universally closed, see Morphisms
of Spaces, Lemma 45.7. By Morphisms of Spaces, Lemma 9.8 we see that X is a separated
algebraic space. �

Proposition 16.7. A quasi-compact and quasi-separated algebraic space is affine if
and only if all higher cohomology groups of quasi-coherent sheaves vanish. More pre-
cisely, any algebraic space as in Situation 16.1 is an affine scheme.

Proof. Choose an affine scheme U = Spec(B) and a surjective étale morphism ϕ :
U → X . Set R = U ×X U . As p is separated (Lemma 16.6) we see that R is a closed
subscheme of U ×Spec(A) U = Spec(B ⊗A B). Hence R = Spec(C) is affine too and the
ring map

B ⊗A B −→ C

is surjective. Let us denote the two maps s, t : B → C as usual. Pick g1, . . . , gm ∈ B
such that s(g1), . . . , s(gm) generate C over t : B → C (which is possible as t : B → C
is of finite presentation and the displayed map is surjective). Then g1, . . . , gm give global
sections of ϕ∗OU and the map

OX [z1, . . . , zn] −→ ϕ∗OU , zj 7−→ gj
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is surjective: you can check this by restricting toU . Namely,ϕ∗ϕ∗OU = t∗OR (by Lemma
11.2) hence you get exactly the condition that s(gi) generate C over t : B → C. By the
vanishing of H1 of the kernel we see that

Γ(X,OX [x1, . . . , xn]) = A[x1, . . . , xn] −→ Γ(X,ϕ∗OU ) = Γ(U,OU ) = B

is surjective. Thus we conclude that B is a finite type A-algebra. Hence X → Spec(A)
is of finite type and separated. By Lemma 16.5 and Morphisms of Spaces, Lemma 27.5
it is also locally quasi-finite. Hence X → Spec(A) is representable by Morphisms of
Spaces, Lemma 51.1 and X is a scheme. Finally X is affine, hence equal to Spec(A), by an
application of Cohomology of Schemes, Lemma 3.1. �

Lemma 16.8. Let S be a scheme. Let X be a Noetherian algebraic space over S. As-
sume that for every coherentOX -module F we have H1(X,F) = 0. Then X is an affine
scheme.

Proof. The assumption implies that H1(X,F) = 0 for every quasi-coherent OX -
module F by Lemmas 15.1 and 5.1. Then X is affine by Proposition 16.7. �

Lemma 16.9. Let S be a scheme. LetX be a Noetherian algebraic space over S. Let L
be an invertible OX -module. Assume that for every coherent OX -module F there exists
an n ≥ 1 such that H1(X,F ⊗OX

L⊗n) = 0. Then X is a scheme and L is ample on X .

Proof. Let s ∈ H0(X,L⊗d) be a global section. Let U ⊂ X be the open subspace
over which s is a generator of L⊗d. In particular we have L⊗d|U ∼= OU . We claim that U
is affine.

Proof of the claim. We will show thatH1(U,F) = 0 for every quasi-coherentOU -module
F . This will prove the claim by Proposition 16.7. Denote j : U → X the inclusion
morphism. Since étale locally the morphism j is affine (by Morphisms, Lemma 11.10) we
see that j is affine (Morphisms of Spaces, Lemma 20.3). Hence we have

H1(U,F) = H1(X, j∗F)

by Lemma 8.2 (and Cohomology on Sites, Lemma 14.6). Write j∗F = colimFi as a filtered
colimit of coherentOX -modules, see Lemma 15.1. Then

H1(X, j∗F) = colimH1(X,Fi)

by Lemma 5.1. Thus it suffices to show that H1(X,Fi) maps to zero in H1(U, j∗Fi). By
assumption there exists an n ≥ 1 such that

H1(X,Fi ⊗OX
(OX ⊕ L⊕ . . .⊕ L⊗d−1)⊗OX

L⊗n) = 0

Hence there exists an a ≥ 0 such thatH1(X,Fi⊗OX
L⊗ad) = 0. On the other hand, the

map
sa : Fi −→ Fi ⊗OX

L⊗ad

is an isomorphism after restriction to U . Contemplating the commutative diagram

H1(X,Fi) //

sa

��

H1(U, j∗Fi)

∼=
��

H1(X,Fi ⊗OX
L⊗ad) // H1(U, j∗(Fi ⊗OX

L⊗ad))

we conclude that the map H1(X,Fi)→ H1(U, j∗Fi) is zero and the claim holds.
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Let x ∈ |X| be a closed point. By Decent Spaces, Lemma 14.6 we can represent x by a
closed immersion i : Spec(k)→ X (this also uses that a quasi-separated algebraic space is
decent, see Decent Spaces, Section 6). Thus OX → i∗OSpec(k) is surjective. Let I ⊂ OX
be the kernel and choose d ≥ 1 such that H1(X, I ⊗OX

L⊗d) = 0. Then

H0(X,L⊗d)→ H0(X, i∗OSpec(k) ⊗OX
L⊗d) = H0(Spec(k), i∗L⊗d) ∼= k

is surjective by the long exact cohomology sequence. Hence there exists an s ∈ H0(X,L⊗d)
such that x ∈ U where U is the open subspace corresponding to s as above. Thus x is in
the schematic locus (see Properties of Spaces, Lemma 13.1) of X by our claim.
To conclude that X is a scheme, it suffices to show that any open subset of |X| which
contains all the closed points is equal to |X|. This follows from the fact that |X| is a
Noetherian topological space, see Properties of Spaces, Lemma 24.3. Finally, if X is a
scheme, then we can apply Cohomology of Schemes, Lemma 3.3 to conclude that L is
ample. �

17. Finite morphisms and affines

This section is the analogue of Cohomology of Schemes, Section 13.

Lemma 17.1. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Assume f is finite, surjective andX locally Noetherian. Let i : Z → X be a closed
immersion. Denote i′ : Z ′ → Y the inverse image of Z (Morphisms of Spaces, Section
13) and f ′ : Z ′ → Z the induced morphism. Then G = f ′

∗OZ′ is a coherent OZ -module
whose support is Z.

Proof. Observe that f ′ is the base change of f and hence is finite and surjective by
Morphisms of Spaces, Lemmas 5.5 and 45.5. Note that Y , Z , and Z ′ are locally Noether-
ian by Morphisms of Spaces, Lemma 23.5 (and the fact that closed immersions and finite
morphisms are of finite type). By Lemma 12.9 we see that G is a coherent OZ -module.
The support of G is closed in |Z|, see Morphisms of Spaces, Lemma 15.2. Hence if the
support of G is not equal to |Z|, then after replacing X by an open subspace we may as-
sume G = 0 but Z 6= ∅. This would mean that f ′

∗OZ′ = 0. In particular the section
1 ∈ Γ(Z ′,OZ′) = Γ(Z, f ′

∗OZ′) would be zero which would imply Z ′ = ∅ is the empty
algebraic space. This is impossible as Z ′ → Z is surjective. �

Lemma 17.2. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let F be a quasi-coherent sheaf on Y . Let I be a quasi-coherent sheaf of ideals on
X . If f is affine then If∗F = f∗(f−1IF) (with notation as explained in the proof).

Proof. The notation means the following. Since f−1 is an exact functor we see that
f−1I is a sheaf of ideals of f−1OX . Via the map f ] : f−1OX → OY on Yétale this
acts on F . Then f−1IF is the subsheaf generated by sums of local sections of the form
as where a is a local section of f−1I and s is a local section of F . It is a quasi-coherent
OY -submodule of F because it is also the image of a natural map f∗I ⊗OY

F → F .
Having said this the proof is straightforward. Namely, the question is étale local on X
and hence we may assumeX is an affine scheme. In this case the result is a consequence of
the corresponding result for schemes, see Cohomology of Schemes, Lemma 13.2. �

Lemma 17.3. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Assume

(1) f finite,
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(2) f surjective,
(3) Y affine, and
(4) X Noetherian.

Then X is affine.

Proof. We will prove that under the assumptions of the lemma for any coherent
OX -module F we haveH1(X,F) = 0. This implies thatH1(X,F) = 0 for every quasi-
coherent OX -module F by Lemmas 15.1 and 5.1. Then it follows that X is affine from
Proposition 16.7.
Let P be the property of coherent sheaves F on X defined by the rule

P(F)⇔ H1(X,F) = 0.
We are going to apply Lemma 14.5. Thus we have to verify (1), (2) and (3) of that lemma
forP . Property (1) follows from the long exact cohomology sequence associated to a short
exact sequence of sheaves. Property (2) follows sinceH1(X,−) is an additive functor. To
see (3) let i : Z → X be a reduced closed subspace with |Z| irreducible. Let i′ : Z ′ → Y
and f ′ : Z ′ → Z be as in Lemma 17.1 and set G = f ′

∗OZ′ . We claim that G satisfies
properties (3)(a) and (3)(b) of Lemma 14.5 which will finish the proof. Property (3)(a) we
have seen in Lemma 17.1. To see (3)(b) let I be a nonzero quasi-coherent sheaf of ideals on
Z. Denote I ′ ⊂ OZ′ the quasi-coherent ideal (f ′)−1IOZ′ , i.e., the image of (f ′)∗I →
OZ′ . By Lemma 17.2 we have f∗I ′ = IG. We claim the common value G′ = IG = f ′

∗I ′

satisfies the condition expressed in (3)(b). First, it is clear that the support of G/G′ is
contained in the support ofOZ/I which is a proper subspace of |Z| as I is a nonzero ideal
sheaf on the reduced and irreducible algebraic space Z. The morphism f ′ is affine, hence
R1f ′

∗I ′ = 0 by Lemma 8.2. As Z ′ is affine (as a closed subscheme of an affine scheme) we
have H1(Z ′, I ′) = 0. Hence the Leray spectral sequence (in the form Cohomology on
Sites, Lemma 14.6) implies that H1(Z, f ′

∗I ′) = 0. Since i : Z → X is affine we conclude
that R1i∗f

′
∗I ′ = 0 hence H1(X, i∗f ′

∗I ′) = 0 by Leray again. In other words, we have
H1(X, i∗G′) = 0 as desired. �

18. A weak version of Chow’s lemma

In this section we quickly prove the following lemma in order to help us prove the basic
results on cohomology of coherent modules on proper algebraic spaces.

Lemma 18.1. Let A be a ring. LetX be an algebraic space over Spec(A) whose struc-
ture morphism X → Spec(A) is separated of finite type. Then there exists a proper
surjective morphism X ′ → X where X ′ is a scheme which is H-quasi-projective over
Spec(A).

Proof. LetW be an affine scheme and let f : W → X be a surjective étale morphism.
There exists an integer d such that all geometric fibres of f have ≤ d points (because X is
a separated algebraic hence reasonable, see Decent Spaces, Lemma 5.1). Picking d minimal
we get a nonempty open U ⊂ X such that f−1(U) → U is finite étale of degree d, see
Decent Spaces, Lemma 8.1. Let

V ⊂W ×X W ×X . . .×X W

(d factors in the fibre product) be the complement of all the diagonals. Because W → X
is separated the diagonal W → W ×X W is a closed immersion. Since W → X is étale
the diagonal W → W ×X W is an open immersion, see Morphisms of Spaces, Lemmas
39.10 and 38.9. Hence the diagonals are open and closed subschemes of the quasi-compact
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schemeW ×X . . .×XW . In particular we conclude V is a quasi-compact scheme. Choose
an open immersionW ⊂ Y with Y H-projective overA (this is possible asW is affine and
of finite type over A; for example we can use Morphisms, Lemmas 39.2 and 43.11). Let

Z ⊂ Y ×A Y ×A . . .×A Y

be the scheme theoretic image of the compositionV →W×X . . .×XW → Y ×A. . .×AY .
Observe that this morphism is quasi-compact since V is quasi-compact and Y ×A . . .×AY
is separated. Note that V → Z is an open immersion as V → Y ×A . . . ×A Y is an
immersion, see Morphisms, Lemma 7.7. The projection morphisms give d morphisms gi :
Z → Y . These morphisms gi are projective as Y is projective over A, see material in
Morphisms, Section 43. We set

X ′ =
⋃
g−1
i (W ) ⊂ Z

There is a morphismX ′ → X whose restriction to g−1
i (W ) is the composition g−1

i (W )→
W → X . Namely, these morphisms agree over V hence agree over g−1

i (W ) ∩ g−1
j (W )

by Morphisms of Spaces, Lemma 17.8. Claim: the morphism X ′ → X is proper.

If the claim holds, then the lemma follows by induction on d. Namely, by construction
X ′ is H-quasi-projective over Spec(A). The image of X ′ → X contains the open U as
V surjects onto U . Denote T the reduced induced algebraic space structure on X \ U .
Then T ×X W is a closed subscheme of W , hence affine. Moreover, the morphism T ×X
W → T is étale and every geometric fibre has < d points. By induction hypothesis there
exists a proper surjective morphism T ′ → T where T ′ is a scheme H-quasi-projective over
Spec(A). Since T is a closed subspace of X we see that T ′ → X is a proper morphism.
Thus the lemma follows by taking the proper surjective morphism X ′ q T ′ → X .

Proof of the claim. By construction the morphismX ′ → X is separated and of finite type.
We will check conditions (1) – (4) of Morphisms of Spaces, Lemma 42.5 for the morphisms
V → X ′ and X ′ → X . Conditions (1) and (2) we have seen above. Condition (3) holds
asX ′ → X is separated (as a morphism whose source is a separated algebraic space). Thus
it suffices to check liftability to X ′ for diagrams

Spec(K) //

��

V

��
Spec(R) // X

where R is a valuation ring with fraction field K. Note that the top horizontal map is
given by d pairwise distinct K-valued points w1, . . . , wd of W . In fact, this is a complete
set of inverse images of the point x ∈ X(K) coming from the diagram. Since W → X
is surjective, we can, after possibly replacing R by an extension of valuation rings, lift the
morphism Spec(R) → X to a morphism w : Spec(R) → W , see Morphisms of Spaces,
Lemma 42.4. Since w1, . . . , wd is a complete collection of inverse images of x we see that
w|Spec(K) is equal to one of them, saywi. Thus we see that we get a commutative diagram

Spec(K) //

��

Z

gi

��
Spec(R) w // Y
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By the valuative criterion of properness for the projective morphism gi we can lift w to
z : Spec(R)→ Z , see Morphisms, Lemma 43.5 and Schemes, Proposition 20.6. The image
of z is in g−1

i (W ) ⊂ X ′ and the proof is complete. �

19. Noetherian valuative criterion

We prove a version of the valuative criterion for properness using discrete valuation rings.
More precise (and therefore more technical) versions can be found in Limits of Spaces,
Section 21.

Lemma 19.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) Y is locally Noetherian,
(2) f is locally of finite type and quasi-separated,
(3) for every commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a discrete valuation ring and K its fraction field, there is at most one
dotted arrow making the diagram commute.

Then f is separated.

Proof. We have to show that the diagonal ∆ : X → X ×Y X is a closed immer-
sion. We already know ∆ is representable, separated, a monomorphism, and locally of
finite type, see Morphisms of Spaces, Lemma 4.1. Choose an affine scheme U and an étale
morphism U → X ×Y X . Set V = X ×∆,X×YX U . It suffices to show that V → U is a
closed immersion (Morphisms of Spaces, Lemma 12.1). Since X ×Y X is locally of finite
type over Y we see thatU is Noetherian (use Morphisms of Spaces, Lemmas 23.2, 23.3, and
23.5). Note that V is a scheme as ∆ is representable. Also, V is quasi-compact because f is
quasi-separated. Hence V → U is of finite type. Consider a commutative diagram

Spec(K) //

��

V

��
Spec(A) //

;;

U

of morphisms of schemes where A is a discrete valuation ring with fraction field K. We
can interpret the composition Spec(A) → U → X ×Y X as a pair of morphisms a, b :
Spec(A) → X agreeing as morphisms into Y and equal when restricted to Spec(K).
Hence our assumption (3) guarantees a = b and we find the dotted arrow in the diagram.
By Limits, Lemma 15.3 we conclude that V → U is proper. In other words, ∆ is proper.
Since ∆ is a monomorphism, we find that ∆ is a closed immersion (Étale Morphisms,
Lemma 7.2) as desired. �

Lemma 19.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) Y is locally Noetherian,
(2) f is of finite type and quasi-separated,
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(3) for every commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a discrete valuation ring and K its fraction field, there is a unique
dotted arrow making the diagram commute.

Then f is proper.

Proof. It suffices to prove f is universally closed because f is separated by Lemma
19.1. To do this we may work étale locally on Y (Morphisms of Spaces, Lemma 9.5). Hence
we may assume Y = Spec(A) is a Noetherian affine scheme. Choose X ′ → X as in the
weak form of Chow’s lemma (Lemma 18.1). We claim that X ′ → Spec(A) is universally
closed. The claim implies the lemma by Morphisms of Spaces, Lemma 40.7. To prove
this, according to Limits, Lemma 15.4 it suffices to prove that in every solid commutative
diagram

Spec(K) //

��

X ′ // X

��
Spec(A) //

a

;;

b

66

Y

where A is a dvr with fraction field K we can find the dotted arrow a. By assumption
we can find the dotted arrow b. Then the morphism X ′ ×X,b Spec(A) → Spec(A) is a
proper morphism of schemes and by the valuative criterion for morphisms of schemes we
can lift b to the desired morphism a. �

Remark 19.3 (Variant for complete discrete valuation rings). In Lemmas 19.1 and
19.2 it suffices to consider complete discrete valuation rings. To be precise in Lemma 19.1
we can replace condition (3) by the following condition: Given any commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a complete discrete valuation ring with fraction field K there exists at most
one dotted arrow making the diagram commute. Namely, given any diagram as in Lemma
19.1 (3) the completion A∧ is a discrete valuation ring (More on Algebra, Lemma 43.5)
and the uniqueness of the arrow Spec(A∧) → X implies the uniqueness of the arrow
Spec(A)→ X for example by Properties of Spaces, Proposition 17.1. Similarly in Lemma
19.2 we can replace condition (3) by the following condition: Given any commutative
diagram

Spec(K) //

��

X

��
Spec(A) // Y
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where A is a complete discrete valuation ring with fraction field K there exists an ex-
tension A ⊂ A′ of complete discrete valuation rings inducing a fraction field extension
K ⊂ K ′ such that there exists a unique arrow Spec(A′)→ X making the diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

commute. Namely, given any diagram as in Lemma 19.2 part (3) the existence of any
commutative diagram

Spec(L) //

��

Spec(K) // X

��
Spec(B) //

44

Spec(A) // Y

for any extension A ⊂ B of discrete valuation rings will imply there exists an arrow
Spec(A)→ X fitting into the diagram. This was shown in Morphisms of Spaces, Lemma
41.4. In fact, it follows from these considerations that it suffices to look for dotted arrows
in diagrams for any class of discrete valuation rings such that, given any discrete valuation
ring, there is an extension of it that is in the class. For example, we could take complete
discrete valuation rings with algebraically closed residue field.

20. Higher direct images of coherent sheaves

In this section we prove the fundamental fact that the higher direct images of a coherent
sheaf under a proper morphism are coherent. First we prove a helper lemma.

Lemma 20.1. Let S be a scheme. Consider a commutative diagram

X
i
//

f   

Pn
Y

��
Y

of algebraic spaces over S. Assume i is a closed immersion and Y Noetherian. Set L =
i∗OPn

Y
(1). Let F be a coherent module on X . Then there exists an integer d0 such that

for all d ≥ d0 we have Rpf∗(F ⊗OX
L⊗d) = 0 for all p > 0.

Proof. Checking whetherRpf∗(F⊗L⊗d) is zero can be done étale locally on Y , see
Equation (3.0.1). Hence we may assume Y is the spectrum of a Noetherian ring. In this
caseX is a scheme and the result follows from Cohomology of Schemes, Lemma 16.2. �

Lemma 20.2. Let S be a scheme. Let f : X → Y be a proper morphism of algebraic
spaces over S with Y locally Noetherian. Let F be a coherent OX -module. Then Rif∗F
is a coherentOY -module for all i ≥ 0.

Proof. We first remark thatX is a locally Noetherian algebraic space by Morphisms
of Spaces, Lemma 23.5. Hence the statement of the lemma makes sense. Moreover, comput-
ingRif∗F commutes with étale localization on Y (Properties of Spaces, Lemma 26.2) and
checking whether Rif∗F coherent can be done étale locally on Y (Lemma 12.2). Hence
we may assume that Y = Spec(A) is a Noetherian affine scheme.
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Assume Y = Spec(A) is an affine scheme. Note that f is locally of finite presentation
(Morphisms of Spaces, Lemma 28.7). Thus it is of finite presentation, hence X is Noe-
therian (Morphisms of Spaces, Lemma 28.6). Thus Lemma 14.6 applies to the category of
coherent modules ofX . For a coherent sheafF onX we sayP holds if and only ifRif∗F
is a coherent module on Spec(A). We will show that conditions (1), (2), and (3) of Lemma
14.6 hold for this property thereby finishing the proof of the lemma.

Verification of condition (1). Let

0→ F1 → F2 → F3 → 0
be a short exact sequence of coherent sheaves on X . Consider the long exact sequence of
higher direct images

Rp−1f∗F3 → Rpf∗F1 → Rpf∗F2 → Rpf∗F3 → Rp+1f∗F1

Then it is clear that if 2-out-of-3 of the sheavesFi have propertyP , then the higher direct
images of the third are sandwiched in this exact complex between two coherent sheaves.
Hence these higher direct images are also coherent by Lemmas 12.3 and 12.4. Hence prop-
erty P holds for the third as well.

Verification of condition (2). This follows immediately from the fact that Rif∗(F1 ⊕
F2) = Rif∗F1 ⊕ Rif∗F2 and that a summand of a coherent module is coherent (see
lemmas cited above).

Verification of condition (3). Let i : Z → X be a closed immersion withZ reduced and |Z|
irreducible. Set g = f ◦ i : Z → Spec(A). Let G be a coherent module onZ whose scheme
theoretic support is equal to Z such that Rpg∗G is coherent for all p. Then F = i∗G is a
coherent module on X whose scheme theoretic support is Z such that Rpf∗F = Rpg∗G.
To see this use the Leray spectral sequence (Cohomology on Sites, Lemma 14.7) and the
fact thatRqi∗G = 0 for q > 0 by Lemma 8.2 and the fact that a closed immersion is affine.
(Morphisms of Spaces, Lemma 20.6). Thus we reduce to finding a coherent sheaf G on Z
with support equal to Z such that Rpg∗G is coherent for all p.

We apply Lemma 18.1 to the morphism Z → Spec(A). Thus we get a diagram

Z

g
##

Z ′

g′

��

π
oo

i
// Pn

A

{{
Spec(A)

with π : Z ′ → Z proper surjective and i an immersion. Since Z → Spec(A) is proper
we conclude that g′ is proper (Morphisms of Spaces, Lemma 40.4). Hence i is a closed
immersion (Morphisms of Spaces, Lemmas 40.6 and 12.3). It follows that the morphism
i′ = (i, π) : Pn

A ×Spec(A) Z
′ = Pn

Z is a closed immersion (Morphisms of Spaces, Lemma
4.6). Set

L = i∗OPn
A

(1) = (i′)∗OPn
Z

(1)
We may apply Lemma 20.1 to L and π as well as L and g′. Hence for all d � 0 we have
Rpπ∗L⊗d = 0 for all p > 0 and Rp(g′)∗L⊗d = 0 for all p > 0. Set G = π∗L⊗d. By the
Leray spectral sequence (Cohomology on Sites, Lemma 14.7) we have

Ep,q2 = Rpg∗R
qπ∗L⊗d ⇒ Rp+q(g′)∗L⊗d

and by choice of d the only nonzero terms in Ep,q2 are those with q = 0 and the only
nonzero terms of Rp+q(g′)∗L⊗d are those with p = q = 0. This implies that Rpg∗G = 0
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for p > 0 and that g∗G = (g′)∗L⊗d. Applying Cohomology of Schemes, Lemma 16.3 we
see that g∗G = (g′)∗L⊗d is coherent.

We still have to check that the support of G is Z. This follows from the fact that L⊗d has
lots of global sections. We spell it out here. Note that L⊗d is globally generated for all
d ≥ 0 because the same is true for OPn(d). Pick a point z ∈ Z ′ mapping to the generic
point ξ ofZ which we can do as π is surjective. (Observe thatZ does indeed have a generic
point as |Z| is irreducible and Z is Noetherian, hence quasi-separated, hence |Z| is a sober
topological space by Properties of Spaces, Lemma 15.1.) Pick s ∈ Γ(Z ′,L⊗d) which does
not vanish at z. Since Γ(Z,G) = Γ(Z ′,L⊗d) we may think of s as a global section of G.
Choose a geometric point z of Z ′ lying over z and denote ξ = g′ ◦ z the corresponding
geometric point of Z. The adjunction map

(g′)∗G = (g′)∗g′
∗L⊗d −→ L⊗d

induces a map of stalks Gξ → Lz , see Properties of Spaces, Lemma 29.5. Moreover the
adjunction map sends the pullback of s (viewed as a section of G) to s (viewed as a section
of L⊗d). Thus the image of s in the vector space which is the source of the arrow

Gξ ⊗ κ(ξ) −→ L⊗d
z ⊗ κ(z)

isn’t zero since by choice of s the image in the target of the arrow is nonzero. Hence ξ is
in the support of G (Morphisms of Spaces, Lemma 15.2). Since |Z| is irreducible and Z is
reduced we conclude that the scheme theoretic support of G is all of Z as desired. �

Lemma 20.3. Let A be a Noetherian ring. Let f : X → Spec(A) be a proper mor-
phism of algebraic spaces. Let F be a coherent OX -module. Then Hi(X,F) is finite
A-module for all i ≥ 0.

Proof. This is just the affine case of Lemma 20.2. Namely, by Lemma 3.1 we know
that Rif∗F is a quasi-coherent sheaf. Hence it is the quasi-coherent sheaf associated to
the A-module Γ(Spec(A), Rif∗F) = Hi(X,F). The equality holds by Cohomology on
Sites, Lemma 14.6 and vanishing of higher cohomology groups of quasi-coherent modules
on affine schemes (Cohomology of Schemes, Lemma 2.2). By Lemma 12.2 we see Rif∗F
is a coherent sheaf if and only if Hi(X,F) is an A-module of finite type. Hence Lemma
20.2 gives us the conclusion. �

Lemma 20.4. Let A be a Noetherian ring. Let B be a finitely generated graded A-
algebra. Let f : X → Spec(A) be a proper morphism of algebraic spaces. Set B = f∗B̃.
Let F be a quasi-coherent graded B-module of finite type. For every p ≥ 0 the graded
B-module Hp(X,F) is a finite B-module.

Proof. To prove this we consider the fibre product diagram

X ′ = Spec(B)×Spec(A) X π
//

f ′

��

X

f

��
Spec(B) // Spec(A)

Note that f ′ is a proper morphism, see Morphisms of Spaces, Lemma 40.3. Also, B is a
finitely generated A-algebra, and hence Noetherian (Algebra, Lemma 31.1). This implies
that X ′ is a Noetherian algebraic space (Morphisms of Spaces, Lemma 28.6). Note that
X ′ is the relative spectrum of the quasi-coherent OX -algebra B by Morphisms of Spaces,
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Lemma 20.7. Since F is a quasi-coherent B-module we see that there is a unique quasi-
coherent OX′ -module F ′ such that π∗F ′ = F , see Morphisms of Spaces, Lemma 20.10.
Since F is finite type as a B-module we conclude that F ′ is a finite type OX′ -module
(details omitted). In other words, F ′ is a coherent OX′ -module (Lemma 12.2). Since the
morphism π : X ′ → X is affine we have

Hp(X,F) = Hp(X ′,F ′)
by Lemma 8.2 and Cohomology on Sites, Lemma 14.6. Thus the lemma follows from
Lemma 20.3. �

21. Ample invertible sheaves and cohomology

Here is a criterion for ampleness on proper algebraic spaces over affine bases in terms of
vanishing of cohomology after twisting.

Lemma 21.1. Let R be a Noetherian ring. Let X be a proper algebraic space over R.
Let L be an invertibleOX -module. The following are equivalent

(1) X is a scheme and L is ample on X ,
(2) for every coherent OX -module F there exists an n0 ≥ 0 such that Hp(X,F ⊗
L⊗n) = 0 for all n ≥ n0 and p > 0, and

(3) for every coherent OX -module F there exists an n ≥ 1 such that H1(X,F ⊗
L⊗n) = 0.

Proof. The implication (1)⇒ (2) follows from Cohomology of Schemes, Lemma 17.1.
The implication (2)⇒ (3) is trivial. The implication (3)⇒ (1) is Lemma 16.9. �

Lemma 21.2. LetR be a Noetherian ring. Let f : Y → X be a morphism of algebraic
spaces proper overR. LetL be an invertibleOX -module. Assume f is finite and surjective.
The following are equivalent

(1) X is a scheme and L is ample, and
(2) Y is a scheme and f∗L is ample.

Proof. Assume (1). Then Y is a scheme as a finite morphism is representable (by
schemes), see Morphisms of Spaces, Lemma 45.3. Hence (2) follows from Cohomology of
Schemes, Lemma 17.2.
Assume (2). Let P be the following property on coherent OX -modules F : there exists
an n0 such that Hp(X,F ⊗ L⊗n) = 0 for all n ≥ n0 and p > 0. We will prove that
P holds for any coherent OX -module F , which implies L is ample by Lemma 21.1. We
are going to apply Lemma 14.5. Thus we have to verify (1), (2) and (3) of that lemma for
P . Property (1) follows from the long exact cohomology sequence associated to a short
exact sequence of sheaves and the fact that tensoring with an invertible sheaf is an exact
functor. Property (2) follows since Hp(X,−) is an additive functor.
To see (3) let i : Z → X be a reduced closed subspace with |Z| irreducible. Let i′ :
Z ′ → Y and f ′ : Z ′ → Z be as in Lemma 17.1 and set G = f ′

∗OZ′ . We claim that G
satisfies properties (3)(a) and (3)(b) of Lemma 14.5 which will finish the proof. Property
(3)(a) we have seen in Lemma 17.1. To see (3)(b) let I be a nonzero quasi-coherent sheaf
of ideals on Z. Denote I ′ ⊂ OZ′ the quasi-coherent ideal (f ′)−1IOZ′ , i.e., the image
of (f ′)∗I → OZ′ . By Lemma 17.2 we have f∗I ′ = IG. We claim the common value
G′ = IG = f ′

∗I ′ satisfies the condition expressed in (3)(b). First, it is clear that the
support of G/G′ is contained in the support ofOZ/I which is a proper subspace of |Z| as
I is a nonzero ideal sheaf on the reduced and irreducible algebraic space Z. Recall that f ′

∗,
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i∗, and i′∗ transform coherent modules into coherent modules, see Lemmas 12.9 and 12.8.
As Y is a scheme and L is ample we see from Lemma 21.1 that there exists an n0 such that

Hp(Y, i′∗I ′ ⊗OY
f∗L⊗n) = 0

for n ≥ n0 and p > 0. Now we get

Hp(X, i∗G′ ⊗OX
L⊗n) = Hp(Z,G′ ⊗OZ

i∗L⊗n)
= Hp(Z, f ′

∗I ′ ⊗OZ
i∗L⊗n))

= Hp(Z, f ′
∗(I ′ ⊗OZ′ (f ′)∗i∗L⊗n))

= Hp(Z, f ′
∗(I ′ ⊗OZ′ (i′)∗f∗L⊗n))

= Hp(Z ′, I ′ ⊗OZ′ (i′)∗f∗L⊗n))
= Hp(Y, i′∗I ′ ⊗OY

f∗L⊗n) = 0

Here we have used the projection formula and the Leray spectral sequence (see Cohomol-
ogy on Sites, Sections 50 and 14) and Lemma 4.1. This verifies property (3)(b) of Lemma
14.5 as desired. �

22. The theorem on formal functions

This section is the analogue of Cohomology of Schemes, Section 20. We encourage the
reader to read that section first.

Situation 22.1. Here A is a Noetherian ring and I ⊂ A is an ideal. Also, f : X →
Spec(A) is a proper morphism of algebraic spaces and F is a coherent sheaf on X .

In this situation we denote InF the quasi-coherent submodule of F generated as an OX -
module by products of local sections of F and elements of In. In other words, it is the
image of the map f∗Ĩ ⊗OX

F → F .

Lemma 22.2. In Situation 22.1. Set B =
⊕

n≥0 I
n. Then for every p ≥ 0 the graded

B-module
⊕

n≥0 H
p(X, InF) is a finite B-module.

Proof. Let B =
⊕
InOX = f∗B̃. Then

⊕
InF is a finite type graded B-module.

Hence the result follows from Lemma 20.4. �

Lemma 22.3. In Situation 22.1. For every p ≥ 0 there exists an integer c ≥ 0 such
that

(1) the multiplication map In−c⊗Hp(X, IcF)→ Hp(X, InF) is surjective for all
n ≥ c, and

(2) the image of Hp(X, In+mF) → Hp(X, InF) is contained in the submodule
Im−cHp(X, InF) for all n ≥ 0, m ≥ c.

Proof. By Lemma 22.2 we can find d1, . . . , dt ≥ 0, and xi ∈ Hp(X, IdiF) such that⊕
n≥0 H

p(X, InF) is generated by x1, . . . , xt over B =
⊕

n≥0 I
n. Take c = max{di}.

It is clear that (1) holds. For (2) let b = max(0, n−c). Consider the commutative diagram
of A-modules

In+m−c−b ⊗ Ib ⊗Hp(X, IcF) //

��

In+m−c ⊗Hp(X, IcF) // Hp(X, In+mF)

��
In+m−c−b ⊗Hp(X, InF) // Hp(X, InF)
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By part (1) of the lemma the composition of the horizontal arrows is surjective ifn+m ≥ c.
On the other hand, it is clear that n+m− c− b ≥ m− c. Hence part (2). �

Lemma 22.4. In Situation 22.1. Fix p ≥ 0.
(1) There exists a c1 ≥ 0 such that for all n ≥ c1 we have

Ker(Hp(X,F)→ Hp(X,F/InF)) ⊂ In−c1Hp(X,F).
(2) The inverse system

(Hp(X,F/InF))n∈N

satisfies the Mittag-Leffler condition (see Homology, Definition 31.2).
(3) In fact for any p and n there exists a c2(n) ≥ n such that

Im(Hp(X,F/IkF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))
for all k ≥ c2(n).

Proof. Let c1 = max{cp, cp+1}, where cp, cp+1 are the integers found in Lemma
22.3 for Hp and Hp+1. We will use this constant in the proofs of (1), (2) and (3).

Let us prove part (1). Consider the short exact sequence

0→ InF → F → F/InF → 0
From the long exact cohomology sequence we see that

Ker(Hp(X,F)→ Hp(X,F/InF)) = Im(Hp(X, InF)→ Hp(X,F))
Hence by our choice of c1 we see that this is contained in In−c1Hp(X,F) for n ≥ c1.

Note that part (3) implies part (2) by definition of the Mittag-Leffler condition.

Let us prove part (3). Fix ann throughout the rest of the proof. Consider the commutative
diagram

0 // InF // F // F/InF // 0

0 // In+mF //

OO

F //

OO

F/In+mF //

OO

0
This gives rise to the following commutative diagram

Hp(X, InF) // Hp(X,F) // Hp(X,F/InF)
δ

// Hp+1(X, InF)

Hp(X, In+mF) //

OO

Hp(X,F) //

1

OO

Hp(X,F/In+mF) //

OO

Hp+1(X, In+mF)

a

OO

If m ≥ c1 we see that the image of a is contained in Im−c1Hp+1(X, InF). By the Artin-
Rees lemma (see Algebra, Lemma 51.3) there exists an integer c3(n) such that

INHp+1(X, InF) ∩ Im(δ) ⊂ δ
(
IN−c3(n)Hp(X,F/InF)

)
for all N ≥ c3(n). As Hp(X,F/InF) is annihilated by In, we see that if m ≥ c3(n) +
c1 + n, then

Im(Hp(X,F/In+mF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))
In other words, part (3) holds with c2(n) = c3(n) + c1 + n. �
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Theorem 22.5 (Theorem on formal functions). In Situation 22.1. Fix p ≥ 0. The
system of maps

Hp(X,F)/InHp(X,F) −→ Hp(X,F/InF)

define an isomorphism of limits

Hp(X,F)∧ −→ limnH
p(X,F/InF)

where the left hand side is the completion of theA-moduleHp(X,F) with respect to the
ideal I , see Algebra, Section 96. Moreover, this is in fact a homeomorphism for the limit
topologies.

Proof. In fact, this follows immediately from Lemma 22.4. We spell out the details.
Set M = Hp(X,F) and Mn = Hp(X,F/InF). Denote Nn = Im(M → Mn). By the
description of the limit in Homology, Section 31 we have

limnMn = {(xn) ∈
∏

Mn | ϕi(xn) = xn−1, n = 2, 3, . . .}

Pick an element x = (xn) ∈ limnMn. By Lemma 22.4 part (3) we have xn ∈ Nn for all
n since by definition xn is the image of some xn+m ∈ Mn+m for all m. By Lemma 22.4
part (1) we see that there exists a factorization

M → Nn →M/In−c1M

of the reduction map. Denote yn ∈ M/In−c1M the image of xn for n ≥ c1. Since for
n′ ≥ n the composition M → Mn′ → Mn is the given map M → Mn we see that yn′

maps to yn under the canonical map M/In
′−c1M → M/In−c1M . Hence y = (yn+c1)

defines an element of limnM/InM . We omit the verification that y maps to x under the
map

M∧ = limnM/InM −→ limnMn

of the lemma. We also omit the verification on topologies. �

Lemma 22.6. Let A be a ring. Let I ⊂ A be an ideal. Assume A is Noetherian and
complete with respect to I . Let f : X → Spec(A) be a proper morphism of algebraic
spaces. Let F be a coherent sheaf on X . Then

Hp(X,F) = limnH
p(X,F/InF)

for all p ≥ 0.

Proof. This is a reformulation of the theorem on formal functions (Theorem 22.5) in
the case of a complete Noetherian base ring. Namely, in this case theA-moduleHp(X,F)
is finite (Lemma 20.3) hence I-adically complete (Algebra, Lemma 97.1) and we see that
completion on the left hand side is not necessary. �

Lemma 22.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S and let F be a quasi-coherent sheaf on Y . Assume

(1) Y locally Noetherian,
(2) f proper, and
(3) F coherent.
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Let y be a geometric point of Y . Consider the “infinitesimal neighbourhoods”

Xn = Spec(OY,y/mny )×Y X
in
//

fn

��

X

f

��
Spec(OY,y/mny ) cn // Y

of the fibre X1 = Xy and set Fn = i∗nF . Then we have

(Rpf∗F)∧
y
∼= limnH

p(Xn,Fn)

asO∧
Y,y-modules.

Proof. This is just a reformulation of a special case of the theorem on formal func-
tions, Theorem 22.5. Let us spell it out. Note thatOY,y is a Noetherian local ring, see Prop-
erties of Spaces, Lemma 24.4. Consider the canonical morphism c : Spec(OY,y) → Y .
This is a flat morphism as it identifies local rings. Denote f ′ : X ′ → Spec(OY,y) the base
change of f to this local ring. We see that c∗Rpf∗F = Rpf ′

∗F ′ by Lemma 11.2. Moreover,
we have canonical identifications Xn = X ′

n for all n ≥ 1.

Hence we may assume thatY = Spec(A) is the spectrum of a strictly henselian Noetherian
local ringAwith maximal idealm and that y → Y is equal to Spec(A/m)→ Y . It follows
that

(Rpf∗F)y = Γ(Y,Rpf∗F) = Hp(X,F)
because (Y, y) is an initial object in the category of étale neighbourhoods of y. The mor-
phisms cn are each closed immersions. Hence their base changes in are closed immersions
as well. Note that in,∗Fn = in,∗i

∗
nF = F/mnF . By the Leray spectral sequence for in,

and Lemma 12.9 we see that

Hp(Xn,Fn) = Hp(X, in,∗F) = Hp(X,F/mnF)
Hence we may indeed apply the theorem on formal functions to compute the limit in the
statement of the lemma and we win. �

Here is a lemma which we will generalize later to fibres of dimension> 0, namely the next
lemma.

Lemma 22.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let y be a geometric point of Y . Assume

(1) Y locally Noetherian,
(2) f is proper, and
(3) Xy has discrete underlying topological space.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > 0.

Proof. Let κ(y) be the residue field of the local ring of OY,y . As in Lemma 22.7 we
set Xy = X1 = Spec(κ(y))×Y X . By Morphisms of Spaces, Lemma 34.8 the morphism
f : X → Y is quasi-finite at each of the points of the fibre of X → Y over y. It follows
thatXy → y is separated and quasi-finite. HenceXy is a scheme by Morphisms of Spaces,
Proposition 50.2. Since it is quasi-compact its underlying topological space is a finite dis-
crete space. Then it is an affine scheme by Schemes, Lemma 11.8. By Lemma 17.3 it follows
that the algebraic spaces Xn are affine schemes as well. Moreover, the underlying topo-
logical of each Xn is the same as that of X1. Hence it follows that Hp(Xn,Fn) = 0 for
all p > 0. Hence we see that (Rpf∗F)∧

y = 0 by Lemma 22.7. Note thatRpf∗F is coherent
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by Lemma 20.2 and hence Rpf∗Fy is a finite OY,y-module. By Algebra, Lemma 97.1 this
implies that (Rpf∗F)y = 0. �

Lemma 22.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let y be a geometric point of Y . Assume

(1) Y locally Noetherian,
(2) f is proper, and
(3) dim(Xy) = d.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > d.

Proof. Let κ(y) be the residue field of the local ring of OY,y . As in Lemma 22.7 we
set Xy = X1 = Spec(κ(y)) ×Y X . Moreover, the underlying topological space of each
infinitesimal neighbourhood Xn is the same as that of Xy . Hence Hp(Xn,Fn) = 0 for
all p > d by Lemma 10.1. Hence we see that (Rpf∗F)∧

y = 0 by Lemma 22.7 for p > d.
Note that Rpf∗F is coherent by Lemma 20.2 and hence Rpf∗Fy is a finite OY,y-module.
By Algebra, Lemma 97.1 this implies that (Rpf∗F)y = 0. �

23. Applications of the theorem on formal functions

We will add more here as needed.

Lemma 23.1. (For a more general version see More on Morphisms of Spaces, Lemma
35.1). Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S.
Assume Y is locally Noetherian. The following are equivalent

(1) f is finite, and
(2) f is proper and |Xk| is a discrete space for every morphism Spec(k)→ Y where

k is a field.

Proof. A finite morphism is proper according to Morphisms of Spaces, Lemma 45.9.
A finite morphism is quasi-finite according to Morphisms of Spaces, Lemma 45.8. A quasi-
finite morphism has discrete fibres Xk , see Morphisms of Spaces, Lemma 27.5. Hence a
finite morphism is proper and has discrete fibres Xk.

Assume f is proper with discrete fibres Xk. We want to show f is finite. In fact it suffices
to prove f is affine. Namely, if f is affine, then it follows that f is integral by Morphisms
of Spaces, Lemma 45.7 whereupon it follows from Morphisms of Spaces, Lemma 45.6 that
f is finite.

To show that f is affine we may assume that Y is affine, and our goal is to show that X
is affine too. Since f is proper we see that X is separated and quasi-compact. We will
show that for any coherent OX -module F we have H1(X,F) = 0. This implies that
H1(X,F) = 0 for every quasi-coherent OX -module F by Lemmas 15.1 and 5.1. Then it
follows thatX is affine from Proposition 16.7. By Lemma 22.8 we conclude that the stalks
of R1f∗F are zero for all geometric points of Y . In other words, R1f∗F = 0. Hence
we see from the Leray Spectral Sequence for f that H1(X,F) = H1(Y, f∗F). Since
Y is affine, and f∗F is quasi-coherent (Morphisms of Spaces, Lemma 11.2) we conclude
H1(Y, f∗F) = 0 from Cohomology of Schemes, Lemma 2.2. Hence H1(X,F) = 0 as
desired. �

As a consequence we have the following useful result.
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Lemma 23.2. (For a more general version see More on Morphisms of Spaces, Lemma
35.2). Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. Let y
be a geometric point of Y . Assume

(1) Y is locally Noetherian,
(2) f is proper, and
(3) |Xy| is finite.

Then there exists an open neighbourhood V ⊂ Y of y such that f |f−1(V ) : f−1(V )→ V
is finite.

Proof. The morphism f is quasi-finite at all the geometric points of X lying over
y by Morphisms of Spaces, Lemma 34.8. By Morphisms of Spaces, Lemma 34.7 the set of
points at which f is quasi-finite is an open subspace U ⊂ X . Let Z = X \ U . Then
y 6∈ f(Z). Since f is proper the set f(Z) ⊂ Y is closed. Choose any open neighbourhood
V ⊂ Y of y with Z ∩ V = ∅. Then f−1(V ) → V is locally quasi-finite and proper.
Hence f−1(V )→ V has discrete fibresXk (Morphisms of Spaces, Lemma 27.5) which are
quasi-compact hence finite. Thus f−1(V )→ V is finite by Lemma 23.1. �
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CHAPTER 70

Limits of Algebraic Spaces

1. Introduction

In this chapter we put material related to limits of algebraic spaces. A first topic is the
characterization of algebraic spacesF locally of finite presentation over the base S as limit
preserving functors. We continue with a study of limits of inverse systems over directed
sets (Categories, Definition 21.1) with affine transition maps. We discuss absolute Noe-
therian approximation for quasi-compact and quasi-separated algebraic spaces following
[?]. Another approach is due to David Rydh (see [?]) whose results also cover absolute
Noetherian approximation for certain algebraic stacks.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Morphisms of finite presentation

In this section we generalize Limits, Proposition 6.1 to morphisms of algebraic spaces. The
motivation for the following definition comes from the proposition just cited.

Definition 3.1. Let S be a scheme.
(1) A functor F : (Sch/S)oppfppf → Sets is said to be limit preserving or locally of

finite presentation if for every affine schemeT overS which is a limitT = limTi
of a directed inverse system of affine schemes Ti over S , we have

F (T ) = colimF (Ti).

We sometimes say that F is locally of finite presentation over S.
(2) Let F,G : (Sch/S)oppfppf → Sets. A transformation of functors a : F → G is

limit preserving or locally of finite presentation if for every scheme T over S
and every y ∈ G(T ) the functor

Fy : (Sch/T )oppfppf −→ Sets, T ′/T 7−→ {x ∈ F (T ′) | a(x) = y|T ′}

is locally of finite presentation over T 1. We sometimes say that F is relatively
limit preserving over G.

1The characterization (2) in Lemma 3.2 may be easier to parse.

5421
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The functor Fy is in some sense the fiber of a : F → G over y, except that it is a presheaf
on the big fppf site of T . A formula for this functor is:

(3.1.1) Fy = F |(Sch/T )fppf×G|(Sch/T )fppf
∗

Here ∗ is the final object in the category of (pre)sheaves on (Sch/T )fppf (see Sites, Exam-
ple 10.2) and the map ∗ → G|(Sch/T )fppf is given by y. Note that if j : (Sch/T )fppf →
(Sch/S)fppf is the localization functor, then the formula above becomesFy = j−1F×j−1G

∗ and j!Fy is just the fiber product F ×G,y T . (See Sites, Section 25, for information on
localization, and especially Sites, Remark 25.10 for information on j! for presheaves.)

At this point we temporarily have two definitions of what it means for a morphism X →
Y of algebraic spaces over S to be locally of finite presentation. Namely, one by Mor-
phisms of Spaces, Definition 28.1 and one using that X → Y is a transformation of func-
tors so that Definition 3.1 applies (we will use the terminology “limit preserving” for this
notion as much as possible). We will show in Proposition 3.10 that these two definitions
agree.

Lemma 3.2. Let S be a scheme. Let a : F → G be a transformation of functors
(Sch/S)oppfppf → Sets. The following are equivalent

(1) a : F → G is limit preserving, and
(2) for every affine scheme T overS which is a limit T = limTi of a directed inverse

system of affine schemes Ti over S the diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) // G(T )

is a fibre product diagram.

Proof. Assume (1). Consider T = limi∈I Ti as in (2). Let (y, xT ) be an element of
the fibre product colimiG(Ti) ×G(T ) F (T ). Then y comes from yi ∈ G(Ti) for some
i. Consider the functor Fyi on (Sch/Ti)fppf as in Definition 3.1. We see that xT ∈
Fyi(T ). Moreover T = limi′≥i Ti′ is a directed system of affine schemes over Ti. Hence
(1) implies that xT the image of a unique element x of colimi′≥i Fyi(Ti′). Thus x is the
unique element of colimF (Ti) which maps to the pair (y, xT ). This proves that (2) holds.

Assume (2). Let T be a scheme and yT ∈ G(T ). We have to show that FyT is limit
preserving. Let T ′ = limi∈I T

′
i be an affine scheme over T which is the directed limit of

affine scheme T ′
i over T . Let xT ′ ∈ FyT . Pick i ∈ I which is possible as I is a directed

set. Denote yi ∈ F (T ′
i ) the image of yT ′ . Then we see that (yi, xT ′) is an element of

the fibre product colimiG(T ′
i )×G(T ′) F (T ′). Hence by (2) we get a unique element x of

colimi F (T ′
i ) mapping to (yi, xT ′). It is clear that x defines an element of colimi Fy(T ′

i )
mapping to xT ′ and we win. �

Lemma 3.3. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G → H be transformations of functors. If a and b are limit
preserving, then

b ◦ a : F −→ H

is limit preserving.
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Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 3.2. Consider the
diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) //

b

��

G(T )

b

��
colimiH(Ti) // H(T )

By assumption the two squares are fibre product squares. Hence the outer rectangle is a
fibre product diagram too which proves the lemma. �

Lemma 3.4. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G → H be transformations of functors. If b ◦ a and b are limit
preserving, then a is limit preserving.

Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 3.2. Consider the
diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) //

b

��

G(T )

b

��
colimiH(Ti) // H(T )

By assumption the lower square and the outer rectangle are fibre products of sets. Hence
the upper square is a fibre product square too which proves the lemma. �

Lemma 3.5. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : H → G be transformations of functors. Consider the fibre
product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

If a is limit preserving, then the base change a′ is limit preserving.

Proof. Omitted. Hint: This is formal. �

Lemma 3.6. LetS be a scheme contained in Schfppf . LetE,F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : H → G, and c : G → E be transformations of functors. If c,
c ◦ a, and c ◦ b are limit preserving, then F ×G H → E is too.

Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 3.2. Then we have

colim(F ×G H)(Ti) = colimF (Ti)×colimG(Ti) colimH(Ti)
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as filtered colimits commute with finite products. Our goal is thus to show that

colimF (Ti)×colimG(Ti) colimH(Ti) //

��

F (T )×G(T ) H(T )

��
colimiE(Ti) // E(T )

is a fibre product diagram. This follows from the observation that given maps of sets
E′ → E , F → G, H → G, and G→ E we have

E′ ×E (F ×G H) = (E′ ×E F )×(E′×EG) (E′ ×E H)
Some details omitted. �

Lemma 3.7. Let S be a scheme contained in Schfppf . Let F : (Sch/S)oppfppf → Sets
be a functor. If F is limit preserving then its sheafification F# is limit preserving.

Proof. Assume F is limit preserving. It suffices to show that F+ is limit preserving,
since F# = (F+)+, see Sites, Theorem 10.10. Let T be an affine scheme over S , and
let T = limTi be written as the directed limit of an inverse system of affine S schemes.
Recall that F+(T ) is the colimit of Ȟ0(V, F ) where the limit is over all coverings of T
in (Sch/S)fppf . Any fppf covering of an affine scheme can be refined by a standard fppf
covering, see Topologies, Lemma 7.4. Hence we can write

F+(T ) = colimV standard covering T Ȟ
0(V, F ).

Any V = {Tk → T}k=1,...,n in the colimit may be written as Vi ×Ti T for some i and
some standard fppf covering Vi = {Ti,k → Ti}k=1,...,n of Ti. Denote Vi′ = {Ti′,k →
Ti′}k=1,...,n the base change for i′ ≥ i. Then we see that

colimi′≥i Ȟ
0(Vi, F ) = colimi′≥i Equalizer(

∏
F (Ti′,k) //

//
∏
F (Ti′,k ×Ti′ Ti′,l)

= Equalizer( colimi′≥i
∏
F (Ti′,k) //

// colimk′≥k
∏
F (Ti′,k ×Ti′ Ti′,l)

= Equalizer(
∏
F (Tk) //

//
∏
F (Tk ×T Tl)

= Ȟ0(V, F )

Here the second equality holds because filtered colimits are exact. The third equality holds
because F is limit preserving and because limi′≥i Ti′,k = Tk and limi′≥i Ti′,k ×Ti′ Ti′,l =
Tk ×T Tl by Limits, Lemma 2.3. If we use this for all coverings at the same time we obtain

F+(T ) = colimV standard covering T Ȟ
0(V, F )

= colimi∈I colimVi standard covering Ti Ȟ
0(T ×Ti Vi, F )

= colimi∈I F
+(Ti)

The switch of the order of the colimits is allowed by Categories, Lemma 14.10. �

Lemma 3.8. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Assume
that

(1) F is a sheaf, and
(2) there exists an fppf covering {Uj → S}j∈J such that F |(Sch/Uj)fppf is limit

preserving.
Then F is limit preserving.
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Proof. Let T be an affine scheme over S. Let I be a directed set, and let Ti be an
inverse system of affine schemes over S such that T = limTi. We have to show that the
canonical map colimF (Ti)→ F (T ) is bijective.

Choose some 0 ∈ I and choose a standard fppf covering {V0,k → T0}k=1,...,m which
refines the pullback {Uj ×S T0 → T0} of the given fppf covering of S. For each i ≥ 0
we set Vi,k = Ti ×T0 V0,k , and we set Vk = T ×T0 V0,k. Note that Vk = limi≥0 Vi,k , see
Limits, Lemma 2.3.

Suppose that x, x′ ∈ colimF (Ti) map to the same element of F (T ). Say x, x′ are given
by elements xi, x′

i ∈ F (Ti) for some i ∈ I (we may choose the same i for both as I is
directed). By assumption (2) and the fact that xi, x′

i map to the same element of F (T ) this
implies that

xi|Vi′,k = x′
i|Vi′,k

for some suitably large i′ ∈ I . We can choose the same i′ for each k as k ∈ {1, . . . ,m}
ranges over a finite set. Since {Vi′,k → Ti′} is an fppf covering andF is a sheaf this implies
that xi|Ti′ = x′

i|Ti′ as desired. This proves that the map colimF (Ti)→ F (T ) is injective.

To show surjectivity we argue in a similar fashion. Let x ∈ F (T ). By assumption (2) for
each k we can choose a i such that x|Vk comes from an element xi,k ∈ F (Vi,k). As before
we may choose a single i which works for all k. By the injectivity proved above we see
that

xi,k|Vi′,k×T
i′
Vi′,l = xi,l|Vi′,k×T

i′
Vi′,l

for some large enough i′. Hence by the sheaf condition of F the elements xi,k|Vi′,k glue
to an element xi′ ∈ F (Ti′) as desired. �

Lemma 3.9. Let S be a scheme contained in Schfppf . LetF,G : (Sch/S)oppfppf → Sets
be functors. If a : F → G is a transformation which is limit preserving, then the induced
transformation of sheaves F# → G# is limit preserving.

Proof. Suppose that T is a scheme and y ∈ G#(T ). We have to show the functor
F#
y : (Sch/T )oppfppf → Sets constructed from F# → G# and y as in Definition 3.1 is limit

preserving. By Equation (3.1.1) we see that F#
y is a sheaf. Choose an fppf covering {Vj →

T}j∈J such that y|Vj comes from an element yj ∈ F (Vj). Note that the restriction of F#

to (Sch/Vj)fppf is just F#
yj . If we can show that F#

yj is limit preserving then Lemma 3.8
guarantees that F#

y is limit preserving and we win. This reduces us to the case y ∈ G(T ).

Let y ∈ G(T ). In this case we claim thatF#
y = (Fy)#. This follows from Equation (3.1.1).

Thus this case follows from Lemma 3.7. �

Proposition 3.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) The morphism f is a morphism of algebraic spaces which is locally of finite pre-
sentation, see Morphisms of Spaces, Definition 28.1.

(2) The morphism f : X → Y is limit preserving as a transformation of functors,
see Definition 3.1.

Proof. Assume (1). Let T be a scheme and let y ∈ Y (T ). We have to show that
T ×Y X is limit preserving over T in the sense of Definition 3.1. Hence we are reduced
to proving that if X is an algebraic space which is locally of finite presentation over S
as an algebraic space, then it is limit preserving as a functor X : (Sch/S)oppfppf → Sets.



5426 70. LIMITS OF ALGEBRAIC SPACES

To see this choose a presentation X = U/R, see Spaces, Definition 9.3. It follows from
Morphisms of Spaces, Definition 28.1 that both U and R are schemes which are locally of
finite presentation over S. Hence by Limits, Proposition 6.1 we have

U(T ) = colimU(Ti), R(T ) = colimR(Ti)
whenever T = limi Ti in (Sch/S)fppf . It follows that the presheaf

(Sch/S)oppfppf −→ Sets, W 7−→ U(W )/R(W )

is limit preserving. Hence by Lemma 3.7 its sheafification X = U/R is limit preserving
too.
Assume (2). Choose a scheme V and a surjective étale morphism V → Y . Next, choose
a scheme U and a surjective étale morphism U → V ×Y X . By Lemma 3.5 the transfor-
mation of functors V ×Y X → V is limit preserving. By Morphisms of Spaces, Lemma
39.8 the morphism of algebraic spaces U → V ×Y X is locally of finite presentation,
hence limit preserving as a transformation of functors by the first part of the proof. By
Lemma 3.3 the composition U → V ×Y X → V is limit preserving as a transformation
of functors. Hence the morphism of schemes U → V is locally of finite presentation by
Limits, Proposition 6.1 (modulo a set theoretic remark, see last paragraph of the proof).
This means, by definition, that (1) holds.
Set theoretic remark. Let U → V be a morphism of (Sch/S)fppf . In the statement of
Limits, Proposition 6.1 we characterize U → V as being locally of finite presentation
if for all directed inverse systems (Ti, fii′) of affine schemes over V we have U(T ) =
colimV (Ti), but in the current setting we may only consider affine schemes Ti over V
which are (isomorphic to) an object of (Sch/S)fppf . So we have to make sure that there
are enough affines in (Sch/S)fppf to make the proof work. Inspecting the proof of (2)
⇒ (1) of Limits, Proposition 6.1 we see that the question reduces to the case that U and
V are affine. Say U = Spec(A) and V = Spec(B). By construction of (Sch/S)fppf
the spectrum of any ring of cardinality ≤ |B| is isomorphic to an object of (Sch/S)fppf .
Hence it suffices to observe that in the ”only if” part of the proof of Algebra, Lemma 127.3
only A-algebras of cardinality ≤ |B| are used. �

Remark 3.11. Here is an important special case of Proposition 3.10. LetS be a scheme.
Let X be an algebraic space over S. Then X is locally of finite presentation over S if and
only if X , as a functor (Sch/S)opp → Sets, is limit preserving. Compare with Limits,
Remark 6.2. In fact, we will see in Lemma 3.12 below that it suffices if the map

colimX(Ti) −→ X(T )
is surjective whenever T = limTi is a directed limit of affine schemes over S.

Lemma 3.12. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If for every directed limit T = limi∈I Ti of affine schemes over S the map

colimX(Ti) −→ X(T )×Y (T ) colimY (Ti)
is surjective, then f is locally of finite presentation. In other words, in Proposition 3.10
part (2) it suffices to check surjectivity in the criterion of Lemma 3.2.

Proof. Choose a scheme V and a surjective étale morphism g : V → Y . Next, choose
a scheme U and a surjective étale morphism h : U → V ×Y X . It suffices to show for
T = limTi as in the lemma that the map

colimU(Ti) −→ U(T )×V (T ) colimV (Ti)
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is surjective, because then U → V will be locally of finite presentation by Limits, Lemma
6.3 (modulo a set theoretic remark exactly as in the proof of Proposition 3.10). Thus we
take a : T → U and bi : Ti → V which determine the same morphism T → V . Picture

T

a

��

pi
// Ti

bi

��{{
U

h // X ×Y V

��

// V

g

��
X

f // Y

By the assumption of the lemma after increasing i we can find a morphism ci : Ti → X
such that h ◦ a = (bi, ci) ◦ pi : Ti → V ×Y X and such that f ◦ ci = g ◦ bi. Since h is an
étale morphism of algebraic spaces (and hence locally of finite presentation), we have the
surjectivity of

colimU(Ti) −→ U(T )×(X×Y V )(T ) colim(X ×Y V )(Ti)
by Proposition 3.10. Hence after increasing i again we can find the desired morphism
ai : Ti → U with a = ai ◦ pi and bi = (U → V ) ◦ ai. �

4. Limits of algebraic spaces

The following lemma explains how we think of limits of algebraic spaces in this chapter.
We will use (without further mention) that the base change of an affine morphism of
algebraic spaces is affine (see Morphisms of Spaces, Lemma 20.5).

Lemma 4.1. Let S be a scheme. Let I be a directed set. Let (Xi, fii′) be an inverse
system over I in the category of algebraic spaces over S. If the morphisms fii′ : Xi → Xi′

are affine, then the limit X = limiXi (as an fppf sheaf) is an algebraic space. Moreover,
(1) each of the morphisms fi : X → Xi is affine,
(2) for any i ∈ I and any morphism of algebraic spaces T → Xi we have

X ×Xi T = limi′≥iXi′ ×Xi T.
as algebraic spaces over S.

Proof. Part (2) is a formal consequence of the existence of the limit X = limXi

as an algebraic space over S. Choose an element 0 ∈ I (this is possible as a directed
set is nonempty). Choose a scheme U0 and a surjective étale morphism U0 → X0. Set
R0 = U0×X0 U0 so thatX0 = U0/R0. For i ≥ 0 set Ui = Xi×X0 U0 andRi = Xi×X0

R0 = Ui ×Xi Ui. By Limits, Lemma 2.2 we see that U = limi≥0 Ui and R = limi≥0 Ri
are schemes. Moreover, the two morphisms s, t : R → U are the base change of the
two projections R0 → U0 by the morphism U → U0, in particular étale. The morphism
R → U ×S U defines an equivalence relation as directed a limit of equivalence relations
is an equivalence relation. Hence the morphism R → U ×S U is an étale equivalence
relation. We claim that the natural map
(4.1.1) U/R −→ limXi

is an isomorphism of fppf sheaves on the category of schemes over S. The claim implies
X = limXi is an algebraic space by Spaces, Theorem 10.5.
Let Z be a scheme and let a : Z → limXi be a morphism. Then a = (ai) where ai :
Z → Xi. Set W0 = Z ×a0,X0 U0. Note that W0 = Z ×ai,Xi Ui for all i ≥ 0 by our



5428 70. LIMITS OF ALGEBRAIC SPACES

choice of Ui → Xi above. Hence we obtain a morphism W0 → limi≥0 Ui = U . Since
W0 → Z is surjective and étale, we conclude that (4.1.1) is a surjective map of sheaves.
Finally, suppose that Z is a scheme and that a, b : Z → U/R are two morphisms which
are equalized by (4.1.1). We have to show that a = b. After replacing Z by the members
of an fppf covering we may assume there exist morphisms a′, b′ : Z → U which give rise
to a and b. The condition that a, b are equalized by (4.1.1) means that for each i ≥ 0 the
compositions a′

i, b
′
i : Z → U → Ui are equal as morphisms into Ui/Ri = Xi. Hence

(a′
i, b

′
i) : Z → Ui ×S Ui factors through Ri, say by some morphism ci : Z → Ri. Since

R = limi≥0 Ri we see that c = lim ci : Z → R is a morphism which shows that a, b are
equal as morphisms of Z into U/R.

Part (1) follows as we have seen above that Ui ×Xi X = U and U → Ui is affine by
construction. �

Lemma 4.2. Let S be a scheme. Let I be a directed set. Let (Xi, fii′) be an inverse
system over I of algebraic spaces over S with affine transition maps. Let X = limiXi.
Let 0 ∈ I . Suppose that T → X0 is a morphism of algebraic spaces. Then

T ×X0 X = limi≥0 T ×X0 Xi

as algebraic spaces over S.

Proof. The limit X is an algebraic space by Lemma 4.1. The equality is formal, see
Categories, Lemma 14.10. �

Lemma 4.3. Let S be a scheme. Let I be a directed set. Let (Xi, fi′i) → (Yi, gi′i) be
a morphism of inverse systems over I of algebraic spaces over S. Assume

(1) the morphisms fi′i : Xi′ → Xi are affine,
(2) the morphisms gi′i : Yi′ → Yi are affine,
(3) the morphisms Xi → Yi are closed immersions.

Then limXi → limYi is a closed immersion.

Proof. Observe that limXi and limYi exist by Lemma 4.1. Pick 0 ∈ I and choose
an affine scheme V0 and an étale morphism V0 → Y0. Then the morphisms Vi = Yi ×Y0

V0 → Ui = Xi ×Y0 V0 are closed immersions of affine schemes. Hence the morphism
V = Y ×Y0 V0 → U = X ×Y0 V0 is a closed immersion because V = limVi, U = limUi
and because a limit of closed immersions of affine schemes is a closed immersion: a filtered
colimit of surjective ring maps is surjective. Since the étale morphisms V → Y form an
étale covering of Y as we vary our choice of V0 → Y0 we see that the lemma is true. �

Lemma 4.4. Let S be a scheme. Let I be a directed set. Let (Xi, fi′i) be an inverse
systems over I of algebraic spaces over S. If Xi is reduced for all i, then X is reduced.

Proof. Observe that limXi exists by Lemma 4.1. Pick 0 ∈ I and choose an affine
scheme V0 and an étale morphism U0 → X0. Then the affine schemes Ui = Xi ×X0 U0
are reduced. Hence U = X ×X0 U0 is a reduced affine scheme as a limit of reduced affine
schemes: a filtered colimit of reduced rings is reduced. Since the étale morphisms U → X
form an étale covering of X as we vary our choice of U0 → X0 we see that the lemma is
true. �

Lemma 4.5. Let S be a scheme. Let X → Y be a morphism of algebraic spaces over
S. The equivalent conditions (1) and (2) of Proposition 3.10 are also equivalent to
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(3) for every directed limit T = limTi of quasi-compact and quasi-separated alge-
braic spaces Ti over S with affine transition morphisms the diagram of sets

colimi Mor(Ti, X) //

��

Mor(T,X)

��
colimi Mor(Ti, Y ) // Mor(T, Y )

is a fibre product diagram.

Proof. It is clear that (3) implies (2). We will assume (2) and prove (3). The proof is
rather formal and we encourage the reader to find their own proof.
Let us first prove that (3) holds when Ti is in addition assumed separated for all i. Choose
i ∈ I and choose a surjective étale morphism Ui → Ti where Ui is affine. Using Lemma
4.2 we see that with U = Ui ×Ti T and Ui′ = Ui ×Ti Ti′ we have U = limi′≥i Ui′ .
Of course U and Ui′ are affine (see Lemma 4.1). Since Ti is separated, the fibre product
Vi = Ui×Ti Ui is an affine scheme as well and we obtain affine schemes V = Vi×Ti T and
Vi′ = Vi ×Ti Ti′ with V = limi′≥i Vi′ . Observe that U → T and Ui → Ti are surjective
étale and that V = U ×T U and Vi′ = Ui′ ×Ti′ Ui′ . Note that Mor(T,X) is the equalizer
of the two maps Mor(U,X) → Mor(V,X); this is true for example because X as a sheaf
on (Sch/S)fppf is the coequalizer of the two maps hV → hu. Similarly Mor(Ti′ , X) is
the equalizer of the two maps Mor(Ui′ , X)→ Mor(Vi′ , X). And of course the same thing
is true with X replaced with Y . Condition (2) says that the diagrams of in (3) are fibre
products in the case of U = limUi and V = limVi. It follows formally that the same
thing is true for T = limTi.
In the general case, choose an affine scheme U , an i ∈ I , and a surjective étale morphism
U → Ti. Repeating the argument of the previous paragraph we still achieve the proof:
the schemes Vi′ , V are no longer affine, but they are still quasi-compact and separated and
the result of the preceding paragraph applies. �

5. Descending properties

This section is the analogue of Limits, Section 4.

Lemma 5.1. Let S be a scheme. Let X = limi∈I Xi be the limit of a directed inverse
system of algebraic spaces over S with affine transition morphisms (Lemma 4.1). If each
Xi is decent (for example quasi-separated or locally separated) then |X| = limi |Xi| as
sets.

Proof. There is a canonical map |X| → lim |Xi|. Choose 0 ∈ I . If W0 ⊂ X0 is an
open subspace, then we have f−1

0 W0 = limi≥0 f
−1
i0 W0, see Lemma 4.1. Hence, if we can

prove the lemma for inverse systems where X0 is quasi-compact, then the lemma follows
in general. Thus we may and do assume X0 is quasi-compact.
Choose an affine scheme U0 and a surjective étale morphism U0 → X0. Set Ui = Xi ×X0

U0 and U = X ×X0 U0. Set Ri = Ui ×Xi Ui and R = U ×X U . Recall that U = limUi
andR = limRi, see proof of Lemma 4.1. Recall that |X| = |U |/|R| and |Xi| = |Ui|/|Ri|.
By Limits, Lemma 4.6 we have |U | = lim |Ui| and |R| = lim |Ri|.
Surjectivity of |X| → lim |Xi|. Let (xi) ∈ lim |Xi|. Denote Si ⊂ |Ui| the inverse image
of xi. This is a finite nonempty set by the definition of decent spaces (Decent Spaces, Def-
inition 6.1). Hence limSi is nonempty, see Categories, Lemma 21.7. Let (ui) ∈ limSi ⊂
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lim |Ui|. By the above this determines a point u ∈ |U |which maps to an x ∈ |X|mapping
to the given element (xi) of lim |Xi|.

Injectivity of |X| → lim |Xi|. Suppose that x, x′ ∈ |X|map to the same point of lim |Xi|.
Choose lifts u, u′ ∈ |U | and denote ui, u′

i ∈ |Ui| the images. For each i let Ti ⊂ |Ri| be
the set of points mapping to (ui, u′

i) ∈ |Ui| × |Ui|. This is a finite set by the definition of
decent spaces (Decent Spaces, Definition 6.1). Moreover Ti is nonempty as we’ve assumed
that x and x′ map to the same point of Xi. Hence limTi is nonempty, see Categories,
Lemma 21.7. As before let r ∈ |R| = lim |Ri| be a point corresponding to an element of
limTi. Then r maps to (u, u′) in |U | × |U | by construction and we see that x = x′ in |X|
as desired.

Parenthetical statement: A quasi-separated algebraic space is decent, see Decent Spaces,
Section 6 (the key observation to this is Properties of Spaces, Lemma 6.7). A locally sepa-
rated algebraic space is decent by Decent Spaces, Lemma 15.2. �

Lemma 5.2. With same notation and assumptions as in Lemma 5.1 we have |X| =
limi |Xi| as topological spaces.

Proof. We will use the criterion of Topology, Lemma 14.3. We have seen that |X| =
limi |Xi| as sets in Lemma 5.1. The maps fi : X → Xi are morphisms of algebraic spaces
hence determine continuous maps |X| → |Xi|. Thus f−1

i (Ui) is open for each open Ui ⊂
|Xi|. Finally, let x ∈ |X| and let x ∈ V ⊂ |X| be an open neighbourhood. We have
to find an i and an open neighbourhood Wi ⊂ |Xi| of the image x with f−1

i (Wi) ⊂ V .
Choose 0 ∈ I . Choose a scheme U0 and a surjective étale morphism U0 → X0. Set
U = X ×X0 U0 and Ui = Xi ×X0 U0 for i ≥ 0. Then U = limi≥0 Ui in the category of
schemes by Lemma 4.1. Choose u ∈ U mapping to x. By the result for schemes (Limits,
Lemma 4.2) we can find an i ≥ 0 and an open neighbourhood Ei ⊂ Ui of the image of u
whose inverse image in U is contained in the inverse image of V in U . Then we can set
Wi ⊂ |Xi| equal to the image of Ei. This works because |Ui| → |Xi| is open. �

Lemma 5.3. Let S be a scheme. Let X = limi∈I Xi be the limit of a directed inverse
system of algebraic spaces over S with affine transition morphisms (Lemma 4.1). If each
Xi is quasi-compact and nonempty, then |X| is nonempty.

Proof. Choose 0 ∈ I . Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set Ui = Xi ×X0 U0 and U = X ×X0 U0. Then each Ui is a nonempty affine
scheme. HenceU = limUi is nonempty (Limits, Lemma 4.3) and thusX is nonempty. �

Lemma 5.4. Let S be a scheme. Let X = limi∈I Xi be the limit of a directed inverse
system of algebraic spaces over S with affine transition morphisms (Lemma 4.1). Let x ∈
|X| with images xi ∈ |Xi|. If each Xi is decent, then {x} = limi {xi} as sets and as
algebraic spaces if endowed with reduced induced scheme structure.

Proof. Set Z = {x} ⊂ |X| and Zi = {xi} ⊂ |Xi|. Since |X| → |Xi| is continuous
we see that Z maps into Zi for each i. Hence we obtain an injective map Z → limZi
because |X| = lim |Xi| as sets (Lemma 5.1). Suppose that x′ ∈ |X| is not in Z. Then
there is an open subset U ⊂ |X| with x′ ∈ U and x 6∈ U . Since |X| = lim |Xi| as
topological spaces (Lemma 5.2) we can write U =

⋃
j∈J f

−1
j (Uj) for some subset J ⊂ I

and opensUj ⊂ |Xj |, see Topology, Lemma 14.2. Then we see that for some j ∈ J we have
fj(x′) ∈ Uj and fj(x) 6∈ Uj . In other words, we see that fj(x′) 6∈ Zj . Thus Z = limZi
as sets.
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Next, endow Z and Zi with their reduced induced scheme structures, see Properties of
Spaces, Definition 12.5. The transition morphisms Xi′ → Xi induce affine morphisms
Zi′ → Zi and the projections X → Xi induce compatible morphisms Z → Zi. Hence
we obtain morphisms Z → limZi → X of algebraic spaces. By Lemma 4.3 we see that
limZi → X is a closed immersion. By Lemma 4.4 the algebraic space limZi is reduced.
By the above Z → limZi is bijective on points. By uniqueness of the reduced induced
closed subscheme structure we find that this morphism is an isomorphism of algebraic
spaces. �

Situation 5.5. Let S be a scheme. Let X = limi∈I Xi be the limit of a directed
inverse system of algebraic spaces over S with affine transition morphisms (Lemma 4.1).
We assume that Xi is quasi-compact and quasi-separated for all i ∈ I . We also choose an
element 0 ∈ I .

Lemma 5.6. Notation and assumptions as in Situation 5.5. Suppose thatF0 is a quasi-
coherent sheaf on X0. Set Fi = f∗

0iF0 for i ≥ 0 and set F = f∗
0F0. Then

Γ(X,F) = colimi≥0 Γ(Xi,Fi)

Proof. Choose a surjective étale morphism U0 → X0 where U0 is an affine scheme
(Properties of Spaces, Lemma 6.3). Set Ui = Xi ×X0 U0. Set R0 = U0 ×X0 U0 and
Ri = R0×X0 Xi. In the proof of Lemma 4.1 we have seen that there exists a presentation
X = U/R with U = limUi and R = limRi. Note that Ui and U are affine and that Ri
and R are quasi-compact and separated (as Xi is quasi-separated). Hence Limits, Lemma
4.7 implies that

F(U) = colimFi(Ui) and F(R) = colimFi(Ri).

The lemma follows as Γ(X,F) = Ker(F(U) → F(R)) and similarly Γ(Xi,Fi) =
Ker(Fi(Ui)→ Fi(Ri)) �

Lemma 5.7. Notation and assumptions as in Situation 5.5. For any quasi-compact
open subspace U ⊂ X there exists an i and a quasi-compact open Ui ⊂ Xi whose inverse
image in X is U .

Proof. Follows formally from the construction of limits in Lemma 4.1 and the cor-
responding result for schemes: Limits, Lemma 4.11. �

The following lemma will be superseded by the stronger Lemma 6.10.

Lemma 5.8. Notation and assumptions as in Situation 5.5. Let f0 : Y0 → Z0 be
a morphism of algebraic spaces over X0. Assume (a) Y0 → X0 and Z0 → X0 are repre-
sentable, (b) Y0,Z0 quasi-compact and quasi-separated, (c) f0 locally of finite presentation,
and (d) Y0 ×X0 X → Z0 ×X0 X an isomorphism. Then there exists an i ≥ 0 such that
Y0 ×X0 Xi → Z0 ×X0 Xi is an isomorphism.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0. Set
Ui = U0×X0 Xi and U = U0×X0 X . Apply Limits, Lemma 8.11 to see that Y0×X0 Ui →
Z0 ×X0 Ui is an isomorphism of schemes for some i ≥ 0 (details omitted). As Ui → Xi

is surjective étale, it follows that Y0 ×X0 Xi → Z0 ×X0 Xi is an isomorphism (details
omitted). �

Lemma 5.9. Notation and assumptions as in Situation 5.5. IfX is separated, thenXi

is separated for some i ∈ I .
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Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0. For
i ≥ 0 set Ui = U0 ×X0 Xi and set U = U0 ×X0 X . Note that Ui and U are affine
schemes which come equipped with surjective étale morphisms Ui → Xi and U → X .
SetRi = Ui×Xi Ui andR = U×X U with projections si, ti : Ri → Ui and s, t : R→ U .
Note that Ri and R are quasi-compact separated schemes (as the algebraic spaces Xi and
X are quasi-separated). The maps si : Ri → Ui and s : R → U are of finite type. By
definition Xi is separated if and only if (ti, si) : Ri → Ui × Ui is a closed immersion,
and since X is separated by assumption, the morphism (t, s) : R → U × U is a closed
immersion. Since R → U is of finite type, there exists an i such that the morphism
R→ Ui×U is a closed immersion (Limits, Lemma 4.16). Fix such an i ∈ I . Apply Limits,
Lemma 8.5 to the system of morphisms Ri′ → Ui × Ui′ for i′ ≥ i (this is permissible as
indeed Ri′ = Ri ×Ui×Ui Ui × Ui′ ) to see that Ri′ → Ui × Ui′ is a closed immersion for
i′ sufficiently large. This implies immediately that Ri′ → Ui′ ×Ui′ is a closed immersion
finishing the proof of the lemma. �

Lemma 5.10. Notation and assumptions as in Situation 5.5. If X is affine, then there
exists an i such that Xi is affine.

Proof. Choose 0 ∈ I . Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set U = U0 ×X0 X and Ui = U0 ×X0 Xi for i ≥ 0. Since the transition
morphisms are affine, the algebraic spaces Ui and U are affine. Thus U → X is an étale
morphism of affine schemes. Hence we can write X = Spec(A), U = Spec(B) and

B = A[x1, . . . , xn]/(g1, . . . , gn)

such that ∆ = det(∂gλ/∂xµ) is invertible in B, see Algebra, Lemma 143.2. Set Ai =
OXi(Xi). We have A = colimAi by Lemma 5.6. After increasing 0 we may assume we
have g1,i, . . . , gn,i ∈ Ai[x1, . . . , xn] mapping to g1, . . . , gn. Set

Bi = Ai[x1, . . . , xn]/(g1,i, . . . , gn,i)

for all i ≥ 0. Increasing 0 if necessary we may assume that ∆i = det(∂gλ,i/∂xµ) is
invertible in Bi for all i ≥ 0. Thus Ai → Bi is an étale ring map. After increasing
0 we may assume also that Spec(Bi) → Spec(Ai) is surjective, see Limits, Lemma 8.15.
Increasing 0 yet again we may choose elements h1,i, . . . , hn,i ∈ OUi(Ui) which map to
the classes of x1, . . . , xn in B = OU (U) and such that gλ,i(hν,i) = 0 in OUi(Ui). Thus
we obtain a commutative diagram

(5.10.1)

Xi

��

Uioo

��
Spec(Ai) Spec(Bi)oo

By construction Bi = B0 ⊗A0 Ai and B = B0 ⊗A0 A. Consider the morphism

f0 : U0 −→ X0 ×Spec(A0) Spec(B0)

This is a morphism of quasi-compact and quasi-separated algebraic spaces representable,
separated and étale overX0. The base change of f0 toX is an isomorphism by our choices.
Hence Lemma 5.8 guarantees that there exists an i such that the base change of f0 to
Xi is an isomorphism, in other words the diagram (5.10.1) is cartesian. Thus Descent,
Lemma 39.1 applied to the fppf covering {Spec(Bi) → Spec(Ai)} combined with De-
scent, Lemma 37.1 give that Xi → Spec(Ai) is representable by a scheme affine over
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Spec(Ai) as desired. (Of course it then also follows that Xi = Spec(Ai) but we don’t
need this.) �

Lemma 5.11. Notation and assumptions as in Situation 5.5. If X is a scheme, then
there exists an i such that Xi is a scheme.

Proof. Choose a finite affine open covering X =
⋃
Wj . By Lemma 5.7 we can find

an i ∈ I and open subspaces Wj,i ⊂ Xi whose base change to X is Wj → X . By Lemma
5.10 we may assume that each Wj,i is an affine scheme. This means that Xi is a scheme
(see for example Properties of Spaces, Section 13). �

Lemma 5.12. Let S be a scheme. Let B be an algebraic space over S. Let X = limXi

be a directed limit of algebraic spaces overBwith affine transition morphisms. LetY → X
be a morphism of algebraic spaces over B.

(1) If Y → X is a closed immersion,Xi quasi-compact, and Y → B locally of finite
type, then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → B locally of finite type,
and Y quasi-compact, then Y → Xi is an immersion for i large enough.

(3) If Y → X is an isomorphism, Xi quasi-compact, Xi → B locally of finite
type, the transition morphisms Xi′ → Xi are closed immersions, and Y → B is
locally of finite presentation, thenY → Xi is an isomorphism for i large enough.

(4) If Y → X is a monomorphism,Xi quasi-separated, Y → B locally of finite type,
and Y quasi-compact, then Y → Xi is a monomorphism for i large enough.

Proof. Proof of (1). Choose 0 ∈ I . As X0 is quasi-compact, we can choose an affine
schemeW and an étale morphismW → B such that the image of |X0| → |B| is contained
in |W | → |B|. Choose an affine scheme U0 and an étale morphism U0 → X0 ×BW such
that U0 → X0 is surjective. (This is possible by our choice of W and the fact that X0 is
quasi-compact; details omitted.) Let V → Y , resp. U → X , resp. Ui → Xi be the base
change of U0 → X0 (for i ≥ 0). It suffices to prove that V → Ui is a closed immersion
for i sufficiently large. Thus we reduce to proving the result for V → U = limUi over
W . This follows from the case of schemes, which is Limits, Lemma 4.16.

Proof of (2). Choose 0 ∈ I . Choose a quasi-compact open subspace X ′
0 ⊂ X0 such that

Y → X0 factors throughX ′
0. After replacingXi by the inverse image ofX ′

0 for i ≥ 0 we
may assume all X ′

i are quasi-compact and quasi-separated. Let U ⊂ X be a quasi-compact
open such that Y → X factors through a closed immersion Y → U (U exists as Y is quasi-
compact). By Lemma 5.7 we may assume that U = limUi with Ui ⊂ Xi quasi-compact
open. By part (1) we see that Y → Ui is a closed immersion for some i. Thus (2) holds.

Proof of (3). Choose 0 ∈ I . Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. SetUi = Xi×X0 U0, U = X×X0 U0 = Y ×X0 U0. ThenU = limUi is a limit
of affine schemes, the transition maps of the system are closed immersions, and U → U0
is of finite presentation (because U → B is locally of finite presentation and U0 → B is
locally of finite type and Morphisms of Spaces, Lemma 28.9). Thus we’ve reduced to the
following algebra fact: If A = limAi is a directed colimit of R-algebras with surjective
transition maps and A of finite presentation over A0, then A = Ai for some i. Namely,
write A = A0/(f1, . . . , fn). Pick i such that f1, . . . , fn map to zero under the surjective
map A0 → Ai.

Proof of (4). Set Zi = Y ×Xi Y . As the transition morphisms Xi′ → Xi are affine hence
separated, the transition morphisms Zi′ → Zi are closed immersions, see Morphisms of
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Spaces, Lemma 4.5. We have limZi = Y ×X Y = Y as Y → X is a monomorphism.
Choose 0 ∈ I . Since Y → X0 is locally of finite type (Morphisms of Spaces, Lemma 23.6)
the morphism Y → Z0 is locally of finite presentation (Morphisms of Spaces, Lemma
28.10). The morphisms Zi → Z0 are locally of finite type (they are closed immersions).
Finally, Zi = Y ×Xi Y is quasi-compact as Xi is quasi-separated and Y is quasi-compact.
Thus part (3) applies to Y = limi≥0 Zi over Z0 and we conclude Y = Zi for some i. This
proves (4) and the lemma. �

Lemma 5.13. Let S be a scheme. Let Y be an algebraic space over S. Let X = limXi

be a directed limit of algebraic spaces over Y with affine transition morphisms. Assume
(1) Y is quasi-separated,
(2) Xi is quasi-compact and quasi-separated,
(3) the morphism X → Y is separated.

Then Xi → Y is separated for all i large enough.

Proof. Let 0 ∈ I . Choose an affine scheme W and an étale morphism W → Y such
that the image of |W | → |Y | contains the image of |X0| → |Y |. This is possible as X0
is quasi-compact. It suffices to check that W ×Y Xi → W is separated for some i ≥ 0
because the diagonal of W ×Y Xi over W is the base change of Xi → Xi ×Y Xi by the
surjective étale morphism (Xi×Y Xi)×Y W → Xi×Y Xi. Since Y is quasi-separated the
algebraic spaces W ×Y Xi are quasi-compact (as well as quasi-separated). Thus we may
base change toW and assume Y is an affine scheme. When Y is an affine scheme, we have
to show that Xi is a separated algebraic space for i large enough and we are given that X
is a separated algebraic space. Thus this case follows from Lemma 5.9. �

Lemma 5.14. Let S be a scheme. Let Y be an algebraic space over S. Let X = limXi

be a directed limit of algebraic spaces over Y with affine transition morphisms. Assume
(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → Y affine.

Then Xi → Y is affine for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X ×Y W is affine and it suffices to check that Xi ×Y W is affine for some i (Morphisms
of Spaces, Lemma 20.3). This follows from Lemma 5.10. �

Lemma 5.15. Let S be a scheme. Let Y be an algebraic space over S. Let X = limXi

be a directed limit of algebraic spaces over Y with affine transition morphisms. Assume
(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → Y locally of finite type
(5) X → Y integral.

Then Xi → Y is finite for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X×Y W is finite overW and it suffices to check thatXi×Y W is finite overW for some i
(Morphisms of Spaces, Lemma 45.3). By Lemma 5.11 this reduces us to the case of schemes.
In the case of schemes it follows from Limits, Lemma 4.19. �
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Lemma 5.16. Let S be a scheme. Let Y be an algebraic space over S. Let X = limXi

be a directed limit of algebraic spaces over Y with affine transition morphisms. Assume
(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → Y locally of finite type
(5) X → Y is a closed immersion.

Then Xi → Y is a closed immersion for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X ×Y W is a closed subspace of W and it suffices to check that Xi ×Y W is a closed
subspace W for some i (Morphisms of Spaces, Lemma 12.1). By Lemma 5.11 this reduces
us to the case of schemes. In the case of schemes it follows from Limits, Lemma 4.20. �

6. Descending properties of morphisms

This section is the analogue of Section 5 for properties of morphisms. We will work in the
following situation.

Situation 6.1. Let S be a scheme. Let B = limBi be a limit of a directed inverse
system of algebraic spaces over S with affine transition morphisms (Lemma 4.1). Let 0 ∈ I
and let f0 : X0 → Y0 be a morphism of algebraic spaces over B0. Assume B0, X0, Y0 are
quasi-compact and quasi-separated. Let fi : Xi → Yi be the base change of f0 to Bi and
let f : X → Y be the base change of f0 to B.

Lemma 6.2. With notation and assumptions as in Situation 6.1. If
(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Choose an affine schemeV0 and a surjective étale morphismV0 → Y0. Choose
an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0. Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change this
diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale, and
the limit of the morphisms Ui → Vi is U → V . Recall that Xi → Yi is étale if and
only if Ui → Vi is étale and similarly X → Y is étale if and only if U → V is étale
(Morphisms of Spaces, Lemma 39.2). Since f0 is locally of finite presentation, so is the
morphism U0 → V0. Hence the lemma follows from Limits, Lemma 8.10. �

Lemma 6.3. With notation and assumptions as in Situation 6.1. If
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(1) f is smooth,
(2) f0 is locally of finite presentation,

then fi is smooth for some i ≥ 0.

Proof. Choose an affine schemeV0 and a surjective étale morphismV0 → Y0. Choose
an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0. Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change this
diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale, and
the limit of the morphismsUi → Vi isU → V . Recall thatXi → Yi is smooth if and only
if Ui → Vi is smooth and similarly X → Y is smooth if and only if U → V is smooth
(Morphisms of Spaces, Definition 37.1). Since f0 is locally of finite presentation, so is the
morphism U0 → V0. Hence the lemma follows from Limits, Lemma 8.9. �

Lemma 6.4. With notation and assumptions as in Situation 6.1. If
(1) f is surjective,
(2) f0 is locally of finite presentation,

then fi is surjective for some i ≥ 0.

Proof. Choose an affine schemeV0 and a surjective étale morphismV0 → Y0. Choose
an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0. Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change this
diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale, the
limit of the morphisms Ui → Vi is U → V , and the morphisms Ui → Xi ×Yi Vi and
U → X ×Y V are surjective (as base changes of U0 → X0 ×Y0 V0). In particular, we see
that Xi → Yi is surjective if and only if Ui → Vi is surjective and similarly X → Y is
surjective if and only if U → V is surjective. Since f0 is locally of finite presentation, so
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is the morphism U0 → V0. Hence the lemma follows from the case of schemes (Limits,
Lemma 8.15). �

Lemma 6.5. Notation and assumptions as in Situation 6.1. If
(1) f is universally injective,
(2) f0 is locally of finite type,

then fi is universally injective for some i ≥ 0.

Proof. Recall that a morphism X → Y is universally injective if and only if the
diagonal X → X ×Y X is surjective (Morphisms of Spaces, Definition 19.3 and Lemma
19.2). Observe that X0 → X0 ×Y0 X0 is of locally of finite presentation (Morphisms
of Spaces, Lemma 28.10). Hence the lemma follows from Lemma 6.4 by considering the
morphism X0 → X0 ×Y0 X0. �

Lemma 6.6. Notation and assumptions as in Situation 6.1. If f is affine, then fi is
affine for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0 Yi and V = V0×Y0 Y . Since f is affine we see that V ×Y X = limVi×YiXi

is affine. By Lemma 5.10 we see that Vi ×Yi Xi is affine for some i ≥ 0. For this i the
morphism fi is affine (Morphisms of Spaces, Lemma 20.3). �

Lemma 6.7. Notation and assumptions as in Situation 6.1. If
(1) f is finite,
(2) f0 is locally of finite type,

then fi is finite for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0 Yi and V = V0×Y0 Y . Since f is finite we see that V ×Y X = limVi×Yi Xi

is a scheme finite over V . By Lemma 5.10 we see that Vi ×Yi Xi is affine for some i ≥ 0.
Increasing i if necessary we find that Vi ×Yi Xi → Vi is finite by Limits, Lemma 8.3. For
this i the morphism fi is finite (Morphisms of Spaces, Lemma 45.3). �

Lemma 6.8. Notation and assumptions as in Situation 6.1. If
(1) f is a closed immersion,
(2) f0 is locally of finite type,

then fi is a closed immersion for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0 ×Y0 Yi and V = V0 ×Y0 Y . Since f is a closed immersion we see that V ×Y X =
limVi ×Yi Xi is a closed subscheme of the affine scheme V . By Lemma 5.10 we see that
Vi×YiXi is affine for some i ≥ 0. Increasing i if necessary we find that Vi×YiXi → Vi is
a closed immersion by Limits, Lemma 8.5. For this i the morphism fi is a closed immersion
(Morphisms of Spaces, Lemma 45.3). �

Lemma 6.9. Notation and assumptions as in Situation 6.1. If f is separated, then fi
is separated for some i ≥ 0.

Proof. Apply Lemma 6.8 to the diagonal morphism ∆X0/Y0 : X0 → X0 ×Y0 X0.
(Diagonal morphisms are locally of finite type and the fibre product X0 ×Y0 X0 is quasi-
compact and quasi-separated. Some details omitted.) �

Lemma 6.10. Notation and assumptions as in Situation 6.1. If
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(1) f is a isomorphism,
(2) f0 is locally of finite presentation,

then fi is a isomorphism for some i ≥ 0.

Proof. Being an isomorphism is equivalent to being étale, universally injective, and
surjective, see Morphisms of Spaces, Lemma 51.2. Thus the lemma follows from Lemmas
6.2, 6.4, and 6.5. �

Lemma 6.11. Notation and assumptions as in Situation 6.1. If
(1) f is a monomorphism,
(2) f0 is locally of finite type,

then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism is a monomorphism if and only if the diagonal is
an isomorphism. The morphism X0 → X0 ×Y0 X0 is locally of finite presentation by
Morphisms of Spaces, Lemma 28.10. SinceX0×Y0X0 is quasi-compact and quasi-separated
we conclude from Lemma 6.10 that ∆i : Xi → Xi ×Yi Xi is an isomorphism for some
i ≥ 0. For this i the morphism fi is a monomorphism. �

Lemma 6.12. Notation and assumptions as in Situation 6.1. LetF0 be a quasi-coherent
OX0 -module and denote Fi the pullback to Xi and F the pullback to X . If

(1) F is flat over Y ,
(2) F0 is of finite presentation, and
(3) f0 is locally of finite presentation,

then Fi is flat over Yi for some i ≥ 0. In particular, if f0 is locally of finite presentation
and f is flat, then fi is flat for some i ≥ 0.

Proof. Choose an affine schemeV0 and a surjective étale morphismV0 → Y0. Choose
an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0. Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change this
diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale, and
the limit of the morphisms Ui → Vi is U → V . Recall that Fi is flat over Yi if and only
if Fi|Ui is flat over Vi and similarly F is flat over Y if and only if F|U is flat over V
(Morphisms of Spaces, Definition 30.1). Since f0 is locally of finite presentation, so is the
morphism U0 → V0. Hence the lemma follows from Limits, Lemma 10.4. �

Lemma 6.13. Assumptions and notation as in Situation 6.1. If
(1) f is proper, and
(2) f0 is locally of finite type,
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then there exists an i such that fi is proper.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = Yi ×Y0 V0 and V = Y ×Y0 V0. It suffices to prove that the base change of fi to Vi is
proper, see Morphisms of Spaces, Lemma 40.2. Thus we may assume Y0 is affine.

By Lemma 6.9 we see that fi is separated for some i ≥ 0. Replacing 0 by i we may assume
that f0 is separated. Observe that f0 is quasi-compact. Thus f0 is separated and of finite
type. By Cohomology of Spaces, Lemma 18.1 we can choose a diagram

X0

  

X ′
0

��

π
oo // Pn

Y0

}}
Y0

where X ′
0 → Pn

Y0
is an immersion, and π : X ′

0 → X0 is proper and surjective. Introduce
X ′ = X ′

0×Y0 Y andX ′
i = X ′

0×Y0 Yi. By Morphisms of Spaces, Lemmas 40.4 and 40.3 we
see thatX ′ → Y is proper. HenceX ′ → Pn

Y is a closed immersion (Morphisms of Spaces,
Lemma 40.6). By Morphisms of Spaces, Lemma 40.7 it suffices to prove that X ′

i → Yi is
proper for some i. By Lemma 6.8 we find that X ′

i → Pn
Yi

is a closed immersion for i large
enough. Then X ′

i → Yi is proper and we win. �

Lemma 6.14. Assumptions and notation as in Situation 6.1. Let d ≥ 0. If
(1) f has relative dimension ≤ d (Morphisms of Spaces, Definition 33.2), and
(2) f0 is locally of finite type,

then there exists an i such that fi has relative dimension ≤ d.

Proof. Choose an affine schemeV0 and a surjective étale morphismV0 → Y0. Choose
an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0. Diagram

U0

��

// V0

��
X0 // Y0

The vertical arrows are surjective and étale by construction. We can base change this
diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale, and
the limit of the morphisms Ui → Vi is U → V . In this situation Xi → Yi has relative di-
mension≤ d if and only if Ui → Vi has relative dimension≤ d (as defined in Morphisms,
Definition 29.1). To see the equivalence, use that the definition for morphisms of algebraic
spaces involves Morphisms of Spaces, Definition 33.1 which uses étale localization. The
same is true for X → Y and U → V . Since f0 is locally of finite type, so is the morphism
U0 → V0. Hence the lemma follows from the more general Limits, Lemma 18.1. �
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7. Descending relative objects

The following lemma is typical of the type of results in this section.

Lemma 7.1. Let S be a scheme. Let I be a directed set. Let (Xi, fii′) be an inverse
system over I of algebraic spaces over S. Assume

(1) the morphisms fii′ : Xi → Xi′ are affine,
(2) the spaces Xi are quasi-compact and quasi-separated.

Let X = limiXi. Then the category of algebraic spaces of finite presentation over X is
the colimit over I of the categories of algebraic spaces of finite presentation over Xi.

Proof. Pick 0 ∈ I . Choose a surjective étale morphism U0 → X0 where U0 is an
affine scheme (Properties of Spaces, Lemma 6.3). SetUi = Xi×X0U0. SetR0 = U0×X0U0
and Ri = R0 ×X0 Xi. Denote si, ti : Ri → Ui and s, t : R → U the two projections.
In the proof of Lemma 4.1 we have seen that there exists a presentation X = U/R with
U = limUi and R = limRi. Note that Ui and U are affine and that Ri and R are quasi-
compact and separated (as Xi is quasi-separated). Let Y be an algebraic space over S and
let Y → X be a morphism of finite presentation. Set V = U ×X Y . This is an algebraic
space of finite presentation over U . Choose an affine scheme W and a surjective étale
morphism W → V . Then W → Y is surjective étale as well. Set R′ = W ×Y W so that
Y = W/R′ (see Spaces, Section 9). Note that W is a scheme of finite presentation over U
and that R′ is a scheme of finite presentation over R (details omitted). By Limits, Lemma
10.1 we can find an index i and a morphism of schemes Wi → Ui of finite presentation
whose base change to U gives W → U . Similarly we can find, after possibly increasing i,
a scheme R′

i of finite presentation over Ri whose base change to R is R′. The projection
morphisms s′, t′ : R′ → W are morphisms over the projection morphisms s, t : R → U .
Hence we can view s′, resp. t′ as a morphism between schemes of finite presentation over
U (with structure morphism R′ → U given by R′ → R followed by s, resp. t). Hence
we can apply Limits, Lemma 10.1 again to see that, after possibly increasing i, there exist
morphisms s′

i, t
′
i : R′

i →Wi, whose base change toU is S′, t′. By Limits, Lemmas 8.10 and
8.14 we may assume that s′

i, t
′
i are étale and that j′

i : R′
i →Wi×XiWi is a monomorphism

(here we view j′
i as a morphism of schemes of finite presentation over Ui via one of the

projections – it doesn’t matter which one). Setting Yi = Wi/R
′
i (see Spaces, Theorem

10.5) we obtain an algebraic space of finite presentation over Xi whose base change to X
is isomorphic to Y .
This shows that every algebraic space of finite presentation over X comes from an alge-
braic space of finite presentation over someXi, i.e., it shows that the functor of the lemma
is essentially surjective. To show that it is fully faithful, consider an index 0 ∈ I and two
algebraic spaces Y0, Z0 of finite presentation overX0. Set Yi = Xi×X0Y0, Y = X×X0Y0,
Zi = Xi ×X0 Z0, and Z = X ×X0 Z0. Let α : Y → Z be a morphism of algebraic spaces
over X . Choose a surjective étale morphism V0 → Y0 where V0 is an affine scheme. Set
Vi = V0×Y0 Yi and V = V0×Y0 Y which are affine schemes endowed with surjective étale
morphisms to Yi and Y . The composition V → Y → Z → Z0 comes from a (essentially
unique) morphism Vi → Z0 for some i ≥ 0 by Proposition 3.10 (applied to Z0 → X0
which is of finite presentation by assumption). After increasing i the two compositions

Vi ×Yi Vi → Vi → Z0

are equal as this is true in the limit. Hence we obtain a (essentially unique) morphism
Yi → Z0. Since this is a morphism over X0 it induces a morphism into Zi = Z0 ×X0 Xi

as desired. �
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Lemma 7.2. With notation and assumptions as in Lemma 7.1. The category of OX -
modules of finite presentation is the colimit over I of the categoriesOXi -modules of finite
presentation.

Proof. Choose 0 ∈ I . Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set Ui = Xi ×X0 U0. Set R0 = U0 ×X0 U0 and Ri = R0 ×X0 Xi. Denote
si, ti : Ri → Ui and s, t : R → U the two projections. In the proof of Lemma 4.1 we
have seen that there exists a presentation X = U/R with U = limUi and R = limRi.
Note that Ui and U are affine and that Ri and R are quasi-compact and separated (as Xi

is quasi-separated). Moreover, it is also true that R ×s,U,t R = colimRi ×si,Ui,ti Ri.
Thus we know that QCoh(OU ) = colim QCoh(OUi), QCoh(OR) = colim QCoh(ORi),
and QCoh(OR×s,U,tR) = colim QCoh(ORi×si,Ui,tiRi) by Limits, Lemma 10.2. We have
QCoh(OX) = QCoh(U,R, s, t, c) and QCoh(OXi) = QCoh(Ui, Ri, si, ti, ci), see Prop-
erties of Spaces, Proposition 32.1. Thus the result follows formally. �

Lemma 7.3. With notation and assumptions as in Lemma 7.1. Then
(1) any finite locally free OX -module is the pullback of a finite locally free OXi -

module for some i,
(2) any invertibleOX -module is the pullback of an invertibleOXi -module for some

i.

Proof. Proof of (2). Let L be an invertible OX -module. Since invertible modules
are of finite presentation we can find an i and modules Li and Ni of finite presentation
over Xi such that f∗

i Li ∼= L and f∗
i Ni ∼= L⊗−1, see Lemma 7.2. Since pullback com-

mutes with tensor product we see that f∗
i (Li ⊗OXi

Ni) is isomorphic to OX . Since the
tensor product of finitely presented modules is finitely presented, the same lemma implies
that f∗

i′iLi ⊗OX
i′
f∗
i′iNi is isomorphic to OXi′ for some i′ ≥ i. It follows that f∗

i′iLi is
invertible (Modules on Sites, Lemma 32.2) and the proof is complete.

Proof of (1). Omitted. Hint: argue as in the proof of (2) using that a module (on a locally
ringed site) is finite locally free if and only if it has a dual, see Modules on Sites, Section
29. Alternatively, argue as in the proof for schemes, see Limits, Lemma 10.3. �

8. Absolute Noetherian approximation

The following result is [?, Theorem 1.2.2]. A key ingredient in the proof is Decent Spaces,
Lemma 8.6.

Proposition 8.1. Let X be a quasi-compact and quasi-separated algebraic space over
Spec(Z). There exist a directed set I and an inverse system of algebraic spaces (Xi, fii′)
over I such that

(1) the transition morphisms fii′ are affine
(2) each Xi is quasi-separated and of finite type over Z, and
(3) X = limXi.

Proof. We apply Decent Spaces, Lemma 8.6 to get open subspaces Up ⊂ X , schemes
Vp, and morphisms fp : Vp → Up with properties as stated. Note that fn : Vn → Un is an
étale morphism of algebraic spaces whose restriction to the inverse image of Tn = (Vn)red
is an isomorphism. Hence fn is an isomorphism, for example by Morphisms of Spaces,
Lemma 51.2. In particular Un is a quasi-compact and separated scheme. Thus we can write
Un = limUn,i as a directed limit of schemes of finite type over Z with affine transition
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morphisms, see Limits, Proposition 5.4. Thus, applying descending induction on p, we see
that we have reduced to the problem posed in the following paragraph.

Here we haveU ⊂ X , U = limUi, Z ⊂ X , and f : V → X with the following properties
(1) X is a quasi-compact and quasi-separated algebraic space,
(2) V is a quasi-compact and separated scheme,
(3) U ⊂ X is a quasi-compact open subspace,
(4) (Ui, gii′) is a directed inverse system of quasi-separated algebraic spaces of finite

type over Z with affine transition morphisms whose limit is U ,
(5) Z ⊂ X is a closed subspace such that |X| = |U | q |Z|,
(6) f : V → X is a surjective étale morphism such that f−1(Z)→ Z is an isomor-

phism.
Problem: Show that the conclusion of the proposition holds for X .

Note that W = f−1(U) ⊂ V is a quasi-compact open subscheme étale over U . Hence we
may apply Lemmas 7.1 and 6.2 to find an index 0 ∈ I and an étale morphismW0 → U0 of
finite presentation whose base change to U produces W . Setting Wi = W0 ×U0 Ui we see
that W = limi≥0 Wi. After increasing 0 we may assume the Wi are schemes, see Lemma
5.11. Moreover, Wi is of finite type over Z.

Apply Limits, Lemma 5.3 to W = limi≥0 Wi and the inclusion W ⊂ V . Replace I by the
directed setJ found in that lemma. This allows us to writeV as a directed limitV = limVi
of finite type schemes over Z with affine transition maps such that each Vi containsWi as
an open subscheme (compatible with transition morphisms). For each i we can form the
push out

Wi
//

∆
��

Vi

��
Wi ×Ui Wi

// Ri

in the category of schemes. Namely, the left vertical and upper horizontal arrows are
open immersions of schemes. In other words, we can construct Ri as the glueing of Vi
andWi×UiWi along the common openWi (see Schemes, Section 14). Note that the étale
projection maps Wi ×Ui Wi →Wi extend to étale morphisms si, ti : Ri → Vi. It is clear
that the morphism ji = (ti, si) : Ri → Vi × Vi is an étale equivalence relation on Vi.
Note that Wi ×Ui Wi is quasi-compact (as Ui is quasi-separated and Wi quasi-compact)
and Vi is quasi-compact, hence Ri is quasi-compact. For i ≥ i′ the diagram

(8.1.1)

Ri //

si

��

Ri′

si′

��
Vi // Vi′

is cartesian because

(Wi′ ×Ui′ Wi′)×Ui′ Ui = Wi′ ×Ui′ Ui ×Ui Ui ×Ui′ Wi′ = Wi ×Ui Wi.

Consider the algebraic space Xi = Vi/Ri (see Spaces, Theorem 10.5). As Vi is of finite
type over Z and Ri is quasi-compact we see that Xi is quasi-separated and of finite type
over Z (see Properties of Spaces, Lemma 6.5 and Morphisms of Spaces, Lemmas 8.6 and
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23.4). As the construction ofRi above is compatible with transition morphisms, we obtain
morphisms of algebraic spaces Xi → Xi′ for i ≥ i′. The commutative diagrams

Vi //

��

Vi′

��
Xi

// Xi′

are cartesian as (8.1.1) is cartesian, see Groupoids, Lemma 20.7. Since Vi → Vi′ is affine,
this implies that Xi → Xi′ is affine, see Morphisms of Spaces, Lemma 20.3. Thus we can
form the limit X ′ = limXi by Lemma 4.1. We claim that X ∼= X ′ which finishes the
proof of the proposition.
Proof of the claim. Set R = limRi. By construction the algebraic space X ′ comes
equipped with a surjective étale morphism V → X ′ such that

V ×X′ V ∼= R

(use Lemma 4.1). By construction limWi ×Ui Wi = W ×U W and V = limVi so that
R is the union of W ×U W and V glued along W . Property (6) implies the projections
V ×XV → V are isomorphisms over f−1(Z) ⊂ V . Hence the schemeV ×XV is the union
of the opens ∆V/X(V ) andW×UW which intersect along ∆W/X(W ). We conclude that
there exists a unique isomorphism R ∼= V ×X V compatible with the projections to V .
Since V → X and V → X ′ are surjective étale we see that

X = V/V ×X V = V/R = V/V ×X′ V = X ′

by Spaces, Lemma 9.1 and we win. �

9. Applications

The following lemma can also be deduced directly from Decent Spaces, Lemma 8.6 without
passing through absolute Noetherian approximation.

Lemma 9.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated al-
gebraic space over S. Every quasi-coherent OX -module is a filtered colimit of finitely
presentedOX -modules.

Proof. We may view X as an algebraic space over Spec(Z), see Spaces, Definition
16.2 and Properties of Spaces, Definition 3.1. Thus we may apply Proposition 8.1 and
writeX = limXi withXi of finite presentation over Z. ThusXi is a Noetherian algebraic
space, see Morphisms of Spaces, Lemma 28.6. The morphismX → Xi is affine, see Lemma
4.1. Conclusion by Cohomology of Spaces, Lemma 15.2. �

The rest of this section consists of straightforward applications of Lemma 9.1.

Lemma 9.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let F be a quasi-coherentOX -module. Then F is the directed colimit
of its finite type quasi-coherent submodules.

Proof. If G,H ⊂ F are finite type quasi-coherent OX -submodules then the image
of G ⊕H → F is another finite type quasi-coherentOX -submodule which contains both
of them. In this way we see that the system is directed. To show that F is the colimit of
this system, writeF = colimi Fi as a directed colimit of finitely presented quasi-coherent
sheaves as in Lemma 9.1. Then the images Gi = Im(Fi → F) are finite type quasi-
coherent subsheaves of F . Since F is the colimit of these the result follows. �
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Lemma 9.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let F be a finite type quasi-coherent OX -module. Then we can write
F = limFi where eachFi is anOX -module of finite presentation and all transition maps
Fi → Fi′ surjective.

Proof. Write F = colimGi as a filtered colimit of finitely presented OX -modules
(Lemma 9.1). We claim that Gi → F is surjective for some i. Namely, choose an étale
surjectionU → X whereU is an affine scheme. Choose finitely many sections sk ∈ F(U)
generating F|U . Since U is affine we see that sk is in the image of Gi → F for i large
enough. Hence Gi → F is surjective for i large enough. Choose such an i and let K ⊂ Gi
be the kernel of the map Gi → F . Write K = colimKa as the filtered colimit of its finite
type quasi-coherent submodules (Lemma 9.2). ThenF = colimGi/Ka is a solution to the
problem posed by the lemma. �

Let X be an algebraic space. In the following lemma we use the notion of a finitely pre-
sented quasi-coherent OX -algebra A. This means that for every affine U = Spec(R)
étale over X we have A|U = Ã where A is a (commutative) R-algebra which is of finite
presentation as an R-algebra.

Lemma 9.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. LetA be a quasi-coherentOX -algebra. ThenA is a directed colimit of
finitely presented quasi-coherentOX -algebras.

Proof. First we writeA = colimi Fi as a directed colimit of finitely presented quasi-
coherent sheaves as in Lemma 9.1. For each i let Bi = Sym(Fi) be the symmetric algebra
on Fi overOX . Write Ii = Ker(Bi → A). Write Ii = colimj Fi,j where Fi,j is a finite
type quasi-coherent submodule of Ii, see Lemma 9.2. Set Ii,j ⊂ Ii equal to the Bi-ideal
generated by Fi,j . Set Ai,j = Bi/Ii,j . Then Ai,j is a quasi-coherent finitely presented
OX -algebra. Define (i, j) ≤ (i′, j′) if i ≤ i′ and the map Bi → Bi′ maps the ideal Ii,j
into the ideal Ii′,j′ . Then it is clear thatA = colimi,j Ai,j . �

LetX be an algebraic space. In the following lemma we use the notion of a quasi-coherent
OX -algebra A of finite type. This means that for every affine U = Spec(R) étale over
X we have A|U = Ã where A is a (commutative) R-algebra which is of finite type as an
R-algebra.

Lemma 9.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. LetA be a quasi-coherentOX -algebra. ThenA is the directed colimit
of its finite type quasi-coherentOX -subalgebras.

Proof. Omitted. Hint: Compare with the proof of Lemma 9.2. �

Let X be an algebraic space. In the following lemma we use the notion of a finite (resp.
integral) quasi-coherent OX -algebra A. This means that for every affine U = Spec(R)
étale over X we have A|U = Ã where A is a (commutative) R-algebra which is finite
(resp. integral) as an R-algebra.

Lemma 9.6. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let A be a finite quasi-coherent OX -algebra. Then A = colimAi is a
directed colimit of finite and finitely presented quasi-coherent OX -algebras with surjec-
tive transition maps.
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Proof. By Lemma 9.3 there exists a finitely presentedOX -moduleF and a surjection
F → A. Using the algebra structure we obtain a surjection

Sym∗
OX

(F) −→ A

DenoteJ the kernel. WriteJ = colim Ei as a filtered colimit of finite typeOX -submodules
Ei (Lemma 9.2). Set

Ai = Sym∗
OX

(F)/(Ei)

where (Ei) indicates the ideal sheaf generated by the image of Ei → Sym∗
OX

(F). Then
each Ai is a finitely presented OX -algebra, the transition maps are surjective, and A =
colimAi. To finish the proof we still have to show that Ai is a finite OX -algebra for
i sufficiently large. To do this we choose an étale surjective map U → X where U is an
affine scheme. Take generators f1, . . . , fm ∈ Γ(U,F). AsA(U) is a finiteOX(U)-algebra
we see that for each j there exists a monic polynomial Pj ∈ O(U)[T ] such that Pj(fj) is
zero inA(U). SinceA = colimAi by construction, we have Pj(fj) = 0 inAi(U) for all
sufficiently large i. For such i the algebrasAi are finite. �

Lemma 9.7. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. LetA be an integral quasi-coherentOX -algebra. Then

(1) A is the directed colimit of its finite quasi-coherentOX -subalgebras, and
(2) A is a directed colimit of finite and finitely presentedOX -algebras.

Proof. By Lemma 9.5 we haveA = colimAi whereAi ⊂ A runs through the quasi-
coherent OX -sub algebras of finite type. Any finite type quasi-coherent OX -subalgebra
ofA is finite (use Algebra, Lemma 36.5 on affine schemes étale over X). This proves (1).

To prove (2), write A = colimFi as a colimit of finitely presented OX -modules using
Lemma 9.1. For each i, let Ji be the kernel of the map

Sym∗
OX

(Fi) −→ A

For i′ ≥ i there is an induced map Ji → Ji′ and we have A = colim Sym∗
OX

(Fi)/Ji.
Moreover, the quasi-coherent OX -algebras Sym∗

OX
(Fi)/Ji are finite (see above). Write

Ji = colim Eik as a colimit of finitely presented OX -modules. Given i′ ≥ i and k there
exists a k′ such that we have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Cohomology of Spaces, Lemma 5.3. This induces a map

Aik = Sym∗
OX

(Fi)/(Eik) −→ Sym∗
OX

(Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras Aki are
of finite presentation and finite for k large enough (see proof of Lemma 9.6). Finally, we
have

colimAik = colimAi = A
Namely, the first equality was shown in the proof of Lemma 9.6 and the second equality
becauseA is the colimit of the modules Fi. �
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Lemma 9.8. Let S be a scheme. Let X be a quasi-compact and quasi-separated al-
gebraic space over S. Let U ⊂ X be a quasi-compact open. Let F be a quasi-coherent
OX -module. Let G ⊂ F|U be a quasi-coherent OU -submodule which is of finite type.
Then there exists a quasi-coherent submodule G′ ⊂ F which is of finite type such that
G′|U = G.

Proof. Denote j : U → X the inclusion morphism. As X is quasi-separated and U
quasi-compact, the morphism j is quasi-compact. Hence j∗G ⊂ j∗F|U are quasi-coherent
modules on X (Morphisms of Spaces, Lemma 11.2). Let H = Ker(j∗G ⊕ F → j∗F|U ).
ThenH|U = G. By Lemma 9.2 we can find a finite type quasi-coherent submoduleH′ ⊂ H
such thatH′|U = H|U = G. Set G′ = Im(H′ → F) to conclude. �

10. Relative approximation

We discuss variants of Proposition 8.1 over a base.

Lemma 10.1. Let f : X → Y be a morphism of quasi-compact and quasi-separated
algebraic spaces over Z. Then there exists a direct set I and an inverse system (fi : Xi →
Yi) of morphisms algebraic spaces over I , such that the transition morphisms Xi → Xi′

and Yi → Yi′ are affine, such that Xi and Yi are quasi-separated and of finite type over Z,
and such that (X → Y ) = lim(Xi → Yi).

Proof. Write X = lima∈AXa and Y = limb∈B Yb as in Proposition 8.1, i.e., with
Xa and Yb quasi-separated and of finite type over Z and with affine transition morphisms.

Fix b ∈ B. By Lemma 4.5 applied to Yb and X = limXa over Z we find there exists an
a ∈ A and a morphism fa,b : Xa → Yb making the diagram

X

��

// Y

��
Xa

// Yb

commute. Let I be the set of triples (a, b, fa,b) we obtain in this manner.

Let (a, b, fa,b) and (a′, b′, fa′,b′) be in I . Let b′′ ≤ min(b, b′). By Lemma 4.5 again, there
exists an a′′ ≥ max(a, a′) such that the compositions Xa′′ → Xa → Yb → Yb′′ and
Xa′′ → Xa′ → Yb′ → Yb′′ are equal. We endow I with the preorder

(a, b, fa,b) ≥ (a′, b′, fa′,b′)⇔ a ≥ a′, b ≥ b′, and gb,b′ ◦ fa,b = fa′,b′ ◦ ha,a′

where ha,a′ : Xa → Xa′ and gb,b′ : Yb → Yb′ are the transition morphisms. The remarks
above show that I is directed and that the maps I → A, (a, b, fa,b) 7→ a and I → B,
(a, b, fa,b) are cofinal. If for i = (a, b, fa,b) we set Xi = Xa, Yi = Yb, and fi = fa,b, then
we get an inverse system of morphisms over I and we have

limi∈I Xi = lima∈AXa = X and limi∈I Si = limb∈B Yb = Y

by Categories, Lemma 17.4 (recall that limits over I are really limits over the opposite
category associated to I and hence cofinal turns into initial). This finishes the proof. �

Lemma 10.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) Y is quasi-separated.
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Then X = limXi is a limit of a directed inverse system of algebraic spaces Xi of finite
presentation over Y with affine transition morphisms over Y .

Proof. Since |f |(|X|) is quasi-compact we may replace Y by a quasi-compact open
subspace whose set of points contains |f |(|X|). Hence we may assume Y is quasi-compact
as well. By Lemma 10.1 we can write (X → Y ) = lim(Xi → Yi) for some directed inverse
system of morphisms of finite type schemes over Z with affine transition morphisms. Since
limits commute with limits (Categories, Lemma 14.10) we have X = limXi ×Yi Y . For
i ≥ i′ the transition morphism Xi ×Yi Y → Xi′ ×Yi′ Y is affine as the composition

Xi ×Yi Y → Xi ×Yi′ Y → Xi′ ×Yi′ Y

where the first morphism is a closed immersion (by Morphisms of Spaces, Lemma 4.5) and
the second is a base change of an affine morphism (Morphisms of Spaces, Lemma 20.5) and
the composition of affine morphisms is affine (Morphisms of Spaces, Lemma 20.4). The
morphisms fi are of finite presentation (Morphisms of Spaces, Lemmas 28.7 and 28.9) and
hence the base changesXi×fi,Yi Y → Y are of finite presentation (Morphisms of Spaces,
Lemma 28.3). �

11. Finite type closed in finite presentation

This section is the analogue of Limits, Section 9.

Lemma 11.1. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. If Y quasi-compact and quasi-separated, then X is a directed limit X =
limXi with each Xi affine and of finite presentation over Y .

Proof. Consider the quasi-coherent OY -module A = f∗OX . By Lemma 9.4 we
can write A = colimAi as a directed colimit of finitely presented OY -algebras Ai. Set
Xi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 20.8. By construction Xi → Y is

affine and of finite presentation and X = limXi. �

Lemma 11.2. Let S be a scheme. Let f : X → Y be an integral morphism of algebraic
spaces over S. Assume Y quasi-compact and quasi-separated. Then X can be written as a
directed limit X = limXi where Xi are finite and of finite presentation over Y .

Proof. Consider the quasi-coherentOY -moduleA = f∗OX . By Lemma 9.7 we can
writeA = colimAi as a directed colimit of finite and finitely presentedOY -algebrasAi.
SetXi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 20.8. By constructionXi → Y

is finite and of finite presentation and X = limXi. �

Lemma 11.3. Let S be a scheme. Let f : X → Y be a finite morphism of algebraic
spaces over S. Assume Y quasi-compact and quasi-separated. Then X can be written as
a directed limit X = limXi where the transition maps are closed immersions and the
objects Xi are finite and of finite presentation over Y .

Proof. Consider the finite quasi-coherent OY -module A = f∗OX . By Lemma 9.6
we can write A = colimAi as a directed colimit of finite and finitely presented OY -
algebras Ai with surjective transition maps. Set Xi = Spec

Y
(Ai), see Morphisms of

Spaces, Definition 20.8. By construction Xi → Y is finite and of finite presentation, the
transition maps are closed immersions, and X = limXi. �

Lemma 11.4. Let S be a scheme. Let f : X → Y be a closed immersion of algebraic
spaces over S. Assume Y quasi-compact and quasi-separated. Then X can be written as
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a directed limit X = limXi where the transition maps are closed immersions and the
morphisms Xi → Y are closed immersions of finite presentation.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subspace of Y . By Lemma 9.2 we can write I = colim Ii as the filtered colimit of its
finite type quasi-coherent submodules. Let Xi be the closed subspace of X cut out by Ii.
ThenXi → Y is a closed immersion of finite presentation, andX = limXi. Some details
omitted. �

Lemma 11.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) f is locally of finite type and quasi-affine, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed immersion
X → X ′ over Y .

Proof. By Morphisms of Spaces, Lemma 21.6 we can find a factorization X → Z →
Y where X → Z is a quasi-compact open immersion and Z → Y is affine. Write Z =
limZi with Zi affine and of finite presentation over Y (Lemma 11.1). For some 0 ∈ I we
can find a quasi-compact open U0 ⊂ Z0 such thatX is isomorphic to the inverse image of
U0 in Z (Lemma 5.7). Let Ui be the inverse image of U0 in Zi, so U = limUi. By Lemma
5.12 we see that X → Ui is a closed immersion for some i large enough. Setting X ′ = Ui
finishes the proof. �

Lemma 11.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume:

(1) f is of locally of finite type.
(2) X is quasi-compact and quasi-separated, and
(3) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed immersion
X → X ′ of algebraic spaces over Y .

Proof. By Proposition 8.1 we can write X = limiXi with Xi quasi-separated of
finite type over Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider the
commutative diagram

X //

!!

Xi,Y
//

��

Xi

��
Y // Spec(Z)

Note thatXi is of finite presentation over Spec(Z), see Morphisms of Spaces, Lemma 28.7.
Hence the base changeXi,Y → Y is of finite presentation by Morphisms of Spaces, Lemma
28.3. Observe that limXi,Y = X × Y and that X → X × Y is a monomorphism. By
Lemma 5.12 we see that X → Xi,Y is a monomorphism for i large enough. Fix such an
i. Note that X → Xi,Y is locally of finite type (Morphisms of Spaces, Lemma 23.6) and
a monomorphism, hence separated and locally quasi-finite (Morphisms of Spaces, Lemma
27.10). Hence X → Xi,Y is representable. Hence X → Xi,Y is quasi-affine because we
can use the principle Spaces, Lemma 5.8 and the result for morphisms of schemes More on
Morphisms, Lemma 43.2. Thus Lemma 11.5 gives a factorization X → X ′ → Xi,Y with
X → X ′ a closed immersion and X ′ → Xi,Y of finite presentation. Finally, X ′ → Y is
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of finite presentation as a composition of morphisms of finite presentation (Morphisms of
Spaces, Lemma 28.2). �

Proposition 11.7. Let S be a scheme. f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) f is of finite type and separated, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ over Y .

Proof. By Lemma 11.6 there is a closed immersion X → Z with Z/Y of finite pre-
sentation. Let I ⊂ OZ be the quasi-coherent sheaf of ideals defining X as a closed sub-
scheme of Y . By Lemma 9.2 we can write I as a directed colimit I = colima∈A Ia of
its quasi-coherent sheaves of ideals of finite type. Let Xa ⊂ Z be the closed subspace
defined by Ia. These form an inverse system indexed by A. The transition morphisms
Xa → Xa′ are affine because they are closed immersions. Each Xa is quasi-compact
and quasi-separated since it is a closed subspace of Z and Z is quasi-compact and quasi-
separated by our assumptions. We have X = limaXa as follows directly from the fact
that I = colima∈A Ia. Each of the morphismsXa → Z is of finite presentation, see Mor-
phisms, Lemma 21.7. Hence the morphisms Xa → Y are of finite presentation. Thus it
suffices to show thatXa → Y is separated for some a ∈ A. This follows from Lemma 5.13
as we have assumed that X → Y is separated. �

12. Approximating proper morphisms

Lemma 12.1. Let S be a scheme. Let f : X → Y be a proper morphism of algebraic
spaces over S with Y quasi-compact and quasi-separated. Then X = limXi is a directed
limit of algebraic spaces Xi proper and of finite presentation over Y and with transition
morphisms and morphisms X → Xi closed immersions.

Proof. By Proposition 11.7 we can find a closed immersion X → X ′ with X ′ sep-
arated and of finite presentation over Y . By Lemma 11.4 we can write X = limXi with
Xi → X ′ a closed immersion of finite presentation. We claim that for all i large enough
the morphism Xi → Y is proper which finishes the proof.

To prove this we may assume that Y is an affine scheme, see Morphisms of Spaces, Lemma
40.2. Next, we use the weak version of Chow’s lemma, see Cohomology of Spaces, Lemma
18.1, to find a diagram

X ′

!!

X ′′

��

π
oo // Pn

Y

}}
Y

where X ′′ → Pn
Y is an immersion, and π : X ′′ → X ′ is proper and surjective. Denote

X ′
i ⊂ X ′′, resp. π−1(X) the scheme theoretic inverse image of Xi ⊂ X ′, resp. X ⊂ X ′.

Then limX ′
i = π−1(X). Since π−1(X) → Y is proper (Morphisms of Spaces, Lemmas

40.4), we see that π−1(X) → Pn
Y is a closed immersion (Morphisms of Spaces, Lemmas

40.6 and 12.3). Hence for i large enough we find that X ′
i → Pn

Y is a closed immersion by
Lemma 5.16. Thus X ′

i is proper over Y . For such i the morphism Xi → Y is proper by
Morphisms of Spaces, Lemma 40.7. �
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Lemma 12.2. Let f : X → Y be a proper morphism of algebraic spaces over Z with
Y quasi-compact and quasi-separated. Then there exists a directed set I , an inverse system
(fi : Xi → Yi) of morphisms of algebraic spaces over I , such that the transition mor-
phismsXi → Xi′ and Yi → Yi′ are affine, such that fi is proper and of finite presentation,
such that Yi is of finite presentation over Z, and such that (X → Y ) = lim(Xi → Yi).

Proof. By Lemma 12.1 we can write X = limk∈K Xk with Xk → Y proper and of
finite presentation. Next, by absolute Noetherian approximation (Proposition 8.1) we can
write Y = limj∈J Yj with Yj of finite presentation over Z. For each k there exists a j and
a morphism Xk,j → Yj of finite presentation with Xk

∼= Y ×Yj Xk,j as algebraic spaces
over Y , see Lemma 7.1. After increasing j we may assumeXk,j → Yj is proper, see Lemma
6.13. The set I will be consist of these pairs (k, j) and the corresponding morphism is
Xk,j → Yj . For every k′ ≥ k we can find a j′ ≥ j and a morphism Xj′,k′ → Xj,k over
Yj′ → Yj whose base change to Y gives the morphism Xk′ → Xk (follows again from
Lemma 7.1). These morphisms form the transition morphisms of the system. Some details
omitted. �

Recall the scheme theoretic support of a finite type quasi-coherent module, see Morphisms
of Spaces, Definition 15.4.

Lemma 12.3. Assumptions and notation as in Situation 6.1. LetF0 be a quasi-coherent
OX0 -module. Denote F and Fi the pullbacks of F0 to X and Xi. Assume

(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .

Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms
of Spaces, Lemma 15.2 this guarantees thatXi is the support of Fi andX is the support of
F . Then, if Z ⊂ X denotes the scheme theoretic support of F , we see that Z → X is a
universal homeomorphism. We conclude thatX → Y is proper as this is true for Z → Y
by assumption, see Morphisms, Lemma 41.9. By Lemma 6.13 we see thatXi → Y is proper
for some i. Then it follows that the scheme theoretic support Zi of Fi is proper over Y
by Morphisms of Spaces, Lemmas 40.5 and 40.4. �

13. Embedding into affine space

Some technical lemmas to be used in the proof of Chow’s lemma later.

Lemma 13.1. Let S be a scheme. Let f : U → X be a morphism of algebraic spaces
over S. Assume U is an affine scheme, f is locally of finite type, and X quasi-separated
and locally separated. Then there exists an immersion U → An

X over X .

Proof. Say U = Spec(A). Write A = colimAi as a filtered colimit of finite type
Z-subalgebras. For each i the morphism U → Ui = Spec(Ai) induces a morphism

U −→ X × Ui
overX . In the limit the morphism U → X ×U is an immersion asX is locally separated,
see Morphisms of Spaces, Lemma 4.6. By Lemma 5.12 we see that U → X × Ui is an
immersion for some i. Since Ui is isomorphic to a closed subscheme of An

Z the lemma
follows. �
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Remark 13.2. We have seen in Examples, Section 28 that Lemma 13.1 does not hold if
we drop the assumption thatX be locally separated. This raises the question: Does Lemma
13.1 hold if we drop the assumption that X be quasi-separated? If you know the answer,
please email stacks.project@gmail.com.

Lemma 13.3. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. AssumeX Noetherian and f of finite presentation. Then there exists a dense open
V ⊂ Y and an immersion V → An

X .

Proof. The assumptions imply that Y is Noetherian (Morphisms of Spaces, Lemma
28.6). Then Y is quasi-separated, hence has a dense open subscheme (Properties of Spaces,
Proposition 13.3). Thus we may assume that Y is a Noetherian scheme. By removing
intersections of irreducible components of Y (use Topology, Lemma 9.2 and Properties,
Lemma 5.5) we may assume that Y is a disjoint union of irreducible Noetherian schemes.
Since there is an immersion

An
X qAm

X −→ Amax(n,m)+1
X

(details omitted) we see that it suffices to prove the result in case Y is irreducible.

AssumeY is an irreducible scheme. LetT ⊂ |X| be the closure of the image of f : Y → X .
Note that since |Y | and |X| are sober topological spaces (Properties of Spaces, Lemma 15.1)
T is irreducible with a unique generic point ξ which is the image of the generic point η of
Y . Let I ⊂ X be a quasi-coherent sheaf of ideals cutting out the reduced induced space
structure on T (Properties of Spaces, Definition 12.5). SinceOY,η is an Artinian local ring
we see that for some n > 0 we have f−1InOY,η = 0. As f−1IOY is a finite type quasi-
coherent ideal we conclude that f−1InOV = 0 for some nonempty open V ⊂ Y . Let
Z ⊂ X be the closed subspace cut out by In. By construction V → Y → X factors
through Z. Because An

Z → An
X is an immersion, we may replace X by Z and Y by V .

Hence we reach the situation where Y andX are irreducible and Y → X maps the generic
point of Y onto the generic point of X .

Assume Y and X are irreducible, Y is a scheme, and Y → X maps the generic point of
Y onto the generic point of X . By Properties of Spaces, Proposition 13.3 X has a dense
open subscheme U ⊂ X . Choose a nonempty affine open V ⊂ Y whose image in X is
contained in U . By Morphisms, Lemma 39.2 we may factor V → U as V → An

U → U .
Composing with An

U → An
X we obtain the desired immersion. �

14. Sections with support in a closed subset

This section is the analogue of Properties, Section 24.

Lemma 14.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space. Let U ⊂ X be an open subspace. The following are equivalent:

(1) U → X is quasi-compact,
(2) U is quasi-compact, and
(3) there exists a finite type quasi-coherent sheaf of ideals I ⊂ OX such that |X| \
|U | = |V (I)|.

Proof. LetW be an affine scheme and letϕ : W → X be a surjective étale morphism,
see Properties of Spaces, Lemma 6.3. If (1) holds, then ϕ−1(U) → W is quasi-compact,
hence ϕ−1(U) is quasi-compact, hence U is quasi-compact (as |ϕ−1(U)| → |U | is sur-
jective). If (2) holds, then ϕ−1(U) is quasi-compact because ϕ is quasi-compact since X

mailto:stacks.project@gmail.com
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is quasi-separated (Morphisms of Spaces, Lemma 8.10). Hence ϕ−1(U) → W is a quasi-
compact morphism of schemes by Properties, Lemma 24.1. It follows that U → X is
quasi-compact by Morphisms of Spaces, Lemma 8.8. Thus (1) and (2) are equivalent.
Assume (1) and (2). By Properties of Spaces, Lemma 12.3 there exists a unique quasi-
coherent sheaf of ideals J cutting out the reduced induced closed subspace structure on
|X| \ |U |. Note that J |U = OU which is an OU -modules of finite type. As U is quasi-
compact it follows from Lemma 9.2 that there exists a quasi-coherent subsheaf I ⊂ J
which is of finite type and has the property that I|U = J |U . Then |X| \ |U | = |V (I)|
and we obtain (3). Conversely, if I is as in (3), then ϕ−1(U) ⊂ W is a quasi-compact
open by the lemma for schemes (Properties, Lemma 24.1) applied to ϕ−1I onW . Thus (2)
holds. �

Lemma 14.2. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. Let F be a quasi-coherent OX -module. Consider the
sheaf ofOX -modules F ′ which associates to every object U of Xétale the module

F ′(U) = {s ∈ F(U) | Is = 0}
Assume I is of finite type. Then

(1) F ′ is a quasi-coherent sheaf ofOX -modules,
(2) for affine U in Xétale we have F ′(U) = {s ∈ F(U) | I(U)s = 0}, and
(3) F ′

x = {s ∈ Fx | Ixs = 0}.

Proof. It is clear that the rule definingF ′ gives a subsheaf ofF . Hence we may work
étale locally on X to verify the other statements. Thus the lemma reduces to the case of
schemes which is Properties, Lemma 24.2. �

Definition 14.3. Let S be a scheme. LetX be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals of finite type. Let F be a quasi-coherent OX -module.
The subsheaf F ′ ⊂ F defined in Lemma 14.2 above is called the subsheaf of sections
annihilated by I .

Lemma 14.4. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let I ⊂ OY be a quasi-coherent sheaf
of ideals of finite type. Let F be a quasi-coherent OX -module. Let F ′ ⊂ F be the sub-
sheaf of sections annihilated by f−1IOX . Then f∗F ′ ⊂ f∗F is the subsheaf of sections
annihilated by I .

Proof. Omitted. Hint: The assumption that f is quasi-compact and quasi-separated
implies that f∗F is quasi-coherent (Morphisms of Spaces, Lemma 11.2) so that Lemma 14.2
applies to I and f∗F . �

Next we come to the sheaf of sections supported in a closed subset. Again this isn’t always
a quasi-coherent sheaf, but if the complement of the closed is “retrocompact” in the given
algebraic space, then it is.

Lemma 14.5. Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X| be
a closed subset and let U ⊂ X be the open subspace such that T q |U | = |X|. Let F be
a quasi-coherent OX -module. Consider the sheaf of OX -modules F ′ which associates to
every object ϕ : W → X of Xétale the module

F ′(W ) = {s ∈ F(W ) | the support of s is contained in |ϕ|−1(T )}
If U → X is quasi-compact, then
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(1) forW affine there exist a finitely generated ideal I ⊂ OX(W ) such that |ϕ|−1(T ) =
V (I),

(2) for W and I as in (1) we have F ′(W ) = {x ∈ F(W ) | Inx = 0 for some n},
(3) F ′ is a quasi-coherent sheaf ofOX -modules.

Proof. It is clear that the rule definingF ′ gives a subsheaf ofF . Hence we may work
étale locally on X to verify the other statements. Thus the lemma reduces to the case of
schemes which is Properties, Lemma 24.5. �

Definition 14.6. Let S be a scheme. LetX be an algebraic space over S. Let T ⊂ |X|
be a closed subset whose complement corresponds to an open subspace U ⊂ X with quasi-
compact inclusion morphism U → X . Let F be a quasi-coherentOX -module. The quasi-
coherent subsheaf F ′ ⊂ F defined in Lemma 14.5 above is called the subsheaf of sections
supported on T .

Lemma 14.7. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let T ⊂ |Y | be a closed subset. Assume
|Y | \ T corresponds to an open subspace V ⊂ Y such that V → Y is quasi-compact. Let
F be a quasi-coherent OX -module. Let F ′ ⊂ F be the subsheaf of sections supported on
|f |−1T . Then f∗F ′ ⊂ f∗F is the subsheaf of sections supported on T .

Proof. Omitted. Hints: |X| \ |f |−1T is the support of the open subspace U =
f−1V ⊂ X . Since V → Y is quasi-compact, so is U → X (by base change). The as-
sumption that f is quasi-compact and quasi-separated implies that f∗F is quasi-coherent.
Hence Lemma 14.5 applies to T and f∗F as well as to |f |−1T and F . The equality of the
given quasi-coherent modules is immediate from the definitions. �

15. Characterizing affine spaces

This section is the analogue of Limits, Section 11.

Lemma 15.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
overS. Assume that f is surjective and finite, and assume thatX is affine. Then Y is affine.

Proof. We may and do view f : X → Y as a morphism of algebraic space over
Spec(Z) (see Spaces, Definition 16.2). Note that a finite morphism is affine and universally
closed, see Morphisms of Spaces, Lemma 45.7. By Morphisms of Spaces, Lemma 9.8 we see
that Y is a separated algebraic space. As f is surjective andX is quasi-compact we see that
Y is quasi-compact.

By Lemma 11.3 we can write X = limXa with each Xa → Y finite and of finite presen-
tation. By Lemma 5.10 we see that Xa is affine for a large enough. Hence we may and do
assume that f : X → Y is finite, surjective, and of finite presentation.

By Proposition 8.1 we may write Y = lim Yi as a directed limit of algebraic spaces of finite
presentation over Z. By Lemma 7.1 we can find 0 ∈ I and a morphism X0 → Y0 of finite
presentation such that Xi = X0 ×Y0 Yi for i ≥ 0 and such that X = limiXi. By Lemma
6.7 we see that Xi → Yi is finite for i large enough. By Lemma 6.4 we see that Xi → Yi
is surjective for i large enough. By Lemma 5.10 we see that Xi is affine for i large enough.
Hence for i large enough we can apply Cohomology of Spaces, Lemma 17.3 to conclude
that Yi is affine. This implies that Y is affine and we conclude. �
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Proposition 15.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume thatX is affine and f is surjective and universally closed2. Then Y
is affine.

Proof. We may and do view f : X → Y as a morphism of algebraic spaces over
Spec(Z) (see Spaces, Definition 16.2). By Morphisms of Spaces, Lemma 9.8 we see that Y
is a separated algebraic space. Then by Morphisms of Spaces, Lemma 20.11 we find that f
is affine. Whereupon by Morphisms of Spaces, Lemma 45.7 we see that f is integral.

By the preceding paragraph, we may assume f : X → Y is surjective and integral, X is
affine, and Y is separated. Since f is surjective andX is quasi-compact we also deduce that
Y is quasi-compact.

Consider the sheaf A = f∗OX . This is a quasi-coherent sheaf of OY -algebras, see Mor-
phisms of Spaces, Lemma 11.2. By Lemma 9.1 we can write A = colimi Fi as a filtered
colimit of finite type OY -modules. Let Ai ⊂ A be the OY -subalgebra generated by Fi.
Since the map of algebrasOY → A is integral, we see that eachAi is a finite quasi-coherent
OY -algebra. Hence

Xi = Spec
Y

(Ai) −→ Y

is a finite morphism of algebraic spaces. Here Spec is the construction of Morphisms of
Spaces, Lemma 20.7. It is clear that X = limiXi. Hence by Lemma 5.10 we see that for i
sufficiently large the schemeXi is affine. Moreover, sinceX → Y factors through eachXi

we see that Xi → Y is surjective. Hence we conclude that Y is affine by Lemma 15.1. �

The following corollary of the result above can be found in [?].

Lemma 15.3. Let S be a scheme. Let X be an algebraic space over S. If Xred is a
scheme, then X is a scheme.

Proof. LetU ′ ⊂ Xred be an open affine subscheme. LetU ⊂ X be the open subspace
corresponding to the open |U ′| ⊂ |Xred| = |X|. Then U ′ → U is surjective and integral.
HenceU is affine by Proposition 15.2. Thus every point is contained in an open subscheme
of X , i.e., X is a scheme. �

Lemma 15.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is integral and induces a bijection |X| → |Y |. Then X is a scheme if
and only if Y is a scheme.

Proof. An integral morphism is representable by definition, hence if Y is a scheme,
so isX . Conversely, assume thatX is a scheme. Let U ⊂ X be an affine open. An integral
morphism is closed and |f | is bijective, hence |f |(|U |) ⊂ |Y | is open as the complement
of |f |(|X| \ |U |). Let V ⊂ Y be the open subspace with |V | = |f |(|U |), see Properties of
Spaces, Lemma 4.8. Then U → V is integral and surjective, hence V is an affine scheme
by Proposition 15.2. This concludes the proof. �

Lemma 15.5. Let S be a scheme. Let f : X → B and B′ → B be morphisms of
algebraic spaces over S. Assume

(1) B′ → B is a closed immersion,
(2) |B′| → |B| is bijective,
(3) X ×B B′ → B′ is a closed immersion, and
(4) X → B is of finite type or B′ → B is of finite presentation.

2An integral morphism is universally closed, see Morphisms of Spaces, Lemma 45.7.
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Then f : X → B is a closed immersion.

Proof. Assumptions (1) and (2) imply that Bred = B′
red. Set X ′ = X ×B B′. Then

X ′ → X is closed immersion and X ′
red = Xred. Let U → B be an étale morphism with

U affine. ThenX ′×B U → X×B U is a closed immersion of algebraic spaces inducing an
isomorphism on underlying reduced spaces. Since X ′ ×B U is a scheme (as B′ → B and
X ′ → B′ are representable) so isX ×B U by Lemma 15.3. HenceX → B is representable
too. Thus we reduce to the case of schemes, see Morphisms, Lemma 45.7. �

16. Finite cover by a scheme

As an application of the limit results of this chapter, we prove that given any quasi-
compact and quasi-separated algebraic spaceX , there is a scheme Y and a surjective, finite
morphism Y → X . We will rely on the already proven result that we can find a finite
integral cover by a scheme, which was proved in Decent Spaces, Section 9.

Proposition 16.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S.

(1) There exists a surjective finite morphism Y → X of finite presentation where Y
is a scheme,

(2) given a surjective étale morphism U → X we may choose Y → X such that for
every y ∈ Y there is an open neighbourhood V ⊂ Y such that V → X factors
through U .

Proof. Part (1) is the special case of (2) with U = X . Let Y → X be as in Decent
Spaces, Lemma 9.2. Choose a finite affine open covering Y =

⋃
Vj such that Vj → X fac-

tors through U . We can write Y = lim Yi with Yi → X finite and of finite presentation,
see Lemma 11.2. For large enough i the algebraic space Yi is a scheme, see Lemma 5.11. For
large enough i we can find affine opens Vi,j ⊂ Yi whose inverse image in Y recovers Vj ,
see Lemma 5.7. For even larger i the morphisms Vj → U over X come from morphisms
Vi,j → U over X , see Proposition 3.10. This finishes the proof. �

Lemma 16.2. Let S be a scheme. Let f : X → Y be an integral morphism of algebraic
spaces over S. Assume Y quasi-compact and quasi-separated. Let V ⊂ Y be a quasi-
compact open subspace such that f−1(V ) → V is finite and of finite presentation. Then
X can be written as a directed limit X = limXi where fi : Xi → Y are finite and of
finite presentation such that f−1(V )→ f−1

i (V ) is an isomorphism for all i.

Proof. This lemma is a slight refinement of Proposition 16.1. Consider the inte-
gral quasi-coherent OY -algebra A = f∗OX . In the next paragraph, we will write A =
colimAi as a directed colimit of finite and finitely presented OY -algebras Ai such that
Ai|V = A|V . Having done this we set Xi = Spec

Y
(Ai), see Morphisms of Spaces, Def-

inition 20.8. By construction Xi → Y is finite and of finite presentation, X = limXi,
and f−1

i (V ) = f−1(V ).

The proof of the assertion on algebras is similar to the proof of part (2) of Lemma 9.7. First,
writeA = colimFi as a colimit of finitely presentedOY -modules using Lemma 9.1. Since
A|V is a finite typeOV -module we may and do assume that Fi|V → A|V is surjective for
all i. For each i, let Ji be the kernel of the map

Sym∗
OX

(Fi) −→ A
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For i′ ≥ i there is an induced map Ji → Ji′ . We have A = colim Sym∗
OX

(Fi)/Ji.
Moreover, the quasi-coherentOX -algebras Sym∗

OX
(Fi)/Ji are finite (as finite type quasi-

coherent subalgebras of the integral quasi-coherentOY -algebraA overOX ). The restric-
tion of Sym∗

OX
(Fi)/Ji to V isA|V by the surjectivity above. Hence Ji|V is finitely gen-

erated as an ideal sheaf of Sym∗
OX

(Fi)|V due to the fact that A|V is finitely presented as
anOY -algebra. Write Ji = colim Eik as a colimit of finitely presentedOX -modules. We
may and do assume that Eik|V generates Ji|V as a sheaf of ideal of Sym∗

OX
(Fi)|V by the

statement on finite generation above. Given i′ ≥ i and k there exists a k′ such that we
have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Cohomology of Spaces, Lemma 5.3. This induces a map

Aik = Sym∗
OX

(Fi)/(Eik) −→ Sym∗
OX

(Fi′)/(Ei′k′) = Ai′k′

where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras Aki are
of finite presentation and finite for k large enough (see proof of Lemma 9.6). Moreover
we haveAik|V = A|V by construction. Finally, we have

colimAik = colimAi = A

Namely, the first equality was shown in the proof of Lemma 9.6 and the second equality
becauseA is the colimit of the modules Fi. �

Lemma 16.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S such that |X| has finitely many irreducible components.

(1) There exists a surjective finite morphism f : Y → X of finite presentation
where Y is a scheme such that f is finite étale over a quasi-compact dense open
U ⊂ X ,

(2) given a surjective étale morphism V → X we may choose Y → X such that for
every y ∈ Y there is an open neighbourhoodW ⊂ Y such thatW → X factors
through V .

Proof. Part (1) is the special case of (2) with V = X .

Proof of (2). Let π : Y → X be as in Decent Spaces, Lemma 9.3 and let U ⊂ X be a quasi-
compact dense open such that π−1(U) → U is finite étale. Choose a finite affine open
covering Y =

⋃
Wj such that Wj → X factors through V . We can write Y = lim Yi

with πi : Yi → X finite and of finite presentation such that π−1(U) → π−1
i (U) is an

isomorphism, see Lemma 16.2. For large enough i the algebraic space Yi is a scheme, see
Lemma 5.11. For large enough i we can find affine opens Wi,j ⊂ Yi whose inverse image
in Y recoversWj , see Lemma 5.7. For even larger i the morphismsWj → V overX come
from morphisms Wi,j → U over X , see Proposition 3.10. This finishes the proof. �

Lemma 16.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. There exists a t ≥ 0 and closed subspaces

X ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅



17. OBTAINING SCHEMES 5457

such that Zi → X is of finite presentation, Z0 ⊂ X is a thickening, and for each i =
0, . . . t − 1 there exists a scheme Yi, a surjective, finite, and finitely presented morphism
Yi → Zi which is finite étale over Zi \ Zi+1.

Proof. We may view X as an algebraic space over Spec(Z), see Spaces, Definition
16.2 and Properties of Spaces, Definition 3.1. Thus we may apply Proposition 8.1. It fol-
lows that we can find an affine morphism X → X0 with X0 of finite presentation over
Z. If we can prove the lemma for X0, then we can pull back the stratification and the
morphisms toX and get the result forX ; some details omitted. This reduces us to the case
discussed in the next paragraph.
AssumeX is of finite presentation over Z. ThenX is Noetherian and |X| is a Noetherian
topological space (with finitely many irreducible components) of finite dimension. Hence
we may use induction on dim(|X|). Any finite morphism towards X is of finite presen-
tation, so we can ignore that requirement in the rest of the proof. By Lemma 16.3 there
exists a surjective finite morphism Y → X which is finite étale over a dense open U ⊂ X .
Set Z0 = X and let Z1 ⊂ X be the reduced closed subspace with |Z1| = |X| \ |U |. By
induction we find an integer t ≥ 0 and a filtration

Z1 ⊃ Z1,0 ⊃ Z1,1 ⊃ . . . ⊃ Z1,t = ∅
by closed subspaces, where Z1,0 → Z1 is a thickening and there exist finite surjective
morphisms Y1,i → Z1,i which are finite étale over Z1,i \ Z1,i+1. Since Z1 is reduced, we
have Z1 = Z1,0. Hence we can set Zi = Z1,i−1 and Yi = Y1,i−1 for i ≥ 1 and the lemma
is proved. �

17. Obtaining schemes

A few more techniques to show an algebraic space is a scheme. The first is that we can
show there is a minimal closed subspace which is not a scheme.

Lemma 17.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. If X is not a scheme, then there exists a closed subspace Z ⊂ X such
that Z is not a scheme, but every proper closed subspace Z ′ ⊂ Z is a scheme.

Proof. We prove this by Zorn’s lemma. LetZ be the set of closed subspaces Z which
are not schemes ordered by inclusion. By assumption Z contains X , hence is nonempty.
If Zα is a totally ordered subset of Z , then Z =

⋂
Zα is in Z . Namely,

Z = limZα

and the transition morphisms are affine. Thus we may apply Lemma 5.11 to see that if Z
were a scheme, then so would one of the Zα. (This works even if Z = ∅, but note that by
Lemma 5.3 this cannot happen.) Thus Z has minimal elements by Zorn’s lemma. �

Now we can prove a little bit about these minimal non-schemes.

Lemma 17.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Assume that every proper closed subspace Z ⊂ X is a scheme, but X
is not a scheme. Then X is reduced and irreducible.

Proof. We see that X is reduced by Lemma 15.3. Choose closed subsets T1 ⊂ |X|
and T2 ⊂ |X| such that |X| = T1 ∪ T2. If T1 and T2 are proper closed subsets, then
the corresponding reduced induced closed subspaces Z1, Z2 ⊂ X (Properties of Spaces,
Definition 12.5) are schemes and so is Z = Z1×X Z2 = Z1 ∩Z2 as a closed subscheme of
either Z1 or Z2. Observe that the coproduct Z1 qZ Z2 exists in the category of schemes,
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see More on Morphisms, Lemma 67.8. One way to proceed, is to show that Z1 qZ Z2 is
isomorphic toX , but we cannot use this here as the material on pushouts of algebraic spaces
comes later in the theory. Instead we will use Lemma 15.1 to find an affine neighbourhood
of every point. Namely, let x ∈ |X|. If x 6∈ Z1, then x has a neighbourhood which is
a scheme, namely, X \ Z1. Similarly if x 6∈ Z2. If x ∈ Z = Z1 ∩ Z2, then we choose
an affine open U ⊂ Z1 qZ Z2 containing z. Then U1 = Z1 ∩ U and U2 = Z2 ∩ U are
affine opens whose intersections with Z agree. Since |Z1| = T1 and |Z2| = T2 are closed
subsets of |X| which intersect in |Z|, we find an open W ⊂ |X| with W ∩ T1 = |U1| and
W ∩ T2 = |U2|. Let W denote the corresponding open subspace of X . Then x ∈ |W |
and the morphism U1qU2 →W is a surjective finite morphism whose source is an affine
scheme. Thus W is an affine scheme by Lemma 15.1. �

A key point in the following lemma is that we only need to check the condition in the
images of points of X .

Lemma 17.3. Let f : X → S be a quasi-compact and quasi-separated morphism from
an algebraic space to a scheme S. If for every x ∈ |X| with image s = f(x) ∈ S the
algebraic space X ×S Spec(OS,s) is a scheme, then X is a scheme.

Proof. Let x ∈ |X|. It suffices to find an open neighbourhood U of s = f(x)
such that X ×S U is a scheme. As X ×S Spec(OS,s) is a scheme, then, since OS,s =
colimOS(U) where the colimit is over affine open neighbourhoods of s in S we see that

X ×S Spec(OS,s) = limX ×S U
By Lemma 5.11 we see that X ×S U is a scheme for some U . �

Instead of restricting to local rings as in Lemma 17.3, we can restrict to closed subschemes
of the base.

Lemma 17.4. Let ϕ : X → Spec(A) be a quasi-compact and quasi-separated mor-
phism from an algebraic space to an affine scheme. If X is not a scheme, then there exists
an ideal I ⊂ A such that the base change XA/I is not a scheme, but for every I ⊂ I ′,
I 6= I ′ the base change XA/I′ is a scheme.

Proof. We prove this by Zorn’s lemma. Let I be the set of ideals I such thatXA/I is
not a scheme. By assumption I contains (0). If Iα is a chain of ideals in I , then I =

⋃
Iα

is in I . Namely, A/I = colimA/Iα, hence

XA/I = limXA/Iα

Thus we may apply Lemma 5.11 to see that if XA/I were a scheme, then so would be one
of the XA/Iα . Thus I has maximal elements by Zorn’s lemma. �

18. Glueing in closed fibres

Applying our theory above to the spectrum of a local ring we obtain a few pleasing glueing
results for relative algebraic spaces. We first prove a helper lemma (which will be vastly
generalized in Bootstrap, Section 11).

Lemma 18.1. Let S = U ∪W be an open covering of a scheme. Then the functor

FPS −→ FPU ×FPU∩W FPW

given by base change is an equivalence where FPT is the category of algebraic spaces of
finite presentation over the scheme T .
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Proof. First, since S = U ∪ W is a Zariski covering, we see that the category of
sheaves on (Sch/S)fppf is equivalent to the category of triples (FU ,FW , ϕ) where FU is
a sheaf on (Sch/U)fppf , FW is a sheaf on (Sch/W )fppf , and

ϕ : FU |(Sch/U∩W )fppf −→ FW |(Sch/U∩W )fppf

is an isomorphism. See Sites, Lemma 26.5 (note that no other gluing data are necessary
because U ×S U = U , W ×S W = W and that the cocycle condition is automatic for
the same reason). Now, if the sheaf F on (Sch/S)fppf maps to (FU ,FW , ϕ) via this
equivalence, then F is an algebraic space if and only if FU and FW are algebraic spaces.
This follows immediately from Algebraic Spaces, Lemma 8.5 as FU → F and FW → F
are representable by open immersions and coverF . Finally, in this case the algebraic space
F is of finite presentation over S if and only ifFU is of finite presentation overU andFW
is of finite presentation over W by Morphisms of Spaces, Lemmas 8.8, 4.12, and 28.4. �

Lemma 18.2. Let S be a scheme. Let s ∈ S be a closed point such thatU = S \{s} →
S is quasi-compact. With V = Spec(OS,s) \ {s} there is an equivalence of categories

FPS −→ FPU ×FPV FPSpec(OS,s)

where FPT is the category of algebraic spaces of finite presentation over T .

Proof. Let W ⊂ S be an open neighbourhood of s. The functor

FPS → FPU ×FPW\{s} FPW

is an equivalence of categories by Lemma 18.1. We have OS,s = colimOW (W ) where
W runs over the affine open neighbourhoods of s. Hence Spec(OS,s) = limW where
W runs over the affine open neighbourhoods of s. Thus the category of algebraic spaces
of finite presentation over Spec(OS,s) is the limit of the category of algebraic spaces of
finite presentation over W where W runs over the affine open neighbourhoods of s, see
Lemma 7.1. For every affine open s ∈ W we see that U ∩W is quasi-compact as U → S
is quasi-compact. Hence V = limW ∩ U = limW \ {s} is a limit of quasi-compact
and quasi-separated schemes (see Limits, Lemma 2.2). Thus also the category of algebraic
spaces of finite presentation over V is the limit of the categories of algebraic spaces of finite
presentation over W ∩ U where W runs over the affine open neighbourhoods of s. The
lemma follows formally from a combination of these results. �

Lemma 18.3. Let S be a scheme. Let U ⊂ S be a retrocompact open. Let s ∈ S be
a point in the complement of U . With V = Spec(OS,s) ∩ U there is an equivalence of
categories

colims∈U ′⊃U open FPU ′ −→ FPU ×FPV FPSpec(OS,s)

where FPT is the category of algebraic spaces of finite presentation over T .

Proof. Let W ⊂ S be an open neighbourhood of s. By Lemma 18.1 the functor

FPU∪W −→ FPU ×FPU∩W FPW

is an equivalence of categories. We have OS,s = colimOW (W ) where W runs over the
affine open neighbourhoods of s. Hence Spec(OS,s) = limW where W runs over the
affine open neighbourhoods of s. Thus the category of algebraic spaces of finite presenta-
tion over Spec(OS,s) is the limit of the category of algebraic spaces of finite presentation
over W where W runs over the affine open neighbourhoods of s, see Lemma 7.1. For ev-
ery affine open s ∈ W we see that U ∩W is quasi-compact as U → S is quasi-compact.
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Hence V = limW ∩ U is a limit of quasi-compact and quasi-separated schemes (see Lim-
its, Lemma 2.2). Thus also the category of algebraic spaces of finite presentation over V
is the limit of the categories of algebraic spaces of finite presentation over W ∩ U where
W runs over the affine open neighbourhoods of s. The lemma follows formally from a
combination of these results. �

Lemma 18.4. Let S be a scheme. Let s1, . . . , sn ∈ S be pairwise distinct closed points
such that U = S \ {s1, . . . , sn} → S is quasi-compact. With Si = Spec(OS,si) and
Ui = Si \ {si} there is an equivalence of categories

FPS −→ FPU ×(FPU1 ×...×FPUn ) (FPS1 × . . .× FPSn)
where FPT is the category of algebraic spaces of finite presentation over T .

Proof. For n = 1 this is Lemma 18.2. For n > 1 the lemma can be proved in exactly
the same way or it can be deduced from it. For example, suppose that fi : Xi → Si
are objects of FPSi and f : X → U is an object of FPU and we’re given isomorphisms
Xi ×Si Ui = X ×U Ui. By Lemma 18.2 we can find a morphism f ′ : X ′ → U ′ =
S \ {s1, . . . , sn−1} which is of finite presentation, which is isomorphic to Xi over Si,
which is isomorphic to X over U , and these isomorphisms are compatible with the given
isomorphism Xi ×Sn Un = X ×U Un. Then we can apply induction to fi : Xi → Si,
i ≤ n−1, f ′ : X ′ → U ′, and the induced isomorphismsXi×SiUi = X ′×U ′Ui, i ≤ n−1.
This shows essential surjectivity. We omit the proof of fully faithfulness. �

19. Application to modifications

Using limits we can describe the category of modifications of a decent algebraic space over
a closed point in terms of the henselian local ring.

Lemma 19.1. Let S be a scheme. Consider a separated étale morphism f : V →W of
algebraic spaces over S. Assume there exists a closed subspace T ⊂W such that f−1T →
T is an isomorphism. Then, withW 0 = W \T and V 0 = f−1W 0 the base change functor{
g : X →W morphism of algebraic spaces
g−1(W 0)→W 0 is an isomorphism

}
−→

{
h : Y → V morphism of algebraic spaces
h−1(V 0)→ V 0 is an isomorphism

}
is an equivalence of categories.

Proof. Since V →W is separated we see that V ×W V = ∆(V )qU for some open
and closed subspace U of V ×W V . By the assumption that f−1T → T is an isomorphism
we see that U ×W T = ∅, i.e., the two projections U → V maps into V 0.

Given h : Y → V in the right hand category, consider the contravariant functor X on
(Sch/S)fppf defined by the rule

X(T ) = {(w, y) | w : T →W, y : T ×w,W V → Y morphism over V }
Denote g : X → W the map sending (w, y) ∈ X(T ) to w ∈ W (T ). Since h−1V 0 → V 0

is an isomorphism, we see that if w : T →W maps intoW 0, then there is a unique choice
for h. In other words X ×g,W W 0 = W 0. On the other hand, consider a T -valued point
(w, y, v) of X ×g,W,f V . Then w = f ◦ v and

y : T ×f◦v,W V −→ V

is a morphism over V . Consider the morphism

T ×f◦v,W V
(v,idV )−−−−→ V ×W V = V q U
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The inverse image of V is T embedded via (idT , v) : T → T ×f◦v,W V . The composition
y′ = y ◦ (idT , v) : T → Y is a morphism with v = h ◦ y′ which determines y because the
restriction of y to the other part is uniquely determined as U maps into V 0 by the second
projection. It follows that X ×g,W,f V → Y , (w, y, v) 7→ y′ is an isomorphism.

Thus if we can show that X is an algebraic space, then we are done. Since V →W is sep-
arated and étale it is representable by Morphisms of Spaces, Lemma 51.1 (and Morphisms
of Spaces, Lemma 39.5). Of course W 0 → W is representable and étale as it is an open
immersion. Thus

W 0 q Y = X ×g,W W 0 qX ×g,W,f V = X ×g,W (W 0 q V ) −→ X

is representable, surjective, and étale by Spaces, Lemmas 3.3 and 5.5. ThusX is an algebraic
space by Spaces, Lemma 11.2. �

Lemma 19.2. Notation and assumptions as in Lemma 19.1. Let g : X → W cor-
respond to h : Y → V via the equivalence. Then g is quasi-compact, quasi-separated,
separated, locally of finite presentation, of finite presentation, locally of finite type, of
finite type, proper, integral, finite, and add more here if and only if h is so.

Proof. If g is quasi-compact, quasi-separated, separated, locally of finite presentation,
of finite presentation, locally of finite type, of finite type, proper, finite, so is h as a base
change of g by Morphisms of Spaces, Lemmas 8.4, 4.4, 28.3, 23.3, 40.3, 45.5. Conversely, let
P be a property of morphisms of algebraic spaces which is étale local on the base and which
holds for the identity morphism of any algebraic space. Since {W 0 →W,V →W} is an
étale covering, to prove that g has P it suffices to show that h has P . Thus we conclude
using Morphisms of Spaces, Lemmas 8.8, 4.12, 28.4, 23.4, 40.2, 45.3. �

Lemma 19.3. LetS be a scheme. LetX be a decent algebraic space overS. Let x ∈ |X|
be a closed point such thatU = X \{x} → X is quasi-compact. With V = Spec(OhX,x)\
{mhx} the base change functor{
f : Y → X of finite presentation
f−1(U)→ U is an isomorphism

}
−→

{
g : Y → Spec(OhX,x) of finite presentation

g−1(V )→ V is an isomorphism

}
is an equivalence of categories.

Proof. Let a : (W,w)→ (X,x) be an elementary étale neighbourhood of xwithW
affine as in Decent Spaces, Lemma 11.4. Since x is a closed point of X and w is the unique
point ofW lying over x, we see thatw is a closed point ofW . Since a is étale and identifies
residue fields at x and w, it follows that a induces an isomorphism a−1x → x (as closed
subspaces of X and W ). Thus we may apply Lemma 19.1 and 19.2 to reduce the problem
to the case where X is an affine scheme.

Assume X is an affine scheme. Recall thatOhX,x is the colimit of Γ(U,OU ) over affine el-
ementary étale neighbourhoods (U, u)→ (X,x). Recall that the category of these neigh-
bourhoods is cofiltered, see Decent Spaces, Lemma 11.6 or More on Morphisms, Lemma
35.4. Then Spec(OhX,x) = limU and V = limU \ {u} (Lemma 4.1) where the limits
are taken over the same category. Thus by Lemma 7.1 The category on the right is the
colimit of the categories for the pairs (U, u). And by the material in the first paragraph,
each of these categories is equivalent to the category for the pair (X,x). This finishes the
proof. �
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20. Universally closed morphisms

In this section we discuss when a quasi-compact (but not necessarily separated) morphism
is universally closed. We first prove a lemma which will allow us to check universal closed-
ness after a base change which is locally of finite presentation.

Lemma 20.1. Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms of
algebraic spaces over S. Let z ∈ |Z| and let T ⊂ |X ×Y Z| be a closed subset with z 6∈
Im(T → |Z|). If f is quasi-compact, then there exists an étale neighbourhood (V, v) →
(Z, z), a commutative diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that
(1) the morphism b : Z ′ → Y is locally of finite presentation,
(2) with z′ = a(v) we have z′ 6∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X ×Y V |maps into T ′ via |X ×Y V | → |X ×Y Z ′|.

Moreover, we may assume V andZ ′ are affine schemes and ifZ is a scheme we may assume
V is an affine open neighbourhood of z.

Proof. We will deduce this from the corresponding result for morphisms of schemes.
Let y ∈ |Y | be the image of z. First we choose an affine étale neighbourhood (U, u) →
(Y, y) and then we choose an affine étale neighbourhood (V, v) → (Z, z) such that the
morphism V → Y factors through U . Then we may replace

(1) X → Y by X ×Y U → U ,
(2) Z → Y by V → U ,
(3) z by v, and
(4) T by its inverse image in |(X ×Y U)×U V | = |X ×Y V |.

In fact, below we will show that after replacing V by an affine open neighbourhood of
v there will be a morphism a : V → Z ′ for some Z ′ → U of finite presentation and
a closed subset T ′ of |(X ×Y U) ×U Z ′| = |X ×Y Z ′| such that T maps into T ′ and
a(v) 6∈ Im(T ′ → |Z ′|). Thus we may and do assume thatZ and Y are affine schemes with
the proviso that we need to find a solution where V is an open neighbourhood of z.

Since f is quasi-compact and Y is affine, the algebraic space X is quasi-compact. Choose
an affine scheme W and a surjective étale morphism W → X . Let TW ⊂ |W ×Y Z| be
the inverse image of T . Then z is not in the image of TW . By the schemes case (Limits,
Lemma 14.1) we can find an open neighbourhood V ⊂ Z of z a commutative diagram of
schemes

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |W ×Y Z ′| such that
(1) the morphism b : Z ′ → Y is locally of finite presentation,
(2) with z′ = a(z) we have z′ 6∈ Im(T ′ → Z ′), and
(3) T1 = TW ∩ |W ×Y V | maps into T ′ via |W ×Y V | → |W ×Y Z ′|.
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The commutative diagram

W ×Y Z

��

W ×Y Voo
a1

//

c

��

W ×Y Z ′

q

��
X ×Y Z X ×Y Voo a2 // X ×Y Z ′

has cartesian squares and the vertical maps are, surjective, étale and a fortiori open. Look-
ing at the left hand square we see that T1 = TW ∩ |W ×Y V | is the inverse image of T2 =
T ∩ |X ×Y V | by c. By Properties of Spaces, Lemma 4.3 we get a1(T1) = q−1(a2(T2)).
By Topology, Lemma 6.4 we get

q−1
(
a2(T2)

)
= q−1(a2(T2)) = a1(T1) ⊂ T ′

As q is surjective the image of a2(T2)→ |Z ′| does not contain z′ since the same is true for
T ′. Thus we can take the diagram with Z ′, V, a, b above and the closed subset a2(T2) ⊂
|X ×Y Z ′| as a solution to the problem posed by the lemma. �

Lemma 20.2. Let S be a scheme. Let f : X → Y be a quasi-compact morphism of
algebraic spaces over S. The following are equivalent

(1) f is universally closed,
(2) for every morphism Z → Y which is locally of finite presentation the map
|X ×Y Z| → |Z| is closed, and

(3) there exists a scheme V and a surjective étale morphism V → Y such that |An×
(X ×Y V )| → |An × V | is closed for all n ≥ 0.

Proof. It is clear that (1) implies (2). Suppose that |X ×Y Z| → |Z| is not closed
for some morphism of algebraic spaces Z → Y over S. This means that there exists some
closed subset T ⊂ |X ×Y Z| such that Im(T → |Z|) is not closed. Pick z ∈ |Z| in
the closure of the image of T but not in the image. Apply Lemma 20.1. We find an étale
neighbourhood (V, v)→ (Z, z), a commutative diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that
(1) the morphism b : Z ′ → Y is locally of finite presentation,
(2) with z′ = a(v) we have z′ 6∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X ×Y V |maps into T ′ via |X ×Y V | → |X ×Y Z ′|.

We claim that z′ is in the closure of Im(T ′ → |Z ′|) which implies that |X ×Y Z ′| → |Z ′|
is not closed. The claim shows that (2) implies (1). To see the claim is true we contemplate
following commutative diagram

X ×Y Z

��

X ×Y Voo

��

// X ×Y Z ′

��
Z Voo a // Z ′

Let TV ⊂ |X ×Y V | be the inverse image of T . By Properties of Spaces, Lemma 4.3 the
image of TV in |V | is the inverse image of the image of T in |Z|. Then since z is in the
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closure of the image of T → |Z| and since |V | → |Z| is open, we see that v is in the closure
of the image of TV → |V |. Since the image of TV in |X ×Y Z ′| is contained in |T ′| it
follows immediately that z′ = a(v) is in the closure of the image of T ′.

It is clear that (1) implies (3). Let V → Y be as in (3). If we can show that X ×Y V → V
is universally closed, then f is universally closed by Morphisms of Spaces, Lemma 9.5.
Thus it suffices to show that f : X → Y satisfies (2) if f is a quasi-compact morphism of
algebraic spaces, Y is a scheme, and |An×X| → |An× Y | is closed for all n. Let Z → Y
be locally of finite presentation. We have to show the map |X ×Y Z| → |Z| is closed.
This question is étale local on Z hence we may assume Z is affine (some details omitted).
Since Y is a scheme, Z is affine, and Z → Y is locally of finite presentation we can find an
immersion Z → An × Y , see Morphisms, Lemma 39.2. Consider the cartesian diagram

X ×Y Z

��

// An ×X

��
Z // An × Y

inducing the
cartesian square

|X ×Y Z|

��

// |An ×X|

��
|Z| // |An × Y |

of topological spaces whose horizontal arrows are homeomorphisms onto locally closed
subsets (Properties of Spaces, Lemma 12.1). Thus every closed subset T of |X ×Y Z| is the
pullback of a closed subset T ′ of |An × Y |. Since the assumption is that the image of T ′

in |An ×X| is closed we conclude that the image of T in |Z| is closed as desired. �

Lemma 20.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f separated and of finite type. The following are equivalent

(1) The morphism f is proper.
(2) For any morphism Y → Z which is locally of finite presentation the map |X×Y

Z| → |Z| is closed, and
(3) there exists a scheme V and a surjective étale morphism V → Y such that |An×

(X ×Y V )| → |An × V | is closed for all n ≥ 0.

Proof. In view of the fact that a proper morphism is the same thing as a separated,
finite type, and universally closed morphism, this lemma is a special case of Lemma 20.2.

�

21. Noetherian valuative criterion

We have already proved some results in Cohomology of Spaces, Section 19. The corre-
sponding section for schemes is Limits, Section 15.

Many of the results in this section can (and perhaps should) be proved by appealing to the
following lemma, although we have not always done so.

Lemma 21.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f finite type and Y locally Noetherian. Let y ∈ |Y | be a point in the
closure of the image of |f |. Then there exists a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y
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where A is a discrete valuation ring and K is its field of fractions mapping the closed
point of Spec(A) to y. Moreover, we can assume that the point x ∈ |X| corresponding
to Spec(K)→ X is a codimension 0 point3 and that K is the residue field of a point on a
scheme étale over X .

Proof. Choose an affine scheme V , a point v ∈ V and an étale morphism V → Y
mapping v to y. The map |V | → |Y | is open and by Properties of Spaces, Lemma 4.3 the
image of |X ×Y V | → |V | is the inverse image of the image of |f |. We conclude that the
point v is in the closure of the image of |X ×Y V | → |V |. If we prove the lemma for
X×Y V → V and the point v, then the lemma follows for f and y. In this way we reduce
to the situation described in the next paragraph.

Assume we have f : X → Y and y ∈ |Y | as in the lemma where Y is an affine scheme.
Since f is quasi-compact, we conclude that X is quasi-compact. Hence we can choose an
affine scheme W and a surjective étale morphism W → X . Then the image of |f | is the
same as the image of W → Y . In this way we reduce to the case of schemes which is
Limits, Lemma 15.1. �

First we state the result concerning separation. We will often use solid commutative dia-
grams of morphisms of algebraic spaces over a base scheme S having the following shape

(21.1.1)

Spec(K) //

��

X

��
Spec(A) //

;;

Y

with A a valuation ring and K its field of fractions.

Lemma 21.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is quasi-separated and locally of finite type and Y is locally Noetherian.
The following are equivalent:

(1) The morphism f is separated.
(2) For any diagram (21.1.1) there is at most one dotted arrow.
(3) For all diagrams (21.1.1) with A a discrete valuation ring there is at most one

dotted arrow.
(4) For all diagrams (21.1.1) whereA is a discrete valuation ring and where the image

of Spec(K) → X is a point of codimension 0 on X there is at most one dotted
arrow.

Proof. We have (1)⇒ (2) by Morphisms of Spaces, Lemma 43.1. The implications
(2)⇒ (3) and (3)⇒ (4) are immediate. It remains to show (4) implies (1).

Assume (4). We have to show that the diagonal ∆ : X → X ×Y X is a closed immer-
sion. We already know ∆ is representable, separated, a monomorphism, and locally of
finite type, see Morphisms of Spaces, Lemma 4.1. Choose an affine scheme U and an étale
morphism U → X ×Y X . Set V = X ×∆,X×YX U . It suffices to show that V → U is a
closed immersion (Morphisms of Spaces, Lemma 12.1). Since X ×Y X is locally of finite
type over Y we see thatU is Noetherian (use Morphisms of Spaces, Lemmas 23.2, 23.3, and
23.5). Note that V is a scheme as ∆ is representable. Also, V is quasi-compact because f

3See discussion in Properties of Spaces, Section 11.
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is quasi-separated. Hence V → U is separated and of finite type. Consider a commutative
diagram

Spec(K) //

��

V

��
Spec(A) //

;;

U

of morphisms of schemes where A is a discrete valuation ring with fraction field K and
whereK is the residue field of a generic point of the Noetherian scheme V . Since V → X
is étale (as a base change of the étale morphism U → X ×Y X) we see that the image of
Spec(K) → V → X is a point of codimension 0, see Properties of Spaces, Section 10.
We can interpret the composition Spec(A) → U → X ×Y X as a pair of morphisms
a, b : Spec(A)→ X agreeing as morphisms into Y and equal when restricted to Spec(K)
and that this restriction maps to a point of codimension 0. Hence our assumption (4)
guarantees a = b and we find the dotted arrow in the diagram. By Limits, Lemma 15.3 we
conclude that V → U is proper. In other words, ∆ is proper. Since ∆ is a monomorphism,
we find that ∆ is a closed immersion (Étale Morphisms, Lemma 7.2) as desired. �

Lemma 21.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is quasi-separated and of finite type and Y is locally Noetherian. The
following are equivalent:

(1) f is proper,
(2) f satisfies the valuative criterion, see Morphisms of Spaces, Definition 41.1,
(3) for any diagram (21.1.1) there exists exactly one dotted arrow,
(4) for all diagrams (21.1.1) withA a discrete valuation ring there exists exactly one

dotted arrow, and
(5) for all diagrams (21.1.1) whereA is a discrete valuation ring and where the image

of Spec(K) → X is a point of codimension 0 on X there exists exactly one
dotted arrow4.

Proof. We have (1) ⇔ (2) ⇔ (3) by Morphisms of Spaces, Lemma 44.1. It is clear
that (3)⇒ (4)⇒ (5). To finish the proof we will now show (5) implies (1).

Assume (5). By Lemma 21.2 we see that f is separated. To finish the proof it suffices to
show that f is universally closed. Let V → Y be an étale morphism where V is an affine
scheme. It suffices to show that the base change V ×Y X → V is universally closed, see
Morphisms of Spaces, Lemma 9.5. Let

Spec(K) //

��

V ×Y X

��

// X

��
Spec(A) //

99 44

V // Y

of algebraic spaces over S be a commutative diagram where A is a discrete valuation ring
with fraction field K and where Spec(K)→ V ×Y X maps to a point of codimension 0
of the algebraic space V ×Y X . Since V ×Y X → X is étale it follows that the image of
Spec(K)→ X is a point of codimension 0 of X . Thus by (5) we obtain the longer of the
two dotted arrows fitting into the diagram. Then of course we obtain the shorter one as

4There is a sharper formulation where in the existence part one only requires the dotted arrow exists after
an extension of discrete valuation rings.
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well. It follows that our assumptions hold for the morphism V ×Y X → V and we reduce
to the case discussed in the next paragraph.

AassumeY is a Noetherian affine scheme. In this caseX is a separated Noetherian algebraic
space (we already know f is separated) of finite type over Y . (In particular, the algebraic
space X has a dense open subspace which is a scheme by Properties of Spaces, Proposition
13.3 although strictly speaking we will not need this.) Choose a quasi-projective scheme
X ′ over Y and a proper surjective morphism X ′ → X as in the weak form of Chow’s
lemma (Cohomology of Spaces, Lemma 18.1). We may replace X ′ by the disjoint union
of the irreducible components which dominate an irreducible component of X ; details
omitted. In particular, we may assume that generic points of the schemeX ′ map to points
of codimension 0 of X (in this case these are exactly the generic points of X). We claim
that X ′ → Y is proper. The claim implies X is proper over Y by Morphisms of Spaces,
Lemma 40.7. To prove this, according to Limits, Lemma 15.3 it suffices to prove that in
every solid commutative diagram

Spec(K) //

��

X ′ // X

��
Spec(A) //

a

;;

b

66

Y

where A is a dvr with fraction field K and where K is the residue field of a generic point
ofX ′ we can find the dotted arrow a (we already know uniqueness asX ′ is separated). By
assumption (5) we can find the dotted arrow b. Then the morphism X ′ ×X,b Spec(A)→
Spec(A) is a proper morphism of schemes and by the valuative criterion for morphisms
of schemes we can lift b to the desired morphism a. �

Lemma 21.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume Y is locally Noetherian and f is of finite type. Then the following are
equivalent

(1) f is universally closed,
(2) f satisfies the existence part of the valuative criterion,
(3) there exists a scheme V and a surjective étale morphism V → Y such that |An×

X ×Y V | → |An × V | is closed for all n ≥ 0,
(4) for all diagrams (21.1.1) with A a discrete valuation ring there there exists a fi-

nite separable extensionK ′/K of fields, a discrete valuation ringA′ ⊂ K ′ dom-
inating A, and a morphism Spec(A′) → X such that the following diagram
commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

(5) for all diagrams (21.1.1) withA a discrete valuation ring there there exists a field
extension K ′/K , a valuation ring A′ ⊂ K ′ dominating A, and a morphism
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Spec(A′)→ X such that the following diagram commutes

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

Proof. Parts (1), (2), and (3) are equivalent by Lemma 20.2 and Morphisms of Spaces,
Lemma 42.1. These equivalent conditions imply part (4) as Morphisms of Spaces, Lemma
41.3 tells us that we may always choose K ′/K finite separable in the existence part of
the valuative criterion and this automatically forces A′ to be a discrete valuation ring by
Krull-Akizuki (Algebra, Lemma 119.12). The implication (4)⇒ (5) is immediate. In the
rest of the proof we show that (5) implies (1).

Assume (5). Chose an affine scheme V and an étale morphism V → Y . It suffices to show
that the base change of f to V is universally closed, see Morphisms of Spaces, Lemma 9.5.
Exactly as in the proof of Lemma 21.3 we see that assumption (5) is inherited by this base
change; details omitted. This reduces us to the case discussed in the next paragraph.

Assume Y is a Noetherian affine scheme and we have (5). To prove that f is universally
closed it suffices to show that |X ×An| → |Y ×An| is closed for all n (by the discussion
above). Since assumption (5) is inherited by the product morphism X ×An → Y ×An

(details omitted) we reduce to proving that |X| → |Y | is closed.

Assume Y is a Noetherian affine scheme and we have (5). Let T ⊂ |X| be a closed subset.
We have to show that the image of T in |Y | is closed. We may replace X by the reduced
induced closed subspace structure on T ; we omit the verification that property (5) is pre-
served by this replacement. Thus we reduce to proving that the image of |X| → |Y | is
closed.

Let y ∈ |Y | be a point in the closure of the image of |X| → |Y |. By Lemma 21.1 we may
choose a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

where A is a discrete valuation ring and K is its field of fractions mapping the closed
point of Spec(A) to y. It follows immediately from property (5) that y is in the image of
|X| → |Y | and the proof is complete. �

22. Refined Noetherian valuative criteria

This section is the analogue of Limits, Section 16. One usually does not have to consider
all possible diagrams with valuation rings when checking valuative criteria.

Lemma 22.1. Let S be a scheme. Let f : X → Y and h : U → X be morphisms of
algebraic spaces over S. Assume that Y is locally Noetherian, that f and h are of finite
type, that f is separated, and that the image of |h| : |U | → |X| is dense in |X|. If given
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any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K , there exists a dotted arrow
making the diagram commute, then f is proper.

Proof. It suffices to prove that f is universally closed. Let V → Y be an étale mor-
phism where V is an affine scheme. By Morphisms of Spaces, Lemma 9.5 it suffices to prove
that the base change X ×Y V → V is universally closed. By Properties of Spaces, Lemma
4.3 the image I of |U ×Y V | → |X ×Y V | is the inverse image of the image of |h|. Since
|X ×Y V | → |X| is open (Properties of Spaces, Lemma 16.7) we conclude that I is dense
in |X ×Y V |. Therefore the assumptions of the lemma are satisfied for the morphisms
U ×Y V → X ×Y V → V . Hence we may assume Y is an affine scheme.

Assume Y is an affine scheme. Then U is quasi-compact. Choose an affine scheme and a
surjective étale morphism W → U . Then we may and do replace U by W and assume
that U is affine. By the weak version of Chow’s lemma (Cohomology of Spaces, Lemma
18.1) we can choose a surjective proper morphism X ′ → X where X ′ is a scheme. Then
U ′ = X ′ ×X U is a scheme and U ′ → X ′ is of finite type. We may replace X ′ by the
scheme theoretic image of h′ : U ′ → X ′ and hence h′(U ′) is dense in X ′. We claim that
for every diagram

Spec(K) //

��

U ′ h // X ′

f ′

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K , there exists a dotted arrow
making the diagram commute. Namely, we first get an arrow Spec(A) → X by the
assumption of the lemma and then we lift this to an arrow Spec(A) → X ′ using the
valuative criterion for properness (Morphisms of Spaces, Lemma 44.1). The morphism
X ′ → Y is separated as a composition of a proper and a separated morphism. Thus by the
case of schemes the morphism X ′ → Y is proper (Limits, Lemma 16.1). By Morphisms of
Spaces, Lemma 40.7 we conclude that X → Y is proper. �

Lemma 22.2. Let S be a scheme. Let f : X → Y and h : U → X be morphisms
of algebraic spaces over S. Assume that Y is locally Noetherian, that f is locally of finite
type and quasi-separated, that h is of finite type, and that the image of |h| : |U | → |X| is
dense in |X|. If given any commutative solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K , there exists at most one
dotted arrow making the diagram commute, then f is separated.
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Proof. We will apply Lemma 22.1 to the morphismsU → X and ∆ : X → X×Y X .
We check the conditions. Observe that ∆ is quasi-compact because f is quasi-separated. Of
course ∆ is locally of finite type and separated (true for any diagonal morphism). Finally,
suppose given a commutative solid diagram

Spec(K) //

��

U
h // X

∆
��

Spec(A)
(a,b) //

55

X ×Y X

where A is a discrete valuation ring with field of fractions K. Then a and b give two
dotted arrows in the diagram of the lemma and have to be equal. Hence as dotted arrow
we can use a = b which gives existence. This finishes the proof. �

Lemma 22.3. Let S be a scheme. Let f : X → Y and h : U → X be morphisms of
algebraic spaces over S. Assume that Y is locally Noetherian, that f and h are of finite
type, that f is quasi-separated, and that h(U) is dense in X . If given any commutative
solid diagram

Spec(K) //

��

U
h // X

f

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K , there exists a unique dotted
arrow making the diagram commute, then f is proper.

Proof. Combine Lemmas 22.2 and 22.1. �

23. Descending finite type spaces

This section continues the theme of Section 11 in the spirit of the results discussed in
Section 7. It is also the analogue of Limits, Section 22 for algebraic spaces.

Situation 23.1. Let S be a scheme, for example Spec(Z). Let B = limi∈I Bi be
the limit of a directed inverse system of Noetherian spaces over S with affine transition
morphisms Bi′ → Bi for i′ ≥ i.

Lemma 23.2. In Situation 23.1. Let X → B be a quasi-separated and finite type
morphism of algebraic spaces. Then there exists an i ∈ I and a diagram

(23.2.1)

X //

��

W

��
B // Bi

such that W → Bi is of finite type and such that the induced morphism X → B ×Bi W
is a closed immersion.

Proof. By Lemma 11.6 we can find a closed immersion X → X ′ over B where X ′

is an algebraic space of finite presentation over B. By Lemma 7.1 we can find an i and a
morphism of finite presentation X ′

i → Bi whose pull back is X ′. Set W = X ′
i . �
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Lemma 23.3. In Situation 23.1. Let X → B be a quasi-separated and finite type
morphism of algebraic spaces. Given i ∈ I and a diagram

X //

��

W

��
B // Bi

as in (23.2.1) for i′ ≥ i let Xi′ be the scheme theoretic image of X → Bi′ ×Bi W . Then
X = limi′≥iXi′ .

Proof. Since X is quasi-compact and quasi-separated formation of the scheme theo-
retic image of X → Bi′ ×Bi W commutes with étale localization (Morphisms of Spaces,
Lemma 16.3). Hence we may and do assume W is affine and maps into an affine Ui étale
over Bi. Then

Bi′ ×Bi W = Bi′ ×Bi Ui ×Ui W = Ui′ ×Ui W
where Ui′ = Bi′ ×Bi Ui is affine as the transition morphisms are affine. Thus the lemma
follows from the case of schemes which is Limits, Lemma 22.3. �

Lemma 23.4. In Situation 23.1. Let f : X → Y be a morphism of algebraic spaces
quasi-separated and of finite type over B. Let

X //

��

W

��
B // Bi1

and

Y //

��

V

��
B // Bi2

be diagrams as in (23.2.1). Let X = limi≥i1 Xi and Y = limi≥i2 Yi be the corresponding
limit descriptions as in Lemma 23.3. Then there exists an i0 ≥ max(i1, i2) and a morphism

(fi)i≥i0 : (Xi)i≥i0 → (Yi)i≥i0
of inverse systems over (Bi)i≥i0 such that such that f = limi≥i0 fi. If (gi)i≥i0 : (Xi)i≥i0 →
(Yi)i≥i0 is a second morphism of inverse systems over (Bi)i≥i0 such that such that f =
limi≥i0 gi then fi = gi for all i� i0.

Proof. Since V → Bi2 is of finite presentation andX = limi≥i1 Xi we can appeal to
Proposition 3.10 as improved by Lemma 4.5 to find an i0 ≥ max(i1, i2) and a morphism
h : Xi0 → V over Bi2 such that X → Xi0 → V is equal to X → Y → V . For i ≥ i0 we
get a commutative solid diagram

X

��

// Xi
//

��

��

Xi0

h

��
Y //

��

Yi //

��

V

��
B // Bi // Bi0

Since X → Xi has scheme theoretically dense image and since Yi is the scheme theoretic
image of Y → Bi ×Bi2 V we find that the morphism Xi → Bi ×Bi2 V induced by the
diagram factors through Yi (Morphisms of Spaces, Lemma 16.6). This proves existence.
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Uniqueness. Let Ei → Xi be the equalizer of fi and gi for i ≥ i0. We have Ei =
Yi ×∆,Yi×BiYi,(fi,gi) Xi. Hence Ei → Xi is a monomorphism of finite presentation as a
base change of the diagonal of Yi overBi, see Morphisms of Spaces, Lemmas 4.1 and 28.10.
Since Xi is a closed subspace of Bi ×Bi0 Xi0 and similarly for Yi we see that

Ei = Xi ×(Bi×Bi0Xi0 ) (Bi ×Bi0 Ei0) = Xi ×Xi0 Ei0
Similarly, we haveX = X×Xi0 Ei0 . Hence we conclude thatEi = Xi for i large enough
by Lemma 6.10. �

Remark 23.5. In Situation 23.1 Lemmas 23.2, 23.3, and 23.4 tell us that the category
of algebraic spaces quasi-separated and of finite type over B is equivalent to certain types
of inverse systems of algebraic spaces over (Bi)i∈I , namely the ones produced by applying
Lemma 23.3 to a diagram of the form (23.2.1). For example, given X → B finite type and
quasi-separated if we choose two different diagrams X → V1 → Bi1 and X → V2 →
Bi2 as in (23.2.1), then applying Lemma 23.4 to idX (in two directions) we see that the
corresponding limit descriptions of X are canonically isomorphic (up to shrinking the
directed set I). And so on and so forth.

Lemma 23.6. Notation and assumptions as in Lemma 23.4. If f is flat and of finite
presentation, then there exists an i3 > i0 such that for i ≥ i3 we have fi is flat, Xi =
Yi ×Yi3 Xi3 , and X = Y ×Yi3 Xi3 .

Proof. By Lemma 7.1 we can choose an i ≥ i2 and a morphism U → Yi of finite
presentation such thatX = Y ×Yi U (this is where we use that f is of finite presentation).
After increasing i we may assume that U → Yi is flat, see Lemma 6.12. As discussed in
Remark 23.5 we may and do replace the initial diagram used to define the system (Xi)i≥i1
by the system corresponding to X → U → Bi. Thus Xi′ for i′ ≥ i is defined as the
scheme theoretic image of X → Bi′ ×Bi U .

Because U → Yi is flat (this is where we use that f is flat), because X = Y ×Yi U , and
because the scheme theoretic image ofY → Yi isYi, we see that the scheme theoretic image
of X → U is U (Morphisms of Spaces, Lemma 30.12). Observe that Yi′ → Bi′ ×Bi Yi is a
closed immersion for i′ ≥ i by construction of the system of Yj . Then the same argument
as above shows that the scheme theoretic image of X → Bi′ ×Bi U is equal to the closed
subspace Yi′ ×Yi U . Thus we see that Xi′ = Yi′ ×Yi U for all i′ ≥ i and hence the lemma
holds with i3 = i. �

Lemma 23.7. Notation and assumptions as in Lemma 23.4. If f is smooth, then there
exists an i3 > i0 such that for i ≥ i3 we have fi is smooth.

Proof. Combine Lemmas 23.6 and 6.3. �

Lemma 23.8. Notation and assumptions as in Lemma 23.4. If f is proper, then there
exists an i3 ≥ i0 such that for i ≥ i3 we have fi is proper.

Proof. By the discussion in Remark 23.5 the choice of i1 andW fitting into a diagram
as in (23.2.1) is immaterial for the truth of the lemma. Thus we chooseW as follows. First
we choose a closed immersion X → X ′ with X ′ → Y proper and of finite presentation,
see Lemma 12.1. Then we choose an i3 ≥ i2 and a proper morphism W → Yi3 such that
X ′ = Y ×Yi3 W . This is possible because Y = limi≥i2 Yi and Lemmas 10.2 and 6.13.
With this choice of W it is immediate from the construction that for i ≥ i3 the algebraic
space Xi is a closed subspace of Yi ×Yi3 W ⊂ Bi ×Bi3 W and hence proper over Yi. �
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Lemma 23.9. In Situation 23.1 suppose that we have a cartesian diagram

X1
p
//

q

��

X3

a

��
X2 b // X4

of algebraic spaces quasi-separated and of finite type overB. For each j = 1, 2, 3, 4 choose
ij ∈ I and a diagram

Xj //

��

W j

��
B // Bij

as in (23.2.1). Let Xj = limi≥ij X
j
i be the corresponding limit descriptions as in Lemma

23.4. Let (ai)i≥i5 , (bi)i≥i6 , (pi)i≥i7 , and (qi)i≥i8 be the corresponding morphisms of in-
verse systems contructed in Lemma 23.4. Then there exists an i9 ≥ max(i5, i6, i7, i8) such
that for i ≥ i9 we have ai ◦ pi = bi ◦ qi and such that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i
,ai X

3
i

is a closed immersion. Ifa and b are flat and of finite presentation, then there exists an i10 ≥
max(i5, i6, i7, i8, i9) such that for i ≥ i10 the last displayed morphism is an isomorphism.

Proof. According to the discussion in Remark 23.5 the choice of W 1 fitting into
a diagram as in (23.2.1) is immaterial for the truth of the lemma. Thus we may choose
W 1 = W 2×W 4W 3. Then it is immediate from the construction ofX1

i that ai◦pi = bi◦qi
and that

(qi, pi) : X1
i −→ X2

i ×bi,X4
i
,ai X

3
i

is a closed immersion.
If a and b are flat and of finite presentation, then so are p and q as base changes of a and b.
Thus we can apply Lemma 23.6 to each of a, b, p, q, and a ◦ p = b ◦ q. It follows that there
exists an i9 ∈ I such that

(qi, pi) : X1
i → X2

i ×X4
i
X3
i

is the base change of (qi9 , pi9) by the morphism by the morphismX4
i → X4

i9
for all i ≥ i9.

We conclude that (qi, pi) is an isomorphism for all sufficiently large i by Lemma 6.10. �
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CHAPTER 71

Divisors on Algebraic Spaces

1. Introduction

In this chapter we study divisors on algebraic spaces and related topics. A basic reference
for algebraic spaces is [?].

2. Associated and weakly associated points

In the case of schemes we have introduced two competing notions of associated points.
Namely, the usual associated points (Divisors, Section 2) and the weakly associated points
(Divisors, Section 5). For a general algebraic space the notion of an associated point is
basically useless and we don’t even bother to introduce it. If the algebraic space is locally
Noetherian, then we allow ourselves to use the phrase “associated point” instead of “weakly
associated point” as the notions are the same for Noetherian schemes (Divisors, Lemma
5.8). Before we make our definition, we need a lemma.

Lemma 2.1. Let S be a scheme. Let X be an algebraic space over S. Let F be a quasi-
coherentOX -module. Let x ∈ |X|. The following are equivalent

(1) for some étale morphism f : U → X with U a scheme and u ∈ U mapping to x,
the point u is weakly associated to f∗F ,

(2) for every étale morphism f : U → X with U a scheme and u ∈ U mapping to
x, the point u is weakly associated to f∗F ,

(3) the maximal ideal ofOX,x is a weakly associated prime of the stalk Fx.
If X is locally Noetherian, then these are also equivalent to

(4) for some étale morphism f : U → X with U a scheme and u ∈ U mapping to x,
the point u is associated to f∗F ,

(5) for every étale morphism f : U → X with U a scheme and u ∈ U mapping to
x, the point u is associated to f∗F ,

(6) the maximal ideal ofOX,x is an associated prime of the stalk Fx.

Proof. Choose a scheme U with a point u and an étale morphism f : U → X
mapping u to x. Lift x to a geometric point of U over u. Recall thatOX,x = OshU,u where
the strict henselization is with respect to our chosen lift of x, see Properties of Spaces,
Lemma 22.1. Finally, we have

Fx = (f∗F)u ⊗OU,u
OX,x = (f∗F)u ⊗OU,u

OshU,u
by Properties of Spaces, Lemma 29.4. Hence the equivalence of (1), (2), and (3) follows
from More on Flatness, Lemma 2.9. If X is locally Noetherian, then any U as above is
locally Noetherian, hence we see that (1), resp. (2) are equivalent to (4), resp. (5) by Divi-
sors, Lemma 5.8. On the other hand, in the locally Noetherian case the local ring OX,x is
Noetherian too (Properties of Spaces, Lemma 24.4). Hence the equivalence of (3) and (6)
by the same lemma (or by Algebra, Lemma 66.9). �

5477
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Definition 2.2. Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherent sheaf on X . Let x ∈ |X|.

(1) We say x is weakly associated to F if the equivalent conditions (1), (2), and (3)
of Lemma 2.1 are satisfied.

(2) We denote WeakAss(F) the set of weakly associated points of F .
(3) The weakly associated points of X are the weakly associated points ofOX .

If X is locally Noetherian we will say x is associated to F if and only if x is weakly as-
sociated to F and we set Ass(F) = WeakAss(F). Finally (still assuming X is locally
Noetherian), we will say x is an associated point of X if and only if x is a weakly associ-
ated point of X .

At this point we can prove the obligatory lemmas.

Lemma 2.3. Let S be a scheme. Let X be an algebraic space over S. Let F be a quasi-
coherentOX -module. Then WeakAss(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. The support of an abelian sheaf on
X is defined in Properties of Spaces, Definition 20.3. �

Lemma 2.4. Let S be a scheme. Let X be an algebraic space over S. Let 0 → F1 →
F2 → F3 → 0 be a short exact sequence of quasi-coherent sheaves onX . Then WeakAss(F2) ⊂
WeakAss(F1) ∪WeakAss(F3) and WeakAss(F1) ⊂WeakAss(F2).

Proof. For every geometric point x ∈ X the sequence of stalks 0→ F1,x → F2,x →
F3,x → 0 is a short exact sequence of OX,x-modules. Hence the lemma follows from
Algebra, Lemma 66.4. �

Lemma 2.5. Let S be a scheme. Let X be an algebraic space over S. Let F be a quasi-
coherentOX -module. Then

F = (0)⇔WeakAss(F) = ∅

Proof. Choose a scheme U and a surjective étale morphism f : U → X . Then F
is zero if and only if f∗F is zero. Hence the lemma follows from the definition and the
lemma in the case of schemes, see Divisors, Lemma 5.5. �

Lemma 2.6. Let S be a scheme. Let X be an algebraic space over S. Let F be a quasi-
coherentOX -module. Let x ∈ |X|. If

(1) x ∈ Supp(F)
(2) x is a codimension 0 point of X (Properties of Spaces, Definition 10.2).

Then x ∈ WeakAss(F). If F is a finite type OX -module with scheme theoretic support
Z (Morphisms of Spaces, Definition 15.4) and x is a codimension 0 point of Z , then x ∈
WeakAss(F).

Proof. Sincex ∈ Supp(F) the stalkFx is not zero. Hence WeakAss(Fx) is nonempty
by Algebra, Lemma 66.5. On the other hand, the spectrum of OX,x is a singleton. Hence
x is a weakly associated point of F by definition. The final statement follows as OX,x →
OZ,z is a surjection, the spectrum ofOZ,z is a singleton, and Fx is a nonzero module over
OZ,z . �

Lemma 2.7. Let S be a scheme. Let X be an algebraic space over S. Let F be a quasi-
coherentOX -module. Let x ∈ |X|. If

(1) X is decent (for example quasi-separated or locally separated),
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(2) x ∈ Supp(F)
(3) x is not a specialization of another point in Supp(F).

Then x ∈WeakAss(F).

Proof. (A quasi-separated algebraic space is decent, see Decent Spaces, Section 6.
A locally separated algebraic space is decent, see Decent Spaces, Lemma 15.2.) Choose a
scheme U , a point u ∈ U , and an étale morphism f : U → X mapping u to x. By Decent
Spaces, Lemma 12.1 if u′  u is a nontrivial specialization, then f(u′) 6= x. Hence we
see that u ∈ Supp(f∗F) is not a specialization of another point of Supp(f∗F). Hence
u ∈WeakAss(f∗F) by Divisors, Lemma 2.6. �

Lemma 2.8. Let S be a scheme. Let X be a locally Noetherian algebraic space over
S. Let F be a coherent OX -module. Then Ass(F) ∩W is finite for every quasi-compact
open W ⊂ |X|.

Proof. Choose a quasi-compact scheme U and an étale morphism U → X such that
W is the image of |U | → |X|. ThenU is a Noetherian scheme and we may apply Divisors,
Lemma 2.5 to conclude. �

Lemma 2.9. Let S be a scheme. Let X be an algebraic space over S. Let F be a
quasi-coherent OX -module. If U → X is an étale morphism such that WeakAss(F) ⊂
Im(|U | → |X|), then Γ(X,F)→ Γ(U,F) is injective.

Proof. Let s ∈ Γ(X,F) be a section which restricts to zero on U . Let F ′ ⊂ F
be the image of the map OX → F defined by s. Then F ′|U = 0. This implies that
WeakAss(F ′) ∩ Im(|U | → |X|) = ∅ (by the definition of weakly associated points). On
the other hand, WeakAss(F ′) ⊂WeakAss(F) by Lemma 2.4. We conclude WeakAss(F ′) =
∅. Hence F ′ = 0 by Lemma 2.5. �

Lemma 2.10. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let F be a quasi-coherent OX -module.
Let y ∈ |Y | be a point which is not in the image of |f |. Then y is not weakly associated to
f∗F .

Proof. By Morphisms of Spaces, Lemma 11.2 the OY -module f∗F is quasi-coherent
hence the lemma makes sense. Choose an affine scheme V , a point v ∈ V , and an étale
morphism V → Y mapping v to y. We may replace f : X → Y , F , y by X ×Y V → V ,
F|X×Y V , v. Thus we may assume Y is an affine scheme. In this case X is quasi-compact,
hence we can choose an affine scheme U and a surjective étale morphism U → X . Denote
g : U → Y the composition. Then f∗F ⊂ g∗(F|U ). By Lemma 2.4 we reduce to the case
of schemes which is Divisors, Lemma 5.9. �

Lemma 2.11. Let S be a scheme. Let X be an algebraic space over S. Let ϕ : F → G
be a map of quasi-coherent OX -modules. Assume that for every x ∈ |X| at least one of
the following happens

(1) Fx → Gx is injective, or
(2) x 6∈WeakAss(F).

Then ϕ is injective.

Proof. The assumptions imply that WeakAss(Ker(ϕ)) = ∅ and hence Ker(ϕ) = 0
by Lemma 2.5. �
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Lemma 2.12. Let S be a scheme. LetX be a reduced algebraic space over S. Then the
weakly associated point of X are exactly the codimension 0 points of X .

Proof. Working étale locally this follows from Divisors, Lemma 5.12 and Properties
of Spaces, Lemma 11.1. �

3. Morphisms and weakly associated points

Lemma 3.1. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Let F be a quasi-coherentOX -module. Then we have

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U = X ×Y
V . ThenU → V is an affine morphism of schemes. By our definition of weakly associated
points the problem is reduced to the morphism of schemes U → V . This case is treated in
Divisors, Lemma 6.1. �

Lemma 3.2. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Let F be a quasi-coherentOX -module. If X is locally Noetherian, then we
have

WeakAssY (f∗F) = f(WeakAssX(F))

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U = X ×Y
V . Then U → V is an affine morphism of schemes and U is locally Noetherian. By our
definition of weakly associated points the problem is reduced to the morphism of schemes
U → V . This case is treated in Divisors, Lemma 6.2. �

Lemma 3.3. Let S be a scheme. Let f : X → Y be a finite morphism of alge-
braic spaces over S. Let F be a quasi-coherent OX -module. Then WeakAss(f∗F) =
f(WeakAss(F)).

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U = X ×Y
V . Then U → V is a finite morphism of schemes. By our definition of weakly associated
points the problem is reduced to the morphism of schemes U → V . This case is treated in
Divisors, Lemma 6.3. �

Lemma 3.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let G be a quasi-coherentOY -module. Let x ∈ |X| and y = f(x) ∈ |Y |. If

(1) y ∈WeakAssS(G),
(2) f is flat at x, and
(3) the dimension of the local ring of the fibre of f at x is zero (Morphisms of Spaces,

Definition 33.1),
then x ∈WeakAss(f∗G).

Proof. Choose a scheme V , a point v ∈ V , and an étale morphism V → Y mapping
v to y. Choose a scheme U , a point u ∈ U , and an étale morphism U → V ×Y X mapping
v to a point lying over v and x. This is possible because there is a t ∈ |V ×Y X|mapping
to (v, y) by Properties of Spaces, Lemma 4.3. By definition we see that the dimension of
OUv,u is zero. Hence u is a generic point of the fiber Uv . By our definition of weakly
associated points the problem is reduced to the morphism of schemes U → V . This case
is treated in Divisors, Lemma 6.4. �



4. RELATIVE WEAK ASSASSIN 5481

Lemma 3.5. Let K/k be a field extension. Let X be an algebraic space over k. Let
F be a quasi-coherent OX -module. Let y ∈ XK with image x ∈ X . If y is a weakly
associated point of the pullback FK , then x is a weakly associated point of F .

Proof. This is the translation of Divisors, Lemma 6.5 into the language of algebraic
spaces. We omit the details of the translation. �

Lemma 3.6. Let S be a scheme. Let f : X → Y be a finite flat morphism of algebraic
spaces. Let G be a quasi-coherentOY -module. Let x ∈ |X| be a point with image y ∈ |Y |.
Then

x ∈WeakAss(g∗G)⇔ y ∈WeakAss(G)

Proof. Follows immediately from the case of schemes (More on Flatness, Lemma 2.7)
by étale localization. �

Lemma 3.7. Let S be a scheme. Let f : X → Y be an étale morphism of algebraic
spaces. Let G be a quasi-coherentOY -module. Let x ∈ |X| be a point with image y ∈ |Y |.
Then

x ∈WeakAss(f∗G)⇔ y ∈WeakAss(G)

Proof. This is immediate from the definition of weakly associated points and in fact
the corresponding lemma for the case of schemes (More on Flatness, Lemma 2.8) is the
basis for our definition. �

4. Relative weak assassin

We need a couple of lemmas to define this gadget.

Lemma 4.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let y ∈ |Y |. The following are equivalent

(1) for some scheme V , point v ∈ V , and étale morphism V → Y mapping v to y,
the algebraic space Xv is locally Noetherian,

(2) for every scheme V , point v ∈ V , and étale morphism V → Y mapping v to y,
the algebraic space Xv is locally Noetherian, and

(3) there exists a field k and a morphism Spec(k)→ Y representing y such thatXk

is locally Noetherian.
If there exists a field k0 and a monomorphism Spec(k0) → Y representing y, then these
are also equivalent to

(4) the algebraic space Xk0 is locally Noetherian.

Proof. Observe thatXv = v×Y X = Spec(κ(v))×Y X . Hence the implications (2)
⇒ (1)⇒ (3) are clear. Assume that Spec(k) → Y is a morphism from the spectrum of a
field such that Xk is locally Noetherian. Let V → Y be an étale morphism from a scheme
V and let v ∈ V a point mapping to y. Then the scheme v ×Y Spec(k) is nonempty.
Choose a point w ∈ v ×Y Spec(k). Consider the morphisms

Xv ←− Xw −→ Xk

Since V → Y is étale and since w may be viewed as a point of V ×Y Spec(k), we see that
κ(w)/k is a finite separable extension of fields (Morphisms, Lemma 36.7). Thus Xw →
Xk is a finite étale morphism as a base change of w → Spec(k). Hence Xw is locally
Noetherian (Morphisms of Spaces, Lemma 23.5). The morphismXw → Xv is a surjective,
affine, flat morphism as a base change of the surjective, affine, flat morphismw → v. Then
the fact that Xw is locally Noetherian implies that Xv is locally Noetherian. This can be
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seen by picking a surjective étale morphism U → X and then using that Uw → Uv is
surjective, affine, and flat. Working affine locally on the scheme Uv we conclude that Uw
is locally Noetherian by Algebra, Lemma 164.1.

Finally, it suffices to prove that (3) implies (4) in case we have a monomorphism Spec(k0)→
Y in the class of y. Then Spec(k)→ Y factors as Spec(k)→ Spec(k0)→ Y . The argu-
ment given above then shows thatXk being locally Noetherian impies thatXk0 is locally
Noetherian. �

Definition 4.2. LetS be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let y ∈ |Y |. We say the fibre of f over y is locally Noetherian if the equivalent
conditions (1), (2), and (3) of Lemma 4.1 are satisfied. We say the fibres of f are locally
Noetherian if this holds for every y ∈ |Y |.

Of course, the usual way to guarantee locally Noetherian fibres is to assume the morphism
is locally of finite type.

Lemma 4.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite type, then the fibres of f are locally Noetherian.

Proof. This follows from Morphisms of Spaces, Lemma 23.5 and the fact that the
spectrum of a field is Noetherian. �

Lemma 4.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
overS. Letx ∈ |X| and y = f(x) ∈ |Y |. LetF be a quasi-coherentOX -module. Consider
commutative diagrams

X

��

X ×Y V

��

oo Xv

��

oo

Y Voo voo

X

��

U

��

oo Uv

��

oo

Y Voo voo

x_

��

x′
_

��

�oo u?

��

�oo

y v�oo

where V andU are schemes, V → Y andU → X×Y V are étale, v ∈ V , x′ ∈ |Xv|, u ∈ U
are points related as in the last diagram. Denote F|Xv and F|Uv the pullbacks of F . The
following are equivalent

(1) for some V, v, x′ as above x′ is a weakly associated point of F|Xv ,
(2) for every V → Y, v, x′ as above x′ is a weakly associated point of F|Xv ,
(3) for some U, V, u, v as above u is a weakly associated point of F|Uv ,
(4) for every U, V, u, v as above u is a weakly associated point of F|Uv ,
(5) for some field k and morphism Spec(k)→ Y representing y and some t ∈ |Xk|

mapping to x, the point t is a weakly associated point of F|Xk .
If there exists a field k0 and a monomorphism Spec(k0) → Y representing y, then these
are also equivalent to

(6) x0 is a weakly associated point of F|Xk0
where x0 ∈ |Xk0 | is the unique point

mapping to x.
If the fibre of f over y is locally Noetherian, then in conditions (1), (2), (3), (4), and (6) we
may replace “weakly associated” with “associated”.

Proof. Observe that given V, v, x′ as in the lemma we can find U → X ×Y V and
u ∈ U mapping to x′ and then the morphism Uv → Xv is étale. Thus it is clear that (1)
and (3) are equivalent as well as (2) and (4). Each of these implies (5). We will show that
(5) implies (2). Suppose given V, v, x′ as well as Spec(k)→ X and t ∈ |Xk| such that the
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point t is a weakly associated point of F|Xk . We can choose a point w ∈ v ×Y Spec(k).
Then we obtain the morphisms

Xv ←− Xw −→ Xk

Since V → Y is étale and since w may be viewed as a point of V ×Y Spec(k), we see that
κ(w)/k is a finite separable extension of fields (Morphisms, Lemma 36.7). ThusXw → Xk

is a finite étale morphism as a base change ofw → Spec(k). Thus any pointx′′ ofXw lying
over t is a weakly associated point ofF|Xw by Lemma 3.7. We may pick x′′ mapping to x′

(Properties of Spaces, Lemma 4.3). Then Lemma 3.5 implies that x′ is a weakly associated
point of F|Xv .

To finish the proof it suffices to show that the equivalent conditions (1) – (5) imply (6)
if we are given Spec(k0) → Y as in (6). In this case the morphism Spec(k) → Y of
(5) factors uniquely as Spec(k) → Spec(k0) → Y . Then x0 is the image of t under the
morphism Xk → Xk0 . Hence the same lemma as above shows that (6) is true. �

Definition 4.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. The relative weak assassin of F in
X over Y is the set WeakAssX/Y (F) ⊂ |X| consisting of those x ∈ |X| such that the
equivalent conditions of Lemma 4.4 are satisfied. If the fibres of f are locally Noetherian
(Definition 4.2) then we use the notation AssX/Y (F).

With this notation we can formulate some of the results already proven for schemes.

Lemma 4.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherent OX -module. Let G be a quasi-coherent OY -module.
Assume

(1) F is flat over Y ,
(2) X and Y are locally Noetherian, and
(3) the fibres of f are locally Noetherian.

Then

AssX(F ⊗OX
f∗G) = {x ∈ AssX/Y (F) such that f(x) ∈ AssY (G)}

Proof. Via étale localization, this is an immediate consequence of the result for schemes,
see Divisors, Lemma 3.1. The result for schemes is more general only because we haven’t
defined associated points for non-Noetherian algebraic spaces (hence we need to assume
X and the fibres of X → Y are locally Noetherian to even be able to formulate this re-
sult). �

Lemma 4.7. Let S be a scheme. Let

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let F be a quasi-coherent OX -module
and set F ′ = (g′)∗F . If f is locally of finite type, then

(1) x′ ∈ AssX′/Y ′(F ′)⇒ g′(x′) ∈ AssX/Y (F)
(2) if x ∈ AssX/Y (F), then given y′ ∈ |Y ′| with f(x) = g(y′), there exists an

x′ ∈ AssX′/Y ′(F ′) with g′(x′) = x and f ′(x′) = y′.
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Proof. This follows from the case of schemes by étale localization. We write out the
details completely. Choose a scheme V and a surjective étale morphism V → Y . Choose
a scheme U and a surjective étale morphism U → V ×Y X . Choose a scheme V ′ and a
surjective étale morphism V ′ → V ×Y Y ′. Then U ′ = V ′ ×V U is a scheme and the
morphism U ′ → X ′ is surjective and étale.

Proof of (1). Choose u′ ∈ U ′ mapping to x′. Denote v′ ∈ V ′ the image of u′. Then
x′ ∈ AssX′/Y ′(F ′) is equivalent to u′ ∈ Ass(F|U ′

v′
) by definition (writing Ass instead of

WeakAss makes sense as U ′
v′ is locally Noetherian). Applying Divisors, Lemma 7.3 we see

that the image u ∈ U of u′ is in Ass(F|Uv ) where v ∈ V is the image of u. This in turn
means g′(x′) ∈ AssX/Y (F).

Proof of (2). Choose u ∈ U mapping to x. Denote v ∈ V the image of u. Then
x ∈ AssX/Y (F) is equivalent to u ∈ Ass(F|Uv ) by definition. Choose a point v′ ∈ V ′

mapping to y′ ∈ |Y ′| and to v ∈ V (possible by Properties of Spaces, Lemma 4.3). Let
t ∈ Spec(κ(v′) ⊗κ(v) κ(u)) be a generic point of an irreducible component. Let u′ ∈ U ′

be the image of t. Applying Divisors, Lemma 7.3 we see that u′ ∈ Ass(F ′|U ′
v′

). This in
turn means x′ ∈ AssX′/Y ′(F ′) where x′ ∈ |X ′| is the image of u′. �

Lemma 4.8. With notation and assumptions as in Lemma 4.7. Assume g is locally
quasi-finite, or more generally that for every y′ ∈ |Y ′| the transcendence degree of y′/g(y′)
is 0. Then AssX′/Y ′(F ′) is the inverse image of AssX/Y (F).

Proof. The transcendence degree of a point over its image is defined in Morphisms
of Spaces, Definition 33.1. Let x′ ∈ |X ′| with image x ∈ |X|. Choose a scheme V and a
surjective étale morphism V → Y . Choose a scheme U and a surjective étale morphism
U → V ×Y X . Choose a scheme V ′ and a surjective étale morphism V ′ → V ×Y Y ′. Then
U ′ = V ′ ×V U is a scheme and the morphism U ′ → X ′ is surjective and étale. Choose
u ∈ U mapping to x. Denote v ∈ V the image of u. Then x ∈ AssX/Y (F) is equivalent to
u ∈ Ass(F|Uv ) by definition. Choose a point u′ ∈ U ′ mapping to x′ ∈ |X ′| and to u ∈ U
(possible by Properties of Spaces, Lemma 4.3). Let v′ ∈ V ′ be the image of u′. Then x′ ∈
AssX′/Y ′(F ′) is equivalent to u′ ∈ Ass(F ′|U ′

v′
) by definition. Now the lemma follows

from the discussion in Divisors, Remark 7.4 applied to u′ ∈ Spec(κ(v′)⊗κ(v) κ(u)). �

Lemma 4.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let i : Z → X be a finite morphism. Let G be a quasi-coherentOZ -module. Then
WeakAssX/Y (i∗G) = i(WeakAssZ/Y (G)).

Proof. Follows from the case of schemes (Divisors, Lemma 8.3) by étale localization.
Details omitted. �

Lemma 4.10. Let Y be a scheme. Let X be an algebraic space of finite presentation
over Y . Let F be a quasi-coherent OX -module of finite presentation. Let U ⊂ X be an
open subspace such that U → Y is quasi-compact. Then the set

E = {y ∈ Y | AssXy (Fy) ⊂ |Uy|}
is locally constructible in Y .

Proof. Note that sinceY is a scheme, it makes sense to take the fibresXy = Spec(κ(y))×Y
X . (Also, by our definitions, the set AssXy (Fy) is exactly the fibre of AssX/Y (F) → Y

over y, but we won’t need this.) The question is local on Y , indeed, we have to show
that E is constructible if Y is affine. In this case X is quasi-compact. Choose an affine



5. FITTING IDEALS 5485

scheme W and a surjective étale morphism ϕ : W → X . Then AssXy (Fy) is the image
of AssWy (ϕ∗Fy) for all y ∈ Y . Hence the lemma follows from the case of schemes for
the open ϕ−1(U) ⊂ W and the morphism W → Y . The case of schemes is More on
Morphisms, Lemma 25.5. �

5. Fitting ideals

This section is the continuation of the discussion in Divisors, Section 9. Let S be a scheme.
Let X be an algebraic space over S. Let F be a finite type, quasi-coherentOX -module. In
this situation we can construct the Fitting ideals

0 = Fit−1(F) ⊂ Fit0(F) ⊂ Fit1(F) ⊂ . . . ⊂ OX
as the sequence of quasi-coherent sheaves ideals characterized by the following property:
for every affine U = Spec(A) étale over X if F|U corresponds to the A-module M , then
Fiti(F)|U corresponds to the ideal Fiti(M) ⊂ A. This is well defined and a quasi-coherent
sheaf of ideals because ifA→ B is an étale ring map, then the ith Fitting ideal ofM⊗AB
overB is equal to Fiti(M)B by More on Algebra, Lemma 8.4 part (3). More precisely (per-
haps), the existence of the quasi-coherent sheaves of ideals Fit0(OX) follows (for example)
from the description of quasi-coherent sheaves in Properties of Spaces, Lemma 29.3 and
the pullback property given in Divisors, Lemma 9.1.
The advantage of constructing the Fitting ideals in this way is that we see immediately that
formation of Fitting ideals commutes with étale localization hence many properties of the
Fitting ideals immediately reduce to the corresponding properties in the case of schemes.
Often we will use the discussion in Properties of Spaces, Section 30 to do the translation
between properties of quasi-coherent sheaves on schemes and on algebraic spaces.

Lemma 5.1. LetS be a scheme. Let f : X → Y be a morphism of algebraic spaces over
S. LetF be a finite type, quasi-coherentOY -module. Then f−1Fiti(F)·OX = Fiti(f∗F).

Proof. Reduces to Divisors, Lemma 9.1 by étale localization. �

Lemma 5.2. Let S be a scheme. LetX be an algebraic space over S. LetF be a finitely
presentedOX -module. Then Fitr(F) is a quasi-coherent ideal of finite type.

Proof. Reduces to Divisors, Lemma 9.2 by étale localization. �

Lemma 5.3. Let S be a scheme. Let X be an algebraic space over S. Let F be a finite
type, quasi-coherentOX -module. Let Z0 ⊂ X be the closed subspace cut out by Fit0(F).
Let Z ⊂ X be the scheme theoretic support of F . Then

(1) Z ⊂ Z0 ⊂ X as closed subspaces,
(2) |Z| = |Z0| = Supp(F) as closed subsets of |X|,
(3) there exists a finite type, quasi-coherentOZ0 -module G0 with

(Z0 → X)∗G0 = F .
Proof. Recall that formation of Z commutes with étale localization, see Morphisms

of Spaces, Definition 15.4 (which uses Morphisms of Spaces, Lemma 15.3 to define Z).
Hence (1) and (2) follow from the case of schemes, see Divisors, Lemma 9.3. To get G0 as
in part (3) we can use that we have G on Z as in Morphisms of Spaces, Lemma 15.3 and set
G0 = (Z → Z0)∗G. �

Lemma 5.4. Let S be a scheme. Let X be an algebraic space over S. Let F be a finite
type, quasi-coherentOX -module. Let x ∈ |X|. Then F can be generated by r elements in
an étale neighbourhood of x if and only if Fitr(F)x = OX,x.
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Proof. Reduces to Divisors, Lemma 9.4 by étale localization (as well as the descrip-
tion of the local ring in Properties of Spaces, Section 22 and the fact that the strict henseliza-
tion of a local ring is faithfully flat to see that the equality over the strict henselization is
equivalent to the equality over the local ring). �

Lemma 5.5. Let S be a scheme. Let X be an algebraic space over S. Let F be a finite
type, quasi-coherentOX -module. Let r ≥ 0. The following are equivalent

(1) F is finite locally free of rank r
(2) Fitr−1(F) = 0 and Fitr(F) = OX , and
(3) Fitk(F) = 0 for k < r and Fitk(F) = OX for k ≥ r.

Proof. Reduces to Divisors, Lemma 9.5 by étale localization. �

Lemma 5.6. Let S be a scheme. Let X be an algebraic space over S. Let F be a finite
type, quasi-coherentOX -module. The closed subspaces

X = Z−1 ⊃ Z0 ⊃ Z1 ⊃ Z2 . . .

defined by the Fitting ideals of F have the following properties
(1) The intersection

⋂
Zr is empty.

(2) The functor (Sch/X)opp → Sets defined by the rule

T 7−→
{
{∗} if FT is locally generated by ≤ r sections
∅ otherwise

is representable by the open subspace X \ Zr.
(3) The functor Fr : (Sch/X)opp → Sets defined by the rule

T 7−→
{
{∗} if FT locally free rank r
∅ otherwise

is representable by the locally closed subspace Zr−1 \ Zr of X .
If F is of finite presentation, then Zr → X , X \ Zr → X , and Zr−1 \ Zr → X are of
finite presentation.

Proof. Reduces to Divisors, Lemma 9.6 by étale localization. �

Lemma 5.7. Let S be a scheme. Let X be an algebraic space over S. Let F be anOX -
module of finite presentation. Let X = Z−1 ⊂ Z0 ⊂ Z1 ⊂ . . . be as in Lemma 5.6. Set
Xr = Zr−1 \ Zr. Then X ′ =

∐
r≥0 Xr represents the functor

Fflat : Sch/X −→ Sets, T 7−→
{
{∗} if FT flat over T
∅ otherwise

Moreover, F|Xr is locally free of rank r and the morphismsXr → X andX ′ → X are of
finite presentation.

Proof. Reduces to Divisors, Lemma 9.7 by étale localization. �

6. Effective Cartier divisors

For some reason it seem convenient to define the notion of an effective Cartier divisor
before anything else. Note that in Morphisms of Spaces, Section 13 we discussed the cor-
respondence between closed subspaces and quasi-coherent sheaves of ideals. Moreover,
in Properties of Spaces, Section 30, we discussed properties of quasi-coherent modules, in
particular “locally generated by 1 element”. These references show that the following
definition is compatible with the definition for schemes.
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Definition 6.1. Let S be a scheme. Let X be an algebraic space over S.
(1) A locally principal closed subspace ofX is a closed subspace whose sheaf of ideals

is locally generated by 1 element.
(2) An effective Cartier divisor onX is a closed subspaceD ⊂ X such that the ideal

sheaf ID ⊂ OX is an invertibleOX -module.

Thus an effective Cartier divisor is a locally principal closed subspace, but the converse is
not always true. Effective Cartier divisors are closed subspaces of pure codimension 1 in
the strongest possible sense. Namely they are locally cut out by a single element which is
not a zerodivisor. In particular they are nowhere dense.

Lemma 6.2. Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X be a
closed subspace. The following are equivalent:

(1) The subspace D is an effective Cartier divisor on X .
(2) For some scheme U and surjective étale morphism U → X the inverse image

D ×X U is an effective Cartier divisor on U .
(3) For every scheme U and every étale morphism U → X the inverse imageD×X

U is an effective Cartier divisor on U .
(4) For every x ∈ |D| there exists an étale morphism (U, u) → (X,x) of pointed

algebraic spaces such that U = Spec(A) and D ×X U = Spec(A/(f)) with
f ∈ A not a zerodivisor.

Proof. The equivalence of (1) – (3) follows from Definition 6.1 and the references
preceding it. Assume (1) and let x ∈ |D|. Choose a scheme W and a surjective étale
morphismW → X . Choose w ∈ D×X W mapping to x. By (3) D×X W is an effective
Cartier divisor on W . Hence we can find affine étale neighbourhood U by choosing an
affine open neighbourhood of w in W as in Divisors, Lemma 13.2.

Assume (4). Then we see that ID|U is invertible by Divisors, Lemma 13.2. Since we can
find an étale covering of X by the collection of all such U and X \ D, we conclude that
ID is an invertibleOX -module. �

Lemma 6.3. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X be a
locally principal closed subspace. Let U = X \ Z. Then U → X is an affine morphism.

Proof. The question is étale local on X , see Morphisms of Spaces, Lemmas 20.3 and
Lemma 6.2. Thus this follows from the case of schemes which is Divisors, Lemma 13.3. �

Lemma 6.4. Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X be
an effective Cartier divisor. Let U = X \D. Then U → X is an affine morphism and U
is scheme theoretically dense in X .

Proof. Affineness is Lemma 6.3. The density question is étale local on X by Mor-
phisms of Spaces, Definition 17.3. Thus this follows from the case of schemes which is
Divisors, Lemma 13.4. �

Lemma 6.5. Let S be a scheme. LetX be an algebraic space over S. LetD ⊂ X be an
effective Cartier divisor. Let x ∈ |D|. If dimx(X) <∞, then dimx(D) < dimx(X).

Proof. Both the definition of an effective Cartier divisor and of the dimension of an
algebraic space at a point (Properties of Spaces, Definition 9.1) are étale local. Hence this
lemma follows from the case of schemes which is Divisors, Lemma 13.5. �
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Definition 6.6. Let S be a scheme. Let X be an algebraic space over S. Given
effective Cartier divisors D1, D2 on X we set D = D1 +D2 equal to the closed subspace
of X corresponding to the quasi-coherent sheaf of ideals ID1ID2 ⊂ OS . We call this the
sum of the effective Cartier divisors D1 and D2.

It is clear that we may define the sum
∑
niDi given finitely many effective Cartier divisors

Di on X and nonnegative integers ni.

Lemma 6.7. The sum of two effective Cartier divisors is an effective Cartier divisor.

Proof. Omitted. Étale locally this reduces to the following simple algebra fact: if
f1, f2 ∈ A are nonzerodivisors of a ring A, then f1f2 ∈ A is a nonzerodivisor. �

Lemma 6.8. Let S be a scheme. Let X be an algebraic space over S. Let Z, Y be
two closed subspaces of X with ideal sheaves I and J . If IJ defines an effective Cartier
divisor D ⊂ X , then Z and Y are effective Cartier divisors and D = Z + Y .

Proof. By Lemma 6.2 this reduces to the case of schemes which is Divisors, Lemma
13.9. �

Recall that we have defined the inverse image of a closed subspace under any morphism
of algebraic spaces in Morphisms of Spaces, Definition 13.2.

Lemma 6.9. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic spaces
over S. Let Z ⊂ X be a locally principal closed subspace. Then the inverse image f−1(Z)
is a locally principal closed subspace of X ′.

Proof. Omitted. �

Definition 6.10. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let D ⊂ X be an effective Cartier divisor. We say the pullback of D by
f is defined if the closed subspace f−1(D) ⊂ X ′ is an effective Cartier divisor. In this
case we denote it either f∗D or f−1(D) and we call it the pullback of the effective Cartier
divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in practice.

Lemma 6.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let D ⊂ Y be an effective Cartier divisor. The pullback of D by f is defined in
each of the following cases:

(1) f(x) 6∈ |D| for any weakly associated point x of X ,
(2) f is flat, and
(3) add more here as needed.

Proof. Working étale locally this lemma reduces to the case of schemes, see Divisors,
Lemma 13.13. �

Lemma 6.12. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic spaces
over S. Let D1, D2 be effective Cartier divisors on X . If the pullbacks of D1 and D2 are
defined then the pullback of D = D1 +D2 is defined and f∗D = f∗D1 + f∗D2.

Proof. Omitted. �
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7. Effective Cartier divisors and invertible sheaves

Since an effective Cartier divisor has an invertible ideal sheaf (Definition 6.1) the follow-
ing definition makes sense.

Definition 7.1. LetS be a scheme. LetX be an algebraic space overS and letD ⊂ X
be an effective Cartier divisor with ideal sheaf ID.

(1) The invertible sheafOX(D) associated to D is defined by

OX(D) = HomOX
(ID,OX) = I⊗−1

D .

(2) The canonical section, usually denoted 1 or 1D , is the global section of OX(D)
corresponding to the inclusion mapping ID → OX .

(3) We writeOX(−D) = OX(D)⊗−1 = ID.
(4) Given a second effective Cartier divisor D′ ⊂ X we define OX(D − D′) =
OX(D)⊗OX

OX(−D′).

Some comments. We will see below that the assignment D 7→ OX(D) turns addition of
effective Cartier divisors (Definition 6.6) into addition in the Picard group of X (Lemma
7.3). However, the expression D −D′ in the definition above does not have any geomet-
ric meaning. More precisely, we can think of the set of effective Cartier divisors on X
as a commutative monoid EffCart(X) whose zero element is the empty effective Cartier
divisor. Then the assignment (D,D′) 7→ OX(D −D′) defines a group homomorphism

EffCart(X)gp −→ Pic(X)
where the left hand side is the group completion of EffCart(X). In other words, when we
writeOX(D −D′) we may think of D −D′ as an element of EffCart(X)gp.

Lemma 7.2. Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X
be an effective Cartier divisor. Then for the conormal sheaf we have CD/X = ID|D =
OX(D)⊗−1|D.

Proof. Omitted. �

Lemma 7.3. Let S be a scheme. Let X be an algebraic space over S. Let D1, D2 be
effective Cartier divisors on X . Let D = D1 +D2. Then there is a unique isomorphism

OX(D1)⊗OX
OX(D2) −→ OX(D)

which maps 1D1 ⊗ 1D2 to 1D.

Proof. Omitted. �

Definition 7.4. Let S be a scheme. Let X be an algebraic space over S. Let L be an
invertible sheaf on X . A global section s ∈ Γ(X,L) is called a regular section if the map
OX → L, f 7→ fs is injective.

Lemma 7.5. LetS be a scheme. LetX be an algebraic space overS. Let f ∈ Γ(X,OX).
The following are equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is not a zerodivisor.
(3) for any affine U = Spec(A) étale overX the restriction f |U is a nonzerodivisor

of A, and
(4) there exists a scheme U and a surjective étale morphism U → X such that f |U

is a regular section ofOU .
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Proof. Omitted. �

Note that a global section s of an invertibleOX -module Lmay be seen as anOX -module
map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See Modules on Sites,
Lemma 32.4 for the dual invertible sheaf.)

Definition 7.6. Let S be a scheme. Let X be an algebraic space over S. Let L be an
invertible sheaf. Let s ∈ Γ(X,L). The zero scheme of s is the closed subspace Z(s) ⊂ X
defined by the quasi-coherent sheaf of ideals I ⊂ OX which is the image of the map
s : L⊗−1 → OX .

Lemma 7.7. Let S be a scheme. Let X be an algebraic space over S. Let L be an
invertibleOX -module. Let s ∈ Γ(X,L).

(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L)) is zero or-
dered by inclusion. The zero schemeZ(s) is the maximal element of this ordered
set.

(2) For any morphism of algebraic spaces f : Y → X over S we have f∗s = 0 in
Γ(Y, f∗L) if and only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subspace of X .
(4) The zero scheme Z(s) is an effective Cartier divisor on X if and only if s is a

regular section of L.

Proof. Omitted. �

Lemma 7.8. Let S be a scheme. Let X be an algebraic space over S.
(1) IfD ⊂ X is an effective Cartier divisor, then the canonical section 1D ofOX(D)

is regular.
(2) Conversely, if s is a regular section of the invertible sheaf L, then there exists

a unique effective Cartier divisor D = Z(s) ⊂ X and a unique isomorphism
OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps{
effective Cartier divisors on X

}
↔
{

pairs (L, s) consisting of an invertible
OX -module and a regular global section

}
Proof. Omitted. �

8. Effective Cartier divisors on Noetherian spaces

In the locally Noetherian setting most of the discussion of effective Cartier divisors and
regular sections simplifies somewhat.

Lemma 8.1. Let S be a scheme and letX be a locally Noetherian algebraic space over
S. Let D ⊂ X be an effective Cartier divisor. If X is (Sk), then D is (Sk−1).

Proof. By our definition of the property (Sk) for algebraic spaces (Properties of
Spaces, Section 7) and Lemma 6.2 this follows from the case of schemes (Divisors, Lemma
15.5). �

Lemma 8.2. Let S be a scheme and let X be a locally Noetherian normal algebraic
space over S. Let D ⊂ X be an effective Cartier divisor. Then D is (S1).

Proof. By our definition of normality for algebraic spaces (Properties of Spaces, Sec-
tion 7) and Lemma 6.2 this follows from the case of schemes (Divisors, Lemma 15.6). �
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The following lemma can sometimes be used to produce effective Cartier divisors.

Lemma 8.3. Let S be a scheme. Let X be a regular Noetherian separated algebraic
space over S. Let U ⊂ X be a dense affine open. Then there exists an effective Cartier
divisor D ⊂ X with U = X \D.

Proof. We claim that the reduced induced algebraic space structure D on X \ U
(Properties of Spaces, Definition 12.5) is the desired effective Cartier divisor. The con-
struction ofD commutes with étale localization, see proof of Properties of Spaces, Lemma
12.3. Let X ′ → X be a surjective étale morphism with X ′ affine. Since X is separated, we
see that U ′ = X ′ ×X U is affine. Since |X ′| → |X| is open, we see that U ′ is dense in X ′.
Since D′ = X ′ ×X D is the reduced induced scheme structure on X ′ \ U ′, we conclude
that D′ is an effective Cartier divisor by Divisors, Lemma 16.6 and its proof. This is what
we had to show. �

Lemma 8.4. Let S be a scheme. Let X be a regular Noetherian separated algebraic
space over S. Then every invertibleOX -module is isomorphic to

OX(D −D′) = OX(D)⊗OX
OX(D′)⊗−1

for some effective Cartier divisors D,D′ in X .

Proof. Let L be an invertible OX -module. Choose a dense affine open U ⊂ X such
thatL|U is trivial. This is possible becauseX has a dense open subspace which is a scheme,
see Properties of Spaces, Proposition 13.3. Denote s : OU → L|U the trivialization. The
complement of U is an effective Cartier divisorD. We claim that for some n > 0 the map
s extends uniquely to a map

s : OX(−nD) −→ L
The claim implies the lemma because it shows that L ⊗OX

OX(nD) has a regular global
section hence is isomorphic to OX(D′) for some effective Cartier divisor D′ by Lemma
7.8. To prove the claim we may work étale locally. Thus we may assume X is an affine
Noetherian scheme. Since OX(−nD) = In where I = OX(−D) is the ideal sheaf of D
in X , this case follows from Cohomology of Schemes, Lemma 10.5. �

The following lemma really belongs to a different section.

Lemma 8.5. Let R be a valuation ring with fraction field K. Let X be an algebraic
space over R such that X → Spec(R) is smooth. For every effective Cartier divisor
D ⊂ XK there exists an effective Cartier divisor D′ ⊂ X with D′

K = D.

Proof. Let D′ ⊂ X be the scheme theoretic image of D → XK → X . Since this
morphism is quasi-compact, formation of D′ commutes with flat base change, see Mor-
phisms of Spaces, Lemma 30.12. In particular we find that D′

K = D. Hence, we may
assume X is affine. Say X = Spec(A). Then XK = Spec(A ⊗R K) and D corresponds
to an ideal I ⊂ A ⊗R K. We have to show that J = I ∩ A cuts out an effective Cartier
divisor in X . First, observe that A/J is flat over R (as a torsion free R-module, see More
on Algebra, Lemma 22.10), hence J is finitely generated by More on Algebra, Lemma 25.6
and Algebra, Lemma 5.3. Thus it suffices to show that Jq ⊂ Aq is generated by a single
element for each prime q ⊂ A. Let p = R ∩ q. Then Rp is a valuation ring (Algebra,
Lemma 50.9). Observe further that Aq/pAq is a regular ring by Algebra, Lemma 140.3.
Thus we may apply More on Algebra, Lemma 121.3 to see that I(Aq ⊗R K) is generated
by a single element f ∈ Ap ⊗R K. After clearing denominators we may assume f ∈ Aq.
Let c ⊂ Rp be the content ideal of f (see More on Algebra, Definition 24.1 and More on
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Flatness, Lemma 19.6). SinceRp is a valuation ring and since c is finitely generated (More
on Algebra, Lemma 24.2) we see c = (π) for some π ∈ Rp (Algebra, Lemma 50.15). After
relacing f by π−1f we see that f ∈ Aq and f 6∈ pAq. Claim: Iq = (f) which finishes the
proof. To see the claim, observe that f ∈ Iq. Hence we have a surjectionAq/(f)→ Aq/Iq
which is an isomorphism after tensoring over R with K. Thus we are done if Aq/(f) is
Rp-flat. This follows from Algebra, Lemma 128.5 and our choice of f . �

9. Relative effective Cartier divisors

The following lemma shows that an effective Cartier divisor which is flat over the base is
really a “family of effective Cartier divisors” over the base. For example the restriction to
any fibre is an effective Cartier divisor.

Lemma 9.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let D ⊂ X be a closed subspace. Assume

(1) D is an effective Cartier divisor, and
(2) D → Y is a flat morphism.

Then for every morphism of schemes g : Y ′ → Y the pullback (g′)−1D is an effective
Cartier divisor on X ′ = Y ′ ×Y X where g′ : X ′ → X is the projection.

Proof. Using Lemma 6.2 the property of being an effective Cartier divisor is étale
local. Thus this lemmma immediately reduces to the case of schemes which is Divisors,
Lemma 18.1. �

This lemma is the motivation for the following definition.

Definition 9.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. A relative effective Cartier divisor on X/Y is an effective Cartier divisor
D ⊂ X such that D → Y is a flat morphism of algebraic spaces.

10. Meromorphic functions and sections

This section is the analogue of Divisors, Section 23. Beware: it is even easier to make
mistakes with this material in the case of algebraic space, than it is in the case of schemes!

Let S be a scheme. Let X be an algebraic space over S. For any scheme U étale over X
we have defined the set S(U) ⊂ OX(U) of regular sections ofOX over U , see Definition
7.4. The restriction of a regular section to V/U étale is regular. Hence S : U 7→ S(U)
is a subsheaf (of sets) of OX . We sometimes denote S = SX if we want to indicate the
dependence on X . Moreover, S(U) is a multiplicative subset of the ringOX(U) for each
U . Hence we may consider the presheaf of rings

U 7−→ S(U)−1OX(U),
on Xétale and its sheafification, see Modules on Sites, Section 44.

Definition 10.1. Let S be a scheme. Let X be an algebraic space over S. The sheaf
of meromorphic functions on X is the sheaf KX on Xétale associated to the presheaf dis-
played above. A meromorphic function on X is a global section of KX .

Since each element of eachS(U) is a nonzerodivisor onOX(U) we see that the natural map
of sheaves of ringsOX → KX is injective. Moreover, by the compatibility of sheafification
and taking stalks we see that

KX,x = S−1
x OX,x
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for any geometric point x of X . The set Sx is a subset of the set of nonzerodivisors of
OX,x, but in general not equal to this.

Lemma 10.2. Let S be a scheme. LetX be an algebraic space over S. For U affine and
étale over X the set SX(U) is the set of nonzerodivisors inOX(U).

Proof. Follows from Lemma 7.5. �

Next, letF be a sheaf ofOX -modules onXétale. Consider the presheafU 7→ S(U)−1F(U).
Its sheafification is the sheaf F ⊗OX

KX , see Modules on Sites, Lemma 44.2.

Definition 10.3. Let S be a scheme. Let X be an algebraic space over S. Let F be a
sheaf ofOX -modules on Xétale.

(1) We denote KX(F) the sheaf of KX -modules which is the sheafification of the
presheaf U 7→ S(U)−1F(U). Equivalently KX(F) = F ⊗OX

KX (see above).
(2) A meromorphic section of F is a global section of KX(F).

In particular we have

KX(F)x = Fx ⊗OX,x
KX,x = S−1

x Fx
for any geometric point x ofX . However, one has to be careful since it may not be the case
that Sx is the set of nonzerodivisors in the étale local ringOX,x as we pointed out above.
The sheaves of meromorphic sections aren’t quasi-coherent modules in general, but they
do have some properties in common with quasi-coherent modules.

Lemma 10.4. Let S be a scheme. Let X be an algebraic space over S. Assume
(a) every weakly associated point of X is a point of codimension 0, and
(b) X satisfies the equivalent conditions of Morphisms of Spaces, Lemma 49.1.

Then
(1) KX is a quasi-coherent sheaf ofOX -algebras,
(2) for U ∈ Xétale affine KX(U) is the total ring of fractions ofOX(U),
(3) for a geometric point x the set Sx the set of nonzerodivisors ofOX,x, and
(4) for a geometric point x the ring KX,x is the total ring of fractions ofOX,x.

Proof. By Lemma 7.5 we see that U ∈ Xétale affine SX(U) ⊂ OX(U) is the set of
nonzerodivisors inOX(U). Thus the presheaf S−1OX is equal to

U 7−→ Q(OX(U))
onXaffine,étale, with notation as in Algebra, Example 9.8. Observe that the codimension
0 points of X correspond to the generic points of U , see Properties of Spaces, Lemma 11.1.
Hence if U = Spec(A), thenA is a ring with finitely many minimal primes such that any
weakly associated prime of A is minimal. The same is true for any étale extension of A
(because the spectrum of such is an affine scheme étale overX hence can play the role ofA
in the previous sentence). In order to show that our presheaf is a sheaf and quasi-coherent
it suffices to show that

Q(A)⊗A B −→ Q(B)
is an isomorphism whenA→ B is an étale ring map, see Properties of Spaces, Lemma 29.3.
(To define the displayed arrow, observe that since A → B is flat it maps nonzerodivisors
to nonzerodivisors.) By Algebra, Lemmas 25.4 and 66.7. we have

Q(A) =
∏

p⊂A minimal
Ap and Q(B) =

∏
q⊂B minimal

Bq
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Since A → B is étale, the minimal primes of B are exactly the primes of B lying over
the minimal primes of A (for example by More on Algebra, Lemma 44.2). By Algebra,
Lemmas 153.10, 153.3 (13), and 153.5 we see thatAp⊗AB is a finite product of local rings
finite étale over Ap. This cleary implies that Ap ⊗A B =

∏
q lies over pBq as desired.

At this point we know that (1) and (2) hold. Proof of (3). Let s ∈ OX,x be a nonzerodivisor.
Then we can find an étale neighbourhood (U, u) → (X,x) and f ∈ OX(U) mapping to
s. Let u ∈ U be the point determined by u. Since OU,u → OX,x is faithfully flat (as a
strict henselization), we see that f maps to a nonzerodivisor inOU,u. By Divisors, Lemma
23.6 after shrinking U we find that f is a nonzerodivisor and hence a section of SX(U).
Part (4) follows from (3) by computing stalks. �

Lemma 10.5. Let S be a scheme. Let X be an algebraic space over S. Assume
(a) every weakly associated point of X is a point of codimension 0, and
(b) X satisfies the equivalent conditions of Morphisms of Spaces, Lemma 49.1.
(c) X is representable by a scheme X0 (awkward but temporary notation).

Then the sheaf of meromorphic functions KX is the quasi-coherent sheaf ofOX -algebras
associated to the quasi-coherent sheaf of meromorphic functions KX0 .

Proof. For the equivalence between QCoh(OX) and QCoh(OX0), please see Prop-
erties of Spaces, Section 29. The lemma is true because KX and KX0 are quasi-coherent
and have the same value on corresponding affine opens of X and X0 by Lemma 10.4 and
Divisors, Lemma 23.6. �

Definition 10.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say that pullbacks of meromorphic functions are defined for f if for
every commutative diagram

U //

��

X

��
V // Y

withU ∈ Xétale andV ∈ Yétale and any section s ∈ SY (V ) the pullback f ](s) ∈ OX(U)
is an element of SX(U).

In this case there is an induced map f ] : f−1
smallKY → KX , in other words we obtain a

commutative diagram of morphisms of ringed topoi

(Sh(Xétale),KX) //

fsmall

��

(Sh(Xétale),OX)

fsmall

��
(Sh(Yétale),KY ) // (Sh(Yétale),OY )

We sometimes denote f∗(s) = f ](s) for a section s ∈ Γ(Y,KY ).

Lemma 10.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Pullbacks of meromorphic sections are defined in each of the following cases

(1) weakly associated points of X are mapped to points of codimension 0 on Y ,
(2) f is flat,
(3) add more here as needed.
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Proof. Working étale locally, this translates into the case of schemes, see Divisors,
Lemma 23.5. To do the translation use Lemma 7.5 (description of regular sections), Def-
inition 2.2 (definition of weakly associated points), and Properties of Spaces, Lemma 11.1
(description of codimension 0 points). �

Lemma 10.8. Let S be a scheme. Let X be an algebraic space over S. Assume
(a) every weakly associated point of X is a point of codimension 0, and
(b) X satisfies the equivalent conditions of Morphisms of Spaces, Lemma 49.1,
(c) every codimension 0 point ofX can be represented by a monomorphism Spec(k)→

X .
Let X0 ⊂ |X| be the set of codimension 0 points of X . Then we have

KX =
⊕

η∈X0
jη,∗OX,η =

∏
η∈X0

jη,∗OX,η

where jη : Spec(OX,η)→ X is the canonical map of Schemes, Section 13; this makes sense
because X0 is contained in the schematic locus of X . Similarly, for every quasi-coherent
OX -module F we obtain the formula

KX(F) =
⊕

η∈X0
jη,∗Fη =

∏
η∈X0

jη,∗Fη

for the sheaf of meromorphic sections of F . Finally, the ring of rational functions of X
is the ring of meromorphic functions on X , in a formula: R(X) = Γ(X,KX).

Proof. By Decent Spaces, Lemma 20.3 and Section 6 we see that X is decent1. Thus
X0 ⊂ |X| is the set of generic points of irreducible components (Decent Spaces, Lemma
20.1) and X0 is locally finite in |X| by (b). It follows that X0 is contained in every dense
open subset of |X|. In particular, X0 is contained in the schematic locus (Decent Spaces,
Theorem 10.2). Thus the local ringsOX,η and the morphisms jη are defined.
Observe that a locally finite direct sum of sheaves of modules is equal to the product. This
and the fact that X0 is locally finite in |X| explains the equalities between direct sums
and products in the statement. Then since KX(F) = F ⊗OX

KX we see that the second
equality follows from the first.
Let j : Y =

∐
η∈X0 Spec(OX,η) → X be the product of the morphisms jη . We have to

show thatKX = j∗OY . Observe thatKY = OY as Y is a disjoint union of spectra of local
rings of dimension 0: in a local ring of dimension zero any nonzerodivisor is a unit. Next,
note that pullbacks of meromorphic functions are defined for j by Lemma 10.7. This gives
a map

KX −→ j∗OY .
Let U ∈ Xétale be affine. By Lemma 10.4 the left hand side evaluates to total ring of
fractions ofOX(U). On the other hand, the right hand side is equal to the product of the
local rings of U at the codimension 0 points, i.e., the generic points of U . These two rings
are equal (as we already saw in the proof of Lemma 10.4) by Algebra, Lemmas 25.4 and
66.7. Thus our map is an isomorphism.
Finally, we have to show that R(X) = Γ(X,KX). This follows from the case of schemes
(Divisors, Lemma 23.6) applied to the schematic locus X ′ ⊂ X . Namely, the ring of
rational functions of X is by definition the same as the ring of rational functions on X ′

as it is a dense open subspace of X (see above). Certainly, R(X ′) agrees with the ring of
rational functions when X ′ is viewed as a scheme. On the other hand, by our description

1Conversely, if X is decent, then condition (c) holds automatically.
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of KX above, and the fact, seen above, that X0 ⊂ |X ′| is contained in any dense open,
we see that Γ(X,KX) = Γ(X ′,KX′). Finally, use the compatibility recorded in Lemma
10.5. �

Definition 10.9. Let S be a scheme. LetX be an algebraic space over S. Let L be an
invertible OX -module. A meromorphic section s of L is said to be regular if the induced
map KX → KX(L) is injective.

Let us spell out when (regular) meromorphic sections can be pulled back.

Lemma 10.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume that pullbacks of meromorphic functions are defined for f (see Definition
10.6).

(1) LetF be a sheaf ofOY -modules. There is a canonical pullback map f∗ : Γ(Y,KY (F))→
Γ(X,KX(f∗F)) for meromorphic sections of F .

(2) Let L be an invertible OX -module. A regular meromorphic section s of L pulls
back to a regular meromorphic section f∗s of f∗L.

Proof. Omitted. �

Lemma 10.11. Let S be a scheme. LetX be an algebraic space over S satisfying (a), (b),
and (c) of Lemma 10.8. Then every invertible OX -module L has a regular meromorphic
section.

Proof. With notation as in Lemma 10.8 the stalkLη ofL at is defined for all η ∈ X0

and it is a rank 1 free OX,η-module. Pick a generator sη ∈ Lη for all η ∈ X0. It follows
immediately from the description of KX and KX(L) in Lemma 10.8 that s =

∏
sη is a

regular meromorphic section of L. �

11. Relative Proj

This section revisits the construction of the relative proj in the setting of algebraic spaces.
The material in this section corresponds to the material in Constructions, Section 16 and
Divisors, Section 30 in the case of schemes.

Situation 11.1. Here S is a scheme, X is an algebraic space over S , andA is a quasi-
coherent gradedOX -algebra.

In Situation 11.1 we are going to define a functor F : (Sch/S)oppfppf → Sets which will
turn out to be an algebraic space. We will follow (mutatis mutandis) the procedure of
Constructions, Section 16. First, given a scheme T over S we define a quadruple over T to
be a system (d, f : T → X,L, ψ)

(1) d ≥ 1 is an integer,
(2) f : T → X is a morphism over S ,
(3) L is an invertibleOT -module, and
(4) ψ : f∗A(d) →

⊕
n≥0 L⊗n is a homomorphism of gradedOT -algebras such that

f∗Ad → L is surjective.
We say two quadruples (d, f,L, ψ) and (d′, f ′,L′, ψ′) are equivalent2 if and only if we
have f = f ′ and for some positive integer m = ad = a′d′ there exists an isomorphism
β : L⊗a → (L′)⊗a′

with the property that β ◦ ψ|f∗A(m) and ψ′|f∗A(m) agree as graded

2This definition is motivated by Constructions, Lemma 16.4. The advantage of choosing this one is that it
clearly defines an equivalence relation.
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ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn. Given a quadruple (d, f,L, ψ) and a morphism
h : T ′ → T we have the pullback (d, f ◦h, h∗L, h∗ψ). Pullback preserves the equivalence
relation. Finally, for a quasi-compact scheme T over S we set

F (T ) = the set of equivalence classes of quadruples over T

and for an arbitrary scheme T over S we set

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices of
elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . Thus we have
defined our functor

(11.1.1) F : Schopp −→ Sets

There is a morphism F → X of functors sending the quadruple (d, f,L, ψ) to f .

Lemma 11.2. In Situation 11.1. The functor F above is an algebraic space. For any
morphism g : Z → X whereZ is a scheme there is a canonical isomorphism Proj

Z
(g∗A) =

Z ×X F compatible with further base change.

Proof. It suffices to prove the second assertion, see Spaces, Lemma 11.3. Let g : Z →
X be a morphism where Z is a scheme. Let F ′ be the functor of quadruples associated
to the graded quasi-coherent OZ -algebra g∗A. Then there is a canonical isomorphism
F ′ = Z ×X F , sending a quadruple (d, f : T → Z,L, ψ) for F ′ to (d, g ◦ f,L, ψ) (details
omitted, see proof of Constructions, Lemma 16.1). By Constructions, Lemmas 16.4, 16.5,
and 16.6 and Definition 16.7 we see that F ′ is representable by Proj

Z
(g∗A). �

The lemma above tells us the following definition makes sense.

Definition 11.3. Let S be a scheme. Let X be an algebraic space over S. Let A be
a quasi-coherent sheaf of graded OX -algebras. The relative homogeneous spectrum of A
over X , or the homogeneous spectrum of A over X , or the relative Proj of A over X is
the algebraic space F over X of Lemma 11.2. We denote it π : Proj

X
(A)→ X .

In particular the structure morphism of the relative Proj is representable by construction.
We can also think about the relative Proj via glueing. Let ϕ : U → X be a surjective
étale morphism, where U is a scheme. Set R = U ×X U with projection morphisms
s, t : R→ U . By Lemma 11.2 there exists a canonical isomorphism

γ : Proj
U

(ϕ∗A) −→ Proj
X

(A)×X U

over U . Let α : t∗ϕ∗A → s∗ϕ∗A be the canonical isomorphism of Properties of Spaces,
Proposition 32.1. Then the diagram

Proj
U

(ϕ∗A)×U,s R Proj
R

(s∗ϕ∗A)

induced by α

��

Proj
X

(A)×X R

s∗γ

55

t∗γ

))
Proj

U
(ϕ∗A)×U,t R Proj

R
(t∗ϕ∗A)
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is commutative (the equal signs come from Constructions, Lemma 16.10). Thus, if we
denote AU , AR the pullback of A to U , R, then P = Proj

X
(A) has an étale covering by

the scheme PU = Proj
U

(AU ) and PU ×P PU is equal to PR = Proj
R

(AR). Using these
remarks we can argue in the usual fashion using étale localization to transfer results on
the relative proj from the case of schemes to the case of algebraic spaces.

Lemma 11.4. In Situation 11.1. The relative Proj comes equipped with a quasi-coherent
sheaf of Z-graded algebras

⊕
n∈ZOProj

X
(A)(n) and a canonical homomorphism of graded

algebras
ψ : π∗A −→

⊕
n≥0
OProj

X
(A)(n)

whose base change to any scheme over X agrees with Constructions, Lemma 15.5.

Proof. As in the discussion following Definition 11.3 choose a schemeU and a surjec-
tive étale morphismU → X , setR = U ×X U with projections s, t : R→ U ,AU = A|U ,
AR = A|R, and π : P = Proj

X
(A) → X , πU : PU = Proj

U
(AU ) and πR : PR =

Proj
U

(AR). By the Constructions, Lemma 15.5 we have a quasi-coherent sheaf of Z-
gradedOPU -algebras

⊕
n∈ZOPU (n) and a canonical map ψU : π∗

UAU →
⊕

n≥0OPU (n)
and similarly for PR. By Constructions, Lemma 16.10 the pullback ofOPU (n) and ψU by
either projection PR → PU is equal toOPR(n) and ψR. By Properties of Spaces, Proposi-
tion 32.1 we obtainOP (n) andψ. We omit the verification of compatibility with pullback
to arbitrary schemes over X . �

Having constructed the relative Proj we turn to some basic properties.

Lemma 11.5. Let S be a scheme. Let g : X ′ → X be a morphism of algebraic spaces
over S and letA be a quasi-coherent sheaf of gradedOX -algebras. Then there is a canon-
ical isomorphism

r : Proj
X′(g

∗A) −→ X ′ ×X Proj
X

(A)
as well as a corresponding isomorphism

θ : r∗pr∗
2

(⊕
d∈Z
OProj

X
(A)(d)

)
−→

⊕
d∈Z
OProj

X′ (g∗A)(d)

of Z-gradedOProj
X′ (g∗A)-algebras.

Proof. Let F be the functor (11.1.1) and let F ′ be the corresponding functor defined
using g∗A on X ′. We claim there is a canonical isomorphism r : F ′ → X ′ ×X F of
functors (and of course r is the isomorphism of the lemma). It suffices to construct the
bijection r : F ′(T ) → X ′(T ) ×X(T ) F (T ) for quasi-compact schemes T over S. First,
if ξ = (d′, f ′,L′, ψ′) is a quadruple over T for F ′, then we can set r(ξ) = (f ′, (d′, g ◦
f ′,L′, ψ′)). This makes sense as (g ◦ f ′)∗A(d) = (f ′)∗(g∗A)(d). The inverse map sends
the pair (f ′, (d, f,L, ψ)) to the quadruple (d, f ′,L, ψ). We omit the proof of the final
assertion (hint: reduce to the case of schemes by étale localization and apply Constructions,
Lemma 16.10). �

Lemma 11.6. In Situation 11.1 the morphism π : Proj
X

(A)→ X is separated.

Proof. By Morphisms of Spaces, Lemma 4.12 and the construction of the relative
Proj this follows from the case of schemes which is Constructions, Lemma 16.9. �

Lemma 11.7. In Situation 11.1. If one of the following holds
(1) A is of finite type as a sheaf ofA0-algebras,
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(2) A is generated byA1 as anA0-algebra andA1 is a finite typeA0-module,
(3) there exists a finite type quasi-coherentA0-submoduleF ⊂ A+ such thatA+/FA

is a locally nilpotent sheaf of ideals ofA/FA,
then π : Proj

X
(A)→ X is quasi-compact.

Proof. By Morphisms of Spaces, Lemma 8.8 and the construction of the relative Proj
this follows from the case of schemes which is Divisors, Lemma 30.1. �

Lemma 11.8. In Situation 11.1. If A is of finite type as a sheaf of OX -algebras, then
π : Proj

X
(A)→ X is of finite type.

Proof. By Morphisms of Spaces, Lemma 23.4 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 30.2. �

Lemma 11.9. In Situation 11.1. If OX → A0 is an integral algebra map3 and A is of
finite type as anA0-algebra, then π : Proj

X
(A)→ X is universally closed.

Proof. By Morphisms of Spaces, Lemma 9.5 and the construction of the relative Proj
this follows from the case of schemes which is Divisors, Lemma 30.3. �

Lemma 11.10. In Situation 11.1. The following conditions are equivalent
(1) A0 is a finite typeOX -module andA is of finite type as anA0-algebra,
(2) A0 is a finite typeOX -module andA is of finite type as anOX -algebra.

If these conditions hold, then π : Proj
X

(A)→ X is proper.

Proof. By Morphisms of Spaces, Lemma 40.2 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 30.3. �

Lemma 11.11. Let S be a scheme. Let X be an algebraic space over S. Let A be a
quasi-coherent sheaf of graded OX -modules generated as an A0-algebra by A1. With
P = Proj

X
(A) we have

(1) P represents the functor F1 which associates to T over S the set of isomorphism
classes of triples (f,L, ψ), where f : T → X is a morphism over S , L is an
invertible OT -module, and ψ : f∗A →

⊕
n≥0 L⊗n is a map of graded OT -

algebras inducing a surjection f∗A1 → L,
(2) the canonical map π∗A1 → OP (1) is surjective, and
(3) eachOP (n) is invertible and the multiplication maps induce isomorphismsOP (n)⊗OP

OP (m) = OP (n+m).

Proof. Omitted. See Constructions, Lemma 16.11 for the case of schemes. �

12. Functoriality of relative proj

This section is the analogue of Constructions, Section 18.

Lemma 12.1. Let S be a scheme. Let X be an algebraic space over S. Let ψ : A → B
be a map of quasi-coherent graded OX -algebras. Set P = Proj

X
(A) → X and Q =

Proj
X

(B)→ X . There is a canonical open subspaceU(ψ) ⊂ Q and a canonical morphism
of algebraic spaces

rψ : U(ψ) −→ P

3In other words, the integral closure of OX in A0 , see Morphisms of Spaces, Definition 48.2, equals A0.
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over X and a map of Z-gradedOU(ψ)-algebras

θ = θψ : r∗
ψ

(⊕
d∈Z
OP (d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the property that for any schemeW étale over
X the triple

(U(ψ)×X W, rψ|U(ψ)×XW : U(ψ)×X W → P ×X W, θ|U(ψ)×XW )

is equal to the triple associated to ψ : A|W → B|W of Constructions, Lemma 18.1.

Proof. This lemma follows from étale localization and the case of schemes, see dis-
cussion following Definition 11.3. Details omitted. �

Lemma 12.2. Let S be a scheme. Let X be an algebraic space over S. Let A, B, and
C be quasi-coherent graded OX -algebras. Set P = Proj

X
(A), Q = Proj

X
(B) and R =

Proj
X

(C). Let ϕ : A → B, ψ : B → C be gradedOX -algebra maps. Then we have

U(ψ ◦ ϕ) = r−1
ϕ (U(ψ)) and rψ◦ϕ = rϕ ◦ rψ|U(ψ◦ϕ).

In addition we have
θψ ◦ r∗

ψθϕ = θψ◦ϕ

with obvious notation.

Proof. Omitted. �

Lemma 12.3. With hypotheses and notation as in Lemma 12.1 above. AssumeAd →
Bd is surjective for d� 0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ R is a closed immersion, and
(3) the maps θ : r∗

ψOP (n)→ OQ(n) are surjective but not isomorphisms in general
(even ifA → B is surjective).

Proof. Follows from the case of schemes (Constructions, Lemma 18.3) by étale local-
ization. �

Lemma 12.4. With hypotheses and notation as in Lemma 12.1 above. AssumeAd →
Bd is an isomorphism for all d� 0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is an isomorphism, and
(3) the maps θ : r∗

ψOP (n)→ OQ(n) are isomorphisms.

Proof. Follows from the case of schemes (Constructions, Lemma 18.4) by étale local-
ization. �

Lemma 12.5. With hypotheses and notation as in Lemma 12.1 above. AssumeAd →
Bd is surjective for d� 0 and thatA is generated byA1 overA0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is a closed immersion, and
(3) the maps θ : r∗

ψOP (n)→ OQ(n) are isomorphisms.

Proof. Follows from the case of schemes (Constructions, Lemma 18.5) by étale local-
ization. �
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13. Invertible sheaves and morphisms into relative Proj

It seems that we may need the following lemma somewhere. The situation is the following:
(1) Let S be a scheme and Y an algebraic space over S.
(2) LetA be a quasi-coherent gradedOY -algebra.
(3) Denote π : Proj

Y
(A)→ Y the relative Proj ofA over Y .

(4) Let f : X → Y be a morphism of algebraic spaces over S.
(5) Let L be an invertibleOX -module.
(6) Let ψ : f∗A →

⊕
d≥0 L⊗d be a homomorphism of gradedOX -algebras.

Given this data let U(ψ) ⊂ X be the open subspace with

|U(ψ)| =
⋃

d≥1
{locus where f∗Ad → L⊗d is surjective}

Formation of U(ψ) ⊂ X commutes with pullback by any morphism X ′ → X .

Lemma 13.1. With assumptions and notation as above. The morphism ψ induces a
canonical morphism of algebraic spaces over Y

rL,ψ : U(ψ) −→ Proj
Y

(A)

together with a map of gradedOU(ψ)-algebras

θ : r∗
L,ψ

(⊕
d≥0
OProj

Y
(A)(d)

)
−→

⊕
d≥0
L⊗d|U(ψ)

characterized by the following properties:
(1) For V → Y étale and d ≥ 0 the diagram

Ad(V )

ψ

��

ψ
// Γ(V ×Y X,L⊗d)

restrict

��
Γ(V ×Y Proj

Y
(A),OProj

Y
(A)(d)) θ // Γ(V ×Y U(ψ),L⊗d)

is commutative.
(2) For any d ≥ 1 and any morphism W → X where W is a scheme such that

ψ|W : f∗Ad|W → L⊗d|W is surjective we have (a) W → X factors through
U(ψ) and (b) composition of W → U(ψ) with rL,ψ agrees with the morphism
W → Proj

Y
(A) which exists by the construction of Proj

Y
(A), see Definition

11.3.
(3) Consider a commutative diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

where X ′ and Y ′ are schemes, set A′ = g∗A and L′ = (g′)∗L and denote ψ′ :
(f ′)∗A →

⊕
d≥0(L′)⊗d the pullback of ψ. Let U(ψ′), rψ′,L′ , and θ′ be the

open, morphism, and homomorphism constructed in Constructions, Lemma 13.1.
Then U(ψ′) = (g′)−1(U(ψ)) and rψ′,L′ agrees with the base change of rψ,L via
the isomorphism Proj

Y ′(A′) = Y ′ ×Y Proj
Y

(A) of Lemma 11.5. Moreover, θ′

is the pullback of θ.
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Proof. Omitted. Hints: First we observe that for a quasi-compact schemeW overX
the following are equivalent

(1) W → X factors through U(ψ), and
(2) there exists a d such that ψ|W : f∗Ad|W → L⊗d|W is surjective.

This gives a description of U(ψ) as a subfunctor of X on our base category (Sch/S)fppf .
For such a W and d we consider the quadruple (d,W → Y,L|W , ψ(d)|W ). By definition
of Proj

Y
(A) we obtain a morphism W → Proj

Y
(A). By our notion of equivalence of

quadruples one sees that this morphism is independent of the choice of d. This clearly de-
fines a transformation of functors rψ,L : U(ψ)→ Proj

Y
(A), i.e., a morphism of algebraic

spaces. By construction this morphism satisfies (2). Since the morphism constructed in
Constructions, Lemma 19.1 satisfies the same property, we see that (3) is true.
To construct θ and check the compatibility (1) of the lemma, work étale locally on Y and
X , arguing as in the discussion following Definition 11.3. �

14. Relatively ample sheaves

This section is the analogue of Morphisms, Section 37 for algebraic spaces. Our definition
of a relatively ample invertible sheaf is as follows.

Definition 14.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let L be an invertible OX -module. We say L is relatively ample, or f -
relatively ample, or ample on X/Y , or f -ample if f : X → Y is representable and for
every morphism Z → Y where Z is a scheme, the pullback LZ of L to XZ = Z ×Y X is
ample on XZ/Z as in Morphisms, Definition 37.1.

We will almost always reduce questions about relatively ample invertible sheaves to the
case of schemes. Thus in this section we have mainly sanity checks.

Lemma 14.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let L be an invertible OX -module. Assume Y is a scheme. The following are
equivalent

(1) L is ample on X/Y in the sense of Definition 14.1, and
(2) X is a scheme and L is ample on X/Y in the sense of Morphisms, Definition

37.1.

Proof. This follows from the definitions and Morphisms, Lemma 37.9 (which says
that being relatively ample for schemes is preserved under base change). �

Lemma 14.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. LetL be an invertibleOX -module. Let Y ′ → Y be a morphism of algebraic spaces
over S. Let f ′ : X ′ → Y ′ be the base change of f and denote L′ the pullback of L to X ′.
If L is f -ample, then L′ is f ′-ample.

Proof. This follows immediately from the definition! (Hint: transitivity of base
change.) �

Lemma 14.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If there exists an f -ample invertible sheaf, then f is representable, quasi-compact,
and separated.

Proof. This is clear from the definitions and Morphisms, Lemma 37.3. (If in doubt,
take a look at the principle of Algebraic Spaces, Lemma 5.8.) �
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Lemma 14.5. Let V → U be a surjective étale morphism of affine schemes. Let X be
an algebraic space over U . Let L be an invertible OX -module. Let Y = V ×U X and let
N be the pullback of L to Y . The following are equivalent

(1) L is ample on X/U , and
(2) N is ample on Y/V .

Proof. The implication (1)⇒ (2) follows from Lemma 14.3. Assume (2). This implies
that Y → V is quasi-compact and separated (Lemma 14.4) and Y is a scheme. It follows
that the morphism f : X → U is quasi-compact and separated (Morphisms of Spaces,
Lemmas 8.8 and 4.12). SetA =

⊕
d≥0 f∗L⊗d. This is a quasi-coherent sheaf of gradedOU -

algebras (Morphisms of Spaces, Lemma 11.2). By adjunction we have a map ψ : f∗A →⊕
d≥0 L⊗d. Applying Lemma 13.1 we obtain an open subspaceU(ψ) ⊂ X and a morphism

rL,ψ : U(ψ)→ Proj
U

(A)

Since h : V → U is étale we have A|V = (Y → V )∗(
⊕

d≥0N⊗d), see Properties of
Spaces, Lemma 26.2. It follows that the pullback ψ′ of ψ to Y is the adjunction map for
the situation (Y → V,N ) as in Morphisms, Lemma 37.4 part (5). Since N is ample on
Y/V we conclude from the lemma just cited that U(ψ′) = Y and that rN ,ψ′ is an open
immersion. Since Lemma 13.1 tells us that the formation of rL,ψ commutes with base
change, we conclude that U(ψ) = X and that we have a commutative diagram

Y
r′
//

��

Proj
V

(A|V )

��

// V

��
X

r // Proj
U

(A) // U

whose squares are fibre products. We conclude that r is an open immersion by Morphisms
of Spaces, Lemma 12.1. Thus X is a scheme. Then we can apply Morphisms, Lemma 37.4
part (5) to conclude that L is ample on X/U . �

Lemma 14.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let L be an invertibleOX -module. The following are equivalent

(1) L is ample on X/Y ,
(2) for every scheme Z and every morphism Z → Y the algebraic space XZ =

Z ×Y X is a scheme and the pullback LZ is ample on XZ/Z ,
(3) for every affine schemeZ and every morphismZ → Y the algebraic spaceXZ =

Z ×Y X is a scheme and the pullback LZ is ample on XZ/Z ,
(4) there exists a scheme V and a surjective étale morphism V → Y such that the

algebraic space XV = V ×Y X is a scheme and the pullback LV is ample on
XV /V .

Proof. Parts (1) and (2) are equivalent by definition. The implication (2)⇒ (3) is
immediate. If (3) holds and Z → Y is as in (2), then we see that XZ → Z is affine locally
on Z representable. Hence XZ is a scheme for example by Properties of Spaces, Lemma
13.1. Then it follows that LZ is ample on XZ/Z because it holds locally on Z and we can
use Morphisms, Lemma 37.4. Thus (1), (2), and (3) are equivalent. Clearly these conditions
imply (4).

Assume (4). Let Z → Y be a morphism with Z affine. Then U = V ×Y Z → Z is a
surjective étale morphism such that the pullback of LZ by XU → XZ is relatively ample
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on XU/U . Of course we may replace U by an affine open. It follows that LZ is ample on
XZ/Z by Lemma 14.5. Thus (4)⇒ (3) and the proof is complete. �

Lemma 14.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then f is quasi-affine if and only ifOX is f -relatively ample.

Proof. Follows from the case of schemes, see Morphisms, Lemma 37.6. �

15. Relative ampleness and cohomology

This section contains some results related to the results in Cohomology of Schemes, Sec-
tions 21 and 17.

The following lemma is just an example of what we can do.

Lemma 15.1. LetR be a Noetherian ring. LetX be an algebraic space overR such that
the structure morphism f : X → Spec(R) is proper. Let L be an invertible OX -module.
The following are equivalent

(1) L is ample on X/R (Definition 14.1),
(2) for every coherent OX -module F there exists an n0 ≥ 0 such that Hp(X,F ⊗
L⊗n) = 0 for all n ≥ n0 and p > 0.

Proof. The implication (1)⇒ (2) follows from Cohomology of Schemes, Lemma 16.1
because assumption (1) implies thatX is a scheme. The implication (2)⇒ (1) is Cohomol-
ogy of Spaces, Lemma 16.9. �

Lemma 15.2. Let Y be a Noetherian scheme. LetX be an algebraic space over Y such
that the structure morphism f : X → Y is proper. Let L be an invertible OX -module.
Let F be a coherentOX -module. Let y ∈ Y be a point such that Xy is a scheme and Ly is
ample on Xy . Then there exists a d0 such that for all d ≥ d0 we have

Rpf∗(F ⊗OX
L⊗d)y = 0 for p > 0

and the map
f∗(F ⊗OX

L⊗d)y −→ H0(Xy,Fy ⊗OXy
L⊗d
y )

is surjective.

Proof. Note thatOY,y is a Noetherian local ring. Consider the canonical morphism
c : Spec(OY,y)→ Y , see Schemes, Equation (13.1.1). This is a flat morphism as it identifies
local rings. Denote momentarily f ′ : X ′ → Spec(OY,y) the base change of f to this local
ring. We see that c∗Rpf∗F = Rpf ′

∗F ′ by Cohomology of Spaces, Lemma 11.2. Moreover,
the fibres Xy and X ′

y are identified. Hence we may assume that Y = Spec(A) is the
spectrum of a Noetherian local ring (A,m, κ) and y ∈ Y corresponds to m. In this case
Rpf∗(F ⊗OX

L⊗d)y = Hp(X,F ⊗OX
L⊗d) for all p ≥ 0. Denote fy : Xy → Spec(κ)

the projection.

Let B = Grm(A) =
⊕

n≥0 m
n/mn+1. Consider the sheaf B = f∗

y B̃ of quasi-coherent
graded OXy -algebras. We will use notation as in Cohomology of Spaces, Section 22 with
I replaced by m. Since Xy is the closed subspace of X cut out by mOX we may think of
mnF/mn+1F as a coherent OXy -module, see Cohomology of Spaces, Lemma 12.8. Then⊕

n≥0 m
nF/mn+1F is a quasi-coherent graded B-module of finite type because it is gen-

erated in degree zero over B abd because the degree zero part is Fy = F/mF which is
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a coherent OXy -module. Hence by Cohomology of Schemes, Lemma 19.3 part (2) there
exists a d0 such that

Hp(Xy,m
nF/mn+1F ⊗OXy

L⊗d
y ) = 0

for all p > 0, d ≥ d0, and n ≥ 0. By Cohomology of Spaces, Lemma 8.3 this is the same as
the statement thatHp(X,mnF/mn+1F ⊗OX

L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0.

Consider the short exact sequences

0→ mnF/mn+1F → F/mn+1F → F/mnF → 0

of coherent OX -modules. Tensoring with L⊗d is an exact functor and we obtain short
exact sequences

0→ mnF/mn+1F ⊗OX
L⊗d → F/mn+1F ⊗OX

L⊗d → F/mnF ⊗OX
L⊗d → 0

Using the long exact cohomology sequence and the vanishing above we conclude (using
induction) that

(1) Hp(X,F/mnF ⊗OX
L⊗d) = 0 for all p > 0, d ≥ d0, and n ≥ 0, and

(2) H0(X,F/mnF⊗OX
L⊗d)→ H0(Xy,Fy⊗OXy

L⊗d
y ) is surjective for all d ≥ d0

and n ≥ 1.
By the theorem on formal functions (Cohomology of Spaces, Theorem 22.5) we find that
the m-adic completion of Hp(X,F ⊗OX

L⊗d) is zero for all d ≥ d0 and p > 0. Since
Hp(X,F⊗OX

L⊗d) is a finiteA-module by Cohomology of Spaces, Lemma 20.3 it follows
from Nakayama’s lemma (Algebra, Lemma 20.1) that Hp(X,F ⊗OX

L⊗d) is zero for all
d ≥ d0 and p > 0. For p = 0 we deduce from Cohomology of Spaces, Lemma 22.4 part (3)
that H0(X,F ⊗OX

L⊗d) → H0(Xy,Fy ⊗OXy
L⊗d
y ) is surjective, which gives the final

statement of the lemma. �

Lemma 15.3. (For a more general version see Descent on Spaces, Lemma 13.2). Let
Y be a Noetherian scheme. Let X be an algebraic space over Y such that the structure
morphism f : X → Y is proper. Let L be an invertibleOX -module. Let y ∈ Y be a point
such that Xy is a scheme and Ly is ample on Xy . Then there is an open neighbourhood
V ⊂ Y of y such that L|f−1(V ) is ample on f−1(V )/V (as in Definition 14.1).

Proof. Pick d0 as in Lemma 15.2 forF = OX . Pick d ≥ d0 so that we can find r ≥ 0
and sections sy,0, . . . , sy,r ∈ H0(Xy,L⊗d

y ) which define a closed immersion

ϕy = ϕL⊗d
y ,(sy,0,...,sy,r) : Xy → Pr

κ(y).

This is possible by Morphisms, Lemma 39.4 but we also use Morphisms, Lemma 41.7 to see
that ϕy is a closed immersion and Constructions, Section 13 for the description of mor-
phisms into projective space in terms of invertible sheaves and sections. By our choice
of d0, after replacing Y by an open neighbourhood of y, we can choose s0, . . . , sr ∈
H0(X,L⊗d) mapping to sy,0, . . . , sy,r. Let Xsi ⊂ X be the open subspace where si is
a generator of L⊗d. Since the sy,i generate L⊗d

y we see that |Xy| ⊂ U =
⋃
|Xsi |. Since

X → Y is closed, we see that there is an open neighbourhood y ∈ V ⊂ Y such that
|f |−1(V ) ⊂ U . After replacing Y by V we may assume that the si generate L⊗d. Thus
we obtain a morphism

ϕ = ϕL⊗d,(s0,...,sr) : X −→ Pr
Y
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with L⊗d ∼= ϕ∗OPr
Y

(1) whose base change to y gives ϕy (strictly speaking we need to
write out a proof that the construction of morphisms into projective space given in Con-
structions, Section 13 also works to describe morphisms of algebraic spaces into projective
space; we omit the details).

We will finish the proof by a sleight of hand; the “correct” proof proceeds by directly
showing that ϕ is a closed immersion after base changing to an open neighbourhood of
y. Namely, by Cohomology of Spaces, Lemma 23.2 we see that ϕ is a finite over an open
neighbourhood of the fibre Pr

κ(y) of Pr
Y → Y above y. Using that Pr

Y → Y is closed,
after shrinking Y we may assume that ϕ is finite. In particular X is a scheme. Then
L⊗d ∼= ϕ∗OPr

Y
(1) is ample by the very general Morphisms, Lemma 37.7. �

16. Closed subspaces of relative proj

Some auxiliary lemmas about closed subspaces of relative proj. This section is the analogue
of Divisors, Section 31.

Lemma 16.1. Let S be a scheme. LetX be an algebraic space over S. LetA be a quasi-
coherent graded OX -algebra. Let π : P = Proj

X
(A) → X be the relative Proj of A. Let

i : Z → P be a closed subspace. Denote I ⊂ A the kernel of the canonical map

A −→
⊕

d≥0
π∗ ((i∗OZ)(d))

If π is quasi-compact, then there is an isomorphism Z = Proj
X

(A/I).

Proof. The morphism π is separated by Lemma 11.6. As π is quasi-compact, π∗
transforms quasi-coherent modules into quasi-coherent modules, see Morphisms of Spaces,
Lemma 11.2. Hence I is a quasi-coherent OX -module. In particular, B = A/I is a quasi-
coherent graded OX -algebra. The functoriality morphism Z ′ = Proj

X
(B) → Proj

X
(A)

is everywhere defined and a closed immersion, see Lemma 12.3. Hence it suffices to prove
Z = Z ′ as closed subspaces of P .

Having said this, the question is étale local on the base and we reduce to the case of schemes
(Divisors, Lemma 31.1) by étale localization. �

In case the closed subspace is locally cut out by finitely many equations we can define it
by a finite type ideal sheaf ofA.

Lemma 16.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space overS. LetA be a quasi-coherent gradedOX -algebra. Letπ : P = Proj

X
(A)→

X be the relative Proj of A. Let i : Z → P be a closed subscheme. If π is quasi-compact
and i of finite presentation, then there exists a d > 0 and a quasi-coherent finite type
OX -submodule F ⊂ Ad such that Z = Proj

X
(A/FA).

Proof. The reader can redo the arguments used in the case of schemes. However,
we will show the lemma follows from the case of schemes by a trick. Let I ⊂ A be the
quasi-coherent graded ideal cutting out Z of Lemma 16.1. Choose an affine scheme U and
a surjective étale morphism U → X , see Properties of Spaces, Lemma 6.3. By the case
of schemes (Divisors, Lemma 31.4) there exists a d > 0 and a quasi-coherent finite type
OU -submoduleF ′ ⊂ Id|U ⊂ Ad|U such thatZ×XU is equal to Proj

U
(A|U/F ′A|U ). By

Limits of Spaces, Lemma 9.2 we can find a finite type quasi-coherent submodule F ⊂ Id
such that F ′ ⊂ F|U . Let Z ′ = Proj

X
(A/FA). Then Z ′ → P is a closed immersion
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(Lemma 12.5) and Z ⊂ Z ′ as FA ⊂ I . On the other hand, Z ′ ×X U ⊂ Z ×X U by our
choice of F . Thus Z = Z ′ as desired. �

Lemma 16.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space overS. LetA be a quasi-coherent gradedOX -algebra. Letπ : P = Proj

X
(A)→

X be the relative Proj of A. Let i : Z → X be a closed subspace. Let U ⊂ X be an open.
Assume that

(1) π is quasi-compact,
(2) i of finite presentation,
(3) |U | ∩ |π|(|i|(|Z|)) = ∅,
(4) U is quasi-compact,
(5) An is a finite typeOX -module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OX -submodule F ⊂ Ad with
(a) Z = Proj

X
(A/FA) and (b) the support ofAd/F is disjoint from U .

Proof. We use the same trick as in the proof of Lemma 16.2 to reduce to the case
of schemes. Let I ⊂ A be the quasi-coherent graded ideal cutting out Z of Lemma 16.1.
Choose an affine scheme W and a surjective étale morphism W → X , see Properties of
Spaces, Lemma 6.3. By the case of schemes (Divisors, Lemma 31.5) there exists a d > 0 and
a quasi-coherent finite typeOW -submoduleF ′ ⊂ Id|W ⊂ Ad|W such that (a)Z×XW is
equal to Proj

W
(A|W /F ′A|W ) and (b) the support ofAd|W /F ′ is disjoint fromU ×XW .

By Limits of Spaces, Lemma 9.2 we can find a finite type quasi-coherent submoduleF ⊂ Id
such that F ′ ⊂ F|W . Let Z ′ = Proj

X
(A/FA). Then Z ′ → P is a closed immersion

(Lemma 12.5) and Z ⊂ Z ′ as FA ⊂ I . On the other hand, Z ′ ×X W ⊂ Z ×X W by
our choice of F . Thus Z = Z ′. Finally, we see that Ad/F is supported on X \ U as
Ad|W /F|W is a quotient of Ad|W /F ′ which is supported on W \ U ×X W . Thus the
lemma follows. �

Lemma 16.4. Let S be a scheme and let X be an algebraic space over S. Let E be a
quasi-coherentOX -module. There is a bijection{

sections σ of the
morphism P(E)→ X

}
↔
{

surjections E → L where
L is an invertibleOX -module

}
In this case σ is a closed immersion and there is a canonical isomorphism

Ker(E → L)⊗OX
L⊗−1 −→ Cσ(X)/P(E)

Both the bijection and isomorphism are compatible with base change.

Proof. Because the constructions are compatible with base change, it suffices to check
the statement étale locally on X . Thus we may assume X is a scheme and the result is
Divisors, Lemma 31.6. �

17. Blowing up

Blowing up is an important tool in algebraic geometry.

Definition 17.1. Let S be a scheme. LetX be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals, and let Z ⊂ X be the closed subspace corresponding
to I (Morphisms of Spaces, Lemma 13.1). The blowing up of X along Z , or the blowing
up of X in the ideal sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In
)
−→ X
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The exceptional divisor of the blowup is the inverse image b−1(Z). Sometimes Z is called
the center of the blowup.

We will see later that the exceptional divisor is an effective Cartier divisor. Moreover, the
blowing up is characterized as the “smallest” algebraic space over X such that the inverse
image of Z is an effective Cartier divisor.
If b : X ′ → X is the blowup of X in Z , then we often denote OX′(n) the twists of
the structure sheaf. Note that these are invertible OX′ -modules and that OX′(n) =
OX′(1)⊗n becauseX ′ is the relative Proj of a quasi-coherent gradedOX -algebra which is
generated in degree 1, see Lemma 11.11.

Lemma 17.2. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX be
a quasi-coherent sheaf of ideals. Let U = Spec(A) be an affine scheme étale over X and
let I ⊂ A be the ideal corresponding to I|U . If X ′ → X is the blowup of X in I , then
there is a canonical isomorphism

U ×X X ′ = Proj(
⊕

d≥0
Id)

of schemes over U , where the right hand side is the homogeneous spectrum of the Rees
algebra of I inA. Moreover, U ×X X ′ has an affine open covering by spectra of the affine
blowup algebras A[ Ia ].

Proof. Note that the restriction I|U is equal to the pullback of I via the morphism
U → X , see Properties of Spaces, Section 26. Thus the lemma follows on combining
Lemma 11.2 with Divisors, Lemma 32.2. �

Lemma 17.3. Let S be a scheme. LetX1 → X2 be a flat morphism of algebraic spaces
over S. Let Z2 ⊂ X2 be a closed subspace. Let Z1 be the inverse image of Z2 in X1. Let
X ′
i be the blowup of Zi in Xi. Then there exists a cartesian diagram

X ′
1

//

��

X ′
2

��
X1 // X2

of algebraic spaces over S.

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given
morphism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1 (see Morphisms
of Spaces, Definition 13.2 and discussion following the definition). By Lemma 11.5 we see
thatX1×X2X

′
2 is the relative Proj of

⊕
n≥0 g

∗In2 . Because g is flat the map g∗In2 → OX1

is injective with image In1 . Thus we see that X1 ×X2 X
′
2 = X ′

1. �

Lemma 17.4. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X be a
closed subspace. The blowing up b : X ′ → X of Z in X has the following properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,
(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphismOX′(−1) = OX′(E)

Proof. LetU be a scheme and letU → X be a surjective étale morphism. As blowing
up commutes with flat base change (Lemma 17.3) we can prove each of these statements
after base change to U . This reduces us to the case of schemes. In this case the result is
Divisors, Lemma 32.4. �
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Lemma 17.5 (Universal property blowing up). Let S be a scheme. Let X be an al-
gebraic space over S. Let Z ⊂ X be a closed subspace. Let C be the full subcategory of
(Spaces/X) consisting of Y → X such that the inverse image of Z is an effective Cartier
divisor on Y . Then the blowing up b : X ′ → X of Z in X is a final object of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 17.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism Y → X ′

over X . Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and let ID be the ideal
sheaf of D. Then f∗I → ID is a surjection to an invertible OY -module. This extends to
a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras. (We observe that IdD = I⊗d

D as D
is an effective Cartier divisor.) By Lemma 11.11. the triple (f : Y → X, ID, ψ) defines a
morphism Y → X ′ over X . The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z

is unique. The open Y \ D is scheme theoretically dense in Y according to Lemma 6.4.
Thus the morphism Y → X ′ is unique by Morphisms of Spaces, Lemma 17.8 (also b is
separated by Lemma 11.6). �

Lemma 17.6. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X be
an effective Cartier divisor. The blowup of X in Z is the identity morphism of X .

Proof. Immediate from the universal property of blowups (Lemma 17.5). �

Lemma 17.7. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX be
a quasi-coherent sheaf of ideals. IfX is reduced, then the blowupX ′ ofX in I is reduced.

Proof. LetU be a scheme and letU → X be a surjective étale morphism. As blowing
up commutes with flat base change (Lemma 17.3) we can prove each of these statements
after base change to U . This reduces us to the case of schemes. In this case the result is
Divisors, Lemma 32.8. �

Lemma 17.8. Let S be a scheme. Let X be an algebraic space over S. Let b : X ′ →
X be the blowup of X in a closed subspace. If X satisfies the equivalent conditions of
Morphisms of Spaces, Lemma 49.1 then so does X ′.

Proof. Follows immediately from the lemma cited in the statement, the étale local
description of blowing ups in Lemma 17.2, and Divisors, Lemma 32.10. �

Lemma 17.9. Let S be a scheme. LetX be an algebraic space over S. Let b : X ′ → X
be a blowup of X in a closed subspace. For any effective Cartier divisor D on X the
pullback b−1D is defined (see Definition 6.10).

Proof. By Lemmas 17.2 and 6.2 this reduces to the following algebra fact: Let A be
a ring, I ⊂ A an ideal, a ∈ I , and x ∈ A a nonzerodivisor. Then the image of x in A[ Ia ]
is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ]. Then amxy = 0 in A
for some m. Hence amy = 0 as x is a nonzerodivisor. Whence y/an is zero in A[ Ia ] as
desired. �

Lemma 17.10. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
and J be quasi-coherent sheaves of ideals. Let b : X ′ → X be the blowing up of X in I .
Let b′ : X ′′ → X ′ be the blowing up of X ′ in b−1JOX′ . Then X ′′ → X is canonically
isomorphic to the blowing up of X in IJ .
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Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 17.4. Then (b′)−1E is an effective Cartier divisor onX ′′ by Lemma 17.9.
Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective Cartier divisor). Consider
the effective Cartier divisor E′′ = E′ + (b′)−1E. By construction the ideal of E′′ is
(b◦b′)−1I(b◦b′)−1JOX′′ . Hence according to Lemma 17.5 there is a canonical morphism
from X ′′ to the blowup c : Y → X of X in IJ . Conversely, as IJ pulls back to an
invertible ideal we see that c−1IOY defines an effective Cartier divisor, see Lemma 6.8.
Thus a morphism c′ : Y → X ′ overX by Lemma 17.5. Then (c′)−1b−1JOY = c−1JOY
which also defines an effective Cartier divisor. Thus a morphism c′′ : Y → X ′′ over
X ′. We omit the verification that this morphism is inverse to the morphism X ′′ → Y
constructed earlier. �

Lemma 17.11. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. Let b : X ′ → X be the blowing up of X in the ideal
sheaf I . If I is of finite type, then b : X ′ → X is a proper morphism.

Proof. LetU be a scheme and letU → X be a surjective étale morphism. As blowing
up commutes with flat base change (Lemma 17.3) we can prove each of these statements
after base change to U (see Morphisms of Spaces, Lemma 40.2). This reduces us to the
case of schemes. In this case the morphism b is projective by Divisors, Lemma 32.13 hence
proper by Morphisms, Lemma 43.5. �

Lemma 17.12. Let S be a scheme and letX be an algebraic space over S. AssumeX is
quasi-compact and quasi-separated. Let Z ⊂ X be a closed subspace of finite presentation.
Let b : X ′ → X be the blowing up with center Z. Let Z ′ ⊂ X ′ be a closed subspace of
finite presentation. LetX ′′ → X ′ be the blowing up with center Z ′. There exists a closed
subspace Y ⊂ X of finite presentation, such that

(1) |Y | = |Z| ∪ |b|(|Z ′|), and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .

Proof. The condition that Z → X is of finite presentation means that Z is cut out
by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms of Spaces, Lemma
28.12. Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z is a quasi-compact

open subspace of X by Limits of Spaces, Lemma 14.1. Since b−1(X \ Z) → X \ Z is an
isomorphism (Lemma 17.4) the same result shows that b−1(X \ Z) \ Z ′ is quasi-compact
open subspace in X ′. Hence U = X \ (Z ∪ b(Z ′)) is quasi-compact open subspace in X .
By Lemma 16.3 there exist a d > 0 and a finite type OX -submodule F ⊂ Id such that
Z ′ = Proj(A/FA) and such that the support of Id/F is contained in X \ U .

Since F ⊂ Id is anOX -submodule we may think of F ⊂ Id ⊂ OX as a finite type quasi-
coherent sheaf of ideals on X . Let’s denote this J ⊂ OX to prevent confusion. Since
Id/J andO/Id are supported on |X| \ |U | we see that |V (J )| is contained in |X| \ |U |.
Conversely, asJ ⊂ Id we see that |Z| ⊂ |V (J )|. OverX \Z ∼= X ′ \b−1(Z) the sheaf of
ideals J cuts out Z ′ (see displayed formula below). Hence |V (J )| equals |Z| ∪ |b|(|Z ′|).
It follows that also |V (IJ )| = |Z| ∪ |b|(|Z ′|). Moreover, IJ is an ideal of finite type as
a product of two such. We claim that X ′′ → X is isomorphic to the blowing up of X in
IJ which finishes the proof of the lemma by setting Y = V (IJ ).

First, recall that the blowup ofX in IJ is the same as the blowup ofX ′ in b−1JOX′ , see
Lemma 17.10. Hence it suffices to show that the blowup of X ′ in b−1JOX′ agrees with
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the blowup of X ′ in Z ′. We will show that

b−1JOX′ = IdEIZ′

as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective Cartier
divisor dE and we can use Lemmas 17.6 and 17.10.

To see the displayed equality of the ideals we may work locally. With notation A, I ,
a ∈ I as in Lemma 17.2 we see that F corresponds to an R-submodule M ⊂ Id mapping
isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA) means that Z ′ ∩
Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad, m ∈ M . Say the
element m ∈ M corresponds to the function f ∈ J . Then in the affine blowup algebra
A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the equality holds. �

18. Strict transform

This section is the analogue of Divisors, Section 33. LetS be a scheme, letB be an algebraic
space over S , and let Z ⊂ B be a closed subspace. Let b : B′ → B be the blowing up of
B in Z and denote E ⊂ B′ the exceptional divisor E = b−1Z. In the following we will
often consider an algebraic space X over B and form the cartesian diagram

pr−1
B′ E //

��

X ×B B′
prX
//

prB′

��

X

f

��
E // B′ // B

Since E is an effective Cartier divisor (Lemma 17.4) we see that pr−1
B′ E ⊂ X ×B B′

is locally principal (Lemma 6.9). Thus the inclusion morphism of the complement of
pr−1
B′ E in X ×B B′ is affine and in particular quasi-compact (Lemma 6.3). Consequently,

for a quasi-coherentOX×BB′ -module G the subsheaf of sections supported on |pr−1
B′ E| is

a quasi-coherent submodule, see Limits of Spaces, Definition 14.6. If G is a quasi-coherent
sheaf of algebras, e.g., G = OX×BB′ , then this subsheaf is an ideal of G.

Definition 18.1. With Z ⊂ B and f : X → B as above.
(1) Given a quasi-coherentOX -module F the strict transform of F with respect to

the blowup of B in Z is the quotient F ′ of pr∗
XF by the submodule of sections

supported on |pr−1
B′ E|.

(2) The strict transform of X is the closed subspace X ′ ⊂ X ×B B′ cut out by the
quasi-coherent ideal of sections ofOX×BB′ supported on |pr−1

B′ E|.

Note that taking the strict transform along a blowup depends on the closed subspace used
for the blowup (and not just on the morphism B′ → B).

Lemma 18.2 (Étale localization and strict transform). In the situation of Definition
18.1. Let

U //

��

X

��
V // B

be a commutative diagram of morphisms with U and V schemes and étale horizontal ar-
rows. Let V ′ → V be the blowup of V in Z ×B V . Then

(1) V ′ = V ×B B′ and the maps V ′ → B′ and U ×V V ′ → X ×B B′ are étale,
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(2) the strict transform U ′ of U relative to V ′ → V is equal to X ′ ×X U where X ′

is the strict transform of X relative to B′ → B, and
(3) for a quasi-coherent OX -module F the restriction of the strict transform F ′ to

U ×V V ′ is the strict transform of F|U relative to V ′ → V .
Proof. Part (1) follows from the fact that blowup commutes with flat base change

(Lemma 17.3), the fact that étale morphisms are flat, and that the base change of an étale
morphism is étale. Part (3) then follows from the fact that taking the sheaf of sections
supported on a closed commutes with pullback by étale morphisms, see Limits of Spaces,
Lemma 14.5. Part (2) follows from (3) applied to F = OX . �

Lemma 18.3. In the situation of Definition 18.1.
(1) The strict transform X ′ of X is the blowup of X in the closed subspace f−1Z

of X .
(2) For a quasi-coherent OX -module F the strict transform F ′ is canonically iso-

morphic to the pushforward along X ′ → X ×B B′ of the strict transform of F
relative to the blowing up X ′ → X .

Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 17.5) there exists a commutative diagram

X ′′ //

��

X

��
B′ // B

whence a morphism i : X ′′ → X ×B B′. The first assertion of the lemma is that i is a
closed immersion with image X ′. The second assertion of the lemma is that F ′ = i∗F ′′

where F ′′ is the strict transform of F with respect to the blowing up X ′′ → X . We can
check these assertions étale locally onX , hence we reduce to the case of schemes (Divisors,
Lemma 33.2). Some details omitted. �

Lemma 18.4. In the situation of Definition 18.1.
(1) If X is flat over B at all points lying over Z , then the strict transform of X is

equal to the base change X ×B B′.
(2) LetF be a quasi-coherentOX -module. IfF is flat overB at all points lying over

Z , then the strict transform F ′ of F is equal to the pullback pr∗
XF .

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.3) by
étale localization (Lemma 18.2). �

Lemma 18.5. Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B be a
closed subspace. Let b : B′ → B be the blowing up of Z in B. Let g : X → Y be an affine
morphism of spaces over B. Let F be a quasi-coherent sheaf on X . Let g′ : X ×B B′ →
Y ×B B′ be the base change of g. Let F ′ be the strict transform of F relative to b. Then
g′

∗F ′ is the strict transform of g∗F .
Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.4) by

étale localization (Lemma 18.2). �

Lemma 18.6. Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B be
a closed subspace. Let D ⊂ B be an effective Cartier divisor. Let Z ′ ⊂ B be the closed
subspace cut out by the product of the ideal sheaves of Z and D. Let B′ → B be the
blowup of B in Z.
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(1) The blowup of B in Z ′ is isomorphic to B′ → B.
(2) Let f : X → B be a morphism of algebraic spaces and let F be a quasi-coherent
OX -module. If the subsheaf of F of sections supported on |f−1D| is zero, then
the strict transform of F relative to the blowing up in Z agrees with the strict
transform of F relative to the blowing up of B in Z ′.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.5) by
étale localization (Lemma 18.2). �

Lemma 18.7. Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B
be a closed subspace. Let b : B′ → B be the blowing up with center Z. Let Z ′ ⊂ B′

be a closed subspace. Let B′′ → B′ be the blowing up with center Z ′. Let Y ⊂ B be
a closed subscheme such that |Y | = |Z| ∪ |b|(|Z ′|) and the composition B′′ → B is
isomorphic to the blowing up of B in Y . In this situation, given any scheme X over B
and F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of B in Y is equal to
the strict transform with respect to the blowup B′′ → B′ in Z ′ of the strict
transform of F with respect to the blowup B′ → B of B in Z , and

(2) the strict transform of X with respect to the blowing up of B in Y is equal to
the strict transform with respect to the blowup B′′ → B′ in Z ′ of the strict
transform of X with respect to the blowup B′ → B of B in Z.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.6) by
étale localization (Lemma 18.2). �

Lemma 18.8. In the situation of Definition 18.1. Suppose that

0→ F1 → F2 → F3 → 0

is an exact sequence of quasi-coherent sheaves on X which remains exact after any base
change T → B. Then the strict transforms of F ′

i relative to any blowup B′ → B form a
short exact sequence 0→ F ′

1 → F ′
2 → F ′

3 → 0 too.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 33.7) by
étale localization (Lemma 18.2). �

Lemma 18.9. Let S be a scheme. Let B be an algebraic space over S. Let F be a finite
type quasi-coherentOB-module. LetZk ⊂ S be the closed subscheme cut out by Fitk(F),
see Section 5. Let B′ → B be the blowup of B in Zk and let F ′ be the strict transform of
F . Then F ′ can locally be generated by ≤ k sections.

Proof. Omitted. Follows from the case of schemes (Divisors, Lemma 35.1) by étale
localization (Lemma 18.2). �

Lemma 18.10. Let S be a scheme. LetB be an algebraic space over S. LetF be a finite
type quasi-coherentOB-module. LetZk ⊂ S be the closed subscheme cut out by Fitk(F),
see Section 5. Assume that F is locally free of rank k on B \ Zk. Let B′ → B be the
blowup ofB in Zk and let F ′ be the strict transform of F . Then F ′ is locally free of rank
k.

Proof. Omitted. Follows from the case of schemes (Divisors, Lemma 35.2) by étale
localization (Lemma 18.2). �
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19. Admissible blowups

To have a bit more control over our blowups we introduce the following standard termi-
nology.

Definition 19.1. Let S be a scheme. Let X be an algebraic space over S. Let U ⊂ X
be an open subspace. A morphismX ′ → X is called a U -admissible blowup if there exists
a closed immersion Z → X of finite presentation with Z disjoint from U such that X ′ is
isomorphic to the blowup of X in Z.

We recall that Z → X is of finite presentation if and only if the ideal sheaf IZ ⊂ OX
is of finite type, see Morphisms of Spaces, Lemma 28.12. In particular, a U -admissible
blowup is a proper morphism, see Lemma 17.11. Note that there can be multiple centers
which give rise to the same morphism. Hence the requirement is just the existence of some
center disjoint from U which produces X ′. Finally, as the morphism b : X ′ → X is an
isomorphism over U (see Lemma 17.4) we will often abuse notation and think of U as an
open subspace of X ′ as well.

Lemma 19.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let U ⊂ X be a quasi-compact open subspace. Let b : X ′ → X be
a U -admissible blowup. Let X ′′ → X ′ be a U -admissible blowup. Then the composition
X ′′ → X is a U -admissible blowup.

Proof. Immediate from the more precise Lemma 17.12. �

Lemma 19.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated al-
gebraic space. Let U, V ⊂ X be quasi-compact open subspaces. Let b : V ′ → V be a
U ∩ V -admissible blowup. Then there exists a U -admissible blowup X ′ → X whose
restriction to V is V ′.

Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that V (I)
is disjoint from U ∩ V and such that V ′ is isomorphic to the blowup of V in I . Let
I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U isOU and whose
restriction to V is I . By Limits of Spaces, Lemma 9.8 there exists a finite type quasi-
coherent sheaf of idealsJ ⊂ OX whose restriction toU∪V is I ′. The lemma follows. �

Lemma 19.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated al-
gebraic space over S. Let U ⊂ X be a quasi-compact open subspace. Let bi : Xi → X ,
i = 1, . . . , n be U -admissible blowups. There exists a U -admissible blowup b : X ′ → X
such that (a) b factors as X ′ → Xi → X for i = 1, . . . , n and (b) each of the morphisms
X ′ → Xi is a U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that V (Ii)
is disjoint from U and such that Xi is isomorphic to the blowup of X in Ii. Set I =
I1 · . . . · In and let X ′ be the blowup of X in I . Then X ′ → X factors through bi by
Lemma 17.10. �

Lemma 19.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let U, V be quasi-compact disjoint open subspaces of X . Then there
exist a U ∪ V -admissible blowup b : X ′ → X such that X ′ is a disjoint union of open
subspaces X ′ = X ′

1 qX ′
2 with b−1(U) ⊂ X ′

1 and b−1(V ) ⊂ X ′
2.

Proof. Choose a finite type quasi-coherent sheaf of ideals I , resp. J such that X \
U = V (I), resp.X \V = V (J ), see Limits of Spaces, Lemma 14.1. Then |V (IJ )| = |X|.
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Hence IJ is a locally nilpotent sheaf of ideals. Since I and J are of finite type and X is
quasi-compact there exists an n > 0 such that InJ n = 0. We may and do replace I by
In and J by J n. Whence IJ = 0. Let b : X ′ → X be the blowing up in I + J . This
is U ∪ V -admissible as |V (I + J )| = |X| \ |U | ∪ |V |. We will show that X ′ is a disjoint
union of open subspaces X ′ = X ′

1 qX ′
2 as in the statement of the lemma.

Since |V (I+J )| is the complement of |U ∪V |we conclude that V ∪U is scheme theoret-
ically dense inX ′, see Lemmas 17.4 and 6.4. Thus if such a decompositionX ′ = X ′

1qX ′
2

into open and closed subspaces exists, then X ′
1 is the scheme theoretic closure of U in

X ′ and similarly X ′
2 is the scheme theoretic closure of V in X ′. Since U → X ′ and

V → X ′ are quasi-compact taking scheme theoretic closures commutes with étale local-
ization (Morphisms of Spaces, Lemma 16.3). Hence to verify the existence of X ′

1 and X ′
2

we may work étale locally on X . This reduces us to the case of schemes which is treated
in the proof of Divisors, Lemma 34.5. �
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CHAPTER 72

Algebraic Spaces over Fields

1. Introduction

This chapter is the analogue of the chapter on varieties in the setting of algebraic spaces.
A reference for algebraic spaces is [?].

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Generically finite morphisms

This section continues the discussion in Decent Spaces, Section 21 and the analogue for
morphisms of algebraic spaces of Varieties, Section 17.

Lemma 3.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type and Y is locally Noetherian. Let y ∈ |Y | be a
point of codimension ≤ 1 on Y . Let X0 ⊂ |X| be the set of points of codimension 0 on
X . Assume in addition one of the following conditions is satisfied

(1) for every x ∈ X0 the transcendence degree of x/f(x) is 0,
(2) for every x ∈ X0 with f(x) y the transcendence degree of x/f(x) is 0,
(3) f is quasi-finite at every x ∈ X0,
(4) f is quasi-finite at a dense set of points of |X|,
(5) add more here.

Then f is quasi-finite at every point of X lying over y.

Proof. We want to reduce the proof to the case of schemes. To do this we choose a
commutative diagram

U //

g

��

X

f

��
V // Y

where U , V are schemes and where the horizontal arrows are étale and surjective. Pick
v ∈ V mapping to y. Observe that V is locally Noetherian and that dim(OV,v) ≤ 1 (see
Properties of Spaces, Definitions 10.2 and Remark 7.3). The fibre Uv of U → V over v
surjects onto f−1({y}) ⊂ |X|. The inverse image of X0 in U is exactly the set of generic
points of irreducible components ofU (Properties of Spaces, Lemma 11.1). If η ∈ U is such

5517
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a point with image x ∈ X0, then the transcendence degree of x/f(x) is the transcendence
degree of κ(η) over κ(g(η)) (Morphisms of Spaces, Definition 33.1). Observe thatU → V
is quasi-finite at u ∈ U if and only if f is quasi-finite at the image of u in X .

Case (1). Here case (1) of Varieties, Lemma 17.1 applies and we conclude that U → V is
quasi-finite at all points of Uv . Hence f is quasi-finite at every point lying over y.

Case (2). Let u ∈ U be a generic point of an irreducible component whose image in V
specializes to v. Then the image x ∈ X0 of u has the property that f(x)  y. Hence we
see that case (2) of Varieties, Lemma 17.1 applies and we conclude as before.

Case (3) follows from case (3) of Varieties, Lemma 17.1.

In case (4), since |U | → |X| is open, we see that the set of points where U → V is quasi-
finite is dense as well. Hence case (4) of Varieties, Lemma 17.1 applies. �

Lemma 3.2. LetS be a scheme. Let f : X → Y be a morphism of algebraic spaces over
S. Assume f is proper and Y is locally Noetherian. Let y ∈ Y be a point of codimension
≤ 1 in Y . Let X0 ⊂ |X| be the set of points of codimension 0 on X . Assume in addition
one of the following conditions is satisfied

(1) for every x ∈ X0 the transcendence degree of x/f(x) is 0,
(2) for every x ∈ X0 with f(x) y the transcendence degree of x/f(x) is 0,
(3) f is quasi-finite at every x ∈ X0,
(4) f is quasi-finite at a dense set of points of |X|,
(5) add more here.

Then there exists an open subspace Y ′ ⊂ Y containing y such that Y ′ ×Y X → Y ′ is
finite.

Proof. By Lemma 3.1 the morphism f is quasi-finite at every point lying over y. Let
y : Spec(k)→ Y be a geometric point lying over y. Then |Xy| is a discrete space (Decent
Spaces, Lemma 18.10). Since Xy is quasi-compact as f is proper we conclude that |Xy| is
finite. Thus we can apply Cohomology of Spaces, Lemma 23.2 to conclude. �

Lemma 3.3. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
f : Y → X be a birational proper morphism of algebraic spaces with Y reduced. Let
U ⊂ X be the maximal open over which f is an isomorphism. Then U contains

(1) every point of codimension 0 in X ,
(2) every x ∈ |X| of codimension 1 onX such that the local ring ofX at x is normal

(Properties of Spaces, Remark 7.6), and
(3) every x ∈ |X| such that the fibre of |Y | → |X| over x is finite and such that the

local ring of X at x is normal.

Proof. Part (1) follows from Decent Spaces, Lemma 22.5 (and the fact that the Noe-
therian algebraic spaces X and Y are quasi-separated and hence decent). Part (2) follows
from part (3) and Lemma 3.2 (and the fact that finite morphisms have finite fibres). Let
x ∈ |X| be as in (3). By Cohomology of Spaces, Lemma 23.2 (which applies by Decent
Spaces, Lemma 18.10) we may assume f is finite. Choose an affine scheme X ′ and an étale
morphism X ′ → X and a point x′ ∈ X mapping to x. It suffices to show there exists
an open neighbourhood U ′ of x′ ∈ X ′ such that Y ×X X ′ → X ′ is an isomorphism
over U ′ (namely, then U contains the image of U ′ in X , see Spaces, Lemma 5.6). Then
Y ×XX ′ → X is a finite birational (Decent Spaces, Lemma 22.6) morphism. Since a finite
morphism is affine we reduce to the case of a finite birational morphism of Noetherian
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affine schemes Y → X and x ∈ X such that OX,x is a normal domain. This is treated in
Varieties, Lemma 17.3. �

4. Integral algebraic spaces

We have not yet defined the notion of an integral algebraic space. The problem is that
being integral is not an étale local property of schemes. We could use the property, that
X is reduced and |X| is irreducible, given in Properties, Lemma 3.4 to define integral
algebraic spaces. In this case the algebraic space described in Spaces, Example 14.9 would
be integral which does not seem right. To avoid this type of pathology we will in addition
assume that X is a decent algebraic space, although perhaps a weaker alternative exists.

Definition 4.1. Let S be a scheme. We say an algebraic spaceX over S is integral if
it is reduced, decent, and |X| is irreducible.

In this case the irreducible topological space |X| is sober (Decent Spaces, Proposition 12.4).
Hence it has a unique generic point x. In fact, in Decent Spaces, Lemma 20.4 we charac-
terized decent algebraic spaces with finitely many irreducible components. Applying that
lemma we see that an algebraic spaceX is integral if it is reduced, has an irreducible dense
open subscheme X ′ with generic point x′ and the morphism x′ → X is quasi-compact.

Lemma 4.2. Let S be a scheme. Let X be an integral algebraic space over S. Let
η ∈ |X| be the generic point of X . There are canonical identifications

R(X) = OhX,η = κ(η)
where R(X) is the ring of rational functions defined in Morphisms of Spaces, Definition
47.3, κ(η) is the residue field defined in Decent Spaces, Definition 11.2, and OhX,η is the
henselian local ring defined in Decent Spaces, Definition 11.5. In particular, these rings
are fields.

Proof. SinceX is a scheme in an open neighbourhood of η (see discussion above), this
follows immediately from the corresponding result for schemes, see Morphisms, Lemma
49.5. We also use: the henselianization of a field is itself and that our definitions of these
objects for algebraic spaces are compatible with those for schemes. Details omitted. �

This leads to the following definition.

Definition 4.3. Let S be a scheme. LetX be an integral algebraic space over S. The
function field, or the field of rational functions of X is the field R(X) of Lemma 4.2.

We may occasionally indicate this field k(X) instead of R(X).

Lemma 4.4. Let S be a scheme. Let X be an integral algebraic space over S. Then
Γ(X,OX) is a domain.

Proof. Set R = Γ(X,OX). If f, g ∈ R are nonzero and fg = 0 then X = V (f) ∪
V (g) where V (f) denotes the closed subspace of X cut out by f . Since X is irreducible,
we see that either V (f) = X or V (g) = X . Then either f = 0 or g = 0 by Properties of
Spaces, Lemma 21.4. �

Here is a lemma about normal integral algebraic spaces.

Lemma 4.5. Let S be a scheme. Let X be a normal integral algebraic space over S.
For every x ∈ |X| there exists a normal integral affine scheme U and an étale morphism
U → X such that x is in the image.
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Proof. Choose an affine scheme U and an étale morphism U → X such that x is in
the image. Letui, i ∈ I be the generic points of irreducible components ofU . Then eachui
maps to the generic point ofX (Decent Spaces, Lemma 20.1). By our definition of a decent
space (Decent Spaces, Definition 6.1), we see that I is finite. Hence U = Spec(A) where
A is a normal ring with finitely many minimal primes. Thus A =

∏
i∈I Ai is a product

of normal domains by Algebra, Lemma 37.16. Then U =
∐
Ui with Ui = Spec(Ai) and

x is in the image of Ui → X for some i. This proves the lemma. �

Lemma 4.6. Let S be a scheme. Let X be a normal integral algebraic space over S.
Then Γ(X,OX) is a normal domain.

Proof. Set R = Γ(X,OX). Then R is a domain by Lemma 4.4. Let f = a/b be an
element of the fraction field of R which is integral over R. For any U → X étale with U
a scheme there is at most one fU ∈ Γ(U,OU ) with b|UfU = a|U . Namely, U is reduced
and the generic points of U map to the generic point of X which implies that b|U is a
nonzerodivisor. For every x ∈ |X| we choose U → X as in Lemma 4.5. Then there is
a unique fU ∈ Γ(U,OU ) with b|UfU = a|U because Γ(U,OU ) is a normal domain by
Properties, Lemma 7.9. By the uniqueness mentioned above these fU glue and define a
global section f of the structure sheaf, i.e., of R. �

Lemma 4.7. Let S be a scheme. Let X be a decent algebraic space over S. There are
canonical bijections between the following sets:

(1) the set of points of X , i.e., |X|,
(2) the set of irreducible closed subsets of |X|,
(3) the set of integral closed subspaces of X .

The bijection from (1) to (2) sends x to {x}. The bijection from (3) to (2) sends Z to |Z|.

Proof. Our map defines a bijection between (1) and (2) as |X| is sober by Decent
Spaces, Proposition 12.4. Given T ⊂ |X| closed and irreducible, there is a unique reduced
closed subspace Z ⊂ X such that |Z| = T , namely, Z is the reduced induced subspace
structure on T , see Properties of Spaces, Definition 12.5. This is an integral algebraic space
because it is decent, reduced, and irreducible. �

5. Morphisms between integral algebraic spaces

The following lemma characterizes dominant morphisms of finite degree between integral
algebraic spaces.

Lemma 5.1. Let S be a scheme. Let X , Y be integral algebraic spaces over S Let x ∈
|X| and y ∈ |Y | be the generic points. Let f : X → Y be locally of finite type. Assume f
is dominant (Morphisms of Spaces, Definition 18.1). The following are equivalent:

(1) the transcendence degree of x/y is 0,
(2) the extension κ(x)/κ(y) (see proof) is finite,
(3) there exist nonempty affine opens U ⊂ X and V ⊂ Y such that f(U) ⊂ V and

f |U : U → V is finite,
(4) f is quasi-finite at x, and
(5) x is the only point of |X| mapping to y.

If f is separated or if f is quasi-compact, then these are also equivalent to
(6) there exists a nonempty affine open V ⊂ Y such that f−1(V )→ V is finite.
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Proof. By elementary topology, we see that f(x) = y as f is dominant. Let Y ′ ⊂ Y
be the schematic locus of Y and let X ′ ⊂ f−1(Y ′) be the schematic locus of f−1(Y ′). By
the discussion above, using Decent Spaces, Proposition 12.4 and Theorem 10.2, we see that
x ∈ |X ′| and y ∈ |Y ′|. Then f |X′ : X ′ → Y ′ is a morphism of integral schemes which
is locally of finite type. Thus we see that (1), (2), (3) are equivalent by Morphisms, Lemma
51.7.

Condition (4) implies condition (1) by Morphisms of Spaces, Lemma 33.3 applied toX →
Y → Y . On the other hand, condition (3) implies condition (4) as a finite morphism is
quasi-finite and as x ∈ U because x is the generic point. Thus (1) – (4) are equivalent.

Assume the equivalent conditions (1) – (4). Suppose that x′ 7→ y. Then x  x′ is a
specialization in the fibre of |X| → |Y | over y. If x′ 6= x, then f is not quasi-finite at x
by Decent Spaces, Lemma 18.9. Hence x = x′ and (5) holds. Conversely, if (5) holds, then
(5) holds for the morphism of schemes X ′ → Y ′ (see above) and we can use Morphisms,
Lemma 51.7 to see that (1) holds.

Observe that (6) implies the equivalent conditions (1) – (5) without any further assump-
tions on f . To finish the proof we have to show the equivalent conditions (1) – (5) imply
(6). This follows from Decent Spaces, Lemma 21.4. �

Definition 5.2. Let S be a scheme. Let X and Y be integral algebraic spaces over
S. Let f : X → Y be locally of finite type and dominant. Assume any of the equivalent
conditions (1) – (5) of Lemma 5.1. Let x ∈ |X| and y ∈ |Y | be the generic points. Then
the positive integer

deg(X/Y ) = [κ(x) : κ(y)]
is called the degree of X over Y .

Lemma 5.3. Let S be a scheme. Let X , Y , Z be integral algebraic spaces over S. Let
f : X → Y and g : Y → Z be dominant morphisms locally of finite type. Assume any of
the equivalent conditions (1) – (5) of Lemma 5.1 hold for f and g. Then

deg(X/Z) = deg(X/Y ) deg(Y/Z).

Proof. This comes from the multiplicativity of degrees in towers of finite extensions
of fields, see Fields, Lemma 7.7. �

6. Weil divisors

This section is the analogue of Divisors, Section 26.

We will introduce Weil divisors and rational equivalence of Weil divisors for locally Noe-
therian integral algebraic spaces. Since we are not assuming our algebraic spaces are quasi-
compact we have to be a little careful when defining Weil divisors. We have to allow
infinite sums of prime divisors because a rational function may have infinitely many poles
for example. In the quasi-compact case our Weil divisors are finite sums as usual. Here is
a basic lemma we will often use to prove collections of closed subspaces are locally finite.

Lemma 6.1. Let S be a scheme and letX be a locally Noetherian algebraic space over
S. If T ⊂ |X| is a closed subset, then the collection of irreducible components of T is
locally finite.

Proof. The topological space |X| is locally Noetherian (Properties of Spaces, Lemma
24.2). A Noetherian topological space has a finite number of irreducible components and
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a subspace of a Noetherian space is Noetherian (Topology, Lemma 9.2). Thus the lemma
follows from the definition of locally finite (Topology, Definition 28.4). �

Let S be a scheme. Let X be a decent algebraic space over S. Let Z be an integral closed
subspace of X and let ξ ∈ |Z| be the generic point. Then the codimension of |Z| in |X| is
equal to the dimension of the local ring of X at ξ by Decent Spaces, Lemma 20.2. Recall
that we also indicate this by saying that ξ is a point of codimension 1 onX , see Properties
of Spaces, Definition 10.2.

Definition 6.2. Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S.

(1) A prime divisor is an integral closed subspace Z ⊂ X of codimension 1, i.e., the
generic point of |Z| is a point of codimension 1 on X .

(2) A Weil divisor is a formal sum D =
∑
nZZ where the sum is over prime divi-

sors of X and the collection {|Z| : nZ 6= 0} is locally finite in |X| (Topology,
Definition 28.4).

The group of all Weil divisors on X is denoted Div(X).

Our next task is to define the Weil divisor associated to a rational function. In order to do
this we need to define the order of vanishing of a rational function on a locally Noetherian
integral algebraic spaceX along a prime divisor Z. Let ξ ∈ |Z| be the generic point. Here
we run into the problem that the local ringOX,ξ doesn’t exist and the henselian local ring
OhX,ξ may not be a domain, see Example 6.11. To get around this we use the following
lemma.

Lemma 6.3. Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let Z ⊂ X be a prime divisor and let ξ ∈ |Z| be the generic point. Then
the henselian local ring OhX,ξ is a reduced 1-dimensional Noetherian local ring and there
is a canonical injective map

R(X) −→ Q(OhX,ξ)
from the function field R(X) of X into the total ring of fractions.

Proof. We will use the results of Decent Spaces, Section 11. Let (U, u) → (X, ξ) be
an elementary étale neighbourhood. Observe that U is locally Noetherian and reduced.
Thus OU,u is a 1-dimensional (by our definition of prime divisors) reduced Noetherian
ring. After replacing U by an affine open neighbourhood of u we may assume U is Noe-
therian and affine. After replacing U by a smaller open, we may assume every irreducible
component of U passes through u. Since U → X is open and X irreducible, U → X
is dominant. Hence we obtain a ring map R(X) → R(U) by composing rational maps,
see Morphisms of Spaces, Section 47. Since R(X) is a field, this map is injective. By our
choice of U we see that R(U) is the total quotient ring Q(OU,u), see Morphisms, Lemma
49.5 and Algebra, Lemma 25.4.

At this point we have proved all the statements in the lemma withOU,u in stead ofOhX,ξ .
However, OhX,ξ is the henselization of OU,u. Thus OhX,ξ is a 1-dimensional reduced Noe-
therian ring, see More on Algebra, Lemmas 45.4, 45.7, and 45.3. Since OU,u → OhX,ξ is
faithfully flat by More on Algebra, Lemma 45.1 it sends nonzerodivisors to nonzerodivi-
sors. Therefore we obtain a canonical map Q(OU,u)→ Q(OhX,ξ) and we obtain our map.
We omit the verification that the map is independent of the choice of (U, u)→ (X,x); a
slightly better approach would be to first observe that colimQ(OU,u) = Q(OhX,ξ). �
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Definition 6.4. Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let f ∈ R(X)∗. For every prime divisor Z ⊂ X we define the order of
vanishing of f along Z as the integer

ordZ(f) = lengthOh
X,ξ

(OhX,ξ/aOhX,ξ)− lengthOh
X,ξ

(OhX,ξ/bOhX,ξ)

where a, b ∈ OhX,ξ are nonzerodivisors such that the image of f in Q(OhX,ξ) (Lemma 6.3)
is equal to a/b. This is well defined by Algebra, Lemma 121.1.

IfOhX,ξ happens to be a domain, then we obtain

ordZ(f) = ordOh
X,ξ

(f)

where the right hand side is the notion of Algebra, Definition 121.2. Note that for f, g ∈
R(X)∗ we have

ordZ(fg) = ordZ(f) + ordZ(g).
Of course it can happen that ordZ(f) < 0. In this case we say that f has a pole along Z
and that −ordZ(f) > 0 is the order of pole of f along Z. It is important to note that the
condition ordZ(f) ≥ 0 is not equivalent to the condition f ∈ OhX,ξ unless the local ring
OX,ξ is a discrete valuation ring.

Lemma 6.5. Let S be a scheme. LetX be a locally Noetherian integral algebraic space
over S. Let f ∈ R(X)∗. If the prime divisor Z ⊂ X meets the schematic locus ofX , then
the order of vanishing ordZ(f) of Definition 6.4 agrees with the order of vanishing of
Divisors, Definition 26.3.

Proof. After shrinking X we may assume X is an integral Noetherian scheme. If
ξ ∈ Z denotes the generic point, then we find that OhX,ξ is the henselization of OX,ξ
(Decent Spaces, Lemma 11.8). To prove the lemma it suffices and is necessary to show that

lengthOX,ξ
(OX,ξ/aOX,ξ) = lengthOh

X,ξ
(OhX,ξ/aOhX,ξ)

This follows immediately from Algebra, Lemma 52.13 (and the fact that OX,ξ → OhX,ξ is
a flat local ring homomorphism of local Noetherian rings). �

Lemma 6.6. Let S be a scheme. LetX be a locally Noetherian integral algebraic space
over S. Let f ∈ R(X)∗. Then the collections

{Z ⊂ X | Z a prime divisor with generic point ξ and f not inOX,ξ}
and

{Z ⊂ X | Z a prime divisor and ordZ(f) 6= 0}
are locally finite in X .

Proof. There exists a nonempty open subspace U ⊂ X such that f corresponds to a
section of Γ(U,O∗

X). Hence the prime divisors which can occur in the sets of the lemma
all correspond to irreducible components of |X| \ |U |. Hence Lemma 6.1 gives the desired
result. �

This lemma allows us to make the following definition.

Definition 6.7. Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let f ∈ R(X)∗. The principal Weil divisor associated to f is the Weil
divisor

div(f) = divX(f) =
∑

ordZ(f)[Z]
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where the sum is over prime divisors and ordZ(f) is as in Definition 6.4. This makes sense
by Lemma 6.6.

Lemma 6.8. Let S be a scheme. LetX be a locally Noetherian integral algebraic space
over S. Let f, g ∈ R(X)∗. Then

divX(fg) = divX(f) + divX(g)
as Weil divisors on X .

Proof. This is clear from the additivity of the ord functions. �

We see from the lemma above that the collection of principal Weil divisors form a sub-
group of the group of all Weil divisors. This leads to the following definition.

Definition 6.9. Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. The Weil divisor class group of X is the quotient of the group of Weil
divisors by the subgroup of principal Weil divisors. Notation: Cl(X).

By construction we obtain an exact complex

(6.9.1) R(X)∗ div−−→ Div(X)→ Cl(X)→ 0
which we can think of as a presentation of Cl(X). Our next task is to relate the Weil
divisor class group to the Picard group.

Example 6.10. This is a continuation of Morphisms of Spaces, Example 53.3. Con-
sider the algebraic spaceX = A1

k/{t ∼ −t | t 6= 0}. This is a smooth algebraic space over
the field k. There is a universal homeomorphism

X −→ A1
k = Spec(k[t])

which is an isomorphism over A1
k \ {0}. We conclude that X is Noetherian and inte-

gral. Since dim(X) = 1, we see that the prime divisors of X are the closed points of X .
Consider the unique closed point x ∈ |X| lying over 0 ∈ A1

k. Since X \ {x} maps iso-
morphically to A1 \ {0} we see that the classes in Cl(X) of closed points different from
x are zero. However, the divisor of t on X is 2[x]. We conclude that Cl(X) = Z/2Z.

Example 6.11. Let k be a field. Let

U = Spec(k[x, y]/(xy))
be the union of the coordinate axes in A2

k. Denote ∆ : U → U ×k U the diagonal and
∆′ : U → U ×k U the map u 7→ (u, σ(u)) where σ : U → U , (x, y) 7→ (y, x) is the
automorphism flipping the coordinate axes. Set

R = ∆(U)q∆′(U \ {0U})
where 0U ∈ U is the origin. It is easy to see that R is an étale equivalence relation on U .
The quotient X = U/R is an algebraic space. The morphism U → A1

k , (x, y) 7→ x+ y is
R-invariant and hence defines a morphism

X −→ A1
k

This morphism is a universal homeomorphism and an isomorphism over A1
k \ {0}. It

follows that X is integral and Noetherian. Exactly as in Example 6.10 the reader shows
that Cl(X) = Z/2Z with generator corresponding to the unique closed point x ∈ |X|
mapping to 0 ∈ A1

k. However, in this case the henselian local ring ofX at x isn’t a domain,
as it is the henselization ofOU,0U .
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7. The Weil divisor class associated to an invertible module

In this section we go through exactly the same progression as in Section 6 to define a
canonical map Pic(X)→ Cl(X) on a locally Noetherian integral algebraic space.
Let S be a scheme. Let X be a locally Noetherian integral algebraic space over S. Let L
be an invertible OX -module. By Divisors on Spaces, Lemma 10.11 there exists a regular
meromorphic section s ∈ Γ(X,KX(L)). In fact, by Divisors on Spaces, Lemma 10.8 this
is the same thing as a nonzero element inLη where η ∈ |X| is the generic point. The same
lemma tells us that if L = OX , then s is the same thing as a nonzero rational function on
X (so what we will do below matches the construction in Section 6).
Let Z ⊂ X be a prime divisor and let ξ ∈ |Z| be the generic point. We are going to define
the order of vanishing of s along Z. Consider the canonical morphism

cξ : Spec(OhX,ξ) −→ X

whose source is the spectrum of the henselian local ring of X as ξ (Decent Spaces, Def-
inition 11.7). The pullback Lξ = c∗

ξL is an invertible module and hence trivial; choose
a generator sξ of Lξ . Since cξ is flat, pullbacks of meromorphic functions and (regular)
sections are defined for cξ , see Divisors on Spaces, Definition 10.6 and Lemmas 10.7 and
10.10. Thus we get

c∗
ξ(s) = fsξ

for some nonzerodivisor f ∈ Q(OhX,ξ). Here we are using Divisors, Lemma 24.2 to identify
the space of meromorphic sections of Lξ ∼= OSpec(Oh

X,ξ
) in terms of the total ring of

fractions ofOhX,ξ . Let us agree to denote this element

s/sξ = f ∈ Q(OhX,ξ)

Observe that f = s/sξ is replaced by uf where u ∈ OhX,ξ is a unit if we change our choice
of sξ .

Definition 7.1. Let S be a scheme. Let X be a locally Noetherian integral algebraic
algebraic space over S. Let L be an invertible OX -module. Let s ∈ Γ(X,KX(L)) be a
regular meromorphic section of L. For every prime divisor Z ⊂ X with generic point
ξ ∈ |Z| we define the order of vanishing of s along Z as the integer

ordZ,L(s) = lengthOh
X,ξ

(OhX,ξ/aOhX,ξ)− lengthOh
X,ξ

(OhX,ξ/bOhX,ξ)

where a, b ∈ OhX,ξ are nonzerodivisors such that the element s/sξ ofQ(OhX,ξ) constructed
above is equal to a/b. This is well defined by the above and Algebra, Lemma 121.1.

As explained above, a regular meromorphic section s ofOX can be written s = f ·1 where
f is a nonzero rational function onX and we have ordZ(f) = ordZ,OX

(s). As in the case
of principal divisors we have the following lemma.

Lemma 7.2. Let S be a scheme. LetX be a locally Noetherian integral algebraic space
over S. Let L be an invertible OX -module. Let s ∈ KX(L) be a regular (i.e., nonzero)
meromorphic section of L. Then the sets

{Z ⊂ X | Z a prime divisor with generic point ξ and s not in Lξ}
and

{Z ⊂ X | Z is a prime divisor and ordZ,L(s) 6= 0}
are locally finite in X .
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Proof. There exists a nonempty open subspace U ⊂ X such that s corresponds to a
section of Γ(U,L) which generates L over U . Hence the prime divisors which can occur
in the sets of the lemma all correspond to irreducible components of |X| \ |U |. Hence
Lemma 6.1. gives the desired result. �

Lemma 7.3. Let S be a scheme. LetX be a locally Noetherian integral algebraic space
over S Let L be an invertible OX -module. Let s, s′ ∈ KX(L) be nonzero meromorphic
sections of L. Then f = s/s′ is an element of R(X)∗ and we have∑

ordZ,L(s)[Z] =
∑

ordZ,L(s′)[Z] + div(f)

as Weil divisors.

Proof. This is clear from the definitions. Note that Lemma 7.2 guarantees that the
sums are indeed Weil divisors. �

Definition 7.4. Let S be a scheme. Let X be a locally Noetherian integral algebraic
space over S. Let L be an invertibleOX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor associ-
ated to s as

divL(s) =
∑

ordZ,L(s)[Z] ∈ Div(X)

where the sum is over prime divisors. This is well defined by Lemma 7.2.
(2) We define Weil divisor class associated to L as the image of divL(s) in Cl(X)

where s is any nonzero meromorphic section of L over X . This is well defined
by Lemma 7.3.

As expected this construction is additive in the invertible module.

Lemma 7.5. Let S be a scheme. LetX be a locally Noetherian integral algebraic space
over S. Let L, N be invertible OX -modules. Let s, resp. t be a nonzero meromorphic
section of L, resp.N . Then st is a nonzero meromorphic section of L ⊗OX

N and

divL⊗N (st) = divL(s) + divN (t)
in Div(X). In particular, the Weil divisor class ofL⊗OX

N is the sum of the Weil divisor
classes of L andN .

Proof. Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st is a
nonzero meromorphic section of L⊗N . Let Z ⊂ X be a prime divisor. Let ξ ∈ |Z| be its
generic point. Choose generators sξ ∈ Lξ , and tξ ∈ Nξ with notation as described earlier
in this section. Then sξ ⊗ tξ is a generator for (L⊗N )ξ . So st/(sξtξ) = (s/sξ)(t/tξ) in
Q(OhX,ξ). Applying the additivity of Algebra, Lemma 121.1 we conclude that

divL⊗N ,Z(st) = divL,Z(s) + divN ,Z(t)
Some details omitted. �

Let S be a scheme. Let X be a locally Noetherian integral algebraic space over S. By the
constructions and lemmas above we obtain a homomorphism of abelian groups

(7.5.1) Pic(X) −→ Cl(X)
which assigns to an invertible module its Weil divisor class.

Lemma 7.6. Let S be a scheme. LetX be a locally Noetherian integral algebraic space
over S. If X is normal, then the map (7.5.1) Pic(X)→ Cl(X) is injective.
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Proof. LetL be an invertibleOX -module whose associated Weil divisor class is triv-
ial. Let s be a regular meromorphic section of L. The assumption means that divL(s) =
div(f) for some f ∈ R(X)∗. Then we see that t = f−1s is a regular meromorphic section
of L with divL(t) = 0, see Lemma 7.3. We claim that t defines a trivialization of L. The
claim finishes the proof of the lemma. Our proof of the claim is a bit awkward as we don’t
yet have a lot of theory at our dispposal; we suggest the reader skip the proof.
We may check our claim étale locally. Let U ∈ Xétale be affine such that L|U is trivial.
Say sU ∈ Γ(U,L|U ) is a trivialization. By Properties, Lemma 7.5 we may also assume
U is integral. Write U = Spec(A) as the spectrum of a normal Noetherian domain A
with fraction field K. We may write t|U = fsU for some element f of K , see Divisors
on Spaces, Lemma 10.4 for example. Let p ⊂ A be a height one prime corresponding to
a codimension 1 point u ∈ U which maps to a codimension 1 point ξ ∈ |X|. Choose a
trivialization sξ of Lξ as in the beginning of this section. Choose a geometric point u of
U lying over u. Then

(OhX,ξ)sh = OX,u = OshU,u = (Ap)sh

see Decent Spaces, Lemmas 11.9 and Properties of Spaces, Lemma 22.1. The normality ofX
shows that all of these are discrete valuation rings. The trivializations sU and sξ differ by
a unit as sections of L pulled back to Spec(OX,u). Write t = fξsξ with fξ ∈ Q(OhX,ξ).
We conclude that fξ and f differ by a unit in Q(OX,u). If Z ⊂ X denotes the prime
divisor corresponding to ξ (Lemma 4.7), then 0 = ordZ,L(t) = ordOh

X,ξ
(fξ) and since

OhX,ξ is a discrete valuation ring we see that fξ is a unit. Thus f is a unit in OX,u and
hence in particular f ∈ Ap. This implies f ∈ A by Algebra, Lemma 157.6. We conclude
that t ∈ Γ(X,L). Repeating the argument with t−1 viewed as a meromorphic section of
L⊗−1 finishes the proof. �

8. Modifications and alterations

Using our notion of an integral algebraic space we can define a modification as follows.

Definition 8.1. Let S be a scheme. Let X be an integral algebraic space over S. A
modification of X is a birational proper morphism f : X ′ → X of algebraic spaces over
S with X ′ integral.

For birational morphisms of algebraic spaces, see Decent Spaces, Definition 22.1.

Lemma 8.2. Let f : X ′ → X be a modification as in Definition 8.1. There exists a
nonempty open U ⊂ X such that f−1(U)→ U is an isomorphism.

Proof. By Lemma 5.1 there exists a nonempty U ⊂ X such that f−1(U) → U
is finite. By generic flatness (Morphisms of Spaces, Proposition 32.1) we may assume
f−1(U)→ U is flat and of finite presentation. So f−1(U)→ U is finite locally free (Mor-
phisms of Spaces, Lemma 46.6). Since f is birational, the degree of X ′ over X is 1. Hence
f−1(U)→ U is finite locally free of degree 1, in other words it is an isomorphism. �

Definition 8.3. Let S be a scheme. Let X be an integral algebraic space over S. An
alteration of X is a proper dominant morphism f : Y → X of algebraic spaces over S
with Y integral such that f−1(U)→ U is finite for some nonempty open U ⊂ X .

If f : Y → X is a dominant and proper morphism between integral algebraic spaces, then
it is an alteration as soon as the induced extension of residue fields in generic points is
finite. Here is the precise statement.
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Lemma 8.4. Let S be a scheme. Let f : X → Y be a proper dominant morphism of
integral algebraic spaces overS. Then f is an alteration if and only if any of the equivalent
conditions (1) – (6) of Lemma 5.1 hold.

Proof. Immediate consequence of the lemma referenced in the statement. �

Lemma 8.5. Let S be a scheme. Let f : X → Y be a proper surjective morphism
of algebraic spaces over S. Assume Y is integral. Then there exists an integral closed
subspace X ′ ⊂ X such that f ′ = f |X′ : X ′ → Y is an alteration.

Proof. Let V ⊂ Y be a nonempty open affine (Decent Spaces, Theorem 10.2). Let
η ∈ V be the generic point. ThenXη is a nonempty proper algebraic space over η. Choose
a closed point x ∈ |Xη| (exists because |Xη| is a quasi-compact, sober topological space,
see Decent Spaces, Proposition 12.4 and Topology, Lemma 12.8.) Let X ′ be the reduced
induced closed subspace structure on {x} ⊂ |X| (Properties of Spaces, Definition 12.5.
Then f ′ : X ′ → Y is surjective as the image contains η. Also f ′ is proper as a composition
of a closed immersion and a proper morphism. Finally, the fibre X ′

η has a single point;
to see this use Decent Spaces, Lemma 18.6 for both X → Y and X ′ → Y and the point
η. Since Y is decent and X ′ → Y is separated we see that X ′ is decent (Decent Spaces,
Lemmas 17.2 and 17.5). Thus f ′ is an alteration by Lemma 8.4. �

9. Schematic locus

We have already proven a number of results on the schematic locus of an algebraic space.
Here is a list of references:

(1) Properties of Spaces, Sections 13 and 14,
(2) Decent Spaces, Section 10,
(3) Properties of Spaces, Lemma 15.3⇐Decent Spaces, Lemma 12.8⇐Decent Spaces,

Lemma 14.2,
(4) Limits of Spaces, Section 15, and
(5) Limits of Spaces, Section 17.

There are some cases where certain types of morphisms of algebraic spaces are automati-
cally representable, for example separated, locally quasi-finite morphisms (Morphisms of
Spaces, Lemma 51.1), and flat monomorphisms (More on Morphisms of Spaces, Lemma
4.1). In Section 10 we will study what happens with the schematic locus under extension
of base field.

Lemma 9.1. LetS be a scheme. LetX be an algebraic space overS. AssumeX satisfies
at least one of the following conditions

(1) X is quasi-separated and dim(X) = 0,
(2) X is locally of finite type over a field k and dim(X) = 0,
(3) X is Noetherian and dim(X) = 0, or
(4) add more here.

Then X is a separated scheme and any quasi-compact open of X is affine.

Proof. If we prove that any quasi-compact open ofX is affine, thenX is a separated
scheme. Thus we may assume X is quasi-compact and we aim to show that X is affine.
Cases (2) and (3) follow immediately from case (1) but we will give a separate proofs of (2)
and (3) as these proofs use significantly less theory.
Proof of (3). Let U be an affine scheme and let U → X be an étale morphism. Set R =
U ×X U . The two projection morphisms s, t : R → U are étale morphisms of schemes.
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By Properties of Spaces, Definition 9.2 we see that dim(U) = 0 and dim(R) = 0. SinceR
is a locally Noetherian scheme of dimension 0, we see that R is a disjoint union of spectra
of Artinian local rings (Properties, Lemma 10.5). Since we assumed that X is Noetherian
(so quasi-separated) we conclude that R is quasi-compact. Hence R is an affine scheme
(use Schemes, Lemma 6.8). The étale morphisms s, t : R → U induce finite residue field
extensions. Hence s and t are finite by Algebra, Lemma 54.4 (small detail omitted). Thus
Groupoids, Proposition 23.9 shows that X = U/R is an affine scheme.

Proof of (2) – almost identical to the proof of (3). Let U be an affine scheme and let
U → X be a surjective étale morphism. SetR = U ×X U . The two projection morphisms
s, t : R → U are étale morphisms of schemes. By Properties of Spaces, Definition 9.2 we
see that dim(U) = 0 and similarly dim(R) = 0. On the other hand, the morphism U →
Spec(k) is locally of finite type as the composition of the étale morphism U → X and
X → Spec(k), see Morphisms of Spaces, Lemmas 23.2 and 39.9. Similarly, R→ Spec(k)
is locally of finite type. Hence by Varieties, Lemma 20.2 we see that U and R are disjoint
unions of spectra of local Artinian k-algebras finite over k. The same thing is therefore
true of U ×Spec(k) U . As

R = U ×X U −→ U ×Spec(k) U

is a monomorphism, we see that R is a finite(!) union of spectra of finite k-algebras. It
follows that R is affine, see Schemes, Lemma 6.8. Applying Varieties, Lemma 20.2 once
more we see that R is finite over k. Hence s, t are finite, see Morphisms, Lemma 44.14.
Thus Groupoids, Proposition 23.9 shows that X = U/R is an affine scheme.

Cohomological proof of (1). By Cohomology of Spaces, Lemma 10.1 we have vanishing of
higher cohomology groups for all quasi-coherent sheaves F on X . Hence X is affine (in
particular a scheme) by Cohomology of Spaces, Proposition 16.7.

Geometric proof of (1). Choose a stratification

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and étale morphisms fp : Vp → Up as in Decent Spaces, Lemma 8.6 (we will use all
their properties below). Then dim(Vp) = 0 by our definition of dimension of algebraic
spaces. Thus Properties, Lemma 10.6 applies to each Vp. Then f−1

p (Up+1) ⊂ Vp is quasi-
compact open and hence is affine as well as closed. It follows that |Tp| ⊂ |Up| (see locus
citatus) is open as well as closed. HenceX is a disjoint union of open and closed subspaces
whose reduced structures are schemes. It follows that X is a scheme (Limits of Spaces,
Lemma 15.3). Then the proof is finished by the case of schemes that we already referenced
above. �

The following lemma tells us that a quasi-separated algebraic space is a scheme away from
codimension 1.

Lemma 9.2. Let S be a scheme. LetX be a quasi-separated algebraic space over S. Let
x ∈ |X|. The following are equivalent

(1) x is a point of codimension 0 on X ,
(2) the local ring of X at x has dimension 0, and
(3) x is a generic point of an irreducible component of |X|.

If true, then there exists an open subspace of X containing x which is a scheme.
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Proof. The equivalence of (1), (2), and (3) follows from Decent Spaces, Lemma 20.1
and the fact that a quasi-separated algebraic space is decent (Decent Spaces, Section 6).
However in the next paragraph we will give a more elementary proof of the equivalence.
Note that (1) and (2) are equivalent by definition (Properties of Spaces, Definition 10.2).
To prove the equivalence of (1) and (3) we may assume X is quasi-compact. Choose

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and fi : Vi → Ui as in Decent Spaces, Lemma 8.6. Say x ∈ Ui, x 6∈ Ui+1. Then x = fi(y)
for a unique y ∈ Vi. If (1) holds, then y is a generic point of an irreducible component
of Vi (Properties of Spaces, Lemma 11.1). Since f−1

i (Ui+1) is a quasi-compact open of Vi
not containing y, there is an open neighbourhoodW ⊂ Vi of y disjoint from f−1

i (Vi) (see
Properties, Lemma 2.2 or more simply Algebra, Lemma 26.4). Then fi|W : W → X is an
isomorphism onto its image and hence x = fi(y) is a generic point of |X|. Conversely,
assume (3) holds. Then fi maps {y} onto the irreducible component {x} of |Ui|. Since
|fi| is bijective over {x}, it follows that {y} is an irreducible component of Ui. Thus x is
a point of codimension 0.
The final statement of the lemma is Properties of Spaces, Proposition 13.3. �

The following lemma says that a separated locally Noetherian algebraic space is a scheme
in codimension 1, i.e., away from codimension 2.

Lemma 9.3. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|. If
X is separated, locally Noetherian, and the dimension of the local ring of X at x is ≤ 1
(Properties of Spaces, Definition 10.2), then there exists an open subspace ofX containing
x which is a scheme.

Proof. (Please see the remark below for a different approach avoiding the material
on finite groupoids.) We can replace X by an quasi-compact neighbourhood of x, hence
we may assume X is quasi-compact, separated, and Noetherian. There exists a scheme
U and a finite surjective morphism U → X , see Limits of Spaces, Proposition 16.1. Let
R = U ×X U . Then j : R → U ×S U is an equivalence relation and we obtain a
groupoid scheme (U,R, s, t, c) over S with s, t finite and U Noetherian and separated.
Let {u1, . . . , un} ⊂ U be the set of points mapping to x. Then dim(OU,ui) ≤ 1 by
Decent Spaces, Lemma 12.6.
By More on Groupoids, Lemma 14.10 there exists an R-invariant affine open W ⊂ U
containing the orbit {u1, . . . , un}. Since U → X is finite surjective the continuous map
|U | → |X| is closed surjective, hence submersive by Topology, Lemma 6.5. Thus f(W )
is open and there is an open subspace X ′ ⊂ X with f : W → X ′ a surjective finite
morphism. Then X ′ is an affine scheme by Cohomology of Spaces, Lemma 17.3 and the
proof is finished. �

Remark 9.4. Here is a sketch of a proof of Lemma 9.3 which avoids using More on
Groupoids, Lemma 14.10.
Step 1. We may assume X is a reduced Noetherian separated algebraic space (for example
by Cohomology of Spaces, Lemma 17.3 or by Limits of Spaces, Lemma 15.3) and we may
choose a finite surjective morphism Y → X where Y is a Noetherian scheme (by Limits
of Spaces, Proposition 16.1).
Step 2. After replacing X by an open neighbourhood of x, there exists a birational finite
morphism X ′ → X and a closed subscheme Y ′ ⊂ X ′ ×X Y such that Y ′ → X ′ is
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surjective finite locally free. Namely, because X is reduced there is a dense open subspace
U ⊂ X over which Y is flat (Morphisms of Spaces, Proposition 32.1). Then we can choose
a U -admissible blowup b : X̃ → X such that the strict transform Ỹ of Y is flat over X̃ ,
see More on Morphisms of Spaces, Lemma 39.1. (An alternative is to use Hilbert schemes
if one wants to avoid using the result on blowups). Then we let X ′ ⊂ X̃ be the scheme
theoretic closure of b−1(U) and Y ′ = X ′ ×X̃ Ỹ . Since x is a codimension 1 point, we see
that X ′ → X is finite over a neighbourhood of x (Lemma 3.2).
Step 3. After shrinking X to a smaller neighbourhood of x we get that X ′ is a scheme.
This holds because Y ′ is a scheme and Y ′ → X ′ being finite locally free and because every
finite set of codimension 1 points of Y ′ is contained in an affine open. Use Properties of
Spaces, Proposition 14.1 and Varieties, Proposition 42.7.
Step 4. There exists an affine open W ′ ⊂ X ′ containing all points lying over x which is
the inverse image of an open subspace of X . To prove this let Z ⊂ X be the closure of
the set of points whereX ′ → X is not an isomorphism. We may assume x ∈ Z otherwise
we are already done. Then x is a generic point of an irreducible component of Z and after
shrinking X we may assume Z is an affine scheme (Lemma 9.2). Then the inverse image
Z ′ ⊂ X ′ is an affine scheme as well. Say x1, . . . , xn ∈ Z ′ are the points mapping to x.
Then we can find an affine openW ′ inX ′ whose intersection with Z ′ is the inverse image
of a principal open of Z containing x. Namely, we first pick an affine open W ′ ⊂ X ′

containing x1, . . . , xn using Varieties, Proposition 42.7. Then we pick a principal open
D(f) ⊂ Z containing x whose inverse image D(f |Z′) is contained in W ′ ∩ Z ′. Then
we pick f ′ ∈ Γ(W ′,OW ′) restricting to f |Z′ and we replace W ′ by D(f ′) ⊂ W ′. Since
X ′ → X is an isomorphism away from Z ′ → Z the choice of W ′ guarantees that the
image W ⊂ X of W ′ is open with inverse image W ′ in X ′.
Step 5. ThenW ′ →W is a finite surjective morphism andW is a scheme by Cohomology
of Spaces, Lemma 17.3 and the proof is complete.

10. Schematic locus and field extension

It can happen that a nonrepresentable algebraic space over a field k becomes representable
(i.e., a scheme) after base change to an extension of k. See Spaces, Example 14.2. In this
section we address this issue.

Lemma 10.1. Let k be a field. Let X be an algebraic space over k. If there exists a
purely inseparable field extension k′/k such that Xk′ is a scheme, then X is a scheme.

Proof. The morphism Xk′ → X is integral, surjective, and universally injective.
Hence this lemma follows from Limits of Spaces, Lemma 15.4. �

Lemma 10.2. Let k be a field with algebraic closure k. Let X be a quasi-separated
algebraic space over k.

(1) If there exists a field extension K/k such that XK is a scheme, then Xk is a
scheme.

(2) If X is quasi-compact and there exists a field extension K/k such that XK is a
scheme, then Xk′ is a scheme for some finite separable extension k′ of k.

Proof. Since every algebraic space is the union of its quasi-compact open subspaces,
we see that the first part of the lemma follows from the second part (some details omitted).
Thus we assume X is quasi-compact and we assume given an extension K/k with XK

representable. Write K =
⋃
A as the colimit of finitely generated k-subalgebras A. By
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Limits of Spaces, Lemma 5.11 we see that XA is a scheme for some A. Choose a maximal
ideal m ⊂ A. By the Hilbert Nullstellensatz (Algebra, Theorem 34.1) the residue field
k′ = A/m is a finite extension of k. Thus we see that Xk′ is a scheme. If k′ ⊃ k is
not separable, let k′/k′′/k be the subextension found in Fields, Lemma 14.6. Since k′/k′′

is purely inseparable, by Lemma 10.1 the algebraic space Xk′′ is a scheme. Since k′′|k is
separable the proof is complete. �

Lemma 10.3. Let k′/k be a finite Galois extension with Galois group G. Let X be an
algebraic space over k. Then G acts freely on the algebraic space Xk′ and X = Xk′/G in
the sense of Properties of Spaces, Lemma 34.1.

Proof. Omitted. Hints: First show that Spec(k) = Spec(k′)/G. Then use compat-
ibility of taking quotients with base change. �

Lemma 10.4. Let S be a scheme. Let X be an algebraic space over S and let G be a
finite group acting freely onX . Set Y = X/G as in Properties of Spaces, Lemma 34.1. For
y ∈ |Y | the following are equivalent

(1) y is in the schematic locus of Y , and
(2) there exists an affine open U ⊂ X containing the preimage of y.

Proof. It follows from the construction of Y = X/G in Properties of Spaces, Lemma
34.1 that the morphism X → Y is surjective and étale. Of course we have X ×Y X =
X × G hence the morphism X → Y is even finite étale. It is also surjective. Thus the
lemma follows from Decent Spaces, Lemma 10.3. �

Lemma 10.5. Let k be a field. Let X be a quasi-separated algebraic space over k. If
there exists a purely transcendental field extension K/k such that XK is a scheme, then
X is a scheme.

Proof. Since every algebraic space is the union of its quasi-compact open subspaces,
we may assumeX is quasi-compact (some details omitted). Recall (Fields, Definition 26.1)
that the assumption on the extension K/k signifies that K is the fraction field of a poly-
nomial ring (in possibly infinitely many variables) over k. ThusK =

⋃
A is the union of

subalgebras each of which is a localization of a finite polynomial algebra over k. By Limits
of Spaces, Lemma 5.11 we see that XA is a scheme for some A. Write

A = k[x1, . . . , xn][1/f ]
for some nonzero f ∈ k[x1, . . . , xn].
If k is infinite then we can finish the proof as follows: choose a1, . . . , an ∈ k with
f(a1, . . . , an) 6= 0. Then (a1, . . . , an) define an k-algebra map A → k mapping xi to
ai and 1/f to 1/f(a1, . . . , an). Thus the base change XA ×Spec(A) Spec(k) ∼= X is a
scheme as desired.
In this paragraph we finish the proof in case k is finite. In this case we write X = limXi

with Xi of finite presentation over k and with affine transition morphisms (Limits of
Spaces, Lemma 10.2). Using Limits of Spaces, Lemma 5.11 we see that Xi,A is a scheme
for some i. Thus we may assume X → Spec(k) is of finite presentation. Let x ∈ |X| be
a closed point. We may represent x by a closed immersion Spec(κ)→ X (Decent Spaces,
Lemma 14.6). Then Spec(κ) → Spec(k) is of finite type, hence κ is a finite extension of
k (by the Hilbert Nullstellensatz, see Algebra, Theorem 34.1; some details omitted). Say
[κ : k] = d. Choose an integer n� 0 prime to d and let k′/k be the extension of degree n.
Then k′/k is Galois withG = Aut(k′/k) cyclic of order n. If n is large enough there will



10. SCHEMATIC LOCUS AND FIELD EXTENSION 5533

be k-algebra homomorphism A → k′ by the same reason as above. Then Xk′ is a scheme
and X = Xk′/G (Lemma 10.3). On the other hand, since n and d are relatively prime we
see that

Spec(κ)×X Xk′ = Spec(κ)×Spec(k) Spec(k′) = Spec(κ⊗k k′)

is the spectrum of a field. In other words, the fibre of Xk′ → X over x consists of a single
point. Thus by Lemma 10.4 we see that x is in the schematic locus of X as desired. �

Remark 10.6. Let k be a finite field. Let K/k be a geometrically irreducible field ex-
tension. Then K is the limit of geometrically irreducible finite type k-algebras A. Given
A the estimates of Lang and Weil [?], show that for n � 0 there exists an k-algebra ho-
momorphism A→ k′ with k′/k of degree n. Analyzing the argument given in the proof
of Lemma 10.5 we see that if X is a quasi-separated algebraic space over k and XK is a
scheme, then X is a scheme. If we ever need this result we will precisely formulate it and
prove it here.

Lemma 10.7. Let k be a field with algebraic closure k. Let X be an algebraic space
over k such that

(1) X is decent and locally of finite type over k,
(2) Xk is a scheme, and
(3) any finite set of k-rational points of Xk is contained in an affine.

Then X is a scheme.

Proof. If K/k is an extension, then the base change XK is decent (Decent Spaces,
Lemma 6.5) and locally of finite type over K (Morphisms of Spaces, Lemma 23.3). By
Lemma 10.1 it suffices to prove thatX becomes a scheme after base change to the perfection
of k, hence we may assume k is a perfect field (this step isn’t strictly necessary, but makes
the other arguments easier to think about). By covering X by quasi-compact opens we
see that it suffices to prove the lemma in case X is quasi-compact (small detail omitted).
In this case |X| is a sober topological space (Decent Spaces, Proposition 12.4). Hence it
suffices to show that every closed point in |X| is contained in the schematic locus of X
(use Properties of Spaces, Lemma 13.1 and Topology, Lemma 12.8).

Let x ∈ |X| be a closed point. By Decent Spaces, Lemma 14.6 we can find a closed immer-
sion Spec(l)→ X representing x. Then Spec(l)→ Spec(k) is of finite type (Morphisms
of Spaces, Lemma 23.2) and we conclude that l is a finite extension of k by the Hilbert
Nullstellensatz (Algebra, Theorem 34.1). It is separable because k is perfect. Thus the
scheme

Spec(l)×X Xk = Spec(l)×Spec(k) Spec(k) = Spec(l ⊗k k)

is the disjoint union of a finite number of k-rational points. By assumption (3) we can find
an affine open W ⊂ Xk containing these points.

By Lemma 10.2 we see thatXk′ is a scheme for some finite extension k′/k. After enlarging
k′ we may assume that there exists an affine open U ′ ⊂ Xk′ whose base change to k
recovers W (use that Xk is the limit of the schemes Xk′′ for k′ ⊂ k′′ ⊂ k finite and use
Limits, Lemmas 4.11 and 4.13). We may assume that k′/k is a Galois extension (take the
normal closure Fields, Lemma 16.3 and use that k is perfect). Set G = Gal(k′/k). By
construction the G-invariant closed subscheme Spec(l)×X Xk′ is contained in U ′. Thus
x is in the schematic locus by Lemmas 10.3 and 10.4. �
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The following two lemmas should go somewhere else. Please compare the next lemma to
Decent Spaces, Lemma 18.8.

Lemma 10.8. Let k be a field. Let X be an algebraic space over k. The following are
equivalent

(1) X is locally quasi-finite over k,
(2) X is locally of finite type over k and has dimension 0,
(3) X is a scheme and is locally quasi-finite over k,
(4) X is a scheme and is locally of finite type over k and has dimension 0, and
(5) X is a disjoint union of spectra of Artinian local k-algebrasA over kwith dimk(A) <
∞.

Proof. Because we are over a field relative dimension of X/k is the same as the di-
mension of X . Hence by Morphisms of Spaces, Lemma 34.6 we see that (1) and (2) are
equivalent. Hence it follows from Lemma 9.1 (and trivial implications) that (1) – (4) are
equivalent. Finally, Varieties, Lemma 20.2 shows that (1) – (4) are equivalent with (5). �

Lemma 10.9. Let k be a field. Let f : X → Y be a monomorphism of algebraic spaces
over k. If Y is locally quasi-finite over k so is X .

Proof. Assume Y is locally quasi-finite over k. By Lemma 10.8 we see that Y =∐
Spec(Ai) where each Ai is an Artinian local ring finite over k. By Decent Spaces,

Lemma 19.1 we see that X is a scheme. Consider Xi = f−1(Spec(Ai)). Then Xi has
either one or zero points. If Xi has zero points there is nothing to prove. If Xi has one
point, then Xi = Spec(Bi) with Bi a zero dimensional local ring and Ai → Bi is an
epimorphism of rings. In particular Ai/mAi = Bi/mAiBi and we see that Ai → Bi is
surjective by Nakayama’s lemma, Algebra, Lemma 20.1 (because mAi is a nilpotent ideal!).
Thus Bi is a finite local k-algebra, and we conclude by Lemma 10.8 that X → Spec(k) is
locally quasi-finite. �

11. Geometrically reduced algebraic spaces

If X is a reduced algebraic space over a field, then it can happen that X becomes nonre-
duced after extending the ground field. This does not happen for geometrically reduced
algebraic spaces.

Definition 11.1. Let k be a field. Let X be an algebraic space over k.
(1) Let x ∈ |X| be a point. We say X is geometrically reduced at x if OX,x is

geometrically reduced over k.
(2) We sayX is geometrically reduced over k ifX is geometrically reduced at every

point of X .

Observe that if X is geometrically reduced at x, then the local ring of X at x is reduced
(Properties of Spaces, Lemma 22.6). Similarly, if X is geometrically reduced over k, then
X is reduced (by Properties of Spaces, Lemma 21.4). The following lemma in particular
implies this definition does not clash with the corresponding property for schemes over a
field.

Lemma 11.2. Let k be a field. Let X be an algebraic space over k. Let x ∈ |X|. The
following are equivalent

(1) X is geometrically reduced at x,
(2) for some étale neighbourhood (U, u) → (X,x) where U is a scheme, U is geo-

metrically reduced at u,
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(3) for any étale neighbourhood (U, u)→ (X,x) where U is a scheme, U is geomet-
rically reduced at u.

Proof. Recall that the local ringOX,x is the strict henselization ofOU,u, see Proper-
ties of Spaces, Lemma 22.1. By Varieties, Lemma 6.2 we find thatU is geometrically reduced
at u if and only if OU,u is geometrically reduced over k. Thus we have to show: if A is a
local k-algebra, thenA is geometrically reduced over k if and only ifAsh is geometrically
reduced over k. We check this using the definition of geometrically reduced algebras (Al-
gebra, Definition 43.1). Let K/k be a field extension. Since A → Ash is faithfully flat
(More on Algebra, Lemma 45.1) we see that A⊗kK → Ash⊗kK is faithfully flat (Alge-
bra, Lemma 39.7). Hence if Ash ⊗k K is reduced, so is A⊗k K by Algebra, Lemma 164.2.
Conversely, recall thatAsh is a colimit of étaleA-algebra, see Algebra, Lemma 155.2. Thus
Ash⊗kK is a filtered colimit of étaleA⊗kK-algebras. We conclude by Algebra, Lemma
163.7. �

Lemma 11.3. Let k be a field. Let X be an algebraic space over k. The following are
equivalent

(1) X is geometrically reduced,
(2) for some surjective étale morphism U → X where U is a scheme, U is geometri-

cally reduced,
(3) for any étale morphismU → X whereU is a scheme,U is geometrically reduced.

Proof. Immediate from the definitions and Lemma 11.2. �

The notion isn’t interesting in characteristic zero.

Lemma 11.4. Let X be an algebraic space over a perfect field k (for example k has
characteristic zero).

(1) For x ∈ |X|, ifOX,x is reduced, then X is geometrically reduced at x.
(2) If X is reduced, then X is geometrically reduced over k.

Proof. The first statement follows from Algebra, Lemma 43.6 and the definition of a
perfect field (Algebra, Definition 45.1). The second statement follows from the first. �

Lemma 11.5. Let k be a field of characteristic p > 0. LetX be an algebraic space over
k. The following are equivalent

(1) X is geometrically reduced over k,
(2) Xk′ is reduced for every field extension k′/k,
(3) Xk′ is reduced for every finite purely inseparable field extension k′/k,
(4) Xk1/p is reduced,
(5) Xkperf is reduced, and
(6) Xk̄ is reduced.

Proof. Choose a surjective étale morphismU → X whereU is a scheme. Via Lemma
11.3 the lemma follows from the result for U over k. See Varieties, Lemma 6.4. �

Lemma 11.6. Let k be a field. Let X be an algebraic space over k. Let k′/k be a field
extension. Let x ∈ |X| be a point and let x′ ∈ |Xk′ | be a point lying over x. The following
are equivalent

(1) X is geometrically reduced at x,
(2) Xk′ is geometrically reduced at x′.
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In particular,X is geometrically reduced over k if and only ifXk′ is geometrically reduced
over k′.

Proof. Choose an étale morphism U → X where U is a scheme and a point u ∈ U
mapping to x ∈ |X|. By Properties of Spaces, Lemma 4.3 we may choose a point u′ ∈
Uk′ = U ×X Xk′ mapping to both u and x′. By Lemma 11.2 the lemma follows from the
lemma for U, u, u′ which is Varieties, Lemma 6.6. �

Lemma 11.7. Let k be a field. Let f : X → Y be a morphism of algebraic spaces over
k. Let x ∈ |X| be a point with image y ∈ |Y |.

(1) if f is étale at x, then X is geometrically reduced at x ⇔ Y is geometrically
reduced at y,

(2) if f is surjective étale, then X is geometrically reduced ⇔ Y is geometrically
reduced.

Proof. Part (1) is clear because OX,x = OY,y if f is étale at x. Part (2) follows
immediately from part (1). �

12. Geometrically connected algebraic spaces

IfX is a connected algebraic space over a field, then it can happen thatX becomes discon-
nected after extending the ground field. This does not happen for geometrically connected
algebraic spaces.

Definition 12.1. LetX be an algebraic space over the field k. We sayX is geometri-
cally connected over k if the base change Xk′ is connected for every field extension k′ of
k.

By convention a connected topological space is nonempty; hence a fortiori geometrically
connected algebraic spaces are nonempty.

Lemma 12.2. LetX be an algebraic space over the field k. Let k′/k be a field extension.
Then X is geometrically connected over k if and only if Xk′ is geometrically connected
over k′.

Proof. If X is geometrically connected over k, then it is clear that Xk′ is geomet-
rically connected over k′. For the converse, note that for any field extension k′′/k there
exists a common field extension k′′′/k′ and k′′′/k′. As the morphism Xk′′′ → Xk′′ is
surjective (as a base change of a surjective morphism between spectra of fields) we see that
the connectedness ofXk′′′ implies the connectedness ofXk′′ . Thus ifXk′ is geometrically
connected over k′ then X is geometrically connected over k. �

Lemma 12.3. Let k be a field. Let X , Y be algebraic spaces over k. Assume X is
geometrically connected over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between connected components.

Proof. Let y ∈ |Y | be represented by a morphism Spec(K)→ Y whereK is a field.
The fibre of |X ×k Y | → |Y | over y is the image of |XK | → |X ×k Y | by Properties of
Spaces, Lemma 4.3. Thus these fibres are connected by our assumption that X is geomet-
rically connected. By Morphisms of Spaces, Lemma 6.6 the map |p| is open. Thus we may
apply Topology, Lemma 7.6 to conclude. �
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Lemma 12.4. Let k′/k be an extension of fields. Let X be an algebraic space over
k. Assume k separably algebraically closed. Then the morphism Xk′ → X induces a
bijection of connected components. In particular, X is geometrically connected over k if
and only if X is connected.

Proof. Since k is separably algebraically closed we see that k′ is geometrically con-
nected over k, see Algebra, Lemma 48.4. Hence Z = Spec(k′) is geometrically connected
over k by Varieties, Lemma 7.5. SinceXk′ = Z ×kX the result is a special case of Lemma
12.3. �

Lemma 12.5. Let k be a field. Let X be an algebraic space over k. Let k be a separable
algebraic closure of k. Then X is geometrically connected if and only if the base change
Xk is connected.

Proof. Assume Xk is connected. Let k′/k be a field extension. There exists a field
extension k′

/k such that k′ embeds into k′ as an extension of k. By Lemma 12.4 we see
that X

k
′ is connected. Since X

k
′ → Xk′ is surjective we conclude that Xk′ is connected

as desired. �

Let k be a field. Let k/k be a (possibly infinite) Galois extension. For example k could
be the separable algebraic closure of k. For any σ ∈ Gal(k/k) we get a corresponding
automorphism Spec(σ) : Spec(k) −→ Spec(k). Note that Spec(σ)◦Spec(τ) = Spec(τ ◦
σ). Hence we get an action

Gal(k/k)opp × Spec(k) −→ Spec(k)
of the opposite group on the scheme Spec(k). Let X be an algebraic space over k. Since
Xk = Spec(k)×Spec(k) X by definition we see that the action above induces a canonical
action
(12.5.1) Gal(k/k)opp ×Xk −→ Xk.

Lemma 12.6. Let k be a field. Let X be an algebraic space over k. Let k be a (possibly
infinite) Galois extension of k. Let V ⊂ Xk be a quasi-compact open. Then

(1) there exists a finite subextension k/k′/k and a quasi-compact open V ′ ⊂ Xk′

such that V = (V ′)k ,
(2) there exists an open subgroupH ⊂ Gal(k/k) such that σ(V ) = V for all σ ∈ H .

Proof. Choose a schemeU and a surjective étale morphismU → X . Choose a quasi-
compact open W ⊂ Uk whose image in Xk is V . This is possible because |Uk| → |Xk| is
continuous and because |Uk| has a basis of quasi-compact opens. We can apply Varieties,
Lemma 7.9 to W ⊂ Uk to obtain the lemma. �

Lemma 12.7. Let k be a field. Let k/k be a (possibly infinite) Galois extension. LetX
be an algebraic space over k. Let T ⊂ |Xk| have the following properties

(1) T is a closed subset of |Xk|,
(2) for every σ ∈ Gal(k/k) we have σ(T ) = T .

Then there exists a closed subset T ⊂ |X| whose inverse image in |Xk′ | is T .

Proof. Let T ⊂ |X| be the image of T . Since |Xk| → |X| is surjective, the statement
means that T is closed and that its inverse image is T . Choose a scheme U and a surjective
étale morphism U → X . By the case of schemes (see Varieties, Lemma 7.10) there exists
a closed subset T ′ ⊂ |U | whose inverse image in |Uk| is the inverse image of T . Since
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|Uk| → |Xk| is surjective, we see that T ′ is the inverse image of T via |U | → |X|. By our
construction of the topology on |X| this means that T is closed. In the same manner one
sees that T is the inverse image of T . �

Lemma 12.8. Let k be a field. Let X be an algebraic space over k. The following are
equivalent

(1) X is geometrically connected,
(2) for every finite separable field extension k′/k the algebraic space Xk′ is con-

nected.

Proof. This proof is identical to the proof of Varieties, Lemma 7.11 except that we
replace Varieties, Lemma 7.7 by Lemma 12.5, we replace Varieties, Lemma 7.9 by Lemma
12.6, and we replace Varieties, Lemma 7.10 by Lemma 12.7. We urge the reader to read that
proof in stead of this one.

It follows immediately from the definition that (1) implies (2). Assume that X is not
geometrically connected. Let k ⊂ k be a separable algebraic closure of k. By Lemma 12.5
it follows that Xk is disconnected. Say Xk = U q V with U and V open, closed, and
nonempty algebraic subspaces of Xk.

Suppose thatW ⊂ X is any quasi-compact open subspace. ThenWk ∩U andWk ∩V are
open and closed subspaces of Wk. In particular Wk ∩ U and Wk ∩ V are quasi-compact,
and by Lemma 12.6 both Wk ∩ U and Wk ∩ V are defined over a finite subextension and
invariant under an open subgroup of Gal(k/k). We will use this without further mention
in the following.

Pick W0 ⊂ X quasi-compact open subspace such that both W0,k ∩ U and W0,k ∩ V are
nonempty. Choose a finite subextension k/k′/k and a decomposition W0,k′ = U ′

0 q V ′
0

into open and closed subsets such that W0,k ∩ U = (U ′
0)k and W0,k ∩ V = (V ′

0)k. Let
H = Gal(k/k′) ⊂ Gal(k/k). In particular σ(W0,k ∩U) = W0,k ∩U and similarly for V .

Having chosen W0, k′ as above, for every quasi-compact open subspace W ⊂ X we set

UW =
⋂

σ∈H
σ(Wk ∩ U), VW =

⋃
σ∈H

σ(Wk ∩ V ).

Now, since Wk ∩ U and Wk ∩ V are fixed by an open subgroup of Gal(k/k) we see that
the union and intersection above are finite. Hence UW and VW are both open and closed
subspaces. Also, by construction Wk̄ = UW q VW .

We claim that ifW ⊂W ′ ⊂ X are quasi-compact open subspaces, thenWk ∩UW ′ = UW
and Wk ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining U =⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain Xk = U q V is a disjoint union of open

and closed subsets. It is clear that V is nonempty as it is constructed by taking unions
(locally). On the other hand, U is nonempty since it contains W0 ∩ U by construction.
Finally, U, V ⊂ Xk̄ are closed andH-invariant by construction. Hence by Lemma 12.7 we
have U = (U ′)k̄ , and V = (V ′)k̄ for some closed U ′, V ′ ⊂ Xk′ . Clearly Xk′ = U ′ q V ′

and we see that Xk′ is disconnected as desired. �
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13. Geometrically irreducible algebraic spaces

Spaces, Example 14.9 shows that it is best not to think about irreducible algebraic spaces
in complete generality1. For decent (for example quasi-separated) algebraic spaces this
kind of disaster doesn’t happen. Thus we make the following definition only under the
assumption that our algebraic space is decent.

Definition 13.1. Let k be a field. Let X be a decent algebraic space over k. We say
X is geometrically irreducible if the topological space |Xk′ | is irreducible2 for any field
extension k′ of k.

Observe thatXk′ is a decent algebraic space (Decent Spaces, Lemma 6.5). Hence the topo-
logical space |Xk′ | is sober. Decent Spaces, Proposition 12.4.

14. Geometrically integral algebraic spaces

Recall that integral algebraic spaces are by definition decent, see Section 4.

Definition 14.1. Let X be an algebraic space over the field k. We say X is geomet-
rically integral over k if the algebraic space Xk′ is integral (Definition 4.1) for every field
extension k′ of k.

In particular X is a decent algebraic space. We can relate this to being geometrically re-
duced and geometrically irreducible as follows.

Lemma 14.2. Let k be a field. LetX be a decent algebraic space over k. ThenX is geo-
metrically integral over k if and only ifX is both geometrically reduced and geometrically
irreducible over k.

Proof. This is an immediate consequence of the definitions because our notion of
integral (in the presence of decency) is equivalent to reduced and irreducible. �

Lemma 14.3. Let k be a field. Let X be a proper algebraic space over k.
(1) A = H0(X,OX) is a finite dimensional k-algebra,
(2) A =

∏
i=1,...,nAi is a product of Artinian local k-algebras, one factor for each

connected component of |X|,
(3) if X is reduced, then A =

∏
i=1,...,n ki is a product of fields, each a finite exten-

sion of k,
(4) if X is geometrically reduced, then ki is finite separable over k,
(5) if X is geometrically connected, then A is geometrically irreducible over k,
(6) if X is geometrically irreducible, then A is geometrically irreducible over k,
(7) if X is geometrically reduced and connected, then A = k, and
(8) if X is geometrically integral, then A = k.

Proof. By Cohomology of Spaces, Lemma 20.3 we see that A = H0(X,OX) is a
finite dimensional k-algebra. This proves (1).

Then A is a product of local rings by Algebra, Lemma 53.2 and Algebra, Proposition 60.7.
If X = Y q Z with Y and Z open subspaces of X , then we obtain an idempotent e ∈ A
by taking the section of OX which is 1 on Y and 0 on Z. Conversely, if e ∈ A is an

1To be sure, if we say “the algebraic spaceX is irreducible”, we probably mean to say “the topological space
|X| is irreducible”.

2An irreducible space is nonempty.



5540 72. ALGEBRAIC SPACES OVER FIELDS

idempotent, then we get a corresponding decomposition of |X|. Finally, as |X| is a Noe-
therian topological space (by Morphisms of Spaces, Lemma 28.6 and Properties of Spaces,
Lemma 24.2) its connected components are open. Hence the connected components of |X|
correspond 1-to-1 with primitive idempotents of A. This proves (2).

If X is reduced, then A is reduced (Properties of Spaces, Lemma 21.4). Hence the local
rings Ai = ki are reduced and therefore fields (for example by Algebra, Lemma 25.1).
This proves (3).

If X is geometrically reduced, then same thing is true for A ⊗k k = H0(Xk,OXk) (see
Cohomology of Spaces, Lemma 11.2 for equality). This implies that ki ⊗k k is a product
of fields and hence ki/k is separable for example by Algebra, Lemmas 44.1 and 44.3. This
proves (4).

IfX is geometrically connected, thenA⊗k k = H0(Xk,OXk) is a zero dimensional local
ring by part (2) and hence its spectrum has one point, in particular it is irreducible. Thus
A is geometrically irreducible. This proves (5). Of course (5) implies (6).

If X is geometrically reduced and connected, then A = k1 is a field and the extension
k1/k is finite separable and geometrically irreducible. However, then k1⊗k k is a product
of [k1 : k] copies of k and we conclude that k1 = k. This proves (7). Of course (7) implies
(8). �

Lemma 14.4. Let k be a field. Let X be a proper integral algebraic space over k. Let
L be an invertible OX -module. If H0(X,L) and H0(X,L⊗−1) are both nonzero, then
L ∼= OX .

Proof. Let s ∈ H0(X,L) and t ∈ H0(X,L⊗−1) be nonzero sections. Let x ∈ |X|
be a point in the support of s. Choose an affine étale neighbourhood (U, u) → (X,x)
such that L|U ∼= OU . Then s|U corresponds to a nonzero regular function on the reduced
(because X is reduced) scheme U and hence is nonvanishing in a generic point of an ir-
reducible component of U . By Decent Spaces, Lemma 20.1 we conclude that the generic
point η of |X| is in the support of s. The same is true for t. Then of course st must be
nonzero because the local ring of X at η is a field (by aforementioned lemma the local
ring has dimension zero, as X is reduced the local ring is reduced, and Algebra, Lemma
25.1). However, we have seen that K = H0(X,OX) is a field in Lemma 14.3. Thus st is
everywhere nonzero and we see that s : OX → L is an isomorphism. �

15. Dimension

In this section we continue the discussion about dimension. Here is a list of previous
material:

(1) dimension is defined in Properties of Spaces, Section 9,
(2) dimension of local ring is defined in Properties of Spaces, Section 10,
(3) a couple of results in Properties of Spaces, Lemmas 22.4 and 22.5,
(4) relative dimension is defined in Morphisms of Spaces, Section 33,
(5) results on dimension of fibres in Morphisms of Spaces, Section 34,
(6) a weak form of the dimension formula Morphisms of Spaces, Section 35,
(7) a result on smoothness and dimension Morphisms of Spaces, Lemma 37.10,
(8) dimension is dim(|X|) for decent spaces Decent Spaces, Lemma 12.5,
(9) quasi-finite maps and dimension Decent Spaces, Lemmas 12.6 and 12.7.
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In More on Morphisms of Spaces, Section 31 we will discuss jumping of dimension in fibres
of a finite type morphism.

Lemma 15.1. Let S be a scheme. Let f : X → Y be an integral morphism of algebraic
spaces. Then dim(X) ≤ dim(Y ). If f is surjective then dim(X) = dim(Y ).

Proof. Choose V → Y surjective étale with V a scheme. Then U = X ×Y V is a
scheme and U → V is integral (and surjective if f is surjective). By Properties of Spaces,
Lemma 22.5 we have dim(X) = dim(U) and dim(Y ) = dim(V ). Thus the result follows
from the case of schemes which is Morphisms, Lemma 44.9. �

Lemma 15.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume that

(1) Y is locally Noetherian,
(2) X and Y are integral algebraic spaces,
(3) f is dominant, and
(4) f is locally of finite type.

If x ∈ |X| and y ∈ |Y | are the generic points, then

dim(X) ≤ dim(Y ) + transcendence degree of x/y.

If f is proper, then equality holds.

Proof. Recall that |X| and |Y | are irreducible sober topological spaces, see discussion
following Definition 4.1. Thus the fact that f is dominant means that |f | maps x to y.
Moreover, x ∈ |X| is the unique point at which the local ring of X has dimension 0,
see Decent Spaces, Lemma 20.1. By Morphisms of Spaces, Lemma 35.1 we see that the
dimension of the local ring of X at any point x′ ∈ |X| is at most the dimension of the
local ring of Y at y′ = f(x′) plus the transcendence degree of x/y. Since the dimension of
X , resp. dimension of Y is the supremum of the dimensions of the local rings at x′, resp.
y′ (Properties of Spaces, Lemma 10.3) we conclude the inequality holds.

Assume f is proper. Let V ⊂ Y be a nonempty quasi-compact open subspace. If we can
prove the equality for the morphism f−1(V )→ V , then we get the equality for X → Y .
Thus we may assume thatX andY are quasi-compact. Observe thatX is quasi-separated as
a locally Noetherian decent algebraic space, see Decent Spaces, Lemma 14.1. Thus we may
choose Y ′ → Y finite surjective where Y ′ is a scheme, see Limits of Spaces, Proposition
16.1. After replacing Y ′ by a suitable closed subscheme, we may assume Y ′ is integral, see
for example the more general Lemma 8.5. By the same lemma, we may choose a closed
subspace X ′ ⊂ X ×Y Y ′ such that X ′ is integral and X ′ → X is finite surjective. Now
X ′ is also locally Noetherian (Morphisms of Spaces, Lemma 23.5) and we can use Limits of
Spaces, Proposition 16.1 once more to choose a finite surjective morphismX ′′ → X ′ with
X ′′ a scheme. As before we may assume that X ′′ is integral. Picture

X ′′

��

// X

f

��
Y ′ // Y

By Lemma 15.1 we have dim(X ′′) = dim(X) and dim(Y ′) = dim(Y ). Since X and Y
have open neighbourhoods of x, resp. y which are schemes, we readily see that the generic
points x′′ ∈ X ′′, resp. y′ ∈ Y ′ are the unique points mapping to x, resp. y and that
the residue field extensions κ(x′′)/κ(x) and κ(y′)/κ(y) are finite. This implies that the
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transcendence degree of x′′/y′ is the same as the transcendence degree of x/y. Thus the
equality follows from the case of schemes whicn is Morphisms, Lemma 52.4. �

16. Spaces smooth over fields

This section is the analogue of Varieties, Section 25.

Lemma 16.1. Let k be a field. Let X be an algebraic space smooth over k. Then X is
a regular algebraic space.

Proof. Choose a scheme U and a surjective étale morphism U → X . The morphism
U → Spec(k) is smooth as a composition of an étale (hence smooth) morphism and a
smooth morphism (see Morphisms of Spaces, Lemmas 39.6 and 37.2). Hence U is regular
by Varieties, Lemma 25.3. By Properties of Spaces, Definition 7.2 this means that X is
regular. �

Lemma 16.2. Let k be a field. Let X be an algebraic space smooth over Spec(k). The
set of x ∈ |X| which are image of morphisms Spec(k′)→ X with k′ ⊃ k finite separable
is dense in |X|.

Proof. Choose a scheme U and a surjective étale morphism U → X . The morphism
U → Spec(k) is smooth as a composition of an étale (hence smooth) morphism and a
smooth morphism (see Morphisms of Spaces, Lemmas 39.6 and 37.2). Hence we can apply
Varieties, Lemma 25.6 to see that the closed points of U whose residue fields are finite
separable over k are dense. This implies the lemma by our definition of the topology on
|X|. �

17. Euler characteristics

In this section we prove some elementary properties of Euler characteristics of coherent
sheaves on algebraic spaces proper over fields.

Definition 17.1. Let k be a field. Let X be a proper algebraic over k. Let F be a
coherentOX -module. In this situation the Euler characteristic of F is the integer

χ(X,F) =
∑

i
(−1)i dimkH

i(X,F).

For justification of the formula see below.

In the situation of the definition only a finite number of the vector spaces Hi(X,F) are
nonzero (Cohomology of Spaces, Lemma 7.3) and each of these spaces is finite dimensional
(Cohomology of Spaces, Lemma 20.3). Thus χ(X,F) ∈ Z is well defined. Observe that
this definition depends on the field k and not just on the pair (X,F).

Lemma 17.2. Let k be a field. LetX be a proper algebraic space over k. Let 0→ F1 →
F2 → F3 → 0 be a short exact sequence of coherent modules on X . Then

χ(X,F2) = χ(X,F1) + χ(X,F3)
Proof. Consider the long exact sequence of cohomology

0→ H0(X,F1)→ H0(X,F2)→ H0(X,F3)→ H1(X,F1)→ . . .

associated to the short exact sequence of the lemma. The rank-nullity theorem in linear
algebra shows that

0 = dimH0(X,F1)− dimH0(X,F2) + dimH0(X,F3)− dimH1(X,F1) + . . .

This immediately implies the lemma. �
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Lemma 17.3. Let k be a field. Let f : Y → X be a morphism of algebraic spaces
proper over k. Let G be a coherentOY -module. Then

χ(Y,G) =
∑

(−1)iχ(X,Rif∗G)

Proof. The formula makes sense: the sheaves Rif∗G are coherent and only a finite
number of them are nonzero, see Cohomology of Spaces, Lemmas 20.2 and 8.1. By Coho-
mology on Sites, Lemma 14.5 there is a spectral sequence with

Ep,q2 = Hp(X,Rqf∗G)
converging to Hp+q(Y,G). By finiteness of cohomology on X we see that only a finite
number of Ep,q2 are nonzero and each Ep,q2 is a finite dimensional vector space. It follows
that the same is true for Ep,qr for r ≥ 2 and that∑

(−1)p+q dimk E
p,q
r

is independent of r. Since for r large enough we haveEp,qr = Ep,q∞ and since convergence
means there is a filtration onHn(Y,G) whose graded pieces areEp,q∞ with p+ 1 = n (this
is the meaning of convergence of the spectral sequence), we conclude. �

18. Numerical intersections

In this section we play around with the Euler characteristic of coherent sheaves on proper
algebraic spaces to obtain numerical intersection numbers for invertible modules. Our
main tool will be the following lemma.

Lemma 18.1. Let k be a field. Let X be a proper algebraic space over k. Let F be a
coherentOX -module. Let L1, . . . ,Lr be invertibleOX -modules. The map

(n1, . . . , nr) 7−→ χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )
is a numerical polynomial in n1, . . . , nr of total degree at most the dimension of the
scheme theoretic support of F .

Proof. Let Z ⊂ X be the scheme theoretic support of F . Then F = i∗G for some
coherentOZ -module G (Cohomology of Spaces, Lemma 12.7) and we have

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) = χ(Z,G ⊗ i∗L⊗n1
1 ⊗ . . .⊗ i∗L⊗nr

r )
by the projection formula (Cohomology on Sites, Lemma 50.1) and Cohomology of Spaces,
Lemma 8.3. Since |Z| = Supp(F) we see that it suffices to show

PF (n1, . . . , nr) : (n1, . . . , nr) 7−→ χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )
is a numerical polynomial in n1, . . . , nr of total degree at most dim(X). Let us say prop-
erty P holds for the coherentOX -module F if the above is true.
We will prove this statement by devissage, more precisely we will check conditions (1),
(2), and (3) of Cohomology of Spaces, Lemma 14.6 are satisfied.
Verification of condition (1). Let

0→ F1 → F2 → F3 → 0
be a short exact sequence of coherent sheaves on X . By Lemma 17.2 we have

PF2(n1, . . . , nr) = PF1(n1, . . . , nr) + PF3(n1, . . . , nr)
Then it is clear that if 2-out-of-3 of the sheavesFi have propertyP , then so does the third.
Condition (2) follows because PF⊕m(n1, . . . , nr) = mPF (n1, . . . , nr).
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Proof of (3). Let i : Z → X be a reduced closed subspace with |Z| irreducible. We have to
find a coherent module G on X whose support is Z such that P holds for G. We will give
two constructions: one using Chow’s lemma and one using a finite cover by a scheme.

Proof existence G using a finite cover by a scheme. Choose π : Z ′ → Z finite surjective
where Z ′ is a scheme, see Limits of Spaces, Proposition 16.1. Set G = i∗π∗OZ′ = (i ◦
π)∗OZ′ . Note that Z ′ is proper over k and that the support of G is Y (details omitted).
We have

R(π◦i)∗(OZ′) = G and R(π◦i)∗(π∗i∗(L⊗n1
1 ⊗. . .⊗L⊗nr

r )) = G⊗L⊗n1
1 ⊗. . .⊗L⊗nr

r

The first equality holds because i ◦π is affine (Cohomology of Spaces, Lemma 8.2) and the
second equality follows from the first and the projection formula (Cohomology on Sites,
Lemma 50.1). Using Leray (Cohomology on Sites, Lemma 14.6) we obtain

PG(n1, . . . , nr) = χ(Z ′, π∗i∗(L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ))

By the case of schemes (Varieties, Lemma 45.1) this is a numerical polynomial inn1, . . . , nr
of degree at most dim(Z ′). We conclude because dim(Z ′) ≤ dim(Z) ≤ dim(X). The
first inequality follows from Decent Spaces, Lemma 12.7.

Proof existence G using Chow’s lemma. We apply Cohomology of Spaces, Lemma 18.1 to
the morphism Z → Spec(k). Thus we get a surjective proper morphism f : Y → Z over
Spec(k) where Y is a closed subscheme of Pm

k for some m. After replacing Y by a closed
subscheme we may assume that Y is integral and f : Y → Z is an alteration, see Lemma
8.5. Denote OY (n) the pullback of OPm

k
(n). Pick n > 0 such that Rpf∗OY (n) = 0 for

p > 0, see Cohomology of Spaces, Lemma 20.1. We claim that G = i∗f∗OY (n) satisfies
P . Namely, by the case of schemes (Varieties, Lemma 45.1) we know that

(n1, . . . , nr) 7−→ χ(Y,OY (n)⊗ f∗i∗(L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ))

is a numerical polynomial in n1, . . . , nr of total degree at most dim(Y ). On the other
hand, by the projection formula (Cohomology on Sites, Lemma 50.1)

i∗Rf∗
(
OY (n)⊗ f∗i∗(L⊗n1

1 ⊗ . . .⊗ L⊗nr
r )

)
= i∗Rf∗OY (n)⊗ L⊗n1

1 ⊗ . . .⊗ L⊗nr
r

= G ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r

the last equality by our choice of n. By Leray (Cohomology on Sites, Lemma 14.6) we get

χ(Y,OY (n)⊗ f∗i∗(L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )) = PG(n1, . . . , nr)

and we conclude because dim(Y ) ≤ dim(Z) ≤ dim(X). The first inequality holds by
Morphisms of Spaces, Lemma 35.2 and the fact that Y → Z is an alteration (and hence
the induced extension of residue fields in generic points is finite). �

The following lemma roughly shows that the leading coefficient only depends on the
length of the coherent module in the generic points of its support.

Lemma 18.2. Let k be a field. Let X be a proper algebraic space over k. Let F be a
coherentOX -module. LetL1, . . . ,Lr be invertibleOX -modules. Let d = dim(Supp(F)).
Let Zi ⊂ X be the irreducible components of Supp(F) of dimension d. Let xi be a geo-
metric generic point of Zi and set mi = lengthOX,xi

(Fxi). Then

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

i
mi χ(Zi,L⊗n1

1 ⊗ . . .⊗ L⊗nr
r |Zi)

is a numerical polynomial in n1, . . . , nr of total degree < d.
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Proof. We first prove a slightly weaker statement. Namely, say dim(X) = N and
let Xi ⊂ X be the irreducible components of dimension N . Let xi be a geometric generic
point of Xi. The étale local ring OX,xi is Noetherian of dimension 0, hence for every
coherentOX -module F the length

mi(F) = lengthOX,xi

(Fxi)

is an integer ≥ 0. We claim that

E(F) = χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

i
mi(F) χ(Zi,L⊗n1

1 ⊗ . . .⊗ L⊗nr
r |Zi)

is a numerical polynomial in n1, . . . , nr of total degree< N . We will prove this using Co-
homology of Spaces, Lemma 14.6. For any short exact sequence 0→ F ′ → F → F ′′ → 0
we have E(F) = E(F ′) + E(F ′′). This follows from additivity of Euler characteristics
(Lemma 17.2) and additivity of lengths (Algebra, Lemma 52.3). This immediately implies
properties (1) and (2) of Cohomology of Spaces, Lemma 14.6. Finally, property (3) holds
because for G = OZ for any Z ⊂ X irreducible reduced closed subspace. Namely, if
Z = Zi0 for some i0, then mi(G) = δi0i and we conclude E(G) = 0. If Z 6= Zi for any i,
then mi(G) = 0 for all i, dim(Z) < N and we get the result from Lemma 18.1.

Proof of the statement as in the lemma. Let Z ⊂ X be the scheme theoretic support of
F . Then F = i∗G for some coherentOZ -module G (Cohomology of Spaces, Lemma 12.7)
and we have

χ(X,F ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r ) = χ(Z,G ⊗ i∗L⊗n1
1 ⊗ . . .⊗ i∗L⊗nr

r )

by the projection formula (Cohomology on Sites, Lemma 50.1) and Cohomology of Spaces,
Lemma 8.3. Since |Z| = Supp(F) we see thatZi ⊂ Z for all i and we see that these are the
irreducible components of Z of dimension d. We may and do think of xi as a geometric
point of Z. The map i] : OX → i∗OZ determines a surjection

OX,xi → OZ,xi
Via this map we have an isomorphism of modules Gxi = Fxi as F = i∗G. This implies
that

mi = lengthOX,xi

(Fxi) = lengthOZ,xi

(Gxi)

Thus we see that the expression in the lemma is equal to

χ(Z,G ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nr

r )−
∑

i
mi χ(Zi,L⊗n1

1 ⊗ . . .⊗ L⊗nr
r |Zi)

and the result follows from the discussion in the first paragraph (applied with Z in stead
of X). �

Definition 18.3. Let k be a field. Let X be a proper algebraic space over k. Let
i : Z → X be a closed subspace of dimension d. LetL1, . . . ,Ld be invertibleOX -modules.
We define the intersection number (L1 · · · Ld · Z) as the coefficient of n1 . . . nd in the
numerical polynomial

χ(X, i∗OZ ⊗ L⊗n1
1 ⊗ . . .⊗ L⊗nd

d ) = χ(Z,L⊗n1
1 ⊗ . . .⊗ L⊗nd

d |Z)

In the special case that L1 = . . . = Ld = L we write (Ld · Z).

The displayed equality in the definition follows from the projection formula (Cohomol-
ogy, Section 54) and Cohomology of Schemes, Lemma 2.4. We prove a few lemmas for
these intersection numbers.
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Lemma 18.4. In the situation of Definition 18.3 the intersection number (L1 · · · Ld ·
Z) is an integer.

Proof. Any numerical polynomial of degree e in n1, . . . , nd can be written uniquely
as a Z-linear combination of the functions

(
n1
k1

)(
n2
k2

)
. . .
(
nd
kd

)
with k1+. . .+kd ≤ e. Apply

this with e = d. Left as an exercise. �

Lemma 18.5. In the situation of Definition 18.3 the intersection number (L1 · · · Ld ·
Z) is additive: if Li = L′

i ⊗ L′′
i , then we have

(L1 · · · Li · · · Ld · Z) = (L1 · · · L′
i · · · Ld · Z) + (L1 · · · L′′

i · · · Ld · Z)

Proof. This is true because by Lemma 18.1 the function

(n1, . . . , ni−1, n
′
i, n

′′
i , ni+1, . . . , nd) 7→ χ(Z,L⊗n1

1 ⊗. . .⊗(L′
i)⊗n′

i⊗(L′′
i )⊗n′′

i ⊗. . .⊗L⊗nd
d |Z)

is a numerical polynomial of total degree at most d in d+ 1 variables. �

Lemma 18.6. In the situation of Definition 18.3 let Zi ⊂ Z be the irreducible com-
ponents of dimension d. Let mi = lengthOX,xi

(OZ,xi) where xi is a geometric generic
point of Zi. Then

(L1 · · · Ld · Z) =
∑

mi(L1 · · · Ld · Zi)

Proof. Immediate from Lemma 18.2 and the definitions. �

Lemma 18.7. Let k be a field. Let f : Y → X be a morphism of algebraic spaces proper
over k. Let Z ⊂ Y be an integral closed subspace of dimension d and let L1, . . . ,Ld be
invertibleOX -modules. Then

(f∗L1 · · · f∗Ld · Z) = deg(f |Z : Z → f(Z))(L1 · · · Ld · f(Z))

where deg(Z → f(Z)) is as in Definition 5.2 or 0 if dim(f(Z)) < d.

Proof. In the statement f(Z) ⊂ X is the scheme theoretic image of f and it is
also the reduced induced algebraic space structure on the closed subset f(|Z|) ⊂ X , see
Morphisms of Spaces, Lemma 16.4. Then Z and f(Z) are reduced, proper (hence decent)
algebraic spaces over k, whence integral (Definition 4.1). The left hand side is computed
using the coefficient of n1 . . . nd in the function

χ(Y,OZ ⊗ f∗L⊗n1
1 ⊗ . . .⊗ f∗L⊗nd

d ) =
∑

(−1)iχ(X,Rif∗OZ ⊗L⊗n1
1 ⊗ . . .⊗L⊗nd

d )

The equality follows from Lemma 17.3 and the projection formula (Cohomology, Lemma
54.2). If f(Z) has dimension < d, then the right hand side is a polynomial of total degree
< d by Lemma 18.1 and the result is true. Assume dim(f(Z)) = d. Then by dimension
theory (Lemma 15.2) we find that the equivalent conditions (1) – (5) of Lemma 5.1 hold.
Thus deg(Z → f(Z)) is well defined. By the already used Lemma 5.1 we find f : Z →
f(Z) is finite over a nonempty open V of f(Z); after possibly shrinking V we may assume
V is a scheme. Let ξ ∈ V be the generic point. Thus deg(f : Z → f(Z)) the length of the
stalk of f∗OZ at ξ overOX,ξ and the stalk ofRif∗OX at ξ is zero for i > 0 (for example by
Cohomology of Spaces, Lemma 4.1). Thus the terms χ(X,Rif∗OZ⊗L⊗n1

1 ⊗ . . .⊗L⊗nd
d )

with i > 0 have total degree < d and

χ(X, f∗OZ⊗L⊗n1
1 ⊗. . .⊗L⊗nd

d ) = deg(f : Z → f(Z))χ(f(Z),L⊗n1
1 ⊗. . .⊗L⊗nd

d |f(Z))

modulo a polynomial of total degree < d by Lemma 18.2. The desired result follows. �
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Lemma 18.8. Let k be a field. Let X be a proper algebraic space over k. Let Z ⊂ X
be a closed subspace of dimension d. Let L1, . . . ,Ld be invertible OX -modules. Assume
there exists an effective Cartier divisor D ⊂ Z such that L1|Z ∼= OZ(D). Then

(L1 · · · Ld · Z) = (L2 · · · Ld ·D)

Proof. We may replace X by Z and Li by Li|Z . Thus we may assume X = Z and
L1 = OX(D). Then L−1

1 is the ideal sheaf of D and we can consider the short exact
sequence

0→ L⊗−1
1 → OX → OD → 0

Set P (n1, . . . , nd) = χ(X,L⊗n1
1 ⊗ . . .⊗L⊗nd

d ) andQ(n1, . . . , nd) = χ(D,L⊗n1
1 ⊗ . . .⊗

L⊗nd
d |D). We conclude from additivity (Lemma 17.2) that

P (n1, . . . , nd)− P (n1 − 1, n2, . . . , nd) = Q(n1, . . . , nd)
Because the total degree of P is at most d, we see that the coefficient of n1 . . . nd in P is
equal to the coefficient of n2 . . . nd in Q. �
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CHAPTER 73

Topologies on Algebraic Spaces

1. Introduction

In this chapter we introduce some topologies on the category of algebraic spaces. Compare
with the material in [?], [?], [?] and [?]. Before doing so we would like to point out that
there are many different choices of sites (as defined in Sites, Definition 6.2) which give rise
to the same notion of sheaf on the underlying category. Hence our choices may be slightly
different from those in the references but ultimately lead to the same cohomology groups,
etc.

2. The general procedure

In this section we explain a general procedure for producing the sites we will be working
with. This discussion will make little or no sense unless the reader has read Topologies,
Section 2.
Let S be a base scheme. Take any category Schα constructed as in Sets, Lemma 9.2 starting
with S and any set of schemes over S you want to be included. Choose any set of cover-
ings Covfppf on Schα as in Sets, Lemma 11.1 starting with the category Schα and the class
of fppf coverings. Let Schfppf denote the big fppf site so obtained, and let (Sch/S)fppf
denote the corresponding big fppf site ofS. (The above is entirely as prescribed in Topolo-
gies, Section 7.)
Given choices as above the category of algebraic spaces over S has a set of isomorphism
classes. One way to see this is to use the fact that any algebraic space over S is of the form
U/R for some étale equivalence relation j : R→ U×SU withU,R ∈ Ob((Sch/S)fppf ),
see Spaces, Lemma 9.1. Hence we can find a full subcategory Spaces/S of the category of al-
gebraic spaces overS which has a set of objects such that each algebraic space is isomorphic
to an object of Spaces/S. We fix a choice of such a category.
In the sections below, given a topology τ , the big site (Spaces/S)τ (resp. the big site
(Spaces/X)τ of an algebraic space X over S) has as underlying category the category
Spaces/S (resp. the subcategory Spaces/X of Spaces/S , see Categories, Example 2.13).
The procedure for turning this into a site is as usual by defining a class of τ -coverings
and using Sets, Lemma 11.1 to choose a sufficiently large set of coverings which defines the
topology.
We point out that the small étale site Xétale of an algebraic space X has already been de-
fined in Properties of Spaces, Definition 18.1. Its objects are schemes étale overX , of which
there are plenty by definition of an algebraic spaces. However, a more natural site, from the
perspective of this chapter (compare Topologies, Definition 4.8) is the siteXspaces,étale of
Properties of Spaces, Definition 18.2. These two sites define the same topos, see Properties
of Spaces, Lemma 18.3. We will not redefine these in this chapter; instead we will simply
use them.

5549
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3. Zariski topology

In Spaces, Section 12 we introduced the notion of a Zariski covering of an algebraic space
by open subspaces. Here is the corresponding notion with open subspaces replaced by open
immersions.

Definition 3.1. Let S be a scheme, and letX be an algebraic space over S. A Zariski
covering ofX is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces over S such
that each fi is an open immersion and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

Although Zariski coverings are occasionally useful the corresponding topology on the cat-
egory of algebraic spaces is really too coarse, and not particularly useful. Still, it does define
a site.

Lemma 3.2. Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a Zariski covering of X .
(2) If {Xi → X}i∈I is a Zariski covering and for each i we have a Zariski covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a Zariski covering.

(3) If {Xi → X}i∈I is a Zariski covering and X ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is a Zariski covering.

Proof. Omitted. �

4. Étale topology

In this section we discuss the notion of a étale covering of algebraic spaces, and we define
the big étale site of an algebraic space. Please compare with Topologies, Section 4.

Definition 4.1. Let S be a scheme, and let X be an algebraic space over S. An étale
covering ofX is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces over S such
that each fi is étale and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 4.1. In particular, if X and all the Xi

are schemes, then we recover the usual notion of a étale covering of schemes.

Lemma 4.2. Any Zariski covering is an étale covering.

Proof. This is clear from the definitions and the fact that an open immersion is an
étale morphism (this follows from Morphisms, Lemma 36.9 via Spaces, Lemma 5.8 as im-
mersions are representable). �

Lemma 4.3. Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a étale covering of X .
(2) If {Xi → X}i∈I is a étale covering and for each i we have a étale covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a étale covering.

(3) If {Xi → X}i∈I is a étale covering and X ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is a étale covering.

Proof. Omitted. �
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The following lemma tells us that the sites (Spaces/X)étale and (Spaces/X)smooth have
the same categories of sheaves.

Lemma 4.4. LetS be a scheme. LetX be an algebraic space overS. Let {Xi → X}i∈I
be a smooth covering ofX . Then there exists an étale covering {Uj → X}j∈J ofX which
refines {Xi → X}i∈I .

Proof. First choose a scheme U and a surjective étale morphism U → X . For each i
choose a scheme Wi and a surjective étale morphism Wi → Xi. Then {Wi → X}i∈I is a
smooth covering which refines {Xi → X}i∈I . Hence {Wi ×X U → U}i∈I is a smooth
covering of schemes. By More on Morphisms, Lemma 38.7 we can choose an étale covering
{Uj → U} which refines {Wi ×X U → U}. Then {Uj → X}j∈J is an étale covering
refining {Xi → X}i∈I . �

Definition 4.5. Let S be a scheme. A big étale site (Spaces/S)étale is any site con-
structed as follows:

(1) Choose a big étale site (Sch/S)étale as in Topologies, Section 4.
(2) As underlying category take the category Spaces/S of algebraic spaces over S

(see discussion in Section 2 why this is a set).
(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category

Spaces/S and the class of étale coverings of Definition 4.1.

Having defined this, we can localize to get the étale site of an algebraic space.

Definition 4.6. Let S be a scheme. Let (Spaces/S)étale be as in Definition 4.5. Let
X be an algebraic space over S , i.e., an object of (Spaces/S)étale. Then the big étale site
(Spaces/X)étale of X is the localization of the site (Spaces/S)étale at X introduced in
Sites, Section 25.

Recall that given an algebraic space X over S as in the definition, we already have de-
fined the small étale sites Xspaces,étale and Xétale, see Properties of Spaces, Section 18.
We will silently identify the corresponding topoi using the inclusion functor Xétale ⊂
Xspaces,étale (Properties of Spaces, Lemma 18.3) and we will call it the small étale topos of
X . Next, we establish some relationships between the topoi associated to these sites.

Lemma 4.7. Let S be a scheme. Let f : Y → X be a morphism of (Spaces/S)étale.
The inclusion functorYspaces,étale → (Spaces/X)étale is cocontinuous and induces a mor-
phism of topoi

if : Sh(Yétale) −→ Sh((Spaces/X)étale)
For a sheaf G on (Spaces/X)étale we have the formula (i−1

f G)(U/Y ) = G(U/X). The
functor i−1

f also has a left adjoint if,! which commutes with fibre products and equalizers.

Proof. Denote the functor u : Yspaces,étale → (Spaces/X)étale. In other words,
given an étale morphism j : U → Y corresponding to an object of Yspaces,étale we set
u(U → T ) = (f ◦ j : U → S). The category Yspaces,étale has fibre products and equal-
izers and u commutes with them. It is immediate that u cocontinuous. The functor u is
also continuous as u transforms coverings to coverings and commutes with fibre products.
Hence the Lemma follows from Sites, Lemmas 21.5 and 21.6. �

Lemma 4.8. Let S be a scheme. Let X be an object of (Spaces/S)étale. The inclusion
functorXspaces,étale → (Spaces/X)étale satisfies the hypotheses of Sites, Lemma 21.8 and
hence induces a morphism of sites

πX : (Spaces/X)étale −→ Xspaces,étale
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and a morphism of topoi

iX : Sh(Xétale) −→ Sh((Spaces/X)étale)

such that πX ◦ iX = id. Moreover, iX = iidX with iidX as in Lemma 4.7. In particular the
functor i−1

X = πX,∗ is described by the rule i−1
X (G)(U/X) = G(U/X).

Proof. In this case the functor u : Xspaces,étale → (Spaces/X)étale, in addition to
the properties seen in the proof of Lemma 4.7 above, also is fully faithful and transforms
the final object into the final object. The lemma follows from Sites, Lemma 21.8. �

Definition 4.9. In the situation of Lemma 4.8 the functor i−1
X = πX,∗ is often called

the restriction to the small étale site, and for a sheafF on the big étale site we often denote
F|Xétale this restriction.

With this notation in place we have for a sheafF on the big site and a sheaf G on the small
site that

MorSh(Xétale)(F|Xétale ,G) = MorSh((Spaces/X)étale)(F , iX,∗G)
MorSh(Xétale)(G,F|Xétale) = MorSh((Spaces/X)étale)(π−1

X G,F)

Moreover, we have (iX,∗G)|Xétale = G and we have (π−1
X G)|Xétale = G.

Lemma 4.10. Let S be a scheme. Let f : Y → X be a morphism in (Spaces/S)étale.
The functor

u : (Spaces/Y )étale −→ (Spaces/X)étale, V/Y 7−→ V/X

is cocontinuous, and has a continuous right adjoint

v : (Spaces/X)étale −→ (Spaces/Y )étale, (U → X) 7−→ (U ×X Y → Y ).

They induce the same morphism of topoi

fbig : Sh((Spaces/Y )étale) −→ Sh((Spaces/X)étale)

We have f−1
big (G)(U/Y ) = G(U/X). We have fbig,∗(F)(U/X) = F(U ×X Y/Y ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functor u is cocontinuous, continuous and commutes with fibre prod-
ucts and equalizers (details omitted; compare with the proof of Lemma 4.7). Hence Sites,
Lemmas 21.5 and 21.6 apply and we deduce the formula for f−1

big and the existence of
fbig!. Moreover, the functor v is a right adjoint because given U/Y and V/X we have
MorX(u(U), V ) = MorY (U, V ×X Y ) as desired. Thus we may apply Sites, Lemmas 22.1
and 22.2 to get the formula for fbig,∗. �

Lemma 4.11. Let S be a scheme. Let f : Y → X be a morphism in (Spaces/S)étale.
(1) We have if = fbig ◦ iT with if as in Lemma 4.7 and iT as in Lemma 4.8.
(2) The functor Xspaces,étale → Tspaces,étale, (U → X) 7→ (U ×X Y → Y ) is

continuous and induces a morphism of sites

fspaces,étale : Yspaces,étale −→ Xspaces,étale

The corresponding morphism of small étale topoi is denoted

fsmall : Sh(Yétale)→ Sh(Xétale)

We have fsmall,∗(F)(U/X) = F(U ×X Y/Y ).
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(3) We have a commutative diagram of morphisms of sites

Yspaces,étale

fspaces,étale

��

(Spaces/Y )étale

fbig

��

πY
oo

Xspaces,étale (Spaces/X)étale
πXoo

so that fsmall ◦ πY = πX ◦ fbig as morphisms of topoi.
(4) We have fsmall = πX ◦ fbig ◦ iY = πX ◦ if .

Proof. The equality if = fbig ◦ iY follows from the equality i−1
f = i−1

T ◦f
−1
big which

is clear from the descriptions of these functors above. Thus we see (1).

The functor u : Xspaces,étale → Yspaces,étale, u(U → X) = (U ×X Y → Y ) was
shown to give rise to a morphism of sites and correspong morphism of small étale topoi in
Properties of Spaces, Lemma 18.8. The description of the pushforward is clear.

Part (3) follows because πX and πY are given by the inclusion functors and fspaces,étale
and fbig by the base change functors U 7→ U ×X Y .

Statement (4) follows from (3) by precomposing with iY . �

In the situation of the lemma, using the terminology of Definition 4.9 we have: for F a
sheaf on the big étale site of Y

(fbig,∗F)|Xétale = fsmall,∗(F|Yétale),

This equality is clear from the commutativity of the diagram of sites of the lemma, since
restriction to the small étale site of Y , resp. X is given by πY,∗, resp. πX,∗. A similar
formula involving pullbacks and restrictions is false.

Lemma 4.12. Let S be a scheme. Given morphisms f : X → Y , g : Y → Z in
(Spaces/S)étale we have gbig ◦ fbig = (g ◦ f)big and gsmall ◦ fsmall = (g ◦ f)small.

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 4.10. For the functors on the small sites this
follows from the description of the pushforward functors in Lemma 4.11. �

Lemma 4.13. Let S be a scheme. Consider a cartesian diagram

Y ′
g′
//

f ′

��

Y

f

��
X ′ g // X

in (Spaces/S)étale. Then i−1
g ◦ fbig,∗ = f ′

small,∗ ◦ (ig′)−1 and g−1
big ◦ fbig,∗ = f ′

big,∗ ◦
(g′
big)−1.

Proof. Since the diagram is cartesian, we have forU ′/X ′ thatU ′×X′Y ′ = U ′×XY .
Hence both i−1

g ◦ fbig,∗ and f ′
small,∗ ◦ (ig′)−1 send a sheaf F on (Spaces/Y )étale to the

sheaf U ′ 7→ F(U ′ ×X′ Y ′) on X ′
étale (use Lemmas 4.7 and 4.10). The second equality

can be proved in the same manner or can be deduced from the very general Sites, Lemma
28.1. �
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Remark 4.14. The sites (Spaces/X)étale andXspaces,étale come with structure sheaves.
For the small étale site we have seen this in Properties of Spaces, Section 21. The struc-
ture sheaf O on the big étale site (Spaces/X)étale is defined by assigning to an object U
the global sections of the structure sheaf of U . This makes sense because after all U is an
algebraic space itself hence has a structure sheaf. SinceOU is a sheaf on the étale site of U ,
the presheafO so defined satisfies the sheaf condition for coverings of U , i.e.,O is a sheaf.
We can upgrade the morphisms if , πX , iX , fsmall, and fbig defined above to morphisms
of ringed sites, respectively topoi. Let us deal with these one by one.

(1) In Lemma 4.7 denoteO the structure sheaf on (Spaces/X)étale. We have (i−1
f O)(U/Y ) =

OU (U) = OY (U) by construction. Hence an isomorphism i]f : i−1
f O → OY .

(2) In Lemma 4.8 it was noted that iX is a special case of if with f = idX hence we
are back in case (1).

(3) In Lemma 4.8 the morphism πX satisfies (πX,∗O)(U) = O(U) = OX(U).
Hence we can use this to define π]X : OX → πX,∗O.

(4) In Lemma 4.11 the extension of fsmall to a morphism of ringed topoi was dis-
cussed in Properties of Spaces, Lemma 21.3.

(5) In Lemma 4.11 the functor f−1
big is simply the restriction via the inclusion functor

(Spaces/Y )étale → (Spaces/X)étale. LetO1 be the structure sheaf on (Spaces/X)étale
and letO2 be the structure sheaf on (Spaces/Y )étale. We obtain a canonical iso-
morphism f ]big : f−1

bigO1 → O2.
Moreover, with these definitions compositions work out correctly too. We omit giving a
detailed statement and proof.

5. Smooth topology

In this section we discuss the notion of a smooth covering of algebraic spaces, and we define
the big smooth site of an algebraic space. Please compare with Topologies, Section 5.

Definition 5.1. Let S be a scheme, and letX be an algebraic space over S. A smooth
covering ofX is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces over S such
that each fi is smooth and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 5.1. In particular, if X and all the Xi

are schemes, then we recover the usual notion of a smooth covering of schemes.

Lemma 5.2. Any étale covering is a smooth covering, and a fortiori, any Zariski cov-
ering is a smooth covering.

Proof. This is clear from the definitions, the fact that an étale morphism is smooth
(Morphisms of Spaces, Lemma 39.6), and Lemma 4.2. �

Lemma 5.3. Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a smooth covering of X .
(2) If {Xi → X}i∈I is a smooth covering and for each i we have a smooth covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a smooth covering.

(3) If {Xi → X}i∈I is a smooth covering and X ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is a smooth covering.
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Proof. Omitted. �

To be continued...

6. Syntomic topology

In this section we discuss the notion of a syntomic covering of algebraic spaces, and we
define the big syntomic site of an algebraic space. Please compare with Topologies, Section
6.

Definition 6.1. LetS be a scheme, and letX be an algebraic space overS. A syntomic
covering ofX is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces over S such
that each fi is syntomic and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 6.1. In particular, if X and all the Xi

are schemes, then we recover the usual notion of a syntomic covering of schemes.

Lemma 6.2. Any smooth covering is a syntomic covering, and a fortiori, any étale or
Zariski covering is a syntomic covering.

Proof. This is clear from the definitions and the fact that a smooth morphism is
syntomic (Morphisms of Spaces, Lemma 37.8), and Lemma 5.2. �

Lemma 6.3. Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a syntomic covering of X .
(2) If {Xi → X}i∈I is a syntomic covering and for each i we have a syntomic

covering {Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a syntomic covering.
(3) If {Xi → X}i∈I is a syntomic covering andX ′ → X is a morphism of algebraic

spaces then {X ′ ×X Xi → X ′}i∈I is a syntomic covering.

Proof. Omitted. �

To be continued...

7. Fppf topology

In this section we discuss the notion of an fppf covering of algebraic spaces, and we define
the big fppf site of an algebraic space. Please compare with Topologies, Section 7.

Definition 7.1. Let S be a scheme, and let X be an algebraic space over S. An fppf
covering ofX is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces over S such
that each fi is flat and locally of finite presentation and such that

|X| =
⋃

i∈I
|fi|(|Xi|),

i.e., the morphisms are jointly surjective.

This is exactly the same as Topologies, Definition 7.1. In particular, if X and all the Xi

are schemes, then we recover the usual notion of an fppf covering of schemes.

Lemma 7.2. Any syntomic covering is an fppf covering, and a fortiori, any smooth,
étale, or Zariski covering is an fppf covering.
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Proof. This is clear from the definitions, the fact that a syntomic morphism is flat
and locally of finite presentation (Morphisms of Spaces, Lemmas 36.5 and 36.6) and Lemma
6.2. �

Lemma 7.3. Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is an fppf covering of X .
(2) If {Xi → X}i∈I is an fppf covering and for each i we have an fppf covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is an fppf covering.

(3) If {Xi → X}i∈I is an fppf covering and X ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is an fppf covering.

Proof. Omitted. �

Lemma 7.4. Let S be a scheme, and let X be an algebraic space over S. Suppose
that U = {fi : Xi → X}i∈I is an fppf covering of X . Then there exists a refinement
V = {gi : Ti → X} of U which is an fppf covering such that each Ti is a scheme.

Proof. Omitted. Hint: For each i choose a schemeTi and a surjective étale morphism
Ti → Xi. Then check that {Ti → X} is an fppf covering. �

Lemma 7.5. LetS be a scheme. Let {fi : Xi → X}i∈I be an fppf covering of algebraic
spaces over S. Then the map of sheaves∐

Xi −→ X

is surjective.

Proof. This follows from Spaces, Lemma 5.9. See also Spaces, Remark 5.2 in case you
are confused about the meaning of this lemma. �

Definition 7.6. Let S be a scheme. A big fppf site (Spaces/S)fppf is any site con-
structed as follows:

(1) Choose a big fppf site (Sch/S)fppf as in Topologies, Section 7.
(2) As underlying category take the category Spaces/S of algebraic spaces over S

(see discussion in Section 2 why this is a set).
(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category

Spaces/S and the class of fppf coverings of Definition 7.1.

Having defined this, we can localize to get the fppf site of an algebraic space.

Definition 7.7. Let S be a scheme. Let (Spaces/S)fppf be as in Definition 7.6. Let
X be an algebraic space over S , i.e., an object of (Spaces/S)fppf . Then the big fppf site
(Spaces/X)fppf of X is the localization of the site (Spaces/S)fppf at X introduced in
Sites, Section 25.

Next, we establish some relationships between the topoi associated to these sites.

Lemma 7.8. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. The functor

u : (Spaces/Y )fppf −→ (Spaces/X)fppf , V/Y 7−→ V/X

is cocontinuous, and has a continuous right adjoint

v : (Spaces/X)fppf −→ (Spaces/Y )fppf , (U → Y ) 7−→ (U ×X Y → Y ).
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They induce the same morphism of topoi
fbig : Sh((Spaces/Y )fppf ) −→ Sh((Spaces/X)fppf )

We have f−1
big (G)(U/Y ) = G(U/X). We have fbig,∗(F)(U/X) = F(U ×X Y/Y ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functoru is cocontinuous, continuous, and commutes with fibre products
and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for
f−1
big and the existence of fbig!. Moreover, the functor v is a right adjoint because given
U/T and V/X we have MorX(u(U), V ) = MorY (U, V ×X Y ) as desired. Thus we may
apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. �

Lemma 7.9. Let S be a scheme. Given morphisms f : X → Y , g : Y → Z of
algebraic spaces over S we have gbig ◦ fbig = (g ◦ f)big .

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 7.8. �

8. The ph topology

In this section we define the ph topology. This is the topology generated by étale coverings
and proper surjective morphisms, see Lemma 8.7.

Definition 8.1. Let S be a scheme and let X be an algebraic space over S. A ph
covering of X is a family of morphisms {Xi → X}i∈I of algebraic spaces over S such
that fi is locally of finite type and such that for every U → X with U affine there exists
a standard ph covering {Uj → U}j=1,...,m refining the family {Xi ×X U → U}i∈I .

In other words, there exists indices i1, . . . , im ∈ I and morphisms hj : Uj → Xij such
that fij ◦ hj = h ◦ gj . Note that if X and all Xi are representable, this is the same as a ph
covering of schemes by Topologies, Definition 8.4.

Lemma 8.2. Any fppf covering is a ph covering, and a fortiori, any syntomic, smooth,
étale or Zariski covering is a ph covering.

Proof. We will show that an fppf covering is a ph covering, and then the rest follows
from Lemma 7.2. Let {Xi → X}i∈I be an fppf covering of algebraic spaces over a base
scheme S. Let U be an affine scheme and let U → X be a morphism. We can refine
the fppf covering {Xi ×U U → U}i∈I by an fppf covering {Ti → U}i∈I where Ti is a
scheme (Lemma 7.4). Then we can find a standard ph covering {Uj → U}j=1,...,m refining
{Ti → U}i∈I by More on Morphisms, Lemma 48.7 (and the definition of ph coverings
for schemes). Thus {Xi → X}i∈I is a ph covering by definition. �

Lemma 8.3. Let S be a scheme. Let f : Y → X be a surjective proper morphism of
algebraic spaces over S. Then {Y → X} is a ph covering.

Proof. Let U → X be a morphism with U affine. By Chow’s lemma (in the weak
form given as Cohomology of Spaces, Lemma 18.1) we see that there is a surjective proper
morphism of schemes V → U which factors through Y ×X U → U . Taking any finite
affine open cover of V we obtain a standard ph covering of U refining {X ×Y U → U}
as desired. �

Lemma 8.4. Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is a ph covering of X .
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(2) If {Xi → X}i∈I is a ph covering and for each i we have a ph covering {Xij →
Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a ph covering.

(3) If {Xi → X}i∈I is a ph covering andX ′ → X is a morphism of algebraic spaces
then {X ′ ×X Xi → X ′}i∈I is a ph covering.

Proof. Part (1) is clear. Consider g : X ′ → X and {Xi → X}i∈I a ph covering as
in (3). By Morphisms of Spaces, Lemma 23.3 the morphisms X ′ ×X Xi → X ′ are locally
of finite type. If h′ : Z → X ′ is a morphism from an affine scheme towards X ′, then set
h = g ◦ h′ : Z → X . The assumption on {Xi → X}i∈I means there exists a standard ph
covering {Zj → Z}j=1,...,n and morphisms Zj → Xi(j) covering h for certain i(j) ∈ I .
By the universal property of the fibre product we obtain morphisms Zj → X ′ ×X Xi(j)
over h′ also. Hence {X ′ ×X Xi → X ′}i∈I is a ph covering. This proves (3).

Let {Xi → X}i∈I and {Xij → Xi}j∈Ji be as in (2). Let h : Z → X be a morphism
from an affine scheme towards X . By assumption there exists a standard ph covering
{Zj → Z}j=1,...,n and morphisms hj : Zj → Xi(j) covering h for some indices i(j) ∈ I .
By assumption there exist standard ph coverings {Zj,l → Zj}l=1,...,n(j) and morphisms
Zj,l → Xi(j)j(l) covering hj for some indices j(l) ∈ Ji(j). By Topologies, Lemma 8.3 the
family {Zj,l → Z} can be refined by a standard ph covering. Hence we conclude that
{Xij → X}i∈I,j∈Ji is a ph covering. �

Definition 8.5. LetS be a scheme. A big ph site (Spaces/S)ph is any site constructed
as follows:

(1) Choose a big ph site (Sch/S)ph as in Topologies, Section 8.
(2) As underlying category take the category Spaces/S of algebraic spaces over S

(see discussion in Section 2 why this is a set).
(3) Choose any set of coverings as in Sets, Lemma 11.1 starting with the category

Spaces/S and the class of ph coverings of Definition 8.1.

Having defined this, we can localize to get the ph site of an algebraic space.

Definition 8.6. Let S be a scheme. Let (Spaces/S)ph be as in Definition 8.5. Let
X be an algebraic space over S , i.e., an object of (Spaces/S)ph. Then the big ph site
(Spaces/X)ph of X is the localization of the site (Spaces/S)ph at X introduced in Sites,
Section 25.

Here is the promised characterization of ph sheaves.

Lemma 8.7. LetS be a scheme. LetX be an algebraic space overS. LetF be a presheaf
on (Spaces/X)ph. Then F is a sheaf if and only if

(1) F satisfies the sheaf condition for étale coverings, and
(2) if f : V → U is a proper surjective morphism of (Spaces/X)ph, thenF(U) maps

bijectively to the equalizer of the two maps F(V )→ F(V ×U V ).

Proof. We will show that if (1) and (2) hold, then F is sheaf. Let {Ti → T} be a
ph covering, i.e., a covering in (Spaces/X)ph. We will verify the sheaf condition for this
covering. Let si ∈ F(Ti) be sections which restrict to the same section over Ti ×T Ti′ .
We will show that there exists a unique section s ∈ F restricting to si over Ti. Let {Uj →
T} be an étale covering with Uj affine. By property (1) it suffices to produce sections
sj ∈ F(Uj) which agree on Uj ∩ Uj′ in order to produce s. Consider the ph coverings
{Ti×TUj → Uj}. Then sji = si|Ti×TUj are sections agreeing over (Ti×TUj)×Uj (Ti′×T
Uj). Choose a proper surjective morphism Vj → Uj and a finite affine open covering
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Vj =
⋃
Vjk such that the standard ph covering {Vjk → Uj} refines {Ti×T Uj → Uj}. If

sjk ∈ F(Vjk) denotes the pullback of sji to Vjk by the implied morphisms, then we find
that sjk glue to a section s′

j ∈ F(Vj). Using the agreement on overlaps once more, we
find that s′

j is in the equalizer of the two maps F(Vj)→ F(Vj ×Uj Vj). Hence by (2) we
find that s′

j comes from a unique section sj ∈ F(Uj). We omit the verification that these
sections sj have all the desired properties. �

Next, we establish some relationships between the topoi associated to these sites.

Lemma 8.8. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. The functor

u : (Spaces/Y )ph −→ (Spaces/X)ph, V/Y 7−→ V/X

is cocontinuous, and has a continuous right adjoint

v : (Spaces/X)ph −→ (Spaces/Y )ph, (U → Y ) 7−→ (U ×X Y → Y ).

They induce the same morphism of topoi

fbig : Sh((Spaces/Y )ph) −→ Sh((Spaces/X)ph)

We have f−1
big (G)(U/Y ) = G(U/X). We have fbig,∗(F)(U/X) = F(U ×X Y/Y ). Also,

f−1
big has a left adjoint fbig! which commutes with fibre products and equalizers.

Proof. The functoru is cocontinuous, continuous, and commutes with fibre products
and equalizers. Hence Sites, Lemmas 21.5 and 21.6 apply and we deduce the formula for
f−1
big and the existence of fbig!. Moreover, the functor v is a right adjoint because given
U/T and V/X we have MorX(u(U), V ) = MorY (U, V ×X Y ) as desired. Thus we may
apply Sites, Lemmas 22.1 and 22.2 to get the formula for fbig,∗. �

Lemma 8.9. Let S be a scheme. Given morphisms f : X → Y , g : Y → Z of
algebraic spaces over S we have gbig ◦ fbig = (g ◦ f)big .

Proof. This follows from the simple description of pushforward and pullback for
the functors on the big sites from Lemma 8.8. �

Lemma 8.10. Let S be a scheme. Let X be an algebraic space over S. Let P be a
property of objects in (Spaces/X)fppf such that whenever {Ui → U} is a covering in
(Spaces/X)fppf , then

P (Ui0 ×U . . .×U Uip) for all p ≥ 0, i0, . . . , ip ∈ I ⇒ P (U)

If P (U) for all U affine and flat, locally of finite presentation over X , then P (X).

Proof. Let U be a separated algebraic space locally of finite presentation over X .
Then we can choose an étale covering {Ui → U}i∈I with Vi affine. Since U is separated,
we conclude that Ui0 ×U . . . ×U Uip is always affine. Whence P (Ui0 ×U . . . ×U Uip)
always. Hence P (U) holds. Choose a scheme U which is a disjoint union of affines and a
surjective étale morphismU → X . ThenU×X . . .×XU (with p+1 factors) is a separated
algebraic space étale over X . Hence P (U ×X . . .×X U) by the above. We conclude that
P (X) is true. �
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9. Fpqc topology

We briefly discuss the notion of an fpqc covering of algebraic spaces. Please compare with
Topologies, Section 9. We will show in Descent on Spaces, Proposition 4.1 that quasi-
coherent sheaves descent along these.

Definition 9.1. Let S be a scheme, and let X be an algebraic space over S. An fpqc
covering of X is a family of morphisms {fi : Xi → X}i∈I of algebraic spaces such
that each fi is flat and such that for every affine scheme Z and morphism h : Z → X
there exists a standard fpqc covering {gj : Zj → Z}j=1,...,m which refines the family
{Xi ×X Z → Z}i∈I .

In other words, there exists indices i1, . . . , im ∈ I and morphisms hj : Uj → Xij such
that fij ◦ hj = h ◦ gj . Note that if X and all Xi are representable, this is the same as a
fpqc covering of schemes by Topologies, Lemma 9.11.

Lemma 9.2. Any fppf covering is an fpqc covering, and a fortiori, any syntomic,
smooth, étale or Zariski covering is an fpqc covering.

Proof. We will show that an fppf covering is an fpqc covering, and then the rest
follows from Lemma 7.2. Let {fi : Ui → U}i∈I be an fppf covering of algebraic spaces
over S. By definition this means that the fi are flat which checks the first condition
of Definition 9.1. To check the second, let V → U be a morphism with V affine. We
may choose an étale covering {Vij → V ×U Ui} with Vij affine. Then the compositions
fij : Vij → V ×U Ui → V are flat and locally of finite presentation as compositions of
such (Morphisms of Spaces, Lemmas 28.2, 30.3, 39.7, and 39.8). Hence these morphisms are
open (Morphisms of Spaces, Lemma 30.6) and we see that |V | =

⋃
i∈I
⋃
j∈Ji fij(|Vij |) is

an open covering of |V |. Since |V | is quasi-compact, this covering has a finite refinement.
Say Vi1j1 , . . . , ViN jN do the job. Then {Vikjk → V }k=1,...,N is a standard fpqc covering
of V refinining the family {Ui ×U V → V }. This finishes the proof. �

Lemma 9.3. Let S be a scheme. Let X be an algebraic space over S.
(1) If X ′ → X is an isomorphism then {X ′ → X} is an fpqc covering of X .
(2) If {Xi → X}i∈I is an fpqc covering and for each i we have an fpqc covering
{Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is an fpqc covering.

(3) If {Xi → X}i∈I is an fpqc covering and X ′ → X is a morphism of algebraic
spaces then {X ′ ×X Xi → X ′}i∈I is an fpqc covering.

Proof. Part (1) is clear. Consider g : X ′ → X and {Xi → X}i∈I an fpqc covering
as in (3). By Morphisms of Spaces, Lemma 30.4 the morphisms X ′ ×X Xi → X ′ are flat.
If h′ : Z → X ′ is a morphism from an affine scheme towards X ′, then set h = g ◦ h′ :
Z → X . The assumption on {Xi → X}i∈I means there exists a standard fpqc covering
{Zj → Z}j=1,...,n and morphisms Zj → Xi(j) covering h for certain i(j) ∈ I . By the
universal property of the fibre product we obtain morphisms Zj → X ′ ×X Xi(j) over h′

also. Hence {X ′ ×X Xi → X ′}i∈I is an fpqc covering. This proves (3).
Let {Xi → X}i∈I and {Xij → Xi}j∈Ji be as in (2). Let h : Z → X be a morphism
from an affine scheme towards X . By assumption there exists a standard fpqc covering
{Zj → Z}j=1,...,n and morphisms hj : Zj → Xi(j) covering h for some indices i(j) ∈ I .
By assumption there exist standard fpqc coverings {Zj,l → Zj}l=1,...,n(j) and morphisms
Zj,l → Xi(j)j(l) covering hj for some indices j(l) ∈ Ji(j). By Topologies, Lemma 9.10
the family {Zj,l → Z} is a standard fpqc covering. Hence we conclude that {Xij →
X}i∈I,j∈Ji is an fpqc covering. �
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Lemma 9.4. Let S be a scheme, and let X be an algebraic space over S. Suppose that
{fi : Xi → X}i∈I is a family of morphisms of algebraic spaces with targetX . LetU → X
be a surjective étale morphism from a scheme towards X . Then {fi : Xi → X}i∈I is an
fpqc covering of X if and only if {U ×X Xi → U}i∈I is an fpqc covering of U .

Proof. If {Xi → X}i∈I is an fpqc covering, then so is {U ×X Xi → U}i∈I by
Lemma 9.3. Assume that {U ×X Xi → U}i∈I is an fpqc covering. Let h : Z → X
be a morphism from an affine scheme towards X . Then we see that U ×X Z → Z is a
surjective étale morphism of schemes, in particular open. Hence we can find finitely many
affine opens W1, . . . ,Wt of U ×X Z whose images cover Z. For each j we may apply
the condition that {U ×X Xi → U}i∈I is an fpqc covering to the morphism Wj → U ,
and obtain a standard fpqc covering {Wjl →Wj} which refines {Wj ×X Xi →Wj}i∈I .
Hence {Wjl → Z} is a standard fpqc covering of Z (see Topologies, Lemma 9.10) which
refines {Z ×X Xi → X} and we win. �

Lemma 9.5. Let S be a scheme, and let X be an algebraic space over S. Suppose
that U = {fi : Xi → X}i∈I is an fpqc covering of X . Then there exists a refinement
V = {gi : Ti → X} of U which is an fpqc covering such that each Ti is a scheme.

Proof. Omitted. Hint: For each i choose a schemeTi and a surjective étale morphism
Ti → Xi. Then check that {Ti → X} is an fpqc covering. �

To be continued...
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CHAPTER 74

Descent and Algebraic Spaces

1. Introduction

In the chapter on topologies on algebraic spaces (see Topologies on Spaces, Section 1) we
introduced étale, fppf, smooth, syntomic and fpqc coverings of algebraic spaces. In this
chapter we discuss what kind of structures over algebraic spaces can be descended through
such coverings. See for example [?], [?], [?], [?], [?], and [?].

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.
Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Descent data for quasi-coherent sheaves

This section is the analogue of Descent, Section 2 for algebraic spaces. It makes sense to
read that section first.

Definition 3.1. Let S be a scheme. Let {fi : Xi → X}i∈I be a family of morphisms
of algebraic spaces over S with fixed target X .

(1) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the given
family is given by a quasi-coherent sheafFi onXi for each i ∈ I , an isomorphism
of quasi-coherentOXi×XXj -modulesϕij : pr∗

0Fi → pr∗
1Fj for each pair (i, j) ∈

I2 such that for every triple of indices (i, j, k) ∈ I3 the diagram

pr∗
0Fi

pr∗
01ϕij ##

pr∗
02ϕik

// pr∗
2Fk

pr∗
1Fj

pr∗
12ϕjk

;;

ofOXi×XXj×XXk -modules commutes. This is called the cocycle condition.
(2) A morphism ψ : (Fi, ϕij) → (F ′

i , ϕ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms of OXi -modules ψi : Fi → F ′
i such that all the

diagrams
pr∗

0Fi ϕij
//

pr∗
0ψi

��

pr∗
1Fj

pr∗
1ψj

��
pr∗

0F
′
i

ϕ′
ij // pr∗

1F
′
j
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commute.

Lemma 3.2. Let S be a scheme. Let U = {Ui → U}i∈I and V = {Vj → V }j∈J
be families of morphisms of algebraic spaces over S with fixed targets. Let (g, α : I →
J, (gi)) : U → V be a morphism of families of maps with fixed target, see Sites, Definition
8.1. Let (Fj , ϕjj′) be a descent datum for quasi-coherent sheaves with respect to the family
{Vj → V }j∈J . Then

(1) The system (
g∗
iFα(i), (gi × gi′)∗ϕα(i)α(i′)

)
is a descent datum with respect to the family {Ui → U}i∈I .

(2) This construction is functorial in the descent datum (Fj , ϕjj′).
(3) Given a second morphism (g′, α′ : I → J, (g′

i)) of families of maps with fixed
target with g = g′ there exists a functorial isomorphism of descent data
(g∗
iFα(i), (gi × gi′)∗ϕα(i)α(i′)) ∼= ((g′

i)∗Fα′(i), (g′
i × g′

i′)∗ϕα′(i)α′(i′)).

Proof. Omitted. Hint: The maps g∗
iFα(i) → (g′

i)∗Fα′(i) which give the isomor-
phism of descent data in part (3) are the pullbacks of the mapsϕα(i)α′(i) by the morphisms
(gi, g′

i) : Ui → Vα(i) ×V Vα′(i). �

Let g : U → V be a morphism of algebraic spaces. The lemma above tells us that there is a
well defined pullback functor between the categories of descent data relative to families of
maps with target V and U provided there is a morphism between those families of maps
which “lives over g”.

Definition 3.3. Let S be a scheme. Let {Ui → U}i∈I be a family of morphisms of
algebraic spaces over S with fixed target.

(1) Let F be a quasi-coherent OU -module. We call the unique descent on F datum
with respect to the covering {U → U} the trivial descent datum.

(2) The pullback of the trivial descent datum to {Ui → U} is called the canonical
descent datum. Notation: (F|Ui , can).

(3) A descent datum (Fi, ϕij) for quasi-coherent sheaves with respect to the given
family is said to be effective if there exists a quasi-coherent sheaf F on U such
that (Fi, ϕij) is isomorphic to (F|Ui , can).

Lemma 3.4. Let S be a scheme. Let U be an algebraic space over S. Let {Ui → U}
be a Zariski covering of U , see Topologies on Spaces, Definition 3.1. Any descent datum
on quasi-coherent sheaves for the family U = {Ui → U} is effective. Moreover, the
functor from the category of quasi-coherent OU -modules to the category of descent data
with respect to {Ui → U} is fully faithful.

Proof. Omitted. �

4. Fpqc descent of quasi-coherent sheaves

The main application of flat descent for modules is the corresponding descent statement
for quasi-coherent sheaves with respect to fpqc-coverings.

Proposition 4.1. Let S be a scheme. Let {Xi → X} be an fpqc covering of algebraic
spaces over S , see Topologies on Spaces, Definition 9.1. Any descent datum on quasi-
coherent sheaves for {Xi → X} is effective. Moreover, the functor from the category of
quasi-coherentOX -modules to the category of descent data with respect to {Xi → X} is
fully faithful.
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Proof. This is more or less a formal consequence of the corresponding result for
schemes, see Descent, Proposition 5.2. Here is a strategy for a proof:

(1) The fact that {Xi → X} is a refinement of the trivial covering {X → X} gives,
via Lemma 3.2, a functor QCoh(OX)→ DD({Xi → X}) from the category of
quasi-coherentOX -modules to the category of descent data for the given family.

(2) In order to prove the proposition we will construct a quasi-inverse functor back :
DD({Xi → X})→ QCoh(OX).

(3) Applying again Lemma 3.2 we see that there is a functor DD({Xi → X}) →
DD({Tj → X}) if {Tj → X} is a refinement of the given family. Hence in
order to construct the functor back we may assume that eachXi is a scheme, see
Topologies on Spaces, Lemma 9.5. This reduces us to the case where all the Xi

are schemes.
(4) A quasi-coherent sheaf on X is by definition a quasi-coherent OX -module on

Xétale. Now for anyU ∈ Ob(Xétale) we get an fppf covering {Ui×XXi → U}
by schemes and a morphism g : {Ui ×X Xi → U} → {Xi → X} of coverings
lying over U → X . Given a descent datum ξ = (Fi, ϕij) we obtain a quasi-
coherent OU -module Fξ,U corresponding to the pullback g∗ξ of Lemma 3.2 to
the covering ofU and using effectivity for fppf covering of schemes, see Descent,
Proposition 5.2.

(5) Check that ξ 7→ Fξ,U is functorial in ξ. Omitted.
(6) Check that ξ 7→ Fξ,U is compatible with morphisms U → U ′ of the site Xétale,

so that the system of sheavesFξ,U corresponds to a quasi-coherentFξ onXétale,
see Properties of Spaces, Lemma 29.3. Details omitted.

(7) Check that back : ξ 7→ Fξ is quasi-inverse to the functor constructed in (1).
Omitted.

This finishes the proof. �

5. Quasi-coherent modules and affines

Let S be a scheme. LetX be an algebraic space over S. Recall thatXaffine,étale is the full
subcategory ofXétale whose objects are affine turned into a site by declaring the coverings
to be the standard étale coverings. See Properties of Spaces, Definition 18.5. By Proper-
ties of Spaces, Lemma 18.6 we have an equivalence of topoi g : Sh(Xaffine,étale) →
Sh(Xétale) whose pullback functor is given by restriction. Recall that OX denotes the
structure sheaf on Xétale. Then we obtain an equivalence

(5.0.1) (Sh(Xaffine,étale),OX |Xaffine,étale) −→ (Sh(Xétale),OX)
of ringed topoi. We will often writeOX in stead ofOX |Xaffine,étale . Having said this we
can compare quasi-coherent modules as well.

Lemma 5.1. LetS be a scheme. LetX be an algebraic space overS. LetF be a presheaf
ofOX -modules on Xaffine,étale. The following are equivalent

(1) for every morphismU → U ′ ofXaffine,étale the mapF(U ′)⊗OX(U ′)OX(U)→
F(U) is an isomorphism,

(2) F is a quasi-coherent module on the ringed site (Xaffine,étale,OX) in the sense
of Modules on Sites, Definition 23.1,

(3) F corresponds to a quasi-coherent module on X via the equivalence (5.0.1),

Proof. Assume (1) holds. To show that F is a sheaf, let U = {Ui → U}i=1,...,n be
a covering of Xaffine,étale. The sheaf condition for F and U , by our assumption on F ,
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reduces to showing that

0→ F(U)→
∏
F(U)⊗OX(U) OX(Ui)→

∏
F(U)⊗OX(U) OX(Ui ×U Uj)

is exact. This is true because OX(U)→
∏
OX(Ui) is faithfully flat (by Descent, Lemma

9.1 and the fact that coverings in Xaffine,étale are standard étale coverings) and we may
apply Descent, Lemma 3.6. Next, we show that F is quasi-coherent on Xaffine,étale.
Namely, for U in Xaffine,étale, set R = OX(U) and choose a presentation⊕

k∈K
R −→

⊕
l∈L

R −→ F(U) −→ 0

by free R-modules. By property (1) and the right exactness of tensor product we see that
for every morphism U ′ → U in Xaffine,étale we obtain a presentation⊕

k∈K
OX(U ′) −→

⊕
l∈L
OX(U ′) −→ F(U ′) −→ 0

In other words, we see that the restriction of F to the localized category Xaffine,etale/U
has a presentation⊕

k∈K
OX |Xaffine,étale/U −→

⊕
l∈L
OX |Xaffine,étale/U −→ F|Xaffine,étale/U −→ 0

as required to show that F is quasi-coherent. With apologies for the horrible notation,
this finishes the proof that (1) implies (2).

Since the notion of a quasi-coherent module is intrinsic (Modules on Sites, Lemma 23.2)
we see that the equivalence (5.0.1) induces an equivalence between categories of quasi-
coherent modules. Thus we have the equivalence of (2) and (3).

Let us assume (3) and prove (1). Namely, let G be a quasi-coherent module on X cor-
responding to F . Let h : U → U ′ → X be a morphism of Xaffine,étale. Denote
f : U → X and f ′ : U ′ → X the structure morphisms, so that f = f ′ ◦ h. We have
F(U ′) = Γ(U ′, (f ′)∗G) and F(U) = Γ(U, f∗G) = Γ(U, h∗(f ′)∗G). Hence (1) holds by
Schemes, Lemma 7.3. �

6. Descent of finiteness properties of modules

This section is the analogue for the case of algebraic spaces of Descent, Section 7. The goal
is to show that one can check a quasi-coherent module has a certain finiteness conditions
by checking on the members of a covering. We will repeatedly use the following proof
scheme. Suppose that X is an algebraic space, and that {Xi → X} is a fppf (resp. fpqc)
covering. Let U → X be a surjective étale morphism such that U is a scheme. Then there
exists an fppf (resp. fpqc) covering {Yj → X} such that

(1) {Yj → X} is a refinement of {Xi → X},
(2) each Yj is a scheme, and
(3) each morphism Yj → X factors though U , and
(4) {Yj → U} is an fppf (resp. fpqc) covering of U .

Namely, first refine {Xi → X} by an fppf (resp. fpqc) covering such that each Xi is a
scheme, see Topologies on Spaces, Lemma 7.4, resp. Lemma 9.5. Then set Yi = U ×X Xi.
A quasi-coherent OX -module F is of finite type, of finite presentation, etc if and only if
the quasi-coherent OU -module F|U is of finite type, of finite presentation, etc. Hence we
can use the existence of the refinement {Yj → X} to reduce the proof of the following
lemmas to the case of schemes. We will indicate this by saying that “the result follows
from the case of schemes by étale localization”.
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Lemma 6.1. Let X be an algebraic space over a scheme S. Let F be a quasi-coherent
OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is a finite
typeOXi -module. Then F is a finite typeOX -module.

Proof. This follows from the case of schemes, see Descent, Lemma 7.1, by étale local-
ization. �

Lemma 6.2. Let X be an algebraic space over a scheme S. Let F be a quasi-coherent
OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is an OXi -
module of finite presentation. Then F is anOX -module of finite presentation.

Proof. This follows from the case of schemes, see Descent, Lemma 7.3, by étale local-
ization. �

Lemma 6.3. Let X be an algebraic space over a scheme S. Let F be a quasi-coherent
OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is a flat
OXi -module. Then F is a flatOX -module.

Proof. This follows from the case of schemes, see Descent, Lemma 7.5, by étale local-
ization. �

Lemma 6.4. Let X be an algebraic space over a scheme S. Let F be a quasi-coherent
OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is a finite
locally freeOXi -module. Then F is a finite locally freeOX -module.

Proof. This follows from the case of schemes, see Descent, Lemma 7.6, by étale lo-
calization. �

The definition of a locally projective quasi-coherent sheaf can be found in Properties of
Spaces, Section 31. It is also proved there that this notion is preserved under pullback.

Lemma 6.5. Let X be an algebraic space over a scheme S. Let F be a quasi-coherent
OX -module. Let {fi : Xi → X}i∈I be an fpqc covering such that each f∗

i F is a locally
projectiveOXi -module. Then F is a locally projectiveOX -module.

Proof. This follows from the case of schemes, see Descent, Lemma 7.7, by étale local-
ization. �

We also add here two results which are related to the results above, but are of a slightly
different nature.

Lemma 6.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherentOX -module. Assume f is a finite morphism. Then F is
anOX -module of finite type if and only if f∗F is anOY -module of finite type.

Proof. As f is finite it is representable. Choose a scheme V and a surjective étale
morphism V → Y . Then U = V ×Y X is a scheme with a surjective étale morphism
towards X and a finite morphism ψ : U → V (the base change of f ). Since ψ∗(F|U ) =
f∗F|V the result of the lemma follows immediately from the schemes version which is
Descent, Lemma 7.9. �

Lemma 6.7. LetS be a scheme. Let f : X → Y be a morphism of algebraic spaces over
S. Let F be a quasi-coherent OX -module. Assume f is finite and of finite presentation.
Then F is an OX -module of finite presentation if and only if f∗F is an OY -module of
finite presentation.
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Proof. As f is finite it is representable. Choose a scheme V and a surjective étale
morphism V → Y . Then U = V ×Y X is a scheme with a surjective étale morphism
towards X and a finite morphism ψ : U → V (the base change of f ). Since ψ∗(F|U ) =
f∗F|V the result of the lemma follows immediately from the schemes version which is
Descent, Lemma 7.10. �

7. Fpqc coverings

This section is the analogue of Descent, Section 13. At the moment we do not know if all
of the material for fpqc coverings of schemes holds also for algebraic spaces.

Lemma 7.1. Let S be a scheme. Let {fi : Ti → T}i∈I be an fpqc covering of algebraic
spaces over S. Suppose that for each iwe have an open subspaceWi ⊂ Ti such that for all
i, j ∈ I we have pr−1

0 (Wi) = pr−1
1 (Wj) as open subspaces of Ti ×T Tj . Then there exists

a unique open subspace W ⊂ T such that Wi = f−1
i (W ) for each i.

Proof. By Topologies on Spaces, Lemma 9.5 we may assume each Ti is a scheme.
Choose a scheme U and a surjective étale morphism U → T . Then {Ti ×T U → U} is an
fpqc covering of U and Ti×T U is a scheme for each i. Hence we see that the collection of
opens Wi ×T U comes from a unique open subscheme W ′ ⊂ U by Descent, Lemma 13.6.
As U → X is open we can define W ⊂ X the Zariski open which is the image of W ′, see
Properties of Spaces, Section 4. We omit the verification that this works, i.e., that Wi is
the inverse image of W for each i. �

Lemma 7.2. Let S be a scheme. Let {Ti → T} be an fpqc covering of algebraic spaces
over S , see Topologies on Spaces, Definition 9.1. Then given an algebraic space B over S
the sequence

MorS(T,B) // ∏
i MorS(Ti, B) //

//
∏
i,j MorS(Ti ×T Tj , B)

is an equalizer diagram. In other words, every representable functor on the category of
algebraic spaces over S satisfies the sheaf condition for fpqc coverings.

Proof. We know this is true if {Ti → T} is an fpqc covering of schemes, see Prop-
erties of Spaces, Proposition 17.1. This is the key fact and we encourage the reader to skip
the rest of the proof which is formal. Choose a scheme U and a surjective étale morphism
U → T . Let Ui be a scheme and let Ui → Ti ×T U be a surjective étale morphism. Then
{Ui → U} is an fpqc covering. This follows from Topologies on Spaces, Lemmas 9.3 and
9.4. By the above we have the result for {Ui → U}.

What this means is the following: Suppose that bi : Ti → B is a family of morphisms
with bi ◦ pr0 = bj ◦ pr1 as morphisms Ti ×T Tj → B. Then we let ai : Ui → B be
the composition of Ui → Ti with bi. By what was said above we find a unique morphism
a : U → B such that ai is the composition of awith Ui → U . The uniqueness guarantees
that a ◦ pr0 = a ◦ pr1 as morphisms U ×T U → B. Then since T = U/(U ×T U) as a
sheaf, we find that a comes from a unique morphism b : T → B. Chasing diagrams we
find that b is the morphism we are looking for. �

8. Descent of finiteness and smoothness properties of morphisms

The following type of lemma is occasionally useful.



8. DESCENT OF FINITENESS AND SMOOTHNESS PROPERTIES OF MORPHISMS 5569

Lemma 8.1. LetS be a scheme. LetX → Y → Z be morphism of algebraic spaces. Let
P be one of the following properties of morphisms of algebraic spaces over S: flat, locally
finite type, locally finite presentation. Assume that X → Z has P and that X → Y is a
surjection of sheaves on (Sch/S)fppf . Then Y → Z is P .

Proof. Choose a scheme W and a surjective étale morphism W → Z. Choose a
scheme V and a surjective étale morphism V → W ×Z Y . Choose a scheme U and a
surjective étale morphism U → V ×Y X . By assumption we can find an fppf covering
{Vi → V } and lifts Vi → X of the morphism Vi → Y . Since U → X is surjective étale
we see that over the members of the fppf covering {Vi ×X U → V } we have lifts into U .
Hence U → V induces a surjection of sheaves on (Sch/S)fppf . By our definition of what
it means to have property P for a morphism of algebraic spaces (see Morphisms of Spaces,
Definition 30.1, Definition 23.1, and Definition 28.1) we see that U → W has P and we
have to show V → W has P . Thus we reduce the question to the case of morphisms of
schemes which is treated in Descent, Lemma 14.8. �

A more standard case of the above lemma is the following. (The version with “flat” follows
from Morphisms of Spaces, Lemma 31.5.)

Lemma 8.2. Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that f is
surjective, flat, and locally of finite presentation and assume that p is locally of finite pre-
sentation (resp. locally of finite type). Then q is locally of finite presentation (resp. locally
of finite type).

Proof. Since {X → Y } is an fppf covering, it induces a surjection of fppf sheaves
(Topologies on Spaces, Lemma 7.5) and the lemma is a special case of Lemma 8.1. On the
other hand, an easier argument is to deduce it from the analogue for schemes. Namely, the
problem is étale local on B and Y (Morphisms of Spaces, Lemmas 23.4 and 28.4). Hence
we may assume that B and Y are affine schemes. Since |X| → |Y | is open (Morphisms
of Spaces, Lemma 30.6), we can choose an affine scheme U and an étale morphism U →
X such that the composition U → Y is surjective. In this case the result follows from
Descent, Lemma 14.3. �

Lemma 8.3. Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that
(1) f is surjective, and syntomic (resp. smooth, resp. étale),
(2) p is syntomic (resp. smooth, resp. étale).

Then q is syntomic (resp. smooth, resp. étale).
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Proof. We deduce this from the analogue for schemes. Namely, the problem is étale
local on B and Y (Morphisms of Spaces, Lemmas 36.4, 37.4, and 39.2). Hence we may
assume that B and Y are affine schemes. Since |X| → |Y | is open (Morphisms of Spaces,
Lemma 30.6), we can choose an affine scheme U and an étale morphism U → X such that
the composition U → Y is surjective. In this case the result follows from Descent, Lemma
14.4. �

Actually we can strengthen this result as follows.

Lemma 8.4. Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that
(1) f is surjective, flat, and locally of finite presentation,
(2) p is smooth (resp. étale).

Then q is smooth (resp. étale).

Proof. We deduce this from the analogue for schemes. Namely, the problem is étale
local on B and Y (Morphisms of Spaces, Lemmas 37.4 and 39.2). Hence we may assume
that B and Y are affine schemes. Since |X| → |Y | is open (Morphisms of Spaces, Lemma
30.6), we can choose an affine scheme U and an étale morphism U → X such that the
composition U → Y is surjective. In this case the result follows from Descent, Lemma
14.5. �

Lemma 8.5. Let S be a scheme. Let

X
f

//

p
  

Y

q
~~

B

be a commutative diagram of morphisms of algebraic spaces over S. Assume that
(1) f is surjective, flat, and locally of finite presentation,
(2) p is syntomic.

Then both q and f are syntomic.

Proof. We deduce this from the analogue for schemes. Namely, the problem is étale
local on B and Y (Morphisms of Spaces, Lemma 36.4). Hence we may assume that B and
Y are affine schemes. Since |X| → |Y | is open (Morphisms of Spaces, Lemma 30.6), we
can choose an affine scheme U and an étale morphism U → X such that the composition
U → Y is surjective. In this case the result follows from Descent, Lemma 14.7. �

9. Descending properties of spaces

In this section we put some results of the following kind.

Lemma 9.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let x ∈ |X|. If f is flat at x and X is geometrically unibranch at x, then Y is
geometrically unibranch at f(x).
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Proof. Consider the map of étale local rings OY,f(x) → OX,x. By Morphisms of
Spaces, Lemma 30.8 this is flat. Hence ifOX,x has a unique minimal prime, so doesOY,f(x)
(by going down, see Algebra, Lemma 39.19). �

Lemma 9.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is flat and surjective and X is reduced, then Y is reduced.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X ×Y V . As f is surjective and flat,
the morphism of schemes U → V is surjective and flat. In this way we reduce the prob-
lem to the case of schemes (as reducedness of X and Y is defined in terms of reducedness
of U and V , see Properties of Spaces, Section 7). The case of schemes is Descent, Lemma
19.1. �

Lemma 9.3. Let f : X → Y be a morphism of algebraic spaces. If f is locally of finite
presentation, flat, and surjective andX is locally Noetherian, then Y is locally Noetherian.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme U and a surjective étale morphism U → X ×Y V . As f is surjective, flat, and
locally of finite presentation the morphism of schemes U → V is surjective, flat, and lo-
cally of finite presentation. In this way we reduce the problem to the case of schemes (as
being locally Noetherian forX and Y is defined in terms of being locally Noetherian ofU
and V , see Properties of Spaces, Section 7). In the case of schemes the result follows from
Descent, Lemma 16.1. �

Lemma 9.4. Let f : X → Y be a morphism of algebraic spaces. If f is locally of
finite presentation, flat, and surjective and X is regular, then Y is regular.

Proof. By Lemma 9.3 we know that Y is locally Noetherian. Choose a scheme V
and a surjective étale morphism V → Y . It suffices to prove that the local rings of V are
all regular local rings, see Properties, Lemma 9.2. Choose a schemeU and a surjective étale
morphism U → X ×Y V . As f is surjective and flat the morphism of schemes U → V
is surjective and flat. By assumption U is a regular scheme in particular all of its local
rings are regular (by the lemma above). Hence the lemma follows from Algebra, Lemma
110.9. �

Lemma 9.5. Let f : X → Y be a smooth morphism of algebraic spaces. If Y is
reduced, then X is reduced. If f is surjective and X is reduced, then Y is reduced.

Proof. Choose a commutative diagram

U

��

// V

��
X // Y

whereU and V are schemes, the vertical arrows are surjective and étale, andU → X×Y V
is surjective étale. Observe thatX is a reduced algebraic space if and only if U is a reduced
scheme by our definition of reduced algebraic spaces in Properties of Spaces, Section 7.
Similarly for Y and V . The morphism U → V is a smooth morphism of schemes, see
Morphisms of Spaces, Lemma 37.4. Since being reduced is local for the smooth topology
for schemes (Descent, Lemma 18.1) we see that U is reduced if V is reduced. On the other
hand, if X → Y is surjective, then U → V is surjective and in this case if U is reduced,
then V is reduced. �
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10. Descending properties of morphisms

In this section we introduce the notion of when a property of morphisms of algebraic
spaces is local on the target in a topology. Please compare with Descent, Section 22.

Definition 10.1. Let S be a scheme. Let P be a property of morphisms of algebraic
spaces overS. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}. We sayP is τ local on the
base, or τ local on the target, or local on the base for the τ -topology if for any τ -covering
{Yi → Y }i∈I of algebraic spaces and any morphism of algebraic spaces f : X → Y we
have

f has P ⇔ each Yi ×Y X → Yi has P.

To be sure, since isomorphisms are always coverings we see (or require) that property P
holds for X → Y if and only if it holds for any arrow X ′ → Y ′ isomorphic to X → Y .
If a property is τ -local on the target then it is preserved by base changes by morphisms
which occur in τ -coverings. Here is a formal statement.

Lemma 10.2. Let S be a scheme. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}.
LetP be a property of morphisms of algebraic spaces over S which is τ local on the target.
Let f : X → Y have property P . For any morphism Y ′ → Y which is flat, resp. flat and
locally of finite presentation, resp. syntomic, resp. étale, the base change f ′ : Y ′ ×Y X →
Y ′ of f has property P .

Proof. This is true because we can fit Y ′ → Y into a family of morphisms which
forms a τ -covering. �

A simple often used consequence of the above is that if f : X → Y has property P which
is τ -local on the target and f(X) ⊂ V for some open subspace V ⊂ Y , then also the
induced morphism X → V has P . Proof: The base change f by V → Y gives X → V .

Lemma 10.3. Let S be a scheme. Let τ ∈ {fppf, syntomic, smooth, étale}. Let P
be a property of morphisms of algebraic spaces over S which is τ local on the target. For
any morphism of algebraic spaces f : X → Y over S there exists a largest open subspace
W (f) ⊂ Y such that the restriction XW (f) →W (f) has P . Moreover,

(1) if g : Y ′ → Y is a morphism of algebraic spaces which is flat and locally of finite
presentation, syntomic, smooth, or étale and the base change f ′ : XY ′ → Y ′ has
P , then g factors through W (f),

(2) if g : Y ′ → Y is flat and locally of finite presentation, syntomic, smooth, or
étale, then W (f ′) = g−1(W (f)), and

(3) if {gi : Yi → Y } is a τ -covering, then g−1
i (W (f)) = W (fi), where fi is the

base change of f by Yi → Y .

Proof. Consider the union Wset ⊂ |Y | of the images g(|Y ′|) ⊂ |Y | of morphisms
g : Y ′ → Y with the properties:

(1) g is flat and locally of finite presentation, syntomic, smooth, or étale, and
(2) the base change Y ′ ×g,Y X → Y ′ has property P .

Since such a morphism g is open (see Morphisms of Spaces, Lemma 30.6) we see thatWset is
an open subset of |Y |. DenoteW ⊂ Y the open subspace whose underlying set of points is
Wset, see Properties of Spaces, Lemma 4.8. SinceP is local in the τ topology the restriction
XW →W has propertyP because we are given a covering {Y ′ →W} ofW such that the
pullbacks have P . This proves the existence and proves that W (f) has property (1). To
see property (2) note that W (f ′) ⊃ g−1(W (f)) because P is stable under base change by
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flat and locally of finite presentation, syntomic, smooth, or étale morphisms, see Lemma
10.2. On the other hand, if Y ′′ ⊂ Y ′ is an open such that XY ′′ → Y ′′ has property P ,
then Y ′′ → Y factors through W by construction, i.e., Y ′′ ⊂ g−1(W (f)). This proves
(2). Assertion (3) follows from (2) because each morphism Yi → Y is flat and locally of
finite presentation, syntomic, smooth, or étale by our definition of a τ -covering. �

Lemma 10.4. Let S be a scheme. LetP be a property of morphisms of algebraic spaces
over S. Assume

(1) if Xi → Yi, i = 1, 2 have property P so does X1 qX2 → Y1 q Y2,
(2) a morphism of algebraic spaces f : X → Y has property P if and only if for

every affine scheme Z and morphism Z → Y the base change Z ×Y X → Z of
f has property P , and

(3) for any surjective flat morphism of affine schemes Z ′ → Z over S and a mor-
phism f : X → Z from an algebraic space to Z we have

f ′ : Z ′ ×Z X → Z ′ has P ⇒ f has P.

Then P is fpqc local on the base.

Proof. If P has property (2), then it is automatically stable under any base change.
Hence the direct implication in Definition 10.1.

Let {Yi → Y }i∈I be an fpqc covering of algebraic spaces over S. Let f : X → Y be
a morphism of algebraic spaces over S. Assume each base change fi : Yi ×Y X → Yi
has property P . Our goal is to show that f has P . Let Z be an affine scheme, and let
Z → Y be a morphism. By (2) it suffices to show that the morphism of algebraic spaces
Z ×Y X → Z has P . Since {Yi → Y }i∈I is an fpqc covering we know there exists a
standard fpqc covering {Zj → Z}j=1,...,n and morphisms Zj → Yij over Y for suitable
indices ij ∈ I . Since fij has P we see that

Zj ×Y X = Zj ×Yij (Yij ×Y X) −→ Zj

hasP as a base change of fij (see first remark of the proof). SetZ ′ =
∐
j=1,...,n Zj , so that

Z ′ → Z is a flat and surjective morphism of affine schemes over S. By (1) we conclude
that Z ′ ×Y X → Z ′ has property P . Since this is the base change of the morphism
Z ×Y X → Z by the morphism Z ′ → Z we conclude that Z ×Y X → Z has property P
as desired. �

11. Descending properties of morphisms in the fpqc topology

In this section we find a large number of properties of morphisms of algebraic spaces which
are local on the base in the fpqc topology. Please compare with Descent, Section 23 for
the case of morphisms of schemes.

Lemma 11.1. Let S be a scheme. The property P(f) =“f is quasi-compact” is fpqc
local on the base on algebraic spaces over S.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 8.8. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′ ×Z X → Z ′ is quasi-compact. We have to show that f is
quasi-compact. To see this, using Morphisms of Spaces, Lemma 8.8 again, it is enough to
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show that for every affine scheme Y and morphism Y → Z the fibre product Y ×Z X is
quasi-compact. Here is a picture:

(11.1.1)

Y ×Z Z ′ ×Z X

��

//

''

Z ′ ×Z X

f ′

��

##
Y ×Z X

��

// X

f

��

Y ×Z Z ′ //

''

Z ′

$$
Y // Z

Note that all squares are cartesian and the bottom square consists of affine schemes. The
assumption that f ′ is quasi-compact combined with the fact that Y ×Z Z ′ is affine implies
that Y ×Z Z ′ ×Z X is quasi-compact. Since

Y ×Z Z ′ ×Z X −→ Y ×Z X
is surjective as a base change of Z ′ → Z we conclude that Y ×Z X is quasi-compact, see
Morphisms of Spaces, Lemma 8.6. This finishes the proof. �

Lemma 11.2. Let S be a scheme. The property P(f) =“f is quasi-separated” is fpqc
local on the base on algebraic spaces over S.

Proof. A base change of a quasi-separated morphism is quasi-separated, see Mor-
phisms of Spaces, Lemma 4.4. Hence the direct implication in Definition 10.1.
Let {Yi → Y }i∈I be an fpqc covering of algebraic spaces over S. Let f : X → Y be a
morphism of algebraic spaces over S. Assume each base change Xi := Yi ×Y X → Yi is
quasi-separated. This means that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)
is quasi-compact. The base change of a fpqc covering is an fpqc covering, see Topologies on
Spaces, Lemma 9.3 hence {Yi×Y (X×Y X)→ X×Y X} is an fpqc covering of algebraic
spaces. Moreover, each ∆i is the base change of the morphism ∆ : X → X ×Y X . Hence
it follows from Lemma 11.1 that ∆ is quasi-compact, i.e., f is quasi-separated. �

Lemma 11.3. Let S be a scheme. The propertyP(f) =“f is universally closed” is fpqc
local on the base on algebraic spaces over S.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 9.5. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′ ×Z X → Z ′ is universally closed. We have to show that f is
universally closed. To see this, using Morphisms of Spaces, Lemma 9.5 again, it is enough
to show that for every affine scheme Y and morphism Y → Z the map |Y ×Z X| → |Y |
is closed. Consider the cube (11.1.1). The assumption that f ′ is universally closed implies
that |Y ×ZZ ′×ZX| → |Y ×ZZ ′| is closed. As Y ×ZZ ′ → Y is quasi-compact, surjective,
and flat as a base change of Z ′ → Z we see the map |Y ×Z Z ′| → |Y | is submersive, see
Morphisms, Lemma 25.12. Moreover the map

|Y ×Z Z ′ ×Z X| −→ |Y ×Z Z ′| ×|Y | |Y ×Z X|
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is surjective, see Properties of Spaces, Lemma 4.3. It follows by elementary topology that
|Y ×Z X| → |Y | is closed. �

Lemma 11.4. Let S be a scheme. The property P(f) =“f is universally open” is fpqc
local on the base on algebraic spaces over S.

Proof. The proof is the same as the proof of Lemma 11.3. �

Lemma 11.5. The property P(f) =“f is universally submersive” is fpqc local on the
base.

Proof. The proof is the same as the proof of Lemma 11.3. �

Lemma 11.6. The property P(f) =“f is surjective” is fpqc local on the base.

Proof. Omitted. (Hint: Use Properties of Spaces, Lemma 4.3.) �

Lemma 11.7. The property P(f) =“f is universally injective” is fpqc local on the
base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 9.5. Let Z ′ → Z be a flat surjective morphism
of affine schemes over S and let f : X → Z be a morphism from an algebraic space to
Z. Assume that the base change f ′ : X ′ → Z ′ is universally injective. Let K be a field,
and let a, b : Spec(K) → X be two morphisms such that f ◦ a = f ◦ b. As Z ′ → Z is
surjective there exists a field extension K ′/K and a morphism Spec(K ′)→ Z ′ such that
the following solid diagram commutes

Spec(K ′)

))
a′,b′

$$

��

X ′ //

��

Z ′

��
Spec(K) a,b // X // Z

As the square is cartesian we get the two dotted arrows a′, b′ making the diagram com-
mute. Since X ′ → Z ′ is universally injective we get a′ = b′. This forces a = b as
{Spec(K ′) → Spec(K)} is an fpqc covering, see Properties of Spaces, Proposition 17.1.
Hence f is universally injective as desired. �

Lemma 11.8. The property P(f) =“f is a universal homeomorphism” is fpqc local
on the base.

Proof. This can be proved in exactly the same manner as Lemma 11.3. Alternatively,
one can use that a map of topological spaces is a homeomorphism if and only if it is in-
jective, surjective, and open. Thus a universal homeomorphism is the same thing as a sur-
jective, universally injective, and universally open morphism. See Morphisms of Spaces,
Lemma 5.5 and Morphisms of Spaces, Definitions 19.3, 5.2, 6.2, 53.2. Thus the lemma
follows from Lemmas 11.6, 11.7, and 11.4. �

Lemma 11.9. The property P(f) =“f is locally of finite type” is fpqc local on the
base.
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Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 23.4. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′ ×Z X → Z ′ is locally of finite type. We have to show that
f is locally of finite type. Let U be a scheme and let U → X be surjective and étale. By
Morphisms of Spaces, Lemma 23.4 again, it is enough to show that U → Z is locally of
finite type. Since f ′ is locally of finite type, and since Z ′ ×Z U is a scheme étale over
Z ′ ×Z X we conclude (by the same lemma again) that Z ′ ×Z U → Z ′ is locally of finite
type. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is locally of finite type
by Descent, Lemma 23.10 as desired. �

Lemma 11.10. The property P(f) =“f is locally of finite presentation” is fpqc local
on the base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 28.4. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′×ZX → Z ′ is locally of finite presentation. We have to show
that f is locally of finite presentation. Let U be a scheme and let U → X be surjective and
étale. By Morphisms of Spaces, Lemma 28.4 again, it is enough to show that U → Z is
locally of finite presentation. Since f ′ is locally of finite presentation, and sinceZ ′×ZU is
a scheme étale overZ ′×ZX we conclude (by the same lemma again) thatZ ′×ZU → Z ′ is
locally of finite presentation. As {Z ′ → Z} is an fpqc covering we conclude that U → Z
is locally of finite presentation by Descent, Lemma 23.11 as desired. �

Lemma 11.11. The property P(f) =“f is of finite type” is fpqc local on the base.

Proof. Combine Lemmas 11.1 and 11.9. �

Lemma 11.12. The property P(f) =“f is of finite presentation” is fpqc local on the
base.

Proof. Combine Lemmas 11.1, 11.2 and 11.10. �

Lemma 11.13. The property P(f) =“f is flat” is fpqc local on the base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 30.5. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′ ×Z X → Z ′ is flat. We have to show that f is flat. Let U be
a scheme and let U → X be surjective and étale. By Morphisms of Spaces, Lemma 30.5
again, it is enough to show that U → Z is flat. Since f ′ is flat, and since Z ′ ×Z U is a
scheme étale over Z ′×ZX we conclude (by the same lemma again) that Z ′×Z U → Z ′ is
flat. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is flat by Descent, Lemma
23.15 as desired. �

Lemma 11.14. The property P(f) =“f is an open immersion” is fpqc local on the
base.
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Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 12.1. Consider a cartesian diagram

X ′ //

��

X

��
Z ′ // Z

of algebraic spaces over S where Z ′ → Z is a surjective flat morphism of affine schemes,
andX ′ → Z ′ is an open immersion. We have to show thatX → Z is an open immersion.
Note that |X ′| ⊂ |Z ′| corresponds to an open subscheme U ′ ⊂ Z ′ (isomorphic to X ′)
with the property that pr−1

0 (U ′) = pr−1
1 (U ′) as open subschemes of Z ′ ×Z Z ′. Hence

there exists an open subscheme U ⊂ Z such that X ′ = (Z ′ → Z)−1(U), see Descent,
Lemma 13.6. By Properties of Spaces, Proposition 17.1 we see that X satisfies the sheaf
condition for the fpqc topology. Now we have the fpqc covering U = {U ′ → U} and
the element U ′ → X ′ → X ∈ Ȟ0(U , X). By the sheaf condition we obtain a morphism
U → X such that

U ′ //

∼=
��

��

U

��

��

X ′ //

��

X

��
Z ′ // Z

is commutative. On the other hand, we know that for any scheme T over S and T -valued
point T → X the composition T → X → Z is a morphism such that Z ′ ×Z T → Z ′

factors through U ′. Clearly this means that T → Z factors through U . In other words
the map of sheaves U → X is bijective and we win. �

Lemma 11.15. The property P(f) =“f is an isomorphism” is fpqc local on the base.

Proof. Combine Lemmas 11.6 and 11.14. �

Lemma 11.16. The property P(f) =“f is affine” is fpqc local on the base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 20.3. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′ ×Z X → Z ′ is affine. Let X ′ be a scheme representing
Z ′ ×Z X . We obtain a canonical isomorphism

ϕ : X ′ ×Z Z ′ −→ Z ′ ×Z X ′

since both schemes represent the algebraic space Z ′×Z Z ′×Z X . This is a descent datum
for X ′/Z ′/Z , see Descent, Definition 34.1 (verification omitted, compare with Descent,
Lemma 39.1). Since X ′ → Z ′ is affine this descent datum is effective, see Descent, Lemma
37.1. Thus there exists a scheme Y → Z over Z and an isomorphism ψ : Z ′ ×Z Y → X ′

compatible with descent data. Of course Y → Z is affine (by construction or by Descent,
Lemma 23.18). Note that Y = {Z ′ ×Z Y → Y } is a fpqc covering, and interpreting ψ
as an element of X(Z ′ ×Z Y ) we see that ψ ∈ Ȟ0(Y, X). By the sheaf condition for
X with respect to this covering (see Properties of Spaces, Proposition 17.1) we obtain a
morphism Y → X . By construction the base change of this to Z ′ is an isomorphism,
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hence an isomorphism by Lemma 11.15. This proves that X is representable by an affine
scheme and we win. �

Lemma 11.17. The property P(f) =“f is a closed immersion” is fpqc local on the
base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 12.1. Consider a cartesian diagram

X ′ //

��

X

��
Z ′ // Z

of algebraic spaces over S where Z ′ → Z is a surjective flat morphism of affine schemes,
andX ′ → Z ′ is a closed immersion. We have to show thatX → Z is a closed immersion.
The morphism X ′ → Z ′ is affine. Hence by Lemma 11.16 we see that X is a scheme and
X → Z is affine. It follows from Descent, Lemma 23.19 thatX → Z is a closed immersion
as desired. �

Lemma 11.18. The property P(f) =“f is separated” is fpqc local on the base.

Proof. A base change of a separated morphism is separated, see Morphisms of Spaces,
Lemma 4.4. Hence the direct implication in Definition 10.1.
Let {Yi → Y }i∈I be an fpqc covering of algebraic spaces over S. Let f : X → Y be a
morphism of algebraic spaces over S. Assume each base change Xi := Yi ×Y X → Yi is
separated. This means that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)
is a closed immersion. The base change of a fpqc covering is an fpqc covering, see Topolo-
gies on Spaces, Lemma 9.3 hence {Yi ×Y (X ×Y X)→ X ×Y X} is an fpqc covering of
algebraic spaces. Moreover, each ∆i is the base change of the morphism ∆ : X → X×YX .
Hence it follows from Lemma 11.17 that ∆ is a closed immersion, i.e., f is separated. �

Lemma 11.19. The property P(f) =“f is proper” is fpqc local on the base.

Proof. The lemma follows by combining Lemmas 11.3, 11.18 and 11.11. �

Lemma 11.20. The property P(f) =“f is quasi-affine” is fpqc local on the base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 21.3. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′ ×Z X → Z ′ is quasi-affine. Let X ′ be a scheme representing
Z ′ ×Z X . We obtain a canonical isomorphism

ϕ : X ′ ×Z Z ′ −→ Z ′ ×Z X ′

since both schemes represent the algebraic space Z ′×Z Z ′×Z X . This is a descent datum
for X ′/Z ′/Z , see Descent, Definition 34.1 (verification omitted, compare with Descent,
Lemma 39.1). Since X ′ → Z ′ is quasi-affine this descent datum is effective, see Descent,
Lemma 38.1. Thus there exists a scheme Y → Z over Z and an isomorphism ψ : Z ′ ×Z
Y → X ′ compatible with descent data. Of course Y → Z is quasi-affine (by construction
or by Descent, Lemma 23.20). Note that Y = {Z ′ ×Z Y → Y } is a fpqc covering, and
interpreting ψ as an element of X(Z ′ ×Z Y ) we see that ψ ∈ Ȟ0(Y, X). By the sheaf
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condition forX (see Properties of Spaces, Proposition 17.1) we obtain a morphismY → X .
By construction the base change of this toZ ′ is an isomorphism, hence an isomorphism by
Lemma 11.15. This proves thatX is representable by a quasi-affine scheme and we win. �

Lemma 11.21. The property P(f) =“f is a quasi-compact immersion” is fpqc local
on the base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemmas 12.1 and 8.8. Consider a cartesian diagram

X ′ //

��

X

��
Z ′ // Z

of algebraic spaces over S where Z ′ → Z is a surjective flat morphism of affine schemes,
and X ′ → Z ′ is a quasi-compact immersion. We have to show that X → Z is a closed
immersion. The morphismX ′ → Z ′ is quasi-affine. Hence by Lemma 11.20 we see thatX
is a scheme andX → Z is quasi-affine. It follows from Descent, Lemma 23.21 thatX → Z
is a quasi-compact immersion as desired. �

Lemma 11.22. The property P(f) =“f is integral” is fpqc local on the base.

Proof. An integral morphism is the same thing as an affine, universally closed mor-
phism. See Morphisms of Spaces, Lemma 45.7. Hence the lemma follows on combining
Lemmas 11.3 and 11.16. �

Lemma 11.23. The property P(f) =“f is finite” is fpqc local on the base.

Proof. An finite morphism is the same thing as an integral, morphism which is lo-
cally of finite type. See Morphisms of Spaces, Lemma 45.6. Hence the lemma follows on
combining Lemmas 11.9 and 11.22. �

Lemma 11.24. The properties P(f) =“f is locally quasi-finite” and P(f) =“f is
quasi-finite” are fpqc local on the base.

Proof. We have already seen that “quasi-compact” is fpqc local on the base, see Lemma
11.1. Hence it is enough to prove the lemma for “locally quasi-finite”. We will use Lemma
10.4 to prove this. Assumptions (1) and (2) of that lemma follow from Morphisms of
Spaces, Lemma 27.6. Let Z ′ → Z be a surjective flat morphism of affine schemes over
S. Let f : X → Z be a morphism of algebraic spaces, and assume that the base change
f ′ : Z ′ ×Z X → Z ′ is locally quasi-finite. We have to show that f is locally quasi-finite.
LetU be a scheme and letU → X be surjective and étale. By Morphisms of Spaces, Lemma
27.6 again, it is enough to show thatU → Z is locally quasi-finite. Since f ′ is locally quasi-
finite, and since Z ′×Z U is a scheme étale over Z ′×ZX we conclude (by the same lemma
again) that Z ′ ×Z U → Z ′ is locally quasi-finite. As {Z ′ → Z} is an fpqc covering we
conclude that U → Z is locally quasi-finite by Descent, Lemma 23.24 as desired. �

Lemma 11.25. The property P(f) =“f is syntomic” is fpqc local on the base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 36.4. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′×ZX → Z ′ is syntomic. We have to show that f is syntomic.
LetU be a scheme and letU → X be surjective and étale. By Morphisms of Spaces, Lemma
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36.4 again, it is enough to show that U → Z is syntomic. Since f ′ is syntomic, and since
Z ′ ×Z U is a scheme étale over Z ′ ×Z X we conclude (by the same lemma again) that
Z ′ ×Z U → Z ′ is syntomic. As {Z ′ → Z} is an fpqc covering we conclude that U → Z
is syntomic by Descent, Lemma 23.26 as desired. �

Lemma 11.26. The property P(f) =“f is smooth” is fpqc local on the base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 37.4. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′×ZX → Z ′ is smooth. We have to show that f is smooth. Let
U be a scheme and let U → X be surjective and étale. By Morphisms of Spaces, Lemma
37.4 again, it is enough to show that U → Z is smooth. Since f ′ is smooth, and since
Z ′ ×Z U is a scheme étale over Z ′ ×Z X we conclude (by the same lemma again) that
Z ′ ×Z U → Z ′ is smooth. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is
smooth by Descent, Lemma 23.27 as desired. �

Lemma 11.27. The property P(f) =“f is unramified” is fpqc local on the base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 38.5. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′ ×Z X → Z ′ is unramified. We have to show that f is
unramified. Let U be a scheme and let U → X be surjective and étale. By Morphisms
of Spaces, Lemma 38.5 again, it is enough to show that U → Z is unramified. Since f ′ is
unramified, and since Z ′ ×Z U is a scheme étale over Z ′ ×Z X we conclude (by the same
lemma again) that Z ′ ×Z U → Z ′ is unramified. As {Z ′ → Z} is an fpqc covering we
conclude that U → Z is unramified by Descent, Lemma 23.28 as desired. �

Lemma 11.28. The property P(f) =“f is étale” is fpqc local on the base.

Proof. We will use Lemma 10.4 to prove this. Assumptions (1) and (2) of that lemma
follow from Morphisms of Spaces, Lemma 39.2. Let Z ′ → Z be a surjective flat morphism
of affine schemes over S. Let f : X → Z be a morphism of algebraic spaces, and assume
that the base change f ′ : Z ′ ×Z X → Z ′ is étale. We have to show that f is étale. Let U
be a scheme and let U → X be surjective and étale. By Morphisms of Spaces, Lemma 39.2
again, it is enough to show that U → Z is étale. Since f ′ is étale, and since Z ′ ×Z U is a
scheme étale over Z ′ ×Z X we conclude (by the same lemma again) that Z ′ ×Z U → Z ′

is étale. As {Z ′ → Z} is an fpqc covering we conclude that U → Z is étale by Descent,
Lemma 23.29 as desired. �

Lemma 11.29. The property P(f) =“f is finite locally free” is fpqc local on the base.

Proof. Being finite locally free is equivalent to being finite, flat and locally of finite
presentation (Morphisms of Spaces, Lemma 46.6). Hence this follows from Lemmas 11.23,
11.13, and 11.10. �

Lemma 11.30. The propertyP(f) =“f is a monomorphism” is fpqc local on the base.

Proof. Let f : X → Y be a morphism of algebraic spaces. Let {Yi → Y } be an fpqc
covering, and assume each of the base changes fi : Xi → Yi of f is a monomorphism. We
have to show that f is a monomorphism.
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First proof. Note that f is a monomorphism if and only if ∆ : X → X ×Y X is an
isomorphism. By applying this to fi we see that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)

is an isomorphism. The base change of an fpqc covering is an fpqc covering, see Topologies
on Spaces, Lemma 9.3 hence {Yi×Y (X×YX)→ X×YX} is an fpqc covering of algebraic
spaces. Moreover, each ∆i is the base change of the morphism ∆ : X → X ×Y X . Hence
it follows from Lemma 11.15 that ∆ is an isomorphism, i.e., f is a monomorphism.

Second proof. Let V be a scheme, and let V → Y be a surjective étale morphism. If we
can show that V ×Y X → V is a monomorphism, then it follows that X → Y is a
monomorphism. Namely, given any cartesian diagram of sheaves

F
a
//

b

��

G

c

��
H d // I

F = H×I G

if c is a surjection of sheaves, and a is injective, then also d is injective. This reduces the
problem to the case where Y is a scheme. Moreover, in this case we may assume that
the algebraic spaces Yi are schemes also, since we can always refine the covering to place
ourselves in this situation, see Topologies on Spaces, Lemma 9.5.

Assume {Yi → Y } is an fpqc covering of schemes. Let a, b : T → X be two morphisms
such that f ◦ a = f ◦ b. We have to show that a = b. Since fi is a monomorphism we
see that ai = bi, where ai, bi : Yi ×Y T → Xi are the base changes. In particular the
compositions Yi ×Y T → T → X are equal. Since {Yi ×Y T → T} is an fpqc covering
we deduce that a = b from Properties of Spaces, Proposition 17.1. �

12. Descending properties of morphisms in the fppf topology

In this section we find some properties of morphisms of algebraic spaces for which we
could not (yet) show they are local on the base in the fpqc topology which, however, are
local on the base in the fppf topology.

Lemma 12.1. The property P(f) =“f is an immersion” is fppf local on the base.

Proof. Let f : X → Y be a morphism of algebraic spaces. Let {Yi → Y }i∈I be an
fppf covering of Y . Let fi : Xi → Yi be the base change of f .

If f is an immersion, then each fi is an immersion by Spaces, Lemma 12.3. This proves the
direct implication in Definition 10.1.

Conversely, assume each fi is an immersion. By Morphisms of Spaces, Lemma 10.7 this
implies each fi is separated. By Morphisms of Spaces, Lemma 27.7 this implies each fi is
locally quasi-finite. Hence we see that f is locally quasi-finite and separated, by apply-
ing Lemmas 11.18 and 11.24. By Morphisms of Spaces, Lemma 51.1 this implies that f is
representable!

By Morphisms of Spaces, Lemma 12.1 it suffices to show that for every scheme Z and
morphism Z → Y the base change Z ×Y X → Z is an immersion. By Topologies on
Spaces, Lemma 7.4 we can find an fppf covering {Zi → Z} by schemes which refines
the pullback of the covering {Yi → Y } to Z. Hence we see that Z ×Y X → Z (which
is a morphism of schemes according to the result of the preceding paragraph) becomes



5582 74. DESCENT AND ALGEBRAIC SPACES

an immersion after pulling back to the members of an fppf (by schemes) of Z. Hence
Z ×Y X → Z is an immersion by the result for schemes, see Descent, Lemma 24.1. �

Lemma 12.2. The property P(f) =“f is locally separated” is fppf local on the base.

Proof. A base change of a locally separated morphism is locally separated, see Mor-
phisms of Spaces, Lemma 4.4. Hence the direct implication in Definition 10.1.

Let {Yi → Y }i∈I be an fppf covering of algebraic spaces over S. Let f : X → Y be a
morphism of algebraic spaces over S. Assume each base change Xi := Yi ×Y X → Yi is
locally separated. This means that each of the morphisms

∆i : Xi −→ Xi ×Yi Xi = Yi ×Y (X ×Y X)

is an immersion. The base change of a fppf covering is an fppf covering, see Topologies on
Spaces, Lemma 7.3 hence {Yi×Y (X ×Y X)→ X ×Y X} is an fppf covering of algebraic
spaces. Moreover, each ∆i is the base change of the morphism ∆ : X → X ×Y X . Hence
it follows from Lemma 12.1 that ∆ is a immersion, i.e., f is locally separated. �

13. Application of descent of properties of morphisms

This section is the analogue of Descent, Section 25.

Lemma 13.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. LetL be an invertibleOX -module. Let {gi : Yi → Y }i∈I be an fpqc covering. Let
fi : Xi → Yi be the base change of f and let Li be the pullback of L toXi. The following
are equivalent

(1) L is ample on X/Y , and
(2) Li is ample on Xi/Yi for every i ∈ I .

Proof. The implication (1)⇒ (2) follows from Divisors on Spaces, Lemma 14.3. As-
sume (2). To check L is ample on X/Y we may work étale localy on Y , see Divisors on
Spaces, Lemma 14.6. Thus we may assume that Y is a scheme and then we may in turn
assume each Yi is a scheme too, see Topologies on Spaces, Lemma 9.5. In other words, we
may assume that {Yi → Y } is an fpqc covering of schemes.

By Divisors on Spaces, Lemma 14.4 we see that Xi → Yi is representable (i.e., Xi is a
scheme), quasi-compact, and separated. Hence f is quasi-compact and separated by Lem-
mas 11.1 and 11.18. This means that A =

⊕
d≥0 f∗L⊗d is a quasi-coherent graded OY -

algebra (Morphisms of Spaces, Lemma 11.2). Moreover, the formation of A commutes
with flat base change by Cohomology of Spaces, Lemma 11.2. In particular, if we set
Ai =

⊕
d≥0 fi,∗L

⊗d
i then we have Ai = g∗

iA. It follows that the natural maps ψd :
f∗Ad → L⊗d of OX pullback to give the natural maps ψi,d : f∗

i (Ai)d → L⊗d
i of OXi -

modules. Since Li is ample on Xi/Yi we see that for any point xi ∈ Xi, there exists a
d ≥ 1 such that f∗

i (Ai)d → L⊗d
i is surjective on stalks at xi. This follows either directly

from the definition of a relatively ample module or from Morphisms, Lemma 37.4. If
x ∈ |X|, then we can choose an i and an xi ∈ Xi mapping to x. Since OX,x → OXi,xi is
flat hence faithfully flat, we conclude that for every x ∈ |X| there exists a d ≥ 1 such that
f∗Ad → L⊗d is surjective on stalks at x. This implies that the open subset U(ψ) ⊂ X
of Divisors on Spaces, Lemma 13.1 corresponding to the map ψ : f∗A →

⊕
d≥0 L⊗d of

gradedOX -algebras is equal to X . Consider the corresponding morphism

rL,ψ : X −→ Proj
Y

(A)
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It is clear from the above that the base change of rL,ψ to Yi is the morphism rLi,ψi which
is an open immersion by Morphisms, Lemma 37.4. Hence rL,ψ is an open immersion by
Lemma 11.14. Hence X is a scheme and we conclude L is ample on X/Y by Morphisms,
Lemma 37.4. �

Lemma 13.2. Let S be a scheme. Let f : X → Y be a proper morphism of algebraic
spaces over S. Let L be an invertible OX -module. There exists an open subspace V ⊂ Y
characterized by the following property: A morphism Y ′ → Y of algebraic spaces factors
through V if and only if the pullback L′ of L to X ′ = Y ′ ×Y X is ample on X ′/Y ′ (as
in Divisors on Spaces, Definition 14.1).

Proof. Suppose that the lemma holds whenever Y is a scheme. Let U be a scheme
and let U → Y be a surjective étale morphism. Let R = U ×Y U with projections
t, s : R → U . Denote XU = U ×Y X and LU the pullback. Then we get an open
subschemeV ′ ⊂ U as in the lemma for (XU → U,LU ). By the functorial characterization
we see that s−1(V ′) = t−1(V ′). Thus there is an open subspace V ⊂ Y such that V ′ is
the inverse image of V inU . In particular V ′ → V is surjective étale and we conclude that
LV is ample on XV /V (Divisors on Spaces, Lemma 14.6). Now, if Y ′ → Y is a morphism
such that L′ is ample on X ′/Y ′, then U ×Y Y ′ → Y ′ must factor through V ′ and we
conclude that Y ′ → Y factors through V . Hence V ⊂ Y is as in the statement of the
lemma. In this way we reduce to the case dealt with in the next paragraph.

Assume Y is a scheme. Since the question is local on Y we may assume Y is an affine
scheme. We will show the following:

(A) If Spec(k) → Y is a morphism such that Lk is ample on Xk/k, then there is
an open neighbourhood V ⊂ Y of the image of Spec(k) → Y such that LV is
ample on XV /V .

It is clear that (A) implies the truth of the lemma.

Let X → Y , L, Spec(k)→ Y be as in (A). By Lemma 13.1 we may assume that k = κ(y)
is the residue field of a point y of Y .

As Y is affine we can find a directed set I and an inverse system of morphisms Xi → Yi
of algebraic spaces with Yi of finite presentation over Z, with affine transition morphisms
Xi → Xi′ and Yi → Yi′ , with Xi → Yi proper and of finite presentation, and such
that X → Y = lim(Xi → Yi). See Limits of Spaces, Lemma 12.2. After shrinking I
we may assume Yi is an (affine) scheme for all i, see Limits of Spaces, Lemma 5.10. After
shrinking I we can assume we have a compatible system of invertible OXi -modules Li
pulling back to L, see Limits of Spaces, Lemma 7.3. Let yi ∈ Yi be the image of y. Then
κ(y) = colim κ(yi). Hence Xy = limXi,yi and after shrinking I we may assume Xi,yi

is a scheme for all i, see Limits of Spaces, Lemma 5.11. Hence for some i we have Li,yi
is ample on Xi,yi by Limits, Lemma 4.15. By Divisors on Spaces, Lemma 15.3 we find an
open neigbourhood Vi ⊂ Yi of yi such that Li restricted to f−1

i (Vi) is ample relative to
Vi. Letting V ⊂ Y be the inverse image of Vi finishes the proof (hints: use Morphisms,
Lemma 37.9 and the fact thatX → Y ×Yi Xi is affine and the fact that the pullback of an
ample invertible sheaf by an affine morphism is ample by Morphisms, Lemma 37.7). �

14. Properties of morphisms local on the source

In this section we define what it means for a property of morphisms of algebraic spaces to
be local on the source. Please compare with Descent, Section 26.



5584 74. DESCENT AND ALGEBRAIC SPACES

Definition 14.1. Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}. We say P is τ local on
the source, or local on the source for the τ -topology if for any morphism f : X → Y of
algebraic spaces over S , and any τ -covering {Xi → X}i∈I of algebraic spaces we have

f has P ⇔ each Xi → Y has P.

To be sure, since isomorphisms are always coverings we see (or require) that property P
holds forX → Y if and only if it holds for any arrowX ′ → Y ′ isomorphic toX → Y . If
a property is τ -local on the source then it is preserved by precomposing with morphisms
which occur in τ -coverings. Here is a formal statement.

Lemma 14.2. Let S be a scheme. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}.
LetP be a property of morphisms of algebraic spaces over S which is τ local on the source.
Let f : X → Y have property P . For any morphism a : X ′ → X which is flat, resp. flat
and locally of finite presentation, resp. syntomic, resp. smooth, resp. étale, the composition
f ◦ a : X ′ → Y has property P .

Proof. This is true because we can fit X ′ → X into a family of morphisms which
forms a τ -covering. �

Lemma 14.3. Let S be a scheme. Let τ ∈ {fpqc, fppf, syntomic, smooth, étale}.
Suppose that P is a property of morphisms of schemes over S which is étale local on the
source-and-target. Denote Pspaces the corresponding property of morphisms of algebraic
spaces over S , see Morphisms of Spaces, Definition 22.2. If P is local on the source for the
τ -topology, then Pspaces is local on the source for the τ -topology.

Proof. Let f : X → Y be a morphism of algebraic spaces over S. Let {Xi → X}i∈I
be a τ -covering of algebraic spaces. Choose a scheme V and a surjective étale morphism
V → Y . Choose a scheme U and a surjective étale morphism U → X ×Y V . For each i
choose a scheme Ui and a surjective étale morphism Ui → Xi ×X U .

Note that {Xi ×X U → U}i∈I is a τ -covering. Note that each {Ui → Xi ×X U} is an
étale covering, hence a τ -covering. Hence {Ui → U}i∈I is a τ -covering of algebraic spaces
over S. But since U and each Ui is a scheme we see that {Ui → U}i∈I is a τ -covering of
schemes over S.

Now we have

f has Pspaces ⇔ U → V has P
⇔ each Ui → V has P
⇔ each Xi → Y has Pspaces.

the first and last equivalence by the definition of Pspaces the middle equivalence because
we assumed P is local on the source in the τ -topology. �

15. Properties of morphisms local in the fpqc topology on the source

Here are some properties of morphisms that are fpqc local on the source.

Lemma 15.1. The property P(f) =“f is flat” is fpqc local on the source.

Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 30.1 and
Descent, Lemma 27.1. �
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16. Properties of morphisms local in the fppf topology on the source

Here are some properties of morphisms that are fppf local on the source.
Lemma 16.1. The property P(f) =“f is locally of finite presentation” is fppf local

on the source.
Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 28.1 and

Descent, Lemma 28.1. �

Lemma 16.2. The property P(f) =“f is locally of finite type” is fppf local on the
source.

Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 23.1 and
Descent, Lemma 28.2. �

Lemma 16.3. The property P(f) =“f is open” is fppf local on the source.
Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 6.2 and

Descent, Lemma 28.3. �

Lemma 16.4. The propertyP(f) =“f is universally open” is fppf local on the source.
Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 6.2 and

Descent, Lemma 28.4. �

17. Properties of morphisms local in the syntomic topology on the source

Here are some properties of morphisms that are syntomic local on the source.
Lemma 17.1. The property P(f) =“f is syntomic” is syntomic local on the source.
Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 36.1 and

Descent, Lemma 29.1. �

18. Properties of morphisms local in the smooth topology on the source

Here are some properties of morphisms that are smooth local on the source.
Lemma 18.1. The property P(f) =“f is smooth” is smooth local on the source.
Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 37.1 and

Descent, Lemma 30.1. �

19. Properties of morphisms local in the étale topology on the source

Here are some properties of morphisms that are étale local on the source.
Lemma 19.1. The property P(f) =“f is étale” is étale local on the source.
Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 39.1 and

Descent, Lemma 31.1. �

Lemma 19.2. The property P(f) =“f is locally quasi-finite” is étale local on the
source.

Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 27.1 and
Descent, Lemma 31.2. �

Lemma 19.3. The property P(f) =“f is unramified” is étale local on the source.
Proof. Follows from Lemma 14.3 using Morphisms of Spaces, Definition 38.1 and

Descent, Lemma 31.3. �
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20. Properties of morphisms smooth local on source-and-target

Let P be a property of morphisms of algebraic spaces. There is an intuitive meaning to
the phrase “P is smooth local on the source and target”. However, it turns out that this
notion is not the same as asking P to be both smooth local on the source and smooth local
on the target. We have discussed a similar phenomenon (for the étale topology and the
category of schemes) in great detail in Descent, Section 32 (for a quick overview take a
look at Descent, Remark 32.8). However, there is an important difference between the
case of the smooth and the étale topology. To see this difference we encourage the reader
to ponder the difference between Descent, Lemma 32.4 and Lemma 20.2 as well as the
difference between Descent, Lemma 32.5 and Lemma 20.3. Namely, in the étale setting the
choice of the étale “covering” of the target is immaterial, whereas in the smooth setting it
is not.

Definition 20.1. Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S. We say P is smooth local on source-and-target if

(1) (stable under precomposing with smooth maps) if f : X → Y is smooth and
g : Y → Z has P , then g ◦ f has P ,

(2) (stable under smooth base change) if f : X → Y has P and Y ′ → Y is smooth,
then the base change f ′ : Y ′ ×Y X → Y ′ has P , and

(3) (locality) given a morphism f : X → Y the following are equivalent
(a) f has P ,
(b) for every x ∈ |X| there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with smooth vertical arrows and u ∈ |U | with a(u) = x such that h has P .

The above serves as our definition. In the lemmas below we will show that this is equiv-
alent to P being smooth local on the target, smooth local on the source, and stable under
post-composing by smooth morphisms.

Lemma 20.2. Let S be a scheme. LetP be a property of morphisms of algebraic spaces
over S which is smooth local on source-and-target. Then

(1) P is smooth local on the source,
(2) P is smooth local on the target,
(3) P is stable under postcomposing with smooth morphisms: if f : X → Y has P

and g : Y → Z is smooth, then g ◦ f has P .

Proof. We write everything out completely.

Proof of (1). Let f : X → Y be a morphism of algebraic spaces over S. Let {Xi → X}i∈I
be a smooth covering ofX . If each composition hi : Xi → Y hasP , then for each |x| ∈ X
we can find an i ∈ I and a point xi ∈ |Xi| mapping to x. Then (Xi, xi) → (X,x) is a
smooth morphism of pairs, and idY : Y → Y is a smooth morphism, and hi is as in part (3)
of Definition 20.1. Thus we see that f has P . Conversely, if f has P then each Xi → Y
has P by Definition 20.1 part (1).

Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let {Yi → Y }i∈I
be a smooth covering of Y . Write Xi = Yi ×Y X and hi : Xi → Yi for the base change
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of f . If each hi : Xi → Yi has P , then for each x ∈ |X| we pick an i ∈ I and a point
xi ∈ |Xi|mapping to x. Then (Xi, xi)→ (X,x) is a smooth morphism of pairs, Yi → Y
is smooth, and hi is as in part (3) of Definition 20.1. Thus we see that f hasP . Conversely,
if f has P , then each Xi → Yi has P by Definition 20.1 part (2).

Proof of (3). Assume f : X → Y has P and g : Y → Z is smooth. For every x ∈ |X|
we can think of (X,x) → (X,x) as a smooth morphism of pairs, Y → Z is a smooth
morphism, and h = f is as in part (3) of Definition 20.1. Thus we see that g ◦f hasP . �

The following lemma is the analogue of Morphisms, Lemma 14.4.

Lemma 20.3. Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S which is smooth local on source-and-target. Let f : X → Y be a morphism
of algebraic spaces over S. The following are equivalent:

(a) f has property P ,
(b) for every x ∈ |X| there exists a smooth morphism of pairs a : (U, u)→ (X,x), a

smooth morphism b : V → Y , and a morphism h : U → V such that f◦a = b◦h
and h has P ,

(c) for some commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b smooth and a surjective the morphism h has P ,
(d) for any commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth and U → X ×Y V smooth the morphism h has P ,
(e) there exists a smooth covering {Yi → Y }i∈I such that each base change Yi ×Y

X → Yi has P ,
(f) there exists a smooth covering {Xi → X}i∈I such that each compositionXi →

Y has P ,
(g) there exists a smooth covering {Yi → Y }i∈I and for each i ∈ I a smooth cover-

ing {Xij → Yi ×Y X}j∈Ji such that each morphism Xij → Yi has P .

Proof. The equivalence of (a) and (b) is part of Definition 20.1. The equivalence of
(a) and (e) is Lemma 20.2 part (2). The equivalence of (a) and (f) is Lemma 20.2 part (1).
As (a) is now equivalent to (e) and (f) it follows that (a) equivalent to (g).

It is clear that (c) implies (b). If (b) holds, then for any x ∈ |X| we can choose a smooth
morphism of pairs ax : (Ux, ux) → (X,x), a smooth morphism bx : Vx → Y , and a
morphism hx : Ux → Vx such that f ◦ ax = bx ◦ hx and hx has P . Then h =

∐
hx :∐

Ux →
∐
Vx with a =

∐
ax and b =

∐
bx is a diagram as in (c). (Note that h has

property P as {Vx →
∐
Vx} is a smooth covering and P is smooth local on the target.)

Thus (b) is equivalent to (c).

Now we know that (a), (b), (c), (e), (f), and (g) are equivalent. Suppose (a) holds. Let
U, V, a, b, h be as in (d). Then X ×Y V → V has P as P is stable under smooth base
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change, whenceU → V hasP asP is stable under precomposing with smooth morphisms.
Conversely, if (d) holds, then setting U = X and V = Y we see that f has P . �

Lemma 20.4. Let S be a scheme. LetP be a property of morphisms of algebraic spaces
over S. Assume

(1) P is smooth local on the source,
(2) P is smooth local on the target, and
(3) P is stable under postcomposing with smooth morphisms: if f : X → Y has P

and Y → Z is a smooth morphism then X → Z has P .
Then P is smooth local on the source-and-target.

Proof. Let P be a property of morphisms of algebraic spaces which satisfies condi-
tions (1), (2) and (3) of the lemma. By Lemma 14.2 we see that P is stable under precom-
posing with smooth morphisms. By Lemma 10.2 we see thatP is stable under smooth base
change. Hence it suffices to prove part (3) of Definition 20.1 holds.

More precisely, suppose that f : X → Y is a morphism of algebraic spaces over S which
satisfies Definition 20.1 part (3)(b). In other words, for every x ∈ X there exists a smooth
morphism ax : Ux → X , a point ux ∈ |Ux|mapping to x, a smooth morphism bx : Vx →
Y , and a morphism hx : Ux → Vx such that f ◦ ax = bx ◦ hx and hx has P . The proof of
the lemma is complete once we show that f has P . Set U =

∐
Ux, a =

∐
ax, V =

∐
Vx,

b =
∐
bx, and h =

∐
hx. We obtain a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with a, b smooth, a surjective. Note that h has P as each hx does and P is smooth local on
the target. Because a is surjective and P is smooth local on the source, it suffices to prove
that b ◦ h has P . This follows as we assumed that P is stable under postcomposing with a
smooth morphism and as b is smooth. �

Remark 20.5. Using Lemma 20.4 and the work done in the earlier sections of this
chapter it is easy to make a list of types of morphisms which are smooth local on the source-
and-target. In each case we list the lemma which implies the property is smooth local on
the source and the lemma which implies the property is smooth local on the target. In
each case the third assumption of Lemma 20.4 is trivial to check, and we omit it. Here is
the list:

(1) flat, see Lemmas 15.1 and 11.13,
(2) locally of finite presentation, see Lemmas 16.1 and 11.10,
(3) locally finite type, see Lemmas 16.2 and 11.9,
(4) universally open, see Lemmas 16.4 and 11.4,
(5) syntomic, see Lemmas 17.1 and 11.25,
(6) smooth, see Lemmas 18.1 and 11.26,
(7) add more here as needed.

21. Properties of morphisms étale-smooth local on source-and-target

This section is the analogue of Section 20 for properties of morphisms which are étale local
on the source and smooth local on the target. We give this property a ridiculously long
name in order to avoid using it too much.
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Definition 21.1. Let S be a scheme. Let P be a property of morphisms of algebraic
spaces over S. We say P is étale-smooth local on source-and-target if

(1) (stable under precomposing with étale maps) if f : X → Y is étale and g : Y →
Z has P , then g ◦ f has P ,

(2) (stable under smooth base change) if f : X → Y has P and Y ′ → Y is smooth,
then the base change f ′ : Y ′ ×Y X → Y ′ has P , and

(3) (locality) given a morphism f : X → Y the following are equivalent
(a) f has P ,
(b) for every x ∈ |X| there exists a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth and U → X ×Y V étale and u ∈ |U | with a(u) = x such
that h has P .

The above serves as our definition. In the lemmas below we will show that this is equiv-
alent to P being étale local on the target, smooth local on the source, and stable under
post-composing by étale morphisms.

Lemma 21.2. Let S be a scheme. LetP be a property of morphisms of algebraic spaces
over S which is étale-smooth local on source-and-target. Then

(1) P is étale local on the source,
(2) P is smooth local on the target,
(3) P is stable under postcomposing with étale morphisms: if f : X → Y hasP and

g : Y → Z is étale, then g ◦ f has P , and
(4) P has a permanence property: given f : X → Y and g : Y → Z étale such that

g ◦ f has P , then f has P .

Proof. We write everything out completely.

Proof of (1). Let f : X → Y be a morphism of algebraic spaces over S. Let {Xi → X}i∈I
be an étale covering of X . If each composition hi : Xi → Y has P , then for each |x| ∈ X
we can find an i ∈ I and a point xi ∈ |Xi| mapping to x. Then (Xi, xi) → (X,x) is an
étale morphism of pairs, and idY : Y → Y is a smooth morphism, and hi is as in part (3)
of Definition 21.1. Thus we see that f has P . Conversely, if f has P then each Xi → Y
has P by Definition 21.1 part (1).

Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let {Yi → Y }i∈I
be a smooth covering of Y . Write Xi = Yi ×Y X and hi : Xi → Yi for the base change
of f . If each hi : Xi → Yi has P , then for each x ∈ |X| we pick an i ∈ I and a point
xi ∈ |Xi| mapping to x. Then Xi → X ×Y Yi is an étale morphism (because it is an
isomorphism), Yi → Y is smooth, and hi is as in part (3) of Definition 20.1. Thus we see
that f has P . Conversely, if f has P , then each Xi → Yi has P by Definition 20.1 part
(2).

Proof of (3). Assume f : X → Y has P and g : Y → Z is étale. The morphism
X → Y ×ZX is étale as a morphism between algebraic spaces étale overX ( Properties of
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Spaces, Lemma 16.6). Also Y → Z is étale hence a smooth morphism. Thus the diagram

X

��

f
// Y

��
X

g◦f // Z

works for every x ∈ |X| in part (3) of Definition 20.1 and we conclude that g ◦ f has P .

Proof of (4). Let f : X → Y be a morphism and g : Y → Z étale such that g ◦ f has P .
Then by Definition 21.1 part (2) we see that prY : Y ×ZX → Y hasP . But the morphism
(f, 1) : X → Y ×Z X is étale as a section to the étale projection prX : Y ×Z X → X , see
Morphisms of Spaces, Lemma 39.11. Hence f = prY ◦ (f, 1) has P by Definition 21.1 part
(1). �

Lemma 21.3. Let S be a scheme. LetP be a property of morphisms of algebraic spaces
over S which is etale-smooth local on source-and-target. Let f : X → Y be a morphism
of algebraic spaces over S. The following are equivalent:

(a) f has property P ,
(b) for everyx ∈ |X| there exists a smooth morphism b : V → Y , an étale morphism

a : U → V ×Y X , and a point u ∈ |U | mapping to x such that U → V has P ,
(c) for some commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth, U → V ×Y X étale, and a surjective the morphism h has P ,
(d) for any commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth and U → X ×Y V étale, the morphism h has P ,
(e) there exists a smooth covering {Yi → Y }i∈I such that each base change Yi ×Y

X → Yi has P ,
(f) there exists an étale covering {Xi → X}i∈I such that each compositionXi → Y

has P ,
(g) there exists a smooth covering {Yi → Y }i∈I and for each i ∈ I an étale covering
{Xij → Yi ×Y X}j∈Ji such that each morphism Xij → Yi has P .

Proof. The equivalence of (a) and (b) is part of Definition 21.1. The equivalence of
(a) and (e) is Lemma 21.2 part (2). The equivalence of (a) and (f) is Lemma 21.2 part (1). As
(a) is now equivalent to (e) and (f) it follows that (a) equivalent to (g).

It is clear that (c) implies (b). If (b) holds, then for any x ∈ |X| we can choose a smooth
morphism a smooth morphism bx : Vx → Y , an étale morphism Ux → Vx ×Y X , and
ux ∈ |Ux| mapping to x such that Ux → Vx has P . Then h =

∐
hx :

∐
Ux →

∐
Vx

with a =
∐
ax and b =

∐
bx is a diagram as in (c). (Note that h has property P as

{Vx →
∐
Vx} is a smooth covering and P is smooth local on the target.) Thus (b) is

equivalent to (c).
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Now we know that (a), (b), (c), (e), (f), and (g) are equivalent. Suppose (a) holds. Let
U, V, a, b, h be as in (d). Then X ×Y V → V has P as P is stable under smooth base
change, whence U → V has P as P is stable under precomposing with étale morphisms.
Conversely, if (d) holds, then setting U = X and V = Y we see that f has P . �

Lemma 21.4. Let S be a scheme. LetP be a property of morphisms of algebraic spaces
over S. Assume

(1) P is étale local on the source,
(2) P is smooth local on the target, and
(3) P is stable under postcomposing with open immersions: if f : X → Y has P

and Y ⊂ Z is an open embedding then X → Z has P .
Then P is étale-smooth local on the source-and-target.

Proof. Let P be a property of morphisms of algebraic spaces which satisfies condi-
tions (1), (2) and (3) of the lemma. By Lemma 14.2 we see that P is stable under precom-
posing with étale morphisms. By Lemma 10.2 we see that P is stable under smooth base
change. Hence it suffices to prove part (3) of Definition 20.1 holds.

More precisely, suppose that f : X → Y is a morphism of algebraic spaces over S which
satisfies Definition 20.1 part (3)(b). In other words, for every x ∈ X there exists a smooth
morphism bx : Vx → Y , an étale morphism Ux → Vx ×Y X , and a point ux ∈ |Ux|
mapping to x such that hx : Ux → Vx has P . The proof of the lemma is complete once
we show that f has P .

Let ax : Ux → X be the composition Ux → Vx ×Y X → X . Set U =
∐
Ux, a =

∐
ax,

V =
∐
Vx, b =

∐
bx, and h =

∐
hx. We obtain a commutative diagram

U

a

��

h
// V

b
��

X
f // Y

with b smooth, U → V ×Y X étale, a surjective. Note that h has P as each hx does
and P is smooth local on the target. In the next paragraph we prove that we may assume
U, V,X, Y are schemes; we encourage the reader to skip it.

Let X,Y, U, V, a, b, f, h be as in the previous paragraph. We have to show f has P . Let
X ′ → X be a surjective étale morphism with Xi a scheme. Set U ′ = X ′ ×X U . Then
U ′ → X ′ is surjective and U ′ → X ′×Y V is étale. Since P is étale local on the source, we
see thatU ′ → V hasP and that it suffices to show thatX ′ → Y hasP . In other words, we
may assume that X is a scheme. Next, choose a surjective étale morphism Y ′ → Y with
Y ′ a scheme. Set V ′ = V ×Y Y ′, X ′ = X ×Y Y ′, and U ′ = U ×Y Y ′. Then U ′ → X ′ is
surjective and U ′ → X ′ ×Y ′ V ′ is étale. Since P is smooth local on the target, we see that
U ′ → V ′ has P and that it suffices to prove X ′ → Y ′ has P . Thus we may assume both
X and Y are schemes. Choose a surjective étale morphism V ′ → V with V ′ a scheme.
Set U ′ = U ×V V ′. Then U ′ → X is surjective and U ′ → X ×Y V ′ is étale. Since P
is smooth local on the source, we see that U ′ → V ′ has P . Thus we may replace U, V by
U ′, V ′ and assumeX,Y, V are schemes. Finally, we replace U by a scheme surjective étale
over U and we see that we may assume U, V,X, Y are all schemes.

If U, V,X, Y are schemes, then f has P by Descent, Lemma 32.11. �
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Remark 21.5. Using Lemma 21.4 and the work done in the earlier sections of this
chapter it is easy to make a list of types of morphisms which are smooth local on the
source-and-target. In each case we list the lemma which implies the property is etale local
on the source and the lemma which implies the property is smooth local on the target. In
each case the third assumption of Lemma 21.4 is trivial to check, and we omit it. Here is
the list:

(1) étale, see Lemmas 19.1 and 11.28,
(2) locally quasi-finite, see Lemmas 19.2 and 11.24,
(3) unramified, see Lemmas 19.3 and 11.27, and
(4) add more here as needed.

Of course any property listed in Remark 20.5 is a fortiori an example that could be listed
here.

22. Descent data for spaces over spaces

This section is the analogue of Descent, Section 34 for algebraic spaces. Most of the argu-
ments in this section are formal relying only on the definition of a descent datum.

Definition 22.1. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S.

(1) Let V → Y be a morphism of algebraic spaces. A descent datum for V/Y/X
is an isomorphism ϕ : V ×X Y → Y ×X V of algebraic spaces over Y ×X Y
satisfying the cocycle condition that the diagram

V ×X Y ×X Y
ϕ01

((

ϕ02
// Y ×X Y ×X V

Y ×X V ×X Y

ϕ12

66

commutes (with obvious notation).
(2) We also say that the pair (V/Y, ϕ) is a descent datum relative to Y → X .
(3) A morphism f : (V/Y, ϕ)→ (V ′/Y, ϕ′) of descent data relative to Y → X is a

morphism f : V → V ′ of algebraic spaces over Y such that the diagram

V ×X Y
ϕ
//

f×idY
��

Y ×X V

idY ×f
��

V ′ ×X Y
ϕ′
// Y ×X V ′

commutes.

Remark 22.2. Let S be a scheme. Let Y → X be a morphism of algebraic spaces over
S. Let (V/Y, ϕ) be a descent datum relative to Y → X . We may think of the isomorphism
ϕ as an isomorphism

(Y ×X Y )×pr0,Y
V −→ (Y ×X Y )×pr1,Y

V

of algebraic spaces over Y ×X Y . So loosely speaking one may think of ϕ as a map ϕ :
pr∗

0V → pr∗
1V

1. The cocycle condition then says that pr∗
02ϕ = pr∗

12ϕ◦pr∗
01ϕ. In this way

it is very similar to the case of a descent datum on quasi-coherent sheaves.

1Unfortunately, we have chosen the “wrong” direction for our arrow here. In Definitions 22.1 and 22.3 we
should have the opposite direction to what was done in Definition 3.1 by the general principle that “functions”
and “spaces” are dual.
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Here is the definition in case you have a family of morphisms with fixed target.

Definition 22.3. Let S be a scheme. Let {Xi → X}i∈I be a family of morphisms of
algebraic spaces over S with fixed target X .

(1) A descent datum (Vi, ϕij) relative to the family {Xi → X} is given by an al-
gebraic space Vi over Xi for each i ∈ I , an isomorphism ϕij : Vi ×X Xj →
Xi ×X Vj of algebraic spaces over Xi ×X Xj for each pair (i, j) ∈ I2 such that
for every triple of indices (i, j, k) ∈ I3 the diagram

Vi ×X Xj ×X Xk

pr∗
01ϕij

))

pr∗
02ϕik

// Xi ×X Xj ×X Vk

Xi ×X Vj ×X Xk

pr∗
12ϕjk

55

of algebraic spaces over Xi ×X Xj ×X Xk commutes (with obvious notation).
(2) A morphism ψ : (Vi, ϕij) → (V ′

i , ϕ
′
ij) of descent data is given by a family

ψ = (ψi)i∈I of morphisms ψi : Vi → V ′
i of algebraic spaces over Xi such that

all the diagrams

Vi ×X Xj ϕij
//

ψi×id
��

Xi ×X Vj

id×ψj
��

V ′
i ×X Xj

ϕ′
ij // Xi ×X V ′

j

commute.

Remark 22.4. Let S be a scheme. Let {Xi → X}i∈I be a family of morphisms of
algebraic spaces over S with fixed target X . Let (Vi, ϕij) be a descent datum relative to
{Xi → X}. We may think of the isomorphisms ϕij as isomorphisms

(Xi ×X Xj)×pr0,Xi
Vi −→ (Xi ×X Xj)×pr1,Xj

Vj

of algebraic spaces over Xi ×X Xj . So loosely speaking one may think of ϕij as an
isomorphism pr∗

0Vi → pr∗
1Vj over Xi ×X Xj . The cocycle condition then says that

pr∗
02ϕik = pr∗

12ϕjk ◦ pr∗
01ϕij . In this way it is very similar to the case of a descent datum

on quasi-coherent sheaves.

The reason we will usually work with the version of a family consisting of a single mor-
phism is the following lemma.

Lemma 22.5. Let S be a scheme. Let {Xi → X}i∈I be a family of morphisms of
algebraic spaces over S with fixed target X . Set Y =

∐
i∈I Xi. There is a canonical

equivalence of categories

category of descent data
relative to the family {Xi → X}i∈I

−→ category of descent data
relative to Y/X

which maps (Vi, ϕij) to (V, ϕ) with V =
∐
i∈I Vi and ϕ =

∐
ϕij .

Proof. Observe that Y ×X Y =
∐
ij Xi×X Xj and similarly for higher fibre prod-

ucts. Giving a morphism V → Y is exactly the same as giving a family Vi → Xi. And
giving a descent datum ϕ is exactly the same as giving a family ϕij . �

Lemma 22.6. Pullback of descent data. Let S be a scheme.
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(1) Let
Y ′

f
//

a′

��

Y

a

��
X ′ h // X

be a commutative diagram of algebraic spaces over S. The construction

(V → Y, ϕ) 7−→ f∗(V → Y, ϕ) = (V ′ → Y ′, ϕ′)
where V ′ = Y ′ ×Y V and where ϕ′ is defined as the composition

V ′ ×X′ Y ′ (Y ′ ×Y V )×X′ Y ′ (Y ′ ×X′ Y ′)×Y×XY (V ×X Y )

id×ϕ
��

Y ′ ×X′ V ′ Y ′ ×X′ (Y ′ ×Y V ) (Y ′ ×X Y ′)×Y×XY (Y ×X V )

defines a functor from the category of descent data relative to Y → X to the
category of descent data relative to Y ′ → X ′.

(2) Given two morphisms fi : Y ′ → Y , i = 0, 1 making the diagram commute the
functors f∗

0 and f∗
1 are canonically isomorphic.

Proof. We omit the proof of (1), but we remark that the morphism ϕ′ is the mor-
phism (f × f)∗ϕ in the notation introduced in Remark 22.2. For (2) we indicate which
morphism f∗

0V → f∗
1V gives the functorial isomorphism. Namely, since f0 and f1 both

fit into the commutative diagram we see there is a unique morphism r : Y ′ → Y ×X Y
with fi = pri ◦ r. Then we take

f∗
0V = Y ′ ×f0,Y V

= Y ′ ×pr0◦r,Y V

= Y ′ ×r,Y×XY (Y ×X Y )×pr0,Y
V

ϕ−→ Y ′ ×r,Y×XY (Y ×X Y )×pr1,Y
V

= Y ′ ×pr1◦r,Y V

= Y ′ ×f1,Y V

= f∗
1V

We omit the verification that this works. �

Definition 22.7. With S,X,X ′, Y, Y ′, f, a, a′, h as in Lemma 22.6 the functor

(V, ϕ) 7−→ f∗(V, ϕ)
constructed in that lemma is called the pullback functor on descent data.

Lemma 22.8. LetS be a scheme. LetU ′ = {X ′
i → X ′}i∈I′ andU = {Xj → X}i∈I be

families of morphisms with fixed target. Letα : I ′ → I , g : X ′ → X and gi : X ′
i → Xα(i)

be a morphism of families of maps with fixed target, see Sites, Definition 8.1.
(1) Let (Vi, ϕij) be a descent datum relative to the family U . The system(

g∗
i Vα(i), (gi × gj)∗ϕα(i)α(j)

)
(with notation as in Remark 22.4) is a descent datum relative to U ′.

(2) This construction defines a functor between the category of descent data relative
to U and the category of descent data relative to U ′.
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(3) Given a second β : I ′ → I , h : X ′ → X and h′
i : X ′

i → Xβ(i) morphism
of families of maps with fixed target, then if g = h the two resulting functors
between descent data are canonically isomorphic.

(4) These functors agree, via Lemma 22.5, with the pullback functors constructed in
Lemma 22.6.

Proof. This follows from Lemma 22.6 via the correspondence of Lemma 22.5. �

Definition 22.9. With U ′ = {X ′
i → X ′}i∈I′ , U = {Xi → X}i∈I , α : I ′ → I ,

g : X ′ → X , and gi : X ′
i → Xα(i) as in Lemma 22.8 the functor

(Vi, ϕij) 7−→ (g∗
i Vα(i), (gi × gj)∗ϕα(i)α(j))

constructed in that lemma is called the pullback functor on descent data.

If U and U ′ have the same target X , and if U ′ refines U (see Sites, Definition 8.1) but no
explicit pair (α, gi) is given, then we can still talk about the pullback functor since we
have seen in Lemma 22.8 that the choice of the pair does not matter (up to a canonical
isomorphism).

Definition 22.10. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S.

(1) Given an algebraic space U over X we have the trivial descent datum of U rela-
tive to id : X → X , namely the identity morphism on U .

(2) By Lemma 22.6 we get a canonical descent datum on Y ×X U relative to Y → X
by pulling back the trivial descent datum via f . We often denote (Y ×X U, can)
this descent datum.

(3) A descent datum (V, ϕ) relative to Y/X is called effective if (V, ϕ) is isomorphic
to the canonical descent datum (Y ×X U, can) for some algebraic space U over
X .

Thus being effective means there exists an algebraic space U over X and an isomorphism
ψ : V → Y ×X U over Y such that ϕ is equal to the composition

V ×X Y
ψ×idY−−−−→ Y ×X U ×S Y = Y ×X Y ×X U

idY ×ψ−1

−−−−−−→ Y ×X V

There is a slight problem here which is that this definition (in spirit) conflicts with the
definition given in Descent, Definition 34.10 in case Y and X are schemes. However, it
will always be clear from context which version we mean.

Definition 22.11. Let S be a scheme. Let {Xi → X} be a family of morphisms of
algebraic spaces over S with fixed target X .

(1) Given an algebraic space U over X we have a canonical descent datum on the
family of algebraic spaces Xi ×X U by pulling back the trivial descent datum
for U relative to {id : S → S}. We denote this descent datum (Xi ×X U, can).

(2) A descent datum (Vi, ϕij) relative to {Xi → S} is called effective if there exists
an algebraic spaceU overX such that (Vi, ϕij) is isomorphic to (Xi×XU, can).

23. Descent data in terms of sheaves

This section is the analogue of Descent, Section 39. It is slightly different as algebraic
spaces are already sheaves.
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Lemma 23.1. Let S be a scheme. Let {Xi → X}i∈I be an fppf covering of algebraic
spaces over S (Topologies on Spaces, Definition 7.1). There is an equivalence of categories{

descent data (Vi, ϕij)
relative to {Xi → X}

}
↔

sheaves F on (Sch/S)fppf endowed
with a map F → X such that each
Xi ×X F is an algebraic space

 .

Moreover,
(1) the algebraic spaceXi×X F on the right hand side corresponds to Vi on the left

hand side, and
(2) the sheaf F is an algebraic space2 if and only if the corresponding descent datum

(Xi, ϕij) is effective.
Proof. Let us construct the functor from right to left. LetF → X be a map of sheaves

on (Sch/S)fppf such that eachVi = Xi×XF is an algebraic space. We have the projection
Vi → Xi. Then both Vi ×X Xj and Xi ×X Vj represent the sheaf Xi ×X F ×X Xj and
hence we obtain an isomorphism

ϕii′ : Vi ×X Xj → Xi ×X Vj

It is straightforward to see that the maps ϕij are morphisms over Xi ×X Xj and satisfy
the cocycle condition. The functor from right to left is given by this construction F 7→
(Vi, ϕij).
Let us construct a functor from left to right. The isomorphisms ϕij give isomorphisms

ϕij : Vi ×X Xj −→ Xi ×X Vj

over Xi ×Xj . Set F equal to the coequalizer in the following diagram

∐
i,i′ Vi ×X Xj

pr0 //

pr1◦ϕij
//
∐
i Vi

// F

The cocycle condition guarantees that F comes with a map F → X and that Xi ×X F is
isomorphic to Vi. The functor from left to right is given by this construction (Vi, ϕij) 7→
F .
We omit the verification that these constructions are mutually quasi-inverse functors. The
final statements (1) and (2) follow from the constructions. �
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CHAPTER 75

Derived Categories of Spaces

1. Introduction

In this chapter we discuss derived categories of modules on algebraic spaces. There do not
seem to be good introductory references addressing this topic; it is covered in the literature
by referring to papers dealing with derived categories of modules on algebraic stacks, for
example see [?].

2. Conventions

If A is an abelian category and M is an object of A then we also denote M the object of
K(A) and/or D(A) corresponding to the complex which has M in degree 0 and is zero
in all other degrees.

If we have a ringA, thenK(A) denotes the homotopy category of complexes ofA-modules
and D(A) the associated derived category. Similarly, if we have a ringed space (X,OX)
the symbol K(OX) denotes the homotopy category of complexes of OX -modules and
D(OX) the associated derived category.

3. Generalities

In this section we put some general results on cohomology of unbounded complexes of
modules on algebraic spaces.

Lemma 3.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Given an étale morphism V → Y , set U = V ×Y X and denote g : U → V the
projection morphism. Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• and Rg∗(E|U ) = g∗(I•|U ) by Cohomology on Sites, Lemma 20.1. Hence the result
follows from Properties of Spaces, Lemma 26.2. �

Definition 3.2. Let S be a scheme. Let X be an algebraic space over S. Let E be
an object of D(OX). Let T ⊂ |X| be a closed subset. We say E is supported on T if the
cohomology sheaves Hi(E) are supported on T .

4. Derived category of quasi-coherent modules on the small étale site

Let X be a scheme. In this section we show that DQCoh(OX) can be defined in terms of
the small étale site Xétale of X . Denote Oétale the structure sheaf on Xétale. Consider
the morphism of ringed sites

(4.0.1) ε : (Xétale,Oétale) −→ (XZar,OX).

denoted idsmall,étale,Zar in Descent, Lemma 8.5.

5599
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Lemma 4.1. The morphism ε of (4.0.1) is a flat morphism of ringed sites. In particular
the functor ε∗ : Mod(OX)→Mod(Oétale) is exact. Moreover, if ε∗F = 0, then F = 0.

Proof. The flatness of the morphism ε is Descent, Lemma 10.1. Here is another proof.
We have to show that Oétale is a flat ε−1OX -module. To do this it suffices to check
OX,x → Oétale,x is flat for any geometric point x ofX , see Modules on Sites, Lemma 39.3,
Sites, Lemma 34.2, and Étale Cohomology, Remarks 29.11. By Étale Cohomology, Lemma
33.1 we see that Oétale,x is the strict henselization of OX,x. Thus OX,x → Oétale,x is
faithfully flat by More on Algebra, Lemma 45.1.

The exactness of ε∗ follows from the flatness of ε by Modules on Sites, Lemma 31.2.

Let F be anOX -module. If ε∗F = 0, then with notation as above

0 = ε∗Fx = Fx ⊗OX,x
Oétale,x

(Modules on Sites, Lemma 36.4) for all geometric points x. By faithful flatness ofOX,x →
Oétale,x we conclude Fx = 0 for all x ∈ X . �

Let X be a scheme. Notation as in (4.0.1). Recall that ε∗ : QCoh(OX)→ QCoh(Oétale)
is an equivalence by Descent, Proposition 8.9 and Remark 8.6. Moreover, QCoh(Oétale)
forms a Serre subcategory of Mod(Oétale) by Descent, Lemma 10.2. Hence we can let
DQCoh(Oétale) be the triangulated subcategory of D(Oétale) whose objects are the com-
plexes with quasi-coherent cohomology sheaves, see Derived Categories, Section 17. The
functor ε∗ is exact (Lemma 4.1) hence induces ε∗ : D(OX) → D(Oétale) and since pull-
backs of quasi-coherent modules are quasi-coherent also ε∗ : DQCoh(OX)→ DQCoh(Oétale).

Lemma 4.2. Let X be a scheme. The functor ε∗ : DQCoh(OX) → DQCoh(Oétale)
defined above is an equivalence.

Proof. We will prove this by showing the functor Rε∗ : D(Oétale) → D(OX)
induces a quasi-inverse. We will use freely that ε∗ is given by restriction toXZar ⊂ Xétale

and the description of ε∗ = id∗
small,étale,Zar in Descent, Lemma 8.5.

For a quasi-coherent OX -module F the adjunction map F → ε∗ε
∗F is an isomorphism

by the fact that Fa (Descent, Definition 8.2) is a sheaf as proved in Descent, Lemma 8.1.
Conversely, every quasi-coherent Oétale-module H is of the form ε∗F for some quasi-
coherent OX -module F , see Descent, Proposition 8.9. Then F = ε∗H by what we just
said and we conclude that the adjunction map ε∗ε∗H → H is an isomorphism for all
quasi-coherentOétale-modulesH.

Let E be an object of DQCoh(Oétale) and denoteHq = Hq(E) its qth cohomology sheaf.
Let B be the set of affine objects of Xétale. Then Hp(U,Hq) = 0 for all p > 0, all q ∈ Z,
and all U ∈ B, see Descent, Proposition 9.3 and Cohomology of Schemes, Lemma 2.2. By
Cohomology on Sites, Lemma 23.11 this means that

Hq(U,E) = H0(U,Hq)
for all U ∈ B. In particular, we find that this holds for affine opens U ⊂ X . It follows
that the qth cohomology ofRε∗E overU is the value of the sheaf ε∗Hq overU . Applying
sheafification we obtain

Hq(Rε∗E) = ε∗Hq

which in particular shows that Rε∗ induces a functor DQCoh(Oétale) → DQCoh(OX).
Since ε∗ is exact we then obtain Hq(ε∗Rε∗E) = ε∗ε∗Hq = Hq (by discussion above).
Thus the adjunction map ε∗Rε∗E → E is an isomorphism.
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Conversely, for F ∈ DQCoh(OX) the adjunction map F → Rε∗ε
∗F is an isomorphism

for the same reason, i.e., because the cohomology sheaves of Rε∗ε∗F are isomorphic to
ε∗H

m(ε∗F ) = ε∗ε
∗Hm(F ) = Hm(F ). �

5. Derived category of quasi-coherent modules

LetS be a scheme. Lemma 4.2 shows that the categoryDQCoh(OS) can be defined in terms
of complexes ofOS-modules on the scheme S or by complexes ofO-modules on the small
étale site of S. Hence the following definition is compatible with the definition in the case
of schemes.

Definition 5.1. Let S be a scheme. Let X be an algebraic space over S. The derived
category ofOX -modules with quasi-coherent cohomology sheaves is denotedDQCoh(OX).

This makes sense by Properties of Spaces, Lemma 29.7 and Derived Categories, Section 17.
Thus we obtain a canonical functor

(5.1.1) D(QCoh(OX)) −→ DQCoh(OX)

see Derived Categories, Equation (17.1.1).

Observe that a flat morphism f : Y → X of algebraic spaces induces an exact functor
f∗ : Mod(OX)→Mod(OY ), see Morphisms of Spaces, Lemma 30.9 and Modules on Sites,
Lemma 31.2. In particular Lf∗ : D(OX) → D(OY ) is computed on any representative
complex (Derived Categories, Lemma 16.9). We will write Lf∗ = f∗ when f is flat and
we have Hi(f∗E) = f∗Hi(E) for E in D(OX) in this case. We will use this often when
f is étale. Of course in the étale case the pullback functor is just the restriction to Yétale,
see Properties of Spaces, Equation (26.1.1).

Lemma 5.2. Let S be a scheme. LetX be an algebraic space over S. LetE be an object
of D(OX). The following are equivalent

(1) E is in DQCoh(OX),
(2) for every étale morphism ϕ : U → X where U is an affine scheme ϕ∗E is an

object of DQCoh(OU ),
(3) for every étale morphism ϕ : U → X where U is a scheme ϕ∗E is an object of

DQCoh(OU ),
(4) there exists a surjective étale morphism ϕ : U → X where U is a scheme such

that ϕ∗E is an object of DQCoh(OU ), and
(5) there exists a surjective étale morphism of algebraic spaces f : Y → X such that

Lf∗E is an object of DQCoh(OY ).

Proof. This follows immediately from the discussion preceding the lemma and Prop-
erties of Spaces, Lemma 29.6. �

Lemma 5.3. LetS be a scheme. LetX be an algebraic space overS. ThenDQCoh(OX)
has direct sums.

Proof. By Injectives, Lemma 13.4 the derived category D(OX) has direct sums and
they are computed by taking termwise direct sums of any representatives. Thus it is clear
that the cohomology sheaf of a direct sum is the direct sum of the cohomology sheaves
as taking direct sums is an exact functor (in any Grothendieck abelian category). The
lemma follows as the direct sum of quasi-coherent sheaves is quasi-coherent, see Properties
of Spaces, Lemma 29.7. �
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We will need some information on derived limits. We warn the reader that in the lemma
below the derived limit will typically not be an object of DQCoh .

Lemma 5.4. Let S be a scheme. Let X be an algebraic space over S. Let (Kn) be an
inverse system of DQCoh(OX) with derived limit K = R limKn in D(OX). Assume
Hq(Kn+1)→ Hq(Kn) is surjective for all q ∈ Z and n ≥ 1. Then

(1) Hq(K) = limHq(Kn),
(2) R limHq(Kn) = limHq(Kn), and
(3) for every affine open U ⊂ X we have Hp(U, limHq(Kn)) = 0 for p > 0.

Proof. Let B ⊂ Ob(Xétale) be the set of affine objects. Since Hq(Kn) is quasi-
coherent we have Hp(U,Hq(Kn)) = 0 for U ∈ B by the discussion in Cohomology of
Spaces, Section 3 and Cohomology of Schemes, Lemma 2.2. Moreover, the mapsH0(U,Hq(Kn+1))→
H0(U,Hq(Kn)) are surjective for U ∈ B by similar reasoning. Part (1) follows from Co-
homology on Sites, Lemma 23.12 whose conditions we have just verified. Parts (2) and (3)
follow from Cohomology on Sites, Lemma 23.5. �

Lemma 5.5. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. The functor Lf∗ sends DQCoh(OX) into DQCoh(OY ).

Proof. Choose a diagram
U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, the vertical arrows are étale, and a is surjective. Since a∗ ◦
Lf∗ = Lh∗ ◦ b∗ the result follows from Lemma 5.2 and the case of schemes which is
Derived Categories of Schemes, Lemma 3.8. �

Lemma 5.6. Let S be a scheme. Let X be an algebraic space over S. For objects K,L
of DQCoh(OX) the derived tensor product K ⊗L L is in DQCoh(OX).

Proof. Let ϕ : U → X be a surjective étale morphism from a scheme U . Since
ϕ∗(K ⊗L

OX
L) = ϕ∗K ⊗L

OU
ϕ∗L we see from Lemma 5.2 that this follows from the case

of schemes which is Derived Categories of Schemes, Lemma 3.9. �

The following lemma will help us to “compute” a right derived functor on an object of
DQCoh(OX).

Lemma 5.7. Let S be a scheme. LetX be an algebraic space over S. LetE be an object
of DQCoh(OX). Then the canonical map E → R lim τ≥−nE is an isomorphism1.

Proof. Denote Hi = Hi(E) the ith cohomology sheaf of E. Let B be the set of
affine objects of Xétale. Then Hp(U,Hi) = 0 for all p > 0, all i ∈ Z, and all U ∈ B as U
is an affine scheme. See discussion in Cohomology of Spaces, Section 3 and Cohomology
of Schemes, Lemma 2.2. Thus the lemma follows from Cohomology on Sites, Lemma 23.10
with d = 0. �

Lemma 5.8. LetS be a scheme. LetX be an algebraic space overS. LetF : Mod(OX)→
Ab be a functor and N ≥ 0 an integer. Assume that

(1) F is left exact,

1In particular, E has a K-injective representative as in Cohomology on Sites, Lemma 24.1.
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(2) F commutes with countable direct products,
(3) RpF (F) = 0 for all p ≥ N and F quasi-coherent.

Then for E ∈ DQCoh(OX)
(1) Hi(RF (τ≤aE)→ Hi(RF (E)) is an isomorphism for i ≤ a,
(2) Hi(RF (E))→ Hi(RF (τ≥b−N+1E)) is an isomorphism for i ≥ b,
(3) if Hi(E) = 0 for i 6∈ [a, b] for some −∞ ≤ a ≤ b ≤ ∞, then Hi(RF (E)) = 0

for i 6∈ [a, b+N − 1].

Proof. Statement (1) is Derived Categories, Lemma 16.1.

Proof of statement (2). Write En = τ≥−nE. We have E = R limEn, see Lemma 5.7.
Thus RF (E) = R limRF (En) in D(Ab) by Injectives, Lemma 13.6. Thus for every
i ∈ Z we have a short exact sequence

0→ R1 limHi−1(RF (En))→ Hi(RF (E))→ limHi(RF (En))→ 0
see More on Algebra, Remark 86.10. To prove (2) we will show that the term on the left
is zero and that the term on the right equals Hi(RF (E−b+N−1) for any b with i ≥ b.

For every n we have a distinguished triangle

H−n(E)[n]→ En → En−1 → H−n(E)[n+ 1]
(Derived Categories, Remark 12.4) in D(OX). Since H−n(E) is quasi-coherent we have

Hi(RF (H−n(E)[n])) = Ri+nF (H−n(E)) = 0
for i+ n ≥ N and

Hi(RF (H−n(E)[n+ 1])) = Ri+n+1F (H−n(E)) = 0
for i+ n+ 1 ≥ N . We conclude that

Hi(RF (En))→ Hi(RF (En−1))
is an isomorphism for n ≥ N − i. Thus the systems Hi(RF (En)) all satisfy the ML
condition and the R1 lim term in our short exact sequence is zero (see discussion in More
on Algebra, Section 86). Moreover, the system Hi(RF (En)) is constant starting with
n = N − i− 1 as desired.

Proof of (3). Under the assumption on E we have τ≤a−1E = 0 and we get the vanishing
of Hi(RF (E)) for i ≤ a− 1 from (1). Similarly, we have τ≥b+1E = 0 and hence we get
the vanishing of Hi(RF (E)) for i ≥ b+ n from part (2). �

6. Total direct image

The following lemma is the analogue of Cohomology of Spaces, Lemma 8.1.

Lemma 6.1. Let S be a scheme. Let f : X → Y be a quasi-separated and quasi-
compact morphism of algebraic spaces over S.

(1) The functor Rf∗ sends DQCoh(OX) into DQCoh(OY ).
(2) If Y is quasi-compact, there exists an integer N = N(X,Y, f) such that for an

objectE ofDQCoh(OX) withHm(E) = 0 form > 0 we haveHm(Rf∗E) = 0
for m ≥ N .

(3) In fact, if Y is quasi-compact we can find N = N(X,Y, f) such that for every
morphism of algebraic spaces Y ′ → Y the same conclusion holds for the functor
R(f ′)∗ where f ′ : X ′ → Y ′ is the base change of f .



5604 75. DERIVED CATEGORIES OF SPACES

Proof. LetE be an object ofDQCoh(OX). To prove (1) we have to show thatRf∗E
has quasi-coherent cohomology sheaves. This question is local on Y , hence we may assume
Y is quasi-compact. PickN = N(X,Y, f) as in Cohomology of Spaces, Lemma 8.1. Thus
Rpf∗F = 0 for all quasi-coherent OX -modules F and all p ≥ N . Moreover Rpf∗F is
quasi-coherent for all p by Cohomology of Spaces, Lemma 3.1. These statements remain
true after base change.

First, assume E is bounded below. We will show (1) and (2) and (3) hold for such E with
our choice of N . In this case we can for example use the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

(Derived Categories, Lemma 21.3), the quasi-coherence ofRpf∗H
q(E), and the vanishing

of Rpf∗H
q(E) for p ≥ N to see that (1), (2), and (3) hold in this case.

Next we prove (2) and (3). SayHm(E) = 0 form > 0. Let V be an affine object of Yétale.
We have Hp(V ×Y X,F) = 0 for p ≥ N , see Cohomology of Spaces, Lemma 3.2. Hence
we may apply Lemma 5.8 to the functor Γ(V ×Y X,−) to see that

RΓ(V,Rf∗E) = RΓ(V ×Y X,E)

has vanishing cohomology in degrees ≥ N . Since this holds for all V affine in Yétale we
conclude that Hm(Rf∗E) = 0 for m ≥ N .

Next, we prove (1) in the general case. Recall that there is a distinguished triangle

τ≤−n−1E → E → τ≥−nE → (τ≤−n−1E)[1]

in D(OX), see Derived Categories, Remark 12.4. By (2) we see that Rf∗τ≤−n−1E has
vanishing cohomology sheaves in degrees≥ −n+N . Thus, given an integer q we see that
Rqf∗E is equal to Rqf∗τ≥−nE for some n and the result above applies. �

Lemma 6.2. Let S be a scheme. Let f : X → Y be a quasi-separated and quasi-
compact morphism of algebraic spaces over S. Then Rf∗ : DQCoh(OX)→ DQCoh(OY )
commutes with direct sums.

Proof. LetEi be a family of objects ofDQCoh(OX) and setE =
⊕
Ei. We want to

show that the map ⊕
Rf∗Ei −→ Rf∗E

is an isomorphism. We will show it induces an isomorphism on cohomology sheaves
in degree 0 which will imply the lemma. Choose an integer N as in Lemma 6.1. Then
R0f∗E = R0f∗τ≥−NE and R0f∗Ei = R0f∗τ≥−NEi by the lemma cited. Observe that
τ≥−NE =

⊕
τ≥−NEi. Thus we may assume all of the Ei have vanishing cohomology

sheaves in degrees < −N . Next we use the spectral sequences

Rpf∗H
q(E)⇒ Rp+qf∗E and Rpf∗H

q(Ei)⇒ Rp+qf∗Ei

(Derived Categories, Lemma 21.3) to reduce to the case of a direct sum of quasi-coherent
sheaves. This case is handled by Cohomology of Spaces, Lemma 5.2. �

Remark 6.3. Let S be a scheme. Let f : X → Y be a morphism of representable
algebraic spacesX andY overS. Let f0 : X0 → Y0 be a morphism of schemes representing
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f (awkward but temporary notation). Then the diagram

DQCoh(OX0)
Lemma 4.2

DQCoh(OX)

DQCoh(OY0)

Lf∗
0

OO

Lemma 4.2
DQCoh(OY )

Lf∗

OO

(Lemma 5.5 and Derived Categories of Schemes, Lemma 3.8) is commutative. This follows
as the equivalences DQCoh(OX0) → DQCoh(OX) and DQCoh(OY0) → DQCoh(OY ) of
Lemma 4.2 come from pulling back by the (flat) morphisms of ringed sites ε : Xétale →
X0,Zar and ε : Yétale → Y0,Zar and the diagram of ringed sites

X0,Zar

f0

��

Xétaleε
oo

f

��
Y0,Zar Yétale

εoo

is commutative (details omitted). If f is quasi-compact and quasi-separated, equivalently
if f0 is quasi-compact and quasi-separated, then we claim

DQCoh(OX0)

Rf0,∗

��

Lemma 4.2
DQCoh(OX)

Rf∗

��
DQCoh(OY0) Lemma 4.2

DQCoh(OY )

(Lemma 6.1 and Derived Categories of Schemes, Lemma 4.1) is commutative as well. This
also follows from the commutative diagram of sites displayed above as the proof of Lemma
4.2 shows that the functorRε∗ gives the equivalencesDQCoh(OX)→ DQCoh(OX0) and
DQCoh(OY )→ DQCoh(OY0).

Lemma 6.4. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Then Rf∗ : DQCoh(OX)→ DQCoh(OY ) reflects isomorphisms.

Proof. The statement means that a morphism α : E → F of DQCoh(OX) is an
isomorphism if Rf∗α is an isomorphism. We may check this on cohomology sheaves.
In particular, the question is étale local on Y . Hence we may assume Y and therefore X
is affine. In this case the problem reduces to the case of schemes (Derived Categories of
Schemes, Lemma 5.2) via Lemma 4.2 and Remark 6.3. �

Lemma 6.5. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. For E in DQCoh(OY ) we have Rf∗Lf

∗E = E ⊗L
OY

f∗OX .

Proof. Since f is affine the map f∗OX → Rf∗OX is an isomorphism (Cohomol-
ogy of Spaces, Lemma 8.2). There is a canonical map E ⊗L f∗OX = E ⊗L Rf∗OX →
Rf∗Lf

∗E adjoint to the map

Lf∗(E ⊗L Rf∗OX) = Lf∗E ⊗L Lf∗Rf∗OX −→ Lf∗E ⊗L OX = Lf∗E

coming from 1 : Lf∗E → Lf∗E and the canonical map Lf∗Rf∗OX → OX . To check
the map so constructed is an isomorphism we may work locally on Y . Hence we may
assume Y and thereforeX is affine. In this case the problem reduces to the case of schemes
(Derived Categories of Schemes, Lemma 5.3) via Lemma 4.2 and Remark 6.3. �



5606 75. DERIVED CATEGORIES OF SPACES

7. Being proper over a base

This section is the analogue of Cohomology of Schemes, Section 26. As usual with material
having to do with topology on the sets of points, we have to be careful translating the
material to algebraic spaces.

Lemma 7.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let T ⊂ |X| be a closed subset. The following are
equivalent

(1) the morphism Z → Y is proper if Z is the reduced induced algebraic space
structure on T (Properties of Spaces, Definition 12.5),

(2) for some closed subspace Z ⊂ X with |Z| = T the morphism Z → Y is proper,
and

(3) for any closed subspace Z ⊂ X with |Z| = T the morphism Z → Y is proper.

Proof. The implications (3)⇒ (1) and (1)⇒ (2) are immediate. Thus it suffices to
prove that (2) implies (3). We urge the reader to find their own proof of this fact. Let Z ′

andZ ′′ be closed subspaces with T = |Z ′| = |Z ′′| such thatZ ′ → Y is a proper morphism
of algebraic spaces. We have to show that Z ′′ → Y is proper too. Let Z ′′′ = Z ′ ∪ Z ′′

be the scheme theoretic union, see Morphisms of Spaces, Definition 14.4. Then Z ′′′ is
another closed subspace with |Z ′′′| = T . This follows for example from the description of
scheme theoretic unions in Morphisms of Spaces, Lemma 14.6. SinceZ ′′ → Z ′′′ is a closed
immersion it suffices to prove that Z ′′′ → Y is proper (see Morphisms of Spaces, Lemmas
40.5 and 40.4). The morphism Z ′ → Z ′′′ is a bijective closed immersion and in particular
surjective and universally closed. Then the fact that Z ′ → Y is separated implies that
Z ′′′ → Y is separated, see Morphisms of Spaces, Lemma 9.8. MoreoverZ ′′′ → Y is locally
of finite type as X → Y is locally of finite type (Morphisms of Spaces, Lemmas 23.7 and
23.2). SinceZ ′ → Y is quasi-compact andZ ′ → Z ′′′ is a universal homeomorphism we see
that Z ′′′ → Y is quasi-compact. Finally, since Z ′ → Y is universally closed, we see that
the same thing is true for Z ′′′ → Y by Morphisms of Spaces, Lemma 40.7. This finishes
the proof. �

Definition 7.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let T ⊂ |X| be a closed subset. We say T is
proper over Y if the equivalent conditions of Lemma 7.1 are satisfied.

The lemma used in the definition above is false if the morphism f : X → Y is not locally
of finite type. Therefore we urge the reader not to use this terminology if f is not locally
of finite type.

Lemma 7.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let T ′ ⊂ T ⊂ |X| be closed subsets. If T is proper
over Y , then the same is true for T ′.

Proof. Omitted. �

Lemma 7.4. Let S be a scheme. Consider a cartesian diagram of algebraic spaces over
S

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y
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with f locally of finite type. If T is a closed subset of |X| proper over Y , then |g′|−1(T )
is a closed subset of |X ′| proper over Y ′.

Proof. Observe that the statement makes sense as f ′ is locally of finite type by Mor-
phisms of Spaces, Lemma 23.3. Let Z ⊂ X be the reduced induced closed subspace struc-
ture on T . Denote Z ′ = (g′)−1(Z) the scheme theoretic inverse image. Then Z ′ =
X ′ ×X Z = (Y ′ ×Y X)×X Z = Y ′ ×Y Z is proper over Y ′ as a base change of Z over
Y (Morphisms of Spaces, Lemma 40.3). On the other hand, we have T ′ = |Z ′|. Hence the
lemma holds. �

Lemma 7.5. Let S be a scheme. Let B be an algebraic space over S. Let f : X → Y
be a morphism of algebraic spaces which are locally of finite type over B.

(1) If Y is separated over B and T ⊂ |X| is a closed subset proper over B, then
|f |(T ) is a closed subset of |Y | proper over B.

(2) If f is universally closed and T ⊂ |X| is a closed subset proper over B, then
|f |(T ) is a closed subset of Y proper over B.

(3) If f is proper and T ⊂ |Y | is a closed subset proper over B, then |f |−1(T ) is a
closed subset of |X| proper over B.

Proof. Proof of (1). Assume Y is separated over B and T ⊂ |X| is a closed subset
proper over B. Let Z be the reduced induced closed subspace structure on T and apply
Morphisms of Spaces, Lemma 40.8 to Z → Y over B to conclude.
Proof of (2). Assume f is universally closed and T ⊂ |X| is a closed subset proper over
B. Let Z be the reduced induced closed subspace structure on T and let Z ′ be the reduced
induced closed subspace structure on |f |(T ). We obtain an induced morphism Z → Z ′.
Denote Z ′′ = f−1(Z ′) the scheme theoretic inverse image. Then Z ′′ → Z ′ is universally
closed as a base change of f (Morphisms of Spaces, Lemma 40.3). HenceZ → Z ′ is univer-
sally closed as a composition of the closed immersion Z → Z ′′ and Z ′′ → Z ′ (Morphisms
of Spaces, Lemmas 40.5 and 40.4). We conclude that Z ′ → B is separated by Morphisms
of Spaces, Lemma 9.8. Since Z → B is quasi-compact and Z → Z ′ is surjective we see
that Z ′ → B is quasi-compact. Since Z ′ → B is the composition of Z ′ → Y and Y → B
we see that Z ′ → B is locally of finite type (Morphisms of Spaces, Lemmas 23.7 and 23.2).
Finally, since Z → B is universally closed, we see that the same thing is true for Z ′ → B
by Morphisms of Spaces, Lemma 40.7. This finishes the proof.
Proof of (3). Assume f is proper and T ⊂ |Y | is a closed subset proper over B. Let Z be
the reduced induced closed subspace structure on T . Denote Z ′ = f−1(Z) the scheme
theoretic inverse image. Then Z ′ → Z is proper as a base change of f (Morphisms of
Spaces, Lemma 40.3). Whence Z ′ → B is proper as the composition of Z ′ → Z and
Z → B (Morphisms of Spaces, Lemma 40.4). This finishes the proof. �

Lemma 7.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let Ti ⊂ |X|, i = 1, . . . , n be closed subsets. If Ti,
i = 1, . . . , n are proper over Y , then the same is true for T1 ∪ . . . ∪ Tn.

Proof. Let Zi be the reduced induced closed subscheme structure on Ti. The mor-
phism

Z1 q . . .q Zn −→ X

is finite by Morphisms of Spaces, Lemmas 45.10 and 45.11. As finite morphisms are uni-
versally closed (Morphisms of Spaces, Lemma 45.9) and since Z1q . . .qZn is proper over
S we conclude by Lemma 7.5 part (2) that the image Z1 ∪ . . . ∪ Zn is proper over S. �
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Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S which is
locally of finite type. LetF be a finite type, quasi-coherentOX -module. Then the support
Supp(F) of F is a closed subset of |X|, see Morphisms of Spaces, Lemma 15.2. Hence it
makes sense to say “the support of F is proper over Y ”.

Lemma 7.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let F be a finite type, quasi-coherent OX -module.
The following are equivalent

(1) the support of F is proper over Y ,
(2) the scheme theoretic support of F (Morphisms of Spaces, Definition 15.4) is

proper over Y , and
(3) there exists a closed subspace Z ⊂ X and a finite type, quasi-coherent OZ -

module G such that (a) Z → Y is proper, and (b) (Z → X)∗G = F .

Proof. The support Supp(F) ofF is a closed subset of |X|, see Morphisms of Spaces,
Lemma 15.2. Hence we can apply Definition 7.2. Since the scheme theoretic support of F
is a closed subspace whose underlying closed subset is Supp(F) we see that (1) and (2) are
equivalent by Definition 7.2. It is clear that (2) implies (3). Conversely, if (3) is true, then
Supp(F) ⊂ |Z| and hence Supp(F) is proper over Y for example by Lemma 7.3. �

Lemma 7.8. Let S be a scheme. Consider a cartesian diagram of algebraic spaces over
S

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

with f locally of finite type. Let F be a finite type, quasi-coherent OX -module. If the
support of F is proper over Y , then the support of (g′)∗F is proper over Y ′.

Proof. Observe that the statement makes sense because (g′) ∗ F is of finite type by
Modules on Sites, Lemma 23.4. We have Supp((g′)∗F) = |g′|−1(Supp(F)) by Morphisms
of Spaces, Lemma 15.2. Thus the lemma follows from Lemma 7.4. �

Lemma 7.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let F , G be finite type, quasi-coherentOX -module.

(1) If the supports of F , G are proper over Y , then the same is true for F ⊕ G , for
any extension of G by F , for Im(u) and Coker(u) given any OX -module map
u : F → G , and for any quasi-coherent quotient of F or G.

(2) If Y is locally Noetherian, then the category of coherentOX -modules with sup-
port proper over Y is a Serre subcategory (Homology, Definition 10.1) of the
abelian category of coherentOX -modules.

Proof. Proof of (1). Let T , T ′ be the support of F and G. Then all the sheaves men-
tioned in (1) have support contained in T ∪T ′. Thus the assertion itself is clear from Lem-
mas 7.3 and 7.6 provided we check that these sheaves are finite type and quasi-coherent.
For quasi-coherence we refer the reader to Properties of Spaces, Section 29. For “finite
type” we refer the reader to Properties of Spaces, Section 30.

Proof of (2). The proof is the same as the proof of (1). Note that the assertions make sense
asX is locally Noetherian by Morphisms of Spaces, Lemma 23.5 and by the description of
the category of coherent modules in Cohomology of Spaces, Section 12. �
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Lemma 7.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type and Y locally Noetherian. Let F be a coherent
OX -module with support proper over Y . Then Rpf∗F is a coherent OY -module for all
p ≥ 0.

Proof. By Lemma 7.7 there exists a closed immersion i : Z → X with g = f ◦ i :
Z → Y proper and F = i∗G for some coherent module G on Z. We see that Rpg∗G is
coherent on S by Cohomology of Spaces, Lemma 20.2. On the other hand,Rqi∗G = 0 for
q > 0 (Cohomology of Spaces, Lemma 12.9). By Cohomology on Sites, Lemma 14.7 we
get Rpf∗F = Rpg∗G and the lemma follows. �

8. Derived category of coherent modules

Let S be a scheme. Let X be a locally Noetherian algebraic space over S. In this case the
category Coh(OX) ⊂ Mod(OX) of coherent OX -modules is a weak Serre subcategory,
see Homology, Section 10 and Cohomology of Spaces, Lemma 12.3. Denote

DCoh(OX) ⊂ D(OX)

the subcategory of complexes whose cohomology sheaves are coherent, see Derived Cate-
gories, Section 17. Thus we obtain a canonical functor

(8.0.1) D(Coh(OX)) −→ DCoh(OX)

see Derived Categories, Equation (17.1.1).

Lemma 8.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type and Y is Noetherian. Let E be an object of
Db

Coh(OX) such that the support of Hi(E) is proper over Y for all i. Then Rf∗E is an
object of Db

Coh(OY ).

Proof. Consider the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

see Derived Categories, Lemma 21.3. By assumption and Lemma 7.10 the sheavesRpf∗H
q(E)

are coherent. HenceRp+qf∗E is coherent, i.e., E ∈ DCoh(OY ). Boundedness from below
is trivial. Boundedness from above follows from Cohomology of Spaces, Lemma 8.1 or
from Lemma 6.1. �

Lemma 8.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type and Y is Noetherian. Let E be an object of
D+

Coh(OX) such that the support of Hi(E) is proper over S for all i. Then Rf∗E is an
object of D+

Coh(OY ).

Proof. The proof is the same as the proof of Lemma 8.1. You can also deduce it from
Lemma 8.1 by considering what the exact functor Rf∗ does to the distinguished triangles
τ≤aE → E → τ≥a+1E → τ≤aE[1]. �

Lemma 8.3. Let S be a scheme. LetX be a locally Noetherian algebraic space over S.
If L is in D+

Coh(OX) and K in D−
Coh(OX), then RHom(K,L) is in D+

Coh(OX).

Proof. We can check whether an object of D(OX) is in DCoh(OX) étale locally on
X , see Cohomology of Spaces, Lemma 12.2. Hence this lemma follows from the case of
schemes, see Derived Categories of Schemes, Lemma 11.5. �
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Lemma 8.4. Let A be a Noetherian ring. Let X be a proper algebraic space over A.
For L in D+

Coh(OX) and K in D−
Coh(OX), the A-modules ExtnOX

(K,L) are finite.

Proof. Recall that
ExtnOX

(K,L) = Hn(X,RHomOX
(K,L)) = Hn(Spec(A), Rf∗RHomOX

(K,L))
see Cohomology on Sites, Lemma 35.1 and Cohomology on Sites, Section 14. Thus the
result follows from Lemmas 8.3 and 8.2. �

9. Induction principle

In this section we discuss an induction principle for algebraic spaces analogous to what
is Cohomology of Schemes, Lemma 4.1 for schemes. To formulate it we introduce the
notion of an elementary distinguished square; this terminology is borrowed from [?]. The
principle as formulated here is implicit in the paper [?] by Raynaud and Gruson. A related
principle for algebraic stacks is [?, Theorem D] by David Rydh.

Definition 9.1. Let S be a scheme. A commutative diagram

U ×W V //

��

V

f

��
U

j // W

of algebraic spaces over S is called an elementary distinguished square if
(1) U is an open subspace of W and j is the inclusion morphism,
(2) f is étale, and
(3) setting T = W \ U (with reduced induced subspace structure) the morphism

f−1(T )→ T is an isomorphism.
We will indicate this by saying: “Let (U ⊂ W,f : V → W ) be an elementary distin-
guished square.”

Note that if (U ⊂ W,f : V → W ) is an elementary distinguished square, then we have
W = U ∪ f(V ). Thus {U → W,V → W} is an étale covering of W . It turns out that
these étale coverings have nice properties and that in some sense there are “enough” of
them.

Lemma 9.2. Let S be a scheme. Let (U ⊂ W,f : V → W ) be an elementary distin-
guished square of algebraic spaces over S.

(1) If V ′ ⊂ V and U ⊂ U ′ ⊂ W are open subspaces and W ′ = U ′ ∪ f(V ′) then
(U ′ ⊂W ′, f |V ′ : V ′ →W ′) is an elementary distinguished square.

(2) If p : W ′ → W is a morphism of algebraic spaces, then (p−1(U) ⊂ W ′, V ×W
W ′ →W ′) is an elementary distinguished square.

(3) If S′ → S is a morphism of schemes, then (S′ ×S U ⊂ S′ ×S W,S′ ×S V →
S′ ×S W ) is an elementary distinguished square.

Proof. Omitted. �

Lemma 9.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let P be a property of the quasi-compact and quasi-separated objects
of Xspaces,étale. Assume that

(1) P holds for every affine object of Xspaces,étale,
(2) for every elementary distinguished square (U ⊂W,f : V →W ) such that
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(a) W is a quasi-compact and quasi-separated object of Xspaces,étale,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,

then P holds for W .
Then P holds for every quasi-compact and quasi-separated object of Xspaces,étale and in
particular for X .

Proof. We first claim that P holds for every representable quasi-compact and quasi-
separated object of Xspaces,étale. Namely, suppose that U → X is étale and U is a quasi-
compact and quasi-separated scheme. By assumption (1) property P holds for every affine
open of U . Moreover, ifW,V ⊂ U are quasi-compact open with V affine and P holds for
W , V , andW ∩V , then P holds forW ∪V by (2) (as the pair (W ⊂W ∪V, V →W ∪V )
is an elementary distinguished square). Thus P holds forU by the induction principle for
schemes, see Cohomology of Schemes, Lemma 4.1.
To finish the proof it suffices to prove P holds forX (because we can simply replaceX by
any quasi-compact and quasi-separated object ofXspaces,étale we want to prove the result
for). We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 8.6. We will prove that P
holds forUp by descending induction on p. Note that P holds forUn+1 by (1) as an empty
algebraic space is affine. Assume P holds for Up+1. Note that (Up+1 ⊂ Up, fp : Vp →
Up) is an elementary distinguished square, but (2) may not apply as Vp may not be affine.
However, as Vp is a quasi-compact scheme we may choose a finite affine open covering
Vp = Vp,1 ∪ . . . ∪ Vp,m. Set Wp,0 = Up+1 and

Wp,i = Up+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)
for i = 1, . . . ,m. These are quasi-compact open subspaces of X . Then we have

Up+1 = Wp,0 ⊂Wp,1 ⊂ . . . ⊂Wp,m = Up

and the pairs
(Wp,0 ⊂Wp,1, fp|Vp,1), (Wp,1 ⊂Wp,2, fp|Vp,2), . . . , (Wp,m−1 ⊂Wp,m, fp|Vp,m)

are elementary distinguished squares by Lemma 9.2. Note that P holds for each Vp,1 (as
affine schemes) and for Wp,i ×Wp,i+1 Vp,i+1 as this is a quasi-compact open of Vp,i+1 and
hence P holds for it by the first paragraph of this proof. Thus (2) applies to each of these
and we inductively conclude P holds for Wp,1, . . . ,Wp,m = Up. �

Lemma 9.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let B ⊂ Ob(Xspaces,étale). Let P be a property of the elements of B.
Assume that

(1) every W ∈ B is quasi-compact and quasi-separated,
(2) if W ∈ B and U ⊂W is quasi-compact open, then U ∈ B,
(3) if V ∈ Ob(Xspaces,étale) is affine, then (a) V ∈ B and (b) P holds for V ,
(4) for every elementary distinguished square (U ⊂W,f : V →W ) such that

(a) W ∈ B,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,
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then P holds for W .
Then P holds for every W ∈ B.

Proof. This is proved in exactly the same manner as the proof of Lemma 9.3. (We
remark that (4)(d) makes sense as U ×W V is a quasi-compact open of V hence an element
of B by conditions (2) and (3).) �

Remark 9.5. How to choose the collectionB in Lemma 9.4? Here are some examples:
(1) IfX is quasi-compact and separated, then we can choose B to be the set of quasi-

compact and separated objects of Xspaces,étale. Then X ∈ B and B satisfies (1),
(2), and (3)(a). With this choice of B Lemma 9.4 reproduces Lemma 9.3.

(2) If X is quasi-compact with affine diagonal over Z (as in Properties of Spaces,
Definition 3.1), then we can choose B to be the set of objects of Xspaces,étale

which are quasi-compact and have affine diagonal over Z. Again X ∈ B and B
satisfies (1), (2), and (3)(a).

(3) IfX is quasi-compact and quasi-separated, then the smallest subset B which con-
tains X and satisfies (1), (2), and (3)(a) is given by the rule W ∈ B if and only if
either W is a quasi-compact open subspace of X , or W is a quasi-compact open
of an affine object of Xspaces,étale.

Here is a variant where we extend the truth from an open to larger opens.

Lemma 9.6. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let W ⊂ X be a quasi-compact open subspace. Let P be a property of
quasi-compact open subspaces of X . Assume that

(1) P holds for W , and
(2) for every elementary distinguished square (W1 ⊂ W2, f : V → W2) where

such that
(a) W1, W2 are quasi-compact open subspaces of X ,
(b) W ⊂W1,
(c) V is affine, and
(d) P holds for W1,

then P holds for W2.
Then P holds for X .

Proof. We can deduce this from Lemma 9.4, but instead we will give a direct argu-
ment by explicitly redoing the proof of Lemma 9.3. We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 8.6. We will prove that P
holds for Wp = W ∪ Up by descending induction on p. This will finish the proof as
W1 = X . Note that P holds for Wn+1 = W ∩ Un+1 = W by (1). Assume P holds
forWp+1. Observe that Wp \Wp+1 (with reduced induced subspace structure) is a closed
subspace of Up \ Up+1. Since (Up+1 ⊂ Up, fp : Vp → Up) is an elementary distinguished
square, the same is true for (Wp+1 ⊂ Wp, fp : Vp → Wp). However (2) may not apply
as Vp may not be affine. However, as Vp is a quasi-compact scheme we may choose a finite
affine open covering Vp = Vp,1 ∪ . . . ∪ Vp,m. Set Wp,0 = Wp+1 and

Wp,i = Wp+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)
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for i = 1, . . . ,m. These are quasi-compact open subspaces of X containing W . Then we
have

Wp+1 = Wp,0 ⊂Wp,1 ⊂ . . . ⊂Wp,m = Wp

and the pairs
(Wp,0 ⊂Wp,1, fp|Vp,1), (Wp,1 ⊂Wp,2, fp|Vp,2), . . . , (Wp,m−1 ⊂Wp,m, fp|Vp,m)

are elementary distinguished squares by Lemma 9.2. Now (2) applies to each of these and
we inductively conclude P holds for Wp,1, . . . ,Wp,m = Wp. �

10. Mayer-Vietoris

In this section we prove that an elementary distinguished triangle gives rise to various
Mayer-Vietoris sequences.
Let S be a scheme. Let U → X be an étale morphism of algebraic spaces over S. In
Properties of Spaces, Section 27 it was shown that Uspaces,étale = Xspaces,étale/U com-
patible with structure sheaves. Hence in this situation we often think of the morphism
jU : U → X as a localization morphism (see Modules on Sites, Definition 19.1). In par-
ticular we think of pullback j∗

U as restriction to U and we often denote it by |U ; this is
compatible with Properties of Spaces, Equation (26.1.1). In particular we see that
(10.0.1) (F|U )u = Fx
if u is a geometric point of U and x the image of u in X . Moreover, restriction has an
exact left adjoint jU !, see Modules on Sites, Lemmas 19.2 and 19.3. Finally, recall that if G
is anOX -module, then

(10.0.2) (jU !G)x =
⊕

u
Gu

for any geometric point x : Spec(k)→ X where the direct sum is over those morphisms
u : Spec(k)→ U such that jU ◦ u = x, see Modules on Sites, Lemma 38.1 and Properties
of Spaces, Lemma 19.13.

Lemma 10.1. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary distin-
guished square of algebraic spaces over S.

(1) For a sheaf ofOX -modules F we have a short exact sequence
0→ jU×XV !F|U×XV → jU !F|U ⊕ jV !F|V → F → 0

(2) For an object E of D(OX) we have a distinguished triangle
jU×XV !E|U×XV → jU !E|U ⊕ jV !E|V → E → jU×XV !E|U×XV [1]

in D(OX).

Proof. To show the sequence of (1) is exact we may check on stalks at geometric
points by Properties of Spaces, Theorem 19.12. Let x be a geometric point of X . By Equa-
tions (10.0.1) and (10.0.2) taking stalks at x we obtain the sequence

0→
⊕

(u,v)
Fx →

⊕
u
Fx ⊕

⊕
v
Fx → Fx → 0

This sequence is exact because for every x there either is exactly one u mapping to x, or
there is no u and exactly one v mapping to x.
Proof of (2). We have seen in Cohomology on Sites, Section 20 that the restriction functors
and the extension by zero functors on derived categories are computed by just applying
the functor to any complex. Let E• be a complex of OX -modules representing E. The
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distinguished triangle of the lemma is the distinguished triangle associated (by Derived
Categories, Section 12 and especially Lemma 12.1) to the short exact sequence of complexes
ofOX -modules

0→ jU×XV !E•|U×XV → jU !E•|U ⊕ jV !E•|V → E• → 0

which is short exact by (1). �

Lemma 10.2. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary distin-
guished square of algebraic spaces over S.

(1) For every sheaf ofOX -modules F we have a short exact sequence

0→ F → jU,∗F|U ⊕ jV,∗F|V → jU×XV,∗F|U×XV → 0

(2) For any object E of D(OX) we have a distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU×XV,∗E|U×XV → E[1]

in D(OX).

Proof. Let W be an object of Xétale. We claim the sequence

0→ F(W )→ F(W ×X U)⊕F(W ×X V )→ F(W ×X U ×X V )

is exact and that an element of the last group can locally onW be lifted to the middle one.
By Lemma 9.2 the pair (W ×X U ⊂ W,V ×X W → W ) is an elementary distinguished
square. Thus we may assume W = X and it suffices to prove the same thing for

0→ F(X)→ F(U)⊕F(V )→ F(U ×X V )

We have seen that

0→ jU×XV !OU×XV → jU !OU ⊕ jV !OV → OX → 0

is a exact sequence of OX -modules in Lemma 10.1 and applying the right exact functor
HomOX

(−,F) gives the sequence above. This also means that the obstruction to lifting
s ∈ F(U ×X V ) to an element of F(U) ⊕ F(V ) lies in Ext1

OX
(OX ,F) = H1(X,F).

By locality of cohomology (Cohomology on Sites, Lemma 7.3) this obstruction vanishes
étale locally on X and the proof of (1) is complete.

Proof of (2). Choose a K-injective complex I• representing E whose terms In are injec-
tive objects of Mod(OX), see Injectives, Theorem 12.6. Then I•|U is a K-injective complex
(Cohomology on Sites, Lemma 20.1). Hence RjU,∗E|U is represented by jU,∗I•|U . Simi-
larly forV andU×XV . Hence the distinguished triangle of the lemma is the distinguished
triangle associated (by Derived Categories, Section 12 and especially Lemma 12.1) to the
short exact sequence of complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU×XV,∗I•|U×XV → 0.

This sequence is exact by (1). �

Lemma 10.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let (U ⊂ X,V → X) be an elementary distinguished square. Denote a = f |U :
U → Y , b = f |V : V → Y , and c = f |U×XV : U ×X V → Y the restrictions. For every
object E of D(OX) there exists a distinguished triangle

Rf∗E → Ra∗(E|U )⊕Rb∗(E|V )→ Rc∗(E|U×XV )→ Rf∗E[1]

in D(OY ). This triangle is functorial in E.
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Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 12.6. Then Rf∗E is com-
puted by f∗I•. Similarly for U , V , and U ∩ V by Cohomology on Sites, Lemma 20.1.
Hence the distinguished triangle of the lemma is the distinguished triangle associated (by
Derived Categories, Section 12 and especially Lemma 12.1) to the short exact sequence of
complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U×XV → 0.
To see this is a short exact sequence of complexes we argue as follows. Pick an injective
object I of Mod(OX). Apply f∗ to the short exact sequence

0→ I → jU,∗I|U ⊕ jV,∗I|V → jU×XV,∗I|U×XV → 0
of Lemma 10.2 and use that R1f∗I = 0 to get a short exact sequence

0→ f∗I → f∗jU,∗I|U ⊕ f∗jV,∗I|V → f∗jU×XV,∗I|U×XV → 0
The proof is finished by observing that a∗ = f∗jU,∗ and similarly for b∗ and c∗. �

Lemma 10.4. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary distin-
guished square of algebraic spaces over S. For objects E , F of D(OX) we have a Mayer-
Vietoris sequence

. . . // Ext−1(EU×XV , FU×XV )

qqHom(E,F ) // Hom(EU , FU )⊕Hom(EV , FV ) // Hom(EU×XV , FU×XV )

where the subscripts denote restrictions to the relevant opens and the Hom’s are taken in
the relevant derived categories.

Proof. Use the distinguished triangle of Lemma 10.1 to obtain a long exact sequence
of Hom’s (from Derived Categories, Lemma 4.2) and use that Hom(jU !E|U , F ) = Hom(E|U , F |U )
by Cohomology on Sites, Lemma 20.8. �

Lemma 10.5. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary distin-
guished square of algebraic spaces over S. For an object E of D(OX) we have a distin-
guished triangle

RΓ(X,E)→ RΓ(U,E)⊕RΓ(V,E)→ RΓ(U ×X V,E)→ RΓ(X,E)[1]
and in particular a long exact cohomology sequence

. . .→ Hn(X,E)→ Hn(U,E)⊕Hn(V,E)→ Hn(U ×X V,E)→ Hn+1(X,E)→ . . .

The construction of the distinguished triangle and the long exact sequence is functorial
in E.

Proof. Choose a K-injective complex I• representingE whose terms In are injective
objects of Mod(OX), see Injectives, Theorem 12.6. In the proof of Lemma 10.2 we found a
short exact sequence of complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU×XV,∗I•|U×XV → 0
Since H1(X, In) = 0, we see that taking global sections gives an exact sequence of com-
plexes

0→ Γ(X, I•)→ Γ(U, I•)⊕ Γ(V, I•)→ Γ(U ×X V, I•)→ 0
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Since these complexes represent RΓ(X,E), RΓ(U,E), RΓ(V,E), and RΓ(U ×X V,E)
we get a distinguished triangle by Derived Categories, Section 12 and especially Lemma
12.1. �

Lemma 10.6. Let S be a scheme. Let j : U → X be a étale morphism of algebraic
spaces over S. Given an étale morphism V → Y , set W = V ×X U and denote jW :
W → V the projection morphism. Then (j!E)|V = jW !(E|W ) for E in D(OU ).

Proof. This is true because (j!F)|V = jW !(F|W ) for an OX -module F as follows
immediately from the construction of the functors j! and jW !, see Modules on Sites, Lemma
19.2. �

Lemma 10.7. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary distin-
guished square of algebraic spaces over S. Set T = |X| \ |U |.

(1) If E is an object of D(OX) supported on T , then (a) E → Rj∗(E|V ) and (b)
j!(E|V )→ E are isomorphisms.

(2) If F is an object of D(OV ) supported on j−1T , then (a) F → (j!F )|V , (b)
(Rj∗F )|V → F , and (c) j!F → Rj∗F are isomorphisms.

Proof. LetE be an object ofD(OX) whose cohomology sheaves are supported on T .
Then we see that E|U = 0 and E|U×XV = 0 as T doesn’t meet U and j−1T doesn’t meet
U ×X V . Thus (1)(a) follows from Lemma 10.2. In exactly the same way (1)(b) follows
from Lemma 10.1.

Let F be an object of D(OV ) whose cohomology sheaves are supported on j−1T . By
Lemma 3.1 we have (Rj∗F )|U = RjW,∗(F |W ) = 0 because F |W = 0 by our assumption.
Similarly (j!F )|U = jW !(F |W ) = 0 by Lemma 10.6. Thus j!F and Rj∗F are supported
on T and (j!F )|V and (Rj∗F )|V are supported on j−1(T ). To check that the maps (2)(a),
(b), (c) are isomorphisms in the derived category, it suffices to check that these map induce
isomorphisms on stalks of cohomology sheaves at geometric points of T and j−1(T ) by
Properties of Spaces, Theorem 19.12. This we may do after replacingX byV ,U byU×XV ,
V by V ×X V and F by F |V×XV (restriction via first projection), see Lemmas 3.1, 10.6,
and 9.2. Since V ×X V → V has a section this reduces (2) to the case that j : V → X has
a section.

Assume j has a section σ : X → V . Set V ′ = σ(X). This is an open subspace of V .
Set U ′ = j−1(U). This is another open subspace of V . Then (U ′ ⊂ V, V ′ → V ) is an
elementary distinguished square. Observe that F |U ′ = 0 and F |V ′∩U ′ = 0 because F is
supported on j−1(T ). Denote j′ : V ′ → V the open immersion and jV ′ : V ′ → X the
composition V ′ → V → X which is the inverse of σ. Set F ′ = σ∗F . The distinguished
triangles of Lemmas 10.1 and 10.2 show thatF = j′

!(F |V ′) andF = Rj′
∗(F |V ′). It follows

that j!F = j!j
′
!(F |V ′) = jV ′!F = F ′ because jV ′ : V ′ → X is an isomorphism and the

inverse of σ. Similarly, Rj∗F = Rj∗Rj
′
∗F = RjV ′,∗F = F ′. This proves (2)(c). To

prove (2)(a) and (2)(b) it suffices to show that F = F ′|V . This is clear because both F and
F ′|V restrict to zero on U ′ and U ′ ∩ V ′ and the same object on V ′. �

We can glue complexes!

Lemma 10.8. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary distin-
guished square of algebraic spaces over S. Suppose given

(1) an object A of D(OU ),
(2) an object B of D(OV ), and
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(3) an isomorphism c : A|U×XV → B|U×XV .

Then there exists an object F of D(OX) and isomorphisms f : F |U → A, g : F |V → B
such that c = g|U×XV ◦ f−1|U×XV . Moreover, given

(1) an object E of D(OX),
(2) a morphism a : A→ E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),

such that

a|U×XV = b|U×XV ◦ c.

Then there exists a morphismF → E inD(OX) whose restriction toU is a◦f and whose
restriction to V is b ◦ g.

Proof. Denote jU , jV , jU×XV the corresponding morphisms towards X . Choose a
distinguished triangle

F → RjU,∗A⊕RjV,∗B → RjU×XV,∗(B|U×XV )→ F [1]

Here the map RjV,∗B → RjU×XV,∗(B|U×XV ) is the obvious one. The map RjU,∗A →
RjU×XV,∗(B|U×XV ) is the composition ofRjU,∗A→ RjU×XV,∗(A|U×XV ) withRjU×XV,∗c.
Restricting to U we obtain

F |U → A⊕ (RjV,∗B)|U → (RjU×XV,∗(B|U×XV ))|U → F |U [1]

Denote j : U×X V → U . Compatibility of restriction and total direct image (Lemma 3.1)
shows that both (RjV,∗B)|U and (RjU×XV,∗(B|U×XV ))|U are canonically isomorphic to
Rj∗(B|U×XV ). Hence the second arrow of the last displayed equation has a section, and
we conclude that the morphism F |U → A is an isomorphism.

To see that the morphismF |V → B is an isomorphism we will use a trick. Namely, choose
a distinguished triangle

F |V → B → B′ → F [1]|V

in D(OV ). Since F |U → A is an isomorphism, and since we have the isomorphism c :
A|U×XV → B|U×XV the restriction of F |V → B is an isomorphism over U ×X V . Thus
B′ is supported on j−1

V (T ) where T = |X| \ |U |. On the other hand, there is a morphism
of distinguished triangles

F //

��

RjU,∗F |U ⊕RjV,∗F |V //

��

RjU×XV,∗F |U×XV
//

��

F [1]

��
F // RjU,∗A⊕RjV,∗B // RjU×XV,∗(B|U×XV ) // F [1]

The all of the vertical maps in this diagram are isomorphisms, except for the mapRjV,∗F |V →
RjV,∗B, hence that is an isomorphism too (Derived Categories, Lemma 4.3). This implies
that RjV,∗B′ = 0. Hence B′ = 0 by Lemma 10.7.

The existence of the morphism F → E follows from the Mayer-Vietoris sequence for
Hom, see Lemma 10.4. �
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11. The coherator

Let S be a scheme. Let X be an algebraic space over S. The coherator is a functor

QX : Mod(OX) −→ QCoh(OX)

which is right adjoint to the inclusion functor QCoh(OX)→Mod(OX). It exists for any
algebraic spaceX and moreover the adjunction mappingQX(F)→ F is an isomorphism
for every quasi-coherent module F , see Properties of Spaces, Proposition 32.2. Since QX
is left exact (as a right adjoint) we can consider its right derived extension

RQX : D(OX) −→ D(QCoh(OX)).

Since QX is right adjoint to the inclusion functor QCoh(OX) → Mod(OX) we see that
RQX is right adjoint to the canonical functor D(QCoh(OX)) → D(OX) by Derived
Categories, Lemma 30.3.

In this section we will study the functor RQX . In Section 19 we will study the (closely
related) right adjoint to the inclusion functor DQCoh(OX)→ D(OX) (when it exists).

Lemma 11.1. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Then f∗ defines a derived functor f∗ : D(QCoh(OX))→ D(QCoh(OY )).
This functor has the property that

D(QCoh(OX))

f∗

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. The functor f∗ : QCoh(OX) → QCoh(OY ) is exact, see Cohomology of
Spaces, Lemma 8.2. Hence f∗ defines a derived functor f∗ : D(QCoh(OX))→ D(QCoh(OY ))
by simply applying f∗ to any representative complex, see Derived Categories, Lemma 16.9.
For any complex of OX -modules F• there is a canonical map f∗F• → Rf∗F•. To fin-
ish the proof we show this is a quasi-isomorphism when F• is a complex with each Fn
quasi-coherent. The statement is étale local on Y hence we may assume Y affine. As an
affine morphism is representable we reduce to the case of schemes by the compatibility of
Remark 6.3. The case of schemes is Derived Categories of Schemes, Lemma 7.1. �

Lemma 11.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is quasi-compact, quasi-separated, and flat. Then, denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))

the right derived functor of f∗ : QCoh(OX) → QCoh(OY ) we have RQY ◦ Rf∗ =
Φ ◦RQX .

Proof. We will prove this by showing thatRQY ◦Rf∗ and Φ◦RQX are right adjoint
to the same functor D(QCoh(OY ))→ D(OX).

Since f is quasi-compact and quasi-separated, we see that f∗ preserves quasi-coherence,
see Morphisms of Spaces, Lemma 11.2. Recall that QCoh(OX) is a Grothendieck abelian
category (Properties of Spaces, Proposition 32.2). Hence any K in D(QCoh(OX)) can
be represented by a K-injective complex I• of QCoh(OX), see Injectives, Theorem 12.6.
Then we can define Φ(K) = f∗I•.
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Since f is flat, the functor f∗ is exact. Hence f∗ defines f∗ : D(OY ) → D(OX) and
also f∗ : D(QCoh(OY )) → D(QCoh(OX)). The functor f∗ = Lf∗ : D(OY ) →
D(OX) is left adjoint to Rf∗ : D(OX) → D(OY ), see Cohomology on Sites, Lemma
19.1. Similarly, the functor f∗ : D(QCoh(OY )) → D(QCoh(OX)) is left adjoint to
Φ : D(QCoh(OX))→ D(QCoh(OY )) by Derived Categories, Lemma 30.3.
Let A be an object of D(QCoh(OY )) and E an object of D(OX). Then

HomD(QCoh(OY ))(A,RQY (Rf∗E)) = HomD(OY )(A,Rf∗E)
= HomD(OX)(f∗A,E)
= HomD(QCoh(OX))(f∗A,RQX(E))
= HomD(QCoh(OY ))(A,Φ(RQX(E)))

This implies what we want. �

Lemma 11.3. Let S be a scheme. Let X be an affine algebraic space over S. Set A =
Γ(X,OX). Then

(1) QX : Mod(OX) → QCoh(OX) is the functor which sends F to the quasi-
coherentOX -module associated to the A-module Γ(X,F),

(2) RQX : D(OX)→ D(QCoh(OX)) is the functor which sendsE to the complex
of quasi-coherentOX -modules associated to the object RΓ(X,E) of D(A),

(3) restricted to DQCoh(OX) the functor RQX defines a quasi-inverse to (5.1.1).

Proof. Let X0 = Spec(A) be the affine scheme representing X . Recall that there is
a morphism of ringed sites ε : Xétale → X0,Zar which induces equivalences

QCoh(OX)
ε∗ // QCoh(OX0)
ε∗
oo

see Lemma 4.2. Hence we see that QX = ε∗ ◦QX0 ◦ ε∗ by uniqueness of adjoint functors.
Hence (1) follows from the description of QX0 in Derived Categories of Schemes, Lemma
7.3 and the fact that Γ(X0, ε∗F) = Γ(X,F). Part (2) follows from (1) and the fact that
the functor from A-modules to quasi-coherent OX -modules is exact. The third assertion
now follows from the result for schemes (Derived Categories of Schemes, Lemma 7.3) and
Lemma 4.2. �

Next, we prove a criterion for when the functor D(QCoh(OX)) → DQCoh(OX) is an
equivalence.

Lemma 11.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Suppose that for every étale morphism j : V → W with W ⊂ X
quasi-compact open and V affine the right derived functor

Φ : D(QCoh(OU ))→ D(QCoh(OW ))
of the left exact functor j∗ : QCoh(OV )→ QCoh(OW ) fits into a commutative diagram

D(QCoh(OV ))

Φ
��

iV
// DQCoh(OV )

Rj∗

��
D(QCoh(OW )) iW // DQCoh(OW )

Then the functor (5.1.1)
D(QCoh(OX)) −→ DQCoh(OX)
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is an equivalence with quasi-inverse given by RQX .

Proof. We first use the induction principle to prove iX is fully faithful. More pre-
cisely, we will use Lemma 9.6. Let (U ⊂ W,V → W ) be an elementary distinguished
square with V affine and U,W quasi-compact open in X . Assume that iU is fully faith-
ful. We have to show that iW is fully faithful. We may replace X by W , i.e., we may
assume W = X (we do this just to simplify the notation – observe that the condition in
the statement of the lemma is preserved under this operation).

Suppose that A,B are objects of D(QCoh(OX)). We want to show that

HomD(QCoh(OX))(A,B) −→ HomD(OX)(iX(A), iX(B))

is bijective. Let T = |X| \ |U |.

Assume first iX(B) is supported on T . In this case the map

iX(B)→ RjV,∗(iX(B)|V ) = RjV,∗(iV (B|V ))

is a quasi-isomorphism (Lemma 10.7). By assumption we have an isomorphism iX(Φ(B|V ))→
RjV,∗(iV (B|V )) inD(OX). Moreover, Φ and−|V are adjoint functors on the derived cat-
egories of quasi-coherent modules (by Derived Categories, Lemma 30.3). The adjunction
mapB → Φ(B|V ) becomes an isomorphism after applying iX , whence is an isomorphism
in D(QCoh(OX)). Hence

MorD(QCoh(OX))(A,B) = MorD(QCoh(OX))(A,Φ(B|V ))
= MorD(QCoh(OV ))(A|V , B|V )
= MorD(OV )(iV (A|V ), iV (B|V ))
= MorD(OX)(iX(A), RjV,∗(iV (B|V )))
= MorD(OX)(iX(A), iX(B))

as desired. Here we have used that iV is fully faithful (Lemma 11.3).

In general, choose any complex B• of quasi-coherent OX -modules representing B. Next,
choose any quasi-isomorphism s : B•|U → C• of complexes of quasi-coherent modules
on U . As jU : U → X is quasi-compact and quasi-separated the functor jU,∗ transforms
quasi-coherent modules into quasi-coherent modules (Morphisms of Spaces, Lemma 11.2).
Thus there is a canonical mapB• → jU,∗(B•|U )→ jU,∗C• of complexes of quasi-coherent
modules on X . Set B′′ = jU,∗C• in D(QCoh(OX)) and choose a distinguished triangle

B → B′′ → B′ → B[1]
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in D(QCoh(OX)). Since the first arrow of the triangle restricts to an isomorphism over
U we see that B′ is supported on T . Hence in the diagram

HomD(QCoh(OX))(A,B′[−1]) //

��

HomD(OX)(iX(A), iX(B′)[−1])

��
HomD(QCoh(OX))(A,B) //

��

HomD(OX)(iX(A), iX(B))

��
HomD(QCoh(OX))(A,B′′) //

��

HomD(OX)(iX(A), iX(B′′))

��
HomD(QCoh(OX))(A,B′) // HomD(OX)(iX(A), iX(B′))

we have exact columns and the top and bottom horizontal arrows are bijective. Finally,
choose a complexA• of quasi-coherent modules representing A.

Let α : iX(A) → iX(B) be a morphism between in D(OX). The restriction α|U comes
from a morphism in D(QCoh(OU )) as iU is fully faithful. Hence there exists a choice
of s : B•|U → C• as above such that α|U is represented by an actual map of complexes
A•|U → C•. This corresponds to a map of complexesA → jU,∗C•. In other words, the im-
age ofα in HomD(OX)(iX(A), iX(B′′)) comes from an element of HomD(QCoh(OX))(A,B′′).
A diagram chase then shows that α comes from a morphism A → B in D(QCoh(OX)).
Finally, suppose that a : A → B is a morphism of D(QCoh(OX)) which becomes zero
in D(OX). After choosing B• suitably, we may assume a is represented by a morphism
of complexes a• : A• → B•. Since iU is fully faithul the restriction a•|U is zero in
D(QCoh(OU )). Thus we can choose s such that s ◦ a•|U : A•|U → C• is homo-
topic to zero. Applying the functor jU,∗ we conclude that A• → jU,∗C• is homotopic
to zero. Thus a maps to zero in HomD(QCoh(OX))(A,B′′). Thus we may assume that
a is the image of an element of b ∈ HomD(QCoh(OX))(A,B′[−1]). The image of b in
HomD(OX)(iX(A), iX(B′)[−1]) comes from a γ ∈ HomD(OX)(A,B′′[−1]) (as a maps
to zero in the group on the right). Since we’ve seen above the horizontal arrows are surjec-
tive, we see that γ comes from a c in HomD(QCoh(OX))(A,B′′[−1]) which implies a = 0
as desired.

At this point we know that iX is fully faithful for our original X . Since RQX is its right
adjoint, we see thatRQX ◦iX = id (Categories, Lemma 24.4). To finish the proof we show
that for anyE inDQCoh(OX) the map iX(RQX(E))→ E is an isomorphism. Choose a
distinguished triangle

iX(RQX(E))→ E → E′ → iX(RQX(E))[1]

inDQCoh(OX). A formal argument using the above shows that iX(RQX(E′)) = 0. Thus
it suffices to prove that for E ∈ DQCoh(OX) the condition iX(RQX(E)) = 0 implies
that E = 0. Consider an étale morphism j : V → X with V affine. By Lemmas 11.3 and
11.2 and our assumption we have

Rj∗(E|V ) = Rj∗(iV (RQV (E|V ))) = iX(Φ(RQV (E|V ))) = iX(RQX(Rj∗(E|V )))

Choose a distinguished triangle

E → Rj∗(E|V )→ E′ → E[1]
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Apply RQX to get a distinguished triangle

0→ RQX(Rj∗(E|V ))→ RQX(E′)→ 0[1]
in other words the map in the middle is an isomorphism. Combined with the string of
equalities above we find that our first distinguished triangle becomes a distinguished tri-
angle

E → iX(RQX(E′))→ E′ → E[1]
where the middle morphism is the adjunction map. However, the compositionE → E′ is
zero, henceE → iX(RQX(E′)) is zero by adjunction! Since this morphism is isomorphic
to the morphism E → Rj∗(E|V ) adjoint to id : E|V → E|V we conclude that E|V is
zero. Since this holds for all affine V étale over X we conclude E is zero as desired. �

Proposition 11.5. Let S be a scheme. Let X be a quasi-compact algebraic space over
S with affine diagonal over Z (as in Properties of Spaces, Definition 3.1). Then the functor
(5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)
is an equivalence with quasi-inverse given by RQX .

Proof. Let V → W be an étale morphism with V affine and W a quasi-compact
open subspace of X . Then the morphism V → W is affine as W has affine diagonal over
Z and V is affine (Morphisms of Spaces, Lemma 20.11). Lemma 11.1 then guarantees that
the assumption of Lemma 11.4 holds. Hence we conclude. �

Lemma 11.6. Let S be a scheme and let f : X → Y be a morphism of algebraic
spaces over S. Assume X and Y are quasi-compact and have affine diagonal over Z (as in
Properties of Spaces, Definition 3.1). Then, denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))
the right derived functor of f∗ : QCoh(OX)→ QCoh(OY ) the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

is commutative.

Proof. Observe that the horizontal arrows in the diagram are equivalences of cate-
gories by Proposition 11.5. Hence we can identify these categories (and similarly for other
quasi-compact algebraic spaces with affine diagonal) and then the statement of the lemma
is that the canonical map Φ(K)→ Rf∗(K) is an isomorphism for allK inD(QCoh(OX)).
Note that if K1 → K2 → K3 → K1[1] is a distinguished triangle in D(QCoh(OX)) and
the statement is true for two-out-of-three, then it is true for the third.

Let B ⊂ Ob(Xspaces,étale) be the set of objects which are quasi-compact and have affine
diagonal. For U ∈ B and any morphism g : U → Z where Z is a quasi-compact algebraic
space over S with affine diagonal, denote

Φg : D(QCoh(OU ))→ D(QCoh(OZ))
the derived extension of g∗. Let P (U) = “for any K in D(QCoh(OU )) and any g : U →
Z as above the map Φg(K) → Rg∗K is an isomorphism”. By Remark 9.5 conditions (1),
(2), and (3)(a) of Lemma 9.4 hold and we are left with proving (3)(b) and (4).
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Checking condition (3)(b). Let U be an affine scheme étale over X . Let g : U → Z be as
above. Since the diagonal of Z is affine the morphism g : U → Z is affine (Morphisms of
Spaces, Lemma 20.11). Hence P (U) holds by Lemma 11.1.
Checking condition (4). Let (U ⊂W,V →W ) be an elementary distinguished square in
Xspaces,étale withU,W, V inB and V affine. Assume thatP holds forU , V , andU×W V .
We have to show that P holds for W . Let g : W → Z be a morphism to a quasi-compact
algebraic space with affine diagonal. Let K be an object of D(QCoh(OW )). Consider the
distinguished triangle

K → RjU,∗K|U ⊕RjV,∗K|V → RjU×WV,∗K|U×WV → K[1]
in D(OW ). By the two-out-of-three property mentioned above, it suffices to show that
Φg(RjU,∗K|U )→ Rg∗(RjU,∗K|U ) is an isomorphism and similarly for V and U ×W V .
This is discussed in the next paragraph.
Let j : U → W be a morphism Xspaces,étale with U,W in B and P holds for U . Let
g : W → Z be a morphism to a quasi-compact algebraic space with affine diagonal. To
finish the proof we have to show that Φg(Rj∗K) → Rg∗(Rj∗K) is an isomorphism for
any K in D(QCoh(OU )). Let I• be a K-injective complex in QCoh(OU ) representing
K. From P (U) applied to j we see that j∗I• represents Rj∗K. Since j∗ : QCoh(OU )→
QCoh(OX) has an exact left adjoint j∗ : QCoh(OX) → QCoh(OU ) we see that j∗I•

is a K-injective complex in QCoh(OW ), see Derived Categories, Lemma 31.9. Hence
Φg(Rj∗K) is represented by g∗j∗I• = (g ◦ j)∗I•. By P (U) applied to g ◦ j we see
that this represents Rg◦j,∗(K) = Rg∗(Rj∗K). This finishes the proof. �

12. The coherator for Noetherian spaces

We need a little bit more about injective modules to treat the case of a Noetherian algebraic
space.

Lemma 12.1. LetS be a Noetherian affine scheme. Every injective object of QCoh(OS)
is a filtered colimit colimi Fi of quasi-coherent sheaves of the form

Fi = (Zi → S)∗Gi
where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.

Proof. LetS = Spec(A). LetJ be an injective object of QCoh(OS). Since QCoh(OS)
is equivalent to the category of A-modules we see that J is equal to J̃ for some injective
A-module J . By Dualizing Complexes, Proposition 5.9 we can write J =

⊕
Eα withEα

indecomposable and therefore isomorphic to the injective hull of a reside field at a point.
Thus (because finite disjoint unions of Artinian schemes are Artinian) we may assume that
J is the injective hull of κ(p) for some prime p ofA. Then J =

⋃
J [pn] where J [pn] is the

injective hull of κ(p) over A/pnAp, see Dualizing Complexes, Lemma 7.3. Thus J̃ is the
colimit of the sheaves (Zn → X)∗Gn where Zn = Spec(Ap/p

nAp) and Gn the coherent
sheaf associated to the finite A/pnAp-module J [pn]. Finiteness follows from Dualizing
Complexes, Lemma 6.1. �

Lemma 12.2. Let S be an affine scheme. LetX be a Noetherian algebraic space over S.
Every injective object of QCoh(OX) is a direct summand of a filtered colimit colimi Fi
of quasi-coherent sheaves of the form

Fi = (Zi → X)∗Gi
where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.
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Proof. Choose an affine scheme U and a surjective étale morphism j : U → X
(Properties of Spaces, Lemma 6.3). Then U is a Noetherian affine scheme. Choose an
injective object J ′ of QCoh(OU ) such that there exists an injection J |U → J ′. Then

J → j∗J ′

is an injective morphism in QCoh(OX), hence identifies J as a direct summand of j∗J ′.
Thus the result follows from the corresponding result for J ′ proved in Lemma 12.1. �

Lemma 12.3. Let S be a scheme. Let f : X → Y be a flat, quasi-compact, and quasi-
separated morphism of algebraic spaces over S. If J is an injective object of QCoh(OX),
then f∗J is an injective object of QCoh(OY ).

Proof. Since f is quasi-compact and quasi-separated, the functor f∗ transforms quasi-
coherent sheaves into quasi-coherent sheaves (Morphisms of Spaces, Lemma 11.2). The
functor f∗ is a left adjoint to f∗ which transforms injections into injections. Hence the
result follows from Homology, Lemma 29.1 �

Lemma 12.4. Let S be a scheme. Let X be a Noetherian algebraic space over S. If J
is an injective object of QCoh(OX), then

(1) Hp(U,J |U ) = 0 for p > 0 and for every quasi-compact and quasi-separated
algebraic space U étale over X ,

(2) for any morphism f : X → Y of algebraic spaces over S with Y quasi-separated
we have Rpf∗J = 0 for p > 0.

Proof. Proof of (1). Write J as a direct summand of colimFi with Fi = (Zi →
X)∗Gi as in Lemma 12.2. It is clear that it suffices to prove the vanishing for colimFi.
Since pullback commutes with colimits and since U is quasi-compact and quasi-separated,
it suffices to prove Hp(U,Fi|U ) = 0 for p > 0, see Cohomology of Spaces, Lemma 5.1.
Observe thatZi → X is an affine morphism, see Morphisms of Spaces, Lemma 20.12. Thus

Fi|U = (Zi ×X U → U)∗G′
i = R(Zi ×X U → U)∗G′

i

where G′
i is the pullback of Gi to Zi ×X U , see Cohomology of Spaces, Lemma 11.1. Since

Zi ×X U is affine we conclude that G′
i has no higher cohomology on Zi ×X U . By the

Leray spectral sequence we conclude the same thing is true forFi|U (Cohomology on Sites,
Lemma 14.6).

Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let V → Y be an
étale morphism with V affine. Then V ×Y X → X is an étale morphism and V ×Y X is
a quasi-compact and quasi-separated algebraic space étale overX (details omitted). Hence
Hp(V ×Y X,J ) is zero by part (1). Since Rpf∗J is the sheaf associated to the presheaf
V 7→ Hp(V ×Y X,J ) the result is proved. �

Lemma 12.5. Let S be a scheme. Let f : X → Y be a morphism of Noetherian
algebraic spaces over S. Then f∗ on quasi-coherent sheaves has a right derived extension
Φ : D(QCoh(OX))→ D(QCoh(OY )) such that the diagram

D(QCoh(OX))

Φ
��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.
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Proof. Since X and Y are Noetherian the morphism is quasi-compact and quasi-
separated (see Morphisms of Spaces, Lemma 8.10). Thus f∗ preserve quasi-coherence, see
Morphisms of Spaces, Lemma 11.2. Next, let K be an object of D(QCoh(OX)). Since
QCoh(OX) is a Grothendieck abelian category (Properties of Spaces, Proposition 32.2),
we can represent K by a K-injective complex I• such that each In is an injective object
of QCoh(OX), see Injectives, Theorem 12.6. Thus we see that the functor Φ is defined by
setting

Φ(K) = f∗I•

where the right hand side is viewed as an object ofD(QCoh(OY )). To finish the proof of
the lemma it suffices to show that the canonical map

f∗I• −→ Rf∗I•

is an isomorphism in D(OY ). To see this it suffices to prove the map induces an isomor-
phism on cohomology sheaves. Pick any m ∈ Z. Let N = N(X,Y, f) be as in Lemma
6.1. Consider the short exact sequence

0→ σ≥m−N−1I• → I• → σ≤m−N−2I• → 0
of complexes of quasi-coherent sheaves on X . By Lemma 6.1 we see that the cohomology
sheaves of Rf∗σ≤m−N−2I• are zero in degrees ≥ m − 1. Thus we see that Rmf∗I• is
isomorphic to Rmf∗σ≥m−N−1I•. In other words, we may assume that I• is a bounded
below complex of injective objects of QCoh(OX). This case follows from Leray’s acyclic-
ity lemma (Derived Categories, Lemma 16.7) with required vanishing because of Lemma
12.4. �

Proposition 12.6. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Then the functor (5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)
is an equivalence with quasi-inverse given by RQX .

Proof. Follows immediately from Lemmas 12.5 and 11.4. �

13. Pseudo-coherent and perfect complexes

In this section we study the general notions defined in Cohomology on Sites, Sections 44,
45, 46, and 47 for the étale site of an algebraic space. In particular we match this with
what happens for schemes.

First we compare the notion of a pseudo-coherent complex on a scheme and on its associ-
ated small étale site.

Lemma 13.1. Let X be a scheme. Let F be an OX -module. The following are equiv-
alent

(1) F is of finite type as anOX -module, and
(2) ε∗F is of finite type as anOétale-module on the small étale site of X .

Here ε is as in (4.0.1).

Proof. The implication (1)⇒ (2) is a general fact, see Modules on Sites, Lemma 23.4.
Assume (2). By assumption there exists an étale covering {fi : Xi → X} such that
ε∗F|(Xi)étale is generated by finitely many sections. Let x ∈ X . We will show that F
is generated by finitely many sections in a neighbourhood of x. Say x is in the image
of Xi → X and denote X ′ = Xi. Let s1, . . . , sn ∈ Γ(X ′, ε∗F|X′

étale
) be generating
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sections. As ε∗F = ε−1F ⊗ε−1OX
Oétale we can find an étale morphism X ′′ → X ′ such

that x is in the image of X ′ → X and such that si|X′′ =
∑
sij ⊗ aij for some sections

sij ∈ ε−1F(X ′′) and aij ∈ Oétale(X ′′). Denote U ⊂ X the image of X ′′ → X . This is
an open subscheme as f ′′ : X ′′ → X is étale (Morphisms, Lemma 36.13). After possibly
shrinking X ′′ more we may assume sij come from elements tij ∈ F(U) as follows from
the construction of the inverse image functor ε−1. Now we claim that tij generate F|U
which finishes the proof of the lemma. Namely, the corresponding mapO⊕N

U → F|U has
the property that its pullback by f ′′ toX ′′ is surjective. Since f ′′ : X ′′ → U is a surjective
flat morphism of schemes, this implies thatO⊕N

U → F|U is surjective by looking at stalks
and using thatOU,f ′′(z) → OX′′,z is faithfully flat for all z ∈ X ′′. �

In the situation above the morphism of sites ε is flat hence defines a pullback on complexes
of modules.

Lemma 13.2. Let X be a scheme. Let E be an object of D(OX). The following are
equivalent

(1) E is m-pseudo-coherent, and
(2) ε∗E is m-pseudo-coherent on the small étale site of X .

Here ε is as in (4.0.1).

Proof. The implication (1)⇒ (2) is a general fact, see Cohomology on Sites, Lemma
45.3. Assume ε∗E is m-pseudo-coherent. We will use without further mention that ε∗ is
an exact functor and that therefore

ε∗Hi(E) = Hi(ε∗E).

To show that E is m-pseudo-coherent we may work locally on X , hence we may assume
that X is quasi-compact (for example affine). Since X is quasi-compact every étale cover-
ing {Ui → X} has a finite refinement. Thus we see that ε∗E is an object of D−(Oétale),
see comments following Cohomology on Sites, Definition 45.1. By Lemma 4.1 it follows
that E is an object of D−(OX).

Let n ∈ Z be the largest integer such that Hn(E) is nonzero; then n is also the largest
integer such that Hn(ε∗E) is nonzero. We will prove the lemma by induction on n−m.
If n < m, then the lemma is clearly true. If n ≥ m, then Hn(ε∗E) is a finite Oétale-
module, see Cohomology on Sites, Lemma 45.7. Hence Hn(E) is a finite OX -module, see
Lemma 13.1. After replacingX by the members of an open covering, we may assume there
exists a surjection O⊕t

X → Hn(E). We may locally on X lift this to a map of complexes
α : O⊕t

X [−n]→ E (details omitted). Choose a distinguished triangle

O⊕t
X [−n]→ E → C → O⊕t

X [−n+ 1]

Then C has vanishing cohomology in degrees ≥ n. On the other hand, the complex ε∗C
is m-pseudo-coherent, see Cohomology on Sites, Lemma 45.4. Hence by induction we see
thatC ism-pseudo-coherent. Applying Cohomology on Sites, Lemma 45.4 once more we
conclude. �

Lemma 13.3. Let X be a scheme. Let E be an object of D(OX). Then
(1) E has tor amplitude in [a, b] if and only if ε∗E has tor amplitude in [a, b].
(2) E has finite tor dimension if and only if ε∗E has finite tor dimension.

Here ε is as in (4.0.1).
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Proof. The easy implication follows from Cohomology on Sites, Lemma 46.5. For
the converse, assume that ε∗E has tor amplitude in [a, b]. Let F be anOX -module. As ε is
a flat morphism of ringed sites (Lemma 4.1) we have

ε∗(E ⊗L
OX
F) = ε∗E ⊗L

Oétale
ε∗F

Thus the (assumed) vanishing of cohomology sheaves on the right hand side implies the
desired vanishing of the cohomology sheaves of E ⊗L

OX
F via Lemma 4.1. �

Lemma 13.4. Let f : X → Y be a morphism of schemes. Let E be an object of
D(OX). Then

(1) E as an object of D(f−1OY ) has tor amplitude in [a, b] if and only if ε∗E has
tor amplitude in [a, b] as an object of D(f−1

smallOYétale).
(2) E locally has finite tor dimension as an object of D(f−1OY ) if and only if ε∗E

locally has finite tor dimension as an object of D(f−1
smallOYétale).

Here ε is as in (4.0.1).

Proof. The easy direction in (1) follows from Cohomology on Sites, Lemma 46.5.
Let x ∈ X be a point and let x be a geometric point lying over x. Let y = f(x) and denote
y the geometric point of Y coming from x. Then (f−1OY )x = OY,y (Sheaves, Lemma
21.5) and

(f−1
smallOYétale)x = OYétale,y = OshY,y

is the strict henselization (by Étale Cohomology, Lemmas 36.2 and 33.1). Since the stalk
ofOXétale at X isOshX,x we obtain

(ε∗E)x = Ex ⊗L
OX,x

OshX,x
by transitivity of pullbacks. If ε∗E has tor amplitude in [a, b] as a complex of f−1

smallOYétale -
modules, then (ε∗E)x has tor amplitude in [a, b] as a complex of OshY,y-modules (because
taking stalks is a pullback and lemma cited above). By More on Flatness, Lemma 2.6 we find
the tor amplitude of (ε∗E)x as a complex ofOY,y-modules is in [a, b]. SinceOX,x → OshX,x
is faithfully flat (More on Algebra, Lemma 45.1) and since (ε∗E)x = Ex ⊗L

OX,x
OshX,x we

may apply More on Algebra, Lemma 66.18 to conclude the tor amplitude of Ex as a com-
plex of OY,y-modules is in [a, b]. By Cohomology, Lemma 48.5 we conclude that E as an
object of D(f−1OY ) has tor amplitude in [a, b]. This gives the reverse implication in (1).
Part (2) follows formally from (1). �

Lemma 13.5. Let X be a scheme. Let E be an object of D(OX). Then E is a perfect
object ofD(OX) if and only if ε∗E is a perfect object ofD(Oétale). Here ε is as in (4.0.1).

Proof. The easy implication follows from the general result contained in Cohomol-
ogy on Sites, Lemma 47.5. For the converse, we can use the equivalence of Cohomology
on Sites, Lemma 47.4 and the corresponding results for pseudo-coherent and complexes of
finite tor dimension, namely Lemmas 13.2 and 13.3. Some details omitted. �

Lemma 13.6. Let S be a scheme. Let X be an algebraic space over S. If E is an m-
pseudo-coherent object ofD(OX), thenHi(E) is a quasi-coherentOX -module for i > m.
If E is pseudo-coherent, then E is an object of DQCoh(OX).

Proof. LocallyHi(E) is isomorphic toHi(E•) with E• strictly perfect. The sheaves
E i are direct summands of finite free modules, hence quasi-coherent. The lemma follows.

�
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Lemma 13.7. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
E be an object of DQCoh(OX). For m ∈ Z the following are equivalent

(1) Hi(E) is coherent for i ≥ m and zero for i� 0, and
(2) E is m-pseudo-coherent.

In particular, E is pseudo-coherent if and only if E is an object of D−
Coh(OX).

Proof. As X is quasi-compact we can find an affine scheme U and a surjective étale
morphismU → X (Properties of Spaces, Lemma 6.3). Observe thatU is Noetherian. Note
that E is m-pseudo-coherent if and only if E|U is m-pseudo-coherent (follows from the
definition or from Cohomology on Sites, Lemma 45.2). Similarly, Hi(E) is coherent if
and only if Hi(E)|U = Hi(E|U ) is coherent (see Cohomology of Spaces, Lemma 12.2).
Thus we may assume that X is representable.

IfX is representable by a scheme X0 then (Lemma 4.2) we can write E = ε∗E0 where E0
is an object of DQCoh(OX0) and ε : Xétale → (X0)Zar is as in (4.0.1). In this case E is
m-pseudo-coherent if and only ifE0 is by Lemma 13.2. Similarly,Hi(E0) is of finite type
(i.e., coherent) if and only if Hi(E) is by Lemma 13.1. Finally, Hi(E0) = 0 if and only
if Hi(E) = 0 by Lemma 4.1. Thus we reduce to the case of schemes which is Derived
Categories of Schemes, Lemma 10.3. �

Lemma 13.8. Let S be a scheme. Let X be a quasi-separated algebraic space over S.
Let E be an object of DQCoh(OX). Let a ≤ b. The following are equivalent

(1) E has tor amplitude in [a, b], and
(2) for all F in QCoh(OX) we have Hi(E ⊗L

OX
F) = 0 for i 6∈ [a, b].

Proof. It is clear that (1) implies (2). Assume (2). Let j : U → X be an étale mor-
phism with U affine. As X is quasi-separated j : U → X is quasi-compact and separated,
hence j∗ transforms quasi-coherent modules into quasi-coherent modules (Morphisms of
Spaces, Lemma 11.2). Thus the functor QCoh(OX) → QCoh(OU ) is essentially surjec-
tive. It follows that condition (2) implies the vanishing of Hi(E|U ⊗L

OU
G) for i 6∈ [a, b]

for all quasi-coherentOU -modules G. Since it suffices to prove thatE|U has tor amplitude
in [a, b] we reduce to the case where X is representable.

If X is representable by a scheme X0 then (Lemma 4.2) we can write E = ε∗E0 where
E0 is an object of DQCoh(OX0) and ε : Xétale → (X0)Zar is as in (4.0.1). For every
quasi-coherent module F0 on X0 the module ε∗F0 is quasi-coherent on X and

Hi(E ⊗L
OX

ε∗F0) = ε∗Hi(E0 ⊗L
OX0
F0)

as ε is flat (Lemma 4.1). Moreover, the vanishing of these sheaves for i 6∈ [a, b] implies the
same thing for Hi(E0 ⊗L

OX0
F0) by the same lemma. Thus we’ve reduced the problem to

the case of schemes which is treated in Derived Categories of Schemes, Lemma 10.6. �

Lemma 13.9. Let X be a scheme. Let E,F be objects of D(OX). Assume either
(1) E is pseudo-coherent and F lies in D+(OX), or
(2) E is perfect and F arbitrary,

then there is a canonical isomorphism

ε∗RHom(E,F ) −→ RHom(ε∗E, ε∗F )

Here ε is as in (4.0.1).
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Proof. Recall that ε is flat (Lemma 4.1) and hence ε∗ = Lε∗. There is a canonical map
from left to right by Cohomology on Sites, Remark 35.11. To see this is an isomorphism
we can work locally, i.e., we may assume X is an affine scheme.
In case (1) we can representE by a bounded above complex E• of finite freeOX -modules,
see Derived Categories of Schemes, Lemma 13.3. We may also represent F by a bounded
below complex F• of OX -modules. Applying Cohomology, Lemma 46.11 we see that
RHom(E,F ) is represented by the complex with terms⊕

n=−p+q
HomOX

(Ep,Fq)

Applying Cohomology on Sites, Lemma 44.10 we see that RHom(ε∗E, ε∗F ) is repre-
sented by the complex with terms⊕

n=−p+q
HomOétale

(ε∗Ep, ε∗Fq)

Thus the statement of the lemma boils down to the true fact that the canonical map
ε∗HomOX

(E ,F) −→ HomOétale
(ε∗E , ε∗F)

is an isomorphism for anyOX -module F and finite freeOX -module E .
In case (2) we can representE by a strictly perfect complex E• ofOX -modules, use Derived
Categories of Schemes, Lemmas 3.5 and 10.7 and the fact that a perfect complex of modules
is represented by a finite complex of finite projective modules. Thus we can do the exact
same proof as above, replacing the reference to Cohomology, Lemma 46.11 by a reference
to Cohomology, Lemma 46.9. �

Lemma 13.10. Let S be a scheme. Let X be an algebraic space over S. Let L,K be
objects of D(OX). If either

(1) L in D+
QCoh(OX) and K is pseudo-coherent,

(2) L in DQCoh(OX) and K is perfect,
then RHom(K,L) is in DQCoh(OX).

Proof. This follows from the analogue for schemes (Derived Categories of Schemes,
Lemma 10.8) via the criterion of Lemma 5.2, the criterion of Lemmas 13.2 and 13.5, and the
result of Lemma 13.9. �

Lemma 13.11. Let S be a scheme. LetX be an algebraic space over S. LetK,L,M be
objects of DQCoh(OX). The map

K ⊗L
OX

RHom(M,L) −→ RHom(M,K ⊗L
OX

L)
of Cohomology on Sites, Lemma 35.7 is an isomorphism in the following cases

(1) M perfect, or
(2) K is perfect, or
(3) M is pseudo-coherent, L ∈ D+(OX), and K has finite tor dimension.

Proof. Checking whether or not the map is an isomorphism can be done étale locally
hence we may assumeX is an affine scheme. Then we can writeK,L,M as ε∗K0, ε

∗L0, ε
∗M0

for someK0, L0,M0 inDQCoh(OX) by Lemma 4.2. Then we see that Lemma 13.9 reduces
cases (1) and (3) to the case of schemes which is Derived Categories of Schemes, Lemma
10.9. If K is perfect but no other assumptions are made, then we do not know that either
side of the arrow is in DQCoh(OX) but the result is still true because K will be repre-
sented (after localizing further) by a finite complex of finite free modules in which case it
is clear. �
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14. Approximation by perfect complexes

In this section we continue the discussion started in Derived Categories of Schemes, Sec-
tion 14.

Definition 14.1. Let S be a scheme. Let X be an algebraic space over S. Consider
triples (T,E,m) where

(1) T ⊂ |X| is a closed subset,
(2) E is an object of DQCoh(OX), and
(3) m ∈ Z.

We say approximation holds for the triple (T,E,m) if there exists a perfect object P of
D(OX) supported on T and a map α : P → E which induces isomorphisms Hi(P ) →
Hi(E) for i > m and a surjection Hm(P )→ Hm(E).

Approximation cannot hold for every triple. Please read the remarks following Derived
Categories of Schemes, Definition 14.1 to see why.

Definition 14.2. Let S be a scheme. Let X be an algebraic space over S. We say
approximation by perfect complexes holds on X if for any closed subset T ⊂ |X| such
that the morphism X \ T → X is quasi-compact there exists an integer r such that for
every triple (T,E,m) as in Definition 14.1 with

(1) E is (m− r)-pseudo-coherent, and
(2) Hi(E) is supported on T for i ≥ m− r

approximation holds.

Lemma 14.3. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary distin-
guished square of algebraic space over S. Let E be a perfect object of D(OV ) supported
on j−1(T ) where T = |X| \ |U |. Then Rj∗E is a perfect object of D(OX).

Proof. Being perfect is local onXétale. Thus it suffices to check thatRj∗E is perfect
when restricted to U and V . We have Rj∗E|V = E by Lemma 10.7 which is perfect. We
have Rj∗E|U = 0 because E|V \j−1(T ) = 0 (use Lemma 3.1). �

Lemma 14.4. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Let T be a closed subset of |X| \ |U |
and let (T,E,m) be a triple as in Definition 14.1. If

(1) approximation holds for (j−1T,E|V ,m), and
(2) the sheaves Hi(E) for i ≥ m are supported on T ,

then approximation holds for (T,E,m).

Proof. Let P → E|V be an approximation of the triple (j−1T,E|V ,m) over V .
ThenRj∗P is a perfect object ofD(OX) by Lemma 14.3. On the other hand,Rj∗P = j!P
by Lemma 10.7. We see that j!P is supported on T for example by (10.0.2). Hence we
obtain an approximation Rj∗P = j!P → j!(E|V )→ E. �

Lemma 14.5. Let S be a scheme. Let X be an algebraic space over S which is repre-
sentable by an affine scheme. Then approximation holds for every triple (T,E,m) as in
Definition 14.1 such that there exists an integer r ≥ 0 with

(1) E is m-pseudo-coherent,
(2) Hi(E) is supported on T for i ≥ m− r + 1,
(3) X \ T is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.
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Proof. LetX0 be an affine scheme representingX . Let T0 ⊂ X0 by the closed subset
corresponding to T . Let ε : Xétale → X0,Zar be the morphism (4.0.1). We may write
E = ε∗E0 for some object E0 of DQCoh(OX0), see Lemma 4.2. Then E0 is m-pseudo-
coherent, see Lemma 13.2. Comparing stalks of cohomology sheaves (see proof of Lemma
4.1) we see that Hi(E0) is supported on T0 for i ≥ m − r + 1. By Derived Categories
of Schemes, Lemma 14.4 there exists an approximation P0 → E0 of (T0, E0,m). By
Lemma 13.5 we see that P = ε∗P0 is a perfect object of D(OX). Pulling back we obtain
an approximation P = ε∗P0 → ε∗E0 = E as desired. �

Lemma 14.6. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary distin-
guished square of algebraic spaces over S. AssumeU quasi-compact, V affine, andU×X V
quasi-compact. If approximation by perfect complexes holds on U , then approximation
by perfect complexes holds on X .

Proof. Let T ⊂ |X| be a closed subset with X \ T → X quasi-compact. Let rU be
the integer of Definition 14.2 adapted to the pair (U, T ∩ |U |). Set T ′ = T \ |U |. Endow
T ′ with the induced reduced subspace structure. Since |T ′| is contained in |X| \ |U | we
see that j−1(T ′) → T ′ is an isomorphism. Moreover, V \ j−1(T ′) is quasi-compact as it
is the fibre product of U ×X V with X \ T over X and we’ve assumed U ×X V quasi-
compact and X \ T → X quasi-compact. Let r′ be the number of affines needed to cover
V \ j−1(T ′). We claim that r = max(rU , r′) works for the pair (X,T ).

To see this choose a triple (T,E,m) such thatE is (m−r)-pseudo-coherent andHi(E) is
supported on T for i ≥ m− r. Let t be the largest integer such that Ht(E)|U is nonzero.
(Such an integer exists as U is quasi-compact and E|U is (m − r)-pseudo-coherent.) We
will prove that E can be approximated by induction on t.

Base case: t ≤ m− r′. This means that Hi(E) is supported on T ′ for i ≥ m− r′. Hence
Lemma 14.5 guarantees the existence of an approximation P → E|V of (T ′, E|V ,m) on
V . Applying Lemma 14.4 we see that (T ′, E,m) can be approximated. Such an approxi-
mation is also an approximation of (T,E,m).

Induction step. Choose an approximation P → E|U of (T ∩ |U |, E|U ,m). This in par-
ticular gives a surjection Ht(P ) → Ht(E|U ). In the rest of the proof we will use the
equivalence of Lemma 4.2 (and the compatibilities of Remark 6.3) for the representable
algebraic spaces V and U ×X V . We will also use the fact that (m− r)-pseudo-coherence,
resp. perfectness on the Zariski site and étale site agree, see Lemmas 13.2 and 13.5. Thus
we can use the results of Derived Categories of Schemes, Section 13 for the open im-
mersion U ×X V ⊂ V . In this way Derived Categories of Schemes, Lemma 13.9 im-
plies there exists a perfect object Q in D(OV ) supported on j−1(T ) and an isomorphism
Q|U×XV → (P ⊕ P [1])|U×XV . By Derived Categories of Schemes, Lemma 13.6 we can
replace Q by Q⊗L I and assume that the map

Q|U×XV −→ (P ⊕ P [1])|U×XV −→ P |U×XV −→ E|U×XV

lifts to Q → E|V . By Lemma 10.8 we find an morphism a : R → E of D(OX) such
that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to Q → E|V . Thus R is
perfect and supported on T and the map Ht(R) → Ht(E) is surjective on restriction to
U . Choose a distinguished triangle

R→ E → E′ → R[1]
Then E′ is (m − r)-pseudo-coherent (Cohomology on Sites, Lemma 45.4), Hi(E′)|U =
0 for i ≥ t, and Hi(E′) is supported on T for i ≥ m − r. By induction we find an



5632 75. DERIVED CATEGORIES OF SPACES

approximation R′ → E′ of (T,E′,m). Fit the composition R′ → E′ → R[1] into a
distinguished triangle R → R′′ → R′ → R[1] and extend the morphisms R′ → E′ and
R[1]→ R[1] into a morphism of distinguished triangles

R //

��

R′′

��

// R′

��

// R[1]

��
R // E // E′ // R[1]

using TR3. Then R′′ is a perfect complex (Cohomology on Sites, Lemma 47.6) supported
on T . An easy diagram chase shows that R′′ → E is the desired approximation. �

Theorem 14.7. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Then approximation by perfect complexes holds on X .

Proof. This follows from the induction principle of Lemma 9.3 and Lemmas 14.6
and 14.5. �

15. Generating derived categories

This section is the analogue of Derived Categories of Schemes, Section 15. However, we
first prove the following lemma which is the analogue of Derived Categories of Schemes,
Lemma 13.10.

Lemma 15.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let W ⊂ X be a quasi-compact open. Let T ⊂ |X| be a closed subset
such that X \ T → X is a quasi-compact morphism. Let E be an object of DQCoh(OX).
Let α : P → E|W be a map where P is a perfect object of D(OW ) supported on T ∩W .
Then there exists a map β : R → E where R is a perfect object of D(OX) supported on
T such that P is a direct summand of R|W in D(OW ) compatible α and β|W .

Proof. We will use the induction principle of Lemma 9.6 to prove this. Thus we
immediately reduce to the case where we have an elementary distinguished square (W ⊂
X, f : V → X) with V affine and P → E|W as in the statement of the lemma. In the
rest of the proof we will use Lemma 4.2 (and the compatibilities of Remark 6.3) for the
representable algebraic spaces V and W ×X V . We will also use the fact that perfectness
on the Zariski site and étale site agree, see Lemma 13.5.

By Derived Categories of Schemes, Lemma 13.9 we can choose a perfect objectQ inD(OV )
supported on f−1T and an isomorphism Q|W×XV → (P ⊕ P [1])|W×XV . By Derived
Categories of Schemes, Lemma 13.6 we can replaceQ byQ⊗L I (still supported on f−1T )
and assume that the map

Q|W×XV → (P ⊕ P [1])|W×V −→ P |W×XV −→ E|W×XV

lifts to Q→ E|V . By Lemma 10.8 we find an morphism a : R→ E of D(OX) such that
a|W is isomorphic to P ⊕ P [1] → E|W and a|V isomorphic to Q → E|V . Thus R is
perfect and supported on T as desired. �

Remark 15.2. The proof of Lemma 15.1 shows that

R|W = P ⊕ P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]
for some m ≥ 0 and nj ≥ 0. Thus the highest degree cohomology sheaf of R|W equals
that of P . By repeating the construction for the map P⊕n1 [1]⊕ . . .⊕P⊕nm [m]→ R|W ,
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taking cones, and using induction we can achieve equality of cohomology sheaves ofR|W
and P above any given degree.

Lemma 15.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. LetW be a quasi-compact open subspace ofX . LetP be a perfect object
of D(OW ). Then P is a direct summand of the restriction of a perfect object of D(OX).

Proof. Special case of Lemma 15.1. �

Theorem 15.4. LetS be a scheme. LetX be a quasi-compact and quasi-separated alge-
braic space over S. The category DQCoh(OX) can be generated by a single perfect object.
More precisely, there exists a perfect object P of D(OX) such that for E ∈ DQCoh(OX)
the following are equivalent

(1) E = 0, and
(2) HomD(OX)(P [n], E) = 0 for all n ∈ Z.

Proof. We will prove this using the induction principle of Lemma 9.3.

If X is affine, then OX is a perfect generator. This follows from Lemma 4.2 and Derived
Categories of Schemes, Lemma 3.5.

Assume that (U ⊂ X, f : V → X) is an elementary distinguished square with U quasi-
compact such that the theorem holds for U and V is an affine scheme. Let P be a perfect
object ofD(OU ) which is a generator forDQCoh(OU ). Using Lemma 15.3 we may choose
a perfect objectQ ofD(OX) whose restriction toU is a direct sum one of whose summands
is P . Say V = Spec(A). Let Z ⊂ V be the reduced closed subscheme which is the inverse
image of X \U and maps isomorphically to it (see Definition 9.1). This is a retrocompact
closed subset of V . Choose f1, . . . , fr ∈ A such thatZ = V (f1, . . . , fr). LetK ∈ D(OV )
be the perfect object corresponding to the Koszul complex on f1, . . . , fr overA. Note that
since K is supported on Z , the pushforward K ′ = Rf∗K is a perfect object of D(OX)
whose restriction toV isK (see Lemmas 14.3 and 10.7). We claim thatQ⊕K ′ is a generator
for DQCoh(OX).

Let E be an object of DQCoh(OX) such that there are no nontrivial maps from any shift
of Q⊕K ′ into E. By Lemma 10.7 we have K ′ = f!K and hence

HomD(OX)(K ′[n], E) = HomD(OV )(K[n], E|V )

Thus by Derived Categories of Schemes, Lemma 15.2 (using also Lemma 4.2) the vanishing
of these groups implies that E|V is isomorphic to R(U ×X V → V )∗E|U×XV . This
implies that E = R(U → X)∗E|U (small detail omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of P the
vanishing of these groups implies that E|U is zero. Whence E is zero. �

Remark 15.5. Let S be a scheme. Let f : X → Y be a morphism of quasi-compact
and quasi-separated algebraic spaces over S. Let E ∈ DQCoh(OY ) be a generator (see
Theorem 15.4). Then the following are equivalent

(1) for K ∈ DQCoh(OX) we have Rf∗K = 0 if and only if K = 0,
(2) Rf∗ : DQCoh(OX)→ DQCoh(OY ) reflects isomorphisms, and
(3) Lf∗E is a generator for DQCoh(OX).
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The equivalence between (1) and (2) is a formal consequence of the fact thatRf∗ : DQCoh(OX)→
DQCoh(OY ) is an exact functor of triangulated categories. Similarly, the equivalence be-
tween (1) and (3) follows formally from the fact that Lf∗ is the left adjoint toRf∗. These
conditions hold if f is affine (Lemma 6.4) or if f is an open immersion, or if f is a compo-
sition of such.

The following result is an strengthening of Theorem 15.4 proved using exactly the same
methods. Let T ⊂ |X| be a closed subset where X is an algebraic space. Let’s denote
DT (OX) the strictly full, saturated, triangulated subcategory consisting of complexes
whose cohomology sheaves are supported on T .

Lemma 15.6. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space overS. Let T ⊂ |X| be a closed subset such that |X|\T is quasi-compact. With
notation as above, the category DQCoh,T (OX) is generated by a single perfect object.

Proof. We will prove this using the induction principle of Lemma 9.3. The property
is true for representable quasi-compact and quasi-separated objects of the siteXspaces,étale

by Derived Categories of Schemes, Lemma 15.4.

Assume that (U ⊂ X, f : V → X) is an elementary distinguished square such that the
lemma holds for U and V is affine. To finish the proof we have to show that the result
holds forX . Let P be a perfect object ofD(OU ) supported on T ∩U which is a generator
for DQCoh,T∩U (OU ). Using Lemma 15.1 we may choose a perfect object Q of D(OX)
supported on T whose restriction toU is a direct sum one of whose summands is P . Write
V = Spec(B). Let Z = X \U . Then f−1Z is a closed subset of V such that V \ f−1Z is
quasi-compact. As X is quasi-separated, it follows that f−1Z ∩ f−1T = f−1(Z ∩ T ) is a
closed subset of V such that W = V \ f−1(Z ∩ T ) is quasi-compact. Thus we can choose
g1, . . . , gs ∈ B such that f−1(Z ∩ T ) = V (g1, . . . , gr). Let K ∈ D(OV ) be the perfect
object corresponding to the Koszul complex on g1, . . . , gs over B. Note that since K is
supported on f−1(Z ∩T ) ⊂ V closed, the pushforwardK ′ = R(V → X)∗K is a perfect
object of D(OX) whose restriction to V is K (see Lemmas 14.3 and 10.7). We claim that
Q⊕K ′ is a generator for DQCoh,T (OX).

LetE be an object ofDQCoh,T (OX) such that there are no nontrivial maps from any shift
of Q⊕K ′ into E. By Lemma 10.7 we have K ′ = R(V → X)!K and hence

HomD(OX)(K ′[n], E) = HomD(OV )(K[n], E|V )

Thus by Derived Categories of Schemes, Lemma 15.2 we have E|V = Rj∗E|W where
j : W → V is the inclusion. Picture

W
j

// V Z ∩ Too

��
V \ f−1Z

j′

OO

j′′

::

Z

bb

Since E is supported on T we see that E|W is supported on f−1T ∩W = f−1T ∩ (V \
f−1Z) which is closed in W . We conclude that

E|V = Rj∗(E|W ) = Rj∗(Rj′
∗(E|U∩V )) = Rj′′

∗ (E|U∩V )

Here the second equality is part (1) of Cohomology, Lemma 33.6 which applies because V
is a scheme and E has quasi-coherent cohomology sheaves hence pushforward along the
quasi-compact open immersion j′ agrees with pushforward on the underlying schemes,
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see Remark 6.3. This implies that E = R(U → X)∗E|U (small detail omitted). If this is
the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )
which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of P the
vanishing of these groups implies that E|U is zero. Whence E is zero. �

16. Compact and perfect objects

This section is the analogue of Derived Categories of Schemes, Section 17.

Proposition 16.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. An object of DQCoh(OX) is compact if and only if it is perfect.

Proof. If K is a perfect object of D(OX) with dual K∨ (Cohomology on Sites,
Lemma 48.4) we have

HomD(OX)(K,M) = H0(X,K∨ ⊗L
OX

M)

functorially in M . Since K∨ ⊗L
OX
− commutes with direct sums and since H0(X,−)

commutes with direct sums onDQCoh(OX) by Lemma 6.2 we conclude thatK is compact
in DQCoh(OX).
Conversely, letK be a compact object ofDQCoh(OX). To show thatK is perfect, it suffices
to show that K|U is perfect for every affine scheme U étale over X , see Cohomology on
Sites, Lemma 47.2. Observe that j : U → X is a quasi-compact and separated morphism.
Hence Rj∗ : DQCoh(OU ) → DQCoh(OX) commutes with direct sums, see Lemma 6.2.
Thus the adjointness of restriction to U and Rj∗ implies that K|U is a perfect object of
DQCoh(OU ). Hence we reduce to the case that X is affine, in particular a quasi-compact
and quasi-separated scheme. Via Lemma 4.2 and 13.5 we reduce to the case of schemes, i.e.,
to Derived Categories of Schemes, Proposition 17.1. �

Remark 16.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let G be a perfect object of D(OX) which is a generator for
DQCoh(OX). By Theorem 15.4 there is at least one of these. Combining Lemma 5.3 with
Proposition 16.1 and with Derived Categories, Proposition 37.6 we see thatG is a classical
generator for Dperf (OX).

The following result is a strengthening of Proposition 16.1. Let T ⊂ |X| be a closed subset
where X is an algebraic space. As before DT (OX) denotes the strictly full, saturated, tri-
angulated subcategory consisting of complexes whose cohomology sheaves are supported
on T . Since taking direct sums commutes with taking cohomology sheaves, it follows that
DT (OX) has direct sums and that they are equal to direct sums in D(OX).

Lemma 16.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-compact. An
object of DQCoh,T (OX) is compact if and only if it is perfect as an object of D(OX).

Proof. We observe that DQCoh,T (OX) is a triangulated category with direct sums
by the remark preceding the lemma. By Proposition 16.1 the perfect objects define compact
objects ofD(OX) hence a fortiori of any subcategory preserved under taking direct sums.
For the converse we will use there exists a generatorE ∈ DQCoh,T (OX) which is a perfect
complex of OX -modules, see Lemma 15.6. Hence by the above, E is compact. Then it
follows from Derived Categories, Proposition 37.6 that E is a classical generator of the
full subcategory of compact objects of DQCoh,T (OX). Thus any compact object can be
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constructed out of E by a finite sequence of operations consisting of (a) taking shifts, (b)
taking finite direct sums, (c) taking cones, and (d) taking direct summands. Each of these
operations preserves the property of being perfect and the result follows. �

Remark 16.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated al-
gebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-compact.
Let G be a perfect object of DQCoh,T (OX) which is a generator for DQCoh,T (OX). By
Lemma 15.6 there is at least one of these. Combining the fact that DQCoh,T (OX) has di-
rect sums with Lemma 16.3 and with Derived Categories, Proposition 37.6 we see that G
is a classical generator for Dperf,T (OX).

The following lemma is an application of the ideas that go into the proof of the preceding
lemma.

Lemma 16.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let T ⊂ |X| be a closed subset such that the complement U ⊂ X is
quasi-compact. Let α : P → E be a morphism of DQCoh(OX) with either

(1) P is perfect and E supported on T , or
(2) P pseudo-coherent, E supported on T , and E bounded below.

Then there exists a perfect complex of OX -modules I and a map I → OX [0] such that
I ⊗L P → E is zero and such that I|U → OU [0] is an isomorphism.

Proof. SetD = DQCoh,T (OX). In both cases the complexK = RHom(P,E) is an
object of D. See Lemma 13.10 for quasi-coherence. It is clear that K is supported on T as
formation of RHom commutes with restriction to opens. The map α defines an element
of H0(K) = HomD(OX)(OX [0],K). Then it suffices to prove the result for the map
α : OX [0]→ K.
Let E ∈ D be a perfect generator, see Lemma 15.6. Write

K = hocolimKn

as in Derived Categories, Lemma 37.3 using the generator E. Since the functor D →
D(OX) commutes with direct sums, we see thatK = hocolimKn holds inD(OX). Since
OX is a compact object of D(OX) we find an n and a morphism αn : OX → Kn which
gives rise to α, see Derived Categories, Lemma 33.9. By Derived Categories, Lemma 37.4
applied to the morphism OX [0] → Kn in the ambient category D(OX) we see that αn
factors asOX [0]→ Q→ Kn whereQ is an object of 〈E〉. We conclude thatQ is a perfect
complex supported on T .
Choose a distinguished triangle

I → OX [0]→ Q→ I[1]
By construction I is perfect, the map I → OX [0] restricts to an isomorphism over U , and
the composition I → K is zero as α factors through Q. This proves the lemma. �

17. Derived categories as module categories

The section is the analogue of Derived Categories of Schemes, Section 18.

Lemma 17.1. Let S be a scheme. Let X be an algebraic space over S. Let K• be a
complex of OX -modules whose cohomology sheaves are quasi-coherent. Let (E, d) =
HomCompdg(OX)(K•,K•) be the endomorphism differential graded algebra. Then the
functor

−⊗L
E K

• : D(E, d) −→ D(OX)



17. DERIVED CATEGORIES AS MODULE CATEGORIES 5637

of Differential Graded Algebra, Lemma 35.3 has image contained in DQCoh(OX).

Proof. Let P be a differential graded E-module with property P . Let F• be a filtra-
tion on P as in Differential Graded Algebra, Section 20. Then we have

P ⊗E K• = hocolim FiP ⊗E K•

Each of the FiP has a finite filtration whose graded pieces are direct sums of E[k]. The
result follows easily. �

The following lemma can be strengthened (there is a uniformity in the vanishing over all
L with nonzero cohomology sheaves only in a fixed range).

Lemma 17.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let K be a perfect object of D(OX). Then

(1) there exist integers a ≤ b such that HomD(OX)(K,L) = 0 forL ∈ DQCoh(OX)
with Hi(L) = 0 for i ∈ [a, b], and

(2) if L is bounded, then ExtnD(OX)(K,L) is zero for all but finitely many n.

Proof. Part (2) follows from (1) as ExtnD(OX)(K,L) = HomD(OX)(K,L[n]). We
prove (1). Since K is perfect we have

ExtiD(OX)(K,L) = Hi(X,K∨ ⊗L
OX

L)

where K∨ is the “dual” perfect complex to K , see Cohomology on Sites, Lemma 48.4.
Note that P = K∨ ⊗L

OX
L is in DQCoh(X) by Lemmas 5.6 and 13.6 (to see that a perfect

complex has quasi-coherent cohomology sheaves). Say K∨ has tor amplitude in [a, b].
Then the spectral sequence

Ep,q1 = Hp(K∨ ⊗L
OX

Hq(L))⇒ Hp+q(K∨ ⊗L
OX

L)

shows that Hj(K∨ ⊗L
OX

L) is zero if Hq(L) = 0 for q ∈ [j − b, j − a]. Let N be the
integer max(dp + p) of Cohomology of Spaces, Lemma 7.3. Then H0(X,K∨ ⊗L

OX
L)

vanishes if the cohomology sheaves

H−N (K∨ ⊗L
OX

L), H−N+1(K∨ ⊗L
OX

L), . . . , H0(K∨ ⊗L
OX

L)
are zero. Namely, by the lemma cited and Lemma 5.8, we have

H0(X,K∨ ⊗L
OX

L) = H0(X, τ≥−N (K∨ ⊗L
OX

L))

and by the vanishing of cohomology sheaves, this is equal to H0(X, τ≥1(K∨ ⊗L
OX

L))
which is zero by Derived Categories, Lemma 16.1. It follows that HomD(OX)(K,L) is
zero if Hi(L) = 0 for i ∈ [−b−N,−a]. �

The following is the analogue of Derived Categories of Schemes, Theorem 18.3.

Theorem 17.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Then there exist a differential graded algebra (E, d) with only a
finite number of nonzero cohomology groupsHi(E) such thatDQCoh(OX) is equivalent
to D(E, d).

Proof. Let K• be a K-injective complex of O-modules which is perfect and gener-
ates DQCoh(OX). Such a thing exists by Theorem 15.4 and the existence of K-injective
resolutions. We will show the theorem holds with

(E, d) = HomCompdg(OX)(K•,K•)
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where Compdg(OX) is the differential graded category of complexes ofO-modules. Please
see Differential Graded Algebra, Section 35. Since K• is K-injective we have

(17.3.1) Hn(E) = ExtnD(OX)(K•,K•)

for all n ∈ Z. Only a finite number of these Exts are nonzero by Lemma 17.2. Consider
the functor

−⊗L
E K

• : D(E, d) −→ D(OX)
of Differential Graded Algebra, Lemma 35.3. Since K• is perfect, it defines a compact
object of D(OX), see Proposition 16.1. Combined with (17.3.1) the functor above is fully
faithful as follows from Differential Graded Algebra, Lemmas 35.6. It has a right adjoint

RHom(K•,−) : D(OX) −→ D(E, d)

by Differential Graded Algebra, Lemmas 35.5 which is a left quasi-inverse functor by gen-
eralities on adjoint functors. On the other hand, it follows from Lemma 17.1 that we obtain

−⊗L
E K

• : D(E, d) −→ DQCoh(OX)

and by our choice ofK• as a generator ofDQCoh(OX) the kernel of the adjoint restricted
toDQCoh(OX) is zero. A formal argument shows that we obtain the desired equivalence,
see Derived Categories, Lemma 7.2. �

Remark 17.4 (Variant with support). Let S be a scheme. Let X be a quasi-compact
and quasi-separated algebraic space. Let T ⊂ |X| be a closed subset such that |X| \ T
is quasi-compact. The analogue of Theorem 17.3 holds for DQCoh,T (OX). This follows
from the exact same argument as in the proof of the theorem, using Lemmas 15.6 and 16.3
and a variant of Lemma 17.1 with supports. If we ever need this, we will precisely state the
result here and give a detailed proof.

Remark 17.5 (Uniqueness of dga). Let X be a quasi-compact and quasi-separated al-
gebraic space over a ringR. By the construction of the proof of Theorem 17.3 there exists
a differential graded algebra (A, d) over R such that DQCoh(X) is R-linearly equivalent
to D(A, d) as a triangulated category. One may ask: how unique is (A, d)? The answer is
(only) slightly better than just saying that (A, d) is well defined up to derived equivalence.
Namely, suppose that (B, d) is a second such pair. Then we have

(A, d) = HomCompdg(OX)(K•,K•)

and
(B, d) = HomCompdg(OX)(L•, L•)

for some K-injective complexesK• and L• ofOX -modules corresponding to perfect gen-
erators of DQCoh(OX). Set

Ω = HomCompdg(OX)(K•, L•) Ω′ = HomCompdg(OX)(L•,K•)

Then Ω is a differential gradedBopp⊗RA-module and Ω′ is a differential gradedAopp⊗R
B-module. Moreover, the equivalence

D(A, d)→ DQCoh(OX)→ D(B, d)

is given by the functor − ⊗L
A Ω′ and similarly for the quasi-inverse. Thus we are in the

situation of Differential Graded Algebra, Remark 37.10. If we ever need this remark we
will provide a precise statement with a detailed proof here.
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18. Characterizing pseudo-coherent complexes, I

This material will be continued in More on Morphisms of Spaces, Section 51. We can
characterize pseudo-coherent objects as derived homotopy limits of approximations by
perfect objects.

Lemma 18.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let K ∈ D(OX). The following are equivalent

(1) K is pseudo-coherent, and
(2) K = hocolimKn where Kn is perfect and τ≥−nKn → τ≥−nK is an isomor-

phism for all n.

Proof. The implication (2)⇒ (1) is true on any ringed site. Namely, assume (2) holds.
Recall that a perfect object of the derived category is pseudo-coherent, see Cohomology
on Sites, Lemma 47.4. Then it follows from the definitions that τ≥−nKn is (−n + 1)-
pseudo-coherent and hence τ≥−nK is (−n + 1)-pseudo-coherent, hence K is (−n + 1)-
pseudo-coherent. This is true for all n, hence K is pseudo-coherent, see Cohomology on
Sites, Definition 45.1.

Assume (1). We start by choosing an approximation K1 → K of (X,K,−2) by a perfect
complex K1, see Definitions 14.1 and 14.2 and Theorem 14.7. Suppose by induction we
have

K1 → K2 → . . .→ Kn → K

with Ki perfect such that such that τ≥−iKi → τ≥−iK is an isomorphism for all 1 ≤
i ≤ n. Then we pick a ≤ b as in Lemma 17.2 for the perfect object Kn. Choose an
approximation Kn+1 → K of (X,K,min(a − 1,−n − 1)). Choose a distinguished
triangle

Kn+1 → K → C → Kn+1[1]
Then we see that C ∈ DQCoh(OX) has Hi(C) = 0 for i ≥ a. Thus by our choice of
a, b we see that HomD(OX)(Kn, C) = 0. Hence the composition Kn → K → C is zero.
Hence by Derived Categories, Lemma 4.2 we can factor Kn → K through Kn+1 proving
the induction step.

We still have to prove that K = hocolimKn. This follows by an application of Derived
Categories, Lemma 33.8 to the functors Hi(−) : D(OX)→Mod(OX) and our choice of
Kn. �

Lemma 18.2. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X be
a closed subset such that X \ T is quasi-compact. Let K ∈ D(OX) supported on T . The
following are equivalent

(1) K is pseudo-coherent, and
(2) K = hocolimKn whereKn is perfect, supported on T , and τ≥−nKn → τ≥−nK

is an isomorphism for all n.

Proof. The proof of this lemma is exactly the same as the proof of Lemma 18.1 except
that in the choice of the approximations we use the triples (T,K,m). �

19. The coherator revisited

In Section 11 we constructed and studied the right adjoint RQX to the canonical functor
D(QCoh(OX)) → D(OX). It was constructed as the right derived extension of the
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coherator QX : Mod(OX) → QCoh(OX). In this section, we study when the inclusion
functor

DQCoh(OX) −→ D(OX)
has a right adjoint. If this right adjoint exists, we will denote2 it

DQX : D(OX) −→ DQCoh(OX)
It turns out that quasi-compact and quasi-separated algebraic spaces have such a right ad-
joint.

Lemma 19.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. The inclusion functor DQCoh(OX)→ D(OX) has a right adjoint.

First proof. We will use the induction principle in Lemma 9.3 to prove this. If
D(QCoh(OX)) → DQCoh(OX) is an equivalence, then the lemma is true because the
functor RQX of Section 11 is a right adjoint to the functor D(QCoh(OX)) → D(OX).
In particular, our lemma is true for affine algebraic spaces, see Lemma 11.3. Thus we see
that it suffices to show: if (U ⊂ X, f : V → X) is an elementary distinguished square
with U quasi-compact and V affine and the lemma holds for U , V , and U ×X V , then the
lemma holds for X .

The adjoint exists if and only if for every object K of D(OX) we can find a distinguished
triangle

E′ → E → K → E′[1]
in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M,K) = 0 for all M in
DQCoh(OX). See Derived Categories, Lemma 40.7. Consider the distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU×XV,∗E|U×XV → E[1]
inD(OX) of Lemma 10.2. By Derived Categories, Lemma 40.5 it suffices to construct the
desired distinguished triangles for RjU,∗E|U , RjV,∗E|V , and RjU×XV,∗E|U×XV . This
reduces us to the statement discussed in the next paragraph.

Let j : U → X be an étale morphism corresponding with U quasi-compact and quasi-
separated and the lemma is true for U . Let L be an object of D(OU ). Then there exists a
distinguished triangle

E′ → Rj∗L→ K → E′[1]
in D(OX) such that E′ is in DQCoh(OX) and such that Hom(M,K) = 0 for all M in
DQCoh(OX). To see this we choose a distinguished triangle

L′ → L→ Q→ L′[1]
in D(OU ) such that L′ is in DQCoh(OU ) and such that Hom(N,Q) = 0 for all N in
DQCoh(OU ). This is possible because the statement in Derived Categories, Lemma 40.7 is
an if and only if. We obtain a distinguished triangle

Rj∗L
′ → Rj∗L→ Rj∗Q→ Rj∗L

′[1]
in D(OX). Observe that Rj∗L

′ is in DQCoh(OX) by Lemma 6.1. On the other hand, if
M in DQCoh(OX), then

Hom(M,Rj∗Q) = Hom(Lj∗M,Q) = 0
because Lj∗M is in DQCoh(OU ) by Lemma 5.5. This finishes the proof. �

2This is probably nonstandard notation. However, we have already used QX for the coherator and RQX
for its derived extension.
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Second proof. The adjoint exists by Derived Categories, Proposition 38.2. The hy-
potheses are satisfied: First, note that DQCoh(OX) has direct sums and direct sums com-
mute with the inclusion functor (Lemma 5.3). On the other hand, DQCoh(OX) is com-
pactly generated because it has a perfect generator Theorem 15.4 and because perfect ob-
jects are compact by Proposition 16.1. �

Lemma 19.2. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. If the right adjoints DQX and DQY of
the inclusion functors DQCoh → D exist for X and Y , then

Rf∗ ◦DQX = DQY ◦Rf∗

Proof. The statement makes sense becauseRf∗ sendsDQCoh(OX) intoDQCoh(OY )
by Lemma 6.1. The statement is true becauseLf∗ similarly mapsDQCoh(OY ) intoDQCoh(OX)
(Lemma 5.5) and hence both Rf∗ ◦ DQX and DQY ◦ Rf∗ are right adjoint to Lf∗ :
DQCoh(OY )→ D(OX). �

Remark 19.3. Let S be a scheme. Let (U ⊂ X, f : V → X) be an elementary
distinguished square of algebraic spaces over S. Assume X , U , V are quasi-compact and
quasi-separated. By Lemma 19.1 the functors DQX , DQU , DQV , DQU×XV exist. More-
over, there is a canonical distinguished triangle
DQX(K)→ RjU,∗DQU (K|U )⊕RjV,∗DQV (K|V )→ RjU×XV,∗DQU×XV (K|U×XV )→
for any K ∈ D(OX). This follows by applying the exact functor DQX to the distin-
guished triangle of Lemma 10.2 and using Lemma 19.2 three times.

Lemma 19.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. The functorDQX of Lemma 19.1 has the following boundedness prop-
erty: there exists an integer N = N(X) such that, if K in D(OX) with Hi(U,K) = 0
for U affine étale over X and i 6∈ [a, b], then the cohomology sheaves Hi(DQX(K)) are
zero for i 6∈ [a, b+N ].

Proof. We will prove this using the induction principle of Lemma 9.3.
If X is affine, then the lemma is true with N = 0 because then RQX = DQX is given by
taking the complex of quasi-coherent sheaves associated to RΓ(X,K). See Lemma 11.3.
Let (U ⊂ W,f : V → W ) be an elementary distinguished square with W quasi-compact
and quasi-separated, U ⊂ W quasi-compact open, V affine such that the lemma holds for
U , V , and U ×W V . Say with integersN(U),N(V ), andN(U ×W V ). Now supposeK is
inD(OX) withHi(W,K) = 0 for all affineW étale overX and all i 6∈ [a, b]. ThenK|U ,
K|V , K|U×WV have the same property. Hence we see that RQU (K|U ) and RQV (K|V )
and RQU∩V (K|U×WV ) have vanishing cohomology sheaves outside the inverval [a, b+
max(N(U), N(V ), N(U×W V )). Since the functorsRjU,∗,RjV,∗,RjU×WV,∗ have finite
cohomological dimension onDQCoh by Lemma 6.1 we see that there exists anN such that
RjU,∗DQU (K|U ),RjV,∗DQV (K|V ), andRjU∩V,∗DQU×WV (K|U×WV ) have vanishing
cohomology sheaves outside the interval [a, b + N ]. Then finally we conclude by the
distinguished triangle of Remark 19.3. �

Example 19.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let (Fn) be an inverse system of quasi-coherent sheaves on X .
SinceDQX is a right adjoint it commutes with products and therefore with derived limits.
Hence we see that

DQX(R limFn) = (R lim in DQCoh(OX))(Fn)
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where the first R lim is taken in D(OX). In fact, let’s write K = R limFn for this. For
any affine U étale over X we have

Hi(U,K) = Hi(RΓ(U,R limFn)) = Hi(R limRΓ(U,Fn)) = Hi(R lim Γ(U,Fn))

since cohomology commutes with derived limits and since the quasi-coherent sheaves Fn
have no higher cohomology on affines. By the computation of R lim in the category of
abelian groups, we see that Hi(U,K) = 0 unless i ∈ [0, 1]. Then finally we conclude that
the R lim in DQCoh(OX), which is DQX(K) by the above, is in Db

QCoh(OX) and has
vanishing cohomology sheaves in negative degrees by Lemma 19.4.

20. Cohomology and base change, IV

This section is the analogue of Derived Categories of Schemes, Section 22.

Lemma 20.1. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces overS. ForE inDQCoh(OX) andK inDQCoh(OY )
we have

Rf∗(E)⊗L
OY

K = Rf∗(E ⊗L
OX

Lf∗K)

Proof. Without any assumptions there is a map Rf∗(E) ⊗L
OY

K → Rf∗(E ⊗L
OX

Lf∗K). Namely, it is the adjoint to the canonical map

Lf∗(Rf∗(E)⊗L
OY

K) = Lf∗(Rf∗(E))⊗L
OX

Lf∗K −→ E ⊗L
OX

Lf∗K

coming from the map Lf∗Rf∗E → E. See Cohomology on Sites, Lemmas 18.4 and 19.1.
To check it is an isomorphism we may work étale locally on Y . Hence we reduce to the
case that Y is an affine scheme.

Suppose that K =
⊕
Ki is a direct sum of some complexes Ki ∈ DQCoh(OY ). If the

statement holds for each Ki, then it holds for K. Namely, the functors Lf∗ and ⊗L

preserve direct sums by construction and Rf∗ commutes with direct sums (for complexes
with quasi-coherent cohomology sheaves) by Lemma 6.2. Moreover, suppose that K →
L → M → K[1] is a distinguished triangle in DQCoh(Y ). Then if the statement of the
lemma holds for two of K,L,M , then it holds for the third (as the functors involved are
exact functors of triangulated categories).

Assume Y affine, say Y = Spec(A). The functor˜ : D(A) → DQCoh(OY ) is an equiva-
lence by Lemma 4.2 and Derived Categories of Schemes, Lemma 3.5. Let T be the property
for K ∈ D(A) that the statement of the lemma holds for K̃. The discussion above and
More on Algebra, Remark 59.11 shows that it suffices to prove T holds for A[k]. This fin-
ishes the proof, as the statement of the lemma is clear for shifts of the structure sheaf. �

Definition 20.2. Let S be a scheme. LetB be an algebraic space over S. LetX , Y be
algebraic spaces over B. We say X and Y are Tor independent over B if and only if for
every commutative diagram

Spec(k)

y

�� b ##

x
// X

��
Y // B

of geometric points the ringsOX,x andOY,y are Tor independent overOB,b (see More on
Algebra, Definition 61.1).
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The following lemma shows in particular that this definition agrees with our definition
in the case of representable algebraic spaces.

Lemma 20.3. Let S be a scheme. Let B be an algebraic space over S. Let X , Y be
algebraic spaces over B. The following are equivalent

(1) X and Y are Tor independent over B,
(2) for every commutative diagram

U

��

// W

��

V

��

oo

X // B Yoo

with étale vertical arrows U and V are Tor independent over W ,
(3) for some commutative diagram as in (2) with (a) W → B étale surjective, (b)

U → X ×B W étale surjective, (c) V → Y ×B W étale surjective, the spaces U
and V are Tor independent over W , and

(4) for some commutative diagram as in (3) with U , V , W schemes, the schemes
U and V are Tor independent over W in the sense of Derived Categories of
Schemes, Definition 22.2.

Proof. For an étale morphism ϕ : U → X of algebraic spaces and geometric point
u the map of local rings OX,ϕ(u) → OU,u is an isomorphism. Hence the equivalence of
(1) and (2) follows. So does the implication (1)⇒ (3). Assume (3) and pick a diagram of
geometric points as in Definition 20.2. The assumptions imply that we can first lift b to a
geometric point w of W , then lift the geometric point (x, b) to a geometric point u of U ,
and finally lift the geometric point (y, b) to a geometric point v of V . Use Properties of
Spaces, Lemma 19.4 to find the lifts. Using the remark on local rings above we conclude
that the condition of the definition is satisfied for the given diagram.

Having made these initial points, it is clear that (4) comes down to the statement that
Definition 20.2 agrees with Derived Categories of Schemes, Definition 22.2 when X , Y ,
and B are schemes.

Let x, b, y be as in Definition 20.2 lying over the points x, y, b. Recall that OX,x = OshX,x
(Properties of Spaces, Lemma 22.1) and similarly for the other two. By Algebra, Lemma
155.12 we see that OX,x is a strict henselization of OX,x ⊗OB,b

OB,b. In particular, the
ring map

OX,x ⊗OB,b
OB,b −→ OX,x

is flat (More on Algebra, Lemma 45.1). By More on Algebra, Lemma 61.3 we see that

TorOB,b

i (OX,x,OY,y)⊗OX,x⊗OB,bOY,y
(OX,x ⊗O

B,b
OY,y) = Tor

O
B,b

i (OX,x,OY,y)

Hence it follows that if X and Y are Tor independent over B as schemes, then X and Y
are Tor independent as algebraic spaces over B.

For the converse, we may assume X , Y , and B are affine. Observe that the ring map

OX,x ⊗OB,b
OY,y −→ OX,x ⊗O

B,b
OY,y

is flat by the observations given above. Moreover, the image of the map on spectra includes
all primes s ⊂ OX,x⊗OB,b

OY,y lying over mx and my . Hence from this and the displayed
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formula of Tor’s above we see that if X and Y are Tor independent over B as algebraic
spaces, then

TorOB,b

i (OX,x,OY,y)s = 0
for all i > 0 and all s as above. By More on Algebra, Lemma 61.6 applied to the ring maps
Γ(B,OB) → Γ(X,OX) and Γ(B,OB) → Γ(X,OX) this implies that X and Y are Tor
independent over B. �

Lemma 20.4. Let S be a scheme. Let g : Y ′ → Y be a morphism of algebraic spaces
over S. Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic
spaces over S. Consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

IfX andY ′ are Tor independent overY , then for allE ∈ DQCoh(OX) we haveRf ′
∗L(g′)∗E =

Lg∗Rf∗E.

Proof. For any objectE ofD(OX) we can use Cohomology on Sites, Remark 19.3 to
get a canonical base change map Lg∗Rf∗E → Rf ′

∗L(g′)∗E. To check this is an isomor-
phism we may work étale locally on Y ′. Hence we may assume g : Y ′ → Y is a morphism
of affine schemes. In particular, g is affine and it suffices to show that

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗L(g′)∗E = Rf∗(Rg′

∗L(g′)∗E)
is an isomorphism, see Lemma 6.4 (and use Lemmas 5.5, 5.6, and 6.1 to see that the objects
Rf ′

∗L(g′)∗E and Lg∗Rf∗E have quasi-coherent cohomology sheaves). Note that g′ is
affine as well (Morphisms of Spaces, Lemma 20.5). By Lemma 6.5 the map becomes a map

Rf∗E ⊗L
OY

g∗OY ′ −→ Rf∗(E ⊗L
OX

g′
∗OX′)

Observe that g′
∗OX′ = f∗g∗OY ′ . Thus by Lemma 20.1 it suffices to prove thatLf∗g∗OY ′ =

f∗g∗OY ′ . This follows from our assumption that X and Y ′ are Tor independent over Y .
Namely, to check it we may work étale locally onX , hence we may also assumeX is affine.
Say X = Spec(A), Y = Spec(R) and Y ′ = Spec(R′). Our assumption implies that A
and R′ are Tor independent over R (see Lemma 20.3 and More on Algebra, Lemma 61.6),
i.e., TorRi (A,R′) = 0 for i > 0. In other wordsA⊗L

RR
′ = A⊗RR′ which exactly means

that Lf∗g∗OY ′ = f∗g∗OY ′ . �

The following lemma will be used in the chapter on dualizing complexes.

Lemma 20.5. Let g : S′ → S be a morphism of affine schemes. Consider a cartesian
square

X ′
g′
//

f ′

��

X

f

��
S′ g // S

of quasi-compact and quasi-separated algebraic spaces. Assume g and f Tor independent.
Write S = Spec(R) and S′ = Spec(R′). For M,K ∈ D(OX) the canonical map

RHomX(M,K)⊗L
R R

′ −→ RHomX′(L(g′)∗M,L(g′)∗K)
in D(R′) is an isomorphism in the following two cases
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(1) M ∈ D(OX) is perfect and K ∈ DQCoh(X), or
(2) M ∈ D(OX) is pseudo-coherent, K ∈ D+

QCoh(X), and R′ has finite tor dimen-
sion over R.

Proof. There is a canonical mapRHomX(M,K)→ RHomX′(L(g′)∗M,L(g′)∗K)
inD(Γ(X,OX)) of global hom complexes, see Cohomology on Sites, Section 36. Restrict-
ing scalars we can view this as a map in D(R). Then we can use the adjointness of restric-
tion and − ⊗L

R R′ to get the displayed map of the lemma. Having defined the map it
suffices to prove it is an isomorphism in the derived category of abelian groups.

The right hand side is equal to

RHomX(M,R(g′)∗L(g′)∗K) = RHomX(M,K ⊗L
OX

g′
∗OX′)

by Lemma 6.5. In both cases the complex RHom(M,K) is an object of DQCoh(OX) by
Lemma 13.10. There is a natural map

RHom(M,K)⊗L
OX

g′
∗OX′ −→ RHom(M,K ⊗L

OX
g′

∗OX′)

which is an isomorphism in both cases Lemma 13.11. To see that this lemma applies in
case (2) we note that g′

∗OX′ = Rg′
∗OX′ = Lf∗g∗OX the second equality by Lemma

20.4. Using Derived Categories of Schemes, Lemma 10.4, Lemma 13.3, and Cohomology
on Sites, Lemma 46.5 we conclude that g′

∗OX′ has finite Tor dimension. Hence, in both
cases by replacing K by RHom(M,K) we reduce to proving

RΓ(X,K)⊗L
A A

′ −→ RΓ(X,K ⊗L
OX

g′
∗OX′)

is an isomorphism. Note that the left hand side is equal to RΓ(X ′, L(g′)∗K) by Lemma
6.5. Hence the result follows from Lemma 20.4. �

Remark 20.6. With notation as in Lemma 20.5. The diagram

RHomX(M,Rg′
∗L)⊗L

R R
′ //

µ

��

RHomX′(L(g′)∗M,L(g′)∗Rg′
∗L)

a

��
RHomX(M,R(g′)∗L) RHomX′(L(g′)∗M,L)

is commutative where the top horizontal arrow is the map from the lemma, µ is the mul-
tiplication map, and a comes from the adjunction map L(g′)∗Rg′

∗L → L. The multipli-
cation map is the adjunction map K ′ ⊗L

R R
′ → K ′ for any K ′ ∈ D(R′).

Lemma 20.7. Let S be a scheme. Consider a cartesian square of algebraic spaces

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

over S. Assume g and f Tor independent.
(1) IfE ∈ D(OX) has tor amplitude in [a, b] as a complex of f−1OY -modules, then

L(g′)∗E has tor amplitude in [a, b] as a complex of f−1OY ′ -modules.
(2) If G is anOX -module flat over Y , then L(g′)∗G = (g′)∗G.
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Proof. We can compute tor dimension at stalks, see Cohomology on Sites, Lemma
46.10 and Properties of Spaces, Theorem 19.12. If x′ is a geometric point ofX ′ with image
x in X , then

(L(g′)∗E)x′ = Ex ⊗L
OX,x

OX′,x′

Let y′ in Y ′ and y in Y be the image of x′ and x. Since X and Y ′ are tor independent
over Y , we can apply More on Algebra, Lemma 61.2 to see that the right hand side of
the displayed formula is equal to Ex ⊗L

OY,y
OY ′,y′ in D(OY ′,y′). Thus (1) follows from

More on Algebra, Lemma 66.13. To see (2) observe that flatness of G is equivalent to the
condition that G[0] has tor amplitude in [0, 0]. Applying (1) we conclude. �

21. Cohomology and base change, V

This section is the analogue of Derived Categories of Schemes, Section 26. In Section 20
we saw a base change theorem holds when the morphisms are tor independent. Even in
the affine case there cannot be a base change theorem without such a condition, see More
on Algebra, Section 61. In this section we analyze when one can get a base change result
“one complex at a time”.

To make this work, let S be a base scheme and suppose we have a commutative diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of algebraic spaces over S (usually we will assume it is cartesian). Let K ∈ DQCoh(OX)
and letL(g′)∗K → K ′ be a map inDQCoh(OX′). For a geometric point x′ ofX ′ consider
the geometric points x = g′(x′), y′ = f ′(x′), y = f(x) = g(y′) of X , Y ′, Y . Then we
can consider the maps

Kx ⊗L
OY,y

OY ′,y′ → Kx ⊗L
OX,x

OX′,x′ → K ′
x′

where the first arrow is More on Algebra, Equation (61.0.1) and the second comes from
(L(g′)∗K)x′ = Kx ⊗L

OX,x
OX′,x′ and the given map L(g′)∗K → K ′. For each i ∈

Z we obtain a OX,x ⊗OY,y
OY ′,y′ -module structure on Hi(Kx ⊗L

OY,y
OY ′,y′). Putting

everything together we obtain canonical maps

(21.0.1) Hi(Kx ⊗L
OY,y

OY ′,y′)⊗(OX,x⊗OY,y
OY ′,y′ ) OX′,x′ −→ Hi(K ′

x′)

ofOX′,x′ -modules.

Lemma 21.1. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces overS. LetK ∈ DQCoh(OX) and letL(g′)∗K →
K ′ be a map in DQCoh(OX′). The following are equivalent

(1) for any x′ ∈ X ′ and i ∈ Z the map (21.0.1) is an isomorphism,
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(2) for any commutative diagram

U

��

a

  
V ′ //

c

  

V

b

  

X

f

��
Y ′ g // Y

with a, b, c étale, U, V, V ′ schemes, and with U ′ = V ′ ×V U the equivalent
conditions of Derived Categories of Schemes, Lemma 21.1 hold for (U → X)∗K
and (U ′ → X ′)∗K ′, and

(3) there is some diagram as in (2) with U ′ → X ′ surjective.

Proof. Observe that (1) is étale local on X ′. Working through formal implications
of what is known, we see that it suffices to prove condition (1) of this lemma is equivalent
to condition (1) of Derived Categories of Schemes, Lemma 26.1 if X,Y, Y ′, X ′ are repre-
sentable by schemes X0, Y0, Y

′
0 , X

′
0. Denote f0, g0, g

′
0, f

′
0 the morphisms between these

schemes corresponding to f, g, g′, f ′. We may assume K = ε∗K0 and K ′ = ε∗K ′
0 for

some objects K0 ∈ DQCoh(OX0) and K ′
0 ∈ DQCoh(OX′

0
), see Lemma 4.2. Moreover, the

map Lg∗K → K ′ is the pullback of a map L(g0)∗K0 → K ′
0 with notation as in Remark

6.3. Recall thatOX,x is the strict henselization ofOX,x (Properties of Spaces, Lemma 22.1)
and that we have

Kx = K0,x ⊗L
OX,x

OX,x and K ′
x′ = K ′

0,x′ ⊗L
OX′,x′ OX′,x′

(akin to Properties of Spaces, Lemma 29.4). Consider the commutative diagram

Hi(Kx ⊗L
OY,y

OY ′,y′)⊗(OX,x⊗OY,y
OY ′,y′ ) OX′,x′ // Hi(K ′

x′)

Hi(K0,x ⊗L
OY,y

OY ′,y′)⊗(OX,x⊗OY,yOY ′,y′ ) OX′,x′

OO

// Hi(K ′
0,x′)

OO

We have to show that the lower horizontal arrow is an isomorphism if and only if the up-
per horizontal arrow is an isomorphism. Since OX′,x′ → OX′,x′ is faithfully flat (More
on Algebra, Lemma 45.1) it suffices to show that the top arrow is the base change of the bot-
tom arrow by this map. This follows immediately from the relationships between stalks
given above for the objects on the right. For the objects on the left it suffices to show that

Hi
(

(K0,x ⊗L
OX,x

OX,x)⊗L
OY,y

OY ′,y′

)
= Hi(K0,x ⊗L

OY,y
OY ′,y′)⊗(OX,x⊗OY,yOY ′,y′ ) (OX,x ⊗OY,y

OY ′,y′)

This follows from More on Algebra, Lemma 61.5. The flatness assumptions of this lemma
hold by what was said above as well as Algebra, Lemma 155.12 implying that OX,x is
the strict henselization of OX,x ⊗OY,y

OY,y and that OY ′,y′ is the strict henselization of
OY ′,y′ ⊗OY,y

OY,y . �
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Lemma 21.2. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces overS. LetK ∈ DQCoh(OX) and letL(g′)∗K →
K ′ be a map in DQCoh(OX′). If

(1) the equivalent conditions of Lemma 21.1 hold, and
(2) f is quasi-compact and quasi-separated,

then the composition Lg∗Rf∗K → Rf ′
∗L(g′)∗K → Rf ′

∗K
′ is an isomorphism.

Proof. To check the map is an isomorphism we may work étale locally on Y ′. Hence
we may assume g : Y ′ → Y is a morphism of affine schemes. In this case, we will use the
induction principle of Lemma 9.3 to prove that for a quasi-compact and quasi-separated
algebraic space U étale over X the similarly constructed map Lg∗R(U → Y )∗K|U →
R(U ′ → Y ′)∗K

′|U ′ is an isomorphism. Here U ′ = X ′ ×g′,X U = Y ′ ×g,Y U .

If U is a scheme (for example affine), then the result holds. Namely, then Y, Y ′, U, U ′ are
schemes, K and K ′ come from objects of the derived category of the underlying schemes
by Lemma 4.2 and the condition of Derived Categories of Schemes, Lemma 26.1 holds for
these complexes by Lemma 21.1. Thus (by the compatibilities explained in Remark 6.3)
we can apply the result in the case of schemes which is Derived Categories of Schemes,
Lemma 26.2.

The induction step. Let (U ⊂W,V →W ) be an elementary distinguished square withW
a quasi-compact and quasi-separated algebraic space étale over X , with U quasi-compact,
V affine and the result holds for U , V , and U ×W V . To easy notation we replaceW byX
(this is permissible at this point). Denote a : U → Y , b : V → Y , and c : U ×X V → Y
the obvious morphisms. Let a′ : U ′ → Y ′, b′ : V ′ → Y ′ and c′ : U ′ ×X′ V ′ → Y ′ be the
base changes of a, b, and c. Using the distinguished triangles from relative Mayer-Vietoris
(Lemma 10.3) we obtain a commutative diagram

Lg∗Rf∗K //

��

Rf ′
∗K

′

��
Lg∗Ra∗K|U ⊕ Lg∗Rb∗K|V //

��

Ra′
∗K

′|U ′ ⊕Rb′
∗K

′|V ′

��
Lg∗Rc∗K|U×XV

//

��

Rc′
∗K

′|U ′×X′V ′

��
Lg∗Rf∗K[1] // Rf ′

∗K
′[1]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived Cate-
gories, Lemma 4.3) and the proof of the lemma is finished. �
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Lemma 21.3. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
S′ g // S

be a cartesian diagram of algebraic spaces overS. LetK ∈ DQCoh(OX) and letL(g′)∗K →
K ′ be a map in DQCoh(OX′). If the equivalent conditions of Lemma 21.1 hold, then

(1) forE ∈ DQCoh(OX) the equivalent conditions of Lemma 21.1 hold forL(g′)∗(E⊗L

K)→ L(g′)∗E ⊗L K ′,
(2) if E in D(OX) is perfect the equivalent conditions of Lemma 21.1 hold for

L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,K ′), and
(3) if K is bounded below and E in D(OX) pseudo-coherent the equivalent condi-

tions of Lemma 21.1 hold for L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,K ′).

Proof. The statement makes sense as the complexes involved have quasi-coherent
cohomology sheaves by Lemmas 5.5, 5.6, and 13.10 and Cohomology on Sites, Lemmas
45.3 and 47.5. Having said this, we can check the maps (21.0.1) are isomorphisms in case
(1) by computing the source and target of (21.0.1) using the transitive property of tensor
product, see More on Algebra, Lemma 59.15. The map in (2) and (3) is the composition

L(g′)∗RHom(E,K)→ RHom(L(g′)∗E,L(g′)∗K)→ RHom(L(g′)∗E,K ′)

where the first arrow is Cohomology on Sites, Remark 35.11 and the second arrow comes
from the given map L(g′)∗K → K ′. To prove the maps (21.0.1) are isomorphisms one
represents Ex by a bounded complex of finite projective OX.x-modules in case (2) or by
a bounded above complex of finite free modules in case (3) and computes the source and
target of the arrow. Some details omitted. �

Lemma 21.4. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces overS. LetE ∈ DQCoh(OX). LetG• be a bounded
above complex of quasi-coherentOX -modules flat over Y . Then formation of

Rf∗(E ⊗L
OX
G•)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

in other words X ′ = Y ′ ×Y X . The lemma asserts that

Lg∗Rf∗(E ⊗L
OX
G•) −→ Rf ′

∗(L(g′)∗E ⊗L
OX′ (g′)∗G•)

is an isomorphism. Observe that on the right hand side we do not use derived pullback
on G•. To prove this, we apply Lemmas 21.2 and 21.3 to see that it suffices to prove the
canonical map

L(g′)∗G• → (g′)∗G•
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satisfies the equivalent conditions of Lemma 21.1. This follows by checking the condition
on stalks, where it immediately follows from the fact that G•

x ⊗OY,y
OY ′,y′ computes the

derived tensor product by our assumptions on the complex G•. �

Lemma 21.5. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let E be an object of D(OX). Let G• be a
complex of quasi-coherentOX -modules. If

(1) E is perfect, G• is a bounded above, and Gn is flat over Y , or
(2) E is pseudo-coherent, G• is bounded, and Gn is flat over Y ,

then formation of
Rf∗RHom(E,G•)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
Y ′ g // Y

in other words X ′ = Y ′ ×Y X . The lemma asserts that

Lg∗Rf∗RHom(E,G•) −→ R(f ′)∗RHom(L(g′)∗E, (g′)∗G•)
is an isomorphism. Observe that on the right hand side we do not use the derived pullback
on G•. To prove this, we apply Lemmas 21.2 and 21.3 to see that it suffices to prove the
canonical map

L(g′)∗G• → (g′)∗G•

satisfies the equivalent conditions of Lemma 21.1. This was shown in the proof of Lemma
21.4. �

22. Producing perfect complexes

The following lemma is our main technical tool for producing perfect complexes. Later
versions of this result will reduce to this by Noetherian approximation.

Lemma 22.1. Let S be a scheme. Let Y be a Noetherian algebraic space over S. Let
f : X → Y be a morphism of algebraic spaces which is locally of finite type and quasi-
separated. Let E ∈ D(OX) such that

(1) E ∈ Db
Coh(OX),

(2) the support of Hi(E) is proper over Y for all i,
(3) E has finite tor dimension as an object of D(f−1OY ).

Then Rf∗E is a perfect object of D(OY ).

Proof. By Lemma 8.1 we see that Rf∗E is an object of Db
Coh(OY ). Hence Rf∗E

is pseudo-coherent (Lemma 13.7). Hence it suffices to show that Rf∗E has finite tor di-
mension, see Cohomology on Sites, Lemma 47.4. By Lemma 13.8 it suffices to check that
Rf∗(E) ⊗L

OY
F has universally bounded cohomology for all quasi-coherent sheaves F

on Y . Bounded from above is clear as Rf∗(E) is bounded from above. Let T ⊂ |X| be
the union of the supports of Hi(E) for all i. Then T is proper over Y by assumptions (1)
and (2) and Lemma 7.6. In particular there exists a quasi-compact open subspace X ′ ⊂ X
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containing T . Setting f ′ = f |X′ we have Rf∗(E) = Rf ′
∗(E|X′) because E restricts to

zero on X \ T . Thus we may replace X by X ′ and assume f is quasi-compact. We have
assumed f is quasi-separated. Thus

Rf∗(E)⊗L
OY
F = Rf∗

(
E ⊗L

OX
Lf∗F

)
= Rf∗

(
E ⊗L

f−1OY
f−1F

)
by Lemma 20.1 and Cohomology on Sites, Lemma 18.5. By assumption (3) the complex
E ⊗L

f−1OY
f−1F has cohomology sheaves in a given finite range, say [a, b]. Then Rf∗ of

it has cohomology in the range [a,∞) and we win. �

Lemma 22.2. Let S be a scheme. Let B be a Noetherian algebraic space over S. Let
f : X → B be a morphism of algebraic spaces which is locally of finite type and quasi-
separated. Let E ∈ D(OX) be perfect. Let G• be a bounded complex of coherent OX -
modules flat overB with support proper overB. ThenK = Rf∗(E⊗L

OX
G•) is a perfect

object of D(OB).

Proof. The objectK is perfect by Lemma 22.1. We check the lemma applies: Locally
E is isomorphic to a finite complex of finite free OX -modules. Hence locally E ⊗L

OX
G•

is isomorphic to a finite complex whose terms are of the form⊕
i=a,...,b

(Gi)⊕ri

for some integersa, b, ra, . . . , rb. This immediately implies the cohomology sheavesHi(E⊗L
OX

G) are coherent. The hypothesis on the tor dimension also follows as Gi is flat over
f−1OY . �

Lemma 22.3. Let S be a scheme. Let B be a Noetherian algebraic space over S. Let
f : X → B be a morphism of algebraic spaces which is locally of finite type and quasi-
separated. Let E ∈ D(OX) be perfect. Let G• be a bounded complex of coherent OX -
modules flat overB with support proper overB. ThenK = Rf∗RHom(E,G) is a perfect
object of D(OB).

Proof. Since E is a perfect complex there exists a dual perfect complex E∨, see Co-
homology on Sites, Lemma 48.4. Observe that RHom(E,G•) = E∨ ⊗L

OX
G•. Thus the

perfectness of K follows from Lemma 22.2. �

23. A projection formula for Ext

Lemma 23.3 (or similar results in the literature) is sometimes useful to verify properties of
an obstruction theory needed to verify one of Artin’s criteria for Quot functors, Hilbert
schemes, and other moduli problems. Suppose that f : X → Y is a proper, flat, finitely
presented morphism of algebraic spaces and E ∈ D(OX) is perfect. Here the lemma says

ExtiX(E, f∗F) = ExtiY ((Rf∗E
∨)∨,F)

for F quasi-coherent on Y . Writing it this way makes it look like a projection formula
for Ext and indeed the result follows rather easily from Lemma 20.1.

Lemma 23.1. Assumptions and notation as in Lemma 22.2. Then there are functorial
isomorphisms

Hi(B,K ⊗L
OB
F) −→ Hi(X,E ⊗L

OX
(G• ⊗OX

f∗F))

for F quasi-coherent on B compatible with boundary maps (see proof).
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Proof. We have
G• ⊗L

OX
Lf∗F = G• ⊗L

f−1OB
f−1F = G• ⊗f−1OB

f−1F = G• ⊗OX
f∗F

the first equality by Cohomology on Sites, Lemma 18.5, the second as Gn is a flat f−1OB-
module, and the third by definition of pullbacks. Hence we obtain

Hi(X,E ⊗L
OX

(G• ⊗OX
f∗F)) = Hi(X,E ⊗L

OX
G• ⊗L

OX
Lf∗F)

= Hi(B,Rf∗(E ⊗L
OX
G• ⊗L

OX
Lf∗F))

= Hi(B,Rf∗(E ⊗L
OX
G•)⊗L

OB
F)

= Hi(B,K ⊗L
OB
F)

The first equality by the above, the second by Leray (Cohomology on Sites, Remark 14.4),
and the third equality by Lemma 20.1. The statement on boundary maps means the fol-
lowing: Given a short exact sequence 0 → F1 → F2 → F3 → 0 then the isomorphisms
fit into commutative diagrams

Hi(B,K ⊗L
OB
F3) //

δ

��

Hi(X,E ⊗L
OX

(G• ⊗OX
f∗F3))

δ

��
Hi+1(B,K ⊗L

OB
F1) // Hi+1(X,E ⊗L

OX
(G• ⊗OX

f∗F1))

where the boundary maps come from the distinguished triangle

K ⊗L
OB
F1 → K ⊗L

OB
F2 → K ⊗L

OB
F3 → K ⊗L

OB
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence
0→ G• ⊗OX

f∗F1 → G• ⊗OX
f∗F2 → G• ⊗OX

f∗F3 → 0
of complexes. This sequence is exact because Gn is flat over B. We omit the verification
of the commutativity of the displayed diagram. �

Lemma 23.2. Assumption and notation as in Lemma 22.3. Then there are functorial
isomorphisms

Hi(B,K ⊗L
OB
F) −→ ExtiOX

(E,G• ⊗OX
f∗F)

for F quasi-coherent on B compatible with boundary maps (see proof).

Proof. As in the proof of Lemma 22.3 let E∨ be the dual perfect complex and recall
that K = Rf∗(E∨ ⊗L

OX
G•). Since we also have

ExtiOX
(E,G• ⊗OX

f∗F) = Hi(X,E∨ ⊗L
OX

(G• ⊗OX
f∗F))

by construction ofE∨, the existence of the isomorphisms follows from Lemma 23.1 applied
toE∨ and G•. The statement on boundary maps means the following: Given a short exact
sequence 0→ F1 → F2 → F3 → 0 then the isomorphisms fit into commutative diagrams

Hi(B,K ⊗L
OB
F3) //

δ

��

ExtiOX
(E,G• ⊗OX

f∗F3)

δ

��
Hi+1(B,K ⊗L

OB
F1) // Exti+1

OX
(E,G• ⊗OX

f∗F1)

where the boundary maps come from the distinguished triangle

K ⊗L
OB
F1 → K ⊗L

OB
F2 → K ⊗L

OB
F3 → K ⊗L

OB
F1[1]
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and the distinguished triangle in D(OX) associated to the short exact sequence

0→ G• ⊗OX
f∗F1 → G• ⊗OX

f∗F2 → G• ⊗OX
f∗F3 → 0

of complexes. This sequence is exact because Gn is flat over B. We omit the verification
of the commutativity of the displayed diagram. �

Lemma 23.3. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S , E ∈ D(OX), and F• a complex ofOX -modules. Assume

(1) B is Noetherian,
(2) f is locally of finite type and quasi-separated,
(3) E ∈ D−

Coh(OX),
(4) G• is a bounded complex of coherentOX -module flat overBwith support proper

over B.
Then the following two statements are true

(A) for every m ∈ Z there exists a perfect object K of D(OB) and functorial maps

αiF : ExtiOX
(E,G• ⊗OX

f∗F) −→ Hi(B,K ⊗L
OB
F)

forF quasi-coherent onB compatible with boundary maps (see proof) such that
αiF is an isomorphism for i ≤ m, and

(B) there exists a pseudo-coherent L ∈ D(OB) and functorial isomorphisms

ExtiOB
(L,F) −→ ExtiOX

(E,G• ⊗OX
f∗F)

for F quasi-coherent on B compatible with boundary maps.

Proof. Proof of (A). Suppose Gi is nonzero only for i ∈ [a, b]. We may replace X
by a quasi-compact open neighbourhood of the union of the supports of Gi. Hence we
may assumeX is Noetherian. In this caseX and f are quasi-compact and quasi-separated.
Choose an approximationP → E by a perfect complexP of (X,E,−m−1+a) (possible
by Theorem 14.7). Then the induced map

ExtiOX
(E,G• ⊗OX

f∗F) −→ ExtiOX
(P,G• ⊗OX

f∗F)

is an isomorphism for i ≤ m. Namely, the kernel, resp. cokernel of this map is a quotient,
resp. submodule of

ExtiOX
(C,G• ⊗OX

f∗F) resp. Exti+1
OX

(C,G• ⊗OX
f∗F)

where C is the cone of P → E. Since C has vanishing cohomology sheaves in degrees
≥ −m − 1 + a these Ext-groups are zero for i ≤ m + 1 by Derived Categories, Lemma
27.3. This reduces us to the case that E is a perfect complex which is Lemma 23.2. The
statement on boundaries is explained in the proof of Lemma 23.2.

Proof of (B). As in the proof of (A) we may assume X is Noetherian. Observe that E
is pseudo-coherent by Lemma 13.7. By Lemma 18.1 we can write E = hocolimEn with
En perfect and En → E inducing an isomorphism on truncations τ≥−n. Let E∨

n be the
dual perfect complex (Cohomology on Sites, Lemma 48.4). We obtain an inverse system
. . .→ E∨

3 → E∨
2 → E∨

1 of perfect objects. This in turn gives rise to an inverse system

. . .→ K3 → K2 → K1 with Kn = Rf∗(E∨
n ⊗L

OX
G•)

perfect on Y , see Lemma 22.2. By Lemma 23.2 and its proof and by the arguments in the
previous paragraph (with P = En) for any quasi-coherent F on Y we have functorial
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canonical maps

ExtiOX
(E,G• ⊗OX

f∗F)

tt ))
Hi(Y,Kn+1 ⊗L

OY
F) // Hi(Y,Kn ⊗L

OY
F)

which are isomorphisms for i ≤ n+ a. Let Ln = K∨
n be the dual perfect complex. Then

we see that L1 → L2 → L3 → . . . is a system of perfect objects in D(OY ) such that for
any quasi-coherent F on Y the maps

ExtiOY
(Ln+1,F) −→ ExtiOY

(Ln,F)
are isomorphisms for i ≤ n+a−1. This implies thatLn → Ln+1 induces an isomorphism
on truncations τ≥−n−a+2 (hint: take cone of Ln → Ln+1 and look at its last nonvanish-
ing cohomology sheaf). Thus L = hocolimLn is pseudo-coherent, see Lemma 18.1. The
mapping property of homotopy colimits gives that ExtiOY

(L,F) = ExtiOY
(Ln,F) for

i ≤ n+ a− 3 which finishes the proof. �

Remark 23.4. The pseudo-coherent complex L of part (B) of Lemma 23.3 is canoni-
cally associated to the situation. For example, formation of L as in (B) is compatible with
base change. In other words, given a cartesian diagram

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of schemes we have canonical functorial isomorphisms

ExtiOY ′ (Lg
∗L,F ′) −→ ExtiOX

(L(g′)∗E, (g′)∗G• ⊗OX′ (f ′)∗F ′)

for F ′ quasi-coherent on Y ′. Obsere that we do not use derived pullback on G• on the
right hand side. If we ever need this, we will formulate a precise result here and give a
detailed proof.

24. Limits and derived categories

In this section we collect some results about the derived category of an algebraic space
which is the limit of an inverse system of algebraic spaces. More precisely, we will work
in the following setting.

Situation 24.1. Let S be a scheme. LetX = limi∈I Xi be a limit of a directed system
of algebraic spaces over S with affine transition morphisms fi′i : Xi′ → Xi. We denote
fi : X → Xi the projection. We assume that Xi is quasi-compact and quasi-separated for
all i ∈ I . We also choose an element 0 ∈ I .

Lemma 24.2. In Situation 24.1. Let E0 and K0 be objects of D(OX0). Set Ei =
Lf∗

i0E0 and Ki = Lf∗
i0K0 for i ≥ 0 and set E = Lf∗

0E0 and K = Lf∗
0K0. Then the

map
colimi≥0 HomD(OXi

)(Ei,Ki) −→ HomD(OX)(E,K)
is an isomorphism if either

(1) E0 is perfect and K0 ∈ DQCoh(OX0), or
(2) E0 is pseudo-coherent and K0 ∈ DQCoh(OX0) has finite tor dimension.
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Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the canonical map

colimi≥0 HomD(OUi
)(Ei|Ui ,Ki|Ui) −→ HomD(OU )(E|U ,K|U )

is an isomorphism, where U = X ×X0 U0 and Ui = Xi ×X0 U0. We will prove P holds
for each U0 by the induction principle of Lemma 9.3. Condition (2) of this lemma follows
immediately from Mayer-Vietoris for hom in the derived category, see Lemma 10.4. Thus
it suffices to prove the lemma when X0 is affine.

If X0 is affine, then the result follows from the case of schemes, see Derived Categories of
Schemes, Lemma 29.2. To see this use the equivalence of Lemma 4.2 and use the translation
of properties explained in Lemmas 13.2, 13.3, and 13.5. �

Lemma 24.3. In Situation 24.1 the category of perfect objects ofD(OX) is the colimit
of the categories of perfect objects of D(OXi).

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the functor

colimi≥0 Dperf (OUi) −→ Dperf (OU )

is an equivalence where perf indicates the full subcategory of perfect objects and where
U = X ×X0 U0 and Ui = Xi ×X0 U0. We will prove P holds for every U0 by the
induction principle of Lemma 9.3. First, we observe that we already know the functor is
fully faithful by Lemma 24.2. Thus it suffices to prove essential surjectivity.

We first check condition (2) of the induction principle. Thus suppose that we have an
elementary distinguished square (U0 ⊂ X0, V0 → X0) and that P holds for U0, V0, and
U0 ×X0 V0. Let E be a perfect object of D(OX). We can find i ≥ 0 and EU,i perfect on
Ui and EV,i perfect on Vi whose pullback to U and V are isomorphic to E|U and E|V .
Denote

a : EU,i → (R(X → Xi)∗E)|Ui and b : EV,i → (R(X → Xi)∗E)|Vi
the maps adjoint to the isomorphisms L(U → Ui)∗EU,i → E|U and L(V → Vi)∗EV,i →
E|V . By fully faithfulness, after increasing i, we can find an isomorphism c : EU,i|Ui×XiVi →
EV,i|Ui×XiVi which pulls back to the identifications

L(U → Ui)∗EU,i|U×XV → E|U×XV → L(V → Vi)∗EV,i|U×XV .

Apply Lemma 10.8 to get an object Ei on Xi and a map d : Ei → R(X → Xi)∗E which
restricts to the maps a and b over Ui and Vi. Then it is clear that Ei is perfect and that d
is adjoint to an isomorphism L(X → Xi)∗Ei → E.

Finally, we check condition (1) of the induction principle, in other words, we check the
lemma holds when X0 is affine. This follows from the case of schemes, see Derived Cate-
gories of Schemes, Lemma 29.3. To see this use the equivalence of Lemma 4.2 and use the
translation of Lemma 13.5. �

25. Cohomology and base change, VI

A final section on cohomology and base change continuing the discussion of Sections 20,
21, and 22. An easy to grok special case is given in Remark 25.2.
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Lemma 25.1. Let S be a scheme. Let f : X → Y be a morphism of finite presentation
between algebraic spaces over S. LetE ∈ D(OX) be a perfect object. Let G• be a bounded
complex of finitely presentedOX -modules, flat over Y , with support proper over Y . Then

K = Rf∗(E ⊗L
OX
G•)

is a perfect object of D(OY ) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 21.4. Thus it suffices to show thatK
is a perfect object. If Y is Noetherian, then this follows from Lemma 22.2. We will reduce
to this case by Noetherian approximation. We encourage the reader to skip the rest of this
proof.
The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R). We write
R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits of Spaces, Lemma
7.1 there exists an i and an algebraic space Xi of finite presentation over Ri whose base
change to R is X . By Limits of Spaces, Lemma 7.2 we may assume after increasing i, that
there exists a bounded complex of finitely presented OXi -modules G•

i whose pullback to
X is G•. After increasing i we may assume Gni is flat over Ri, see Limits of Spaces, Lemma
6.12. After increasing i we may assume the support of Gni is proper over Ri, see Limits
of Spaces, Lemma 12.3. Finally, by Lemma 24.3 we may, after increasing i, assume there
exists a perfect object Ei of D(OXi) whose pullback to X is E. By Lemma 22.2 we have
that Ki = Rfi,∗(Ei ⊗L

OXi
G•
i ) is perfect on Spec(Ri) where fi : Xi → Spec(Ri) is

the structure morphism. By the base change result (Lemma 21.4) the pullback of Ki to
Y = Spec(R) is K and we conclude. �

Remark 25.2. LetR be a ring. LetX be an algebraic space of finite presentation over
R. Let G be a finitely presented OX -module flat over R with support proper over R. By
Lemma 25.1 there exists a finite complex of finite projective R-modules M• such that we
have

RΓ(XR′ ,GR′) = M• ⊗R R′

functorially in the R-algebra R′.

Lemma 25.3. Let S be a scheme. Let f : X → Y be a morphism of finite presentation
between algebraic spaces over S. Let E ∈ D(OX) be a pseudo-coherent object. Let G•

be a bounded above complex of finitely presentedOX -modules, flat over Y , with support
proper over Y . Then

K = Rf∗(E ⊗L
OX
G•)

is a pseudo-coherent object of D(OY ) and its formation commutes with arbitrary base
change.

Proof. The statement on base change is Lemma 21.4. Thus it suffices to show that
K is a pseudo-coherent object. This will follow from Lemma 25.1 by approximation by
perfect complexes. We encourage the reader to skip the rest of the proof.
The question is étale local onY , hence we may assumeY is affine. ThenX is quasi-compact
and quasi-separated. Moreover, there exists an integer N such that total direct image
Rf∗ : DQCoh(OX) → DQCoh(OY ) has cohomological dimension N as explained in
Lemma 6.1. Choose an integer b such that Gi = 0 for i > b. It suffices to show that K is
m-pseudo-coherent for every m. Choose an approximation P → E by a perfect complex
P of (X,E,m − N − 1 − b). This is possible by Theorem 14.7. Choose a distinguished
triangle

P → E → C → P [1]
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in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m − N − 1 − b.
Hence the cohomology sheaves of C ⊗L G• are zero in degrees ≥ m − N − 1. Thus the
cohomology sheaves of Rf∗(C ⊗L G) are zero in degrees ≥ m− 1. Hence

Rf∗(P ⊗L G)→ Rf∗(E ⊗L G)
is an isomorphism on cohomology sheaves in degrees≥ m. Next, suppose thatHi(P ) = 0
for i > a. Then P ⊗L σ≥m−N−1−aG• −→ P ⊗L G• is an isomorphism on cohomology
sheaves in degrees ≥ m−N − 1. Thus again we find that

Rf∗(P ⊗L σ≥m−N−1−aG•)→ Rf∗(P ⊗L G•)
is an isomorphism on cohomology sheaves in degrees≥ m. By Lemma 25.1 the source is a
perfect complex. We conclude that K is m-pseudo-coherent as desired. �

Lemma 25.4. Let S be a scheme. Let f : X → Y be a proper morphism of finite
presentation of algebraic spaces over S.

(1) Let E ∈ D(OX) be perfect and f flat. Then Rf∗E is a perfect object of D(OY )
and its formation commutes with arbitrary base change.

(2) LetG be anOX -module of finite presentation, flat overS. ThenRf∗G is a perfect
object of D(OY ) and its formation commutes with arbitrary base change.

Proof. Special cases of Lemma 25.1 applied with (1) G• equal toOX in degree 0 and
(2) E = OX and G• consisting of G sitting in degree 0. �

Lemma 25.5. Let S be a scheme. Let f : X → Y be a flat proper morphism of
finite presentation of algebraic spaces over S. Let E ∈ D(OX) be pseudo-coherent. Then
Rf∗E is a pseudo-coherent object of D(OY ) and its formation commutes with arbitrary
base change.

More generally, if f : X → Y is proper and E on X is pseudo-coherent relative to
Y (More on Morphisms of Spaces, Definition 45.3), then Rf∗E is pseudo-coherent (but
formation does not commute with base change in this generality). The case of this for
schemes is proved in [?].

Proof. Special case of Lemma 25.3 applied with G = OX . �

Lemma 25.6. Let R be a ring. Let X be an algebraic space and let f : X → Spec(R)
be proper, flat, and of finite presentation. Let (Mn) be an inverse system of R-modules
with surjective transition maps. Then the canonical map

OX ⊗R (limMn) −→ limOX ⊗RMn

induces an isomorphism from the source to DQX applied to the target.

Proof. The statement means that for any object E of DQCoh(OX) the induced map
Hom(E,OX ⊗R (limMn)) −→ Hom(E, limOX ⊗RMn)

is an isomorphism. SinceDQCoh(OX) has a perfect generator (Theorem 15.4) it suffices to
check this for perfectE. By Lemma 5.4 we have limOX⊗RMn = R limOX⊗RMn. The
exact functor RHomX(E,−) : DQCoh(OX) → D(R) of Cohomology on Sites, Section
36 commutes with products and hence with derived limits, whence

RHomX(E, limOX ⊗RMn) = R limRHomX(E,OX ⊗RMn)
Let E∨ be the dual perfect complex, see Cohomology on Sites, Lemma 48.4. We have

RHomX(E,OX ⊗RMn) = RΓ(X,E∨ ⊗L
OX

Lf∗Mn) = RΓ(X,E∨)⊗L
RMn
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by Lemma 20.1. From Lemma 25.4 we see RΓ(X,E∨) is a perfect complex of R-modules.
In particular it is a pseudo-coherent complex and by More on Algebra, Lemma 102.3 we
obtain

R limRΓ(X,E∨)⊗L
RMn = RΓ(X,E∨)⊗L

R limMn

as desired. �

Lemma 25.7. Let A be a ring. Let X be an algebraic space over A which is quasi-
compact and quasi-separated. Let K ∈ D−

QCoh(OX). If RΓ(X,E ⊗L K) is pseudo-
coherent inD(A) for every perfectE inD(OX), thenRΓ(X,E⊗LK) is pseudo-coherent
in D(A) for every pseudo-coherent E in D(OX).

Proof. There exists an integer N such that RΓ(X,−) : DQCoh(OX) → D(A) has
cohomological dimensionN as explained in Lemma 6.1. Let b ∈ Z be such thatHi(K) = 0
for i > b. Let E be pseudo-coherent on X . It suffices to show that RΓ(X,E ⊗L K) is
m-pseudo-coherent for every m. Choose an approximation P → E by a perfect complex
P of (X,E,m − N − 1 − b). This is possible by Theorem 14.7. Choose a distinguished
triangle

P → E → C → P [1]
in DQCoh(OX). The cohomology sheaves of C are zero in degrees ≥ m − N − 1 − b.
Hence the cohomology sheaves of C ⊗L K are zero in degrees ≥ m − N − 1. Thus the
cohomology of RΓ(X,C ⊗L K) are zero in degrees ≥ m− 1. Hence

RΓ(X,P ⊗L K)→ RΓ(X,E ⊗L K)

is an isomorphism on cohomology in degrees ≥ m. By assumption the source is pseudo-
coherent. We conclude that RΓ(X,E ⊗L K) is m-pseudo-coherent as desired. �

Lemma 25.8. Let S be a scheme. Let f : X → Y be a morphism of finite presentation
between algebraic spaces over S. LetE ∈ D(OX) be a perfect object. Let G• be a bounded
complex of finitely presentedOX -modules, flat over Y , with support proper over Y . Then

K = Rf∗RHom(E,G•)

is a perfect object of D(OY ) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 21.5. Thus it suffices to show thatK
is a perfect object. If Y is Noetherian, then this follows from Lemma 22.3. We will reduce
to this case by Noetherian approximation. We encourage the reader to skip the rest of this
proof.

The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R). We write
R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits of Spaces, Lemma
7.1 there exists an i and an algebraic space Xi of finite presentation over Ri whose base
change to R is X . By Limits of Spaces, Lemma 7.2 we may assume after increasing i, that
there exists a bounded complex of finitely presented OXi -module G•

i whose pullback to
X is G. After increasing i we may assume Gni is flat over Ri, see Limits of Spaces, Lemma
6.12. After increasing i we may assume the support of Gni is proper over Ri, see Limits
of Spaces, Lemma 12.3. Finally, by Lemma 13.5 we may, after increasing i, assume there
exists a perfect object Ei of D(OXi) whose pullback to X is E. Applying Lemma 23.2 to
Xi → Spec(Ri), Ei, G•

i and using the base change property already shown we obtain the
result. �
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26. Perfect complexes

We first talk about jumping loci for betti numbers of perfect complexes. First we have to
define betti numbers.

Let S be a scheme. Let X be an algebraic space over S. Let E be an object of D(OX).
Let x ∈ |X|. We want to define βi(x) ∈ {0, 1, 2, . . .} ∪ {∞}. To do this, choose a
morphism f : Spec(k) → X in the equivalence class of x. Then Lf∗E is an object of
D(Spec(k)étale,O). By Étale Cohomology, Lemma 59.4 and Theorem 17.4 we find that
D(Spec(k)étale,O) = D(k) is the derived category of k-vector spaces. Hence Lf∗E is
a complex of k-vector spaces and we can take βi(x) = dimkH

i(Lf∗E). It is easy to see
that this does not depend on the choice of the representative in x. Moreover, if X is a
scheme, this is the same as the notion used in Derived Categories of Schemes, Section 31.

Lemma 26.1. Let S be a scheme. LetX be an algebraic space over S. LetE ∈ D(OX)
be pseudo-coherent (for example perfect). For any i ∈ Z consider the function

βi : |X| −→ {0, 1, 2, . . .}

defined above. Then we have
(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are étale locally constructible.

Proof. Choose a schemeU and a surjective étale morphismϕ : U → X . ThenLϕ∗E
is a pseudo-coherent complex on the scheme U (use Lemma 13.2) and we can apply the
result for schemes, see Derived Categories of Schemes, Lemma 31.1. The meaning of part
(3) is that the inverse image of the level sets to U are locally constructible, see Properties
of Spaces, Definition 8.2. �

Lemma 26.2. Let Y be a scheme and let X be an algebraic space over Y such that the
structure morphism f : X → Y is flat, proper, and of finite presentation. Let F be an
OX -module of finite presentation, flat over Y . For fixed i ∈ Z consider the function

βi : |Y | → {0, 1, 2, . . .}, y 7−→ dimκ(y) H
i(Xy,Fy)

Then we have
(1) formation of βi commutes with arbitrary base change,
(2) the functions βi are upper semi-continuous, and
(3) the level sets of βi are locally constructible in Y .

Proof. By cohomology and base change (more precisely by Lemma 25.4) the object
K = Rf∗F is a perfect object of the derived category of Y whose formation commutes
with arbitrary base change. In particular we have

Hi(Xy,Fy) = Hi(K ⊗L
OY

κ(y))

Thus the lemma follows from Lemma 26.1. �

Lemma 26.3. Let S be a scheme. LetX be an algebraic space over S. LetE ∈ D(OX)
be perfect. The function

χE : |X| −→ Z, x 7−→
∑

(−1)iβi(x)

is locally constant on X .
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Proof. Omitted. Hints: Follows from the case of schemes by étale localization. See
Derived Categories of Schemes, Lemma 31.2. �

Lemma 26.4. Let S be a scheme. LetX be an algebraic space over S. LetE ∈ D(OX)
be perfect. Given i, r ∈ Z, there exists an open subspace U ⊂ X characterized by the
following

(1) E|U ∼= Hi(E|U )[−i] and Hi(E|U ) is a locally freeOU -module of rank r,
(2) a morphism f : Y → X factors through U if and only if Lf∗E is isomorphic to

a locally free module of rank r placed in degree i.

Proof. Omitted. Hints: Follows from the case of schemes by étale localization. See
Derived Categories of Schemes, Lemma 31.3. �

Lemma 26.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is proper, flat, and of finite presentation. Let F be an OX -module of finite
presentation, flat over Y . Fix i, r ∈ Z. Then there exists an open subspace V ⊂ Y with
the following property: A morphism T → Y factors through V if and only if RfT,∗FT
is isomorphic to a finite locally free module of rank r placed in degree i.

Proof. By cohomology and base change ( Lemma 25.4) the object K = Rf∗F is a
perfect object of the derived category of Y whose formation commutes with arbitrary base
change. Thus this lemma follows immediately from Lemma 26.4. �

Lemma 26.6. Let S be a scheme. LetX be an algebraic space over S. LetE ∈ D(OX)
be perfect of tor-amplitude in [a, b] for some a, b ∈ Z. Let r ≥ 0. Then there exists a
locally closed subspace j : Z → X characterized by the following

(1) Ha(Lj∗E) is a locally freeOZ -module of rank r, and
(2) a morphism f : Y → X factors through Z if and only if for all morphisms

g : Y ′ → Y theOY ′ -module Ha(L(f ◦ g)∗E) is locally free of rank r.
Moreover, j : Z → X is of finite presentation and we have

(3) if f : Y → X factors as Y g−→ Z → X , then Ha(Lf∗E) = g∗Ha(Lj∗E),
(4) if βa(x) ≤ r for all x ∈ |X|, then j is a closed immersion and given f : Y → X

the following are equivalent
(a) f : Y → X factors through Z ,
(b) H0(Lf∗E) is a locally freeOY -module of rank r,

and if r = 1 these are also equivalent to
(c) OY → HomOY

(H0(Lf∗E),H0(Lf∗E)) is injective.

Proof. Omitted. Hints: Follows from the case of schemes by étale localization. See
Derived Categories of Schemes, Lemma 31.4. �

Lemma 26.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) f is proper, flat, and of finite presentation, and
(2) for a morphism Spec(k)→ Y where k is a field, we have k = H0(Xk,OXk).

Then we have
(a) f∗OX = OY and this holds after any base change,
(b) étale locally on Y we have

Rf∗OX = OY ⊕ P
in D(OY ) where P is perfect of tor amplitude in [1,∞).
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Proof. It suffices to prove (a) and (b) étale locally on Y , thus we may and do assume
Y is an affine scheme. By cohomology and base change (Lemma 25.4) the complex E =
Rf∗OX is perfect and its formation commutes with arbitrary base change. In particular,
for y ∈ Y we see that H0(E ⊗L κ(y)) = H0(Xy,OXy ) = κ(y). Thus β0(y) ≤ 1 for all
y ∈ Y with notation as in Lemma 26.1. Apply Lemma 26.6 with a = 0 and r = 1. We
obtain a universal closed subscheme j : Z → Y with H0(Lj∗E) invertible characterized
by the equivalence of (4)(a), (b), and (c) of the lemma. Since formation of E commutes
with base change, we have

Lf∗E = Rpr1,∗OX×YX

The morphism pr1 : X ×Y X has a section namely the diagonal morphism ∆ for X over
Y . We obtain maps

OX −→ Rpr1,∗OX×YX −→ OX
in D(OX) whose composition is the identity. Thus Rpr1,∗OX×YX = OX ⊕ E′ in
D(OX). Thus OX is a direct summand of H0(Lf∗E) and we conclude that X → Y
factors through Z by the equivalence of (4)(c) and (4)(a) of the lemma cited above. Since
{X → Y } is an fppf covering, we have Z = Y . Thus f∗OX is an invertible OY -module.
We conclude OY → f∗OX is an isomorphism because a ring map A → B such that B is
invertible as an A-module is an isomorphism. Since the assumptions are preserved under
base change, we see that (a) is true.

Proof of (b). Above we have seen that for every y ∈ Y the map OY → H0(E ⊗L κ(y))
is surjective. Thus we may apply More on Algebra, Lemma 76.2 to see that in an open
neighbourhood of y we have a decomposition Rf∗OX = OY ⊕ P �

Lemma 26.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced and connected.

Then f∗OX = OY and this holds after any base change.

Proof. By Lemma 26.7 it suffices to show that k = H0(Xk,OXk) for all morphisms
Spec(k) → Y where k is a field. This follows from Spaces over Fields, Lemma 14.3 and
the fact that Xk is geometrically connected and geometrically reduced. �

27. Other applications

In this section we state and prove some results that can be deduced from the theory worked
out above.

Lemma 27.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let K be an object of DQCoh(OX) such that the cohomology sheaves
Hi(K) have countable sets of sections over affine schemes étale over X . Then for any
quasi-compact and quasi-separated étale morphism U → X and any perfect object E in
D(OX) the sets

Hi(U,K ⊗L E), Exti(E|U ,K|U )
are countable.

Proof. Using Cohomology on Sites, Lemma 48.4 we see that it suffices to prove the
result for the groups Hi(U,K ⊗L E). We will use the induction principle to prove the
lemma, see Lemma 9.3.
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When U = Spec(A) is affine the result follows from the case of schemes, see Derived
Categories of Schemes, Lemma 33.2.

To finish the proof it suffices to show: if (U ⊂W,V →W ) is an elementary distinguished
triangle and the result holds for U , V , and U ×W V , then the result holds for W . This is
an immediate consquence of the Mayer-Vietoris sequence, see Lemma 10.5. �

Lemma 27.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated al-
gebraic space over S. Assume the sets of sections of OX over affines étale over X are
countable. Let K be an object of DQCoh(OX). The following are equivalent

(1) K = hocolimEn with En a perfect object of D(OX), and
(2) the cohomology sheavesHi(K) have countable sets of sections over affines étale

over X .

Proof. If (1) is true, then (2) is true because homotopy colimits commutes with taking
cohomology sheaves (by Derived Categories, Lemma 33.8) and because a perfect complex
is locally isomorphic to a finite complex of finite freeOX -modules and therefore satisfies
(2) by assumption on X .

Assume (2). Choose a K-injective complexK• representingK. Choose a perfect generator
E of DQCoh(OX) and represent it by a K-injective complex I•. According to Theorem
17.3 and its proof there is an equivalence of triangulated categories F : DQCoh(OX) →
D(A, d) where (A, d) is the differential graded algebra

(A, d) = HomCompdg(OX)(I•, I•)

which maps K to the differential graded module

M = HomCompdg(OX)(I•,K•)

Note that Hi(A) = Exti(E,E) and Hi(M) = Exti(E,K). Moreover, since F is an
equivalence it and its quasi-inverse commute with homotopy colimits. Therefore, it suf-
fices to write M as a homotopy colimit of compact objects of D(A, d). By Differential
Graded Algebra, Lemma 38.3 it suffices show that Exti(E,E) and Exti(E,K) are count-
able for each i. This follows from Lemma 27.1. �

Lemma 27.3. Let A be a ring. Let f : U → X be a flat morphism of algebraic spaces
of finite presentation over A. Then

(1) there exists an inverse system of perfect objects Ln of D(OX) such that

RΓ(U,Lf∗K) = hocolim RHomX(Ln,K)
in D(A) functorially in K in DQCoh(OX), and

(2) there exists a system of perfect objects En of D(OX) such that

RΓ(U,Lf∗K) = hocolim RΓ(X,En ⊗L K)
in D(A) functorially in K in DQCoh(OX).

Proof. By Lemma 20.1 we have

RΓ(U,Lf∗K) = RΓ(X,Rf∗OU ⊗L K)
functorially in K. Observe that RΓ(X,−) commutes with homotopy colimits because it
commutes with direct sums by Lemma 6.2. Similarly, − ⊗L K commutes with derived
colimits because −⊗L K commutes with direct sums (because direct sums in D(OX) are
given by direct sums of representing complexes). Hence to prove (2) it suffices to write
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Rf∗OU = hocolimEn for a system of perfect objectsEn ofD(OX). Once this is done we
obtain (1) by setting Ln = E∨

n , see Cohomology on Sites, Lemma 48.4.

Write A = colimAi with Ai of finite type over Z. By Limits of Spaces, Lemma 7.1 we
can find an i and morphisms Ui → Xi → Spec(Ai) of finite presentation whose base
change to Spec(A) recovers U → X → Spec(A). After increasing i we may assume
that fi : Ui → Xi is flat, see Limits of Spaces, Lemma 6.12. By Lemma 20.4 the derived
pullback of Rfi,∗OUi by g : X → Xi is equal to Rf∗OU . Since Lg∗ commutes with
derived colimits, it suffices to prove what we want for fi. Hence we may assume that U
and X are of finite type over Z.

Assume f : U → X is a morphism of algebraic spaces of finite type over Z. To finish
the proof we will show that Rf∗OU is a homotopy colimit of perfect complexes. To see
this we apply Lemma 27.2. Thus it suffices to show that Rif∗OU has countable sets of
sections over affines étale over X . This follows from Lemma 27.1 applied to the structure
sheaf. �

28. The resolution property

This section is the analogue of Derived Categories of Schemes, Section 36 for algebraic
spaces; please read that section first. It is currently not known if a smooth proper algebraic
space over a field always has the resolution property or if this is false. If you know the
answer to this question, please email stacks.project@gmail.com.

We can make the following definition although it scarcely makes sense to consider it for
general algebraic spaces.

Definition 28.1. Let S be a scheme. Let X be an algebraic space over S. We say
X has the resolution property if every quasi-coherent OX -module of finite type is the
quotient of a finite locally freeOX -module.

If X is a quasi-compact and quasi-separated algebraic space, then it suffices to check every
OX -module module of finite presentation (automatically quasi-coherent) is the quotient
of a finite locally free OX -module, see Limits of Spaces, Lemma 9.3. If X is a Noether-
ian algebraic space, then finite type quasi-coherent modules are exactly the coherentOX -
modules, see Cohomology of Spaces, Lemma 12.2.

Lemma 28.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) Y is quasi-compact and quasi-separated and has the resolution property,
(2) there exists an f -ample invertible module on X (Divisors on Spaces, Definition

14.1).
Then X has the resolution property.

Proof. Let F be a finite type quasi-coherent OX -module. Let L be an f -ample in-
vertible module. Choose an affine scheme V and a surjective étale morphism V → Y . Set
U = V ×Y X . Then L|U is ample on U . By Properties, Proposition 26.13 we know there
exists finitely many maps si : L⊗ni |U → F|U which are jointly surjective. Consider the
quasi-coherentOY -modules

Hn = f∗(F ⊗OX
L⊗n)

We may think of si as a section over V of the sheaf H−ni . Suppose we can find finite
locally free OY -modules Ei and maps Ei → H−ni such that si is in the image. Then the

mailto:stacks.project@gmail.com
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corresponding maps
f∗Ei ⊗OX

L⊗ni −→ F
are going to be jointly surjective and the lemma is proved. By Limits of Spaces, Lemma 9.2
for each i we can find a finite type quasi-coherent submoduleH′

i ⊂ H−ni which contains
the section si over V . Thus the resolution property of Y produces surjections Ei → H′

i

and we conclude. �

Lemma 28.3. Let S be a scheme. Let f : X → Y be an affine or quasi-affine mor-
phism of algebraic spaces over S with Y quasi-compact and quasi-separated. If Y has the
resolution property, so does X .

Proof. By Divisors on Spaces, Lemma 14.7 this is a special case of Lemma 28.2. �

Here is a case where one can prove the resolution property goes down.

Lemma 28.4. Let S be a scheme. Let f : X → Y be a surjective finite locally free
morphism of algebraic spaces over S. If X has the resolution property, so does Y .

Proof. The condition means that f is affine and that f∗OX is a finite locally free
OY -module of positive rank. Let G be a quasi-coherent OY -module of finite type. By
assumption there exists a surjection E → f∗G for some finite locally free OX -module E .
Since f∗ is exact (Cohomology of Spaces, Section 4) we get a surjection

f∗E −→ f∗f
∗G = G ⊗OY

f∗OX
Taking duals we get a surjection

f∗E ⊗OY
HomOY

(f∗OX ,OY ) −→ G
Since f∗E is finite locally free, we conclude. �

For more on the resolution property of algebraic spaces, please see More on Morphisms of
Spaces, Section 56.

29. Detecting Boundedness

In this section, we show that compact generators of DQCoh of a quasi-compact, quasi-
separated scheme, as constructed in Section 15, have a special property. We recommend
reading that section first as it is very similar to this one.

Lemma 29.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. LetP ∈ Dperf (OX) andE ∈ DQCoh(OX). Let a ∈ Z. The following
are equivalent

(1) HomD(OX)(P [−i], E) = 0 for i� 0, and
(2) HomD(OX)(P [−i], τ≥aE) = 0 for i� 0.

Proof. Using the triangle τ<aE → E → τ≥aE → we see that the equivalence
follows if we can show

HomD(OX)(P [−i], τ<aE) = HomD(OX)(P, (τ<aE)[i]) = 0
for i� 0. As P is perfect this is true by Lemma 17.2. �

Lemma 29.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. LetP ∈ Dperf (OX) andE ∈ DQCoh(OX). Let a ∈ Z. The following
are equivalent

(1) HomD(OX)(P [−i], E) = 0 for i� 0, and
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(2) HomD(OX)(P [−i], τ≤aE) = 0 for i� 0.

Proof. Using the triangle τ≤aE → E → τ>aE → we see that the equivalence
follows if we can show

HomD(OX)(P [−i], τ>aE) = HomD(OX)(P, (τ>aE)[i]) = 0
for i� 0. As P is perfect this is true by Lemma 17.2. �

Proposition 29.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space overS. LetG ∈ Dperf (OX) be a perfect complex which generatesDQCoh(OX).
Let E ∈ DQCoh(OX). The following are equivalent

(1) E ∈ D−
QCoh(OX),

(2) HomD(OX)(G[−i], E) = 0 for i� 0,
(3) ExtiX(G,E) = 0 for i� 0,
(4) RHomX(G,E) is in D−(Z),
(5) Hi(X,G∨ ⊗L

OX
E) = 0 for i� 0,

(6) RΓ(X,G∨ ⊗L
OX

E) is in D−(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X,P ⊗L

OX
E) = 0 for i� 0,

(c) RΓ(X,P ⊗L
OX

E) is in D−(Z).

Proof. Assume (1). Since HomD(OX)(G[−i], E) = HomD(OX)(G,E[i]) we see that
this is zero for i� 0 by Lemma 17.2. This proves that (1) implies (2).

Parts (2), (3), (4) are equivalent by the discussion in Cohomology on Sites, Section 36. Part
(5) and (6) are equivalent as Hi(X,−) = Hi(RΓ(X,−)) by definition. The equivalent
conditions (2), (3), (4) are equivalent to the equivalent conditions (5), (6) by Cohomology
on Sites, Lemma 48.4 and the fact that (G[−i])∨ = G∨[i].
It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions (2)
– (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark 16.2. For
P ∈ Dperf (OX) let T (P ) be the assertion thatRHomX(P,E) is inD−(Z). Clearly, T is
inherited by direct sums, satisfies the 2-out-of-three property for distinguished triangles,
is inherited by direct summands, and is perserved by shifts. Hence by Derived Categories,
Remark 36.7 we see that (4) implies T holds on all of Dperf (OX). The same argument
works for all other properties, except that for property (7)(b) and (7)(c) we also use that
P 7→ P∨ is a self equivalence of Dperf (OX). Small detail omitted.

We will prove the equivalent conditions (2) – (7) imply (1) using the induction principle
of Lemma 9.3.

First, we prove (2) – (7)⇒ (1) if X is affine. This follows from the case of schemes, see
Derived Categories of Schemes, Proposition 40.5.

Now assume (U ⊂ X, j : V → X) is an elementary distinguished square of quasi-compact
and quasi-separated algebraic spaces over S and assume the implication (2) – (7)⇒ (1) is
known forU , V , andU×XV . To finish the proof we have to show the implication (2) – (7)
⇒ (1) for X . Suppose E ∈ DQCoh(OX) satisfies (2) – (7). By Lemma 15.3 and Theorem
15.4 there exists a perfect complex Q on X such that Q|U generates DQCoh(OU ).

Say V = Spec(A). Let Z ⊂ V be the reduced closed subscheme which is the inverse
image of X \U and maps isomorphically to it (see Definition 9.1). This is a retrocompact
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closed subset of V . Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let K ∈
D(OV ) be the perfect object corresponding to the Koszul complex on f1, . . . , fr over A.
Note that since K is supported on Z , the pushforward K ′ = Rj∗K is a perfect object of
D(OX) whose restriction to V isK (see Lemmas 14.3 and 10.7). By assumption, we know
RHomOX

(Q,E) and RHomOX
(K ′, E) are bounded above.

By Lemma 10.7 we have K ′ = j!K and hence
HomD(OX)(K ′[−i], E) = HomD(OV )(K[−i], E|V ) = 0

for i � 0. Therefore, we may apply Derived Categories of Schemes, Lemma 40.1 to E|V
to obtain an integer a such that τ≥a(E|V ) = τ≥aR(U ×X V → V )∗(E|U×XV ). Then
τ≥aE = τ≥aR(U → X)∗(E|U ) (check that the canonical map is an isomorphism after
restricting to U and to V ). Hence using Lemma 29.1 twice we see that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX)(Q[−i], R(U → X)∗(E|U )) = 0
for i � 0. Since the Proposition holds for U and the generator Q|U , we have E|U ∈
D−

QCoh(OU ). But then since the functor R(U → X)∗ preserves D−
QCoh (by Lemma 6.1),

we get τ≥aE ∈ D−
QCoh(OX). Thus E ∈ D−

QCoh(OX). �

Proposition 29.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space overS. LetG ∈ Dperf (OX) be a perfect complex which generatesDQCoh(OX).
Let E ∈ DQCoh(OX). The following are equivalent

(1) E ∈ D+
QCoh(OX),

(2) HomD(OX)(G[−i], E) = 0 for i� 0,
(3) ExtiX(G,E) = 0 for i� 0,
(4) RHomX(G,E) is in D+(Z),
(5) Hi(X,G∨ ⊗L

OX
E) = 0 for i� 0,

(6) RΓ(X,G∨ ⊗L
OX

E) is in D+(Z),
(7) for every perfect object P of D(OX)

(a) the assertions (2), (3), (4) hold with G replaced by P , and
(b) Hi(X,P ⊗L

OX
E) = 0 for i� 0,

(c) RΓ(X,P ⊗L
OX

E) is in D+(Z).

Proof. Assume (1). Since HomD(OX)(G[−i], E) = HomD(OX)(G,E[i]) we see that
this is zero for i� 0 by Lemma 17.2. This proves that (1) implies (2).
Parts (2), (3), (4) are equivalent by the discussion in Cohomology on Sites, Section 36. Part
(5) and (6) are equivalent as Hi(X,−) = Hi(RΓ(X,−)) by definition. The equivalent
conditions (2), (3), (4) are equivalent to the equivalent conditions (5), (6) by Cohomology
on Sites, Lemma 48.4 and the fact that (G[−i])∨ = G∨[i].
It is clear that (7) implies (2). Conversely, let us prove that the equivalent conditions (2)
– (6) imply (7). Recall that G is a classical generator for Dperf (OX) by Remark 16.2. For
P ∈ Dperf (OX) let T (P ) be the assertion thatRHomX(P,E) is inD+(Z). Clearly, T is
inherited by direct sums, satisfies the 2-out-of-three property for distinguished triangles,
is inherited by direct summands, and is perserved by shifts. Hence by Derived Categories,
Remark 36.7 we see that (4) implies T holds on all of Dperf (OX). The same argument
works for all other properties, except that for property (7)(b) and (7)(c) we also use that
P 7→ P∨ is a self equivalence of Dperf (OX). Small detail omitted.
We will prove the equivalent conditions (2) – (7) imply (1) using the induction principle
of Lemma 9.3.
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First, we prove (2) – (7)⇒ (1) if X is affine. This follows from the case of schemes, see
Derived Categories of Schemes, Proposition 40.6.
Now assume (U ⊂ X, j : V → X) is an elementary distinguished square of quasi-compact
and quasi-separated algebraic spaces over S and assume the implication (2) – (7)⇒ (1) is
known forU , V , andU×XV . To finish the proof we have to show the implication (2) – (7)
⇒ (1) for X . Suppose E ∈ DQCoh(OX) satisfies (2) – (7). By Lemma 15.3 and Theorem
15.4 there exists a perfect complex Q on X such that Q|U generates DQCoh(OU ).
Say V = Spec(A). Let Z ⊂ V be the reduced closed subscheme which is the inverse
image of X \U and maps isomorphically to it (see Definition 9.1). This is a retrocompact
closed subset of V . Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let K ∈
D(OV ) be the perfect object corresponding to the Koszul complex on f1, . . . , fr over A.
Note that since K is supported on Z , the pushforward K ′ = Rj∗K is a perfect object of
D(OX) whose restriction to V isK (see Lemmas 14.3 and 10.7). By assumption, we know
RHomOX

(Q,E) and RHomOX
(K ′, E) are bounded below.

By Lemma 10.7 we have K ′ = j!K and hence
HomD(OX)(K ′[−i], E) = HomD(OV )(K[−i], E|V ) = 0

for i � 0. Therefore, we may apply Derived Categories of Schemes, Lemma 40.2 to E|V
to obtain an integer a such that τ≤a(E|V ) = τ≤aR(U ×X V → V )∗(E|U×XV ). Then
τ≤aE = τ≤aR(U → X)∗(E|U ) (check that the canonical map is an isomorphism after
restricting to U and to V ). Hence using Lemma 29.2 twice we see that

HomD(OU )(Q|U [−i], E|U ) = HomD(OX)(Q[−i], R(U → X)∗(E|U )) = 0
for i � 0. Since the Proposition holds for U and the generator Q|U , we have E|U ∈
D+

QCoh(OU ). But then since the functor R(U → X)∗ preserves D+
QCoh (by Lemma 6.1),

we get τ≤aE ∈ D+
QCoh(OX). Thus E ∈ D+

QCoh(OX). �

30. Quasi-coherent objects in the derived category

Let S be a scheme. Let X be an algebraic space over S. Recall that Xaffine,étale denotes
the category of affine objects ofXétale with topology given by standard étale coverings, see
Properties of Spaces, Definition 18.5. We remind the reader that the topos ofXaffine,étale

is the small étale topos of X , see Properties of Spaces, Lemma 18.6. The site Xétale comes
with a structure sheaf OX whose restriction to Xaffine,étale we also denote OX . Then
there is an equivalence of ringed topoi

(Sh(Xaffine,étale),OX) −→ (Sh(Xétale),OX)
See Descent on Spaces, Equation (5.0.1) and the discussion in Descent on Spaces, Section 5.
In this section we denoteXaffine the underlying category ofXaffine,étale endowed with
the chaotic topology, i.e., such that sheaves agree with presheaves. In particular, the struc-
ture sheaf OX becomes a sheaf on Xaffine as well. We obtain a morphisms of ringed
sites

ε : (Xaffine,étale,OX) −→ (Xaffine,OX)
as in Cohomology on Sites, Section 27. In this section we will identify DQCoh(OX) with
the category QC (Xaffine,OX) introduced in Cohomology on Sites, Section 43.

Lemma 30.1. In the sitation above there are canonical exact equivalences between the
following triangulated categories

(1) DQCoh(OX),
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(2) DQCoh(Xaffine,étale,OX),
(3) DQCoh(Xaffine,OX), and
(4) QC (Xaffine,OX).

Proof. If U → V → X are étale morphisms with U and V affine, then the ring map
OX(V ) → OX(U) is flat. Hence the equivalence between (3) and (4) is a special case of
Cohomology on Sites, Lemma 43.11 (the proof also clarifies the statement).
The discussion preceding the lemma shows that we have an equivalence of ringed topoi
(Sh(Xaffine,étale),OX)→ (Sh(Xétale),OX) and hence an equivalence between abelian
categories of modules. Since the notion of quasi-coherent modules is intrinsic (Modules
on Sites, Lemma 23.2) we see that this equivalence preserves the subcategories of quasi-
coherent modules. Thus we get a canonical exact equivalence between the triangulated
categories in (1) and (2).
To get an exact equivalence between the triangulated categories in (2) and (3) we will
apply Cohomology on Sites, Lemma 29.1 to the morphism ε : (Xaffine,étale,OX) →
(Xaffine,OX) above. We take B = Ob(Xaffine) and we take A ⊂ PMod(Xaffine,O)
to be the full subcategory of those presheavesF such thatF(V )⊗OX(V )OX(U)→ F(U)
is an isomorphism. Observe that by Descent on Spaces, Lemma 5.1 objects ofA are exactly
those sheaves in the étale topology which are quasi-coherent modules on (Xaffine,étale,OX).
On the other hand, by Modules on Sites, Lemma 24.2, the objects ofA are exactly the quasi-
coherent modules on (Xaffine,OX), i.e., in the chaotic topology. Thus if we show that
Cohomology on Sites, Lemma 29.1 applies, then we do indeed get the canonical equiva-
lence between the categories of (2) and (3) using ε∗ and Rε∗.
We have to verify 4 conditions:

(1) Every object ofA is a sheaf for the étale topology. This we have seen above.
(2) A is a weak Serre subcategory of Mod(Xaffine,étale,OX). Above we have seen

that A = QCoh(Xaffine,étale,OX) and we have seen above that these, via
the equivalence Mod(Xaffine,étale,O) = Mod(Xétale,OX), correspond to the
quasi-coherent modules on X . Thus the result by Properties of Spaces, Lemma
29.7 and Homology, Lemma 10.3.

(3) Every object of Xaffine has a covering in the chaotic topology whose members
are elements of B. This holds because B contains all objects.

(4) For every object U of Xaffine and F inA we have Hp
Zar(U,F) = 0 for p > 0.

This holds by the vanishing of cohomology of quasi-coherent modules on affines,
see discussion in Cohomology of Spaces, Section 3 and Cohomology of Schemes,
Lemma 2.2.

This finishes the proof. �

Remark 30.2. Let S be a scheme. Let X be an algebraic space over S. We will later
show that also QC ((Aff/X),O) is canonically equivalent to DQCoh(OX). See Sheaves
on Stacks, Proposition 26.4.
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CHAPTER 76

More on Morphisms of Spaces

1. Introduction

In this chapter we continue our study of properties of morphisms of algebraic spaces. A
fundamental reference is [?].

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.
Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Radicial morphisms

It turns out that a radicial morphism is not the same thing as a universally injective mor-
phism, contrary to what happens with morphisms of schemes. In fact it is a bit stronger.

Definition 3.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is radicial if for any morphism Spec(K)→ Y where K is a field
the reduction (Spec(K)×Y X)red is either empty or representable by the spectrum of a
purely inseparable field extension of K.

Lemma 3.2. A radicial morphism of algebraic spaces is universally injective.

Proof. Let S be a scheme. Let f : X → Y be a radicial morphism of algebraic spaces
over S. It is clear from the definition that given a morphism Spec(K) → Y there is
at most one lift of this morphism to a morphism into X . Hence we conclude that f is
universally injective by Morphisms of Spaces, Lemma 19.2. �

Example 3.3. It is no longer true that universally injective is equivalent to radicial.
For example the morphism

X = [Spec(Q)/Gal(Q/Q)] −→ S = Spec(Q)
of Spaces, Example 14.7 is universally injective, but is not radicial in the sense above.

Nonetheless it is often the case that the reverse implication holds.

Lemma 3.4. Let S be a scheme. Let f : X → Y be a universally injective morphism
of algebraic spaces over S.

(1) If f is decent then f is radicial.
(2) If f is quasi-separated then f is radicial.
(3) If f is locally separated then f is radicial.

5671
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Proof. Let P be a property of morphisms of algebraic spaces which is stable under
base change and composition and holds for closed immersions. Assume f : X → Y
has P and is universally injective. Then, in the situation of Definition 3.1 the morphism
(Spec(K) ×Y X)red → Spec(K) is universally injective and has P . This reduces the
problem of proving

P + universally injective⇒ radicial
to the problem of proving that any nonempty reduced algebraic spaceX over field whose
structure morphism X → Spec(K) is universally injective and P is representable by the
spectrum of a field. Namely, then X → Spec(K) will be a morphism of schemes and
we conclude by the equivalence of radicial and universally injective for morphisms of
schemes, see Morphisms, Lemma 10.2.

Let us prove (1). Assume f is decent and universally injective. By Decent Spaces, Lemmas
17.4, 17.6, and 17.2 (to see that an immersion is decent) we see that the discussion in the
first paragraph applies. Let X be a nonempty decent reduced algebraic space universally
injective over a field K. In particular we see that |X| is a singleton. By Decent Spaces,
Lemma 14.2 we conclude that X ∼= Spec(L) for some extension K ⊂ L as desired.

A quasi-separated morphism is decent, see Decent Spaces, Lemma 17.2. Hence (1) implies
(2).

Let us prove (3). Recall that the separation axioms are stable under base change and com-
position and that closed immersions are separated, see Morphisms of Spaces, Lemmas 4.4,
4.8, and 10.7. Thus the discussion in the first paragraph of the proof applies. Let X be a
reduced algebraic space universally injective and locally separated over a field K. In par-
ticular |X| is a singleton hence X is quasi-compact, see Properties of Spaces, Lemma 5.2.
We can find a surjective étale morphism U → X with U affine, see Properties of Spaces,
Lemma 6.3. Consider the morphism of schemes

j : U ×X U −→ U ×Spec(K) U

As X → Spec(K) is universally injective j is surjective, and as X → Spec(K) is locally
separated j is an immersion. A surjective immersion is a closed immersion, see Schemes,
Lemma 10.4. Hence R = U ×X U is affine as a closed subscheme of an affine scheme. In
particular R is quasi-compact. It follows that X = U/R is quasi-separated, and the result
follows from (2). �

Remark 3.5. Let X → Y be a morphism of algebraic spaces. For some applications
(of radicial morphisms) it is enough to require that for every Spec(K) → Y where K is
a field

(1) the space |Spec(K)×Y X| is a singleton,
(2) there exists a monomorphism Spec(L)→ Spec(K)×Y X , and
(3) K ⊂ L is purely inseparable.

If needed later we will may call such a morphism weakly radicial. For example if X →
Y is a surjective weakly radicial morphism then X(k) → Y (k) is surjective for every
algebraically closed field k. Note that the base change XQ → Spec(Q) of the morphism
in Example 3.3 is weakly radicial, but not radicial. The analogue of Lemma 3.4 is that
if X → Y has property (β) and is universally injective, then it is weakly radicial (proof
omitted).

Lemma 3.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume
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(1) f is locally of finite type,
(2) for every étale morphism V → Y the map |X ×Y V | → |V | is injective.

Then f is universally injective.

Proof. The question is étale local on Y by Morphisms of Spaces, Lemma 19.6. Hence
we may assume that Y is a scheme. Then Y is in particular decent and by Decent Spaces,
Lemma 18.9 we see that f is locally quasi-finite. Let y ∈ Y be a point and let Xy be the
scheme theoretic fibre. AssumeXy is not empty. By Spaces over Fields, Lemma 10.8 we see
thatXy is a scheme which is locally quasi-finite over κ(y). Since |Xy| ⊂ |X| is the fibre of
|X| → |Y | over y we see thatXy has a unique point x. The same is true forXy×Spec(κ(y))
Spec(k) for any finite separable extension k/κ(y) because we can realize k as the residue
field at a point lying over y in an étale scheme over Y , see More on Morphisms, Lemma
35.2. ThusXy is geometrically connected, see Varieties, Lemma 7.11. This implies that the
finite extension κ(x)/κ(y) is purely inseparable.

We conclude (in the case that Y is a scheme) that for every y ∈ Y either the fibre Xy

is empty, or (Xy)red = Spec(κ(x)) with κ(y) ⊂ κ(x) purely inseparable. Hence f is
radicial (some details omitted), whence universally injective by Lemma 3.2. �

4. Monomorphisms

This section is the continuation of Morphisms of Spaces, Section 10. We would like to
know whether or not every monomorphism of algebraic spaces is representable. If you
can prove this is true or have a counterexample, please email stacks.project@gmail.com.
For the moment this is known in the following cases

(1) for monomorphisms which are locally of finite type (more generally any sep-
arated, locally quasi-finite morphism is representable by Morphisms of Spaces,
Lemma 51.1 and a monomorphism which is locally of finite type is locally quasi-
finite by Morphisms of Spaces, Lemma 27.10),

(2) if the target is a disjoint union of spectra of zero dimensional local rings (Decent
Spaces, Lemma 19.1), and

(3) for flat monomorphisms (see below).

Lemma 4.1 (David Rydh). A flat monomorphism of algebraic spaces is representable
by schemes.

Proof. Let f : X → Y be a flat monomorphism of algebraic spaces. To prove f
is representable, we have to show X ×Y V is a scheme for every scheme V mapping to
Y . Since being a scheme is local (Properties of Spaces, Lemma 13.1), we may assume V is
affine. Thus we may assume Y = Spec(B) is an affine scheme. Next, we can assume that
X is quasi-compact by replacing X by a quasi-compact open. The space X is separated as
X → X×Spec(B)X is an isomorphism. Applying Limits of Spaces, Lemma 17.3 we reduce
to the case where B is local, X → Spec(B) is a flat monomorphism, and there exists a
point x ∈ X mapping to the closed point of Spec(B). Then X → Spec(B) is surjective
as generalizations lift along flat morphisms of separated algebraic spaces, see Decent Spaces,
Lemma 7.4. Hence we see that {X → Spec(B)} is an fpqc cover. Then X → Spec(B) is
a morphism which becomes an isomorphism after base change by X → Spec(B). Hence
it is an isomorphism by fpqc descent, see Descent on Spaces, Lemma 11.15. �

The following is (in some sense) a variant of the lemma above.

mailto:stacks.project@gmail.com
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Lemma 4.2. Let S be a scheme. Let f : X → Y be a quasi-compact monomorphism
of algebraic spaces such that for every T → Y the map

OT → fT,∗OX×Y T

is injective. Then f is an isomorphism (and hence representable by schemes).

Proof. The question is étale local on Y , hence we may assume Y = Spec(A) is
affine. Then X is quasi-compact and we may choose an affine scheme U = Spec(B) and
a surjective étale morphism U → X (Properties of Spaces, Lemma 6.3). Note that U ×X
U = Spec(B ⊗A B). Hence the category of quasi-coherentOX -modules is equivalent to
the category DDB/A of descent data on modules for A → B. See Properties of Spaces,
Proposition 32.1, Descent, Definition 3.1, and Descent, Subsection 4.14. On the other
hand,

A→ B

is a universally injective ring map. Namely, given an A-module M we see that A⊕M →
B⊗A (A⊕M) is injective by the assumption of the lemma. HenceDDB/A is equivalent
to the category of A-modules by Descent, Theorem 4.22. Thus pullback along f : X →
Spec(A) determines an equivalence of categories of quasi-coherent modules. In particular
f∗ is exact on quasi-coherent modules and we see that f is flat (small detail omitted).
Moreover, it is clear that f is surjective (for example because Spec(B) → Spec(A) is
surjective). Hence we see that {X → Spec(A)} is an fpqc cover. Then X → Spec(A) is
a morphism which becomes an isomorphism after base change by X → Spec(A). Hence
it is an isomorphism by fpqc descent, see Descent on Spaces, Lemma 11.15. �

Lemma 4.3. A quasi-compact flat surjective monomorphism of algebraic spaces is an
isomorphism.

Proof. Such a morphism satisfies the assumptions of Lemma 4.2. �

5. Conormal sheaf of an immersion

Let S be a scheme. Let i : Z → X be a closed immersion of algebraic spaces over S. Let
I ⊂ OX be the corresponding quasi-coherent sheaf of ideals, see Morphisms of Spaces,
Lemma 13.1. Consider the short exact sequence

0→ I2 → I → I/I2 → 0
of quasi-coherent sheaves onX . Since the sheaf I/I2 is annihilated by I it corresponds to
a sheaf on Z by Morphisms of Spaces, Lemma 14.1. This quasi-coherentOZ -module is the
conormal sheaf of Z in X and is often denoted I/I2 by the abuse of notation mentioned
in Morphisms of Spaces, Section 14.
In case i : Z → X is a (locally closed) immersion we define the conormal sheaf of i as
the conormal sheaf of the closed immersion i : Z → X \ ∂Z , see Morphisms of Spaces,
Remark 12.4. It is often denoted I/I2 where I is the ideal sheaf of the closed immersion
i : Z → X \ ∂Z.

Definition 5.1. Let i : Z → X be an immersion. The conormal sheaf CZ/X of Z in
X or the conormal sheaf of i is the quasi-coherentOZ -module I/I2 described above.

In [?, IV Definition 16.1.2] this sheaf is denotedNZ/X . We will not follow this convention
since we would like to reserve the notationNZ/X for the normal sheaf of the immersion.
It is defined as

NZ/X = HomOZ
(CZ/X ,OZ) = HomOZ

(I/I2,OZ)
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provided the conormal sheaf is of finite presentation (otherwise the normal sheaf may
not even be quasi-coherent). We will come back to the normal sheaf later (insert future
reference here).

Lemma 5.2. Let S be a scheme. Let i : Z → X be an immersion. Let ϕ : U → X
be an étale morphism where U is a scheme. Set ZU = U ×X Z which is a locally closed
subscheme of U . Then

CZ/X |ZU = CZU/U
canonically and functorially in U .

Proof. Let T ⊂ X be a closed subspace such that i defines a closed immersion into
X \ T . Let I be the quasi-coherent sheaf of ideals on X \ T defining Z. Then the lemma
just states that I|U\ϕ−1(T ) is the sheaf of ideals of the immersionZU → U \ϕ−1(T ). This
is clear from the construction of I in Morphisms of Spaces, Lemma 13.1. �

Lemma 5.3. Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a commutative diagram of algebraic spaces over S. Assume i, i′ immersions. There is a
canonical map ofOZ -modules

f∗CZ′/X′ −→ CZ/X
Proof. First find open subspaces U ′ ⊂ X ′ and U ⊂ X such that g(U) ⊂ U ′ and

such that i(Z) ⊂ U and i(Z ′) ⊂ U ′ are closed (proof existence omitted). ReplacingX by
U and X ′ by U ′ we may assume that i and i′ are closed immersions. Let I ′ ⊂ OX′ and
I ⊂ OX be the quasi-coherent sheaves of ideals associated to i′ and i, see Morphisms of
Spaces, Lemma 13.1. Consider the composition

g−1I ′ → g−1OX′
g]−→ OX → OX/I = i∗OZ

Since g(i(Z)) ⊂ Z ′ we conclude this composition is zero (see statement on factorizations
in Morphisms of Spaces, Lemma 13.1). Thus we obtain a commutative diagram

0 // I // OX // i∗OZ // 0

0 // g−1I ′ //

OO

g−1OX′ //

OO

g−1i′∗OZ′ //

OO

0

The lower row is exact since g−1 is an exact functor. By exactness we also see that (g−1I ′)2 =
g−1((I ′)2). Hence the diagram induces a map g−1(I ′/(I ′)2) → I/I2. Pulling back
(using i−1 for example) to Z we obtain i−1g−1(I ′/(I ′)2) → CZ/X . Since i−1g−1 =
f−1(i′)−1 this gives a map f−1CZ′/X′ → CZ/X , which induces the desired map. �

Lemma 5.4. Let S be a scheme. The conormal sheaf of Definition 5.1, and its functo-
riality of Lemma 5.3 satisfy the following properties:

(1) If Z → X is an immersion of schemes over S , then the conormal sheaf agrees
with the one from Morphisms, Definition 31.1.

(2) If in Lemma 5.3 all the spaces are schemes, then the map f∗CZ′/X′ → CZ/X is
the same as the one constructed in Morphisms, Lemma 31.3.
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(3) Given a commutative diagram

Z
i
//

f

��

X

g

��
Z ′ i′ //

f ′

��

X ′

g′

��
Z ′′ i′′

// X ′′

then the map (f ′ ◦ f)∗CZ′′/X′′ → CZ/X is the same as the composition of
f∗CZ′/X′ → CZ/X with the pullback by f of (f ′)∗CZ′′/X′′ → CZ′/X′

Proof. Omitted. Note that Part (1) is a special case of Lemma 5.2. �

Lemma 5.5. Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a fibre product diagram of algebraic spaces over S. Assume i, i′ immersions. Then the
canonical map f∗CZ′/X′ → CZ/X of Lemma 5.3 is surjective. If g is flat, then it is an
isomorphism.

Proof. Choose a commutative diagram

U //

��

X

��
U ′ // X ′

where U , U ′ are schemes and the horizontal arrows are surjective and étale, see Spaces,
Lemma 11.6. Then using Lemmas 5.2 and 5.4 we see that the question reduces to the case
of a morphism of schemes. In the schemes case this is Morphisms, Lemma 31.4. �

Lemma 5.6. Let S be a scheme. Let Z → Y → X be immersions of algebraic spaces.
Then there is a canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0
where the maps come from Lemma 5.3 and i : Z → Y is the first morphism.

Proof. LetU be a scheme and letU → X be a surjective étale morphism. Via Lemmas
5.2 and 5.4 the exactness of the sequence translates immediately into the exactness of the
corresponding sequence for the immersions of schemes Z×X U → Y ×X U → U . Hence
the lemma follows from Morphisms, Lemma 31.5. �

6. The normal cone of an immersion

Let S be a scheme. Let i : Z → X be a closed immersion of algebraic spaces over S. Let
I ⊂ OX be the corresponding quasi-coherent sheaf of ideals, see Morphisms of Spaces,
Lemma 13.1. Consider the quasi-coherent sheaf of graded OX -algebras

⊕
n≥0 In/In+1.

Since the sheaves In/In+1 are each annihilated by I this graded algebra corresponds to
a quasi-coherent sheaf of graded OZ -algebras by Morphisms of Spaces, Lemma 14.1. This
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quasi-coherent graded OZ -algebra is called the conormal algebra of Z in X and is often
simply denoted

⊕
n≥0 In/In+1 by the abuse of notation mentioned in Morphisms of

Spaces, Section 14.

In case i : Z → X is a (locally closed) immersion we define the conormal algebra of i as
the conormal algebra of the closed immersion i : Z → X \ ∂Z , see Morphisms of Spaces,
Remark 12.4. It is often denoted

⊕
n≥0 In/In+1 where I is the ideal sheaf of the closed

immersion i : Z → X \ ∂Z.

Definition 6.1. Let i : Z → X be an immersion. The conormal algebra CZ/X,∗
of Z in X or the conormal algebra of i is the quasi-coherent sheaf of graded OZ -algebras⊕

n≥0 In/In+1 described above.

Thus CZ/X,1 = CZ/X is the conormal sheaf of the immersion. Also CZ/X,0 = OZ and
CZ/X,n is a quasi-coherentOZ -module characterized by the property

(6.1.1) i∗CZ/X,n = In/In+1

where i : Z → X \ ∂Z and I is the ideal sheaf of i as above. Finally, note that there is a
canonical surjective map

(6.1.2) Sym∗(CZ/X) −→ CZ/X,∗
of quasi-coherent gradedOZ -algebras which is an isomorphism in degrees 0 and 1.

Lemma 6.2. Let S be a scheme. Let i : Z → X be an immersion of algebraic spaces
over S. Let ϕ : U → X be an étale morphism where U is a scheme. Set ZU = U ×X Z
which is a locally closed subscheme of U . Then

CZ/X,∗|ZU = CZU/U,∗
canonically and functorially in U .

Proof. Let T ⊂ X be a closed subspace such that i defines a closed immersion into
X \ T . Let I be the quasi-coherent sheaf of ideals on X \ T defining Z. Then the lemma
follows from the fact that I|U\ϕ−1(T ) is the sheaf of ideals of the immersion ZU → U \
ϕ−1(T ). This is clear from the construction of I in Morphisms of Spaces, Lemma 13.1. �

Lemma 6.3. Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a commutative diagram of algebraic spaces over S. Assume i, i′ immersions. There is a
canonical map of gradedOZ -algebras

f∗CZ′/X′,∗ −→ CZ/X,∗
Proof. First find open subspaces U ′ ⊂ X ′ and U ⊂ X such that g(U) ⊂ U ′ and

such that i(Z) ⊂ U and i(Z ′) ⊂ U ′ are closed (proof existence omitted). ReplacingX by
U and X ′ by U ′ we may assume that i and i′ are closed immersions. Let I ′ ⊂ OX′ and
I ⊂ OX be the quasi-coherent sheaves of ideals associated to i′ and i, see Morphisms of
Spaces, Lemma 13.1. Consider the composition

g−1I ′ → g−1OX′
g]−→ OX → OX/I = i∗OZ
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Since g(i(Z)) ⊂ Z ′ we conclude this composition is zero (see statement on factorizations
in Morphisms of Spaces, Lemma 13.1). Thus we obtain a commutative diagram

0 // I // OX // i∗OZ // 0

0 // g−1I ′ //

OO

g−1OX′ //

OO

g−1i′∗OZ′ //

OO

0

The lower row is exact since g−1 is an exact functor. By exactness we also see that (g−1I ′)n =
g−1((I ′)n) for all n ≥ 1. Hence the diagram induces a map g−1((I ′)n/(I ′)n+1) →
In/In+1. Pulling back (using i−1 for example) toZ we obtain i−1g−1((I ′)n/(I ′)n+1)→
CZ/X,n. Since i−1g−1 = f−1(i′)−1 this gives maps f−1CZ′/X′,n → CZ/X,n, which in-
duce the desired map. �

Lemma 6.4. Let S be a scheme. Let

Z
i
//

f

��

X

g

��
Z ′ i′ // X ′

be a cartesian square of algebraic spaces over S with i, i′ immersions. Then the canonical
map f∗CZ′/X′,∗ → CZ/X,∗ of Lemma 6.3 is surjective. If g is flat, then it is an isomorphism.

Proof. We may check the statement after étale localizing X ′. In this case we may
assume X ′ → X is a morphism of schemes, hence Z and Z ′ are schemes and the result
follows from the case of schemes, see Divisors, Lemma 19.4. �

We use the same conventions for cones and vector bundles over algebraic spaces as we do
for schemes (where we use the conventions of EGA), see Constructions, Sections 7 and 6.
In particular, a vector bundle is a very general gadget (and not locally isomorphic to an
affine space bundle).

Definition 6.5. Let S be a scheme. Let i : Z → X be an immersion of algebraic
spaces over S. The normal cone CZX of Z in X is

CZX = Spec
Z

(CZ/X,∗)
see Morphisms of Spaces, Definition 20.8. The normal bundle of Z in X is the vector
bundle

NZX = Spec
Z

(Sym(CZ/X))

Thus CZX → Z is a cone over Z and NZX → Z is a vector bundle over Z. Moreover,
the canonical surjection (6.1.2) of graded algebras defines a canonical closed immersion
(6.5.1) CZX −→ NZX

of cones over Z.

7. Sheaf of differentials of a morphism

We suggest the reader take a look at the corresponding section in the chapter on commuta-
tive algebra (Algebra, Section 131), the corresponding section in the chapter on morphism
of schemes (Morphisms, Section 32) as well as Modules on Sites, Section 33. We first show
that the notion of sheaf of differentials for a morphism of schemes agrees with the corre-
sponding morphism of small étale (ringed) sites.
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To clearly state the following lemma we temporarily go back to denoting Fa the sheaf
of OXétale -modules associated to a quasi-coherent OX -module F on the scheme X , see
Descent, Definition 8.2.

Lemma 7.1. Let f : X → Y be a morphism of schemes. Let fsmall : Xétale → Yétale
be the associated morphism of small étale sites, see Descent, Remark 8.4. Then there is a
canonical isomorphism

(ΩX/Y )a = ΩXétale/Yétale
compatible with universal derivations. Here the first module is the sheaf on Xétale asso-
ciated to the quasi-coherent OX -module ΩX/Y , see Morphisms, Definition 32.1, and the
second module is the one from Modules on Sites, Definition 33.3.

Proof. Leth : U → X be an étale morphism. In this case the natural maph∗ΩX/Y →
ΩU/Y is an isomorphism, see More on Morphisms, Lemma 9.9. This means that there is a
naturalOYétale -derivation

da : OXétale −→ (ΩX/Y )a

since we have just seen that the value of (ΩX/Y )a on any object U of Xétale is canon-
ically identified with Γ(U,ΩU/Y ). By the universal property of dX/Y : OXétale →
ΩXétale/Yétale there is a unique OXétale -linear map c : ΩXétale/Yétale → (ΩX/Y )a such
that da = c ◦ dX/Y .

Conversely, suppose that F is an OXétale -module and D : OXétale → F is a OYétale -
derivation. Then we can simply restrict D to the small Zariski site XZar of X . Since
sheaves on XZar agree with sheaves on X , see Descent, Remark 8.3, we see that D|XZar :
OX → F|XZar is just a “usual” Y -derivation. Hence we obtain a map ψ : ΩX/Y −→
F|XZar such thatD|XZar = ψ ◦d. In particular, if we apply this withF = ΩXétale/Yétale
we obtain a map

c′ : ΩX/Y −→ ΩXétale/Yétale |XZar
Consider the morphism of ringed sites idsmall,étale,Zar : Xétale → XZar discussed in
Descent, Remark 8.4 and Lemma 8.5. Since the restriction functor F 7→ F|XZar is equal
to idsmall,étale,Zar,∗, since id∗

small,étale,Zar is left adjoint to idsmall,étale,Zar,∗ and since
(ΩX/Y )a = id∗

small,étale,ZarΩX/Y we see that c′ is adjoint to a map

c′′ : (ΩX/Y )a −→ ΩXétale/Yétale .

We claim that c′′ and c′ are mutually inverse. This claim finishes the proof of the lemma.
To see this it is enough to show that c′′(d(f)) = dX/Y (f) and c(dX/Y (f)) = d(f) if f is
a local section ofOX over an open of X . We omit the verification. �

This clears the way for the following definition. For an alternative, see Remark 7.5.

Definition 7.2. LetS be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The sheaf of differentials ΩX/Y of X over Y is sheaf of differentials (Modules on
Sites, Definition 33.10) for the morphism of ringed topoi

(fsmall, f ]) : (Xétale,OX)→ (Yétale,OY )

of Properties of Spaces, Lemma 21.3. The universal Y -derivation will be denoted dX/Y :
OX → ΩX/Y .
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By Lemma 7.1 this does not conflict with the already existing notion in case X and Y
are representable. From now on, if X and Y are representable, we no longer distinguish
between the sheaf of differentials defined above and the one defined in Morphisms, Defi-
nition 32.1. We want to relate this to the usual modules of differentials for morphisms of
schemes. Here is the key lemma.

Lemma 7.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Consider any commutative diagram

U

a

��

ψ
// V

b
��

X
f // Y

where the vertical arrows are étale morphisms of algebraic spaces. Then

ΩX/Y |Uétale = ΩU/V

In particular, if U , V are schemes, then this is equal to the usual sheaf of differentials of
the morphism of schemes U → V .

Proof. By Properties of Spaces, Lemma 18.11 and Equation (18.11.1) we may think of
the restriction of a sheaf onXétale to Uétale as the pullback by asmall. Similarly for b. By
Modules on Sites, Lemma 33.6 we have

ΩX/Y |Uétale = ΩOUétale
/a−1
small

f−1
small

OYétale

Since a−1
smallf

−1
smallOYétale = ψ−1

smallb
−1
smallOYétale = ψ−1

smallOVétale we see that the lemma
holds. �

Lemma 7.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then ΩX/Y is a quasi-coherentOX -module.

Proof. Choose a diagram as in Lemma 7.3 with a and b surjective and U and V
schemes. Then we see that ΩX/Y |U = ΩU/V which is quasi-coherent (for example by
Morphisms, Lemma 32.7). Hence we conclude that ΩX/Y is quasi-coherent by Properties
of Spaces, Lemma 29.6. �

Remark 7.5. Now that we know that ΩX/Y is quasi-coherent we can attempt to
construct it in another manner. For example we can use the result of Properties of Spaces,
Section 32 to construct the sheaf of differentials by glueing. For example if Y is a scheme
and if U → X is a surjective étale morphism from a scheme towards X , then we see
that ΩU/Y is a quasi-coherent OU -module, and since s, t : R → U are étale we get an
isomorphism

α : s∗ΩU/Y → ΩR/Y → t∗ΩU/Y
by using Morphisms, Lemma 34.16. You check that this satisfies the cocycle condition
and you’re done. If Y is not a scheme, then you define ΩU/Y as the cokernel of the map
(U → Y )∗ΩY/S → ΩU/S , and proceed as before. This two step process is a little bit ugly.
Another possibility is to glue the sheaves ΩU/V for any diagram as in Lemma 7.3 but this
is not very elegant either. Both approaches will work however, and will give a slightly
more elementary construction of the sheaf of differentials.
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Lemma 7.6. Let S be a scheme. Let

X ′

��

f
// X

��
Y ′ // Y

be a commutative diagram of algebraic spaces. The map f ] : OX → f∗OX′ composed
with the map f∗dX′/Y ′ : f∗OX′ → f∗ΩX′/Y ′ is a Y -derivation. Hence we obtain a
canonical map of OX -modules ΩX/Y → f∗ΩX′/Y ′ , and by adjointness of f∗ and f∗ a
canonicalOX′ -module homomorphism

cf : f∗ΩX/Y −→ ΩX′/Y ′ .

It is uniquely characterized by the property that f∗dX/Y (t) mapsto dX′/Y ′(f∗t) for any
local section t ofOX .

Proof. This is a special case of Modules on Sites, Lemma 33.11. �

Lemma 7.7. Let S be a scheme. Let

X ′′

��

g
// X ′

��

f
// X

��
Y ′′ // Y ′ // Y

be a commutative diagram of algebraic spaces over S. Then we have

cf◦g = cg ◦ g∗cf

as maps (f ◦ g)∗ΩX/Y → ΩX′′/Y ′′ .

Proof. Omitted. Hint: Use the characterization of cf , cg, cf◦g in terms of the effect
these maps have on local sections. �

Lemma 7.8. Let S be a scheme. Let f : X → Y , g : Y → B be morphisms of
algebraic spaces over S. Then there is a canonical exact sequence

f∗ΩY/B → ΩX/B → ΩX/Y → 0

where the maps come from applications of Lemma 7.6.

Proof. Follows from the schemes version, see Morphisms, Lemma 32.9, of this result
via étale localization, see Lemma 7.3. �

Lemma 7.9. Let S be a scheme. If X → Y is an immersion of algebraic spaces over
S then ΩX/S is zero.

Proof. Follows from the schemes version, see Morphisms, Lemma 32.14, of this result
via étale localization, see Lemma 7.3. �

Lemma 7.10. Let S be a scheme. Let B be an algebraic space over S. Let i : Z → X
be an immersion of algebraic spaces over B. There is a canonical exact sequence

CZ/X → i∗ΩX/B → ΩZ/B → 0

where the first arrow is induced by dX/B and the second arrow comes from Lemma 7.6.
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Proof. This is the algebraic spaces version of Morphisms, Lemma 32.15 and will be
a consequence of that lemma by étale localization, see Lemmas 7.3 and 5.2. However, we
should make sure we can define the first arrow globally. Hence we explain the meaning
of “induced by dX/B” here. Namely, we may assume that i is a closed immersion after
replacing X by an open subspace. Let I ⊂ OX be the quasi-coherent sheaf of ideals
corresponding to Z ⊂ X . Then dX/S : I → ΩX/S maps the subsheaf I2 ⊂ I to IΩX/S .
Hence it induces a map I/I2 → ΩX/S/IΩX/S which isOX/I-linear. By Morphisms of
Spaces, Lemma 14.1 this corresponds to a map CZ/X → i∗ΩX/S as desired. �

Lemma 7.11. Let S be a scheme. Let B be an algebraic space over S. Let i : Z → X
be an immersion of algebraic spaces over B, and assume i (étale locally) has a left inverse.
Then the canonical sequence

0→ CZ/X → i∗ΩX/B → ΩZ/B → 0

of Lemma 7.10 is (étale locally) split exact.

Proof. Clarification: we claim that if g : X → Z is a left inverse of i over B, then
i∗cg is a right inverse of the map i∗ΩX/B → ΩZ/B . Having said this, the result follows
from the corresponding result for morphisms of schemes by étale localization, see Lemmas
7.3 and 5.2. �

Lemma 7.12. Let S be a scheme. Let X → Y be a morphism of algebraic spaces over
S. Let g : Y ′ → Y be a morphism of algebraic spaces over S. Let X ′ = XY ′ be the base
change of X . Denote g′ : X ′ → X the projection. Then the map

(g′)∗ΩX/Y → ΩX′/Y ′

of Lemma 7.6 is an isomorphism.

Proof. Follows from the schemes version, see Morphisms, Lemma 32.10 and étale
localization, see Lemma 7.3. �

Lemma 7.13. Let S be a scheme. Let f : X → B and g : Y → B be morphisms of
algebraic spaces over S with the same target. Let p : X×B Y → X and q : X×B Y → Y
be the projection morphisms. The maps from Lemma 7.6

p∗ΩX/B ⊕ q∗ΩY/B −→ ΩX×BY/B

give an isomorphism.

Proof. Follows from the schemes version, see Morphisms, Lemma 32.11 and étale
localization, see Lemma 7.3. �

Lemma 7.14. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite type, then ΩX/Y is a finite typeOX -module.

Proof. Follows from the schemes version, see Morphisms, Lemma 32.12 and étale
localization, see Lemma 7.3. �

Lemma 7.15. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite presentation, then ΩX/Y is anOX -module of finite presen-
tation.

Proof. Follows from the schemes version, see Morphisms, Lemma 32.13 and étale
localization, see Lemma 7.3. �
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Lemma 7.16. Let S be a scheme. Let f : X → Y be a smooth morphism of algebraic
spaces over S. Then the module of differentials ΩX/Y is finite locally free.

Proof. The statement is étale local on X and Y by Lemma 7.3. Hence this follows
from the case of schemes, see Morphisms, Lemma 34.12. �

8. Topological invariance of the étale site

We show that the siteXspaces,étale is a “topological invariant”. It then follows thatXétale,
which consists of the representable objects in Xspaces,étale, is a topological invariant too,
see Lemma 8.2.

Theorem 8.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is integral, universally injective and surjective. The functor

V 7−→ VX = X ×Y V
defines an equivalence of categories Yspaces,étale → Xspaces,étale.

Proof. The morphism f is representable and a universal homeomorphism, see Mor-
phisms of Spaces, Section 53.

We first prove that the functor is faithful. Suppose that V ′, V are objects of Yspaces,étale
and that a, b : V ′ → V are distinct morphisms over Y . Since V ′, V are étale over Y the
equalizer

E = V ′ ×(a,b),V×Y V,∆V/Y
V

of a, b is étale over Y also. Hence E → V ′ is an étale monomorphism (i.e., an open
immersion) which is an isomorphism if and only if it is surjective. Since X → Y is a
universal homeomorphism we see that this is the case if and only if EX = V ′

X , i.e., if and
only if aX = bX .

Next, we prove that the functor is fully faithful. Suppose thatV ′, V are objects ofYspaces,étale
and that c : V ′

X → VX is a morphism over X . We want to construct a morphism
a : V ′ → V over Y such that aX = c. Let a′ : V ′′ → V ′ be a surjective étale morphism
such that V ′′ is a separated algebraic space. If we can construct a morphism a′′ : V ′′ → V
such that a′′

X = c ◦ a′
X , then the two compositions

V ′′ ×V ′ V ′′ pri−−→ V ′′ a′′

−−→ V

will be equal by the faithfulness of the functor proved in the first paragraph. Hence a′′

will factor through a unique morphism a : V ′ → V as V ′ is (as a sheaf) the quotient of
V ′′ by the equivalence relation V ′′ ×V ′ V ′′. Hence we may assume that V ′ is separated.
In this case the graph

Γc ⊂ (V ′ ×Y V )X
is open and closed (details omitted). Since X → Y is a universal homeomorphism, there
exists an open and closed subspace Γ ⊂ V ′ ×Y V such that ΓX = Γc. The projection
Γ→ V ′ is an étale morphism whose base change to X is an isomorphism. Hence Γ→ V ′

is étale, universally injective, and surjective, so an isomorphism by Morphisms of Spaces,
Lemma 51.2. Thus Γ is the graph of a morphism a : V ′ → V as desired.

Finally, we prove that the functor is essentially surjective. Suppose that U is an object
of Xspaces,étale. We have to find an object V of Yspaces,étale such that VX ∼= U . Let
U ′ → U be a surjective étale morphism such that U ′ ∼= V ′

X and U ′ ×U U ′ ∼= V ′′
X for

some objects V ′′, V ′ of Yspaces,étale. Then by fully faithfulness of the functor we obtain
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morphisms s, t : V ′′ → V ′ with tX = pr0 and sX = pr1 as morphisms U ′ ×U U ′ → U ′.
Using that (pr0, pr1) : U ′ ×U U ′ → U ′ ×S U ′ is an étale equivalence relation, and that
U ′ → V ′ and U ′ ×U U ′ → V ′′ are universally injective and surjective we deduce that
(t, s) : V ′′ → V ′ ×S V ′ is an étale equivalence relation. Then the quotient V = V ′/V ′′

(see Spaces, Theorem 10.5) is an algebraic space V over Y . There is a morphism V ′ → V
such that V ′′ = V ′ ×V V ′. Thus we obtain a morphism V → Y (see Descent on Spaces,
Lemma 7.2). On base change to X we see that we have a morphism U ′ → VX and a
compatible isomorphism U ′ ×VX U ′ = U ′ ×U U ′, which implies that VX ∼= U (by the
lemma just cited once more).

Pick a scheme W and a surjective étale morphism W → Y . Pick a scheme U ′ and a
surjective étale morphism U ′ → U ×XWX . Note that U ′ and U ′×U U ′ are schemes étale
over X whose structure morphism to X factors through the scheme WX . Hence by Étale
Cohomology, Theorem 45.2 there exist schemes V ′, V ′′ étale over W whose base change
to WX is isomorphic to respectively U ′ and U ′ ×U U ′. This finishes the proof. �

Lemma 8.2. With assumption and notation as in Theorem 8.1 the equivalence of
categories Yspaces,étale → Xspaces,étale restricts to equivalences of categories Yétale →
Xétale and Yaffine,étale → Xaffine,étale.

Proof. This is just the statement that given an object V ∈ Yspaces,étale we have V
is a(n affine) scheme if and only if V ×Y X is a(n affine) scheme. Since V ×Y X → V
is integral, universally injective, and surjective (as a base change of X → Y ) this follows
from Limits of Spaces, Lemma 15.4 and Proposition 15.2. �

Remark 8.3. A universal homeomorphism of algebraic spaces need not be repre-
sentable, see Morphisms of Spaces, Example 53.3. In fact Theorem 8.1 does not hold for
universal homeomorphisms. To see this, let k be an algebraically closed field of character-
istic 0 and let

A1 → X → A1

be as in Morphisms of Spaces, Example 53.3. Recall that the first morphism is étale and
identifies t with −t for t ∈ A1

k \ {0} and that the second morphism is our universal
homeomorphism. Since A1

k has no nontrivial connected finite étale coverings (because
k is algebraically closed of characteristic zero; details omitted), it suffices to construct a
nontrivial connected finite étale covering Y → X . To do this, let Y be the affine line with
zero doubled (Schemes, Example 14.3). Then Y = Y1 ∪ Y2 with Yi = A1

k glued along
A1
k \ {0}. To define the morphism Y → X we use the morphisms

Y1
1−→ A1

k → X and Y2
−1−−→ A1

k → X.

These glue over Y1 ∩ Y2 by the construction of X and hence define a morphism Y → X .
In fact, we claim that

Y

��

Y1 q Y2oo

��
X A1

k
oo

is a cartesian square. We omit the details; you can use for example Groupoids, Lemma 20.7.
Since A1

k → X is étale and surjective, this proves that Y → X is finite étale of degree 2
which gives the desired example.
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More simply, you can argue as follows. The scheme Y has a free action of the group G =
{+1,−1} where−1 acts by swapping Y1 and Y2 and changing the sign of the coordinate.
Then X = Y/G (see Spaces, Definition 14.4) and hence Y → X is finite étale. You can
also show directly that there exists a universal homeomorphismX → A1

k by using t 7→ t2

on affine spaces. In fact, this X is the same as the X above.

9. Thickenings

The following terminology may not be completely standard, but it is convenient.

Definition 9.1. Thickenings. Let S be a scheme.
(1) We say an algebraic space X ′ is a thickening of an algebraic space X if X is a

closed subspace of X ′ and the associated topological spaces are equal.
(2) We say X ′ is a first order thickening of X if X is a closed subspace of X ′ and

the quasi-coherent sheaf of ideals I ⊂ OX′ defining X has square zero.
(3) Given two thickenings X ⊂ X ′ and Y ⊂ Y ′ a morphism of thickenings is

a morphism f ′ : X ′ → Y ′ such that f(X) ⊂ Y , i.e., such that f ′|X factors
through the closed subspace Y . In this situation we set f = f ′|X : X → Y and
we say that (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of thickenings.

(4) Let B be an algebraic space. We similarly define thickenings over B, and mor-
phisms of thickenings over B. This means that the spaces X,X ′, Y, Y ′ above
are algebraic spaces endowed with a structure morphism toB, and that the mor-
phisms X → X ′, Y → Y ′ and f ′ : X ′ → Y ′ are morphisms over B.

The fundamental equivalence. Note that if X ⊂ X ′ is a thickening, then X → X ′ is
integral and universally bijective. This implies that

(9.1.1) Xspaces,étale = X ′
spaces,étale

via the pullback functor, see Theorem 8.1. Hence we may think of OX′ as a sheaf on
Xspaces,étale. Thus a canonical equivalence of locally ringed topoi

(9.1.2) (Sh(X ′
spaces,étale),OX′) ∼= (Sh(Xspaces,étale),OX′)

Below we will frequently combine this with the fully faithfulness result of Properties of
Spaces, Theorem 28.4. For example the closed immersion iX : X → X ′ corresponds to
the surjective map i]X : OX′ → OX .

Let S be a scheme, and letB be an algebraic space over S. Let (f, f ′) : (X ⊂ X ′)→ (Y ⊂
Y ′) be a morphism of thickenings over B. Note that the diagram of continuous functors

Xspaces,étale Yspaces,étaleoo

X ′
spaces,étale

OO

Y ′
spaces,étale

OO

oo

is commutative and the vertical arrows are equivalences. Hence fspaces,étale, fsmall, f ′
spaces,étale,

and f ′
small all define the same morphism of topoi. Thus we may think of

(f ′)] : f−1
spaces,étaleOY ′ −→ OX′
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as a map of sheaves ofOB-algebras fitting into the commutative diagram

f−1
spaces,étaleOY

f]
//// OX

f−1
spaces,étaleOY ′

(f ′)] //

i]
Y

OO

OX′

i]
X

OO

Here iX : X → X ′ and iY : Y → Y ′ are the names of the given closed immersions.

Lemma 9.2. Let S be a scheme. Let B be an algebraic space over S. Let X ⊂ X ′ and
Y ⊂ Y ′ be thickenings of algebraic spaces over B. Let f : X → Y be a morphism of
algebraic spaces over B. Given any map ofOB-algebras

α : f−1
spaces,étaleOY ′ → OX′

such that
f−1
spaces,étaleOY

f]
//// OX

f−1
spaces,étaleOY ′

α //

i]
Y

OO

OX′

i]
X

OO

commutes, there exists a unique morphism of (f, f ′) of thickenings overB such that α =
(f ′)].

Proof. To find f ′, by Properties of Spaces, Theorem 28.4, all we have to do is show
that the morphism of ringed topoi

(fspaces,étale, α) : (Sh(Xspaces,étale),OX′) −→ (Sh(Yspaces,étale),OY ′)

is a morphism of locally ringed topoi. This follows directly from the definition of mor-
phisms of locally ringed topoi (Modules on Sites, Definition 40.9), the fact that (f, f ]) is
a morphism of locally ringed topoi (Properties of Spaces, Lemma 28.1), that α fits into the
given commutative diagram, and the fact that the kernels of i]X and i]Y are locally nilpo-
tent. Finally, the fact that f ′◦iX = iY ◦f follows from the commutativity of the diagram
and another application of Properties of Spaces, Theorem 28.4. We omit the verification
that f ′ is a morphism over B. �

Lemma 9.3. Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces over
S. For any open subspace U ⊂ X there exists a unique open subspace U ′ ⊂ X ′ such that
U = X ×X′ U ′.

Proof. Let U ′ → X ′ be the object of X ′
spaces,étale corresponding to the object U →

X of Xspaces,étale via (9.1.1). The morphism U ′ → X ′ is étale and universally injective,
hence an open immersion, see Morphisms of Spaces, Lemma 51.2. �

Finite order thickenings. Let iX : X → X ′ be a thickening of algebraic spaces. Any local
section of the kernel I = Ker(i]X) ⊂ OX′ is locally nilpotent. Let us say that X ⊂ X ′ is
a finite order thickening if the ideal sheaf I is “globally” nilpotent, i.e., if there exists an
n ≥ 0 such that In+1 = 0. Technically the class of finite order thickenings X ⊂ X ′ is
much easier to handle than the general case. Namely, in this case we have a filtration

0 ⊂ In ⊂ In−1 ⊂ . . . ⊂ I ⊂ OX′
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and we see that X ′ is filtered by closed subspaces

X = X0 ⊂ X1 ⊂ . . . ⊂ Xn−1 ⊂ Xn+1 = X ′

such that each pair Xi ⊂ Xi+1 is a first order thickening over B. Using simple induction
arguments many results proved for first order thickenings can be rephrased as results on
finite order thickenings.

Lemma 9.4. Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces over
S. Let U be an affine object of Xspaces,étale. Then

Γ(U,OX′)→ Γ(U,OX)
is surjective where we think ofOX′ as a sheaf on Xspaces,étale via (9.1.2).

Proof. Let U ′ → X ′ be the étale morphism of algebraic spaces such that U =
X ×X′ U ′, see Theorem 8.1. By Limits of Spaces, Lemma 15.1 we see that U ′ is an affine
scheme. Hence Γ(U,OX′) = Γ(U ′,OU ′)→ Γ(U,OU ) is surjective as U → U ′ is a closed
immersion of affine schemes. Below we give a direct proof for finite order thickenings
which is the case most used in practice. �

Proof for finite order thickenings. We may assume that X ⊂ X ′ is a first or-
der thickening by the principle explained above. Denote I the kernel of the surjection
OX′ → OX . As I is a quasi-coherent OX′ -module and since I2 = 0 by the definition of
a first order thickening we may apply Morphisms of Spaces, Lemma 14.1 to see that I is
a quasi-coherentOX -module. Hence the lemma follows from the long exact cohomology
sequence associated to the short exact sequence

0→ I → OX′ → OX → 0
and the fact thatH1

étale(U, I) = 0 as I is quasi-coherent, see Descent, Proposition 9.3 and
Cohomology of Schemes, Lemma 2.2. �

Lemma 9.5. Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces over
S. If X is (representable by) a scheme, then so is X ′.

Proof. Note that X ′
red = Xred. Hence if X is a scheme, then X ′

red is a scheme.
Thus the result follows from Limits of Spaces, Lemma 15.3. Below we give a direct proof
for finite order thickenings which is the case most often used in practice. �

Proof for finite order thickenings. It suffices to prove this when X ′ is a first
order thickening ofX . By Properties of Spaces, Lemma 13.1 there is a largest open subspace
of X ′ which is a scheme. Thus we have to show that every point x of |X ′| = |X| is
contained in an open subspace ofX ′ which is a scheme. Using Lemma 9.3 we may replace
X ⊂ X ′ by U ⊂ U ′ with x ∈ U and U an affine scheme. Hence we may assume that X is
affine. Thus we reduce to the case discussed in the next paragraph.

Assume X ⊂ X ′ is a first order thickening where X is an affine scheme. Set A =
Γ(X,OX) and A′ = Γ(X ′,OX′). By Lemma 9.4 the map A → A′ is surjective. The
kernel I is an ideal of square zero. By Properties of Spaces, Lemma 33.1 we obtain a canon-
ical morphism f : X ′ → Spec(A′) which fits into the following commutative diagram

X // X ′

f

��
Spec(A) // Spec(A′)
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Because the horizontal arrows are thickenings it is clear that f is universally injective and
surjective. Hence it suffices to show that f is étale, since then Morphisms of Spaces, Lemma
51.2 will imply that f is an isomorphism.

To prove that f is étale choose an affine scheme U ′ and an étale morphism U ′ → X ′. It
suffices to show that U ′ → X ′ → Spec(A′) is étale, see Properties of Spaces, Definition
16.2. Write U ′ = Spec(B′). Set U = X ×X′ U ′. Since U is a closed subspace of U ′, it is a
closed subscheme, hence U = Spec(B) with B′ → B surjective. Denote J = Ker(B′ →
B) and note that J = Γ(U, I) where I = Ker(OX′ → OX) on Xspaces,étale as in
the proof of Lemma 9.4. The morphism U ′ → X ′ → Spec(A′) induces a commutative
diagram

0 // J // B′ // B // 0

0 // I //

OO

A′ //

OO

A //

OO

0

Now, since I is a quasi-coherent OX -module we have I = (Ĩ)a, see Descent, Definition
8.2 for notation and Descent, Proposition 8.9 for why this is true. Hence we see that
J = I ⊗A B. Finally, note that A → B is étale as U → X is étale as the base change
of the étale morphism U ′ → X ′. We conclude that A′ → B′ is étale by Algebra, Lemma
143.11. �

Lemma 9.6. Let S be a scheme. Let X ⊂ X ′ be a thickening of algebraic spaces over
S. The functor

V ′ 7−→ V = X ×X′ V ′

defines an equivalence of categories X ′
étale → Xétale.

Proof. The functor V ′ 7→ V defines an equivalence of categories X ′
spaces,étale →

Xspaces,étale, see Theorem 8.1. Thus it suffices to show that V is a scheme if and only if
V ′ is a scheme. This is the content of Lemma 9.5. �

First order thickening are described as follows.

Lemma 9.7. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Consider a short exact sequence

0→ I → A → OX → 0

of sheaves on Xétale where A is a sheaf of f−1OB-algebras, A → OX is a surjection of
sheaves of f−1OB-algebras, and I is its kernel. If

(1) I is an ideal of square zero inA, and
(2) I is quasi-coherent as anOX -module

then there exists a first order thickening X ⊂ X ′ over B and an isomorphism OX′ → A
of f−1OB-algebras compatible with the surjections toOX .

Proof. In this proof we redo some of the arguments used in the proofs of Lemmas
9.4 and 9.5. We first handle the case B = S = Spec(Z). Let U be an affine scheme, and
let U → X be étale. Then

0→ I(U)→ A(U)→ OX(U)→ 0
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is exact as H1(Uétale, I) = 0 as I is quasi-coherent, see Descent, Proposition 9.3 and Co-
homology of Schemes, Lemma 2.2. IfV → U is a morphism of affine objects ofXspaces,étale

then
I(V ) = I(U)⊗OX(U) OX(V )

since I is a quasi-coherent OX -module, see Descent, Proposition 8.9. Hence A(U) →
A(V ) is an étale ring map, see Algebra, Lemma 143.11. Hence we see that

U 7−→ U ′ = Spec(A(U))
is a functor from Xaffine,étale to the category of affine schemes and étale morphisms. In
fact, we claim that this functor can be extended to a functor U 7→ U ′ on all of Xétale. To
see this, if U is an object of Xétale, note that

0→ I|UZar → A|UZar → OX |UZar → 0
and I|UZar is a quasi-coherent sheaf on U , see Descent, Proposition 9.4. Hence by More
on Morphisms, Lemma 2.2 we obtain a first order thickening U ⊂ U ′ of schemes such
thatOU ′ is isomorphic toA|UZar . It is clear that this construction is compatible with the
construction for affines above.

Choose a presentation X = U/R, see Spaces, Definition 9.3 so that s, t : R → U define
an étale equivalence relation. Applying the functor above we obtain an étale equivalence
relation s′, t′ : R′ → U ′ in schemes. Consider the algebraic spaceX ′ = U ′/R′ (see Spaces,
Theorem 10.5). The morphism X = U/R → U ′/R′ = X ′ is a first order thickening.
ConsiderOX′ viewed as a sheaf on Xétale. By construction we have an isomorphism

γ : OX′ |Uétale −→ A|Uétale
such that s−1γ agrees with t−1γ on Rétale. Hence by Properties of Spaces, Lemma 18.14
this implies that γ comes from a unique isomorphismOX′ → A as desired.

To handle the case of a general base algebraic spaceB, we first constructX ′ as an algebraic
space over Z as above. Then we use the isomorphismOX′ → A to define f−1OB → OX′ .
According to Lemma 9.2 this defines a morphism X ′ → B compatible with the given
morphism X → B and we are done. �

Lemma 9.8. Let S be a scheme. Let Y ⊂ Y ′ be a thickening of algebraic spaces over
S. LetX ′ → Y ′ be a morphism and setX = Y ×Y ′ X ′. Then (X ⊂ X ′)→ (Y ⊂ Y ′) is a
morphism of thickenings. If Y ⊂ Y ′ is a first (resp. finite order) thickening, thenX ⊂ X ′

is a first (resp. finite order) thickening.

Proof. Omitted. �

Lemma 9.9. Let S be a scheme. IfX ⊂ X ′ andX ′ ⊂ X ′′ are thickenings of algebraic
spaces over S , then so is X ⊂ X ′′.

Proof. Omitted. �

Lemma 9.10. The property of being a thickening is fpqc local. Similarly for first
order thickenings.

Proof. The statement means the following: Let S be a scheme and let X → X ′ be a
morphism of algebraic spaces over S. Let {gi : X ′

i → X ′} be an fpqc covering of algebraic
spaces such that the base change Xi → X ′

i is a thickening for all i. Then X → X ′ is
a thickening. Since the morphisms gi are jointly surjective we conclude that X → X ′

is surjective. By Descent on Spaces, Lemma 11.17 we conclude that X → X ′ is a closed
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immersion. Thus X → X ′ is a thickening. We omit the proof in the case of first order
thickenings. �

10. Morphisms of thickenings

If (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of thickenings of algebraic spaces, then
often properties of the morphism f are inherited by f ′. There are several variants.

Lemma 10.1. Let S be a scheme. Let (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be a morphism
of thickenings of algebraic spaces over S. Then

(1) f is an affine morphism if and only if f ′ is an affine morphism,
(2) f is a surjective morphism if and only if f ′ is a surjective morphism,
(3) f is quasi-compact if and only if f ′ quasi-compact,
(4) f is universally closed if and only if f ′ is universally closed,
(5) f is integral if and only if f ′ is integral,
(6) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(7) f is universally injective if and only if f ′ is universally injective,
(8) f is universally open if and only if f ′ is universally open,
(9) f is representable if and only if f ′ is representable, and

(10) add more here.

Proof. Observe that Y → Y ′ and X → X ′ are integral and universal homeomor-
phisms. This immediately implies parts (2), (3), (4), (7), and (8). Part (1) follows from
Limits of Spaces, Proposition 15.2 which tells us that there is a 1-to-1 correspondence be-
tween affine schemes étale over X and X ′ and between affine schemes étale over Y and
Y ′. Part (5) follows from (1) and (4) by Morphisms of Spaces, Lemma 45.7. Finally, note
that

X ×Y X = X ×Y ′ X → X ×Y ′ X ′ → X ′ ×Y ′ X ′

is a thickening (the two arrows are thickenings by Lemma 9.8). Hence applying (3) and
(4) to the morphism (X ⊂ X ′)→ (X ×Y X → X ′ ×Y ′ X ′) we obtain (6). Finally, part
(9) follows from the fact that an algebraic space thickening of a scheme is again a scheme,
see Lemma 9.5. �

Lemma 10.2. Let S be a scheme. Let (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be a morphism
of thickenings of algebraic spaces over S such that X = Y ×Y ′ X ′. If X ⊂ X ′ is a finite
order thickening, then

(1) f is a closed immersion if and only if f ′ is a closed immersion,
(2) f is locally of finite type if and only if f ′ is locally of finite type,
(3) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(4) f is locally of finite type of relative dimension d if and only if f ′ is locally of

finite type of relative dimension d,
(5) ΩX/Y = 0 if and only if ΩX′/Y ′ = 0,
(6) f is unramified if and only if f ′ is unramified,
(7) f is proper if and only if f ′ is proper,
(8) f is a finite morphism if and only if f ′ is an finite morphism,
(9) f is a monomorphism if and only if f ′ is a monomorphism,

(10) f is an immersion if and only if f ′ is an immersion, and
(11) add more here.

Proof. Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Choose a
scheme U ′ and a surjective étale morphism U ′ → X ′×Y ′ V ′. Set V = Y ×Y ′ V ′ and U =
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X ×X′ U ′. Then for étale local properties of morphisms we can reduce to the morphism
of thickenings of schemes (U ⊂ U ′)→ (V ⊂ V ′) and apply More on Morphisms, Lemma
3.3. This proves (2), (3), (4), (5), and (6).
The properties of morphisms in (1), (7), (8), (9), (10) are stable under base change, hence
if f ′ has property P , then so does f . See Spaces, Lemma 12.3, and Morphisms of Spaces,
Lemmas 40.3, 45.5, and 10.5.
The interesting direction in (1), (7), (8), (9), (10) is to assume that f has the property and
deduce that f ′ has it too. By induction on the order of the thickening we may assume that
Y ⊂ Y ′ is a first order thickening, see discussion on finite order thickenings above.
Proof of (1). Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Set V =
Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′ and U = X ×Y V . Then U → V is a closed immersion,
which implies that U is a scheme, which in turn implies that U ′ is a scheme (Lemma 9.5).
Thus we can apply the lemma in the case of schemes (More on Morphisms, Lemma 3.3) to
(U ⊂ U ′)→ (V ⊂ V ′) to conclude.
Proof of (7). Follows by combining (2) with results of Lemma 10.1 and the fact that proper
equals quasi-compact + separated + locally of finite type + universally closed.
Proof of (8). Follows by combining (2) with results of Lemma 10.1 and using the fact that
finite equals integral + locally of finite type (Morphisms, Lemma 44.4).
Proof of (9). As f is a monomorphism we have X = X ×Y X . We may apply the results
proved so far to the morphism of thickenings (X ⊂ X ′) → (X ×Y X ⊂ X ′ ×Y ′ X ′).
We conclude X ′ → X ′ ×Y ′ X ′ is a closed immersion by (1). In fact, it is a first order
thickening as the ideal defining the closed immersion X ′ → X ′ ×Y ′ X ′ is contained
in the pullback of the ideal I ⊂ OY ′ cutting out Y in Y ′. Indeed, X = X ×Y X =
(X ′ ×Y ′ X ′) ×Y ′ Y is contained in X ′. The conormal sheaf of the closed immersion
∆ : X ′ → X ′ ×Y ′ X ′ is equal to ΩX′/Y ′ (this is the analogue of Morphisms, Lemma 32.7
for algebraic spaces and follows either by étale localization or by combining Lemmas 7.11
and 7.13; some details omitted). Thus it suffices to show that ΩX′/Y ′ = 0 which follows
from (5) and the corresponding statement for X/Y .
Proof of (10). If f : X → Y is an immersion, then it factors as X → V → Y where
V → Y is an open subspace and X → V is a closed immersion, see Morphisms of Spaces,
Remark 12.4. Let V ′ ⊂ Y ′ be the open subspace whose underlying topological space |V ′|
is the same as |V | ⊂ |Y | = |Y ′|. ThenX ′ → Y ′ factors through V ′ and we conclude that
X ′ → V ′ is a closed immersion by part (1). This finishes the proof. �

The following lemma is a variant on the preceding one. Rather than assume that the
thickenings involved are finite order (which allows us to transfer the property of being
locally of finite type from f to f ′), we instead take as given that each of f and f ′ is locally
of finite type.

Lemma 10.3. Let S be a scheme. Let (f, f ′) : (X ⊂ X ′)→ (Y → Y ′) be a morphism
of thickenings of algebraic spaces over S. Assume f and f ′ are locally of finite type and
X = Y ×Y ′ X ′. Then

(1) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(2) f is finite if and only if f ′ is finite,
(3) f is a closed immersion if and only if f ′ is a closed immersion,
(4) ΩX/Y = 0 if and only if ΩX′/Y ′ = 0,
(5) f is unramified if and only if f ′ is unramified,
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(6) f is a monomorphism if and only if f ′ is a monomorphism,
(7) f is an immersion if and only if f ′ is an immersion,
(8) f is proper if and only if f ′ is proper, and
(9) add more here.

Proof. Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Choose a
scheme U ′ and a surjective étale morphism U ′ → X ′×Y ′ V ′. Set V = Y ×Y ′ V ′ and U =
X ×X′ U ′. Then for étale local properties of morphisms we can reduce to the morphism
of thickenings of schemes (U ⊂ U ′)→ (V ⊂ V ′) and apply More on Morphisms, Lemma
3.4. This proves (1), (4), and (5).

The properties in (2), (3), (6), (7), and (8) are stable under base change, hence if f ′ has
property P , then so does f . See Spaces, Lemma 12.3, and Morphisms of Spaces, Lemmas
40.3, 45.5, and 10.5. Hence in each case we need only to prove that if f has the desired
property, so does f ′.

Case (2) follows from case (5) of Lemma 10.1 and the fact that the finite morphisms are pre-
cisely the integral morphisms that are locally of finite type (Morphisms of Spaces, Lemma
45.6).

Case (3). This follows immediately from Limits of Spaces, Lemma 15.5.

Proof of (6). As f is a monomorphism we have X = X ×Y X . We may apply the results
proved so far to the morphism of thickenings (X ⊂ X ′) → (X ×Y X ⊂ X ′ ×Y ′ X ′).
We conclude ∆X′/Y ′ : X ′ → X ′ ×Y ′ X ′ is a closed immersion by (3). In fact ∆X′/Y ′

induces a bijection |X ′| → |X ′ ×Y ′ X ′|, hence ∆X′/Y ′ is a thickening. On the other
hand ∆X′/Y ′ is locally of finite presentation by Morphisms of Spaces, Lemma 28.10. In
other words, ∆X′/Y ′(X ′) is cut out by a quasi-coherent sheaf of ideals J ⊂ OX′×Y ′X′ of
finite type. Since ΩX′/Y ′ = 0 by (5) we see that the conormal sheaf of X ′ → X ′ ×Y ′ X ′

is zero. (The conormal sheaf of the closed immersion ∆X′/Y ′ is equal to ΩX′/Y ′ ; this is
the analogue of Morphisms, Lemma 32.7 for algebraic spaces and follows either by étale
localization or by combining Lemmas 7.11 and 7.13; some details omitted.) In other words,
J /J 2 = 0. This implies ∆X′/Y ′ is an isomorphism, for example by Algebra, Lemma 21.5.

Proof of (7). If f : X → Y is an immersion, then it factors as X → V → Y where
V → Y is an open subspace and X → V is a closed immersion, see Morphisms of Spaces,
Remark 12.4. Let V ′ ⊂ Y ′ be the open subspace whose underlying topological space |V ′|
is the same as |V | ⊂ |Y | = |Y ′|. ThenX ′ → Y ′ factors through V ′ and we conclude that
X ′ → V ′ is a closed immersion by part (3).

Case (8) follows from Lemma 10.1 and the definition of proper morphisms as being the
quasi-compact, universally closed, and separated morphisms that are locally of finite type.

�

11. Picard groups of thickenings

Some material on Picard groups of thickenings.
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Lemma 11.1. Let S be a scheme. Let X ⊂ X ′ be a first order thickening of algebraic
spaces over S with ideal sheaf I . Then there is a canonical exact sequence

0 // H0(X, I) // H0(X ′,O∗
X′) // H0(X,O∗

X)

// H1(X, I) // Pic(X ′) // Pic(X)

// H2(X, I) // . . . // . . .

of abelian groups.

Proof. Recall thatXétale = X ′
étale, see Lemma 9.6 and more generally the discussion

in Section 9. The sequence of the lemma is the long exact cohomology sequence associated
to the short exact sequence of sheaves of abelian groups

0→ I → O∗
X′ → O∗

X → 0
on Xétale where the first map sends a local section f of I to the invertible section 1 + f
of OX′ . We also use the identification of the Picard group of a ringed site with the first
cohomology group of the sheaf of invertible functions, see Cohomology on Sites, Lemma
6.1. �

12. First order infinitesimal neighbourhood

A natural construction of first order thickenings is the following. Suppose that i : Z → X
be an immersion of algebraic spaces. Choose an open subspaceU ⊂ X such that i identifies
Z with a closed subspace Z ⊂ U (see Morphisms of Spaces, Remark 12.4). Let I ⊂ OU be
the quasi-coherent sheaf of ideals defining Z in U , see Morphisms of Spaces, Lemma 13.1.
Then we can consider the closed subspace Z ′ ⊂ U defined by the quasi-coherent sheaf of
ideals I2.

Definition 12.1. Let i : Z → X be an immersion of algebraic spaces. The first
order infinitesimal neighbourhood of Z inX is the first order thickening Z ⊂ Z ′ overX
described above.

This thickening has the following universal property (which will assuage any fears that
the construction above depends on the choice of the open U ).

Lemma 12.2. Let i : Z → X be an immersion of algebraic spaces. The first order
infinitesimal neighbourhood Z ′ of Z in X has the following universal property: Given
any commutative diagram

Z

i

��

T
a

oo

��
X T ′boo

where T ⊂ T ′ is a first order thickening over X , there exists a unique morphism (a′, a) :
(T ⊂ T ′)→ (Z ⊂ Z ′) of thickenings over X .

Proof. Let U ⊂ X be the open subspace used in the construction of Z ′, i.e., an open
such that Z is identified with a closed subspace of U cut out by the quasi-coherent sheaf
of ideals I . Since |T | = |T ′| we see that |b|(|T ′|) ⊂ |U |. Hence we can think of b as a
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morphism into U , see Properties of Spaces, Lemma 4.9. Let J ⊂ OT ′ be the square zero
quasi-coherent sheaf of ideals cutting outT . By the commutativity of the diagram we have
b|T = i ◦ a where i : Z → U is the closed immersion. We conclude that b](b−1I) ⊂ J
by Morphisms of Spaces, Lemma 13.1. As T ′ is a first order thickening of T we see that
J 2 = 0 hence b](b−1(I2)) = 0. By Morphisms of Spaces, Lemma 13.1 this implies that b
factors through Z ′. Letting a′ : T ′ → Z ′ be this factorization we win. �

Lemma 12.3. Let i : Z → X be an immersion of algebraic spaces. Let Z ⊂ Z ′ be the
first order infinitesimal neighbourhood of Z in X . Then the diagram

Z //

��

Z ′

��
Z // X

induces a map of conormal sheaves CZ/X → CZ/Z′ by Lemma 5.3. This map is an isomor-
phism.

Proof. This is clear from the construction of Z ′ above. �

13. Formally smooth, étale, unramified transformations

Recall that a ring map R → A is called formally smooth, resp. formally étale, resp. for-
mally unramified (see Algebra, Definition 138.1, resp. Definition 150.1, resp. Definition
148.1) if for every commutative solid diagram

A //

!!

B/I

R //

OO

B

OO

where I ⊂ B is an ideal of square zero, there exists a, resp. exists a unique, resp. exists at
most one dotted arrow which makes the diagram commute. This motivates the following
analogue for morphisms of algebraic spaces, and more generally functors.

Definition 13.1. Let S be a scheme. Let a : F → G be a transformation of functors
F,G : (Sch/S)oppfppf → Sets. Consider commutative solid diagrams of the form

F

a

��

T

i
��

oo

G T ′oo

``

where T and T ′ are affine schemes and i is a closed immersion defined by an ideal of square
zero.

(1) We say a is formally smooth if given any solid diagram as above there exists a
dotted arrow making the diagram commute1.

(2) We say a is formally étale if given any solid diagram as above there exists exactly
one dotted arrow making the diagram commute.

(3) We say a is formally unramified if given any solid diagram as above there exists
at most one dotted arrow making the diagram commute.

1This is just one possible definition that one can make here. Another slightly weaker condition would be
to require that the dotted arrow exists fppf locally on T ′. This weaker notion has in some sense better formal
properties.
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Lemma 13.2. Let S be a scheme. Let a : F → G be a transformation of functors
F,G : (Sch/S)oppfppf → Sets. Then a is formally étale if and only if a is both formally
smooth and formally unramified.

Proof. Formal from the definition. �

Lemma 13.3. Composition.
(1) A composition of formally smooth transformations of functors is formally smooth.
(2) A composition of formally étale transformations of functors is formally étale.
(3) A composition of formally unramified transformations of functors is formally

unramified.

Proof. This is formal. �

Lemma 13.4. Let S be a scheme contained in Schfppf . LetF,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : H → G be transformations of functors. Consider the fibre
product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

(1) If a is formally smooth, then the base change a′ is formally smooth.
(2) If a is formally étale, then the base change a′ is formally étale.
(3) If a is formally unramified, then the base change a′ is formally unramified.

Proof. This is formal. �

Lemma 13.5. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets. Let a : F → G be
a representable transformation of functors.

(1) If a is smooth then a is formally smooth.
(2) If a is étale, then a is formally étale.
(3) If a is unramified, then a is formally unramified.

Proof. Consider a solid commutative diagram

F

a

��

T

i
��

oo

G T ′oo

``

as in Definition 13.1. Then F ×GT ′ is a scheme smooth (resp. étale, resp. unramified) over
T ′. Hence by More on Morphisms, Lemma 11.7 (resp. Lemma 8.9, resp. Lemma 6.8) we can
fill in (resp. uniquely fill in, resp. fill in at most one way) the dotted arrow in the diagram

F ×G T ′

��

T

i

��

oo

T ′ T ′oo

dd

an hence we also obtain the corresponding assertion in the first diagram. �

Lemma 13.6. Let S be a scheme contained in Schfppf . LetF,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G → H be transformations of functors. Assume that a is
representable, surjective, and étale.
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(1) If b is formally smooth, then b ◦ a is formally smooth.
(2) If b is formally étale, then b ◦ a is formally étale.
(3) If b is formally unramified, then b ◦ a is formally unramified.

Conversely, consider a solid commutative diagram

G

b

��

T

i
��

oo

H T ′oo

``

with T ′ an affine scheme over S and i : T → T ′ a closed immersion defined by an ideal of
square zero.

(4) If b ◦ a is formally smooth, then for every t ∈ T there exists an étale morphism
of affines U ′ → T ′ and a morphism U ′ → G such that

G

b

��

Too T ×T ′ U ′

��

oo

H T ′oo U ′

ii

oo

commutes and t is in the image of U ′ → T ′.
(5) If b ◦ a is formally unramified, then there exists at most one dotted arrow in the

diagram above, i.e., b is formally unramified.
(6) If b◦a is formally étale, then there exists exactly one dotted arrow in the diagram

above, i.e., b is formally étale.

Proof. Assume b is formally smooth (resp. formally étale, resp. formally unramified).
Since an étale morphism is both smooth and unramified we see that a is representable
and smooth (resp. étale, resp. unramified). Hence parts (1), (2) and (3) follow from a
combination of Lemma 13.5 and Lemma 13.3.
Assume that b ◦ a is formally smooth. Consider a diagram as in the statement of the
lemma. LetW = F ×G T . By assumptionW is a scheme surjective étale over T . By Étale
Morphisms, Theorem 15.2 there exists a schemeW ′ étale overT ′ such thatW = T×T ′W ′.
Choose an affine open subschemeU ′ ⊂W ′ such that t is in the image ofU ′ → T ′. Because
b ◦ a is formally smooth we see that the exist morphisms U ′ → F such that

F

b◦a
��

Woo T ×T ′ U ′

��

oo

H T ′oo U ′

ii

oo

commutes. Taking the compositionU ′ → F → G gives a map as in part (5) of the lemma.
Assume that f, g : T ′ → G are two dotted arrows fitting into the diagram of the lemma.
Let W = F ×G T . By assumption W is a scheme surjective étale over T . By Étale Mor-
phisms, Theorem 15.2 there exists a scheme W ′ étale over T ′ such that W = T ×T ′ W ′.
Since a is formally étale the compositions

W ′ → T ′ f−→ G and W ′ → T ′ g−→ G

lift to morphisms f ′, g′ : W ′ → F (lift on affine opens and glue by uniqueness). Now if
b ◦ a : F → H is formally unramified, then f ′ = g′ and hence f = g as W ′ → T ′ is an
étale covering. This proves part (6) of the lemma.
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Assume that b ◦ a is formally étale. Then by part (4) we can étale locally on T ′ find a
dotted arrow fitting into the diagram and by part (5) this dotted arrow is unique. Hence
we may glue the local solutions to get assertion (6). Some details omitted. �

Remark 13.7. It is tempting to think that in the situation of Lemma 13.6 we have “b
formally smooth”⇔ “b ◦ a formally smooth”. However, this is likely not true in general.

Lemma 13.8. Let S be a scheme. Let F,G,H : (Sch/S)oppfppf → Sets. Let a : F → G,
b : G→ H be transformations of functors. Assume b is formally unramified.

(1) If b ◦ a is formally unramified then a is formally unramified.
(2) If b ◦ a is formally étale then a is formally étale.
(3) If b ◦ a is formally smooth then a is formally smooth.

Proof. Let T ⊂ T ′ be a closed immersion of affine schemes defined by an ideal of
square zero. Let g′ : T ′ → G and f : T → F be given such that g′|T = a ◦ f . Because b is
formally unramified, there is a one to one correspondence between

{f ′ : T ′ → F | f = f ′|T and a ◦ f ′ = g′}

and
{f ′ : T ′ → F | f = f ′|T and b ◦ a ◦ f ′ = b ◦ g′}.

From this the lemma follows formally. �

14. Formally unramified morphisms

In this section we work out what it means that a morphism of algebraic spaces is formally
unramified.

Definition 14.1. Let S be a scheme. A morphism f : X → Y of algebraic spaces
over S is said to be formally unramified if it is formally unramified as a transformation of
functors as in Definition 13.1.

We will not restate the results proved in the more general setting of formally unramified
transformations of functors in Section 13. It turns out we can characterize this property
in terms of vanishing of the module of relative differentials, see Lemma 14.6.

Lemma 14.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is formally unramified,
(2) for every diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale the morphism of
schemes ψ is formally unramified (as in More on Morphisms, Definition 6.1),
and

(3) for one such diagram with surjective vertical arrows the morphism ψ is formally
unramified.

Proof. Assume f is formally unramified. By Lemma 13.5 the morphismsU → X and
V → Y are formally unramified. Thus by Lemma 13.3 the compositionU → Y is formally
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unramified. Then it follows from Lemma 13.8 that U → V is formally unramified. Thus
(1) implies (2). And (2) implies (3) trivially

Assume given a diagram as in (3). By Lemma 13.5 the morphism V → Y is formally
unramified. Thus by Lemma 13.3 the composition U → Y is formally unramified. Then
it follows from Lemma 13.6 that X → Y is formally unramified, i.e., (1) holds. �

Lemma 14.3. Let S be a scheme. If f : X → Y is a formally unramified morphism
of algebraic spaces over S , then given any solid commutative diagram

X

f

��

T

i
��

oo

S T ′oo

``

where T ⊂ T ′ is a first order thickening of algebraic spaces over S there exists at most
one dotted arrow making the diagram commute. In other words, in Definition 14.1 the
condition that T be an affine scheme may be dropped.

Proof. This is true because there exists a surjective étale morphism U ′ → T ′ where
U ′ is a disjoint union of affine schemes (see Properties of Spaces, Lemma 6.1) and a mor-
phism T ′ → X is determined by its restriction to U ′. �

Lemma 14.4. A composition of formally unramified morphisms is formally unrami-
fied.

Proof. This is formal. �

Lemma 14.5. A base change of a formally unramified morphism is formally unrami-
fied.

Proof. This is formal. �

Lemma 14.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is formally unramified, and
(2) ΩX/Y = 0.

Proof. This is a combination of Lemma 14.2, More on Morphisms, Lemma 6.7, and
Lemma 7.3. �

Lemma 14.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) The morphism f is unramified,
(2) the morphism f is locally of finite type and ΩX/Y = 0, and
(3) the morphism f is locally of finite type and formally unramified.

Proof. Choose a diagram
U

��

ψ
// V

��
X

f // Y
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where U and V are schemes and the vertical arrows are étale and surjective. Then we see

f unramified⇔ ψ unramified
⇔ ψ locally finite type and ΩU/V = 0
⇔ f locally finite type and ΩX/Y = 0
⇔ f locally finite type and formally unramified

Here we have used Morphisms, Lemma 35.2 and Lemma 14.6. �

Lemma 14.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is unramified and a monomorphism,
(2) f is unramified and universally injective,
(3) f is locally of finite type and a monomorphism,
(4) f is universally injective, locally of finite type, and formally unramified.

Moreover, in this case f is also representable, separated, and locally quasi-finite.

Proof. We have seen in Lemma 14.7 that being formally unramified and locally of fi-
nite type is the same thing as being unramified. Hence (4) is equivalent to (2). A monomor-
phism is certainly formally unramified hence (3) implies (4). It is clear that (1) implies (3).
Finally, if (2) holds, then ∆ : X → X ×Y X is both an open immersion (Morphisms of
Spaces, Lemma 38.9) and surjective (Morphisms of Spaces, Lemma 19.2) hence an isomor-
phism, i.e., f is a monomorphism. In this way we see that (2) implies (1). Finally, we see
that f is representable, separated, and locally quasi-finite by Morphisms of Spaces, Lemmas
27.10 and 51.1. �

Lemma 14.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is a closed immersion,
(2) f is universally closed, unramified, and a monomorphism,
(3) f is universally closed, unramified, and universally injective,
(4) f is universally closed, locally of finite type, and a monomorphism,
(5) f is universally closed, universally injective, locally of finite type, and formally

unramified.

Proof. The equivalence of (2) – (5) follows immediately from Lemma 14.8. More-
over, if (2) – (5) are satisfied then f is representable. Similarly, if (1) is satisfied then f
is representable. Hence the result follows from the case of schemes, see Étale Morphisms,
Lemma 7.2. �

15. Universal first order thickenings

Let S be a scheme. Let h : Z → X be a morphism of algebraic spaces over S. A universal
first order thickening of Z over X is a first order thickening Z ⊂ Z ′ over X such that
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given any first order thickening T ⊂ T ′ over X and a solid commutative diagram

(15.0.1)

Z

~~

T

  

a
oo

Z ′

''

T ′a′
oo

b
ww

X

there exists a unique dotted arrow making the diagram commute. Note that in this sit-
uation (a, a′) : (T ⊂ T ′) → (Z ⊂ Z ′) is a morphism of thickenings over X . Thus if
a universal first order thickening exists, then it is unique up to unique isomorphism. In
general a universal first order thickening does not exist, but if h is formally unramified
then it does. Before we prove this, let us show that a universal first order thickening in
the category of schemes is a universal first order thickening in the category of algebraic
spaces.

Lemma 15.1. Let S be a scheme. Let h : Z → X be a morphism of algebraic spaces
over S. Let Z ⊂ Z ′ be a first order thickening over X . The following are equivalent

(1) Z ⊂ Z ′ is a universal first order thickening,
(2) for any diagram (15.0.1) with T ′ a scheme a unique dotted arrow exists making

the diagram commute, and
(3) for any diagram (15.0.1) with T ′ an affine scheme a unique dotted arrow exists

making the diagram commute.

Proof. The implications (1)⇒ (2)⇒ (3) are formal. Assume (3) a assume given an
arbitrary diagram (15.0.1). Choose a presentation T ′ = U ′/R′, see Spaces, Definition 9.3.
We may assume that U ′ =

∐
U ′
i is a disjoint union of affines, so R′ = U ′ ×T ′ U ′ =∐

i,j U
′
i ×′

T U
′
j . For each pair (i, j) choose an affine open covering U ′

i ×′
T U

′
j =

⋃
k R

′
ijk.

Denote Ui, Rijk the fibre products with T over T ′. Then each Ui ⊂ U ′
i and Rijk ⊂ R′

ijk

is a first order thickening of affine schemes. Denote ai : Ui → Z , resp. aijk : Rijk → Z
the composition of a : T → Z with the morphism Ui → T , resp. Rijk → T . By (3)
applied to ai : Ui → Z we obtain unique morphisms a′

i : U ′
i → Z ′. By (3) applied to

aijk we see that the two compositions R′
ijk → R′

i → Z ′ and R′
ijk → R′

j → Z ′ are equal.
Hence a′ =

∐
a′
i : U ′ =

∐
U ′
i → Z ′ descends to the quotient sheaf T ′ = U ′/R′ and we

win. �

Lemma 15.2. Let S be a scheme. Let Z → Y → X be morphisms of algebraic spaces
over S. IfZ ⊂ Z ′ is a universal first order thickening ofZ over Y and Y → X is formally
étale, then Z ⊂ Z ′ is a universal first order thickening of Z over X .

Proof. This is formal. Namely, by Lemma 15.1 it suffices to consider solid commu-
tative diagrams (15.0.1) with T ′ an affine scheme. The composition T → Z → Y lifts
uniquely to T ′ → Y as Y → X is assumed formally étale. Hence the fact that Z ⊂ Z ′ is a
universal first order thickening over Y produces the desired morphism a′ : T ′ → Z ′. �

Lemma 15.3. Let S be a scheme. Let Z → Y → X be morphisms of algebraic spaces
over S. Assume Z → Y is étale.

(1) If Y ⊂ Y ′ is a universal first order thickening of Y overX , then the unique étale
morphism Z ′ → Y ′ such that Z = Y ×Y ′ Z ′ (see Theorem 8.1) is a universal
first order thickening of Z over X .
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(2) If Z → Y is surjective and (Z ⊂ Z ′)→ (Y ⊂ Y ′) is an étale morphism of first
order thickenings over X and Z ′ is a universal first order thickening of Z over
X , then Y ′ is a universal first order thickening of Y over X .

Proof. Proof of (1). By Lemma 15.1 it suffices to consider solid commutative dia-
grams (15.0.1) with T ′ an affine scheme. The composition T → Z → Y lifts uniquely to
T ′ → Y ′ as Y ′ is the universal first order thickening. Then the fact that Z ′ → Y ′ is étale
implies (see Lemma 13.5) that T ′ → Y ′ lifts to the desired morphism a′ : T ′ → Z ′.

Proof of (2). Let T ⊂ T ′ be a first order thickening over X and let a : T → Y be a
morphism. Set W = T ×Y Z and denote c : W → Z the projection Let W ′ → T ′ be the
unique étale morphism such thatW = T ×T ′ W ′, see Theorem 8.1. Note thatW ′ → T ′ is
surjective asZ → Y is surjective. By assumption we obtain a unique morphism c′ : W ′ →
Z ′ over X restricting to c on W . By uniqueness the two restrictions of c′ to W ′ ×T ′ W ′

are equal (as the two restrictions of c toW ×TW are equal). Hence c′ descends to a unique
morphism a′ : T ′ → Y ′ and we win. �

Lemma 15.4. Let S be a scheme. Let h : Z → X be a formally unramified morphism
of algebraic spaces over S. There exists a universal first order thickening Z ⊂ Z ′ of Z
over X .

Proof. Choose any commutative diagram

V

��

// U

��
Z // X

where V and U are schemes and the vertical arrows are étale. Note that V → U is a
formally unramified morphism of schemes, see Lemma 14.2. Combining Lemma 15.1 and
More on Morphisms, Lemma 7.1 we see that a universal first order thickening V ⊂ V ′ of
V over U exists. By Lemma 15.2 part (1) V ′ is a universal first order thickening of V over
X .

Fix a scheme U and a surjective étale morphism U → X . The argument above shows
that for any V → Z étale with V a scheme such that V → Z → X factors through
U a universal first order thickening V ⊂ V ′ of V over X exists (but does not depend
on the chosen factorization of V → X through U ). Now we may choose V such that
V → Z is surjective étale (see Spaces, Lemma 11.6). Then R = V ×Z V a scheme étale
over Z such that R → X factors through U also. Hence we obtain universal first order
thickenings V ⊂ V ′ andR ⊂ R′ overX . As V ⊂ V ′ is a universal first order thickening,
the two projections s, t : R → V lift to morphisms s′, t′ : R′ → V ′. By Lemma 15.3 as
R′ is the universal first order thickening of R over X these morphisms are étale. Then
(t′, s′) : R′ → V ′ is an étale equivalence relation and we can set Z ′ = V ′/R′. Since
V ′ → Z ′ is surjective étale and v′ is the universal first order thickening of V over X we
conclude from Lemma 15.2 part (2) that Z ′ is a universal first order thickening of Z over
X . �

Definition 15.5. Let S be a scheme. Let h : Z → X be a formally unramified
morphism of algebraic spaces over S.

(1) The universal first order thickening of Z over X is the thickening Z ⊂ Z ′

constructed in Lemma 15.4.
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(2) The conormal sheaf of Z over X is the conormal sheaf of Z in its universal first
order thickening Z ′ over X .

We often denote the conormal sheaf CZ/X in this situation.

Thus we see that there is a short exact sequence of sheaves

0→ CZ/X → OZ′ → OZ → 0
on Zétale and CZ/X is a quasi-coherent OZ -module. The following lemma proves that
there is no conflict between this definition and the definition in case Z → X is an immer-
sion.

Lemma 15.6. Let S be a scheme. Let i : Z → X be an immersion of algebraic spaces
over S. Then

(1) i is formally unramified,
(2) the universal first order thickening of Z over X is the first order infinitesimal

neighbourhood of Z in X of Definition 12.1,
(3) the conormal sheaf of i in the sense of Definition 5.1 agrees with the conormal

sheaf of i in the sense of Definition 15.5.

Proof. An immersion of algebraic spaces is by definition a representable morphism.
Hence by Morphisms, Lemmas 35.7 and 35.8 an immersion is unramified (via the abstract
principle of Spaces, Lemma 5.8). Hence it is formally unramified by Lemma 14.7. The
other assertions follow by combining Lemmas 12.2 and 12.3 and the definitions. �

Lemma 15.7. Let S be a scheme. Let Z → X be a formally unramified morphism of
algebraic spaces over S. Then the universal first order thickening Z ′ is formally unrami-
fied over X .

Proof. Let T ⊂ T ′ be a first order thickening of affine schemes over X . Let

Z ′

��

T
c

oo

��
X T ′oo

a,b

``

be a commutative diagram. Set T0 = c−1(Z) ⊂ T and T ′
a = a−1(Z) (scheme theoreti-

cally). Since Z ′ is a first order thickening of Z , we see that T ′ is a first order thickening
of T ′

a. Moreover, since c = a|T we see that T0 = T ∩ T ′
a (scheme theoretically). As T ′

is a first order thickening of T it follows that T ′
a is a first order thickening of T0. Now

a|T ′
a

and b|T ′
a

are morphisms of T ′
a into Z ′ over X which agree on T0 as morphisms into

Z. Hence by the universal property of Z ′ we conclude that a|T ′
a

= b|T ′
a

. Thus a and b
are morphism from the first order thickening T ′ of T ′

a whose restrictions to T ′
a agree as

morphisms into Z. Thus using the universal property of Z ′ once more we conclude that
a = b. In other words, the defining property of a formally unramified morphism holds
for Z ′ → X as desired. �

Lemma 15.8. Let S be a scheme Consider a commutative diagram of algebraic spaces
over S

Z
h
//

f

��

X

g

��
W

h′
// Y



15. UNIVERSAL FIRST ORDER THICKENINGS 5703

with h and h′ formally unramified. Let Z ⊂ Z ′ be the universal first order thickening of
Z overX . LetW ⊂W ′ be the universal first order thickening ofW over Y . There exists
a canonical morphism (f, f ′) : (Z,Z ′)→ (W,W ′) of thickenings over Y which fits into
the following commutative diagram

Z ′

~~
f ′

��
Z //

f

��

44

X

��

W ′

}}
W

44

// Y

In particular the morphism (f, f ′) of thickenings induces a morphism of conormal sheaves
f∗CW/Y → CZ/X .

Proof. The first assertion is clear from the universal property of W ′. The induced
map on conormal sheaves is the map of Lemma 5.3 applied to (Z ⊂ Z ′) → (W ⊂ W ′).

�

Lemma 15.9. Let S be a scheme. Let

Z
h
//

f

��

X

g

��
W

h′
// Y

be a fibre product diagram of algebraic spaces over S with h′ formally unramified. Then
h is formally unramified and ifW ⊂W ′ is the universal first order thickening ofW over
Y , then Z = X ×Y W ⊂ X ×Y W ′ is the universal first order thickening of Z over X .
In particular the canonical map f∗CW/Y → CZ/X of Lemma 15.8 is surjective.

Proof. The morphism h is formally unramified by Lemma 14.5. It is clear thatX×Y
W ′ is a first order thickening. It is straightforward to check that it has the universal
property becauseW ′ has the universal property (by mapping properties of fibre products).
See Lemma 5.5 for why this implies that the map of conormal sheaves is surjective. �

Lemma 15.10. Let S be a scheme. Let

Z
h
//

f

��

X

g

��
W

h′
// Y

be a fibre product diagram of algebraic spaces over S with h′ formally unramified and g
flat. In this case the corresponding map Z ′ → W ′ of universal first order thickenings is
flat, and f∗CW/Y → CZ/X is an isomorphism.

Proof. Flatness is preserved under base change, see Morphisms of Spaces, Lemma
30.4. Hence the first statement follows from the description of W ′ in Lemma 15.9. It is
clear that X ×Y W ′ is a first order thickening. It is straightforward to check that it has
the universal property because W ′ has the universal property (by mapping properties of
fibre products). See Lemma 5.5 for why this implies that the map of conormal sheaves is
an isomorphism. �
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Lemma 15.11. Taking the universal first order thickenings commutes with étale lo-
calization. More precisely, let h : Z → X be a formally unramified morphism of algebraic
spaces over a base scheme S. Let

V

��

// U

��
Z // X

be a commutative diagram with étale vertical arrows. Let Z ′ be the universal first order
thickening ofZ overX . Then V → U is formally unramified and the universal first order
thickening V ′ of V over U is étale over Z ′. In particular, CZ/X |V = CV/U .

Proof. The first statement is Lemma 14.2. The compatibility of universal first order
thickenings is a consequence of Lemmas 15.2 and 15.3. �

Lemma 15.12. Let S be a scheme. Let B be an algebraic space over S. Let h : Z → X
be a formally unramified morphism of algebraic spaces overB. LetZ ⊂ Z ′ be the universal
first order thickening of Z over X with structure morphism h′ : Z ′ → X . The canonical
map

dh′ : (h′)∗ΩX/B → ΩZ′/B

induces an isomorphism h∗ΩX/B → ΩZ′/B ⊗OZ .

Proof. The map ch′ is the map defined in Lemma 7.6. If i : Z → Z ′ is the given
closed immersion, then i∗ch′ is a map h∗ΩX/S → ΩZ′/S ⊗ OZ . Checking that it is an
isomorphism reduces to the case of schemes by étale localization, see Lemma 15.11 and
Lemma 7.3. In this case the result is More on Morphisms, Lemma 7.9. �

Lemma 15.13. Let S be a scheme. LetB be an algebraic space over S. Let h : Z → X
be a formally unramified morphism of algebraic spaces over B. There is a canonical exact
sequence

CZ/X → h∗ΩX/B → ΩZ/B → 0.
The first arrow is induced by dZ′/B where Z ′ is the universal first order neighbourhood
of Z over X .

Proof. We know that there is a canonical exact sequence

CZ/Z′ → ΩZ′/S ⊗OZ → ΩZ/S → 0.

see Lemma 7.10. Hence the result follows on applying Lemma 15.12. �

Lemma 15.14. Let S be a scheme. Let

Z
i
//

j   

X

��
Y

be a commutative diagram of algebraic spaces over S where i and j are formally unrami-
fied. Then there is a canonical exact sequence

CZ/Y → CZ/X → i∗ΩX/Y → 0

where the first arrow comes from Lemma 15.8 and the second from Lemma 15.13.
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Proof. Since the maps have been defined, checking the sequence is exact reduces to
the case of schemes by étale localization, see Lemma 15.11 and Lemma 7.3. In this case the
result is More on Morphisms, Lemma 7.11. �

Lemma 15.15. Let S be a scheme. Let Z → Y → X be formally unramified mor-
phisms of algebraic spaces over S.

(1) If Z ⊂ Z ′ is the universal first order thickening of Z over X and Y ⊂ Y ′ is the
universal first order thickening of Y overX , then there is a morphism Z ′ → Y ′

and Y ×Y ′ Z ′ is the universal first order thickening of Z over Y .
(2) There is a canonical exact sequence

i∗CY/X → CZ/X → CZ/Y → 0
where the maps come from Lemma 15.8 and i : Z → Y is the first morphism.

Proof. The map h : Z ′ → Y ′ in (1) comes from Lemma 15.8. The assertion that
Y ×Y ′ Z ′ is the universal first order thickening of Z over Y is clear from the universal
properties of Z ′ and Y ′. By Lemma 5.6 we have an exact sequence

(i′)∗CY×Y ′Z′/Z′ → CZ/Z′ → CZ/Y×Y ′Z′ → 0
where i′ : Z → Y ×Y ′ Z ′ is the given morphism. By Lemma 5.5 there exists a surjection
h∗CY/Y ′ → CY×Y ′Z′/Z′ . Combined with the equalities CY/Y ′ = CY/X , CZ/Z′ = CZ/X ,
and CZ/Y×Y ′Z′ = CZ/Y this proves the lemma. �

16. Formally étale morphisms

In this section we work out what it means that a morphism of algebraic spaces is formally
étale.

Definition 16.1. Let S be a scheme. A morphism f : X → Y of algebraic spaces
over S is said to be formally étale if it is formally étale as a transformation of functors as
in Definition 13.1.

We will not restate the results proved in the more general setting of formally étale trans-
formations of functors in Section 13.

Lemma 16.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is formally étale,
(2) for every diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale the morphism of
schemes ψ is formally étale (as in More on Morphisms, Definition 8.1), and

(3) for one such diagram with surjective vertical arrows the morphism ψ is formally
étale.

Proof. Assume f is formally étale. By Lemma 13.5 the morphisms U → X and
V → Y are formally étale. Thus by Lemma 13.3 the composition U → Y is formally
étale. Then it follows from Lemma 13.8 that U → V is formally étale. Thus (1) implies
(2). And (2) implies (3) trivially
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Assume given a diagram as in (3). By Lemma 13.5 the morphism V → Y is formally étale.
Thus by Lemma 13.3 the composition U → Y is formally étale. Then it follows from
Lemma 13.6 that X → Y is formally étale, i.e., (1) holds. �

Lemma 16.3. Let S be a scheme. Let f : X → Y be a formally étale morphism of
algebraic spaces over S. Then given any solid commutative diagram

X

f

��

T

i
��

aoo

Y T ′oo

``

where T ⊂ T ′ is a first order thickening of algebraic spaces over Y there exists exactly
one dotted arrow making the diagram commute. In other words, in Definition 16.1 the
condition that T be affine may be dropped.

Proof. Let U ′ → T ′ be a surjective étale morphism where U ′ =
∐
U ′
i is a disjoint

union of affine schemes. Let Ui = T ×T ′ U ′
i . Then we get morphisms a′

i : U ′
i → X such

that a′
i|Ui equals the composition Ui → T → X . By uniqueness (see Lemma 14.3) we see

that a′
i and a′

j agree on the fibre product U ′
i ×T ′ U ′

j . Hence
∐
a′
i : U ′ → X descends to

give a unique morphism a′ : T ′ → X . �

Lemma 16.4. A composition of formally étale morphisms is formally étale.

Proof. This is formal. �

Lemma 16.5. A base change of a formally étale morphism is formally étale.

Proof. This is formal. �

Lemma 16.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S The following are equivalent:

(1) f is formally étale,
(2) f is formally unramified and the universal first order thickening of X over Y is

equal to X ,
(3) f is formally unramified and CX/Y = 0, and
(4) ΩX/Y = 0 and CX/Y = 0.

Proof. Actually, the last assertion only make sense because ΩX/Y = 0 implies that
CX/Y is defined via Lemma 14.6 and Definition 15.5. This also makes it clear that (3) and
(4) are equivalent.

Either of the assumptions (1), (2), and (3) imply that f is formally unramified. Hence we
may assume f is formally unramified. The equivalence of (1), (2), and (3) follow from the
universal property of the universal first order thickeningX ′ ofX over S and the fact that
X = X ′ ⇔ CX/Y = 0 since after all by definition CX/Y = CX/X′ is the ideal sheaf of X
in X ′. �

Lemma 16.7. An unramified flat morphism is formally étale.

Proof. Follows from the case of schemes, see More on Morphisms, Lemma 8.7 and
étale localization, see Lemmas 14.2 and 16.2 and Morphisms of Spaces, Lemma 30.5. �

Lemma 16.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:
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(1) The morphism f is étale, and
(2) the morphism f is locally of finite presentation and formally étale.

Proof. Follows from the case of schemes, see More on Morphisms, Lemma 8.9 and
étale localization, see Lemma 16.2 and Morphisms of Spaces, Lemmas 28.4 and 39.2. �

17. Infinitesimal deformations of maps

In this section we explain how a derivation can be used to infinitesimally move a map.
Throughout this section we use that a sheaf on a thickeningX ′ ofX can be seen as a sheaf
on X , see Equations (9.1.1) and (9.1.2).

Lemma 17.1. Let S be a scheme. Let B be an algebraic space over S. Let X ⊂ X ′

and Y ⊂ Y ′ be two first order thickenings of algebraic spaces over B. Let (a, a′), (b, b′) :
(X ⊂ X ′)→ (Y ⊂ Y ′) be two morphisms of thickenings over B. Assume that

(1) a = b, and
(2) the two maps a∗CY/Y ′ → CX/X′ (Lemma 5.3) are equal.

Then the map (a′)] − (b′)] factors as

OY ′ → OY
D−→ a∗CX/X′ → a∗OX′

where D is anOB-derivation.

Proof. Instead of working on Y we work on X . The advantage is that the pullback
functor a−1 is exact. Using (1) and (2) we obtain a commutative diagram with exact rows

0 // CX/X′ // OX′ // OX // 0

0 // a−1CY/Y ′ //

OO

a−1OY ′ //

(a′)]

OO

(b′)]

OO

a−1OY //

OO

0

Now it is a general fact that in such a situation the difference of theOB-algebra maps (a′)]
and (b′)] is an OB-derivation from a−1OY to CX/X′ . By adjointness of the functors a−1

and a∗ this is the same thing as an OB-derivation from OY into a∗CX/X′ . Some details
omitted. �

Note that in the situation of the lemma above we may write D as

(17.1.1) D = dY/B ◦ θ

where θ is an OY -linear map θ : ΩY/B → a∗CX/X′ . Of course, then by adjunction again
we may view θ as anOX -linear map θ : a∗ΩY/B → CX/X′ .

Lemma 17.2. Let S be a scheme. Let B be an algebraic space over S. Let (a, a′) :
(X ⊂ X ′)→ (Y ⊂ Y ′) be a morphism of first order thickenings over B. Let

θ : a∗ΩY/B → CX/X′

be anOX -linear map. Then there exists a unique morphism of pairs (b, b′) : (X ⊂ X ′)→
(Y ⊂ Y ′) such that (1) and (2) of Lemma 17.1 hold and the derivationD and θ are related
by Equation (17.1.1).

Proof. Consider the map

α = (a′)] +D : a−1OY ′ → OX′
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where D is as in Equation (17.1.1). As D is anOB-derivation it follows that α is a map of
sheaves of OB-algebras. By construction we have i]X ◦ α = a] ◦ i]Y where iX : X → X ′

and iY : Y → Y ′ are the given closed immersions. By Lemma 9.2 we obtain a unique
morphism (a, b′) : (X ⊂ X ′) → (Y ⊂ Y ′) of thickenings over B such that α = (b′)].
Setting b = a we win. �

Remark 17.3. Assumptions and notation as in Lemma 17.2. The action of a local
section θ on a′ is sometimes indicated by θ · a′. Note that this means nothing else than
the fact that (a′)] and (θ · a′)] differ by a derivation D which is related to θ by Equation
(17.1.1).

Lemma 17.4. Let S be a scheme. LetB be an algebraic space over S. LetX ⊂ X ′ and
Y ⊂ Y ′ be first order thickenings over B. Assume given a morphism a : X → Y and
a map A : a∗CY/Y ′ → CX/X′ of OX -modules. For an object U ′ of (X ′)spaces,étale with
U = X ×X′ U ′ consider morphisms a′ : U ′ → Y ′ such that

(1) a′ is a morphism over B,
(2) a′|U = a|U , and
(3) the induced map a∗CY/Y ′ |U → CX/X′ |U is the restriction of A to U .

Then the rule
(17.4.1) U ′ 7→ {a′ : U ′ → Y ′ such that (1), (2), (3) hold.}
defines a sheaf of sets on (X ′)spaces,étale.

Proof. Denote F the rule of the lemma. The restriction mapping F(U ′) → F(V ′)
for V ′ ⊂ U ′ ⊂ X ′ of F is really the restriction map a′ 7→ a′|V ′ . With this definition in
place it is clear that F is a sheaf since morphisms of algebraic spaces satisfy étale descent,
see Descent on Spaces, Lemma 7.2. �

Lemma 17.5. Same notation and assumptions as in Lemma 17.4. We identify sheaves
on X and X ′ via (9.1.1). There is an action of the sheaf

HomOX
(a∗ΩY/B , CX/X′)

on the sheaf (17.4.1). Moreover, the action is simply transitive for any objectU ′ of (X ′)spaces,étale
over which the sheaf (17.4.1) has a section.

Proof. This is a combination of Lemmas 17.1, 17.2, and 17.4. �

Remark 17.6. A special case of Lemmas 17.1, 17.2, 17.4, and 17.5 is where Y = Y ′. In
this case the map A is always zero. The sheaf of Lemma 17.4 is just given by the rule

U ′ 7→ {a′ : U ′ → Y over B with a′|U = a|U}
and we act on this by the sheafHomOX

(a∗ΩY/B , CX/X′).

Remark 17.7. Another special case of Lemmas 17.1, 17.2, 17.4, and 17.5 is where B
itself is a thickening Z ⊂ Z ′ = B and Y = Z ×Z′ Y ′. Picture

(X ⊂ X ′)
(a,?)

//

(g,g′) &&

(Y ⊂ Y ′)

(h,h′)xx
(Z ⊂ Z ′)

In this case the map A : a∗CY/Y ′ → CX/X′ is determined by a: the map h∗CZ/Z′ →
CY/Y ′ is surjective (because we assumed Y = Z ×Z′ Y ′), hence the pullback g∗CZ/Z′ =
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a∗h∗CZ/Z′ → a∗CY/Y ′ is surjective, and the composition g∗CZ/Z′ → a∗CY/Y ′ → CX/X′

has to be the canonical map induced by g′. Thus the sheaf of Lemma 17.4 is just given by
the rule

U ′ 7→ {a′ : U ′ → Y ′ over Z ′ with a′|U = a|U}
and we act on this by the sheafHomOX

(a∗ΩY/Z , CX/X′).

Lemma 17.8. LetS be a scheme. Consider a commutative diagram of first order thick-
enings

(T2 ⊂ T ′
2)

(h,h′)
��

(a2,a
′
2)

// (X2 ⊂ X ′
2)

(f,f ′)
��

(T1 ⊂ T ′
1)

(a1,a
′
1) // (X1 ⊂ X ′

1)

and a commutative
diagram

X ′
2

//

��

B2

��
X ′

1
// B1

of algebraic spaces over S with X2 → X1 and B2 → B1 étale. For any OT1 -linear map
θ1 : a∗

1ΩX1/B1 → CT1/T ′
1

let θ2 be the composition

a∗
2ΩX2/B2 h∗a∗

1ΩX1/B1

h∗θ1 // h∗CT1/T ′
1

// CT2/T ′
2

(equality sign is explained in the proof). Then the diagram

T ′
2

θ2·a′
2

//

��

X ′
2

��
T ′

1
θ1·a′

1 // X ′
1

commutes where the actions θ2 · a′
2 and θ1 · a′

1 are as in Remark 17.3.

Proof. The equality sign comes from the identification f∗ΩX1/S1 = ΩX2/S2 we
get as the construction of the sheaf of differentials is compatible with étale localization
(both on source and target), see Lemma 7.3. Namely, using this we have a∗

2ΩX2/S2 =
a∗

2f
∗ΩX1/S1 = h∗a∗

1ΩX1/S1 because f ◦a2 = a1 ◦h. Having said this, the commutativity
of the diagram may be checked on étale locally. Thus we may assume T ′

i , X ′
i , B2, and B1

are schemes and in this case the lemma follows from More on Morphisms, Lemma 9.10.
Alternative proof: using Lemma 9.2 it suffices to show a certain diagram of sheaves of rings
on X ′

1 is commutative; then argue exactly as in the proof of the aforementioned More on
Morphisms, Lemma 9.10 to see that this is indeed the case. �

18. Infinitesimal deformations of algebraic spaces

The following simple lemma is often a convenient tool to check whether an infinitesimal
deformation of a map is flat.

Lemma 18.1. Let S be a scheme. Let (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) be a morphism
of first order thickenings of algebraic spaces over S. Assume that f is flat. Then the
following are equivalent

(1) f ′ is flat and X = Y ×Y ′ X ′, and
(2) the canonical map f∗CY/Y ′ → CX/X′ is an isomorphism.

Proof. Choose a scheme V ′ and a surjective étale morphism V ′ → Y ′. Choose a
scheme U ′ and a surjective étale morphism U ′ → X ′ ×Y ′ V ′. Set U = X ×X′ U ′ and
V = Y ×Y ′ V ′. According to our definition of a flat morphism of algebraic spaces we see
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that the induced map g : U → V is a flat morphism of schemes and that f ′ is flat if and
only if the corresponding morphism g′ : U ′ → V ′ is flat. Also, X = Y ×Y ′ X ′ if and
only if U = V ×V ′ V ′. Finally, the map f∗CY/Y ′ → CX/X′ is an isomorphism if and
only if g∗CV/V ′ → CU/U ′ is an isomorphism. Hence the lemma follows from its analogue
for morphisms of schemes, see More on Morphisms, Lemma 10.1. �

The following lemma is the “nilpotent” version of the “critère de platitude par fibres”, see
Section 23.

Lemma 18.2. Let S be a scheme. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic spaces over S. Assume
(1) X ′ is flat over B′,
(2) f is flat,
(3) B ⊂ B′ is a finite order thickening, and
(4) X = B ×B′ X ′ and Y = B ×B′ Y ′.

Then f ′ is flat and Y ′ is flat over B′ at all points in the image of f ′.

Proof. Choose a scheme U ′ and a surjective étale morphism U ′ → B′. Choose a
scheme V ′ and a surjective étale morphism V ′ → U ′ ×B′ Y ′. Choose a scheme W ′ and a
surjective étale morphismW ′ → V ′×Y ′X ′. LetU, V,W be the base change ofU ′, V ′,W ′

by B → B′. Then flatness of f ′ is equivalent to flatness of W ′ → V ′ and we are given
thatW → V is flat. Hence we may apply the lemma in the case of schemes to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of schemes. See More on Morphisms, Lemma 10.2. The statement about
flatness of Y ′/B′ at points in the image of f ′ follows in the same manner. �

Many properties of morphisms of schemes are preserved under flat deformations.

Lemma 18.3. Let S be a scheme. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic spaces over S. Assume B ⊂ B′ is a finite order thickening, X ′

flat over B′, X = B ×B′ X ′, and Y = B ×B′ Y ′. Then
(1) f is representable if and only if f ′ is representable,
(2) f is flat if and only if f ′ is flat,
(3) f is an isomorphism if and only if f ′ is an isomorphism,
(4) f is an open immersion if and only if f ′ is an open immersion,
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(5) f is quasi-compact if and only if f ′ is quasi-compact,
(6) f is universally closed if and only if f ′ is universally closed,
(7) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(8) f is a monomorphism if and only if f ′ is a monomorphism,
(9) f is surjective if and only if f ′ is surjective,

(10) f is universally injective if and only if f ′ is universally injective,
(11) f is affine if and only if f ′ is affine,
(12) f is locally of finite type if and only if f ′ is locally of finite type,
(13) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(14) f is locally of finite presentation if and only if f ′ is locally of finite presentation,
(15) f is locally of finite type of relative dimension d if and only if f ′ is locally of

finite type of relative dimension d,
(16) f is universally open if and only if f ′ is universally open,
(17) f is syntomic if and only if f ′ is syntomic,
(18) f is smooth if and only if f ′ is smooth,
(19) f is unramified if and only if f ′ is unramified,
(20) f is étale if and only if f ′ is étale,
(21) f is proper if and only if f ′ is proper,
(22) f is integral if and only if f ′ is integral,
(23) f is finite if and only if f ′ is finite,
(24) f is finite locally free (of rank d) if and only if f ′ is finite locally free (of rank

d), and
(25) add more here.

Proof. Case (1) follows from Lemma 10.1.

Choose a scheme U ′ and a surjective étale morphism U ′ → B′. Choose a scheme V ′ and
a surjective étale morphism V ′ → U ′ ×B′ Y ′. Choose a scheme W ′ and a surjective étale
morphism W ′ → V ′ ×Y ′ X ′. Let U, V,W be the base change of U ′, V ′,W ′ by B → B′.
Consider the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of schemes. For any of the properties which are étale local on the source-
and-target the result follows immediately from the corresponding result for morphisms of
thickenings of schemes applied to the diagram above. Thus cases (2), (12), (13), (14), (15),
(17), (18), (19), (20) follow from the corresponding cases of More on Morphisms, Lemma
10.3.

Since X → X ′ and Y → Y ′ are universal homeomorphisms we see that any question
about the topology of the maps X → Y and X ′ → Y ′ has the same answer. Thus we see
that cases (5), (6), (9), (10), and (16) hold.

In each of the remaining cases we only prove the implication f has P ⇒ f ′ has P since
the other implication follows from the fact that P is stable under base change, see Spaces,
Lemma 12.3 and Morphisms of Spaces, Lemmas 4.4, 10.5, 20.5, 40.3, 45.5, and 46.5.
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The case (4). Assume f is an open immersion. Then f ′ is étale by (20) and universally
injective by (10) hence f ′ is an open immersion, see Morphisms of Spaces, Lemma 51.2. You
can avoid using this lemma at the cost of first using (1) to reduce to the case of schemes.
The case (3). Follows from cases (4) and (9).
The case (7). See Lemma 10.1.
The case (8). Assume f is a monomorphism. Consider the diagonal morphism ∆X′/Y ′ :
X ′ → X ′ ×Y ′ X ′. The base change of ∆X′/Y ′ by B → B′ is ∆X/Y which is an isomor-
phism by assumption. By (3) we conclude that ∆X′/Y ′ is an isomorphism and hence f ′ is
a monomorphism.
The case (11). See Lemma 10.1.
The case (21). See Lemma 10.2.
The case (22). See Lemma 10.1.
The case (23). See Lemma 10.2.
The case (24). Assume f finite locally free. By (23) we see that f ′ is finite. By (2) we see
that f ′ is flat. By (14) f ′ is locally of finite presentation. Hence f ′ is finite locally free by
Morphisms of Spaces, Lemma 46.6. �

The following lemma is the “locally nilpotent” version of the “critère de platitude par
fibres”, see Section 23.

Lemma 18.4. Let S be a scheme. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic spaces over S. Assume
(1) Y ′ → B′ is locally of finite type,
(2) X ′ → B′ is flat and locally of finite presentation,
(3) f is flat, and
(4) X = B ×B′ X ′ and Y = B ×B′ Y ′.

Then f ′ is flat and for all y′ ∈ |Y ′| in the image of |f ′| the morphism Y ′ → B′ is flat at
y′.

Proof. Choose a scheme U ′ and a surjective étale morphism U ′ → B′. Choose a
scheme V ′ and a surjective étale morphism V ′ → U ′ ×B′ Y ′. Choose a scheme W ′ and a
surjective étale morphismW ′ → V ′×Y ′X ′. LetU, V,W be the base change ofU ′, V ′,W ′

by B → B′. Then flatness of f ′ is equivalent to flatness of W ′ → V ′ and we are given
thatW → V is flat. Hence we may apply the lemma in the case of schemes to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of schemes. See More on Morphisms, Lemma 10.4. The statement about
flatness of Y ′/B′ at points in the image of f ′ follows in the same manner. �
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Many properties of morphisms of schemes are preserved under flat deformations as in the
lemma above.

Lemma 18.5. Let S be a scheme. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic spaces overS. AssumeY ′ → B′ locally of finite type,X ′ → B′

flat and locally of finite presentation, X = B ×B′ X ′, and Y = B ×B′ Y ′. Then
(1) f is representable if and only if f ′ is representable,
(2) f is flat if and only if f ′ is flat,
(3) f is an isomorphism if and only if f ′ is an isomorphism,
(4) f is an open immersion if and only if f ′ is an open immersion,
(5) f is quasi-compact if and only if f ′ is quasi-compact,
(6) f is universally closed if and only if f ′ is universally closed,
(7) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(8) f is a monomorphism if and only if f ′ is a monomorphism,
(9) f is surjective if and only if f ′ is surjective,

(10) f is universally injective if and only if f ′ is universally injective,
(11) f is affine if and only if f ′ is affine,
(12) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(13) f is locally of finite type of relative dimension d if and only if f ′ is locally of

finite type of relative dimension d,
(14) f is universally open if and only if f ′ is universally open,
(15) f is syntomic if and only if f ′ is syntomic,
(16) f is smooth if and only if f ′ is smooth,
(17) f is unramified if and only if f ′ is unramified,
(18) f is étale if and only if f ′ is étale,
(19) f is proper if and only if f ′ is proper,
(20) f is finite if and only if f ′ is finite,
(21) f is finite locally free (of rank d) if and only if f ′ is finite locally free (of rank

d), and
(22) add more here.

Proof. Case (1) follows from Lemma 10.1.

Choose a scheme U ′ and a surjective étale morphism U ′ → B′. Choose a scheme V ′ and
a surjective étale morphism V ′ → U ′ ×B′ Y ′. Choose a scheme W ′ and a surjective étale
morphism W ′ → V ′ ×Y ′ X ′. Let U, V,W be the base change of U ′, V ′,W ′ by B → B′.
Consider the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of schemes. For any of the properties which are étale local on the source-
and-target the result follows immediately from the corresponding result for morphisms of
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thickenings of schemes applied to the diagram above. Thus cases (2), (12), (13), (15), (16),
(17), (18) follow from the corresponding cases of More on Morphisms, Lemma 10.5.
Since X → X ′ and Y → Y ′ are universal homeomorphisms we see that any question
about the topology of the maps X → Y and X ′ → Y ′ has the same answer. Thus we see
that cases (5), (6), (9), (10), and (14) hold.
In each of the remaining cases we only prove the implication f has P ⇒ f ′ has P since
the other implication follows from the fact that P is stable under base change, see Spaces,
Lemma 12.3 and Morphisms of Spaces, Lemmas 4.4, 10.5, 20.5, 40.3, 45.5, and 46.5.
The case (4). Assume f is an open immersion. Then f ′ is étale by (18) and universally
injective by (10) hence f ′ is an open immersion, see Morphisms of Spaces, Lemma 51.2. You
can avoid using this lemma at the cost of first using (1) to reduce to the case of schemes.
The case (3). Follows from cases (4) and (9).
The case (7). See Lemma 10.1.
The case (8). Assume f is a monomorphism. Consider the diagonal morphism ∆X′/Y ′ :
X ′ → X ′ ×Y ′ X ′. The base change of ∆X′/Y ′ by B → B′ is ∆X/Y which is an isomor-
phism by assumption. By (3) we conclude that ∆X′/Y ′ is an isomorphism and hence f ′ is
a monomorphism.
The case (11). See Lemma 10.1.
The case (19). See Lemma 10.3.
The case (20). See Lemma 10.3.
The case (21). Assume f finite locally free. By (20) we see that f ′ is finite. By (2) we see
that f ′ is flat. Also f ′ is locally finite presentation by Morphisms of Spaces, Lemma 28.9.
Hence f ′ is finite locally free by Morphisms of Spaces, Lemma 46.6. �

19. Formally smooth morphisms

In this section we introduce the notion of a formally smooth morphism X → Y of alge-
braic spaces. Such a morphism is characterized by the property that T -valued points ofX
lift to infinitesimal thickenings of T provided T is affine. The main result is that a mor-
phism which is formally smooth and locally of finite presentation is smooth, see Lemma
19.6. It turns out that this criterion is often easier to use than the Jacobian criterion.

Definition 19.1. Let S be a scheme. A morphism f : X → Y of algebraic spaces
overS is said to be formally smooth if it is formally smooth as a transformation of functors
as in Definition 13.1.

In the cases of formally unramified and formally étale morphisms the condition that T ′

be affine could be dropped, see Lemmas 14.3 and 16.3. This is no longer true in the case of
formally smooth morphisms. In fact, a slightly more natural condition would be that we
should be able to fill in the dotted arrow étale locally on T ′. In fact, analyzing the proof
of Lemma 19.6 shows that this would be equivalent to the definition as it currently stands.
It is also true that requiring the existence of the dotted arrow fppf locally on T ′ would be
sufficient, but that is slightly more difficult to prove.
We will not restate the results proved in the more general setting of formally smooth
transformations of functors in Section 13.

Lemma 19.2. A composition of formally smooth morphisms is formally smooth.
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Proof. Omitted. �

Lemma 19.3. A base change of a formally smooth morphism is formally smooth.

Proof. Omitted, but see Algebra, Lemma 138.2 for the algebraic version. �

Lemma 19.4. Let f : X → S be a morphism of schemes. Then f is formally étale if
and only if f is formally smooth and formally unramified.

Proof. Omitted. �

Here is a helper lemma which will be superseded by Lemma 19.10.

Lemma 19.5. Let S be a scheme. Let

U

��

ψ
// V

��
X

f // Y

be a commutative diagram of morphisms of algebraic spaces over S. If the vertical arrows
are étale and f is formally smooth, then ψ is formally smooth.

Proof. By Lemma 13.5 the morphisms U → X and V → Y are formally étale.
By Lemma 13.3 the composition U → Y is formally smooth. By Lemma 13.8 we see
ψ : U → V is formally smooth. �

The following lemma is the main result of this section. It implies, combined with Limits
of Spaces, Proposition 3.10, that we can recognize whether a morphism of algebraic spaces
f : X → Y is smooth in terms of “simple” properties of the transformation of functors
X → Y .

Lemma 19.6 (Infinitesimal lifting criterion). Let S be a scheme. Let f : X → Y be a
morphism of algebraic spaces over S. The following are equivalent:

(1) The morphism f is smooth.
(2) The morphism f is locally of finite presentation, and formally smooth.

Proof. Assume f : X → S is locally of finite presentation and formally smooth.
Consider a commutative diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale and surjective. By Lemma
19.5 we see ψ : U → V is formally smooth. By Morphisms of Spaces, Lemma 28.4 the
morphism ψ is locally of finite presentation. Hence by the case of schemes the morphism
ψ is smooth, see More on Morphisms, Lemma 11.7. Hence f is smooth, see Morphisms of
Spaces, Lemma 37.4.
Conversely, assume that f : X → Y is smooth. Consider a solid commutative diagram

X

f

��

T

i
��

a
oo

Y T ′oo

``
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as in Definition 19.1. We will show the dotted arrow exists thereby proving that f is
formally smooth. Let F be the sheaf of sets on (T ′)spaces,étale of Lemma 17.4 as in the
special case discussed in Remark 17.6. Let

H = HomOT
(a∗ΩX/Y , CT/T ′)

be the sheaf ofOT -modules onTspaces,étale with actionH×F → F as in Lemma 17.5. The
actionH×F → F turns F into a pseudoH-torsor, see Cohomology on Sites, Definition
4.1. Our goal is to show that F is a trivialH-torsor. There are two steps: (I) To show that
F is a torsor we have to show that F has étale locally a section. (II) To show that F is the
trivial torsor it suffices to show thatH1(Tétale,H) = 0, see Cohomology on Sites, Lemma
4.3.

First we prove (I). To see this choose a commutative diagram

U

��

ψ
// V

��
X

f // Y

whereU andV are schemes and the vertical arrows are étale and surjective. As f is assumed
smooth we see that ψ is smooth and hence formally smooth by Lemma 13.5. By the same
lemma the morphism V → Y is formally étale. Thus by Lemma 13.3 the composition
U → Y is formally smooth. Then (I) follows from Lemma 13.6 part (4).

Finally we prove (II). By Lemma 7.15 we see that ΩX/S is of finite presentation. Hence
a∗ΩX/S is of finite presentation (see Properties of Spaces, Section 30). Hence the sheaf
H = HomOT

(a∗ΩX/Y , CT/T ′) is quasi-coherent by Properties of Spaces, Lemma 29.7.
Thus by Descent, Proposition 9.3 and Cohomology of Schemes, Lemma 2.2 we have

H1(Tspaces,étale,H) = H1(Tétale,H) = H1(T,H) = 0

as desired. �

Smooth morphisms satisfy strong local lifting property, see Lemma 19.7. If in the lemma
we assume T ′ is affine, then we do not know if it is necessary to take an étale covering.
More precisely, if we have a commutative diagram

X

��

Too

��
Y T ′oo

``

of algebraic spaces whereX → Y is smooth and T → T ′ is a thickening of affine schemes,
the does a dotted arrow making the diagram commute always exist? If you know the
answer, or if you have a reference, please email stacks.project@gmail.com.

Lemma 19.7. Let S be a scheme. Consider a commutative diagram

X

��

Too

��
Y T ′oo

mailto:stacks.project@gmail.com
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of algebraic spaces over S where X → Y is smooth and T → T ′ is a thickening. Then
there exists an étale covering {T ′

i → T ′} such that we can find the dotted arrow in

X

��

Too

��

T ×T ′ T ′
i

oo

��
Y T ′oo T ′

i
oo

hh

making the diagram commute (for all i).

Proof. Choose an étale covering {Yi → Y } with each Yi affine. After replacing T ′

by the induced étale covering we may assume Y is affine.

Assume Y is affine. Choose an étale covering {Xi → X}. This gives rise to an étale
covering of T . This étale covering of T comes from an étale covering of T ′ (by Theorem
8.1, see discussion in Section 9). Hence we may assume X is affine.

Assume X and Y are affine. We can do one more étale covering of T ′ and assume T ′ is
affine. In this case the lemma follows from Algebra, Lemma 138.17. �

We do a bit more work to show that being formally smooth is étale local on the source.
To begin we show that a formally smooth morphism has a nice sheaf of differentials. The
notion of a locally projective quasi-coherent module is defined in Properties of Spaces,
Section 31.

Lemma 19.8. Let S be a scheme. Let f : X → Y be a formally smooth morphism of
algebraic spaces over S. Then ΩX/Y is locally projective on X .

Proof. Choose a diagram
U

��

ψ
// V

��
X

f // Y

where U and V are affine(!) schemes and the vertical arrows are étale. By Lemma 19.5
we see ψ : U → V is formally smooth. Hence Γ(V,OV ) → Γ(U,OU ) is a formally
smooth ring map, see More on Morphisms, Lemma 11.6. Hence by Algebra, Lemma 138.7
the Γ(U,OU )-module ΩΓ(U,OU )/Γ(V,OV ) is projective. Hence ΩU/V is locally projective,
see Properties, Section 21. Since ΩX/Y |U = ΩU/V we see that ΩX/Y is locally projective
too. (Because we can find an étale covering of X by the affine U ’s fitting into diagrams as
above – details omitted.) �

Lemma 19.9. Let T be an affine scheme. Let F , G be quasi-coherent OT -modules on
Tétale. Consider the internal hom sheaf H = HomOT

(F ,G) on Tétale. If F is locally
projective, then H1(Tétale,H) = 0.

Proof. By the definition of a locally projective sheaf on an algebraic space (see Prop-
erties of Spaces, Definition 31.2) we see that FZar = F|TZar is a locally projective sheaf
on the scheme T . ThusFZar is a direct summand of a freeOTZar -module. Whereupon we
conclude (as F = (FZar)a, see Descent, Proposition 8.9) that F is a direct summand of a
freeOT -module on Tétale. Hence we may assume that F =

⊕
i∈I OT is a free module. In

this case H =
∏
i∈I G is a product of quasi-coherent modules. By Cohomology on Sites,

Lemma 12.5 we conclude that H1 = 0 because the cohomology of a quasi-coherent sheaf
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on an affine scheme is zero, see Descent, Proposition 9.3 and Cohomology of Schemes,
Lemma 2.2. �

Lemma 19.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is formally smooth,
(2) for every diagram

U

��

ψ
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are étale the morphism of
schemes ψ is formally smooth (as in More on Morphisms, Definition 6.1), and

(3) for one such diagram with surjective vertical arrows the morphism ψ is formally
smooth.

Proof. We have seen that (1) implies (2) and (3) in Lemma 19.5. Assume (3). The
proof that f is formally smooth is entirely similar to the proof of (1) ⇒ (2) of Lemma
19.6.

Consider a solid commutative diagram

X

f

��

T

i
��

a
oo

Y T ′oo

``

as in Definition 19.1. We will show the dotted arrow exists thereby proving that f is
formally smooth. Let F be the sheaf of sets on (T ′)spaces,étale of Lemma 17.4 as in the
special case discussed in Remark 17.6. Let

H = HomOT
(a∗ΩX/Y , CT/T ′)

be the sheaf ofOT -modules onTspaces,étale with actionH×F → F as in Lemma 17.5. The
actionH×F → F turns F into a pseudoH-torsor, see Cohomology on Sites, Definition
4.1. Our goal is to show that F is a trivialH-torsor. There are two steps: (I) To show that
F is a torsor we have to show that F has étale locally a section. (II) To show that F is the
trivial torsor it suffices to show thatH1(Tétale,H) = 0, see Cohomology on Sites, Lemma
4.3.

First we prove (I). To see this consider a diagram (which exists because we are assuming
(3))

U

��

ψ
// V

��
X

f // Y

where U and V are schemes, the vertical arrows are étale and surjective, and ψ is formally
smooth. By Lemma 13.5 the morphism V → Y is formally étale. Thus by Lemma 13.3 the
composition U → Y is formally smooth. Then (I) follows from Lemma 13.6 part (4).

Finally we prove (II). By Lemma 19.8 we see that ΩU/V locally projective. Hence ΩX/Y is
locally projective, see Descent on Spaces, Lemma 6.5. Hence a∗ΩX/Y is locally projective,
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see Properties of Spaces, Lemma 31.3. Hence
H1(Tétale,H) = H1(Tétale,HomOT

(a∗ΩX/Y , CT/T ′) = 0
by Lemma 19.9 as desired. �

Lemma 19.11. The property P(f) =“f is formally smooth” is fpqc local on the base.

Proof. Let f : X → Y be a morphism of algebraic spaces over a scheme S. Choose
an index set I and diagrams

Ui

��

ψi

// Vi

��
X

f // Y

with étale vertical arrows and Ui, Vi affine schemes. Moreover, assume that
∐
Ui → X

and
∐
Vi → Y are surjective, see Properties of Spaces, Lemma 6.1. By Lemma 19.10 we see

that f is formally smooth if and only if each of the morphisms ψi are formally smooth.
Hence we reduce to the case of a morphism of affine schemes. In this case the result follows
from Algebra, Lemma 138.16. Some details omitted. �

Lemma 19.12. Let S be a scheme. Let f : X → Y , g : Y → Z be morphisms of
algebraic spaces over S. Assume f is formally smooth. Then

0→ f∗ΩY/Z → ΩX/Z → ΩX/Y → 0
Lemma 7.8 is short exact.

Proof. Follows from the case of schemes, see More on Morphisms, Lemma 11.11, by
étale localization, see Lemmas 19.10 and 7.3. �

Lemma 19.13. Let S be a scheme. LetB be an algebraic space over S. Let h : Z → X
be a formally unramified morphism of algebraic spaces overB. Assume that Z is formally
smooth over B. Then the canonical exact sequence

0→ CZ/X → h∗ΩX/B → ΩZ/B → 0
of Lemma 15.13 is short exact.

Proof. Let Z → Z ′ be the universal first order thickening of Z over X . From the
proof of Lemma 15.13 we see that our sequence is identified with the sequence

CZ/Z′ → ΩZ′/B ⊗OZ → ΩZ/B → 0.
Since Z → S is formally smooth we can étale locally on Z ′ find a left inverse Z ′ → Z
over B to the inclusion map Z → Z ′. Thus the sequence is étale locally split, see Lemma
7.11. �

Lemma 19.14. Let S be a scheme. Let

Z
i
//

j   

X

f

��
Y

be a commutative diagram of algebraic spaces overS where i and j are formally unramified
and f is formally smooth. Then the canonical exact sequence

0→ CZ/Y → CZ/X → i∗ΩX/Y → 0
of Lemma 15.14 is exact and locally split.
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Proof. Denote Z → Z ′ the universal first order thickening of Z over X . Denote
Z → Z ′′ the universal first order thickening of Z over Y . By Lemma 15.13 here is a
canonical morphism Z ′ → Z ′′ so that we have a commutative diagram

Z
i′
//

j′   

Z ′
a
//

k
��

X

f

��
Z ′′ b // Y

The sequence above is identified with the sequence

CZ/Z′′ → CZ/Z′ → (i′)∗ΩZ′/Z′′ → 0

via our definitions concerning conormal sheaves of formally unramified morphisms. Let
U ′′ → Z ′′ be an étale morphism with U ′′ affine. Denote U → Z and U ′ → Z ′ the
corresponding affine schemes étale over Z and Z ′. As f is formally smooth there exists a
morphism h : U ′′ → X which agrees with i on U and such that f ◦ h equals b|U ′′ . Since
Z ′ is the universal first order thickening we obtain a unique morphism g : U ′′ → Z ′ such
that g = a ◦ h. The universal property of Z ′′ implies that k ◦ g is the inclusion map
U ′′ → Z ′′. Hence g is a left inverse to k. Picture

U

��

// Z ′

k
��

U ′′ //

g

==

Z ′′

Thus g induces a map CZ/Z′ |U → CZ/Z′′ |U which is a left inverse to the map CZ/Z′′ →
CZ/Z′ over U . �

20. Smoothness over a Noetherian base

This section is the analogue of More on Morphisms, Section 12.

Lemma 20.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let x ∈ |X|. Assume that Y is locally Noetherian and f locally of finite type.
The following are equivalent:

(1) f is smooth at x,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

Y Spec(B′)βoo

cc

where B′ → B is a surjection of local rings with Ker(B′ → B) of square zero,
and α mapping the closed point of Spec(B) to x there exists a dotted arrow
making the diagram commute, and

(3) same as in (2) but with B′ → B ranging over small extensions (see Algebra,
Definition 141.1).

Proof. Condition (1) means there is an open subspace X ′ ⊂ X such that X ′ → Y
is smooth. Hence (1) implies conditions (2) and (3) by Lemma 19.6. Condition (2) implies
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condition (3) trivially. Assume (3). Choose a commutative diagram

X

��

Uoo

��
Y Voo

withU and V affine, horizontal arrows étale and such that there is a point u ∈ U mapping
to x. Next, consider a diagram

X

��

Uoo

��

Spec(B)

i

��

α
oo

Y Voo Spec(B′)βoo

as in (3) but for u ∈ U → V . Let γ : Spec(B′) → X be the arrow we get from our
assumption that (3) holds forX . BecauseU → X is étale and hence formally étale (Lemma
16.8) the morphism γ has a unique lift to U compatible with α. Then because V → Y is
étale hence formally étale this lift is compatible with β. Hence (3) holds for u ∈ U → V
and we conclude that U → V is smooth at u by More on Morphisms, Lemma 12.1. This
proves that X → Y is smooth at x, thereby finishing the proof. �

Sometimes it is useful to know that one only needs to check the lifting criterion for small
extensions “centered” at points of finite type (see Morphisms of Spaces, Section 25).

Lemma 20.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume Y is locally Noetherian and f locally of finite type. The following are
equivalent:

(1) f is smooth,
(2) for every solid commutative diagram

X

f

��

Spec(B)

i

��

α
oo

Y Spec(B′)βoo

cc

where B′ → B is a small extension of Artinian local rings and β of finite type
(!) there exists a dotted arrow making the diagram commute.

Proof. If f is smooth, then the infinitesimal lifting criterion (Lemma 19.6) says f is
formally smooth and (2) holds.

Assume f is not smooth. The set of points x ∈ X where f is not smooth forms a closed
subset T of |X|. By Morphisms of Spaces, Lemma 25.6, there exists a point x ∈ T ⊂ X
with x ∈ Xft-pts. Choose a commutative diagram

X

��

Uoo

��

u_

��
Y Voo v

withU and V affine, horizontal arrows étale and such that there is a point u ∈ U mapping
to x. Then u is a finite type point of U . Since U → V is not smooth at the point u, by
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More on Morphisms, Lemma 12.1 there is a diagram

X

��

Uoo

��

Spec(B)

i

��

α
oo

Y Voo Spec(B′)βoo

cc

with B′ → B a small extension of (Artinian) local rings such that the residue field of B
is equal to κ(v) and such that the dotted arrow does not exist. Since U → V is of finite
type, we see that v is a finite type point of V . By Morphisms, Lemma 16.2 the morphism
β is of finite type, hence the composition Spec(B) → Y is of finite type also. Arguing
exactly as in the proof of Lemma 20.1 (using that U → X and V → Y are étale hence
formally étale) we see that there cannot be an arrow Spec(B)→ X fitting into the outer
rectangle of the last displayed diagram. In other words, (2) doesn’t hold and the proof is
complete. �

Here is a useful application.

Lemma 20.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type and Y locally Noetherian. LetZ ⊂ Y be a closed
subspace with nth infinitesimal neighbourhood Zn ⊂ Y . Set Xn = Zn ×Y X .

(1) If Xn → Zn is smooth for all n, then f is smooth at every point of f−1(Z).
(2) If Xn → Zn is étale for all n, then f is étale at every point of f−1(Z).

Proof. Assume Xn → Zn is smooth for all n. Let x ∈ X be a point lying over a
point of Z. Given a small extension B′ → B and morphisms α, β as in Lemma 20.1 part
(3) the maximal ideal of B′ is nilpotent (as B′ is Artinian) and hence the morphism β
factors through Zn and α factors through Xn for a suitable n. Thus the lifting property
for Xn → Zn kicks in to get the desired dotted arrow in the diagram. This proves (1).
Part (2) follows from (1) and the fact that a morphism is étale if and only if it is smooth
of relative dimension 0. �

21. The naive cotangent complex

This section is the continuation of Modules on Sites, Section 35 which in turn continues
the discussion in Algebra, Section 134.

Definition 21.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The naive cotangent complex of f is the complex defined in Modules on
Sites, Definition 35.4 for the morphism of ringed topoi fsmall between the small étale sites
of X and Y , see Properties of Spaces, Lemma 21.3. Notation: NLf or NLX/Y .

The next lemmas show this definition is compatible with the definition for ring maps and
for schemes and that NLX/Y is an object of DQCoh(OX).

Lemma 21.2. Let S be a scheme. Consider a commutative diagram

U

p

��

g
// V

q

��
X

f // Y

of algebraic spaces over S with p and q étale. Then there is a canonical identification
NLX/Y |Uétale = NLU/V in D(OU ).
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Proof. Formation of the naive cotangent complex commutes with pullback (Mod-
ules on Sites, Lemma 35.3) and we have p−1

smallOX = OU and g−1
smallOVétale = p−1

smallf
−1
smallOYétale

because q−1
smallOYétale = OVétale by Properties of Spaces, Lemma 26.1. Tracing through

the definitions we conclude that NLX/Y |Uétale = NLU/V . �

Lemma 21.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume X and Y representable by schemes X0 and Y0. Then there is a canonical
identification NLX/Y = ε∗ NLX0/Y0 in D(OX) where ε is as in Derived Categories of
Spaces, Section 4 and NLX0/Y0 is as in More on Morphisms, Definition 13.1.

Proof. Let f0 : X0 → Y0 be the morphism of schemes corresponding to f . There is
a canonical map ε−1f−1

0 OY0 → f−1
smallOY compatible with ε] : ε−1OX0 → OX because

there is a commutative diagram

X0,Zar

f0

��

Xétaleε
oo

f

��
Y0,Zar Yétale

εoo

see Derived Categories of Spaces, Remark 6.3. Thus we obtain a canonical map

ε−1 NLX0/Y0 = ε−1 NLOX0/f
−1
0 OY0

= NLε−1OX0/ε
−1f−1

0 OY0
→ NLOX/f

−1
small

OY
= NLX/Y

by functoriality of the naive cotangent complex. To see that the induced map ε∗ NLX0/Y0 →
NLX/Y is an isomorphism in D(OX) we may check on stalks at geometric points (Prop-
erties of Spaces, Theorem 19.12). Let x : Spec(k) → X0 be a geometric point lying over
x ∈ X0, with y = f ◦ x lying over y ∈ Y0. Then

NLX/Y,x = NLOX,x/OY,y

This is true because taking stalks at x is the same as taking inverse image via x : Spec(k)→
X and we may apply Modules on Sites, Lemma 35.3. On the other hand we have

(ε∗ NLX0/Y0)x = NLX0/Y0,x⊗OX0,x
OX,x = NLOX0,x/OY0,y

⊗OX0,x
OX,x

Some details omitted (hint: use that the stalk of a pullback is the stalk at the image point,
see Sites, Lemma 34.2, as well as the corresponding result for modules, see Modules on Sites,
Lemma 36.4). Observe that OX,x is the strict henselization of OX0,x and similarly for
OY,y (Properties of Spaces, Lemma 22.1). Thus the result follows from More on Algebra,
Lemma 33.8. �

Lemma 21.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The cohomology sheaves of the complex NLX/Y are quasi-coherent, zero outside
degrees −1, 0 and equal to ΩX/Y in degree 0.

Proof. By construction of the naive cotangent complex in Modules on Sites, Section
35 we have that NLX/Y is a complex sitting in degrees −1, 0 and that its cohomology in
degree 0 is ΩX/Y (by our construction of ΩX/Y in Section 7). The sheaf of differentials is
quasi-coherent (by Lemma 7.4). To finish the proof it suffices to show thatH−1(NLX/Y )
is quasi-coherent. This follows by checking étale locally (allowed by Lemma 21.2 and
Properties of Spaces, Lemma 29.6) reducing to the case of schemes (Lemma 21.3) and finally
using the result in the case of schemes (More on Morphisms, Lemma 13.3). �
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Lemma 21.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is locally of finite presentation, then NLX/Y is étale locally on X quasi-
isomorphic to a complex

. . .→ 0→ F−1 → F0 → 0→ . . .

of quasi-coherentOX -modules with F0 of finite presentation and F−1 of finite type.

Proof. Formation of the naive cotangent complex commutes with étale localization
by Lemma 21.2. This reduces us to the case of schemes by Lemma 21.3. The result in the
case of schemes is More on Morphisms, Lemma 13.4. �

Lemma 21.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f is formally smooth,
(2) H−1(NLX/Y ) = 0 and H0(NLX/Y ) = ΩX/Y is locally projective.

Proof. This follows from Lemma 19.10, Lemma 21.2, Lemma 21.3 and the case of
schemes which is More on Morphisms, Lemma 13.5. �

Lemma 21.7. Let f : X → Y be a morphism of schemes. The following are equivalent
(1) f is formally étale,
(2) H−1(NLX/Y ) = H0(NLX/Y ) = 0.

Proof. Assume (1). A formally étale morphism is a formally smooth morphism.
Thus H−1(NLX/Y ) = 0 by Lemma 21.6. On the other hand, a formally étale morphism
if formally unramified hence we have ΩX/Y = 0 by Lemma 14.6. Conversely, if (2) holds,
then f is formally smooth by Lemma 21.6 and formally unramified by Lemma 14.6 and
hence formally étale by Lemmas 19.4. �

Lemma 21.8. Let f : X → Y be a morphism of schemes. The following are equivalent
(1) f is smooth, and
(2) f is locally of finite presentation, H−1(NLX/Y ) = 0, and H0(NLX/Y ) =

ΩX/Y is finite locally free.

Proof. This follows from Lemma 19.10, Lemma 21.2, Lemma 21.3 and the case of
schemes which is More on Morphisms, Lemma 13.7. �

22. Openness of the flat locus

This section is analogue of More on Morphisms, Section 15. Note that we have defined the
notion of flatness for quasi-coherent modules on algebraic spaces in Morphisms of Spaces,
Section 31.

Theorem 22.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherent sheaf on X . Assume f is locally of finite presentation
and that F is anOX -module which is locally of finite presentation. Then

{x ∈ |X| : F is flat over Y at x}

is open in |X|.
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Proof. Choose a commutative diagram

U

p

��

α
// V

q

��
X

a // Y

with U , V schemes and p, q surjective and étale as in Spaces, Lemma 11.6. By More on
Morphisms, Theorem 15.1 the set U ′ = {u ∈ |U | : p∗F is flat over V at u} is open in U .
By Morphisms of Spaces, Definition 31.2 the image of U ′ in |X| is the set of the theorem.
Hence we are done because the map |U | → |X| is open, see Properties of Spaces, Lemma
4.6. �

Lemma 22.2. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian diagram of algebraic spaces over S. Let F be a quasi-coherent OX -module.
Assume g is flat, f is locally of finite presentation, and F is locally of finite presentation.
Then

{x′ ∈ |X ′| : (g′)∗F is flat over Y ′ at x′}
is the inverse image of the open subset of Theorem 22.1 under the continuous map |g′| :
|X ′| → |X|.

Proof. This follows from Morphisms of Spaces, Lemma 31.3. �

23. Critère de platitude par fibres

Let S be a scheme. Consider a commutative diagram of algebraic spaces over S

X
f

//

g
  

Y

h��
Z

and a quasi-coherent OX -module F . Given a point x ∈ |X| we consider the question as
to whether F is flat over Y at x. If F is flat over Z at x, then the theorem below states
this question is intimately related to the question of whether the restriction of F to the
fibre of X → Z over g(x) is flat over the fibre of Y → Z over g(x). To make sense out of
this we offer the following preliminary lemma.

Lemma 23.1. In the situation above the following are equivalent
(1) Pick a geometric point x of X lying over x. Set y = f ◦ x and z = g ◦ x. Then

the module Fx/mzFx is flat overOY,y/mzOY,y .
(2) Pick a morphism x : Spec(K)→ X in the equivalence class of x. Set z = g ◦ x,

Xz = Spec(K) ×z,Z X , Yz = Spec(K) ×z,Z Y , and Fz the pullback of F to
Xz . Then Fz is flat at x over Yz (as defined in Morphisms of Spaces, Definition
31.2).
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(3) Pick a commutative diagram

U

a

tt

//

  

V

b
tt ~~

X
f

//

g
  

Y

h��

W

c

ttZ

where U, V,W are schemes, and a, b, c are étale, and a point u ∈ U mapping to
x. Let w ∈W be the image of u. Let Fw be the pullback of F to the fibre Uw of
U →W at w. Then Fw is flat over Vw at u.

Proof. Note that in (2) the morphism x : Spec(K)→ X defines a K-rational point
of Xz , hence the statement makes sense. Moreover, the condition in (2) is independent
of the choice of Spec(K) → X in the equivalence class of x (details omitted; this will
also follow from the arguments below because the other conditions do not depend on
this choice). Also note that we can always choose a diagram as in (3) by: first choosing
a scheme W and a surjective étale morphism W → Z , then choosing a scheme V and a
surjective étale morphism V →W ×Z Y , and finally choosing a schemeU and a surjective
étale morphism U → V ×Y X . Having made these choices we set U → W equal to the
composition U → V → W and we can pick a point u ∈ U mapping to x because the
morphism U → X is surjective.

Suppose given both a diagram as in (3) and a geometric point x : Spec(k)→ X as in (1).
By Properties of Spaces, Lemma 19.4 we can choose a geometric point u : Spec(k) → U
lying over u such that x = a ◦ u. Denote v : Spec(k) → V and w : Spec(k) → W the
induced geometric points of V and W . In this setting we know that OX,x = OshU,u and
similarly for Y and Z , see Properties of Spaces, Lemma 22.1. In the same vein we have

Fx = (a∗F)u ⊗OU,u
OshU,u

see Properties of Spaces, Lemma 29.4. Note that the stalk of Fw at u is given by

(Fw)u = (a∗F)u/mw(a∗F)u
and the local ring of Vw at v is given by

OVw,v = OV,v/mwOV,v.
Since mz = mwOZ,z = mwOshW,w we see that

Fx/mzFx = (a∗F)u ⊗OU,u
OX,x/mzOX,x

= (Fw)u ⊗OUw,u
OshU,u/mwOshU,u

= (Fw)u ⊗OUw,u
OshUw,u

= (Fw)u
the penultimate equality by Algebra, Lemma 156.4 and the last equality by Properties of
Spaces, Lemma 29.4. The same arguments applied to the structure sheaves of V and Y
show that

OshVw,v = OshV,v/mwOshV,v = OY,y/mzOY,y.
OK, and now we can use Morphisms of Spaces, Lemma 31.1 to see that (1) is equivalent to
(3).
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Finally we prove the equivalence of (2) and (3). To do this we pick a field extension K̃
of K and a morphism x̃ : Spec(K̃) → U which lies over u (this is possible because
u×X,xSpec(K) is a nonempty scheme). Set z̃ : Spec(K̃)→ U →W be the composition.
We obtain a commutative diagram

Uw ×w z̃
a

tt

//

##

Vw ×w z̃

b
ss {{

Xz
f

//

g
  

Yz

h
~~

z̃

c

ssz

where z = Spec(K) and w = Spec(κ(w)). Now it is clear that Fw and Fz pull back to
the same module on Uw ×w z̃. This leads to a commutative diagram

Xz

��

Uw ×w z̃oo

��

// Uw

��
Yz Vw ×w z̃oo // Vw

both of whose squares are cartesian and whose bottom horizontal arrows are flat: the lower
left horizontal arrow is the composition of the morphism Y ×Z z̃ → Y ×Z z = Yz (base
change of a flat morphism), the étale morphism V ×Z z̃ → Y ×Z z̃, and the étale morphism
V ×W z̃ → V ×Z z̃. Thus it follows from Morphisms of Spaces, Lemma 31.3 that

Fz flat at x over Yz ⇔ F|Uw×w z̃ flat at x̃ over Vw ×w z̃ ⇔ Fw flat at u over Vw
and we win. �

Definition 23.2. Let S be a scheme. Let X → Y → Z be morphisms of algebraic
spaces over S. Let F be a quasi-coherent OX -module. Let x ∈ |X| be a point and denote
z ∈ |Z| its image.

(1) We say the restriction of F to its fibre over z is flat at x over the fibre of Y over
z if the equivalent conditions of Lemma 23.1 are satisfied.

(2) We say the fibre ofX over z is flat at x over the fibre of Y over z if the equivalent
conditions of Lemma 23.1 hold with F = OX .

(3) We say the fibre of X over z is flat over the fibre of Y over z if for all x ∈ |X|
lying over z the fibre of X over z is flat at x over the fibre of Y over z

With this definition in hand we can state a version of the criterion as follows. The Noe-
therian version can be found in Section 24.

Theorem 23.3. Let S be a scheme. Let f : X → Y and Y → Z be morphisms of
algebraic spaces over S. Let F be a quasi-coherentOX -module. Assume

(1) X is locally of finite presentation over Z ,
(2) F anOX -module of finite presentation, and
(3) Y is locally of finite type over Z.

Let x ∈ |X| and let y ∈ |Y | and z ∈ |Z| be the images of x. If Fx 6= 0, then the following
are equivalent:

(1) F is flat over Z at x and the restriction of F to its fibre over z is flat at x over
the fibre of Y over z, and



5728 76. MORE ON MORPHISMS OF SPACES

(2) Y is flat over Z at y and F is flat over Y at x.
Moreover, the set of points x where (1) and (2) hold is open in Supp(F).

Proof. Choose a diagram as in Lemma 23.1 part (3). It follows from the definitions
that this reduces to the corresponding theorem for the morphisms of schemes U → V →
W , the quasi-coherent sheaf a∗F , and the point u ∈ U . Thus the theorem follows from
the corresponding result for schemes which is More on Morphisms, Theorem 16.2. �

Lemma 23.4. Let S be a scheme. Let f : X → Y and Y → Z be a morphism of
algebraic spaces over S. Assume

(1) X is locally of finite presentation over Z ,
(2) X is flat over Z ,
(3) for every z ∈ |Z| the fibre of X over z is flat over the fibre of Y over z, and
(4) Y is locally of finite type over Z.

Then f is flat. If f is also surjective, then Y is flat over Z.

Proof. This is a special case of Theorem 23.3. �

Lemma 23.5. Let S be a scheme. Let f : X → Y and Y → Z be morphisms of
algebraic spaces over S. Let F be a quasi-coherentOX -module. Assume

(1) X is locally of finite presentation over Z ,
(2) F anOX -module of finite presentation,
(3) F is flat over Z , and
(4) Y is locally of finite type over Z.

Then the set
A = {x ∈ |X| : F flat at x over Y }.

is open in |X| and its formation commutes with arbitrary base change: If Z ′ → Z is
a morphism of algebraic spaces, and A′ is the set of points of X ′ = X ×Z Z ′ where
F ′ = F ×Z Z ′ is flat over Y ′ = Y ×Z Z ′, then A′ is the inverse image of A under the
continuous map |X ′| → |X|.

Proof. One way to prove this is to translate the proof as given in More on Mor-
phisms, Lemma 16.4 into the category of algebraic spaces. Instead we will prove this by
reducing to the case of schemes. Namely, choose a diagram as in Lemma 23.1 part (3) such
that a, b, and c are surjective. It follows from the definitions that this reduces to the cor-
responding theorem for the morphisms of schemes U → V → W , the quasi-coherent
sheaf a∗F , and the point u ∈ U . The only minor point to make is that given a mor-
phism of algebraic spacesZ ′ → Z we choose a schemeW ′ and a surjective étale morphism
W ′ → W ×Z Z ′. Then we set U ′ = W ′ ×W U and V ′ = W ′ ×W V . We write a′, b′, c′

for the morphisms from U ′, V ′,W ′ to X ′, Y ′, Z ′. In this case A, resp. A′ are images of
the open subsets of U , resp. U ′ associated to a∗F , resp. (a′)∗F ′. This indeed does reduce
the lemma to More on Morphisms, Lemma 16.4. �

Lemma 23.6. Let S be a scheme. Let f : X → Y and Y → Z be a morphism of
algebraic spaces over S. Assume

(1) X is locally of finite presentation over Z ,
(2) X is flat over Z , and
(3) Y is locally of finite type over Z.
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Then the set
{x ∈ |X| : X flat at x over Y }.

is open in |X| and its formation commutes with arbitrary base change Z ′ → Z.

Proof. This is a special case of Lemma 23.5. �

Lemma 23.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite presentation. Let F be a finitely presented OX -module.
Let x ∈ |X|with image y ∈ |Y |. IfF is flat at x over Y , then the following are equivalent

(1) (Fy)x is a flatOXy,x-module,
(2) (Fy)x is a freeOXy,x-module,
(3) Fy is finite free in an étale neighbourhood of x in Xy , and
(4) F is finite free in an étale neighbourhood of x in X .

Here x is a geometric point of X lying over x and y = f ◦ x.

Proof. Pick a commutative diagram

U

��

// V

��
X // Y

where U and V are schemes and the vertical arrows are étale such that there is a point
u ∈ U mapping to x. Let v ∈ V be the image of u. Applying Lemma 23.1 to id : X → X
over Y we see that (1) translates into the condition “F|Uv is flat over Uv at u”. In other
words, (1) is equivalent to (F|Uv )u being a flat OUv,u-module. By the case of schemes
(More on Morphisms, Lemma 16.7), we find that this implies that F|U is finite free in an
open neighbourhood of u. In this way we see that (1) implies (4). The implications (4)⇒
(3) and (2)⇒ (1) are immediate. For the implication (3)⇒ (2) use the description of local
rings and stalks in Properties of Spaces, Lemmas 22.1 and 29.4. �

Lemma 23.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite presentation. Let F be a finitely presented OX -module
flat over Y . Then the set

{x ∈ |X| : F free in an étale neighbourhood of x}
is open in |X| and its formation commutes with arbitrary base change Y ′ → Y .

Proof. Openness holds trivially. Let Y ′ → Y be a morphism of algebraic spaces, set
X ′ = Y ′×Y X , and let x′ ∈ |X ′| be a point lying over x ∈ |X|. By Lemma 23.7 we see that
x is in our set if and only if (Fy)x is a flat OXy,x-module. Simiarly, x′ is in the analogue
of our set for the pullback F ′ of F to X ′ if and only if (F ′

y′)x′ is a flat OX′
y′ ,x

′ -module
(with obvious notation). These two assertions are equivalent by Lemma 23.1 applied to
the morphism id : X → X over Y . Thus the statement on base change holds. �

24. Flatness over a Noetherian base

Here is the “Critère de platitude par fibres” in the Noetherian case.

Theorem 24.1. Let S be a scheme. Let f : X → Y and Y → Z be morphisms of
algebraic spaces over S. Let F be a quasi-coherentOX -module. Assume

(1) X , Y , Z locally Noetherian, and
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(2) F a coherentOX -module.
Let x ∈ |X| and let y ∈ |Y | and z ∈ |Z| be the images of x. If Fx 6= 0, then the following
are equivalent:

(1) F is flat over Z at x and the restriction of F to its fibre over z is flat at x over
the fibre of Y over z, and

(2) Y is flat over Z at y and F is flat over Y at x.

Proof. Choose a diagram as in Lemma 23.1 part (3). It follows from the definitions
that this reduces to the corresponding theorem for the morphisms of schemes U → V →
W , the quasi-coherent sheaf a∗F , and the point u ∈ U . Thus the theorem follows from
the corresponding result for schemes which is More on Morphisms, Theorem 16.1. �

Lemma 24.2. Let S be a scheme. Let f : X → Y and Y → Z be a morphism of
algebraic spaces over S. Assume

(1) X , Y , Z locally Noetherian,
(2) X is flat over Z ,
(3) for every z ∈ |Z| the fibre of X over z is flat over the fibre of Y over z.

Then f is flat. If f is also surjective, then Y is flat over Z.

Proof. This is a special case of Theorem 24.1. �

Just like for checking smoothness, if the base is Noetherian it suffices to check flatness over
Artinian rings. Here is a sample statement.

Lemma 24.3. LetA be a Noetherian ring. Let I ⊂ A be an ideal. LetX be an algebraic
space locally of finite presentation over S = Spec(A). For n ≥ 1 set Sn = Spec(A/In)
and Xn = Sn ×S X . Let F be coherent OX -module. If for every n ≥ 1 the pullback Fn
ofF toX is flat over Sn, then the (open) locus whereF is flat overX contains the inverse
image of V (I) under X → S.

Proof. The locus where F is flat over S is open in |X| by Theorem 22.1. The state-
ment is insensitive to replacing X by the members of an étale covering, hence we may
assume X is an affine scheme. In this case the result follows immediately from Algebra,
Lemma 99.11. Some details omitted. �

25. Normalization revisited

Normalization commutes with smooth base change.

Lemma 25.1. Let S be a scheme. Let f : Y → X be a smooth morphism of algebraic
spaces over S. LetA be a quasi-coherent sheaf ofOX -algebras. The integral closure ofOY
in f∗A is equal to f∗A′ whereA′ ⊂ A is the integral closure ofOX inA.

Proof. By our construction of the integral closure, see Morphisms of Spaces, Defini-
tion 48.2, this reduces immediately to the case where X and Y are affine. In this case the
result is Algebra, Lemma 147.4. �

Lemma 25.2 (Normalization commutes with smooth base change). Let S be a scheme.
Let

Y2 //

��

Y1

f

��
X2

ϕ // X1
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be a fibre square of algebraic spaces over S. Assume f is quasi-compact and quasi-separated
and ϕ is smooth. Let Yi → X ′

i → Xi be the normalization of Xi in Yi. Then X ′
2
∼=

X2 ×X1 X
′
1.

Proof. The base change of the factorization Y1 → X ′
1 → X1 toX2 is a factorization

Y2 → X2×X1 X
′
1 → X1 andX2×X1 X

′
1 → X1 is integral (Morphisms of Spaces, Lemma

45.5). Hence we get a morphism h : X ′
2 → X2 ×X1 X

′
1 by the universal property of

Morphisms of Spaces, Lemma 48.5. Observe thatX ′
2 is the relative spectrum of the integral

closure of OX2 in f2,∗OY2 . If A′ ⊂ f1,∗OY1 denotes the integral closure of OX2 , then
X2 ×X1 X

′
1 is the relative spectrum of ϕ∗A′ as the construction of the relative spectrum

commutes with arbitrary base change. By Cohomology of Spaces, Lemma 11.2 we know
that f2,∗OY2 = ϕ∗f1,∗OY1 . Hence the result follows from Lemma 25.1. �

26. Cohen-Macaulay morphisms

This is the analogue of More on Morphisms, Section 22.

Lemma 26.1. The property of morphisms of germs of schemes

P((X,x)→ (S, s)) =
the local ringOXs,x of the fibre is Noetherian and Cohen-Macaulay

is étale local on the source-and-target (Descent, Definition 33.1).

Proof. Given a diagram as in Descent, Definition 33.1 we obtain an étale morphism
of fibres U ′

v′ → Uv mapping u′ to u, see Descent, Lemma 33.5. Thus the strict henseliza-
tions of the local ringsOU ′

v′ ,u
′ andOUv,u are the same. We conclude by More on Algebra,

Lemma 45.9. �

Definition 26.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume the fibres of f are locally Noetherian (Divisors on Spaces, Defini-
tion 4.2).

(1) Let x ∈ |X|, and y = f(x). We say that f is Cohen-Macaulay at x if f is flat at
x and the equivalent conditions of Morphisms of Spaces, Lemma 22.5 hold for
the property P described in Lemma 26.1.

(2) We say f is a Cohen-Macaulay morphism if f is Cohen-Macaulay at every point
of X .

Here is a translation.

Lemma 26.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume the fibres of f are locally Noetherian. The following are equivalent

(1) f is Cohen-Macaulay,
(2) f is flat and for some surjective étale morphism V → Y where V is a scheme,

the fibres of XV → V are Cohen-Macaulay algebraic spaces, and
(3) f is flat and for any étale morphism V → Y where V is a scheme, the fibres of

XV → V are Cohen-Macaulay algebraic spaces.
Given x ∈ |X| with image y ∈ |Y | the following are equivalent

(a) f is Cohen-Macaulay at x, and
(b) OY,y → OX,x is flat andOX,x/myOX,x is Cohen-Macaulay.
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Proof. Given an étale morphism V → Y where V is a scheme choose a scheme U
and a surjective étale morphism U → X ×Y V . Consider the commutative diagram

U

��

// V

��
X // Y

Let u ∈ U with images x ∈ |X|, y ∈ |Y |, and v ∈ V . Then f is Cohen-Macaulay at x
if and only if U → V is Cohen-Macaulay at u (by definition). Moreover the morphism
Uv → Xv = (XV )v is surjective étale. Hence the scheme Uv is Cohen-Macaulay if and
only if the algebraic space Xv is Cohen-Macaulay. Thus the equivalence of (1), (2), and
(3) follows from the corresponding equivalence for morphisms of schemes, see More on
Morphisms, Lemma 22.2 by a formal argument.

Proof of equivalence of (a) and (b). The corresponding equivalence for flatness is Mor-
phisms of Spaces, Lemma 30.8. Thus we may assume f is flat at xwhen proving the equiv-
alence. Consider a diagram and x, y, u, v as above. Then OY,y → OX,x is equal to the
mapOshV,v → OshU,u on strict henselizations of local rings, see Properties of Spaces, Lemma
22.1. Thus we have

OX,x/myOX,x = (OU,u/mvOU,u)sh

by Algebra, Lemma 156.4. Thus we have to show that the Noetherian local ringOU,u/mvOU,u
is Cohen-Macaulay if and only if its strict henselization is. This is More on Algebra,
Lemma 45.9. �

Lemma 26.4. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
algebraic spaces over S. Assume that the fibres of f , g, and g ◦ f are locally Noetherian.
Let x ∈ |X| with images y ∈ |Y | and z ∈ |Z|.

(1) If f is Cohen-Macaulay at x and g is Cohen-Macaulay at f(x), then g ◦ f is
Cohen-Macaulay at x.

(2) If f and g are Cohen-Macaulay, then g ◦ f is Cohen-Macaulay.
(3) If g ◦ f is Cohen-Macaulay at x and f is flat at x, then f is Cohen-Macaulay at

x and g is Cohen-Macaulay at f(x).
(4) If f ◦ g is Cohen-Macaulay and f is flat, then f is Cohen-Macaulay and g is

Cohen-Macaulay at every point in the image of f .

Proof. Working étale locally this follows from the corresponding result for schemes,
see More on Morphisms, Lemma 22.4. Alternatively, we can use the equivalence of (a) and
(b) in Lemma 26.3. Thus we consider the local homomorphism of Noetherian local rings

OY,y/mzOY,y −→ OX,x/mzOX,x
whose fibre is

OX,x/myOX,x
and we use Algebra, Lemma 163.3. �

Lemma 26.5. Let S be a scheme. Let f : X → Y be a flat morphism of locally
Noetherian algebraic spaces over S. If X is Cohen-Macaulay, then f is Cohen-Macaulay
andOY,f(x) is Cohen-Macaulay for all x ∈ |X|.

Proof. After translating into algebra using Lemma 26.3 (compare with the proof of
Lemma 26.4) this follows from Algebra, Lemma 163.3. �
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Lemma 26.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume the fibres of f are locally Noetherian. Let Y ′ → Y be locally of finite
type. Let f ′ : X ′ → Y ′ be the base change of f . Let x′ ∈ |X ′| be a point with image
x ∈ |X|.

(1) If f is Cohen-Macaulay at x, then f ′ : X ′ → Y ′ is Cohen-Macaulay at x′.
(2) If f is flat at x and f ′ is Cohen-Macaulay at x′, then f is Cohen-Macaulay at x.
(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Cohen-Macaulay at x′, then f is Cohen-

Macaulay at x.

Proof. Denote y ∈ |Y | and y′ ∈ |Y ′| the image of x′. Choose a surjective étale
morphismV → Y whereV is a scheme. Choose a surjective étale morphismU → X×Y V
where U is a scheme. Choose a surjectiev étale morphism V ′ → Y ′ ×Y V where V ′ is a
scheme. Then U ′ = U ×V V ′ is a scheme which comes equipped with a surjective étale
morphism U ′ → X ′. Choose u′ ∈ U ′ mapping to x′. Denote u ∈ U the image of u′.
Then the lemma follows from the lemma for U → V and its base change U ′ → V ′ and
the points u′ and u (this follows from the definitions). Thus the lemma follows from the
case of schemes, see More on Morphisms, Lemma 22.6. �

Lemma 26.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat and locally of finite presentation. Let

W = {x ∈ |X| : f is Cohen-Macaulay at x}
Then W is open in |X| and the formation of W commutes with arbitrary base change of
f : For any morphism g : Y ′ → Y , consider the base change f ′ : X ′ → Y ′ of f and the
projection g′ : X ′ → X . Then the corresponding set W ′ for the morphism f ′ is equal to
W ′ = (g′)−1(W ).

Proof. Choose a commutative diagram

U

��

// V

��
X // Y

with étale vertical arrows and U and V schemes. Let u ∈ U with image x ∈ |X|. Then
f is Cohen-Macaulay at x if and only if U → V is Cohen-Macaulay at u (by definition).
Thus we reduce to the case of the morphism U → V . See More on Morphisms, Lemma
22.7. �

Lemma 26.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume that f is locally of finite presentation and Cohen-Macaulay. Then there
exist open and closed subschemes Xd ⊂ X such that X =

∐
d≥0 Xd and f |Xd : Xd → Y

has relative dimension d.

Proof. Choose a commutative diagram

U

��

// V

��
X // Y

with étale vertical arrows and U and V schemes. Then U → V is locally of finite presen-
tation and Cohen-Macaulay (immediate from our definitions). Thus we have a decompo-
sition U =

∐
d≥0 Ud into open and closed subschemes with f |Ud : Ud → V of relative
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dimension d, see Morphisms, Lemma 29.4. Let u ∈ U with image x ∈ |X|. Then f has
relative dimension d at x if and only if U → V has relative dimension d at u (this fol-
lows from our definitions). In this way we see that Ud is the inverse image of a subset
Xd ⊂ |X| which is necessarily open and closed. Denoting Xd the corresponding open
and closed algebraic subspace of X we see that the lemma is true. �

27. Gorenstein morphisms

This is the analogue of Duality for Schemes, Section 25.

Lemma 27.1. The property of morphisms of germs of schemes

P((X,x)→ (S, s)) =
the local ringOXs,x of the fibre is Noetherian and Gorenstein

is étale local on the source-and-target (Descent, Definition 33.1).

Proof. Given a diagram as in Descent, Definition 33.1 we obtain an étale morphism
of fibres U ′

v′ → Uv mapping u′ to u, see Descent, Lemma 33.5. Thus OUv,u → OU ′
v′ ,u

′ is
the localization of an étale ring map. Hence the first is Noetherian if and only if the second
is Noetherian, see More on Algebra, Lemma 44.1. Then, sinceOU ′

v′ ,u
′/muOU ′

v′ ,u
′ = κ(u′)

(Algebra, Lemma 143.5) is a Gorenstein ring, we see that OUv,u is Gorenstein if and only
ifOU ′

v′ ,u
′ is Gorenstein by Dualizing Complexes, Lemma 21.8. �

Definition 27.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume the fibres of f are locally Noetherian (Divisors on Spaces, Defini-
tion 4.2).

(1) Let x ∈ |X|, and y = f(x). We say that f is Gorenstein at x if f is flat at x
and the equivalent conditions of Morphisms of Spaces, Lemma 22.5 hold for the
property P described in Lemma 27.1.

(2) We say f is a Gorenstein morphism if f is Gorenstein at every point of X .

Here is a translation.

Lemma 27.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume the fibres of f are locally Noetherian. The following are equivalent

(1) f is Gorenstein,
(2) f is flat and for some surjective étale morphism V → Y where V is a scheme,

the fibres of XV → V are Gorenstein algebraic spaces, and
(3) f is flat and for any étale morphism V → Y where V is a scheme, the fibres of

XV → V are Gorenstein algebraic spaces.
Given x ∈ |X| with image y ∈ |Y | the following are equivalent

(a) f is Gorenstein at x, and
(b) OY,y → OX,x is flat andOX,x/myOX,x is Gorenstein.

Proof. Given an étale morphism V → Y where V is a scheme choose a scheme U
and a surjective étale morphism U → X ×Y V . Consider the commutative diagram

U

��

// V

��
X // Y
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Let u ∈ U with images x ∈ |X|, y ∈ |Y |, and v ∈ V . Then f is Gorenstein at x if and only
ifU → V is Gorenstein at u (by definition). Moreover the morphismUv → Xv = (XV )v
is surjective étale. Hence the scheme Uv is Gorenstein if and only if the algebraic space
Xv is Gorenstein. Thus the equivalence of (1), (2), and (3) follows from the corresponding
equivalence for morphisms of schemes, see Duality for Schemes, Lemma 24.4 by a formal
argument.

Proof of equivalence of (a) and (b). The corresponding equivalence for flatness is Mor-
phisms of Spaces, Lemma 30.8. Thus we may assume f is flat at xwhen proving the equiv-
alence. Consider a diagram and x, y, u, v as above. Then OY,y → OX,x is equal to the
mapOshV,v → OshU,u on strict henselizations of local rings, see Properties of Spaces, Lemma
22.1. Thus we have

OX,x/myOX,x = (OU,u/mvOU,u)sh

by Algebra, Lemma 156.4. Thus we have to show that the Noetherian local ringOU,u/mvOU,u
is Gorenstein if and only if its strict henselization is. This follows immediately from Dual-
izing Complexes, Lemma 22.3 and the definition of a Gorenstein local ring as a Noetherian
local ring which is a dualizing complex over itself. �

Lemma 27.4. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
algebraic spaces over S. Assume that the fibres of f , g, and g ◦ f are locally Noetherian.
Let x ∈ |X| with images y ∈ |Y | and z ∈ |Z|.

(1) If f is Gorenstein at x and g is Gorenstein at f(x), then g ◦ f is Gorenstein at x.
(2) If f and g are Gorenstein, then g ◦ f is Gorenstein.
(3) If g ◦ f is Gorenstein at x and f is flat at x, then f is Gorenstein at x and g is

Gorenstein at f(x).
(4) If f ◦ g is Gorenstein and f is flat, then f is Gorenstein and g is Gorenstein at

every point in the image of f .

Proof. Working étale locally this follows from the corresponding result for schemes,
see Duality for Schemes, Lemma 25.6. Alternatively, we can use the equivalence of (a) and
(b) in Lemma 27.3. Thus we consider the local homomorphism of Noetherian local rings

OY,y/mzOY,y −→ OX,x/mzOX,x
whose fibre is

OX,x/myOX,x
and we use Dualizing Complexes, Lemma 21.8. �

Lemma 27.5. Let S be a scheme. Let f : X → Y be a flat morphism of locally
Noetherian algebraic spaces over S. If X is Gorenstein, then f is Gorenstein andOY,f(x)
is Gorenstein for all x ∈ |X|.

Proof. After translating into algebra using Lemma 27.3 (compare with the proof of
Lemma 27.4) this follows from Dualizing Complexes, Lemma 21.8. �

Lemma 27.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume the fibres of f are locally Noetherian. Let Y ′ → Y be locally of finite
type. Let f ′ : X ′ → Y ′ be the base change of f . Let x′ ∈ |X ′| be a point with image
x ∈ |X|.

(1) If f is Gorenstein at x, then f ′ : X ′ → Y ′ is Gorenstein at x′.
(2) If f is flat at x and f ′ is Gorenstein at x′, then f is Gorenstein at x.
(3) If Y ′ → Y is flat at f ′(x′) and f ′ is Gorenstein at x′, then f is Gorenstein at x.
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Proof. Denote y ∈ |Y | and y′ ∈ |Y ′| the image of x′. Choose a surjective étale
morphismV → Y whereV is a scheme. Choose a surjective étale morphismU → X×Y V
where U is a scheme. Choose a surjectiev étale morphism V ′ → Y ′ ×Y V where V ′ is a
scheme. Then U ′ = U ×V V ′ is a scheme which comes equipped with a surjective étale
morphism U ′ → X ′. Choose u′ ∈ U ′ mapping to x′. Denote u ∈ U the image of u′.
Then the lemma follows from the lemma for U → V and its base change U ′ → V ′ and
the points u′ and u (this follows from the definitions). Thus the lemma follows from the
case of schemes, see Duality for Schemes, Lemma 25.8. �

Lemma 27.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat and locally of finite presentation. Let

W = {x ∈ |X| : f is Gorenstein at x}
Then W is open in |X| and the formation of W commutes with arbitrary base change of
f : For any morphism g : Y ′ → Y , consider the base change f ′ : X ′ → Y ′ of f and the
projection g′ : X ′ → X . Then the corresponding set W ′ for the morphism f ′ is equal to
W ′ = (g′)−1(W ).

Proof. Choose a commutative diagram

U

��

// V

��
X // Y

Let u ∈ U with image x ∈ |X|. Then f is Gorenstein at x if and only if U → V is
Gorenstein at u (by definition). Thus we reduce to the case of the morphism U → V of
schemes. Openness is proven in Duality for Schemes, Lemma 25.11 and compatibility with
base change in Duality for Schemes, Lemma 25.9. �

28. Slicing Cohen-Macaulay morphisms

Let S be a scheme. Let X be an algebraic space over S. Let f1, . . . , fr ∈ Γ(X,OX). In
this case we denote V (f1, . . . , fr) the closed subspace of X cut out by f1, . . . , fr. More
precisely, we can define V (f1, . . . , fr) as the closed subspace of X corresponding to the
quasi-coherent sheaf of ideals generated by f1, . . . , fr , see Morphisms of Spaces, Lemma
13.1. Alternatively, we can choose a presentation X = U/R and consider the closed
subscheme Z ⊂ U cut out by f1|U, . . . , fr|U . It is clear that Z is an R-invariant (see
Groupoids, Definition 19.1) closed subscheme and we may set V (f1, . . . , fr) = Z/RZ .

Lemma 28.1. Let S be a scheme. Consider a cartesian diagram

X

��

F
p

oo

��
Y Spec(k)oo

where X → Y is a morphism of algebraic spaces over S which is flat and locally of finite
presentation, and where k is a field over S. Let f1, . . . , fr ∈ Γ(X,OX) and z ∈ |F | such
that f1, . . . , fr map to a regular sequence in the local ring OF,z . Then, after replacing X
by an open subspace containing p(z), the morphism

V (f1, . . . , fr) −→ Y

is flat and locally of finite presentation.
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Proof. Set Z = V (f1, . . . , fr). It is clear that Z → X is locally of finite presen-
tation, hence the composition Z → Y is locally of finite presentation, see Morphisms of
Spaces, Lemma 28.2. Hence it suffices to show that Z → Y is flat in a neighbourhood
of p(z). Let k′/k be an extension field. Then F ′ = F ×Spec(k) Spec(k′) is surjective
and flat over F , hence we can find a point z′ ∈ |F ′| mapping to z and the local ring
map OF,z → OF ′,z′ is flat, see Morphisms of Spaces, Lemma 30.8. Hence the image of
f1, . . . , fr in OF ′,z′ is a regular sequence too, see Algebra, Lemma 68.5. Thus, during the
proof we may replace k by an extension field. In particular, we may assume that z ∈ |F |
comes from a section z : Spec(k)→ F of the structure morphism F → Spec(k).

Choose a scheme V and a surjective étale morphism V → Y . Choose a scheme U and
a surjective étale morphism U → X ×Y V . After possibly enlarging k once more we
may assume that Spec(k) → F → X factors through U (as U → X is surjective). Let
u : Spec(k)→ U be such a factorization and denote v ∈ V the image of u. Note that the
morphisms

Uv ×Spec(κ(v)) Spec(k) = U ×V Spec(k)→ U ×Y Spec(k)→ F

are étale (the first as the base change of V → V ×Y V and the second as the base change of
U → X). Moreover, by construction the point u : Spec(k)→ U gives a point of the left
most space which maps to z on the right. Hence the elements f1, . . . , fr map to a regular
sequence in the local ring on the right of the following map

OUv,u −→ OUv×Spec(κ(v)Spec(k),u = OU×V Spec(k),u.

But since the displayed arrow is flat (combine More on Flatness, Lemma 2.5 and Morphisms
of Spaces, Lemma 30.8) we see from Algebra, Lemma 68.5 that f1, . . . , fr maps to a regular
sequence inOUv,u. By More on Morphisms, Lemma 23.2 we conclude that the morphism
of schemes

V (f1, . . . , fr)×X U = V (f1|U , . . . , fr|U )→ V

is flat in an open neighbourhoodU ′ of u. LetX ′ ⊂ X be the open subspace corresponding
to the image of |U ′| → |X| (see Properties of Spaces, Lemmas 4.6 and 4.8). We conclude
that V (f1, . . . , fr)∩X ′ → Y is flat (see Morphisms of Spaces, Definition 30.1) as we have
the commutative diagram

V (f1, . . . , fr)×X U ′

a

��

// V

b

��
V (f1, . . . , fr) ∩X ′ // Y

with a, b étale and a surjective. �

29. Reduced fibres

This section is the analogue of More on Morphisms, Section 26.

Lemma 29.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let y ∈ |Y |. The following are equivalent

(1) for some morphism Spec(k) → Y in the equivalence class of y the algebraic
space Xk is geometrically reduced over k,

(2) for every morphism Spec(k) → Y in the equivalence class of y the algebraic
space Xk is geometrically reduced over k,
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(3) for every morphism Spec(k) → Y in the equivalence class of y the algebraic
space Xk is reduced.

Proof. This follows immediately from Spaces over Fields, Lemma 11.6 and the defini-
tion of the equivalence relation defining |X| given in Properties of Spaces, Section 4. �

Definition 29.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y ∈ |Y |. We say the fibre of f : X → Y at y is geometrically reduced
if the equivalent conditions of Lemma 29.1 hold.

Here are the obligatory lemmas.

Lemma 29.3. Let S be a scheme. Let f : X → Y and g : Y ′ → Y be morphisms of
algebraic spaces over S. Denote f ′ : X ′ → Y ′ the base change of f by g. Then

{y′ ∈ |Y ′| : the fibre of f ′ : X ′ → Y ′ at y′ is geometrically reduced}
= g−1({y ∈ |Y | : the fibre of f : X → Y at y is geometrically reduced}).

Proof. For y′ ∈ |Y ′| choose a morphism Spec(k) → Y ′ in the equivalence class of
y′. Then g(y′) is represented by the composition Spec(k) → Y ′ → Y . Hence X ′ ×Y ′

Spec(k) = X ×Y Spec(k) and the result follows from the definition. �

Lemma 29.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is quasi-compact and locally of finite presentation. Then the set

E = {y ∈ |Y | : the fibre of f : X → Y at y is geometrically reduced}
is étale locally constructible.

Proof. Choose an affine scheme V and an étale morphism V → Y . The meaning of
the statement is that the inverse image ofE in |V | is constructible. By Lemma 29.3 we may
replace Y by V , i.e., we may assume that Y is an affine scheme. Then X is quasi-compact.
Choose an affine scheme U and a surjective étale morphism U → X . For a morphism
Spec(k) → Y the morphism between fibres Uk → Xk is surjective étale. Hence Uk is
geometrically reduced over k if and only ifXk is geometrically reduced over k, see Spaces
over Fields, Lemma 11.7. Thus the setE forX → Y is the same as the setE forU → Y . In
this way we see that the lemma follows from the case of schemes, see More on Morphisms,
Lemma 26.5. �

Lemma 29.5. Let X be an algebraic space over a discrete valuation ring R whose
structure morphism X → Spec(R) is proper and flat. If the special fibre is reduced, then
both X and the generic fibre Xη are reduced.

Proof. Choose an étale morphismU → X whereU is an affine scheme. ThenU is of
finite type overR. Let u ∈ U be in the special fibre. The local ringA = OU,u is essentially
of finite type over R, hence Noetherian. Let π ∈ R be a uniformizer. Since X is flat over
R, we see that π ∈ mA is a nonzerodivisor onA and since the special fibre ofX is reduced,
we have thatA/πA is reduced. If a ∈ A, a 6= 0 then there exists an n ≥ 0 and an element
a′ ∈ A such that a = πna′ and a′ 6∈ πA. This follows from Krull intersection theorem
(Algebra, Lemma 51.4). If a is nilpotent, so is a′, because π is a nonzerodivisor. But a′ maps
to a nonzero element of the reduced ring A/πA so this is impossible. Hence A is reduced.
It follows that there exists an open neighbourhood of u inU which is reduced (small detail
omitted; use that U is Noetherian). Thus we can find an étale morphism U → X with
U a reduced scheme, such that every point of the special fibre of X is in the image. Since
X is proper over R it follows that U → X is surjective. Hence X is reduced. Since the
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generic fibre of U → Spec(R) is reduced as well (on affine pieces it is computed by taking
localizations), we conclude the same thing is true for the generic fibre. �

Lemma 29.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is flat, proper, and of finite presentation, then the set

E = {y ∈ |Y | : the fibre of f : X → Y at y is geometrically reduced}
is open in |Y |.

Proof. By Lemma 29.3 formation ofE commutes with base change. To check a sub-
set of |Y | is open, we may replace Y by the members of an étale covering. Thus we may
assume Y is affine. Then Y is a cofiltered limit of affine schemes of finite type over Z.
Hence we can assume X → Y is the base change of X0 → Y0 where Y0 is the spectrum of
a finite type Z-algebra and X0 → Y0 is flat and proper. See Limits of Spaces, Lemma 7.1,
6.12, and 6.13. Since the formation of E commutes with base change (see above), we may
assume the base is Noetherian.
Assume Y is Noetherian. The set is constructible by Lemma 29.4. Hence it suffices to show
the set is stable under generalization (Topology, Lemma 19.10). By Properties, Lemma 5.10
we reduce to the case where Y = Spec(R), R is a discrete valuation ring, and the closed
fibreXy is geometrically reduced. To show: the generic fibreXη is geometrically reduced.
If not then there exists a finite extension L of the fraction field of R such that XL is not
reduced, see Spaces over Fields, Lemmas 11.4 (characteristic zero) and 11.5 (positive char-
acteristic). There exists a discrete valuation ringR′ ⊂ Lwith fraction field L dominating
R, see Algebra, Lemma 120.18. After replacing R by R′ we reduce to Lemma 29.5. �

30. Connected components of fibres

This section is the analogue of More on Morphisms, Section 28.

Lemma 30.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let

nX/Y : |Y | → {0, 1, 2, 3, . . . ,∞}
be the function which associates to y ∈ Y the number of connected components of Xk

where Spec(k) → Y is in the equivalence class of y with k algebraically closed. This is
well defined and if g : Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ g
where X ′ → Y ′ is the base change of f .

Proof. Suppose that y′ ∈ Y ′ has image y ∈ Y . Let Spec(k′)→ Y ′ be in the equiva-
lence class of y′ with k′ algebraically closed. Then we can choose a commutative diagram

Spec(K) //

%%

Spec(k′) // Y ′

��
Spec(k) // Y

where K is an algebraically closed field. The result follows as the morphisms of schemes

X ′
k′ (X ′

k′)K = (Xk)Koo // Xk

induce bijections between connected components, see Spaces over Fields, Lemma 12.4. To
use this to prove the function is well defined take Y ′ = Y . �
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31. Dimension of fibres

This section is the analogue of More on Morphisms, Section 30.

Lemma 31.1. LetS be a scheme. Let f : X → Y be a finite type morphism of algebraic
spaces over S. Let y ∈ |Y |. The following quantities are the same

(1) d = −∞ if y is not in the image of |f | and otherwise the minimal integer d such
that f has relative dimension ≤ d at every x ∈ |X| mapping to y,

(2) the dimension of the algebraic space Xk = Spec(k) ×Y X for any morphism
Spec(k)→ Y in the equivalence class defining y.

Proof. To parse this one has to consult Morphisms of Spaces, Definition 33.1, Prop-
erties of Spaces, Definition 9.2, Properties of Spaces, Definition 9.1. We will show that
the numbers in (1) and (2) are equal for a fixed morphism Spec(k)→ Y . Choose an étale
morphism V → Y where V is an affine scheme and a point v ∈ V mapping to y. Since
V ×Y Spec(k)→ Spec(k) is surjective étale (by Properties of Spaces, Lemma 4.3) we can
find a finite separable extension k′/k (by Morphisms, Lemma 36.7) and a commutative
diagram

Spec(k′) //

��

V

��
Spec(k) // Y

We may replace X → Y by V ×Y X → V and Xk by Xk′ = Spec(k′) ×V (V ×Y X)
because this does not change the dimensions in question by Properties of Spaces, Lemma
22.5 and Morphisms of Spaces, Lemma 34.3. Thus we may assume that Y is an affine
scheme. In this case we may assume that k = κ(y) because the dimension of Xκ(y) and
Xk are the same by the aforementioned Morphisms of Spaces, Lemma 34.3 and the fact
that for an algebraic space Z over a field K the relative dimension of Z at a point z ∈ |Z|
is the same as dimz(Z) by definition. Assume Y is affine and k = κ(y). Then X is quasi-
compact we can choose an affine scheme U and an surjective étale morphism U → X .
Then dim(Xk) = dim(Uk) = max dimu(Uk) is equal to the number given in (1) by
definition. �

Lemma 31.2. LetS be a scheme. Let f : X → Y be a finite type morphism of algebraic
spaces over S. Let

nX/Y : |Y | → {−∞, 0, 1, 2, 3, . . .}
be the function which associates to y ∈ |Y | the integer discussed in Lemma 31.1. If g :
Y ′ → Y is a morphism then

nX′/Y ′ = nX/Y ◦ |g|
where X ′ → Y ′ is the base change of f .

Proof. This follows immediately from Lemma 31.1. �

Lemma 31.3. Let S be a scheme. Let f : X → Y be a flat morphism of finite presen-
tation of algebraic spaces over S. Let nX/Y be the function on Y giving the dimension of
fibres of f introduced in Lemma 31.2. Then nX/Y is lower semi-continuous.

Proof. Let V → Y be a surjective étale morphism where V is a scheme. If we can
show that the composition nX/Y ◦ |g| is lower semi-continuous, then the lemma follows
as |g| is open. Hence we may assume Y is a scheme. Working locally we may assume V is
an affine scheme. Then we can choose an affine scheme U and a surjective étale morphism
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U → X . Then nX/Y = nU/Y . Hence we may assume X and Y are both schemes. In this
case the lemma follows from More on Morphisms, Lemma 30.4. �

Lemma 31.4. Let S be a scheme. Let f : X → Y be a proper morphism of alge-
braic spaces over S. Let nX/Y be the function on Y giving the dimension of fibres of f
introduced in Lemma 31.2. Then nX/Y is upper semi-continuous.

Proof. Let Zd = {x ∈ |X| : the fibre of f at x has dimension > d}. Then Zd is
a closed subset of |X| by Morphisms of Spaces, Lemma 34.4. Since f is proper f(Zd) is
closed in |Y |. Since y ∈ f(Zd)⇔ nX/Y (y) > d we see that the lemma is true. �

Lemma 31.5. Let S be a scheme. Let f : X → Y be a proper, flat, finitely presented
morphism of algebraic spaces overS. LetnX/Y be the function on Y giving the dimension
of fibres of f introduced in Lemma 31.2. Then nX/Y is locally constant.

Proof. Immediate consequence of Lemmas 31.3 and 31.4. �

32. Catenary algebraic spaces

This section continues the discussion started in Decent Spaces, Section 25. The following
lemma will be used in the proof of the next one.

Lemma 32.1. Let S be a scheme. Let f : X → Y be an integral morphism of algebraic
spaces over S. Let y ∈ |Y | be a point which can be represented by a closed immersion
y : Spec(k)→ Y . Then there exists a factorization X → X ′ → Y of f such that

(1) X ′ → Y is integral,
(2) X → X ′ is an isomorphism over X ′ \X ′

y ,
(3) X ′

y has a unique point x′ with κ(x′) = k.
Moreover, if f is finite and Y is locally Noetherian, then X ′ → Y is finite.

Proof. By Morphisms of Spaces, Lemma 11.2 the sheaves f∗OX , (Xy → Y )∗OXy ,
and y∗OSpec(k) are quasi-coherent sheaves ofOY -algebras. Consider the maps

f∗OY −→ (Xy → Y )∗OXy ←− y∗OSpec(k)

The fibre product is a quasi-coherent sheaf ofOY -algebrasA′ and we can define X ′ → Y
as the relative spectrum ofA′ over Y , see Morphisms, Lemma 11.5. This construction com-
mutes with arbitrary change of base. In particular, it is clear that over the open subspace
|Y | \ {y} the morphism X → X ′ is an isomorphism and over |Y | \ {y} the morphism
X ′ → Y is integral. It remains to prove the statements in a small neighbourhood of y.
Choose an affine scheme V = Spec(R) and an étale morphismϕ : V → Y such that y is in
the image ofϕ. Then Vy is a closed subscheme of V étale over k, whence consists of finitely
many points each with residue field separable over k (see Decent Spaces, Remark 4.1). Af-
ter shrinking V we may assume there is a unique closed point v = Spec(l)→ V mapping
to y with l/k finite separable. We may write V ×Y X = Spec(C) withR→ C an integral
ring map. The stated compatibility with base change gives us that U ×X Y ′ = Spec(C ′)
where

C ′ = C ×C⊗Rl l

SinceR→ l is surjective, alsoC → C⊗R l is surjective and we see that this is a fibre prod-
uct of the kind studied in More on Algebra, Situation 6.1 (withA,A′, B,B′ corresponding
toC⊗R l, C, l, C ′). Observe thatC ′ is anR-subalgebra ofC and hence is integral overR;
this proves (1). Finally, More on Algebra, Lemma 6.2 shows that V ×X Y ′ = Spec(C ′) has
a unique point y′′ lying over v with residue l (this corresponds with the obvious surjective
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map C ′ → l). ThusXy ×Spec(k) Spec(l) has a unique point with residue field l. Since l/k
is finite separable, this implies X ′

y has a unique point with residue field k, i.e., (3) holds.

To prove the final statement, observe that ifY is locally Noetherian, thenR is a Noetherian
ring and if f is finite, then R → C is finite. Then C ′ is a finite type R-algebra by More
on Algebra, Lemma 5.1. This proves that X ′ → Y is finite. �

Lemma 32.2. Let S be a scheme. Let B be an algebraic space over S. Let δ : |B| → Z
be a function. Assume B is decent, locally Noetherian, and universally catenary and δ is
a dimension function. If X is a decent algebraic space over B whose structure morphism
f : X → B is locally of finite type we define δX : |X| → Z by the rule

δX(x) = δ(f(x)) + transcendence degreeof x/f(x)
(Morphisms of Spaces, Definition 33.1). Then δX is a dimension function.

Proof. The problem is local on B. Thus we may assume B is quasi-compact. By
Decent Spaces, Lemma 14.1 we see B is quasi-separated. By Limits of Spaces, Proposition
16.1 we can choose a finite surjective morphism π : Y → X where Y is a scheme. Claim:
δY is a dimension function.

The claim implies the lemma. With X → B as in the lemma set Z = Y ×B X with
projections p : Z → Y and q : Z → X . Then we have

δZ(z) = δY (p(z)) + transcendence degreeof z/p(z)
and δZ(z) = δX(q(z)). This follows from Morphisms of Spaces, Lemma 34.2 and the fact
that these transcendence degrees are zero for finite morphisms. By Decent Spaces, Lemma
25.2 and the claim we find that δZ is a dimension function. Then we find that δX is a
dimension function by Decent Spaces, Lemma 25.6.

Proof of the claim. Consider a specialization y  y′, y 6= y′ of points of the Noetherian
scheme Y . Then δY (y) > δY (y′) because there are no specializations between points in
fibres of Y (see Decent Spaces, Lemma 18.10). Using this for a chain of specializations we
find

δY (y)− δY (y′) ≥ codim({y′}, {y})
Our task is to show equality. By Properties, Lemma 5.9 we can choose a specialization
y′  y0. It suffices to show δY (y)− δY (y0) = codim({y0}, {y}) because this will imply
the equality for both y  y′ and y′  y0.

Choose a maximal chain y = yc  yc−1  . . . y0 of specializations in Y . Set b = π(y)
and b0 = π(y0). Choose a maximal chain b = be  be−1  . . .  b0 of specializations
in |B|. We have to show e = c. Since π is closed (Morphisms of Spaces, Lemma 45.9)
we can find a sequence of specializations y = y′

e  y′
e−1  . . .  y′

0 mapping to
b = be  be−1  . . . b0. Observe that y′

e  y′
e−1  . . . y′

0 is a maximal chain as
well. If y0 = y′

0, then because Y is catenary, we conclude that e = c as desired. In the next
paragraph we reduce to this case by sleight of hand and we conclude in the same manner.

Since π is closed we see that b0 is a closed point of |B|. By Decent Spaces, Lemma 14.6 we
can represent b0 by a closed immersion b0 : Spec(k) → B. By Lemma 32.1 we can find a
factorization

Y → Y ′ → X

with π′ : Y ′ → X finite and Y → Y ′ a morphism which map y0 and y′
0 to the same point

and is an isomorphism away from the inverse image of b0. (Of course Y ′ won’t be a scheme
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but this doesn’t matter for the argument that follows.) Clearly the maximal chains of spe-
cializations yc  yc−1  . . .  y0 and y′

e  y′
e−1  . . .  y′

0 map to maximal chains
of specializations in Y ′ having the same start and end. SinceB is universally catenary, we
see that |Y ′| is catenary and we conclude as before. �

33. Étale localization of morphisms

The section is the analogue of More on Morphisms, Section 41.

Lemma 33.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let y ∈ |Y |. Let x1, . . . , xn ∈ |X| mapping to y. Assume that

(1) f is locally of finite type,
(2) f is separated,
(3) f is quasi-finite at x1, . . . , xn, and
(4) f is quasi-compact or Y is decent.

Then there exists an étale morphism (U, u) → (Y, y) of pointed algebraic spaces and a
decomposition

U ×Y X = W q V
into open and closed subspaces such that the morphism V → U is finite, every point of
the fibre of |V | → |U | over u maps to an xi, and the fibre of |W | → |U | over u contains
no point mapping to an xi.

Proof. Let (U, u) → (Y, y) be an étale morphism of algebraic spaces and consider
the set of w ∈ |U ×Y X|mapping to u ∈ |U | and one of the xi ∈ |X|. By Decent Spaces,
Lemma 18.4 (if f is of finite type) or Decent Spaces, Lemma 18.5 (if Y is decent) this set is
finite. It follows that we may replace f by the base change U ×Y X → U and x1, . . . , xn
by the set of these w. In particular we may and do assume that Y is an affine scheme,
whence X is a separated algebraic space.

Choose an affine scheme Z and an étale morphism Z → X such that x1, . . . , xn are in the
image of |Z| → |X|. The fibres of |Z| → |X| are finite, see Properties of Spaces, Lemma
6.7 (or the more general discussion in Decent Spaces, Section 6). Let {z1, . . . , zm} ⊂ |Z|
be the preimage of {x1, . . . , xn}. By More on Morphisms, Lemma 41.4 there exists an
étale morphism (U, u) → (Y, y) such that U ×Y Z = Z1 q Z2 with Z1 → U finite and
(Z1)y = {z1, . . . , zm}. We may assume that U is affine and hence Z1 is affine too.

Since f is separated, the image V of Z1 → X is both open and closed (Morphisms of
Spaces, Lemma 40.6). Set W = X \ V to get a decomposition as in the lemma. To finish
the proof we have to show that V → U is finite. As Z1 → V is surjective and étale, V is
the quotient ofZ1 by the étale equivalence relationR = Z1×V Z1, see Spaces, Lemma 9.1.
Since f is separated, V → U is separated and R is closed in Z1 ×U Z1. Since Z1 → U is
finite, the projections s, t : R → Z1 are finite. Thus V is an affine scheme by Groupoids,
Proposition 23.9. By Morphisms, Lemma 41.9 we conclude that V → U is proper and
by Morphisms, Lemma 44.11 we conclude that V → U is finite, thereby finishing the
proof. �

Lemma 33.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let x ∈ |X| with image y ∈ |Y |. Assume that

(1) f is locally of finite type,
(2) f is separated, and
(3) f is quasi-finite at x.
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Then there exists an étale morphism (U, u) → (Y, y) of pointed algebraic spaces and a
decomposition

U ×Y X = W q V
into open and closed subspaces such that the morphism V → U is finite and there exists a
point v ∈ |V | which maps to x in |X| and u in |U |.

Proof. Pick a scheme U , a point u ∈ U , and an étale morphism U → Y mapping u
to y. There exists a point x′ ∈ |U ×Y X| mapping to x in |X| and u in |U | (Properties
of Spaces, Lemma 4.3). To finish, apply Lemma 33.1 to the morphism U ×Y X → U and
the point x′. It applies because U is a scheme and hence u comes from the monomorphism
Spec(κ(u))→ U . �

34. Zariski’s Main Theorem

In this section we apply the results of the previous section to prove Zariski’s main theorem
for morphisms of algebraic spaces. This section is the analogue of More on Morphisms,
Section 43.

Lemma 34.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is of finite type and separated. Let Y ′ be the normalization of Y in X .
Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then there exists an open subspace U ′ ⊂ Y ′ such that
(1) (f ′)−1(U ′)→ U ′ is an isomorphism, and
(2) (f ′)−1(U ′) ⊂ X is the set of points at which f is quasi-finite.

Proof. By Morphisms of Spaces, Lemma 34.7 there is an open subspace U ⊂ X
corresponding to the points of |X| where f is quasi-finite. We have to prove

(a) the image of |U | → |Y ′| is |U ′| for some open subspace U ′ of Y ′,
(b) U = f−1(U ′), and
(c) U → U ′ is an isomorphism.

Since formation ofU commutes with arbitrary base change (Morphisms of Spaces, Lemma
34.7), since formation of the normalizationY ′ commutes with smooth base change (Lemma
25.2), since étale morphisms are open, and since “being an isomorphism” is fpqc local on
the base (Descent on Spaces, Lemma 11.15), it suffices to prove (a), (b), (c) étale locally on
Y (some details omitted). Thus we may assume Y is an affine scheme. This implies that
Y ′ is an (affine) scheme as well.

Let x ∈ |U |. Claim: there exists an open neighbourhood f ′(x) ∈ V ⊂ Y ′ such that
(f ′)−1V → V is an isomorphism. We first prove the claim implies the lemma. Namely,
then (f ′)−1V ∼= V is a scheme (as an open of Y ′), locally of finite type over Y (as an open
subspace of X), and for v ∈ V the residue field extension κ(v)/κ(ν(v)) is algebraic (as
V ⊂ Y ′ and Y ′ is integral over Y ). Hence the fibres of V → Y are discrete (Morphisms,
Lemma 20.2) and (f ′)−1V → Y is locally quasi-finite (Morphisms, Lemma 20.8). This
implies (f ′)−1V ⊂ U and V ⊂ U ′. Since x was arbitrary we see that (a), (b), and (c) are
true.
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Let y = f(x) ∈ |Y |. Let (T, t)→ (Y, y) be an étale morphism of pointed schemes. Denote
by a subscript T the base change to T . Let z ∈ XT be a point in the fibre Xt lying over x.
Note that UT ⊂ XT is the set of points where fT is quasi-finite, see Morphisms of Spaces,
Lemma 34.7. Note that

XT
f ′
T−−→ Y ′

T
νT−−→ T

is the normalization of T in XT , see Lemma 25.2. Suppose that the claim holds for z ∈
UT ⊂ XT → Y ′

T → T , i.e., suppose that we can find an open neighbourhood f ′
T (z) ∈

V ′ ⊂ Y ′
T such that (f ′

T )−1V ′ → V ′ is an isomorphism. The morphism Y ′
T → Y ′ is étale

hence the image V ⊂ Y ′ of V ′ is open. Observe that f ′(x) ∈ V as f ′
T (z) ∈ V ′. Observe

that
(f ′
T )−1V ′ //

��

(f ′)−1(V )

��
V ′ // V

is a fibre square (as Y ′
T ×Y ′ X = XT ). Since the left vertical arrow is an isomorphism and

{V ′ → V } is a étale covering, we conclude that the right vertical arrow is an isomorphism
by Descent on Spaces, Lemma 11.15. In other words, the claim holds for x ∈ U ⊂ X →
Y ′ → Y .
By the result of the previous paragraph to prove the claim for x ∈ |U |, we may replace Y
by an étale neighbourhood T of y = f(x) and x by any point lying over x in T ×Y X .
Thus we may assume there is a decomposition

X = V qW
into open and closed subspaces where V → Y is finite and x ∈ V , see Lemma 33.1. Since
X is a disjoint union of V and W over Y and since V → Y is finite we see that the
normalization of Y in X is the morphism

X = V qW −→ V qW ′ −→ S

where W ′ is the normalization of Y in W , see Morphisms of Spaces, Lemmas 48.8, 45.6,
and 48.10. The claim follows and we win. �

The following lemma is a duplicate of Morphisms of Spaces, Lemma 52.2. The reason for
having two copies of the same lemma is that the proofs are somewhat different. The proof
given below rests on Zariski’s Main Theorem for nonrepresentable morphisms of algebraic
spaces as presented above, whereas the proof of Morphisms of Spaces, Lemma 52.2 rests on
Morphisms of Spaces, Proposition 50.2 to reduce to the case of morphisms of schemes.

Lemma 34.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is quasi-finite and separated. Let Y ′ be the normalization of Y in X .
Picture:

X

f   

f ′
// Y ′

ν
~~

Y

Then f ′ is a quasi-compact open immersion and ν is integral. In particular f is quasi-affine.

Proof. This follows from Lemma 34.1. Namely, by that lemma there exists an open
subspaceU ′ ⊂ Y ′ such that (f ′)−1(U ′) = X (!) andX → U ′ is an isomorphism! In other
words, f ′ is an open immersion. Note that f ′ is quasi-compact as f is quasi-compact and
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ν : Y ′ → Y is separated (Morphisms of Spaces, Lemma 8.9). Hence for every affine scheme
Z and morphism Z → Y the fibre product Z ×Y X is a quasi-compact open subscheme
of the affine scheme Z ×Y Y ′. Hence f is quasi-affine by definition. �

Lemma 34.3 (Zariski’s Main Theorem). Let S be a scheme. Let f : X → Y be a
morphism of algebraic spaces over S. Assume f is quasi-finite and separated and assume
that Y is quasi-compact and quasi-separated. Then there exists a factorization

X

f   

j
// T

π
��

Y

where j is a quasi-compact open immersion and π is finite.

Proof. Let X → Y ′ → Y be as in the conclusion of Lemma 34.2. By Limits of
Spaces, Lemma 9.7 we can write ν∗OY ′ = colimi∈I Ai as a directed colimit of finite
quasi-coherent OX -algebras Ai ⊂ ν∗OY ′ . Then πi : Ti = Spec

Y
(Ai) → Y is a fi-

nite morphism for each i. Note that the transition morphisms Ti′ → Ti are affine and that
Y ′ = limTi.

By Limits of Spaces, Lemma 5.7 there exists an i and a quasi-compact open Ui ⊂ Ti whose
inverse image in Y ′ equals f ′(X). For i′ ≥ i let Ui′ be the inverse image of Ui in Ti′ .
Then X ∼= f ′(X) = limi′≥i Ui′ , see Limits of Spaces, Lemma 4.1. By Limits of Spaces,
Lemma 5.12 we see that X → Ui′ is a closed immersion for some i′ ≥ i. (In fact X ∼= Ui′

for sufficiently large i′ but we don’t need this.) Hence X → Ti′ is an immersion. By
Morphisms of Spaces, Lemma 12.6 we can factor this as X → T → Ti′ where the first
arrow is an open immersion and the second a closed immersion. Thus we win. �

Lemma 34.4. With notation and hypotheses as in Lemma 34.3. Assume moreover
that f is locally of finite presentation. Then we can choose the factorization such that T
is finite and of finite presentation over Y .

Proof. By Limits of Spaces, Lemma 11.3 we can write T = limTi where all Ti are
finite and of finite presentation over Y and the transition morphisms Ti′ → Ti are closed
immersions. By Limits of Spaces, Lemma 5.7 there exists an i and an open subscheme
Ui ⊂ Ti whose inverse image in T is X . By Limits of Spaces, Lemma 5.12 we see that
X ∼= Ui for large enough i. Replacing T by Ti finishes the proof. �

35. Applications of Zariski’s Main Theorem, I

A first application is the characterization of finite morphisms as proper morphisms with
finite fibres.

Lemma 35.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is finite,
(2) f is proper and locally quasi-finite,
(3) f is proper and |Xk| is a discrete space for every morphism Spec(k)→ Y where

k is a field,
(4) f is universally closed, separated, locally of finite type and |Xk| is a discrete space

for every morphism Spec(k)→ Y where k is a field.
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Proof. We have (1)⇒ (2) by Morphisms of Spaces, Lemmas 45.9, 45.8. We have (2)
⇒ (3) by Morphisms of Spaces, Lemma 27.5. By definition (3) implies (4).

Assume (4). Since f is universally closed it is quasi-compact (Morphisms of Spaces, Lemma
9.7). Pick a point y of |Y |. We represent y by a morphism Spec(k)→ Y . Note that |Xk|
is finite discrete as a quasi-compact discrete space. The map |Xk| → |X| surjects onto the
fibre of |X| → |Y | over y (Properties of Spaces, Lemma 4.3). By Morphisms of Spaces,
Lemma 34.8 we see that X → Y is quasi-finite at all the points of the fibre of |X| → |Y |
over y. Choose an elementary étale neighbourhood (U, u) → (Y, y) and decomposition
XU = V q W as in Lemma 33.1 adapted to all the points of |X| lying over y. Note
that Wu = ∅ because we used all the points in the fibre of |X| → |Y | over y. Since f
is universally closed we see that the image of |W | in |U | is a closed set not containing u.
After shrinking U we may assume that W = ∅. In other words we see that XU = V is
finite over U . Since y ∈ |Y | was arbitrary this means there exists a family {Ui → Y } of
étale morphisms whose images cover Y such that the base changes XUi → Ui are finite.
We conclude that f is finite by Morphisms of Spaces, Lemma 45.3. �

As a consequence we have the following useful result.

Lemma 35.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let y ∈ |Y |. Assume

(1) f is proper, and
(2) f is quasi-finite at all x ∈ |X| lying over y (Decent Spaces, Lemma 18.10).

Then there exists an open neighbourhood V ⊂ Y of y such that f |f−1(V ) : f−1(V )→ V
is finite.

Proof. By Morphisms of Spaces, Lemma 34.7 the set of points at which f is quasi-
finite is an open U ⊂ X . Let Z = X \ U . Then y 6∈ f(Z). Since f is proper the set
f(Z) ⊂ Y is closed. Choose any open neighbourhood V ⊂ Y of y with Z ∩V = ∅. Then
f−1(V ) → V is locally quasi-finite and proper. Hence f−1(V ) → V is finite by Lemma
35.1. �

Lemma 35.3. Let S be a scheme. Let

X
h

//

f   

Y

g
~~

B

be a commutative diagram of morphism of algebraic spaces over S. Let b ∈ B and let
Spec(k)→ B be a morphism in the equivalence class of b. Assume

(1) X → B is a proper morphism,
(2) Y → B is separated and locally of finite type,
(3) one of the following is true

(a) the image of |Xk| → |Yk| is finite,
(b) the image of |f |−1({b}) in |Y | is finite and B is decent.

Then there is an open subspaceB′ ⊂ B containing b such thatXB′ → YB′ factors through
a closed subspace Z ⊂ YB′ finite over B′.

Proof. Let Z ⊂ Y be the scheme theoretic image of h, see Morphisms of Spaces,
Section 16. By Morphisms of Spaces, Lemma 40.8 the morphism X → Z is surjective and
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Z → B is proper. Thus

{x ∈ |X| lying over b} → {z ∈ |Z| lying over b}

and |Xk| → |Zk| are surjective. We see that either (3)(a) or (3)(b) imply that Z → B is
quasi-finite all points of |Z| lying over b by Decent Spaces, Lemma 18.10. Hence Z → B
is finite in an open neighbourhood of b by Lemma 35.2. �

36. Stein factorization

Stein factorization is the statement that a proper morphism f : X → S with f∗OX = OS
has connected fibres.

Lemma 36.1. Let S be a scheme. Let f : X → Y be a universally closed and quasi-
separated morphism of algebraic spaces over S. There exists a factorization

X
f ′

//

f   

Y ′

π
~~

Y

with the following properties:
(1) the morphism f ′ is universally closed, quasi-compact, quasi-separated, and sur-

jective,
(2) the morphism π : Y ′ → Y is integral,
(3) we have f ′

∗OX = OY ′ ,
(4) we have Y ′ = Spec

Y
(f∗OX), and

(5) Y ′ is the normalization of Y inX as defined in Morphisms of Spaces, Definition
48.3.

Formation of the factorization f = π ◦ f ′ commutes with flat base change.

Proof. By Morphisms of Spaces, Lemma 9.7 the morphism f is quasi-compact. We
just define Y ′ as the normalization of Y in X , so (5) and (2) hold automatically. By Mor-
phisms of Spaces, Lemma 48.9 we see that (4) holds. The morphism f ′ is universally closed
by Morphisms of Spaces, Lemma 40.6. It is quasi-compact by Morphisms of Spaces, Lemma
8.9 and quasi-separated by Morphisms of Spaces, Lemma 4.10.

To show the remaining statements we may assume the base Y is affine (as taking normal-
ization commutes with étale localization). Say Y = Spec(R). Then Y ′ = Spec(A) with
A = Γ(X,OX) an integralR-algebra. Thus it is clear that f ′

∗OX isOY ′ (because f ′
∗OX is

quasi-coherent, by Morphisms of Spaces, Lemma 11.2, and hence equal to Ã). This proves
(3).

Let us show that f ′ is surjective. As f ′ is universally closed (see above) the image of f ′ is a
closed subset V (I) ⊂ Y ′ = Spec(A). Pick h ∈ I . Then h|X = f ](h) is a global section of
the structure sheaf ofX which vanishes at every point. AsX is quasi-compact this means
that h|X is a nilpotent section, i.e., hn|X = 0 for some n > 0. But A = Γ(X,OX), hence
hn = 0. In other words I is contained in the Jacobson radical of A and we conclude that
V (I) = Y ′ as desired. �

Lemma 36.2. In Lemma 36.1 assume in addition that f is locally of finite type and Y
affine. Then for y ∈ Y the fibre π−1({y}) = {y1, . . . , yn} is finite and the field extensions
κ(yi)/κ(y) are finite.
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Proof. Recall that there are no specializations among the points of π−1({y}), see
Algebra, Lemma 36.20. As f ′ is surjective, we find that |Xy| → π−1({y}) is surjective.
Observe that Xy is a quasi-separated algebraic space of finite type over a field (quasi-
compactness was shown in the proof of the referenced lemma). Thus |Xy| is a Noetherian
topological space (Morphisms of Spaces, Lemma 28.6). A topological argument (omitted)
now shows that π−1({y}) is finite. For each i we can pick a finite type point xi ∈ |Xy|
mapping to yi (Morphisms of Spaces, Lemma 25.6). We conclude that κ(yi)/κ(y) is finite:
xi can be represented by a morphism Spec(ki)→ Xy of finite type (by our definition of fi-
nite type points) and hence Spec(ki)→ y = Spec(κ(y)) is of finite type (as a composition
of finite type morphisms), hence ki/κ(y) is finite (Morphisms, Lemma 16.1). �

Let f : X → Y be a morphism of algebraic spaces and let y : Spec(k)→ Y be a geometric
point. Then the fibre of f over y is the algebraic space Xy = X ×Y,y Spec(k) over k. If
Y is a scheme and y ∈ Y is a point, then we denote Xy = X ×Y Spec(κ(y)) the fibre as
usual.

Lemma 36.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let y be a geometric point of Y . Then Xy is connected, if and only if for every
étale neighbourhood (V, v) → (Y, y) where V is a scheme the base change XV → V has
connected fibre Xv .

Proof. Since the category of étale neighbourhoods of y is cofiltered and contains
a cofinal collection of schemes (Properties of Spaces, Lemma 19.3) we may replace Y by
one of these neighbourhoods and assume that Y is a scheme. Let y ∈ Y be the point
corresponding to y. Then Xy is geometrically connected over κ(y) if and only if Xy

is connected and if and only if (Xy)k′ is connected for every finite separable extension
k′ of κ(y). See Spaces over Fields, Section 12 and especially Lemma 12.8. By More on
Morphisms, Lemma 35.2 there exists an affine étale neighbourhood (V, v) → (Y, y) such
that κ(s) ⊂ κ(u) is identified with κ(s) ⊂ k′ any given finite separable extension. The
lemma follows. �

Theorem 36.4 (Stein factorization; Noetherian case). Let S be a scheme. Let f :
X → Y be a proper morphism of algebraic spaces over S with Y locally Noetherian.
There exists a factorization

X
f ′

//

f   

Y ′

π
~~

Y

with the following properties:
(1) the morphism f ′ is proper with connected geometric fibres,
(2) the morphism π : Y ′ → Y is finite,
(3) we have f ′

∗OX = OY ′ ,
(4) we have Y ′ = Spec

Y
(f∗OX), and

(5) Y ′ is the normalization of Y in X , see Morphisms, Definition 53.3.

Proof. Let f = π ◦ f ′ be the factorization of Lemma 36.1. Note that besides the
conclusions of Lemma 36.1 we also have that f ′ is separated (Morphisms of Spaces, Lemma
4.10) and finite type (Morphisms of Spaces, Lemma 23.6). Hence f ′ is proper. By Coho-
mology of Spaces, Lemma 20.2 we see that f∗OX is a coherentOY -module. Hence we see
that π is finite, i.e., (2) holds.
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This proves all but the most interesting assertion, namely that the geometric fibres of f ′ are
connected. It is clear from the discussion above that we may replace Y by Y ′. Then Y is
locally Noetherian, f : X → Y is proper, and f∗OX = OY . Let y be a geometric point of
Y . At this point we apply the theorem on formal functions, more precisely Cohomology
of Spaces, Lemma 22.7. It tells us that

O∧
Y,y = limnH

0(Xn,OXn)

where Xn = Spec(OY,y/mny ) ×Y X . Note that X1 = Xy → Xn is a (finite order)
thickening and hence the underlying topological space ofXn is equal to that ofXy . Thus,
ifXy = T1qT2 is a disjoint union of nonempty open and closed subspaces, then similarly
Xn = T1,n q T2,n for all n. And this in turn means H0(Xn,OXn) contains a nontrivial
idempotent e1,n, namely the function which is identically 1 on T1,n and identically 0 on
T2,n. It is clear that e1,n+1 restricts to e1,n on Xn. Hence e1 = lim e1,n is a nontrivial
idempotent of the limit. This contradicts the fact that O∧

Y,y is a local ring. Thus the
assumption was wrong, i.e., Xy is connected as desired. �

Theorem 36.5 (Stein factorization; general case). Let S be a scheme. Let f : X → Y
be a proper morphism of algebraic spaces over S. There exists a factorization

X
f ′

//

f   

Y ′

π
~~

Y

with the following properties:
(1) the morphism f ′ is proper with connected geometric fibres,
(2) the morphism π : Y ′ → Y is integral,
(3) we have f ′

∗OX = OY ′ ,
(4) we have Y ′ = Spec

Y
(f∗OX), and

(5) Y ′ is the normalization of Y in X (Morphisms of Spaces, Definition 48.3).

Proof. We may apply Lemma 36.1 to get the morphism f ′ : X → Y ′. Note that
besides the conclusions of Lemma 36.1 we also have that f ′ is separated (Morphisms of
Spaces, Lemma 4.10) and finite type (Morphisms of Spaces, Lemma 23.6). Hence f ′ is
proper. At this point we have proved all of the statements except for the statement that
f ′ has connected geometric fibres.

It is clear from the discussion that we may replaceY byY ′. Then f : X → Y is proper and
f∗OX = OY . Note that these conditions are preserved under flat base change (Morphisms
of Spaces, Lemma 40.3 and Cohomology of Spaces, Lemma 11.2). Let y be a geometric point
of Y . By Lemma 36.3 and the remark just made we reduce to the case where Y is a scheme,
y ∈ Y is a point, f : X → Y is a proper algebraic space over Y with f∗OX = OY , and
we have to show the fibre Xy is connected. Replacing Y by an affine neighbourhood of
y we may assume that Y = Spec(R) is affine. Then f∗OX = OY signifies that the ring
map R→ Γ(X,OX) is bijective.

By Limits of Spaces, Lemma 12.2 we can write (X → Y ) = lim(Xi → Yi) with Xi → Yi
proper and of finite presentation and Yi Noetherian. For i large enough Yi is affine (Limits
of Spaces, Lemma 5.10). Say Yi = Spec(Ri). LetR′

i = Γ(Xi,OXi). Observe that we have
ring mapsRi → R′

i → R. Namely, we have the first becauseXi is an algebraic space over
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Ri and the second because we haveX → Xi andR = Γ(X,OX). Note thatR = colimR′
i

by Limits of Spaces, Lemma 5.6. Then

X

��

// Xi

��
Y // Y ′

i
// Yi

is commutative with Y ′
i = Spec(R′

i). Let y′
i ∈ Y ′

i be the image of y. We have Xy =
limXi,y′

i
becauseX = limXi, Y = lim Y ′

i , andκ(y) = colim κ(y′
i). Now letXy = UqV

with U and V open and closed. Then U, V are the inverse images of opens Ui, Vi in Xi,y′
i

(Limits of Spaces, Lemma 5.7). By Theorem 36.4 the fibres of Xi → Y ′
i are connected,

hence either U or V is empty. This finishes the proof. �

Here is an application.

Lemma 36.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) f is proper,
(2) Y is integral (Spaces over Fields, Definition 4.1) with generic point ξ,
(3) Y is normal,
(4) X is reduced,
(5) every generic point of an irreducible component of |X| maps to ξ,
(6) we have H0(Xξ,O) = κ(ξ).

Then f∗OX = OY and f has geometrically connected fibres.

Proof. Apply Theorem 36.5 to get a factorization X → Y ′ → Y . It is enough to
show that Y ′ = Y . It suffices to show that Y ′ ×Y V → V is an isomorphism, where
V → Y is an étale morphism and V an affine integral scheme, see Spaces over Fields,
Lemma 4.5. The formation of Y ′ commutes with étale base change, see Morphisms of
Spaces, Lemma 48.4. The generic points ofX×Y V lie over the generic points ofX (Decent
Spaces, Lemma 20.1) hence map to the generic point of V by assumption (5). Moreover,
condition (6) is preserved under the base change by V → Y , for example by flat base
change (Cohomology of Spaces, Lemma 11.2). Thus it suffices to prove the lemma in case
Y is a normal integral affine scheme.

Assume Y is a normal integral affine scheme. We will show Y ′ → Y is an isomorphism by
an application of Morphisms, Lemma 54.8. Namely, Y ′ is reduced because X is reduced
(Morphisms of Spaces, Lemma 48.6). The morphism Y ′ → Y is integral by the theorem
cited above. Since Y is decent and X → Y is separated, we see that X is decent too;
to see this use Decent Spaces, Lemmas 17.2 and 17.5. By assumption (5), Morphisms of
Spaces, Lemma 48.7, and Decent Spaces, Lemma 20.1 we see that every generic point of
an irreducible component of |Y ′| maps to ξ. On the other hand, since Y ′ is the relative
spectrum of f∗OX we see that the scheme theoretic fibre Y ′

ξ is the spectrum ofH0(Xξ,O)
which is equal to κ(ξ) by assumption. Hence Y ′ is an integral scheme with function field
equal to the function field of Y . This finishes the proof. �

Here is another application.

Lemma 36.7. Let S be a scheme. Let X → Y be a morphism of algebraic spaces over
S. If f is proper, flat, and of finite presentation, then the function nX/Y : |Y | → Z
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counting the number of geometric connected components of fibres of f (Lemma 30.1) is
lower semi-continuous.

Proof. The question is étale local on Y , hence we may and do assume Y is an affine
scheme. Let y ∈ Y . Set n = nX/S(y). Note that n < ∞ as the geometric fibre of
X → Y at y is a proper algebraic space over a field, hence Noetherian, hence has a fi-
nite number of connected components. We have to find an open neighbourhood V of y
such that nX/S |V ≥ n. Let X → Y ′ → Y be the Stein factorization as in Theorem
36.5. By Lemma 36.2 there are finitely many points y′

1, . . . , y
′
m ∈ Y ′ lying over y and the

extensions κ(y′
i)/κ(y) are finite. More on Morphisms, Lemma 42.1 tells us that after re-

placing Y by an étale neighbourhood of y we may assume Y ′ = V1q . . .qVm as a scheme
with y′

i ∈ Vi and κ(y′
i)/κ(y) purely inseparable. Then the algebraic spaces Xy′

i
are ge-

ometrically connected over κ(y), hence m = n. The algebraic spaces Xi = (f ′)−1(Vi),
i = 1, . . . , n are flat and of finite presentation over Y . Hence the image of Xi → Y is
open (Morphisms of Spaces, Lemma 30.6). Thus in a neighbourhood of y we see that nX/Y
is at least n. �

Lemma 36.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume

(1) f is proper, flat, and of finite presentation, and
(2) the geometric fibres of f are reduced.

Then the function nX/S : |Y | → Z counting the numbers of geometric connected com-
ponents of fibres of f (Lemma 30.1) is locally constant.

Proof. By Lemma 36.7 the function nX/Y is lower semincontinuous. Thus it suffices
to show it is upper semi-continuous. To do this we may work étale locally on Y , hence we
may assume Y is an affine scheme. For y ∈ Y consider the κ(y)-algebra

A = H0(Xy,OXy )
By Spaces over Fields, Lemma 14.3 and the fact that Xy is geometrically reduced A is
finite product of finite separable extensions of κ(y). Hence A ⊗κ(y) κ(y) is a product of
β0(y) = dimκ(y) A copies of κ(y). Thus Xy has β0(y) connected components. In other
words, we have nX/S = β0 as functions on Y . Thus nX/Y is upper semi-continuous by
Derived Categories of Spaces, Lemma 26.2. This finishes the proof. �

Lemma 36.9. Let S be a scheme. Let f : X → Y be a proper morphism of algebraic
spaces over S. LetX → Y ′ → Y be the Stein factorization of f (Theorem 36.5). If f is of
finite presentation, flat, with geometrically reduced fibres (Definition 29.2), then Y ′ → Y
is finite étale.

Proof. Formation of the Stein factorization commutes with flat base change, see
Lemma 36.1. Thus we may work étale locally on Y and we may assume Y is an affine
scheme. Then Y ′ is an affine scheme and Y ′ → Y is integral.

Let y ∈ Y . Set n be the number of connected components of the geometric fibreXy . Note
that n < ∞ as the geometric fibre of X → Y at y is a proper algebraic space over a field,
hence Noetherian, hence has a finite number of connected components. By Lemma 36.2
there are finitely many points y′

1, . . . , y
′
m ∈ Y ′ lying over y and for each i we can pick a

finite type point xi ∈ |Xy| mapping to y′
i the extension κ(y′

i)/κ(y) is finite. Thus More
on Morphisms, Lemma 42.1 tells us that after replacing Y by an étale neighbourhood of
y we may assume Y ′ = V1 q . . . q Vm as a scheme with y′

i ∈ Vi and κ(y′
i)/κ(y) purely
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inseparable. In this case the algebraic spaces Xy′
i

are geometrically connected over κ(y),
hencem = n. The algebraic spacesXi = (f ′)−1(Vi), i = 1, . . . , n are proper, flat, of finite
presentation, with geometrically reduced fibres over Y . It suffices to prove the lemma for
each of the morphisms Xi → Y . This reduces us to the case where Xy is connected.
Assume that Xy is connected. By Lemma 36.8 we see that X → Y has geometrically
connected fibres in a neighbourhood of y. Thus we may assume the fibres of X → Y are
geometrically connected. Then f∗OX = OY by Derived Categories of Spaces, Lemma
26.8 which finishes the proof. �

The proof of the following lemma uses Stein factorization for schemes which is why it
ended up in this section.

Lemma 36.10. Let (A, I) be a henselian pair. Let X be an algebraic space separated
and of finite type over A. Set X0 = X ×Spec(A) Spec(A/I). Let Y ⊂ X0 be an open
and closed subspace such that Y → Spec(A/I) is proper. Then there exists an open and
closed subspace W ⊂ X which is proper over A with W ×Spec(A) Spec(A/I) = Y .

Proof. We will denote T 7→ T0 the base change by Spec(A/I) → Spec(A). By a
weak version of Chow’s lemma (in the form of Cohomology of Spaces, Lemma 18.1) there
exists a surjective proper morphism ϕ : X ′ → X such that X ′ admits an immersion
into Pn

A. Set Y ′ = ϕ−1(Y ). This is an open and closed subscheme of X ′
0. The lemma

holds for (X ′, Y ′) by More on Morphisms, Lemma 53.9. Let W ′ ⊂ X ′ be the open and
closed subscheme proper over A such that Y ′ = W ′

0. By Morphisms of Spaces, Lemma
40.6 Q1 = ϕ(|W ′|) ⊂ |X| and Q2 = ϕ(|X ′ \ W ′|) ⊂ |X| are closed subsets and by
Morphisms of Spaces, Lemma 40.7 any closed subspace structure on Q1 is proper over
A. The image of Q1 ∩ Q2 in Spec(A) is closed. Since (A, I) is henselian, if Q1 ∩ Q2 is
nonempty, then we find thatQ1∩Q2 has a point lying over Spec(A/I). This is impossible
as W ′

0 = Y ′ = ϕ−1(Y ). We conclude that Q1 is open and closed in |X|. Let W ⊂ X be
the corresponding open and closed subspace. ThenW is proper overAwithW0 = Y . �

37. Extending properties from an open

In this section we collect a number of results of the form: If f : X → Y is a flat morphism
of algebraic spaces and f satisfies some property over a dense open of Y , then f satisfies
the same property over all of Y .

Lemma 37.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherentOX -module. Let V ⊂ Y be an open subspace. Assume

(1) f is locally of finite presentation,
(2) F is of finite type and flat over Y ,
(3) V → Y is quasi-compact and scheme theoretically dense,
(4) F|f−1V is of finite presentation.

Then F is of finite presentation.

Proof. It suffices to prove the pullback of F to a scheme surjective and étale over X
is of finite presentation. Hence we may assume X is a scheme. Similarly, we can replace
Y by a scheme surjective and étale and over Y (the inverse image of V in this scheme is
scheme theoretically dense, see Morphisms of Spaces, Section 17). Thus we reduce to the
case of schemes which is More on Flatness, Lemma 11.1. �

Lemma 37.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let V ⊂ Y be an open subspace. Assume
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(1) f is locally of finite type and flat,
(2) V → Y is quasi-compact and scheme theoretically dense,
(3) f |f−1V : f−1V → V is locally of finite presentation.

Then f is of locally of finite presentation.

Proof. The proof is identical to the proof of Lemma 37.1 except one uses More on
Flatness, Lemma 11.2. �

Lemma 37.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat and locally of finite type. Let V ⊂ Y be an open subspace such that
|V | ⊂ |Y | is dense and such that XV → V has relative dimension ≤ d. If also either

(1) f is locally of finite presentation, or
(2) V → Y is quasi-compact,

then f : X → Y has relative dimension ≤ d.

Proof. We may replace Y by its reduction, hence we may assume Y is reduced. Then
V is scheme theoretically dense in Y , see Morphisms of Spaces, Lemma 17.7. By definition
the property of having relative dimension ≤ d can be checked on an étale covering, see
Morphisms of Spaces, Sections 33. Thus it suffices to prove f has relative dimension ≤ d
after replacing X by a scheme surjective and étale overX . Similarly, we can replace Y by
a scheme surjective and étale and over Y . The inverse image of V in this scheme is scheme
theoretically dense, see Morphisms of Spaces, Section 17. Since a scheme theoretically
dense open of a scheme is in particular dense, we reduce to the case of schemes which is
More on Flatness, Lemma 11.3. �

Lemma 37.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat and proper. Let V → Y be an open subspace with |V | ⊂ |Y | dense
such that XV → V is finite. If also either f is locally of finite presentation or V → Y is
quasi-compact, then f is finite.

Proof. By Lemma 37.3 the fibres of f have dimension zero. By Morphisms of Spaces,
Lemma 34.6 this implies that f is locally quasi-finite. By Morphisms of Spaces, Lemma 51.1
this implies that f is representable. We can check whether f is finite étale locally on Y ,
hence we may assume Y is a scheme. Since f is representable, we reduce to the case of
schemes which is More on Flatness, Lemma 11.4. �

Lemma 37.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let V ⊂ Y be an open subspace. If

(1) f is separated, locally of finite type, and flat,
(2) f−1(V )→ V is an isomorphism, and
(3) V → Y is quasi-compact and scheme theoretically dense,

then f is an open immersion.

Proof. Applying Lemma 37.2 we see that f is locally of finite presentation. Applying
Lemma 37.3 we see that f has relative dimension ≤ 0. By Morphisms of Spaces, Lemma
34.6 this implies that f is locally quasi-finite. By Morphisms of Spaces, Lemma 51.1 this
implies that f is representable. By Descent on Spaces, Lemma 11.14 we can check whether
f is an open immersion étale locally on Y . Hence we may assume that Y is a scheme. Since
f is representable, we reduce to the case of schemes which is More on Flatness, Lemma
11.5. �
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38. Blowing up and flatness

Instead of redoing the work in More on Flatness, Section 30 we prove an analogue of More
on Flatness, Lemma 30.5 which tells us that the problem of finding a suitable blowup is
often étale local on the base.

Lemma 38.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let ϕ : W → X be a quasi-compact separated étale morphism. Let
U ⊂ X be a quasi-compact open subspace. Let I ⊂ OW be a finite type quasi-coherent
sheaf of ideals such thatV (I)∩ϕ−1(U) = ∅. Then there exists a finite type quasi-coherent
sheaf of ideals J ⊂ OX such that

(1) V (J ) ∩ U = ∅, and
(2) ϕ−1(J )OW = II ′ for some finite type quasi-coherent ideal I ′ ⊂ OW .

Proof. Choose a factorization W → Y → X where j : W → Y is a quasi-compact
open immersion and π : Y → X is a finite morphism of finite presentation (Lemma 34.4).
Let V = j(W ) ∪ π−1(U) ⊂ Y . Note that I on W ∼= j(W ) and Oπ−1(U) glue to a finite
type quasi-coherent sheaf of ideals I1 ⊂ OV . By Limits of Spaces, Lemma 9.8 there exists
a finite type quasi-coherent sheaf of ideals I2 ⊂ OY such that I2|V = I1. In other words,
I2 ⊂ OY is a finite type quasi-coherent sheaf of ideals such that V (I2) is disjoint from
π−1(U) and j−1I2 = I . Denote i : Z → Y the corresponding closed immersion which is
of finite presentation (Morphisms of Spaces, Lemma 28.12). In particular the composition
τ = π ◦ i : Z → X is finite and of finite presentation (Morphisms of Spaces, Lemmas 28.2
and 45.4).

Let F = τ∗OZ which we think of as a quasi-coherentOX -module. By Descent on Spaces,
Lemma 6.7 we see that F is a finitely presented OX -module. Let J = Fit0(F). (Insert
reference to fitting modules on ringed topoi here.) This is a finite type quasi-coherent
sheaf of ideals onX (as F is of finite presentation, see More on Algebra, Lemma 8.4). Part
(1) of the lemma holds because |τ |(|Z|) ∩ |U | = ∅ by our choice of I2 and because the
0th Fitting ideal of the trivial module equals the structure sheaf. To prove (2) note that
ϕ−1(J )OW = Fit0(ϕ∗F) because taking Fitting ideals commutes with base change. On
the other hand, as ϕ : W → X is separated and étale we see that (1, j) : W →W ×X Y is
an open and closed immersion. Hence W ×Y Z = V (I)q Z ′ for some finite and finitely
presented morphism of algebraic spaces τ ′ : Z ′ →W . Thus we see that

Fit0(ϕ∗F) = Fit0((W ×Y Z →W )∗OW×Y Z)
= Fit0(OW /I) · Fit0(τ ′

∗OZ′)
= I · Fit0(τ ′

∗OZ′)

the second equality by More on Algebra, Lemma 8.4 translated in sheaves on ringed topoi.
Setting I ′ = Fit0(τ ′

∗OZ′) finishes the proof of the lemma. �

Theorem 38.2. Let S be a scheme. Let B be a quasi-compact and quasi-separated
algebraic space over S. Let X be an algebraic space over B. Let F be a quasi-coherent
module on X . Let U ⊂ B be a quasi-compact open subspace. Assume

(1) X is quasi-compact,
(2) X is locally of finite presentation over B,
(3) F is a module of finite type,
(4) FU is of finite presentation, and
(5) FU is flat over U .
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Then there exists a U -admissible blowup B′ → B such that the strict transform F ′ of F
is anOX×BB′ -module of finite presentation and flat over B′.

Proof. Choose an affine scheme V and a surjective étale morphism V → X . Because
strict transform commutes with étale localization (Divisors on Spaces, Lemma 18.2) it suf-
fices to prove the result with X replaced by V . Hence we may assume that X → B is
representable (in addition to the hypotheses of the lemma).

Assume that X → B is representable. Choose an affine scheme W and a surjective étale
morphism ϕ : W → B. Note that X ×B W is a scheme. By the case of schemes (More
on Flatness, Theorem 30.7) we can find a finite type quasi-coherent sheaf of ideals I ⊂
OW such that (a) |V (I)| ∩ |ϕ−1(U)| = ∅ and (b) the strict transform of F|X×BW with
respect to the blowing up W ′ → W in I becomes flat over W ′ and is a module of finite
presentation. Choose a finite type sheaf of ideals J ⊂ OB as in Lemma 38.1. Let B′ → B
be the blowing up ofJ . We claim that this blowup works. Namely, it is clear thatB′ → B
is U -admissible by our choice of ideal J . Moreover, the base change B′ ×B W → W is
the blowup of W in ϕ−1J = II ′ (compatibility of blowup with flat base change, see
Divisors on Spaces, Lemma 17.3). Hence there is a factorization

W ×B B′ →W ′ →W

where the first morphism is a blowup as well, see Divisors on Spaces, Lemma 17.10). The
restriction of F ′ (which lives on B′ ×B X) to W ×B B′ ×B X is the strict transform of
F|X×BW (Divisors on Spaces, Lemma 18.2) and hence is the twice repeated strict trans-
form of F|X×BW by the two blowups displayed above (Divisors on Spaces, Lemma 18.7).
After the first blowup our sheaf is already flat over the base and of finite presentation (by
construction). Whence this holds after the second strict transform as well (since this is a
pullback by Divisors on Spaces, Lemma 18.4). Thus we see that the restriction of F ′ to an
étale cover of B′ ×B X has the desired properties and the theorem is proved. �

39. Applications

In this section we apply the result on flattening by blowing up.

Lemma 39.1. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Let U ⊂ B be an open subspace. Assume

(1) B is quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f : X → B is of finite type and quasi-separated, and
(4) f−1(U)→ U is flat and locally of finite presentation.

Then there exists a U -admissible blowup B′ → B such that the strict transform X ′ of X
is flat and of finite presentation over B′.

Proof. Let B′ → B be a U -admissible blowup. Note that the strict transform of X
is quasi-compact and quasi-separated over B′ as X is quasi-compact and quasi-separated
over B. Hence we only need to worry about finding a U -admissible blowup such that the
strict transform becomes flat and locally of finite presentation. We cannot directly apply
Theorem 38.2 because X is not locally of finite presentation over B.

Choose an affine scheme V and a surjective étale morphism V → X . (This is possible as
X is quasi-compact as a finite type space over the quasi-compact spaceB.) Then it suffices
to show the result for the morphism V → B (as strict transform commutes with étale
localization, see Divisors on Spaces, Lemma 18.2). Hence we may assume that X → B is
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separated as well as finite type. In this case we can find a closed immersion i : X → Y
with Y → B separated and of finite presentation, see Limits of Spaces, Proposition 11.7.

Apply Theorem 38.2 to F = i∗OX on Y/B. We find a U -admissible blowup B′ → B
such that strict transform ofF is flat overB′ and of finite presentation. LetX ′ be the strict
transform of X under the blowup B′ → B. Let i′ : X ′ → Y ×B B′ be the induced mor-
phism. Since taking strict transform commutes with pushforward along affine morphisms
(Divisors on Spaces, Lemma 18.5), we see that i′∗OX′ is flat over B′ and of finite presenta-
tion as a OY×BB′ -module. Thus X ′ → B′ is flat and locally of finite presentation. This
implies the lemma by our earlier remarks. �

Lemma 39.2. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Let U ⊂ B be an open subspace. Assume

(1) B is quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f : X → B is proper, and
(4) f−1(U)→ U is finite locally free.

Then there exists a U -admissible blowup B′ → B such that the strict transform X ′ of X
is finite locally free over B′.

Proof. By Lemma 39.1 we may assume thatX → B is flat and of finite presentation.
After replacing B by a U -admissible blowup if necessary, we may assume that U ⊂ B is
scheme theoretically dense. Then f is finite by Lemma 37.4. Hence f is finite locally free
by Morphisms of Spaces, Lemma 46.6. �

Lemma 39.3. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Let U ⊂ B be an open subspace. Assume

(1) B is quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f : X → B is proper, and
(4) f−1(U)→ U is an isomorphism.

Then there exists a U -admissible blowup B′ → B such that the strict transform X ′ of X
maps isomorphically to B′.

Proof. By Lemma 39.1 we may assume thatX → B is flat and of finite presentation.
After replacing B by a U -admissible blowup if necessary, we may assume that U ⊂ B is
scheme theoretically dense. Then f is finite by Lemma 37.4 and an open immersion by
Lemma 37.5. Hence f is an open immersion whose image is closed and contains the dense
open U , whence f is an isomorphism. �

Lemma 39.4. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Let U ⊂ B be an open subspace. Assume

(1) B quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f is of finite type
(4) f−1(U)→ U is an isomorphism.

Then there exists a U -admissible blowup B′ → B such that U is scheme theoretically
dense in B′ and such that the strict transform X ′ of X maps isomorphically to an open
subspace of B′.



5758 76. MORE ON MORPHISMS OF SPACES

Proof. This lemma is a generalization of Lemma 39.3. As the composition of U -
admissible blowups is U -admissible (Divisors on Spaces, Lemma 19.2) we can proceed in
stages. Pick a finite type quasi-coherent sheaf of ideals I ⊂ OB with |B| \ |U | = |V (I)|.
ReplaceB by the blowup ofB in I andX by the strict transform ofX . After this replace-
ment B \ U is the support of an effective Cartier divisor D (Divisors on Spaces, Lemma
17.4). In particular U is scheme theoretically dense inB (Divisors on Spaces, Lemma 6.4).
Next, we do anotherU -admissible blowup to get to the situation whereX → B is flat and
of finite presentation, see Lemma 39.1. Note that U is still scheme theoretically dense in
B. Hence X → B is an open immersion by Lemma 37.5. �

The following lemma says that a modification can be dominated by a blowup.

Lemma 39.5. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Let U ⊂ B be an open subspace. Assume

(1) B is quasi-compact and quasi-separated,
(2) U is quasi-compact,
(3) f : X → B is proper,
(4) f−1(U)→ U us an isomorphism.

Then there exists aU -admissible blowupB′ → B which dominatesX , i.e., such that there
exists a factorization B′ → X → B of the blowup morphism.

Proof. By Lemma 39.3 we may find a U -admissible blowup B′ → B such that the
strict transform X ′ maps isomorphically to B′. Then we can use B′ = X ′ → X as the
factorization. �

Lemma 39.6. LetS be a scheme. LetX , Y be algebraic spaces overS. LetU ⊂W ⊂ Y
be open subspaces. Let f : X →W and let s : U → X be morphisms such that f◦s = idU .
Assume

(1) f is proper,
(2) Y is quasi-compact and quasi-separated, and
(3) U and W are quasi-compact.

Then there exists a U -admissible blowup b : Y ′ → Y and a morphism s′ : b−1(W )→ X
extending s with f ◦ s′ = b|b−1(W ).

Proof. We may and do replaceX by the scheme theoretic image of s. ThenX →W
is an isomorphism over U , see Morphisms of Spaces, Lemma 16.7. By Lemma 39.5 there
exists a U -admissible blowup W ′ → W and an extension W ′ → X of s. We finish the
proof by applying Divisors on Spaces, Lemma 19.3 to extend W ′ →W to a U -admissible
blowup of Y . �

40. Chow’s lemma

In this section we prove Chow’s lemma (Lemma 40.5). We encourage the reader to take a
look at Cohomology of Spaces, Section 18 for a weak version of Chow’s lemma that is easy
to prove and sufficient for many applications.

Since we have yet to define projective morphisms of algebraic spaces, the statements of
lemmas (see for example Lemma 40.2) will involve representable proper morphisms, rather
than projective ones.

Lemma 40.1. Let S be a scheme. Let Y be a quasi-compact and quasi-separated alge-
braic space over S. Let U → X1 and U → X2 be open immersions of algebraic spaces
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over Y and assume U , X1, X2 of finite type and separated over Y . Then there exists a
commutative diagram

X ′
1

��

// X X ′
2

oo

��
X1 Uoo

`` OO >>

// X2

of algebraic spaces over Y where X ′
i → Xi is a U -admissible blowup, X ′

i → X is an open
immersion, and X is separated and finite type over Y .

Proof. Throughout the proof all the algebraic spaces will be separated of finite type
over Y . This in particular implies these algebraic spaces are quasi-compact and quasi-
separated and that the morphisms between them will be quasi-compact and separated. See
Morphisms of Spaces, Sections 4 and 8. We will use that if U → W is an immersion of
such spaces over Y , then the scheme theoretic image Z of U in W is a closed subspace of
W andU → Z is an open immersion, U ⊂ Z is scheme theoretically dense, and |U | ⊂ |Z|
is dense. See Morphisms of Spaces, Lemma 17.7.

LetX12 ⊂ X1×Y X2 be the scheme theoretic image of U → X1×Y X2. The projections
pi : X12 → Xi induce isomorphisms p−1

i (U) → U by Morphisms of Spaces, Lemma
16.7. Choose a U -admissible blowup Xi

i → Xi such that the strict transform Xi
12 of

X12 is isomorphic to an open subspace of Xi
i , see Lemma 39.4. Let Ii ⊂ OXi be the

corresponding finite type quasi-coherent sheaf of ideals. Recall that Xi
12 → X12 is the

blowup in p−1
i IiOX12 , see Divisors on Spaces, Lemma 18.3. LetX ′

12 be the blowup ofX12
in p−1

1 I1p
−1
2 I2OX12 , see Divisors on Spaces, Lemma 17.10 for what this entails. We obtain

a commutative diagram
X ′

12

��

// X2
12

��
X1

12
// X12

where all the morphisms are U -admissible blowing ups. Since Xi
12 ⊂ Xi

i is an open we
may choose a U -admissible blowup X ′

i → Xi
i restricting to X ′

12 → Xi
12, see Divisors on

Spaces, Lemma 19.3. Then X ′
12 ⊂ X ′

i is an open subspace and the diagram

X ′
12

��

// X ′
i

��
Xi

12
// Xi

i

is commutative with vertical arrows blowing ups and horizontal arrows open immersions.
Note that X ′

12 → X ′
1 ×Y X ′

2 is an immersion and proper (use that X ′
12 → X12 is proper

and X12 → X1 ×Y X2 is closed and X ′
1 ×Y X ′

2 → X1 ×Y X2 is separated and apply
Morphisms of Spaces, Lemma 40.6). ThusX ′

12 → X ′
1×Y X ′

2 is a closed immersion. If we
define X by glueing X ′

1 and X ′
2 along the common open subspace X ′

12, then X → Y is
of finite type and separated2. As compositions of U -admissible blowups are U -admissible
blowups (Divisors on Spaces, Lemma 19.2) the lemma is proved. �

2Because we may check closedness of the diagonalX → X ×Y X over the four open partsX′
i ×Y X′

j of
X ×Y X where it is clear.
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Lemma 40.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let U ⊂ X be an open subspace. Assume

(1) U is quasi-compact,
(2) Y is quasi-compact and quasi-separated,
(3) there exists an immersion U → Pn

Y over Y ,
(4) f is of finite type and separated.

Then there exists a commutative diagram

U

~~ �� !! ((
X

  

X ′oo

��

// Z ′

}}

// Z

~~
Y Pn

Y
oo

where the arrows with source U are open immersions, X ′ → X is a U -admissible blowup,
X ′ → Z ′ is an open immersion, Z ′ → Y is a proper and representable morphism of
algebraic spaces. More precisely, Z ′ → Z is a U -admissible blowup and Z → Pn

Y is a
closed immersion.

Proof. Let Z ⊂ Pn
Y be the scheme theoretic image of the immersion U → Pn

Y .
Since U → Pn

Y is quasi-compact we see that U ⊂ Z is a (scheme theoretically) dense open
subspace (Morphisms of Spaces, Lemma 17.7). Apply Lemma 40.1 to find a diagram

X ′

��

// X
′

Z ′oo

��
X Uoo

`` OO >>

// Z

with properties as listed in the statement of that lemma. As X ′ → X and Z ′ → Z are
U -admissible blowups we find that U is a scheme theoretically dense open of bothX ′ and
Z ′ (see Divisors on Spaces, Lemmas 17.4 and 6.4). Since Z ′ → Z → Y is proper we see
that Z ′ ⊂ X ′ is a closed subspace (see Morphisms of Spaces, Lemma 40.6). It follows that
X ′ ⊂ Z ′ (scheme theoretically), henceX ′ is an open subspace of Z ′ (small detail omitted)
and the lemma is proved. �

Lemma 40.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f separated, of finite type, and Y Noetherian. Then there exists a dense
open subspace U ⊂ X and a commutative diagram

U

~~ �� !! ((
X

  

X ′oo

��

// Z ′

}}

// Z

~~
Y Pn

Y
oo

where the arrows with source U are open immersions, X ′ → X is a U -admissible blowup,
X ′ → Z ′ is an open immersion, Z ′ → Y is a proper and representable morphism of
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algebraic spaces. More precisely, Z ′ → Z is a U -admissible blowup and Z → Pn
Y is a

closed immersion.

Proof. By Limits of Spaces, Lemma 13.3 there exists a dense open subspace U ⊂ X
and an immersion U → An

Y over Y . Composing with the open immersion An
Y → Pn

Y

we obtain a situation as in Lemma 40.2 and the result follows. �

Remark 40.4. In Lemmas 40.2 and 40.3 the morphism g : Z ′ → Y is a composition
of projective morphisms. Presumably (by the analogue for algebraic spaces of Morphisms,
Lemma 37.8) there exists a g-ample invertible sheaf on Z ′. If we ever need this, then we
will state and prove this here.

The following result is [?, IV Theorem 3.1]. Note that the immersion X ′ → Pn
Y is quasi-

compact, hence can be factored as X ′ → Z ′ → Pn
Y where the first morphism is an open

immersion and the second morphism a closed immersion (Morphisms of Spaces, Lemma
17.7).

Lemma 40.5 (Chow’s lemma). Let S be a scheme. Let f : X → Y be a morphism of
algebraic spaces over S. Assume f separated of finite type, and Y separated and Noether-
ian. Then there exists a commutative diagram

X

  

X ′oo

��

// Pn
Y

}}
Y

where X ′ → X is a U -admissible blowup for some dense open U ⊂ X and the morphism
X ′ → Pn

Y is an immersion.

Proof. In this first paragraph of the proof we reduce the lemma to the case where Y
is of finite type over Spec(Z). We may and do replace the base scheme S by Spec(Z). We
can write Y = lim Yi as a directed limit of separated algebraic spaces of finite type over
Spec(Z), see Limits of Spaces, Proposition 8.1 and Lemma 5.9. For all i sufficiently large
we can find a separated finite type morphism Xi → Yi such that X = Y ×Yi Xi, see Lim-
its of Spaces, Lemmas 7.1 and 6.9. Let η1, . . . , ηn be the generic points of the irreducible
components of |X| (X is Noetherian as a finite type separated algebraic space over the Noe-
therian algebraic space Y and therefore |X| is a Noetherian topological space). By Limits
of Spaces, Lemma 5.2 we find that the images of η1, . . . , ηn in |Xi| are distinct for i large
enough. We may replace Xi by the scheme theoretic image of the (quasi-compact, in fact
affine) morphismX → Xi. After this replacement we see that the images of η1, . . . , ηn in
|Xi| are the generic points of the irreducible components of |Xi|, see Morphisms of Spaces,
Lemma 16.3. Having said this, suppose we can find a diagram

Xi

  

X ′
i

oo

��

// Pn
Yi

}}
Y

where X ′
i → Xi is a Ui-admissible blowup for some dense open Ui ⊂ Xi and the mor-

phism X ′
i → Pn

Yi
is an immersion. Then the strict transform X ′ → X of X relative to

X ′
i → Xi is a U -admissible blowing up where U ⊂ X is the inverse image of Ui in X .

Because of our carefuly chosen index i it follows that η1, . . . , ηn ∈ |U | and U ⊂ X is
dense. Moreover, X ′ → Pn

Y is an immersion as X ′ is closed in X ′
i ×Xi X = X ′

i ×Yi Y
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which comes with an immersion into Pn
Y . Thus we have reduced to the situation of the

following paragraph.
Assume that Y is separated of finite type over Spec(Z). Then X → Spec(Z) is separated
of finite type as well. We apply Lemma 40.3 to X → Spec(Z) to find a dense open
subspace U ⊂ X and a commutative diagram

U

zz �� $$ ))
X

##

X ′oo

��

// Z ′

zz

// Z

~~
Spec(Z) Pn

Z
oo

with all the properties listed in the lemma. Note that Z has an ample invertible sheaf,
namely OPn(1)|Z . Hence Z ′ → Z is a H-projective morphism by Morphisms, Lemma
43.16. It follows that Z ′ → Spec(Z) is H-projective by Morphisms, Lemma 43.7. Thus
there exists a closed immersion Z ′ → Pm

Spec(Z) for some m ≥ 0. It follows that the
diagonal morphism

X ′ → Y ×Pm
Z = Pm

Y

is an immersion (because the composition with the projection to Pm
Z is an immersion) and

we win. �

41. Variants of Chow’s Lemma

In this section we prove a number of variants of Chow’s lemma dealing with morphisms
between non-Noetherian algebraic spaces. The Noetherian versions are Lemma 40.3 and
Lemma 40.5.

Lemma 41.1. Let S be a scheme. Let Y be a quasi-compact and quasi-separated alge-
braic space over S. Let f : X → Y be a separated morphism of finite type. Then there
exists a commutative diagram

X

  

X ′oo

��

// X
′

~~
Y

where X ′ → X is proper surjective, X ′ → X
′ is an open immersion, and X ′ → Y is

proper and representable morphism of algebraic spaces.

Proof. By Limits of Spaces, Proposition 11.7 we can find a closed immersion X →
X1 where X1 is separated and of finite presentation over Y . Clearly, if we prove the
assertion for X1 → Y , then the result follows for X . Hence we may assume that X is of
finite presentation over Y .
We may and do replace the base scheme S by Spec(Z). Write Y = limi Yi as a directed
limit of quasi-separated algebraic spaces of finite type over Spec(Z), see Limits of Spaces,
Proposition 8.1. By Limits of Spaces, Lemma 7.1 we can find an index i ∈ I and a scheme
Xi → Yi of finite presentation so that X = Y ×Yi Xi. By Limits of Spaces, Lemma 6.9
we may assume that Xi → Yi is separated. Clearly, if we prove the assertion for Xi over
Yi, then the assertion holds for X . The case Xi → Yi is treated by Lemma 40.3. �
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Lemma 41.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f separated of finite type, and Y separated and quasi-compact. Then there
exists a commutative diagram

X

  

X ′oo

��

// Pn
Y

}}
Y

where X ′ → X is proper surjective morphism and the morphism X ′ → Pn
Y is an immer-

sion.

Proof. By Limits of Spaces, Proposition 11.7 we can find a closed immersion X →
X1 where X1 is separated and of finite presentation over Y . Clearly, if we prove the
assertion for X1 → Y , then the result follows for X . Hence we may assume that X is of
finite presentation over Y .

We may and do replace the base scheme S by Spec(Z). Write Y = limi Yi as a directed
limit of quasi-separated algebraic spaces of finite type over Spec(Z), see Limits of Spaces,
Proposition 8.1. By Limits of Spaces, Lemma 5.9 we may assume that Yi is separated for
all i. By Limits of Spaces, Lemma 7.1 we can find an index i ∈ I and a scheme Xi → Yi
of finite presentation so that X = Y ×Yi Xi. By Limits of Spaces, Lemma 6.9 we may
assume that Xi → Yi is separated. Clearly, if we prove the assertion for Xi over Yi, then
the assertion holds for X . The case Xi → Yi is treated by Lemma 40.5. �

42. Grothendieck’s existence theorem

In this section we discuss Grothendieck’s existence theorem for algebraic spaces. Instead of
developing a theory of “formal algebraic spaces” we temporarily develop a bit of language
that replaces the notion of a “coherent module on a Noetherian adic formal space”.

Let S be a scheme. Let X be a Noetherian algebraic space over S. Let I ⊂ OX be a
quasi-coherent sheaf of ideals. Below we will consider inverse systems (Fn) of coherent
OX -modules such that

(1) Fn is annihilated by In, and
(2) the transition maps induce isomorphisms Fn+1/InFn+1 → Fn.

A morphism α : (Fn) → (Gn) of such inverse systems is simply a compatible system
of morphisms αn : Fn → Gn. Let us denote the category of these inverse systems with
Coh(X, I). We will develop some theory regarding these systems that will parallel to the
corresponding results in the case of schemes, see Cohomology of Schemes, Sections 24, 25,
27, and 28.

Functoriality. Let f : X → Y be a morphism of Noetherian algebraic spaces over a
scheme S , and let J ⊂ OY be a quasi-coherent sheaf of ideals. Set I = f−1JOX . In this
situation there is a functor

f∗ : Coh(Y,J ) −→ Coh(X, I)
which sends (Gn) to (f∗Gn). Compare with Cohomology of Schemes, Lemma 23.9. If f is
étale, then we may think of this as simply the restriction of the system toX , see Properties
of Spaces, Equation 26.1.1.

Étale descent. LetS be a scheme. LetU0 → X be a surjective étale morphism of Noetherian
algebraic spaces. Set U1 = U0 ×X U0 and U2 = U0 ×X U0 ×X U0. Let I ⊂ OX be a
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quasi-coherent sheaf of ideals. Set Ii = I|Ui . In this situation we obtain a diagram of
categories

Coh(X, I) // Coh(U0, I0) //// Coh(U1, I1) ////// Coh(U2, I2)

an the first arrow presents Coh(X, I) as the homotopy limit of the right part of the dia-
gram. More precisely, given a descent datum, i.e., a pair ((Gn), ϕ) where (Gn) is an object
of Coh(U0, I0) and ϕ : pr∗

0(Gn)→ pr∗
1(Gn) is an isomorphism in Coh(U1, I1) satisfying

the cocycle condition in Coh(U2, I2), then there exists a unique object (Fn) of Coh(X, I)
whose associated canonical descent datum is isomorphic to ((Gn), ϕ). Compare with De-
scent on Spaces, Definition 3.3. The proof of this statement follows immediately by ap-
plying Descent on Spaces, Proposition 4.1 to the descent data (Gn, ϕn) for varying n.

Lemma 42.1. Let S be a scheme. Let X be a Noetherian algebraic space over S and
let I ⊂ OX be a quasi-coherent sheaf of ideals.

(1) The category Coh(X, I) is abelian.
(2) Exactness in Coh(X, I) can be checked étale locally.
(3) For any flat morphism f : X ′ → X of Noetherian algebraic spaces the functor

f∗ : Coh(X, I)→ Coh(X ′, f−1IOX′) is exact.

Proof. Proof of (1). Choose an affine scheme U0 and a surjective étale morphism
U0 → X . Set U1 = U0 ×X U0 and U2 = U0 ×X U0 ×X U0 as in our discussion of
étale descent above. The categories Coh(Ui, Ii) are abelian (Cohomology of Schemes,
Lemma 23.2) and the pullback functors are exact functors Coh(U0, I0) → Coh(U1, I1)
and Coh(U1, I1) → Coh(U2, I2) (Cohomology of Schemes, Lemma 23.9). The lemma
then follows formally from the description of Coh(X, I) as a category of descent data.
Some details omitted; compare with the proof of Groupoids, Lemma 14.6.
Part (2) follows immediately from the discussion in the previous paragraph. In the situa-
tion of (3) choose a commutative diagram

U ′

��

// U

��
X ′ // X

where U ′ and U are affine schemes and the vertical morphisms are surjective étale. Then
U ′ → U is a flat morphism of Noetherian schemes (Morphisms of Spaces, Lemma 30.5)
whence the pullback functor Coh(U, IOU ) → Coh(U ′, IOU ′) is exact by Cohomology
of Schemes, Lemma 23.9. Since we can check exactness in Coh(X,OX) onU and similarly
for X ′, U ′ the assertion follows. �

Lemma 42.2. Let S be a scheme. Let X be a Noetherian algebraic space over S and
let I ⊂ OX be a quasi-coherent sheaf of ideals. A map (Fn) → (Gn) is surjective in
Coh(X, I) if and only if F1 → G1 is surjective.

Proof. We can check on an affine étale cover of X by Lemma 42.1. Thus we reduce
to the case of schemes which is Cohomology of Schemes, Lemma 23.3. �

Let S be a scheme. Let X be a Noetherian algebraic space over S and let I ⊂ OX be a
quasi-coherent sheaf of ideals. There is a functor
(42.2.1) Coh(OX) −→ Coh(X, I), F 7−→ F∧

which associates to the coherentOX -moduleF the objectF∧ = (F/InF) of Coh(X, I).
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Lemma 42.3. The functor (42.2.1) is exact.

Proof. It suffices to check this étale locally on X , see Lemma 42.1. Thus we reduce
to the case of schemes which is Cohomology of Schemes, Lemma 23.4. �

Lemma 42.4. Let S be a scheme. Let X be a Noetherian algebraic space over S and
let I ⊂ OX be a quasi-coherent sheaf of ideals. Let F , G be coherent OX -modules. Set
H = HomOX

(F ,G). Then

limH0(X,H/InH) = MorCoh(X,I)(F∧,G∧).

Proof. Since H is a sheaf on Xétale and since we have étale descent for objects of
Coh(X, I) it suffices to prove this étale locally. Thus we reduce to the case of schemes
which is Cohomology of Schemes, Lemma 23.5. �

We introduce the setting that we will focus on throughout the rest of this section.

Situation 42.5. HereA is a Noetherian ring complete with respect to an ideal I . Also
f : X → Spec(A) is a finite type separated morphism of algebraic spaces and I = IOX .

In this situation we denote

Cohsupport proper overA(OX)

be the full subcategory of Coh(OX) consisting of those coherentOX -modules whose sup-
port is proper over Spec(A), or equivalently whose scheme theoretic support is proper
over Spec(A), see Derived Categories of Spaces, Lemma 7.7. Similarly, we let

Cohsupport proper overA(X, I)

be the full subcategory of Coh(X, I) consisting of those objects (Fn) such that the support
of F1 is proper over Spec(A). Since the support of a quotient module is contained in the
support of the module, it follows that (42.2.1) induces a functor

(42.5.1) Cohsupport proper overA(OX) −→ Cohsupport proper overA(X, I)

Our first result is that this functor is fully faithful.

Lemma 42.6. In Situation 42.5. Let F , G be coherentOX -modules. Assume that the
intersection of the supports of F and G is proper over Spec(A). Then the map

MorCoh(OX)(F ,G) −→ MorCoh(X,I)(F∧,G∧)

coming from (42.2.1) is a bijection. In particular, (42.5.1) is fully faithful.

Proof. Let H = HomOX
(G,F). This is a coherent OX -module because its restric-

tion of schemes étale over X is coherent by Modules, Lemma 22.6. By Lemma 42.4 the
map

limnH
0(X,H/InH)→ MorCoh(X,I)(G∧,F∧)

is bijective. Let i : Z → X be the scheme theoretic support of H. It is clear that Z
is a closed subspace such that |Z| is contained in the intersection of the supports of F
and G. Hence Z → Spec(A) is proper by assumption (see Derived Categories of Spaces,
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Section 7). WriteH = i∗H′ for some coherentOZ -moduleH′. We have i∗(H′/InH′) =
H/InH. Hence we obtain

limnH
0(X,H/InH) = limnH

0(Z,H′/InH′)
= H0(Z,H′)
= H0(X,H)
= MorCoh(OX)(F ,G)

the second equality by the theorem on formal functions (Cohomology of Spaces, Lemma
22.6). This proves the lemma. �

Remark 42.7. Let S be a scheme. Let X be a Noetherian algebraic space over S
and let I,K ⊂ OX be quasi-coherent sheaves of ideals. Let α : (Fn) → (Gn) be a
morphism of Coh(X, I). Given an affine scheme U = Spec(A) and a surjective étale
morphismU → X denote I,K ⊂ A the ideals corresponding to the restrictions I|U ,K|U .
Denote αU : M → N of finite A∧-modules which corresponds to α|U via Cohomology
of Schemes, Lemma 23.1. We claim the following are equivalent

(1) there exists an integer t ≥ 1 such that Ker(αn) and Coker(αn) are annihilated
by Kt for all n ≥ 1,

(2) for any (or some) affine open Spec(A) = U ⊂ X as above the modules Ker(αU )
and Coker(αU ) are annihilated by Kt for some integer t ≥ 1.

If these equivalent conditions hold we will say that α is a map whose kernel and coker-
nel are annihilated by a power of K. To see the equivalence we refer to Cohomology of
Schemes, Remark 25.1.

Lemma 42.8. Let S be a scheme. Let X be a Noetherian algebraic space over S and
let I ⊂ OX be a quasi-coherent sheaf of ideals. Let G be a coherent OX -module, (Fn) an
object of Coh(X, I), andα : (Fn)→ G∧ a map whose kernel and cokernel are annihilated
by a power of I . Then there exists a unique (up to unique isomorphism) triple (F , a, β)
where

(1) F is a coherentOX -module,
(2) a : F → G is anOX -module map whose kernel and cokernel are annihilated by

a power of I ,
(3) β : (Fn)→ F∧ is an isomorphism, and
(4) α = a∧ ◦ β.

Proof. The uniqueness and étale descent for objects of Coh(X, I) and Coh(OX)
implies it suffices to construct (F , a, β) étale locally on X . Thus we reduce to the case of
schemes which is Cohomology of Schemes, Lemma 23.6. �

Lemma 42.9. In Situation 42.5. Let K ⊂ OX be a quasi-coherent sheaf of ideals. Let
Xe ⊂ X be the closed subspace cut out by Ke. Let Ie = IOXe . Let (Fn) be an object of
Cohsupport proper overA(X, I). Assume

(1) the functor Cohsupport proper overA(OXe) → Cohsupport proper overA(Xe, Ie) is an
equivalence for all e ≥ 1, and

(2) there exists an objectH of Cohsupport proper overA(OX) and a map α : (Fn)→ H∧

whose kernel and cokernel are annihilated by a power of K.
Then (Fn) is in the essential image of (42.5.1).
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Proof. During this proof we will use without further mention that for a closed im-
mersion i : Z → X the functor i∗ gives an equivalence between the category of coherent
modules on Z and coherent modules on X annihilated by the ideal sheaf of Z , see Coho-
mology of Spaces, Lemma 12.8. In particular we think of

Cohsupport proper overA(OXe) ⊂ Cohsupport proper overA(OX)
as the full subcategory of consisting of modules annihilated by Ke and

Cohsupport proper overA(Xe, Ie) ⊂ Cohsupport proper overA(X, I)
as the full subcategory of objects annihilated by Ke. Moreover (1) tells us these two cate-
gories are equivalent under the completion functor (42.5.1).
Applying this equivalence we get a coherent OX -module Ge annihilated by Ke corre-
sponding to the system (Fn/KeFn) of Cohsupport proper overA(X, I). The mapsFn/Ke+1Fn →
Fn/KeFn correspond to canonical mapsGe+1 → Ge which induce isomorphismsGe+1/KeGe+1 →
Ge. We obtain an object (Ge) of the category Cohsupport proper overA(X,K). The map α in-
duces a system of maps

Fn/KeFn −→ H/(In +Ke)H
whence maps Ge → H/KeH (by the equivalence of categories again). Let t ≥ 1 be an
integer, which exists by assumption (2), such that Kt annihilates the kernel and cokernel
of all the mapsFn → H/InH. ThenK2t annihilates the kernel and cokernel of the maps
Fn/KeFn → H/(In+Ke)H (details omitted; see Cohomology of Schemes, Remark 25.1).
Whereupon we conclude that K4t annihilates the kernel and the cokernel of the maps

Ge −→ H/KeH,
(details omitted; see Cohomology of Schemes, Remark 25.1). We apply Lemma 42.8 to
obtain a coherent OX -module F , a map a : F → H and an isomorphism β : (Ge) →
(F/KeF) in Coh(X,K). Working backwards, for a given n the triple (F/InF , a mod
In, β mod In) is a triple as in the lemma for the morphism αn mod Ke : (Fn/KeFn)→
(H/(In + Ke)H) of Coh(X,K). Thus the uniqueness in Lemma 42.8 gives a canonical
isomorphism F/InF → Fn compatible with all the morphisms in sight.
To finish the proof of the lemma we still have to show that the support of F is proper
over A. By construction the kernel of a : F → H is annihilated by a power of K.
Hence the support of this kernel is contained in the support of G1. Since G1 is an ob-
ject of Cohsupport proper overA(OX1) we see this is proper over A. Combined with the fact
that the support of H is proper over A we conclude that the support of F is proper over
A by Derived Categories of Spaces, Lemma 7.6. �

Lemma 42.10. LetS be a scheme. Let f : X → Y be a representable proper morphism
of Noetherian algebraic spaces over S. LetJ ,K ⊂ OY be quasi-coherent sheaves of ideals.
Assume f is an isomorphism over V = Y \ V (K). Set I = f−1JOX . Let (Gn) be an
object of Coh(Y,J ), let F be a coherent OX -module, and let β : (f∗Gn) → F∧ be an
isomorphism in Coh(X, I). Then there exists a map

α : (Gn) −→ (f∗F)∧

in Coh(Y,J ) whose kernel and cokernel are annihilated by a power of K.

Proof. Since f is a proper morphism we see that f∗F is a coherentOY -module (Co-
homology of Spaces, Lemma 20.2). Thus the statement of the lemma makes sense. Consider
the compositions

γn : Gn → f∗f
∗Gn → f∗(F/InF).
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Here the first map is the adjunction map and the second is f∗βn. We claim that there exists
a unique α as in the lemma such that the compositions

Gn
αn−−→ f∗F/J nf∗F → f∗(F/InF)

equal γn for all n. Because of the uniqueness and étale descent for Coh(Y,J ) it suffices
to prove this étale locally on Y . Thus we may assume Y is the spectrum of a Noetherian
ring. As f is representable we see that X is a scheme as well. Thus we reduce to the case
of schemes, see proof of Cohomology of Schemes, Lemma 25.3. �

Theorem 42.11 (Grothendieck’s existence theorem). In Situation 42.5 the functor
(42.5.1) is an equivalence.

Proof. We will use the equivalence of categories of Cohomology of Spaces, Lemma
12.8 without further mention in the proof of the theorem. By Lemma 42.6 the functor is
fully faithful. Thus we need to prove the functor is essentially surjective.

Consider the collection Ξ of quasi-coherent sheaves of idealsK ⊂ OX such that the state-
ment holds for every object (Fn) of Cohsupport proper overA(X, I) annihilated by K. We
want to show (0) is in Ξ. If not, then since X is Noetherian there exists a maximal quasi-
coherent sheaf of idealsK not in Ξ, see Cohomology of Spaces, Lemma 13.1. After replacing
X by the closed subscheme of X corresponding to K we may assume that every nonzero
K is in Ξ. Let (Fn) be an object of Cohsupport proper overA(X, I). We will show that this
object is in the essential image, thereby completing the proof of the theorem.

Apply Chow’s lemma (Lemma 40.5) to find a proper surjective morphism f : Y → X
which is an isomorphism over a dense openU ⊂ X such that Y is H-quasi-projective over
A. Note that Y is a scheme and f representable. Choose an open immersion j : Y → Y ′

with Y ′ projective over A, see Morphisms, Lemma 43.11. Let Tn be the scheme theoretic
support of Fn. Note that |Tn| = |T1|, hence Tn is proper over A for all n (Morphisms of
Spaces, Lemma 40.7). Then f∗Fn is supported on the closed subscheme f−1Tn which is
proper over A (by Morphisms of Spaces, Lemma 40.4 and properness of f ). In particular,
the composition f−1Tn → Y → Y ′ is closed (Morphisms, Lemma 41.7). Let T ′

n ⊂ Y ′ be
the corresponding closed subscheme; it is contained in the open subscheme Y and equal
to f−1Tn as a closed subscheme of Y . Let F ′

n be the coherentOY ′ -module corresponding
to f∗Fn viewed as a coherent module on Y ′ via the closed immersion f−1Tn = T ′

n ⊂
Y ′. Then (F ′

n) is an object of Coh(Y ′, IOY ′). By the projective case of Grothendieck’s
existence theorem (Cohomology of Schemes, Lemma 24.3) there exists a coherent OY ′ -
module F ′ and an isomorphism (F ′)∧ ∼= (F ′

n) in Coh(Y ′, IOY ′). Let Z ′ ⊂ Y ′ be the
scheme theoretic support of F ′. Since F ′/IF ′ = F ′

1 we see that Z ′ ∩ V (IOY ′) = T ′
1

set-theoretically. The structure morphism p′ : Y ′ → Spec(A) is proper, hence p′(Z ′ ∩
(Y ′ \Y )) is closed in Spec(A). If nonempty, then it would contain a point of V (I) as I is
contained in the Jacobson radical of A (Algebra, Lemma 96.6). But we’ve seen above that
Z ′ ∩ (p′)−1V (I) = T ′

1 ⊂ Y hence we conclude that Z ′ ⊂ Y . Thus F ′|Y is supported on
a closed subscheme of Y proper over A.

LetK be the quasi-coherent sheaf of ideals cutting out the reduced complementX \U . By
Cohomology of Spaces, Lemma 20.2 theOX -moduleH = f∗F ′ is coherent and by Lemma
42.10 there exists a morphism α : (Fn)→ H∧ in the category Cohsupport proper overA(X, I)
whose kernel and cokernel are annihilated by a power of K. Let Z0 ⊂ X be the scheme
theoretic support of H. It is clear that |Z0| ⊂ f(|Z ′|). Hence Z0 → Spec(A) is proper
(Morphisms of Spaces, Lemma 40.7). Thus H is an object of Cohsupport proper overA(OX).
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Since each of the sheaves of ideals Ke is an element of Ξ we see that the assumptions of
Lemma 42.9 are satisfied and we conclude. �

Remark 42.12 (Unwinding Grothendieck’s existence theorem). Let A be a Noether-
ian ring complete with respect to an ideal I . Write S = Spec(A) and Sn = Spec(A/In).
Let X → S be a morphism of algebraic spaces that is separated and of finite type. For
n ≥ 1 we set Xn = X ×S Sn. Picture:

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . . X

��
S1 // S2 // S3 // . . . S

In this situation we consider systems (Fn, ϕn) where
(1) Fn is a coherentOXn -module,
(2) ϕn : i∗nFn+1 → Fn is an isomorphism, and
(3) Supp(F1) is proper over S1.

Theorem 42.11 says that the completion functor

coherentOX -modules F
with support proper over A −→ systems (Fn)

as above
is an equivalence of categories. In the special case thatX is proper overAwe can omit the
conditions on the supports.

43. Grothendieck’s algebraization theorem

This section is the analogue of Cohomology of Schemes, Section 28. However, this section
is missing the result on algebraization of deformations of proper algebraic spaces endowed
with ample invertible sheaves, as a proper algebraic space which comes with an ample in-
vertible sheaf is already a scheme. We do have an algebraization result on proper algebraic
spaces of relative dimension 1. Our first result is a translation of Grothendieck’s existence
theorem in terms of closed subschemes and finite morphisms.

Lemma 43.1. Let A be a Noetherian ring complete with respect to an ideal I . Write
S = Spec(A) and Sn = Spec(A/In). Let X → S be a morphism of algebraic spaces
that is separated and of finite type. For n ≥ 1 we set Xn = X ×S Sn. Suppose given a
commutative diagram

Z1 //

��

Z2 //

��

Z3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of algebraic spaces with cartesian squares. Assume that
(1) Z1 → X1 is a closed immersion, and
(2) Z1 → S1 is proper.

Then there exists a closed immersion of algebraic spaces Z → X such that Zn = Z×S Sn
for all n ≥ 1. Moreover, Z is proper over S.

Proof. Let’s write jn : Zn → Xn for the vertical morphisms. As the squares in
the statement are cartesian we see that the base change of jn to X1 is j1. Thus Limits of
Spaces, Lemma 15.5 shows that jn is a closed immersion. SetFn = jn,∗OZn , so that j]n is a
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surjectionOXn → Fn. Again using that the squares are cartesian we see that the pullback
ofFn+1 toXn isFn. Hence Grothendieck’s existence theorem, as reformulated in Remark
42.12, tells us there exists a map OX → F of coherent OX -modules whose restriction to
Xn recoversOXn → Fn. Moreover, the support ofF is proper over S. As the completion
functor is exact (Lemma 42.3) we see that OX → F is surjective. Thus F = OX/J for
some quasi-coherent sheaf of ideals J . Setting Z = V (J ) finishes the proof. �

Lemma 43.2. Let A be a Noetherian ring complete with respect to an ideal I . Write
S = Spec(A) and Sn = Spec(A/In). Let X → S be a morphism of algebraic spaces
that is separated and of finite type. For n ≥ 1 we set Xn = X ×S Sn. Suppose given a
commutative diagram

Y1 //

��

Y2 //

��

Y3 //

��

. . .

X1
i1 // X2

i2 // X3 // . . .

of algebraic spaces with cartesian squares. Assume that
(1) Y1 → X1 is a finite morphism, and
(2) Y1 → S1 is proper.

Then there exists a finite morphism of algebraic spaces Y → X such that Yn = Y ×S Sn
for all n ≥ 1. Moreover, Y is proper over S.

Proof. Let’s write fn : Yn → Xn for the vertical morphisms. As the squares in
the statement are cartesian we see that the base change of fn to X1 is f1. Thus Lemma
10.2 shows that fn is a finite morphism. Set Fn = fn,∗OYn . Using that the squares are
cartesian we see that the pullback of Fn+1 to Xn is Fn. Hence Grothendieck’s existence
theorem, as reformulated in Remark 42.12, tells us there exists a coherent OX -module F
whose restriction toXn recoversFn. Moreover, the support ofF is proper over S. As the
completion functor is fully faithful (Theorem 42.11) we see that the multiplication maps
Fn⊗OXn

Fn → Fn fit together to give an algebra structure onF . Setting Y = Spec
X

(F)
finishes the proof. �

Lemma 43.3. Let A be a Noetherian ring complete with respect to an ideal I . Write
S = Spec(A) and Sn = Spec(A/In). Let X , Y be algebraic spaces over S. For n ≥ 1
we set Xn = X ×S Sn and Yn = Y ×S Sn. Suppose given a compatible system of
commutative diagrams

Xn+1

##

gn+1
// Yn+1

{{
Xn

66

  

gn
// Yn

55

||

Sn+1

Sn

55

Assume that
(1) X → S is proper, and
(2) Y → S is separated of finite type.

Then there exists a unique morphism of algebraic spaces g : X → Y over S such that gn
is the base change of g to Sn.
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Proof. The morphisms (1, gn) : Xn → Xn ×S Yn are closed immersions because
Yn → Sn is separated (Morphisms of Spaces, Lemma 4.7). Thus by Lemma 43.1 there
exists a closed subspace Z ⊂ X ×S Y proper over S whose base change to Sn recovers
Xn ⊂ Xn×SYn. The first projection p : Z → X is a proper morphism (asZ is proper over
S , see Morphisms of Spaces, Lemma 40.6) whose base change to Sn is an isomorphism for
all n. In particular, p : Z → X is quasi-finite on an open subspace of Z containing every
point of Z0 for example by Morphisms of Spaces, Lemma 34.7. As Z is proper over S this
open neighbourhood is all of Z. We conclude that p : Z → X is finite by Zariski’s main
theorem (for example apply Lemma 34.3 and use properness of Z over X to see that the
immersion is a closed immersion). Applying the equivalence of Theorem 42.11 we see that
p∗OZ = OX as this is true modulo In for all n. Hence p is an isomorphism and we obtain
the morphism g as the composition X ∼= Z → Y . We omit the proof of uniqueness. �

Remark 43.4. We can ask if in Grothendieck’s algebraization theorem (in the form
of Lemma 43.3), we can get by with weaker separation axioms on the target. Let us be
more precise. Let A, I , S , Sn, X , Y , Xn, Yn, and gn be as in the statement of Lemma 43.3
and assume that

(1) X → S is proper, and
(2) Y → S is locally of finite type.

Does there exist a morphism of algebraic spaces g : X → Y over S such that gn is the
base change of g to Sn? We don’t know the answer in general; if you do please email
stacks.project@gmail.com. If Y → S is separated, then the result holds by the lemma
(there is an immediate reduction to the case where X is finite type over S , by choos-
ing a quasi-compact open containing the image of g1). If we only assume Y → S is
quasi-separated, then the result is true as well. First, as before we may assume Y is quasi-
compact as well as quasi-separated. Then we can use either [?] or from [?] to algebraize
(gn). Namely, to apply the first reference, we use

Dperf (X)→ limDperf (Xn) limLg∗
n−−−−−→ limDperf (Yn) = Dperf (Y )

where the last step uses a Grothendieck existence result for the derived category of the
proper algebraic space Y over R (compare with Flatness on Spaces, Remark 13.7). The
paper cited shows that this arrow determines a morphism Y → X as desired. To apply
the second reference we use the same argument with coherent modules:

Coh(OX)→ lim Coh(OXn) lim g∗
n−−−−→ lim Coh(OYn) = Coh(OY )

where the final equality is a consequence of Grothendieck’s existence theorem (Theorem
42.11). The second reference tells us that this functor corresponds to a morphism Y → X
over R. If we ever need this generalization we will precisely state and carefully prove the
result here.

Lemma 43.5. Let (A,m, κ) be a complete local Noetherian ring. Set S = Spec(A)
and Sn = Spec(A/mn). Consider a commutative diagram

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . .

S1 // S2 // S3 // . . .

of algebraic spaces with cartesian squares. If dim(X1) ≤ 1, then there exists a projective
morphism of schemes X → S and isomorphisms Xn

∼= X ×S Sn compatible with in.

mailto:stacks.project@gmail.com
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Proof. By Spaces over Fields, Lemma 9.3 the algebraic space X1 is a scheme. Hence
X1 is a proper scheme of dimension≤ 1 over κ. By Varieties, Lemma 43.4 we see that X1
is H-projective over κ. Let L1 be an ample invertible sheaf on X1.

We are going to show that L1 lifts to a compatible system {Ln} of invertible sheaves on
{Xn}. Observe that Xn is a scheme too by Lemma 9.5. Recall that X1 → Xn induces
homeomorphisms of underlying topological spaces. In the rest of the proof we do not
distinguish between sheaves on Xn and sheaves on X1. Suppose, given a lift Ln to Xn.
We consider the exact sequence

1→ (1 + mnOXn+1)∗ → O∗
Xn+1

→ O∗
Xn → 1

of sheaves on Xn+1. The class of Ln in H1(Xn,O∗
Xn

) (see Cohomology, Lemma 6.1) can
be lifted to an element ofH1(Xn+1,O∗

Xn+1
) if and only if the obstruction inH2(Xn+1, (1+

mnOXn+1)∗) is zero. As X1 is a Noetherian scheme of dimension ≤ 1 this cohomology
group vanishes (Cohomology, Proposition 20.7).

By Grothendieck’s algebraization theorem (Cohomology of Schemes, Theorem 28.4) we
find a projective morphism of schemes X → S = Spec(A) and a compatible system of
isomorphisms Xn = Sn ×S X . �

Lemma 43.6. Let (A,m, κ) be a complete Noetherian local ring. LetX be an algebraic
space over Spec(A). If X → Spec(A) is proper and dim(Xκ) ≤ 1, then X is a scheme
projective over A.

Proof. Set Xn = X ×Spec(A) Spec(A/mn). By Lemma 43.5 there exists a projec-
tive morphism Y → Spec(A) and compatible isomorphisms Y ×Spec(A) Spec(A/mn) ∼=
X ×Spec(A) Spec(A/mn). By Lemma 43.3 we see that X ∼= Y and the proof is com-
plete. �

44. Regular immersions

This section is the analogue of Divisors, Section 21 for morphisms of algebraic spaces. The
reader is encouraged to read up on regular immersions of schemes in that section first.

In Divisors, Section 21 we defined four types of regular immersions for morphisms of
schemes. Of these only three are (as far as we know) local on the target for the étale
topology; as usual plain old regular immersions aren’t. This is why for morphisms of al-
gebraic spaces we cannot actually define regular immersions. (These kinds of annoyances
prompted Grothendieck and his school to replace original notion of a regular immersion
by a Koszul-regular immersions, see [?, Exposee VII, Definition 1.4].) But we can define
Koszul-regular, H1-regular, and quasi-regular immersions. Another remark is that since
Koszul-regular immersions are not preserved by arbitrary base change, we cannot use the
strategy of Morphisms of Spaces, Section 3 to define them. Similarly, as Koszul-regular
immersions are not étale local on the source, we cannot use Morphisms of Spaces, Lemma
22.1 to define them either. We replace this lemma instead by the following.

Lemma 44.1. Let P be a property of morphisms of schemes which is étale local on
the target. Let S be a scheme. Let f : X → Y be a representable morphism of algebraic
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spaces over S. Consider commutative diagrams

X ×Y V

��

// V

��
X

f // Y

where V is a scheme and V → Y is étale. The following are equivalent
(1) for any diagram as above the projection X ×Y V → V has property P , and
(2) for some diagram as above with V → Y surjective the projectionX ×Y V → V

has property P .
If X and Y are representable, then this is also equivalent to f (as a morphism of schemes)
having property P .

Proof. Let us prove the equivalence of (1) and (2). The implication (1)⇒ (2) is im-
mediate. Assume

X ×Y V

��

// V

��
X

f // Y

X ×Y V ′

��

// V ′

��
X

f // Y

are two diagrams as in the lemma. Assume V → Y is surjective and X ×Y V → V has
property P . To show that (2) implies (1) we have to prove thatX ×Y V ′ → V ′ has P . To
do this consider the diagram

X ×Y V

��

(X ×Y V )×X (X ×Y V ′)oo

��

// X ×Y V ′

��
V V ×Y V ′oo // V ′

By our assumption that P is étale local on the source, we see that P is preserved under
étale base change, see Descent, Lemma 22.2. Hence if the left vertical arrow has P the so
does the middle vertical arrow. Since U ×X U ′ → U ′ is surjective and étale (hence defines
an étale covering of U ′) this implies (as P is assumed local for the étale topology on the
target) that the left vertical arrow has P .

If X and Y are representable, then we can take idY : Y → Y as our étale covering to see
the final statement of the lemma is true. �

Note that “being a Koszul-regular (resp. H1-regular, resp. quasi-regular) immersion” is a
property of morphisms of schemes which is fpqc local on the target, see Descent, Lemma
23.32. Hence the following definition now makes sense.

Definition 44.2. Let S be a scheme. Let i : X → Y be a morphism of algebraic
spaces over S.

(1) We say i is a Koszul-regular immersion if i is representable and the equivalent
conditions of Lemma 44.1 hold with P(f) =“f is a Koszul-regular immersion”.

(2) We say i is anH1-regular immersion if i is representable and the equivalent con-
ditions of Lemma 44.1 hold with P(f) =“f is an H1-regular immersion”.

(3) We say i is a quasi-regular immersion if i is representable and the equivalent
conditions of Lemma 44.1 hold with P(f) =“f is a quasi-regular immersion”.
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Lemma 44.3. Let S be a scheme. Let i : Z → X be an immersion of algebraic spaces
over S. We have the following implications: i is Koszul-regular⇒ i is H1-regular⇒ i is
quasi-regular.

Proof. Via the definition this lemma immediately reduces to Divisors, Lemma 21.2.
�

Lemma 44.4. Let S be a scheme. Let i : Z → X be an immersion of algebraic spaces
over S. Assume X is locally Noetherian. Then i is Koszul-regular⇔ i is H1-regular⇔ i
is quasi-regular.

Proof. Via Definition 44.2 (and the definition of a locally Noetherian algebraic space
in Properties of Spaces, Section 7) this immediately translates to the case of schemes which
is Divisors, Lemma 21.3. �

Lemma 44.5. Let S be a scheme. Let i : Z → X be a Koszul-regular, H1-regular, or
quasi-regular immersion of algebraic spaces over S. Let X ′ → X be a flat morphism of
algebraic spaces over S. Then the base change i′ : Z ×X X ′ → X ′ is a Koszul-regular,
H1-regular, or quasi-regular immersion.

Proof. Via Definition 44.2 (and the definition of a flat morphism of algebraic spaces
in Morphisms of Spaces, Section 30) this lemma reduces to the case of schemes, see Divisors,
Lemma 21.4. �

Lemma 44.6. Let S be a scheme. Let i : Z → X be an immersion of algebraic spaces
over S. Then i is a quasi-regular immersion if and only if the following conditions are
satisfied

(1) i is locally of finite presentation,
(2) the conormal sheaf CZ/X is finite locally free, and
(3) the map (6.1.2) is an isomorphism.

Proof. Follows from the case of schemes (Divisors, Lemma 21.5) via étale localization
(use Definition 44.2 and Lemma 6.2). �

Lemma 44.7. Let S be a scheme. Let Z → Y → X be immersions of algebraic spaces
over S. Assume that Z → Y is H1-regular. Then the canonical sequence of Lemma 5.6

0→ i∗CY/X → CZ/X → CZ/Y → 0
is exact and (étale) locally split.

Proof. Since CZ/Y is finite locally free (see Lemma 44.6 and Lemma 44.3) it suffices
to prove that the sequence is exact. It suffices to show that the first map is injective as the
sequence is already right exact in general. After étale localization onX this reduces to the
case of schemes, see Divisors, Lemma 21.6. �

A composition of quasi-regular immersions may not be quasi-regular, see Algebra, Remark
69.8. The other types of regular immersions are preserved under composition.

Lemma 44.8. Let S be a scheme. Let i : Z → Y and j : Y → X be immersions of
algebraic spaces over S.

(1) If i and j are Koszul-regular immersions, so is j ◦ i.
(2) If i and j are H1-regular immersions, so is j ◦ i.
(3) If i is an H1-regular immersion and j is a quasi-regular immersion, then j ◦ i is

a quasi-regular immersion.
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Proof. Immediate from the case of schemes, see Divisors, Lemma 21.7. �

Lemma 44.9. Let S be a scheme. Let i : Z → Y and j : Y → X be immersions of
algebraic spaces over S. Assume that the sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
of Lemma 5.6 is exact and locally split.

(1) If j ◦ i is a quasi-regular immersion, so is i.
(2) If j ◦ i is a H1-regular immersion, so is i.
(3) If both j and j ◦ i are Koszul-regular immersions, so is i.

Proof. Immediate from the case of schemes, see Divisors, Lemma 21.8. �

Lemma 44.10. Let S be a scheme. Let i : Z → Y and j : Y → X be immersions of
algebraic spaces over S. Assume X is locally Noetherian. The following are equivalent

(1) i and j are Koszul regular immersions,
(2) i and j ◦ i are Koszul regular immersions,
(3) j ◦ i is a Koszul regular immersion and the conormal sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
is exact and locally split.

Proof. Immediate from the case of schemes, see Divisors, Lemma 21.9. �

45. Relative pseudo-coherence

This section is the analogue of More on Morphisms, Section 59. However, in the treatment
of this material for algebraic spaces we have decided to work exclusively with objects in
the derived category whose cohomology sheaves are quasi-coherent. There are two reasons
for this: (1) it greatly simplifies the exposition and (2) we currently have no use for the
more general notion.

Remark 45.1. Let S be a scheme. Let f : X → Y be a morphism of representable
algebraic spaces over S which is locally of finite type. Let f0 : X0 → Y0 be a morphism
of schemes representing f (awkward but temporary notation). Then f0 is locally of finite
type. If E is an object of DQCoh(OX), then E is the pullback of a unique object E0 in
DQCoh(OX0), see Derived Categories of Spaces, Lemma 4.2. In this situation the phrase
“E is m-pseudo-coherent relative to Y ” will be taken to mean “E0 is m-pseudo-coherent
relative to Y0” as defined in More on Morphisms, Section 59.

Lemma 45.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let m ∈ Z. Let E ∈ DQCoh(OX). With notation
as explained in Remark 45.1 the following are equivalent:

(1) for every commutative diagram

U

��

// V

��
X // Y

where U , V are schemes and the vertical arrows are étale, the complex E|U is
m-pseudo-coherent relative to V ,

(2) for some commutative diagram as in (1) with U → X surjective, the complex
E|U is m-pseudo-coherent relative to V ,
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(3) for every commutative diagram as in (1) withU andV affine the complexRΓ(U,E)
ofOX(U)-modules is m-pseudo-coherent relative toOY (V ).

Proof. Part (1) implies (3) by More on Morphisms, Lemma 59.7.

Assume (3). Pick any commutative diagram as in (1) with U → X surjective. Choose an
affine open covering V =

⋃
Vj and affine open coverings (U → V )−1(Vj) =

⋃
Uij . By

(3) and More on Morphisms, Lemma 59.7 we see that E|U is m-pseudo-coherent relative
to V . Thus (3) implies (2).

Assume (2). Choose a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, the morphism U → X is surjective,
and E|U is m-pseudo-coherent relative to V . Next, suppose given a second commutative
diagram

U ′

��

// V ′

��
X // Y

with étale vertical arrows and U ′, V ′ schemes. We want to show that E|U ′ is m-pseudo-
coherent relative to V ′. The morphism U ′′ = U ×X U ′ → U ′ is surjective étale and
U ′′ → V ′ factors through V ′′ = V ′ ×Y V which is étale over V ′. Hence it suffices to
show that E|U ′′ is m-pseudo-coherent relative to V ′′, see More on Morphisms, Lemmas
70.1 and 70.2. Using the second lemma once more it suffices to show that E|U ′′ is m-
pseudo-coherent relative to V . This is true by More on Morphisms, Lemma 59.16 and the
fact that an étale morphism of schemes is pseudo-coherent by More on Morphisms, Lemma
60.6. �

Definition 45.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let E be an object of DQCoh(OX). Let F be
a quasi-coherentOX -module. Fix m ∈ Z.

(1) We say E is m-pseudo-coherent relative to Y if the equivalent conditions of
Lemma 45.2 are satisfied.

(2) We sayE is pseudo-coherent relative to Y ifE ism-pseudo-coherent relative to
Y for all m ∈ Z.

(3) We sayF ism-pseudo-coherent relative toY ifF viewed as an object ofDQCoh(OX)
is m-pseudo-coherent relative to Y .

(4) We sayF is pseudo-coherent relative toY ifF viewed as an object ofDQCoh(OX)
is pseudo-coherent relative to Y .

Most of the properties of pseudo-coherent complexes relative to a base will follow imme-
diately from the corresponding properties in the case of schemes. We will add the relevant
lemmas here as needed.

Lemma 45.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let E in DQCoh(OX). If f is flat and locally of finite presentation, then the
following are equivalent
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(1) E is pseudo-coherent relative to Y , and
(2) E is pseudo-coherent on X .

Proof. By étale localization and the definitions we may assumeX andY are schemes.
For the case of schemes this follows from More on Morphisms, Lemma 59.18. �

46. Pseudo-coherent morphisms

This section is the analogue of More on Morphisms, Section 60 for morphisms of schemes.
The reader is encouraged to read up on pseudo-coherent morphisms of schemes in that
section first.
The property “pseudo-coherent” of morphisms of schemes is étale local on the source-
and-target. To see this use More on Morphisms, Lemmas 60.10 and 60.13 and Descent,
Lemma 32.6. By Morphisms of Spaces, Lemma 22.1 we may define the notion of a pseudo-
coherent morphism of algebraic spaces as follows and it agrees with the already existing
notion defined in More on Morphisms, Section 60 when the algebraic spaces in question
are representable.

Definition 46.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is pseudo-coherent if the equivalent conditions of Morphisms of Spaces,
Lemma 22.1 hold with P =“pseudo-coherent”.

(2) Let x ∈ |X|. We say f is pseudo-coherent at x if there exists an open neighbour-
hood X ′ ⊂ X of x such that f |X′ : X ′ → Y is pseudo-coherent.

Beware that a base change of a pseudo-coherent morphism is not pseudo-coherent in gen-
eral.

Lemma 46.2. A flat base change of a pseudo-coherent morphism is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 60.3. �

Lemma 46.3. A composition of pseudo-coherent morphisms is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 60.4. �

Lemma 46.4. A pseudo-coherent morphism is locally of finite presentation.

Proof. Immediate from the definitions. �

Lemma 46.5. A flat morphism which is locally of finite presentation is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 60.6. �

Lemma 46.6. Let f : X → Y be a morphism of algebraic spaces pseudo-coherent
over a base algebraic space B. Then f is pseudo-coherent.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 60.7. �

Lemma 46.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If Y is locally Noetherian, then f is pseudo-coherent if and only if f is locally of
finite type.
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Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 60.9. �

47. Perfect morphisms

This section is the analogue of More on Morphisms, Section 61 for morphisms of schemes.
The reader is encouraged to read up on perfect morphisms of schemes in that section first.

The property “perfect” of morphisms of schemes is étale local on the source-and-target.
To see this use More on Morphisms, Lemmas 61.10 and 61.14 and Descent, Lemma 32.6.
By Morphisms of Spaces, Lemma 22.1 we may define the notion of a perfect morphism of
algebraic spaces as follows and it agrees with the already existing notion defined in More
on Morphisms, Section 61 when the algebraic spaces in question are representable.

Definition 47.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is perfect if the equivalent conditions of Morphisms of Spaces, Lemma
22.1 hold with P =“perfect”.

(2) Let x ∈ |X|. We say f is perfect at x if there exists an open neighbourhood
X ′ ⊂ X of x such that f |X′ : X ′ → Y is perfect.

Note that a perfect morphism is pseudo-coherent, hence locally of finite presentation. Be-
ware that a base change of a perfect morphism is not perfect in general.

Lemma 47.2. A flat base change of a perfect morphism is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 61.3. �

Lemma 47.3. A composition of perfect morphisms is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 61.4. �

Lemma 47.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f is flat and perfect, and
(2) f is flat and locally of finite presentation.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 61.5. �

Lemma 47.5. Let S be a scheme. Let Y be a Noetherian algebraic space over S. Let
f : X → Y be a perfect proper morphism of algebraic spaces. LetE ∈ D(OX) be perfect.
Then Rf∗E is a perfect object of D(OY ).

Proof. We claim that Derived Categories of Spaces, Lemma 22.1 applies. Conditions
(1) and (2) are immediate. Condition (3) is local on X . Thus we may assume X and Y
affine and E represented by a strictly perfect complex ofOX -modules. Thus it suffices to
show thatOX has finite tor dimension as a sheaf of f−1OY -modules on the étale site. By
Derived Categories of Spaces, Lemma 13.4 it suffices to check this on the Zariski site. This
is equivalent to being perfect for finite type morphisms of schemes by More on Morphisms,
Lemma 61.11. �
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48. Local complete intersection morphisms

This section is the analogue of More on Morphisms, Section 62 for morphisms of schemes.
The reader is encouraged to read up on local complete intersection morphisms of schemes
in that section first.

The property “being a local complete intersection morphism” of morphisms of schemes is
étale local on the source-and-target. To see this use More on Morphisms, Lemmas 62.19
and 62.20 and Descent, Lemma 32.6. By Morphisms of Spaces, Lemma 22.1 we may define
the notion of a local complete intersection morphism of algebraic spaces as follows and it
agrees with the already existing notion defined in More on Morphisms, Section 62 when
the algebraic spaces in question are representable.

Definition 48.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S.

(1) We say f is a Koszul morphism, or that f is a local complete intersection mor-
phism if the equivalent conditions of Morphisms of Spaces, Lemma 22.1 hold
with P(f) =“f is a local complete intersection morphism”.

(2) Let x ∈ |X|. We say f is Koszul at x if there exists an open neighbourhoodX ′ ⊂
X of x such that f |X′ : X ′ → Y is a local complete intersection morphism.

In some sense the defining property of a local complete intersection morphism is the result
of the following lemma.

Lemma 48.2. Let S be a scheme. Let f : X → Y be a local complete intersection
morphism of algebraic spaces over S. Let P be an algebraic space smooth over Y . Let
U → X be an étale morphism of algebraic spaces and let i : U → P an immersion of
algebraic spaces over Y . Picture:

X

  

Uoo

��

i
// P

��
Y

Then i is a Koszul-regular immersion of algebraic spaces.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Choose a
scheme W and a surjective étale morphism W → P ×Y V . Set U ′ = U ×P W , which
is a scheme étale over U . We have to show that U ′ → W is a Koszul-regular immer-
sion of schemes, see Definition 44.2. By Definition 48.1 above the morphism of schemes
U ′ → V is a local complete intersection morphism. Hence the result follows from More
on Morphisms, Lemma 62.3. �

It seems like a good idea to collect here some properties in common with all Koszul mor-
phisms.

Lemma 48.3. Let S be a scheme. Let f : X → Y be a local complete intersection
morphism of algebraic spaces over S. Then

(1) f is locally of finite presentation,
(2) f is pseudo-coherent, and
(3) f is perfect.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 62.4. �



5780 76. MORE ON MORPHISMS OF SPACES

Beware that a base change of a Koszul morphism is not Koszul in general.

Lemma 48.4. A flat base change of a local complete intersection morphism is a local
complete intersection morphism.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 62.6. �

Lemma 48.5. A composition of local complete intersection morphisms is a local com-
plete intersection morphism.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 62.7. �

Lemma 48.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent

(1) f is flat and a local complete intersection morphism, and
(2) f is syntomic.

Proof. Omitted. Hint: Use the schemes version of this lemma, see More on Mor-
phisms, Lemma 62.8. �

Lemma 48.7. Let S be a scheme. A Koszul-regular immersion of algebraic spaces over
S is a local complete intersection morphism.

Proof. Let i : X → Y be a Koszul-regular immersion of algebraic spaces over S. By
definition there exists a surjective étale morphism V → Y where V is a scheme such that
X ×Y V is a scheme and the base change X ×Y V → V is a Koszul-regular immersion of
schemes. By More on Morphisms, Lemma 62.9 we see that X ×Y V → V is a local com-
plete intersection morphism. From Definition 48.1 we conclude that i is a local complete
intersection morphism of algebraic spaces. �

Lemma 48.8. Let S be a scheme. Let

X
f

//

  

Y

��
Z

be a commutative diagram of morphisms of algebraic spaces over S. Assume Y → Z is
smooth and X → Z is a local complete intersection morphism. Then f : X → Y is a
local complete intersection morphism.

Proof. Choose a scheme W and a surjective étale morphism W → Z. Choose a
scheme V and a surjective étale morphism V → W ×Z Y . Choose a scheme U and a
surjective étale morphism U → V ×Y X . Then U → W is a local complete intersection
morphism of schemes and V → W is a smooth morphism of schemes. By the result for
schemes (More on Morphisms, Lemma 62.10) we conclude that U → V is a local complete
intersection morphism. By definition this means that f is a local complete intersection
morphism. �

Lemma 48.9. The property P(f) =“f is a local complete intersection morphism” is
fpqc local on the base.
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Proof. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S.
Let {Yi → Y } be an fpqc covering (Topologies on Spaces, Definition 9.1). Let fi : Xi → Yi
be the base change of f by Yi → Y . If f is a local complete intersection morphism, then
each fi is a local complete intersection morphism by Lemma 48.4.
Conversely, assume each fi is a local complete intersection morphism. We may replace the
covering by a refinement (again because flat base change preserves the property of being
a local complete intersection morphism). Hence we may assume Yi is a scheme for each i,
see Topologies on Spaces, Lemma 9.5. Choose a scheme V and a surjective étale morphism
V → Y . Choose a scheme U and a surjective étale morphism U → V ×Y X . We have to
show that U → V is a local complete intersection morphism of schemes. By Topologies
on Spaces, Lemma 9.4 we have that {Yi×Y V → V } is an fpqc covering of schemes. By the
case of schemes (More on Morphisms, Lemma 62.19) it suffices to prove the base change

U ×Y Yi = U ×V (V ×Y Yi) −→ V

of U → V by V ×Y Yi → V is a local complete intersection morphism. We can write this
as the composition

U ×Y Yi −→ (V ×Y X)×Y Yi = V ×Y Xi −→ V ×Y Yi
The first arrow is an étale morphism of schemes (as a base change ofU → V ×Y X) and the
second arrow is a local complete intersection morphism of schemes as a flat base change of
fi. The result follows as being a local complete intersection morphism is syntomic local
on the source and since étale morphisms are syntomic (More on Morphisms, Lemma 62.20
and Morphisms, Lemma 36.10). �

Lemma 48.10. The propertyP(f) =“f is a local complete intersection morphism” is
syntomic local on the source.

Proof. This follows from Descent on Spaces, Lemma 14.3 and More on Morphisms,
Lemma 62.20. �

Lemma 48.11. Let S be a scheme. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces over S. Assume that both p and q are flat and locally of finite presen-
tation. Then there exists an open subspace U(f) ⊂ X such that |U(f)| ⊂ |X| is the set
of points where f is Koszul. Moreover, for any morphism of algebraic spaces Z ′ → Z , if
f ′ : X ′ → Y ′ is the base change of f by Z ′ → Z , then U(f ′) is the inverse image of U(f)
under the projection X ′ → X .

Proof. This lemma is the analogue of More on Morphisms, Lemma 62.21 and in fact
we will deduce the lemma from it. By Definition 48.1 the set {x ∈ |X| : f is Koszul at x}
is open in |X| hence by Properties of Spaces, Lemma 4.8 it corresponds to an open subspace
U(f) of X . Hence we only need to prove the final statement.
Choose a scheme W and a surjective étale morphism W → Z. Choose a scheme V and
a surjective étale morphism V → W ×Z Y . Choose a scheme U and a surjective étale
morphism U → V ×Y X . Finally, choose a scheme W ′ and a surjective étale morphism
W ′ → W ×Z Z ′. Set V ′ = W ′ ×W V and U ′ = W ′ ×W U , so that we obtain surjective
étale morphisms V ′ → Y ′ and U ′ → X ′. We will use without further mention an étale
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morphism of algebraic spaces induces an open map of associated topological spaces (see
Properties of Spaces, Lemma 16.7). Note that by definitionU(f) is the image in |X| of the
set T of points in U where the morphism of schemes U → V is Koszul. Similarly, U(f ′)
is the image in |X ′| of the set T ′ of points in U ′ where the morphism of schemes U ′ → V ′

is Koszul. Now, by construction the diagram

U ′ //

��

U

��
V ′ // V

is cartesian (in the category of schemes). Hence the aforementioned More on Morphisms,
Lemma 62.21 applies to show that T ′ is the inverse image of T . Since |U ′| → |X ′| is
surjective this implies the lemma. �

Lemma 48.12. Let S be a scheme. Let f : X → Y be a local complete intersection
morphism of algebraic spaces over S. Then f is unramified if and only if f is formally
unramified and in this case the conormal sheaf CX/Y is finite locally free on X .

Proof. This follows from the corresponding result for morphisms of schemes, see
More on Morphisms, Lemma 62.22, by étale localization, see Lemma 15.11. (Note that in
the situation of this lemma the morphism V → U is unramified and a local complete
intersection morphism by definition.) �

Lemma 48.13. Let S be a scheme. Let Z → Y → X be formally unramified mor-
phisms of algebraic spaces over S. Assume that Z → Y is a local complete intersection
morphism. The exact sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0
of Lemma 5.6 is short exact.

Proof. Choose a scheme U and a surjective étale morphism U → X . Choose a
scheme V and a surjective étale morphism V → U×XY . Choose a schemeW and a surjec-
tive étale morphismW → V ×Y Z. By Lemma 15.11 the morphismsW → V and V → U
are formally unramified. Moreover the sequence i∗CY/X → CZ/X → CZ/Y → 0 restricts
to the corresponding sequence i∗CV/U → CW/U → CW/V → 0 for W → V → U . Hence
the result follows from the result for schemes (More on Morphisms, Lemma 62.23) as by
definition the morphism W → V is a local complete intersection morphism. �

49. When is a morphism an isomorphism?

More generally we can ask: “When does a morphism have property P?” A more precise
question is the following. Suppose given a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Does there exist a monomorphism of algebraic spaces W → Z with
the following two properties:

(1) the base change fW : XW → YW has property P , and
(2) any morphism Z ′ → Z of algebraic spaces factors through W if and only if the

base change fZ′ : XZ′ → YZ′ has property P .
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In many cases, if W → Z exists, then it is an immersion, open immersion, or closed im-
mersion.

The answer to this question may depend on auxiliary properties of the morphisms f , p,
and q. An example isP(f) =“f is flat” which we have discussed for morphisms of schemes
in the case Y = S in great detail in the chapter “More on Flatness”, starting with More
on Flatness, Section 20.

Lemma 49.1. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that p is locally of finite type and closed. Then there exists an
open subspace W ⊂ Z such that a morphism Z ′ → Z factors through W if and only if
the base change fZ′ : XZ′ → YZ′ is unramified.

Proof. By Morphisms of Spaces, Lemma 38.10 there exists an open subspace U(f) ⊂
X which is the set of points where f is unramified. Moreover, formation of U(f) com-
mutes with arbitrary base change. Let W ⊂ Z be the open subspace (see Properties of
Spaces, Lemma 4.8) with underlying set of points

|W | = |Z| \ |p| (|X| \ |U(f)|)

i.e., z ∈ |Z| is a point ofW if and only if f is unramified at every point ofX above z. Note
that this is open because we assumed that p is closed. Since the formation of U(f) com-
mutes with arbitrary base change we immediately see (using Properties of Spaces, Lemma
4.9) that W has the desired universal property. �

Lemma 49.2. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is locally of finite type,
(2) p is closed, and
(3) p2 : X ×Y X → Z is closed.

Then there exists an open subspaceW ⊂ Z such that a morphismZ ′ → Z factors through
W if and only if the base change fZ′ : XZ′ → YZ′ is unramified and universally injective.

Proof. After replacingZ by the open subspace found in Lemma 49.1 we may assume
that f is already unramified; note that this does not destroy assumption (2) or (3). By
Morphisms of Spaces, Lemma 38.9 we see that ∆X/Y : X → X ×Y X is an open im-
mersion. This remains true after any base change. Hence by Morphisms of Spaces, Lemma
19.2 we see that fZ′ is universally injective if and only if the base change of the diagonal
XZ′ → (X ×Y X)Z′ is an isomorphism. LetW ⊂ Z be the open subspace (see Properties
of Spaces, Lemma 4.8) with underlying set of points

|W | = |Z| \ |p2|
(
|X ×Y X| \ Im(|∆X/Y |)

)
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i.e., z ∈ |Z| is a point of W if and only if the fibre of |X ×Y X| → |Z| over z is in the
image of |X| → |X ×Y X|. Then it is clear from the discussion above that the restriction
p−1(W )→ q−1(W ) of f is unramified and universally injective.
Conversely, suppose that fZ′ is unramified and universally injective. In order to show
that Z ′ → Z factors through W it suffices to show that |Z ′| → |Z| has image contained
in |W |, see Properties of Spaces, Lemma 4.9. Hence it suffices to prove the result when Z ′

is the spectrum of a field. Denote z ∈ |Z| the image of |Z ′| → |Z|. The discussion above
shows that

|XZ′ | −→ |(X ×Y X)Z′ |
is surjective. By Properties of Spaces, Lemma 4.3 in the commutative diagram

|XZ′ |

��

// |(X ×Y X)Z′ |

��
|p|−1({z}) // |p2|−1({z})

the vertical arrows are surjective. It follows that z ∈ |W | as desired. �

Lemma 49.3. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is locally of finite type,
(2) p is universally closed, and
(3) q : Y → Z is separated.

Then there exists an open subspaceW ⊂ Z such that a morphismZ ′ → Z factors through
W if and only if the base change fZ′ : XZ′ → YZ′ is a closed immersion.

Proof. We will use the characterization of closed immersions as universally closed,
unramified, and universally injective morphisms, see Lemma 14.9. First, note that since p
is universally closed and q is separated, we see that f is universally closed, see Morphisms
of Spaces, Lemma 40.6. It follows that any base change of f is universally closed, see
Morphisms of Spaces, Lemma 9.3. Thus to finish the proof of the lemma it suffices to prove
that the assumptions of Lemma 49.2 are satisfied. The projection pr0 : X ×Y X → X
is universally closed as a base change of f , see Morphisms of Spaces, Lemma 9.3. Hence
X×Y X → Z is universally closed as a composition of universally closed morphisms (see
Morphisms of Spaces, Lemma 9.4). This finishes the proof of the lemma. �

Lemma 49.4. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is locally of finite presentation,
(2) p is flat,
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(3) p is closed, and
(4) q is locally of finite type.

Then there exists an open subspaceW ⊂ Z such that a morphismZ ′ → Z factors through
W if and only if the base change fZ′ : XZ′ → YZ′ is flat.

Proof. By Lemma 23.6 the set
A = {x ∈ |X| : X flat at x over Y }.

is open in |X| and its formation commutes with arbitrary base change. LetW ⊂ Z be the
open subspace (see Properties of Spaces, Lemma 4.8) with underlying set of points

|W | = |Z| \ |p| (|X| \A)
i.e., z ∈ |Z| is a point ofW if and only if the whole fibre of |X| → |Z| over z is contained
in A. This is open because p is closed. Since the formation of A commutes with arbitrary
base change it follows that W works. �

Lemma 49.5. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is locally of finite presentation,
(2) p is flat,
(3) p is closed,
(4) q is locally of finite type, and
(5) q is closed.

Then there exists an open subspaceW ⊂ Z such that a morphismZ ′ → Z factors through
W if and only if the base change fZ′ : XZ′ → YZ′ is surjective and flat.

Proof. By Lemma 49.4 we may assume that f is flat. Note that f is locally of finite
presentation by Morphisms of Spaces, Lemma 28.9. Hence f is open, see Morphisms of
Spaces, Lemma 30.6. Let W ⊂ Z be the open subspace (see Properties of Spaces, Lemma
4.8) with underlying set of points

|W | = |Z| \ |q| (|Y | \ |f |(|X|)) .
in other words for z ∈ |Z| we have z ∈ |W | if and only if the whole fibre of |Y | → |Z|
over z is in the image of |X| → |Y |. Since q is closed this set is open in |Z|. The morphism
XW → YW is surjective by construction. Finally, suppose that XZ′ → YZ′ is surjective.
In order to show that Z ′ → Z factors through W it suffices to show that |Z ′| → |Z| has
image contained in |W |, see Properties of Spaces, Lemma 4.9. Hence it suffices to prove
the result when Z ′ is the spectrum of a field. Denote z ∈ |Z| the image of |Z ′| → |Z|. By
Properties of Spaces, Lemma 4.3 in the commutative diagram

|XZ′ |

��

// |YZ′ |

��
|p|−1({z}) // |q|−1({z})

the vertical arrows are surjective. It follows that z ∈ |W | as desired. �
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Lemma 49.6. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is locally of finite presentation,
(2) p is flat,
(3) p is universally closed,
(4) q is locally of finite type,
(5) q is closed, and
(6) q is separated.

Then there exists an open subspaceW ⊂ Z such that a morphismZ ′ → Z factors through
W if and only if the base change fZ′ : XZ′ → YZ′ is an isomorphism.

Proof. By Lemma 49.5 there exists an open subspace W1 ⊂ Z such that fZ′ is sur-
jective and flat if and only if Z ′ → Z factors through W1. By Lemma 49.3 there exists
an open subspace W2 ⊂ Z such that fZ′ is a closed immersion if and only if Z ′ → Z
factors through W2. We claim that W = W1 ∩ W2 works. Certainly, if fZ′ is an iso-
morphism, then Z ′ → Z factors through W . Hence it suffices to show that fW is an
isomorphism. By construction fW is a surjective flat closed immersion. In particular fW
is representable. Since a surjective flat closed immersion of schemes is an isomorphism (see
Morphisms, Lemma 26.1) we win. (Note that actually fW is locally of finite presentation,
whence open, so you can avoid the use of this lemma if you like.) �

Lemma 49.7. Consider a commutative diagram

X
f

//

p
  

Y

q
��

Z

of algebraic spaces. Assume that
(1) p is flat and locally of finite presentation,
(2) p is closed, and
(3) q is flat and locally of finite presentation,

Then there exists an open subspaceW ⊂ Z such that a morphismZ ′ → Z factors through
W if and only if the base change fZ′ : XZ′ → YZ′ is a local complete intersection mor-
phism.

Proof. By Lemma 48.11 there exists an open subspace U(f) ⊂ X which is the set
of points where f is Koszul. Moreover, formation of U(f) commutes with arbitrary base
change. Let W ⊂ Z be the open subspace (see Properties of Spaces, Lemma 4.8) with
underlying set of points

|W | = |Z| \ |p| (|X| \ |U(f)|)
i.e., z ∈ |Z| is a point ofW if and only if f is Koszul at every point ofX above z. Note that
this is open because we assumed that p is closed. Since the formation of U(f) commutes
with arbitrary base change we immediately see (using Properties of Spaces, Lemma 4.9)
that W has the desired universal property. �
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50. Exact sequences of differentials and conormal sheaves

In this section we collect some results on exact sequences of conormal sheaves and sheaves
of differentials. In some sense these are all realizations of the triangle of cotangent com-
plexes associated to composable morphisms of algebraic spaces.

In the sequences below each of the maps are as constructed in either Lemma 7.6 or Lemma
15.8. Let S be a scheme. Let g : Z → Y and f : Y → X be morphisms of algebraic spaces
over S.

(1) There is a canonical exact sequence

g∗ΩY/X → ΩZ/X → ΩZ/Y → 0,

see Lemma 7.8. If g : Z → Y is formally smooth, then this sequence is a short
exact sequence, see Lemma 19.12.

(2) If g is formally unramified, then there is a canonical exact sequence

CZ/Y → g∗ΩY/X → ΩZ/X → 0,

see Lemma 15.13. If f ◦ g : Z → X is formally smooth, then this sequence is a
short exact sequence, see Lemma 19.13.

(3) if g and f ◦ g are formally unramified, then there is a canonical exact sequence

CZ/X → CZ/Y → g∗ΩY/X → 0,

see Lemma 15.14. If f : Y → X is formally smooth, then this sequence is a short
exact sequence, see Lemma 19.14.

(4) if g and f are formally unramified, then there is a canonical exact sequence

g∗CY/X → CZ/X → CZ/Y → 0.

see Lemma 15.15. If g : Z → Y is a local complete intersection morphism, then
this sequence is a short exact sequence, see Lemma 48.13.

51. Characterizing pseudo-coherent complexes, II

In this section we discuss a characterization of pseudo-coherent complexes in terms of
cohomology. Earlier material on pseudo-coherent complexes on algebraic spaces may be
found in Derived Categories of Spaces, Section 13 and in Derived Categories of Spaces,
Section 18. The analogue of this section for schemes is More on Morphisms, Section 69. A
basic tool will be to reduce to the case of projective space using a derived version of Chow’s
lemma, see Lemma 51.2.

Lemma 51.1. Let S be a scheme. Consider a commutative diagram of algebraic spaces

Z ′

��

// Y ′

��
X ′ // B′

over S. Let B → B′ be a morphism. Denote by X and Y the base changes of X ′ and Y ′

toB. Assume Y ′ → B′ and Z ′ → X ′ are flat. ThenX ×B Y and Z ′ are Tor independent
over X ′ ×B′ Y ′.
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Proof. By Derived Categories of Spaces, Lemma 20.3 we may check tor independence
étale locally on X ×B Y and Z ′. This3 reduces the lemma to the case of schemes which is
More on Morphisms, Lemma 69.1. �

Lemma 51.2 (Derived Chow’s lemma). LetA be a ring. LetX be a separated algebraic
space of finite presentation over A. Let x ∈ |X|. Then there exist an n ≥ 0, a closed sub-
space Z ⊂ X ×A Pn

A, a point z ∈ |Z|, an open V ⊂ Pn
A, and an objectE inD(OX×APn

A
)

such that
(1) Z → X ×A Pn

A is of finite presentation,
(2) c : Z → Pn

A is a closed immersion over V , set W = c−1(V ),
(3) the restriction of b : Z → X to W is étale, z ∈W , and b(z) = x,
(4) E|X×AV

∼= (b, c)∗OZ |X×AV ,
(5) E is pseudo-coherent and supported on Z.

Proof. We can find a finite type Z-subalgebra A′ ⊂ A and an algebraic space X ′

separated and of finite presentation over A′ whose base change to A is X . See Limits
of Spaces, Lemmas 7.1 and 6.9. Let x′ ∈ |X ′| be the image of x. If we can prove the
lemma for (X ′/A′, x′), then the lemma follows for (X/A, x). Namely, if n′, Z ′, z′, V ′, E′

provide the solution for (X ′/A′, x′), then we can let n = n′, let Z ⊂ X × Pn be the
inverse image of Z ′, let z ∈ Z be the unique point mapping to x, let V ⊂ Pn

A be the
inverse image of V ′, and let E be the derived pullback of E′. Observe that E is pseudo-
coherent by Cohomology on Sites, Lemma 45.3. It only remains to check (5). To see this
set W = c−1(V ) and W ′ = (c′)−1(V ′) and consider the cartesian square

W

(b,c)
��

// W ′

(b′,c′)
��

X ×A V // X ′ ×A′ V ′

By Lemma 51.1 X ×A V and W ′ are tor-independent over X ′ ×A′ V ′. Thus the derived
pullback of (b′, c′)∗OW ′ toX×AV is (b, c)∗OW by Derived Categories of Spaces, Lemma
20.4. This also uses that R(b′, c′)∗OZ′ = (b′, c′)∗OZ′ because (b′, c′) is a closed immer-
sion and simiarly for (b, c)∗OZ . Since E′|U ′×A′V ′ = (b′, c′)∗OW ′ we obtain E|U×AV =
(b, c)∗OW and (5) holds. This reduces us to the situation described in the next paragraph.
AssumeA is of finite type over Z. Choose an étale morphismU → X whereU is an affine
scheme and a point u ∈ U mapping to x. Then U is of finite type overA. Choose a closed
immersion U → An

A and denote j : U → Pn
A the immersion we get by composing with

the open immersion An
A → Pn

A. Let Z be the scheme theoretic closure of
(idU , j) : U −→ X ×A Pn

A

Let z ∈ Z be the image of u. Let Y ⊂ Pn
A be the scheme theoretic closure of j. Then it

is clear that Z ⊂ X ×A Y is the scheme theoretic closure of (idU , j) : U → X ×A Y .

3Here is the argument in more detail. Choose a surjective étale morphism W ′ → B′ with W ′ a scheme.
Choose a surjective étale morphism W → B ×B′ W ′ with W a scheme. Choose a surjective étale morphism
U ′ → X′ ×B′ W ′ with U ′ a scheme. Choose a surjective étale morphism V ′ → Y ′ ×B′ W ′ with V ′ a
scheme. Observe that U ′ ×W ′ V ′ → X′ ×B′ Y ′ is surjective étale. Choose a surjective étale morphism
T ′ → Z′ ×X′×B′Y ′ U ′ ×W ′ V ′ with T ′ a scheme. Denote U and V the base changes of U ′ and V ′ to W .
Then the lemma says thatX ×B Y and Z′ are Tor independent overX′ ×B′ Y ′ as algebraic spaces if and only
if U ×W V and T ′ are Tor independent over U ′ ×W ′ V ′ as schemes. Thus it suffices to prove the lemma for
the square with corners T ′, U ′, V ′,W ′ and base change byW → W ′. The flatness of Y ′ → B′ andZ′ → X′

implies flatness of V ′ → W ′ and T ′ → U ′.
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As X is separated, the morphism X ×A Y → Y is separated as well. Hence we see that
Z → Y is an isomorphism over the open subscheme j(U) ⊂ Y by Morphisms of Spaces,
Lemma 16.7. Choose V ⊂ Pn

A open with V ∩ Y = j(U). Then we see that (2) holds, that
W = (idU , j)(U), and hence that (3) holds. Part (1) holds because A is Noetherian.

Because A is Noetherian we see that X and X ×A Pn
A are Noetherian algebraic spaces.

Hence we can take E = (b, c)∗OZ in this case: (4) is clear and for (5) see Derived Cate-
gories of Spaces, Lemma 13.7. This finishes the proof. �

Lemma 51.3. Let X/A, x ∈ |X|, and n,Z, z, V, E be as in Lemma 51.2. For any
K ∈ DQCoh(OX) we have

Rq∗(Lp∗K ⊗L E)|V = R(W → V )∗K|W
where p : X ×A Pn

A → X and q : X ×A Pn
A → Pn

A are the projections and where the
morphism W → V is the finitely presented closed immersion c|W : W → V .

Proof. SinceW = c−1(V ) and since c is a closed immersion over V , we see that c|W
is a closed immersion. It is of finite presentation becauseW andV are of finite presentation
over A, see Morphisms of Spaces, Lemma 28.9. First we have

Rq∗(Lp∗K ⊗L E)|V = Rq′
∗
(
(Lp∗K ⊗L E)|X×AV

)
where q′ : X ×A V → V is the projection because formation of total direct image com-
mutes with localization. Denote i = (b, c)|W : W → X×AV the given closed immersion.
Then

Rq′
∗
(
(Lp∗K ⊗L E)|X×AV

)
= Rq′

∗(Lp∗K|X×AV ⊗L i∗OW )
by property (5). Since i is a closed immersion we have i∗OW = Ri∗OW . Using Derived
Categories of Spaces, Lemma 20.1 we can rewrite this as

Rq′
∗Ri∗Li

∗Lp∗K|X×AV = R(q′ ◦ i)∗Lb
∗K|W = R(W → V )∗K|W

which is what we want. (Note that restricting toW and derived pulling back viaW → X
is the same thing as W is étale over X .) �

Lemma 51.4. Let A be a ring. Let X be an algebraic space separated and of finite
presentation over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent in
D(A) for every pseudo-coherent E in D(OX), then K is pseudo-coherent relative to A
(Definition 45.3).

Proof. AssumeK ∈ DQCoh(OX) andRΓ(X,E⊗LK) is pseudo-coherent inD(A)
for every pseudo-coherent E in D(OX). Let x ∈ |X|. We will show that K is pseudo-
coherent relative to A in an étale neighbourhood of x. This will prove the lemma by our
definition of relative pseudo-coherence.

Choose n,Z, z, V, E as in Lemma 51.2. Denote p : X ×Pn → X and q : X ×Pn → Pn
A

the projections. Then for any i ∈ Z we have

RΓ(Pn
A, Rq∗(Lp∗K ⊗L E)⊗L OPn

A
(i))

= RΓ(X ×Pn, Lp∗K ⊗L E ⊗L Lq∗OPn
A

(i))
= RΓ(X,K ⊗L Rq∗(E ⊗L Lq∗OPn

A
(i)))

by Derived Categories of Spaces, Lemma 20.1. By Derived Categories of Spaces, Lemma
25.5 the complexRq∗(E⊗LLq∗OPn

A
(i)) is pseudo-coherent onX . Hence the assumption

tells us the expression in the displayed formula is a pseudo-coherent object of D(A). By
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Derived Categories of Schemes, Lemma 34.2 we conclude thatRq∗(Lp∗K⊗LE) is pseudo-
coherent on Pn

A. By Lemma 51.3 we have

Rq∗(Lp∗K ⊗L E)|X×AV = R(W → V )∗K|W
Since W → V is a closed immersion into an open subscheme of Pn

A this means K|W is
pseudo-coherent relative to A for example by More on Morphisms, Lemma 59.18. �

Lemma 51.5. Let A be a ring. Let X be an algebraic space separated and of finite
presentation over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is pseudo-coherent in
D(A) for every perfect E ∈ D(OX), then K is pseudo-coherent relative to A.

Proof. In view of Lemma 51.4, it suffices to showRΓ(X,E⊗LK) is pseudo-coherent
inD(A) for every pseudo-coherentE ∈ D(OX). By Derived Categories of Spaces, Propo-
sition 29.3 it follows that K ∈ D−

QCoh(OX). Now the result follows by Derived Cate-
gories of Spaces, Lemma 25.7. �

52. Relatively perfect objects

In this section we introduce a notion from [?]. This notion has been discussed for mor-
phisms of schemes in Derived Categories of Schemes, Section 35.

Definition 52.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is flat and locally of finite presentation. An object E of D(OX) is
perfect relative to Y or Y -perfect if E is pseudo-coherent (Cohomology on Sites, Defini-
tion 45.1) andE locally has finite tor dimension as an object ofD(f−1OY ) (Cohomology
on Sites, Definition 46.1).

Please see Derived Categories of Schemes, Remark 35.14 for a discussion; here we just men-
tion that E being pseudo-coherent is the same thing as E being pseudo-coherent relative
to Y by Lemma 45.4. Moreover, pseudo-coherence of E implies E ∈ DQCoh(OX), see
Derived Categories of Spaces, Lemma 13.6.

Example 52.2. Let k be a field. LetX be an algebraic space of finite presentation over
k (in particular X is quasi-compact). Then an object E of D(OX) is k-perfect if and only
if it is bounded and pseudo-coherent (by definition), i.e., if and only if it is inDb

Coh(X) (by
Derived Categories of Spaces, Lemma 13.7). Thus being relatively perfect does not mean
“perfect on the fibres”.

The corresponding algebra concept is studied in More on Algebra, Section 83. We can link
the notion for algebraic spaces with the algebraic notion as follows.

Lemma 52.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat and locally of finite presentation. Let E ∈ DQCoh(OX). The follow-
ing are equivalent:

(1) E is Y -perfect,
(2) for every commutative diagram

U

��

g
// V

��
X

f // Y

where U , V are schemes and the vertical arrows are étale, the complex E|U is
V -perfect in the sense of Derived Categories of Schemes, Definition 35.1,
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(3) for some commutative diagram as in (2) with U → X surjective, the complex
E|U is V -perfect in the sense of Derived Categories of Schemes, Definition 35.1,

(4) for every commutative diagram as in (2) withU andV affine the complexRΓ(U,E)
isOY (V )-perfect.

Proof. To make sense of parts (2), (3), (4) of the lemma, observe that the object E|U
ofDQCoh(OU ) corresponds to an objectE0 ofDQCoh(OU0) whereU0 denotes the scheme
underlying U , see Derived Categories of Spaces, Lemma 4.2. Moreover, in this case E0 is
pseudo-coherent if and only if E|U is pseudo-coherent, see Derived Categories of Spaces,
Lemma 13.2. Also, E|U locally has finite tor dimension over f−1OY |U = g−1OV if and
only if E0 locally has finite tor dimension over g−1

0 OV0 by Derived Categories of Spaces,
Lemma 13.4. Here g0 : U0 → V0 is the morphism of schemes representing g : U → V
(notation as in Derived Categories of Spaces, Remark 6.3). Finally, observe that “being
pseudo-coherent” is étale local and of course “having locally finite tor dimension” is étale
local. Thus we see that it suffices to check Y -perfectness étale locally and by the above
discussion we see that (1) implies (2) and (3) implies (1). Since part (4) is equivalent to (2)
and (3) by Derived Categories of Schemes, Lemma 35.3 the proof is complete. �

Lemma 52.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat and locally of finite presentation. The full subcategory of D(OX)
consisting of Y -perfect objects is a saturated4 triangulated subcategory.

Proof. This follows from Cohomology on Sites, Lemmas 45.4, 45.6, 46.6, and 46.8.
�

Lemma 52.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat and locally of finite presentation. A perfect object of D(OX) is Y -
perfect. If K,M ∈ D(OX), then K ⊗L

OX
M is Y -perfect if K is perfect and M is Y -

perfect.

Proof. Reduce to the case of schemes using Lemma 52.3 and then apply Derived
Categories of Schemes, Lemma 35.5. �

Lemma 52.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat and locally of finite presentation. Let g : Y ′ → Y be a morphism of
algebraic spaces over S. Set X ′ = Y ′ ×Y X and denote g′ : X ′ → X the projection. If
K ∈ D(OX) is Y -perfect, then L(g′)∗K is Y ′-perfect.

Proof. Reduce to the case of schemes using Lemma 52.3 and then apply Derived
Categories of Schemes, Lemma 35.6. �

Situation 52.7. Let S be a scheme. Let Y = limi∈I Yi be a limit of a directed system
of algebraic spaces over S with affine transition morphisms gi′i : Yi′ → Yi. We assume
that Yi is quasi-compact and quasi-separated for all i ∈ I . We denote gi : Y → Yi the
projection. We fix an element 0 ∈ I and a flat morphism of finite presentation X0 → Y0.
We set Xi = Yi ×Y0 X0 and X = Y ×Y0 X0 and we denote the transition morphisms
fi′i : Xi′ → Xi and fi : X → Xi the projections.

Lemma 52.8. In Situation 52.7. Let K0 and L0 be objects of D(OX0). Set Ki =
Lf∗

i0K0 and Li = Lf∗
i0L0 for i ≥ 0 and set K = Lf∗

0K0 and L = Lf∗
0L0. Then the map

colimi≥0 HomD(OXi
)(Ki, Li) −→ HomD(OX)(K,L)

4Derived Categories, Definition 6.1.
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is an isomorphism if K0 is pseudo-coherent and L0 ∈ DQCoh(OX0) has (locally) finite
tor dimension as an object of D((X0 → Y0)−1OY0)

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that

colimi≥0 HomD(OUi
)(Ki|Ui , Li|Ui) −→ HomD(OU )(K|U , L|U )

is an isomorphism where U = X ×X0 U0 and Ui = Xi ×X0 U0. We will prove P holds
for each U0.

Suppose that (U0 ⊂W0, V0 →W0) is an elementary distinguished square in (X0)spaces,étale
and P holds for U0, V0, U0 ×W0 V0. Then P holds for W0 by Mayer-Vietoris for hom in
the derived category, see Derived Categories of Spaces, Lemma 10.4.

We first considerU0 = W0×Y0 X0 withW0 a quasi-compact and quasi-separated object of
(Y0)spaces,étale. By the induction principle of Derived Categories of Spaces, Lemma 9.3
applied to these W0 and the previous paragraph, we find that it is enough to prove P for
U0 = W0 ×Y0 X0 with W0 affine. In other words, we have reduced to the case where Y0
is affine. Next, we apply the induction principle again, this time to all quasi-compact and
quasi-separated opens of X0, to reduce to the case where X0 is affine as well.

IfX0 and Y0 are affine, then we are back in the case of schemes which is proved in Derived
Categories of Schemes, Lemma 35.8. The reader may use Derived Categories of Spaces,
Lemmas 13.6, 4.2, 13.2, and 13.4 to accomplish the translation of the statement into a state-
ment involving only schemes and derived categories of modules on schemes. �

Lemma 52.9. In Situation 52.7 the category of Y -perfect objects of D(OX) is the
colimit of the categories of Yi-perfect objects of D(OXi).

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the functor

colimi≥0 DYi-perfect(OUi) −→ DY -perfect(OU )
is an equivalence where U = X ×X0 U0 and Ui = Xi ×X0 U0. We observe that we al-
ready know this functor is fully faithful by Lemma 52.8. Thus it suffices to prove essential
surjectivity.

Suppose that (U0 ⊂W0, V0 →W0) is an elementary distinguished square in (X0)spaces,étale
and P holds for U0, V0, U0×W0 V0. We claim that P holds for W0. We will use the nota-
tion Ui = Xi ×X0 U0, U = X ×X0 U0, and similarly for V0 and W0. We will abusively
use the symbol fi for all the morphisms U → Ui, V → Vi, U ×W V → Ui ×Wi Vi, and
W → Wi. Suppose E is an Y -perfect object of D(OW ). Goal: show E is in the essential
image of the functor. By assumption, we can find i ≥ 0, an Yi-perfect object EU,i on Ui,
an Yi-perfect objectEV,i on Vi, and isomorphismsLf∗

i EU,i → E|U andLf∗
i EV,i → E|V .

Let
a : EU,i → (Rfi,∗E)|Ui and b : EV,i → (Rfi,∗E)|Vi

the maps adjoint to the isomorphisms Lf∗
i EU,i → E|U and Lf∗

i EV,i → E|V . By fully
faithfulness, after increasing i, we can find an isomorphism c : EU,i|Ui×WiVi → EV,i|Ui×WiVi
which pulls back to the identifications

Lf∗
i EU,i|U×WV → E|U×WV → Lf∗

i EV,i|U×WV .

Apply Derived Categories of Spaces, Lemma 10.8 to get an object Ei on Wi and a map
d : Ei → Rfi,∗E which restricts to the maps a and b over Ui and Vi. Then it is clear that
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Ei is Yi-perfect (because being relatively perfect is an étale local property) and that d is
adjoint to an isomorphism Lf∗

i Ei → E.
By exactly the same argument as used in the proof of Lemma 52.8 using the induction prin-
ciple (Derived Categories of Spaces, Lemma 9.3) we reduce to the case where bothX0 and
Y0 are affine: first work with quasi-compact and quasi-separated objects in (Y0)spaces,étale
to reduce toY0 affine, then work with quasi-compact and quasi-separated object in (X0)spaces,étale
to reduce toX0 affine. In the affine case the result follows from the case of schemes which
is Derived Categories of Schemes, Lemma 35.9. The translation into the case for schemes
is done by Lemma 52.3. �

Lemma 52.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat, proper, and of finite presentation. Let E ∈ D(OX) be Y -perfect.
Then Rf∗E is a perfect object of D(OY ) and its formation commutes with arbitrary base
change.

Proof. The statement on base change is Derived Categories of Spaces, Lemma 21.4
(with G• equal toOX in degree 0). Thus it suffices to show that Rf∗E is a perfect object.
We will reduce to the case where Y is Noetherian affine by a limit argument.
The question is étale local on Y , hence we may assume Y is affine. Say Y = Spec(R).
We write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits of Spaces,
Lemma 7.1 there exists an i and an algebraic spaceXi of finite presentation overRi whose
base change to R is X . By Limits of Spaces, Lemmas 6.13 and 6.12 we may assume Xi is
proper and flat over Ri. By Lemma 52.9 we may assume there exists a Ri-perfect object
Ei ofD(OXi) whose pullback toX isE. Applying Derived Categories of Spaces, Lemma
22.1 to Xi → Spec(Ri) and Ei and using the base change property already shown we
obtain the result. �

Lemma 52.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let E,K ∈ D(OX). Assume

(1) Y is quasi-compact and quasi-separated,
(2) f is proper, flat, and of finite presentation,
(3) E is Y -perfect,
(4) K is pseudo-coherent.

Then there exists a pseudo-coherent L ∈ D(OY ) such that
Rf∗RHom(K,E) = RHom(L,OY )

and the same is true after arbitrary base change: given

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

cartesian, then we have
Rf ′

∗RHom(L(g′)∗K,L(g′)∗E)
= RHom(Lg∗L,OY ′)

Proof. Since Y is quasi-compact and quasi-separated, the same is true for X . By
Derived Categories of Spaces, Lemma 18.1 we can writeK = hocolimKn withKn perfect
andKn → K inducing an isomorphism on truncations τ≥−n. LetK∨

n be the dual perfect
complex (Cohomology on Sites, Lemma 48.4). We obtain an inverse system . . .→ K∨

3 →
K∨

2 → K∨
1 of perfect objects. By Lemma 52.5 we see that K∨

n ⊗OX
E is Y -perfect. Thus

we may apply Lemma 52.10 to K∨
n ⊗OX

E and we obtain an inverse system
. . .→M3 →M2 →M1
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of perfect complexes on Y with

Mn = Rf∗(K∨
n ⊗L

OX
E) = Rf∗RHom(Kn, E)

Moreover, the formation of these complexes commutes with any base change, namely
Lg∗Mn = Rf ′

∗((L(g′)∗Kn)∨ ⊗L
OX′ L(g′)∗E) = Rf ′

∗RHom(L(g′)∗Kn, L(g′)∗E).

As Kn → K induces an isomorphism on τ≥−n, we see that Kn → Kn+1 induces an
isomorphism on τ≥−n. It follows that K∨

n+1 → K∨
n induces an isomorphism on τ≤n

as K∨
n = RHom(Kn,OX). Suppose that E has tor amplitude in [a, b] as a complex of

f−1OY -modules. Then the same is true after any base change, see Derived Categories of
Spaces, Lemma 20.7. We find that K∨

n+1 ⊗OX
E → K∨

n ⊗OX
E induces an isomorphism

on τ≤n+a and the same is true after any base change. Applying the right derived functor
Rf∗ we conclude the maps Mn+1 →Mn induce isomorphisms on τ≤n+a and the same is
true after any base change. Choose a distinguished triangle

Mn+1 →Mn → Cn →Mn+1[1]
Pick y ∈ |Y |. Choose an elementary étale neighbourhood (U, u)→ (Y, y); this is possible
by Decent Spaces, Lemma 11.4. Take Y ′ equal to the spectrum of the residue field at u.
Pull back to see that Cn|U ⊗L

OU
κ(u) has nonzero cohomology only in degrees ≥ n + a.

By More on Algebra, Lemma 75.6 we see that the perfect complexCn|U has tor amplitude
in [n + a,mn] for some integer mn and after possibly shrinking U . Thus Cn has tor
amplitude in [n+a,mn] for some integermn (because Y is quasi-compact). In particular,
the dual perfect complex C∨

n has tor amplitude in [−mn,−n− a].

Let Ln = M∨
n be the dual perfect complex. The conclusion from the discussion in the

previous paragraph is that Ln → Ln+1 induces isomorphisms on τ≥−n−a. Thus L =
hocolimLn is pseudo-coherent, see Derived Categories of Spaces, Lemma 18.1. Since we
have

RHom(K,E) = RHom(hocolimKn, E) = R limRHom(Kn, E) = R limK∨
n ⊗OX

E

(Cohomology on Sites, Lemma 48.8) and since R lim commutes with Rf∗ we find that

Rf∗RHom(K,E) = R limMn = R limRHom(Ln,OY ) = RHom(L,OY )

This proves the formula over Y . Since the construction of Mn is compatible with base
chance, the formula continues to hold after any base change. �

Remark 52.12. The reader may have noticed the similarity between Lemma 52.11
and Derived Categories of Spaces, Lemma 23.3. Indeed, the pseudo-coherent complex L
of Lemma 52.11 may be characterized as the unique pseudo-coherent complex on Y such
that there are functorial isomorphisms

ExtiOY
(L,F) −→ ExtiOX

(K,E ⊗L
OX

Lf∗F)
compatible with boundary maps for F ranging over QCoh(OY ). If we ever need this we
will formulate a precise result here and give a detailed proof.

Lemma 52.13. Let S be a scheme. Let X be an algebraic space over S such that the
structure morphism f : X → S is flat and locally of finite presentation. Let E be a
pseudo-coherent object of D(OX). The following are equivalent

(1) E is S-perfect, and
(2) E is locally bounded below and for every point s ∈ S the objectL(Xs → X)∗E

of D(OXs) is locally bounded below.
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Proof. Since everything is local we immediately reduce to the case thatX and S are
affine, see Lemma 52.3. This case is handled by Derived Categories of Schemes, Lemma
35.13. �

Lemma 52.14. Let A be a ring. Let X be an algebraic space separated, of finite pre-
sentation, and flat over A. Let K ∈ DQCoh(OX). If RΓ(X,E ⊗L K) is perfect in D(A)
for every perfect E ∈ D(OX), then K is Spec(A)-perfect.

Proof. By Lemma 51.5, K is pseudo-coherent relative to A. By Lemma 45.4, K is
pseudo-coherent in D(OX). By Derived Categories of Spaces, Proposition 29.4 we see
that K is in D−(OX). Let p be a prime ideal of A and denote i : Y → X the inclusion of
the scheme theoretic fibre over p, i.e., Y is a scheme over κ(p). By Lemma 52.13, we will be
done if we can show Li∗(K) is bounded below. LetG ∈ Dperf (OX) be a perfect complex
which generates DQCoh(OX), see Derived Categories of Spaces, Theorem 15.4. We have

RHomOY
(Li∗(G), Li∗(K)) = RΓ(Y, Li∗(G∨ ⊗L K))

= RΓ(X,G∨ ⊗L K)⊗L
A κ(p)

The first equality uses that Li∗ preserves perfect objects and duals and Cohomology on
Sites, Lemma 48.4; we omit some details. The second equality follows from Derived Cate-
gories of Spaces, Lemma 20.4 asX is flat overA. It follows from our hypothesis that this is
a perfect object of D(κ(p)). The object Li∗(G) ∈ Dperf (OY ) generates DQCoh(OY ) by
Derived Categories of Spaces, Remark 15.5. Hence Derived Categories of Spaces, Proposi-
tion 29.4 now implies that Li∗(K) is bounded below and we win. �

53. Theorem of the cube

This section is the analogue of More on Morphisms, Section 33. The following lemma tells
us that the diagonal of the Picard functor is representable by locally closed immersions
under the assumptions made in the lemma.

Lemma 53.1. Let S be a scheme. Let f : X → Y be a flat, proper morphism of finite
presentation of algebraic spaces over S. Let E be a finite locally free OX -module. For a
morphism g : Y ′ → Y consider the base change diagram

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

Assume OY ′ → f ′
∗OX′ is an isomorphism for all g : Y ′ → Y . Then there exists an

immersion j : Z → Y of finite presentation such that a morphism g : Y ′ → Y factors
through Z if and only if there exists a finite locally free OY ′ -module N with (f ′)∗N ∼=
(g′)∗L.

Proof. Let y : Spec(k) → Y be a field valued point. Then the fibre Xy of f at y
is connected by our assumption that H0(Xy,OXy ) = k. Thus the rank of E is constant
on the fibres. Since f is open (Morphisms of Spaces, Lemma 30.6) and closed we conclude
that there is a decomposition Y =

∐
Yr of Y into open and closed subspaces such that E

has constant rank r on the inverse image of Yr. Thus we may assume E has constant rank
r. We will denote E∨ = Hom(E ,OX) the dual rank r module.
By cohomology and base change (more precisely by Derived Categories of Spaces, Lemma
25.4) we see that E = Rf∗E is a perfect object of the derived category of Y and that its



5796 76. MORE ON MORPHISMS OF SPACES

formation commutes with arbitrary change of base. Similarly for E′ = Rf∗E∨. Since
there is never any cohomology in degrees < 0, we see that E and E′ have (locally) tor-
amplitude in [0, b] for some b. Observe that for any g : Y ′ → Y we have f ′

∗((g′)∗E) =
H0(Lg∗E) and f ′

∗((g′)∗E∨) = H0(Lg∗E′). Let j : Z → Y and j′ : Z ′ → Y be the
locally closed immersions constructed in Derived Categories of Spaces, Lemma 26.6 forE
and E′ with a = 0 and r = r; these are characterized by the property that H0(Lj∗E)
and H0((j′)∗E′) are locally free modules of rank r compatible with pullback.

Let g : Y ′ → Y be a morphism. If there exists an N as in the lemma, then, using the
projection formula Cohomology on Sites, Lemma 50.1, we see that the modules

f ′
∗((g′)∗E) ∼= f ′

∗((f ′)∗N ) ∼= N ⊗OY ′ f
′
∗OX′ ∼= N and similarly f ′

∗((g′)∗E∨) ∼= N∨

are locally free of rank r and remain locally free of rank r after any further base change
Y ′′ → Y ′. Hence in this case g : Y ′ → Y factors through j and through j′. Thus we may
replace Y by Z×Y Z ′ and assume that f∗E and f∗E∨ are locally freeOY -modules of rank
r whose formation commutes with arbitrary change of base.

In this sitation if g : Y ′ → Y is a morphism and there exists an N as in the lemma, then
the map (cup product in degree 0)

f ′
∗((g′)∗E)⊗OY ′ f

′
∗((g′)∗E∨) −→ OY ′

is a perfect pairing. Conversely, if this cup product map is a perfect pairing, then we see
that locally on Y ′ we have a basis of sections σ1, . . . , σr in f ′

∗((g′)∗L) and τ1, . . . , τr in
f ′

∗((g′)∗E∨) whose products satisfy σiτj = δij . Thinking of σi as a section of (g′)∗L on
X ′ and τj as a section of (g′)∗L∨ on X ′, we conclude that

σ1, . . . , σr : O⊕r
X′ −→ (g′)∗E

is an isomorphism with inverse given by

τ1, . . . , τr : (g′)∗E −→ O⊕r
X′

In other words, we see that (f ′)∗f ′
∗(g′)∗E ∼= (g′)∗E . But the condition that the cupprod-

uct is nondegenerate picks out a retrocompact open subscheme (namely, the locus where
a suitable determinant is nonzero) and the proof is complete. �

54. Descent of finiteness properties of complexes

This section is the analogue of More on Morphisms, Section 70 and Derived Categories of
Schemes, Section 12.

Lemma 54.1. Let S be a scheme. Let {fi : Xi → X} be an fpqc covering of algebraic
spaces over S. Let E ∈ DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-coherent if and
only if each Lf∗

i E is m-pseudo-coherent.

Proof. Pullback always preserves m-pseudo-coherence, see Cohomology on Sites,
Lemma 45.3. Thus it suffices to assumeLf∗

i E ism-pseudo-coherent and to prove thatE is
m-pseudo-coherent. Then first we may assume Xi is a scheme for all i, see Topologies on
Spaces, Lemma 9.5. Next, choose a surjective étale morphismU → X whereU is a scheme.
Then Ui = U ×X Xi is a scheme and we obtain an fpqc covering {Ui → U} of schemes,
see Topologies on Spaces, Lemma 9.4. We know the result is true for {Ui → U}i∈I by the
case for schemes, see Derived Categories of Schemes, Lemma 12.2. On the other hand, the
restriction E|U comes from an object of DQCoh(OU ) (defined using the Zariski topology
and the “usual” structure sheaf of U ), see Derived Categories of Spaces, Lemma 4.2. The
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lemma follows as the two notions of pseudo-coherent (étale and Zariski) agree by Derived
Categories of Spaces, Lemma 13.2. �

Lemma 54.2. Let S be a scheme. Let {gi : Yi → Y } be an fpqc covering of algebraic
spaces over S. Let f : X → Y be a morphism of algebraic spaces and set Xi = Yi ×Y X
with projections fi : Xi → Yi and g′

i : Xi → X . Let E ∈ DQCoh(OX). Let a, b ∈ Z.
Then the following are equivalent

(1) E has tor amplitude in [a, b] as an object of D(f−1OY ), and
(2) L(g′

i)∗E has tor amplitude in [a, b] as a object of D(f−1
i OYi) for all i.

Also true if “tor amplitude in [a, b]” is replaced by “locally finite tor dimension”.

Proof. Pullback preserves “tor amplitude in [a, b]” by Derived Categories of Spaces,
Lemma 20.7 Observe that Yi and X are tor independent over Y as Yi → Y is flat. Let us
assume (2) and prove (1). We can compute tor dimension at stalks, see Cohomology on
Sites, Lemma 46.10 and Properties of Spaces, Theorem 19.12. Let x be a geometric point of
X . Choose an i and a geometric point xi in Xi with image x in X . Then

(L(g′
i)∗E)xi = Ex ⊗L

OX,x
OX,xi

Let yi in Yi and y in Y be the image of xi and x. Since X and Yi are tor independent
over Y , we can apply More on Algebra, Lemma 61.2 to see that the right hand side of the
displayed formula is equal to Ex ⊗L

OY,y
OYi,yi in D(OYi,yi). Since we have assume the

tor amplitude of this is in [a, b], we conclude that the tor amplitude of Ex in D(OY,y) is
in [a, b] by More on Algebra, Lemma 66.17. Thus (1) follows.
Using some elementary topology the case “locally finite tor dimension” follows too. �

The following lemmas do not really belong in this section.

Lemma 54.3. Let S be a scheme. Let i : X → X ′ be a finite order thickening of
algebraic spaces. LetK ′ ∈ D(OX′) be an object such thatK = Li∗K ′ is pseudo-coherent.
Then K ′ is pseudo-coherent.

Proof. We first proveK ′ has quasi-coherent cohomology sheaves; we urge the reader
to skip this part. To do this, we may reduce to the case of a first order thickening, see
Section 9. Let I ⊂ OX′ be the quasi-coherent sheaf of ideals cutting out X . Tensoring
the short exact sequence

0→ I → OX′ → i∗OX → 0
with K ′ we obtain a distinguished triangle

K ′ ⊗L
OX′ I → K ′ → K ′ ⊗L

OX′ i∗OX → (K ′ ⊗L
OX′ I)[1]

Since i∗ = Ri∗ and since we may view I as a quasi-coherent OX -module (as we have a
first order thickening) we may rewrite this as

i∗(K ⊗L
OX
I)→ K ′ → i∗K → i∗(K ⊗L

OX
I)[1]

Please use Cohomology of Spaces, Lemma 4.4 to identify the terms. SinceK is inDQCoh(OX)
we conclude that K ′ is in DQCoh(OX′); this uses Derived Categories of Spaces, Lemmas
13.6, 5.6, and 6.1.
Assume K ′ is in DQCoh(OX′). The question is étale local on X ′ hence we may assume
X ′ is affine. In this case the result follows from the case of schemes (More on Morphisms,
Lemma 71.1). The translation into the language of schemes uses Derived Categories of
Spaces, Lemmas 4.2 and 13.2 and Remark 6.3. �



5798 76. MORE ON MORPHISMS OF SPACES

Lemma 54.4. Let S be a scheme. Consider a cartesian diagram

X
i
//

f

��

X ′

f ′

��
Y

j // Y ′

of algebraic spaces over S. Assume X ′ → Y ′ is flat and locally of finite presentation and
Y → Y ′ is a finite order thickening. Let E′ ∈ D(OX′). If E = Li∗(E′) is Y -perfect,
then E′ is Y ′-perfect.

Proof. Recall that being Y -perfect for E means E is pseudo-coherent and locally
has finite tor dimension as a complex of f−1OY -modules (Definition 52.1). By Lemma
54.3 we find that E′ is pseudo-coherent. In particular, E′ is in DQCoh(OX′), see Derived
Categories of Spaces, Lemma 13.6. By Lemma 52.3 this reduces us to the case of schemes.
The case of schemes is More on Morphisms, Lemma 71.2. �

Lemma 54.5. Let (R, I) be a pair consisting of a ring and an ideal I contained in the
Jacobson radical. Set S = Spec(R) and S0 = Spec(R/I). Let X be an algebraic space
over R whose structure morphism f : X → S is proper, flat, and of finite presentation.
Denote X0 = S0 ×S X . Let E ∈ D(OX) be pseudo-coherent. If the derived restriction
E0 of E to X0 is S0-perfect, then E is S-perfect.

Proof. Choose a surjective étale morphism U → X with U affine. Choose a closed
immersion U → Ad

S . Set U0 = S0 ×S U . The complex E0|U0 has tor amplitude in [a, b]
for some a, b ∈ Z. Let x be a geometric point of X . We will show that the tor amplitude
ofEx overR is in [a− d, b]. This will finish the proof as the tor amplitude can be read off
from the stalks by Cohomology on Sites, Lemma 46.10 and Properties of Spaces, Theorem
19.12.

Let x ∈ |X| be the point determined by x. Recall that |X| → |S| is closed (by definition
of proper morphisms). Since I is contained in the Jacobson radical, any nonempty closed
subset of S contains a point of the closed subscheme S0. Hence we can find a specialization
x x0 in |X|withx0 ∈ |X0|. Chooseu0 ∈ U0 mapping tox0. By Decent Spaces, Lemma
7.4 (or by Decent Spaces, Lemma 7.3 which applies directly to étale morphisms) we find a
specialization u  u0 in U such that u maps to x. We may lift x to a geometric point u
of U lying over u. Then we have Ex = (E|U )u.

Write U = Spec(A). Then A is a flat, finitely presented R-algebra which is a quotient of
a polynomialR-algebra in d-variables. The restrictionE|U corresponds (by Derived Cat-
egories of Spaces, Lemmas 13.6, 4.2, and 13.2 and Derived Categories of Schemes, Lemma
3.5 and 10.2) to a pseudo-coherent object K of D(A). Observe that E0 corresponds to
K ⊗L

A A/IA. Let q ⊂ q0 ⊂ A be the prime ideals corresponding to u u0. Then

Ex = (E|U )u = Eu ⊗L
OU,u

OU,u = Kq ⊗L
Aq

Ashq

(some details omitted). Since Aq → Ashq is flat, the tor amplitude of this as an R-module
is the same as the tor amplitude of Kq as an R-module (More on Algebra, Lemma 66.18).
Also, Kq is a localization of Kq0 . Hence it suffices to show that Kq0 has tor amplitude in
[a− d, b] as a complex of R-modules.
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Let I ⊂ p0 ⊂ R be the prime ideal corresponding to f(x0). Then we have

K ⊗L
R κ(p0) = (K ⊗L

R R/I)⊗L
R/I κ(p0)

= (K ⊗L
A A/IA)⊗L

R/I κ(p0)

the second equality because R → A is flat. By our choice of a, b this complex has coho-
mology only in degrees in the interval [a, b]. Thus we may finally apply More on Algebra,
Lemma 83.9 to R→ A, q0, p0 and K to conclude. �

55. Families of nodal curves

This section is the continuation of Algebraic Curves, Section 20. Please also see that section
for our choice of terminology.

The property “at-worst-nodal of relative dimension 1” of morphisms of schemes is étale
local on the source-and-target, see Descent, Lemma 32.6 and Algebraic Curves, Lemmas
20.8, 20.9, and 20.7. It is also stable under base change and fpqc local on the target, see
Algebraic Curves, Lemmas 20.4 and 20.9. Hence, by Morphisms of Spaces, Lemma 22.1 we
may define the notion of an at-worst-nodal morphism of relative dimension 1 for algebraic
spaces as follows and it agrees with the already existing notion defined in Morphisms of
Spaces, Section 3 when the morphism is representable.

Definition 55.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We say f is at-worst-nodal of relative dimension 1 if the equivalent con-
ditions of Morphisms of Spaces, Lemma 22.1 hold with P =“at-worst-nodal of relative
dimension 1”.

Lemma 55.2. The property of being at-worst-nodal of relative dimension 1 is pre-
served under base change.

Proof. See Morphisms of Spaces, Remark 22.4 and Algebraic Curves, Lemma 20.4.
�

Lemma 55.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The following are equivalent:

(1) f is at-worst-nodal of relative dimension 1,
(2) for every scheme Z and any morphism Z → Y the morphism Z ×Y X → Z is

at-worst-nodal of relative dimension 1,
(3) for every affine scheme Z and any morphism Z → Y the morphism Z×Y X →

Z is at-worst-nodal of relative dimension 1,
(4) there exists a scheme V and a surjective étale morphism V → Y such that V ×Y

X → V is at-worst-nodal of relative dimension 1,
(5) there exists a scheme U and a surjective étale morphism ϕ : U → X such that

the composition f ◦ ϕ is at-worst-nodal of relative dimension 1,
(6) for every commutative diagram

U

��

// V

��
X // Y

whereU , V are schemes and the vertical arrows are étale the top horizontal arrow
is at-worst-nodal of relative dimension 1,
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(7) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are schemes, the vertical arrows are étale, and U → X is surjective
such that the top horizontal arrow is at-worst-nodal of relative dimension 1, and

(8) there exist Zariski coverings Y =
⋃
i∈I Yi, and f−1(Yi) =

⋃
Xij such that each

morphism Xij → Yi is at-worst-nodal of relative dimension 1.

Proof. Omitted. �

The following lemma tells us that we can check whether a morphism is at-worst-nodal of
relative dimension 1 on the fibres.

Lemma 55.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is flat and locally of finite presentation. Then there is a maximal open
subspace X ′ ⊂ X such that f |X′ : X ′ → Y is at-worst-nodal of relative dimension 1.
Moreover, formation of X ′ commutes with arbitrary base change.

Proof. Choose a commutative diagram

U

��

h
// V

��
X

f // Y

where U , V are schemes, the vertical arrows are étale, and U → X is surjective. By the
lemma for the case of schemes (Algebraic Curves, Lemma 20.5) we find a maximal open
subschemeU ′ ⊂ U such that h|U ′ : U ′ → V is at-worst-nodal of relative dimension 1 and
such that formation of U ′ commutes with base change. Let X ′ ⊂ X be the open subspace
whose points correspond to the open subset Im(|U ′| → |X|). By Lemma 55.3 we see that
X ′ → Y is at-worst-nodal of relative dimension 1 and thatX ′ is the largest open subspace
with this property (this also implies that U ′ is the inverse image ofX ′ in U , but we do not
need this). Since the same is true after base change the proof is complete. �

56. The resolution property

We continue the discussion in Derived Categories of Spaces, Section 28.

Situation 56.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let V → X be a surjective étale morphism where V is an affine
scheme (such a thing exists by Properties of Spaces, Lemma 6.3). Choose a commutative
diagram

V

ϕ   

j
// Y

π~~
X

where j is an open immersion andπ is a finite morphism of algebraic spaces (such a diagram
exists by Lemma 34.3). Let I ⊂ OY be a finite type quasi-coherent sheaf of ideals on Y
with V (I) = Y \ j(V ) (such a sheaf of ideals exists by Limits of Spaces, Lemma 14.1).
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Lemma 56.2. In Situation 56.1, assumeX is Noetherian. Then for any coherentOX -
module F there exist r ≥ 0, integers n1, . . . , nr ≥ 0, and a surjection⊕

i=1,...,r
π∗(Ini) −→ F

ofOX -modules.

Proof. Denote ωY/X the coherentOY -module such that there is an isomorphism

π∗ωY/X ∼= HomOX
(π∗OY ,OX)

of π∗OY -modules, see Morphisms of Spaces, Lemma 20.10 and Descent on Spaces, Lemma
6.6. The canonical mapOX → π∗OY produces a canonical map

Trπ : π∗ωY/X −→ OX
Since V is Noetherian affine we may choose sections

s1, . . . , sr ∈ Γ(V, π∗F ⊗OY
ωY/X)

generating the coherent module π∗F ⊗OX
ωY/X over V . By Cohomology of Spaces,

Lemma 13.4 we can choose integers ni ≥ 0 such that si extends to a map s′
i : Ini →

π∗F ⊗OY
ωY/X . Pushing to X we obtain maps

σi : π∗Ini
π∗s

′
i−−−→ π∗(π∗F ⊗OY

ωY/X) = F ⊗OX
π∗ωY/X

Trπ−−→ F

where the equality sign is Cohomology of Spaces, Lemma 4.3. To finish the proof we will
show that the sum of these maps is surjective.

Let x ∈ |X| be a point ofX . Let v ∈ |V | be a point mapping to x. We may choose an étale
neighbourhood (U, u)→ (X,x) such that

U ×X Y = W
∐

W ′

(disjoint union of algebraic spaces) such thatW → U is an isomorphism and such that the
unique point w ∈W lying over umaps to v in V ⊂ Y . To see this is true use Lemma 33.2
and Étale Morphisms, Lemma 18.1. After shrinking U further if necessary we may assume
W maps into V ⊂ Y by the projection. Since the formation of ωY/X commutes with étale
localization we see that

π∗ωY/X |U = (π|W )∗ωW/U ⊕ (π|W ′)∗ωW ′/U

We have (π|W )∗ωW/U = OU and this isomorphism is given by the trace map Trπ|U
restricted to the first summand in the decomposition above. Since W maps into V we see
that Ini |W = OW . Hence

π∗(Ini)|U = OU ⊕ (W ′ → U)∗(Ini |W ′)
Chasing diagrams the reader sees (details omitted) that σi|U on the summand OU is the
mapOU → F corresponding to the section

si|W ∈ Γ(W,π∗F ⊗OY
ωY/X) = Γ(W,F|W ⊗OW

ωW/U ) = Γ(U,F)
Since the sections si generate the module π∗F ⊗OY

ωY/X over V and since W maps into
V we conclude that the restriction of

⊕
σi to U is surjective. Since x was an arbitrary

point the proof is complete. �

Lemma 56.3. In Situation 56.1, assume X is Noetherian. Then X has the resolution
property if and only if π∗I is the quotient of a finite locally freeOX -module.
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Proof. The module π∗I is coherent by Cohomology of Spaces, Lemma 12.9. Hence if
X has the resolution property then π∗I is the quotient of a finite locally freeOX -module.
Conversely, assume given a surjection E → π∗I for some finite locally free OX -module
E . Observe that for all n ≥ 1 there is a surjection

π∗I ⊗OX
π∗In −→ π∗In+1

Hence E⊗n surjects onto π∗In for all n ≥ 1. We conclude that X has the resolution
property if we combine this with the result of Lemma 56.2. �

Lemma 56.4. In Situation 56.1, the algebraic space X has the resolution property if
and only if π∗I is the quotient of a finite locally freeOX -module.

Proof. The pushforward π∗G of a finite type quasi-coherentOY -module G is a finite
type quasi-coherentOX -module by Descent on Spaces, Lemma 6.6. In particular, ifX has
the resolution property, then π∗I is the quotient of a finite locally free OX -module by
Derived Categories of Spaces, Definition 28.1.
Assume that we have a surjection E → π∗I for some finite locally free OX -module E .
In the rest of the proof we show that X has the resolution property by reducing to the
Noetherian case handled in Lemma 56.3. We suggest the reader skip the rest of the proof.
A first reduction is that we may view X as an algebraic space over Spec(Z), see Spaces,
Definition 16.2. (This doesn’t affect the conditions nor the conclusion of the lemma.)
By Limits of Spaces, Lemma 11.3 we can write Y = lim Yi with Yi finite and of finite
presentation over X and where the transition maps are closed immersions. Consider the
closed subspace Z = V (I) of Y . Since I is of finite type, the morphism Z → Y is of
finite presentation. Hence we can find an i and a morphismZi → Yi of finite presentation
whose base change to Y is Z → Y , see Limits of Spaces, Lemma 7.1. For i′ ≥ i denote
Zi′ = Zi ×Yi Yi′ . After increasing i we may assume Zi → Yi is a closed immersion (of
finite presentation), see Limits of Spaces, Lemma 6.8. Denote Ii ⊂ OYi the ideal sheaf
of Zi and denote πi : Yi → X the structure morphism. Similarly for i′ ≥ i. Since
Z = limi′≥i Zi′ we have

π∗I = colim πi′,∗Ii′
The transition maps in the system are all surjective as follows from the surjectivity of the
maps πi,∗OYi → πi′,∗OYi′ and the fact that Zi′ = Zi×Yi Yi′ . By Cohomology of Spaces,
Lemma 5.3 for some i′ ≥ i the map E → π∗I lifts to a map E → πi′,∗Ii′ . After increasing
i′ this map E → πi′,∗Ii′ becomes surjective (since if not the colimit of the cokernels,
having surjective transition maps, is nonzero). This reduces us to the case discussed in the
next paragraph.
AssumeX is an algebraic space over Z and that Y → X is of finite presentation. By abso-
lute Noetherian approximation we can write X = limXi as a directed limit, where each
Xi is a quasi-separated algebraic space of finite type over Z and the transition morphisms
are affine, see Limits of Spaces, Proposition 8.1. Since π : Y → X is of finite presentation
we can find an i and a morphism πi : Yi → Xi of finite presentation whose base change to
X is π, see Limits of Spaces, Lemma 7.1. After increasing i we may assume πi is finite, see
Limits of Spaces, Lemma 6.7. Next, we may assume there exists a finite locally free OXi -
module Ei whose pullback toX is E , see Limits of Spaces, Lemma 7.3. We may also assume
there is a map Ei → πi,∗OYi whose pullback to X is the composition E → π∗I → π∗OY ,
see Limits of Spaces, Lemma 7.2. The cokernel

Ei → πi,∗OYi → Qi → 0
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is a coherent OYi -module whose pullback to X is the (finitely presented) cokernel Q of
the map E → π∗OY . In other words, we haveQ = π∗(OY /I). Consider the map

Ei ⊗OXi
πi,∗OYi −→ πi,∗OYi ⊗OXi

πi,∗OYi → πi,∗OYi → Qi

where the second arrow is given by the algebra structure on πi,∗OYi . The pullback of this
map to Y is zero because the image of E → π∗OY is the ideal π∗I . Hence by Limits of
Spaces, Lemma 7.2 after increasing i we may assume the displayed composition is zero.
This exactly means that the imag of Ei → πi,∗OYi is of the form πi,∗Ii for some coherent
ideal sheaf Ii ⊂ OYi . Since Ei → πi,∗OYi pulls back to E → π∗OY we see that the
pullback of Ii to Y generates I . Denote Vi ⊂ Yi the open subspace whose complement is
V (Ii) ⊂ Yi. Then V is the inverse image of Vi by the comments above. After increasing
i we may assume that Vi is affine and that πi|Vi : Vi → Xi is étale, see Limits of Spaces,
Lemmas 5.10 and 6.2. Having said all of this, we may apply Lemma 56.3 to conclude that
Xi has the resolution property. Since X → Xi is affine we conclude that X has the
resolution property too by Derived Categories of Spaces, Lemma 28.3. �

Lemma 56.5. LetS be a scheme. LetX = limXi be a limit of a direct system of quasi-
compact and quasi-separated algebraic spaces over S with affine transition morphisms.
Then X has the resolution property if and only if Xi has the resolution properties for
some i.

Proof. If Xi has the resolution property, then X does by Derived Categories of
Spaces, Lemma 28.3. Assume X has the resolution property. Choose i ∈ I . We may
choose an affine scheme Vi and a surjective étale morphism Vi → Xi (Properties of Spaces,
Lemma 6.3). We may choose an embedding j : Vi → Yi with Yi finite and finitely pre-
sented overXi (Lemma 34.4). We may choose a finite type quasi-coherent ideal Ii ⊂ OYi
such that Vi = Yi \ V (Ii) (Limits of Spaces, Lemma 14.1). Denote V → Y → X the
base changes of Vi → Yi → Xi to X . Denote I ⊂ OY the pullback of the ideal Ii.
By the easy direction of Lemma 56.4 there exists a finite locally free OX -module E and a
surjection E → π∗I . Note that since πi : Yi → Xi is finite and of finite presentation we
also have that π : Y → X is finite and of finite presentation and that the OXi -modules
πi,∗OYi and πi,∗(OYi/Ii) are of finite presentation and pullback to X to give π∗OY and
π∗(OY /I). Thus by Limits of Spaces, Lemma 7.2 after increasing i we can find a finite
locally freeOXi -module Ei and a map Ei → πi,∗OYi whose base change toX recovers the
composition E → π∗I → π∗OY . The pullbacks of the finitely presented OXi -modules
Coker(Ei → πi,∗OYi) and πi,∗(OYi/Ii) toX agree as quotients of π∗OY . Hence by Lim-
its of Spaces, Lemma 7.2 we may assume that these agree, in other words that the image of
Ei → πi,∗OXi is equal to πi,∗Ii. Then we conclude that Xi has the resolution property
by Lemma 56.4. �

Lemma 56.6. Let S be a scheme. Let X be a quasi-compact and quasi-separated al-
gebraic space with the resolution property. Then X has affine diagonal over Z (as in
Properties of Spaces, Definition 3.1).

Proof. We could prove this as in the case of schemes, but instead we will deduce the
lemma from the case of schemes. First, we may and do assume S = Spec(Z). Next, we
choose a scheme Y and a surjective integral morphism f : Y → X , see Decent Spaces,
Lemma 9.2. Then f is affine, hence Y has the resolution property by Derived Categories
of Spaces, Lemma 28.3. Hence by the case of schemes, the scheme Y has affine diagonal,
see Derived Categories of Schemes, Lemma 36.10. Next, we consider the commutative
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diagram
Y

��

∆Y

// Y ×Z Y

��
X

∆X // X ×Z X

Observe that the right vertical arrow is integral, in particular affine. Let W → X ×Z X
be a morphism with W affine. Then we see that

Y ×X×ZX W = Y ×∆Y ,Y×ZY (Y ×Z Y )×X×ZX W

is affine. On the other hand, Y → X is integral and surjective hence

Y ×X×ZX W −→ X ×X×ZX W

is integral surjective as the base change of Y → X to W . We conclude that the target of
this arrow is affine by Limits of Spaces, Proposition 15.2. It follows that ∆X is affine as
desired. �

57. Blowing up and the resolution property

We prove that the resolution property is satisfied after a blowing up.

Lemma 57.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated al-
gebraic space over S. Assume that |X| has finitely many irreducible components. There
exists a dense quasi-compact open U ⊂ X and a U -admissible blowing up X ′ → X such
that the algebraic space X ′ has the resolution property.

Proof. By Limits of Spaces, Lemma 16.3 there exists a surjective, finite, and finitely
presented morphism f : Y → X where Y is a scheme and a quasi-compact dense open
U ⊂ X such that f−1(U) → U is finite étale. By More on Morphisms, Lemma 80.2
there is a quasi-compact dense open V ⊂ Y and a V -admissible blowing up Y ′ → Y such
that Y ′ has an ample family of invertible modules. After shrinking U we may assume
that f−1(U) ⊂ V (details omitted). Hence f ′ : Y ′ → X is finite étale over U and in
particular, the morphism (f ′)−1(U) → U is finite locally free. By Lemma 39.2 there is a
U -admissible blowing upX ′ → X such that the strict transform Y ′′ of Y ′ is finite locally
free over X ′. Picture

Y ′′

��

g
// Y ′ // Y

��
X ′ // X

Since g : Y ′′ → Y ′ is a blowing up (Divisors on Spaces, Lemma 18.3) in the inverse image
of the center ofX ′ → X , we see that g : Y ′′ → Y ′ is projective and that there exists some
g-ample invertible module on Y ′′. Hence by More on Morphisms, Lemma 79.1 we see that
Y ′′ has an ample family of invertible modules. Hence Y ′′ has the resolution property,
see Derived Categories of Schemes, Lemma 36.7. We conclude that X ′ has the resolution
property by Derived Categories of Spaces, Lemma 28.4. �

Lemma 57.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. There exists a t ≥ 0 and closed subspaces

X ⊃ Z0 ⊃ Z1 ⊃ . . . ⊃ Zt = ∅
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such that Zi → X is of finite presentation, Z0 ⊂ X is a thickening, and for each i =
0, . . . t− 1 there exists a (Zi \Zi−1)-admissible blowing up Z ′

i → Zi such that Z ′
i has the

resolution property.

Proof. In this paragraph we use absolute Noetherian approximation to reduce to the
case of algebraic spaces of finite presentation over Spec(Z). We may viewX as an algebraic
space over Spec(Z), see Spaces, Definition 16.2 and Properties of Spaces, Definition 3.1.
Thus we may apply Limits of Spaces, Proposition 8.1. It follows that we can find an affine
morphism X → X0 with X0 of finite presentation over Z. If we can prove the lemma
for X0, then we can pull back the stratification and the centers of the blowing ups to
X and get the result for X ; this uses that the resolution property goes up along affine
morphisms (Derived Categories of Spaces, Lemma 28.3) and that the strict transform of
an affine morphism is affine – details omitted. This reduces us to the case discussed in the
next paragraph.
AssumeX is of finite presentation over Z. ThenX is Noetherian and |X| is a Noetherian
topological space (with finitely many irreducible components) of finite dimension. Hence
we may use induction on dim(|X|). By Lemma 57.1 there exists a dense openU ⊂ X and a
U -admissible blowing up X ′ → X such that X ′ has the resolution property. Set Z0 = X
and let Z1 ⊂ X be the reduced closed subspace with |Z1| = |X| \ |U |. By induction we
find an integer t ≥ 0 and a filtration

Z1 ⊃ Z1,0 ⊃ Z1,1 ⊃ . . . ⊃ Z1,t = ∅
by closed subspaces, where Z1,0 → Z1 is a thickening and there exist (Z1,i \ Z1,i+1)-
admissible blowing ups Z ′

1,i → Z1,i such that Z ′
1,i has the resolution property. Since Z1

is reduced, we have Z1 = Z1,0. Hence we can set Zi = Z1,i−1 and Z ′
i = Z ′

1,i−1 for i ≥ 1
and the lemma is proved. �
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CHAPTER 77

Flatness on Algebraic Spaces

1. Introduction

In this chapter, we discuss some advanced results on flat modules and flat morphisms in
the setting of algebraic spaces. We strongly encourage the reader to take a look at the
corresponding chapter in the setting of schemes first, see More on Flatness, Section 1. A
reference is the paper [?] by Raynaud and Gruson.

2. Impurities

The section is the analogue of More on Flatness, Section 15.

Situation 2.1. Let S be a scheme. Let f : X → Y be a finite type, decent1 morphism
of algebraic spaces over S. Also, F is a finite type quasi-coherent OX -module. Finally
y ∈ |Y | is a point of Y .

In this situation consider a scheme T , a morphism g : T → Y , a point t ∈ T with g(t) = y,
a specialization t′  t in T , and a point ξ ∈ |XT | lying over t′. Here XT = T ×Y X .
Picture

(2.1.1)

ξ_

��
t′ // t � //// y

XT

fT
��

// X

f

��
T

g // Y

Moreover, denote FT the pullback of F to XT .

Definition 2.2. In Situation 2.1 we say a diagram (2.1.1) defines an impurity of F
above y if ξ ∈ AssXT /T (FT ) and t 6∈ fT ({ξ}). We will indicate this by saying “let
(g : T → Y, t′  t, ξ) be an impurity of F above y”.

Another way to say this is: (g : T → Y, t′  t, ξ) is an impurity of F above y if there
exists no specialization ξ  θ in the topological space |XT | with fT (θ) = t. Specializa-
tions in non-decent algebraic spaces do not behave well. If the morphism f is decent, then
XT is a decent algebraic space for all morphisms g : T → Y as above, see Decent Spaces,
Definition 17.1.

Lemma 2.3. In Situation 2.1. Let (g : T → S, t′  t, ξ) be an impurity of F above
y. Assume T = limi∈I Ti is a directed limit of affine schemes over Y . Then for some i the
triple (Ti → Y, t′i  ti, ξi) is an impurity of F above y.

1Quasi-separated morphisms are decent, see Decent Spaces, Lemma 17.2. For any morphism Spec(k) → Y

where k is a field, the algebraic space Xk is of finite presentation over k because it is of finite type over k and
quasi-separated by Decent Spaces, Lemma 14.1.

5807
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Proof. The notation in the statement means this: Let pi : T → Ti be the projection
morphisms, let ti = pi(t) and t′i = pi(t′). Finally ξi ∈ |XTi | is the image of ξ. By Divisors
on Spaces, Lemma 4.7 we have ξi ∈ AssXTi/Ti(FTi). Thus the only point is to show that
ti 6∈ fTi({ξi}) for some i.

Let Zi ⊂ XTi be the reduced induced scheme structure on {ξi} ⊂ |XTi | and let Z ⊂ XT

be the reduced induced scheme structure on {ξ} ⊂ |XT |. Then Z = limZi by Limits of
Spaces, Lemma 5.4 (the lemma applies because each XTi is decent). Choose a field k and a
morphism Spec(k)→ T whose image is t. Then

∅ = Z ×T Spec(k) = (limZi)×(limTi) Spec(k) = limZi ×Ti Spec(k)
because limits commute with fibred products (limits commute with limits). Each Zi ×Ti
Spec(k) is quasi-compact becauseXTi → Ti is of finite type and henceZi → Ti is of finite
type. Hence Zi ×Ti Spec(k) is empty for some i by Limits of Spaces, Lemma 5.3. Since
the image of the composition Spec(k)→ T → Ti is ti we obtain what we want. �

Impurities go up along flat base change.

Lemma 2.4. In Situation 2.1. Let (Y1, y1) → (Y, y) be a morphism of pointed alge-
braic spaces over S. Assume Y1 → Y is flat at y1. If (T → Y, t′  t, ξ) is an impurity of
F above y, then there exists an impurity (T1 → Y1, t

′
1  t1, ξ1) of the pullback F1 of F

to X1 = Y1 ×Y X over y1 such that T1 is étale over Y1 ×Y T .

Proof. Choose an étale morphism T1 → Y1 ×Y T where T1 is a scheme and let
t1 ∈ T1 be a point mapping to y1 and t. It is possible to find a pair (T1, t1) like this
by Properties of Spaces, Lemma 4.3. The morphism of schemes T1 → T is flat at t1 (use
Morphisms of Spaces, Lemma 30.4 and the definition of flat morphisms of algebraic spaces)
there exists a specialization t′1  t1 lying over t′  t, see Morphisms, Lemma 25.9.
Choose a point ξ1 ∈ |XT1 | mapping to t′1 and ξ with ξ1 ∈ AssXT1/T1(FT1). point of
Spec(κ(t′1)⊗κ(t′)κ(ξ)). This is possible by Divisors on Spaces, Lemma 4.7. As the closure
Z1 of {ξ1} in |XT1 | maps into the closure of {ξ} in |XT | we conclude that the image of
Z1 in |T1| cannot contain t1. Hence (T1 → Y1, t

′
1  t1, ξ1) is an impurity of F1 above

Y1. �

Lemma 2.5. In Situation 2.1. Let y be a geometric point lying over y. Let O = OY,y
be the étale local ring of Y at y. Denote Y sh = Spec(O), Xsh = X ×Y Y sh, and Fsh
the pullback of F to Xsh. The following are equivalent

(1) there exists an impurity (Y sh → Y, y′  y, ξ) of F above y,
(2) every point of AssXsh/Y sh(Fsh) specializes to a point of the closed fibre Xy ,
(3) there exists an impurity (T → Y, t′  t, ξ) of F above y such that (T, t) →

(Y, y) is an étale neighbourhood, and
(4) there exists an impurity (T → Y, t′  t, ξ) of F above y such that T → Y is

quasi-finite at t.

Proof. That parts (1) and (2) are equivalent is immediate from the definition.
Recall thatO = OY,y is the filtered colimit ofO(V ) over the category of étale neighbour-
hoods (V, v)→ (Y, y) (Properties of Spaces, Lemma 19.3). Moreover, it suffices to consider
affine étale neighbourhoods V . Hence Y sh = Spec(O) = lim Spec(O(V )) = limV .
Thus we see that (1) implies (3) by Lemma 2.3.
Since an étale morphism is locally quasi-finite (Morphisms of Spaces, Lemma 39.5) we see
that (3) implies (4).
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Finally, assume (4). After replacing T by an open neighbourhood of twe may assume T →
Y is locally quasi-finite. By Lemma 2.4 we find an impurity (T1 → Y sh, t′1  t1, ξ1) with
T1 → T×Y Y sh étale. Since an étale morphism is locally quasi-finite and using Morphisms
of Spaces, Lemma 27.4 and Morphisms, Lemma 20.12 we see that T1 → Y sh is locally
quasi-finite. As O is strictly henselian, we can apply More on Morphisms, Lemma 41.1 to
see that after replacing T1 by an open and closed neighbourhood of t1 we may assume that
T1 → Y sh = Spec(O) is finite. Let θ ∈ |Xsh| be the image of ξ1 and let y′ ∈ Spec(O)
be the image of t′1. By Divisors on Spaces, Lemma 4.7 we see that θ ∈ AssXsh/Y sh(Fsh).
Since π : XT1 → Xsh is finite, it induces a closed map |XT1 | → |Xsh|. Hence the image
of {ξ1} is {θ}. It follows that (Y sh → Y, y′  y, θ) is an impurity of F above y and the
proof is complete. �

3. Relatively pure modules

This section is the analogue of More on Flatness, Section 16.

Definition 3.1. In Situation 2.1.
(1) We sayF is pure above y if none of the equivalent conditions of Lemma 2.5 hold.
(2) We say F is universally pure above y if there does not exist any impurity of F

above y.
(3) We say that X is pure above y ifOX is pure above y.
(4) We say F is universally Y -pure, or universally pure relative to Y if F is univer-

sally pure above y for every y ∈ |Y |.
(5) We sayF is Y -pure, or pure relative to Y ifF is pure above y for every y ∈ |Y |.
(6) We say that X is Y -pure or pure relative to Y ifOX is pure relative to Y .

The obligatory lemmas follow.

Lemma 3.2. In Situation 2.1.
(1) F is universally pure above y, and
(2) for every morphism (Y ′, y′) → (Y, y) of pointed algebraic spaces the pullback
FY ′ is pure above y′.

In particular, F is universally pure relative to Y if and only if every base change FY ′ of
F is pure relative to Y ′.

Proof. This is formal. �

Lemma 3.3. In Situation 2.1. Let (Y ′, y′) → (Y, y) be a morphism of pointed alge-
braic spaces. If Y ′ → Y is quasi-finite at y′ and F is pure above y, then FY ′ is pure above
y′.

Proof. It (T → Y ′, t′  t, ξ) is an impurity of FY ′ above y′ with T → Y ′ quasi-
finite at t, then (T → Y, t′ → t, ξ) is an impurity of F above y with T → Y quasi-finite
at t, see Morphisms of Spaces, Lemma 27.3. Hence the lemma follows immediately from
the definition of purity. �

Purity satisfies flat descent.

Lemma 3.4. In Situation 2.1. Let (Y1, y1) → (Y, y) be a morphism of pointed alge-
braic spaces. Assume Y1 → Y is flat at y1.

(1) If FY1 is pure above y1, then F is pure above y.
(2) If FY1 is universally pure above y1, then F is universally pure above y.
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Proof. This is true because impurities go up along a flat base change, see Lemma 2.4.
For example part (1) follows because by any impurity (T → Y, t′  t, ξ) of F above y
with T → Y quasi-finite at t by the lemma leads to an impurity (T1 → Y1, t

′
1  t1, ξ1)

of the pullback F1 of F to X1 = Y1 ×Y X over y1 such that T1 is étale over Y1 ×Y
T . Hence T1 → Y1 is quasi-finite at t1 because étale morphisms are locally quasi-finite
and compositions of locally quasi-finite morphisms are locally quasi-finite (Morphisms of
Spaces, Lemmas 39.5 and 27.3). Similarly for part (2). �

Lemma 3.5. In Situation 2.1. Let i : Z → X be a closed immersion and assume that
F = i∗G for some finite type, quasi-coherent sheaf G on Z. Then G is (universally) pure
above y if and only if F is (universally) pure above y.

Proof. This follows from Divisors on Spaces, Lemma 4.9. �

Lemma 3.6. In Situation 2.1.
(1) If the support of F is proper over Y , then F is universally pure relative to Y .
(2) If f is proper, then F is universally pure relative to Y .
(3) If f is proper, then X is universally pure relative to Y .

Proof. First we reduce (1) to (2). Namely, letZ ⊂ X be the scheme theoretic support
of F (Morphisms of Spaces, Definition 15.4). Let i : Z → X be the corresponding closed
immersion and write F = i∗G for some finite type quasi-coherent OZ -module G. In case
(1) Z → Y is proper by assumption. Thus by Lemma 3.5 case (1) reduces to case (2).

Assume f is proper. Let (g : T → Y, t′  t, ξ) be an impurity of F above y. Since f
is proper, it is universally closed. Hence fT : XT → T is closed. Since fT (ξ) = t′ this
implies that t ∈ f({ξ}) which is a contradiction. �

4. Flat finite type modules

Please compare with More on Flatness, Sections 10, 13, and 26. Most of these results have
immediate consequences of algebraic spaces by étale localization.

Lemma 4.1. Let S be a scheme. Let X → Y be a finite type morphism of alge-
braic spaces over S. Let F be a finite type quasi-coherent OX -module. Let y ∈ |Y | be
a point. There exists an étale morphism (Y ′, y′) → (Y, y) with Y ′ an affine scheme and
étale morphisms hi : Wi → XY ′ , i = 1, . . . , n such that for each i there exists a com-
plete dévissage of Fi/Wi/Y

′ over y′, where Fi is the pullback of F to Wi and such that
|(XY ′)y′ | ⊂

⋃
hi(Wi).

Proof. The question is étale local on Y hence we may assume Y is an affine scheme.
Then X is quasi-compact, hence we can choose an affine scheme X ′ and a surjective étale
morphism X ′ → X . Then we may apply More on Flatness, Lemma 5.8 to X ′ → Y ,
(X ′ → Y )∗F , and y to get what we want. �

Lemma 4.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. LetF be a quasi-coherentOX -module of finite type.
Let y ∈ |Y | and F = f−1({y}) ⊂ |X|. Then the set

{x ∈ F | F flat over Y at x}

is open in F .
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Proof. Choose a schemeV , a point v ∈ V , and an étale morphismV → Y mapping v
to y. Choose a schemeU and a surjective étale morphismU → V ×Y X . Then |Uv| → F is
an open continuous map of topological spaces as |U | → |X| is continuous and open. Hence
the result follows from the case of schemes which is More on Flatness, Lemma 10.4. �

Lemma 4.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let x ∈ |X| with image y ∈ |Y |. Let F be a finite
type quasi-coherent sheaf onX . Let G be a quasi-coherent sheaf on Y . IfF is flat at x over
Y , then

x ∈WeakAssX(F ⊗OX
f∗G)⇔ y ∈WeakAssY (G) and x ∈ AssX/Y (F).

Proof. Choose a commutative diagram

U

��

g
// V

��
X

f // Y

where U and V are schemes and the vertical arrows are surjective étale. Choose u ∈ U
mapping to x. Let E = F|U and H = G|V . Let v ∈ V be the image of u. Then x ∈
WeakAssX(F ⊗OX

f∗G) if and only if u ∈ WeakAssX(E ⊗OX
g∗H) by Divisors on

Spaces, Definition 2.2. Similarly, y ∈ WeakAssY (G) if and only if v ∈ WeakAssV (H).
Finally, we have x ∈ AssX/Y (F) if and only if u ∈ AssUv (E|Uv ) by Divisors on Spaces,
Definition 4.5. Observe that flatness of F at x is equivalent to flatness of E at u, see
Morphisms of Spaces, Definition 31.2. The equivalence for g : U → V , E , H, u, and v is
More on Flatness, Lemma 13.3. �

Lemma 4.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let F be a finite type quasi-coherent sheaf on X
which is flat over Y . Let G be a quasi-coherent sheaf on Y . Then we have

WeakAssX(F ⊗OX
f∗G) = AssX/Y (F) ∩ |f |−1(WeakAssY (G))

Proof. Immediate consequence of Lemma 4.3. �

Theorem 4.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherentOX -module. Assume

(1) X → Y is locally of finite presentation,
(2) F is anOX -module of finite type, and
(3) the set of weakly associated points of Y is locally finite in Y .

ThenU = {x ∈ |X| : F flat at x over Y } is open inX andF|U is anOU -module of finite
presentation and flat over Y .

Proof. Condition (3) means that if V → Y is a surjective étale morphism where V
is a scheme, then the weakly associated points of V are locally finite on the scheme V .
(Recall that the weakly associated points of V are exactly the inverse image of the weakly
associated points of Y by Divisors on Spaces, Definition 2.2.) Having said this the question
is étale local on X and Y , hence we may assume X and Y are schemes. Thus the result
follows from More on Flatness, Theorem 13.6. �

Lemma 4.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherent sheaf on X . Let y ∈ |Y |. Set F = f−1({y}) ⊂ |X|.
Assume that
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(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over Y at all x ∈ F .

Then there exists an étale morphism (Y ′, y′) → (Y, y) where Y ′ is a scheme and a com-
mutative diagram of algebraic spaces

X

��

X ′
g

oo

��
Y Spec(OY ′,y′)oo

such that X ′ → X ×Y Spec(OY ′,y′) is étale, |X ′
y′ | → F is surjective, X ′ is affine, and

Γ(X ′, g∗F) is a freeOY ′,y′ -module.

Proof. Choose an étale morphism (Y ′, y′) → (Y, y) where Y ′ is an affine scheme.
Then X ×Y Y ′ is quasi-compact. Choose an affine scheme X ′ and a surjective étale mor-
phism X ′ → X ×Y Y ′. Picture

X

��

X ′
g

oo

��
Y Y ′oo

Then F ′ = g∗F is flat over Y ′ at all points of X ′
y′ , see Morphisms of Spaces, Lemma 31.3.

Hence we can apply the lemma in the case of schemes (More on Flatness, Lemma 12.11) to
the morphism X ′ → Y ′, the quasi-coherent sheaf g∗F , and the point y′. This gives an
étale morphism (Y ′′, y′′)→ (Y ′, y′) and a commutative diagram

X

��

X ′
g

oo

��

X ′′
g′

oo

��
Y Y ′oo Spec(OY ′′,y′′)oo

To get what we want we take (Y ′′, y′′)→ (Y, y) and g ◦ g′ : X ′′ → X . �

Theorem 4.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. LetF be a quasi-coherentOX -module of finite type.
Let x ∈ |X| with image y ∈ |Y |. Set F = f−1({y}) ⊂ |X|. Consider the conditions

(1) F is flat at x over Y , and
(2) for every x′ ∈ F ∩ AssX/Y (F) which specializes to x we have that F is flat at

x′ over Y .
Then we always have (2)⇒ (1). If X and Y are decent, then (1)⇒ (2).

Proof. Assume (2). Choose a scheme V and a surjective étale morphism V → Y .
Choose a scheme U and a surjective étale morphism U → V ×Y X . Choose a point
u ∈ U mapping to x. Let v ∈ V be the image of u. We will deduce the result from
the corresponding result for F|U = (U → X)∗F and the point u. Uv . This works
because AssU/V (F|U ) ∩ |Uv| is equal to AssUv (F|Uv ) and equal to the inverse image of
F ∩ AssX/Y (F). Since the map |Uv| → F is continuous we see that specializations in
|Uv|map to specializations in F , hence condition (2) is inherited by U → V ,F|U , and the
point u. Thus More on Flatness, Theorem 26.1 applies and we conclude that (1) holds.
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If Y is decent, then we can represent y by a quasi-compact monomorphism Spec(k)→ Y
(by definition of decent spaces, see Decent Spaces, Definition 6.1). Then F = |Xk|, see
Decent Spaces, Lemma 18.6. If in addition X is decent (or more generally if f is decent,
see Decent Spaces, Definition 17.1 and Decent Spaces, Lemma 17.3), then Xy is a decent
space too. Furthermore, specializations in F can be lifted to specializations in Uv → Xy ,
see Decent Spaces, Lemma 12.2. Having said this it is clear that the reverse implication
holds, because it holds in the case of schemes. �

Lemma 4.8. Let S be a local scheme with closed point s. Let f : X → S be a
morphism from an algebraic space X to S which is locally of finite type. Let F be a finite
type quasi-coherentOX -module. Assume that

(1) every point of AssX/S(F) specializes to a point of the closed fibre Xs
2,

(2) F is flat over S at every point of Xs.
Then F is flat over S.

Proof. This is immediate from the fact that it suffices to check for flatness at points
of the relative assassin of F over S by Theorem 4.7. �

5. Flat finitely presented modules

This is the analogue of More on Flatness, Section 12.

Proposition 5.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X . Let x ∈ |X| with image y ∈ |Y |.
Assume that

(1) f is locally of finite presentation,
(2) F is of finite presentation, and
(3) F is flat at x over Y .

Then there exists a commutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(Y, y) (Y ′, y′)oo

whose horizontal arrows are étale such that X ′, Y ′ are affine and such that Γ(X ′, g∗F) is
a projective Γ(Y ′,OY ′)-module.

Proof. As formulated this proposition immmediately reduces to the case of schemes,
which is More on Flatness, Proposition 12.4. �

Lemma 5.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherent sheaf on X . Let y ∈ |Y |. Set F = f−1({y}) ⊂ |X|.
Assume that

(1) f is of finite presentation,
(2) F is of finite presentation, and
(3) F is flat over Y at all x ∈ F .

2For example this holds if f is finite type and F is pure along Xs , or if f is proper.
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Then there exists a commutative diagram of algebraic spaces

X

��

X ′
g

oo

��
Y Y ′hoo

such that h and g are étale, there is a point y′ ∈ |Y ′| mapping to y, we have F ⊂ g(|X ′|),
the algebraic spaces X ′, Y ′ are affine, and Γ(X ′, g∗F) is a projective Γ(Y ′,OY ′)-module.

Proof. As formulated this lemma immmediately reduces to the case of schemes, which
is More on Flatness, Lemma 12.5. �

6. A criterion for purity

This section is the analogue of More on Flatness, Section 18.

Lemma 6.1. Let S be a scheme. LetX be a decent algebraic space locally of finite type
over S. Let F be a finite type, quasi-coherent OX -module. Let s ∈ S such that F is flat
over S at all points of Xs. Let x′ ∈ AssX/S(F). If the closure of {x′} in |X| meets |Xs|,
then the closure meets AssX/S(F) ∩ |Xs|.

Proof. Observe that |Xs| ⊂ |X| is the set of points of |X| lying over s ∈ S , see
Decent Spaces, Lemma 18.6. Let t ∈ |Xs| be a specialization of x′ in |X|. Choose an affine
scheme U and a point u ∈ U and an étale morphism ϕ : U → X mapping u to t. By
Decent Spaces, Lemma 12.2 we can choose a specialization u′  u with u′ mapping to x′.
Set g = f ◦ ϕ. Observe that s′ = g(u′) = f(x′) specializes to s. By our definition of
AssX/S(F) we have u′ ∈ AssU/S(ϕ∗F). By the schemes version of this lemma (More on
Flatness, Lemma 18.1) we see that there is a specializationu′  uwithu ∈ AssUs(ϕ∗Fs) =
AssU/S(ϕ∗F) ∩ Us. Hence x = ϕ(u) ∈ AssX/S(F) lies over s and the lemma is proved.

�

Lemma 6.2. Let Y be an algebraic space over a scheme S. Let g : X ′ → X be a
morphism of algebraic spaces over Y with X locally of finite type over Y . Let F be a
quasi-coherent OX -module. If AssX/Y (F) ⊂ g(|X ′|), then for any morphism Z → Y
we have AssXZ/Z(FZ) ⊂ gZ(|X ′

Z |).

Proof. By Properties of Spaces, Lemma 4.3 the map |X ′
Z | → |XZ |×|X| |X ′| is surjec-

tive asX ′
Z is equal toXZ×XX ′. By Divisors on Spaces, Lemma 4.7 the map |XZ | → |X|

sends AssXZ/Z(FZ) into AssX/Y (F). The lemma follows. �

Lemma 6.3. Let Y be an algebraic space over a scheme S. Let g : X ′ → X be an
étale morphism of algebraic spaces over Y . Assume the structure morphismsX ′ → Y and
X → Y are decent and of finite type. Let F be a finite type, quasi-coherent OX -module.
Let y ∈ |Y |. Set F = f−1({y}) ⊂ |X|.

(1) If AssX/Y (F) ⊂ g(|X ′|) and g∗F is (universally) pure above y, then F is (uni-
versally) pure above y.

(2) If F is pure above y, g(|X ′|) contains F , and Y is affine local with closed point
y, then AssX/Y (F) ⊂ g(|X ′|).

(3) IfF is pure above y,F is flat at all points of F , g(|X ′|) contains AssX/Y (F)∩F ,
and Y is affine local with closed point y, then AssX/Y (F) ⊂ g(|X ′|).

(4) Add more here.
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Proof. The assumptions on X → Y and X ′ → Y guarantee that we may apply the
material in Sections 2 and 3 to these morphisms and the sheaves F and g∗F . Since g is
étale we see that AssX′/Y (g∗F) is the inverse image of AssX/Y (F) and the same remains
true after base change.

Proof of (1). Assume AssX/Y (F) ⊂ g(|X ′|). Suppose that (T → Y, t′  t, ξ) is an
impurity of F above y. Since AssXT /T (FT ) ⊂ gT (|X ′

T |) by Lemma 6.2 we can choose a
point ξ′ ∈ |X ′

T |mapping to ξ. By the above we see that (T → Y, t′  t, ξ′) is an impurity
of g∗F above y′. This implies (1) is true.

Proof of (2). This follows from the fact that g(|X ′|) is open in |X| and the fact that by
purity every point of AssX/Y (F) specializes to a point of F .

Proof of (3). This follows from the fact that g(|X ′|) is open in |X| and the fact that
by purity combined with Lemma 6.1 every point of AssX/Y (F) specializes to a point of
AssX/Y (F) ∩ F . �

Lemma 6.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherentOX -module. Let y ∈ |Y |. Assume

(1) f is decent and of finite type,
(2) F is of finite type,
(3) F is flat over Y at all points lying over y, and
(4) F is pure above y.

Then F is universally pure above y.

Proof. Consider the morphism Spec(OY,y)→ Y . This is a flat morphism from the
spectrum of a stricly henselian local ring which maps the closed point to y. By Lemma 3.4
we reduce to the case described in the next paragraph.

Assume Y is the spectrum of a strictly henselian local ring R with closed point y. By
Lemma 4.6 there exists an étale morphism g : X ′ → X with g(|X ′|) ⊃ |Xy|, with X ′

affine, and with Γ(X ′, g∗F) a free R-module. Then g∗F is universally pure relative to
Y , see More on Flatness, Lemma 17.4. Hence it suffices to prove that g(|X ′|) contains
AssX/Y (F) by Lemma 6.3 part (1). This in turn follows from Lemma 6.3 part (2). �

Lemma 6.5. Let S be a scheme. Let f : X → Y be a decent, finite type morphism of
algebraic spaces over S. Let F be a finite type quasi-coherent OX -module. Assume F is
flat over Y . In this caseF is pure relative to Y if and only ifF is universally pure relative
to Y .

Proof. Immediate consequence of Lemma 6.4 and the definitions. �

Lemma 6.6. Let Y be an algebraic space over a scheme S. Let g : X ′ → X be a flat
morphism of algebraic spaces over Y withX locally of finite type over Y . LetF be a finite
type quasi-coherent OX -module which is flat over Y . If AssX/Y (F) ⊂ g(|X ′|) then the
canonical map

F −→ g∗g
∗F

is injective, and remains injective after any base change.

Proof. The final assertion means that FZ → (gZ)∗g
∗
ZFZ is injective for any mor-

phism Z → Y . Since the assumption on the relative assassin is preserved by base change
(Lemma 6.2) it suffices to prove the injectivity of the displayed arrow.
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Let K = Ker(F → g∗g
∗F). Our goal is to prove that K = 0. In order to do this it

suffices to prove that WeakAssX(K) = ∅, see Divisors on Spaces, Lemma 2.5. We have
WeakAssX(K) ⊂ WeakAssX(F), see Divisors on Spaces, Lemma 2.4. As F is flat we
see from Lemma 4.4 that WeakAssX(F) ⊂ AssX/Y (F). By assumption any point x of
AssX/Y (F) is the image of some x′ ∈ |X ′|. Since g is flat the local ring map OX,x →
OX′,x′ is faithfully flat, hence the map

Fx −→ (g∗F)x′ = Fx ⊗OX,x
OX′,x′

is injective (see Algebra, Lemma 82.11). Since the displayed arrow factors through Fx →
(g∗g

∗F)x, we conclude that Kx = 0. Hence x cannot be a weakly associated point of K
and we win. �

7. Flattening functors

This section is the analogue of More on Flatness, Section 20. We urge the reader to skip
this section on a first reading.

Situation 7.1. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Let u : F → G be a homomorphism of quasi-coherent OX -modules. For any
scheme T over B we will denote uT : FT → GT the base change of u to T , in other
words, uT is the pullback of u via the projection morphism XT = X ×B T → X . In this
situation we can consider the functor

(7.1.1) Fiso : (Sch/B)opp −→ Sets, T −→
{
{∗} if uT is an isomorphism,
∅ else.

There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective, or zero.

In Situation 7.1 we sometimes think of the functorsFiso,Finj ,Fsurj , andFzero as functors
(Sch/S)opp → Sets endowed with a morphism Fiso → B, Finj → B, Fsurj → B, and
Fzero → B. Namely, if T is a scheme over S , then an element h ∈ Fiso(T ) is a morphism
h : T → B such that the base change of u via h is an isomorphism. In particular, when we
say thatFiso is an algebraic space, we mean that the corresponding functor (Sch/S)opp →
Sets is an algebraic space.

Lemma 7.2. In Situation 7.1. Each of the functors Fiso, Finj , Fsurj , Fzero satisfies
the sheaf property for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi =
X×STi andui = uTi . Note that {Xi → XT }i∈I is an fpqc covering ofXT , see Topologies
on Spaces, Lemma 9.3. In particular, for every x ∈ |XT | there exists an i ∈ I and an xi ∈
|Xi|mapping to x. SinceOXT ,x → OXi,xi is flat, hence faithfully flat (see Morphisms of
Spaces, Section 30). we conclude that (ui)xi is injective, surjective, bijective, or zero if and
only if (uT )x is injective, surjective, bijective, or zero. The lemma follows. �

Lemma 7.3. In Situation 7.1 let X ′ → X be a flat morphism of algebraic spaces.
Denote u′ : F ′ → G′ the pullback of u toX ′. DenoteF ′

iso, F ′
inj , F ′

surj , F ′
zero the functors

on Sch/B associated to u′.
(1) If G is of finite type and the image of |X ′| → |X| contains the support of G , then

Fsurj = F ′
surj and Fzero = F ′

zero.
(2) If F is of finite type and the image of |X ′| → |X| contains the support of F ,

then Finj = F ′
inj and Fzero = F ′

zero.
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(3) If F and G are of finite type and the image of |X ′| → |X| contains the supports
of F and G , then Fiso = F ′

iso.

Proof. let v : H → E be a map of quasi-coherent modules on an algebraic space
Y and let ϕ : Y ′ → Y be a surjective flat morphism of algebraic spaces, then v is an
isomorphism, injective, surjective, or zero if and only if ϕ∗v is an isomorphism, injective,
surjective, or zero. Namely, for every y ∈ |Y | there exists a y′ ∈ |Y ′| and the map of local
rings OY,y → OY ′,y′ is faithfully flat (see Morphisms of Spaces, Section 30). Of course,
to check for injectivity or being zero it suffices to look at the points in the support of H,
and to check for surjectivity it suffices to look at points in the support of E . Moreover,
under the finite type assumptions as in the statement of the lemma, taking the supports
commutes with base change, see Morphisms of Spaces, Lemma 15.2. Thus the lemma is
clear. �

Recall that we’ve defined the scheme theoretic support of a finite type quasi-coherent mod-
ule in Morphisms of Spaces, Definition 15.4.

Lemma 7.4. In Situation 7.1.
(1) If G is of finite type and the scheme theoretic support of G is quasi-compact over

B, then Fsurj is limit preserving.
(2) If F of finite type and the scheme theoretic support of F is quasi-compact over

B, then Fzero is limit preserving.
(3) IfF is of finite type, G is of finite presentation, and the scheme theoretic supports

of F and G are quasi-compact over B, then Fiso is limit preserving.

Proof. Proof of (1). Let i : Z → X be the scheme theoretic support of G and think
of G as a finite type quasi-coherent module on Z. We may replace X by Z and u by the
map i∗F → G (details omitted). Hence we may assume f is quasi-compact and G of finite
type. Let T = limi∈I Ti be a directed limit of affine B-schemes and assume that uT is
surjective. Set Xi = XTi = X ×S Ti and ui = uTi : Fi = FTi → Gi = GTi . To prove (1)
we have to show that ui is surjective for some i. Pick 0 ∈ I and replace I by {i | i ≥ 0}.
Since f is quasi-compact we see X0 is quasi-compact. Hence we may choose a surjective
étale morphism ϕ0 : W0 → X0 where W0 is an affine scheme. Set W = W0 ×T0 T and
Wi = W0 ×T0 Ti for i ≥ 0. These are affine schemes endowed with a surjective étale
morphisms ϕ : W → XT and ϕi : Wi → Xi. Note that W = limWi. Hence ϕ∗uT is
surjective and it suffices to prove that ϕ∗

i ui is surjective for some i. Thus we have reduced
the problem to the affine case which is Algebra, Lemma 127.5 part (2).
Proof of (2). Assume F is of finite type with scheme theoretic support Z ⊂ B quasi-
compact over B. Let T = limi∈I Ti be a directed limit of affine B-schemes and assume
that uT is zero. Set Xi = Ti ×B X and denote ui : Fi → Gi the pullback. Choose 0 ∈ I
and replace I by {i | i ≥ 0}. Set Z0 = Z ×X X0. By Morphisms of Spaces, Lemma 15.2
the support ofFi is |Z0|. Since |Z0| is quasi-compact we can find an affine schemeW0 and
an étale morphism W0 → X0 such that |Z0| ⊂ Im(|W0| → |X0|). Set W = W0 ×T0 T
and Wi = W0 ×T0 Ti for i ≥ 0. These are affine schemes endowed with étale morphisms
ϕ : W → XT and ϕi : Wi → Xi. Note thatW = limWi and that the support ofFT and
Fi is contained in the image of |W | → |XT | and |Wi| → |Xi|. Now ϕ∗uT is injective and
it suffices to prove that ϕ∗

i ui is injective for some i. Thus we have reduced the problem to
the affine case which is Algebra, Lemma 127.5 part (1).
Proof of (3). This can be proven in exactly the same manner as in the previous two para-
graphs using Algebra, Lemma 127.5 part (3). We can also deduce it from (1) and (2) as
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follows. Let T = limi∈I Ti be a directed limit of affine B-schemes and assume that uT
is an isomorphism. By part (1) there exists an 0 ∈ I such that uT0 is surjective. Set
K = Ker(uT0) and consider the map of quasi-coherent modules v : K → FT0 . For i ≥ 0
the base change vTi is zero if and only if ui is an isomorphism. Moreover, vT is zero. Since
GT0 is of finite presentation, FT0 is of finite type, and uT0 is surjective we conclude that
K is of finite type (Modules on Sites, Lemma 24.1). It is clear that the support of K is
contained in the support ofFT0 which is quasi-compact over T0. Hence we can apply part
(2) to see that vTi is zero for some i. �

Lemma 7.5. In Situation 7.1 suppose given an exact sequence

F u−→ G v−→ H → 0

Then we have Fv,iso = Fu,zero with obvious notation.

Proof. Since pullback is right exact we see that FT → GT → HT → 0 is exact for
every scheme T over B. Hence uT is surjective if and only if vT is an isomorphism. �

Lemma 7.6. In Situation 7.1 suppose given an affine morphism i : Z → X and a
quasi-coherentOZ -moduleH such that G = i∗H. Let v : i∗F → H be the map adjoint to
u. Then

(1) Fv,zero = Fu,zero, and
(2) if i is a closed immersion, then Fv,surj = Fu,surj .

Proof. LetT be a scheme overB. Denote iT : ZT → XT the base change of i andHT
the pullback ofH to ZT . Observe that (i∗F)T = i∗TFT and iT,∗HT = (i∗H)T . The first
statement follows from commutativity of pullbacks and the second from Cohomology of
Spaces, Lemma 11.1. Hence we see that uT and vT are adjoint maps as well. Thus uT = 0
if and only if vT = 0. This proves (1). In case (2) we see that uT is surjective if and only
if vT is surjective because uT factors as

FT → iT,∗i
∗
TFT

iT,∗vT−−−−→ iT,∗HT
and the fact that iT,∗ is an exact functor fully faithfully embedding the category of quasi-
coherent modules on ZT into the category of quasi-coherent OXT -modules. See Mor-
phisms of Spaces, Lemma 14.1. �

Lemma 7.7. In Situation 7.1 suppose given an affine morphism g : X → X ′. Set
u′ = f∗u : f∗F → f∗G. Then Fu,iso = Fu′,iso, Fu,inj = Fu′,inj , Fu,surj = Fu′,surj , and
Fu,zero = Fu′,zero.

Proof. By Cohomology of Spaces, Lemma 11.1 we have gT,∗uT = u′
T . Moreover,

gT,∗ : QCoh(OXT ) → QCoh(OX) is a faithful, exact functor reflecting isomorphisms,
injective maps, and surjective maps. �

Situation 7.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherent OX -module. For any scheme T over Y we will denote
FT the base change of F to T , in other words, FT is the pullback of F via the projection
morphism XT = X ×Y T → X . Since the base change of a flat module is flat we obtain
a functor

(7.8.1) Fflat : (Sch/Y )opp −→ Sets, T −→
{
{∗} if FT is flat over T,
∅ else.
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In Situation 7.8 we sometimes think of Fflat as a functor (Sch/S)opp → Sets endowed
with a morphism Fflat → Y . Namely, if T is a scheme over S , then an element h ∈
Fflat(T ) is a morphism h : T → Y such that the base change of F via h is flat over T . In
particular, when we say that Fflat is an algebraic space, we mean that the corresponding
functor (Sch/S)opp → Sets is an algebraic space.

Lemma 7.9. In Situation 7.8.
(1) The functor Fflat satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite presen-

tation, then the functor Fflat is limit preserving.

Proof. Part (1) follows from the following statement: If T ′ → T is a surjective flat
morphism of algebraic spaces over Y , then FT ′ is flat over T ′ if and only ifFT is flat over
T , see Morphisms of Spaces, Lemma 31.3. Part (2) follows from Limits of Spaces, Lemma
6.12 if f is also quasi-separated (i.e., f is of finite presentation). For the general case, first
reduce to the case where the base is affine and then cover X by finitely many affines to
reduce to the quasi-separated case. Details omitted. �

8. Making a map zero

This section has no analogue in the corresponding chapter on schemes.

Situation 8.1. Let S = Spec(R) be an affine scheme. Let X be an algebraic space
over S. Let u : F → G be a map of quasi-coherentOX -modules. Assume G flat over S.

Lemma 8.2. In Situation 8.1. Let T → S be a quasi-compact morphism of schemes
such that the base change uT is zero. Then exists a closed subscheme Z ⊂ S such that (a)
T → S factors through Z and (b) the base change uZ is zero. If F is a finite type OX -
module and the scheme theoretic support of F is quasi-compact, then we can take Z → S
of finite presentation.

Proof. Let U → X be a surjective étale morphism of algebraic spaces where U =∐
Ui is a disjoint union of affine schemes (see Properties of Spaces, Lemma 6.1). By Lemma

7.3 we see that we may replaceX by U . In other words, we may assume thatX =
∐
Xi is

a disjoint union of affine schemesXi. Suppose that we can prove the lemma for ui = u|Xi .
Then we find a closed subscheme Zi ⊂ S such that T → S factors through Zi and ui,Zi
is zero. If Zi = Spec(R/Ii) ⊂ Spec(R) = S , then taking Z = Spec(R/

∑
Ii) works.

Thus we may assume that X = Spec(A) is affine.

Choose a finite affine open covering T = T1 ∪ . . .∪ Tm. It is clear that we may replace T
by
∐
j=1,...,m Tj . Hence we may assume T is affine. Say T = Spec(R′). Let u : M → N

be the homomorphisms of A-modules corresponding to u : F → G. Then N is a flat
R-module as G is flat over S. The assumption of the lemma means that the composition

M ⊗R R′ → N ⊗R R′

is zero. Let z ∈ M . By Lazard’s theorem (Algebra, Theorem 81.4) and the fact that ⊗
commutes with colimits we can find free R-module Fz , an element z̃ ∈ Fz , and a map
Fz → N such that u(z) is the image of z̃ and z̃ maps to zero in Fz ⊗R R′. Choose a
basis {ez,α} of Fz and write z̃ =

∑
fz,αez,α with fz,α ∈ R. Let I ⊂ R be the ideal

generated by the elements fz,α with z ranging over all elements of M . By construction
I maps to zero in R′ and the elements z̃ map to zero in Fz/IFz whence in N/IN . Thus
Z = Spec(R/I) is a solution to the problem in this case.
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Assume F is of finite type with quasi-compact scheme theoretic support. Write Z =
Spec(R/I). Write I =

⋃
Iλ as a filtered union of finitely generated ideals. Set Zλ =

Spec(R/Iλ), so Z = colimZλ. Since uZ is zero, we see that uZλ is zero for some λ by
Lemma 7.4. This finishes the proof of the lemma. �

Lemma 8.3. Let A be a ring. Let u : M → N be a map of A-modules. If N is
projective as an A-module, then there exists an ideal I ⊂ A such that for any ring map
ϕ : A→ B the following are equivalent

(1) u⊗ 1 : M ⊗A B → N ⊗A B is zero, and
(2) ϕ(I) = 0.

Proof. AsN is projective we can find a projectiveA-moduleC such thatF = N⊕C
is a free R-module. By replacing u by u ⊕ 1 : F = M ⊕ C → N ⊕ C we see that we
may assume N is free. In this case let I be the ideal of A generated by coefficients of all
the elements of Im(u) with respect to some (fixed) basis of N . �

Lemma 8.4. In Situation 8.1. Let T ⊂ S be a subset. Let s ∈ S be in the closure of T .
For t ∈ T , let ut be the pullback of u to Xt and let us be the pullback of u to Xs. If X is
locally of finite presentation over S , G is of finite presentation3, and ut = 0 for all t ∈ T ,
then us = 0.

Proof. To check whether us is zero, is étale local on the fibreXs. Hence we may pick
a point x ∈ |Xs| ⊂ |X| and check in an étale neighbourhood. Choose

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

as in Proposition 5.1. Let T ′ ⊂ S′ be the inverse image of T . Observe that s′ is in the
closure of T ′ because S′ → S is open. Hence we reduce to the algebra problem described
in the next paragraph.
We have an R-module map u : M → N such that N is projective as an R-module and
such that ut : M ⊗R κ(t) → N ⊗R κ(t) is zero for each t ∈ T . Problem: show that
us = 0. Let I ⊂ R be the ideal defined in Lemma 8.3. Then I maps to zero in κ(t) for
all t ∈ T . Hence T ⊂ V (I). Since s is in the closure of T we see that s ∈ V (I). Hence
us = 0. �

It would be interesting to find a “simple” direct proof of either Lemma 8.5 or Lemma 8.6
using arguments like those used in Lemmas 8.2 and 8.4. A “classical” proof of this lemma
when f : X → B is a projective morphism and B a Noetherian scheme would be: (a)
choose a relatively ample invertible sheaf OX(1), (b) set un : f∗F(n) → f∗G(n), (c)
observe that f∗G(n) is a finite locally free sheaf for all n� 0, and (d) Fzero is represented
by the vanishing locus of un for some n� 0.

Lemma 8.5. In Situation 7.1. Assume
(1) f is of finite presentation, and
(2) G is of finite presentation, flat over B, and pure relative to B.

3It would suffice if X is locally of finite type over S and G is finitely presented relative to S, but this
notion hasn’t yet been defined in the setting of algebraic spaces. The definition for schemes is given in More on
Morphisms, Section 58.
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Then Fzero is an algebraic space and Fzero → B is a closed immersion. If F is of finite
type, then Fzero → B is of finite presentation.

Proof. By Lemma 6.5 the module G is universally pure relative to B. In order to
prove that Fzero is an algebraic space, it suffices to show that Fzero → B is representable,
see Spaces, Lemma 11.3. Let B′ → B be a morphism where B′ is a scheme and let u′ :
F ′ → G′ be the pullback of u to X ′ = XB′ . Then the associated functor F ′

zero equals
Fzero ×B B′. This reduces us to the case that B is a scheme.

Assume B is a scheme. We will show that Fzero is representable by a closed subscheme
of B. By Lemma 7.2 and Descent, Lemmas 37.2 and 39.1 the question is local for the étale
topology on B. Let b ∈ B. We first replace B by an affine neighbourhood of b. Choose a
diagram

X

��

X ′
g

oo

��
B B′oo

and b′ ∈ B′ mapping to b ∈ B as in Lemma 5.2. As we are working étale locally, we may
replace B by B′ and assume that we have a diagram

X

  

X ′
g

oo

~~
B

withB andX ′ affine such that Γ(X ′, g∗G) is a projective Γ(B,OB)-module and g(|X ′|) ⊃
|Xb|. LetU ⊂ X be the open subspace with |U | = g(|X ′|). By Divisors on Spaces, Lemma
4.10 the set

E = {t ∈ B : AssXt(Gt) ⊂ |Ut|} = {t ∈ B : AssX/B(G) ∩ |Xt| ⊂ |Ut|}

is constructible in B. By Lemma 6.3 part (2) we see that E contains Spec(OB,b). By
Morphisms, Lemma 22.4 we see that E contains an open neighbourhood of b. Hence after
replacing B by a smaller affine neighbourhood of b we may assume that AssX/B(G) ⊂
g(|X ′|).

From Lemma 6.6 it follows that u : F → G is injective if and only if g∗u : g∗F → g∗G is
injective, and the same remains true after any base change. Hence we have reduced to the
case where, in addition to the assumptions in the theorem,X → B is a morphism of affine
schemes and Γ(X,G) is a projective Γ(B,OB)-module. This case follows immediately
from Lemma 8.3.

We still have to show that Fzero → B is of finite presentation if F is of finite type. This
follows from Lemma 7.4 combined with Limits of Spaces, Proposition 3.10. �

Lemma 8.6. In Situation 7.1. Assume
(1) f is locally of finite presentation,
(2) G is anOX -module of finite presentation flat over B,
(3) the support of G is proper over B.

Then the functor Fzero is an algebraic space and Fzero → B is a closed immersion. If F
is of finite type, then Fzero → B is of finite presentation.
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Proof. If f is of finite presentation, then this follows immediately from Lemmas 8.5
and 3.6. This is the only case of interest and we urge the reader to skip the rest of the
proof, which deals with the possibility (allowed by the assumptions in this lemma) that f
is not quasi-separated or quasi-compact.

Let i : Z → X be the closed subspace cut out by the zeroth fitting ideal of G (Divisors
on Spaces, Section 5). Then Z → B is proper by assumption (see Derived Categories
of Spaces, Section 7). On the other hand i is of finite presentation (Divisors on Spaces,
Lemma 5.2 and Morphisms of Spaces, Lemma 28.12). There exists a quasi-coherent OZ -
module H of finite type with i∗H = G (Divisors on Spaces, Lemma 5.3). In fact H is
of finite presentation as an OZ -module by Algebra, Lemma 6.4 (details omitted). Then
Fzero is the same as the functor Fzero for the map i∗F → H adjoint to u, see Lemma 7.6.
The sheaf H is flat relative to B because the same is true for G (check on stalks; details
omitted). Moreover, note that if F is of finite type, then i∗F is of finite type. Hence we
have reduced the lemma to the case discussed in the first paragraph of the proof. �

9. Flattening a map

This section is the analogue of More on Flatness, Section 23. In particular the following
result is a variant of More on Flatness, Theorem 23.3.

Theorem 9.1. In Situation 7.1 assume
(1) f is of finite presentation,
(2) F is of finite presentation, flat over B, and pure relative to B, and
(3) u is surjective.

Then Fiso is representable by a closed immersion Z → B. Moreover Z → S is of finite
presentation if G is of finite presentation.

Proof. Let K = Ker(u) and denote v : K → F the inclusion. By Lemma 7.5 we
see that Fu,iso = Fv,zero. By Lemma 8.5 applied to v we see that Fu,iso = Fv,zero is
representable by a closed subspace of B. Note that K is of finite type if G is of finite
presentation, see Modules on Sites, Lemma 24.1. Hence we also obtain the final statement
of the lemma. �

Lemma 9.2. In Situation 7.1. Assume
(1) f is locally of finite presentation,
(2) F is locally of finite presentation and flat over B,
(3) the support of F is proper over B, and
(4) u is surjective.

Then the functor Fiso is an algebraic space and Fiso → B is a closed immersion. If G is of
finite presentation, then Fiso → B is of finite presentation.

Proof. Let K = Ker(u) and denote v : K → F the inclusion. By Lemma 7.5 we
see that Fu,iso = Fv,zero. By Lemma 8.6 applied to v we see that Fu,iso = Fv,zero is
representable by a closed subspace of B. Note that K is of finite type if G is of finite
presentation, see Modules on Sites, Lemma 24.1. Hence we also obtain the final statement
of the lemma. �

We will use the following (easy) result when discussing the Quot functor.

Lemma 9.3. In Situation 7.1. Assume
(1) f is locally of finite presentation,
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(2) G is of finite type,
(3) the support of G is proper over B.

Then Fsurj is an algebraic space and Fsurj → B is an open immersion.

Proof. Consider Coker(u). Observe that Coker(uT ) = Coker(u)T for any T/B.
Note that formation of the support of a finite type quasi-coherent module commutes with
pullback (Morphisms of Spaces, Lemma 15.1). Hence Fsurj is representable by the open
subspace of B corresponding to the open set

|B| \ |f |(Supp(Coker(u)))

see Properties of Spaces, Lemma 4.8. This is an open because |f | is closed on Supp(G) and
Supp(Coker(u)) is a closed subset of Supp(G). �

10. Flattening in the local case

This section is the analogue of More on Flatness, Section 24.

Lemma 10.1. Let S be the spectrum of a henselian local ring with closed point s. Let
X → S be a morphism of algebraic spaces which is locally of finite type. Let F be a
finite type quasi-coherent OX -module. Let E ⊂ |Xs| be a subset. There exists a closed
subscheme Z ⊂ S with the following property: for any morphism of pointed schemes
(T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of |Xt| which map to a point of E ⊂ |Xs|, and
(2) Spec(OT,t)→ S factors through Z.

Moreover, if X → S is locally of finite presentation, F is of finite presentation, and
E ⊂ |Xs| is closed and quasi-compact, then Z → S is of finite presentation.

Proof. Choose a scheme U and an étale morphism ϕ : U → X . LetE′ ⊂ |Us| be the
inverse image of E. If E′ → E is surjective, then condition (1) is equivalent to: (ϕ∗F)T
is flat over T at all points of |Ut| which map to a point of E′ ⊂ |Ut|. Choosing ϕ to be
surjective, we reduced to the case of schemes which is More on Flatness, Lemma 24.3. If
E is closed and quasi-compact, then we may choose U to be affine such that E′ → E is
surjective. Then E′ is closed and quasi-compact and the final statement follows from the
final statement of More on Flatness, Lemma 24.3. �

11. Universal flattening

This section is the analogue of More on Flatness, Section 27. Our main aim is to prove
Lemma 11.8. However, we do not see a way to deduce this result from the corresponding
result for schemes directly. Hence we have to redevelop some of the material here. But
first a definition.

Definition 11.1. Let S be a scheme. Let X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherent OX -module. We say that the universal flattening of F
exists if the functor Fflat defined in Situation 7.8 is an algebraic space. We say that the
universal flattening of X exists if the universal flattening ofOX exists.

This is a bit unsatisfactory, because here the definition of universal flattening does not
agree with the one used in the case of schemes, as we don’t know whether every monomor-
phism of algebraic spaces is representable (More on Morphisms of Spaces, Section 4).
Hopefully no confusion will ever result from this.
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Lemma 11.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
which is locally of finite type. Let F be a quasi-coherent OX -module of finite type. Let
n ≥ 0. The following are equivalent

(1) for some commutative diagram

U

ϕ

��

// V

��
X // Y

with surjective, étale vertical arrows where U and V are schemes, the sheaf ϕ∗F
is flat over V in dimensions ≥ n (More on Flatness, Definition 20.10),

(2) for every commutative diagram

U

ϕ

��

// V

��
X // Y

with étale vertical arrows where U and V are schemes, the sheaf ϕ∗F is flat over
V in dimensions ≥ n, and

(3) for x ∈ |X| such that F is not flat at x over Y the transcendence degree of
x/f(x) is < n (Morphisms of Spaces, Definition 33.1).

If this is true, then it remains true after any base change Y ′ → Y .

Proof. Suppose that we have a diagram as in (1). Then the equivalence of the condi-
tions in More on Flatness, Lemma 20.9 shows that (1) and (3) are equivalent. But condition
(3) is inherited by ϕ∗F for any U → V as in (2). Whence we see that (3) implies (2) by
the result for schemes again. The result for schemes also implies the statement on base
change. �

Definition 11.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let F be a quasi-coherent OX -module of
finite type. Let n ≥ 0. We say F is flat over Y in dimensions ≥ n if the equivalent
conditions of Lemma 11.2 are satisfied.

Situation 11.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. LetF be a quasi-coherentOX -module of finite type.
For any scheme T over Y we will denote FT the base change of F to T , in other words,
FT is the pullback of F via the projection morphism XT = X ×Y T → X . Note that
fT : XT → T is of finite type and that FT is an OXT -module of finite type (Morphisms
of Spaces, Lemma 23.3 and Modules on Sites, Lemma 23.4). Let n ≥ 0. By Definition 11.3
and Lemma 11.2 we obtain a functor

(11.4.1) Fn : (Sch/Y )opp −→ Sets, T −→
{
{∗} if FT is flat over T in dim ≥ n,
∅ else.

In Situation 11.4 we sometimes think ofFn as a functor (Sch/S)opp → Sets endowed with
a morphism Fn → Y . Namely, if T is a scheme over S , then an element h ∈ Fn(T ) is a
morphism h : T → Y such that the base change of F via h is flat over T in dim ≥ n.
In particular, when we say that Fn is an algebraic space, we mean that the corresponding
functor (Sch/S)opp → Sets is an algebraic space.

Lemma 11.5. In Situation 11.4.
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(1) The functor Fn satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite presen-

tation, then the functor Fn is limit preserving.

Proof. Proof of (1). Suppose that {Ti → T} is an fpqc covering of a scheme T
over Y . We have to show that if Fn(Ti) is nonempty for all i, then Fn(T ) is nonempty.
Choose a diagram as in part (1) of Lemma 11.2. Denote F ′

n the corresponding functor for
ϕ∗F and the morphism U → V . By More on Flatness, Lemma 20.12 we have the sheaf
property for F ′

n. Thus we get the sheaf property for Fn because for T → Y we have
Fn(T ) = F ′

n(V ×Y T ) by Lemma 11.2 and because {V ×Y Ti → V ×Y T} is an fpqc
covering.

Proof of (2). Suppose that T = limi∈I Ti is a filtered limit of affine schemes Ti over Y
and assume that Fn(T ) is nonempty. We have to show that Fn(Ti) is nonempty for some
i. Choose a diagram as in part (1) of Lemma 11.2. Fix i ∈ I and choose an affine open
Wi ⊂ V ×Y Ti mapping surjectively onto Ti. For i′ ≥ i let Wi′ be the inverse image of
Wi in V ×Y Ti′ and letW ⊂ V ×Y T be the inverse image ofWi. ThenW = limi′≥iWi

is a filtered limit of affine schemes over V . By Lemma 11.2 again it suffices to show that
F ′
n(Wi′) is nonempty for some i′ ≥ i. But we know that F ′

n(W ) is nonempty because of
our assumption that Fn(T ) = F ′

n(V ×Y T ) is nonempty. Thus we can apply More on
Flatness, Lemma 20.12 to conclude. �

Lemma 11.6. In Situation 11.4. Let h : X ′ → X be an étale morphism. SetF ′ = h∗F
and f ′ = f ◦h. LetF ′

n be (11.4.1) associated to (f ′ : X ′ → Y,F ′). ThenFn is a subfunctor
of F ′

n and if h(X ′) ⊃ AssX/Y (F), then Fn = F ′
n.

Proof. Choose U → X , V → Y , U → V as in part (1) of Lemma 11.2. Choose a
surjective étale morphismU ′ → U×XX ′ whereU ′ is a scheme. Then we have the lemma
for the two functors FU,n and FU ′,n determined byU ′ → U andF|U over V , see More on
Flatness, Lemma 27.2. On the other hand, Lemma 11.2 tells us that given T → Y we have
Fn(T ) = FU,n(V ×Y T ) and F ′

n(T ) = FU ′,n(V ×Y T ). This proves the lemma. �

Theorem 11.7. In Situation 11.4. Assume moreover that f is of finite presentation,
that F is anOX -module of finite presentation, and that F is pure relative to Y . Then Fn
is an algebraic space and Fn → Y is a monomorphism of finite presentation.

Proof. The functorFn is a sheaf for the fppf topology by Lemma 11.5. SinceFn → Y
is a monomorphism of sheaves on (Sch/S)fppf we see that ∆ : Fn → Fn × Fn is the
pullback of the diagonal ∆Y : Y → Y ×S Y . Hence the representability of ∆Y implies
the same thing for Fn. Therefore it suffices to prove that there exists a scheme W over S
and a surjective étale morphism W → Fn.

To construct W → Fn choose an étale covering {Yi → Y } with Yi a scheme. Let Xi =
X ×Y Yi and let Fi be the pullback of F to Xi. Then Fi is pure relative to Yi either by
definition or by Lemma 3.3. The other assumptions of the theorem are preserved as well.
Finally, the restriction of Fn to Yi is the functor Fn corresponding to Xi → Yi and Fi.
Hence it suffices to show: Given F and f : X → Y as in the statement of the theorem
where Y is a scheme, the functor Fn is representable by a scheme Zn and Zn → Y is a
monomorphism of finite presentation.

Observe that a monomorphism of finite presentation is separated and quasi-finite (Mor-
phisms, Lemma 20.15). Hence combining Descent, Lemma 39.1, More on Morphisms,
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Lemma 57.1 , and Descent, Lemmas 23.31 and 23.13 we see that the question is local for
the étale topology on Y .

In particular the situation is local for the Zariski topology on Y and we may assume that
Y is affine. In this case the dimension of the fibres of f is bounded above, hence we see
that Fn is representable for n large enough. Thus we may use descending induction on
n. Suppose that we know Fn+1 is representable by a monomorphism Zn+1 → Y of finite
presentation. Consider the base change Xn+1 = Zn+1 ×Y X and the pullback Fn+1 of
F to Xn+1. The morphism Zn+1 → Y is quasi-finite as it is a monomorphism of finite
presentation, hence Lemma 3.3 implies that Fn+1 is pure relative to Zn+1. Since Fn is a
subfunctor ofFn+1 we conclude that in order to prove the result forFn it suffices to prove
the result for the corresponding functor for the situationFn+1/Xn+1/Zn+1. In this way
we reduce to proving the result for Fn in case Yn+1 = Y , i.e., we may assume that F is
flat in dimensions ≥ n+ 1 over Y .

Fix n and assume F is flat in dimensions ≥ n + 1 over the affine scheme Y . To finish
the proof we have to show that Fn is representable by a monomorphism Zn → S of
finite presentation. Since the question is local in the étale topology on Y it suffices to
show that for every y ∈ Y there exists an étale neighbourhood (Y ′, y′) → (Y, y) such
that the result holds after base change to Y ′. Thus by Lemma 4.1 we may assume there
exist étale morphisms hj : Wj → X , j = 1, . . . ,m such that for each j there exists a
complete dévissage of Fj/Wj/Y over y, where Fj is the pullback of F to Wj and such
that |Xy| ⊂

⋃
hj(Wj). Since hj is étale, by Lemma 11.2 the sheaves Fj are still flat over

in dimensions≥ n+ 1 over Y . Set W =
⋃
hj(Wj), which is a quasi-compact open of X .

As F is pure along Xy we see that

E = {t ∈ |Y | : AssXt(Ft) ⊂W}.

contains all generalizations of y. By Divisors on Spaces, Lemma 4.10 E is a constructible
subset of Y . We have seen that Spec(OY,y) ⊂ E. By Morphisms, Lemma 22.4 we see that
E contains an open neighbourhood of y. Hence after shrinking Y we may assume that
E = Y . It follows from Lemma 11.6 that it suffices to prove the lemma for the functor Fn
associated toX =

∐
Wj andF =

∐
Fj . If Fj,n denotes the functor forWj → Y and the

sheaf Fj we see that Fn =
∏
Fj,n. Hence it suffices to prove each Fj,n is representable by

some monomorphism Zj,n → Y of finite presentation, since then

Zn = Z1,n ×Y . . .×Y Zm,n

Thus we have reduced the theorem to the special case handled in More on Flatness, Lemma
27.4. �

Thus we finally obtain the desired result.

Lemma 11.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let F be a quasi-coherentOX -module.

(1) If f is of finite presentation, F is an OX -module of finite presentation, and F
is pure relative to Y , then there exists a universal flattening Y ′ → Y of F .
Moreover Y ′ → Y is a monomorphism of finite presentation.

(2) If f is of finite presentation and X is pure relative to Y , then there exists a uni-
versal flattening Y ′ → Y ofX . Moreover Y ′ → Y is a monomorphism of finite
presentation.
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(3) If f is proper and of finite presentation andF is anOX -module of finite presen-
tation, then there exists a universal flattening Y ′ → Y ofF . Moreover Y ′ → Y
is a monomorphism of finite presentation.

(4) If f is proper and of finite presentation then there exists a universal flattening
Y ′ → Y of X .

Proof. These statements follow immediately from Theorem 11.7 applied to F0 =
Fflat and the fact that if f is proper thenF is automatically pure over the base, see Lemma
3.6. �

12. Grothendieck’s Existence Theorem

This section is the analogue of More on Flatness, Section 28 and continues the discussion
in More on Morphisms of Spaces, Section 42. We will work in the following situation.

Situation 12.1. Here we have an inverse system of rings (An) with surjective tran-
sition maps whose kernels are locally nilpotent. Set A = limAn. We have an algebraic
space X separated and of finite presentation over A. We set Xn = X ×Spec(A) Spec(An)
and we view it as a closed subspace of X . We assume further given a system (Fn, ϕn)
where Fn is a finitely presentedOXn -module, flat overAn, with support proper overAn,
and

ϕn : Fn ⊗OXn
OXn−1 −→ Fn−1

is an isomorphism (notation using the equivalence of Morphisms of Spaces, Lemma 14.1).

Our goal is to see if we can find a quasi-coherent sheafF onX such thatFn = F⊗OX
OXn

for all n.

Lemma 12.2. In Situation 12.1 consider
K = R limDQCoh(OX)(Fn) = DQX(R limD(OX) Fn)

ThenK is inDb
QCoh(OX) and in factK has nonzero cohomology sheaves only in degrees

≥ 0.

Proof. Special case of Derived Categories of Spaces, Example 19.5. �

Lemma 12.3. In Situation 12.1 letK be as in Lemma 12.2. For any perfect objectE of
D(OX) we have

(1) M = RΓ(X,K ⊗L E) is a perfect object of D(A) and there is a canonical iso-
morphism RΓ(Xn,Fn ⊗L E|Xn) = M ⊗L

A An in D(An),
(2) N = RHomX(E,K) is a perfect object of D(A) and there is a canonical iso-

morphism RHomXn(E|Xn ,Fn) = N ⊗L
A An in D(An).

In both statements E|Xn denotes the derived pullback of E to Xn.

Proof. Proof of (2). Write En = E|Xn and Nn = RHomXn(En,Fn). Recall that
RHomXn(−,−) is equal to RΓ(Xn, RHom(−,−)), see Cohomology on Sites, Section
36. Hence by Derived Categories of Spaces, Lemma 25.8 we see that Nn is a perfect object
ofD(An) whose formation commutes with base change. Thus the mapsNn⊗L

An
An−1 →

Nn−1 coming from ϕn are isomorphisms. By More on Algebra, Lemma 97.3 we find that
R limNn is perfect and that its base change back to An recovers Nn. On the other hand,
the exact functor RHomX(E,−) : DQCoh(OX) → D(A) of triangulated categories
commutes with products and hence with derived limits, whence
RHomX(E,K) = R limRHomX(E,Fn) = R limRHomX(En,Fn) = R limNn
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This proves (2). To see that (1) holds, translate it into (2) using Cohomology on Sites,
Lemma 48.4. �

Lemma 12.4. In Situation 12.1 letK be as in Lemma 12.2. ThenK is pseudo-coherent
relative to A.

Proof. Combinging Lemma 12.3 and Derived Categories of Spaces, Lemma 25.7 we
see thatRΓ(X,K⊗LE) is pseudo-coherent inD(A) for all pseudo-coherentE inD(OX).
Thus the lemma follows from More on Morphisms of Spaces, Lemma 51.4. �

Lemma 12.5. In Situation 12.1 let K be as in Lemma 12.2. For any étale morphism
U → X with U quasi-compact and quasi-separated we have

RΓ(U,K)⊗L
A An = RΓ(Un,Fn)

in D(An) where Un = U ×X Xn.

Proof. Fix n. By Derived Categories of Spaces, Lemma 27.3 there exists a system of
perfect complexes Em on X such that RΓ(U,K) = hocolimRΓ(X,K ⊗L Em). In fact,
this formula holds not just for K but for every object of DQCoh(OX). Applying this to
Fn we obtain

RΓ(Un,Fn) = RΓ(U,Fn)
= hocolimmRΓ(X,Fn ⊗L Em)
= hocolimmRΓ(Xn,Fn ⊗L Em|Xn)

Using Lemma 12.3 and the fact that−⊗L
AAn commutes with homotopy colimits we obtain

the result. �

Lemma 12.6. In Situation 12.1 letK be as in Lemma 12.2. DenoteX0 ⊂ |X| the closed
subset consisting of points lying over the closed subset Spec(A1) = Spec(A2) = . . . of
Spec(A). There exists an open subspace W ⊂ X containing X0 such that

(1) Hi(K)|W is zero unless i = 0,
(2) F = H0(K)|W is of finite presentation, and
(3) Fn = F ⊗OX

OXn .

Proof. Fixn ≥ 1. By construction there is a canonical mapK → Fn inDQCoh(OX)
and hence a canonical map H0(K) → Fn of quasi-coherent sheaves. This explains the
meaning of part (3).

Let x ∈ X0 be a point. We will find an open neighbourhood W of x such that (1), (2),
and (3) are true. Since X0 is quasi-compact this will prove the lemma. Let U → X be an
étale morphism with U affine and u ∈ U a point mapping to x. Since |U | → |X| is open
it suffices to find an open neighbourhood of u in U where (1), (2), and (3) are true. Say
U = Spec(B). Choose a surjection P → B with P smooth over A. By Lemma 12.4 and
the definition of relative pseudo-coherence there exists a bounded above complex F • of
finite freeP -modules representingRi∗K where i : U → Spec(P ) is the closed immersion
induced by the presentation. LetMn be theB-module corresponding toFn|U . By Lemma
12.5

Hi(F • ⊗A An) =
{

0 if i 6= 0
Mn if i = 0
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Let i be the maximal index such that F i is nonzero. If i ≤ 0, then (1), (2), and (3) are true.
If not, then i > 0 and we see that the rank of the map

F i−1 → F i

in the point u is maximal. Hence in an open neighbourhood of u inside Spec(P ) the
rank is maximal. Thus after replacing P by a principal localization we may assume that
the displayed map is surjective. Since F i is finite free we may choose a splitting F i−1 =
F ′ ⊕ F i. Then we may replace F • by the complex

. . .→ F i−2 → F ′ → 0→ . . .

and we win by induction on i. �

Lemma 12.7. In Situation 12.1 letK be as in Lemma 12.2. LetW ⊂ X be as in Lemma
12.6. Set F = H0(K)|W . Then, after possibly shrinking the open W , the support of F is
proper over A.

Proof. Fix n ≥ 1. Let In = Ker(A → An). By More on Algebra, Lemma 11.3
the pair (A, In) is henselian. Let Z ⊂ W be the scheme theoretic support of F . This
is a closed subspace as F is of finite presentation. By part (3) of Lemma 12.6 we see that
Z ×Spec(A) Spec(An) is equal to the support of Fn and hence proper over Spec(A/I).
By More on Morphisms of Spaces, Lemma 36.10 we can write Z = Z1 q Z2 with Z1, Z2
open and closed in Z , with Z1 proper over A, and with Z1 ×Spec(A) Spec(A/In) equal to
the support of Fn. In other words, |Z2| does not meet X0. Hence after replacing W by
W \ Z2 we obtain the lemma. �

Theorem 12.8 (Grothendieck Existence Theorem). In Situation 12.1 there exists a
finitely presentedOX -moduleF , flat overA, with support proper overA, such thatFn =
F ⊗OX

OXn for all n compatibly with the maps ϕn.

Proof. Apply Lemmas 12.2, 12.3, 12.4, 12.5, 12.6, and 12.7 to get an open subspace
W ⊂ X containing all points lying over Spec(An) and a finitely presented OW -module
F whose support is proper over A with Fn = F ⊗OW

OXn for all n ≥ 1. (This makes
sense as Xn ⊂ W .) By Lemma 3.6 we see that F is universally pure relative to Spec(A).
By Theorem 11.7 (for explanation, see Lemma 11.8) there exists a universal flatteningS′ →
Spec(A) of F and moreover the morphism S′ → Spec(A) is a monomorphism of finite
presentation. In particular S′ is a scheme (this follows from the proof of the theorem
but it also follows a postoriori by Morphisms of Spaces, Proposition 50.2). Since the base
change of F to Spec(An) is Fn we find that Spec(An) → Spec(A) factors (uniquely)
through S′ for each n. By More on Flatness, Lemma 28.8 we see that S′ = Spec(A). This
means that F is flat over A. Finally, since the scheme theoretic support Z of F is proper
over Spec(A), the morphism Z → X is closed. Hence the pushforward (W → X)∗F is
supported on W and has all the desired properties. �

13. Grothendieck’s Existence Theorem, bis

In this section we prove an analogue for Grothendieck’s existence theorem in the derived
category, following the method used in Section 12 for quasi-coherent modules. This sec-
tion is the analogue of More on Flatness, Section 29 for algebraic spaces. The classical case
(for algebraic spaces) is discussed in More on Morphisms of Spaces, Section 42. We will
work in the following situation.
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Situation 13.1. Here we have an inverse system of rings (An) with surjective transi-
tion maps whose kernels are locally nilpotent. SetA = limAn. We have an algebraic space
X proper, flat, and of finite presentation overA. We setXn = X×Spec(A) Spec(An) and
we view it as a closed subspace of X . We assume further given a system (Kn, ϕn) where
Kn is a pseudo-coherent object of D(OXn) and

ϕn : Kn −→ Kn−1

is a map in D(OXn) which induces an isomorphism Kn ⊗L
OXn

OXn−1 → Kn−1 in
D(OXn−1).

More precisely, we should write ϕn : Kn → Rin−1,∗Kn−1 where in−1 : Xn−1 →
Xn is the inclusion morphism and in this notation the condition is that the adjoint map
Li∗n−1Kn → Kn−1 is an isomorphism. Our goal is to find a pseudo-coherentK ∈ D(OX)
such that Kn = K ⊗L

OX
OXn for all n (with the same abuse of notation).

Lemma 13.2. In Situation 13.1 consider

K = R limDQCoh(OX)(Kn) = DQX(R limD(OX) Kn)

Then K is in D−
QCoh(OX).

Proof. The functorDQX exists becauseX is quasi-compact and quasi-separated, see
Derived Categories of Spaces, Lemma 19.1. Since DQX is a right adjoint it commutes
with products and therefore with derived limits. Hence the equality in the statement of
the lemma.

By Derived Categories of Spaces, Lemma 19.4 the functor DQX has bounded cohomo-
logical dimension. Hence it suffices to show that R limKn ∈ D−(OX). To see this, let
U → X be étale with U affine. Then there is a canonical exact sequence

0→ R1 limHm−1(U,Kn)→ Hm(U,R limKn)→ limHm(U,Kn)→ 0

by Cohomology on Sites, Lemma 23.2. Since U is affine and Kn is pseudo-coherent (and
hence has quasi-coherent cohomology sheaves by Derived Categories of Spaces, Lemma
13.6) we see that Hm(U,Kn) = Hm(Kn)(U) by Derived Categories of Schemes, Lemma
3.5. Thus we conclude that it suffices to show that Kn is bounded above independent of
n.

Since Kn is pseudo-coherent we have Kn ∈ D−(OXn). Suppose that an is maximal
such that Han(Kn) is nonzero. Of course a1 ≤ a2 ≤ a3 ≤ . . .. Note that Han(Kn)
is an OXn -module of finite presentation (Cohomology on Sites, Lemma 45.7). We have
Han(Kn−1) = Han(Kn) ⊗OXn

OXn−1 . Since Xn−1 → Xn is a thickening, it follows
from Nakayama’s lemma (Algebra, Lemma 20.1) that if Han(Kn) ⊗OXn

OXn−1 is zero,
thenHan(Kn) is zero too (argue by checking on stalks for example; small detail omitted).
Thus an−1 = an for all n and we conclude. �

Lemma 13.3. In Situation 13.1 let K be as in Lemma 13.2. For any perfect object E
of D(OX) the cohomology

M = RΓ(X,K ⊗L E)
is a pseudo-coherent object of D(A) and there is a canonical isomorphism

RΓ(Xn,Kn ⊗L E|Xn) = M ⊗L
A An

in D(An). Here E|Xn denotes the derived pullback of E to Xn.
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Proof. Write En = E|Xn and Mn = RΓ(Xn,Kn ⊗L E|Xn). By Derived Cate-
gories of Spaces, Lemma 25.5 we see that Mn is a pseudo-coherent object of D(An) whose
formation commutes with base change. Thus the maps Mn ⊗L

An
An−1 → Mn−1 coming

from ϕn are isomorphisms. By More on Algebra, Lemma 97.1 we find that R limMn is
pseudo-coherent and that its base change back toAn recoversMn. On the other hand, the
exact functor RΓ(X,−) : DQCoh(OX) → D(A) of triangulated categories commutes
with products and hence with derived limits, whence

RΓ(X,E ⊗L K) = R limRΓ(X,E ⊗L Kn) = R limRΓ(Xn, En ⊗L Kn) = R limMn

as desired. �

Lemma 13.4. In Situation 13.1 letK be as in Lemma 13.2. ThenK is pseudo-coherent
on X .

Proof. Combinging Lemma 13.3 and Derived Categories of Spaces, Lemma 25.7 we
see thatRΓ(X,K⊗LE) is pseudo-coherent inD(A) for all pseudo-coherentE inD(OX).
Thus it follows from More on Morphisms of Spaces, Lemma 51.4 thatK is pseudo-coherent
relative to A. Since X is of flat and of finite presentation over A, this is the same as being
pseudo-coherent on X , see More on Morphisms of Spaces, Lemma 45.4. �

Lemma 13.5. In Situation 13.1 let K be as in Lemma 13.2. For any étale morphism
U → X with U quasi-compact and quasi-separated we have

RΓ(U,K)⊗L
A An = RΓ(Un,Kn)

in D(An) where Un = U ×X Xn.

Proof. Fix n. By Derived Categories of Spaces, Lemma 27.3 there exists a system of
perfect complexes Em on X such that RΓ(U,K) = hocolimRΓ(X,K ⊗L Em). In fact,
this formula holds not just for K but for every object of DQCoh(OX). Applying this to
Kn we obtain

RΓ(Un,Kn) = RΓ(U,Kn)
= hocolimmRΓ(X,Kn ⊗L Em)
= hocolimmRΓ(Xn,Kn ⊗L Em|Xn)

Using Lemma 13.3 and the fact that−⊗L
AAn commutes with homotopy colimits we obtain

the result. �

Theorem 13.6 (Derived Grothendieck Existence Theorem). In Situation 13.1 there
exists a pseudo-coherentK inD(OX) such thatKn = K ⊗L

OX
OXn for all n compatibly

with the maps ϕn.

Proof. Apply Lemmas 13.2, 13.3, 13.4 to get a pseudo-coherent object K of D(OX).
Choosing affine U in Lemma 13.5 it follows immediately that K restricts to Kn over Xn.

�

Remark 13.7. The result in this section can be generalized. It is probably correct if
we only assume X → Spec(A) to be separated, of finite presentation, and Kn pseudo-
coherent relative toAn supported on a closed subset ofXn proper overAn. The outcome
will be a K which is pseudo-coherent relative to A supported on a closed subset proper
over A. If we ever need this, we will formulate a precise statement and prove it here.
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CHAPTER 78

Groupoids in Algebraic Spaces

1. Introduction

This chapter is devoted to generalities concerning groupoids in algebraic spaces. We rec-
ommend reading the beautiful paper [?] by Keel and Mori.

A lot of what we say here is a repeat of what we said in the chapter on groupoid schemes,
see Groupoids, Section 1. The discussion of quotient stacks is new here.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

We continue our convention to label projection maps starting with index 0, so we have
pr0 : X ×S Y → X and pr1 : X ×S Y → Y .

3. Notation

Let S be a scheme; this will be our base scheme and all algebraic spaces will be over S.
Let B be an algebraic space over S; this will be our base algebraic space, and often other
algebraic spaces, and schemes will be overB. If we say thatX is an algebraic space overB,
then we mean that X is an algebraic space over S which comes equipped with structure
morphism X → B. Moreover, we try to reserve the letter T to denote a “test” scheme
over B. In other words T is a scheme which comes equipped with a structure morphism
T → B. In this situation we denote X(T ) for the set of T -valued points of X over B. In
a formula:

X(T ) = MorB(T,X).
Similarly, given a second algebraic space Y over B we set

X(Y ) = MorB(Y,X).
Suppose we are given algebraic spaces X , Y over B as above and a morphism f : X → Y
over B. For any scheme T over B we get an induced map of sets

f : X(T ) −→ Y (T )
which is functorial in the scheme T overB. As f is a map of sheaves on (Sch/S)fppf over
the sheaf B it is clear that f determines and is determined by this rule. More generally,
we use the same notation for maps between fibre products. For example, if X , Y , Z are
algebraic spaces over B, and if m : X ×B Y → Z ×B Z is a morphism of algebraic spaces

5835
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over B, then we think of m as corresponding to a collection of maps between T -valued
points

X(T )× Y (T ) −→ Z(T )× Z(T ).
And so on and so forth.

Finally, given two maps f, g : X → Y of algebraic spaces over B, if the induced maps
f, g : X(T ) → Y (T ) are equal for every scheme T over B, then f = g, and hence also
f, g : X(Z) → Y (Z) are equal for every third algebraic space Z over B. Hence, for
example, to check the axioms for an group algebraic space G over B, it suffices to check
commutativity of diagram on T -valued points where T is a scheme over B as we do in
Definition 5.1 below.

4. Equivalence relations

Please refer to Groupoids, Section 3 for notation.

Definition 4.1. Let B → S as in Section 3. Let U be an algebraic space over B.
(1) A pre-relation on U over B is any morphism j : R → U ×B U of algebraic

spaces over B. In this case we set t = pr0 ◦ j and s = pr1 ◦ j , so that j = (t, s).
(2) A relation onU overB is a monomorphism j : R→ U×B U of algebraic spaces

over B.
(3) A pre-equivalence relation is a pre-relation j : R→ U×BU such that the image

of j : R(T ) → U(T ) × U(T ) is an equivalence relation for all schemes T over
B.

(4) We say a morphism R → U ×B U of algebraic spaces over B is an equivalence
relation on U overB if and only if for every T overB the T -valued points ofR
define an equivalence relation on the set of T -valued points of U .

In other words, an equivalence relation is a pre-equivalence relation such that j is a rela-
tion.

Lemma 4.2. Let B → S as in Section 3. Let U be an algebraic space over B. Let
j : R → U ×B U be a pre-relation. Let g : U ′ → U be a morphism of algebraic spaces
over B. Finally, set

R′ = (U ′ ×B U ′)×U×BU R
j′

−→ U ′ ×B U ′

Then j′ is a pre-relation on U ′ over B. If j is a relation, then j′ is a relation. If j is a pre-
equivalence relation, then j′ is a pre-equivalence relation. If j is an equivalence relation,
then j′ is an equivalence relation.

Proof. Omitted. �

Definition 4.3. Let B → S as in Section 3. Let U be an algebraic space over B. Let
j : R → U ×B U be a pre-relation. Let g : U ′ → U be a morphism of algebraic spaces
over B. The pre-relation j′ : R′ → U ′ ×B U ′ of Lemma 4.2 is called the restriction, or
pullback of the pre-relation j to U ′. In this situation we sometimes write R′ = R|U ′ .

Lemma 4.4. Let B → S as in Section 3. Let j : R → U ×B U be a pre-relation of
algebraic spaces over B. Consider the relation on |U | defined by the rule

x ∼ y ⇔ ∃ r ∈ |R| : t(r) = x, s(r) = y.

If j is a pre-equivalence relation then this is an equivalence relation.
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Proof. Suppose that x ∼ y and y ∼ z. Pick r ∈ |R| with t(r) = x, s(r) = y
and pick r′ ∈ |R| with t(r′) = y, s(r′) = z. We may pick a field K such that r and
r′ can be represented by morphisms r, r′ : Spec(K) → R with s ◦ r = t ◦ r′. Denote
x = t ◦ r, y = s ◦ r = t ◦ r′, and z = s ◦ r′, so x, y, z : Spec(K) → U . By construction
(x, y) ∈ j(R(K)) and (y, z) ∈ j(R(K)). Since j is a pre-equivalence relation we see that
also (x, z) ∈ j(R(K)). This clearly implies that x ∼ z.

The proof that ∼ is reflexive and symmetric is omitted. �

5. Group algebraic spaces

Please refer to Groupoids, Section 4 for notation.

Definition 5.1. Let B → S as in Section 3.
(1) A group algebraic space over B is a pair (G,m), where G is an algebraic space

overB andm : G×BG→ G is a morphism of algebraic spaces overB with the
following property: For every scheme T over B the pair (G(T ),m) is a group.

(2) A morphism ψ : (G,m) → (G′,m′) of group algebraic spaces over B is a mor-
phism ψ : G → G′ of algebraic spaces over B such that for every T/B the
induced map ψ : G(T )→ G′(T ) is a homomorphism of groups.

Let (G,m) be a group algebraic space over the algebraic space B. By the discussion in
Groupoids, Section 4 we obtain morphisms of algebraic spaces over B (identity) e : B →
G and (inverse) i : G → G such that for every T the quadruple (G(T ),m, e, i) satisfies
the axioms of a group.

Let (G,m), (G′,m′) be group algebraic spaces over B. Let f : G → G′ be a morphism
of algebraic spaces over B. It follows from the definition that f is a morphism of group
algebraic spaces over B if and only if the following diagram is commutative:

G×B G
f×f
//

m

��

G′ ×B G′

m

��
G

f // G′

Lemma 5.2. Let B → S as in Section 3. Let (G,m) be a group algebraic space over
B. Let B′ → B be a morphism of algebraic spaces. The pullback (GB′ ,mB′) is a group
algebraic space over B′.

Proof. Omitted. �

6. Properties of group algebraic spaces

In this section we collect some simple properties of group algebraic spaces which hold over
any base.

Lemma 6.1. Let S be a scheme. Let B be an algebraic space over S. Let G be a group
algebraic space over B. Then G → B is separated (resp. quasi-separated, resp. locally
separated) if and only if the identity morphism e : B → G is a closed immersion (resp.
quasi-compact, resp. an immersion).
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Proof. We recall that by Morphisms of Spaces, Lemma 4.7 we have that e is a closed
immersion (resp. quasi-compact, resp. an immersion) if G → B is separated (resp. quasi-
separated, resp. locally separated). For the converse, consider the diagram

G
∆G/B

//

��

G×B G

(g,g′)7→m(i(g),g′)
��

B
e // G

It is an exercise in the functorial point of view in algebraic geometry to show that this
diagram is cartesian. In other words, we see that ∆G/B is a base change of e. Hence if
e is a closed immersion (resp. quasi-compact, resp. an immersion) so is ∆G/B , see Spaces,
Lemma 12.3 (resp. Morphisms of Spaces, Lemma 8.4, resp. Spaces, Lemma 12.3). �

Lemma 6.2. Let S be a scheme. Let B be an algebraic space over S. Let G be a group
algebraic space over B. Assume G → B is locally of finite type. Then G → B is unram-
ified (resp. locally quasi-finite) if and only if G → B is unramified (resp. quasi-finite) at
e(b) for all b ∈ |B|.

Proof. By Morphisms of Spaces, Lemma 38.10 (resp. Morphisms of Spaces, Lemma
27.2) there is a maximal open subspace U ⊂ G such that U → B is unramified (resp.
locally quasi-finite) and formation of U commutes with base change. Thus we reduce to
the case where B = Spec(k) is the spectrum of a field. Let g ∈ G(K) be a point with
values in an extension K/k. Then to check whether or not g is in U , we may base change
to K. Hence it suffices to show

G→ Spec(k) is unramified at e⇔ G→ Spec(k) is unramified at g
for a k-rational point g (resp. similarly for quasi-finite at g and e). Since translation by g
is an automorphism of G over k this is clear. �

Lemma 6.3. Let S be a scheme. Let B be an algebraic space over S. Let G be a group
algebraic space over B. Assume G→ B is locally of finite type.

(1) There exists a maximal open subspace U ⊂ B such that GU → U is unramified
and formation of U commutes with base change.

(2) There exists a maximal open subspace U ⊂ B such that GU → U is locally
quasi-finite and formation of U commutes with base change.

Proof. By Morphisms of Spaces, Lemma 38.10 (resp. Morphisms of Spaces, Lemma
27.2) there is a maximal open subspace W ⊂ G such that W → B is unramified (resp.
locally quasi-finite). Moreover formation of W commutes with base change. By Lemma
6.2 we see that U = e−1(W ) in either case. �

7. Examples of group algebraic spaces

IfG→ S is a group scheme over the base scheme S , then the base changeGB to any alge-
braic spaceB over S is an group algebraic space overB by Lemma 5.2. We will frequently
use this in the examples below.

Example 7.1 (Multiplicative group algebraic space). Let B → S as in Section 3.
Consider the functor which associates to any schemeT overB the group Γ(T,O∗

T ) of units
in the global sections of the structure sheaf. This is representable by the group algebraic
space

Gm,B = B ×S Gm,S
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over B. Here Gm,S is the multiplicative group scheme over S , see Groupoids, Example
5.1.

Example 7.2 (Roots of unity as a group algebraic space). Let B → S as in Section 3.
Let n ∈ N. Consider the functor which associates to any scheme T over B the subgroup
of Γ(T,O∗

T ) consisting of nth roots of unity. This is representable by the group algebraic
space

µn,B = B ×S µn,S
over B. Here µn,S is the group scheme of nth roots of unity over S , see Groupoids, Ex-
ample 5.2.

Example 7.3 (Additive group algebraic space). Let B → S as in Section 3. Consider
the functor which associates to any schemeT overB the group Γ(T,OT ) of global sections
of the structure sheaf. This is representable by the group algebraic space

Ga,B = B ×S Ga,S

over B. Here Ga,S is the additive group scheme over S , see Groupoids, Example 5.3.

Example 7.4 (General linear group algebraic space). Let B → S as in Section 3. Let
n ≥ 1. Consider the functor which associates to any scheme T over B the group

GLn(Γ(T,OT ))
of invertible n× n matrices over the global sections of the structure sheaf. This is repre-
sentable by the group algebraic space

GLn,B = B ×S GLn,S
over B. Here Gm,S is the general linear group scheme over S , see Groupoids, Example
5.4.

Example 7.5. Let B → S as in Section 3. Let n ≥ 1. The determinant defines a
morphism of group algebraic spaces

det : GLn,B −→ Gm,B

over B. It is the base change of the determinant morphism over S from Groupoids, Ex-
ample 5.5.

Example 7.6 (Constant group algebraic space). Let B → S as in Section 3. Let G
be an abstract group. Consider the functor which associates to any scheme T over B the
group of locally constant maps T → G (where T has the Zariski topology and G the
discrete topology). This is representable by the group algebraic space

GB = B ×S GS
over B. Here GS is the constant group scheme introduced in Groupoids, Example 5.6.

8. Actions of group algebraic spaces

Please refer to Groupoids, Section 10 for notation.

Definition 8.1. Let B → S as in Section 3. Let (G,m) be a group algebraic space
over B. Let X be an algebraic space over B.

(1) An action of G on the algebraic space X/B is a morphism a : G ×B X → X
overB such that for every scheme T overB the map a : G(T )×X(T )→ X(T )
defines the structure of a G(T )-set on X(T ).



5840 78. GROUPOIDS IN ALGEBRAIC SPACES

(2) Suppose that X , Y are algebraic spaces over B each endowed with an action of
G. An equivariant or more precisely a G-equivariant morphism ψ : X → Y
is a morphism of algebraic spaces over B such that for every T over B the map
ψ : X(T )→ Y (T ) is a morphism of G(T )-sets.

In situation (1) this means that the diagrams

(8.1.1) G×B G×B X 1G×a
//

m×1X
��

G×B X

a

��
G×B X

a // X

G×B X a
// X

X

e×1X

OO

1X

::

are commutative. In situation (2) this just means that the diagram

G×B X id×f
//

a

��

G×B Y

a

��
X

f // Y

commutes.

Definition 8.2. Let B → S , G → B, and X → B as in Definition 8.1. Let a :
G×B X → X be an action of G on X/B. We say the action is free if for every scheme T
over B the action a : G(T ) ×X(T ) → X(T ) is a free action of the group G(T ) on the
set X(T ).

Lemma 8.3. Situation as in Definition 8.2, The action a is free if and only if
G×B X → X ×B X, (g, x) 7→ (a(g, x), x)

is a monomorphism of algebraic spaces.

Proof. Immediate from the definitions. �

9. Principal homogeneous spaces

This section is the analogue of Groupoids, Section 11. We suggest reading that section
first.

Definition 9.1. LetS be a scheme. LetB be an algebraic space overS. Let (G,m) be a
group algebraic space overB. LetX be an algebraic space overB, and let a : G×BX → X
be an action of G on X .

(1) We say X is a pseudo G-torsor or that X is formally principally homogeneous
under G if the induced morphism G ×B X → X ×B X , (g, x) 7→ (a(g, x), x)
is an isomorphism.

(2) A pseudo G-torsor X is called trivial if there exists an G-equivariant isomor-
phism G→ X over B where G acts on G by left multiplication.

It is clear that if B′ → B is a morphism of algebraic spaces then the pullback XB′ of a
pseudo G-torsor over B is a pseudo GB′ -torsor over B′.

Lemma 9.2. In the situation of Definition 9.1.
(1) The algebraic space X is a pseudo G-torsor if and only if for every scheme T

over B the set X(T ) is either empty or the action of the group G(T ) on X(T )
is simply transitive.

(2) A pseudoG-torsorX is trivial if and only if the morphismX → B has a section.
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Proof. Omitted. �

Definition 9.3. Let S be a scheme. Let B be an algebraic space over S. Let (G,m)
be a group algebraic space over B. Let X be a pseudo G-torsor over B.

(1) We sayX is a principal homogeneous space, or more precisely a principal homo-
geneous G-space over B if there exists a fpqc covering1 {Bi → B}i∈I such that
each XBi → Bi has a section (i.e., is a trivial pseudo GBi -torsor).

(2) Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. We say X is a G-torsor in
the τ topology, or a τ G-torsor, or simply a τ torsor if there exists a τ covering
{Bi → B}i∈I such that each XBi → Bi has a section.

(3) If X is a principal homogeneous G-space over B, then we say that it is quasi-
isotrivial if it is a torsor for the étale topology.

(4) If X is a principal homogeneous G-space over B, then we say that it is locally
trivial if it is a torsor for the Zariski topology.

We sometimes say “let X be a G-principal homogeneous space over B” to indicate that X
is an algebraic space over B equipped with an action of G which turns it into a principal
homogeneous space over B. Next we show that this agrees with the notation introduced
earlier when both apply.

Lemma 9.4. Let S be a scheme. Let (G,m) be a group algebraic space over S. Let X
be an algebraic space over S , and let a : G ×S X → X be an action of G on X . Then
X is a G-torsor in the fppf -topology in the sense of Definition 9.3 if and only if X is a
G-torsor on (Sch/S)fppf in the sense of Cohomology on Sites, Definition 4.1.

Proof. Omitted. �

Lemma 9.5. Let S be a scheme. Let B be an algebraic space over S. Let G be a group
algebraic space over B. Let X be a pseudo G-torsor over B. Assume G and X locally of
finite type over B.

(1) If G→ B is unramified, then X → B is unramified.
(2) If G→ B is locally quasi-finite, then X → B is locally quasi-finite.

Proof. Proof of (1). By Morphisms of Spaces, Lemma 38.10 we reduce to the case
whereB is the spectrum of a field. IfX is empty, then the result holds. IfX is nonempty,
then after increasing the field, we may assume X has a point. Then G ∼= X and the result
holds.

The proof of (2) works in exactly the same way using Morphisms of Spaces, Lemma 27.2.
�

10. Equivariant quasi-coherent sheaves

Please compare with Groupoids, Section 12.

Definition 10.1. Let B → S as in Section 3. Let (G,m) be a group algebraic space
over B, and let a : G ×B X → X be an action of G on the algebraic space X over
B. An G-equivariant quasi-coherent OX -module, or simply a equivariant quasi-coherent

1The default type of torsor in Groupoids, Definition 11.3 is a pseudo torsor which is trivial on an fpqc
covering. Since G, as an algebraic space, can be seen a sheaf of groups there already is a notion of a G-torsor
which corresponds to fppf-torsor, see Lemma 9.4. Hence we use “principal homogeneous space” for a pseudo
torsor which is fpqc locally trivial, and we try to avoid using the word torsor in this situation.
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OX -module, is a pair (F , α), whereF is a quasi-coherentOX -module, and α is aOG×BX -
module map

α : a∗F −→ pr∗
1F

where pr1 : G×B X → X is the projection such that
(1) the diagram

(1G × a)∗pr∗
2F pr∗

12α
// pr∗

2F

(1G × a)∗a∗F

(1G×a)∗α

OO

(m× 1X)∗a∗F

(m×1X)∗α

OO

is a commutative in the category ofOG×BG×BX -modules, and
(2) the pullback

(e× 1X)∗α : F −→ F
is the identity map.

For explanation compare with the relevant diagrams of Equation (8.1.1).

Note that the commutativity of the first diagram guarantees that (e×1X)∗α is an idempo-
tent operator onF , and hence condition (2) is just the condition that it is an isomorphism.

Lemma 10.2. LetB → S as in Section 3. LetG be a group algebraic space overB. Let
f : X → Y be a G-equivariant morphism between algebraic spaces over B endowed with
G-actions. Then pullback f∗ given by (F , α) 7→ (f∗F , (1G × f)∗α) defines a functor
from the category of quasi-coherent G-equivariant sheaves on Y to the category of quasi-
coherent G-equivariant sheaves on X .

Proof. Omitted. �

11. Groupoids in algebraic spaces

Please refer to Groupoids, Section 13 for notation.

Definition 11.1. Let B → S as in Section 3.
(1) A groupoid in algebraic spaces over B is a quintuple (U,R, s, t, c) where U and

R are algebraic spaces over B, and s, t : R → U and c : R ×s,U,t R → R
are morphisms of algebraic spaces over B with the following property: For any
scheme T over B the quintuple

(U(T ), R(T ), s, t, c)
is a groupoid category.

(2) A morphism f : (U,R, s, t, c) → (U ′, R′, s′, t′, c′) of groupoids in algebraic
spaces over B is given by morphisms of algebraic spaces f : U → U ′ and f :
R → R′ over B with the following property: For any scheme T over B the
maps f define a functor from the groupoid category (U(T ), R(T ), s, t, c) to the
groupoid category (U ′(T ), R′(T ), s′, t′, c′).

Let (U,R, s, t, c) be a groupoid in algebraic spaces overB. Note that there are unique mor-
phisms of algebraic spaces e : U → R and i : R → R over B such that for every scheme
T over B the induced map e : U(T ) → R(T ) is the identity, and i : R(T ) → R(T )
is the inverse of the groupoid category. The septuple (U,R, s, t, c, e, i) satisfies commu-
tative diagrams corresponding to each of the axioms (1), (2)(a), (2)(b), (3)(a) and (3)(b)
of Groupoids, Section 13. Conversely given a septuple with this property the quintuple
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(U,R, s, t, c) is a groupoid in algebraic spaces over B. Note that i is an isomorphism, and
e is a section of both s and t. Moreover, given a groupoid in algebraic spaces over B we
denote

j = (t, s) : R −→ U ×B U

which is compatible with our conventions in Section 4 above. We sometimes say “let
(U,R, s, t, c, e, i) be a groupoid in algebraic spaces over B” to stress the existence of iden-
tity and inverse.

Lemma 11.2. Let B → S as in Section 3. Given a groupoid in algebraic spaces
(U,R, s, t, c) over B the morphism j : R→ U ×B U is a pre-equivalence relation.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 11.3. LetB → S as in Section 3. Given an equivalence relation j : R→ U×B
U overB there is a unique way to extend it to a groupoid in algebraic spaces (U,R, s, t, c)
over B.

Proof. Omitted. This is a nice exercise in the definitions. �

Lemma 11.4. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over B. In the commutative diagram

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top (which is
really a square) is also cartesian.

Proof. Omitted. Exercise in the definitions and the functorial point of view in al-
gebraic geometry. �

Lemma 11.5. Let B → S be as in Section 3. Let (U,R, s, t, c, e, i) be a groupoid in
algebraic spaces over B. The diagram

(11.5.1) R×t,U,t R
pr1 //

pr0
//

pr0×c◦(i,1)
��

R
t //

idR
��

U

idU
��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The two
lower left squares are cartesian.
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Proof. The commutativity of the diagram follows from the axioms of a groupoid.
Note that, in terms of groupoids, the top left vertical arrow assigns to a pair of morphisms
(α, β) with the same target, the pair of morphisms (α, α−1 ◦ β). In any groupoid this
defines a bijection between Arrows×t,Ob,t Arrows and Arrows×s,Ob,t Arrows. Hence the
second assertion of the lemma. The last assertion follows from Lemma 11.4. �

Lemma 11.6. Let B → S be as in Section 3. Let (U,R, s, t, c) be a groupoid in alge-
braic spaces overB. LetB′ → B be a morphism of algebraic spaces. Then the base changes
U ′ = B′ ×B U , R′ = B′ ×B R endowed with the base changes s′, t′, c′ of the morphisms
s, t, c form a groupoid in algebraic spaces (U ′, R′, s′, t′, c′) over B′ and the projections
determine a morphism (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) of groupoids in algebraic spaces
over B.

Proof. Omitted. Hint: R′ ×s′,U ′,t′ R
′ = B′ ×B (R×s,U,t R). �

12. Quasi-coherent sheaves on groupoids

Please compare with Groupoids, Section 14.

Definition 12.1. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. A quasi-coherent module on (U,R, s, t, c) is a pair (F , α), where
F is a quasi-coherentOU -module, and α is aOR-module map

α : t∗F −→ s∗F
such that

(1) the diagram

pr∗
1t

∗F
pr∗

1α
// pr∗

1s
∗F

pr∗
0s

∗F c∗s∗F

pr∗
0t

∗F
pr∗

0α

dd

c∗t∗F
c∗α

::

is a commutative in the category ofOR×s,U,tR-modules, and
(2) the pullback

e∗α : F −→ F
is the identity map.

Compare with the commutative diagrams of Lemma 11.4.

The commutativity of the first diagram forces the operator e∗α to be idempotent. Hence
the second condition can be reformulated as saying that e∗α is an isomorphism. In fact,
the condition implies that α is an isomorphism.

Lemma 12.2. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in alge-
braic spaces over B. If (F , α) is a quasi-coherent module on (U,R, s, t, c) then α is an
isomorphism.

Proof. Pull back the commutative diagram of Definition 12.1 by the morphism (i, 1) :
R→ R×s,U,tR. Then we see that i∗α ◦α = s∗e∗α. Pulling back by the morphism (1, i)
we obtain the relation α ◦ i∗α = t∗e∗α. By the second assumption these morphisms are
the identity. Hence i∗α is an inverse of α. �
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Lemma 12.3. Let B → S as in Section 3. Consider a morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoid in algebraic spaces over B. Then pullback f∗ given by

(F , α) 7→ (f∗F , f∗α)
defines a functor from the category of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) to the
category of quasi-coherent sheaves on (U,R, s, t, c).

Proof. Omitted. �

Lemma 12.4. Let B → S as in Section 3. Consider a morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoids in algebraic spaces over B. Assume that

(1) f : U → U ′ is quasi-compact and quasi-separated,
(2) the square

R

t

��

f
// R′

t′

��
U

f // U ′

is cartesian, and
(3) s′ and t′ are flat.

Then pushforward f∗ given by
(F , α) 7→ (f∗F , f∗α)

defines a functor from the category of quasi-coherent sheaves on (U,R, s, t, c) to the cat-
egory of quasi-coherent sheaves on (U ′, R′, s′, t′, c′) which is right adjoint to pullback as
defined in Lemma 12.3.

Proof. SinceU → U ′ is quasi-compact and quasi-separated we see that f∗ transforms
quasi-coherent sheaves into quasi-coherent sheaves (Morphisms of Spaces, Lemma 11.2).
Moreover, since the squares

R

t

��

f
// R′

t′

��
U

f // U ′

and

R

s

��

f
// R′

s′

��
U

f // U ′

are cartesian we find that (t′)∗f∗F = f∗t
∗F and (s′)∗f∗F = f∗s

∗F , see Cohomology of
Spaces, Lemma 11.2. Thus it makes sense to think of f∗α as a map (t′)∗f∗F → (s′)∗f∗F .
A similar argument shows that f∗α satisfies the cocycle condition. The functor is adjoint
to the pullback functor since pullback and pushforward on modules on ringed spaces are
adjoint. Some details omitted. �

Lemma 12.5. Let B → S be as in Section 3. Let (U,R, s, t, c) be a groupoid in alge-
braic spaces overB. The category of quasi-coherent modules on (U,R, s, t, c) has colimits.

Proof. Let i 7→ (Fi, αi) be a diagram over the index categoryI . We can form the col-
imit F = colimFi which is a quasi-coherent sheaf on U , see Properties of Spaces, Lemma
29.7. Since colimits commute with pullback we see that s∗F = colim s∗Fi and similarly
t∗F = colim t∗Fi. Hence we can set α = colimαi. We omit the proof that (F , α) is the
colimit of the diagram in the category of quasi-coherent modules on (U,R, s, t, c). �

Lemma 12.6. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in algebraic
spaces overB. If s, t are flat, then the category of quasi-coherent modules on (U,R, s, t, c)
is abelian.
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Proof. Let ϕ : (F , α) → (G, β) be a homomorphism of quasi-coherent modules on
(U,R, s, t, c). Since s is flat we see that

0→ s∗ Ker(ϕ)→ s∗F → s∗G → s∗ Coker(ϕ)→ 0

is exact and similarly for pullback by t. Henceα andβ induce isomorphismsκ : t∗ Ker(ϕ)→
s∗ Ker(ϕ) and λ : t∗ Coker(ϕ)→ s∗ Coker(ϕ) which satisfy the cocycle condition. Then
it is straightforward to verify that (Ker(ϕ), κ) and (Coker(ϕ), λ) are a kernel and coker-
nel in the category of quasi-coherent modules on (U,R, s, t, c). Moreover, the condition
Coim(ϕ) = Im(ϕ) follows because it holds over U . �

13. Colimits of quasi-coherent modules

This section is the analogue of Groupoids, Section 15.

Lemma 13.1. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over B. Assume s, t are flat, quasi-compact, and quasi-separated. For any quasi-
coherent module G on U , there exists a canonical isomorphism α : t∗s∗t

∗G → s∗s∗t
∗G

which turns (s∗t
∗G, α) into a quasi-coherent module on (U,R, s, t, c). This construction

defines a functor
QCoh(OU ) −→ QCoh(U,R, s, t, c)

which is a right adjoint to the forgetful functor (F , β) 7→ F .

Proof. The pushforward of a quasi-coherent module along a quasi-compact and quasi-
separated morphism is quasi-coherent, see Morphisms of Spaces, Lemma 11.2. Hence s∗t

∗G
is quasi-coherent. With notation as in Lemma 11.4 we have

t∗s∗t
∗G = pr1,∗pr∗

0t
∗G = pr1,∗c

∗t∗G = s∗s∗t
∗G

The middle equality because t ◦ c = t ◦ pr0 as morphisms R ×s,U,t R → U , and the
first and the last equality because we know that base change and pushforward commute
in these steps by Cohomology of Spaces, Lemma 11.2.

To verify the cocycle condition of Definition 12.1 for α and the adjointness property we
describe the construction G 7→ (s∗t

∗G, α) in another way. Consider the groupoid scheme
(R,R×t,U,t R, pr0, pr1, pr02) associated to the equivalence relation R×t,U,t R on R, see
Lemma 11.3. There is a morphism

f : (R,R×t,U,t R, pr1, pr0, pr02) −→ (U,R, s, t, c)

of groupoid schemes given by s : R → U and R ×t,U,t R → R given by (r0, r1) 7→
r−1

0 ◦ r1; we omit the verification of the commutativity of the required diagrams. Since
t, s : R → U are quasi-compact, quasi-separated, and flat, and since we have a cartesian
square

R×t,U,t R
pr0

��

(r0,r1)7→r−1
0 ◦r1

// R

t

��
R

s // U

by Lemma 11.5 it follows that Lemma 12.4 applies to f . Thus pushforward and pullback of
quasi-coherent modules along f are adjoint functors. To finish the proof we will identify
these functors with the functors described above. To do this, note that

t∗ : QCoh(OU ) −→ QCoh(R,R×t,U,t R, pr1, pr0, pr02)
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is an equivalence by the theory of descent of quasi-coherent sheaves as {t : R→ U} is an
fpqc covering, see Descent on Spaces, Proposition 4.1.

Pushforward along f precomposed with the equivalence t∗ sends G to (s∗t
∗G, α); we omit

the verification that the isomorphism α obtained in this fashion is the same as the one
constructed above.

Pullback along f postcomposed with the inverse of the equivalence t∗ sends (F , β) to the
descent relative to {t : R→ U} of the module s∗F endowed with the descent datum γ on
R×t,U,t R which is the pullback of β by (r0, r1) 7→ r−1

0 ◦ r1. Consider the isomorphism
β : t∗F → s∗F . The canonical descent datum (Descent on Spaces, Definition 3.3) on t∗F
relative to {t : R→ U} translates via β into the map

pr∗
0s

∗F
pr∗

0β
−1

−−−−→ pr∗
0t

∗F can−−→ pr∗
1t

∗F
pr∗

1β−−−→ pr∗
1s

∗F

Since β satisfies the cocycle condition, this is equal to the pullback of β by (r0, r1) 7→
r−1

0 ◦ r1. To see this take the actual cocycle relation in Definition 12.1 and pull it back
by the morphism (pr0, c ◦ (i, 1)) : R ×t,U,t R → R ×s,U,t R which also plays a role
in the commutative diagram of Lemma 11.5. It follows that (s∗F , γ) is isomorphic to
(t∗F , can). All in all, we conclude that pullback by f postcomposed with the inverse of
the equivalence t∗ is isomorphic to the forgetful functor (F , β) 7→ F . �

Remark 13.2. In the situation of Lemma 13.1 denote

F : QCoh(U,R, s, t, c)→ QCoh(OU ), (F , β) 7→ F

the forgetful functor and denote

G : QCoh(OU )→ QCoh(U,R, s, t, c), G 7→ (s∗t
∗G, α)

the right adjoint constructed in the lemma. Then the unit η : id→ G◦F of the adjunction
evaluated on (F , β) is given by the map

F → s∗s
∗F β−1

−−→ s∗t
∗F

We omit the verification.

Lemma 13.3. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let F be a quasi-coherentOX -module, let G be a quasi-coherentOY -module, and
let ϕ : G → f∗F be a module map. Assume

(1) ϕ is injective,
(2) f is quasi-compact, quasi-separated, flat, and surjective,
(3) X , Y are locally Noetherian, and
(4) G is a coherentOY -module.

Then F ∩ f∗G defined as the pullback

F // f∗f
∗F

F ∩ f∗G

OO

// f∗G

OO

is a coherentOX -module.
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Proof. We will freely use the characterization of coherent modules of Cohomology
of Spaces, Lemma 12.2 as well as the fact that coherent modules form a Serre subcategory
of QCoh(OX), see Cohomology of Spaces, Lemma 12.4. If f has a section σ, then we see
thatF∩f∗G is contained in the image of σ∗G → σ∗f∗F = F , hence coherent. In general,
to show that F ∩ f∗G is coherent, it suffices the show that f∗(F ∩ f∗G) is coherent (see
Descent on Spaces, Lemma 6.1). Since f is flat this is equal to f∗F ∩f∗f∗G. Since f is flat,
quasi-compact, and quasi-separated we see f∗f∗G = p∗q

∗G where p, q : Y ×X Y → Y are
the projections, see Cohomology of Spaces, Lemma 11.2. Since p has a section we win. �

Let B → S be as in Section 3. Let (U,R, s, t, c) be a groupoid in algebraic spaces over B.
Assume that U is locally Noetherian. In the lemma below we say that a quasi-coherent
sheaf (F , α) on (U,R, s, t, c) is coherent if F is a coherentOU -module.

Lemma 13.4. Let B → S be as in Section 3. Let (U,R, s, t, c) be a groupoid in alge-
braic spaces over B. Assume that

(1) U , R are Noetherian,
(2) s, t are flat, quasi-compact, and quasi-separated.

Then every quasi-coherent module (F , α) on (U,R, s, t, c) is a filtered colimit of coherent
modules.

Proof. We will use the characterization of Cohomology of Spaces, Lemma 12.2 of co-
herent modules on locally Noetherian algebraic spaces without further mention. We can
writeF = colimHi as the filtered colimit of coherent submodulesHi ⊂ F , see Cohomol-
ogy of Spaces, Lemma 15.1. Given a quasi-coherent sheaf H on U we denote (s∗t

∗H, α)
the quasi-coherent sheaf on (U,R, s, t, c) of Lemma 13.1. Consider the adjunction map
(F , β)→ (s∗t

∗F , α) in QCoh(U,R, s, t, c), see Remark 13.2. Set

(Fi, βi) = (F , β)×(s∗t∗F,α) (s∗t
∗Hi, α)

in QCoh(U,R, s, t, c). Since restriction to U is an exact functor on QCoh(U,R, s, t, c)
by the proof of Lemma 12.6 we obtain a pullback diagram

F // s∗t
∗F

Fi //

OO

s∗t
∗Hi

OO

in other words Fi = F ∩ s∗t
∗Hi. By the description of the adjunction map in Remark

13.2 this diagram is isomorphic to the diagram

F // s∗s
∗F

Fi //

OO

s∗t
∗Hi

OO

where the right vertical arrow is the result of appplying s∗ to the map

t∗Hi → t∗F β−→ s∗F

This arrow is injective as t is a flat morphism. It follows that Fi is coherent by Lemma
13.3. Finally, because s is quasi-compact and quasi-separated we see that s∗ commutes
with colimits (see Cohomology of Schemes, Lemma 6.1). Hence s∗t

∗F = colim s∗t
∗Hi

and hence (F , β) = colim(Fi, βi) as desired. �
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14. Crystals in quasi-coherent sheaves

Let (I,Φ, j) be a pair consisting of a set I and a pre-relation j : Φ→ I × I . Assume given
for every i ∈ I a scheme Xi and for every φ ∈ Φ a morphism of schemes fφ : Xi′ → Xi

where j(φ) = (i, i′). Set X = ({Xi}i∈I , {fφ}φ∈Φ). Define a crystal in quasi-coherent
modules on X as a rule which associates to every i ∈ Ob(I) a quasi-coherent sheaf Fi on
Xi and for every φ ∈ Φ with j(φ) = (i, i′) an isomorphism

αφ : f∗
φFi −→ Fi′

of quasi-coherent sheaves on Xi′ . These crystals in quasi-coherent modules form an ad-
ditive category CQC(X)2. This category has colimits (proof is the same as the proof of
Lemma 12.5). If all the morphisms fφ are flat, then CQC(X) is abelian (proof is the same
as the proof of Lemma 12.6). Let κ be a cardinal. We say that a crystal in quasi-coherent
modules F on X is κ-generated if each Fi is κ-generated (see Properties, Definition 23.1).

Lemma 14.1. In the situation above, if all the morphisms fφ are flat, then there exists
a cardinal κ such that every object ({Fi}i∈I , {αφ}φ∈Φ) of CQC(X) is the directed colimit
of its κ-generated submodules.

Proof. In the lemma and in this proof a submodule of ({Fi}i∈I , {αφ}φ∈Φ) means
the data of a quasi-coherent submodule Gi ⊂ Fi for all i such that αφ(f∗

φGi) = Gi′ as
subsheaves of Fi′ for all φ ∈ Φ. This makes sense because since fφ is flat the pullback f∗

φ

is exact, i.e., preserves subsheaves. The proof will be a variant to the proof of Properties,
Lemma 23.3. We urge the reader to read that proof first.

We claim that it suffices to prove the lemma in case all the schemes Xi are affine. To see
this let

J =
∐

i∈I
{U ⊂ Xi affine open}

and let

Ψ =
∐

φ∈Φ
{(U, V ) | U ⊂ Xi, V ⊂ Xi′ affine open with fφ(U) ⊂ V }

q
∐

i∈I
{(U,U ′) | U,U ′ ⊂ Xi affine open with U ⊂ U ′}

endowed with the obvious map Ψ → J × J . Then our (F , α) induces a crystal in quasi-
coherent sheaves ({Hj}j∈J , {βψ}ψ∈Ψ) on Y = (J,Ψ) by setting H(i,U) = Fi|U for
(i, U) ∈ J and setting βψ for ψ ∈ Ψ equal to the restriction of αφ to U if ψ = (φ,U, V )
and equal to id : (Fi|U ′)|U → Fi|U when ψ = (i, U, U ′). Moreover, submodules of
({Hj}j∈J , {βψ}ψ∈Ψ) correspond 1-to-1 with submodules of ({Fi}i∈I , {αφ}φ∈Φ). We
omit the proof (hint: use Sheaves, Section 30). Moreover, it is clear that if κ works for Y ,
then the same κ works forX (by the definition of κ-generated modules). Hence it suffices
to proof the lemma for crystals in quasi-coherent sheaves on Y .

Assume that all the schemes Xi are affine. Let κ be an infinite cardinal larger than the
cardinality of I or Φ. Let ({Fi}i∈I , {αφ}φ∈Φ) be an object of CQC(X). For each i write

2We could single out a set of triples φ, φ′, φ′′ ∈ Φ with j(φ) = (i, i′), j(φ′) = (i′, i′′), and j(φ′′) =
(i, i′′) such that fφ′′ = fφ ◦ fφ′ and require that αφ′ ◦ f∗

φ′αφ = αφ′′ for these triples. This would define an
additive subcategory. For example the data (I,Φ) could be the set of objects and arrows of an index category
andX could be a diagram of schemes over this index category. The result of Lemma 14.1 immediately gives the
corresponding result in the subcategory.



5850 78. GROUPOIDS IN ALGEBRAIC SPACES

Xi = Spec(Ai) and Mi = Γ(Xi,Fi). For every φ ∈ Φ with j(φ) = (i, i′) the map αφ
translates into an Ai′ -module isomorphism

αφ : Mi ⊗Ai Ai′ −→Mi′

Using the axiom of choice choose a rule
(φ,m) 7−→ S(φ,m′)

where the source is the collection of pairs (φ,m′) such that φ ∈ Φ with j(φ) = (i, i′) and
m′ ∈Mi′ and where the output is a finite subset S(φ,m′) ⊂Mi so that

m′ = αφ

(∑
m∈S(φ,m′)

m⊗ a′
m

)
for some a′

m ∈ Ai′ .
Having made these choices we claim that any section of any Fi over any Xi is in a κ-
generated submodule. To see this suppose that we are given a collection S = {Si}i∈I
of subsets Si ⊂ Mi each with cardinality at most κ. Then we define a new collection
S ′ = {S′

i}i∈I with

S′
i = Si ∪

⋃
(φ,m′), j(φ)=(i,i′), m′∈Si′

S(φ,m′)

Note that each S′
i still has cardinality at most κ. Set S(0) = S , S(1) = S ′ and by induction

S(n+1) = (S(n))′. Then setS(∞)
i =

⋃
n≥0 S

(n)
i andS(∞) = {S(∞)

i }i∈I . By construction,
for every φ ∈ Φ with j(φ) = (i, i′) and everym′ ∈ S(∞)

i′ we can writem′ as a finite linear
combination of images αφ(m⊗ 1) with m ∈ S(∞)

i . Thus we see that setting Ni equal to
theAi-submodule ofMi generated byS(∞)

i the corresponding quasi-coherent submodules
Ñi ⊂ Fi form a κ-generated submodule. This finishes the proof. �

Lemma 14.2. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in algebraic
spaces overB. If s, t are flat, then there exists a set T and a family of objects (Ft, αt)t∈T of
QCoh(U,R, s, t, c) such that every object (F , α) is the directed colimit of its submodules
isomorphic to one of the objects (Ft, αt).

Proof. This lemma is a generalization of Groupoids, Lemma 15.7 which deals with
the case of a groupoid in schemes. We can’t quite use the same argument, so we use the
material on “crystals of quasi-coherent sheaves” we developed above.
Choose a scheme W and a surjective étale morphism W → U . Choose a scheme V and
a surjective étale morphism V → W ×U,s R. Choose a scheme V ′ and a surjective étale
morphism V ′ → R×t,U W . Consider the collection of schemes

I = {W,W ×U W,V, V ′, V ×R V ′}
and the set of morphisms of schemes

Φ = {pri : W ×U W →W,V →W,V ′ →W,V ×R V ′ → V, V ×R V ′ → V ′}
Set X = (I,Φ). Recall that we have defined a category CQC(X) of crystals of quasi-
coherent sheaves on X . There is a functor

QCoh(U,R, s, t, c) −→ CQC(X)
which assigns to (F , α) the sheaf F|W on W , the sheaf F|W×UW on W ×U W , the pull-
back ofF via V →W×U,sR→W → U on V , the pullback ofF via V ′ → R×t,UW →
W → U on V ′, and finally the pullback ofF via V ×RV ′ → V →W ×U,sR→W → U
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on V ×R V ′. As comparison maps {αφ}φ∈Φ we use the obvious ones (coming from asso-
ciativity of pullbacks) except for the map φ = prV ′ : V ×R V ′ → V ′ we use the pullback
of α : t∗F → s∗F to V ×R V ′. This makes sense because of the following commutative
diagram

V ×R V ′

zz $$
V

$$

��

V ′

zz

��

R

s

��

t

��

W

$$

W

zz
U

The functor displayed above isn’t an equivalence of categories. However, since W → U
is surjective étale it is faithful3. Since all the morphisms in the diagram above are flat
we see that it is an exact functor of abelian categories. Moreover, we claim that given
(F , α) with image ({Fi}i∈I , {αφ}φ∈Φ) there is a 1-to-1 correspondence between quasi-
coherent submodules of (F , α) and ({Fi}i∈I , {αφ}φ∈Φ). Namely, given a submodule of
({Fi}i∈I , {αφ}φ∈Φ) compatibility of the submodule over W with the projection maps
W ×U W → W will guarantee the submodule comes from a quasi-coherent submodule
of F (by Properties of Spaces, Proposition 32.1) and compatibility with αprV ′ will insure
this subsheaf is compatible with α (details omitted).

Choose a cardinalκ as in Lemma 14.1 for the systemX = (I,Φ). It is clear from Properties,
Lemma 23.2 that there is a set of isomorphism classes of κ-generated crystals in quasi-
coherent sheaves on X . Hence the result is clear. �

15. Groupoids and group spaces

Please compare with Groupoids, Section 16.

Lemma 15.1. Let B → S as in Section 3. Let (G,m) be a group algebraic space
over B with identity eG and inverse iG. Let X be an algebraic space over B and let a :
G×BX → X be an action ofG onX overB. Then we get a groupoid in algebraic spaces
(U,R, s, t, c, e, i) over B in the following manner:

(1) We set U = X , and R = G×B X .
(2) We set s : R→ U equal to (g, x) 7→ x.
(3) We set t : R→ U equal to (g, x) 7→ a(g, x).
(4) We set c : R×s,U,t R→ R equal to ((g, x), (g′, x′)) 7→ (m(g, g′), x′).
(5) We set e : U → R equal to x 7→ (eG(x), x).
(6) We set i : R→ R equal to (g, x) 7→ (iG(g), a(g, x)).

Proof. Omitted. Hint: It is enough to show that this works on the set level. For this
use the description above the lemma describing g as an arrow from v to a(g, v). �

3In fact the functor is fully faithful, but we won’t need this.
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Lemma 15.2. Let B → S as in Section 3. Let (G,m) be a group algebraic space over
B. Let X be an algebraic space over B and let a : G×B X → X be an action of G on X
over B. Let (U,R, s, t, c) be the groupoid in algebraic spaces constructed in Lemma 15.1.
The rule (F , α) 7→ (F , α) defines an equivalence of categories between G-equivariant
OX -modules and the category of quasi-coherent modules on (U,R, s, t, c).

Proof. The assertion makes sense because t = a and s = pr1 as morphisms R =
G ×B X → X , see Definitions 10.1 and 12.1. Using the translation in Lemma 15.1 the
commutativity requirements of the two definitions match up exactly. �

16. The stabilizer group algebraic space

Please compare with Groupoids, Section 17. Given a groupoid in algebraic spaces we get
a group algebraic space as follows.

Lemma 16.1. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over B. The algebraic space G defined by the cartesian square

G //

��

R

j=(t,s)
��

U
∆ // U ×B U

is a group algebraic space overU with composition lawm induced by the composition law
c.

Proof. This is true because in a groupoid category the set of self maps of any object
forms a group. �

Since ∆ is a monomorphism we see that G = j−1(∆U/B) is a subsheaf of R. Thinking of
it in this way, the structure morphism G = j−1(∆U/B) → U is induced by either s or t
(it is the same), and m is induced by c.

Definition 16.2. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces overB. The group algebraic space j−1(∆U/B)→ U is called the stabilizer
of the groupoid in algebraic spaces (U,R, s, t, c).

In the literature the stabilizer group algebraic space is often denoted S (because the word
stabilizer starts with an “s” presumably); we cannot do this since we have already used S
for the base scheme.

Lemma 16.3. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over B, and let G/U be its stabilizer. Denote Rt/U the algebraic space R seen as
an algebraic space over U via the morphism t : R→ U . There is a canonical left action

a : G×U Rt −→ Rt

induced by the composition law c.

Proof. In terms of points over T/B we define a(g, r) = c(g, r). �
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17. Restricting groupoids

Please refer to Groupoids, Section 18 for notation.

Lemma 17.1. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in algebraic
spaces overB. Let g : U ′ → U be a morphism of algebraic spaces. Consider the following
diagram

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

where all the squares are fibre product squares. Then there is a canonical composition law
c′ : R′×s′,U ′,t′ R

′ → R′ such that (U ′, R′, s′, t′, c′) is a groupoid in algebraic spaces over
B and such that U ′ → U , R′ → R defines a morphism (U ′, R′, s′, t′, c′)→ (U,R, s, t, c)
of groupoids in algebraic spaces over B. Moreover, for any scheme T over B the functor
of groupoids

(U ′(T ), R′(T ), s′, t′, c′)→ (U(T ), R(T ), s, t, c)
is the restriction (see Groupoids, Section 18) of (U(T ), R(T ), s, t, c) via the mapU ′(T )→
U(T ).

Proof. Omitted. �

Definition 17.2. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. Let g : U ′ → U be a morphism of algebraic spaces over B. The
morphism of groupoids in algebraic spaces (U ′, R′, s′, t′, c′)→ (U,R, s, t, c) constructed
in Lemma 17.1 is called the restriction of (U,R, s, t, c) toU ′. We sometime use the notation
R′ = R|U ′ in this case.

Lemma 17.3. The notions of restricting groupoids and (pre-)equivalence relations
defined in Definitions 17.2 and 4.3 agree via the constructions of Lemmas 11.2 and 11.3.

Proof. What we are saying here is that R′ of Lemma 17.1 is also equal to

R′ = (U ′ ×B U ′)×U×BU R −→ U ′ ×B U ′

In fact this might have been a clearer way to state that lemma. �

18. Invariant subspaces

In this section we discuss briefly the notion of an invariant subspace.

Definition 18.1. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over the base B.

(1) We say an open subspace W ⊂ U is R-invariant if t(s−1(W )) ⊂W .
(2) A locally closed subspace Z ⊂ U is called R-invariant if t−1(Z) = s−1(Z) as

locally closed subspaces of R.
(3) A monomorphism of algebraic spaces T → U is R-invariant if T ×U,t R =

R×s,U T as algebraic spaces over R.
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For an open subspaceW ⊂ U theR-invariance is also equivalent to requiring that s−1(W ) =
t−1(W ). IfW ⊂ U isR-invariant then the restriction ofR toW is justRW = s−1(W ) =
t−1(W ). Similarly, ifZ ⊂ U is anR-invariant locally closed subspace, then the restriction
of R to Z is just RZ = s−1(Z) = t−1(Z).

Lemma 18.2. Let B → S as in Section 3. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over B.

(1) If s and t are open, then for every open W ⊂ U the open s(t−1(W )) is R-
invariant.

(2) If s and t are open and quasi-compact, then U has an open covering consisting
of R-invariant quasi-compact open subspaces.

Proof. Assume s and t open and W ⊂ U open. Since s is open we see that W ′ =
s(t−1(W )) is an open subspace of U . Now it is quite easy to using the functorial point of
view that this is an R-invariant open subset of U , but we are going to argue this directly
by some diagrams, since we think it is instructive. Note that t−1(W ′) is the image of the
morphism

A := t−1(W )×s|t−1(W ),U,t
R

pr1−−→ R

and that s−1(W ′) is the image of the morphism

B := R×s,U,s|t−1(W )
t−1(W )

pr0−−→ R.

The algebraic spacesA,B on the left of the arrows above are open subspaces ofR×s,U,tR
and R×s,U,s R respectively. By Lemma 11.4 the diagram

R×s,U,t R

pr1
$$

(pr1,c)
// R×s,U,s R

pr0
zz

R

is commutative, and the horizontal arrow is an isomorphism. Moreover, it is clear that
(pr1, c)(A) = B. Hence we conclude s−1(W ′) = t−1(W ′), and W ′ is R-invariant. This
proves (1).
Assume now that s, t are both open and quasi-compact. Then, ifW ⊂ U is a quasi-compact
open, then alsoW ′ = s(t−1(W )) is a quasi-compact open, and invariant by the discussion
above. Letting W range over images of affines étale over U we see (2). �

19. Quotient sheaves

Let S be a scheme, and let B be an algebraic space over S. Let j : R → U ×B U be a
pre-relation over B. For each scheme S′ over S we can take the equivalence relation ∼S′

generated by the image of j(S′) : R(S′)→ U(S′)× U(S′). Hence we get a presheaf

(19.0.1) (Sch/S)oppfppf −→ Sets,
S′ 7−→ U(S′)/ ∼S′

Note that since j is a morphism of algebraic spaces over B and into U ×B U there is a
canonical transformation of presheaves from the presheaf (19.0.1) to B.

Definition 19.1. Let B → S and the pre-relation j : R → U ×B U be as above.
In this setting the quotient sheaf U/R associated to j is the sheafification of the presheaf
(19.0.1) on (Sch/S)fppf . If j : R→ U ×B U comes from the action of a group algebraic
space G over B on U as in Lemma 15.1 then we denote the quotient sheaf U/G.
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This means exactly that the diagram

R
//
// U // U/R

is a coequalizer diagram in the category of sheaves of sets on (Sch/S)fppf . Again there is
a canonical map of sheaves U/R → B as j is a morphism of algebraic spaces over B into
U ×B U .

Remark 19.2. A variant of the construction above would have been to sheafify the
functor

(Spaces/B)oppfppf −→ Sets,
X 7−→ U(X)/ ∼X

where now ∼X⊂ U(X) × U(X) is the equivalence relation generated by the image of
j : R(X) → U(X) × U(X). Here of course U(X) = MorB(X,U) and R(X) =
MorB(X,R). In fact, the result would have been the same, via the identifications of (insert
future reference in Topologies of Spaces here).

Definition 19.3. In the situation of Definition 19.1. We say that the pre-relation j
has a quotient representable by an algebraic space if the sheaf U/R is an algebraic space.
We say that the pre-relation j has a representable quotient if the sheafU/R is representable
by a scheme. We will say a groupoid in algebraic spaces (U,R, s, t, c) over B has a repre-
sentable quotient (resp. quotient representable by an algebraic space if the quotient U/R
with j = (t, s) is representable (resp. an algebraic space).

If the quotient U/R is representable by M (either a scheme or an algebraic space over S),
then it comes equipped with a canonical structure morphismM → B as we’ve seen above.
The following lemma characterizes M representing the quotient. It applies for example
if U →M is flat, of finite presentation and surjective, and R ∼= U ×M U .

Lemma 19.4. In the situation of Definition 19.1. Assume there is an algebraic space
M over S , and a morphism U →M such that

(1) the morphism U →M equalizes s, t,
(2) the map U →M is a surjection of sheaves, and
(3) the induced map (t, s) : R→ U ×M U is a surjection of sheaves.

In this case M represents the quotient sheaf U/R.

Proof. Condition (1) says that U → M factors through U/R. Condition (2) says
that U/R → M is surjective as a map of sheaves. Condition (3) says that U/R → M is
injective as a map of sheaves. Hence the lemma follows. �

The following lemma is wrong if we do not require j to be a pre-equivalence relation (but
just a pre-relation say).

Lemma 19.5. Let S be a scheme. Let B be an algebraic space over S. Let j : R →
U ×B U be a pre-equivalence relation over B. For a scheme S′ over S and a, b ∈ U(S′)
the following are equivalent:

(1) a and b map to the same element of (U/R)(S′), and
(2) there exists an fppf covering {fi : Si → S′} of S′ and morphisms ri : Si → R

such that a ◦ fi = s ◦ ri and b ◦ fi = t ◦ ri.
In other words, in this case the map of sheaves

R −→ U ×U/R U
is surjective.
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Proof. Omitted. Hint: The reason this works is that the presheaf (19.0.1) in this
case is really given by T 7→ U(T )/j(R(T )) as j(R(T )) ⊂ U(T )×U(T ) is an equivalence
relation, see Definition 4.1. �

Lemma 19.6. Let S be a scheme. Let B be an algebraic space over S. Let j : R →
U ×B U be a pre-relation over B and g : U ′ → U a morphism of algebraic spaces over B.
Let j′ : R′ → U ′ ×B U ′ be the restriction of j to U ′. The map of quotient sheaves

U ′/R′ −→ U/R

is injective. If U ′ → U is surjective as a map of sheaves, for example if {g : U ′ → U}
is an fppf covering (see Topologies on Spaces, Definition 7.1), then U ′/R′ → U/R is an
isomorphism of sheaves.

Proof. Suppose ξ, ξ′ ∈ (U ′/R′)(S′) are sections which map to the same section of
U/R. Then we can find an fppf covering S = {Si → S′} of S′ such that ξ|Si , ξ′|Si are
given by ai, a′

i ∈ U ′(Si). By Lemma 19.5 and the axioms of a site we may after refining
T assume there exist morphisms ri : Si → R such that g ◦ ai = s ◦ ri, g ◦ a′

i = t ◦ ri.
Since by construction R′ = R×U×SU (U ′ ×S U ′) we see that (ri, (ai, a′

i)) ∈ R′(Si) and
this shows that ai and a′

i define the same section of U ′/R′ over Si. By the sheaf condition
this implies ξ = ξ′.
If U ′ → U is a surjective map of sheaves, then U ′/R′ → U/R is surjective also. Finally,
if {g : U ′ → U} is a fppf covering, then the map of sheaves U ′ → U is surjective, see
Topologies on Spaces, Lemma 7.5. �

Lemma 19.7. Let S be a scheme. LetB be an algebraic space over S. Let (U,R, s, t, c)
be a groupoid in algebraic spaces over B. Let g : U ′ → U a morphism of algebraic spaces
overB. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) toU ′. The map of quotient
sheaves

U ′/R′ −→ U/R

is injective. If the composition

U ′ ×g,U,t R pr1
//

h

((
R

s
// U

is a surjection of fppf sheaves then the map is bijective. This holds for example if {h :
U ′ ×g,U,t R → U} is an fppf -covering, or if U ′ → U is a surjection of sheaves, or if
{g : U ′ → U} is a covering in the fppf topology.

Proof. Injectivity follows on combining Lemmas 11.2 and 19.6. To see surjectivity
(see Sites, Section 11 for a characterization of surjective maps of sheaves) we argue as fol-
lows. Suppose that T is a scheme and σ ∈ U/R(T ). There exists a covering {Ti → T}
such that σ|Ti is the image of some element fi ∈ U(Ti). Hence we may assume that σ
if the image of f ∈ U(T ). By the assumption that h is a surjection of sheaves, we can
find an fppf covering {ϕi : Ti → T} and morphisms fi : Ti → U ′ ×g,U,t R such that
f ◦ ϕi = h ◦ fi. Denote f ′

i = pr0 ◦ fi : Ti → U ′. Then we see that f ′
i ∈ U ′(Ti) maps to

g ◦ f ′
i ∈ U(Ti) and that g ◦ f ′

i ∼Ti h ◦ fi = f ◦ ϕi notation as in (19.0.1). Namely, the
element of R(Ti) giving the relation is pr1 ◦ fi. This means that the restriction of σ to Ti
is in the image of U ′/R′(Ti)→ U/R(Ti) as desired.
If {h} is an fppf covering, then it induces a surjection of sheaves, see Topologies on Spaces,
Lemma 7.5. If U ′ → U is surjective, then also h is surjective as s has a section (namely the
neutral element e of the groupoid scheme). �



20. QUOTIENT STACKS 5857

20. Quotient stacks

In this section and the next few sections we describe a kind of generalization of Section
19 above and Groupoids, Section 20. It is different in the following way: We are going to
take quotient stacks instead of quotient sheaves.
Let us assume we have a schemeS , and algebraic spaceB overS and a groupoid in algebraic
spaces (U,R, s, t, c) over B. Given these data we consider the functor

(20.0.1) (Sch/S)oppfppf −→ Groupoids
S′ 7−→ (U(S′), R(S′), s, t, c)

By Categories, Example 37.1 this “presheaf in groupoids” corresponds to a category fibred
in groupoids over (Sch/S)fppf . In this chapter we will denote this

[U/pR]→ (Sch/S)fppf
where the subscript p is there to distinguish from the quotient stack.

Definition 20.1. Quotient stacks. Let B → S be as above.
(1) Let (U,R, s, t, c) be a groupoid in algebraic spaces over B. The quotient stack

p : [U/R] −→ (Sch/S)fppf
of (U,R, s, t, c) is the stackification (see Stacks, Lemma 9.1) of the category fibred
in groupoids [U/pR] over (Sch/S)fppf associated to (20.0.1).

(2) Let (G,m) be a group algebraic space overB. Let a : G×BX → X be an action
of G on an algebraic space over B. The quotient stack

p : [X/G] −→ (Sch/S)fppf
is the quotient stack associated to the groupoid in algebraic spaces (X,G ×B
X, s, t, c) over B of Lemma 15.1.

Thus [U/R] and [X/G] are stacks in groupoids over (Sch/S)fppf . These stacks will be
very important later on and hence it makes sense to give a detailed description. Recall that
given an algebraic space X over S we use the notation SX → (Sch/S)fppf to denote the
stack in sets associated to the sheaf X , see Categories, Lemma 38.6 and Stacks, Lemma 6.2.

Lemma 20.2. Assume B → S and (U,R, s, t, c) as in Definition 20.1 (1). There are
canonical 1-morphisms π : SU → [U/R], and [U/R] → SB of stacks in groupoids over
(Sch/S)fppf . The composition SU → SB is the 1-morphism associated to the structure
morphism U → B.

Proof. During this proof let us denote [U/pR] the category fibred in groupoids as-
sociated to the presheaf in groupoids (20.0.1). By construction of the stackification there
is a 1-morphism [U/pR] → [U/R]. The 1-morphism SU → [U/R] is simply the compo-
sition SU → [U/pR] → [U/R], where the first arrow associates to the scheme S′/S and
morphism x : S′ → U over S the object x ∈ U(S′) of the fibre category of [U/pR] over
S′.
To construct the 1-morphism [U/R] → SB it is enough to construct the 1-morphism
[U/pR]→ SB , see Stacks, Lemma 9.2. On objects over S′/S we just use the map

U(S′) −→ B(S′)
coming from the structure morphismU → B. And clearly, ifa ∈ R(S′) is an “arrow” with
source s(a) ∈ U(S′) and target t(a) ∈ U(S′), then since s and t are morphisms over B
these both map to the same element a ofB(S′). Hence we can map an arrow a ∈ R(S′) to
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the identity morphism of a. (This is good because the fibre category (SB)S′ only contains
identities.) We omit the verification that this rule is compatible with pullback on these
split fibred categories, and hence defines a 1-morphism [U/pR]→ SB as desired.

We omit the verification of the last statement. �

Lemma 20.3. Assumptions and notation as in Lemma 20.2. There exists a canonical
2-morphism α : π ◦ s→ π ◦ t making the diagram

SR s
//

t

��

SU

π

��
SU

π // [U/R]

2-commutative.

Proof. Let S′ be a scheme over S. Let r : S′ → R be a morphism over S. Then
r ∈ R(S′) is an isomorphism between the objects s ◦ r, t ◦ r ∈ U(S′). Moreover, this
construction is compatible with pullbacks. This gives a canonical 2-morphism αp : πp ◦
s → πp ◦ t where πp : SU → [U/pR] is as in the proof of Lemma 20.2. Thus even the
diagram

SR s
//

t

��

SU
πp

��
SU

πp // [U/pR]

is 2-commutative. Thus a fortiori the diagram of the lemma is 2-commutative. �

Remark 20.4. In future chapters we will use the ambiguous notation where instead
of writing SX for the stack in sets associated toX we simply writeX . Using this notation
the diagram of Lemma 20.3 becomes the familiar diagram

R
s
//

t

��

U

π

��
U

π // [U/R]

In the following sections we will show that this diagram has many good properties. In
particular we will show that it is a 2-fibre product (Section 22) and that it is close to being
a 2-coequalizer of s and t (Section 23).

21. Functoriality of quotient stacks

A morphism of groupoids in algebraic spaces gives an associated morphism of quotient
stacks.

Lemma 21.1. LetS be a scheme. LetB be an algebraic space overS. Let f : (U,R, s, t, c)→
(U ′, R′, s′, t′, c′) be a morphism of groupoids in algebraic spaces over B. Then f induces
a canonical 1-morphism of quotient stacks

[f ] : [U/R] −→ [U ′/R′].
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Proof. Denote [U/pR] and [U ′/pR
′] the categories fibred in groupoids over the base

site (Sch/S)fppf associated to the functors (20.0.1). It is clear that f defines a 1-morphism
[U/pR] → [U ′/pR

′] which we can compose with the stackyfication functor for [U ′/R′]
to get [U/pR] → [U ′/R′]. Then, by the universal property of the stackyfication functor
[U/pR]→ [U/R], see Stacks, Lemma 9.2 we get [U/R]→ [U ′/R′]. �

Let B → S and f : (U,R, s, t, c) → (U ′, R′, s′, t′, c′) be as in Lemma 21.1. In this situa-
tion, we define a third groupoid in algebraic spaces over B as follows, using the language
of T -valued points where T is a (varying) scheme over B:

(1) U ′′ = U ×f,U ′,t′ R
′ so that a T -valued point is a pair (u, r′) with f(u) = t′(r′),

(2) R′′ = R ×f◦s,U ′,t′ R
′ so that a T -valued point is a pair (r, r′) with f(s(r)) =

t′(r′),
(3) s′′ : R′′ → U ′′ is given by s′′(r, r′) = (s(r), r′),
(4) t′′ : R′′ → U ′′ is given by t′′(r, r′) = (t(r), c′(f(r), r′)),
(5) c′′ : R′′ ×s′′,U ′′,t′′ R′′ → R′′ is given by c′′((r1, r

′
1), (r2, r

′
2)) = (c(r1, r2), r′

2).
The formula for c′′ makes sense as s′′(r1, r

′
1) = t′′(r2, r

′
2). It is clear that c′′ is associa-

tive. The identity e′′ is given by e′′(u, r) = (e(u), r). The inverse of (r, r′) is given by
(i(r), c′(f(r), r′)). Thus we do indeed get a groupoid in algebraic spaces over B.

Clearly the maps U ′′ → U and R′′ → R define a morphism g : (U ′′, R′′, s′′, t′′, c′′) →
(U,R, s, t, c) of groupoids in algebraic spaces over B. Moreover, the maps U ′′ → U ′,
(u, r′) 7→ s′(r′) and R′′ → U ′, (r, r′) 7→ s′(r′) show that in fact (U ′′, R′′, s′′, t′′, c′′) is a
groupoid in algebraic spaces over U ′.

Lemma 21.2. Notation and assumption as in Lemma 21.1. Let (U ′′, R′′, s′′, t′′, c′′)
be the groupoid in algebraic spaces over B constructed above. There is a 2-commutative
square

[U ′′/R′′]

��

[g]
// [U/R]

[f ]
��

SU ′ // [U ′/R′]

which identifies [U ′′/R′′] with the 2-fibre product.

Proof. The maps [f ] and [g] come from an application of Lemma 21.1 and the other
two maps come from Lemma 20.2 (and the fact that (U ′′, R′′, s′′, t′′, c′′) lives over U ′). To
show the 2-fibre product property, it suffices to prove the lemma for the diagram

[U ′′/pR
′′]

��

[g]
// [U/pR]

[f ]
��

SU ′ // [U ′/pR
′]

of categories fibred in groupoids, see Stacks, Lemma 9.3. In other words, it suffices to show
that an object of the 2-fibre product SU×[U ′/pR′] [U/pR] over T corresponds to a T -valued
point ofU ′′ and similarly for morphisms. And of course this is exactly how we constructed
U ′′ and R′′ in the first place.

In detail, an object of SU ×[U ′/pR′] [U/pR] over T is a triple (u′, u, r′) where u′ is a T -
valued point of U ′, u is a T -valued point of U , and r′ is a morphism from u′ to f(u) in
[U ′/R′]T , i.e., r′ is a T -valued point of R with s′(r′) = u′ and t′(r′) = f(u). Clearly
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we can forget about u′ without losing information and we see that these objects are in
one-to-one correspondence with T -valued points of R′′.

Similarly for morphisms: Let (u′
1, u1, r

′
1) and (u′

2, u2, r
′
2) be two objects of the fibre prod-

uct over T . Then a morphism from (u′
2, u2, r

′
2) to (u′

1, u1, r
′
1) is given by (1, r) where

1 : u′
1 → u′

2 means simply u′
1 = u′

2 (this is so because SU is fibred in sets), and r is a
T -valued point of R with s(r) = u2, t(r) = u1 and moreover c′(f(r), r′

2) = r′
1. Hence

the arrow
(1, r) : (u′

2, u2, r
′
2)→ (u′

1, u1, r
′
1)

is completely determined by knowing the pair (r, r′
2). Thus the functor of arrows is rep-

resented by R′′, and moreover the morphisms s′′, t′′, and c′′ clearly correspond to source,
target and composition in the 2-fibre product SU ×[U ′/pR′] [U/pR]. �

22. The 2-cartesian square of a quotient stack

In this section we compute the Isom-sheaves for a quotient stack and we deduce that the
defining diagram of a quotient stack is a 2-fibre product.

Lemma 22.1. Assume B → S , (U,R, s, t, c) and π : SU → [U/R] are as in Lemma
20.2. Let S′ be a scheme over S. Let x, y ∈ Ob([U/R]S′) be objects of the quotient stack
over S′. If x = π(x′) and y = π(y′) for some morphisms x′, y′ : S′ → U , then

Isom(x, y) = S′ ×(y′,x′),U×SU R

as sheaves over S′.

Proof. Let [U/pR] be the category fibred in groupoids associated to the presheaf in
groupoids (20.0.1) as in the proof of Lemma 20.2. By construction the sheaf Isom(x, y)
is the sheaf associated to the presheaf Isom(x′, y′). On the other hand, by definition of
morphisms in [U/pR] we have

Isom(x′, y′) = S′ ×(y′,x′),U×SU R

and the right hand side is an algebraic space, therefore a sheaf. �

Lemma 22.2. Assume B → S , (U,R, s, t, c), and π : SU → [U/R] are as in Lemma
20.2. The 2-commutative square

SR s
//

t

��

SU

π

��
SU

π // [U/R]

of Lemma 20.3 is a 2-fibre product of stacks in groupoids of (Sch/S)fppf .

Proof. According to Stacks, Lemma 5.6 the lemma makes sense. It also tells us that
we have to show that the functor

SR −→ SU ×[U/R] SU
which maps r : T → R to (T, t(r), s(r), α(r)) is an equivalence, where the right hand
side is the 2-fibre product as described in Categories, Lemma 32.3. This is, after spelling
out the definitions, exactly the content of Lemma 22.1. (Alternative proof: Work out the
meaning of Lemma 21.2 in this situation will give you the result also.) �
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Lemma 22.3. AssumeB → S and (U,R, s, t, c) are as in Definition 20.1 (1). For any
scheme T over S and objects x, y of [U/R] over T the sheaf Isom(x, y) on (Sch/T )fppf
has the following property: There exists a fppf covering {Ti → T}i∈I such that Isom(x, y)|(Sch/Ti)fppf
is representable by an algebraic space.

Proof. Follows immediately from Lemma 22.1 and the fact that both x and y locally
in the fppf topology come from objects of SU by construction of the quotient stack. �

23. The 2-coequalizer property of a quotient stack

On a groupoid we have the composition, which leads to a cocycle condition for the canon-
ical 2-morphism of the lemma above. To give the precise formulation we will use the
notation introduced in Categories, Sections 28 and 29.

Lemma 23.1. Assumptions and notation as in Lemmas 20.2 and 20.3. The vertical
composition of

SR×s,U,tR

π◦s◦pr1=π◦s◦c

++��α?idpr1

π◦t◦pr1=π◦s◦pr0

// 33

π◦t◦pr0=π◦t◦c
��α?idpr0

[U/R]

is the 2-morphism α ? idc. In a formula α ? idc = (α ? idpr0
) ◦ (α ? idpr1

).

Proof. We make two remarks:
(1) The formula α? idc = (α? idpr0

)◦ (α? idpr1
) only makes sense if you realize the

equalities π ◦s◦pr1 = π ◦s◦c, π ◦ t◦pr1 = π ◦s◦pr0, and π ◦ t◦pr0 = π ◦ t◦c.
Namely, the second one implies the vertical composition ◦ makes sense, and the
other two guarantee the two sides of the formula are 2-morphisms with the same
source and target.

(2) The reason the lemma holds is that composition in the category fibred in groupoids
[U/pR] associated to the presheaf in groupoids (20.0.1) comes from the compo-
sition law c : R×s,U,t R→ R.

We omit the proof of the lemma. �

Note that, in the situation of the lemma, we actually have the equalities s ◦ pr1 = s ◦ c,
t ◦ pr1 = s ◦ pr0, and t ◦ pr0 = t ◦ c before composing with π. Hence the formula in the
lemma below makes sense in exactly the same way that the formula in the lemma above
makes sense.

Lemma 23.2. Assumptions and notation as in Lemmas 20.2 and 20.3. The 2-commutative
diagram of Lemma 20.3 is a 2-coequalizer in the following sense: Given

(1) a stack in groupoids X over (Sch/S)fppf ,
(2) a 1-morphism f : SU → X , and
(3) a 2-arrow β : f ◦ s→ f ◦ t

such that
β ? idc = (β ? idpr0

) ◦ (β ? idpr1
)
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then there exists a 1-morphism [U/R]→ X which makes the diagram

SR s
//

t

��

SU

��
f

��

SU //

f
))

[U/R]

""
X

2-commute.

Proof. Suppose given X , f and β as in the lemma. By Stacks, Lemma 9.2 it suffices
to construct a 1-morphism g : [U/pR] → X . First we note that the 1-morphism SU →
[U/pR] is bijective on objects. Hence on objects we can set g(x) = f(x) for x ∈ Ob(SU ) =
Ob([U/pR]). A morphism ϕ : x→ y of [U/pR] arises from a commutative diagram

S2

h

��

x
//

ϕ
  

U

R

s

OO

t

��
S1

y // U.

Thus we can set g(ϕ) equal to the composition

f(x)

--

f(s ◦ ϕ) (f ◦ s)(ϕ) β // (f ◦ t)(ϕ) f(t ◦ ϕ) f(y ◦ h)

��
f(y).

The vertical arrow is the result of applying the functor f to the canonical morphism y ◦
h → y in SU (namely, the strongly cartesian morphism lifting h with target y). Let us
verify that f so defined is compatible with composition, at least on fibre categories. So let
S′ be a scheme over S , and let a : S′ → R ×s,U,t R be a morphism. In this situation we
set x = s ◦ pr1 ◦a = s ◦ c ◦a, y = t ◦ pr1 ◦a = s ◦ pr0 ◦a, and z = t ◦ pr0 ◦a = t ◦ pr0 ◦ c
to get a commutative diagram

x
c◦a

//

pr1◦a
��

z

y

pr0◦a

??

in the fibre category [U/pR]S′ . Moreover, any commutative triangle in this fibre category
has this form. Then we see by our definitions above that f maps this to a commutative
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diagram if and only if the diagram

(f ◦ s)(c ◦ a)
β
// (f ◦ t)(c ◦ a)

(f ◦ s)(pr1 ◦ a)
β

((

(f ◦ t)(pr0 ◦ a)

(f ◦ t)(pr1 ◦ a) (f ◦ s)(pr0 ◦ a)

β
66

is commutative which is exactly the condition expressed by the formula in the lemma. We
omit the verification that f maps identities to identities and is compatible with composi-
tion for arbitrary morphisms. �

24. Explicit description of quotient stacks

In order to formulate the result we need to introduce some notation. Assume B → S and
(U,R, s, t, c) are as in Definition 20.1 (1). LetT be a scheme overS. Let T = {Ti → T}i∈I
be an fppf covering. A [U/R]-descent datum relative to T is given by a system (ui, rij)
where

(1) for each i a morphism ui : Ti → U , and
(2) for each i, j a morphism rij : Ti ×T Tj → R

such that
(a) as morphisms Ti ×T Tj → U we have

s ◦ rij = ui ◦ pr0 and t ◦ rij = uj ◦ pr1,

(b) as morphisms Ti ×T Tj ×T Tk → R we have

c ◦ (rjk ◦ pr12, rij ◦ pr01) = rik ◦ pr02.

A morphism (ui, rij)→ (u′
i, r

′
ij) between two [U/R]-descent data over the same covering

T is a collection (ri : Ti → R) such that
(α) as morphisms Ti → U we have

ui = s ◦ ri and u′
i = t ◦ ri

(β) as morphisms Ti ×T Tj → R we have

c ◦ (r′
ij , ri ◦ pr0) = c ◦ (rj ◦ pr1, rij).

There is a natural composition law on morphisms of descent data relative to a fixed cov-
ering and we obtain a category of descent data. This category is a groupoid. Finally, if
T ′ = {T ′

j → T}j∈J is a second fppf covering which refines T then there is a notion
of pullback of descent data. This is particularly easy to describe explicitly in this case.
Namely, if α : J → I and ϕj : T ′

j → Tα(i) is the morphism of coverings, then the
pullback of the descent datum (ui, rii′) is simply

(uα(i) ◦ ϕj , rα(j)α(j′) ◦ ϕj × ϕj′).
Pullback defined in this manner defines a functor from the category of descent data over
T to the category of descend data over T ′.

Lemma 24.1. Assume B → S and (U,R, s, t, c) are as in Definition 20.1 (1). Let
π : SU → [U/R] be as in Lemma 20.2. Let T be a scheme over S.
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(1) for every object x of the fibre category [U/R]T there exists an fppf covering
{fi : Ti → T}i∈I such that f∗

i x
∼= π(ui) for some ui ∈ U(Ti),

(2) the composition of the isomorphisms

π(ui ◦ pr0) = pr∗
0π(ui) ∼= pr∗

0f
∗
i x
∼= pr∗

1f
∗
j x
∼= pr∗

1π(uj) = π(uj ◦ pr1)

are of the form π(rij) for certain morphisms rij : Ti ×T Tj → R,
(3) the system (ui, rij) forms a [U/R]-descent datum as defined above,
(4) any [U/R]-descent datum (ui, rij) arises in this manner,
(5) if x corresponds to (ui, rij) as above, and y ∈ Ob([U/R]T ) corresponds to

(u′
i, r

′
ij) then there is a canonical bijection

Mor[U/R]T (x, y)←→
{

morphisms (ui, rij)→ (u′
i, r

′
ij)

of [U/R]-descent data

}
(6) this correspondence is compatible with refinements of fppf coverings.

Proof. Statement (1) is part of the construction of the stackyfication. Part (2) follows
from Lemma 22.1. We omit the verification of (3). Part (4) is a translation of the fact that
in a stack all descent data are effective. We omit the verifications of (5) and (6). �

25. Restriction and quotient stacks

In this section we study what happens to the quotient stack when taking a restriction.

Lemma 25.1. Notation and assumption as in Lemma 21.1. The morphism of quotient
stacks

[f ] : [U/R] −→ [U ′/R′]
is fully faithful if and only if R is the restriction of R′ via the morphism f : U → U ′.

Proof. Let x, y be objects of [U/R] over a scheme T/S. Let x′, y′ be the images of
x, y in the category [U ′/R′]T . The functor [f ] is fully faithful if and only if the map of
sheaves

Isom(x, y) −→ Isom(x′, y′)
is an isomorphism for every T, x, y. We may test this locally on T (in the fppf topology).
Hence, by Lemma 24.1 we may assume that x, y come from a, b ∈ U(T ). In that case we
see that x′, y′ correspond to f ◦ a, f ◦ b. By Lemma 22.1 the displayed map of sheaves in
this case becomes

T ×(a,b),U×BU R −→ T ×f◦a,f◦b,U ′×BU ′ R′.

This is an isomorphism ifR is the restriction, because in that caseR = (U×BU)×U ′×BU ′

R′, see Lemma 17.3 and its proof. Conversely, if the last displayed map is an isomorphism
for all T, a, b, then it follows that R = (U ×B U)×U ′×BU ′ R′, i.e., R is the restriction of
R′. �

Lemma 25.2. Notation and assumption as in Lemma 21.1. The morphism of quotient
stacks

[f ] : [U/R] −→ [U ′/R′]
is an equivalence if and only if

(1) (U,R, s, t, c) is the restriction of (U ′, R′, s′, t′, c′) via f : U → U ′, and
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(2) the map

U ×f,U ′,t′ R
′

pr1
//

h

((
R′

s′
// U ′

is a surjection of sheaves.
Part (2) holds for example if {h : U×f,U ′,t′R

′ → U ′} is an fppf covering, or if f : U → U ′

is a surjection of sheaves, or if {f : U → U ′} is an fppf covering.

Proof. We already know that part (1) is equivalent to fully faithfulness by Lemma
25.1. Hence we may assume that (1) holds and that [f ] is fully faithful. Our goal is to
show, under these assumptions, that [f ] is an equivalence if and only if (2) holds. We may
use Stacks, Lemma 4.8 which characterizes equivalences.

Assume (2). We will use Stacks, Lemma 4.8 to prove [f ] is an equivalence. Suppose that
T is a scheme and x′ ∈ Ob([U ′/R′]T ). There exists a covering {gi : Ti → T} such that
g∗
i x

′ is the image of some element a′
i ∈ U ′(Ti), see Lemma 24.1. Hence we may assume

that x′ is the image of a′ ∈ U ′(T ). By the assumption that h is a surjection of sheaves, we
can find an fppf covering {ϕi : Ti → T} and morphisms bi : Ti → U ×g,U ′,t′ R

′ such
that a′ ◦ ϕi = h ◦ bi. Denote ai = pr0 ◦ bi : Ti → U . Then we see that ai ∈ U(Ti) maps
to f ◦ ai ∈ U ′(Ti) and that f ◦ ai ∼=Ti h ◦ bi = a′ ◦ ϕi, where ∼=Ti denotes isomorphism
in the fibre category [U ′/R′]Ti . Namely, the element ofR′(Ti) giving the isomorphism is
pr1 ◦ bi. This means that the restriction of x to Ti is in the essential image of the functor
[U/R]Ti → [U ′/R′]Ti as desired.

Assume [f ] is an equivalence. Let ξ′ ∈ [U ′/R′]U ′ denote the object corresponding to
the identity morphism of U ′. Applying Stacks, Lemma 4.8 we see there exists an fppf
covering U ′ = {g′

i : U ′
i → U ′} such that (g′

i)∗ξ′ ∼= [f ](ξi) for some ξi in [U/R]U ′
i
. After

refining the covering U ′ (using Lemma 24.1) we may assume ξi comes from a morphism
ai : U ′

i → U . The fact that [f ](ξi) ∼= (g′
i)∗ξ′ means that, after possibly refining the

covering U ′ once more, there exist morphisms r′
i : U ′

i → R′ with t′ ◦ r′
i = f ◦ ai and

s′ ◦ r′
i = idU ′ ◦ g′

i. Picture

U

f

��

U ′
iai

oo

r′
i

~~
g′
i

��
U ′ R′t′oo s′

// U ′

Thus (ai, r′
i) : U ′

i → U ×g,U ′,t′ R
′ are morphisms such that h ◦ (ai, r′

i) = g′
i and we

conclude that {h : U ×g,U ′,t′ R
′ → U ′} can be refined by the fppf covering U ′ which

means that h induces a surjection of sheaves, see Topologies on Spaces, Lemma 7.5.

If {h} is an fppf covering, then it induces a surjection of sheaves, see Topologies on Spaces,
Lemma 7.5. If U ′ → U is surjective, then also h is surjective as s has a section (namely the
neutral element e of the groupoid in algebraic spaces). �

Lemma 25.3. Notation and assumption as in Lemma 21.1. Assume that

R

s

��

f
// R′

s′

��
U

f // U ′
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is cartesian. Then

SU

��

// [U/R]

[f ]
��

SU ′ // [U ′/R′]

is a 2-fibre product square.

Proof. Applying the inverse isomorphisms i : R→ R and i′ : R′ → R′ to the (first)
cartesian diagram of the statement of the lemma we see that

R

t

��

f
// R′

t′

��
U

f // U ′

is cartesian as well. By Lemma 21.2 we have a 2-fibre square

[U ′′/R′′]

��

// [U/R]

��
SU ′ // [U ′/R′]

where U ′′ = U ×f,U ′,t′ R
′ and R′′ = R ×f◦s,U ′,t′ R

′. By the above we see that (t, f) :
R→ U ′′ is an isomorphism, and that

R′′ = R×f◦s,U ′,t′ R
′ = R×s,U U ×f,U ′,t′ R

′ = R×s,U,t ×R.

Explicitly the isomorphism R×s,U,t R→ R′′ is given by the rule (r0, r1) 7→ (r0, f(r1)).
Moreover, s′′, t′′, c′′ translate into the maps

R×s,U,t R→ R, s′′(r0, r1) = r1, t′′(r0, r1) = c(r0, r1)

and
c′′ : (R×s,U,t R)×s′′,R,t′′ (R×s,U,t R) −→ R×s,U,t R,

((r0, r1), (r2, r3)) 7−→ (c(r0, r2), r3).

Precomposing with the isomorphism

R×s,U,s R −→ R×s,U,t R, (r0, r1) 7−→ (c(r0, i(r1)), r1)

we see that t′′ and s′′ turn into pr0 and pr1 and that c′′ turns into pr02 : R×s,U,sR×s,U,s
R→ R×s,U,s R. Hence we see that there is an isomorphism [U ′′/R′′] ∼= [R/R×s,U,s R]
where as a groupoid in algebraic spaces (R,R×s,U,s R, s′′, t′′, c′′) is the restriction of the
trivial groupoid (U,U, id, id, id) via s : R → U . Since s : R → U is a surjection of fppf
sheaves (as it has a right inverse) the morphism

[U ′′/R′′] ∼= [R/R×s,U,s R] −→ [U/U ] = SU

is an equivalence by Lemma 25.2. This proves the lemma. �
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26. Inertia and quotient stacks

The (relative) inertia stack of a stack in groupoids is defined in Stacks, Section 7. The actual
construction, in the setting of fibred categories, and some of its properties is in Categories,
Section 34.

Lemma 26.1. AssumeB → S and (U,R, s, t, c) as in Definition 20.1 (1). LetG/U be
the stabilizer group algebraic space of the groupoid (U,R, s, t, c, e, i), see Definition 16.2.
Set R′ = R×s,U G and set

(1) s′ : R′ → G, (r, g) 7→ g,
(2) t′ : R′ → G, (r, g) 7→ c(r, c(g, i(r))),
(3) c′ : R′ ×s′,G,t′ R

′ → R′, ((r1, g1), (r2, g2) 7→ (c(r1, r2), g1).
Then (G,R′, s′, t′, c′) is a groupoid in algebraic spaces over B and

I[U/R] = [G/R′].

i.e., the associated quotient stack is the inertia stack of [U/R].

Proof. By Stacks, Lemma 8.5 it suffices to prove that I[U/pR] = [G/pR′]. Let T be
a scheme over S. Recall that an object of the inertia fibred category of [U/pR] over T is
given by a pair (x, g) where x is an object of [U/pR] over T and g is an automorphism of
x in its fibre category over T . In other words, x : T → U and g : T → R such that
x = s ◦ g = t ◦ g. This means exactly that g : T → G. A morphism in the inertia
fibred category from (x, g) → (y, h) over T is given by r : T → R such that s(r) = x,
t(r) = y and c(r, g) = c(h, r), see the commutative diagram in Categories, Lemma 34.1.
In a formula

h = c(r, c(g, i(r))) = c(c(r, g), i(r)).

The notation s(r), etc is a short hand for s ◦ r, etc. The composition of r1 : (x2, g2) →
(x1, g1) and r2 : (x1, g1)→ (x2, g2) is c(r1, r2) : (x1, g1)→ (x3, g3).

Note that in the above we could have written g in stead of (x, g) for an object of I[U/pR]
over T as x is the image of g under the structure morphismG→ U . Then the morphisms
g → h in I[U/pR] over T correspond exactly to morphisms r′ : T → R′ with s′(r′) = g

and t′(r′) = h. Moreover, the composition corresponds to the rule explained in (3). Thus
the lemma is proved. �

Lemma 26.2. AssumeB → S and (U,R, s, t, c) as in Definition 20.1 (1). LetG/U be
the stabilizer group algebraic space of the groupoid (U,R, s, t, c, e, i), see Definition 16.2.
There is a canonical 2-cartesian diagram

SG //

��

SU

��
I[U/R] // [U/R]

of stacks in groupoids of (Sch/S)fppf .

Proof. By Lemma 25.3 it suffices to prove that the morphism s′ : R′ → G of Lemma
26.1 isomorphic to the base change of s by the structure morphism G → U . This base
change property is clear from the construction of s′. �
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27. Gerbes and quotient stacks

In this section we relate quotient stacks to the discussion Stacks, Section 11 and especially
gerbes as defined in Stacks, Definition 11.4. The stacks in groupoids occurring in this
section are generally speaking not algebraic stacks!

Lemma 27.1. Notation and assumption as in Lemma 21.1. The morphism of quotient
stacks

[f ] : [U/R] −→ [U ′/R′]

turns [U/R] into a gerbe over [U ′/R′] if f : U → U ′ and R → R′|U are surjective maps
of fppf sheaves. Here R′|U is the restriction of R′ to U via f : U → U ′.

Proof. We will verify that Stacks, Lemma 11.3 properties (2) (a) and (2) (b) hold.
Property (2)(a) holds because U → U ′ is a surjective map of sheaves (use Lemma 24.1
to see that objects in [U ′/R′] locally come from U ′). To prove (2)(b) let x, y be objects
of [U/R] over a scheme T/S. Let x′, y′ be the images of x, y in the category [U ′/′R]T .
Condition (2)(b) requires us to check the map of sheaves

Isom(x, y) −→ Isom(x′, y′)

on (Sch/T )fppf is surjective. To see this we may work fppf locally on T and assume that
come from a, b ∈ U(T ). In that case we see that x′, y′ correspond to f ◦a, f ◦b. By Lemma
22.1 the displayed map of sheaves in this case becomes

T ×(a,b),U×BU R −→ T ×f◦a,f◦b,U ′×BU ′ R′ = T ×(a,b),U×BU R
′|U .

Hence the assumption that R→ R′|U is a surjective map of fppf sheaves on (Sch/S)fppf
implies the desired surjectivity. �

Lemma 27.2. Let S be a scheme. LetB be an algebraic space over S. LetG be a group
algebraic space over B. Endow B with the trivial action of G. The morphism

[B/G] −→ SB

(Lemma 20.2) turns [B/G] into a gerbe over B.

Proof. Immediate from Lemma 27.1 as the morphisms B → B and B ×B G → B
are surjective as morphisms of sheaves. �

28. Quotient stacks and change of big site

We suggest skipping this section on a first reading. Pullbacks of stacks are defined in
Stacks, Section 12.

Lemma 28.1. Suppose given big sites Schfppf and Sch′
fppf . Assume that Schfppf is

contained in Sch′
fppf , see Topologies, Section 12. Let S ∈ Ob(Schfppf ). Let B,U,R ∈

Sh((Sch/S)fppf ) be algebraic spaces, and let (U,R, s, t, c) be a groupoid in algebraic
spaces overB. Let f : (Sch′/S)fppf → (Sch/S)fppf the morphism of sites corresponding
to the inclusion functor u : Schfppf → Sch′

fppf . Then we have a canonical equivalence

[f−1U/f−1R] −→ f−1[U/R]

of stacks in groupoids over (Sch′/S)fppf .
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Proof. Note that f−1B, f−1U, f−1R ∈ Sh((Sch′/S)fppf ) are algebraic spaces by
Spaces, Lemma 15.1 and hence (f−1U, f−1R, f−1s, f−1t, f−1c) is a groupoid in algebraic
spaces over f−1B. Thus the statement makes sense.

The category up[U/pR] is the localization of the category upp[U/pR] at right multiplica-
tive system I of morphisms. An object of upp[U/pR] is a triple

(T ′, φ : T ′ → T, x)
where T ′ ∈ Ob((Sch′/S)fppf ), T ∈ Ob((Sch/S)fppf ), φ is a morphism of schemes over
S , and x : T → U is a morphism of sheaves on (Sch/S)fppf . Note that the morphism
of schemes φ : T ′ → T is the same thing as a morphism φ : T ′ → u(T ), and since u(T )
represents f−1T it is the same thing as a morphism T ′ → f−1T . Moreover, as f−1 on
algebraic spaces is fully faithful, see Spaces, Lemma 15.2, we may think of x as a morphism
x : f−1T → f−1U as well. From now on we will make such identifications without
further mention. A morphism

(a, a′, α) : (T ′
1, φ1 : T ′

1 → T1, x1) −→ (T ′
2, φ2 : T ′

2 → T2, x2)
of upp[U/pR] is a commutative diagram

U

T ′
1

a′

��

φ1

// T1

a

��

x1

??

α
// R

t

��

s

OO

T ′
2

φ2 // T2
x2 // U

and such a morphism is an element of I if and only if T ′
1 = T ′

2 and a′ = id. We define a
functor

upp[U/pR] −→ [f−1U/pf
−1R]

by the rules
(T ′, φ : T ′ → T, x) 7−→ (x ◦ φ : T ′ → f−1U)

on objects and
(a, a′, α) 7−→ (α ◦ φ1 : T ′

1 → f−1R)
on morphisms as above. It is clear that elements of I are transformed into isomorphisms
as (f−1U, f−1R, f−1s, f−1t, f−1c) is a groupoid in algebraic spaces over f−1B. Hence
this functor factors in a canonical way through a functor

up[U/pR] −→ [f−1U/pf
−1R]

Applying stackification we obtain a functor of stacks

f−1[U/R] −→ [f−1U/f−1R]
over (Sch′/S)fppf , as by Stacks, Lemma 12.11 the stack f−1[U/R] is the stackification of
up[U/pR].
At this point we have a morphism of stacks, and to verify that it is an equivalence it suffices
to show that it is fully faithful and that objects are locally in the essential image, see Stacks,
Lemmas 4.7 and 4.8. The statement on objects holds as f−1R admits a surjective étale
morphism f−1W → f−1R for some objectW of (Sch/S)fppf . To show that the functor
is “full”, it suffices to show that morphisms are locally in the image of the functor which
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holds as f−1U admits a surjective étale morphism f−1W → f−1U for some object W of
(Sch/S)fppf . We omit the proof that the functor is faithful. �

29. Separation conditions

This really means conditions on the morphism j : R → U ×B U when given a groupoid
in algebraic spaces (U,R, s, t, c) over B. As in the previous section we first formulate the
corresponding diagram.

Lemma 29.1. Let B → S be as in Section 3. Let (U,R, s, t, c) be a groupoid in alge-
braic spaces overB. LetG→ U be the stabilizer group algebraic space. The commutative
diagram

R

∆R/U×BU

��

f 7→(f,s(f))
// R×s,U U

��

// U

��
R×(U×BU) R

(f,g) 7→(f,f−1◦g) // R×s,U G // G

the two left horizontal arrows are isomorphisms and the right square is a fibre product
square.

Proof. Omitted. Exercise in the definitions and the functorial point of view in al-
gebraic geometry. �

Lemma 29.2. Let B → S be as in Section 3. Let (U,R, s, t, c) be a groupoid in alge-
braic spaces over B. Let G→ U be the stabilizer group algebraic space.

(1) The following are equivalent
(a) j : R→ U ×B U is separated,
(b) G→ U is separated, and
(c) e : U → G is a closed immersion.

(2) The following are equivalent
(a) j : R→ U ×B U is locally separated,
(b) G→ U is locally separated, and
(c) e : U → G is an immersion.

(3) The following are equivalent
(a) j : R→ U ×B U is quasi-separated,
(b) G→ U is quasi-separated, and
(c) e : U → G is quasi-compact.

Proof. The group algebraic spaceG→ U is the base change ofR→ U ×B U by the
diagonal morphism U → U ×B U , see Lemma 16.1. Hence if j is separated (resp. locally
separated, resp. quasi-separated), then G → U is separated (resp. locally separated, resp.
quasi-separated). See Morphisms of Spaces, Lemma 4.4. Thus (a)⇒ (b) in (1), (2), and (3).
Conversely, if G → U is separated (resp. locally separated, resp. quasi-separated), then
the morphism e : U → G, as a section of the structure morphism G → U is a closed
immersion (resp. an immersion, resp. quasi-compact), see Morphisms of Spaces, Lemma
4.7. Thus (b)⇒ (c) in (1), (2), and (3).
If e is a closed immersion (resp. an immersion, resp. quasi-compact) then by the result of
Lemma 29.1 (and Spaces, Lemma 12.3, and Morphisms of Spaces, Lemma 8.4) we see that
∆R/U×BU is a closed immersion (resp. an immersion, resp. quasi-compact). Thus (c)⇒
(a) in (1), (2), and (3). �
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CHAPTER 79

More on Groupoids in Spaces

1. Introduction

This chapter is devoted to advanced topics on groupoids in algebraic spaces. Even though
the results are stated in terms of groupoids in algebraic spaces, the reader should keep in
mind the 2-cartesian diagram

(1.0.1)

R //

��

U

��
U // [U/R]

where [U/R] is the quotient stack, see Groupoids in Spaces, Remark 20.4. Many of the
results are motivated by thinking about this diagram. See for example the beautiful paper
[?] by Keel and Mori.

2. Notation

We continue to abide by the conventions and notation introduced in Groupoids in Spaces,
Section 3.

3. Useful diagrams

We briefly restate the results of Groupoids in Spaces, Lemmas 11.4 and 11.5 for easy ref-
erence in this chapter. Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. In the commutative diagram

(3.0.1)

U

R

s

��

t

::

R×s,U,t Rpr0
oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top (which is
really a square) is also cartesian.

5873
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The diagram

(3.0.2)

R×t,U,t R
pr1 //

pr0
//

pr0×c◦(i,1)
��

R
t //

idR
��

U

idU
��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The two
lower left squares are cartesian.

4. Local structure

Let S be a scheme. Let (U,R, s, t, c, e, i) be a groupoid in algebraic spaces over S. Let u
be a geometric point of U . In this section we explain what kind of structure we obtain on
the local rings (Properties of Spaces, Definition 22.2)

A = OU,u and B = OR,e(u)

The convention we will use is to denote the local ring homomorphisms induced by the
morphisms s, t, c, e, i by the corresponding letters. In particular we have a commutative
diagram

A

t ��

1

''
B

e // A

A

s

??

1

77

of local rings. Thus if I ⊂ B denotes the kernel of e : B → A, then B = s(A) ⊕ I =
t(A)⊕ I . Let us denote

C = OR×s,U,tR,(e,e)(u)

Then we have
C = (B ⊗s,A,t B)hmB⊗B+B⊗mB

because the localization (B ⊗s,A,t B)mB⊗B+B⊗mB has separably closed residue field. Let
J ⊂ C be the ideal of C generated by I ⊗ B + B ⊗ I . Then J is also the kernel of the
local ring homomorphism

(e, e) : C −→ A

The composition law c : R×s,U,t R→ R corresponds to a ring map
c : B −→ C

sending I into J .

Lemma 4.1. The map I/I2 → J/J2 induced by c is the composition

I/I2 (1,1)−−−→ I/I2 ⊕ I/I2 → J/J2

where the second arrow comes from the equality J = (I ⊗ B + B ⊗ I)C. The map
i : B → B induces the map −1 : I/I2 → I/I2.
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Proof. To describe a local homomorphism from C to another henselian local ring it
is enough to say what happens to elements of the form b1 ⊗ b2 by Algebra, Lemma 155.6
for example. Keeping this in mind we have the two canonical maps

e2 : C → B, b1 ⊗ b2 7→ b1s(e(b2)), e1 : C → B, b1 ⊗ b2 7→ t(e(b1))b2

corresponding to the embeddings R → R ×s,U,t R given by r 7→ (r, e(s(r))) and r 7→
(e(t(r)), r). These maps define maps J/J2 → I/I2 which jointly give an inverse to the
map I/I2 ⊕ I/I2 → J/J2 of the lemma. Thus to prove statement we only have to show
that e1 ◦ c : B → B and e2 ◦ c : B → B are the identity maps. This follows from the fact
that both compositions R→ R×s,U,t R→ R are identities.

The statement on i follows from the statement on c and the fact that c ◦ (1, i) = e ◦ t.
Some details omitted. �

5. Groupoid of sections

Suppose we have a groupoid (Ob,Arrows, s, t, c, e, i). Then we can construct a monoid Γ
whose elements are maps δ : Ob→ Arrows with s ◦ δ = idOb and composition given by

δ1 ◦ δ2 = c(δ1 ◦ t ◦ δ2, δ2)
In other words, an element of Γ is a rule δwhich prescribes an arrow emanating from every
object and composition is the natural thing. For example

•

��
•:: •

��
•

__ ◦

•

��
•

??

•

��
•

__ =

•





•:: •oo

•

__

with obvious notation

The same procedure can be applied to a groupoid in algebraic spaces (U,R, s, t, c, e, i) over
a scheme S. Namely, as elements of Γ we take the set

Γ = {δ : U → R | s ◦ δ = idU}

and composition ◦ : Γ× Γ→ Γ is given by the rule above

(5.0.1) δ1 ◦ δ2 = c(δ1 ◦ t ◦ δ2, δ2)
The identity is given by e ∈ Γ. The groupoid Γ is not a group in general because there may
be elements δ ∈ Γ which do not have an inverse. Namely, it is clear that δ ∈ Γ will have
an inverse if and only if t◦δ is an automorphism ofU and in this case δ−1 = i◦δ◦(t◦δ)−1.

For later use we discuss what happens with the subgroupoid Γ0 of Γ of sections which
are infinitesimally close to the identity e. More precisely, suppose given an R-invariant
closed subspace U0 ⊂ U such that U is a first order thickening of U0. Denote R0 =
s−1(U0) = t−1(U0) and let (U0, R0, s0, t0, c0, e0, i0) be the corresponding groupoid in
algebraic spaces. Set

Γ0 = {δ ∈ Γ | δ|U0 = e0}
If s and t are flat, then every element in Γ0 is invertible. This follows because t ◦ δ will
be a morphism U → U inducing the identity on OU0 and on CU0/U (Lemma 5.1) and we
conclude because we have a short exact sequence 0→ CU0/U → OU → OU0 → 0.
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Lemma 5.1. In the situation discussed in this section, let δ ∈ Γ0 and f = t ◦ δ :
U → U . If s, t are flat, then the canonical map CU0/U → CU0/U induced by f (More on
Morphisms of Spaces, Lemma 5.3) is the identity map.

Proof. To see this we extend the bottom of the diagram (3.0.2) as follows

Y //

��

R×s,U,t R
c //

pr0
//

pr1

��

R
t //

s

��

U

U
δ

// R
s //

t
// U

where the left square is cartesian and this is our definition of Y ; we will not need to know
more about Y . There is a similar diagram with similar properties obtained by base change
to U0 everywhere. We are trying to show that idU = s ◦ δ and f = t ◦ δ induce the same
maps on conormal sheaves. Since s is flat and surjective, it suffices to prove the same thing
for the two compositions a, b : Y → R along the top row. Observe that a0 = b0 and that
one of a and b is an isomorphism as we know that s ◦ δ is an isomorphism. Therefore the
two morphisms a, b : Y → R are morphisms between algebraic spaces flat over U (via the
morphism t : R → U and the morphism t ◦ a = t ◦ b : Y → U ). This implies what we
want. Namely, by the compatibility with compositions in More on Morphisms of Spaces,
Lemma 5.4 we conclude that both maps a∗

0CR0/R → CY0/Y fit into a commutative diagram

a∗
0CR0/R

// CY0/Y

a∗
0t

∗
0CU0/U

OO

(t0 ◦ a0)∗CU0/U

OO

whose vertical arrows are isomorphisms by More on Morphisms of Spaces, Lemma 18.1.
Thus the lemma holds. �

Let us identify the group Γ0. Applying the discussion in More on Morphisms of Spaces,
Remarks 17.3 and 17.7 to the diagram

(U0 ⊂ U)
(e0,δ)

//

(idU0 ,idU ) &&

(R0 ⊂ R)

(s0,s)xx
(U0 ⊂ U)

we see that δ = θ · e for a unique OU0 -linear map θ : e∗
0ΩR0/U0 → CU0/U . Thus we get a

bijection

(5.1.1) HomOU0
(e∗

0ΩR0/U0 , CU0/U ) −→ Γ0

by applying More on Morphisms of Spaces, Lemma 17.5.

Lemma 5.2. The bijection (5.1.1) is an isomorphism of groups.

Proof. Let δ1, δ2 ∈ Γ0 correspond to θ1, θ2 as above and the composition δ = δ1 ◦δ2
in Γ0 correspond to θ. We have to show that θ = θ1 + θ2. Recall (More on Morphisms
of Spaces, Lemma 17.2) that θ1, θ2, θ correspond to derivations D1, D2, D : e−1

0 OR0 →
CU0/U given by D1 = θ1 ◦ dR0/U0 and so on. It suffices to check that D = D1 +D2.
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We may check equality on stalks. Let u be a geometric point of U and let us use the
local rings A,B,C introduced in Section 4. The morphisms δi correspond to ring maps
δi : B → A. Let K ⊂ A be the ideal of square zero such that A/K = OU0,u. In other
words, K is the stalk of CU0/U at u. The fact that δi ∈ Γ0 means exactly that δi(I) ⊂ K.
The derivation Di is just the map δi − e : B → A. Since B = s(A) ⊕ I we see that Di

is determined by its restriction to I and that this is just given by δi|I . Moreover Di and
hence δi annihilates I2 because I = Ker(I).

To finish the proof we observe that δ corresponds to the composition

B → C = (B ⊗s,A,t B)hmB⊗B+B⊗mB → A

where the first arrow is c and the second arrow is determined by the rule b1 ⊗ b2 7→
δ2(t(δ1(b1)))δ2(b2) as follows from (5.0.1). By Lemma 4.1 we see that an element ζ of I
maps to ζ ⊗ 1 + 1⊗ ζ plus higher order terms. Hence we conclude that

D(ζ) = (δ2 ◦ t) (D1(ζ)) +D2(ζ)
However, by Lemma 5.1 the action of δ2◦t onK = CU0/U,u is the identity and we win. �

6. Properties of groupoids

This section is the analogue of More on Groupoids, Section 6. The reader is strongly
encouraged to read that section first.

The following lemma is the analogue of More on Groupoids, Lemma 6.4.

Lemma 6.1. Let B → S be as in Section 2. Let (U,R, s, t, c) be a groupoid in alge-
braic spaces over B. Let τ ∈ {fppf, étale, smooth, syntomic}. Let P be a property of
morphisms of algebraic spaces which is τ -local on the target (Descent on Spaces, Defini-
tion 10.1). Assume {s : R → U} and {t : R → U} are coverings for the τ -topology. Let
W ⊂ U be the maximal open subspace such that s−1(W )→W has property P . ThenW
is R-invariant (Groupoids in Spaces, Definition 18.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 10.3. In Diagram (3.0.1) let W1 ⊂ R be the maximal open subscheme
over which the morphism pr1 : R ×s,U,t R → R has property P . It follows from the
aforementioned Descent on Spaces, Lemma 10.3 and the assumption that {s : R → U}
and {t : R → U} are coverings for the τ -topology that t−1(W ) = W1 = s−1(W ) as
desired. �

Lemma 6.2. LetB → S be as in Section 2. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over B. Let G → U be its stabilizer group algebraic space. Let τ ∈ {fppf, étale,
smooth, syntomic}. LetP be a property of morphisms of algebraic spaces which is τ -local
on the target. Assume {s : R → U} and {t : R → U} are coverings for the τ -topology.
Let W ⊂ U be the maximal open subspace such that GW →W has property P . Then W
is R-invariant (see Groupoids in Spaces, Definition 18.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 10.3. The morphism

G×U,t R −→ R×s,U G, (g, r) 7−→ (r, r−1 ◦ g ◦ r)
is an isomorphism of algebraic spaces overR (where ◦ denotes composition in the groupoid).
Hence s−1(W ) = t−1(W ) by the properties ofW proved in the aforementioned Descent
on Spaces, Lemma 10.3. �
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7. Comparing fibres

This section is the analogue of More on Groupoids, Section 7. The reader is strongly
encouraged to read that section first.

Lemma 7.1. LetB → S be as in Section 2. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over B. Let K be a field and let r, r′ : Spec(K) → R be morphisms such that
t◦r = t◦r′ : Spec(K)→ U . Set u = s◦r, u′ = s◦r′ and denoteFu = Spec(K)×u,U,sR
and Fu′ = Spec(K)×u′,U,sR the fibre products. Then Fu ∼= Fu′ as algebraic spaces over
K.

Proof. We use the properties and the existence of Diagram (3.0.1). There exists a
morphism ξ : Spec(K) → R ×s,U,t R with pr0 ◦ ξ = r and c ◦ ξ = r′. Let r̃ = pr1 ◦ ξ :
Spec(K) → R. Then looking at the bottom two squares of Diagram (3.0.1) we see that
bothFu andFu′ are identified with the algebraic space Spec(K)×r̃,R,pr1

(R×s,U,tR). �

Actually, in the situation of the lemma the morphisms of pairs s : (R, r) → (U, u) and
s : (R, r′) → (U, u′) are locally isomorphic in the τ -topology, provided {s : R → U} is
a τ -covering. We will insert a precise statement here if needed.

8. Restricting groupoids

In this section we collect a bunch of lemmas on properties of groupoids which are inher-
ited by restrictions. Most of these lemmas can be proved by contemplating the defining
diagram

(8.0.1)

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ g // U

of a restriction. See Groupoids in Spaces, Lemma 17.1.

Lemma 8.1. Let S be a scheme. Let B be an algebraic space over S. Let (U,R, s, t, c)
be a groupoid in algebraic spaces over B. Let g : U ′ → U be a morphism of algebraic
spaces over B. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via g.

(1) If s, t are locally of finite type and g is locally of finite type, then s′, t′ are locally
of finite type.

(2) If s, t are locally of finite presentation and g is locally of finite presentation, then
s′, t′ are locally of finite presentation.

(3) If s, t are flat and g is flat, then s′, t′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition and
arbitrary base change, see Morphisms of Spaces, Lemmas 23.2 and 23.3. Hence (1) is clear
from Diagram (8.0.1). For the other cases, see Morphisms of Spaces, Lemmas 28.2, 28.3,
30.3, and 30.4. �



9. PROPERTIES OF GROUPS OVER FIELDS AND GROUPOIDS ON FIELDS 5879

9. Properties of groups over fields and groupoids on fields

The reader is advised to first look at the corresponding sections for groupoid schemes, see
Groupoids, Section 7 and More on Groupoids, Section 10.

Situation 9.1. Here S is a scheme, k is a field over S , and (G,m) is a group algebraic
space over Spec(k).

Situation 9.2. Here S is a scheme, B is an algebraic space, and (U,R, s, t, c) is a
groupoid in algebraic spaces over B with U = Spec(k) for some field k.

Note that in Situation 9.1 we obtain a groupoid in algebraic spaces
(9.2.1) (Spec(k), G, p, p,m)
where p : G→ Spec(k) is the structure morphism of G, see Groupoids in Spaces, Lemma
15.1. This is a situation as in Situation 9.2. We will use this without further mention in
the rest of this section.

Lemma 9.3. In Situation 9.2 the composition morphism c : R ×s,U,t R → R is
flat and universally open. In Situation 9.1 the group law m : G ×k G → G is flat and
universally open.

Proof. The composition is isomorphic to the projection map pr1 : R ×t,U,t R→ R
by Diagram (3.0.2). The projection is flat as a base change of the flat morphism t and open
by Morphisms of Spaces, Lemma 6.6. The second assertion follows immediately from the
first because m matches c in (9.2.1). �

Note that the following lemma applies in particular when working with either quasi-
separated or locally separated algebraic spaces (Decent Spaces, Lemma 15.2).

Lemma 9.4. In Situation 9.2 assume R is a decent space. Then R is a separated alge-
braic space. In Situation 9.1 assume thatG is a decent algebraic space. ThenG is separated
algebraic space.

Proof. We first prove the second assertion. By Groupoids in Spaces, Lemma 6.1 we
have to show that e : S → G is a closed immersion. This follows from Decent Spaces,
Lemma 14.5.
Next, we prove the first assertion. To do this we may replace B by S. By the paragraph
above the stabilizer group scheme G → U is separated. By Groupoids in Spaces, Lemma
29.2 the morphism j = (t, s) : R→ U ×S U is separated. As U is the spectrum of a field
the schemeU ×S U is affine (by the construction of fibre products in Schemes, Section 17).
Hence R is separated, see Morphisms of Spaces, Lemma 4.9. �

Lemma 9.5. In Situation 9.2. Let k′/k be a field extension, U ′ = Spec(k′) and let
(U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via U ′ → U . In the defining diagram

R′

��

//

t′

%%

s′

**

&&

R×s,U U ′ //

��

U ′

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ // U
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all the morphisms are surjective, flat, and universally open. The dotted arrow R′ → R is
in addition affine.

Proof. The morphism U ′ → U equals Spec(k′) → Spec(k), hence is affine, surjec-
tive and flat. The morphisms s, t : R → U and the morphism U ′ → U are universally
open by Morphisms, Lemma 23.4. SinceR is not empty andU is the spectrum of a field the
morphisms s, t : R → U are surjective and flat. Then you conclude by using Morphisms
of Spaces, Lemmas 5.5, 5.4, 6.4, 20.5, 20.4, 30.4, and 30.3. �

Lemma 9.6. In Situation 9.2. For any point r ∈ |R| there exist
(1) a field extension k′/k with k′ algebraically closed,
(2) a point r′ : Spec(k′)→ R′ where (U ′, R′, s′, t′, c′) is the restriction of (U,R, s, t, c)

via Spec(k′)→ Spec(k)
such that

(1) the point r′ maps to r under the morphism R′ → R, and
(2) the maps s′ ◦ r′, t′ ◦ r′ : Spec(k′)→ Spec(k′) are automorphisms.

Proof. Let’s represent r by a morphism r : Spec(K)→ R for some fieldK. To prove
the lemma we have to find an algebraically closed field k′ and a commutative diagram

k′ k′
1

oo

k′

τ

OO

K

σ

``

k
s

oo

i

__

k

i

``

t

OO

where s, t : k → K are the field maps coming from s ◦ r and t ◦ r. In the proof of More
on Groupoids, Lemma 10.5 it is shown how to construct such a diagram. �

Lemma 9.7. In Situation 9.2. If r : Spec(k)→ R is a morphism such that s ◦ r, t ◦ r
are automorphisms of Spec(k), then the map

R −→ R, x 7−→ c(r, x)

is an automorphism R→ R which maps e to r.

Proof. Proof is identical to the proof of More on Groupoids, Lemma 10.6. �

Lemma 9.8. In Situation 9.2 the algebraic space R is geometrically unibranch. In
Situation 9.1 the algebraic space G is geometrically unibranch.

Proof. Let r ∈ |R|. We have to show that R is geometrically unibranch at r. Com-
bining Lemma 9.5 with Descent on Spaces, Lemma 9.1 we see that it suffices to prove this
in case k is algebraically closed and r comes from a morphism r : Spec(k)→ R such that
s ◦ r and t ◦ r are automorphisms of Spec(k). By Lemma 9.7 we reduce to the case that
r = e is the identity of R and k is algebraically closed.

Assume r = e and k is algebraically closed. Let A = OR,e be the étale local ring of R
at e and let C = OR×s,U,tR,(e,e) be the étale local ring of R ×s,U,t R at (e, e). By More
on Algebra, Lemma 107.4 the minimal prime ideals q of C correspond 1-to-1 to pairs of
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minimal primes p, p′ ⊂ A. On the other hand, the composition law induces a flat ring
map

A
c]

// C q

A⊗s],k,t] A

OO

p⊗A+A⊗ p′

_

Note that (c])−1(q) contains both p and p′ as the diagrams

A
c]

// C

A⊗s],k k

OO

A⊗s],k,t] A
1⊗e]oo

OO A
c]

// C

k ⊗k,t] A

OO

A⊗s],k,t] A
e]⊗1oo

OO

commute by (3.0.1). Since c] is flat (as c is a flat morphism by Lemma 9.3), we see that
(c])−1(q) is a minimal prime of A. Hence p = (c])−1(q) = p′. �

In the following lemma we use dimension of algebraic spaces (at a point) as defined in
Properties of Spaces, Section 9. We also use the dimension of the local ring defined in
Properties of Spaces, Section 10 and transcendence degree of points, see Morphisms of
Spaces, Section 33.

Lemma 9.9. In Situation 9.2 assume s, t are locally of finite type. For all r ∈ |R|
(1) dim(R) = dimr(R),
(2) the transcendence degree of r over Spec(k) via s equals the transcendence degree

of r over Spec(k) via t, and
(3) if the transcendence degree mentioned in (2) is 0, then dim(R) = dim(OR,r).

Proof. Let r ∈ |R|. Denote trdeg(r/sk) the transcendence degree of r over Spec(k)
via s. Choose an étale morphism ϕ : V → R where V is a scheme and v ∈ V mapping to
r. Using the definitions mentioned above the lemma we see that

dimr(R) = dimv(V ) = dim(OV,v) + trdegs(k)(κ(v)) = dim(OR,r) + trdeg(r/sk)

and similarly for t (the second equality by Morphisms, Lemma 28.1). Hence we see that
trdeg(r/sk) = trdeg(r/tk), i.e., (2) holds.

Let k′/k be a field extension. Note that the restrictionR′ ofR to Spec(k′) (see Lemma 9.5)
is obtained fromR by two base changes by morphisms of fields. Thus Morphisms of Spaces,
Lemma 34.3 shows the dimension of R at a point is unchanged by this operation. Hence
in order to prove (1) we may assume, by Lemma 9.6, that r is represented by a morphism
r : Spec(k)→ R such that both s◦ r and t◦ r are automorphisms of Spec(k). In this case
there exists an automorphism R→ R which maps r to e (Lemma 9.7). Hence we see that
dimr(R) = dime(R) for any r. By definition this means that dimr(R) = dim(R).

Part (3) is a formal consequence of the results obtained in the discussion above. �

Lemma 9.10. In Situation 9.1 assume G locally of finite type. For all g ∈ |G|
(1) dim(G) = dimg(G),
(2) if the transcendence degree of g over k is 0, then dim(G) = dim(OG,g).

Proof. Immediate from Lemma 9.9 via (9.2.1). �
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Lemma 9.11. In Situation 9.2 assume s, t are locally of finite type. LetG = Spec(k)×∆,Spec(k)×BSpec(k),t×s
R be the stabilizer group algebraic space. Then we have dim(R) = dim(G).

Proof. Since G and R are equidimensional (see Lemmas 9.9 and 9.10) it suffices to
prove that dime(R) = dime(G). Let V be an affine scheme, v ∈ V , and let ϕ : V → R be
an étale morphism of schemes such that ϕ(v) = e. Note that V is a Noetherian scheme as
s ◦ϕ is locally of finite type as a composition of morphisms locally of finite type and as V
is quasi-compact (use Morphisms of Spaces, Lemmas 23.2, 39.8, and 28.5 and Morphisms,
Lemma 15.6). Hence V is locally connected (see Properties, Lemma 5.5 and Topology,
Lemma 9.6). Thus we may replace V by the connected component containing v (it is still
affine as it is an open and closed subscheme of V ). Set T = Vred equal to the reduction of
V . Consider the two morphisms a, b : T → Spec(k) given by a = s◦ϕ|T and b = t◦ϕ|T .
Note that a, b induce the same field map k → κ(v) because ϕ(v) = e! Let ka ⊂ Γ(T,OT )
be the integral closure of a](k) ⊂ Γ(T,OT ). Similarly, let kb ⊂ Γ(T,OT ) be the integral
closure of b](k) ⊂ Γ(T,OT ). By Varieties, Proposition 31.1 we see that ka = kb. Thus we
obtain the following commutative diagram

k

a

"" ++
ka = kb // Γ(T,OT ) // κ(v)

k

b

<< 33

As discussed above the long arrows are equal. Since ka = kb → κ(v) is injective we
conclude that the two morphisms a and b agree. Hence T → R factors through G. It
follows that Rred = Gred in an open neighbourhood of e which certainly implies that
dime(R) = dime(G). �

10. Group algebraic spaces over fields

There exists a nonseparated group algebraic space over a field, namely Ga/Z over a field
of characteristic zero, see Examples, Section 49. In fact any group scheme over a field
is separated (Lemma 9.4) hence every nonseparated group algebraic space over a field is
nonrepresentable. On the other hand, a group algebraic space over a field is separated as
soon as it is decent, see Lemma 9.4. In this section we will show that a separated group
algebraic space over a field is representable, i.e., a scheme.

Lemma 10.1. Let k be a field with algebraic closure k. LetG be a group algebraic space
over k which is separated1. Then Gk is a scheme.

Proof. By Spaces over Fields, Lemma 10.2 it suffices to show thatGK is a scheme for
some field extension K/k. Denote G′

K ⊂ GK the schematic locus of GK as in Properties
of Spaces, Lemma 13.1. By Properties of Spaces, Proposition 13.3 we see that G′

K ⊂ GK is
dense open, in particular not empty. Choose a scheme U and a surjective étale morphism
U → G. By Varieties, Lemma 14.2 if K is an algebraically closed field of large enough
transcendence degree, then UK is a Jacobson scheme and every closed point of UK is K-
rational. Hence G′

K has a K-rational point and it suffices to show that every K-rational

1It is enough to assume G is decent, e.g., locally separated or quasi-separated by Lemma 9.4.
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point of GK is in G′
K . If g ∈ GK(K) is a K-rational point and g′ ∈ G′

K(K) a K-
rational point in the schematic locus, then we see that g is in the image of G′

K under the
automorphism

GK −→ GK , h 7−→ g(g′)−1h

of GK . Since automorphisms of GK as an algebraic space preserve G′
K , we conclude that

g ∈ G′
K as desired. �

Lemma 10.2. Let k be a field. LetG be a group algebraic space over k. IfG is separated
and locally of finite type over k, then G is a scheme.

Proof. This follows from Lemma 10.1, Groupoids, Lemma 8.6, and Spaces over Fields,
Lemma 10.7. �

Proposition 10.3. Let k be a field. Let G be a group algebraic space over k. If G is
separated, then G is a scheme.

Proof. This lemma generalizes Lemma 10.2 (which covers all cases one cares about
in practice). The proof is very similar to the proof of Spaces over Fields, Lemma 10.7 used
in the proof of Lemma 10.2 and we encourage the reader to read that proof first.

By Lemma 10.1 the base changeGk is a scheme. LetK/k be a purely transcendental exten-
sion of very large transcendence degree. By Spaces over Fields, Lemma 10.5 it suffices to
show that GK is a scheme. Let Kperf be the perfect closure of K. By Spaces over Fields,
Lemma 10.1 it suffices to show that GKperf is a scheme. Let K ⊂ Kperf ⊂ K be the
algebraic closure of K. We may choose an embedding k → K over k, so that GK is the
base change of the scheme Gk by k → K. By Varieties, Lemma 14.2 we see that GK is a
Jacobson scheme all of whose closed points have residue field K.

Since GK → GKperf is surjective, it suffices to show that the image g ∈ |GKperf | of
an arbitrary closed point of GK is in the schematic locus of GK . In particular, we may
represent g by a morphism g : Spec(L)→ GKperf where L/Kperf is separable algebraic
(for example we can take L = K). Thus the scheme

T = Spec(L)×G
Kperf

GK

= Spec(L)×Spec(Kperf ) Spec(K)
= Spec(L⊗Kperf K)

is the spectrum of aK-algebra which is a filtered colimit of algebras which are finite prod-
ucts of copies ofK. Thus by Groupoids, Lemma 7.13 we can find an affine openW ⊂ GK
containing the image of gK : T → GK .

Choose a quasi-compact open V ⊂ GKperf containing the image of W . By Spaces over
Fields, Lemma 10.2 we see that VK′ is a scheme for some finite extensionK ′/Kperf . After
enlarging K ′ we may assume that there exists an affine open U ′ ⊂ VK′ ⊂ GK′ whose
base change to K recovers W (use that VK is the limit of the schemes VK′′ for K ′ ⊂
K ′′ ⊂ K finite and use Limits, Lemmas 4.11 and 4.13). We may assume that K ′/Kperf

is a Galois extension (take the normal closure Fields, Lemma 16.3 and use that Kperf is
perfect). Set H = Gal(K ′/Kperf ). By construction the H-invariant closed subscheme
Spec(L) ×G

Kperf
GK′ is contained in U ′. By Spaces over Fields, Lemmas 10.3 and 10.4

we conclude. �
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11. No rational curves on groups

In this section we prove that there are no nonconstant morphisms from P1 to a group
algebraic space locally of finite type over a field.

Lemma 11.1. Let S be a scheme. Let B be an algebraic space over S. Let f : X → Y
and g : X → Z be morphisms of algebraic spaces over B. Assume

(1) Y → B is separated,
(2) g is surjective, flat, and locally of finite presentation,
(3) there is a scheme theoretically dense openV ⊂ Z such that f |g−1(V ) : g−1(V )→

Y factors through V .
Then f factors through g.

Proof. Set R = X ×Z X . By (2) we see that Z = X/R as sheaves. Also (2) im-
plies that the inverse image of V in R is scheme theoretically dense in R (Morphisms of
Spaces, Lemma 30.11). The we see that the two compositions R → X → Y are equal by
Morphisms of Spaces, Lemma 17.8. The lemma follows. �

Lemma 11.2. Let k be a field. Let n ≥ 1 and let (P1
k)n be the n-fold self product over

Spec(k). Let f : (P1
k)n → Z be a morphism of algebraic spaces over k. If Z is separated

of finite type over k, then f factors as

(P1
k)n projection−−−−−−−→ (P1

k)m finite−−−−→ Z.

Proof. We may assume k is algebraically closed (details omitted); we only do this so
we may argue using rational points, but the reader can work around this if she/he so de-
sires. In the proof products are over k. The automorphism group algebraic space of (P1

k)n
contains G = (GL2,k)n. If C ⊂ (P1

k)n is a closed subvariety (in particular irreducible
over k) which is mapped to a point, then we can apply More on Morphisms of Spaces,
Lemma 35.3 to the morphism

G× C → G× Z, (g, c) 7→ (g, f(g · c))

over G. Hence g(C) is mapped to a point for g ∈ G(k) lying in a Zariski open U ⊂ G.
Suppose x = (x1, . . . , xn), y = (y1, . . . , yn) are k-valued points of (P1

k)n. Let I ⊂
{1, . . . , n} be the set of indices i such that xi = yi. Then

{g(x) | g(y) = y, g ∈ U(k)}

is Zariski dense in the fibre of the projection πI : (P1
k)n →

∏
i∈I P1

k (exercise). Hence if
x, y ∈ C(k) are distinct, we conclude that f maps the whole fibre of πI containing x, y
to a single point. Moreover, the U(k)-orbit of C meets a Zariski open set of fibres of πI .
By Lemma 11.1 the morphism f factors through πI . After repeating this process finitely
many times we reach the stage where all fibres of f over k points are finite. In this case f
is finite by More on Morphisms of Spaces, Lemma 35.2 and the fact that k points are dense
in Z (Spaces over Fields, Lemma 16.2). �

Lemma 11.3. Let k be a field. Let G be a separated group algebraic space locally of
finite type over k. There does not exist a nonconstant morphism f : P1

k → G over
Spec(k).

Proof. Assume f is nonconstant. Consider the morphisms

P1
k ×Spec(k) . . .×Spec(k) P1

k −→ G, (t1, . . . , tn) 7−→ f(g1) . . . f(gn)
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where on the right hand side we use multiplication in the group. By Lemma 11.2 and the
assumption that f is nonconstant this morphism is finite onto its image. Hence dim(G) ≥
n for all n, which is impossible by Lemma 9.10 and the fact that G is locally of finite type
over k. �

12. The finite part of a morphism

Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. For an
algebraic space or a scheme T over S consider pairs (a, Z) where

(12.0.1)
a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace
such that pr0|Z : Z → T is finite.

Suppose h : T ′ → T is a morphism of algebraic spaces over S and (a, Z) is a pair as in
(12.0.1) over T . Set a′ = a ◦ h and Z ′ = (h × idX)−1(Z) = T ′ ×T Z. Then (a′, Z ′)
is a pair as in (12.0.1) over T ′. This follows as finite morphisms are preserved under base
change, see Morphisms of Spaces, Lemma 45.5. Thus we obtain a functor

(12.0.2) (X/Y )fin : (Sch/S)opp −→ Sets
T 7−→ {(a, Z) as above}

For applications we are mainly interested in this functor (X/Y )fin when f is separated
and locally of finite type. To get an idea of what this is all about, take a look at Remark
12.6.

Lemma 12.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then we have

(1) The presheaf (X/Y )fin satisfies the sheaf condition for the fppf topology.
(2) If T is an algebraic space over S , then there is a canonical bijection

MorSh((Sch/S)fppf )(T, (X/Y )fin) = {(a, Z) satisfying 12.0.1}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering (by
algebraic spaces). Let si = (ai, Zi) be pairs over Ti satisfying 12.0.1 such that we have
si|Ti×TTj = sj |Ti×TTj . First, this implies in particular that ai and aj define the same
morphism Ti ×T Tj → Y . By Descent on Spaces, Lemma 7.2 we deduce that there exists
a unique morphism a : T → Y such that ai equals the composition Ti → T → Y .
Second, this implies that Zi ⊂ Ti ×Y X are open subspaces whose inverse images in
(Ti ×T Tj)×Y X are equal. Since {Ti ×Y X → T ×Y X} is an fppf covering we deduce
that there exists a unique open subspace Z ⊂ T ×Y X which restricts back to Zi over Ti,
see Descent on Spaces, Lemma 7.1. We claim that the projection Z → T is finite. This
follows as being finite is local for the fpqc topology, see Descent on Spaces, Lemma 11.23.

Note that the result of the preceding paragraph in particular implies (1).

Let T be an algebraic space overS. In order to prove (2) we will construct mutually inverse
maps between the displayed sets. In the following when we say “pair” we mean a pair
satisfying conditions 12.0.1.

Let v : T → (X/Y )fin be a natural transformation. Choose a scheme U and a surjective
étale morphism p : U → T . Then v(p) ∈ (X/Y )fin(U) corresponds to a pair (aU , ZU )
over U . Let R = U ×T U with projections t, s : R → U . As v is a transformation of
functors we see that the pullbacks of (aU , ZU ) by s and t agree. Hence, since {U → T}
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is an fppf covering, we may apply the result of the first paragraph that deduce that there
exists a unique pair (a, Z) over T .

Conversely, let (a, Z) be a pair over T . Let U → T , R = U ×T U , and t, s : R → U
be as above. Then the restriction (a, Z)|U gives rise to a transformation of functors v :
hU → (X/Y )fin by the Yoneda lemma (Categories, Lemma 3.5). As the two pullbacks
s∗(a, Z)|U and t∗(a, Z)|U are equal, we see that v coequalizes the two maps ht, hs : hR →
hU . Since T = U/R is the fppf quotient sheaf by Spaces, Lemma 9.1 and since (X/Y )fin
is an fppf sheaf by (1) we conclude that v factors through a map T → (X/Y )fin.

We omit the verification that the two constructions above are mutually inverse. �

Lemma 12.2. Let S be a scheme. Consider a commutative diagram

X ′
j

//

  

X

~~
Y

of algebraic spaces over S. If j is an open immersion, then there is a canonical injective
map of sheaves j : (X ′/Y )fin → (X/Y )fin.

Proof. If (a, Z) is a pair over T for X ′/Y , then (a, j(Z)) is a pair over T for X/Y .
�

Lemma 12.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let X ′ ⊂ X be the maximal open subspace over
which f is locally quasi-finite, see Morphisms of Spaces, Lemma 34.7. Then (X/Y )fin =
(X ′/Y )fin.

Proof. Lemma 12.2 gives us an injective map (X ′/Y )fin → (X/Y )fin. Morphisms
of Spaces, Lemma 34.7 assures us that formation ofX ′ commutes with base change. Hence
everything comes down to proving that ifZ ⊂ X is an open subspace such that f |Z : Z →
Y is finite, then Z ⊂ X ′. This is true because a finite morphism is locally quasi-finite, see
Morphisms of Spaces, Lemma 45.8. �

Lemma 12.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let T be an algebraic space over S , and let (a, Z) be a pair as in 12.0.1. If f is
separated, then Z is closed in T ×Y X .

Proof. A finite morphism of algebraic spaces is universally closed by Morphisms of
Spaces, Lemma 45.9. Since f is separated so is the morphism T×Y X → T , see Morphisms
of Spaces, Lemma 4.4. Thus the closedness ofZ follows from Morphisms of Spaces, Lemma
40.6. �

Remark 12.5. Let f : X → Y be a separated morphism of algebraic spaces. The
sheaf (X/Y )fin comes with a natural map (X/Y )fin → Y by mapping the pair (a, Z) ∈
(X/Y )fin(T ) to the element a ∈ Y (T ). We can use Lemma 12.4 to define operations

?i : (X/Y )fin ×Y (X/Y )fin −→ (X/Y )fin
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by the rules

?1 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∪ Z2)
?2 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∩ Z2)
?3 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 \ Z2)
?4 : ((a, Z1), (a, Z2)) 7−→ (a, Z2 \ Z1).

The reason this works is that Z1 ∩ Z2 is both open and closed inside Z1 and Z2 (which
also implies that Z1 ∪ Z2 is the disjoint union of the other three pieces). Thus we can
think of (X/Y )fin as an F2-algebra (without unit) over Y with multiplication given by
ss′ = ?2(s, s′), and addition given by

s+ s′ = ?1(?3(s, s′), ?4(s, s′))

which boils down to taking the symmetric difference. Note that in this sheaf of algebras
0 = (1Y , ∅) and that indeed s + s = 0 for any local section s. If f : X → Y is finite,
then this algebra has a unit namely 1 = (1Y , X) and ?3(s, s′) = s(1+s′), and ?4(s, s′) =
(1 + s)s′.

Remark 12.6. Let f : X → Y be a separated, locally quasi-finite morphism of
schemes. In this case the sheaf (X/Y )fin is closely related to the sheaf f!F2 (insert fu-
ture reference here) on Yétale. Namely, if V → Y is étale, and s ∈ Γ(V, f!F2), then
s ∈ Γ(V ×Y X,F2) is a section with proper support Z = Supp(s) over V . Since f is also
locally quasi-finite we see that the projection Z → V is actually finite. Since the support
of a section of a constant abelian sheaf is open we see that the pair (V → Y, Supp(s)) satis-
fies 12.0.1. In fact, f!F2 ∼= (X/Y )fin|Yétale in this case which also explains the F2-algebra
structure introduced in Remark 12.5.

Lemma 12.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The diagonal of (X/Y )fin → Y

(X/Y )fin −→ (X/Y )fin ×Y (X/Y )fin
is representable (by schemes) and an open immersion and the “absolute” diagonal

(X/Y )fin −→ (X/Y )fin × (X/Y )fin
is representable (by schemes).

Proof. The second statement follows from the first as the absolute diagonal is the
composition of the relative diagonal and a base change of the diagonal of Y (which is
representable by schemes), see Spaces, Section 3. To prove the first assertion we have to
show the following: Given a scheme T and two pairs (a, Z1) and (a, Z2) over T with
identical first component satisfying 12.0.1 there is an open subscheme V ⊂ T with the
following property: For any morphism of schemes h : T ′ → T we have

h(T ′) ⊂ V ⇔
(
T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X

)
Let us construct V . Note that Z1 ∩ Z2 is open in Z1 and in Z2. Since pr0|Zi : Zi → T is
finite, hence proper (see Morphisms of Spaces, Lemma 45.9) we see that

E = pr0|Z1 (Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2 (Z2 \ Z1 ∩ Z2))

is closed in T . Now it is clear that V = T \ E works. �
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Lemma 12.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Suppose that U is a scheme, U → Y is an étale morphism and Z ⊂ U ×Y X is an
open subspace finite over U . Then the induced morphism U → (X/Y )fin is étale.

Proof. This is formal from the description of the diagonal in Lemma 12.7 but we
write it out since it is an important step in the development of the theory. We have to
check that for any scheme T over S and a morphism T → (X/Y )fin the projection map

T ×(X/Y )fin U −→ T

is étale. Note that

T ×(X/Y )fin U = (X/Y )fin ×((X/Y )fin×Y (X/Y )fin) (T ×Y U)

Applying the result of Lemma 12.7 we see that T ×(X/Y )fin U is represented by an open
subscheme of T ×Y U . As the projection T ×Y U → T is étale by Morphisms of Spaces,
Lemma 39.4 we conclude. �

Lemma 12.9. Let S be a scheme. Let

X ′

��

// X

��
Y ′ // Y

be a fibre product square of algebraic spaces over S. Then

(X ′/Y ′)fin

��

// (X/Y )fin

��
Y ′ // Y

is a fibre product square of sheaves on (Sch/S)fppf .

Proof. It follows immediately from the definitions that the sheaf (X ′/Y ′)fin is
equal to the sheaf Y ′ ×Y (X/Y )fin. �

Lemma 12.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. If f is separated and locally quasi-finite, then there exists a scheme U étale over Y
and a surjective étale morphism U → (X/Y )fin over Y .

Proof. Note that the assertion makes sense by the result of Lemma 12.7 on the di-
agonal of (X/Y )fin, see Spaces, Lemma 5.10. Let V be a scheme and let V → Y be a
surjective étale morphism. By Lemma 12.9 the morphism (V ×Y X/V )fin → (X/Y )fin
is a base change of the map V → Y and hence is surjective and étale, see Spaces, Lemma
5.5. Hence it suffices to prove the lemma for (V ×Y X/V )fin. (Here we implicitly use
that the composition of representable, surjective, and étale transformations of functors is
again representable, surjective, and étale, see Spaces, Lemmas 3.2 and 5.4, and Morphisms,
Lemmas 9.2 and 36.3.) Note that the properties of being separated and locally quasi-finite
are preserved under base change, see Morphisms of Spaces, Lemmas 4.4 and 27.4. Hence
V ×Y X → V is separated and locally quasi-finite as well, and by Morphisms of Spaces,
Proposition 50.2 we see that V ×Y X is a scheme as well. Thus we may assume that
f : X → Y is a separated and locally quasi-finite morphism of schemes.
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Pick a point y ∈ Y . Pick x1, . . . , xn ∈ X points lying over y. Pick an étale neighbour-
hood a : (U, u)→ (Y, y) and a decomposition

U ×S X = W q
∐

i=1,...,n

∐
j=1,...,mj

Vi,j

as in More on Morphisms, Lemma 41.5. Pick any subset

I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}.
Given these choices we obtain a pair (a, Z) with Z =

⋃
(i,j)∈I Vi,j which satisfies condi-

tions 12.0.1. In other words we obtain a morphism U → (X/Y )fin. The construction of
this morphism depends on all the things we picked above, so we should really write

U(y, n, x1, . . . , xn, a, I) −→ (X/Y )fin
This morphism is étale by Lemma 12.8.

Claim: The disjoint union of all of these is surjective onto (X/Y )fin. It is clear that if the
claim holds, then the lemma is true.

To show surjectivity we have to show the following (see Spaces, Remark 5.2): Given
a scheme T over S , a point t ∈ T , and a map T → (X/Y )fin we can find a datum
(y, n, x1, . . . , xn, a, I) as above such that t is in the image of the projection map

U(y, n, x1, . . . , xn, a, I)×(X/Y )fin T −→ T.

To prove this we may clearly replace T by Spec(κ(t)) and T → (X/Y )fin by the com-
position Spec(κ(t)) → T → (X/Y )fin. In other words, we may assume that T is the
spectrum of an algebraically closed field.

Let T = Spec(k) be the spectrum of an algebraically closed field k. The morphism T →
(X/Y )fin is given by a pair (T → Y, Z) satisfying conditions 12.0.1. Here is a picture:

Z

��

// X

��
Spec(k) T // Y

Let y ∈ Y be the image point of T → Y . Since Z is finite over k it has finitely many
points. Thus there exist finitely many points x1, . . . , xn ∈ X such that the image of Z in
X is contained in {x1, . . . , xn}. Choose a : (U, u)→ (Y, y) adapted to y and x1, . . . , xn
as above, which gives the diagram

W q
∐
i=1,...,n

∐
j=1,...,mj Vi,j

��

// X

��
U // Y.

Since k is algebraically closed and κ(y) ⊂ κ(u) is finite separable we may factor the mor-
phism T = Spec(k)→ Y through the morphism u = Spec(κ(u))→ Spec(κ(y)) = y ⊂
Y . With this choice we obtain the commutative diagram:

Z

��

// W q
∐
i=1,...,n

∐
j=1,...,mj Vi,j

��

// X

��
Spec(k) // U // Y
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We know that the image of the left upper arrow ends up in
∐
Vi,j . Recall also that Z is

an open subscheme of Spec(k)×Y X by definition of (X/Y )fin and that the right hand
square is a fibre product square. Thus we see that

Z ⊂
∐

i=1,...,n

∐
j=1,...,mj

Spec(k)×U Vi,j

is an open subscheme. By construction (see More on Morphisms, Lemma 41.5) eachVi,j has
a unique point vi,j lying overuwith purely inseparable residue field extensionκ(vi,j)/κ(u).
Hence each scheme Spec(k)×U Vi,j has exactly one point. Thus we see that

Z =
∐

(i,j)∈I
Spec(k)×U Vi,j

for a unique subset I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}. Unwinding the definitions
this shows that

U(y, n, x1, . . . , xn, a, I)×(X/Y )fin T

with I as found above is nonempty as desired. �

Proposition 12.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is separated and locally of finite type. Then (X/Y )fin is an algebraic
space. Moreover, the morphism (X/Y )fin → Y is étale.

Proof. By Lemma 12.3 we may replace X by the open subscheme which is locally
quasi-finite over Y . Hence we may assume that f is separated and locally quasi-finite.
We will check the three conditions of Spaces, Definition 6.1. Condition (1) follows from
Lemma 12.1. Condition (2) follows from Lemma 12.7. Finally, condition (3) follows from
Lemma 12.10. Thus (X/Y )fin is an algebraic space. Moreover, that lemma shows that
there exists a commutative diagram

U //

��

(X/Y )fin

zz
Y

with horizontal arrow surjective and étale and south-east arrow étale. By Properties of
Spaces, Lemma 16.3 this implies that the south-west arrow is étale as well. �

Remark 12.12. The condition that f be separated cannot be dropped from Proposi-
tion 12.11. An example is to take X the affine line with zero doubled, see Schemes, Ex-
ample 14.3, Y = A1

k the affine line, and X → Y the obvious map. Recall that over
0 ∈ Y there are two points 01 and 02 in X . Thus (X/Y )fin has four points over 0,
namely ∅, {01}, {02}, {01, 02}. Of these four points only three can be lifted to an open
subscheme of U ×Y X finite over U for U → Y étale, namely ∅, {01}, {02}. This shows
that (X/Y )fin if representable by an algebraic space is not étale over Y . Similar argu-
ments show that (X/Y )fin is really not an algebraic space. Details omitted.

Remark 12.13. Let Y = A1
R be the affine line over the real numbers, and let X =

Spec(C) mapping to the R-rational point 0 in Y . In this case the morphism f : X → Y is
finite, but it is not the case that (X/Y )fin is a scheme. Namely, one can show that in this
case the algebraic space (X/Y )fin is isomorphic to the algebraic space of Spaces, Example
14.2 associated to the extension R ⊂ C. Thus it is really necessary to leave the category
of schemes in order to represent the sheaf (X/Y )fin, even when f is a finite morphism.
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Lemma 12.14. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is separated, flat, and locally of finite presentation. In this case

(1) (X/Y )fin → Y is separated, representable, and étale, and
(2) if Y is a scheme, then (X/Y )fin is (representable by) a scheme.

Proof. Since f is in particular separated and locally of finite type (see Morphisms of
Spaces, Lemma 28.5) we see that (X/Y )fin is an algebraic space by Proposition 12.11. To
prove that (X/Y )fin → Y is separated we have to show the following: Given a scheme T
and two pairs (a, Z1) and (a, Z2) over T with identical first component satisfying 12.0.1
there is a closed subscheme V ⊂ T with the following property: For any morphism of
schemes h : T ′ → T we have

h factors through V ⇔
(
T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X

)
In the proof of Lemma 12.7 we have seen that V = T ′ \E is an open subscheme of T ′ with
closed complement

E = pr0|Z1 (Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2 (Z2 \ Z1 ∩ Z2)) .
Thus everything comes down to showing that E is also open. By Lemma 12.4 we see that
Z1 and Z2 are closed in T ′ ×Y X . Hence Z1 \ Z1 ∩ Z2 is open in Z1. As f is flat and
locally of finite presentation, so is pr0|Z1 . This is true asZ1 is an open subspace of the base
change T ′×Y X , and Morphisms of Spaces, Lemmas 28.3 and Lemmas 30.4. Hence pr0|Z1

is open, see Morphisms of Spaces, Lemma 30.6. Thus pr0|Z1 (Z1 \ Z1 ∩ Z2)) is open and
it follows that E is open as desired.
We have already seen that (X/Y )fin → Y is étale, see Proposition 12.11. Hence now we
know it is locally quasi-finite (see Morphisms of Spaces, Lemma 39.5) and separated, hence
representable by Morphisms of Spaces, Lemma 51.1. The final assertion is clear (if you like
you can use Morphisms of Spaces, Proposition 50.2). �

Variant: Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. Let
σ : Y → X be a section of f . For an algebraic space or a scheme T over S consider pairs
(a, Z) where

(12.14.1)

a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace

such that pr0|Z : Z → T is finite and
(1T , σ ◦ a) : T → T ×Y X factors through Z.

We will denote (X/Y, σ)fin the subfunctor of (X/Y )fin parametrizing these pairs.

Lemma 12.15. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let σ : Y → X be a section of f . Consider the transformation of functors

t : (X/Y, σ)fin −→ (X/Y )fin.
defined above. Then

(1) t is representable by open immersions,
(2) if f is separated, then t is representable by open and closed immersions,
(3) if (X/Y )fin is an algebraic space, then (X/Y, σ)fin is an algebraic space and an

open subspace of (X/Y )fin, and
(4) if (X/Y )fin is a scheme, then (X/Y, σ)fin is an open subscheme of it.

Proof. Omitted. Hint: Given a pair (a, Z) over T as in (12.0.1) the inverse image of
Z by (1T , σ ◦ a) : T → T ×Y X is the open subscheme of T we are looking for. �
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13. Finite collections of arrows

Let C be a groupoid, see Categories, Definition 2.5. As discussed in Groupoids, Section 13
this corresponds to a septuple (Ob,Arrows, s, t, c, e, i).
Using this data we can make another groupoid Cfin as follows:

(1) An object of Cfin consists of a finite subset Z ⊂ Arrows with the following
properties:
(a) s(Z) = {u} is a singleton, and
(b) e(u) ∈ Z.

(2) A morphism of Cfin consists of a pair (Z, z), where Z is an object of Cfin and
z ∈ Z.

(3) The source of (Z, z) is Z.
(4) The target of (Z, z) is t(Z, z) = {z′ ◦ z−1; z′ ∈ Z}.
(5) Given (Z1, z1), (Z2, z2) such that s(Z1, z1) = t(Z2, z2) the composition (Z1, z1)◦

(Z2, z2) is (Z2, z1 ◦ z2).
We omit the verification that this defines a groupoid. Pictorially an object of Cfin can be
viewed as a diagram

•

•e ::

??

//

��

•

•
To make a morphism of Cfin you pick one of the arrows and you precompose the other
arrows by its inverse. For example if we pick the middle horizontal arrow then the target
is the picture

•

• •oo

OO

e
zz

��
•

Note that the cardinalities of s(Z, z) and t(Z, z) are equal. So Cfin is really a countable
disjoint union of groupoids.

14. The finite part of a groupoid

In this section we are going to use the idea explained in Section 13 to take the finite part
of a groupoid in algebraic spaces.
Let S be a scheme. LetB be an algebraic space over S. Let (U,R, s, t, c, e, i) be a groupoid
in algebraic spaces over B. Assumption: The morphisms s, t are separated and locally of
finite type. This notation and assumption will we be fixed throughout this section.
Denote Rs the algebraic space R seen as an algebraic space over U via s. Let U ′ =
(Rs/U, e)fin. Since s is separated and locally of finite type, by Proposition 12.11 and
Lemma 12.15, we see that U ′ is an algebraic space endowed with an étale morphism g :
U ′ → U . Moreover, by Lemma 12.1 there exists a universal open subspace Zuniv ⊂
R ×s,U,g U ′ which is finite over U ′ and such that (1U ′ , e ◦ g) : U ′ → R ×s,U,g U ′
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factors through Zuniv . Moreover, by Lemma 12.4 the open subspace Zuniv is also closed
in R×s,U ′,g U . Picture so far:

Zuniv

�� %%
R×s,U,g U ′

��

// U ′

g

��
R

s // U

Let T be a scheme overB. We see that a T -valued point ofZuniv may be viewed as a triple
(u,Z, z) where

(1) u : T → U is a T -valued point of U ,
(2) Z ⊂ R×s,U,uT is an open and closed subspace finite over T such that (e◦u, 1T )

factors through it, and
(3) z : T → R is a T -valued point of R with s ◦ z = u and such that (z, 1T ) factors

through Z.
Having said this, it is morally clear from the discussion in Section 13 that we can turn
(Zuniv, U ′) into a groupoid in algebraic spaces over B. To make sure will define the mor-
phisms s′, t′, c′, e′, i′ one by one using the functorial point of view. (Please don’t read this
before reading and understanding the simple construction in Section 13.)

The morphism s′ : Zuniv → U ′ corresponds to the rule

s′ : (u,Z, z) 7→ (u,Z).

The morphism t′ : Zuniv → U ′ is given by the rule

t′ : (u,Z, z) 7→ (t ◦ z, c(Z, i ◦ z)).

The entry c(Z, i ◦ z) makes sense as the map c(−, i ◦ z) : R×s,U,u T → R×s,U,t◦z T is an
isomorphism with inverse c(−, z). The morphism e′ : U ′ → Zuniv is given by the rule

e′ : (u,Z) 7→ (u,Z, (e ◦ u, 1T )).

Note that this makes sense by the requirement that (e ◦ u, 1T ) factors through Z. The
morphism i′ : Zuniv → Zuniv is given by the rule

i′ : (u,Z, z) 7→ (t ◦ z, c(Z, i ◦ z), i ◦ z).

Finally, composition is defined by the rule

c′ : ((u1, Z1, z1), (u2, Z2, z2)) 7→ (u2, Z2, z1 ◦ z2).

We omit the verification that the axioms of a groupoid in algebraic spaces hold for (U ′, Zuniv, s
′, t′, c′, e′, i′).

A final piece of information is that there is a canonical morphism of groupoids

(U ′, Zuniv, s
′, t′, c′, e′, i′) −→ (U,R, s, t, c, e, i)

Namely, the morphism U ′ → U is the morphism g : U ′ → U which is defined by the
rule (u,Z) 7→ u. The morphism Zuniv → R is defined by the rule (u,Z, z) 7→ z. This
finishes the construction. Let us summarize our findings as follows.
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Lemma 14.1. LetS be a scheme. LetB be an algebraic space overS. Let (U,R, s, t, c, e, i)
be a groupoid in algebraic spaces overB. Assume the morphisms s, t are separated and lo-
cally of finite type. There exists a canonical morphism

(U ′, Zuniv, s
′, t′, c′, e′, i′) −→ (U,R, s, t, c, e, i)

of groupoids in algebraic spaces over B where
(1) g : U ′ → U is identified with (Rs/U, e)fin → U , and
(2) Zuniv ⊂ R ×s,U,g U ′ is the universal open (and closed) subspace finite over U ′

which contains the base change of the unit e.

Proof. See discussion above. �

15. Étale localization of groupoid schemes

In this section we prove results similar to [?, Proposition 4.2]. We try to be a bit more
general, and we try to avoid using Hilbert schemes by using the finite part of a morphism
instead. The goal is to ”split” a groupoid in algebraic spaces over a point after étale local-
ization. Here is the definition (very similar to [?, Definition 4.1]).

Definition 15.1. LetS be a scheme. LetB be an algebraic space overS Let (U,R, s, t, c)
be a groupoid in algebraic spaces over B. Let u ∈ |U | be a point.

(1) We say R is strongly split over u if there exists an open subspace P ⊂ R such
that
(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) {r ∈ |R| : s(r) = u, t(r) = u} ⊂ |P |.

The choice of such a P will be called a strong splitting of R over u.
(2) We say R is split over u if there exists an open subspace P ⊂ R such that

(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) {g ∈ |G| : g maps to u} ⊂ |P | where G→ U is the stabilizer.

The choice of such a P will be called a splitting of R over u.
(3) We say R is quasi-split over u if there exists an open subspace P ⊂ R such that

(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) e(u) ∈ |P |2.

The choice of such a P will be called a quasi-splitting of R over u.

Note the similarity of the conditions on P to the conditions on pairs in (12.0.1). In par-
ticular, if s, t are separated, then P is also closed in R (see Lemma 12.4).

Suppose we start with a groupoid in algebraic spaces (U,R, s, t, c) over B and a point
u ∈ |U |. Since the goal is to split the groupoid after étale localization we may as well
replace U by an affine scheme (what we mean is that this is harmless for any possible
application). Moreover, the additional hypotheses we are going to have to impose will
force R to be a scheme at least in a neighbourhood of {r ∈ |R| : s(r) = u, t(r) = u}
or e(u). This is why we start with a groupoid scheme as described below. However, our
technique of proof leads us outside of the category of schemes, which is why we have
formulated a splitting for the case of groupoids in algebraic spaces above. On the other

2This condition is implied by (a).
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hand, we know of no applications but the case where the morphisms s, t are also flat and
of finite presentation, in which case we end up back in the category of schemes.

Situation 15.2 (Strong splitting). Let S be a scheme. Let (U,R, s, t, c) be a groupoid
scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type,
(3) the set {r ∈ R : s(r) = u, t(r) = u} is finite, and
(4) s is quasi-finite at each point of the set in (3).

Note that assumptions (3) and (4) are implied by the assumption that the fibre s−1({u})
is finite, see Morphisms, Lemma 20.7.

Situation 15.3 (Splitting). LetS be a scheme. Let (U,R, s, t, c) be a groupoid scheme
over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type,
(3) the set {g ∈ G : g maps to u} is finite where G→ U is the stabilizer, and
(4) s is quasi-finite at each point of the set in (3).

Situation 15.4 (Quasi-splitting). Let S be a scheme. Let (U,R, s, t, c) be a groupoid
scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type, and
(3) s is quasi-finite at e(u).

For our application to the existence theorems for algebraic spaces the case of quasi-splittings
is sufficient. Moreover, the quasi-splitting case will allow us to prove an étale local struc-
ture theorem for quasi-DM stacks. The splitting case will be used to prove a version of
the Keel-Mori theorem. The strong splitting case applies to give an étale local structure
theorem for quasi-DM algebraic stacks with quasi-compact diagonal.

Lemma 15.5 (Existence of strong splitting). In Situation 15.2 there exists an algebraic
space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u)) → U ′ lying over
u : Spec(κ(u))→ U such that the restriction R′ = R|U ′ of R to U ′ is strongly split over
u′.

Proof. Let f : (U ′, Zuniv, s
′, t′, c′) → (U,R, s, t, c) be as constructed in Lemma

14.1. Recall that R′ = R ×(U×SU) (U ′ ×S U ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same sym-
bols). Now, as Zuniv ⊂ R ×s,U,g U ′ is open and R′ → R ×s,U,g U ′ is étale (as a base
change of U ′ → U ) we see that Zuniv → R′ is an open immersion. By construction the
morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the point u′ of U ′.

We think of u as a morphism Spec(κ(u)) → U as in the statement of the lemma. Set
Fu = R ×s,U Spec(κ(u)). The set {r ∈ R : s(r) = u, t(r) = u} is finite by assumption
and Fu → Spec(κ(u)) is quasi-finite at each of its elements by assumption. Hence we can
find a decomposition into open and closed subschemes

Fu = Zu qRest



5896 79. MORE ON GROUPOIDS IN SPACES

for some scheme Zu finite over κ(u) whose support is {r ∈ R : s(r) = u, t(r) = u}.
Note that e(u) ∈ Zu. Hence by the construction of U ′ in Section 14 (u,Zu) defines a
Spec(κ(u))-valued point u′ of U ′.

We still have to show that the set {r′ ∈ |R′| : s′(r′) = u′, t′(r′) = u′} is contained in
|Zuniv|. Pick any point r′ in this set and represent it by a morphism z′ : Spec(k) → R′.
Denote z : Spec(k) → R the composition of z′ with the map R′ → R. Clearly, z
defines an element of the set {r ∈ R : s(r) = u, t(r) = u}. Also, the compositions
s ◦ z, t ◦ z : Spec(k)→ U factor through u, so we may think of s ◦ z, t ◦ z as a morphism
Spec(k) → Spec(κ(u)). Then z′ = (z, u′ ◦ t ◦ z, u′ ◦ s ◦ u) as morphisms into R′ =
R×(U×SU) (U ′ ×S U ′). Consider the triple

(s ◦ z, Zu ×Spec(κ(u)),s◦z Spec(k), z)

where Zu is as above. This defines a Spec(k)-valued point of Zuniv whose image via s′, t′

in U ′ is u′ and whose image via Zuniv → R′ is the point r′ by the relationship between z
and z′ mentioned above. This finishes the proof. �

Lemma 15.6 (Existence of splitting). In Situation 15.3 there exists an algebraic space
U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u)) → U ′ lying over u :
Spec(κ(u))→ U such that the restriction R′ = R|U ′ of R to U ′ is split over u′.

Proof. Let f : (U ′, Zuniv, s
′, t′, c′) → (U,R, s, t, c) be as constructed in Lemma

14.1. Recall that R′ = R ×(U×SU) (U ′ ×S U ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same sym-
bols). Now, as Zuniv ⊂ R ×s,U,g U ′ is open and R′ → R ×s,U,g U ′ is étale (as a base
change of U ′ → U ) we see that Zuniv → R′ is an open immersion. By construction the
morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the point u′ of U ′.

We think of u as a morphism Spec(κ(u)) → U as in the statement of the lemma. Set
Fu = R ×s,U Spec(κ(u)). Let Gu ⊂ Fu be the scheme theoretic fibre of G→ U over u.
By assumption Gu is finite and Fu → Spec(κ(u)) is quasi-finite at each point of Gu by
assumption. Hence we can find a decomposition into open and closed subschemes

Fu = Zu qRest

for some scheme Zu finite over κ(u) whose support is Gu. Note that e(u) ∈ Zu. Hence
by the construction of U ′ in Section 14 (u,Zu) defines a Spec(κ(u))-valued point u′ of
U ′.

We still have to show that the set {g′ ∈ |G′| : g′ maps to u′} is contained in |Zuniv|.
Pick any point g′ in this set and represent it by a morphism z′ : Spec(k) → G′. Denote
z : Spec(k)→ G the composition of z′ with the map G′ → G. Clearly, z defines a point
of Gu. In fact, let us write ũ : Spec(k) → u → U for the corresponding map to u or U .
Consider the triple

(ũ, Zu ×u,ũ Spec(k), z)
where Zu is as above. This defines a Spec(k)-valued point of Zuniv whose image via s′, t′

in U ′ is u′ and whose image via Zuniv → R′ is the point z′ (because the image in R is z).
This finishes the proof. �
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Lemma 15.7 (Existence of quasi-splitting). In Situation 15.4 there exists an algebraic
space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u)) → U ′ lying over
u : Spec(κ(u))→ U such that the restrictionR′ = R|U ′ ofR to U ′ is quasi-split over u′.

Proof. Let f : (U ′, Zuniv, s
′, t′, c′) → (U,R, s, t, c) be as constructed in Lemma

14.1. Recall that R′ = R ×(U×SU) (U ′ ×S U ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same sym-
bols). Now, as Zuniv ⊂ R ×s,U,g U ′ is open and R′ → R ×s,U,g U ′ is étale (as a base
change of U ′ → U ) we see that Zuniv → R′ is an open immersion. By construction the
morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the point u′ of U ′.

We think of u as a morphism Spec(κ(u)) → U as in the statement of the lemma. Set
Fu = R ×s,U Spec(κ(u)). The morphism Fu → Spec(κ(u)) is quasi-finite at e(u) by
assumption. Hence we can find a decomposition into open and closed subschemes

Fu = Zu qRest
for some scheme Zu finite over κ(u) whose support is e(u). Hence by the construction of
U ′ in Section 14 (u,Zu) defines a Spec(κ(u))-valued point u′ of U ′. To finish the proof
we have to show that e′(u′) ∈ Zuniv which is clear. �

Finally, when we add additional assumptions we obtain schemes.

Lemma 15.8. In Situation 15.2 assume in addition that s, t are flat and locally of finite
presentation. Then there exists a scheme U ′, a separated étale morphism U ′ → U , and a
point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R
to U ′ is strongly split over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 15.5 because
in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas 12.14 and 12.15.

�

Lemma 15.9. In Situation 15.3 assume in addition that s, t are flat and locally of finite
presentation. Then there exists a scheme U ′, a separated étale morphism U ′ → U , and a
point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R
to U ′ is split over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 15.6 because
in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas 12.14 and 12.15.

�

Lemma 15.10. In Situation 15.4 assume in addition that s, t are flat and locally of
finite presentation. Then there exists a scheme U ′, a separated étale morphism U ′ → U ,
and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the restriction R′ = R|U ′

of R to U ′ is quasi-split over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 15.7 because
in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas 12.14 and 12.15.

�

In fact we can obtain affine schemes by applying an earlier result on finite locally free
groupoids.
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Lemma 15.11. In Situation 15.2 assume in addition that s, t are flat and locally of
finite presentation and that U is affine. Then there exists an affine scheme U ′, an étale
morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the
restriction R′ = R|U ′ of R to U ′ is strongly split over u′.

Proof. Let U ′ → U and u′ ∈ U ′ be the separated étale morphism of schemes we
found in Lemma 15.8. Let P ⊂ R′ be the strong splitting of R′ over u′. By More on
Groupoids, Lemma 9.1 the morphisms s′, t′ : R′ → U ′ are flat and locally of finite pre-
sentation. They are finite by assumption. Hence s′, t′ are finite locally free, see Mor-
phisms, Lemma 48.2. In particular t(s−1(u′)) is a finite set of points {u′

1, u
′
2, . . . , u

′
n} of

U ′. Choose a quasi-compact open W ⊂ U ′ containing each u′
i. As U is affine the mor-

phism W → U is quasi-compact (see Schemes, Lemma 19.2). The morphism W → U
is also locally quasi-finite (see Morphisms, Lemma 36.6) and separated. Hence by More
on Morphisms, Lemma 43.2 (a version of Zariski’s Main Theorem) we conclude that W
is quasi-affine. By Properties, Lemma 29.5 we see that {u′

1, . . . , u
′
n} are contained in an

affine open ofU ′. Thus we may apply Groupoids, Lemma 24.1 to conclude that there exists
an affine P -invariant open U ′′ ⊂ U ′ which contains u′.
To finish the proof denote R′′ = R|U ′′ the restriction of R to U ′′. This is the same as the
restriction of R′ to U ′′. As P ⊂ R′ is an open and closed subscheme, so is P |U ′′ ⊂ R′′.
By construction the open subscheme U ′′ ⊂ U ′ is P -invariant which means that P |U ′′ =
(s′|P )−1(U ′′) = (t′|P )−1(U ′′) (see discussion in Groupoids, Section 19) so the restrictions
of s′′ and t′′ toP |U ′′ are still finite. The sub groupoid schemeP |U ′′ is still a strong splitting
of R′′ over u′′; above we verified (a), (b) and (c) holds as {r′ ∈ R′ : t′(r′) = u′, s′(r′) =
u′} = {r′′ ∈ R′′ : t′′(r′′) = u′, s′′(r′′) = u′} trivially. The lemma is proved. �

Lemma 15.12. In Situation 15.3 assume in addition that s, t are flat and locally of
finite presentation and that U is affine. Then there exists an affine scheme U ′, an étale
morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the
restriction R′ = R|U ′ of R to U ′ is split over u′.

Proof. The proof of this lemma is literally the same as the proof of Lemma 15.11
except that “strong splitting” needs to be replaced by “splitting” (2 times) and that the
reference to Lemma 15.8 needs to be replaced by a reference to Lemma 15.9. �

Lemma 15.13. In Situation 15.4 assume in addition that s, t are flat and locally of
finite presentation and that U is affine. Then there exists an affine scheme U ′, an étale
morphism U ′ → U , and a point u′ ∈ U ′ lying over u with κ(u) = κ(u′) such that the
restriction R′ = R|U ′ of R to U ′ is quasi-split over u′.

Proof. The proof of this lemma is literally the same as the proof of Lemma 15.11
except that “strong splitting” needs to be replaced by “quasi-splitting” (2 times) and that
the reference to Lemma 15.8 needs to be replaced by a reference to Lemma 15.10. �
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CHAPTER 80

Bootstrap

1. Introduction

In this chapter we use the material from the preceding sections to give criteria under which
a presheaf of sets on the category of schemes is an algebraic space. Some of this material
comes from the work of Artin, see [?], [?], [?], [?], [?], [?], [?], and [?]. However, our method
will be to use as much as possible arguments similar to those of the paper by Keel and Mori,
see [?].

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Morphisms representable by algebraic spaces

Here we define the notion of one presheaf being relatively representable by algebraic spaces
over another, and we prove some properties of this notion.

Definition 3.1. Let S be a scheme contained in Schfppf . Let F , G be presheaves
on Schfppf/S. We say a morphism a : F → G is representable by algebraic spaces if
for every U ∈ Ob((Sch/S)fppf ) and any ξ : U → G the fiber product U ×ξ,G F is an
algebraic space.

Here is a sanity check.

Lemma 3.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then f is representable by algebraic spaces.

Proof. This is formal. It relies on the fact that the category of algebraic spaces over
S has fibre products, see Spaces, Lemma 7.3. �

Lemma 3.3. Let S be a scheme. Let

G′ ×G F //

a′

��

F

a

��
G′ // G

be a fibre square of presheaves on (Sch/S)fppf . If a is representable by algebraic spaces so
is a′.

5901
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Proof. Omitted. Hint: This is formal. �

Lemma 3.4. LetS be a scheme contained in Schfppf . LetF,G : (Sch/S)oppfppf → Sets.
Let a : F → G be representable by algebraic spaces. If G is a sheaf, then so is F .

Proof. (Same as the proof of Spaces, Lemma 3.5.) Let {ϕi : Ti → T} be a covering
of the site (Sch/S)fppf . Let si ∈ F (Ti) which satisfy the sheaf condition. Then σi =
a(si) ∈ G(Ti) satisfy the sheaf condition also. Hence there exists a unique σ ∈ G(T ) such
that σi = σ|Ti . By assumption F ′ = hT ×σ,G,a F is a sheaf. Note that (ϕi, si) ∈ F ′(Ti)
satisfy the sheaf condition also, and hence come from some unique (idT , s) ∈ F ′(T ).
Clearly s is the section of F we are looking for. �

Lemma 3.5. LetS be a scheme contained in Schfppf . LetF,G : (Sch/S)oppfppf → Sets.
Let a : F → G be representable by algebraic spaces. Then ∆F/G : F → F ×G F is
representable by algebraic spaces.

Proof. (Same as the proof of Spaces, Lemma 3.6.) Let U be a scheme. Let ξ =
(ξ1, ξ2) ∈ (F ×G F )(U). Set ξ′ = a(ξ1) = a(ξ2) ∈ G(U). By assumption there exist
an algebraic space V and a morphism V → U representing the fibre product U ×ξ′,G F .
In particular, the elements ξ1, ξ2 give morphisms f1, f2 : U → V over U . Because V
represents the fibre product U ×ξ′,G F and because ξ′ = a ◦ ξ1 = a ◦ ξ2 we see that if
g : U ′ → U is a morphism then

g∗ξ1 = g∗ξ2 ⇔ f1 ◦ g = f2 ◦ g.
In other words, we see that U ×ξ,F×GF F is represented by V ×∆,V×V,(f1,f2) U which is
an algebraic space. �

The proof of Lemma 3.6 below is actually slightly tricky. Namely, we cannot use the ar-
gument of the proof of Spaces, Lemma 11.3 because we do not yet know that a composition
of transformations representable by algebraic spaces is representable by algebraic spaces.
In fact, we will use this lemma to prove that statement.

Lemma 3.6. LetS be a scheme contained in Schfppf . LetF,G : (Sch/S)oppfppf → Sets.
Let a : F → G be representable by algebraic spaces. If G is an algebraic space, then so is
F .

Proof. We have seen in Lemma 3.4 that F is a sheaf.
LetU be a scheme and letU → G be a surjective étale morphism. In this caseU×GF is an
algebraic space. Let W be a scheme and let W → U ×G F be a surjective étale morphism.
First we claim thatW → F is representable. To see this letX be a scheme and letX → F
be a morphism. Then

W ×F X = W ×U×GF U ×G F ×F X = W ×U×GF (U ×G X)
Since both U ×G F and G are algebraic spaces we see that this is a scheme.
Next, we claim that W → F is surjective and étale (this makes sense now that we know
it is representable). This follows from the formula above since both W → U ×G F and
U → G are étale and surjective, henceW×U×GF (U×GX)→ U×GX andU×GX → X
are surjective and étale, and the composition of surjective étale morphisms is surjective and
étale.
Set R = W ×F W . By the above R is a scheme and the projections t, s : R → W are
étale. It is clear that R is an equivalence relation, and W → F is a surjection of sheaves.



3. MORPHISMS REPRESENTABLE BY ALGEBRAIC SPACES 5903

Hence R is an étale equivalence relation and F = W/R. Hence F is an algebraic space by
Spaces, Theorem 10.5. �

Lemma 3.7. LetS be a scheme. Leta : F → G be a map of presheaves on (Sch/S)fppf .
Suppose a : F → G is representable by algebraic spaces. If X is an algebraic space over S ,
and X → G is a map of presheaves then X ×G F is an algebraic space.

Proof. By Lemma 3.3 the transformationX×GF → X is representable by algebraic
spaces. Hence it is an algebraic space by Lemma 3.6. �

Lemma 3.8. Let S be a scheme. Let

F
a // G

b // H

be maps of presheaves on (Sch/S)fppf . If a and b are representable by algebraic spaces, so
is b ◦ a.

Proof. Let T be a scheme over S , and let T → H be a morphism. By assumption
T ×HG is an algebraic space. Hence by Lemma 3.7 we see that T ×H F = (T ×HG)×GF
is an algebraic space as well. �

Lemma 3.9. Let S be a scheme. Let Fi, Gi : (Sch/S)oppfppf → Sets, i = 1, 2. Let
ai : Fi → Gi, i = 1, 2 be representable by algebraic spaces. Then

a1 × a2 : F1 × F2 −→ G1 ×G2

is a representable by algebraic spaces.

Proof. Write a1×a2 as the composition F1×F2 → G1×F2 → G1×G2. The first
arrow is the base change of a1 by the map G1 × F2 → G1, and the second arrow is the
base change of a2 by the map G1 ×G2 → G2. Hence this lemma is a formal consequence
of Lemmas 3.8 and 3.3. �

Lemma 3.10. Let S be a scheme. Let a : F → G and b : G → H be transformations
of functors (Sch/S)oppfppf → Sets. Assume

(1) ∆ : G→ G×H G is representable by algebraic spaces, and
(2) b ◦ a : F → H is representable by algebraic spaces.

Then a is representable by algebraic spaces.

Proof. Let U be a scheme over S and let ξ ∈ G(U). Then

U ×ξ,G,a F = (U ×b(ξ),H,b◦a F )×(ξ,a),(G×HG),∆ G

Hence the result using Lemma 3.7. �

Lemma 3.11. Let S ∈ Ob(Schfppf ). Let F be a presheaf of sets on (Sch/S)fppf .
Assume

(1) F is a sheaf for the Zariski topology on (Sch/S)fppf ,
(2) there exists an index set I and subfunctors Fi ⊂ F such that

(a) each Fi is an fppf sheaf,
(b) each Fi → F is representable by algebraic spaces,
(c)
∐
Fi → F becomes surjective after fppf sheafification.

Then F is an fppf sheaf.
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Proof. Let T ∈ Ob((Sch/S)fppf ) and let s ∈ F (T ). By (2)(c) there exists an fppf
covering {Tj → T} such that s|Tj is a section of Fα(j) for some α(j) ∈ I . Let Wj ⊂ T

be the image of Tj → T which is an open subscheme Morphisms, Lemma 25.10. By (2)(b)
we see Fα(j)×F,s|Wj Wj →Wj is a monomorphism of algebraic spaces through which Tj
factors. Since {Tj →Wj} is an fppf covering, we conclude that Fα(j) ×F,s|Wj Wj = Wj ,
in other words s|Wj

∈ Fα(j)(Wj). Hence we conclude that
∐
Fi → F is surjective for

the Zariski topology.

Let {Tj → T} be an fppf covering in (Sch/S)fppf . Let s, s′ ∈ F (T ) with s|Tj = s′|Tj
for all j. We want to show that s, s′ are equal. As F is a Zariski sheaf by (1) we may
work Zariski locally on T . By the result of the previous paragraph we may assume there
exist i such that s ∈ Fi(T ). Then we see that s′|Tj is a section of Fi. By (2)(b) we see
Fi ×F,s′ T → T is a monomorphism of algebraic spaces through which all of the Tj
factor. Hence we conclude that s′ ∈ Fi(T ). Since Fi is a sheaf for the fppf topology we
conclude that s = s′.

Let {Tj → T} be an fppf covering in (Sch/S)fppf and let sj ∈ F (Tj) such that sj |Tj×TTj′ =
sj′ |Tj×TTj′ . By assumption (2)(b) we may refine the covering and assume that sj ∈
Fα(j)(Tj) for some α(j) ∈ I . Let Wj ⊂ T be the image of Tj → T which is an open
subscheme Morphisms, Lemma 25.10. Then {Tj → Wj} is an fppf covering. Since Fα(j)
is a sub presheaf of F we see that the two restrictions of sj to Tj ×Wj

Tj agree as ele-
ments of Fα(j)(Tj ×Wj

Tj). Hence, the sheaf condition for Fα(j) implies there exists a
s′
j ∈ Fα(j)(Wj) whose restriction to Tj is sj . For a pair of indices j and j′ the sections
s′
j |Wj∩Wj′ and s′

j′ |Wj∩Wj′ of F agree by the result of the previous paragraph. This fin-
ishes the proof by the fact that F is a Zariski sheaf. �

4. Properties of maps of presheaves representable by algebraic spaces

Here is the definition that makes this work.

Definition 4.1. Let S be a scheme. Let a : F → G be a map of presheaves on
(Sch/S)fppf which is representable by algebraic spaces. LetP be a property of morphisms
of algebraic spaces which

(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 10.1.

In this case we say that a has property P if for every scheme U and ξ : U → G the
resulting morphism of algebraic spaces U ×G F → U has property P .

It is important to note that we will only use this definition for properties of morphisms
that are stable under base change, and local in the fppf topology on the base. This is not
because the definition doesn’t make sense otherwise; rather it is because we may want to
give a different definition which is better suited to the property we have in mind.

The definition above applies1 for example to the properties of being “surjective”, “quasi-
compact”, “étale”, “smooth”, “flat”, “separated”, “(locally) of finite type”, “(locally) quasi-
finite”, “(locally) of finite presentation”, “affine”, “proper”, and “a closed immersion”. In
other words, a is surjective (resp. quasi-compact, étale, smooth, flat, separated, (locally)

1Being preserved under base change holds by Morphisms of Spaces, Lemmas 5.5, 8.4, 39.4, 37.3, 30.4, 4.4,
23.3, 27.4, 28.3, 20.5, 40.3, and Spaces, Lemma 12.3. Being fppf local on the base holds by Descent on Spaces,
Lemmas 11.6, 11.1, 11.28, 11.26, 11.13, 11.18, 11.11, 11.24, 11.10, 11.16, 11.19, and 11.17.
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of finite type, (locally) quasi-finite, (locally) of finite presentation, proper, a closed im-
mersion) if for every scheme T and map ξ : T → G the morphism of algebraic spaces
T ×ξ,G F → T is surjective (resp. quasi-compact, étale, flat, separated, (locally) of finite
type, (locally) quasi-finite, (locally) of finite presentation, proper, a closed immersion).

Next, we check consistency with the already existing notions. By Lemma 3.2 any mor-
phism between algebraic spaces over S is representable by algebraic spaces. And by Mor-
phisms of Spaces, Lemma 5.3 (resp. 8.8, 39.2, 37.4, 30.5, 4.12, 23.4, 27.6, 28.4, 20.3, 40.2,
12.1) the definition of surjective (resp. quasi-compact, étale, smooth, flat, separated, (lo-
cally) of finite type, (locally) quasi-finite, (locally) of finite presentation, affine, proper,
closed immersion) above agrees with the already existing definition of morphisms of al-
gebraic spaces.

Some formal lemmas follow.

Lemma 4.2. Let S be a scheme. Let P be a property as in Definition 4.1. Let

G′ ×G F //

a′

��

F

a

��
G′ // G

be a fibre square of presheaves on (Sch/S)fppf . If a is representable by algebraic spaces
and has P so does a′.

Proof. Omitted. Hint: This is formal. �

Lemma 4.3. Let S be a scheme. Let P be a property as in Definition 4.1, and assume
P is stable under composition. Let

F
a // G

b // H

be maps of presheaves on (Sch/S)fppf . If a, b are representable by algebraic spaces and
has P so does b ◦ a.

Proof. Omitted. Hint: See Lemma 3.8 and use stability under composition. �

Lemma 4.4. Let S be a scheme. Let Fi, Gi : (Sch/S)oppfppf → Sets, i = 1, 2. Let
ai : Fi → Gi, i = 1, 2 be representable by algebraic spaces. Let P be a property as in
Definition 4.1 which is stable under composition. If a1 and a2 have property P so does
a1 × a2 : F1 × F2 −→ G1 ×G2.

Proof. Note that the lemma makes sense by Lemma 3.9. Proof omitted. �

Lemma 4.5. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets. Let a : F → G be a
transformation of functors representable by algebraic spaces. Let P , P ′ be properties as in
Definition 4.1. Suppose that for any morphism f : X → Y of algebraic spaces over S we
have P(f)⇒ P ′(f). If a has property P , then a has property P ′.

Proof. Formal. �

Lemma 4.6. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets be sheaves. Let
a : F → G be representable by algebraic spaces, flat, locally of finite presentation, and
surjective. Then a : F → G is surjective as a map of sheaves.
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Proof. Let T be a scheme over S and let g : T → G be a T -valued point of G.
By assumption T ′ = F ×G T is an algebraic space and the morphism T ′ → T is a flat,
locally of finite presentation, and surjective morphism of algebraic spaces. Let U → T ′ be
a surjective étale morphism, whereU is a scheme. Then by the definition of flat morphisms
of algebraic spaces the morphism of schemes U → T is flat. Similarly for “locally of finite
presentation”. The morphism U → T is surjective also, see Morphisms of Spaces, Lemma
5.3. Hence we see that {U → T} is an fppf covering such that g|U ∈ G(U) comes from
an element of F (U), namely the map U → T ′ → F . This proves the map is surjective as
a map of sheaves, see Sites, Definition 11.1. �

5. Bootstrapping the diagonal

In this section we prove that the diagonal of a sheaf F on (Sch/S)fppf is representable as
soon as there exists an “fppf cover” of F by a scheme or by an algebraic space, see Lemma
5.3.

Lemma 5.1. Let S be a scheme. If F is a presheaf on (Sch/S)fppf . The following are
equivalent:

(1) ∆F : F → F × F is representable by algebraic spaces,
(2) for every scheme T any map T → F is representable by algebraic spaces, and
(3) for every algebraic spaceX any mapX → F is representable by algebraic spaces.

Proof. Assume (1). Let X → F be as in (3). Let T be a scheme, and let T → F be a
morphism. Then we have

T ×F X = (T ×S X)×F×F,∆ F

which is an algebraic space by Lemma 3.7 and (1). Hence X → F is representable, i.e.,
(3) holds. The implication (3) ⇒ (2) is trivial. Assume (2). Let T be a scheme, and let
(a, b) : T → F × F be a morphism. Then

F ×∆F ,F×F T = (T ×a,F,b T )×T×T,∆T
T

which is an algebraic space by assumption. Hence ∆F is representable by algebraic spaces,
i.e., (1) holds. �

In particular if F is a presheaf satisfying the equivalent conditions of the lemma, then for
any morphismX → F whereX is an algebraic space it makes sense to say thatX → F is
surjective (resp. étale, flat, locally of finite presentation) by using Definition 4.1.

Before we actually do the bootstrap we prove a fun lemma.

Lemma 5.2. Let S be a scheme. Let

E
a
//

f

��

F

g

��
H

b // G

be a cartesian diagram of sheaves on (Sch/S)fppf , so E = H ×G F . If
(1) g is representable by algebraic spaces, surjective, flat, and locally of finite presen-

tation, and
(2) a is representable by algebraic spaces, separated, and locally quasi-finite

then b is representable (by schemes) as well as separated and locally quasi-finite.
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Proof. Let T be a scheme, and let T → G be a morphism. We have to show that
T ×GH is a scheme, and that the morphism T ×GH → T is separated and locally quasi-
finite. Thus we may base change the whole diagram to T and assume that G is a scheme.
In this case F is an algebraic space. Let U be a scheme, and let U → F be a surjective étale
morphism. Then U → F is representable, surjective, flat and locally of finite presentation
by Morphisms of Spaces, Lemmas 39.7 and 39.8. By Lemma 3.8 U → G is surjective, flat
and locally of finite presentation also. Note that the base changeE×F U → U of a is still
separated and locally quasi-finite (by Lemma 4.2). Hence we may replace the upper part of
the diagram of the lemma byE×F U → U . In other words, we may assume thatF → G is
a surjective, flat morphism of schemes which is locally of finite presentation. In particular,
{F → G} is an fppf covering of schemes. By Morphisms of Spaces, Proposition 50.2 we
conclude that E is a scheme also. By Descent, Lemma 39.1 the fact that E = H ×G F
means that we get a descent datum onE relative to the fppf covering {F → G}. By More
on Morphisms, Lemma 57.1 this descent datum is effective. By Descent, Lemma 39.1 again
this implies that H is a scheme. By Descent, Lemmas 23.6 and 23.24 it now follows that b
is separated and locally quasi-finite. �

Here is the result that the section title refers to.

Lemma 5.3. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Assume
that

(1) the presheaf F is a sheaf,
(2) there exists an algebraic space X and a map X → F which is representable by

algebraic spaces, surjective, flat and locally of finite presentation.
Then ∆F is representable (by schemes).

Proof. Let U → X be a surjective étale morphism from a scheme towards X . Then
U → X is representable, surjective, flat and locally of finite presentation by Morphisms
of Spaces, Lemmas 39.7 and 39.8. By Lemma 4.3 the composition U → F is representable
by algebraic spaces, surjective, flat and locally of finite presentation also. Thus we see that
R = U ×F U is an algebraic space, see Lemma 3.7. The morphism of algebraic spaces
R → U ×S U is a monomorphism, hence separated (as the diagonal of a monomorphism
is an isomorphism, see Morphisms of Spaces, Lemma 10.2). SinceU → F is locally of finite
presentation, both morphisms R → U are locally of finite presentation, see Lemma 4.2.
Hence R → U ×S U is locally of finite type (use Morphisms of Spaces, Lemmas 28.5 and
23.6). Altogether this means that R → U ×S U is a monomorphism which is locally of
finite type, hence a separated and locally quasi-finite morphism, see Morphisms of Spaces,
Lemma 27.10.
Now we are ready to prove that ∆F is representable. Let T be a scheme, and let (a, b) :
T → F × F be a morphism. Set

T ′ = (U ×S U)×F×F T.

Note thatU×SU → F ×F is representable by algebraic spaces, surjective, flat and locally
of finite presentation by Lemma 4.4. Hence T ′ is an algebraic space, and the projection
morphism T ′ → T is surjective, flat, and locally of finite presentation. Consider Z =
T ×F×F F (this is a sheaf) and

Z ′ = T ′ ×U×SU R = T ′ ×T Z.
We see that Z ′ is an algebraic space, and Z ′ → T ′ is separated and locally quasi-finite by
the discussion in the first paragraph of the proof which showed thatR is an algebraic space
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and that the morphism R → U ×S U has those properties. Hence we may apply Lemma
5.2 to the diagram

Z ′ //

��

T ′

��
Z // T

and we conclude. �

Here is a variant of the result above.

Lemma 5.4. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. LetX be a
scheme and letX → F be representable by algebraic spaces and locally quasi-finite. Then
X → F is representable (by schemes).

Proof. Let T be a scheme and let T → F be a morphism. We have to show that the
algebraic space X ×F T is representable by a scheme. Consider the morphism

X ×F T −→ X ×Spec(Z) T

SinceX×F T → T is locally quasi-finite, so is the displayed arrow (Morphisms of Spaces,
Lemma 27.8). On the other hand, the displayed arrow is a monomorphism and hence
separated (Morphisms of Spaces, Lemma 10.3). Thus X ×F T is a scheme by Morphisms
of Spaces, Proposition 50.2. �

6. Bootstrap

We warn the reader right away that the result of this section will be superseded by the
stronger Theorem 10.1. On the other hand, the theorem in this section is quite a bit easier
to prove and still provides quite a bit of insight into how things work, especially for those
readers mainly interested in Deligne-Mumford stacks.
In Spaces, Section 6 we defined an algebraic space as a sheaf in the fppf topology whose
diagonal is representable, and such that there exist a surjective étale morphism from a
scheme towards it. In this section we show that a sheaf in the fppf topology whose diag-
onal is representable by algebraic spaces and which has an étale surjective covering by an
algebraic space is also an algebraic space. In other words, the category of algebraic spaces
is an enlargement of the category of schemes by those fppf sheaves F which have a repre-
sentable diagonal and an étale covering by a scheme. The result of this section says that
doing the same process again starting with the category of algebraic spaces, does not lead
to yet another category.
Another motivation for the material in this section is that it will guarantee later that a
Deligne-Mumford stack whose inertia stack is trivial is equivalent to an algebraic space,
see Algebraic Stacks, Lemma 13.2.
Here is the main result of this section (as we mentioned above this will be superseded by
the stronger Theorem 10.1).

Theorem 6.1. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Assume
that

(1) the presheaf F is a sheaf,
(2) the diagonal morphism F → F × F is representable by algebraic spaces, and
(3) there exists an algebraic space X and a map X → F which is surjective, and

étale.
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or assume that
(a) the presheaf F is a sheaf, and
(b) there exists an algebraic space X and a map X → F which is representable by

algebraic paces, surjective, and étale.
Then F is an algebraic space.

Proof. We will use the remarks directly below Definition 4.1 without further men-
tion.

Assume (1), (2), and (3) and let X → F be as in (3). By Lemma 5.1 the morphism X → F
is representable by algebraic spaces. Thus we see that (a) and (b) hold.

Assume (a) and (b) and letX → F be as in (b). Let U → X be a surjective étale morphism
from a scheme towards X . By Lemma 3.8 the transformation U → F is representable by
algebraic spaces, surjective, and étale. Hence to prove that F is an algebraic space boils
down to proving that ∆F is representable (Spaces, Definition 6.1). This follows imme-
diately from Lemma 5.3. On the other hand we can circumvent this lemma and show
directly F is an algebraic space as in the next paragraph.

Namely, let U be a scheme and let U → F be representable by algebraic spaces, surjec-
tive, and étale. Consider the fibre product R = U ×F U . Both projections R → U
are representable by algebraic spaces, surjective, and étale (Lemma 4.2). In particular R is
an algebraic space by Lemma 3.6. The morphism of algebraic spaces R → U ×S U is a
monomorphism, hence separated (as the diagonal of a monomorphism is an isomorphism).
Since R→ U is étale, we see that R→ U is locally quasi-finite, see Morphisms of Spaces,
Lemma 39.5. We conclude that also R → U ×S U is locally quasi-finite by Morphisms
of Spaces, Lemma 27.8. Hence Morphisms of Spaces, Proposition 50.2 applies and R is a
scheme. By Lemma 4.6 the map U → F is a surjection of sheaves. Thus F = U/R. We
conclude that F is an algebraic space by Spaces, Theorem 10.5. �

7. Finding opens

First we prove a lemma which is a slight improvement and generalization of Spaces, Lemma
10.2 to quotient sheaves associated to groupoids.

Lemma 7.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let
g : U ′ → U be a morphism. Assume

(1) the composition

U ′ ×g,U,t R pr1
//

h

((
R

s
// U

has an open image W ⊂ U , and
(2) the resulting map h : U ′ ×g,U,t R → W defines a surjection of sheaves in the

fppf topology.
Let R′ = R|U ′ be the restriction of R to U ′. Then the map of quotient sheaves

U ′/R′ → U/R

in the fppf topology is representable, and is an open immersion.
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Proof. Note thatW is anR-invariant open subscheme of U . This is true because the
set of points ofW is the set of points of U which are equivalent in the sense of Groupoids,
Lemma 3.4 to a point of g(U ′) ⊂ U (the lemma applies as j : R → U ×S U is a pre-
equivalence relation by Groupoids, Lemma 13.2). Also g : U ′ → U factors through W .
Let R|W be the restriction of R to W . Then it follows that R′ is also the restriction of
R|W to U ′. Hence we can factor the map of sheaves of the lemma as

U ′/R′ −→W/R|W −→ U/R

By Groupoids, Lemma 20.6 we see that the first arrow is an isomorphism of sheaves. Hence
it suffices to show the lemma in case g is the immersion of an R-invariant open into U .

Assume U ′ ⊂ U is an R-invariant open and g is the inclusion morphism. Set F = U/R
and F ′ = U ′/R′. By Groupoids, Lemma 20.5 or 20.6 the map F ′ → F is injective. Let
ξ ∈ F (T ). We have to show that T ×ξ,F F ′ is representable by an open subscheme of T .
There exists an fppf covering {fi : Ti → T} such that ξ|Ti is the image via U → U/R of
a morphism ai : Ti → U . Set Vi = a−1

i (U ′). We claim that Vi×T Tj = Ti×T Vj as open
subschemes of Ti ×T Tj .

As ai ◦ pr0 and aj ◦ pr1 are morphisms Ti ×T Tj → U which both map to the section
ξ|Ti×TTj ∈ F (Ti ×T Tj) we can find an fppf covering {fijk : Tijk → Ti ×T Tj} and
morphisms rijk : Tijk → R such that

ai ◦ pr0 ◦ fijk = s ◦ rijk, aj ◦ pr1 ◦ fijk = t ◦ rijk,

see Groupoids, Lemma 20.4. Since U ′ is R-invariant we have s−1(U ′) = t−1(U ′) and
hence f−1

ijk(Vi ×T Tj) = f−1
ijk(Ti ×T Vj). As {fijk} is surjective this implies the claim

above. Hence by Descent, Lemma 13.6 there exists an open subscheme V ⊂ T such that
f−1
i (V ) = Vi. We claim that V represents T ×ξ,F F ′.

As a first step, we will show that ξ|V lies in F ′(V ) ⊂ F (V ). Namely, the family of
morphisms {Vi → V } is an fppf covering, and by construction we have ξ|Vi ∈ F ′(Vi).
Hence by the sheaf property ofF ′ we get ξ|V ∈ F ′(V ). Finally, letT ′ → T be a morphism
of schemes and that ξ|T ′ ∈ F ′(T ′). To finish the proof we have to show that T ′ → T
factors through V . We can find a fppf covering {T ′

j → T ′}j∈J and morphisms bj : T ′
j →

U ′ such that ξ|T ′
j

is the image via U ′ → U/R of bj . Clearly, it is enough to show that
the compositions T ′

j → T factor through V . Hence we may assume that ξ|T ′ is the image
of a morphism b : T ′ → U ′. Now, it is enough to show that T ′ ×T Ti → Ti factors
through Vi. Over the scheme T ′ ×T Ti the restriction of ξ is the image of two elements
of (U/R)(T ′ ×T Ti), namely ai ◦ pr1, and b ◦ pr0, the second of which factors through
the R-invariant open U ′. Hence by Groupoids, Lemma 20.4 there exists a covering {hk :
Zk → T ′ ×T Ti} and morphisms rk : Zk → R such that ai ◦ pr1 ◦ hk = s ◦ rk and
b ◦ pr0 ◦ hk = t ◦ rk. As U ′ is an R-invariant open the fact that b has image in U ′ then
implies that each ai ◦ pr1 ◦ hk has image in U ′. It follows from this that T ′ ×T Ti → Ti
has image in Vi by definition of Vi which concludes the proof. �

8. Slicing equivalence relations

In this section we explain how to “improve” a given equivalence relation by slicing. This
is not a kind of “étale slicing” that you may be used to but a much coarser kind of slicing.

Lemma 8.1. Let S be a scheme. Let j : R → U ×S U be an equivalence relation on
schemes over S. Assume s, t : R → U are flat and locally of finite presentation. Then
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there exists an equivalence relation j′ : R′ → U ′ ×S U ′ on schemes over S , and an
isomorphism

U ′/R′ −→ U/R

induced by a morphism U ′ → U which maps R′ into R such that s′, t′ : R → U are flat,
locally of finite presentation and locally quasi-finite.

Proof. We will prove this lemma in several steps. We will use without further men-
tion that an equivalence relation gives rise to a groupoid scheme and that the restriction
of an equivalence relation is an equivalence relation, see Groupoids, Lemmas 3.2, 13.3, and
18.3.
Step 1: We may assume that s, t : R → U are locally of finite presentation and Cohen-
Macaulay morphisms. Namely, as in More on Groupoids, Lemma 8.1 let g : U ′ → U be
the open subscheme such that t−1(U ′) ⊂ R is the maximal open over which s : R → U
is Cohen-Macaulay, and denote R′ the restriction of R to U ′. By the lemma cited above
we see that

t−1(U ′) U ′ ×g,U,t R pr1
//

h

((
R

s
// U

is surjective. Since h is flat and locally of finite presentation, we see that {h} is a fppf
covering. Hence by Groupoids, Lemma 20.6 we see that U ′/R′ → U/R is an isomor-
phism. By the construction of U ′ we see that s′, t′ are Cohen-Macaulay and locally of
finite presentation.
Step 2. Assume s, t are Cohen-Macaulay and locally of finite presentation. Let u ∈ U be a
point of finite type. By More on Groupoids, Lemma 12.4 there exists an affine scheme U ′

and a morphism g : U ′ → U such that
(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) h is flat, locally of finite presentation and locally quasi-finite, and
(5) the morphisms s′, t′ : R′ → U ′ are flat, locally of finite presentation and locally

quasi-finite.
Here we have used the notation introduced in More on Groupoids, Situation 12.1.
Step 3. For each point u ∈ U which is of finite type choose a gu : U ′

u → U as in Step 2
and denote R′

u the restriction of R to U ′
u. Denote hu = s ◦ pr1 : U ′

u ×gu,U,t R→ U . Set
U ′ =

∐
u∈U U

′
u, and g =

∐
gu. Let R′ be the restriction of R to U ′ as above. We claim

that the pair (U ′, g) works2. Note that

R′ =
∐

u1,u2∈U
(U ′

u1
×gu1 ,U,t

R)×R (R×s,U,gu2
U ′
u2

)

=
∐

u1,u2∈U
(U ′

u1
×gu1 ,U,t

R)×hu1 ,U,gu2
U ′
u2

Hence the projection s′ : R′ → U ′ =
∐
U ′
u2

is flat, locally of finite presentation and
locally quasi-finite as a base change of

∐
hu1 . Finally, by construction the morphism

h : U ′ ×g,U,t R → U is equal to
∐
hu hence its image contains all points of finite type

2Here we should check that U ′ is not too large, i.e., that it is isomorphic to an object of the category
Schfppf , see Section 2. This is a purely set theoretical matter; let us use the notion of size of a scheme introduced
in Sets, Section 9. Note that each U ′

u has size at most the size of U and that the cardinality of the index set is at
most the cardinality of |U | which is bounded by the size of U . Hence U ′ is isomorphic to an object of Schfppf
by Sets, Lemma 9.9 part (6).
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of U . Since each hu is flat and locally of finite presentation we conclude that h is flat
and locally of finite presentation. In particular, the image of h is open (see Morphisms,
Lemma 25.10) and since the set of points of finite type is dense (see Morphisms, Lemma
16.7) we conclude that the image of h is U . This implies that {h} is an fppf covering. By
Groupoids, Lemma 20.6 this means that U ′/R′ → U/R is an isomorphism. This finishes
the proof of the lemma. �

9. Quotient by a subgroupoid

We need one more lemma before we can do our final bootstrap. Let us discuss what is going
on in terms of “plain” groupoids before embarking on the scheme theoretic version.

Let C be a groupoid, see Categories, Definition 2.5. As discussed in Groupoids, Section 13
this corresponds to a quintuple (Ob,Arrows, s, t, c). Suppose we are given a subset P ⊂
Arrows such that (Ob, P, s|P , t|P , c|P ) is also a groupoid and such that there are no non-
trivial automorphisms inP . Then we can construct the quotient groupoid (Ob,Arrows, s, t, c)
as follows:

(1) Ob = Ob/P is the set of P -isomorphism classes,
(2) Arrows = P\Arrows/P is the set of arrows in C up to pre-composing and post-

composing by arrows of P ,
(3) the source and target maps s, t : P\Arrows/P → Ob/P are induced by s, t,
(4) composition is defined by the rule c(a, b) = c(a, b) which is well defined.

In fact, it turns out that the original groupoid (Ob,Arrows, s, t, c) is canonically isomor-
phic to the restriction (see discussion in Groupoids, Section 18) of the groupoid (Ob,Arrows, s, t, c)
via the quotient map g : Ob→ Ob. Recall that this means that

Arrows = Ob×
g,Ob,t Arrows×

s,Ob,g Ob

which holds as P has no nontrivial automorphisms. We omit the details.

The following lemma holds in much greater generality, but this is the version we use in
the proof of the final bootstrap (after which we can more easily prove the more general
versions of this lemma).

Lemma 9.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let
P → R be monomorphism of schemes. Assume that

(1) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid scheme,
(2) s|P , t|P : P → U are finite locally free,
(3) j|P : P → U ×S U is a monomorphism.
(4) U is affine, and
(5) j : R→ U ×S U is separated and locally quasi-finite,

Then U/P is representable by an affine scheme U , the quotient morphism U → U is
finite locally free, and P = U ×U U . Moreover, R is the restriction of a groupoid scheme
(U,R, s, t, c) on U via the quotient morphism U → U .

Proof. Conditions (1), (2), (3), and (4) and Groupoids, Proposition 23.9 imply the
affine scheme U representing U/P exists, the morphism U → U is finite locally free, and
P = U ×U U . The identification P = U ×U U is such that t|P = pr0 and s|P = pr1,
and such that composition is equal to pr02 : U ×U U ×U U → U ×U U . A product of
finite locally free morphisms is finite locally free (see Spaces, Lemma 5.7 and Morphisms,
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Lemmas 48.4 and 48.3). To get R we are going to descend the scheme R via the finite
locally free morphism U ×S U → U ×S U . Namely, note that

(U ×S U)×(U×SU) (U ×S U) = P ×S P

by the above. Thus giving a descent datum (see Descent, Definition 34.1) for R/U ×S
U/U ×S U consists of an isomorphism

ϕ : R×(U×SU),t×t (P ×S P ) −→ (P ×S P )×s×s,(U×SU) R

over P ×S P satisfying a cocycle condition. We define ϕ on T -valued points by the rule

ϕ : (r, (p, p′)) 7−→ ((p, p′), p−1 ◦ r ◦ p′)
where the composition is taken in the groupoid category (U(T ), R(T ), s, t, c). This makes
sense because for (r, (p, p′)) to be a T -valued point of the source of ϕ it needs to be the
case that t(r) = t(p) and s(r) = t(p′). Note that this map is an isomorphism with inverse
given by ((p, p′), r′) 7→ (p ◦ r′ ◦ (p′)−1, (p, p′)). To check the cocycle condition we have
to verify that ϕ02 = ϕ12 ◦ ϕ01 as maps over

(U×SU)×(U×SU) (U×SU)×(U×SU) (U×SU) = (P ×SP )×s×s,(U×SU),t×t (P ×SP )

By explicit calculation we see that

ϕ02 (r, (p1, p
′
1), (p2, p

′
2)) 7→ ((p1, p

′
1), (p2, p

′
2), (p1 ◦ p2)−1 ◦ r ◦ (p′

1 ◦ p′
2))

ϕ01 (r, (p1, p
′
1), (p2, p

′
2)) 7→ ((p1, p

′
1), p−1

1 ◦ r ◦ p′
1, (p2, p

′
2))

ϕ12 ((p1, p
′
1), r, (p2, p

′
2)) 7→ ((p1, p

′
1), (p2, p

′
2), p−1

2 ◦ r ◦ p′
2)

(with obvious notation) which implies what we want. As j is separated and locally quasi-
finite by (5) we may apply More on Morphisms, Lemma 57.1 to get a schemeR→ U×SU
and an isomorphism

R→ R×(U×SU) (U ×S U)

which identifies the descent datum ϕ with the canonical descent datum on R ×(U×SU)
(U ×S U), see Descent, Definition 34.10.

Since U ×S U → U ×S U is finite locally free we conclude that R → R is finite locally
free as a base change. HenceR→ R is surjective as a map of sheaves on (Sch/S)fppf . Our
choice of ϕ implies that given T -valued points r, r′ ∈ R(T ) these have the same image in
R if and only if p−1 ◦ r ◦ p′ for some p, p′ ∈ P (T ). Thus R represents the sheaf

T 7−→ R(T ) = P (T )\R(T )/P (T )
with notation as in the discussion preceding the lemma. Hence we can define the groupoid
structure on (U = U/P,R = P\R/P ) exactly as in the discussion of the “plain” groupoid
case. It follows from this that (U,R, s, t, c) is the pullback of this groupoid structure via
the morphism U → U . This concludes the proof. �

10. Final bootstrap

The following result goes quite a bit beyond the earlier results.

Theorem 10.1. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Any
one of the following conditions implies that F is an algebraic space:

(1) F = U/R where (U,R, s, t, c) is a groupoid in algebraic spaces over S such that
s, t are flat and locally of finite presentation, and j = (t, s) : R→ U ×S U is an
equivalence relation,
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(2) F = U/R where (U,R, s, t, c) is a groupoid scheme over S such that s, t are flat
and locally of finite presentation, and j = (t, s) : R→ U×SU is an equivalence
relation,

(3) F is a sheaf and there exists an algebraic space U and a morphism U → F which
is representable by algebraic spaces, surjective, flat and locally of finite presenta-
tion,

(4) F is a sheaf and there exists a scheme U and a morphism U → F which is
representable by algebraic spaces or schemes, surjective, flat and locally of finite
presentation,

(5) F is a sheaf, ∆F is representable by algebraic spaces, and there exists an algebraic
space U and a morphism U → F which is surjective, flat, and locally of finite
presentation, or

(6) F is a sheaf, ∆F is representable, and there exists a scheme U and a morphism
U → F which is surjective, flat, and locally of finite presentation.

Proof. Trivial observations: (6) is a special case of (5) and (4) is a special case of
(3). We first prove that cases (5) and (3) reduce to case (1). Namely, by bootstrapping the
diagonal Lemma 5.3 we see that (3) implies (5). In case (5) we setR = U ×F U which is an
algebraic space by assumption. Moreover, by assumption both projections s, t : R → U
are surjective, flat and locally of finite presentation. The map j : R → U ×S U is clearly
an equivalence relation. By Lemma 4.6 the map U → F is a surjection of sheaves. Thus
F = U/R which reduces us to case (1).

Next, we show that (1) reduces to (2). Namely, let (U,R, s, t, c) be a groupoid in algebraic
spaces over S such that s, t are flat and locally of finite presentation, and j = (t, s) : R→
U ×S U is an equivalence relation. Choose a scheme U ′ and a surjective étale morphism
U ′ → U . Let R′ = R|U ′ be the restriction of R to U ′. By Groupoids in Spaces, Lemma
19.6 we see that U/R = U ′/R′. Since s′, t′ : R′ → U ′ are also flat and locally of finite
presentation (see More on Groupoids in Spaces, Lemma 8.1) this reduces us to the case
where U is a scheme. As j is an equivalence relation we see that j is a monomorphism. As
s : R→ U is locally of finite presentation we see that j : R→ U ×S U is locally of finite
type, see Morphisms of Spaces, Lemma 23.6. By Morphisms of Spaces, Lemma 27.10 we see
that j is locally quasi-finite and separated. Hence if U is a scheme, then R is a scheme by
Morphisms of Spaces, Proposition 50.2. Thus we reduce to proving the theorem in case
(2).

Assume F = U/R where (U,R, s, t, c) is a groupoid scheme over S such that s, t are flat
and locally of finite presentation, and j = (t, s) : R→ U×S U is an equivalence relation.
By Lemma 8.1 we reduce to that case where s, t are flat, locally of finite presentation, and
locally quasi-finite. Let U =

⋃
i∈I Ui be an affine open covering (with index set I of

cardinality ≤ than the size of U to avoid set theoretic problems later – most readers can
safely ignore this remark). Let (Ui, Ri, si, ti, ci) be the restriction of R to Ui. It is clear
that si, ti are still flat, locally of finite presentation, and locally quasi-finite as Ri is the
open subscheme s−1(Ui) ∩ t−1(Ui) of R and si, ti are the restrictions of s, t to this open.
By Lemma 7.1 (or the simpler Spaces, Lemma 10.2) the mapUi/Ri → U/R is representable
by open immersions. Hence if we can show that Fi = Ui/Ri is an algebraic space, then∐
i∈I Fi is an algebraic space by Spaces, Lemma 8.4. As U =

⋃
Ui is an open covering it

is clear that
∐
Fi → F is surjective. Thus it follows that U/R is an algebraic space, by

Spaces, Lemma 8.5. In this way we reduce to the case where U is affine and s, t are flat,
locally of finite presentation, and locally quasi-finite and j is an equivalence.
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Assume (U,R, s, t, c) is a groupoid scheme over S , with U affine, such that s, t are flat,
locally of finite presentation, and locally quasi-finite, and j is an equivalence relation.
Choose u ∈ U . We apply More on Groupoids in Spaces, Lemma 15.13 to u ∈ U,R, s, t, c.
We obtain an affine scheme U ′, an étale morphism g : U ′ → U , a point u′ ∈ U ′ with
κ(u) = κ(u′) such that the restriction R′ = R|U ′ is quasi-split over u′. Note that the
image g(U ′) is open as g is étale and contains u. Hence, repeatedly applying the lemma,
we can find finitely many points ui ∈ U , i = 1, . . . , n, affine schemes U ′

i , étale morphisms
gi : U ′

i → U , points u′
i ∈ U ′

i with g(u′
i) = ui such that (a) each restrictionR′

i is quasi-split
over some point in U ′

i and (b) U =
⋃
i=1,...,n gi(U ′

i). Now we rerun the last part of the
argument in the preceding paragraph: Using Lemma 7.1 (or the simpler Spaces, Lemma
10.2) the map U ′

i/R
′
i → U/R is representable by open immersions. If we can show that

Fi = U ′
i/R

′
i is an algebraic space, then

∐
i∈I Fi is an algebraic space by Spaces, Lemma

8.4. As {gi : U ′
i → U} is an étale covering it is clear that

∐
Fi → F is surjective. Thus it

follows thatU/R is an algebraic space, by Spaces, Lemma 8.5. In this way we reduce to the
case whereU is affine and s, t are flat, locally of finite presentation, and locally quasi-finite,
j is an equivalence, and R is quasi-split over u for some u ∈ U .

Assume (U,R, s, t, c) is a groupoid scheme over S , with U affine, u ∈ U such that s, t are
flat, locally of finite presentation, and locally quasi-finite and j = (t, s) : R → U ×S U
is an equivalence relation and R is quasi-split over u. Let P ⊂ R be a quasi-splitting
of R over u. By Lemma 9.1 we see that (U,R, s, t, c) is the restriction of a groupoid
(U,R, s, t, c) by a surjective finite locally free morphism U → U such that P = U ×U U .
Note that s admits a factorization

R = U ×U,t R×s,U U
pr23−−→ R×s,U U

pr2−−→ U

The map pr2 is the base change of s, and the map pr23 is a base change of the surjective
finite locally free map U → U . Since s is flat, locally of finite presentation, and locally
quasi-finite and since pr23 is surjective finite locally free (as a base change of such), we
conclude that pr2 is flat, locally of finite presentation, and locally quasi-finite by Descent,
Lemmas 27.1 and 28.1 and Morphisms, Lemma 20.18. Since pr2 is the base change of the
morphism s by U → U and {U → U} is an fppf covering we conclude s is flat, locally
of finite presentation, and locally quasi-finite, see Descent, Lemmas 23.15, 23.11, and 23.24.
The same goes for t. Consider the commutative diagram

U ×U U

##

P //

��

R

��
U

e // R

It is a general fact about restrictions that the outer four corners form a cartesian diagram.
By the equality we see the inner square is cartesian. Since P is open inR (by definition of
a quasi-splitting) we conclude that e is an open immersion by Descent, Lemma 23.16. An
application of Groupoids, Lemma 20.5 shows that U/R = U/R. Hence we have reduced
to the case where (U,R, s, t, c) is a groupoid scheme over S , with U affine, u ∈ U such
that s, t are flat, locally of finite presentation, and locally quasi-finite and j = (t, s) : R→
U ×S U is an equivalence relation and e : U → R is an open immersion!

But of course, if e is an open immersion and s, t are flat and locally of finite presentation
then the morphisms t, s are étale. For example you can see this by applying More on
Groupoids, Lemma 4.1 which shows that ΩR/U = 0 which in turn implies that s, t : R→
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U is G-unramified (see Morphisms, Lemma 35.2), which in turn implies that s, t are étale
(see Morphisms, Lemma 36.16). And if s, t are étale then finally U/R is an algebraic space
by Spaces, Theorem 10.5. �

11. Applications

As a first application we obtain the following fundamental fact:

A sheaf which is fppf locally an algebraic space is an algebraic space.

This is the content of the following lemma. Note that assumption (2) is equivalent to the
condition thatF |(Sch/Si)fppf is an algebraic space, see Spaces, Lemma 16.4. Assumption (3)
is a set theoretic condition which may be ignored by those not worried about set theoretic
questions.

Lemma 11.1. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Let
{Si → S}i∈I be a covering of (Sch/S)fppf . Assume that

(1) F is a sheaf,
(2) each Fi = hSi × F is an algebraic space, and
(3)

∐
i∈I Fi is an algebraic space (see Spaces, Lemma 8.4).

Then F is an algebraic space.

Proof. Consider the morphism
∐
Fi → F . This is the base change of

∐
Si → S via

F → S. Hence it is representable, locally of finite presentation, flat and surjective by our
definition of an fppf covering and Lemma 4.2. Thus Theorem 10.1 applies to show that F
is an algebraic space. �

Here is a special case of Lemma 11.1 where we do not need to worry about set theoretical
issues.

Lemma 11.2. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Let
{Si → S}i∈I be a covering of (Sch/S)fppf . Assume that

(1) F is a sheaf,
(2) each Fi = hSi × F is an algebraic space, and
(3) the morphisms Fi → Si are of finite type.

Then F is an algebraic space.

Proof. We will use Lemma 11.1 above. To do this we will show that the assumption
that Fi is of finite type over Si to prove that the set theoretic condition in the lemma is
satisfied (after perhaps refining the given covering of S a bit). We suggest the reader skip
the rest of the proof.

If S′
i → Si is a morphism of schemes then

hS′
i
× F = hS′

i
×hSi hSi × F = hS′

i
×hSi Fi

is an algebraic space of finite type over S′
i, see Spaces, Lemma 7.3 and Morphisms of Spaces,

Lemma 23.3. Thus we may refine the given covering. After doing this we may assume: (a)
each Si is affine, and (b) the cardinality of I is at most the cardinality of the set of points
of S. (Since to cover all of S it is enough that each point is in the image of Si → S for
some i.)

Since each Si is affine and each Fi of finite type over Si we conclude that Fi is quasi-
compact. Hence by Properties of Spaces, Lemma 6.3 we can find an affineUi ∈ Ob((Sch/S)fppf )
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and a surjective étale morphism Ui → Fi. The fact that Fi → Si is locally of finite
type then implies that Ui → Si is locally of finite type, and in particular Ui → S is lo-
cally of finite type. By Sets, Lemma 9.7 we conclude that size(Ui) ≤ size(S). Since also
|I| ≤ size(S) we conclude that

∐
i∈I Ui is isomorphic to an object of (Sch/S)fppf by Sets,

Lemma 9.5 and the construction of Sch. This implies that
∐
Fi is an algebraic space by

Spaces, Lemma 8.4 and we win. �

As a second application we obtain

Any fppf descent datum for algebraic spaces is effective.

This holds modulo set theoretical difficulties; as an example result we offer the following
lemma.

Lemma 11.3. Let S be a scheme. Let {Xi → X}i∈I be an fppf covering of algebraic
spaces over S.

(1) If I is countable3, then any descent datum for algebraic spaces relative to {Xi →
X} is effective.

(2) Any descent datum (Yi, ϕij) relative to {Xi → X}i∈I (Descent on Spaces, Def-
inition 22.3) with Yi → Xi of finite type is effective.

Proof. Proof of (1). By Descent on Spaces, Lemma 23.1 this translates into the state-
ment that an fppf sheaf F endowed with a map F → X is an algebraic space provided
that each F ×X Xi is an algebraic space. The restriction on the cardinality of I implies
that coproducts of algebraic spaces indexed by I are algebraic spaces, see Spaces, Lemma
8.4 and Sets, Lemma 9.9. The morphism∐

F ×X Xi −→ F

is representable by algebraic spaces (as the base change of
∐
Xi → X , see Lemma 3.3), and

surjective, flat, and locally of finite presentation (as the base change of
∐
Xi → X , see

Lemma 4.2). Hence part (1) follows from Theorem 10.1.

Proof of (2). First we apply Descent on Spaces, Lemma 23.1 to obtain an fppf sheaf F
endowed with a map F → X such that F ×X Xi = Yi for all i ∈ I . Our goal is to
show that F is an algebraic space. Choose a scheme U and a surjective étale morphism
U → X . Then F ′ = U ×X F → F is representable, surjective, and étale as the base
change of U → X . By Theorem 10.1 it suffices to show that F ′ = U ×X F is an algebraic
space. We may choose an fppf covering {Uj → U}j∈J where Uj is a scheme refining the
fppf covering {Xi ×X U → U}i∈I , see Topologies on Spaces, Lemma 7.4. Thus we get
a map a : J → I and for each j a morphism Uj → Xa(j) over X . Then we see that
Uj ×U F ′ = Uj ×Xa(j) Ya(j) is of finite type over Uj . Hence F ′ is an algebraic space by
Lemma 11.2. �

Here is a different type of application.

Lemma 11.4. Let S be a scheme. Let a : F → G and b : G → H be transformations
of functors (Sch/S)oppfppf → Sets. Assume

(1) F,G,H are sheaves,

3The restriction on countablility can be ignored by those who do not care about set theoretical issues. We
can allow larger index sets here if we can bound the size of the algebraic spaces which we are descending. See for
example Lemma 11.2.
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(2) a : F → G is representable by algebraic spaces, flat, locally of finite presentation,
and surjective, and

(3) b ◦ a : F → H is representable by algebraic spaces.
Then b is representable by algebraic spaces.

Proof. LetU be a scheme over S and let ξ ∈ H(U). We have to show thatU×ξ,HG
is an algebraic space. On the other hand, we know that U ×ξ,H F is an algebraic space
and that U ×ξ,H F → U ×ξ,H G is representable by algebraic spaces, flat, locally of finite
presentation, and surjective as a base change of the morphism a (see Lemma 4.2). Thus the
result follows from Theorem 10.1. �

Lemma 11.5. Assume B → S and (U,R, s, t, c) are as in Groupoids in Spaces, Def-
inition 20.1 (1). For any scheme T over S and objects x, y of [U/R] over T the sheaf
Isom(x, y) on (Sch/T )fppf is an algebraic space.

Proof. By Groupoids in Spaces, Lemma 22.3 there exists an fppf covering {Ti →
T}i∈I such that Isom(x, y)|(Sch/Ti)fppf is an algebraic space for each i. By Spaces, Lemma
16.4 this means that each Fi = hSi × Isom(x, y) is an algebraic space. Thus to prove the
lemma we only have to verify the set theoretic condition that

∐
Fi is an algebraic space

of Lemma 11.1 above to conclude. To do this we use Spaces, Lemma 8.4 which requires
showing that I and the Fi are not “too large”. We suggest the reader skip the rest of the
proof.

Choose U ′ ∈ Ob(Sch/S)fppf and a surjective étale morphism U ′ → U . Let R′ be the
restriction of R to U ′. Since [U/R] = [U ′/R′] we may, after replacing U by U ′, assume
that U is a scheme. (This step is here so that the fibre products below are over a scheme.)

Note that if we refine the covering {Ti → T} then it remains true that each Fi is an
algebraic space. Hence we may assume that each Ti is affine. Since Ti → T is locally of
finite presentation, this then implies that size(Ti) ≤ size(T ), see Sets, Lemma 9.7. We may
also assume that the cardinality of the index set I is at most the cardinality of the set of
points of T since to get a covering it suffices to check that each point of T is in the image.
Hence |I| ≤ size(T ). Choose W ∈ Ob((Sch/S)fppf ) and a surjective étale morphism
W → R. Note that in the proof of Groupoids in Spaces, Lemma 22.3 we showed that Fi
is representable by Ti ×(yi,xi),U×BU R for some xi, yi : Ti → U . Hence now we see that
Vi = Ti ×(yi,xi),U×BU W is a scheme which comes with an étale surjection Vi → Fi. By
Sets, Lemma 9.6 we see that

size(Vi) ≤ max{size(Ti), size(W )} ≤ max{size(T ), size(W )}
Hence, by Sets, Lemma 9.5 we conclude that

size(
∐

i∈I
Vi) ≤ max{|I|, size(T ), size(W )}.

Hence we conclude by our construction of Sch that
∐
i∈I Vi is isomorphic to an object V

of (Sch/S)fppf . This verifies the hypothesis of Spaces, Lemma 8.4 and we win. �

Lemma 11.6. Let S be a scheme. Consider an algebraic space F of the form F = U/R
where (U,R, s, t, c) is a groupoid in algebraic spaces over S such that s, t are flat and
locally of finite presentation, and j = (t, s) : R → U ×S U is an equivalence relation.
Then U → F is surjective, flat, and locally of finite presentation.

Proof. This is almost but not quite a triviality. Namely, by Groupoids in Spaces,
Lemma 19.5 and the fact that j is a monomorphism we see that R = U ×F U . Choose a
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scheme W and a surjective étale morphism W → F . As U → F is a surjection of sheaves
we can find an fppf covering {Wi → W} and maps Wi → U lifting the morphisms
Wi → F . Then we see that

Wi ×F U = Wi ×U U ×F U = Wi ×U,t R
and the projection Wi ×F U → Wi is the base change of t : R → U hence flat and
locally of finite presentation, see Morphisms of Spaces, Lemmas 30.4 and 28.3. Hence by
Descent on Spaces, Lemmas 11.13 and 11.10 we see that U → F is flat and locally of finite
presentation. It is surjective by Spaces, Remark 5.2. �

Lemma 11.7. Let S be a scheme. Let X → B be a morphism of algebraic spaces over
S. Let G be a group algebraic space over B and let a : G ×B X → X be an action of G
on X over B. If

(1) a is a free action, and
(2) G→ B is flat and locally of finite presentation,

then X/G (see Groupoids in Spaces, Definition 19.1) is an algebraic space, the morphism
X → X/G is surjective, flat, and locally of finite presentation, and X is an fppf G-torsor
over X/G.

Proof. The fact thatX/G is an algebraic space is immediate from Theorem 10.1 and
the definitions. Namely, X/G = X/R where R = G ×B X . The morphisms s, t :
G ×B X → X are flat and locally of finite presentation (clear for s as a base change
of G → B and by symmetry using the inverse it follows for t) and the morphism j :
G×BX → X×BX is a monomorphism by Groupoids in Spaces, Lemma 8.3 as the action
is free. The morphism X → X/G is surjective, flat, and locally of finite presentation by
Lemma 11.6. To see that X → X/G is an fppf G-torsor (Groupoids in Spaces, Definition
9.3) we have to show thatG×SX → X ×X/GX is an isomorphism and thatX → X/G
fppf locally has sections. The second part is clear from the properties of X → X/G
already shown. The map G×S X → X ×X/GX is injective (as a map of fppf sheaves) as
the action is free. Finally, the map is also surjective as a map of sheaves by Groupoids in
Spaces, Lemma 19.5. This finishes the proof. �

Lemma 11.8. Let {Si → S}i∈I be a covering of (Sch/S)fppf . Let G be a group
algebraic space over S , and denote Gi = GSi the base changes. Suppose given

(1) for each i ∈ I an fppf Gi-torsor Xi over Si, and
(2) for each i, j ∈ I aGSi×SSj -equivariant isomorphismϕij : Xi×SSj → Si×SXj

satisfying the cocycle condition over every Si ×S Sj ×S Sj .
Then there exists an fppf G-torsor X over S whose base change to Si is isomorphic to Xi

such that we recover the descent datum ϕij .

Proof. We may think of Xi as a sheaf on (Sch/Si)fppf , see Spaces, Section 16. By
Sites, Section 26 the descent datum (Xi, ϕij) is effective in the sense that there exists a
unique sheaf X on (Sch/S)fppf which recovers the algebraic spaces Xi after restricting
back to (Sch/Si)fppf . Hence we see that Xi = hSi × X . By Lemma 11.1 we see that
X is an algebraic space, modulo verifying that

∐
Xi is an algebraic space which we do

at the end of the proof. By the equivalence of categories in Sites, Lemma 26.5 the action
maps Gi ×Si Xi → Xi glue to give a map a : G ×S X → X . Now we have to show
that a is an action and that X is a pseudo-torsor, and fppf locally trivial (see Groupoids
in Spaces, Definition 9.3). These may be checked fppf locally, and hence follow from the
corresponding properties of the actions Gi ×Si Xi → Xi. Hence the lemma is true.
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We suggest the reader skip the rest of the proof, which is purely set theoretical. Pick
coverings {Sij → Sj}j∈Ji of (Sch/S)fppf which trivialize theGi torsorsXi (possible by
assumption, and Topologies, Lemma 7.7 part (1)). Then {Sij → S}i∈I,j∈Ji is a covering
of (Sch/S)fppf and hence we may assume that each Xi is the trivial torsor! Of course
we may also refine the covering further, hence we may assume that each Si is affine and
that the index set I has cardinality bounded by the cardinality of the set of points of S.
Choose U ∈ Ob((Sch/S)fppf ) and a surjective étale morphism U → G. Then we see
that Ui = U ×S Si comes with an étale surjective morphism to Xi

∼= Gi. By Sets, Lemma
9.6 we see size(Ui) ≤ max{size(U), size(Si)}. By Sets, Lemma 9.7 we have size(Si) ≤
size(S). Hence we see that size(Ui) ≤ max{size(U), size(S)} for all i ∈ I . Together with
the bound on |I| we found above we conclude from Sets, Lemma 9.5 that size(

∐
Ui) ≤

max{size(U), size(S)}. Hence Spaces, Lemma 8.4 applies to show that
∐
Xi is an algebraic

space which is what we had to prove. �

12. Algebraic spaces in the étale topology

Let S be a scheme. Instead of working with sheaves over the big fppf site (Sch/S)fppf
we could work with sheaves over the big étale site (Sch/S)étale. All of the material in
Algebraic Spaces, Sections 3 and 5 makes sense for sheaves over (Sch/S)étale. Thus we
get a second notion of algebraic spaces by working in the étale topology. This notion is (a
priori) weaker then the notion introduced in Algebraic Spaces, Definition 6.1 since a sheaf
in the fppf topology is certainly a sheaf in the étale topology. However, the notions are
equivalent as is shown by the following lemma.

Lemma 12.1. Denote the common underlying category of Schfppf and Schétale by
Schα (see Topologies, Remark 11.1). Let S be an object of Schα. Let

F : (Schα/S)opp −→ Sets
be a presheaf with the following properties:

(1) F is a sheaf for the étale topology,
(2) the diagonal ∆ : F → F × F is representable, and
(3) there exists U ∈ Ob(Schα/S) and U → F which is surjective and étale.

Then F is an algebraic space in the sense of Algebraic Spaces, Definition 6.1.

Proof. Note that properties (2) and (3) of the lemma and the corresponding proper-
ties (2) and (3) of Algebraic Spaces, Definition 6.1 are independent of the topology. This
is true because these properties involve only the notion of a fibre product of presheaves,
maps of presheaves, the notion of a representable transformation of functors, and what it
means for such a transformation to be surjective and étale. Thus all we have to prove is
that an étale sheaf F with properties (2) and (3) is also an fppf sheaf.
To do this, letR = U ×F U . By (2) the presheafR is representable by a scheme and by (3)
the projections R → U are étale. Thus j : R → U ×S U is an étale equivalence relation.
Moreover U → F identifies F as the quotient of U by R for the étale topology: (a) if
T → F is a morphism, then {T ×F U → T} is an étale covering, hence U → F is a
surjection of sheaves for the étale topology, (b) if a, b : T → U map to the same section of
F , then (a, b) : T → R hence a and b have the same image in the quotient of U by R for
the étale topology. Next, let U/R denote the quotient sheaf in the fppf topology which
is an algebraic space by Spaces, Theorem 10.5. Thus we have morphisms (transformations
of functors)

U → F → U/R.
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By the aforementioned Spaces, Theorem 10.5 the composition is representable, surjec-
tive, and étale. Hence for any scheme T and morphism T → U/R the fibre product
V = T ×U/R U is a scheme surjective and étale over T . In other words, {V → U} is
an étale covering. This proves that U → U/R is surjective as a map of sheaves in the
étale topology. It follows that F → U/R is surjective as a map of sheaves in the étale
topology. On the other hand, the map F → U/R is injective (as a map of presheaves)
since R = U ×U/R U again by Spaces, Theorem 10.5. It follows that F → U/R is an
isomorphism of étale sheaves, see Sites, Lemma 11.2 which concludes the proof. �

There is also an analogue of Spaces, Lemma 11.1.

Lemma 12.2. Denote the common underlying category of Schfppf and Schétale by
Schα (see Topologies, Remark 11.1). Let S be an object of Schα. Let

F : (Schα/S)opp −→ Sets
be a presheaf with the following properties:

(1) F is a sheaf for the étale topology,
(2) there exists an algebraic spaceU overS and a mapU → F which is representable

by algebraic spaces, surjective, and étale.
Then F is an algebraic space in the sense of Algebraic Spaces, Definition 6.1.

Proof. Set R = U ×F U . This is an algebraic space as U → F is assumed rep-
resentable by algebraic spaces. The projections s, t : R → U are étale morphisms of
algebraic spaces as U → F is assumed étale. The map j = (t, s) : R → U ×S U is a
monomorphism and an equivalence relation as R = U ×F U . By Theorem 10.1 the fppf
quotient sheaf F ′ = U/R is an algebraic space. The morphism U → F ′ is surjective, flat,
and locally of finite presentation by Lemma 11.6. The mapR→ U ×F ′ U is surjective as a
map of fppf sheaves by Groupoids in Spaces, Lemma 19.5 and since j is a monomorphism it
is an isomorphism. Hence the base change ofU → F ′ byU → F ′ is étale, and we conclude
that U → F ′ is étale by Descent on Spaces, Lemma 11.28. Thus U → F ′ is surjective as a
map of étale sheaves. This means that F ′ is equal to the quotient sheaf U/R in the étale
topology (small check omitted). Hence we obtain a canonical factorization U → F ′ → F
and F ′ → F is an injective map of sheaves. On the other hand, U → F is surjective as a
map of étale sheaves and hence so is F ′ → F . This means that F ′ = F and the proof is
complete. �

In fact, it suffices to have a smooth cover by a scheme and it suffices to assume the diagonal
is representable by algebraic spaces.

Lemma 12.3. Denote the common underlying category of Schfppf and Schétale by
Schα (see Topologies, Remark 11.1). Let S be an object of Schα.

F : (Schα/S)opp −→ Sets
be a presheaf with the following properties:

(1) F is a sheaf for the étale topology,
(2) the diagonal ∆ : F → F × F is representable by algebraic spaces, and
(3) there exists U ∈ Ob(Schα/S) and U → F which is surjective and smooth.

Then F is an algebraic space in the sense of Algebraic Spaces, Definition 6.1.

Proof. The proof mirrors the proof of Lemma 12.1. Let R = U ×F U . By (2) the
presheaf R is an algebraic space and by (3) the projections R→ U are smooth and surjec-
tive. Denote (U,R, s, t, c) the groupoid associated to the equivalence relation j : R →
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U ×S U (see Groupoids in Spaces, Lemma 11.3). By Theorem 10.1 we see that X = U/R
(quotient in the fppf-topology) is an algebraic space. Using that the smooth topology and
the étale topology have the same sheaves (by More on Morphisms, Lemma 38.7) we see
the map U → F identifies F as the quotient of U by R for the smooth topology (details
omitted). Thus we have morphisms (transformations of functors)

U → F → X.

By Lemma 11.6 we see that U → X is surjective, flat and locally of finite presentation.
By Groupoids in Spaces, Lemma 19.5 (and the fact that j is a monomorphism) we have
R = U ×X U . By Descent on Spaces, Lemma 11.26 we conclude that U → X is smooth
and surjective (as the projections R → U are smooth and surjective and {U → X} is
an fppf covering). Hence for any scheme T and morphism T → X the fibre product
T ×X U is an algebraic space surjective and smooth over T . Choose a scheme V and a
surjective étale morphism V → T ×X U . Then {V → T} is a smooth covering such that
V → T → X lifts to a morphism V → U . This proves that U → X is surjective as a
map of sheaves in the smooth topology. It follows that F → X is surjective as a map of
sheaves in the smooth topology. On the other hand, the map F → X is injective (as a map
of presheaves) since R = U ×X U . It follows that F → X is an isomorphism of smooth
(= étale) sheaves, see Sites, Lemma 11.2 which concludes the proof. �

Finally, here is the analogue of Spaces, Lemma 11.1 with a smooth morphism covering the
space.

Lemma 12.4. Denote the common underlying category of Schfppf and Schétale by
Schα (see Topologies, Remark 11.1). Let S be an object of Schα. Let

F : (Schα/S)opp −→ Sets
be a presheaf with the following properties:

(1) F is a sheaf for the étale topology,
(2) there exists an algebraic spaceU overS and a mapU → F which is representable

by algebraic spaces, surjective, and smooth.
Then F is an algebraic space in the sense of Algebraic Spaces, Definition 6.1.

Proof. The proof is identical to the proof of Lemma 12.2. Set R = U ×F U . This is
an algebraic space asU → F is assumed representable by algebraic spaces. The projections
s, t : R → U are smooth morphisms of algebraic spaces as U → F is assumed smooth.
The map j = (t, s) : R → U ×S U is a monomorphism and an equivalence relation as
R = U ×F U . By Theorem 10.1 the fppf quotient sheaf F ′ = U/R is an algebraic space.
The morphism U → F ′ is surjective, flat, and locally of finite presentation by Lemma
11.6. The map R → U ×F ′ U is surjective as a map of fppf sheaves by Groupoids in
Spaces, Lemma 19.5 and since j is a monomorphism it is an isomorphism. Hence the base
change of U → F ′ by U → F ′ is smooth, and we conclude that U → F ′ is smooth by
Descent on Spaces, Lemma 11.26. Thus U → F ′ is surjective as a map of étale sheaves (as
the smooth topology is equal to the étale topology by More on Morphisms, Lemma 38.7).
This means that F ′ is equal to the quotient sheaf U/R in the étale topology (small check
omitted). Hence we obtain a canonical factorization U → F ′ → F and F ′ → F is an
injective map of sheaves. On the other hand, U → F is surjective as a map of étale sheaves
(as the smooth topology is the same as the étale topology) and hence so is F ′ → F . This
means that F ′ = F and the proof is complete. �
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CHAPTER 81

Pushouts of Algebraic Spaces

1. Introduction

The goal of this chapter is to discuss pushouts in the category of algebraic spaces. This can
be done with varying assumptions. A fairly general pushout construction is given in [?]:
one of the morphisms is affine and the other is a closed immersion. We discuss a particular
case of this in Section 6 where we assume one of the morphisms is affine and the other is a
thickening, a situation that often comes up in deformation theory.

In Sections 10 and 11 we discuss diagrams

f−1(X \ Z) //

��

Y

f

��
X \ Z // X

where f is a quasi-compact and quasi-separated morphism of algebraic spaces, Z → X is
a closed immersion of finite presentation, the map f−1(Z) → Z is an isomorphism, and
f is flat along f−1(Z). In this situation we glue quasi-coherent modules on X \ Z and Y
(in Section 10) to quasi-coherent modules on X and we glue algebraic spaces over X \ Z
and Y (in Section 11) to algebraic spaces over X .

In Section 13 we discuss how proper birational morphisms of Noetherian algebraic spaces
give rise to coequalizer diagrams in algebraic spaces in some sense.

In Section 14 we use the construction of elementary distinguished squares in Section 9 to
prove Nagata’s theorem on compactifications in the setting of algebraic spaces.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Colimits of algebraic spaces

We briefly discuss colimits of algebraic spaces. Let S be a scheme. Let I → (Sch/S)fppf ,
i 7→ Xi be a diagram (see Categories, Section 14). For each i we may consider the small
étale siteXi,étale whose objects are schemes étale overXi, see Properties of Spaces, Section
18. For each morphism i→ j of I we have the morphismXi → Xj and hence a pullback

5925
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functor Xj,étale → Xi,étale. Hence we obtain a pseudo functor from Iopp into the 2-
category of categories. Denote

limiXi,étale

the 2-limit (see insert future reference here). What does this mean concretely? An object
of this limit is a system of étale morphisms Ui → Xi over I such that for each i→ j in I
the diagram

Ui //

��

Uj

��
Xi

// Xj

is cartesian. Morphisms between objects are defined in the obvious manner. Suppose that
fi : Xi → T is a family of morphisms such that for each i → j the composition Xi →
Xj → T is equal to fi. Then we get a functor Tétale → limXi,étale. With this notation
in hand we can formulate our lemma.

Lemma 3.1. Let S be a scheme. Let I → (Sch/S)fppf , i 7→ Xi be a diagram of
schemes over S as above. Assume that

(1) X = colimXi exists in the category of schemes,
(2)

∐
Xi → X is surjective,

(3) if U → X is étale and Ui = Xi ×X U , then U = colimUi in the category of
schemes, and

(4) every object (Ui → Xi) of limXi,étale withUi → Xi separated is in the essential
image of the functor Xétale → limXi,étale.

Then X = colimXi in the category of algebraic spaces over S also.
Proof. Let Z be an algebraic space over S. Suppose that fi : Xi → Z is a family of

morphisms such that for each i → j the composition Xi → Xj → Z is equal to fi. We
have to construct a morphism of algebraic spaces f : X → Z such that we can recover fi
as the compositionXi → X → Z. LetW → Z be a surjective étale morphism of a scheme
toZ. We may assume thatW is a disjoint union of affines and in particular we may assume
that W → Z is separated. For each i set Ui = W ×Z,fi Xi and denote hi : Ui → W
the projection. Then Ui → Xi forms an object of limXi,étale with Ui → Xi separated.
By assumption (4) we can find an étale morphism U → X and (functorial) isomorphisms
Ui = Xi ×X U . By assumption (3) there exists a morphism h : U → W such that the
compositions Ui → U →W are hi. Let g : U → Z be the composition of h with the map
W → Z. To finish the proof we have to show that g : U → Z descends to a morphism
X → Z. To do this, consider the morphism (h, h) : U ×X U → W ×S W . Composing
with Ui ×Xi Ui → U ×X U we obtain (hi, hi) which factors through W ×Z W . Since
U ×X U is the colimit of the schemes Ui ×Xi Ui by (3) we see that (h, h) factors through
W ×Z W . Hence the two compositions U ×X U → U → W → Z are equal. Because
each Ui → Xi is surjective and assumption (2) we see that U → X is surjective. As Z is
a sheaf for the étale topology, we conclude that g : U → Z descends to f : X → Z as
desired. �

We can check that a cocone is a colimit (fpqc) locally on the cocone.
Lemma 3.2. LetS be a scheme. LetB be an algebraic space overS. LetI → (Sch/S)fppf ,

i 7→ Xi be a diagram of algebraic spaces over B. Let (X,Xi → X) be a cocone for the
diagram in the category of algebraic spaces over B (Categories, Remark 14.5). If there
exists a fpqc covering {Ua → X}a∈A such that
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(1) for all a ∈ A we have Ua = colimXi ×X Ua in the category of algebraic spaces
over B, and

(2) for all a, b ∈ A we have Ua ×X Ub = colimXi ×X Ua ×X Ub in the category
of algebraic spaces over B,

then X = colimXi in the category of algebraic spaces over B.

Proof. Namely, for an algebraic space Y over B a morphism X → Y over B is the
same thing as a collection of morphism Ua → Y which agree on the overlaps Ua ×X Ub
for all a, b ∈ A, see Descent on Spaces, Lemma 7.2. �

We are going to find a common partial generalization of Lemmas 3.1 and 3.2 which can in
particular be used to reduce a colimit construction to a subcategory of the category of all
algebraic spaces.

Let S be a scheme and let B be an algebraic space over S. Let I be an index category
and let i 7→ Xi be a diagram in the category of algebraic spaces over B, see Categories,
Section 14. For each i we may consider the small étale site Xi,spaces,étale whose objects
are algebraic spaces étale over Xi, see Properties of Spaces, Section 18. For each mor-
phism i → j of I we have the morphism Xi → Xj and hence a pullback functor
Xj,spaces,étale → Xi,spaces,étale. Hence we obtain a pseudo functor from Iopp into the
2-category of categories. Denote

limiXi,spaces,étale

the 2-limit (see insert future reference here). What does this mean concretely? An object
of this limit is a diagram i 7→ (Ui → Xi) in the category of arrows of algebraic spaces
over B such that for each i→ j in I the diagram

Ui //

��

Uj

��
Xi

// Xj

is cartesian. Morphisms between objects are defined in the obvious manner. Suppose that
fi : Xi → Z is a family of morphisms of algebraic spaces over B such that for each i→ j
the composition Xi → Xj → Z is equal to fi. Then we get a functor Zspaces,étale →
limXi,spaces,étale. With this notation in hand we can formulate our next lemma.

Lemma 3.3. LetS be a scheme. LetB be an algebraic space overS. LetI → (Sch/S)fppf ,
i 7→ Xi be a diagram of algebraic spaces over B. Let (X,Xi → X) be a cocone for the
diagram in the category of algebraic spaces overB (Categories, Remark 14.5). Assume that

(1) the base change functor Xspaces,tale → limXi,spaces,étale, sending U to Ui =
Xi ×X U is an equivalence,

(2) given
(a) B′ affine and étale over B,
(b) Z an affine scheme over B′,
(c) U → X ×B B′ an étale morphism of algebraic spaces with U affine,
(d) fi : Ui → Z a cocone over B′ of the diagram i 7→ Ui = U ×X Xi,

there exists a unique morphism f : U → Z over B′ such that fi equals the
composition Ui → U → Z.

Then X = colimXi in the category of all algebraic spaces over B.
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Proof. In this paragraph we reduce to the case where B is an affine scheme. Let
B′ → B be an étale morphism of algebraic spaces. Observe that conditions (1) and (2) are
preserved if we replace B, Xi, X by B′, Xi ×B B′, X ×B B′. Let {Ba → B}a∈A be an
étale covering with Ba affine, see Properties of Spaces, Lemma 6.1. For a ∈ A denote Xa,
Xa,i the base changes of X and the diagram to Ba. For a, b ∈ A denote Xa,b and Xa,b,i

the base changes ofX and the diagram toBa×BBb. By Lemma 3.2 it suffices to prove that
Xa = colimXa,i andXa,b = colimXa,b,i. This reduces us to the case whereB = Ba (an
affine scheme) orB = Ba×BBb (a separated scheme). Repeating the argument once more,
we conclude that we may assume B is an affine scheme (this uses that the intersection of
affine opens in a separated scheme is affine).

Assume B is an affine scheme. Let Z be an algebraic space over B. We have to show

MorB(X,Z) −→ lim MorB(Xi, Z)
is a bijection.

Proof of injectivity. Let f, g : X → Z be morphisms such that the compositions fi, gi :
Xi → Z are the same for all i. Choose an affine scheme Z ′ and an étale morphism Z ′ →
Z. By Properties of Spaces, Lemma 6.1 we know we can cover Z by such affines. Set
U = X ×f,Z Z ′ and U ′ = X ×g,Z Z ′ and denote p : U → X and p′ : U ′ → X the
projections. Since fi = gi for all i, we see that

Ui = Xi ×fi,Z Z ′ = Xi ×gi,Z Z ′ = U ′
i

compatible with transition morphisms. By (1) there is a unique isomorphism ε : U → U ′

as algebraic spaces over X , i.e., with p = p′ ◦ ε which is compatible with the displayed
identifications. Choose an étale covering {ha : Ua → U} with Ua affine. By (2) we see
that f ◦ p ◦ha = g ◦ p′ ◦ ε ◦ha = g ◦ p ◦ha. Since {ha : Ua → U} is an étale covering we
conclude f ◦ p = g ◦ p. Since the collection of morphisms p : U → X we obtain in this
manner is an étale covering, we conclude that f = g.

Proof of surjectivity. Let fi : Xi → Z be an element of the right hand side of the displayed
arrow in the first paragraph of the proof. It suffices to find an étale covering {Uc →
X}c∈C such that the families fc,i ∈ limi MorB(Xi ×X Uc, Z) come from morphisms
fc : Uc → Z. Namely, by the uniqueness proved above the morphisms fc will agree on
Uc ×X Ub and hence will descend to give the desired morphism f : X → Z. To find our
covering, we first choose an étale covering {ga : Za → Z}a∈A where each Za is affine.
Then we letUa,i = Xi×fi,ZZa. By (1) we findUa,i = Xi×XUa for some algebraic spaces
Ua étale over X . Then we choose étale coverings {Ua,b → Ua}b∈Ba with Ua,b affine and
we consider the morphisms

Ua,b,i = Xi ×X Ua,b → Xi ×X Ua = Xi ×fi,Z Za → Za

By (2) we obtain morphisms fa,b : Ua,b → Za compatible with these morphisms. Setting
C =

∐
a∈ABa and for c ∈ C corresponding to b ∈ Ba setting Uc = Ua,b and fc =

ga ◦ fa,b : Uc → Z we conclude. �

Here is an application of these ideas to reduce the general case to the case of separated
algebraic spaces.

Lemma 3.4. Let S be a scheme. Let B be an algebraic space over S. Let I →
(Sch/S)fppf , i 7→ Xi be a diagram of algebraic spaces over B. Assume that

(1) each Xi is separated over B,
(2) X = colimXi exists in the category of algebraic spaces separated over B,
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(3)
∐
Xi → X is surjective,

(4) ifU → X is an étale separated morphism of algebraic spaces andUi = Xi×X U ,
then U = colimUi in the category of algebraic spaces separated over B, and

(5) every object (Ui → Xi) of limXi,spaces,étale with Ui → Xi separated is of
the form Ui = Xi ×X U for some étale separated morphism of algebraic spaces
U → X .

Then X = colimXi in the category of all algebraic spaces over B.

Proof. We encourage the reader to look instead at Lemma 3.3 and its proof.

Let Z be an algebraic space over B. Suppose that fi : Xi → Z is a family of morphisms
such that for each i → j the composition Xi → Xj → Z is equal to fi. We have to
construct a morphism of algebraic spaces f : X → Z over B such that we can recover
fi as the composition Xi → X → Z. Let W → Z be a surjective étale morphism of
a scheme to Z. We may assume that W is a disjoint union of affines and in particular
we may assume that W → Z is separated and that W is separated over B. For each i set
Ui = W×Z,fiXi and denote hi : Ui →W the projection. ThenUi → Xi forms an object
of limXi,spaces,étale with Ui → Xi separated. By assumption (5) we can find a separated
étale morphismU → X of algebraic spaces and (functorial) isomorphismsUi = Xi×XU .
By assumption (4) there exists a morphism h : U →W overB such that the compositions
Ui → U → W are hi. Let g : U → Z be the composition of h with the map W → Z.
To finish the proof we have to show that g : U → Z descends to a morphism X → Z.
To do this, consider the morphism (h, h) : U ×X U → W ×S W . Composing with
Ui×Xi Ui → U ×X U we obtain (hi, hi) which factors throughW ×ZW . SinceU ×X U
is the colimit of the algebraic spacesUi×XiUi in the category of algebraic spaces separated
over B by (4) we see that (h, h) factors through W ×Z W . Hence the two compositions
U ×X U → U →W → Z are equal. Because each Ui → Xi is surjective and assumption
(2) we see that U → X is surjective. As Z is a sheaf for the étale topology, we conclude
that g : U → Z descends to f : X → Z as desired. �

4. Descending étale sheaves

This section is the analogue for algebraic spaces of Étale Cohomology, Section 104.

In order to conveniently express our results we need some notation. Let S be a scheme. Let
U = {fi : Xi → X} be a family of morphisms of algebraic spaces overS with fixed target.
A descent datum for étale sheaves with respect to U is a family ((Fi)i∈I , (ϕij)i,j∈I) where

(1) Fi is in Sh(Xi,étale), and
(2) ϕij : pr−1

0,smallFi −→ pr−1
1,smallFj is an isomorphism in Sh((Xi ×X Xj)étale)

such that the cocycle condition holds: the diagrams

pr−1
0,smallFi

pr−1
02,smallϕik &&

pr−1
01,smallϕij // pr−1

1,smallFj

pr−1
12,smallϕjkxx

pr−1
2,smallFk

commute in Sh((Xi×XXj×XXk)étale). There is an obvious notion of morphisms of de-
scent data and we obtain a category of descent data. A descent datum ((Fi)i∈I , (ϕij)i,j∈I)
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is called effective if there exist a F in Sh(Xétale) and isomorphisms ϕi : f−1
i,smallF → Fi

in Sh(Xi,étale) compatible with the ϕij , i.e., such that

ϕij = pr−1
1,small(ϕj) ◦ pr−1

0,small(ϕ
−1
i )

Another way to say this is the following. Given an object F of Sh(Xétale) we obtain the
canonical descent datum (f−1

i,smallFi, cij) where cij is the canonical isomorphism

cij : pr−1
0,smallf

−1
i,smallF −→ pr−1

1,smallf
−1
j,smallF

The descent datum ((Fi)i∈I , (ϕij)i,j∈I) is effective if and only if it is isomorphic to the
canonical descent datum associated to some F in Sh(Xétale).

If the family consists of a single morphism {X → Y }, then we think of a descent datum
as a pair (F , ϕ) where F is an object of Sh(Xétale) and ϕ is an isomorphism

pr−1
0,smallF −→ pr−1

1,smallF

in Sh((X ×Y X)étale) such that the cocycle condition holds:

pr−1
0,smallF

pr−1
02,smallϕ &&

pr−1
01,smallϕ // pr−1

1,smallF

pr−1
12,smallϕxx

pr−1
2,smallF

commutes in Sh((X ×Y X ×Y X)étale). There is a notion of morphisms of descent data
and effectivity exactly as before.

Lemma 4.1. Let S be a scheme. Let {fi : Xi → X} be an étale covering of algebraic
spaces. The functor

Sh(Xétale) −→ descent data for étale sheaves wrt {fi : Xi → X}
is an equivalence of categories.

Proof. In Properties of Spaces, Section 18 we have defined a site Xspaces,étale whose
objects are algebraic spaces étale overX with étale coverings. Moreover, we have a identi-
fications Sh(Xétale) = Sh(Xspaces,étale) compatible with morphisms of algebraic spaces,
i.e., compatible with pushforward and pullback. Hence the statement of the lemma follows
from the much more general discussion in Sites, Section 26. �

Lemma 4.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let {Yi → Y }i∈I be an étale covering of algebraic spaces. If for each i ∈ I the
functor

Sh(Yi,étale) −→ descent data for étale sheaves wrt {X ×Y Yi → Yi}
is an equivalence of categories and for each i, j ∈ I the functor

Sh((Yi×Y Yj)étale) −→ descent data for étale sheaves wrt {X×Y Yi×Y Yj → Yi×Y Yj}
is an equivalence of categories, then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. Formal consequence of Lemma 4.1 and the definitions. �
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Lemma 4.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is representable (by schemes) and f has one of the following properties:
surjective and integral, surjective and proper, or surjective and flat and locally of finite
presentation Then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

is an equivalence of categories.

Proof. Each of the properties of morphisms of algebraic spaces mentioned in the
statement of the lemma is preserved by arbitrary base change, see the lists in Spaces, Section
4. Thus we can apply Lemma 4.2 to see that we can work étale locally on Y . In this way
we reduce to the case where Y is a scheme; some details omitted. In this case X is also a
scheme and the result follows from Étale Cohomology, Lemma 104.2, 104.3, or 104.5. �

Lemma 4.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let π : X ′ → X be a morphism of algebraic spaces. Assume

(1) f ◦ π is representable (by schemes),
(2) f ◦ π has one of the following properties: surjective and integral, surjective and

proper, or surjective and flat and locally of finite presentation.
Then

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }
is an equivalence of categories.

Proof. Formal consequence of Lemma 4.3 and Stacks, Lemma 3.7. �

Lemma 4.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which has one of the following properties: surjective and integral, surjective and
proper, or surjective and flat and locally of finite presentation. Then the functor

Sh(Yétale) −→ descent data for étale sheaves wrt {X → Y }

is an equivalence of categories.

Proof. Observe that the base change of a proper surjective morphism is proper and
surjective, see Morphisms of Spaces, Lemmas 40.3 and 5.5. Hence by Lemma 4.2 we may
work étale locally on Y . Hence we reduce to Y being an affine scheme; some details omit-
ted.

Assume Y is affine. By Lemma 4.4 it suffices to find a morphism X ′ → X where X ′ is a
scheme such that X ′ → Y is surjective and integral, surjective and proper, or surjective
and flat and locally of finite presentation.

In case X → Y is integral and surjective, we can take X = X ′ as an integral morphism is
representable.

If f is proper and surjective, then the algebraic spaceX is quasi-compact and separated, see
Morphisms of Spaces, Section 8 and Lemma 4.9. Choose a schemeX ′ and a surjective finite
morphism X ′ → X , see Limits of Spaces, Proposition 16.1. Then X ′ → Y is surjective
and proper.

Finally, ifX → Y is surjective and flat and locally of finite presentation then we can take
an affine étale covering {Ui → X} and set X ′ equal to the disjoint

∐
Ui. �
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Lemma 4.6. Let S be a scheme. Let {fi : Xi → X} be an fppf covering of algebraic
spaces over S. The functor

Sh(Xétale) −→ descent data for étale sheaves wrt {fi : Xi → X}

is an equivalence of categories.

Proof. We have Lemma 4.5 for the morphism f :
∐
Xi → X . Then a formal

argument shows that descent data for f are the same thing as descent data for the covering,
compare with Descent, Lemma 34.5. Details omitted. �

Lemma 4.7. Let S be a scheme. Let f : Y ′ → Y be a proper morphism of algebraic
spaces over S. Let i : Z → Y be a closed immersion. Set E = Z ×Y Y ′. Picture

E

g

��

j
// Y ′

f

��
Z

i // Y

If f is an isomorphism over Y \ Z , then the functor

Sh(Yétale) −→ Sh(Y ′
étale)×Sh(Eétale) Sh(Zétale)

is an equivalence of categories.

Proof. Observe that X = Y ′∐Z → Y is a proper surjective morphism. Thus it
suffice to construct an equivalence of categories

Sh(Y ′
étale)×Sh(Eétale) Sh(Zétale) −→ descent data for étale sheaves wrt {X → Y }

compatible with pullback functors fromY because then we can use Lemma 4.5 to conclude.
Thus let (G′,G, α) be an object of Sh(Y ′

étale) ×Sh(Eétale) Sh(Zétale) with notation as in
Categories, Example 31.3. Then we can consider the sheaf F on X defined by taking G′

on the summand Y ′ and G on the summand Z. We have

X ×Y X = Y ′ ×Y Y ′ q Y ′ ×Y Z q Z ×Y Y ′ q Z ×Y Z = Y ′ ×Y Y ′ q E q E q Z

The isomorphisms of the two pullbacks of F to this algebraic space are obvious over
the summands E , E , Z. The interesting part of the proof is to find an isomorphism
pr−1

0,smallG′ → pr−1
1,smallG′ over Y ′ ×Y Y ′ satisfying the cocycle condition. However,

our assumption that Y ′ → Y is an isomorphism over Y \ Z implies that

h : Y
∐

E ×Z E −→ Y ′ ×Y Y ′

is a surjective proper morphism. (It is in fact a finite morphism as it is the disjoint union
of two closed immersions.) Hence it suffices to construct an isomorphism of the pullbacks
of pr−1

0,smallG′and pr−1
1,smallG′ by hsmall satisfying a certain cocycle condition. For the

diagonal, it is clear how to do this. And for the pullback to E ×Z E we use that both
sheaves pull back to the pullback of G by the morphism E ×Z E → Z. We omit the
details. �

5. Descending étale morphisms of algebraic spaces

In this section we combine the glueing results for étale sheaves given in Section 4 with
the flexibility of algebraic spaces to get some descent statements for étale morphisms of
algebraic spaces.
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Lemma 5.1. Let S be a scheme. Let f : X → Y be a proper surjective morphism of
algebraic spaces over S. Any descent datum (U/X,ϕ) relative to f (Descent on Spaces,
Definition 22.1) with U étale over X is effective (Descent on Spaces, Definition 22.10).
More precisely, there exists an étale morphism V → Y of algebraic spaces whose corre-
sponding canonical descent datum is isomorphic to (U/X,ϕ).

Proof. Recall thatU gives rise to a representable sheafF = hU in Sh(Xspaces,étale) =
Sh(Xétale), see Properties of Spaces, Section 18. The descent datum on U relative to f ex-
actly gives a descent datum (F , ϕ) for étale sheaves with respect to {X → Y }. By Lemma
4.5 this descent datum is effective. Let G be the corresponding sheaf on Yétale. By Prop-
erties of Spaces, Lemma 27.3 we obtain an étale morphism V → Y of algebraic spaces
corresponding to G; we omit the verification of the set theoretic condition1. The given
isomorphism F → f−1

smallG corresponds to an isomorphism U → V ×Y X compatible
with the descent datum. �

Lemma 5.2. Let S be a scheme. Let f : Y ′ → Y be a proper morphism of algebraic
spaces over S. Let i : Z → Y be a closed immersion. Set E = Z ×Y Y ′. Picture

E

g

��

j
// Y ′

f

��
Z

i // Y

If f is an isomorphism over Y \ Z , then the functor

Yspaces,étale −→ Y ′
spaces,étale ×Espaces,étale Zspaces,étale

is an equivalence of categories.

Proof. Let (V ′ → Y ′,W → Z,α) be an object of the right hand side. Recall that
V ′, resp.W gives rise to a representable sheaf G′ = hV ′ in Sh(Y ′

spaces,étale) = Sh(Y ′
étale),

resp. G = hW in Sh(Zspaces,étale) = Sh(Zétale), see Properties of Spaces, Section 18. The
isomorphism α : V ′×Y ′ E →W ×Z E determines an isomorphism j−1

smallG′ → g−1
smallG

of sheaves on E. By Lemma 4.7 we obtain a unique sheaf F on Y pulling pack to G′ and
G compatibly with the isomorphism. By Properties of Spaces, Lemma 27.3 we obtain an
étale morphism V → Y of algebraic spaces corresponding to F ; we omit the verification
of the set theoretic condition2. The given isomorphism G′ → f−1

smallF and G → i−1
smallF

corresponds to isomorphisms V ′ → V ×Y Y ′ and W → V ×Y Z compatible with α as
desired. �

6. Pushouts along thickenings and affine morphisms

This section is analogue of More on Morphisms, Section 14.

Lemma 6.1. Let S be a scheme. Let X → X ′ be a thickening of schemes over S and
letX → Y be an affine morphism of schemes over S. Let Y ′ = Y qXX ′ be the pushout in
the category of schemes (see More on Morphisms, Lemma 14.3). Then Y ′ is also a pushout
in the category of algebraic spaces over S.

Proof. This is an immediate consequence of Lemma 3.1 and More on Morphisms,
Lemmas 14.3, 14.4, and 14.6. �

1It follows from the fact that F satisfies the corresponding condition.
2It follows from the fact that G and G′ satisfies the corresponding condition.
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Lemma 6.2. Let S be a scheme. Let X → X ′ be a thickening of algebraic spaces over
S and let X → Y be an affine morphism of algebraic spaces over S. Then there exists a
pushout

X //

f

��

X ′

f ′

��
Y // Y qX X ′

in the category of algebraic spaces over S. Moreover Y ′ = Y qX X ′ is a thickening of Y
and

OY ′ = OY ×f∗OX
f ′

∗OX′

as sheaves on Yétale = (Y ′)étale.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U = V ×Y
X . This is a scheme affine over V with a surjective étale morphism U → X . By More
on Morphisms of Spaces, Lemma 9.6 there exists a U ′ → X ′ surjective étale with U =
U ′ ×X′ X . In particular the morphism of schemes U → U ′ is a thickening too. Apply
More on Morphisms, Lemma 14.3 to obtain a pushout V ′ = V qU U ′ in the category of
schemes.
We repeat this procedure to construct a pushout

U ×X U

��

// U ′ ×X′ U ′

��
V ×Y V // R′

in the category of schemes. Consider the morphisms
U ×X U → U → V ′, U ′ ×X′ U ′ → U ′ → V ′, V ×Y V → V → V ′

where we use the first projection in each case. Clearly these glue to give a morphism
t′ : R′ → V ′ which is étale by More on Morphisms, Lemma 14.6. Similarly, we obtain
s′ : R′ → V ′ étale. The morphism j′ = (t′, s′) : R′ → V ′ ×S V ′ is unramified (as t′ is
étale) and a monomorphism when restricted to the closed subscheme V ×Y V ⊂ R′. As
V ×Y V ⊂ R′ is a thickening it follows that j′ is a monomorphism too. Finally, j′ is an
equivalence relation as we can use the functoriality of pushouts of schemes to construct a
morphism c′ : R′ ×s′,V ′,t′ R

′ → R′ (details omitted). At this point we set Y ′ = U ′/R′,
see Spaces, Theorem 10.5.
We have morphisms X ′ = U ′/U ′ ×X′ U ′ → V ′/R′ = Y ′ and Y = V/V ×Y V →
V ′/R′ = Y ′. By construction these fit into the commutative diagram

X //

f

��

X ′

f ′

��
Y // Y ′

Since Y → Y ′ is a thickening we have Yétale = (Y ′)étale, see More on Morphisms of
Spaces, Lemma 9.6. The commutativity of the diagram gives a map of sheaves

OY ′ −→ OY ×f∗OX
f ′

∗OX′

on this set. By More on Morphisms, Lemma 14.3 this map is an isomorphism when we
restrict to the scheme V ′, hence it is an isomorphism.
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To finish the proof we show that the diagram above is a pushout in the category of alge-
braic spaces. To see this, let Z be an algebraic space and let a′ : X ′ → Z and b : Y → Z be
morphisms of algebraic spaces. By Lemma 6.1 we obtain a unique morphism h : V ′ → Z
fitting into the commutative diagrams

U ′

��

// V ′

h

��
X ′ a′

// Z

and

V //

��

V ′

h

��
Y

b // Z

The uniqueness shows that h ◦ t′ = h ◦ s′. Hence h factors uniquely as V ′ → Y ′ → Z
and we win. �

In the following lemma we use the fibre product of categories as defined in Categories,
Example 31.3.

Lemma 6.3. Let S be a base scheme. Let X → X ′ be a thickening of algebraic spaces
overS and letX → Y be an affine morphism of algebraic spaces overS. LetY ′ = Y qXX ′

be the pushout (see Lemma 6.2). Base change gives a functor

F : (Spaces/Y ′) −→ (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)
given by V ′ 7−→ (V ′×Y ′Y, V ′×Y ′X ′, 1) which sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′)
(Sch/X ′). The functor F has a left adjoint

G : (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′) −→ (Spaces/Y ′)
which sends the triple (V,U ′, ϕ) to the pushoutV q(V×YX)U

′ in the category of algebraic
spaces over S. The functor G sends (Sch/Y )×(Sch/Y ′) (Sch/X ′) into (Sch/Y ′).

Proof. The proof is completely formal. Since the morphisms X → X ′ and X → Y
are representable it is clear that F sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′) (Sch/X ′).

Let us construct G. Let (V,U ′, ϕ) be an object of the fibre product category. Set U =
U ′ ×X′ X . Note that U → U ′ is a thickening. Since ϕ : V ×Y X → U ′ ×X′ X = U is
an isomorphism we have a morphism U → V over X → Y which identifies U with the
fibre product X ×Y V . In particular U → V is affine, see Morphisms of Spaces, Lemma
20.5. Hence we can apply Lemma 6.2 to get a pushout V ′ = V qU U ′. Denote V ′ → Y ′

the morphism we obtain in virtue of the fact that V ′ is a pushout and because we are
given morphisms V → Y and U ′ → X ′ agreeing on U as morphisms into Y ′. Setting
G(V,U ′, ϕ) = V ′ gives the functor G.

If (V,U ′, ϕ) is an object of (Sch/Y )×(Sch/Y ′) (Sch/X ′) then U = U ′×X′ X is a scheme
too and we can form the pushout V ′ = V qU U ′ in the category of schemes by More on
Morphisms, Lemma 14.3. By Lemma 6.1 this is also a pushout in the category of schemes,
hence G sends (Sch/Y )×(Sch/Y ′) (Sch/X ′) into (Sch/Y ′).

Let us prove that G is a left adjoint to F . Let Z be an algebraic space over Y ′. We have to
show that

Mor(V ′, Z) = Mor((V,U ′, ϕ), F (Z))
where the morphism sets are taking in their respective categories. Let g′ : V ′ → Z be a
morphism. Denote g̃, resp. f̃ ′ the composition of g′ with the morphism V → V ′, resp.
U ′ → V ′. Base change g̃, resp. f̃ ′ by Y → Y ′, resp. X ′ → Y ′ to get a morphism g : V →
Z×Y ′Y , resp. f ′ : U ′ → Z×Y ′X ′. Then (g, f ′) is an element of the right hand side of the
equation above (details omitted). Conversely, suppose that (g, f ′) : (V,U ′, ϕ) → F (Z)
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is an element of the right hand side. We may consider the composition g̃ : V → Z , resp.
f̃ ′ : U ′ → Z of g, resp. f by Z ×Y ′ X ′ → Z , resp. Z ×Y ′ Y → Z. Then g̃ and f̃ ′ agree
as morphism from U to Z. By the universal property of pushout, we obtain a morphism
g′ : V ′ → Z , i.e., an element of the left hand side. We omit the verification that these
constructions are mutually inverse. �

Lemma 6.4. Let S be a scheme. Let

A //

��

C

��

// E

��
B // D // F

be a commutative diagram of algebraic spaces overS. Assume thatA,B,C,D andA,B,E, F
form cartesian squares and that B → D is surjective étale. Then C,D,E, F is a cartesian
square.

Proof. This is formal. �

Lemma 6.5. In the situation of Lemma 6.3 the functor F ◦ G is isomorphic to the
identity functor.

Proof. We will prove that F ◦ G is isomorphic to the identity by reducing this to
the corresponding statement of More on Morphisms, Lemma 14.4.

Choose a scheme Y1 and a surjective étale morphism Y1 → Y . SetX1 = Y1×Y X . This is a
scheme affine over Y1 with a surjective étale morphismX1 → X . By More on Morphisms
of Spaces, Lemma 9.6 there exists a X ′

1 → X ′ surjective étale with X1 = X ′
1 ×X′ X .

In particular the morphism of schemes X1 → X ′
1 is a thickening too. Apply More on

Morphisms, Lemma 14.3 to obtain a pushout Y ′
1 = Y1qX1 X

′
1 in the category of schemes.

In the proof of Lemma 6.2 we constructed Y ′ as a quotient of an étale equivalence relation
on Y ′

1 such that we get a commutative diagram

(6.5.1)

X //

��

X ′

��

X1 //

��

>>

X ′
1

��

>>

Y // Y ′

Y1 //

>>

Y ′
1

>>

where all squares except the front and back squares are cartesian (the front and back
squares are pushouts) and the northeast arrows are surjective étale. Denote F1, G1 the
functors constructed in More on Morphisms, Lemma 14.4 for the front square. Then the
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diagram of categories

(Sch/Y ′
1)

F1

//

��

(Sch/Y1)×(Sch/Y ′
1 ) (Sch/X ′

1)

��

G1oo

(Spaces/Y ′)
F
// (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)

Goo

is commutative by simple considerations regarding base change functors and the agree-
ment of pushouts in schemes with pushouts in spaces of Lemma 6.1.

Let (V,U ′, ϕ) be an object of (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′). DenoteU = U ′×X′X
so that G(V,U ′, ϕ) = V qU U ′. Choose a scheme V1 and a surjective étale morphism
V1 → Y1 ×Y V . Set U1 = V1 ×Y X . Then

U1 = V1 ×Y X −→ (Y1 ×Y V )×Y X = X1 ×Y V = X1 ×X X ×Y V = X1 ×X U

is surjective étale too. By More on Morphisms of Spaces, Lemma 9.6 there exists a thick-
ening U1 → U ′

1 and a surjective étale morphism U ′
1 → X ′

1 ×X′ U ′ whose base change to
X1×XU is the displayed morphism. At this point (V1, U

′
1, ϕ1) is an object of (Sch/Y1)×(Sch/Y ′

1 )
(Sch/X ′

1). In the proof of Lemma 6.2 we constructed G(V,U ′, ϕ) = V qU U ′ as a quo-
tient of an étale equivalence relation on G1(V1, U

′
1, ϕ1) = V1 qU1 U

′
1 such that we get a

commutative diagram

(6.5.2)

U //

��

U ′

��

U1 //

��

??

U ′
1

��

66

V // G(V,U ′, ϕ)

V1 //

??

G1(V1, U
′
1, ϕ1)

77

where all squares except the front and back squares are cartesian (the front and back
squares are pushouts) and the northeast arrows are surjective étale. In particular

G1(V1, U
′
1, ϕ1)→ G(V,U ′, ϕ)

is surjective étale.

Finally, we come to the proof of the lemma. We have to show that the adjunction mapping
(V,U ′, ϕ)→ F (G(V,U ′, ϕ)) is an isomorphism. We know (V1, U

′
1, ϕ1)→ F1(G1(V1, U

′
1, ϕ1))

is an isomorphism by More on Morphisms, Lemma 14.4. Recall thatF andF1 are given by
base change. Using the properties of (6.5.2) and Lemma 6.4 we see thatV → G(V,U ′, ϕ)×Y ′

Y and U ′ → G(V,U ′, ϕ)×Y ′ X ′ are isomorphisms, i.e., (V,U ′, ϕ) → F (G(V,U ′, ϕ)) is
an isomorphism. �

Lemma 6.6. Let S be a base scheme. Let X → X ′ be a thickening of algebraic spaces
overS and letX → Y be an affine morphism of algebraic spaces overS. LetY ′ = Y qXX ′

be the pushout (see Lemma 6.2). Let V ′ → Y ′ be a morphism of algebraic spaces over S.
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Set V = Y ×Y ′ V ′, U ′ = X ′ ×Y ′ V ′, and U = X ×Y ′ V ′. There is an equivalence of
categories between

(1) quasi-coherentOV ′ -modules flat over Y ′, and
(2) the category of triples (G,F ′, ϕ) where

(a) G is a quasi-coherentOV -module flat over Y ,
(b) F ′ is a quasi-coherentOU ′ -module flat over X , and
(c) ϕ : (U → V )∗G → (U → U ′)∗F ′ is an isomorphism ofOU -modules.

The equivalence maps G′ to ((V → V ′)∗G′, (U ′ → V ′)∗G′, can). Suppose G′ corresponds
to the triple (G,F ′, ϕ). Then

(a) G′ is a finite type OV ′ -module if and only if G and F ′ are finite type OY and
OU ′ -modules.

(b) if V ′ → Y ′ is locally of finite presentation, then G′ is an OV ′ -module of finite
presentation if and only if G and F ′ are OY and OU ′ -modules of finite presen-
tation.

Proof. A quasi-inverse functor assigns to the triple (G,F ′, ϕ) the fibre product

(V → V ′)∗G ×(U→V ′)∗F (U ′ → V ′)∗F ′

whereF = (U → U ′)∗F ′. This works, because on affines étale over V ′ and Y ′ we recover
the equivalence of More on Algebra, Lemma 7.5. Details omitted.

Parts (a) and (b) reduce by étale localization (Properties of Spaces, Section 30) to the case
where V ′ and Y ′ are affine in which case the result follows from More on Algebra, Lemmas
7.4 and 7.6. �

Lemma 6.7. In the situation of Lemma 6.5. If V ′ = G(V,U ′, ϕ) for some triple
(V,U ′, ϕ), then

(1) V ′ → Y ′ is locally of finite type if and only if V → Y and U ′ → X ′ are locally
of finite type,

(2) V ′ → Y ′ is flat if and only if V → Y and U ′ → X ′ are flat,
(3) V ′ → Y ′ is flat and locally of finite presentation if and only if V → Y and

U ′ → X ′ are flat and locally of finite presentation,
(4) V ′ → Y ′ is smooth if and only if V → Y and U ′ → X ′ are smooth,
(5) V ′ → Y ′ is étale if and only if V → Y and U ′ → X ′ are étale, and
(6) add more here as needed.

If W ′ is flat over Y ′, then the adjunction mapping G(F (W ′)) → W ′ is an isomorphism.
Hence F andG define mutually quasi-inverse functors between the category of spaces flat
over Y ′ and the category of triples (V,U ′, ϕ) with V → Y and U ′ → X ′ flat.

Proof. Choose a diagram (6.5.1) as in the proof of Lemma 6.5.

Proof of (1) – (5). Let (V,U ′, ϕ) be an object of (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′). Con-
struct a diagram (6.5.2) as in the proof of Lemma 6.5. Then the base change ofG(V,U ′, ϕ)→
Y ′ to Y ′

1 is G1(V1, U
′
1, ϕ1) → Y ′

1 . Hence (1) – (5) follow immediately from the corre-
sponding statements of More on Morphisms, Lemma 14.6 for schemes.

Suppose that W ′ → Y ′ is flat. Choose a scheme W ′
1 and a surjective étale morphism

W ′
1 → Y ′

1 ×Y ′ W ′. Observe that W ′
1 → W ′ is surjective étale as a composition of sur-

jective étale morphisms. We know that G1(F1(W ′
1)) → W ′

1 is an isomorphism by More
on Morphisms, Lemma 14.6 applied to W ′

1 over Y ′
1 and the front of the diagram (with

functors G1 and F1 as in the proof of Lemma 6.5). Then the construction of G(F (W ′))
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(as a pushout, i.e., as constructed in Lemma 6.2) shows that G1(F1(W ′
1)) → G(F (W )) is

surjective étale. Whereupon we conclude that G(F (W )) → W is étale, see for example
Properties of Spaces, Lemma 16.3. But G(F (W ))→W is an isomorphism on underlying
reduced algebraic spaces (by construction), hence it is an isomorphism. �

7. Pushouts along closed immersions and integral morphisms

This section is analogue of More on Morphisms, Section 67.

Lemma 7.1. In More on Morphisms, Situation 67.1 let Y qZ X be the pushout in
the category of schemes (More on Morphisms, Proposition 67.3). Then Y qZ X is also a
pushout in the category of algebraic spaces over S.

Proof. This is a consequence of Lemma 3.1, the proposition mentioned in the lemma
and More on Morphisms, Lemmas 67.6 and 67.7. Conditions (1) and (2) of Lemma 3.1 fol-
low immediately. To see (3) and (4) note that an étale morphism is locally quasi-finite and
use that the equivalence of categories of More on Morphisms, Lemma 67.7 is constructed
using the pushout construction of More on Morphisms, Lemmas 67.6. Minor details omit-
ted. �

8. Pushouts and derived categories

In this section we discuss the behaviour of the derived category of modules under pushouts.

Lemma 8.1. Let S be a scheme. Consider a pushout

X
i
//

f

��

X ′

f ′

��
Y

j // Y ′

in the category of algebraic spaces over S as in Lemma 6.2. Assume i is a thickening. Then
the essential image of the functor3

D(OY ′) −→ D(OY )×D(OX) D(OX′)

contains every triple (M,K ′, α) where M ∈ D(OY ) and K ′ ∈ D(OX′) are pseudo-
coherent.

Proof. Let (M,K ′, α) be an object of the target of the functor of the lemma. Here
α : Lf∗M → Li∗K ′ is an isomorphism which is adjoint to a map β : M → Rf∗Li

∗K ′.
Thus we obtain maps

Rj∗M
Rj∗β−−−→ Rj∗Rf∗Li

∗K ′ = Rf ′
∗Ri∗Li

∗K ′ ← Rf ′
∗K

′

where the arrow pointing left comes from K ′ → Ri∗Li
∗K ′. Choose a distinguished

triangle
M ′ → Rj∗M ⊕Rf ′

∗K
′ → Rj∗Rf∗Li

∗K ′ →M ′[1]
in D(OY ′). The first arrow defines canonical maps Lj∗M ′ → M and L(f ′)∗M ′ → K ′

compatible with α. Thus it suffices to show that the mapsLj∗M ′ →M andL(f ′)∗M ′ →
K are isomorphisms. This we may check étale locally on Y ′, hence we may assume Y ′ is
étale.

3All functors given by derived pullback.
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Assume Y ′ affine and M ∈ D(OY ) and K ′ ∈ D(OX′) are pseudo-coherent. Say our
pushout corresponds to the fibre product

B B′oo

A

OO

A′oo

OO

of rings where B′ → B is surjective with locally nilpotent kernel I (and hence A′ →
A is surjective with locally nilpotent kernel I as well). The assumption on M and K ′

imply thatM comes from a pseudo-coherent object ofD(A) andK ′ comes from a pseudo-
coherent object ofD(B′), see Derived Categories of Spaces, Lemmas 13.6, 4.2, and 13.2 and
Derived Categories of Schemes, Lemma 3.5 and 10.2. Moreover, pushforward and derived
pullback agree with the corresponding operations on derived categories of modules, see
Derived Categories of Spaces, Remark 6.3 and Derived Categories of Schemes, Lemmas 3.7
and 3.8. This reduces us to the statement formulated in the next paragraph. (To be sure
these references show the objectM ′ liesDQCoh(OY ′) as this is a triangulated subcategory
of D(OY ′).)

Given a diagram of rings as above and a triple (M,K ′, α) whereM ∈ D(A),K ′ ∈ D(B′)
are pseudo-coherent and α : M ⊗L

A B → K ′ ⊗L
B′ B is an isomorphism suppose we have

distinguished triangle

M ′ →M ⊕K ′ → K ′ ⊗L
B′ B →M ′[1]

in D(A′). Goal: show that the induced maps M ′ ⊗L
A′ A→M and M ′ ⊗L

A′ B′ → K ′ are
isomorphisms. To do this, choose a bounded above complex E• of finite free A-modules
representing M . Since (B′, I) is a henselian pair (More on Algebra, Lemma 11.2) with
B = B′/I we may apply More on Algebra, Lemma 75.8 to see that there exists a bounded
above complexP • of freeB′-modules such thatα is represented by an isomorphismE•⊗A
B ∼= P • ⊗B′ B. Then we can consider the short exact sequence

0→ L• → E• ⊕ P • → P • ⊗B′ B → 0

of complexes of B′-modules. More on Algebra, Lemma 6.9 implies L• is a bounded above
complex of finite projective A′-modules (in fact it is rather easy to show directly that Ln
is finite free in our case) and that we have L• ⊗A′ A = E• and L• ⊗A′ B′ = P •. The
short exact sequence gives a distinguished triangle

L• →M ⊕K ′ → K ′ ⊗L
B′ B → (L•)[1]

inD(A′) (Derived Categories, Section 12) which is isomorphic to the given distinguished
triangle by general properties of triangulated categories (Derived Categories, Section 4).
In other words,L• representsM ′ compatibly with the given maps. Thus the mapsM ′⊗L

A′

A→M andM ′⊗L
A′ B′ → K ′ are isomorphisms because we just saw that the correspond-

ing thing is true for L•. �

9. Constructing elementary distinguished squares

Elementary distinguished squares were defined in Derived Categories of Spaces, Section 9.
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Lemma 9.1. Let S be a scheme. Let (U ⊂ W,f : V → W ) be an elementary distin-
guished square. Then

U ×W V //

��

V

f

��
U // W

is a pushout in the category of algebraic spaces over S.

Proof. Observe that U q V →W is a surjective étale morphism. The fibre product

(U q V )×W (U q V )

is the disjoint union of four pieces, namelyU = U×W U ,U×W V , V ×W U , and V ×W V .
There is a surjective étale morphism

V q (U ×W V )×U (U ×W V ) −→ V ×W V

because f induces an isomorphism over W \ U (part of the definition of being an ele-
mentary distinguished square). Let B be an algebraic space over S and let g : V → B
and h : U → B be morphisms over S which agree after restricting to U ×W V . Then
the description of (U q V ) ×W (U q V ) given above shows that h q g : U q V → B
equalizes the two projections. SinceB is a sheaf for the étale topology we obtain a unique
factorization of hq g through W as desired. �

Lemma 9.2. Let S be a scheme. Let V , U be algebraic spaces over S. Let V ′ ⊂ V be
an open subspace and let f ′ : V ′ → U be a separated étale morphism of algebraic spaces
over S. Then there exists a pushout

V ′ //

��

V

f

��
U // W

in the category of algebraic spaces over S and moreover (U ⊂ W,f : V → W ) is an
elementary distinguished square.

Proof. We are going to construct W as the quotient of an étale equivalence relation
R on U q V . Such a quotient is an algebraic space for example by Bootstrap, Theorem
10.1. Moreover, the proof of Lemma 9.1 tells us to take

R = U q V ′ q V ′ q V q (V ′ ×U V ′ \∆V ′/U (V ′))

Since we assumed V ′ → U is separated, the image of ∆V ′/U is closed and hence the com-
plement is an open subspace. The morphism j : R → (U q V ) ×S (U q V ) is given
by

u, v′, v′, v, (v′
1, v

′
2) 7→ (u, u), (f ′(v′), v′), (v′, f ′(v′)), (v, v), (v′

1, v
′
2)

with obvious notation. It is immediately verified that this is a monomorphism, an equiv-
alence relation, and that the induced morphisms s, t : R → U q V are étale. Let W =
(U q V )/R be the quotient algebraic space. We obtain a commutative diagram as in the
statement of the lemma. To finish the proof it suffices to show that this diagram is an ele-
mentary distinguished square, since then Lemma 9.1 implies that it is a pushout. Thus we
have to show that U →W is open and that f is étale and is an isomorphism over W \ U .
This follows from the choice of R; we omit the details. �
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10. Formal glueing of quasi-coherent modules

This section is the analogue of More on Algebra, Section 89. In the case of morphisms
of schemes, the result can be found in the paper by Joyet [?]; this is a good place to start
reading. For a discussion of applications to descent problems for stacks, see the paper by
Moret-Bailly [?]. In the case of an affine morphism of schemes there is a statement in the
appendix of the paper [?] but one needs to add the hypothesis that the closed subscheme is
cut out by a finitely generated ideal (as in the paper by Joyet) since otherwise the result does
not hold. A generalization of this material to (higher) derived categories with potential
applications to nonflat situations can be found in [?, Section 5].

We start with a lemma on abelian sheaves supported on closed subsets.

Lemma 10.1. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and universally
injective. Let y be a geometric point of Y and x = f(y). We have

(Rf∗Q)x = Qy

in D(Ab) for any object Q of D(Yétale) supported on |f−1Z|.

Proof. Consider the commutative diagram of algebraic spaces

f−1Z
i′
//

f ′

��

Y

f

��
Z

i // X

By Cohomology of Spaces, Lemma 9.4 we can write Q = Ri′∗K
′ for some object K ′

of D(f−1Zétale). By Morphisms of Spaces, Lemma 53.7 we have K ′ = (f ′)−1K with
K = Rf ′

∗K
′. Then we have Rf∗Q = Rf∗Ri

′
∗K

′ = Ri∗Rf
′
∗K

′ = Ri∗K. Let z be
the geometric point of Z corresponding to x and let z′ be the geometric point of f−1Z
corresponding to y. We obtain the result of the lemma as follows

Qy = (Ri′∗K ′)y = K ′
z′ = (f ′)−1Kz′ = Kz = Ri∗Kx = Rf∗Qx

The middle equality holds because of the description of the stalk of a pullback given in
Properties of Spaces, Lemma 19.9. �

Lemma 10.2. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and universally
injective. Let y be a geometric point of Y and x = f(y). Let G be an abelian sheaf on Y .
Then the map of two term complexes

(f∗Gx → (f ◦ j′)∗(G|V )x) −→ (Gy → j′
∗(G|V )y)

induces an isomorphism on kernels and an injection on cokernels. Here V = Y \ f−1Z
and j′ : V → Y is the inclusion.

Proof. Choose a distinguished triangle

G → Rj′
∗G|V → Q→ G[1]

n D(Yétale). The cohomology sheaves of Q are supported on |f−1Z|. We apply Rf∗ and
we obtain

Rf∗G → Rf∗Rj
′
∗G|V → Rf∗Q→ Rf∗G[1]
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Taking stalks at x we obtain an exact sequence

0→ (R−1f∗Q)x → f∗Gx → (f ◦ j′)∗(G|V )x → (R0f∗Q)x
We can compare this with the exact sequence

0→ H−1(Q)y → Gy → j′
∗(G|V )y → H0(Q)y

Thus we see that the lemma follows because Qy = Rf∗Qx by Lemma 10.1. �

Lemma 10.3. Let S be a scheme. Let X be an algebraic space over S. Let f : Y → X
be a quasi-compact and quasi-separated morphism. Let x be a geometric point of X and
let Spec(OX,x) → X be the canonical morphism. For a quasi-coherent module G on Y
we have

f∗Gx = Γ(Y ×X Spec(OX,x), p∗F)
where p : Y ×X Spec(OX,x)→ Y is the projection.

Proof. Observe that f∗Gx = Γ(Spec(OX,x), h∗f∗G) where h : Spec(OX,x) →
X . Hence the result is true because h is flat so that Cohomology of Spaces, Lemma 11.2
applies. �

Lemma 10.4. LetS be a scheme. LetX be an algebraic space overS. Let i : Z → X be
a closed immersion of finite presentation. Let Q ∈ DQCoh(OX) be supported on |Z|. Let
x be a geometric point of X and let Ix ⊂ OX,x be the stalk of the ideal sheaf of Z. Then
the cohomology modules Hn(Qx) are Ix-power torsion (see More on Algebra, Definition
88.1).

Proof. Choose an affine schemeU and an étale morphismU → X such that x lifts to
a geometric point u ofU . Then we can replaceX byU ,Z byU×X Z ,Q by the restriction
Q|U , and x by u. Thus we may assume that X = Spec(A) is affine. Let I ⊂ A be the
ideal defining Z. Since i : Z → X is of finite presentation, the ideal I = (f1, . . . , fr)
is finitely generated. The object Q comes from a complex of A-modules M•, see Derived
Categories of Spaces, Lemma 4.2 and Derived Categories of Schemes, Lemma 3.5. Since the
cohomology sheaves of Q are supported on Z we see that the localization M•

f is acyclic
for each f ∈ I . Take x ∈ Hp(M•). By the above we can find ni such that fnii x = 0 in
Hp(M•) for each i. Then with n =

∑
ni we see that In annihilates x. Thus Hp(M•)

is I-power torsion. Since the ring map A → OX,x is flat and since Ix = IOX,x we
conclude. �

Lemma 10.5. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let Z ⊂ X be a closed subspace. Assume f−1Z → Z is an isomorphism and that
f is flat in every point of f−1Z. For anyQ inDQCoh(OY ) supported on |f−1Z|we have
Lf∗Rf∗Q = Q.

Proof. We show the canonical map Lf∗Rf∗Q→ Q is an isomorphism by checking
on stalks at y. If y is not in f−1Z , then both sides are zero and the result is true. Assume
the image x of y is in Z. By Lemma 10.1 we have Rf∗Qx = Qy and since f is flat at y we
see that

(Lf∗Rf∗Q)y = (Rf∗Q)x ⊗OX,x
OY,y = Qy ⊗OX,x

OY,y
Thus we have to check that the canonical map

Qy ⊗OX,x
OY,y −→ Qy

is an isomorphism in the derived category. Let Ix ⊂ OX,x be the stalk of the ideal sheaf
defining Z. Since Z → X is locally of finite presentation this ideal is finitely generated
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and the cohomology groups ofQy are Iy = IxOY,y-power torsion by Lemma 10.4 applied
to Q on Y . It follows that they are also Ix-power torsion. The ring map OX,x → OY,y
is flat and induces an isomorphism after dividing by Ix and Iy because we assumed that
f−1Z → Z is an isomorphism. Hence we see that the cohomology modules of Qy ⊗OX,x

OY,y are equal to the cohomology modules ofQy by More on Algebra, Lemma 89.2 which
finishes the proof. �

Situation 10.6. Here S is a base scheme, f : Y → X is a quasi-compact and quasi-
separated morphism of algebraic spaces over S , and Z → X is a closed immersion of finite
presentation. We assume that f−1(Z)→ Z is an isomorphism and that f is flat in every
point x ∈ |f−1Z|. We set U = X \ Z and V = Y \ f−1(Z). Picture

V
j′
//

f |V
��

Y

f

��
U

j // X

In Situation 10.6 we define QCoh(Y → X,Z) as the category of triples (H,G, ϕ) where
H is a quasi-coherent sheaf of OU -modules, G is a quasi-coherent sheaf of OY -modules,
and ϕ : f∗H → G|V is an isomorphism ofOV -modules. There is a canonical functor
(10.6.1) QCoh(OX) −→ QCoh(Y → X,Z)
which maps F to the system (F|U , f∗F , can). By analogy with the proof given in the
affine case, we construct a functor in the opposite direction. To an object (H,G, ϕ) we
assign theOX -module
(10.6.2) Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )
Observe that j and j′ are quasi-compact morphisms as Z → X is of finite presentation.
Hence f∗, j∗, and (f ◦ j′)∗ transform quasi-coherent modules into quasi-coherent modules
(Morphisms of Spaces, Lemma 11.2). Thus the module (10.6.2) is quasi-coherent.

Lemma 10.7. In Situation 10.6. The functor (10.6.2) is right adjoint to the functor
(10.6.1).

Proof. This follows easily from the adjointness of f∗ to f∗ and j∗ to j∗. Details
omitted. �

Lemma 10.8. In Situation 10.6. Let X ′ → X be a flat morphism of algebraic spaces.
Set Z ′ = X ′ ×X Z and Y ′ = X ′ ×X Y . The pullbacks QCoh(OX)→ QCoh(OX′) and
QCoh(Y → X,Z) → QCoh(Y ′ → X ′, Z ′) are compatible with the functors (10.6.2)
and 10.6.1).

Proof. This is true because pullback commutes with pullback and because flat pull-
back commutes with pushforward along quasi-compact and quasi-separated morphisms,
see Cohomology of Spaces, Lemma 11.2. �

Proposition 10.9. In Situation 10.6 the functor (10.6.1) is an equivalence with quasi-
inverse given by (10.6.2).

Proof. We first treat the special case where X and Y are affine schemes and where
the morphism f is flat. Say X = Spec(R) and Y = Spec(S). Then f corresponds to a
flat ring map R → S. Moreover, Z ⊂ X is cut out by a finitely generated ideal I ⊂ R.
Choose generators f1, . . . , ft ∈ I . By the description of quasi-coherent modules in terms
of modules (Schemes, Section 7), we see that the category QCoh(Y → X,Z) is canonically
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equivalent to the category Glue(R → S, f1, . . . , ft) of More on Algebra, Remark 89.10
such that the functors (10.6.1) and (10.6.2) correspond to the functors Can andH0. Hence
the result follows from More on Algebra, Proposition 89.15 in this case.

We return to the general case. LetF be a quasi-coherent module onX . We will show that

α : F −→ Ker (j∗F|U ⊕ f∗f
∗F → (f ◦ j′)∗f

∗F|V )

is an isomorphism. Let (H,G, ϕ) be an object of QCoh(Y → X,Z). We will show that

β : f∗ Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ G

and
γ : j∗ Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ H

are isomorphisms. To see these statements are true it suffices to look at stalks. Let y be a
geometric point of Y mapping to the geometric point x of X .

Fix an object (H,G, ϕ) of QCoh(Y → X,Z). By Lemma 10.2 and a diagram chase (omit-
ted) the canonical map

Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )x −→ Ker(j∗Hx ⊕ Gy → j′
∗Gy)

is an isomorphism.

In particular, if y is a geometric point of V , then we see that j′
∗Gy = Gy and hence that

this kernel is equal toHx. This easily implies that αx, βx, and βy are isomorphisms in this
case.

Next, assume that y is a point of f−1Z. Let Ix ⊂ OX,x, resp. Iy ⊂ OY,y be the stalk of
the ideal cutting out Z , resp. f−1Z. Then Ix is a finitely generated ideal, Iy = IxOY,y ,
and OX,x → OY,y is a flat local homomorphism inducing an isomorphism OX,x/Ix =
OY,y/Iy . At this point we can bootstrap using the diagram of categories

QCoh(OX)
(10.6.1)

//

��

QCoh(Y → X,Z)

��

(10.6.2)
zz

ModOX,x

Can // Glue(OX,x → OY,y, f1, . . . , ft)

H0
ee

Namely, as in the first paragraph of the proof we identify

Glue(OX,x → OY,y, f1, . . . , ft) = QCoh(Spec(OY,y)→ Spec(OX,x), V (Ix))

The right vertical functor is given by pullback, and it is clear that the inner square is
commutative. Our computation of the stalk of the kernel in the third paragraph of the
proof combined with Lemma 10.3 implies that the outer square (using the curved arrows)
commutes. Thus we conclude using the case of a flat morphism of affine schemes which
we handled in the first paragraph of the proof. �

Lemma 10.10. In Situation 10.6 the functor Rf∗ induces an equivalence between
DQCoh,|f−1Z|(OY ) and DQCoh,|Z|(OX) with quasi-inverse given by Lf∗.
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Proof. Since f is quasi-compact and quasi-separated we see thatRf∗ defines a functor
from DQCoh,|f−1Z|(OY ) to DQCoh,|Z|(OX), see Derived Categories of Spaces, Lemma
6.1. By Derived Categories of Spaces, Lemma 5.5 we see that Lf∗ maps DQCoh,|Z|(OX)
into DQCoh,|f−1Z|(OY ). In Lemma 10.5 we have seen that Lf∗Rf∗Q = Q for Q in
DQCoh,|f−1Z|(OY ). By the dual of Derived Categories, Lemma 7.2 to finish the proof it
suffices to show that Lf∗K = 0 implies K = 0 for K in DQCoh,|Z|(OX). This follows
from the fact that f is flat at all points of f−1Z and the fact that f−1Z → Z is surjective.

�

Lemma 10.11. In Situation 10.6 there exists an fpqc covering {Xi → X}i∈I refining
the family {U → X,Y → X}.

Proof. For the definition and general properties of fpqc coverings we refer to Topolo-
gies, Section 9. In particular, we can first choose an étale covering {Xi → X} with Xi

affine and by base changing Y , Z , and U to each Xi we reduce to the case where X is
affine. In this caseU is quasi-compact and hence a finite unionU = U1∪ . . .∪Un of affine
opens. Then Z is quasi-compact hence also f−1Z is quasi-compact. Thus we can choose
an affine scheme W and an étale morphism h : W → Y such that h−1f−1Z → f−1Z
is surjective. Say W = Spec(B) and h−1f−1Z = V (J) where J ⊂ B is an ideal of
finite type. By Pro-étale Cohomology, Lemma 5.1 there exists a localization B → B′

such that points of Spec(B′) correspond exactly to points of W = Spec(B) specializing
to h−1f−1Z = V (J). It follows that the composition Spec(B′) → Spec(B) = W →
Y → X is flat as by assumption f : Y → X is flat at all the points of f−1Z. Then
{Spec(B′) → X,U1 → X, . . . , Un → X} is an fpqc covering by Topologies, Lemma
9.2. �

11. Formal glueing of algebraic spaces

In Situation 10.6 we consider the category Spaces(Y → X,Z) of commutative diagrams
of algebraic spaces over S of the form

U ′

��

V ′oo

��

// Y ′

��
U Voo // Y

where both squares are cartesian. There is a canonical functor

(11.0.1) Spaces/X −→ Spaces(Y → X,Z)
which maps X ′ → X to the morphisms U ×X X ′ ← V ×X X ′ → Y ×X X ′.

Lemma 11.1. In Situation 10.6 the functor (11.0.1) restricts to an equivalence
(1) from the category of algebraic spaces affine over X to the full subcategory of

Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V , and
Y ′ → Y affine,

(2) from the category of closed immersions X ′ → X to the full subcategory of
Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V , and
Y ′ → Y closed immersions, and

(3) same statement as in (2) for finite morphisms.

Proof. The category of algebraic spaces affine over X is equivalent to the category
of quasi-coherent sheaves A of OX -algebras. The full subcategory of Spaces(Y → X,Z)
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consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V , and Y ′ → Y affine is equiva-
lent to the category of algebra objects of QCoh(Y → X,Z). In both cases this follows
from Morphisms of Spaces, Lemma 20.7 with quasi-inverse given by the relative spectrum
construction (Morphisms of Spaces, Definition 20.8) which commutes with arbitrary base
change. Thus part (1) of the lemma follows from Proposition 10.9.
Fully faithfulness in part (2) follows from part (1). For essential surjectivity, we reduce by
part (1) to proving thatX ′ → X is a closed immersion if and only if both U ×X X ′ → U
and Y ×X X ′ → Y are closed immersions. By Lemma 10.11 {U → X,Y → X} can
be refined by an fpqc covering. Hence the result follows from Descent on Spaces, Lemma
11.17.
For (3) use the argument proving (2) and Descent on Spaces, Lemma 11.23. �

Lemma 11.2. In Situation 10.6 the functor (11.0.1) reflects isomorphisms.

Proof. By a formal argument with base change, this reduces to the following ques-
tion: A morphism a : X ′ → X of algebraic spaces such that U ×X X ′ → U and
Y ×X X ′ → Y are isomorphisms, is an isomorphism. The family {U → X,Y → X} can
be refined by an fpqc covering by Lemma 10.11. Hence the result follows from Descent on
Spaces, Lemma 11.15. �

Lemma 11.3. In Situation 10.6 the functor (11.0.1) is fully faithful on algebraic spaces
separated over X . More precisely, it induces a bijection

MorX(X ′
1, X

′
2) −→ MorSpaces(Y→X,Z)(F (X ′

1), F (X ′
2))

whenever X ′
2 → X is separated.

Proof. Since X ′
2 → X is separated, the graph i : X ′

1 → X ′
1 ×X X ′

2 of a morphism
X ′

1 → X ′
2 over X is a closed immersion, see Morphisms of Spaces, Lemma 4.6. Moreover

a closed immersion i : T → X ′
1 ×X X ′

2 is the graph of a morphism if and only if pr1 ◦ i
is an isomorphism. The same is true for

(1) the graph of a morphism U ×X X ′
1 → U ×X X ′

2 over U ,
(2) the graph of a morphism V ×X X ′

1 → V ×X X ′
2 over V , and

(3) the graph of a morphism Y ×X X ′
1 → Y ×X X ′

2 over Y .
Moreover, if morphisms as in (1), (2), (3) fit together to form a morphism in the cate-
gory Spaces(Y → X,Z), then these graphs fit together to give an object of Spaces(Y ×X
(X ′

1 ×X X ′
2) → X ′

1 ×X X ′
2, Z ×X (X ′

1 ×X X ′
2)) whose triple of morphisms are closed

immersions. The proof is finished by applying Lemmas 11.1 and 11.2. �

12. Glueing and the Beauville-Laszlo theorem

Let R→ R′ be a ring homomorphism and let f ∈ R be an element such that
0→ R→ Rf ⊕R′ → R′

f → 0
is a short exact sequence. This implies thatR/fnR ∼= R′/fnR′ for all n and (R→ R′, f)
is a glueing pair in the sense of More on Algebra, Section 90. Set X = Spec(R), U =
Spec(Rf ), X ′ = Spec(R′) and U ′ = Spec(R′

f ). Picture

U ′ //

��

X ′

��
U // X
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In this situation we can consider the category Spaces(U ← U ′ → X ′) whose objects are
commutative diagrams

V

��

V ′oo

��

// Y ′

��
U U ′oo // X ′

of algebraic spaces with both squares cartesian and whose morphism are defined in the
obvious manner. An object of this category will be denoted (V, V ′, Y ′) with arrows sur-
pressed from the notation. There is a functor

(12.0.1) Spaces/X −→ Spaces(U ← U ′ → X ′)

given by base change: Y 7→ (U ×X Y, U ′ ×X Y,X ′ ×X Y ).

We have seen in More on Algebra, Section 90 that not everyR-moduleM can be recovered
from its gluing data. Similarly, the functor (12.0.1) won’t be fully faithful on the category
of all spaces over X . In order to single out a suitable subcategory of algebraic spaces over
X we need a lemma.

Lemma 12.1. Let (R→ R′, f) be a glueing pair, see above. Let Y be an algebraic space
over X . The following are equivalent

(1) there exists an étale covering {Yi → Y }i∈I with Yi affine and Γ(Yi,OYi) glue-
able as an R-module,

(2) for every étale morphism W → Y with W affine Γ(W,OW ) is a glueable R-
module.

Proof. It is immediate that (2) implies (1). Assume {Yi → Y } is as in (1) and let
W → Y be as in (2). Then {Yi×Y W →W}i∈I is an étale covering, which we may refine
by an étale covering {Wj → W}j=1,...,m with Wj affine (Topologies, Lemma 4.4). Thus
to finish the proof it suffices to show the following three algebraic statements:

(1) ifR→ A→ B are ring maps withA→ B étale andA glueable as anR-module,
then B is glueable as an R-module,

(2) finite products of glueable R-modules are glueable,
(3) ifR→ A→ B are ring maps withA→ B faithfully étale andB glueable as an

R-module, then A is glueable as an R-module.
Namely, the first of these will imply that Γ(Wj ,OWj

) is a glueable R-module, the sec-
ond will imply that

∏
Γ(Wj ,OWj

) is a glueable R-module, and the third will imply that
Γ(W,OW ) is a glueable R-module.

Consider an étale R-algebra homomorphism A → B. Set A′ = A ⊗R R′ and B′ =
B ⊗R R′ = A′ ⊗A B. Statements (1) and (3) then follow from the following facts: (a) A,
resp. B is glueable if and only if the sequence

0→ A→ Af ⊕A′ → A′
f → 0, resp. 0→ B → Bf ⊕B′ → B′

f → 0,

is exact, (b) the second sequence is equal to the functor−⊗AB applied to the first and (c)
(faithful) flatness of A→ B. We omit the proof of (2). �

Let (R → R′, f) be a glueing pair, see above. We will say an algebraic space Y over
X = Spec(R) is glueable for (R→ R′, f) if the equivalent conditions of Lemma 12.1 are
satisfied.
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Lemma 12.2. Let (R → R′, f) be a glueing pair, see above. The functor (12.0.1)
restricts to an equivalence between the category of affine Y/X which are glueable for
(R → R′, f) and the full subcategory of objects (V, V ′, Y ′) of Spaces(U ← U ′ → X ′)
with V , V ′, Y ′ affine.

Proof. Let (V, V ′, Y ′) be an object of Spaces(U ← U ′ → X ′) with V , V ′, Y ′ affine.
Write V = Spec(A1) and Y ′ = Spec(A′). By our definition of the category Spaces(U ←
U ′ → X ′) we find that V ′ is the spectrum of A1 ⊗Rf R′

f = A1 ⊗R R′ and the spectrum
of A′

f . Hence we get an isomorphism ϕ : A′
f → A1 ⊗R R′ of R′

f -algebras. By More
on Algebra, Theorem 90.17 there exists a unique glueable R-module A and isomorphisms
Af → A1 and A⊗R R′ → A′ of modules compatible with ϕ. Since the sequence

0→ A→ A1 ⊕A′ → A′
f → 0

is short exact, the multiplications on A1 and A′ define a unique R-algebra structure on
A such that the maps A → A1 and A → A′ are ring homomorphisms. We omit the
verification that this construction defines a quasi-inverse to the functor (12.0.1) restricted
to the subcategories mentioned in the statement of the lemma. �

Lemma 12.3. Let P be one of the following properties of morphisms: “finite”, “closed
immersion”, “flat”, “finite type”, “flat and finite presentation”, “étale”. Under the equiva-
lence of Lemma 12.2 the morphisms having P correspond to morphisms of triples whose
components have P .

Proof. Let P ′ be one of the following properties of homomorphisms of rings: “fi-
nite”, “surjective”, “flat”, “finite type”, “flat and of finite presentation”, “étale”. Translated
into algebra, the statement means the following: If A → B is an R-algebra homomor-
phism andA andB are glueable for (R→ R′, f), thenAf → Bf andA⊗RR′ → B⊗RR′

have P ′ if and only if A→ B has P ′.

By More on Algebra, Lemmas 90.5 and 90.19 the algebraic statement is true for P ′ equal
to “finite” or “flat”.

If Af → Bf and A ⊗R R′ → B ⊗R R′ are surjective, then N = B/A is an R-module
with Nf = 0 and N ⊗R R′ = 0 and hence vanishes by More on Algebra, Lemma 90.3.
Thus A→ B is surjective.

If Af → Bf and A ⊗R R′ → B ⊗R R′ are finite type, then we can choose an A-
algebra homomorphism A[x1, . . . , xn]→ B such that Af [x1, . . . , xn]→ Bf and (A⊗R
R′)[x1, . . . , xn] → B ⊗R R′ are surjective (small detail omitted). We conclude that
A[x1, . . . , xn]→ B is surjective by the previous result. Thus A→ B is of finite type.

If Af → Bf and A ⊗R R′ → B ⊗R R′ are flat and of finite presentation, then we
know that A → B is flat and of finite type by what we have already shown. Choose
a surjection A[x1, . . . , xn] → B and denote I the kernel. By flatness of B over A we
see that If is the kernel of Af [x1, . . . , xn] → Bf and I ⊗R R′ is the kernel of A ⊗R
R′[x1, . . . , xn] → B ⊗R R′. Thus If is a finite Af [x1, . . . , xn]-module and I ⊗R R′ is
a finite (A ⊗R R′)[x1, . . . , xn]-module. By More on Algebra, Lemma 90.5 applied to I
viewed as a module overA[x1, . . . , xn] we conclude that I is a finitely generated ideal and
we conclude A→ B is flat and of finite presentation.

IfAf → Bf andA⊗RR′ → B⊗RR′ are étale, then we know thatA→ B is flat and of fi-
nite presentation by what we have already shown. Since the fibres of Spec(B)→ Spec(A)
are isomorphic to fibres of Spec(Bf )→ Spec(Af ) or Spec(B/fB)→ Spec(A/fA), we
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conclude thatA→ B is unramified, see Morphisms, Lemmas 35.11 and 35.12. We conclude
that A→ B is étale by Morphisms, Lemma 36.16 for example. �

Lemma 12.4. Let (R → R′, f) be a glueing pair, see above. The functor (12.0.1) is
faithful on the full subcategory of algebraic spaces Y/X glueable for (R→ R′, f).

Proof. Let f, g : Y → Z be two morphisms of algebraic spaces over X with Y and
Z glueable for (R → R′, f) such that f and g are mapped to the same morphism in the
category Spaces(U ← U ′ → X ′). We have to show the equalizer E → Y of f and g is
an isomorphism. Working étale locally on Y we may assume Y is an affine scheme. Then
E is a scheme and the morphism E → Y is a monomorphism and locally quasi-finite, see
Morphisms of Spaces, Lemma 4.1. Moreover, the base change of E → Y to U and to X ′

is an isomorphism. As Y is the disjoint union of the affine open V = U ×X Y and the
affine closed V (f)×X Y , we conclude E is the disjoint union of their isomorphic inverse
images. It follows in particular thatE is quasi-compact. By Zariski’s main theorem (More
on Morphisms, Lemma 43.3) we conclude that E is quasi-affine. Set B = Γ(E,OE) and
A = Γ(Y,OY ) so that we have an R-algebra homomorphism A → B. Since E → Y
becomes an isomorphism after base change to U and X ′ we obtain ring maps B → Af
and B → A⊗R R′ agreeing as maps into A⊗R R′

f . Since A is glueable for (R→ R′, f)
we get a ring map B → A which is left inverse to the map A → B. The corresponding
morphism Y = Spec(A) → Spec(B) maps into the open subscheme E ⊂ Spec(B)
pointwise because this is true after base change to U and X ′. Hence we get a morphism
Y → E over Y . SinceE → Y is a monomorhism we conclude Y → E is an isomorphism
as desired. �

Lemma 12.5. Let (R → R′, f) be a glueing pair, see above. The functor (12.0.1) is
fully faithful on the full subcategory of algebraic spaces Y/X which are (a) glueable for
(R→ R′, f) and (b) have affine diagonal Y → Y ×X Y .

Proof. Let Y, Z be two algebraic spaces over X which are both glueable for (R →
R′, f) and assume the diagonal of Z is affine. Let a : U ×X Y → U ×X Z over U and
b : X ′ ×X Y → X ′ ×X Z over X ′ be two morphisms of algebraic spaces which induce
the same morphism c : U ′×X Y → U ′×X Z over U ′. We want to construct a morphism
f : Y → Z over X which produces the morphisms a, b on base change to U , X ′. By
the faithfulness of Lemma 12.4, it suffices to construct the morphism f étale locally on Y
(details omitted). Thus we may and do assume Y is affine.

Let y ∈ |Y | be a point. If y maps into the open U ⊂ X , then U ×X Y is an open of Y on
which the morphism f is defined (we can just take a). Thus we may assume ymaps into the
closed subset V (f) of X . Since R/fR = R′/fR′ there is a unique point y′ ∈ |X ′ ×X Y |
mapping to y. Denote z′ = b(y′) ∈ |X ′ ×X Z| and z ∈ |Z| the images of y′. Choose an
étale neighbourhood (W,w)→ (Z, z) with W affine. Observe that

(U ×X W )×U×XZ,a (U ×X Y ), (U ′ ×X W )×U ′×XZ,c (U ′ ×X Y ),

and
(X ′ ×X W )×X′×XZ,b (X ′ ×X Y )

form an object of Spaces(U ← U ′ → X ′) with affine parts (this is where we use that Z
has affine diagonal). Hence by Lemma 12.2 there exists a unique affine scheme V glueable
for (R→ R′, f) such that

(U ×X V,U ′ ×X V,X ′ ×X V )
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is the triple displayed above. By fully faithfulness for the affine case (Lemma 12.2) we get
a unique morphisms V → W and V → Y agreeing with the first and second projection
morphisms over U andX ′ in the construction above. By Lemma 12.3 the morphism V →
Y is étale. To finish the proof, it suffices to show that there is a point v ∈ |V |mapping to
y (because then f is defined on an étale neighbourhood of y, namely V ). There is a unique
point w′ ∈ |X ′ ×X W | mapping to w. By uniqueness w′ is mapped to z′ under the map
|X ′ ×X W | → |X ′ ×X Z|. Then we consider the cartesian diagram

X ′ ×X V //

��

X ′ ×X W

��
X ′ ×X Y // X ′ ×X Z

to see that there is a point v′ ∈ |X ′×X V |mapping to y′ and w′, see Properties of Spaces,
Lemma 4.3. Of course the image v of v′ in |V | maps to y and the proof is complete. �

Lemma 12.6. Let (R→ R′, f) be a glueing pair, see above. Any object (V, V ′, Y ′) of
Spaces(U ← U ′ → X ′) with V , V ′, Y ′ quasi-affine is isomorphic to the image under the
functor (12.0.1) of a separated algebraic space Y over X .

Proof. Choose n′, T ′ → Y ′ and n1, T1 → V as in Properties, Lemma 18.6. Picture

T1 ×V V ′ ×Y T ′

vv ((
T1

��

T1 ×V V ′oo

((

V ′ ×Y ′ T ′ //

vv

T ′

��
V V ′ //oo Y ′

Observe that T1 ×V V ′ and V ′ ×Y ′ T ′ are affine (namely the morphisms V ′ → V and
V ′ → Y ′ are affine as base changes of the affine morphisms U ′ → U and U ′ → X ′). By
construction we see that

An′

T1×V V ′ ∼= T1 ×V V ′ ×Y ′ T ′ ∼= An1
V ′×Y ′T ′

In other words, the affine schemes An′

T1
and An1

T ′ are part of a triple making an affine object
of Spaces(U ← U ′ → X ′). By Lemma 12.2 there exists a morphism of affine schemes
T → X and isomorphisms U ×X T ∼= An′

T1
and X ′ ×X T ∼= An1

T ′ compatible with the
isomorphisms displayed above. These isomorphisms produce morphisms

U ×X T −→ V and X ′ ×X T −→ Y ′

satisfying the property of Properties, Lemma 18.6 with n = n′ + n1 and moreover define
a morphism from the triple (U ×X T,U ′×X T,X ′×X T ) to our triple (V, V ′, Y ′) in the
category Spaces(U ← U ′ → X ′).

By Lemma 12.2 there is an affine scheme W whose image in Spaces(U ← U ′ → X ′) is
isomorphic to the triple

((U ×X T )×V (U ×X T ), (U ′ ×X T )×V ′ (U ′ ×X T ), (X ′ ×X T )×Y ′ (X ′ ×X T ))
By fully faithfulness of this construction, we obtain two maps p0, p1 : W → T whose
base changes to U,U ′, X ′ are the projection morphisms. By Lemma 12.3 the morphisms
p0, p1 are flat and of finite presentation and the morphism (p0, p1) : W → T ×X T is a
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closed immersion. In fact, W → T ×X T is an equivalence relation: by the lemmas used
above we may check symmetry, reflexivity, and transitivity after base change to U and
X ′, where these are obvious (details omitted). Thus the quotient sheaf

Y = T/W

is an algebraic space for example by Bootstrap, Theorem 10.1. Since it is clear that Y/X
is sent to the triple (V, V ′, Y ′). The base change of the diagonal ∆ : Y → Y ×X Y by
the quasi-compact surjective flat morphism T ×X T → Y ×X Y is the closed immersion
W → T ×X T . Thus ∆ is a closed immersion by Descent on Spaces, Lemma 11.17. Thus
the algebraic space Y is separated and the proof is complete. �

13. Coequalizers and glueing

Let X be a Noetherian algebraic space and Z → X a closed subspace. Let X ′ → X be
the blowing up in Z. In this section we show that X can be recovered from X ′, Zn and
glueing data where Zn is the nth infinitesimal neighbourhood of Z in X .

Lemma 13.1. Let S be a scheme. Let

g : Y −→ X

be a morphism of algebraic spaces overS. AssumeX is locally Noetherian, and g is proper.
LetR = Y ×X Y with projection morphisms t, s : R→ Y . There exists a coequalizerX ′

of s, t : R→ Y in the category of algebraic spaces over S. Moreover
(1) The morphism X ′ → X is finite.
(2) The morphism Y → X ′ is proper.
(3) The morphism Y → X ′ is surjective.
(4) The morphism X ′ → X is universally injective.
(5) If g is surjective, the morphism X ′ → X is a universal homeomorphism.

Proof. Denote h : R → X denote the composition of either s or t with g. Then h
is proper by Morphisms of Spaces, Lemmas 40.3 and 40.4. The sheaves

g∗OY and h∗OR
are coherentOX -algebras by Cohomology of Spaces, Lemma 20.2. The X-morphisms s, t
induceOX -algebra maps s], t] from the first to the second. Set

A = Equalizer
(
s], t] : g∗OY −→ h∗OR

)
ThenA is a coherentOX -algebra and we can define

X ′ = Spec
X

(A)

as in Morphisms of Spaces, Definition 20.8. By Morphisms of Spaces, Remark 20.9 and
functoriality of the Spec construction there is a factorization

Y −→ X ′ −→ X

and the morphism g′ : Y → X ′ equalizes s and t.

Before we show that X ′ is the coequalizer of s and t, we show that Y → X ′ and X ′ → X
have the desired properties. Since A is a coherent OX -module it is clear that X ′ → X is
a finite morphism of algebraic spaces. This proves (1). The morphism Y → X ′ is proper
by Morphisms of Spaces, Lemma 40.6. This proves (2). Denote Y → Y ′ → X with Y ′ =
Spec

X
(g∗OY ) the Stein factorization of g, see More on Morphisms of Spaces, Theorem

36.4. Of course we obtain morphisms Y → Y ′ → X ′ → X fitting with the morphisms



13. COEQUALIZERS AND GLUEING 5953

studied above. Since OX′ ⊂ g∗OY is a finite extension we see that Y ′ → X ′ is finite
and surjective. Some details omitted; hint: use Algebra, Lemma 36.17 and reduce to the
affine case by étale localization. Since Y → Y ′ is surjective (with geometrically connected
fibres) we conclude that Y → X ′ is surjective. This proves (3). To show that X ′ → X is
universally injective, we have to show that X ′ → X ′ ×X X ′ is surjective, see Morphisms
of Spaces, Definition 19.3 and Lemma 19.2. Since Y → X ′ is surjective (see above) and
since base changes and compositions of surjective morphisms are surjective by Morphisms
of Spaces, Lemmas 5.5 and 5.4 we see that Y ×X Y → X ′ ×X X ′ is surjective. However,
since Y → X ′ equalizes s and t, we see that Y ×X Y → X ′ ×X X ′ factors through
X ′ → X ′ ×X X ′ and we conclude this latter map is surjective. This proves (4). Finally,
if g is surjective, then since g factors through X ′ → X we see that X ′ → X is surjective.
Since a surjective, universally injective, finite morphism is a universal homeomorphism
(because it is universally bijective and universally closed), this proves (5).

In the rest of the proof we show that Y → X ′ is the coequalizer of s and t in the category
of algebraic spaces over S. Observe that X ′ is locally Noetherian (Morphisms of Spaces,
Lemma 23.5). Moreover, observe that Y ×X′ Y → Y ×X Y is an isomorphism as Y → X ′

equalizes s and t (this is a categorical statement). Hence in order to prove the statement
that Y → X ′ is the coequalizer of s and t, we may and do assumeX = X ′. In other words,
OX is the equalizer of the maps s], t] : g∗OY → h∗OR.

Let X1 → X be a flat morphism of algebraic spaces over S with X1 locally Noetherian.
Denote g1 : Y1 → X1, h1 : R1 → X1 and s1, t1 : R1 → Y1 the base changes of g, h, s, t
to X1. Of course g1 is proper and R1 = Y1 ×X1 Y1. Since we have flat base change for
pushforward of quasi-coherent modules, Cohomology of Spaces, Lemma 11.2, we see that
OX1 is the equalizer of the maps s]1, t

]
1 : g1,∗OY1 → h1,∗OR1 . Hence all the assumptions

we have are preserved by this base change.

At this point we are going to check conditions (1) and (2) of Lemma 3.3. Condition (1)
follows from Lemma 5.1 and the fact that g is proper and surjective (because X = X ′).
To check condition (2), by the remarks on base change above, we reduce to the statement
discussed and proved in the next paragraph.

Assume S = Spec(A) is an affine scheme, X = X ′ is an affine scheme, and Z is an affine
scheme over S. We have to show that

MorS(X,Z) −→ Equalizer(s, t : MorS(Y, Z)→ MorS(R,Z))

is bijective. However, this is clear from the fact that X = X ′ which implies OX is the
equalizer of the maps s], t] : g∗OY → h∗OR which in turn implies

Γ(X,OX) = Equalizer
(
s], t] : Γ(Y,OY )→ Γ(R,OR)

)
Namely, we have

MorS(X,Z) = HomA(Γ(Z,OZ),Γ(X,OX))

and similarly for Y and R, see Properties of Spaces, Lemma 33.1. �

We will work in the following situation.

Situation 13.2. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let Z → X be a closed immersion and let U ⊂ X be the complementary open
subspace. Finally, let f : X ′ → X be a proper morphism of algebraic spaces such that
f−1(U)→ U is an isomorphism.
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Lemma 13.3. In Situation 13.2 letY = X ′qZ andR = Y ×XY with projections t, s :
R→ Y . There exists a coequalizer X1 of s, t : R→ Y in the category of algebraic spaces
over S. The morphism X1 → X is a finite universal homeomorphism, an isomorphism
over U , and Z → X lifts to X1.

Proof. Existence of X1 and the fact that X1 → X is a finite universal homeomor-
phism is a special case of Lemma 13.1. The formation of X1 commutes with étale localiza-
tion on X (see proof of Lemma 13.1). Thus the morphism X1 → X is an isomorphism
over U . It is immediate from the construction that Z → X lifts to X1. �

In Situation 13.2 for n ≥ 1 let Zn ⊂ X be the nth order infinitesimal neighbourhood of
Z in X , i.e., the closed subscheme defined by the nth power of the sheaf of ideals cutting
out Z. Consider Yn = X ′ q Zn and Rn = Yn ×X Yn and the coequalizer

Rn
//
// Yn // Xn

// X

as in Lemma 13.3. The maps Yn → Yn+1 and Rn → Rn+1 induce morphisms
(13.3.1) X1 → X2 → X3 → . . .→ X

Each of these morphisms is a universal homeomorphism as the morphisms Xn → X are
universal homeomorphisms.

Lemma 13.4. In Situation 13.2 assume X quasi-compact. In (13.3.1) for all n large
enough, there exists an m such that Xn → Xn+m factors through a closed immersion
X → Xn+m.

Proof. Let’s look a bit more closely at the construction of Xn and how it changes as
we increase n. We have Xn = Spec(An) where An is the equalizer of s]n and t]n going
from gn,∗OYn to hn,∗ORn . Here gn : Yn = X ′qZn → X and hn : Rn = Yn×XYn → X
are the given morphisms. Let I ⊂ OX be the coherent sheaf of ideals corresponding to Z.
Then

gn,∗OYn = f∗OX′ ×OX/In

Similarly, we have a decomposition
Rn = X ′ ×X X ′ qX ′ ×X Zn q Zn ×X X ′ q Zn ×X Zn

As Zn → X is a monomorphism, we see that X ′ ×X Zn = Zn ×X X ′ and that this
identification is compatible with the two morphisms to X , with the two morphisms to
X ′, and with the two morphisms to Zn. Denote fn : X ′ ×X Zn → X the morphism to
X . Denote

A = Equalizer( f∗OX′
//
// (f × f)∗OX′×XX′ )

By the remarks above we find that

An = Equalizer( A×OX/In
//
// fn,∗OX′×XZn )

We have canonical maps
OX → . . .→ A3 → A2 → A1

of coherentOX -algebras. The statement of the lemma means that for n large enough there
exists an m ≥ 0 such that the image of An+m → An is isomorphic to OX . This we may
check étale locally on X . Hence by Properties of Spaces, Lemma 6.3 we may assume X is
an affine Noetherian scheme.
SinceXn → X is an isomorphism overU we see that the kernel ofOX → An is supported
on |Z|. Since X is Noetherian, the sequence of kernels Jn = Ker(OX → An) stabilizes
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(Cohomology of Spaces, Lemma 13.1). Say Jn0 = Jn0+1 = . . . = J . By Cohomology of
Spaces, Lemma 13.2 we find that ItJ = 0 for some t ≥ 0. On the other hand, there is an
OX -algebra mapAn → OX/In and henceJ ⊂ In for alln. By Artin-Rees (Cohomology
of Spaces, Lemma 13.3) we find that J ∩ In ⊂ In−cJ for some c ≥ 0 and all n� 0. We
conclude that J = 0.
Pick n ≥ n0 as in the previous paragraph. Then OX → An is injective. Hence it now
suffices to find m ≥ 0 such that the image of An+m → An is equal to the image of OX .
Observe thatAn sits in a short exact sequence

0→ Ker(A → fn,∗OX′×XZn)→ An → OX/In → 0
and similarly forAn+m. Hence it suffices to show

Ker(A → fn+m,∗OX′×XZn+m) ⊂ Im(In → A)
for somem ≥ 0. To do this we may work étale locally onX and sinceX is Noetherian we
may assume that X is a Noetherian affine scheme. Say X = Spec(R) and I corresponds
to the ideal I ⊂ R. Let A = Ã for a finite R-algebra A. Let f∗OX′ = B̃ for a finite
R-algebra B. Then R → A ⊂ B and these maps become isomorphisms on inverting any
element of I .
Note that fn,∗OX′×XZn is equal to f∗(OX′/InOX′) in the notation used in Cohomology
of Spaces, Section 22. By Cohomology of Spaces, Lemma 22.4 we see that there exists a
c ≥ 0 such that

Ker(B → Γ(X, f∗(OX′/In+m+cOX′))
is contained in In+mB. On the other hand, as R→ B is finite and an isomorphism after
inverting any element of I we see that In+mB ⊂ Im(In → B) for m large enough (can
be chosen independent of n). This finishes the proof as A ⊂ B. �

Remark 13.5. The meaning of Lemma 13.4 is the system X1 → X2 → X3 → . . . is
essentially constant with value X . See Categories, Definition 22.1.

14. Compactifications

This section is the analogue of More on Flatness, Section 33. The theorem in this section
is the main theorem in [?].
LetB be a quasi-compact and quasi-separated algebraic space over some base schemeS. We
will say an algebraic space X over B has a compactification over B or is compactifyable
over B if there exists a quasi-compact open immersion X → X into an algebraic space X
proper overB. IfX has a compactification overB, thenX → B is separated and of finite
type. The main theorem of this section is that the converse is true as well.

Lemma 14.1. Let S be a scheme. Let X → Y be a morphism of algebraic spaces over
S. If (U ⊂ X, f : V → X) is an elementary distinguished square such that U → Y and
V → Y are separated and U ×X V → U ×Y V is closed, then X → Y is separated.

Proof. We have to check that ∆ : X → X ×Y X is a closed immersion. There is
an étale covering of X ×Y X given by the four parts U ×Y U , U ×Y V , V ×Y U , and
V ×Y V . Observe that (U×Y U)×(X×YX),∆X = U , (U×Y V )×(X×YX),∆X = U×XV ,
(V ×Y U) ×(X×YX),∆ X = V ×X U , and (V ×Y V ) ×(X×YX),∆ X = V . Thus the
assumptions of the lemma exactly tell us that ∆ is a closed immersion. �

Lemma 14.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated alge-
braic space over S. Let U ⊂ X be a quasi-compact open.
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(1) IfZ1, Z2 ⊂ X are closed subspaces of finite presentation such thatZ1∩Z2∩U =
∅, then there exists a U -admissible blowing up X ′ → X such that the strict
transforms of Z1 and Z2 are disjoint.

(2) IfT1, T2 ⊂ |U | are disjoint constructible closed subsets, then there is aU -admissible
blowing up X ′ → X such that the closures of T1 and T2 are disjoint.

Proof. Proof of (1). The assumption that Zi → X is of finite presentation signifies
that the quasi-coherent ideal sheaf Ii of Zi is of finite type, see Morphisms of Spaces,
Lemma 28.12. Denote Z ⊂ X the closed subspace cut out by the product I1I2. Observe
that Z ∩ U is the disjoint union of Z1 ∩ U and Z2 ∩ U . By Divisors on Spaces, Lemma
19.5 there is a U ∩Z-admissible blowup Z ′ → Z such that the strict transforms of Z1 and
Z2 are disjoint. Denote Y ⊂ Z the center of this blowing up. Then Y → X is a closed
immersion of finite presentation as the composition of Y → Z and Z → X (Divisors
on Spaces, Definition 19.1 and Morphisms of Spaces, Lemma 28.2). Thus the blowing up
X ′ → X of Y is a U -admissible blowing up. By general properties of strict transforms,
the strict transform of Z1, Z2 with respect to X ′ → X is the same as the strict transform
of Z1, Z2 with respect to Z ′ → Z , see Divisors on Spaces, Lemma 18.3. Thus (1) is proved.

Proof of (2). By Limits of Spaces, Lemma 14.1 there exists a finite type quasi-coherent sheaf
of ideals Ji ⊂ OU such that Ti = V (Ji) (set theoretically). By Limits of Spaces, Lemma
9.8 there exists a finite type quasi-coherent sheaf of ideals Ii ⊂ OX whose restriction to
U is Ji. Apply the result of part (1) to the closed subspaces Zi = V (Ii) to conclude. �

Lemma 14.3. Let S be a scheme. Let f : X → Y be a proper morphism of quasi-
compact and quasi-separated algebraic spaces over S. Let V ⊂ Y be a quasi-compact
open and U = f−1(V ). Let T ⊂ |V | be a closed subset such that f |U : U → V is an
isomorphism over an open neighbourhood of T in V . Then there exists a V -admissible
blowing up Y ′ → Y such that the strict transform f ′ : X ′ → Y ′ of f is an isomorphism
over an open neighbourhood of the closure of T in |Y ′|.

Proof. Let T ′ ⊂ |V | be the complement of the maximal open over which f |U is an
isomorphism. Then T ′, T are closed in |V | and T ∩ T ′ = ∅. Since |V | is a spectral topo-
logical space (Properties of Spaces, Lemma 15.2) we can find constructible closed subsets
Tc, T

′
c of |V | with T ⊂ Tc, T ′ ⊂ T ′

c such that Tc ∩ T ′
c = ∅ (choose a quasi-compact open

W of |V | containing T ′ not meeting T and set Tc = |V | \W , then choose a quasi-compact
open W ′ of |V | containing Tc not meeting T ′ and set T ′

c = |V | \W ′). By Lemma 14.2 we
may, after replacing Y by a V -admissible blowing up, assume that Tc and T ′

c have disjoint
closures in |Y |. Let Y0 be the open subspace of Y corresponding to the open |Y | \ T ′

c and
set V0 = V ∩ Y0, U0 = U ×V V0, and X0 = X ×Y Y0. Since U0 → V0 is an isomorphism,
we can find a V0-admissible blowing up Y ′

0 → Y0 such that the strict transform X ′
0 of X0

maps isomorphically to Y ′
0 , see More on Morphisms of Spaces, Lemma 39.4. By Divisors

on Spaces, Lemma 19.3 there exists a V -admissible blow up Y ′ → Y whose restriction to
Y0 is Y ′

0 → Y0. If f ′ : X ′ → Y ′ denotes the strict transform of f , then we see what we
want is true because f ′ restricts to an isomorphism over Y ′

0 . �

Lemma 14.4. Let S be a scheme. Consider a diagram

X

f

��

Uoo

f |U
��

A

��

oo

Y Voo Boo
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of quasi-compact and quasi-separated algebraic spaces over S. Assume
(1) f is proper,
(2) V is a quasi-compact open of Y , U = f−1(V ),
(3) B ⊂ V and A ⊂ U are closed subspaces,
(4) f |A : A→ B is an isomorphism, and f is étale at every point of A.

Then there exists a V -admissible blowing up Y ′ → Y such that the strict transform f ′ :
X ′ → Y ′ satisfies: for every geometric point a of the closure of |A| in |X ′| there exists a
quotientOX′,a → O such thatOY ′,f ′(a) → O is finite flat.

As you can see from the proof, more is true, but the statement is already long enough and
this will be sufficient later on.

Proof. Let T ′ ⊂ |U | be the complement of the maximal open on which f |U is étale.
Then T ′ is closed in |U | and disjoint from |A|. Since |U | is a spectral topological space
(Properties of Spaces, Lemma 15.2) we can find constructible closed subsets Tc, T ′

c of |U |
with |A| ⊂ Tc, T ′ ⊂ T ′

c such that Tc ∩ T ′
c = ∅ (see proof of Lemma 14.3). By Lemma 14.2

there is a U -admissible blowing up X1 → X such that Tc and T ′
c have disjoint closures in

|X1|. Let X1,0 be the open subspace of X1 corresponding to the open |X1| \ T
′
c and set

U0 = U ∩X1,0. Observe that the scheme theoretic image A1 ⊂ X1 of A is contained in
X1,0 by construction.

After replacing Y by a V -admissible blowing up and taking strict transforms, we may
assume X1,0 → Y is flat, quasi-finite, and of finite presentation, see More on Morphisms
of Spaces, Lemmas 39.1 and 37.3. Consider the commutative diagram

X1 //

  

X

��
Y

and the diagram

A1 //

��

A

��
B

of scheme theoretic images. The morphism A1 → A is surjective because it is proper
and hence the scheme theoretic image ofA1 → Amust be equal toA and then we can use
Morphisms of Spaces, Lemma 40.8. The statement on étale local rings follows by choosing
a lift of the geometric point a to a geometric point a1 of A1 and setting O = OX1,a1 .
Namely, sinceX1 → Y is flat and quasi-finite onX1,0 ⊃ A1, the mapOY ′,f ′(a) → OX1,a1

is finite flat, see Algebra, Lemmas 156.3 and 153.3. �

Lemma 14.5. Let S be a scheme. Let X → B and Y → B be morphisms of algebraic
spaces over S. Let U ⊂ X be an open subspace. Let V → X ×B Y be a quasi-compact
morphism whose composition with the first projection maps into U . Let Z ⊂ X ×B Y
be the scheme theoretic image of V → X ×B Y . Let X ′ → X be a U -admissible blowup.
Then the scheme theoretic image of V → X ′ ×B Y is the strict transform of Z with
respect to the blowing up.

Proof. Denote Z ′ → Z the strict transform. The morphism Z ′ → X ′ induces a
morphism Z ′ → X ′ ×B Y which is a closed immersion (as Z ′ is a closed subspace of
X ′ ×X Z by definition). Thus to finish the proof it suffices to show that the scheme
theoretic image Z ′′ of V → Z ′ is Z ′. Observe that Z ′′ ⊂ Z ′ is a closed subspace such
that V → Z ′ factors through Z ′′. Since both V → X ×B Y and V → X ′ ×B Y are
quasi-compact (for the latter this follows from Morphisms of Spaces, Lemma 8.9 and the
fact that X ′ ×B Y → X ×B Y is separated as a base change of a proper morphism), by
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Morphisms of Spaces, Lemma 16.3 we see that Z ∩ (U ×B Y ) = Z ′′ ∩ (U ×B Y ). Thus
the inclusion morphism Z ′′ → Z ′ is an isomorphism away from the exceptional divisor
E of Z ′ → Z. However, the structure sheaf of Z ′ does not have any nonzero sections
supported on E (by definition of strict transforms) and we conclude that the surjection
OZ′ → OZ′′ must be an isomorphism. �

Lemma 14.6. Let S be a scheme. Let B be a quasi-compact and quasi-separated alge-
braic space over S. Let U be an algebraic space of finite type and separated over B. Let
V → U be an étale morphism. If V has a compactification V ⊂ Y over B, then there
exists a V -admissible blowing up Y ′ → Y and an open V ⊂ V ′ ⊂ Y ′ such that V → U
extends to a proper morphism V ′ → U .

Proof. Consider the scheme theoretic image Z ⊂ Y ×B U of the “diagonal” mor-
phism V → Y ×B U . If we replace Y by a V -admissible blowing up, then Z is replaced
by the strict transform with respect to this blowing up, see Lemma 14.5. Hence by More
on Morphisms of Spaces, Lemma 39.4 we may assume Z → Y is an open immersion. If
V ′ ⊂ Y denotes the image, then we see that the induced morphism V ′ → U is proper be-
cause the projectionY×BU → U is proper andV ′ ∼= Z is a closed subspace ofY×BU . �

The following lemma is formulated for finite type separated algebraic spaces over a finite
type algebraic space over Z. The version for quasi-compact and quasi-separated algebraic
spaces is true as well (with essentially the same proof), but will be trivially implied by the
main theorem in this section. We strongly urge the reader to read the proof of this lemma
in the case of schemes first.

Lemma 14.7. Let B be an algebraic space of finite type over Z. Let U be an algebraic
space of finite type and separated over B. Let (U2 ⊂ U, f : U1 → U) be an elementary
distinguished square. Assume U1 and U2 have compactifications overB and U1×U U2 →
U has dense image. Then U has a compactification over B.

Proof. Choose a compactification Ui ⊂ Xi over B for i = 1, 2. We may assume
Ui is scheme theoretically dense in Xi. We may assume there is an open Vi ⊂ Xi and a
proper morphism ψi : Vi → U extending Ui → U , see Lemma 14.6. Picture

Ui //

��

Vi //

ψi~~

Xi

U

Denote Z1 ⊂ U the reduced closed subspace corresponding to the closed subset |U | \ |U2|.
Recall that f−1Z1 is a closed subspace of U1 mapping isomorphically to Z1. Denote Z2 ⊂
U the reduced closed subspace corresponding to the closed subset |U | \ Im(|f |) = |U2| \
Im(|U1 ×U U2| → |U2|). Thus we have

U = U2 q Z1 = Z2 q Im(f) = Z2 q Im(U1 ×U U2 → U2)q Z1

set theoretically. Denote Zi,i ⊂ Vi the inverse image of Zi under ψi. Observe that ψ2
is an isomorphism over an open neighbourhood of Z2. Observe that Z1,1 = ψ−1

1 Z1 =
f−1Z1 q T for some closed subspace T ⊂ V1 disjoint from f−1Z1 and furthermore ψ1
is étale along f−1Z1. Denote Zi,j ⊂ Vi the inverse image of Zj under ψi. Observe that
ψi : Zi,j → Zj is a proper morphism. Since Zi and Zj are disjoint closed subspaces of U ,
we see that Zi,i and Zi,j are disjoint closed subspaces of Vi.
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Denote Zi,i and Zi,j the scheme theoretic images of Zi,i and Zi,j in Xi. We recall that
|Zi,j | is dense in |Zi,j |, see Morphisms of Spaces, Lemma 17.7. After replacing Xi by a
Vi-admissible blowup we may assume that Zi,i and Zi,j are disjoint, see Lemma 14.2. We
assume this holds for bothX1 andX2. Observe that this property is preserved if we replace
Xi by a further Vi-admissible blowup. Hence we may replaceX1 by another V1-admissible
blowup and assume |Z1,1| is the disjoint union of the closures of |T | and |f−1Z1| in |X1|.

Set V12 = V1 ×U V2. We have an immersion V12 → X1 ×B X2 which is the composition
of the closed immersion V12 = V1×U V2 → V1×B V2 (Morphisms of Spaces, Lemma 4.5)
and the open immersion V1 ×B V2 → X1 ×B X2. Let X12 ⊂ X1 ×B X2 be the scheme
theoretic image of V12 → X1 ×B X2. The projection morphisms

p1 : X12 → X1 and p2 : X12 → X2

are proper as X1 and X2 are proper over B. If we replace X1 by a V1-admissible blowing
up, thenX12 is replaced by the strict transform with respect to this blowing up, see Lemma
14.5.

Denote ψ : V12 → U the compositions ψ = ψ1 ◦ p1|V12 = ψ2 ◦ p2|V12 . Consider the
closed subspace

Z12,2 = (p1|V12)−1Z1,2 = (p2|V12)−1Z2,2 = ψ−1Z2 ⊂ V12

The morphism p1|V12 : V12 → V1 is an isomorphism over an open neighbourhood of
Z1,2 because ψ2 : V2 → U is an isomorphism over an open neighbourhood of Z2 and
V12 = V1 ×U V2. By Lemma 14.3 there exists a V1-admissible blowing up X ′

1 → X1
such that the strict tranform p′

1 : X ′
12 → X ′

1 of p1 is an isomorphism over an open
neighbourhood of the closure of |Z1,2| in |X ′

1|. After replacing X1 by X ′
1 and X12 by

X ′
12 we may assume that p1 is an isomorphism over an open neighbourhood of |Z1,2|.

The result of the previous paragraph tells us that

X12 ∩ (Z1,2 ×B Z2,1) = ∅

where the intersection taken in X1 ×B X2. Namely, the inverse image p−1
1 Z1,2 in X12

maps isomorphically to Z1,2. In particular, we see that |Z12,2| is dense in |p−1
1 Z1,2|. Thus

p2 maps |p−1
1 Z1,2| into |Z2,2|. Since |Z2,2| ∩ |Z2,1| = ∅ we conclude.

It turns out that we need to do one additional blowing up before we can conclude the
argument. Namely, let V2 ⊂W2 ⊂ X2 be the open subspace with underlying topological
space

|W2| = |V2| ∪ (|X2| \ |Z2,1|) = |X2| \
(
|Z2,1| \ |Z2,1|

)
Since p2(p−1

1 Z1,2) is contained in W2 (see above) we see that replacing X2 by a W2-
admissible blowup and X21 by the corresponding strict transform will preserve the prop-
erty of p1 being an isomorphism over an open neighbourhood ofZ1,2. SinceZ2,1∩W2 =
Z2,1 ∩ V2 = Z2,1 we see that Z2,1 is a closed subspace of W2 and V2. Observe that
V12 = V1 ×U V2 = p−1

1 (V1) = p−1
2 (V2) as open subspaces of X12 as it is the largest

open subspace of X12 over which the morphism ψ : V12 → U extends; details omitted4.
We have the following equalities of closed subspaces of V12:

p−1
2 Z2,1 = p−1

2 ψ−1
2 Z1 = p−1

1 ψ−1
1 Z1 = p−1

1 Z1,1 = p−1
1 f−1Z1 q p−1

1 T

4Namely, V1 ×U V2 is proper over U so if ψ extends to a larger open of X12 , then V1 ×U V2 would be
closed in this open by Morphisms of Spaces, Lemma 40.6. Then we get equality as V12 ⊂ X12 is dense.
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Here and below we use the slight abuse of notation of writing p2 in stead of the restriction
of p2 to V12, etc. Since p−1

2 (Z2,1) is a closed subspace of p−1
2 (W2) as Z2,1 is a closed sub-

space ofW2 we conclude that also p−1
1 f−1Z1 is a closed subspace of p−1

2 (W2). Finally, the
morphism p2 : X12 → X2 is étale at points of p−1

1 f−1Z1 as ψ1 is étale along f−1Z1 and
V12 = V1 ×U V2. Thus we may apply Lemma 14.4 to the morphism p2 : X12 → X2, the
openW2, the closed subspaceZ2,1 ⊂W2, and the closed subspace p−1

1 f−1Z1 ⊂ p−1
2 (W2).

Hence after replacingX2 by aW2-admissible blowup andX12 by the corresponding strict
transform, we obtain for every geometric point y of the closure of |p−1

1 f−1Z1| a local ring
mapOX12,y → O such thatOX2,p2(y) → O is finite flat.
Consider the algebraic space

W2 = U
∐

U2
(X2 \ Z2,1),

and with T ⊂ V1 as in the first paragraph the algebraic space

W1 = U
∐

U1
(X1 \ Z1,2 ∪ T ),

obtained by pushout, see Lemma 9.2. Let us apply Lemma 14.1 to see that Wi → B is
separated. First, U → B and Xi → B are separated. Let us check the quasi-compact im-
mersion Ui → U ×B (Xi \Zi,j) is closed using the valuative criterion, see Morphisms of
Spaces, Lemma 42.1. Choose a valuation ringA overB with fraction fieldK and compati-
ble morphisms (u, xi) : Spec(A)→ U×BXi and ui : Spec(K)→ Ui. Sinceψi is proper,
we can find a unique vi : Spec(A) → Vi compatible with u and ui. Since Xi is proper
over B we see that xi = vi. If vi does not factor through Ui ⊂ Vi, then we conclude that
xi maps the closed point of Spec(A) into Zi,j or T when i = 1. This finishes the proof
because we removed Zi,j and T in the construction of Wi.
On the other hand, for any valuation ring A over B with fraction field K and any mor-
phism

γ : Spec(K)→ Im(U1 ×U U2 → U)
over B, we claim that after replacing A by an extension of valuation rings, there is an
i and an extension of γ to a morphism hi : Spec(A) → Wi. Namely, we first extend
γ to a morphism g2 : Spec(A) → X2 using the valuative criterion of properness. If
the image of g2 does not meet Z2,1, then we obtain our morphism into W2. Otherwise,
denote z ∈ Z2,1 a geometric point lying over the image of the closed point under g2. We
may lift this to a geometric point y of X12 in the closure of |p−1

1 f−1Z1| because the map
of spaces |p−1

1 f−1Z1| → |Z2,1| is closed with image containing the dense open |Z2,1|.
After replacing A by its strict henselization (More on Algebra, Lemma 123.6) we get the
following diagram

A // A′

OX2,z
//

OO

OX12,y
// O

OO

whereOX12,y → O is the map we found in the 5th paragraph of the proof. Since the hor-
izontal composition is finite and flat we can find an extension of valuation rings A′/A
and dotted arrow making the diagram commute. After replacing A by A′ this means
that we obtain a lift g12 : Spec(A) → X12 whose closed point maps into the closure
of |p−1

1 f−1Z1|. Then g1 = p1 ◦ g12 : Spec(A) → X1 is a morphism whose closed point
maps into the closure of |f−1Z1|. Since the closure of |f−1Z1| is disjoint from the closure
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of |T | and contained in |Z1,1| which is disjoint from |Z1,2| we conclude that g1 defines a
morphism h1 : Spec(A)→W1 as desired.

Consider a diagram
W ′

1

��

// W W ′
2

oo

��
W1 Uoo

`` OO >>

// W2

as in More on Morphisms of Spaces, Lemma 40.1. By the previous paragraph for every
solid diagram

Spec(K)
γ

//

��

W

��
Spec(A)

;;

// B

where Im(γ) ⊂ Im(U1 ×U U2 → U) there is an i and an extension hi : Spec(A) → Wi

of γ after possibly replacing A by an extension of valuation rings. Using the valuative
criterion of properness for W ′

i → Wi, we can then lift hi to h′
i : Spec(A) → W ′

i . Hence
the dotted arrow in the diagram exists after possibly extending A. Since W is separated
over B, we see that the choice of extension isn’t needed and the arrow is unique as well,
see Morphisms of Spaces, Lemmas 41.5 and 43.1. Then finally the existence of the dotted
arrow implies that W → B is universally closed by Morphisms of Spaces, Lemma 42.5.
As W → B is already of finite type and separated, we win. �

Lemma 14.8. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
U ⊂ X be a proper dense open subspace. Then there exists an affine scheme V and an
étale morphism V → X such that

(1) the open subspace W = U ∪ Im(V → X) is strictly larger than U ,
(2) (U ⊂W,V →W ) is a distinguished square, and
(3) U ×W V → U has dense image.

Proof. Choose a stratification

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and morphisms fp : Vp → Up as in Decent Spaces, Lemma 8.6. Let p be the smallest
integer such that Up 6⊂ U (this is possible as U 6= X). Choose an affine open V ⊂ Vp such
that the étale morphism fp|V : V → X does not factor through U . Consider the open
W = U ∪ Im(V → X) and the reduced closed subspace Z ⊂ W with |Z| = |W | \ |U |.
Then f−1Z → Z is an isomorphism because we have the corresponding property for the
morphism fp, see the lemma cited above. Thus (U ⊂ W,f : V → W ) is a distinguished
square. It may not be true that the open I = Im(U ×W V → U) is dense in U . The
algebraic space U ′ ⊂ U whose underlying set is |U | \ |I| is Noetherian and hence we can
find a dense open subscheme U ′′ ⊂ U ′, see for example Properties of Spaces, Proposition
13.3. Then we can find a dense open affineU ′′′ ⊂ U ′′, see Properties, Lemmas 5.7 and 29.1.
After we replace f by V q U ′′′ → X everything is clear. �

Theorem 14.9. Let S be a scheme. Let B be a quasi-compact and quasi-separated
algebraic space over S. Let X → B be a separated, finite type morphism. Then X has a
compactification over B.
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Proof. We first reduce to the Noetherian case. We strongly urge the reader to skip
this paragraph. First, we may replace S by Spec(Z). See Spaces, Section 16 and Proper-
ties of Spaces, Definition 3.1. There exists a closed immersion X → X ′ with X ′ → B
of finite presentation and separated. See Limits of Spaces, Proposition 11.7. If we find a
compactification of X ′ over B, then taking the scheme theoretic closure of X in this will
give a compactification of X over B. Thus we may assume X → B is separated and of
finite presentation. We may write B = limBi as a directed limit of a system of Noe-
therian algebraic spaces of finite type over Spec(Z) with affine transition morphisms. See
Limits of Spaces, Proposition 8.1. We can choose an i and a morphism Xi → Bi of finite
presentation whose base change to B is X → B, see Limits of Spaces, Lemma 7.1. After
increasing i we may assume Xi → Bi is separated, see Limits of Spaces, Lemma 6.9. If
we can find a compactification of Xi over Bi, then the base change of this to B will be a
compactification ofX overB. This reduces us to the case discussed in the next paragraph.
AssumeB is of finite type over Z in addition to being quasi-compact and quasi-separated.
Let U → X be an étale morphism of algebraic spaces such that U has a compactification
Y over Spec(Z). The morphism

U −→ B ×Spec(Z) Y

is separated and quasi-finite by Morphisms of Spaces, Lemma 27.10 (the displayed mor-
phism factors into an immersion hence is a monomorphism). Hence by Zariski’s main
theorem (More on Morphisms of Spaces, Lemma 34.3) there is an open immersion of U
into an algebraic space Y ′ finite over B ×Spec(Z) Y . Then Y ′ → B is proper as the com-
position Y ′ → B ×Spec(Z) Y → B of two proper morphisms (use Morphisms of Spaces,
Lemmas 45.9, 40.4, and 40.3). We conclude that U has a compactification over B.
There is a dense open subspace U ⊂ X which is a scheme. (Properties of Spaces, Propo-
sition 13.3). In fact, we may choose U to be an affine scheme (Properties, Lemmas 5.7 and
29.1). Thus U has a compactification over Spec(Z); this is easily shown directly but also
follows from the theorem for schemes, see More on Flatness, Theorem 33.8. By the previ-
ous paragraph U has a compactification over B. By Noetherian induction we can find a
maximal dense open subspaceU ⊂ X which has a compactification overB. We will show
that the assumption that U 6= X leads to a contradiction. Namely, by Lemma 14.8 we can
find a strictly larger open U ⊂W ⊂ X and a distinguished square (U ⊂W,f : V →W )
with V affine and U ×W V dense image in U . Since V is affine, as before it has a compact-
ification over B. Hence Lemma 14.7 applies to show that W has a compactification over
B which is the desired contradiction. �
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CHAPTER 82

Chow Groups of Spaces

1. Introduction

In this chapter we first discuss Chow groups of algebraic spaces. Having defined these, we
define Chern classes of vector bundles as operators on these chow groups. The strategy will
be entirely the same as the strategy in the case of schemes. Therefore we urge the reader to
take a look at the introduction (Chow Homology, Section 1) of the corresponding chapter
for schemes.
Some related papers: [?] and [?].

2. Setup

We first fix the category of algebraic spaces we will be working with. Please keep in mind
throughout this chapter that “decent + locally Noetherian” is the same as “quasi-separated
+ locally Noetherian” according to Decent Spaces, Lemma 14.1.

Situation 2.1. Here S is a scheme andB is an algebraic space over S. We assumeB is
quasi-separated, locally Noetherian, and universally catenary (Decent Spaces, Definition
25.4). Moreover, we assume given a dimension function δ : |B| −→ Z. We say X/B is
good if X is an algebraic space over B whose structure morphism f : X → B is quasi-
separated and locally of finite type. In this case we define

δ = δX/B : |X| −→ Z
as the map sending x to δ(f(x)) plus the transcendence degree of x/f(x) (Morphisms of
Spaces, Definition 33.1). This is a dimension function by More on Morphisms of Spaces,
Lemma 32.2.

A special case is when S = B is a scheme and (S, δ) is as in Chow Homology, Situation 7.1.
ThusB might be the spectrum of a field (Chow Homology, Example 7.2) orB = Spec(Z)
(Chow Homology, Example 7.3).
Many lemma, proposition, theorems, definitions on algebraic spaces are easier in the set-
ting of Situation 2.1 because the algebraic spaces we are working with are quasi-separated
(and thus a fortiori decent) and locally Noetherian. We will sprinkle this chapter with
remarks such as the following to point this out.

Remark 2.2. In Situation 2.1 if X/B is good, then |X| is a sober topological space.
See Properties of Spaces, Lemma 15.1 or Decent Spaces, Proposition 12.4. We will use this
without further mention to choose generic points of irreducible closed subsets of |X|.

Remark 2.3. In Situation 2.1 if X/B is good, then X is integral (Spaces over Fields,
Definition 4.1) if and only ifX is reduced and |X| is irreducible. Moreover, for any point
ξ ∈ |X| there is a unique integral closed subspace Z ⊂ X such that ξ is the generic point
of the closed subset |Z| ⊂ |X|, see Spaces over Fields, Lemma 4.7.

5967
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If B is Jacobson and δ sends closed points to zero, then δ is the function sending a point
to the dimension of its closure.

Lemma 2.4. In Situation 2.1 assumeB is Jacobson and that δ(b) = 0 for every closed
point b of |B|. Let X/B be good. If Z ⊂ X is an integral closed subspace with generic
point ξ ∈ |Z|, then the following integers are the same:

(1) δ(ξ) = δX/B(ξ),
(2) dim(|Z|),
(3) codim({z}, |Z|) for z ∈ |Z| closed,
(4) the dimension of the local ring of Z at z for z ∈ |Z| closed, and
(5) dim(OZ,z) for z ∈ |Z| closed.

Proof. Let X , Z , ξ be as in the lemma. Since X is locally of finite type over B we
see that X is Jacobson, see Decent Spaces, Lemma 23.1. Hence Xft-pts ⊂ |X| is the set of
closed points by Decent Spaces, Lemma 23.3. Given a chain T0 ⊃ . . . ⊃ Te of irreducible
closed subsets of |Z|we have Te ∩Xft-pts nonempty by Morphisms of Spaces, Lemma 25.6.
Thus we can always assume such a chain ends with Te = {z} for some z ∈ |Z| closed.
It follows that dim(Z) = supz codim({z}, |Z|) where z runs over the closed points of
|Z|. We have codim({z}, Z) = δ(ξ)− δ(z) by Topology, Lemma 20.2. By Morphisms of
Spaces, Lemma 25.4 the image of z is a finite type point ofB, i.e., a closed point of |B|. By
Morphisms of Spaces, Lemma 33.4 the transcendence degree of z/b is 0. We conclude that
δ(z) = δ(b) = 0 by assumption. Thus we obtain equality

dim(|Z|) = codim({z}, Z) = δ(ξ)

for all z ∈ |Z| closed. Finally, we have that codim({z}, Z) is equal to the dimension of
the local ring ofZ at z by Decent Spaces, Lemma 20.2 which in turn is equal to dim(OZ,z)
by Properties of Spaces, Lemma 22.4. �

In the situation of the lemma above the value of δ at the generic point of a closed irre-
ducible subset is the dimension of the irreducible closed subset. This motivates the fol-
lowing definition.

Definition 2.5. In Situation 2.1 for any goodX/B and any irreducible closed subset
T ⊂ |X| we define

dimδ(T ) = δ(ξ)
where ξ ∈ T is the generic point of T . We will call this the δ-dimension of T . If T ⊂ |X|
is any closed subset, then we define dimδ(T ) as the supremum of the δ-dimensions of the
irreducible components of T . If Z is a closed subspace of X , then we set dimδ(Z) =
dimδ(|Z|).

Of course this just means that dimδ(T ) = sup{δ(t) | t ∈ T}.

3. Cycles

This is the analogue of Chow Homology, Section 8

Since we are not assuming our spaces are quasi-compact we have to be a little careful when
defining cycles. We have to allow infinite sums because a rational function may have
infinitely many poles for example. In any case, if X is quasi-compact then a cycle is a
finite sum as usual.

Definition 3.1. In Situation 2.1 let X/B be good. Let k ∈ Z.
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(1) A cycle on X is a formal sum

α =
∑

nZ [Z]

where the sum is over integral closed subspaces Z ⊂ X , each nZ ∈ Z, and
{|Z|;nZ 6= 0} is a locally finite collection of subsets of |X| (Topology, Defini-
tion 28.4).

(2) A k-cycle on X is a cycle

α =
∑

nZ [Z]

where nZ 6= 0⇒ dimδ(Z) = k.
(3) The abelian group of all k-cycles on X is denoted Zk(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of integral
closed subspaces (Remark 2.3) of δ-dimension k. Addition of k-cycles α =

∑
nZ [Z] and

β =
∑
mZ [Z] is given by

α+ β =
∑

(nZ +mZ)[Z],

i.e., by adding the coefficients.

4. Multiplicities

A section with a few simple results on lengths and multiplicities.

Lemma 4.1. Let S be a scheme and let X be an algebraic space over S. Let F be a
quasi-coherent OX -module. Let x ∈ |X|. Let d ∈ {0, 1, 2, . . . ,∞}. The following are
equivalent

(1) lengthOX,x
Fx = d

(2) for some étale morphism U → X with U a scheme and u ∈ U mapping to x we
have lengthOU,u

(F|U )u = d

(3) for any étale morphism U → X with U a scheme and u ∈ U mapping to x we
have lengthOU,u

(F|U )u = d

Proof. Let U → X and u ∈ U be as in (2) or (3). Then we know that OX,x is the
strict henselization ofOU,u and that

Fx = (F|U )u ⊗OU,u
OX,x

See Properties of Spaces, Lemmas 22.1 and 29.4. Thus the equality of the lengths fol-
lows from Algebra, Lemma 52.13 the fact that OU,u → OX,x is flat and the fact that
OX,x/muOX,x is equal to the residue field of OX,x. These facts about strict henseliza-
tions can be found in More on Algebra, Lemma 45.1. �

Definition 4.2. Let S be a scheme and letX be an algebraic space over S. LetF be a
quasi-coherent OX -module. Let x ∈ |X|. Let d ∈ {0, 1, 2, . . . ,∞}. We say F has length
d at x if the equivalent conditions of Lemma 4.1 are satisfied.

Lemma 4.3. Let S be a scheme. Let i : Y → X be a closed immersion of algebraic
spaces over S. Let G be a quasi-coherent OY -module. Let y ∈ |Y | with image x ∈ |X|.
Let d ∈ {0, 1, 2, . . . ,∞}. The following are equivalent

(1) G has length d at y, and
(2) i∗G has length d at x.
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Proof. Choose an étale morphism f : U → X with U a scheme and u ∈ U map-
ping to x. Set V = Y ×X U . Denote g : V → Y and j : V → U the projections.
Then j : V → U is a closed immersion and there is a unique point v ∈ V mapping to
y ∈ |Y | and u ∈ U (use Properties of Spaces, Lemma 4.3 and Spaces, Lemma 12.3). We
have j∗(G|V ) = (i∗G)|U as modules on the scheme V and j∗ the “usual” pushforward
of modules for the morphism of schemes j , see discussion surrounding Cohomology of
Spaces, Equation (3.0.1). In this way we reduce to the case of schemes: if i : Y → X is a
closed immersion of schemes, then

(i∗G)x = Gy
as modules over OX,x where the module structure on the right hand side is given by the
surjection i]y : OX,x → OY,y . Thus equality by Algebra, Lemma 52.5. �

Lemma 4.4. Let S be a scheme and letX be a locally Noetherian algebraic space over
S. Let F be a coherentOX -module. Let x ∈ |X|. The following are equivalent

(1) for some étale morphism U → X with U a scheme and u ∈ U mapping to x we
have u is a generic point of an irreducible component of Supp(F|U ),

(2) for any étale morphism U → X with U a scheme and u ∈ U mapping to x we
have u is a generic point of an irreducible component of Supp(F|U ),

(3) the length of F at x is finite and nonzero.
If X is decent (equivalently quasi-separated) then these are also equivalent to

(4) x is a generic point of an irreducible component of Supp(F).

Proof. Assume f : U → X is an étale morphism with U a scheme and u ∈ U maps
to x. ThenF|U = f∗F is a coherentOU -module on the locally Noetherian schemeU and
in particular (F|U )u is a finite OU,u-module, see Cohomology of Spaces, Lemma 12.2 and
Cohomology of Schemes, Lemma 9.1. Recall that the support of F|U is a closed subset of
U (Morphisms, Lemma 5.3) and that the support of (F|U )u is the pullback of the support
of F|U by the morphism Spec(OU,u) → U . Thus u is a generic point of an irreducible
component of Supp(F|U ) if and only if the support of (F|U )u is equal to the maximal
ideal ofOU,u. Now the equivalence of (1), (2), (3) follows from by Algebra, Lemma 62.3.

If X is decent we choose an étale morphism f : U → X and a point u ∈ U mapping to x.
The support of F pulls back to the support of F|U , see Morphisms of Spaces, Lemma 15.2.
Also, specializations x′  x in |X| lift to specializations u′  u in U and any nontrivial
specialization u′  u in U maps to a nontrivial specialization f(u′)  f(u) in |X|, see
Decent Spaces, Lemmas 12.2 and 12.1. Using that |X| and U are sober topological spaces
(Decent Spaces, Proposition 12.4 and Schemes, Lemma 11.1) we conclude x is a generic
point of the support of F if and only if u is a generic point of the support of F|U . We
conclude (4) is equivalent to (1).

The parenthetical statement follows from Decent Spaces, Lemma 14.1. �

Lemma 4.5. In Situation 2.1 let X/B be good. Let T ⊂ |X| be a closed subset and
t ∈ T . If dimδ(T ) ≤ k and δ(t) = k, then t is a generic point of an irreducible component
of T .

Proof. We know t is contained in an irreducible component T ′ ⊂ T . Let t′ ∈ T ′

be the generic point. Then k ≥ δ(t′) ≥ δ(t). Since δ is a dimension function we see that
t = t′. �



6. CYCLE ASSOCIATED TO A COHERENT SHEAF 5971

5. Cycle associated to a closed subspace

This section is the analogue of Chow Homology, Section 9.

Remark 5.1. In Situation 2.1 let X/B be good. Let Y ⊂ X be a closed subspace. By
Remarks 2.2 and 2.3 there are 1-to-1 correspondences between

(1) irreducible components T of |Y |,
(2) generic points of irreducible components of |Y |, and
(3) integral closed subspaces Z ⊂ Y with the property that |Z| is an irreducible

component of |Y |.
In this chapter we will call Z as in (3) an irreducible component of Y and we will call
ξ ∈ |Z| its generic point.

Definition 5.2. In Situation 2.1 let X/B be good. Let Y ⊂ X be a closed subspace.
(1) For an irreducible component Z ⊂ Y with generic point ξ the length of OY at

ξ (Definition 4.2) is called the multiplicity of Z in Y . By Lemma 4.4 applied to
OY on Y this is a positive integer.

(2) Assume dimδ(Y ) ≤ k. The k-cycle associated to Y is

[Y ]k =
∑

mZ,Y [Z]

where the sum is over the irreducible components Z of Y of δ-dimension k and
mZ,Y is the multiplicity of Z in Y . This is a k-cycle by Spaces over Fields,
Lemma 6.1.

It is important to note that we only define [Y ]k if the δ-dimension of Y does not exceed
k. In other words, by convention, if we write [Y ]k then this implies that dimδ(Y ) ≤ k.

6. Cycle associated to a coherent sheaf

This is the analogue of Chow Homology, Section 10.

Definition 6.1. In Situation 2.1 let X/B be good. Let F be a coherentOX -module.
(1) For an integral closed subspace Z ⊂ X with generic point ξ such that |Z| is an

irreducible component of Supp(F) the length ofF at ξ (Definition 4.2) is called
the multiplicity of Z in F . By Lemma 4.4 this is a positive integer.

(2) Assume dimδ(Supp(F)) ≤ k. The k-cycle associated to F is

[F ]k =
∑

mZ,F [Z]

where the sum is over the integral closed subspaces Z ⊂ X corresponding to ir-
reducible components of Supp(F) of δ-dimension k andmZ,F is the multiplicity
of Z in F . This is a k-cycle by Spaces over Fields, Lemma 6.1.

It is important to note that we only define [F ]k if F is coherent and the δ-dimension of
Supp(F) does not exceed k. In other words, by convention, if we write [F ]k then this
implies that F is coherent on X and dimδ(Supp(F)) ≤ k.

Lemma 6.2. In Situation 2.1 let X/B be good. Let F be a coherentOX -module with
dimδ(Supp(F)) ≤ k. Let Z be an integral closed subspace of X with dimδ(Z) = k. Let
ξ ∈ |Z| be the generic point. Then the coefficient of Z in [F ]k is the length of F at ξ.

Proof. Observe that |Z| is an irreducible component of Supp(F) if and only if ξ ∈
Supp(F), see Lemma 4.5. Moreover, the length of F at ξ is zero if ξ 6∈ Supp(F). Com-
bining this with Definition 6.1 we conclude. �
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Lemma 6.3. In Situation 2.1 let X/B be good. Let Y ⊂ X be a closed subspace. If
dimδ(Y ) ≤ k, then [Y ]k = [i∗OY ]k where i : Y → X is the inclusion morphism.

Proof. Let Z be an integral closed subspace of X with dimδ(Z) = k. If Z 6⊂ Y the
Z has coefficient zero in both [Y ]k and [i∗OY ]k. If Z ⊂ Y , then the generic point of Z
may be viewed as a point y ∈ |Y | whose image x ∈ |X|. Then the coefficient of Z in [Y ]k
is the length of OY at y and the coefficient of Z in [i∗OY ]k is the length of i∗OY at x.
Thus the equality of the coefficients follows from Lemma 4.3. �

Lemma 6.4. In Situation 2.1 letX/B be good. Let 0→ F → G → H → 0 be a short
exact sequence of coherentOX -modules. Assume that the δ-dimension of the supports of
F , G , andH are ≤ k. Then [G]k = [F ]k + [H]k.

Proof. Let Z be an integral closed subspace of X with dimδ(Z) = k. It suffices to
show that the coefficients ofZ in [G]k , [F ]k , and [H]k satisfy the corresponding additivity.
By Lemma 6.2 it suffices to show

the length of G at x = the length of F at x+ the length ofH at x

for any x ∈ |X|. Looking at Definition 4.2 this follows immediately from additivity of
lengths, see Algebra, Lemma 52.3. �

7. Preparation for proper pushforward

This section is the analogue of Chow Homology, Section 11.

Lemma 7.1. In Situation 2.1 let X,Y/B be good and let f : X → Y be a morphism
over B. If Z ⊂ X is an integral closed subspace, then there exists a unique integral closed
subspace Z ′ ⊂ Y such that there is a commutative diagram

Z //

��

X

f

��
Z ′ // Y

with Z → Z ′ dominant. If f is proper, then Z → Z ′ is proper and surjective.

Proof. Let ξ ∈ |Z| be the generic point. Let Z ′ ⊂ Y be the integral closed subspace
whose generic point is ξ′ = f(ξ), see Remark 2.3. Since ξ ∈ |f−1(Z ′)| = |f |−1(|Z ′|) by
Properties of Spaces, Lemma 4.3 and since Z is the reduced with |Z| = {ξ} we see that
Z ⊂ f−1(Z ′) as closed subspaces of X (see Properties of Spaces, Lemma 12.4). Thus we
obtain our morphism Z → Z ′. This morphism is dominant as the generic point of Z
maps to the generic point of Z ′. Uniqueness of Z ′ is clear. If f is proper, then Z → Y
is proper as a composition of proper morphisms (Morphisms of Spaces, Lemmas 40.3 and
40.5). Then we conclude that Z → Z ′ is proper by Morphisms of Spaces, Lemma 40.6.
Surjectivity then follows as the image of a proper morphism is closed. �

Remark 7.2. In Situation 2.1 let X/B be good. Every x ∈ |X| can be represented
by a (unique) monomorphism Spec(k)→ X where k is a field, see Decent Spaces, Lemma
11.1. Then k is the residue field of x and is denoted κ(x). Recall that X has a dense open
subscheme U ⊂ X (Properties of Spaces, Proposition 13.3). If x ∈ U , then κ(x) agrees
with the residue field of x on U as a scheme. See Decent Spaces, Section 11.
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Remark 7.3. In Situation 2.1 let X/B be good. Assume X is integral. In this case
the function fieldR(X) ofX is defined and is equal to the residue field ofX at its generic
point. See Spaces over Fields, Definition 4.3. Combining this with Remark 2.3 we find
that for any x ∈ X the residue field κ(x) is the function field of the unique integral
closed subspace Z ⊂ X whose generic point is x.

Lemma 7.4. In Situation 2.1 let X,Y/B be good and let f : X → Y be a mor-
phism over B. Assume X , Y integral and dimδ(X) = dimδ(Y ). Then either f factors
through a proper closed subspace of Y , or f is dominant and the extension of function
fields R(X)/R(Y ) is finite.

Proof. By Lemma 7.1 there is a unique integral closed subspace Z ⊂ Y such that f
factors through a dominant morphism X → Z. Then Z = Y if and only if dimδ(Z) =
dimδ(Y ). On the other hand, by our construction of dimension functions (see Situation
2.1) we have dimδ(X) = dimδ(Z) + r where r the transcendence degree of the extension
R(X)/R(Z). Combining this with Spaces over Fields, Lemma 5.1 the lemma follows. �

Lemma 7.5. In Situation 2.1 letX,Y/B be good. Let f : X → Y be a morphism over
B. Assume f is quasi-compact, and {Ti}i∈I is a locally finite collection of closed subsets
of |X|. Then {|f |(Ti)}i∈I is a locally finite collection of closed subsets of |Y |.

Proof. Let V ⊂ |Y | be a quasi-compact open subset. Then |f |−1(V ) ⊂ |X| is quasi-
compact by Morphisms of Spaces, Lemma 8.3. Hence the set {i ∈ I : Ti ∩ |f |−1(V ) 6= ∅}
is finite by a simple topological argument which we omit. Since this is the same as the set

{i ∈ I : |f |(Ti) ∩ V 6= ∅} = {i ∈ I : |f |(Ti) ∩ V 6= ∅}
the lemma is proved. �

8. Proper pushforward

This section is the analogue of Chow Homology, Section 12.

Definition 8.1. In Situation 2.1 letX,Y/B be good. Let f : X → Y be a morphism
over B. Assume f is proper.

(1) Let Z ⊂ X be an integral closed subspace with dimδ(Z) = k. Let Z ′ ⊂ Y be
the image of Z as in Lemma 7.1. We define

f∗[Z] =
{

0 if dimδ(Z ′) < k,
deg(Z/Z ′)[Z ′] if dimδ(Z ′) = k.

The degree of Z over Z ′ is defined and finite if dimδ(Z ′) = dimδ(Z) by Lemma
7.4 and Spaces over Fields, Definition 5.2.

(2) Let α =
∑
nZ [Z] be a k-cycle on X . The pushforward of α as the sum

f∗α =
∑

nZf∗[Z]

where each f∗[Z] is defined as above. The sum is locally finite by Lemma 7.5
above.

By definition the proper pushforward of cycles
f∗ : Zk(X) −→ Zk(Y )

is a homomorphism of abelian groups. It turns X 7→ Zk(X) into a covariant functor
on the category whose object are good algebraic spaces over B and whose morphisms are
proper morphisms over B.



5974 82. CHOW GROUPS OF SPACES

Lemma 8.2. In Situation 2.1 let X,Y, Z/B be good. Let f : X → Y and g : Y → Z
be proper morphisms over B. Then g∗ ◦ f∗ = (g ◦ f)∗ as maps Zk(X)→ Zk(Z).

Proof. Let W ⊂ X be an integral closed subspace of dimension k. Consider the
integral closed subspaces W ′ ⊂ Y and W ′′ ⊂ Z we get by applying Lemma 7.1 to f and
W and then to g and W ′. Then W → W ′ and W ′ → W ′′ are surjective and proper. We
have to show that g∗(f∗[W ]) = (f ◦ g)∗[W ]. If dimδ(W ′′) < k, then both sides are zero.
If dimδ(W ′′) = k, then we see W → W ′ and W ′ → W ′′ both satisfy the hypotheses of
Lemma 7.4. Hence
g∗(f∗[W ]) = deg(W/W ′) deg(W ′/W ′′)[W ′′], (f ◦ g)∗[W ] = deg(W/W ′′)[W ′′].

Then we can apply Spaces over Fields, Lemma 5.3 to conclude. �

Lemma 8.3. In Situation 2.1 let f : X → Y be a proper morphism of good algebraic
spaces over B.

(1) Let Z ⊂ X be a closed subspace with dimδ(Z) ≤ k. Then
f∗[Z]k = [f∗OZ ]k.

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k. Then
f∗[F ]k = [f∗F ]k.

Note that the statement makes sense since f∗F and f∗OZ are coherent OY -modules by
Cohomology of Spaces, Lemma 20.2.

Proof. Part (1) follows from (2) and Lemma 6.3. Let F be a coherent sheaf on X .
Assume that dimδ(Supp(F)) ≤ k. By Cohomology of Spaces, Lemma 12.7 there exists a
closed immersion i : Z → X and a coherent OZ -module G such that i∗G ∼= F and such
that the support of F is Z. Let Z ′ ⊂ Y be the scheme theoretic image of f |Z : Z → Y ,
see Morphisms of Spaces, Definition 16.2. Consider the commutative diagram

Z
i
//

f |Z
��

X

f

��
Z ′ i′ // Y

of algebraic spaces over B. Observe that f |Z is surjective (follows from Morphisms of
Spaces, Lemma 16.3 and the fact that |f | is closed) and proper (follows from Morphisms
of Spaces, Lemmas 40.3, 40.5, and 40.6). We have f∗F = f∗i∗G = i′∗(f |Z)∗G by going
around the diagram in two ways. Suppose we know the result holds for closed immersions
and for f |Z . Then we see that
f∗[F ]k = f∗i∗[G]k = (i′)∗(f |Z)∗[G]k = (i′)∗[(f |Z)∗G]k = [(i′)∗(f |Z)∗G]k = [f∗F ]k

as desired. The case of a closed immersion follows from Lemma 4.3 and the definitions.
Thus we have reduced to the case where dimδ(X) ≤ k and f : X → Y is proper and
surjective.
Assume dimδ(X) ≤ k and f : X → Y is proper and surjective. For every irreducible
component Z ⊂ Y with generic point η there exists a point ξ ∈ X such that f(ξ) = η.
Hence δ(η) ≤ δ(ξ) ≤ k. Thus we see that in the expressions

f∗[F ]k =
∑

nZ [Z], and [f∗F ]k =
∑

mZ [Z].

whenever nZ 6= 0, or mZ 6= 0 the integral closed subspace Z is actually an irreducible
component of Y of δ-dimension k (see Lemma 4.5). Pick such an integral closed subspace
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Z ⊂ Y and denote η its generic point. Note that for any ξ ∈ X with f(ξ) = η we
have δ(ξ) ≥ k and hence ξ is a generic point of an irreducible component of X of δ-
dimension k as well (see Lemma 4.5). By Spaces over Fields, Lemma 3.2 there exists an
open subspace η ∈ V ⊂ Y such that f−1(V ) → V is finite. Since η is a generic point
of an irreducible component of |Y | we may assume V is an affine scheme, see Properties
of Spaces, Proposition 13.3. Replacing Y by V and X by f−1(V ) we reduce to the case
where Y is affine, and f is finite. In particular X and Y are schemes and we reduce to
the corresponding result for schemes, see Chow Homology, Lemma 12.4 (applied with
S = Y ). �

9. Preparation for flat pullback

This section is the analogue of Chow Homology, Section 13.
Recall that a morphism of algebraic spaces is said to have relative dimension r if étale lo-
cally on the source and the target we get a morphism of schemes which has relative dimen-
sion r. The precise definition is equivalent, but in fact slightly different, see Morphisms
of Spaces, Definition 33.2.

Lemma 9.1. In Situation 2.1 let X,Y/B be good. Let f : X → Y be a morphism
over B. Assume f is flat of relative dimension r. For any closed subset T ⊂ |Y | we have

dimδ(|f |−1(T )) = dimδ(T ) + r.

provided |f |−1(T ) is nonempty. If Z ⊂ Y is an integral closed subscheme and Z ′ ⊂
f−1(Z) is an irreducible component, thenZ ′ dominatesZ and dimδ(Z ′) = dimδ(Z)+r.

Proof. Since the δ-dimension of a closed subset is the supremum of the δ-dimensions
of the irreducible components, it suffices to prove the final statement. We may replace Y
by the integral closed subscheme Z and X by f−1(Z) = Z ×Y X . Hence we may assume
Z = Y is integral and f is a flat morphism of relative dimension r. Since Y is locally
Noetherian the morphism f which is locally of finite type, is actually locally of finite
presentation. Hence Morphisms of Spaces, Lemma 30.6 applies and we see that f is open.
Let ξ ∈ X be a generic point of an irreducible component of X . By the openness of f we
see that f(ξ) is the generic point η of Z = Y . Thus Z ′ dominates Z = Y . Finally, we see
that ξ and η are in the schematic locus of X and Y by Properties of Spaces, Proposition
13.3. Since ξ is a generic point of X we see that OX,ξ = OXη,ξ has only one prime ideal
and hence has dimension 0 (we may use usual local rings as ξ and η are in the schematic loci
ofX and Y ). Thus by Morphisms of Spaces, Lemma 34.1 (and the definition of morphisms
of given relative dimension) we conclude that the transcendence degree of κ(ξ) over κ(η)
is r. In other words, δ(ξ) = δ(η) + r as desired. �

Here is the lemma that we will use to prove that the flat pullback of a locally finite collec-
tion of closed subschemes is locally finite.

Lemma 9.2. In Situation 2.1 let X,Y/B be good. Let f : X → Y be a morphism
over B. Assume {Ti}i∈I is a locally finite collection of closed subsets of |Y |. Then
{|f |−1(Ti)}i∈I is a locally finite collection of closed subsets of X .

Proof. LetU ⊂ |X| be a quasi-compact open subset. Since the image |f |(U) ⊂ |Y | is
a quasi-compact subset there exists a quasi-compact open V ⊂ |Y | such that |f |(U) ⊂ V .
Note that

{i ∈ I : |f |−1(Ti) ∩ U 6= ∅} ⊂ {i ∈ I : Ti ∩ V 6= ∅}.
Since the right hand side is finite by assumption we win. �
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10. Flat pullback

This section is the analogue of Chow Homology, Section 14.

Let S be a scheme and let f : X → Y be a morphism of algebraic spaces over S. Let
Z ⊂ Y be a closed subspace. In this chapter we will sometimes use the terminology scheme
theoretic inverse image for the inverse image f−1(Z) of Z constructed in Morphisms of
Spaces, Definition 13.2. The scheme theoretic inverse image is the fibre product

f−1(Z) //

��

X

��
Z // Y

If I ⊂ OY is the quasi-coherent sheaf of ideals corresponding to Z in Y , then f−1(I)OX
is the quasi-coherent sheaf of ideals corresponding to f−1(Z) in X .

Definition 10.1. In Situation 2.1 letX,Y/B be good. Let f : X → Y be a morphism
over B. Assume f is flat of relative dimension r.

(1) Let Z ⊂ Y be an integral closed subspace of δ-dimension k. We define f∗[Z] to
be the (k + r)-cycle on X associated to the scheme theoretic inverse image

f∗[Z] = [f−1(Z)]k+r.

This makes sense since dimδ(f−1(Z)) = k + r by Lemma 9.1.
(2) Let α =

∑
ni[Zi] be a k-cycle on Y . The flat pullback of α by f is the sum

f∗α =
∑

nif
∗[Zi]

where each f∗[Zi] is defined as above. The sum is locally finite by Lemma 9.2.
(3) We denote f∗ : Zk(Y )→ Zk+r(X) the map of abelian groups so obtained.

An open immersion is flat. This is an important though trivial special case of a flat mor-
phism. If U ⊂ X is open then sometimes the pullback by j : U → X of a cycle is called
the restriction of the cycle to U . Note that in this case the maps

j∗ : Zk(X) −→ Zk(U)
are all surjective. The reason is that given any integral closed subspaceZ ′ ⊂ U , we can take
the closure ofZ ofZ ′ inX and think of it as a reduced closed subspace ofX (see Properties
of Spaces, Definition 12.5). And clearly Z ∩U = Z ′, in other words j∗[Z] = [Z ′] whence
the surjectivity. In fact a little bit more is true.

Lemma 10.2. In Situation 2.1 let X/B be good. Let U ⊂ X be an open subspace. Let
Y be the reduced closed subspace of X with |Y | = |X| \ |U | and denote i : Y → X the
inclusion morphism. For every k ∈ Z the sequence

Zk(Y ) i∗ // Zk(X) j∗
// Zk(U) // 0

is an exact complex of abelian groups.

Proof. Surjectivity of j∗ we saw above. First assume X is quasi-compact. Then
Zk(X) is a free Z-module with basis given by the elements [Z] where Z ⊂ X is integral
closed of δ-dimension k. Such a basis element maps either to the basis element [Z ∩ U ]
of Zk(U) or to zero if Z ⊂ Y . Hence the lemma is clear in this case. The general case is
similar and the proof is omitted. �
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Lemma 10.3. In Situation 2.1 let f : X → Y be an étale morphism of good algebraic
spaces over B. If Z ⊂ Y is an integral closed subspace, then f∗[Z] =

∑
[Z ′] where the

sum is over the irreducible components (Remark 5.1) of f−1(Z).

Proof. The meaning of the lemma is that the coefficient of [Z ′] is 1. This follows
from the fact that f−1(Z) is a reduced algebraic space because it is étale over the integral
algebraic space Z. �

Lemma 10.4. In Situation 2.1 letX,Y, Z/B be good. Let f : X → Y and g : Y → Z
be flat morphisms of relative dimensions r and s over B. Then g ◦ f is flat of relative
dimension r + s and

f∗ ◦ g∗ = (g ◦ f)∗

as maps Zk(Z)→ Zk+r+s(X).

Proof. The composition is flat of relative dimension r + s by Morphisms of Spaces,
Lemmas 34.2 and 30.3. Suppose that

(1) A ⊂ Z is a closed integral subspace of δ-dimension k,
(2) A′ ⊂ Y is a closed integral subspace of δ-dimension k + s with A′ ⊂ g−1(A),

and
(3) A′′ ⊂ Y is a closed integral subspace of δ-dimension k + s + r with A′′ ⊂

f−1(W ′).
We have to show that the coefficient n of [A′′] in (g ◦ f)∗[A] agrees with the coefficient
m of [A′′] in f∗(g∗[A]). We may choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

where U, V,W are schemes, the vertical arrows are étale, and there exist points u ∈ U ,
v ∈ V , w ∈ W such that u 7→ v 7→ w and such that u, v, w map to the generic points of
A′′, A′, A. (Details omitted.) Then we have flat local ring homorphisms OW,w → OV,v ,
OV,v → OU,u, and repeatedly using Lemma 4.1 we find

n = lengthOU,u
(OU,u/mwOU,u)

and
m = lengthOV,v

(OV,v/mwOV,v)lengthOU,u
(OU,u/mvOU,u)

Hence the equality follows from Algebra, Lemma 52.14. �

Lemma 10.5. In Situation 2.1 letX,Y/B be good. Let f : X → Y be a flat morphism
of relative dimension r.

(1) LetZ ⊂ Y be a closed subspace with dimδ(Z) ≤ k. Then we have dimδ(f−1(Z)) ≤
k + r and [f−1(Z)]k+r = f∗[Z]k in Zk+r(X).

(2) Let F be a coherent sheaf on Y with dimδ(Supp(F)) ≤ k. Then we have
dimδ(Supp(f∗F)) ≤ k + r and

f∗[F ]k = [f∗F ]k+r

in Zk+r(X).
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Proof. Part (1) follows from part (2) by Lemma 6.3 and the fact that f∗OZ = Of−1(Z).

Proof of (2). AsX , Y are locally Noetherian we may apply Cohomology of Spaces, Lemma
12.2 to see that F is of finite type, hence f∗F is of finite type (Modules on Sites, Lemma
23.4), hence f∗F is coherent (Cohomology of Spaces, Lemma 12.2 again). Thus the lemma
makes sense. LetW ⊂ Y be an integral closed subspace of δ-dimension k, and letW ′ ⊂ X
be an integral closed subspace of dimension k + r mapping into W under f . We have
to show that the coefficient n of [W ′] in f∗[F ]k agrees with the coefficient m of [W ′] in
[f∗F ]k+r. We may choose a commutative diagram

U

��

// V

��
X // Y

where U, V are schemes, the vertical arrows are étale, and there exist points u ∈ U , v ∈ V
such that u 7→ v and such that u, v map to the generic points ofW ′,W . (Details omitted.)
Consider the stalk M = (F|V )v as an OV,v-module. (Note that M has finite length by
our dimension assumptions, but we actually do not need to verify this. See Lemma 4.4.)
We have (f∗F|U )u = OU,u ⊗OV,v

M . Thus we see that

n = lengthOU,u
(OU,u⊗OV,v

M) and m = lengthOV,v
(M)lengthOV,v

(OU,u/mvOU,u)

Thus the equality follows from Algebra, Lemma 52.13. �

11. Push and pull

This section is the analogue of Chow Homology, Section 14.

In this section we verify that proper pushforward and flat pullback are compatible when
this makes sense. By the work we did above this is a consequence of cohomology and base
change.

Lemma 11.1. In Situation 2.1 let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a fibre product diagram of good algebraic spaces over B. Assume f : X → Y proper
and g : Y ′ → Y flat of relative dimension r. Then also f ′ is proper and g′ is flat of relative
dimension r. For any k-cycle α on X we have

g∗f∗α = f ′
∗(g′)∗α

in Zk+r(Y ′).

Proof. The assertion that f ′ is proper follows from Morphisms of Spaces, Lemma
40.3. The assertion that g′ is flat of relative dimension r follows from Morphisms of
Spaces, Lemmas 34.3 and 30.4. It suffices to prove the equality of cycles whenα = [W ] for
some integral closed subspace W ⊂ X of δ-dimension k. Note that in this case we have
α = [OW ]k , see Lemma 6.3. By Lemmas 8.3 and 10.5 it therefore suffices to show that
f ′

∗(g′)∗OW is isomorphic to g∗f∗OW . This follows from cohomology and base change,
see Cohomology of Spaces, Lemma 11.2. �
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Lemma 11.2. In Situation 2.1 let X,Y/B be good. Let f : X → Y be a finite locally
free morphism of degree d (see Morphisms of Spaces, Definition 46.2). Then f is both
proper and flat of relative dimension 0, and

f∗f
∗α = dα

for every α ∈ Zk(Y ).

Proof. A finite locally free morphism is flat and finite by Morphisms of Spaces,
Lemma 46.6, and a finite morphism is proper by Morphisms of Spaces, Lemma 45.9. We
omit showing that a finite morphism has relative dimension 0. Thus the formula makes
sense. To prove it, let Z ⊂ Y be an integral closed subscheme of δ-dimension k. It suffices
to prove the formula for α = [Z]. Since the base change of a finite locally free morphism
is finite locally free (Morphisms of Spaces, Lemma 46.5) we see that f∗f

∗OZ is a finite
locally free sheaf of rank d on Z. Thus clearly f∗f

∗OZ has length d at the generic point
of Z. Hence

f∗f
∗[Z] = f∗f

∗[OZ ]k = [f∗f
∗OZ ]k = d[Z]

where we have used Lemmas 10.5 and 8.3. �

12. Preparation for principal divisors

This section is the analogue of Chow Homology, Section 16. Some of the material in this
section partially overlaps with the discussion in Spaces over Fields, Section 6.

Lemma 12.1. In Situation 2.1 let X/B be good. Assume X is integral.
(1) If Z ⊂ X is an integral closed subspace, then the following are equivalent:

(a) Z is a prime divisor,
(b) |Z| has codimension 1 in |X|, and
(c) dimδ(Z) = dimδ(X)− 1.

(2) IfZ is an irreducible component of an effective Cartier divisor onX , then dimδ(Z) =
dimδ(X)− 1.

Proof. Part (1) follows from the definition of a prime divisor (Spaces over Fields,
Definition 6.2), Decent Spaces, Lemma 20.2, and the definition of a dimension function
(Topology, Definition 20.1).
Let D ⊂ X be an effective Cartier divisor. Let Z ⊂ D be an irreducible component
and let ξ ∈ |Z| be the generic point. Choose an étale neighbourhood (U, u) → (X, ξ)
where U = Spec(A) and D ×X U is cut out by a nonzerodivisor f ∈ A, see Divisors
on Spaces, Lemma 6.2. Then u is a generic point of V (f) by Decent Spaces, Lemma 20.1.
HenceOU,u has dimension 1 by Krull’s Hauptidealsatz (Algebra, Lemma 60.11). Thus ξ is
a codimension 1 point on X and Z is a prime divisor as desired. �

13. Principal divisors

This section is the analogue of Chow Homology, Section 17. The following definition is
the analogue of Spaces over Fields, Definition 6.7 in our current setup.

Definition 13.1. In Situation 2.1 let X/B be good. Assume X is integral with
dimδ(X) = n. Let f ∈ R(X)∗. The principal divisor associated to f is the (n − 1)-
cycle

div(f) = divX(f) =
∑

ordZ(f)[Z]
defined in Spaces over Fields, Definition 6.7. This makes sense because prime divisors have
δ-dimension n− 1 by Lemma 12.1.
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In the situation of the definition for f, g ∈ R(X)∗ we have
divX(fg) = divX(f) + divX(g)

in Zn−1(X). See Spaces over Fields, Lemma 6.8. The following lemma will allow us to
reduce statements about principal divisors to the case of schemes.

Lemma 13.2. In Situation 2.1 let f : X → Y be an étale morphism of good algebraic
spaces over B. Assume Y is integral. Let g ∈ R(Y )∗. As cycles on X we have

f∗(divY (g)) =
∑

X′
(X ′ → X)∗divX′(g ◦ f |X′)

where the sum is over the irreducible components of X (Remark 5.1).

Proof. The map |X| → |Y | is open. The set of irreducible components of |X| is
locally finite in |X|. We conclude that f |X′ : X ′ → Y is dominant for every irreducible
component X ′ ⊂ X . Thus g ◦ f |X′ is defined (Morphisms of Spaces, Section 47), hence
divX′(g ◦ f |X′) is defined. Moreover, the sum is locally finite and we find that the right
hand side indeed is a cycle on X . The left hand side is defined by Definition 10.1 and the
fact that an étale morphism is flat of relative dimension 0.
Since f is étale we see that δX(x) = δy(f(x)) for all x ∈ |X|. Thus if dimδ(Y ) = n, then
dimδ(X ′) = n for every irreducible component X ′ of X (since generic points of X map
to the generic point of Y , see above). Thus both left and right hand side are (n−1)-cycles.
Let Z ⊂ X be an integral closed subspace with dimδ(Z) = n− 1. To prove the equality,
we need to show that the coefficients of Z are the same. Let Z ′ ⊂ Y be the integral closed
subspace constructed in Lemma 7.1. Then dimδ(Z ′) = n − 1 too. Let ξ ∈ |Z| be the
generic point. Then ξ′ = f(ξ) ∈ |Z ′| is the generic point. Consider the commutative
diagram

Spec(OhX,ξ) //

��

X

��
Spec(OhY,ξ′) // Y

of Decent Spaces, Remark 11.11. We have to be slightly careful as the reduced Noetherian
local ringsOhX,ξ andOhY,ξ′ need not be domains. Thus we work with total rings of fractions
Q(−) rather than fraction fields. By definition, to get the coefficient of Z ′ in divY (g) we
write the image of g in Q(OhY,ξ′) as a/b with a, b ∈ OhY,ξ′ nonzerodivisors and we take

ordZ′(g) = lengthOh
Y,ξ′

(OhY,ξ′/aOhY,ξ′)− lengthOh
Y,ξ′

(OhY,ξ′/bOhY,ξ′)

Observe that the coefficient of Z in f∗divY (G) is the same integer, see Lemma 10.3. Sup-
pose that ξ ∈ X ′. Then we can consider the maps

OhY,ξ′ → OhX,ξ → OhX′,ξ

The first arrow is flat and the second arrow is a surjective map of reduced local Noetherian
rings of dimension 1. Therefore both these maps send nonzerodivisors to nonzerodivisors
and we conclude the coefficient of Z ′ in divX′(g ◦ f |X′) is

ordZ(g ◦ f |X′) = lengthOh
X′,ξ

(OhX′,ξ/aOhX′,ξ)− lengthOh
Y,ξ′

(OhX′,ξ/bOhX′,ξ)

by the same prescription as above. Thus it suffices to show

lengthOh
Y,ξ′

(OhY,ξ′/aOhY,ξ′) =
∑

ξ∈|X′|
lengthOh

X′,ξ
(OhX′,ξ/aOhX′,ξ)
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First, since the ring mapOhY,ξ′ → OhX,ξ is flat and unramified, we have

lengthOh
Y,ξ′

(OhY,ξ′/aOhY,ξ′) = lengthOh
X,ξ

(OhX,ξ/aOhX,ξ)

by Algebra, Lemma 52.13. Let q1, . . . , qt be the nonmaximal primes ofOhX,ξ and set Rj =
OhX,ξ/qj . For X ′ as above, denote J(X ′) ⊂ {1, . . . , t} the set of indices such that qj
corresponds to a point ofX ′, i.e., such that under the surjectionOhX,ξ → OX′,ξ the prime
qj corresponds to a prime ofOX′,ξ . By Chow Homology, Lemma 3.2 we get

lengthOh
X,ξ

(OhX,ξ/aOhX,ξ) =
∑

j
lengthRj (Rj/aRj)

and

lengthOh
X′,ξ

(OhX′,ξ/aOhX′,ξ) =
∑

j∈J(X′)
lengthRj (Rj/aRj)

Thus the result of the lemma holds because {1, . . . , t} is the disjoint union of the sets
J(X ′): each point of codimension 0 on X lies on a unique X ′. �

14. Principal divisors and pushforward

This section is the analogue of Chow Homology, Section 18.

Lemma 14.1. In Situation 2.1 let X,Y/B be good. Assume X , Y are integral and
n = dimδ(X) = dimδ(Y ). Let p : X → Y be a dominant proper morphism. Let
f ∈ R(X)∗. Set

g = NmR(X)/R(Y )(f).

Then we have p∗div(f) = div(g).

Proof. We are going to deduce this from the case of schemes by étale localization.
Let Z ⊂ Y be an integral closed subspace of δ-dimension n−1. We want to show that the
coefficient of [Z] in p∗div(f) and div(g) are equal. Apply Spaces over Fields, Lemma 3.2
to the morphism p : X → Y and the generic point ξ ∈ |Z|. We find that we may replace
Y by an open subspace containing ξ and assume that p : X → Y is finite. Pick an étale
neighbourhood (V, v)→ (Y, ξ) where V is an affine scheme. By Lemma 10.3 it suffices to
prove the equality of cycles after pulling back to V . Set U = V ×Y X and consider the
commutative diagram

U
a
//

p′

��

X

p

��
V

b // Y

Let Vj ⊂ V , j = 1, . . . ,m be the irreducible components of V . For each i, let Uj,i,
i = 1, . . . , nj be the irreducible components ofU dominating Vj . Denote p′

j,i : Uj,i → Vj
the restriction of p′ : U → V . By the case of schemes (Chow Homology, Lemma 18.1) we
see that

p′
j,i,∗divUj,i(fj,i) = divVj (gj,i)
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where fj,i is the restriction of f toUj,i and gj,i is the norm of fj,i along the finite extension
R(Uj,i)/R(Vj). We have

b∗p∗divX(f) = p′
∗a

∗divX(f)

= p′
∗

(∑
j,i

(Uj,i → U)∗divUj,i(fj,i)
)

=
∑

j,i
(Vj → V )∗p

′
j,i,∗divUj,i(fj,i)

=
∑

j
(Vj → V )∗

(∑
i

divVj (gj,i)
)

=
∑

j
(Vj → V )∗divVj (

∏
i
gj,i)

by Lemmas 11.1, 13.2, and 8.2. To finish the proof, using Lemma 13.2 again, it suffices to
show that

g ◦ b|Vj =
∏

i
gj,i

as elements of the function field of Vj . In terms of fields this is the following statement:
let L/K be a finite extension. Let M/K be a finite separable extension. Write M ⊗K
L =

∏
Mi. Then for t ∈ L with images ti ∈ Mi the image of NormL/K(t) in M is∏

NormMi/M (ti). We omit the proof. �

15. Rational equivalence

This section is the analogue of Chow Homology, Section 19. In this section we define ra-
tional equivalence on k-cycles. We will allow locally finite sums of images of principal
divisors (under closed immersions). This leads to some pretty strange phenomena (see ex-
amples in the chapter on schemes). However, if we do not allow these then we do not
know how to prove that capping with Chern classes of line bundles factors through ratio-
nal equivalence.

Definition 15.1. In Situation 2.1 let X/B be good. Let k ∈ Z.
(1) Given any locally finite collection {Wj ⊂ X} of integral closed subspaces with

dimδ(Wj) = k + 1, and any fj ∈ R(Wj)∗ we may consider∑
(ij)∗div(fj) ∈ Zk(X)

where ij : Wj → X is the inclusion morphism. This makes sense as the mor-
phism

∐
ij :

∐
Wj → X is proper.

(2) We say that α ∈ Zk(X) is rationally equivalent to zero if α is a cycle of the form
displayed above.

(3) We say α, β ∈ Zk(X) are rationally equivalent and we write α ∼rat β if α− β
is rationally equivalent to zero.

(4) We define
CHk(X) = Zk(X)/ ∼rat

to be the Chow group of k-cycles onX . This is sometimes called the Chow group
of k-cycles modulo rational equivalence on X .

There are many other interesting equivalence relations. Rational equivalence is the coars-
est of them all. A very simple but important lemma is the following.

Lemma 15.2. In Situation 2.1 let X/B be good. Let U ⊂ X be an open subspace. Let
Y be the reduced closed subspace of X with |Y | = |X| \ |U | and denote i : Y → X the
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inclusion morphism. Let k ∈ Z. Suppose α, β ∈ Zk(X). If α|U ∼rat β|U then there exist
a cycle γ ∈ Zk(Y ) such that

α ∼rat β + i∗γ.

In other words, the sequence

CHk(Y ) i∗ // CHk(X) j∗
// CHk(U) // 0

is an exact complex of abelian groups.

Proof. Let {Wj}j∈J be a locally finite collection of integral closed subspaces ofU of
δ-dimension k+1, and let fj ∈ R(Wj)∗ be elements such that (α−β)|U =

∑
(ij)∗div(fj)

as in the definition. Let W ′
j ⊂ X be the corresponding integral closed subspace of X , i.e.,

having the same generic point asWj . Suppose that V ⊂ X is a quasi-compact open. Then
alsoV ∩U is quasi-compact open inU asV is Noetherian. Hence the set {j ∈ J |Wj∩V 6=
∅} = {j ∈ J | W ′

j ∩ V 6= ∅} is finite since {Wj} is locally finite. In other words we see
that {W ′

j} is also locally finite. Since R(Wj) = R(W ′
j) we see that

α− β −
∑

(i′j)∗div(fj)

is a cycle on X whose restriction to U is zero. The lemma follows by applying Lemma
10.2. �

Remark 15.3. In Situation 2.1 letX/B be good. Suppose we have infinite collections
αi, βi ∈ Zk(X), i ∈ I of k-cycles on X . Suppose that the supports of αi and βi form lo-
cally finite collections of closed subsets of X so that

∑
αi and

∑
βi are defined as cycles.

Moreover, assume that αi ∼rat βi for each i. Then it is not clear that
∑
αi ∼rat

∑
βi.

Namely, the problem is that the rational equivalences may be given by locally finite fam-
ilies {Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji but the union {Wi,j}i∈I,j∈Ji may not be locally finite.

In many cases in practice, one has a locally finite family of closed subsets {Ti}i∈I of |X|
such that αi, βi are supported on Ti and such that αi ∼rat βi “on” Ti. More precisely,
the families {Wi,j , fi,j ∈ R(Wi,j)∗}j∈Ji consist of integral closed subspaces Wi,j with
|Wi,j | ⊂ Ti. In this case it is true that

∑
αi ∼rat

∑
βi on X , simply because the family

{Wi,j}i∈I,j∈Ji is automatically locally finite in this case.

16. Rational equivalence and push and pull

This section is the analogue of Chow Homology, Section 20. In this section we show that
flat pullback and proper pushforward commute with rational equivalence.

Lemma 16.1. In Situation 2.1 letX,Y/B be good. AssumeY integral with dimδ(Y ) =
k. Let f : X → Y be a flat morphism of relative dimension r. Then for g ∈ R(Y )∗ we
have

f∗divY (g) =
∑

mX′,X(X ′ → X)∗divX′(g ◦ f |X′)

as (k+ r−1)-cycles onX where the sum is over the irreducible componentsX ′ ofX and
mX′,X is the multiplicity of X ′ in X .

Proof. Observe that any irreducible component ofX dominates Y (Lemma 9.1) and
hence the composition g ◦ f |X′ is defined (Morphisms of Spaces, Section 47). We will
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reduce this to the case of schemes. Choose a scheme V and a surjective étale morphism
V → Y . Choose a scheme U and a surjective étale morphism U → V ×Y X . Picture

U
a
//

h
��

X

f

��
V

b // Y

Since a is surjective and étale it follows from Lemma 10.3 that it suffices to prove the
equality of cycles after pulling back by a. We can use Lemma 13.2 to write

b∗divY (g) =
∑

(V ′ → V )∗divV ′(g ◦ b|V ′)

where the sum is over the irreducible components V ′ of V . Using Lemma 11.1 we find

h∗b∗divY (g) =
∑

(V ′ ×V U → U)∗(h′)∗divV ′(g ◦ b|V ′)

where h′ : V ′ ×V U → V ′ is the projection. We may apply the lemma in the case of
schemes (Chow Homology, Lemma 20.1) to the morphism h′ : V ′ ×V U → V ′ to see that
we have

(h′)∗divV ′(g ◦ b|V ′) =
∑

mU ′,V ′×V U (U ′ → V ′ ×V U)∗divU ′(g ◦ b|V ′ ◦ h′|U ′)

where the sum is over the irreducible components U ′ of V ′ ×V U . Each U ′ occurring in
this sum is an irreducible component of U and conversely every irreducible component
U ′ of U is an irreducible component of V ′ ×V U for a unique irreducible component
V ′ ⊂ V . Given an irreducible component U ′ ⊂ U , denote a(U ′) ⊂ X the “image” in X
(Lemma 7.1); this is an irreducible component of X for example by Lemma 9.1. The mu-
plticity mU ′,V ′×V U is equal to the multiplicity m

a(U ′),X . This follows from the equality
h∗a∗[Y ] = b∗f∗[Y ] (Lemma 10.4), the definitions, and Lemma 10.3. Combining all of
what we just said we obtain

a∗f∗divY (g) = h∗b∗divY (g) =
∑

m
a(U ′),X(U ′ → U)∗divU ′(g ◦ (f ◦ a)|U ′)

Next, we analyze what happens with the right hand side of the formula in the statement
of the lemma if we pullback by a. First, we use Lemma 11.1 to get

a∗
∑

mX′,X(X ′ → X)∗divX′(g◦f |X′) =
∑

mX′,X(X ′×XU → U)∗(a′)∗divX′(g◦f |X′)

where a′ : X ′ ×X U → X ′ is the projection. By Lemma 13.2 we get

(a′)∗divX′(g ◦ f |X′) =
∑

(U ′ → X ′ ×X U)∗divU ′(g ◦ (f ◦ a)|U ′)

where the sum is over the irreducible components U ′ of X ′ ×X U . These U ′ are irre-
ducible components of U and in fact are exactly the irreducible components of U such
that a(U ′) = X ′. Comparing with what we obtained above we conclude. �

Lemma 16.2. In Situation 2.1 letX,Y/B be good. Let f : X → Y be a flat morphism
of relative dimension r. Let α ∼rat β be rationally equivalent k-cycles on Y . Then
f∗α ∼rat f∗β as (k + r)-cycles on X .

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ Y
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of closed immersions, with each Wj integral of δ-dimension k + 1 and rational functions
gj ∈ R(Wj)∗. Moreover, assume that the collection {|ij |(|Wj |)}j∈J is locally finite in
|Y |. Then we have to show that

f∗(
∑

ij,∗div(gj)) =
∑

f∗ij,∗div(gj)

is rationally equivalent to zero on X . The sum on the right makes sense by Lemma 9.2.

Consider the fibre products

i′j : W ′
j = Wj ×Y X −→ X.

and denote fj : W ′
j →Wj the first projection. By Lemma 11.1 we can write the sum above

as ∑
i′j,∗(f∗

j div(gj))
By Lemma 16.1 we see that each f∗

j div(gj) is rationally equivalent to zero on W ′
j . Hence

each i′j,∗(f∗
j div(gj)) is rationally equivalent to zero. Then the same is true for the dis-

played sum by the discussion in Remark 15.3. �

Lemma 16.3. In Situation 2.1 let X,Y/B be good. Let p : X → Y be a proper
morphism. Suppose α, β ∈ Zk(X) are rationally equivalent. Then p∗α is rationally
equivalent to p∗β.

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ X

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational functions
fj ∈ R(Wj)∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally finite on X .
Then we have to show that

p∗

(∑
ij,∗div(fj)

)
is rationally equivalent to zero on X .

Note that the sum is equal to ∑
p∗ij,∗div(fj).

LetW ′
j ⊂ Y be the integral closed subspace which is the image of p◦ij , see Lemma 7.1. The

collection {W ′
j} is locally finite in Y by Lemma 7.5. Hence it suffices to show, for a given

j , that either p∗ij,∗div(fj) = 0 or that it is equal to i′j,∗div(gj) for some gj ∈ R(W ′
j)∗.

The arguments above therefore reduce us to the case of a since integral closed subspace
W ⊂ X of δ-dimension k + 1. Let f ∈ R(W )∗. Let W ′ = p(W ) as above. We get a
commutative diagram of morphisms

W
i
//

p′

��

X

p

��
W ′ i′ // Y

Note that p∗i∗div(f) = i′∗(p′)∗div(f) by Lemma 8.2. As explained above we have to show
that (p′)∗div(f) is the divisor of a rational function on W ′ or zero. There are three cases
to distinguish.

The case dimδ(W ′) < k. In this case automatically (p′)∗div(f) = 0 and there is nothing
to prove.
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The case dimδ(W ′) = k. Let us show that (p′)∗div(f) = 0 in this case. Since (p′)∗div(f)
is a k-cycle, we see that (p′)∗div(f) = n[W ′] for some n ∈ Z. In order to prove that n = 0
we may replace W ′ by a nonempty open subspace. In particular, we may and do assume
that W ′ is a scheme. Let η ∈ W ′ be the generic point. Let K = κ(η) = R(W ′) be the
function field. Consider the base change diagram

Wη
//

c

��

W

p′

��
Spec(K) η // W ′

Observe that c is proper. Also |Wη| has dimension 1: use Decent Spaces, Lemma 18.6 to
identify |Wη| as the subspace of |W | of points mapping to η and note that since dimδ(W ) =
k+ 1 and δ(η) = k points ofWη must have δ-value either k or k+ 1. Thus the local rings
have dimension≤ 1 by Decent Spaces, Lemma 20.2. By Spaces over Fields, Lemma 9.3 we
find that Wη is a scheme. Since Spec(K) is the limit of the nonempty affine open sub-
schemes of W ′ we conclude that we may assume that W is a scheme by Limits of Spaces,
Lemma 5.11. Then finally by the case of schemes (Chow Homology, Lemma 20.3) we find
that n = 0.
The case dimδ(W ′) = k + 1. In this case Lemma 14.1 applies, and we see that indeed
p′

∗div(f) = div(g) for some g ∈ R(W ′)∗ as desired. �

17. The divisor associated to an invertible sheaf

This section is the analogue of Chow Homology, Section 24. The following definition is
the analogue of Spaces over Fields, Definition 7.4 in our current setup.

Definition 17.1. In Situation 2.1 let X/B be good. Assume X is integral and n =
dimδ(X). Let L be an invertibleOX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor associ-
ated to s is the (n− 1)-cycle

divL(s) =
∑

ordZ,L(s)[Z]

defined in Spaces over Fields, Definition 7.4. This makes sense because Weil
divisors have δ-dimension n− 1 by Lemma 12.1.

(2) We define Weil divisor associated to L as
c1(L) ∩ [X] = class of divL(s) ∈ CHn−1(X)

where s is any nonzero meromorphic section of L over X . This is well defined
by Spaces over Fields, Lemma 7.3.

The zero scheme of a nonzero section is an effective Cartier divisor whose Weil divisor
class computes the Weil divisor associated to the invertible module.

Lemma 17.2. In Situation 2.1 let X/B be good. Assume X is integral and n =
dimδ(X). LetL be an invertibleOX -module. Let s ∈ Γ(X,L) be a nonzero global section.
Then

divL(s) = [Z(s)]n−1

in Zn−1(X) and
c1(L) ∩ [X] = [Z(s)]n−1

in CHn−1(X).
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Proof. LetZ ⊂ X be an integral closed subspace of δ-dimensionn−1. Let ξ ∈ |Z| be
its generic point. To prove the first equality we compare the coefficients ofZ on both sides.
Choose an elementary étale neighbourhood (U, u) → (X, ξ), see Decent Spaces, Section
11 and recall thatOhX,ξ = OhU,u in this case. After replacing U by an open neighbourhood
of u we may assume there is a trivializing section sU of L|U . Write s|U = fsU for some
f ∈ Γ(U,OU ). Then Z ×X U is equal to V (f) as a closed subscheme of U , see Divisors
on Spaces, Definition 7.6. As in Spaces over Fields, Section 7 denote Lξ the pullback of L
under the canonical morphism cξ : Spec(OhX,ξ)→ X . Denote sξ the pullback of sU ; it is
a trivialization of Lξ . Then we see that c∗

ξ(s) = fsξ . The coefficient of Z in [Z(s)]n−1 is
by definition

lengthOU,u
(OU,u/fOU,u)

SinceOU,u → OhX,ξ is flat and identifies residue fields this is equal to

lengthOh
X,ξ

(OhX,ξ/fOhX,ξ)

by Algebra, Lemma 52.13. This final quantity is equal to ordZ,L(s) by Spaces over Fields,
Definition 7.1, i.e., to the coefficient of Z in divL(s) as desired. �

Lemma 17.3. In Situation 2.1 let X/B be good. Let L be an invertible OX -module.
The morphism

q : T = Spec
(⊕

n∈Z
L⊗n

)
−→ X

has the following properties:
(1) q is surjective, smooth, affine, of relative dimension 1,
(2) there is an isomorphism α : q∗L ∼= OT ,
(3) formation of (q : T → X,α) commutes with base change,
(4) q∗ : Zk(X)→ Zk+1(T ) is injective,
(5) if Z ⊂ X is an integral closed subspace, then q−1(Z) ⊂ T is an integral closed

subspace,
(6) if Z ⊂ X is a closed subspace of X of δ-dimension ≤ k, then q−1(Z) is a closed

subspace of T of δ-dimension ≤ k + 1 and q∗[Z]k = [q−1(Z)]k+1,
(7) if ξ′ ∈ |T | is the generic point of the fibre of |T | → |X| over ξ, then the ring map
OhX,ξ → OhT,ξ′ is flat, we have mhξ′ = mhξOhT,ξ′ , and the residue field extension is
purely transcendental of transcendence degree 1, and

(8) add more here as needed.

Proof. LetU → X be an étale morphism such thatL|U is trivial. ThenT×XU → U
is isomorphic to the projection morphism Gm×U → U , where Gm is the multipliciative
group scheme, see Groupoids, Example 5.1. Thus (1) is clear.

To see (2) observe that q∗q
∗L =

⊕
n∈Z L⊗n+1. Thus there is an obvious isomorphism

q∗q
∗L → q∗OT of q∗OT -modules. By Morphisms of Spaces, Lemma 20.10 this determines

an isomorphism q∗L → OT .

Part (3) holds because forming the relative spectrum commutes with arbitrary base change
and the same thing is clearly true for the isomorphism α.

Part (4) follows immediately from (1) and the definitions.

Part (5) follows from the fact that if Z is an integral algebraic space, then Gm × Z is an
integral algebraic space.
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Part (6) follows from the fact that lengths are preserved: if (A,m) is a local ring and
B = A[x]mA[x] and if M is an A-module, then lengthA(M) = lengthB(M ⊗A B). This
implies that if F is a coherentOX -module and ξ ∈ |X| with ξ′ ∈ |T | the generic point of
the fibre over ξ, then the length of F at ξ is the same as the length of q∗F at ξ′. Tracing
through the definitions this gives (6) and more.

The map in part (7) comes from Decent Spaces, Remark 11.11. However, in our case we
have

Spec(OhX,ξ)×X T = Gm × Spec(OhX,ξ) = Spec(OhX,ξ[t, t−1])

and ξ′ corresponds to the generic point of the special fibre of this over Spec(OhX,ξ). Thus
OhT,ξ′ is the henselization of the localization of OhX,ξ[t, t−1] at the corresponding prime.
Part (7) follows from this and some commutative algebra; details omitted. �

Lemma 17.4. In Situation 2.1 let X/B be good. Let L be an invertible OX -module.
Assume X is integral. Let s be a nonzero meromorphic section of L. Let q : T → X be
the morphism of Lemma 17.3. Then

q∗divL(s) = divT (q∗(s))

where we view the pullback q∗(s) as a nonzero meromorphic function on T using the
isomorphism q∗L → OT

Proof. Observe that divT (q∗(s)) = divOT
(q∗(s)) by the compatibility between the

constructions given in Spaces over Fields, Sections 6 and 7. We will show the agreement
with divOT

(q∗(s)) in this proof. We will use all the properties of q : T → X stated in
Lemma 17.3 without further mention. Let Z ⊂ T be a prime divisor. Then either Z → X
is dominant or Z = q−1(Z ′) for some prime divisor Z ′ ⊂ X . If Z → X is dominant,
then the coefficient of Z in either side of the equality of the lemma is zero. Thus we may
assume Z = q−1(Z ′) where Z ′ ⊂ X is a prime divisor. Let ξ′ ∈ |Z ′| and ξ ∈ |Z| be the
generic points. Then we obtain a commutative diagram

Spec(OhT,ξ) cξ
//

h

��

T

q

��
Spec(OhX,ξ′)

cξ′
// X

see Decent Spaces, Remark 11.11. Choose a trivialization sξ′ of Lξ′ = c∗
ξ′L. Then we can

use the pullback sξ of sξ′ via h as our trivialization of Lξ = c∗
ξq

∗L. Write s/sξ′ = a/b

for a, b ∈ OX,ξ′ nonzerodivisors. By definition the coefficient of Z ′ in divL(s) is

lengthOh
X,ξ′

(OhX,ξ′/aOhX,ξ′)− lengthOh
X,ξ′

(OhX,ξ′/bOhX,ξ′)

Since Z = q−1(Z ′), this is also the coefficient of Z in q∗divL(s). Since OhX,ξ′ → OhT,ξ is
flat the elements a, b map to nonzerodivisors in OhT,ξ . Thus q∗(s)/sξ = a/b in the total
quotient ring ofOhT,ξ . By definition the coefficient of Z in divT (q∗(s)) is

lengthOh
T,ξ

(OhT,ξ/aOhT,ξ)− lengthOh
T,ξ

(OhT,ξ/bOhT,ξ)

The proof is finished because these lengths are the same as before by Algebra, Lemma 52.13
and the fact that mhξ = mhξ′OhT,ξ shown in Lemma 17.3. �
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18. Intersecting with an invertible sheaf

This section is the analogue of Chow Homology, Section 25. In this section we study the
following construction.

Definition 18.1. In Situation 2.1 let X/B be good. Let L be an invertible OX -
module. We define, for every integer k, an operation

c1(L) ∩ − : Zk+1(X)→ CHk(X)
called intersection with the first Chern class of L.

(1) Given an integral closed subspace i : W → X with dimδ(W ) = k+1 we define
c1(L) ∩ [W ] = i∗(c1(i∗L) ∩ [W ])

where the right hand side is defined in Definition 17.1.
(2) For a general (k + 1)-cycle α =

∑
ni[Wi] we set

c1(L) ∩ α =
∑

nic1(L) ∩ [Wi]

Write each c1(L)∩Wi =
∑
j ni,j [Zi,j ] with {Zi,j}j a locally finite sum of integral closed

subspaces ofWi. Since {Wi} is a locally finite collection of integral closed subspaces onX ,
it follows easily that {Zi,j}i,j is a locally finite collection of closed subspaces ofX . Hence
c1(L) ∩ α =

∑
nini,j [Zi,j ] is a cycle. Another, often more convenient, way to think

about this is to observe that the morphism
∐
Wi → X is proper. Hence c1(L)∩α can be

viewed as the pushforward of a class in CHk(
∐
Wi) =

∏
CHk(Wi). This also explains

why the result is well defined up to rational equivalence on X .
The main goal for the next few sections is to show that intersecting with c1(L) factors
through rational equivalence. This is not a triviality.

Lemma 18.2. In Situation 2.1 let X/B be good. Let L,N be an invertible sheaves on
X . Then

c1(L) ∩ α+ c1(N ) ∩ α = c1(L ⊗OX
N ) ∩ α

in CHk(X) for every α ∈ Zk−1(X). Moreover, c1(OX) ∩ α = 0 for all α.

Proof. The additivity follows directly from Spaces over Fields, Lemma 7.5 and the
definitions. To see that c1(OX) ∩ α = 0 consider the section 1 ∈ Γ(X,OX). This
restricts to an everywhere nonzero section on any integral closed subspaceW ⊂ X . Hence
c1(OX) ∩ [W ] = 0 as desired. �

Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible sheaf
on an algebraic space X , see Divisors on Spaces, Definition 7.6.

Lemma 18.3. In Situation 2.1 let Y/B be good. Let L be an invertible OY -module.
Let s ∈ Γ(Y,L) be a regular section and assume dimδ(Y ) ≤ k + 1. Write [Y ]k+1 =∑
ni[Yi] where Yi ⊂ Y are the irreducible components of Y of δ-dimension k + 1. Set

si = s|Yi ∈ Γ(Yi,L|Yi). Then

(18.3.1) [Z(s)]k =
∑

ni[Z(si)]k
as k-cycles on Y .

Proof. Letϕ : V → Y be a surjective étale morphism where V is a scheme. It suffices
to prove the equality after pulling back by ϕ, see Lemma 10.3. That same lemma tells us
that ϕ∗[Yi] = [ϕ−1(Yi)] =

∑
[Vi,j ] where Vi,j are the irreducible components of V lying

over Yi. Hence if we first apply the case of schemes (Chow Homology, Lemma 25.3) to
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ϕ∗si on Yi ×Y V we find that ϕ∗[Z(si)]k = [Z(ϕ∗si)] =
∑

[Z(si,j)]k where si,j is the
pullback of s to Vi,j . Applying the case of schemes to ϕ∗s we get

ϕ∗[Z(s)]k = [Z(ϕ∗s)]k =
∑

ni[Z(si,j)]k

by our remark on multiplicities above. Combining all of the above the proof is complete.
�

The following lemma is a useful result in order to compute the intersection product of
the c1 of an invertible sheaf and the cycle associated to a closed subscheme. Recall that
Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible sheaf on a scheme
X , see Divisors, Definition 14.8.

Lemma 18.4. In Situation 2.1 let X/B be good. Let L be an invertible OX -module.
Let Y ⊂ X be a closed subscheme with dimδ(Y ) ≤ k + 1 and let s ∈ Γ(Y,L|Y ) be a
regular section. Then

c1(L) ∩ [Y ]k+1 = [Z(s)]k
in CHk(X).

Proof. Write
[Y ]k+1 =

∑
ni[Yi]

where Yi ⊂ Y are the irreducible components of Y of δ-dimension k + 1 and ni > 0.
By assumption the restriction si = s|Yi ∈ Γ(Yi,L|Yi) is not zero, and hence is a regular
section. By Lemma 17.2 we see that [Z(si)]k represents c1(L|Yi). Hence by definition

c1(L) ∩ [Y ]k+1 =
∑

ni[Z(si)]k

Thus the result follows from Lemma 18.3. �

19. Intersecting with an invertible sheaf and push and pull

This section is the analogue of Chow Homology, Section 26. In this section we prove that
the operation c1(L) ∩ − commutes with flat pullback and proper pushforward.

Lemma 19.1. In Situation 2.1 letX,Y/B be good. Let f : X → Y be a flat morphism
of relative dimension r. Let L be an invertible sheaf on Y . Assume Y is integral and
n = dimδ(Y ). Let s be a nonzero meromorphic section of L. Then we have

f∗divL(s) =
∑

nidivf∗L|Xi (si)

in Zn+r−1(X). Here the sum is over the irreducible componentsXi ⊂ X of δ-dimension
n + r, the section si = f |∗Xi(s) is the pullback of s, and ni = mXi,X is the multiplicity
of Xi in X .

Proof. Using sleight of hand we will deduce this from Lemma 16.1. (An alternative
is to redo the proof of that lemma in the setting of meromorphic sections of invertible
modules.) Namely, let q : T → Y be the morphism of Lemma 17.3 constructed using L
on Y . We will use all the properties of T stated in this lemma. Consider the fibre product
diagram

T ′
q′
//

h

��

X

f

��
T

q // Y
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Then q′ : T ′ → X is the morphism constructed using f∗L onX . Then it suffices to prove

(q′)∗f∗divL(s) =
∑

ni(q′)∗divf∗L|Xi (si)

Observe that T ′
i = q−1(Xi) are the irreducible components of T ′ and that ni is the mul-

tiplicity of T ′
i in T ′. The left hand side is equal to

h∗q∗divL(s) = h∗divT (q∗(s))
by Lemma 17.4 (and Lemma 10.4). On the other hand, denoting q′

i : T ′
i → Xi the restric-

tion of q′ we find that Lemma 17.4 also tells us the right hand side is equal to∑
nidivTi((q′

i)∗(si))

In these two formulas the expressions q∗(s) and (q′
i)∗(si) represent the rational functions

corresponding to the pulled back meromorphic sections of q∗L and (q′
i)∗f∗L|Xi via the

isomorphism α : q∗L → OT and its pullbacks to spaces over T . With this convention
it is clear that (q′

i)∗(si) is the composition of the rational function q∗(s) on T and the
morphism h|T ′

i
: T ′

i → T . Thus Lemma 16.1 exactly says that

h∗divT (q∗(s)) =
∑

nidivTi((q′
i)∗(si))

as desired. �

Lemma 19.2. In Situation 2.1 letX,Y/B be good. Let f : X → Y be a flat morphism
of relative dimension r. Let L be an invertible sheaf on Y . Let α be a k-cycle on Y . Then

f∗(c1(L) ∩ α) = c1(f∗L) ∩ f∗α

in CHk+r−1(X).

Proof. Write α =
∑
ni[Wi]. We will show that

f∗(c1(L) ∩ [Wi]) = c1(f∗L) ∩ f∗[Wi]
in CHk+r−1(X) by producing a rational equivalence on the closed subspace f−1(Wi) of
X . By the discussion in Remark 15.3 this will prove the equality of the lemma is true.

LetW ⊂ Y be an integral closed subspace of δ-dimension k. Consider the closed subspace
W ′ = f−1(W ) = W ×Y X so that we have the fibre product diagram

W ′ //

h

��

X

f

��
W // Y

We have to show that f∗(c1(L) ∩ [W ]) = c1(f∗L) ∩ f∗[W ]. Choose a nonzero mero-
morphic section s of L|W . Let W ′

i ⊂ W ′ be the irreducible components of δ-dimension
k + r. Write [W ′]k+r =

∑
ni[W ′

i ] with ni the multiplicity of W ′
i in W ′ as per defi-

nition. So f∗[W ] =
∑
ni[W ′

i ] in Zk+r(X). Since each W ′
i → W is dominant we see

that si = s|W ′
i

is a nonzero meromorphic section for each i. By Lemma 19.1 we have the
following equality of cycles

h∗divL|W (s) =
∑

nidivf∗L|W ′
i

(si)

in Zk+r−1(W ′). This finishes the proof since the left hand side is a cycle on W ′ which
pushes to f∗(c1(L)∩[W ]) in CHk+r−1(X) and the right hand side is a cycle onW ′ which
pushes to c1(f∗L) ∩ f∗[W ] in CHk+r−1(X). �
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Lemma 19.3. In Situation 2.1 let X,Y/B be good. Let f : X → Y be a proper
morphism. Let L be an invertible sheaf on Y . Assume X , Y integral, f dominant, and
dimδ(X) = dimδ(Y ). Let s be a nonzero meromorphic section s of L on Y . Then

f∗ (divf∗L(f∗s)) = [R(X) : R(Y )]divL(s).

as cycles on Y . In particular

f∗(c1(f∗L) ∩ [X]) = c1(L) ∩ f∗[Y ].

Proof. The last equation follows from the first since f∗[X] = [R(X) : R(Y )][Y ]
by definition. Proof of the first equaltion. Let q : T → Y be the morphism of Lemma
17.3 constructed using L on Y . We will use all the properties of T stated in this lemma.
Consider the fibre product diagram

T ′
q′
//

h

��

X

f

��
T

q // Y

Then q′ : T ′ → X is the morphism constructed using f∗L on X . It suffices to prove the
equality after pulling back to T ′. The left hand side pulls back to

q∗f∗ (divf∗L(f∗s)) = h∗(q′)∗divf∗L(f∗s)
= h∗div(q′)∗f∗L((q′)∗f∗s)
= h∗divh∗q∗L(h∗q∗s)

The first equality by Lemma 11.1. The second by Lemma 19.1 using that T ′ is integral. The
third because the displayed diagram commutes. The right hand side pulls back to

[R(X) : R(Y )]q∗divL(s) = [R(T ′) : R(T )]divq∗L(q∗s)

This follows from Lemma 19.1, the fact that T is integral, and the equality [R(T ′) :
R(T )] = [R(X) : R(Y )] whose proof we omit (it follows from Lemma 11.1 but that would
be a silly way to prove the equality). Thus it suffices to prove the lemma for h : T ′ → T ,
the invertible module qL and the section q∗s. Since q∗L = OT we reduce to the case
where L ∼= O discussed in the next paragraph.

Assume that L = OY . In this case s corresponds to a rational function g ∈ R(Y ). Using
the embedding R(Y ) ⊂ R(X) we may think of g as a rational on X and we are simply
trying to prove

f∗ (divX(g)) = [R(X) : R(Y )]divY (g).
Comparing with the result of Lemma 14.1 we see this true since NmR(X)/R(Y )(g) =
g[R(X):R(Y )] as g ∈ R(Y )∗. �

Lemma 19.4. In Situation 2.1 let X,Y/B be good. Let p : X → Y be a proper
morphism. Let α ∈ Zk+1(X). Let L be an invertible sheaf on Y . Then

p∗(c1(p∗L) ∩ α) = c1(L) ∩ p∗α

in CHk(Y ).

Proof. Suppose that p has the property that for every integral closed subspaceW ⊂
X the map p|W : W → Y is a closed immersion. Then, by definition of capping with
c1(L) the lemma holds.
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We will use this remark to reduce to a special case. Namely, write α =
∑
ni[Wi] with

ni 6= 0 and Wi pairwise distinct. Let W ′
i ⊂ Y be the “image” of Wi as in Lemma 7.1.

Consider the diagram
X ′ =

∐
Wi q

//

p′

��

X

p

��
Y ′ =

∐
W ′
i

q′
// Y.

Since {Wi} is locally finite on X , and p is proper we see that {W ′
i} is locally finite on Y

and that q, q′, p′ are also proper morphisms. We may think of
∑
ni[Wi] also as a k-cycle

α′ ∈ Zk(X ′). Clearly q∗α
′ = α. We have q∗(c1(q∗p∗L) ∩ α′) = c1(p∗L) ∩ q∗α

′ and
(q′)∗(c1((q′)∗L) ∩ p′

∗α
′) = c1(L) ∩ q′

∗p
′
∗α

′ by the initial remark of the proof. Hence it
suffices to prove the lemma for the morphism p′ and the cycle

∑
ni[Wi]. Clearly, this

means we may assume X , Y integral, f : X → Y dominant and α = [X]. In this case the
result follows from Lemma 19.3. �

20. The key formula

This section is the analogue of Chow Homology, Section 27. We strongly urge the reader
to read the proof in that case first.

In Situation 2.1 let X/B be good. Assume X is integral and dimδ(X) = n. Let L and
N be invertible OX -modules. Let s be a nonzero meromorphic section of L and let t be
a nonzero meromorphic section of N . Let Z ⊂ X be a prime divisor with generic point
ξ ∈ |Z|. Consider the morphism

cξ : Spec(OhX,ξ) −→ X

used in Spaces over Fields, Section 7. We denote Lξ andNξ the pullbacks of L andN by
cξ ; we often think of Lξ and Nξ as the rank 1 free OhX,ξ-modules they give rise to. Note
that the pullback of s, resp. t is a regular meromorphic section of Lξ , resp.Nξ .

Let Zi ⊂ X , i ∈ I be a locally finite set of prime divisors with the following property:
If Z 6∈ {Zi}, then s is a generator for Lξ and t is a generator for Nξ . Such a set exists by
Spaces over Fields, Lemma 7.2. Then

divL(s) =
∑

ordZi,L(s)[Zi]

and similarly
divN (t) =

∑
ordZi,N (t)[Zi]

Unwinding the definitions more, we pick for each i generators si ∈ Lξi and ti ∈ Nξi
where ξi is the generic point of Zi. Then we can write

s = fisi and t = giti

with fi, gi invertible elements of the total ring of fractions Q(OhX,ξi). We abbreviate
Bi = OhX,ξi . Let us denote

ordBi : Q(Bi)∗ −→ Z, a/b 7−→ lengthBi(Bi/aBi)− lengthBi(Bi/bBi)

In other words, we temporarily extend Algebra, Definition 121.2 to these reduced Noe-
therian local rings of dimension 1. Then by definition

ordZi,L(s) = ordBi(fi) and ordZi,N (t) = ordBi(gi)
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Since ξi is the generic point of Zi we see that the residue field κ(ξi) is the function field of
Zi. Moreover κ(ξi) is the residue field ofBi, see Decent Spaces, Lemma 11.10. Since ti is a
generator ofNξi we see that its image in the fibreNξi⊗Bi κ(ξi) is a nonzero meromorphic
section ofN|Zi . We will denote this image ti|Zi . From our definitions it follows that

c1(N ) ∩ divL(s) =
∑

ordBi(fi)(Zi → X)∗divN |Zi (ti|Zi)

and similarly

c1(L) ∩ divN (t) =
∑

ordBi(gi)(Zi → X)∗divL|Zi (si|Zi)

in CHn−2(X). We are going to find a rational equivalence between these two cycles. To
do this we consider the tame symbol

∂Bi(fi, gi) ∈ κ(ξi)∗ = R(Zi)∗

see Chow Homology, Section 5.

Lemma 20.1 (Key formula). In the situation above the cycle∑
(Zi → X)∗

(
ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)

)
is equal to the cycle ∑

(Zi → X)∗div(∂Bi(fi, gi))

Proof. The strategy of the proof will be: first reduce to the case where L andN are
trivial invertible modules, then change our choices of local trivializations, and then finally
use étale localization to reduce to the case of schemes1.

First step. Let q : T → X be the morphism constructed in Lemma 17.3. We will use
all properties stated in that lemma without further mention. In particular, it suffices to
show that the cycles are equal after pulling back by q. Denote s′ and t′ the pullbacks of s
and t to meromorphic sections of q∗L and q∗N . Denote Z ′

i = q−1(Zi), denote ξ′
i ∈ |Z ′

i|
the generic point, denote B′

i = OhT,ξ′
i
, denote Lξ′

i
and Nξ′

i
the pullbacks of L and N to

Spec(B′
i). Recall that we have commutative diagrams

Spec(B′
i) cξ′

i

//

��

T

q

��
Spec(Bi)

cξi // X

see Decent Spaces, Remark 11.11. Denote s′
i and t′i the pullbacks of si and ti which are

generators of Lξ′
i

andNξ′
i
. Then we have

s′ = f ′
is

′
i and t′ = g′

it
′
i

where f ′
i and g′

i are the images of fi, gi under the mapQ(Bi)→ Q(B′
i) induced byBi →

B′
i. By Algebra, Lemma 52.13 we have

ordBi(fi) = ordB′
i
(f ′
i) and ordBi(gi) = ordB′

i
(g′
i)

By Lemma 19.1 applied to q : Z ′
i → Zi we have

q∗divN |Zi (ti|Zi) = divq∗N |Z′
i

(t′i|Z′
i
) and q∗divL|Zi (si|Zi) = divq∗L|Z′

i

(s′
i|Z′

i
)

1It is possible that a shorter proof can be given by immediately applying étale localization.
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This already shows that the first cycle in the statement of the lemma pulls back to the
corresponding cycle for s′, t′, Z ′

i, s
′
i, t

′
i. To see the same is true for the second, note that

by Chow Homology, Lemma 5.4 we have

∂Bi(fi, gi) 7→ ∂B′
i
(f ′
i , g

′
i) via κ(ξi)→ κ(ξ′

i)

Hence the same lemma as before shows that

q∗div(∂Bi(fi, gi)) = div(∂B′
i
(f ′
i , g

′
i))

Since q∗L ∼= OT we find that it suffices to prove the equality in caseL is trivial. Exchang-
ing the roles of L and N we see that we may similarly assume N is trivial. This finishes
the proof of the first step.

Second step. Assume L = OX and N = OX . Denote 1 the trivializing section of L.
Then si = u · 1 for some unit u ∈ Bi. Let us examine what happens if we replace si by
1. Then fi gets replaced by ufi. Thus the first part of the first expression of the lemma is
unchanged and in the second part we add

ordBi(gi)div(u|Zi)
where u|Zi is the image of u in the residue field by Spaces over Fields, Lemma 7.3 and in
the second expression we add

div(∂Bi(u, gi))
by bi-linearity of the tame symbol. These terms agree by the property of the tame symbol
given in Chow Homology, Equation (6).

Let Y ⊂ X be an integral closed subspace with dimδ(Y ) = n − 2. To show that the
coefficients of Y of the two cycles of the lemma is the same, we may do a replacement of
si by 1 as in the previous paragraph. In exactly the same way one shows that we may do
a replacement of ti by 1. Since there are only a finite number of Zi such that Y ⊂ Zi we
may assume si = 1 and ti = 1 for all these Zi.

Third step. Here we prove the coefficients of Y in the cycles of the lemma agree for an
integral closed subspace Y with dimδ(Y ) = n − 2 such that moreover L = OX and
N = OX and si = 1 and ti = 1 for all Zi such that Y ⊂ Zi. After replacing X by a
smaller open subspace we may in fact assume that si and ti are equal to 1 for all i. In this
case the first cycle is zero. Our task is to show that the coefficient of Y in the second cycle
is zero as well.

First, since L = OX and N = OX we may and do think of s, t as rational functions f, g
on X . Since si and ti are equal to 1 we find that fi, resp. gi is the image of f , resp. g in
Q(Bi) for all i. Let ζ ∈ |Y | be the generic point. Choose an étale neighbourhood

(U, u) −→ (X, ζ)

and denote Y ′ = {u} ⊂ U . Since an étale morphism is flat, we can pullback f and g to
regular meromorphic functions on U which we will also denote f and g. For every prime
divisor Y ⊂ Z ⊂ X the scheme Z ×X U is a union of prime divisors of U . Conversely,
given a prime divisor Y ′ ⊂ Z ′ ⊂ U , there is a prime divisor Y ⊂ Z ⊂ X such that Z ′ is
a component of Z ×X U . Given such a pair (Z,Z ′) the ring map

OhX,ξ → OhU,ξ′

is étale (in fact it is finite étale). Hence we find that

∂Oh
X,ξ

(f, g) 7→ ∂Oh
U,ξ′

(f, g) via κ(ξ)→ κ(ξ′)
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by Chow Homology, Lemma 5.4. Thus Lemma 13.2 applies to show

(Z ×X U → Z)∗divZ(∂Oh
X,ξ

(f, g)) =
∑

Z′⊂Z×XU
divZ′(∂Oh

U,ξ′
(f, g))

Since flat pullback commutes with pushforward along closed immersions (Lemma 11.1) we
see that it suffices to prove that the coefficient of Y ′ in∑

Z′⊂U
(Z ′ → U)∗divZ′(∂Oh

U,ξ′
(f, g))

is zero.

Let A = OU,u. Then f, g ∈ Q(A)∗. Thus we can write f = a/b and g = c/d with
a, b, c, d ∈ A nonzerodivisors. The coefficient of Y ′ in the expression above is∑

q⊂A height 1
ordA/q(∂Aq

(f, g))

By bilinearity of ∂A it suffices to prove∑
q⊂A height 1

ordA/q(∂Aq
(a, c))

is zero and similarly for the other pairs (a, d), (b, c), and (b, d). This is true by Chow
Homology, Lemma 6.2. �

21. Intersecting with an invertible sheaf and rational equivalence

This section is the analogue of Chow Homology, Section 28. Applying the key lemma we
obtain the fundamental properties of intersecting with invertible sheaves. In particular,
we will see that c1(L)∩− factors through rational equivalence and that these operations
for different invertible sheaves commute.

Lemma 21.1. In Situation 2.1 letX/B be good. AssumeX integral and dimδ(X) = n.
LetL,N be invertible onX . Choose a nonzero meromorphic section s ofL and a nonzero
meromorphic section t ofN . Set α = divL(s) and β = divN (t). Then

c1(N ) ∩ α = c1(L) ∩ β

in CHn−2(X).

Proof. Immediate from the key Lemma 20.1 and the discussion preceding it. �

Lemma 21.2. In Situation 2.1 let X/B be good. Let L be invertible on X . The oper-
ation α 7→ c1(L) ∩ α factors through rational equivalence to give an operation

c1(L) ∩ − : CHk+1(X)→ CHk(X)

Proof. Let α ∈ Zk+1(X), and α ∼rat 0. We have to show that c1(L)∩α as defined
in Definition 18.1 is zero. By Definition 15.1 there exists a locally finite family {Wj} of
integral closed subspaces with dimδ(Wj) = k + 2 and rational functions fj ∈ R(Wj)∗

such that
α =

∑
(ij)∗divWj

(fj)

Note that p :
∐
Wj → X is a proper morphism, and hence α = p∗α

′ where α′ ∈
Zk+1(

∐
Wj) is the sum of the principal divisors divWj

(fj). By Lemma 19.4 we have
c1(L)∩α = p∗(c1(p∗L)∩α′). Hence it suffices to show that each c1(L|Wj )∩ divWj (fj)
is zero. In other words we may assume that X is integral and α = divX(f) for some
f ∈ R(X)∗.
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Assume X is integral and α = divX(f) for some f ∈ R(X)∗. We can think of f as a
regular meromorphic section of the invertible sheaf N = OX . Choose a meromorphic
section s of L and denote β = divL(s). By Lemma 21.1 we conclude that

c1(L) ∩ α = c1(OX) ∩ β.
However, by Lemma 18.2 we see that the right hand side is zero in CHk(X) as desired. �

In Situation 2.1 let X/B be good. Let L be invertible on X . We will denote

c1(L)s ∩ − : CHk+s(X)→ CHk(X)
the operation c1(L)∩−. This makes sense by Lemma 21.2. We will denote c1(Ls ∩− the
s-fold iterate of this operation for all s ≥ 0.

Lemma 21.3. In Situation 2.1 letX/B be good. LetL,N be invertible onX . For any
α ∈ CHk+2(X) we have

c1(L) ∩ c1(N ) ∩ α = c1(N ) ∩ c1(L) ∩ α
as elements of CHk(X).

Proof. Write α =
∑
mj [Zj ] for some locally finite collection of integral closed

subspaces Zj ⊂ X with dimδ(Zj) = k + 2. Consider the proper morphism p :
∐
Zj →

X . Set α′ =
∑
mj [Zj ] as a (k+ 2)-cycle on

∐
Zj . By several applications of Lemma 19.4

we see that c1(L)∩ c1(N )∩α = p∗(c1(p∗L)∩ c1(p∗N )∩α′) and c1(N )∩ c1(L)∩α =
p∗(c1(p∗N ) ∩ c1(p∗L) ∩ α′). Hence it suffices to prove the formula in case X is integral
and α = [X]. In this case the result follows from Lemma 21.1 and the definitions. �

22. Intersecting with effective Cartier divisors

This section is the analogue of Chow Homology, Section 29. Please read the introduction
of that section we motivation.

Recall that effective Cartier divisors correspond 1-to-1 to isomorphism classes of pairs
(L, s) whereL is an invertible sheaf and s is a global section, see Divisors on Spaces, Lemma
7.8. IfD corresponds to (L, s), then L = OX(D). Please keep this in mind while reading
this section.

Definition 22.1. In Situation 2.1 let X/B be good. Let (L, s) be a pair consisting
of an invertible sheaf and a global section s ∈ Γ(X,L). Let D = Z(s) be the vanishing
locus of s, and denote i : D → X the closed immersion. We define, for every integer k, a
(refined) Gysin homomorphism

i∗ : Zk+1(X)→ CHk(D).
by the following rules:

(1) Given a integral closed subspace W ⊂ X with dimδ(W ) = k + 1 we define
(a) if W 6⊂ D, then i∗[W ] = [D ∩W ]k as a k-cycle on D, and
(b) if W ⊂ D, then i∗[W ] = i′∗(c1(L|W ) ∩ [W ]), where i′ : W → D is the

induced closed immersion.
(2) For a general (k + 1)-cycle α =

∑
nj [Wj ] we set

i∗α =
∑

nji
∗[Wj ]

(3) IfD is an effective Cartier divisor, then we denoteD·α = i∗i
∗α the pushforward

of the class to a class on X .
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In fact, as we will see later, this Gysin homomorphism i∗ can be viewed as an example of
a non-flat pullback. Thus we will sometimes informally call the class i∗α the pullback of
the class α.

Remark 22.2. Let S , B, X , L, s, i : D → X be as in Definition 22.1 and assume that
L|D ∼= OD. In this case we can define a canonical map i∗ : Zk+1(X)→ Zk(D) on cycles,
by requiring that i∗[W ] = 0 whenever W ⊂ D. The possibility to do this will be useful
later on.

Remark 22.3. Let f : X ′ → X be a morphism of good algebraic spaces over B as
in Situation 2.1. Let (L, s, i : D → X) be a triple as in Definition 22.1. Then we can set
L′ = f∗L, s′ = f∗s, and D′ = X ′ ×X D = Z(s′). This gives a commutative diagram

D′

g

��

i′
// X ′

f

��
D

i // X

and we can ask for various compatibilities between i∗ and (i′)∗.

Lemma 22.4. In Situation 2.1 let X/B be good. Let (L, s, i : D → X) be as in
Definition 22.1. Let α be a (k + 1)-cycle on X . Then i∗i∗α = c1(L) ∩ α in CHk(X). In
particular, if D is an effective Cartier divisor, then D · α = c1(OX(D)) ∩ α.

Proof. Write α =
∑
nj [Wj ] where ij : Wj → X are integral closed subspaces

with dimδ(Wj) = k. Since D is the vanishing locus of s we see that D ∩ Wj is the
vanishing locus of the restriction s|Wj . Hence for each j such that Wj 6⊂ D we have
c1(L) ∩ [Wj ] = [D ∩Wj ]k by Lemma 18.4. So we have

c1(L) ∩ α =
∑

Wj 6⊂D
nj [D ∩Wj ]k +

∑
Wj⊂D

njij,∗(c1(L)|Wj ) ∩ [Wj ])

in CHk(X) by Definition 18.1. The right hand side matches (termwise) the pushforward
of the class i∗α on D from Definition 22.1. Hence we win. �

Lemma 22.5. In Situation 2.1. Let f : X ′ → X be a proper morphism of good
algebraic spaces overB. Let (L, s, i : D → X) be as in Definition 22.1. Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 22.3. For any (k+1)-cycle α′ onX ′ we have i∗f∗α
′ = g∗(i′)∗α′ in CHk(D)

(this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ′] for some integral closed subspace W ′ ⊂ X ′. Let W ⊂ X
be the “image” of W ′ as in Lemma 7.1. In case W ′ 6⊂ D′, then W 6⊂ D and we see that

[W ′ ∩D′]k = divL′|W ′ (s′|W ′) and [W ∩D]k = divL|W (s|W )

and hence f∗ of the first cycle equals the second cycle by Lemma 19.3. Hence the equality
holds as cycles. In case W ′ ⊂ D′, then W ⊂ D and f∗(c1(L|W ′) ∩ [W ′]) is equal to
c1(L|W ) ∩ [W ] in CHk(W ) by the second assertion of Lemma 19.3. By Remark 15.3 the
result follows for general α′. �
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Lemma 22.6. In Situation 2.1. Let f : X ′ → X be a flat morphism of relative dimen-
sion r of good algebraic spaces over B. Let (L, s, i : D → X) be as in Definition 22.1.
Form the diagram

D′

g

��

i′
// X ′

f

��
D

i // X

as in Remark 22.3. For any (k+1)-cycleα onX we have (i′)∗f∗α = g∗i∗α′ in CHk+r(D)
(this makes sense as f∗ is defined on the level of cycles).

Proof. Suppose α = [W ] for some integral closed subspace W ⊂ X . Let W ′ =
f−1(W ) ⊂ X ′. In case W 6⊂ D, then W ′ 6⊂ D′ and we see that

W ′ ∩D′ = g−1(W ∩D)

as closed subspaces of D′. Hence the equality holds as cycles, see Lemma 10.5. In case
W ⊂ D, thenW ′ ⊂ D′ andW ′ = g−1(W ) with [W ′]k+1+r = g∗[W ] and equality holds
in CHk+r(D′) by Lemma 19.2. By Remark 15.3 the result follows for general α′. �

Lemma 22.7. In Situation 2.1 let X/B be good. Let (L, s, i : D → X) be as in
Definition 22.1. Let Z ⊂ X be a closed subscheme such that dimδ(Z) ≤ k + 1 and such
that D ∩ Z is an effective Cartier divisor on Z. Then i∗([Z]k+1) = [D ∩ Z]k.

Proof. The assumption means that s|Z is a regular section of L|Z . Thus D ∩ Z =
Z(s) and we get

[D ∩ Z]k =
∑

ni[Z(si)]k
as cycles where si = s|Zi , the Zi are the irreducible components of δ-dimension k + 1,
and [Z]k+1 =

∑
ni[Zi]. See Lemma 18.3. We haveD∩Zi = Z(si). Comparing with the

definition of the gysin map we conclude. �

23. Gysin homomorphisms

This section is the analogue of Chow Homology, Section 30. In this section we use the key
formula to show the Gysin homomorphism factor through rational equivalence.

Lemma 23.1. In Situation 2.1 letX/B be good. AssumeX integral andn = dimδ(X).
Let i : D → X be an effective Cartier divisor. Let N be an invertible OX -module and
let t be a nonzero meromorphic section of N . Then i∗divN (t) = c1(N ) ∩ [D]n−1 in
CHn−2(D).

Proof. Write divN (t) =
∑

ordZi,N (t)[Zi] for some integral closed subspaces Zi ⊂
X of δ-dimension n − 1. We may assume that the family {Zi} is locally finite, that t ∈
Γ(U,N|U ) is a generator where U = X \

⋃
Zi, and that every irreducible component of

D is one of the Zi, see Spaces over Fields, Lemmas 6.1, 6.6, and 7.2.

Set L = OX(D). Denote s ∈ Γ(X,OX(D)) = Γ(X,L) the canonical section. We will
apply the discussion of Section 20 to our current situation. For each i let ξi ∈ |Zi| be
its generic point. Let Bi = OhX,ξi . For each i we pick generators si of Lξi and ti of Nξi
over Bi but we insist that we pick si = s if Zi 6⊂ D. Write s = fisi and t = giti with
fi, gi ∈ Bi. Then ordZi,N (t) = ordBi(gi). On the other hand, we have fi ∈ Bi and

[D]n−1 =
∑

ordBi(fi)[Zi]
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because of our choices of si. We claim that

i∗divN (t) =
∑

ordBi(gi)divL|Zi (si|Zi)

as cycles. More precisely, the right hand side is a cycle representing the left hand side.
Namely, this is clear by our formula for divN (t) and the fact that divL|Zi (si|Zi) = [Z(si|Zi)]n−2 =
[Zi∩D]n−2 whenZi 6⊂ D because in that case si|Zi = s|Zi is a regular section, see Lemma
17.2. Similarly,

c1(N ) ∩ [D]n−1 =
∑

ordBi(fi)divN |Zi (ti|Zi)
The key formula (Lemma 20.1) gives the equality∑(

ordBi(fi)divN |Zi (ti|Zi)− ordBi(gi)divL|Zi (si|Zi)
)

=
∑

divZi(∂Bi(fi, gi))

of cycles. IfZi 6⊂ D, then fi = 1 and hence divZi(∂Bi(fi, gi)) = 0. Thus we get a rational
equivalence between our specific cycles representing i∗divN (t) and c1(N ) ∩ [D]n−1 on
D. This finishes the proof. �

Lemma 23.2. In Situation 2.1 let X/B be good. Let (L, s, i : D → X) be as in
Definition 22.1. The Gysin homomorphism factors through rational equivalence to give
a map i∗ : CHk+1(X)→ CHk(D).

Proof. Let α ∈ Zk+1(X) and assume that α ∼rat 0. This means there exists a
locally finite collection of integral closed subspaces Wj ⊂ X of δ-dimension k + 2 and
fj ∈ R(Wj)∗ such that α =

∑
ij,∗divWj (fj). Set X ′ =

∐
Wi and consider the diagram

D′

q

��

i′
// X ′

p

��
D

i // X

of Remark 22.3. Since X ′ → X is proper we see that i∗p∗ = q∗(i′)∗ by Lemma 22.5. As
we know that q∗ factors through rational equivalence (Lemma 16.3), it suffices to prove
the result for α′ =

∑
divWj (fj) on X ′. Clearly this reduces us to the case where X is

integral and α = div(f) for some f ∈ R(X)∗.
Assume X is integral and α = div(f) for some f ∈ R(X)∗. If X = D, then we see that
i∗α is equal to c1(L) ∩ α. This is rationally equivalent to zero by Lemma 21.2. If D 6= X ,
then we see that i∗divX(f) is equal to c1(OD) ∩ [D]n−1 in CHk(D) by Lemma 23.1. Of
course capping with c1(OD) is the zero map. �

Lemma 23.3. In Situation 2.1 letX/B be good. Let (L, s, i : D → X) be a triple as in
Definition 22.1. LetN be an invertibleOX -module. Then i∗(c1(N )∩α) = c1(i∗N )∩i∗α
in CHk−2(D) for all α ∈ CHk(Z).

Proof. With exactly the same proof as in Lemma 23.2 this follows from Lemmas 19.4,
21.3, and 23.1. �

Lemma 23.4. In Situation 2.1 letX/B be good. Let (L, s, i : D → X) and (L′, s′, i′ :
D′ → X) be two triples as in Definition 22.1. Then the diagram

CHk(X)
i∗

//

(i′)∗

��

CHk−1(D)

��
CHk−1(D′) // CHk−2(D ∩D′)
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commutes where each of the maps is a gysin map.

Proof. Denote j : D ∩ D′ → D and j′ : D ∩ D′ → D′ the closed immersions
corresponding to (L|D′ , s|D′ and (L′

D, s|D). We have to show that (j′)∗i∗α = j∗(i′)∗α
for all α ∈ CHk(X). Let W ⊂ X be an integral closed subscheme of dimension k. We
will prove the equality in case α = [W ]. The general case will then follow from the
observation in Remark 15.3 (and the specific shape of our rational equivalence produced
below). We will deduce the equality for α = [W ] from the key formula.

We let σ be a nonzero meromorphic section of L|W which we require to be equal to s|W
if W 6⊂ D. We let σ′ be a nonzero meromorphic section of L′|W which we require to be
equal to s′|W if W 6⊂ D′. Write

divL|W (σ) =
∑

ordZi,L|W (σ)[Zi] =
∑

ni[Zi]

and similarly
divL′|W (σ′) =

∑
ordZi,L′|W (σ′)[Zi] =

∑
n′
i[Zi]

as in the discussion in Section 20. Then we see that Zi ⊂ D if ni 6= 0 and Z ′
i ⊂ D′ if

n′
i 6= 0. For each i, let ξi ∈ |Zi| be the generic point. As in Section 20 we choose for each i

an element σi ∈ Lξi , resp. σ′
i ∈ L′

ξi
which generates over Bi = OhW,ξi and which is equal

to the image of s, resp. s′ if Zi 6⊂ D, resp. Zi 6⊂ D′. Write σ = fiσi and σ′ = f ′
iσ

′
i so that

ni = ordBi(fi) and n′
i = ordBi(f ′

i). From our definitions it follows that

(j′)∗i∗[W ] =
∑

ordBi(fi)divL′|Zi (σ
′
i|Zi)

as cycles and
j∗(i′)∗[W ] =

∑
ordBi(f ′

i)divL|Zi (σi|Zi)

The key formula (Lemma 20.1) now gives the equality∑(
ordBi(fi)divL′|Zi (σ

′
i|Zi)− ordBi(f ′

i)divL|Zi (σi|Zi)
)

=
∑

divZi(∂Bi(fi, f ′
i))

of cycles. Note that divZi(∂Bi(fi, f ′
i)) = 0 ifZi 6⊂ D∩D′ because in this case either fi =

1 or f ′
i = 1. Thus we get a rational equivalence between our specific cycles representing

(j′)∗i∗[W ] and j∗(i′)∗[W ] on D ∩D′ ∩W . �

24. Relative effective Cartier divisors

This section is the analogue of Chow Homology, Section 31. Relative effective Cartier
divisors are defined in Divisors on Spaces, Section 9. To develop the basic results on Chern
classes of vector bundles we only need the case where both the ambient scheme and the
effective Cartier divisor are flat over the base.

Lemma 24.1. In Situation 2.1. LetX,Y/B be good. Let p : X → Y be a flat morphism
of relative dimension r. Let i : D → X be a relative effective Cartier divisor (Divisors on
Spaces, Definition 9.2). Let L = OX(D). For any α ∈ CHk+1(Y ) we have

i∗p∗α = (p|D)∗α

in CHk+r(D) and
c1(L) ∩ p∗α = i∗((p|D)∗α)

in CHk+r(X).



6002 82. CHOW GROUPS OF SPACES

Proof. LetW ⊂ Y be an integral closed subspace of δ-dimension k+ 1. By Divisors
on Spaces, Lemma 9.1 we see that D ∩ p−1W is an effective Cartier divisor on p−1W . By
Lemma 22.7 we get the first equality in

i∗[p−1W ]k+r+1 = [D ∩ p−1W ]k+r = [(p|D)−1(W )]k+r.

and the second because D ∩ p−1(W ) = (p|D)−1(W ) as algebraic spaces. Since by def-
inition p∗[W ] = [p−1W ]k+r+1 we see that i∗p∗[W ] = (p|D)∗[W ] as cycles. If α =∑
mj [Wj ] is a general k+1 cycle, then we get i∗α =

∑
mji

∗p∗[Wj ] =
∑
mj(p|D)∗[Wj ]

as cycles. This proves then first equality. To deduce the second from the first apply Lemma
22.4. �

25. Affine bundles

This section is the analogue of Chow Homology, Section 32. For an affine bundle the
pullback map is surjective on Chow groups.

Lemma 25.1. In Situation 2.1 letX,Y/B be good. Let f : X → Y be a quasi-compact
flat morphism over B of relative dimension r. Assume that for every y ∈ Y we have
Xy
∼= Ar

κ(y). Then f∗ : CHk(Y )→ CHk+r(X) is surjective for all k ∈ Z.

Proof. Let α ∈ CHk+r(X). Write α =
∑
mj [Wj ] with mj 6= 0 and Wj pairwise

distinct integral closed subspaces of δ-dimension k + r. Then the family {Wj} is locally
finite in X . Let Zj ⊂ Y be the integral closed subspace such that we obtain a dominant
morphism Wj → Zj as in Lemma 7.1. For any quasi-compact open V ⊂ Y we see that
f−1(V ) ∩Wj is nonempty only for finitely many j. Hence the collection Zj of closures
of images is a locally finite collection of integral closed subspaces of Y .

Consider the fibre product diagrams

f−1(Zj) //

fj

��

X

f

��
Zj // Y

Suppose that [Wj ] ∈ Zk+r(f−1(Zj)) is rationally equivalent to f∗
j βj for some k-cycle

βj ∈ CHk(Zj). Then β =
∑
mjβj will be a k-cycle on Y and f∗β =

∑
mjf

∗
j βj will be

rationally equivalent to α (see Remark 15.3). This reduces us to the case Y integral, and
α = [W ] for some integral closed subscheme of X dominating Y . In particular we may
assume that d = dimδ(Y ) <∞.

Hence we can use induction on d = dimδ(Y ). If d < k, then CHk+r(X) = 0 and the
lemma holds; this is the base case of the induction. Consider a nonempty open V ⊂ Y .
Suppose that we can show that α|f−1(V ) = f∗β for some β ∈ Zk(V ). By Lemma 10.2 we
see that β = β′|V for some β′ ∈ Zk(Y ). By the exact sequence CHk(f−1(Y \ V )) →
CHk(X) → CHk(f−1(V )) of Lemma 15.2 we see that α − f∗β′ comes from a cycle
α′ ∈ CHk+r(f−1(Y \ V )). Since dimδ(Y \ V ) < d we win by induction on d.

In particular, by replacing Y by a suitable open we may assume Y is a scheme with generic
point η. The isomorphism Yη ∼= Ar

η extends to an isomorphism over a nonempty open
V ⊂ Y , see Limits of Spaces, Lemma 7.1. This reduces us to the case of schemes which is
Chow Homology, Lemma 32.1. �
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Lemma 25.2. In Situation 2.1 let X/B be good. Let L be an invertible OX -module.
Let

p : L = Spec(Sym∗(L)) −→ X

be the associated vector bundle over X . Then p∗ : CHk(X) → CHk+1(L) is an isomor-
phism for all k.

Proof. For surjectivity see Lemma 25.1. Let o : X → L be the zero section ofL→ X ,
i.e., the morphism corresponding to the surjection Sym∗(L) → OX which maps L⊗n to
zero for all n > 0. Then p ◦ o = idX and o(X) is an effective Cartier divisor on L. Hence
by Lemma 24.1 we see that o∗ ◦ p∗ = id and we conclude that p∗ is injective too. �

26. Bivariant intersection theory

This section is the analogue of Chow Homology, Section 33. In order to intelligently talk
about higher Chern classes of vector bundles we introduce the following notion, following
[?]. It follows from [?, Theorem 17.1] that our definition agrees with that of [?] modulo
the caveat that we are working in different settings.

Definition 26.1. In Situation 2.1 let f : X → Y be a morphism of good algebraic
spaces over B. Let p ∈ Z. A bivariant class c of degree p for f is given by a rule which
assigns to every morphism Y ′ → Y of good algebraic spaces over B and every k a map

c ∩ − : CHk(Y ′) −→ CHk−p(X ′)

where X ′ = Y ′ ×Y X , satisfying the following conditions
(1) if Y ′′ → Y ′ is a proper morphism, then c∩ (Y ′′ → Y ′)∗α

′′ = (X ′′ → X ′)∗(c∩
α′′) for all α′′ on Y ′′,

(2) if Y ′′ → Y ′ a morphism of good algebraic spaces overB which is flat of relative
dimension r, then c ∩ (Y ′′ → Y ′)∗α′ = (X ′′ → X ′)∗(c ∩ α′) for all α′ on Y ′,

(3) if (L′, s′, i′ : D′ → Y ′) is as in Definition 22.1 with pullback (N ′, t′, j′ : E′ →
X ′) to X ′, then we have c ∩ (i′)∗α′ = (j′)∗(c ∩ α′) for all α′ on Y ′.

The collection of all bivariant classes of degree p for f is denoted Ap(X → Y ).

In Situation 2.1 let X → Y and Y → Z be morphisms of good algebraic spaces over B.
Let p ∈ Z. It is clear that Ap(X → Y ) is an abelian group. Moreover, it is clear that we
have a bilinear composition

Ap(X → Y )×Aq(Y → Z)→ Ap+q(X → Z)

which is associative. We will be most interested inAp(X) = Ap(X → X), which will al-
ways mean the bivariant cohomology classes for idX . Namely, that is where Chern classes
will live.

Definition 26.2. In Situation 2.1 let X/B be good. The Chow cohomology of X is
the graded Z-algebra A∗(X) whose degree p component is Ap(X → X).

Warning: It is not clear that the Z-algebra structure on A∗(X) is commutative, but we
will see that Chern classes live in its center.

Remark 26.3. In Situation 2.1 let f : X → Y be a morphism of good algebraic
spaces overB. Then there is a canonical Z-algebra mapA∗(Y )→ A∗(X). Namely, given
c ∈ Ap(Y ) and X ′ → X , then we can let f∗c be defined by the map c ∩− : CHk(X ′)→
CHk−p(X ′) which is given by thinking of X ′ as an algebraic space over Y .
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Lemma 26.4. In Situation 2.1 let X/B be good. Let L be an invertible OX -module.
Then the rule that to f : X ′ → X assigns c1(f∗L) ∩ − : CHk(X ′) → CHk−1(X ′) is a
bivariant class of degree 1.

Proof. This follows from Lemmas 21.2, 19.4, 19.2, and 23.3. �

Lemma 26.5. In Situation 2.1 let f : X → Y be a morphism of good algebraic spaces
over B which is flat of relative dimension r. Then the rule that to Y ′ → Y assigns
(f ′)∗ : CHk(Y ′) → CHk+r(X ′) where X ′ = X ×Y Y ′ is a bivariant class of degree
−r.

Proof. This follows from Lemmas 16.2, 10.4, 11.1, and 22.6. �

Lemma 26.6. In Situation 2.1 let X/B be good. Let (L, s, i : D → X) be a triple
as in Definition 22.1. Then the rule that to f : X ′ → X assigns (i′)∗ : CHk(X ′) →
CHk−1(D′) where D′ = D ×X X ′ is a bivariant class of degree 1.

Proof. This follows from Lemmas 23.2, 22.5, 22.6, and 23.4. �

Lemma 26.7. In Situation 2.1 let f : X → Y and g : Y → Z be morphisms of good
algebraic spaces over B. Let c ∈ Ap(X → Z) and assume f is proper. Then the rule that
to X ′ → X assigns α 7−→ f∗(c ∩ α) is a bivariant class of degree p.

Proof. This follows from Lemmas 8.2, 11.1, and 22.5. �

Here we see that c1(L) is in the center of A∗(X).

Lemma 26.8. In Situation 2.1 let X/B be good. Let L be an invertible OX -module.
Then c1(L) ∈ A1(X) commutes with every element c ∈ Ap(X).

Proof. Let p : L → X be as in Lemma 25.2 and let o : X → L be the zero section.
Observe that p∗L⊗−1 has a canonical section whose vanishing locus is exactly the effective
Cartier divisor o(X). Let α ∈ CHk(X). Then we see that

p∗(c1(L⊗−1) ∩ α) = c1(p∗L⊗−1) ∩ p∗α = o∗o
∗p∗α

by Lemmas 19.2 and 24.1. Since c is a bivariant class we have
p∗(c ∩ c1(L⊗−1) ∩ α) = c ∩ p∗(c1(L⊗−1) ∩ α)

= c ∩ o∗o
∗p∗α

= o∗o
∗p∗(c ∩ α)

= p∗(c1(L⊗−1) ∩ c ∩ α)

(last equality by the above applied to c ∩ α). Since p∗ is injective by a lemma cited above
we get that c1(L⊗−1) is in the center of A∗(X). This proves the lemma. �

Here a criterion for when a bivariant class is zero.

Lemma 26.9. In Situation 2.1 letX/B be good. Let c ∈ Ap(X). Then c is zero if and
only if c ∩ [Y ] = 0 in CH∗(Y ) for every integral algebraic space Y locally of finite type
over X .

Proof. The if direction is clear. For the converse, assume that c∩[Y ] = 0 in CH∗(Y )
for every integral algebraic space Y locally of finite type over X . Let X ′ → X be locally
of finite type. Let α ∈ CHk(X ′). Write α =

∑
ni[Yi] with Yi ⊂ X ′ a locally finite

collection of integral closed subschemes of δ-dimension k. Then we see that α is pushfor-
ward of the cycle α′ =

∑
ni[Yi] on X ′′ =

∐
Yi under the proper morphism X ′′ → X ′.
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By the properties of bivariant classes it suffices to prove that c ∩ α′ = 0 in CHk−p(X ′′).
We have CHk−p(X ′′) =

∏
CHk−p(Yi) as follows immediately from the definitions. The

projection maps CHk−p(X ′′) → CHk−p(Yi) are given by flat pullback. Since capping
with c commutes with flat pullback, we see that it suffices to show that c ∩ [Yi] is zero in
CHk−p(Yi) which is true by assumption. �

27. Projective space bundle formula

In Situation 2.1 let X/B be good. Consider a finite locally free OX -module E of rank r.
Our convention is that the projective bundle associated to E is the morphism

P(E) = Proj
X

(Sym∗(E)) π // X

over X with OP(E)(1) normalized so that π∗(OP(E)(1)) = E . In particular there is a
surjection π∗E → OP(E)(1). We will say informally “let (π : P → X,OP (1)) be the
projective bundle associated to E” to denote the situation where P = P(E) andOP (1) =
OP(E)(1).

Lemma 27.1. In Situation 2.1 let X/B be good. Let E be a finite locally free OX -
module E of rank r. Let (π : P → X,OP (1)) be the projective bundle associated to E .
For any α ∈ CHk(X) the element

π∗ (c1(OP (1))s ∩ π∗α) ∈ CHk+r−1−s(X)

is 0 if s < r − 1 and is equal to α when s = r − 1.

Proof. Let Z ⊂ X be an integral closed subspace of δ-dimension k. We will prove
the lemma for α = [Z]. We omit the argument deducing the general case from this special
case; hint: argue as in Remark 15.3.

Let PZ = P ×X Z be the base change; of course πZ : PZ → Z is the projective bundle
associated to E|Z and OP (1) pulls back to the corresponding invertible module on PZ .
Since c1(OP (1) ∩ −, and π∗ are bivariant classes by Lemmas 26.4 and 26.5 we see that

π∗ (c1(OP (1))s ∩ π∗[Z]) = (Z → X)∗πZ,∗ (c1(OPZ (1))s ∩ π∗
Z [Z])

Hence it suffices to prove the lemma in case X is integral and α = [X].

Assume X is integral, dimδ(X) = k, and α = [X]. Note that π∗[X] = [P ] as P is
integral of δ-dimension r − 1. If s < r − 1, then by construction c1(OP (1))s ∩ [P ] a
(k+ r− 1− s)-cycle. Hence the pushforward of this cycle is zero for dimension reasons.

Let s = r − 1. By the argument given above we see that π∗(c1(OP (1))s ∩ [P ]) = n[X]
for some n ∈ Z. We want to show that n = 1. For the same dimension reasons as above
it suffices to prove this result after replacing X by a dense open. Thus we may assume X
is a scheme and the result follows from Chow Homology, Lemma 36.1. �

Lemma 27.2 (Projective space bundle formula). Let (S, δ) be as in Situation 2.1. Let
X be locally of finite type over S. Let E be a finite locally free OX -module E of rank r.
Let (π : P → X,OP (1)) be the projective bundle associated to E . The map⊕r−1

i=0
CHk+i(X) −→ CHk+r−1(P ),

(α0, . . . , αr−1) 7−→ π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1

is an isomorphism.
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Proof. Fix k ∈ Z. We first show the map is injective. Suppose that (α0, . . . , αr−1)
is an element of the left hand side that maps to zero. By Lemma 27.1 we see that

0 = π∗(π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1) = αr−1

Next, we see that

0 = π∗(c1(OP (1))∩(π∗α0+c1(OP (1))∩π∗α1+. . .+c1(OP (1))r−2∩π∗αr−2)) = αr−2

and so on. Hence the map is injective.

To prove the map is surjective, we will argue exactly as in the proof of Lemma 25.1 to
reduce to the case of schemes. We urge the reader to skip the proof.

Let β ∈ CHk+r−1(P ). Write β =
∑
mj [Wj ] with mj 6= 0 and Wj pairwise distinct

integral closed subspaces of δ-dimension k + r. Then the family {Wj} is locally finite in
P . LetZj ⊂ X be the “image” ofWj as in Lemma 7.1. For any quasi-compact openU ⊂ X
we see that π−1(U) ∩Wj is nonempty only for finitely many j. Hence the collection Zj
of images is a locally finite collection of integral closed subspaces of X .

Consider the fibre product diagrams

Pj //

πj

��

P

π

��
Zj // X

Suppose that [Wj ] ∈ Zk+r−1(Pj) is rationally equivalent to

π∗
jαj,0 + c1(O(1)) ∩ π∗

jαj,1 + . . .+ c1(O(1))r−1 ∩ π∗
jαj,r−1

for some (k+ i)-cycle αj,i ∈ CHk+i(Zj). Then αi =
∑
mjβj,i will be a (k+ i)-cycle on

X and
π∗α0 + c1(O(1)) ∩ π∗α1 + . . .+ c1(O(1))r−1 ∩ π∗αr−1

will be rationally equivalent to β (see Remark 15.3). This reduces us to the caseX integral,
and α = [W ] for some integral closed subscheme of P dominating X . In particular we
may assume that d = dimδ(X) <∞.

Hence we can use induction on d = dimδ(X). If d < k, then CHk+r−1(X) = 0 and the
lemma holds; this is the base case of the induction. Consider a nonempty open U ⊂ X .
Suppose that we can show that

β|π−1(U) = π∗α0 + c1(O(1)) ∩ π∗α1 + . . .+ c1(O(1))r−1 ∩ π∗αr−1

for some αi ∈ Zk+i(U). By Lemma 10.2 we see that αi = α′
i|U for some α′

i ∈ Zk+i(X).
By the exact sequences CHk+i(π−1(X\U))→ CHk+i(P )→ CHk+i(π−1(U)) of Lemma
15.2 we see that

β −
(
π∗α′

0 + c1(O(1)) ∩ π∗α′
1 + . . .+ c1(O(1))r−1 ∩ π∗α′

r−1
)

comes from a cycle β′ ∈ CHk+r(π−1(X \ U)). Since dimδ(X \ U) < d we win by
induction on d.

In particular, by replacingX by a suitable open we may assumeX is a scheme and we have
reduced our problem to Chow Homology, Lemma 36.2. �
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Lemma 27.3. In Situation 2.1 let X/B be good. Let E be a finite locally free sheaf of
rank r on X . Let

p : E = Spec(Sym∗(E)) −→ X

be the associated vector bundle over X . Then p∗ : CHk(X) → CHk+r(E) is an isomor-
phism for all k.

Proof. (For the case of linebundles, see Lemma 25.2.) For surjectivity see Lemma 25.1.
Let (π : P → X,OP (1)) be the projective space bundle associated to the finite locally free
sheaf E ⊕ OX . Let s ∈ Γ(P,OP (1)) correspond to the global section (0, 1) ∈ Γ(X, E ⊕
OX). Let D = Z(s) ⊂ P . Note that (π|D : D → X,OP (1)|D) is the projective space
bundle associated to E . We denote πD = π|D andOD(1) = OP (1)|D. Moreover, D is an
effective Cartier divisor on P . Hence OP (D) = OP (1) (see Divisors on Spaces, Lemma
7.8). Also there is an isomorphism E ∼= P \ D. Denote j : E → P the corresponding
open immersion. For injectivity we use that the kernel of

j∗ : CHk+r(P ) −→ CHk+r(E)

are the cycles supported in the effective Cartier divisor D, see Lemma 15.2. So if p∗α = 0,
then π∗α = i∗β for some β ∈ CHk+r(D). By Lemma 27.2 we may write

β = π∗
Dβ0 + . . .+ c1(OD(1))r−1 ∩ π∗

Dβr−1.

for some βi ∈ CHk+i(X). By Lemmas 24.1 and 19.4 this implies

π∗α = i∗β = c1(OP (1)) ∩ π∗β0 + . . .+ c1(OD(1))r ∩ π∗βr−1.

Since the rank of E ⊕ OX is r + 1 this contradicts Lemma 19.4 unless all α and all βi are
zero. �

28. The Chern classes of a vector bundle

This section is the analogue of Chow Homology, Sections 37 and 38. However, contrary
to what is done there, we directly define the Chern classes of a vector bundle as bivariant
classes. This saves a considerable amount of work.

Lemma 28.1. In Situation 2.1 let X/B be good. Let E be a finite locally free sheaf of
rank r onX . Let (π : P → X,OP (1)) be the projective space bundle associated to E . For
every morphism X ′ → X of good algebraic spaces over B there are unique maps

ci(E) ∩ − : CHk(X ′) −→ CHk−i(X ′), i = 0, . . . , r

such that for α ∈ CHk(X ′) we have c0(E) ∩ α = α and∑
i=0,...,r

(−1)ic1(OP ′(1))i ∩ (π′)∗ (cr−i(E) ∩ α) = 0

where π′ : P ′ → X ′ is the base change of π. Moreover, these maps define a bivariant class
ci(E) of degree i on X .

Proof. Uniqueness and existence of the maps ci(E) ∩ − follows immediately from
Lemma 27.2 and the given description of c0(E). For every i ∈ Z the rule which to every
morphism X ′ → X of good algebraic spaces over B assigns the map

ti(E) ∩ − : CHk(X ′) −→ CHk−i(X ′), α 7−→ π′
∗(c1(OP ′(1))r−1+i ∩ (π′)∗α)
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is a bivariant class2 by Lemmas 26.4, 26.5, and 26.7. By Lemma 27.1 we have ti(E) = 0
for i < 0 and t0(E) = 1. Applying pushforward to the equation in the statement of the
lemma we find from Lemma 27.1 that

(−1)rt1(E) + (−1)r−1c1(E) = 0
In particular we find that c1(E) is a bivariant class. If we multiply the equation in the
statement of the lemma by c1(OP ′(1)) and push the result forward to X ′ we find

(−1)rt2(E) + (−1)r−1t1(E) ∩ c1(E) + (−1)r−2c2(E) = 0
As before we conclude that c2(E) is a bivariant class. And so on. �

Definition 28.2. In Situation 2.1 let X/B be good. Let E be a finite locally free
sheaf of rank r on X . For i = 0, . . . , r the ith Chern class of E is the bivariant class
ci(E) ∈ Ai(X) of degree i constructed in Lemma 28.1. The total Chern class of E is the
formal sum

c(E) = c0(E) + c1(E) + . . .+ cr(E)
which is viewed as a nonhomogeneous bivariant class on X .
For convenience we often set ci(E) = 0 for i > r and i < 0. By definition we have
c0(E) = 1 ∈ A0(X). Here is a sanity check.

Lemma 28.3. In Situation 2.1 let X/B be good. Let L be an invertible OX -module.
The first Chern class of L onX of Definition 28.2 is equal to the bivariant class of Lemma
26.4.

Proof. Namely, in this case P = P(L) = X withOP (1) = L by our normalization
of the projective bundle, see Section 27. Hence the equation in Lemma 28.1 reads

(−1)0c1(L)0 ∩ cnew1 (L) ∩ α+ (−1)1c1(L)1 ∩ cnew0 (L) ∩ α = 0
where cnewi (L) is as in Definition 28.2. Since cnew0 (L) = 1 and c1(L)0 = 1 we conclude.

�

Next we see that Chern classes are in the center of the bivariant Chow cohomology ring
A∗(X).

Lemma 28.4. In Situation 2.1 letX/B be good. Let E be a locally freeOX -module of
rank r. Then cj(L) ∈ Aj(X) commutes with every element c ∈ Ap(X). In particular, if
F is a second locally freeOX -module on X of rank s, then

ci(E) ∩ cj(F) ∩ α = cj(F) ∩ ci(E) ∩ α
as elements of CHk−i−j(X) for all α ∈ CHk(X).

Proof. Let X ′ → X be a morphism of good algebraic spaces over B. Let α ∈
CHk(X ′). Write αj = cj(E) ∩ α, so α0 = α. By Lemma 28.1 we have∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(αr−i) = 0

in the chow group of the projective bundle (π′ : P ′ → X ′,OP ′(1)) associated to (X ′ →
X)∗E . Applying c ∩ − and using Lemma 26.8 and the properties of bivariant classes we
obtain ∑r

i=0
(−1)ic1(OP ′(1))i ∩ π∗(c ∩ αr−i) = 0

in the Chow group of P ′. Hence we see that c ∩ αj is equal to cj(E) ∩ (c ∩ α) by the
uniqueness in Lemma 28.1. This proves the lemma. �

2Up to signs these are the Segre classes of E .
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Remark 28.5. In Situation 2.1 let X/B be good. Let E be a finite locally free OX -
module. If the rank of E is not constant then we can still define the Chern classes of E .
Namely, in this case we can write

X = X0 qX1 qX2 q . . .

where Xr ⊂ X is the open and closed subspace where the rank of E is r. If X ′ → X is
a morphism of good algebraic spaces over B, then we obtain by pullback a corresponding
decomposition of X ′ and we find that

CH∗(X ′) =
∏

r≥0
CH∗(X ′

r)

by our definitions. Then we simply define ci(E) to be the bivariant class which preserves
these direct product decompositions and acts by the already defined operations ci(E|Xr )∩
− on the factors. Observe that in this setting it may happen that ci(E) is nonzero for
infinitely many i.

29. Polynomial relations among Chern classes

In Situation 2.1 let X/B be good. Let Ei be a finite collection of finite locally free OX -
modules. By Lemma 28.4 we see that the Chern classes

cj(Ei) ∈ A∗(X)

generate a commutative (and even central) Z-subalgebra of the Chow cohomologyA∗(X).
Thus we can say what it means for a polynomial in these Chern classes to be zero, or for
two polynomials to be the same. As an example, saying that c1(E1)5 + c2(E2)c3(E3) = 0
means that the operations

CHk(Y ) −→ CHk−5(Y ), α 7−→ c1(E1)5 ∩ α+ c2(E2) ∩ c3(E3) ∩ α

are zero for all morphisms f : Y → X of good algebraic spaces over B. By Lemma 26.9
this is equivalent to the requirement that given any morphism f : Y → X where Y is an
integral algebraic space locally of finite type over X the cycle

c1(E1)5 ∩ [Y ] + c2(E2) ∩ c3(E3) ∩ [Y ]

is zero in CHdim(Y )−5(Y ).

A specific example is the relation

c1(L ⊗OX
N ) = c1(L) + c1(N )

proved in Lemma 18.2. More generally, here is what happens when we tensor an arbitrary
locally free sheaf by an invertible sheaf.

Lemma 29.1. In Situation 2.1 let X/B be good. Let E be a finite locally free sheaf of
rank r on X . Let L be an invertible sheaf on X . Then we have

(29.1.1) ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 39.1 replacing
the lemmas used there by Lemmas 26.9 and 28.1. �
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30. Additivity of Chern classes

This section is the analogue of Chow Homology, Section 40.

Lemma 30.1. In Situation 2.1 letX/B be good. Let E , F be finite locally free sheaves
on X of ranks r, r − 1 which fit into a short exact sequence

0→ OX → E → F → 0

Then we have
cr(E) = 0, cj(E) = cj(F), j = 0, . . . , r − 1

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 40.1 replacing
the lemmas used there by Lemmas 26.9, 24.1, 19.4, and 28.1. �

Lemma 30.2. In Situation 2.1 letX/B be good. Let E , F be finite locally free sheaves
on X of ranks r, r − 1 which fit into a short exact sequence

0→ L → E → F → 0

where L is an invertible sheaf. Then

c(E) = c(L)c(F)

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 40.2 replacing
the lemmas used there by Lemmas 30.1 and 29.1. �

Lemma 30.3. In Situation 2.1 let X/B be good. Suppose that E sits in an exact se-
quence

0→ E1 → E → E2 → 0

of finite locally free sheaves Ei of rank ri. The total Chern classes satisfy

c(E) = c(E1)c(E2)

in A∗(X).

Proof. The proof is identical to the proof of Chow Homology, Lemma 40.3 replacing
the lemmas used there by Lemmas 26.9, 30.2, and 28.1. �

Lemma 30.4. In Situation 2.1 let X/B be good. Let Li, i = 1, . . . , r be invertible
OX -modules. Let E be a locally free rankOX -module endowed with a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E

such that Ei/Ei−1 ∼= Li. Set c1(Li) = xi. Then

c(E) =
∏r

i=1
(1 + xi)

in A∗(X).

Proof. Apply Lemma 30.2 and induction. �
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31. The splitting principle

This section is the analogue of Chow Homology, Section 40.

Lemma 31.1. In Situation 2.1 let X/B be good. Let Ei be a finite collection of locally
free OX -modules of rank ri. There exists a projective flat morphism π : P → X of
relative dimension d such that

(1) for any morphism f : Y → X of good algebraic spaces over B the map π∗
Y :

CH∗(Y )→ CH∗+d(Y ×X P ) is injective, and
(2) eachπ∗Ei has a filtration whose successive quotientsLi,1, . . . ,Li,ri are invertible
OP -modules.

Proof. We prove this by induction on the integer r =
∑
ri. If r = 0 we can take

π = idX . If ri = 1 for all i, then we can also take π = idX . Assume that ri0 > 1 for some
i0. Let (π : P → X,OP (1)) be the projective bundle associated to Ei0 . The canonical map
π∗Ei0 → OP (1) is surjective and hence its kernel E ′

i0
is finite locally free of rank ri0 − 1.

Observe that π∗
Y is injective for any morphism f : Y → X of good algebraic spaces over

B, see Lemma 27.2. Thus it suffices to prove the lemma for P and the locally free sheaves
π∗Ei. However, because we have the subbundle Ei0 ⊂ π∗Ei0 with invertible quotient, it
now suffices to prove the lemma for the collection {Ei}i 6=i0 ∪{E ′

i0
}. This decreases r by 1

and we win by induction hypothesis. �

Rather than explaining what the splitting principle says, let us use it in the proof of some
lemmas.

Lemma 31.2. In Situation 2.1 let X/B be good. Let E be a finite locally free OX -
module with dual E∨. Then

ci(E∨) = (−1)ici(E)
in Ai(X).

Proof. Choose a morphism π : P → X as in Lemma 31.1. By the injectivity of π∗

(after any base change) it suffices to prove the relation between the Chern classes of E and
E∨ after pulling back to P . Thus we may assume there exist invertible OX -modules Li,
i = 1, . . . , r and a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E

such that Ei/Ei−1 ∼= Li. Then we obtain the dual filtration

0 = E⊥
r ⊂ E⊥

1 ⊂ E⊥
2 ⊂ . . . ⊂ E⊥

0 = E∨

such that E⊥
i−1/E⊥

i
∼= L⊗−1

i . Set xi = c1(Li). Then c1(L⊗−1
i ) = −xi by Lemma 18.2.

By Lemma 30.4 we have

c(E) =
∏r

i=1
(1 + xi) and c(E∨) =

∏r

i=1
(1− xi)

in A∗(X). The result follows from a formal computation which we omit. �

Lemma 31.3. In Situation 2.1 let X/B be good. Let E and F be a finite locally free
OX -modules of ranks r and s. Then we have

c1(E ⊗ F) = rc1(F) + sc1(E)

c2(E ⊗ F) = r2c2(F) + rsc1(F)c1(E) + s2c2(E)
and so on (see proof).
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Proof. Arguing exactly as in the proof of Lemma 31.2 we may assume we have in-
vertibleOX -modules Li, i = 1, . . . , r Ni, i = 1, . . . , s filtrations

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E and 0 = F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ Fs = F

such that Ei/Ei−1 ∼= Li and such that Fj/Fj−1 ∼= Nj . Ordering pairs (i, j) lexicograph-
ically we obtain a filtration

0 ⊂ . . . ⊂ Ei ⊗Fj + Ei−1 ⊗F ⊂ . . . ⊂ E ⊗ F

with successive quotients

L1 ⊗N1,L1 ⊗N2, . . . ,L1 ⊗Ns,L2 ⊗N1, . . . ,Lr ⊗Ns
By Lemma 30.4 we have

c(E) =
∏

(1 + xi), c(F) =
∏

(1 + yj), and c(F) =
∏

(1 + xi + yj),

in A∗(X). The result follows from a formal computation which we omit. �

32. Degrees of zero cycles

This section is the analogue of Chow Homology, Section 41. We start with defining the
degree of a zero cycle on a proper algebraic space over a field.

Definition 32.1. Let k be a field. Let p : X → Spec(k) be a proper morphism of
algebraic spaces. The degree of a zero cycle on X is given by proper pushforward

p∗ : CH0(X) −→ CH0(Spec(k)) −→ Z

(Lemma 16.3) composed with the natural isomorphism CH0(Spec(k)) → Z which maps
[Spec(k)] to 1. Notation: deg(α).

Let us spell this out further.

Lemma 32.2. Let k be a field. Let X be a proper algebraic space over k. Let α =∑
ni[Zi] be in Z0(X). Then

deg(α) =
∑

ni deg(Zi)

where deg(Zi) is the degree of Zi → Spec(k), i.e., deg(Zi) = dimk Γ(Zi,OZi).

Proof. This is the definition of proper pushforward (Definition 8.1). �

Lemma 32.3. Let k be a field. Let X be a proper algebraic space over k. Let Z ⊂ X
be a closed subspace of dimension d. Let L1, . . . ,Ld be invertibleOX -modules. Then

(L1 · · · Ld · Z) = deg(c1(L1) ∩ . . . ∩ c1(L1) ∩ [Z]d)

where the left hand side is defined in Spaces over Fields, Definition 18.3.

Proof. Let Zi ⊂ Z , i = 1, . . . , t be the irreducible components of dimension d. Let
mi be the multiplicity of Zi in Z. Then [Z]d =

∑
mi[Zi] and c1(L1) ∩ . . . ∩ c1(Ld) ∩

[Z]d is the sum of the cycles mic1(L1) ∩ . . . ∩ c1(Ld) ∩ [Zi]. Since we have a similar
decomposition for (L1 · · · Ld · Z) by Spaces over Fields, Lemma 18.2 it suffices to prove
the lemma in case Z = X is a proper integral algebraic space over k.

By Chow’s lemma there exists a proper morphism f : X ′ → X which is an isomorphism
over a dense open U ⊂ X such that X ′ is a scheme. See More on Morphisms of Spaces,
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Lemma 40.5. Then X ′ is a proper scheme over k. After replacing X ′ by the scheme theo-
retic closure of f−1(U) we may assume that X ′ is integral. Then

(f∗L1 · · · f∗Ld ·X ′) = (L1 · · · Ld ·X)
by Spaces over Fields, Lemma 18.7 and we have

f∗(c1(f∗L1) ∩ . . . ∩ c1(f∗Ld) ∩ [Y ]) = c1(L1) ∩ . . . ∩ c1(Ld) ∩ [X]
by Lemma 19.4. Thus we may replaceX byX ′ and assume thatX is a proper scheme over
k. This case was proven in Chow Homology, Lemma 41.4. �

33. Other chapters

Preliminaries
(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes
(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent

(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory

(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces

(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces



6014 82. CHOW GROUPS OF SPACES

(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces
(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks

(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index



CHAPTER 83

Quotients of Groupoids

1. Introduction

This chapter is devoted to generalities concerning groupoids and their quotients (as far as
they exist). There is a lot of literature on this subject, see for example [?], [?], [?], [?], [?]
and many more.

2. Conventions and notation

In this chapter the conventions and notation are those introduced in Groupoids in Spaces,
Sections 2 and 3.

3. Invariant morphisms

Definition 3.1. Let S be a scheme, and let B be an algebraic space over S. Let j =
(t, s) : R → U ×B U be a pre-relation of algebraic spaces over B. We say a morphism
φ : U → X of algebraic spaces over B is R-invariant if the diagram

R
s
//

t

��

U

φ

��
U

φ // X

is commutative. If j : R → U ×B U comes from the action of a group algebraic space G
on U over B as in Groupoids in Spaces, Lemma 15.1, then we say that φ is G-invariant.

In other words, a morphism U → X is R-invariant if it equalizes s and t. We can refor-
mulate this in terms of associated quotient sheaves as follows.

Lemma 3.2. Let S be a scheme, and letB be an algebraic space over S. Let j = (t, s) :
R→ U×BU be a pre-relation of algebraic spaces overB. A morphism of algebraic spaces
φ : U → X is R-invariant if and only if it factors as U → U/R→ X .

Proof. This is clear from the definition of the quotient sheaf in Groupoids in Spaces,
Section 19. �

Lemma 3.3. Let S be a scheme, and letB be an algebraic space over S. Let j = (t, s) :
R→ U ×B U be a pre-relation of algebraic spaces over B. Let U → X be an R-invariant
morphism of algebraic spaces over B. Let X ′ → X be any morphism of algebraic spaces.

(1) Setting U ′ = X ′ ×X U , R′ = X ′ ×X R we obtain a pre-relation j′ : R′ →
U ′ ×B U ′.

(2) If j is a relation, then j′ is a relation.
(3) If j is a pre-equivalence relation, then j′ is a pre-equivalence relation.
(4) If j is an equivalence relation, then j′ is an equivalence relation.
(5) If j comes from a groupoid in algebraic spaces (U,R, s, t, c) over B, then

6015
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(a) (U,R, s, t, c) is a groupoid in algebraic spaces over X , and
(b) j′ comes from the base change (U ′, R′, s′, t′, c′) of this groupoid to X ′, see

Groupoids in Spaces, Lemma 11.6.
(6) If j comes from the action of a group algebraic spaceG/B on U as in Groupoids

in Spaces, Lemma 15.1 then j′ comes from the induced action of G on U ′.

Proof. Omitted. Hint: Functorial point of view combined with the picture:

R′ = X ′ ×X R

��

//

&&

X ′ ×X U = U ′

��

&&
R

��

// U

��

U ′ = X ′ ×X U //

&&

X ′

&&
U // X

�

Definition 3.4. In the situation of Lemma 3.3 we call j′ : R′ → U ′ ×B U ′ the base
change of the pre-relation j to X ′. We say it is a flat base change if X ′ → X is a flat
morphism of algebraic spaces.

This kind of base change interacts well with taking quotient sheaves and quotient stacks.

Lemma 3.5. In the situation of Lemma 3.3 there is an isomorphism of sheaves

U ′/R′ = X ′ ×X U/R

For the construction of quotient sheaves, see Groupoids in Spaces, Section 19.

Proof. Since U → X isR-invariant, it is clear that the map U → X factors through
the quotient sheaf U/R. Recall that by definition

R
//
// U // U/R

is a coequalizer diagram in the category Sh of sheaves of sets on (Sch/S)fppf . In fact,
this is a coequalizer diagram in the comma category Sh /X . Since the base change functor
X ′ ×X − : Sh /X → Sh /X ′ is exact (true in any topos), we conclude. �

Lemma 3.6. Let S be a scheme. Let B be an algebraic space over S. Let (U,R, s, t, c)
be a groupoid in algebraic spaces over B. Let U → X be an R-invariant morphism of
algebraic spaces over B. Let g : X ′ → X be a morphism of algebraic spaces over B and
let (U ′, R′, s′, t′, c′) be the base change as in Lemma 3.3. Then

[U ′/R′] //

��

[U/R]

��
SX′ // SX

is a 2-fibre product of stacks in groupoids over (Sch/S)fppf . For the construction of
quotient stacks and the morphisms in this diagram, see Groupoids in Spaces, Section 20.
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Proof. We will prove this by using the explicit description of the quotient stacks
given in Groupoids in Spaces, Lemma 24.1. However, we strongly urge the reader to find
their own proof. First, we may view (U,R, s, t, c) as a groupoid in algebraic spaces overX ,
hence we obtain a map f : [U/R]→ SX , see Groupoids in Spaces, Lemma 20.2. Similarly,
we have f ′ : [U ′/R′]→ X ′.

An object of the 2-fibre product SX′ ×SX [U/R] over a scheme T over S is the same
as a morphism x′ : T → X ′ and an object y of [U/R] over T such that such that the
composition g ◦ x′ is equal to f(y). This makes sense because objects of SX over T are
morphisms T → X . By Groupoids in Spaces, Lemma 24.1 we may assume y is given by a
[U/R]-descent datum (ui, rij) relative to an fppf covering {Ti → T}. The agreement of
g ◦ x′ = f(y) means that the diagrams

Ti ui
//

��

U

��
T

x′
// X ′ g // X

and

Ti ×T Tj rij
//

��

R

��
T

x′
// X ′ g // X

are commutative.

On the other hand, an object y′ of [U ′/R′] over a scheme T over S by Groupoids in Spaces,
Lemma 24.1 is given by a [U ′/R′]-descent datum (u′

i, r
′
ij) relative to an fppf covering

{Ti → T}. Setting f ′(y′) = x′ : T → X ′ we see that the diagrams

Ti
u′
i

//

��

U ′

��
T

x′
// X ′

and

Ti ×T Tj
r′
ij

//

��

U ′

��
T

x′
// X ′

are commutative.

With this notation in place, we define a functor

[U ′/R′] −→ SX′ ×SX [U/R]

by sending y′ = (u′
i, r

′
ij) as above to the object (x′, (ui, rij)) where x′ = f ′(y′), where ui

is the composition Ti → U ′ → U , and where rij is the composition Ti×T Tj → R′ → R.
Conversely, given an object (x′, (ui, rij) of the right hand side we can send this to the
object ((x′, ui), (x′, rij)) of the left hand side. We omit the discussion of what to do with
morphisms (works in exactly the same manner). �

4. Categorical quotients

This is the most basic kind of quotient one can consider.

Definition 4.1. Let S be a scheme, and let B be an algebraic space over S. Let j =
(t, s) : R→ U ×B U be pre-relation in algebraic spaces over B.

(1) We say a morphism φ : U → X of algebraic spaces over B is a categorical
quotient if it is R-invariant, and for every R-invariant morphism ψ : U → Y
of algebraic spaces overB there exists a unique morphism χ : X → Y such that
ψ = φ ◦ χ.

(2) Let C be a full subcategory of the category of algebraic spaces overB. AssumeU ,
R are objects of C. In this situation we say a morphism φ : U → X of algebraic
spaces over B is a categorical quotient in C if X ∈ Ob(C), and φ is R-invariant,
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and for every R-invariant morphism ψ : U → Y with Y ∈ Ob(C) there exists
a unique morphism χ : X → Y such that ψ = φ ◦ χ.

(3) If B = S and C is the category of schemes over S , then we say U → X is a
categorical quotient in the category of schemes, or simply a categorical quotient
in schemes.

We often single out a category C of algebraic spaces over B by some separation axiom, see
Example 4.3 for some standard cases. Note that φ : U → X is a categorical quotient if and
only if U → X is a coequalizer for the morphisms t, s : R → U in the category. Hence
we immediately deduce the following lemma.

Lemma 4.2. Let S be a scheme, and let B be an algebraic space over S. Let j : R →
U ×B U be a pre-relation in algebraic spaces over B. If a categorical quotient in the
category of algebraic spaces over B exists, then it is unique up to unique isomorphism.
Similarly for categorical quotients in full subcategories of Spaces/B.

Proof. See Categories, Section 11. �

Example 4.3. Let S be a scheme, and let B be an algebraic space over S. Here are
some standard examples of categories C that we often come up when applying Definition
4.1:

(1) C is the category of all algebraic spaces over B,
(2) B is separated and C is the category of all separated algebraic spaces over B,
(3) B is quasi-separated and C is the category of all quasi-separated algebraic spaces

over B,
(4) B is locally separated and C is the category of all locally separated algebraic

spaces over B,
(5) B is decent and C is the category of all decent algebraic spaces over B, and
(6) S = B and C is the category of schemes over S.

In this case, if φ : U → X is a categorical quotient then we say U → X is (1) a categorical
quotient, (2) a categorical quotient in separated algebraic spaces, (3) a categorical quotient
in quasi-separated algebraic spaces, (4) a categorical quotient in locally separated algebraic
spaces, (5) a categorical quotient in decent algebraic spaces, (6) a categorical quotient in
schemes.

Definition 4.4. Let S be a scheme, and let B be an algebraic space over S. Let C be
a full subcategory of the category of algebraic spaces over B closed under fibre products.
Let j = (t, s) : R → U ×B U be pre-relation in C , and let U → X be an R-invariant
morphism with X ∈ Ob(C).

(1) We say U → X is a universal categorical quotient in C if for every morphism
X ′ → X in C the morphism U ′ = X ′ ×X U → X ′ is the categorical quotient
in C of the base change j′ : R′ → U ′ of j.

(2) We say U → X is a uniform categorical quotient in C if for every flat morphism
X ′ → X in C the morphism U ′ = X ′ ×X U → X ′ is the categorical quotient
in C of the base change j′ : R′ → U ′ of j.

Lemma 4.5. In the situation of Definition 4.1. If φ : U → X is a categorical quotient
andU is reduced, thenX is reduced. The same holds for categorical quotients in a category
of spaces C listed in Example 4.3.

Proof. Let Xred be the reduction of the algebraic space X . Since U is reduced the
morphism φ : U → X factors through i : Xred → X (Properties of Spaces, Lemma
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12.4). Denote this morphism by φred : U → Xred. Since φ ◦ s = φ ◦ t we see that also
φred◦s = φred◦t (as i : Xred → X is a monomorphism). Hence by the universal property
of φ there exists a morphism χ : X → Xred such that φred = φ ◦ χ. By uniqueness we
see that i ◦ χ = idX and χ ◦ i = idXred . Hence i is an isomorphism and X is reduced.

To show that this argument works in a category C one just needs to show that the reduction
of an object of C is an object of C. We omit the verification that this holds for each of the
standard examples. �

5. Quotients as orbit spaces

Let j = (t, s) : R → U ×B U be a pre-relation. If j is a pre-equivalence relation, then
loosely speaking the “orbits” of R on U are the subsets t(s−1({u})) of U . However, if j is
just a pre-relation, then we need to take the equivalence relation generated by R.

Definition 5.1. Let S be a scheme, and let B be an algebraic space over S. Let j :
R → U ×B U be a pre-relation over B. If u ∈ |U |, then the orbit, or more precisely the
R-orbit of u is

Ou =

u′ ∈ |U | :

∃n ≥ 1, ∃u0, . . . , un ∈ |U | such that u0 = u and un = u′

and for all i ∈ {0, . . . , n− 1} either ui = ui+1 or
∃r ∈ |R|, s(r) = ui, t(r) = ui+1 or
∃r ∈ |R|, t(r) = ui, s(r) = ui+1


It is clear that these are the equivalence classes of an equivalence relation, i.e., we have
u′ ∈ Ou if and only if u ∈ Ou′ . The following lemma is a reformulation of Groupoids in
Spaces, Lemma 4.4.

Lemma 5.2. Let B → S as in Section 2. Let j : R → U ×B U be a pre-equivalence
relation of algebraic spaces over B. Then

Ou = {u′ ∈ |U | such that ∃r ∈ |R|, s(r) = u, t(r) = u′}.

Proof. By the aforementioned Groupoids in Spaces, Lemma 4.4 we see that the orbits
Ou as defined in the lemma give a disjoint union decomposition of |U |. Thus we see they
are equal to the orbits as defined in Definition 5.1. �

Lemma 5.3. In the situation of Definition 5.1. Let φ : U → X be an R-invariant
morphism of algebraic spaces over B. Then |φ| : |U | → |X| is constant on the orbits.

Proof. To see this we just have to show that φ(u) = φ(u′) for all u, u′ ∈ |U | such
that there exists an r ∈ |R| such that s(r) = u and t(r) = u′. And this is clear since φ
equalizes s and t. �

There are several problems with considering the orbitsOu ⊂ |U | as a tool for singling out
properties of quotient maps. One issue is the following. Suppose that Spec(k) → B is a
geometric point of B. Consider the canonical map

U(k) −→ |U |.

Then it is usually not the case that the equivalence classes of the equivalence relation
generated by j(R(k)) ⊂ U(k) × U(k) are the inverse images of the orbits Ou ⊂ |U |. A
silly example is to take S = B = Spec(Z), U = R = Spec(k) with s = t = idk. Then
|U | = |R| is a single point but U(k)/R(k) is enormous. A more interesting example is to
take S = B = Spec(Q), choose some of number fields K ⊂ L, and set U = Spec(L) and
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R = Spec(L ⊗K L) with obvious maps s, t : R → U . In this case |U | still has just one
point, but the quotient

U(k)/R(k) = Hom(K, k)
consists of more than one element. We conclude from both examples that if U → X
is an R-invariant map and if we want it to “separate orbits” we get a much stronger and
interesting notion by considering the induced maps U(k) → X(k) and ask that those
maps separate orbits.

There is an issue with this too. Namely, suppose that S = B = Spec(R), U = Spec(C),
and R = Spec(C) q Spec(K) for some field extension σ : C → K. Let the maps s, t be
given by the identity on the component Spec(C), but by σ, σ◦τ on the second component
where τ is complex conjugation. If K is a nontrivial extension of C, then the two points
1, τ ∈ U(C) are not equivalent under j(R(C)). But after choosing an extension C ⊂ Ω
of sufficiently large cardinality (for example larger than the cardinality of K) then the
images of 1, τ ∈ U(C) in U(Ω) do become equivalent! It seems intuitively clear that this
happens either because s, t : R→ U are not locally of finite type or because the cardinality
of the field k is not large enough.

Keeping this in mind we make the following definition.

Definition 5.4. Let S be a scheme, and let B be an algebraic space over S. Let j :
R→ U ×B U be a pre-relation over B. Let Spec(k)→ B be a geometric point of B.

(1) We say u, u′ ∈ U(k) are weaklyR-equivalent if they are in the same equivalence
class for the equivalence relation generated by the relation j(R(k)) ⊂ U(k) ×
U(k).

(2) We say u, u′ ∈ U(k) are R-equivalent if for some overfield k ⊂ Ω the images in
U(Ω) are weakly R-equivalent.

(3) The weak orbit, or more precisely the weak R-orbit of u ∈ U(k) is set of all
elements of U(k) which are weakly R-equivalent to u.

(4) The orbit, or more precisely the R-orbit of u ∈ U(k) is set of all elements of
U(k) which are R-equivalent to u.

It turns out that in good cases orbits and weak orbits agree, see Lemma 5.7. The following
lemma illustrates the difference in the special case of a pre-equivalence relation.

Lemma 5.5. Let S be a scheme, and letB be an algebraic space over S. Let Spec(k)→
B be a geometric point of B. Let j : R → U ×B U be a pre-equivalence relation over B.
In this case the weak orbit of u ∈ U(k) is simply

{u′ ∈ U(k) such that ∃r ∈ R(k), s(r) = u, t(r) = u′}

and the orbit of u ∈ U(k) is

{u′ ∈ U(k) : ∃ field extension K/k, ∃ r ∈ R(K), s(r) = u, t(r) = u′}

Proof. This is true because by definition of a pre-equivalence relation the image
j(R(k)) ⊂ U(k)× U(k) is an equivalence relation. �

Let us describe the recipe for turning any pre-relation into a pre-equivalence relation. We
will use the morphisms

(5.5.1)
jdiag : U −→ U ×B U, u 7−→ (u, u)
jflip : R −→ U ×B U, r 7−→ (s(r), t(r))
jcomp : R×s,U,t R −→ U ×B U, (r, r′) 7−→ (t(r), s(r′))
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We define j1 = (t1, s1) : R1 → U ×B U to be the morphism

j q jdiag q jflip : R q U qR −→ U ×B U
with notation as in Equation (5.5.1). For n > 1 we set

jn = (tn, sn) : Rn = R1 ×s1,U,tn−1 Rn−1 −→ U ×B U
where tn comes from t1 precomposed with projection onto R1 and sn comes from sn−1
precomposed with projection onto Rn−1. Finally, we denote

j∞ = (t∞, s∞) : R∞ =
∐

n≥1
Rn −→ U ×B U.

Lemma 5.6. Let S be a scheme, and let B be an algebraic space over S. Let j : R →
U ×B U be a pre-relation overB. Then j∞ : R∞ → U ×B U is a pre-equivalence relation
over B. Moreover

(1) φ : U → X is R-invariant if and only if it is R∞-invariant,
(2) the canonical map of quotient sheaves U/R→ U/R∞ (see Groupoids in Spaces,

Section 19) is an isomorphism,
(3) weak R-orbits agree with weak R∞-orbits,
(4) R-orbits agree with R∞-orbits,
(5) if s, t are locally of finite type, then s∞, t∞ are locally of finite type,
(6) add more here as needed.

Proof. Omitted. Hint for (5): Any property of s, twhich is stable under composition
and stable under base change, and Zariski local on the source will be inherited by s∞, t∞.

�

Lemma 5.7. Let S be a scheme, and let B be an algebraic space over S. Let j : R →
U ×B U be a pre-relation over B. Let Spec(k)→ B be a geometric point of B.

(1) If s, t : R→ U are locally of finite type then weakR-equivalence onU(k) agrees
with R-equivalence, and weak R-orbits agree with R-orbits on U(k).

(2) If k has sufficiently large cardinality then weak R-equivalence on U(k) agrees
with R-equivalence, and weak R-orbits agree with R-orbits on U(k).

Proof. We first prove (1). Assume s, t locally of finite type. By Lemma 5.6 we may
assume that R is a pre-equivalence relation. Let k be an algebraically closed field over B.
Suppose u, u′ ∈ U(k) are R-equivalent. Then for some extension field Ω/k there exists a
point r ∈ R(Ω) mapping to (u, u′) ∈ (U ×B U)(Ω), see Lemma 5.5. Hence

Z = R×j,U×BU,(u,u′) Spec(k)
is nonempty. As s is locally of finite type we see that also j is locally of finite type, see
Morphisms of Spaces, Lemma 23.6. This implies Z is a nonempty algebraic space locally
of finite type over the algebraically closed field k (use Morphisms of Spaces, Lemma 23.3).
Thus Z has a k-valued point, see Morphisms of Spaces, Lemma 24.1. Hence we conclude
there exists a r ∈ R(k) with j(r) = (u, u′), and we conclude that u, u′ are R-equivalent
as desired.

The proof of part (2) is the same, except that it uses Morphisms of Spaces, Lemma 24.2
instead of Morphisms of Spaces, Lemma 24.1. This shows that the assertion holds as soon
as |k| > λ(R) with λ(R) as introduced just above Morphisms of Spaces, Lemma 24.1. �

In the following definition we use the terminology “k is a field over B” to mean that
Spec(k) comes equipped with a morphism Spec(k)→ B.
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Definition 5.8. Let S be a scheme, and let B be an algebraic space over S. Let j :
R→ U ×B U be a pre-relation over B.

(1) We say φ : U → X is set-theoretically R-invariant if and only if the map
U(k) → X(k) equalizes the two maps s, t : R(k) → U(k) for every alge-
braically closed field k over B.

(2) We say φ : U → X separates orbits, or separatesR-orbits if it is set-theoretically
R-invariant and φ(u) = φ(u′) inX(k) implies that u, u′ ∈ U(k) are in the same
orbit for every algebraically closed field k over B.

In Example 5.12 we show that being set-theoretically invariant is “too weak” a notion in
the category of algebraic spaces. A more geometric reformulation of what it means to be
set-theoretically invariant or to separate orbits is in Lemma 5.17.

Lemma 5.9. In the situation of Definition 5.8. A morphism φ : U → X is set-
theoreticallyR-invariant if and only if for any algebraically closed field k overB the map
U(k)→ X(k) is constant on orbits.

Proof. This is true because the condition is supposed to hold for all algebraically
closed fields over B. �

Lemma 5.10. In the situation of Definition 5.8. An invariant morphism is set-theoretically
invariant.

Proof. This is immediate from the definitions. �

Lemma 5.11. In the situation of Definition 5.8. Let φ : U → X be a morphism of
algebraic spaces over B. Assume

(1) φ is set-theoretically R-invariant,
(2) R is reduced, and
(3) X is locally separated over B.

Then φ is R-invariant.

Proof. Consider the equalizer

Z = R×(φ,φ)◦j,X×BX,∆X/B
X

algebraic space. Then Z → R is an immersion by assumption (3). By assumption (1)
|Z| → |R| is surjective. This implies that Z → R is a bijective closed immersion (use
Schemes, Lemma 10.4) and by assumption (2) we conclude that Z = R. �

Example 5.12. There exist reduced quasi-separated algebraic spaces X , Y and a pair
of morphisms a, b : Y → X which agree on all k-valued points but are not equal. To get
an example take Y = Spec(k[[x]]) and

X = A1
k

/(
∆q {(x,−x) | x 6= 0}

)
the algebraic space of Spaces, Example 14.1. The two morphisms a, b : Y → X come from
the two maps x 7→ x and x 7→ −x from Y to A1

k = Spec(k[x]). On the generic point
the two maps are the same because on the open part x 6= 0 of the space X the functions
x and −x are equal. On the closed point the maps are obviously the same. It is also true
that a 6= b. This implies that Lemma 5.11 does not hold with assumption (3) replaced by



5. QUOTIENTS AS ORBIT SPACES 6023

the assumption that X be quasi-separated. Namely, consider the diagram

Y

−1
��

1
// Y

a

��
Y

a // X

then the composition a ◦ (−1) = b. Hence we can set R = Y , U = Y , s = 1, t = −1,
φ = a to get an example of a set-theoretically invariant morphism which is not invariant.

The example above is instructive because the map Y → X even separates orbits. It shows
that in the category of algebraic spaces there are simply too many set-theoretically invari-
ant morphisms lying around. Next, let us define what it means for R to be a set-theoretic
equivalence relation, while remembering that we need to allow for field extensions to make
this work correctly.

Definition 5.13. Let S be a scheme, and let B be an algebraic space over S. Let
j : R→ U ×B U be a pre-relation over B.

(1) We say j is a set-theoretic pre-equivalence relation if for all algebraically closed
fields k over B the relation ∼R on U(k) defined by

u ∼R u′ ⇔ ∃ field extension K/k, ∃ r ∈ R(K),
s(r) = u, t(r) = u′

is an equivalence relation.
(2) We say j is a set-theoretic equivalence relation if j is universally injective and a

set-theoretic pre-equivalence relation.

Let us reformulate this in more geometric terms.

Lemma 5.14. In the situation of Definition 5.13. The following are equivalent:
(1) The morphism j is a set-theoretic pre-equivalence relation.
(2) The subset j(|R|) ⊂ |U×BU | contains the image of |j′| for any of the morphisms

j′ as in Equation (5.5.1).
(3) For every algebraically closed field k over B of sufficiently large cardinality the

subset j(R(k)) ⊂ U(k)× U(k) is an equivalence relation.
If s, t are locally of finite type these are also equivalent to

(4) For every algebraically closed field k overB the subset j(R(k)) ⊂ U(k)×U(k)
is an equivalence relation.

Proof. Assume (2). Let k be an algebraically closed field over B. We are going to
show that ∼R is an equivalence relation. Suppose that ui : Spec(k) → U , i = 1, 2 are
k-valued points of U . Suppose that (u1, u2) is the image of a K-valued point r ∈ R(K).
Consider the solid commutative diagram

Spec(K ′) //

��

Spec(k)

(u2,u1)
��

Spec(K)

��

oo

R
j // U ×B U R

jflipoo

We also denote r ∈ |R| the image of r. By assumption the image of |jflip| is contained in
the image of |j|, in other words there exists a r′ ∈ |R| such that |j|(r′) = |jflip|(r). But
note that (u2, u1) is in the equivalence class that defines |j|(r′) (by the commutativity
of the solid part of the diagram). This means there exists a field extension K ′/k and a
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morphism r′ : Spec(K) → R (abusively denoted r′ as well) with j ◦ r′ = (u2, u1) ◦ i
where i : Spec(K ′) → Spec(K) is the obvious map. In other words the dotted part
of the diagram commutes. This proves that ∼R is a symmetric relation on U(k). In the
similar way, using that the image of |jdiag| is contained in the image of |j|we see that∼R
is reflexive (details omitted).

To show that ∼R is transitive assume given ui : Spec(k) → U , i = 1, 2, 3 and field
extensions Ki/k and points ri : Spec(Ki) → R, i = 1, 2 such that j(r1) = (u1, u2) and
j(r1) = (u2, u3). Then we may choose a commutative diagram of fields

K K2oo

K1

OO

koo

OO

and we may think of r1, r2 ∈ R(K). We consider the commutative solid diagram

Spec(K ′) //

��

Spec(k)

(u1,u3)
��

Spec(K)

(r1,r2)
��

oo

R
j // U ×B U R×s,U,t R

jcompoo

By exactly the same reasoning as in the first part of the proof, but this time using that
|jcomp|((r1, r2)) is in the image of |j|, we conclude that a fieldK ′ and dotted arrows exist
making the diagram commute. This proves that ∼R is transitive and concludes the proof
that (2) implies (1).

Assume (1) and let k be an algebraically closed field overB whose cardinality is larger than
λ(R), see Morphisms of Spaces, Lemma 24.2. Suppose that u ∼R u′ with u, u′ ∈ U(k).
By assumption there exists a point in |R| mapping to (u, u′) ∈ |U ×B U |. Hence by
Morphisms of Spaces, Lemma 24.2 we conclude there exists an r ∈ R(k) with j(r) =
(u, u′). In this way we see that (1) implies (3).

Assume (3). Let us show that Im(|jcomp|) ⊂ Im(|j|). Pick any point c ∈ |R ×s,U,t R|.
We may represent this by a morphism c : Spec(k) → R ×s,U,t R, with k over B having
sufficiently large cardinality. By assumption we see that jcomp(c) ∈ U(k) × U(k) =
(U×BU)(k) is also the image j(r) for some r ∈ R(k). Hence jcomp(c) = j(r) in |U×BU |
as desired (with r ∈ |R| the equivalence class of r). The same argument shows also that
Im(|jdiag|) ⊂ Im(|j|) and Im(|jflip|) ⊂ Im(|j|) (details omitted). In this way we see that
(3) implies (2). At this point we have shown that (1), (2) and (3) are all equivalent.

It is clear that (4) implies (3) (without any assumptions on s, t). To finish the proof of
the lemma we show that (1) implies (4) if s, t are locally of finite type. Namely, let k
be an algebraically closed field over B. Suppose that u ∼R u′ with u, u′ ∈ U(k). By
assumption the algebraic spaceZ = R×j,U×BU,(u,u′) Spec(k) is nonempty. On the other
hand, since j = (t, s) is locally of finite type the morphism Z → Spec(k) is locally of
finite type as well (use Morphisms of Spaces, Lemmas 23.6 and 23.3). HenceZ has a k point
by Morphisms of Spaces, Lemma 24.1 and we conclude that (u, u′) ∈ j(R(k)) as desired.
This finishes the proof of the lemma. �

Lemma 5.15. In the situation of Definition 5.13. The following are equivalent:
(1) The morphism j is a set-theoretic equivalence relation.
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(2) The morphism j is universally injective and j(|R|) ⊂ |U ×B U | contains the
image of |j′| for any of the morphisms j′ as in Equation (5.5.1).

(3) For every algebraically closed field k over B of sufficiently large cardinality the
map j : R(k)→ U(k)×U(k) is injective and its image is an equivalence relation.

If j is decent, or locally separated, or quasi-separated these are also equivalent to
(4) For every algebraically closed field k over B the map j : R(k)→ U(k)× U(k)

is injective and its image is an equivalence relation.

Proof. The implications (1)⇒ (2) and (2)⇒ (3) follow from Lemma 5.14 and the
definitions. The same lemma shows that (3) implies j is a set-theoretic pre-equivalence
relation. But of course condition (3) also implies that j is universally injective, see Mor-
phisms of Spaces, Lemma 19.2, so that j is indeed a set-theoretic equivalence relation. At
this point we know that (1), (2), (3) are all equivalent.

Condition (4) implies (3) without any further hypotheses on j. Assume j is decent, or lo-
cally separated, or quasi-separated and the equivalent conditions (1), (2), (3) hold. By More
on Morphisms of Spaces, Lemma 3.4 we see that j is radicial. Let k be any algebraically
closed field over B. Let u, u′ ∈ U(k) with u ∼R u′. We see that R×U×BU,(u,u′) Spec(k)
is nonempty. Hence, as j is radicial, its reduction is the spectrum of a field purely insepa-
rable over k. As k = k we see that it is the spectrum of k. Whence a point r ∈ R(k) with
t(r) = u and s(r) = u′ as desired. �

Lemma 5.16. Let S be a scheme, and let B be an algebraic space over S. Let j : R→
U ×B U be a pre-relation over B.

(1) If j is a pre-equivalence relation, then j is a set-theoretic pre-equivalence relation.
This holds in particular when j comes from a groupoid in algebraic spaces, or
from an action of a group algebraic space on U .

(2) If j is an equivalence relation, then j is a set-theoretic equivalence relation.

Proof. Omitted. �

Lemma 5.17. Let B → S be as in Section 2. Let j : R → U ×B U be a pre-relation.
Let φ : U → X be a morphism of algebraic spaces over B. Consider the diagram

(U ×X U)×(U×BU) R

q

��

p
// R

j

��
U ×X U

c // U ×B U

Then we have:
(1) The morphism φ is set-theoretically invariant if and only if p is surjective.
(2) If j is a set-theoretic pre-equivalence relation then φ separates orbits if and only

if p and q are surjective.
(3) If p and q are surjective, then j is a set-theoretic pre-equivalence relation (and φ

separates orbits).
(4) If φ is R-invariant and j is a set-theoretic pre-equivalence relation, then φ sepa-

rates orbits if and only if the induced morphism R→ U ×X U is surjective.

Proof. Assume φ is set-theoretically invariant. This means that for any algebraically
closed field k overB and any r ∈ R(k) we haveφ(s(r)) = φ(t(r)). Hence ((φ(t(r)), φ(s(r))), r)
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defines a point in the fibre product mapping to r via p. This shows that p is surjective. Con-
versely, assume p is surjective. Pick r ∈ R(k). As p is surjective, we can find a field exten-
sionK/k and aK-valued point r̃ of the fibre product with p(r̃) = r. Then q(r̃) ∈ U×XU
maps to (t(r), s(r)) in U ×B U and we conclude that φ(s(r)) = φ(t(r)). This proves that
φ is set-theoretically invariant.

The proofs of (2), (3), and (4) are omitted. Hint: Assume k is an algebraically closed field
over B of large cardinality. Consider the associated diagram of sets

(U(k)×X(k) U(k))×U(k)×U(k) R(k)

q

��

p
// R(k)

j

��
U(k)×X(k) U(k) c // U(k)× U(k)

By the lemmas above the equivalences posed in (2), (3), and (4) become set-theoretic ques-
tions related to the diagram we just displayed, using that surjectivity translates into sur-
jectivity on k-valued points by Morphisms of Spaces, Lemma 24.2. �

Because we have seen above that the notion of a set-theoretically invariant morphism is
a rather weak one in the category of algebraic spaces, we define an orbit space for a pre-
relation as follows.

Definition 5.18. Let B → S as in Section 2. Let j : R→ U ×B U be a pre-relation.
We say φ : U → X is an orbit space for R if

(1) φ is R-invariant,
(2) φ separates R-orbits, and
(3) φ is surjective.

The definition of separating R-orbits involves a discussion of points with values in alge-
braically closed fields. But as we’ve seen in many cases this just corresponds to the sur-
jectivity of certain canonically associated morphisms of algebraic spaces. We summarize
some of the discussion above in the following characterization of orbit spaces.

Lemma 5.19. Let B → S as in Section 2. Let j : R → U ×B U be a set-theoretic
pre-equivalence relation. A morphism φ : U → X is an orbit space for R if and only if

(1) φ ◦ s = φ ◦ t, i.e., φ is invariant,
(2) the induced morphism (t, s) : R→ U ×X U is surjective, and
(3) the morphism φ : U → X is surjective.

This characterization applies for example if j is a pre-equivalence relation, or comes from
a groupoid in algebraic spaces overB, or comes from the action of a group algebraic space
over B on U .

Proof. Follows immediately from Lemma 5.17 part (4). �

In the following lemma it is (probably) not good enough to assume just that the morphisms
s, t are locally of finite type. The reason is that it may happen that some map φ : U → X
is an orbit space, yet is not locally of finite type. In that case U(k) → X(k) may not be
surjective for all algebraically closed fields k over B.

Lemma 5.20. Let B → S as in Section 2. Let j = (t, s) : R → U ×B U be a pre-
relation. AssumeR,U are locally of finite type overB. Let φ : U → X be anR-invariant



7. TOPOLOGICAL PROPERTIES 6027

morphism of algebraic spaces over B. Then φ is an orbit space for R if and only if the
natural map

U(k)/
(
equivalence relation generated by j(R(k))

)
−→ X(k)

is bijective for all algebraically closed fields k over B.

Proof. Note that since U , R are locally of finite type over B all of the morphisms
s, t, j, φ are locally of finite type, see Morphisms of Spaces, Lemma 23.6. We will also use
without further mention Morphisms of Spaces, Lemma 24.1. Assume φ is an orbit space.
Let k be any algebraically closed field overB. Let x ∈ X(k). Consider U ×φ,X,x Spec(k).
This is a nonempty algebraic space which is locally of finite type over k. Hence it has a
k-valued point. This shows the displayed map of the lemma is surjective. Suppose that
u, u′ ∈ U(k) map to the same element of X(k). By Definition 5.8 this means that u, u′

are in the same R-orbit. By Lemma 5.7 this means that they are equivalent under the
equivalence relation generated by j(R(k)). Thus the displayed morphism is injective.

Conversely, assume the displayed map is bijective for all algebraically closed fields k over
B. This condition clearly implies that φ is surjective. We have already assumed that φ
is R-invariant. Finally, the injectivity of all the displayed maps implies that φ separates
orbits. Hence φ is an orbit space. �

6. Coarse quotients

We only add this here so that we can later say that coarse quotients correspond to coarse
moduli spaces (or moduli schemes).

Definition 6.1. Let S be a scheme and B an algebraic space over S. Let j : R →
U ×B U be a pre-relation. A morphism φ : U → X of algebraic spaces over B is called a
coarse quotient if

(1) φ is a categorical quotient, and
(2) φ is an orbit space.

If S = B, U ,R are all schemes, then we say a morphism of schemes φ : U → X is a coarse
quotient in schemes if

(1) φ is a categorical quotient in schemes, and
(2) φ is an orbit space.

In many situations the algebraic spaces R and U are locally of finite type over B and the
orbit space condition simply means that

U(k)/
(
equivalence relation generated by j(R(k))

) ∼= X(k)

for all algebraically closed fields k. See Lemma 5.20. If j is also a (set-theoretic) pre-
equivalence relation, then the condition is simply equivalent to U(k)/j(R(k)) → X(k)
being bijective for all algebraically closed fields k.

7. Topological properties

Let S be a scheme andB an algebraic space over S. Let j : R→ U ×B U be a pre-relation.
We say a subset T ⊂ |U | isR-invariant if s−1(T ) = t−1(T ) as subsets of |R|. Note that if
T is closed, then it may not be the case that the corresponding reduced closed subspace of
U isR-invariant (as in Groupoids in Spaces, Definition 18.1) because the pullbacks s−1(T ),
t−1(T ) may not be reduced. Here are some conditions that we can consider for an invariant
morphism φ : U → X .
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Definition 7.1. Let S be a scheme and B an algebraic space over S. Let j : R →
U ×B U be a pre-relation. Let φ : U → X be anR-invariant morphism of algebraic spaces
over B.

(1) The morphism φ is submersive.
(2) For any R-invariant closed subset Z ⊂ |U | the image φ(Z) is closed in |X|.
(3) Condition (2) holds and for any pair ofR-invariant closed subsets Z1, Z2 ⊂ |U |

we have
φ(Z1 ∩ Z2) = φ(Z1) ∩ φ(Z2)

(4) The morphism (t, s) : R→ U ×X U is universally submersive.
For each of these properties we can also require them to hold after any flat base change, or
after any base change, see Definition 3.4. In this case we say condition (1), (2), (3), or (4)
holds uniformly or universally.

8. Invariant functions

In some cases it is convenient to pin down the structure sheaf of a quotient by requiring
any invariant function to be a local section of the structure sheaf of the quotient.

Definition 8.1. Let S be a scheme and B an algebraic space over S. Let j : R →
U ×B U be a pre-relation. Let φ : U → X be an R-invariant morphism. Denote φ′ =
φ ◦ s = φ ◦ t : R→ X .

(1) We denote (φ∗OU )R theOX -sub-algebra of φ∗OU which is the equalizer of the
two maps

φ∗OU
φ∗s

]

//

φ∗t
]

// φ′
∗OR

on Xétale. We sometimes call this the sheaf of R-invariant functions on X .
(2) We say the functions on X are the R-invariant functions on U if the natural

mapOX → (φ∗OU )R is an isomorphism.

Of course we can require this property holds after any (flat or any) base change, leading to
a (uniform or) universal notion. This condition is often thrown in with other conditions
in order to obtain a (more) unique quotient. And of course a good deal of motivation for
the whole subject comes from the following special case: U = Spec(A) is an affine scheme
over a field S = B = Spec(k) and where R = G × U , with G an affine group scheme
over k. In this case you have the option of taking for the quotient:

X = Spec(AG)
so that at least the condition of the definition above is satisfied. Even though this is a nice
thing you can do it is often not the right quotient; for example if U = GLn,k andG is the
group of upper triangular matrices, then the above gives X = Spec(k), whereas a much
better quotient (namely the flag variety) exists.

9. Good quotients

Especially when taking quotients by group actions the following definition is useful.

Definition 9.1. Let S be a scheme and B an algebraic space over S. Let j : R →
U ×B U be a pre-relation. A morphism φ : U → X of algebraic spaces over B is called a
good quotient if

(1) φ is invariant,
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(2) φ is affine,
(3) φ is surjective,
(4) condition (3) holds universally, and
(5) the functions on X are the R-invariant functions on U .

In [?] Seshadri gives almost the same definition, except that instead of (4) he simply re-
quires the condition (3) to hold – he does not require it to hold universally.

10. Geometric quotients

This is Mumford’s definition of a geometric quotient (at least the definition from the first
edition of GIT; as far as we can tell later editions changed “universally submersive” to
“submersive”).

Definition 10.1. Let S be a scheme and B an algebraic space over S. Let j : R →
U ×B U be a pre-relation. A morphism φ : U → X of algebraic spaces over B is called a
geometric quotient if

(1) φ is an orbit space,
(2) condition (1) holds universally, i.e., φ is universally submersive, and
(3) the functions on X are the R-invariant functions on U .
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CHAPTER 84

More on Cohomology of Spaces

1. Introduction

In this chapter continues the discussion started in Cohomology of Spaces, Section 1. One
can also view this chapter as the analogue for algebraic spaces of the chapter on étale co-
homology for schemes, see Étale Cohomology, Section 1.

In fact, we intend this chapter to be mainly a translation of the results already proved for
schemes into the language of algebraic spaces. Some of our results can be found in [?].

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. Transporting results from schemes

In this section we explain briefly how results for schemes imply results for (representable)
algebraic spaces and (representable) morphisms of algebraic spaces. For quasi-coherent
modules more is true (because étale cohomology of a quasi-coherent module over a scheme
agrees with Zariski cohomology) and this has already been discussed in Cohomology of
Spaces, Section 3.

LetS be a scheme. LetX be an algebraic space overS. Now suppose thatX is representable
by the schemeX0 (awkward but temporary notation; we usually just say “X is a scheme”).
In this case X and X0 have the same small étale sites:

Xétale = (X0)étale
This is pointed out in Properties of Spaces, Section 18. Moreover, if f : X → Y is a
morphism of representable algebraic spaces over S and if f0 : X0 → Y0 is a morphism of
schemes representing f , then the induced morphisms of small étale topoi agree:

Sh(Xétale)
fsmall

// Sh(Yétale)

Sh((X0)étale)
(f0)small // Sh((Y0)étale)

See Properties of Spaces, Lemma 18.8 and Topologies, Lemma 4.17.

6031
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Thus there is absolutely no difference between étale cohomology of a scheme and the étale
cohomology of the corresponding algebraic space. Similarly for higher direct images along
morphisms of schemes. In fact, if f : X → Y is a morphism of algebraic spaces over S
which is representable (by schemes), then the higher direct imagesRif∗F of a sheaf F on
Xétale can be computed étale locally on Y (Cohomology on Sites, Lemma 7.4) hence this
often reduces computations and proofs to the case where Y and X are schemes.
We will use the above without further mention in this chapter. For other topologies the
same thing is true; we state it explicitly as a lemma for cohomology here.

Lemma 3.1. Let S be a scheme. Let τ ∈ {étale, fppf, ph} (add more here). The
inclusion functor

(Sch/S)τ −→ (Spaces/S)τ
is a special cocontinuous functor (Sites, Definition 29.2) and hence identifies topoi.

Proof. The conditions of Sites, Lemma 29.1 are immediately verified as our functor
is fully faithful and as every algebraic space has an étale covering by schemes. �

4. Proper base change

The proper base change theorem for algebraic spaces follows from the proper base change
theorem for schemes and Chow’s lemma with a little bit of work.

Lemma 4.1. Let S be a scheme. Let f : Y → X be a surjective proper morphism
of algebraic spaces over S. Let F be a sheaf on Xétale. Then F → f∗f

−1F is injective
with image the equalizer of the two maps f∗f

−1F → g∗g
−1F where g is the structure

morphism g : Y ×X Y → X .

Proof. For any surjective morphism f : Y → X of algebraic spaces over S , the
map F → f∗f

−1F is injective. Namely, if x is a geometric point of X , then we choose a
geometric point y of Y lying over x and we consider

Fx → (f∗f
−1F)x → (f−1F)y = Fx

See Properties of Spaces, Lemma 19.9 for the last equality.
The second statement is local on X in the étale topology, hence we may and do assume Y
is an affine scheme.
Choose a surjective proper morphism Z → Y where Z is a scheme, see Cohomology of
Spaces, Lemma 18.1. The result for Z → X implies the result for Y → X . Since Z → X
is a surjective proper morphism of schemes and hence a ph covering (Topologies, Lemma
8.6) the result for Z → X follows from Étale Cohomology, Lemma 102.1 (in fact it is in
some sense equivalent to this lemma). �

Lemma 4.2. Let (A, I) be a henselian pair. Let X be an algebraic space over A such
that the structure morphism f : X → Spec(A) is proper. Let i : X0 → X be the inclusion
of X ×Spec(A) Spec(A/I). For any sheaf F on Xétale we have Γ(X,F) = Γ(X0, i

−1F).

Proof. Choose a surjective proper morphism Y → X where Y is a scheme, see Co-
homology of Spaces, Lemma 18.1. Consider the diagram

Γ(X0,F0) // Γ(Y0,G0) //
// Γ((Y ×X Y )0,H0)

Γ(X,F) //

OO

Γ(Y,G) //
//

OO

Γ(Y ×X Y,H)

OO
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Here G , resp. H is the pullbackf or F to Y , resp. Y ×X Y and the index 0 indicates base
change to Spec(A/I). By the case of schemes (Étale Cohomology, Lemma 91.2) we see
that the middle and right vertical arrows are bijective. By Lemma 4.1 it follows that the
left one is too. �

Lemma 4.3. Let A be a henselian local ring. Let X be an algebraic space over A such
that f : X → Spec(A) is a proper morphism. Let X0 ⊂ X be the fibre of f over the
closed point. For any sheaf F on Xétale we have Γ(X,F) = Γ(X0,F|X0).

Proof. This is a special case of Lemma 4.2. �

Lemma 4.4. Let S be a scheme. Let f : X → Y and g : Y ′ → Y be a morphisms
of algebraic spaces over S. Assume f is proper. Set X ′ = Y ′ ×Y X with projections f ′ :
X ′ → Y ′ and g′ : X ′ → X . Let F be any sheaf on Xétale. Then g−1f∗F = f ′

∗(g′)−1F .

Proof. The question is étale local on Y ′. Choose a scheme V and a surjective étale
morphism V → Y . Choose a scheme V ′ and a surjective étale morphism V ′ → V ×Y Y ′.
Then we may replace Y ′ by V ′ and Y by V . Hence we may assume Y and Y ′ are schemes.
Then we may work Zariski locally on Y and Y ′ and hence we may assume Y and Y ′ are
affine schemes.

Assume Y and Y ′ are affine schemes. Choose a surjective proper morphism h1 : X1 → X
where X1 is a scheme, see Cohomology of Spaces, Lemma 18.1. Set X2 = X1 ×X X1 and
denote h2 : X2 → X the structure morphism. Observe this is a scheme. By the case of
schemes (Étale Cohomology, Lemma 91.5) we know the lemma is true for the cartesian
diagrams

X ′
1

//

��

X1

��
Y ′ // Y

and

X ′
2

//

��

X2

��
Y ′ // Y

and the sheaves Fi = (Xi → X)−1F . By Lemma 4.1 we have an exact sequence 0 →
F → h1,∗F1 → h2,∗F2 and similarly for (g′)−1F because X ′

2 = X ′
1 ×X′ X ′

1. Hence we
conlude that the lemma is true (some details omitted). �

Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces over S. Let
x : Spec(k) → S be a geometric point. The fibre of f at x is the algebraic space Yx =
Spec(k) ×x,X Y over Spec(k). If F is a sheaf on Yétale, then denote Fx = p−1F the
pullback of F to (Yx)étale. Here p : Yx → Y is the projection. In the following we will
consider the set Γ(Yx,Fx).

Lemma 4.5. Let S be a scheme. Let f : Y → X be a proper morphism of algebraic
spaces over S. Let x → X be a geometric point. For any sheaf F on Yétale the canonical
map

(f∗F)x −→ Γ(Yx,Fx)

is bijective.

Proof. This is a special case of Lemma 4.4. �
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Theorem 4.6. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Assume f is proper. Let F be an abelian
torsion sheaf on Xétale. Then the base change map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism.

Proof. This proof repeats a few of the arguments given in the proof of the proper
base change theorem for schemes. See Étale Cohomology, Section 91 for more details.
The statement is étale local on Y ′ and Y , hence we may assume both Y and Y ′ are affine
schemes. Observe that this in particular proves the theorem in case f is representable (we
will use this below).
For every n ≥ 1 let F [n] be the subsheaf of sections of F annihilated by n. Then F =
colimF [n]. By Cohomology of Spaces, Lemma 5.2 the functors g−1Rpf∗ andRpf ′

∗(g′)−1

commute with filtered colimits. Hence it suffices to prove the theorem if F is killed by n.
LetF → I• be a resolution by injective sheaves of Z/nZ-modules. Observe that g−1f∗I• =
f ′

∗(g′)−1I• by Lemma 4.4. Applying Leray’s acyclicity lemma (Derived Categories, Lemma
16.7) we conclude it suffices to prove Rpf ′

∗(g′)−1Im = 0 for p > 0 and m ∈ Z.
Choose a surjective proper morphism h : Z → X where Z is a scheme, see Cohomology
of Spaces, Lemma 18.1. Choose an injective map h−1Im → J where J is an injective
sheaf of Z/nZ-modules on Zétale. Since h is surjective the map Im → h∗J is injective
(see Lemma 4.1). Since Im is injective we see that Im is a direct summand of h∗J . Thus
it suffices to prove the desired vanishing for h∗J .
Denote h′ the base change by g and denote g′′ : Z ′ → Z the projection. There is a spectral
sequence

Ep,q2 = Rpf ′
∗R

qh′
∗(g′′)−1J

converging to Rp+q(f ′ ◦ h′)∗(g′′)−1J . Since h and f ◦ h are representable (by schemes)
we know the result we want holds for them. Thus in the spectral sequence we see that
Ep,q2 = 0 for q > 0 and Rp+q(f ′ ◦ h′)∗(g′′)−1J = 0 for p + q > 0. It follows that
Ep,02 = 0 for p > 0. Now

Ep,02 = Rpf ′
∗h

′
∗(g′′)−1J = Rpf ′

∗(g′)−1h∗J
by Lemma 4.4. This finishes the proof. �

Lemma 4.7. Let S be a scheme. Let

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

be a cartesian square of algebraic spaces over S. Assume f is proper. Let E ∈ D+(Xétale)
have torsion cohomology sheaves. Then the base change map g−1Rf∗E → Rf ′

∗(g′)−1E
is an isomorphism.
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Proof. This is a simple consequence of the proper base change theorem (Theorem
4.6) using the spectral sequences

Ep,q2 = Rpf∗H
q(E) and E′p,q

2 = Rpf ′
∗(g′)−1Hq(E)

converging to Rnf∗E and Rnf ′
∗(g′)−1E. The spectral sequences are constructed in De-

rived Categories, Lemma 21.3. Some details omitted. �

Lemma 4.8. Let S be a scheme. Let f : X → Y be a proper morphism of algebraic
spaces. Let y → Y be a geometric point.

(1) For a torsion abelian sheaf F on Xétale we have (Rnf∗F)y = Hn
étale(Xy,Fy).

(2) For E ∈ D+(Xétale) with torsion cohomology sheaves we have (Rnf∗E)y =
Hn
étale(Xy, Ey).

Proof. In the statement, Fy denotes the pullback of F to Xy = y ×Y X . Since
pulling back by y → Y produces the stalk of F , the first statement of the lemma is a
special case of Theorem 4.6. The second one is a special case of Lemma 4.7. �

Lemma 4.9. Let k′/k be an extension of separably closed fields. LetX be a proper al-
gebraic space over k. LetF be a torsion abelian sheaf onX . Then the mapHq

étale(X,F)→
Hq
étale(Xk′ ,F|Xk′ ) is an isomorphism for q ≥ 0.

Proof. This is a special case of Theorem 4.6. �

5. Comparing big and small topoi

Let S be a scheme and letX be an algebraic space over S. In Topologies on Spaces, Lemma
4.8 we have introduced comparison morphisms πX : (Spaces/X)étale → Xspaces,étale

and iX : Sh(Xétale) → Sh((Spaces/X)étale) with πX ◦ iX = id as morphisms of topoi
and πX,∗ = i−1

X . More generally, if f : Y → X is an object of (Spaces/X)étale, then
there is a morphism if : Sh(Yétale) → Sh((Spaces/X)étale) such that fsmall = πX ◦ if ,
see Topologies on Spaces, Lemmas 4.7 and 4.11. In Topologies on Spaces, Remark 4.14 we
have extended these to a morphism of ringed sites

πX : ((Spaces/X)étale,O)→ (Xspaces,étale,OX)
and morphisms of ringed topoi

iX : (Sh(Xétale),OX)→ (Sh((Spaces/X)étale),O)
and

if : (Sh(Yétale),OY )→ (Sh((Spaces/X)étale,O))
Note that the restriction i−1

X = πX,∗ (see Topologies, Definition 4.15) transforms O into
OX . Similarly, i−1

f transformsO intoOY . See Topologies on Spaces, Remark 4.14. Hence
i∗XF = i−1

X F and i∗fF = i−1
f F for any O-module F on (Spaces/X)étale. In particular

i∗X and i∗f are exact functors. The functor i∗X is often denoted F 7→ F|Xétale (and this
does not conflict with the notation in Topologies on Spaces, Definition 4.9).

Lemma 5.1. Let S be a scheme. Let X be an algebraic space over S. Let F be a sheaf
on Xétale. Then π−1

X F is given by the rule

(π−1
X F)(Y ) = Γ(Yétale, f−1

smallF)

for f : Y → X in (Spaces/X)étale. Moreover, π−1
Y F satisfies the sheaf condition with

respect to smooth, syntomic, fppf, fpqc, and ph coverings.
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Proof. Since pullback is transitive and fsmall = πX ◦ if (see above) we see that
i−1
f π−1

X F = f−1
smallF . This shows that π−1

X has the description given in the lemma.

To prove that π−1
X F is a sheaf for the ph topology it suffices by Topologies on Spaces,

Lemma 8.7 to show that for a surjective proper morphism V → U of algebraic spaces over
X we have (π−1

X F)(U) is the equalizer of the two maps (π−1
X F)(V )→ (π−1

X F)(V ×U V ).
This we have seen in Lemma 4.1.

The case of smooth, syntomic, fppf coverings follows from the case of ph coverings by
Topologies on Spaces, Lemma 8.2.

LetU = {Ui → U}i∈I be an fpqc covering of algebraic spaces overX . Let si ∈ (π−1
X F)(Ui)

be sections which agree over Ui ×U Uj . We have to prove there exists a unique s ∈
(π−1
X F)(U) restricting to si over Ui. Case I: U and Ui are schemes. This case follows

from Étale Cohomology, Lemma 39.2. Case II: U is a scheme. Here we choose surjective
étale morphisms Ti → Ui where Ti is a scheme. Then T = {Ti → U} is an fpqc covering
by schemes and by case I the result holds for T . We omit the verification that this implies
the result for U . Case III: general case. Let W → U be a surjective étale morphism, where
W is a scheme. ThenW = {Ui ×U W →W} is an fpqc covering (by algebraic spaces) of
the schemeW . By case II the result hold forW . We omit the verification that this implies
the result for U . �

Lemma 5.2. Let S be a scheme. Let Y → X be a morphism of (Spaces/S)étale.

(1) If I is injective in Ab((Spaces/X)étale), then
(a) i−1

f I is injective in Ab(Yétale),
(b) I|Xétale is injective in Ab(Xétale),

(2) If I• is a K-injective complex in Ab((Spaces/X)étale), then
(a) i−1

f I• is a K-injective complex in Ab(Yétale),
(b) I•|Xétale is a K-injective complex in Ab(Xétale),

The corresponding statements for modules do not hold.

Proof. Parts (1)(b) and (2)(b) follow formally from the fact that the restriction func-
tor πX,∗ = i−1

X is a right adjoint of the exact functor π−1
X , see Homology, Lemma 29.1 and

Derived Categories, Lemma 31.9.

Parts (1)(a) and (2)(a) can be seen in two ways. First proof: We can use that i−1
f is a right

adjoint of the exact functor if,!. This functor is constructed in Topologies, Lemma 4.13
for sheaves of sets and for abelian sheaves in Modules on Sites, Lemma 16.2. It is shown in
Modules on Sites, Lemma 16.3 that it is exact. Second proof. We can use that if = iY ◦fbig
as is shown in Topologies, Lemma 4.17. Since fbig is a localization, we see that pullback
by it preserves injectives and K-injectives, see Cohomology on Sites, Lemmas 7.1 and 20.1.
Then we apply the already proved parts (1)(b) and (2)(b) to the functor i−1

Y to conclude.

To see a counter example for the case of modules we refer to Étale Cohomology, Lemma
99.1. �

Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces over S. The
commutative diagram of Topologies on Spaces, Lemma 4.11 (3) leads to a commutative
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diagram of ringed sites

(Yspaces,étale,OY )

fspaces,étale

��

((Spaces/Y )étale,O)

fbig

��

πY
oo

(Xspaces,étale,OX) ((Spaces/X)étale,O)πXoo

as one easily sees by writing out the definitions of f ]small, f
]
big , π]X , and π]Y . In particular

this means that

(5.2.1) (fbig,∗F)|Xétale = fsmall,∗(F|Yétale)
for any sheaf F on (Spaces/Y )étale and if F is a sheaf of O-modules, then (5.2.1) is an
isomorphism ofOX -modules on Xétale.

Lemma 5.3. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S.

(1) ForK inD((Spaces/Y )étale) we have (Rfbig,∗K)|Xétale = Rfsmall,∗(K|Yétale)
in D(Xétale).

(2) ForK inD((Spaces/Y )étale,O) we have (Rfbig,∗K)|Xétale = Rfsmall,∗(K|Yétale)
in D(Mod(Xétale,OX)).

More generally, let g : X ′ → X be an object of (Spaces/X)étale. Consider the fibre
product

Y ′
g′
//

f ′

��

Y

f

��
X ′ g // X

Then
(3) For K in D((Spaces/Y )étale) we have i−1

g (Rfbig,∗K) = Rf ′
small,∗(i−1

g′ K) in
D(X ′

étale).
(4) For K in D((Spaces/Y )étale,O) we have i∗g(Rfbig,∗K) = Rf ′

small,∗(i∗g′K) in
D(Mod(X ′

étale,OX′)).
(5) For K in D((Spaces/Y )étale) we have g−1

big(Rfbig,∗K) = Rf ′
big,∗((g′

big)−1K)
in D((Spaces/X ′)étale).

(6) ForK inD((Spaces/Y )étale,O) we have g∗
big(Rfbig,∗K) = Rf ′

big,∗((g′
big)∗K)

in D(Mod(X ′
étale,OX′)).

Proof. Part (1) follows from Lemma 5.2 and (5.2.1) on choosing a K-injective com-
plex of abelian sheaves representing K.

Part (3) follows from Lemma 5.2 and Topologies, Lemma 4.19 on choosing a K-injective
complex of abelian sheaves representing K.

Part (5) is Cohomology on Sites, Lemma 21.1.

Part (6) is Cohomology on Sites, Lemma 21.2.

Part (2) can be proved as follows. Above we have seen that πX ◦ fbig = fsmall ◦ πY as
morphisms of ringed sites. Hence we obtain RπX,∗ ◦ Rfbig,∗ = Rfsmall,∗ ◦ RπY,∗ by
Cohomology on Sites, Lemma 19.2. Since the restriction functors πX,∗ and πY,∗ are exact,
we conclude.

Part (4) follows from part (6) and part (2) applied to f ′ : Y ′ → X ′. �
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Let S be a scheme. Let X be an algebraic space over S. Let H be an abelian sheaf on
(Spaces/X)étale. Recall that Hn

étale(U,H) denotes the cohomology of H over an object
U of (Spaces/X)étale.

Lemma 5.4. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Then

(1) For K in D(Xétale) we have Hn
étale(X,π

−1
X K) = Hn(Xétale,K).

(2) For K in D(Xétale,OX) we have Hn
étale(X,Lπ∗

XK) = Hn(Xétale,K).
(3) For K in D(Xétale) we have Hn

étale(Y, π
−1
X K) = Hn(Yétale, f−1

smallK).
(4) For K in D(Xétale,OX) we have Hn

étale(Y, Lπ∗
XK) = Hn(Yétale, Lf∗

smallK).
(5) For M in D((Spaces/X)étale) we have Hn

étale(Y,M) = Hn(Yétale, i−1
f M).

(6) For M in D((Spaces/X)étale,O) we have Hn
étale(Y,M) = Hn(Yétale, i∗fM).

Proof. To prove (5) represent M by a K-injective complex of abelian sheaves and
apply Lemma 5.2 and work out the definitions. Part (3) follows from this as i−1

f π−1
X =

f−1
small. Part (1) is a special case of (3).

Part (6) follows from the very general Cohomology on Sites, Lemma 37.5. Then part (4)
follows because Lf∗

small = i∗f ◦ Lπ∗
X . Part (2) is a special case of (4). �

Lemma 5.5. Let S be a scheme. Let X be an algebraic space over S. For K ∈
D(Xétale) the map

K −→ RπX,∗π
−1
X K

is an isomorphism where πX : Sh((Spaces/X)étale)→ Sh(Xétale) is as above.

Proof. This is true because both π−1
X and πX,∗ = i−1

X are exact functors and the
composition πX,∗ ◦ π−1

X is the identity functor. �

Lemma 5.6. Let S be a scheme. Let f : Y → X be a proper morphism of algebraic
spaces over S. Then we have

(1) π−1
X ◦ fsmall,∗ = fbig,∗ ◦ π−1

Y as functors Sh(Yétale)→ Sh((Spaces/X)étale),
(2) π−1

X Rfsmall,∗K = Rfbig,∗π
−1
Y K forK inD+(Yétale) whose cohomology sheaves

are torsion, and
(3) π−1

X Rfsmall,∗K = Rfbig,∗π
−1
Y K for all K in D(Yétale) if f is finite.

Proof. Proof of (1). Let F be a sheaf on Yétale. Let g : X ′ → X be an object of
(Spaces/X)étale. Consider the fibre product

Y ′
f ′
//

g′

��

X ′

g

��
Y

f // X

Then we have

(fbig,∗π−1
Y F)(X ′) = (π−1

Y F)(Y ′) = ((g′
small)−1F)(Y ′) = (f ′

small,∗(g′
small)−1F)(X ′)

the second equality by Lemma 5.1. On the other hand

(π−1
X fsmall,∗F)(X ′) = (g−1

smallfsmall,∗F)(X ′)

again by Lemma 5.1. Hence by proper base change for sheaves of sets (Lemma 4.4) we
conclude the two sets are canonically isomorphic. The isomorphism is compatible with
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restriction mappings and defines an isomorphism π−1
X fsmall,∗F = fbig,∗π

−1
Y F . Thus an

isomorphism of functors π−1
X ◦ fsmall,∗ = fbig,∗ ◦ π−1

Y .

Proof of (2). There is a canonical base change map π−1
X Rfsmall,∗K → Rfbig,∗π

−1
Y K for

any K in D(Yétale), see Cohomology on Sites, Remark 19.3. To prove it is an isomor-
phism, it suffices to prove the pull back of the base change map by ig : Sh(X ′

étale) →
Sh((Sch/X)étale) is an isomorphism for any object g : X ′ → X of (Sch/X)étale. Let
T ′, g′, f ′ be as in the previous paragraph. The pullback of the base change map is

g−1
smallRfsmall,∗K = i−1

g π−1
X Rfsmall,∗K

→ i−1
g Rfbig,∗π

−1
Y K

= Rf ′
small,∗(i−1

g′ π
−1
Y K)

= Rf ′
small,∗((g′

small)−1K)

where we have used πX ◦ ig = gsmall, πY ◦ ig′ = g′
small, and Lemma 5.3. This map is

an isomorphism by the proper base change theorem (Lemma 4.7) provided K is bounded
below and the cohomology sheaves of K are torsion.

Proof of (3). If f is finite, then the functors fsmall,∗ and fbig,∗ are exact. This follows
from Cohomology of Spaces, Lemma 4.1 for fsmall. Since any base change f ′ of f is finite
too, we conclude from Lemma 5.3 part (3) that fbig,∗ is exact too (as the higher derived
functors are zero). Thus this case follows from part (1). �

6. Comparing fppf and étale topologies

This section is the analogue of Étale Cohomology, Section 100.

Let S be a scheme. LetX be an algebraic space over S. On the category Spaces/X we con-
sider the fppf and étale topologies. The identity functor (Spaces/X)étale → (Spaces/X)fppf
is continuous and defines a morphism of sites

εX : (Spaces/X)fppf −→ (Spaces/X)étale
by an application of Sites, Proposition 14.7. Please note that εX,∗ is the identity functor
on underlying presheaves and that ε−1

X associates to an étale sheaf the fppf sheafification.
Consider the morphism of sites

πX : (Spaces/X)étale −→ Xspaces,étale

comparing big and small étale sites, see Section 5. The composition determines a morphism
of sites

aX = πX ◦ εX : (Spaces/X)fppf −→ Xspaces,étale

If H is an abelian sheaf on (Spaces/X)fppf , then we will write Hn
fppf (U,H) for the co-

homology ofH over an object U of (Spaces/X)fppf .

Lemma 6.1. Let S be a scheme. Let X be an algebraic space over S.
(1) For F ∈ Sh(Xétale) we have εX,∗a−1

X F = π−1
X F and aX,∗a−1

X F = F .
(2) For F ∈ Ab(Xétale) we have RiεX,∗(a−1

X F) = 0 for i > 0.

Proof. We have a−1
X F = ε−1

X π−1
X F . By Lemma 5.1 the étale sheaf π−1

X F is a sheaf
for the fppf topology and therefore is equal to a−1

X F (as pulling back by εX is given by
fppf sheafification). Recall moreover that εX,∗ is the identity on underlying presheaves.
Now part (1) is immediate from the explicit description of π−1

X in Lemma 5.1.
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We will prove part (2) by reducing it to the case of schemes – see part (1) of Étale Coho-
mology, Lemma 100.6. This will “clearly work” as every algebraic space is étale locally a
scheme. The details are given below but we urge the reader to skip the proof.
For an abelian sheafH on (Spaces/X)fppf the higher direct image RpεX,∗H is the sheaf
associated to the presheaf U 7→ Hp

fppf (U,H) on (Spaces/X)étale. See Cohomology on
Sites, Lemma 7.4. Since every object of (Spaces/X)étale has a covering by schemes, it
suffices to prove that given U/X a scheme and ξ ∈ Hp

fppf (U, a−1
X F) we can find an étale

covering {Ui → U} such that ξ restricts to zero on Ui. We have

Hp
fppf (U, a−1

X F) = Hp((Spaces/U)fppf , (a−1
X F)|Spaces/U )

= Hp((Sch/U)fppf , (a−1
X F)|Sch/U )

where the second identification is Lemma 3.1 and the first is a general fact about restriction
(Cohomology on Sites, Lemma 7.1). Looking at the first paragraph and the corresponding
result in the case of schemes (Étale Cohomology, Lemma 100.1) we conclude that the sheaf
(a−1
X F)|Sch/U matches the pullback by the “schemes version of aU ”. Therefore we can find

an étale covering {Ui → U} such that our class dies inHp((Sch/Ui)fppf , (a−1
X F)|Sch/Ui)

for each i, see Étale Cohomology, Lemma 100.6 (the precise statement one should use here
is that Vn holds for all nwhich is the statement of part (2) for the case of schemes). Trans-
porting back (using the same formulas as above but now for Ui) we conclude ξ restricts to
zero over Ui as desired. �

The hard work done in the case of schemes now tells us that étale and fppf cohomology
agree for sheaves coming from the small étale site.

Lemma 6.2. Let S be a scheme. Let X be an algebraic space over S. For K ∈
D+(Xétale) the maps

π−1
X K −→ RεX,∗a

−1
X K and K −→ RaX,∗a

−1
X K

are isomorphisms with aX : Sh((Spaces/X)fppf )→ Sh(Xétale) as above.

Proof. We only prove the second statement; the first is easier and proved in exactly
the same manner. There is an immediate reduction to the case where K is given by a
single abelian sheaf. Namely, represent K by a bounded below complex F•. By the case
of a sheaf we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are zero for
q > 0. By Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) applied to a−1

X F•

and the functor aX,∗ we conclude. From now on assume K = F .

By Lemma 6.1 we have aX,∗a−1
X F = F . Thus it suffices to show that RqaX,∗a−1

X F = 0
for q > 0. For this we can use aX = εX◦πX and the Leray spectral sequence (Cohomology
on Sites, Lemma 14.7). By Lemma 6.1 we have RiεX,∗(a−1

X F) = 0 for i > 0. We have
εX,∗a

−1
X F = π−1

X F and by Lemma 5.5 we have RjπX,∗(π−1
X F) = 0 for j > 0. This

concludes the proof. �

Lemma 6.3. Let S be a scheme and let X be an algebraic space over S. With aX :
Sh((Spaces/X)fppf )→ Sh(Xétale) as above:

(1) Hq(Xétale,F) = Hq
fppf (X, a−1

X F) for an abelian sheaf F on Xétale,
(2) Hq(Xétale,K) = Hq

fppf (X, a−1
X K) for K ∈ D+(Xétale).

Example: if A is an abelian group, then Hq
étale(X,A) = Hq

fppf (X,A).

Proof. This follows from Lemma 6.2 by Cohomology on Sites, Remark 14.4. �
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Lemma 6.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then there are commutative diagrams of topoi

Sh((Spaces/X)fppf )
fbig,fppf

//

εX

��

Sh((Spaces/Y )fppf )

εY

��
Sh((Spaces/X)étale)

fbig,étale // Sh((Spaces/Y )étale)

and
Sh((Spaces/X)fppf )

fbig,fppf

//

aX

��

Sh((Spaces/Y )fppf )

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)

with aX = πX ◦ εX and aY = πX ◦ εX .

Proof. This follows immediately from working out the definitions of the morphisms
involved, see Topologies on Spaces, Section 7 and Section 5. �

Lemma 6.5. In Lemma 6.4 if f is proper, then we have
(1) a−1

Y ◦ fsmall,∗ = fbig,fppf,∗ ◦ a−1
X , and

(2) a−1
Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1

X K) for K in D+(Xétale) with torsion
cohomology sheaves.

Proof. Proof of (1). You can prove this by repeating the proof of Lemma 5.6 part
(1); we will instead deduce the result from this. As εY,∗ is the identity functor on under-
lying presheaves, it reflects isomorphisms. Lemma 6.1 shows that εY,∗ ◦ a−1

Y = π−1
Y and

similarly for X . To show that the canonical map a−1
Y fsmall,∗F → fbig,fppf,∗a

−1
X F is an

isomorphism, it suffices to show that

π−1
Y fsmall,∗F = εY,∗a

−1
Y fsmall,∗F

→ εY,∗fbig,fppf,∗a
−1
X F

= fbig,étale,∗εX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 5.6.

To see (2) we use that

RεY,∗Rfbig,fppf,∗a
−1
X K = Rfbig,étale,∗RεX,∗a

−1
X K

= Rfbig,étale,∗π
−1
X K

= π−1
Y Rfsmall,∗K

= RεY,∗a
−1
Y Rfsmall,∗K

The first equality by the commutative diagram in Lemma 6.4 and Cohomology on Sites,
Lemma 19.2. Then second equality is Lemma 6.2. The third is Lemma 5.6 part (2). The
fourth is Lemma 6.2 again. Thus the base change map a−1

Y (Rfsmall,∗K)→ Rfbig,fppf,∗(a−1
X K)

induces an isomorphism

RεY,∗a
−1
Y Rfsmall,∗K → RεY,∗Rfbig,fppf,∗a

−1
X K
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The proof is finished by the following remark: a mapα : a−1
Y L→M withL inD+(Yétale)

and M in D+((Spaces/Y )fppf ) such that RεY,∗α is an isomorphism, is an isomorphism.
Namely, we show by induction on i thatHi(α) is an isomorphism. This is true for all suf-
ficiently small i. If it holds for i ≤ i0, then we see that RjεY,∗Hi(M) = 0 for j > 0 and
i ≤ i0 by Lemma 6.1 becauseHi(M) = a−1

Y Hi(L) in this range. Hence εY,∗Hi0+1(M) =
Hi0+1(RεY,∗M) by a spectral sequence argument. Thus εY,∗Hi0+1(M) = π−1

Y Hi0+1(L) =
εY,∗a

−1
Y Hi0+1(L). This impliesHi0+1(α) is an isomorphism (because εY,∗ reflects isomor-

phisms as it is the identity on underlying presheaves) as desired. �

Lemma 6.6. In Lemma 6.4 if f is finite, then a−1
Y (Rfsmall,∗K) = Rfbig,fppf,∗(a−1

X K)
for K in D+(Xétale).

Proof. Let V → Y be a surjective étale morphism where V is a scheme. It suffices
to prove the base change map is an isomorphism after restricting to V . Hence we may
assume that Y is a scheme. As the morphism is finite, hence representable, we conclude
that we may assume both X and Y are schemes. In this case the result follows from the
case of schemes (Étale Cohomology, Lemma 100.6 part (2)) using the comparison of topoi
discussed in Section 3 and in particular given in Lemma 3.1. Some details omitted. �

Lemma 6.7. In Lemma 6.4 assume f is flat, locally of finite presentation, and surjec-
tive. Then the functor

Sh(Yétale) −→
{

(G,H, α)
∣∣∣∣G ∈ Sh(Xétale), H ∈ Sh((Sch/Y )fppf ),
α : a−1

X G → f−1
big,fppfH an isomorphism

}
sending F to (f−1

smallF , a
−1
Y F , can) is an equivalence.

Proof. The functor a−1
X is fully faithful (as aX,∗a−1

X = id by Lemma 6.1). Hence the
forgetful functor (G,H, α) 7→ H identifies the category of triples with a full subcategory
of Sh((Sch/Y )fppf ). Moreover, the functor a−1

Y is fully faithful, hence the functor in
the lemma is fully faithful as well.

Suppose that we have an étale covering {Yi → Y }. Let fi : Xi → Yi be the base change
of f . Denote fij = fi × fj : Xi ×X Xj → Yi ×Y Yj . Claim: if the lemma is true
for fi and fij for all i, j , then the lemma is true for f . To see this, note that the given
étale covering determines an étale covering of the final object in each of the four sites
Yétale, Xétale, (Sch/Y )fppf , (Sch/X)fppf . Thus the category of sheaves is equivalent to
the category of glueing data for this covering (Sites, Lemma 26.5) in each of the four cases.
A huge commutative diagram of categories then finishes the proof of the claim. We omit
the details. The claim shows that we may work étale locally on Y . In particular, we may
assume Y is a scheme.

Assume Y is a scheme. Choose a scheme X ′ and a surjective étale morphism s : X ′ → X .
Set f ′ = f ◦ s : X ′ → Y and observe that f ′ is surjective, locally of finite presentation,
and flat. Claim: if the lemma is true for f ′, then it is true for f . Namely, given a triple
(G,H, α) for f , we can pullback by s to get a triple (s−1

smallG,H, s
−1
big,fppfα) for f ′. A

solution for this triple gives a sheaf F on Yétale with a−1
Y F = H. By the first paragraph

of the proof this means the triple is in the essential image. This reduces us to the case where
both X and Y are schemes. This case follows from Étale Cohomology, Lemma 100.4 via
the discussion in Section 3 and in particular Lemma 3.1. �
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7. Comparing fppf and étale topologies: modules

We continue the discussion in Section 6 but in this section we briefly discuss what happens
for sheaves of modules.

Let S be a scheme. LetX be an algebraic space over S. The morphisms of sites εX , πX , and
their composition aX introduced in Section 6 have natural enhancements to morphisms
of ringed sites. The first is written as

εX : ((Spaces/X)fppf ,O) −→ ((Spaces/X)étale,O)

Note that we can use the same symbol for the structure sheaf as indeed the sheaves have
the same underlying presheaf. The second is

πX : ((Spaces/X)étale,O) −→ (Xétale,OX)

The third is the morphism

aX : ((Spaces/X)fppf ,O) −→ (Xétale,OX)

Let us review what we already know about quasi-coherent modules on these sites.

Lemma 7.1. Let S be a scheme. Let X be an algebraic space over S. Let F be a quasi-
coherentOX -module.

(1) The rule

Fa : (Spaces/X)étale −→ Ab, (f : Y → X) 7−→ Γ(Y, f∗F)

satisfies the sheaf condition for fpqc and a fortiori fppf and étale coverings,
(2) Fa = π∗

XF on (Spaces/X)étale,
(3) Fa = a∗

XF on (Spaces/X)fppf ,
(4) the rule F 7→ Fa defines an equivalence between quasi-coherent OX -modules

and quasi-coherent modules on ((Spaces/X)étale,O),
(5) the rule F 7→ Fa defines an equivalence between quasi-coherent OX -modules

and quasi-coherent modules on ((Spaces/X)fppf ,O),
(6) we have εX,∗a∗

XF = π∗
XF and aX,∗a∗

XF = F ,
(7) we have RiεX,∗(a∗

XF) = 0 and RiaX,∗(a∗
XF) = 0 for i > 0.

Proof. Part (1) is a consequence of fppf descent of quasi-coherent modules. Namely,
suppose that {fi : Ui → U} is an fpqc covering in (Spaces/X)étale. Denote g : U → X
the structure morphism. Suppose that we have a family of sections si ∈ Γ(Ui, f∗

i g
∗F)

such that si|Ui×UUj = sj |Ui×UUj . We have to find the correspond section s ∈ Γ(U, g∗F).
We can reinterpret the si as a family of maps ϕi : f∗

i OU = OUi → f∗
i g

∗F compatible
with the canonical descent data associated to the quasi-coherent sheaves OU and g∗F on
U . Hence by Descent on Spaces, Proposition 4.1 we see that we may (uniquely) descend
these to a mapOU → g∗F which gives us our section s.

We will deduce (2) – (7) from the corresponding statement for schemes. Choose an étale
covering {Xi → X}i∈I where eachXi is a scheme. Observe thatXi×XXj is a scheme too.
This covering induces a covering of the final object in each of the three sites (Spaces/X)fppf ,
(Spaces/X)étale, and Xétale. Hence we see that the category of sheaves on these sites are
equivalent to descent data for these coverings, see Sites, Lemma 26.5. Parts (2), (3) are local
(because we have the glueing statement). Being quasi-coherent is a local property, hence
parts (4), (5) are local. Clearly (6) and (7) are local. It follows that it suffices to prove parts
(2) – (7) of the lemma when X is a scheme.
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AssumeX is a scheme. The embeddings (Sch/X)étale ⊂ (Spaces/X)étale and (Sch/X)fppf ⊂
(Spaces/X)fppf determine equivalences of ringed topoi by Lemma 3.1. We conclude that
(2) – (7) follows from the case of schemes. Étale Cohomology, Lemma 101.1. To transport
the property of being quasi-coherent via this equivalence use that being quasi-coherent is
an intrinsic property of modules as explained in Modules on Sites, Section 23. Some minor
details omitted. �

Lemma 7.2. Let S be a scheme. Let X be an algebraic space over S. For F a quasi-
coherentOX -module the maps

π∗
XF −→ RεX,∗(a∗

XF) and F −→ RaX,∗(a∗
XF)

are isomorphisms.
Proof. This is an immediate consequence of parts (6) and (7) of Lemma 7.1. �

Lemma 7.3. Let S be a scheme. Let X be an algebraic space over S. Let F1 → F2 →
F3 be a complex of quasi-coherentOX -modules. Set

Hétale = Ker(π∗
XF2 → π∗

XF3)/ Im(π∗
XF1 → π∗

XF2)
on (Spaces/X)étale and set

Hfppf = Ker(a∗
XF2 → a∗

XF3)/ Im(a∗
XF1 → a∗

XF2)
on (Spaces/X)fppf . ThenHétale = εX,∗Hfppf and

Hp
étale(U,Hétale) = Hp

fppf (U,Hfppf ) = 0
for p > 0 and any affine object U of (Spaces/X)étale.
More is true, namely the collection of modules on (Spaces/X)fppf which fppf locally look
like those in the lemma are called adquate modules. They form a weak Serre subcategory
of the category of all O-modules and their cohomology is studied in Adequate Modules,
Section 5.

Proof. For any object f : U → X of (Spaces/X)étale consider the restriction
Hétale|Uétale of Hétale to Uétale via the functor i∗f = i−1

f discussed in Section 5. The
sheaf Hétale|Uétale is equal to the homology of complex f∗F• in degree 1. This is true
because if ◦ πX = f as morphisms of ringed sites Uétale → Xétale. In particular we see
thatHétale|Uétale is a quasi-coherentOU -module. Next, let g : V → U be a flat morphism
in (Spaces/X)étale. Since

i∗f◦g ◦ π∗
X = (f ◦ g)∗ = g∗ ◦ f∗

as morphisms of sites Vétale → Xétale and since g is flat hence g∗ is exact, we obtain
Hétale|Vétale = g∗ (Hétale|Uétale)

With these preparations we are ready to prove the lemma.
Let U = {gi : Ui → U}i∈I be an fppf covering with f : U → X as above. The sheaf
propery holds forHétale and the covering U by (1) of Lemma 7.1 applied toHétale|Uétale
and the above. Therefore we see that Hétale is already an fppf sheaf and this means that
Hfppf is equal toHétale as a presheaf. In particularHétale = εX,∗Hfppf .
Finally, to prove the vanishing, we use Cohomology on Sites, Lemma 10.9. We let B be
the affine objects of (Spaces/X)fppf and we let Cov be the set of finite fppf coverings
U = {Ui → U}i=1,...,n with U , Ui affine. We have

Ȟp(U ,Hétale) = Ȟp(U , (Hétale|Uétale)
a)



7. COMPARING FPPF AND ÉTALE TOPOLOGIES: MODULES 6045

because the values of Hétale on the affine schemes Ui0 ×U . . . ×U Uip flat over U agree
with the values of the pullback of the quasi-coherent module Hétale|Uétale by the first
paragraph. Hence we obtain vanishing by Descent, Lemma 9.2. This finishes the proof.

�

Lemma 7.4. Let S be a scheme. Let X be an algebraic space over S. For K ∈
DQCoh(OX) the maps

Lπ∗
XK −→ RεX,∗(La∗

XK) and K −→ RaX,∗(La∗
XK)

are isomorphisms. Here aX : Sh((Spaces/X)fppf )→ Sh(Xétale) is as above.

Proof. The question is étale local on X hence we may assume X is affine. Say X =
Spec(A). Then we have DQCoh(OX) = D(A) by Derived Categories of Spaces, Lemma
4.2 and Derived Categories of Schemes, Lemma 3.5. Hence we can choose an K-flat com-
plex of A-modules K• whose corresponding complex K• of quasi-coherent OX -modules
represents K. We claim that K• is a K-flat complex ofOX -modules.

Proof of the claim. By Derived Categories of Schemes, Lemma 3.6 we see that K̃• is K-flat
on the scheme (Spec(A),OSpec(A)). Next, note that K• = ε∗K̃• where ε is as in Derived
Categories of Spaces, Lemma 4.2 whenceK• is K-flat by Cohomology on Sites, Lemma 18.7
and the fact that the étale site of a scheme has enough points (Étale Cohomology, Remarks
29.11).

By the claim we see that La∗
XK = a∗

XK• and Lπ∗
XK = π∗

XK•. Since the first part of
the proof shows that the pullback a∗

XKn of the quasi-coherent module is acyclic for εX,∗,
resp. aX,∗, surely the proof is done by Leray’s acyclicity lemma? Actually..., no because
Leray’s acyclicity lemma only applies to bounded below complexes. However, in the next
paragraph we will show the result does follow from the bounded below case because our
complex is the derived limit of bounded below complexes of quasi-coherent modules.

The cohomology sheaves of π∗
XK• and a∗

XK• have vanishing higher cohomology groups
over affine objects of (Spaces/X)étale by Lemma 7.3. Therefore we have

Lπ∗
XK = R lim τ≥−n(Lπ∗

XK) and La∗
XK = R lim τ≥−n(La∗

XK)

by Cohomology on Sites, Lemma 23.10.

Proof of Lπ∗
XK = RεX,∗(La∗

XF). By the above we have

RεX,∗La
∗
XK = R limRεX,∗(τ≥−n(La∗

XK))

by Cohomology on Sites, Lemma 23.3. Note that τ≥−n(La∗
XK) is represented by τ≥−n(a∗

XK•)
which may not be the same as a∗

X(τ≥−nK•). But clearly the systems

{τ≥−n(a∗
XK•)}n≥1 and {a∗

X(τ≥−nK•)}n≥1

are isomorphic as pro-systems. By Leray’s acyclicity lemma (Derived Categories, Lemma
16.7) and the first part of the lemma we see that

RεX,∗(a∗
X(τ≥−nK•)) = π∗

X(τ≥−nK•)

Then we can use that the systems

{τ≥−n(π∗
XK•)}n≥1 and {π∗

X(τ≥−nK•)}n≥1
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are isomorphic as pro-systems. Finally, we put everything together as follows

RεX,∗La
∗
XK = RεX,∗(R lim τ≥−n(La∗

XK))
= R limRεX,∗(τ≥−n(La∗

XK))
= R limRεX,∗(τ≥−n(a∗

XK•))
= R limRεX,∗(a∗

X(τ≥−nK•))
= R lim π∗

X(τ≥−nK•)
= R lim τ≥−n(π∗

XK•)
= R lim τ≥−n(Lπ∗

XK)
= Lπ∗

XK

Here in equalities four and six we have used that isomorphic pro-systems have the same
R lim (small detail omitted). You can avoid this step by using more about cohomology of
the terms of the complex τ≥−na

∗
XK• proved in Lemma 7.3 as this will prove directly that

RεX,∗(τ≥−n(a∗
XK•)) = τ≥−n(π∗

XK•).

The equality K = RaX,∗(La∗
XF) is proved in exactly the same way using in the final

step that K = R lim τ≥−nK by Derived Categories of Spaces, Lemma 5.7. �

8. Comparing ph and étale topologies

This section is the analogue of Étale Cohomology, Section 102.

Let S be a scheme. LetX be an algebraic space over S. On the category Spaces/X we con-
sider the ph and étale topologies. The identity functor (Spaces/X)étale → (Spaces/X)ph
is continuous as every étale covering is a ph covering by Topologies on Spaces, Lemma 8.2.
Hence it defines a morphism of sites

εX : (Spaces/X)ph −→ (Spaces/X)étale
by an application of Sites, Proposition 14.7. Please note that εX,∗ is the identity functor
on underlying presheaves and that ε−1

X associates to an étale sheaf the ph sheafification.
Consider the morphism of sites

πX : (Spaces/X)étale −→ Xspaces,étale

comparing big and small étale sites, see Section 5. The composition determines a morphism
of sites

aX = πX ◦ εX : (Spaces/X)ph −→ Xspaces,étale

IfH is an abelian sheaf on (Spaces/X)ph, then we will writeHn
ph(U,H) for the cohomol-

ogy ofH over an object U of (Spaces/X)ph.

Lemma 8.1. Let S be a scheme. Let X be an algebraic space over S.
(1) For F ∈ Sh(Xétale) we have εX,∗a−1

X F = π−1
X F and aX,∗a−1

X F = F .
(2) For F ∈ Ab(Xétale) torsion we have RiεX,∗(a−1

X F) = 0 for i > 0.

Proof. We have a−1
X F = ε−1

X π−1
X F . By Lemma 5.1 the étale sheaf π−1

X F is a sheaf
for the ph topology and therefore is equal to a−1

X F (as pulling back by εX is given by ph
sheafification). Recall moreover that εX,∗ is the identity on underlying presheaves. Now
part (1) is immediate from the explicit description of π−1

X in Lemma 5.1.
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We will prove part (2) by reducing it to the case of schemes – see part (1) of Étale Coho-
mology, Lemma 102.5. This will “clearly work” as every algebraic space is étale locally a
scheme. The details are given below but we urge the reader to skip the proof.
For an abelian sheaf H on (Spaces/X)ph the higher direct image RpεX,∗H is the sheaf
associated to the presheafU 7→ Hp

ph(U,H) on (Spaces/X)étale. See Cohomology on Sites,
Lemma 7.4. Since every object of (Spaces/X)étale has a covering by schemes, it suffices
to prove that given U/X a scheme and ξ ∈ Hp

ph(U, a−1
X F) we can find an étale covering

{Ui → U} such that ξ restricts to zero on Ui. We have
Hp
ph(U, a−1

X F) = Hp((Spaces/U)ph, (a−1
X F)|Spaces/U )

= Hp((Sch/U)ph, (a−1
X F)|Sch/U )

where the second identification is Lemma 3.1 and the first is a general fact about restriction
(Cohomology on Sites, Lemma 7.1). Looking at the first paragraph and the corresponding
result in the case of schemes (Étale Cohomology, Lemma 102.1) we conclude that the sheaf
(a−1
X F)|Sch/U matches the pullback by the “schemes version of aU ”. Therefore we can find

an étale covering {Ui → U} such that our class dies in Hp((Sch/Ui)ph, (a−1
X F)|Sch/Ui)

for each i, see Étale Cohomology, Lemma 102.5 (the precise statement one should use here
is that Vn holds for all nwhich is the statement of part (2) for the case of schemes). Trans-
porting back (using the same formulas as above but now for Ui) we conclude ξ restricts to
zero over Ui as desired. �

The hard work done in the case of schemes now tells us that étale and ph cohomology
agree for torsion abelian sheaves coming from the small étale site.

Lemma 8.2. Let S be a scheme. Let X be an algebraic space over S. For K ∈
D+(Xétale) with torsion cohomology sheaves the maps

π−1
X K −→ RεX,∗a

−1
X K and K −→ RaX,∗a

−1
X K

are isomorphisms with aX : Sh((Spaces/X)ph)→ Sh(Xétale) as above.

Proof. We only prove the second statement; the first is easier and proved in exactly
the same manner. There is a reduction to the case where K is given by a single torsion
abelian sheaf. Namely, represent K by a bounded below complex F• of torsion abelian
sheaves. This is possible by Cohomology on Sites, Lemma 19.8. By the case of a sheaf
we see that Fn = aX,∗a

−1
X Fn and that the sheaves RqaX,∗a−1

X Fn are zero for q > 0.
By Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) applied to a−1

X F• and the
functor aX,∗ we conclude. From now on assume K = F where F is a torsion abelian
sheaf.
By Lemma 8.1 we have aX,∗a−1

X F = F . Thus it suffices to show that RqaX,∗a−1
X F = 0

for q > 0. For this we can use aX = εX◦πX and the Leray spectral sequence (Cohomology
on Sites, Lemma 14.7). By Lemma 8.1 we have RiεX,∗(a−1

X F) = 0 for i > 0. We have
εX,∗a

−1
X F = π−1

X F and by Lemma 5.5 we have RjπX,∗(π−1
X F) = 0 for j > 0. This

concludes the proof. �

Lemma 8.3. Let S be a scheme and let X be an algebraic space over S. With aX :
Sh((Spaces/X)ph)→ Sh(Xétale) as above:

(1) Hq(Xétale,F) = Hq
ph(X, a−1

X F) for a torsion abelian sheaf F on Xétale,
(2) Hq(Xétale,K) = Hq

ph(X, a−1
X K) for K ∈ D+(Xétale) with torsion cohomol-

ogy sheaves
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Example: if A is a torsion abelian group, then Hq
étale(X,A) = Hq

ph(X,A).

Proof. This follows from Lemma 8.2 by Cohomology on Sites, Remark 14.4. �

Lemma 8.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then there are commutative diagrams of topoi

Sh((Spaces/X)ph)
fbig,ph

//

εX

��

Sh((Spaces/Y )ph)

εY

��
Sh((Spaces/X)étale)

fbig,étale // Sh((Spaces/Y )étale)

and
Sh((Spaces/X)ph)

fbig,ph

//

aX

��

Sh((Spaces/Y )ph)

aY

��
Sh(Xétale)

fsmall // Sh(Yétale)

with aX = πX ◦ εX and aY = πX ◦ εX .

Proof. This follows immediately from working out the definitions of the morphisms
involved, see Topologies on Spaces, Section 8 and Section 5. �

Lemma 8.5. In Lemma 8.4 if f is proper, then we have
(1) a−1

Y ◦ fsmall,∗ = fbig,ph,∗ ◦ a−1
X , and

(2) a−1
Y (Rfsmall,∗K) = Rfbig,ph,∗(a−1

X K) for K in D+(Xétale) with torsion co-
homology sheaves.

Proof. Proof of (1). You can prove this by repeating the proof of Lemma 5.6 part
(1); we will instead deduce the result from this. As εY,∗ is the identity functor on under-
lying presheaves, it reflects isomorphisms. Lemma 8.1 shows that εY,∗ ◦ a−1

Y = π−1
Y and

similarly for X . To show that the canonical map a−1
Y fsmall,∗F → fbig,ph,∗a

−1
X F is an

isomorphism, it suffices to show that

π−1
Y fsmall,∗F = εY,∗a

−1
Y fsmall,∗F

→ εY,∗fbig,ph,∗a
−1
X F

= fbig,étale,∗εX,∗a
−1
X F

= fbig,étale,∗π
−1
X F

is an isomorphism. This is part (1) of Lemma 5.6.

To see (2) we use that

RεY,∗Rfbig,ph,∗a
−1
X K = Rfbig,étale,∗RεX,∗a

−1
X K

= Rfbig,étale,∗π
−1
X K

= π−1
Y Rfsmall,∗K

= RεY,∗a
−1
Y Rfsmall,∗K

The first equality by the commutative diagram in Lemma 8.4 and Cohomology on Sites,
Lemma 19.2. Then second equality is Lemma 8.2. The third is Lemma 5.6 part (2). The
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fourth is Lemma 8.2 again. Thus the base change map a−1
Y (Rfsmall,∗K)→ Rfbig,ph,∗(a−1

X K)
induces an isomorphism

RεY,∗a
−1
Y Rfsmall,∗K → RεY,∗Rfbig,ph,∗a

−1
X K

The proof is finished by the following remark: consider a map α : a−1
Y L→M with L in

D+(Yétale) having torsion cohomology sheaves andM inD+((Spaces/Y )ph). IfRεY,∗α
is an isomorphism, then α is an isomorphism. Namely, we show by induction on i that
Hi(α) is an isomorphism. This is true for all sufficiently small i. If it holds for i ≤ i0,
then we see thatRjεY,∗Hi(M) = 0 for j > 0 and i ≤ i0 by Lemma 8.1 becauseHi(M) =
a−1
Y Hi(L) in this range. Hence εY,∗Hi0+1(M) = Hi0+1(RεY,∗M) by a spectral sequence

argument. Thus εY,∗Hi0+1(M) = π−1
Y Hi0+1(L) = εY,∗a

−1
Y Hi0+1(L). This implies

Hi0+1(α) is an isomorphism (because εY,∗ reflects isomorphisms as it is the identity on
underlying presheaves) as desired. �
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CHAPTER 85

Simplicial Spaces

1. Introduction

This chapter develops some theory concerning simplicial topological spaces, simplicial
ringed spaces, simplicial schemes, and simplicial algebraic spaces. The theory of simplicial
spaces sometimes allows one to prove local to global principles which appear difficult to
prove in other ways. Some example applications can be found in the papers [?], [?], and
[?].

We assume throughout that the reader is familiar with the basic concepts and results of the
chapter Simplicial Methods, see Simplicial, Section 1. In particular, we continue to write
X and not X• for a simplicial object.

2. Simplicial topological spaces

A simplicial space is a simplicial object in the category of topological spaces where mor-
phisms are continuous maps of topological spaces. (We will use “simplicial algebraic space”
to refer to simplicial objects in the category of algebraic spaces.) We may picture a simpli-
cial space X as follows

X2

//
//
//
X1

//
//oo

oo
X0oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 → X1,
etc. It is important to keep in mind that dni : Xn → Xn−1 should be thought of as a
“projection forgetting the ith coordinate” and snj : Xn → Xn+1 as the diagonal map
repeating the jth coordinate.

Let X be a simplicial space. We associate a site XZar
1 to X as follows.

(1) An object of XZar is an open U of Xn for some n,
(2) a morphism U → V of XZar is given by a ϕ : [m] → [n] where n,m are such

that U ⊂ Xn, V ⊂ Xm and ϕ is such that X(ϕ)(U) ⊂ V , and
(3) a covering {Ui → U} in XZar means that U,Ui ⊂ Xn are open, the maps

Ui → U are given by id : [n]→ [n], and U =
⋃
Ui.

Note that in particular, if U → V is a morphism of XZar given by ϕ, then X(ϕ) : Xn →
Xm does in fact induce a continuous map U → V of topological spaces.
It is clear that the above is a special case of a construction that associates to any diagram
of topological spaces a site. We formulate the obligatory lemma.

Lemma 2.1. Let X be a simplicial space. Then XZar as defined above is a site.

Proof. Omitted. �

1This notation is similar to the notation in Sites, Example 6.4 and Topologies, Definition 3.7.

6051
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Let X be a simplicial space. Let F be a sheaf on XZar. It is clear from the definition of
coverings, that the restriction ofF to the opens ofXn defines a sheafFn on the topological
space Xn. For every ϕ : [m]→ [n] the restriction maps of F for pairs U ⊂ Xn, V ⊂ Xm

withX(ϕ)(U) ⊂ V , define anX(ϕ)-mapF(ϕ) : Fm → Fn, see Sheaves, Definition 21.7.
Moreover, given ϕ : [m]→ [n] and ψ : [l]→ [m] we have

F(ϕ) ◦ F(ψ) = F(ϕ ◦ ψ)

(LHS uses composition of f -maps, see Sheaves, Definition 21.9). Clearly, the converse is
true as well: if we have a system ({Fn}n≥0, {F(ϕ)}ϕ∈Arrows(∆)) as above, satisfying the
displayed equalities, then we obtain a sheaf on XZar.

Lemma 2.2. LetX be a simplicial space. There is an equivalence of categories between
(1) Sh(XZar), and
(2) category of systems (Fn,F(ϕ)) described above.

Proof. See discussion above. �

Lemma 2.3. Let f : Y → X be a morphism of simplicial spaces. Then the functor
u : XZar → YZar which associates to the open U ⊂ Xn the open f−1

n (U) ⊂ Yn defines a
morphism of sites fZar : YZar → XZar.

Proof. It is clear that u is a continuous functor. Hence we obtain functors fZar,∗ =
us and f−1

Zar = us, see Sites, Section 14. To see that we obtain a morphism of sites we
have to show that us is exact. We will use Sites, Lemma 14.6 to see this. Let V ⊂ Yn
be an open subset. The category IuV (see Sites, Section 5) consists of pairs (U,ϕ) where
ϕ : [m]→ [n] and U ⊂ Xm open such that Y (ϕ)(V ) ⊂ f−1

m (U). Moreover, a morphism
(U,ϕ)→ (U ′, ϕ′) is given by a ψ : [m′]→ [m] such thatX(ψ)(U) ⊂ U ′ and ϕ◦ψ = ϕ′.
It is our task to show that IuV is cofiltered.

We verify the conditions of Categories, Definition 20.1. Condition (1) holds because
(Xn, id[n]) is an object. Let (U,ϕ) be an object. The condition Y (ϕ)(V ) ⊂ f−1

m (U) is
equivalent toV ⊂ f−1

n (X(ϕ)−1(U)). Hence we obtain a morphism (X(ϕ)−1(U), id[n])→
(U,ϕ) given by setting ψ = ϕ. Moreover, given a pair of objects of the form (U, id[n])
and (U ′, id[n]) we see there exists an object, namely (U ∩ U ′, id[n]), which maps to both
of them. Thus condition (2) holds. To verify condition (3) suppose given two mor-
phisms a, a′ : (U,ϕ) → (U ′, ϕ′) given by ψ,ψ′ : [m′] → [m]. Then precompos-
ing with the morphism (X(ϕ)−1(U), id[n]) → (U,ϕ) given by ϕ equalizes a, a′ because
ϕ ◦ ψ = ϕ′ = ϕ ◦ ψ′. This finishes the proof. �

Lemma 2.4. Let f : Y → X be a morphism of simplicial spaces. In terms of the
description of sheaves in Lemma 2.2 the morphism fZar of Lemma 2.3 can be described as
follows.

(1) If G is a sheaf on Y , then (fZar,∗G)n = fn,∗Gn.
(2) If F is a sheaf on X , then (f−1

ZarF)n = f−1
n Fn.

Proof. The first part is immediate from the definitions. For the second part, note that
in the proof of Lemma 2.3 we have shown that for a V ⊂ Yn open the category (IuV )opp
contains as a cofinal subcategory the category of opens U ⊂ Xn with f−1

n (U) ⊃ V and
morphisms given by inclusions. Hence we see that the restriction of upF to opens of Yn
is the presheaf fn,pFn as defined in Sheaves, Lemma 21.3. Since f−1

ZarF = usF is the
sheafification of upF and since sheafification uses only coverings and since coverings in
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YZar use only inclusions between opens on the same Yn, the result follows from the fact
that f−1

n Fn is (correspondingly) the sheafification of fn,pFn, see Sheaves, Section 21. �

Let X be a topological space. In Sites, Example 6.4 we denoted XZar the site consisting
of opens of X with inclusions as morphisms and coverings given by open coverings. We
identify the topos Sh(XZar) with the category of sheaves on X .

Lemma 2.5. LetX be a simplicial space. The functorXn,Zar → XZar ,U 7→ U is con-
tinuous and cocontinuous. The associated morphism of topoi gn : Sh(Xn)→ Sh(XZar)
satisfies

(1) g−1
n associates to the sheaf F on X the sheaf Fn on Xn,

(2) g−1
n : Sh(XZar)→ Sh(Xn) has a left adjoint gShn! ,

(3) gShn! commutes with finite connected limits,
(4) g−1

n : Ab(XZar)→ Ab(Xn) has a left adjoint gn!, and
(5) gn! is exact.

Proof. Besides the properties of our functor mentioned in the statement, the cate-
gory Xn,Zar has fibre products and equalizers and the functor commutes with them (be-
ware that XZar does not have all fibre products). Hence the lemma follows from the
discussion in Sites, Sections 20 and 21 and Modules on Sites, Section 16. More precisely,
Sites, Lemmas 21.1, 21.5, and 21.6 and Modules on Sites, Lemmas 16.2 and 16.3. �

Lemma 2.6. Let X be a simplicial space. If I is an injective abelian sheaf on XZar ,
then In is an injective abelian sheaf on Xn.

Proof. This follows from Homology, Lemma 29.1 and Lemma 2.5. �

Lemma 2.7. Let f : Y → X be a morphism of simplicial spaces. Then

Sh(Yn)

��

fn

// Sh(Xn)

��
Sh(YZar)

fZar // Sh(XZar)

is a commutative diagram of topoi.

Proof. Direct from the description of pullback functors in Lemmas 2.4 and 2.5. �

Lemma 2.8. Let Y be a simplicial space and let a : Y → X be an augmentation (Sim-
plicial, Definition 20.1). Let an : Yn → X be the corresponding morphisms of topological
spaces. There is a canonical morphism of topoi

a : Sh(YZar)→ Sh(X)
with the following properties:

(1) a−1F is the sheaf restricting to a−1
n F on Yn,

(2) am ◦ Y (ϕ) = an for all ϕ : [m]→ [n],
(3) a ◦ gn = an as morphisms of topoi with gn as in Lemma 2.5,
(4) a∗G for G ∈ Sh(YZar) is the equalizer of the two maps a0,∗G0 → a1,∗G1.

Proof. Part (2) holds for augmentations of simplicial objects in any category. Thus
Y (ϕ)−1a−1

m F = a−1
n F which defines an Y (ϕ)-map from a−1

m F to a−1
n F . Thus we can

use (1) as the definition of a−1F (using Lemma 2.2) and (4) as the definition of a∗. If this
defines a morphism of topoi then part (3) follows because we’ll have g−1

n ◦ a−1 = a−1
n by

construction. To check a is a morphism of topoi we have to show that a−1 is left adjoint



6054 85. SIMPLICIAL SPACES

to a∗ and we have to show that a−1 is exact. The last fact is immediate from the exactness
of the functors a−1

n .

Let F be an object of Sh(X) and let G be an object of Sh(YZar). Given β : a−1F → G
we can look at the components βn : a−1

n F → Gn. These maps are adjoint to maps βn :
F → an,∗Gn. Compatibility with the simplicial structure shows that β0 maps into a∗G.
Conversely, suppose given a map α : F → a∗G. For any n choose a ϕ : [0] → [n]. Then
we can look at the composition

F α−→ a∗G → a0,∗G0
G(ϕ)−−−→ an,∗Gn

These are adjoint to maps a−1
n F → Gn which define a morphism of sheaves a−1F → G.

We omit the proof that the constructions given above define mutually inverse bijections

MorSh(YZar)(a−1F ,G) = MorSh(X)(F , a∗G)

This finishes the proof. An interesting observation is here that this morphism of topoi does
not correspond to any obvious geometric functor between the sites defining the topoi. �

Lemma 2.9. LetX be a simplicial topological space. The complex of abelian presheaves
on XZar

. . .→ ZX2 → ZX1 → ZX0

with boundary
∑

(−1)idni is a resolution of the constant presheaf Z.

Proof. Let U ⊂ Xm be an object of XZar. Then the value of the complex above on
U is the complex of abelian groups

. . .→ Z[Mor∆([2], [m])]→ Z[Mor∆([1], [m])]→ Z[Mor∆([0], [m])]

In other words, this is the complex associated to the free abelian group on the simplicial
set ∆[m], see Simplicial, Example 11.2. Since ∆[m] is homotopy equivalent to ∆[0], see
Simplicial, Example 26.7, and since “taking free abelian groups” is a functor, we see that
the complex above is homotopy equivalent to the free abelian group on ∆[0] (Simplicial,
Remark 26.4 and Lemma 27.2). This complex is acyclic in positive degrees and equal to Z
in degree 0. �

Lemma 2.10. LetX be a simplicial topological space. LetF be an abelian sheaf onX .
There is a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Xp,Fp)

converging to Hp+q(XZar,F). This spectral sequence is functorial in F .

Proof. Let F → I• be an injective resolution. Consider the double complex with
terms

Ap,q = Iq(Xp)
and first differential given by the alternating sum along the maps dp+1

i -maps Iqp → I
q
p+1,

see Lemma 2.2. Note that

Ap,q = Γ(Xp, Iqp) = MorPSh(hXp , Iq) = MorPAb(ZXp , Iq)

Hence it follows from Lemma 2.9 and Cohomology on Sites, Lemma 10.1 that the rows of
the double complex are exact in positive degrees and evaluate to Γ(XZar, Iq) in degree 0.
On the other hand, since restriction is exact (Lemma 2.5) the map

Fp → I•
p
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is a resolution. The sheaves Iqp are injective abelian sheaves onXp (Lemma 2.6). Hence the
cohomology of the columns computes the groups Hq(Xp,Fp). We conclude by applying
Homology, Lemmas 25.3 and 25.4. �

Lemma 2.11. Let X be a simplicial space and let a : X → Y be an augmentation. Let
F be an abelian sheaf on XZar. Then Rna∗F is the sheaf associated to the presheaf

V 7−→ Hn((X ×Y V )Zar,F|(X×Y V )Zar )

Proof. This is the analogue of Cohomology, Lemma 7.3 or of Cohomology on Sites,
Lemma 7.4 and we strongly encourge the reader to skip the proof. Choosing an injective
resolution of F on XZar and using the definitions we see that it suffices to show: (1) the
restriction of an injective abelian sheaf on XZar to (X ×Y V )Zar is an injective abelian
sheaf and (2) a∗F is equal to the rule

V 7−→ H0((X ×Y V )Zar,F|(X×Y V )Zar )

Part (2) follows from the following facts
(2a) a∗F is the equalizer of the two maps a0,∗F0 → a1,∗F1 by Lemma 2.8,
(2b) a0,∗F0(V ) = H0(a−1

0 (V ),F0) and a1,∗F1(V ) = H0(a−1
1 (V ),F1),

(2c) X0 ×Y V = a−1
0 (V ) and X1 ×Y V = a−1

1 (V ),
(2d) H0((X ×Y V )Zar,F|(X×Y V )Zar ) is the equalizer of the two maps H0(X0 ×Y

V,F0)→ H0(X1 ×Y V,F1) for example by Lemma 2.10.
Part (1) follows after one defines an exact left adjoint j! : Ab((X×Y V )Zar)→ Ab(XZar)
(extension by zero) to restriction Ab(XZar)→ Ab((X ×Y V )Zar) and using Homology,
Lemma 29.1. �

Let X be a topological space. Denote X• the constant simplicial topological space with
value X . By Lemma 2.2 a sheaf on X•,Zar is the same thing as a cosimplicial object in the
category of sheaves on X .

Lemma 2.12. Let X be a topological space. Let X• be the constant simplicial topo-
logical space with value X . The functor

X•,Zar −→ XZar, U 7−→ U

is continuous and cocontinuous and defines a morphism of topoi g : Sh(X•,Zar) →
Sh(X) as well as a left adjoint g! to g−1. We have

(1) g−1 associates to a sheaf on X the constant cosimplicial sheaf on X ,
(2) g! associates to a sheaf F on X•,Zar the sheaf F0, and
(3) g∗ associates to a sheaf F on X•,Zar the equalizer of the two maps F0 → F1.

Proof. The statements about the functor are straightforward to verify. The existence
of g and g! follow from Sites, Lemmas 21.1 and 21.5. The description of g−1 is immediate
from Sites, Lemma 21.5. The description of g∗ and g! follows as the functors given are
right and left adjoint to g−1. �

3. Simplicial sites and topoi

It seems natural to define a simplicial site as a simplicial object in the (big) category whose
objects are sites and whose morphisms are morphisms of sites. See Sites, Definitions 6.2 and
14.1 with composition of morphisms as in Sites, Lemma 14.4. But here are some variants
one might want to consider: (a) we could work with cocontinuous functors (see Sites,
Sections 20 and 21) between sites instead, (b) we could work in a suitable 2-category of
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sites where one introduces the notion of a 2-morphism between morphisms of sites, (c) we
could work in a 2-category constructed out of cocontinuous functors. Instead of picking
one of these variants as a definition we will simply develop theory as needed.
Certainly a simplicial topos should probably be defined as a pseudo-functor from ∆opp

into the 2-category of topoi. See Categories, Definition 29.5 and Sites, Section 15 and 36.
We will try to avoid working with such a beast if possible.
Case A. Let C be a simplicial object in the category whose objects are sites and whose mor-
phisms are morphisms of sites. This means that for every morphism ϕ : [m] → [n] of
∆ we have a morphism of sites fϕ : Cn → Cm. This morphism is given by a continuous
functor in the opposite direction which we will denote uϕ : Cm → Cn.

Lemma 3.1. Let C be a simplicial object in the category of sites. With notation as
above we construct a site Ctotal as follows.

(1) An object of Ctotal is an object U of Cn for some n,
(2) a morphism (ϕ, f) : U → V of Ctotal is given by a map ϕ : [m] → [n] with

U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : U → uϕ(V ) of Cn, and
(3) a covering {(id, fi) : Ui → U} in Ctotal is given by an n and a covering {fi :

Ui → U} of Cn.
Proof. Composition of (ϕ, f) : U → V with (ψ, g) : V → W is given by (ϕ ◦

ψ, uϕ(g) ◦ f). This uses that uϕ ◦ uψ = uϕ◦ψ .
Let {(id, fi) : Ui → U} be a covering as in (3) and let (ϕ, g) : W → U be a morphism
with W ∈ Ob(Cm). We claim that

W ×(ϕ,g),U,(id,fi) Ui = W ×g,uϕ(U),uϕ(fi) uϕ(Ui)
in the category Ctotal. This makes sense as by our definition of morphisms of sites, the
required fibre products in Cm exist since uϕ transforms coverings into coverings. The
same reasoning implies the claim (details omitted). Thus we see that the collection of
coverings is stable under base change. The other axioms of a site are immediate. �

Case B. Let C be a simplicial object in the category whose objects are sites and whose mor-
phisms are cocontinuous functors. This means that for every morphism ϕ : [m]→ [n] of
∆ we have a cocontinuous functor denoted uϕ : Cn → Cm. The associated morphism of
topoi is denoted fϕ : Sh(Cn)→ Sh(Cm).

Lemma 3.2. Let C be a simplicial object in the category whose objects are sites and
whose morphisms are cocontinuous functors. With notation as above, assume the functors
uϕ : Cn → Cm have property P of Sites, Remark 20.5. Then we can construct a site Ctotal
as follows.

(1) An object of Ctotal is an object U of Cn for some n,
(2) a morphism (ϕ, f) : U → V of Ctotal is given by a map ϕ : [m] → [n] with

U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : uϕ(U)→ V of Cm, and
(3) a covering {(id, fi) : Ui → U} in Ctotal is given by an n and a covering {fi :

Ui → U} of Cn.
Proof. Composition of (ϕ, f) : U → V with (ψ, g) : V →W is given by (ϕ◦ψ, g ◦

uψ(f)). This uses that uψ ◦ uϕ = uϕ◦ψ .
Let {(id, fi) : Ui → U} be a covering as in (3) and let (ϕ, g) : W → U be a morphism
with W ∈ Ob(Cm). We claim that

W ×(ϕ,g),U,(id,fi) Ui = W ×g,U,fi Ui
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in the category Ctotal where the right hand side is the object of Cm defined in Sites, Remark
20.5 which exists by property P . Compatibility of this type of fibre product with compo-
sitions of functors implies the claim (details omitted). Since the family {W ×g,U,fi Ui →
W} is a covering of Cm by property P we see that the collection of coverings is stable
under base change. The other axioms of a site are immediate. �

Situation 3.3. Here we have one of the following two cases:
(A) C is a simplicial object in the category whose objects are sites and whose mor-

phisms are morphisms of sites. For every morphism ϕ : [m]→ [n] of ∆ we have
a morphism of sites fϕ : Cn → Cm given by a continuous functor uϕ : Cm → Cn.

(B) C is a simplicial object in the category whose objects are sites and whose mor-
phisms are cocontinuous functors having property P of Sites, Remark 20.5. For
every morphism ϕ : [m]→ [n] of ∆ we have a cocontinuous functor uϕ : Cn →
Cm which induces a morphism of topoi fϕ : Sh(Cn)→ Sh(Cm).

As usual we will denote f−1
ϕ and fϕ,∗ the pullback and pushforward. We let Ctotal denote

the site defined in Lemma 3.1 (case A) or Lemma 3.2 (case B).

Let C be as in Situation 3.3. Let F be a sheaf on Ctotal. It is clear from the definition of
coverings, that the restriction of F to the objects of Cn defines a sheaf Fn on the site Cn.
For every ϕ : [m]→ [n] the restriction maps of F along the morphisms (ϕ, f) : U → V
with U ∈ Ob(Cn) and V ∈ Ob(Cm) define an element F(ϕ) of

MorSh(Cm)(Fm, fϕ,∗Fn) = MorSh(Cn)(f−1
ϕ Fm,Fn)

Moreover, given ϕ : [m]→ [n] and ψ : [l]→ [m] the diagrams

Fl F(ϕ◦ψ)
//

F(ψ) ##

fϕ◦ψ,∗Fn

fψ,∗Fm
fψ,∗F(ϕ)

99

and

f−1
ϕ◦ψFl F(ϕ◦ψ)

//

f−1
ϕ F(ψ) $$

Fn

f−1
ϕ Fm

F(ϕ)

<<

commute. Clearly, the converse statement is true as well: if we have a system ({Fn}n≥0, {F(ϕ)}ϕ∈Arrows(∆))
satisfying the commutativity constraints above, then we obtain a sheaf on Ctotal.

Lemma 3.4. In Situation 3.3 there is an equivalence of categories between
(1) Sh(Ctotal), and
(2) the category of systems (Fn,F(ϕ)) described above.

In particular, the topos Sh(Ctotal) only depends on the topoi Sh(Cn) and the morphisms
of topoi fϕ.

Proof. See discussion above. �

Lemma 3.5. In Situation 3.3 the functor Cn → Ctotal, U 7→ U is continuous and
cocontinuous. The associated morphism of topoi gn : Sh(Cn)→ Sh(Ctotal) satisfies

(1) g−1
n associates to the sheaf F on Ctotal the sheaf Fn on Cn,

(2) g−1
n : Sh(Ctotal)→ Sh(Cn) has a left adjoint gShn! ,

(3) for G in Sh(Cn) the restriction of gShn! G to Cm is
∐
ϕ:[n]→[m] f

−1
ϕ G ,

(4) gShn! commutes with finite connected limits,
(5) g−1

n : Ab(Ctotal)→ Ab(Cn) has a left adjoint gn!,
(6) for G in Ab(Cn) the restriction of gn!G to Cm is

⊕
ϕ:[n]→[m] f

−1
ϕ G , and

(7) gn! is exact.
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Proof. Case A. If {Ui → U}i∈I is a covering in Cn then the image {Ui → U}i∈I is
a covering in Ctotal by definition (Lemma 3.1). For a morphism V → U of Cn, the fibre
product V ×U Ui in Cn is also the fibre product in Ctotal (by the claim in the proof of
Lemma 3.1). Therefore our functor is continuous. On the other hand, our functor defines
a bijection between coverings of U in Cn and coverings of U in Ctotal. Therefore it is
certainly the case that our functor is cocontinuous.

Case B. If {Ui → U}i∈I is a covering in Cn then the image {Ui → U}i∈I is a covering
in Ctotal by definition (Lemma 3.2). For a morphism V → U of Cn, the fibre product
V ×U Ui in Cn is also the fibre product in Ctotal (by the claim in the proof of Lemma 3.2).
Therefore our functor is continuous. On the other hand, our functor defines a bijection
between coverings of U in Cn and coverings of U in Ctotal. Therefore it is certainly the
case that our functor is cocontinuous.

At this point part (1) and the existence of gShn! and gn! in cases A and B follows from Sites,
Lemmas 21.1 and 21.5 and Modules on Sites, Lemma 16.2.

Proof of (3). Let G be a sheaf on Cn. Consider the sheafH on Ctotal whose degree m part
is the sheaf

Hm =
∐

ϕ:[n]→[m]
f−1
ϕ G

given in part (3) of the statement of the lemma. Given a map ψ : [m] → [m′] the map
H(ψ) : f−1

ψ Hm → Hm′ is given on components by the identifications

f−1
ψ f−1

ϕ G → f−1
ψ◦ϕG

Observe that given a map α : H → F of sheaves on Ctotal we obtain a map G → Fn
corresponding to the restriction of αn to the component G in Hn. Conversely, given a
map β : G → Fn of sheaves on Cn we can define α : H → F by letting αm be the map
which on components

f−1
ϕ G → Fm

uses the maps adjoint to F(ϕ) ◦ f−1
ϕ β. We omit the arguments showing these two con-

structions give mutually inverse maps

MorSh(Cn)(G,Fn) = MorSh(Ctotal)(H,F)

ThusH = gShn! G as desired.

Proof of (4). If G is an abelian sheaf on Cn, then we proceed in exactly the same ammner
as above, except that we defineH is the abelian sheaf on Ctotal whose degree m part is the
sheaf ⊕

ϕ:[n]→[m]
f−1
ϕ G

with transition maps defined exactly as above. The bijection

MorAb(Cn)(G,Fn) = MorAb(Ctotal)(H,F)
is proved exactly as above. ThusH = gn!G as desired.

The exactness properties of gShn! and gn! follow from formulas given for these functors. �

Lemma 3.6. In Situation 3.3. If I is injective in Ab(Ctotal), then In is injective in
Ab(Cn). If I• is a K-injective complex in Ab(Ctotal), then I•

n is K-injective in Ab(Cn).

Proof. The first statement follows from Homology, Lemma 29.1 and Lemma 3.5. The
second statement from Derived Categories, Lemma 31.9 and Lemma 3.5. �
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4. Augmentations of simplicial sites

We continue in the fashion described in Section 3 working out the meaning of augmenta-
tions in cases A and B treated in that section.

Remark 4.1. In Situation 3.3 an augmentation a0 towards a site D will mean
(A) a0 : C0 → D is a morphism of sites given by a continuous functor u0 : D → C0

such that for all ϕ,ψ : [0]→ [n] we have uϕ ◦ u0 = uψ ◦ u0.
(B) a0 : Sh(C0) → Sh(D) is a morphism of topoi given by a cocontinuous functor

u0 : C0 → D such that for all ϕ,ψ : [0]→ [n] we have u0 ◦ uϕ = u0 ◦ uψ .

Lemma 4.2. In Situation 3.3 let a0 be an augmentation towards a siteD as in Remark
4.1. Then a0 induces

(1) a morphism of topoi an : Sh(Cn)→ Sh(D) for all n ≥ 0,
(2) a morphism of topoi a : Sh(Ctotal)→ Sh(D)

such that
(1) for all ϕ : [m]→ [n] we have am ◦ fϕ = an,
(2) if gn : Sh(Cn)→ Sh(Ctotal) is as in Lemma 3.5, then a ◦ gn = an, and
(3) a∗F for F ∈ Sh(Ctotal) is the equalizer of the two maps a0,∗F0 → a1,∗F1.

Proof. Case A. Let un : D → Cn be the common value of the functors uϕ ◦ u0 for
ϕ : [0]→ [n]. Then un corresponds to a morphism of sites an : Cn → D, see Sites, Lemma
14.4. The same lemma shows that for all ϕ : [m]→ [n] we have am ◦ fϕ = an.
Case B. Let un : Cn → D be the common value of the functors u0 ◦ uϕ for ϕ : [0]→ [n].
Thenun is cocontinuous and hence defines a morphism of topoi an : Sh(Cn)→ Sh(D), see
Sites, Lemma 21.2. The same lemma shows that for allϕ : [m]→ [n] we have am◦fϕ = an.
Consider the functor a−1 : Sh(D) → Sh(Ctotal) which to a sheaf of sets G associates the
sheaf F = a−1G whose components are a−1

n G and whose transition maps F(ϕ) are the
identifications

f−1
ϕ Fm = f−1

ϕ a−1
m G = a−1

n G = Fn
for ϕ : [m] → [n], see the description of Sh(Ctotal) in Lemma 3.4. Since the functors
a−1
n are exact, a−1 is an exact functor. Finally, for a∗ : Sh(Ctotal) → Sh(D) we take the

functor which to a sheaf F on Sh(D) associates

a∗F Equalizer(a0,∗F0
//
// a1,∗F1)

Here the two maps come from the two maps ϕ : [0]→ [1] via

a0,∗F0 → a0,∗fϕ,∗f
−1
ϕ F0

F(ϕ)−−−→ a0,∗fϕ,∗F1 = a1,∗F1

where the first arrow comes from 1 → fϕ,∗f
−1
ϕ . Let G• denote the constant simplicial

sheaf with value G and let a•,∗F denote the simplicial sheaf having an,∗Fn in degree n.
By the usual adjuntion for the morphisms of topoi an we see that a map a−1G → F is the
same thing as a map

G• −→ a•,∗F
of simplicial sheaves. By Simplicial, Lemma 20.2 this is the same thing as a map G →
a∗F . Thus a−1 and a∗ are adjoint functors and we obtain our morphism of topoi a2. The
equalities a ◦ gn = fn follow immediately from the definitions. �

2In case B the morphism a corresponds to the cocontinuous functor Ctotal → D sending U in Cn to
un(U).
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5. Morphisms of simplicial sites

We continue in the fashion described in Section 3 working out the meaning of morphisms
of simplicial sites in cases A and B treated in that section.

Remark 5.1. Let Cn, fϕ, uϕ and C′
n, f

′
ϕ, u

′
ϕ be as in Situation 3.3. A morphism h

between simplicial sites will mean
(A) Morphisms of sites hn : Cn → C′

n such that f ′
ϕ ◦ hn = hm ◦ fϕ as morphisms of

sites for all ϕ : [m]→ [n].
(B) Cocontinuous functors vn : Cn → C′

n inducing morphisms of topoihn : Sh(Cn)→
Sh(C′

n) such that u′
ϕ ◦ vn = vm ◦ uϕ as functors for all ϕ : [m]→ [n].

In both cases we have f ′
ϕ ◦ hn = hm ◦ fϕ as morphisms of topoi, see Sites, Lemma 21.2 for

case B and Sites, Definition 14.5 for case A.

Lemma 5.2. Let Cn, fϕ, uϕ and C′
n, f

′
ϕ, u

′
ϕ be as in Situation 3.3. Let h be a morphism

between simplicial sites as in Remark 5.1. Then we obtain a morphism of topoi

htotal : Sh(Ctotal)→ Sh(C′
total)

and commutative diagrams

Sh(Cn)

gn

��

hn

// Sh(C′
n)

g′
n

��
Sh(Ctotal)

htotal // Sh(C′
total)

Moreover, we have (g′
n)−1 ◦ htotal,∗ = hn,∗ ◦ g−1

n .

Proof. Case A. Say hn corresponds to the continuous functor vn : C′
n → Cn. Then

we can define a functor vtotal : C′
total → Ctotal by using vn in degree n. This is clearly

a continuous functor (see definition of coverings in Lemma 3.1). Let h−1
total = vtotal,s :

Sh(C′
total) → Sh(Ctotal) and htotal,∗ = vstotal = vptotal : Sh(Ctotal) → Sh(C′

total) be
the adjoint pair of functors constructed and studied in Sites, Sections 13 and 14. To see
that htotal is a morphism of topoi we still have to verify that h−1

total is exact. We first
observe that (g′

n)−1 ◦htotal,∗ = hn,∗ ◦ g−1
n ; this is immediate by computing sections over

an object U of C′
n. Thus, if we think of a sheaf F on Ctotal as a system (Fn,F(ϕ)) as in

Lemma 3.4, then htotal,∗F corresponds to the system (hn,∗Fn, hn,∗F(ϕ)). Clearly, the
functor (F ′

n,F ′(ϕ))→ (h−1
n F ′

n, h
−1
n F ′(ϕ)) is its left adjoint. By uniqueness of adjoints,

we conclude that h−1
total is given by this rule on systems. In particular, h−1

total is exact (by
the description of sheaves on Ctotal given in the lemma and the exactness of the functors
h−1
n ) and we have our morphism of topoi. Finally, we obtain g−1

n ◦h−1
total = h−1

n ◦ (g′
n)−1

as well, which proves that the displayed diagram of the lemma commutes.

Case B. Here we have a functor vtotal : Ctotal → C′
total by using vn in degree n. This is

clearly a cocontinuous functor (see definition of coverings in Lemma 3.2). Let htotal be
the morphism of topoi associated to vtotal. The commutativity of the displayed diagram
of the lemma follows immediately from Sites, Lemma 21.2. Taking left adjoints the final
equality of the lemma becomes

h−1
total ◦ (g′

n)Sh! = gShn! ◦ h−1
n

This follows immediately from the explicit description of the functors (g′
n)Sh! and gShn! in

Lemma 3.5, the fact that h−1
n ◦ (f ′

ϕ)−1 = f−1
ϕ ◦ h−1

m for ϕ : [m] → [n], and the fact that
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we already know h−1
total commutes with restrictions to the degree n parts of the simplicial

sites. �

Lemma 5.3. With notation and hypotheses as in Lemma 5.2. For K ∈ D(Ctotal) we
have (g′

n)−1Rhtotal,∗K = Rhn,∗g
−1
n K.

Proof. Let I• be a K-injective complex on Ctotal representingK. Then g−1
n K is rep-

resented by g−1
n I• = I•

n which is K-injective by Lemma 3.6. We have (g′
n)−1htotal,∗I• =

hn,∗g
−1
n I•

n by Lemma 5.2 which gives the desired equality. �

Remark 5.4. Let Cn, fϕ, uϕ and C′
n, f

′
ϕ, u

′
ϕ be as in Situation 3.3. Let a0, resp. a′

0 be
an augmentation towards a siteD, resp.D′ as in Remark 4.1. Let h be a morphism between
simplicial sites as in Remark 5.1. We say a morphism of topoi h−1 : Sh(D) → Sh(D′) is
compatible with h, a0, a′

0 if
(A) h−1 comes from a morphism of sites h−1 : D → D′ such that a′

0 ◦h0 = h−1 ◦a0
as morphisms of sites.

(B) h−1 comes from a cocontinuous functor v−1 : D → D′ such that u′
0 ◦ v0 =

v−1 ◦ u0 as functors.
In both cases we have a′

0 ◦ h0 = h−1 ◦ a0 as morphisms of topoi, see Sites, Lemma 21.2 for
case B and Sites, Definition 14.5 for case A.

Lemma 5.5. Let Cn, fϕ, uϕ,D, a0, C′
n, f

′
ϕ, u

′
ϕ,D′, a′

0, and hn, n ≥ −1 be as in Remark
5.4. Then we obtain a commutative diagram

Sh(Ctotal)

a

��

htotal

// Sh(C′
total)

a′

��
Sh(D)

h−1 // Sh(D′)

Proof. The morphismh is defined in Lemma 5.2. The morphisms a and a′ are defined
in Lemma 4.2. Thus the only thing is to prove the commutativity of the diagram. To do
this, we prove that a−1 ◦ h−1

−1 = h−1
total ◦ (a′)−1. By the commutative diagrams of Lemma

5.2 and the description of Sh(Ctotal) and Sh(C′
total) in terms of components in Lemma 3.4,

it suffices to show that
Sh(Cn)

an

��

hn

// Sh(C′
n)

a′
n

��
Sh(D)

h−1 // Sh(D′)

commutes for all n. This follows from the case for n = 0 (which is an assumption in
Remark 5.4) and for n > 0 we pick ϕ : [0] → [n] and then the required commutativity
follows from the case n = 0 and the relations an = a0 ◦ fϕ and a′

n = a′
0 ◦ f ′

ϕ as well as
the commutation relations f ′

ϕ ◦ hn = h0 ◦ fϕ. �

6. Ringed simplicial sites

Let us endow our simplicial topos with a sheaf of rings.

Lemma 6.1. In Situation 3.3. LetO be a sheaf of rings on Ctotal. There is a canonical
morphism of ringed topoi gn : (Sh(Cn),On) → (Sh(Ctotal),O) agreeing with the mor-
phism gn of Lemma 3.5 on underlying topoi. The functor g∗

n : Mod(O)→Mod(On) has
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a left adjoint gn!. For G in Mod(On)-modules the restriction of gn!G to Cm is⊕
ϕ:[n]→[m]

f∗
ϕG

where fϕ : (Sh(Cm),Om) → (Sh(Cn),On) is the morphism of ringed topoi agreeing
with the previously defined fϕ on topoi and using the map O(ϕ) : f−1

ϕ On → Om on
sheaves of rings.

Proof. By Lemma 3.5 we have g−1
n O = On and hence we obtain our morphism of

ringed topoi. By Modules on Sites, Lemma 41.1 we obtain the adjoint gn!. To prove the
formula for gn! we first define a sheaf ofO-modulesH on Ctotal with degreem component
theOm-module

Hm =
⊕

ϕ:[n]→[m]
f∗
ϕG

Given a map ψ : [m]→ [m′] the mapH(ψ) : f−1
ψ Hm → Hm′ is given on components by

f−1
ψ f∗

ϕG → f∗
ψf

∗
ϕG → f∗

ψ◦ϕG

Since this map f−1
ψ Hm → Hm′ is O(ψ) : f−1

ψ Om → Om′ -semi-linear, this indeed does
define anO-module (use Lemma 3.4). Then one proves directly that

MorOn
(G,Fn) = MorO(H,F)

proceeding as in the proof of Lemma 3.5. ThusH = gn!G as desired. �

Lemma 6.2. In Situation 3.3. Let O be a sheaf of rings on Ctotal. If I is injective in
Mod(O), then In is a totally acyclic sheaf on Cn.

Proof. This follows from Cohomology on Sites, Lemma 37.4 applied to the inclusion
functor Cn → Ctotal and its properties proven in Lemma 3.5. �

Lemma 6.3. With assumptions as in Lemma 6.1 the functor gn! : Mod(On) →
Mod(O) is exact if the maps f−1

ϕ On → Om are flat for all ϕ : [n]→ [m].

Proof. Recall that gn!G is theO-module whose degree m part is theOm-module⊕
ϕ:[n]→[m]

f∗
ϕG

Here the morphism of ringed topoi fϕ : (Sh(Cm),Om) → (Sh(Cn),On) uses the map
f−1
ϕ On → Om of the statement of the lemma. If these maps are flat, then f∗

ϕ is exact
(Modules on Sites, Lemma 31.2). By definition of the site Ctotal we see that these functors
have the desired exactness properties and we conclude. �

Lemma 6.4. In Situation 3.3. LetO be a sheaf of rings on Ctotal such that f−1
ϕ On →

Om is flat for all ϕ : [n] → [m]. If I is injective in Mod(O), then In is injective in
Mod(On).

Proof. This follows from Homology, Lemma 29.1 and Lemma 6.3. �
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7. Morphisms of ringed simplicial sites

We continue the discussion of Section 5.

Remark 7.1. Let Cn, fϕ, uϕ and C′
n, f

′
ϕ, u

′
ϕ be as in Situation 3.3. Let O and O′ be

a sheaf of rings on Ctotal and C′
total. We will say that (h, h]) is a morphism between

ringed simplicial sites if h is a morphism between simplicial sites as in Remark 5.1 and
h] : h−1

totalO′ → O or equivalently h] : O′ → htotal,∗O is a homomorphism of sheaves of
rings.

Lemma 7.2. Let Cn, fϕ, uϕ and C′
n, f

′
ϕ, u

′
ϕ be as in Situation 3.3. Let O and O′ be a

sheaf of rings on Ctotal and C′
total. Let (h, h]) be a morphism between simplicial sites as in

Remark 7.1. Then we obtain a morphism of ringed topoi
htotal : (Sh(Ctotal,O)→ (Sh(C′

total),O′)
and commutative diagrams

(Sh(Cn),On)

gn

��

hn

// (Sh(C′
n),O′

n)

g′
n

��
(Sh(Ctotal),O) htotal // (Sh(C′

total),O′)

of ringed topoi where gn and g′
n are as in Lemma 6.1. Moreover, we have (g′

n)∗◦htotal,∗ =
hn,∗ ◦ g∗

n as functor Mod(O)→Mod(O′
n).

Proof. Follows from Lemma 5.2 and 6.1 by keeping track of the sheaves of rings. A
small point is that in order to define hn as a morphism of ringed topoi we set h]n = g−1

n h] :
g−1
n h−1

totalO′ → g−1
n Owhich makes sense because g−1

n h−1
totalO′ = h−1

n (g′
n)−1O′ = h−1

n O′
n

and g−1
n O = On. Note that g∗

nF = g−1
n F for a sheaf of O-modules F and similarly for

g′
n and this helps explain why (g′

n)∗ ◦htotal,∗ = hn,∗ ◦g∗
n follows from the corresponding

statement of Lemma 5.2. �

Lemma 7.3. With notation and hypotheses as in Lemma 7.2. ForK ∈ D(O) we have
(g′
n)∗Rhtotal,∗K = Rhn,∗g

∗
nK.

Proof. Recall that g∗
n = g−1

n because g−1
n O = On by the construction in Lemma 6.1.

In particular g∗
n is exact and Lg∗

n is given by applying g∗
n to any representative complex

of modules. Similarly for g′
n. There is a canonical base change map (g′

n)∗Rhtotal,∗K →
Rhn,∗g

∗
nK , see Cohomology on Sites, Remark 19.3. By Cohomology on Sites, Lemma 20.7

the image of this in D(C′
n) is the map (g′

n)−1Rhtotal,∗Kab → Rhn,∗g
−1
n Kab where Kab

is the image of K in D(Ctotal). This we proved to be an isomorphism in Lemma 5.3 and
the result follows. �

8. Cohomology on simplicial sites

Let C be as in Situation 3.3. In statement of the following lemmas we will let gn : Sh(Cn)→
Sh(Ctotal) be the morphism of topoi of Lemma 3.5. If ϕ : [m]→ [n] is a morphism of ∆,
then the diagram of topoi

Sh(Cn)

gn %%

fϕ

// Sh(Cm)

gmyy
Sh(Ctotal)
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is not commutative, but there is a 2-morphism gn → gm ◦ fϕ coming from the maps
F(ϕ) : f−1

ϕ Fm → Fn. See Sites, Section 36.

Lemma 8.1. In Situation 3.3 and with notation as above there is a complex

. . .→ g2!Z→ g1!Z→ g0!Z

of abelian sheaves on Ctotal which forms a resolution of the constant sheaf with value Z
on Ctotal.

Proof. We will use the description of the functors gn! in Lemma 3.5 without further
mention. As maps of the complex we take

∑
(−1)idni where dni : gn!Z → gn−1!Z is the

adjoint to the map Z→
⊕

[n−1]→[n] Z = g−1
n gn−1!Z corresponding to the factor labeled

with δni : [n− 1]→ [n]. Then g−1
m applied to the complex gives the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Z→

⊕
α∈Mor∆([1],[m])]

Z→
⊕

α∈Mor∆([0],[m])]
Z

on Cm. In other words, this is the complex associated to the free abelian sheaf on the
simplicial set ∆[m], see Simplicial, Example 11.2. Since ∆[m] is homotopy equivalent to
∆[0], see Simplicial, Example 26.7, and since “taking free abelian sheaf on” is a functor,
we see that the complex above is homotopy equivalent to the free abelian sheaf on ∆[0]
(Simplicial, Remark 26.4 and Lemma 27.2). This complex is acyclic in positive degrees and
equal to Z in degree 0. �

Lemma 8.2. In Situation 3.3. Let F be an abelian sheaf on Ctotal there is a canonical
complex

0→ Γ(Ctotal,F)→ Γ(C0,F0)→ Γ(C1,F1)→ Γ(C2,F2)→ . . .

which is exact in degrees −1, 0 and exact everywhere if F is injective.

Proof. Observe that Hom(Z,F) = Γ(Ctotal,F) and Hom(gn!Z,F) = Γ(Cn,Fn).
Hence this lemma is an immediate consequence of Lemma 8.1 and the fact that Hom(−,F)
is exact if F is injective. �

Lemma 8.3. In Situation 3.3. ForK inD+(Ctotal) there is a spectral sequence (Er, dr)r≥0
with

Ep,q1 = Hq(Cp,Kp), dp,q1 : Ep,q1 → Ep+1,q
1

converging to Hp+q(Ctotal,K). This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injectives representing K. Consider
the double complex with terms

Ap,q = Γ(Cp, Iqp)

where the horizontal arrows come from Lemma 8.2 and the vertical arrows from the dif-
ferentials of the complex I•. The rows of the double complex are exact in positive degrees
and evaluate to Γ(Ctotal, Iq) in degree 0. On the other hand, since restriction to Cp is exact
(Lemma 3.5) the complex I•

p representsKp inD(Cp). The sheaves Iqp are injective abelian
sheaves on Cp (Lemma 3.6). Hence the cohomology of the columns computes the groups
Hq(Cp,Kp). We conclude by applying Homology, Lemmas 25.3 and 25.4. �

Remark 8.4. Assumptions and notation as in Lemma 8.3 except we do not requireK
inD(Ctotal) to be bounded below. We claim there is a natural spectral sequence in this case
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also. Namely, suppose that I• is a K-injective complex of sheaves on Ctotal with injective
terms representing K. We have

RΓ(Ctotal,K) = RHom(Z,K)
= RHom(. . .→ g2!Z→ g1!Z→ g0!Z,K)
= Γ(Ctotal,Hom•(. . .→ g2!Z→ g1!Z→ g0!Z, I•))
= Totπ(A•,•)

whereA•,• is the double complex with termsAp,q = Γ(Cp, Iqp) and Totπ denotes the prod-
uct totalization of this double complex. Namely, the first equality holds in any site. The
second equality holds by Lemma 8.1. The third equality holds because I• is K-injective, see
Cohomology on Sites, Sections 34 and 35. The final equality holds by the construction of
Hom• and the fact that Hom(gp!Z, Iq) = Γ(Cp, Iqp). Then we get our spectral sequence
by viewing Totπ(A•,•) as a filtered complex with F iTotnπ(A•,•) =

∏
p+q=n, p≥iA

p,q .
The spectral sequence we obtain behaves like the spectral sequence (′Er,

′dr)r≥0 in Ho-
mology, Section 25 (where the case of the direct sum totalization is discussed) except
for regularity, boundedness, convergence, and abutment issues. In particular we obtain
Ep,q1 = Hq(Cp,Kp) as in Lemma 8.3.

Lemma 8.5. In Situation 3.3. Let K be an object of D(Ctotal).
(1) If H−p(Cp,Kp) = 0 for all p ≥ 0, then H0(Ctotal,K) = 0.
(2) If RΓ(Cp,Kp) = 0 for all p ≥ 0, then RΓ(Ctotal,K) = 0.

Proof. With notation as in Remark 8.4 we see that RΓ(Ctotal,K) is represented by
Totπ(A•,•). The assumption in (1) tells us that H−p(Ap,•) = 0. Thus the vanishing in
(1) follows from More on Algebra, Lemma 103.1. Part (2) follows from part (1) and taking
shifts. �

Lemma 8.6. Let C be as in Situation 3.3. Let U ∈ Ob(Cn). Let F ∈ Ab(Ctotal). Then
Hp(U,F) = Hp(U, g−1

n F) where on the left hand side U is viewed as an object of Ctotal.

Proof. Observe that “U viewed as object of Ctotal” is explained by the construction
of Ctotal in Lemma 3.1 in case (A) and Lemma 3.2 in case (B). The equality then follows
from Lemma 3.6 and the definition of cohomology. �

9. Cohomology and augmentations of simplicial sites

Consider a simplicial site C as in Situation 3.3. Let a0 be an augmentation towards a site
D as in Remark 4.1. By Lemma 4.2 we obtain a morphism of topoi

a : Sh(Ctotal) −→ Sh(D)

and morphisms of topoi gn : Sh(Cn) → Sh(Ctotal) as in Lemma 3.5. The compositions
a ◦ gn are denoted an : Sh(Cn) → Sh(D). Furthermore, the simplicial structure gives
morphisms of topoi fϕ : Sh(Cn)→ Sh(Cm) such that an ◦fϕ = am for all ϕ : [m]→ [n].

Lemma 9.1. In Situation 3.3 let a0 be an augmentation towards a siteD as in Remark
4.1. For any abelian sheaf G on D there is an exact complex

. . .→ g2!(a−1
2 G)→ g1!(a−1

1 G)→ g0!(a−1
0 G)→ a−1G → 0

of abelian sheaves on Ctotal.
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Proof. We encourage the reader to read the proof of Lemma 8.1 first. We will use
Lemma 4.2 and the description of the functors gn! in Lemma 3.5 without further mention.
In particular gn!(a−1

n G) is the sheaf on Ctotal whose restriction to Cm is the sheaf⊕
ϕ:[n]→[m]

f−1
ϕ a−1

n G =
⊕

ϕ:[n]→[m]
a−1
m G

As maps of the complex we take
∑

(−1)idni where dni : gn!(a−1
n G) → gn−1!(a−1

n−1G) is
the adjoint to the map a−1

n G →
⊕

[n−1]→[n] a
−1
n G = g−1

n gn−1!(a−1
n−1G) corresponding to

the factor labeled with δni : [n− 1]→ [n]. The map g0!(a−1
0 G)→ a−1G is adjoint to the

identity map of a−1
0 G. Then g−1

m applied to the chain complex in degrees . . . , 2, 1, 0 gives
the complex

. . .→
⊕

α∈Mor∆([2],[m])]
a−1
m G →

⊕
α∈Mor∆([1],[m])]

a−1
m G →

⊕
α∈Mor∆([0],[m])]

a−1
m G

on Cm. This is equal to a−1
m G tensored over the constant sheaf Z with the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Z→

⊕
α∈Mor∆([1],[m])]

Z→
⊕

α∈Mor∆([0],[m])]
Z

discussed in the proof of Lemma 8.1. There we have seen that this complex is homotopy
equivalent to Z placed in degree 0 which finishes the proof. �

Lemma 9.2. In Situation 3.3 let a0 be an augmentation towards a siteD as in Remark
4.1. For an abelian sheaf F on Ctotal there is a canonical complex

0→ a∗F → a0,∗F0 → a1,∗F1 → a2,∗F2 → . . .

on D which is exact in degrees −1, 0 and exact everywhere if F is injective.

Proof. To construct the complex, by the Yoneda lemma, it suffices for any abelian
sheaf G on D to construct a complex

0→ Hom(G, a∗F)→ Hom(G, a0,∗F0)→ Hom(G, a1,∗F1)→ . . .

functorially in G. To do this apply Hom(−,F) to the exact complex of Lemma 9.1 and
use adjointness of pullback and pushforward. The exactness properties in degrees −1, 0
follow from the construction as Hom(−,F) is left exact. IfF is an injective abelian sheaf,
then the complex is exact because Hom(−,F) is exact. �

Lemma 9.3. In Situation 3.3 let a0 be an augmentation towards a siteD as in Remark
4.1. For any K in D+(Ctotal) there is a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Rqap,∗Kp, dp,q1 : Ep,q1 → Ep+1,q
1

converging to Rp+qa∗K. This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injectives representing K. Consider
the double complex with terms

Ap,q = ap,∗Iqp
where the horizontal arrows come from Lemma 9.2 and the vertical arrows from the dif-
ferentials of the complex I•. The rows of the double complex are exact in positive de-
grees and evaluate to a∗Iq in degree 0. On the other hand, since restriction to Cp is exact
(Lemma 3.5) the complex I•

p representsKp inD(Cp). The sheaves Iqp are injective abelian
sheaves on Cp (Lemma 3.6). Hence the cohomology of the columns computes Rqap,∗Kp.
We conclude by applying Homology, Lemmas 25.3 and 25.4. �
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10. Cohomology on ringed simplicial sites

This section is the analogue of Section 8 for sheaves of modules.

In Situation 3.3 letO be a sheaf of rings on Ctotal. In statement of the following lemmas we
will let gn : (Sh(Cn),On)→ (Sh(Ctotal),O) be the morphism of ringed topoi of Lemma
6.1. If ϕ : [m]→ [n] is a morphism of ∆, then the diagram of ringed topoi

(Sh(Cn),On)

gn ((

fϕ

// (Sh(Cm),Om)

gmvv
(Sh(Ctotal),O)

is not commutative, but there is a 2-morphism gn → gm ◦ fϕ coming from the maps
F(ϕ) : f−1

ϕ Fm → Fn. See Sites, Section 36.

Lemma 10.1. In Situation 3.3 letO be a sheaf of rings on Ctotal. There is a complex

. . .→ g2!O2 → g1!O1 → g0!O0

ofO-modules which forms a resolution ofO. Here gn! is as in Lemma 6.1.

Proof. We will use the description of gn! given in Lemma 3.5. As maps of the com-
plex we take

∑
(−1)idni where dni : gn!On → gn−1!On−1 is the adjoint to the map

On →
⊕

[n−1]→[n]On = g∗
ngn−1!On−1 corresponding to the factor labeled with δni :

[n− 1]→ [n]. Then g−1
m applied to the complex gives the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Om →

⊕
α∈Mor∆([1],[m])]

Om →
⊕

α∈Mor∆([0],[m])]
Om

on Cm. In other words, this is the complex associated to the free Om-module on the sim-
plicial set ∆[m], see Simplicial, Example 11.2. Since ∆[m] is homotopy equivalent to ∆[0],
see Simplicial, Example 26.7, and since “taking free abelian sheaf on” is a functor, we see
that the complex above is homotopy equivalent to the free abelian sheaf on ∆[0] (Simpli-
cial, Remark 26.4 and Lemma 27.2). This complex is acyclic in positive degrees and equal
toOm in degree 0. �

Lemma 10.2. In Situation 3.3 letO be a sheaf of rings. LetF be a sheaf ofO-modules.
There is a canonical complex

0→ Γ(Ctotal,F)→ Γ(C0,F0)→ Γ(C1,F1)→ Γ(C2,F2)→ . . .

which is exact in degrees −1, 0 and exact everywhere if F is an injectiveO-module.

Proof. Observe that Hom(O,F) = Γ(Ctotal,F) and Hom(gn!On,F) = Γ(Cn,Fn).
Hence this lemma is an immediate consequence of Lemma 10.1 and the fact that Hom(−,F)
is exact if F is injective. �

Lemma 10.3. In Situation 3.3 let O be a sheaf of rings. For K in D+(O) there is a
spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Cp,Kp), dp,q1 : Ep,q1 → Ep+1,q
1

converging to Hp+q(Ctotal,K). This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injective O-modules representing K.
Consider the double complex with terms

Ap,q = Γ(Cp, Iqp)
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where the horizontal arrows come from Lemma 10.2 and the vertical arrows from the dif-
ferentials of the complex I•. Observe that Γ(D,−) = HomOD (OD,−) on Mod(OD).
Hence the lemma says rows of the double complex are exact in positive degrees and evalu-
ate to Γ(Ctotal, Iq) in degree 0. Thus the total complex associated to the double complex
computes RΓ(Ctotal,K) by Homology, Lemma 25.4. On the other hand, since restriction
to Cp is exact (Lemma 3.5) the complex I•

p represents Kp in D(Cp). The sheaves Iqp are
totally acyclic on Cp (Lemma 6.2). Hence the cohomology of the columns computes the
groupsHq(Cp,Kp) by Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) and Co-
homology on Sites, Lemma 14.3. We conclude by applying Homology, Lemma 25.3. �

Lemma 10.4. In Situation 3.3 let O be a sheaf of rings. Let U ∈ Ob(Cn). Let F ∈
Mod(O). Then Hp(U,F) = Hp(U, g∗

nF) where on the left hand side U is viewed as an
object of Ctotal.

Proof. Observe that “U viewed as object of Ctotal” is explained by the construction
of Ctotal in Lemma 3.1 in case (A) and Lemma 3.2 in case (B). In both cases the functor
Cn → C is continuous and cocontinuous, see Lemma 3.5, and g−1

n O = On by definition.
Hence the result is a special case of Cohomology on Sites, Lemma 37.5. �

11. Cohomology and augmentations of ringed simplicial sites

This section is the analogue of Section 9 for sheaves of modules.
Consider a simplicial site C as in Situation 3.3. Let a0 be an augmentation towards a site
D as in Remark 4.1. Let O be a sheaf of rings on Ctotal. Let OD be a sheaf of rings on D.
Suppose we are given a morphism

a] : OD −→ a∗O
where a is as in Lemma 4.2. Consequently, we obtain a morphism of ringed topoi

a : (Sh(Ctotal),O) −→ (Sh(D),OD)
We will think of gn : (Sh(Cn),On) → (Sh(Ctotal),O) as a morphism of ringed topoi
as in Lemma 6.1, then taking the composition an = a ◦ gn (Lemma 4.2) as morphisms of
ringed topoi we obtain

an : (Sh(Cn),On) −→ (Sh(D),OD)
Using the transition maps f−1

ϕ Om → On we obtain morphisms of ringed topoi

fϕ : (Sh(Cn),On)→ (Sh(Cm),Om)
such that an ◦ fϕ = am as morphisms of ringed topoi for all ϕ : [m]→ [n].

Lemma 11.1. With notation as above. The morphism a : (Sh(Ctotal),O)→ (Sh(D),OD)
is flat if and only if an : (Sh(Cn),On)→ (Sh(D),OD) is flat for n ≥ 0.

Proof. Since gn : (Sh(Cn),On)→ (Sh(Ctotal),O) is flat, we see that if a is flat, then
an = a ◦ gn is flat as a composition. Conversely, suppose that an is flat for all n. We have
to check that O is flat as a sheaf of a−1OD-modules. Let F → G be an injective map of
a−1OD-modules. We have to show that

F ⊗a−1OD O → G ⊗a−1OD O
is injective. We can check this on Cn, i.e., after applying g−1

n . Since g∗
n = g−1

n because
g−1
n O = On we obtain

g−1
n F ⊗g−1

n a−1OD
On → g−1

n G ⊗g−1
n a−1OD

On
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which is injective because g−1
n a−1OD = a−1

n OD and we assume an was flat. �

Lemma 11.2. With notation as above. For aOD-module G there is an exact complex

. . .→ g2!(a∗
2G)→ g1!(a∗

1G)→ g0!(a∗
0G)→ a∗G → 0

of sheaves ofO-modules on Ctotal. Here gn! is as in Lemma 6.1.

Proof. Observe that a∗G is the O-module on Ctotal whose restriction to Cm is the
Om-module a∗

mG. The description of the functors gn! on modules in Lemma 6.1 shows
that gn!(a∗

nG) is theO-module on Ctotal whose restriction to Cm is theOm-module⊕
ϕ:[n]→[m]

f∗
ϕa

∗
nG =

⊕
ϕ:[n]→[m]

a∗
mG

The rest of the proof is exactly the same as the proof of Lemma 9.1, replacing a−1
m G by

a∗
mG. �

Lemma 11.3. With notation as above. For anO-moduleF on Ctotal there is a canon-
ical complex

0→ a∗F → a0,∗F0 → a1,∗F1 → a2,∗F2 → . . .

of OD-modules which is exact in degrees −1, 0. If F is an injective O-module, then the
complex is exact in all degrees and remains exact on applying the functor HomOD (G,−)
for anyOD-module G.

Proof. To construct the complex, by the Yoneda lemma, it suffices for any OD-
modules G on D to construct a complex

0→ HomOD (G, a∗F)→ HomOD (G, a0,∗F0)→ HomOD (G, a1,∗F1)→ . . .

functorially in G. To do this apply HomO(−,F) to the exact complex of Lemma 11.2 and
use adjointness of pullback and pushforward. The exactness properties in degrees −1, 0
follow from the construction as HomO(−,F) is left exact. If F is an injectiveO-module,
then the complex is exact because HomO(−,F) is exact. �

Lemma 11.4. With notation as above for anyK inD+(O) there is a spectral sequence
(Er, dr)r≥0 in Mod(OD) with

Ep,q1 = Rqap,∗Kp

converging to Rp+qa∗K. This spectral sequence is functorial in K.

Proof. Let I• be a bounded below complex of injective O-modules representing K.
Consider the double complex with terms

Ap,q = ap,∗Iqp
where the horizontal arrows come from Lemma 11.3 and the vertical arrows from the dif-
ferentials of the complex I•. The lemma says rows of the double complex are exact in
positive degrees and evaluate to a∗Iq in degree 0. Thus the total complex associated to
the double complex computesRa∗K by Homology, Lemma 25.4. On the other hand, since
restriction to Cp is exact (Lemma 3.5) the complex I•

p representsKp inD(Cp). The sheaves
Iqp are totally acyclic on Cp (Lemma 6.2). Hence the cohomology of the columns are the
sheavesRqap,∗Kp by Leray’s acyclicity lemma (Derived Categories, Lemma 16.7) and Co-
homology on Sites, Lemma 14.3. We conclude by applying Homology, Lemma 25.3. �
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12. Cartesian sheaves and modules

Here is the definition.

Definition 12.1. In Situation 3.3.
(1) A sheaf F of sets or of abelian groups on Ctotal is cartesian if the maps F(ϕ) :

f−1
ϕ Fm → Fn are isomorphisms for all ϕ : [m]→ [n].

(2) If O is a sheaf of rings on Ctotal, then a sheaf F of O-modules is cartesian if the
maps f∗

ϕFm → Fn are isomorphisms for all ϕ : [m]→ [n].
(3) An object K of D(Ctotal) is cartesian if the maps f−1

ϕ Km → Kn are isomor-
phisms for all ϕ : [m]→ [n].

(4) If O is a sheaf of rings on Ctotal, then an object K of D(O) is cartesian if the
maps Lf∗

ϕKm → Kn are isomorphisms for all ϕ : [m]→ [n].

Of course there is a general notion of a cartesian section of a fibred category and the above
are merely examples of this. The property on pullbacks needs only be checked for the
degeneracies.

Lemma 12.2. In Situation 3.3.
(1) A sheafF of sets or abelian groups is cartesian if and only if the maps (fδn

j
)−1Fn−1 →

Fn are isomorphisms.
(2) An object K of D(Ctotal) is cartesian if and only if the maps (fδn

j
)−1Kn−1 →

Kn are isomorphisms.
(3) If O is a sheaf of rings on Ctotal a sheaf F of O-modules is cartesian if and only

if the maps (fδn
j

)∗Fn−1 → Fn are isomorphisms.
(4) If O is a sheaf of rings on Ctotal an object K of D(O) is cartesian if and only if

the maps L(fδn
j

)∗Kn−1 → Kn are isomorphisms.
(5) Add more here.

Proof. In each case the key is that the pullback functors compose to pullback functor;
for part (4) see Cohomology on Sites, Lemma 18.3. We show how the argument works
in case (1) and omit the proof in the other cases. The category ∆ is generated by the
morphisms the morphisms δnj and σnj , see Simplicial, Lemma 2.2. Hence we only need
to check the maps (fδn

j
)−1Fn−1 → Fn and (fσn

j
)−1Fn+1 → Fn are isomorphisms, see

Simplicial, Lemma 3.2 for notation. Since σnj ◦ δ
n+1
j = id[n] the composition

Fn = (fσn
j

)−1(fδn+1
j

)−1Fn → (fσn
j

)−1Fn+1 → Fn

is the identity. Thus the result for δn+1
j implies the result for σnj . �

Lemma 12.3. In Situation 3.3 let a0 be an augmentation towards a siteD as in Remark
4.1.

(1) The pullback a−1G of a sheaf of sets or abelian groups on D is cartesian.
(2) The pullback a−1K of an object K of D(D) is cartesian.

Let O be a sheaf of rings on Ctotal and OD a sheaf of rings on D and a] : OD → a∗O a
morphism as in Section 11.

(3) The pullback a∗F of a sheaf ofOD-modules is cartesian.
(4) The derived pullback La∗K of an object K of D(OD) is cartesian.

Proof. This follows immediately from the identities am ◦fϕ = an for all ϕ : [m]→
[n]. See Lemma 4.2 and the discussion in Section 11. �
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Lemma 12.4. In Situation 3.3. The category of cartesian sheaves of sets (resp. abelian
groups) is equivalent to the category of pairs (F , α) whereF is a sheaf of sets (resp. abelian
groups) on C0 and

α : (fδ1
1
)−1F −→ (fδ1

0
)−1F

is an isomorphism of sheaves of sets (resp. abelian groups) on C1 such that (fδ2
1
)−1α =

(fδ2
0
)−1α ◦ (fδ2

2
)−1α as maps of sheaves on C2.

Proof. We abbreviate dnj = fδn
j

: Sh(Cn) → Sh(Cn−1). The condition on α in the
statement of the lemma makes sense because

d1
1 ◦ d2

2 = d1
1 ◦ d2

1, d1
1 ◦ d2

0 = d1
0 ◦ d2

2, d1
0 ◦ d2

0 = d1
0 ◦ d2

1

as morphisms of topoi Sh(C2)→ Sh(C0), see Simplicial, Remark 3.3. Hence we can picture
these maps as follows

(d2
0)−1(d1

1)−1F
(d2

0)−1α

// (d2
0)−1(d1

0)−1F

(d2
2)−1(d1

0)−1F (d2
1)−1(d1

0)−1F

(d2
2)−1(d1

1)−1F
(d2

2)−1α

hh

(d2
1)−1(d1

1)−1F
(d2

1)−1α

66

and the condition signifies the diagram is commutative. It is clear that given a cartesian
sheaf G of sets (resp. abelian groups) on Ctotal we can set F = G0 and α equal to the
composition

(d1
1)−1G0 → G1 ← (d0

1)−1G0

where the arrows are invertible as G is cartesian. To prove this functor is an equivalence
we construct a quasi-inverse. The construction of the quasi-inverse is analogous to the
construction discussed in Descent, Section 3 from which we borrow the notation τni :
[0]→ [n], 0 7→ i and τnij : [1]→ [n], 0 7→ i, 1 7→ j. Namely, given a pair (F , α) as in the
lemma we set Gn = (fτnn )−1F . Given ϕ : [n] → [m] we define G(ϕ) : (fϕ)−1Gn → Gm
using

(fϕ)−1Gn (fϕ)−1(fτnn )−1F (fτm
ϕ(n)

)−1F (fτm
ϕ(n)m

)−1(d1
1)−1F

(fτm
ϕ(n)m

)−1α

��
Gm (fτmm )−1F (fτm

ϕ(n)m
)−1(d1

0)−1F

We omit the verification that the commutativity of the displayed diagram above implies
the maps compose correctly and hence give rise to a sheaf on Ctotal, see Lemma 3.4. We
also omit the verification that the two functors are quasi-inverse to each other. �

Lemma 12.5. In Situation 3.3 let O be a sheaf of rings on Ctotal. The category of
cartesianO-modules is equivalent to the category of pairs (F , α) whereF is aO0-module
and

α : (fδ1
1
)∗F −→ (fδ1

0
)∗F

is an isomorphism of O1-modules such that (fδ2
1
)∗α = (fδ2

0
)∗α ◦ (fδ2

2
)∗α as O2-module

maps.
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Proof. The proof is identical to the proof of Lemma 12.4 with pullback of sheaves of
abelian groups replaced by pullback of modules. �

Lemma 12.6. In Situation 3.3.
(1) The full subcategory of cartesian abelian sheaves forms a weak Serre subcategory

of Ab(Ctotal). Colimits of systems of cartesian abelian sheaves are cartesian.
(2) LetO be a sheaf of rings on Ctotal such that the morphisms

fδn
j

: (Sh(Cn),On)→ (Sh(Cn−1),On−1)

are flat. The full subcategory of cartesianO-modules forms a weak Serre subcat-
egory of Mod(O). Colimits of systems of cartesianO-modules are cartesian.

Proof. To see we obtain a weak Serre subcategory in (1) we check the conditions
listed in Homology, Lemma 10.3. First, if ϕ : F → G is a map between cartesian abelian
sheaves, then Ker(ϕ) and Coker(ϕ) are cartesian too because the restriction functors Sh(Ctotal)→
Sh(Cn) and the functors f−1

ϕ are exact. Similarly, if
0→ F → H → G → 0

is a short exact sequence of abelian sheaves on Ctotal withF andG cartesian, then it follows
that H is cartesian from the 5-lemma. To see the property of colimits, use that colimits
commute with pullback as pullback is a left adjoint. In the case of modules we argue in
the same manner, using the exactness of flat pullback (Modules on Sites, Lemma 31.2) and
the fact that it suffices to check the condition for fδn

j
, see Lemma 12.2. �

Remark 12.7 (Warning). Lemma 12.6 notwithstanding, it can happen that the cat-
egory of cartesian O-modules is abelian without being a Serre subcategory of Mod(O).
Namely, suppose that we only know that fδ1

1
and fδ1

0
are flat. Then it follows easily from

Lemma 12.5 that the category of cartesian O-modules is abelian. But if fδ2
0

is not flat
(for example), there is no reason for the inclusion functor from the category of cartesian
O-modules to allO-modules to be exact.

Lemma 12.8. In Situation 3.3.
(1) An object K of D(Ctotal) is cartesian if and only if Hq(K) is a cartesian abelian

sheaf for all q.
(2) LetO be a sheaf of rings on Ctotal such that the morphisms fδn

j
: (Sh(Cn),On)→

(Sh(Cn−1),On−1) are flat. Then an objectK ofD(O) is cartesian if and only if
Hq(K) is a cartesianO-module for all q.

Proof. Part (1) is true because the pullback functors (fϕ)−1 are exact. Part (2) fol-
lows from the characterization in Lemma 12.2 and the fact that L(fδn

j
)∗ = (fδn

j
)∗ by

flatness. �

Lemma 12.9. In Situation 3.3.
(1) An object K of D(Ctotal) is cartesian if and only the canonical map

gn!Kn −→ gn!Z⊗L
Z K

is an isomorphism for all n.
(2) Let O be a sheaf of rings on Ctotal such that the morphisms f−1

ϕ On → Om are
flat for all ϕ : [n] → [m]. Then an object K of D(O) is cartesian if and only if
the canonical map

gn!Kn −→ gn!On ⊗L
O K
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is an isomorphism for all n.

Proof. Proof of (1). Since gn! is exact, it induces a functor on derived categories
adjoint to g−1

n . The map is the adjoint of the mapKn → (g−1
n gn!Z)⊗L

ZKn corresponding
to Z → g−1

n gn!Z which in turn is adjoint to id : gn!Z → gn!Z. Using the description of
gn! given in Lemma 3.5 we see that the restriction to Cm of this map is⊕

ϕ:[n]→[m]
f−1
ϕ Kn −→

⊕
ϕ:[n]→[m]

Km

Thus the statement is clear.

Proof of (2). Since gn! is exact (Lemma 6.3), it induces a functor on derived categories
adjoint to g∗

n (also exact). The map is the adjoint of the map Kn → (g∗
ngn!On) ⊗L

On
Kn

corresponding toOn → g∗
ngn!On which in turn is adjoint to id : gn!On → gn!On. Using

the description of gn! given in Lemma 6.1 we see that the restriction to Cm of this map is⊕
ϕ:[n]→[m]

f∗
ϕKn −→

⊕
ϕ:[n]→[m]

f∗
ϕOn ⊗Om

Km =
⊕

ϕ:[n]→[m]
Km

Thus the statement is clear. �

Lemma 12.10. In Situation 3.3 letO be a sheaf of rings on Ctotal. Let F be a sheaf of
O-modules. Then F is quasi-coherent in the sense of Modules on Sites, Definition 23.1 if
and only if F is cartesian and Fn is a quasi-coherentOn-module for all n.

Proof. Assume F is quasi-coherent. Since pullbacks of quasi-coherent modules are
quasi-coherent (Modules on Sites, Lemma 23.4) we see that Fn is a quasi-coherent On-
module for all n. To show that F is cartesian, let U be an object of Cn for some n. Let us
viewU as an object of Ctotal. BecauseF is quasi-coherent there exists a covering {Ui → U}
and for each i a presentation⊕

j∈Ji
OCtotal/Ui →

⊕
k∈Ki

OCtotal/Ui → F|Ctotal/Ui → 0

Observe that {Ui → U} is a covering of Cn by the construction of the site Ctotal. Next,
let V be an object of Cm for some m and let V → U be a morphism of Ctotal lying over
ϕ : [n] → [m]. The fibre products Vi = V ×U Ui exist and we get an induced covering
{Vi → V } in Cm. Restricting the presentation above to the sites Cn/Ui and Cm/Vi we
obtain presentations⊕

j∈Ji
OCm/Ui →

⊕
k∈Ki

OCm/Ui → Fn|Cn/Ui → 0

and ⊕
j∈Ji
OCm/Vi →

⊕
k∈Ki

OCm/Vi → Fm|Cm/Vi → 0

These presentations are compatible with the map F(ϕ) : f∗
ϕFn → Fm (as this map is

defined using the restriction maps of F along morphisms of Ctotal lying over ϕ). We
conclude that F(ϕ)|Cm/Vi is an isomorphism. As {Vi → V } is a covering we conclude
F(ϕ)|Cm/V is an isomorphism. Since V and U were arbitrary this proves that F is carte-
sian. (In case A use Sites, Lemma 14.10.)

Conversely, assume Fn is quasi-coherent for all n and that F is cartesian. Then for any n
and objectU of Cn we can choose a covering {Ui → U} of Cn and for each i a presentation⊕

j∈Ji
OCm/Ui →

⊕
k∈Ki

OCm/Ui → Fn|Cn/Ui → 0
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Pulling back to Ctotal/Ui we obtain complexes⊕
j∈Ji
OCtotal/Ui →

⊕
k∈Ki

OCtotal/Ui → F|Ctotal/Ui → 0

of modules on Ctotal/Ui. Then the property that F is cartesian implies that this is exact.
We omit the details. �

13. Simplicial systems of the derived category

In this section we are going to prove a special case of [?, Proposition 3.2.9] in the setting
of derived categories of abelian sheaves. The case of modules is discussed in Section 14.

Definition 13.1. In Situation 3.3. A simplicial system of the derived category con-
sists of the following data

(1) for every n an object Kn of D(Cn),
(2) for every ϕ : [m]→ [n] a map Kϕ : f−1

ϕ Km → Kn in D(Cn)
subject to the condition that

Kϕ◦ψ = Kϕ ◦ f−1
ϕ Kψ : f−1

ϕ◦ψKl = f−1
ϕ f−1

ψ Kl −→ Kn

for any morphisms ϕ : [m] → [n] and ψ : [l] → [m] of ∆. We say the simplicial system
is cartesian if the maps Kϕ are isomorphisms for all ϕ. Given two simplicial systems of
the derived category there is an obvious notion of a morphism of simplicial systems of the
derived category.

We have given this notion a ridiculously long name intentionally. The goal is to show
that a simplicial system of the derived category comes from an object of D(Ctotal) under
certain hypotheses.

Lemma 13.2. In Situation 3.3. If K ∈ D(Ctotal) is an object, then (Kn,K(ϕ)) is a
simplicial system of the derived category. If K is cartesian, so is the system.

Proof. This is obvious. �

Lemma 13.3. In Situation 3.3 suppose given K0 ∈ D(C0) and an isomorphism

α : f−1
δ1

1
K0 −→ f−1

δ1
0
K0

satisfying the cocycle condition. Set τni : [0] → [n], 0 7→ i and set Kn = f−1
τnn
K0. Then

the Kn form a cartesian simplicial system of the derived category.

Proof. Please compare with Lemma 12.4 and its proof (also to see the cocycle condi-
tion spelled out). The construction is analogous to the construction discussed in Descent,
Section 3 from which we borrow the notation τni : [0] → [n], 0 7→ i and τnij : [1] → [n],
0 7→ i, 1 7→ j. Given ϕ : [n]→ [m] we define Kϕ : f−1

ϕ Kn → Km using

f−1
ϕ Kn f−1

ϕ f−1
τnn
K0 f−1

τm
ϕ(n)

K0 f−1
τm
ϕ(n)m

f−1
δ1

1
K0

f−1
τm
ϕ(n)m

α

��
Km f−1

τmm
K0 f−1

τm
ϕ(n)m

f−1
δ1

0
K0

We omit the verification that the cocycle condition implies the maps compose correctly
(in their respective derived categories) and hence give rise to a simplicial system in the
derived category. �
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Lemma 13.4. In Situation 3.3. Let K be an object of D(Ctotal). Set

Xn = (gn!Z)⊗L
Z K and Yn = (gn!Z→ . . .→ g0!Z)[−n]⊗L

Z K

as objects of D(Ctotal) where the maps are as in Lemma 8.1. With the evident canonical
maps Yn → Xn and Y0 → Y1[1]→ Y2[2]→ . . . we have

(1) the distinguished triangles Yn → Xn → Yn−1 → Yn[1] define a Postnikov
system (Derived Categories, Definition 41.1) for . . .→ X2 → X1 → X0,

(2) K = hocolimYn[n] in D(Ctotal).

Proof. First, ifK = Z, then this is the construction of Derived Categories, Example
41.2 applied to the complex

. . .→ g2!Z→ g1!Z→ g0!Z
in Ab(Ctotal) combined with the fact that this complex representsK = Z inD(Ctotal) by
Lemma 8.1. The general case follows from this, the fact that the exact functor − ⊗L

Z K
sends Postnikov systems to Postnikov systems, and that−⊗L

ZK commutes with homotopy
colimits. �

Lemma 13.5. In Situation 3.3. If K,K ′ ∈ D(Ctotal). Assume
(1) K is cartesian,
(2) Hom(Ki[i],K ′

i) = 0 for i > 0, and
(3) Hom(Ki[i+ 1],K ′

i) = 0 for i ≥ 0.
Then any map K → K ′ which induces the zero map K0 → K ′

0 is zero.

Proof. Consider the objects Xn and the Postnikov system Yn associated to K in
Lemma 13.4. As K = hocolimYn[n] the map K → K ′ induces a compatible family of
morphisms Yn[n] → K ′. By (1) and Lemma 12.9 we have Xn = gn!Kn. Since Y0 = X0
we find that K0 → K ′

0 being zero implies Y0 → K ′ is zero. Suppose we’ve shown that
the map Yn[n]→ K ′ is zero for some n ≥ 0. From the distinguished triangle

Yn[n]→ Yn+1[n+ 1]→ Xn+1[n+ 1]→ Yn[n+ 1]
we get an exact sequence

Hom(Xn+1[n+ 1],K ′)→ Hom(Yn+1[n+ 1],K ′)→ Hom(Yn[n],K ′)
As Xn+1[n+ 1] = gn+1!Kn+1[n+ 1] the first group is equal to

Hom(Kn+1[n+ 1],K ′
n+1)

which is zero by assumption (2). By induction we conclude all the maps Yn[n]→ K ′ are
zero. Consider the defining distinguished triangle⊕

Yn[n]→
⊕

Yn[n]→ K → (
⊕

Yn[n])[1]

for the homotopy colimit. Arguing as above, we find that it suffices to show that

Hom((
⊕

Yn[n])[1],K ′) =
∏

Hom(Yn[n+ 1],K ′)

is zero for all n ≥ 0. To see this, arguing as above, it suffices to show that

Hom(Kn[n+ 1],K ′
n) = 0

for all n ≥ 0 which follows from condition (3). �

Lemma 13.6. In Situation 3.3. If K,K ′ ∈ D(Ctotal). Assume
(1) K is cartesian,
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(2) Hom(Ki[i− 1],K ′
i) = 0 for i > 1.

Then any map {Kn → K ′
n} between the associated simplicial systems ofK andK ′ comes

from a map K → K ′ in D(Ctotal).

Proof. Let {Kn → K ′
n}n≥0 be a morphism of simplicial systems of the derived cat-

egory. Consider the objects Xn and Postnikov system Yn associated to K of Lemma 13.4.
By (1) and Lemma 12.9 we have Xn = gn!Kn. In particular, the map K0 → K ′

0 induces
a morphism X0 → K ′. Since {Kn → K ′

n} is a morphism of systems, a computation
(omitted) shows that the composition

X1 → X0 → K ′

is zero. As Y0 = X0 and as Y1 fits into a distinguished triangle

Y1 → X1 → Y0 → Y1[1]

we conclude that there exists a morphism Y1[1] → K ′ whose composition with X0 =
Y0 → Y1[1] is the morphism X0 → K ′ given above. Suppose given a map Yn[n] → K ′

for n ≥ 1. From the distinguished triangle

Xn+1[n]→ Yn[n]→ Yn+1[n+ 1]→ Xn+1[n+ 1]

we get an exact sequence

Hom(Yn+1[n+ 1],K ′)→ Hom(Yn[n],K ′)→ Hom(Xn+1[n],K ′)

As Xn+1[n] = gn+1!Kn+1[n] the last group is equal to

Hom(Kn+1[n],K ′
n+1)

which is zero by assumption (2). By induction we get a system of maps Yn[n] → K ′

compatible with transition maps and reducing to the given map on Y0. This produces a
map

γ : K = hocolimYn[n] −→ K ′

This map in any case has the property that the diagram

X0

!!

// K

γ

��
K ′

is commutative. Restricting to C0 we deduce that the map γ0 : K0 → K ′
0 is the same as

the first map K0 → K ′
0 of the morphism of simplicial systems. Since K is cartesian, this

easily gives that {γn} is the map of simplicial systems we started out with. �

Lemma 13.7. In Situation 3.3. Let (Kn,Kϕ) be a simplicial system of the derived
category. Assume

(1) (Kn,Kϕ) is cartesian,
(2) Hom(Ki[t],Ki) = 0 for i ≥ 0 and t > 0.

Then there exists a cartesian object K of D(Ctotal) whose associated simplicial system is
isomorphic to (Kn,Kϕ).

Proof. Set Xn = gn!Kn in D(Ctotal). For each n ≥ 1 we have

Hom(Xn, Xn−1) = Hom(Kn, g
−1
n gn−1!Kn−1) =

⊕
ϕ:[n−1]→[n]

Hom(Kn, f
−1
ϕ Kn−1)
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Thus we get a map Xn → Xn−1 corresponding to the alternating sum of the maps K−1
ϕ :

Kn → f−1
ϕ Kn−1 where ϕ runs over δn0 , . . . , δnn . We can do this because Kϕ is invertible

by assumption (1). Please observe the similarity with the definition of the maps in the
proof of Lemma 8.1. We obtain a complex

. . .→ X2 → X1 → X0

in D(Ctotal). We omit the computation which shows that the compositions are zero. By
Derived Categories, Lemma 41.6 if we have

Hom(Xi[i− j − 2], Xj) = 0 for i > j + 2
then we can extend this complex to a Postnikov system. The group is equal to

Hom(Ki[i− j − 2], g−1
i gj!Kj)

Again using that (Kn,Kϕ) is cartesian we see that g−1
i gj!Kj is isomorphic to a finite direct

sum of copies ofKi. Hence the group vanishes by assumption (2). Let the Postnikov system
be given by Y0 = X0 and distinguished sequences Yn → Xn → Yn−1 → Yn[1] for n ≥ 1.
We set

K = hocolimYn[n]
To finish the proof we have to show that g−1

m K is isomorphic toKm for allm compatible
with the maps Kϕ. Observe that

g−1
m K = hocolimg−1

m Yn[n]
and that g−1

m Yn[n] is a Postnikov system for g−1
m Xn. Consider the isomorphisms

g−1
m Xn =

⊕
ϕ:[n]→[m]

f−1
ϕ Kn

⊕
Kϕ

−−−−→
⊕

ϕ:[n]→[m]
Km

These maps define an isomorphism of complexes

. . . // g−1
m X2 //

��

g−1
m X1 //

��

g−1
m X0

��
. . . //⊕

ϕ:[2]→[m] Km
//⊕

ϕ:[1]→[m] Km
//⊕

ϕ:[0]→[m] Km

in D(Cm) where the arrows in the bottom row are as in the proof of Lemma 8.1. The
squares commute by our choice of the arrows of the complex . . .→ X2 → X1 → X0; we
omit the computation. The bottom row complex has a postnikov tower given by

Y ′
m,n =

(⊕
ϕ:[n]→[m]

Z→ . . .→
⊕

ϕ:[0]→[m]
Z
)

[−n]⊗L
Z Km

and hocolimY ′
m,n = Km (please compare with the proof of Lemma 13.4 and Derived Cat-

egories, Example 41.2). Applying the second part of Derived Categories, Lemma 41.6 the
vertical maps in the big diagram extend to an isomorphism of Postnikov systems provided
we have

Hom(g−1
m Xi[i− j − 1],

⊕
ϕ:[j]→[m]

Km) = 0 for i > j + 1

The is true if Hom(Km[i− j− 1],Km) = 0 for i > j+ 1 which holds by assumption (2).
Choose an isomorphism given by γm,n : g−1

m Yn → Y ′
m,n of Postnikov systems in D(Cm).

By uniqueness of homotopy colimits, we can find an isomorphism

g−1
m K = hocolimg−1

m Yn[n] γm−−→ hocolimY ′
m,n = Km
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compatible with γm,n.

We still have to prove that the maps γm fit into commutative diagrams

f−1
ϕ g−1

m K

f−1
ϕ γm

��

K(ϕ)
// g−1
n K

γn

��
f−1
ϕ Km

Kϕ // Kn

for every ϕ : [m]→ [n]. Consider the diagram

f−1
ϕ (
⊕

ψ:[0]→[m] f
−1
ψ K0)

f−1
ϕ (
⊕

Kψ)
��

f−1
ϕ g−1

m X0

��

X0(ϕ)
// g−1
n X0

��

⊕
χ:[0]→[n] f

−1
χ K0⊕
Kχ

��
f−1
ϕ (
⊕

ψ:[0]→[m] Km) f−1
ϕ g−1

m K

f−1
ϕ γm

��

K(ϕ)
// g−1
n K

γn

��

⊕
χ:[0]→[n] Kn

f−1
ϕ Y ′

0,m
// f−1
ϕ Km

Kϕ // Kn Y ′
0,n

oo

The top middle square is commutative as X0 → K is a morphism of simplicial objects.
The left, resp. the right rectangles are commutative as γm, resp. γn is compatible with
γ0,m, resp. γ0,n which are the arrows

⊕
Kψ and

⊕
Kχ in the diagram. Going around the

outer rectangle of the diagram is commutative as (Kn,Kϕ) is a simplical system and the
map X0(ϕ) is given by the obvious identifications f−1

ϕ f−1
ψ K0 = f−1

ϕ◦ψK0. Note that the
arrow

⊕
ψKm → Y ′

0,m → Km induces an isomorphism on any of the direct summands
(because of our explicit construction of the Postnikov systems Y ′

i,j above). Hence, if we
take a direct summand of the upper left and corner, then this maps isomorphically to
f−1
ϕ g−1

m K as γm is an isomorphism. Working out what the above says, but looking only
at this direct summand we conclude the lower middle square commutes as we well. This
concludes the proof. �

14. Simplicial systems of the derived category: modules

In this section we are going to prove a special case of [?, Proposition 3.2.9] in the setting of
derived categories of O-modules. The (slightly) easier case of abelian sheaves is discussed
in Section 13.

Definition 14.1. In Situation 3.3. Let O be a sheaf of rings on Ctotal. A simplicial
system of the derived category of modules consists of the following data

(1) for every n an object Kn of D(On),
(2) for every ϕ : [m]→ [n] a map Kϕ : Lf∗

ϕKm → Kn in D(On)
subject to the condition that

Kϕ◦ψ = Kϕ ◦ Lf∗
ϕKψ : Lf∗

ϕ◦ψKl = Lf∗
ϕLf

∗
ψKl −→ Kn

for any morphisms ϕ : [m] → [n] and ψ : [l] → [m] of ∆. We say the simplicial system
is cartesian if the maps Kϕ are isomorphisms for all ϕ. Given two simplicial systems of
the derived category there is an obvious notion of a morphism of simplicial systems of the
derived category of modules.
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We have given this notion a ridiculously long name intentionally. The goal is to show
that a simplicial system of the derived category of modules comes from an object ofD(O)
under certain hypotheses.

Lemma 14.2. In Situation 3.3 let O be a sheaf of rings on Ctotal. If K ∈ D(O) is an
object, then (Kn,K(ϕ)) is a simplicial system of the derived category of modules. If K is
cartesian, so is the system.

Proof. This is immediate from the definitions. �

Lemma 14.3. In Situation 3.3 letO be a sheaf of rings on Ctotal. Suppose givenK0 ∈
D(O0) and an isomorphism

α : L(fδ1
1
)∗K0 −→ L(fδ1

0
)∗K0

satisfying the cocycle condition. Set τni : [0] → [n], 0 7→ i and set Kn = Lf∗
τnn
K0. The

objects Kn form the members of a cartesian simplicial system of the derived category of
modules.

Proof. Please compare with Lemmas 13.3 and 12.4 and its proof (also to see the co-
cycle condition spelled out). The construction is analogous to the construction discussed
in Descent, Section 3 from which we borrow the notation τni : [0] → [n], 0 7→ i and
τnij : [1] → [n], 0 7→ i, 1 7→ j. Given ϕ : [n] → [m] we define Kϕ : L(fϕ)∗Kn → Km

using

L(fϕ)∗Kn L(fϕ)∗L(fτnn )∗K0 L(fτm
ϕ(n)

)∗K0 L(fτm
ϕ(n)m

)∗L(fδ1
1
)∗K0

L(fτm
ϕ(n)m

)∗α

��
Km L(fτmm )∗K0 L(fτm

ϕ(n)m
)∗L(fδ1

0
)∗K0

We omit the verification that the cocycle condition implies the maps compose correctly
(in their respective derived categories) and hence give rise to a simplicial systems of the
derived category of modules. �

Lemma 14.4. In Situation 3.3 let O be a sheaf of rings on Ctotal. Let K be an object
of D(Ctotal). Set

Xn = (gn!On)⊗L
O K and Yn = (gn!On → . . .→ g0!O0)[−n]⊗L

O K

as objects of D(O) where the maps are as in Lemma 8.1. With the evident canonical maps
Yn → Xn and Y0 → Y1[1]→ Y2[2]→ . . . we have

(1) the distinguished triangles Yn → Xn → Yn−1 → Yn[1] define a Postnikov
system (Derived Categories, Definition 41.1) for . . .→ X2 → X1 → X0,

(2) K = hocolimYn[n] in D(O).

Proof. First, ifK = O, then this is the construction of Derived Categories, Example
41.2 applied to the complex

. . .→ g2!O2 → g1!O1 → g0!O0

in Ab(Ctotal) combined with the fact that this complex representsK = O inD(Ctotal) by
Lemma 10.1. The general case follows from this, the fact that the exact functor − ⊗L

O K
sends Postnikov systems to Postnikov systems, and that−⊗L

OK commutes with homotopy
colimits. �
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Lemma 14.5. In Situation 3.3 let O be a sheaf of rings on Ctotal. If K,K ′ ∈ D(O).
Assume

(1) f−1
ϕ On → Om is flat for ϕ : [m]→ [n],

(2) K is cartesian,
(3) Hom(Ki[i],K ′

i) = 0 for i > 0, and
(4) Hom(Ki[i+ 1],K ′

i) = 0 for i ≥ 0.
Then any map K → K ′ which induces the zero map K0 → K ′

0 is zero.

Proof. The proof is exactly the same as the proof of Lemma 13.5 except using Lemma
14.4 instead of Lemma 13.4. �

Lemma 14.6. In Situation 3.3 let O be a sheaf of rings on Ctotal. If K,K ′ ∈ D(O).
Assume

(1) f−1
ϕ On → Om is flat for ϕ : [m]→ [n],

(2) K is cartesian,
(3) Hom(Ki[i− 1],K ′

i) = 0 for i > 1.
Then any map {Kn → K ′

n} between the associated simplicial systems ofK andK ′ comes
from a map K → K ′ in D(O).

Proof. The proof is exactly the same as the proof of Lemma 13.6 except using Lemma
14.4 instead of Lemma 13.4. �

Lemma 14.7. In Situation 3.3 let O be a sheaf of rings on Ctotal. Let (Kn,Kϕ) be a
simplicial system of the derived category of modules. Assume

(1) f−1
ϕ On → Om is flat for ϕ : [m]→ [n],

(2) (Kn,Kϕ) is cartesian,
(3) Hom(Ki[t],Ki) = 0 for i ≥ 0 and t > 0.

Then there exists a cartesian object K of D(O) whose associated simplicial system is iso-
morphic to (Kn,Kϕ).

Proof. The proof is exactly the same as the proof of Lemma 13.7 with the following
changes

(1) use g∗
n = Lg∗

n everywhere instead of g−1
n ,

(2) use f∗
ϕ = Lf∗

ϕ everywhere instead of f−1
ϕ ,

(3) refer to Lemma 10.1 instead of Lemma 8.1,
(4) in the construction of Y ′

m,n useOm instead of Z,
(5) compare with the proof of Lemma 14.4 rather than the proof of Lemma 13.4.

This ends the proof. �

15. The site associated to a semi-representable object

Let C be a site. Recall that a semi-representable object of C is simply a family {Ui}i∈I of
objects of C. A morphism {Ui}i∈I → {Vj}j∈J of semi-representable objects is given by a
map α : I → J and for every i ∈ I a morphism fi : Ui → Vα(i) of C. The category of
semi-representable objects of C is denoted SR(C). See Hypercoverings, Definition 2.1 and
the enclosing section for more information.

For a semi-representable object K = {Ui}i∈I of C we let

C/K =
∐

i∈I
C/Ui
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be the disjoint union of the localizations of C at Ui. There is a natural structure of a site
on this category, with coverings inherited from the localizations C/Ui. The site C/K is
called the localization of C atK. Observe that a sheaf on C/K is the same thing as a family
of sheaves Fi on C/Ui, i.e.,

Sh(C/K) =
∏

i∈I
Sh(C/Ui)

This is occasionally useful to understand what is going on.

Let C be a site. Let K = {Ui}i∈I be an object of SR(C). There is a continuous and co-
continuous localization functor j : C/K → C which is the product of the localization
functors ji : C/Vi → C. We obtain functors j!, j−1, j∗ exactly as in Sites, Section 25. In
terms of the product decomposition Sh(C/K) =

∏
i∈I Sh(C/Ui) we have

j! : (Fi)i∈I 7−→
∐
ji,!Fi

j−1 : G 7−→ (j−1
i G)i∈I

j∗ : (Fi)i∈I 7−→
∏
ji,∗Fi

as the reader easily verifies.

Let f : K → L be a morphism of SR(C). Then we obtain a continuous and cocontinuous
functor

v : C/K −→ C/L
by applying the construction of Sites, Lemma 25.8 to the components. More precisely,
suppose f = (α, fi) where K = {Ui}i∈I , L = {Vj}j∈J , α : I → J , and fi : Ui →
Vα(i). Then the functor v maps the component C/Ui into the component C/Vα(i) via the
construction of the aforementioned lemma. In particular we obtain a morphism

f : Sh(C/K)→ Sh(C/L)
of topoi. In terms of the product decompositions Sh(C/K) =

∏
i∈I Sh(C/Ui) and Sh(C/L) =∏

j∈J Sh(C/Vj) the reader verifies that

f! : (Fi)i∈I 7−→ (
∐
i∈I,α(i)=j fi,!Fi)j∈J

f−1 : (Gj)j∈J 7−→ (f−1
i Gα(i))i∈I

f∗ : (Fi)i∈I 7−→ (
∏
i∈I,α(i)=j fi,∗Fi)j∈J

where fi : Sh(C/Ui)→ Sh(C/Vα(i)) is the morphism associated to the localization func-
tor C/Ui → C/Vα(i) corresponding to fi : Ui → Vα(i).

Lemma 15.1. Let C be a site.
(1) For K in SR(C) the functor j : C/K → C is continuous, cocontinuous, and has

property P of Sites, Remark 20.5.
(2) For f : K → L in SR(C) the functor v : C/K → C/L (see above) is continuous,

cocontinuous, and has property P of Sites, Remark 20.5.

Proof. Proof of (2). In the notation of the discussion preceding the lemma, the lo-
calization functors C/Ui → C/Vα(i) are continuous and cocontinuous by Sites, Section 25
and satisfy P by Sites, Remark 25.11. It is formal to deduce v is continuous and cocontin-
uous and has P . We omit the details. We also omit the proof of (1). �

Lemma 15.2. Let C be a site and K in SR(C). For F in Sh(C) we have

j∗j
−1F = Hom(F (K)#,F)

where F is as in Hypercoverings, Definition 2.2.
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Proof. Say K = {Ui}i∈I . Using the description of the functors j−1 and j∗ given
above we see that

j∗j
−1F =

∏
i∈I

ji,∗(F|C/Ui) =
∏

i∈I
Hom(h#

Ui
,F)

The second equality by Sites, Lemma 26.3. Since F (K) =
∐
hUi in PSh(C , we have

F (K)# =
∐
h#
Ui

in Sh(C) and sinceHom(−,F) turns coproducts into products (imme-
diate from the construction in Sites, Section 26), we conclude. �

Lemma 15.3. Let C be a site.
(1) ForK in SR(C) the functor j! gives an equivalence Sh(C/K)→ Sh(C)/F (K)#

where F is as in Hypercoverings, Definition 2.2.
(2) The functor j−1 : Sh(C) → Sh(C/K) corresponds via the identification of (1)

with F 7→ (F × F (K)# → F (K)#).
(3) For f : K → L in SR(C) the functor f−1 corresponds via the identifications

of (1) to the functor Sh(C)/F (L)# → Sh(C)/F (K)#, (G → F (L)#) 7→
(G ×F (L)# F (K)# → F (K)#).

Proof. Observe that ifK = {Ui}i∈I then the category Sh(C/K) decomposes as the
product of the categories Sh(C/Ui). Observe that F (K)# =

∐
i∈I h

#
Ui

(coproduct in
sheaves). Hence Sh(C)/F (K)# is the product of the categories Sh(C)/h#

Ui
. Thus (1) and

(2) follow from the corresponding statements for each i, see Sites, Lemmas 25.4 and 25.7.
Similarly, if L = {Vj}j∈J and f is given by α : I → J and fi : Ui → Vα(i), then we can
apply Sites, Lemma 25.9 to each of the re-localization morphisms C/Ui → C/Vα(i) to get
(3). �

Lemma 15.4. Let C be a site. For K in SR(C) the functor j−1 sends injective abelian
sheaves to injective abelian sheaves. Similarly, the functor j−1 sends K-injective com-
plexes of abelian sheaves to K-injective complexes of abelian sheaves.

Proof. The first statement is the natural generalization of Cohomology on Sites,
Lemma 7.1 to semi-representable objects. In fact, it follows from this lemma by the prod-
uct decomposition of Sh(C/K) and the description of the functor j−1 given above. The
second statement is the natural generalization of Cohomology on Sites, Lemma 20.1 and
follows from it by the product decomposition of the topos.

Alternative: since j induces a localization of topoi by Lemma 15.3 part (1) it also fol-
lows immediately from Cohomology on Sites, Lemmas 7.1 and 20.1 by enlarging the site;
compare with the proof of Cohomology on Sites, Lemma 13.3 in the case of injective
sheaves. �

Remark 15.5 (Variant for over an object). Let C be a site. Let X ∈ Ob(C). The cate-
gory SR(C, X) of semi-representable objects overX is defined by the formula SR(C, X) =
SR(C/X). See Hypercoverings, Definition 2.1. Thus we may apply the above discussion
to the site C/X . Briefly, the constructions above give

(1) a site C/K for K in SR(C, X),
(2) a decomposition Sh(C/K) =

∏
Sh(C/Ui) if K = {Ui/X},

(3) a localization functor j : C/K → C/X ,
(4) a morphism f : Sh(C/K)→ Sh(C/L) for f : K → L in SR(C, X).

All results of this section hold in this situation by replacing C everywhere by C/X .
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Remark 15.6 (Ringed variant). Let C be a site. Let OC be a sheaf of rings on C. In
this case, for any semi-representable object K of C the site C/K is a ringed site with sheaf
of ringsOK = j−1OC . The constructions above give

(1) a ringed site (C/K,OK) for K in SR(C),
(2) a decomposition Mod(OK) =

∏
Mod(OUi) if K = {Ui},

(3) a localization morphism j : (Sh(C/K),OK)→ (Sh(C),OC) of ringed topoi,
(4) a morphism f : (Sh(C/K),OK) → (Sh(C/L),OL) of ringed topoi for f :

K → L in SR(C).
Many of the results above hold in this setting. For example, the functor j∗ has an exact
left adjoint

j! : Mod(OK)→Mod(OC),
which in terms of the product decomposition given in (2) sends (Fi)i∈I to

⊕
ji,!Fi. Simi-

larly, given f : K → L as above, the functor f∗ has an exact left adjoint f! : Mod(OK)→
Mod(OL). Thus the functors j∗ and f∗ are exact, i.e., j and f are flat morphisms of ringed
topoi (also follows from the equalitiesOK = j−1OC andOK = f−1OL).

Remark 15.7 (Ringed variant over an object). Let C be a site. LetOC be a sheaf of rings
on C. LetX ∈ Ob(C) and denoteOX = OC |C/U . Then we can combine the constructions
given in Remarks 15.5 and 15.6 to get

(1) a ringed site (C/K,OK) for K in SR(C, X),
(2) a decomposition Mod(OK) =

∏
Mod(OUi) if K = {Ui},

(3) a localization morphism j : (Sh(C/K),OK) → (Sh(C/X),OX) of ringed
topoi,

(4) a morphism f : (Sh(C/K),OK) → (Sh(C/L),OL) of ringed topoi for f :
K → L in SR(C, X).

Of course all of the results mentioned in Remark 15.6 hold in this setting as well.

16. The site associate to a simplicial semi-representable object

Let C be a site. LetK be a simplicial object of SR(C). As usual, setKn = K([n]) and denote
K(ϕ) : Kn → Km the morphism associated to ϕ : [m] → [n]. By the construction in
Section 15 we obtain a simplicial object n 7→ C/Kn in the category whose objects are sites
and whose morphisms are cocontinuous functors. In other words, we get a gadget as in
Case B of Section 3. The functors satisfy property P by Lemma 15.1. Hence we may apply
Lemma 3.2 to obtain a site (C/K)total.
We can describe the site (C/K)total explicitly as follows. Say Kn = {Un,i}i∈In . For
ϕ : [m] → [n] the morphism K(ϕ) : Kn → Km is given by a map α(ϕ) : In → Im and
morphisms fϕ,i : Un,i → Um,α(ϕ)(i) for i ∈ In. Then we have

(1) an object of (C/K)total corresponds to an object (U/Un,i) of C/Un,i for some n
and some i ∈ In,

(2) a morphism between U/Un,i and V/Um,j is a pair (ϕ, f) where ϕ : [m] → [n],
j = α(ϕ)(i), and f : U → V is a morphism of C such that

U
f
//

��

V

��
Un,i

fϕ,i // Um,j

is commutative, and
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(3) coverings of the object U/Un,i are constructed by starting with a covering {fj :
Uj → U} in C and letting {(id, fj) : Uj/Un,i → U/Un,i} be a covering in
(C/K)total.

All of our general theory developed for simplicial sites applies to (C/K)total. Observe
that the obvious forgetful functor

jtotal : (C/K)total −→ C
is continuous and cocontinuous. It turns out that the associated morphism of topoi comes
from an (obvious) augmentation.

Lemma 16.1. Let C be a site. Let K be a simplicial object of SR(C). The localization
functor j0 : C/K0 → C defines an augmentation a0 : Sh(C/K0) → Sh(C), as in case (B)
of Remark 4.1. The corresponding morphisms of topoi

an : Sh(C/Kn) −→ Sh(C), a : Sh((C/K)total) −→ Sh(C)
of Lemma 4.2 are equal to the morphisms of topoi associated to the continuous and cocon-
tinuous localization functors jn : C/Kn → C and jtotal : (C/K)total → C.

Proof. This is immediate from working through the definitions. See in particular
the footnote in the proof of Lemma 4.2 for the relationship between a and jtotal. �

Lemma 16.2. With assumption and notation as in Lemma 16.1 we have the following
properties:

(1) there is a functor aSh! : Sh((C/K)total)→ Sh(C) left adjoint to a−1 : Sh(C)→
Sh((C/K)total),

(2) there is a functor a! : Ab((C/K)total) → Ab(C) left adjoint to a−1 : Ab(C) →
Ab((C/K)total),

(3) the functor a−1 associates toF in Sh(C) the sheaf on (C/K)total wich in degree
n is equal to a−1

n F ,
(4) the functor a∗ associates to G in Ab((C/K)total) the equalizer of the two maps

j0,∗G0 → j1,∗G1,

Proof. Parts (3) and (4) hold for any augmentation of a simplicial site, see Lemma
4.2. Parts (1) and (2) follow as jtotal is continuous and cocontinuous. The functor aSh!
is constructed in Sites, Lemma 21.5 and the functor a! is constructed in Modules on Sites,
Lemma 16.2. �

Lemma 16.3. Let C be a site. Let K be a simplicial object of SR(C). Let U/Un,i be an
object of C/Kn. Let F ∈ Ab((C/K)total). Then

Hp(U,F) = Hp(U,Fn,i)
where

(1) on the left hand side U is viewed as an object of Ctotal, and
(2) on the right hand sideFn,i is the ith component of the sheafFn on C/Kn in the

decomposition Sh(C/Kn) =
∏

Sh(C/Un,i) of Section 15.

Proof. This follows immediately from Lemma 8.6 and the product decompositions
of Section 15. �

Remark 16.4 (Variant for over an object). Let C be a site. LetX ∈ Ob(C). Recall that
we have a category SR(C, X) = SR(C/X) of semi-representable objects over X , see Re-
mark 15.5. We may apply the above discussion to the site C/X . Briefly, the constructions
above give
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(1) a site (C/K)total for a simplicial K object of SR(C, X),
(2) a localization functor jtotal : (C/K)total → C/X ,
(3) localization functors jn : C/Kn → C/X ,
(4) a morphism of topoi a : Sh((C/K)total)→ Sh(C/X),
(5) morphisms of topoi an : Sh(C/Kn)→ Sh(C/X),
(6) a functor aSh! : Sh((C/K)total)→ Sh(C/X) left adjoint to a−1, and
(7) a functor a! : Ab((C/K)total)→ Ab(C/X) left adjoint to a−1.

All of the results of this section hold in this setting. To prove this one replaces the site C
everywhere by C/X .

Remark 16.5 (Ringed variant). Let C be a site. Let OC be a sheaf of rings. Given a
simplicial semi-representable object K of C we set O = a−1OC , where a is as in Lemmas
16.1 and 16.2. The constructions above, keeping track of the sheaves of rings as in Remark
15.6, give

(1) a ringed site ((C/K)total,O) for a simplicial K object of SR(C),
(2) a morphism of ringed topoi a : (Sh((C/K)total),O)→ (Sh(C),OC),
(3) morphisms of ringed topoi an : (Sh(C/Kn),On)→ (Sh(C),OC),
(4) a functor a! : Mod(O)→Mod(OC) left adjoint to a∗.

The functor a! exists (but in general is not exact) because a−1OC = O and we can replace
the use of Modules on Sites, Lemma 16.2 in the proof of Lemma 16.2 by Modules on Sites,
Lemma 41.1. As discussed in Remark 15.6 there are exact functors an! : Mod(On) →
Mod(OC) left adjoint to a∗

n. Consequently, the morphisms a and an are flat. Remark 15.6
implies the morphism of ringed topoi fϕ : (Sh(C/Kn),On) → (Sh(C/Km),Om) for
ϕ : [m] → [n] is flat and there exists an exact functor fϕ! : Mod(On) → Mod(Om)
left adjoint to f∗

ϕ. This in turn implies that for the flat morphism of ringed topoi gn :
(Sh(C/Kn),On) → (Sh((C/K)total),O) the functor gn! : Mod(On) → Mod(O) left
adjoint to g∗

n is exact, see Lemma 6.3.

Remark 16.6 (Ringed variant over an object). Let C be a site. Let OC be a sheaf of
rings. LetX ∈ Ob(C) and denoteOX = OC |C/X . Then we can combine the constructions
given in Remarks 16.4 and 16.5 to get

(1) a ringed site ((C/K)total,O) for a simplicial K object of SR(C, X),
(2) a morphism of ringed topoi a : (Sh((C/K)total),O)→ (Sh(C/X),OX),
(3) morphisms of ringed topoi an : (Sh(C/Kn),On)→ (Sh(C/X),OX),
(4) a functor a! : Mod(O)→Mod(OX) left adjoint to a∗.

Of course, all the results mentioned in Remark 16.5 hold in this setting as well.

17. Cohomological descent for hypercoverings

Let C be a site. In this section we assume C has equalizers and fibre products. We let
K be a hypercovering as defined in Hypercoverings, Definition 6.1. We will study the
augmentation

a : Sh((C/K)total) −→ Sh(C)
of Section 16.

Lemma 17.1. Let C be a site with equalizers and fibre products. Let K be a hypercov-
ering. Then

(1) a−1 : Sh(C) → Sh((C/K)total) is fully faithful with essential image the carte-
sian sheaves of sets,
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(2) a−1 : Ab(C)→ Ab((C/K)total) is fully faithful with essential image the carte-
sian sheaves of abelian groups.

In both cases a∗ provides the quasi-inverse functor.

Proof. The case of abelian sheaves follows immediately from the case of sheaves of
sets as the functor a−1 commutes with products. In the rest of the proof we work with
sheaves of sets. Observe that a−1F is cartesian for F in Sh(C) by Lemma 12.3. It suffices
to show that the adjunction map F → a∗a

−1F is an isomorphism F in Sh(C) and that
for a cartesian sheaf G on (C/K)total the adjunction map a−1a∗G → G is an isomorphism.

Let F be a sheaf on C. Recall that a∗a
−1F is the equalizer of the two maps a0,∗a

−1
0 F →

a1,∗a
−1
1 F , see Lemma 16.2. By Lemma 15.2

a0,∗a
−1
0 F = Hom(F (K0)#,F) and a1,∗a

−1
1 F = Hom(F (K1)#,F)

On the other hand, we know that

F (K1)# //
// F (K0)# // final object ∗ of Sh(C)

is a coequalizer diagram in sheaves of sets by definition of a hypercovering. Thus it suffices
to prove thatHom(−,F) transforms coequalizers into equalizers which is immediate from
the construction in Sites, Section 26.
Let G be a cartesian sheaf on (C/K)total. We will show that G = a−1F for some sheaf F
on C. This will finish the proof because then a−1a∗G = a−1a∗a

−1F = a−1F = G by
the result of the previous paragraph. Set Kn = F (Kn)# for n ≥ 0. Then we have maps
of sheaves

K2
////// K1

//// K0

coming from the fact thatK is a simplicial semi-representable object. The fact thatK is a
hypercovering means that

K1 → K0 ×K0 and K2 →
(

cosk1( K1
//// K0oo )

)
2

are surjective maps of sheaves. Using the description of cartesian sheaves on (C/K)total
given in Lemma 12.4 and using the description of Sh(C/Kn) in Lemma 15.3 we find that
our problem can be entirely formulated3 in terms of

(1) the topos Sh(C), and
(2) the simplicial object K in Sh(C) whose terms are Kn.

Thus, after replacing C by a different site C′ as in Sites, Lemma 29.5, we may assume C
has all finite limits, the topology on C is subcanonical, a family {Vj → V } of morphisms
of C is a covering if and only if

∐
hVj → V is surjective, and there exists a simplicial

object U of C such thatKn = hUn as simplicial sheaves. Working backwards through the
equivalences we may assume Kn = {Un} for all n.
Let X be the final object of C. Then {U0 → X} is a covering, {U1 → U0 × U0} is a
covering, and {U2 → (cosk1sk1U)2} is a covering. Let us use dni : Un → Un−1 and
snj : Un → Un+1 the morphisms corresponding to δni and σnj as in Simplicial, Definition

3Even though it does not matter what the precise formulation is, we spell it out: the problem is to show
that given an object G0/K0 of Sh(C)/K0 and an isomorphism

α : G0 ×K0,K(δ1
1) K1 → G0 ×K0,K(δ1

0) K1

over K1 satisfying a cocycle condtion in Sh(C)/K2 , there exists F in Sh(C) and an isomorphism F ×K0 → G0
over K0 compatible with α.
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2.1. By abuse of notation, given a morphism c : V →W of C we denote the morphism of
topoi c : Sh(C/V )→ Sh(C/W ) by the same letter. Now G is given by a sheaf G0 on C/U0
and an isomorphism α : (d1

1)−1G0 → (d1
0)−1G0 satisfying the cocycle condition on C/U2

formulated in Lemma 12.4. Since {U2 → (cosk1sk1U)2} is a covering, the corresponding
pullback functor on sheaves is faithful (small detail omitted). Hence we may replace U by
cosk1sk1U , because this replaces U2 by (cosk1sk1U)2 and leaves U1 and U0 unchanged.
Then

(d2
0, d

2
1, d

2
2) : U2 → U1 × U1 × U1

is a monomorphism whose its image on T -valued points is described in Simplicial, Lemma
19.6. In particular, there is a morphism c fitting into a commutative diagram

U1 ×(d1
1,d

1
0),U0×U0,(d1

1,d
1
0) U1

��

c
// U2

��
U1 × U1

(pr1,pr2,s
0
0◦d1

1◦pr1) // U1 × U1 × U1

as going around the other way defines a point of U2. Pulling back the cocycle condition
for α on U2 translates into the condition that the pullbacks of α via the projections to
U1 ×(d1

1,d
1
0),U0×U0,(d1

1,d
1
0) U1 are the same as the pullback of α via s0

0 ◦ d1
1 ◦ pr1 is the

identity map (namely, the pullback of α by s0
0 is the identity). By Sites, Lemma 26.1 this

means that α comes from an isomorphism

α′ : pr−1
1 G0 → pr−1

2 G0

of sheaves on C/U0 × U0. Then finally, the morphism U2 → U0 × U0 × U0 is surjective
on associated sheaves as is easily seen using the surjectivity of U1 → U0 × U0 and the
description of U2 given above. Therefore α′ satisfies the cocycle condition on U0 × U0 ×
U0. The proof is finished by an application of Sites, Lemma 26.5 to the covering {U0 →
X}. �

Lemma 17.2. Let C be a site with equalizers and fibre products. LetK be a hypercov-
ering. The Čech complex of Lemma 9.2 associated to a−1F

a0,∗a
−1
0 F → a1,∗a

−1
1 F → a2,∗a

−1
2 F → . . .

is equal to the complexHom(s(Z#
F (K)),F). Here s(Z#

F (K)) is as in Hypercoverings, Def-
inition 4.1.

Proof. By Lemma 15.2 we have

an,∗a
−1
n F = Hom′(F (Kn)#,F)

where Hom′ is as in Sites, Section 26. The boundary maps in the complex of Lemma 9.2
come from the simplicial structure. Thus the equality of complexes comes from the canon-
ical identificationsHom′(G,F) = Hom(ZG ,F) for G in Sh(C). �

Lemma 17.3. Let C be a site with equalizers and fibre products. LetK be a hypercov-
ering. For E ∈ D(C) the map

E −→ Ra∗a
−1E

is an isomorphism.
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Proof. First, let I be an injective abelian sheaf on C. Then the spectral sequence of
Lemma 9.3 for the sheaf a−1I degenerates as (a−1I)p = a−1

p I is injective by Lemma 15.4.
Thus the complex

a0,∗a
−1
0 I → a1,∗a

−1
1 I → a2,∗a

−1
2 I → . . .

computes Ra∗a
−1I . By Lemma 17.2 this is equal to the complexHom(s(Z#

F (K)), I). Be-
cause K is a hypercovering, we see that s(Z#

F (K)) is exact in degrees > 0 by Hypercover-
ings, Lemma 4.4 applied to the simplicial presheaf F (K). Since I is injective, the functor
Hom(−, I) is exact and we conclude thatHom(s(Z#

F (K)), I) is exact in positive degrees.
We conclude that Rpa∗a

−1I = 0 for p > 0. On the other hand, we have I = a∗a
−1I by

Lemma 17.1.
Bounded case. Let E ∈ D+(C). Choose a bounded below complex I• of injectives rep-
resenting E. By the result of the first paragraph and Leray’s acyclicity lemma (Derived
Categories, Lemma 16.7) Ra∗a

−1I• is computed by the complex a∗a
−1I• = I• and we

conclude the lemma is true in this case.
Unbounded case. We urge the reader to skip this, since the argument is the same as above,
except that we use explicit representation by double complexes to get around convergence
issues. Let E ∈ D(C). To show the map E → Ra∗a

−1E is an isomorphism, it suffices to
show for every object U of C that

RΓ(U,E) = RΓ(U,Ra∗a
−1E)

We will compute both sides and show the map E → Ra∗a
−1E induces an isomorphism.

Choose a K-injective complex I• representing E. Choose a quasi-isomorphism a−1I• →
J • for some K-injective complex J • on (C/K)total. We have

RΓ(U,E) = RHom(Z#
U , E)

and
RΓ(U,Ra∗a

−1E) = RHom(Z#
U , Ra∗a

−1E) = RHom(a−1Z#
U , a

−1E)
By Lemma 9.1 we have a quasi-isomorphism(

. . .→ g2!(a−1
2 Z#

U )→ g1!(a−1
1 Z#

U )→ g0!(a−1
0 Z#

U )
)
−→ a−1Z#

U

Hence RHom(a−1Z#
U , a

−1E) is equal to

RΓ((C/K)total, RHom(. . .→ g2!(a−1
2 Z#

U )→ g1!(a−1
1 Z#

U )→ g0!(a−1
0 Z#

U ),J •))
By the construction in Cohomology on Sites, Section 35 and since J • is K-injective, we
see that this is represented by the complex of abelian groups with terms∏

p+q=n
Hom(gp!(a−1

p Z#
U ),J q) =

∏
p+q=n

Hom(a−1
p Z#

U , g
−1
p J q)

See Cohomology on Sites, Lemmas 34.6 and 35.1 for more information. Thus we find that
RΓ(U,Ra∗a

−1E) is computed by the product total complex Totπ(B•,•) with Bp,q =
Hom(a−1

p Z#
U , g

−1
p J q). For the other side we argue similarly. First we note that

s(Z#
F (K)) −→ Z

is a quasi-isomorphism of complexes on C by Hypercoverings, Lemma 4.4. Since Z#
U is a

flat sheaf of Z-modules we see that
s(Z#

F (K))⊗Z Z#
U −→ Z#

U
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is a quasi-isomorphism. Therefore RHom(Z#
U , E) is equal to

RΓ(C, RHom(s(Z#
F (K))⊗Z Z#

U , I
•))

By the construction of RHom and since I• is K-injective, this is represented by the com-
plex of abelian groups with terms∏

p+q=n
Hom(Z#

Kp
⊗Z Z#

U , I
q) =

∏
p+q=n

Hom(a−1
p Z#

U , a
−1
p Iq)

The equality of terms follows from the fact that Z#
Kp
⊗Z Z#

U = ap!a
−1
p Z#

U by Modules
on Sites, Remark 27.10. Thus we find that RΓ(U,E) is computed by the product total
complex Totπ(A•,•) with Ap,q = Hom(a−1

p Z#
U , a

−1
p Iq).

Since I• is K-injective we see that a−1
p I• is K-injective, see Lemma 15.4. Since J • is K-

injective we see that g−1
p J • is K-injective, see Lemma 3.6. Both represent the object a−1

p E.
Hence for every p ≥ 0 the map of complexes

Ap,• = Hom(a−1
p Z#

U , a
−1
p I•) −→ Hom(a−1

p Z#
U , g

−1
p J •) = Bp,•

induced by g−1
p applied to the given map a−1I• → J • is a quasi-isomorphisms as these

complexes both compute
RHom(a−1

p Z#
U , a

−1
p E)

By More on Algebra, Lemma 103.2 we conclude that the right vertical arrow in the com-
mutative diagram

RΓ(U,E) //

��

Totπ(A•,•)

��
RΓ(U,Ra∗a

−1E) // Totπ(B•,•)
is a quasi-isomorphism. Since we saw above that the horizontal arrows are quasi-isomorphisms,
so is the left vertical arrow. �

Lemma 17.4. Let C be a site with equalizers and fibre products. LetK be a hypercov-
ering. Then we have a canonical isomorphism

RΓ(C, E) = RΓ((C/K)total, a−1E)

for E ∈ D(C).

Proof. This follows from Lemma 17.3 because RΓ((C/K)total,−) = RΓ(C,−) ◦
Ra∗ by Cohomology on Sites, Remark 14.4. �

Lemma 17.5. Let C be a site with equalizers and fibre products. LetK be a hypercov-
ering. Let A ⊂ Ab((C/K)total) denote the weak Serre subcategory of cartesian abelian
sheaves. Then the functor a−1 defines an equivalence

D+(C) −→ D+
A((C/K)total)

with quasi-inverse Ra∗.

Proof. Observe thatA is a weak Serre subcategory by Lemma 12.6. The equivalence
is a formal consequence of the results obtained so far. Use Lemmas 17.1 and 17.3 and Co-
homology on Sites, Lemma 28.5 �

We urge the reader to skip the following remark.
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Remark 17.6. Let C be a site. Let G be a presheaf of sets on C. If C has equalizers and
fibre products, then we’ve defined the notion of a hypercovering of G in Hypercoverings,
Definition 6.1. We claim that all the results in this section have a valid counterpart in this
setting. To see this, define the localization C/G of C at G exactly as in Sites, Lemma 30.3
(which is stated only for sheaves; the topos Sh(C/G) is equal to the localization of the topos
Sh(C) at the sheaf G#). Then the reader easily shows that the site C/G has fibre products
and equalizers and that a hypercovering of G in C is the same thing as a hypercovering for
the site C/G. Hence replacing the site C by C/G in the lemmas on hypercoverings above
we obtain proofs of the corresponding results for hypercoverings of G. Example: for a
hypercovering K of G we have

RΓ(C/G, E) = RΓ((C/K)total, a−1E)
for E ∈ D+(C/G) where a : Sh((C/K)total)→ Sh(C/G) is the canonical augmentation.
This is Lemma 17.4. Let RΓ(G,−) : D(C) → D(Ab) be defined as the derived func-
tor of the functor H0(G,−) = H0(G#,−) discussed in Hypercoverings, Section 6 and
Cohomology on Sites, Section 13. We have

RΓ(G, E) = RΓ(C/G, j−1E)
by the analogue of Cohomology on Sites, Lemma 7.1 for the localization fuctor j : C/G →
C. Putting everything together we obtain

RΓ(G, E) = RΓ((C/K)total, a−1j−1E) = RΓ((C/K)total, g−1E)
for E ∈ D+(C) where g : Sh((C/K)total)→ Sh(C) is the composition of a and j.

18. Cohomological descent for hypercoverings: modules

Let C be a site. Let OC be a sheaf of rings. Assume C has equalizers and fibre products
and letK be a hypercovering as defined in Hypercoverings, Definition 6.1. We will study
cohomological descent for the augmentation

a : (Sh((C/K)total),O) −→ (Sh(C),OC)
of Remark 16.5.

Lemma 18.1. Let C be a site with equalizers and fibre products. Let OC be a sheaf of
rings. Let K be a hypercovering. With notation as above

a∗ : Mod(OC)→Mod(O)
is fully faithful with essential image the cartesian O-modules. The functor a∗ provides
the quasi-inverse.

Proof. Since a−1OC = Owe have a∗ = a−1. Hence the lemma follows immediately
from Lemma 17.1. �

Lemma 18.2. Let C be a site with equalizers and fibre products. Let OC be a sheaf of
rings. Let K be a hypercovering. For E ∈ D(OC) the map

E −→ Ra∗La
∗E

is an isomorphism.

Proof. Since a−1OC = O we have La∗ = a∗ = a−1. Moreover Ra∗ agrees with
Ra∗ on abelian sheaves, see Cohomology on Sites, Lemma 20.7. Hence the lemma follows
immediately from Lemma 17.3. �
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Lemma 18.3. Let C be a site with equalizers and fibre products. Let OC be a sheaf of
rings. Let K be a hypercovering. Then we have a canonical isomorphism

RΓ(C, E) = RΓ((C/K)total, La∗E)
for E ∈ D(OC).

Proof. This follows from Lemma 18.2 because RΓ((C/K)total,−) = RΓ(C,−) ◦
Ra∗ by Cohomology on Sites, Remark 14.4 or by Cohomology on Sites, Lemma 20.5. �

Lemma 18.4. Let C be a site with equalizers and fibre products. Let OC be a sheaf of
rings. Let K be a hypercovering. LetA ⊂Mod(O) denote the weak Serre subcategory of
cartesianO-modules. Then the functor La∗ defines an equivalence

D+(OC) −→ D+
A(O)

with quasi-inverse Ra∗.

Proof. Observe thatA is a weak Serre subcategory by Lemma 12.6 (the required hy-
potheses hold by the discussion in Remark 16.5). The equivalence is a formal consequence
of the results obtained so far. Use Lemmas 18.1 and 18.2 and Cohomology on Sites, Lemma
28.5. �

19. Cohomological descent for hypercoverings of an object

In this section we assume C has fibre products and X ∈ Ob(C). We let K be a hypercov-
ering of X as defined in Hypercoverings, Definition 3.3. We will study the augmentation

a : Sh((C/K)total) −→ Sh(C/X)
of Remark 16.4. Observe that C/X is a site which has equalizers and fibre products and
that K is a hypercovering for the site C/X4 by Hypercoverings, Lemma 3.9. This means
that every single result proved for hypercoverings in Section 17 has an immediate analogue
in the situation in this section.

Lemma 19.1. Let C be a site with fibre products and X ∈ Ob(C). Let K be a hyper-
covering of X . Then

(1) a−1 : Sh(C/X) → Sh((C/K)total) is fully faithful with essential image the
cartesian sheaves of sets,

(2) a−1 : Ab(C/X) → Ab((C/K)total) is fully faithful with essential image the
cartesian sheaves of abelian groups.

In both cases a∗ provides the quasi-inverse functor.

Proof. Via Remarks 15.5 and 16.4 and the discussion in the introduction to this sec-
tion this follows from Lemma 17.1. �

Lemma 19.2. Let C be a site with fibre product and X ∈ Ob(C). Let K be a hyper-
covering of X . For E ∈ D(C/X) the map

E −→ Ra∗a
−1E

is an isomorphism.

4The converse may not be the case, i.e., ifK is a simplicial object of SR(C, X) = SR(C/X) which defines
a hypercovering for the site C/X as in Hypercoverings, Definition 6.1, then it may not be true that K defines a
hypercovering of X . For example, if K0 = {U0,i}i∈I0 then the latter condition guarantees {U0,i → X} is a
covering of C whereas the former condition only requires

∐
h#
U0,i

→ h#
X to be a surjective map of sheaves.
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Proof. Via Remarks 15.5 and 16.4 and the discussion in the introduction to this sec-
tion this follows from Lemma 17.3. �

Lemma 19.3. Let C be a site with fibre products and X ∈ Ob(C). Let K be a hyper-
covering of X . Then we have a canonical isomorphism

RΓ(X,E) = RΓ((C/K)total, a−1E)
for E ∈ D(C/X).

Proof. Via Remarks 15.5 and 16.4 this follows from Lemma 17.4. �

Lemma 19.4. Let C be a site with fibre products and X ∈ Ob(C). Let K be a hyper-
covering of X . Let A ⊂ Ab((C/K)total) denote the weak Serre subcategory of cartesian
abelian sheaves. Then the functor a−1 defines an equivalence

D+(C/X) −→ D+
A((C/K)total)

with quasi-inverse Ra∗.

Proof. Via Remarks 15.5 and 16.4 this follows from Lemma 17.5. �

20. Cohomological descent for hypercoverings of an object: modules

In this section we assume C has fibre products and X ∈ Ob(C). We let K be a hypercov-
ering of X as defined in Hypercoverings, Definition 3.3. Let OC be a sheaf of rings on C.
SetOX = OC |C/X . We will study the augmentation

a : (Sh((C/K)total),O) −→ (Sh(C/X),OX)
of Remark 16.6. Observe that C/X is a site which has equalizers and fibre products and that
K is a hypercovering for the site C/X . Therefore the results in this section are immediate
consequences of the corresponding results in Section 18.

Lemma 20.1. Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf
of rings. Let K be a hypercovering of X . With notation as above

a∗ : Mod(OX)→Mod(O)
is fully faithful with essential image the cartesian O-modules. The functor a∗ provides
the quasi-inverse.

Proof. Via Remarks 15.7 and 16.6 and the discussion in the introduction to this sec-
tion this follows from Lemma 18.1. �

Lemma 20.2. Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf
of rings. Let K be a hypercovering of X . For E ∈ D(OX) the map

E −→ Ra∗La
∗E

is an isomorphism.

Proof. Via Remarks 15.7 and 16.6 and the discussion in the introduction to this sec-
tion this follows from Lemma 18.2. �

Lemma 20.3. Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf
of rings. Let K be a hypercovering of X . Then we have a canonical isomorphism

RΓ(X,E) = RΓ((C/K)total, La∗E)
for E ∈ D(OC).
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Proof. Via Remarks 15.7 and 16.6 and the discussion in the introduction to this sec-
tion this follows from Lemma 18.3. �

Lemma 20.4. Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf
of rings. LetK be a hypercovering ofX . LetA ⊂Mod(O) denote the weak Serre subcat-
egory of cartesianO-modules. Then the functor La∗ defines an equivalence

D+(OX) −→ D+
A(O)

with quasi-inverse Ra∗.

Proof. Via Remarks 15.7 and 16.6 and the discussion in the introduction to this sec-
tion this follows from Lemma 18.4. �

21. Hypercovering by a simplicial object of the site

Let C be a site with fibre products and let X ∈ Ob(C). In this section we elucidate the
results of Section 19 in the case that our hypercovering is given by a simplicial object of
the site. Let U be a simplicial object of C. As usual we denote Un = U([n]) and fϕ :
Un → Um the morphism fϕ = U(ϕ) corresponding to ϕ : [m] → [n]. Assume we have
an augmentation

a : U → X

From this we obtain a simplicial site (C/U)total and an augmentation morphism
a : Sh((C/U)total) −→ Sh(C/X)

Namely, from U we obtain a simiplical object K of SR(C, X) with degree n part Kn =
{Un → X} and we can apply the constructions in Remark 16.4. More precisely, an object
of the site (C/U)total is given by a V/Un and a morphism (ϕ, f) : V/Un → W/Um is
given by a morphism ϕ : [m] → [n] in ∆ and a morphism f : V → W such that the
diagram

V
f
//

��

W

��
Un

fϕ // Um

is commutative. The morphism of topoi a is given by the cocontinuous functor V/Un 7→
V/X . That’s all folks!
In this section we will say the augmentation a : U → X is a hypercovering of X in C if
the following hold

(1) {U0 → X} is a covering of C ,
(2) {U1 → U0 ×X U0} is a covering of C ,
(3) {Un+1 → (cosknsknU)n+1} is a covering of C for n ≥ 1.

This is equivalent to the condition that K (as above) is a hypercovering of X , see Hyper-
coverings, Example 3.5.

Lemma 21.1. Let C be a site with fibre product and X ∈ Ob(C). Let a : U → X be a
hypercovering of X in C as defined above. Then

(1) a−1 : Sh(C/X) → Sh((C/U)total) is fully faithful with essential image the
cartesian sheaves of sets,

(2) a−1 : Ab(C/X) → Ab((C/U)total) is fully faithful with essential image the
cartesian sheaves of abelian groups.

In both cases a∗ provides the quasi-inverse functor.
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Proof. This is a special case of Lemma 19.1. �

Lemma 21.2. Let C be a site with fibre product and X ∈ Ob(C). Let a : U → X be a
hypercovering of X in C as defined above. For E ∈ D(C/X) the map

E −→ Ra∗a
−1E

is an isomorphism.

Proof. This is a special case of Lemma 19.2. �

Lemma 21.3. Let C be a site with fibre products and X ∈ Ob(C). Let a : U → X be
a hypercovering of X in C as defined above. Then we have a canonical isomorphism

RΓ(X,E) = RΓ((C/U)total, a−1E)

for E ∈ D(C/X).

Proof. This is a special case of Lemma 19.3. �

Lemma 21.4. Let C be a site with fibre product and X ∈ Ob(C). Let a : U → X be a
hypercovering ofX in C as defined above. LetA ⊂ Ab((C/U)total) denote the weak Serre
subcategory of cartesian abelian sheaves. Then the functor a−1 defines an equivalence

D+(C/X) −→ D+
A((C/U)total)

with quasi-inverse Ra∗.

Proof. This is a special case of Lemma 19.4 �

Lemma 21.5. Let U be a simplicial object of a site C with fibre products.
(1) C/U has the structure of a simplicial object in the category whose objects are sites

and whose morphisms are morphisms of sites,
(2) the construction of Lemma 3.1 applied to the structure in (1) reproduces the site

(C/U)total above,
(3) if a : U → X is an augmentation, then a0 : C/U0 → C/X is an augmen-

tation as in Remark 4.1 part (A) and gives the same morphism of topoi a :
Sh((C/U)total)→ Sh(C/X) as the one above.

Proof. Given a morphism of objects V → W of C the localization morphism j :
C/V → C/W is a left adjoint to the base change functor C/W → C/V . The base change
functor is continuous and induces the same morphism of topoi as j. See Sites, Lemma 27.3.
This proves (1).

Part (2) holds because a morphism V/Un →W/Um of the category constructed in Lemma
3.1 is a morphism V → W ×Um,fϕ Un over Un which is the same thing as a morphism
f : V → W over the morphism fϕ : Un → Um, i.e., the same thing as a morphism in the
category (C/U)total defined above. Equality of sets of coverings is immediate from the
definition.

We omit the proof of (3). �
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22. Hypercovering by a simplicial object of the site: modules

Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf of rings on C. Let
U → X be a hypercovering of X in C as defined in Section 21. In this section we study
the augmentation

a : (Sh((C/U)total),O) −→ (Sh(C/X),OX)
we obtain by thinking of U as a simiplical semi-representable object of C/X whose degree
n part is the singleton element {Un/X} and applying the constructions in Remark 16.6.
Thus all the results in this section are immediate consequences of the corresponding results
in Section 20.

Lemma 22.1. Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf
of rings. Let U be a hypercovering of X in C. With notation as above

a∗ : Mod(OX)→Mod(O)
is fully faithful with essential image the cartesian O-modules. The functor a∗ provides
the quasi-inverse.

Proof. This is a special case of Lemma 20.1. �

Lemma 22.2. Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf
of rings. Let U be a hypercovering of X in C. For E ∈ D(OX) the map

E −→ Ra∗La
∗E

is an isomorphism.

Proof. This is a special case of Lemma 20.2. �

Lemma 22.3. Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf
of rings. Let U be a hypercovering of X in C. Then we have a canonical isomorphism

RΓ(X,E) = RΓ((C/U)total, La∗E)
for E ∈ D(OC).

Proof. This is a special case of Lemma 20.3. �

Lemma 22.4. Let C be a site with fibre products and X ∈ Ob(C). Let OC be a sheaf
of rings. Let U be a hypercovering of X in C. Let A ⊂ Mod(O) denote the weak Serre
subcategory of cartesianO-modules. Then the functor La∗ defines an equivalence

D+(OX) −→ D+
A(O)

with quasi-inverse Ra∗.

Proof. This is a special case of Lemma 20.4. �

23. Unbounded cohomological descent for hypercoverings

In this section we discuss unbounded cohomological descent. The results themselves will
be immediate consequences of our results on bounded cohomological descent in the pre-
vious sections and Cohomology on Sites, Lemmas 28.6 and/or 28.7; the real work lies in
setting up notation and choosing appropriate assumptions. Our discussion is motivated
by the discussion in [?] although the details are a good bit different.
Let (C,OC) be a ringed site. Assume given for every objectU of C a weak Serre subcategory
AU ⊂Mod(OU ) satisfying the following properties
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(1) given a morphism U → V of C the restriction functor Mod(OV )→ Mod(OU )
sendsAV intoAU ,

(2) given a covering {Ui → U}i∈I of C an object F of Mod(OU ) is in AU if and
only if the restriction of F to C/Ui is inAUi for all i ∈ I .

(3) there exists a subset B ⊂ Ob(C) such that
(a) every object of C has a covering whose members are in B, and
(b) for every V ∈ B there exists an integer dV and a cofinal system CovV of

coverings of V such that

Hp(Vi,F) = 0 for {Vi → V } ∈ CovV , p > dV , and F ∈ Ob(AV )
Note that we require this to be true forF inAV and not just for “global” objects (and thus
it is stronger than the condition imposed in Cohomology on Sites, Situation 25.1). In this
situation, there is a weak Serre subcategory A ⊂ Mod(OC) consisting of objects whose
restriction to C/U is in AU for all U ∈ Ob(C). Moreover, there are derived categories
DA(OC) and DAU

(OU ) and the restriction functors send these into each other.

Example 23.1. Let S be a scheme and let X be an algebraic space over S. Let C =
Xspaces,étale be the étale site on the category of algebraic spaces étale over X , see Prop-
erties of Spaces, Definition 18.2. Denote OC the structure sheaf, i.e., the sheaf given by
the rule U 7→ Γ(U,OU ). Denote AU the category of quasi-coherent OU -modules. Let
B = Ob(C) and for V ∈ B set dV = 0 and let CovV denote the coverings {Vi → V }
with Vi affine for all i. Then the assumptions (1), (2), (3) are satisfied. See Properties of
Spaces, Lemmas 29.2 and 29.7 for properties (1) and (2) and the vanishing in (3) follows
from Cohomology of Schemes, Lemma 2.2 and the discussion in Cohomology of Spaces,
Section 3.

Example 23.2. Let S be one of the following types of schemes
(1) the spectrum of a finite field,
(2) the spectrum of a separably closed field,
(3) the spectrum of a strictly henselian Noetherian local ring,
(4) the spectrum of a henselian Noetherian local ring with finite residue field,
(5) add more here.

Let Λ be a finite ring whose order is invertible on S. Let C ⊂ (Sch/S)étale be the full
subcategory consisting of schemes locally of finite type over S endowed with the étale
topology. Let OC = Λ be the constant sheaf. Set AU = Mod(OU ), in other words, we
consider all étale sheaves of Λ-modules. LetB ⊂ Ob(C) be the set of quasi-compact objects.
For V ∈ B set

dV = 1 + 2 dim(S) + supv∈V (trdegκ(s)(κ(v)) + 2 dimOV,v)

and let CovV denote the étale coverings {Vi → V } with Vi quasi-compact for all i. Our
choice of bound dV comes from Gabber’s theorem on cohomological dimension. To see
that condition (3) holds with this choice, use [?, Exposé VIII-A, Corollary 1.2 and Lemma
2.2] plus elementary arguments on cohomological dimensions of fields. We add 1 to the
formula because our list contains cases where we allow S to have finite residue field. We
will come back to this example later (insert future reference).

Let (C,OC) be a ringed site. Assume given weak Serre subcategories AU ⊂ Mod(OU )
satisfying condition (1). Then

(1) given a semi-representable objectK = {Ui}i∈I we get a weak Serre subcategory
AK ⊂Mod(OK) by taking

∏
AUi ⊂

∏
Mod(OUi) = Mod(OK), and
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(2) given a morphism of semi-representable objects f : K → L the pullback map
f∗ : Mod(OL)→Mod(OL) sendsAL intoAK .

See Remark 15.6 for notation and explanation. In particular, given a simplicial semi-
representable objectK it is unambiguous to say what it means for an object F of Mod(O)
as in Remark 16.5 to have restrictions Fn inAKn for all n.

Lemma 23.3. Let (C,OC) be a ringed site. Assume given weak Serre subcategories
AU ⊂ Mod(OU ) satisfying conditions (1), (2), and (3) above. Assume C has equalizers
and fibre products and let K be a hypercovering. Let ((C/K)total,O) be as in Remark
16.5. LetAtotal ⊂Mod(O) denote the weak Serre subcategory of cartesianO-modules F
whose restriction Fn is inAKn for all n (as defined above). Then the functor La∗ defines
an equivalence

DA(OC) −→ DAtotal
(O)

with quasi-inverse Ra∗.

Proof. The cartesianO-modules form a weak Serre subcategory by Lemma 12.6 (the
required hypotheses hold by the discussion in Remark 16.5). Since the restriction functor
g∗
n : Mod(O)→Mod(On) are exact, it follows thatAtotal is a weak Serre subcategory.

Let us show that a∗ : A → Atotal is an equivalence of categories with inverse given by
La∗. We already know that La∗a

∗F = F by the bounded version (Lemma 18.4). It is
clear that a∗F is in Atotal for F in A. Conversely, assume that G ∈ Atotal. Because G
is cartesian we see that G = a∗F for some OC-module F by Lemma 18.1. We want to
show that F is in A. Take U ∈ Ob(C). We have to show that the restriction of F to
C/U is in AU . As usual, write K0 = {U0,i}i∈I0 . Since K is a hypercovering, the map∐
i∈I0

hU0,i → ∗ becomes surjective after sheafification. This implies there is a covering
{Uj → U}j∈J and a map τ : J → I0 and for each j ∈ J a morphism ϕj : Uj → U0,τ(j).
Since G0 = a∗

0F we find that the restriction of F to C/Uj is equal to the restriction of the
τ(j)th component of G0 to C/Uj via the morphism ϕj : Uj → U0,τ(i). Hence by (1) we
find that F|C/Uj is inAUj and in turn by (2) we find that F|C/U is inAU .
In particular the statement of the lemma makes sense. The lemma now follows from Co-
homology on Sites, Lemma 28.6. Assumption (1) is clear (see Remark 16.5). Assumptions
(2) and (3) we proved in the preceding paragraph. Assumption (4) is immediate from (3).
For assumption (5) let Btotal be the set of objects U/Un,i of the site (C/K)total such that
U ∈ B where B is as in (3). Here we use the description of the site (C/K)total given
in Section 16. Moreover, we set CovU/Un,i equal to CovU and dU/Un,i equal dU where
CovU and dU are given to us by (3). Then we claim that condition (5) holds with these
choices. This follows immediately from Lemma 16.3 and the fact that F ∈ Atotal im-
plies Fn ∈ AKn and hence Fn,i ∈ AUn,i . (The reader who worries about the difference
between cohomology of abelian sheaves versus cohomology of sheaves of modules may
consult Cohomology on Sites, Lemma 12.4.) �

24. Glueing complexes

This section is the continuation of Cohomology, Section 45. The goal is to prove a slight
generalization of [?, Theorem 3.2.4]. Our method will be a tiny bit different in that we
use the material from Sections 13 and 14. We will also reprove the unbounded version as
it is proved in [?].
Advice to the reader: We suggest the reader first look at the statement of Lemma 24.5 as
well as the second proof of this lemma.
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Here is the situation we are interested in.

Situation 24.1. Let (C,OC) be a ringed site. We are given
(1) a category B and a functor u : B → C ,
(2) an object EU in D(Ou(U)) for U ∈ Ob(B),
(3) an isomorphism ρa : EU |C/u(V ) → EV in D(Ou(V )) for a : V → U in B

such that whenever we have composable arrows b : W → V and a : V → U of B, then
ρa◦b = ρb ◦ ρa|C/u(W ).

We won’t be able to prove anything about this without making more assumptions. An
interesting case is where B is a full subcategory such that every object of C has a covering
whose members are objects of B (this is the case considered in [?]). For us it is important
to allow cases where this is not the case; the main alternative case is where we have a
morphism of sites f : C → D and B is a full subcategory ofD such that every object ofD
has a covering whose members are objects of B.

In Situation 24.1 a solution will be a pair (E, ρU ) whereE is an object ofD(OC) and ρU :
E|C/u(U) → EU forU ∈ Ob(B) are isomorphisms such that we have ρa◦ρU |C/u(V ) = ρV
for a : V → U in B.

Lemma 24.2. In Situation 24.1. Assume negative self-exts of EU in D(Ou(U)) are
zero. Let L be a simplicial object of SR(B). Consider the simplicial object K = u(L) of
SR(C) and let ((C/K)total,O) be as in Remark 16.5. There exists a cartesian object E of
D(O) such that writing Ln = {Un,i}i∈In the restriction of E to D(OC/u(Un,i)) is EUn,i
compatibly (see proof for details). Moreover, E is unique up to unique isomorphism.

Proof. Recall that Sh(C/Kn) =
∏
i∈In Sh(C/u(Un,i)) and similarly for the cate-

gories of modules. This product decomposition is also inherited by the derived categories
of sheaves of modules. Moreover, this product decomposition is compatible with the mor-
phisms in the simplicial semi-representable object K. See Section 15. Hence we can set
En =

∏
i∈In EUn,i (“formal” product) in D(On). Taking (formal) products of the maps

ρa of Situation 24.1 we obtain isomorphisms Eϕ : f∗
ϕEn → Em. The assumption about

compostions of the maps ρa immediately implies that (En, Eϕ) defines a simplicial system
of the derived category of modules as in Definition 14.1. The vanishing of negative exts
assumed in the lemma implies that Hom(En[t], En) = 0 for n ≥ 0 and t > 0. Thus by
Lemma 14.7 we obtain E. Uniqueness up to unique isomorphism follows from Lemmas
14.5 and 14.6. �

Lemma 24.3 (BBD glueing lemma). In Situation 24.1. Assume
(1) C has equalizers and fibre products,
(2) there is a morphism of sites f : C → D given by a continuous functor u : D → C

such that
(a) D has equalizers and fibre products and u commutes with them,
(b) B is a full subcategory of D and u : B → C is the restriction of u,
(c) every object of D has a covering whose members are objects of B,

(3) all negative self-exts of EU in D(Ou(U)) are zero, and
(4) there exists a t ∈ Z such that Hi(EU ) = 0 for i < t and U ∈ Ob(B).

Then there exists a solution unique up to unique isomorphism.

Proof. By Hypercoverings, Lemma 12.3 there exists a hypercovering L for the site
D such that Ln = {Un,i}i∈In with Ui,n ∈ Ob(B). Set K = u(L). Apply Lemma 24.2 to
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get a cartesian object E of D(O) on the site (C/K)total restricting to EUn,i on C/u(Un,i)
compatibly. The assumption on t implies that E ∈ D+(O). By Hypercoverings, Lemma
12.4 we see thatK is a hypercovering too. By Lemma 18.4 we find thatE = a∗F for some
F in D+(OC).
To prove that F is a solution we will use the construction of L0 and L1 given in the proof
of Hypercoverings, Lemma 12.3. (This is a bit inelegant but there does not seem to be a
completely straightforward way around it.)
Namely, we have I0 = Ob(B) and soL0 = {U}U∈Ob(B). Hence the isomorphism a∗F →
E restricted to the components C/u(U) of C/K0 defines isomorphisms ρU : F |C/u(U) →
EU for U ∈ Ob(B) by our choice of E.
To prove that ρU satisfy the requirement of compatibility with the maps ρa of Situation
24.1 we use that I1 contains the set

Ω = {(U, V,W, a, b) | U, V,W ∈ B, a : U → V, b : U →W}
and that for i = (U, V,W, a, b) in Ω we have U1,i = U . Moreover, the component maps
fδ1

0 ,i
and fδ1

1 ,i
of the two morphisms K1 → K0 are the morphisms

a : U → V and b : U → V

Hence the compatibility mentioned in Lemma 24.2 gives that
ρa ◦ ρV |C/u(U) = ρU and ρb ◦ ρW |C/u(U) = ρU

Taking i = (U, V, U, a, idU ) ∈ Ω for example, we find that we have the desired com-
patibility. The uniqueness of F follows from the uniqueness of E in the previous lemma
(small detail omitted). �

Lemma 24.4 (Unbounded BBD glueing lemma). In Situation 24.1. Assume
(1) C has equalizers and fibre products,
(2) there is a morphism of sites f : C → D given by a continuous functor u : D → C

such that
(a) D has equalizers and fibre products and u commutes with them,
(b) B is a full subcategory of D and u : B → C is the restriction of u,
(c) every object of D has a covering whose members are objects of B,

(3) all negative self-exts of EU in D(Ou(U)) are zero, and
(4) there exist weak Serre subcategories AU ⊂ Mod(OU ) for all U ∈ Ob(C) satis-

fying conditions (1), (2), and (3),
(5) EU ∈ DAU

(OU ).
Then there exists a solution unique up to unique isomorphism.

Proof. The proof is exactly the same as the proof of Lemma 24.3. The only change is
thatE is an object ofDAtotal

(O) and hence we use Lemma 23.3 to obtainF withE = a∗F
instead of Lemma 18.4. �

Here is an example application of the general theory above.

Lemma 24.5. Let (C,OC) be a ringed site. Assume C has fibre products. Let {Ui →
X}i∈I be a covering in C. For i ∈ I let Ei be an object of D(OUi) and for i, j ∈ I let

ρij : Ei|C/Uij −→ Ej |C/Uij
be an isomorphism in D(OUij ) where Uij = Ui ×X Uj . Assume

(1) the ρij satisfy the cocycle condition on Ui ×X Uj ×X Uk for all i, j, k ∈ I ,
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(2) ExtpOUi
(Ei, Ei) = 0 for all p < 0 and i ∈ I , and

(3) there exists a t ∈ Z such that Hp(Ei) = 0 for p < t and all i ∈ I .
Then there exists a unique pair (E, ρi) whereE is an object ofD(OX) and ρi : E|Ui → Ei
are isomorphisms in D(OUi) compatible with the ρij .

First proof. In this proof we deduce the lemma from the very general Lemma 24.3.
We urge the reader to look at the second proof in stead.

We may replace C with C/X . Thus we may and do assume X is the final object of C and
that C has all finite limits.

Let B be the full subcategory of C consisting of U ∈ Ob(C) such that there exists an
i(U) ∈ I and a morphism aU : U → Ui(U). We denote EU = a∗

UEi(U) in D(OU ) the
pullback (restriction) of Ei via aU . Given a morphism a : U → U ′ of B we obtain a
morphism (aU ′ ◦ a, aU ) : U → Ui(U ′) ×X Ui(U) = Ui(U ′)i(U) and hence an isomorphism

ρa : a∗EU ′ = a∗a∗
U ′Ei(U ′)

(aU′ ◦a,aU )∗ρi(U′)i(U)−−−−−−−−−−−−−−→ a∗
UEi(U) = EU

in D(OU ). The data B, EU , ρa are as in Situation 24.1; the isomorphisms ρa satisfy the
cocycle condition exactly because of condition (1) in the statement of the lemma (details
omitted).

We are going to apply Lemma 24.3 withB,EU , ρa as above and withD = C and f : C → D
the identity morphism. Assumptions (1) and (2)(a) of Lemma 24.3 we have seen above.
Assumption (2)(b) of Lemma 24.3 is clear. Assumption (2)(c) of Lemma 24.3 holds because
{Ui → X} is a covering5. Assumption (3) of Lemma 24.3 holds because we have assumed
the vanishing of all negative Ext sheaves ofEi which certainly implies that for any object
U lying over Ui the negative self-Exts of Ei|U are zero. Assumption (4) of Lemma 24.3
holds because we have assumed the cohomology sheaves of each Ei are zero to the left of
t.

We obtain a unique solution (E, ρU ). Setting ρi = ρUi the lemma follows. �

Second proof. We sketch a more direct proof. Denote K the Čech hypercovering
of X associated to the covering {Ui → X}i∈I , see Hypercoverings, Example 3.4. Thus
for example K0 = {Ui → X}i∈I and K1 = {Ui ×X Uj → X}i,j∈I and so on. Let
((C/K)total,O), a, an be as in Remark 16.6. The objects Ei determine an object M0 in
D(O0) =

∏
D(OUi). Similarly, the isomorphisms ρij determine an isomorphism

α : L(fδ1
1
)∗M0 −→ L(fδ1

0
)∗M0

in D(O1) satisfying the cocycle condition. By Lemma 14.3 we obtain a cartesian sim-
plicial system (Mn) of the derived category. By the assumed vanishing of the negative
Ext sheaves we see that the objects Mn have vanishing negative self-exts. Thus we find a
cartesian object M of D(O) whose associated simplicial system is isomorphic to (Mn) by
Lemma 14.7. Since the cohomology sheaves of M are zero in degrees < t we see that by
Lemma 20.4 we have M = La∗E for some E in D(OX). The isomorphism La∗E → M
restricted to C/Ui produces the isomorphisms ρi. We omit the verification of the compat-
ibility with the isomorphisms ρij . �

5In fact, it would suffice if the map
∐
i∈I hUi → hX becomes surjective on sheafification and the lemma

holds in this case with the same proof.
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25. Proper hypercoverings in topology

Let’s work in the category LC of Hausdorff and locally quasi-compact topological spaces
and continuous maps, see Cohomology on Sites, Section 31. Let X be an object of LC and
let U be a simplicial object of LC. Assume we have an augmentation

a : U → X

We say that U is a proper hypercovering of X if
(1) U0 → X is a proper surjective map,
(2) U1 → U0 ×X U0 is a proper surjective map,
(3) Un+1 → (cosknsknU)n+1 is a proper surjective map for n ≥ 1.

The category LC has all finite limits, hence the coskeleta used in the formulation above
exist.

Principle: Proper hypercoverings can be used to compute cohomology.

A key idea behind the proof of the principle is to find a topology on LC which is stronger
than the usual one such that (a) a surjective proper map defines a covering, and (b) co-
homology of usual sheaves with respect to this stronger topology agrees with the usual
cohomology. Properties (a) and (b) hold for the qc topology, see Cohomology on Sites,
Section 31. Once we have (a) and (b) we deduce the principle via the earlier work done in
this chapter.

Lemma 25.1. Let U be a simplicial object of LC and let a : U → X be an augmenta-
tion. There is a commutative diagram

Sh((LCqc/U)total)
h
//

aqc

��

Sh(UZar)

a

��
Sh(LCqc/X)

h−1 // Sh(X)

where the left vertical arrow is defined in Section 21 and the right vertical arrow is defined
in Lemma 2.8.

Proof. Write Sh(X) = Sh(XZar). Observe that both (LCqc/U)total and UZar
fall into case A of Situation 3.3. This is immediate from the construction of UZar in
Section 2 and it follows from Lemma 21.5 for (LCqc/U)total. Next, consider the functors
Un,Zar → LCqc/Un, U 7→ U/Un and XZar → LCqc/X , U 7→ U/X . We have seen
that these define morphisms of sites in Cohomology on Sites, Section 31. Thus we obtain
a morphism of simplicial sites compatible with augmentations as in Remark 5.4 and we
may apply Lemma 5.5 to conclude. �

Lemma 25.2. Let U be a simplicial object of LC and let a : U → X be an augmenta-
tion. If a : U → X gives a proper hypercovering of X , then

a−1 : Sh(X)→ Sh(UZar) and a−1 : Ab(X)→ Ab(UZar)

are fully faithful with essential image the cartesian sheaves and quasi-inverse given by a∗.
Here a : Sh(UZar)→ Sh(X) is as in Lemma 2.8.

Proof. We will prove the statement for sheaves of sets. It will be an almost formal
consequence of results already established. Consider the diagram of Lemma 25.1. By Co-
homology on Sites, Lemma 31.6 the functor (h−1)−1 is fully faithful with quasi-inverse
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h−1,∗. The same holds true for the components hn of h. By the description of the func-
tors h−1 and h∗ of Lemma 5.2 we conclude that h−1 is fully faithful with quasi-inverse h∗.
Observe thatU is a hypercovering ofX in LCqc (as defined in Section 21) by Cohomology
on Sites, Lemma 31.4. By Lemma 21.1 we see that a−1

qc is fully faithful with quasi-inverse
aqc,∗ and with essential image the cartesian sheaves on (LCqc/U)total. A formal argument
(chasing around the diagram) now shows that a−1 is fully faithful.

Finally, suppose that G is a cartesian sheaf on UZar. Then h−1G is a cartesian sheaf on
LCqc/U . Hence h−1G = a−1

qc H for some sheafH on LCqc/X . We compute

(h−1)−1(a∗G) = (h−1)−1Eq( a0,∗G0
//
// a1,∗G1 )

= Eq( (h−1)−1a0,∗G0
//
// (h−1)−1a1,∗G1 )

= Eq( aqc,0,∗h−1
0 G0

//
// aqc,1,∗h

−1
1 G1 )

= Eq( aqc,0,∗a−1
qc,0H

//
// aqc,1,∗a

−1
qc,1H )

= aqc,∗a
−1
qc H

= H

Here the first equality follows from Lemma 2.8, the second equality follows as (h−1)−1 is
an exact functor, the third equality follows from Cohomology on Sites, Lemma 31.8 (here
we use that a0 : U0 → X and a1 : U1 → X are proper), the fourth follows from a−1

qc H =
h−1G , the fifth from Lemma 4.2, and the sixth we’ve seen above. Since a−1

qc H = h−1G we
deduce that h−1G ∼= h−1a−1a∗G which ends the proof by fully faithfulness of h−1. �

Lemma 25.3. Let U be a simplicial object of LC and let a : U → X be an augmenta-
tion. If a : U → X gives a proper hypercovering of X , then for K ∈ D+(X)

K → Ra∗(a−1K)

is an isomorphism where a : Sh(UZar)→ Sh(X) is as in Lemma 2.8.

Proof. Consider the diagram of Lemma 25.1. Observe thatRhn,∗h−1
n is the identity

functor onD+(Un) by Cohomology on Sites, Lemma 31.11. HenceRh∗h
−1 is the identity

functor on D+(UZar) by Lemma 5.3. We have

Ra∗(a−1K) = Ra∗Rh∗h
−1a−1K

= Rh−1,∗Raqc,∗a
−1
qc (h−1)−1K

= Rh−1,∗(h−1)−1K

= K

The first equality by the discussion above, the second equality because of the commutativ-
ity of the diagram in Lemma 25.1, the third equality by Lemma 21.2 (U is a hypercovering
of X in LCqc by Cohomology on Sites, Lemma 31.4), and the last equality by the already
used Cohomology on Sites, Lemma 31.11. �

Lemma 25.4. Let U be a simplicial object of LC and let a : U → X be an augmenta-
tion. If U is a proper hypercovering of X , then

RΓ(X,K) = RΓ(UZar, a−1K)

for K ∈ D+(X) where a : Sh(UZar)→ Sh(X) is as in Lemma 2.8.
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Proof. This follows from Lemma 25.3 because RΓ(UZar,−) = RΓ(X,−) ◦Ra∗ by
Cohomology on Sites, Remark 14.4. �

Lemma 25.5. Let U be a simplicial object of LC and let a : U → X be an augmenta-
tion. Let A ⊂ Ab(UZar) denote the weak Serre subcategory of cartesian abelian sheaves.
If U is a proper hypercovering of X , then the functor a−1 defines an equivalence

D+(X) −→ D+
A(UZar)

with quasi-inverse Ra∗ where a : Sh(UZar)→ Sh(X) is as in Lemma 2.8.

Proof. Observe thatA is a weak Serre subcategory by Lemma 12.6. The equivalence
is a formal consequence of the results obtained so far. Use Lemmas 25.2 and 25.3 and
Cohomology on Sites, Lemma 28.5. �

Lemma 25.6. Let U be a simplicial object of LC and let a : U → X be an augmen-
tation. Let F be an abelian sheaf on X . Let Fn be the pullback to Un. If U is a proper
hypercovering of X , then there exists a canonical spectral sequence

Ep,q1 = Hq(Up,Fp)
converging to Hp+q(X,F).

Proof. Immediate consequence of Lemmas 25.4 and 2.10. �

26. Simplicial schemes

A simplicial scheme is a simplicial object in the category of schemes, see Simplicial, Defi-
nition 3.1. Recall that a simplicial scheme looks like

X2

//
//
//
X1

//
//oo

oo
X0oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 → X1,
etc. These morphisms satisfy some required relations such as d1

0 ◦ s0
0 = idX0 = d1

1 ◦ s0
0,

see Simplicial, Lemma 3.2. It is useful to think of dni : Xn → Xn−1 as the “projection
forgetting the ith coordinate” and to think of snj : Xn → Xn+1 as the “diagonal map
repeating the jth coordinate”.

A morphism of simplicial schemes h : X → Y is the same thing as a morphism of
simplicial objects in the category of schemes, see Simplicial, Definition 3.1. Thus h con-
sists of morphisms of schemes hn : Xn → Yn such that hn−1 ◦ dnj = dnj ◦ hn and
hn+1 ◦ snj = snj ◦ hn whenever this makes sense.

An augmentation of a simplicial scheme X is a morphism of schemes a0 : X0 → S such
that a0 ◦ d1

0 = a0 ◦ d1
1. See Simplicial, Section 20.

Let X be a simplicial scheme. The construction of Section 2 applied to the underlying
simplicial topological space gives a siteXZar. On the other hand, for every nwe have the
small Zariski site Xn,Zar (Topologies, Definition 3.7) and for every morphism ϕ : [m]→
[n] we have a morphism of sites fϕ = X(ϕ)small : Xn,Zar → Xm,Zar , associated to
the morphism of schemes X(ϕ) : Xn → Xm (Topologies, Lemma 3.17). This gives a
simplicial object C in the category of sites. In Lemma 3.1 we constructed an associated site
Ctotal. Assigning to an open immersion its image defines an equivalence Ctotal → XZar

which identifies sheaves, i.e., Sh(Ctotal) = Sh(XZar). The difference between Ctotal and
XZar is similar to the difference between the small Zariski site SZar and the underlying
topological space of S. We will silently identify these sites in what follows.
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Let XZar be the site associated to a simplicial scheme X . There is a sheaf of rings O on
XZar whose restriction to Xn is the structure sheaf OXn . This follows from Lemma 2.2
or from Lemma 3.4. We will say O is the structure sheaf of the simplicial scheme X . At
this point all the material developed for simplicial (ringed) sites applies, see Sections 3, 4,
5, 6, 8, 9, 10, 11, 12, 13, and 14.

Let X be a simplicial scheme with structure sheaf O. As on any ringed topos, there is
a notion of a quasi-coherent O-module on XZar , see Modules on Sites, Definition 23.1.
However, a quasi-coherent O-module on XZar is just a cartesian O-module F whose re-
strictions Fn are quasi-coherent on Xn, see Lemma 12.10.

Let h : X → Y be a morphism of simplicial schemes. Either by Lemma 2.3 or by (the proof
of) Lemma 5.2 we obtain a morphism of sites hZar : XZar → YZar. Recall that h−1

Zar and
hZar,∗ have a simple description in terms of the components, see Lemma 2.4 or Lemma 5.2.
LetOX , resp.OY denote the structure sheaf ofX , resp. Y . We define h]Zar : hZar,∗OX →
OY to be the map of sheaves of rings on YZar given by h]n : hn,∗OXn → OYn on Yn. We
obtain a morphism of ringed sites

hZar : (XZar,OX) −→ (YZar,OY )

LetX be a simplicial scheme with structure sheafO. LetS be a scheme and let a0 : X0 → S
be an augmentation ofX . Either by Lemma 2.8 or by Lemma 4.2 we obtain a corresponding
morphism of topoi a : Sh(XZar) → Sh(S). Observe that a−1G is the sheaf on XZar

with components a−1
n G. Hence we can use the maps a]n : a−1

n OS → OXn to define a map
a] : a−1OS → O, or equivalently by adjunction a map a] : OS → a∗O (which as usual
has the same name). This puts us in the situation discussed in Section 11. Therefore we
obtain a morphism of ringed topoi

a : (Sh(XZar),O) −→ (Sh(S),OS)

A final observation is the following. Suppose we are given a morphism h : X → Y of
simplicial schemes X and Y with structure sheaves OX , OY , augmentations a0 : X0 →
X−1, b0 : Y0 → Y−1 and a morphism h−1 : X−1 → Y−1 such that

X0
h0

//

a0

��

Y0

b0

��
X−1

h−1 // Y−1

commutes. Then from the constructions elucidated above we obtain a commutative dia-
gram of morphisms of ringed topoi as follows

(Sh(XZar),OX)
hZar

//

a

��

(Sh(YZar),OY )

b

��
(Sh(X−1),OX−1)

h−1 // (Sh(Y−1),OY−1)

27. Descent in terms of simplicial schemes

Cartesian morphisms are defined as follows.
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Definition 27.1. Let a : Y → X be a morphism of simplicial schemes. We say a is
cartesian, or that Y is cartesian over X , if for every morphism ϕ : [n] → [m] of ∆ the
corresponding diagram

Ym a
//

Y (ϕ)
��

Xm

X(ϕ)
��

Yn
a // Xn

is a fibre square in the category of schemes.

Cartesian morphisms are related to descent data. First we prove a general lemma describ-
ing the category of cartesian simplicial schemes over a fixed simplicial scheme. In this
lemma we denote f∗ : Sch/X → Sch/Y the base change functor associated to a mor-
phism of schemes f : Y → X .

Lemma 27.2. LetX be a simplicial scheme. The category of simplicial schemes carte-
sian over X is equivalent to the category of pairs (V, ϕ) where V is a scheme over X0
and

ϕ : V ×X0,d1
1
X1 −→ X1 ×d1

0,X0 V

is an isomorphism over X1 such that (s0
0)∗ϕ = idV and such that

(d2
1)∗ϕ = (d2

0)∗ϕ ◦ (d2
2)∗ϕ

as morphisms of schemes over X2.

Proof. The statement of the displayed equality makes sense because d1
1◦d2

2 = d1
1◦d2

1,
d1

1 ◦ d2
0 = d1

0 ◦ d2
2, and d1

0 ◦ d2
0 = d1

0 ◦ d2
1 as morphisms X2 → X0, see Simplicial, Remark

3.3 hence we can picture these maps as follows

X2 ×d1
1◦d2

0,X0 V (d2
0)∗ϕ

// X2 ×d1
0◦d2

0,X0 V

X2 ×d1
0◦d2

2,X0 V X2 ×d1
0◦d2

1,X0 V

X2 ×d1
1◦d2

2,X0 V

(d2
2)∗ϕ

hh

X2 ×d1
1◦d2

1,X0 V

(d2
1)∗ϕ

66

and the condition signifies the diagram is commutative. It is clear that given a simplicial
scheme Y cartesian over X we can set V = Y0 and ϕ equal to the composition

V ×X0,d1
1
X1 = Y0 ×X0,d1

1
X1 = Y1 = X1 ×X0,d1

0
Y0 = X1 ×X0,d1

0
V

of identifications given by the cartesian structure. To prove this functor is an equivalence
we construct a quasi-inverse. The construction of the quasi-inverse is analogous to the
construction discussed in Descent, Section 3 from which we borrow the notation τni :
[0] → [n], 0 7→ i and τnij : [1] → [n], 0 7→ i, 1 7→ j. Namely, given a pair (V, ϕ)
as in the lemma we set Yn = Xn ×X(τnn ),X0 V . Then given β : [n] → [m] we define
V (β) : Ym → Yn as the pullback by X(τmβ(n)m) of the map ϕ postcomposed by the
projection Xm ×X(β),Xn Yn → Yn. This makes sense because

Xm ×X(τm
β(n)m),X1 X1 ×d1

1,X0 V = Xm ×X(τmm ),X0 V = Ym
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and

Xm ×X(τm
β(n)m),X1 X1 ×d1

0,X0 V = Xm ×X(τm
β(n)),X0 V = Xm ×X(β),Xn Yn.

We omit the verification that the commutativity of the displayed diagram above implies
the maps compose correctly. We also omit the verification that the two functors are quasi-
inverse to each other. �

Definition 27.3. Let f : X → S be a morphism of schemes. The simplicial scheme
associated to f , denoted (X/S)•, is the functor ∆opp → Sch, [n] 7→ X ×S . . . ×S X
described in Simplicial, Example 3.5.

Thus (X/S)n is the (n+1)-fold fibre product ofX overS. The morphism d1
0 : X×SX →

X is the map (x0, x1) 7→ x1 and the morphism d1
1 is the other projection. The morphism

s0
0 is the diagonal morphism X → X ×S X .

Lemma 27.4. Let f : X → S be a morphism of schemes. Let π : Y → (X/S)•
be a cartesian morphism of simplicial schemes. Set V = Y0 considered as a scheme over
X . The morphisms d1

0, d
1
1 : Y1 → Y0 and the morphism π1 : Y1 → X ×S X induce

isomorphisms

V ×S X Y1
(d1

1,pr1◦π1)oo (pr0◦π1,d
1
0) // X ×S V.

Denote ϕ : V ×S X → X ×S V the resulting isomorphism. Then the pair (V, ϕ) is a
descent datum relative to X → S.

Proof. This is a special case of (part of) Lemma 27.2 as the displayed equation of that
lemma is equivalent to the cocycle condition of Descent, Definition 34.1. �

Lemma 27.5. Let f : X → S be a morphism of schemes. The construction

category of cartesian
schemes over (X/S)•

−→ category of descent data
relative to X/S

of Lemma 27.4 is an equivalence of categories.

Proof. The functor from left to right is given in Lemma 27.4. Hence this is a special
case of Lemma 27.2. �

We may reinterpret the pullback of Descent, Lemma 34.6 as follows. Suppose given a
morphism of simplicial schemes f : X ′ → X and a cartesian morphism of simplicial
schemes Y → X . Then the fibre product (viewed as a “pullback”)

f∗Y = Y ×X X ′

of simplicial schemes is a simplicial scheme cartesian over X ′. Suppose given a commuta-
tive diagram of morphisms of schemes

X ′
f
//

��

X

��
S′ // S.

This gives rise to a morphism of simplicial schemes

f• : (X ′/S′)• −→ (X/S)•.
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We claim that the “pullback” f∗
• along the morphism f• : (X ′/S′)• → (X/S)• corre-

sponds via Lemma 27.5 with the pullback defined in terms of descent data in the afore-
mentioned Descent, Lemma 34.6.

28. Quasi-coherent modules on simplicial schemes

Lemma 28.1. Let f : V → U be a morphism of simplicial schemes. Given a quasi-
coherent module F on UZar the pullback f∗F is a quasi-coherent module on VZar.

Proof. Recall thatF is cartesian withFn quasi-coherent, see Lemma 12.10. By Lemma
2.4 we see that (f∗F)n = f∗

nFn (some details omitted). Hence (f∗F)n is quasi-coherent.
The same fact and the cartesian property for F imply the cartesian property for f∗F .
Thus F is quasi-coherent by Lemma 12.10 again. �

Lemma 28.2. Let f : V → U be a cartesian morphism of simplicial schemes. Assume
the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un are quasi-compact
and quasi-separated. For a quasi-coherent module G on VZar the pushforward f∗G is a
quasi-coherent module on UZar.

Proof. IfF = f∗G , thenFn = fn,∗Gn by Lemma 2.4. The mapsF(ϕ) are defined us-
ing the base change maps, see Cohomology, Section 17. The sheavesFn are quasi-coherent
by Schemes, Lemma 24.1 and the fact that Gn is quasi-coherent by Lemma 12.10. The base
change maps along the degeneracies dnj are isomorphisms by Cohomology of Schemes,
Lemma 5.2 and the fact that G is cartesian by Lemma 12.10. HenceF is cartesian by Lemma
12.2. Thus F is quasi-coherent by Lemma 12.10. �

Lemma 28.3. Let f : V → U be a cartesian morphism of simplicial schemes. Assume
the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un are quasi-compact
and quasi-separated. Then f∗ and f∗ form an adjoint pair of functors between the cate-
gories of quasi-coherent modules on UZar and VZar.

Proof. We have seen in Lemmas 28.1 and 28.2 that the statement makes sense. The
adjointness property follows immediately from the fact that each f∗

n is adjoint to fn,∗. �

Lemma 28.4. Let f : X → S be a morphism of schemes which has a section6. Let
(X/S)• be the simplicial scheme associated to X → S , see Definition 27.3. Then pull-
back defines an equivalence between the category of quasi-coherent OS-modules and the
category of quasi-coherent modules on ((X/S)•)Zar.

Proof. Let σ : S → X be a section of f . Let (F , α) be a pair as in Lemma 12.5. Set
G = σ∗F . Consider the diagram

X
(σ◦f,1)

//

f

��

X ×S X
pr0

��

pr1
// X

S
σ // X

Note that pr0 = d1
1 and pr1 = d1

0. Hence we see that (σ ◦ f, 1)∗α defines an isomorphism
f∗G = (σ ◦ f, 1)∗pr∗

0F −→ (σ ◦ f, 1)∗pr∗
1F = F

We omit the verification that this isomorphism is compatible with α and the canonical
isomorphism pr∗

0f
∗G → pr∗

1f
∗G. �

6In fact, it would be enough to assume that f has fpqc locally on S a section, since we have descent of
quasi-coherent modules by Descent, Section 5.
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29. Groupoids and simplicial schemes

Given a groupoid in schemes we can build a simplicial scheme. It will turn out that the
category of quasi-coherent sheaves on a groupoid is equivalent to the category of cartesian
quasi-coherent sheaves on the associated simplicial scheme.

Lemma 29.1. Let (U,R, s, t, c, e, i) be a groupoid scheme over S. There exists a sim-
plicial scheme X over S with the following properties

(1) X0 = U , X1 = R, X2 = R×s,U,t R,
(2) s0

0 = e : X0 → X1,
(3) d1

0 = s : X1 → X0, d1
1 = t : X1 → X0,

(4) s1
0 = (e ◦ t, 1) : X1 → X2, s1

1 = (1, e ◦ t) : X1 → X2,
(5) d2

0 = pr1 : X2 → X1, d2
1 = c : X2 → X1, d2

2 = pr0, and
(6) X = cosk2sk2X .

For all n we have Xn = R×s,U,t . . .×s,U,t R with n factors. The map dnj : Xn → Xn−1
is given on functors of points by

(r1, . . . , rn) 7−→ (r1, . . . , c(rj , rj+1), . . . , rn)
for 1 ≤ j ≤ n−1 whereas dn0 (r1, . . . , rn) = (r2, . . . , rn) and dnn(r1, . . . , rn) = (r1, . . . , rn−1).

Proof. We only have to verify that the rules prescribed in (1), (2), (3), (4), (5) define
a 2-truncated simplicial scheme U ′ over S , since then (6) allows us to set X = cosk2U

′,
see Simplicial, Lemma 19.2. Using the functor of points approach, all we have to verify is
that if (Ob,Arrows, s, t, c, e, i) is a groupoid, then

Arrows×s,Ob,t Arrows

pr0

��
c

��
pr1

��
Arrows

t

��
s

��

1,e

OO
e,1

OO

Ob

e

OO

is a 2-truncated simplicial set. We omit the details.

Finally, the description ofXn for n > 2 follows by induction from the description ofX0,
X1, X2, and Simplicial, Remark 19.9 and Lemma 19.6. Alternately, one shows that cosk2
applied to the 2-truncated simplicial set displayed above gives a simplicial set whose nth
term equals Arrows×s,Ob,t . . .×s,Ob,tArrows with n factors and degeneracy maps as given
in the lemma. Some details omitted. �

Lemma 29.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S. Let
X be the simplicial scheme over S constructed in Lemma 29.1. Then the category of quasi-
coherent modules on (U,R, s, t, c) is equivalent to the category of quasi-coherent modules
on XZar.

Proof. This is clear from Lemmas 12.10 and 12.5 and Groupoids, Definition 14.1. �

In the following lemma we will use the concept of a cartesian morphism V → U of sim-
plicial schemes as defined in Definition 27.1.

Lemma 29.3. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Let X be
the simplicial scheme over S constructed in Lemma 29.1. Let (R/U)• be the simplicial
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scheme associated to s : R → U , see Definition 27.3. There exists a cartesian morphism
t• : (R/U)• → X of simplicial schemes with low degree morphisms given by

R×s,U,s R×s,U,s R
pr12
//

pr02
//

pr01
//

(r0,r1,r2) 7→(r0◦r−1
1 ,r1◦r−1

2 )

��

R×s,U,s R pr1
//

pr0
//

(r0,r1) 7→r0◦r−1
1

��

R

t

��
R×s,U,t R

pr1
//

c
//

pr0
//
R s

//

t
//
U

Proof. For arbitrary n we define (R/U)• → Xn by the rule
(r0, . . . , rn) −→ (r0 ◦ r−1

1 , . . . , rn−1 ◦ r−1
n )

Compatibility with degeneracy maps is clear from the description of the degeneracies in
Lemma 29.1. We omit the verification that the maps respect the morphisms snj . Groupoids,
Lemma 13.5 (with the roles of s and t reversed) shows that the two right squares are carte-
sian. In exactly the same manner one shows all the other squares are cartesian too. Hence
the morphism is cartesian. �

30. Descent data give equivalence relations

In Section 27 we saw how descent data relative to X → S can be formulated in terms of
cartesian simplicial schemes over (X/S)•. Here we link this to equivalence relations as
follows.

Lemma 30.1. Let f : X → S be a morphism of schemes. Let π : Y → (X/S)•
be a cartesian morphism of simplicial schemes, see Definitions 27.1 and 27.3. Then the
morphism

j = (d1
1, d

1
0) : Y1 → Y0 ×S Y0

defines an equivalence relation on Y0 over S , see Groupoids, Definition 3.1.

Proof. Note that j is a monomorphism. Namely the composition Y1 → Y0×S Y0 →
Y0 ×S X is an isomorphism as π is cartesian.
Consider the morphism

(d2
2, d

2
0) : Y2 → Y1 ×d1

0,Y0,d1
1
Y1.

This works because d0 ◦ d2 = d1 ◦ d0, see Simplicial, Remark 3.3. Also, it is a morphism
over (X/S)2. It is an isomorphism because Y → (X/S)• is cartesian. Note for example
that the right hand side is isomorphic to Y0×π0,X,pr1

(X ×S X ×S X) = X ×S Y0×S X
because π is cartesian. Details omitted.
As in Groupoids, Definition 3.1 we denote t = pr0 ◦ j = d1

1 and s = pr1 ◦ j = d1
0. The

isomorphism above, combined with the morphism d2
1 : Y2 → Y1 give us a composition

morphism
c : Y1 ×s,Y0,t Y1 −→ Y1

over Y0 ×S Y0. This immediately implies that for any scheme T/S the relation Y1(T ) ⊂
Y0(T )× Y0(T ) is transitive.
Reflexivity follows from the fact that the restriction of the morphism j to the diagonal
∆ : X → X ×S X is an isomorphism (again use the cartesian property of π).
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To see symmetry we consider the morphism

(d2
2, d

2
1) : Y2 → Y1 ×d1

1,Y0,d1
1
Y1.

This works because d1 ◦ d2 = d1 ◦ d1, see Simplicial, Remark 3.3. It is an isomorphism
because Y → (X/S)• is cartesian. Note for example that the right hand side is isomorphic
to Y0×π0,X,pr0

(X×SX×SX) = Y0×SX×SX because π is cartesian. Details omitted.

Let T/S be a scheme. Let a ∼ b for a, b ∈ Y0(T ) be synonymous with (a, b) ∈ Y1(T ).
The isomorphism (d2

2, d
2
1) above implies that if a ∼ b and a ∼ c, then b ∼ c. Combined

with reflexivity this shows that ∼ is an equivalence relation. �

31. An example case

In this section we show that disjoint unions of spectra of Artinian rings can be descended
along a quasi-compact surjective flat morphism of schemes.

Lemma 31.1. Let X → S be a morphism of schemes. Suppose Y → (X/S)• is a
cartesian morphism of simplicial schemes. For y ∈ Y0 a point define

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}
as a subset of Y0. Then y ∈ Ty and Ty ∩ Ty′ 6= ∅ ⇒ Ty = Ty′ .

Proof. Combine Lemma 30.1 and Groupoids, Lemma 3.4. �

Lemma 31.2. Let X → S be a morphism of schemes. Suppose Y → (X/S)• is a
cartesian morphism of simplicial schemes. Let y ∈ Y0 be a point. If X → S is quasi-
compact, then

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}
is a quasi-compact subset of Y0.

Proof. Let Fy be the scheme theoretic fibre of d1
1 : Y1 → Y0 at y. Then we see that

Ty is the image of the morphism

Fy //

��

Y1
d1

0 //

d1
1
��

Y0

y // Y0

Note that Fy is quasi-compact. This proves the lemma. �

Lemma 31.3. Let X → S be a quasi-compact flat surjective morphism. Let (V, ϕ) be
a descent datum relative to X → S. If V is a disjoint union of spectra of Artinian rings,
then (V, ϕ) is effective.

Proof. Let Y → (X/S)• be the cartesian morphism of simplicial schemes corre-
sponding to (V, ϕ) by Lemma 27.5. Observe that Y0 = V . Write V =

∐
i∈I Spec(Ai)

with eachAi local Artinian. Moreover, let vi ∈ V be the unique closed point of Spec(Ai)
for all i ∈ I . Write i ∼ j if and only if vi ∈ Tvj with notation as in Lemma 31.1 above.
By Lemmas 31.1 and 31.2 this is an equivalence relation with finite equivalence classes. Let
I = I/ ∼. Then we can write V =

∐
i∈I Vi with Vi =

∐
i∈i Spec(Ai). By construction

we see that ϕ : V ×S X → X ×S V maps the open and closed subspaces Vi ×S X into
the open and closed subspaces X ×S Vi. In other words, we get descent data (Vi, ϕi), and
(V, ϕ) is the coproduct of them in the category of descent data. Since each of the Vi is a
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finite union of spectra of Artinian local rings the morphism Vi → X is affine, see Mor-
phisms, Lemma 11.13. Since {X → S} is an fpqc covering we see that all the descent data
(Vi, ϕi) are effective by Descent, Lemma 37.1. �

To be sure, the lemma above has very limited applicability!

32. Simplicial algebraic spaces

Let S be a scheme. A simplicial algebraic space is a simplicial object in the category of
algebraic spaces over S , see Simplicial, Definition 3.1. Recall that a simplicial algebraic
space looks like

X2

//
//
//
X1

//
//oo

oo
X0oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 → X1,
etc. These morphisms satisfy some required relations such as d1

0 ◦ s0
0 = idX0 = d1

1 ◦ s0
0,

see Simplicial, Lemma 3.2. It is useful to think of dni : Xn → Xn−1 as the “projection
forgetting the ith coordinate” and to think of snj : Xn → Xn+1 as the “diagonal map
repeating the jth coordinate”.

A morphism of simplicial algebraic spaces h : X → Y is the same thing as a morphism of
simplicial objects in the category of algebraic spaces over S , see Simplicial, Definition 3.1.
Thus h consists of morphisms of algebraic spaces hn : Xn → Yn such that hn−1 ◦ dnj =
dnj ◦ hn and hn+1 ◦ snj = snj ◦ hn whenever this makes sense.

An augmentation a : X → X−1 of a simplicial algebraic space X is given by a morphism
of algebraic spaces a0 : X0 → X−1 such that a0 ◦d1

0 = a0 ◦d1
1. See Simplicial, Section 20.

In this situation we always indicate an : Xn → X−1 the induced morphisms for n ≥ 0.

LetX be a simplicial algebraic space. For every nwe have the siteXn,spaces,étale (Proper-
ties of Spaces, Definition 18.2) and for every morphismϕ : [m]→ [n] we have a morphism
of sites

fϕ = X(ϕ)spaces,étale : Xn,spaces,étale → Xm,spaces,étale,

associated to the morphism of algebraic spaces X(ϕ) : Xn → Xm (Properties of Spaces,
Lemma 18.8). This gives a simplicial object in the category of sites. In Lemma 3.1 we con-
structed an associated site which we denoteXspaces,étale. An object of the siteXspaces,étale

is a an algebraic space U étale over Xn for some n and a morphism (ϕ, f) : U/Xn →
V/Xm is given by a morphism ϕ : [m] → [n] in ∆ and a morphism f : U → V of
algebraic spaces such that the diagram

U
f
//

��

V

��
Xn

fϕ // Xm

is commutative. Consider the full subcategories

Xaffine,étale ⊂ Xétale ⊂ Xspaces,étale

whose objects are U/Xn with U affine, respectively a scheme. Endowing these categories
with their natural topologies (see Properties of Spaces, Lemma 18.6, Definition 18.1, and
Lemma 18.3) these inclusion functors define equivalences of topoi

Sh(Xaffine,étale) = Sh(Xétale) = Sh(Xspaces,étale)
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In the following we will silently identify these topoi. We will say that Xétale is the small
étale site of X and its topos is the small étale topos of X .

LetXétale be the small étale site of a simplicial algebraic spaceX . There is a sheaf of rings
O onXétale whose restriction toXn is the structure sheafOXn . This follows from Lemma
3.4. We will sayO is the structure sheaf of the simplicial algebraic space X . At this point
all the material developed for simplicial (ringed) sites applies, see Sections 3, 4, 5, 6, 8, 9,
10, 11, 12, 13, and 14.

Let X be a simplicial algebraic space with structure sheaf O. As on any ringed topos,
there is a notion of a quasi-coherentO-module onXétale, see Modules on Sites, Definition
23.1. However, a quasi-coherentO-module onXétale is just a cartesianO-moduleF whose
restrictions Fn are quasi-coherent on Xn, see Lemma 12.10.

Let h : X → Y be a morphism of simplicial algebraic spaces over S. By Lemma 5.2 applied
to the morphisms of sites (hn)spaces,étale : Xspaces,étale → Yspaces,étale (Properties of
Spaces, Lemma 18.8) we obtain a morphism of small étale topoi hétale : Sh(Xétale) →
Sh(Yétale). Recall that h−1

étale and hétale,∗ have a simple description in terms of the com-
ponents, see Lemma 5.2. Let OX , resp. OY denote the structure sheaf of X , resp. Y . We
define h]étale : hétale,∗OX → OY to be the map of sheaves of rings on Yétale given by
h]n : hn,∗OXn → OYn on Yn. We obtain a morphism of ringed topoi

hétale : (Sh(Xétale),OX) −→ (Sh(Yétale),OY )

Let X be a simplicial algebraic space with structure sheaf O. Let X−1 be an algebraic
space over S and let a0 : X0 → X−1 be an augmentation of X . By Lemma 4.2 applied
to the morphism of sites (a0)spaces,étale : X0,spaces,étale → X−1,spaces,étale we obtain a
corresponding morphism of topoi a : Sh(Xétale)→ Sh(X−1,étale). Observe that a−1G is
the sheaf onXétale with components a−1

n G. Hence we can use the maps a]n : a−1
n OX−1 →

OXn to define a map a] : a−1OX−1 → O, or equivalently by adjunction a map a] :
OX−1 → a∗O (which as usual has the same name). This puts us in the situation discussed
in Section 11. Therefore we obtain a morphism of ringed topoi

a : (Sh(Xétale),O) −→ (Sh(X−1),OX−1)

A final observation is the following. Suppose we are given a morphism h : X → Y
of simplicial algebraic spaces X and Y with structure sheaves OX , OY , augmentations
a0 : X0 → X−1, b0 : Y0 → Y−1 and a morphism h−1 : X−1 → Y−1 such that

X0
h0

//

a0

��

Y0

b0

��
X−1

h−1 // Y−1

commutes. Then from the constructions elucidated above we obtain a commutative dia-
gram of morphisms of ringed topoi as follows

(Sh(Xétale),OX)
hétale

//

a

��

(Sh(Yétale),OY )

b

��
(Sh(X−1),OX−1)

h−1 // (Sh(Y−1),OY−1)
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33. Fppf hypercoverings of algebraic spaces

This section is the analogue of Section 25 for the case of algebraic spaces and fppf hy-
percoverings. The reader who wishes to do so, can replace “algebraic space” everywhere
with “scheme” and get equally valid results. This has the advantage of replacing the refer-
ences to More on Cohomology of Spaces, Section 6 with references to Étale Cohomology,
Section 100.

We fix a base scheme S. Let X be an algebraic space over S and let U be a simplicial
algebraic space over S. Assume we have an augmentation

a : U → X

See Section 32. We say that U is an fppf hypercovering of X if
(1) U0 → X is flat, locally of finite presentation, and surjective,
(2) U1 → U0 ×X U0 is flat, locally of finite presentation, and surjective,
(3) Un+1 → (cosknsknU)n+1 is flat, locally of finite presentation, and surjective for

n ≥ 1.
The category of algebraic spaces over S has all finite limits, hence the coskeleta used in the
formulation above exist.

Principle: Fppf hypercoverings can be used to compute étale cohomology.

The key idea behind the proof of the principle is to compare the fppf and étale topologies
on the category Spaces/S. Namely, the fppf topology is stronger than the étale topology
and we have (a) a flat, locally finitely presented, surjective map defines an fppf covering,
and (b) fppf cohomology of sheaves pulled back from the small étale site agrees with étale
cohomology as we have seen in More on Cohomology of Spaces, Section 6.

Lemma 33.1. LetS be a scheme. LetX be an algebraic space over S. LetU be a simpli-
cial algebraic space over S. Let a : U → X be an augmentation. There is a commutative
diagram

Sh((Spaces/U)fppf,total)
h
//

afppf

��

Sh(Uétale)

a

��
Sh((Spaces/X)fppf )

h−1 // Sh(Xétale)
where the left vertical arrow is defined in Section 21 and the right vertical arrow is defined
in Section 32.

Proof. The notation (Spaces/U)fppf,total indicates that we are using the construc-
tion of Section 21 for the site (Spaces/S)fppf and the simplicial object U of this site7. We
will use the sites Xspaces,étale and Uspaces,étale for the topoi on the right hand side; this
is permissible see discussion in Section 32.

Observe that both (Spaces/U)fppf,total and Uspaces,étale fall into case A of Situation 3.3.
This is immediate from the construction ofUétale in Section 32 and it follows from Lemma
21.5 for (Spaces/U)fppf,total. Next, consider the functorsUn,spaces,étale → (Spaces/Un)fppf ,
U 7→ U/Un and Xspaces,étale → (Spaces/X)fppf , U 7→ U/X . We have seen that these
define morphisms of sites in More on Cohomology of Spaces, Section 6 where these were
denoted aUn = εUn ◦ πun and aX = εX ◦ πX . Thus we obtain a morphism of simplicial

7We could also use the étale topology and this would be denoted (Spaces/U)étale,total.
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sites compatible with augmentations as in Remark 5.4 and we may apply Lemma 5.5 to
conclude. �

Lemma 33.2. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X is an
fppf hypercovering of X , then

a−1 : Sh(Xétale)→ Sh(Uétale) and a−1 : Ab(Xétale)→ Ab(Uétale)

are fully faithful with essential image the cartesian sheaves and quasi-inverse given by a∗.
Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. We will prove the statement for sheaves of sets. It will be an almost formal
consequence of results already established. Consider the diagram of Lemma 33.1. In the
proof of this lemma we have seen that h−1 is the morphism aX of More on Cohomol-
ogy of Spaces, Section 6. Thus it follows from More on Cohomology of Spaces, Lemma
6.1 that (h−1)−1 is fully faithful with quasi-inverse h−1,∗. The same holds true for the
components hn of h. By the description of the functors h−1 and h∗ of Lemma 5.2 we
conclude that h−1 is fully faithful with quasi-inverse h∗. Observe that U is a hypercover-
ing of X in (Spaces/S)fppf as defined in Section 21. By Lemma 21.1 we see that a−1

fppf is
fully faithful with quasi-inverse afppf,∗ and with essential image the cartesian sheaves on
(Spaces/U)fppf,total. A formal argument (chasing around the diagram) now shows that
a−1 is fully faithful.

Finally, suppose that G is a cartesian sheaf on Uétale. Then h−1G is a cartesian sheaf on
(Spaces/U)fppf,total. Hence h−1G = a−1

fppfH for some sheaf H on (Spaces/X)fppf . In
particular we find that h−1

0 G0 = (a0,big,fppf )−1H. Recalling that h0 = aU0 and that
U0 → X is flat, locally of finite presentation, and surjective, we find from More on Co-
homology of Spaces, Lemma 6.7 that there exists a sheaf F on Xétale and isomorphism
H = (h−1)−1F . Since a−1

fppfH = h−1G we deduce that h−1G ∼= h−1a−1F . By fully
faithfulness of h−1 we conclude that a−1F ∼= G.

Fix an isomorphism θ : a−1F → G. To finish the proof we have to show G = a−1a∗G
(in order to show that the quasi-inverse is given by a∗; everything else has been proven
above). Because a−1 is fully faithful we have id ∼= a∗a

−1 by Categories, Lemma 24.4.
Thus F ∼= a∗a

−1F and a∗θ : a∗a
−1F → a∗G combine to an isomorphism F → a∗G.

Pulling back by a and precomposing by θ−1 we find the desired isomorphism. �

Lemma 33.3. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X is an
fppf hypercovering of X , then for K ∈ D+(Xétale)

K → Ra∗(a−1K)

is an isomorphism. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Consider the diagram of Lemma 33.1. Observe thatRhn,∗h−1
n is the identity

functor on D+(Un,étale) by More on Cohomology of Spaces, Lemma 6.2. Hence Rh∗h
−1
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is the identity functor on D+(Uétale) by Lemma 5.3. We have

Ra∗(a−1K) = Ra∗Rh∗h
−1a−1K

= Rh−1,∗Rafppf,∗a
−1
fppf (h−1)−1K

= Rh−1,∗(h−1)−1K

= K

The first equality by the discussion above, the second equality because of the commutativ-
ity of the diagram in Lemma 25.1, the third equality by Lemma 21.2 asU is a hypercovering
of X in (Spaces/S)fppf , and the last equality by the already used More on Cohomology
of Spaces, Lemma 6.2. �

Lemma 33.4. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X is an
fppf hypercovering of X , then

RΓ(Xétale,K) = RΓ(Uétale, a−1K)

for K ∈ D+(Xétale). Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. This follows from Lemma 33.3 because RΓ(Uétale,−) = RΓ(Xétale,−) ◦
Ra∗ by Cohomology on Sites, Remark 14.4. �

Lemma 33.5. Let S be a scheme. Let X be an algebraic space over S. Let U be a sim-
plicial algebraic space over S. Let a : U → X be an augmentation. Let A ⊂ Ab(Uétale)
denote the weak Serre subcategory of cartesian abelian sheaves. If U is an fppf hypercov-
ering of X , then the functor a−1 defines an equivalence

D+(Xétale) −→ D+
A(Uétale)

with quasi-inverse Ra∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Observe thatA is a weak Serre subcategory by Lemma 12.6. The equivalence
is a formal consequence of the results obtained so far. Use Lemmas 33.2 and 33.3 and
Cohomology on Sites, Lemma 28.5. �

Lemma 33.6. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. LetF be an abelian
sheaf on Xétale. Let Fn be the pullback to Un,étale. If U is an fppf hypercovering of X ,
then there exists a canonical spectral sequence

Ep,q1 = Hq
étale(Up,Fp)

converging to Hp+q
étale(X,F).

Proof. Immediate consequence of Lemmas 33.4 and 8.3. �

34. Fppf hypercoverings of algebraic spaces: modules

We continue the discussion of (cohomological) descent for fppf hypercoverings started in
Section 33 but in this section we discuss what happens for sheaves of modules. We mainly
discuss quasi-coherent modules and it turns out that we can do unbounded cohomological
descent for those.
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Lemma 34.1. LetS be a scheme. LetX be an algebraic space overS. LetU be a simpli-
cial algebraic space over S. Let a : U → X be an augmentation. There is a commutative
diagram

(Sh((Spaces/U)fppf,total),Obig,total)
h
//

afppf

��

(Sh(Uétale),OU )

a

��
(Sh((Spaces/X)fppf ),Obig)

h−1 // (Sh(Xétale),OX)

of ringed topoi where the left vertical arrow is defined in Section 22 and the right vertical
arrow is defined in Section 32.

Proof. For the underlying diagram of topoi we refer to the discussion in the proof
of Lemma 33.1. The sheaf OU is the structure sheaf of the simplicial algebraic space U as
defined in Section 32. The sheaf OX is the usual structure sheaf of the algebraic space X .
The sheaves of ringsObig,total andObig come from the structure sheaf on (Spaces/S)fppf
in the manner explained in Section 22 which also constructs afppf as a morphism of ringed
topoi. The component morphisms hn = aUn and h−1 = aX are morphisms of ringed
topoi by More on Cohomology of Spaces, Section 7. Finally, since the continuous functor
u : Uspaces,étale → (Spaces/U)fppf,total used to define h8 is given by V/Un 7→ V/Un we
see that h∗Obig,total = OU which is how we endow hwith the structure of a morphism of
ringed simplicial sites as in Remark 7.1. Then we obtainh as a morphism of ringed topoi by
Lemma 7.2. Please observe that the morphisms hn indeed agree with the morphisms aUn
described above. We omit the verification that the diagram is commutative (as a diagram
of ringed topoi – we already know it is commutative as a diagram of topoi). �

Lemma 34.2. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X is an
fppf hypercovering of X , then

a∗ : QCoh(OX)→ QCoh(OU )

is an equivalence fully faithful with quasi-inverse given by a∗. Here a : Sh(Uétale) →
Sh(Xétale) is as in Section 32.

Proof. Consider the diagram of Lemma 34.1. In the proof of this lemma we have
seen that h−1 is the morphism aX of More on Cohomology of Spaces, Section 7. Thus it
follows from More on Cohomology of Spaces, Lemma 7.1 that

(h−1)∗ : QCoh(OX) −→ QCoh(Obig)

is an equivalence with quasi-inverse h−1,∗. The same holds true for the components hn
of h. Recall that QCoh(OU ) and QCoh(Obig,total) consist of cartesian modules whose
components are quasi-coherent, see Lemma 12.10. Since the functors h∗ and h∗ of Lemma
7.2 agree with the functors h∗

n and hn,∗ on components we conclude that

h∗ : QCoh(OU ) −→ QCoh(Obig,total)

is an equivalence with quasi-inverseh∗. Observe thatU is a hypercovering ofX in (Spaces/S)fppf
as defined in Section 21. By Lemma 22.1 we see that a∗

fppf is fully faithful with quasi-
inverse afppf,∗ and with essential image the cartesian sheaves of Ofppf,total-modules.

8This happened in the proof of Lemma 33.1 via an application of Lemma 5.5.
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Thus, by the description of QCoh(Obig) and QCoh(Obig,total) of Lemma 12.10, we get
an equivalence

a∗
fppf : QCoh(Obig) −→ QCoh(Obig,total)

with quasi-inverse given by afppf,∗. A formal argument (chasing around the diagram)
now shows that a∗ is fully faithful on QCoh(OX) and has image contained in QCoh(OU ).
Finally, suppose that G is in QCoh(OU ). Then h∗G is in QCoh(Obig,total). Hence h∗G =
a∗
fppfH with H = afppf,∗h

∗G in QCoh(Obig) (see above). In turn we see that H =
(h−1)∗F with F = h−1,∗H in QCoh(OX). Going around the diagram we deduce that
h∗G ∼= h∗a∗F . By fully faithfulness of h∗ we conclude that a∗F ∼= G. Since F =
h−1,∗afppf,∗h

∗G = a∗h∗h
∗G = a∗G we also obtain the statement that the quasi-inverse

is given by a∗. �

Lemma 34.3. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X is an
fppf hypercovering of X , then for F a quasi-coherentOX -module the map

F → Ra∗(a∗F)
is an isomorphism. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Consider the diagram of Lemma 33.1. Let Fn = a∗
nF be the nth component

of a∗F . This is a quasi-coherent OUn -module. Then Fn = Rhn,∗h
∗
nFn by More on

Cohomology of Spaces, Lemma 7.2. Hence a∗F = Rh∗h
∗a∗F by Lemma 7.3. We have

Ra∗(a∗F) = Ra∗Rh∗h
∗a∗F

= Rh−1,∗Rafppf,∗a
∗
fppf (h−1)∗F

= Rh−1,∗(h−1)∗F
= F

The first equality by the discussion above, the second equality because of the commutativ-
ity of the diagram in Lemma 25.1, the third equality by Lemma 22.2 as U is a hypercov-
ering of X in (Spaces/S)fppf and La∗

fppf = a∗
fppf as afppf is flat (namely a−1

fppfObig =
Obig,total, see Remark 16.5), and the last equality by the already used More on Cohomol-
ogy of Spaces, Lemma 7.2. �

Lemma 34.4. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space overS. Let a : U → X be an augmentation. Assume a : U → X
is an fppf hypercovering ofX . Then QCoh(OU ) is a weak Serre subcategory of Mod(OU )
and

a∗ : DQCoh(OX) −→ DQCoh(OU )
is an equivalence of categories with quasi-inverse given by Ra∗. Here a : Sh(Uétale) →
Sh(Xétale) is as in Section 32.

Proof. First observe that the maps an : Un → X and dni : Un → Un−1 are flat,
locally of finite presentation, and surjective by Hypercoverings, Remark 8.4.
Recall that anOU -moduleF is quasi-coherent if and only if it is cartesian andFn is quasi-
coherent for all n. See Lemma 12.10. By Lemma 12.6 (and flatness of the maps dni : Un →
Un−1 shown above) the cartesian modules for a weak Serre subcategory of Mod(OU ).
On the other hand QCoh(OUn) ⊂ Mod(OUn) is a weak Serre subcategory for each n
(Properties of Spaces, Lemma 29.7). Combined we see that QCoh(OU ) ⊂ Mod(OU ) is a
weak Serre subcategory.
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To finish the proof we check the conditions (1) – (5) of Cohomology on Sites, Lemma 28.6
one by one.
Ad (1). This holds since an flat (seen above) implies a is flat by Lemma 11.1.
Ad (2). This is the content of Lemma 34.2.
Ad (3). This is the content of Lemma 34.3.
Ad (4). Recall that we can use either the site Uétale or Uspaces,étale to define the small
étale topos Sh(Uétale), see Section 32. The assumption of Cohomology on Sites, Situation
25.1 holds for the triple (Uspaces,étale,OU ,QCoh(OU )) and by the same reasoning for
the triple (Uétale,OU ,QCoh(OU )). Namely, take

B ⊂ Ob(Uétale) ⊂ Ob(Uspaces,étale)
to be the set of affine objects. For V/Un ∈ B take dV/Un = 0 and take CovV/Un to be the
set of étale coverings {Vi → V }with Vi affine. Then we get the desired vanishing because
for F ∈ QCoh(OU ) and any V/Un ∈ B we have

Hp(V/Un,F) = Hp(V,Fn)
by Lemma 10.4. Here on the right hand side we have the cohomology of the quasi-coherent
sheaf Fn on Un over the affine obect V of Un,étale. This vanishes for p > 0 by the discus-
sion in Cohomology of Spaces, Section 3 and Cohomology of Schemes, Lemma 2.2.
Ad (5). Follows by taking B ⊂ Ob(Xspaces,étale) the set of affine objects and the refer-
ences given above. �

Lemma 34.5. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X is an
fppf hypercovering of X , then

RΓ(Xétale,K) = RΓ(Uétale, a∗K)
for K ∈ DQCoh(OX). Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. This follows from Lemma 34.4 because RΓ(Uétale,−) = RΓ(Xétale,−) ◦
Ra∗ by Cohomology on Sites, Remark 14.4. �

Lemma 34.6. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. Let F be quasi-
coherent OX -module. Let Fn be the pullback to Un,étale. If U is an fppf hypercovering
of X , then there exists a canonical spectral sequence

Ep,q1 = Hq
étale(Up,Fp)

converging to Hp+q
étale(X,F).

Proof. Immediate consequence of Lemmas 34.5 and 10.3. �

35. Fppf descent of complexes

In this section we pull some of the previously shown results together for fppf coverings
of algebraic spaces and derived categories of quasi-coherent modules.

Lemma 35.1. LetX be an algebraic space over a scheme S. LetK,E ∈ DQCoh(OX).
Let a : U → X be an fppf hypercovering. Assume that for all n ≥ 0 we have

ExtiOUn
(La∗

nK,La
∗
nE) = 0 for i < 0

Then we have
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(1) ExtiOX
(K,E) = 0 for i < 0, and

(2) there is an exact sequence

0→ HomOX
(K,E)→ HomOU0

(La∗
0K,La

∗
0E)→ HomOU1

(La∗
1K,La

∗
1E)

Proof. Write Kn = La∗
nK and En = La∗

nE. Then these are the simplicial sys-
tems of the derived category of modules (Definition 14.1) associated to La∗K and La∗E
(Lemma 14.2) where a : Uétale → Xétale is as in Section 32. Let us prove (2) first. By
Lemma 34.4 we have

HomOX
(K,E) = HomOU

(La∗K,La∗E)
Thus the sequence looks like this:

0→ HomOU
(La∗K,La∗E)→ HomOU0

(K0, E0)→ HomOU1
(K1, E1)

The first arrow is injective by Lemma 14.5. The image of this arrow is the kernel of the
second by Lemma 14.6. This finishes the proof of (2). Part (1) follows by applying part (2)
with K[i] and E for i > 0. �

Lemma 35.2. LetX be an algebraic space over a scheme S. Let a : U → X be an fppf
hypercovering. Suppose given K0 ∈ DQCoh(U0) and an isomorphism

α : L(fδ1
1
)∗K0 −→ L(fδ1

0
)∗K0

satisfying the cocycle condition on U1. Set τni : [0]→ [n], 0 7→ i and set Kn = Lf∗
τnn
K0.

Assume ExtiOUn
(Kn,Kn) = 0 for i < 0. Then there exists an object K ∈ DQCoh(OX)

and an isomorphism La∗
0K → K compatible with α.

Proof. The objects Kn form the members of a simplicial system of the derived cat-
egory of modules by Lemma 14.3. Then we obtain an object K ′ ∈ DQCoh(OUétale) such
that (Kn,Kϕ) is the system deduced from K ′, see Lemma 14.7. Finally, we apply Lemma
34.4 to see that K ′ = La∗K for some K ∈ DQCoh(OX) as desired. �

36. Proper hypercoverings of algebraic spaces

This section is the analogue of Section 25 for the case of algebraic spaces. The reader who
wishes to do so, can replace “algebraic space” everywhere with “scheme” and get equally
valid results. This has the advantage of replacing the references to More on Cohomology
of Spaces, Section 8 with references to Étale Cohomology, Section 102.

We fix a base scheme S. Let X be an algebraic space over S and let U be a simplicial
algebraic space over S. Assume we have an augmentation

a : U → X

See Section 32. We say that U is a proper hypercovering of X if
(1) U0 → X is proper and surjective,
(2) U1 → U0 ×X U0 is proper and surjective,
(3) Un+1 → (cosknsknU)n+1 is proper and surjective for n ≥ 1.

The category of algebraic spaces over S has all finite limits, hence the coskeleta used in the
formulation above exist.

Principle: Proper hypercoverings can be used to compute étale cohomology.

The key idea behind the proof of the principle is to compare the ph and étale topologies
on the category Spaces/S. Namely, the ph topology is stronger than the étale topology
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and we have (a) a proper surjective map defines a ph covering, and (b) ph cohomology of
sheaves pulled back from the small étale site agrees with étale cohomology as we have seen
in More on Cohomology of Spaces, Section 8.
All results in this section generalize to the case where U → X is merely a “ph hypercov-
ering”, meaning a hypercovering ofX in the site (Spaces/S)ph as defined in Section 21. If
we ever need this, we will precisely formulate and prove this here.

Lemma 36.1. LetS be a scheme. LetX be an algebraic space overS. LetU be a simpli-
cial algebraic space over S. Let a : U → X be an augmentation. There is a commutative
diagram

Sh((Spaces/U)ph,total)
h
//

aph

��

Sh(Uétale)

a

��
Sh((Spaces/X)ph)

h−1 // Sh(Xétale)
where the left vertical arrow is defined in Section 21 and the right vertical arrow is defined
in Section 32.

Proof. The notation (Spaces/U)ph,total indicates that we are using the construction
of Section 21 for the site (Spaces/S)ph and the simplicial object U of this site9. We will
use the sites Xspaces,étale and Uspaces,étale for the topoi on the right hand side; this is
permissible see discussion in Section 32.
Observe that both (Spaces/U)ph,total and Uspaces,étale fall into case A of Situation 3.3.
This is immediate from the construction ofUétale in Section 32 and it follows from Lemma
21.5 for (Spaces/U)ph,total. Next, consider the functorsUn,spaces,étale → (Spaces/Un)ph,
U 7→ U/Un and Xspaces,étale → (Spaces/X)ph, U 7→ U/X . We have seen that these
define morphisms of sites in More on Cohomology of Spaces, Section 8 where these were
denoted aUn = εUn ◦ πun and aX = εX ◦ πX . Thus we obtain a morphism of simplicial
sites compatible with augmentations as in Remark 5.4 and we may apply Lemma 5.5 to
conclude. �

Lemma 36.2. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X is a
proper hypercovering of X , then

a−1 : Sh(Xétale)→ Sh(Uétale) and a−1 : Ab(Xétale)→ Ab(Uétale)
are fully faithful with essential image the cartesian sheaves and quasi-inverse given by a∗.
Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. We will prove the statement for sheaves of sets. It will be an almost formal
consequence of results already established. Consider the diagram of Lemma 36.1. In the
proof of this lemma we have seen that h−1 is the morphism aX of More on Cohomol-
ogy of Spaces, Section 8. Thus it follows from More on Cohomology of Spaces, Lemma
8.1 that (h−1)−1 is fully faithful with quasi-inverse h−1,∗. The same holds true for the
components hn of h. By the description of the functors h−1 and h∗ of Lemma 5.2 we
conclude that h−1 is fully faithful with quasi-inverse h∗. Observe that U is a hypercov-
ering of X in (Spaces/S)ph as defined in Section 21 since a surjective proper morphism
gives a ph covering by Topologies on Spaces, Lemma 8.3. By Lemma 21.1 we see that a−1

ph

is fully faithful with quasi-inverse aph,∗ and with essential image the cartesian sheaves on

9To distinguish from (Spaces/U)fppf,total defined using the fppf topology in Section 33.
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(Spaces/U)ph,total. A formal argument (chasing around the diagram) now shows that a−1

is fully faithful.

Finally, suppose that G is a cartesian sheaf on Uétale. Then h−1G is a cartesian sheaf on
(Spaces/U)ph,total. Hence h−1G = a−1

phH for some sheaf H on (Spaces/X)ph. We com-
pute using somewhat pedantic notation

(h−1)−1(a∗G) = (h−1)−1Eq( a0,small,∗G0
//
// a1,small,∗G1 )

= Eq( (h−1)−1a0,small,∗G0
//
// (h−1)−1a1,small,∗G1 )

= Eq( a0,big,ph,∗h
−1
0 G0

//
// a1,big,ph,∗h

−1
1 G1 )

= Eq( a0,big,ph,∗(a0,big,ph)−1H //
// a1,big,ph,∗(a1,big,ph)−1H )

= aph,∗a
−1
phH

= H

Here the first equality follows from Lemma 4.2, the second equality follows as (h−1)−1 is
an exact functor, the third equality follows from More on Cohomology of Spaces, Lemma
8.5 (here we use that a0 : U0 → X and a1 : U1 → X are proper), the fourth follows from
a−1
phH = h−1G , the fifth from Lemma 4.2, and the sixth we’ve seen above. Since a−1

phH =
h−1G we deduce that h−1G ∼= h−1a−1a∗G which ends the proof by fully faithfulness of
h−1. �

Lemma 36.3. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X is a
proper hypercovering of X , then for K ∈ D+(Xétale)

K → Ra∗(a−1K)

is an isomorphism. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Consider the diagram of Lemma 36.1. Observe thatRhn,∗h−1
n is the identity

functor on D+(Un,étale) by More on Cohomology of Spaces, Lemma 8.2. Hence Rh∗h
−1

is the identity functor on D+(Uétale) by Lemma 5.3. We have

Ra∗(a−1K) = Ra∗Rh∗h
−1a−1K

= Rh−1,∗Raph,∗a
−1
ph (h−1)−1K

= Rh−1,∗(h−1)−1K

= K

The first equality by the discussion above, the second equality because of the commutativ-
ity of the diagram in Lemma 25.1, the third equality by Lemma 21.2 asU is a hypercovering
of X in (Spaces/S)ph by Topologies on Spaces, Lemma 8.3, and the last equality by the
already used More on Cohomology of Spaces, Lemma 8.2. �

Lemma 36.4. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. If a : U → X is a
proper hypercovering of X , then

RΓ(Xétale,K) = RΓ(Uétale, a−1K)

for K ∈ D+(Xétale). Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.
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Proof. This follows from Lemma 36.3 because RΓ(Uétale,−) = RΓ(Xétale,−) ◦
Ra∗ by Cohomology on Sites, Remark 14.4. �

Lemma 36.5. Let S be a scheme. Let X be an algebraic space over S. Let U be a sim-
plicial algebraic space over S. Let a : U → X be an augmentation. Let A ⊂ Ab(Uétale)
denote the weak Serre subcategory of cartesian abelian sheaves. If U is a proper hypercov-
ering of X , then the functor a−1 defines an equivalence

D+(Xétale) −→ D+
A(Uétale)

with quasi-inverse Ra∗. Here a : Sh(Uétale)→ Sh(Xétale) is as in Section 32.

Proof. Observe thatA is a weak Serre subcategory by Lemma 12.6. The equivalence
is a formal consequence of the results obtained so far. Use Lemmas 36.2 and 36.3 and
Cohomology on Sites, Lemma 28.5. �

Lemma 36.6. Let S be a scheme. Let X be an algebraic space over S. Let U be a
simplicial algebraic space over S. Let a : U → X be an augmentation. LetF be an abelian
sheaf onXétale. Let Fn be the pullback to Un,étale. If U is a ph hypercovering ofX , then
there exists a canonical spectral sequence

Ep,q1 = Hq
étale(Up,Fp)

converging to Hp+q
étale(X,F).

Proof. Immediate consequence of Lemmas 36.4 and 8.3. �

37. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra

(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes

(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory

(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves



37. OTHER CHAPTERS 6123

(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces

Topics in Geometry
(82) Chow Groups of Spaces

(83) Quotients of Groupoids
(84) More on Cohomology of Spaces
(85) Simplicial Spaces
(86) Duality for Spaces
(87) Formal Algebraic Spaces
(88) Algebraization of Formal Spaces
(89) Resolution of Surfaces Revisited

Deformation Theory
(90) Formal Deformation Theory
(91) Deformation Theory
(92) The Cotangent Complex
(93) Deformation Problems

Algebraic Stacks
(94) Algebraic Stacks
(95) Examples of Stacks
(96) Sheaves on Algebraic Stacks
(97) Criteria for Representability
(98) Artin’s Axioms
(99) Quot and Hilbert Spaces

(100) Properties of Algebraic Stacks
(101) Morphisms of Algebraic Stacks
(102) Limits of Algebraic Stacks
(103) Cohomology of Algebraic Stacks
(104) Derived Categories of Stacks
(105) Introducing Algebraic Stacks
(106) More on Morphisms of Stacks
(107) The Geometry of Stacks

Topics in Moduli Theory
(108) Moduli Stacks
(109) Moduli of Curves

Miscellany
(110) Examples
(111) Exercises
(112) Guide to Literature
(113) Desirables
(114) Coding Style
(115) Obsolete
(116) GNU Free Documentation Li-

cense
(117) Auto Generated Index





CHAPTER 86

Duality for Spaces

1. Introduction

This chapter is the analogue of the corresponding chapter for schemes, see Duality for
Schemes, Section 1. The development is similar to the development in the papers [?], [?],
[?], and [?].

2. Dualizing complexes on algebraic spaces

Let U be a locally Noetherian scheme. LetOétale be the structure sheaf of U on the small
étale site of U . We will say an object K ∈ DQCoh(Oétale) is a dualizing complex on U if
K = ε∗(ω•

U ) for some dualizing complex ω•
U in the sense of Duality for Schemes, Section

2. Here ε∗ : DQCoh(OU ) → DQCoh(Oétale) is the equivalence of Derived Categories of
Spaces, Lemma 4.2. Most of the properties of ω•

U studied in Duality for Schemes, Section
2 are inherited byK via the discussion in Derived Categories of Spaces, Sections 4 and 13.

We define a dualizing complex on a locally Noetherian algebraic space to be a complex
which étale locally comes from a dualizing complex on the corresponding scheme.

Lemma 2.1. Let S be a scheme. LetX be a locally Noetherian algebraic space over S.
Let K be an object of DQCoh(OX). The following are equivalent

(1) For every étale morphism U → X where U is a scheme the restriction K|U is a
dualizing complex for U (as discussed above).

(2) There exists a surjective étale morphism U → X where U is a scheme such that
K|U is a dualizing complex for U .

Proof. Assume U → X is surjective étale where U is a scheme. Let V → X be an
étale morphism where V is a scheme. Then

U ← U ×X V → V

are étale morphisms of schemes with the arrow to V surjective. Hence we can use Duality
for Schemes, Lemma 26.1 to see that if K|U is a dualizing complex for U , then K|V is a
dualizing complex for V . �

Definition 2.2. LetS be a scheme. LetX be a locally Noetherian algebraic space over
S. An object K of DQCoh(OX) is called a dualizing complex if K satisfies the equivalent
conditions of Lemma 2.1.

Lemma 2.3. Let A be a Noetherian ring and let X = Spec(A). Let Oétale be the
structure sheaf of X on the small étale site of X . Let K,L be objects of D(A). If K ∈
DCoh(A) and L has finite injective dimension, then

ε∗ ˜RHomA(K,L) = RHomOétale
(ε∗K̃, ε∗L̃)
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inD(Oétale) where ε : (Xétale,Oétale)→ (X,OX) is as in Derived Categories of Spaces,
Section 4.

Proof. By Duality for Schemes, Lemma 2.3 we have a canonical isomorphism

˜RHomA(K,L) = RHomOX
(K̃, L̃)

in D(OX). There is a canonical map

ε∗RHomOX
(K̃, L̃) −→ RHomOétale

(ε∗K̃, ε∗L̃)
in D(Oétale), see Cohomology on Sites, Remark 35.11. We will show the left and right
hand side of this arrow have isomorphic cohomology sheaves, but we will omit the verifi-
cation that the isomorphism is given by this arrow.
We may assume thatL is given by a finite complex I• of injectiveA-modules. By induction
on the length of I• and compatibility of the constructions with distinguished triangles,
we reduce to the case that L = I[0] where I is an injective A-module. Recall that the
cohomology sheaves of RHomOétale

(ε∗K̃, ε∗L̃)) are the sheafifications of the presheaf
sending U étale over X to the ith ext group between the restrictions of ε∗K̃ and ε∗L̃
to Uétale. See Cohomology on Sites, Lemma 35.1. If U = Spec(B) is affine, then this
ext group is equal to ExtiB(K ⊗A B,L ⊗A B) by the equivalence of Derived Categories
of Spaces, Lemma 4.2 and Derived Categories of Schemes, Lemma 3.5 (this also uses the
compatibilities detailed in Derived Categories of Spaces, Remark 6.3). Since A → B is
étale, we see that I ⊗A B is an injective B-module by Dualizing Complexes, Lemma 26.4.
Hence we see that

ExtnB(K ⊗A B, I ⊗A B) = HomB(H−n(K ⊗A B), I ⊗A B)
= HomAf (H−n(K)⊗A B, I ⊗A B)
= HomA(H−n(K), I)⊗A B
= ExtnA(K, I)⊗A B

The penultimate equality because H−n(K) is a finite A-module, see More on Algebra,
Lemma 65.4. Therefore the cohomology sheaves of the left and right hand side of the
equality in the lemma are the same. �

Lemma 2.4. Let S be a scheme. Let X be a locally Noetherian algebraic space over
S. Let K be a dualizing complex on X . Then K is an object of DCoh(OX) and D =
RHomOX

(−,K) induces an anti-equivalence
D : DCoh(OX) −→ DCoh(OX)

which comes equipped with a canonical isomorphism id→ D ◦D. IfX is quasi-compact,
then D exchanges D+

Coh(OX) and D−
Coh(OX) and induces an equivalence Db

Coh(OX) →
Db

Coh(OX).

Proof. Let U → X be an étale morphism with U affine. Say U = Spec(A) and let
ω•
A be a dualizing complex for A corresponding to K|U as in Lemma 2.1 and Duality for

Schemes, Lemma 2.1. By Lemma 2.3 the diagram

DCoh(A) //

RHomA(−,ω•
A)
��

DCoh(Oétale)

RHomOétale (−,K|U )
��

DCoh(A) // D(Oétale)
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commutes where Oétale is the structure sheaf of the small étale site of U . Since forma-
tion of RHom commutes with restriction, we conclude that D sends DCoh(OX) into
DCoh(OX). Moreover, the canonical map

L −→ RHomOX
(RHomOX

(L,K),K)

(Cohomology on Sites, Lemma 35.5) is an isomorphism for all L in DCoh(OX) because
this is true over all U as above by Dualizing Complexes, Lemma 15.3. The statement on
boundedness properties of the functor D in the quasi-compact case also follows from the
corresponding statements of Dualizing Complexes, Lemma 15.3. �

Let (C,O) be a ringed site. Recall that an objectL ofD(O) is invertible if it is an invertible
object for the symmetric monoidal structure on D(OX) given by derived tensor product.
In Cohomology on Sites, Lemma 49.2 we we have seen this meansL is perfect and if (C,O)
is a locally ringed site, then for every object U of C there is a covering {Ui → U} of U in
C such that L|Ui ∼= OUi [−ni] for some integers ni.

Let S be a scheme and letX be an algebraic space over S. IfL inD(OX) is invertible, then
there is a disjoint union decomposition X =

∐
n∈Z Xn such that L|Xn is an invertible

module sitting in degree n. In particular, it follows that L =
⊕
Hn(L)[−n] which gives

a well defined complex ofOX -modules (with zero differentials) representing L.

Lemma 2.5. Let S be a scheme. LetX be a locally Noetherian algebraic space over S.
If K and K ′ are dualizing complexes on X , then K ′ is isomorphic to K ⊗L

OX
L for some

invertible object L of D(OX).

Proof. Set
L = RHomOX

(K,K ′)

This is an invertible object of D(OX), because affine locally this is true. Use Lemma 2.3
and Dualizing Complexes, Lemma 15.5 and its proof. The evaluation mapL⊗L

OX
K → K ′

is an isomorphism for the same reason. �

Lemma 2.6. Let S be a scheme. Let X be a locally Noetherian quasi-separated alge-
braic space over S. Let ω•

X be a dualizing complex on X . Then X the function |X| → Z
defined by

x 7−→ δ(x) such that ω•
X,x[−δ(x)] is a normalized dualizing complex overOX,x

is a dimension function on |X|.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. Let ω•
U be

the dualizing complex on U associated to ω•
X |U . If u ∈ U maps to x ∈ |X|, then OX,x is

the strict henselization ofOU,u. By Dualizing Complexes, Lemma 22.1 we see that if ω• is
a normalized dualizing complex forOU,u, then ω• ⊗OU,u

OX,x is a normalized dualizing
complex for OX,x. Hence we see that the dimension function U → Z of Duality for
Schemes, Lemma 2.7 for the scheme U and the complex ω•

U is equal to the composition
of U → |X| with δ. Using the specializations in |X| lift to specializations in U and
that nontrivial specializations inU map to nontrivial specializations inX (Decent Spaces,
Lemmas 12.2 and 12.1) an easy topological argument shows that δ is a dimension function
on |X|. �
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3. Right adjoint of pushforward

This is the analogue of Duality for Schemes, Section 3.

Lemma 3.1. Let S be a scheme. Let f : X → Y be a morphism between quasi-
separated and quasi-compact algebraic spaces over S. The functor Rf∗ : DQCoh(X) →
DQCoh(Y ) has a right adjoint.

Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived
Categories, Proposition 38.2. First off, the category DQCoh(OX) has direct sums, see De-
rived Categories of Spaces, Lemma 5.3. The categoryDQCoh(OX) is compactly generated
by Derived Categories of Spaces, Theorem 15.4. Since X and Y are quasi-compact and
quasi-separated, so is f , see Morphisms of Spaces, Lemmas 4.10 and 8.9. Hence the func-
tor Rf∗ commutes with direct sums, see Derived Categories of Spaces, Lemma 6.2. This
finishes the proof. �

Lemma 3.2. Notation and assumptions as in Lemma 3.1. Let a : DQCoh(OY ) →
DQCoh(OX) be the right adjoint to Rf∗. Then a maps D+

QCoh(OY ) into D+
QCoh(OX).

In fact, there exists an integer N such that Hi(K) = 0 for i ≤ c implies Hi(a(K)) = 0
for i ≤ c−N .

Proof. By Derived Categories of Spaces, Lemma 6.1 the functorRf∗ has finite coho-
mological dimension. In other words, there exist an integer N such that Hi(Rf∗L) = 0
for i ≥ N + c if Hi(L) = 0 for i ≥ c. Say K ∈ D+

QCoh(OY ) has Hi(K) = 0 for i ≤ c.
Then

HomD(OX)(τ≤c−Na(K), a(K)) = HomD(OY )(Rf∗τ≤c−Na(K),K) = 0

by what we said above. Clearly, this implies that Hi(a(K)) = 0 for i ≤ c−N . �

Let S be a scheme. Let f : X → Y be a morphism of quasi-separated and quasi-compact al-
gebraic spaces overS. Leta denote the right adjoint toRf∗ : DQCoh(OX)→ DQCoh(OY ).
For every K ∈ DQCoh(OY ) and L ∈ DQCoh(OX) we obtain a canonical map
(3.2.1) Rf∗RHomOX

(L, a(K)) −→ RHomOY
(Rf∗L,K)

Namely, this map is constructed as the composition
Rf∗RHomOX

(L, a(K))→ RHomOY
(Rf∗L,Rf∗a(K))→ RHomOY

(Rf∗L,K)
where the first arrow is Cohomology on Sites, Remark 35.10 and the second arrow is the
counit Rf∗a(K)→ K of the adjunction.

Lemma 3.3. Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and
quasi-separated algebraic spaces overS. Let a be the right adjoint toRf∗ : DQCoh(OX)→
DQCoh(OY ). Let L ∈ DQCoh(OX) and K ∈ DQCoh(OY ). Then the map (3.2.1)

Rf∗RHomOX
(L, a(K)) −→ RHomOY

(Rf∗L,K)
becomes an isomorphism after applying the functor DQY : D(OY ) → DQCoh(OY )
discussed in Derived Categories of Spaces, Section 19.

Proof. The statement makes sense as DQY exists by Derived Categories of Spaces,
Lemma 19.1. Since DQY is the right adjoint to the inclusion functor DQCoh(OY ) →
D(OY ) to prove the lemma we have to show that for any M ∈ DQCoh(OY ) the map
(3.2.1) induces an bijection

HomY (M,Rf∗RHomOX
(L, a(K))) −→ HomY (M,RHomOY

(Rf∗L,K))
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To see this we use the following string of equalities

HomY (M,Rf∗RHomOX
(L, a(K))) = HomX(Lf∗M,RHomOX

(L, a(K)))
= HomX(Lf∗M ⊗L

OX
L, a(K))

= HomY (Rf∗(Lf∗M ⊗L
OX

L),K)
= HomY (M ⊗L

OY
Rf∗L,K)

= HomY (M,RHomOY
(Rf∗L,K))

The first equality holds by Cohomology on Sites, Lemma 19.1. The second equality by
Cohomology on Sites, Lemma 35.2. The third equality by construction of a. The fourth
equality by Derived Categories of Spaces, Lemma 20.1 (this is the important step). The
fifth by Cohomology on Sites, Lemma 35.2. �

Example 3.4. The statement of Lemma 3.3 is not true without applying the “coher-
ator” DQY . See Duality for Schemes, Example 3.7.

Remark 3.5. In the situation of Lemma 3.3 we have

DQY (Rf∗RHomOX
(L, a(K))) = Rf∗DQX(RHomOX

(L, a(K)))
by Derived Categories of Spaces, Lemma 19.2. Thus ifRHomOX

(L, a(K)) ∈ DQCoh(OX),
then we can “erase” the DQY on the left hand side of the arrow. On the other hand,
if we know that RHomOY

(Rf∗L,K) ∈ DQCoh(OY ), then we can “erase” the DQY
from the right hand side of the arrow. If both are true then we see that (3.2.1) is an iso-
morphism. Combining this with Derived Categories of Spaces, Lemma 13.10 we see that
Rf∗RHomOX

(L, a(K))→ RHomOY
(Rf∗L,K) is an isomorphism if

(1) L and Rf∗L are perfect, or
(2) K is bounded below and L and Rf∗L are pseudo-coherent.

For (2) we use that a(K) is bounded below if K is bounded below, see Lemma 3.2.

Example 3.6. Let S be a scheme. Let f : X → Y be a proper morphism of Noe-
therian algebraic spaces over S , L ∈ D−

Coh(X) and K ∈ D+
QCoh(OY ). Then the map

Rf∗RHomOX
(L, a(K))→ RHomOY

(Rf∗L,K) is an isomorphism. Namely, the com-
plexes L and Rf∗L are pseudo-coherent by Derived Categories of Spaces, Lemmas 13.7
and 8.1 and the discussion in Remark 3.5 applies.

Lemma 3.7. Let S be a scheme. Let f : X → Y be a morphism of quasi-separated and
quasi-compact algebraic spaces over S. For all L ∈ DQCoh(OX) and K ∈ DQCoh(OY )
(3.2.1) induces an isomorphism RHomX(L, a(K)) → RHomY (Rf∗L,K) of global de-
rived homs.

Proof. By construction (Cohomology on Sites, Section 36) the complexes

RHomX(L, a(K)) = RΓ(X,RHomOX
(L, a(K))) = RΓ(Y,Rf∗RHomOX

(L, a(K)))
and

RHomY (Rf∗L,K) = RΓ(Y,RHomOX
(Rf∗L, a(K)))

Thus the lemma is a consequence of Lemma 3.3. Namely, a map E → E′ in D(OY )
which induces an isomorphism DQY (E) → DQY (E′) induces a quasi-isomorphism
RΓ(Y,E)→ RΓ(Y,E′). Indeed we haveHi(Y,E) = ExtiY (OY , E) = Hom(OY [−i], E) =
Hom(OY [−i], DQY (E)) becauseOY [−i] is inDQCoh(OY ) andDQY is the right adjoint
to the inclusion functor DQCoh(OY )→ D(OY ). �
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4. Right adjoint of pushforward and base change, I

Let us define the base change map between right adjoints of pushforward. Let S be a
scheme. Consider a cartesian diagram

(4.0.1)

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

where Y ′ and X are Tor independent over Y . Denote

a : DQCoh(OY )→ DQCoh(OX) and a′ : DQCoh(OY ′)→ DQCoh(OX′)

the right adjoints to Rf∗ and Rf ′
∗ (Lemma 3.1). The base change map of Cohomology on

Sites, Remark 19.3 gives a transformation of functors

Lg∗ ◦Rf∗ −→ Rf ′
∗ ◦ L(g′)∗

on derived categories of sheaves with quasi-coherent cohomology. Hence a transformation
between the right adjoints in the opposite direction

a ◦Rg∗ ←− Rg′
∗ ◦ a′

Lemma 4.1. In diagram (4.0.1) the map a ◦Rg∗ ← Rg′
∗ ◦ a′ is an isomorphism.

Proof. The base change map Lg∗ ◦Rf∗K → Rf ′
∗ ◦L(g′)∗K is an isomorphism for

every K in DQCoh(OX) by Derived Categories of Spaces, Lemma 20.4 (this uses the as-
sumption of Tor independence). Thus the corresponding transformation between adjoint
functors is an isomorphism as well. �

Then we can consider the morphism of functors DQCoh(OY ) → DQCoh(OX′) given by
the composition

(4.1.1) L(g′)∗ ◦ a→ L(g′)∗ ◦ a ◦Rg∗ ◦ Lg∗ ← L(g′)∗ ◦Rg′
∗ ◦ a′ ◦ Lg∗ → a′ ◦ Lg∗

The first arrow comes from the adjunction map id → Rg∗Lg
∗ and the last arrow from

the adjunction map L(g′)∗Rg′
∗ → id. We need the assumption on Tor independence to

invert the arrow in the middle, see Lemma 4.1. Alternatively, we can think of (4.1.1) by
adjointness of L(g′)∗ and R(g′)∗ as a natural transformation

a→ a ◦Rg∗ ◦ Lg∗ ← Rg′
∗ ◦ a′ ◦ Lg∗

were again the second arrow is invertible. If M ∈ DQCoh(OX) and K ∈ DQCoh(OY )
then on Yoneda functors this map is given by

HomX(M,a(K)) = HomY (Rf∗M,K)
→ HomY (Rf∗M,Rg∗Lg

∗K)
= HomY ′(Lg∗Rf∗M,Lg∗K)
← HomY ′(Rf ′

∗L(g′)∗M,Lg∗K)
= HomX′(L(g′)∗M,a′(Lg∗K))
= HomX(M,Rg′

∗a
′(Lg∗K))

(were the arrow pointing left is invertible by the base change theorem given in Derived
Categories of Spaces, Lemma 20.4) which makes things a little bit more explicit.
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In this section we first prove that the base change map satisfies some natural compatibilities
with regards to stacking squares as in Cohomology on Sites, Remarks 19.4 and 19.5 for the
usual base change map. We suggest the reader skip the rest of this section on a first reading.

Lemma 4.2. Let S be a scheme. Consider a commutative diagram

X ′
k
//

f ′

��

X

f

��
Y ′ l //

g′

��

Y

g

��
Z ′ m // Z

of quasi-compact and quasi-separated algebraic spaces over S where both diagrams are
cartesian and where f and l as well as g andm are Tor independent. Then the maps (4.1.1)
for the two squares compose to give the base change map for the outer rectangle (see proof
for a precise statement).

Proof. It follows from the assumptions that g◦f andm are Tor independent (details
omitted), hence the statement makes sense. In this proof we write k∗ in place of Lk∗ and
f∗ instead of Rf∗. Let a, b, and c be the right adjoints of Lemma 3.1 for f , g, and g ◦ f
and similarly for the primed versions. The arrow corresponding to the top square is the
composition

γtop : k∗ ◦ a→ k∗ ◦ a ◦ l∗ ◦ l∗
ξtop←−− k∗ ◦ k∗ ◦ a′ ◦ l∗ → a′ ◦ l∗

where ξtop : k∗ ◦ a′ → a ◦ l∗ is an isomorphism (hence can be inverted) and is the arrow
“dual” to the base change map l∗◦f∗ → f ′

∗◦k∗. The outer arrows come from the canonical
maps 1→ l∗ ◦ l∗ and k∗ ◦ k∗ → 1. Similarly for the second square we have

γbot : l∗ ◦ b→ l∗ ◦ b ◦m∗ ◦m∗ ξbot←−− l∗ ◦ l∗ ◦ b′ ◦m∗ → b′ ◦m∗

For the outer rectangle we get

γrect : k∗ ◦ c→ k∗ ◦ c ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ c′ ◦m∗ → c′ ◦m∗

We have (g ◦ f)∗ = g∗ ◦ f∗ and hence c = a ◦ b and similarly c′ = a′ ◦ b′. The statement
of the lemma is that γrect is equal to the composition

k∗ ◦ c = k∗ ◦ a ◦ b γtop−−→ a′ ◦ l∗ ◦ b γbot−−→ a′ ◦ b′ ◦m∗ = c′ ◦m∗
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To see this we contemplate the following diagram:

k∗ ◦ a ◦ b

��

tt

k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b

tt
k∗ ◦ a ◦ b ◦m∗ ◦m∗ // k∗ ◦ a ◦ l∗ ◦ l∗ ◦ b ◦m∗ ◦m∗ k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b

ξtop

OO

��tt
k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

ξtop

OO

**

a′ ◦ l∗ ◦ b

��
k∗ ◦ k∗ ◦ a′ ◦ b′ ◦m∗

ξrect

OO

**

k∗ ◦ k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

oo

**

a′ ◦ l∗ ◦ b ◦m∗ ◦m∗

a′ ◦ l∗ ◦ l∗ ◦ b′ ◦m∗

ξbot

OO

��
a′ ◦ b′ ◦m∗

Going down the right hand side we have the composition and going down the left hand
side we have γrect. All the quadrilaterals on the right hand side of this diagram commute
by Categories, Lemma 28.2 or more simply the discussion preceding Categories, Definition
28.1. Hence we see that it suffices to show the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦m∗oo

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop

OO

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

ξbot

OO

// k∗ ◦ a′ ◦ b′

ξrect

OO

becomes commutative if we invert the arrows ξtop, ξbot, and ξrect (note that this is different
from asking the diagram to be commutative). However, the diagram

a ◦ l∗ ◦ l∗ ◦ b ◦m∗

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

ξbot

55

k∗ ◦ a′ ◦ l∗ ◦ b ◦m∗

ξtop
ii

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′
ξtop

ii

ξbot

55
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commutes by Categories, Lemma 28.2. Since the diagrams

a ◦ l∗ ◦ l∗ ◦ b ◦m∗ a ◦ b ◦moo

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′

OO

a ◦ l∗ ◦ b′oo

OO

and

a ◦ l∗ ◦ l∗ ◦ l∗ ◦ b′ // a ◦ l∗ ◦ b′

k∗ ◦ a′ ◦ l∗ ◦ l∗ ◦ b′

OO

// k∗ ◦ a′ ◦ b′

OO

commute (see references cited) and since the composition of l∗ → l∗ ◦ l∗ ◦ l∗ → l∗ is the
identity, we find that it suffices to prove that

k ◦ a′ ◦ b′ ξbot−−→ a ◦ l∗ ◦ b
ξtop−−→ a ◦ b ◦m∗

is equal to ξrect (via the identifications a ◦ b = c and a′ ◦ b′ = c′). This is the statement
dual to Cohomology on Sites, Remark 19.4 and the proof is complete. �

Lemma 4.3. Let S be a scheme. Consider a commutative diagram

X ′′
g′
//

f ′′

��

X ′
g
//

f ′

��

X

f

��
Y ′′ h′

// Y ′ h // Y

of quasi-compact and quasi-separated algebraic spaces over S where both diagrams are
cartesian and where f and h as well as f ′ and h′ are Tor independent. Then the maps
(4.1.1) for the two squares compose to give the base change map for the outer rectangle
(see proof for a precise statement).

Proof. It follows from the assumptions that f and h◦h′ are Tor independent (details
omitted), hence the statement makes sense. In this proof we write g∗ in place of Lg∗ and
f∗ instead of Rf∗. Let a, a′, and a′′ be the right adjoints of Lemma 3.1 for f , f ′, and f ′′.
The arrow corresponding to the right square is the composition

γright : g∗ ◦ a→ g∗ ◦ a ◦ h∗ ◦ h∗ ξright←−−−− g∗ ◦ g∗ ◦ a′ ◦ h∗ → a′ ◦ h∗

where ξright : g∗ ◦ a′ → a ◦ h∗ is an isomorphism (hence can be inverted) and is the
arrow “dual” to the base change map h∗ ◦ f∗ → f ′

∗ ◦ g∗. The outer arrows come from the
canonical maps 1→ h∗ ◦ h∗ and g∗ ◦ g∗ → 1. Similarly for the left square we have

γleft : (g′)∗ ◦ a′ → (g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ξleft←−−− (g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ → a′′ ◦ (h′)∗

For the outer rectangle we get

γrect : k∗ ◦ a→ k∗ ◦ a ◦m∗ ◦m∗ ξrect←−−− k∗ ◦ k∗ ◦ a′′ ◦m∗ → a′′ ◦m∗

where k = g ◦ g′ and m = h ◦ h′. We have k∗ = (g′)∗ ◦ g∗ and m∗ = (h′)∗ ◦ h∗. The
statement of the lemma is that γrect is equal to the composition

k∗ ◦ a = (g′)∗ ◦ g∗ ◦ a γright−−−−→ (g′)∗ ◦ a′ ◦ h∗ γleft−−−→ a′′ ◦ (h′)∗ ◦ h∗ = a′′ ◦m∗
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To see this we contemplate the following diagram

(g′)∗ ◦ g∗ ◦ a

��

ww

(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ h∗

ss
(g′)∗ ◦ g∗ ◦ a ◦ h∗ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗ (g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ h∗

ξright

OO

��ss
(g′)∗ ◦ g∗ ◦ g∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

ξright

OO

++

(g′)∗ ◦ a′ ◦ h∗

��
(g′)∗ ◦ g∗ ◦ g∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

''

++

(g′)∗ ◦ a′ ◦ (h′)∗ ◦ (h′)∗ ◦ h∗

(g′)∗ ◦ (g′)∗ ◦ a′′ ◦ (h′)∗ ◦ h∗

ξleft

OO

��
a′′ ◦ (h′)∗ ◦ h∗

Going down the right hand side we have the composition and going down the left hand
side we have γrect. All the quadrilaterals on the right hand side of this diagram commute
by Categories, Lemma 28.2 or more simply the discussion preceding Categories, Definition
28.1. Hence we see that it suffices to show that

g∗ ◦ (g′)∗ ◦ a′′ ξleft−−−→ g∗ ◦ a′ ◦ (h′)∗
ξright−−−−→ a ◦ h∗ ◦ (h′)∗

is equal to ξrect. This is the statement dual to Cohomology, Remark 28.5 and the proof is
complete. �

Remark 4.4. Let S be a scheme. Consider a commutative diagram

X ′′
k′
//

f ′′

��

X ′
k
//

f ′

��

X

f

��
Y ′′ l′ //

g′′

��

Y ′ l //

g′

��

Y

g

��
Z ′′ m′

// Z ′ m // Z

of quasi-compact and quasi-separated algebraic spaces over S where all squares are carte-
sian and where (f, l), (g,m), (f ′, l′), (g′,m′) are Tor independent pairs of maps. Let a,
a′, a′′, b, b′, b′′ be the right adjoints of Lemma 3.1 for f , f ′, f ′′, g, g′, g′′. Let us label the
squares of the diagram A, B, C , D as follows

A B
C D
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Then the maps (4.1.1) for the squares are (where we use k∗ = Lk∗, etc)

γA : (k′)∗ ◦ a′ → a′′ ◦ (l′)∗ γB : k∗ ◦ a→ a′ ◦ l∗
γC : (l′)∗ ◦ b′ → b′′ ◦ (m′)∗ γD : l∗ ◦ b→ b′ ◦m∗

For the 2× 1 and 1× 2 rectangles we have four further base change maps

γA+B : (k ◦ k′)∗ ◦ a→ a′′ ◦ (l ◦ l′)∗

γC+D : (l ◦ l′)∗ ◦ b→ b′′ ◦ (m ◦m′)∗

γA+C : (k′)∗ ◦ (a′ ◦ b′)→ (a′′ ◦ b′′) ◦ (m′)∗

γA+C : k∗ ◦ (a ◦ b)→ (a′ ◦ b′) ◦m∗

By Lemma 4.3 we have
γA+B = γA ◦ γB , γC+D = γC ◦ γD

and by Lemma 4.2 we have
γA+C = γC ◦ γA, γB+D = γD ◦ γB

Here it would be more correct to write γA+B = (γA?idl∗)◦(id(k′)∗ ?γB) with notation as
in Categories, Section 28 and similarly for the others. However, we continue the abuse of
notation used in the proofs of Lemmas 4.2 and 4.3 of dropping ? products with identities as
one can figure out which ones to add as long as the source and target of the transformation
is known. Having said all of this we find (a priori) two transformations

(k′)∗ ◦ k∗ ◦ a ◦ b −→ a′′ ◦ b′′ ◦ (m′)∗ ◦m∗

namely
γC ◦ γA ◦ γD ◦ γB = γA+C ◦ γB+D

and
γC ◦ γD ◦ γA ◦ γB = γC+D ◦ γA+B

The point of this remark is to point out that these transformations are equal. Namely, to
see this it suffices to show that

(k′)∗ ◦ a′ ◦ l∗ ◦ b
γD
//

γA

��

(k′)∗ ◦ a′ ◦ b′ ◦m∗

γA

��
a′′ ◦ (l′)∗ ◦ l∗ ◦ b

γD // a′′ ◦ (l′)∗ ◦ b′ ◦m∗

commutes. This is true by Categories, Lemma 28.2 or more simply the discussion preceding
Categories, Definition 28.1.

5. Right adjoint of pushforward and base change, II

In this section we prove that the base change map of Section 4 is an isomorphism in some
cases.

Lemma 5.1. In diagram (4.0.1) assume in addition g : Y ′ → Y is a morphism of
affine schemes and f : X → Y is proper. Then the base change map (4.1.1) induces an
isomorphism

L(g′)∗a(K) −→ a′(Lg∗K)
in the following cases

(1) for all K ∈ DQCoh(OX) if f is flat of finite presentation,
(2) for all K ∈ DQCoh(OX) if f is perfect and Y Noetherian,
(3) for K ∈ D+

QCoh(OX) if g has finite Tor dimension and Y Noetherian.
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Proof. Write Y = Spec(A) and Y ′ = Spec(A′). As a base change of an affine mor-
phism, the morphism g′ is affine. Let M be a perfect generator for DQCoh(OX), see De-
rived Categories of Spaces, Theorem 15.4. ThenL(g′)∗M is a generator forDQCoh(OX′),
see Derived Categories of Spaces, Remark 15.5. Hence it suffices to show that (4.1.1) in-
duces an isomorphism

(5.1.1) RHomX′(L(g′)∗M,L(g′)∗a(K)) −→ RHomX′(L(g′)∗M,a′(Lg∗K))

of global hom complexes, see Cohomology on Sites, Section 36, as this will imply the cone
of L(g′)∗a(K)→ a′(Lg∗K) is zero. The structure of the proof is as follows: we will first
show that these Hom complexes are isomorphic and in the last part of the proof we will
show that the isomorphism is induced by (5.1.1).

The left hand side. Because M is perfect, the canonical map

RHomX(M,a(K))⊗L
A A

′ −→ RHomX′(L(g′)∗M,L(g′)∗a(K))

is an isomorphism by Derived Categories of Spaces, Lemma 20.5. We can combine this
with the isomorphism RHomY (Rf∗M,K) = RHomX(M,a(K)) of Lemma 3.7 to get
that the left hand side equals RHomY (Rf∗M,K)⊗L

A A
′.

The right hand side. Here we first use the isomorphism

RHomX′(L(g′)∗M,a′(Lg∗K)) = RHomY ′(Rf ′
∗L(g′)∗M,Lg∗K)

of Lemma 3.7. Since f and g are Tor independent the base change map Lg∗Rf∗M →
Rf ′

∗L(g′)∗M is an isomorphism by Derived Categories of Spaces, Lemma 20.4. Hence we
may rewrite this as RHomY ′(Lg∗Rf∗M,Lg∗K). Since Y , Y ′ are affine and K , Rf∗M
are in DQCoh(OY ) (Derived Categories of Spaces, Lemma 6.1) we have a canonical map

β : RHomY (Rf∗M,K)⊗L
A A

′ −→ RHomY ′(Lg∗Rf∗M,Lg∗K)

in D(A′). This is the arrow More on Algebra, Equation (99.1.1) where we have used De-
rived Categories of Schemes, Lemmas 3.5 and 10.8 to translate back and forth into algebra.

(1) If f is flat and of finite presentation, the complex Rf∗M is perfect on Y by
Derived Categories of Spaces, Lemma 25.4 and β is an isomorphism by More on
Algebra, Lemma 99.2 part (1).

(2) If f is perfect and Y Noetherian, the complex Rf∗M is perfect on Y by More
on Morphisms of Spaces, Lemma 47.5 and β is an isomorphism as before.

(3) If g has finite tor dimension and Y is Noetherian, the complexRf∗M is pseudo-
coherent on Y (Derived Categories of Spaces, Lemmas 8.1 and 13.7) and β is an
isomorphism by More on Algebra, Lemma 99.2 part (4).

We conclude that we obtain the same answer as in the previous paragraph.

In the rest of the proof we show that the identifications of the left and right hand side
of (5.1.1) given in the second and third paragraph are in fact given by (5.1.1). To make
our formulas manageable we will use (−,−)X = RHomX(−,−), use − ⊗ A′ in stead
of − ⊗L

A A
′, and we will abbreviate g∗ = Lg∗ and f∗ = Rf∗. Consider the following
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commutative diagram

((g′)∗M, (g′)∗a(K))X′

��

(M,a(K))X ⊗A′
α

oo

��

(f∗M,K)Y ⊗A′

��
((g′)∗M, (g′)∗a(g∗g

∗K))X′ (M,a(g∗g
∗K))X ⊗A′

α
oo (f∗M, g∗g

∗K)Y ⊗A′

µ′

''

((g′)∗M, (g′)∗g′
∗a

′(g∗K))X′

OO

��

(M, g′
∗a

′(g∗K))X ⊗A′

OO

α
oo

µ
tt

(f∗M,K)⊗A′

β

��
((g′)∗M,a′(g∗K))X′ (f ′

∗(g′)∗M, g∗K)Y ′ // (g∗f∗M, g∗K)Y ′

The arrows labeled α are the maps from Derived Categories of Spaces, Lemma 20.5 for
the diagram with corners X ′, X, Y ′, Y . The upper part of the diagram is commutative as
the horizontal arrows are functorial in the entries. The middle vertical arrows come from
the invertible transformation g′

∗ ◦ a′ → a ◦ g∗ of Lemma 4.1 and therefore the middle
square is commutative. Going down the left hand side is (5.1.1). The upper horizontal
arrows provide the identifications used in the second paragraph of the proof. The lower
horizontal arrows including β provide the identifications used in the third paragraph of
the proof. Given E ∈ D(A), E′ ∈ D(A′), and c : E → E′ in D(A) we will denote
µc : E⊗A′ → E′ the map induced by c and the adjointness of restriction and base change;
if c is clear we write µ = µc, i.e., we drop c from the notation. The map µ in the diagram is
of this form with c given by the identification (M, g′

∗a(g∗K))X = ((g′)∗M,a′(g∗K))X′

; the triangle involving µ is commutative by Derived Categories of Spaces, Remark 20.6.

Observe that

(M,a(g∗g
∗K))X (f∗M, g∗g

∗K)Y (g∗f∗M, g∗K)Y ′

(M, g′
∗a

′(g∗K))X

OO

((g′)∗M,a′(g∗K))X′ (f ′
∗(g′)∗M, g∗K)Y ′

OO

is commutative by the very definition of the transformation g′
∗◦a′ → a◦g∗. Letting µ′ be

as above corresponding to the identification (f∗M, g∗g
∗K)X = (g∗f∗M, g∗K)Y ′ , then

the hexagon commutes as well. Thus it suffices to show that β is equal to the composition
of (f∗M,K)Y ⊗ A′ → (f∗M, g∗g

∗K)X ⊗ A′ and µ′. To do this, it suffices to prove
the two induced maps (f∗M,K)Y → (g∗f∗M, g∗K)Y ′ are the same. In other words, it
suffices to show the diagram

RHomA(E,K)
induced by β

//

))

RHomA′(E ⊗L
A A

′,K ⊗L
A A

′)

RHomA(E,K ⊗L
A A

′)

44

commutes for all E,K ∈ D(A). Since this is how β is constructed in More on Algebra,
Section 99 the proof is complete. �
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6. Right adjoint of pushforward and trace maps

Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and quasi-separated
algebraic spaces over S. Let a : DQCoh(OY ) → DQCoh(OX) be the right adjoint as in
Lemma 3.1. By Categories, Section 24 we obtain a transformation of functors

Trf : Rf∗ ◦ a −→ id
The corresponding map Trf,K : Rf∗a(K) −→ K for K ∈ DQCoh(OY ) is sometimes
called the trace map. This is the map which has the property that the bijection

HomX(L, a(K)) −→ HomY (Rf∗L,K)
for L ∈ DQCoh(OX) which characterizes the right adjoint is given by

ϕ 7−→ Trf,K ◦Rf∗ϕ

The canonical map (3.2.1)
Rf∗RHomOX

(L, a(K)) −→ RHomOY
(Rf∗L,K)

comes about by composition with Trf,K . Every trace map we are going to consider in this
section will be a special case of this trace map. Before we discuss some special cases we
show that formation of the trace map commutes with base change.

Lemma 6.1 (Trace map and base change). Suppose we have a diagram (4.0.1). Then
the maps 1 ? Trf : Lg∗ ◦ Rf∗ ◦ a → Lg∗ and Trf ′ ? 1 : Rf ′

∗ ◦ a′ ◦ Lg∗ → Lg∗ agree
via the base change maps β : Lg∗ ◦Rf∗ → Rf ′

∗ ◦ L(g′)∗ (Cohomology on Sites, Remark
19.3) and α : L(g′)∗ ◦ a→ a′ ◦ Lg∗ (4.1.1). More precisely, the diagram

Lg∗ ◦Rf∗ ◦ a

β?1
��

1?Trf
// Lg∗

Rf ′
∗ ◦ L(g′)∗ ◦ a 1?α // Rf ′

∗ ◦ a′ ◦ Lg∗

Trf′?1

OO

of transformations of functors commutes.

Proof. In this proof we write f∗ for Rf∗ and g∗ for Lg∗ and we drop ? products
with identities as one can figure out which ones to add as long as the source and target of
the transformation is known. Recall that β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an isomorphism and
that α is defined using the isomorphism β∨ : g′

∗ ◦ a′ → a ◦ g∗ which is the adjoint of β,
see Lemma 4.1 and its proof. First we note that the top horizontal arrow of the diagram
in the lemma is equal to the composition

g∗ ◦ f∗ ◦ a→ g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗ → g∗ ◦ g∗ ◦ g∗ → g∗

where the first arrow is the unit for (g∗, g∗), the second arrow is Trf , and the third arrow
is the counit for (g∗, g∗). This is a simple consequence of the fact that the composition
g∗ → g∗ ◦ g∗ ◦ g∗ → g∗ of unit and counit is the identity. Consider the diagram

g∗ ◦ f∗ ◦ a
β

uu ��

Trf
// g∗

f ′
∗ ◦ (g′)∗ ◦ a

))

g∗ ◦ f∗ ◦ a ◦ g∗ ◦ g∗

β

��

44

g∗ ◦ f∗ ◦ g′
∗ ◦ a′ ◦ g∗β∨

oo

β

��

f ′
∗ ◦ a′ ◦ g∗

Trf′

ii

f ′
∗ ◦ (g′)∗ ◦ a ◦ g∗ ◦ g∗ f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′ ◦ g∗

55

β∨
oo
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In this diagram the two squares commute Categories, Lemma 28.2 or more simply the
discussion preceding Categories, Definition 28.1. The triangle commutes by the discussion
above. By Categories, Lemma 24.8 the square

g∗ ◦ f∗ ◦ g′
∗ ◦ a′

β∨

��

β
// f ′

∗ ◦ (g′)∗ ◦ g′
∗ ◦ a′

��
g∗ ◦ f∗ ◦ a ◦ g∗ // id

commutes which implies the pentagon in the big diagram commutes. Since β and β∨ are
isomorphisms, and since going on the outside of the big diagram equals Trf ◦ α ◦ β by
definition this proves the lemma. �

Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and quasi-separated
algebraic spaces over S. Let a : DQCoh(OY )→ DQCoh(OX) be the right adjoint of Rf∗
as in Lemma 3.1. By Categories, Section 24 we obtain a transformation of functors

ηf : id→ a ◦Rf∗

which is called the unit of the adjunction.

Lemma 6.2. Suppose we have a diagram (4.0.1). Then the maps 1 ? ηf : L(g′)∗ →
L(g′)∗ ◦ a ◦Rf∗ and ηf ′ ? 1 : L(g′)∗ → a′ ◦Rf ′

∗ ◦L(g′)∗ agree via the base change maps
β : Lg∗ ◦Rf∗ → Rf ′

∗ ◦L(g′)∗ (Cohomology on Sites, Remark 19.3) and α : L(g′)∗ ◦a→
a′ ◦ Lg∗ (4.1.1). More precisely, the diagram

L(g′)∗
1?ηf

//

ηf′?1
��

L(g′)∗ ◦ a ◦Rf∗

α

��
a′ ◦Rf ′

∗ ◦ L(g′)∗ a′ ◦ Lg∗ ◦Rf∗
βoo

of transformations of functors commutes.

Proof. This proof is dual to the proof of Lemma 6.1. In this proof we write f∗ for
Rf∗ and g∗ for Lg∗ and we drop ? products with identities as one can figure out which
ones to add as long as the source and target of the transformation is known. Recall that
β : g∗ ◦ f∗ → f ′

∗ ◦ (g′)∗ is an isomorphism and that α is defined using the isomorphism
β∨ : g′

∗ ◦ a′ → a ◦ g∗ which is the adjoint of β, see Lemma 4.1 and its proof. First we note
that the left vertical arrow of the diagram in the lemma is equal to the composition

(g′)∗ → (g′)∗ ◦ g′
∗ ◦ (g′)∗ → (g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗ → a′ ◦ f ′

∗ ◦ (g′)∗

where the first arrow is the unit for ((g′)∗, g′
∗), the second arrow is ηf ′ , and the third arrow

is the counit for ((g′)∗, g′
∗). This is a simple consequence of the fact that the composition

(g′)∗ → (g′)∗ ◦ (g′)∗ ◦ (g′)∗ → (g′)∗ of unit and counit is the identity. Consider the
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diagram

(g′)∗ ◦ a ◦ f∗ // (g′)∗ ◦ a ◦ g∗ ◦ g∗ ◦ f∗
β

tt
(g′)∗

ηf
55

ηf′

��

))

(g′)∗ ◦ a ◦ g∗ ◦ f ′
∗ ◦ (g′)∗ (g′)∗ ◦ g′

∗ ◦ a′ ◦ g∗ ◦ f∗

β∨

OO

β

tt ��
(g′)∗ ◦ g′

∗ ◦ a′ ◦ f ′
∗ ◦ (g′)∗

uu

β∨

OO

a′ ◦ g∗ ◦ f∗

β
rr

a′ ◦ f ′
∗ ◦ (g′)∗

In this diagram the two squares commute Categories, Lemma 28.2 or more simply the
discussion preceding Categories, Definition 28.1. The triangle commutes by the discussion
above. By the dual of Categories, Lemma 24.8 the square

id //

��

g′
∗ ◦ a′ ◦ g∗ ◦ f∗

β

��
g′

∗ ◦ a′ ◦ g∗ ◦ f∗
β∨
// a ◦ g∗ ◦ f ′

∗ ◦ (g′)∗

commutes which implies the pentagon in the big diagram commutes. Since β and β∨ are
isomorphisms, and since going on the outside of the big diagram equals β ◦ α ◦ ηf by
definition this proves the lemma. �

7. Right adjoint of pushforward and pullback

Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and quasi-separated
algebraic spaces over S. Let a be the right adjoint of pushforward as in Lemma 3.1. For
K,L ∈ DQCoh(OY ) there is a canonical map

Lf∗K ⊗L
OX

a(L) −→ a(K ⊗L
OY

L)

Namely, this map is adjoint to a map

Rf∗(Lf∗K ⊗L
OX

a(L)) = K ⊗L
OY

Rf∗(a(L)) −→ K ⊗L
OY

L

(equality by Derived Categories of Spaces, Lemma 20.1) for which we use the trace map
Rf∗a(L)→ L. When L = OY we obtain a map

(7.0.1) Lf∗K ⊗L
OX

a(OY ) −→ a(K)

functorial in K and compatible with distinguished triangles.

Lemma 7.1. Let S be a scheme. Let f : X → Y be a morphism of quasi-compact
and quasi-separated algebraic spaces over S. The map Lf∗K ⊗L

OX
a(L)→ a(K ⊗L

OY
L)

defined above for K,L ∈ DQCoh(OY ) is an isomorphism if K is perfect. In particular,
(7.0.1) is an isomorphism if K is perfect.
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Proof. Let K∨ be the “dual” to K , see Cohomology on Sites, Lemma 48.4. For M ∈
DQCoh(OX) we have

HomD(OY )(Rf∗M,K ⊗L
OY

L) = HomD(OY )(Rf∗M ⊗L
OY

K∨, L)
= HomD(OX)(M ⊗L

OX
Lf∗K∨, a(L))

= HomD(OX)(M,Lf∗K ⊗L
OX

a(L))

Second equality by the definition of a and the projection formula (Cohomology on Sites,
Lemma 50.1) or the more general Derived Categories of Spaces, Lemma 20.1. Hence the
result by the Yoneda lemma. �

Lemma 7.2. Suppose we have a diagram (4.0.1). LetK ∈ DQCoh(OY ). The diagram

L(g′)∗(Lf∗K ⊗L
OX

a(OY )) //

��

L(g′)∗a(K)

��
L(f ′)∗Lg∗K ⊗L

OX′ a
′(OY ′) // a′(Lg∗K)

commutes where the horizontal arrows are the maps (7.0.1) for K and Lg∗K and the
vertical maps are constructed using Cohomology on Sites, Remark 19.3 and (4.1.1).

Proof. In this proof we will write f∗ for Rf∗ and f∗ for Lf∗, etc, and we will write
⊗ for ⊗L

OX
, etc. Let us write (7.0.1) as the composition

f∗K ⊗ a(OY )→ a(f∗(f∗K ⊗ a(OY )))
← a(K ⊗ f∗a(OK))
→ a(K ⊗OY )
→ a(K)

Here the first arrow is the unit ηf , the second arrow is a applied to Cohomology on Sites,
Equation (50.0.1) which is an isomorphism by Derived Categories of Spaces, Lemma 20.1,
the third arrow is a applied to idK ⊗Trf , and the fourth arrow is a applied to the isomor-
phismK⊗OY = K. The proof of the lemma consists in showing that each of these maps
gives rise to a commutative square as in the statement of the lemma. For ηf and Trf this
is Lemmas 6.2 and 6.1. For the arrow using Cohomology on Sites, Equation (50.0.1) this is
Cohomology on Sites, Remark 50.2. For the multiplication map it is clear. This finishes
the proof. �

8. Right adjoint of pushforward for proper flat morphisms

For proper, flat, and finitely presented morphisms of quasi-compact and quasi-separated
algebraic spaces the right adjoint of pushforward enjoys some remarkable properties.

Lemma 8.1. LetS be a scheme. LetY be a quasi-compact and quasi-separated algebraic
space over S. Let f : X → Y be a morphism of algebraic spaces which is proper, flat, and
of finite presentation. Let a be the right adjoint for Rf∗ : DQCoh(OX) → DQCoh(OY )
of Lemma 3.1. Then a commutes with direct sums.

Proof. LetP be a perfect object ofD(OX). By Derived Categories of Spaces, Lemma
25.4 the complex Rf∗P is perfect on Y . Let Ki be a family of objects of DQCoh(OY ).



6142 86. DUALITY FOR SPACES

Then
HomD(OX)(P, a(

⊕
Ki)) = HomD(OY )(Rf∗P,

⊕
Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX)(P, a(Ki))

because a perfect object is compact (Derived Categories of Spaces, Proposition 16.1). Since
DQCoh(OX) has a perfect generator (Derived Categories of Spaces, Theorem 15.4) we
conclude that the map

⊕
a(Ki) → a(

⊕
Ki) is an isomorphism, i.e., a commutes with

direct sums. �

Lemma 8.2. LetS be a scheme. LetY be a quasi-compact and quasi-separated algebraic
space overS. Let f : X → Y be a morphism of algebraic spaces which is proper, flat, and of
finite presentation. The map (7.0.1) is an isomorphism for every objectK ofDQCoh(OY ).

Proof. By Lemma 8.1 we know that a commutes with direct sums. Hence the collec-
tion of objects of DQCoh(OY ) for which (7.0.1) is an isomorphism is a strictly full, satu-
rated, triangulated subcategory ofDQCoh(OY ) which is moreover preserved under taking
direct sums. Since DQCoh(OY ) is a module category (Derived Categories of Spaces, The-
orem 17.3) generated by a single perfect object (Derived Categories of Spaces, Theorem
15.4) we can argue as in More on Algebra, Remark 59.11 to see that it suffices to prove
(7.0.1) is an isomorphism for a single perfect object. However, the result holds for perfect
objects, see Lemma 7.1. �

Lemma 8.3. Let Y be an affine scheme. Let f : X → Y be a morphism of algebraic
spaces which is proper, flat, and of finite presentation. Let a be the right adjoint for Rf∗ :
DQCoh(OX)→ DQCoh(OY ) of Lemma 3.1. Then

(1) a(OY ) is a Y -perfect object of D(OX),
(2) Rf∗a(OY ) has vanishing cohomology sheaves in positive degrees,
(3) OX → RHomOX

(a(OY ), a(OY )) is an isomorphism.

Proof. For a perfect object E of D(OX) we have

Rf∗(E ⊗L
OX

ω•
X/Y ) = Rf∗RHomOX

(E∨, ω•
X/Y )

= RHomOY
(Rf∗E

∨,OY )
= (Rf∗E

∨)∨

For the first equality, see Cohomology on Sites, Lemma 48.4. For the second equality, see
Lemma 3.3, Remark 3.5, and Derived Categories of Spaces, Lemma 25.4. The third equality
is the definition of the dual. In particular these references also show that the outcome is a
perfect object ofD(OY ). We conclude that ω•

X/Y is Y -perfect by More on Morphisms of
Spaces, Lemma 52.14. This proves (1).
Let M be an object of DQCoh(OY ). Then

HomY (M,Rf∗a(OY )) = HomX(Lf∗M,a(OY ))
= HomY (Rf∗Lf

∗M,OY )
= HomY (M ⊗L

OY
Rf∗OY ,OY )

The first equality holds by Cohomology on Sites, Lemma 19.1. The second equality by
construction of a. The third equality by Derived Categories of Spaces, Lemma 20.1. Recall
Rf∗OX is perfect of tor amplitude in [0, N ] for someN , see Derived Categories of Spaces,
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Lemma 25.4. Thus we can represent Rf∗OX by a complex of finite projective modules
sitting in degrees [0, N ] (using More on Algebra, Lemma 74.2 and the fact that Y is affine).
Hence if M = OY [−i] for some i > 0, then the last group is zero. Since Y is affine we
conclude that Hi(Rf∗a(OY )) = 0 for i > 0. This proves (2).

Let E be a perfect object of DQCoh(OX). Then we have

HomX(E,RHomOX
(a(OY ), a(OY )) = HomX(E ⊗L

OX
a(OY ), a(OY ))

= HomY (Rf∗(E ⊗L
OX

a(OY )),OY )
= HomY (Rf∗(RHomOX

(E∨, a(OY ))),OY )
= HomY (RHomOY

(Rf∗E
∨,OY ),OY )

= RΓ(Y,Rf∗E
∨)

= HomX(E,OX)

The first equality holds by Cohomology on Sites, Lemma 35.2. The second equality is the
definition of a. The third equality comes from the construction of the dual perfect com-
plex E∨, see Cohomology on Sites, Lemma 48.4. The fourth equality follows from the
equality Rf∗RHomOX

(E∨, ω•
X/Y ) = RHomOY

(Rf∗E
∨,OY ) shown in the first para-

graph of the proof. The fifth equality holds by double duality for perfect complexes (Co-
homology on Sites, Lemma 48.4) and the fact thatRf∗E is perfect by Derived Categories
of Spaces, Lemma 25.4 The last equality is Leray for f . This string of equalities essen-
tially shows (3) holds by the Yoneda lemma. Namely, the object RHom(a(OY ), a(OY ))
is in DQCoh(OX) by Derived Categories of Spaces, Lemma 13.10. Taking E = OX
in the above we get a map α : OX → RHomOX

(a(OY ), a(OY )) corresponding to
idOX

∈ HomX(OX ,OX). Since all the isomorphisms above are functorial in E we see
that the cone on α is an objectC ofDQCoh(OX) such that Hom(E,C) = 0 for all perfect
E. Since the perfect objects generate (Derived Categories of Spaces, Theorem 15.4) we
conclude that α is an isomorphism. �

9. Relative dualizing complexes for proper flat morphisms

Motivated by Duality for Schemes, Sections 12 and 28 and the material in Section 8 we
make the following definition.

Definition 9.1. Let S be a scheme. Let f : X → Y be a proper, flat morphism of
algebraic spaces over S which is of finite presentation. A relative dualizing complex for
X/Y is a pair (ω•

X/Y , τ) consisting of a Y -perfect object ω•
X/Y of D(OX) and a map

τ : Rf∗ω
•
X/Y −→ OY

such that for any cartesian square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

whereY ′ is an affine scheme the pair (L(g′)∗ω•
X/Y , Lg

∗τ) is isomorphic to the pair (a′(OY ′),Trf ′,OY ′ )
studied in Sections 3, 4, 5, 6, 7, and 8.

There are several remarks we should make here.
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(1) In Definition 9.1 one may drop the assumption that ω•
X/Y is Y -perfect. Namely,

runningY ′ through the members of an étale covering ofY by affines, we see from
Lemma 8.3 that the restrictions of ω•

X/Y to the members of an étale covering of
X are Y -perfect, which implies ω•

X/Y is Y -perfect, see More on Morphisms of
Spaces, Section 52.

(2) Consider a relative dualizing complex (ω•
X/Y , τ) and a cartesian square as in Def-

inition 9.1. We are going to think of the existence of the isomorphism (L(g′)∗ω•
X/Y , Lg

∗τ) ∼=
(a′(OY ′),Trf ′,OY ′ ) as follows: it says that for anyM ′ ∈ DQCoh(OX′) the map

HomX′(M ′, L(g′)∗ω•
X/Y ) −→ HomY ′(Rf ′

∗M
′,OY ′), ϕ′ 7−→ Lg∗τ ◦Rf ′

∗ϕ
′

is an isomorphism. This follows from the definition of a′ and the discussion in
Section 6. In particular, the Yoneda lemma guarantees that the isomorphism is
unique.

(3) If Y is affine itself, then a relative dualizing complex (ω•
X/Y , τ) exists and is

canonically isomorphic to (a(OY ),Trf,OY
) where a is the right adjoint forRf∗

as in Lemma 3.1 and Trf is as in Section 6. Namely, given a diagram as in the
definition we get an isomorphismL(g′)∗a(OY )→ a′(OY ′) by Lemma 5.1 which
is compatible with trace maps by Lemma 6.1.

This produces exactly enough information to glue the locally given relative dualizing
complexes to global ones. We suggest the reader skip the proofs of the following lemmas.

Lemma 9.2. Let S be a scheme. Let X → Y be a proper, flat morphism of algebraic
spaces which is of finite presentation. If (ω•

X/Y , τ) is a relative dualizing complex, then
OX → RHomOX

(ω•
X/Y , ω

•
X/Y ) is an isomorphism and Rf∗ω

•
X/Y has vanishing coho-

mology sheaves in positive degrees.

Proof. It suffices to prove this after base change to an affine scheme étale over Y in
which case it follows from Lemma 8.3. �

Lemma 9.3. Let S be a scheme. Let X → Y be a proper, flat morphism of algebraic
spaces which is of finite presentation. If (ω•

j , τj), j = 1, 2 are two relative dualizing
complexes on X/Y , then there is a unique isomorphism (ω•

1 , τ1)→ (ω•
2 , τ2).

Proof. Consider g : Y ′ → Y étale with Y ′ an affine scheme and denote X ′ =
Y ′×Y X the base change. By Definition 9.1 and the discussion following, there is a unique
isomorphism ι : (ω•

1 |X′ , τ1|Y ′)→ (ω•
2 |X′ , τ2|Y ′). IfY ′′ → Y ′ is a further étale morphism

of affines and X ′′ = Y ′′ ×Y X , then ι|X′′ is the unique isomorphism (ω•
1 |X′′ , τ1|Y ′′) →

(ω•
2 |X′′ , τ2|Y ′′) (by uniqueness). Also we have

ExtpX′(ω•
1 |X′ , ω•

2 |X′) = 0, p < 0

becauseOX′ ∼= RHomOX′ (ω•
1 |X′ , ω•

1 |X′) ∼= RHomOX′ (ω•
1 |X′ , ω•

2 |X′) by Lemma 9.2.

Choose a étale hypercovering b : V → Y such that each Vn =
∐
i∈In Yn,i with Yn,i

affine. This is possible by Hypercoverings, Lemma 12.2 and Remark 12.9 (to replace the
hypercovering produced in the lemma by the one having disjoint unions in each degree).
Denote Xn,i = Yn,i ×Y X and Un = Vn ×Y X so that we obtain an étale hypercovering
a : U → X (Hypercoverings, Lemma 12.4) with Un =

∐
Xn,i. The assumptions of

Simplicial Spaces, Lemma 35.1 are satisfied for a : U → X and the complexes ω•
1 and ω•

2 .
Hence we obtain a unique morphism ι : ω•

1 → ω•
2 whose restriction to X0,i is the unique
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isomorphism (ω•
1 |X0,i , τ1|Y0,i)→ (ω•

2 |X0,i , τ2|Y0,i) We still have to see that the diagram

Rf∗ω
•
1

τ1 ##

Rf∗ι
// Rf∗ω

•
1

τ2{{
OY

is commutative. However, we know that Rf∗ω
•
1 and Rf∗ω

•
2 have vanishing cohomol-

ogy sheaves in positive degrees (Lemma 9.2) thus this commutativity may be proved after
restricting to the affines Y0,i where it holds by construction. �

Lemma 9.4. Let S be a scheme. Let X → Y be a proper, flat morphism of algebraic
spaces which is of finite presentation. Let (ω•, τ) be a pair consisting of a Y -perfect object
of D(OX) and a map τ : Rf∗ω

• → OY . Assume we have cartesian diagrams

Xi
g′
i

//

fi

��

X

f

��
Yi

gi // Y

with Yi affine such that {gi : Yi → Y } is an étale covering and isomorphisms of pairs
(ω•|Xi , τ |Yi) → (ai(OYi),Trfi,OYi

) as in Definition 9.1. Then (ω•, τ) is a relative dual-
izing complex for X over Y .

Proof. Let g : Y ′ → Y and X ′, f ′, g′, a′ be as in Definition 9.1. Set ((ω′)•, τ ′) =
(L(g′)∗ω•, Lg∗τ). We can find a finite étale covering {Y ′

j → Y ′} by affines which refines
{Yi×Y Y ′ → Y ′} (Topologies, Lemma 4.4). Thus for each j there is an ij and a morphism
kj : Y ′

j → Yij over Y . Consider the fibre products

X ′
j

h′
j

//

f ′
j

��

X ′

f ′

��
Y ′
j

hj // Y ′

Denote k′
j : X ′

j → Xij the induced morphism (base change of kj by fij ). Restrict-
ing the given isomorphisms to Y ′

j via the morphism k′
j we get isomorphisms of pairs

((ω′)•|X′
j
, τ ′|Y ′

j
) → (aj(OY ′

j
),Trf ′

j
,OY ′

j

). After replacing f : X → Y by f ′ : X ′ → Y ′

we reduce to the problem solved in the next paragraph.

AssumeY is affine. Problem: show (ω•, τ) is isomorphic to (ω•
X/Y ,Tr) = (a(OY ),Trf,OY

).
We may assume our covering {Yi → Y } is given by a single surjective étale morphism
{g : Y ′ → Y } of affines. Namely, we can first replace {gi : Yi → Y } by a finite sub-
covering, and then we can set g =

∐
gi : Y ′ =

∐
Yi → Y ; some details omitted. Set

X ′ = Y ′×Y X with maps f ′, g′ as in Definition 9.1. Then all we’re given is that we have
an isomorphism

(ω•|X′ , τ |Y ′)→ (a′(OY ′),Trf ′,OY ′ )
Since (ω•

X/Y ,Tr) is a relative dualizing complex (see discussion following Definition 9.1)
there is a unique isomorphism

(ω•
X/Y |X′ ,Tr|Y ′)→ (a′(OY ′),Trf ′,OY ′ )
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Uniqueness by Lemma 9.3 for example. Combining the displayed isomorphisms we find
an isomorphism

α : (ω•|X′ , τ |Y ′)→ (ω•
X/Y |X′ ,Tr|Y ′)

Set Y ′′ = Y ′ ×Y Y ′ and X ′′ = Y ′′ ×Y X the two pullbacks of α to X ′′ have to be
the same by uniqueness again. Since we have vanishing negative self exts for ω•

X′/Y ′

over X ′ (Lemma 9.2) and since this remains true after pulling back by any projection
Y ′×Y . . .×Y Y ′ → Y ′ (small detail omitted – compare with the proof of Lemma 9.3), we
find that α descends to an isomorphism ω• → ω•

X/Y overX by Simplicial Spaces, Lemma
35.1. �

Lemma 9.5. Let S be a scheme. Let X → Y be a proper, flat morphism of algebraic
spaces which is of finite presentation. There exists a relative dualizing complex (ω•

X/Y , τ).

Proof. Choose a étale hypercovering b : V → Y such that each Vn =
∐
i∈In Yn,i

with Yn,i affine. This is possible by Hypercoverings, Lemma 12.2 and Remark 12.9 (to
replace the hypercovering produced in the lemma by the one having disjoint unions in
each degree). Denote Xn,i = Yn,i ×Y X and Un = Vn ×Y X so that we obtain an
étale hypercovering a : U → X (Hypercoverings, Lemma 12.4) with Un =

∐
Xn,i. For

each n, i there exists a relative dualizing complex (ω•
n,i, τn,i) onXn,i/Yn,i. See discussion

following Definition 9.1. For ϕ : [m] → [n] and i ∈ In consider the morphisms gϕ,i :
Yn,i → Ym,α(ϕ) and g′

ϕ,i : Xn,i → Xm,α(ϕ) which are part of the structure of the given
hypercoverings (Hypercoverings, Section 12). Then we have a unique isomorphisms

ιn,i,ϕ : (L(g′
n,i)∗ω•

n,i, Lg
∗
n,iτn,i) −→ (ω•

m,α(ϕ)(i), τm,α(ϕ)(i))

of pairs, see discussion following Definition 9.1. Observe that ω•
n,i has vanishing negative

self exts on Xn,i by Lemma 9.2. Denote (ω•
n, τn) the pair on Un/Vn constructed using

the pairs (ω•
n,i, τn,i) for i ∈ In. For ϕ : [m] → [n] and i ∈ In consider the morphisms

gϕ : Vn → Vm and g′
ϕ : Un → Um which are part of the structure of the simplicial

algebraic spaces V and U . Then we have unique isomorphisms

ιϕ : (L(g′
ϕ)∗ω•

n, Lg
∗
ϕτn) −→ (ω•

m, τm)

of pairs constructed from the isomorphisms on the pieces. The uniqueness guarantees that
these isomorphisms satisfy the transitivity condition as formulated in Simplicial Spaces,
Definition 14.1. The assumptions of Simplicial Spaces, Lemma 35.2 are satisfied for a :
U → X , the complexes ω•

n and the isomorphisms ιϕ1. Thus we obtain an object ω• of
DQCoh(OX) together with an isomorphism ι0 : ω•|U0 → ω•

0 compatible with the two
isomorphisms ιδ1

0
and ιδ1

1
. Finally, we apply Simplicial Spaces, Lemma 35.1 to find a unique

morphism
τ : Rf∗ω

• −→ OY
whose restriction to V0 agrees with τ0; some details omitted – compare with the end of
the proof of Lemma 9.3 for example to see why we have the required vanishing of nega-
tive exts. By Lemma 9.4 the pair (ω•, τ) is a relative dualizing complex and the proof is
complete. �

1This lemma uses only ω•
0 and the two maps δ1

1 , δ
1
0 : [1] → [0]. The reader can skip the first few lines of

the proof of the referenced lemma because here we actually are already given a simplicial system of the derived
category of modules.
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Lemma 9.6. Let S be a scheme. Consider a cartesian square

X ′

f ′

��

g′
// X

f

��
Y ′ g // Y

of algebraic spaces over S. Assume X → Y is proper, flat, and of finite presentation. Let
(ω•
X/Y , τ) be a relative dualizing complex for f . Then (L(g′)∗ω•

X/Y , Lg
∗τ) is a relative

dualizing complex for f ′.

Proof. Observe that L(g′)∗ω•
X/Y is Y ′-perfect by More on Morphisms of Spaces,

Lemma 52.6. The other condition of Definition 9.1 holds by transitivity of fibre products.
�

10. Comparison with the case of schemes

We should add a lot more in this section.

Lemma 10.1. Let S be a scheme. Let f : X → Y be a morphism of quasi-compact and
quasi-separated algebraic spaces over S. Assume X and Y are representable and let f0 :
X0 → Y0 be a morphism of schemes representing f (awkward but temporary notation).
Let a : DQCoh(OY ) → DQCoh(OX) be the right adjoint of Rf∗ from Lemma 3.1. Let
a0 : DQCoh(OY0)→ DQCoh(OX0) be the right adjoint ofRf∗ from Duality for Schemes,
Lemma 3.1. Then

DQCoh(OX0)
Derived Categories of Spaces, Lemma 4.2

DQCoh(OX)

DQCoh(OY0)

a0

OO

Derived Categories of Spaces, Lemma 4.2
DQCoh(OY )

a

OO

is commutative.

Proof. Follows from uniqueness of adjoints and the compatibilities of Derived Cat-
egories of Spaces, Remark 6.3. �
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CHAPTER 87

Formal Algebraic Spaces

1. Introduction

Formal schemes were introduced in [?]. A more general version of formal schemes was in-
troduced in [?] and another in [?]. Formal algebraic spaces were introduced in [?]. Related
material and much besides can be found in [?] and [?]. This chapter introduces the notion
of formal algebraic spaces we will work with. Our definition is general enough to allow
most classes of formal schemes/spaces in the literature as full subcategories.

Although we do discuss the comparison of some of these alternative theories with ours, we
do not always give full details when it is not necessary for the logical development of the
theory.

Besides introducing formal algebraic spaces, we also prove a few very basic properties and
we discuss a few types of morphisms.

2. Formal schemes à la EGA

In this section we review the construction of formal schemes in [?]. This notion, although
very useful in algebraic geometry, may not always be the correct one to consider. Perhaps
it is better to say that in the setup of the theory a number of choices are made, where for
different purposes others might work better. And indeed in the literature one can find
many different closely related theories adapted to the problem the authors may want to
consider. Still, one of the major advantages of the theory as sketched here is that one gets
to work with definite geometric objects.

Before we start we should point out an issue with the sheaf condition for sheaves of topo-
logical rings or more generally sheaves of topological spaces. Namely, the big categories

(1) category of topological spaces,
(2) category of topological groups,
(3) category of topological rings,
(4) category of topological modules over a given topological ring,

endowed with their natural forgetful functors to Sets are not examples of types of algebraic
structures as defined in Sheaves, Section 15. Thus we cannot blithely apply to them the
machinery developed in that chapter. On the other hand, each of the categories listed
above has limits and equalizers and the forgetful functor to sets, groups, rings, modules
commutes with them (see Topology, Lemmas 14.1, 30.3, 30.8, and 30.11). Thus we can
define the notion of a sheaf as in Sheaves, Definition 9.1 and the underlying presheaf of
sets, groups, rings, or modules is a sheaf. The key difference is that for an open covering
U =

⋃
i∈I Ui the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

6151
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has to be an equalizer diagram in the category of topological spaces, topological groups,
topological rings, topological modules, i.e., that the first map identifies F(U) with a sub-
space of

∏
i∈I F(Ui) which is endowed with the product topology.

The stalk Fx of a sheaf F of topological spaces, topological groups, topological rings, or
topological modules at a point x ∈ X is defined as the colimit over open neighbourhoods

Fx = colimx∈U F(U)

in the corresponding category. This is the same as taking the colimit on the level of sets,
groups, rings, or modules (see Topology, Lemmas 29.1, 30.6, 30.9, and 30.12) but comes
equipped with a topology. Warning: the topology one gets depends on which category
one is working with, see Examples, Section 77. One can sheafify presheaves of topologi-
cal spaces, topological groups, topological rings, or topological modules and taking stalks
commutes with this operation, see Remark 2.4.

Let f : X → Y be a continuous map of topological spaces. There is a functor f∗ from the
category of sheaves of topological spaces, topological groups, topological rings, topolog-
ical modules, to the corresponding category of sheaves on Y which is defined by setting
f∗F(V ) = F(f−1V ) as usual. (We delay discussing the pullback in this setting till later.)
We define the notion of an f -map ξ : G → F between a sheaf of topological spaces G
on Y and a sheaf of topological spaces F on X in exactly the same manner as in Sheaves,
Definition 21.7 with the additional constraint that ξV : G(V )→ F(f−1V ) be continuous
for every open V ⊂ Y . We have

{f -maps from G to F} = MorSh(Y,Top)(G, f∗F)

as in Sheaves, Lemma 21.8. Similarly for sheaves of topological groups, topological rings,
topological modules. Finally, let ξ : G → F be an f -map as above. Then given x ∈ X
with image y = f(x) there is a continuous map

ξx : Gy −→ Fx
of stalks defined in exactly the same manner as in the discussion following Sheaves, Defi-
nition 21.9.

Using the discussion above, we can define a category LTRS of “locally topologically
ringed spaces”. An object is a pair (X,OX) consisting of a topological space X and a
sheaf of topological rings OX whose stalks OX,x are local rings (if one forgets about the
topology). A morphism (X,OX)→ (Y,OY ) ofLTRS is a pair (f, f ]) where f : X → Y
is a continuous map of topological spaces and f ] : OY → OX is an f -map such that for
every x ∈ X the induced map

f ]x : OY,f(x) −→ OX,x
is a local homomorphism of local rings (forgetting about the topologies). The composition
works in exactly the same manner as composition of morphisms of locally ringed spaces.

Assume now that the topological space X has a basis consisting of quasi-compact opens.
Given a sheaf F of sets, groups, rings, modules over a ring, one can endow F with the
structure of a sheaf of topological spaces, topological groups, topological rings, topologi-
cal modules. Namely, if U ⊂ X is quasi-compact open, we endow F(U) with the discrete
topology. If U ⊂ X is arbitrary, then we choose an open covering U =

⋃
i∈I Ui by

quasi-compact opens and we endow F(U) with the induced topology from
∏
i∈I F(Ui)

(as we should do according to our discussion above). The reader may verify (omitted)
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that we obtain a sheaf of topological spaces, topological groups, topological rings, topo-
logical modules in this fashion. Let us say that a sheaf of topological spaces, topological
groups, topological rings, topological modules is pseudo-discrete if the topology on F(U)
is discrete for every quasi-compact open U ⊂ X . Then the construction given above is
an adjoint to the forgetful functor and induces an equivalence between the category of
sheaves of sets and the category of pseudo-discrete sheaves of topological spaces (similarly
for groups, rings, modules).

Grothendieck and Dieudonné first define formal affine schemes. These correspond to ad-
missible topological rings A, see More on Algebra, Definition 36.1. Namely, given A one
considers a fundamental system Iλ of ideals of definition for the ringA. (In any admissible
topological ring the family of all ideals of definition forms a fundamental system.) For
each λ we can consider the scheme Spec(A/Iλ). For Iλ ⊂ Iµ the induced morphism

Spec(A/Iµ)→ Spec(A/Iλ)
is a thickening because Inµ ⊂ Iλ for some n. Another way to see this, is to notice that the
image of each of the maps

Spec(A/Iλ)→ Spec(A)
is a homeomorphism onto the set of open prime ideals ofA. This motivates the definition

Spf(A) = {open prime ideals p ⊂ A}
endowed with the topology coming from Spec(A). For each λ we can consider the struc-
ture sheafOSpec(A/Iλ) as a sheaf on Spf(A). LetOλ be the corresponding pseudo-discrete
sheaf of topological rings, see above. Then we set

OSpf(A) = limOλ
where the limit is taken in the category of sheaves of topological rings. The pair (Spf(A),OSpf(A))
is called the formal spectrum of A.

At this point one should check several things. The first is that the stalksOSpf(A),x are local
rings (forgetting about the topology). The second is that given f ∈ A, for the correspond-
ing open D(f) ∩ Spf(A) we have

Γ(D(f) ∩ Spf(A),OSpf(A)) = A{f} = lim(A/Iλ)f
as topological rings where Iλ is a fundamental system of ideals of definition as above.
Moreover, the ring A{f} is admissible too and (Spf(Af ),OSpf(A{f})) is isomorphic to
(D(f)∩Spf(A),OSpf(A)|D(f)∩Spf(A)). Finally, given a pair of admissible topological rings
A,B we have

(2.0.1) MorLTRS((Spf(B),OSpf(B)), (Spf(A),OSpf(A))) = Homcont(A,B)
where LTRS is the category of “locally topologically ringed spaces” as defined above.

Having said this, in [?] a formal scheme is defined as a pair (X,OX) whereX is a topological
space andOX is a sheaf of topological rings such that every point has an open neighbour-
hood isomorphic (in LTRS) to an affine formal scheme. A morphism of formal schemes
f : (X,OX)→ (Y,OY) is a morphism in the category LTRS.

Let A be a ring endowed with the discrete topology. Then A is admissible and the formal
scheme Spf(A) is equal to Spec(A). The structure sheaf OSpf(A) is the pseudo-discrete
sheaf of topological rings associated to OSpec(A), in other words, its underlying sheaf of
rings is equal to OSpec(A) and the ring OSpf(A)(U) = OSpec(A)(U) over a quasi-compact
open U has the discrete topology, but not in general. Thus we can associate to every affine
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scheme a formal affine scheme. In exactly the same manner we can start with a general
scheme (X,OX) and associate to it (X,O′

X) where O′
X is the pseudo-discrete sheaf of

topological rings whose underlying sheaf of rings isOX . This construction is compatible
with morphisms and defines a functor

(2.0.2) Schemes −→ Formal Schemes

It follows in a straightforward manner from (2.0.1) that this functor is fully faithful.

Let X be a formal scheme. Let us define the size of the formal scheme by the formula
size(X) = max(ℵ0, κ1, κ2) where κ1 is the cardinality of the formal affine opens of X and
κ2 is the supremum of the cardinalities of OX(U) where U ⊂ X is such a formal affine
open.

Lemma 2.1. Choose a category of schemes Schα as in Sets, Lemma 9.2. Given a formal
scheme X let

hX : (Schα)opp −→ Sets, hX(S) = MorFormal Schemes(S,X)

be its functor of points. Then we have

MorFormal Schemes(X,Y) = MorPSh(Schα)(hX, hY)

provided the size of X is not too large.

Proof. First we observe that hX satisfies the sheaf property for the Zariski topology
for any formal schemeX (see Schemes, Definition 15.3). This follows from the local nature
of morphisms in the category of formal schemes. Also, for an open immersion V → W
of formal schemes, the corresponding transformation of functors hV → hW is injective
and representable by open immersions (see Schemes, Definition 15.3). Choose an open
covering X =

⋃
Ui of a formal scheme by affine formal schemes Ui. Then the collection

of functors hUi covers hX (see Schemes, Definition 15.3). Finally, note that

hUi ×hX
hUj = hUi∩Uj

Hence in order to give a map hX → hY is equivalent to giving a family of maps hUi →
hY which agree on overlaps. Thus we can reduce the bijectivity (resp. injectivity) of the
map of the lemma to bijectivity (resp. injectivity) for the pairs (Ui,Y) and injectivity
(resp. nothing) for (Ui ∩ Uj ,Y). In this way we reduce to the case where X is an affine
formal scheme. Say X = Spf(A) for some admissible topological ring A. Also, choose a
fundamental system of ideals of definition Iλ ⊂ A.

We can also localize on Y. Namely, suppose that V ⊂ Y is an open formal subscheme and
ϕ : hX → hY. Then

hV ×hY,ϕ hX → hX

is representable by open immersions. Pulling back to Spec(A/Iλ) for all λ we find an
open subscheme Uλ ⊂ Spec(A/Iλ). However, for Iλ ⊂ Iµ the morphism Spec(A/Iλ)→
Spec(A/Iµ) pulls back Uµ to Uλ. Thus these glue to give an open formal subscheme
U ⊂ X. A straightforward argument (omitted) shows that

hU = hV ×hY
hX

In this way we see that given an open coveringY =
⋃
Vj and a transformation of functors

ϕ : hX → hY we obtain a corresponding open covering of X. Since X is affine, we
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can refine this covering by a finite open covering X = U1 ∪ . . . ∪ Un by affine formal
subschemes. In other words, for each i there is a j and a map ϕi : hUi → hVj such that

hUi ϕi
//

��

hVj

��
hX

ϕ // hY

commutes. With a few additional arguments (which we omit) this implies that it suffices
to prove the bijectivity of the lemma in case both X and Y are affine formal schemes.
Assume X and Y are affine formal schemes. Say X = Spf(A) and Y = Spf(B). Let
ϕ : hX → hY be a transformation of functors. Let Iλ ⊂ A be a fundamental system of
ideals of definition. The canonical inclusion morphism iλ : Spec(A/Iλ) → X maps to
a morphism ϕ(iλ) : Spec(A/Iλ) → Y. By (2.0.1) this corresponds to a continuous map
χλ : B → A/Iλ. Since ϕ is a transformation of functors it follows that for Iλ ⊂ Iµ the
composition B → A/Iλ → A/Iµ is equal to χµ. In other words we obtain a ring map

χ = limχλ : B −→ limA/Iλ = A

This is a continuous homomorphism because the inverse image of Iλ is open for all λ
(as A/Iλ has the discrete topology and χλ is continuous). Thus we obtain a morphism
Spf(χ) : X→ Y by (2.0.1). We omit the verification that this construction is the inverse
to the map of the lemma in this case.
Set theoretic remarks. To make this work on the given category of schemes Schα we
just have to make sure all the schemes used in the proof above are isomorphic to objects of
Schα. In fact, a careful analysis shows that it suffices if the schemes Spec(A/Iλ) occurring
above are isomorphic to objects of Schα. For this it certainly suffices to assume the size of
X is at most the size of a scheme contained in Schα. �

Lemma 2.2. Let X be a formal scheme. The functor of points hX (see Lemma 2.1)
satisfies the sheaf condition for fpqc coverings.

Proof. Topologies, Lemma 9.13 reduces us to the case of a Zariski covering and a
covering {Spec(S) → Spec(R)} with R → S faithfully flat. We observed in the proof
of Lemma 2.1 that hX satisfies the sheaf condition for Zariski coverings.
Suppose that R → S is a faithfully flat ring map. Denote π : Spec(S) → Spec(R) the
corresponding morphism of schemes. It is surjective and flat. Let f : Spec(S) → X be a
morphism such that f ◦ pr1 = f ◦ pr2 as maps Spec(S ⊗R S)→ X. By Descent, Lemma
13.1 we see that as a map on the underlying sets f is of the form f = g ◦ π for some (set
theoretic) map g : Spec(R) → X. By Morphisms, Lemma 25.12 and the fact that f is
continuous we see that g is continuous.
Pick y ∈ Spec(R). Choose U ⊂ X an affine formal open subscheme containing g(y).
Say U = Spf(A) for some admissible topological ring A. By the above we may choose
an r ∈ R such that y ∈ D(r) ⊂ g−1(U). The restriction of f to π−1(D(r)) into U
corresponds to a continuous ring map A → Sr by (2.0.1). The two induced ring maps
A → Sr ⊗Rr Sr = (S ⊗R S)r are equal by assumption on f . Note that Rr → Sr is
faithfully flat. By Descent, Lemma 3.6 the equalizer of the two arrows Sr → Sr ⊗Rr Sr
is Rr. We conclude that A → Sr factors uniquely through a map A → Rr which is also
continuous as it has the same (open) kernel as the map A→ Sr. This map in turn gives a
morphism D(r)→ U by (2.0.1).
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What have we proved so far? We have shown that for any y ∈ Spec(R) there exists
a standard affine open y ∈ D(r) ⊂ Spec(R) such that the morphism f |π−1(D(r)) :
π−1(D(r)) → X factors uniquely though some morphism D(r) → X. We omit the
verification that these morphisms glue to the desired morphism Spec(R)→ X. �

Remark 2.3 (McQuillan’s variant). There is a variant of the construction of formal
schemes due to McQuillan, see [?]. He suggests a slight weakening of the condition of ad-
missibility. Namely, recall that an admissible topological ring is a complete (and separated
by our conventions) topological ring A which is linearly topologized such that there ex-
ists an ideal of definition: an open ideal I such that any neighbourhood of 0 contains In
for some n ≥ 1. McQuillan works with what we will call weakly admissible topological
rings. A weakly admissible topological ringA is a complete (and separated by our conven-
tions) topological ring which is linearly topologized such that there exists an weak ideal of
definition: an open ideal I such that for all f ∈ I we have fn → 0 for n→∞. Similarly
to the admissible case, if I is a weak ideal of definition and J ⊂ A is an open ideal, then
I ∩ J is a weak ideal of definition. Thus the weak ideals of definition form a fundamental
system of open neighbourhoods of 0 and one can proceed along much the same route as
above to define a larger category of formal schemes based on this notion. The analogues
of Lemmas 2.1 and 2.2 still hold in this setting (with the same proof).

Remark 2.4 (Sheafification of presheaves of topological spaces). In this remark we
briefly discuss sheafification of presheaves of topological spaces. The exact same arguments
work for presheaves of topological abelian groups, topological rings, and topological mod-
ules (over a given topological ring). In order to do this in the correct generality let us work
over a site C. The reader who is interested in the case of (pre)sheaves over a topological
spaceX should think of objects of C as the opens ofX , of morphisms of C as inclusions of
opens, and of coverings in C as coverings inX , see Sites, Example 6.4. Denote Sh(C,Top)
the category of sheaves of topological spaces on C and denote PSh(C,Top) the category of
presheaves of topological spaces on C. Let F be a presheaf of topological spaces on C. The
sheafification F# should satisfy the formula

MorPSh(C,Top)(F ,G) = MorSh(C,Top)(F#,G)
functorially in G from Sh(C,Top). In other words, we are trying to construct the left ad-
joint to the inclusion functor Sh(C,Top)→ PSh(C,Top). We first claim that Sh(C,Top)
has limits and that the inclusion functor commutes with them. Namely, given a category
I and a functor i 7→ Gi into Sh(C,Top) we simply define

(limGi)(U) = limGi(U)
where we take the limit in the category of topological spaces (Topology, Lemma 14.1).
This defines a sheaf because limits commute with limits (Categories, Lemma 14.10) and in
particular products and equalizers (which are the operations used in the sheaf axiom). Fi-
nally, a morphism of presheaves fromF → limGi is clearly the same thing as a compatible
system of morphismsF → Gi. In other words, the object limGi is the limit in the category
of presheaves of topological spaces and a fortiori in the category of sheaves of topological
spaces. Our second claim is that any morphism of presheaves F → G with G an object
of Sh(C,Top) factors through a subsheaf G′ ⊂ G whose size is bounded. Here we define
the size |H| of a sheaf of topological spaces H to be the cardinal supU∈Ob(C) |H(U)|. To
prove our claim we let

G′(U) =
{

s ∈ G(U)
∣∣∣∣ there exists a covering {Ui → U}i∈I

such that s|Ui ∈ Im(F(Ui)→ G(Ui))

}
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We endow G′(U) with the induced topology. Then G′ is a sheaf of topological spaces
(details omitted) and G′ → G is a morphism through which the given map F → G fac-
tors. Moreover, the size of G′ is bounded by some cardinal κ depending only on C and
the presheaf F (hint: use that coverings in C form a set by our conventions). Putting
everything together we see that the assumptions of Categories, Theorem 25.3 are satisfied
and we obtain sheafification as the left adjoint of the inclusion functor from sheaves to
presheaves. Finally, let p be a point of the site C given by a functor u : C → Sets, see Sites,
Definition 32.2. For a topological space M the presheaf defined by the rule

U 7→Map(u(U),M) =
∏

x∈u(U)
M

endowed with the product topology is a sheaf of topological spaces. Hence the exact same
argument as given in the proof of Sites, Lemma 32.5 shows thatFp = F#

p , in other words,
sheafification commutes with taking stalks at a point.

3. Conventions and notation

The conventions from now on will be similar to the conventions in Properties of Spaces,
Section 2. Thus from now on the standing assumption is that all schemes are contained
in a big fppf site Schfppf . And all rings A considered have the property that Spec(A) is
(isomorphic) to an object of this big site. For topological rings A we assume only that all
discrete quotients have this property (but usually we assume more, compare with Remark
11.5).
Let S be a scheme and let X be a “space” over S , i.e., a sheaf on (Sch/S)fppf . In this
chapter we will write X ×S X for the product of X with itself in the category of sheaves
on (Sch/S)fppf instead of X × X . Moreover, if X and Y are “spaces” then we say ”let
f : X → Y be a morphism” to indicate that f is a natural transformation of functors, i.e.,
a map of sheaves on (Sch/S)fppf . Similarly, if U is a scheme over S and X is a “space”
over S , then we say ”let f : U → X be a morphism” or ”let g : X → U be a morphism” to
indicate that f or g is a map of sheaves hU → X orX → hU where hU is as in Categories,
Example 3.4.

4. Topological rings and modules

This section is a continuation of More on Algebra, Section 36. Let R be a topological ring
and let M be a linearly topologized R-module. When we say “let Mλ be a fundamental
system of open submodules” we will mean that each Mλ is an open submodule and that
any neighbourhood of 0 contains one of the Mλ. In other words, this means that Mλ is
a fundamental system of neighbourhoods of 0 in M consisting of submodules. Similarly,
if R is a linearly topologized ring, then we say “let Iλ be a fundamental system of open
ideals” to mean that Iλ is a fundamental system of neighbourhoods of 0 inR consisting of
ideals.

Example 4.1. LetR be a linearly topologized ring and letM be a linearly topologized
R-module. Let Iλ be a fundamental system of open ideals inR and letMµ be a fundamental
system of open submodules of M . The continuity of + : M ×M →M is automatic and
the continuity of R×M →M signifies

∀f, x, µ ∃λ, ν, (f + Iλ)(x+Mν) ⊂ fx+Mµ

Since fMν + IλMν ⊂Mµ if Mν ⊂Mµ we see that the condition is equivalent to
∀x, µ ∃λ Iλx ⊂Mµ
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However, it need not be the case that given µ there is a λ such that IλM ⊂Mµ. For exam-
ple, consider R = k[[t]] with the t-adic topology and M =

⊕
n∈N R with fundamental

system of open submodules given by

Mm =
⊕

n∈N
tnmR

Since every x ∈ M has finitely many nonzero coordinates we see that, given m and x
there exists a k such that tkx ∈ Mm. Thus M is a linearly topologized R-module, but it
isn’t true that given m there is a k such that tkM ⊂ Mm. On the other hand, if R → S
is a continuous map of linearly topologized rings, then the corresponding statement does
hold, i.e., for every open ideal J ⊂ S there exists an open ideal I ⊂ R such that IS ⊂ J
(as the reader can easily deduce from continuity of the map R→ S).

Lemma 4.2. Let R be a topological ring. Let M be a linearly topologized R-module
and let Mλ, λ ∈ Λ be a fundamental system of open submodules. Let N ⊂ M be a
submodule. The closure of N is

⋂
λ∈Λ(N +Mλ).

Proof. Since eachN +Mλ is open, it is also closed. Hence the intersection is closed.
Ifx ∈M is not in the closure ofN , then (x+Mλ)∩N = 0 for someλ. Hencex 6∈ N+Mλ.
This proves the lemma. �

Unless otherwise mentioned we endow submodules and quotient modules with the in-
duced topology. Let M be a linearly topologized module over a topological ring R, and
let 0 → N → M → Q → 0 be a short exact sequence of R-modules. If Mλ is a funda-
mental system of open submodules of M , then N ∩Mλ is a fundamental system of open
submodules ofN . If π : M → Q is the quotient map, then π(Mλ) is a fundamental system
of open submodules of Q. In particular these induced topologies are linear topologies.

Lemma 4.3. Let R be a topological ring. Let M be a linearly topologized R-module.
Let N ⊂M be a submodule. Then

(1) 0→ N∧ →M∧ → (M/N)∧ is exact, and
(2) N∧ is the closure of the image of N →M∧.

Proof. LetMλ, λ ∈ Λ be a fundamental system of open submodules. ThenN∩Mλ is
a fundamental system of open submodules of N and Mλ +N/N is a fundamental system
of open submodules of M/N . Thus we see that (1) follows from the exactness of the
sequences

0→ N/N ∩Mλ →M/Mλ →M/(Mλ +N)→ 0
and the fact that taking limits commutes with limits. The second statement follows from
this and the fact that N → N∧ has dense image and that the kernel of M∧ → (M/N)∧

is closed. �

Lemma 4.4. Let R be a topological ring. Let M be a complete, linearly topologized
R-module. Let N ⊂M be a closed submodule. If M has a countable fundamental system
of neighbourhoods of 0, then M/N is complete and the map M →M/N is open.

Proof. LetMn, n ∈ N be a fundamental system of open submodules of M . We may
assume Mn+1 ⊂ Mn for all n. The system (Mn + N)/N is a fundamental system in
M/N . Hence we have to show thatM/N = limM/(Mn +N). Consider the short exact
sequences

0→ N/N ∩Mn →M/Mn →M/(Mn +N)→ 0
Since the transition maps of the system {N/N ∩ Mn} are surjective we see that M =
limM/Mn (by completeness of M ) surjects onto limM/(Mn + N) by Algebra, Lemma



4. TOPOLOGICAL RINGS AND MODULES 6159

86.4. As N is closed we see that the kernel of M → limM/(Mn + N) is N (see Lemma
4.2). Finally, M →M/N is open by definition of the quotient topology. �

Lemma 4.5. Let R be a topological ring. Let M be a linearly topologized R-module.
Let N ⊂ M be a submodule. Assume M has a countable fundamental system of neigh-
bourhoods of 0. Then

(1) 0→ N∧ →M∧ → (M/N)∧ → 0 is exact,
(2) N∧ is the closure of the image of N →M∧,
(3) M∧ → (M/N)∧ is open.

Proof. We have 0→ N∧ →M∧ → (M/N)∧ is exact and statement (2) by Lemma
4.3. This produces a canonical map c : M∧/N∧ → (M/N)∧. The module M∧/N∧ is
complete and M∧ →M∧/N∧ is open by Lemma 4.4. By the universal property of com-
pletion we obtain a canonical map b : (M/N)∧ → M∧/N∧. Then b and c are mutually
inverse as they are on a dense subset. �

Lemma 4.6. LetR be a topological ring. LetM be a topologicalR-module. Let I ⊂ R
be a finitely generated ideal. AssumeM has an open submodule whose topology is I-adic.
Then M∧ has an open submodule whose topology is I-adic and we have M∧/InM∧ =
M/InM for all n ≥ 1.

Proof. LetM ′ ⊂M be an open submodule whose topology is I-adic. Then {InM ′}n≥1
is a fundamental system of open submodules of M . Thus M∧ = limM/InM ′ contains
(M ′)∧ = limM ′/InM ′ as an open submodule and the topology on (M ′)∧ is I-adic by Al-
gebra, Lemma 96.3. Since I is finitely generated, In is finitely generated, say by f1, . . . , fr.
Observe that the surjection (f1, . . . , fr) : M⊕r → InM is continuous and open by our
description of the topology on M above. By Lemma 4.5 applied to this surjection and to
the short exact sequence 0→ InM →M →M/InM → 0 we conclude that

(f1, . . . , fr) : (M∧)⊕r −→M∧

surjects onto the kernel of the surjection M∧ → M/InM . Since f1, . . . , fr generate In
we conclude. �

Definition 4.7. LetR be a topological ring. LetM andN be linearly topologizedR-
modules. The tensor product ofM andN is the (usual) tensor productM ⊗RN endowed
with the linear topology defined by declaring

Im(Mµ ⊗R N +M ⊗R Nν −→M ⊗R N)
to be a fundamental system of open submodules, where Mµ ⊂ M and Nν ⊂ N run
through fundamental systems of open submodules in M and N . The completed tensor
product

M⊗̂RN = limM ⊗R N/(Mµ ⊗R N +M ⊗R Nν) = limM/Mµ ⊗R N/Nν
is the completion of the tensor product.

Observe that the topology on R is immaterial for the construction of the tensor product
or the completed tensor product. If R → A and R → B are continuous maps of lin-
early topologized rings, then the construction above gives a tensor productA⊗RB and a
completed tensor product A⊗̂RB.

We record here the notions introduced in Remark 2.3.

Definition 4.8. Let A be a linearly topologized ring.
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(1) An element f ∈ A is called topologically nilpotent if fn → 0 as n→∞.
(2) A weak ideal of definition for A is an open ideal I ⊂ A consisting entirely of

topologically nilpotent elements.
(3) We say A is weakly pre-admissible if A has a weak ideal of definition.
(4) We say A is weakly admissible if A is weakly pre-admissible and complete1.

Given a weak ideal of definition I in a linearly topologized ring A and an open ideal J
the intersection I ∩ J is a weak ideal of definition. Hence if there is one weak ideal of
definition, then there is a fundamental system of open ideals consisting of weak ideals of
definition. In particular, given a weakly admissible topological ringA thenA = limA/Iλ
where {Iλ} is a fundamental system of weak ideals of definition.

Lemma 4.9. LetA be a weakly admissible topological ring. Let I ⊂ A be a weak ideal
of definition. Then (A, I) is a henselian pair.

Proof. LetA→ A′ be an étale ring map and let σ : A′ → A/I be anA-algebra map.
By More on Algebra, Lemma 11.6 it suffices to lift σ to an A-algebra map A′ → A. To do
this, as A is complete, it suffices to find, for every open ideal J ⊂ I , a unique A-algebra
map A′ → A/J lifting σ. Since I is a weak ideal of definition, the ideal I/J is locally
nilpotent. We conclude by More on Algebra, Lemma 11.2. �

Lemma 4.10. LetB be a linearly topologized ring. The set of topologically nilpotent
elements of B is a closed, radical ideal of B. Let ϕ : A → B be a continuous map of
linearly topologized rings.

(1) If f ∈ A is topologically nilpotent, then ϕ(f) is topologically nilpotent.
(2) If I ⊂ A consists of topologically nilpotent elements, then the closure of ϕ(I)B

consists of topologically nilpotent elements.

Proof. Let b ⊂ B be the set of topologically nilpotent elements. We omit the proof
of the fact that b is a radical ideal (good exercise in the definitions). Let g be an element
of the closure of b. Our goal is to show that g is topologically nilpotent. Let J ⊂ B be
an open ideal. We have to show ge ∈ J for some e ≥ 1. We have g ∈ b + J by Lemma
4.2. Hence g = f + h for some f ∈ b and h ∈ J . Pick m ≥ 1 such that fm ∈ J . Then
gm+1 ∈ J as desired.
Let ϕ : A→ B be as in the statement of the lemma. Assertion (1) is clear and assertion (2)
follows from this and the fact that b is a closed ideal. �

Lemma 4.11. Let A → B be a continuous map of linearly topologized rings. Let
I ⊂ A be an ideal. The closure of IB is the kernel of B → B⊗̂AA/I .

Proof. Let Jµ be a fundamental system of open ideals of B. The closure of IB is⋂
(IB + Jλ) by Lemma 4.2. Let Iµ be a fundamental system of open ideals in A. Then

B⊗̂AA/I = lim(B/Jλ ⊗A A/(Iµ + I)) = limB/(Jλ + IµB + IB)
Since A → B is continuous, for every λ there is a µ such that IµB ⊂ Jλ, see discussion
in Example 4.1. Hence the limit can be written as limB/(Jλ + IB) and the result is
clear. �

Lemma 4.12. Let B → A and B → C be continuous homomorphisms of linearly
topologized rings.

(1) If A and C are weakly pre-admissible, then A⊗̂BC is weakly admissible.

1By our conventions this includes separated.
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(2) If A and C are pre-admissible, then A⊗̂BC is admissible.
(3) IfA andC have a countable fundamental system of open ideals, thenA⊗̂BC has

a countable fundamental system of open ideals.
(4) If A and C are pre-adic and have finitely generated ideals of definition, then

A⊗̂BC is adic and has a finitely generated ideal of definition.
(5) IfA andC are pre-adic Noetherian rings andB/b→ A/a is of finite type where

a ⊂ A and b ⊂ B are the ideals of topologically nilpotent elements, thenA⊗̂BC
is adic Noetherian.

Proof. Let Iλ ⊂ A, λ ∈ Λ and Jµ ⊂ C , µ ∈ M be fundamental systems of open
ideals, then by definition

A⊗̂BC = limλ,µA/Iλ ⊗B C/Jµ
with the limit topology. Thus a fundamental system of open ideals is given by the kernels
Kλ,µ of the maps A⊗̂BC → A/Iλ ⊗B C/Jµ. Note that Kλ,µ is the closure of the ideal
Iλ(A⊗̂BC)+Jµ(A⊗̂BC). Finally, we have a ring homomorphism τ : A⊗BC → A⊗̂BC
with dense image.

Proof of (1). If Iλ and Jµ consist of topologically nilpotent elements, then so does Kλ,µ

by Lemma 4.10. Hence A⊗̂BC is weakly admissible by definition.

Proof of (2). Assume for some λ0 and µ0 the ideals I = Iλ0 ⊂ A and Jµ0 ⊂ C are ideals
of definition. Thus for every λ there exists an n such that In ⊂ Iλ. For every µ there
exists an m such that Jm ⊂ Jµ. Then(

I(A⊗̂BC) + J(A⊗̂BC)
)n+m ⊂ Iλ(A⊗̂BC) + Jµ(A⊗̂BC)

It follows that the open ideal K = Kλ0,µ0 satisfies Kn+m ⊂ Kλ,µ. Hence K is an ideal
of definition of A⊗̂BC and A⊗̂BC is admissible by definition.

Proof of (3). If Λ and M are countable, so is Λ×M .

Proof of (4). Assume Λ = N and M = N and we have finitely generated ideals I ⊂ A
and J ⊂ C such that In = In and Jn = Jn. Then

I(A⊗̂BC) + J(A⊗̂BC)

is a finitely generated ideal and it is easily seen that A⊗̂BC is the completion of A⊗B C
with respect to this ideal. Hence (4) follows from Algebra, Lemma 96.3.

Proof of (5). Let c ⊂ C be the ideal of topologically nilpotent elements. Since A and C
are adic Noetherian, we see that a and c are ideals of definition (details omitted). From
part (4) we already know thatA⊗̂BC is adic and that a(A⊗̂BC) + c(A⊗̂BC) is a finitely
generated ideal of definition. Since

A⊗̂BC/
(
a(A⊗̂BC) + c(A⊗̂BC)

)
= A/a⊗B/b C/c

is Noetherian as a finite type algebra over the Noetherian ringC/cwe conclude by Algebra,
Lemma 97.5. �

5. Taut ring maps

It turns out to be convenient to have a name for the following property of continuous
maps between linearly topologized rings.
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Definition 5.1. Let ϕ : A → B be a continuous map of linearly topologized rings.
We say ϕ is taut2 if for every open ideal I ⊂ A the closure of the ideal ϕ(I)B is open and
these closures form a fundamental system of open ideals.

If ϕ : A → B is a continuous map of linearly topologized rings and Iλ a fundamental
system of open ideals of A, then ϕ is taut if and only if the closures of IλB are open and
form a fundamental system of open ideals in A.

Lemma 5.2. Let ϕ : A → B be a continuous map of weakly admissible topological
rings. The following are equivalent

(1) ϕ is taut,
(2) for every weak ideal of definition I ⊂ A the closure of ϕ(I)B is a weak ideal of

definition ofB and these form a fundamental system of weak ideals of definition
of B.

Proof. The remarks following Definition 5.1 show that (2) implies (1). Conversely,
assume ϕ is taut. If I ⊂ A is a weak ideal of definition, then the closure of ϕ(I)B is
open by definition of tautness and consists of topologically nilpotent elements by Lemma
4.10. Hence the closure of ϕ(I)B is a weak ideal of definition. Furthermore, by definition
of tautness these ideals form a fundamental system of open ideals and we see that (2) is
true. �

Lemma 5.3. Let A be a linearly topologized ring. The map A → A∧ from A to its
completion is taut.

Proof. Let Iλ be a fundamental system of open ideals ofA. Recall thatA∧ = limA/Iλ
with the limit topology, which means that the kernels Jλ = Ker(A∧ → A/Iλ) form a
fundamental system of open ideals of A∧. Since Jλ is the closure of IλA∧ (compare with
Lemma 4.11) we conclude. �

Lemma 5.4. Let A → B and B → C be continuous homomorphisms of linearly
topologized rings. If A→ B and B → C are taut, then A→ C is taut.

Proof. Omitted. Hint: if I ⊂ A is an ideal and J is the closure of IB, then the
closure of JC is equal to the closure of IC. �

Lemma 5.5. Let A → B and B → C be continuous homomorphisms of linearly
topologized rings. If A→ C is taut, then B → C is taut.

Proof. Let J ⊂ B be an open ideal with inverse image I ⊂ A. Then the closure of
JC contains the closure of IC. Hence this closure is open as A → C is taut. Let Iλ be a
fundamental system of open ideals of A. Let Kλ be the closure of IλC. Since A → C is
taut, these form a fundamental system of open ideals of C. Denote Jλ ⊂ B the inverse
image of Kλ. Then the closure of JλC is Kλ. Hence we see that the closures of the ideals
JC , where J runs over the open ideals of B form a fundamental system of open ideals of
C. �

Lemma 5.6. Let A → B and A → C be continuous homomorphisms of linearly
topologized rings. If A→ B is taut, then C → B⊗̂AC is taut.

2This is nonstandard notation. The definition generalizes to modules, by saying a linearly topologized A-
module M is A-taut if for every open ideal I ⊂ A the closure of IM in M is open and these closures form a
fundamental system of neighbourhoods of 0 in M .
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Proof. Let K ⊂ C be an open ideal. Choose any open ideal I ⊂ A whose image in
C is contained in J . By assumption the closure J of IB is open. Since A → B is taut
we see that B⊗̂AC is the limit of the rings B/J ⊗A/I C/K over all choices of K and I ,
i.e, the ideals J(B⊗̂AC) + K(B⊗̂AC) form a fundamental system of open ideals. Now,
since B → B⊗̂AC is continuous we see that J maps into the closure of K(B⊗̂AC) (as
I maps into K). Hence this closure is equal to J(B⊗̂AC) + K(B⊗̂AC) and the proof is
complete. �

Lemma 5.7. Let ϕ : A→ B be a continuous homomorphism of linearly topologized
rings. If ϕ is taut and A has a countable fundamental system of open ideals, then B has a
countable fundamental system of open ideals.

Proof. Immediate from the definitions. �

Lemma 5.8. Let ϕ : A→ B be a continuous homomorphism of linearly topologized
rings. If ϕ is taut and A is weakly pre-admissible, then B is weakly pre-admissible.

Proof. Let I ⊂ A be a weak ideal of definition. Then the closure J of IB is open
and consists of topologically nilpotent elements by Lemma 4.10. Hence J is a weak ideal
of definition of B. �

Lemma 5.9. Let ϕ : A→ B be a continuous homomorphism of linearly topologized
rings. If ϕ is taut and A is pre-admissible, then B is pre-admissible.

Proof. Let I ⊂ A be an ideal of definition. Let Iλ ⊂ A be a fundamental system
of open ideals. Then the closure J of IB is open and the closures Jλ of IλB are open
and form a fundamental system of open ideals of B. For every λ there is an n such that
In ⊂ Iλ. Observe that Jn is contained in the closure of InB. Thus Jn ⊂ Jλ and we
conclude J is an ideal of definition. �

Lemma 5.10. Letϕ : A→ B be a continuous homomorphism of linearly topologized
rings. Assume

(1) ϕ is taut and has dense image,
(2) A is complete and has a countable fundamental system of open ideals, and
(3) B is separated.

Then ϕ is surjective and open,B is complete, andB = A/K for some closed idealK ⊂ A.

Proof. By the open mapping lemma (More on Algebra, Lemma 36.5) combined with
tautness of ϕ, we see the map ϕ is open. Since the image of ϕ is dense, we see that ϕ is
surjective. The kernel K of ϕ is closed as ϕ is continuous. It follows that B = A/K is
complete, see for example Lemma 4.4. �

6. Adic ring maps

Let us make the following definition.

Definition 6.1. Let A and B be pre-adic topological rings. A ring homomorphism
ϕ : A → B is adic3 if there exists an ideal of definition I ⊂ A such that the topology on
B is the I-adic topology.

If ϕ : A → B is an adic homomorphism of pre-adic rings, then ϕ is continuous and the
topology on B is the I-adic topology for every ideal of definition I of A.

3This may be nonstandard terminology.
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Lemma 6.2. Let A → B and B → C be continuous homomorphisms of pre-adic
rings. If A→ B and B → C are adic, then A→ C is adic.

Proof. Omitted. �

Lemma 6.3. Let A → B and B → C be continuous homomorphisms of pre-adic
rings. If A→ C is adic, then B → C is adic.

Proof. Choose an ideal of definition I of A. As A → C is adic, we see that IC is
an ideal of definition of C. As B → C is continuous, we can find an ideal of definition
J ⊂ B mapping into IC. As A → B is continuous the inverse image I ′ ⊂ I of J in I is
an ideal of definition ofA too. Hence I ′C ⊂ JC ⊂ IC is sandwiched between two ideals
of definition, hence is an ideal of definition itself. �

Lemma 6.4. Let ϕ : A→ B be a continuous homomorphism between pre-adic topo-
logical rings. If ϕ is adic, then ϕ is taut.

Proof. Immediate from the definitions. �

The next lemma says two things
(1) the property of being adic ascents along taut maps of complete linearly topolo-

gized rings, and
(2) the properties “ϕ is taut” and “ϕ is adic” are equivalent for continuous maps

ϕ : A→ B between adic rings if A has a finitely generated ideal of definition.
Because of (2) we can say that “tautness” generalizes “adicness” to continuous ring maps
between arbitrary linearly topologized rings. See also Section 23.

Lemma 6.5. Let ϕ : A → B be a continuous map of linearly topologized rings. If
ϕ is taut, A is pre-adic and has a finitely generated ideal of definition, and B is complete,
then B is adic and has a finitely generated ideal of definition and the ring map ϕ is adic.

Proof. Choose a finitely generated ideal of definition I ofA. Let Jn be the closure of
ϕ(In)B in B. Since B is complete we have B = limB/Jn. Let B′ = limB/InB be the
I-adic completion of B. By Algebra, Lemma 96.3, the I-adic topology on B′ is complete
and B′/InB′ = B/InB. Thus the ring map B′ → B is continuous and has dense image
asB′ → B/InB → B/Jn is surjective for all n. Finally, the mapB′ → B is taut because
(InB′)B = InB and A → B is taut. By Lemma 5.10 we see that B′ → B is open and
surjective. Thus the topology on B is the I-adic topology and the proof is complete. �

7. Weakly adic rings

We suggest the reader skip this section. The following is a natural generalization of adic
rings.

Definition 7.1. Let A be a linearly topologized ring.
(1) We say A is weakly pre-adic4 if there exists an ideal I ⊂ A such that the closure

of In is open for all n ≥ 0 and these closures form a fundamental system of open
ideals.

(2) We say A is weakly adic if A is weakly pre-adic and complete5.

4In [?] the authors say A is c-adic.
5By our conventions this includes separated.
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For complete linearly topologized rings we have the following implications

adic + Noetherian

��
adic + finitely generated ideal of definition

��
adic

��
weakly adic

��
admissible + first countable

��

+3 admissible

��
weakly admissible + first countable +3 weakly admissible

where “first countable” means that our topological ring has a countable fundamental sys-
tem of open ideals. There is a similar diagram of implications for noncomplete linearly
topologized rings (i.e., using the notions of pre-adic, weakly pre-adic, pre-admissible, and
weakly pre-admissible). Contrary to what happens with pre-adic rings the completion
of a weakly pre-adic ring is weakly adic as the following lemma characterizing weakly
pre-adic rings shows.

Lemma 7.2. Let A be a linearly topologized ring. The following are equivalent
(1) A is weakly pre-adic,
(2) there exists a taut continuous ring map A′ → A where A′ is a pre-adic topolog-

ical ring, and
(3) A is pre-admissible and there exists an ideal of definition I such that the closure

of In is open for all n ≥ 1, and
(4) A is pre-admissible and for every ideal of definition I the closure of In is open

for all n ≥ 1.
The completion of a weakly pre-adic ring is weakly adic. If A is weakly adic, then A is
admissible and has a countable fundamental system of open ideals.

Proof. Assume (1). Choose an ideal I such that the closure of In is open for all n
and such that these closures form a fundamental system of open ideals. Denote A′ = A
endowed with the I-adic topology. ThenA′ → A is taut by definition and we see that (2)
holds.

Assume (2). Let I ′ ⊂ A′ be an ideal of definition. Denote I the closure of I ′A. Tautness
of A′ → A means that the closures In of (I ′)nA are open and form a fundamental system
of open ideals. Thus I = I1 is open and the closures of In are equal to In and hence open
and form a fundamental system of open ideals. Thus certainly I is an ideal of definition
such that the closure of In is open for all n. Hence (3) holds.

If I ⊂ A is as in (3), then I is an ideal as in Definition 7.1 and we see that (1) holds. Also,
if I ′ ⊂ A is any other ideal of definition, then I ′ is open (see More on Algebra, Definition
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36.1) and hence contains In for some n ≥ 1. Thus (I ′)m contains Inm for all m ≥ 1
and we conclude that the closures of (I ′)m are open for all m. In this way we see that (3)
implies (4). The implication (4)⇒ (3) is trivial.

Let A be weakly pre-adic. Choose A′ → A as in (2). By Lemmas 5.3 and 5.4 the composi-
tionA′ → A∧ is taut. HenceA∧ is weakly pre-adic by the equivalence of (2) and (1). Since
the completion of a linearly topologized ringA is complete (More on Algebra, Section 36)
we see that A∧ is weakly adic.

Let A be weakly adic. Then A is complete and and pre-admissible by (1)⇒ (3) and hence
A is admissible. Of course by definition A has a countable fundamental system of open
ideals. �

We give two criteria that guarantee that a weakly adic ring is adic and has a finitely gen-
erated ideal of definition.

Lemma 7.3. Let A be a complete linearly topologized ring. Let I ⊂ A be a finitely
generated ideal such that the closure of In is open for all n ≥ 0 and these closures form
a fundamental system of open ideals. Then A is adic and has a finitely generated ideal of
definition.

Proof. Denote A′ the ring A endowed with the I-adic topology. The assumptions
tells us that A′ → A is taut. We conclude by Lemma 6.5 (to be sure, this lemma also tells
us that I is an ideal of definition). �

Lemma 7.4. Let A be a weakly adic topological ring. Let I be an ideal of definition
such that I/I2 is a finitely generated module where I2 is the closure of I2. Then A is adic
and has a finitely generated ideal of definition.

Proof. We use the characterization of Lemma 7.2 without further mention. Choose
f1, . . . , fr ∈ I which map to generators of I/I2. Set I ′ = (f1, . . . , fr). We have I ′ +I2 =
I . Then I2 is the closure of I2 = (I ′ + I2)2 ⊂ I ′ + I3 where I3 is the closure of I3. Hence
I ′ + I3 = I . Continuing in this fashion we see that I ′ + In = I for all n ≥ 2 where In is
the closure of In. In other words, the closure of I ′ in A is I . Hence the closure of (I ′)n is
In. Thus the closures of (I ′)n are a fundamental system of open ideals ofA. We conclude
by Lemma 7.3. �

A key feature of the property “weakly pre-adic” is that it ascents along taut ring homo-
morphisms of linearly topologized rings.

Lemma 7.5. Let ϕ : A→ B be a continuous homomorphism of linearly topologized
rings. If ϕ is taut and A is weakly pre-adic, then B is weakly pre-adic.

Proof. Let I ⊂ A be an ideal such that the closure In of In is open and these closures
define a fundamental system of open ideals. Then the closure of InB is equal to the closure
of InB. Since ϕ is taut, these closures are open and form a fundamental system of open
ideals of B. Hence B is weakly pre-adic. �

Lemma 7.6. Let B → A and B → C be continuous homomorphisms of linearly
topologized rings. If A and C are weakly pre-adic, then A⊗̂BC is weakly adic.

Proof. We will use the characterization of Lemma 7.2 without further mention. By
Lemma 4.12 we know thatA⊗̂BC is admissible. Moreover, the proof of that lemma shows
that the closure K ⊂ A⊗̂BC is an ideal of definition, when I ⊂ A and J ⊂ C of
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I(A⊗̂BC) + J(A⊗̂BC) are ideals of definition. Then it suffices to show that the clo-
sure of Kn is open for all n ≥ 1. Since the ideal Kn contains In(A⊗̂BC) + Jn(A⊗̂BC),
since the closure of In in A is open, and since the closure of Jn in C is open, we see that
the closure of Kn is open in A⊗̂BC. �

8. Descending properties

In this section we consider the following situation
(1) ϕ : A→ B is a continuous map of linearly topologized topological rings,
(2) ϕ is taut, and
(3) for every open ideal I ⊂ A if J ⊂ B denotes the closure of IB, then the map

A/I → B/J is faithfully flat.
We are going to show that properties of B are inherited by A in this situation.

Lemma 8.1. In the situation above, if B has a countable fundamental system of open
ideals, then A has a countable fundamental system of open ideals.

Proof. Choose a fundamental systemB ⊃ J1 ⊃ J2 ⊃ . . . of open ideals. By tautness
of ϕ, for every n we can find an open ideal In such that Jn ⊃ InB. We claim that In is
a fundamental system of open ideals of A. Namely, suppose that I ⊂ A is open. As ϕ
is taut, the closure of IB is open and hence contains Jn for some n large enough. Hence
InB ⊂ IB. Let J be the closure of IB in B. Since A/I → B/J is faithfully flat, it is
injective. Hence, since In → A/I → B/J is zero as InB ⊂ IB ⊂ J , we conclude that
In → A/I is zero. Hence In ⊂ I and we win. �

Lemma 8.2. In the situation above, if B is weakly pre-admissible, then A is weakly
pre-admissible.

Proof. Let J ⊂ B be a weak ideal of definition. Let I ⊂ A be an open ideal such that
IB ⊂ J . To show that I is a weak ideal of definition we have to show that any f ∈ I is
topologically nilpotent. Let I ′ ⊂ A be an open ideal. Denote J ′ ⊂ B the closure of I ′B.
Then A/I ′ → B/J ′ is faithfully flat, hence injective. Thus in order to show that fn ∈ I ′

it suffices to show that ϕ(f)n ∈ J ′. This holds for n� 0 since ϕ(f) ∈ J , the ideal J is a
weak ideal of defintion of B, and J ′ is open in B. �

Lemma 8.3. In the situation above, if B is pre-admissible, then A is pre-admissible.
Proof. Let J ⊂ B be a weak ideal of definition. Let I ⊂ A be an open ideal such that

IB ⊂ J . Let I ′ ⊂ A be an open ideal. To show that I is an ideal of definition we have to
show that In ⊂ I ′ for n� 0. Denote J ′ ⊂ B the closure of I ′B. Then A/I ′ → B/J ′ is
faithfully flat, hence injective. Thus in order to show that In ⊂ I ′ it suffices to show that
ϕ(I)n ⊂ J ′. This holds for n � 0 since ϕ(I) ⊂ J , the ideal J is an ideal of defintion of
B, and J ′ is open in B. �

Lemma 8.4. In the situation above, ifB is weakly pre-adic, thenA is weakly pre-adic.
Proof. We will use the characterization of weakly pre-adic rings given in Lemma

7.2 without further mention. By Lemma 8.3 the topological ring A is pre-admissible. Let
I ⊂ A be an ideal of definition. Fix n ≥ 1. To prove the lemma we have to show that the
closure of In is open. Let Iλ ⊂ A be a fundamental system of open ideals. Denote J ⊂ B,
resp. Jλ ⊂ B the closure of IB, resp. IλB. Since B is weakly pre-adic, the closure of Jn
is open. Hence there exists a λ such that

Jλ ⊂
⋂

µ
(Jn + Jµ)
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because the right hand side is the closure of Jn by Lemma 4.2. This means that the image
of Jλ in B/Jµ is contained in the image of Jn in B/Jµ. Observe that the image of Jn in
B/Jµ is equal to the image of InB in B/Jµ (since every element of J is congruent to an
element of IB modulo Jµ). Since A/Iµ → B/Jµ is faithfully flat and since IλB ⊂ Jλ,
we conclude that the image of Iλ in A/Iµ is contained in the image of In. We conclude
that Iλ is contained in the closure of In and the proof is complete. �

Lemma 8.5. In the situation above, if B is adic and has a finitely generated ideal of
definition andA is complete, thenA is adic and has a finitely generated ideal of definition.

Proof. We already know that A is weakly adic and a fortiori admissible by Lemma
8.4 (and Lemma 7.2 to see that adic rings are weakly adic). Let I ⊂ A be an ideal of
definition. Let J ⊂ B be a finitely generated ideal of definition. Since the closure of IB
is open, we can find an n > 0 such that Jn is contained in the closure of IB. Thus after
replacing J by Jn we may assume J is a finitely generated ideal of definition contained in
the closure of IB. By Lemma 4.2 this certainly implies that

J ⊂ IB + J2

Consider the finitely generated A-module M = (J + IB)/IB. The displayed equation
shows that JM = M . By Lemma 4.9 (for example) we see that J is contained in the
Jacobson radical of B. Hence by Nakayama’s lemma, more precisely part (2) of Algebra,
Lemma 20.1, we conclude M = 0. Thus J ⊂ IB.

Since J is finitely generated, we can find a finitely generated ideal I ′ ⊂ I such that J ⊂
I ′B. Since A → B is continuous, J ⊂ B is open, and I is an ideal of definition, we can
find an n > 0 such that InB ⊂ J . Let Jn+1 ⊂ B be the closure of In+1B. We have

In · (B/Jn+1) ⊂ J · (B/Jn+1) ⊂ I ′ · (B/Jn+1)
Since A/In+1 → B/Jn+1 is faithfully flat, this implies In · (A/In+1) ⊂ I ′ · (A/In+1)
which in turn means

In ⊂ I ′ + In+1

This implies In ⊂ I ′ + In+k for all k ≥ 1 which in turn implies that Inm ⊂ (I ′)m +
Inm+k for all k,m ≥ 1. This implies that the closure of (I ′)m contains Inm. Since the
closure of Inm is open as A is weakly adic, we conclude that the closure (I ′)m is open for
all m. Since these closures form a fundamental system of open ideals of A (as the same
thing is true for the closures of In) we conclude by Lemma 7.3. �

9. Affine formal algebraic spaces

In this section we introduce affine formal algebraic spaces. These will in fact be the same
as what are called affine formal schemes in [?]. However, we will call them affine formal
algebraic spaces, in order to prevent confusion with the notion of an affine formal scheme
as defined in [?].

Recall that a thickening of schemes is a closed immersion which induces a surjection on
underlying topological spaces, see More on Morphisms, Definition 2.1.

Definition 9.1. Let S be a scheme. We say a sheaf X on (Sch/S)fppf is an affine
formal algebraic space if there exist

(1) a directed set Λ,
(2) a system (Xλ, fλµ) over Λ in (Sch/S)fppf where

(a) each Xλ is affine,
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(b) each fλµ : Xλ → Xµ is a thickening,
such that

X ∼= colimλ∈Λ Xλ

as fppf sheaves andX satisfies a set theoretic condition (see Remark 11.5). A morphism of
affine formal algebraic spaces over S is a map of sheaves.

Observe that the system (Xλ, fλµ) is not part of the data. Suppose that U is a quasi-
compact scheme over S. Since the transition maps are monomorphisms, we see that

X(U) = colimXλ(U)
by Sites, Lemma 17.7. Thus the fppf sheafification inherent in the colimit of the definition
is a Zariski sheafification which does not do anything for quasi-compact schemes.

Lemma 9.2. Let S be a scheme. If X is an affine formal algebraic space over S , then
the diagonal morphism ∆ : X → X ×S X is representable and a closed immersion.

Proof. Suppose given U → X and V → X where U, V are schemes over S. Let
us show that U ×X V is representable. Write X = colimXλ as in Definition 9.1. The
discussion above shows that Zariski locally on U and V the morphisms factors through
some Xλ. In this case U ×X V = U ×Xλ V which is a scheme. Thus the diagonal is
representable, see Spaces, Lemma 5.10. Given (a, b) : W → X ×S X where W is a
scheme over S consider the map X ×∆,X×SX,(a,b) W → W . As before locally on W
the morphisms a and b map into the affine scheme Xλ for some λ and then we get the
morphism Xλ ×∆λ,Xλ×SXλ,(a,b) W → W . This is the base change of ∆λ : Xλ →
Xλ ×S Xλ which is a closed immersion as Xλ → S is separated (because Xλ is affine).
Thus X → X ×S X is a closed immersion. �

A morphism of schemes X → X ′ is a thickening if it is a closed immersion and induces a
surjection on underlying sets of points, see (More on Morphisms, Definition 2.1). Hence
the property of being a thickening is preserved under arbitrary base change and fpqc local
on the target, see Spaces, Section 4. Thus Spaces, Definition 5.1 applies to “thickening”
and we know what it means for a representable transformation F → G of presheaves on
(Sch/S)fppf to be a thickening. We observe that this does not clash with our definition
(More on Morphisms of Spaces, Definition 9.1) of thickenings in caseF andG are algebraic
spaces.

Lemma 9.3. Let Xλ, λ ∈ Λ and X = colimXλ be as in Definition 9.1. Then Xλ →
X is representable and a thickening.

Proof. The statement makes sense by the discussion in Spaces, Section 3 and 5. By
Lemma 9.2 the morphisms Xλ → X are representable. Given U → X where U is a
scheme, then the discussion following Definition 9.1 shows that Zariski locally on U the
morphism factors through some Xµ with λ ≤ µ. In this case U ×X Xλ = U ×Xµ Xλ so
that U ×X Xλ → U is a base change of the thickening Xλ → Xµ. �

Lemma 9.4. Let Xλ, λ ∈ Λ and X = colimXλ be as in Definition 9.1. If Y is a
quasi-compact algebraic space over S , then any morphism Y → X factors through an
Xλ.

Proof. Choose an affine scheme V and a surjective étale morphism V → Y . The
composition V → Y → X factors through Xλ for some λ by the discussion following
Definition 9.1. Since V → Y is a surjection of sheaves, we conclude. �
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Lemma 9.5. Let S be a scheme. LetX be a sheaf on (Sch/S)fppf . ThenX is an affine
formal algebraic space if and only if the following hold

(1) any morphism U → X where U is an affine scheme over S factors through a
morphism T → X which is representable and a thickening with T an affine
scheme over S , and

(2) a set theoretic condition as in Remark 11.5.

Proof. It follows from Lemmas 9.3 and 9.4 that an affine formal algebraic space sat-
isfies (1) and (2). In order to prove the converse we may assume X is not empty. Let Λ
be the category of representable morphisms T → X which are thickenings where T is an
affine scheme over S. This category is directed. Since X is not empty, Λ contains at least
one object. If T → X and T ′ → X are in Λ, then we can factor T q T ′ → X through
T ′′ → X in Λ. Between any two objects of Λ there is a unique arrow or none. Thus Λ
is a directed set and by assumption X = colimT→X in Λ T . To finish the proof we need
to show that any arrow T → T ′ in Λ is a thickening. This is true because T ′ → X is a
monomorphism of sheaves, so that T = T ×T ′ T ′ = T ×X T ′ and hence the morphism
T → T ′ equals the projection T ×X T ′ → T ′ which is a thickening because T → X is a
thickening. �

For a general affine formal algebraic space X there is no guarantee that X has enough
functions to separate points (for example). See Examples, Section 74. To characterize
those that do we offer the following lemma.

Lemma 9.6. LetS be a scheme. LetX be an fppf sheaf on (Sch/S)fppf which satisfies
the set theoretic condition of Remark 11.5. The following are equivalent:

(1) there exists a weakly admissible topological ringA over S (see Remark 2.3) such
that X = colimI⊂A weak ideal of definition Spec(A/I),

(2) X is an affine formal algebraic space and there exists an S-algebra A and a map
X → Spec(A) such that for a closed immersion T → X with T an affine scheme
the composition T → Spec(A) is a closed immersion,

(3) X is an affine formal algebraic space and there exists an S-algebra A and a map
X → Spec(A) such that for a closed immersion T → X with T a scheme the
composition T → Spec(A) is a closed immersion,

(4) X is an affine formal algebraic space and for some choice ofX = colimXλ as in
Definition 9.1 the projections lim Γ(Xλ,OXλ)→ Γ(Xλ,OXλ) are surjective,

(5) X is an affine formal algebraic space and for any choice of X = colimXλ as in
Definition 9.1 the projections lim Γ(Xλ,OXλ)→ Γ(Xλ,OXλ) are surjective.

Moreover, the weakly admissible topological ring is A = lim Γ(Xλ,OXλ) endowed with
its limit topology and the weak ideals of definition classify exactly the morphisms T → X
which are representable and thickenings.

Proof. It is clear that (5) implies (4).

Assume (4) forX = colimXλ as in Definition 9.1. SetA = lim Γ(Xλ,OXλ). Let T → X
be a closed immersion with T a scheme (note that T → X is representable by Lemma 9.2).
SinceXλ → X is a thickening, so isXλ×XT → T . On the other hand,Xλ×XT → Xλ is
a closed immersion, henceXλ×X T is affine. Hence T is affine by Limits, Proposition 11.2.
Then T → X factors through Xλ for some λ by Lemma 9.4. Thus A → Γ(Xλ,O) →
Γ(T,O) is surjective. In this way we see that (3) holds.

It is clear that (3) implies (2).
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Assume (2) for A and X → Spec(A). Write X = colimXλ as in Definition 9.1. Then
Aλ = Γ(Xλ,O) is a quotient of A by assumption (2). Hence A∧ = limAλ is a complete
topological ring, see discussion in More on Algebra, Section 36. The maps A∧ → Aλ are
surjective as A → Aλ is. We claim that for any λ the kernel Iλ ⊂ A∧ of A∧ → Aλ
is a weak ideal of definition. Namely, it is open by definition of the limit topology. If
f ∈ Iλ, then for any µ ∈ Λ the image of f in Aµ is zero in all the residue fields of the
points of Xµ. Hence it is a nilpotent element of Aµ. Hence some power fn ∈ Iµ. Thus
fn → 0 as n → 0. Thus A∧ is weakly admissible. Finally, suppose that I ⊂ A∧ is a
weak ideal of definition. Then I ⊂ A∧ is open and hence there exists some λ such that
I ⊃ Iλ. Thus we obtain a morphism Spec(A∧/I) → Spec(Aλ) → X . Then it follows
that X = colim Spec(A∧/I) where now the colimit is over all weak ideals of definition.
Thus (1) holds.
Assume (1). In this case it is clear that X is an affine formal algebraic space. Let X =
colimXλ be any presentation as in Definition 9.1. For each λ we can find a weak ideal
of definition I ⊂ A such that Xλ → X factors through Spec(A/I) → X , see Lemma
9.4. Then Xλ = Spec(A/Iλ) with I ⊂ Iλ. Conversely, for any weak ideal of definition
I ⊂ A the morphism Spec(A/I) → X factors through Xλ for some λ, i.e., Iλ ⊂ I . It
follows that each Iλ is a weak ideal of definition and that they form a cofinal subset of the
set of weak ideals of definition. Hence A = limA/I = limA/Iλ and we see that (5) is
true and moreover that A = lim Γ(Xλ,OXλ). �

With this lemma in hand we can make the following definition.

Definition 9.7. Let S be a scheme. LetX be an affine formal algebraic space over S.
We say X is McQuillan if X satisfies the equivalent conditions of Lemma 9.6. Let A be
the weakly admissible topological ring associated to X . We say

(1) X is classical ifX is McQuillan andA is admissible (More on Algebra, Definition
36.1),

(2) X is weakly adic if X is McQuillan and A is weakly adic (Definition 7.1),
(3) X is adic if X is McQuillan and A is adic (More on Algebra, Definition 36.1),
(4) X is adic* if X is McQuillan, A is adic, and A has a finitely generated ideal of

definition, and
(5) X is Noetherian if X is McQuillan and A is both Noetherian and adic.

In [?] they use the terminology “of finite ideal type” for the property that an adic topologi-
cal ringA contains a finitely generated ideal of definition. Given an affine formal algebraic
space X here are the implications among the notions introduced in the definition:

X Noetherian +3 X adic* +3 X adic

ow
X weakly adic +3 X classical +3 X McQuillan

See discussion in Section 7 and for a precise statement see Lemma 10.3.

Remark 9.8. The classical affine formal algebraic spaces correspond to the affine
formal schemes considered in EGA ([?]). To explain this we assume our base scheme is
Spec(Z). Let X = Spf(A) be an affine formal scheme. Let hX be its functor of points as
in Lemma 2.1. Then hX = colim hSpec(A/I) where the colimit is over the collection of
ideals of definition of the admissible topological ring A. This follows from (2.0.1) when
evaluating on affine schemes and it suffices to check on affine schemes as both sides are fppf
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sheaves, see Lemma 2.2. Thus hX is an affine formal algebraic space. In fact, it is a classi-
cal affine formal algebraic space by Definition 9.7. Thus Lemma 2.1 tells us the category
of affine formal schemes is equivalent to the category of classical affine formal algebraic
spaces.

Having made the connection with affine formal schemes above, it seems natural to make
the following definition.

Definition 9.9. Let S be a scheme. Let A be a weakly admissible topological ring
over S , see Definition 4.86. The formal spectrum of A is the affine formal algebraic space

Spf(A) = colim Spec(A/I)
where the colimit is over the set of weak ideals of definition ofA and taken in the category
Sh((Sch/S)fppf ).

Such a formal spectrum is McQuillan by construction and conversely every McQuillan
affine formal algebraic space is isomorphic to a formal spectrum. To be sure, in our the-
ory there exist affine formal algebraic spaces which are not the formal spectrum of any
weakly admissible topological ring. Following [?] we could introduce S-pro-rings to be
pro-objects in the category of S-algebras, see Categories, Remark 22.5. Then every affine
formal algebraic space over S would be the formal spectrum of such an S-pro-ring. We
will not do this and instead we will work directly with the corresponding affine formal
algebraic spaces.
The construction of the formal spectrum is functorial. To explain this let ϕ : B → A be
a continuous map of weakly admissible topological rings over S. Then

Spf(ϕ) : Spf(B)→ Spf(A)
is the unique morphism of affine formal algebraic spaces such that the diagrams

Spec(B/J)

��

// Spec(A/I)

��
Spf(B) // Spf(A)

commute for all weak ideals of definition I ⊂ A and J ⊂ B with ϕ(I) ⊂ J . Since
continuity of ϕ implies that for every weak ideal of definition J ⊂ B there is a weak ideal
of definition I ⊂ A with the required property, we see that the required commutativities
uniquely determine and define Spf(ϕ).

Lemma 9.10. Let S be a scheme. LetA,B be weakly admissible topological rings over
S. Any morphism f : Spf(B) → Spf(A) of affine formal algebraic spaces over S is equal
to Spf(f ]) for a unique continuous S-algebra map f ] : A→ B.

Proof. Let f : Spf(B) → Spf(A) be as in the lemma. Let J ⊂ B be a weak ideal
of definition. By Lemma 9.4 there exists a weak ideal of definition I ⊂ A such that
Spec(B/J) → Spf(B) → Spf(A) factors through Spec(A/I). By Schemes, Lemma 6.4
we obtain an S-algebra map A/I → B/J . These maps are compatible for varying J and
define the map f ] : A → B. This map is continuous because for every weak ideal of
definition J ⊂ B there is a weak ideal of definition I ⊂ A such that f ](I) ⊂ J . The
equality f = Spf(f ]) holds by our choice of the ring maps A/I → B/J which make up
f ]. �

6See More on Algebra, Definition 36.1 for the classical case and see Remark 2.3 for a discussion of differences.
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Lemma 9.11. LetS be a scheme. Let f : X → Y be a map of presheaves on (Sch/S)fppf .
IfX is an affine formal algebraic space and f is representable by algebraic spaces and locally
quasi-finite, then f is representable (by schemes).

Proof. Let T be a scheme over S and T → Y a map. We have to show that the
algebraic space X ×Y T is a scheme. Write X = colimXλ as in Definition 9.1. Let W ⊂
X×Y T be a quasi-compact open subspace. The restriction of the projectionX×Y T → X
to W factors through Xλ for some λ. Then

W → Xλ ×S T
is a monomorphism (hence separated) and locally quasi-finite (becauseW → X×Y T → T
is locally quasi-finite by our assumption on X → Y , see Morphisms of Spaces, Lemma
27.8). Hence W is a scheme by Morphisms of Spaces, Proposition 50.2. Thus X ×Y T is a
scheme by Properties of Spaces, Lemma 13.1. �

10. Countably indexed affine formal algebraic spaces

These are the affine formal algebraic spaces as in the following lemma.

Lemma 10.1. Let S be a scheme. Let X be an affine formal algebraic space over S.
The following are equivalent

(1) there exists a system X1 → X2 → X3 → . . . of thickenings of affine schemes
over S such that X = colimXn,

(2) there exists a choiceX = colimXλ as in Definition 9.1 such that Λ is countable.

Proof. This follows from the observation that a countable directed set has a cofinal
subset isomorphic to (N,≥). See proof of Algebra, Lemma 86.3. �

Definition 10.2. Let S be a scheme. Let X be an affine formal algebraic space over
S. We sayX is countably indexed if the equivalent conditions of Lemma 10.1 are satisfied.

In the language of [?] this is expressed by saying that X is an ℵ0-ind scheme.

Lemma 10.3. Let X be an affine formal algebraic space over a scheme S.
(1) If X is Noetherian, then X is adic*.
(2) If X is adic*, then X is adic.
(3) If X is adic, then X is weakly adic.
(4) If X is weakly adic, then X is classical.
(5) If X is weakly adic, then X is countably indexed.
(6) If X is countably indexed, then X is McQuillan.

Proof. Statements (1), (2), (3), and (4) follow by writingX = Spf(A) and whereA is
a weakly admissible (hence complete) linearly topologized ring and using the implications
between the various types of such rings discussed in Section 7.
Proof of (5). By definition there exists a weakly adic topological ring A such that X =
colim Spec(A/I) where the colimit is over the ideals of definition of A. As A is weakly
adic, there exits in particular a countable fundamental system Iλ of open ideals, see Def-
inition 7.1. Then X = colim Spec(A/In) by definition of Spf(A). Thus X is countably
indexed.
Proof of (6). Write X = colimXn for some system X1 → X2 → X3 → . . . of thicken-
ings of affine schemes over S. Then

A = lim Γ(Xn,OXn)
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surjects onto each Γ(Xn,OXn) because the transition maps are surjections as the mor-
phisms Xn → Xn+1 are closed immersions. Hence X is McQuillan. �

Lemma 10.4. Let S be a scheme. LetX be a presheaf on (Sch/S)fppf . The following
are equivalent

(1) X is a countably indexed affine formal algebraic space,
(2) X = Spf(A) where A is a weakly admissible topological S-algebra which has a

countable fundamental system of neighbourhoods of 0,
(3) X = Spf(A) where A is a weakly admissible topological S-algebra which has a

fundamental system A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . of weak ideals of definition,
(4) X = Spf(A) where A is a complete topological S-algebra with a fundamental

system of open neighbourhoods of 0 given by a countable sequence A ⊃ I1 ⊃
I2 ⊃ I3 ⊃ . . . of ideals such that In/In+1 is locally nilpotent, and

(5) X = Spf(A) where A = limB/Jn with the limit topology where B ⊃ J1 ⊃
J2 ⊃ J3 ⊃ . . . is a sequence of ideals in an S-algebra B with Jn/Jn+1 locally
nilpotent.

Proof. Assume (1). By Lemma 10.3 we can write X = Spf(A) where A is a weakly
admissible topological S-algebra. For any presentation X = colimXn as in Lemma 10.1
part (1) we see that A = limAn with Xn = Spec(An) and An = A/In for some weak
ideal of definition In ⊂ A. This follows from the final statement of Lemma 9.6 which
moreover implies that {In} is a fundamental system of open neighbourhoods of 0. Thus
we have a sequence

A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . .
of weak ideals of definition with A = limA/In. In this way we see that condition (1)
implies each of the conditions (2) – (5).

Assume (5). First note that the limit topology onA = limB/Jn is a linearly topologized,
complete topology, see More on Algebra, Section 36. If f ∈ A maps to zero in B/J1, then
some power maps to zero in B/J2 as its image in J1/J2 is nilpotent, then a further power
maps to zero in J2/J3, etc, etc. In this way we see the open ideal Ker(A → B/J1) is a
weak ideal of definition. Thus A is weakly admissible. In this way we see that (5) implies
(2).

It is clear that (4) is a special case of (5) by taking B = A. It is clear that (3) is a special
case of (2).

Assume A is as in (2). Let En be a countable fundamental system of neighbourhoods of 0
inA. SinceA is a weakly admissible topological ring we can find open ideals In ⊂ En. We
can also choose a weak ideal of definition J ⊂ A. Then J ∩ In is a fundamental system of
weak ideals of definition of A and we get X = Spf(A) = colim Spec(A/(J ∩ In)) which
shows that X is a countably indexed affine formal algebraic space. �

Lemma 10.5. Let S be a scheme. Let X be an affine formal algebraic space. The
following are equivalent

(1) X is Noetherian,
(2) X is adic* and for every closed immersion T → X with T a scheme, T is Noe-

therian,
(3) X is adic* and for some choice ofX = colimXλ as in Definition 9.1 the schemes

Xλ are Noetherian, and
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(4) X is weakly adic and for some choice X = colimXλ as in Definition 9.1 the
schemes Xλ are Noetherian.

Proof. Assume X is Noetherian. Then X = Spf(A) where A is a Noetherian adic
ring. Let T → X be a closed immersion where T is a scheme. By Lemma 9.6 we see that T
is affine and that T → Spec(A) is a closed immersion. Since A is Noetherian, we see that
T is Noetherian. In this way we see that (1)⇒ (2).

The implications (2)⇒ (3) and (2)⇒ (4) are immediate (see Lemma 10.3).

To prove (3)⇒ (1) writeX = Spf(A) for some adic ringAwith finitely generated ideal of
definition I . We are also given that the rings A/Iλ are Noetherian for some fundamental
system of open ideals Iλ. Since I is open, we can find a λ such that Iλ ⊂ I . Then A/I is
Noetherian and we conclude that A is Noetherian by Algebra, Lemma 97.5.

To prove (4)⇒ (3) write X = Spf(A) for some weakly adic ring A. Then A is admissible
and has an ideal of definition I and the closure I2 of I2 is open, see Lemma 7.2. We are also
given that the rings A/Iλ are Noetherian for some fundamental system of open ideals Iλ.
Choose a λ such that Iλ ⊂ I2. ThenA/I2 is Noetherian as a quotient ofA/Iλ. Hence I/I2
is a finite A-module. Hence A is an adic ring with a finitely generated ideal of definition
by Lemma 7.4. Thus X is adic* and (3) holds. �

11. Formal algebraic spaces

We take a break from our habit of introducing new concepts first for rings, then for
schemes, and then for algebraic spaces, by introducing formal algebraic spaces without
first introducing formal schemes. The general idea will be that a formal algebraic space is
a sheaf in the fppf topology which étale locally is an affine formal scheme in the sense of
[?]. Related material can be found in [?].

In the definition of a formal algebraic space we are going to borrow some terminology
from Bootstrap, Sections 3 and 4.

Definition 11.1. Let S be a scheme. We say a sheaf X on (Sch/S)fppf is a formal
algebraic space if there exist a family of maps {Xi → X}i∈I of sheaves such that

(1) Xi is an affine formal algebraic space,
(2) Xi → X is representable by algebraic spaces and étale,
(3)

∐
Xi → X is surjective as a map of sheaves

andX satisfies a set theoretic condition (see Remark 11.5). A morphism of formal algebraic
spaces over S is a map of sheaves.

Discussion. Sanity check: an affine formal algebraic space is a formal algebraic space. In
the situation of the definition the morphisms Xi → X are representable (by schemes),
see Lemma 9.11. By Bootstrap, Lemma 4.6 we could instead of asking

∐
Xi → X to be

surjective as a map of sheaves, require that it be surjective (which makes sense because it is
representable).

Our notion of a formal algebraic space is very general. In fact, even affine formal algebraic
spaces as defined above are very nasty objects.

Lemma 11.2. Let S be a scheme. If X is a formal algebraic space over S , then the
diagonal morphism ∆ : X → X ×S X is representable, a monomorphism, locally quasi-
finite, locally of finite type, and separated.
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Proof. Suppose givenU → X andV → X withU, V schemes overS. ThenU×XV
is a sheaf. Choose {Xi → X} as in Definition 11.1. For every i the morphism

(U ×X Xi)×Xi (V ×X Xi) = (U ×X V )×X Xi → U ×X V

is representable and étale as a base change of Xi → X and its source is a scheme (use
Lemmas 9.2 and 9.11). These maps are jointly surjective henceU×XV is an algebraic space
by Bootstrap, Theorem 10.1. The morphism U ×X V → U ×S V is a monomorphism. It
is also locally quasi-finite, because on precomposing with the morphism displayed above
we obtain the composition

(U ×X Xi)×Xi (V ×X Xi)→ (U ×X Xi)×S (V ×X Xi)→ U ×S V
which is locally quasi-finite as a composition of a closed immersion (Lemma 9.2) and an
étale morphism, see Descent on Spaces, Lemma 19.2. Hence we conclude that U ×X V is
a scheme by Morphisms of Spaces, Proposition 50.2. Thus ∆ is representable, see Spaces,
Lemma 5.10.
In fact, since we’ve shown above that the morphisms of schemes U ×X V → U ×S V
are aways monomorphisms and locally quasi-finite we conclude that ∆ : X → X ×S X
is a monomorphism and locally quasi-finite, see Spaces, Lemma 5.11. Then we can use the
principle of Spaces, Lemma 5.8 to see that ∆ is separated and locally of finite type. Namely,
a monomorphism of schemes is separated (Schemes, Lemma 23.3) and a locally quasi-finite
morphism of schemes is locally of finite type (follows from the definition in Morphisms,
Section 20). �

Lemma 11.3. Let S be a scheme. Let f : X → Y be a morphism from an algebraic
space overS to a formal algebraic space overS. Then f is representable by algebraic spaces.

Proof. Let Z → Y be a morphism where Z is a scheme over S. We have to show
that X ×Y Z is an algebraic space. Choose a scheme U and a surjective étale morphism
U → X . Then U ×Y Z → X ×Y Z is representable surjective étale (Spaces, Lemma 5.5)
andU ×Y Z is a scheme by Lemma 11.2. Hence the result by Bootstrap, Theorem 10.1. �

Remark 11.4. Modulo set theoretic issues the category of formal schemes à la EGA
(see Section 2) is equivalent to a full subcategory of the category of formal algebraic spaces.
To explain this we assume our base scheme is Spec(Z). By Lemma 2.2 the functor of
points hX associated to a formal scheme X is a sheaf in the fppf topology. By Lemma 2.1
the assignment X 7→ hX is a fully faithful embedding of the category of formal schemes
into the category of fppf sheaves. Given a formal scheme X we choose an open covering
X =

⋃
Xi with Xi affine formal schemes. Then hXi is an affine formal algebraic space

by Remark 9.8. The morphisms hXi → hX are representable and open immersions. Thus
{hXi → hX} is a family as in Definition 11.1 and we see that hX is a formal algebraic space.

Remark 11.5. Let S be a scheme and let (Sch/S)fppf be a big fppf site as in Topolo-
gies, Definition 7.8. As our set theoretic condition on X in Definitions 9.1 and 11.1 we
take: there exist objects U,R of (Sch/S)fppf , a morphism U → X which is a surjection
of fppf sheaves, and a morphism R → U ×X U which is a surjection of fppf sheaves. In
other words, we require our sheaf to be a coequalizer of two maps between representable
sheaves. Here are some observations which imply this notion behaves reasonably well:

(1) Suppose X = colimλ∈Λ Xλ and the system satisfies conditions (1) and (2) of
Definition 9.1. Then U =

∐
λ∈Λ Xλ → X is a surjection of fppf sheaves. More-

over, U ×X U is a closed subscheme of U ×S U by Lemma 9.2. Hence if U is
representable by an object of (Sch/S)fppf then U ×S U is too (see Sets, Lemma
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9.9) and the set theoretic condition is satisfied. This is always the case if Λ is
countable, see Sets, Lemma 9.9.

(2) Sanity check. Let {Xi → X}i∈I be as in Definition 11.1 (with the set theoretic
condition as formulated above) and assume that each Xi is actually an affine
scheme. ThenX is an algebraic space. Namely, if we choose a larger big fppf site
(Sch′/S)fppf such that U ′ =

∐
Xi and R′ =

∐
Xi ×X Xj are representable

by objects in it, then X ′ = U ′/R′ will be an object of the category of algebraic
spaces for this choice. Then an application of Spaces, Lemma 15.2 shows that X
is an algebraic space for (Sch/S)fppf .

(3) Let {Xi → X}i∈I be a family of maps of sheaves satisfying conditions (1), (2), (3)
of Definition 11.1. For each i we can pick Ui ∈ Ob((Sch/S)fppf ) and Ui → Xi

which is a surjection of sheaves. Thus if I is not too large (for example countable)
then U =

∐
Ui → X is a surjection of sheaves and U is representable by an

object of (Sch/S)fppf . To get R ∈ Ob((Sch/S)fppf ) surjecting onto U ×X U
it suffices to assume the diagonal ∆ : X → X ×SX is not too wild, for example
this always works if the diagonal ofX is quasi-compact, i.e.,X is quasi-separated.

12. The reduction

All formal algebraic spaces have an underlying reduced algebraic space as the following
lemma demonstrates.

Lemma 12.1. Let S be a scheme. Let X be a formal algebraic space over S. There
exists a reduced algebraic space Xred and a representable morphism Xred → X which
is a thickening. A morphism U → X with U a reduced algebraic space factors uniquely
through Xred.

Proof. First assume that X is an affine formal algebraic space. Say X = colimXλ

as in Definition 9.1. Since the transition morphisms are thickenings, the affine schemes
Xλ all have isomorphic reductions Xred. The morphism Xred → X is representable and
a thickening by Lemma 9.3 and the fact that compositions of thickenings are thickenings.
We omit the verification of the universal property (use Schemes, Definition 12.5, Schemes,
Lemma 12.7, Properties of Spaces, Definition 12.5, and Properties of Spaces, Lemma 12.4).

Let X and {Xi → X}i∈I be as in Definition 11.1. For each i let Xi,red → Xi be the
reduction as constructed above. For i, j ∈ I the projection Xi,red ×X Xj → Xi,red is
an étale (by assumption) morphism of schemes (by Lemma 9.11). Hence Xi,red ×X Xj

is reduced (see Descent, Lemma 18.1). Thus the projection Xi,red ×X Xj → Xj factors
through Xj,red by the universal property. We conclude that

Rij = Xi,red ×X Xj = Xi,red ×X Xj,red = Xi ×X Xj,red

because the morphisms Xi,red → Xi are injections of sheaves. Set U =
∐
Xi,red, set

R =
∐
Rij , and denote s, t : R → U the two projections. As a sheaf R = U ×X U

and s and t are étale. Then (t, s) : R → U defines an étale equivalence relation by our
observations above. Thus Xred = U/R is an algebraic space by Spaces, Theorem 10.5. By
construction the diagram ∐

Xi,red
//

��

∐
Xi

��
Xred

// X
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is cartesian. Since the right vertical arrow is étale surjective and the top horizontal arrow is
representable and a thickening we conclude thatXred → X is representable by Bootstrap,
Lemma 5.2 (to verify the assumptions of the lemma use that a surjective étale morphism
is surjective, flat, and locally of finite presentation and use that thickenings are separated
and locally quasi-finite). Then we can use Spaces, Lemma 5.6 to conclude that Xred →
X is a thickening (use that being a thickening is equivalent to being a surjective closed
immersion).

Finally, suppose thatU → X is a morphism withU a reduced algebraic space overS. Then
eachXi×XU is étale overU and therefore reduced (by our definition of reduced algebraic
spaces in Properties of Spaces, Section 7). Then Xi ×X U → Xi factors through Xi,red.
Hence U → X factors through Xred because {Xi ×X U → U} is an étale covering. �

Example 12.2. Let A be a weakly admissible topological ring. In this case we have

Spf(A)red = Spec(A/a)

where a ⊂ A is the ideal of topologically nilpotent elements. Namely, a is a radical ideal
(Lemma 4.10) which is open because A is weakly admissible.

Lemma 12.3. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S which is representable by algebraic spaces and smooth (for example étale).
Then Xred = X ×Y Yred.

Proof. (The étale case follows directly from the construction of the underlying re-
duced algebraic space in the proof of Lemma 12.1.) Assume f is smooth. Observe that
X ×Y Yred → Yred is a smooth morphism of algebraic spaces. Hence X ×Y Yred is a
reduced algebraic space by Descent on Spaces, Lemma 9.5. Then the univeral property of
reduction shows that the canonical morphismXred → X×Y Yred is an isomorphism. �

Lemma 12.4. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S which is representable by algebraic spaces. Then f is surjective in the sense
of Bootstrap, Definition 4.1 if and only if fred : Xred → Yred is a surjective morphism of
algebraic spaces.

Proof. Omitted. �

13. Colimits of algebraic spaces along thickenings

A special type of formal algebraic space is one which can globally be written as a cofiltered
colimit of algebraic spaces along thickenings as in the following lemma. We will see later
(in Section 18) that any quasi-compact and quasi-separated formal algebraic space is such
a global colimit.

Lemma 13.1. Let S be a scheme. Suppose given a directed set Λ and a system of
algebraic spaces (Xλ, fλµ) over Λ where each fλµ : Xλ → Xµ is a thickening. Then
X = colimλ∈Λ Xλ is a formal algebraic space over S.

Proof. Since we take the colimit in the category of fppf sheaves, we see that X is a
sheaf. Choose and fix λ ∈ Λ. Choose an étale covering {Xi,λ → Xλ} where Xi is an
affine scheme over S , see Properties of Spaces, Lemma 6.1. For each µ ≥ λ there exists a



13. COLIMITS OF ALGEBRAIC SPACES ALONG THICKENINGS 6179

cartesian diagram
Xi,λ

//

��

Xi,µ

��
Xλ

// Xµ

with étale vertical arrows, see More on Morphisms of Spaces, Theorem 8.1 (this also uses
that a thickening is a surjective closed immersion which satisfies the conditions of the
theorem). Moreover, these diagrams are unique up to unique isomorphism and hence
Xi,µ = Xµ ×Xµ′ Xi,µ′ for µ′ ≥ µ. The morphisms Xi,µ → Xi,µ′ is a thickening as
a base change of a thickening. Each Xi,µ is an affine scheme by Limits of Spaces, Proposi-
tion 15.2 and the fact that Xi,λ is affine. Set Xi = colimµ≥λXi,µ. Then Xi is an affine
formal algebraic space. The morphism Xi → X is étale because given an affine scheme U
any U → X factors throughXµ for some µ ≥ λ (details omitted). In this way we see that
X is a formal algebraic space. �

Let S be a scheme. LetX be a formal algebraic space over S. How does one prove or check
thatX is a global colimit as in Lemma 13.1? To do this we look for maps i : Z → X where
Z is an algebraic space over S and i is surjective and a closed immersion, in other words,
i is a thickening. This makes sense as i is representable by algebraic spaces (Lemma 11.3)
and we can use Bootstrap, Definition 4.1 as before.

Example 13.2. Let (A,m, κ) be a valuation ring, which is (π)-adically complete for
some nonzero π ∈ m. Assume also that m is not finitely generated. An example is A =
OCp

and π = p whereOCp
is the ring of integers of the field of p-adic complex numbers

Cp (this is the completion of the algebraic closure of Qp). Another example is

A =
{∑

α∈Q, α≥0
aαt

α

∣∣∣∣ aα ∈ κ and for all n there are only a
finite number of nonzero aα with α ≤ n

}
and π = t. Then X = Spf(A) is an affine formal algebraic space and Spec(κ) → X is a
thickening which corresponds to the weak ideal of definition m ⊂ A which is however
not an ideal of definition.

Remark 13.3 (Weak ideals of definition). Let X be a formal scheme in the sense of
McQuillan, see Remark 2.3. An weak ideal of definition for X is an ideal sheaf I ⊂ OX

such that for all U ⊂ X affine formal open subscheme the ideal I(U) ⊂ OX(U) is a weak
ideal of definition of the weakly admissible topological ring OX(U). It suffices to check
the condition on the members of an affine open covering. There is a one-to-one correspon-
dence

{weak ideals of definition for X} ↔ {thickenings i : Z → hX as above}
This correspondence associates to I the schemeZ = (X,OX/I) together with the obvious
morphism to X. A fundamental system of weak ideals of definition is a collection of weak
ideals of definition Iλ such that on every affine open formal subscheme U ⊂ X the ideals

Iλ = Iλ(U) ⊂ A = Γ(U,OX)
form a fundamental system of weak ideals of definition of the weakly admissible topolog-
ical ring A. It suffices to check on the members of an affine open covering. We conclude
that the formal algebraic space hX associated to the McQuillan formal scheme X is a col-
imit of schemes as in Lemma 13.1 if and only if there exists a fundamental system of weak
ideals of definition for X.
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Remark 13.4 (Ideals of definition). Let X be a formal scheme à la EGA. An ideal of
definition for X is an ideal sheaf I ⊂ OX such that for all U ⊂ X affine formal open
subscheme the ideal I(U) ⊂ OX(U) is an ideal of definition of the admissible topological
ringOX(U). It suffices to check the condition on the members of an affine open covering.
We do not get the same correspondence between ideals of definition and thickeningsZ →
hX as in Remark 13.3; an example is given in Example 13.2. A fundamental system of
ideals of definition is a collection of ideals of definition Iλ such that on every affine open
formal subscheme U ⊂ X the ideals

Iλ = Iλ(U) ⊂ A = Γ(U,OX)
form a fundamental system of ideals of definition of the admissible topological ring A.
It suffices to check on the members of an affine open covering. Suppose that X is quasi-
compact and that {Iλ}λ∈Λ is a fundamental system of weak ideals of definition. IfA is an
admissible topological ring then all sufficiently small open ideals are ideals of definition
(namely any open ideal contained in an ideal of definition is an ideal of definition). Thus
since we only need to check on the finitely many members of an affine open covering we
see that Iλ is an ideal of definition for λ sufficiently large. Using the discussion in Remark
13.3 we conclude that the formal algebraic spacehX associated to the quasi-compact formal
scheme X à la EGA is a colimit of schemes as in Lemma 13.1 if and only if there exists a
fundamental system of ideals of definition for X.

14. Completion along a closed subset

Our notion of a formal algebraic space is well adapted to taking the completion along a
closed subset.

Lemma 14.1. Let S be a scheme. Let X be an affine scheme over S. Let T ⊂ |X| be a
closed subset. Then the functor

(Sch/S)fppf −→ Sets, U 7−→ {f : U → X | f(|U |) ⊂ T}
is a McQuillan affine formal algebraic space.

Proof. Say X = Spec(A) and T corresponds to the radical ideal I ⊂ A. Let U =
Spec(B) be an affine scheme over S and let f : U → X be an element of F (U). Then f
corresponds to a ring map ϕ : A→ B such that every prime of B contains ϕ(I)B. Thus
every element of ϕ(I) is nilpotent inB, see Algebra, Lemma 17.2. Setting J = Ker(ϕ) we
conclude that I/J is a locally nilpotent ideal inA/J . Equivalently, V (J) = V (I) = T . In
other words, the functor of the lemma equals colim Spec(A/J) where the colimit is over
the collection of ideals J with V (J) = T . Thus our functor is an affine formal algebraic
space. It is McQuillan (Definition 9.7) because the maps A → A/J are surjective and
hence A∧ = limA/J → A/J is surjective, see Lemma 9.6. �

Lemma 14.2. Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X| be
a closed subset. Then the functor

(Sch/S)fppf −→ Sets, U 7−→ {f : U → X | f(|U |) ⊂ T}
is a formal algebraic space.

Proof. Denote F the functor. Let {Ui → U} be an fppf covering. Then
∐
|Ui| →

|U | is surjective. Since X is an fppf sheaf, it follows that F is an fppf sheaf.
Let {gi : Xi → X} be an étale covering such that Xi is affine for all i, see Properties
of Spaces, Lemma 6.1. The morphisms F ×X Xi → F are étale (see Spaces, Lemma 5.5)
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and the map
∐
F ×X Xi → F is a surjection of sheaves. Thus it suffices to prove that

F ×X Xi is an affine formal algebraic space. A U -valued point of F ×X Xi is a morphism
U → Xi whose image is contained in the closed subset g−1

i (T ) ⊂ |Xi|. Thus this follows
from Lemma 14.1. �

Definition 14.3. Let S be a scheme. LetX be an algebraic space over S. Let T ⊂ |X|
be a closed subset. The formal algebraic space of Lemma 14.2 is called the completion of
X along T .

In [?, Chapter I, Section 10.8] the notation X/T is used to denote the completion and we
will occasionally use this notation as well. Let f : X → X ′ be a morphism of algebraic
spaces over a scheme S. Suppose that T ⊂ |X| and T ′ ⊂ |X ′| are closed subsets such that
|f |(T ) ⊂ T ′. Then it is clear that f defines a morphism of formal algebraic spaces

X/T −→ X ′
/T ′

between the completions.

Lemma 14.4. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic spaces
over S. Let T ⊂ |X| be a closed subset and let T ′ = |f |−1(T ) ⊂ |X ′|. Then

X ′
/T ′

//

��

X ′

f

��
X/T

// X

is a cartesian diagram of sheaves. In particular, the morphism X ′
/T ′ → X/T is repre-

sentable by algebraic spaces.

Proof. Namely, suppose that Y → X is a morphism from a scheme into X such
that |Y | maps into T . Then Y ×X X ′ → X is a morphism of algebraic spaces such that
|Y ×X X ′| maps into T ′. Hence the functor Y ×X/T X ′

/T ′ is represented by Y ×X X ′

and we see that the lemma holds. �

Lemma 14.5. Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X|
be a closed subset. The reduction (X/T )red of the completion X/T of X along T is the
reduced induced closed subspace Z of X corresponding to T .

Proof. It follows from Lemma 12.1, Properties of Spaces, Definition 12.5 (which uses
Properties of Spaces, Lemma 12.3 to construct Z), and the definition of X/T that Z and
(X/T )red are reduced algebraic spaces characterized the same mapping property: a mor-
phism g : Y → X whose source is a reduced algebraic space factors through them if and
only if |Y | maps into T ⊂ |X|. �

Lemma 14.6. Let S be a scheme. Let X = Spec(A) be an affine scheme over S. Let
T ⊂ X be a closed subset. Let X/T be the formal completion of X along T .

(1) If X \ T is quasi-compact, i.e., T is constructible, then X/T is adic*.
(2) If T = V (I) for some finitely generated ideal I ⊂ A, then X/T = Spf(A∧)

where A∧ is the I-adic completion of A.
(3) If X is Noetherian, then X/T is Noetherian.

Proof. By Algebra, Lemma 29.1 if (1) holds, then we can find an ideal I ⊂ A as in
(2). If (3) holds then we can find an ideal I ⊂ A as in (2). Moreover, completions of
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Noetherian rings are Noetherian by Algebra, Lemma 97.6. All in all we see that it suffices
to prove (2).

Proof of (2). Let I = (f1, . . . , fr) ⊂ A cut out T . If Z = Spec(B) is an affine scheme
and g : Z → X is a morphism with g(Z) ⊂ T (set theoretically), then g](fi) is nilpo-
tent in B for each i. Thus In maps to zero in B for some n. Hence we see that X/T =
colim Spec(A/In) = Spf(A∧). �

The following lemma is due to Ofer Gabber.

Lemma 14.7. Let S be a scheme. Let X = Spec(A) be an affine scheme over S. Let
T ⊂ X be a closed subscheme.

(1) If the formal completion X/T is countably indexed and there exist countably
many f1, f2, f3, . . . ∈ A such that T = V (f1, f2, f3, . . .), then X/T is adic*.

(2) The conclusion of (1) is wrong if we omit the assumption that T can be cut out
by countably many functions in X .

Proof. The assumption that X/T is countably indexed means that there exists a se-
quence of ideals

A ⊃ J1 ⊃ J2 ⊃ J3 ⊃ . . .
with V (Jn) = T such that every ideal J ⊂ A with V (J) = T there exists an n such that
J ⊃ Jn.

To construct an example for (2) let ω1 be the first uncountable ordinal. Let k be a field
and let A be the k-algebra generated by xα, α ∈ ω1 and yαβ with α ∈ β ∈ ω1 subject to
the relations xα = yαβxβ . Let T = V (xα). Let Jn = (xnα). If J ⊂ A is an ideal such
that V (J) = T , then xnαα ∈ J for some nα ≥ 1. One of the sets {α | nα = n} must be
unbounded in ω1. Then the relations imply that Jn ⊂ J .

To see that (2) holds it now suffices to show that A∧ = limA/Jn is not a ring complete
with respect to a finitely generated ideal. For γ ∈ ω1 let Aγ be the quotient of A by the
ideal generated by xα, α ∈ γ and yαβ , α ∈ γ. As A/J1 is reduced, every topologically
nilpotent element f of limA/Jn is in J∧

1 = lim J1/Jn. This means f is an infinite series
involving only a countable number of generators. Hence f dies in A∧

γ = limAγ/JnAγ
for some γ. Note that A∧ → A∧

γ is continuous and open by Lemma 4.5. If the topology
on A∧ was I-adic for some finitely generated ideal I ⊂ A∧, then I would go to zero in
someA∧

γ . This would mean thatA∧
γ is discrete, which is not the case as there is a surjective

continuous and open (by Lemma 4.5) map A∧
γ → k[[t]] given by xα 7→ t, yαβ 7→ 1 for

γ = α or γ ∈ α.

Before we prove (1) we first prove the following: If I ⊂ A∧ is a finitely generated ideal
whose closure Ī is open, then I = Ī . Since V (J2

n) = T there exists an m such that
J2
n ⊃ Jm. Thus, we may assume that J2

n ⊃ Jn+1 for all n by passing to a subsequence. Set
J∧
n = limk≥n Jn/Jk ⊂ A∧. Since the closure Ī =

⋂
(I + J∧

n ) (Lemma 4.2) is open we see
that there exists an m such that I + J∧

n ⊃ J∧
m for all n ≥ m. Fix such an m. We have

J∧
n−1I + J∧

n+1 ⊃ J∧
n−1(I + J∧

n+1) ⊃ J∧
n−1J

∧
m

for all n ≥ m+ 1. Namely, the first inclusion is trivial and the second was shown above.
Because Jn−1Jm ⊃ J2

n−1 ⊃ Jn these inclusions show that the image of Jn in A∧ is
contained in the ideal J∧

n−1I + J∧
n+1. Because this ideal is open we conclude that

J∧
n−1I + J∧

n+1 ⊃ J∧
n .
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Say I = (g1, . . . , gt). Pick f ∈ J∧
m+1. Using the last displayed inclusion, valid for all

n ≥ m+ 1, we can write by induction on c ≥ 0

f =
∑

fi,cgi mod J∧
m+1+c

with fi,c ∈ J∧
m and fi,c ≡ fi,c−1 mod J∧

m+c. It follows that IJ∧
m ⊃ J∧

m+1. Combined
with I + J∧

m+1 ⊃ J∧
m we conclude that I is open.

Proof of (1). Assume T = V (f1, f2, f3, . . .). Let Im ⊂ A∧ be the ideal generated by
f1, . . . , fm. We distinguish two cases.

Case I: For somem the closure of Im is open. Then Im is open by the result of the previous
paragraph. For any n we have (Jn)2 ⊃ Jn+1 by design, so the closure of (J∧

n )2 contains
J∧
n+1 and thus is open. Taking n large, it follows that the closure of the product of any

two open ideals in A∧ is open. Let us prove Ikm is open for k ≥ 1 by induction on k. The
case k = 1 is our hypothesis on m in Case I. For k > 1, suppose Ik−1

m is open. Then
Ikm = Ik−1

m · Im is the product of two open ideals and hence has open closure. But then
since Ikm is finitely generated it follows that Ikm is open by the previous paragraph (applied
to I = Ikm), so we can continue the induction on k. As each element of Im is topologically
nilpotent, we conclude that Im is an ideal of definition which proves that A∧ is adic with
a finitely generated ideal of definition, i.e., X/T is adic*.

Case II. For all m the closure Īm of Im is not open. Then the topology on A∧/Īm is not
discrete. This means we can pick φ(m) ≥ m such that

Im(Jφ(m) → A/(f1, . . . , fm)) 6= Im(Jφ(m)+1 → A/(f1, . . . , fm))

To see this we have used thatA∧/(Īm+J∧
n ) = A/((f1, . . . , fm)+Jn). Choose exponents

ei > 0 such that feii ∈ Jφ(m)+1 for 0 < m < i. Let J = (fe1
1 , fe2

2 , fe3
3 , . . .). Then

V (J) = T . We claim that J 6⊃ Jn for all n which is a contradiction proving Case II
does not occur. Namely, the image of J in A/(f1, . . . , fm) is contained in the image of
Jφ(m)+1 which is properly contained in the image of Jm. �

15. Fibre products

Obligatory section about fibre products of formal algebraic spaces.

Lemma 15.1. Let S be a scheme. Let {Xi → X}i∈I be a family of maps of sheaves
on (Sch/S)fppf . Assume (a) Xi is a formal algebraic space over S , (b) Xi → X is repre-
sentable by algebraic spaces and étale, and (c)

∐
Xi → X is a surjection of sheaves. Then

X is a formal algebraic space over S.

Proof. For each i pick {Xij → Xi}j∈Ji as in Definition 11.1. Then {Xij → X}i∈I,j∈Ji
is a family as in Definition 11.1 for X . �

Lemma 15.2. Let S be a scheme. Let X,Y be formal algebraic spaces over S and let
Z be a sheaf whose diagonal is representable by algebraic spaces. Let X → Z and Y → Z
be maps of sheaves. Then X ×Z Y is a formal algebraic space.

Proof. Choose {Xi → X} and {Yj → Y } as in Definition 11.1. Then {Xi×Z Yj →
X ×Z Y } is a family of maps which are representable by algebraic spaces and étale. Thus
Lemma 15.1 tells us it suffices to show that X ×Z Y is a formal algebraic space when X
and Y are affine formal algebraic spaces.
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Assume X and Y are affine formal algebraic spaces. Write X = colimXλ and Y =
colimYµ as in Definition 9.1. Then X ×Z Y = colimXλ ×Z Yµ. Each Xλ ×Z Yµ is an
algebraic space. For λ ≤ λ′ and µ ≤ µ′ the morphism

Xλ ×Z Yµ → Xλ ×Z Yµ′ → Xλ′ ×Z Yµ′

is a thickening as a composition of base changes of thickenings. Thus we conclude by
applying Lemma 13.1. �

Lemma 15.3. Let S be a scheme. The category of formal algebraic spaces over S has
fibre products.

Proof. Special case of Lemma 15.2 because formal algebraic spaces have representable
diagonals, see Lemma 11.2. �

Lemma 15.4. Let S be a scheme. Let X → Z and Y → Z be morphisms of formal
algebraic spaces over S. Then (X ×Z Y )red = (Xred ×Zred Yred)red.

Proof. This follows from the universal property of the reduction in Lemma 12.1. �

We have already proved the following lemma (without knowing that fibre products exist).

Lemma 15.5. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. The diagonal morphism ∆ : X → X ×Y X is representable (by schemes),
a monomorphism, locally quasi-finite, locally of finite type, and separated.

Proof. Let T be a scheme and let T → X ×Y X be a morphism. Then

T ×(X×YX) X = T ×(X×SX) X

Hence the result follows immediately from Lemma 11.2. �

16. Separation axioms for formal algebraic spaces

This section is about “absolute” separation conditions on formal algebraic spaces. We will
discuss separation conditions for morphisms of formal algebraic spaces later.

Lemma 16.1. Let S be a scheme. Let X be a formal algebraic space over S. The
following are equivalent

(1) the reduction of X (Lemma 12.1) is a quasi-separated algebraic space,
(2) forU → X , V → X withU , V quasi-compact schemes the fibre productU×XV

is quasi-compact,
(3) forU → X , V → X withU , V affine the fibre productU×XV is quasi-compact.

Proof. Observe thatU×X V is a scheme by Lemma 11.2. LetUred, Vred, Xred be the
reduction of U, V,X . Then

Ured ×Xred Vred = Ured ×X Vred → U ×X V

is a thickening of schemes. From this the equivalence of (1) and (2) is clear, keeping in
mind the analogous lemma for algebraic spaces, see Properties of Spaces, Lemma 3.3. We
omit the proof of the equivalence of (2) and (3). �

Lemma 16.2. Let S be a scheme. Let X be a formal algebraic space over S. The
following are equivalent

(1) the reduction of X (Lemma 12.1) is a separated algebraic space,
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(2) for U → X , V → X with U , V affine the fibre product U ×X V is affine and
O(U)⊗Z O(V ) −→ O(U ×X V )

is surjective.

Proof. If (2) holds, then Xred is a separated algebraic space by applying Properties
of Spaces, Lemma 3.3 to morphisms U → Xred and V → Xred with U, V affine and using
that U ×Xred V = U ×X V .
Assume (1). Let U → X and V → X be as in (2). Observe that U ×X V is a scheme by
Lemma 11.2. Let Ured, Vred, Xred be the reduction of U, V,X . Then

Ured ×Xred Vred = Ured ×X Vred → U ×X V

is a thickening of schemes. It follows that (U ×X V )red = (Ured ×Xred Vred)red. In
particular, we see that (U ×X V )red is an affine scheme and that

O(U)⊗Z O(V ) −→ O((U ×X V )red)
is surjective, see Properties of Spaces, Lemma 3.3. Then U ×X V is affine by Limits of
Spaces, Proposition 15.2. On the other hand, the morphism U ×X V → U × V of affine
schemes is the composition

U ×X V = X ×(X×SX) (U ×S V )→ U ×S V → U × V
The first morphism is a monomorphism and locally of finite type (Lemma 11.2). The
second morphism is an immersion (Schemes, Lemma 21.9). Hence the composition is a
monomorphism which is locally of finite type. On the other hand, the composition is in-
tegral as the map on underlying reduced affine schemes is a closed immersion by the above
and hence universally closed (use Morphisms, Lemma 44.7). Thus the ring map

O(U)⊗Z O(V ) −→ O(U ×X V )
is an epimorphism which is integral of finite type hence finite hence surjective (use Mor-
phisms, Lemma 44.4 and Algebra, Lemma 107.6). �

Definition 16.3. Let S be a scheme. Let X be a formal algebraic space over S. We
say

(1) X is quasi-separated if the equivalent conditions of Lemma 16.1 are satisfied.
(2) X is separated if the equivalent conditions of Lemma 16.2 are satisfied.

The following lemma implies in particular that the completed tensor product of weakly
admissible topological rings is a weakly admissible topological ring.

Lemma 16.4. Let S be a scheme. Let X → Z and Y → Z be morphisms of formal
algebraic spaces over S. Assume Z separated.

(1) If X and Y are affine formal algebraic spaces, then so is X ×Z Y .
(2) If X and Y are McQuillan affine formal algebraic spaces, then so is X ×Z Y .
(3) IfX , Y , andZ are McQuillan affine formal algebraic spaces corresponding to the

weakly admissible topologicalS-algebrasA,B, andC , thenX×ZY corresponds
to A⊗̂CB.

Proof. Write X = colimXλ and Y = colim Yµ as in Definition 9.1. Then X ×Z
Y = colimXλ×Z Yµ. Since Z is separated the fibre products are affine, hence we see that
(1) holds. Assume X and Y corresponds to the weakly admissible topological S-algebras
A and B and Xλ = Spec(A/Iλ) and Yµ = Spec(B/Jµ). Then

Xλ ×Z Yµ → Xλ × Yµ → Spec(A⊗B)
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is a closed immersion. Thus one of the conditions of Lemma 9.6 holds and we conclude
that X ×Z Y is McQuillan. If also Z is McQuillan corresponding to C , then

Xλ ×Z Yµ = Spec(A/Iλ ⊗C B/Jµ)

hence we see that the weakly admissible topological ring corresponding to X ×Z Y is the
completed tensor product (see Definition 4.7). �

Lemma 16.5. LetS be a scheme. LetX be a formal algebraic space overS. LetU → X
be a morphism where U is a separated algebraic space over S. Then U → X is separated.

Proof. The statement makes sense because U → X is representable by algebraic
spaces (Lemma 11.3). Let T be a scheme and T → X a morphism. We have to show that
U ×X T → T is separated. Since U ×X T → U ×S T is a monomorphism, it suffices to
show thatU×S T → T is separated. As this is the base change ofU → S this follows. We
used in the argument above: Morphisms of Spaces, Lemmas 4.4, 4.8, 10.3, and 4.11. �

17. Quasi-compact formal algebraic spaces

Here is the characterization of quasi-compact formal algebraic spaces.

Lemma 17.1. Let S be a scheme. Let X be a formal algebraic space over S. The
following are equivalent

(1) the reduction of X (Lemma 12.1) is a quasi-compact algebraic space,
(2) we can find {Xi → X}i∈I as in Definition 11.1 with I finite,
(3) there exists a morphism Y → X representable by algebraic spaces which is étale

and surjective and where Y is an affine formal algebraic space.

Proof. Omitted. �

Definition 17.2. Let S be a scheme. Let X be a formal algebraic space over S. We
say X is quasi-compact if the equivalent conditions of Lemma 17.1 are satisfied.

Lemma 17.3. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. The following are equivalent

(1) the induced map fred : Xred → Yred between reductions (Lemma 12.1) is a
quasi-compact morphism of algebraic spaces,

(2) for every quasi-compact scheme T and morphism T → Y the fibre product
X ×Y T is a quasi-compact formal algebraic space,

(3) for every affine scheme T and morphism T → Y the fibre product X ×Y T is a
quasi-compact formal algebraic space, and

(4) there exists a covering {Yj → Y } as in Definition 11.1 such that each X ×Y Yj
is a quasi-compact formal algebraic space.

Proof. Omitted. �

Definition 17.4. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. We say f is quasi-compact if the equivalent conditions of Lemma
17.3 are satisfied.

This agrees with the already existing notion when the morphism is representable by alge-
braic spaces (and in particular when it is representable).
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Lemma 17.5. Let S be a scheme. Let f : X → Y be a morphism of formal alge-
braic spaces over S which is representable by algebraic spaces. Then f is quasi-compact
in the sense of Definition 17.4 if and only if f is quasi-compact in the sense of Bootstrap,
Definition 4.1.

Proof. This is immediate from the definitions and Lemma 17.3. �

18. Quasi-compact and quasi-separated formal algebraic spaces

The following result is due to Yasuda, see [?, Proposition 3.32].

Lemma 18.1. Let S be a scheme. LetX be a quasi-compact and quasi-separated formal
algebraic space over S. Then X = colimXλ for a system of algebraic spaces (Xλ, fλµ)
over a directed set Λ where each fλµ : Xλ → Xµ is a thickening.

Proof. By Lemma 17.1 we may choose an affine formal algebraic space Y and a rep-
resentable surjective étale morphism Y → X . Write Y = colim Yλ as in Definition 9.1.
Pick λ ∈ Λ. Then Yλ ×X Y is a scheme by Lemma 9.11. The reduction (Lemma 12.1) of
Yλ×X Y is equal to the reduction of Yred×Xred Yred which is quasi-compact asX is quasi-
separated and Yred is affine. Therefore Yλ ×X Y is a quasi-compact scheme. Hence there
exists a µ ≥ λ such that pr2 : Yλ ×X Y → Y factors through Yµ, see Lemma 9.4. Let Zλ
be the scheme theoretic image of the morphism pr2 : Yλ×X Y → Yµ. This is independent
of the choice of µ and we can and will think of Zλ ⊂ Y as the scheme theoretic image of
the morphism pr2 : Yλ×X Y → Y . Observe that Zλ is also equal to the scheme theoretic
image of the morphism pr1 : Y ×X Yλ → Y since this is isomorphic to the morphism used
to define Zλ. We claim that Zλ ×X Y = Y ×X Zλ as subfunctors of Y ×X Y . Namely,
since Y → X is étale we see that Zλ×X Y is the scheme theoretic image of the morphism

pr13 = pr1 × idY : Y ×X Yλ ×X Y −→ Y ×X Y

by Morphisms of Spaces, Lemma 16.3. By the same token, Y ×XZλ is the scheme theoretic
image of the morphism

pr13 = idY × pr2 : Y ×X Yλ ×X Y −→ Y ×X Y

The claim follows. Then Rλ = Zλ ×X Y = Y ×X Zλ together with the morphism
Rλ → Zλ×S Zλ defines an étale equivalence relation. In this way we obtain an algebraic
space Xλ = Zλ/Rλ. By construction the diagram

Zλ //

��

Y

��
Xλ

// X

is cartesian (becauseX is the coequalizer of the two projectionsR = Y ×XY → Y , because
Zλ ⊂ Y is R-invariant, and because Rλ is the restriction of R to Zλ). Hence Xλ → X
is representable and a closed immersion, see Spaces, Lemma 11.5. On the other hand, since
Yλ ⊂ Zλ we see that (Xλ)red = Xred, in other words, Xλ → X is a thickening. Finally,
we claim that

X = colimXλ

We have Y ×X Xλ = Zλ ⊃ Yλ. Every morphism T → X where T is a scheme over
S lifts étale locally to a morphism into Y which lifts étale locally into a morphism into
some Yλ. Hence T → X lifts étale locally on T to a morphism into Xλ. This finishes the
proof. �
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Remark 18.2. In this remark we translate the statement and proof of Lemma 18.1 into
the language of formal schemes à la EGA. Looking at Remark 13.4 we see that the lemma
can be translated as follows

(*) Every quasi-compact and quasi-separated formal scheme has a fundamental sys-
tem of ideals of definition.

To prove this we first use the induction principle (reformulated for quasi-compact and
quasi-separated formal schemes) of Cohomology of Schemes, Lemma 4.1 to reduce to the
following situation: X = U ∪ V with U, V open formal subschemes, with V affine, and
the result is true for U, V, and U∩V. Pick any ideals of definition I ⊂ OU and J ⊂ OV.
By our assumption that we have a fundamental system of ideals of definition on U and V
and because U ∩V is quasi-compact, we can find ideals of definition I ′ ⊂ I and J ′ ⊂ J
such that

I ′|U∩V ⊂ J |U∩V and J ′|U∩V ⊂ I|U∩V

Let U → U ′ → U and V → V ′ → V be the closed immersions determined by the ideals
of definition I ′ ⊂ I ⊂ OU and J ′ ⊂ J ⊂ OV. Let U ∩ V denote the open subscheme
of V whose underlying topological space is that of U ∩V. By our choice of I ′ there is a
factorization U ∩ V → U ′. We define similarly U ∩V which factors through V ′. Then
we consider

ZU = scheme theoretic image of U q (U ∩ V ) −→ U ′

and
ZV = scheme theoretic image of (U ∩V)q V −→ V ′

Since taking scheme theoretic images of quasi-compact morphisms commutes with restric-
tion to opens (Morphisms, Lemma 6.3) we see that ZU ∩V = U ∩ ZV . Thus ZU and ZV
glue to a schemeZ which comes equipped with a morphismZ → X. Analogous to the dis-
cussion in Remark 13.3 we see that Z corresponds to a weak ideal of definition IZ ⊂ OX.
Note that ZU ⊂ U ′ and that ZV ⊂ V ′. Thus the collection of all IZ constructed in this
manner forms a fundamental system of weak ideals of definition. Hence a subfamily gives
a fundamental system of ideals of definition, see Remark 13.4.

Lemma 18.3. Let S be a scheme. Let X be a formal algebraic space over S. Then X
is an affine formal algebraic space if and only if its reduction Xred (Lemma 12.1) is affine.

Proof. By Lemmas 16.1 and 17.1 and Definitions 16.3 and 17.2 we see that X is
quasi-compact and quasi-separated. By Yasuda’s lemma (Lemma 18.1) we can write X =
colimXλ as a filtered colimit of thickenings of algebraic spaces. However, each Xλ is
affine by Limits of Spaces, Lemma 15.3 because (Xλ)red = Xred. Hence X is an affine
formal algebraic space by definition. �

19. Morphisms representable by algebraic spaces

Let f : X → Y be a morphism of formal algebraic spaces which is representable by
algebraic spaces. For these types of morphisms we have a lot of theory at our disposal,
thanks to the work done in the chapters on algebraic spaces.

Lemma 19.1. The composition of morphisms representable by algebraic spaces is rep-
resentable by algebraic spaces. The same holds for representable (by schemes).

Proof. See Bootstrap, Lemma 3.8. �

Lemma 19.2. A base change of a morphism representable by algebraic spaces is rep-
resentable by algebraic spaces. The same holds for representable (by schemes).
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Proof. See Bootstrap, Lemma 3.3. �

Lemma 19.3. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
formal algebraic spaces over S. If g ◦ f : X → Z is representable by algebraic spaces, then
f : X → Y is representable by algebraic spaces.

Proof. Note that the diagonal of Y → Z is representable by Lemma 15.5. Thus
X → Y is representable by algebraic spaces by Bootstrap, Lemma 3.10. �

The property of being representable by algebraic spaces is local on the source and the
target.

Lemma 19.4. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. The following are equivalent:

(1) the morphism f is representable by algebraic spaces,
(2) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces, the vertical arrows are representable by
algebraic spaces, U → X is surjective étale, and U → V is representable by
algebraic spaces,

(3) for any commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces and the vertical arrows are representable
by algebraic spaces, the morphism U → V is representable by algebraic spaces,

(4) there exists a covering {Yj → Y } as in Definition 11.1 and for each j a covering
{Xji → Yj ×Y X} as in Definition 11.1 such that Xji → Yj is representable by
algebraic spaces for each j and i,

(5) there exist a covering {Xi → X} as in Definition 11.1 and for each i a factor-
ization Xi → Yi → Y where Yi is an affine formal algebraic space, Yi → Y is
representable by algebraic spaces, such that Xi → Yi is representable by alge-
braic spaces, and

(6) add more here.

Proof. It is clear that (1) implies (2) because we can take U = X and V = Y . Con-
versely, (2) implies (1) by Bootstrap, Lemma 11.4 applied to U → X → Y .

Assume (1) is true and consider a diagram as in (3). Then U → Y is representable by
algebraic spaces (as the composition U → X → Y , see Bootstrap, Lemma 3.8) and factors
through V . Thus U → V is representable by algebraic spaces by Lemma 19.3.

It is clear that (3) implies (2). Thus now (1) – (3) are equivalent.

Observe that the condition in (4) makes sense as the fibre product Yj ×Y X is a formal
algebraic space by Lemma 15.3. It is clear that (4) implies (5).
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Assume Xi → Yi → Y as in (5). Then we set V =
∐
Yi and U =

∐
Xi to see that (5)

implies (2).

Finally, assume (1) – (3) are true. Thus we can choose any covering {Yj → Y } as in
Definition 11.1 and for each j any covering {Xji → Yj×Y X} as in Definition 11.1. Then
Xij → Yj is representable by algebraic spaces by (3) and we see that (4) is true. This
concludes the proof. �

Lemma 19.5. Let S be a scheme. Let Y be an affine formal algebraic space over S.
Let f : X → Y be a map of sheaves on (Sch/S)fppf which is representable by algebraic
spaces. Then X is a formal algebraic space.

Proof. Write Y = colim Yλ as in Definition 9.1. For each λ the fibre productX×Y
Yλ is an algebraic space. HenceX = colimX×Y Yλ is a formal algebraic space by Lemma
13.1. �

Lemma 19.6. Let S be a scheme. Let Y be a formal algebraic space over S. Let f :
X → Y be a map of sheaves on (Sch/S)fppf which is representable by algebraic spaces.
Then X is a formal algebraic space.

Proof. Let {Yi → Y } be as in Definition 11.1. Then X ×Y Yi → X is a family of
morphisms representable by algebraic spaces, étale, and jointly surjective. Thus it suffices
to show that X ×Y Yi is a formal algebraic space, see Lemma 15.1. This follows from
Lemma 19.5. �

Lemma 19.7. Let S be a scheme. Let f : X → Y be a morphism of affine formal
algebraic spaces which is representable by algebraic spaces. Then f is representable (by
schemes) and affine.

Proof. We will show that f is affine; it will then follow that f is representable and
affine by Morphisms of Spaces, Lemma 20.3. Write Y = colim Yµ and X = colimXλ

as in Definition 9.1. Let T → Y be a morphism where T is a scheme over S. We have
to show that X ×Y T → T is affine, see Bootstrap, Definition 4.1. To do this we may
assume that T is affine and we have to prove that X ×Y T is affine. In this case T → Y
factors through Yµ → Y for some µ, see Lemma 9.4. Since f is quasi-compact we see that
X×Y T is quasi-compact (Lemma 17.3). HenceX×Y T → X factors throughXλ for some
λ. SimilarlyXλ → Y factors through Yµ after increasing µ. ThenX×Y T = Xλ×Yµ T .
We conclude as fibre products of affine schemes are affine. �

Lemma 19.8. Let S be a scheme. Let ϕ : A → B be a continuous map of weakly
admissible topological rings over S. The following are equivalent

(1) Spf(ϕ) : Spf(B)→ Spf(A) is representable by algebraic spaces,
(2) Spf(ϕ) : Spf(B)→ Spf(A) is representable (by schemes),
(3) ϕ is taut, see Definition 5.1.

Proof. Parts (1) and (2) are equivalent by Lemma 19.7.

Assume the equivalent conditions (1) and (2) hold. If I ⊂ A is a weak ideal of definition,
then Spec(A/I) → Spf(A) is representable and a thickening (this is clear from the con-
struction of the formal spectrum but it also follows from Lemma 9.6). Then Spec(A/I)×Spf(A)
Spf(B) → Spf(B) is representable and a thickening as a base change. Hence by Lemma
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9.6 there is a weak ideal of definition J(I) ⊂ B such that Spec(A/I) ×Spf(A) Spf(B) =
Spec(B/J(I)) as subfunctors of Spf(B). We obtain a cartesian diagram

Spec(B/J(I))

��

// Spec(A/I)

��
Spf(B) // Spf(A)

By Lemma 16.4 we see thatB/J(I) = B⊗̂AA/I . It follows that J(I) is the closure of the
ideal ϕ(I)B, see Lemma 4.11. Since Spf(A) = colim Spec(A/I) with I as above, we find
that Spf(B) = colim Spec(B/J(I)). Thus the ideals J(I) form a fundamental system of
weak ideals of definition (see Lemma 9.6). Hence (3) holds.

Assume (3) holds. We are essentially just going to reverse the arguments given in the
previous paragraph. Let I ⊂ A be a weak ideal of definition. By Lemma 16.4 we get a
cartesian diagram

Spf(B⊗̂AA/I)

��

// Spec(A/I)

��
Spf(B) // Spf(A)

If J(I) is the closure of IB, then J(I) is open in B by tautness of ϕ. Hence if J is
open in B and J ⊂ J(B), then B/J ⊗A A/I = B/(IB + J) = B/J(I) because
J(I) =

⋂
J⊂B open(IB+J) by Lemma 4.2. Hence the limit defining the completed tensor

product collapses to give B⊗̂AA/I = B/J(I). Thus Spf(B⊗̂AA/I) = Spec(B/J(I)).
This proves that Spf(B)×Spf(A) Spec(A/I) is representable for every weak ideal of defi-
nition I ⊂ A. Since every morphism T → Spf(A) with T quasi-compact factors through
Spec(A/I) for some weak ideal of definition I (Lemma 9.4) we conclude that Spf(ϕ) is
representable, i.e., (2) holds. This finishes the proof. �

Lemma 19.9. Let S be a scheme. Let Y be an affine formal algebraic space. Let f :
X → Y be a map of sheaves on (Sch/S)fppf which is representable and affine. Then

(1) X is an affine formal algebraic space,
(2) if Y is countably indexed, then X is countably indexed,
(3) ifY is countably indexed and classical, thenX is countably indexed and classical,
(4) if Y is weakly adic, then X is weakly adic,
(5) if Y is adic*, then X is adic*, and
(6) if Y is Noetherian and f is (locally) of finite type, then X is Noetherian.

Proof. Proof of (1). Write Y = colimλ∈Λ Yλ as in Definition 9.1. Since f is repre-
sentable and affine, the fibre productsXλ = Yλ×Y X are affine. AndX = colim Yλ×Y X .
Thus X is an affine formal algebraic space.

Proof of (2). If Y is countably indexed, then in the argument above we may assume Λ is
countable. Then we immediately see that X is countably indexed too.

Proof of (3), (4), and (5). In each of these cases the assumptions imply that Y is a countably
indexed affine formal algebraic space (Lemma 10.3) and henceX is too by (2). Thus we may
write X = Spf(A) and Y = Spf(B) for some weakly admissible topological S-algebras
A and B, see Lemma 10.4. By Lemma 9.10 the morphism f corresponds to a continuous
S-algebra homomorphism ϕ : B → A. We see from Lemma 19.8 that ϕ is taut. We
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conclude that (3) follows from Lemma 5.9, (4) follows from Lemma 7.5, and (5) follows
from Lemma 6.5.

Proof of (6). Combining (3) with Lemma 10.3 we see that X is adic*. Thus we can use
the criterion of Lemma 10.5. First, it tells us the affine schemes Yλ are Noetherian. Then
Xλ → Yλ is of finite type, hence Xλ is Noetherian too (Morphisms, Lemma 15.6). Then
the criterion tells us X is Noetherian and the proof is complete. �

Lemma 19.10. Let S be a scheme. Let f : X → Y be a morphism of affine formal
algebraic spaces which is representable by algebraic spaces. Then

(1) if Y is countably indexed, then X is countably indexed,
(2) ifY is countably indexed and classical, thenX is countably indexed and classical,
(3) if Y is weakly adic, then X is weakly adic,
(4) if Y is adic*, then X is adic*, and
(5) if Y is Noetherian and f is (locally) of finite type, then X is Noetherian.

Proof. Combine Lemmas 19.7 and 19.9. �

Example 19.11. Let B be a weakly admissible topological ring. Let B → A be a ring
map (no topology). Then we can consider

A∧ = limA/JA

where the limit is over all weak ideals of definition J of B. Then A∧ (endowed with
the limit topology) is a complete linearly topologized ring. The (open) kernel I of the
surjectionA∧ → A/JA is the closure of JA∧, see Lemma 4.2. By Lemma 4.10 we see that
I consists of topologically nilpotent elements. Thus I is a weak ideal of definition of A∧

and we conclude A∧ is a weakly admissible topological ring. Thus ϕ : B → A∧ is taut
map of weakly admissible topological rings and

Spf(A∧) −→ Spf(B)

is a special case of the phenomenon studied in Lemma 19.8.

Remark 19.12 (Warning). The discussion in Lemmas 19.8, 19.9, and 19.10 is sharp in
the following two senses:

(1) If A and B are weakly admissible rings and ϕ : A → B is a continuous map,
then Spf(ϕ) : Spf(B)→ Spf(A) is in general not representable.

(2) If f : Y → X is a representable morphism of affine formal algebraic spaces and
X = Spf(A) is McQuillan, then it does not follow that Y is McQuillan.

An example for (1) is to take A = k a field (with discrete topology) and B = k[[t]] with
the t-adic topology. An example for (2) is given in Examples, Section 74.

The warning above notwithstanding, we do have the following result.

Lemma 19.13. Let S be a scheme. Let Y be a McQuillan affine formal algebraic space
over S , i.e., Y = Spf(B) for some weakly admissible topological S-algebraB. Then there
is an equivalence of categories between

(1) the category of morphisms f : X → Y of affine formal algebraic spaces which
are representable by algebraic spaces and étale, and

(2) the category of topological B-algebras of the form A∧ where A is an étale B-
algebra and A∧ = limA/JA with J ⊂ B running over the weak ideals of
definition of B.



20. TYPES OF FORMAL ALGEBRAIC SPACES 6193

The equivalence is given by sending A∧ to X = Spf(A∧). In particular, any X as in (1) is
McQuillan.

Proof. LetA be an étaleB-algebra. ThenB/J → A/JA is étale for every open ideal
J ⊂ B. Hence the morphism Spf(A∧) → Y is representable and étale. The functor Spf
is fully faithful by Lemma 9.10. To finish the proof we will show in the next paragraph
that any X → Y as in (1) is in the essential image.

Choose a weak ideal of definition J0 ⊂ B. Set Y0 = Spec(B/J0) and X0 = Y0 ×Y X .
Then X0 → Y0 is an étale morphism of affine schemes (see Lemma 19.7). Say X0 =
Spec(A0). By Algebra, Lemma 143.10 we can find an étale algebra map B → A such
that A0 ∼= A/J0A. Consider an ideal of definition J ⊂ J0. As above we may write
Spec(B/J)×Y X = Spec(Ā) for some étale ring map B/J → Ā. Then both B/J → Ā
and B/J → A/JA are étale ring maps lifting the étale ring map B/J0 → A0. By More
on Algebra, Lemma 11.2 there is a unique B/J -algebra isomorphism ϕJ : A/JA → Ā
lifting the identification modulo J0. Since the maps ϕJ are unique they are compatible
for varying J . Thus

X = colim Spec(B/J)×Y X = colim Spec(A/JA) = Spf(A)

and we see that the lemma holds. �

Lemma 19.14. With notation and assumptions as in Lemma 19.13 let f : X → Y
correspond to B → A∧. The following are equivalent

(1) f : X → Y is surjective,
(2) B → A is faithfully flat,
(3) for every weak ideal of definition J ⊂ B the ring map B/J → A/JA is faith-

fully flat, and
(4) for some weak ideal of definition J ⊂ B the ring map B/J → A/JA is faith-

fully flat.

Proof. Let J ⊂ B be a weak ideal of definition. As every element of J is topologi-
cally nilpotent, we see that every element of 1 + J is a unit. It follows that J is contained
in the Jacobson radical of B (Algebra, Lemma 19.1). Hence a flat ring map B → A is
faithfully flat if and only if B/J → A/JA is faithfully flat (Algebra, Lemma 39.16). In
this way we see that (2) – (4) are equivalent. If (1) holds, then for every weak ideal of
definition J ⊂ B the morphism Spec(A/JA) = Spec(B/J) ×Y X → Spec(B/J) is
surjective which implies (3). Conversely, assume (3). A morphism T → Y with T quasi-
compact factors through Spec(B/J) for some ideal of definition J of B (Lemma 9.4).
Hence X ×Y T = Spec(A/JA) ×Spec(B/J) T → T is surjective as a base change of the
surjective morphism Spec(A/JA)→ Spec(B/J). Thus (1) holds. �

20. Types of formal algebraic spaces

In this section we define “locally Noetherian”, “locally adic*”, “locally weakly adic”, “lo-
cally countably indexed and classical”, and “locally countably indexed” formal algebraic
spaces. The types “locally adic”, “locally classical”, and “locally McQuillan” are missing
as we do not know how to prove the analogue of the following lemmas for those cases
(it would suffice to prove the analogue of these lemmas for étale coverings between affine
formal algebraic spaces).
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Lemma 20.1. Let S be a scheme. LetX → Y be a morphism of affine formal algebraic
spaces which is representable by algebraic spaces, surjective, and flat. ThenX is countably
indexed if and only if Y is countably indexed.

Proof. Assume X is countably indexed. We write X = colimXn as in Lemma 10.1.
Write Y = colim Yλ as in Definition 9.1. For every nwe can pick a λn such thatXn → Y
factors through Yλn , see Lemma 9.4. On the other hand, for every λ the scheme Yλ×Y X
is affine (Lemma 19.7) and hence Yλ ×Y X → X factors through Xn for some n (Lemma
9.4). Picture

Yλ ×Y X //

��

Xn
//

��

X

��
Yλ // 66Yλn // Y

If we can show the dotted arrow exists, then we conclude that Y = colimYλn and Y is
countably indexed. To do this we pick a µ with µ ≥ λ and µ ≥ λn. Thus both Yλ → Y
and Yλn → Y factor through Yµ → Y . Say Yµ = Spec(Bµ), the closed subscheme Yλ
corresponds to J ⊂ Bµ, and the closed subscheme Yλn corresponds to J ′ ⊂ Bµ. We
are trying to show that J ′ ⊂ J . By the diagram above we know J ′Aµ ⊂ JAµ where
Yµ×Y X = Spec(Aµ). SinceX → Y is surjective and flat the morphism Yλ×Y X → Yλ
is a faithfully flat morphism of affine schemes, hence Bµ → Aµ is faithfully flat. Thus
J ′ ⊂ J as desired.

Assume Y is countably indexed. Then X is countably indexed by Lemma 19.10. �

Lemma 20.2. Let S be a scheme. LetX → Y be a morphism of affine formal algebraic
spaces which is representable by algebraic spaces, surjective, and flat. ThenX is countably
indexed and classical if and only if Y is countably indexed and classical.

Proof. We have already seen the implication in one direction in Lemma 19.10. For
the other direction, note that by Lemma 20.1 we may assume bothX and Y are countably
indexed. Thus X = Spf(A) and Y = Spf(B) for some weakly admissible topological
S-algebras A and B, see Lemma 10.4. By Lemma 9.10 the morphism X → Y corresponds
to a continuous S-algebra homomorphism ϕ : B → A. We see from Lemma 19.8 that ϕ is
taut. Let J ⊂ B be an open ideal and let I ⊂ A be the closure of JA. By Lemmas 16.4 and
4.11 we see that Spec(B/J) ×Y X = Spec(A/I). Hence B/J → A/I is faithfully flat
(since X → Y is surjective and flat). This means that ϕ : B → A is as in Section 8 (with
the roles of A and B swapped). We conclude that the lemma holds by Lemma 8.2. �

Lemma 20.3. Let S be a scheme. LetX → Y be a morphism of affine formal algebraic
spaces which is representable by algebraic spaces, surjective, and flat. Then X is weakly
adic if and only if Y is weakly adic.

Proof. The proof is exactly the same as the proof of Lemma 20.2 except that at the
end we use Lemma 8.4. �

Lemma 20.4. LetS be a scheme. LetX → Y be a morphism of affine formal algebraic
spaces which is representable by algebraic spaces, surjective, and flat. Then X is adic* if
and only if Y is adic*.

Proof. The proof is exactly the same as the proof of Lemma 20.2 except that at the
end we use Lemma 8.5. �
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Lemma 20.5. Let S be a scheme. LetX → Y be a morphism of affine formal algebraic
spaces which is representable by algebraic spaces, surjective, flat, and (locally) of finite type.
Then X is Noetherian if and only if Y is Noetherian.

Proof. Observe that a Noetherian affine formal algebraic space is adic*, see Lemma
10.3. Thus by Lemma 20.4 we may assume that both X and Y are adic*. We will use the
criterion of Lemma 10.5 to see that the lemma holds. Namely, write Y = colimYn as in
Lemma 10.1. For each n set Xn = Yn ×Y X . Then Xn is an affine scheme (Lemma 19.7)
and X = colimXn. Each of the morphisms Xn → Yn is faithfully flat and of finite type.
Thus the lemma follows from the fact that in this situation Xn is Noetherian if and only
if Yn is Noetherian, see Algebra, Lemma 164.1 (to go down) and Algebra, Lemma 31.1 (to
go up). �

Lemma 20.6. Let S be a scheme. Let

P ∈

 countably indexed,
countably indexed and classical,
weakly adic, adic∗, Noetherian


Let X be a formal algebraic space over S. The following are equivalent

(1) if Y is an affine formal algebraic space and f : Y → X is representable by
algebraic spaces and étale, then Y has property P ,

(2) for some {Xi → X}i∈I as in Definition 11.1 each Xi has property P .

Proof. It is clear that (1) implies (2). Assume (2) and let Y → X be as in (1). Since
the fibre products Xi ×X Y are formal algebraic spaces (Lemma 15.2) we can pick cov-
erings {Xij → Xi ×X Y } as in Definition 11.1. Since Y is quasi-compact, there exist
(i1, j1), . . . , (in, jn) such that

Xi1j1 q . . .qXinjn −→ Y

is surjective and étale. Then Xikjk → Xik is representable by algebraic spaces and étale
henceXikjk has property P by Lemma 19.10. ThenXi1j1q . . .qXinjn is an affine formal
algebraic space with property P (small detail omitted on finite disjoint unions of affine
formal algebraic spaces). Hence we conclude by applying one of Lemmas 20.1, 20.2, 20.3,
20.4, and 20.5. �

The previous lemma clears the way for the following definition.

Definition 20.7. Let S be a scheme. Let X be a formal algebraic space over S. We
sayX is locally countably indexed, locally countably indexed and classical, locally weakly
adic, locally adic*, or locally Noetherian if the equivalent conditions of Lemma 20.6 hold
for the corresponding property.

The formal completion of a locally Noetherian algebraic space along a closed subset is a
locally Noetherian formal algebraic space.

Lemma 20.8. Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X| be
a closed subset. Let X/T be the formal completion of X along T .

(1) If X \ T → X is quasi-compact, then X/T is locally adic*.
(2) If X is locally Noetherian, then X/T is locally Noetherian.

Proof. Choose a surjective étale morphism U → X with U =
∐
Ui a disjoint union

of affine schemes, see Properties of Spaces, Lemma 6.1. Let Ti ⊂ Ui be the inverse image of
T . We have X/T ×X Ui = (Ui)/Ti (Lemma 14.4). Hence {(Ui)/Ti → X/T } is a covering



6196 87. FORMAL ALGEBRAIC SPACES

as in Definition 11.1. Moreover, if X \ T → X is quasi-compact, so is Ui \ Ti → Ui and
if X is locally Noetherian, so is Ui. Thus the lemma follows from the affine case which is
Lemma 14.6. �

Remark 20.9 (Warning). Suppose X = Spec(A) and T ⊂ X is the zero locus of a
finitely generated ideal I ⊂ A. Let J =

√
I be the radical of I . Then from the defini-

tions we see that X/T = Spf(A∧) where A∧ = limA/In is the I-adic completion of A.
On the other hand, the map A∧ → limA/Jn from the I-adic completion to the J -adic
completion can fail to be a ring isomorphisms. As an example let

A =
⋃

n≥1
C[t1/n]

and I = (t). Then J = m is the maximal ideal of the valuation ring A and J2 = J .
Thus the J -adic completion ofA is C whereas the I-adic completion is the valuation ring
described in Example 13.2 (but in particular it is easy to see that A ⊂ A∧).

Lemma 20.10. Let S be a scheme. Let X → Y and Z → Y be morphisms of formal
algebraic space over S. Then

(1) If X and Z are locally countably indexed, then X ×Y Z is locally countably
indexed.

(2) If X and Z are locally countably indexed and classical, then X ×Y Z is locally
countably indexed and classical.

(3) If X and Z are weakly adic, then X ×Y Z is weakly adic.
(4) If X and Z are locally adic*, then X ×Y Z is locally adic*.
(5) If X and Z are locally Noetherian and Xred → Yred is locally of finite type,

then X ×Y Z is locally Noetherian.

Proof. Choose a covering {Yj → Y } as in Definition 11.1. For each j choose a
covering {Xji → Yj ×Y X} as in Definition 11.1. For each j choose a covering {Zjk →
Yj ×Y Z} as in Definition 11.1. Observe that Xji ×Yj Zjk is an affine formal algebraic
space by Lemma 16.4. Hence

{Xji ×Yj Zjk → X ×Y Z}

is a covering as in Definition 11.1. Thus it suffices to prove (1), (2), (3), and (4) in case X ,
Y , and Z are affine formal algebraic spaces.

Assume X and Z are countably indexed. Say X = colimXn and Z = colimZm as in
Lemma 10.1. Write Y = colimλ∈Λ Yλ as in Definition 9.1. For each n and m we can
find λn,m ∈ Λ such that Xn → Y and Zm → Y factor through Yλn,m (for example see
Lemma 9.4). Pick λ0 ∈ Λ. By induction for t ≥ 1 pick an element λt ∈ Λ such that
λt ≥ λn,m for all 1 ≤ n,m ≤ t and λt ≥ λt−1. Set Y ′ = colim Yλt . Then Y ′ → Y is a
monomorphism such that X → Y and Z → Y factor through Y ′. Hence we may replace
Y by Y ′, i.e., we may assume that Y is countably indexed.

Assume X , Y , and Z are countably indexed. By Lemma 10.4 we can write X = Spf(A),
Y = Spf(B), Z = Spf(C) for some weakly admissible topological ringsA,B, and C. The
morphsms X → Y and Z → Y are given by continuous ring maps B → A and B → C ,
see Lemma 9.10. By Lemma 16.4 we see that X ×Y Z = Spf(A⊗̂BC) and that A⊗̂BC
is a weakly admissible topological ring. In particular, we see that X ×Y Z is countably
indexed by Lemma 4.12 part (3). This proves (1).
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Proof of (2). In this case X and Z are countably indexed and hence the arguments above
show thatX×Y Z is the formal spectrum ofA⊗̂BC whereA andC are admissible. Then
A⊗̂BC is admissible by Lemma 4.12 part (2).

Proof of (3). As before we conclude thatX×Y Z is the formal spectrum ofA⊗̂BC where
A and C are weakly adic. Then A⊗̂BC is weakly adic by Lemma 7.6.

Proof of (4). Arguing as above, this follows from Lemma 4.12 part (4).

Proof of (5). To deduce case (5) from Lemma 4.12 part (5) we need to show the hypotheses
match. Namely, with notation as in the first parapgrah of the proof, if Xred → Yred is
locally of finite type, then (Xji)red → (Yj)red is locally of finite type. This follows from
Morphisms of Spaces, Lemma 23.4 and the fact that in the commutative diagram

(Xji)red

��

// (Yj)red

��
Xred

// Yred

the vertical morphisms are étale. Namely, we have (Xji)red = Xij×XXred and (Yj)red =
Yj ×Y Yred by Lemma 12.3. Thus as above we reduce to the case where X , Y , Z are
affine formal algebraic spaces, X , Z are Noetherian, and Xred → Yred is of finite type.
Next, in the second paragraph of the proof we replaced Y by Y ′ but by construction
Yred = Y ′

red, hence the finite type assumption is preserved by this replacement. Then
we see that X,Y, Z correspond to A,B,C and X ×Y Z to A⊗̂BC with A, C Noetherian
adic. Finally, taking the reduction corresponds to dividing by the ideal of topologically
nilpotent elements (Example 12.2) hence the fact that Xred → Yred is of finite type does
indeed mean that B/b→ A/a is of finite type and the proof is complete. �

Lemma 20.11. Let S be a scheme. Let X be a locally Noetherian formal algebraic
space over S. Then X = colimXn for a system X1 → X2 → X3 → . . . of finite order
thickenings of locally Noetherian algebraic spaces over S where X1 = Xred and Xn is
the nth infinitesimal neighbourhood of X1 in Xm for all m ≥ n.

Proof. We only sketch the proof and omit some of the details. Set X1 = Xred.
DefineXn ⊂ X as the subfunctor defined by the rule: a morphism f : T → X where T is
a scheme factors through Xn if and only if the nth power of the ideal sheaf of the closed
immersion X1 ×X T → T is zero. Then Xn ⊂ X is a subsheaf as vanishing of quasi-
coherent modules can be checked fppf locally. We claim that Xn → X is representable
by schemes, a closed immersion, and that X = colimXn (as fppf sheaves). To check this
we may work étale locally onX . Hence we may assumeX = Spf(A) is a Noetherian affine
formal algebraic space. Then X1 = Spec(A/a) where a ⊂ A is the ideal of topologically
nilpotent elements of the Noetherian adic topological ring A. Then Xn = Spec(A/an)
and we obtain what we want. �

21. Morphisms and continuous ring maps

In this section we denote WAdm the category of weakly admissible topological rings and
continuous ring homomorphisms. We define full subcategories

WAdm ⊃WAdmcount ⊃WAdmcic ⊃WAdmweakly adic ⊃WAdmadic∗ ⊃WAdmNoeth

whose objects are



6198 87. FORMAL ALGEBRAIC SPACES

(1) WAdmcount: those weakly admissible topological rings A which have a count-
able fundamental system of open ideals,

(2) WAdmcic: the admissible topological rings A which have a countable funda-
mental system of open ideals,

(3) WAdmweakly adic: the weakly adic topological rings (Section 7),
(4) WAdmadic∗: the adic topological rings which have a finitely generated ideal of

definition, and
(5) WAdmNoeth: the adic topological rings which are Noetherian.

Clearly, the formal spectra of these types of rings are the basic building blocks of locally
countably indexed, locally countably indexed and classical, locally weakly adic, locally
adic*, and locally Noetherian formal algebraic spaces.

We briefly review the relationship between morphisms of countably indexed, affine formal
algebraic spaces and morphisms of WAdmcount. Let S be a scheme. Let X and Y be
countably indexed, affine formal algebraic spaces. Write X = Spf(A) and Y = Spf(B)
topological S-algebras A and B in WAdmcount, see Lemma 10.4. By Lemma 9.10 there is
a 1-to-1 correspondence between morphisms f : X → Y and continuous maps

ϕ : B −→ A

of topological S-algebras. The relationship is given by f 7→ f ] and ϕ 7→ Spf(ϕ).

Let S be a scheme. Let f : X → Y be a morphism of locally countably indexed formal
algebraic spaces. Consider a commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces and U → X and V → Y representable by
algebraic spaces and étale. By Definition 20.7 (and hence via Lemma 20.6) we see that
U and V are countably indexed affine formal algebraic spaces. By the discussion in the
previous paragraph we see that U → V is isomorphic to Spf(ϕ) for some continuous map

ϕ : B −→ A

of topological S-algebras in WAdmcount.

Lemma 21.1. Let A ∈ Ob(WAdm). Let A → A′ be a ring map (no topology). Let
(A′)∧ = limI⊂A w.i.d A

′/IA′ be the object of WAdm constructed in Example 19.11.
(1) If A is in WAdmcount, so is (A′)∧.
(2) If A is in WAdmcic, so is (A′)∧.
(3) If A is in WAdmweakly adic, so is (A′)∧.
(4) If A is in WAdmadic∗, so is (A′)∧.
(5) If A is in WAdmNoeth and A′ is Noetherian, then (A′)∧ is in WAdmNoeth.

Proof. Recall that A→ (A′)∧ is taut, see discussion in Example 19.11. Hence state-
ments (1), (2), (3), and (4) follow from Lemmas 5.7, 5.9, 7.5, and 6.5. Finally, assume that
A is Noetherian and adic. By (4) we know that (A′)∧ is adic. By Algebra, Lemma 97.6 we
see that (A′)∧ is Noetherian. Hence (5) holds. �
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Situation 21.2. Let P be a property of morphisms of WAdmcount. Consider com-
mutative diagrams

(21.2.1)

A // (A′)∧

B //

ϕ

OO

(B′)∧

ϕ′

OO

satisfying the following conditions
(1) A and B are objects of WAdmcount,
(2) A→ A′ and B → B′ are étale ring maps,
(3) (A′)∧ = limA′/IA′, resp. (B′)∧ = limB′/JB′ where I ⊂ A, resp. J ⊂ B

runs through the weakly admissible ideals of definition of A, resp. B,
(4) ϕ : B → A and ϕ′ : (B′)∧ → (A′)∧ are continuous.

By Lemma 21.1 the topological rings (A′)∧ and (B′)∧ are objects of WAdmcount. We say
P is a local property if the following axioms hold:

(1) for any diagram (21.2.1) we have P (ϕ)⇒ P (ϕ′),
(2) for any diagram (21.2.1) with A→ A′ faithfully flat we have P (ϕ′)⇒ P (ϕ),
(3) if P (B → Ai) for i = 1, . . . , n, then P (B →

∏
i=1,...,nAi).

Axiom (3) makes sense as WAdmcount has finite products.

Lemma 21.3. Let S be a scheme. Let f : X → Y be a morphism of locally count-
ably indexed formal algebraic spaces over S. Let P be a local property of morphisms of
WAdmcount. The following are equivalent

(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphism U → V corresponds to a morphism
of WAdmcount with property P ,

(2) there exists a covering {Yj → Y } as in Definition 11.1 and for each j a covering
{Xji → Yj ×Y X} as in Definition 11.1 such that each Xji → Yj corresponds
to a morphism of WAdmcount with property P , and

(3) there exist a covering {Xi → X} as in Definition 11.1 and for each i a factor-
ization Xi → Yi → Y where Yi is an affine formal algebraic space, Yi → Y
is representable by algebraic spaces and étale, and Xi → Yi corresponds to a
morphism of WAdmcount with property P .

Proof. It is clear that (1) implies (2) and that (2) implies (3). Assume {Xi → X} and
Xi → Yi → Y as in (3) and let a diagram as in (1) be given. Since Yi ×Y V is a formal
algebraic space (Lemma 15.2) we may pick coverings {Yij → Yi ×Y V } as in Definition
11.1. For each (i, j) we may similarly choose coverings {Xijk → Yij ×Yi Xi ×X U} as in
Definition 11.1. Since U is quasi-compact we can choose (i1, j1, k1), . . . , (in, jn, kn) such
that

Xi1j1k1 q . . .qXinjnkn −→ U
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is surjective. For s = 1, . . . , n consider the commutative diagram

Xisjsks

xx �� &&
X

��

Xis
oo

��

Xis ×X Uoo

��

Yisjs

xx &&

Xis ×X U

��

// U

��

// X

��
Y Yis
oo Yis ×Y Voo Yis ×Y V // V // Y

Let us say that P holds for a morphism of countably indexed affine formal algebraic
spaces if it holds for the corresponding morphism of WAdmcount. Observe that the maps
Xisjsks → Xis , Yisjs → Yis are given by completions of étale ring maps, see Lemma 19.13.
Hence we see that P (Xis → Yis) implies P (Xisjsks → Yisjs) by axiom (1). Observe that
the maps Yisjs → V are given by completions of étale rings maps (same lemma as before).
By axiom (2) applied to the diagram

Xisjsks

��

Xisjsks

��
Yisjs

// V

(this is permissible as identities are faithfully flat ring maps) we conclude thatP (Xisjsks →
V ) holds. By axiom (3) we find that P (

∐
s=1,...,nXisjsks → V ) holds. Since the mor-

phism
∐
Xisjsks → U is surjective by construction, the corresponding morphism of

WAdmcount is the completion of a faithfully flat étale ring map, see Lemma 19.14. One
more application of axiom (2) (with B′ = B) implies that P (U → V ) is true as de-
sired. �

Remark 21.4 (Variant for adic-star). LetP be a property of morphisms of WAdmadic∗.
We say P is a local property if axioms (1), (2), (3) of Situation 21.2 hold for morphisms of
WAdmadic∗. In exactly the same way we obtain a variant of Lemma 21.3 for morphisms
between locally adic* formal algebraic spaces over S.

Remark 21.5 (Variant for Noetherian). LetP be a property of morphisms of WAdmNoeth.
We say P is a local property if axioms (1), (2), (3), of Situation 21.2 hold for morphisms of
WAdmNoeth. In exactly the same way we obtain a variant of Lemma 21.3 for morphisms
between locally Noetherian formal algebraic spaces over S.

Situation 21.6. LetP be a local property of morphisms of WAdmcount, see Situation
21.2. We say P is stable under base change if given B → A and B → C in WAdmcount

we have P (B → A) ⇒ P (C → A⊗̂BC). This makes sense as A⊗̂BC is an object of
WAdmcount by Lemma 4.12.

Lemma 21.7. LetS be a scheme. LetP be a local property of morphisms of WAdmcount

which is stable under base change. Let f : X → Y and g : Z → Y be morphisms of locally
countably indexed formal algebraic spaces over S. If f satisfies the equivalent conditions
of Lemma 21.3 then so does pr2 : X ×Y Z → Z.

Proof. Choose a covering {Yj → Y } as in Definition 11.1. For each j choose a
covering {Xji → Yj ×Y X} as in Definition 11.1. For each j choose a covering {Zjk →
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Yj ×Y Z} as in Definition 11.1. Observe that Xji ×Yj Zjk is an affine formal algebraic
space which is countably indexed, see Lemma 20.10. Then we see that

{Xji ×Yj Zjk → X ×Y Z}

is a covering as in Definition 11.1. Moreover, the morphisms Xji ×Yj Zjk → Z fac-
tor through Zjk. By assumption we know that Xji → Yj corresponds to a morphism
Bj → Aji of WAdmcount having property P . The morphisms Zjk → Yj correspond
to morphisms Bj → Cjk in WAdmcount. Since Xji ×Yj Zjk = Spf(Aji⊗̂BjCjk) by
Lemma 16.4 we see that it suffices to show that Cjk → Aji⊗̂BjCjk has property P which
is exactly what the condition that P is stable under base change guarantees. �

Remark 21.8 (Variant for adic-star). LetP be a local property of morphisms of WAdmadic∗,
see Remark 21.4. We say P is stable under base change if given B → A and B → C in
WAdmadic∗ we have P (B → A) ⇒ P (C → A⊗̂BC). This makes sense as A⊗̂BC is
an object of WAdmadic∗ by Lemma 4.12. In exactly the same way we obtain a variant of
Lemma 21.7 for morphisms between locally adic* formal algebraic spaces over S.

Remark 21.9 (Variant for Noetherian). Let P be a local property of morphisms of
WAdmNoeth, see Remark 21.5. We say P is stable under base change if given B → A

and B → C in WAdmNoeth the property P (B → A) implies both that A⊗̂BC is adic
Noetherian7 and that P (C → A⊗̂BC). In exactly the same way we obtain a variant of
Lemma 21.7 for morphisms between locally Noetherian formal algebraic spaces over S.

Remark 21.10 (Another variant for Noetherian). Let P and Q be local properties of
morphisms of WAdmNoeth, see Remark 21.5. We say P is stable under base change by Q
if given B → A and B → C in WAdmNoeth satisfying P (B → A) and Q(B → C),
then A⊗̂BC is adic Noetherian and P (C → A⊗̂BC) holds. Arguing exactly as in the
proof of Lemma 21.7 we obtain the following statement: given morphisms f : X → Y
and g : Y → Z of locally Noetherian formal algebraic spaces over S such that

(1) the equivalent conditions of Lemma 21.3 hold for f and P ,
(2) the equivalent conditions of Lemma 21.3 hold for g and Q,

then the equivalent conditions of Lemma 21.3 hold for pr2 : X ×Y Z → Z and P .

Situation 21.11. Let P be a local property of morphisms of WAdmcount, see Sit-
uation 21.2. We say P is stable under composition if given B → A and C → B in
WAdmcount we have P (B → A) ∧ P (C → B)⇒ P (C → A).

Lemma 21.12. LetS be a scheme. LetP be a local property of morphisms of WAdmcount

which is stable under composition. Let f : X → Y and g : Y → Z be morphisms of lo-
cally countably indexed formal algebraic spaces over S. If f and g satisfies the equivalent
conditions of Lemma 21.3 then so does g ◦ f : X → Z.

Proof. Choose a covering {Zk → Z} as in Definition 11.1. For each k choose a
covering {Ykj → Zk ×Z Y } as in Definition 11.1. For each k and j choose a covering
{Xkji → Ykj ×Y X} as in Definition 11.1. If f and g satisfies the equivalent conditions
of Lemma 21.3 then Xkji → Yjk and Yjk → Zk correspond to arrows Bkj → Akji and
Ck → Bkj of WAdmcount having property P . Hence the compositions do too and we
conclude. �

7See Lemma 4.12 for a criterion.
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Remark 21.13 (Variant for adic-star). Let P be a local property of morphisms of
WAdmadic∗, see Remark 21.4. We say P is stable under composition if given B → A

and C → B in WAdmadic∗ we have P (B → A)∧P (C → B)⇒ P (C → A). In exactly
the same way we obtain a variant of Lemma 21.12 for morphisms between locally adic*
formal algebraic spaces over S.

Remark 21.14 (Variant for Noetherian). Let P be a local property of morphisms of
WAdmNoeth, see Remark 21.5. We say P is stable under composition if givenB → A and
C → B in WAdmNoeth we have P (B → A)∧P (C → B)⇒ P (C → A). In exactly the
same way we obtain a variant of Lemma 21.12 for morphisms between locally Noetherian
formal algebraic spaces over S.

Situation 21.15. Let P be a local property of morphisms of WAdmcount, see Sit-
uation 21.2. We say P has the cancellation property if given B → A and C → B in
WAdmcount we have P (C → B) ∧ P (C → A)⇒ P (B → A).

Lemma 21.16. LetS be a scheme. LetP be a local property of morphisms of WAdmcount

which has the cancellation property. Let f : X → Y and g : Y → Z be morphisms of
locally countably indexed formal algebraic spaces over S. If g ◦f and g satisfies the equiv-
alent conditions of Lemma 21.3 then so does f : X → Y .

Proof. Choose a covering {Zk → Z} as in Definition 11.1. For each k choose a
covering {Ykj → Zk ×Z Y } as in Definition 11.1. For each k and j choose a covering
{Xkji → Ykj ×Y X} as in Definition 11.1. Let Xkji → Yjk and Yjk → Zk correspond to
arrows Bkj → Akji and Ck → Bkj of WAdmcount. If g ◦ f and g satisfies the equivalent
conditions of Lemma 21.3 then Ck → Bkj and Ck → Akji satisfy P . Hence Bkj → Akji
does too and we conclude. �

Remark 21.17 (Variant for adic-star). Let P be a local property of morphisms of
WAdmadic∗, see Remark 21.4. We say P has the cancellation property if given B → A

and C → B in WAdmadic∗ we have P (C → A)∧P (C → B)⇒ P (B → A). In exactly
the same way we obtain a variant of Lemma 21.12 for morphisms between locally adic*
formal algebraic spaces over S.

Remark 21.18 (Variant for Noetherian). Let P be a local property of morphisms of
WAdmNoeth, see Remark 21.5. We say P has the cancellation property if given B → A

and C → B in WAdmNoeth we have P (C → B) ∧ P (C → A) ⇒ P (C → B). In
exactly the same way we obtain a variant of Lemma 21.12 for morphisms between locally
Noetherian formal algebraic spaces over S.

22. Taut ring maps and representability by algebraic spaces

In this section we briefly show that morphisms between locally countably index formal
algebraic spaces correspond étale locally to taut continuous ring homomorphisms between
weakly admissible topological rings having countable fundamental systems of open ideals.
In fact, this is rather clear from Lemma 19.8 and we encourage the reader to skip this
section.

Lemma 22.1. Let B → A be an arrow of WAdmcount. The following are equivalent
(a) B → A is taut (Definition 5.1),
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(b) forB ⊃ J1 ⊃ J2 ⊃ J3 ⊃ . . . a fundamental system of weak ideals of definitions
there exist a commutative diagram

A // . . . // A3 // A2 // A1

B //

OO

. . . // B/J3 //

OO

B/J2 //

OO

B/J1

OO

such that An+1/JnAn+1 = An and A = limAn as topological ring.
Moreover, these equivalent conditions define a local property, i.e., they satisfy axioms (1),
(2), (3).

Proof. The equivalence of (a) and (b) is immediate. Below we will give an algebraic
proof of the axioms, but it turns out we’ve already proven them. Namely, using Lemma
19.8 the equivalent conditions (a) and (b) translate to saying the corresponding morphism
of affine formal algebraic spaces is representable by algebraic spaces. Since this condition
is “étale local on the source and target” by Lemma 19.4 we immediately get axioms (1), (2),
and (3).

Direct algebraic proof of (1), (2), (3). Let a diagram (21.2.1) as in Situation 21.2 be given.
By Example 19.11 the maps A→ (A′)∧ and B → (B′)∧ satisfy (a) and (b).

Assume (a) and (b) hold forϕ. Let J ⊂ B be a weak ideal of definition. Then the closure of
JA, resp. J(B′)∧ is a weak ideal of definition I ⊂ A, resp. J ′ ⊂ (B′)∧. Then the closure
of I(A′)∧ is a weak ideal of definition I ′ ⊂ (A′)∧. A topological argument shows that I ′

is also the closure of J(A′)∧ and of J ′(A′)∧. Finally, as J runs over a fundamental system
of weak ideals of definition of B so do the ideals I and I ′ in A and (A′)∧. It follows that
(a) holds for ϕ′. This proves (1).

Assume A → A′ is faithfully flat and that (a) and (b) hold for ϕ′. Let J ⊂ B be a weak
ideal of definition. Using (a) and (b) for the maps B → (B′)∧ → (A′)∧ we find that the
closure I ′ of J(A′)∧ is a weak ideal of definition. In particular, I ′ is open and hence the
inverse image of I ′ in A is open. Now we have (explanation below)

A ∩ I ′ = A ∩
⋂

(J(A′)∧ + Ker((A′)∧ → A′/I0A
′))

= A ∩
⋂

Ker((A′)∧ → A′/JA′ + I0A
′)

=
⋂

(JA+ I0)

which is the closure of JA by Lemma 4.2. The intersections are over weak ideals of def-
inition I0 ⊂ A. The first equality because a fundamental system of neighbourhoods of
0 in (A′)∧ are the kernels of the maps (A′)∧ → A′/I0A

′. The second equality is trivial.
The third equality because A → A′ is faithfully flat, see Algebra, Lemma 82.11. Thus the
closure of JA is open. By Lemma 4.10 the closure of JA is a weak ideal of definition of
A. Finally, given a weak ideal of definition I ⊂ A we can find J such that J(A′)∧ is
contained in the closure of I(A′)∧ by property (a) for B → (B′)∧ and ϕ′. Thus we see
that (a) holds for ϕ. This proves (2).

We omit the proof of (3). �

Lemma 22.2. Let S be a scheme. Let f : X → Y be a morphism of locally countably
indexed formal algebraic spaces over S. The following are equivalent
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(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphism U → V corresponds to a taut map
B → A of WAdmcount,

(2) there exists a covering {Yj → Y } as in Definition 11.1 and for each j a covering
{Xji → Yj ×Y X} as in Definition 11.1 such that each Xji → Yj corresponds
to a taut ring map in WAdmcount,

(3) there exist a covering {Xi → X} as in Definition 11.1 and for each i a factor-
ization Xi → Yi → Y where Yi is an affine formal algebraic space, Yi → Y is
representable by algebraic spaces and étale, and Xi → Yi corresponds to a taut
ring map in WAdmcount, and

(4) f is representable by algebraic spaces.

Proof. The property of a map in WAdmcount being “taut” is a local property by
Lemma 22.1. Thus Lemma 21.3 exactly tells us that (1), (2), and (3) are equivalent. On the
other hand, by Lemma 19.8 being “taut” on maps in WAdmcount corresponds exactly to
being “representable by algebraic spaces” for the corresponding morphisms of countably
indexed affine formal algebraic spaces. Thus the implication (1) ⇒ (2) of Lemma 19.4
shows that (4) implies (1) of the current lemma. Similarly, the implication (4)⇒ (1) of
Lemma 19.4 shows that (2) implies (4) of the current lemma. �

23. Adic morphisms

This section matches the occasionally used notion of an “adic morphism” f : X → Y
of locally adic* formal algebraic spaces X and Y on the one hand with representability
of f by algebraic spaces and on the other hand with our notion of taut continuous ring
homomorphisms. First we recall that tautness is equivalent to adicness for adic rings with
finitely generated ideal of definition.

Lemma 23.1. Let A and B be pre-adic topological rings. Let ϕ : A→ B be a contin-
uous ring homomorphism.

(1) If ϕ is adic, then ϕ is taut.
(2) IfB is complete,A has a finitely generated ideal of definition, and ϕ is taut, then

ϕ is adic.
In particular the conditions “ϕ is adic” and “ϕ is taut” are equivalent on the category
WAdmadic∗.

Proof. Part (1) is Lemma 6.4. Part (2) is Lemma 6.5. The final statement is a conse-
quence of (1) and (2). �

Let S be a scheme. Let f : X → Y be a morphism of locally adic* formal algebraic spaces
over S. By Lemma 22.2 the following are equivalent

(1) f is representable by algebraic spaces (in other words, the equivalent conditions
of Lemma 19.4 hold),
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(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphismU → V corresponds to an adic8 map
in WAdmadic∗.

In this situation we will say that f is an adic morphism (the formal definition is below).
This notion/terminology will only be defined/used for morphisms between formal alge-
braic spaces which are locally adic* since otherwise we don’t have the equivalence between
(1) and (2) above.

Definition 23.2. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Assume X and Y are locally adic*. We say f is an adic morphism
if f is representable by algebraic spaces. See discussion above.

24. Morphisms of finite type

Due to how things are setup in the Stacks project, the following is really the correct thing
to do and stronger notions should have a different name.

Definition 24.1. Let S be a scheme. Let f : Y → X be a morphism of formal
algebraic spaces over S.

(1) We say f is locally of finite type if f is representable by algebraic spaces and is
locally of finite type in the sense of Bootstrap, Definition 4.1.

(2) We say f is of finite type if f is locally of finite type and quasi-compact (Defini-
tion 17.4).

We will discuss the relationship between finite type morphisms of certain formal algebraic
spaces and continuous ring mapsA→ B which are topologically of finite type in Section
29.

Lemma 24.2. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. The following are equivalent

(1) f is of finite type,
(2) f is representable by algebraic spaces and is of finite type in the sense of Boot-

strap, Definition 4.1.

Proof. This follows from Bootstrap, Lemma 4.5, the implication “quasi-compact +
locally of finite type⇒ finite type” for morphisms of algebraic spaces, and Lemma 17.5.

�

Lemma 24.3. The composition of finite type morphisms is of finite type. The same
holds for locally of finite type.

Proof. See Bootstrap, Lemma 4.3 and use Morphisms of Spaces, Lemma 23.2. �

Lemma 24.4. A base change of a finite type morphism is finite type. The same holds
for locally of finite type.

8Equivalently taut by Lemma 23.1.
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Proof. See Bootstrap, Lemma 4.2 and use Morphisms of Spaces, Lemma 23.3. �

Lemma 24.5. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
formal algebraic spaces over S. If g ◦ f : X → Z is locally of finite type, then f : X → Y
is locally of finite type.

Proof. By Lemma 19.3 we see that f is representable by algebraic spaces. Let T be a
scheme and let T → Z be a morphism. Then we can apply Morphisms of Spaces, Lemma
23.6 to the morphisms T ×Z X → T ×Z Y → T of algebraic spaces to conclude. �

Being locally of finite type is local on the source and the target.

Lemma 24.6. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. The following are equivalent:

(1) the morphism f is locally of finite type,
(2) there exists a commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces, the vertical arrows are representable by
algebraic spaces and étale, U → X is surjective, and U → V is locally of finite
type,

(3) for any commutative diagram

U

��

// V

��
X // Y

where U , V are formal algebraic spaces and vertical arrows representable by al-
gebraic spaces and étale, the morphism U → V is locally of finite type,

(4) there exists a covering {Yj → Y } as in Definition 11.1 and for each j a covering
{Xji → Yj ×Y X} as in Definition 11.1 such that Xji → Yj is locally of finite
type for each j and i,

(5) there exist a covering {Xi → X} as in Definition 11.1 and for each i a factor-
ization Xi → Yi → Y where Yi is an affine formal algebraic space, Yi → Y is
representable by algebraic spaces and étale, such thatXi → Yi is locally of finite
type, and

(6) add more here.

Proof. In each of the 5 cases the morphism f : X → Y is representable by algebraic
spaces, see Lemma 19.4. We will use this below without further mention.

It is clear that (1) implies (2) because we can take U = X and V = Y . Conversely, assume
given a diagram as in (2). Let T be a scheme and let T → Y be a morphism. Then we can
consider

U ×Y T

��

// V ×Y T

��
X ×Y T // T
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The vertical arrows are étale and the top horizontal arrow is locally of finite type as base
changes of such morphisms. Hence by Morphisms of Spaces, Lemma 23.4 we conclude that
X ×Y T → T is locally of finite type. In other words (1) holds.

Assume (1) is true and consider a diagram as in (3). Then U → Y is locally of finite type
(as the composition U → X → Y , see Bootstrap, Lemma 4.3). Let T be a scheme and let
T → V be a morphism. Then the projection T ×V U → T factors as

T ×V U = (T ×Y U)×(V×Y V ) V → T ×Y U → T

The second arrow is locally of finite type (as a base change of the composition U → X →
Y ) and the first is the base change of the diagonal V → V ×Y V which is locally of finite
type by Lemma 15.5.

It is clear that (3) implies (2). Thus now (1) – (3) are equivalent.

Observe that the condition in (4) makes sense as the fibre product Yj ×Y X is a formal
algebraic space by Lemma 15.3. It is clear that (4) implies (5).

Assume Xi → Yi → Y as in (5). Then we set V =
∐
Yi and U =

∐
Xi to see that (5)

implies (2).

Finally, assume (1) – (3) are true. Thus we can choose any covering {Yj → Y } as in
Definition 11.1 and for each j any covering {Xji → Yj×Y X} as in Definition 11.1. Then
Xij → Yj is locally of finite type by (3) and we see that (4) is true. This concludes the
proof. �

Example 24.7. Let S be a scheme. LetA be a weakly admissible topological ring over
S. Let A→ A′ be a finite type ring map. Then

(A′)∧ = limI⊂A w.i.d.A
′/IA′

is a weakly admissible ring and the corresponding morphism Spf((A′)∧) → Spf(A) is
representable, see Example 19.11. IfT → Spf(A) is a morphism whereT is a quasi-compact
scheme, then this factors through Spec(A/I) for some weak ideal of definition I ⊂ A
(Lemma 9.4). Then T ×Spf(A) Spf((A′)∧) is equal to T ×Spec(A/I) Spec(A′/IA′) and we
see that Spf((A′)∧)→ Spf(A) is of finite type.

Lemma 24.8. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. If Y is locally Noetherian and f locally of finite type, then X is locally
Noetherian.

Proof. Pick {Yj → Y } and {Xij → Yj ×Y X} as in Lemma 24.6. Then it follows
from Lemma 19.9 that each Xij is Noetherian. This proves the lemma. �

Lemma 24.9. Let S be a scheme. Let f : X → Y and Z → Y be morphisms of
formal algebraic spaces over S. IfZ is locally Noetherian and f locally of finite type, then
Z ×Y X is locally Noetherian.

Proof. The morphism Z ×Y X → Z is locally of finite type by Lemma 24.4. Hence
this follows from Lemma 24.8. �
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25. Surjective morphisms

By Lemma 12.4 the following definition does not clash with the already existing defini-
tions for morphisms of algebraic spaces or morphisms of formal algebraic spaces which are
representable by algebraic spaces.

Definition 25.1. Let S be a scheme. A morphism f : X → Y of formal algebraic
spaces over S is said to be surjective if it induces a surjective morphism Xred → Yred on
underlying reduced algebraic spaces.

Lemma 25.2. The composition of two surjective morphisms is a surjective morphism.

Proof. Omitted. �

Lemma 25.3. A base change of a surjective morphism is a surjective morphism.

Proof. Omitted. �

Lemma 25.4. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. The following are equivalent

(1) f is surjective,
(2) for every scheme T and morphism T → Y the projection X ×Y T → T is a

surjective morphism of formal algebraic spaces,
(3) for every affine scheme T and morphism T → Y the projection X ×Y T → T

is a surjective morphism of formal algebraic spaces,
(4) there exists a covering {Yj → Y } as in Definition 11.1 such that eachX×Y Yj →

Yj is a surjective morphism of formal algebraic spaces,
(5) there exists a surjective morphism Z → Y of formal algebraic spaces such that

X ×Y Z → Z is surjective, and
(6) add more here.

Proof. Omitted. �

26. Monomorphisms

Here is the definition.

Definition 26.1. Let S be a scheme. A morphism of formal algebraic spaces over S
is called a monomorphism if it is an injective map of sheaves.

An example is the following. Let X be an algebraic space and let T ⊂ |X| be a closed
subset. Then the morphism X/T → X from the formal completion of X along T to X is
a monomorphism. In particular, monomorphisms of formal algebraic spaces are in general
not representable.

Lemma 26.2. The composition of two monomorphisms is a monomorphism.

Proof. Omitted. �

Lemma 26.3. A base change of a monomorphism is a monomorphism.

Proof. Omitted. �

Lemma 26.4. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. The following are equivalent

(1) f is a monomorphism,



27. CLOSED IMMERSIONS 6209

(2) for every scheme T and morphism T → Y the projection X ×Y T → T is a
monomorphism of formal algebraic spaces,

(3) for every affine scheme T and morphism T → Y the projection X ×Y T → T
is a monomorphism of formal algebraic spaces,

(4) there exists a covering {Yj → Y } as in Definition 11.1 such that eachX×Y Yj →
Yj is a monomorphism of formal algebraic spaces, and

(5) there exists a family of morphisms {Yj → Y } such that
∐
Yj → Y is a surjection

of sheaves on (Sch/S)fppf such that each X ×Y Yj → Yj is a monomorphism
for all j ,

(6) there exists a morphismZ → Y of formal algebraic spaces which is representable
by algebraic spaces, surjective, flat, and locally of finite presentation such that
X ×Y Z → X is a monomorphism, and

(7) add more here.

Proof. Omitted. �

27. Closed immersions

Here is the definition.

Definition 27.1. Let S be a scheme. Let f : Y → X be a morphism of formal
algebraic spaces over S. We say f is a closed immersion if f is representable by algebraic
spaces and a closed immersion in the sense of Bootstrap, Definition 4.1.

Please skip the initial the obligatory lemmas when reading this section.

Lemma 27.2. The composition of two closed immersions is a closed immersion.

Proof. Omitted. �

Lemma 27.3. A base change of a closed immersion is a closed immersion.

Proof. Omitted. �

Lemma 27.4. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. The following are equivalent

(1) f is a closed immersion,
(2) for every scheme T and morphism T → Y the projection X ×Y T → T is a

closed immersion,
(3) for every affine scheme T and morphism T → Y the projection X ×Y T → T

is a closed immersion,
(4) there exists a covering {Yj → Y } as in Definition 11.1 such that eachX×Y Yj →

Yj is a closed immersion, and
(5) there exists a morphismZ → Y of formal algebraic spaces which is representable

by algebraic spaces, surjective, flat, and locally of finite presentation such that
X ×Y Z → X is a closed immersion, and

(6) add more here.

Proof. Omitted. �

Lemma 27.5. Let S be a scheme. Let X be a McQuillan affine formal algebraic space
over S. Let f : Y → X be a closed immersion of formal algebraic spaces over S. Then
Y is a McQuillan affine formal algebraic space and f corresponds to a continuous homo-
morphism A → B of weakly admissible topological S-algebras which is taut, has closed
kernel, and has dense image.
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Proof. Write X = Spf(A) where A is a weakly admissible topological ring. Let
Iλ be a fundamental system of weakly admissible ideals of definition in A. Then Y ×X
Spec(A/Iλ) is a closed subscheme of Spec(A/Iλ) and hence affine (Definition 27.1). Say
Y ×X Spec(A/Iλ) = Spec(Bλ). The ring map A/Iλ → Bλ is surjective. Hence the
projections

B = limBλ −→ Bλ

are surjective as the compositions A → B → Bλ are surjective. It follows that Y is
McQuillan by Lemma 9.6. The ring map A → B is taut by Lemma 19.8. The kernel is
closed because B is complete and A→ B is continuous. Finally, as A→ Bλ is surjective
for all λ we see that the image of A in B is dense. �

Even though we have the result above, in general we do not know how closed immersions
behave when the target is a McQuillan affine formal algebraic space, see Remark 29.4.

Example 27.6. Let S be a scheme. LetA be a weakly admissible topological ring over
S. Let K ⊂ A be a closed ideal. Setting

B = (A/K)∧ = limI⊂A w.i.d.A/(I +K)
the morphism Spf(B) → Spf(A) is representable, see Example 19.11. If T → Spf(A) is a
morphism where T is a quasi-compact scheme, then this factors through Spec(A/I) for
some weak ideal of definition I ⊂ A (Lemma 9.4). Then T ×Spf(A) Spf(B) is equal to
T ×Spec(A/I) Spec(A/(K + I)) and we see that Spf(B)→ Spf(A) is a closed immersion.
The kernel of A → B is K as K is closed, but beware that in general the ring map A →
B = (A/K)∧ need not be surjective.

Lemma 27.7. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces. Assume

(1) f is representable by algebraic spaces,
(2) f is a monomorphism,
(3) the inclusion Yred → Y factors through f , and
(4) f is locally of finite type or Y is locally Noetherian.

Then f is a closed immersion.

Proof. Assumptions (2) and (3) imply that Xred = X ×Y Yred = Yred. We will use
this without further mention.

If Y ′ → Y is an étale morphism of formal algebraic spaces over S , then the base change
f ′ : X ×Y Y ′ → Y ′ satisfies conditions (1) – (4). Hence by Lemma 27.4 we may assume
Y is an affine formal algebraic space.

Say Y = colimλ∈Λ Yλ as in Definition 9.1. Then Xλ = X ×Y Yλ is an algebraic space
endowed with a monomorphism fλ : Xλ → Yλ which induces an isomorphismXλ,red →
Yλ,red. ThusXλ is an affine scheme by Limits of Spaces, Proposition 15.2 (asXλ,red → Xλ

is surjective and integral). To finish the proof it suffices to show thatXλ → Yλ is a closed
immersion which we will do in the next paragraph.

Let X → Y be a monomorphism of affine schemes such that Xred = X ×Y Yred = Yred.
In general, this does not imply that X → Y is a closed immersion, see Examples, Section
35. However, under our assumption (4) we know that in the previous parapgrah either
Xλ → Yλ is of finite type or Yλ is Noetherian. This means that X → Y corresponds to
a ring map R → A such that R/I → A/IA is an isomorphism where I ⊂ R is the nil
radical (ie., the maximal locally nilpotent ideal of R) and either R → A is of finite type
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or R is Noetherian. In the first case R → A is surjective by Algebra, Lemma 126.9 and
in the second case I is finitely generated, hence nilpotent, hence R → A is surjective by
Nakayama’s lemma, see Algebra, Lemma 20.1 part (11). �

28. Restricted power series

Let A be a topological ring complete with respect to a linear topology (More on Algebra,
Definition 36.1). Let Iλ be a fundamental system of open ideals. Let r ≥ 0 be an integer.
In this setting one often denotes

A{x1, . . . , xr} = limλA/Iλ[x1, . . . , xr] = limλ(A[x1, . . . , xr]/IλA[x1, . . . , xr])
endowed with the limit topology. In other words, this is the completion of the polynomial
ring with respect to the ideals Iλ. We can think of elements of A{x1, . . . , xr} as power
series

f =
∑

E=(e1,...,er)
aEx

e1
1 . . . xerr

in x1, . . . , xr with coefficients aE ∈ A which tend to zero in the topology of A. In other
words, for any λ all but a finite number of aE are in Iλ. For this reason elements of
A{x1, . . . , xr} are sometimes called restricted power series. Sometimes this ring is denoted
A〈x1, . . . , xr〉; we will refrain from using this notation.

Remark 28.1 (Universal property restricted power series). Let A→ C be a continu-
ous map of complete linearly topologized rings. Then anyA-algebra mapA[x1, . . . xr]→
C extends uniquely to a continuous map A{x1, . . . , xr} → C on restricted power series.

Remark 28.2. Let A be a ring and let I ⊂ A be an ideal. If A is I-adically complete,
then the I-adic completion A[x1, . . . , xr]∧ of A[x1, . . . , xr] is the restricted power series
ring over A as a ring. However, it is not clear that A[x1, . . . , xr]∧ is I-adically complete.
We think of the topology on A{x1, . . . , xr} as the limit topology (which is always com-
plete) whereas we often think of the topology on A[x1, . . . , xr]∧ as the I-adic topology
(not always complete). If I is finitely generated, thenA{x1, . . . , xr} = A[x1, . . . , xr]∧ as
topological rings, see Algebra, Lemma 96.3.

29. Algebras topologically of finite type

Here is our definition. This definition is not generally agreed upon. Many authors impose
further conditions, often because they are only interested in specific types of rings and not
the most general case.

Definition 29.1. Let A → B be a continuous map of topological rings (More on
Algebra, Definition 36.1). We say B is topologically of finite type over A if there exists
an A-algebra map A[x1, . . . , xn]→ B whose image is dense in B.

IfA is a complete, linearly topologized ring, then the restricted power series ringA{x1, . . . , xr}
is topologically of finite type overA. If k is a field, then the power series ring k[[x1, . . . , xr]]
is topologically of finite type over k.
For continuous taut maps of weakly admissible topological rings, being topologically of
finite type corresponds exactly to morphisms of finite type between the associated affine
formal algebraic spaces.

Lemma 29.2. Let S be a scheme. Let ϕ : A → B be a continuous map of weakly
admissible topological rings over S. The following are equivalent

(1) Spf(ϕ) : Y = Spf(B)→ Spf(A) = X is of finite type,
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(2) ϕ is taut and B is topologically of finite type over A.

Proof. We can use Lemma 19.8 to relate tautness of ϕ to representability of Spf(ϕ).
We will use this without further mention below. It follows that X = colim Spec(A/I)
and Y = colim Spec(B/J(I)) where I ⊂ A runs over the weak ideals of definition of A
and J(I) is the closure of IB in B.
Assume (2). Choose a ring mapA[x1, . . . , xr]→ Bwhose image is dense. ThenA[x1, . . . , xr]→
B → B/J(I) has dense image too which means that it is surjective. Therefore B/J(I)
is of finite type over A/I . Let T → X be a morphism with T a quasi-compact scheme.
Then T → X factors through Spec(A/I) for some I (Lemma 9.4). Then T ×X Y =
T ×Spec(A/I) Spec(B/J(I)), see proof of Lemma 19.8. Hence T ×Y X → T is of finite
type as the base change of the morphism Spec(B/J(I))→ Spec(A/I) which is of finite
type. Thus (1) is true.
Assume (1). Pick any I ⊂ A as above. Since Spec(A/I) ×X Y = Spec(B/J(I)) we see
that A/I → B/J(I) is of finite type. Choose b1, . . . , br ∈ B mapping to generators of
B/J(I) over A/I . We claim that the image of the ring map A[x1, . . . , xr]→ B sending
xi to bi is dense. To prove this, let I ′ ⊂ I be a second weak ideal of definition. Then we
have

B/(J(I ′) + IB) = B/J(I)
because J(I) is the closure of IB and because J(I ′) is open. Hence we may apply Algebra,
Lemma 126.9 to see that (A/I ′)[x1, . . . , xr] → B/J(I ′) is surjective. Thus (2) is true,
concluding the proof. �

Let A be a topological ring complete with respect to a linear topology. Let (Iλ) be a fun-
damental system of open ideals. Let C be the category of inverse systems (Bλ) where

(1) Bλ is a finite type A/Iλ-algebra, and
(2) Bµ → Bλ is an A/Iµ-algebra homomorphism which induces an isomorphism

Bµ/IλBµ → Bλ.
Morphisms in C are given by compatible systems of homomorphisms.

Lemma 29.3. Let S be a scheme. Let X be an affine formal algebraic space over S.
Assume X is McQuillan and let A be the weakly admissible topological ring associated to
X . Then there is an anti-equivalence of categories between

(1) the category C introduced above, and
(2) the category of maps Y → X of finite type of affine formal algebraic spaces.

Proof. Let (Iλ) be a fundamental system of weakly admissible ideals of definition in
A. Consider Y as in (2). Then Y ×X Spec(A/Iλ) is affine (Definition 24.1 and Lemma
19.7). Say Y ×X Spec(A/Iλ) = Spec(Bλ). The ring map A/Iλ → Bλ is of finite type
because Spec(Bλ) → Spec(A/Iλ) is of finite type (by Definition 24.1). Then (Bλ) is an
object of C.
Conversely, given an object (Bλ) of C we can set Y = colim Spec(Bλ). This is an affine
formal algebraic space. We claim that

Y ×X Spec(A/Iλ) = (colimµ Spec(Bµ))×X Spec(A/Iλ) = Spec(Bλ)
To show this it suffices we get the same values if we evaluate on a quasi-compact scheme
U . A morphism U → (colimµ Spec(Bµ))×X Spec(A/Iλ) comes from a morphism U →
Spec(Bµ) ×Spec(A/Iµ) Spec(A/Iλ) for some µ ≥ λ (use Lemma 9.4 two times). Since
Spec(Bµ)×Spec(A/Iµ) Spec(A/Iλ) = Spec(Bλ) by our second assumption on objects of
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C this proves what we want. Using this we can show the morphism Y → X is of finite
type. Namely, we note that for any morphism U → X with U a quasi-compact scheme,
we get a factorization U → Spec(A/Iλ)→ X for some λ (see lemma cited above). Hence

Y ×X U = Y ×X Spec(A/Iλ))×Spec(A/Iλ) U = Spec(Bλ)×Spec(A/Iλ) U

is a scheme of finite type overU as desired. Thus the construction (Bλ) 7→ colim Spec(Bλ)
does give a functor from category (1) to category (2).

To finish the proof we show that the above constructions define quasi-inverse functors
between the categories (1) and (2). In one direction you have to show that

(colimµ Spec(Bµ))×X Spec(A/Iλ) = Spec(Bλ)

for any object (Bλ) in the category C. This we proved above. For the other direction you
have to show that

Y = colim(Y ×X Spec(A/Iλ))
given Y in the category (2). Again this is true by evaluating on quasi-compact test objects
and because X = colim Spec(A/Iλ). �

Remark 29.4. Let A be a weakly admissible topological ring and let (Iλ) be a fun-
damental system of weak ideals of definition. Let X = Spf(A), in other words, X is a
McQuillan affine formal algebraic space. Let f : Y → X be a morphism of affine formal
algebraic spaces. In general it will not be true that Y is McQuillan. More specifically, we
can ask the following questions:

(1) Assume that f : Y → X is a closed immersion. Then Y is McQuillan and f
corresponds to a continuous map ϕ : A → B of weakly admissible topological
rings which is taut, whose kernel K ⊂ A is a closed ideal, and whose image
ϕ(A) is dense in B, see Lemma 27.5. What conditions on A guarantee that B =
(A/K)∧ as in Example 27.6?

(2) What conditions onA guarantee that closed immersions f : Y → X correspond
to quotients A/K of A by closed ideals, in other words, the corresponding con-
tinuous map ϕ is surjective and open?

(3) Suppose that f : Y → X is of finite type. Then we get Y = colim Spec(Bλ)
where (Bλ) is an object of C by Lemma 29.3. In this case it is true that there exists
a fixed integer r such thatBλ is generated by r elements overA/Iλ for all λ (the
argument is essentially already given in the proof of (1)⇒ (2) in Lemma 29.2).
However, it is not clear that the projections limBλ → Bλ are surjective, i.e., it is
not clear that Y is McQuillan. Is there an example where Y is not McQuillan?

(4) Suppose that f : Y → X is of finite type and Y is McQuillan. Then f corre-
sponds to a continuous map ϕ : A→ B of weakly admissible topological rings.
In fact ϕ is taut and B is topologically of finite type over A, see Lemma 29.2. In
other words, f factors as

Y −→ Ar
X −→ X

where the first arrow is a closed immersion of McQuillan affine formal algebraic
spaces. However, then questions (1) and (2) are in force for Y → Ar

X .
Below we will answer these questions when X is countably indexed, i.e., when A has a
countable fundamental system of open ideals. If you have answers to these questions in
greater generality, or if you have counter examples, please email stacks.project@gmail.com.

mailto:stacks.project@gmail.com
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Lemma 29.5. Let S be a scheme. LetX be a countably indexed affine formal algebraic
space over S. Let f : Y → X be a closed immersion of formal algebraic spaces over
S. Then Y is a countably indexed affine formal algebraic space and f corresponds to
A→ A/K where A is an object of WAdmcount (Section 21) and K ⊂ A is a closed ideal.

Proof. By Lemma 10.4 we see thatX = Spf(A) whereA is an object of WAdmcount.
Since a closed immersion is representable and affine, we conclude by Lemma 19.9 that Y
is an affine formal algebraic space and countably index. Thus applying Lemma 10.4 again
we see that Y = Spf(B) with B an object of WAdmcount. By Lemma 27.5 we conclude
that f is given by a morphism A→ B of WAdmcount which is taut and has dense image.
To finish the proof we apply Lemma 5.10. �

Lemma 29.6. Let B → A be an arrow of WAdmcount, see Section 21. The following
are equivalent

(a) B → A is taut and B/J → A/I is of finite type for every weak ideal of defini-
tion J ⊂ B where I ⊂ A is the closure of JA,

(b) B → A is taut and B/Jλ → A/Iλ is of finite type for a cofinal system (Jλ) of
weak ideals of definition of B where Iλ ⊂ A is the closure of JλA,

(c) B → A is taut and A is topologically of finite type over B,
(d) A is isomorphic as a topological B-algebra to a quotient of B{x1, . . . , xn} by a

closed ideal.
Moreover, these equivalent conditions define a local property, i.e., they satisfy Axioms (1),
(2), (3).

Proof. The implications (a)⇒ (b), (c)⇒ (a), (d)⇒ (c) are straightforward from the
definitions. Assume (b) holds and let J ⊂ B and I ⊂ A be as in (a). Choose a commutative
diagram

A // . . . // A3 // A2 // A1

B //

OO

. . . // B/J3 //

OO

B/J2 //

OO

B/J1

OO

such that An+1/JnAn+1 = An and such that A = limAn as in Lemma 22.1. For ev-
ery m there exists a λ such that Jλ ⊂ Jm. Since B/Jλ → A/Iλ is of finite type, this
implies that B/Jm → A/Im is of finite type. Let α1, . . . , αn ∈ A1 be generators of
A1 over B/J1. Since A is a countable limit of a system with surjective transition maps,
we can find a1, . . . , an ∈ A mapping to α1, . . . , αn in A1. By Remark 28.1 we find a
continuous map B{x1, . . . , xn} → A mapping xi to ai. This map induces surjections
(B/Jm)[x1, . . . , xn]→ Am by Algebra, Lemma 126.9. Form ≥ 1 we obtain a short exact
sequence

0→ Km → (B/Jm)[x1, . . . , xn]→ Am → 0
The induced transition maps Km+1 → Km are surjective because Am+1/JmAm+1 =
Am. Hence the inverse limit of these short exact sequences is exact, see Algebra, Lemma
86.4. SinceB{x1, . . . , xn} = lim(B/Jm)[x1, . . . , xn] andA = limAm we conclude that
B{x1, . . . , xn} → A is surjective and open. As A is complete the kernel is a closed ideal.
In this way we see that (a), (b), (c), and (d) are equivalent.

Let a diagram (21.2.1) as in Situation 21.2 be given. By Example 24.7 the mapsA→ (A′)∧

and B → (B′)∧ satisfy (a), (b), (c), and (d). Moreover, by Lemma 22.1 in order to prove
Axioms (1) and (2) we may assume both B → A and (B′)∧ → (A′)∧ are taut. Now pick



29. ALGEBRAS TOPOLOGICALLY OF FINITE TYPE 6215

a weak ideal of definition J ⊂ B. Let J ′ ⊂ (B′)∧, I ⊂ A, I ′ ⊂ (A′)∧ be the closure
of J(B′)∧, JA, J(A′)∧. By what was said above, it suffices to consider the commutative
diagram

A/I // (A′)∧/I ′

B/J //

ϕ

OO

(B′)∧/J ′

ϕ′

OO

and to show (1) ϕ finite type⇒ ϕ′ finite type, and (2) if A→ A′ is faithfully flat, then ϕ′

finite type⇒ ϕ finite type. Note that (B′)∧/J ′ = B′/JB′ and (A′)∧/I ′ = A′/IA′ by
the construction of the topologies on (B′)∧ and (A′)∧. In particular the horizontal maps
in the diagram are étale. Part (1) now follows from Algebra, Lemma 6.2 and part (2) from
Descent, Lemma 14.2 as the ring map A/I → (A′)∧/I ′ = A′/IA′ is faithfully flat and
étale.

We omit the proof of Axiom (3). �

Lemma 29.7. In Lemma 29.6 ifB is admissible (for example adic), then the equivalent
conditions (a) – (d) are also equivalent to

(e) B → A is taut and B/J → A/I is of finite type for some ideal of definition
J ⊂ B where I ⊂ A is the closure of JA.

Proof. It is enough to show that (e) implies (a). Let J ′ ⊂ B be a weak ideal of
definition and let I ′ ⊂ A be the closure of J ′A. We have to show thatB/J ′ → A/I ′ is of
finite type. If the corresponding statement holds for the smaller weak ideal of definition
J ′′ = J ′ ∩ J , then it holds for J ′. Thus we may assume J ′ ⊂ J . As J is an ideal of
definition (and not just a weak ideal of definition), we get Jn ⊂ J ′ for some n ≥ 1. Thus
we can consider the diagram

0 // I/I ′ // A/I ′ // A/I // 0

0 // J/J ′ //

OO

B/J ′ //

OO

B/J //

OO

0

with exact rows. Since I ′ ⊂ A is open and since I is the closure of JA we see that I/I ′ =
(J/J ′) · A/I ′. Because J/J ′ is a nilpotent ideal and as B/J → A/I is of finite type, we
conclude from Algebra, Lemma 126.8 thatA/I ′ is of finite type overB/J ′ as desired. �

Lemma 29.8. Let S be a scheme. Let f : X → Y be a morphism of affine formal
algebraic spaces. Assume Y countably indexed. The following are equivalent

(1) f is locally of finite type,
(2) f is of finite type,
(3) f corresponds to a morphism B → A of WAdmcount (Section 21) satisfying the

equivalent conditions of Lemma 29.6.

Proof. Since X and Y are affine it is clear that conditions (1) and (2) are equivalent.
In cases (1) and (2) the morphism f is representable by algebraic spaces by definition, hence
affine by Lemma 19.7. Thus if (1) or (2) holds we see that X is countably indexed by
Lemma 19.9. Write X = Spf(A) and Y = Spf(B) for topological S-algebras A and B in
WAdmcount, see Lemma 10.4. By Lemma 9.10 we see that f corresponds to a continuous
map B → A. Hence now the result follows from Lemma 29.2. �
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Lemma 29.9. Let S be a scheme. Let f : X → Y be a morphism of locally countably
indexed formal algebraic spaces over S. The following are equivalent

(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphism U → V corresponds to a morphism
of WAdmcount which is taut and topologically of finite type,

(2) there exists a covering {Yj → Y } as in Definition 11.1 and for each j a covering
{Xji → Yj ×Y X} as in Definition 11.1 such that each Xji → Yj corresponds
to a morphism of WAdmcount which is taut and topologically of finite type,

(3) there exist a covering {Xi → X} as in Definition 11.1 and for each i a factor-
ization Xi → Yi → Y where Yi is an affine formal algebraic space, Yi → Y
is representable by algebraic spaces and étale, and Xi → Yi corresponds to a
morphism of WAdmcount which is, taut and topologically of finite type, and

(4) f is locally of finite type.

Proof. By Lemma 29.6 the property P (ϕ) =“ϕ is taut and topologically of finite
type” is local on WAdmcount. Hence by Lemma 21.3 we see that conditions (1), (2), and
(3) are equivalent. On the other hand, by Lemma 29.8 the condition P on morphisms
of WAdmcount corresponds exactly to morphisms of countably indexed, affine formal
algebraic spaces being locally of finite type. Thus the implication (1)⇒ (3) of Lemma 24.6
shows that (4) implies (1) of the current lemma. Similarly, the implication (4)⇒ (1) of
Lemma 24.6 shows that (2) implies (4) of the current lemma. �

30. Separation axioms for morphisms

This section is the analogue of Morphisms of Spaces, Section 4 for morphisms of formal
algebraic spaces.

Definition 30.1. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Let ∆X/Y : X → X ×Y X be the diagonal morphism.

(1) We say f is separated if ∆X/Y is a closed immersion.
(2) We say f is quasi-separated if ∆X/Y is quasi-compact.

Since ∆X/Y is representable (by schemes) by Lemma 15.5 we can test this by considering
morphisms T → X ×Y X from affine schemes T and checking whether

E = T ×X×YX X −→ T

is quasi-compact or a closed immersion, see Lemma 17.5 or Definition 27.1. Note that the
schemeE is the equalizer of two morphisms a, b : T → X which agree as morphisms into
Y and that E → T is a monomorphism and locally of finite type.

Lemma 30.2. All of the separation axioms listed in Definition 30.1 are stable under
base change.

Proof. Let f : X → Y and Y ′ → Y be morphisms of formal algebraic spaces. Let
f ′ : X ′ → Y ′ be the base change of f by Y ′ → Y . Then ∆X′/Y ′ is the base change of
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∆X/Y by the morphism X ′ ×Y ′ X ′ → X ×Y X . Each of the properties of the diagonal
used in Definition 30.1 is stable under base change. Hence the lemma is true. �

Lemma 30.3. Let S be a scheme. Let f : X → Z , g : Y → Z and Z → T be
morphisms of formal algebraic spaces over S. Consider the induced morphism i : X ×Z
Y → X ×T Y . Then

(1) i is representable (by schemes), locally of finite type, locally quasi-finite, sepa-
rated, and a monomorphism,

(2) if Z → T is separated, then i is a closed immersion, and
(3) if Z → T is quasi-separated, then i is quasi-compact.

Proof. By general category theory the following diagram

X ×Z Y
i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z

is a fibre product diagram. Hence i is the base change of the diagonal morphism ∆Z/T .
Thus the lemma follows from Lemma 15.5. �

Lemma 30.4. All of the separation axioms listed in Definition 30.1 are stable under
composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of formal algebraic spaces to
which the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X.

Our separation axiom is defined by requiring the diagonal to have some property P . By
Lemma 30.3 above we see that the second arrow also has this property. Hence the lemma
follows since the composition of (representable) morphisms with propertyP also is a mor-
phism with property P . �

Lemma 30.5. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. Let P be any of the separation axioms of Definition 30.1. The following
are equivalent

(1) f is P ,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z of f

is P ,
(3) for every affine scheme Z and every morphism Z → Y the base change Z ×Y

X → Z of f is P ,
(4) for every affine scheme Z and every morphism Z → Y the formal algebraic

space Z ×Y X is P (see Definition 16.3),
(5) there exists a covering {Yj → Y } as in Definition 11.1 such that the base change

Yj ×Y X → Yj has P for all j.

Proof. We will repeatedly use Lemma 30.2 without further mention. In particular,
it is clear that (1) implies (2) and (2) implies (3).

Assume (3) and let Z → Y be a morphism where Z is an affine scheme. Let U , V be affine
schemes and let a : U → Z ×Y X and b : V → Z ×Y X be morphisms. Then

U ×Z×YX V = (Z ×Y X)×∆,(Z×YX)×Z(Z×YX) (U ×Z V )
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and we see that this is quasi-compact ifP =“quasi-separated” or an affine scheme equipped
with a closed immersion into U ×Z V if P =“separated”. Thus (4) holds.

Assume (4) and let Z → Y be a morphism where Z is an affine scheme. Let U , V be
affine schemes and let a : U → Z ×Y X and b : V → Z ×Y X be morphisms. Reading
the argument above backwards, we see that U ×Z×YX V → U ×Z V is quasi-compact if
P =“quasi-separated” or a closed immersion if P =“separated”. Since we can choose U
and V as above such that U varies through an étale covering of Z ×Y X , we find that the
corresponding morphisms

U ×Z V → (Z ×Y X)×Z (Z ×Y X)
form an étale covering by affines. Hence we conclude that ∆ : (Z×Y X)→ (Z×Y X)×Z
(Z ×Y X) is quasi-compact, resp. a closed immersion. Thus (3) holds.

Let us prove that (3) implies (5). Assume (3) and let {Yj → Y } be as in Definition 11.1.
We have to show that the morphisms

∆j : Yj ×Y X −→ (Yj ×Y X)×Yj (Yj ×Y X) = Yj ×Y X ×Y X

has the corresponding property (i.e., is quasi-compact or a closed immersion). Write Yj =
colimYj,λ as in Definition 9.1. Replacing Yj by Yj,λ in the formula above, we have the
property by our assumption that (3) holds. Since the displayed arrow is the colimit of the
arrows ∆j,λ and since we can test whether ∆j has the corresponding property by testing
after base change by affine schemes mapping into Yj ×Y X×Y X , we conclude by Lemma
9.4.

Let us prove that (5) implies (1). Let {Yj → Y } be as in (5). Then we have the fibre product
diagram ∐

Yj ×Y X //

��

X

��∐
Yj ×Y X ×Y X // X ×Y X

By assumption the left vertical arrow is quasi-compact or a closed immersion. It follows
from Spaces, Lemma 5.6 that also the right vertical arrow is quasi-compact or a closed
immersion. �

31. Proper morphisms

Here is the definition we will use.

Definition 31.1. Let S be a scheme. Let f : Y → X be a morphism of formal
algebraic spaces over S. We say f is proper if f is representable by algebraic spaces and is
proper in the sense of Bootstrap, Definition 4.1.

It follows from the definitions that a proper morphism is of finite type.

Lemma 31.2. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S. The following are equivalent

(1) f is proper,
(2) for every scheme Z and morphism Z → Y the base change Z ×Y X → Z of f

is proper,
(3) for every affine scheme Z and every morphism Z → Y the base change Z ×Y

X → Z of f is proper,
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(4) for every affine scheme Z and every morphism Z → Y the formal algebraic
space Z ×Y X is an algebraic space proper over Z ,

(5) there exists a covering {Yj → Y } as in Definition 11.1 such that the base change
Yj ×Y X → Yj is proper for all j.

Proof. Omitted. �

Lemma 31.3. Proper morphisms of formal algebraic spaces are preserved by base
change.

Proof. This is an immediate consequence of Lemma 31.2 and transitivity of base
change. �

32. Formal algebraic spaces and fpqc coverings

This section is the analogue of Properties of Spaces, Section 17. Please read that section
first.

Lemma 32.1. Let S be a scheme. Let X be a formal algebraic space over S. Then X
satisfies the sheaf property for the fpqc topology.

Proof. The proof is identical to the proof of Properties of Spaces, Proposition 17.1.
Since X is a sheaf for the Zariski topology it suffices to show the following. Given a
surjective flat morphism of affines f : T ′ → T we have: X(T ) is the equalizer of the two
maps X(T ′)→ X(T ′ ×T T ′). See Topologies, Lemma 9.13.
Let a, b : T → X be two morphisms such that a ◦ f = b ◦ f . We have to show a = b.
Consider the fibre product

E = X ×∆X/S ,X×SX,(a,b) T.

By Lemma 11.2 the morphism ∆X/S is a representable monomorphism. Hence E → T is
a monomorphism of schemes. Our assumption that a ◦ f = b ◦ f implies that T ′ → T
factors (uniquely) through E. Consider the commutative diagram

T ′ ×T E //

��

E

��
T ′ //

:: ;;

T

Since the projection T ′ ×T E → T ′ is a monomorphism with a section we conclude it is
an isomorphism. Hence we conclude that E → T is an isomorphism by Descent, Lemma
23.17. This means a = b as desired.
Next, let c : T ′ → X be a morphism such that the two compositions T ′×T T ′ → T ′ → X
are the same. We have to find a morphism a : T → X whose composition with T ′ → T is
c. Choose a formal affine schemeU and an étale morphism U → X such that the image of
|U | → |Xred| contains the image of |c| : |T ′| → |Xred|. This is possible by Definition 11.1,
Properties of Spaces, Lemma 4.6, the fact that a finite union of formal affine algebraic spaces
is a formal affine algebraic space, and the fact that |T ′| is quasi-compact (small argument
omitted). The morphism U → X is representable by schemes (Lemma 9.11) and separated
(Lemma 16.5). Thus

V = U ×X,c T ′ −→ T ′

is an étale and separated morphism of schemes. It is also surjective by our choice ofU → X
(if you do not want to argue this you can replace U by a disjoint union of formal affine
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algebraic spaces so that U → X is surjective everything else still works as well). The
fact that c ◦ pr0 = c ◦ pr1 means that we obtain a descent datum on V/T ′/T (Descent,
Definition 34.1) because

V ×T ′ (T ′ ×T T ′) = U ×X,c◦pr0
(T ′ ×T T ′)

= (T ′ ×T T ′)×c◦pr1,X
U

= (T ′ ×T T ′)×T ′ V

The morphism V → T ′ is ind-quasi-affine by More on Morphisms, Lemma 66.8 (be-
cause étale morphisms are locally quasi-finite, see Morphisms, Lemma 36.6). By More
on Groupoids, Lemma 15.3 the descent datum is effective. Say W → T is a morphism
such that there is an isomorphism α : T ′ ×T W → V compatible with the given descent
datum on V and the canonical descent datum on T ′ ×T W . Then W → T is surjective
and étale (Descent, Lemmas 23.7 and 23.29). Consider the composition

b′ : T ′ ×T W −→ V = U ×X,c T ′ −→ U

The two compositions b′◦(pr0, 1), b′◦(pr1, 1) : (T ′×T T ′)×TW → T ′×TW → U agree
by our choice of α and the corresponding property of c (computation omitted). Hence b′

descends to a morphism b : W → U by Descent, Lemma 13.7. The diagram

T ′ ×T W //

��

W
b
// U

��
T ′ c // X

is commutative. What this means is that we have proved the existence of a étale locally
on T , i.e., we have an a′ : W → X . However, since we have proved uniqueness in the
first paragraph, we find that this étale local solution satisfies the glueing condition, i.e.,
we have pr∗

0a
′ = pr∗

1a
′ as elements of X(W ×T W ). Since X is an étale sheaf we find an

unique a ∈ X(T ) restricting to a′ on W . �

33. Maps out of affine formal schemes

We prove a few results that will be useful later. In the paper [?] the reader can find very
general results of a similar nature.

Lemma 33.1. Let S be a scheme. Let A be a weakly admissible topological S-algebra.
Let X be an affine scheme over S. Then the natural map

MorS(Spec(A), X) −→ MorS(Spf(A), X)
is bijective.

Proof. If X is affine, say X = Spec(B), then we see from Lemma 9.10 that mor-
phisms Spf(A) → Spec(B) correspond to continuous S-algebra maps B → A where B
has the discrete topology. These are just S-algebra maps, which correspond to morphisms
Spec(A)→ Spec(B). �

Lemma 33.2. Let S be a scheme. Let A be a weakly admissible topological S-algebra
such that A/I is a local ring for some weak ideal of definition I ⊂ A. Let X be a scheme
over S. Then the natural map

MorS(Spec(A), X) −→ MorS(Spf(A), X)
is bijective.
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Proof. Let ϕ : Spf(A)→ X be a morphism. Since Spec(A/I) is local we see that ϕ
maps Spec(A/I) into an affine open U ⊂ X . However, this then implies that Spec(A/J)
maps into U for every ideal of definition J . Hence we may apply Lemma 33.1 to see that
ϕ comes from a morphism Spec(A) → X . This proves surjectivity of the map. We omit
the proof of injectivity. �

Lemma 33.3. Let S be a scheme. LetR be a complete local Noetherian S-algebra. Let
X be an algebraic space over S. Then the natural map

MorS(Spec(R), X) −→ MorS(Spf(R), X)

is bijective.

Proof. Let m be the maximal ideal of R. We have to show that

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective for R as above.

Injectivity: Let x, x′ : Spec(R)→ X be two morphisms mapping to the same element in
the right hand side. Consider the fibre product

T = Spec(R)×(x,x′),X×SX,∆ X

Then T is a scheme and T → Spec(R) is locally of finite type, monomorphism, separated,
and locally quasi-finite, see Morphisms of Spaces, Lemma 4.1. In particular T is locally
Noetherian, see Morphisms, Lemma 15.6. Let t ∈ T be the unique point mapping to the
closed point of Spec(R) which exists as x and x′ agree over R/m. Then R → OT,t is a
local ring map of Noetherian rings such that R/mn → OT,t/mnOT,t is an isomorphism
for all n (because x and x′ agree over Spec(R/mn) for all n). SinceOT,t maps injectively
into its completion (see Algebra, Lemma 51.4) we conclude that R = OT,t. Hence x and
x′ agree over R.

Surjectivity: Let (xn) be an element of the right hand side. Choose a scheme U and a
surjective étale morphism U → X . Denote x0 : Spec(k)→ X the morphism induced on
the residue field k = R/m. The morphism of schemes U ×X,x0 Spec(k) → Spec(k) is
surjective étale. Thus U ×X,x0 Spec(k) is a nonempty disjoint union of spectra of finite
separable field extensions of k, see Morphisms, Lemma 36.7. Hence we can find a finite
separable field extension k′/k and a k′-point u0 : Spec(k′)→ U such that

Spec(k′)

��

u0
// U

��
Spec(k) x0 // X

commutes. Let R ⊂ R′ be the finite étale extension of Noetherian complete local rings
which induces k′/k on residue fields (see Algebra, Lemmas 153.7 and 153.9). Denote x′

n

the restriction of xn to Spec(R′/mnR′). By More on Morphisms of Spaces, Lemma 16.8
we can find an element (u′

n) ∈ lim MorS(Spec(R′/mnR′), U) mapping to (x′
n). By

Lemma 33.2 the family (u′
n) comes from a unique morphism u′ : Spec(R′) → U . De-

note x′ : Spec(R′) → X the composition. Note that R′ ⊗R R′ is a finite product of
spectra of Noetherian complete local rings to which our current discussion applies. Hence
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the diagram
Spec(R′ ⊗R R′) //

��

Spec(R′)

x′

��
Spec(R′) x′

// X

is commutative by the injectivity shown above and the fact that x′
n is the restriction of

xn which is defined over R/mn. Since {Spec(R′) → Spec(R)} is an fppf covering we
conclude that x′ descends to a morphism x : Spec(R) → X . We omit the proof that xn
is the restriction of x to Spec(R/mn). �

Lemma 33.4. Let S be a scheme. LetX be an algebraic space over S. Let T ⊂ |X| be a
closed subset such thatX \T → X is quasi-compact. LetR be a complete local Noetherian
S-algebra. Then an adic morphism p : Spf(R)→ X/T corresponds to a unique morphism
g : Spec(R)→ X such that g−1(T ) = {mR}.

Proof. The statement makes sense because X/T is adic* by Lemma 20.8 (and hence
we’re allowed to use the terminology adic for morphisms, see Definition 23.2). Let p be
given. By Lemma 33.3 we get a unique morphism g : Spec(R)→ X corresponding to the
composition Spf(R) → X/T → X . Let Z ⊂ X be the reduced induced closed subspace
structure on T . The incusion morphism Z → X corresponds to a morphism Z → X/T .
Since p is adic it is representable by algebraic spaces and we find

Spf(R)×X/T Z = Spf(R)×X Z

is an algebraic space endowed with a closed immersion to Spf(R). (Equality holds because
X/T → X is a monomorphism.) Thus this fibre product is equal to Spec(R/J) for some
ideal J ⊂ R wich contains mn0

R for some n0 ≥ 1. This implies that Spec(R) ×X Z is a
closed subscheme of Spec(R), say Spec(R)×X Z = Spec(R/I), whose intersection with
Spec(R/mnR) for n ≥ n0 is equal to Spec(R/J). In algebraic terms this says I + mnR =
J + mnR = J for all n ≥ n0. By Krull’s intersection theorem this implies I = J and we
conclude. �

34. The small étale site of a formal algebraic space

The motivation for the following definition comes from classical formal schemes: the
underlying topological space of a formal scheme (X,OX) is the underlying topological
space of the reduction Xred.
An important remark is the following. Suppose thatX is an algebraic space with reduction
Xred (Properties of Spaces, Definition 12.5). Then we have
Xspaces,étale = Xred,spaces,étale, Xétale = Xred,étale, Xaffine,étale = Xred,affine,étale

by More on Morphisms of Spaces, Theorem 8.1 and Lemma 8.2. Therefore the following
definition does not conflict with the already existing notion in case our formal algebraic
space happens to be an algebraic space.

Definition 34.1. LetS be a scheme. LetX be a formal algebraic space with reduction
Xred (Lemma 12.1).

(1) The small étale site Xétale of X is the site Xred,étale of Properties of Spaces,
Definition 18.1.

(2) The siteXspaces,étale is the siteXred,spaces,étale of Properties of Spaces, Defini-
tion 18.2.
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(3) The siteXaffine,étale is the siteXred,affine,étale of Properties of Spaces, Lemma
18.6.

In Lemma 34.6 we will see that Xspaces,étale can be described by in terms of morphisms
of formal algebraic spaces which are representable by algebraic spaces and étale. By Prop-
erties of Spaces, Lemmas 18.3 and 18.6 we have identifications
(34.1.1) Sh(Xétale) = Sh(Xspaces,étale) = Sh(Xaffine,étale)
We will call this the (small) étale topos of X .

Lemma 34.2. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces over S.

(1) There is a continuous functor Yspaces,étale → Xspaces,étale which induces a
morphism of sites

fspaces,étale : Xspaces,étale → Yspaces,étale.

(2) The rule f 7→ fspaces,étale is compatible with compositions, in other words (f ◦
g)spaces,étale = fspaces,étale ◦ gspaces,étale (see Sites, Definition 14.5).

(3) The morphism of topoi associated to fspaces,étale induces, via (34.1.1), a mor-
phism of topoi fsmall : Sh(Xétale) → Sh(Yétale) whose construction is com-
patible with compositions.

Proof. The only point here is that f induces a morphism of reductions Xred →
Yred by Lemma 12.1. Hence this lemma is immediate from the corresponding lemma for
morphisms of algebraic spaces (Properties of Spaces, Lemma 18.8). �

If the morphism of formal algebraic spaces X → Y is étale, then the morphism of topoi
Sh(Xétale)→ Sh(Yétale) is a localization. Here is a statement.

Lemma 34.3. Let S be a scheme, and let f : X → Y be a morphism of formal
algebraic spaces over S. Assume f is representable by algebraic spaces and étale. In this
case there is a cocontinuous functor j : Xétale → Yétale. The morphism of topoi fsmall
is the morphism of topoi associated to j , see Sites, Lemma 21.1. Moreover, j is continuous
as well, hence Sites, Lemma 21.5 applies.

Proof. This will follow immediately from the case of algebraic spaces (Properties of
Spaces, Lemma 18.11) if we can show that the induced morphism Xred → Yred is étale.
Observe that X ×Y Yred is an algebraic space, étale over the reduced algebraic space Yred,
and hence reduced itself (by our definition of reduced algebraic spaces in Properties of
Spaces, Section 7. Hence Xred = X ×Y Yred as desired. �

Lemma 34.4. Let S be a scheme. Let X be an affine formal algebraic space over S.
ThenXaffine,étale is equivalent to the category whose objects are morphisms ϕ : U → X
of formal algebraic spaces such that

(1) U is an affine formal algebraic space,
(2) ϕ is representable by algebraic spaces and étale.

Proof. Denote C the category introduced in the lemma. Observe that forϕ : U → X
in C the morphism ϕ is representable (by schemes) and affine, see Lemma 19.7. Recall that
Xaffine,étale = Xred,affine,étale. Hence we can define a functor

C −→ Xaffine,étale, (U → X) 7−→ U ×X Xred

because U ×X Xred is an affine scheme.
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To finish the proof we will construct a quasi-inverse. Namely, write X = colimXλ as in
Definition 9.1. For each λ we have Xred ⊂ Xλ is a thickening. Thus for every λ we have
an equivalence

Xred,affine,étale = Xλ,affine,étale

for example by More on Algebra, Lemma 11.2. Hence ifUred → Xred is an étale morphism
with Ured affine, then we obtain a system of étale morphisms Uλ → Xλ of affine schemes
compatible with the transition morphisms in the system defining X . Hence we can take

U = colimUλ

as our affine formal algebraic space over X . The construction gives that U ×X Xλ = Uλ.
This shows that U → X is representable and étale. We omit the verification that the
constructions are mutually inverse to each other. �

Lemma 34.5. Let S be a scheme. Let X be an affine formal algebraic space over S.
Assume X is McQuillan, i.e., equal to Spf(A) for some weakly admissible topological S-
algebra A. Then (Xaffine,étale)opp is equivalent to the category whose

(1) objects are A-algebras of the form B∧ = limB/JB where A → B is an étale
ring map and J runs over the weak ideals of definition of A, and

(2) morphisms are continuous A-algebra homomorphisms.

Proof. Combine Lemmas 34.4 and 19.13. �

Lemma 34.6. Let S be a scheme. Let X be a formal algebraic space over S. Then
Xspaces,étale is equivalent to the category whose objects are morphisms ϕ : U → X of
formal algebraic spaces such that ϕ is representable by algebraic spaces and étale.

Proof. Denote C the category introduced in the lemma. Recall that Xspaces,étale =
Xred,spaces,étale. Hence we can define a functor

C −→ Xspaces,étale, (U → X) 7−→ U ×X Xred

because U ×X Xred is an algebraic space étale over Xred.
To finish the proof we will construct a quasi-inverse. Choose an object ψ : V → Xred of
Xred,spaces,étale. Consider the functor UV,ψ : (Sch/S)fppf → Sets given by

UV,ψ(T ) = {(a, b) | a : T → X, b : T ×a,X Xred → V, ψ ◦ b = a|T×a,XXred}
We claim that the transformation UV,ψ → X , (a, b) 7→ a defines an object of the category
C. First, let’s prove that UV,ψ is a formal algebraic space. Observe that UV,ψ is a sheaf for
the fppf topology (some details omitted). Next, suppose thatXi → X is an étale covering
by affine formal algebraic spaces as in Definition 11.1. Set Vi = V ×XredXi,red and denote
ψi : Vi → Xi,red the projection. Then we have

UV,ψ ×X Xi = UVi,ψi

by a formal argument because Xi,red = Xi ×X Xred (as Xi → X is representable by
algebraic spaces and étale). Hence it suffices to show thatUVi,ψi is an affine formal algebraic
space, because then we will have a covering UVi,ψi → UV,ψ as in Definition 11.1. On the
other hand, we have seen in the proof of Lemma 34.3 that ψi : Vi → Xi is the base change
of a representable and étale morphism Ui → Xi of affine formal algebraic spaces. Then it
is not hard to see that Ui = UVi,ψi as desired.
We omit the verification that UV,ψ → X is representable by algebraic spaces and étale.
Thus we obtain our functor (V, ψ) 7→ (UV,ψ → X) in the other direction. We omit the
verification that the constructions are mutually inverse to each other. �
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Lemma 34.7. Let S be a scheme. Let X be a formal algebraic space over S. Then
Xaffine,étale is equivalent to the category whose objects are morphisms ϕ : U → X of
formal algebraic spaces such that

(1) U is an affine formal algebraic space,
(2) ϕ is representable by algebraic spaces and étale.

Proof. This follows by combining Lemmas 34.6 and 18.3. �

35. The structure sheaf

Let X be a formal algebraic space. A structure sheaf for X is a sheaf of topological rings
OX on the étale site Xétale (which we defined in Section 34) such that

OX(Ured) = lim Γ(Uλ,OUλ)

as topological rings whenever
(1) ϕ : U → X is a morphism of formal algebraic spaces,
(2) U is an affine formal algebraic space,
(3) ϕ is representable by algebraic spaces and étale,
(4) Ured → Xred is the corresponding affine object of Xétale, see Lemma 34.7,
(5) U = colimUλ is a colimit representation for U as in Definition 9.1.

Structure sheaves exist but may behave in unexpected manner.

Lemma 35.1. Every formal algebraic space has a structure sheaf.

Proof. Let S be a scheme. Let X be a formal algebraic space over S. By (34.1.1) it
suffices to construct OX as a sheaf of topological rings on Xaffine,étale. Denote C the
category whose objects are morphisms ϕ : U → X of formal algebraic spaces such that
U is an affine formal algebraic space and ϕ is representable by algebraic spaces and étale.
By Lemma 34.7 the functor U 7→ Ured is an equivalence of categories C → Xaffine,étale.
Hence by the rule given above the lemma, we already haveOX as a presheaf of topological
rings on Xaffine,étale. Thus it suffices to check the sheaf condition.

By definition of Xaffine,étale a covering corresponds to a finite family {gi : Ui →
U}i=1,...,n of morphisms of C such that {Ui,red → Ured} is an étale covering. The mor-
phisms gi are representably by algebraic spaces (Lemma 19.3) hence affine (Lemma 19.7).
Then gi is étale (follows formally from Properties of Spaces, Lemma 16.6 as Ui and U are
étale over X in the sense of Bootstrap, Section 4). Finally, write U = colimUλ as in
Definition 9.1.

With these preparations out of the way, we can prove the sheaf property as follows. For
each λ we set Ui,λ = Ui ×U Uλ and Uij,λ = (Ui ×U Uj)×U Uλ. By the above, these are
affine schemes, {Ui,λ → Uλ} is an étale covering, and Uij,λ = Ui,λ ×Uλ Uj,λ. Also we
have Ui = colimUi,λ and Ui×U Uj = colimUij,λ. For each λwe have an exact sequence

0→ Γ(Uλ,OUλ)→
∏

i
Γ(Ui,λ,OUi,λ)→

∏
i,j

Γ(Uij,λ,OUij,λ)

as we have the sheaf condition for the structure sheaf on Uλ and the étale topology (see
Étale Cohomology, Proposition 17.1). Since limits commute with limits, the inverse limit
of these exact sequences is an exact sequence

0→ lim Γ(Uλ,OUλ)→
∏

i
lim Γ(Ui,λ,OUi,λ)→

∏
i,j

lim Γ(Uij,λ,OUij,λ)
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which exactly means that

0→ OX(Ured)→
∏

i
OX(Ui,red)→

∏
i,j
OX((Ui ×U Uj)red)

is exact and hence the sheaf propery holds as desired. �

Remark 35.2. The structure sheaf does not always have “enough sections”. In Exam-
ples, Section 74 we have seen that there exist affine formal algebraic spaces which aren’t
McQuillan and there are even examples whose points are not separated by regular func-
tions.

In the next lemma we prove that the structure sheaf on a countably indexed affine formal
scheme has vanishing higher cohomology. For non-countably indexed ones, presumably
this generally doesn’t hold.

Lemma 35.3. IfX is a countably indexed affine formal algebraic space, then we have
Hn(Xétale,OX) = 0 for n > 0.

Proof. We may work withXaffine,étale as this gives the same topos. We will apply
Cohomology on Sites, Lemma 10.9 to show we have vanishing. Since Xaffine,étale has
finite disjoint unions, this reduces us to the Čech complex of a covering given by a sin-
gle arrow {Ured → Vred} in Xaffine,étale = Xred,affine,étale (see Étale Cohomology,
Lemma 22.1). Thus we have to show that

0→ OX(Vred)→ OX(Ured)→ OX(Ured ×Vred Ured)→ . . .

is exact. We will do this below in the case Vred = Xred. The general case is proven in
exactly the same way.

Recall that X = Spf(A) where A is a weakly admissible topological ring having a count-
able fundamental system of weak ideals of definition. We have seen in Lemmas 34.4 and
34.5 that the objectUred inXaffine,étale corresponds to a morphismU → X of affine for-
mal algebraic spaces which is representable by algebraic space and étale and U = Spf(B∧)
where B is an étale A-algebra. By our rule for the structure sheaf we see

OX(Ured) = B∧

We recall that B∧ = limB/JB where the limit is over weak ideals of definition J ⊂ A.
Working through the definitions we obtain

OX(Ured ×Xred Ured) = (B ⊗A B)∧

and so on. Since U → X is a covering the mapA→ B is faithfully flat, see Lemma 19.14.
Hence the complex

0→ A→ B → B ⊗A B → B ⊗A B ⊗A B → . . .

is universally exact, see Descent, Lemma 3.6. Our goal is to show that

Hn(0→ A∧ → B∧ → (B ⊗A B)∧ → (B ⊗A B ⊗A B)∧ → . . .)
is zero for n > 0. To see what is going on, let’s split our exact complex (before completion)
into short exact sequences

0→ A→ B →M1 → 0, 0→Mi → B⊗Ai+1 →Mi+1 → 0
By what we said above, these are universally exact short exact sequences. Hence JMi =
Mi∩J(B⊗Ai+1) for every ideal J ofA. In particular, the topology onMi as a submodule
of B⊗Ai+1 is the same as the topology on Mi as a quotient module of B⊗Ai. Therefore,
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since there exists a countable fundamental system of weak ideals of definition in A, the
sequences

0→ A∧ → B∧ →M∧
1 → 0, 0→M∧

i → (B⊗Ai+1)∧ →M∧
i+1 → 0

remain exact by Lemma 4.5. This proves the lemma. �

Remark 35.4. Even if the structure sheaf has good properties, this does not mean
there is a good theory of quasi-coherent modules. For example, in Examples, Section 13
we have seen that for almost any Noetherian affine formal algebraic spaces the most natural
notion of a quasi-coherent module leads to a category of modules which is not abelian.

36. Colimits of formal algebraic spaces

In this section we generalize the result of Section 13 to the case of systems of morphisms
of formal algebraic spaces. We remark that in the lemmas below the condition “fλµ :
Xλ → Xµ is a closed immersion inducing an isomorphism Xλ,red → Xµ,red” can be
reformulated as “fλµ is representable and a thickening”.

Lemma 36.1. Let S be a scheme. Suppose given a directed set Λ and a system of
affine formal algebraic spaces (Xλ, fλµ) over Λ where each fλµ : Xλ → Xµ is a closed
immersion inducing an isomorphism Xλ,red → Xµ,red. Then X = colimλ∈Λ Xλ is an
affine formal algebraic space over S.

Proof. We may write Xλ = colimω∈Ωλ Xλ,ω as the colimit of affine schemes over a
directed set Ωλ such that the transition morphisms Xλ,ω → Xλ,ω′ are thickenings. For
each λ, µ ∈ Λ and ω ∈ Ωλ, with µ ≥ λ there exists an ω′ ∈ Ωµ such that the morphism
Xλ,ω → Xµ factors through Xµ,ω′ , see Lemma 9.4. Then the morphism Xλ,ω → Xµ,ω′

is a closed immersion inducing an isomorphism on reductions and hence a thickening.
Set Ω =

∐
λ∈Λ Ωλ and say (λ, ω) ≤ (µ, ω′) if and only if λ ≤ µ and Xλ,ω → Xµ

factors through Xµ,ω′ . It follows from the above that Ω is a directed set and that X =
colimλ∈Λ Xλ = colim(λ,ω)∈Ω Xλ,ω . This finishes the proof. �

Lemma 36.2. LetS be a scheme. Suppose given a directed set Λ and a system of formal
algebraic spaces (Xλ, fλµ) over Λ where each fλµ : Xλ → Xµ is a closed immersion in-
ducing an isomorphism Xλ,red → Xµ,red. Then X = colimλ∈Λ Xλ is a formal algebraic
space over S.

Proof. Since we take the colimit in the category of fppf sheaves, we see that X is a
sheaf. Choose and fix λ ∈ Λ. Choose a covering {Xi,λ → Xλ} as in Definition 11.1. In
particular, we see that {Xi,λ,red → Xλ,red} is an étale covering by affine schemes. For
each µ ≥ λ there exists a cartesian diagram

Xi,λ
//

��

Xi,µ

��
Xλ

// Xµ

with étale vertical arrows. Namely, the étale morphismXi,λ,red → Xλ,red = Xµ,red cor-
responds to an étale morphism Xi,µ → Xµ of formal algebraic spaces with Xi,µ an affine
formal algebraic space, see Lemma 34.4. The same lemma implies the base change of Xi,µ

to Xλ agrees with Xi,λ. It also follows that Xi,µ = Xµ ×Xµ′ Xi,µ′ for µ′ ≥ µ ≥ λ.
Set Xi = colimXi,µ. Then Xi,µ = Xi ×X Xµ (as functors). Since any morphism
T → X = colimXµ from an affine (or quasi-compact) scheme T maps into Xµ for
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some µ, we see conclude that colimXi,µ → colimXµ is étale. Thus, if we can show
that colimXi,µ is an affine formal algebraic space, then the lemma holds. Note that the
morphisms Xi,µ → Xi,µ′ are closed immersions as a base change of the closed immer-
sion Xµ → Xµ′ . Finally, the morphism Xi,µ,red → Xi,µ′,red is an isomorphism as
Xµ,red → Xµ′,red is an isomorphism. Hence this reduces us to the case discussed in Lemma
36.1. �

37. Recompletion

In this section we define the completion of a formal algebraic space along a closed subset
of its reduction. It is the natural generalization of Section 14.

Lemma 37.1. Let S be a scheme. LetX be an affine formal algebraic space over S. Let
T ⊂ |Xred| be a closed subset. Then the functor

X/T : (Sch/S)fppf −→ Sets, U 7−→ {f : U → X : f(|U |) ⊂ T}

is an affine formal algebraic space.

Proof. Write X = colimXλ as in Definition 9.1. Then Xλ,red = Xred and we
may and do view T as a closed subset of |Xλ| = |Xλ,red|. By Lemma 14.1 for each λ
the completion (Xλ)/T is an affine formal algebraic space. The transition morphisms
(Xλ)/T → (Xµ)/T are closed immersions as base changes of the transition morphisms
Xλ → Xµ, see Lemma 14.4. Also the morphisms ((Xλ)/T )red → ((Xµ)/T )red are iso-
morphisms by Lemma 14.5. Since X/T = colim(Xλ)/T we conclude by Lemma 36.1. �

Lemma 37.2. Let S be a scheme. Let X be a formal algebraic space over S. Let T ⊂
|Xred| be a closed subset. Then the functor

X/T : (Sch/S)fppf −→ Sets, U 7−→ {f : U → X | f(|U |) ⊂ T}

is a formal algebraic space.

Proof. The functorX/T is an fppf sheaf since if {Ui → U} is an fppf covering, then∐
|Ui| → |U | is surjective.

Choose a covering {gi : Xi → X}i∈I as in Definition 11.1. The morphismsXi×XX/T →
X/T are étale (see Spaces, Lemma 5.5) and the map

∐
Xi ×X X/T → X/T is a surjection

of sheaves. Thus it suffices to prove that X/T ×X Xi is an affine formal algebraic space.
A U -valued point ofXi×X X/T is a morphism U → Xi whose image is contained in the
closed subset |gi,red|−1(T ) ⊂ |Xi,red|. Thus this follows from Lemma 37.1. �

Definition 37.3. Let S be a scheme. Let X be a formal algebraic space over S. Let
T ⊂ |Xred| be a closed subset. The formal algebraic space X/T of Lemma 14.2 is called
the completion of X along T .

Let f : X → X ′ be a morphism of formal algebraic spaces over a scheme S. Suppose that
T ⊂ |Xred| and T ′ ⊂ |X ′

red| are closed subsets such that |fred|(T ) ⊂ T ′. Then it is clear
that f defines a morphism of formal algebraic spaces

X/T −→ X ′
/T ′

between the completions.
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Lemma 37.4. Let S be a scheme. Let f : X ′ → X be a morphism of formal algebraic
spaces over S. Let T ⊂ |Xred| be a closed subset and let T ′ = |fred|−1(T ) ⊂ |X ′

red|. Then

X ′
/T ′

//

��

X ′

f

��
X/T

// X

is a cartesian diagram of formal algebraic spaces over S.

Proof. Namely, observe that the horizontal arrows are monomorphisms by construc-
tion. Thus it suffices to show that a morphism g : U → X ′ from a scheme U defines a
point of X ′

/T if and only if f ◦ g defines a point of X/T . In other words, we have to show
that g(U) is contained in T ′ ⊂ |X ′

red| if and only if (f ◦g)(U) is contained in T ⊂ |Xred|.
This follows immediately from our choice of T ′ as the inverse image of T . �

Lemma 37.5. Let S be a scheme. Let X be a formal algebraic space over S. Let T ⊂
|Xred| be a closed subset. The reduction (X/T )red of the completion X/T of X along T
is the reduced induced closed subspace Z of Xred corresponding to T .

Proof. It follows from Lemma 12.1, Properties of Spaces, Definition 12.5 (which uses
Properties of Spaces, Lemma 12.3 to construct Z), and the definition of X/T that Z and
(X/T )red are reduced algebraic spaces characterized the same mapping property: a mor-
phism g : Y → X whose source is a reduced algebraic space factors through them if and
only if |Y | maps into T ⊂ |X|. �

Lemma 37.6. Let S be a scheme. LetX be an affine formal algebraic space over S. Let
T ⊂ Xred be a closed subset and let X/T be the formal completion of X along T . Then

(1) X/T is an affine formal algebraic space,
(2) if X is McQuillan, then X/T is McQuillan,
(3) if |Xred|\T is quasi-compact andX is countably indexed, thenX/T is countably

indexed,
(4) if |Xred| \ T is quasi-compact and X is adic*, then X/T is adic*,
(5) if X is Noetherian, then X/T is Noetherian.

Proof. Part (1) is Lemma 37.1. IfX is McQuillan, thenX = Spf(A) for some weakly
admissible topological ring A. Then X/T → X → Spec(A) satisfies property (2) of
Lemma 9.6 and hence X/T is McQuillan, see Definition 9.7.

Assume X and T are as in (3). Then X = Spf(A) where A has a fundamental system
A ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . of weak ideals of definition, see Lemma 10.4. By Algebra, Lemma
29.1 we can find a finitely generated ideal J = (f1, . . . , fr) ⊂ A/I1 such that T is cut
out by J inside Spec(A/I1) = |Xred|. Choose fi ∈ A lifting f i. If Z = Spec(B) is
an affine scheme and g : Z → X is a morphism with g(Z) ⊂ T (set theoretically), then
g] : A→ B factors throughA/In for some n and g](fi) is nilpotent inB for each i. Thus
Jm,n = (f1, . . . , fr)m + In maps to zero in B for some n,m ≥ 1. It follows that X/T is
the formal spectrum of limn,mA/Jm,n and hence countably indexed. This proves (3).

Proof of (4). Here the argument is the same as in (3). However, here we may choose
In = In for some finitely generated ideal I ⊂ A. Then it is clear that X/T is the formal
spectrum of limA/Jn where J = (f1, . . . , fr) + I . Some details omitted.
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Proof of (5). In this caseXred is the spectrum of a Noetherian ring and hence the assump-
tion that |Xred| \ T is quasi-compact is satisfied. Thus as in the proof of (4) we see that
X/T is the spectrum of limA/Jn which is a Noetherian adic topological ring, see Algebra,
Lemma 97.6. �

Lemma 37.7. Let S be a scheme. Let X be a formal algebraic space over S. Let T ⊂
Xred be a closed subset and let X/T be the formal completion of X along T . Then

(1) if Xred \ T → Xred is quasi-compact and X is locally countably indexed, then
X/T is locally countably indexed,

(2) if Xred \ T → Xred is quasi-compact and X is locally adic*, then X/T is locally
adic*, and

(3) if X is locally Noetherian, then X/T is locally Noetherian.

Proof. Choose a covering {Xi → X} as in Definition 11.1. Let Ti ⊂ Xi,red be the
inverse image of T . We have Xi ×X X/T = (Xi)/Ti (Lemma 37.4). Hence {(Xi)/Ti →
X/T } is a covering as in Definition 11.1. Moreover, ifXred \T → Xred is quasi-compact,
so isXi,red \Ti → Xi,red and ifX is locally countably indexed, or locally adic*, pr locally
Noetherian, the isXi is countably index, or adic*, or Noetherian. Thus the lemma follows
from the affine case which is Lemma 37.6. �

38. Completion along a closed subspace

This section is the analgue of Section 14 for completions with respect to a closed subspace.

Definition 38.1. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X
be a closed subspace and denote Zn ⊂ X the nth order infinitesimal neighbourhood. The
formal algebraic space

X∧
Z = colimZn

(see Lemma 36.2) is called the completion of X along Z.

Observe that if T = |Z| then there is a canonical morphism X∧
Z → X/T comparing the

completions along Z and T (Section 14) which need not be an isomorphism.

Let f : X → X ′ be a morphism of algebraic spaces over a scheme S. Suppose that Z ⊂ X
and Z ′ ⊂ X ′ are closed subspaces such that f |Z maps Z into Z ′ inducing a morphism
Z → Z ′. Then it is clear that f defines a morphism of formal algebraic spaces

X∧
Z −→ (X ′)∧

Z′

between the completions.

Lemma 38.2. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic spaces
over S. Let Z ⊂ X be a closed subspace and let Z ′ = f−1(Z) = X ′ ×X Z. Then

(X ′)∧
Z′ //

��

X ′

f

��
X∧
Z

// X

is a cartesian diagram of sheaves. In particular, the morphism (X ′)∧
Z′ → X∧

Z is repre-
sentable by algebraic spaces.
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Proof. Namely, suppose that Y → X is a morphism from a scheme intoX such that
Y → X factors through Z. Then Y ×X X ′ → X is a morphism of algebraic spaces such
that Y ×X X ′ → X ′ factors through Z ′. Since Z ′

n = X ′×X Zn for all n ≥ 1 the same is
true for the infinitesimal neighbourhoods. Hence the cartesian square of functors follows
from the formulas X∧

Z = colimZn and (X ′)∧
Z′ = colimZ ′

n. �

Lemma 38.3. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X be a
closed subspace. The reduction (X∧

Z )red of the completion X∧
Z of X along Z is Zred.

Proof. Omitted. �

Lemma 38.4. Let S be a scheme. Let X = Spec(A) be an affine scheme over S. Let
Z ⊂ X be a closed subscheme. Let X∧

Z be the formal completion of X along Z.
(1) The affine formal algebraic space X∧

Z is weakly adic.
(2) If Z → X is of finite presentation, then X∧

Z is adic*.
(3) If Z = V (I) for some finitely generated ideal I ⊂ A, then X∧

Z = Spf(A∧)
where A∧ is the I-adic completion of A.

(4) If X is Noetherian, then X∧
Z is Noetherian.

Proof. Omitted. �

Lemma 38.5. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X be a
closed subspace. Let X∧

Z be the formal completion of X along Z.
(1) The formal algebraic space X∧

Z is locally weakly adic.
(2) If Z → X is of finite presentation, then X∧

Z is locally adic*.
(3) If X is locally Noetherian, then XZ is locally Noetherian.

Proof. Omitted. �
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CHAPTER 88

Algebraization of Formal Spaces

1. Introduction

The main goal of this chapter is to prove Artin’s theorem on dilatations, see Theorem 29.1;
the result on contractions will be discussed in Artin’s Axioms, Section 27. Both results use
some material on formal algebraic spaces, hence in the middle part of this chapter, we
continue the discussion of formal algebraic spaces from the previous chapter, see Formal
Spaces, Section 1. The first part of this chapter is dedicated to algebraic preliminaries,
mostly dealing with algebraization of rig-étale algebras.

Let A be a Noetherian ring and let I ⊂ A be an ideal. In the first part of this chapter
(Sections 2 – 10) we discuss the category of I-adically complete algebras B topologically
of finite type over a Noetherian ring A. It is shown that B = A{x1, . . . , xn}/J for some
(closed) ideal J in the restricted power series ring (where A is endowed with the I-adic
topology). We show there is a good notion of a naive cotangent complexNL∧

B/A. If some
power of I annihilates NL∧

B/A, then we say B is a rig-étale algebra over (A, I); there is a
similar notion of rig-smooth algebras. If A is a G-ring, then we can show, using Popescu’s
theorem, that any rig-smooth algebra B over (A, I) is the completion of a finite type A-
algebra; informally we say that we can “algebraize” B. However, the main result of the
first part is that any rig-étale algebra B over (A, I) can be algebraized, see Lemma 10.2.
One thing to note here is that we prove this without assuming the ring A is a G-ring.

Many of the results discussed in the first part can be found in the paper [?]. Other general
references for this part are [?], [?], and [?].

In the second part of this chapter (Sections 12 – 24) we talk about types of morphisms of
formal algebraic spaces in a reasonable level of generality (mostly for locally Noetherian
formal algebraic spaces). The most interesting of these is the notion of a “formal mod-
ification” in the last section. We carefully check that our definition agrees with Artin’s
definition in [?].

Finally, in the third and last part of this chapter (Sections 25 – 30) we prove the main
theorem and we give a few applications. In fact, we deduce Artin’s theorem from a stronger
result, namely, Theorem 27.4. This theorem says very roughly: if f : X→ X′ is a rig-étale
morphism and X′ is the formal completion of a locally Noetherian algebraic space, then
so is X. In Artin’s work the morphism f is assumed proper and rig-surjective.

6233
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2. Two categories

Let A be a ring and let I ⊂ A be an ideal. In this section ∧ will mean I-adic completion.
SetAn = A/In so that the I-adic completion ofA isA∧ = limAn. Let C be the category

(2.0.1) C =


inverse systems . . .→ B3 → B2 → B1

where Bn is a finite type An-algebra,
Bn+1 → Bn is an An+1-algebra map
which induces Bn+1/I

nBn+1 ∼= Bn


Morphisms in C are given by systems of homomorphisms. Let C′ be the category

(2.0.2) C′ =
{
A-algebras B which are I-adically complete
such that B/IB is of finite type over A/I

}
Morphisms in C′ are A-algebra maps. There is a functor

(2.0.3) C′ −→ C, B 7−→ (B/InB)

Indeed, since B/IB is of finite type over A/I the ring maps An = A/In → B/InB are
of finite type by Algebra, Lemma 126.8.

Lemma 2.1. Let A be a ring and let I ⊂ A be a finitely generated ideal. The functor

C −→ C′, (Bn) 7−→ B = limBn

is a quasi-inverse to (2.0.3). The completionsA[x1, . . . , xr]∧ are in C′ and any object of C′

is of the form
B = A[x1, . . . , xr]∧/J

for some ideal J ⊂ A[x1, . . . , xr]∧.

Proof. Let (Bn) be an object of C. By Algebra, Lemma 98.2 we see that B = limBn
is I-adically complete and B/InB = Bn. Hence we see that B is an object of C′ and that
we can recover the object (Bn) by taking the quotients. Conversely, if B is an object of
C′, then B = limB/InB by assumption. Thus B 7→ (B/InB) is a quasi-inverse to the
functor of the lemma.

SinceA[x1, . . . , xr]∧ = limAn[x1, . . . , xr] it is an object of C′ by the first statement of the
lemma. Finally, let B be an object of C′. Choose b1, . . . , br ∈ B whose images in B/IB
generateB/IB as an algebra overA/I . SinceB is I-adically complete, theA-algebra map
A[x1, . . . , xr]→ B, xi 7→ bi extends to anA-algebra mapA[x1, . . . , xr]∧ → B. To finish
the proof we have to show this map is surjective which follows from Algebra, Lemma 96.1
as our map A[x1, . . . , xr]→ B is surjective modulo I and as B = B∧. �

We warn the reader that, in case A is not Noetherian, the quotient of an object of C′ may
not be an object of C′. See Examples, Lemma 8.1. Next we show this does not happen when
A is Noetherian.

Lemma 2.2. Let A be a Noetherian ring and let I ⊂ A be an ideal. Then
(1) every object of the category C′ (2.0.2) is Noetherian,
(2) if B ∈ Ob(C′) and J ⊂ B is an ideal, then B/J is an object of C′,
(3) for a finite type A-algebra C the I-adic completion C∧ is in C′,
(4) in particular the completion A[x1, . . . , xr]∧ is in C′.
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Proof. Part (4) follows from Algebra, Lemma 97.6 as A[x1, . . . , xr] is Noetherian
(Algebra, Lemma 31.1). To see (1) by Lemma 2.1 we reduce to the case of the completion
of the polynomial ring which we just proved. Part (2) follows from Algebra, Lemma 97.1
which tells us that ever finite B-module is IB-adically complete. Part (3) follows in the
same manner as part (4). �

Remark 2.3 (Base change). Let ϕ : A1 → A2 be a ring map and let Ii ⊂ Ai be
ideals such that ϕ(Ic1) ⊂ I2 for some c ≥ 1. This induces ring maps A1,cn = A1/I

cn
1 →

A2/I
n
2 = A2,n for all n ≥ 1. Let Ci be the category (2.0.1) for (Ai, Ii). There is a base

change functor
(2.3.1) C1 −→ C2, (Bn) 7−→ (Bcn ⊗A1,cn A2,n)
Let C′

i be the category (2.0.2) for (Ai, Ii). If I2 is finitely generated, then there is a base
change functor
(2.3.2) C′

1 −→ C′
2, B 7−→ (B ⊗A1 A2)∧

because in this case the completion is complete (Algebra, Lemma 96.3). If both I1 and
I2 are finitely generated, then the two base change functors agree via the functors (2.0.3)
which are equivalences by Lemma 2.1.

Remark 2.4 (Base change by closed immersion). Let A be a Noetherian ring and
I ⊂ A an ideal. Let a ⊂ A be an ideal. Denote Ā = A/a. Let Ī ⊂ Ā be an ideal such that
IcĀ ⊂ Ī and Īd ⊂ IĀ for some c, d ≥ 1. In this case the base change functor (2.3.2) for
(A, I) to (Ā, Ī) is given by B 7→ B̄ = B/aB. Namely, we have

(2.4.1) B̄ = (B ⊗A Ā)∧ = (B/aB)∧ = B/aB

the last equality because any finite B-module is I-adically complete by Algebra, Lemma
97.1 and if annihilated by a also Ī-adically complete by Algebra, Lemma 96.9.

3. A naive cotangent complex

Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an A-algebra which is
I-adically complete such that A/I → B/IB is of finite type, i.e., an object of (2.0.2). By
Lemma 2.2 we can write

B = A[x1, . . . , xr]∧/J
for some finitely generated ideal J . For a choice of presentation as above we define the
naive cotangent complex in this setting by the formula

(3.0.1) NL∧
B/A = (J/J2 −→

⊕
Bdxi)

with terms sitting in degrees−1 and 0 where the map sends the residue class of g ∈ J to the
differential dg =

∑
(∂g/∂xi)dxi. Here the partial derivative is taken by thinking of g as

a power series. The following lemma shows that NL∧
B/A is well defined up to homotopy.

Lemma 3.1. Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an object
of (2.0.2). The naive cotangent complex NL∧

B/A is well defined in K(B).

Proof. The lemma signifies that given a second presentationB = A[y1, . . . , ys]∧/K
the complexes of B-modules

(J/J2 → Bdxi) and (K/K2 →
⊕

Bdyj)

are homotopy equivalent. To see this, we can argue exactly as in the proof of Algebra,
Lemma 134.2.
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Step 1. If we choose gi(y1, . . . , ys) ∈ A[y1, . . . , ys]∧ mapping to the image of xi in B,
then we obtain a (unique) continuous A-algebra homomorphism

A[x1, . . . , xr]∧ → A[y1, . . . , ys]∧, xi 7→ gi(y1, . . . , ys)
compatible with the given surjections to B. Such a map is called a morphism of presenta-
tions. It induces a map fromJ intoK and hence induces aB-module mapJ/J2 → K/K2.
Sending dxi to

∑
(∂gi/∂yj)dyj we obtain a map of complexes

(J/J2 →
⊕

Bdxi) −→ (K/K2 →
⊕

Bdyj)

Of course we can do the same thing with the roles of the two presentations exchanged to
get a map of complexes in the other direction.
Step 2. The construction above is compatible with compositions of morphsms of presenta-
tions. Hence to finish the proof it suffices to show: given gi(x1, . . . , xr) ∈ A[x1, . . . , xn]∧
mapping to the image of xi in B, the induced map of complexes

(J/J2 →
⊕

Bdxi) −→ (J/J2 →
⊕

Bdxi)

is homotopic to the identity map. To see this consider the map h :
⊕
Bdxi → J/J2

given by the rule dxi 7→ gi(x1, . . . , xn)− xi and compute. �

Lemma 3.2. Let A be a Noetherian ring and let I ⊂ A be a ideal. Let A → B be a
finite type ring map. Choose a presentation α : A[x1, . . . , xn] → B. Then NL∧

B∧/A =
limNL(α)⊗B B∧ as complexes and NL∧

B∧/A = NLB/A⊗L
BB

∧ in D(B∧).

Proof. The statement makes sense as B∧ is an object of (2.0.2) by Lemma 2.2. Let
J = Ker(α). The functor of taking I-adic completion is exact on finite modules over
A[x1, . . . , xn] and agrees with the functor M 7→ M ⊗A[x1,...,xn] A[x1, . . . , xn]∧, see Al-
gebra, Lemmas 97.1 and 97.2. Moreover, the ring maps A[x1, . . . , xn] → A[x1, . . . , xn]∧
and B → B∧ are flat. Hence B∧ = A[x1, . . . , xn]∧/J∧ and

(J/J2)⊗B B∧ = (J/J2)∧ = J∧/(J∧)2

Since NL(α) = (J/J2 →
⊕
Bdxi), see Algebra, Section 134, we conclude the complex

NL∧
B∧/A is equal to NL(α) ⊗B B∧. The final statement follows as NLB/A is homotopy

equivalent to NL(α) and because the ring map B → B∧ is flat (so derived base change
along B → B∧ is just base change). �

Lemma 3.3. Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an object
of (2.0.2). Then

(1) the pro-objects {NL∧
B/A⊗BB/InB} and {NLBn/An} of D(B) are strictly iso-

morphic (see proof for elucidation),
(2) NL∧

B/A = R limNLBn/An in D(B).
Here Bn and An are as in Section 2.

Proof. The statement means the following: for every nwe have a well defined com-
plex NLBn/An of Bn-modules and we have transition maps NLBn+1/An+1 → NLBn/An .
See Algebra, Section 134. Thus we can consider

. . .→ NLB3/A3 → NLB2/A2 → NLB1/A1

as an inverse system of complexes of B-modules and a fortiori as an inverse system in
D(B). Furthermore R limNLBn/An is a homotopy limit of this inverse system, see De-
rived Categories, Section 34.
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Choose a presentation B = A[x1, . . . , xr]∧/J . This defines presentations

Bn = B/InB = An[x1, . . . , xr]/Jn
where

Jn = JAn[x1, . . . , xr] = J/(J ∩ InA[x1, . . . , xr]∧)
The two term complex Jn/J2

n −→
⊕
Bndxi represents NLBn/An , see Algebra, Section

134. By Artin-Rees (Algebra, Lemma 51.2) in the Noetherian ringA[x1, . . . , xr]∧ (Lemma
2.2) we find a c ≥ 0 such that we have canonical surjections

J/InJ → Jn → J/In−cJ → Jn−c, n ≥ c

for alln ≥ c. A moment’s thought shows that these maps are compatible with differentials
and we obtain maps of complexes

NL∧
B/A⊗BB/InB → NLBn/An → NL∧

B/A⊗BB/In−cB → NLBn−c/An−c

compatible with the transition maps of the inverse systems {NL∧
B/A⊗BB/InB} and

{NLBn/An}. This proves part (1) of the lemma.

By part (1) and since pro-isomorphic systems have the same R lim in order to prove (2)
it suffices to show that NL∧

B/A is equal to R limNL∧
B/A⊗BB/InB. However, NL∧

B/A is
a two term complex M• of finite B-modules which are I-adically complete for example
by Algebra, Lemma 97.1. Hence M• = limM•/InM• = R limM•/InM•, see More on
Algebra, Lemma 87.1 and Remark 87.6. �

Lemma 3.4. Let (A1, I1)→ (A2, I2) be as in Remark 2.3 withA1 andA2 Noetherian.
LetB1 be in (2.0.2) for (A1, I1). LetB2 be the base change ofB1. Then there is a canonical
map

NLB1/A1 ⊗B2B1 → NLB2/A2

which induces and isomorphism on H0 and a surjection on H−1.

Proof. Choose a presentationB1 = A1[x1, . . . , xr]∧/J1. SinceA2/I
n
2 [x1, . . . , xr] =

A1/I
cn
1 [x1, . . . , xr]⊗A1/Icn1

A2/I
n
2 we have

A2[x1, . . . , xr]∧ = (A1[x1, . . . , xr]∧ ⊗A1 A2)∧

where we use I2-adic completion on both sides (but of course I1-adic completion for
A1[x1, . . . , xr]∧). Set J2 = J1A2[x1, . . . , xr]∧. Arguing similarly we get the presentation

B2 = (B1 ⊗A1 A2)∧

= lim A1/I
cn
1 [x1, . . . , xr]

J1(A1/Icn1 [x1, . . . , xr])
⊗A1/Icn1

A2/I
n
2

= lim A2/I
n
2 [x1, . . . , xr]

J2(A2/In2 [x1, . . . , xr])
= A2[x1, . . . , xr]∧/J2

for B2 over A2. As a consequence obtain a commutative diagram

NL∧
B1/A1

:

��

J1/J
2
1 d

//

��

⊕
B1dxi

��
NL∧

B2/A2
: J2/J

2
2

d //⊕B2dxi
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The induced arrow J1/J
2
1 ⊗B1 B2 → J2/J

2
2 is surjective because J2 is generated by the

image of J1. This determines the arrow displayed in the lemma. We omit the proof that
this arrow is well defined up to homotopy (i.e., indepedent of the choice of the presenta-
tions up to homotopy). The statement about the induced map on cohomology modules
follows easily from the discussion (details omitted). �

Lemma 3.5. Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B → C be
morphism of (2.0.2). Then there is an exact sequence

C ⊗B H0(NL∧
B/A) // H0(NL∧

C/A) // H0(NL∧
C/B) // 0

H−1(NL∧
B/A⊗BC) // H−1(NL∧

C/A) // H−1(NL∧
C/B)

kk

See proof for elucidation.

Proof. Observe that taking the tensor product NL∧
B/A⊗BC makes sense as NL∧

B/A

is well defined up to homotopy by Lemma 3.1. Also, (B, IB) is pair whereB is a Noether-
ian ring (Lemma 2.2) and C is in the corresponding category (2.0.2). Thus all the terms in
the 6-term sequence are (well) defined.

Choose a presentationB = A[x1, . . . , xr]∧/J . Choose a presentationC = B[y1, . . . , ys]∧/J ′.
Combinging these presentations gives a presentation

C = A[x1, . . . , xr, y1, . . . , ys]∧/K
Then the reader verifies that we obtain a commutative diagram

0 //⊕Cdxi //⊕Cdxi ⊕
⊕
Cdyj //⊕Cdyj // 0

J/J2 ⊗B C //

OO

K/K2 //

OO

J ′/(J ′)2 //

OO

0

with exact rows. Note that the vertical arrow on the left hand side is the tensor product
of the arrow definingNL∧

B/A with idC . The lemma follows by applying the snake lemma
(Algebra, Lemma 4.1). �

Lemma 3.6. With assumptions as in Lemma 3.5 assume that B/InB → C/InC
is a local complete intersection homomorphism for all n. Then H−1(NL∧

B/A⊗BC) →
H−1(NL∧

C/A) is injective.

Proof. For each n ≥ 1 we set An = A/In, Bn = B/InB, and Cn = C/InC. We
have

H−1(NL∧
B/A⊗BC) = limH−1(NL∧

B/A⊗BCn)
= limH−1(NL∧

B/A⊗BBn ⊗Bn Cn)
= limH−1(NLBn/An ⊗BnCn)

The first equality follows from More on Algebra, Lemma 100.1 and the fact thatH−1(NL∧
B/A⊗BC)

is a finite C-module and hence I-adically complete for example by Algebra, Lemma 97.1.
The second equality is trivial. The third holds by Lemma 3.3. The mapsH−1(NLBn/An ⊗BnCn)→
H−1(NLCn/An) are injective by More on Algebra, Lemma 33.6. The proof is finished be-
cause we also have H−1(NL∧

C/A) = limH−1(NLCn/An) similarly to the above. �
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4. Rig-smooth algebras

As motivation for the following definition, please take a look at More on Algebra, Remark
84.2.

Definition 4.1. Let A be a Noetherian ring and let I ⊂ A be an ideal. Let B be an
object of (2.0.2). We say B is rig-smooth over (A, I) if there exists an integer c ≥ 0 such
that Ic annihilates Ext1

B(NL∧
B/A, N) for every B-module N .

Let us work out what this means.

Lemma 4.2. LetA be a Noetherian ring and let I ⊂ A be an ideal. LetB be an object of
(2.0.2). WriteB = A[x1, . . . , xr]∧/J (Lemma 2.2) and letNL∧

B/A = (J/J2 →
⊕
Bdxi)

be its naive cotangent complex (3.0.1). The following are equivalent
(1) B is rig-smooth over (A, I),
(2) the object NL∧

B/A of D(B) satisfies the equivalent conditions (1) – (4) of More
on Algebra, Lemma 84.10 with respect to the ideal IB,

(3) there exists a c ≥ 0 such that for all a ∈ Ic there is a map h :
⊕
Bdxi → J/J2

such that a : J/J2 → J/J2 is equal to h ◦ d,
(4) there exist b1, . . . , bs ∈ B such that V (b1, . . . , bs) ⊂ V (IB) and such that for

every l = 1, . . . , s there existm ≥ 0, f1, . . . , fm ∈ J , and subsetT ⊂ {1, . . . , n}
with |T | = m such that
(a) deti∈T,j≤m(∂fj/∂xi) divides bl in B, and
(b) blJ ⊂ (f1, . . . , fm) + J2.

Proof. The equivalence of (1), (2), and (3) is immediate from More on Algebra, Lemma
84.10.
Assume b1, . . . , bs are as in (4). Since B is Noetherian the inclusion V (b1, . . . , bs) ⊂
V (IB) implies IcB ⊂ (b1, . . . , bs) for some c ≥ 0 (for example by Algebra, Lemma 62.4).
Pick 1 ≤ l ≤ s and m ≥ 0 and f1, . . . , fm ∈ J and T ⊂ {1, . . . , n} with |T | = m
satisfying (4)(a) and (b). Then if we invert bl we see that

NL∧
B/A⊗BBbl =

(⊕
j≤m

Bblfj −→
⊕

i=1,...,n
Bbldxi

)
and moreover the arrow is isomorphic to the inclusion of the direct summand

⊕
i∈T Bbldxi.

We conclude that H−1(NL∧
B/A) is bl-power torsion and that H0(NL∧

B/A) becomes finite
free after inverting bl. Combined with the inclusion IcB ⊂ (b1, . . . , bs) we see that
H−1(NL∧

B/A) is IB-power torsion. Hence we see that condition (4) of More on Algebra,
Lemma 84.10 holds. In this way we see that (4) implies (2).
Assume the equivalent conditions (1), (2), and (3) hold. We will prove that (4) holds, but
we strongly urge the reader to convince themselves of this. The complex NL∧

B/A deter-
mines an object of Db

Coh(Spec(B)) whose restriction to the Zariski open U = Spec(B) \
V (IB) is a finite locally free module E placed in degree 0 (this follows for example from
the the fourth equivalent condition in More on Algebra, Lemma 84.10). Choose generators
f1, . . . , fM for J . This determines an exact sequence⊕

j=1,...,M
OU · fj →

⊕
i=1,...,n

OU · dxi → E → 0

Let U =
⋃
l=1,...,s Ul be a finite affine open covering such that E|Ul is free of rank rl =

n−ml for some integer n ≥ ml ≥ 0. After replacing each Ul by an affine open covering
we may assume there exists a subset Tl ⊂ {1, . . . , n} such that the elements dxi, i ∈
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{1, . . . , n} \ Tl map to a basis for E|Ul . Repeating the argument, we may assume there
exists a subset T ′

l ⊂ {1, . . . ,M} of cardinality ml such that fj , j ∈ T ′
l map to a basis

of the kernel of OUl · dxi → E|Ul . Finally, since the open covering U =
⋃
Ul may

be refined by a open covering by standard opens (Algebra, Lemma 17.2) we may assume
Ul = D(gl) for some gl ∈ B. In particular we have V (g1, . . . , gs) = V (IB). A linear
algebra argument using our choices above shows that deti∈Tl,j∈T ′

l
(∂fj/∂xi) maps to an

invertible element ofBbl . Similarly, the vanishing of cohomology ofNL∧
B/A in degree−1

over Ul shows that J/J2 + (fj ; j ∈ T ′) is annihilated by a power of bl. After replacing
each gl by a suitable power we obtain conditions (4)(a) and (4)(b) of the lemma. Some
details omitted. �

Lemma 4.3. Let A be a Noetherian ring and let I be an ideal. Let B be a finite type
A-algebra.

(1) If Spec(B)→ Spec(A) is smooth over Spec(A) \ V (I), then B∧ is rig-smooth
over (A, I).

(2) IfB∧ is rig-smooth over (A, I), then there exists g ∈ 1+IB such that Spec(Bg)
is smooth over Spec(A) \ V (I).

Proof. We will use Lemma 4.2 without further mention.

Assume (1). Recall that formation of NLB/A commutes with localization, see Algebra,
Lemma 134.13. Hence by the very definition of smooth ring maps (in terms of the naive
cotangent complex being quasi-isomorphic to a finite projective module placed in degree
0), we see thatNLB/A satisfies the fourth equivalent condition of More on Algebra, Lemma
84.10 with respect to the ideal IB (small detail omitted). SinceNL∧

B∧/A = NLB/A⊗BB∧

by Lemma 3.2 we conclude (2) holds by More on Algebra, Lemma 84.7.

Assume (2). Choose a presentation B = A[x1, . . . , xn]/J , set N = J/J2, and consider
the element ξ ∈ Ext1

B(NLB/A, J/J2) determined by the identity map on J/J2. Using
again that NL∧

B∧/A = NLB/A⊗BB∧ we find that our assumption implies the image

ξ ⊗ 1 ∈ Ext1
B∧(NLB/A⊗BB∧, N ⊗B B∧) = Ext1

B∧(NLB/A, N)⊗B B∧

is annihilated by Ic for some integer c ≥ 0. The equality holds for example by More
on Algebra, Lemma 99.2 (but can also easily be deduced from the much simpler More on
Algebra, Lemma 65.4). Thus M = IcBξ ⊂ Ext1

B(NLB/A, N) is a finite submodule
which maps to zero in Ext1

B(NLB/A, N) ⊗B B∧. Since B → B∧ is flat this means
that M ⊗B B∧ is zero. By Nakayama’s lemma (Algebra, Lemma 20.1) this means that
M = IcBξ is annihilated by an element of the form g = 1+xwith x ∈ IB. This implies
that for every b ∈ IcB there is a B-linear dotted arrow making the diagram commute

J/J2 //

b

��

⊕
Bdxi

h

��
J/J2 // (J/J2)g

Thus (NLB/A)gb is quasi-isomorphic to a finite projective module; small detail omitted.
Since (NLB/A)gb = NLBgb/A in D(Bgb) this shows that Bgb is smooth over Spec(A).
As this holds for all b ∈ IcB we conclude that Spec(Bg) → Spec(A) is smooth over
Spec(A) \ V (I) as desired. �
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Lemma 4.4. Let (A1, I1)→ (A2, I2) be as in Remark 2.3 withA1 andA2 Noetherian.
LetB1 be in (2.0.2) for (A1, I1). LetB2 be the base change ofB1. Let f1 ∈ B1 with image
f2 ∈ B2. If Ext1

B1
(NL∧

B1/A1
, N1) is annihilated by f1 for every B1-module N1, then

Ext1
B2

(NL∧
B2/A2

, N2) is annihilated by f2 for every B2-module N2.

Proof. By Lemma 3.4 there is a map

NLB1/A1 ⊗B2B1 → NLB2/A2

which induces and isomorphism onH0 and a surjection onH−1. Thus the result by More
on Algebra, Lemmas 84.6, 84.7, and 84.9 the last two applied with the principal ideals
(f1) ⊂ B1 and (f2) ⊂ B2. �

Lemma 4.5. LetA1 → A2 be a map of Noetherian rings. Let Ii ⊂ Ai be an ideal such
that V (I1A2) = V (I2). Let B1 be in (2.0.2) for (A1, I1). Let B2 be the base change of B1
as in Remark 2.3. If B1 is rig-smooth over (A1, I1), then B2 is rig-smooth over (A2, I2).

Proof. Follows from Lemma 4.4 and Definition 4.1 and the fact that Ic2 is contained
in I1A2 for some c ≥ 0 as A2 is Noetherian. �

5. Deformations of ring homomorphisms

Some work on lifting ring homomorphisms from rig-smooth algebras.

Remark 5.1 (Linear approximation). LetA be a ring and I ⊂ A be a finitely generated
ideal. Let C be an I-adically complete A-algebra. Let ψ : A[x1, . . . , xr]∧ → C be a
continuous A-algebra map. Suppose given δi ∈ C , i = 1, . . . , r. Then we can consider

ψ′ : A[x1, . . . , xr]∧ → C, xi 7−→ ψ(xi) + δi

see Formal Spaces, Remark 28.1. Then we have

ψ′(g) = ψ(g) +
∑

ψ(∂g/∂xi)δi + ξ

with error term ξ ∈ (δiδj). This follows by writing g as a power series and working term
by term. Convergence is automatic as the coefficients of g tend to zero. Details omitted.

Remark 5.2 (Lifting maps). Let A be a Noetherian ring and I ⊂ A be an ideal. Let
B be an object of (2.0.2). Let C be an I-adically complete A-algebra. Let ψn : B →
C/InC be an A-algebra homomorphism. The obstruction to lifting ψn to an A-algebra
homomorphism into C/I2nC is an element

o(ψn) ∈ Ext1
B(NL∧

B/A, I
nC/I2nC)

as we will explain. Namely, choose a presentation B = A[x1, . . . , xr]∧/J . Choose a lift
ψ : A[x1, . . . , xr]∧ → C of ψn. Since ψ(J) ⊂ InC we get ψ(J2) ⊂ I2nC and hence we
get a B-linear homomorphism

o(ψ) : J/J2 −→ InC/I2nC, g 7−→ ψ(g)
which of course extends to a C-linear map J/J2 ⊗B C → InC/I2nC. Since NL∧

B/A =
(J/J2 →

⊕
Bdxi) we get o(ψn) as the image of o(ψ) by the identification

Ext1
B(NL∧

B/A, I
nC/I2nC)

= Coker
(

HomB(
⊕

Bdxi, InC/I2nC)→ HomB(J/J2, InC/I2nC)
)

See More on Algebra, Lemma 84.4 part (1) for the equality.
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Suppose that o(ψn) maps to zero in Ext1
B(NL∧

B/A, I
n′
C/I2n′

C) for some integer n′ with
n > n′ > n/2. We claim that this means we can find an A-algebra homomorphism
ψ′

2n′ : B → C/I2n′
C which agrees with ψn as maps into C/In

′
C. The extreme case

n′ = n explains why we previously said o(ψn) is the obstruction to liftingψn toC/I2nC.
Proof of the claim: the hypothesis that o(ψn) maps to zero tells us we can find aB-module
map

h :
⊕

Bdxi −→ In
′
C/I2n′

C

such that o(ψ) and h◦d agree as maps into In
′
C/I2n′

C. Say h(dxi) = δi mod I2n′
C for

some δi ∈ In
′
C. Then we look at the map

ψ′ : A[x1, . . . , xr]∧ → C, xi 7−→ ψ(xi)− δi

A computation with power series shows that ψ′(J) ⊂ I2n′
C. Namely, for g ∈ J we get

ψ′(g) ≡ ψ(g)−
∑

ψ(∂g/∂xi)δi ≡ o(ψ)(g)− (h ◦ d)(g) ≡ 0 mod I2n′
C

See Remark 5.1 for the first equality. Henceψ′ induces anA-algebra homomorphismψ′
2n′ :

B → C/I2n′
C as desired.

Lemma 5.3. Assume given the following data
(1) an integer c ≥ 0,
(2) an ideal I of a Noetherian ring A,
(3) B in (2.0.2) for (A, I) such that Ic annihilates Ext1

B(NL∧
B/A, N) for any B-

module N ,
(4) a Noetherian I-adically completeA-algebraC ; denote d = d(GrI(C)) and q0 =

q(GrI(C)) the integers found in Local Cohomology, Section 22,
(5) an integer n ≥ max(q0 + (d+ 1)c, 2(d+ 1)c+ 1), and
(6) an A-algebra homomorphism ψn : B → C/InC.

Then there exists a map ϕ : B → C ofA-algebras such that ψn mod In−(d+1)c = ϕ mod
In−(d+1)c.

Proof. Consider the obstruction class

o(ψn) ∈ Ext1
B(NL∧

B/A, I
nC/I2nC)

of Remark 5.2. For any C/InC-module N we have

Ext1
B(NL∧

B/A, N) = Ext1
C/InC(NL∧

B/A⊗L
BC/I

nC,N)
= Ext1

C/InC(NL∧
B/A⊗BC/InC,N)

The first equality by More on Algebra, Lemma 99.1 and the second one by More on Alge-
bra, Lemma 84.6. In particular, we see that Ext1

C/InC(NL∧
B/A⊗BC/InC,N) is annihi-

lated by IcC for allC/InC-modulesN . It follows that we may apply Local Cohomology,
Lemma 22.7 to see that o(ψn) maps to zero in

Ext1
C/InC(NL∧

B/A⊗BC/InC, In
′
C/I2n′

C) = Ext1
B(NL∧

B/A, I
n′
C/I2n′

C) =

where n′ = n− (d+ 1)c. By the discussion in Remark 5.2 we obtain a map

ψ′
2n′ : B → C/I2n′

C

which agrees with ψn modulo In
′
. Observe that 2n′ > n because n ≥ 2(d+ 1)c+ 1.
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We may repeat this procedure. Starting with n0 = n and ψ0 = ψn we end up getting a
strictly increasing sequence of integers

n0 < n1 < n2 < . . .

and A-algebra homorphisms ψi : B → C/IniC such that ψi+1 and ψi agree modulo
Ini−tc. Since C is I-adically complete we can take ϕ to be the limit of the maps ψi mod
Ini−(d+1)c : B → C/Ini−(d+1)cC and the lemma follows. �

We suggest the reader skip ahead to the next section. Namely, the following two lemmas
are consequences of the result above if the algebra C in them is assumed Noetherian.

Lemma 5.4. Let I = (a) be a principal ideal of a Noetherian ringA. LetB be an object
of (2.0.2). Assume given an integer c ≥ 0 such that Ext1

B(NL∧
B/A, N) is annihilated

by ac for all B-modules N . Let C be an I-adically complete A-algebra such that a is a
nonzerodivisor on C. Let n > 2c. For any A-algebra map ψn : B → C/anC there exists
an A-algebra map ϕ : B → C such that ψn mod an−cC = ϕ mod an−cC.

Proof. Consider the obstruction class

o(ψn) ∈ Ext1
B(NL∧

B/A, a
nC/a2nC)

of Remark 5.2. Since a is a nonzerodivisor on C the map ac : anC/a2nC → anC/a2nC
is isomorphic to the map anC/a2nC → an−cC/a2n−cC in the category of C-modules.
Hence by our assumption on NL∧

B/A we conclude that the class o(ψn) maps to zero in

Ext1
B(NL∧

B/A, a
n−cC/a2n−cC)

and a fortiori in
Ext1

B(NL∧
B/A, a

n−cC/a2n−2cC)
By the discussion in Remark 5.2 we obtain a map

ψ2n−2c : B → C/a2n−2cC

which agrees with ψn modulo an−cC. Observe that 2n− 2c > n because n > 2c.

We may repeat this procedure. Starting with n0 = n and ψ0 = ψn we end up getting a
strictly increasing sequence of integers

n0 < n1 < n2 < . . .

and A-algebra homorphisms ψi : B → C/aniC such that ψi+1 and ψi agree modulo
ani−cC. Since C is I-adically complete we can take ϕ to be the limit of the maps ψi mod
ani−cC : B → C/ani−cC and the lemma follows. �

Lemma 5.5. Let I = (a) be a principal ideal of a Noetherian ringA. LetB be an object
of (2.0.2). Assume given an integer c ≥ 0 such that Ext1

B(NL∧
B/A, N) is annihilated by

ac for all B-modules N . Let C be an I-adically complete A-algebra. Assume given an
integer d ≥ 0 such that C[a∞] ∩ adC = 0. Let n > max(2c, c + d). For any A-
algebra map ψn : B → C/anC there exists an A-algebra map ϕ : B → C such that
ψn mod an−c = ϕ mod an−c.

If C is Noetherian we have C[a∞] = C[ae] for some e ≥ 0. By Artin-Rees (Algebra,
Lemma 51.2) there exists an integer f such that anC∩C[a∞] ⊂ an−fC[a∞] for all n ≥ f .
Then d = e + f is an integer as in the lemma. This argument works in particular if C is
an object of (2.0.2) by Lemma 2.2.
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Proof. Let C → C ′ be the quotient of C by C[a∞]. The A-algebra C ′ is I-adically
complete by Algebra, Lemma 96.10 and the fact that

⋂
(C[a∞] + anC) = C[a∞] because

for n ≥ d the sum C[a∞] + anC is direct. For m ≥ d the diagram

0 // C[a∞] //

��

C //

��

C ′ //

��

0

0 // C[a∞] // C/amC // C ′/amC ′ // 0

has exact rows. Thus C is the fibre product of C ′ and C/amC over C ′/amC ′ for all
m ≥ d. By Lemma 5.4 we can choose a homomorphism ϕ′ : B → C ′ such that ϕ′ and ψn
agree as maps intoC ′/an−cC ′. We obtain a homomorphism (ϕ′, ψn mod an−cC) : B →
C ′ ×C′/an−cC′ C/an−cC. Since n − c ≥ d this is the same thing as a homomorphism
ϕ : B → C. This finishes the proof. �

6. Algebraization of rig-smooth algebras over G-rings

If the base ringA is a Noetherian G-ring, then we can prove [?, III Theorem 7] for arbitrary
rig-smooth algebras with respect to any ideal I ⊂ A (not necessarily principal).

Lemma 6.1. Let I be an ideal of a Noetherian ring A. Let r ≥ 0 and write P =
A[x1, . . . , xr] the I-adic completion. Consider a resolution

P⊕t K−→ P⊕m g1,...,gm−−−−−→ P → B → 0
of a quotient of P . Assume B is rig-smooth over (A, I). Then there exists an integer n
such that for any complex

P⊕t K′

−−→ P⊕m g′
1,...,g

′
m−−−−−→ P

with gi−g′
i ∈ InP andK−K ′ ∈ InMat(m×t, P ) there exists an isomorphismB → B′

of A-algebras where B′ = P/(g′
1, . . . , g

′
m).

Proof. (A) By Definition 4.1 we can choose a c ≥ 0 such that Ic annihilates Ext1
B(NL∧

B/A, N)
for all B-modules N .
(B) By More on Algebra, Lemmas 4.1 and 4.2 there exists a constant c1 = c(g1, . . . , gm,K)
such that for n ≥ c1 + 1 the complex

P⊕t K′

−−→ P⊕m g′
1,...,g

′
m−−−−−→ P → B′ → 0

is exact and GrI(B) ∼= GrI(B′).
(C) Let d0 = d(GrI(B)) and q0 = q(GrI(B)) be the integers found in Local Cohomology,
Section 22.
We claim that n = max(c1 + 1, q0 + (d0 + 1)c, 2(d0 + 1)c + 1) works where c is as in
(A), c1 is as in (B), and q0, d0 are as in (C).
Let g′

1, . . . , g
′
m and K ′ be as in the lemma. Since gi = g′

i ∈ InP we obtain a canonical
A-algebra homomorphism

ψn : B −→ B′/InB′

which induces an isomorphism B/InB → B′/InB′. Since GrI(B) ∼= GrI(B′) we have
d0 = d(GrI(B′)) and q0 = q(GrI(B′)) and since n ≥ max(q0 +(1+d0)c, 2(d0 +1)c+1)
we may apply Lemma 5.3 to find an A-algebra homomorphism

ϕ : B −→ B′
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such that ϕ mod In−(d0+1)cB′ = ψn mod In−(d0+1)cB′. Since n − (d0 + 1)c > 0
we see that ϕ is an A-algebra homomorphism which modulo I induces the isomorphism
B/IB → B′/IB′ we found above. The rest of the proof shows that these facts force ϕ to
be an isomorphism; we suggest the reader find their own proof of this.
Namely, it follows that ϕ is surjective for example by applying Algebra, Lemma 96.1 part
(1) using the fact that B and B′ are complete. Thus ϕ induces a surjection GrI(B) →
GrI(B′) which has to be an isomorphism because the source and target are isomorphic
Noetherian rings, see Algebra, Lemma 31.10 (of course you can showϕ induces the isomor-
phism we found above but that would need a tiny argument). Thus ϕ induces injective
maps IeB/Ie+1B → IeB′/Ie+1B′ for all e ≥ 0. This implies ϕ is injective since for any
b ∈ B there exists an e ≥ 0 such that b ∈ IeB, b 6∈ Ie+1B by Krull’s intersection theorem
(Algebra, Lemma 51.4). This finishes the proof. �

Lemma 6.2. Let I be an ideal of a Noetherian ringA. LetCh be the henselization of a
finite type A-algebra C with respect to the ideal IC. Let J ⊂ Ch be an ideal. Then there
exists a finite type A-algebra B such that B∧ ∼= (Ch/J)∧.

Proof. By More on Algebra, Lemma 12.4 the ringCh is Noetherian. SayJ = (g1, . . . , gm).
The ringCh is a filtered colimit of étaleC algebrasC ′ such thatC/IC → C ′/IC ′ is an iso-
morphism (see proof of More on Algebra, Lemma 12.1). Pick an C ′ such that g1, . . . , gm
are the images of g′

1, . . . , g
′
m ∈ C ′. Setting B = C ′/(g′

1, . . . , g
′
m) we get a finite type

A-algebra. Of course (C, IC) and C ′, IC ′) have the same henselizations and the same
completions. It follows easily from this that B∧ = (Ch/J)∧. �

Proposition 6.3. Let I be an ideal of a Noetherian G-ring A. Let B be an object of
(2.0.2). If B is rig-smooth over (A, I), then there exists a finite type A-algebra C and an
isomorphism B ∼= C∧ of A-algebras.

Proof. Choose a presentation B = A[x1, . . . , xr]∧/J . Write P = A[x1, . . . , xr]∧.
Choose generators g1, . . . , gm ∈ J . Choose generators k1, . . . , kt of the module of rela-
tions between g1, . . . , gm, i.e., such that

P⊕t k1,...,kt−−−−−→ P⊕m g1,...,gm−−−−−→ P → B → 0
is a resolution. Write ki = (ki1, . . . , kim) so that we have

(6.3.1)
∑

j
kijgj = 0

for i = 1, . . . , t. Denote K = (kij) the m× t-matrix with entries kij .
Let A[x1, . . . , xr]h be the henselization of the pair (A[x1, . . . , xr], IA[x1, . . . , xr]), see
More on Algebra, Lemma 12.1. We may and do think ofA[x1, . . . , xr]h as a subring ofP =
A[x1, . . . , xr]∧, see More on Algebra, Lemma 12.4. Since A is a Noetherian G-ring, so is
A[x1, . . . , xr], see More on Algebra, Proposition 50.10. Hence we have approximation for
the map A[x1, . . . , xr]h → A[x1, . . . , xr]∧ = P with respect to the ideal generated by I ,
see Smoothing Ring Maps, Lemma 14.1. Choose a large enough integer n as in Lemma 6.1.
By the approximation property we may choose g′

1, . . . , g
′
m ∈ A[x1, . . . , xr]h and a matrix

K ′ = (k′
ij) ∈Mat(m× t, A[x1, . . . , xr]h) such that

∑
j k

′
ijg

′
j = 0 inA[x1, . . . , xr]h and

such that gi−g′
i ∈ InP andK−K ′ ∈ InMat(m× t, P ). By our choice of nwe conclude

that there is an isomorphism

B → P/(g′
1, . . . , g

′
m) =

(
A[x1, . . . , xr]h/(g′

1, . . . , g
′
m)
)∧

This finishes the proof by Lemma 6.2. �
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The following lemma isn’t true in general ifA is not a G-ring but just Noetherian. Namely,
if (A,m) is local and I = m, then the lemma is equivalent to Artin approximation for Ah
(as in Smoothing Ring Maps, Theorem 13.1) which does not hold for every Noetherian
local ring.

Lemma 6.4. Let A be a Noetherian G-ring. Let I ⊂ A be an ideal. Let B,C be finite
type A-algebras. For any A-algebra map ϕ : B∧ → C∧ of I-adic completions and any
N ≥ 1 there exist

(1) an étale ring map C → C ′ which induces an isomorphism C/IC → C ′/IC ′,
(2) an A-algebra map ϕ : B → C ′

such that ϕ and ψ agree modulo IN into C∧ = (C ′)∧.

Proof. The statement of the lemma makes sense as C → C ′ is flat (Algebra, Lemma
143.3) hence induces an isomorphism C/InC → C ′/InC ′ for all n (More on Algebra,
Lemma 89.2) and hence an isomorphism on completions. Let Ch be the henselization
of the pair (C, IC), see More on Algebra, Lemma 12.1. Then Ch is the filtered colimit
of the algebras C ′ and the maps C → C ′ → Ch induce isomorphism on completions
(More on Algebra, Lemma 12.4). Thus it suffices to prove there exists an A-algebra map
B → Ch which is congruent to ψ modulo IN . Write B = A[x1, . . . , xn]/(f1, . . . , fm).
The ring mapψ corresponds to elements ĉ1, . . . , ĉn ∈ C∧ with fj(ĉ1, . . . , ĉn) = 0 for j =
1, . . . ,m. Namely, as A is a Noetherian G-ring, so is C , see More on Algebra, Proposition
50.10. Thus Smoothing Ring Maps, Lemma 14.1 applies to give elements c1, . . . , cn ∈ Ch
such that fj(c1, . . . , cn) = 0 for j = 1, . . . ,m and such that ĉi − ci ∈ INCh. This
determines the map B → Ch as desired. �

7. Algebraization of rig-smooth algebras

It turns out that if the rig-smooth algebra has a specific presentation, then it is straight-
forward to algebraize it. Please also see Remark 7.3 for a discussion.

Lemma 7.1. LetA be a ring. Let f1, . . . , fm ∈ A[x1, . . . , xn] and setB = A[x1, . . . , xn]/(f1, . . . , fm).
Assume m ≤ n and set g = det1≤i,j≤m(∂fj/∂xi). Then

(1) g annihilates Ext1
B(NLB/A, N) for every B-module N ,

(2) if n = m, then multiplication by g on NLB/A is 0 in D(B).

Proof. Let T be the m×m matrix with entries ∂fj/∂xi for 1 ≤ i, j ≤ n. Let K ∈
D(B) be represented by the complex T : B⊕m → B⊕m with terms sitting in degrees−1
and 0. By More on Algebra, Lemmas 84.12 we have g : K → K is zero in D(B). Set J =
(f1, . . . , fm). Recall thatNLB/A is homotopy equivalent to J/J2 →

⊕
i=1,...,nBdxi, see

Algebra, Section 134. Denote L the complex J/J2 →
⊕

i=1,...,mBdxi to that we have
the quotient map NLB/A → L. We also have a surjective map of complexes K → L by
sending the jth basis element in the term B⊕m in degree −1 to the class of fj in J/J2.
Picture

NLB/A → L← K

From More on Algebra, Lemma 84.8 we conclude that multiplication by g on L is 0 in
D(B). On the other hand, the distinguished triangle B⊕n−m[0] → NLB/A → L shows
that Ext1

B(L,N) → Ext1
B(NLB/A, N) is surjective for every B-module N and hence

annihilated by g. This proves part (1). If n = m then NLB/A = L and we see that (2)
holds. �
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Lemma 7.2. Let I be an ideal of a Noetherian ring A. Let B be an object of (2.0.2).
Let B = A[x1, . . . , xr]∧/J be a presentation. Assume there exists an element b ∈ B,
0 ≤ m ≤ r, and f1, . . . , fm ∈ J such that

(1) V (b) ⊂ V (IB) in Spec(B),
(2) the image of ∆ = det1≤i,j≤m(∂fj/∂xi) in B divides b, and
(3) bJ ⊂ (f1, . . . , fm) + J2.

Then there exists a finite type A-algebra C and an A-algebra isomorphism B ∼= C∧.

Proof. The conditions imply thatB is rig-smooth over (A, I), see Lemma 4.2. Write
b′∆ = b in B for some b′ ∈ B. Say I = (a1, . . . , at). Since V (b) ⊂ V (IB) there exists
an integer c ≥ 0 such that IcB ⊂ bB. Write bbi = aci in B for some bi ∈ B.

Choose an integer n� 0 (we will see later how large). Choose polynomials f ′
1, . . . , f

′
m ∈

A[x1, . . . , xr] such that fi − f ′
i ∈ InA[x1, . . . , xr]∧. We set ∆′ = det1≤i,j≤m(∂f ′

j/∂xi)
and we consider the finite type A-algebra

C = A[x1, . . . , xr, z1, . . . , zt]/(f ′
1, . . . , f

′
m, z1∆′ − ac1, . . . , zt∆′ − act)

We will apply Lemma 7.1 to C. We compute

det


matrix of partials of

f ′
1, . . . , f

′
m, z1∆′ − ac1, . . . , zt∆′ − act

with respect to the variables
x1, . . . , xm, z1, . . . , zt

 = (∆′)t+1

Hence we see that Ext1
C(NLC/A, N) is annihilated by (∆′)t+1 for allC-modulesN . Since

aci is divisible by ∆′ in C we see that a(t+1)c
i annihilates these Ext1’s also. Thus Ic1 an-

nihilates Ext1
C(NLC/A, N) for all C-modules N where c1 = 1 + t((t + 1)c − 1). The

exact value of c1 doesn’t matter for the rest of the argument; what matters is that it is
independent of n.

Since NL∧
C∧/A = NLC/A⊗CC∧ by Lemma 3.2 we conclude that multiplication by Ic1 is

zero on Ext1
C∧(NL∧

C∧/A, N) for anyC∧-moduleN as well, see More on Algebra, Lemmas
84.7 and 84.6. In particular C∧ is rig-smooth over (A, I).

Observe that we have a surjective A-algebra homomorphism

ψn : C −→ B/InB

sending the class of xi to the class of xi and sending the class of zi to the class of bib′. This
works because of our choices of b′ and bi in the first paragraph of the proof.

Let d = d(GrI(B)) and q0 = q(GrI(B)) be the integers found in Local Cohomology,
Section 22. By Lemma 5.3 if we take n ≥ max(q0 + (d + 1)c1, 2(d + 1)c1 + 1) we can
find a homomorphism ϕ : C∧ → B of A-algebras which is congruent to ψn modulo
In−(d+1)c1B.

Since ϕ : C∧ → B is surjective modulo I we see that it is surjective (for example use
Algebra, Lemma 96.1). To finish the proof it suffices to show that Ker(ϕ)/Ker(ϕ)2 is
annihilated by a power of I , see More on Algebra, Lemma 108.4.

Since ϕ is surjective we see that NL∧
B/C∧ has cohomology modules H0(NL∧

B/C∧) = 0
and H−1(NL∧

B/C∧) = Ker(ϕ)/Ker(ϕ)2. We have an exact sequence

H−1(NL∧
C∧/A⊗C∧B)→ H−1(NL∧

B/A)→ H−1(NL∧
B/C∧)→ H0(NL∧

C∧/A⊗C∧B)→ H0(NL∧
B/A)→ 0
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by Lemma 3.5. The first two modules are annihilated by a power of I as B and C∧ are
rig-smooth over (A, I). Hence it suffices to show that the kernel of the surjective map
H0(NL∧

C∧/A⊗C∧B) → H0(NL∧
B/A) is annihilated by a power of I . For this it suffices

to show that it is annihilated by a power of b. In other words, it suffices to show that

H0(NL∧
C∧/A)⊗C∧ B[1/b] −→ H0(NL∧

B/A)⊗B B[1/b]

is an isomorphism. However, both are free B[1/b] modules of rank r − m with basis
dxm+1, . . . , dxr and we conclude the proof. �

Remark 7.3. Let I be an ideal of a Noetherian ring A. Let B be an object of (2.0.2)
which is rig-smooth over (A, I). As far as we know, it is an open question as to whether
B is isomorphic to the I-adic completion of a finite type A-algebra. Here are some things
we do know:

(1) If A is a G-ring, then the answer is yes by Proposition 6.3.
(2) If B is rig-étale over (A, I), then the answer is yes by Lemma 10.2.
(3) If I is principal, then the answer is yes by [?, III Theorem 7].
(4) In general there exists an ideal J = (b1, . . . , bs) ⊂ B such that V (J) ⊂ V (IB)

and such that the I-adic completion of each of the affine blowup algebras B[ Jbi ]
are isomorphic to the I-adic completion of a finite type A-algebra.

To see the last statement, choose b1, . . . , bs as in Lemma 4.2 part (4) and use the properties
mentioned there to see that Lemma 7.2 applies to each completion (B[ Jbi ])

∧. Part (4) tells
us that “rig-locally a rig-smooth formal algebraic space is the completion of a finite type
scheme over A” and it tells us that “there is an admissible formal blowing up of Spf(B)
which is affine locally algebraizable”.

8. Rig-étale algebras

In view of our definition of rig-smooth algebras (Definition 4.1), the following definition
should not come as a surprise.

Definition 8.1. Let A be a Noetherian ring and let I ⊂ A be an ideal. Let B be an
object of (2.0.2). We sayB is rig-étale over (A, I) if there exists an integer c ≥ 0 such that
for all a ∈ Ic multiplication by a on NL∧

B/A is zero in D(B).

Condition (7) in the next lemma is one of the conditions used in [?] to define formal
modifications. We have added it to the list of conditions to facilitate comparison with our
conditions later on.

Lemma 8.2. LetA be a Noetherian ring and let I ⊂ A be an ideal. LetB be an object of
(2.0.2). WriteB = A[x1, . . . , xr]∧/J (Lemma 2.2) and letNL∧

B/A = (J/J2 →
⊕
Bdxi)

be its naive cotangent complex (3.0.1). The following are equivalent
(1) B is rig-étale over (A, I),
(2) there exists a c ≥ 0 such that for all a ∈ Ic multiplication by a on NL∧

B/A is
zero in D(B),

(3) there exits a c ≥ 0 such that Hi(NL∧
B/A), i = −1, 0 is annihilated by Ic,

(4) there exists a c ≥ 0 such that Hi(NLBn/An), i = −1, 0 is annihilated by Ic for
all n ≥ 1 where An = A/In and Bn = B/InB,

(5) for every a ∈ I there exists a c ≥ 0 such that
(a) ac annihilates H0(NL∧

B/A), and
(b) there exist f1, . . . , fr ∈ J such that acJ ⊂ (f1, . . . , fr) + J2.
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(6) for every a ∈ I there exist f1, . . . , fr ∈ J and c ≥ 0 such that
(a) det1≤i,j≤r(∂fj/∂xi) divides ac in B, and
(b) acJ ⊂ (f1, . . . , fr) + J2.

(7) choosing generaters f1, . . . , ft for J we have
(a) the Jacobian ideal ofB overA, namely the ideal inB generated by the r×r

minors of the matrx (∂fj/∂xi)1≤i≤r,1≤j≤t, contains the ideal IcB for some
c, and

(b) the Cramer ideal ofB overA, namely the ideal inB generated by the image
inB of the rth Fitting ideal ofJ as anA[x1, . . . , xr]∧-module, contains IcB
for some c.

Proof. The equivalence of (1) and (2) is a restatement of Definition 8.1.

The equivalence of (2) and (3) follows from More on Algebra, Lemma 84.11.

The equivalence of (3) and (4) follows from the fact that the systems {NLBn/An} and
NL∧

B/A⊗BBn are strictly isomorphic, see Lemma 3.3. Some details omitted.

Assume (2). Let a ∈ I . Let c be such that multiplication by ac is zero onNL∧
B/A. By More

on Algebra, Lemma 84.4 part (1) there exists a map α :
⊕
Bdxi → J/J2 such that d ◦ α

and α ◦ d are both multiplication by ac. Let fi ∈ J be an element whose class modulo J2

is equal to α(dxi). A simple calculation gives that (6)(a), (b) hold.

We omit the verification that (6) implies (5); it is just a statement on two term complexes
over B of the form M → B⊕r.

Assume (5) holds. Say I = (a1, . . . , at). Let ci ≥ 0 be the integer such that (5)(a), (b) hold
for acii . Then we see that I

∑
ci annihilates H0(NL∧

B/A). Let fi,1, . . . , fi,r ∈ J be as in
(5)(b) for ai. Consider the composition

B⊕r → J/J2 →
⊕

Bdxi

where the jth basis vector is mapped to the class of fi,j in J/J2. By (5)(a) and (b) the
cokernel of the composition is annihilated by a2ci

i . Thus this map is surjective after in-
verting acii , and hence an isomorphism (Algebra, Lemma 16.4). Thus the kernel ofB⊕r →⊕
Bdxi is ai-power torsion, and hence H−1(NL∧

B/A) = Ker(J/J2 →
⊕
Bdxi) is ai-

power torsion. Since B is Noetherian (Lemma 2.2), all modules including H−1(NL∧
B/A)

are finite. Thus adii annihilates H−1(NL∧
B/A) for some di ≥ 0. It follows that I

∑
di

annihilates H−1(NL∧
B/A) and we see that (3) holds.

Thus conditions (2), (3), (4), (5), and (6) are equivalent. Thus it remains to show that these
conditions are equivalent with (7). Observe that the Cramer ideal Fitr(J)B is equal to
Fitr(J/J2) as J/J2 = J ⊗A[x1,...,xr]∧ B, see More on Algebra, Lemma 8.4 part (3). Also,
observe that the Jacobian ideal is just Fit0(H0(NL∧

B/A)). Thus we see that the equivalence
of (3) and (7) is a purely algebraic question which we discuss in the next paragraph.

Let R be a Noetherian ring and let I ⊂ R be an ideal. Let M d−→ R⊕r be a two term
complex. We have to show that the following are equivalent

(A) the cohomology of M → R⊕r is annihilated by a power of I , and
(B) the ideals Fitr(M) and Fit0(Coker(d)) contain a power of I .
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Since R is Noetherian, we can reformulate part (2) as an inclusion of the correspond-
ing closed subschemes, see Algebra, Lemmas 17.2 and 32.5. On the other hand, over the
complement of V (Fit0(Coker(d))) the cokernel of d vanishes and over the complement
of V (Fitr(M)) the module M is locally generated by r elements, see More on Algebra,
Lemma 8.6. Thus (B) is equivalent to

(C) away from V (I) the cokernel of d vanishes and the module M is locally gener-
ated by ≤ r elements.

Of course this is equivalent to the condition that M → R⊕r has vanishing cohomology
over Spec(R) \ V (I) which in turn is equivalent to (A). This finishes the proof. �

Lemma 8.3. Let A be a Noetherian ring and let I be an ideal. Let B be an object of
(2.0.2). If B is rig-étale over (A, I), then B is rig-smooth over (A, I).

Proof. Immediate from Definitions 4.1 and 8.1. �

Lemma 8.4. Let A be a Noetherian ring and let I be an ideal. Let B be a finite type
A-algebra.

(1) If Spec(B)→ Spec(A) is étale over Spec(A)\V (I), thenB∧ satisfies the equiv-
alent conditions of Lemma 8.2.

(2) If B∧ satisfies the equivalent conditions of Lemma 8.2, then there exists g ∈
1 + IB such that Spec(Bg) is étale over Spec(A) \ V (I).

Proof. AssumeB∧ satisfies the equivalent conditions of Lemma 8.2. The naive cotan-
gent complex NLB/A is a complex of finite type B-modules and hence H−1 and H0 are
finite B-modules. Completion is an exact functor on finite B-modules (Algebra, Lemma
97.2) andNL∧

B∧/A is the completion of the complexNLB/A (this is easy to see by choosing
presentations). Hence the assumption implies there exists a c ≥ 0 such that H−1/InH−1

and H0/InH0 are annihilated by Ic for all n. By Nakayama’s lemma (Algebra, Lemma
20.1) this means that IcH−1 and IcH0 are annihilated by an element of the form g = 1+x
with x ∈ IB. After inverting g (which does not change the quotientsB/InB) we see that
NLB/A has cohomology annihilated by Ic. Thus A → B is étale at any prime of B not
lying over V (I) by the definition of étale ring maps, see Algebra, Definition 143.1.
Conversely, assume that Spec(B) → Spec(A) is étale over Spec(A) \ V (I). Then for
every a ∈ I there exists a c ≥ 0 such that multiplication by ac is zero NLB/A. Since
NL∧

B∧/A is the derived completion of NLB/A (see Lemma 3.3) it follows that B∧ satisfies
the equivalent conditions of Lemma 8.2. �

Lemma 8.5. Let (A1, I1)→ (A2, I2) be as in Remark 2.3 withA1 andA2 Noetherian.
Let B1 be in (2.0.2) for (A1, I1). Let B2 be the base change of B1. If multiplication by
f1 ∈ B1 on NL∧

B1/A1
is zero in D(B1), then multiplication by the image f2 ∈ B2 on

NL∧
B2/A2

is zero in D(B2).

Proof. By Lemma 3.4 there is a map
NLB1/A1 ⊗B2B1 → NLB2/A2

which induces and isomorphism onH0 and a surjection onH−1. Thus the result by More
on Algebra, Lemma 84.8. �

Lemma 8.6. LetA1 → A2 be a map of Noetherian rings. Let Ii ⊂ Ai be an ideal such
that V (I1A2) = V (I2). Let B1 be in (2.0.2) for (A1, I1). Let B2 be the base change of B1
as in Remark 2.3. If B1 is rig-étale over (A1, I1), then B2 is rig-étale over (A2, I2).
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Proof. Follows from Lemma 8.5 and Definition 8.1 and the fact that Ic2 ⊂ I1A2 for
some c ≥ 0 as A2 is Noetherian. �

Lemma 8.7. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be a finite
type A-algebra such that Spec(B) → Spec(A) is étale over Spec(A) \ V (I). Let C be a
Noetherian A-algebra. Then any A-algebra map B∧ → C∧ of I-adic completions comes
from a unique A-algebra map

B −→ Ch

where Ch is the henselization of the pair (C, IC) as in More on Algebra, Lemma 12.1.
Moreover, any A-algebra homomorphism B → Ch factors through some étale C-algebra
C ′ such that C/IC → C ′/IC ′ is an isomorphism.

Proof. Uniqueness follows from the fact that Ch is a subring of C∧, see for example
More on Algebra, Lemma 12.4. The final assertion follows from the fact that Ch is the
filtered colimit of theseC-algebrasC ′, see proof of More on Algebra, Lemma 12.1. Having
said this we now turn to the proof of existence.
Let ϕ : B∧ → C∧ be the given map. This defines a section

σ : (B ⊗A C)∧ −→ C∧

of the completion of the mapC → B⊗AC. We may replace (A, I,B,C, ϕ) by (C, IC,B⊗A
C,C, σ). In this way we see that we may assume that A = C.
Proof of existence in the case A = C. In this case the map ϕ : B∧ → A∧ is necessarily
surjective. By Lemmas 8.4 and 3.5 we see that the cohomology groups of NL∧

A∧/ϕB∧ are
annihilated by a power of I . Since ϕ is surjective, this implies that Ker(ϕ)/Ker(ϕ)2 is
annihilated by a power of I . Hence ϕ : B∧ → A∧ is the completion of a finite type
B-algebra B → D, see More on Algebra, Lemma 108.4. Hence A → D is a finite type
algebra map which induces an isomorphism A∧ → D∧. By Lemma 8.4 we may replace
D by a localization and assume that A → D is étale away from V (I). Since A∧ → D∧

is an isomorphism, we see that Spec(D) → Spec(A) is also étale in a neighbourhood of
V (ID) (for example by More on Morphisms, Lemma 12.3). Thus Spec(D)→ Spec(A) is
étale. Therefore D maps to Ah and the lemma is proved. �

9. A pushout argument

The only goal in this section is to prove the following lemma which will play a key role
in algebraization of rig-étale algebras. We will use a bit of the theory of algebraic spaces
to prove this lemma; an earlier version of this chapter gave a (much longer) proof using
algebra and a bit of deformation theory that the interested reader can find in the history
of the Stacks project.

Lemma 9.1. LetA be a Noetherian ring and I ⊂ A an ideal. Let J ⊂ A be a nilpotent
ideal. Consider a commutative diagram

C // C0 C/JC

B0

OO

A //

OO

A0

OO

A/J
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whose vertical arrows are of finite type such that
(1) Spec(C)→ Spec(A) is étale over Spec(A) \ V (I),
(2) Spec(B0)→ Spec(A0) is étale over Spec(A0) \ V (IA0), and
(3) B0 → C0 is étale and induces an isomorphism B0/IB0 = C0/IC0.

Then we can fill in the diagram above to a commutative diagram

C // C/JC

B

OO

// B0

OO

A //

OO

A/J

OO

with A → B of finite type, B/JB = B0, B → C étale, and Spec(B) → Spec(A) étale
over Spec(A) \ V (I).

Proof. Set X = Spec(A), X0 = Spec(A0), Y0 = Spec(B0), Z = Spec(C), Z0 =
Spec(C0). Furthermore, denote U ⊂ X , U0 ⊂ X0, V0 ⊂ Y0, W ⊂ Z , W0 ⊂ Z0 the
complement of the vanishing set of I . Here is a picture to help visualize the situation:

Z

��

Z0oo

��
Y0

��
X X0oo

W

��

W0oo

��
V0

��
U U0oo

The conditions in the lemma guarantee that

W0 //

��

Z0

��
V0 // Y0

is an elementary distinguished square, see Derived Categories of Spaces, Definition 9.1. In
addition we know that W0 → U0 and V0 → U0 are étale. The morphism X0 ⊂ X is
a finite order thickening as J is assumed nilpotent. By the topological invariance of the
étale site we can find a unique étale morphism V → X of schemes with V0 = V ×X X0
and we can lift the given morphismW0 → V0 to a unique morphismW → V overX . See
Étale Morphisms, Theorem 15.2. Since W0 → V0 is separated, the morphism W → V is
separated too, see for example More on Morphisms, Lemma 10.3. By Pushouts of Spaces,
Lemma 9.2 we can construct an elementary distinguished square

W //

��

Z

��
V // Y

in the category of algebraic spaces over X . Since the base change of an elementary dis-
tinguished square is an elementary distinguished square (Derived Categories of Spaces,
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Lemma 9.2) we see that
W0 //

��

Z0

��
V0 // Y ×X X0

is an elementary distinguished square. It follows that there is a unique isomorphism Y ×X
X0 = Y0 compatible with the two squares involving these spaces because elementary
distinguished squares are pushouts (Pushouts of Spaces, Lemma 9.1). It follows that Y is
affine by Limits of Spaces, Proposition 15.2. Write Y = Spec(B). It is clear that B fits
into the desired diagram and satisfies all the properties required of it. �

10. Algebraization of rig-étale algebras

The main goal is to prove algebraization for rig-étale algebras when the underlying Noe-
therian ring A is not assumed to be a G-ring and when the ideal I ⊂ A is arbitrary – not
necessarily principal. We first prove the principal ideal case and then use the result of
Section 9 to finish the proof.

Lemma 10.1. Let A be a Noetherian ring and I = (a) a principal ideal. Let B be an
object of (2.0.2) which is rig-étale over (A, I). Then there exists a finite type A-algebra C
and an isomorphism B ∼= C∧.

Proof. Choose a presentation B = A[x1, . . . , xr]∧/J . By Lemma 8.2 part (6) we
can find c ≥ 0 and f1, . . . , fr ∈ J such that det1≤i,j≤r(∂fj/∂xi) divides ac in B and
acJ ⊂ (f1, . . . , fr) + J2. Hence Lemma 7.2 applies. This finishes the proof, but we’d
like to point out that in this case the use of Lemma 5.3 can be replaced by the much easier
Lemma 5.5. �

Lemma 10.2. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be an object
of (2.0.2) which is rig-étale over (A, I). Then there exists a finite type A-algebra C and
an isomorphism B ∼= C∧.

Proof. We prove this lemma by induction on the number of generators of I . Say
I = (a1, . . . , at). If t = 0, then I = 0 and there is nothing to prove. If t = 1, then the
lemma follows from Lemma 10.1. Assume t > 1.

For any m ≥ 1 set Ām = A/(amt ). Consider the ideal Īm = (ā1, . . . , āt−1) in Ām.
Observe that V (IĀm) = V (Īm). Let Bm = B/(amt ) be the base change of B for the
map (A, I)→ (Ām, Īm), see Remark 2.4. By Lemma 8.6 we find that Bm is rig-étale over
(Ām, Īm).

By induction hypothesis (on t) we can find a finite type Ām-algebraCm and a mapCm →
Bm which induces an isomorphism C∧

m
∼= Bm where the completion is with respect to

Īm. By Lemma 8.4 we may assume that Spec(Cm)→ Spec(Ām) is étale over Spec(Ām)\
V (Īm).

We claim that we may choose Am → Cm → Bm as in the previous paragraph such that
moreover there are isomorphisms Cm/(am−1

t ) → Cm−1 compatible with the given A-
algebra structure and the maps to Bm−1 = Bm/(am−1

t ). Namely, first fix a choice of
A1 → C1 → B1. Suppose we have found Cm−1 → Cm−2 → . . .→ C1 with the desired
properties. Note thatCm/(am−1

t ) is étale over Spec(Ām−1)\V (Īm−1). Hence by Lemma
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8.7 there exists an étale extension Cm−1 → C ′
m−1 which induces an isomorphism mod-

ulo Īm−1 and an Ām−1-algebra map Cm/(am−1
t ) → C ′

m−1 inducing the isomorphism
Bm/(am−1

t )→ Bm−1 on completions. Note that Cm/(am−1
t )→ C ′

m−1 is étale over the
complement of V (Īm−1) by Morphisms, Lemma 36.18 and over V (Īm−1) induces an iso-
morphism on completions hence is étale there too (for example by More on Morphisms,
Lemma 12.3). Thus Cm/(am−1

t ) → C ′
m−1 is étale. By the topological invariance of étale

morphisms (Étale Morphisms, Theorem 15.2) there exists an étale ring map Cm → C ′
m

such that Cm/(am−1
t ) → C ′

m−1 is isomorphic to Cm/(am−1
t ) → C ′

m/(am−1
t ). Observe

that the Īm-adic completion of C ′
m is equal to the Īm-adic completion of Cm, i.e., to Bm

(details omitted). We apply Lemma 9.1 to the diagram

C ′
m

// C ′
m/(am−1

t )

C ′′
m

==

// Cm−1

OO

Ām //

OO

aa

Ām−1

OO

to see that there exists a “lift” of C ′′
m of Cm−1 to an algebra over Ām with all the desired

properties.
By construction (Cm) is an object of the category (2.0.1) for the principal ideal (at). Thus
the inverse limit B′ = limCm is an (at)-adically complete A-algebra such that B′/atB

′

is of finite type over A/(at), see Lemma 2.1. By construction the I-adic completion of B′

is isomorphic toB (details omitted). Consider the complexNL∧
B′/A constructed using the

(at)-adic topology. Choosing a presentation for B′ (which induces a similar presentation
forB) the reader immediately sees thatNL∧

B′/A⊗B′B = NL∧
B/A. Since at ∈ I and since

the cohomology modules of NL∧
B′/A are finite B′-modules (hence complete for the at-

adic topology), we conclude that act acts as zero on these cohomologies as the same thing is
true by assumption for NL∧

B/A. Thus B′ is rig-étale over (A, (at)) by Lemma 8.2. Hence
finally, we may apply Lemma 10.1 to B′ over (A, (at)) to finish the proof. �

Lemma 10.3. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be an I-
adically completeA-algebra withA/I → B/IB of finite type. The equivalent conditions
of Lemma 8.2 are also equivalent to

(8) there exists a finite type A-algebra C such that Spec(C) → Spec(A) is étale
over Spec(A) \ V (I) and such that B ∼= C∧.

Proof. Combine Lemmas 8.2, 10.2, and 8.4. Small detail omitted. �

11. Finite type morphisms

In Formal Spaces, Section 24 we have defined finite type morphisms of formal algebraic
spaces. In this section we study the corresponding types of continuous ring maps of adic
topological rings which have a finitely generated ideal of definition. We strongly suggest
the reader skip this section.

Lemma 11.1. Let A and B be adic topological rings which have a finitely generated
ideal of definition. Let ϕ : A → B be a continuous ring homomorphism. The following
are equivalent:
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(1) ϕ is adic and B is topologically of finite type over A,
(2) ϕ is taut and B is topologically of finite type over A,
(3) there exists an ideal of definition I ⊂ A such that the topology onB is the I-adic

topology and there exist an ideal of definition I ′ ⊂ A such thatA/I ′ → B/I ′B
is of finite type,

(4) for all ideals of definition I ⊂ A the topology on B is the I-adic topology and
A/I → B/IB is of finite type,

(5) there exists an ideal of definition I ⊂ A such that the topology onB is the I-adic
topology and B is in the category (2.0.2),

(6) for all ideals of definition I ⊂ A the topology on B is the I-adic topology and
B is in the category (2.0.2),

(7) B as a topological A-algebra is the quotient of A{x1, . . . , xr} by a closed ideal,
(8) B as a topological A-algebra is the quotient of A[x1, . . . , xr]∧ by a closed ideal

where A[x1, . . . , xr]∧ is the completion of A[x1, . . . , xr] with respect to some
ideal of definition of A, and

(9) add more here.
Moreover, these equivalent conditions define a local property of morphisms of WAdmadic∗

as defined in Formal Spaces, Remark 21.4.

Proof. Taut ring homomorphisms are defined in Formal Spaces, Definition 5.1. Adic
ring homomorphisms are defined in Formal Spaces, Definition 6.1. The lemma follows
from a combination of Formal Spaces, Lemmas 29.6, 29.7, and 23.1. We omit the de-
tails. To be sure, there is no difference between the topological rings A[x1, . . . , xn]∧ and
A{x1, . . . , xr}, see Formal Spaces, Remark 28.2. �

Remark 11.2. LetA→ B be an arrow of WAdmadic∗ which is adic and topologically
of finite type (see Lemma 11.1). Write B = A{x1, . . . , xr}/J . Then we can set1

NL∧
B/A =

(
J/J2 −→

⊕
Bdxi

)
Exactly as in the proof of Lemma 3.1 the reader can show that this complex ofB-modules
is well defined up to (unique isomorphism) in the homotopy category K(B). Now, if A
is Noetherian and I ⊂ A is an ideal of definition, then this construction reproduces the
naive cotangent complex of B over (A, I) defined by Equation (3.0.1) in Section 3 simply
because A[x1, . . . , xn]∧ agrees with A{x1, . . . , xr} by Formal Spaces, Remark 28.2. In
particular, we find that, still when A is an adic Noetherian topological ring, the object
NL∧

B/A is independent of the choice of the ideal of definition I ⊂ A.

Lemma 11.3. Consider the property P on arrows of WAdmadic∗ defined in Lemma
11.1. Then P is stable under base change as defined in Formal Spaces, Remark 21.8.

Proof. The statement makes sense by Lemma 11.1. To see that it is true assume we
have morphisms B → A and B → C in WAdmadic∗ and that as a topological B-algebra
we haveA = B{x1, . . . , xr}/J for some closed ideal J . ThenA⊗̂BC is isomorphic to the
quotient of C{x1, . . . , xr}/J ′ where J ′ is the closure of JC{x1, . . . , xr}. Some details
omitted. �

Lemma 11.4. Consider the property P on arrows of WAdmadic∗ defined in Lemma
11.1. Then P is stable under composition as defined in Formal Spaces, Remark 21.13.

1In fact, this construction works for arrows of WAdmcount satisfying the equivalent conditions of Formal
Spaces, Lemma 29.6.
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Proof. The statement makes sense by Lemma 11.1. The easiest way to prove it is
true is to show that (a) compositions of adic ring maps between adic topological rings are
adic and (b) that compositions of continuous ring maps preserves the property of being
topologically of finite type. We omit the details. �

The following lemma says that morphisms of adic* formal algebraic spaces are locally of
finite type if and only if they are étale locally given by the types of maps of topological
rings described in Lemma 11.1.

Lemma 11.5. Let S be a scheme. Let f : X → Y be a morphism of locally adic*
formal algebraic spaces over S. The following are equivalent

(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphism U → V corresponds to an arrow of
WAdmadic∗ which is adic and topologically of finite type,

(2) there exists a covering {Yj → Y } as in Formal Spaces, Definition 11.1 and for
each j a covering {Xji → Yj ×Y X} as in Formal Spaces, Definition 11.1 such
that each Xji → Yj corresponds to an arrow of WAdmadic∗ which is adic and
topologically of finite type,

(3) there exist a covering {Xi → X} as in Formal Spaces, Definition 11.1 and for
each i a factorizationXi → Yi → Y where Yi is an affine formal algebraic space,
Yi → Y is representable by algebraic spaces and étale, andXi → Yi corresponds
to an arrow of WAdmadic∗ which is adic and topologically of finite type, and

(4) f is locally of finite type.

Proof. Immediate consequence of the equivalence of (1) and (2) in Lemma 11.1 and
Formal Spaces, Lemma 29.9. �

12. Finite type on reductions

In this section we talk a little bit about morphisms X → Y of locally countably indexed
formal algebraic spaces such that Xred → Yred is locally of finite type. We will translate
this into an algebraic condition. To understand this algebraic condition it pays to keep in
mind the following:

• If A is a weakly admissible topological ring, then the set a ⊂ A of topological
nilpotent elements is an open, radical ideal and Spf(A)red = Spec(A/a).

See Formal Spaces, Definition 4.8, Lemma 4.10, and Example 12.2.

Lemma 12.1. For an arrowϕ : A→ B in WAdmcount consider the propertyP (ϕ) =“the
induced ring homomorphism A/a → B/b is of finite type” where a ⊂ A and b ⊂ B are
the ideals of topologically nilpotent elements. Then P is a local property as defined in
Formal Spaces, Situation 21.2.
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Proof. Consider a commutative diagram

B // (B′)∧

A //

ϕ

OO

(A′)∧

ϕ′

OO

as in Formal Spaces, Situation 21.2. Taking Spf of this diagram we obtain

Spf(B)

��

Spf((B′)∧)oo

��
Spf(A) Spf((A′)∧)oo

of affine formal algebraic spaces whose horizontal arrows are representable by algebraic
spaces and étale by Formal Spaces, Lemma 19.13. Hence we obtain a commutative diagram
of affine schemes

Spf(B)red

f

��

Spf((B′)∧)redg
oo

f ′

��
Spf(A)red Spf((A′)∧)redoo

whose horizontal arrows are étale by Formal Spaces, Lemma 12.3. By Formal Spaces, Ex-
ample 12.2 and Lemma 19.14 conditions (1), (2), and (3) of Formal Spaces, Situation 21.2
translate into the following statements

(1) if f is locally of finite type, then f ′ is locally of finite type,
(2) if f ′ is locally of finite type and g is surjective, then f is locally of finite type,

and
(3) if Ti → S , i = 1, . . . , n are locally of finite type, then

∐
i=1,...,n Ti → S is

locally of finite type.
Properties (1) and (2) follow from the fact that being locally of finite type is local on the
source and target in the étale topology, see discussion in Morphisms of Spaces, Section 23.
Property (3) is a straightforward consequence of the definition. �

Lemma 12.2. Consider the property P on arrows of WAdmcount defined in Lemma
12.1. Then P is stable under base change (Formal Spaces, Situation 21.6).

Proof. The statement makes sense by Lemma 12.1. To see that it is true assume we
have morphisms B → A and B → C in WAdmcount such that B/b → A/a is of finite
type where b ⊂ B and a ⊂ A are the ideals of topologically nilpotent elements. Since A
and B are weakly admissible, the ideals a and b are open. Let c ⊂ C be the (open) ideal
of topologically nilpotent elements. Then we find a surjection A⊗̂BC → A/a⊗B/b C/c
whose kernel is a weak ideal of definition and hence consists of topologically nilpotent
elements (please compare with the proof of Formal Spaces, Lemma 4.12). Since already
C/c→ A/a⊗B/b C/c is of finite type as a base change of B/b→ A/a we conclude. �

Lemma 12.3. Consider the property P on arrows of WAdmcount defined in Lemma
12.1. Then P is stable under composition (Formal Spaces, Situation 21.11).

Proof. Omitted. Hint: compositions of finite type ring maps are of finite type. �
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Lemma 12.4. Let ϕ : A → B be an arrow of WAdmcount. If ϕ is taut and topologi-
cally of finite type, then ϕ satisfies the condition defined in Lemma 12.1.

Proof. This is an easy consequence of the definitions. �

Lemma 12.5. Let ϕ : A → B be an arrow of WAdmNoeth satisfying the condition
defined in Lemma 12.1. Then A→ B is topologically of finite type.

Proof. Let b ⊂ B be the ideal of topologically nilpotent elements. Choose b1, . . . , br ∈
B which map to generators ofB/b overA. Choose generators br+1, . . . , bs of the ideal b.
We claim that the image of

ϕ : A[x1, . . . , xs] −→ B, xi 7−→ bi

has dense image. Namely, if b ∈ bn for somen ≥ 0, then we can write b =
∑
bEb

er+1
r+1 . . . b

es
s

for multiindices E = (er+1, . . . , es) with |E| =
∑
ei = n and bE ∈ B. Next, we can

write bE = fE(b1, . . . , br) + b′
E with b′

E ∈ b and fE ∈ A[x1, . . . , xr]. Combined we
obtain b ∈ Im(ϕ) + bn+1. By induction we see thatB = Im(ϕ) + bn for all n ≥ 0 which
mplies what we want as b is an ideal of definition of B. �

Lemma 12.6. Let ϕ : A→ B be an arrow of WAdmNoeth. If ϕ is adic the following
are equivalent

(1) ϕ satisfies the condition defined in Lemma 12.1 and
(2) ϕ satisfies the condition defined in Lemma 11.1.

Proof. Omitted. Hint: For the proof of (1)⇒ (2) use Lemma 12.5. �

Lemma 12.7. Let S be a scheme. Let f : X → Y be a morphism of locally countably
indexed formal algebraic spaces over S. The following are equivalent

(1) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphism U → V corresponds to an arrow of
WAdmcount satisfying the property defined in Lemma 12.1,

(2) there exists a covering {Yj → Y } as in Formal Spaces, Definition 11.1 and for
each j a covering {Xji → Yj ×Y X} as in Formal Spaces, Definition 11.1 such
that eachXji → Yj corresponds to an arrow of WAdmcount satisfying the prop-
erty defined in Lemma 12.1,

(3) there exist a covering {Xi → X} as in Formal Spaces, Definition 11.1 and for
each i a factorizationXi → Yi → Y where Yi is an affine formal algebraic space,
Yi → Y is representable by algebraic spaces and étale, andXi → Yi corresponds
to an arrow of WAdmcount satisfying the property defined in Lemma 12.1, and

(4) the morphism fred : Xred → Yred is locally of finite type.

Proof. The equivalence of (1), (2), and (3) follows from Lemma 12.1 and an applica-
tion of Formal Spaces, Lemma 21.3. Let Yj and Xji be as in (2). Then

• The families {Yj,red → Yred} and {Xji,red → Xred} are étale coverings by
affine schemes. This follows from the discussion in the proof of Formal Spaces,
Lemma 12.1 or directly from Formal Spaces, Lemma 12.3.
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• If Xji → Yj corresponds to the morphism Bj → Aji of WAdmcount, then
Xji,red → Yj,red corresponds to the ring map Bj/bj → Aji/aji where bj and
aji are the ideals of topologically nilpotent elements. This follows from Formal
Spaces, Example 12.2. HenceXji,red → Yj,red is locally of finite type if and only
if Bj → Aji satisfies the property defined in Lemma 12.1.

The equivalence of (2) and (4) follows from these remarks because being locally of finite
type is a property of morphisms of algebraic spaces which is étale local on source and
target, see discussion in Morphisms of Spaces, Section 23. �

13. Flat morphisms

In this section we define flat morphisms of locally Noetherian formal algebraic spaces.

Lemma 13.1. The property P (ϕ) =“ϕ is flat” on arrows of WAdmNoeth is a local
property as defined in Formal Spaces, Remark 21.5.

Proof. Let us recall what the statement signifies. First, WAdmNoeth is the category
whose objects are adic Noetherian topological rings and whose morphisms are continuous
ring homomorphisms. Consider a commutative diagram

B // (B′)∧

A //

ϕ

OO

(A′)∧

ϕ′

OO

satisfying the following conditions: A and B are adic Noetherian topological rings, A→
A′ and B → B′ are étale ring maps, (A′)∧ = limA′/InA′ for some ideal of definition
I ⊂ A, (B′)∧ = limB′/JnB′ for some ideal of definition J ⊂ B, and ϕ : A → B
and ϕ′ : (A′)∧ → (B′)∧ are continuous. Note that (A′)∧ and (B′)∧ are adic Noetherian
topological rings by Formal Spaces, Lemma 21.1. We have to show

(1) ϕ is flat⇒ ϕ′ is flat,
(2) if B → B′ faithfully flat, then ϕ′ is flat⇒ ϕ is flat, and
(3) if A→ Bi is flat for i = 1, . . . , n, then A→

∏
i=1,...,nBi is flat.

We will use without further mention that completions of Noetherian rings are flat (Alge-
bra, Lemma 97.2). Since of course A→ A′ and B → B′ are flat, we see in particular that
the horizontal arrows in the diagram are flat.

Proof of (1). If ϕ is flat, then the composition A → (A′)∧ → (B′)∧ is flat. Hence A′ →
(B′)∧ is flat by More on Flatness, Lemma 2.3. Hence we see that (A′)∧ → (B′)∧ is flat
by applying More on Algebra, Lemma 27.5 with R = A′, with ideal I(A′), and with
M = (B′)∧ = M∧.

Proof of (2). Assume ϕ′ is flat and B → B′ is faithfully flat. Then the composition
A → (A′)∧ → (B′)∧ is flat. Also we see that B → (B′)∧ is faithfully flat by Formal
Spaces, Lemma 19.14. Hence by Algebra, Lemma 39.9 we find that ϕ : A→ B is flat.

Proof of (3). Omitted. �

Lemma 13.2. Denote P the property of arrows of WAdmNoeth defined in Lemma
13.1. Denote Q the property defined in Lemma 12.1 viewed as a property of arrows of
WAdmNoeth. Denote R the property defined in Lemma 11.1 viewed as a property of ar-
rows of WAdmNoeth. Then
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(1) P is stable under base change by Q (Formal Spaces, Remark 21.10), and
(2) P +R is stable under base change (Formal Spaces, Remark 21.9).

Proof. The statement makes sense as each of the properties P , Q, and R is a local
property of morphisms of WAdmNoeth. Let ϕ : B → A and ψ : B → C be morphisms of
WAdmNoeth. If either Q(ϕ) or Q(ψ) then we see that A⊗̂BC is Noetherian by Formal
Spaces, Lemma 4.12. SinceR impliesQ (Lemma 12.4), we find that this holds in both cases
(1) and (2). This is the first thing we have to check. It remains to show that C → A⊗̂BC
is flat.

Proof of (1). Fix ideals of definition I ⊂ A and J ⊂ B. By Lemma 12.5 the ring mapB →
C is topologically of finite type. Hence B → C/Jn is of finite type for all n ≥ 1. Hence
A⊗BC/Jn is Noetherian as a ring (because it is of finite type overA andA is Noetherian).
Thus the I-adic completionA⊗̂BC/Jn ofA⊗BC/Jn is flat overC/Jn becauseC/Jn →
A⊗B C/Jn is flat as a base change of B → A and because A⊗B C/Jn → A⊗̂BC/Jn is
flat by Algebra, Lemma 97.2 Observe that A⊗̂BC/Jn = (A⊗̂BC)/Jn(A⊗̂BC); details
omitted. We conclude thatM = A⊗̂BC is aC-module which is complete with respect to
the J -adic topology such that M/JnM is flat over C/Jn for all n ≥ 1. This implies that
M is flat over C by More on Algebra, Lemma 27.4.

Proof of (2). In this caseB → A is adic and hence we have justA⊗̂BC = limA⊗BC/Jn.
The rings A ⊗B C/Jn are Noetherian by an application of Formal Spaces, Lemma 4.12
with C replaced by C/Jn. We conclude in the same manner as before. �

Lemma 13.3. Denote P the property of arrows of WAdmNoeth defined in Lemma
13.1. Then P is stable under composition (Formal Spaces, Remark 21.14).

Proof. This is true because compositions of flat ring maps are flat. �

Definition 13.4. Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is flat if for every commutative
diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by alge-
braic spaces and étale, the morphism U → V corresponds to a flat map of adic Noetherian
topological rings.

Let us prove that we can check this condition étale locally on the source and target.

Lemma 13.5. Let S be a scheme. Let f : X → Y be a morphism of locally Noetherian
formal algebraic spaces over S. The following are equivalent

(1) f is flat,
(2) for every commutative diagram

U

��

// V

��
X // Y
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with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphism U → V corresponds to a flat map in
WAdmNoeth,

(3) there exists a covering {Yj → Y } as in Formal Spaces, Definition 11.1 and for
each j a covering {Xji → Yj ×Y X} as in Formal Spaces, Definition 11.1 such
that each Xji → Yj corresponds to a flat map in WAdmNoeth, and

(4) there exist a covering {Xi → X} as in Formal Spaces, Definition 11.1 and for
each i a factorizationXi → Yi → Y where Yi is an affine formal algebraic space,
Yi → Y is representable by algebraic spaces and étale, andXi → Yi corresponds
to a flat map in WAdmNoeth.

Proof. The equivalence of (1) and (2) is Definition 13.4. The equivalence of (2), (3),
and (4) follows from the fact that being flat is a local property of arrows of WAdmNoeth by
Lemma 13.1 and an application of the variant of Formal Spaces, Lemma 21.3 for morphisms
between locally Noetherian algebraic spaces mentioned in Formal Spaces, Remark 21.5.

�

Lemma 13.6. Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms of
locally Noetherian formal algebraic spaces over S.

(1) If f is flat and gred : Zred → Yred is locally of finite type, then the base change
X ×Y Z → Z is flat.

(2) If f is flat and locally of finite type, then the base change X ×Y Z → Z is flat
and locally of finite type.

Proof. Part (1) follows from a combination of Formal Spaces, Remark 21.10, Lemma
13.2 part (1), Lemma 13.5, and Lemma 12.7.

Part (2) follows from a combination of Formal Spaces, Remark 21.9, Lemma 13.2 part (2),
Lemma 13.5, and Lemma 11.5. �

Lemma 13.7. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
locally Noetherian formal algebraic spaces over S. If f and g are flat, then so is g ◦ f .

Proof. Combine Formal Spaces, Remark 21.14 and Lemma 13.3. �

Lemma 13.8. LetS be a scheme. Let f : X → Y be a morphisms of locally Noetherian
formal algebraic spaces overS. If f is representable by algebraic spaces and flat in the sense
of Bootstrap, Definition 4.1, then f is flat in the sense of Definition 13.4.

Proof. This is a sanity check whose proof should be trivial but isn’t quite. We urge
the reader to skip the proof. Assume f is representable by algebraic spaces and flat in the
sense of Bootstrap, Definition 4.1. Consider a commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by alge-
braic spaces and étale. Then the morphism U → V corresponds to a taut map B → A of
WAdmNoeth by Formal Spaces, Lemma 22.2. Observe that this meansB → A is adic (For-
mal Spaces, Lemma 23.1) and in particular for any ideal of definition J ⊂ B the topology
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on A is the J -adic topology and the diagrams

Spec(A/JnA) //

��

Spec(B/Jn)

��
U // V

are cartesian.
Let T → V is a morphism where T is a scheme. Then

X ×Y T → T is flat⇒ U ×Y T → T is flat
⇒ U ×V V ×Y T → T is flat
⇒ U ×V V ×Y T → V ×Y T is flat
⇒ U ×V T → T is flat

The first statement is the assumption on f . The first implication because U → X is étale
and hence flat and compositions of flat morphisms of algebraic spaces are flat. The second
impliciation because U ×Y T = U ×V V ×Y T . The third implication by More on
Flatness, Lemma 2.3. The fourth implication because we can pullback by the morphism
T → V ×Y T . We conclude that U → V is flat in the sense of Bootstrap, Definition 4.1.
In terms of the continuous ring map B → A this means the ring maps B/Jn → A/JnA
are flat (see diagram above).
Finally, we can conclude that B → A is flat for example by More on Algebra, Lemma
27.4. �

14. Rig-closed points

We develop just enough theory to be able to use this for testing rig-flatness in a later
section. The reader can find more theory in [?] who discuss (among other things) the case
of locally Noetherian formal schemes.

Lemma 14.1. LetA be a Noetherian adic topological ring. Let q ⊂ A be a prime ideal.
The following are equivalent

(1) for some ideal of definition I ⊂ A we have I 6⊂ q and q is maximal with respect
to this property,

(2) for some ideal of definition I ⊂ A the prime q defines a closed point of Spec(A)\
V (I),

(3) for any ideal of definition I ⊂ A we have I 6⊂ q and q is maximal with respect
to this property,

(4) for any ideal of definition I ⊂ A the prime q defines a closed point of Spec(A)\
V (I),

(5) dim(A/q) = 1 and for some ideal of definition I ⊂ A we have I 6⊂ q,
(6) dim(A/q) = 1 and for any ideal of definition I ⊂ A we have I 6⊂ q,
(7) dim(A/q) = 1 and the induced topology on A/q is nontrivial,
(8) A/q is a 1-dimensional Noetherian complete local domain whose maximal ideal

is the radical of the image of any ideal of definition of A, and
(9) add more here.

Proof. It is clear that (1) and (2) are equivalent and for the same reason that (3) and
(4) are equivalent. Since V (I) is independent of the choice of the ideal of definition I of
A, we see that (2) and (4) are equivalent.
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Assume the equivalent conditions (1) – (4) hold. If dim(A/q) > 1 we can choose a maxi-
mal ideal q ⊂ m ⊂ A such that dim((A/q)m) > 1. Then Spec((A/q)m)− V (I(A/q)m)
would be infinite by Algebra, Lemma 61.1. This contradicts the fact that q is closed in
Spec(A) \ V (I). Hence we see that (6) holds. Trivially (6) implies (5).
Conversely, assume (5) holds. Let I ⊂ A be an ideal of definition. Since A/q is complete
with respect to I(A/q) (for example by Algebra, Lemma 97.1) we see that all closed points
of Spec(A/q) are contained in V (IA/q) by Algebra, Lemma 96.6. Since dim(A/q) = 1
and since I 6⊂ q we conclude two things: (a) V (IA/q) must contain all points distinct
from the generic point of Spec(A/q), and (b) V (IA/q) must be a (finite) discrete set.
From (a) we see that q is a closed point of Spec(A) \V (I) and we conclude that (2) holds.
Continuing to assume (5) we see that the finite discrete space V (IA/q) must be a single-
ton by More on Algebra, Lemma 11.16 for example (and the fact that complete pairs are
henselian pairs, see More on Algebra, Lemma 11.4). Hence we see that (8) is true. Con-
versely, it is clear that (8) implies (5).
At this point we know that (1) – (6) and (8) are equivalent. We omit the verification that
these are also equivalent to (7). �

In order to comfortably talk about such primes we introduce the following nonstandard
notation.

Definition 14.2. Let A be a Noetherian adic topological ring. Let q ⊂ A be a prime
ideal. We say q is rig-closed if the equivalent conditions of Lemma 14.1 are satisfied.

We will need a few lemmas which essentially tell us there are plenty of rig-closed primes
even in a relative settting.

Lemma 14.3. Let ϕ : A → B in WAdmNoeth. Denote a ⊂ A and b ⊂ B the ideals
of topologically nilpotent elements. Assume A/a → B/b is of finite type. Let q ⊂ B be
rig-closed. The residue field κ of the local ring B/q is a finite type A/a-algebra.

Proof. Let q ⊂ m ⊂ B be the unique maximal ideal containing q. Then b ⊂ m.
Hence A/a→ B/b→ B/m = κ is of finite type. �

Lemma 14.4. Let ϕ : A → B be an arrow of WAdmNoeth which is adic and topo-
logically of finite type. Let q ⊂ B be rig-closed. Let p = ϕ−1(q) ⊂ A. Let a ⊂ A be the
ideal of topologically nilpotent elements. The following are equivalent

(1) the residue field κ of B/q is finite over A/a,
(2) p ⊂ A is rig-closed,
(3) A/p ⊂ B/q is a finite extension of rings.

Proof. Assume (1). Recall that B/q is a Noetherian local ring of dimension 1 whose
topology is the adic topology coming from the maximal ideal. Since ϕ is adic, we see that
A → B/q is adic. Hence ϕ(a) is a nonzero ideal in B/q. Hence B/q + ϕ(a) has finite
length. Hence B/q + ϕ(a) is finite as an A/a-module by our assumption. Thus B/q is
finite over A by Algebra, Lemma 96.12. Thus (3) holds.
Assume (3). Then Spec(B/q)→ Spec(A/p) is surjective by Algebra, Lemma 36.17. This
implies (2).
Assume (2). Denote κ′ the residue field of A/p. By Lemma 14.3 (and Lemma 12.4) the
extension κ/κ′ is finitely generated as an algebra. By the Hilbert Nullstellensatz (Algebra,
Lemma 34.2) we see that κ/κ′ is a finite extension. Hence we see that (1) holds. �
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Lemma 14.5. Letϕ : A→ B be an arrow of WAdmNoeth which is adic and topologi-
cally of finite type. Let q ⊂ B be rig-closed. IfA/I is Jacobson for some ideal of definition
I ⊂ A, then p = ϕ−1(q) ⊂ A is rig-closed.

Proof. By Lemma 14.3 (combined with Lemma 12.4) the residue field κ of B/q is of
finite type over A/a. Since A/a is Jacobson, we see that κ is finite over A/a by Algebra,
Lemma 35.18. We conclude by Lemma 14.4. �

Lemma 14.6. Let ϕ : A → B be an arrow of WAdmNoeth which is adic and topo-
logically of finite type. Let p ⊂ A be rig-closed. Let a ⊂ A and b ⊂ B be the ideals of
topologically nilpotent elements. If ϕ is flat, then the following are equivalent

(1) the maximal ideal of A/p is in the image of Spec(B/b)→ Spec(A/a),
(2) there exists a rig-closed prime ideal q ⊂ B such that p = ϕ−1(q).

and if so then ϕ, p, and q satisfy the conclusions of Lemma 14.4.

Proof. The implication (2)⇒ (1) is immediate. Assume (1). To prove the existence
of q we may replace A by A/p and B by B/pB (some details omitted). Thus we may
assume (A,m, κ) is a local complete 1-dimensional Noetherian ring, m = a, and p = (0).
Condition (1) just says that B0 = B ⊗A κ = B/mB = B/aB is nonzero. Note that B0
is of finite type over κ. Hence we can use induction on dim(B0). If dim(B0) = 0, then
any minimal prime q ⊂ B will do (flatness ofA→ B insures that q will lie over p = (0)).
If dim(B0) > 0 then we can find an element b ∈ B which maps to an element b0 ∈ B0
which is a nonzerodivisor and a nonunit, see Algebra, Lemma 63.20. By Algebra, Lemma
99.2 the ring B′ = B/bB is flat over A. Since B′

0 = B′ ⊗A κ = B0/(b0) is not zero,
we may apply the induction hypothesis to B′ and conclude. The final statement of the
lemma is clear from Lemma 14.4. �

We introduce some notation.

Definition 14.7. Let A be an adic topological ring which has a finitely generated
ideal of definition. Let f ∈ A. The completed principal localization A{f} of A is the
completion of Af = A[1/f ] of the principal localization of A at f with respect to any
ideal of definition of A.

To be sure, if f is topologically nilpotent, then A{f} is the zero ring.

Lemma 14.8. Let A be an adic Noetherian topological ring. Let p ⊂ A be a prime
ideal. Let f ∈ A be an element mapping to a unit in A/p. Then

pA{f} = p(Af )∧ = p⊗A (Af )∧ = (pf )∧

is a prime ideal with quotient

A/p = (A/p)⊗A (Af )∧ = (Af )∧/p(Af )∧ = A{f}/pA{f}

Proof. Since Af is Noetherian the ring map A → Af → (Af )∧ is flat. For any
finite A-module M we see that M ⊗A (Af )∧ is the completion of Mf . If f is a unit on
M , then Mf = M is already complete. See discussion in Algebra, Section 97. From these
observations the results follow easily. �

Lemma 14.9. Let ϕ : A → B be an arrow of WAdmNoeth which is adic and topo-
logically of finite type. Let q ⊂ B be rig-closed. There exists an f ∈ A which maps to a
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unit in B/q such that we obtain a diagram

B // B{f}

A //

ϕ

OO

A{f}

ϕ{f}

OO

with primes

q q′ qB{f}

p p′

such that p′ is rig-closed, i.e., the map A{f} → B{f} and the prime ideals q′ and p′ satisfy
the equivalent conditions of Lemma 14.4.

Proof. Please see Lemma 14.8 for the description of q′. The only assertion the lemma
makes is that for a suitable choice of f the prime ideal p′ has the property dim((Af )∧/p′) =
1. By Lemma 14.4 this in turn just means that the residue field κ of B/q = (Bf )∧/q′ is
finite over (Af )∧/a′ = (A/a)f . By Lemma 14.3 we know that A/a → κ is a finite type
algebra homomorphism. By the Hilbert Nullstellensatz in the form of Algebra, Lemma
34.2 we can find an f ∈ A which maps to a unit in κ such that κ is finite over Af . This
finishes the proof. �

Lemma 14.10. Let A be a Noetherian adic topological ring. Denote A{x1, . . . , xn}
the restricted power series over A. Let q ⊂ A{x1, . . . , xn} be a prime ideal. Set q′ =
A[x1, . . . , xn] ∩ q and p = A ∩ q. If q and p are rig-closed, then the map

A[x1, . . . , xn]q′ → A{x1, . . . , xn}q
defines an isomorphism on completions with respect to their maximal ideals.

Proof. By Lemma 14.4 the ring map A/p → A{x1, . . . , xn}/q is finite. For ev-
erym ≥ 1 the module qm/qm+1 is finite overA as it is a finiteA{x1, . . . , xn}/q-module.
HenceA{x1, . . . xn}/qm is a finiteA-module. HenceA[x1, . . . , xn]→ A{x1, . . . , xn}/qm
is surjective (as the image is dense and an A-submodule). It follows in a straightforward
manner that A[x1, . . . , xn]/(q′)m → A{x1, . . . , xn}/qm is an isomorphism for all m.
From this the lemma easily follows. Hint: Pick a topologically nilpotent g ∈ A which is
not contained in p. Then the map of completions is the map

limm (A[x1, . . . , xn]/(q′)m)g −→ (A{x1, . . . , xn}/qm)g
Some details omitted. �

Lemma 14.11. Let ϕ : A → B be an arrow of WAdmNoeth. Assume ϕ is adic,
topologically of finite type, flat, and A/I → B/IB is étale for some (resp. any) ideal of
definition I ⊂ A. Let q ⊂ B be rig-closed such that p = A ∩ q is rig-closed as well. Then
pBq = qBq.

Proof. Let κ be the residue field of the 1-dimensional complete local ringA/p. Since
A/I → B/IB is étale, we see thatB⊗A κ is a finite product of finite separable extensions
of κ, see Algebra, Lemma 143.4. One of these is the residue field of B/q. By Algebra,
Lemma 96.12 we see that B/pB is a finite A/p-algebra. It is also flat. Combining the
above we see that A/p→ B/pB is finite étale, see Algebra, Lemma 143.7. Hence B/pB is
reduced, which implies the statement of the lemma (details omitted). �

Lemma 14.12. LetA be an adic Noetherian topological ring. Let p ⊂ A be a rig-closed
prime. For any n ≥ 1 the ring map

A/p −→ A{x1, . . . , xn} ⊗A A/p = A/p{x1, . . . , xn}
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is regular. In particular, the algebraA{x1, . . . , xn}⊗A κ(p) is geometrically regular over
κ(p).

Proof. We will use some fact on regular ring maps the reader can find in More on
Algebra, Section 41. Since A/p is a complete local Noetherian ring it is excellent (More
on Algebra, Proposition 52.3). HenceA/p[x1, . . . , xn] is excellent (by the same reference).
HenceA/p[x1, . . . , xn]→ A/p{x1, . . . , xn} is a regular ring homomorphism by More on
Algebra, Lemma 50.14. Of course A/p → A/p[x1, . . . , xn] is smooth and hence regular.
Since the composition of regular ring maps is regular the proof is complete. �

15. Rig-flat homomorphisms

In this section we define rig-flat homomorphisms of adic Noetherian topological rings.

Lemma 15.1. Let ϕ : A→ B be a morphism in WAdmadic∗ (Formal Spaces, Section
21). Assume ϕ is adic. The following are equivalent:

(1) Bf is flat over A for all topologically nilpotent f ∈ A,
(2) Bg is flat over A for all topologically nilpotent g ∈ B,
(3) Bq is flat overA for all primes q ⊂ B which do not contain an ideal of definition,
(4) Bq is flat over A for every rig-closed prime q ⊂ B, and
(5) add more here.

Proof. Follows from the definitions and Algebra, Lemma 39.18. �

Definition 15.2. Let ϕ : A → B be a continuous ring homomorphism between
adic Noetherian topological rings, i.e., ϕ is an arrow of WAdmNoeth. We say ϕ is naively
rig-flat if ϕ is adic, topologically of finite type, and satisfies the equivalent conditions of
Lemma 15.1.

The example below shows that this notion does not “localize”.

Example 15.3. By Examples, Lemma 17.1 there exists a local Noetherian 2-dimensional
domain (A,m) complete with respect to a principal ideal I = (a) and an element f ∈ m,
f 6∈ I with the following property: the ring A{f}[1/a] is nonreduced. Here A{f} is the
I-adic completion (Af )∧ of the principal localizationAf . To be sure the ringA{f}[1/a] is
nonzero. LetB = A{f}/nil(A{f}) be the quotient by its nilradical. Observe thatA→ B
is adic and topologically of finite type. In fact, B is a quotient of A{x} = A[x]∧ by the
map sending x to the image of 1/f in B. Every prime q of B not containing a must lie
over (0) ⊂ A2. Hence Bq is flat over A as it is a module over the fraction field of A. Thus
A→ B is naively rig-flat. On the other hand, the map

A{f} −→ B{f} = (Bf )∧ = B = A{f}/nil(A{f})

is not flat after invertinga because we get the nontrivial surjectionA{f}[1/a]→ A{f}[1/a]/nil(A{f}[1/a]).
Hence A{f} → B∧

{f} is not naively rig-flat!

It turns out that it is easy to work around this problem by using the following definition.

2Namely, we can find q ⊂ q′ ⊂ B with a ∈ q′ because B is a-adically complete. Then p′ = A ∩ q′

contains a but not f hence is a height 1 prime. Then p = A∩ q must be strictly contained in p′ as a 6∈ p. Since
dim(A) = 2 we see that p = (0).
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Definition 15.4. Let ϕ : A→ B be a continuous ring homomorphism between adic
Noetherian topological rings, i.e., ϕ is an arrow of WAdmNoeth. We say ϕ is rig-flat if ϕ
is adic, topologically of finite type, and for all f ∈ A the induced map

A{f} −→ B{f}

is naively rig-flat (Definition 15.2).

Setting f = 1 in the definition above we see that rig-flatness implies naive rig-flatness.
The example shows the converse is false. However, in many situations we don’t need to
worry about the difference between rig-flatness and its naive version as the next lemma
shows.

Lemma 15.5. Let ϕ : A → B be an arrow of WAdmNoeth. If A/I is Jacobson for
some (equivalently any) ideal of definition I ⊂ A and ϕ is naively rig-flat, then ϕ is rig-
flat.

Proof. Assume ϕ is naively rig-flat. We first state some obvious consequences of the
assumptions. Namely, let f ∈ A. Then A,B,A{f}, B{f} are Noetherian adic topological
rings. The maps A → A{f} → B{f} and A → B → B{f} are adic and topologically
of finite type. The ring maps A → A{f} and B → B{f} are flat as compositions of
A → Af and B → Bf and the completion maps which are flat by Algebra, Lemma 97.2.
The quotients of each of the rings A,B,A{f}, B{f} by I is of finite type over A/I and
hence Jacobson too (Algebra, Proposition 35.19).
Let q′ ⊂ B{f} be rig-closed. It suffices to prove that (B{f})q′ is flat overA{f}, see Lemma
15.1. By Lemma 14.5 the primes q ⊂ B and p′ ⊂ A{f} and p ⊂ A lying under q′ are
rig-closed. We are going to apply Algebra, Lemma 100.2 to the diagram

Bq
// (B{f})q′

Ap

OO

// (A{f})p′

OO

with M = Bq. The only assumption that hasn’t been checked yet is the fact that p gen-
erates the maximal ideal of (A{f})p′ . This follows from Lemma 14.8; here we use that p
and p′ are rig-closed to see that f maps to a unit of A/p (this is the only step in the proof
that fails without the Jacobson assumption). Namely, this tells us that A/p→ A{f}/p

′ is
a finite inclusion of local rings (Lemma 14.4) and f maps to a unit in the second one. �

Lemma 15.6. Let ϕ : A → B and A → C be arrows of WAdmNoeth. Assume ϕ is
rig-flat and A→ C adic and topologically of finite type. Then C → B⊗̂AC is rig-flat.

Proof. Assumeϕ is rig-flat. Let f ∈ C be an element. We have to show thatC{f} →
B⊗̂AC{f} is naively rig-flat. Since we can replace C by C{f} we it suffices to show that
C → B⊗̂AC is naively rig-flat.
If A → C is surjective or more generally if C is finite as an A-module, then B ⊗A C =
B⊗̂AC as a finite module over a complete Noetherian ring is complete, see Algebra, Lemma
97.1. By the usual base change for flatness (Algebra, Lemma 39.7) we see that naive rig-
flatness of ϕ implies naive rig-flatness for C → B ×A C in this case.
In the general case, we can factorA→ C asA→ A{x1, . . . , xn} → C whereA{x1, . . . , xn}
is the restricted power series ring andA{x1, . . . , xn} → C is surjective. Thus it suffices to
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showC → B⊗̂AB is naively rig-flat in caseC = A{x1, . . . , xn}. SinceA{x1, . . . , xn} =
A{x1, . . . , xn−1}{xn} by induction on nwe reduce to the case discussed in the next para-
graph.

Here C = A{x}. Note that B⊗̂AC = B{x}. We have to show that A{x} → B{x} is
naively rig-flat. Let q ⊂ B{x} be a rig-closed prime ideal. We have to show that B{x}q
is flat over A{x}. Set p = A ∩ q. By Lemma 14.9 we can find an f ∈ A such that f maps
to a unit in B{x}/q and such that the prime ideal p′ in A{f} induced is rig-closed. Below
we will use that A{f}{x} = A{x}{f} and similarly for B; details omitted. Consider the
diagram

(B{x})q // (B{f}{x})q′

A{x} //

OO

A{f}{x}

OO

We want to show that the left vertical arrow is flat. The top horizontal arrow is faithfully
flat as it is a local homomorphism of local rings and flat asB{f}{x} is the completion of a
localization of the Noetherian ring B{x}. Similarly the bottom horizontal arrow is flat.
Hence it suffices to prove that the right vertical arrow is flat. This reduces us to the case
discussed in the next paragraph.

Here C = A{x}, we have a rig-closed prime ideal q ⊂ B{x} such that p = A ∩ q is
rig-closed as well. This implies, via Lemma 14.4, that the intermediate primes B ∩ q and
A{x} ∩ q are rig-closed as well. Consider the diagram

(B[x])B[x]∩q
// (B{x})q

(A[x])A[x]∩q
//

OO

(A{x})A{x}∩q

OO

of local homomorphisms of Noetherian local rings. By Lemma 14.10 the horizontal arrows
define isomorphisms on completions. We already know that the left vertical arrow is flat
(as A → B is naively rig-flat and hence A[x] → B[x] is flat away from the closed locus
defined by an ideal of definition). Hence we finally conclude by More on Algebra, Lemma
43.8. �

Lemma 15.7. Consider a commutative diagram

B // B′

A //

ϕ

OO

A′

ϕ′

OO

in WAdmNoeth with all arrows adic and topologically of finite type. AssumeA→ A′ and
B → B′ are flat. Let I ⊂ A be an ideal of definition. If ϕ is rig-flat and A/I → A′/IA′

is étale, then ϕ′ is rig-flat.
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Proof. Given f ∈ A′ the assumptions of the lemma remain true for the digram

B // (B′){f}

A //

ϕ

OO

(A′){f}

OO

Hence it suffices to prove that ϕ′ is naively rig-flat.
Take a rig-closed prime ideal q′ ⊂ B′. We have to show that (B′)q′ is flat overA′. We can
choose an f ∈ A which maps to a unit of B′/q′ such that the induced prime ideal p′′ of
A{f} is rig-closed, see Lemma 14.9. To be precise, here q′′ = q′B′

{f} and p′′ = A{f} ∩ q′′.
Consider the diagram

B′
q′ // (B′

{f})q′′

A //

OO

A{f}

OO

We want to show that the left vertical arrow is flat. The top horizontal arrow is faithfully
flat as it is a local homomorphism of local rings and flat as B′

{f} is the completion of a
localization of the Noetherian ring B′

f . Similarly the bottom horizontal arrow is flat.
Hence it suffices to prove that the right vertical arrow is flat. Finally, all the assumptions
of the lemma remain true for the diagram

B{f} // B′
{f}

A{f} //

OO

A′
{f}

OO

This reduces us to the case discussed in the next paragraph.
Take a rig-closed prime ideal q′ ⊂ B′ and assume p = A ∩ q′ is rig-closed as well. This
implies also the primes q = B ∩ q′ and p′ = A′ ∩ q′ are rig-closed, see Lemma 14.4. We
are going to apply Algebra, Lemma 100.2 to the diagram

Bq
// B′

q′

Ap

OO

// A′
p′

OO

withM = Bq. The only assumption that hasn’t been checked yet is the fact that p gener-
ates the maximal ideal of A′

p′ . This follows from Lemma 14.11. �

Lemma 15.8. Consider a commutative diagram

B // B′

A //

ϕ

OO

A′

ϕ′

OO

in WAdmNoeth with all arrows adic and topologically of finite type. AssumeA→ A′ flat
and B → B′ faithfully flat. If ϕ′ is rig-flat, then ϕ is rig-flat.
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Proof. Given f ∈ A the assumptions of the lemma remain true for the digram

B{f} // (B′){f}

A{f} //

ϕ

OO

(A′){f}

OO

(To check the condition on faithful flatness: faithful flatness of B → B′ is equivalent to
B → B′ being flat and Spec(B′/IB′)→ Spec(B/IB) being surjective for some ideal of
definition I ⊂ A.) Hence it suffices to prove that ϕ is naively rig-flat. However, we know
thatϕ′ is naively rig-flat and that Spec(B′)→ Spec(B) is surjective. From this the result
follows immediately. �

Finally, we can show that rig-flatness is a local property.

Lemma 15.9. The property P (ϕ) =“ϕ is rig-flat” on arrows of WAdmNoeth is a local
property as defined in Formal Spaces, Remark 21.4.

Proof. Let us recall what the statement signifies. First, WAdmNoeth is the category
whose objects are adic Noetherian topological rings and whose morphisms are continuous
ring homomorphisms. Consider a commutative diagram

B // (B′)∧

A //

ϕ

OO

(A′)∧

ϕ′

OO

satisfying the following conditions: A and B are adic Noetherian topological rings, A→
A′ and B → B′ are étale ring maps, (A′)∧ = limA′/InA′ for some ideal of definition
I ⊂ A, (B′)∧ = limB′/JnB′ for some ideal of definition J ⊂ B, and ϕ : A → B
and ϕ′ : (A′)∧ → (B′)∧ are continuous. Note that (A′)∧ and (B′)∧ are adic Noetherian
topological rings by Formal Spaces, Lemma 21.1. We have to show

(1) ϕ is rig-flat⇒ ϕ′ is rig-flat,
(2) if B → B′ faithfully flat, then ϕ′ is rig-flat⇒ ϕ is rig-flat, and
(3) if A→ Bi is rig-flat for i = 1, . . . , n, then A→

∏
i=1,...,nBi is rig-flat.

Being adic and topologically of finite type satisfies conditions (1), (2), and (3), see Lemma
11.1. Thus in verifying (1), (2), and (3) for the property “rig-flat” we may already assume
our ring maps are all adic and topologically of finite type. Then (1) and (2) follow from
Lemmas 15.7 and 15.8. We omit the trivial proof of (3). �

Lemma 15.10. The propertyP (ϕ) =“ϕ is rig-flat” on arrows of WAdmNoeth is stable
under composition as defined in Formal Spaces, Remark 21.14.

Proof. The statement makes sense by Lemma 15.9. To see that it is true assume we
have rig-flat morphisms A → B and B → C in WAdmNoeth. Then A → C is adic and
topologically of finite type by Lemma 11.4. To finish the proof we have to show that for all
f ∈ A the map A{f} → C{f} is naively rig-flat. Since A{f} → B{f} and B{f} → C{f}
are naively rig-flat, it suffices to show that compositions of naively rig-flat maps are naively
rig-flat. This is a consequence of Algebra, Lemma 39.4. �
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16. Rig-flat morphisms

In this section we use the work done in Section 15 to define rig-flat morphisms of locally
Noetherian algebraic spaces.

Definition 16.1. Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is rig-flat if for every commutative
diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by alge-
braic spaces and étale, the morphism U → V corresponds to a rig-flat map of adic Noe-
therian topological rings.

Let us prove that we can check this condition étale locally on source and target.

Lemma 16.2. Let S be a scheme. Let f : X → Y be a morphism of locally Noetherian
formal algebraic spaces over S. The following are equivalent

(1) f is rig-flat,
(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphism U → V corresponds to a rig-flat
map in WAdmNoeth,

(3) there exists a covering {Yj → Y } as in Formal Spaces, Definition 11.1 and for
each j a covering {Xji → Yj ×Y X} as in Formal Spaces, Definition 11.1 such
that each Xji → Yj corresponds to a rig-flat map in WAdmNoeth, and

(4) there exist a covering {Xi → X} as in Formal Spaces, Definition 11.1 and for
each i a factorizationXi → Yi → Y where Yi is an affine formal algebraic space,
Yi → Y is representable by algebraic spaces and étale, andXi → Yi corresponds
to a rig-flat map in WAdmNoeth.

Proof. The equivalence of (1) and (2) is Definition 16.1. The equivalence of (2), (3),
and (4) follows from the fact that being rig-flat is a local property of arrows of WAdmNoeth

by Lemma 15.9 and an application of the variant of Formal Spaces, Lemma 21.3 for mor-
phisms between locally Noetherian algebraic spaces mentioned in Formal Spaces, Remark
21.5. �

Lemma 16.3. Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms of
locally Noetherian formal algebraic spaces over S. If f is rig-flat and g is locally of finite
type, then the base change X ×Y Z → Z is rig-flat.

Proof. By Formal Spaces, Remark 21.10 and the discussion in Formal Spaces, Section
23, this follows from Lemma 15.6. �
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Lemma 16.4. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
locally Noetherian formal algebraic spaces over S. If f and g are rig-flat, then so is g ◦ f .

Proof. By Formal Spaces, Remark 21.14 this follows from Lemma 15.10. �

17. Rig-smooth homomorphisms

In this section we prove some properties of rig-smooth homomorphisms of adic Noether-
ian topological rings which are needed to introduce rig-smooth morpisms of locally Noe-
therian formal algebraic spaces.

Lemma 17.1. LetA→ B be a morphism in WAdmNoeth (Formal Spaces, Section 21).
The following are equivalent:

(a) A → B satisfies the equivalent conditions of Lemma 11.1 and there exists an
ideal of definition I ⊂ B such that B is rig-smooth over (A, I), and

(b) A → B satisfies the equivalent conditions of Lemma 11.1 and for all ideals of
definition I ⊂ A the algebra B is rig-smooth over (A, I).

Proof. Let I and I ′ be ideals of definitions of A. Then there exists an integer c ≥ 0
such that Ic ⊂ I ′ and (I ′)c ⊂ I . Hence B is rig-smooth over (A, I) if and only if B
is rig-smooth over (A, I ′). This follows from Definition 4.1, the inclusions Ic ⊂ I ′ and
(I ′)c ⊂ I , and the fact that the naive cotangent complex NL∧

B/A is independent of the
choice of ideal of definition of A by Remark 11.2. �

Definition 17.2. Let ϕ : A→ B be a continuous ring homomorphism between adic
Noetherian topological rings, i.e., ϕ is an arrow of WAdmNoeth. We say ϕ is rig-smooth
if the equivalent conditions of Lemma 17.1 hold.

This defines a local property.

Lemma 17.3. The property P (ϕ) =“ϕ is rig-smooth” on arrows of WAdmNoeth is a
local property as defined in Formal Spaces, Remark 21.5.

Proof. Let us recall what the statement signifies. First, WAdmNoeth is the category
whose objects are adic Noetherian topological rings and whose morphisms are continuous
ring homomorphisms. Consider a commutative diagram

B // (B′)∧

A //

ϕ

OO

(A′)∧

ϕ′

OO

satisfying the following conditions: A and B are adic Noetherian topological rings, A→
A′ and B → B′ are étale ring maps, (A′)∧ = limA′/InA′ for some ideal of definition
I ⊂ A, (B′)∧ = limB′/JnB′ for some ideal of definition J ⊂ B, and ϕ : A → B
and ϕ′ : (A′)∧ → (B′)∧ are continuous. Note that (A′)∧ and (B′)∧ are adic Noetherian
topological rings by Formal Spaces, Lemma 21.1. We have to show

(1) ϕ is rig-smooth⇒ ϕ′ is rig-smooth,
(2) if B → B′ faithfully flat, then ϕ′ is rig-smooth⇒ ϕ is rig-smooth, and
(3) ifA→ Bi is rig-smooth for i = 1, . . . , n, thenA→

∏
i=1,...,nBi is rig-smooth.
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The equivalent conditions of Lemma 11.1 satisfy conditions (1), (2), and (3). Thus in veri-
fying (1), (2), and (3) for the property “rig-smooth” we may already assume our ring maps
satisfy the equivalent conditions of Lemma 11.1 in each case.

Pick an ideal of definition I ⊂ A. By the remarks above the topology on each ring in
the diagram is the I-adic topology and B, (A′)∧, and (B′)∧ are in the category (2.0.2) for
(A, I). Since A → A′ and B → B′ are étale the complexes NLA′/A and NLB′/B are
zero and hence NL∧

(A′)∧/A and NL∧
(B′)∧/B are zero by Lemma 3.2. Applying Lemma 3.5

to A→ (A′)∧ → (B′)∧ we get isomorphisms

Hi(NL∧
(B′)∧/(A′)∧)→ Hi(NL∧

(B′)∧/A)

Thus NL∧
(B′)∧/A → NL(B′)∧/(A′)∧ is a quasi-isomorphism. The ring maps B/InB →

B′/InB′ are étale and hence are local complete intersections (Algebra, Lemma 143.2).
Hence we may apply Lemmas 3.5 and 3.6 to A→ B → (B′)∧ and we get isomorphisms

Hi(NL∧
B/A⊗B(B′)∧)→ Hi(NL∧

(B′)∧/A)

We conclude that NL∧
B/A⊗B(B′)∧ → NL∧

(B′)∧/A is a quasi-isomorphism. Combining
these two observations we obtain that

NL∧
(B′)∧/(A′)∧ ∼= NL∧

B/A⊗B(B′)∧

in D((B′)∧). With these preparations out of the way we can start the actual proof.

Proof of (1). Assumeϕ is rig-smooth. Then there exists a c ≥ 0 such that Ext1
B(NL∧

B/A, N)
is annihilated by Ic for every B-module N . By More on Algebra, Lemmas 84.6 and 84.7
this property is preserved under base change byB → (B′)∧. Hence Ext1

(B′)∧(NL∧
(B′)∧/(A′)∧ , N)

is annihilated by Ic(A′)∧ for all (B′)∧-modules N which tells us that ϕ′ is rig-smooth.
This proves (1).

To prove (2) assumeB → B′ is faithfully flat and thatϕ′ is rig-smooth. Then there exists a
c ≥ 0 such that Ext1

(B′)∧(NL∧
(B′)∧/(A′)∧ , N ′) is annihilated by Ic(B′)∧ for every (B′)∧-

module N ′. The composition B → B′ → (B′)∧ is flat (Algebra, Lemma 97.2) hence for
any B-module N we have

Ext1
B(NL∧

B/A, N)⊗B (B′)∧ = Ext1
(B′)∧(NL∧

B/A⊗B(B′)∧, N ⊗B (B′)∧)

by More on Algebra, Lemma 99.2 part (3) (minor details omitted). Thus we see that this
module is annihilated by Ic. However, B → (B′)∧ is actually faithfully flat by our as-
sumption thatB → B′ is faithfully flat (Formal Spaces, Lemma 19.14). Thus we conclude
that Ext1

B(NL∧
B/A, N) is annihilated by Ic. Hence ϕ is rig-smooth. This proves (2).

To prove (3), setting B =
∏
i=1,...,nBi we just observe that NL∧

B/A is the direct sum of
the complexes NL∧

Bi/A viewed as complexes of B-modules. �

Lemma 17.4. Consider the propertiesP (ϕ) =“ϕ is rig-smooth” andQ(ϕ)=“ϕ is adic”
on arrows of WAdmNoeth. Then P is stable under base change byQ as defined in Formal
Spaces, Remark 21.10.

Proof. The statement makes sense by Lemma 17.1. To see that it is true assume we
have morphisms B → A and B → C in WAdmNoeth and that B → A is rig-smooth and
B → C is adic (Formal Spaces, Definition 6.1). Then we can choose an ideal of definition
I ⊂ B such that the topology on A and C is the I-adic topology. In this situation it
follows immediately that A⊗̂BC is rig-smooth over (C, IC) by Lemma 4.5. �
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Lemma 17.5. The property P (ϕ) =“ϕ is rig-smooth” on arrows of WAdmNoeth is
stable under composition as defined in Formal Spaces, Remark 21.14.

Proof. We strongly urge the reader to find their own proof and not read the proof
that follows. The statement makes sense by Lemma 17.1. To see that it is true assume we
have rig-smooth morphisms A → B and B → C in WAdmNoeth. Then we can choose
an ideal of definition I ⊂ A such that the topology on C and B is the I-adic topology.
By Lemma 3.5 we obtain an exact sequence

C ⊗B H0(NL∧
B/A) // H0(NL∧

C/A) // H0(NL∧
C/B) // 0

H−1(NL∧
B/A⊗BC) // H−1(NL∧

C/A) // H−1(NL∧
C/B)

kk

Observe thatH−1(NL∧
B/A⊗BC) andH−1(NL∧

C/B) are annihilated by a power of I ; this
follows from Lemma 4.2 part (2) combined with More on Algebra, Lemmas 84.6 and 84.7
(to deal with the base change byB → C). HenceH−1(NL∧

C/A) is annihilated by a power
of I . Next, by the characterization of rig-smooth algebras in Lemma 4.2 part (2) which
in turn refers to More on Algebra, Lemma 84.10 part (5) we can choose f1, . . . , fs ∈ IB
and g1, . . . , gt ∈ IC such that V (f1, . . . , fs) = V (IB) and V (g1, . . . , gt) = V (IC) and
such that H0(NL∧

B/A)fi is a finite projective Bfi -module and H0(NL∧
C/B)gj is a finite

projective Cgj -module. Since the cohomologies in degree −1 vanish upon localization at
figj we get a short exact sequence

0→ (C ⊗B H0(NL∧
B/A))figj → H0(NL∧

C/A)figj → H0(NL∧
C/B)figj → 0

and we conclude that H0(NL∧
C/A)figj is a finite projective Cfigj -module as an extension

of same. Thus by the criterion in Lemma 4.2 part (2) and via that the criterion in More on
Algebra, Lemma 84.10 part (4) we conclude that C is rig-smooth over (A, I). �

The following lemma can be interpreted as saying that a rig-smooth homomorphism is
“rig-syntomic” or “rig-flat+rig-lci”.

Lemma 17.6. Let ϕ : A → B be an arrow of WAdmNoeth. If ϕ is rig-smooth,
then ϕ is rig-flat, and for any presentation B = A{x1, . . . , xn}/J and prime J ⊂ q ⊂
A{x1, . . . , xn} not containing an ideal of definition the ideal Jq ⊂ A{x1, . . . , xn}q is
generated by a regular sequence.

Proof. Let f ∈ A. To prove that ϕ is rig-flat we have to show that ϕ{f} : A{f} →
B{f} is naively rig-flat. Now either by viewing ϕ{f} as a base change of ϕ and using
Lemma 17.4 or by using the fact that being rig-smooth is a local property (Lemma 17.3)
we see that ϕ{f} is rig-smooth. Hence it suffices to show that ϕ is naively rig-flat.
Choose a presentation B = A{x1, . . . , xn}/J . In order to check the second part of the
lemma it suffices to check Jq ⊂ A{x1, . . . , xn}q is generated by a regular sequence for
J ⊂ q for q maximal with respect to not containing an ideal of definition, see Algebra,
Lemma 68.6 (which shows that the set of primes in V (J) where there is a regular sequence
generating J is open). In other words, we may assume q is rig-closed in A{x1, . . . , xn}.
And to check that B is naively rig-flat, it also suffices to check that the corresponding
localizations Bq are flat over A.
Let q ⊂ A{x1, . . . , xn} be rig-closed with J ⊂ q. By Lemma 14.9 we may choose an
f ∈ A mapping to a unit in A{x1, . . . , xn}/q and such that the prime ideal p′ in A{f}
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induced is rig-closed. Below we will use that A{f}{x1, . . . , xn} = A{x1, . . . , xn}{f};
details omitted. Consider the diagram

A{x1, . . . , xn}q/Jq // A{f}{x1, . . . , xn}q′/JA{f}{x1, . . . , xn}q′

A{x1, . . . , xn}q //

OO

A{f}{x1, . . . , xn}q′

OO

A //

OO

A{f}

OO

The middle horizontal arrow is faithfully flat as it is a local homomorphism of local rings
and flat as A{f}{x1, . . . , xn} is the completion of a localization of the Noetherian ring
A{x1, . . . , xn}. Similarly the bottom horizontal arrow is flat. Hence to show that Jq
is generated by a regular sequence and that A → A{x1, . . . , xn}q/Jq is flat, it suffices to
prove the same things forJA{f}{x1, . . . , xn}q′ andA{f} → A{f}{x1, . . . , xn}q′/JA{f}{x1, . . . , xn}q′ .
See Algebra, Lemma 68.5 or More on Algebra, Lemma 32.4 for the statement on regular
sequences. Finally, we have already seen that A{f} → B{f} is rig-smooth. This reduces
us to the case discussed in the next paragraph.

Let q ⊂ A{x1, . . . , xn} be rig-closed with J ⊂ q such that moreover p = A ∩ q is rig-
closed as well. By the characterization of rig-smooth algebras given in Lemma 4.2 after
reordering the variables x1, . . . , xn we can find m ≥ 0 and f1, . . . , fm ∈ J such that

(1) Jq is generated by f1, . . . , fm, and
(2) det1≤i,j≤m(∂fj/∂xi) maps to a unit in A{x1, . . . , xn}q.

By Lemma 14.12 the fibre ring

F = A{x1, . . . , xn} ⊗A κ(p)
is regular. Observe that the A-derivations ∂/∂xi extend (uniquely) to derivations Di :
F → F . By More on Algebra, Lemma 48.3 we see that f1, . . . , fm map to a regular se-
quence in Fq. By flatness of A → A{x1, . . . , xn} and Algebra, Lemma 99.3 this shows
that f1, . . . , fm map to a regular sequence in A{x1, . . . , xm}q and the quotient by these
elements is flat over A. This finishes the proof. �

Lemma 17.7. Let A → B → C be arrows in WAdmNoeth which are adic and topo-
logically of finite type. If B → C is rig-smooth, then the kernel of the map

H−1(NL∧
B/A⊗BC)→ H−1(NL∧

C/A)

(see Lemma 3.5) is annihilated by an ideal of definition.

Proof. Let q ⊂ C be a prime ideal which does not contain an ideal of definition.
Since the modules in question are finite it suffices to show that

H−1(NL∧
B/A⊗BC)q → H−1(NL∧

C/A)q
is injective. As in the proof of Lemma 3.5 choose presentations B = A{x1, . . . , xr}/J ,
C = B{y1, . . . , ys}/J ′, and C = A{x1, . . . , xr, y1, . . . , ys}/K. Looking at the diagram
in the proof of Lemma 3.5 we see that it suffices to show that J/J2 ⊗B C → K/K2 is
injective after localization at the prime ideal q ⊂ A{x1, . . . , xr, y1, . . . , ys} corresponding
to q. Please compare with More on Algebra, Lemma 33.6 and its proof. This is the same
as asking J/KJ → K/K2 to be injective after localization at q. Equivalently, we have to
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show that Jq∩K2
q = (KJ)q. By Lemma 17.6 we know that (K/J)q = J ′

q is generated by
a regular sequence. Hence the desired intersection property follows from More on Algebra,
Lemma 32.5 (and the fact that an ideal generated by a regular sequence is H1-regular, see
More on Algebra, Section 32). �

18. Rig-smooth morphisms

In this section we use the work done in Section 17 to define rig-smooth morphisms of
locally Noetherian algebraic spaces.

Definition 18.1. Let S be a scheme. Let f : X → Y be a morphism of locally Noe-
therian formal algebraic spaces over S. We say f is rig-smooth if for every commutative
diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by al-
gebraic spaces and étale, the morphism U → V corresponds to a rig-smooth map of adic
Noetherian topological rings.
Let us prove that we can check this condition étale locally on source and target.

Lemma 18.2. Let S be a scheme. Let f : X → Y be a morphism of locally Noetherian
formal algebraic spaces over S. The following are equivalent

(1) f is rig-smooth,
(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphismU → V corresponds to a rig-smooth
map in WAdmNoeth,

(3) there exists a covering {Yj → Y } as in Formal Spaces, Definition 11.1 and for
each j a covering {Xji → Yj ×Y X} as in Formal Spaces, Definition 11.1 such
that each Xji → Yj corresponds to a rig-smooth map in WAdmNoeth, and

(4) there exist a covering {Xi → X} as in Formal Spaces, Definition 11.1 and for
each i a factorizationXi → Yi → Y where Yi is an affine formal algebraic space,
Yi → Y is representable by algebraic spaces and étale, andXi → Yi corresponds
to a rig-smooth map in WAdmNoeth.

Proof. The equivalence of (1) and (2) is Definition 18.1. The equivalence of (2),
(3), and (4) follows from the fact that being rig-smooth is a local property of arrows of
WAdmNoeth by Lemma 17.3 and an application of the variant of Formal Spaces, Lemma
21.3 for morphisms between locally Noetherian algebraic spaces mentioned in Formal
Spaces, Remark 21.5. �

Lemma 18.3. Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms of
locally Noetherian formal algebraic spaces over S. If f is rig-smooth and g is adic, then
the base change X ×Y Z → Z is rig-smooth.
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Proof. By Formal Spaces, Remark 21.10 and the discussion in Formal Spaces, Section
23, this follows from Lemma 17.4. �

Lemma 18.4. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
locally Noetherian formal algebraic spaces over S. If f and g are rig-smooth, then so is
g ◦ f .

Proof. By Formal Spaces, Remark 21.14 this follows from Lemma 17.5. �

Lemma 18.5. Let S be a scheme. Let f : X → Y be a morphism of locally Noetherian
formal algebraic spaces over S. If f is rig-smooth, then f is rig-flat.

Proof. Follows immediately from Lemma 17.6 and the definitions. �

19. Rig-étale homomorphisms

In this section we prove some properties of rig-étale homomorphisms of adic Noetherian
topological rings which are needed to introduce rig-étale morphisms of locally Noetherian
algebraic spaces.

Lemma 19.1. LetA→ B be a morphism in WAdmNoeth (Formal Spaces, Section 21).
The following are equivalent:

(a) A → B satisfies the equivalent conditions of Lemma 11.1 and there exists an
ideal of definition I ⊂ B such that B is rig-étale over (A, I), and

(b) A → B satisfies the equivalent conditions of Lemma 11.1 and for all ideals of
definition I ⊂ A the algebra B is rig-étale over (A, I).

Proof. Let I and I ′ be ideals of definitions of A. Then there exists an integer c ≥ 0
such that Ic ⊂ I ′ and (I ′)c ⊂ I . Hence B is rig-étale over (A, I) if and only if B is rig-
étale over (A, I ′). This follows from Definition 8.1, the inclusions Ic ⊂ I ′ and (I ′)c ⊂ I ,
and the fact that the naive cotangent complexNL∧

B/A is independent of the choice of ideal
of definition of A by Remark 11.2. �

Definition 19.2. Let ϕ : A→ B be a continuous ring homomorphism between adic
Noetherian topological rings, i.e., ϕ is an arrow of WAdmNoeth. We say ϕ is rig-etale if
the equivalent conditions of Lemma 19.1 hold.

This defines a local property.

Lemma 19.3. The property P (ϕ) =“ϕ is rig-étale” on arrows of WAdmNoeth is a
local property as defined in Formal Spaces, Remark 21.5.

Proof. This proof is exactly the same as the proof of Lemma 17.3. Let us recall what
the statement signifies. First, WAdmNoeth is the category whose objects are adic Noether-
ian topological rings and whose morphisms are continuous ring homomorphisms. Con-
sider a commutative diagram

B // (B′)∧

A //

ϕ

OO

(A′)∧

ϕ′

OO

satisfying the following conditions: A and B are adic Noetherian topological rings, A→
A′ and B → B′ are étale ring maps, (A′)∧ = limA′/InA′ for some ideal of definition
I ⊂ A, (B′)∧ = limB′/JnB′ for some ideal of definition J ⊂ B, and ϕ : A → B
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and ϕ′ : (A′)∧ → (B′)∧ are continuous. Note that (A′)∧ and (B′)∧ are adic Noetherian
topological rings by Formal Spaces, Lemma 21.1. We have to show

(1) ϕ is rig-étale⇒ ϕ′ is rig-étale,
(2) if B → B′ faithfully flat, then ϕ′ is rig-étale⇒ ϕ is rig-étale, and
(3) if A→ Bi is rig-étale for i = 1, . . . , n, then A→

∏
i=1,...,nBi is rig-étale.

The equivalent conditions of Lemma 11.1 satisfy conditions (1), (2), and (3). Thus in ver-
ifying (1), (2), and (3) for the property “rig-étale” we may already assume our ring maps
satisfy the equivalent conditions of Lemma 11.1 in each case.
Pick an ideal of definition I ⊂ A. By the remarks above the topology on each ring in
the diagram is the I-adic topology and B, (A′)∧, and (B′)∧ are in the category (2.0.2) for
(A, I). Since A → A′ and B → B′ are étale the complexes NLA′/A and NLB′/B are
zero and hence NL∧

(A′)∧/A and NL∧
(B′)∧/B are zero by Lemma 3.2. Applying Lemma 3.5

to A→ (A′)∧ → (B′)∧ we get isomorphisms

Hi(NL∧
(B′)∧/(A′)∧)→ Hi(NL∧

(B′)∧/A)

Thus NL∧
(B′)∧/A → NL(B′)∧/(A′)∧ is a quasi-isomorphism. The ring maps B/InB →

B′/InB′ are étale and hence are local complete intersections (Algebra, Lemma 143.2).
Hence we may apply Lemmas 3.5 and 3.6 to A→ B → (B′)∧ and we get isomorphisms

Hi(NL∧
B/A⊗B(B′)∧)→ Hi(NL∧

(B′)∧/A)

We conclude that NL∧
B/A⊗B(B′)∧ → NL∧

(B′)∧/A is a quasi-isomorphism. Combining
these two observations we obtain that

NL∧
(B′)∧/(A′)∧ ∼= NL∧

B/A⊗B(B′)∧

in D((B′)∧). With these preparations out of the way we can start the actual proof.
Proof of (1). Assume ϕ is rig-étale. Then there exists a c ≥ 0 such that multiplication
by a ∈ Ic is zero on NL∧

B/A in D(B). This property is preserved under base change by
B → (B′)∧, see More on Algebra, Lemmas 84.6. By the isomorphism above we find that
ϕ′ is rig-étale. This proves (1).
To prove (2) assume B → B′ is faithfully flat and that ϕ′ is rig-étale. Then there exists a
c ≥ 0 such that multiplication by a ∈ Ic is zero on NL∧

(B′)∧/(A′)∧ in D((B′)∧). By the
isomorphism above we see thatac annihilates the cohomology modules ofNL∧

B/A⊗B(B′)∧.
The composition B → (B′)∧ is faithfully flat by our assumption that B → B′ is faith-
fully flat, see Formal Spaces, Lemma 19.14. Hence the cohomology modules ofNL∧

B/A are
annihilated by Ic. It follows from Lemma 8.2 that ϕ is rig-étale. This proves (2).
To prove (3), setting B =

∏
i=1,...,nBi we just observe that NL∧

B/A is the direct sum of
the complexes NL∧

Bi/A viewed as complexes of B-modules. �

Lemma 19.4. Consider the properties P (ϕ) =“ϕ is rig-étale” and Q(ϕ)=“ϕ is adic”
on arrows of WAdmNoeth. Then P is stable under base change byQ as defined in Formal
Spaces, Remark 21.10.

Proof. The statement makes sense by Lemma 19.1. To see that it is true assume we
have morphisms B → A and B → C in WAdmNoeth and that B → A is rig-étale and
B → C is adic (Formal Spaces, Definition 6.1). Then we can choose an ideal of definition
I ⊂ B such that the topology on A and C is the I-adic topology. In this situation it
follows immediately that A⊗̂BC is rig-étale over (C, IC) by Lemma 8.6. �
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Lemma 19.5. The propertyP (ϕ) =“ϕ is rig-étale” on arrows of WAdmNoeth is stable
under composition as defined in Formal Spaces, Remark 21.14.

Proof. The statement makes sense by Lemma 19.1. To see that it is true assume we
have rig-étale morphisms A → B and B → C in WAdmNoeth. Then we can choose an
ideal of definition I ⊂ A such that the topology on C and B is the I-adic topology. By
Lemma 3.5 we obtain an exact sequence

C ⊗B H0(NL∧
B/A) // H0(NL∧

C/A) // H0(NL∧
C/B) // 0

H−1(NL∧
B/A⊗BC) // H−1(NL∧

C/A) // H−1(NL∧
C/B)

kk

There exists a c ≥ 0 such that for all a ∈ I multiplication by ac is zero onNL∧
B/A inD(B)

and NL∧
C/B in D(C). Then of course multiplication by ac is zero on NL∧

B/A⊗BC in
D(C) too. HenceH0(NL∧

B/A)⊗AC ,H0(NL∧
C/B),H−1(NL∧

B/A⊗BC), andH−1(NL∧
C/B)

are annihilated by ac. From the exact sequence we obtain that multiplication by a2c is
zero on H0(NL∧

C/A) and H−1(NL∧
C/A). It follows from Lemma 8.2 that C is rig-étale

over (A, I) as desired. �

Lemma 19.6. The property P (ϕ) =“ϕ is rig-étale” on arrows of WAdmNoeth has the
cancellation property as defined in Formal Spaces, Remark 21.18.

Proof. The statement makes sense by Lemma 19.1. To see that it is true assume we
have maps A → B and B → C in WAdmNoeth with A → C and A → B rig-étale. We
have to show that B → C is rig-étale. Then we can choose an ideal of definition I ⊂ A
such that the topology on C and B is the I-adic topology. By Lemma 3.5 we obtain an
exact sequence

C ⊗B H0(NL∧
B/A) // H0(NL∧

C/A) // H0(NL∧
C/B) // 0

H−1(NL∧
B/A⊗BC) // H−1(NL∧

C/A) // H−1(NL∧
C/B)

kk

There exists a c ≥ 0 such that for all a ∈ I multiplication by ac is zero on NL∧
B/A in

D(B) and NL∧
C/A in D(C). Hence H0(NL∧

B/A)⊗A C , H0(NL∧
C/A), and H−1(NL∧

C/A)
are annihilated by ac. From the exact sequence we obtain that multiplication by a2c is
zero on H0(NL∧

C/B) and H−1(NL∧
C/B). It follows from Lemma 8.2 that C is rig-étale

over (B, IB) as desired. �

20. Rig-étale morphisms

In this section we use the work done in Section 19 to define rig-étale morphisms of locally
Noetherian algebraic spaces.

Definition 20.1. Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is rig-étale if for every commutative



6280 88. ALGEBRAIZATION OF FORMAL SPACES

diagram
U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable by al-
gebraic spaces and étale, the morphism U → V corresponds to a rig-étale map of adic
Noetherian topological rings.

Let us prove that we can check this condition étale locally on source and target.

Lemma 20.2. Let S be a scheme. Let f : X → Y be a morphism of locally Noetherian
formal algebraic spaces over S. The following are equivalent

(1) f is rig-étale,
(2) for every commutative diagram

U

��

// V

��
X // Y

with U and V affine formal algebraic spaces, U → X and V → Y representable
by algebraic spaces and étale, the morphism U → V corresponds to a rig-étale
map in WAdmNoeth,

(3) there exists a covering {Yj → Y } as in Formal Spaces, Definition 11.1 and for
each j a covering {Xji → Yj ×Y X} as in Formal Spaces, Definition 11.1 such
that each Xji → Yj corresponds to a rig-étale map in WAdmNoeth, and

(4) there exist a covering {Xi → X} as in Formal Spaces, Definition 11.1 and for
each i a factorizationXi → Yi → Y where Yi is an affine formal algebraic space,
Yi → Y is representable by algebraic spaces and étale, andXi → Yi corresponds
to a rig-étale map in WAdmNoeth.

Proof. The equivalence of (1) and (2) is Definition 20.1. The equivalence of (2),
(3), and (4) follows from the fact that being rig-étale is a local property of arrows of
WAdmNoeth by Lemma 19.3 and an application of the variant of Formal Spaces, Lemma
21.3 for morphisms between locally Noetherian algebraic spaces mentioned in Formal
Spaces, Remark 21.5. �

To be sure, a rig-étale morphism is locally of finite type.

Lemma 20.3. A rig-étale morphism of locally Noetherian formal algebraic spaces is
locally of finite type.

Proof. The property P in Lemma 19.3 implies the equivalent conditions (a), (b), (c),
and (d) in Formal Spaces, Lemma 29.6. Hence this follows from Formal Spaces, Lemma
29.9. �

Lemma 20.4. A rig-étale morphism of locally Noetherian formal algebraic spaces is
rig-smooth.

Proof. Follows from the definitions and Lemma 8.3. �
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Lemma 20.5. Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms of
locally Noetherian formal algebraic spaces over S. If f is rig-étale and g is adic, then the
base change X ×Y Z → Z is rig-étale.

Proof. By Formal Spaces, Remark 21.10 and the discussion in Formal Spaces, Section
23, this follows from Lemma 19.4. �

Lemma 20.6. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
locally Noetherian formal algebraic spaces over S. If f and g are rig-étale, then so is g ◦ f .

Proof. By Formal Spaces, Remark 21.14 this follows from Lemma 19.5. �

Lemma 20.7. Let S be a scheme. Let f : X → Y and g : Y → Z be a morphism of
locally Noetherian formal algebraic spaces over S. If g ◦ f and g are rig-étale, then so is f .

Proof. By Formal Spaces, Remark 21.18 this follows from Lemma 19.6. �

Lemma 20.8. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of locally Noetherian formal algebraic spaces over S. If g ◦ f is rig-étale and g is an adic
monomorphism, then f is rig-étale.

Proof. Use Lemma 20.5 and that f is the base change of g ◦ f by g. �

Lemma 20.9. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces. Assume that X and Y are locally Noetherian and f is a closed immersion. The
following are equivalent

(1) f is rig-smooth,
(2) f is rig-étale,
(3) for every affine formal algebraic space V and every morphism V → Y which is

representable by algebraic spaces and étale the morphism X ×Y V → V corre-
sponds to a surjective morphismB → A in WAdmNoeth whose kernel J has the
following property: I(J/J2) = 0 for some ideal of definition I of B.

Proof. Let us observe that given V and V → Y as in (2) without any further assump-
tion on f we see that the morphism X ×Y V → V corresponds to a surjective morphism
B → A in WAdmNoeth by Formal Spaces, Lemma 29.5.

We have (2)⇒ (1) by Lemma 20.4.

Proof of (3) ⇒ (2). Assume (3). By Lemma 20.2 it suffices to show that the ring maps
B → A occuring in (3) are rig-étale in the sense of Definition 19.2. Let I be as in (3). The
naive cotangent complex NL∧

A/B of A over (B, I) is the complex of A-modules given by
putting J/J2 in degree −1. Hence A is rig-étale over (B, I) by Definition 8.1.

Assume (1) and let V and B → A be as in (3). By Definition 18.1 we see that B → A is
rig-smooth. Choose any ideal of definition I ⊂ B. Then A is rig-smooth over (B, I). As
above the complex NL∧

A/B is given by putting J/J2 in degree −1. Hence by Lemma 4.2
we see that J/J2 is annihilated by a power In for some n ≥ 1. SinceB is adic, we see that
In is an ideal of definition of B and the proof is complete. �
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21. Rig-surjective morphisms

For morphisms locally of finite type between locally Noetherian formal algebraic spaces a
definition borrowed from [?] can be used. See Remark 21.2 for a discussion of what to do
in more general cases.

Definition 21.1. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Assume thatX and Y are locally Noetherian and that f is locally
of finite type. We say f is rig-surjective if for every solid diagram

Spf(R′) //

��

X

f

��
Spf(R) p // Y

whereR is a complete discrete valuation ring and where p is an adic morphism there exists
an extension of complete discrete valuation rings R ⊂ R′ and a morphism Spf(R′)→ X
making the displayed diagram commute.

We will see in the lemmas below that this notion behaves reasonably well in the context
of locally Noetherian formal algebraic spaces and morphisms which are locally of finite
type. In the next remark we discuss options for modifying this definition to a wider class
of morphisms of formal algebraic spaces.

Remark 21.2. The condition as formulated in Definition 21.1 is not right even for
morphisms of finite type of locally adic* formal algebraic spaces. For example, if A =
(
⋃
n≥1 k[t1/n])∧ where the completion is the t-adic completion, then there are no adic

morphisms Spf(R) → Spf(A) where R is a complete discrete valuation ring. Thus any
morphism X → Spf(A) would be rig-surjective, but since A is a domain and t ∈ A is not
zero, we want to think ofA as having at least one “rig-point”, and we do not want to allow
X = ∅. To cover this particular case, one can consider adic morphisms

Spf(R) −→ Y

where R is a valuation ring complete with respect to a principal ideal J whose radical is
mR =

√
J . In this case the value group ofR can be embedded into (R,+) and one obtains

the point of view used by Berkovich in defining an analytic space associated to Y , see [?].
Another approach is championed by Huber. In his theory, one drops the hypothesis that
Spec(R/J) is a singleton, see [?].

Lemma 21.3. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. Assume X , Y , Z are locally Noetherian and f and g
locally of finite type. Then if f and g are rig-surjective, so is g ◦ f .

Proof. Follows in a straightforward manner from the definitions (and Formal Spaces,
Lemma 24.3). �

Lemma 21.4. Let S be a scheme. Let f : X → Y andZ → Y be morphisms of formal
algebraic spaces over S. Assume X , Y , Z are locally Noetherian and f and g locally of
finite type. If f is rig-surjective, then the base change Z ×Y X → Z is too.

Proof. Follows in a straightforward manner from the definitions (and Formal Spaces,
Lemmas 24.9 and 24.4). �
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Lemma 21.5. LetS be a scheme. Let f : X → Y and g : Y → Z be morphisms locally
of finite type of locally Noetherian formal algebraic spaces over S. If g ◦f is rig-surjective
and g is a monomorphism, then f is rig-surjective.

Proof. Use Lemma 21.4 and that f is the base change of g ◦ f by g. �

Lemma 21.6. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
formal algebraic spaces over S. Assume X , Y , Z locally Noetherian and f and g locally
of finite type. If g ◦ f : X → Z is rig-surjective, so is g : Y → Z.

Proof. Immediate from the definition. �

Lemma 21.7. Let S be a scheme. Let f : X → Y be a morphism of locally Noetherian
formal algebraic spaces which is representable by algebraic spaces, étale, and surjective.
Then f is rig-surjective.

Proof. Let p : Spf(R)→ Y be an adic morphism whereR is a complete discrete valu-
ation ring. LetZ = Spf(R)×Y X . ThenZ → Spf(R) is representable by algebraic spaces,
étale, and surjective. HenceZ is nonempty. Pick a nonempty affine formal algebraic space
V and an étale morphism V → Z (possible by our definitions). Then V → Spf(R) corre-
sponds to R → A∧ where R → A is an étale ring map, see Formal Spaces, Lemma 19.13.
Since A∧ 6= 0 (as V 6= ∅) we can find a maximal ideal m of A lying over mR. Then Am

is a discrete valuation ring (More on Algebra, Lemma 44.4). Then R′ = A∧
m is a complete

discrete valuation ring (More on Algebra, Lemma 43.5). Applying Formal Spaces, Lemma
9.10. we find the desired morphism Spf(R′)→ V → Z → X . �

The upshot of the lemmas above is that we may check whether f : X → Y is rig-surjective,
étale locally on Y .

Lemma 21.8. Let S be a scheme. Let f : X → Y be a morphism of locally Noetherian
formal algebraic spaces which is locally of finite type. Let {gi : Yi → Y } be a family of
morphisms of formal algebraic spaces which are representable by algebraic spaces and étale
such that

∐
gi is surjective. Then f is rig-surjective if and only if each fi : X×Y Yi → Yi

is rig-surjective.

Proof. Namely, if f is rig-surjective, so is any base change (Lemma 21.4). Conversely,
if all fi are rig-surjective, so is

∐
fi :

∐
X ×Y Yi →

∐
Yi. By Lemma 21.7 the morphism∐

gi :
∐
Yi → Y is rig-surjective. Hence

∐
X ×Y Yi → Y is rig-surjective (Lemma

21.3). Since this morphism factors through X → Y we see that X → Y is rig-surjective
by Lemma 21.6. �

Lemma 21.9. Let A be a Noetherian ring complete with respect to an ideal I . Let B
be an I-adically complete A-algebra. If A/In → B/InB is of finite type and flat for all
n and faithfully flat for n = 1, then Spf(B)→ Spf(A) is rig-surjective.

Proof. We will use without further mention that morphisms between formal spec-
tra are given by continuous maps between the corresponding topological rings, see Formal
Spaces, Lemma 9.10. Let ϕ : A → R be a continuous map into a complete discrete val-
uation ring A. This implies that ϕ(I) ⊂ mR. On the other hand, since we only need to
produce the lift ϕ′ : B′ → R′ in the case that ϕ corresponds to an adic morphism, we
may assume that ϕ(I) 6= 0. Thus we may consider the base change C = B⊗̂AR, see Re-
mark 2.3 for example. Then C is an mR-adically complete R-algebra such that C/mnRC
is of finite type and flat over R/mnR and such that C/mRC is nonzero. Pick any max-
imal ideal m ⊂ C lying over mR. By flatness (which implies going down) we see that
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Spec(Cm) \ V (mRCm) is a nonempty open. Hence We can pick a prime q ⊂ m such that
q defines a closed point of Spec(Cm) \ {m} and such that q 6∈ V (ICm), see Properties,
Lemma 6.4. Then C/q is a dimension 1-local domain and we can find C/q ⊂ R′ with R′

a discrete valuation ring (Algebra, Lemma 119.13). By construction mRR
′ ⊂ mR′ and we

see that C → R′ extends to a continuous map C → (R′)∧ (in fact we can pick R′ such
that R′ = (R′)∧ in our current situation but we do not need this). Since the completion
of a discrete valuation ring is a discrete valuation ring, we see that the assumption gives a
commutative diagram of rings

(R′)∧ Coo Boo

R

OO

Roo

OO

Aoo

OO

which gives the desired lift. �

Lemma 21.10. Let A be a Noetherian ring complete with respect to an ideal I . Let B
be an I-adically complete A-algebra. Assume that

(1) the I-torsion in A is 0,
(2) A/In → B/InB is flat and of finite type for all n.

Then Spf(B)→ Spf(A) is rig-surjective if and only if A/I → B/IB is faithfully flat.

Proof. Faithful flatness implies rig-surjectivity by Lemma 21.9. To prove the con-
verse we will use without further mention that the vanishing of I-torsion is equivalent
to the vanishing of I-power torsion (More on Algebra, Lemma 88.3). We will also use
without further mention that morphisms between formal spectra are given by continuous
maps between the corresponding topological rings, see Formal Spaces, Lemma 9.10.
Assume Spf(B) → Spf(A) is rig-surjective. Choose a maximal ideal I ⊂ m ⊂ A. The
open U = Spec(Am) \ V (Im) of Spec(Am) is nonempty as the Im-torsion of Am is zero
(use Algebra, Lemma 62.4). Thus we can find a prime q ⊂ Am which defines a point
of U (i.e., IAm 6⊂ q) and which corresponds to a closed point of Spec(Am) \ {m}, see
Properties, Lemma 6.4. Then Am/q is a dimension 1 local domain. Thus we can find an
injective local homomorphism of local rings Am/q ⊂ R where R is a discrete valuation
ring (Algebra, Lemma 119.13). By construction IR ⊂ mR and we see thatA→ R extends
to a continuous map A → R∧. Since the completion of a discrete valuation ring is a
discrete valuation ring, we see that the assumption gives a commutative diagram of rings

R′ Boo

R∧

OO

Aoo

OO

Thus we find a prime ideal ofB lying over m. It follows that Spec(B/IB)→ Spec(A/I)
is surjective, whence A/I → B/IB is faithfully flat (Algebra, Lemma 39.16). �

Lemma 21.11. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces. AssumeX and Y are locally Noetherian, f locally of finite type, and f a monomor-
phism. Then f is rig surjective if and only if every adic morphism Spf(R)→ Y where R
is a complete discrete valuation ring factors through X .

Proof. One direction is trivial. For the other, suppose that Spf(R) → Y is an
adic morphism such that there exists an extension of complete discrete valuation rings
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R ⊂ R′ with Spf(R′) → Spf(R) → X factoring through Y . Then Spec(R′/mnRR
′) →

Spec(R/mnR) is surjective and flat, hence the morphisms Spec(R/mnR)→ X factor through
X asX satisfies the sheaf condition for fpqc coverings, see Formal Spaces, Lemma 32.1. In
other words, Spf(R)→ Y factors through X . �

Lemma 21.12. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces. Assume that X and Y are locally Noetherian and f is a closed immersion. The
following are equivalent

(1) f is rig-surjective, and
(2) for every affine formal algebraic space V and every morphism V → Y which

is representable by algebraic spaces and étale the morphism X ×Y V → V cor-
responds to a surjective morphism B → A in WAdmNoeth whose kernel J has
the following property: IJn = 0 for some ideal of definition I of B and some
n ≥ 1.

Proof. Let us observe that given V and V → Y as in (2) without any further assump-
tion on f we see that the morphism X ×Y V → V corresponds to a surjective morphism
B → A in WAdmNoeth by Formal Spaces, Lemma 29.5.

Assume (1). By Lemma 21.4 we see that Spf(A) → Spf(B) is rig-surjective. Let I ⊂ B
be an ideal of definition. Since B is adic, Im ⊂ B is an ideal of definition for all m ≥ 1.
If ImJn 6= 0 for all n,m ≥ 1, then IJ is not nilpotent, hence V (IJ) 6= Spec(B). Thus
we can find a prime ideal p ⊂ B with p 6∈ V (I) ∪ V (J). Observe that I(B/p) 6= B/p
hence we can find a maximal ideal p + I ⊂ m ⊂ B. By Algebra, Lemma 119.13 we can
find a discrete valuation ringR and an injective local ring homomorphism (B/p)m → R.
Clearly, the ring map B → R cannot factor through A = B/J . According to Lemma
21.11 this contradicts the fact that Spf(A) → Spf(B) is rig-surjective. Hence for some
n,m we do have InJm = 0 which shows that (2) holds.

Assume (2). By Lemma 21.8 it suffices to show that Spf(A) → Spf(B) is rig-surjective.
Pick an ideal of definition I ⊂ B and an integer n such that IJn = 0. Consider a ring
map B → R where R is a discrete valuation ring and the image of I is nonzero. Since R
is a domain, we conclude the image of J in R is zero. Hence B → R factors through the
surjection B → A and we are done by definition of rig-surjective morphisms. �

Lemma 21.13. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces. Assume that X and Y are locally Noetherian and f is a closed immersion. The
following are equivalent

(1) f is rig-smooth and rig-surjective,
(2) f is rig-étale and rig-surjective, and
(3) for every affine formal algebraic space V and every morphism V → Y which is

representable by algebraic spaces and étale the morphism X ×Y V → V corre-
sponds to a surjective morphismB → A in WAdmNoeth whose kernel J has the
following property: IJ = 0 for some ideal of definition I of B.

Proof. Let I and J be ideals of a ring B such that IJn = 0 and I(J/J2) = 0. Then
InJ = 0 (proof omitted). Hence this lemma follows from a trivial combination of Lemmas
20.9 and 21.12. �

Lemma 21.14. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms of
locally Noetherian formal algebraic spaces over S. Assume
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(1) g is locally of finite type,
(2) f is rig-smooth (resp. rig-étale) and rig-surjective,
(3) g ◦ f is rig-smooth (resp. rig-étale)

then g is rig-smooth (resp. rig-étale).

Proof. We will prove this in the rig-smooth case and indicate the necessary changes
to prove the rig-étale case at the end of the proof. Consider a commutative diagram

X ×Y V //

��

V

��

// W

��
X // Y // Z

with V and W affine formal algebraic spaces, V → Y and W → Z representable by
algebraic spaces and étale. We have to show that V → W corresponds to a rig-smooth
map of adic Noetherian topological rings, see Definition 18.1. We may write V = Spf(B)
and W = Spf(C) and that V → W corresponds to an adic ring map C → B which is
topologically of finite type, see Lemma 11.5.

We will use below without further mention that X ×Y V → V is rig-smooth and rig-
surjective, see Lemmas 18.3 and 21.4. Also, the composition X ×Y V → V → W is
rig-smooth since g ◦ f is rig-smooth.

Let I ⊂ C be an ideal of definition. The module Assume C → B is not rig-smooth to get
a contradiction. This means that there exists a prime ideal q ⊂ B not containing IB such
that eitherH−1(NL∧

B/C)p is nonzero orH0(NL∧
B/C)p is not a finite freeBq-module. See

Lemma 4.2; some details omitted. We may choose a maximal ideal IB + q ⊂ m. By
Algebra, Lemma 119.13 we can find a complete discrete valuation ring R and an injective
local ring homomorphism (B/q)m → R.

After replacing R by an extension, we may assume given a lift Spf(R)→ X ×Y V of the
adic morphism Spf(R)→ V = Spf(B). Choose an étale covering {Spf(Ai)→ X ×Y V }
as in Formal Spaces, Definition 11.1. By Lemma 21.7 we may assume Spf(R) → X ×Y V
lifts to a morphism Spf(R) → Spf(Ai) for some i (this might require replacing R by
another extension). Set A = Ai. Consider the ring maps

C → B → A→ R

Let p ⊂ A be the kernel of the map A → R and note that p lies over q. We know that
C → A andB → A are rig-smooth. In particular the ring mapBq → Ap is flat by Lemma
17.6. Consider the associated exact sequence

H0(NL∧
B/C)⊗B Ap

// H0(NL∧
A/C)p // H0(NL∧

A/B)p // 0

0 // H−1(NL∧
B/C ⊗BA)p // H−1(NL∧

A/C)p // H−1(NL∧
A/B)p

ll

of Lemmas 3.5 and 17.7. Given the rig-smoothness of C → A and B → A we conclude
that H−1(NL∧

B/C ⊗BA)p = 0 and that H0(NL∧
B/C) ⊗B Ap is finite free as a kernel of

a surjection of finite free Ap-modules. Since Bq → Ap is flat and hence faithfully flat,
this implies that H−1(NL∧

B/C)q = 0 and that H0(NL∧
B/C)q is finite free which is the

contradiction we were looking for.
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In the rig-étale case one argues in exactly the same manner but the conclusion obtained is
that both H−1(NL∧

B/C)q and H0(NL∧
B/C)q are zero. �

22. Formal algebraic spaces over cdvrs

In this section we will use the following terminology: ifA is a weakly admissible topolog-
ical ring, then we say “X is a formal algebraic space over A” to mean that X is a formal
algebraic space which comes equipped with a morphism p : X → Spf(A) of formal alge-
braic spaces. In this situation we will call p the structure morphism.

Lemma 22.1. Let X be a locally Noetherian formal algebraic space over a complete
discrete valuation ring A. Then there exists a closed immersion X ′ → X of formal alge-
braic spaces such that X ′ is flat over A and such that any morphism Y → X of locally
Noetherian formal algebraic spaces with Y flat over A factors through X ′.

Proof. Let π ∈ A be the uniformizer. Recall that an A-module is flat if and only if
the π-power torsion is 0.

First assume that X is an affine formal algebraic space. ThenX = Spf(B) with B an adic
Noetherian A-algebra. In this case we set X ′ = Spf(B′) where B′ = B/π-power torsion.
It is clear that X ′ is flat over A and that X ′ → X is a closed immersion. Let g : Y → X
be a morphism of locally Noetherian formal algebraic spaces with Y flat over A. Choose
a covering {Yj → Y } as in Formal Spaces, Definition 11.1. Then Yj = Spf(Cj) with Cj
flat over A. Hence the morphism Yj → X , which correspond to a continuous R-algebra
map B → Cj , factors through X ′ as clearly B → Cj kills the π-power torsion. Since
{Yj → Y } is a covering and since X ′ → X is a monomorphism, we conclude that g
factors through X ′.

Let X and {Xi → X}i∈I be as in Formal Spaces, Definition 11.1. For each i let X ′
i → Xi

be the flat part as constructed above. For i, j ∈ I the projection X ′
i ×X Xj → X ′

i is
an étale (by assumption) morphism of schemes (by Formal Spaces, Lemma 9.11). Hence
X ′
i ×X Xj is flat over A as morphisms representable by algebraic spaces and étale are flat

(Lemma 13.8). Thus the projectionX ′
i ×X Xj → Xj factors throughX ′

j by the universal
property. We conclude that

Rij = X ′
i ×X Xj = X ′

i ×X X ′
j = Xi ×X X ′

j

because the morphismsX ′
i → Xi are injections of sheaves. SetU =

∐
X ′
i , setR =

∐
Rij ,

and denote s, t : R→ U the two projections. As a sheafR = U×XU and s and t are étale.
Then (t, s) : R→ U defines an étale equivalence relation by our observations above. Thus
X ′ = U/R is an algebraic space by Spaces, Theorem 10.5. By construction the diagram∐

X ′
i

//

��

∐
Xi

��
X ′ // X

is cartesian. Since the right vertical arrow is étale surjective and the top horizontal arrow
is representable and a closed immersion we conclude that X ′ → X is representable by
Bootstrap, Lemma 5.2. Then we can use Spaces, Lemma 5.6 to conclude that X ′ → X is a
closed immersion.

Finally, suppose that Y → X is a morphism with Y a locally Noetherian formal algebraic
space flat overA. Then eachXi×X Y is étale over Y and therefore flat overA (see above).
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Then Xi ×X Y → Xi factors through X ′
i . Hence Y → X factors through X ′ because

{Xi ×X Y → Y } is an étale covering. �

Lemma 22.2. Let X be a locally Noetherian formal algebraic space which is locally
of finite type over a complete discrete valuation ring A. Let X ′ ⊂ X be as in Lemma 22.1.
If X → X ×Spf(A) X is rig-étale and rig-surjective, then X ′ = Spf(A) or X ′ = ∅.

Proof. (Aside: the diagonal is always locally of finite type by Formal Spaces, Lemma
15.5 andX×Spf(A)X is locally Noetherian by Formal Spaces, Lemmas 24.4 and 24.8. Thus
imposing the conditions on the diagonal morphism makes sense.) The diagram

X ′ //

��

X ′ ×Spf(A) X
′

��
X // X ×Spf(A) X

is cartesian. Hence X ′ → X ′ ×Spf(A) X
′ is rig-étale and rig-surjective by Lemma 21.4.

Choose an affine formal algebraic spaceU and a morphismU → X ′ which is representable
by algebraic spaces and étale. ThenU = Spf(B) whereB is an adic Noetherian topological
ring which is a flat A-algebra, whose topology is the π-adic topology where π ∈ A is a
uniformizer, and such that A/πnA → B/πnB is of finite type for each n. For later use,
we remark that this in particular implies: if B 6= 0, then the map Spf(B) → Spf(A)
is a surjection of sheaves (please recall that we are using the fppf topology as always).
Repeating the argument above, we see that

W = U ×X′ U = X ′ ×X′×Spf(A)X′ (U ×Spf(A) U) −→ U ×Spf(A) U

is a closed immersion and rig-étale and rig-surjective. We haveU×Spf(A)U = Spf(B⊗̂AB)
by Formal Spaces, Lemma 16.4. Then B⊗̂AB is a flat A-algebra as the π-adic completion
of the flat A-algebra B ⊗A B. Hence W = U ×Spf(A) U by Lemma 21.13. In other words,
we have U ×X′ U = U ×Spf(A) U which in turn means that the image of U → X ′ (as a
map of sheaves) maps injectively to Spf(A). Choose a covering {Ui → X ′} as in Formal
Spaces, Definition 11.1. In particular

∐
Ui → X ′ is a surjection of sheaves. By applying

the above to Ui
∐
Uj → X ′ (using the fact that UiqUj is an affine formal algebraic space

as well) we see that X ′ → Spf(A) is an injective map of fppf sheaves. Since X ′ is flat
over A, either X ′ is empty (if Ui is empty for all i) or the map is an isomorphism (if Ui is
nonempty for some iwhen we have seen that Ui → Spf(A) is a surjective map of sheaves)
and the proof is complete. �

Lemma 22.3. Let S be a scheme. Let f : X → Y be a morphism of formal algebraic
spaces. Assume

(1) X and Y are locally Noetherian,
(2) f locally of finite type,
(3) ∆f : X → X ×Y X is rig-étale and rig-surjective.

Then f is rig surjective if and only if every adic morphism Spf(R) → Y where R is a
complete discrete valuation ring lifts to a morphism Spf(R)→ X .

Proof. One direction is trivial. For the other, suppose that Spf(R) → Y is an adic
morphism such that there exists an extension of complete discrete valuation ringsR ⊂ R′
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with Spf(R′)→ Spf(R)→ X factoring through Y . Consider the fibre product diagram

Spf(R′) //

&&

Spf(R)×Y X //

p

��

X

f

��
Spf(R) // Y

The morphism p is locally of finite type as a base change of f , see Formal Spaces, Lemma
24.4. The diagonal morphism ∆p is the base change of ∆f and hence is rig-étale and rig-
surjective. By Lemma 22.2 the flat locus of Spf(R) ×Y X over R is either ∅ or equal to
Spf(R). However, since Spf(R′) factors through it we conclude it is not empty and hence
we get a morphism Spf(R)→ Spf(R)×Y X → X as desired. �

23. The completion functor

In this section we consider the following situation. First we fix a base scheme S. All rings,
topological rings, schemes, algebraic spaces, and formal algebraic spaces and morphisms
between these will be over S. Next, we fix an algebraic space X and a closed subset T ⊂
|X|. We denote U ⊂ X be the open subspace with |U | = |X| \ T . Picture

U → X |X| = |U | q T
In this situation, given an algebraic space X ′ over X , i.e., an algebraic space X ′ endowed
with a morphism f : X ′ → X , then we denote T ′ ⊂ |X ′| the inverse image of T and we
let U ′ ⊂ X ′ be the open subspace with |U ′| = |X ′| \ T ′. Picture

U ′ = f−1U

U ′

��

// X ′

f

��
U // X

|U ′| //

��

|X ′|

|f |
��

T ′oo

��
|U | // |X| Too

T ′ = |f |−1T

We will relate properties of f to properties of the induced morphism
f/T : X ′

/T ′ −→ X/T

of formal completions. As indicated in the displayed formula, we will denote this mor-
phism f/T . We have already seen that f/T is representable by algebraic spaces in Formal
Spaces, Lemma 14.4. In fact, as the proof of that lemma shows, the diagram

X ′
/T ′

f/T

��

// X ′

f

��
X/T

// X

is cartesian. Please keep this fact in mind whilst reading the lemmas stated and proved
below.

Lemma 23.1. In the situation above. If f is locally of finite type, then f/T is locally
of finite type.

Proof. (Finite type morphisms of formal algebraic spaces are discussed in Formal
Spaces, Section 24.) Namely, suppose that Z → X is a morphism from a scheme into X
such that |Z| maps into T . From the cartesian square above we see that Z ×X X ′ is an
algebraic space representing Z ×X/T X ′

/T ′ . Since Z ×X X ′ → Z is locally of finite type
by Morphisms of Spaces, Lemma 23.3 we conclude. �



6290 88. ALGEBRAIZATION OF FORMAL SPACES

Lemma 23.2. In the situation above. If f is étale, then f/T is étale.

Proof. By the same argument as in the proof of Lemma 23.1 this follows from Mor-
phisms of Spaces, Lemma 39.4. �

Lemma 23.3. In the situation above. If f is a closed immersion, then f/T is a closed
immersion.

Proof. (Closed immersions of formal algebraic spaces are discussed in Formal Spaces,
Section 27.) By the same argument as in the proof of Lemma 23.1 this follows from Spaces,
Lemma 12.3. �

Lemma 23.4. In the situation above. If f is proper, then f/T is proper.

Proof. (Proper morphisms of formal algebraic spaces are discussed in Formal Spaces,
Section 31.) By the same argument as in the proof of Lemma 23.1 this follows from Mor-
phisms of Spaces, Lemma 40.3. �

Lemma 23.5. In the situation above. If f is quasi-compact, then f/T is quasi-compact.

Proof. (Quasi-compact morphisms of formal algebraic spaces are discussed in Formal
Spaces, Section 17.) We have to show that (X ′

/T ′)red → (X/T )red is a quasi-compact
morphism of algebraic spaces. By Formal Spaces, Lemma 14.5 this is the morphism Z ′ →
Z where Z ′ ⊂ X ′, resp. Z ⊂ X is the reduced induced algebraic space structure on T ′,
resp. T . It follows that Z ′ → f−1Z = Z ×X X ′ is a thickening (a closed immersion
defining an isomorphism on underlying topological spaces). Since Z ×X X ′ → Z is
quasi-compact as a base change of f (Morphisms of Spaces, Lemma 8.4) we conclude that
Z ′ → Z is too by More on Morphisms of Spaces, Lemma 10.1. �

Remark 23.6. In the situation above consider the diagonal morphisms ∆f : X ′ →
X ′ ×X X ′ and ∆f/T : X ′

/T ′ → X ′
/T ′ ×X/T X ′

/T ′ . It is easy to see that

X ′
/T ′ ×X/T X

′
/T ′ = (X ′ ×X X ′)/T ′′

as subfunctors of X ′ ×X X ′ where T ′′ ⊂ |X ′ ×X X ′| is the inverse image of T . Hence
we see that ∆f/T = (∆f )/T ′′ . We will use this below to show that properties of ∆f are
inherited by ∆f/T .

Lemma 23.7. In the situation above. If f is (quasi-)separated, then f/T is too.

Proof. (Separation conditions on morphisms of formal algebraic spaces are discussed
in Formal Spaces, Section 30.) We have to show that if ∆f is quasi-compact, resp. a closed
immersion, then the same is true for ∆f/T . This follows from the discussion in Remark
23.6 and Lemmas 23.5 and 23.3. �

Lemma 23.8. In the situation above. If X is locally Noetherian, f is locally of finite
type, and U ′ → U is smooth, then f/T is rig-smooth.

Proof. The strategy of the proof is this: reduce to the case whereX andX ′ are affine,
translate the affine case into algebra, and finally apply Lemma 4.3. We urge the reader to
skip the details.
Choose a surjective étale morphism W → X with W =

∐
Wi a disjoint union of affine

schemes, see Properties of Spaces, Lemma 6.1. For each i choose a surjective étale morphism
W ′
i →Wi×XX ′ whereW ′

i =
∐
W ′
ij is a disjoint union of affines. In particular

∐
W ′
ij →

X ′ is surjective and étale. Denote fij : Wij →Wi the given morphism. Denote Ti ⊂Wi
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and T ′
ij ⊂ Wij the inverse images of T . Since taking the completion along the inverse

image of T produces cartesian diagrams (see above) we have (Wi)/Ti = Wi ×X X/T

and similarly (W ′
ij)/T ′

ij
= W ′

ij ×X′ X ′
/T ′ . Moreover, recall that (Wi)/Ti and (W ′

ij)/T ′
ij

are affine formal algebraic spaces. Hence {W ′
ij)/T ′

ij
→ X ′

/T ′} is a covering as in Formal
Spaces, Definition 11.1. By Lemma 18.2 we see that it suffices to prove that

(W ′
ij)/T ′

ij
−→ (Wi)/Ti

is rig-smooth. Observe that W ′
ij → Wi is locally of finite type and induces a smooth

morphism W ′
ij \ T ′

ij → Wi \ Ti (as this is true for f and these properties of morphisms
are étale local on the source and target). Observe that Wi is locally Noetherian (as X is
locally Noetherian and this property is étale local on the algebraic space). Hence it suffices
to prove the lemma when X and X ′ are affine schemes.

Assume X = Spec(A) and X ′ = Spec(A′) are affine schemes. Since X is Noetherian, we
see that A is Noetherian. The morphism f is given by a ring map A → A′ of finite type.
Let I ⊂ A be an ideal cutting out T . Then IA′ cuts out T ′. Also Spec(A′)→ Spec(A) is
smooth over Spec(A) \ T . Let A∧ and (A′)∧ be the I-adic completions. We have X/T =
Spf(A∧) and X ′

/T ′ = Spf((A′)∧), see proof of Formal Spaces, Lemma 20.8. By Lemma
4.3 we see that (A′)∧ is rig-smooth over (A.I) which in turn means that A∧ → (A′)∧ is
rig-smooth which finally implies that X ′

/T ′ → X/T is rig smooth by Lemma 18.2. �

Lemma 23.9. In the situation above. If X is locally Noetherian, f is locally of finite
type, and U ′ → U is étale, then f/T is rig-étale.

Proof. The proof is exactly the same as the proof of Lemma 23.8 except with Lemmas
4.3 and 18.2 replaced by Lemmas 8.4 and 20.2 �

Lemma 23.10. In the situation above. If X is locally Noetherian, f is proper, and
U ′ → U is surjective, then f/T is rig-surjective.

Proof. (The statement makes sense by Lemma 23.1 and Formal Spaces, Lemma 20.8.)
Let R be a complete discrete valuation ring with fraction field K. Let p : Spf(R) →
X/T be an adic morphism of formal algebraic spaces. By Formal Spaces, Lemma 33.4 the
composition Spf(R) → X/T → X corresponds to a morphism q : Spec(R) → X which
maps Spec(K) intoU . SinceU ′ → U is proper and surjective we see that Spec(K)×U U ′

is nonempty and proper over K. Hence we can choose a field extension K ′/K and a
commutative diagram

Spec(K ′) //

��

U ′ //

��

X ′

��
Spec(K) // U // X

LetR′ ⊂ K ′ be a discrete valuation ring dominatingRwith fraction fieldK ′, see Algebra,
Lemma 119.13. Since Spec(K) → X extends to Spec(R) → X we see by the valuative
criterion of properness (Morphisms of Spaces, Lemma 44.1) that we can extend our K ′-
point ofU ′ to a morphism Spec(R′)→ X ′ over Spec(R)→ X . It follows that the inverse
image of T ′ in Spec(R′) is the closed point and we find an adic morphism Spf((R′)∧)→
X ′
/T ′ lifting p as desired (note that (R′)∧ is a complete discrete valuation ring by More

on Algebra, Lemma 43.5). �
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Lemma 23.11. In the situation above. If X is locally Noetherian, f is separated and
locally of finite type, and U ′ → U is a monomorphism, then ∆f/T is rig-surjective.

Proof. The diagonal ∆f : X ′ → X ′×XX ′ is a closed immersion and the restriction
U ′ → U ′ ×U U ′ of ∆f is surjective. Hence the lemma follows from the discussion in
Remark 23.6 and Lemma 23.10. �

24. Formal modifications

In this section we define and study Artin’s notion of a formal modification of locally Noe-
therian formal algebraic spaces. First, here is the definition.

Definition 24.1. Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is a formal modification if

(1) f is a proper morphism (Formal Spaces, Definition 31.1),
(2) f is rig-étale,
(3) f is rig-surjective,
(4) ∆f : X → X ×Y X is rig-surjective.

A typical example is given in Lemma 24.3 and indeed we will later show that every for-
mal modification is “formal locally” of this type, see Lemma 29.2. Let us compare these
conditions with those in Artin’s paper.

Remark 24.2. In [?, Definition 1.7] a formal modification is defined as a proper mor-
phism f : X → Y of locally Noetherian formal algebraic spaces satisfying the following
three conditions3

(i) the Cramer and Jacobian ideal of f each contain an ideal of definition of X ,
(ii) the ideal defining the diagonal map ∆ : X → X×Y X is annihilated by an ideal

of definition of X ×Y X , and
(iii) any adic morphism Spf(R)→ Y lifts to Spf(R)→ X wheneverR is a complete

discrete valuation ring.
Let us compare these to our list of conditions above.

Ad (i). Property (i) agrees with our condition that f be a rig-étale morphism: this follows
from Lemma 8.2 part (7).

Ad (ii). Assume f is rig-étale. Then ∆f : X → X ×Y X is rig-étale as a morphism of
locally Noetherian formal algebraic spaces which are rig-étale overX (via idX for the first
one and via pr1 for the second one). See Lemmas 20.5 and 20.7. Hence property (ii) agrees
with our condition that ∆f be rig-surjective by Lemma 21.13.

Ad (iii). Property (iii) does not quite agree with our notion of a rig-surjective morphism,
as Artin requires all adic morphisms Spf(R)→ Y to lift to morphisms intoX whereas our
notion of rig-surjective only asserts the existence of a lift after replacingR by an extension.
However, since we already have that ∆f is rig-étale and rig-surjective by (i) and (ii), these
conditions are equivalent by Lemma 22.3.

Lemma 24.3. Let S , f : X ′ → X , T ⊂ |X|, U ⊂ X , T ′ ⊂ |X ′|, and U ′ ⊂ X ′ be as in
Section 23. If X is locally Noetherian, f is proper, and U ′ → U is an isomorphism, then
f/T : X ′

/T ′ → X/T is a formal modification.

3We will not completely translate these conditions into the language developed in the Stacks project. We
hope nonetheless the discussion here will be useful to the reader.
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Proof. By Formal Spaces, Lemmas 20.8 the source and target of the arrow are locally
Noetherian formal algebraic spaces. The other conditions follow from Lemmas 23.4, 23.9,
23.10, and 23.11. �

Lemma 24.4. Let S be a scheme. Let f : X → Y be a morphism of locally Noe-
therian formal algebraic spaces over S which is a formal modification. Then for any
adic morphism Y ′ → Y of locally Noetherian formal algebraic spaces, the base change
f ′ : X ×Y Y ′ → Y ′ is a formal modification.

Proof. The morphism f ′ is proper by Formal Spaces, Lemma 31.3. The morphism
f ′ is rig-etale by Lemma 20.5. Then morphism f ′ is rig-surjective by Lemma 21.4. Set
X ′ = X×′

Y . The morphism ∆f ′ is the base change of ∆f by the adic morphism X ′ ×Y ′

X ′ → X ×Y X . Hence ∆f ′ is rig-surjective by Lemma 21.4. �

25. Completions and morphisms, I

In this section we put some preliminary results on completions which we will use in the
proof of Theorem 27.4. Although the lemmas stated and proved here are not trivial (some
are based on our work on algebraization of rig-étale algebras), we still suggest the reader
skip this section on a first reading.

Lemma 25.1. Let T ⊂ X be a closed subset of a Noetherian affine scheme X . Let W
be a Noetherian affine formal algebraic space. Let g : W → X/T be a rig-étale morphism.
Then there exists an affine scheme X ′ and a finite type morphism f : X ′ → X étale
over X \ T such that there is an isomorphism X ′

/f−1T
∼= W compatible with f/T and g.

Moreover, if W → X/T is étale, then X ′ → X is étale.

Proof. The existence of X ′ is a restatement of Lemma 10.3. The final statement
follows from More on Morphisms, Lemma 12.3. �

Lemma 25.2. Assume we have
(1) Noetherian affine schemes X , X ′, and Y ,
(2) a closed subset T ⊂ |X|,
(3) a morphism f : X ′ → X locally of finite type and étale over X \ T ,
(4) a morphism h : Y → X ,
(5) a morphism α : Y/T → X ′

/T over X/T (see proof for notation).
Then there exists an étale morphism b : Y ′ → Y of affine schemes which induces an
isomorphism b/T : Y ′

/T → Y/T and a morphism a : Y ′ → X ′ over X such that α =
a/T ◦ b−1

/T .

Proof. The notation using the subscript /T in the statement refers to the construc-
tion which to a morphism of schemes g : V → X associates the morphism g/T : V/g−1T →
X/T of formal algebraic spaces; it is a functor from the category of schemes overX to the
category of formal algebraic spaces over X/T , see Section 23. Having said this, the lemma
is just a reformulation of Lemma 8.7. �

Lemma 25.3. Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms of
algebraic spaces. Let T ⊂ |X| be closed. Assume that

(1) X is locally Noetherian,
(2) g is a monomorphism and locally of finite type,
(3) f |X\T : X \ T → Y factors through g, and
(4) f/T : X/T → Y factors through g,
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then f factors through g.

Proof. Consider the fibre product E = X ×Y Z → X . By assumption the open
immersion X \ T → X factors through E and any morphism ϕ : X ′ → X with
|ϕ|(|X ′|) ⊂ T factors through E as well, see Formal Spaces, Section 14. By More on
Morphisms of Spaces, Lemma 20.3 this implies that E → X is étale at every point of
E mapping to a point of T . Hence E → X is an étale monomorphism, hence an open
immersion (Morphisms of Spaces, Lemma 51.2). Then it follows that E = X since our
assumptions imply that |X| = |E|. �

Lemma 25.4. Let S be a scheme. Let X , W be algebraic spaces over S with X locally
Noetherian. Let T ⊂ |X| be a closed subset. Let a, b : X →W be morphisms of algebraic
spaces over S such that a|X\T = b|X\T and such that a/T = b/T as morphisms X/T →
W . Then a = b.

Proof. Let E be the equalizer of a and b. Then E is an algebraic space and E → X
is locally of finite type and a monomorphism, see Morphisms of Spaces, Lemma 4.1. Our
assumptions imply we can apply Lemma 25.3 to the two morphisms f = id : X → X and
g : E → X and the closed subset T of |X|. �

Lemma 25.5. Let S be a scheme. LetX , Y be locally Noetherian algebraic spaces over
S. Let T ⊂ |X| and T ′ ⊂ |Y | be closed subsets. Let a, b : X → Y be morphisms of
algebraic spaces over S such that a|X\T = b|X\T , such that |a|(T ) ⊂ T ′ and |b|(T ) ⊂ T ′,
and such that a/T = b/T as morphisms X/T → Y/T ′ . Then a = b.

Proof. Consequence of the more general Lemma 25.4. �

Lemma 25.6. Let S be a scheme. Let X be a locally Noetherian algebraic space over
S. Let T ⊂ |X| be a closed subset. Let s, t : R→ U be two morphisms of algebraic spaces
over X . Assume

(1) R, U are locally of finite type over X ,
(2) the base change of s and t to X \ T is an étale equivalence relation, and
(3) the formal completion (t/T , s/T ) : R/T → U/T ×X/T U/T is an equivalence

relation too (see proof for notation).
Then (t, s) : R→ U ×X U is an étale equivalence relation.

Proof. The notation using the subscript /T in the statement refers to the construc-
tion which to a morphism f : X ′ → X of algebraic spaces associates the morphism
f/T : X ′

/f−1T → X/T of formal algebraic spaces, see Section 23. The morphisms s, t :
R → U are étale over X \ T by assumption. Since the formal completions of the maps
s, t : R → U are étale, we see that s and t are étale for example by More on Morphisms,
Lemma 12.3. Applying Lemma 25.3 to the morphisms id : R ×U×XU R → R ×U×XU R
and ∆ : R → R ×U×XU R we conclude that (t, s) is a monomorphism. Applying it
again to (t ◦ pr0, s ◦ pr1) : R ×s,U,t R → U ×X U and (t, s) : R → U ×X U we find
that “transitivity” holds. We omit the proof of the other two axioms of an equivalence
relation. �

Lemma 25.7. Let S be a scheme. Let X be a locally Noetherian algebraic space over
S and let T ⊂ |X| be a closed subset. Let f : X ′ → X be a morphism of algebraic spaces
which is locally of finite type and étale outside of T . There exists a factorization

X ′ −→ X ′′ −→ X
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of f with the following properties: X ′′ → X is locally of finite type, X ′′ → X is an
isomorphism over X \ T , and X ′

/T → X ′′
/T is an isomorphism (see proof for notation).

Proof. The notation using the subscript /T in the statement refers to the construc-
tion which to a morphism f : X ′ → X of algebraic spaces associates the morphism
f/T : X ′

/f−1T → X/T of formal algebraic spaces, see Section 23. We will also use the
notion U ⊂ X and U ′ ⊂ X ′ to denote the open subspaces with |U | = |X| \ T and
U ′ = |X ′| \ f−1T introduced in Section 23.

After replacing X ′ by X ′ q U we may and do assume the image of X ′ → X contains U .
Let

R = X ′ qU ′ (U ′ ×U U ′)
be the pushout ofU ′ → X ′ and the diagonal morphismU ′ → U ′×UU ′ = U ′×XU ′. Since
U ′ → X is étale, this diagonal is an open immersion and we see thatR is an algebraic space
(this follows for example from Spaces, Lemma 8.5). The two projections U ′ ×U U ′ → U ′

extend to R and we obtain two étale morphisms s, t : R → X ′. Checking on each piece
separatedly we find that R is an étale equivalence relation on X ′. Set X ′′ = X ′/R which
is an algebraic space by Bootstrap, Theorem 10.1. By construction have the factorization
as in the lemma and the morphismX ′′ → X is locally of finite type (as this can be checked
étale locally, i.e., onX ′). SinceU ′ → U is a surjective étale morphism and since s−1(U ′) =
t−1(U ′) = U ′ ×U U ′ we see that U ′′ = U ×X X ′′ → U is an isomorphism. Finally, we
have to show the morphismX ′ → X ′′ induces an isomorphismX ′

/T → X ′′
/T . To see this,

note that the formal completion of R along the inverse image of T is equal to the formal
completion of X ′ along the inverse image of T by our choice of R! By our construction
of the formal completion in Formal Spaces, Section 14 we have X ′′

/T = (X ′
/T )/(R/T ) as

sheaves. SinceX ′
/T = R/T we conclude thatX ′

/T = X ′′
/T and this finishes the proof. �

26. Rig glueing of morphisms

Let X , W be algebraic spaces with X Noetherian. Let Z ⊂ X be a closed subspace with
open complement U . The proposition below says roughly speaking that

{morphisms X →W} = {compatible morphisms U →W and X/Z →W}

where compatibility of a : U → W and b : X/Z → W means that a and b define the
same “morphism of rig-spaces”. To introduce the category of “rig-spaces” requires a lot of
work, but we don’t need to do so in order to state precisely what the condition means in
this case.

Proposition 26.1. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset with complementary open subspace U ⊂ X . Let
f : X ′ → X be a proper morphism of algebraic spaces such that f−1(U) → U is an
isomorphism. For any algebraic space W over S the map

MorS(X,W ) −→ MorS(X ′,W )×MorS(X′
/T
,W ) MorS(X/T ,W )

is bijective.

Proof. Let w′ : X ′ → W and ŵ : X/T → W be morphisms which determine the
same morphism X ′

/T → W by composition with X ′
/T → X and X ′

/T → X/T . We have
to prove there exists a unique morphism w : X → W whose composition with X ′ → X
and X/T → X recovers w′ and ŵ. The uniqueness is immediate from Lemma 25.4.



6296 88. ALGEBRAIZATION OF FORMAL SPACES

The assumptions onT and f are preserved by base change by any étale morphismX1 → X
of algebraic spaces. Since formal algebraic spaces are sheaves for the étale topology and
since we aready have the uniqueness, it suffices to prove existence after replacingX by the
members of an étale covering. Thus we may assume X is an affine Noetherian scheme.
Assume X is an affine Noetherian scheme. We will construct the morphism w : X → W
using the material in Pushouts of Spaces, Section 13. It makes sense to read a little bit of
the material in that section before continuing the read the proof.
Set X ′′ = X ′ ×X X ′ and consider the two morphisms a = w′ ◦ pr1 : X ′′ → W and
b = w′ ◦ pr2 : X ′′ → W . Then we see that a and b agree over the open U and that a/T
and ba/T agree (as these are both equal to the composition X ′′

/T → X/T → W where the
second arrow is ŵ). Thus by Lemma 25.4 we see a = b.
Denote Z ⊂ X the reduced induced closed subscheme structure on T . For n ≥ 1 denote
Zn ⊂ X the nth infinitesimal neighbourhood of Z. Denote wn = ŵ|Zn : Zn → W so
that we have ŵ = colimwn on X/T = colimZn. Set Yn = X ′ q Zn. Consider the two
projections

sn, tn : Rn = Yn ×X Yn −→ Yn

Let Yn → Xn → X be the coequalizer of sn and tn as in Pushouts of Spaces, Section 13 (in
particular this coequalizer exists, has good properties, etc, see Pushouts of Spaces, Lemma
13.1). By the result a = b of the previous parapgraph and the agreement of w′ and ŵ over
X ′
/T we see that the morphism

w′ q wn : Yn −→W

equalizes the morphisms sn and tn. Hence we see that for all n ≥ 1 there is a morphism
wn : Xn →W compatible with w′ and wn. Moreover, for m ≥ 1 the composition

Xn → Xn+m
wn+m

−−−−→W

is equal to wn by construction (as the corresponding statement holds for w′ qwn+m and
w′ q wn). By Pushouts of Spaces, Lemma 13.4 and Remark 13.5 the system of algebraic
spaces Xn is essentially constant with value X and we conclude. �

27. Algebraization of rig-étale morphisms

In this section we prove a generalization of the result on dilatations from the paper of
Artin [?].
The notation in this section will agree with the notation in Section 23 except our algebraic
spaces and formal algebraic spaces will be locally Noetherian.
Thus, we first fix a base scheme S. All rings, topological rings, schemes, algebraic spaces,
and formal algebraic spaces and morphisms between these will be over S. Next, we fix a
locally Noetherian algebraic space X and a closed subset T ⊂ |X|. We denote U ⊂ X be
the open subspace with |U | = |X| \ T . Picture

U → X |X| = |U | q T
Given a morphism of algebraic spaces f : X ′ → X , we will use the notation U ′ = f−1U ,
T ′ = |f |−1(T ), and f/T : X ′

/T ′ → X/T as in Section 23. We will sometimes writeX ′
/T in

stead of X ′
/T ′ and more generally for a morphism a : X ′ → X ′′ of algebraic spaces over

X we will denote a/T : X ′
/T → X ′′

/T the induced morphism of formal algebraic spaces
obtained by completing the morphism a along the inverse images of T in X ′ and X ′′.
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Given this setup we will consider the functor

(27.0.1)


morphisms of algebraic spaces
f : X ′ → X which are locally

of finite type and such that
U ′ → U is an isomorphism

 −→


morphisms g : W → X/T

of formal algebraic spaces
with W locally Noetherian

and g rig-étale


sending f : X ′ → X to f/T : X ′

/T ′ → X/T . This makes sense because f/T is rig-étale by
Lemma 23.9.

Lemma 27.1. In the situation above, let X1 → X be a morphism of algebraic spaces
with X1 locally Noetherian. Denote T1 ⊂ |X1| the inverse image of T and U1 ⊂ X1 the
inverse image of U . We denote

(1) CX,T the category whose objects are morphisms of algebraic spaces f : X ′ → X
which are locally of finite type and such that U ′ = f−1U → U is an isomor-
phism,

(2) CX1,T1 the category whose objects are morphisms of algebraic spaces f1 : X ′
1 →

X1 which are locally of finite type and such that f−1
1 U1 → U1 is an isomor-

phism,
(3) CX/T the category whose objects are morphisms g : W → X/T of formal alge-

braic spaces with W locally Noetherian and g rig-étale,
(4) CX1,/T1

the category whose objects are morphisms g1 : W1 → X1,/T1 of formal
algebraic spaces with W1 locally Noetherian and g1 rig-étale.

Then the diagram
CX,T

��

// CX/T

��
CX1,T1

// CX1,/T1

is commutative where the horizonal arrows are given by (27.0.1) and the vertical arrows
by base change along X1 → X and along X1,/T1 → X/T .

Proof. This follows immediately from the fact that the completion functor (h :
Y → X) 7→ Y/T = Y/|h|−1T on the category of algebraic spaces over X commutes
with fibre products. �

Lemma 27.2. In the situation above. Let f : X ′ → X be a morphism of algebraic
spaces which is locally of finite type and an isomorphism over U . Let g : Y → X be a
morphism with Y locally Noetherian. Then completion defines a bijection

MorX(Y,X ′) −→ MorX/T (Y/T , X ′
/T )

In particular, the functor (27.0.1) is fully faithful.

Proof. Let a, b : Y → X ′ be morphisms over X such that a/T = b/T . Then we see
that a and b agree over the open subspace g−1U and after completion along g−1T . Hence
a = b by Lemma 25.5. In other words, the completion map is always injective.
Letα : Y/T → X ′

/T be a morphism of formal algebraic spaces overX/T . We have to prove
there exists a morphism a : Y → X ′ over X such that α = a/T . The proof proceeds by a
standard but cumbersome reduction to the affine case and then applying Lemma 25.2.
Let {hi : Yi → Y } be an étale covering of algebraic spaces. If we can find for each i a
morphism ai : Yi → X ′ over X whose completion (ai)/T : (Yi)/T → X ′

/T is equal to
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α ◦ (hi)/T , then we get a morphism a : Y → X ′ with α = a/T . Namely, we first observe
that (ai)/T ◦ pr1 = (aj)/T ◦ pr2 as morphisms (Yi ×Y Yj)/T → X ′

/T by the agreement
with α (this uses that completion /T commutes with fibre products). By the injectivity
already proven this shows that ai ◦ pr1 = aj ◦ pr2 as morphisms Yi ×Y Yj → X ′. Since
X ′ is an fppf sheaf this means that the collection of morphisms ai descends to a morphism
a : Y → X ′. We have α = a/T because {(ai)/T : (Yi)/T → X ′

/T } is an étale covering.

By the result of the previous paragraph, to prove existence, we may assume that Y is affine
and that g : Y → X factors as g1 : Y → X1 and an étale morphism X1 → X with
X1 affine. Then we can consider T1 ⊂ |X1| the inverse image of T and we can set X ′

1 =
X ′ ×X X1 with projection f1 : X ′

1 → X1 and

α1 = (α, (g1)/T1) : Y/T1 = Y/T −→ X ′
/T ×X/T (X1)/T1 = (X ′

1)/T1

We conclude that it suffices to prove the existence for α1 overX1, in other words, we may
replace X,T,X ′, Y, f, g, α by X1, T1, X

′
1, Y, g1, α1. This reduces us to the case described

in the next paragraph.

Assume Y and X are affine. Recall that (Y/T )red is an affine scheme (isomorphic to the
reduced induced scheme structure on g−1T ⊂ Y , see Formal Spaces, Lemma 14.5). Hence
αred : (Y/T )red → (X ′

/T )red has quasi-compact image E in f−1T (this is the underlying
topological space of (X ′

/T )red by the same lemma as above). Thus we can find an affine
scheme V and an étale morpism h : V → X ′ such that the image of h containsE. Choose
a solid cartesian diagram

Y ′
/T

  

// W

��

// V/T

h/T

��
Y/T

α // X ′
/T

By construction, the morphism W → Y/T is representable by algebraic spaces, étale, and
surjective (surjectivity can be seen by looking at the reductions, see Formal Spaces, Lemma
12.4). By Lemma 25.1 we can write W = Y ′

/T for Y ′ → Y étale and Y ′ affine. This gives
the dotted arrows in the diagram. Since W → Y/T is surjective, we see that the image of
Y ′ → Y contains g−1T . Hence {Y ′ → Y, Y \ g−1T → Y } is an étale covering. As f is
an isomorphism over U we have a (unique) morphism Y \ g−1T → X ′ over X agreeing
with α on completions (as the completion of Y \g−1T is empty). Thus it suffices to prove
the existence for Y ′ which reduces us to the case studied in the next paragraph.

By the result of the previous paragraph, we may assume that Y is affine and that α factors
as Y/T → V/T → X ′

/T where V is an affine scheme étale over X ′. We may still replace Y
by the members of an affine étale covering. By Lemma 25.2 we may find an étale morphism
b : Y ′ → Y of affine schemes which induces an isomorphism b/T : Y ′

/T → Y/T and a
morphism c : Y ′ → V such that c/T ◦ b−1

/T is the given morphism Y/T → V/T . Setting
a′ : Y ′ → X ′ equal to the composition of c and V → X ′ we find that a′

/T = α ◦ b/T ,
in other words, we have existence for Y ′ and α ◦ b/T . Then we are done by replacing
considering once more the étale covering {Y ′ → Y, Y \ g−1T → Y }. �

Lemma 27.3. In the situation above. AssumeX is affine. Then the functor (27.0.1) is
an equivalence.
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Before we prove this lemma let us discuss an example. Suppose that S = Spec(k), X =
A1
k , and T = {0}. Then X/T = Spf(k[[x]]). Let W = Spf(k[[x]] × k[[x]]). Then the

corresponding f : X ′ → X is the affine line with zero doubled mapping to the affine line
(Schemes, Example 14.3). Moreover, this is the output of the construction in Lemma 25.7
starting with X qX over X .

Proof. We already know the functor is fully faithful, see Lemma 27.2. Essential sur-
jectivity. Let g : W → X/T be a morphism of formal algebraic spaces with W locally
Noetherian and g rig-étale. We will prove W is in the essential image in a number of
steps.

Step 1: W is an affine formal algebraic space. Then we can find U → X of finite type and
étale over X \ T such that U/T is isomorphic to W , see Lemma 25.1. Thus we see that W
is in the essential image by Lemma 25.7.

Step 2: W is separated. Choose {Wi → W} as in Formal Spaces, Definition 11.1. By
Step 1 the formal algebraic spaces Wi and Wi ×W Wj are in the essential image. Say
Wi = (X ′

i)/T and Wi ×W Wj = (X ′
ij)/T . By fully faithfulness we obtain morphisms

tij : X ′
ij → X ′

i and sij : X ′
ij → X ′

j matching the projections Wi ×W Wj → Wi and
Wi ×W Wj →Wj . Consider the structure

R =
∐

X ′
ij , V =

∐
X ′
i, s =

∐
sij , t =

∐
tij

(We can’t use the letter U as it has already been used.) Applying Lemma 25.6 we find that
(t, s) : R → V ×X V defines an étale equivalence relation on V over X . Thus we can
take the quotient X ′ = V/R and it is an algebraic space, see Bootstrap, Theorem 10.1.
Since completion commutes with fibre products and taking quotient sheaves, we find that
X ′
/T
∼= W as formal algebraic spaces over X/T .

Step 3: W is general. Choose {Wi →W} as in Formal Spaces, Definition 11.1. The formal
algebraic spaces Wi and Wi ×W Wj are separated. Hence by Step 2 the formal algebraic
spaces Wi and Wi ×W Wj are in the essential image. Then we argue exactly as in the
previous paragraph to see that W is in the essential image as well. This concludes the
proof. �

Theorem 27.4. Let S be a scheme. LetX be a locally Noetherian algebraic space over
S. Let T ⊂ |X| be a closed subset. Let U ⊂ X be the open subspace with |U | = |X| \ T .
The completion functor (27.0.1)

morphisms of algebraic spaces
f : X ′ → X which are locally

of finite type and such that
f−1U → U is an isomorphism

 −→


morphisms g : W → X/T

of formal algebraic spaces
with W locally Noetherian

and g rig-étale


sending f : X ′ → X to f/T : X ′

/T ′ → X/T is an equivalence.

Proof. The functor is fully faithful by Lemma 27.2. Let g : W → X/T be a mor-
phism of formal algebraic spaces withW locally Noetherian and g rig-étale. We will prove
W is in the essential image to finish the proof.

Choose an étale covering {Xi → X}withXi affine for all i. Denote Ui ⊂ Xi the inverse
image of U and denote Ti ⊂ Xi the inverse image of T . Recall that (Xi)/Ti = (Xi)/T =
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(Xi ×X X)/T and Wi = Xi ×X W = (Xi)/T ×X/T W , see Lemma 27.1. Observe that
we obtain isomorphisms

αij : Wi ×X/T (Xj)/T −→ (Xi)/T ×X/T Wj

satisfying a suitable cocycle condition. By Lemma 27.3 applied toXi, Ti, Ui,Wi → (Xi)/T
there exists a morphism X ′

i → Xi of algebraic spaces which is locally of finite type and
an isomorphism over Ui and an isomorphism βi : (X ′

i)/T ∼= Wi over (Xi)/T . By fully
faithfullness we find an isomorphism

aij : X ′
i ×X Xj −→ Xi ×X X ′

j

overXi×XXj such thatαij = βj |Xi×XXj ◦(aij)/T ◦β−1
i |Xi×XXj . By fully faithfulness

again (this time over Xi×X Xj ×X Xk) we see that these morphisms aij satisfy the same
cocycle condition as satisfied by the αij . In other words, we obtain a descent datum (as
in Descent on Spaces, Definition 22.3) (X ′

i, aij) relative to the family {Xi → X}. By
Bootstrap, Lemma 11.3, this descent datum is effective. Thus we find a morphism f :
X ′ → X of algebraic spaces and isomorphisms hi : X ′ ×X Xi → X ′

i over Xi such that
aij = hj |Xi×XXj ◦ h−1

i |Xi×XXj . The reader can check that the ensuing isomorphisms

(X ′ ×X Xi)/T
βi◦(hi)/T−−−−−−→Wi

over Xi glue to an isomorphism X ′
/T →W over X/T ; some details omitted. �

28. Completions and morphisms, II

To obtain Artin’s theorem on dilatations, we need to match formal modifications with
actual modifications in the correspondence given by Theorem 27.4. We urge the reader to
skip this section.

Lemma 28.1. With assumptions and notation as in Theorem 27.4 let f : X ′ → X
correspond to g : W → X/T . Then f is quasi-compact if and only if g is quasi-compact.

Proof. If f is quasi-compact, then g is quasi-compact by Lemma 23.5. Conversely,
assume g is quasi-compact. Choose an étale covering {Xi → X}withXi affine. It suffices
to prove that the base changeX ′×XXi → Xi is quasi-compact, see Morphisms of Spaces,
Lemma 8.8. By Formal Spaces, Lemma 17.3 the base changes Wi ×X/T (Xi)/T → (Xi)/T
are quasi-compact. By Lemma 27.1 we reduce to the case described in the next paragraph.

Assume X is affine and g : W → X/T quasi-compact. We have to show that X ′ is quasi-
compact. Let V → X ′ be a surjective étale morphism where V =

∐
j∈J Vj is a disjoint

union of affines. Then V/T → X ′
/T = W is a surjective étale morphism. Since W is

quasi-compact, then we can find a finite subset J ′ ⊂ J such that
∐
j∈J′(Vj)/T → W is

surjective. Then it follows that

U q
∐

j∈J′
Vj −→ X ′

is surjective (and hence X ′ is quasi-compact). Namely, we have |X ′| = |U | q |Wred| as
X ′
/T = W . �

Lemma 28.2. With assumptions and notation as in Theorem 27.4 let f : X ′ → X
correspond to g : W → X/T . Then f is quasi-separated if and only if g is so.
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Proof. If f is quasi-separated, then g is quasi-separated by Lemma 23.7. Conversely,
assume g is quasi-separated. We have to show that f is quasi-separated. Exactly as in the
proof of Lemma 28.1 we may check this over the members of a étale covering of X by
affine schemes using Morphisms of Spaces, Lemma 4.12 and Formal Spaces, Lemma 30.5.
Thus we may and do assume X is affine.

Let V → X ′ be a surjective étale morphism where V =
∐
j∈J Vj is a disjoint union of

affines. To show that X ′ is quasi-separated, it suffices to show that Vj ×X′ Vj′ is quasi-
compact for all j, j′ ∈ J . Since W is quasi-separated the fibre products (Vj ×Y Vj′)/T =
(Vj)/T ×X′

/T
(Vj′)/T are quasi-compact for all j, j′ ∈ J . SinceX is Noetherian affine and

U ′ → U is an isomorphism, we see that

(Vj ×X′ Vj′)×X U = (Vj ×X Vj′)×X U

is quasi-compact. Hence we conclude by the equality

|Vj ×X′ Vj′ | = |(Vj ×X′ Vj′)×X U | q |(Vj ×X′ Vj′)/T,red|

and the fact that a formal algebraic space is quasi-compact if and only if its associated
reduced algebraic space is so. �

Lemma 28.3. With assumptions and notation as in Theorem 27.4 let f : X ′ → X
correspond to g : W → X/T . Then f is separated ⇔ g is separated and ∆g : W →
W ×X/T W is rig-surjective.

Proof. If f is separated, then g is separated and ∆g is rig-surjective by Lemmas 23.7
and 23.11. Assume g is separated and ∆g is rig-surjective. Exactly as in the proof of Lemma
28.1 we may check this over the members of a étale covering ofX by affine schemes using
Morphisms of Spaces, Lemma 4.4 (locality on the base of being separated for morphisms
of algebraic spaces), Formal Spaces, Lemma 30.2 (being separated for morphisms of formal
algebraic spaces is preserved by base change), and Lemma 21.4 (being rig-surjective is pre-
served by base change). Thus we may and do assumeX is affine. Furthermore, we already
know that f : X ′ → X is quasi-separated by Lemma 28.2.

By Cohomology of Spaces, Lemma 19.1 and Remark 19.3 it suffices to show that given any
commutative diagram

Spec(K) //

��

X ′

��
Spec(R) p //

88

X ′ ×X X ′

where R is a complete discrete valuation ring with fraction field K , there is a dotted
arrow making the diagram commute (as this will give the uniqueness part of the valu-
ative criterion). Let h : Spec(R) → X be the composition of p with the morphism
Y ×X Y → X . There are three cases: Case I: h(Spec(R)) ⊂ U . This case is trivial be-
cause U ′ = X ′×X U → U is an isomorphism. Case II: hmaps Spec(R) into T . This case
follows from our assumption that g : W → X/T is separated. Namely, if Z denotes the
reduced induced closed subspace structure on T , then h factors through Z and

W ×X/T Z = X ′ ×X Z −→ Z

is separated by assumption (and for example Formal Spaces, Lemma 30.5) which implies
we get the lifting property by Cohomology of Spaces, Lemma 19.1 applied to the displayed
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arrow. Case III: h(Spec(K)) is not in T but h maps the closed point of Spec(R) into T .
In this case the corresponding morphism

p/T : Spf(R) −→ (X ′ ×X X ′)/T = W ×X/T W

is an adic morphism (by Formal Spaces, Lemma 14.4 and Definition 23.2). Hence our
assumption that ∆g : W → W ×X/T W is rig-surjective implies we can lift p/T to
a morphism Spf(R) → W = X ′

/T , see Lemma 21.11. Algebraizing the composition
Spf(R) → X ′ using Formal Spaces, Lemma 33.3 we find a morphism Spec(R) → X ′

lifting p as desired. �

Lemma 28.4. With assumptions and notation as in Theorem 27.4 let f : X ′ → X
correspond to g : W → X/T . Then f is proper if and only if g is a formal modification
(Definition 24.1).

Proof. If f is proper, then g is a formal modification by Lemma 24.3. Assume g
is a formal modification. By Lemmas 28.1 and 28.3 we see that f is quasi-compact and
separated.

By Cohomology of Spaces, Lemma 19.2 and Remark 19.3 it suffices to show that given any
commutative diagram

Spec(K) //

��

X ′

f

��
Spec(R) p //

;;

X

whereR is a complete discrete valuation ring with fraction fieldK , there is a dotted arrow
making the diagram commute. There are three cases: Case I: p(Spec(R)) ⊂ U . This case
is trivial because U ′ → U is an isomorphism. Case II: p maps Spec(R) into T . This case
follows from our assumption that g : W → X/T is proper. Namely, if Z denotes the
reduced induced closed subspace structure on T , then p factors through Z and

W ×X/T Z = X ′ ×X Z −→ Z

is proper by assumption which implies we get the lifting property by Cohomology of
Spaces, Lemma 19.2 applied to the displayed arrow. Case III: p(Spec(K)) is not in T but
p maps the closed point of Spec(R) into T . In this case the corresponding morphism

p/T : Spf(R) −→ X ′
/T = W

is an adic morphism (by Formal Spaces, Lemma 14.4 and Definition 23.2). Hence our
assumption that g : W → X/T be rig-surjective implies we can lift g/T to a morphism
Spf(R′) → W = X ′

/T for some extension of complete discrete valuation rings R ⊂ R′.
Algebraizing the composition Spf(R′) → X ′ using Formal Spaces, Lemma 33.3 we find a
morphism Spec(R′)→ X ′ lifting p as desired. �

Lemma 28.5. With assumptions and notation as in Theorem 27.4 let f : X ′ → X
correspond to g : W → X/T . Then f is étale if and only if g is étale.

Proof. If f is étale, then g is étale by Lemma 23.2. Conversely, assume g is étale.
Since f is an isomorphism over U we see that f is étale over U . Thus it suffices to prove
that f is étale at any point ofX ′ lying over T . DenoteZ ⊂ X the reduced closed subspace
whose underlying topological space is |Z| = T ⊂ |X|, see Properties of Spaces, Definition
12.5. Letting Zn ⊂ X be the nth infinitesimal neighbourhood we have X/T = colimZn.
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Since X ′
/T = W → X/T we conclude that f−1(Zn) = X ′ ×X Zn → Zn is étale by the

assumed étaleness of g. By More on Morphisms of Spaces, Lemma 20.3 we conclude that
f is étale at points lying over T . �

29. Artin’s theorem on dilatations

In this section we use a different font for formal algebraic spaces to stress the similarity of
the statements with the corresponding statements in [?]. Here is the first main theorem of
this chapter.

Theorem 29.1. Let S be a scheme. LetX be a locally Noetherian algebraic space over
S. Let T ⊂ |X| be a closed subset. Let X = X/T be the formal completion of X along T .
Let

f : X′ → X

be a formal modification (Definition 24.1). Then there exists a unique proper morphism
f : X ′ → X which is an isomorphism over the complement of T in X whose completion
f/T recovers f.

Proof. This follows from Theorem 27.4 and Lemma 28.4. �

Here is the characterization of formal modifcations as promised in Section 24.

Lemma 29.2. Let S be a scheme. Let X′ → X be a formal modification (Definition
24.1) of locally Noetherian formal algebraic spaces over S. Given

(1) any adic Noetherian topological ring A,
(2) any adic morphism Spf(A) −→ X

there exists a proper morphism X → Spec(A) of algebraic spaces and an isomorphism
Spf(A)×X X′ −→ X/Z

over Spf(A) of the base change of X with the formal completion of X along the “closed
fibre” Z = X ×Spec(A) Spf(A)red of X over A.

Proof. The morphism Spf(A)×X X′ → Spf(A) is a formal modification by Lemma
24.4. Hence this follows from Theorem 29.1. �

30. Application to modifications

Let A be a Noetherian ring and let I ⊂ A be an ideal. We set X = Spec(A) and U =
X \ V (I). In this section we will consider the category

(30.0.1)

f : X ′ −→ X

∣∣∣∣∣∣
X ′ is an algebraic space
f is locally of finite type

f−1(U)→ U is an isomorphism


A morphism fromX ′/X toX ′′/X will be a morphism of algebraic spacesX ′ → X ′′ over
X .
Let A→ B be a homomorphism of Noetherian rings and let J ⊂ B be an ideal such that
J =

√
IB. Then base change along the morphism Spec(B) → Spec(A) gives a functor

from the category (30.0.1) for A to the category (30.0.1) for B.

Lemma 30.1. Let A → B be a ring homomorphism of Noetherian rings inducing
an isomorphism on I-adic completions for some ideal I ⊂ A (for example if B is the I-
adic completion ofA). Then base change defines an equivalence of categories between the
category (30.0.1) for (A, I) with the category (30.0.1) for (B, IB).
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Proof. Set X = Spec(A) and T = V (I). Set X1 = Spec(B) and T1 = V (IB). By
Theorem 27.4 (in fact we only need the affine case treated in Lemma 27.3) the category
(30.0.1) for X and T is equivalent to the the category of rig-étale morphisms W → X/T

of locally Noetherian formal algebraic spaces. Similarly, the the category (30.0.1) for X1
and T1 is equivalent to the category of rig-étale morphisms W1 → X1,/T1 of locally Noe-
therian formal algebraic spaces. Since X/T = Spf(A∧) and X1,/T1 = Spf(B∧) (Formal
Spaces, Lemma 14.6) we see that these categories are equivalent by our assumption that
A∧ → B∧ is an isomorphism. We omit the verification that this equivalence is given by
base change. �

Lemma 30.2. Notation and assumptions as in Lemma 30.1. Let f : X ′ → Spec(A)
correspond to g : Y ′ → Spec(B) via the equivalence. Then f is quasi-compact, quasi-
separated, separated, proper, finite, and add more here if and only if g is so.

Proof. You can deduce this for the statements quasi-compact, quasi-separated, sep-
arated, and proper by using Lemmas 28.1 28.2, 28.3, 28.2, and 28.4 to translate the corre-
sponding property into a property of the formal completion and using the argument of the
proof of Lemma 30.1. However, there is a direct argument using fpqc descent as follows.
First, you can reduce to proving the lemma for A → A∧ and B → B∧ since A∧ → B∧

is an isomorphism. Then note that {U → Spec(A), Spec(A∧) → Spec(A)} is an fpqc
covering with U = Spec(A) \ V (I) as before. The base change of f by U → Spec(A) is
idU by definition of our category (30.0.1). Let P be a property of morphisms of algebraic
spaces which is fpqc local on the base (Descent on Spaces, Definition 10.1) such that P
holds for identity morphisms. Then we see that P holds for f if and only if P holds for
g. This applies to P equal to quasi-compact, quasi-separated, separated, proper, and finite
by Descent on Spaces, Lemmas 11.1, 11.2, 11.18, 11.19, and 11.23. �

Lemma 30.3. Let A→ B be a local map of local Noetherian rings such that
(1) A→ B is flat,
(2) mB = mAB, and
(3) κ(mA) = κ(mB)

Then the base change functor from the category (30.0.1) for (A,mA) to the category
(30.0.1) for (B,mB) is an equivalence.

Proof. The conditions signify thatA→ B induces an isomorphism on completions,
see More on Algebra, Lemma 43.9. Hence this lemma is a special case of Lemma 30.1. �

Lemma 30.4. Let (A,m, κ) be a Noetherian local ring. Let f : X → S be an object
of (30.0.1). Then there exists a U -admissible blowup S′ → S which dominates X .

Proof. Special case of More on Morphisms of Spaces, Lemma 39.5. �
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CHAPTER 89

Resolution of Surfaces Revisited

1. Introduction

This chapter discusses resolution of singularities of Noetherian algebraic spaces of dimen-
sion 2. We have already discussed resolution of surfaces for schemes following Lipman
[?] in an earlier chapter. See Resolution of Surfaces, Section 1. Most of the results in this
chapter are straightforward consequences of the results on schemes.
Unless specifically mentioned otherwise all geometric objects in this chapter will be alge-
braic spaces. Thus if we say “let f : X → Y be a modification” then this means that f is
a morphism as in Spaces over Fields, Definition 8.1. Similarly for proper morphism, etc,
etc.

2. Modifications

Let (A,m, κ) be a Noetherian local ring. We set S = Spec(A) and U = S \ {m}. In this
section we will consider the category

(2.0.1)

f : X −→ S

∣∣∣∣∣∣
X is an algebraic space
f is a proper morphism

f−1(U)→ U is an isomorphism


A morphism fromX/S toX ′/S will be a morphism of algebraic spacesX → X ′ compat-
ible with the structure morphisms over S. In Algebraization of Formal Spaces, Section 30
we have seen that this category only depends on the completion ofA and we have proven
some elementary properties of objects in this category. In this section we specifically study
cases where dim(A) ≤ 2 or where the dimension of the closed fibre is at most 1.

Lemma 2.1. Let (A,m, κ) be a 2-dimensional Noetherian local domain such that
U = Spec(A) \ {m} is a normal scheme. Then any modification f : X → Spec(A)
is a morphism as in (2.0.1).

Proof. Let f : X → S be a modification. We have to show that f−1(U)→ U is an
isomorphism. Since every closed point u ofU has codimension 1, this follows from Spaces
over Fields, Lemma 3.3. �

Lemma 2.2. Let (A,m, κ) be a Noetherian local ring. Let g : X → Y be a morphism
in the category (2.0.1). If the induced morphism Xκ → Yκ of special fibres is a closed
immersion, then g is a closed immersion.

Proof. This is a special case of More on Morphisms of Spaces, Lemma 49.3. �

Lemma 2.3. Let (A,m, κ) be a Noetherian local domain of dimension ≥ 1. Let f :
X → Spec(A) be a morphism of algebraic spaces. Assume at least one of the following
conditions is satisfied

(1) f is a modification (Spaces over Fields, Definition 8.1),

6307
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(2) f is an alteration (Spaces over Fields, Definition 8.3),
(3) f is locally of finite type, quasi-separated, X is integral, and there is exactly one

point of |X| mapping to the generic point of Spec(A),
(4) f is locally of finite type, X is decent, and the points of |X| mapping to the

generic point of Spec(A) are the generic points of irreducible components of
|X|,

(5) add more here.
Then dim(Xκ) ≤ dim(A)− 1.

Proof. Cases (1), (2), and (3) are special cases of (4). Choose an affine scheme U =
Spec(B) and an étale morphismU → X . The ring mapA→ B is of finite type. We have
to show that dim(Uκ) ≤ dim(A)− 1. SinceX is decent, the generic points of irreducible
components of U are the points lying over generic points of irreducible components of
|X|, see Decent Spaces, Lemma 20.1. Hence the fibre of Spec(B) → Spec(A) over (0)
is the (finite) set of minimal primes q1, . . . , qr of B. Thus Af → Bf is finite for some
nonzero f ∈ A (Algebra, Lemma 122.10). We conclude κ(qi) is a finite extension of the
fraction field of A. Let q ⊂ B be a prime lying over m. Then

dim(Bq) = max dim((B/qi)q) ≤ dim(A)

the inequality by the dimension formula for A ⊂ B/qi, see Algebra, Lemma 113.1. How-
ever, the dimension ofBq/mBq (which is the local ring of Uκ at the corresponding point)
is at least one less because the minimal primes qi are not in V (m). We conclude by Prop-
erties, Lemma 10.2. �

Lemma 2.4. If (A,m, κ) is a complete Noetherian local domain of dimension 2, then
every modification of Spec(A) is projective over A.

Proof. By More on Morphisms of Spaces, Lemma 43.6 it suffices to show that the
special fibre of any modification X of Spec(A) has dimension ≤ 1. This follows from
Lemma 2.3. �

3. Strategy

Let S be a scheme. Let X be a decent algebraic space over S. Let x1, . . . , xn ∈ |X| be
pairwise distinct closed points. For each i we pick an elementary étale neighbourhood
(Ui, ui) → (X,xi) as in Decent Spaces, Lemma 11.4. This means that Ui is an affine
scheme,Ui → X is étale, ui is the unique point ofUi lying over xi, and Spec(κ(ui))→ X
is a monomorphism representing xi. After shrinking Ui we may and do assume that for
j 6= i there does not exist a point of Ui mapping to xj . Observe that ui ∈ Ui is a closed
point.

Denote CX,{x1,...,xn} the category of morphisms of algebraic spaces f : Y → X which
induce an isomorphism f−1(X \ {x1, . . . , xn}) → X \ {x1, . . . , xn}. For each i denote
CUi,ui the category of morphisms of algebraic spaces gi : Yi → Ui which induce an iso-
morphism g−1

i (Ui \ {ui})→ Ui \ {ui}. Base change defines an functor

(3.0.1) F : CX,{x1,...,xn} −→ CU1,u1 × . . .× CUn,un
To reduce at least some of the problems in this chapter to the case of schemes we have the
following lemma.

Lemma 3.1. The functor F (3.0.1) is an equivalence.
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Proof. For n = 1 this is Limits of Spaces, Lemma 19.1. For n > 1 the lemma can be
proved in exactly the same way or it can be deduced from it. For example, suppose that
gi : Yi → Ui are objects of CUi,ui . Then by the case n = 1 we can find f ′

i : Y ′
i → X which

are isomorphisms over X \ {xi} and whose base change to Ui is fi. Then we can set

f : Y = Y ′
1 ×X . . .×X Y ′

n → X

This is an object of CX,{x1,...,xn} whose base change by Ui → X recovers gi. Thus the
functor is essentially surjective. We omit the proof of fully faithfulness. �

Lemma 3.2. Let X,xi, Ui → X,ui be as in (3.0.1). If f : Y → X corresponds to
gi : Yi → Ui under F , then f is quasi-compact, quasi-separated, separated, locally of finite
presentation, of finite presentation, locally of finite type, of finite type, proper, integral,
finite, if and only if gi is so for i = 1, . . . , n.

Proof. Follows from Limits of Spaces, Lemma 19.2. �

Lemma 3.3. Let X,xi, Ui → X,ui be as in (3.0.1). If f : Y → X corresponds to
gi : Yi → Ui under F , then Yxi ∼= (Yi)ui as algebraic spaces.

Proof. This is clear because ui → xi is an isomorphism. �

4. Dominating by quadratic transformations

We define the blowup of a space at a point only if X is decent.

Definition 4.1. Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X| be a closed point. By Decent Spaces, Lemma 14.6 we can represent x by a closed
immersion i : Spec(k) → X . The blowing up X ′ → X of X at x means the blowing up
of X in the closed subspace Z = i(Spec(k)) ⊂ X .

In this generality the blowing up of X at x is not necessarily proper. However, if X is
locally Noetherian, then it follows from Divisors on Spaces, Lemma 17.11 that the blowing
up is proper. Recall that a locally Noetherian algebraic space is Noetherian if and only if it
is quasi-compact and quasi-separated. Moreover, for a locally Noetherian algebraic space,
being quasi-separated is equivalent to being decent (Decent Spaces, Lemma 14.1).

Lemma 4.2. Let X,xi, Ui → X,ui be as in (3.0.1) and assume f : Y → X corre-
sponds to gi : Yi → Ui under F . Then there exists a factorization

Y = Zm → Zm−1 → . . .→ Z1 → Z0 = X

of f whereZj+1 → Zj is the blowing up ofZj at a closed point zj lying over {x1, . . . , xn}
if and only if for each i there exists a factorization

Yi = Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Ui

of gi where Zi,j+1 → Zi,j is the blowing up of Zi,j at a closed point zi,j lying over ui.

Proof. A blowing up is a representable morphism. Hence in either case we induc-
tively see that Zj → X or Zi,j → Ui is representable. Whence each Zj or Zi,j is a decent
algebraic space by Decent Spaces, Lemma 6.5. This shows that the assertions make sense
(since blowing up is only defined for decent spaces). To prove the equivalence, let’s start
with a sequence of blowups Zm → Zm−1 → . . . → Z1 → Z0 = X . The first morphism
Z1 → X is given by blowing up one of the xi, say x1. Applying F to Z1 → X we find a
blowupZ1,1 → U1 at u1 is the blowing up at u1 and otherwiseZi,0 = Ui for i > 1. In the
next step, we either blow up one of the xi, i ≥ 2 on Z1 or we pick a closed point z1 of the
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fibre of Z1 → X over x1. In the first case it is clear what to do and in the second case we
use that (Z1)x1

∼= (Z1,1)u1 (Lemma 3.3) to get a closed point z1,1 ∈ Z1,1 corresponding to
z1. Then we set Z1,2 → Z1,1 equal to the blowing up in z1,1. Continuing in this manner
we construct the factorizations of each gi.

Conversely, given sequences of blowups Zi,mi → Zi,mi−1 → . . . → Zi,1 → Zi,0 = Ui
we construct the sequence of blowing ups of X in exactly the same manner. �

Lemma 4.3. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x and (2) the local
ring of X at x has dimension 2. Let I ⊂ OX be a quasi-coherent sheaf of ideals such that
OX/I is supported on T . Then there exists a sequence

Xm → Xm−1 → . . .→ X1 → X0 = X

where Xj+1 → Xj is the blowing up of Xj at a closed point xj lying above a point of T
such that IOXn is an invertible ideal sheaf.

Proof. Say T = {x1, . . . , xr}. Pick elementary étale neighbourhoods (Ui, ui) →
(X,xi) as in Section 3. For each i the restriction Ii = I|Ui ⊂ OUi is a quasi-coherent
sheaf of ideals supported at ui. The local ring of Ui at ui is regular and has dimension 2.
Thus we may apply Resolution of Surfaces, Lemma 4.1 to find a sequence

Xi,mi → Xi,mi−1 → . . .→ X1 → Xi,0 = Ui

of blowing ups in closed points lying over ui such that IiOXi,mi is invertible. By Lemma
4.2 we find a sequence of blowing ups

Xm → Xm−1 → . . .→ X1 → X0 = X

as in the statement of the lemma whose base change to our Ui produces the given se-
quences. It follows that IOXn is an invertible ideal sheaf. Namely, we know this is true
over X \ {x1, . . . , xn} and in an étale neighbourhood of the fibre of each xi it is true by
construction. �

Lemma 4.4. Let S be a scheme. Let X be a Noetherian algebraic space over S. Let
T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x and (2) the local
ring of X at x has dimension 2. Let f : Y → X be a proper morphism of algebraic spaces
which is an isomorphism over U = X \ T . Then there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point of T
and a factorization Xn → Y → X of the composition.

Proof. By More on Morphisms of Spaces, Lemma 39.5 there exists a U -admissible
blowup X ′ → X which dominates Y → X . Hence we may assume there exists an ideal
sheaf I ⊂ OX such thatOX/I is supported on T and such that Y is the blowing up ofX
in I . By Lemma 4.3 there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point of
T such that IOXn is an invertible ideal sheaf. By the universal property of blowing up
(Divisors on Spaces, Lemma 17.5) we find the desired factorization. �
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5. Dominating by normalized blowups

In this section we prove that a modification of a surface can be dominated by a sequence
of normalized blowups in points.

Definition 5.1. LetS be a scheme. LetX be a decent algebraic space overS satisfying
the equivalent conditions of Morphisms of Spaces, Lemma 49.1. Let x ∈ |X| be a closed
point. The normalized blowup of X at x is the composition X ′′ → X ′ → X where
X ′ → X is the blowup of X at x (Definition 4.1) and X ′′ → X ′ is the normalization of
X ′.

Here the normalizationX ′′ → X ′ is defined as the algebraic spaceX ′ satisfies the equiva-
lent conditions of Morphisms of Spaces, Lemma 49.1 by Divisors on Spaces, Lemma 17.8.
See Morphisms of Spaces, Definition 49.6 for the definition of the normalization.
In general the normalized blowing up need not be proper even whenX is Noetherian. Re-
call that an algebraic space is Nagata if it has an étale covering by affines which are spectra
of Nagata rings (Properties of Spaces, Definition 7.2 and Remark 7.3 and Properties, Def-
inition 13.1).

Lemma 5.2. In Definition 5.1 if X is Nagata, then the normalized blowing up of X
at x is a normal Nagata algebraic space proper over X .

Proof. The blowup morphismX ′ → X is proper (asX is locally Noetherian we may
apply Divisors on Spaces, Lemma 17.11). ThusX ′ is Nagata (Morphisms of Spaces, Lemma
26.1). Therefore the normalizationX ′′ → X ′ is finite (Morphisms of Spaces, Lemma 49.9)
and we conclude that X ′′ → X is proper as well (Morphisms of Spaces, Lemmas 45.9 and
40.4). It follows that the normalized blowing up is a normal (Morphisms of Spaces, Lemma
49.8) Nagata algebraic space. �

Here is the analogue of Lemma 4.2 for normalized blowups.

Lemma 5.3. Let X,xi, Ui → X,ui be as in (3.0.1) and assume f : Y → X cor-
responds to gi : Yi → Ui under F . Assume X satisfies the equivalent conditions of
Morphisms of Spaces, Lemma 49.1. Then there exists a factorization

Y = Zm → Zm−1 → . . .→ Z1 → Z0 = X

of f where Zj+1 → Zj is the normalized blowing up of Zj at a closed point zj lying over
{x1, . . . , xn} if and only if for each i there exists a factorization

Yi = Zi,mi → Zi,mi−1 → . . .→ Zi,1 → Zi,0 = Ui

of gi whereZi,j+1 → Zi,j is the normalized blowing up ofZi,j at a closed point zi,j lying
over ui.

Proof. This follows by the exact same argument as used to prove Lemma 4.2. �

A Nagata algebraic space is locally Noetherian.

Lemma 5.4. Let S be a scheme. LetX be a Noetherian Nagata algebraic space over S
with dim(X) = 2. Let f : Y → X be a proper birational morphism. Then there exists a
commutative diagram

Xn
//

��

Xn−1 // . . . // X1 // X0

��
Y // X
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where X0 → X is the normalization and where Xi+1 → Xi is the normalized blowing
up of Xi at a closed point.

Proof. Although one can prove this lemma directly for algebraic spaces, we will con-
tinue the approach used above to reduce it to the case of schemes.

We will use that Noetherian algebraic spaces are quasi-separated and hence points have
well defined residue fields (for example by Decent Spaces, Lemma 11.4). We will use the
results of Morphisms of Spaces, Sections 26, 35, and 49 without further mention. We
may replace Y by its normalization. Let X0 → X be the normalization. The morphism
Y → X factors through X0. Thus we may assume that both X and Y are normal.

Assume X and Y are normal. The morphism f : Y → X is an isomorphism over an
open which contains every point of codimension 0 and 1 in Y and every point of Y over
which the fibre is finite, see Spaces over Fields, Lemma 3.3. Hence we see that there is a
finite set of closed points T ⊂ |X| such that f is an isomorphism over X \ T . By More
on Morphisms of Spaces, Lemma 39.5 there exists an X \ T -admissible blowup Y ′ → X
which dominates Y . After replacing Y by the normalization of Y ′ we see that we may
assume that Y → X is representable.

Say T = {x1, . . . , xr}. Pick elementary étale neighbourhoods (Ui, ui) → (X,xi) as in
Section 3. For each i the morphism Yi = Y ×X Ui → Ui is a proper birational morphism
which is an isomorphism over Ui \ {ui}. Thus we may apply Resolution of Surfaces,
Lemma 5.3 to find a sequence

Xi,mi → Xi,mi−1 → . . .→ X1 → Xi,0 = Ui

of normalized blowing ups in closed points lying over ui such that Xi,mi dominates Yi.
By Lemma 5.3 we find a sequence of normalized blowing ups

Xm → Xm−1 → . . .→ X1 → X0 = X

as in the statement of the lemma whose base change to ourUi produces the given sequences.
It follows that Xm dominates Y by the equivalence of categories of Lemma 3.1. �

6. Base change to the completion

The following simple lemma will turn out to be a useful tool in what follows.

Lemma 6.1. Let (A,m, κ) be a local ring with finitely generated maximal ideal m. Let
X be a decent algebraic space over A. Let Y = X ×Spec(A) Spec(A∧) where A∧ is the
m-adic completion of A. For a point q ∈ |Y | with image p ∈ |X| lying over the closed
point of Spec(A) the mapOhX,p → OhY,q of henselian local rings induces an isomorphism
on completions.

Proof. This follows immediately from the case of schemes by choosing an elemen-
tary étale neighbourhood (U, u) → (X, p) as in Decent Spaces, Lemma 11.4, setting V =
U ×X Y = U ×Spec(A) Spec(A∧) and v = (u, q). The case of schemes is Resolution of
Surfaces, Lemma 11.1. �

Lemma 6.2. Let (A,m, κ) be a Noetherian local ring. Let X → Spec(A) be a mor-
phism which is locally of finite type withX a decent algebraic space. Set Y = X×Spec(A)
Spec(A∧). Let y ∈ |Y | with image x ∈ |X|. Then

(1) ifOhY,y is regular, thenOhX,x is regular,
(2) if y is in the closed fibre, thenOhY,y is regular⇔ OhX,x is regular, and



7. IMPLIED PROPERTIES 6313

(3) If X is proper over A, then X is regular if and only if Y is regular.

Proof. By étale localization the first two statements follow immediately from the
counter part to this lemma for schemes, see Resolution of Surfaces, Lemma 11.2. For part
(3), since Y → X is surjective (asA→ A∧ is faithfully flat) we see that Y regular implies
X regular by part (1). Conversely, if X is regular, then the henselian local rings of Y are
regular for all points of the special fibre. Let y ∈ |Y | be a general point. Since |Y | →
| Spec(A∧)| is closed in the proper case, we can find a specialization y  y0 with y0 in the
closed fibre. Choose an elementary étale neighbourhood (V, v0) → (Y, y0) as in Decent
Spaces, Lemma 11.4. Since Y is decent we can lift y  y0 to a specialization v  v0 in V
(Decent Spaces, Lemma 12.2). Then we conclude thatOV,v is a localization ofOV,v0 hence
regular and the proof is complete. �

Lemma 6.3. Let (A,m) be a local Noetherian ring. Let X be an algebraic space over
A. Assume

(1) A is analytically unramified (Algebra, Definition 162.9),
(2) X is locally of finite type over A,
(3) X → Spec(A) is étale at every point of codimension 0 in X .

Then the normalization of X is finite over X .

Proof. Choose a scheme U and a surjective étale morphism U → X . Then U →
Spec(A) satisfies the assumptions and hence the conclusions of Resolution of Surfaces,
Lemma 11.5. �

7. Implied properties

In this section we prove that for a Noetherian integral algebraic space the existence of a
regular alteration has quite a few consequences. This section should be skipped by those
not interested in “bad” Noetherian algebraic spaces.

Lemma 7.1. Let S be a scheme. Let Y be a Noetherian integral algebraic space over
S. Assume there exists an alteration f : X → Y withX regular. Then the normalization
Y ν → Y is finite and Y has a dense open which is regular.

Proof. By étale localization, it suffices to prove this when Y = Spec(A) where A
is a Noetherian domain. Let B be the integral closure of A in its fraction field. Set C =
Γ(X,OX). By Cohomology of Spaces, Lemma 20.2 we see that C is a finiteA-module. As
X is normal (Properties of Spaces, Lemma 25.4) we see that C is normal domain (Spaces
over Fields, Lemma 4.6). Thus B ⊂ C and we conclude that B is finite over A as A is
Noetherian.

There exists a nonempty openV ⊂ Y such that f−1V → V is finite, see Spaces over Fields,
Definition 8.3. After shrinking V we may assume that f−1V → V is flat (Morphisms
of Spaces, Proposition 32.1). Thus f−1V → V is faithfully flat. Then V is regular by
Algebra, Lemma 164.4. �

Lemma 7.2. Let (A,m, κ) be a local Noetherian domain. Assume there exists an al-
teration f : X → Spec(A) with X regular. Then

(1) there exists a nonzero f ∈ A such that Af is regular,
(2) the integral closure B of A in its fraction field is finite over A,
(3) the m-adic completion of B is a normal ring, i.e., the completions of B at its

maximal ideals are normal domains, and
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(4) the generic formal fibre of A is regular.

Proof. Parts (1) and (2) follow from Lemma 7.1. We have to redo part of the proof
of that lemma in order to set up notation for the proof of (3). Set C = Γ(X,OX). By
Cohomology of Spaces, Lemma 20.2 we see that C is a finite A-module. As X is normal
(Properties of Spaces, Lemma 25.4) we see that C is normal domain (Spaces over Fields,
Lemma 4.6). Thus B ⊂ C and we conclude that B is finite over A as A is Noetherian. By
Resolution of Surfaces, Lemma 13.2 in order to prove (3) it suffices to show that the m-adic
completion C∧ is normal.

By Algebra, Lemma 97.8 the completion C∧ is the product of the completions of C at the
prime ideals ofC lying over m. There are finitely many of these and these are the maximal
ideals m1, . . . ,mr of C. (The corresponding result for B explains the final statement of
the lemma.) Thus replacing A by Cmi and X by Xi = X ×Spec(C) Spec(Cmi) we reduce
to the case discussed in the next paragraph. (Note that Γ(Xi,O) = Cmi by Cohomology
of Spaces, Lemma 11.2.)

HereA is a Noetherian local normal domain and f : X → Spec(A) is a regular alteration
with Γ(X,OX) = A. We have to show that the completion A∧ of A is a normal domain.
By Lemma 6.2 Y = X ×Spec(A) Spec(A∧) is regular. Since Γ(Y,OY ) = A∧ by Coho-
mology of Spaces, Lemma 11.2. We conclude that A∧ is normal as before. Namely, Y is
normal by Properties of Spaces, Lemma 25.4. It is connected because Γ(Y,OY ) = A∧ is
local. Hence Y is normal and integral (as connected and normal implies integral for sep-
arated algebraic spaces). Thus Γ(Y,OY ) = A∧ is a normal domain by Spaces over Fields,
Lemma 4.6. This proves (3).

Proof of (4). Let η ∈ Spec(A) denote the generic point and denote by a subscript η the
base change to η. Since f is an alteration, the scheme Xη is finite and faithfully flat over
η. Since Y = X ×Spec(A) Spec(A∧) is regular by Lemma 6.2 we see that Yη is regular (as
a limit of opens in Y ). Then Yη → Spec(A∧ ⊗A κ(η)) is finite faithfully flat onto the
generic formal fibre. We conclude by Algebra, Lemma 164.4. �

8. Resolution

Here is a definition.

Definition 8.1. Let S be a scheme. Let Y be a Noetherian integral algebraic space
over S. A resolution of singularities of X is a modification f : X → Y such that X is
regular.

In the case of surfaces we sometimes want a bit more information.

Definition 8.2. Let S be a scheme. Let Y be a 2-dimensional Noetherian integral
algebraic space over S. We say Y has a resolution of singularities by normalized blowups
if there exists a sequence

Yn → Xn−1 → . . .→ Y1 → Y0 → Y

where
(1) Yi is proper over Y for i = 0, . . . , n,
(2) Y0 → Y is the normalization,
(3) Yi → Yi−1 is a normalized blowup for i = 1, . . . , n, and
(4) Yn is regular.
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Observe that condition (1) implies that the normalization Y0 of Y is finite over Y and that
the normalizations used in the normalized blowing ups are finite as well. We finally come
to the main theorem of this chapter.

Theorem 8.3. Let S be a scheme. Let Y be a two dimensional integral Noetherian
algebraic space over S. The following are equivalent

(1) there exists an alteration X → Y with X regular,
(2) there exists a resolution of singularities of Y ,
(3) Y has a resolution of singularities by normalized blowups,
(4) the normalizationY ν → Y is finite,Y ν has finitely many singular points y1, . . . , ym ∈
|Y |, and for each i the completion of the henselian local ringOhY ν ,yi is normal.

Proof. The implications (3)⇒ (2)⇒ (1) are immediate.
Let X → Y be an alteration with X regular. Then Y ν → Y is finite by Lemma 7.1.
Consider the factorization f : X → Y ν from Morphisms of Spaces, Lemma 49.8. The
morphism f is finite over an open V ⊂ Y ν containing every point of codimension≤ 1 in
Y ν by Spaces over Fields, Lemma 3.2. Then f is flat over V by Algebra, Lemma 128.1 and
the fact that a normal local ring of dimension≤ 2 is Cohen-Macaulay by Serre’s criterion
(Algebra, Lemma 157.4). Then V is regular by Algebra, Lemma 164.4. As Y ν is Noetherian
we conclude that Y ν \ V = {y1, . . . , ym} is finite. For each i letOhY ν ,yi be the henselian
local ring. ThenX×Y Spec(OhY ν ,yi) is a regular alteration of Spec(OhY ν ,yi) (some details
omitted). By Lemma 7.2 the completion of OhY ν ,yi is normal. In this way we see that (1)
⇒ (4).
Assume (4). We have to prove (3). We may immediately replace Y by its normalization.
Let y1, . . . , ym ∈ |Y | be the singular points. Choose a collection of elementary étale
neighbourhoods (Vi, vi) → (Y, yi) as in Section 3. For each i the henselian local ring
OhY ν ,yi is the henselization of OVi,vi . Hence these rings have isomorphic completions.
Thus by the result for schemes (Resolution of Surfaces, Theorem 14.5) we see that there
exist finite sequences of normalized blowups

Xi,ni → Xi,ni−1 → . . .→ Vi

blowing up only in points lying over vi such that Xi,ni is regular. By Lemma 5.3 there is
a sequence of normalized blowing ups

Xn → Xn−1 → . . .→ X1 → Y

and of course Xn is regular too (look at the local rings). This completes the proof. �

9. Examples

Some examples related to the results earlier in this chapter.
Example 9.1. Let k be a field. The ring A = k[x, y, z]/(xr + ys + zt) is a UFD for

r, s, t pairwise coprime integers. Namely, since xr + ys + zt is irreducible A is a domain.
The element z is a prime element, i.e., generates a prime ideal in A. On the other hand, if
t = 1 + ers for some e, then

A[1/z] ∼= k[x′, y′, 1/z]
where x′ = x/zes, y′ = y/zer and z = (x′)r + (y′)s. Thus A[1/z] is a localization of
a polynomial ring and hence a UFD. It follows from an argument of Nagata that A is a
UFD. See Algebra, Lemma 120.7. A similar argument can be given if t is not congruent to
1 modulo rs.
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Example 9.2. The ring A = C[[x, y, z]]/(xr + ys + zt) is not a UFD when 1 <
r < s < t are pairwise coprime integers and not equal to 2, 3, 5. For example consider the
special case A = C[[x, y, z]]/(x2 + y5 + z7). Consider the maps

ψζ : C[[x, y, z]]/(x2 + y5 + z7)→ C[[t]]

given by
x 7→ t7, y 7→ t3, z 7→ −ζt2(1 + t)1/7

where ζ is a 7th root of unity. The kernel pζ of ψζ is a height one prime, hence if A is a
UFD, then it is principal, say given by fζ ∈ C[[x, y, z]]. Note that V (x3−y7) =

⋃
V (pζ)

andA/(x3−y7) is reduced away from the closed point. Hence, still assumingA is a UFD,
we would obtain∏

ζ
fζ = u(x3 − y7) + a(x2 + y5 + z7) in C[[x, y, z]]

for some unit u ∈ C[[x, y, z]] and some element a ∈ C[[x, y, z]]. After scaling by a
constant we may assume u(0, 0, 0) = 1. Note that the left hand side vanishes to order 7.
Hence a = −x mod m2. But then we get a term xy5 on the right hand side which does
not occur on the left hand side. A contradiction.

Example 9.3. There exists an excellent 2-dimensional Noetherian local ring and a
modification X → S = Spec(A) which is not a scheme. We sketch a construction. Let
X be a normal surface over C with a unique singular point x ∈ X . Assume that there
exists a resolution π : X ′ → X such that the exceptional fibreC = π−1(x)red is a smooth
projective curve. Furthermore, assume there exists a point c ∈ C such that if OC(nc) is
in the image of Pic(X ′) → Pic(C), then n = 0. Then we let X ′′ → X ′ be the blowing
up in the nonsingular point c. Let C ′ ⊂ X ′′ be the strict transform of C and let E ⊂ X ′′

be the exceptional fibre. By Artin’s results ([?]; use for example [?] to see that the normal
bundle of C ′ is negative) we can blow down the curve C ′ in X ′′ to obtain an algebraic
space X ′′′. Picture

X ′′

}} ""
X ′

!!

X ′′′

||
X

We claim that X ′′′ is not a scheme. This provides us with our example because X ′′′ is a
scheme if and only if the base change of X ′′′ to A = OX,x is a scheme (details omitted).
If X ′′′ where a scheme, then the image of C ′ in X ′′′ would have an affine neighbour-
hood. The complement of this neighbourhood would be an effective Cartier divisor on
X ′′′ (becauseX ′′′ is nonsingular apart from 1 point). This effective Cartier divisor would
correspond to an effective Cartier divisor on X ′′ meeting E and avoiding C ′. Taking the
image inX ′ we obtain an effective Cartier divisor meeting C (set theoretically) in c. This
is impossible as no multiple of c is the restriction of a Cartier divisor by assumption.

To finish we have to find such a singular surface X . We can just take X to be the affine
surface given by

x3 + y3 + z3 + x4 + y4 + z4 = 0
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in A3
C = Spec(C[x, y, z]) and singular point (0, 0, 0). Then (0, 0, 0) is the only singular

point. Blowing up X in the maximal ideal corresponding to (0, 0, 0) we find three charts
each isomorphic to the smooth affine surface

1 + s3 + t3 + x(1 + s4 + t4) = 0
which is nonsingular with exceptional divisorC given byx = 0. The reader will recognize
C as an elliptic curve. Finally, the surfaceX is rational as projection from (0, 0, 0) shows,
or because in the equation for the blowup we can solve for x. Finally, the Picard group of
a nonsingular rational surface is countable, whereas the Picard group of an elliptic curve
over the complex numbers is uncountable. Hence we can find a closed point c as indicated.
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CHAPTER 90

Formal Deformation Theory

1. Introduction

This chapter develops formal deformation theory in a form applicable later in the Stacks
project, closely following Rim [?, Exposee VI] and Schlessinger [?]. We strongly encourage
the reader new to this topic to read the paper by Schlessinger first, as it is sufficiently
general for most applications, and Schlessinger’s results are indeed used in most papers
that use this kind of formal deformation theory.

Let Λ be a complete Noetherian local ring with residue field k, and let CΛ denote the cat-
egory of Artinian local Λ-algebras with residue field k. Given a functor F : CΛ → Sets
such that F (k) is a one element set, Schlessinger’s paper introduced conditions (H1)-(H4)
such that:

(1) F has a “hull” if and only if (H1)-(H3) hold.
(2) F is prorepresentable if and only if (H1)-(H4) hold.

The purpose of this chapter is to generalize these results in two ways exactly as is done in
Rim’s paper:

(A) The functor F is replaced by a category F cofibered in groupoids over CΛ, see
Section 3.

(B) We let Λ be a Noetherian ring and Λ → k a finite ring map to a field. The
category CΛ is the category of Artinian local Λ-algebrasA endowed with a given
identification A/mA = k.

The analogue of the condition that F (k) is a one element set is that F(k) is the trivial
groupoid. If F satisfies this condition then we say it is a predeformation category, but in
general we do not make this assumption. Rim’s paper [?, Exposee VI] is the original source
for the results in this document. We also mention the useful paper [?], which discusses
deformation theory with groupoids but in less generality than we do here.

An important role is played by the “completion” ĈΛ of the category CΛ. An object of ĈΛ is a
Noetherian complete local Λ-algebraRwhose residue field is identified with k, see Section
4. On the one hand CΛ ⊂ ĈΛ is a strictly full subcategory and on the other hand ĈΛ is a full
subcategory of the category of pro-objects of CΛ. A functor CΛ → Sets is prorepresentable
if it is isomorphic to the restriction of a representable functor R = MorĈΛ

(R,−) to CΛ

where R ∈ Ob(ĈΛ).

Categories cofibred in groupoids are dual to categories fibred in groupoids; we introduce
them in Section 5. A smooth morphism of categories cofibred in groupoids over CΛ is one
that satisfies the infinitesimal lifting criterion for objects, see Section 8. This is analogous
to the definition of a formally smooth ring map, see Algebra, Definition 138.1 and is exactly
dual to the notion in Criteria for Representability, Section 6. This is an important notion
as we eventually want to prove that certain kinds of categories cofibred in groupoids have

6321
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a smooth prorepresentable presentation, much like the characterization of algebraic stacks
in Algebraic Stacks, Sections 16 and 17. A versal formal object of a category F cofibred
in groupoids over CΛ is an object ξ ∈ F̂(R) of the completion such that the associated
morphism ξ : R|CΛ → F is smooth.

In Section 10, we define conditions (S1) and (S2) onF generalizing Schlessinger’s (H1) and
(H2). The analogue of Schlessinger’s (H3)—the condition that F has finite dimensional
tangent space—is not given a name. A key step in the development of the theory is the
existence of versal formal objects for predeformation categories satisfying (S1), (S2) and
(H3), see Lemma 13.4. Schlessinger’s notion of a hull for a functor F : CΛ → Sets is, in
our terminology, a versal formal object ξ ∈ F̂ (R) such that the induced map of tangent
spaces dξ : TR|CΛ → TF is an isomorphism. In the literature a hull is often called a
“miniversal” object. We do not do so, and here is why. It can happen that a functor has
a versal formal object without having a hull. Moreover, we show in Section 14 that if a
predeformation category has a versal formal object, then it always has a minimal one (as
defined in Definition 14.4) which is unique up to isomorphism, see Lemma 14.5. But it can
happen that the minimal versal formal object does not induce an isomorphism on tangent
spaces! (See Examples 15.3 and 15.8.)

Keeping in mind the differences pointed out above, Theorem 15.5 is the direct general-
ization of (1) above: it recovers Schlessinger’s result in the case that F is a functor and it
characterizes minimal versal formal objects, in the presence of conditions (S1) and (S2), in
terms of the map dξ : TR|CΛ → TF on tangent spaces.

In Section 16, we define Rim’s condition (RS) onF generalizing Schlessinger’s (H4). A de-
formation category is defined as a predeformation category satisfying (RS). The analogue
to prorepresentable functors are the categories cofibred in groupoids over CΛ which have
a presentation by a smooth prorepresentable groupoid in functors on CΛ, see Definitions
21.1, 22.1, and 23.1. This notion of a presentation takes into account the groupoid struc-
ture of the fibers of F . In Theorem 26.4 we prove that F has a presentation by a smooth
prorepresentable groupoid in functors if and only if F has a finite dimensional tangent
space and finite dimensional infinitesimal automorphism space. This is the generalization
of (2) above: it reduces to Schlessinger’s result in the case that F is a functor. There is a
final Section 27 where we discuss how to use minimal versal formal objects to produce a
(unique up to isomorphism) minimal presentation by a smooth prorepresentable groupoid
in functors.

We also find the following conceptual explanation for Schlessinger’s conditions. If a pre-
deformation category F satisfies (RS), then the associated functor of isomorphism classes
F : CΛ → Sets satisfies (H1) and (H2) (Lemmas 16.6 and 10.5). Conversely, if a functor
F : CΛ → Sets arises naturally as the functor of isomorphism classes of a category F
cofibered in groupoids, then it seems to happen in practice that an argument showing F
satisfies (H1) and (H2) will also showF satisfies (RS). Examples are discussed in Deforma-
tion Problems, Section 1. Moreover, if F satisfies (RS), then condition (H4) for F has a
simple interpretation in terms of extending automorphisms of objects ofF (Lemma 16.7).
These observations suggest that (RS) should be regarded as the fundamental deformation
theoretic glueing condition.
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2. Notation and Conventions

A ring is commutative with 1. The maximal ideal of a local ringA is denoted by mA. The
set of positive integers is denoted by N = {1, 2, 3, . . .}. If U is an object of a category
C , we denote by U the functor MorC(U,−) : C → Sets, see Remarks 5.2 (12). Warning:
this may conflict with the notation in other chapters where we sometimes useU to denote
hU (−) = MorC(−, U).

Throughout this chapter Λ is a Noetherian ring and Λ→ k is a finite ring map from Λ to
a field. The kernel of this map is denoted mΛ and the image k′ ⊂ k. It turns out that mΛ
is a maximal ideal, k′ = Λ/mΛ is a field, and the extension k/k′ is finite. See discussion
surrounding (3.3.1).

3. The base category

Motivation. An important application of formal deformation theory is to criteria for rep-
resentability by algebraic spaces. Suppose given a locally Noetherian base S and a functor
F : (Sch/S)oppfppf → Sets. Let k be a finite type field over S , i.e., we are given a finite type
morphism Spec(k)→ S. One of Artin’s criteria is that for any element x ∈ F (Spec(k))
the predeformation functor associated to the triple (S, k, x) should be prorepresentable.
By Morphisms, Lemma 16.1 the condition that k is of finite type over S means that there
exists an affine open Spec(Λ) ⊂ S such that k is a finite Λ-algebra. This motivates why
we work throughout this chapter with a base category as follows.

Definition 3.1. Let Λ be a Noetherian ring and let Λ→ k be a finite ring map where
k is a field. We define CΛ to be the category with

(1) objects are pairs (A,ϕ) where A is an Artinian local Λ-algebra and where ϕ :
A/mA → k is a Λ-algebra isomorphism, and

(2) morphisms f : (B,ψ) → (A,ϕ) are local Λ-algebra homomorphisms such that
ϕ ◦ (f mod m) = ψ.

We say we are in the classical case if Λ is a Noetherian complete local ring and k is its
residue field.

Note that if Λ→ k is surjective and if A is an Artinian local Λ-algebra, then the identifi-
cation ϕ, if it exists, is unique. Moreover, in this case any Λ-algebra map A→ B is going
to be compatible with the identifications. Hence in this case CΛ is just the category of local
Artinian Λ-algebras whose residue field “is” k. By abuse of notation we also denote objects
of CΛ simply A in the general case. Moreover, we will often write A/m = k, i.e., we will
pretend all rings in CΛ have residue field k (since all ring maps in CΛ are compatible with
the given identifications this should never cause any problems). Throughout the rest of
this chapter the base ring Λ and the field k are fixed. The category CΛ will be the base
category for the cofibered categories considered below.

Definition 3.2. Let f : B → A be a ring map in CΛ. We say f is a small extension
if it is surjective and Ker(f) is a nonzero principal ideal which is annihilated by mB .

By the following lemma we can often reduce arguments involving surjective ring maps in
CΛ to the case of small extensions.

Lemma 3.3. Let f : B → A be a surjective ring map in CΛ. Then f can be factored
as a composition of small extensions.
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Proof. Let I be the kernel of f . The maximal ideal mB is nilpotent since B is Ar-
tinian, say mnB = 0. Hence we get a factorization

B = B/Imn−1
B → B/Imn−2

B → . . .→ B/I ∼= A

of f into a composition of surjective maps whose kernels are annihilated by the maximal
ideal. Thus it suffices to prove the lemma when f itself is such a map, i.e. when I is anni-
hilated by mB . In this case I is a k-vector space, which has finite dimension, see Algebra,
Lemma 53.6. Take a basis x1, . . . , xn of I as a k-vector space to get a factorization

B → B/(x1)→ . . .→ B/(x1, . . . , xn) ∼= A

of f into a composition of small extensions. �

The next lemma says that we can compute the length of a module over a local Λ-algebra
with residue field k in terms of the length over Λ. To explain the notation in the statement,
let k′ ⊂ k be the image of our fixed finite ring map Λ → k. Note that k′ ⊂ k is a finite
extension of rings. Hence k′ is a field and k/k′ is a finite extension of fields, see Algebra,
Lemma 36.18. Moreover, as Λ → k′ is surjective we see that its kernel is a maximal ideal
mΛ. Thus

(3.3.1) [k : k′] = [k : Λ/mΛ] <∞
and in the classical case we have k = k′. The notation k′ = Λ/mΛ will be fixed throughout
this chapter.

Lemma 3.4. Let A be a local Λ-algebra with residue field k. Let M be an A-module.
Then [k : k′]lengthA(M) = lengthΛ(M). In the classical case we have lengthA(M) =
lengthΛ(M).

Proof. If M is a simple A-module then M ∼= k as an A-module, see Algebra, Lemma
52.10. In this case lengthA(M) = 1 and lengthΛ(M) = [k′ : k], see Algebra, Lemma
52.6. If lengthA(M) is finite, then the result follows on choosing a filtration of M by A-
submodules with simple quotients using additivity, see Algebra, Lemma 52.3. If lengthA(M)
is infinite, the result follows from the obvious inequality lengthA(M) ≤ lengthΛ(M).

�

Lemma 3.5. Let A→ B be a ring map in CΛ. The following are equivalent
(1) f is surjective,
(2) mA/m

2
A → mB/m

2
B is surjective, and

(3) mA/(mΛA+ m2
A)→ mB/(mΛB + m2

B) is surjective.

Proof. For any ring map f : A → B in CΛ we have f(mA) ⊂ mB for example
because mA, mB is the set of nilpotent elements of A, B. Suppose f is surjective. Let
y ∈ mB . Choose x ∈ Awith f(x) = y. Since f induces an isomorphismA/mA → B/mB
we see that x ∈ mA. Hence the induced map mA/m

2
A → mB/m

2
B is surjective. In this

way we see that (1) implies (2).

It is clear that (2) implies (3). The map A → B gives rise to a canonical commutative
diagram

mΛ/m
2
Λ ⊗k′ k //

��

mA/m
2
A

//

��

mA/(mΛA+ m2
A) //

��

0

mΛ/m
2
Λ ⊗k′ k // mB/m2

B
// mB/(mΛB + m2

B) // 0
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with exact rows. Hence if (3) holds, then so does (2).

Assume (2). To show that A → B is surjective it suffices by Nakayama’s lemma (Al-
gebra, Lemma 20.1) to show that A/mA → B/mAB is surjective. (Note that mA is
a nilpotent ideal.) As k = A/mA = B/mB it suffices to show that mAB → mB
is surjective. Applying Nakayama’s lemma once more we see that it suffices to see that
mAB/mAmB → mB/m

2
B is surjective which is what we assumed. �

If A → B is a ring map in CΛ, then the map mA/(mΛA + m2
A) → mB/(mΛB + m2

B) is
the map on relative cotangent spaces. Here is a formal definition.

Definition 3.6. Let R → S be a local homomorphism of local rings. The relative
cotangent space1 of R over S is the S/mS-vector space mS/(mRS + m2

S).

If f1 : A1 → A and f2 : A2 → A are two ring maps, then the fiber product A1 ×A A2
is the subring of A1 × A2 consisting of elements whose two projections to A are equal.
Throughout this chapter we will be considering conditions involving such a fiber product
when f1 and f2 are in CΛ. It isn’t always the case that the fibre product is an object of CΛ.

Example 3.7. Let p be a prime number and let n ∈ N. Let Λ = Fp(t1, t2, . . . , tn) and
let k = Fp(x1, . . . , xn) with map Λ → k given by ti 7→ xpi . Let A = k[ε] = k[x]/(x2).
ThenA is an object of CΛ. Suppose thatD : k → k is a derivation of k over Λ, for example
D = ∂/∂xi. Then the map

fD : k −→ k[ε], a 7→ a+D(a)ε

is a morphism of CΛ. Set A1 = A2 = k and set f1 = f∂/∂x1 and f2(a) = a. Then
A1 ×A A2 = {a ∈ k | ∂/∂x1(a) = 0} which does not surject onto k. Hence the fibre
product isn’t an object of CΛ.

It turns out that this problem can only occur if the residue field extension k/k′ (3.3.1) is
inseparable and neither f1 nor f2 is surjective.

Lemma 3.8. Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ. Then:
(1) If f1 or f2 is surjective, then A1 ×A A2 is in CΛ.
(2) If f2 is a small extension, then so is A1 ×A A2 → A1.
(3) If the field extension k/k′ is separable, then A1 ×A A2 is in CΛ.

Proof. The ring A1 ×A A2 is a Λ-algebra via the map Λ → A1 ×A A2 induced by
the maps Λ→ A1 and Λ→ A2. It is a local ring with unique maximal ideal

mA1 ×mA mA2 = Ker(A1 ×A A2 −→ k)

A ring is Artinian if and only if it has finite length as a module over itself, see Alge-
bra, Lemma 53.6. Since A1 and A2 are Artinian, Lemma 3.4 implies lengthΛ(A1) and
lengthΛ(A2), and hence lengthΛ(A1 × A2), are all finite. As A1 ×A A2 ⊂ A1 × A2 is
a Λ-submodule, this implies lengthA1×AA2

(A1 ×A A2) ≤ lengthΛ(A1 ×A A2) is finite.
So A1 ×A A2 is Artinian. Thus the only thing that is keeping A1 ×A A2 from being an
object of CΛ is the possibility that its residue field maps to a proper subfield of k via the
map A1 ×A A2 → A→ A/mA = k above.

1Caution: We will see later that in our general setting the tangent space of an objectA ∈ CΛ over Λ should
not be defined simply as the k-linear dual of the relative cotangent space. In fact, the correct definition of the
relative cotangent space is ΩS/R ⊗S S/mS .
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Proof of (1). If f2 is surjective, then the projection A1 ×A A2 → A1 is surjective. Hence
the composition A1 ×A A2 → A1 → A1/mA1 = k is surjective and we conclude that
A1 ×A A2 is an object of CΛ.

Proof of (2). If f2 is a small extension then A2 → A and A1 ×A A2 → A1 are both
surjective with the same kernel. Hence the kernel of A1 ×A A2 → A1 is a 1-dimensional
k-vector space and we see that A1 ×A A2 → A1 is a small extension.

Proof of (3). Choose x ∈ k such that k = k′(x) (see Fields, Lemma 19.1). Let P ′(T ) ∈
k′[T ] be the minimal polynomial ofx over k′. Since k/k′ is separable we see that dP/dT (x) 6=
0. Choose a monic P ∈ Λ[T ] which maps to P ′ under the surjective map Λ[T ] →
k′[T ]. BecauseA,A1, A2 are henselian, see Algebra, Lemma 153.10, we can find x, x1, x2 ∈
A,A1, A2 with P (x) = 0, P (x1) = 0, P (x2) = 0 and such that the image of x, x1, x2
in k is x. Then (x1, x2) ∈ A1 ×A A2 because x1, x2 map to x ∈ A by uniqueness, see
Algebra, Lemma 153.2. Hence the residue field ofA1×AA2 contains a generator of k over
k′ and we win. �

Next we define essential surjections in CΛ. A necessary and sufficient condition for a sur-
jection in CΛ to be essential is given in Lemma 3.12.

Definition 3.9. Let f : B → A be a ring map in CΛ. We say f is an essential
surjection if it has the following properties:

(1) f is surjective.
(2) If g : C → B is a ring map in CΛ such that f ◦g is surjective, then g is surjective.

Using Lemma 3.5, we can characterize essential surjections in CΛ as follows.

Lemma 3.10. Let f : B → A be a ring map in CΛ. The following are equivalent
(1) f is an essential surjection,
(2) the map B/m2

B → A/m2
A is an essential surjection, and

(3) the map B/(mΛB + m2
B)→ A/(mΛA+ m2

A) is an essential surjection.

Proof. Assume (3). Let C → B be a ring map in CΛ such that C → A is surjective.
Then C → A/(mΛA + m2

A) is surjective too. We conclude that C → B/(mΛB + m2
B)

is surjective by our assumption. Hence C → B is surjective by applying Lemma 3.5 (2
times).

Assume (1). Let C → B/(mΛB + m2
B) be a morphism of CΛ such that C → A/(mΛA +

m2
A) is surjective. Set C ′ = C ×B/(mΛB+m2

B
) B which is an object of CΛ by Lemma 3.8.

Note that C ′ → A/(mΛA+ m2
A) is still surjective, hence C ′ → A is surjective by Lemma

3.5. Thus C ′ → B is surjective by our assumption. This implies that C ′ → B/(mΛB +
m2
B) is surjective, which implies by the construction of C ′ that C → B/(mΛB + m2

B) is
surjective.

In the first paragraph we proved (3)⇒ (1) and in the second paragraph we proved (1)⇒
(3). The equivalence of (2) and (3) is a special case of the equivalence of (1) and (3), hence
we are done. �

To analyze essential surjections in CΛ a bit more we introduce some notation. Suppose that
A is an object of CΛ or more generally any Λ-algebra equipped with a Λ-algebra surjection
A→ k. There is a canonical exact sequence

(3.10.1) mA/m
2
A

dA−−→ ΩA/Λ ⊗A k → Ωk/Λ → 0
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see Algebra, Lemma 131.9. Note that Ωk/Λ = Ωk/k′ with k′ as in (3.3.1). Let H1(Lk/Λ)
be the first homology module of the naive cotangent complex of k over Λ, see Algebra,
Definition 134.1. Then we can extend (3.10.1) to the exact sequence

(3.10.2) H1(Lk/Λ)→ mA/m
2
A

dA−−→ ΩA/Λ ⊗A k → Ωk/Λ → 0,

see Algebra, Lemma 134.4. If B → A is a ring map in CΛ or more generally a map of
Λ-algebras equipped with Λ-algebra surjections onto k, then we obtain a commutative
diagram

(3.10.3)

H1(Lk/Λ) // mB/m2
B dB

//

��

ΩB/Λ ⊗B k //

��

Ωk/Λ // 0

H1(Lk/Λ) // mA/m2
A

dA // ΩA/Λ ⊗A k // Ωk/Λ // 0

with exact rows.

Lemma 3.11. There is a canonical map

mΛ/m
2
Λ −→ H1(Lk/Λ).

If k′ ⊂ k is separable (for example if the characteristic of k is zero), then this map induces
an isomorphism mΛ/m

2
Λ ⊗k′ k = H1(Lk/Λ). If k = k′ (for example in the classical case),

then mΛ/m
2
Λ = H1(Lk/Λ). The composition

mΛ/m
2
Λ −→ H1(Lk/Λ) −→ mA/m

2
A

comes from the canonical map mΛ → mA.

Proof. Note thatH1(Lk′/Λ) = mΛ/m
2
Λ as Λ→ k′ is surjective with kernel mΛ. The

map arises from functoriality of the naive cotangent complex. If k′ ⊂ k is separable, then
k′ → k is an étale ring map, see Algebra, Lemma 143.4. Thus its naive cotangent complex
has trivial homology groups, see Algebra, Definition 143.1. Then Algebra, Lemma 134.4
applied to the ring maps Λ→ k′ → k implies that mΛ/m

2
Λ ⊗k′ k = H1(Lk/Λ). We omit

the proof of the final statement. �

Lemma 3.12. Let f : B → A be a ring map in CΛ. Notation as in (3.10.3).
(1) The equivalent conditions of Lemma 3.5 characterizing when f is surjective are

also equivalent to
(a) Im(dB)→ Im(dA) is surjective, and
(b) the map ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is surjective.

(2) The following are equivalent
(a) f is an essential surjection (see Lemma 3.10),
(b) the map Im(dB)→ Im(dA) is an isomorphism, and
(c) the map ΩB/Λ ⊗B k → ΩA/Λ ⊗A k is an isomorphism.

(3) If k/k′ is separable, then f is an essential surjection if and only if the mapmB/(mΛB+
m2
B)→ mA/(mΛA+ m2

A) is an isomorphism.
(4) If f is a small extension, then f is not essential if and only if f has a section

s : A→ B in CΛ with f ◦ s = idA.

Proof. Proof of (1). It follows from (3.10.3) that (1)(a) and (1)(b) are equivalent.
Also, ifA→ B is surjective, then (1)(a) and (1)(b) hold. Assume (1)(a). Since the kernel of
dA is the image of H1(Lk/Λ) which also maps to mB/m

2
B we conclude that mB/m2

B →
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mA/m
2
A is surjective. Hence B → A is surjective by Lemma 3.5. This finishes the proof

of (1).

Proof of (2). The equivalence of (2)(b) and (2)(c) is immediate from (3.10.3).

Assume (2)(b). Let g : C → B be a ring map in CΛ such that f ◦ g is surjective. We
conclude that mC/m2

C → mA/m
2
A is surjective by Lemma 3.5. Hence Im(dC)→ Im(dA)

is surjective and by the assumption we see that Im(dC)→ Im(dB) is surjective. It follows
that C → B is surjective by (1).

Assume (2)(a). Then f is surjective and we see that ΩB/Λ⊗B k → ΩA/Λ⊗Ak is surjective.
Let K be the kernel. Note that K = dB(Ker(mB/m2

B → mA/m
2
A)) by (3.10.3). Choose

a splitting
ΩB/Λ ⊗B k = ΩA/Λ ⊗A k ⊕K

of k-vector space. The map d : B → ΩB/Λ induces via the projection onto K a map
D : B → K. Set C = {b ∈ B | D(b) = 0}. The Leibniz rule shows that this is a Λ-
subalgebra ofB. Let x ∈ k. Choose x ∈ B mapping to x. IfD(x) 6= 0, then we can find an
element y ∈ mB such that D(y) = D(x). Hence x− y ∈ C is an element which maps to
x. ThusC → k is surjective andC is an object of CΛ. Similarly, pick ω ∈ Im(dA). We can
find x ∈ mB such that dB(x) maps to ω by (1). If D(x) 6= 0, then we can find an element
y ∈ mB which maps to zero in mA/m

2
A such that D(y) = D(x). Hence z = x − y is an

element of mC whose image dC(z) ∈ ΩC/k ⊗C k maps to ω. Hence Im(dC) → Im(dA)
is surjective. We conclude that C → A is surjective by (1). Hence C → B is surjective by
assumption. Hence D = 0, i.e., K = 0, i.e., (2)(c) holds. This finishes the proof of (2).

Proof of (3). If k′/k is separable, thenH1(Lk/Λ) = mΛ/m
2
Λ⊗k′ k, see Lemma 3.11. Hence

Im(dA) = mA/(mΛA+ m2
A) and similarly for B. Thus (3) follows from (2).

Proof of (4). A section s of f is not surjective (by definition a small extension has nontriv-
ial kernel), hence f is not essentially surjective. Conversely, assume f is a small extension
but not an essential surjection. Choose a ring map C → B in CΛ which is not surjective,
such that C → A is surjective. Let C ′ ⊂ B be the image of C → B. Then C ′ 6= B but C ′

surjects onto A. Since f : B → A is a small extension, lengthC(B) = lengthC(A) + 1.
Thus lengthC(C ′) ≤ lengthC(A) sinceC ′ is a proper subring ofB. ButC ′ → A is surjec-
tive, so in fact we must have lengthC(C ′) = lengthC(A) and C ′ → A is an isomorphism
which gives us our section. �

Example 3.13. Let Λ = k[[x]] be the power series ring in 1 variable over k. SetA = k
and B = Λ/(x2). Then B → A is an essential surjection by Lemma 3.12 because it is a
small extension and the map B → A does not have a right inverse (in the category CΛ).
But the map

k ∼= mB/m
2
B −→ mA/m

2
A = 0

is not an isomorphism. Thus in Lemma 3.12 (3) it is necessary to consider the map of
relative cotangent spaces mB/(mΛB + m2

B)→ mA/(mΛA+ m2
A).

4. The completed base category

The following “completion” of the category CΛ will serve as the base category of the com-
pletion of a category cofibered in groupoids over CΛ (Section 7).

Definition 4.1. Let Λ be a Noetherian ring and let Λ→ k be a finite ring map where
k is a field. We define ĈΛ to be the category with
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(1) objects are pairs (R,ϕ) where R is a Noetherian complete local Λ-algebra and
where ϕ : R/mR → k is a Λ-algebra isomorphism, and

(2) morphisms f : (S, ψ) → (R,ϕ) are local Λ-algebra homomorphisms such that
ϕ ◦ (f mod m) = ψ.

As in the discussion following Definition 3.1 we will usually denote an object of ĈΛ simply
R, with the identification R/mR = k understood. In this section we discuss some basic
properties of objects and morphisms of the category ĈΛ paralleling our discussion of the
category CΛ in the previous section.

Our first observation is that any object A ∈ CΛ is an object of ĈΛ as an Artinian local ring
is always Noetherian and complete with respect to its maximal ideal (which is after all a
nilpotent ideal). Moreover, it is clear from the definitions that CΛ ⊂ ĈΛ is the strictly full
subcategory consisting of all Artinian rings. As it turns out, conversely every object of ĈΛ
is a limit of objects of CΛ.

Suppose that R is an object of ĈΛ. Consider the rings Rn = R/mnR for n ∈ N. These are
Noetherian local rings with a unique nilpotent prime ideal, hence Artinian, see Algebra,
Proposition 60.7. The ring maps

. . .→ Rn+1 → Rn → . . .→ R2 → R1 = k

are all surjective. Completeness of R by definition means that R = limRn. If f : R→ S

is a ring map in ĈΛ then we obtain a system of ring maps fn : Rn → Sn whose limit is the
given map.

Lemma 4.2. Let f : R→ S be a ring map in ĈΛ. The following are equivalent
(1) f is surjective,
(2) the map mR/m

2
R → mS/m

2
S is surjective, and

(3) the map mR/(mΛR+ m2
R)→ mS/(mΛS + m2

S) is surjective.

Proof. Note that for n ≥ 2 we have the equality of relative cotangent spaces

mR/(mΛR+ m2
R) = mRn/(mΛRn + m2

Rn)
and similarly for S. Hence by Lemma 3.5 we see thatRn → Sn is surjective for all n. Now
let Kn be the kernel of Rn → Sn. Then the sequences

0→ Kn → Rn → Sn → 0
form an exact sequence of directed inverse systems. The system (Kn) is Mittag-Leffler
since each Kn is Artinian. Hence by Algebra, Lemma 86.4 taking limits preserves exact-
ness. So limRn → limSn is surjective, i.e., f is surjective. �

Lemma 4.3. The category ĈΛ admits pushouts.

Proof. Let R → S1 and R → S2 be morphisms of ĈΛ. Consider the ring C =
S1 ⊗R S2. This ring has a finitely generated maximal ideal m = mS1 ⊗ S2 + S1 ⊗ mS2

with residue field k. Set C∧ equal to the completion of C with respect to m. Then C∧ is
a Noetherian ring complete with respect to the maximal ideal m∧ = mC∧ whose residue
field is identified with k, see Algebra, Lemma 97.5. Hence C∧ is an object of ĈΛ. Then
S1 → C∧ and S2 → C∧ turn C∧ into a pushout over R in ĈΛ (details omitted). �

We will not need the following lemma.

Lemma 4.4. The category ĈΛ admits coproducts of pairs of objects.
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Proof. Let R and S be objects of ĈΛ. Consider the ring C = R ⊗Λ S. There is
a canonical surjective map C → R ⊗Λ S → k ⊗Λ k → k where the last map is the
multiplication map. The kernel of C → k is a maximal ideal m. Note that m is generated
by mRC , mSC and finitely many elements of C which map to generators of the kernel of
k ⊗Λ k → k. Hence m is a finitely generated ideal. Set C∧ equal to the completion of C
with respect to m. Then C∧ is a Noetherian ring complete with respect to the maximal
ideal m∧ = mC∧ with residue field k, see Algebra, Lemma 97.5. Hence C∧ is an object of
ĈΛ. Then R→ C∧ and S → C∧ turn C∧ into a coproduct in ĈΛ (details omitted). �

An empty coproduct in a category is an initial object of the category. In the classical case
ĈΛ has an initial object, namely Λ itself. More generally, if k′ = k, then the completion
Λ∧ of Λ with respect to mΛ is an initial object. More generally still, if k′ ⊂ k is separable,
then ĈΛ has an initial object too. Namely, choose a monic polynomial P ∈ Λ[T ] such that
k ∼= k′[T ]/(P ′) where p′ ∈ k′[T ] is the image of P . Then R = Λ∧[T ]/(P ) is an initial
object, see proof of Lemma 3.8.

If R is an initial object as above, then we have CΛ = CR and ĈΛ = ĈR which effectively
brings the whole discussion in this chapter back to the classical case. But, if k′ ⊂ k is
inseparable, then an initial object does not exist.

Lemma 4.5. Let S be an object of ĈΛ. Then dimk DerΛ(S, k) <∞.

Proof. Letx1, . . . , xn ∈ mS map to a k-basis for the relative cotangent spacemS/(mΛS+
m2
S). Choose y1, . . . , ym ∈ S whose images in k generate k over k′. We claim that

dimk DerΛ(S, k) ≤ n+m. To see this it suffices to prove that ifD(xi) = 0 andD(yj) = 0,
thenD = 0. Leta ∈ S. We can find a polynomialP =

∑
λJy

J withλJ ∈ Λ whose image
in k is the same as the image of a in k. Then we see thatD(a−P ) = D(a)−D(P ) = D(a)
by our assumption that D(yj) = 0 for all j. Thus we may assume a ∈ mS . Write
a =

∑
aixi with ai ∈ S. By the Leibniz rule

D(a) =
∑

xiD(ai) +
∑

aiD(xi) =
∑

xiD(ai)

as we assumed D(xi) = 0. We have
∑
xiD(ai) = 0 as multiplication by xi is zero on

k. �

Lemma 4.6. Let f : R → S be a morphism of ĈΛ. If DerΛ(S, k) → DerΛ(R, k) is
injective, then f is surjective.

Proof. If f is not surjective, then mS/(mRS + m2
S) is nonzero by Lemma 4.2. Then

also Q = S/(f(R) + mRS + m2
S) is nonzero. Note that Q is a k = R/mR-vector space

via f . We turn Q into an S-module via S → k. The quotient map D : S → Q is an
R-derivation: if a1, a2 ∈ S , we can write a1 = f(b1) + a′

1 and a2 = f(b2) + a′
2 for some

b1, b2 ∈ R and a′
1, a

′
2 ∈ mS . Then bi and ai have the same image in k for i = 1, 2 and

a1a2 = (f(b1) + a′
1)(f(b2) + a′

2)
= f(b1)a′

2 + f(b2)a′
1

= f(b1)(f(b2) + a′
2) + f(b2)(f(b1) + a′

1)
= f(b1)a2 + f(b2)a1

in Q which proves the Leibniz rule. Hence D : S → Q is a Λ-derivation which is zero on
composing with R → S. Since Q 6= 0 there also exist derivations D : S → k which are
zero on composing with R→ S , i.e., DerΛ(S, k)→ DerΛ(R, k) is not injective. �
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Lemma 4.7. LetR be an object of ĈΛ. Let (Jn) be a decreasing sequence of ideals such
that mnR ⊂ Jn. Set J =

⋂
Jn. Then the sequence (Jn/J) defines the mR/J -adic topology

on R/J .

Proof. It is clear that mnR/J ⊂ Jn/J . Thus it suffices to show that for every n there
exists anN such that JN/J ⊂ mnR/J . This is equivalent to JN ⊂ mnR +J . For each n the
ring R/mnR is Artinian, hence there exists a Nn such that

JNn + mnR = JNn+1 + mnR = . . .

Set En = (JNn + mnR)/mnR. Set E = limEn ⊂ limR/mnR = R. Note that E ⊂ J as
for any f ∈ E and any m we have f ∈ Jm + mnR for all n � 0, so f ∈ Jm by Krull’s
intersection theorem, see Algebra, Lemma 51.4. Since the transition mapsEn → En−1 are
all surjective, we see that J surjects onto En. Hence for N = Nn works. �

Lemma 4.8. Let . . . → A3 → A2 → A1 be a sequence of surjective ring maps in
CΛ. If dimk(mAn/m2

An
) is bounded, then S = limAn is an object in ĈΛ and the ideals

In = Ker(S → An) define the mS-adic topology on S.

Proof. We will use freely that the maps S → An are surjective for all n. Note
that the maps mAn+1/m

2
An+1

→ mAn/m
2
An

are surjective, see Lemma 4.2. Hence for n
sufficiently large the dimension dimk(mAn/m2

An
) stabilizes to an integer, say r. Thus we

can find x1, . . . , xr ∈ mS whose images inAn generate mAn . Moreover, pick y1, . . . , yt ∈
S whose images in k generate k over Λ. Then we get a ring mapP = Λ[z1, . . . , zr+t]→ S ,
zi 7→ xi and zr+j 7→ yj such that the composition P → S → An is surjective for
all n. Let m ⊂ P be the kernel of P → k. Let R = P∧ be the m-adic completion of
P ; this is an object of ĈΛ. Since we still have the compatible system of (surjective) maps
R → An we get a map R → S. Set Jn = Ker(R → An). Set J =

⋂
Jn. By Lemma

4.7 we see that R/J = limR/Jn = limAn = S and that the ideals Jn/J = In define
the m-adic topology. (Note that for each n we have mNnR ⊂ Jn for some Nn and not
necessarily Nn = n, so a renumbering of the ideals Jn may be necessary before applying
the lemma.) �

Lemma 4.9. Let R′, R ∈ Ob(ĈΛ). Suppose that R = R′ ⊕ I for some ideal I of
R. Let x1, . . . , xr ∈ I map to a basis of I/mRI . Set S = R′[[X1, . . . , Xr]] and consider
the R′-algebra map S → R mapping Xi to xi. Assume that for every n � 0 the map
S/mnS → R/mnR has a left inverse in CΛ. Then S → R is an isomorphism.

Proof. As R = R′ ⊕ I we have

mR/m
2
R = mR′/m2

R′ ⊕ I/mRI

and similarly

mS/m
2
S = mR′/m2

R′ ⊕
⊕

kXi

Hence for n > 1 the map S/mnS → R/mnR induces an isomorphism on cotangent spaces.
Thus a left inverse hn : R/mnR → S/mnS is surjective by Lemma 4.2. Since hn is injective
as a left inverse it is an isomorphism. Thus the canonical surjections S/mnS → R/mnR are
all isomorphisms and we win. �
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5. Categories cofibered in groupoids

In developing the theory we work with categories cofibered in groupoids. We assume
as known the definition and basic properties of categories fibered in groupoids, see Cate-
gories, Section 35.

Definition 5.1. Let C be a category. A category cofibered in groupoids over C is a
category F equipped with a functor p : F → C such that Fopp is a category fibered in
groupoids over Copp via popp : Fopp → Copp.

Explicitly, p : F → C is cofibered in groupoids if the following two conditions hold:
(1) For every morphism f : U → V in C and every object x lying over U , there is a

morphism x→ y of F lying over f .
(2) For every pair of morphisms a : x → y and b : x → z of F and any morphism

f : p(y) → p(z) such that p(b) = f ◦ p(a), there exists a unique morphism
c : y → z of F lying over f such that b = c ◦ a.

Remarks 5.2. Everything about categories fibered in groupoids translates directly to
the cofibered setting. The following remarks are meant to fix notation. Let C be a category.

(1) We often omit the functor p : F → C from the notation.
(2) The fiber category over an objectU in C is denoted byF(U). Its objects are those

of F lying over U and its morphisms are those of F lying over idU . If x, y are
objects of F(U), we sometimes write MorU (x, y) for MorF(U)(x, y).

(3) The fibre categories F(U) are groupoids, see Categories, Lemma 35.2. Hence
the morphisms in F(U) are all isomorphisms. We sometimes write AutU (x) for
MorF(U)(x, x).

(4) LetF be a category cofibered in groupoids over C , let f : U → V be a morphism
in C , and let x ∈ Ob(F(U)). A pushforward of x along f is a morphism x→ y
of F lying over f . A pushforward is unique up to unique isomorphism (see the
discussion following Categories, Definition 33.1). We sometimes write x→ f∗x
for “the” pushforward of x along f .

(5) A choice of pushforwards for F is the choice of a pushforward of x along f for
every pair (x, f) as above. We can make such a choice of pushforwards forF by
the axiom of choice.

(6) Let F be a category cofibered in groupoids over C. Given a choice of pushfor-
wards for F , there is an associated pseudo-functor C → Groupoids. We will
never use this construction so we give no details.

(7) A morphism of categories cofibered in groupoids over C is a functor commuting
with the projections to C. IfF andF ′ are categories cofibered in groupoids over
C , we denote the morphisms from F to F ′ by MorC(F ,F ′).

(8) Categories cofibered in groupoids form a (2, 1)-category Cof(C). Its 1-morphisms
are the morphisms described in (7). If p : F → C and p′ : F ′ → C are categories
cofibered in groupoids and ϕ,ψ : F → F ′ are 1-morphisms, then a 2-morphism
t : ϕ→ ψ is a morphism of functors such that p′(tx) = idp(x) for allx ∈ Ob(F).

(9) Let F : C → Groupoids be a functor. There is a category cofibered in groupoids
F → C associated to F as follows. An object of F is a pair (U, x) where U ∈
Ob(C) and x ∈ Ob(F (U)). A morphism (U, x) → (V, y) is a pair (f, a) where
f ∈ MorC(U, V ) and a ∈ MorF (V )(F (f)(x), y). The functor F → C sends
(U, x) to U . See Categories, Section 37.
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(10) Let F be cofibered in groupoids over C. For U ∈ Ob(C) set F(U) equal to the
set of isomorphisms classes of the category F(U). If f : U → V is a morphism
of C , then we obtain a map of sets F(U)→ F(V ) by mapping the isomorphism
class of x to the isomorphism class of a pushforward f∗x of x see (4). Then
F : C → Sets is a functor. Similarly, if ϕ : F → G is a morphism of cofibered
categories, we denote by ϕ : F → G the associated morphism of functors.

(11) Let F : C → Sets be a functor. We can think of a set as a discrete category, i.e., as
a groupoid with only identity morphisms. Then the construction (9) associates
to F a category cofibered in sets. This defines a fully faithful embedding of
the category of functors C → Sets to the category of categories cofibered in
groupoids over C. We identify the category of functors with its image under
this embedding. Hence if F : C → Sets is a functor, we denote the associated
category cofibered in sets also byF ; and ifϕ : F → G is a morphism of functors,
we denote still by ϕ the corresponding morphism of categories cofibered in sets,
and vice-versa. See Categories, Section 38.

(12) Let U be an object of C. We write U for the functor MorC(U,−) : C → Sets.
This defines a fully faithful embedding of Copp into the category of functors
C → Sets. Hence, if f : U → V is a morphism, we are justified in denoting still
by f the induced morphism V → U , and vice-versa.

(13) Fiber products of categories cofibered in groupoids: If F → H and G → H
are morphisms of categories cofibered in groupoids over CΛ, then a construction
of their 2-fiber product is given by the construction for their 2-fiber product as
categories over CΛ, as described in Categories, Lemma 32.3.

(14) Products of categories cofibered in groupoids: IfF and G are categories cofibered
in groupoids over CΛ then their product is defined to be the 2-fiber product
F ×CΛ G as described in Categories, Lemma 32.3.

(15) Restricting the base category: Let p : F → C be a category cofibered in groupoids,
and let C′ be a full subcategory of C. The restriction F|C′ is the full subcategory
of F whose objects lie over objects of C′. It is a category cofibered in groupoids
via the functor p|C′ : F|C′ → C′.

6. Prorepresentable functors and predeformation categories

Our basic goal is to understand categories cofibered in groupoids over CΛ and ĈΛ. Since CΛ
is a full subcategory of ĈΛ we can restrict categories cofibred in groupoids over ĈΛ to CΛ,
see Remarks 5.2 (15). In particular we can do this with functors, in particular with repre-
sentable functors. The functors on CΛ one obtains in this way are called prorepresentable
functors.

Definition 6.1. Let F : CΛ → Sets be a functor. We say F is prorepresentable if
there exists an isomorphism F ∼= R|CΛ of functors for some R ∈ Ob(ĈΛ).

Note that if F : CΛ → Sets is prorepresentable by R ∈ Ob(ĈΛ), then
F (k) = MorĈΛ

(R, k) = {∗}

is a singleton. The categories cofibered in groupoids over CΛ that are arise in deformation
theory will often satisfy an analogous condition.

Definition 6.2. A predeformation category F is a category cofibered in groupoids
over CΛ such that F(k) is equivalent to a category with a single object and a single mor-
phism, i.e., F(k) contains at least one object and there is a unique morphism between
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any two objects. A morphism of predeformation categories is a morphism of categories
cofibered in groupoids over CΛ.

A feature of a predeformation category is the following. Let x0 ∈ Ob(F(k)). Then every
object of F comes equipped with a unique morphism to x0. Namely, if x is an object of
F over A, then we can choose a pushforward x → q∗x where q : A → k is the quotient
map. There is a unique isomorphism q∗x → x0 and the composition x → q∗x → x0 is
the desired morphism.

Remark 6.3. We say that a functor F : CΛ → Sets is a predeformation functor if
the associated cofibered set is a predeformation category, i.e. if F (k) is a one element set.
Thus if F is a predeformation category, then F is a predeformation functor.

Remark 6.4. Let p : F → CΛ be a category cofibered in groupoids, and let x ∈
Ob(F(k)). We denote by Fx the category of objects over x. An object of Fx is an arrow
y → x. A morphism (y → x)→ (z → x) in Fx is a commutative diagram

y //

��

z

��
x

There is a forgetful functor Fx → F . We define the functor px : Fx → CΛ as the
composition Fx → F

p−→ CΛ. Then px : Fx → CΛ is a predeformation category (proof
omitted). In this way we can pass from an arbitrary category cofibered in groupoids over
CΛ to a predeformation category at any x ∈ Ob(F(k)).

7. Formal objects and completion categories

In this section we discuss how to go between categories cofibred in groupoids over CΛ to
categories cofibred in groupoids over ĈΛ and vice versa.

Definition 7.1. Let F be a category cofibered in groupoids over CΛ. The category
F̂ of formal objects of F is the category with the following objects and morphisms.

(1) A formal object ξ = (R, ξn, fn) of F consists of an object R of ĈΛ, and a collec-
tion indexed by n ∈ N of objects ξn of F(R/mnR) and morphisms fn : ξn+1 →
ξn lying over the projection R/mn+1

R → R/mnR.
(2) Let ξ = (R, ξn, fn) and η = (S, ηn, gn) be formal objects of F . A morphism

a : ξ → η of formal objects consists of a map a0 : R→ S in ĈΛ and a collection
an : ξn → ηn of morphisms of F lying over R/mnR → S/mnS , such that for
every n the diagram

ξn+1
fn

//

an+1

��

ξn

an

��
ηn+1

gn // ηn

commutes.

The category of formal objects comes with a functor p̂ : F̂ → ĈΛ which sends an object
(R, ξn, fn) to R and a morphism (R, ξn, fn)→ (S, ηn, gn) to the map R→ S.

Lemma 7.2. Let p : F → CΛ be a category cofibered in groupoids. Then p̂ : F̂ → ĈΛ
is a category cofibered in groupoids.
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Proof. Let R → S be a ring map in ĈΛ. Let (R, ξn, fn) be an object of F̂ . For each
n choose a pushforward ξn → ηn of ξn along R/mnR → S/mnS . For each n there exists a
unique morphism gn : ηn+1 → ηn in F lying over S/mn+1

S → S/mnS such that

ξn+1

��

fn

// ξn

��
ηn+1

gn // ηn

commutes (by the first axiom of a category cofibred in groupoids). Hence we obtain a
morphism (R, ξn, fn) → (S, ηn, gn) lying over R → S , i.e., the first axiom of a cate-
gory cofibred in groupoids holds for F̂ . To see the second axiom suppose that we have
morphisms a : (R, ξn, fn) → (S, ηn, gn) and b : (R, ξn, fn) → (T, θn, hn) in F̂ and
a morphism c0 : S → T in ĈΛ such that c0 ◦ a0 = b0. By the second axiom of a
category cofibred in groupoids for F we obtain unique maps cn : ηn → θn lying over
S/mnS → T/mnT such that cn ◦ an = bn. Setting c = (cn)n≥0 gives the desired morphism
c : (S, ηn, gn)→ (T, θn, hn) in F̂ (we omit the verification that hn◦cn+1 = cn◦gn). �

Definition 7.3. Let p : F → CΛ be a category cofibered in groupoids. The category
cofibered in groupoids p̂ : F̂ → ĈΛ is called the completion of F .

If F is a category cofibered in groupoids over CΛ, we have defined F̂(R) for R ∈ Ob(ĈΛ)
in terms of the filtration of R by powers of its maximal ideal. But suppose I = (In) is
a filtration of R by ideals inducing the mR-adic topology. We define F̂I(R) to be the
category with the following objects and morphisms:

(1) An object is a collection (ξn, fn)n∈N of objects ξn of F(R/In) and morphisms
fn : ξn+1 → ξn lying over the projections R/In+1 → R/In.

(2) A morphism a : (ξn, fn) → (ηn, gn) consists of a collection an : ξn → ηn of
morphisms in F(R/In), such that for every n the diagram

ξn+1
fn //

an+1

��

ξn

an

��
ηn+1

gn // ηn

commutes.

Lemma 7.4. In the situation above, F̂I(R) is equivalent to the category F̂(R).

Proof. An equivalence F̂I(R) → F̂(R) can be defined as follows. For each n, let
m(n) be the least m that Im ⊂ mnR. Given an object (ξn, fn) of F̂I(R), let ηn be the
pushforward of ξm(n) along R/Im(n) → R/mnR. Let gn : ηn+1 → ηn be the unique
morphism of F lying over R/mn+1

R → R/mnR such that

ξm(n+1)
fm(n)◦...◦fm(n+1)−1

//

��

ξm(n)

��
ηn+1

gn // ηn
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commutes (existence and uniqueness is guaranteed by the axioms of a cofibred category).
The functor F̂I(R)→ F̂(R) sends (ξn, fn) to (R, ηn, gn). We omit the verification that
this is indeed an equivalence of categories. �

Remark 7.5. Let p : F → CΛ be a category cofibered in groupoids. Suppose that for
each R ∈ Ob(ĈΛ) we are given a filtration IR of R by ideals. If IR induces the mR-adic
topology on R for all R, then one can define a category F̂I by mimicking the definition
of F̂ . This category comes equipped with a morphism p̂I : F̂I → ĈΛ making it into
a category cofibered in groupoids such that F̂I(R) is isomorphic to F̂IR(R) as defined
above. The categories cofibered in groupoids F̂I and F̂ are equivalent, by using over an
object R ∈ Ob(ĈΛ) the equivalence of Lemma 7.4.

Remark 7.6. Let F : CΛ → Sets be a functor. Identifying functors with cofibered
sets, the completion of F is the functor F̂ : ĈΛ → Sets given by F̂ (S) = limF (S/mnS).
This agrees with the definition in Schlessinger’s paper [?].

Remark 7.7. LetF be a category cofibred in groupoids over CΛ. We claim that there
is a canonical equivalence

can : F̂ |CΛ −→ F .

Namely, let A ∈ Ob(CΛ) and let (A, ξn, fn) be an object of F̂ |CΛ(A). Since A is Artinian
there is a minimal m ∈ N such that mmA = 0. Then can sends (A, ξn, fn) to ξm. This
functor is an equivalence of categories cofibered in groupoids by Categories, Lemma 35.9
because it is an equivalence on all fibre categories by Lemma 7.4 and the fact that the mA-
adic topology on a local Artinian ring A comes from the zero ideal. We will frequently
identify F with a full subcategory of F̂ via a quasi-inverse to the functor can.

Remark 7.8. Let ϕ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Then there is an induced morphism ϕ̂ : F̂ → Ĝ of categories cofibered in
groupoids over ĈΛ. It sends an object ξ = (R, ξn, fn) of F̂ to (R,ϕ(ξn), ϕ(fn)), and
it sends a morphism (a0 : R → S, an : ξn → ηn) between objects ξ and η of F̂ to
(a0 : R → S, ϕ(an) : ϕ(ξn) → ϕ(ηn)). Finally, if t : ϕ → ϕ′ is a 2-morphism between
1-morphisms ϕ,ϕ′ : F → G of categories cofibred in groupoids, then we obtain a 2-
morphism t̂ : ϕ̂ → ϕ̂′. Namely, for ξ = (R, ξn, fn) as above we set t̂ξ = (tϕ(ξn)). Hence
completion defines a functor between 2-categories

̂ : Cof(CΛ) −→ Cof(ĈΛ)

from the 2-category of categories cofibred in groupoids over CΛ to the 2-category of cate-
gories cofibred in groupoids over ĈΛ.

Remark 7.9. We claim the completion functor of Remark 7.8 and the restriction
functor |CΛ : Cof(ĈΛ) → Cof(CΛ) of Remarks 5.2 (15) are “2-adjoint” in the following
precise sense. Let F ∈ Ob(Cof(CΛ)) and let G ∈ Ob(Cof(ĈΛ)). Then there is an equiva-
lence of categories

Φ : MorCΛ(G|CΛ ,F) −→ MorĈΛ
(G, F̂)

To describe this equivalence, we define canonical morphisms G → Ĝ|CΛ and F̂ |CΛ → F as
follows
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(1) Let R ∈ Ob(ĈΛ)) and let ξ be an object of the fiber category G(R). Choose a
pushforward ξ → ξn of ξ to R/mnR for each n ∈ N, and let fn : ξn+1 → ξn be
the induced morphism. Then G → Ĝ|CΛ sends ξ to (R, ξn, fn).

(2) This is the equivalence can : F̂ |CΛ → F of Remark 7.7.
Having said this, the equivalence Φ : MorCΛ(G|CΛ ,F)→ MorĈΛ

(G, F̂) sends a morphism
ϕ : G|CΛ → F to

G → Ĝ|CΛ

ϕ̂−→ F̂
There is a quasi-inverse Ψ : MorĈΛ

(G, F̂)→ MorCΛ(G|CΛ ,F) to Φ which sends ψ : G →
F̂ to

G|CΛ

ψ|CΛ−−−→ F̂|CΛ → F .
We omit the verification that Φ and Ψ are quasi-inverse. We also do not address functo-
riality of Φ (because it would lead into 3-category territory which we want to avoid at all
cost).

Remark 7.10. For a category C we denote by CofSet(C) the category of cofibered
sets over C. It is a 1-category isomorphic the category of functors C → Sets. See Remarks
5.2 (11). The completion and restriction functors restrict to functorŝ : CofSet(CΛ) →
CofSet(ĈΛ) and |CΛ : CofSet(ĈΛ) → CofSet(CΛ) which we denote by the same symbols.
As functors on the categories of cofibered sets, completion and restriction are adjoints in
the usual 1-categorical sense: the same construction as in Remark 7.9 defines a functorial
bijection

MorCΛ(G|CΛ , F ) −→ MorĈΛ
(G, F̂ )

for F ∈ Ob(CofSet(CΛ)) and G ∈ Ob(CofSet(ĈΛ)). Again the map F̂ |CΛ → F is an
isomorphism.

Remark 7.11. Let G : ĈΛ → Sets be a functor that commutes with limits. Then the
map G → Ĝ|CΛ described in Remark 7.9 is an isomorphism. Indeed, if S is an object of
ĈΛ, then we have canonical bijections

Ĝ|CΛ(S) = limnG(S/mnS) = G(limn S/m
n
S) = G(S).

In particular, if R is an object of ĈΛ then R = R̂|CΛ because the representable functor R
commutes with limits by definition of limits.

Remark 7.12. LetR be an object of ĈΛ. It defines a functorR : ĈΛ → Sets as described
in Remarks 5.2 (12). As usual we identify this functor with the associated cofibered set. If
F is a cofibered category over CΛ, then there is an equivalence of categories

(7.12.1) MorCΛ(R|CΛ ,F) −→ F̂(R).

It is given by the composition

MorCΛ(R|CΛ ,F) Φ−→ MorĈΛ
(R, F̂) ∼−→ F̂(R)

where Φ is as in Remark 7.9 and the second equivalence comes from the 2-Yoneda lemma
(the cofibered analogue of Categories, Lemma 41.2). Explicitly, the equivalence sends a
morphism ϕ : R|CΛ → F to the formal object (R,ϕ(R → R/mnR), ϕ(fn)) in F̂(R),
where fn : R/mn+1

R → R/mnR is the projection.
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Assume a choice of pushforwards for F has been made. Given any ξ ∈ Ob(F̂(R)) we
construct an explicit ξ : R|CΛ → F which maps to ξ under (7.12.1). Namely, say ξ =
(R, ξn, fn). An object α in R|CΛ is the same thing as a morphism α : R → A of ĈΛ with
A Artinian. Let m ∈ N be minimal such that mmA = 0. Then α factors through a unique
αm : R/mmR → A and we can set ξ(α) = αm,∗ξm. We omit the description of ξ on
morphisms and we omit the proof that ξ maps to ξ via (7.12.1).

Assume a choice of pushforwards for F̂ has been made. In this case the proof of Categories,
Lemma 41.2 gives an explicit quasi-inverse

ι : F̂(R) −→ MorĈΛ
(R, F̂)

to the 2-Yoneda equivalence which takes ξ to the morphism ι(ξ) : R → F̂ sending f ∈
R(S) = MorCΛ(R,S) to f∗ξ. A quasi-inverse to (7.12.1) is then

F̂(R) ι−→ MorĈΛ
(R, F̂) Ψ−→ MorCΛ(R|CΛ ,F)

where Ψ is as in Remark 7.9. Given ξ ∈ Ob(F̂(R)) we have Ψ(ι(ξ)) ∼= ξ where ξ is as in
the previous paragraph, because both are mapped to ξ under the equivalence of categories
(7.12.1). UsingR = R̂|CΛ (see Remark 7.11) and unwinding the definitions of Φ and Ψ we
conclude that ι(ξ) is isomorphic to the completion of ξ.

Remark 7.13. LetF be a category cofibred in groupoids over CΛ. Let ξ = (R, ξn, fn)
and η = (S, ηn, gn) be formal objects ofF . Let a = (an) : ξ → η be a morphism of formal
objects, i.e., a morphism of F̂ . Let f = p̂(a) = a0 : R → S be the projection of a in ĈΛ.
Then we obtain a 2-commutative diagram

R|CΛ

ξ !!

S|CΛf
oo

η
}}

F

where ξ and η are the morphisms constructed in Remark 7.12. To see this let α : S → A

be an object of S|CΛ (see loc. cit.). Let m ∈ N be minimal such that mmA = 0. We get a
commutative diagram

R

f

��

// R/mmR

fm

��

βm

""
S // S/mmS

αm // A

such that the bottom arrows compose to give α. Then η(α) = αm,∗ηm and ξ(α ◦ f) =
βm,∗ξm. The morphism am : ξm → ηm lies over fm hence we obtain a canonical mor-
phism

ξ(α ◦ f) = βm,∗ξm −→ η(α) = αm,∗ηm

lying over idA such that
ξm //

am

��

βm,∗ξm

��
ηm // αm,∗ηm
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commutes by the axioms of a category cofibred in groupoids. This defines a transformation
of functors ξ ◦ f → η which witnesses the 2-commutativity of the first diagram of this
remark.

Remark 7.14. According to Remark 7.12, giving a formal object ξ of F is equivalent
to giving a prorepresentable functor U : CΛ → Sets and a morphism U → F .

8. Smooth morphisms

In this section we discuss smooth morphisms of categories cofibered in groupoids over CΛ.
Definition 8.1. Let ϕ : F → G be a morphism of categories cofibered in groupoids

over CΛ. We say ϕ is smooth if it satisfies the following condition: Let B → A be a
surjective ring map in CΛ. Let y ∈ Ob(G(B)), x ∈ Ob(F(A)), and y → ϕ(x) be a
morphism lying over B → A. Then there exists x′ ∈ Ob(F(B)), a morphism x′ → x
lying over B → A, and a morphism ϕ(x′) → y lying over id : B → B, such that the
diagram

ϕ(x′) //

##

y

��
ϕ(x)

commutes.
Lemma 8.2. Let ϕ : F → G be a morphism of categories cofibered in groupoids over

CΛ. Then ϕ is smooth if the condition in Definition 8.1 is assumed to hold only for small
extensions B → A.

Proof. LetB → A be a surjective ring map in CΛ. Let y ∈ Ob(G(B)), x ∈ Ob(F(A)),
and y → ϕ(x) be a morphism lying over B → A. By Lemma 3.3 we can factor B → A
into small extensions B = Bn → Bn−1 → . . . → B0 = A. We argue by induction on
n. If n = 1 the result is true by assumption. If n > 1, then denote f : B = Bn → Bn−1
and denote g : Bn−1 → B0 = A. Choose a pushforward y → f∗y of y along f , so
that the morphism y → ϕ(x) factors as y → f∗y → ϕ(x). By the induction hypothesis
we can find xn−1 → x lying over g : Bn−1 → A and a : ϕ(xn−1) → f∗y lying over
id : Bn−1 → Bn−1 such that

ϕ(xn−1)
a
//

$$

f∗y

��
ϕ(x)

commutes. We can apply the assumption to the composition y → ϕ(xn−1) of y → f∗y
with a−1 : f∗y → ϕ(xn−1). We obtainxn → xn−1 lying overBn → Bn−1 andϕ(xn)→
y lying over id : Bn → Bn so that the diagram

ϕ(xn) //

��

y

��
ϕ(xn−1) a //

$$

f∗y

��
ϕ(x)



6340 90. FORMAL DEFORMATION THEORY

commutes. Then the composition xn → xn−1 → x and ϕ(xn) → y are the morphisms
required by the definition of smoothness. �

Remark 8.3. Let ϕ : F → G be a morphism of categories cofibered in groupoids
over CΛ. Let B → A be a ring map in CΛ. Choices of pushforwards along B → A for
objects in the fiber categories F(B) and G(B) determine functors F(B) → F(A) and
G(B)→ G(A) fitting into a 2-commutative diagram

F(B) ϕ //

��

G(B)

��
F(A) ϕ // G(A).

Hence there is an induced functorF(B)→ F(A)×G(A)G(B). Unwinding the definitions
shows thatϕ : F → G is smooth if and only if this induced functor is essentially surjective
wheneverB → A is surjective (or equivalently, by Lemma 8.2, wheneverB → A is a small
extension).

Remark 8.4. The characterization of smooth morphisms in Remark 8.3 is analogous
to Schlessinger’s notion of a smooth morphism of functors, cf. [?, Definition 2.2.]. In fact,
whenF andG are cofibered in sets then our notion is equivalent to Schlessinger’s. Namely,
in this case let F,G : CΛ → Sets be the corresponding functors, see Remarks 5.2 (11).
Then F → G is smooth if and only if for every surjection of rings B → A in CΛ the map
F (B)→ F (A)×G(A) G(B) is surjective.

Remark 8.5. LetF be a category cofibered in groupoids over CΛ. Then the morphism
F → F is smooth. Namely, suppose that f : B → A is a ring map in CΛ. Let x ∈
Ob(F(A)) and let y ∈ F(B) be the isomorphism class of y ∈ Ob(F(B)) such that
f∗y = x. Then we simply take x′ = y, the implied morphism x′ = y → x over B → A,
and the equality x′ = y as the solution to the problem posed in Definition 8.1.

If R → S is a ring map ĈΛ, then there is an induced morphism S → R between the
functors S,R : ĈΛ → Sets. In this situation, smoothness of the restriction S|CΛ → R|CΛ

is a familiar notion:

Lemma 8.6. Let R → S be a ring map in ĈΛ. Then the induced morphism S|CΛ →
R|CΛ is smooth if and only if S is a power series ring over R.

Proof. Assume S is a power series ring over R. Say S = R[[x1, . . . , xn]]. Smooth-
ness of S|CΛ → R|CΛ means the following (see Remark 8.4): Given a surjective ring map
B → A in CΛ, a ring map R→ B, a ring map S → A such that the solid diagram

S //

��

A

R

OO

// B

OO

is commutative then a dotted arrow exists making the diagram commute. (Note the sim-
ilarity with Algebra, Definition 138.1.) To construct the dotted arrow choose elements
bi ∈ B whose images in A are equal to the images of xi in A. Note that bi ∈ mB as xi
maps to an element of mA. Hence there is a unique R-algebra map R[[x1, . . . , xn]] → B
which maps xi to bi and which can serve as our dotted arrow.
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Conversely, assume S|CΛ → R|CΛ is smooth. Let x1, . . . , xn ∈ S be elements whose
images form a basis in the relative cotangent space mS/(mRS + m2

S) of S over R. Set
T = R[[X1, . . . , Xn]]. Note that both

S/(mRS + m2
S) ∼= R/mR[x1, . . . , xn]/(xixj)

and
T/(mRT + m2

T ) ∼= R/mR[X1, . . . , Xn]/(XiXj).

Let S/(mRS + m2
S) → T/(mRT + m2

T ) be the local R-algebra isomorphism given by
mapping the class ofxi to the class ofXi. Let f1 : S → T/(mRT+m2

T ) be the composition
S → S/(mRS + m2

S)→ T/(mRT + m2
T ). The assumption that S|CΛ → R|CΛ is smooth

means we can lift f1 to a map f2 : S → T/m2
T , then to a map f3 : S → T/m3

T , and so on,
for alln ≥ 1. Thus we get an induced map f : S → T = limT/mnT of localR-algebras. By
our choice of f1, the map f induces an isomorphismmS/(mRS+m2

S)→ mT /(mRT+m2
T )

of relative cotangent spaces. Hence f is surjective by Lemma 4.2 (where we think of f as
a map in ĈR). Choose preimages yi ∈ S of Xi ∈ T under f . As T is a power series ring
over R there exists a local R-algebra homomorphism s : T → S mapping Xi to yi. By
construction f ◦ s = id. Then s is injective. But s induces an isomorphism on relative
cotangent spaces since f does, so it is also surjective by Lemma 4.2 again. Hence s and f
are isomorphisms. �

Smooth morphisms satisfy the following functorial properties.

Lemma 8.7. Let ϕ : F → G and ψ : G → H be morphisms of categories cofibered in
groupoids over CΛ.

(1) If ϕ and ψ are smooth, then ψ ◦ ϕ is smooth.
(2) If ϕ is essentially surjective and ψ ◦ ϕ is smooth, then ψ is smooth.
(3) If G′ → G is a morphism of categories cofibered in groupoids and ϕ is smooth,

then F ×G G′ → G′ is smooth.

Proof. Statements (1) and (2) follow immediately from the definitions. Proof of
(3) omitted. Hints: use the formulation of smoothness given in Remark 8.3 and use that
F ×G G′ is the 2-fibre product, see Remarks 5.2 (13). �

Lemma 8.8. Let ϕ : F → G be a smooth morphism of categories cofibered in
groupoids over CΛ. Assume ϕ : F(k) → G(k) is essentially surjective. Then ϕ : F → G
and ϕ̂ : F̂ → Ĝ are essentially surjective.

Proof. Let y be an object of G lying overA ∈ Ob(CΛ). Let y → y0 be a pushforward
of y along A→ k. By the assumption on essential surjectivity of ϕ : F(k)→ G(k) there
exist an object x0 of F lying over k and an isomorphism y0 → ϕ(x0). Smoothness of ϕ
implies there exists an object x of F over A whose image ϕ(x) is isomorphic to y. Thus
ϕ : F → G is essentially surjective.

Let η = (R, ηn, gn) be an object of Ĝ. We construct an object ξ of F̂ with an isomorphism
η → ϕ(ξ). By the assumption on essential surjectivity of ϕ : F(k) → G(k), there exists
a morphism η1 → ϕ(ξ1) in G(k) for some ξ1 ∈ Ob(F(k)). The morphism η2

g1−→ η1 →
ϕ(ξ1) lies over the surjective ring mapR/m2

R → k, hence by smoothness of ϕ there exists
ξ2 ∈ Ob(F(R/m2

R)), a morphism f1 : ξ2 → ξ1 lying over R/m2
R → k, and a morphism
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η2 → ϕ(ξ2) such that

ϕ(ξ2)
ϕ(f1) // ϕ(ξ1)

η2

OO

g1 // η1

OO

commutes. Continuing in this way we construct an object ξ = (R, ξn, fn) of F̂ and a
morphism η → ϕ(ξ) = (R,ϕ(ξn), ϕ(fn)) in Ĝ(R). �

Later we are interested in producing smooth morphisms from prorepresentable functors
to predeformation categoriesF . By the discussion in Remark 7.12 these morphisms corre-
spond to certain formal objects of F . More precisely, these are the so-called versal formal
objects of F .

Definition 8.9. Let F be a category cofibered in groupoids. Let ξ be a formal object
of F lying over R ∈ Ob(ĈΛ). We say ξ is versal if the corresponding morphism ξ :
R|CΛ → F of Remark 7.12 is smooth.

Remark 8.10. Let F be a category cofibered in groupoids over CΛ, and let ξ be a
formal object of F . It follows from the definition of smoothness that versality of ξ is
equivalent to the following condition: If

y

��
ξ // x

is a diagram in F̂ such that y → x lies over a surjective mapB → A of Artinian rings (we
may assume it is a small extension), then there exists a morphism ξ → y such that

y

��
ξ //

@@

x

commutes. In particular, the condition that ξ be versal does not depend on the choices of
pushforwards made in the construction of ξ : R|CΛ → F in Remark 7.12.

Lemma 8.11. Let F be a predeformation category. Let ξ be a versal formal object of
F . For any formal object η of F̂ , there exists a morphism ξ → η.

Proof. By assumption the morphism ξ : R|CΛ → F is smooth. Then ι(ξ) : R → F̂
is the completion of ξ, see Remark 7.12. By Lemma 8.8 there exists an object f of R such
that ι(ξ)(f) = η. Then f is a ring map f : R → S in ĈΛ. And ι(ξ)(f) = η means that
f∗ξ ∼= η which means exactly that there is a morphism ξ → η lying over f . �

9. Smooth or unobstructed categories

Let p : F → CΛ be a category cofibered in groupoids. We can consider CΛ as a category
cofibered in groupoids over CΛ using the identity functor. In this way p : F −→ CΛ
becomes a morphism of categories cofibered in groupoids over CΛ.
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Definition 9.1. Let p : F → CΛ be a category cofibered in groupoids. We say F is
smooth or unobstructed if its structure morphism p is smooth in the sense of Definition
8.1.

This is the “absolute” notion of smoothness for a category cofibered in groupoids over CΛ,
although it would be more correct to say that F is smooth over Λ. One has to be careful
with the phrase “F is unobstructed”: it may happen thatF has an obstruction theory with
nonvanishing obstruction spaces even though F is smooth.

Remark 9.2. SupposeF is a predeformation category admitting a smooth morphism
ϕ : U → F from a predeformation category U . Then by Lemma 8.8 ϕ is essentially
surjective, so by Lemma 8.7 p : F → CΛ is smooth if and only if the composition U ϕ−→
F p−→ CΛ is smooth, i.e. F is smooth if and only if U is smooth.

Lemma 9.3. Let R ∈ Ob(ĈΛ). The following are equivalent
(1) R|CΛ is smooth,
(2) Λ→ R is formally smooth in the mR-adic topology,
(3) Λ→ R is flat and R⊗Λ k

′ is geometrically regular over k′, and
(4) Λ→ R is flat and k′ → R⊗Λ k

′ is formally smooth in the mR-adic topology.
In the classical case, these are also equivalent to

(5) R is isomorphic to Λ[[x1, . . . , xn]] for some n.

Proof. Smoothness of p : R|CΛ → CΛ means that givenB → A surjective in CΛ and
given R→ A we can find the dotted arrow in the diagram

R //

��

A

Λ //

OO

B

OO

This is certainly true if Λ→ R is formally smooth in the mR-adic topology, see More on
Algebra, Definitions 37.3 and 37.1. Conversely, if this holds, then we see that Λ → R is
formally smooth in the mR-adic topology by More on Algebra, Lemma 38.1. Thus (1) and
(2) are equivalent.
The equivalence of (2), (3), and (4) is More on Algebra, Proposition 40.5. The equivalence
with (5) follows for example from Lemma 8.6 and the fact that CΛ is the same as Λ|CΛ in
the classical case. �

Lemma 9.4. Let F be a predeformation category. Let ξ be a versal formal object of
F lying over R ∈ Ob(ĈΛ). The following are equivalent

(1) F is unobstructed, and
(2) Λ→ R is formally smooth in the mR-adic topology.

In the classical case these are also equivalent to
(3) R ∼= Λ[[x1, . . . , xn]] for some n.

Proof. If (1) holds, i.e., if F is unobstructed, then the composition

R|CΛ

ξ
−→ F → CΛ

is smooth, see Lemma 8.7. Hence we see that (2) holds by Lemma 9.3. Conversely, if (2)
holds, then the composition is smooth and moreover the first arrow is essentially surjective
by Lemma 8.11. Hence we find that the second arrow is smooth by Lemma 8.7 which means
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thatF is unobstructed by definition. The equivalence with (3) in the classical case follows
from Lemma 9.3. �

Lemma 9.5. There exists an R ∈ Ob(ĈΛ) such that the equivalent conditions of
Lemma 9.3 hold and moreover H1(Lk/Λ) = mR/m

2
R and ΩR/Λ ⊗R k = Ωk/Λ.

Proof. In the classical case we choose R = Λ. More generally, if the residue field
extension k/k′ is separable, then there exists a unique finite étale extension Λ∧ → R
(Algebra, Lemmas 153.9 and 153.7) of the completion Λ∧ of Λ inducing the extension
k/k′ on residue fields.

In the general case we proceed as follows. Choose a smooth Λ-algebra P and a Λ-algebra
surjection P → k. (For example, let P be a polynomial algebra.) Denote mP the kernel
of P → k. The Jacobi-Zariski sequence, see (3.10.2) and Algebra, Lemma 134.4, is an exact
sequence

0→ H1(NLk/Λ)→ mP /m
2
P → ΩP/Λ ⊗P k → Ωk/Λ → 0

We have the 0 on the left because P/k is smooth, hence NLP/Λ is quasi-isomorphic to
a finite projective module placed in degree 0, hence H1(NLP/Λ⊗P k) = 0. Suppose
f ∈ mP maps to a nonzero element of ΩP/Λ ⊗P k. Setting P ′ = P/(f) we have a
Λ-algebra surjection P ′ → k. Observe that P ′ is smooth at mP ′ : this follows from More
on Morphisms, Lemma 38.1. Thus after replacing P by a principal localization of P ′,
we see that dim(mP /m2

P ) decreases. Repeating finitely many times, we may assume the
map mP /m

2
P → ΩP/Λ ⊗P k is zero so that the exact sequence breaks into isomorphisms

H1(Lk/Λ) = mP /m
2
P and ΩP/Λ ⊗P k = Ωk/Λ.

LetR be the mP -adic completion of P . ThenR is an object of ĈΛ. Namely, it is a complete
local Noetherian ring (see Algebra, Lemma 97.6) and its residue field is identified with k.
We claim that R works.

First observe that the mapP → R induces isomorphismsmP /m2
P = mR/m

2
R and ΩP/Λ⊗P

k = ΩR/Λ ⊗R k. This is true because both mP /m
2
P and ΩP/Λ ⊗P k only depend on the

Λ-algebra P/m2
P , see Algebra, Lemma 131.11, the same holds for R and we have P/m2

P =
R/m2

R. Using the functoriality of the Jacobi-Zariski sequence (3.10.3) we deduce that
H1(Lk/Λ) = mR/m

2
R and ΩR/Λ ⊗R k = Ωk/Λ as the same is true for P .

Finally, since Λ → P is smooth we see that Λ → P is formally smooth by Algebra,
Proposition 138.13. Then Λ → P is formally smooth for the mP -adic topology by More
on Algebra, Lemma 37.2. This property is inherited by the completion R by More on
Algebra, Lemma 37.4 and the proof is complete. In fact, it turns out that whenever R|CΛ

is smooth, thenR is isomorphic to a completion of a smooth algebra over Λ, but we won’t
use this. �

Example 9.6. Here is a more explicit example of an R as in Lemma 9.5. Let p be a
prime number and let n ∈ N. Let Λ = Fp(t1, t2, . . . , tn) and let k = Fp(x1, . . . , xn)
with map Λ→ k given by ti 7→ xpi . Then we can take

R = Λ[x1, . . . , xn]∧(xp1−t1,...,xpn−tn)

We cannot do “better” in this example, i.e., we cannot approximate CΛ by a smaller smooth
object of ĈΛ (one can argue that the dimension of R has to be at least n since the map
ΩR/Λ ⊗R k → Ωk/Λ is surjective). We will discuss this phenomenon later in more detail.



10. SCHLESSINGER’S CONDITIONS 6345

10. Schlessinger’s conditions

In the following we often consider fibre products A1 ×A A2 of rings in the category CΛ.
We have seen in Example 3.7 that such a fibre product may not always be an object of
CΛ. However, in virtually all cases below one of the two maps Ai → A is surjective and
A1 ×A A2 will be an object of CΛ by Lemma 3.8. We will use this result without further
mention.

We denote by k[ε] the ring of dual numbers over k. More generally, for a k-vector space
V , we denote by k[V ] the k-algebra whose underlying vector space is k ⊕ V and whose
multiplication is given by (a, v) · (a′, v′) = (aa′, av′ + a′v). When V = k, k[V ] is the
ring of dual numbers over k. For any finite dimensional k-vector space V the ring k[V ] is
in CΛ.

Definition 10.1. Let F be a category cofibered in groupoids over CΛ. We define
conditions (S1) and (S2) on F as follows:

(S1) Every diagram in F

x2

��
x1 // x

lying over

A2

��
A1 // A

in CΛ with A2 → A surjective can be completed to a commutative diagram

y //

��

x2

��
x1 // x

lying over

A1 ×A A2 //

��

A2

��
A1 // A.

(S2) The condition of (S1) holds for diagrams in F lying over a diagram in CΛ of the
form

k[ε]

��
A // k.

Moreover, if we have two commutative diagrams in F

y
c
//

a

��

xε

e

��
x

d // x0

and

y′
c′
//

a′

��

xε

e

��
x

d // x0

lying over

A×k k[ε] //

��

k[ε]

��
A // k

then there exists a morphism b : y → y′ in F(A×k k[ε]) such that a = a′ ◦ b.

We can partly explain the meaning of conditions (S1) and (S2) in terms of fibre categories.
Suppose that f1 : A1 → A and f2 : A2 → A are ring maps in CΛ with f2 surjective.
Denote pi : A1×AA2 → Ai the projection maps. Assume a choice of pushforwards forF
has been made. Then the commutative diagram of rings translates into a 2-commutative
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diagram
F(A1 ×A A2)

p2,∗
//

p1,∗

��

F(A2)

f2,∗

��
F(A1)

f1,∗ // F(A)

of fibre categories whence a functor

(10.1.1) F(A1 ×A A2)→ F(A1)×F(A) F(A2)

into the 2-fibre product of categories. Condition (S1) requires that this functor be essen-
tially surjective. The first part of condition (S2) requires that this functor be a essentially
surjective if f2 equals the map k[ε]→ k. Moreover in this case, the second part of (S2) im-
plies that two objects which become isomorphic in the target are isomorphic in the source
(but it is not equivalent to this statement). The advantage of stating the conditions as in
the definition is that no choices have to be made.

Lemma 10.2. Let F be a category cofibered in groupoids over CΛ. Then F satisfies
(S1) if the condition of (S1) is assumed to hold only when A2 → A is a small extension.

Proof. Proof omitted. Hints: apply Lemma 3.3 and use induction similar to the proof
of Lemma 8.2. �

Remark 10.3. When F is cofibered in sets, conditions (S1) and (S2) are exactly con-
ditions (H1) and (H2) from Schlessinger’s paper [?]. Namely, for a functor F : CΛ → Sets,
conditions (S1) and (S2) state:

(S1) If A1 → A and A2 → A are maps in CΛ with A2 → A surjective, then the
induced map F (A1 ×A A2)→ F (A1)×F (A) F (A2) is surjective.

(S2) If A → k is a map in CΛ, then the induced map F (A ×k k[ε]) → F (A) ×F (k)
F (k[ε]) is bijective.

The injectivity of the map F (A ×k k[ε]) → F (A) ×F (k) F (k[ε]) comes from the second
part of condition (S2) and the fact that morphisms are identities.

Lemma 10.4. Let F be a category cofibred in groupoids over CΛ. If F satisfies (S2),
then the condition of (S2) also holds when k[ε] is replaced by k[V ] for any finite dimen-
sional k-vector space V .

Proof. In the case that F is cofibred in sets, i.e., corresponds to a functor F : CΛ →
Sets this follows from the description of (S2) forF in Remark 10.3 and the fact that k[V ] ∼=
k[ε] ×k . . . ×k k[ε] with dimk V factors. The case of functors is what we will use in the
rest of this chapter.

We prove the general case by induction on dim(V ). If dim(V ) = 1, then k[V ] ∼= k[ε] and
the result holds by assumption. If dim(V ) > 1 we write V = V ′ ⊕ kε. Pick a diagram

xV

��
x // x0

lying over

k[V ]

��
A // k

Choose a morphism xV → xV ′ lying over k[V ]→ k[V ′] and a morphism xV → xε lying
over k[V ] → k[ε]. Note that the morphism xV → x0 factors as xV → xV ′ → x0 and as
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xV → xε → x0. By induction hypothesis we can find a diagram

y′

��

// xV ′

��
x // x0

lying over

A×k k[V ′]

��

// k[V ′]

��
A // k

This gives us a commutative diagram

xε

��
y′ // x0

lying over

k[ε]

��
A×k k[V ′] // k

Hence by (S2) we get a commutative diagram

y

��

// xε

��
y′ // x0

lying over

(A×k k[V ′])×k k[ε]

��

// k[ε]

��
A×k k[V ′] // k

Note that (A×k k[V ′])×k k[ε] = A×k k[V ′⊕kε] = A×k k[V ]. We claim that y fits into
the correct commutative diagram. To see this we let y → yV be a morphism lying over
A ×k k[V ] → k[V ]. We can factor the morphisms y → y′ → xV ′ and y → xε through
the morphism y → yV (by the axioms of categories cofibred in groupoids). Hence we see
that both yV and xV fit into commutative diagrams

yV //

��

xε

��
xV ′ // x0

and

xV //

��

xε

��
xV ′ // x0

and hence by the second part of (S2) there exists an isomorphism yV → xV compatible
with yV → xV ′ and xV → xV ′ and in particular compatible with the maps to x0. The
composition y → yV → xV then fits into the required commutative diagram

y //

��

xV

��
x // x0

lying over

A×k k[V ]

��

// k[V ]

��
A // k

In this way we see that the first part of (S2) holds with k[ε] replaced by k[V ].

To prove the second part suppose given two commutative diagrams

y //

��

xV

��
x // x0

and

y′ //

��

xV

��
x // x0

lying over

A×k k[V ]

��

// k[V ]

��
A // k

We will use the morphisms xV → xV ′ → x0 and xV → xε → x0 introduced in the
first paragraph of the proof. Choose morphisms y → yV ′ and y′ → y′

V ′ lying over A×k



6348 90. FORMAL DEFORMATION THEORY

k[V ] → A ×k k[V ′]. The axioms of a cofibred category imply we can find commutative
diagrams

yV ′ //

��

xV ′

��
x // x0

and

y′
V ′ //

��

xV ′

��
x // x0

lying over

A×k k[V ′]

��

// k[V ′]

��
A // k

By induction hypothesis we obtain an isomorphism b : yV ′ → y′
V ′ compatible with the

morphisms yV ′ → x and y′
V ′ → x, in particular compatible with the morphisms to x0.

Then we have commutative diagrams

y //

��

xε

��
y′
V ′ // x0

and

y′ //

��

xε

��
y′
V ′ // x0

lying over

A×k k[ε]

��

// k[ε]

��
A // k

where the morphism y → y′
V ′ is the composition y → yV ′

b−→ y′
V ′ and where the mor-

phisms y → xε and y′ → xε are the compositions of the maps y → xV and y′ → xV
with the morphism xV → xε. Then the second part of (S2) guarantees the existence of an
isomorphism y → y′ compatible with the maps to y′

V ′ , in particular compatible with the
maps to x (because b was compatible with the maps to x). �

Lemma 10.5. Let F be a category cofibered in groupoids over CΛ.
(1) If F satisfies (S1), then so does F .
(2) IfF satisfies (S2), then so doesF provided at least one of the following conditions

is satisfied
(a) F is a predeformation category,
(b) the category F(k) is a set or a setoid, or
(c) for any morphism xε → x0 ofF lying over k[ε]→ k the pushforward map

Autk[ε](xε)→ Autk(x0) is surjective.

Proof. Assume F has (S1). Suppose we have ring maps fi : Ai → A in CΛ with f2
surjective. Let xi ∈ F(Ai) such that the pushforwards f1,∗(x1) and f2,∗(x2) are isomor-
phic. Then we can denote x an object of F over A isomorphic to both of these and we
obtain a diagram as in (S1). Hence we find an object y of F over A1 ×A A2 whose push-
forward to A1, resp. A2 is isomorphic to x1, resp. x2. In this way we see that (S1) holds
for F .

Assume F has (S2). The first part of (S2) for F follows as in the argument above. The
second part of (S2) for F signifies that the map

F(A×k k[ε])→ F(A)×F(k) F(k[ε])

is injective for any ring A in CΛ. Suppose that y, y′ ∈ F(A×k k[ε]). Using the axioms of
cofibred categories we can choose commutative diagrams

y
c
//

a

��

xε

e

��
x

d // x0

and

y′
c′
//

a′

��

x′
ε

e′

��
x′ d′

// x′
0

lying over

A×k k[ε]

��

// k[ε]

��
A // k
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Assume that there exist isomorphisms α : x → x′ in F(A) and β : xε → x′
ε in F(k[ε]).

This also means there exists an isomorphism γ : x0 → x′
0 compatible with α. To prove

(S2) for F we have to show that there exists an isomorphism y → y′ in F(A×k k[ε]). By
(S2) for F such a morphism will exist if we can choose the isomorphisms α and β and γ
such that

x

α

��

// x0

γ

��

xε

β

��

e
oo

x′ // x′
0 x′

ε
e′
oo

is commutative (because then we can replace x by x′ and xε by x′
ε in the previous displayed

diagram). The left hand square commutes by our choice of γ. We can factor e′ ◦β as γ′ ◦e
for some second map γ′ : x0 → x′

0. Now the question is whether we can arrange it so that
γ = γ′? This is clear if F(k) is a set, or a setoid. Moreover, if Autk[ε](xε) → Autk(x0) is
surjective, then we can adjust the choice of β by precomposing with an automorphism of
xε whose image is γ−1 ◦ γ′ to make things work. �

Lemma 10.6. LetF be a category cofibered in groupoids overCΛ. Letx0 ∈ Ob(F(k)).
Let Fx0 be the category cofibred in groupoids over CΛ constructed in Remark 6.4.

(1) If F satisfies (S1), then so does Fx0 .
(2) If F satisfies (S2), then so does Fx0 .

Proof. Any diagram as in Definition 10.1 inFx0 gives rise to a diagram inF and the
output of condition (S1) or (S2) for this diagram in F can be viewed as an output for Fx0

as well. �

Lemma 10.7. Let p : F → CΛ be a category cofibered in groupoids. Consider a
diagram of F

y //

a

��

xε

e

��
x

d // x0

lying over

A×k k[ε] //

��

k[ε]

��
A // k.

in CΛ. Assume F satisfies (S2). Then there exists a morphism s : x→ y with a ◦ s = idx
if and only if there exists a morphism sε : x→ xε with e ◦ sε = d.

Proof. The “only if” direction is clear. Conversely, assume there exists a morphism
sε : x → xε with e ◦ sε = d. Note that p(sε) : A → k[ε] is a ring map compatible with
the map A→ k. Hence we obtain

σ = (idA, p(sε)) : A→ A×k k[ε].
Choose a pushforward x → σ∗x. By construction we can factor sε as x → σ∗x → xε.
Moreover, as σ is a section of A ×k k[ε] → A, we get a morphism σ∗x → x such that
x→ σ∗x→ x is idx. Because e ◦ sε = d we find that the diagram

σ∗x //

��

xε

e

��
x

d // x0

is commutative. Hence by (S2) we obtain a morphism σ∗x → y such that σ∗x → y → x
is the given map σ∗x→ x. The solution to the problem is now to take a : x→ y equal to
the composition x→ σ∗x→ y. �
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Lemma 10.8. Consider a commutative diagram in a predeformation category F

y //

��

x2

a2

��
x1

a1 // x

lying over

A1 ×A A2 //

��

A2

f2

��
A1

f1 // A

in CΛ where f2 : A2 → A is a small extension. Assume there is a map h : A1 → A2 such
that f2 = f1 ◦ h. Let I = Ker(f2). Consider the ring map

g : A1 ×A A2 −→ k[I] = k ⊕ I, (u, v) 7−→ u⊕ (v − h(u))

Choose a pushforward y → g∗y. Assume F satisfies (S2). If there exists a morphism
x1 → g∗y, then there exists a morphism b : x1 → x2 such that a1 = a2 ◦ b.

Proof. Note that idA1 × g : A1 ×A A2 → A1 ×k k[I] is an isomorphism and that
k[I] ∼= k[ε]. Hence we have a diagram

y //

��

g∗y

��
x1 // x0

lying over

A1 ×k k[ε] //

��

k[ε]

��
A1 // k.

where x0 is an object of F lying over k (every object of F has a unique morphism to x0,
see discussion following Definition 6.2). If we have a morphism x1 → g∗y then Lemma
10.7 provides us with a section s : x1 → y of the map y → x1. Composing this with the
map y → x2 we obtain b : x1 → x2 which has the property that a1 = a2 ◦ b because the
diagram of the lemma commutes and because s is a section. �

11. Tangent spaces of functors

LetR be a ring. We write ModR for the category ofR-modules and ModfgR for the category
of finitely generated R-modules.

Definition 11.1. Let L : ModfgR → ModR, resp. L : ModR → ModR be a functor.
We say that L isR-linear if for every pair of objectsM,N of ModfgR , resp. ModR the map

L : HomR(M,N) −→ HomR(L(M), L(N))

is a map of R-modules.

Remark 11.2. One can define the notion of an R-linearity for any functor between
categories enriched over ModR. We made the definition specifically for functors L :
ModfgR → ModR and L : ModR → ModR because these are the cases that we have
needed so far.

Remark 11.3. If L : ModfgR → ModR is an R-linear functor, then L preserves finite
products and sends the zero module to the zero module, see Homology, Lemma 3.7. On
the other hand, if a functor ModfgR → Sets preserves finite products and sends the zero
module to a one element set, then it has a unique lift to aR-linear functor, see Lemma 11.4.
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Lemma 11.4. Let L : ModfgR → Sets, resp. L : ModR → Sets be a functor. Suppose
L(0) is a one element set and L preserves finite products. Then there exists a unique R-
linear functor L̃ : ModfgR →ModR, resp. L̃ : ModfgR →ModR, such that

ModR
forget

""
ModfgR

L̃

::

L // Sets

resp.

ModR
forget

##
ModR

L̃

::

L // Sets

commutes.

Proof. We only prove this in case L : ModfgR → Sets. Let M be a finitely generated
R-module. We define L̃(M) to be the set L(M) with the following R-module structure.
Multiplication: If r ∈ R, multiplication by r on L(M) is defined to be the map L(M)→
L(M) induced by the multiplication map r· : M →M .
Addition: The sum map M ×M → M : (m1,m2) 7→ m1 + m2 induces a map L(M ×
M) → L(M). By assumption L(M ×M) is canonically isomorphic to L(M) × L(M).
Addition on L(M) is defined by the map L(M)× L(M) ∼= L(M ×M)→ L(M).
Zero: There is a unique map 0 → M . The zero element of L(M) is the image of L(0) →
L(M).

We omit the verification that this defines an R-module L̃(M), the unique such that is
R-linearly functorial in M . �

Lemma 11.5. Let L1, L2 : ModfgR → Sets be functors that take 0 to a one element set
and preserve finite products. Let t : L1 → L2 be a morphism of functors. Then t induces
a morphism t̃ : L̃1 → L̃2 between the functors guaranteed by Lemma 11.4, which is given
simply by t̃M = tM : L̃1(M) → L̃2(M) for each M ∈ Ob(ModfgR ). In other words,
tM : L̃1(M)→ L̃2(M) is a map of R-modules.

Proof. Omitted. �

In the case R = K is a field, a K-linear functor L : ModfgK →ModK is determined by its
value L(K).

Lemma 11.6. Let K be a field. Let L : ModfgK →ModK be a K-linear functor. Then
L is isomorphic to the functor L(K)⊗K − : ModfgK →ModK .

Proof. For V ∈ Ob(ModfgK ), the isomorphism L(K) ⊗K V → L(V ) is given on
pure tensors by x⊗v 7→ L(fv)(x), where fv : K → V is theK-linear map sending 1 7→ v.
When V = K , this is the isomorphism L(K)⊗K K → L(K) given by multiplication by
K. For general V , it is an isomorphism by the case V = K and the fact that L commutes
with finite products (Remark 11.3). �

For a ringR and anR-moduleM , letR[M ] be theR-algebra whose underlyingR-module
isR⊕M and whose multiplication is given by (r,m) ·(r′,m′) = (rr′, rm′ +r′m). When
M = R this is the ring of dual numbers over R, which we denote by R[ε].
Now let S be a ring and assume R is an S-algebra. Then the assignment M 7→ R[M ]
determines a functor ModR → S-Alg/R, where S-Alg/R denotes the category of S-
algebras over R. Note that S-Alg/R admits finite products: if A1 → R and A2 → R are
two objects, then A1 ×R A2 is a product.



6352 90. FORMAL DEFORMATION THEORY

Lemma 11.7. Let R be an S-algebra. Then the functor ModR → S-Alg/R described
above preserves finite products.

Proof. This is merely the statement that if M and N are R-modules, then the map
R[M ×N ]→ R[M ]×R R[N ] is an isomorphism in S-Alg/R. �

Lemma 11.8. LetR be anS-algebra, and let C be a strictly full subcategory ofS-Alg/R
containing R[M ] for all M ∈ Ob(ModfgR ). Let F : C → Sets be a functor. Suppose that
F (R) is a one element set and that for any M,N ∈ Ob(ModfgR ), the induced map

F (R[M ]×R R[N ])→ F (R[M ])× F (R[N ])

is a bijection. ThenF (R[M ]) has a naturalR-module structure for anyM ∈ Ob(ModfgR ).

Proof. Note thatR ∼= R[0] andR[M ]×RR[N ] ∼= R[M×N ] henceR andR[M ]×R
R[N ] are objects of C by our assumptions on C. Thus the conditions on F make sense.
The functor ModR → S-Alg/R of Lemma 11.7 restricts to a functor ModfgR → C by
the assumption on C. Let L be the composition ModfgR → C → Sets, i.e., L(M) =
F (R[M ]). Then L preserves finite products by Lemma 11.7 and the assumption on F .
Hence Lemma 11.4 shows that L(M) = F (R[M ]) has a natural R-module structure for
any M ∈ Ob(ModfgR ). �

Definition 11.9. Let C be a category as in Lemma 11.8. Let F : C → Sets be a functor
such that F (R) is a one element set. The tangent space TF of F is F (R[ε]).

When F : C → Sets satisfies the hypotheses of Lemma 11.8, the tangent space TF has a
natural R-module structure.

Example 11.10. Since CΛ contains all k[V ] for finite dimensional vector spaces V we
see that Definition 11.9 applies with S = Λ, R = k, C = CΛ, and F : CΛ → Sets a
predeformation functor. The tangent space is TF = F (k[ε]).

Example 11.11. Let us work out the tangent space of Example 11.10 when F : CΛ →
Sets is a prorepresentable functor, say F = S|CΛ for S ∈ Ob(ĈΛ). Then F commutes with
arbitrary limits and thus satisfies the hypotheses of Lemma 11.8. We compute

TF = F (k[ε]) = MorCΛ(S, k[ε]) = DerΛ(S, k)

and more generally for a finite dimensional k-vector space V we have

F (k[V ]) = MorCΛ(S, k[V ]) = DerΛ(S, V ).

Explicitly, a Λ-algebra map f : S → k[V ] compatible with the augmentations q : S → k
and k[V ]→ k corresponds to the derivation D defined by s 7→ f(s)− q(s). Conversely,
a Λ-derivation D : S → V corresponds to f : S → k[V ] in CΛ defined by the rule
f(s) = q(s) + D(s). Since these identifications are functorial we see that the k-vector
spaces structures on TF and DerΛ(S, k) correspond (see Lemma 11.5). It follows that
dimk TF is finite by Lemma 4.5.

Example 11.12. The computation of Example 11.11 simplifies in the classical case.
Namely, in this case the tangent space of the functor F = S|CΛ is simply the relative
cotangent space of S over Λ, in a formula TF = TS/Λ. In fact, this works more generally
when the field extension k/k′ is separable. See Exercises, Exercise 35.2.
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Lemma 11.13. Let F,G : C → Sets be functors satisfying the hypotheses of Lemma
11.8. Let t : F → G be a morphism of functors. For any M ∈ Ob(ModfgR ), the map
tR[M ] : F (R[M ]) → G(R[M ]) is a map of R-modules, where F (R[M ]) and G(R[M ])
are given the R-module structure from Lemma 11.8. In particular, tR[ε] : TF → TG is a
map of R-modules.

Proof. Follows from Lemma 11.5. �

Example 11.14. Suppose that f : R → S is a ring map in ĈΛ. Set F = R|CΛ and
G = S|CΛ . The ring map f induces a transformation of functorsG→ F . By Lemma 11.13
we get a k-linear map TG→ TF . This is the map

TG = DerΛ(S, k) −→ DerΛ(R, k) = TF

as follows from the canonical identifications F (k[V ]) = DerΛ(R, V ) and G(k[V ]) =
DerΛ(S, V ) of Example 11.11 and the rule for computing the map on tangent spaces.

Lemma 11.15. Let F : C → Sets be a functor satisfying the hypotheses of Lemma
11.8. Assume R = K is a field. Then F (K[V ]) ∼= TF ⊗K V for any finite dimensional
K-vector space V .

Proof. Follows from Lemma 11.6. �

12. Tangent spaces of predeformation categories

We will define tangent spaces of predeformation functors using the general Definition
11.9. We have spelled this out in Example 11.10. It applies to predeformation categories
by looking at the associated functor of isomorphism classes.

Definition 12.1. Let F be a predeformation category. The tangent space TF of F
is the set F(k[ε]) of isomorphism classes of objects in the fiber category F(k[ε]).

Thus TF is nothing but the tangent space of the associated functor F : CΛ → Sets. It has
a natural vector space structure when F satisfies (S2), or, in fact, as long as F does.

Lemma 12.2. Let F be a predeformation category such that F satisfies (S2)2. Then
TF has a natural k-vector space structure. For any finite dimensional vector space V we
have F(k[V ]) = TF ⊗k V functorially in V .

Proof. Let us write F = F : CΛ → Sets. This is a predeformation functor and F
satisfies (S2). By Lemma 10.4 (and the translation of Remark 10.3) we see that

F (A×k k[V ]) −→ F (A)× F (k[V ])
is a bijection for every finite dimensional vector space V and every A ∈ Ob(CΛ). In
particular, if A = k[W ] then we see that F (k[W ] ×k k[V ]) = F (k[W ]) × F (k[V ]). In
other words, the hypotheses of Lemma 11.8 hold and we see that TF = TF has a natural
k-vector space structure. The final assertion follows from Lemma 11.15. �

A morphism of predeformation categories induces a map on tangent spaces.

Definition 12.3. Let ϕ : F → G be a morphism predeformation categories. The
differential dϕ : TF → TG of ϕ is the map obtained by evaluating the morphism of
functors ϕ : F → G at A = k[ε].

2For example if F satisfies (S2), see Lemma 10.5.
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Lemma 12.4. Let ϕ : F → G be a morphism of predeformation categories. Assume
F and G both satisfy (S2). Then dϕ : TF → TG is k-linear.

Proof. In the proof of Lemma 12.2 we have seen that F and G satisfy the hypotheses
of Lemma 11.8. Hence the lemma follows from Lemma 11.13. �

Remark 12.5. We can globalize the notions of tangent space and differential to ar-
bitrary categories cofibered in groupoids as follows. Let F be a category cofibered in
groupoids over CΛ, and let x ∈ Ob(F(k)). As in Remark 6.4, we get a predeformation
category Fx. We define

TxF = TFx
to be the tangent space of F at x. If ϕ : F → G is a morphism of categories cofibered in
groupoids over CΛ and x ∈ Ob(F(k)), then there is an induced morphism ϕx : Fx →
Gϕ(x). We define the differential dxϕ : TxF → Tϕ(x)G of ϕ at x to be the map dϕx :
TFx → TGϕ(x). If bothF and G satisfy (S2) then all of these tangent spaces have a natural
k-vector space structure and all the differentials dxϕ : TxF → Tϕ(x)G are k-linear (use
Lemmas 10.6 and 12.4).

The following observations are uninteresting in the classical case or when k/k′ is a separa-
ble field extension, because then DerΛ(k, k) and DerΛ(k, V ) are zero. There is a canonical
identification

MorCΛ(k, k[ε]) = DerΛ(k, k).
Namely, for D ∈ DerΛ(k, k) let fD : k → k[ε] be the map a 7→ a + D(a)ε. More
generally, given a finite dimensional vector space V over k we have

MorCΛ(k, k[V ]) = DerΛ(k, V )

and we will use the same notation fD for the map associated to the derivationD. We also
have

MorCΛ(k[W ], k[V ]) = Homk(V,W )⊕DerΛ(k, V )
where (ϕ,D) corresponds to the map fϕ,D : a+w 7→ a+ϕ(w)+D(a). We will sometimes
write f1,D : a + v → a + v + D(a) for the automorphism of k[V ] determined by the
derivation D : k → V . Note that f1,D ◦ f1,D′ = f1,D+D′ .

Let F be a predeformation category over CΛ. Let x0 ∈ Ob(F(k)). By the above there is a
canonical map

γV : DerΛ(k, V ) −→ F(k[V ])
defined by D 7→ fD,∗(x0). Moreover, there is an action

aV : DerΛ(k, V )×F(k[V ]) −→ F(k[V ])

defined by (D,x) 7→ f1,D,∗(x). These two maps are compatible, i.e., f1,D,∗fD′,∗x0 =
fD+D′,∗x0 as follows from a computation of the compositions of these maps. Note that
the maps γV and aV are independent of the choice of x0 as there is a unique x0 up to
isomorphism.

Lemma 12.6. Let F be a predeformation category over CΛ. If F has (S2) then the
maps γV are k-linear and we have aV (D,x) = x+ γV (D).

Proof. In the proof of Lemma 12.2 we have seen that the functor V 7→ F(k[V ])
transforms 0 to a singleton and products to products. The same is true of the functor
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V 7→ DerΛ(k, V ). Hence γV is linear by Lemma 11.5. Let D : k → V be a Λ-derivation.
Set D1 : k → V ⊕2 equal to a 7→ (D(a), 0). Then

k[V × V ]
+

//

f1,D1
��

k[V ]

f1,D

��
k[V × V ] + // k[V ]

commutes. Unwinding the definitions and using that F (V × V ) = F (V ) × F (V ) this
means that aD(x1) + x2 = aD(x1 + x2) for all x1, x2 ∈ F (V ). Thus it suffices to show
that aV (D, 0) = 0 + γV (D) where 0 ∈ F (V ) is the zero vector. By definition this is the
element f0,∗(x0). Since fD = f1,D ◦ f0 the desired result follows. �

A special case of the constructions above are the map

(12.6.1) γ : DerΛ(k, k) −→ TF
and the action

(12.6.2) a : DerΛ(k, k)× TF −→ TF
defined for any predeformation category F . Note that if ϕ : F → G is a morphism of
predeformation categories, then we get commutative diagrams

DerΛ(k, k)
γ
//

γ
%%

TF

dϕ

��
TG

and

DerΛ(k, k)× TF
a
//

1×dϕ
��

TF

dϕ

��
DerΛ(k, k)× TG a // TG

13. Versal formal objects

The existence of a versal formal object forces F to have property (S1).

Lemma 13.1. Let F be a predeformation category. Assume F has a versal formal
object. Then F satisfies (S1).

Proof. Let ξ be a versal formal object of F . Let

x2

��
x1 // x

be a diagram in F such that x2 → x lies over a surjective ring map. Since the natural
morphism F̂ |CΛ

∼−→ F is an equivalence (see Remark 7.7), we can consider this diagram
also as a diagram in F̂ . By Lemma 8.11 there exists a morphism ξ → x1, so by Remark 8.10
we also get a morphism ξ → x2 making the diagram

ξ //

��

x2

��
x1 // x

commute. If x1 → x and x2 → x lie above ring maps A1 → A and A2 → A then taking
the pushforward of ξ to A1 ×A A2 gives an object y as required by (S1). �
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In the case that our cofibred category satisfies (S1) and (S2) we can characterize the versal
formal objects as follows.

Lemma 13.2. Let F be a predeformation category satisfying (S1) and (S2). Let ξ be a
formal object of F corresponding to ξ : R|CΛ → F , see Remark 7.12. Then ξ is versal if
and only if the following two conditions hold:

(1) the map dξ : TR|CΛ → TF on tangent spaces is surjective, and
(2) given a diagram in F̂

y

��
ξ // x

lying over

B

f

��
R // A

in ĈΛ with B → A a small extension of Artinian rings, then there exists a ring
map R→ B such that

B

f

��
R

??

// A
commutes.

Proof. If ξ is versal then (1) holds by Lemma 8.8 and (2) holds by Remark 8.10. As-
sume (1) and (2) hold. By Remark 8.10 we must show that given a diagram in F̂ as in (2),
there exists ξ → y such that

y

��
ξ

@@

// x

commutes. Let b : R → B be the map guaranteed by (2). Denote y′ = b∗ξ and choose a
factorization ξ → y′ → x lying over R → B → A of the given morphism ξ → x. By
(S1) we obtain a commutative diagram

z //

��

y

��
y′ // x

lying over

B ×A B

��

// B

f

��
B

f // A.

Set I = Ker(f). Let g : B ×A B → k[I] be the ring map (u, v) 7→ u ⊕ (v − u),
cf. Lemma 10.8. By (1) there exists a morphism ξ → g∗z which lies over a ring map
i : R → k[ε]. Choose an Artinian quotient b1 : R → B1 such that both b : R → B
and i : R → k[ε] factor through R → B1, i.e., giving h : B1 → B and i′ : B1 → k[ε].
Choose a pushforward y1 = b1,∗ξ, a factorization ξ → y1 → y′ lying over R→ B1 → B
of ξ → y′, and a factorization ξ → y1 → g∗z lying over R → B1 → k[ε] of ξ → g∗z.
Applying (S1) once more we obtain

z1 //

��

z //

��

y

��
y1 // y′ // x

lying over

B1 ×A B

��

// B ×A B //

��

B

f

��
B1 // B // A.
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Note that the map g : B1×AB → k[I] of Lemma 10.8 (defined using h) is the composition
of B1 ×A B → B ×A B and the map g above. By construction there exists a morphism
y1 → g∗z1 ∼= g∗z! Hence Lemma 10.8 applies (to the outer rectangles in the diagrams
above) to give a morphism y1 → y and precomposing with ξ → y1 gives the desired
morphism ξ → y. �

IfF has property (S1) then the “largest quotient where a lift exists” exists. Here is a precise
statement.

Lemma 13.3. Let F be a category cofibred in groupoids over CΛ which has (S1). Let
B → A be a surjection in CΛ with kernel I annihilated by mB . Let x ∈ F(A). The set of
ideals

J = {J ⊂ I | there exists an y → x lying over B/J → A}
has a smallest element.

Proof. Note that J is nonempty as I ∈ J . Also, if J ∈ J and J ⊂ J ′ ⊂ I then
J ′ ∈ J because we can pushforward the object y to an object y′ over B/J ′. Let J and K
be elements of the displayed set. We claim that J ∩K ∈ J which will prove the lemma.
Since I is a k-vector space we can find an ideal J ⊂ J ′ ⊂ I such that J ∩K = J ′ ∩K and
such that J ′ +K = I . By the above we may replace J by J ′ and assume that J +K = I .
In this case

A/(J ∩K) = A/J ×A/I A/K.
Hence the existence of an element z ∈ F(A/(J∩K)) mapping to x follows, via (S1), from
the existence of the elements we have assumed exist over A/J and A/K. �

We will improve on the following result later.

Lemma 13.4. Let F be a category cofibred in groupoids over CΛ. Assume the follow-
ing conditions hold:

(1) F is a predeformation category.
(2) F satisfies (S1).
(3) F satisfies (S2).
(4) dimk TF is finite.

Then F has a versal formal object.

Proof. Assume (1), (2), (3), and (4) hold. Choose an object R ∈ Ob(ĈΛ) such that
R|CΛ is smooth. See Lemma 9.5. Let r = dimk TF and put S = R[[X1, . . . , Xr]].
We are going to inductively construct for n ≥ 2 pairs (Jn, fn−1 : ξn → ξn−1) where
Jn ⊂ S is an decreasing sequence of ideals and fn−1 : ξn → ξn−1 is a morphism of F
lying over the projection S/Jn → S/Jn−1.
Step 1. Let J1 = mS . Let ξ1 be the unique (up to unique isomorphism) object of F over
k = S/J1 = S/mS

Step 2. Let J2 = m2
S +mRS. Then S/J2 = k[V ] with V = kX1 ⊕ . . .⊕ kXr By (S2) for

F we get a bijection
F(S/J2) −→ TF ⊗k V,

see Lemmas 10.5 and 12.2. Choose a basis θ1, . . . , θr for TF and set ξ2 =
∑
θi ⊗ Xi ∈

Ob(F(S/J2)). The point of this choice is that
dξ2 : MorCΛ(S/J2, k[ε]) −→ TF

is surjective. Let f1 : ξ2 → ξ1 be the unique morphism.
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Induction step. Assume (Jn, fn−1 : ξn → ξn−1) has been constructed for some n ≥ 2.
There is a minimal element Jn+1 of the set of ideals J ⊂ S satisfying: (a) mSJn ⊂ J ⊂ Jn
and (b) there exists a morphism ξn+1 → ξn lying over S/J → S/Jn, see Lemma 13.3. Let
fn : ξn+1 → ξn be any morphism of F lying over S/Jn+1 → S/Jn.

Set J =
⋂
Jn. Set S = S/J . Set Jn = Jn/J . By Lemma 4.7 the sequence of ideals (Jn)

induces the mS-adic topology on S. Since (ξn, fn) is an object of F̂I(S), where I is the
filtration (Jn) of S , we see that (ξn, fn) induces an object ξ of F̂(S). see Lemma 7.4.

We prove ξ is versal. For versality it suffices to check conditions (1) and (2) of Lemma 13.2.
Condition (1) follows from our choice of ξ2 in Step 2 above. Suppose given a diagram in
F̂

y

��
ξ // x

lying over

B

f

��
S // A

in ĈΛ with f : B → A a small extension of Artinian rings. We have to show there is a
map S → B fitting into the diagram on the right. Choose n such that S → A factors
through S → S/Jn. This is possible as the sequence (Jn) induces the mS-adic topology
as we saw above. The pushforward of ξ along S → S/Jn is ξn. We may factor ξ → x as
ξ → ξn → x hence we get a diagram in F

y

��
ξn // x

lying over

B

f

��
S/Jn // A.

To check condition (2) of Lemma 13.2 it suffices to complete the diagram

S/Jn+1

��

// B

f

��
S/Jn // A

or equivalently, to complete the diagram

S/Jn ×A B

p1

��
S/Jn+1

88

// S/Jn.

If p1 has a section we are done. If not, by Lemma 3.8 (2) p1 is a small extension, so by
Lemma 3.12 (4) p1 is an essential surjection. Recall that S = R[[X1, . . . , Xr]] and that
we chose R such that R|CΛ is smooth. Hence there exists a map h : R → B lifting the
map R → S → S/Jn → A. By the universal property of a power series ring there is an
R-algebra map h : S = R[[X1, . . . , Xr]] → B lifting the given map S → S/Jn → A.
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This induces a map g : S → S/Jn ×A B making the solid square in the diagram

S

��

g
// S/Jn ×A B

p1

��
S/Jn+1

88

// S/Jn

commute. Then g is a surjection since p1 is an essential surjection. We claim the idealK =
Ker(g) of S satisfies conditions (a) and (b) of the construction of Jn+1 in the induction
step above. Namely,K ⊂ Jn is clear and mSJn ⊂ K as p1 is a small extension; this proves
(a). By (S1) applied to

y

��
ξn // x,

there exists a lifting of ξn to S/K ∼= S/Jn ×A B, so (b) holds. Since Jn+1 was the
minimal ideal with properties (a) and (b) this implies Jn+1 ⊂ K. Thus the desired map
S/Jn+1 → S/K ∼= S/Jn ×A B exists. �

Remark 13.5. Let F : CΛ → Sets be a predeformation functor satisfying (S1) and
(S2). The condition dimk TF <∞ is precisely condition (H3) from Schlessinger’s paper.
Recall that (S1) and (S2) correspond to conditions (H1) and (H2), see Remark 10.3. Thus
Lemma 13.4 tells us

(H1) + (H2) + (H3)⇒ there exists a versal formal object

for predeformation functors. We will make the link with hulls in Remark 15.6.

14. Minimal versal formal objects

We do a little bit of work to try and understand (non)uniqueness of versal formal objects.
It turns out that if a predeformation category has a versal formal object, then it has a
minimal versal formal object and any two such are isomorphic. Moreover, all versal formal
objects are “more or less” the same up to replacing the base ring by a power series extension.

Let F be a category cofibred in groupoids over CΛ. For every object x of F lying over
A ∈ Ob(CΛ) consider the category Sx with objects

Ob(Sx) = {x′ → x | x′ → x lies over A′ ⊂ A}

and morphisms are morphisms over x. For every y → x in F lying over f : B → A in
CΛ there is a functor f∗ : Sy → Sx defined as follows: Given y′ → y lying over B′ ⊂ B
set A′ = f(B′) and let y′ → x′ be over B′ → f(B′) be the pushforward of y′. By the
axioms of a category cofibred in groupoids we obtain a unique morphism x′ → x lying
over f(B′)→ A such that

y′

��

// x′

��
y // x

commutes. Then x′ → x is an object of Sx. We say an object x′ → x of Sx is minimal if
any morphism (x′

1 → x)→ (x′ → x) in Sx is an isomorphism, i.e., x′ and x′
1 are defined
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over the same subring of A. Since A has finite length as a Λ-module we see that minimal
objects always exist.

Lemma 14.1. Let F be a category cofibred in groupoids over CΛ which has (S1).
(1) For y → x in F a minimal object in Sy maps to a minimal object of Sx.
(2) For y → x in F lying over a surjection f : B → A in CΛ every minimal object

of Sx is the image of a minimal object of Sy .
Proof. Proof of (1). Say y → x lies over f : B → A. Let y′ → y lying over B′ ⊂ B

be a minimal object of Sy . Let

y′

��

// x′

��
y // x

lying over

B′

��

// f(B′)

��
B // A

be as in the construction of f∗ above. Suppose that (x′′ → x)→ (x′ → x) is a morphism
of Sx with x′′ → x′ lying over A′′ ⊂ f(B′). By (S1) there exists y′′ → y′ lying over
B′×f(B′) A

′′ → B′. Since y′ → y is minimal we conclude thatB′×f(B′) A
′′ → B′ is an

isomorphism, which implies that A′′ = f(B′), i.e., x′ → x is minimal.
Proof of (2). Suppose f : B → A is surjective and y → x lies over f . Let x′ → x
be a minimal object of Sx lying over A′ ⊂ A. By (S1) there exists y′ → y lying over
B′ = f−1(A′) = B ×A A′ → B whose image in Sx is x′ → x. So f∗(y′ → y) = x′ → x.
Choose a morphism (y′′ → y) → (y′ → y) in Sy with y′′ → y a minimal object (this
is possible by the remark on lengths above the lemma). Then f∗(y′′ → y) is an object
of Sx which maps to x′ → x (by functoriality of f∗) hence is isomorphic to x′ → x by
minimality of x′ → x. �

Lemma 14.2. Let F be a category cofibred in groupoids over CΛ which has (S1). Let
ξ be a versal formal object of F lying over R. There exists a morphism ξ′ → ξ lying over
R′ ⊂ R with the following minimality properties

(1) for every f : R→ A with A ∈ Ob(CΛ) the pushforwards

ξ′

��

// x′

��
ξ // x

lying over

R′

��

// f(R′)

��
R // A

produce a minimal object x′ → x of Sx, and
(2) for any morphism of formal objects ξ′′ → ξ′ the corresponding morphismR′′ →

R′ is surjective.
Proof. Write ξ = (R, ξn, fn). Set R′

1 = k and ξ′
1 = ξ1. Suppose that we have

constructed minimal objects ξ′
m → ξm of Sξm lying over R′

m ⊂ R/mmR for m ≤ n and
morphisms f ′

m : ξ′
m+1 → ξ′

m compatible with fm for m ≤ n − 1. By Lemma 14.1 (2)
there exists a minimal object ξ′

n+1 → ξn+1 lying over R′
n+1 ⊂ R/mn+1

R whose image is
ξ′
n → ξn over R′

n ⊂ R/mnR. This produces the commutative diagram

ξ′
n+1

f ′
n

//

��

ξ′
n

��
ξn+1

fn // ξn
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by construction. Moreover the ring map R′
n+1 → R′

n is surjective. Set R′ = limnR
′
n.

Then R′ → R is injective.

However, it isn’t a priori clear that R′ is Noetherian. To prove this we use that ξ is versal.
Namely, versality implies that there exists a morphism ξ → ξ′

n in F̂ , see Lemma 8.11.
The corresponding map R → R′

n has to be surjective (as ξ′
n → ξn is minimal in Sξn ).

Thus the dimensions of the cotangent spaces are bounded and Lemma 4.8 implies R′ is
Noetherian, i.e., an object of ĈΛ. By Lemma 7.4 (plus the result on filtrations of Lemma
4.8) the sequence of elements ξ′

n defines a formal object ξ′ over R′ and we have a map
ξ′ → ξ.

By construction (1) holds for R → R/mnR for each n. Since each R → A as in (1) factors
through R → R/mnR → A we see that (1) for x′ → x over f(R) ⊂ A follows from the
minimality of ξ′

n → ξn over R′
n → R/mnR by Lemma 14.1 (1).

If R′′ → R′ as in (2) is not surjective, then R′′ → R′ → R′
n would not be surjective for

some n and ξ′
n → ξn wouldn’t be minimal, a contradiction. This contradiction proves

(2). �

Lemma 14.3. Let F be a category cofibred in groupoids over CΛ which has (S1). Let
ξ be a versal formal object of F lying over R. Let ξ′ → ξ be a morphism of formal objects
lying over R′ ⊂ R as constructed in Lemma 14.2. Then

R ∼= R′[[x1, . . . , xr]]

is a power series ring over R′. Moreover, ξ′ is a versal formal object too.

Proof. By Lemma 8.11 there exists a morphism ξ → ξ′. By Lemma 14.2 the corre-
sponding map f : R → R′ induces a surjection f |R′ : R′ → R′. This is an isomorphism
by Algebra, Lemma 31.10. Hence I = Ker(f) is an ideal of R such that R = R′ ⊕ I .
Let x1, . . . , xn ∈ I be elements which form a basis for I/mRI . Consider the map S =
R′[[X1, . . . , Xr]]→ RmappingXi to xi. For every n ≥ 1 we get a surjection of Artinian
R′-algebras B = S/mnS → R/mnR = A. Denote y ∈ Ob(F(B), resp. x ∈ Ob(F(A))
the pushforward of ξ′ along R′ → S → B, resp. R′ → S → A. Note that x is also the
pushforward of ξ along R → A as ξ is the pushforward of ξ′ along R′ → R. Thus we
have a solid diagram

y

��
ξ //

@@

x

lying over

S/mnS

��
R //

==

R/mnR

Because ξ is versal, using Remark 8.10 we obtain the dotted arrows fitting into these dia-
grams. In particular, the maps S/mnS → R/mnR have sections hn : R/mnR → S/mnS . It
follows from Lemma 4.9 that S → R is an isomorphism.

As ξ is a pushforward of ξ′ along R′ → R we obtain from Remark 7.13 a commutative
diagram

R|CΛ
//

ξ !!

R′|CΛ

ξ′
}}

F
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Since R′ → R has a left inverse (namely R → R/I = R′) we see that R|CΛ → R′|CΛ

is essentially surjective. Hence by Lemma 8.7 we see that ξ′ is smooth, i.e., ξ′ is a versal
formal object. �

Motivated by the preceding lemmas we make the following definition.
Definition 14.4. LetF be a predeformation category. We say a versal formal object

ξ of F is minimal3 if for any morphism of formal objects ξ′ → ξ the underlying map on
rings is surjective. Sometimes a minimal versal formal object is called miniversal.
The work in this section shows this definition is reasonable. First of all, the existence of
a versal formal object implies that F has (S1). Then the preceding lemmas show there
exists a minimal versal formal object. Finally, any two minimal versal formal objects are
isomorphic. Here is a summary of our results (with detailed proofs).

Lemma 14.5. Let F be a predeformation category which has a versal formal object.
Then

(1) F has a minimal versal formal object,
(2) minimal versal objects are unique up to isomorphism, and
(3) any versal object is the pushforward of a minimal versal object along a power

series ring extension.
Proof. Suppose F has a versal formal object ξ over R. Then it satisfies (S1), see

Lemma 13.1. Let ξ′ → ξ over R′ ⊂ R be any of the morphisms constructed in Lemma
14.2. By Lemma 14.3 we see that ξ′ is versal, hence it is a minimal versal formal object (by
construction). This proves (1). Also, R ∼= R′[[x1, . . . , xn]] which proves (3).
Suppose that ξi/Ri are two minimal versal formal objects. By Lemma 8.11 there exist
morphisms ξ1 → ξ2 and ξ2 → ξ1. The corresponding ring maps f : R1 → R2 and
g : R2 → R1 are surjective by minimality. Hence the compositions g ◦ f : R1 →
R1 and f ◦ g : R2 → R2 are isomorphisms by Algebra, Lemma 31.10. Thus f and g
are isomorphisms whence the maps ξ1 → ξ2 and ξ2 → ξ1 are isomorphisms (because
F̂ is cofibred in groupoids by Lemma 7.2). This proves (2) and finishes the proof of the
lemma. �

15. Miniversal formal objects and tangent spaces

The general notion of minimality introduced in Definition 14.4 can sometimes be deduced
from the behaviour on tangent spaces. Let ξ be a formal object of the predeformation
category F and let ξ : R|CΛ → F be the corresponding morphism. Then we can consider
the following the condition
(15.0.1) dξ : DerΛ(R, k)→ TF is bijective
and the condition
(15.0.2) dξ : DerΛ(R, k)→ TF is bijective on DerΛ(k, k)-orbits.

Here we are using the identification TR|CΛ = DerΛ(R, k) of Example 11.11 and the action
(12.6.2) of derivations on the tangent spaces. If k′ ⊂ k is separable, then DerΛ(k, k) = 0
and the two conditions are equivalent. It turns out that, in the presence of condition (S2)
a versal formal object is minimal if and only if ξ satisfies (15.0.2). Moreover, if ξ satisfies
(15.0.1), then F satisfies (S2).

3This may be nonstandard terminology. Many authors tie this notion in with properties of tangent spaces.
We will make the link in Section 15.
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Lemma 15.1. Let F be a predeformation category. Let ξ be a versal formal object of
F such that (15.0.2) holds. Then ξ is a minimal versal formal object. In particular, such ξ
are unique up to isomorphism.

Proof. If ξ is not minimal, then there exists a morphism ξ′ → ξ lying over R′ → R
such that R = R′[[x1, . . . , xn]] with n > 0, see Lemma 14.5. Thus dξ factors as

DerΛ(R, k)→ DerΛ(R′, k)→ TF

and we see that (15.0.2) cannot hold becauseD : f 7→ ∂/∂x1(f) mod mR is an element of
the kernel of the first arrow which is not in the image of DerΛ(k, k)→ DerΛ(R, k). �

Lemma 15.2. Let F be a predeformation category. Let ξ be a versal formal object of
F such that (15.0.1) holds. Then

(1) F satisfies (S1).
(2) F satisfies (S2).
(3) dimk TF is finite.

Proof. Condition (S1) holds by Lemma 13.1. The first part of (S2) holds since (S1)
holds. Let

y
c
//

a

��

xε

e

��
x

d // x0

and

y′
c′
//

a′

��

xε

e

��
x

d // x0

lying over

A×k k[ε] //

��

k[ε]

��
A // k

be diagrams as in the second part of (S2). As above we can find morphisms b : ξ → y and
b′ : ξ → y′ such that

ξ
b′
//

b

��

y′

a′

��
y

a // x

commutes. Let p : F → CΛ denote the structure morphism. Say p̂(ξ) = R, i.e., ξ lies
over R ∈ Ob(ĈΛ). We see that the pushforward of ξ via p(c) ◦ p(b) is xε and that the
pushforward of ξ via p(c′) ◦ p(b′) is xε. Since ξ satisfies (15.0.1), we see that p(c) ◦ p(b) =
p(c′) ◦ p(b′) as maps R → k[ε]. Hence p(b) = p(b′) as maps from R → A ×k k[ε]. Thus
we see that y and y′ are isomorphic to the pushforward of ξ along this map and we get a
unique morphism y → y′ over A×k k[ε] compatible with b and b′ as desired.

Finally, by Example 11.11 we see dimk TF = dimk TR|CΛ is finite. �

Example 15.3. There exist predeformation categories which have a versal formal
object satisfying (15.0.2) but which do not satisfy (S2). A quick example is to take F =
k[ε]/GwhereG ⊂ AutCΛ(k[ε]) is a finite nontrivial subgroup. Namely, the map k[ε]→ F

is smooth, but the tangent space of F does not have a natural k-vector space structure (as
it is a quotient of a k-vector space by a finite group).

Lemma 15.4. Let F be a predeformation category satisfying (S2) which has a versal
formal object. Then its minimal versal formal object satisfies (15.0.2).

Proof. Let ξ be a minimal versal formal object forF , see Lemma 14.5. Say ξ lies over
R ∈ Ob(ĈΛ). In order to parse (15.0.2) we point out that TF has a natural k-vector space
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structure (see Lemma 12.2), that dξ : DerΛ(R, k) → TF is linear (see Lemma 12.4), and
that the action of DerΛ(k, k) is given by addition (see Lemma 12.6). Consider the diagram

Homk(mR/m2
R, k)

K // DerΛ(R, k)
dξ

//

OO

TF

DerΛ(k, k)

OO 77

The vector spaceK is the kernel of dξ. Note that the middle column is exact in the middle
as it is dual to the sequence (3.10.1). If (15.0.2) fails, then we can find a nonzero element
D ∈ K which does not map to zero in Homk(mR/m2

R, k). This means there exists an
t ∈ mR such that D(t) = 1. Set R′ = {a ∈ R | D(a) = 0}. As D is a derivation this is a
subring ofR. SinceD(t) = 1 we see thatR′ → k is surjective (compare with the proof of
Lemma 3.12). Note that mR′ = Ker(D : mR → k) is an ideal ofR and m2

R ⊂ mR′ . Hence

mR/m
2
R = mR′/m2

R + kt

which implies that the map

R′/m2
R ×k k[ε]→ R/m2

R

sending ε to t is an isomorphism. In particular there is a map R/m2
R → R′/m2

R.

Let ξ → y be a morphism lying over R → R/m2
R. Let y → x be a morphism lying

over R/m2
R → R′/m2

R. Let y → xε be a morphism lying over R/m2
R → k[ε]. Let x0 be

the unique (up to unique isomorphism) object of F over k. By the axioms of a category
cofibred in groupoids we obtain a commutative diagram

y //

��

xε

��
x // x0

lying over

R′/m2
R ×k k[ε] //

��

k[ε]

��
R′/m2

R
// k.

Because D ∈ K we see that xε is isomorphic to 0 ∈ F(k[ε]), i.e., xε is the pushforward of
x0 via k → k[ε], a 7→ a. Hence by Lemma 10.7 we see that there exists a morphism x→ y.
Since lengthΛ(R′/m2

R) < lengthΛ(R/m2
R) the corresponding ring mapR′/m2

R → R/m2
R

is not surjective. This contradicts the minimality of ξ/R, see part (1) of Lemma 14.2. This
contradiction shows that such a D cannot exist, hence we win. �

Theorem 15.5. Let F be a predeformation category. Consider the following condi-
tions

(1) F has a minimal versal formal object satisfying (15.0.1),
(2) F has a minimal versal formal object satisfying (15.0.2),
(3) the following conditions hold:

(a) F satisfies (S1).
(b) F satisfies (S2).
(c) dimk TF is finite.
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We always have
(1)⇒ (3)⇒ (2).

If k′ ⊂ k is separable, then all three are equivalent.

Proof. Lemma 15.2 shows that (1)⇒ (3). Lemmas 13.4 and 15.4 show that (3)⇒ (2).
If k′ ⊂ k is separable then DerΛ(k, k) = 0 and we see that (15.0.1) = (15.0.2), i.e., (1) is
the same as (2).

An alternative proof of (3)⇒ (1) in the classical case is to add a few words to the proof of
Lemma 13.4 to see that one can right away construct a versal object which satisfies (15.0.1)
in this case. This avoids the use of Lemma 13.4 in the classical case. Details omitted. �

Remark 15.6. Let F : CΛ → Sets be a predeformation functor satisfying (S1) and
(S2) and dimk TF < ∞. Recall that these conditions correspond to the conditions (H1),
(H2), and (H3) from Schlessinger’s paper, see Remark 13.5. Now, in the classical case (or
if k′ ⊂ k is separable) following Schlessinger we introduce the notion of a hull: a hull
is a versal formal object ξ ∈ F̂ (R) such that dξ : TR|CΛ → TF is an isomorphism, i.e.,
(15.0.1) holds. Thus Theorem 15.5 tells us

(H1) + (H2) + (H3)⇒ there exists a hull

in the classical case. In other words, our theorem recovers Schlessinger’s theorem on the
existence of hulls.

Remark 15.7. Let F be a predeformation category. Recall that F → F is smooth,
see Remark 8.5. Hence if ξ ∈ F̂(R) is a versal formal object, then the composition

R|CΛ −→ F −→ F

is smooth (Lemma 8.7) and we conclude that the image ξ of ξ inF is a versal formal object.
If (15.0.1) holds, then ξ induces an isomorphism TR|CΛ → TF because F → F identifies
tangent spaces. Hence in this case ξ is a hull for F , see Remark 15.6. By Theorem 15.5
we can always find such a ξ if k′ ⊂ k is separable and F is a predeformation category
satisfying (S1), (S2), and dimk TF <∞.

Example 15.8. In Lemma 9.5 we constructed objectsR ∈ ĈΛ such thatR|CΛ is smooth
and such that

H1(Lk/Λ) = mR/m
2
R and ΩR/Λ ⊗R k = Ωk/Λ

Let us reinterpret this using the theorem above. Namely, consider F = CΛ as a category
cofibred in groupoids over itself (using the identity functor). ThenF is a predeformation
category, satisfies (S1) and (S2), and we have TF = 0. Thus F satisfies condition (3) of
Theorem 15.5. The theorem implies that (2) holds, i.e., we can find a minimal versal formal
object ξ ∈ F̂(S) over some S ∈ ĈΛ satisfying (15.0.2). Lemma 9.3 shows that Λ → S is
formally smooth in the mS-adic topology (because ξ : R|CΛ → F = CΛ is smooth). Now
condition (15.0.2) tells us that DerΛ(S, k) → 0 is bijective on DerΛ(k, k)-orbits. This
means the injection DerΛ(k, k) → DerΛ(S, k) is also surjective. In other words, we have
ΩS/Λ ⊗S k = Ωk/Λ. Since Λ → S is formally smooth in the mS-adic topology, we can
apply More on Algebra, Lemma 40.4 to conclude the exact sequence (3.10.2) turns into a
pair of identifications

H1(Lk/Λ) = mS/m
2
S and ΩS/Λ ⊗S k = Ωk/Λ
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Reading the argument backwards, we find that the R constructed in Lemma 9.5 carries a
minimal versal object. By the uniqueness of minimal versal objects (Lemma 14.5) we also
conclude R ∼= S , i.e., the two constructions give the same answer.

16. Rim-Schlessinger conditions and deformation categories

There is a very natural property of categories fibred in groupoids over CΛ which is easy
to check in practice and which implies Schlessinger’s properties (S1) and (S2) we have
introduced earlier.

Definition 16.1. LetF be a category cofibered in groupoids over CΛ. We say thatF
satisfies condition (RS) if for every diagram in F

x2

��
x1 // x

lying over

A2

��
A1 // A

in CΛ with A2 → A surjective, there exists a fiber product x1 ×x x2 in F such that the
diagram

x1 ×x x2 //

��

x2

��
x1 // x

lies over

A1 ×A A2 //

��

A2

��
A1 // A.

Lemma 16.2. Let F be a category cofibered in groupoids over CΛ satisfying (RS).
Given a commutative diagram in F

y //

��

x2

��
x1 // x

lying over

A1 ×A A2 //

��

A2

��
A1 // A.

with A2 → A surjective, then it is a fiber square.

Proof. Since F satisfies (RS), there exists a fiber product diagram

x1 ×x x2 //

��

x2

��
x1 // x

lying over

A1 ×A A2 //

��

A2

��
A1 // A.

The induced map y → x1 ×x x2 lies over id : A1 ×A A1 → A1 ×A A1, hence it is an
isomorphism. �

Lemma 16.3. Let F be a category cofibered in groupoids over CΛ. Then F satisfies
(RS) if the condition in Definition 16.1 is assumed to hold only when A2 → A is a small
extension.

Proof. Apply Lemma 3.3. The proof is similar to that of Lemma 8.2. �

Lemma 16.4. Let F be a category cofibered in groupoids over CΛ. The following are
equivalent

(1) F satisfies (RS),
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(2) the functorF(A1×AA2)→ F(A1)×F(A)F(A2) see (10.1.1) is an equivalence
of categories whenever A2 → A is surjective, and

(3) same as in (2) whenever A2 → A is a small extension.

Proof. Assume (1). By Lemma 16.2 we see that every object of F(A1 ×A A2) is of
the form x1 ×x x2. Moreover

MorA1×AA2(x1 ×x x2, y1 ×y y2) = MorA1(x1, y1)×MorA(x,y) MorA2(x2, y2).
Hence we see that F(A1×AA2) is a 2-fibre product of F(A1) with F(A2) over F(A) by
Categories, Remark 31.5. In other words, we see that (2) holds.

The implication (2)⇒ (3) is immediate.

Assume (3). Let q1 : A1 → A and q2 : A2 → A be given with q2 a small extension. We will
use the description of the 2-fibre product F(A1)×F(A) F(A2) from Categories, Remark
31.5. Hence let y ∈ F(A1 ×A A2) correspond to (x1, x2, x, a1 : x1 → x, a2 : x2 → x).
Let z be an object of F lying over C. Then

MorF (z, y) = {(f, α) | f : C → A1 ×A A2, α : f∗z → y}
= {(f1, f2, α1, α2) | fi : C → Ai, αi : fi,∗z → xi,

q1 ◦ f1 = q2 ◦ f2, q1,∗α1 = q2,∗α2}
= MorF (z, x1)×MorF (z,x) MorF (z, x2)

whence y is a fibre product of x1 and x2 over x. Thus we see that F satisfies (RS) in case
A2 → A is a small extension. Hence (RS) holds by Lemma 16.3. �

Remark 16.5. When F is cofibered in sets, condition (RS) is exactly condition (H4)
from Schlessinger’s paper [?, Theorem 2.11]. Namely, for a functor F : CΛ → Sets, condi-
tion (RS) states: If A1 → A and A2 → A are maps in CΛ with A2 → A surjective, then
the induced map F (A1 ×A A2)→ F (A1)×F (A) F (A2) is bijective.

Lemma 16.6. LetF be a category cofibered in groupoids over CΛ. The condition (RS)
for F implies both (S1) and (S2) for F .

Proof. Using the reformulation of Lemma 16.4 and the explanation of (S1) following
Definition 10.1 it is immediate that (RS) implies (S1). This proves the first part of (S2).
The second part of (S2) follows because Lemma 16.2 tells us that y = x1 ×d,x0,e x2 = y′

if y, y′ are as in the second part of the definition of (S2) in Definition 10.1. (In fact the
morphism y → y′ is compatible with both a, a′ and c, c′!) �

The following lemma is the analogue of Lemma 10.5. Recall that ifF is a category cofibred
in groupoids over CΛ and x is an object of F lying over A, then we denote AutA(x) =
MorA(x, x) = MorF(A)(x, x). If x′ → x is a morphism of F lying over A′ → A then
there is a well defined map of groups AutA′(x′)→ AutA(x).

Lemma 16.7. LetF be a category cofibered in groupoids over CΛ satisfying (RS). The
following conditions are equivalent:

(1) F satisfies (RS).
(2) Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ with f2 surjective. The

induced map of sets of isomorphism classes

F(A1)×F(A) F(A2)→ F(A1)×F(A) F(A2)

is injective.
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(3) For every morphism x′ → x in F lying over a surjective ring map A′ → A, the
map AutA′(x′)→ AutA(x) is surjective.

(4) For every morphism x′ → x inF lying over a small extensionA′ → A, the map
AutA′(x′)→ AutA(x) is surjective.

Proof. We prove that (1) is equivalent to (2) and (2) is equivalent to (3). The equiv-
alence of (3) and (4) follows from Lemma 3.3.

Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ with f2 surjective. By Remark 16.5
we see F satisfies (RS) if and only if the map

F(A1 ×A A2)→ F(A1)×F(A) F(A2)

is bijective for any such f1, f2. This map is at least surjective since that is the condition of
(S1) and F satisfies (S1) by Lemmas 16.6 and 10.5. Moreover, this map factors as

F(A1 ×A A2) −→ F(A1)×F(A) F(A2) −→ F(A1)×F(A) F(A2),

where the first map is a bijection since

F(A1 ×A A2) −→ F(A1)×F(A) F(A2)

is an equivalence by (RS) for F . Hence (1) is equivalent to (2).

Assume (2) holds. Let x′ → x be a morphism in F lying over a surjective ring map f :
A′ → A. Let a ∈ AutA(x). The objects

(x′, x′, a : x→ x), (x′, x′, id : x→ x)
of F(A′) ×F(A) F(A′) have the same image in F(A′) ×F(A) F(A′). By (2) there exists
maps b1, b2 : x′ → x′ such that

x
a
//

f∗b1

��

x

f∗b2

��
x

id // x

commutes. Hence b−1
2 ◦ b1 ∈ AutA′(x′) has image a ∈ AutA(x). Hence (3) holds.

Assume (3) holds. Suppose

(x1, x2, a : (f1)∗x1 → (f2)∗x2), (x′
1, x

′
2, a

′ : (f1)∗x
′
1 → (f2)∗x

′
2)

are objects of F(A1) ×F(A) F(A2) with the same image in F(A1) ×F(A) F(A2). Then
there are morphisms b1 : x1 → x′

1 in F(A1) and b2 : x2 → x′
2 in F(A2). By (3) we can

modify b2 by an automorphism of x2 over A2 so that the diagram

(f1)∗x1 a
//

(f1)∗b1

��

(f2)∗x2

(f2)∗b2

��
(f1)∗x

′
1

a′
// (f2)∗x

′
2.

commutes. This proves (x1, x2, a) ∼= (x′
1, x

′
2, a

′) in F(A1)×F(A) F(A2). Hence (2)
holds. �

Finally we define the notion of a deformation category.

Definition 16.8. A deformation category is a predeformation category F satisfying
(RS). A morphism of deformation categories is a morphism of categories over CΛ.
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Remark 16.9. We say that a functor F : CΛ → Sets is a deformation functor if the
associated cofibered set is a deformation category, i.e. if F (k) is a one element set and F
satisfies (RS). If F is a deformation category, then F is a predeformation functor but not
necessarily a deformation functor, as Lemma 16.7 shows.

Example 16.10. A prorepresentable functor F is a deformation functor. Namely,
suppose R ∈ Ob(ĈΛ) and F (A) = MorĈΛ

(R,A). There is a unique morphism R→ k, so
F (k) is a one element set. Since

HomΛ(R,A1 ×A A2) = HomΛ(R,A1)×HomΛ(R,A) HomΛ(R,A2)

the same is true for maps in ĈΛ and we see that F has (RS).

The following is one of our typical remarks on passing from a category cofibered in groupoids
to the predeformation category at a point over k: it says that this process preserves (RS).

Lemma 16.11. LetF be a category cofibered in groupoids overCΛ. Letx0 ∈ Ob(F(k)).
Let Fx0 be the category cofibred in groupoids over CΛ constructed in Remark 6.4. If F
satisfies (RS), then so does Fx0 . In particular, Fx0 is a deformation category.

Proof. Any diagram as in Definition 16.1 inFx0 gives rise to a diagram inF and the
output of (RS) for this diagram in F can be viewed as an output for Fx0 as well. �

The following lemma is the analogue of the fact that 2-fibre products of algebraic stacks
are algebraic stacks.

Lemma 16.12. Let
H×F G //

��

G

g

��
H

f // F

be 2-fibre product of categories cofibered in groupoids over CΛ. If F ,G,H all satisfy (RS),
thenH×F G satisfies (RS).

Proof. If A is an object of CΛ, then an object of the fiber category of H ×F G over
A is a triple (u, v, a) where u ∈ H(A), v ∈ G(A), and a : f(u) → g(v) is a morphism in
F(A). Consider a diagram inH×F G

(u2, v2, a2)

��
(u1, v1, a1) // (u, v, a)

lying over

A2

��
A1 // A

in CΛ withA2 → A surjective. SinceH andG satisfy (RS), there are fiber productsu1×uu2
and v1 ×v v2 lying over A1 ×A A2. Since F satisfies (RS), Lemma 16.2 shows

f(u1 ×u u2) //

��

f(u2)

��
f(u1) // f(u)

and

g(v1 ×v v2) //

��

g(v2)

��
g(v1) // g(v)
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are both fiber squares in F . Thus we can view a1 ×a a2 as a morphism from f(u1 ×u u2)
to g(v1 ×v v2) over A1 ×A A2. It follows that

(u1 ×u u2, v1 ×v v2, a1 ×a a2)

��

// (u2, v2, a2)

��
(u1, v1, a1) // (u, v, a)

is a fiber square inH×F G as desired. �

17. Lifts of objects

The content of this section is that the tangent space has a principal homogeneous action
on the set of lifts along a small extension in the case of a deformation category.

Definition 17.1. LetF be a category cofibered in groupoids over CΛ. Let f : A′ → A
be a map in CΛ. Let x ∈ F(A). The category Lift(x, f) of lifts of x along f is the category
with the following objects and morphisms.

(1) Objects: A lift of x along f is a morphism x′ → x lying over f .
(2) Morphisms: A morphism of lifts from a1 : x′

1 → x to a2 : x′
2 → x is a morphism

b : x′
1 → x′

2 in F(A′) such that a2 = a1 ◦ b.
The set Lift(x, f) of lifts of x along f is the set of isomorphism classes of Lift(x, f).

Remark 17.2. When the map f : A′ → A is clear from the context, we may write
Lift(x,A′) and Lift(x,A′) in place of Lift(x, f) and Lift(x, f).

Remark 17.3. LetF be a category cofibred in groupoids over CΛ. Letx0 ∈ Ob(F(k)).
Let V be a finite dimensional vector space. Then Lift(x0, k[V ]) is the set of isomorphism
classes of Fx0(k[V ]) where Fx0 is the predeformation category of objects in F lying over
x0, see Remark 6.4. Hence if F satisfies (S2), then so does Fx0 (see Lemma 10.6) and by
Lemma 12.2 we see that

Lift(x0, k[V ]) = TFx0 ⊗k V
as k-vector spaces.

Remark 17.4. LetF be a category cofibered in groupoids over CΛ satisfying (RS). Let

A1 ×A A2 //

��

A2

��
A1 // A

be a fibre square in CΛ such that either A1 → A or A2 → A is surjective. Let x ∈
Ob(F(A)). Given lifts x1 → x and x2 → x of x to A1 and A2, we get by (RS) a lift
x1 ×x x2 → x of x to A1 ×A A2. Conversely, by Lemma 16.2 any lift of x to A1 ×A A2
is of this form. Hence a bijection

Lift(x,A1)× Lift(x,A2) −→ Lift(x,A1 ×A A2).

Similarly, if x1 → x is a fixed lifting of x to A1, then there is a bijection

Lift(x1, A1 ×A A2) −→ Lift(x,A2).
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Now let
A′

1 ×A A2 //

��

A1 ×A A2 //

��

A2

��
A′

1
// A1 // A

be a composition of fibre squares in CΛ with both A′
1 → A1 and A1 → A surjective. Let

x1 → x be a morphism lying over A1 → A. Then by the above we have bijections

Lift(x1, A
′
1 ×A A2) = Lift(x1, A

′
1)× Lift(x1, A1 ×A A2)

= Lift(x1, A
′
1)× Lift(x,A2).

Lemma 17.5. LetF be a deformation category. LetA′ → A be a surjective ring map in
CΛ whose kernel I is annihilated by mA′ . Let x ∈ Ob(F(A)). If Lift(x,A′) is nonempty,
then there is a free and transitive action of TF ⊗k I on Lift(x,A′).

Proof. Consider the ring map g : A′ ×A A′ → k[I] defined by the rule g(a1, a2) =
a1 ⊕ a2 − a1 (compare with Lemma 10.8). There is an isomorphism

A′ ×A A′ ∼−→ A′ ×k k[I]

given by (a1, a2) 7→ (a1, g(a1, a2)). This isomorphism commutes with the projections to
A′ on the first factor, and hence with the projections of A′ ×A A′ and A′ ×k k[I] to A.
Thus there is a bijection

(17.5.1) Lift(x,A′ ×A A′) −→ Lift(x,A′ ×k k[I])

By Remark 17.4 there is a bijection

(17.5.2) Lift(x,A′)× Lift(x,A′) −→ Lift(x,A′ ×A A′)

There is a commutative diagram

A′ ×k k[I] //

��

A×k k[I] //

��

k[I]

��
A′ // A // k.

Thus if we choose a pushforward x → x0 of x along A → k, we obtain by the end of
Remark 17.4 a bijection

(17.5.3) Lift(x,A′ ×k k[I]) −→ Lift(x,A′)× Lift(x0, k[I])

Composing (17.5.2), (17.5.1), and (17.5.3) we get a bijection

Φ : Lift(x,A′)× Lift(x,A′) −→ Lift(x,A′)× Lift(x0, k[I]).

This bijection commutes with the projections on the first factors. By Remark 17.3 we see
that Lift(x0, k[I]) = TF ⊗k I . If pr2 is the second projection of Lift(x,A′)×Lift(x,A′),
then we get a map

a = pr2 ◦ Φ−1 : Lift(x,A′)× (TF ⊗k I) −→ Lift(x,A′).

Unwinding all the above we see that a(x′ → x, θ) is the unique lift x′′ → x such that
g∗(x′, x′′) = θ in Lift(x0, k[I]) = TF ⊗k I . To see this is an action of TF ⊗k I on
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Lift(x,A′) we have to show the following: if x′, x′′, x′′′ are lifts of x and g∗(x′, x′′) = θ,
g∗(x′′, x′′′) = θ′, then g∗(x′, x′′′) = θ + θ′. This follows from the commutative diagram

A′ ×A A′ ×A A′
(a1,a2,a3)7→(g(a1,a2),g(a2,a3))

//

(a1,a2,a3) 7→g(a1,a3)
,,

k[I]×k k[I] = k[I × I]

+
��

k[I]

The action is free and transitive because Φ is bijective. �

Remark 17.6. The action of Lemma 17.5 is functorial. Let ϕ : F → G be a morphism
of deformation categories. Let A′ → A be a surjective ring map whose kernel I is annihi-
lated by mA′ . Let x ∈ Ob(F(A)). In this situation ϕ induces the vertical arrows in the
following commutative diagram

Lift(x,A′)× (TF ⊗k I)

(ϕ,dϕ⊗idI)
��

// Lift(x,A′)

ϕ

��
Lift(ϕ(x), A′)× (TG ⊗k I) // Lift(ϕ(x), A′)

The commutativity follows as each of the maps (17.5.2), (17.5.1), and (17.5.3) of the proof
of Lemma 17.5 gives rise to a similar commutative diagram.

18. Schlessinger’s theorem on prorepresentable functors

We deduce Schlessinger’s theorem characterizing prorepresentable functors on CΛ.

Lemma 18.1. Let F,G : CΛ → Sets be deformation functors. Let ϕ : F → G be
a smooth morphism which induces an isomorphism dϕ : TF → TG of tangent spaces.
Then ϕ is an isomorphism.

Proof. We prove F (A) → G(A) is a bijection for all A ∈ Ob(CΛ) by induction
on lengthA(A). For A = k the statement follows from the assumption that F and G
are deformation functors. Suppose that the statement holds for rings of length less than
n and let A′ be a ring of length n. Choose a small extension f : A′ → A. We have a
commutative diagram

F (A′) //

F (f)
��

G(A′)

G(f)
��

F (A) ∼ // G(A)

where the map F (A) → G(A) is a bijection. By smoothness of F → G, F (A′) →
G(A′) is surjective (Lemma 8.8). Thus we can check bijectivity by checking it on fibers
F (f)−1(x) → G(f)−1(ϕ(x)) for x ∈ F (A) such that F (f)−1(x) is nonempty. These
fibers are precisely Lift(x,A′) and Lift(ϕ(x), A′) and by assumption we have an isomor-
phism dϕ⊗ id : TF ⊗kKer(f)→ TG⊗kKer(f). Thus, by Lemma 17.5 and Remark 17.6,
for x ∈ F (A) such that F (f)−1(x) is nonempty the map F (f)−1(x) → G(f)−1(ϕ(x))
is a map of sets commuting with free transitive actions by TF ⊗k Ker(f). Hence it is
bijective. �

Note that in case k′ ⊂ k is separable condition (c) in the theorem below is empty.
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Theorem 18.2. Let F : CΛ → Sets be a functor. Then F is prorepresentable if and
only if (a) F is a deformation functor, (b) dimk TF is finite, and (c) γ : DerΛ(k, k)→ TF
is injective.

Proof. Assume F is prorepresentable byR ∈ ĈΛ. We see F is a deformation functor
by Example 16.10. We see dimk TF is finite by Example 11.11. Finally, DerΛ(k, k)→ TF
is identified with DerΛ(k, k) → DerΛ(R, k) by Example 11.14 which is injective because
R→ k is surjective.

Conversely, assume (a), (b), and (c) hold. By Lemma 16.6 we see that (S1) and (S2) hold.
Hence by Theorem 15.5 there exists a minimal versal formal object ξ ofF such that (15.0.2)
holds. Say ξ lies over R. The map

dξ : DerΛ(R, k)→ TF

is bijective on DerΛ(k, k)-orbits. Since the action of DerΛ(k, k) on the left hand side is
free by (c) and Lemma 12.6 we see that the map is bijective. Thus we see that ξ is an
isomorphism by Lemma 18.1. �

19. Infinitesimal automorphisms

LetF be a category cofibered in groupoids over CΛ. Given a morphism x′ → x inF lying
over A′ → A, there is an induced homomorphism

AutA′(x′)→ AutA(x).
Lemma 16.7 says that the cokernel of this homomorphism determines whether condition
(RS) on F passes to F . In this section we study the kernel of this homomorphism. We
will see that it also gives a measure of how far F is from F .

Definition 19.1. Let F be a category cofibered in groupoids over CΛ. Let x′ → x be
a morphism in F lying over A′ → A. The kernel

Inf(x′/x) = Ker(AutA′(x′)→ AutA(x))
is the group of infinitesimal automorphisms of x′ over x.

Definition 19.2. Let F be a category cofibered in groupoids over CΛ. Let x0 ∈
Ob(F(k)). Assume a choice of pushforward x0 → x′

0 of x0 along the map k → k[ε], a 7→
a has been made. Then there is a unique map x′

0 → x0 such that x0 → x′
0 → x0 is the

identity on x0. Then
Infx0(F) = Inf(x′

0/x0)
is the group of infinitesimal automorphisms of x0

Remark 19.3. Up to canonical isomorphism Infx0(F) does not depend on the choice
of pushforward x0 → x′

0 because any two pushforwards are canonically isomorphic.
Moreover, if y0 ∈ F(k) and x0 ∼= y0 in F(k), then Infx0(F) ∼= Infy0(F) where the
isomorphism depends (only) on the choice of an isomorphism x0 → y0. In particular,
Autk(x0) acts on Infx0(F).

Remark 19.4. Assume F is a predeformation category. Then
(1) for x0 ∈ Ob(F(k)) the automorphism group Autk(x0) is trivial and hence

Infx0(F) = Autk[ε](x′
0), and

(2) for x0, y0 ∈ Ob(F(k)) there is a unique isomorphism x0 → y0 and hence a
canonical identification Infx0(F) = Infy0(F).
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Since F(k) is nonempty, choosing x0 ∈ Ob(F(k)) and setting
Inf(F) = Infx0(F)

we get a well defined group of infinitesimal automorphisms of F . With this notation we
have Inf(Fx0) = Infx0(F). Please compare with the equality TFx0 = Tx0F in Remark
12.5.

We will see that Infx0(F) has a natural k-vector space structure when F satisfies (RS). At
the same time, we will see that if F satisfies (RS), then the infinitesimal automorphisms
Inf(x′/x) of a morphism x′ → x lying over a small extension are governed by Infx0(F),
where x0 is a pushforward of x to F(k). In order to do this, we introduce the automor-
phism functor for any object x ∈ Ob(F) as follows.

Definition 19.5. Let p : F → C be a category cofibered in groupoids over an arbi-
trary base category C. Assume a choice of pushforwards has been made. Let x ∈ Ob(F)
and let U = p(x). Let U/C denote the category of objects under U . The automorphism
functor of x is the functor Aut(x) : U/C → Sets sending an object f : U → V to
AutV (f∗x) and sending a morphism

V ′ // V

U
f ′

``

f

??

to the homomorphism AutV ′(f ′
∗x) → AutV (f∗x) coming from the unique morphism

f ′
∗x→ f∗x lying over V ′ → V and compatible with x→ f ′

∗x and x→ f∗x.

We will be concerned with the automorphism functors of objects in a category cofibered in
groupoidsF over CΛ. IfA ∈ Ob(CΛ), then the categoryA/CΛ is nothing but the category
CA, i.e. the category defined in Section 3 where we take Λ = A and k = A/mA. Hence
the automorphism functor of an object x ∈ Ob(F(A)) is a functor Aut(x) : CA → Sets.
The following lemma could be deduced from Lemma 16.12 by thinking about the “iner-
tia” of a category cofibred in groupoids, see for example Stacks, Section 7 and Categories,
Section 34. However, it is easier to see it directly.

Lemma 19.6. Let F be a category cofibered in groupoids over CΛ satisfying (RS). Let
x ∈ Ob(F(A)). Then Aut(x) : CA → Sets satisfies (RS).

Proof. It follows that Aut(x) satisfies (RS) from the fully faithfulness of the functor
F(A1 ×A A2)→ F(A1)×F(A) F(A2) in Lemma 16.4. �

Lemma 19.7. Let F be a category cofibered in groupoids over CΛ satisfying (RS). Let
x ∈ Ob(F(A)). Let x0 be a pushforward of x to F(k).

(1) Tidx0
Aut(x) has a natural k-vector space structure such that addition agrees with

composition in Tidx0
Aut(x). In particular, composition in Tidx0

Aut(x) is com-
mutative.

(2) There is a canonical isomorphism Tidx0
Aut(x) → Tidx0

Aut(x0) of k-vector
spaces.

Proof. We apply Remark 6.4 to the functor Aut(x) : CA → Sets and the element
idx0 ∈ Aut(x)(k) to get a predeformation functor F = Aut(x)idx0

. By Lemmas 19.6 and
16.11 F is a deformation functor. By definition Tidx0

Aut(x) = TF = F (k[ε]) which has
a natural k-vector space structure specified by Lemma 11.8.
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Addition is defined as the composition

F (k[ε])× F (k[ε]) −→ F (k[ε]×k k[ε]) −→ F (k[ε])

where the first map is the inverse of the bijection guaranteed by (RS) and the second is
induced by the k-algebra map k[ε] ×k k[ε] → k[ε] which maps (ε, 0) and (0, ε) to ε. If
A → B is a ring map in CΛ, then F (A) → F (B) is a homomorphism where F (A) =
Aut(x)idx0

(A) and F (B) = Aut(x)idx0
(B) are groups under composition. We conclude

that + : F (k[ε]) × F (k[ε]) → F (k[ε]) is a homomorphism where F (k[ε]) is regarded as
a group under composition. With id ∈ F (k[ε]) the unit element we see that +(v, id) =
+(id, v) = v for any v ∈ F (k[ε]) because (id, v) is the pushforward of v along the ring
map k[ε]→ k[ε]×k k[ε] with ε 7→ (ε, 0). In general, given a group G with multiplication
◦ and + : G × G → G is a homomorphism such that +(g, 1) = +(1, g) = g, where 1
is the identity of G, then + = ◦. This shows addition in the k-vector space structure on
F (k[ε]) agrees with composition.

Finally, (2) is a matter of unwinding the definitions. Namely Tidx0
Aut(x) is the set of

automorphisms α of the pushforward of x along A→ k → k[ε] which are trivial modulo
ε. On the other hand Tidx0

Aut(x0) is the set of automorphisms of the pushforward of x0
along k → k[ε] which are trivial modulo ε. Since x0 is the pushforward of x alongA→ k
the result is clear. �

Remark 19.8. We point out some basic relationships between infinitesimal automor-
phism groups, liftings, and tangent spaces to automorphism functors. Let F be a category
cofibered in groupoids over CΛ. Let x′ → x be a morphism lying over a ring mapA′ → A.
Then from the definitions we have an equality

Inf(x′/x) = Lift(idx, A′)

where the liftings are of idx as an object of Aut(x′). If x0 ∈ Ob(F(k)) and x′
0 is the

pushforward to F(k[ε]), then applying this to x′
0 → x0 we get

Infx0(F) = Lift(idx0 , k[ε]) = Tidx0
Aut(x0),

the last equality following directly from the definitions.

Lemma 19.9. Let F be a category cofibered in groupoids over CΛ satisfying (RS). Let
x0 ∈ Ob(F(k)). Then Infx0(F) is equal as a set to Tidx0

Aut(x0), and so has a natural
k-vector space structure such that addition agrees with composition of automorphisms.

Proof. The equality of sets is as in the end of Remark 19.8 and the statement about
the vector space structure follows from Lemma 19.7. �

Lemma 19.10. Let ϕ : F → G be a morphism of categories cofibred in groupoids
over CΛ satisfying (RS). Let x0 ∈ Ob(F(k)). Then ϕ induces a k-linear map Infx0(F)→
Infϕ(x0)(G).

Proof. It is clear that ϕ induces a morphism from Aut(x0) → Aut(ϕ(x0)) which
maps the identity to the identity. Hence this follows from the result for tangent spaces,
see Lemma 12.4. �

Lemma 19.11. LetF be a category cofibered in groupoids over CΛ satisfying (RS). Let
x′ → x be a morphism lying over a surjective ring mapA′ → Awith kernel I annihilated
by mA′ . Let x0 be a pushforward of x to F(k). Then Inf(x′/x) has a free and transitive
action by Tidx0

Aut(x′)⊗k I = Infx0(F)⊗k I .
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Proof. This is just the analogue of Lemma 17.5 in the setting of automorphism sheaves.
To be precise, we apply Remark 6.4 to the functor Aut(x′) : CA′ → Sets and the element
idx0 ∈ Aut(x)(k) to get a predeformation functor F = Aut(x′)idx0

. By Lemmas 19.6 and
16.11 F is a deformation functor. Hence Lemma 17.5 gives a free and transitive action of
TF ⊗k I on Lift(idx, A′), because as Lift(idx, A′) is a group it is always nonempty. Note
that we have equalities of vector spaces

TF = Tidx0
Aut(x′)⊗k I = Infx0(F)⊗k I

by Lemma 19.7. The equality Inf(x′/x) = Lift(idx, A′) of Remark 19.8 finishes the proof.
�

Lemma 19.12. LetF be a category cofibered in groupoids over CΛ satisfying (RS). Let
x′ → x be a morphism in F lying over a surjective ring map. Let x0 be a pushforward of
x to F(k). If Infx0(F) = 0 then Inf(x′/x) = 0.

Proof. Follows from Lemmas 3.3 and 19.11. �

Lemma 19.13. LetF be a category cofibered in groupoids over CΛ satisfying (RS). Let
x0 ∈ Ob(F(k)). Then Infx0(F) = 0 if and only if the natural morphism Fx0 → Fx0 of
categories cofibered in groupoids is an equivalence.

Proof. The morphism Fx0 → Fx0 is an equivalence if and only if Fx0 is fibered in
setoids, cf. Categories, Section 39 (a setoid is by definition a groupoid in which the only
automorphism of any object is the identity). We prove that Infx0(F) = 0 if and only
if this condition holds for Fx0 . Obviously if Fx0 is fibered in setoids then Infx0(F) =
0. Conversely assume Infx0(F) = 0. Let A be an object of CΛ. Then by Lemma 19.12,
Inf(x/x0) = 0 for any object x → x0 of Fx0(A). Since by definition Inf(x/x0) equals
the group of automorphisms of x→ x0 in Fx0(A), this proves Fx0(A) is a setoid. �

20. Applications

We collect some results on deformation categories we will use later.

Lemma 20.1. Let f : H → F and g : G → F be 1-morphisms of deformation
categories. Then

(1) W = H×F G is a deformation category, and
(2) we have a 6-term exact sequence of vector spaces

0→ Inf(W)→ Inf(H)⊕ Inf(G)→ Inf(F)→ TW → TH⊕ TG → TF

Proof. Part (1) follows from Lemma 16.12 and the fact thatW(k) is the fibre product
of two setoids with a unique isomorphism class over a setoid with a unique isomorphism
class.

Part (2). Let w0 ∈ Ob(W(k)) and let x0, y0, z0 be the image of w0 in F ,H,G. Then
Inf(W) = Infw0(W) and simlarly for H, G , and F , see Remark 19.4. We apply Lemmas
12.4 and 19.10 to get all the linear maps except for the “boundary map” δ : Infx0(F) →
TW . We will insert suitable signs later.

Construction of δ. Choose a pushforward w0 → w′
0 along k → k[ε]. Denote x′

0, y
′
0, z

′
0

the images of w′
0 in F ,H,G. In particular we obtain isomorphisms b′ : f(y′

0) → x′
0 and

c′ : x′
0 → g(z′

0). Denote b : f(y0) → x0 and c : x0 → g(z0) the pushforwards along
k[ε]→ k. Observe that this means w′

0 = (k[ε], y′
0, z

′
0, c

′ ◦ b′) and w0 = (k, y0, z0, c ◦ b) in
terms of the explicit form of the fibre product of categories, see Remarks 5.2 (13). Given



20. APPLICATIONS 6377

α : x′
0 → x′

0 we set δ(α) = (k[ε], y′
0, z

′
0, c

′ ◦ α ◦ b′) which is indeed an object ofW over
k[ε] and comes with a morphism (k[ε], y′

0, z
′
0, c

′ ◦α ◦ b′)→ w0 over k[ε]→ k as α pushes
forward to the identity over k. More generally, for any k-vector space V we can define a
map

Lift(idx0 , k[V ]) −→ Lift(w0, k[V ])
using exactly the same formulae. This construction is functorial in the vector space V
(details omitted). Hence δ is k-linear by an application of Lemma 11.5.

Having constructed these maps it is straightforward to show the sequence is exact. In-
jectivity of the first map comes from the fact that f × g : W → H × G is faithful. If
(β, γ) ∈ Infy0(H)⊕ Infz0(G) map to the same element of Infx0(F) then (β, γ) defines an
automorphism of w′

0 = (k[ε], y′
0, z

′
0, c

′ ◦ b′) whence exactness at the second spot. If α as
above gives the trivial deformation (k[ε], y′

0, z
′
0, c

′ ◦ α ◦ b′) of w0, then the isomorphism
w′

0 = (k[ε], y′
0, z

′
0, c

′ ◦ b′) → (k[ε], y′
0, z

′
0, c

′ ◦ α ◦ b′) produces a pair (β, γ) which is a
preimage of α. If w = (k[ε], y, z, φ) is a deformation of w0 such that y′

0
∼= y and z ∼= z′

0
then the map

f(y′
0)→ f(y) φ−→ g(z)→ g(z′

0)
is an α which maps to w under δ. Finally, if y and z are deformations of y0 and z0 and
there exists an isomorphism φ : f(y) → g(z) of deformations of f(y0) = x0 = g(z0)
then we get a preimage w = (k[ε], y, z, φ) of (x, y) in TW . This finishes the proof. �

Lemma 20.2. Let H1 → G , H2 → G , and G → F be maps of categories cofibred in
groupoids over CΛ. Assume

(1) F and G are deformation categories,
(2) TG → TF is injective, and
(3) Inf(G)→ Inf(F) is surjective.

ThenH1 ×G H2 → H1 ×F H2 is smooth.

Proof. Denote pi : Hi → G and q : G → F be the given maps. Let A′ → A be a
small extension in CΛ. An object ofH1×FH2 overA′ is a triple (x′

1, x
′
2, a

′) where x′
i is an

object ofHi overA′ and a′ : q(p1(x′
1))→ q(p2(x′

2)) is a morphism of the fibre category of
F over A′. By pushforward along A′ → A we get (x1, x2, a). Lifting this to an object of
H1 ×G H2 over A means finding a morphism b : p1(x1)→ p2(x2) over A with q(b) = a.
Thus we have to show that we can lift b to a morphism b′ : p1(x′

1)→ p2(x′
2) whose image

under q is a′.

Observe that we can think of

p1(x′
1)→ p1(x1) b−→ p2(x2) and p2(x′

2)→ p2(x2)
as two objects of Lift(p2(x2), A′ → A). The functor q sends these objects to the two
objects

q(p1(x′
1))→ q(p1(x1)) b−→ q(p2(x2)) and q(p2(x′

2))→ q(p2(x2))
of Lift(q(p2(x2)), A′ → A) which are isomorphic using the map a′ : q(p1(x′

1)) →
q(p2(x′

2)). On the other hand, the functor

q : Lift(p2(x2), A′ → A)→ Lift(q(p2(x2)), A′ → A)
defines a injection on isomorphism classes by Lemma 17.5 and our assumption on tangent
spaces. Thus we see that there is a morphism b′ : p1(x′

1)→ p2(x′
2) whose pushforward to

A is b. However, we may need to adjust our choice of b′ to achieve q(b′) = a′. For this it
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suffices to see that q : Inf(p2(x′
2)/p2(x2))→ Inf(q(p2(x′

2))/q(p2(x2))) is surjective. This
follows from our assumption on infinitesimal automorphisms and Lemma 19.11. �

Lemma 20.3. Let f : F → G be a map of deformation categories. Let x0 ∈ Ob(F(k))
with image y0 ∈ Ob(G(k)). If

(1) the map TF → TG is surjective, and
(2) for every small extension A′ → A in CΛ and x ∈ F(A) with image y ∈ G(A) if

there is a lift of y to A′, then there is a lift of x to A′,
then F → G is smooth (and vice versa).

Proof. Let A′ → A be a small extension. Let x ∈ F(A). Let y′ → f(x) be a
morphism in G overA′ → A. Consider the functor Lift(A′, x)→ Lift(A′, f(x)) induced
by f . We have to show that there exists an object x′ → x of Lift(A′, x) mapping to
y′ → f(x), see Lemma 8.2. By condition (2) we know that Lift(A′, x) is not the empty
category. By condition (2) and Lemma 17.5 we conlude that the map on isomorphism
classes is surjective as desired. �

Lemma 20.4. Let F → G → H be maps of categories cofibred in groupoids over CΛ.
If

(1) F , G are deformation categories
(2) the map TF → TG is surjective, and
(3) F → H is smooth.

Then F → G is smooth.

Proof. Let A′ → A be a small extension in CΛ and let x ∈ F(A) with image y ∈
G(A). Assume there is a lift y′ ∈ G(A′). According to Lemma 20.3 all we have to do is
check that x has a lift too. Take the image z′ ∈ H(A′) of y′. Since F → H is smooth,
there is an x′ ∈ F(A′) mapping to both x ∈ F(A) and z′ ∈ H(A′), see Definition 8.1.
This finishes the proof. �

21. Groupoids in functors on an arbitrary category

We begin with generalities on groupoids in functors on an arbitrary category. In the next
section we will pass to the category CΛ. For clarity we shall sometimes refer to an ordinary
groupoid, i.e., a category whose morphisms are all isomorphisms, as a groupoid category.

Definition 21.1. Let C be a category. The category of groupoids in functors on C is
the category with the following objects and morphisms.

(1) Objects: A groupoid in functors on C is a quintuple (U,R, s, t, c) where U,R :
C → Sets are functors and s, t : R→ U and c : R×s,U,t R→ R are morphisms
with the following property: For any object T of C , the quintuple

(U(T ), R(T ), s, t, c)

is a groupoid category.
(2) Morphisms: A morphism (U,R, s, t, c) → (U ′, R′, s′, t′, c′) of groupoids in

functors on C consists of morphisms U → U ′ and R → R′ with the follow-
ing property: For any object T of C , the induced maps U(T ) → U ′(T ) and
R(T )→ R′(T ) define a functor between groupoid categories

(U(T ), R(T ), s, t, c)→ (U ′(T ), R′(T ), s′, t′, c′).
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Remark 21.2. A groupoid in functors on C amounts to the data of a functor C →
Groupoids, and a morphism of groupoids in functors on C amounts to a morphism of the
corresponding functors C → Groupoids (where Groupoids is regarded as a 1-category).
However, for our purposes it is more convenient to use the terminology of groupoids
in functors. In fact, thinking of a groupoid in functors as the corresponding functor
C → Groupoids, or equivalently as the category cofibered in groupoids associated to that
functor, can lead to confusion (Remark 23.2).

Remark 21.3. Let (U,R, s, t, c) be a groupoid in functors on a category C. There
are unique morphisms e : U → R and i : R → R such that for every object T of C ,
e : U(T )→ R(T ) sends x ∈ U(T ) to the identity morphism on x and i : R(T )→ R(T )
sends a ∈ U(T ) to the inverse of a in the groupoid category (U(T ), R(T ), s, t, c). We
will sometimes refer to s, t, c, e, and i as “source”, “target”, “composition”, “identity”, and
“inverse”.

Definition 21.4. Let C be a category. A groupoid in functors on C is representable
if it is isomorphic to one of the form (U,R, s, t, c) where U andR are objects of C and the
pushout R qs,U,t R exists.

Remark 21.5. Hence a representable groupoid in functors on C is given by objects U
and R of C and morphisms s, t : U → R and c : R→ R qs,U,t R such that (U,R, s, t, c)
satisfies the condition of Definition 21.1. The reason for requiring the existence of the
pushout R qs,U,t R is so that the composition morphism c is defined at the level of mor-
phisms in C. This requirement will always be satisfied below when we consider repre-
sentable groupoids in functors on ĈΛ, since by Lemma 4.3 the category ĈΛ admits pushouts.

Remark 21.6. We will say “let (U,R, s, t, c) be a groupoid in functors on C” to mean
that we have a representable groupoid in functors. Thus this means that U and R are
objects of C , there are morphisms s, t : U → R, the pushout R qs,U,t R exists, there is a
morphism c : R→ R qs,U,t R, and (U,R, s, t, c) is a groupoid in functors on C.

We introduce notation for restriction of groupoids in functors. This will be relevant below
in situations where we restrict from ĈΛ to CΛ.

Definition 21.7. Let (U,R, s, t, c) be a groupoid in functors on a category C. Let C′

be a subcategory of C. The restriction (U,R, s, t, c)|C′ of (U,R, s, t, c) to C′ is the groupoid
in functors on C′ given by (U |C′ , R|C′ , s|C′ , t|C′ , c|C′).

Remark 21.8. In the situation of Definition 21.7, we often denote s|C′ , t|C′ , c|C′ sim-
ply by s, t, c.

Definition 21.9. Let (U,R, s, t, c) be a groupoid in functors on a category C.

(1) The assignmentT 7→ (U(T ), R(T ), s, t, c) determines a functor C → Groupoids.
The quotient category cofibered in groupoids [U/R]→ C is the category cofibered
in groupoids over C associated to this functor (as in Remarks 5.2 (9)).

(2) The quotient morphism U → [U/R] is the morphism of categories cofibered in
groupoids over C defined by the rules
(a) x ∈ U(T ) maps to the object (T, x) ∈ Ob([U/R](T )), and
(b) x ∈ U(T ) and f : T → T ′ give rise to the morphism (f, idU(f)(x)) :

(T, x)→ (T,U(f)(x)) lying over f : T → T ′.
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22. Groupoids in functors on the base category

In this section we discuss groupoids in functors on CΛ. Our eventual goal is to show that
prorepresentable groupoids in functors on CΛ serve as “presentations” for well-behaved
deformation categories in the same way that smooth groupoids in algebraic spaces serve
as presentations for algebraic stacks, cf. Algebraic Stacks, Section 16.

Definition 22.1. A groupoid in functors on CΛ is prorepresentable if it is isomorphic
to (R0, R1, s, t, c)|CΛ for some representable groupoid in functors (R0, R1, s, t, c) on the
category ĈΛ.

Let (U,R, s, t, c) be a groupoid in functors on CΛ. Taking completions, we get a quintuple
(Û , R̂, ŝ, t̂, ĉ). By Remark 7.10 completion as a functor on CofSet(CΛ) is a right adjoint,
so it commutes with limits. In particular, there is a canonical isomorphism

̂R×s,U,t R −→ R̂×
ŝ,Û ,̂t

R̂,

so ĉ can be regarded as a functor R̂ ×
ŝ,Û ,̂t

R̂ → R̂. Then (Û , R̂, ŝ, t̂, ĉ) is a groupoid in
functors on ĈΛ, with identity and inverse morphisms being the completions of those of
(U,R, s, t, c).

Definition 22.2. Let (U,R, s, t, c) be a groupoid in functors on CΛ. The completion
(U,R, s, t, c)∧ of (U,R, s, t, c) is the groupoid in functors (Û , R̂, ŝ, t̂, ĉ) on ĈΛ described
above.

Remark 22.3. Let (U,R, s, t, c) be a groupoid in functors on CΛ. Then there is a
canonical isomorphism (U,R, s, t, c)∧|CΛ

∼= (U,R, s, t, c), see Remark 7.7. On the other
hand, let (U,R, s, t, c) be a groupoid in functors on ĈΛ such that U,R : ĈΛ → Sets both
commute with limits, e.g. ifU,R are representable. Then there is a canonical isomorphism
((U,R, s, t, c)|CΛ)∧ ∼= (U,R, s, t, c). This follows from Remark 7.11.

Lemma 22.4. Let (U,R, s, t, c) be a groupoid in functors on CΛ.
(1) (U,R, s, t, c) is prorepresentable if and only if its completion is representable as

a groupoid in functors on ĈΛ.
(2) (U,R, s, t, c) is prorepresentable if and only if U and R are prorepresentable.

Proof. Part (1) follows from Remark 22.3. For (2), the “only if” direction is clear from
the definition of a prorepresentable groupoid in functors. Conversely, assumeU andR are
prorepresentable, sayU ∼= R0|CΛ andR ∼= R1|CΛ for objectsR0 andR1 of ĈΛ. SinceR0 ∼=
R̂0|CΛ and R1 ∼= R̂1|CΛ by Remark 7.11 we see that the completion (U,R, s, t, c)∧ is a
groupoid in functors of the form (R0, R1, ŝ, t̂, ĉ). By Lemma 4.3 the pushoutR1×ŝ,R1 ,̂t

R1

exists. Hence (R0, R1, ŝ, t̂, ĉ) is a representable groupoid in functors on ĈΛ. Finally, the
restriction (R0, R1, s, t, c)|CΛ gives back (U,R, s, t, c) by Remark 22.3 hence (U,R, s, t, c)
is prorepresentable by definition. �

23. Smooth groupoids in functors on the base category

The notion of smoothness for groupoids in functors on CΛ is defined as follows.

Definition 23.1. Let (U,R, s, t, c) be a groupoid in functors on CΛ. We say (U,R, s, t, c)
is smooth if s, t : R→ U are smooth.
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Remark 23.2. We note that this terminology is potentially confusing: if (U,R, s, t, c)
is a smooth groupoid in functors, then the quotient [U/R] need not be a smooth category
cofibred in groupoids as defined in Definition 9.1. However smoothness of (U,R, s, t, c)
does imply (in fact is equivalent to) smoothness of the quotient morphism U → [U/R] as
we shall see in Lemma 23.4.

Remark 23.3. Let (R0, R1, s, t, c)|CΛ be a prorepresentable groupoid in functors on
CΛ. Then (R0, R1, s, t, c)|CΛ is smooth if and only ifR1 is a power series overR0 via both
s and t. This follows from Lemma 8.6.

Lemma 23.4. Let (U,R, s, t, c) be a groupoid in functors on CΛ. The following are
equivalent:

(1) The groupoid in functors (U,R, s, t, c) is smooth.
(2) The morphism s : R→ U is smooth.
(3) The morphism t : R→ U is smooth.
(4) The quotient morphism U → [U/R] is smooth.

Proof. Statement (2) is equivalent to (3) since the inverse i : R→ R of (U,R, s, t, c)
is an isomorphism and t = s ◦ i. By definition (1) is equivalent to (2) and (3) together,
hence it is equivalent to either of them individually.
Finally we prove (2) is equivalent to (4). Unwinding the definitions:

(2) Smoothness of s : R→ U amounts to the following condition: If f : B → A is
a surjective ring map in CΛ, a ∈ R(A), and y ∈ U(B) such that s(a) = U(f)(y),
then there exists a′ ∈ R(B) such that R(f)(a′) = a and s(a′) = y.

(4) Smoothness ofU → [U/R] amounts to the following condition: If f : B → A is
a surjective ring map in CΛ and (f, a) : (B, y)→ (A, x) is a morphism of [U/R],
then there exists x′ ∈ U(B) and b ∈ R(B) with s(b) = x′, t(b) = y such that
c(a,R(f)(b)) = e(x). Here e : U → R denotes the identity and the notation
(f, a) is as in Remarks 5.2 (9); in particular a ∈ R(A) with s(a) = U(f)(y) and
t(a) = x.

If (4) holds and f, a, y as in (2) are given, let x = t(a) so that we have a morphism (f, a) :
(B, y) → (A, x). Then (4) produces x′ and b, and a′ = i(b) satisfies the requirements of
(2). Conversely, assume (2) holds and let (f, a) : (B, y)→ (A, x) as in (4) be given. Then
(2) produces a′ ∈ R(B), and x′ = t(a′) and b = i(a′) satisfy the requirements of (4). �

24. Deformation categories as quotients of groupoids in functors

We discuss conditions on a groupoid in functors on CΛ which guarantee that the quotient
is a deformation category, and we calculate the tangent and infinitesimal automorphism
spaces of such a quotient.

Lemma 24.1. Let (U,R, s, t, c) be a smooth groupoid in functors on CΛ. Assume U
and R satisfy (RS). Then [U/R] satisfies (RS).

Proof. Let
(A2, x2)

(f2,a2)
��

(A1, x1)
(f1,a1) // (A, x)

be a diagram in [U/R] such that f2 : A2 → A is surjective. The notation is as in Remarks
5.2 (9). Hence f1 : A1 → A, f2 : A2 → A are maps in CΛ, x ∈ U(A), x1 ∈ U(A1), x2 ∈
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U(A2), and a1, a2 ∈ R(A) with s(a1) = U(f1)(x1), t(a1) = x and s(a2) = U(f2)(x2),
t(a2) = x. We construct a fiber product lying over A1 ×A A2 for this diagram in [U/R]
as follows.

Let a = c(i(a1), a2), where i : R → R is the inverse morphism. Then a ∈ R(A), x2 ∈
U(A2) and s(a) = U(f2)(x2). Hence an element (a, x2) ∈ R(A) ×s,U(A),U(f2) U(A2).
By smoothness of s : R → U there is an element ã ∈ R(A2) with R(f2)(ã) = a and
s(ã) = x2. In particular U(f2)(t(ã)) = t(a) = U(f1)(x1). Thus x1 and t(ã) define an
element

(x1, t(ã)) ∈ U(A1)×U(A) U(A2).
By the assumption that U satisfies (RS), we have an identification U(A1)×U(A)U(A2) =
U(A1 ×A A2). Let us denote x1 × t(ã) ∈ U(A1 ×A A2) the element corresponding to
(x1, t(ã)) ∈ U(A1)×U(A) U(A2). Let p1, p2 be the projections of A1 ×A A2. We claim

(A1 ×A A2, x1 × t(ã))

(p1,e(x1))
��

(p2,i(̃a))
// (A2, x2)

(f2,a2)
��

(A1, x1)
(f1,a1) // (A, x)

is a fiber square in [U/R]. (Note e : U → R denotes the identity.)

The diagram is commutative because c(a2, R(f2)(i(ã))) = c(a2, i(a)) = a1. To check it
is a fiber square, let

(B, z)

(g1,b1)
��

(g2,b2)
// (A2, x2)

(f2,a2)
��

(A1, x1)
(f1,a1) // (A, x)

be a commutative diagram in [U/R]. We will show there is a unique morphism (g, b) :
(B, z)→ (A1×AA2, x1×t(ã)) compatible with the morphisms to (A1, x1) and (A2, x2).
We must take g = (g1, g2) : B → A1×AA2. Since by assumptionR satisfies (RS), we have
an identification R(A1 ×A A2) = R(A1)×R(A) R(A2). Hence we can write b = (b′

1, b
′
2)

for some b′
1 ∈ R(A1), b′

2 ∈ R(A2) which agree in R(A). Then ((g1, g2), (b′
1, b

′
2)) :

(B, z)→ (A1×AA2, x1× t(ã)) will commute with the projections if and only if b′
1 = b1

and b′
2 = c(ã, b2) proving unicity and existence. �

Lemma 24.2. Let (U,R, s, t, c) be a smooth groupoid in functors on CΛ. Assume U
and R are deformation functors. Then:

(1) The quotient [U/R] is a deformation category.
(2) The tangent space of [U/R] is

T [U/R] = Coker(ds− dt : TR→ TU).

(3) The space of infinitesimal automorphisms of [U/R] is

Inf([U/R]) = Ker(ds⊕ dt : TR→ TU ⊕ TU).

Proof. SinceU andR are deformation functors [U/R] is a predeformation category.
Since (RS) holds for deformation functors by definition we see that (RS) holds for [U/R]
by Lemma 24.1. Hence [U/R] is a deformation category. Statements (2) and (3) follow
directly from the definitions. �
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25. Presentations of categories cofibered in groupoids

A presentation is defined as follows.

Definition 25.1. Let F be a category cofibered in groupoids over a category C. Let
(U,R, s, t, c) be a groupoid in functors on C. A presentation of F by (U,R, s, t, c) is an
equivalence ϕ : [U/R]→ F of categories cofibered in groupoids over C.

The following two general lemmas will be used to get presentations.

Lemma 25.2. Let F be category cofibered in groupoids over a category C. Let U :
C → Sets be a functor. Let f : U → F be a morphism of categories cofibered in groupoids
over C. Define R, s, t, c as follows:

(1) R : C → Sets is the functor U ×f,F,f U .
(2) t, s : R→ U are the first and second projections, respectively.
(3) c : R ×s,U,t R → R is the morphism given by projection onto the first and last

factors of U ×f,F,f U ×f,F,f U under the canonical isomorphismR×s,U,tR→
U ×f,F,f U ×f,F,f U .

Then (U,R, s, t, c) is a groupoid in functors on C.

Proof. Omitted. �

Lemma 25.3. Let F be category cofibered in groupoids over a category C. Let U :
C → Sets be a functor. Let f : U → F be a morphism of categories cofibered in groupoids
over C. Let (U,R, s, t, c) be the groupoid in functors on C constructed from f : U → F
in Lemma 25.2. Then there is a natural morphism [f ] : [U/R]→ F such that:

(1) [f ] : [U/R]→ F is fully faithful.
(2) [f ] : [U/R] → F is an equivalence if and only if f : U → F is essentially

surjective.

Proof. Omitted. �

26. Presentations of deformation categories

According to the next lemma, a smooth morphism from a predeformation functor to a
predeformation category F gives rise to a presentation of F by a smooth groupoid in
functors.

Lemma 26.1. Let F be a category cofibered in groupoids over CΛ. Let U : CΛ → Sets
be a functor. Let f : U → F be a smooth morphism of categories cofibered in groupoids.
Then:

(1) If (U,R, s, t, c) is the groupoid in functors on CΛ constructed from f : U → F
in Lemma 25.2, then (U,R, s, t, c) is smooth.

(2) If f : U(k) → F(k) is essentially surjective, then the morphism [f ] : [U/R] →
F of Lemma 25.3 is an equivalence.

Proof. From the construction of Lemma 25.2 we have a commutative diagram

R = U ×f,F,f U s
//

t

��

U

f

��
U

f // F
where t, s are the first and second projections. So t, s are smooth by Lemma 8.7. Hence (1)
holds.
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If the assumption of (2) holds, then by Lemma 8.8 the morphism f : U → F is essentially
surjective. Hence by Lemma 25.3 the morphism [f ] : [U/R]→ F is an equivalence. �

Lemma 26.2. Let F be a deformation category. Let U : CΛ → Sets be a deformation
functor. Let f : U → F be a morphism of categories cofibered in groupoids. Then
U ×f,F,f U is a deformation functor with tangent space fitting into an exact sequence of
k-vector spaces

0→ Inf(F)→ T (U ×f,F,f U)→ TU ⊕ TU

Proof. Follows from Lemma 20.1 and the fact that Inf(U) = (0). �

Lemma 26.3. Let F be a deformation category. Let U : CΛ → Sets be a prorepre-
sentable functor. Let f : U → F be a morphism of categories cofibered in groupoids. Let
(U,R, s, t, c) be the groupoid in functors on CΛ constructed from f : U → F in Lemma
25.2. If dimk Inf(F) <∞, then (U,R, s, t, c) is prorepresentable.

Proof. Note that U is a deformation functor by Example 16.10. By Lemma 26.2 we
see thatR = U×f,F,f U is a deformation functor whose tangent space TR = T (U×f,F,f
U) sits in an exact sequence 0 → Inf(F) → TR → TU ⊕ TU . Since we have assumed
the first space has finite dimension and since TU has finite dimension by Example 11.11
we see that dimTR <∞. The map γ : DerΛ(k, k)→ TR see (12.6.1) is injective because
its composition with TR → TU is injective by Theorem 18.2 for the prorepresentable
functor U . ThusR is prorepresentable by Theorem 18.2. It follows from Lemma 22.4 that
(U,R, s, t, c) is prorepresentable. �

Theorem 26.4. Let F be a category cofibered in groupoids over CΛ. Then F admits
a presentation by a smooth prorepresentable groupoid in functors on CΛ if and only if the
following conditions hold:

(1) F is a deformation category.
(2) dimk TF is finite.
(3) dimk Inf(F) is finite.

Proof. Recall that a prorepresentable functor is a deformation functor, see Example
16.10. Thus if F is equivalent to a smooth prorepresentable groupoid in functors, then
conditions (1), (2), and (3) follow from Lemma 24.2 (1), (2), and (3).

Conversely, assume conditions (1), (2), and (3) hold. Condition (1) implies that (S1) and
(S2) are satisfied, see Lemma 16.6. By Lemma 13.4 there exists a versal formal object ξ.
Setting U = R|CΛ the associated map ξ : U → F is smooth (this is the definition of a
versal formal object). Let (U,R, s, t, c) be the groupoid in functors constructed in Lemma
25.2 from the map ξ. By Lemma 26.1 we see that (U,R, s, t, c) is a smooth groupoid in
functors and that [U/R]→ F is an equivalence. By Lemma 26.3 we see that (U,R, s, t, c)
is prorepresentable. Hence [U/R]→ F is the desired presentation of F . �

27. Remarks regarding minimality

The main theorem of this chapter is Theorem 26.4 above. It describes completely those
categories cofibred in groupoids over CΛ which have a presentation by a smooth prorep-
resentable groupoid in functors. In this section we briefly discuss how the minimality
discussed in Sections 14 and 15 can be used to obtain a “minimal” smooth prorepresentable
presentation.
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Definition 27.1. Let (U,R, s, t, c) be a smooth prorepresentable groupoid in func-
tors on CΛ.

(1) We say (U,R, s, t, c) is normalized if the groupoid (U(k[ε]), R(k[ε]), s, t, c) is
totally disconnected, i.e., there are no morphisms between distinct objects.

(2) We say (U,R, s, t, c) is minimal if the U → [U/R] is given by a minimal versal
formal object of [U/R].

The difference between the two notions is related to the difference between conditions
(15.0.1) and (15.0.2) and disappears when k′ ⊂ k is separable. Also a normalized smooth
prorepresentable groupoid in functors is minimal as the following lemma shows. Here is
a precise statement.

Lemma 27.2. Let (U,R, s, t, c) be a smooth prorepresentable groupoid in functors on
CΛ.

(1) (U,R, s, t, c) is normalized if and only if the morphism U → [U/R] induces an
isomorphism on tangent spaces, and

(2) (U,R, s, t, c) is minimal if and only if the kernel of TU → T [U/R] is contained
in the image of DerΛ(k, k)→ TU .

Proof. Part (1) follows immediately from the definitions. To see part (2) set F =
[U/R]. Since F has a presentation it is a deformation category, see Theorem 26.4. In
particular it satisfies (RS), (S1), and (S2), see Lemma 16.6. Recall that minimal versal formal
objects are unique up to isomorphism, see Lemma 14.5. By Theorem 15.5 a minimal versal
object induces a map ξ : R|CΛ → F satisfying (15.0.2). Since U ∼= R|CΛ over F we see
that TU → TF = T [U/R] satisfies the property as stated in the lemma. �

The quotient of a minimal prorepresentable groupoid in functors on CΛ does not admit
autoequivalences which are not automorphisms. To prove this, we first note the following
lemma.

Lemma 27.3. Let U : CΛ → Sets be a prorepresentable functor. Let ϕ : U → U be a
morphism such that dϕ : TU → TU is an isomorphism. Then ϕ is an isomorphism.

Proof. If U ∼= R|CΛ for some R ∈ Ob(ĈΛ), then completing ϕ gives a morphism
R → R. If f : R → R is the corresponding morphism in ĈΛ, then f induces an isomor-
phism DerΛ(R, k) → DerΛ(R, k), see Example 11.14. In particular f is a surjection by
Lemma 4.6. As a surjective endomorphism of a Noetherian ring is an isomorphism (see
Algebra, Lemma 31.10) we conclude f , hence R → R, hence ϕ : U → U is an isomor-
phism. �

Lemma 27.4. Let (U,R, s, t, c) be a minimal smooth prorepresentable groupoid in
functors on CΛ. If ϕ : [U/R] → [U/R] is an equivalence of categories cofibered in
groupoids, then ϕ is an isomorphism.

Proof. A morphism ϕ : [U/R] → [U/R] is the same thing as a morphism ϕ :
(U,R, s, t, c) → (U,R, s, t, c) of groupoids in functors over CΛ as defined in Definition
21.1. Denote φ : U → U and ψ : R → R the corresponding morphisms. Because the
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diagram
DerΛ(k, k)

γ
&&

γ
xx

TU
dφ

//

��

TU

��
T [U/R] dϕ // T [U/R]

is commutative, since dϕ is bijective, and since we have the characterization of minimality
in Lemma 27.2 we conclude that dφ is injective (hence bijective by dimension reasons).
Thus φ : U → U is an isomorphism by Lemma 27.3. We can use a similar argument, using
the exact sequence

0→ Inf([U/R])→ TR→ TU ⊕ TU
of Lemma 26.2 to prove that ψ : R → R is an isomorphism. But is also a consequence of
the fact that R = U ×[U/R] U and that ϕ and φ are isomorphisms. �

Lemma 27.5. Let (U,R, s, t, c) and (U ′, R′, s′, t′, c′) be minimal smooth prorepre-
sentable groupoids in functors on CΛ. If ϕ : [U/R] → [U ′/R′] is an equivalence of cate-
gories cofibered in groupoids, then ϕ is an isomorphism.

Proof. Let ψ : [U ′/R′]→ [U/R] be a quasi-inverse to ϕ. Then ψ ◦ ϕ and ϕ ◦ ψ are
isomorphisms by Lemma 27.4, hence ϕ and ψ are isomorphisms. �

The following lemma summarizes some of the things we have seen earlier in this chapter.

Lemma 27.6. LetF be a deformation category such that dimk TF <∞ and dimk Inf(F) <
∞. Then there exists a minimal versal formal object ξ of F . Say ξ lies over R ∈ Ob(ĈΛ).
Let U = R|CΛ . Let f = ξ : U → F be the associated morphism. Let (U,R, s, t, c)
be the groupoid in functors on CΛ constructed from f : U → F in Lemma 25.2. Then
(U,R, s, t, c) is a minimal smooth prorepresentable groupoid in functors on CΛ and there
is an equivalence [U/R]→ F .

Proof. As F is a deformation category it satisfies (S1) and (S2), see Lemma 16.6. By
Lemma 13.4 there exists a versal formal object. By Lemma 14.5 there exists a minimal versal
formal object ξ/R as in the statement of the lemma. Setting U = R|CΛ the associated map
ξ : U → F is smooth (this is the definition of a versal formal object). Let (U,R, s, t, c) be
the groupoid in functors constructed in Lemma 25.2 from the map ξ. By Lemma 26.1 we
see that (U,R, s, t, c) is a smooth groupoid in functors and that [U/R]→ F is an equiva-
lence. By Lemma 26.3 we see that (U,R, s, t, c) is prorepresentable. Finally, (U,R, s, t, c)
is minimal because U → [U/R] = F corresponds to the minimal versal formal object
ξ. �

Presentations by minimal prorepresentable groupoids in functors satisfy the following
uniqueness property.

Lemma 27.7. Let F be category cofibered in groupoids over CΛ. Assume there exist
presentations ofF by minimal smooth prorepresentable groupoids in functors (U,R, s, t, c)
and (U ′, R′, s′, t′, c′). Then (U,R, s, t, c) and (U ′, R′, s′, t′, c′) are isomorphic.

Proof. Follows from Lemma 27.5 and the observation that a morphism [U/R] →
[U ′/R′] is the same thing as a morphism of groupoids in functors (by our explicit con-
struction of [U/R] in Definition 21.9). �
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In summary we have proved the following theorem.

Theorem 27.8. Let F be a category cofibered in groupoids over CΛ. Consider the
following conditions

(1) F admits a presentation by a normalized smooth prorepresentable groupoid in
functors on CΛ,

(2) F admits a presentation by a smooth prorepresentable groupoid in functors on
CΛ,

(3) F admits a presentation by a minimal smooth prorepresentable groupoid in func-
tors on CΛ, and

(4) F satisfies the following conditions
(a) F is a deformation category.
(b) dimk TF is finite.
(c) dimk Inf(F) is finite.

Then (2), (3), (4) are equivalent and are implied by (1). If k′ ⊂ k is separable, then (1), (2),
(3), (4) are all equivalent. Furthermore, the minimal smooth prorepresentable groupoids
in functors which provide a presentation of F are unique up to isomorphism.

Proof. We see that (1) implies (3) and is equivalent to (3) if k′ ⊂ k is separable from
Lemma 27.2. It is clear that (3) implies (2). We see that (2) implies (4) by Theorem 26.4.
We see that (4) implies (3) by Lemma 27.6. This proves all the implications. The final
uniqueness statement follows from Lemma 27.7. �

28. Uniqueness of versal rings

Given R,S in ĈΛ we say maps f, g : R → S are formally homotopic if there exists an
r ≥ 0 and maps h : R → R[[t1, . . . , tr]] and k : R[[t1, . . . , tr]] → S in ĈΛ such that for
all a ∈ R we have

(1) h(a) mod (t1, . . . , tr) = a,
(2) f(a) = k(a),
(3) g(a) = k(h(a)).

We will say (r, h, k) is a formal homotopy between f and g.

Lemma 28.1. Being formally homotopic is an equivalence relation on sets of mor-
phisms in ĈΛ.

Proof. Suppose we have any r ≥ 1 and two maps h1, h2 : R → R[[t1, . . . , tr]]
such that h1(a) mod (t1, . . . , tr) = h2(a) mod (t1, . . . , tr) = a for all a ∈ R and a
map k : R[[t1, . . . , tr]] → S. Then we claim k ◦ h1 is formally homotopic to k ◦ h2.
The symmetric inherent in this claim will show that our notion of formally homotopic is
symmetric. Namely, the map

Ψ : R[[t1, . . . , tr]] −→ R[[t1, . . . , tr]],
∑

aIt
I 7−→

∑
h1(aI)tI

is an isomorphism. Set h(a) = Ψ−1(h2(a)) for a ∈ R and k′ = k ◦ Ψ, then we see that
(r, h, k′) is a formal homotopy between k ◦ h1 and k ◦ h2, proving the claim
Say we have three maps f1, f2, f3 : R → S as above and a formal homotopy (r1, h1, k1)
between f1 and f2 and a formal homotopy (r2, h2, k2) between f3 and f2 (!). After relabel-
ing the coordinates we may assumeh2 : R→ R[[tr1+1, . . . , tr1+r2 ]] and k2 : R[[tr1+1, . . . , tr1+r2 ]]→
S. By choosing a suitable isomorphism

R[[t1, . . . , tr1+r2 ]] −→ R[[tr1+1, . . . , tr1+r2 ]]⊗̂h2,R,h1R[[t1, . . . , tr1 ]]



6388 90. FORMAL DEFORMATION THEORY

we may fit these maps into a commutative diagram

R
h1

//

h2

��

R[[t1, . . . , tr1 ]]

h′
2
��

R[[tr1+1, . . . , tr1+r2 ]]
h′

1 // R[[t1, . . . , tr1+r2 ]]

with h′
2(ti) = ti for 1 ≤ i ≤ r1 and h′

1(ti) = ti for r1 + 1 ≤ i ≤ r2. Some details
omitted. Since this diagram is a pushout in the category ĈΛ (see proof of Lemma 4.3) and
since k1 ◦ h1 = f2 = k2 ◦ h2 we conclude there exists a map

k : R[[t1, . . . , tr1+r2 ]]→ S

with k1 = k ◦ h′
2 and k2 = k ◦ h′

1. Denote h = h′
1 ◦ h2 = h′

2 ◦ h1. Then we have
(1) k(h′

1(a)) = k2(a) = f3(a), and
(2) k(h′

2(a)) = k1(a) = f1(a).
By the claim in the first paragraph of the proof this shows that f1 and f3 are formally
homotopic. �

Lemma 28.2. In the category ĈΛ, if f1, f2 : R → S are formally homotopic and
g : S → S′ is a morphism, then g ◦ f1 and g ◦ f2 are formally homotopic.

Proof. Namely, if (r, h, k) is a formal homotopy between f1 and f2, then (r, h, g◦k)
is a formal homotopy between g ◦ f1 and g ◦ f2. �

Lemma 28.3. Let F be a deformation category over CΛ with dimk TF < ∞ and
dimk Inf(F) < ∞. Let ξ be a versal formal object lying over R. Let η be a formal object
lying over S. Then any two maps

f, g : R→ S

such that f∗ξ ∼= η ∼= g∗ξ are formally homotopic.

Proof. By Theorem 26.4 and its proof, F has a presentation by a smooth prorepre-
sentable groupoid

(R,R1, s, t, c, e, i)|CΛ

in functors on Cλ such that F . Then the maps s : R → R1 and t : R → R1 are for-
mally smooth ring maps and e : R1 → R is a section. In particular, we can choose
an isomorphism R1 = R[[t1, . . . , tr]] for some r ≥ 0 such that s is the embedding
R ⊂ R[[t1, . . . , tr]] and t corresponds to a map h : R → R[[t1, . . . , tr]] with h(a) mod
(t1, . . . , tr) = a for all a ∈ R. The existence of the isomorphism α : f∗ξ → g∗ξ means
exactly that there is a map k : R1 → S such that f = k ◦ s and g = k ◦ t. This exactly
means that (r, h, k) is a formal homotopy between f and g. �

Lemma 28.4. In the category ĈΛ, if f1, f2 : R → S are formally homotopic and
p ⊂ R is a minimal prime ideal, then f1(p)S = f2(p)S as ideals.

Proof. Suppose (r, h, k) is a formal homotopy between f1 and f2. We claim that
pR[[t1, . . . , tr]] = h(p)R[[t1, . . . , tr]]. The claim implies the lemma by further compos-
ing with k. To prove the claim, observe that the map p 7→ pR[[t1, . . . , tr]] is a bijection
between the minimal prime ideals ofR and the minimal prime ideals ofR[[t1, . . . , tr]]. Fi-
nally, h(p)R[[t1, . . . , tr]] is a minimal prime ash is flat, and hence of the form qR[[t1, . . . , tr]]
for some minimal prime q ⊂ R by what we just said. But since h mod (t1, . . . , tr) = idR
by definition of a formal homotopy, we conclude that q = p as desired. �
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29. Change of residue field

In this section we quickly discuss what happens if we replace the residue field k by a finite
extension. Let Λ be a Noetherian ring and let Λ → k be a finite ring map where k is a
field. Throughout this whole chapter we have used CΛ to denote the category of Artinian
local Λ-algebras whose residue field is identified with k, see Definition 3.1. However, since
in this section we will discuss what happen when we change k we will instead use the
notation CΛ,k to indicate the dependence on k.

Situation 29.1. Let Λ be a Noetherian ring and let Λ→ k → l be a finite ring maps
where k and l are fields. Thus l/k is a finite extensions of fields. A typical object of CΛ,l
will be denoted B and a typical object of CΛ,k will be denoted A. We define

(29.1.1) CΛ,l −→ CΛ,k, B 7−→ B ×l k
Given a category cofibred in groupoids p : F → CΛ,k we obtain an associated category
cofibred in groupoids

pl/k : Fl/k −→ CΛ,l

by setting Fl/k(B) = F(B ×l k).

The functor (29.1.1) makes sense: because B ×l k ⊂ B we have

[k : k′] lengthB×lk(B ×l k) = lengthΛ(B ×l k)
≤ lengthΛ(B)
= [l : k′] lengthB(B) <∞

(see Lemma 3.4) hence B ×l k is Artinian (see Algebra, Lemma 53.6). Thus B ×l k is an
Artinian local ring with residue field k. Note that (29.1.1) commutes with fibre products

(B1 ×B B2)×l k = (B1 ×l k)×(B×lk) (B2 ×l k)
and transforms surjective ring maps into surjective ring maps. We use the “expensive”
notation Fl/k to prevent confusion with the construction of Remark 6.4. Here are some
elementary observations.

Lemma 29.2. With notation and assumptions as in Situation 29.1.
(1) We have Fl/k = (F)l/k.
(2) If F is a predeformation category, then Fl/k is a predeformation category.
(3) If F satisfies (S1), then Fl/k satisfies (S1).
(4) If F satisfies (S2), then Fl/k satisfies (S2).
(5) If F satisfies (RS), then Fl/k satisfies (RS).

Proof. Part (1) is immediate from the definitions.

Since Fl/k(l) = F(k) part (2) follows from the definition, see Definition 6.2.

Part (3) follows as the functor (29.1.1) commutes with fibre products and transforms sur-
jective maps into surjective maps, see Definition 10.1.

Part (4). To see this consider a diagram

l[ε]

��
B // l
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in CΛ,l as in Definition 10.1. Applying the functor (29.1.1) we obtain

k[lε]

��
B ×l k // k

where lε denotes the finite dimensional k-vector space lε ⊂ l[ε]. According to Lemma 10.4
the condition of (S2) for F also holds for this diagram. Hence (S2) holds for Fl/k.

Part (5) follows from the characterization of (RS) in Lemma 16.4 part (2) and the fact that
(29.1.1) commutes with fibre products. �

The following lemma applies in particular when F satisfies (S2) and is a predeformation
category, see Lemma 10.5.

Lemma 29.3. With notation and assumptions as in Situation 29.1. Assume F is a
predeformation category and F satisfies (S2). Then there is a canonical l-vector space
isomorphism

TF ⊗k l −→ TFl/k
of tangent spaces.

Proof. By Lemma 29.2 we may replace F by F . Moreover we see that TF , resp.
TFl/k has a canonical k-vector space structure, resp. l-vector space structure, see Lemma
12.2. Then

TFl/k = Fl/k(l[ε]) = F(k[lε]) = TF ⊗k l
the last equality by Lemma 12.2. More generally, given a finite dimensional l-vector space
V we have

Fl/k(l[V ]) = F(k[Vk]) = TF ⊗k Vk
whereVk denotesV seen as a k-vector space. We conclude that the functorsV 7→ Fl/k(l[V ])
and V 7→ TF ⊗k Vk are canonically identified as functors to the category of sets. By
Lemma 11.4 we see there is at most one way to turn either functor into an l-linear functor.
Hence the isomorphisms are compatible with the l-vector space structures and we win. �

Lemma 29.4. With notation and assumptions as in Situation 29.1. Assume F is a
deformation category. Then there is a canonical l-vector space isomorphism

Inf(F)⊗k l −→ Inf(Fl/k)

of infinitesimal automorphism spaces.

Proof. Let x0 ∈ Ob(F(k)) and denote xl,0 the corresponding object of Fl/k over
l. Recall that Inf(F) = Infx0(F) and Inf(Fl/k) = Infxl,0(Fl/k), see Remark 19.4. Recall
that the vector space structure on Infx0(F) comes from identifying it with the tangent
space of the functor Aut(x0) which is defined on the category Ck,k of Artinian local k-
algebras with residue field k. Similarly, Infxl,0(Fl/k) is the tangent space of Aut(xl,0)
which is defined on the category Cl,l of Artinian local l-algebras with residue field l. Un-
winding the definitions we see that Aut(xl,0) is the restriction of Aut(x0)l/k (which lives
on Ck,l) to Cl,l. Since there is no difference between the tangent space of Aut(x0)l/k seen
as a functor on Ck,l or Cl,l, the lemma follows from Lemma 29.3 and the fact that Aut(x0)
satisfies (RS) by Lemma 19.6 (whence we have (S2) by Lemma 16.6). �
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Lemma 29.5. With notation and assumptions as in Situation 29.1. If F → G is a
smooth morphism of categories cofibred in groupoids over CΛ,k , then Fl/k → Gl/k is a
smooth morphism of categories cofibred in groupoids over CΛ,l.

Proof. This follows immediately from the definitions and the fact that (29.1.1) pre-
serves surjections. �

There are many more things you can say about the relationship between F and Fl/k (in
particular about the relationship between versal deformations) and we will add these here
as needed.

Lemma 29.6. With notation and assumptions as in Situation 29.1. Let ξ be a versal
formal object for F lying over R ∈ Ob(ĈΛ,k). Then there exist

(1) an S ∈ Ob(ĈΛ,l) and a local Λ-algebra homomorphism R → S which is for-
mally smooth in the mS-adic topology and induces the given field extension l/k
on residue fieds, and

(2) a versal formal object of Fl/k lying over S.

Proof. Construction of S. Choose a surjection R[x1, . . . , xn] → l of R-algebras.
The kernel is a maximal ideal m. Set S equal to the m-adic completion of the Noetherian
ring R[x1, . . . , xn]. Then S is in ĈΛ,l by Algebra, Lemma 97.6. The map R → S is
formally smooth in the mS-adic topology by More on Algebra, Lemmas 37.2 and 37.4 and
the fact that R → R[x1, . . . , xn] is formally smooth. (Compare with the proof Lemma
9.5.)
Since ξ is versal, the transformation ξ : R|CΛ,k → F is smooth. By Lemma 29.5 the
induced map

(R|CΛ,k)l/k −→ Fl/k
is smooth. Thus it suffices to construct a smooth morphism S|CΛ,l → (R|CΛ,k)l/k. To give
such a map means for every object B of CΛ,l a map of sets

MorĈΛ,l
(S,B) −→ MorĈΛ,k

(R,B ×l k)

functorial inB. Given an element ϕ : S → B on the left hand side we send it to the com-
positionR→ S → B whose image is contained in the sub Λ-algebraB×l k. Smoothness
of the map means that given a surjection B′ → B and a commutative diagram

S // B B

R

OO

// B′ ×l k

OO

// B′

OO

we have to find a ring map S → B′ fitting into the outer rectangle. The existence of this
map is guaranteed as we choseR→ S to be formally smooth in the mS-adic topology, see
More on Algebra, Lemma 37.5. �
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CHAPTER 91

Deformation Theory

1. Introduction

The goal of this chapter is to give a (relatively) gentle introduction to deformation theory
of modules, morphisms, etc. In this chapter we deal with those results that can be proven
using the naive cotangent complex. In the chapter on the cotangent complex we will
extend these results a little bit. The advanced reader may wish to consult the treatise by
Illusie on this subject, see [?].

2. Deformations of rings and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation theory.
We start with a surjective ring map A′ → A whose kernel is an ideal I of square zero.
Moreover we assume given a ring map A → B, a B-module N , and an A-module map
c : I → N . In this section we ask ourselves whether we can find the question mark fitting
into the following diagram

(2.0.1)

0 // N // ? // B // 0

0 // I

c

OO

// A′

OO

// A

OO

// 0
and moreover how unique the solution is (if it exists). More precisely, we look for a surjec-
tion of A′-algebras B′ → B whose kernel is an ideal of square zero and is identified with
N such that A′ → B′ induces the given map c. We will say B′ is a solution to (2.0.1).

Lemma 2.1. Given a commutative diagram

0 // N2 // B′
2

// B2 // 0

0 // I2

c2

OO

// A′
2

OO

// A2

OO

// 0

0 // N1

GG

// B′
1

// B1

GG

// 0

0 // I1

GG

c1

OO

// A′
1

GG

OO

// A1

GG

OO

// 0

with front and back solutions to (2.0.1) we have
(1) There exist a canonical element in Ext1

B1
(NLB1/A1 , N2) whose vanishing is a

necessary and sufficient condition for the existence of a ring map B′
1 → B′

2
fitting into the diagram.

6395



6396 91. DEFORMATION THEORY

(2) If there exists a map B′
1 → B′

2 fitting into the diagram the set of all such maps
is a principal homogeneous space under HomB1(ΩB1/A1 , N2).

Proof. Let E = B1 viewed as a set. Consider the surjection A1[E] → B1 with
kernel J used to define the naive cotangent complex by the formula

NLB1/A1 = (J/J2 → ΩA1[E]/A1 ⊗A1[E] B1)

in Algebra, Section 134. Since ΩA1[E]/A1 ⊗B1 is a free B1-module we have

Ext1
B1

(NLB1/A1 , N2) = HomB1(J/J2, N2)
HomB1(ΩA1[E]/A1 ⊗B1, N2)

We will construct an obstruction in the module on the right. Let J ′ = Ker(A′
1[E]→ B1).

Note that there is a surjection J ′ → J whose kernel is I1A1[E]. For every e ∈ E denote
xe ∈ A1[E] the corresponding variable. Choose a lift ye ∈ B′

1 of the image of xe in B1
and a lift ze ∈ B′

2 of the image of xe in B2. These choices determine A′
1-algebra maps

A′
1[E]→ B′

1 and A′
1[E]→ B′

2

The first of these gives a map J ′ → N1, f ′ 7→ f ′(ye) and the second gives a map J ′ → N2,
f ′ 7→ f ′(ze). A calculation shows that these maps annihilate (J ′)2. Because the left square
of the diagram (involving c1 and c2) commutes we see that these maps agree on I1A1[E]
as maps into N2. Observe that B′

1 is the pushout of J ′ → A′
1[B1] and J ′ → N1. Thus,

if the maps J ′ → N1 → N2 and J ′ → N2 agree, then we obtain a map B′
1 → B′

2 fitting
into the diagram. Thus we let the obstruction be the class of the map

J/J2 → N2, f 7→ f ′(ze)− ν(f ′(ye))

where ν : N1 → N2 is the given map and where f ′ ∈ J ′ is a lift of f . This is well defined
by our remarks above. Note that we have the freedom to modify our choices of ze into
ze + δ2,e and ye into ye + δ1,e for some δi,e ∈ Ni. This will modify the map above into

f 7→ f ′(ze + δ2,e)− ν(f ′(ye + δ1,e)) = f ′(ze)− ν(f ′(ze)) +
∑

(δ2,e − ν(δ1,e))
∂f

∂xe

This means exactly that we are modifying the map J/J2 → N2 by the composition
J/J2 → ΩA1[E]/A1 ⊗ B1 → N2 where the second map sends dxe to δ2,e − ν(δ1,e).
Thus our obstruction is well defined and is zero if and only if a lift exists.

Part (2) comes from the observation that given two maps ϕ,ψ : B′
1 → B′

2 fitting into the
diagram, then ϕ− ψ factors through a map D : B1 → N2 which is an A1-derivation:

D(fg) = ϕ(f ′g′)− ψ(f ′g′)
= ϕ(f ′)ϕ(g′)− ψ(f ′)ψ(g′)
= (ϕ(f ′)− ψ(f ′))ϕ(g′) + ψ(f ′)(ϕ(g′)− ψ(g′))
= gD(f) + fD(g)

Thus D corresponds to a unique B1-linear map ΩB1/A1 → N2. Conversely, given such
a linear map we get a derivation D and given a ring map ψ : B′

1 → B′
2 fitting into the

diagram the map ψ +D is another ring map fitting into the diagram. �

Lemma 2.2. If there exists a solution to (2.0.1), then the set of isomorphism classes of
solutions is principal homogeneous under Ext1

B(NLB/A, N).
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Proof. We observe right away that given two solutions B′
1 and B′

2 to (2.0.1) we ob-
tain by Lemma 2.1 an obstruction element o(B′

1, B
′
2) ∈ Ext1

B(NLB/A, N) to the existence
of a map B′

1 → B′
2. Clearly, this element is the obstruction to the existence of an isomor-

phism, hence separates the isomorphism classes. To finish the proof it therefore suffices to
show that given a solutionB′ and an element ξ ∈ Ext1

B(NLB/A, N) we can find a second
solution B′

ξ such that o(B′, B′
ξ) = ξ.

Let E = B viewed as a set. Consider the surjection A[E] → B with kernel J used to
define the naive cotangent complex by the formula

NLB/A = (J/J2 → ΩA[E]/A ⊗A[E] B)

in Algebra, Section 134. Since ΩA[E]/A ⊗B is a free B-module we have

Ext1
B(NLB/A, N) = HomB(J/J2, N)

HomB(ΩA[E]/A ⊗B,N)

Thus we may represent ξ as the class of a morphism δ : J/J2 → N .

For every e ∈ E denote xe ∈ A[E] the corresponding variable. Choose a lift ye ∈ B′ of
the image of xe in B. These choices determine an A′-algebra map ϕ : A′[E] → B′. Let
J ′ = Ker(A′[E] → B). Observe that ϕ induces a map ϕ|J′ : J ′ → N and that B′ is the
pushout, as in the following diagram

0 // N // B′ // B // 0

0 // J ′

ϕ|J′

OO

// A′[E]

OO

// B

=

OO

// 0

Let ψ : J ′ → N be the sum of the map ϕ|J′ and the composition

J ′ → J ′/(J ′)2 → J/J2 δ−→ N.

Then the pushout along ψ is an other ring extension B′
ξ fitting into a diagram as above.

A calculation shows that o(B′, B′
ξ) = ξ as desired. �

Lemma 2.3. LetA be a ring. LetB be anA-algebra. LetN be aB-module. The set of
isomorphism classes of extensions of A-algebras

0→ N → B′ → B → 0

where N is an ideal of square zero is canonically bijective to Ext1
B(NLB/A, N).

Proof. To prove this we apply the previous results to the case where (2.0.1) is given
by the diagram

0 // N // ? // B // 0

0 // 0

OO

// A

OO

id // A

OO

// 0
Thus our lemma follows from Lemma 2.2 and the fact that there exists a solution, namely
N ⊕B. (See remark below for a direct construction of the bijection.) �
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Remark 2.4. LetA→ B andN be as in Lemma 2.3. Letα : P → B be a presentation
of B over A, see Algebra, Section 134. With J = Ker(α) the naive cotangent complex
NL(α) associated to α is the complex J/J2 → ΩP/A ⊗P B. We have

Ext1
B(NL(α), N) = Coker

(
HomB(ΩP/A ⊗P B,N)→ HomB(J/J2, N)

)
because ΩP/A is a free module. Consider a extension 0 → N → B′ → B → 0 as in
the lemma. Since P is a polynomial algebra over A we can lift α to an A-algebra map
α′ : P ′ → B′. Then α′|J : J → N factors as J → J/J2 → N as N has square zero in
B′. The lemma sends our extension to the class of this map J/J2 → N in the displayed
cokernel.

Lemma 2.5. Given ring maps A → B → C , a B-module M , a C-module N , a B-
linear map c : M → N , and extensions of A-algebras with square zero kernels

(a) 0→M → B′ → B → 0 corresponding to ξ ∈ Ext1
B(NLB/A,M), and

(b) 0→ N → C ′ → C → 0 corresponding to ζ ∈ Ext1
C(NLC/A, N).

See Lemma 2.3. Then there is an A-algebra map B′ → C ′ compatible with B → C and c
if and only if ξ and ζ map to the same element of Ext1

B(NLB/A, N).

Proof. The stament makes sense as we have the maps

Ext1
B(NLB/A,M)→ Ext1

B(NLB/A, N)

using the map M → N and

Ext1
C(NLC/A, N)→ Ext1

B(NLC/A, N)→ Ext1
B(NLB/A, N)

where the first arrows uses the restriction map D(C)→ D(B) and the second arrow uses
the canonical map of complexes NLB/A → NLC/A. The statement of the lemma can be
deduced from Lemma 2.1 applied to the diagram

0 // N // C ′ // C // 0

0 // 0

OO

// A

OO

// A

OO

// 0

0 // M

FF

// B′ // B

GG

// 0

0 // 0

FF

OO

// A

FF

OO

// A

GG

OO

// 0
and a compatibility between the constructions in the proofs of Lemmas 2.3 and 2.1 whose
statement and proof we omit. (See remark below for a direct argument.) �

Remark 2.6. Let A → B → C , M , N , c : M → N , 0 → M → B′ → B → 0,
ξ ∈ Ext1

B(NLB/A,M), 0 → N → C ′ → C → 0, and ζ ∈ Ext1
C(NLC/A, N) be as in

Lemma 2.5. Using pushout along c : M → N we can construct an extension

0 // N // B′
1

// B // 0

0 // M

c

OO

// B′

OO

// B

OO

// 0
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by settingB′
1 = (N×B′)/M whereM is antidiagonally embedded. Using pullback along

B → C we can construct an extension

0 // N // C ′ // C // 0

0 // N

OO

// B′
2

OO

// B

OO

// 0

by setting B′
2 = C ′ ×C B (fibre product of rings). A simple diagram chase tells us that

there exists an A-algebra map B′ → C ′ compatible with B → C and c if and only if B′
1

is isomorphic to B′
2 as A-algebra extensions of B by N . Thus to see Lemma 2.5 is true, it

suffices to show that B′
1 corresponds via the bijection of Lemma 2.3 to the image of ξ by

the map Ext1
B(NLB/A,M)→ Ext1

B(NLB/A, N) and thatB′
2 correspond to the image of

ζ by the map Ext1
C(NLC/A, N) → Ext1

B(NLB/A, N). The first of these two statements
is immediate from the construction of the class in Remark 2.4. For the second, choose a
commutative diagram

Q
β
// C

P

ϕ

OO

α // B

OO

of A-algebras, such that α is a presentation of B over A and β is a presentation of C over
A. See Remark 2.4 and references therein. Set J = Ker(α) and K = Ker(β). The map
ϕ induces a map of complexes NL(α) → NL(β) and in particular ϕ̄ : J/J2 → K/K2.
ChooseA-algebra homomorphismβ′ : Q→ C ′ which is a lift ofβ. Thenα′ = (β′◦ϕ, α) :
P → B′

2 = C ′ ×C B is a lift of α. With these choices the composition of the map
K/K2 → N induced by β′ and the map ϕ̄ : J/J2 → K/K2 is the restriction of α′ to
J/J2. Unwinding the constructions of our classes in Remark 2.4 this indeed shows that
B′

2 correspond to the image of ζ by the map Ext1
C(NLC/A, N)→ Ext1

B(NLB/A, N).

Lemma 2.7. Let 0 → I → A′ → A → 0, A → B, and c : I → N be as in (2.0.1).
Denote ξ ∈ Ext1

A(NLA/A′ , I) the element corresponding to the extension A′ of A by I
via Lemma 2.3. The set of isomorphism classes of solutions is canonically bijective to the
fibre of

Ext1
B(NLB/A′ , N)→ Ext1

A(NLA′/A, N)
over the image of ξ.

Proof. By Lemma 2.3 applied to A′ → B and the B-module N we see that elements
ζ of Ext1

B(NLB/A′ , N) parametrize extensions 0 → N → B′ → B → 0 of A′-algebras.
By Lemma 2.5 applied to A′ → A→ B and c : I → N we see that there is an A′-algebra
map A′ → B′ compatible with c and A→ B if and only if ζ maps to ξ. Of course this is
the same thing as saying B′ is a solution of (2.0.1). �

Remark 2.8. Observe that in the situation of Lemma 2.7 we have

Ext1
A(NLA′/A, N) = Ext1

B(NLA′/A⊗L
AB,N) = Ext1

B(NLA′/A⊗AB,N)

The first equality by More on Algebra, Lemma 60.3 and the second by More on Algebra,
Lemma 85.1. We have maps of complexes

NLA′/A⊗AB → NLB/A′ → NLB/A
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which is close to being a distinguished triangle, see Algebra, Lemma 134.4. If it were a
distinguished triangle we would conclude that the image of ξ in Ext2

B(NLB/A, N) would
be the obstruction to the existence of a solution to (2.0.1).

If our ring mapA→ B is a local complete intersection, then there is a solutuion. This is a
kind of lifting result; observe that for syntomic ring maps we have proved a rather strong
lifting result in Smoothing Ring Maps, Proposition 3.2.

Lemma 2.9. If A → B is a local complete intersection ring map, then there exists a
solution to (2.0.1).

First proof. WriteB = A[x1, . . . , xn]/J . By More on Algebra, Definition 33.2 the
ideal J is Koszul-regular. This implies J is H1-regular and quasi-regular, see More on Al-
gebra, Section 32. Let J ′ ⊂ A′[x1, . . . , xn] be the inverse image of J . Denote I[x1, . . . , xn]
the kernel ofA′[x1, . . . , xn]→ A[x1, . . . , xn]. By More on Algebra, Lemma 32.5 we have
I[x1, . . . , xn]∩(J ′)2 = J ′I[x1, . . . , xn] = JI[x1, . . . , xn]. Hence we obtain a short exact
sequence

0→ I ⊗A B → J ′/(J ′)2 → J/J2 → 0
Since J/J2 is projective (More on Algebra, Lemma 32.3) we can choose a splitting of this
sequence

J ′/(J ′)2 = I ⊗A B ⊕ J/J2

Let (J ′)2 ⊂ J ′′ ⊂ J ′ be the elements which map to the second summand in the decompo-
sition above. Then

0→ I ⊗A B → A′[x1, . . . , xn]/J ′′ → B → 0

is a solution to (2.0.1) withN = I ⊗AB. The general case is obtained by doing a pushout
along the given map I ⊗A B → N . �

Second proof. Please read Remark 2.8 before reading this proof. By More on Alge-
bra, Lemma 33.6 the maps NLA′/A⊗AB → NLB/A′ → NLB/A do form a distinguished
triangle in D(B). Hence it suffices to show that Ext2

B/A(NLB/A, N) vanishes. By More
on Algebra, Lemma 85.4 the complex NLB/A is perfect of tor-amplitude in [−1, 0]. This
implies our Ext2 vanishes for example by More on Algebra, Lemma 76.1 part (1). �

3. Thickenings of ringed spaces

In the following few sections we will use the following notions:
(1) A sheaf of ideals I ⊂ OX′ on a ringed space (X ′,OX′) is locally nilpotent if

any local section of I is locally nilpotent. Compare with Algebra, Item 29.
(2) A thickening of ringed spaces is a morphism i : (X,OX)→ (X ′,OX′) of ringed

spaces such that
(a) i induces a homeomorphism X → X ′,
(b) the map i] : OX′ → i∗OX is surjective, and
(c) the kernel of i] is a locally nilpotent sheaf of ideals.

(3) A first order thickening of ringed spaces is a thickening i : (X,OX)→ (X ′,OX′)
of ringed spaces such that Ker(i]) has square zero.

(4) It is clear how to define morphisms of thickenings, morphisms of thickenings
over a base ringed space, etc.
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If i : (X,OX) → (X ′,OX′) is a thickening of ringed spaces then we identify the under-
lying topological spaces and think of OX , OX′ , and I = Ker(i]) as sheaves on X = X ′.
We obtain a short exact sequence

0→ I → OX′ → OX → 0

of OX′ -modules. By Modules, Lemma 13.4 the category of OX -modules is equivalent to
the category ofOX′ -modules annihilated by I . In particular, if i is a first order thickening,
then I is aOX -module.

Situation 3.1. A morphism of thickenings (f, f ′) is given by a commutative diagram

(3.1.1)

(X,OX)
i
//

f

��

(X ′,OX′)

f ′

��
(S,OS) t // (S′,OS′)

of ringed spaces whose horizontal arrows are thickenings. In this situation we set I =
Ker(i]) ⊂ OX′ and J = Ker(t]) ⊂ OS′ . As f = f ′ on underlying topological spaces
we will identify the (topological) pullback functors f−1 and (f ′)−1. Observe that (f ′)] :
f−1OS′ → OX′ induces in particular a map f−1J → I and therefore a map of OX′ -
modules

(f ′)∗J −→ I
If i and t are first order thickenings, then (f ′)∗J = f∗J and the map above becomes a
map f∗J → I .

Definition 3.2. In Situation 3.1 we say that (f, f ′) is a strict morphism of thicken-
ings if the map (f ′)∗J −→ I is surjective.

The following lemma in particular shows that a morphism (f, f ′) : (X ⊂ X ′) → (S ⊂
S′) of thickenings of schemes is strict if and only if X = S ×S′ X ′.

Lemma 3.3. In Situation 3.1 the morphism (f, f ′) is a strict morphism of thickenings
if and only if (3.1.1) is cartesian in the category of ringed spaces.

Proof. Omitted. �

4. Modules on first order thickenings of ringed spaces

In this section we discuss some preliminaries to the deformation theory of modules. Let
i : (X,OX) → (X ′,OX′) be a first order thickening of ringed spaces. We will freely
use the notation introduced in Section 3, in particular we will identify the underlying
topological spaces. In this section we consider short exact sequences

(4.0.1) 0→ K → F ′ → F → 0

ofOX′ -modules, whereF ,K areOX -modules andF ′ is anOX′ -module. In this situation
we have a canonicalOX -module map

cF ′ : I ⊗OX
F −→ K

where I = Ker(i]). Namely, given local sections f of I and s ofF we set cF ′(f⊗s) = fs′

where s′ is a local section of F ′ lifting s.
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Lemma 4.1. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0
as in (4.0.1) and maps ϕ : F → G and ψ : K → L.

(1) If there exists anOX′ -module map ϕ′ : F ′ → G′ compatible with ϕ and ψ, then
the diagram

I ⊗OX
F

cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗OX

G
cG′ // L

is commutative.
(2) The set of OX′ -module maps ϕ′ : F ′ → G′ compatible with ϕ and ψ is, if

nonempty, a principal homogeneous space under HomOX
(F ,L).

Proof. Part (1) is immediate from the description of the maps. For (2), if ϕ′ and ϕ′′

are two maps F ′ → G′ compatible with ϕ and ψ, then ϕ′ − ϕ′′ factors as

F ′ → F → L → G′

The map in the middle comes from a unique element of HomOX
(F ,L) by Modules, Lemma

13.4. Conversely, given an element α of this group we can add the composition (as dis-
played above with α in the middle) to ϕ′. Some details omitted. �

Lemma 4.2. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0
as in (4.0.1) and maps ϕ : F → G and ψ : K → L. Assume the diagram

I ⊗OX
F

cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗OX

G
cG′ // L

is commutative. Then there exists an element

o(ϕ,ψ) ∈ Ext1
OX

(F ,L)
whose vanishing is a necessary and sufficient condition for the existence of a map ϕ′ :
F ′ → G′ compatible with ϕ and ψ.

Proof. We can construct explicitly an extension

0→ L → H → F → 0
by takingH to be the cohomology of the complex

K 1,−ψ−−−→ F ′ ⊕ G′ ϕ,1−−→ G

in the middle (with obvious notation). A calculation with local sections using the assump-
tion that the diagram of the lemma commutes shows thatH is annihilated by I . HenceH
defines a class in

Ext1
OX

(F ,L) ⊂ Ext1
OX′ (F ,L)
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Finally, the class of H is the difference of the pushout of the extension F ′ via ψ and the
pullback of the extension G′ via ϕ (calculations omitted). Thus the vanishing of the class
ofH is equivalent to the existence of a commutative diagram

0 // K //

ψ

��

F ′ //

ϕ′

��

F //

ϕ

��

0

0 // L // G′ // G // 0

as desired. �

Lemma 4.3. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given OX -modules F , K and an OX -linear map c : I ⊗OX

F → K. If
there exists a sequence (4.0.1) with cF ′ = c then the set of isomorphism classes of these
extensions is principal homogeneous under Ext1

OX
(F ,K).

Proof. Assume given extensions

0→ K → F ′
1 → F → 0 and 0→ K → F ′

2 → F → 0

with cF ′
1

= cF ′
2

= c. Then the difference (in the extension group, see Homology, Section
6) is an extension

0→ K → E → F → 0
where E is annihilated by I (local computation omitted). Hence the sequence is an exten-
sion ofOX -modules, see Modules, Lemma 13.4. Conversely, given such an extension E we
can add the extension E to the OX′ -extension F ′ without affecting the map cF ′ . Some
details omitted. �

Lemma 4.4. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume givenOX -modules F ,K and anOX -linear map c : I ⊗OX

F → K. Then
there exists an element

o(F ,K, c) ∈ Ext2
OX

(F ,K)
whose vanishing is a necessary and sufficient condition for the existence of a sequence
(4.0.1) with cF ′ = c.

Proof. We first show that if K is an injective OX -module, then there does exist a
sequence (4.0.1) with cF ′ = c. To do this, choose a flat OX′ -module H′ and a surjection
H′ → F (Modules, Lemma 17.6). Let J ⊂ H′ be the kernel. SinceH′ is flat we have

I ⊗OX′ H′ = IH′ ⊂ J ⊂ H′

Observe that the map

IH′ = I ⊗OX′ H′ −→ I ⊗OX′ F = I ⊗OX
F

annihilates IJ . Namely, if f is a local section of I and s is a local section ofH, then fs is
mapped to f ⊗ s where s is the image of s in F . Thus we obtain

IH′/IJ �
� //

��

J /IJ

γ

��
I ⊗OX

F c // K



6404 91. DEFORMATION THEORY

a diagram of OX -modules. If K is injective as an OX -module, then we obtain the dotted
arrow. Denote γ′ : J → K the composition of γ with J → J /IJ . A local calculation
shows the pushout

0 // J //

γ′

��

H′ //

��

F // 0

0 // K // F ′ // F // 0
is a solution to the problem posed by the lemma.

General case. Choose an embedding K ⊂ K′ with K′ an injective OX -module. Let Q be
the quotient, so that we have an exact sequence

0→ K → K′ → Q→ 0

Denote c′ : I ⊗OX
F → K′ be the composition. By the paragraph above there exists a

sequence
0→ K′ → E ′ → F → 0

as in (4.0.1) with cE′ = c′. Note that c′ composed with the map K′ → Q is zero, hence
the pushout of E ′ by K′ → Q is an extension

0→ Q→ D′ → F → 0

as in (4.0.1) with cD′ = 0. This means exactly thatD′ is annihilated by I , in other words,
the D′ is an extension ofOX -modules, i.e., defines an element

o(F ,K, c) ∈ Ext1
OX

(F ,Q) = Ext2
OX

(F ,K)

(the equality holds by the long exact cohomology sequence associated to the exact se-
quence above and the vanishing of higher ext groups into the injective module K′). If
o(F ,K, c) = 0, then we can choose a splitting s : F → D′ and we can set

F ′ = Ker(E ′ → D′/s(F))

so that we obtain the following diagram

0 // K //

��

F ′ //

��

F // 0

0 // K′ // E ′ // F // 0
with exact rows which shows that cF ′ = c. Conversely, if F ′ exists, then the pushout of
F ′ by the mapK → K′ is isomorphic to E ′ by Lemma 4.3 and the vanishing of higher ext
groups into the injective moduleK′. This gives a diagram as above, which implies thatD′

is split as an extension, i.e., the class o(F ,K, c) is zero. �

Remark 4.5. Let (X,OX) be a ringed space. A first order thickening i : (X,OX)→
(X ′,OX′) is said to be trivial if there exists a morphism of ringed spaces π : (X ′,OX′)→
(X,OX) which is a left inverse to i. The choice of such a morphism π is called a trivial-
ization of the first order thickening. Given π we obtain a splitting

(4.5.1) OX′ = OX ⊕ I

as sheaves of algebras on X by using π] to split the surjection OX′ → OX . Conversely,
such a splitting determines a morphism π. The category of trivialized first order thicken-
ings of (X,OX) is equivalent to the category ofOX -modules.
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Remark 4.6. Let i : (X,OX) → (X ′,OX′) be a trivial first order thickening of
ringed spaces and let π : (X ′,OX′)→ (X,OX) be a trivialization. Then given any triple
(F ,K, c) consisting of a pair ofOX -modules and a map c : I ⊗OX

F → K we may set
F ′
c,triv = F ⊕K

and use the splitting (4.5.1) associated to π and the map c to define theOX′ -module struc-
ture and obtain an extension (4.0.1). We will call F ′

c,triv the trivial extension of F by
K corresponding to c and the trivialization π. Given any extension F ′ as in (4.0.1) we
can use π] : OX → OX′ to think of F ′ as an OX -module extension, hence a class ξF ′ in
Ext1

OX
(F ,K). Lemma 4.3 assures that F ′ 7→ ξF ′ induces a bijection{

isomorphism classes of extensions
F ′ as in (4.0.1) with c = cF ′

}
−→ Ext1

OX
(F ,K)

Moreover, the trivial extension F ′
c,triv maps to the zero class.

Remark 4.7. Let (X,OX) be a ringed space. Let (X,OX) → (X ′
i,OX′

i
), i = 1, 2

be first order thickenings with ideal sheaves Ii. Let h : (X ′
1,OX′

1
) → (X ′

2,OX′
2
) be a

morphism of first order thickenings of (X,OX). Picture

(X,OX)

xx &&
(X ′

1,OX′
1
) h // (X ′

2,OX′
2
)

Observe that h] : OX′
2
→ OX′

1
in particular induces an OX -module map I2 → I1. Let

F be anOX -module. Let (Ki, ci), i = 1, 2 be a pair consisting of anOX -moduleKi and a
map ci : Ii ⊗OX

F → Ki. Assume furthermore given a map of OX -modules K2 → K1
such that

I2 ⊗OX
F

c2
//

��

K2

��
I1 ⊗OX

F c1 // K1

is commutative. Then there is a canonical functoriality{
F ′

2 as in (4.0.1) with
c2 = cF ′

2
and K = K2

}
−→

{
F ′

1 as in (4.0.1) with
c1 = cF ′

1
and K = K1

}
Namely, thinking of all sheavesOX ,OX′

i
, F ,Ki, etc as sheaves on X , we set given F ′

2 the
sheaf F ′

1 equal to the pushout, i.e., fitting into the following diagram of extensions

0 // K2 //

��

F ′
2

//

��

F // 0

0 // K1 // F ′
1

// F // 0

We omit the construction of theOX′
1
-module structure on the pushout (this uses the com-

mutativity of the diagram involving c1 and c2).

Remark 4.8. Let (X,OX), (X,OX) → (X ′
i,OX′

i
), Ii, and h : (X ′

1,OX′
1
) →

(X ′
2,OX′

2
) be as in Remark 4.7. Assume that we are given trivializations πi : X ′

i → X
such that π1 = h ◦ π2. In other words, assume h is a morphism of trivialized first order
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thickening of (X,OX). Let (Ki, ci), i = 1, 2 be a pair consisting of anOX -moduleKi and
a map ci : Ii ⊗OX

F → Ki. Assume furthermore given a map ofOX -modules K2 → K1
such that

I2 ⊗OX
F

c2
//

��

K2

��
I1 ⊗OX

F c1 // K1

is commutative. In this situation the construction of Remark 4.6 induces a commutative
diagram

{F ′
2 as in (4.0.1) with c2 = cF ′

2
and K = K2}

��

// Ext1
OX

(F ,K2)

��
{F ′

1 as in (4.0.1) with c1 = cF ′
1

and K = K1} // Ext1
OX

(F ,K1)

where the vertical map on the right is given by functoriality of Ext and the mapK2 → K1
and the vertical map on the left is the one from Remark 4.7.

Remark 4.9. Let (X,OX) be a ringed space. We define a sequence of morphisms of
first order thickenings

(X ′
1,OX′

1
)→ (X ′

2,OX′
2
)→ (X ′

3,OX′
3
)

of (X,OX) to be a complex if the corresponding maps between the ideal sheaves Ii give
a complex of OX -modules I3 → I2 → I1 (i.e., the composition is zero). In this case
the composition (X ′

1,OX′
1
) → (X ′

3,OX′
3
) factors through (X,OX) → (X ′

3,OX′
3
), i.e.,

the first order thickening (X ′
1,OX′

1
) of (X,OX) is trivial and comes with a canonical

trivialization π : (X ′
1,OX′

1
)→ (X,OX).

We say a sequence of morphisms of first order thickenings

(X ′
1,OX′

1
)→ (X ′

2,OX′
2
)→ (X ′

3,OX′
3
)

of (X,OX) is a short exact sequence if the corresponding maps between ideal sheaves is a
short exact sequence

0→ I3 → I2 → I1 → 0
ofOX -modules.

Remark 4.10. Let (X,OX) be a ringed space. Let F be anOX -module. Let

(X ′
1,OX′

1
)→ (X ′

2,OX′
2
)→ (X ′

3,OX′
3
)

be a complex first order thickenings of (X,OX), see Remark 4.9. Let (Ki, ci), i = 1, 2, 3
be pairs consisting of anOX -module Ki and a map ci : Ii ⊗OX

F → Ki. Assume given a
short exact sequence ofOX -modules

0→ K3 → K2 → K1 → 0
such that

I2 ⊗OX
F

c2
//

��

K2

��
I1 ⊗OX

F c1 // K1

and

I3 ⊗OX
F

c3
//

��

K3

��
I2 ⊗OX

F c2 // K2



5. INFINITESIMAL DEFORMATIONS OF MODULES ON RINGED SPACES 6407

are commutative. Finally, assume given an extension

0→ K2 → F ′
2 → F → 0

as in (4.0.1) with K = K2 of OX′
2
-modules with cF ′

2
= c2. In this situation we can apply

the functoriality of Remark 4.7 to obtain an extension F ′
1 on X ′

1 (we’ll describe F ′
1 in

this special case below). By Remark 4.6 using the canonical splitting π : (X ′
1,OX′

1
) →

(X,OX) of Remark 4.9 we obtain ξF ′
1
∈ Ext1

OX
(F ,K1). Finally, we have the obstruction

o(F ,K3, c3) ∈ Ext2
OX

(F ,K3)
see Lemma 4.4. In this situation we claim that the canonical map

∂ : Ext1
OX

(F ,K1) −→ Ext2
OX

(F ,K3)
coming from the short exact sequence 0 → K3 → K2 → K1 → 0 sends ξF ′

1
to the

obstruction class o(F ,K3, c3).

To prove this claim choose an embedding j : K3 → KwhereK is an injectiveOX -module.
We can lift j to a map j′ : K2 → K. Set E ′

2 = j′
∗F ′

2 equal to the pushout of F ′
2 by j′ so

that cE′
2

= j′ ◦ c2. Picture:

0 // K2 //

j′

��

F ′
2

//

��

F //

��

0

0 // K // E ′
2

// F // 0

Set E ′
3 = E ′

2 but viewed as an OX′
3
-module via OX′

3
→ OX′

2
. Then cE′

3
= j ◦ c3. The

proof of Lemma 4.4 constructs o(F ,K3, c3) as the boundary of the class of the extension
ofOX -modules

0→ K/K3 → E ′
3/K3 → F → 0

On the other hand, note thatF ′
1 = F ′

2/K3 hence the class ξF ′
1

is the class of the extension

0→ K2/K3 → F ′
2/K3 → F → 0

seen as a sequence ofOX -modules using π] whereπ : (X ′
1,OX′

1
)→ (X,OX) is the canon-

ical splitting. Thus finally, the claim follows from the fact that we have a commutative
diagram

0 // K2/K3 //

��

F ′
2/K3 //

��

F //

��

0

0 // K/K3 // E ′
3/K3 // F // 0

which isOX -linear (with theOX -module structures given above).

5. Infinitesimal deformations of modules on ringed spaces

Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed spaces. We freely use
the notation introduced in Section 3. Let F ′ be anOX′ -module and set F = i∗F ′. In this
situation we have a short exact sequence

0→ IF ′ → F ′ → F → 0
of OX′ -modules. Since I2 = 0 the OX′ -module structure on IF ′ comes from a unique
OX -module structure. Thus the sequence above is an extension as in (4.0.1). As a special
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case, if F ′ = OX′ we have i∗OX′ = OX and IOX′ = I and we recover the sequence of
structure sheaves

0→ I → OX′ → OX → 0

Lemma 5.1. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Let F ′, G′ be OX′ -modules. Set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be an
OX -linear map. The set of lifts of ϕ to an OX′ -linear map ϕ′ : F ′ → G′ is, if nonempty,
a principal homogeneous space under HomOX

(F , IG′).

Proof. This is a special case of Lemma 4.1 but we also give a direct proof. We have
short exact sequences of modules

0→ I → OX′ → OX → 0 and 0→ IG′ → G′ → G → 0
and similarly for F ′. Since I has square zero the OX′ -module structure on I and IG′

comes from a uniqueOX -module structure. It follows that
HomOX′ (F ′, IG′) = HomOX

(F , IG′) and HomOX′ (F ′,G) = HomOX
(F ,G)

The lemma now follows from the exact sequence
0→ HomOX′ (F ′, IG′)→ HomOX′ (F ′,G′)→ HomOX′ (F ′,G)

see Homology, Lemma 5.8. �

Lemma 5.2. Let (f, f ′) be a morphism of first order thickenings of ringed spaces as
in Situation 3.1. LetF ′ be anOX′ -module and setF = i∗F ′. Assume thatF is flat over S
and that (f, f ′) is a strict morphism of thickenings (Definition 3.2). Then the following
are equivalent

(1) F ′ is flat over S′, and
(2) the canonical map f∗J ⊗OX

F → IF ′ is an isomorphism.
Moreover, in this case the maps

f∗J ⊗OX
F → I ⊗OX

F → IF ′

are isomorphisms.

Proof. The map f∗J → I is surjective as (f, f ′) is a strict morphism of thickenings.
Hence the final statement is a consequence of (2).
Proof of the equivalence of (1) and (2). We may check these conditions at stalks. Let
x ∈ X ⊂ X ′ be a point with image s = f(x) ∈ S ⊂ S′. Set A′ = OS′,s, B′ = OX′,x,
A = OS,s, and B = OX,x. Then A = A′/J and B = B′/I for some square zero ideals.
Since (f, f ′) is a strict morphism of thickenings we have I = JB′. Let M ′ = F ′

x and
M = Fx. ThenM ′ is aB′-module andM is aB-module. SinceF = i∗F ′ we see that the
kernel of the surjection M ′ →M is IM ′ = JM ′. Thus we have a short exact sequence

0→ JM ′ →M ′ →M → 0
Using Sheaves, Lemma 26.4 and Modules, Lemma 16.1 to identify stalks of pullbacks and
tensor products we see that the stalk at x of the canonical map of the lemma is the map

(J ⊗A B)⊗B M = J ⊗AM = J ⊗A′ M ′ −→ JM ′

The assumption that F is flat over S signifies that M is a flat A-module.

Assume (1). Flatness implies TorA
′

1 (M ′, A) = 0 by Algebra, Lemma 75.8. This means
J ⊗A′ M ′ → M ′ is injective by Algebra, Remark 75.9. Hence J ⊗A M → JM ′ is an
isomorphism.
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Assume (2). Then J ⊗A′ M ′ → M ′ is injective. Hence TorA
′

1 (M ′, A) = 0 by Algebra,
Remark 75.9. Hence M ′ is flat over A′ by Algebra, Lemma 99.8. �

Lemma 5.3. Let (f, f ′) be a morphism of first order thickenings as in Situation 3.1.
Let F ′, G′ be OX′ -modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be an
OX -linear map. Assume that G′ is flat over S′ and that (f, f ′) is a strict morphism of
thickenings. The set of lifts of ϕ to an OX′ -linear map ϕ′ : F ′ → G′ is, if nonempty, a
principal homogeneous space under

HomOX
(F ,G ⊗OX

f∗J )

Proof. Combine Lemmas 5.1 and 5.2. �

Lemma 5.4. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Let F ′, G′ be OX′ -modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be an
OX -linear map. There exists an element

o(ϕ) ∈ Ext1
OX

(Li∗F ′, IG′)
whose vanishing is a necessary and sufficient condition for the existence of a lift of ϕ to
anOX′ -linear map ϕ′ : F ′ → G′.

Proof. It is clear from the proof of Lemma 5.1 that the vanishing of the boundary of
ϕ via the map

HomOX
(F ,G) = HomOX′ (F ′,G) −→ Ext1

OX′ (F
′, IG′)

is a necessary and sufficient condition for the existence of a lift. We conclude as

Ext1
OX′ (F

′, IG′) = Ext1
OX

(Li∗F ′, IG′)

the adjointness of i∗ = Ri∗ and Li∗ on the derived category (Cohomology, Lemma 28.1).
�

Lemma 5.5. Let (f, f ′) be a morphism of first order thickenings as in Situation 3.1.
Let F ′, G′ be OX′ -modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be an OX -
linear map. Assume that F ′ and G′ are flat over S′ and that (f, f ′) is a strict morphism of
thickenings. There exists an element

o(ϕ) ∈ Ext1
OX

(F ,G ⊗OX
f∗J )

whose vanishing is a necessary and sufficient condition for the existence of a lift of ϕ to
anOX′ -linear map ϕ′ : F ′ → G′.

First proof. This follows from Lemma 5.4 as we claim that under the assumptions
of the lemma we have

Ext1
OX

(Li∗F ′, IG′) = Ext1
OX

(F ,G ⊗OX
f∗J )

Namely, we have IG′ = G ⊗OX
f∗J by Lemma 5.2. On the other hand, observe that

H−1(Li∗F ′) = TorOX′
1 (F ′,OX)

(local computation omitted). Using the short exact sequence
0→ I → OX′ → OX → 0

we see that this Tor1 is computed by the kernel of the map I⊗OX
F → IF ′ which is zero

by the final assertion of Lemma 5.2. Thus τ≥−1Li
∗F ′ = F . On the other hand, we have

Ext1
OX

(Li∗F ′, IG′) = Ext1
OX

(τ≥−1Li
∗F ′, IG′)
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by the dual of Derived Categories, Lemma 16.1. �

Second proof. We can apply Lemma 4.2 as follows. Note that K = I ⊗OX
F and

L = I ⊗OX
G by Lemma 5.2, that cF ′ = 1⊗ 1 and cG′ = 1⊗ 1 and taking ψ = 1⊗ϕ the

diagram of the lemma commutes. Thus o(ϕ) = o(ϕ, 1⊗ ϕ) works. �

Lemma 5.6. Let (f, f ′) be a morphism of first order thickenings as in Situation 3.1.
Let F be an OX -module. Assume (f, f ′) is a strict morphism of thickenings and F flat
over S. If there exists a pair (F ′, α) consisting of an OX′ -module F ′ flat over S′ and an
isomorphism α : i∗F ′ → F , then the set of isomorphism classes of such pairs is principal
homogeneous under Ext1

OX
(F , I ⊗OX

F).

Proof. If we assume there exists one such module, then the canonical map

f∗J ⊗OX
F → I ⊗OX

F
is an isomorphism by Lemma 5.2. Apply Lemma 4.3 with K = I ⊗OX

F and c = 1. By
Lemma 5.2 the corresponding extensions F ′ are all flat over S′. �

Lemma 5.7. Let (f, f ′) be a morphism of first order thickenings as in Situation 3.1.
Let F be an OX -module. Assume (f, f ′) is a strict morphism of thickenings and F flat
over S. There exists anOX′ -module F ′ flat over S′ with i∗F ′ ∼= F , if and only if

(1) the canonical map f∗J ⊗OX
F → I ⊗OX

F is an isomorphism, and
(2) the class o(F , I ⊗OX

F , 1) ∈ Ext2
OX

(F , I ⊗OX
F) of Lemma 4.4 is zero.

Proof. This follows immediately from the characterization ofOX′ -modules flat over
S′ of Lemma 5.2 and Lemma 4.4. �

6. Application to flat modules on flat thickenings of ringed spaces

Consider a commutative diagram

(X,OX)
i
//

f

��

(X ′,OX′)

f ′

��
(S,OS) t // (S′,OS′)

of ringed spaces whose horizontal arrows are first order thickenings as in Situation 3.1. Set
I = Ker(i]) ⊂ OX′ and J = Ker(t]) ⊂ OS′ . Let F be anOX -module. Assume that

(1) (f, f ′) is a strict morphism of thickenings,
(2) f ′ is flat, and
(3) F is flat over S.

Note that (1) + (2) imply that I = f∗J (apply Lemma 5.2 to OX′ ). The theory of the
preceding section is especially nice under these assumptions. We summarize the results
already obtained in the following lemma.

Lemma 6.1. In the situation above.
(1) There exists an OX′ -module F ′ flat over S′ with i∗F ′ ∼= F , if and only if the

class o(F , f∗J ⊗OX
F , 1) ∈ Ext2

OX
(F , f∗J ⊗OX

F) of Lemma 4.4 is zero.
(2) If such a module exists, then the set of isomorphism classes of lifts is principal

homogeneous under Ext1
OX

(F , f∗J ⊗OX
F).

(3) Given a liftF ′, the set of automorphisms ofF ′ which pull back to idF is canon-
ically isomorphic to Ext0

OX
(F , f∗J ⊗OX

F).
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Proof. Part (1) follows from Lemma 5.7 as we have seen above that I = f∗J . Part
(2) follows from Lemma 5.6. Part (3) follows from Lemma 5.3. �

Situation 6.2. Let f : (X,OX) → (S,OS) be a morphism of ringed spaces. Con-
sider a commutative diagram

(X ′
1,O′

1)
h
//

f ′
1
��

(X ′
2,O′

2) //

f ′
2
��

(X ′
3,O′

3)

f ′
3
��

(S′
1,OS′

1
) // (S′

2,OS′
2
) // (S′

3,OS′
3
)

where (a) the top row is a short exact sequence of first order thickenings of X , (b) the
lower row is a short exact sequence of first order thickenings of S , (c) each f ′

i restricts to
f , (d) each pair (f, f ′

i) is a strict morphism of thickenings, and (e) each f ′
i is flat. Finally,

let F ′
2 be anO′

2-module flat over S′
2 and set F = F ′

2|X . Let π : X ′
1 → X be the canonical

splitting (Remark 4.9).

Lemma 6.3. In Situation 6.2 the modules π∗F and h∗F ′
2 areO′

1-modules flat over S′
1

restricting toF onX . Their difference (Lemma 6.1) is an element θ of Ext1
OX

(F , f∗J1⊗OX

F) whose boundary in Ext2
OX

(F , f∗J3 ⊗OX
F) equals the obstruction (Lemma 6.1) to

lifting F to anO′
3-module flat over S′

3.

Proof. Note that both π∗F and h∗F ′
2 restrict to F on X and that the kernels of

π∗F → F and h∗F ′
2 → F are given by f∗J1 ⊗OX

F . Hence flatness by Lemma 5.2.
Taking the boundary makes sense as the sequence of modules

0→ f∗J3 ⊗OX
F → f∗J2 ⊗OX

F → f∗J1 ⊗OX
F → 0

is short exact due to the assumptions in Situation 6.2 and the fact that F is flat over S.
The statement on the obstruction class is a direct translation of the result of Remark 4.10
to this particular situation. �

7. Deformations of ringed spaces and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation theory.
We start with a first order thickening t : (S,OS)→ (S′,OS′) of ringed spaces. We denote
J = Ker(t]) and we identify the underlying topological spaces of S and S′. Moreover
we assume given a morphism of ringed spaces f : (X,OX) → (S,OS), an OX -module
G , and an f -map c : J → G of sheaves of modules (Sheaves, Definition 21.7 and Section
26). In this section we ask ourselves whether we can find the question mark fitting into
the following diagram

(7.0.1)

0 // G // ? // OX // 0

0 // J

c

OO

// OS′

OO

// OS

OO

// 0

(where the vertical arrows are f -maps) and moreover how unique the solution is (if it
exists). More precisely, we look for a first order thickening i : (X,OX) → (X ′,OX′)
and a morphism of thickenings (f, f ′) as in (3.1.1) where Ker(i]) is identified with G such
that (f ′)] induces the given map c. We will say X ′ is a solution to (7.0.1).
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Lemma 7.1. Assume given a commutative diagram of morphisms of ringed spaces

(7.1.1)

(X2,OX2)
i2
//

f2

��
g

��

(X ′
2,OX′

2
)

f ′
2

��
(S2,OS2) t2 //

��

(S′
2,OS′

2
)

��

(X1,OX1)
i1
//

f1

��

(X ′
1,OX′

1
)

f ′
1

��
(S1,OS1) t1 // (S′

1,OS′
1
)

whose horizontal arrows are first order thickenings. Set Gj = Ker(i]j) and assume given a
g-map ν : G1 → G2 of modules giving rise to the commutative diagram

(7.1.2)

0 // G2 // OX′
2

// OX2
// 0

0 // J2

c2

OO

// OS′
2

OO

// OS2

OO

// 0

0 // G1

FF

// OX′
1

// OX1

EE

// 0

0 // J1

FF

c1

OO

// OS′
1

EE

OO

// OS1

EE

OO

// 0

with front and back solutions to (7.0.1).
(1) There exist a canonical element in Ext1

OX2
(Lg∗ NLX1/S1 ,G2) whose vanishing

is a necessary and sufficient condition for the existence of a morphism of ringed
spaces X ′

2 → X ′
1 fitting into (7.1.1) compatibly with ν.

(2) If there exists a morphism X ′
2 → X ′

1 fitting into (7.1.1) compatibly with ν the
set of all such morphisms is a principal homogeneous space under

HomOX1
(ΩX1/S1 , g∗G2) = HomOX2

(g∗ΩX1/S1 ,G2) = Ext0
OX2

(Lg∗ NLX1/S1 ,G2).

Proof. The naive cotangent complex NLX1/S1 is defined in Modules, Definition
31.6. The equalities in the last statement of the lemma follow from the fact that g∗ is
adjoint to g∗, the fact that H0(NLX1/S1) = ΩX1/S1 (by construction of the naive cotan-
gent complex) and the fact that Lg∗ is the left derived functor of g∗. Thus we will work
with the groups ExtkOX2

(Lg∗ NLX1/S1 ,G2), k = 0, 1 in the rest of the proof. We first
argue that we can reduce to the case where the underlying topological spaces of all ringed
spaces in the lemma is the same.
To do this, observe that g−1 NLX1/S1 is equal to the naive cotangent complex of the homo-
morphism of sheaves of rings g−1f−1

1 OS1 → g−1OX1 , see Modules, Lemma 31.3. More-
over, the degree 0 term of NLX1/S1 is a flatOX1 -module, hence the canonical map

Lg∗ NLX1/S1 −→ g−1 NLX1/S1 ⊗g−1OX1
OX2
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induces an isomorphism on cohomology sheaves in degrees 0 and−1. Thus we may replace
the Ext groups of the lemma with

Extkg−1OX1
(g−1 NLX1/S1 ,G2) = Extkg−1OX1

(NLg−1OX1/g
−1f−1

1 OS1
,G2)

The set of morphism of ringed spacesX ′
2 → X ′

1 fitting into (7.1.1) compatibly with ν is in
one-to-one bijection with the set of homomorphisms of g−1f−1

1 OS′
1
-algebras g−1OX′

1
→

OX′
2

which are compatible with f ] and ν. In this way we see that we may assume we have
a diagram (7.1.2) of sheaves on X and we are looking to find a homomorphism of sheaves
of ringsOX′

1
→ OX′

2
fitting into it.

In the rest of the proof of the lemma we assume all underlying topological spaces are
the same, i.e., we have a diagram (7.1.2) of sheaves on a space X and we are looking for
homomorphisms of sheaves of rings OX′

1
→ OX′

2
fitting into it. As ext groups we will

use ExtkOX1
(NLOX1/OS1

,G2), k = 0, 1.

Step 1. Construction of the obstruction class. Consider the sheaf of sets

E = OX′
1
×OX2

OX′
2

This comes with a surjective map α : E → OX1 and hence we can use NL(α) instead of
NLOX1/OS1

, see Modules, Lemma 31.2. Set

I ′ = Ker(OS′
1
[E ]→ OX1) and I = Ker(OS1 [E ]→ OX1)

There is a surjection I ′ → I whose kernel is J1OS′
1
[E ]. We obtain two homomorphisms

ofOS′
2
-algebras

a : OS′
1
[E ]→ OX′

1
and b : OS′

1
[E ]→ OX′

2

which induce maps a|I′ : I ′ → G1 and b|I′ : I ′ → G2. Both a and b annihilate (I ′)2.
Moreover a and b agree onJ1OS′

1
[E ] as maps into G2 because the left hand square of (7.1.2)

is commutative. Thus the difference b|I′ −ν ◦a|I′ induces a well definedOX1 -linear map

ξ : I/I2 −→ G2

which sends the class of a local section f of I to a(f ′)− ν(b(f ′)) where f ′ is a lift of f to
a local section of I ′. We let [ξ] ∈ Ext1

OX1
(NL(α),G2) be the image (see below).

Step 2. Vanishing of [ξ] is necessary. Let us write Ω = ΩOS1 [E]/OS1
⊗OS1 [E]OX1 . Observe

that NL(α) = (I/I2 → Ω) fits into a distinguished triangle

Ω[0]→ NL(α)→ I/I2[1]→ Ω[1]
Thus we see that [ξ] is zero if and only if ξ is a composition I/I2 → Ω → G2 for some
map Ω→ G2. Suppose there exists a homomorphisms of sheaves of ringsϕ : OX′

1
→ OX′

2

fitting into (7.1.2). In this case consider the mapOS′
1
[E ]→ G2, f ′ 7→ b(f ′)−ϕ(a(f ′)). A

calculation shows this annihilates J1OS′
1
[E ] and induces a derivation OS1 [E ]→ G2. The

resulting linear map Ω→ G2 witnesses the fact that [ξ] = 0 in this case.

Step 3. Vanishing of [ξ] is sufficient. Let θ : Ω → G2 be a OX1 -linear map such that ξ is
equal to θ ◦ (I/I2 → Ω). Then a calculation shows that

b+ θ ◦ d : OS′
1
[E ]→ OX′

2

annihilates I ′ and hence defines a mapOX′
1
→ OX′

2
fitting into (7.1.2).

Proof of (2) in the special case above. Omitted. Hint: This is exactly the same as the proof
of (2) of Lemma 2.1. �
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Lemma 7.2. LetX be a topological space. LetA → B be a homomorphism of sheaves
of rings. Let G be a B-module. Let ξ ∈ Ext1

B(NLB/A,G). There exists a map of sheaves of
sets α : E → B such that ξ ∈ Ext1

B(NL(α),G) is the class of a map I/I2 → G (see proof
for notation).

Proof. Recall that given α : E → B such that A[E ]→ B is surjective with kernel I
the complex NL(α) = (I/I2 → ΩA[E]/A ⊗A[E] B) is canonically isomorphic to NLB/A,
see Modules, Lemma 31.2. Observe moreover, that Ω = ΩA[E]/A ⊗A[E] B is the sheaf
associated to the presheaf U 7→

⊕
e∈E(U) B(U). In other words, Ω is the free B-module

on the sheaf of sets E and in particular there is a canonical map E → Ω.

Having said this, pick some E (for example E = B as in the definition of the naive cotan-
gent complex). The obstruction to writing ξ as the class of a map I/I2 → G is an element
in Ext1

B(Ω,G). Say this is represented by the extension 0 → G → H → Ω → 0 of
B-modules. Consider the sheaf of sets E ′ = E ×Ω H which comes with an induced map
α′ : E ′ → B. Let I ′ = Ker(A[E ′] → B) and Ω′ = ΩA[E′]/A ⊗A[E′] B. The pullback of ξ
under the quasi-isomorphismNL(α′)→ NL(α) maps to zero in Ext1

B(Ω′,G) because the
pullback of the extensionH by the map Ω′ → Ω is split as Ω′ is the free B-module on the
sheaf of sets E ′ and since by construction there is a commutative diagram

E ′ //

��

E

��
H // Ω

This finishes the proof. �

Lemma 7.3. If there exists a solution to (7.0.1), then the set of isomorphism classes of
solutions is principal homogeneous under Ext1

OX
(NLX/S ,G).

Proof. We observe right away that given two solutions X ′
1 and X ′

2 to (7.0.1) we
obtain by Lemma 7.1 an obstruction element o(X ′

1, X
′
2) ∈ Ext1

OX
(NLX/S ,G) to the ex-

istence of a map X ′
1 → X ′

2. Clearly, this element is the obstruction to the existence of
an isomorphism, hence separates the isomorphism classes. To finish the proof it therefore
suffices to show that given a solution X ′ and an element ξ ∈ Ext1

OX
(NLX/S ,G) we can

find a second solution X ′
ξ such that o(X ′, X ′

ξ) = ξ.

Pick α : E → OX as in Lemma 7.2 for the class ξ. Consider the surjection f−1OS [E ] →
OX with kernel I and corresponding naive cotangent complex NL(α) = (I/I2 →
Ωf−1OS [E]/f−1OS

⊗f−1OS [E]OX). By the lemma ξ is the class of a morphism δ : I/I2 →
G. After replacing E by E ×OX

OX′ we may also assume that α factors through a map
α′ : E → OX′ .

These choices determine an f−1OS′ -algebra map ϕ : OS′ [E ] → OX′ . Let I ′ = Ker(ϕ).
Observe that ϕ induces a map ϕ|I′ : I ′ → G and that OX′ is the pushout, as in the
following diagram

0 // G // OX′ // OX // 0

0 // I ′

ϕ|I′

OO

// f−1OS′ [E ]

OO

// OX

=

OO

// 0
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Let ψ : I ′ → G be the sum of the map ϕ|I′ and the composition

I ′ → I ′/(I ′)2 → I/I2 δ−→ G.
Then the pushout along ψ is an other ring extensionOX′

ξ
fitting into a diagram as above.

A calculation (omitted) shows that o(X ′, X ′
ξ) = ξ as desired. �

Lemma 7.4. Let f : (X,OX)→ (S,OS) be a morphism of ringed spaces. Let G be a
OX -module. The set of isomorphism classes of extensions of f−1OS-algebras

0→ G → OX′ → OX → 0
where G is an ideal of square zero1 is canonically bijective to Ext1

OX
(NLX/S ,G).

Proof. To prove this we apply the previous results to the case where (7.0.1) is given
by the diagram

0 // G // ? // OX // 0

0 // 0

OO

// OS

OO

id // OS

OO

// 0
Thus our lemma follows from Lemma 7.3 and the fact that there exists a solution, namely
G ⊕OX . (See remark below for a direct construction of the bijection.) �

Remark 7.5. Let f : (X,OX) → (S,OS) and G be as in Lemma 7.4. Consider an
extension 0 → G → OX′ → OX → 0 as in the lemma. We can choose a sheaf of sets E
and a commutative diagram

E

α′

��

α

""
OX′ // OX

such that f−1OS [E ] → OX is surjective with kernel J . (For example you can take any
sheaf of sets surjecting ontoOX′ .) Then

NLX/S ∼= NL(α) =
(
J /J 2 −→ Ωf−1OS [E]/f−1OS

⊗f−1OS [E] OX
)

See Modules, Section 31 and in particular Lemma 31.2. Of course α′ determines a map
f−1OS [E ]→ OX′ which in turn determines a map

J /J 2 −→ G

which in turn determines the element of Ext1
OX

(NL(α),G) = Ext1
OX

(NLX/S ,G) corre-
sponding toOX′ by the bijection of the lemma.

Lemma 7.6. Let f : (X,OX)→ (S,OS) and g : (Y,OY )→ (X,OX) be morphisms
of ringed spaces. Let F be a OX -module. Let G be a OY -module. Let c : F → G be a
g-map. Finally, consider

(a) 0 → F → OX′ → OX → 0 an extension of f−1OS-algebras corresponding to
ξ ∈ Ext1

OX
(NLX/S ,F), and

(b) 0→ G → OY ′ → OY → 0 an extension of g−1f−1OS-algebras corresponding
to ζ ∈ Ext1

OY
(NLY/S ,G).

1In other words, the set of isomorphism classes of first order thickenings i : X → X′ over S endowed
with an isomorphism G → Ker(i]) of OX -modules.
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See Lemma 7.4. Then there is an S-morphism g′ : Y ′ → X ′ compatible with g and c if
and only if ξ and ζ map to the same element of Ext1

OY
(Lg∗ NLX/S ,G).

Proof. The stament makes sense as we have the maps

Ext1
OX

(NLX/S ,F)→ Ext1
OY

(Lg∗ NLX/S , Lg
∗F)→ Ext1

OY
(Lg∗ NLX/S ,G)

using the map Lg∗F → g∗F c−→ G and

Ext1
OY

(NLY/S ,G)→ Ext1
OY

(Lg∗ NLX/S ,G)

using the map Lg∗ NLX/S → NLY/S . The statement of the lemma can be deduced from
Lemma 7.1 applied to the diagram

0 // G // OY ′ // OY // 0

0 // 0

OO

// OS

OO

// OS

OO

// 0

0 // F

FF

// OX′ // OX

EE

// 0

0 // 0

FF

OO

// OS

EE

OO

// OS

EE

OO

// 0

and a compatibility between the constructions in the proofs of Lemmas 7.4 and 7.1 whose
statement and proof we omit. (See remark below for a direct argument.) �

Remark 7.7. Let f : (X,OX)→ (S,OS), g : (Y,OY )→ (X,OX),F , G , c : F → G ,
0 → F → OX′ → OX → 0, ξ ∈ Ext1

OX
(NLX/S ,F), 0 → G → OY ′ → OY → 0, and

ζ ∈ Ext1
OY

(NLY/S ,G) be as in Lemma 7.6. Using pushout along c : g−1F → G we can
construct an extension

0 // G // O′
1

// g−1OX // 0

0 // g−1F

c

OO

// g−1OX′

OO

// g−1OX // 0

Using pullback along g] : g−1OX → OY we can construct an extension

0 // G // OY ′ // OY // 0

0 // G // O′
2

OO

// g−1OX

OO

// 0

A diagram chase tells us that there exists an S-morphism Y ′ → X ′ compatible with g and
c if and only ifO′

1 is isomorphic toO′
2 as g−1f−1OS-algebra extensions of g−1OX by G.

By Lemma 7.4 these extensions are classified by the LHS of

Ext1
g−1OX

(NLg−1OX/g−1f−1OS
,G) = Ext1

OY
(Lg∗ NLX/S ,G)

Here the equality comes from tensor-hom adjunction and the equalities

NLg−1OX/g−1f−1OS
= g−1 NLX/S and Lg∗ NLX/S = g−1 NLX/S ⊗L

g−1OX
OY
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For the first of these see Modules, Lemma 31.3; the second follows from the definition of
derived pullback. Thus, in order to see that Lemma 7.6 is true, it suffices to show that O′

1
corresponds to the image of ξ and that O′

2 correspond to the image of ζ . The correspon-
dence between ξ andO′

1 is immediate from the construction of the class ξ in Remark 7.5.
For the correspondence between ζ andO′

2, we first choose a commutative diagram

E

β′

��

β

""
OY ′ // OY

such that g−1f−1OS [E ] → OY is surjective with kernel K. Next choose a commutative
diagram

E

β′

��

E ′
ϕ

oo

α′

��

α

##
OY ′ O′

2
oo // g−1OX

such that g−1f−1OS [E ′] → g−1OX is surjective with kernel J . (For example just take
E ′ = E q O′

2 as a sheaf of sets.) The map ϕ induces a map of complexes NL(α) →
NL(β) (notation as in Modules, Section 31) and in particular ϕ̄ : J /J 2 → K/K2.
Then NL(α) ∼= NLY/S and NL(β) ∼= NLg−1OX/g−1f−1OS

and the map of complexes
NL(α) → NL(β) represents the map Lg∗ NLX/S → NLY/S used in the statement
of Lemma 7.6 (see first part of its proof). Now ζ corresponds to the class of the map
K/K2 → G induced by β′, see Remark 7.5. Similarly, the extensionO′

2 corresponds to the
map J /J 2 → G induced by α′. The commutative diagram above shows that this map is
the composition of the mapK/K2 → G induced by β′ with the map ϕ̄ : J /J 2 → K/K2.
This proves the compatibility we were looking for.

Lemma 7.8. Let t : (S,OS)→ (S′,OS′), J = Ker(t]), f : (X,OX)→ (S,OS), G ,
and c : J → G be as in (7.0.1). Denote ξ ∈ Ext1

OS
(NLS/S′ ,J ) the element correspond-

ing to the extension OS′ of OS by J via Lemma 7.4. The set of isomorphism classes of
solutions is canonically bijective to the fibre of

Ext1
OX

(NLX/S′ ,G)→ Ext1
OX

(Lf∗ NLS/S′ ,G)

over the image of ξ.

Proof. By Lemma 7.4 applied toX → S′ and theOX -moduleG we see that elements
ζ of Ext1

OX
(NLX/S′ ,G) parametrize extensions 0→ G → OX′ → OX → 0 of f−1OS′ -

algebras. By Lemma 7.6 applied to X → S → S′ and c : J → G we see that there is an
S′-morphism X ′ → S′ compatible with c and f : X → S if and only if ζ maps to ξ. Of
course this is the same thing as sayingOX′ is a solution of (7.0.1). �

Remark 7.9. In the situation of Lemma 7.8 we have maps of complexes

Lf∗ NLS′/S → NLX/S′ → NLX/S

These maps are closed to forming a distinguished triangle, see Modules, Lemma 31.7. If it
were a distinguished triangle we would conclude that the image of ξ in Ext2

OX
(NLX/S ,G)

would be the obstruction to the existence of a solution to (7.0.1).
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8. Deformations of schemes

In this section we spell out what the results in Section 7 mean for deformations of schemes.

Lemma 8.1. Let S ⊂ S′ be a first order thickening of schemes. Let f : X → S be a
flat morphism of schemes. If there exists a flat morphism f ′ : X ′ → S′ of schemes and an
isomorphism a : X → X ′ ×S′ S over S , then

(1) the set of isomorphism classes of pairs (f ′ : X ′ → S′, a) is principal homoge-
neous under Ext1

OX
(NLX/S , f∗CS/S′), and

(2) the set of automorphisms of ϕ : X ′ → X ′ over S′ which reduce to the identity
on X ′ ×S′ S is Ext0

OX
(NLX/S , f∗CS/S′).

Proof. First we observe that thickenings of schemes as defined in More on Mor-
phisms, Section 2 are the same things as morphisms of schemes which are thickenings in
the sense of Section 3. We may think of X as a closed subscheme of X ′ so that (f, f ′) :
(X ⊂ X ′)→ (S ⊂ S′) is a morphism of first order thickenings. Then we see from More
on Morphisms, Lemma 10.1 (or from the more general Lemma 5.2) that the ideal sheaf of
X in X ′ is equal to f∗CS/S′ . Hence we have a commutative diagram

0 // f∗CS/S′ // OX′ // OX // 0

0 // CS/S′

OO

// OS′

OO

// OS

OO

// 0

where the vertical arrows are f -maps; please compare with (7.0.1). Thus part (1) follows
from Lemma 7.3 and part (2) from part (2) of Lemma 7.1. (Note thatNLX/S as defined for
a morphism of schemes in More on Morphisms, Section 13 agrees with NLX/S as used in
Section 7.) �

9. Thickenings of ringed topoi

This section is the analogue of Section 3 for ringed topoi. In the following few sections
we will use the following notions:

(1) A sheaf of ideals I ⊂ O′ on a ringed topos (Sh(D),O′) is locally nilpotent if
any local section of I is locally nilpotent.

(2) A thickening of ringed topoi is a morphism i : (Sh(C),O) → (Sh(D),O′) of
ringed topoi such that
(a) i∗ is an equivalence Sh(C)→ Sh(D),
(b) the map i] : O′ → i∗O is surjective, and
(c) the kernel of i] is a locally nilpotent sheaf of ideals.

(3) A first order thickening of ringed topoi is a thickening i : (Sh(C),O)→ (Sh(D),O′)
of ringed topoi such that Ker(i]) has square zero.

(4) It is clear how to define morphisms of thickenings of ringed topoi, morphisms
of thickenings of ringed topoi over a base ringed topos, etc.

If i : (Sh(C),O) → (Sh(D),O′) is a thickening of ringed topoi then we identify the
underlying topoi and think ofO,O′, and I = Ker(i]) as sheaves on C. We obtain a short
exact sequence

0→ I → O′ → O → 0
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ofO′-modules. By Modules on Sites, Lemma 25.1 the category ofO-modules is equivalent
to the category ofO′-modules annihilated byI . In particular, if i is a first order thickening,
then I is aO-module.

Situation 9.1. A morphism of thickenings of ringed topoi (f, f ′) is given by a com-
mutative diagram

(9.1.1)

(Sh(C),O)
i
//

f

��

(Sh(D),O′)

f ′

��
(Sh(B),OB) t // (Sh(B′),OB′)

of ringed topoi whose horizontal arrows are thickenings. In this situation we set I =
Ker(i]) ⊂ O′ and J = Ker(t]) ⊂ OB′ . As f = f ′ on underlying topoi we will identify
the pullback functors f−1 and (f ′)−1. Observe that (f ′)] : f−1OB′ → O′ induces in
particular a map f−1J → I and therefore a map ofO′-modules

(f ′)∗J −→ I
If i and t are first order thickenings, then (f ′)∗J = f∗J and the map above becomes a
map f∗J → I .

Definition 9.2. In Situation 9.1 we say that (f, f ′) is a strict morphism of thicken-
ings if the map (f ′)∗J −→ I is surjective.

10. Modules on first order thickenings of ringed topoi

In this section we discuss some preliminaries to the deformation theory of modules. Let
i : (Sh(C,O) → (Sh(D),O′) be a first order thickening of ringed topoi. We will freely
use the notation introduced in Section 9, in particular we will identify the underlying
topological topoi. In this section we consider short exact sequences

(10.0.1) 0→ K → F ′ → F → 0
of O′-modules, where F , K are O-modules and F ′ is an O′-module. In this situation we
have a canonicalO-module map

cF ′ : I ⊗O F −→ K
where I = Ker(i]). Namely, given local sections f of I and s ofF we set cF ′(f⊗s) = fs′

where s′ is a local section of F ′ lifting s.

Lemma 10.1. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0
as in (10.0.1) and maps ϕ : F → G and ψ : K → L.

(1) If there exists an O′-module map ϕ′ : F ′ → G′ compatible with ϕ and ψ, then
the diagram

I ⊗O F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗O G

cG′ // L
is commutative.
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(2) The set of O′-module maps ϕ′ : F ′ → G′ compatible with ϕ and ψ is, if
nonempty, a principal homogeneous space under HomO(F ,L).

Proof. Part (1) is immediate from the description of the maps. For (2), if ϕ′ and ϕ′′

are two maps F ′ → G′ compatible with ϕ and ψ, then ϕ′ − ϕ′′ factors as
F ′ → F → L → G′

The map in the middle comes from a unique element of HomO(F ,L) by Modules on Sites,
Lemma 25.1. Conversely, given an element α of this group we can add the composition
(as displayed above with α in the middle) to ϕ′. Some details omitted. �

Lemma 10.2. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0
as in (10.0.1) and maps ϕ : F → G and ψ : K → L. Assume the diagram

I ⊗O F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗O G

cG′ // L

is commutative. Then there exists an element
o(ϕ,ψ) ∈ Ext1

O(F ,L)
whose vanishing is a necessary and sufficient condition for the existence of a map ϕ′ :
F ′ → G′ compatible with ϕ and ψ.

Proof. We can construct explicitly an extension
0→ L → H → F → 0

by takingH to be the cohomology of the complex

K 1,−ψ−−−→ F ′ ⊕ G′ ϕ,1−−→ G
in the middle (with obvious notation). A calculation with local sections using the assump-
tion that the diagram of the lemma commutes shows thatH is annihilated by I . HenceH
defines a class in

Ext1
O(F ,L) ⊂ Ext1

O′(F ,L)
Finally, the class of H is the difference of the pushout of the extension F ′ via ψ and the
pullback of the extension G′ via ϕ (calculations omitted). Thus the vanishing of the class
ofH is equivalent to the existence of a commutative diagram

0 // K //

ψ

��

F ′ //

ϕ′

��

F //

ϕ

��

0

0 // L // G′ // G // 0
as desired. �

Lemma 10.3. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Assume givenO-modulesF ,K and anO-linear map c : I⊗OF → K. If there exists
a sequence (10.0.1) with cF ′ = c then the set of isomorphism classes of these extensions is
principal homogeneous under Ext1

O(F ,K).
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Proof. Assume given extensions

0→ K → F ′
1 → F → 0 and 0→ K → F ′

2 → F → 0
with cF ′

1
= cF ′

2
= c. Then the difference (in the extension group, see Homology, Section

6) is an extension
0→ K → E → F → 0

where E is annihilated by I (local computation omitted). Hence the sequence is an exten-
sion ofO-modules, see Modules on Sites, Lemma 25.1. Conversely, given such an extension
E we can add the extension E to theO′-extensionF ′ without affecting the map cF ′ . Some
details omitted. �

Lemma 10.4. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Assume givenO-modules F ,K and anO-linear map c : I ⊗O F → K. Then there
exists an element

o(F ,K, c) ∈ Ext2
O(F ,K)

whose vanishing is a necessary and sufficient condition for the existence of a sequence
(10.0.1) with cF ′ = c.

Proof. We first show that if K is an injective O-module, then there does exist a se-
quence (10.0.1) with cF ′ = c. To do this, choose a flat O′-module H′ and a surjection
H′ → F (Modules on Sites, Lemma 28.8). Let J ⊂ H′ be the kernel. Since H′ is flat we
have

I ⊗O′ H′ = IH′ ⊂ J ⊂ H′

Observe that the map

IH′ = I ⊗O′ H′ −→ I ⊗O′ F = I ⊗O F
annihilates IJ . Namely, if f is a local section of I and s is a local section ofH, then fs is
mapped to f ⊗ s where s is the image of s in F . Thus we obtain

IH′/IJ �
� //

��

J /IJ

γ

��
I ⊗O F

c // K

a diagram ofO-modules. IfK is injective as anO-module, then we obtain the dotted arrow.
Denote γ′ : J → K the composition of γ with J → J /IJ . A local calculation shows
the pushout

0 // J //

γ′

��

H′ //

��

F // 0

0 // K // F ′ // F // 0
is a solution to the problem posed by the lemma.

General case. Choose an embeddingK ⊂ K′ withK′ an injectiveO-module. LetQ be the
quotient, so that we have an exact sequence

0→ K → K′ → Q→ 0
Denote c′ : I ⊗O F → K′ be the composition. By the paragraph above there exists a
sequence

0→ K′ → E ′ → F → 0
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as in (10.0.1) with cE′ = c′. Note that c′ composed with the map K′ → Q is zero, hence
the pushout of E ′ by K′ → Q is an extension

0→ Q→ D′ → F → 0

as in (10.0.1) with cD′ = 0. This means exactly thatD′ is annihilated by I , in other words,
the D′ is an extension ofO-modules, i.e., defines an element

o(F ,K, c) ∈ Ext1
O(F ,Q) = Ext2

O(F ,K)

(the equality holds by the long exact cohomology sequence associated to the exact se-
quence above and the vanishing of higher ext groups into the injective module K′). If
o(F ,K, c) = 0, then we can choose a splitting s : F → D′ and we can set

F ′ = Ker(E ′ → D′/s(F))

so that we obtain the following diagram

0 // K //

��

F ′ //

��

F // 0

0 // K′ // E ′ // F // 0

with exact rows which shows that cF ′ = c. Conversely, if F ′ exists, then the pushout of
F ′ by the map K → K′ is isomorphic to E ′ by Lemma 10.3 and the vanishing of higher
ext groups into the injective moduleK′. This gives a diagram as above, which implies that
D′ is split as an extension, i.e., the class o(F ,K, c) is zero. �

Remark 10.5. Let (Sh(C),O) be a ringed topos. A first order thickening i : (Sh(C),O)→
(Sh(D),O′) is said to be trivial if there exists a morphism of ringed topoiπ : (Sh(D),O′)→
(Sh(C),O) which is a left inverse to i. The choice of such a morphism π is called a trivi-
alization of the first order thickening. Given π we obtain a splitting

(10.5.1) O′ = O ⊕ I

as sheaves of algebras on C by using π] to split the surjectionO′ → O. Conversely, such a
splitting determines a morphism π. The category of trivialized first order thickenings of
(Sh(C),O) is equivalent to the category ofO-modules.

Remark 10.6. Let i : (Sh(C),O) → (Sh(D),O′) be a trivial first order thickening
of ringed topoi and let π : (Sh(D),O′)→ (Sh(C),O) be a trivialization. Then given any
triple (F ,K, c) consisting of a pair ofO-modules and a map c : I ⊗O F → K we may set

F ′
c,triv = F ⊕K

and use the splitting (10.5.1) associated to π and the map c to define theO′-module struc-
ture and obtain an extension (10.0.1). We will call F ′

c,triv the trivial extension of F by
K corresponding to c and the trivialization π. Given any extension F ′ as in (10.0.1) we
can use π] : O → O′ to think of F ′ as an O-module extension, hence a class ξF ′ in
Ext1

O(F ,K). Lemma 10.3 assures that F ′ 7→ ξF ′ induces a bijection{
isomorphism classes of extensions
F ′ as in (10.0.1) with c = cF ′

}
−→ Ext1

O(F ,K)

Moreover, the trivial extension F ′
c,triv maps to the zero class.
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Remark 10.7. Let (Sh(C),O) be a ringed topos. Let (Sh(C),O) → (Sh(Di),O′
i),

i = 1, 2 be first order thickenings with ideal sheaves Ii. Let h : (Sh(D1),O′
1) →

(Sh(D2),O′
2) be a morphism of first order thickenings of (Sh(C),O). Picture

(Sh(C),O)

ww ''
(Sh(D1),O′

1) h // (Sh(D2),O′
2)

Observe that h] : O′
2 → O′

1 in particular induces an O-module map I2 → I1. Let F
be an O-module. Let (Ki, ci), i = 1, 2 be a pair consisting of an O-module Ki and a map
ci : Ii ⊗O F → Ki. Assume furthermore given a map ofO-modules K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

is commutative. Then there is a canonical functoriality{
F ′

2 as in (10.0.1) with
c2 = cF ′

2
and K = K2

}
−→

{
F ′

1 as in (10.0.1) with
c1 = cF ′

1
and K = K1

}
Namely, thinking of all sheavesO,O′

i,F ,Ki, etc as sheaves on C , we set givenF ′
2 the sheaf

F ′
1 equal to the pushout, i.e., fitting into the following diagram of extensions

0 // K2 //

��

F ′
2

//

��

F // 0

0 // K1 // F ′
1

// F // 0

We omit the construction of the O′
1-module structure on the pushout (this uses the com-

mutativity of the diagram involving c1 and c2).

Remark 10.8. Let (Sh(C),O), (Sh(C),O)→ (Sh(Di),O′
i), Ii, andh : (Sh(D1),O′

1)→
(Sh(D2),O′

2) be as in Remark 10.7. Assume that we are given trivializationsπi : (Sh(Di),O′
i)→

(Sh(C),O) such that π1 = h ◦ π2. In other words, assume h is a morphism of trivialized
first order thickenings of (Sh(C),O). Let (Ki, ci), i = 1, 2 be a pair consisting of an O-
moduleKi and a map ci : Ii⊗OF → Ki. Assume furthermore given a map ofO-modules
K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

is commutative. In this situation the construction of Remark 10.6 induces a commutative
diagram

{F ′
2 as in (10.0.1) with c2 = cF ′

2
and K = K2}

��

// Ext1
O(F ,K2)

��
{F ′

1 as in (10.0.1) with c1 = cF ′
1

and K = K1} // Ext1
O(F ,K1)
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where the vertical map on the right is given by functoriality of Ext and the mapK2 → K1
and the vertical map on the left is the one from Remark 10.7.

Remark 10.9. Let (Sh(C),O), (Sh(C),O)→ (Sh(Di),O′
i), Ii, andh : (Sh(D1),O′

1)→
(Sh(D2),O′

2) be as in Remark 10.7. Observe that h] : O′
2 → O′

1 in particular induces an
O-module map I2 → I1. LetF be anO-module. Let (Ki, ci), i = 1, 2 be a pair consisting
of an O-module Ki and a map ci : Ii ⊗O F → Ki. Assume furthermore given a map of
O-modules K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

is commutative. Then we claim the map

Ext2
O(F ,K2) −→ Ext2

O(F ,K1)
sends o(F ,K2, c2) to o(F ,K1, c1).

To prove this claim choose an embedding j2 : K2 → K′
2 where K′

2 is an injective O-
module. As in the proof of Lemma 10.4 we can choose an extension ofO2-modules

0→ K′
2 → E2 → F → 0

such that cE2 = j2 ◦ c2. The proof of Lemma 10.4 constructs o(F ,K2, c2) as the Yoneda
extension class (in the sense of Derived Categories, Section 27) of the exact sequence of
O-modules

0→ K2 → K′
2 → E2/K2 → F → 0

Let K′
1 be the cokernel of K2 → K1 ⊕K′

2. There is an injection j1 : K1 → K′
1 and a map

K′
2 → K′

1 forming a commutative square. We form the pushout:

0 // K′
2

//

��

E2 //

��

F //

��

0

0 // K′
1

// E1 // F // 0

There is a canonicalO1-module structure on E1 and for this structure we have cE1 = j1◦c1
(this uses the commutativity of the diagram involving c1 and c2 above). The procedure of
Lemma 10.4 tells us that o(F ,K1, c1) is the Yoneda extension class of the exact sequence
ofO-modules

0→ K1 → K′
1 → E1/K1 → F → 0

Since we have maps of exact sequences

0 // K2

��

// K′
2

��

// E2/K2 //

��

F // 0

0 // K2 // K′
2

// E2/K2 // F // 0

we conclude that the claim is true.

Remark 10.10. Let (Sh(C),O) be a ringed topos. We define a sequence of morphisms
of first order thickenings

(Sh(D1),O′
1)→ (Sh(D2),O′

2)→ (Sh(D3),O′
3)
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of (Sh(C),O) to be a complex if the corresponding maps between the ideal sheaves Ii give
a complex ofO-modulesI3 → I2 → I1 (i.e., the composition is zero). In this case the com-
position (Sh(D1),O′

1) → (Sh(D3),O′
3) factors through (Sh(C),O) → (Sh(D3),O′

3),
i.e., the first order thickening (Sh(D1),O′

1) of (Sh(C),O) is trivial and comes with a
canonical trivialization π : (Sh(D1),O′

1)→ (Sh(C),O).

We say a sequence of morphisms of first order thickenings

(Sh(D1),O′
1)→ (Sh(D2),O′

2)→ (Sh(D3),O′
3)

of (Sh(C),O) is a short exact sequence if the corresponding maps between ideal sheaves is
a short exact sequence

0→ I3 → I2 → I1 → 0
ofO-modules.

Remark 10.11. Let (Sh(C),O) be a ringed topos. Let F be anO-module. Let

(Sh(D1),O′
1)→ (Sh(D2),O′

2)→ (Sh(D3),O′
3)

be a complex first order thickenings of (Sh(C),O), see Remark 10.10. Let (Ki, ci), i =
1, 2, 3 be pairs consisting of an O-module Ki and a map ci : Ii ⊗O F → Ki. Assume
given a short exact sequence ofO-modules

0→ K3 → K2 → K1 → 0
such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

and

I3 ⊗O F c3
//

��

K3

��
I2 ⊗O F

c2 // K2

are commutative. Finally, assume given an extension

0→ K2 → F ′
2 → F → 0

as in (10.0.1) with K = K2 of O′
2-modules with cF ′

2
= c2. In this situation we can

apply the functoriality of Remark 10.7 to obtain an extension F ′
1 of O′

1-modules (we’ll
describe F ′

1 in this special case below). By Remark 10.6 using the canonical splitting π :
(Sh(D1),O′

1) → (Sh(C),O) of Remark 10.10 we obtain ξF ′
1
∈ Ext1

O(F ,K1). Finally,
we have the obstruction

o(F ,K3, c3) ∈ Ext2
O(F ,K3)

see Lemma 10.4. In this situation we claim that the canonical map

∂ : Ext1
O(F ,K1) −→ Ext2

O(F ,K3)
coming from the short exact sequence 0 → K3 → K2 → K1 → 0 sends ξF ′

1
to the

obstruction class o(F ,K3, c3).

To prove this claim choose an embedding j : K3 → K where K is an injectiveO-module.
We can lift j to a map j′ : K2 → K. Set E ′

2 = j′
∗F ′

2 equal to the pushout of F ′
2 by j′ so

that cE′
2

= j′ ◦ c2. Picture:

0 // K2 //

j′

��

F ′
2

//

��

F //

��

0

0 // K // E ′
2

// F // 0
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Set E ′
3 = E ′

2 but viewed as an O′
3-module via O′

3 → O′
2. Then cE′

3
= j ◦ c3. The proof

of Lemma 10.4 constructs o(F ,K3, c3) as the boundary of the class of the extension of
O-modules

0→ K/K3 → E ′
3/K3 → F → 0

On the other hand, note thatF ′
1 = F ′

2/K3 hence the class ξF ′
1

is the class of the extension

0→ K2/K3 → F ′
2/K3 → F → 0

seen as a sequence of O-modules using π] where π : (Sh(D1),O′
1) → (Sh(C),O) is the

canonical splitting. Thus finally, the claim follows from the fact that we have a commu-
tative diagram

0 // K2/K3 //

��

F ′
2/K3 //

��

F //

��

0

0 // K/K3 // E ′
3/K3 // F // 0

which isO-linear (with theO-module structures given above).

11. Infinitesimal deformations of modules on ringed topoi

Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of ringed topoi. We freely
use the notation introduced in Section 9. Let F ′ be an O′-module and set F = i∗F ′. In
this situation we have a short exact sequence

0→ IF ′ → F ′ → F → 0
of O′-modules. Since I2 = 0 the O′-module structure on IF ′ comes from a unique O-
module structure. Thus the sequence above is an extension as in (10.0.1). As a special case,
if F ′ = O′ we have i∗O′ = O and IO′ = I and we recover the sequence of structure
sheaves

0→ I → O′ → O → 0

Lemma 11.1. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Let F ′, G′ be O′-modules. Set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be an
O-linear map. The set of lifts of ϕ to an O′-linear map ϕ′ : F ′ → G′ is, if nonempty, a
principal homogeneous space under HomO(F , IG′).

Proof. This is a special case of Lemma 10.1 but we also give a direct proof. We have
short exact sequences of modules

0→ I → O′ → O → 0 and 0→ IG′ → G′ → G → 0
and similarly forF ′. Since I has square zero theO′-module structure on I and IG′ comes
from a uniqueO-module structure. It follows that

HomO′(F ′, IG′) = HomO(F , IG′) and HomO′(F ′,G) = HomO(F ,G)
The lemma now follows from the exact sequence

0→ HomO′(F ′, IG′)→ HomO′(F ′,G′)→ HomO′(F ′,G)
see Homology, Lemma 5.8. �

Lemma 11.2. Let (f, f ′) be a morphism of first order thickenings of ringed topoi as
in Situation 9.1. LetF ′ be anO′-module and setF = i∗F ′. Assume thatF is flat overOB
and that (f, f ′) is a strict morphism of thickenings (Definition 9.2). Then the following
are equivalent
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(1) F ′ is flat overOB′ , and
(2) the canonical map f∗J ⊗O F → IF ′ is an isomorphism.

Moreover, in this case the maps

f∗J ⊗O F → I ⊗O F → IF ′

are isomorphisms.

Proof. The map f∗J → I is surjective as (f, f ′) is a strict morphism of thickenings.
Hence the final statement is a consequence of (2).

Proof of the equivalence of (1) and (2). By definition flatness overOB means flatness over
f−1OB. Similarly for flatness over f−1OB′ . Note that the strictness of (f, f ′) and the
assumption that F = i∗F ′ imply that

F = F ′/(f−1J )F ′

as sheaves on C. Moreover, observe that f∗J ⊗O F = f−1J ⊗f−1OB F . Hence the
equivalence of (1) and (2) follows from Modules on Sites, Lemma 28.15. �

Lemma 11.3. Let (f, f ′) be a morphism of first order thickenings of ringed topoi as in
Situation 9.1. Let F ′ be anO′-module and set F = i∗F ′. Assume that F ′ is flat overOB′

and that (f, f ′) is a strict morphism of thickenings. Then the following are equivalent
(1) F ′ is anO′-module of finite presentation, and
(2) F is anO-module of finite presentation.

Proof. The implication (1)⇒ (2) follows from Modules on Sites, Lemma 23.4. For
the converse, assume F of finite presentation. We may and do assume that C = C′. By
Lemma 11.2 we have a short exact sequence

0→ I ⊗OX
F → F ′ → F → 0

Let U be an object of C such that F|U has a presentation

O⊕m
U → O⊕n

U → F|U → 0

After replacing U by the members of a covering we may assume the map O⊕n
U → F|U

lifts to a map (O′
U )⊕n → F ′|U . The induced map I⊕n → I ⊗ F is surjective by right

exactness of ⊗. Thus after replacing U by the members of a covering we can find a lift
(O′|U )⊕m → (O′|U )⊕n of the given mapO⊕m

U → O⊕n
U such that

(O′
U )⊕m → (O′

U )⊕n → F ′|U → 0

is a complex. Using right exactness of⊗ once more it is seen that this complex is exact. �

Lemma 11.4. Let (f, f ′) be a morphism of first order thickenings as in Situation 9.1.
Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be an
O-linear map. Assume that G′ is flat over OB′ and that (f, f ′) is a strict morphism of
thickenings. The set of lifts of ϕ to an O′-linear map ϕ′ : F ′ → G′ is, if nonempty, a
principal homogeneous space under

HomO(F ,G ⊗O f∗J )

Proof. Combine Lemmas 11.1 and 11.2. �
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Lemma 11.5. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be an
O-linear map. There exists an element

o(ϕ) ∈ Ext1
O(Li∗F ′, IG′)

whose vanishing is a necessary and sufficient condition for the existence of a lift of ϕ to
anO′-linear map ϕ′ : F ′ → G′.

Proof. It is clear from the proof of Lemma 11.1 that the vanishing of the boundary
of ϕ via the map

HomO(F ,G) = HomO′(F ′,G) −→ Ext1
O′(F ′, IG′)

is a necessary and sufficient condition for the existence of a lift. We conclude as

Ext1
O′(F ′, IG′) = Ext1

O(Li∗F ′, IG′)
the adjointness of i∗ = Ri∗ and Li∗ on the derived category (Cohomology on Sites,
Lemma 19.1). �

Lemma 11.6. Let (f, f ′) be a morphism of first order thickenings as in Situation 9.1.
Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be an O-linear
map. Assume that F ′ and G′ are flat over OB′ and that (f, f ′) is a strict morphism of
thickenings. There exists an element

o(ϕ) ∈ Ext1
O(F ,G ⊗O f∗J )

whose vanishing is a necessary and sufficient condition for the existence of a lift of ϕ to
anO′-linear map ϕ′ : F ′ → G′.

First proof. This follows from Lemma 11.5 as we claim that under the assumptions
of the lemma we have

Ext1
O(Li∗F ′, IG′) = Ext1

O(F ,G ⊗O f∗J )
Namely, we have IG′ = G ⊗O f∗J by Lemma 11.2. On the other hand, observe that

H−1(Li∗F ′) = TorO′

1 (F ′,O)
(local computation omitted). Using the short exact sequence

0→ I → O′ → O → 0
we see that this Tor1 is computed by the kernel of the map I ⊗O F → IF ′ which is zero
by the final assertion of Lemma 11.2. Thus τ≥−1Li

∗F ′ = F . On the other hand, we have

Ext1
O(Li∗F ′, IG′) = Ext1

O(τ≥−1Li
∗F ′, IG′)

by the dual of Derived Categories, Lemma 16.1. �

Second proof. We can apply Lemma 10.2 as follows. Note that K = I ⊗O F and
L = I ⊗O G by Lemma 11.2, that cF ′ = 1⊗ 1 and cG′ = 1⊗ 1 and taking ψ = 1⊗ ϕ the
diagram of the lemma commutes. Thus o(ϕ) = o(ϕ, 1⊗ ϕ) works. �

Lemma 11.7. Let (f, f ′) be a morphism of first order thickenings as in Situation 9.1.
LetF be anO-module. Assume (f, f ′) is a strict morphism of thickenings andF flat over
OB. If there exists a pair (F ′, α) consisting of an O′-module F ′ flat over OB′ and an
isomorphism α : i∗F ′ → F , then the set of isomorphism classes of such pairs is principal
homogeneous under Ext1

O(F , I ⊗O F).



12. APPLICATION TO FLAT MODULES ON FLAT THICKENINGS OF RINGED TOPOI 6429

Proof. If we assume there exists one such module, then the canonical map

f∗J ⊗O F → I ⊗O F
is an isomorphism by Lemma 11.2. Apply Lemma 10.3 with K = I ⊗O F and c = 1. By
Lemma 11.2 the corresponding extensions F ′ are all flat overOB′ . �

Lemma 11.8. Let (f, f ′) be a morphism of first order thickenings as in Situation 9.1.
LetF be anO-module. Assume (f, f ′) is a strict morphism of thickenings andF flat over
OB. There exists anO′-module F ′ flat overOB′ with i∗F ′ ∼= F , if and only if

(1) the canonical map f∗J ⊗O F → I ⊗O F is an isomorphism, and
(2) the class o(F , I ⊗O F , 1) ∈ Ext2

O(F , I ⊗O F) of Lemma 10.4 is zero.

Proof. This follows immediately from the characterization of O′-modules flat over
OB′ of Lemma 11.2 and Lemma 10.4. �

12. Application to flat modules on flat thickenings of ringed topoi

Consider a commutative diagram

(Sh(C),O)
i
//

f

��

(Sh(D),O′)

f ′

��
(Sh(B),OB) t // (Sh(B′),OB′)

of ringed topoi whose horizontal arrows are first order thickenings as in Situation 9.1. Set
I = Ker(i]) ⊂ O′ and J = Ker(t]) ⊂ OB′ . Let F be anO-module. Assume that

(1) (f, f ′) is a strict morphism of thickenings,
(2) f ′ is flat, and
(3) F is flat overOB.

Note that (1) + (2) imply that I = f∗J (apply Lemma 11.2 to O′). The theory of the
preceding section is especially nice under these assumptions. We summarize the results
already obtained in the following lemma.

Lemma 12.1. In the situation above.
(1) There exists an O′-module F ′ flat over OB′ with i∗F ′ ∼= F , if and only if the

class o(F , f∗J ⊗O F , 1) ∈ Ext2
O(F , f∗J ⊗O F) of Lemma 10.4 is zero.

(2) If such a module exists, then the set of isomorphism classes of lifts is principal
homogeneous under Ext1

O(F , f∗J ⊗O F).
(3) Given a liftF ′, the set of automorphisms ofF ′ which pull back to idF is canon-

ically isomorphic to Ext0
O(F , f∗J ⊗O F).

Proof. Part (1) follows from Lemma 11.8 as we have seen above that I = f∗J . Part
(2) follows from Lemma 11.7. Part (3) follows from Lemma 11.4. �

Situation 12.2. Let f : (Sh(C),O)→ (Sh(B),OB) be a morphism of ringed topoi.
Consider a commutative diagram

(Sh(C′
1),O′

1)
h
//

f ′
1
��

(Sh(C′
2),O′

2)

f ′
2
��

(Sh(B′
1),OB′

1
) // (Sh(B′

2),OB′
2
)
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where h is a morphism of first order thickenings of (Sh(C),O), the lower horizontal arrow
is a morphism of first order thickenings of (Sh(B),OB), each f ′

i restricts to f , both pairs
(f, f ′

i) are strict morphisms of thickenings, and both f ′
i are flat. Finally, let F be an O-

module flat overOB.

Lemma 12.3. In Situation 12.2 the obstruction class o(F , f∗J2⊗O F , 1) maps to the
obstruction class o(F , f∗J1 ⊗O F , 1) under the canonical map

Ext2
O(F , f∗J2 ⊗O F)→ Ext2

O(F , f∗J1 ⊗O F)

Proof. Follows from Remark 10.9. �

Situation 12.4. Let f : (Sh(C),O)→ (Sh(B),OB) be a morphism of ringed topoi.
Consider a commutative diagram

(Sh(C′
1),O′

1)
h
//

f ′
1
��

(Sh(C′
2),O′

2) //

f ′
2
��

(Sh(C′
3),O′

3)

f ′
3
��

(Sh(B′
1),OB′

1
) // (Sh(B′

2),OB′
2
) // (Sh(B′

3),OB′
3
)

where (a) the top row is a short exact sequence of first order thickenings of (Sh(C),O),
(b) the lower row is a short exact sequence of first order thickenings of (Sh(B),OB), (c)
each f ′

i restricts to f , (d) each pair (f, f ′
i) is a strict morphism of thickenings, and (e)

each f ′
i is flat. Finally, let F ′

2 be an O′
2-module flat over OB′

2
and set F = F ′

2 ⊗ O. Let
π : (Sh(C′

1),O′
1)→ (Sh(C),O) be the canonical splitting (Remark 10.10).

Lemma 12.5. In Situation 12.4 the modules π∗F and h∗F ′
2 areO′

1-modules flat over
OB′

1
restricting to F on (Sh(C),O). Their difference (Lemma 12.1) is an element θ of

Ext1
O(F , f∗J1 ⊗O F) whose boundary in Ext2

O(F , f∗J3 ⊗O F) equals the obstruction
(Lemma 12.1) to lifting F to anO′

3-module flat overOB′
3
.

Proof. Note that both π∗F and h∗F ′
2 restrict to F on (Sh(C),O) and that the ker-

nels of π∗F → F and h∗F ′
2 → F are given by f∗J1 ⊗O F . Hence flatness by Lemma

11.2. Taking the boundary makes sense as the sequence of modules
0→ f∗J3 ⊗O F → f∗J2 ⊗O F → f∗J1 ⊗O F → 0

is short exact due to the assumptions in Situation 12.4 and the fact that F is flat overOB.
The statement on the obstruction class is a direct translation of the result of Remark 10.11
to this particular situation. �

13. Deformations of ringed topoi and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation theory.
We start with a first order thickening t : (Sh(B),OB) → (Sh(B′),OB′) of ringed topoi.
We denote J = Ker(t]) and we identify the underlying topoi of B and B′. Moreover we
assume given a morphism of ringed topoi f : (Sh(C),O) → (Sh(B),OB), an O-module
G , and a map f−1J → G of sheaves of f−1OB-modules. In this section we ask ourselves
whether we can find the question mark fitting into the following diagram

(13.0.1)

0 // G // ? // O // 0

0 // f−1J

c

OO

// f−1OB′

OO

// f−1OB

OO

// 0
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and moreover how unique the solution is (if it exists). More precisely, we look for a first
order thickening i : (Sh(C),O)→ (Sh(C′),O′) and a morphism of thickenings (f, f ′) as
in (9.1.1) where Ker(i]) is identified with G such that (f ′)] induces the given map c. We
will say (Sh(C′),O′) is a solution to (13.0.1).

Lemma 13.1. Assume given a commutative diagram of morphisms ringed topoi

(13.1.1)

(Sh(C2),O2)
i2
//

f2

��
g

~~

(Sh(C′
2),O′

2)

f ′
2
��

(Sh(B2),OB2) t2 //

~~

(Sh(B′
2),OB′

2
)

~~

(Sh(C1),O1)
i1
//

f1

��

(Sh(C′
1),O′

1)

f ′
1
��

(Sh(B1),OB1) t1 // (Sh(B′
1),OB′

1
)

whose horizontal arrows are first order thickenings. Set Gj = Ker(i]j) and assume given a
map of g−1O1-modules ν : g−1G1 → G2 giving rise to the commutative diagram

(13.1.2)

0 // G2 // O′
2

// O2 // 0

0 // f−1
2 J2

c2

OO

// f−1
2 OB′

2

OO

// f−1
2 OB2

OO

// 0

0 // G1

CC

// O′
1

// O1

CC

// 0

0 // f−1
1 J1

CC

c1

OO

// f−1
1 OB′

1

CC

OO

// f−1
1 OB1

CC

OO

// 0

with front and back solutions to (13.0.1). (The north-north-west arrows are maps on C2
after applying g−1 to the source.)

(1) There exist a canonical element in Ext1
O2

(Lg∗ NLO1/OB1
,G2) whose vanishing

is a necessary and sufficient condition for the existence of a morphism of ringed
topoi (Sh(C′

2),O′
2)→ (Sh(C′

1),O′
1) fitting into (13.1.1) compatibly with ν.

(2) If there exists a morphism (Sh(C′
2),O′

2) → (Sh(C′
1),O′

1) fitting into (13.1.1)
compatibly with ν the set of all such morphisms is a principal homogeneous
space under

HomO1(ΩO1/OB1
, g∗G2) = HomO2(g∗ΩO1/OB1

,G2) = Ext0
O2

(Lg∗ NLO1/OB1
,G2).

Proof. The proof of this lemma is identical to the proof of Lemma 7.1. We urge the
reader to read that proof instead of this one. We will identify the underlying topoi for
every thickening in sight (we have already used this convention in the statement). The
equalities in the last statement of the lemma are immediate from the definitions. Thus we
will work with the groups ExtkO2

(Lg∗ NLO1/OB1
,G2), k = 0, 1 in the rest of the proof.
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We first argue that we can reduce to the case where the underlying topos of all ringed
topoi in the lemma is the same.

To do this, observe that g−1 NLO1/OB1
is equal to the naive cotangent complex of the

homomorphism of sheaves of rings g−1f−1
1 OB1 → g−1O1, see Modules on Sites, Lemma

33.5. Moreover, the degree 0 term of NLO1/OB1
is a flat O1-module, hence the canonical

map
Lg∗ NLO1/OB1

−→ g−1 NLO1/OB1
⊗g−1O1O2

induces an isomorphism on cohomology sheaves in degrees 0 and−1. Thus we may replace
the Ext groups of the lemma with

Extkg−1O1
(g−1 NLO1/OB1

,G2) = Extkg−1O1
(NLg−1O1/g−1f−1

1 OB1
,G2)

The set of morphism of ringed topoi (Sh(C′
2),O′

2) → (Sh(C′
1),O′

1) fitting into (13.1.1)
compatibly with ν is in one-to-one bijection with the set of homomorphisms of g−1f−1

1 OB′
1
-

algebras g−1O′
1 → O′

2 which are compatible with f ] and ν. In this way we see that we
may assume we have a diagram (13.1.2) of sheaves on a site C (with f1 = f2 = id on un-
derlying topoi) and we are looking to find a homomorphism of sheaves of ringsO′

1 → O′
2

fitting into it.

In the rest of the proof of the lemma we assume all underlying topological spaces are
the same, i.e., we have a diagram (13.1.2) of sheaves on a site C (with f1 = f2 = id on
underlying topoi) and we are looking for homomorphisms of sheaves of rings O′

1 → O′
2

fitting into it. As ext groups we will use ExtkO1
(NLO1/OB1

,G2), k = 0, 1.

Step 1. Construction of the obstruction class. Consider the sheaf of sets

E = O′
1 ×O2 O′

2

This comes with a surjective map α : E → O1 and hence we can use NL(α) instead of
NLO1/OB1

, see Modules on Sites, Lemma 35.2. Set

I ′ = Ker(OB′
1
[E ]→ O1) and I = Ker(OB1 [E ]→ O1)

There is a surjection I ′ → I whose kernel is J1OB′
1
[E ]. We obtain two homomorphisms

ofOB′
2
-algebras

a : OB′
1
[E ]→ O′

1 and b : OB′
1
[E ]→ O′

2

which induce maps a|I′ : I ′ → G1 and b|I′ : I ′ → G2. Both a and b annihilate (I ′)2.
Moreover a and b agree on J1OB′

1
[E ] as maps into G2 because the left hand square of

(13.1.2) is commutative. Thus the difference b|I′ − ν ◦ a|I′ induces a well defined O1-
linear map

ξ : I/I2 −→ G2

which sends the class of a local section f of I to a(f ′)− ν(b(f ′)) where f ′ is a lift of f to
a local section of I ′. We let [ξ] ∈ Ext1

O1
(NL(α),G2) be the image (see below).

Step 2. Vanishing of [ξ] is necessary. Let us write Ω = ΩOB1 [E]/OB1
⊗OB1 [E] O1. Observe

that NL(α) = (I/I2 → Ω) fits into a distinguished triangle

Ω[0]→ NL(α)→ I/I2[1]→ Ω[1]

Thus we see that [ξ] is zero if and only if ξ is a composition I/I2 → Ω → G2 for some
map Ω → G2. Suppose there exists a homomorphisms of sheaves of rings ϕ : O′

1 → O′
2

fitting into (13.1.2). In this case consider the mapO′
1[E ]→ G2, f ′ 7→ b(f ′)− ϕ(a(f ′)). A
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calculation shows this annihilates J1OB′
1
[E ] and induces a derivationOB1 [E ]→ G2. The

resulting linear map Ω→ G2 witnesses the fact that [ξ] = 0 in this case.

Step 3. Vanishing of [ξ] is sufficient. Let θ : Ω → G2 be a O1-linear map such that ξ is
equal to θ ◦ (I/I2 → Ω). Then a calculation shows that

b+ θ ◦ d : OB′
1
[E ] −→ O′

2

annihilates I ′ and hence defines a mapO′
1 → O′

2 fitting into (13.1.2).

Proof of (2) in the special case above. Omitted. Hint: This is exactly the same as the proof
of (2) of Lemma 2.1. �

Lemma 13.2. Let C be a site. Let A → B be a homomorphism of sheaves of rings on
C. Let G be a B-module. Let ξ ∈ Ext1

B(NLB/A,G). There exists a map of sheaves of sets
α : E → B such that ξ ∈ Ext1

B(NL(α),G) is the class of a map I/I2 → G (see proof for
notation).

Proof. Recall that given α : E → B such that A[E ]→ B is surjective with kernel I
the complex NL(α) = (I/I2 → ΩA[E]/A ⊗A[E] B) is canonically isomorphic to NLB/A,
see Modules on Sites, Lemma 35.2. Observe moreover, that Ω = ΩA[E]/A ⊗A[E] B is the
sheaf associated to the presheaf U 7→

⊕
e∈E(U) B(U). In other words, Ω is the free B-

module on the sheaf of sets E and in particular there is a canonical map E → Ω.

Having said this, pick some E (for example E = B as in the definition of the naive cotan-
gent complex). The obstruction to writing ξ as the class of a map I/I2 → G is an element
in Ext1

B(Ω,G). Say this is represented by the extension 0 → G → H → Ω → 0 of
B-modules. Consider the sheaf of sets E ′ = E ×Ω H which comes with an induced map
α′ : E ′ → B. Let I ′ = Ker(A[E ′] → B) and Ω′ = ΩA[E′]/A ⊗A[E′] B. The pullback of ξ
under the quasi-isomorphismNL(α′)→ NL(α) maps to zero in Ext1

B(Ω′,G) because the
pullback of the extensionH by the map Ω′ → Ω is split as Ω′ is the free B-module on the
sheaf of sets E ′ and since by construction there is a commutative diagram

E ′ //

��

E

��
H // Ω

This finishes the proof. �

Lemma 13.3. If there exists a solution to (13.0.1), then the set of isomorphism classes
of solutions is principal homogeneous under Ext1

O(NLO/OB ,G).

Proof. We observe right away that given two solutions O′
1 and O′

2 to (13.0.1) we
obtain by Lemma 13.1 an obstruction element o(O′

1,O′
2) ∈ Ext1

O(NLO/OB ,G) to the
existence of a map O′

1 → O′
2. Clearly, this element is the obstruction to the existence of

an isomorphism, hence separates the isomorphism classes. To finish the proof it therefore
suffices to show that given a solution O′ and an element ξ ∈ Ext1

O(NLO/OB ,G) we can
find a second solutionO′

ξ such that o(O′,O′
ξ) = ξ.

Pick α : E → O as in Lemma 13.2 for the class ξ. Consider the surjection f−1OB[E ]→ O
with kernelI and corresponding naive cotangent complexNL(α) = (I/I2 → Ωf−1OB[E]/f−1OB⊗f−1OB[E]
O). By the lemma ξ is the class of a morphism δ : I/I2 → G. After replacing E by E×OO′

we may also assume that α factors through a map α′ : E → O′.
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These choices determine an f−1OB′ -algebra map ϕ : OB′ [E ] → O′. Let I ′ = Ker(ϕ).
Observe thatϕ induces a mapϕ|I′ : I ′ → G and thatO′ is the pushout, as in the following
diagram

0 // G // O′ // O // 0

0 // I ′

ϕ|I′

OO

// f−1OB′ [E ]

OO

// O

=

OO

// 0
Let ψ : I ′ → G be the sum of the map ϕ|I′ and the composition

I ′ → I ′/(I ′)2 → I/I2 δ−→ G.
Then the pushout along ψ is an other ring extension O′

ξ fitting into a diagram as above.
A calculation (omitted) shows that o(O′,O′

ξ) = ξ as desired. �

Lemma 13.4. Let f : (Sh(C),O)→ (Sh(B),OB) be a morphism of ringed topoi. Let
G be anO-module. The set of isomorphism classes of extensions of f−1OB-algebras

0→ G → O′ → O → 0
where G is an ideal of square zero2 is canonically bijective to Ext1

O(NLO/OB ,G).

Proof. To prove this we apply the previous results to the case where (13.0.1) is given
by the diagram

0 // G // ? // O // 0

0 // 0

OO

// f−1OB

OO

id // f−1OB

OO

// 0

Thus our lemma follows from Lemma 13.3 and the fact that there exists a solution, namely
G ⊕O. (See remark below for a direct construction of the bijection.) �

Remark 13.5. Let f : (Sh(C),O) → (B,OB) and G be as in Lemma 13.4. Consider
an extension 0 → G → O′ → O → 0 as in the lemma. We can choose a sheaf of sets E
and a commutative diagram

E

α′

��
α

  
O′ // O

such that f−1OB[E ] → O is surjective with kernel J . (For example you can take any
sheaf of sets surjecting ontoO′.) Then

NLO/OB
∼= NL(α) =

(
J /J 2 −→ Ωf−1OB[E]/f−1OB ⊗f−1OB[E] O

)
See Modules on Sites, Section 35 and in particular Lemma 35.2. Of course α′ determines a
map f−1OB[E ]→ O′ which in turn determines a map

J /J 2 −→ G

which in turn determines the element of Ext1
O(NL(α),G) = Ext1

O(NLO/OB ,G) corre-
sponding toO′ by the bijection of the lemma.

2In other words, the set of isomorphism classes of first order thickenings i : (Sh(C),O) → (Sh(C),O′)
over (Sh(B),OB) endowed with an isomorphism G → Ker(i]) of O-modules.
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Lemma 13.6. Let f : (Sh(C),OC)→ (Sh(B),OB) and g : (Sh(D),OD)→ (Sh(C),OC)
be morphisms of ringed topoi. Let F be a OC-module. Let G be a OD-module. Let
c : g∗F → G be aOD-linear map. Finally, consider

(a) 0 → F → OC′ → OC → 0 an extension of f−1OB-algebras corresponding to
ξ ∈ Ext1

OC
(NLOC/OB ,F), and

(b) 0→ G → OD′ → OD → 0 an extension of g−1f−1OB-algebras corresponding
to ζ ∈ Ext1

OD
(NLOD/OB ,G).

See Lemma 13.4. Then there is a morphism

g′ : (Sh(D),OD′) −→ (Sh(C),OC′)

of ringed topoi over (Sh(B),OB) compatible with g and c if and only if ξ and ζ map to
the same element of Ext1

OD
(Lg∗ NLOC/OB ,G).

Proof. The stament makes sense as we have the maps

Ext1
OC

(NLOC/OB ,F)→ Ext1
OD

(Lg∗ NLOC/OB , Lg
∗F)→ Ext1

OD
(Lg∗ NLOC/OB ,G)

using the map Lg∗F → g∗F c−→ G and

Ext1
OY

(NLOD/OB ,G)→ Ext1
OY

(Lg∗ NLOC/OB ,G)

using the map Lg∗ NLOC/OB → NLOD/OB . The statement of the lemma can be deduced
from Lemma 13.1 applied to the diagram

0 // G // OD′ // OD // 0

0 // 0

OO

// g−1f−1OB

OO

// g−1f−1OB

OO

// 0

0 // F

EE

// OC′ // OC

??

// 0

0 // 0

EE

OO

// f−1OB

AA

OO

// f−1OB

??

OO

// 0

and a compatibility between the constructions in the proofs of Lemmas 13.4 and 13.1 whose
statement and proof we omit. (See remark below for a direct argument.) �

Remark 13.7. Let f : (Sh(C),OC)→ (Sh(B),OB), g : (Sh(D),OD)→ (Sh(C),OC),
F , G , c : g∗F → G , 0 → F → OC′ → OC → 0, ξ ∈ Ext1

OC
(NLOC/OB ,F), 0 → G →

OD′ → OD → 0, and ζ ∈ Ext1
OD

(NLOD/OB ,G) be as in Lemma 13.6. Using pushout
along c : g−1F → G we can construct an extension

0 // G // O′
1

// g−1OC // 0

0 // g−1F

c

OO

// g−1OC′

OO

// g−1OC // 0



6436 91. DEFORMATION THEORY

Using pullback along g] : g−1OC → OD we can construct an extension

0 // G // OD′ // OD // 0

0 // G // O′
2

OO

// g−1OC

OO

// 0

A diagram chase tells us that there exists a morphism g′ : (Sh(D),OD′)→ (Sh(C),OC′)
over (Sh(B),OB) compatible with g and c if and only ifO′

1 is isomorphic toO′
2 as g−1f−1OB-

algebra extensions of g−1OC by G. By Lemma 13.4 these extensions are classified by the
LHS of

Ext1
g−1OC

(NLg−1OC/g−1f−1OB ,G) = Ext1
OD

(Lg∗ NLOC/OB ,G)
Here the equality comes from tensor-hom adjunction and the equalities

NLg−1OC/g−1f−1OB = g−1 NLOC/OB and Lg∗ NLOC/OB = g−1 NLOC/OB ⊗
L
g−1OX

OY
For the first of these see Modules on Sites, Lemma 35.3; the second follows from the def-
inition of derived pullback. Thus, in order to see that Lemma 13.6 is true, it suffices to
show that O′

1 corresponds to the image of ξ and that O′
2 correspond to the image of ζ .

The correspondence between ξ and O′
1 is immediate from the construction of the class ξ

in Remark 13.5. For the correspondence between ζ andO′
2, we first choose a commutative

diagram
E

β′

��

β

""
OD′ // OD

such that g−1f−1OB[E ] → OD is surjective with kernel K. Next choose a commutative
diagram

E

β′

��

E ′
ϕ

oo

α′

��

α

##
OD′ O′

2
oo // g−1OC

such that g−1f−1OB[E ′] → g−1OC is surjective with kernel J . (For example just take
E ′ = E q O′

2 as a sheaf of sets.) The map ϕ induces a map of complexes NL(α) →
NL(β) (notation as in Modules, Section 31) and in particular ϕ̄ : J /J 2 → K/K2.
Then NL(α) ∼= NLOD/OB and NL(β) ∼= NLg−1OC/g−1f−1OB and the map of complexes
NL(α) → NL(β) represents the map Lg∗ NLOC/OB → NLOD/OB used in the state-
ment of Lemma 13.6 (see first part of its proof). Now ζ corresponds to the class of the map
K/K2 → G induced byβ′, see Remark 13.5. Similarly, the extensionO′

2 corresponds to the
map J /J 2 → G induced by α′. The commutative diagram above shows that this map is
the composition of the mapK/K2 → G induced by β′ with the map ϕ̄ : J /J 2 → K/K2.
This proves the compatibility we were looking for.

Lemma 13.8. Let t : (Sh(B),OB)→ (Sh(B′),OB′), J = Ker(t]), f : (Sh(C),O)→
(Sh(B),OB), G , and c : J → G be as in (13.0.1). Denote ξ ∈ Ext1

OB
(NLOB/OB′ ,J ) the

element corresponding to the extension OB′ of OB by J via Lemma 13.4. The set of
isomorphism classes of solutions is canonically bijective to the fibre of

Ext1
O(NLO/OB′ ,G)→ Ext1

O(Lf∗ NLOB/OB′ ,G)
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over the image of ξ.

Proof. By Lemma 13.4 applied to t ◦ f : (Sh(C),O) → (Sh(B′),OB′) and the O-
module G we see that elements ζ of Ext1

O(NLO/OB′ ,G) parametrize extensions 0→ G →
O′ → O → 0 of f−1OB′ -algebras. By Lemma 13.6 applied to

(Sh(C),O) f−→ (Sh(B),OB) t−→ (Sh(B′),OB′)

and c : J → G we see that there is an morphism

f ′ : (Sh(C),O′) −→ (Sh(B′),OB′)

over (Sh(B′),OB′) compatible with c and f if and only if ζ maps to ξ. Of course this is
the same thing as sayingO′ is a solution of (13.0.1). �

14. Deformations of algebraic spaces

In this section we spell out what the results in Section 13 mean for deformations of alge-
braic spaces.

Lemma 14.1. Let S be a scheme. Let i : Z → Z ′ be a morphism of algebraic spaces
over S. The following are equivalent

(1) i is a thickening of algebraic spaces as defined in More on Morphisms of Spaces,
Section 9, and

(2) the associated morphism ismall : (Sh(Zétale),OZ) → (Sh(Z ′
étale),OZ′) of

ringed topoi (Properties of Spaces, Lemma 21.3) is a thickening in the sense of
Section 9.

Proof. We stress that this is not a triviality.

Assume (1). By More on Morphisms of Spaces, Lemma 9.6 the morphism i induces an
equivalence of small étale sites and in particular of topoi. Of course i] is surjective with
locally nilpotent kernel by definition of thickenings.

Assume (2). (This direction is less important and more of a curiosity.) For any étale mor-
phism Y ′ → Z ′ we see that Y = Z×Z′ Y ′ has the same étale topos as Y ′. In particular, Y ′

is quasi-compact if and only if Y is quasi-compact because being quasi-compact is a topos
theoretic notion (Sites, Lemma 17.3). Having said this we see that Y ′ is quasi-compact
and quasi-separated if and only if Y is quasi-compact and quasi-separated (because you
can characterize Y ′ being quasi-separated by saying that for all Y ′

1 , Y
′

2 quasi-compact al-
gebraic spaces étale over Y ′ we have that Y ′

1 ×Y ′ Y ′
2 is quasi-compact). Take Y ′ affine.

Then the algebraic space Y is quasi-compact and quasi-separated. For any quasi-coherent
OY -module F we have Hq(Y,F) = Hq(Y ′, (Y → Y ′)∗F) because the étale topoi are
the same. Then Hq(Y ′, (Y → Y ′)∗F) = 0 because the pushforward is quasi-coherent
(Morphisms of Spaces, Lemma 11.2) and Y is affine. It follows that Y ′ is affine by Coho-
mology of Spaces, Proposition 16.7 (there surely is a proof of this direction of the lemma
avoiding this reference). Hence i is an affine morphism. In the affine case it follows easily
from the conditions in Section 9 that i is a thickening of algebraic spaces. �

Lemma 14.2. Let S be a scheme. Let Y ⊂ Y ′ be a first order thickening of algebraic
spaces over S. Let f : X → Y be a flat morphism of algebraic spaces over S. If there exists
a flat morphism f ′ : X ′ → Y ′ of algebraic spaces over S and an isomorphsm a : X →
X ′ ×Y ′ Y over Y , then
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(1) the set of isomorphism classes of pairs (f ′ : X ′ → Y ′, a) is principal homoge-
neous under Ext1

OX
(NLX/Y , f∗CY/Y ′), and

(2) the set of automorphisms of ϕ : X ′ → X ′ over Y ′ which reduce to the identity
on X ′ ×Y ′ Y is Ext0

OX
(NLX/Y , f∗CY/Y ′).

Proof. We will apply the material on deformations of ringed topoi to the small étale
topoi of the algebraic spaces in the lemma. We may think of X as a closed subspace of X ′

so that (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) is a morphism of first order thickenings. By
Lemma 14.1 this translates into a morphism of thickenings of ringed topoi. Then we see
from More on Morphisms of Spaces, Lemma 18.1 (or from the more general Lemma 11.2)
that the ideal sheaf ofX inX ′ is equal to f∗CY ′/Y and this is in fact equivalent to flatness
of X ′ over Y ′. Hence we have a commutative diagram

0 // f∗CY/Y ′ // OX′ // OX // 0

0 // f−1
smallCY/Y ′

OO

// f−1
smallOY ′

OO

// f−1
smallOY

OO

// 0

Please compare with (13.0.1). Observe that automorphismsϕ as in (2) give automorphisms
ϕ] : OX′ → OX′ fitting in the diagram above. Conversely, an automorphism α : OX′ →
OX′ fitting into the diagram of sheaves above is equal to ϕ] for some automorphism ϕ as
in (2) by More on Morphisms of Spaces, Lemma 9.2. Finally, by More on Morphisms of
Spaces, Lemma 9.7 if we find another sheaf of ringsA on Xétale fitting into the diagram

0 // f∗CY/Y ′ // A // OX // 0

0 // f−1
smallCY/Y ′

OO

// f−1
smallOY ′

OO

// f−1
smallOY

OO

// 0

then there exists a first order thickening X ⊂ X ′′ with OX′′ = A and applying More
on Morphisms of Spaces, Lemma 9.2 once more, we obtain a morphism (f, f ′′) : (X ⊂
X ′′)→ (Y ⊂ Y ′) with all the desired properties. Thus part (1) follows from Lemma 13.3
and part (2) from part (2) of Lemma 13.1. (Note thatNLX/Y as defined for a morphism of
algebraic spaces in More on Morphisms of Spaces, Section 21 agrees with NLX/Y as used
in Section 13.) �

LetS be a scheme. Let f : X → B be a morphism of algebraic spaces overS. LetF → G be
a homomorphism ofOX -modules (not necessarily quasi-coherent). Consider the functor

F :

 extensions of f−1OB algebras
0→ F → O′ → OX → 0

where F is an ideal of square zero

 −→
 extensions of f−1OB algebras

0→ G → O′ → OX → 0
where G is an ideal of square zero


given by pushout.

Lemma 14.3. In the situation above assume thatX is quasi-compact and quasi-separated
and that DQX(F) → DQX(G) (Derived Categories of Spaces, Section 19) is an isomor-
phism. Then the functor F is an equivalence of categories.

Proof. Recall that NLX/B is an object of DQCoh(OX), see More on Morphisms of
Spaces, Lemma 21.4. Hence our assumption implies the maps

ExtiX(NLX/B ,F) −→ ExtiX(NLX/B ,G)
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are isomorphisms for all i. This implies our functor is fully faithful by Lemma 13.1. On
the other hand, the functor is essentially surjective by Lemma 13.3 because we have the
solutionsOX ⊕F andOX ⊕ G in both categories. �

Let S be a scheme. Let B ⊂ B′ be a first order thickening of algebraic spaces over S with
ideal sheaf J which we view either as a quasi-coherentOB-module or as a quasi-coherent
sheaf of ideals on B′, see More on Morphisms of Spaces, Section 9. Let f : X → B be a
morphism of algebraic spaces over S. Let F → G be a homomorphism of OX -modules
(not necessarily quasi-coherent). Let c : f−1J → F be a map of f−1OB-modules and
denote c′ : f−1J → G the composition. Consider the functor

FT : {solutions to (13.0.1) for F and c} −→ {solutions to (13.0.1) for G and c′}

given by pushout.

Lemma 14.4. In the situation above assume thatX is quasi-compact and quasi-separated
and that DQX(F) → DQX(G) (Derived Categories of Spaces, Section 19) is an isomor-
phism. Then the functor FT is an equivalence of categories.

Proof. A solution of (13.0.1) for F in particular gives an extension of f−1OB′ -
algebras

0→ F → O′ → OX → 0
where F is an ideal of square zero. Similarly for G. Moreover, given such an extension,
we obtain a map cO′ : f−1J → F . Thus we are looking at the full subcategory of such
extensions of f−1OB′ -algebras with c = cO′ . Clearly, if O′′ = F (O′) where F is the
equivalence of Lemma 14.3 (applied toX → B′ this time), then cO′′ is the composition of
cO′ and the map F → G. This proves the lemma. �

15. Deformations of complexes

This section is a warmup for the next one. We will use as much as possible the material in
the chapters on commutative algebra.

Lemma 15.1. LetR′ → R be a surjection of rings whose kernel is an ideal I of square
zero. For every K ∈ D−(R) there is a canonical map

ω(K) : K −→ K ⊗L
R I[2]

in D(R) with the following properties
(1) ω(K) = 0 if and only if there exists K ′ ∈ D(R′) with K ′ ⊗L

R′ R = K ,
(2) given K → L in D−(R) the diagram

K

��

ω(K)
// K ⊗L

R I[2]

��
L

ω(L) // L⊗L
R I[2]

commutes, and
(3) formation ofω(K) is compatible with ring mapsR′ → S′ (see proof for a precise

statement).

Proof. Choose a bounded above complex K• of free R-modules representing K.
Then we can choose free R′-modules (K ′)n lifting Kn. We can choose R′-module maps
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(d′)nK : (K ′)n → (K ′)n+1 lifting the differentials dnK : Kn → Kn+1 of K•. Although
the compositions

(d′)n+1
K ◦ (d′)nK : (K ′)n → (K ′)n+2

may not be zero, they do factor as

(K ′)n → Kn ωnK−−→ Kn+2 ⊗R I = I(K ′)n+2 → (K ′)n+2

because dn+1 ◦ dn = 0. A calculation shows that ωnK defines a map of complexes. This
map of complexes defines ω(K).

Let us prove this construction is compatible with a map of complexes α• : K• → L•

of bounded above free R-modules and given choices of lifts (K ′)n, (L′)n, (d′)nK , (d′)nL.
Namely, choose (α′)n : (K ′)n → (L′)n lifting the components αn : Kn → Ln. As
before we get a factorization

(K ′)n → Kn hn−−→ Ln+1 ⊗R I = I(L′)n+1 → (L′)n+2

of (d′)nL ◦ (α′)n − (α′)n+1 ◦ (d′)nK . Then it is an pleasant calculation to show that

ωnL ◦ αn = (dn+1
L ⊗ idI) ◦ hn + hn+1 ◦ dnK + (αn+2 ⊗ idI) ◦ ωnK

This proves the commutativity of the diagram in (2) of the lemma in this particular case.
Using this for two different choices of bounded above free complexes representing K , we
find that ω(K) is well defined! And of course (2) holds in general as well.

If K lifts to K ′ in D−(R′), then we can represent K ′ by a bounded above complex of
free R′-modules and we see immediately that ω(K) = 0. Conversely, going back to our
choices K•, (K ′)n, (d′)nK , if ω(K) = 0, then we can find gn : Kn → Kn+1 ⊗R I with

ωn = (dn+1
K ⊗ idI) ◦ gn + gn+1 ◦ dnK

This means that with differentials (d′)nK + gn : (K ′)n → (K ′)n+1 we obtain a complex
of free R′-modules lifting K•. This proves (1).

Finally, part (3) means the following: Let R′ → S′ be a map of rings. Set S = S′ ⊗R′ R
and denote J = IS′ ⊂ S′ the square zero kernel of S′ → S. Then givenK ∈ D−(R) the
statement is that we get a commutative diagram

K ⊗L
R S

��

ω(K)⊗id
// (K ⊗L

R I[2])⊗L
R S

��
K ⊗L

R S
ω(K⊗L

RS) // (K ⊗L
R S)⊗L

S J [2]

Here the right vertical arrow comes from

(K ⊗L
R I[2])⊗L

R S = (K ⊗L
R S)⊗L

S (I ⊗L
R S)[2] −→ (K ⊗L

R S)⊗L
S J [2]

Choose K•, (K ′)n, and (d′)nK as above. Then we can use K• ⊗R S , (K ′)n ⊗R′ S′, and
(d′)nK ⊗ idS′ for the construction of ω(K ⊗L

R S). With these choices commutativity is
immediately verified on the level of maps of complexes. �
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16. Deformations of complexes on ringed topoi

This material is taken from [?].

The material in this section works in the setting of a first order thickening of ringed topoi
as defined in Section 9. However, in order to simplify the notation we will assume the
underlying sites C andD are the same. Moreover, the surjective homomorphismO′ → O
of sheaves of rings will be denotedO → O0 as is perhaps more customary in the literature.

Lemma 16.1. Let C be a site. LetO → O0 be a surjection of sheaves of rings. Assume
given the following data

(1) flatO-modules Gn,
(2) maps ofO-modules Gn → Gn+1,
(3) a complex K•

0 ofO0-modules,
(4) maps ofO-modules Gn → Kn0

such that
(a) Hn(K•

0) = 0 for n� 0,
(b) Gn = 0 for n� 0,
(c) with Gn0 = Gn ⊗O O0 the induced maps determine a complex G•

0 and a map of
complexes G•

0 → K•
0 .

Then there exist
(i) flatO-modules Fn,

(ii) maps ofO-modules Fn → Fn+1,
(iii) maps ofO-modules Fn → Kn0 ,
(iv) maps ofO-modules Gn → Fn,

such that Fn = 0 for n� 0, such that the diagrams

Gn //

��

Gn+1

��
Fn // Fn+1

commute for alln, such that the compositionGn → Fn → Kn0 is the given mapGn → Kn0 ,
and such that with Fn0 = Fn ⊗O O0 we obtain a complex F•

0 and map of complexes
F•

0 → K•
0 which is a quasi-isomorphism.

Proof. We will prove by descending induction on e that we can findFn, Gn → Fn,
and Fn → Fn+1 for n ≥ e fitting into a commutative diagram

. . . // Ge−1 //

��

Ge

��

//

��

Ge+1

��

//

��

. . .

Fe

��

// Fe+1

��

// . . .

. . . // Ke−1
0

// Ke0 // Ke+1
0

// . . .

such thatF•
0 is a complex, the induced mapF•

0 → K•
0 induces an isomorphism onHn for

n > e and a surjection for n = e. For e � 0 this is true because we can take Fn = 0 for
n ≥ e in that case by assumptions (a) and (b).
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Induction step. We have to construct Fe−1 and the maps Ge−1 → Fe−1, Fe−1 → Fe,
and Fe−1 → Ke−1

0 . We will choose Fe−1 = A⊕B ⊕ C as a direct sum of three pieces.

For the first we take A = Ge−1 and we choose our map Ge−1 → Fe−1 to be the inclusion
of the first summand. The maps A→ Ke−1

0 and A→ Fe will be the obvious ones.

To choose B we consider the surjection (by induction hypothesis)

γ : Ker(Fe0 → Fe+1
0 ) −→ Ker(Ke0 → Ke+1

0 )/ Im(Ke−1
0 → Ke0)

We can choose a set I , for each i ∈ I an object Ui of C , and sections si ∈ Fe(Ui), ti ∈
Ke−1

0 (Ui) such that
(1) si maps to a section of Ker(γ) ⊂ Ker(Fe0 → Fe+1

0 ),
(2) si and ti map to the same section of Ke0,
(3) the sections si generate Ker(γ) as anO0-module.

We omit giving the full justification for this; one uses that Fe → Fe0 is a surjective maps
of sheaves of sets. Then we set to put

B =
⊕

i∈I
jUi!OUi

and define the maps B → Fe and B → Ke−1
0 by using si and ti to determine where to

send the summand jUi!OUi .
With Fe−1 = A⊕B and maps as above, this produces a diagram as above for e− 1 such
that F•

0 → K•
0 induces an isomorphism on Hn for n ≥ e. To get the map to be surjective

on He−1 we choose the summand C as follows. Choose a set J , for each j ∈ J an object
Uj of C and a section tj of Ker(Ke−1

0 → Ke0) over Uj such that these sections generate
this kernel overO0. Then we put

C =
⊕

j∈J
jUj !OUj

and the zero mapC → Fe and the mapC → Ke−1
0 by using sj to determine where to the

summand jUj !OUj . This finishes the induction step by taking Fe−1 = A ⊕ B ⊕ C and
maps as indicated. �

Lemma 16.2. Let C be a site. Let O → O0 be a surjection of sheaves of rings whose
kernel is an ideal sheafI of square zero. For every objectK0 inD−(O0) there is a canonical
map

ω(K0) : K0 −→ K0 ⊗L
O0
I[2]

in D(O0) such that for any map K0 → L0 in D−(O0) the diagram

K0

��

ω(K0)
// (K0 ⊗L

O0
I)[2]

��
L0

ω(L0) // (L0 ⊗L
O0
I)[2]

commutes.

Proof. Represent K0 by any complex K•
0 of O0-modules. Apply Lemma 16.1 with

Gn = 0 for all n. Denote d : Fn → Fn+1 the maps produced by the lemma. Then we see
that d◦d : Fn → Fn+2 is zero modulo I . SinceFn is flat, we see that IFn = Fn⊗OI =
Fn0 ⊗O0 I . Hence we obtain a canonical map of complexes

d ◦ d : F•
0 −→ (F•

0 ⊗O0 I)[2]
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Since F•
0 is a bounded above complex of flat O0-modules, it is K-flat and may be used to

compute derived tensor product. Moreover, the map of complexes F•
0 → K•

0 is a quasi-
isomorphism by construction. Therefore the source and target of the map just constructed
represent K0 and K0 ⊗L

O0
I[2] and we obtain our map ω(K0).

Let us show that this procedure is compatible with maps of complexes. Namely, let L•
0

represent another object of D−(O0) and suppose that
K•

0 −→ L•
0

is a map of complexes. Apply Lemma 16.1 for the complex L•
0 , the flat modules Fn, the

maps Fn → Fn+1, and the compositions Fn → Kn0 → Ln0 (we apologize for the reversal
of letters used). We obtain flat modules Gn, maps Fn → Gn, maps Gn → Gn+1, and maps
Gn → Ln0 with all properties as in the lemma. Then it is clear that

F•
0

��

// (F•
0 ⊗O0 I)[2]

��
G•

0
// (G•

0 ⊗O0 I)[2]

is a commutative diagram of complexes.
To see that ω(K0) is well defined, suppose that we have two complexes K•

0 and (K′
0)• of

O0-modules representing K0 and two systems (Fn, d : Fn → Fn+1,Fn → Kn0 ) and
((F ′)n, d : (F ′)n → (F ′)n+1, (F ′)n → Kn0 ) as above. Then we can choose a complex
(K′′

0 )• and quasi-isomorphisms K•
0 → (K′′

0 )• and (K′
0)• → (K′′

0 )• realizing the fact that
both complexes represent K0 in the derived category. Next, we apply the result of the
previous paragraph to

(K0)• ⊕ (K′
0)• −→ (K′′

0 )•

This produces a commutative diagram

F•
0 ⊕ (F ′

0)•

��

// (F•
0 ⊗O0 I)[2]⊕ ((F ′

0)• ⊗O0 I)[2]

��
G•

0
// (G•

0 ⊗O0 I)[2]

Since the vertical arrows give quasi-isomorphisms on the summands we conclude the de-
sired commutativity in D(O0).
Having established well-definedness, the statement on compatibility with maps is a conse-
quence of the result in the second paragraph. �

Lemma 16.3. Let (C,O) be a ringed site. Let α : K → L be a map of D−(O). Let F
be a sheaf ofO-modules. Let n ∈ Z.

(1) If Hi(α) is an isomorphism for i ≥ n, then Hi(α ⊗L
O idF ) is an isomorphism

for i ≥ n.
(2) If Hi(α) is an isomorphism for i > n and surjective for i = n, then Hi(α ⊗L

O
idF ) is an isomorphism for i > n and surjective for i = n.

Proof. Choose a distinguished triangle
K → L→ C → K[1]

In case (2) we see that Hi(C) = 0 for i ≥ n. Hence Hi(C ⊗L
O F) = 0 for i ≥ n by

(the dual of) Derived Categories, Lemma 16.1. This in turn shows that Hi(α ⊗L
O idF )
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is an isomorphism for i > n and surjective for i = n. In case (1) we moreover see that
Hn−1(L)→ Hn−1(C) is surjective. Considering the diagram

Hn−1(L)⊗O F //

��

Hn−1(C)⊗O F

Hn−1(L⊗L
O F) // Hn−1(C ⊗L

O F)

we conclude the lower horizontal arrow is surjective. Combined with what was said before
this implies that Hn(α⊗L

O idF ) is an isomorphism. �

Lemma 16.4. Let C be a site. Let O → O0 be a surjection of sheaves of rings whose
kernel is an ideal sheaf I of square zero. For every object K0 in D−(O0) the following
are equivalent

(1) the class ω(K0) ∈ Ext2
O0

(K0,K0 ⊗O0 I) constructed in Lemma 16.2 is zero,
(2) there exists K ∈ D−(O) with K ⊗L

O O0 = K0 in D(O0).

Proof. LetK be as in (2). Then we can representK by a bounded above complexF•

of flatO-modules. Then F•
0 = F• ⊗O O0 represents K0 in D(O0). Since dF• ◦ dF• = 0

as F• is a complex, we see from the very construction of ω(K0) that it is zero.

Assume (1). Let Fn, d : Fn → Fn+1 be as in the construction of ω(K0). The nullity of
ω(K0) implies that the map

ω = d ◦ d : F•
0 −→ (F•

0 ⊗O0 I)[2]
is zero inD(O0). By definition of the derived category as the localization of the homotopy
category of complexes ofO0-modules, there exists a quasi-isomorphismα : G•

0 → F•
0 such

that there existO0-modules maps hn : Gn0 → Fn+1
0 ⊗O I with

ω ◦ α = dF•
0 ⊗I ◦ h+ h ◦ dG•

0

We set
Hn = Fn ×Fn

0
Gn0

and we define

d′ : Hn −→ Hn+1, (fn, gn0 ) 7−→ (d(fn)− hn(gn0 ), d(gn0 ))
with obvious notation using that Fn+1

0 ⊗O0 I = Fn+1 ⊗O I = IFn+1 ⊂ Fn+1. Then
one checks d′ ◦d′ = 0 by our choice of hn and definition of ω. HenceH• defines an object
in D(O). On the other hand, there is a short exact sequence of complexes ofO-modules

0→ F•
0 ⊗O0 I → H• → G•

0 → 0
We still have to show thatH• ⊗L

O O0 is isomorphic to K0. Choose a quasi-isomorphism
E• → H• where E• is a bounded above complex of flat O-modules. We obtain a commu-
tative diagram

0 // E• ⊗O I

β

��

// E•

γ

��

// E•
0

δ

��

// 0

0 // F•
0 ⊗O0 I // H• // G•

0
// 0

We claim that δ is a quasi-isomorphism. SinceHi(δ) is an isomorphism for i� 0, we can
use descending induction on n such thatHi(δ) is an isomorphism for i ≥ n. Observe that
E•⊗O I represents E•

0 ⊗L
O0
I , thatF•

0 ⊗O0 I represents G•
0⊗L

O0
I , and that β = δ⊗L

O0
idI
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as maps in D(O0). This is true because β = (α ⊗ idI) ◦ (δ ⊗ idI). Suppose that Hi(δ)
is an isomorphism in degrees ≥ n. Then the same is true for β by what we just said and
Lemma 16.3. Then we can look at the diagram

Hn−1(E• ⊗O I) //

Hn−1(β)
��

Hn−1(E•) //

��

Hn−1(E•
0 ) //

Hn−1(δ)
��

Hn(E• ⊗O I) //

Hn(β)
��

Hn(E•)

��
Hn−1(F•

0 ⊗O I) // Hn−1(H•) // Hn−1(G•
0 ) // Hn(F•

0 ⊗O I) // Hn(H•)

Using Homology, Lemma 5.19 we see thatHn−1(δ) is surjective. This in turn implies that
Hn−1(β) is surjective by Lemma 16.3. Using Homology, Lemma 5.19 again we see that
Hn−1(δ) is an isomorphism. The claim holds by induction, so δ is a quasi-isomorphism
which is what we wanted to show. �

Lemma 16.5. Let C be a site. LetO → O0 be a surjection of sheaves of rings. Assume
given the following data

(1) a complex ofO-modules F•,
(2) a complex K•

0 ofO0-modules,
(3) a quasi-isomorphism K•

0 → F• ⊗O O0,
Then there exist a quasi-isomorphism G• → F• such that the map of complexes G• ⊗O
O0 → F• ⊗O O0 factors through K•

0 in the homotopy category of complexes of O0-
modules.

Proof. Set F•
0 = F• ⊗O O0. By Derived Categories, Lemma 9.8 there exists a fac-

torization
K•

0 → L•
0 → F•

0
of the given map such that the first arrow has an inverse up to homotopy and the second
arrow is termwise split surjective. Hence we may assume that K•

0 → F•
0 is termwise

surjective. In that case we take
Gn = Fn ×Fn

0
Kn0

and everything is clear. �

Lemma 16.6. Let C be a site. Let O → O0 be a surjection of sheaves of rings whose
kernel is an ideal sheaf I of square zero. Let K,L ∈ D−(O). Set K0 = K ⊗L

O O0 and
L0 = L⊗L

O O0 in D−(O0). Given α0 : K0 → L0 in D(O0) there is a canonical element

o(α0) ∈ Ext1
O0

(K0, L0 ⊗L
O0
I)

whose vanishing is necessary and sufficient for the existence of a mapα : K → L inD(O)
with α0 = α⊗L

O id.

Proof. Finding α : K → L lifing α0 is the same as finding α : K → L such that
the composition K α−→ L→ L0 is equal to the composition K → K0

α0−→ L0. The short
exact sequence 0→ I → O → O0 → 0 gives rise to a canonical distinguished triangle

L⊗L
O I → L→ L0 → (L⊗L

O I)[1]
in D(O). By Derived Categories, Lemma 4.2 the composition

K → K0
α0−→ L0 → (L⊗L

O I)[1]
is zero if and only if we can find α : K → L lifting α0. The composition is an element in

HomD(O)(K, (L⊗L
O I)[1]) = HomD(O0)(K0, (L⊗L

O I)[1]) = Ext1
O0

(K0, L0 ⊗L
O0
I)
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by adjunction. �

Lemma 16.7. Let C be a site. Let O → O0 be a surjection of sheaves of rings whose
kernel is an ideal sheaf I of square zero. Let K0 ∈ D−(O). A lift of K0 is a pair (K,α0)
consisting of an objectK inD−(O) and an isomorphism α0 : K⊗L

OO0 → K0 inD(O0).
(1) Given a lift (K,α) the group of automorphism of the pair is canonically the

cokernel of a map

Ext−1
O0

(K0,K0) −→ HomO0(K0,K0 ⊗L
O0
I)

(2) If there is a lift, then the set of isomorphism classes of lifts is principal homoge-
nenous under Ext1

O0
(K0,K0 ⊗L

O0
I).

Proof. An automorphism of (K,α) is a mapϕ : K → K inD(O) withϕ⊗O idO0 =
id. This is the same thing as saying that

K
ϕ−id−−−→ K → K ⊗L

O O0

is zero. We conclude the group of automorphisms is the cokernel of a map

HomO(K,K0[−1]) −→ HomO(K,K0 ⊗L
O0
I)

by the distinguished triangle

K ⊗L
O I → K → K ⊗L

O O0 → (K ⊗L
O I)[1]

inD(O) and Derived Categories, Lemma 4.2. To translate into the groups in the lemma use
adjunction of the restriction functor D(O0) → D(O) and −⊗O O0 : D(O) → D(O0).
This proves (1).

Proof of (2). Assume that K0 = K ⊗L
O O0 in D(O). By Lemma 16.6 the map sending

a lift (K ′, α0) to the obstruction o(α0) to lifting α0 defines a canonical injective map
from the set of isomomorphism classes of pairs to Ext1

O0
(K0,K0 ⊗L

O0
I). To finish the

proof we show that it is surjective. Pick ξ : K0 → (K0 ⊗L
O0
I)[1] in the Ext1 of the

lemma. Choose a bounded above complex F• of flat O-modules representing K. The
map ξ can be represented as t ◦ s−1 where s : K•

0 → F•
0 is a quasi-isomorphism and

t : K•
0 → F•

0 ⊗O0 I[1] is a map of complexes. By Lemma 16.5 we can assume there exists
a quasi-isomorphism G• → F• of complexes of O-modules such that G•

0 → F•
0 factors

through s up to homotopy. We may and do replace G• by a bounded above complex of
flat O-modules (by picking a qis from such to G• and replacing). Then we see that ξ is
represented by a map of complexes t : G•

0 → F•
0 ⊗O0 I[1] and the quasi-isomorphism

G•
0 → F•

0 . Set
Hn = Fn ×Fn

0
Gn0

with differentials

Hn → Hn+1, (fn, gn0 ) 7→ (d(fn) + t(gn0 ), d(gn0 ))

This makes sense as Fn+1
0 ⊗O0 I = Fn+1 ⊗O I = IFn+1 ⊂ Fn+1. We omit the

computation that shows that H• is a complex of O-modules. By construction there is a
short exact sequence

0→ F•
0 ⊗O0 I → H• → G•

0 → 0
of complexes of O-modules. Exactly as in the proof of Lemma 16.4 one shows that this
sequence induces an isomorphism α0 : H• ⊗L

O O0 → G•
0 in D(O0). In other words, we

have produced a pair (H•, α0). We omit the verification that o(α0) = ξ; hint: o(α0)
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can be computed explitly in this case as we have maps Hn → Fn (not compatible with
differentials) lifting the components of α0. This finishes the proof. �
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CHAPTER 92

The Cotangent Complex

1. Introduction

The goal of this chapter is to construct the cotangent complex of a ring map, of a morphism
of schemes, and of a morphism of algebraic spaces. Some references are the notes [?], the
paper [?], and the books [?] and [?].

2. Advice for the reader

In writing this chapter we have tried to minimize the use of simplicial techniques. We
view the choice of a resolution P• of a ring B over a ring A as a tool to calculating the
homology of abelian sheaves on the category CB/A, see Remark 5.5. This is similar to
the role played by a “good cover” to compute cohomology using the Čech complex. To
read a bit on homology on categories, please visit Cohomology on Sites, Section 39. The
derived lower shriek functor Lπ! is to homology what RΓ(CB/A,−) is to cohomology.
The category CB/A, studied in Section 4, is the opposite of the category of factorizations
A→ P → B where P is a polynomial algebra over A. This category comes with maps of
sheaves of rings

A −→ O −→ B

where over the object U = (P → B) we haveO(U) = P . It turns out that we obtain the
cotangent complex of B over A as

LB/A = Lπ!(ΩO/A ⊗O B)

see Lemma 4.3. We have consistently tried to use this point of view to prove the basic prop-
erties of cotangent complexes of ring maps. In particular, all of the results can be proven
without relying on the existence of standard resolutions, although we have not done so.
The theory is quite satisfactory, except that perhaps the proof of the fundamental triangle
(Proposition 7.4) uses just a little bit more theory on derived lower shriek functors. To
provide the reader with an alternative, we give a rather complete sketch of an approach to
this result based on simple properties of standard resolutions in Remarks 7.5 and 7.6.

Our approach to the cotangent complex for morphisms of ringed topoi, morphisms of
schemes, morphisms of algebraic spaces, etc is to deduce as much as possible from the case
of “plain ring maps” discussed above.

3. The cotangent complex of a ring map

Let A be a ring. Let AlgA be the category of A-algebras. Consider the pair of adjoint
functors (U, V ) where V : AlgA → Sets is the forgetful functor and U : Sets → AlgA
assigns to a set E the polynomial algebra A[E] on E over A. Let X• be the simplicial
object of Fun(AlgA,AlgA) constructed in Simplicial, Section 34.

6449
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Consider anA-algebraB. Denote P• = X•(B) the resulting simplicialA-algebra. Recall
that P0 = A[B], P1 = A[A[B]], and so on. In particular each term Pn is a polynomial
A-algebra. Recall also that there is an augmentation

ε : P• −→ B

where we view B as a constant simplicial A-algebra.

Definition 3.1. Let A → B be a ring map. The standard resolution of B over A is
the augmentation ε : P• → B with terms

P0 = A[B], P1 = A[A[B]], . . .

and maps as constructed above.

It will turn out that we can use the standard resolution to compute left derived functors
in certain settings.

Definition 3.2. The cotangent complex LB/A of a ring mapA→ B is the complex
of B-modules associated to the simplicial B-module

ΩP•/A ⊗P•,ε B

where ε : P• → B is the standard resolution of B over A.

In Simplicial, Section 23 we associate a chain complex to a simplicial module, but here
we work with cochain complexes. Thus the term L−n

B/A in degree −n is the B-module
ΩPn/A ⊗Pn,εn B and LmB/A = 0 for m > 0.

Remark 3.3. Let A→ B be a ring map. LetA be the category of arrows ψ : C → B
of A-algebras and let S be the category of maps E → B where E is a set. There are
adjoint functors V : A → S (the forgetful functor) and U : S → A which sends E → B
to A[E] → B. Let X• be the simplicial object of Fun(A,A) constructed in Simplicial,
Section 34. The diagram

A

��

// Soo

��
AlgA // Setsoo

commutes. It follows thatX•(idB : B → B) is equal to the standard resolution ofB over
A.

Lemma 3.4. Let Ai → Bi be a system of ring maps over a directed index set I . Then
colimLBi/Ai = LcolimBi/ colimAi .

Proof. This is true because the forgetful functor V : A-Alg → Sets and its adjoint
U : Sets→ A-Alg commute with filtered colimits. Moreover, the functor B/A 7→ ΩB/A
does as well (Algebra, Lemma 131.5). �

4. Simplicial resolutions and derived lower shriek

Let A → B be a ring map. Consider the category whose objects are A-algebra maps α :
P → B where P is a polynomial algebra over A (in some set1 of variables) and whose
morphisms s : (α : P → B) → (α′ : P ′ → B) are A-algebra homomorphisms s :
P → P ′ with α′ ◦ s = α. Let C = CB/A denote the opposite of this category. The reason

1It suffices to consider sets of cardinality at most the cardinality of B.
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for taking the opposite is that we want to think of objects (P, α) as corresponding to the
diagram of affine schemes

Spec(B)

��

// Spec(P )

yy
Spec(A)

We endow C with the chaotic topology (Sites, Example 6.6), i.e., we endow C with the
structure of a site where coverings are given by identities so that all presheaves are sheaves.
Moreover, we endow C with two sheaves of rings. The first is the sheaf O which sends to
object (P, α) to P . Then second is the constant sheaf B, which we will denote B. We
obtain the following diagram of morphisms of ringed topoi

(4.0.1)

(Sh(C), B)
i
//

π

��

(Sh(C),O)

(Sh(∗), B)

The morphism i is the identity on underlying topoi and i] : O → B is the obvious map.
The map π is as in Cohomology on Sites, Example 39.1. An important role will be played
in the following by the derived functors Li∗ : D(O) −→ D(B) left adjoint toRi∗ = i∗ :
D(B)→ D(O) and Lπ! : D(B) −→ D(B) left adjoint to π∗ = π−1 : D(B)→ D(B).

Lemma 4.1. With notation as above let P• be a simplicial A-algebra endowed with
an augmentation ε : P• → B. Assume each Pn is a polynomial algebra over A and ε is a
trivial Kan fibration on underlying simplicial sets. Then

Lπ!(F) = F(P•, ε)
in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

Proof. We will use the criterion of Cohomology on Sites, Lemma 39.7 to prove this.
Given an object U = (Q, β) of C we have to show that

S• = MorC((Q, β), (P•, ε))
is homotopy equivalent to a singleton. Write Q = A[E] for some set E (this is possible
by our choice of the category C). We see that

S• = MorSets((E, β|E), (P•, ε))
Let ∗ be the constant simplicial set on a singleton. For b ∈ B let Fb,• be the simplicial set
defined by the cartesian diagram

Fb,• //

��

P•

ε

��
∗ b // B

With this notation S• =
∏
e∈E Fβ(e),•. Since we assumed ε is a trivial Kan fibration we

see that Fb,• → ∗ is a trivial Kan fibration (Simplicial, Lemma 30.3). Thus S• → ∗ is a
trivial Kan fibration (Simplicial, Lemma 30.6). Therefore S• is homotopy equivalent to ∗
(Simplicial, Lemma 30.8). �

In particular, we can use the standard resolution of B over A to compute derived lower
shriek.
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Lemma 4.2. Let A→ B be a ring map. Let ε : P• → B be the standard resolution of
B over A. Let π be as in (4.0.1). Then

Lπ!(F) = F(P•, ε)
in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

First proof. We will apply Lemma 4.1. Since the terms Pn are polynomial algebras
we see the first assumption of that lemma is satisfied. The second assumption is proved as
follows. By Simplicial, Lemma 34.3 the map ε is a homotopy equivalence of underlying
simplicial sets. By Simplicial, Lemma 31.9 this implies ε induces a quasi-isomorphism of
associated complexes of abelian groups. By Simplicial, Lemma 31.8 this implies that ε is a
trivial Kan fibration of underlying simplicial sets. �

Second proof. We will use the criterion of Cohomology on Sites, Lemma 39.7. Let
U = (Q, β) be an object of C. We have to show that

S• = MorC((Q, β), (P•, ε))
is homotopy equivalent to a singleton. Write Q = A[E] for some set E (this is possible
by our choice of the category C). Using the notation of Remark 3.3 we see that

S• = MorS((E → B), i(P• → B))
By Simplicial, Lemma 34.3 the map i(P• → B)→ i(B → B) is a homotopy equivalence
in S . Hence S• is homotopy equivalent to

MorS((E → B), (B → B)) = {∗}
as desired. �

Lemma 4.3. LetA→ B be a ring map. Letπ and i be as in (4.0.1). There is a canonical
isomorphism

LB/A = Lπ!(Li∗ΩO/A) = Lπ!(i∗ΩO/A) = Lπ!(ΩO/A ⊗O B)
in D(B).

Proof. For an object α : P → B of the category C the module ΩP/A is a free P -
module. Thus ΩO/A is a flat O-module. Hence Li∗ΩO/A = i∗ΩO/A is the sheaf of B-
modules which associates toα : P → A theB-module ΩP/A⊗P,αB. By Lemma 4.2 we see
that the right hand side is computed by the value of this sheaf on the standard resolution
which is our definition of the left hand side (Definition 3.2). �

Lemma 4.4. If A→ B is a ring map, then Lπ!(π−1M) = M with π as in (4.0.1).

Proof. This follows from Lemma 4.1 which tells us Lπ!(π−1M) is computed by
(π−1M)(P•, ε) which is the constant simplicial object on M . �

Lemma 4.5. If A→ B is a ring map, then H0(LB/A) = ΩB/A.

Proof. We will prove this by a direct calculation. We will use the identification of
Lemma 4.3. There is clearly a map from ΩO/A⊗B to the constant sheaf with value ΩB/A.
Thus this map induces a map

H0(LB/A) = H0(Lπ!(ΩO/A ⊗B)) = π!(ΩO/A ⊗B)→ ΩB/A
By choosing an object P → B of CB/A with P → B surjective we see that this map is
surjective (by Algebra, Lemma 131.6). To show that it is injective, suppose that P → B is
an object of CB/A and that ξ ∈ ΩP/A ⊗P B is an element which maps to zero in ΩB/A.
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We first choose factorization P → P ′ → B such that P ′ → B is surjective and P ′ is
a polynomial algebra over A. We may replace P by P ′. If B = P/I , then the kernel
ΩP/A ⊗P B → ΩB/A is the image of I/I2 (Algebra, Lemma 131.9). Say ξ is the image of
f ∈ I . Then we consider the two maps a, b : P ′ = P [x]→ P , the first of which maps x to
0 and the second of which maps x to f (in both cases P [x] → B maps x to zero). We see
that ξ and 0 are the image of dx⊗ 1 in ΩP ′/A ⊗P ′ B. Thus ξ and 0 have the same image
in the colimit (see Cohomology on Sites, Example 39.1) π!(ΩO/A ⊗B) as desired. �

Lemma 4.6. If B is a polynomial algebra over the ring A, then with π as in (4.0.1)
we have that π! is exact and π!F = F(B → B).

Proof. This follows from Lemma 4.1 which tells us the constant simplicial algebra
on B can be used to compute Lπ!. �

Lemma 4.7. IfB is a polynomial algebra over the ringA, thenLB/A is quasi-isomorphic
to ΩB/A[0].

Proof. Immediate from Lemmas 4.3 and 4.6. �

5. Constructing a resolution

In the Noetherian finite type case we can construct a “small” simplicial resolution for finite
type ring maps.

Lemma 5.1. Let A be a Noetherian ring. Let A→ B be a finite type ring map. LetA
be the category of A-algebra maps C → B. Let n ≥ 0 and let P• be a simplicial object of
A such that

(1) P• → B is a trivial Kan fibration of simplicial sets,
(2) Pk is finite type over A for k ≤ n,
(3) P• = cosknsknP• as simplicial objects ofA.

Then Pn+1 is a finite type A-algebra.

Proof. Although the proof we give of this lemma is straightforward, it is a bit messy.
To clarify the idea we explain what happens for low n before giving the proof in general.
For example, if n = 0, then (3) means that P1 = P0 ×B P0. Since the ring map P0 → B
is surjective, this is of finite type over A by More on Algebra, Lemma 5.1.

If n = 1, then (3) means that

P2 = {(f0, f1, f2) ∈ P 3
1 | d0f0 = d0f1, d1f0 = d0f2, d1f1 = d1f2}

where the equalities take place in P0. Observe that the triple

(d0f0, d1f0, d1f1) = (d0f1, d0f2, d1f2)

is an element of the fibre product P0×B P0×B P0 overB because the maps di : P1 → P0
are morphisms over B. Thus we get a map

ψ : P2 −→ P0 ×B P0 ×B P0

The fibre ofψ over an element (g0, g1, g2) ∈ P0×BP0×BP0 is the set of triples (f0, f1, f2)
of 1-simplices with (d0, d1)(f0) = (g0, g1), (d0, d1)(f1) = (g0, g2), and (d0, d1)(f2) =
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(g1, g2). As P• → B is a trivial Kan fibration the map (d0, d1) : P1 → P0 ×B P0 is
surjective. Thus we see that P2 fits into the cartesian diagram

P2

��

// P 3
1

��
P0 ×B P0 ×B P0 // (P0 ×B P0)3

By More on Algebra, Lemma 5.2 we conclude. The general case is similar, but requires a
bit more notation.
The case n > 1. By Simplicial, Lemma 19.14 the condition P• = cosknsknP• implies the
same thing is true in the category of simplicial A-algebras and hence in the category of
sets (as the forgetful functor from A-algebras to sets commutes with limits). Thus

Pn+1 = Mor(∆[n+ 1], P•) = Mor(skn∆[n+ 1], sknP•)
by Simplicial, Lemma 11.3 and Equation (19.0.1). We will prove by induction on 1 ≤ k <
m ≤ n+ 1 that the ring

Qk,m = Mor(skk∆[m], skkP•)
is of finite type overA. The case k = 1, 1 < m ≤ n+1 is entirely similar to the discussion
above in the case n = 1. Namely, there is a cartesian diagram

Q1,m

��

// PN1

��
P0 ×B . . .×B P0 // (P0 ×B P0)N

where N =
(
m+1

2
)
. We conclude as before.

Let 1 ≤ k0 ≤ n and assume Qk,m is of finite type over A for all 1 ≤ k ≤ k0 and
k < m ≤ n+ 1. For k0 + 1 < m ≤ n+ 1 we claim there is a cartesian square

Qk0+1,m

��

// PNk0+1

��
Qk0,m

// QNk0,k0+1

where N is the number of nondegenerate (k0 + 1)-simplices of ∆[m]. Namely, to see this
is true, think of an element of Qk0+1,m as a function f from the (k0 + 1)-skeleton of
∆[m] to P•. We can restrict f to the k0-skeleton which gives the left vertical map of the
diagram. We can also restrict to each nondegenerate (k0 +1)-simplex which gives the top
horizontal arrow. Moreover, to give such an f is the same thing as giving its restriction to
k0-skeleton and to each nondegenerate (k0 + 1)-face, provided these agree on the overlap,
and this is exactly the content of the diagram. Moreover, the fact that P• → B is a trivial
Kan fibration implies that the map

Pk0 → Qk0,k0+1 = Mor(∂∆[k0 + 1], P•)
is surjective as every map ∂∆[k0 + 1]→ B can be extended to ∆[k0 + 1]→ B for k0 ≥ 1
(small argument about constant simplicial sets omitted). Since by induction hypothesis
the rings Qk0,m, Qk0,k0+1 are finite type A-algebras, so is Qk0+1,m by More on Algebra,
Lemma 5.2 once more. �
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Proposition 5.2. Let A be a Noetherian ring. Let A→ B be a finite type ring map.
There exists a simplicial A-algebra P• with an augmentation ε : P• → B such that each
Pn is a polynomial algebra of finite type over A and such that ε is a trivial Kan fibration
of simplicial sets.

Proof. LetA be the category ofA-algebra mapsC → B. In this proof our simplicial
objects and skeleton and coskeleton functors will be taken in this category.
Choose a polynomial algebra P0 of finite type over A and a surjection P0 → B. As a first
approximation we take P• = cosk0(P0). In other words, P• is the simplicial A-algebra
with terms Pn = P0 ×A . . . ×A P0. (In the final paragraph of the proof this simplicial
object will be denoted P 0

• .) By Simplicial, Lemma 32.3 the map P• → B is a trivial Kan
fibration of simplicial sets. Also, observe that P• = cosk0sk0P•.
Suppose for some n ≥ 0 we have constructed P• (in the final paragraph of the proof this
will be Pn• ) such that

(a) P• → B is a trivial Kan fibration of simplicial sets,
(b) Pk is a finitely generated polynomial algebra for 0 ≤ k ≤ n, and
(c) P• = cosknsknP•

By Lemma 5.1 we can find a finitely generated polynomial algebra Q over A and a surjec-
tion Q → Pn+1. Since Pn is a polynomial algebra the A-algebra maps si : Pn → Pn+1
lift to maps s′

i : Pn → Q. Set d′
j : Q → Pn equal to the composition of Q → Pn+1 and

dj : Pn+1 → Pn. We obtain a truncated simplicial object P ′
• ofA by setting P ′

k = Pk for
k ≤ n and P ′

n+1 = Q and morphisms d′
i = di and s′

i = si in degrees k ≤ n− 1 and using
the morphisms d′

j and s′
i in degree n. Extend this to a full simplicial object P ′

• ofA using
coskn+1. By functoriality of the coskeleton functors there is a morphism P ′

• → P• of
simplicial objects extending the given morphism of (n + 1)-truncated simplicial objects.
(This morphism will be denoted Pn+1

• → Pn• in the final paragraph of the proof.)
Note that conditions (b) and (c) are satisfied for P ′

• with n replaced by n + 1. We claim
the mapP ′

• → P• satisfies assumptions (1), (2), (3), and (4) of Simplicial, Lemmas 32.1 with
n + 1 instead of n. Conditions (1) and (2) hold by construction. By Simplicial, Lemma
19.14 we see that we have P• = coskn+1skn+1P• and P ′

• = coskn+1skn+1P
′
• not only in

A but also in the category of A-algebras, whence in the category of sets (as the forgetful
functor from A-algebras to sets commutes with all limits). This proves (3) and (4). Thus
the lemma applies and P ′

• → P• is a trivial Kan fibration. By Simplicial, Lemma 30.4 we
conclude that P ′

• → B is a trivial Kan fibration and (a) holds as well.
To finish the proof we take the inverse limit P• = limPn• of the sequence of simplicial
algebras

. . .→ P 2
• → P 1

• → P 0
•

constructed above. The map P• → B is a trivial Kan fibration by Simplicial, Lemma 30.5.
However, the construction above stabilizes in each degree to a fixed finitely generated
polynomial algebra as desired. �

Lemma 5.3. Let A be a Noetherian ring. Let A → B be a finite type ring map. Let
π, B be as in (4.0.1). If F is an B-module such that F(P, α) is a finite B-module for
all α : P = A[x1, . . . , xn] → B, then the cohomology modules of Lπ!(F) are finite
B-modules.

Proof. By Lemma 4.1 and Proposition 5.2 we can compute Lπ!(F) by a complex
constructed out of the values of F on finite type polynomial algebras. �
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Lemma 5.4. Let A be a Noetherian ring. Let A→ B be a finite type ring map. Then
Hn(LB/A) is a finite B-module for all n ∈ Z.

Proof. Apply Lemmas 4.3 and 5.3. �

Remark 5.5 (Resolutions). Let A → B be any ring map. Let us call an augmented
simplicial A-algebra ε : P• → B a resolution of B over A if each Pn is a polynomial
algebra and ε is a trivial Kan fibration of simplicial sets. If P• → B is an augmentation
of a simplicial A-algebra with each Pn a polynomial algebra surjecting onto B, then the
following are equivalent

(1) ε : P• → B is a resolution of B over A,
(2) ε : P• → B is a quasi-isomorphism on associated complexes,
(3) ε : P• → B induces a homotopy equivalence of simplicial sets.

To see this use Simplicial, Lemmas 30.8, 31.9, and 31.8. A resolution P• of B over A gives
a cosimplicial object U• of CB/A as in Cohomology on Sites, Lemma 39.7 and it follows
that

Lπ!F = F(P•)
functorially in F , see Lemma 4.1. The (formal part of the) proof of Proposition 5.2 shows
that resolutions exist. We also have seen in the first proof of Lemma 4.2 that the standard
resolution of B over A is a resolution (so that this terminology doesn’t lead to a conflict).
However, the argument in the proof of Proposition 5.2 shows the existence of resolutions
without appealing to the simplicial computations in Simplicial, Section 34. Moreover, for
any choice of resolution we have a canonical isomorphism

LB/A = ΩP•/A ⊗P•,ε B

inD(B) by Lemma 4.3. The freedom to choose an arbitrary resolution can be quite useful.

Lemma 5.6. LetA→ B be a ring map. Let π,O,B be as in (4.0.1). For anyO-module
F we have

Lπ!(F) = Lπ!(Li∗F) = Lπ!(F ⊗L
O B)

in D(Ab).

Proof. It suffices to verify the assumptions of Cohomology on Sites, Lemma 39.12
hold forO → B on CB/A. We will use the results of Remark 5.5 without further mention.
Choose a resolution P• ofB overA to get a suitable cosimplicial object U• of CB/A. Since
P• → B induces a quasi-isomorphism on associated complexes of abelian groups we see
that Lπ!O = B. On the other hand Lπ!B is computed by B(U•) = B. This verifies
the second assumption of Cohomology on Sites, Lemma 39.12 and we are done with the
proof. �

Lemma 5.7. Let A→ B be a ring map. Let π,O, B be as in (4.0.1). We have
Lπ!(O) = Lπ!(B) = B and LB/A = Lπ!(ΩO/A ⊗O B) = Lπ!(ΩO/A)

in D(Ab).

Proof. This is just an application of Lemma 5.6 (and the first equality on the right is
Lemma 4.3). �

Here is a special case of the fundamental triangle that is easy to prove.

Lemma 5.8. Let A → B → C be ring maps. If B is a polynomial algebra over A,
then there is a distinguished triangle LB/A ⊗L

B C → LC/A → LC/B → LB/A ⊗L
B C[1]

in D(C).
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Proof. We will use the observations of Remark 5.5 without further mention. Choose
a resolution ε : P• → C of C over B (for example the standard resolution). Since B is a
polynomial algebra over A we see that P• is also a resolution of C over A. Hence LC/A
is computed by ΩP•/A ⊗P•,ε C and LC/B is computed by ΩP•/B ⊗P•,ε C. Since for each
n we have the short exact sequence 0 → ΩB/A ⊗B Pn → ΩPn/A → ΩPn/B (Algebra,
Lemma 138.9) and since LB/A = ΩB/A[0] (Lemma 4.7) we obtain the result. �

Example 5.9. Let A → B be a ring map. In this example we will construct an “ex-
plicit” resolution P• of B over A of length 2. To do this we follow the procedure of the
proof of Proposition 5.2, see also the discussion in Remark 5.5.

We choose a surjection P0 = A[ui]→ B where ui is a set of variables. Choose generators
ft ∈ P0, t ∈ T of the ideal Ker(P0 → B). We choose P1 = A[ui, xt] with face maps d0
and d1 the unique A-algebra maps with dj(ui) = ui and d0(xt) = 0 and d1(xt) = ft.
The map s0 : P0 → P1 is the unique A-algebra map with s0(ui) = ui. It is clear that

P1
d0−d1−−−−→ P0 → B → 0

is exact, in particular the map (d0, d1) : P1 → P0×B P0 is surjective. Thus, if P• denotes
the 1-truncated simplicialA-algebra given byP0,P1, d0, d1, and s0, then the augmentation
cosk1(P•) → B is a trivial Kan fibration. The next step of the procedure in the proof of
Proposition 5.2 is to choose a polynomial algebra P2 and a surjection

P2 −→ cosk1(P•)2

Recall that

cosk1(P•)2 = {(g0, g1, g2) ∈ P 3
1 | d0(g0) = d0(g1), d1(g0) = d0(g2), d1(g1) = d1(g2)}

Thinking of gi ∈ P1 as a polynomial in xt the conditions are

g0(0) = g1(0), g0(ft) = g2(0), g1(ft) = g2(ft)

Thus cosk1(P•)2 contains the elements yt = (xt, xt, ft) and zt = (0, xt, xt). Every
element G in cosk1(P•)2 is of the form G = H + (0, 0, g) where H is in the image of
A[ui, yt, zt] → cosk1(P•)2. Here g ∈ P1 is a polynomial with vanishing constant term
such that g(ft) = 0 in P0. Observe that

(1) g = xtxt′ − ftxt′ and
(2) g =

∑
rtxt with rt ∈ P0 if

∑
rtft = 0 in P0

are elements of P1 of the desired form. Let

Rel = Ker(
⊕

t∈T
P0 −→ P0), (rt) 7−→

∑
rtft

We set P2 = A[ui, yt, zt, vr, wt,t′ ] where r = (rt) ∈ Rel, with map

P2 −→ cosk1(P•)2

given by yt 7→ (xt, xt, ft), zt 7→ (0, xt, xt), vr 7→ (0, 0,
∑
rtxt), andwt,t′ 7→ (0, 0, xtxt′−

ftxt′). A calculation (omitted) shows that this map is surjective. Our choice of the map
displayed above determines the maps d0, d1, d2 : P2 → P1. Finally, the procedure in
the proof of Proposition 5.2 tells us to choose the maps s0, s1 : P1 → P2 lifting the two
maps P1 → cosk1(P•)2. It is clear that we can take si to be the unique A-algebra maps
determined by s0(xt) = yt and s1(xt) = zt.
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6. Functoriality

In this section we consider a commutative square

(6.0.1)

B // B′

A

OO

// A′

OO

of ring maps. We claim there is a canonical B-linear map of complexes

LB/A −→ LB′/A′

associated to this diagram. Namely, if P• → B is the standard resolution ofB overA and
P ′

• → B′ is the standard resolution of B′ over A′, then there is a canonical map P• → P ′
•

of simplicial A-algebras compatible with the augmentations P• → B and P ′
• → B′. This

can be seen in terms of the construction of standard resolutions in Simplicial, Section 34
but in the special case at hand it probably suffices to say simply that the maps

P0 = A[B] −→ A′[B′] = P ′
0, P1 = A[A[B]] −→ A′[A′[B′]] = P ′

1,

and so on are given by the given maps A → A′ and B → B′. The desired map LB/A →
LB′/A′ then comes from the associated maps ΩPn/A → ΩP ′

n/A
′ .

Another description of the functoriality map can be given as follows. Let C = CB/A and
C′ = C′

B′/A be the categories considered in Section 4. There is a functor

u : C −→ C′, (P, α) 7−→ (P ⊗A A′, c ◦ (α⊗ 1))

where c : B ⊗A A′ → B′ is the obvious map. As discussed in Cohomology on Sites,
Example 39.3 we obtain a morphism of topoi g : Sh(C) → Sh(C′) and a commutative
diagram of maps of ringed topoi

(6.0.2)

(Sh(C′), B)

π

��

(Sh(C′), B′)

π

��

h
oo (Sh(C), B′)

π′

��

g
oo

(Sh(∗), B) (Sh(∗), B′)foo (Sh(∗), B′)oo

Here h is the identity on underlying topoi and given by the ring mapB → B′ on sheaves
of rings. By Cohomology on Sites, Remark 38.7 given F on C and F ′ on C′ and a trans-
formation t : F → g−1F ′ we obtain a canonical map Lπ!(F) → Lπ′

!(F ′). If we apply
this to the sheaves

F : (P, α) 7→ ΩP/A ⊗P B, F ′ : (P ′, α′) 7→ ΩP ′/A′ ⊗P ′ B′,

and the transformation t given by the canonical maps

ΩP/A ⊗P B −→ ΩP⊗AA′/A′ ⊗P⊗AA′ B′

to get a canonical map

Lπ!(ΩO/A ⊗O B) −→ Lπ′
!(ΩO′/A′ ⊗O′ B′)

By Lemma 4.3 this gives LB/A → LB′/A′ . We omit the verification that this map agrees
with the map defined above in terms of simplicial resolutions.

Lemma 6.1. Assume (6.0.1) induces a quasi-isomorphismB⊗L
AA

′ = B′. Then, with
notation as in (6.0.2) and F ′ ∈ Ab(C′), we have Lπ!(g−1F ′) = Lπ′

!(F ′).
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Proof. We use the results of Remark 5.5 without further mention. We will apply
Cohomology on Sites, Lemma 39.8. Let P• → B be a resolution. If we can show that
u(P•) = P• ⊗A A′ → B′ is a quasi-isomorphism, then we are done. The complex of
A-modules s(P•) associated to P• (viewed as a simplicial A-module) is a free A-module
resolution of B. Namely, Pn is a free A-module and s(P•) → B is a quasi-isomorphism.
Thus B ⊗L

A A
′ is computed by s(P•) ⊗A A′ = s(P• ⊗A A′). Therefore the assumption

of the lemma signifies that ε′ : P• ⊗A A′ → B′ is a quasi-isomorphism. �

The following lemma in particular applies when A → A′ is flat and B′ = B ⊗A A′ (flat
base change).

Lemma 6.2. If (6.0.1) induces a quasi-isomorphism B ⊗L
A A

′ = B′, then the functo-
riality map induces an isomorphism

LB/A ⊗L
B B

′ −→ LB′/A′

Proof. We will use the notation introduced in Equation (6.0.2). We have

LB/A ⊗L
B B

′ = Lπ!(ΩO/A ⊗O B)⊗L
B B

′ = Lπ!(Lh∗(ΩO/A ⊗O B))

the first equality by Lemma 4.3 and the second by Cohomology on Sites, Lemma 39.6.
Since ΩO/A is a flatO-module, we see that ΩO/A⊗OB is a flatB-module. ThusLh∗(ΩO/A⊗O
B) = ΩO/A⊗O B′ which is equal to g−1(ΩO′/A′ ⊗O′ B′) by inspection. we conclude by
Lemma 6.1 and the fact that LB′/A′ is computed by Lπ′

!(ΩO′/A′ ⊗O′ B′). �

Remark 6.3. Suppose that we are given a square (6.0.1) such that there exists an
arrow κ : B → A′ making the diagram commute:

B
β
//

κ   

B′

A

OO

α // A′

OO

In this case we claim the functoriality map P• → P ′
• is homotopic to the composition

P• → B → A′ → P ′
•. Namely, using κ the functoriality map factors as

P• → PA′/A′,• → P ′
•

where PA′/A′,• is the standard resolution of A′ over A′. Since A′ is the polynomial alge-
bra on the empty set over A′ we see from Simplicial, Lemma 34.3 that the augmentation
εA′/A′ : PA′/A′,• → A′ is a homotopy equivalence of simplicial rings. Observe that the
homotopy inverse map c : A′ → PA′/A′,• constructed in the proof of that lemma is just
the structure morphism, hence we conclude what we want because the two compositions

P• // PA′/A′,•
id //

c◦εA′/A′
// PA′/A′,• // P ′

•

are the two maps discussed above and these are homotopic (Simplicial, Remark 26.5). Since
the second map P• → P ′

• induces the zero map ΩP•/A → ΩP ′
•/A

′ we conclude that the
functoriality map LB/A → LB′/A′ is homotopic to zero in this case.

Lemma 6.4. Let A → B and A → C be ring maps. Then the map LB×C/A →
LB/A ⊕ LC/A is an isomorphism in D(B × C).
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Proof. Although this lemma can be deduced from the fundamental triangle we will
give a direct and elementary proof of this now. Factor the ring map A → B × C as
A→ A[x]→ B × C where x 7→ (1, 0). By Lemma 5.8 we have a distinguished triangle

LA[x]/A ⊗L
A[x] (B × C)→ LB×C/A → LB×C/A[x] → LA[x]/A ⊗L

A[x] (B × C)[1]

in D(B × C). Similarly we have the distinguished triangles

LA[x]/A ⊗L
A[x] B → LB/A → LB/A[x] → LA[x]/A ⊗L

A[x] B[1]
LA[x]/A ⊗L

A[x] C → LC/A → LC/A[x] → LA[x]/A ⊗L
A[x] C[1]

Thus it suffices to prove the result for B × C over A[x]. Note that A[x] → A[x, x−1] is
flat, that (B×C)⊗A[x]A[x, x−1] = B⊗A[x]A[x, x−1], and that C⊗A[x]A[x, x−1] = 0.
Thus by base change (Lemma 6.2) the map LB×C/A[x] → LB/A[x] ⊕ LC/A[x] becomes
an isomorphism after inverting x. In the same way one shows that the map becomes an
isomorphism after inverting x− 1. This proves the lemma. �

7. The fundamental triangle

In this section we consider a sequence of ring maps A → B → C. It is our goal to show
that this triangle gives rise to a distinguished triangle

(7.0.1) LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]

in D(C). This will be proved in Proposition 7.4. For an alternative approach see Remark
7.5.

Consider the category CC/B/A wich is the opposite of the category whose objects are (P →
B,Q→ C) where

(1) P is a polynomial algebra over A,
(2) P → B is an A-algebra homomorphism,
(3) Q is a polynomial algebra over P , and
(4) Q→ C is a P -algebra-homomorphism.

We take the opposite as we want to think of (P → B,Q → C) as corresponding to the
commutative diagram

Spec(C)

��

// Spec(Q)

��
Spec(B)

��

// Spec(P )

yy
Spec(A)

Let CB/A, CC/A, CC/B be the categories considered in Section 4. There are functors

u1 : CC/B/A → CB/A, (P → B,Q→ C) 7→ (P → B)
u2 : CC/B/A → CC/A, (P → B,Q→ C) 7→ (Q→ C)
u3 : CC/B/A → CC/B , (P → B,Q→ C) 7→ (Q⊗P B → C)
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These functors induce corresponding morphisms of topoi gi. Let us denote Oi = g−1
i O

so that we get morphisms of ringed topoi

(7.0.2)
g1 : (Sh(CC/B/A),O1) −→ (Sh(CB/A),O)
g2 : (Sh(CC/B/A),O2) −→ (Sh(CC/A),O)
g3 : (Sh(CC/B/A),O3) −→ (Sh(CC/B),O)

Let us denote π : Sh(CC/B/A) → Sh(∗), π1 : Sh(CB/A) → Sh(∗), π2 : Sh(CC/A) →
Sh(∗), and π3 : Sh(CC/B)→ Sh(∗), so that π = πi ◦gi. We will obtain our distinguished
triangle from the identification of the cotangent complex in Lemma 4.3 and the following
lemmas.

Lemma 7.1. With notation as in (7.0.2) set
Ω1 = ΩO/A ⊗O B on CB/A
Ω2 = ΩO/A ⊗O C on CC/A
Ω3 = ΩO/B ⊗O C on CC/B

Then we have a canonical short exact sequence of sheaves of C-modules

0→ g−1
1 Ω1 ⊗B C → g−1

2 Ω2 → g−1
3 Ω3 → 0

on CC/B/A.

Proof. Recall that g−1
i is gotten by simply precomposing with ui. Given an object

U = (P → B,Q→ C) we have a split short exact sequence
0→ ΩP/A ⊗Q→ ΩQ/A → ΩQ/P → 0

for example by Algebra, Lemma 138.9. Tensoring with C over Q we obtain a short exact
sequence

0→ ΩP/A ⊗ C → ΩQ/A ⊗ C → ΩQ/P ⊗ C → 0
We have ΩP/A⊗C = ΩP/A⊗B⊗C whence this is the value of g−1

1 Ω1⊗B C on U . The
module ΩQ/A ⊗ C is the value of g−1

2 Ω2 on U . We have ΩQ/P ⊗ C = ΩQ⊗PB/B ⊗ C
by Algebra, Lemma 131.12 hence this is the value of g−1

3 Ω3 on U . Thus the short exact
sequence of the lemma comes from assigning to U the last displayed short exact sequence.

�

Lemma 7.2. With notation as in (7.0.2) suppose that C is a polynomial algebra over
B. Then Lπ!(g−1

3 F) = Lπ3,!F = π3,!F for any abelian sheaf F on CC/B
Proof. Write C = B[E] for some set E. Choose a resolution P• → B of B over

A. For every n consider the object Un = (Pn → B,Pn[E] → C) of CC/B/A. Then U•
is a cosimplicial object of CC/B/A. Note that u3(U•) is the constant cosimplicial object
of CC/B with value (C → C). We will prove that the object U• of CC/B/A satisfies the
hypotheses of Cohomology on Sites, Lemma 39.7. This implies the lemma as it shows that
Lπ!(g−1

3 F) is computed by the constant simplicial abelian groupF(C → C) which is the
value of Lπ3,!F = π3,!F by Lemma 4.6.
Let U = (β : P → B, γ : Q→ C) be an object of CC/B/A. We may write P = A[S] and
Q = A[S q T ] by the definition of our category CC/B/A. We have to show that

MorCC/B/A(U•, U)
is homotopy equivalent to a singleton simplicial set ∗. Observe that this simplicial set is
the product ∏

s∈S
Fs ×

∏
t∈T

F ′
t
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where Fs is the corresponding simplicial set for Us = (A[{s}] → B,A[{s}] → C) and
F ′
t is the corresponding simplicial set for Ut = (A → B,A[{t}] → C). Namely, the

object U is the product
∏
Us ×

∏
Ut in CC/B/A. It suffices each Fs and F ′

t is homotopy
equivalent to ∗, see Simplicial, Lemma 26.10. The case of Fs follows as P• → B is a trivial
Kan fibration (as a resolution) and Fs is the fibre of this map over β(s). (Use Simplicial,
Lemmas 30.3 and 30.8). The case of F ′

t is more interesting. Here we are saying that the
fibre of

P•[E] −→ C = B[E]
over γ(t) ∈ C is homotopy equivalent to a point. In fact we will show this map is a trivial
Kan fibration. Namely, P• → B is a trivial can fibration. For any ring R we have

R[E] = colimΣ⊂Map(E,Z≥0) finite
∏

I∈Σ
R

(filtered colimit). Thus the displayed map of simplicial sets is a filtered colimit of trivial
Kan fibrations, whence a trivial Kan fibration by Simplicial, Lemma 30.7. �

Lemma 7.3. With notation as in (7.0.2) we have Lgi,! ◦ g−1
i = id for i = 1, 2, 3 and

hence also Lπ! ◦ g−1
i = Lπi,! for i = 1, 2, 3.

Proof. Proof for i = 1. We claim the functor CC/B/A is a fibred category over CB/A
Namely, suppose given (P → B,Q → C) and a morphism (P ′ → B) → (P → B) of
CB/A. Recall that this means we have an A-algebra homomorphism P → P ′ compatible
with maps to B. Then we set Q′ = Q⊗P P ′ with induced map to C and the morphism

(P ′ → B,Q′ → C) −→ (P → B,Q→ C)
in CC/B/A (note reversal arrows again) is strongly cartesian in CC/B/A over CB/A. More-
over, observe that the fibre category of u1 over P → B is the category CC/P . Let F be
an abelian sheaf on CB/A. Since we have a fibred category we may apply Cohomology on
Sites, Lemma 40.2. Thus Lng1,!g

−1
1 F is the (pre)sheaf which assigns to U ∈ Ob(CB/A)

the nth homology of g−1
1 F restricted to the fibre category over U . Since these restric-

tions are constant the desired result follows from Lemma 4.4 via our identifications of
fibre categories above.

The case i = 2. We claim CC/B/A is a fibred category over CC/A is a fibred category.
Namely, suppose given (P → B,Q → C) and a morphism (Q′ → C) → (Q → C) of
CC/A. Recall that this means we have a B-algebra homomorphism Q → Q′ compatible
with maps to C. Then

(P → B,Q′ → C) −→ (P → B,Q→ C)
is strongly cartesian in CC/B/A over CC/A. Note that the fibre category of u2 overQ→ C

has an final (beware reversal arrows) object, namely, (A → B,Q → C). Let F be an
abelian sheaf on CC/A. Since we have a fibred category we may apply Cohomology on
Sites, Lemma 40.2. Thus Lng2,!g

−1
2 F is the (pre)sheaf which assigns to U ∈ Ob(CC/A)

the nth homology of g−1
1 F restricted to the fibre category overU . Since these restrictions

are constant the desired result follows from Cohomology on Sites, Lemma 39.5 because the
fibre categories all have final objects.

The case i = 3. In this case we will apply Cohomology on Sites, Lemma 40.3 to u = u3 :
CC/B/A → CC/B andF ′ = g−1

3 F for some abelian sheafF on CC/B . SupposeU = (Q→
C) is an object of CC/B . Then IU = CQ/B/A (again beware of reversal of arrows). The
sheaf F ′

U is given by the rule (P → B,Q → Q) 7→ F(Q ⊗P B → C). In other words,
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this sheaf is the pullback of a sheaf on CQ/C via the morphism Sh(CQ/B/A)→ Sh(CQ/B).
Thus Lemma 7.2 shows that Hn(IU ,F ′

U ) = 0 for n > 0 and equal to F(Q→ C) for n =
0. The aforementioned Cohomology on Sites, Lemma 40.3 implies thatLg3,!(g−1

3 F) = F
and the proof is done. �

Proposition 7.4. Let A→ B → C be ring maps. There is a canonical distinguished
triangle

LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]
in D(C).

Proof. Consider the short exact sequence of sheaves of Lemma 7.1 and apply the
derived functor Lπ! to obtain a distinguished triangle

Lπ!(g−1
1 Ω1 ⊗B C)→ Lπ!(g−1

2 Ω2)→ Lπ!(g−1
3 Ω3)→ Lπ!(g−1

1 Ω1 ⊗B C)[1]

in D(C). Using Lemmas 7.3 and 4.3 we see that the second and third terms agree with
LC/A and LC/B and the first one equals

Lπ1,!(Ω1 ⊗B C) = Lπ1,!(Ω1)⊗L
B C = LB/A ⊗L

B C

The first equality by Cohomology on Sites, Lemma 39.6 (and flatness of Ω1 as a sheaf of
modules over B) and the second by Lemma 4.3. �

Remark 7.5. We sketch an alternative, perhaps simpler, proof of the existence of the
fundamental triangle. LetA→ B → C be ring maps and assume thatB → C is injective.
Let P• → B be the standard resolution of B over A and let Q• → C be the standard
resolution of C over B. Picture

P• : A[A[A[B]]]

��

//
//
//
A[A[B]]

��

//
//oo

oo
A[B]

��

oo // B

Q• : A[A[A[C]]]
//
//
//
A[A[C]] //

//oo
oo

A[C]oo // C

Observe that since B → C is injective, the ring Qn is a polynomial algebra over Pn for
all n. Hence we obtain a cosimplicial object in CC/B/A (beware reversal arrows). Now
set Q• = Q• ⊗P• B. The key to the proof of Proposition 7.4 is to show that Q• is a
resolution of C over B. This follows from Cohomology on Sites, Lemma 39.12 applied to
C = ∆,O = P•,O′ = B, and F = Q• (this uses thatQn is flat over Pn; see Cohomology
on Sites, Remark 39.11 to relate simplicial modules to sheaves). The key fact implies that
the distinguished triangle of Proposition 7.4 is the distinguished triangle associated to the
short exact sequence of simplicial C-modules

0→ ΩP•/A ⊗P• C → ΩQ•/A ⊗Q• C → ΩQ•/B
⊗Q•

C → 0

which is deduced from the short exact sequences 0 → ΩPn/A ⊗Pn Qn → ΩQn/A →
ΩQn/Pn → 0 of Algebra, Lemma 138.9. Namely, by Remark 5.5 and the key fact the
complex on the right hand side represents LC/B in D(C).

If B → C is not injective, then we can use the above to get a fundamental triangle for
A → B → B × C. Since LB×C/B → LB/B ⊕ LC/B and LB×C/A → LB/A ⊕ LC/A
are quasi-isomorphism in D(B × C) (Lemma 6.4) this induces the desired distinguished
triangle in D(C) by tensoring with the flat ring map B × C → C.
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Remark 7.6. Let A → B → C be ring maps with B → C injective. Recall the
notation P•, Q•, Q• of Remark 7.5. Let R• be the standard resolution of C over B. In
this remark we explain how to get the canonical identification of ΩQ•/B

⊗Q•
C with

LC/B = ΩR•/B ⊗R• C. Let S• → B be the standard resolution of B over B. Note that
the functoriality map S• → R• identifies Rn as a polynomial algebra over Sn because
B → C is injective. For example in degree 0 we have the map B[B]→ B[C], in degree 1
the mapB[B[B]]→ B[B[C]], and so on. ThusR• = R•⊗S• B is a simplicial polynomial
algebra overB as well and it follows (as in Remark 7.5) from Cohomology on Sites, Lemma
39.12 that R• → C is a resolution. Since we have a commutative diagram

Q• // R•

P•

OO

// S•

OO

// B

we obtain a canonical map Q• = Q• ⊗P• B → R•. Thus the maps

LC/B = ΩR•/B ⊗R• C −→ ΩR•/B
⊗R•

C ←− ΩQ•/B
⊗Q•

C

are quasi-isomorphisms (Remark 5.5) and composing one with the inverse of the other
gives the desired identification.

8. Localization and étale ring maps

In this section we study what happens if we localize our rings. Let A → A′ → B be ring
maps such thatB = B⊗L

AA
′. This happens for example ifA′ = S−1A is the localization

of A at a multiplicative subset S ⊂ A. In this case for an abelian sheaf F ′ on CB/A′ the
homology of g−1F ′ over CB/A agrees with the homology of F ′ over CB/A′ , see Lemma
6.1 for a precise statement.

Lemma 8.1. Let A→ A′ → B be ring maps such that B = B ⊗L
A A

′. Then LB/A =
LB/A′ in D(B).

Proof. According to the discussion above (i.e., using Lemma 6.1) and Lemma 4.3 we
have to show that the sheaf given by the rule (P → B) 7→ ΩP/A ⊗P B on CB/A is
the pullback of the sheaf given by the rule (P → B) 7→ ΩP/A′ ⊗P B. The pullback
functor g−1 is given by precomposing with the functor u : CB/A → CB/A′ , (P → B) 7→
(P ⊗A A′ → B). Thus we have to show that

ΩP/A ⊗P B = ΩP⊗AA′/A′ ⊗(P⊗AA′) B

By Algebra, Lemma 131.12 the right hand side is equal to

(ΩP/A ⊗A A′)⊗(P⊗AA′) B

SinceP is a polynomial algebra overA the module ΩP/A is free and the equality is obvious.
�

Lemma 8.2. Let A → B be a ring map such that B = B ⊗L
A B. Then LB/A = 0 in

D(B).

Proof. This is true because LB/A = LB/B = 0 by Lemmas 8.1 and 4.7. �

Lemma 8.3. LetA→ B be a ring map such that TorAi (B,B) = 0 for i > 0 and such
that LB/B⊗AB = 0. Then LB/A = 0 in D(B).
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Proof. By Lemma 6.2 we see that LB/A ⊗L
B (B ⊗A B) = LB⊗AB/B . Now we use

the distinguished triangle (7.0.1)

LB⊗AB/B ⊗
L
(B⊗AB) B → LB/B → LB/B⊗AB → LB⊗AB/B ⊗

L
(B⊗AB) B[1]

associated to the ring maps B → B ⊗A B → B and the vanishing of LB/B (Lemma 4.7)
and LB/B⊗AB (assumed) to see that

0 = LB⊗AB/B ⊗
L
(B⊗AB) B = LB/A ⊗L

B (B ⊗A B)⊗L
(B⊗AB) B = LB/A

as desired. �

Lemma 8.4. The cotangent complex LB/A is zero in each of the following cases:
(1) A→ B andB⊗AB → B are flat, i.e.,A→ B is weakly étale (More on Algebra,

Definition 104.1),
(2) A→ B is a flat epimorphism of rings,
(3) B = S−1A for some multiplicative subset S ⊂ A,
(4) A→ B is unramified and flat,
(5) A→ B is étale,
(6) A→ B is a filtered colimit of ring maps for which the cotangent complex van-

ishes,
(7) B is a henselization of a local ring of A,
(8) B is a strict henselization of a local ring of A, and
(9) add more here.

Proof. In case (1) we may apply Lemma 8.2 to the surjective flat ring mapB⊗AB →
B to conclude thatLB/B⊗AB = 0 and then we use Lemma 8.3 to conclude. The cases (2) –
(5) are each special cases of (1). Part (6) follows from Lemma 3.4. Parts (7) and (8) follows
from the fact that (strict) henselizations are filtered colimits of étale ring extensions of A,
see Algebra, Lemmas 155.7 and 155.11. �

Lemma 8.5. Let A → B → C be ring maps such that LC/B = 0. Then LC/A =
LB/A ⊗L

B C.

Proof. This is a trivial consequence of the distinguished triangle (7.0.1). �

Lemma 8.6. LetA→ B be ring maps and S ⊂ A, T ⊂ B multiplicative subsets such
that S maps into T . Then LT−1B/S−1A = LB/A ⊗B T−1B in D(T−1B).

Proof. Lemma 8.5 shows that LT−1B/A = LB/A ⊗B T−1B and Lemma 8.1 shows
that LT−1B/A = LT−1B/S−1A. �

Lemma 8.7. LetA→ B be a local ring homomorphism of local rings. LetAh → Bh,
resp. Ash → Bsh be the induced maps of henselizations, resp. strict henselizations. Then

LBh/Ah = LBh/A = LB/A ⊗L
B B

h resp. LBsh/Ash = LBsh/A = LB/A ⊗L
B B

sh

in D(Bh), resp. D(Bsh).

Proof. The complexes LAh/A, LAsh/A, LBh/B , and LBsh/B are all zero by Lemma
8.4. Using the fundamental distinguished triangle (7.0.1) for A → B → Bh we obtain
LBh/A = LB/A ⊗L

B B
h. Using the fundamental triangle for A → Ah → Bh we obtain

LBh/Ah = LBh/A. Similarly for strict henselizations. �



6466 92. THE COTANGENT COMPLEX

9. Smooth ring maps

Let C → B be a surjection of rings with kernel I . Let us call such a ring map “weakly
quasi-regular” if I/I2 is a flat B-module and TorC∗ (B,B) is the exterior algebra on I/I2.
The generalization to “smooth ring maps” of what is done in Lemma 8.4 for “étale ring
maps” is to look at flat ring mapsA→ B such that the multiplication mapB⊗AB → B
is weakly quasi-regular. For the moment we just stick to smooth ring maps.

Lemma 9.1. If A→ B is a smooth ring map, then LB/A = ΩB/A[0].

Proof. We have the agreement in cohomological degree 0 by Lemma 4.5. Thus it
suffices to prove the other cohomology groups are zero. It suffices to prove this locally
on Spec(B) as LBg/A = (LB/A)g for g ∈ B by Lemma 8.5. Thus we may assume that
A → B is standard smooth (Algebra, Lemma 137.10), i.e., that we can factor A → B
as A → A[x1, . . . , xn] → B with A[x1, . . . , xn] → B étale. In this case Lemmas 8.4
and Lemma 8.5 show that LB/A = LA[x1,...,xn]/A ⊗B whence the conclusion by Lemma
4.7. �

10. Positive characteristic

In this section we fix a prime number p. If A is a ring with p = 0 in A, then FA : A→ A
denotes the Frobenius endomorphism a 7→ ap.

Lemma 10.1. Let A → B be a ring map with p = 0 in A. Let P• be the standard
resolution of B over A. The map P• → P• induced by the diagram

B
FB

// B

A

OO

FA // A

OO

discussed in Section 6 is homotopic to the Frobenius endomorphism P• → P• given by
Frobenius on each Pn.

Proof. Let A be the category of Fp-algebra maps A → B. Let S be the category of
pairs (A,E) where A is an Fp-algebra and E is a set. Consider the adjoint functors

V : A → S, (A→ B) 7→ (A,B)
and

U : S → A, (A,E) 7→ (A→ A[E])
Let X be the simplicial object in in the category of functors from A to A constructed in
Simplicial, Section 34. It is clear that P• = X(A→ B) because if we fix A then.
Set Y = U ◦ V . Recall that X is constructed from Y and certain maps and has terms
Xn = Y ◦ . . . ◦ Y with n+ 1 terms; the construction is given in Simplicial, Example 33.1
and please see proof of Simplicial, Lemma 34.2 for details.
Let f : idA → idA be the Frobenius endomorphism of the identity functor. In other
words, we set fA→B = (FA, FB) : (A → B) → (A → B). Then our two maps on
X(A→ B) are given by the natural transformations f ? 1X and 1X ? f . Details omitted.
Thus we conclude by Simplicial, Lemma 33.6. �

Lemma 10.2. Let p be a prime number. Let A → B be a ring homomorphism and
assume that p = 0 in A. The map LB/A → LB/A of Section 6 induced by the Frobenius
maps FA and FB is homotopic to zero.
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Proof. Let P• be the standard resolution ofB overA. By Lemma 10.1 the map P• →
P• induced by FA and FB is homotopic to the map FP• : P• → P• given by Frobenius
on each term. Hence we obtain what we want as clearly FP• induces the zero zero map
ΩPn/A → ΩPn/A (since the derivative of a pth power is zero). �

Lemma 10.3. Let p be a prime number. Let A → B be a ring homomorphism and
assume that p = 0 in A. If A and B are perfect, then LB/A is zero in D(B).

Proof. The map (FA, FB) : (A → B) → (A → B) is an isomorphism hence
induces an isomorphism on LB/A and on the other hand induces zero on LB/A by Lemma
10.2. �

11. Comparison with the naive cotangent complex

The naive cotangent complex was introduced in Algebra, Section 134.

Remark 11.1. LetA→ B be a ring map. Working on CB/A as in Section 4 letJ ⊂ O
be the kernel of O → B. Note that Lπ!(J ) = 0 by Lemma 5.7. Set Ω = ΩO/A ⊗O B so
that LB/A = Lπ!(Ω) by Lemma 4.3. It follows that Lπ!(J → Ω) = Lπ!(Ω) = LB/A.
Thus, for any object U = (P → B) of CB/A we obtain a map

(11.1.1) (J → ΩP/A ⊗P B) −→ LB/A

where J = Ker(P → B) inD(A), see Cohomology on Sites, Remark 39.4. Continuing in
this manner, note that Lπ!(J ⊗L

OB) = Lπ!(J ) = 0 by Lemma 5.6. Since TorO
0 (J , B) =

J /J 2 the spectral sequence

Hp(CB/A,TorO
q (J , B))⇒ Hp+q(CB/A,J ⊗L

O B) = 0

(dual of Derived Categories, Lemma 21.3) implies thatH0(CB/A,J /J 2) = 0 andH1(CB/A,J /J 2) =
0. It follows that the complex of B-modules J /J 2 → Ω satisfies τ≥−1Lπ!(J /J 2 →
Ω) = τ≥−1LB/A. Thus, for any object U = (P → B) of CB/A we obtain a map

(11.1.2) (J/J2 → ΩP/A ⊗P B) −→ τ≥−1LB/A

in D(B), see Cohomology on Sites, Remark 39.4.

The first case is where we have a surjection of rings.

Lemma 11.2. LetA→ B be a surjective ring map with kernel I . ThenH0(LB/A) = 0
and H−1(LB/A) = I/I2. This isomorphism comes from the map (11.1.2) for the object
(A→ B) of CB/A.

Proof. We will show below (using the surjectivity of A → B) that there exists a
short exact sequence

0→ π−1(I/I2)→ J /J 2 → Ω→ 0
of sheaves on CB/A. Taking Lπ! and the associated long exact sequence of homology, and
using the vanishing ofH1(CB/A,J /J 2) andH0(CB/A,J /J 2) shown in Remark 11.1 we
obtain what we want using Lemma 4.4.

What is left is to verify the local statement mentioned above. For every objectU = (P →
B) of CB/A we can choose an isomorphism P = A[E] such that the map P → B maps
each e ∈ E to zero. Then J = J (U) ⊂ P = O(U) is equal to J = IP + (e; e ∈ E). The
value on U of the short sequence of sheaves above is the sequence

0→ I/I2 → J/J2 → ΩP/A ⊗P B → 0
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Verification omitted (hint: the only tricky point is that IP ∩J2 = IJ ; which follows for
example from More on Algebra, Lemma 30.9). �

Lemma 11.3. Let A → B be a ring map. Then τ≥−1LB/A is canonically quasi-
isomorphic to the naive cotangent complex.

Proof. Consider P = A[B] → B with kernel I . The naive cotangent complex
NLB/A of B over A is the complex I/I2 → ΩP/A ⊗P B, see Algebra, Definition 134.1.
Observe that in (11.1.2) we have already constructed a canonical map

c : NLB/A −→ τ≥−1LB/A

Consider the distinguished triangle (7.0.1)

LP/A ⊗L
P B → LB/A → LB/P → (LP/A ⊗L

P B)[1]

associated to the ring maps A→ A[B]→ B. We know that LP/A = ΩP/A[0] = NLP/A
in D(P ) (Lemma 4.7 and Algebra, Lemma 134.3) and that τ≥−1LB/P = I/I2[1] =
NLB/P inD(B) (Lemma 11.2 and Algebra, Lemma 134.6). To show c is a quasi-isomorphism
it suffices by Algebra, Lemma 134.4 and the long exact cohomology sequence associated to
the distinguished triangle to show that the maps LP/A → LB/A → LB/P are compatible
on cohomology groups with the corresponding maps NLP/A → NLB/A → NLB/P of
the naive cotangent complex. We omit the verification. �

Remark 11.4. We can make the comparison map of Lemma 11.3 explicit in the fol-
lowing way. Let P• be the standard resolution of B over A. Let I = Ker(A[B] → B).
Recall that P0 = A[B]. The map of the lemma is given by the commutative diagram

LB/A

��

. . . // ΩP2/A ⊗P2 B //

��

ΩP1/A ⊗P1 B //

��

ΩP0/A ⊗P0 B

��
NLB/A . . . // 0 // I/I2 // ΩP0/A ⊗P0 B

We construct the downward arrow with target I/I2 by sending df ⊗ b to the class of
(d0(f) − d1(f))b in I/I2. Here di : P1 → P0, i = 0, 1 are the two face maps of the
simplicial structure. This makes sense as d0 − d1 maps P1 into I = Ker(P0 → B).
We omit the verification that this rule is well defined. Our map is compatible with the
differential ΩP1/A ⊗P1 B → ΩP0/A ⊗P0 B as this differential maps df ⊗ b to d(d0(f)−
d1(f)) ⊗ b. Moreover, the differential ΩP2/A ⊗P2 B → ΩP1/A ⊗P1 B maps df ⊗ b to
d(d0(f) − d1(f) + d2(f)) ⊗ b which are annihilated by our downward arrow. Hence a
map of complexes. We omit the verification that this is the same as the map of Lemma
11.3.

Remark 11.5. Adopt notation as in Remark 11.1. The arguments given there show
that the differential

H2(CB/A,J /J 2) −→ H0(CB/A,TorO
1 (J , B))

of the spectral sequence is an isomorphism. Let C′
B/A denote the full subcategory of CB/A

consisting of surjective maps P → B. The agreement of the cotangent complex with the
naive cotangent complex (Lemma 11.3) shows that we have an exact sequence of sheaves

0→ H1(LB/A)→ J /J 2 d−→ Ω→ H2(LB/A)→ 0
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on C′
B/A. It follows that Ker(d) and Coker(d) on the whole category CB/A have vanishing

higher homology groups, since these are computed by the homology groups of constant
simplicial abelian groups by Lemma 4.1. Hence we conclude that

Hn(CB/A,J /J 2)→ Hn(LB/A)
is an isomorphism for all n ≥ 2. Combined with the remark above we obtain the formula
H2(LB/A) = H0(CB/A,TorO

1 (J , B)).

12. A spectral sequence of Quillen

In this section we discuss a spectral sequence relating derived tensor product to the cotan-
gent complex.

Lemma 12.1. Notation and assumptions as in Cohomology on Sites, Example 39.1.
Assume C has a cosimplicial object as in Cohomology on Sites, Lemma 39.7. LetF be a flat
B-module such that H0(C,F) = 0. Then Hl(C, Symk

B(F)) = 0 for l < k.

Proof. We drop the subscript B from tensor products, wedge powers, and symmetric
powers. We will prove the lemma by induction on k. The cases k = 0, 1 follow from the
assumptions. If k > 1 consider the exact complex

. . .→ ∧2F ⊗ Symk−2F → F ⊗ Symk−1F → SymkF → 0

with differentials as in the Koszul complex. If we think of this as a resolution of SymkF ,
then this gives a first quadrant spectral sequence

Ep,q1 = Hp(C,∧q+1F ⊗ Symk−q−1F)⇒ Hp+q(C, Symk(F))
By Cohomology on Sites, Lemma 39.10 we have

Lπ!(∧q+1F ⊗ Symk−q−1F) = Lπ!(∧q+1F)⊗L
B Lπ!(Symk−q−1F))

It follows (from the construction of derived tensor products) that the induction hypoth-
esis combined with the vanishing of H0(C,∧q+1(F)) = 0 will prove what we want.
This is true because ∧q+1(F) is a quotient of F⊗q+1 and H0(C,F⊗q+1) is a quotient
of H0(C,F)⊗q+1 which is zero. �

Remark 12.2. In the situation of Lemma 12.1 one can show that Hk(C, Symk(F)) =
∧kB(H1(C,F)). Namely, it can be deduced from the proof that Hk(C, Symk(F)) is the
Sk-coinvariants of

H−k(Lπ!(F)⊗L
B Lπ!(F)⊗L

B . . .⊗L
B Lπ!(F)) = H1(C,F)⊗k

Thus our claim is that this action is given by the usual action of Sk on the tensor product
multiplied by the sign character. To prove this one has to work through the sign conven-
tions in the definition of the total complex associated to a multi-complex. We omit the
verification.

Lemma 12.3. Let A be a ring. Let P = A[E] be a polynomial ring. Set I = (e; e ∈
E) ⊂ P . The maps TorPi (A, In+1)→ TorPi (A, In) are zero for all i and n.

Proof. Denote xe ∈ P the variable corresponding to e ∈ E. A free resolution
of A over P is given by the Koszul complex K• on the xe. Here Ki has basis given by
wedges e1 ∧ . . . ∧ ei, e1, . . . , ei ∈ E and d(e) = xe. Thus K• ⊗P In = InK• computes
TorPi (A, In). Observe that everything is graded with deg(xe) = 1, deg(e) = 1, and
deg(a) = 0 for a ∈ A. Suppose ξ ∈ In+1Ki is a cocycle homogeneous of degree m. Note
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that m ≥ i + 1 + n. Then ξ = dη for some η ∈ Ki+1 as K• is exact in degrees > 0.
(The case i = 0 is left to the reader.) Now deg(η) = m ≥ i+ 1 + n. Hence writing η in
terms of the basis we see the coordinates are in In. Thus ξ maps to zero in the homology
of InK• as desired. �

Theorem 12.4 (Quillen spectral sequence). Let A → B be a surjective ring map.
Consider the sheaf Ω = ΩO/A ⊗O B of B-modules on CB/A, see Section 4. Then there is
a spectral sequence with E1-page

Ep,q1 = H−p−q(CB/A, Symp
B(Ω))⇒ TorA−p−q(B,B)

with dr of bidegree (r,−r + 1). Moreover, Hi(CB/A, Symk
B(Ω)) = 0 for i < k.

Proof. Let I ⊂ A be the kernel of A → B. Let J ⊂ O be the kernel of O → B.
Then IO ⊂ J . Set K = J /IO andO = O/IO.

For every object U = (P → B) of CB/A we can choose an isomorphism P = A[E] such
that the map P → B maps each e ∈ E to zero. Then J = J (U) ⊂ P = O(U) is equal to
J = IP + (e; e ∈ E). MoreoverO(U) = B[E] and K = K(U) = (e; e ∈ E) is the ideal
generated by the variables in the polynomial ring B[E]. In particular it is clear that

K/K2 d−→ ΩP/A ⊗P B

is a bijection. In other words, Ω = K/K2 and Symk
B(Ω) = Kk/Kk+1. Note that π!(Ω) =

ΩB/A = 0 (Lemma 4.5) as A → B is surjective (Algebra, Lemma 131.4). By Lemma 12.1
we conclude that

Hi(CB/A,Kk/Kk+1) = Hi(CB/A, Symk
B(Ω)) = 0

for i < k. This proves the final statement of the theorem.

The approach to the theorem is to note that

B ⊗L
A B = Lπ!(O)⊗L

A B = Lπ!(O ⊗L
A B) = Lπ!(O)

The first equality by Lemma 5.7, the second equality by Cohomology on Sites, Lemma
39.6, and the third equality asO is flat over A. The sheafO has a filtration

. . . ⊂ K3 ⊂ K2 ⊂ K ⊂ O
This induces a filtration F on a complex C representing Lπ!(O) with F pC representing
Lπ!(Kp) (construction ofC andF omitted). Consider the spectral sequence of Homology,
Section 24 associated to (C,F ). It has E1-page

Ep,q1 = H−p−q(CB/A,Kp/Kp+1) ⇒ H−p−q(CB/A,O) = TorA−p−q(B,B)

and differentials Ep,qr → Ep+r,q−r+1
r . To show convergence we will show that for every

k there exists a c such that Hi(CB/A,Kn) = 0 for i < k and n > c2.

Given k ≥ 0 set c = k2. We claim that

Hi(CB/A,Kn+c)→ Hi(CB/A,Kn)
is zero for i < k and all n ≥ 0. Note thatKn/Kn+c has a finite filtration whose successive
quotients Km/Km+1, n ≤ m < n + c have Hi(CB/A,Km/Km+1) = 0 for i < n (see
above). Hence the claim implies Hi(CB/A,Kn+c) = 0 for i < k and all n ≥ k which is
what we need to show.

2A posteriori the “correct” vanishing Hi(CB/A,Kn) = 0 for i < n can be concluded.
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Proof of the claim. Recall that for any O-module F the map F → F ⊗L
O B induces an

isomorphism on applying Lπ!, see Lemma 5.6. Consider the map

Kn+k ⊗L
O B −→ Kn ⊗L

O B

We claim that this map induces the zero map on cohomology sheaves in degrees 0,−1, . . . ,−k+
1. If this second claim holds, then the k-fold composition

Kn+c ⊗L
O B −→ Kn ⊗L

O B

factors through τ≤−kKn⊗L
O B hence induces zero onHi(CB/A,−) = Liπ!(−) for i < k,

see Derived Categories, Lemma 12.5. By the remark above this means the same thing is
true for Hi(CB/A,Kn+c)→ Hi(CB/A,Kn) which proves the (first) claim.

Proof of the second claim. The statement is local, hence we may work over an object
U = (P → B) as above. We have to show the maps

TorPi (B,Kn+k)→ TorPi (B,Kn)

are zero for i < k. There is a spectral sequence

TorPa (P/IP,TorP/IPb (B,Kn))⇒ TorPa+b(B,Kn),

see More on Algebra, Example 62.2. Thus it suffices to prove the maps

TorP/IPi (B,Kn+1)→ TorP/IPi (B,Kn)

are zero for all i. This is Lemma 12.3. �

Remark 12.5. In the situation of Theorem 12.4 let I = Ker(A→ B). ThenH−1(LB/A) =
H1(CB/A,Ω) = I/I2, see Lemma 11.2. Hence Hk(CB/A, Symk(Ω)) = ∧kB(I/I2) by Re-
mark 12.2. Thus the E1-page looks like

B
0
0 I/I2

0 H−2(LB/A)
0 H−3(LB/A) ∧2(I/I2)
0 H−4(LB/A) H3(CB/A, Sym2(Ω))
0 H−5(LB/A) H4(CB/A, Sym2(Ω)) ∧3(I/I2)

with horizontal differential. Thus we obtain edge maps TorAi (B,B) → H−i(LB/A),
i > 0 and ∧iB(I/I2)→ TorAi (B,B). Finally, we have TorA1 (B,B) = I/I2 and there is a
five term exact sequence

TorA3 (B,B)→ H−3(LB/A)→ ∧2
B(I/I2)→ TorA2 (B,B)→ H−2(LB/A)→ 0

of low degree terms.

Remark 12.6. LetA→ B be a ring map. Let P• be a resolution ofB overA (Remark
5.5). Set Jn = Ker(Pn → B). Note that

TorPn2 (B,B) = TorPn1 (Jn, B) = Ker(Jn ⊗Pn Jn → J2
n).

Hence H2(LB/A) is canonically equal to

Coker(TorP1
2 (B,B)→ TorP0

2 (B,B))
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by Remark 11.5. To make this more explicit we choose P2, P1, P0 as in Example 5.9. We
claim that

TorP1
2 (B,B) = ∧2(

⊕
t∈T

B) ⊕
⊕

t∈T
J0 ⊕ TorP0

2 (B,B)

Namely, the basis elements xt ∧ xt′ of the first summand corresponds to the element
xt ⊗ xt′ − xt′ ⊗ xt of J1 ⊗P1 J1. For f ∈ J0 the element xt ⊗ f of the second sum-
mand corresponds to the element xt ⊗ s0(f) − s0(f) ⊗ xt of J1 ⊗P1 J1. Finally, the
map TorP0

2 (B,B) → TorP1
2 (B,B) is given by s0. The map d0 − d1 : TorP1

2 (B,B) →
TorP0

2 (B,B) is zero on the last summand, maps xt⊗f to f⊗ft−ft⊗f , and maps xt∧xt′
to ft ⊗ ft′ − ft′ ⊗ ft. All in all we conclude that there is an exact sequence

∧2
B(J0/J

2
0 )→ TorP0

2 (B,B)→ H−2(LB/A)→ 0

In this way we obtain a direct proof of a consequence of Quillen’s spectral sequence dis-
cussed in Remark 12.5.

13. Comparison with Lichtenbaum-Schlessinger

Let A → B be a ring map. In [?] there is a fairly explicit determination of τ≥−2LB/A
which is often used in calculations of versal deformation spaces of singularities. The con-
struction follows. Choose a polynomial algebra P over A and a surjection P → B with
kernel I . Choose generators ft, t ∈ T for I which induces a surjection F =

⊕
t∈T P → I

with F a free P -module. Let Rel ⊂ F be the kernel of F → I , in other words Rel is
the set of relations among the ft. Let TrivRel ⊂ Rel be the submodule of trivial rela-
tions, i.e., the submodule of Rel generated by the elements (. . . , ft′ , 0, . . . , 0,−ft, 0, . . .).
Consider the complex of B-modules

(13.0.1) Rel/TrivRel −→ F ⊗P B −→ ΩP/A ⊗P B

where the last term is placed in degree 0. The first map is the obvious one and the second
map sends the basis element corresponding to t ∈ T to dft ⊗ 1.

Definition 13.1. Let A → B be a ring map. Let M be a (B,B)-bimodule over A.
An A-biderivation is an A-linear map λ : B →M such that λ(xy) = xλ(y) + λ(x)y.

For a polynomial algebra the biderivations are easy to describe.

Lemma 13.2. LetP = A[S] be a polynomial ring overA. LetM be a (P, P )-bimodule
over A. Given ms ∈ M for s ∈ S , there exists a unique A-biderivation λ : P → M
mapping s to ms for s ∈ S.

Proof. We set

λ(s1 . . . st) =
∑

s1 . . . si−1msisi+1 . . . st

in M . Extending by A-linearity we obtain a biderivation. �

Here is the comparison statement. The reader may also read about this in [?, page 206,
Proposition 12] or in the paper [?] which extends the complex (13.0.1) by one term and
the comparison to τ≥−3.

Lemma 13.3. In the situation above denote L the complex (13.0.1). There is a canon-
ical map LB/A → L in D(B) which induces an isomorphism τ≥−2LB/A → L in D(B).
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Proof. Let P• → B be a resolution of B over A (Remark 5.5). We will identify
LB/A with ΩP•/A ⊗B. To construct the map we make some choices.
Choose an A-algebra map ψ : P0 → P compatible with the given maps P0 → B and
P → B.
Write P1 = A[S] for some set S. For s ∈ S we may write

ψ(d0(s)− d1(s)) =
∑

ps,tft

for some ps,t ∈ P . Think of F =
⊕

t∈T P as a (P1, P1)-bimodule via the maps (ψ ◦
d0, ψ ◦ d1). By Lemma 13.2 we obtain a unique A-biderivation λ : P1 → F mapping s to
the vector with coordinates ps,t. By construction the composition

P1 −→ F −→ P

sends f ∈ P1 to ψ(d0(f) − d1(f)) because the map f 7→ ψ(d0(f) − d1(f)) is an A-
biderivation agreeing with the composition on generators.
For g ∈ P2 we claim that λ(d0(g)− d1(g) + d2(g)) is an element of Rel. Namely, by the
last remark of the previous paragraph the image of λ(d0(g)− d1(g) + d2(g)) in P is

ψ((d0 − d1)(d0(g)− d1(g) + d2(g)))
which is zero by Simplicial, Section 23).
The choice of ψ determines a map

dψ ⊗ 1 : ΩP0/A ⊗B −→ ΩP/A ⊗B
Composing λwith the map F → F ⊗B gives a usualA-derivation as the two P1-module
structures on F ⊗B agree. Thus λ determines a map

λ : ΩP1/A ⊗B −→ F ⊗B
Finally, We obtain a B-linear map

q : ΩP2/A ⊗B −→ Rel/TrivRel

by mapping dg to the class of λ(d0(g)− d1(g) + d2(g)) in the quotient.
The diagram

ΩP3/A ⊗B //

��

ΩP2/A ⊗B //

q

��

ΩP1/A ⊗B //

λ

��

ΩP0/A ⊗B

dψ⊗1
��

0 // Rel/TrivRel // F ⊗B // ΩP/A ⊗B

commutes (calculation omitted) and we obtain the map of the lemma. By Remark 11.4
and Lemma 11.3 we see that this map induces isomorphisms H1(LB/A) → H1(L) and
H0(LB/A)→ H0(L).

It remains to see that our map LB/A → L induces an isomorphism H2(LB/A)→ H2(L).
Choose a resolution ofB overAwith P0 = P = A[ui] and then P1 and P2 as in Example
5.9. In Remark 12.6 we have constructed an exact sequence

∧2
B(J0/J

2
0 )→ TorP0

2 (B,B)→ H−2(LB/A)→ 0
where P0 = P and J0 = Ker(P → B) = I . Calculating the Tor group using the
short exact sequences 0 → I → P → B → 0 and 0 → Rel → F → I → 0 we find
that TorP2 (B,B) = Ker(Rel ⊗ B → F ⊗ B). The image of the map ∧2

B(I/I2) →
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TorP2 (B,B) under this identification is exactly the image of TrivRel ⊗ B. Thus we see
that H2(LB/A) ∼= H2(L).

Finally, we have to check that our map LB/A → L actually induces this isomorphism.
We will use the notation and results discussed in Example 5.9 and Remarks 12.6 and 11.5
without further mention. Pick an element ξ of TorP0

2 (B,B) = Ker(I⊗P I → I2). Write
ξ =

∑
ht′,tft′ ⊗ ft for some ht′,t ∈ P . Tracing through the exact sequences above we

find that ξ corresponds to the image in Rel ⊗B of the element r ∈ Rel ⊂ F =
⊕

t∈T P
with tth coordinate rt =

∑
t′∈T ht′,tft′ . On the other hand, ξ corresponds to the element

ofH2(LB/A) = H2(Ω) which is the image via d : H2(J /J 2)→ H2(Ω) of the boundary
of ξ under the 2-extension

0→ TorO
2 (B,B)→ J ⊗O J → J → J /J 2 → 0

We compute the successive transgressions of our element. First we have

ξ = (d0 − d1)(−
∑

s0(ht′,tft′)⊗ xt)

and next we have ∑
s0(ht′,tft′)xt = d0(vr)− d1(vr) + d2(vr)

by our choice of the variables v in Example 5.9. We may choose our map λ above such
that λ(ui) = 0 and λ(xt) = −et where et ∈ F denotes the basis vector corresponding to
t ∈ T . Hence the construction of our map q above sends dvr to

λ(
∑

s0(ht′,tft′)xt) =
∑

t

(∑
t′
ht′,tft′

)
et

matching the image of ξ in Rel ⊗ B (the two minus signs we found above cancel out).
This agreement finishes the proof. �

Remark 13.4 (Functoriality of the Lichtenbaum-Schlessinger complex). Consider a
commutative square

A′ // B′

A

OO

// B

OO

of ring maps. Choose a factorization

A′ // P ′ // B′

A

OO

// P

OO

// B

OO

with P a polynomial algebra over A and P ′ a polynomial algebra over A′. Choose gen-
erators ft, t ∈ T for Ker(P → B). For t ∈ T denote f ′

t the image of ft in P ′. Choose
f ′
s ∈ P ′ such that the elements f ′

t for t ∈ T ′ = T qS generate the kernel of P ′ → B′. Set
F =

⊕
t∈T P and F ′ =

⊕
t′∈T ′ P ′. Let Rel = Ker(F → P ) and Rel′ = Ker(F ′ → P ′)

where the maps are given by multiplication by ft, resp. f ′
t on the coordinates. Finally, set

TrivRel, resp. TrivRel′ equal to the submodule of Rel, resp. TrivRel generated by the
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elements (. . . , ft′ , 0, . . . , 0,−ft, 0, . . .) for t, t′ ∈ T , resp. T ′. Having made these choices
we obtain a canonical commutative diagram

L′ : Rel′/TrivRel′ // F ′ ⊗P ′ B′ // ΩP ′/A′ ⊗P ′ B′

L :

OO

Rel/TrivRel //

OO

F ⊗P B //

OO

ΩP/A ⊗P B

OO

Moreover, tracing through the choices made in the proof of Lemma 13.3 the reader sees
that one obtains a commutative diagram

LB′/A′ // L′

LB/A //

OO

L

OO

14. The cotangent complex of a local complete intersection

If A → B is a local complete intersection map, then LB/A is a perfect complex. The key
to proving this is the following lemma.

Lemma 14.1. Let A = Z[x1, . . . , xn]→ B = Z be the ring map which sends xi to 0
for i = 1, . . . , n. Let I = (x1, . . . , xn) ⊂ A. Then LB/A is quasi-isomorphic to I/I2[1].

Proof. There are several ways to prove this. For example one can explicitly con-
struct a resolution of B over A and compute. We will use (7.0.1). Namely, consider the
distinguished triangle

LZ[x1,...,xn]/Z⊗Z[x1,...,xn]Z→ LZ/Z → LZ/Z[x1,...,xn] → LZ[x1,...,xn]/Z⊗Z[x1,...,xn]Z[1]

The complexLZ[x1,...,xn]/Z is quasi-isomorphic to ΩZ[x1,...,xn]/Z by Lemma 4.7. The com-
plex LZ/Z is zero in D(Z) by Lemma 8.4. Thus we see that LB/A has only one nonzero
cohomology group which is as described in the lemma by Lemma 11.2. �

Lemma 14.2. Let A → B be a surjective ring map whose kernel I is generated by a
Koszul-regular sequence (for example a regular sequence). ThenLB/A is quasi-isomorphic
to I/I2[1].

Proof. Let f1, . . . , fr ∈ I be a Koszul regular sequence generating I . Consider the
ring map Z[x1, . . . , xr] → A sending xi to fi. Since x1, . . . , xr is a regular sequence in
Z[x1, . . . , xr] we see that the Koszul complex on x1, . . . , xr is a free resolution of Z =
Z[x1, . . . , xr]/(x1, . . . , xr) over Z[x1, . . . , xr] (see More on Algebra, Lemma 30.2). Thus
the assumption that f1, . . . , fr is Koszul regular exactly means thatB = A⊗L

Z[x1,...,xr] Z.
Hence LB/A = LZ/Z[x1,...,xr] ⊗L

Z B by Lemmas 6.2 and 14.1. �

Lemma 14.3. Let A → B be a surjective ring map whose kernel I is Koszul. Then
LB/A is quasi-isomorphic to I/I2[1].

Proof. Locally on Spec(A) the ideal I is generated by a Koszul regular sequence, see
More on Algebra, Definition 32.1. Hence this follows from Lemma 6.2. �

Proposition 14.4. Let A → B be a local complete intersection map. Then LB/A is
a perfect complex with tor amplitude in [−1, 0].
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Proof. Choose a surjection P = A[x1, . . . , xn]→ B with kernel J . By Lemma 11.3
we see that J/J2 →

⊕
Bdxi is quasi-isomorphic to τ≥−1LB/A. Note that J/J2 is finite

projective (More on Algebra, Lemma 32.3), hence τ≥−1LB/A is a perfect complex with tor
amplitude in [−1, 0]. Thus it suffices to show that Hi(LB/A) = 0 for i 6∈ [−1, 0]. This
follows from (7.0.1)

LP/A ⊗L
P B → LB/A → LB/P → LP/A ⊗L

P B[1]

and Lemma 14.3 to see thatHi(LB/P ) is zero unless i ∈ {−1, 0}. (We also use Lemma 4.7
for the term on the left.) �

15. Tensor products and the cotangent complex

Let R be a ring and let A, B be R-algebras. In this section we discuss LA⊗RB/R. Most of
the information we want is contained in the following diagram
(15.0.1)

LA/R ⊗L
A (A⊗R B) // LA⊗RB/B

// E

LA/R ⊗L
A (A⊗R B) // LA⊗RB/R

//

OO

LA⊗RB/A

OO

LB/R ⊗L
B (A⊗R B)

OO

LB/R ⊗L
B (A⊗R B)

OO

Explanation: The middle row is the fundamental triangle (7.0.1) for the ring maps R →
A → A ⊗R B. The middle column is the fundamental triangle (7.0.1) for the ring maps
R → B → A ⊗R B. Next, E is an object of D(A ⊗R B) which “fits” into the upper
right corner, i.e., which turns both the top row and the right column into distinguished
triangles. Such an E exists by Derived Categories, Proposition 4.23 applied to the lower
left square (with 0 placed in the missing spot). To be more explicit, we could for example
define E as the cone (Derived Categories, Definition 9.1) of the map of complexes

LA/R ⊗L
A (A⊗R B)⊕ LB/R ⊗L

B (A⊗R B) −→ LA⊗RB/R

and get the two maps with target E by an application of TR3. In the Tor independent
case the object E is zero.

Lemma 15.1. IfA andB are Tor independentR-algebras, then the objectE in (15.0.1)
is zero. In this case we have

LA⊗RB/R = LA/R ⊗L
A (A⊗R B)⊕ LB/R ⊗L

B (A⊗R B)
which is represented by the complex LA/R ⊗R B ⊕ LB/R ⊗R A of A⊗R B-modules.

Proof. The first two statements are immediate from Lemma 6.2. The last statement
follows as LA/R is a complex of freeA-modules, hence LA/R⊗L

A (A⊗RB) is represented
by LA/R ⊗A (A⊗R B) = LA/R ⊗R B �

In general we can say this about the object E.

Lemma 15.2. Let R be a ring and let A, B be R-algebras. The object E in (15.0.1)
satisfies

Hi(E) =
{

0 if i ≥ −1
TorR1 (A,B) if i = −2
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Proof. We use the description ofE as the cone onLB/R⊗L
B (A⊗RB)→ LA⊗RB/A.

By Lemma 13.3 the canonical truncations τ≥−2LB/R and τ≥−2LA⊗RB/A are computed
by the Lichtenbaum-Schlessinger complex (13.0.1). These isomorphisms are compatible
with functoriality (Remark 13.4). Thus in this proof we work with the Lichtenbaum-
Schlessinger complexes.
Choose a polynomial algebra P over R and a surjection P → B. Choose generators
ft ∈ P , t ∈ T of the kernel of this surjection. Let Rel ⊂ F =

⊕
t∈T P be the kernel of

the map F → P which maps the basis vector corresponding to t to ft. Set PA = A⊗R P
and FA = A⊗R F = PA ⊗P F . Let RelA be the kernel of the map FA → PA. Using the
exact sequence

0→ Rel→ F → P → B → 0
and standard short exact sequences for Tor we obtain an exact sequence

A⊗R Rel→ RelA → TorR1 (A,B)→ 0
Note that PA → A⊗R B is a surjection whose kernel is generated by the elements 1⊗ ft
in PA. Denote TrivRelA ⊂ RelA the PA-submodule generated by the elements (. . . , 1⊗
ft′ , 0, . . . , 0,−1⊗ft⊗1, 0, . . .). Since TrivRel⊗RA→ TrivRelA is surjective, we find
a canonical exact sequence

A⊗R (Rel/TrivRel)→ RelA/TrivRelA → TorR1 (A,B)→ 0
The map of Lichtenbaum-Schlessinger complexes is given by the diagram

RelA/TrivRelA // FA ⊗PA (A⊗R B) // ΩPA/A⊗RB ⊗PA (A⊗R B)

Rel/TrivRel //

−2

OO

F ⊗P B //

−1

OO

ΩP/A ⊗P B

0

OO

Note that vertical maps −1 and −0 induce an isomorphism after applying the functor
A⊗R − = PA ⊗P − to the source and the vertical map −2 gives exactly the map whose
cokernel is the desired Tor module as we saw above. �

16. Deformations of ring maps and the cotangent complex

This section is the continuation of Deformation Theory, Section 2 which we urge the
reader to read first. We start with a surjective ring map A′ → A whose kernel is an ideal
I of square zero. Moreover we assume given a ring map A → B, a B-module N , and
an A-module map c : I → N . In this section we ask ourselves whether we can find the
question mark fitting into the following diagram

(16.0.1)

0 // N // ? // B // 0

0 // I

c

OO

// A′

OO

// A

OO

// 0
and moreover how unique the solution is (if it exists). More precisely, we look for a surjec-
tion of A′-algebras B′ → B whose kernel is an ideal of square zero and is identified with
N such that A′ → B′ induces the given map c. We will say B′ is a solution to (16.0.1).

Lemma 16.1. In the situation above we have
(1) There is a canonical element ξ ∈ Ext2

B(LB/A, N) whose vanishing is a sufficient
and necessary condition for the existence of a solution to (16.0.1).
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(2) If there exists a solution, then the set of isomorphism classes of solutions is prin-
cipal homogeneous under Ext1

B(LB/A, N).
(3) Given a solutionB′, the set of automorphisms ofB′ fitting into (16.0.1) is canon-

ically isomorphic to Ext0
B(LB/A, N).

Proof. Via the identificationsNLB/A = τ≥−1LB/A (Lemma 11.3) andH0(LB/A) =
ΩB/A (Lemma 4.5) we have seen parts (2) and (3) in Deformation Theory, Lemmas 2.1 and
2.2.

Proof of (1). Roughly speaking, this follows from the discussion in Deformation Theory,
Remark 2.8 by replacing the naive cotangent complex by the full cotangent complex. Here
is a more detailed explanation. By Deformation Theory, Lemma 2.7 and Remark 2.8 there
exists an element

ξ′ ∈ Ext1
A(NLA/A′ , N) = Ext1

B(NLA/A′ ⊗L
AB,N) = Ext1

B(LA/A′ ⊗L
A B,N)

(for the equalities see Deformation Theory, Remark 2.8 and use thatNLA′/A = τ≥−1LA′/A)
such that a solution exists if and only if this element is in the image of the map

Ext1
B(NLB/A′ , N) = Ext1

B(LB/A′ , N) −→ Ext1
B(LA/A′ ⊗L

A B,N)

The distinguished triangle (7.0.1) for A′ → A→ B gives rise to a long exact sequence

. . .→ Ext1
B(LB/A′ , N)→ Ext1

B(LA/A′ ⊗L
A B,N)→ Ext2

B(LB/A, N)→ . . .

Hence taking ξ the image of ξ′ works. �

17. The Atiyah class of a module

LetA→ B be a ring map. LetM be aB-module. LetP → B be an object of CB/A (Section
4). Consider the extension of principal parts

0→ ΩP/A ⊗P M → P 1
P/A(M)→M → 0

see Algebra, Lemma 133.6. This sequence is functorial in P by Algebra, Remark 133.7.
Thus we obtain a short exact sequence of sheaves ofO-modules

0→ ΩO/A ⊗O M → P 1
O/A(M)→M → 0

on CB/A. We have Lπ!(ΩO/A ⊗O M) = LB/A ⊗B M = LB/A ⊗L
B M by Lemma 4.2

and the flatness of the terms of LB/A. We have Lπ!(M) = M by Lemma 4.4. Thus a
distinguished triangle

(17.0.1) LB/A ⊗L
B M → Lπ!

(
P 1

O/A(M)
)
→M → LB/A ⊗L

B M [1]

inD(B). Here we use Cohomology on Sites, Remark 39.13 to get a distinguished triangle
in D(B) and not just in D(A).

Definition 17.1. Let A→ B be a ring map. Let M be a B-module. The map M →
LB/A ⊗L

B M [1] in (17.0.1) is called the Atiyah class of M .
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18. The cotangent complex

In this section we discuss the cotangent complex of a map of sheaves of rings on a site. In
later sections we specialize this to obtain the cotangent complex of a morphism of ringed
topoi, a morphism of ringed spaces, a morphism of schemes, a morphism of algebraic space,
etc.
Let C be a site and let Sh(C) denote the associated topos. Let A denote a sheaf of rings on
C. Let A-Alg be the category of A-algebras. Consider the pair of adjoint functors (U, V )
where V : A-Alg → Sh(C) is the forgetful functor and U : Sh(C) → A-Alg assigns to a
sheaf of sets E the polynomial algebra A[E ] on E over A. Let X• be the simplicial object
of Fun(A-Alg,A-Alg) constructed in Simplicial, Section 34.
Now assume that A → B is a homomorphism of sheaves of rings. Then B is an object of
the category A-Alg. Denote P• = X•(B) the resulting simplicial A-algebra. Recall that
P0 = A[B], P1 = A[A[B]], and so on. Recall also that there is an augmentation

ε : P• −→ B
where we view B as a constant simplicialA-algebra.

Definition 18.1. Let C be a site. LetA → B be a homomorphism of sheaves of rings
on C. The standard resolution of B overA is the augmentation ε : P• → B with terms

P0 = A[B], P1 = A[A[B]], . . .

and maps as constructed above.

With this definition in hand the cotangent complex of a map of sheaves of rings is defined
as follows. We will use the module of differentials as defined in Modules on Sites, Section
33.

Definition 18.2. Let C be a site. Let A → B be a homomorphism of sheaves of
rings on C. The cotangent complex LB/A is the complex of B-modules associated to the
simplicial module

ΩP•/A ⊗P•,ε B
where ε : P• → B is the standard resolution of B over A. We usually think of LB/A as
an object of D(B).

These constructions satisfy a functoriality similar to that discussed in Section 6. Namely,
given a commutative diagram

(18.2.1)

B // B′

A

OO

// A′

OO

of sheaves of rings on C there is a canonical B-linear map of complexes
LB/A −→ LB′/A′

constructed as follows. If P• → B is the standard resolution of B overA and P ′
• → B′ is

the standard resolution ofB′ overA′, then there is a canonical mapP• → P ′
• of simplicial

A-algebras compatible with the augmentations P• → B and P ′
• → B′. The maps

P0 = A[B] −→ A′[B′] = P ′
0, P1 = A[A[B]] −→ A′[A′[B′]] = P ′

1

and so on are given by the given maps A → A′ and B → B′. The desired map LB/A →
LB′/A′ then comes from the associated maps on sheaves of differentials.
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Lemma 18.3. Let f : Sh(D) → Sh(C) be a morphism of topoi. Let A → B be a
homomorphism of sheaves of rings on C. Then f−1LB/A = Lf−1B/f−1A.

Proof. The diagram
A-Alg

f−1

��

// Sh(C)oo

f−1

��
f−1A-Alg // Sh(D)oo

commutes. �

Lemma 18.4. Let C be a site. Let A → B be a homomorphism of sheaves of rings on
C. Then Hi(LB/A) is the sheaf associated to the presheaf U 7→ Hi(LB(U)/A(U)).

Proof. Let C′ be the site we get by endowing C with the chaotic topology (presheaves
are sheaves). There is a morphism of topoi f : Sh(C)→ Sh(C′) where f∗ is the inclusion
of sheaves into presheaves and f−1 is sheafification. By Lemma 18.3 it suffices to prove the
result for C′, i.e., in case C has the chaotic topology.

If C carries the chaotic topology, then LB/A(U) is equal to LB(U)/A(U) because

A-Alg

sections over U
��

// Sh(C)oo

sections over U
��

A(U)-Alg // Setsoo

commutes. �

Remark 18.5. It is clear from the proof of Lemma 18.4 that for anyU ∈ Ob(C) there
is a canonical map LB(U)/A(U) → LB/A(U) of complexes of B(U)-modules. Moreover,
these maps are compatible with restriction maps and the complex LB/A is the sheafifica-
tion of the rule U 7→ LB(U)/A(U).

Lemma 18.6. Let C be a site. Let A → B be a homomorphism of sheaves of rings on
C. Then H0(LB/A) = ΩB/A.

Proof. Follows from Lemmas 18.4 and 4.5 and Modules on Sites, Lemma 33.4. �

Lemma 18.7. Let C be a site. LetA → B andA → B′ be homomorphisms of sheaves
of rings on C. Then

LB×B′/A −→ LB/A ⊕ LB′/A

is an isomorphism in D(B × B′).

Proof. By Lemma 18.4 it suffices to prove this for ring maps. In the case of rings this
is Lemma 6.4. �

The fundamental triangle for the cotangent complex of sheaves of rings is an easy conse-
quence of the result for homomorphisms of rings.

Lemma 18.8. LetD be a site. LetA → B → C be homomorphisms of sheaves of rings
on D. There is a canonical distinguished triangle

LB/A ⊗L
B C → LC/A → LC/B → LB/A ⊗L

B C[1]
in D(C).



18. THE COTANGENT COMPLEX 6481

Proof. We will use the method described in Remarks 7.5 and 7.6 to construct the
triangle; we will freely use the results mentioned there. As in those remarks we first con-
struct the triangle in case B → C is an injective map of sheaves of rings. In this case we
set

(1) P• is the standard resolution of B overA,
(2) Q• is the standard resolution of C overA,
(3) R• is the standard resolution of C over B,
(4) S• is the standard resolution of B over B,
(5) Q• = Q• ⊗P• B, and
(6) R• = R• ⊗S• B.

The distinguished triangle is the distinguished triangle associated to the short exact se-
quence of simplicial C-modules

0→ ΩP•/A ⊗P• C → ΩQ•/A ⊗Q• C → ΩQ•/B ⊗Q•
C → 0

The first two terms are equal to the first two terms of the triangle of the statement of
the lemma. The identification of the last term with LC/B uses the quasi-isomorphisms of
complexes

LC/B = ΩR•/B ⊗R• C −→ ΩR•/B ⊗R•
C ←− ΩQ•/B ⊗Q•

C

All the constructions used above can first be done on the level of presheaves and then
sheafified. Hence to prove sequences are exact, or that map are quasi-isomorphisms it suf-
fices to prove the corresponding statement for the ring maps A(U) → B(U) → C(U)
which are known. This finishes the proof in the case that B → C is injective.

In general, we reduce to the case where B → C is injective by replacing C by B × C if
necessary. This is possible by the argument given in Remark 7.5 by Lemma 18.7. �

Lemma 18.9. Let C be a site. Let A → B be a homomorphism of sheaves of rings on
C. If p is a point of C , then (LB/A)p = LBp/Ap

.

Proof. This is a special case of Lemma 18.3. �

For the construction of the naive cotangent complex and its properties we refer to Modules
on Sites, Section 35.

Lemma 18.10. Let C be a site. Let A → B be a homomorphism of sheaves of rings
on C. There is a canonical map LB/A → NLB/A which identifies the naive cotangent
complex with the truncation τ≥−1LB/A.

Proof. Let P• be the standard resolution of B over A. Let I = Ker(A[B] → B).
Recall that P0 = A[B]. The map of the lemma is given by the commutative diagram

LB/A

��

. . . // ΩP2/A ⊗P2 B //

��

ΩP1/A ⊗P1 B //

��

ΩP0/A ⊗P0 B

��
NLB/A . . . // 0 // I/I2 // ΩP0/A ⊗P0 B

We construct the downward arrow with target I/I2 by sending a local section df ⊗ b to
the class of (d0(f)− d1(f))b in I/I2. Here di : P1 → P0, i = 0, 1 are the two face maps
of the simplicial structure. This makes sense as d0 − d1 maps P1 into I = Ker(P0 → B).
We omit the verification that this rule is well defined. Our map is compatible with the
differential ΩP1/A⊗P1 B → ΩP0/A⊗P0 B as this differential maps a local section df ⊗ b
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to d(d0(f)− d1(f))⊗ b. Moreover, the differential ΩP2/A⊗P2 B → ΩP1/A⊗P1 B maps
a local section df ⊗ b to d(d0(f) − d1(f) + d2(f)) ⊗ b which are annihilated by our
downward arrow. Hence a map of complexes.

To see that our map induces an isomorphism on the cohomology sheavesH0 andH−1 we
argue as follows. Let C′ be the site with the same underlying category as C but endowed
with the chaotic topology. Let f : Sh(C) → Sh(C′) be the morphism of topoi whose
pullback functor is sheafification. LetA′ → B′ be the given map, but thought of as a map
of sheaves of rings on C′. The construction above gives a map LB′/A′ → NLB′/A′ on C′

whose value over any object U of C′ is just the map

LB(U)/A(U) → NLB(U)/A(U)

of Remark 11.4 which induces an isomorphism onH0 andH−1. Since f−1LB′/A′ = LB/A
(Lemma 18.3) and f−1 NLB′/A′ = NLB/A (Modules on Sites, Lemma 35.3) the lemma is
proved. �

19. The Atiyah class of a sheaf of modules

Let C be a site. Let A → B be a homomorphism of sheaves of rings. Let F be a sheaf of
B-modules. Let P• → B be the standard resolution of B over A (Section 18). For every
n ≥ 0 consider the extension of principal parts

(19.0.1) 0→ ΩPn/A ⊗Pn F → P1
Pn/A(F)→ F → 0

see Modules on Sites, Lemma 34.6. The functoriality of this construction (Modules on
Sites, Remark 34.7) tells us (19.0.1) is the degree n part of a short exact sequence of sim-
plicialP•-modules (Cohomology on Sites, Section 41). Using the functor Lπ! : D(P•)→
D(B) of Cohomology on Sites, Remark 41.3 (here we use that P• → A is a resolution) we
obtain a distinguished triangle

(19.0.2) LB/A ⊗L
B F → Lπ!

(
P1

P•/A(F)
)
→ F → LB/A ⊗L

B F [1]

in D(B).

Definition 19.1. Let C be a site. LetA → B be a homomorphism of sheaves of rings.
Let F be a sheaf of B-modules. The map F → LB/A ⊗L

B F [1] in (19.0.2) is called the
Atiyah class of F .

20. The cotangent complex of a morphism of ringed spaces

The cotangent complex of a morphism of ringed spaces is defined in terms of the cotangent
complex we defined above.

Definition 20.1. Let f : (X,OX) → (S,OS) be a morphism of ringed spaces.
The cotangent complex Lf of f is Lf = LOX/f−1OS

. We will also use the notation
Lf = LX/S = LOX/OS

.

More precisely, this means that we consider the cotangent complex (Definition 18.2) of
the homomorphism f ] : f−1OS → OX of sheaves of rings on the site associated to the
topological space X (Sites, Example 6.4).

Lemma 20.2. Let f : (X,OX) → (S,OS) be a morphism of ringed spaces. Then
H0(LX/S) = ΩX/S .

Proof. Special case of Lemma 18.6. �
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Lemma 20.3. Let f : X → Y and g : Y → Z be morphisms of ringed spaces. Then
there is a canonical distinguished triangle

Lf∗LY/Z → LX/Z → LX/Y → Lf∗LY/Z [1]

in D(OX).

Proof. Set h = g ◦ f so that h−1OZ = f−1g−1OZ . By Lemma 18.3 we have
f−1LY/Z = Lf−1OY /h−1OZ

and this is a complex of flat f−1OY -modules. Hence the
distinguished triangle above is an example of the distinguished triangle of Lemma 18.8
withA = h−1OZ , B = f−1OY , and C = OX . �

Lemma 20.4. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. There is
a canonical map LX/Y → NLX/Y which identifies the naive cotangent complex with the
truncation τ≥−1LX/Y .

Proof. Special case of Lemma 18.10. �

21. Deformations of ringed spaces and the cotangent complex

This section is the continuation of Deformation Theory, Section 7 which we urge the
reader to read first. We briefly recall the setup. We have a first order thickening t :
(S,OS) → (S′,OS′) of ringed spaces with J = Ker(t]), a morphism of ringed spaces
f : (X,OX) → (S,OS), an OX -module G , and an f -map c : J → G of sheaves of
modules. We ask whether we can find the question mark fitting into the following diagram

(21.0.1)

0 // G // ? // OX // 0

0 // J

c

OO

// OS′

OO

// OS

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for a first
order thickening i : (X,OX) → (X ′,OX′) and a morphism of thickenings (f, f ′) as in
Deformation Theory, Equation (3.1.1) where Ker(i]) is identified with G such that (f ′)]
induces the given map c. We will say X ′ is a solution to (21.0.1).

Lemma 21.1. In the situation above we have
(1) There is a canonical element ξ ∈ Ext2

OX
(LX/S ,G) whose vanishing is a suffi-

cient and necessary condition for the existence of a solution to (21.0.1).
(2) If there exists a solution, then the set of isomorphism classes of solutions is prin-

cipal homogeneous under Ext1
OX

(LX/S ,G).
(3) Given a solutionX ′, the set of automorphisms ofX ′ fitting into (21.0.1) is canon-

ically isomorphic to Ext0
OX

(LX/S ,G).

Proof. Via the identificationsNLX/S = τ≥−1LX/S (Lemma 20.4) andH0(LX/S) =
ΩX/S (Lemma 20.2) we have seen parts (2) and (3) in Deformation Theory, Lemmas 7.1
and 7.3.

Proof of (1). Roughly speaking, this follows from the discussion in Deformation Theory,
Remark 7.9 by replacing the naive cotangent complex by the full cotangent complex. Here
is a more detailed explanation. By Deformation Theory, Lemma 7.8 there exists an element

ξ′ ∈ Ext1
OX

(Lf∗ NLS/S′ ,G) = Ext1
OX

(Lf∗LS/S′ ,G)
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such that a solution exists if and only if this element is in the image of the map

Ext1
OX

(NLX/S′ ,G) = Ext1
OX

(LX/S′ ,G) −→ Ext1
OX

(Lf∗LS/S′ ,G)

The distinguished triangle of Lemma 20.3 for X → S → S′ gives rise to a long exact
sequence

. . .→ Ext1
OX

(LX/S′ ,G)→ Ext1
OX

(Lf∗LS/S′ ,G)→ Ext2
OX

(LX/S ,G)→ . . .

Hence taking ξ the image of ξ′ works. �

22. The cotangent complex of a morphism of ringed topoi

The cotangent complex of a morphism of ringed topoi is defined in terms of the cotangent
complex we defined above.

Definition 22.1. Let (f, f ]) : (Sh(C),OC)→ (Sh(D),OD) be a morphism of ringed
topoi. The cotangent complex Lf of f is Lf = LOC/f−1OD . We sometimes write Lf =
LOC/OD .

This definition applies to many situations, but it doesn’t always produce the thing one
expects. For example, if f : X → Y is a morphism of schemes, then f induces a morphism
of big étale sites fbig : (Sch/X)étale → (Sch/Y )étale which is a morphism of ringed topoi
(Descent, Remark 8.4). However, Lfbig = 0 since (fbig)] is an isomorphism. On the other
hand, if we take Lf where we think of f as a morphism between the underlying Zariski
ringed topoi, then Lf does agree with the cotangent complex LX/Y (as defined below)
whose zeroth cohomology sheaf is ΩX/Y .

Lemma 22.2. Let f : (Sh(C),O) → (Sh(B),OB) be a morphism of ringed topoi.
Then H0(Lf ) = Ωf .

Proof. Special case of Lemma 18.6. �

Lemma 22.3. Let f : (Sh(C1),O1)→ (Sh(C2),O2) and g : (Sh(C2),O2)→ (Sh(C3),O3)
be morphisms of ringed topoi. Then there is a canonical distinguished triangle

Lf∗Lg → Lg◦f → Lf → Lf∗Lg[1]

in D(O1).

Proof. Set h = g◦f so that h−1O3 = f−1g−1O3. By Lemma 18.3 we have f−1Lg =
Lf−1O2/h−1O3 and this is a complex of flat f−1O2-modules. Hence the distinguished
triangle above is an example of the distinguished triangle of Lemma 18.8 withA = h−1O3,
B = f−1O2, and C = O1. �

Lemma 22.4. Let f : (Sh(C),O) → (Sh(B),OB) be a morphism of ringed topoi.
There is a canonical map Lf → NLf which identifies the naive cotangent complex with
the truncation τ≥−1Lf .

Proof. Special case of Lemma 18.10. �
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23. Deformations of ringed topoi and the cotangent complex

This section is the continuation of Deformation Theory, Section 13 which we urge the
reader to read first. We briefly recall the setup. We have a first order thickening t :
(Sh(B),OB) → (Sh(B′),OB′) of ringed topoi with J = Ker(t]), a morphism of ringed
topoi f : (Sh(C),O)→ (Sh(B),OB), anO-moduleG , and a map f−1J → G of sheaves of
f−1OB-modules. We ask whether we can find the question mark fitting into the following
diagram

(23.0.1)

0 // G // ? // O // 0

0 // f−1J

c

OO

// f−1OB′

OO

// f−1OB

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for a first
order thickening i : (Sh(C),O) → (Sh(C′),O′) and a morphism of thickenings (f, f ′)
as in Deformation Theory, Equation (9.1.1) where Ker(i]) is identified with G such that
(f ′)] induces the given map c. We will say (Sh(C′),O′) is a solution to (23.0.1).

Lemma 23.1. In the situation above we have
(1) There is a canonical element ξ ∈ Ext2

O(Lf ,G) whose vanishing is a sufficient
and necessary condition for the existence of a solution to (23.0.1).

(2) If there exists a solution, then the set of isomorphism classes of solutions is prin-
cipal homogeneous under Ext1

O(Lf ,G).
(3) Given a solutionX ′, the set of automorphisms ofX ′ fitting into (23.0.1) is canon-

ically isomorphic to Ext0
O(Lf ,G).

Proof. Via the identifications NLf = τ≥−1Lf (Lemma 22.4) and H0(Lf ) = Ωf
(Lemma 22.2) we have seen parts (2) and (3) in Deformation Theory, Lemmas 13.1 and
13.3.

Proof of (1). To match notation with Deformation Theory, Section 13 we will write
NLf = NLO/OB and Lf = LO/OB and similarly for the morphisms t and t ◦ f . By
Deformation Theory, Lemma 13.8 there exists an element

ξ′ ∈ Ext1
O(Lf∗ NLOB/OB′ ,G) = Ext1

O(Lf∗LOB/OB′ ,G)

such that a solution exists if and only if this element is in the image of the map

Ext1
O(NLO/OB′ ,G) = Ext1

O(LO/OB′ ,G) −→ Ext1
O(Lf∗LOB/OB′ ,G)

The distinguished triangle of Lemma 22.3 for f and t gives rise to a long exact sequence

. . .→ Ext1
O(LO/OB′ ,G)→ Ext1

O(Lf∗LOB/OB′ ,G)→ Ext1
O(LO/OB ,G)

Hence taking ξ the image of ξ′ works. �

24. The cotangent complex of a morphism of schemes

As promised above we define the cotangent complex of a morphism of schemes as follows.

Definition 24.1. Let f : X → Y be a morphism of schemes. The cotangent com-
plex LX/Y of X over Y is the cotangent complex of f as a morphism of ringed spaces
(Definition 20.1).
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In particular, the results of Section 20 apply to cotangent complexes of morphisms of
schemes. The next lemma shows this definition is compatible with the definition for ring
maps and it also implies that LX/Y is an object of DQCoh(OX).

Lemma 24.2. Let f : X → Y be a morphism of schemes. Let U = Spec(A) ⊂ X
and V = Spec(B) ⊂ Y be affine opens such that f(U) ⊂ V . There is a canonical map

L̃B/A −→ LX/Y |U
of complexes which is an isomorphism inD(OU ). This map is compatible with restricting
to smaller affine opens of X and Y .

Proof. By Remark 18.5 there is a canonical map of complexes LOX(U)/f−1OY (U) →
LX/Y (U) of B = OX(U)-modules, which is compatible with further restrictions. Using
the canonical mapA→ f−1OY (U) we obtain a canonical mapLB/A → LOX(U)/f−1OY (U)
of complexes of B-modules. Using the universal property of the˜ functor (see Schemes,
Lemma 7.1) we obtain a map as in the statement of the lemma. We may check this map is
an isomorphism on cohomology sheaves by checking it induces isomorphisms on stalks.
This follows immediately from Lemmas 18.9 and 8.6 (and the description of the stalks of
OX and f−1OY at a point p ∈ Spec(B) as Bp and Aq where q = A ∩ p; references used
are Schemes, Lemma 5.4 and Sheaves, Lemma 21.5). �

Lemma 24.3. Let Λ be a ring. Let X be a scheme over Λ. Then

LX/ Spec(Λ) = LOX/Λ

where Λ is the constant sheaf with value Λ on X .

Proof. Let p : X → Spec(Λ) be the structure morphism. Let q : Spec(Λ)→ (∗,Λ)
be the obvious morphism. By the distinguished triangle of Lemma 20.3 it suffices to show
that Lq = 0. To see this it suffices to show for p ∈ Spec(Λ) that

(Lq)p = LOSpec(Λ),p/Λ = LΛp/Λ

(Lemma 18.9) is zero which follows from Lemma 8.4. �

25. The cotangent complex of a scheme over a ring

Let Λ be a ring and let X be a scheme over Λ. Write LX/ Spec(Λ) = LX/Λ which is
justified by Lemma 24.3. In this section we give a description of LX/Λ similar to Lemma
4.3. Namely, we construct a category CX/Λ fibred overXZar and endow it with a sheaf of
(polynomial) Λ-algebrasO such that

LX/Λ = Lπ!(ΩO/Λ ⊗O OX).
We will later use the category CX/Λ to construct a naive obstruction theory for the stack
of coherent sheaves.

Let Λ be a ring. Let X be a scheme over Λ. Let CX/Λ be the category whose objects are
commutative diagrams

(25.0.1)

X

��

Uoo

��
Spec(Λ) Aoo

of schemes where
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(1) U is an open subscheme of X ,
(2) there exists an isomorphism A = Spec(P ) whereP is a polynomial algebra over

Λ (on some set of variables).
In other words, A is an (infinite dimensional) affine space over Spec(Λ). Morphisms are
given by commutative diagrams. Recall thatXZar denotes the small Zariski siteX . There
is a forgetful functor

u : CX/Λ → XZar, (U → A) 7→ U

Observe that the fibre category overU is canonically equivalent to the category COX(U)/Λ
introduced in Section 4.

Lemma 25.1. In the situation above the category CX/Λ is fibred over XZar.

Proof. Given an object U → A of CX/Λ and a morphism U ′ → U ofXZar consider
the object U ′ → A of CX/Λ where U ′ → A is the composition of U → A and U ′ → U .
The morphism (U ′ → A)→ (U → A) of CX/Λ is strongly cartesian over XZar. �

We endow CX/Λ with the topology inherited from XZar (see Stacks, Section 10). The
functor u defines a morphism of topoi π : Sh(CX/Λ)→ Sh(XZar). The site CX/Λ comes
with several sheaves of rings.

(1) The sheafO given by the rule (U → A) 7→ Γ(A,OA).
(2) The sheafOX = π−1OX given by the rule (U → A) 7→ OX(U).
(3) The constant sheaf Λ.

We obtain morphisms of ringed topoi

(25.1.1)

(Sh(CX/Λ),OX)
i
//

π

��

(Sh(CX/Λ),O)

(Sh(XZar),OX)

The morphism i is the identity on underlying topoi and i] : O → OX is the obvious
map. The map π is a special case of Cohomology on Sites, Situation 38.1. An important
role will be played in the following by the derived functors Li∗ : D(O) −→ D(OX) left
adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! : D(OX) −→ D(OX) left adjoint to
π∗ = π−1 : D(OX)→ D(OX). We can compute Lπ! thanks to our earlier work.

Remark 25.2. In the situation above, for every U ⊂ X open let P•,U be the standard
resolution ofOX(U) over Λ. Set An,U = Spec(Pn,U ). Then A•,U is a cosimplicial object
of the fibre category COX(U)/Λ of CX/Λ over U . Moreover, as discussed in Remark 5.5 we
have that A•,U is a cosimplicial object of COX(U)/Λ as in Cohomology on Sites, Lemma
39.7. Since the construction U 7→ A•,U is functorial in U , given any (abelian) sheaf F on
CX/Λ we obtain a complex of presheaves

U 7−→ F(A•,U )

whose cohomology groups compute the homology of F on the fibre category. We con-
clude by Cohomology on Sites, Lemma 40.2 that the sheafification computes Lnπ!(F).
In other words, the complex of sheaves whose term in degree −n is the sheafification of
U 7→ F(An,U ) computes Lπ!(F).

With this remark out of the way we can state the main result of this section.
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Lemma 25.3. In the situation above there is a canonical isomorphism

LX/Λ = Lπ!(Li∗ΩO/Λ) = Lπ!(i∗ΩO/Λ) = Lπ!(ΩO/Λ ⊗O OX)

in D(OX).

Proof. We first observe that for any object (U → A) of CX/Λ the value of the sheaf
O is a polynomial algebra over Λ. Hence ΩO/Λ is a flat O-module and we conclude the
second and third equalities of the statement of the lemma hold.

By Remark 25.2 the object Lπ!(ΩO/Λ ⊗O OX) is computed as the sheafification of the
complex of presheaves

U 7→
(
ΩO/Λ ⊗O OX

)
(A•,U ) = ΩP•,U/Λ ⊗P•,U OX(U) = LOX(U)/Λ

using notation as in Remark 25.2. Now Remark 18.5 shows that Lπ!(ΩO/Λ⊗OOX) com-
putes the cotangent complex of the map of rings Λ → OX on X . This is what we want
by Lemma 24.3. �

26. The cotangent complex of a morphism of algebraic spaces

We define the cotangent complex of a morphism of algebraic spaces using the associated
morphism between the small étale sites.

Definition 26.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The cotangent complexLX/Y ofX over Y is the cotangent complex of the
morphism of ringed topoi fsmall between the small étale sites of X and Y (see Properties
of Spaces, Lemma 21.3 and Definition 22.1).

In particular, the results of Section 22 apply to cotangent complexes of morphisms of alge-
braic spaces. The next lemmas show this definition is compatible with the definition for
ring maps and for schemes and that LX/Y is an object of DQCoh(OX).

Lemma 26.2. Let S be a scheme. Consider a commutative diagram

U

p

��

g
// V

q

��
X

f // Y

of algebraic spaces over S with p and q étale. Then there is a canonical identification
LX/Y |Uétale = LU/V in D(OU ).

Proof. Formation of the cotangent complex commutes with pullback (Lemma 18.3)
and we have p−1

smallOX = OU and g−1
smallOVétale = p−1

smallf
−1
smallOYétale because q−1

smallOYétale =
OVétale (Properties of Spaces, Lemma 26.1). Tracing through the definitions we conclude
that LX/Y |Uétale = LU/V . �

Lemma 26.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume X and Y representable by schemes X0 and Y0. Then there is a canonical
identificationLX/Y = ε∗LX0/Y0 inD(OX) where ε is as in Derived Categories of Spaces,
Section 4 and LX0/Y0 is as in Definition 24.1.
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Proof. Let f0 : X0 → Y0 be the morphism of schemes corresponding to f . There is
a canonical map ε−1f−1

0 OY0 → f−1
smallOY compatible with ε] : ε−1OX0 → OX because

there is a commutative diagram

X0,Zar

f0

��

Xétaleε
oo

f

��
Y0,Zar Yétale

εoo

see Derived Categories of Spaces, Remark 6.3. Thus we obtain a canonical map

ε−1LX0/Y0 = ε−1LOX0/f
−1
0 OY0

= Lε−1OX0/ε
−1f−1

0 OY0
−→ LOX/f

−1
small

OY
= LX/Y

by the functoriality discussed in Section 18 and Lemma 18.3. To see that the induced
map ε∗LX0/Y0 → LX/Y is an isomorphism we may check on stalks at geometric points
(Properties of Spaces, Theorem 19.12). We will use Lemma 18.9 to compute the stalks. Let
x : Spec(k) → X0 be a geometric point lying over x ∈ X0, with y = f ◦ x lying over
y ∈ Y0. Then

LX/Y,x = LOX,x/OY,y

and
(ε∗LX0/Y0)x = LX0/Y0,x ⊗OX0,x

OX,x = LOX0,x/OY0,y
⊗OX0,x

OX,x
Some details omitted (hint: use that the stalk of a pullback is the stalk at the image point,
see Sites, Lemma 34.2, as well as the corresponding result for modules, see Modules on
Sites, Lemma 36.4). Observe that OX,x is the strict henselization of OX0,x and similarly
forOY,y (Properties of Spaces, Lemma 22.1). Thus the result follows from Lemma 8.7. �

Lemma 26.4. Let Λ be a ring. Let X be an algebraic space over Λ. Then

LX/ Spec(Λ) = LOX/Λ

where Λ is the constant sheaf with value Λ on Xétale.

Proof. Let p : X → Spec(Λ) be the structure morphism. Let q : Spec(Λ)étale →
(∗,Λ) be the obvious morphism. By the distinguished triangle of Lemma 22.3 it suffices
to show that Lq = 0. To see this it suffices to show (Properties of Spaces, Theorem 19.12)
for a geometric point t : Spec(k)→ Spec(Λ) that

(Lq)t = LOSpec(Λ)étale,t
/Λ

(Lemma 18.9) is zero. Since OSpec(Λ)étale,t is a strict henselization of a local ring of Λ
(Properties of Spaces, Lemma 22.1) this follows from Lemma 8.4. �

27. The cotangent complex of an algebraic space over a ring

Let Λ be a ring and let X be an algebraic space over Λ. Write LX/ Spec(Λ) = LX/Λ which
is justified by Lemma 26.4. In this section we give a description of LX/Λ similar to Lemma
4.3. Namely, we construct a category CX/Λ fibred over Xétale and endow it with a sheaf
of (polynomial) Λ-algebrasO such that

LX/Λ = Lπ!(ΩO/Λ ⊗O OX).

We will later use the category CX/Λ to construct a naive obstruction theory for the stack
of coherent sheaves.
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Let Λ be a ring. LetX be an algebraic space over Λ. Let CX/Λ be the category whose objects
are commutative diagrams

(27.0.1)

X

��

Uoo

��
Spec(Λ) Aoo

of schemes where
(1) U is a scheme,
(2) U → X is étale,
(3) there exists an isomorphism A = Spec(P ) whereP is a polynomial algebra over

Λ (on some set of variables).
In other words, A is an (infinite dimensional) affine space over Spec(Λ). Morphisms are
given by commutative diagrams. Recall thatXétale denotes the small étale site ofX whose
objects are schemes étale over X . There is a forgetful functor

u : CX/Λ → Xétale, (U → A) 7→ U

Observe that the fibre category overU is canonically equivalent to the category COX(U)/Λ
introduced in Section 4.

Lemma 27.1. In the situation above the category CX/Λ is fibred over Xétale.

Proof. Given an objectU → A of CX/Λ and a morphismU ′ → U ofXétale consider
the object U ′ → A of CX/Λ where U ′ → A is the composition of U → A and U ′ → U .
The morphism (U ′ → A)→ (U → A) of CX/Λ is strongly cartesian over Xétale. �

We endow CX/Λ with the topology inherited from Xétale (see Stacks, Section 10). The
functor u defines a morphism of topoi π : Sh(CX/Λ)→ Sh(Xétale). The site CX/Λ comes
with several sheaves of rings.

(1) The sheafO given by the rule (U → A) 7→ Γ(A,OA).
(2) The sheafOX = π−1OX given by the rule (U → A) 7→ OX(U).
(3) The constant sheaf Λ.

We obtain morphisms of ringed topoi

(27.1.1)

(Sh(CX/Λ),OX)
i
//

π

��

(Sh(CX/Λ),O)

(Sh(Xétale),OX)

The morphism i is the identity on underlying topoi and i] : O → OX is the obvious
map. The map π is a special case of Cohomology on Sites, Situation 38.1. An important
role will be played in the following by the derived functors Li∗ : D(O) −→ D(OX) left
adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! : D(OX) −→ D(OX) left adjoint to
π∗ = π−1 : D(OX)→ D(OX). We can compute Lπ! thanks to our earlier work.

Remark 27.2. In the situation above, for every object U → X of Xétale let P•,U
be the standard resolution of OX(U) over Λ. Set An,U = Spec(Pn,U ). Then A•,U is a
cosimplicial object of the fibre category COX(U)/Λ of CX/Λ overU . Moreover, as discussed
in Remark 5.5 we have that A•,U is a cosimplicial object of COX(U)/Λ as in Cohomology
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on Sites, Lemma 39.7. Since the construction U 7→ A•,U is functorial in U , given any
(abelian) sheaf F on CX/Λ we obtain a complex of presheaves

U 7−→ F(A•,U )

whose cohomology groups compute the homology of F on the fibre category. We con-
clude by Cohomology on Sites, Lemma 40.2 that the sheafification computes Lnπ!(F).
In other words, the complex of sheaves whose term in degree −n is the sheafification of
U 7→ F(An,U ) computes Lπ!(F).

With this remark out of the way we can state the main result of this section.

Lemma 27.3. In the situation above there is a canonical isomorphism

LX/Λ = Lπ!(Li∗ΩO/Λ) = Lπ!(i∗ΩO/Λ) = Lπ!(ΩO/Λ ⊗O OX)

in D(OX).

Proof. We first observe that for any object (U → A) of CX/Λ the value of the sheaf
O is a polynomial algebra over Λ. Hence ΩO/Λ is a flat O-module and we conclude the
second and third equalities of the statement of the lemma hold.

By Remark 27.2 the object Lπ!(ΩO/Λ ⊗O OX) is computed as the sheafification of the
complex of presheaves

U 7→
(
ΩO/Λ ⊗O OX

)
(A•,U ) = ΩP•,U/Λ ⊗P•,U OX(U) = LOX(U)/Λ

using notation as in Remark 27.2. Now Remark 18.5 shows that Lπ!(ΩO/Λ⊗OOX) com-
putes the cotangent complex of the map of rings Λ → OX on Xétale. This is what we
want by Lemma 26.4. �

28. Fibre products of algebraic spaces and the cotangent complex

Let S be a scheme. Let X → B and Y → B be morphisms of algebraic spaces over S.
Consider the fibre product X ×B Y with projection morphisms p : X ×B Y → X and
q : X×B Y → Y . In this section we discussLX×BY/B . Most of the information we want
is contained in the following diagram

(28.0.1)

Lp∗LX/B // LX×BY/Y
// E

Lp∗LX/B // LX×BY/B
//

OO

LX×BY/X

OO

Lq∗LY/B

OO

Lq∗LY/B

OO

Explanation: The middle row is the fundamental triangle of Lemma 22.3 for the mor-
phisms X ×B Y → X → B. The middle column is the fundamental triangle for the
morphisms X ×B Y → Y → B. Next, E is an object of D(OX×BY ) which “fits” into
the upper right corner, i.e., which turns both the top row and the right column into dis-
tinguished triangles. Such an E exists by Derived Categories, Proposition 4.23 applied to
the lower left square (with 0 placed in the missing spot). To be more explicit, we could for
example defineE as the cone (Derived Categories, Definition 9.1) of the map of complexes

Lp∗LX/B ⊕ Lq∗LY/B −→ LX×BY/B
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and get the two maps with target E by an application of TR3. In the Tor independent
case the object E is zero.

Lemma 28.1. In the situation above, if X and Y are Tor independent over B, then
the object E in (28.0.1) is zero. In this case we have

LX×BY/B = Lp∗LX/B ⊕ Lq∗LY/B

Proof. Choose a scheme W and a surjective étale morphism W → B. Choose a
scheme U and a surjective étale morphism U → X ×B W . Choose a scheme V and a
surjective étale morphism V → Y ×B W . Then U ×W V → X ×B Y is surjective étale
too. Hence it suffices to prove that the restriction of E to U ×W V is zero. By Lemma
26.3 and Derived Categories of Spaces, Lemma 20.3 this reduces us to the case of schemes.
Taking suitable affine opens we reduce to the case of affine schemes. Using Lemma 24.2 we
reduce to the case of a tensor product of rings, i.e., to Lemma 15.1. �

In general we can say the following about the object E.

Lemma 28.2. Let S be a scheme. Let X → B and Y → B be morphisms of algebraic
spaces over S. The object E in (28.0.1) satisfies Hi(E) = 0 for i = 0,−1 and for a
geometric point (x, y) : Spec(k)→ X ×B Y we have

H−2(E)(x,y) = TorR1 (A,B)⊗A⊗RB C

where R = OB,b, A = OX,x, B = OY,y , and C = OX×BY,(x,y).

Proof. The formation of the cotangent complex commutes with taking stalks and
pullbacks, see Lemmas 18.9 and 18.3. Note that C is a henselization of A⊗R B. LC/R =
LA⊗RB/R ⊗A⊗RB C by the results of Section 8. Thus the stalk of E at our geometric
point is the cone of the map LA/R ⊗ C → LA⊗RB/R ⊗ C. Therefore the results of the
lemma follow from the case of rings, i.e., Lemma 15.2. �
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CHAPTER 93

Deformation Problems

1. Introduction

The goal of this chapter is to work out examples of the general theory developed in the
chapters Formal Deformation Theory, Deformation Theory, The Cotangent Complex.
Section 3 of the paper [?] by Schlessinger discusses some examples as well.

2. Examples of deformation problems

List of things that should go here:
(1) Deformations of schemes:

(a) The Rim-Schlessinger condition.
(b) Computing the tangent space.
(c) Computing the infinitesimal deformations.
(d) The deformation category of an affine hypersurface.

(2) Deformations of sheaves (for example fix X/S , a finite type point s of S , and a
quasi-coherent sheaf Fs over Xs).

(3) Deformations of algebraic spaces (very similar to deformations of schemes; maybe
even easier?).

(4) Deformations of maps (eg morphisms between schemes; you can fix both or one
of the target and/or source).

(5) Add more here.

3. General outline

This section lays out the procedure for discussing the next few examples.
Step I. For each section we fix a Noetherian ring Λ and we fix a finite ring map Λ → k
where k is a field. As usual we let CΛ = CΛ,k be our base category, see Formal Deformation
Theory, Definition 3.1.
Step II. In each section we define a category F cofibred in groupoids over CΛ. Occassion-
ally we will consider instead a functor F : CΛ → Sets.
Step III. We explain to what extent F satisfies the Rim-Schlesssinger condition (RS) dis-
cussed in Formal Deformation Theory, Section 16. Similarly, we may discuss to what
extent our F satisfies (S1) and (S2) or to what extent F satisfies the corresponding Sch-
lessinger’s conditions (H1) and (H2). See Formal Deformation Theory, Section 10.
Step IV. Let x0 be an object of F(k), in other words an object of F over k. In this chapter
we will use the notation

Def x0 = Fx0

to denote the predeformation category constructed in Formal Deformation Theory, Re-
mark 6.4. If F satisfies (RS), then Def x0 is a deformation category (Formal Deformation

6495
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Theory, Lemma 16.11) and satisfies (S1) and (S2) (Formal Deformation Theory, Lemma
16.6). If (S1) and (S2) are satisfied, then an important question is whether the tangent
space

TDef x0 = Tx0F = TFx0

(see Formal Deformation Theory, Remark 12.5 and Definition 12.1) is finite dimensional.
Namely, this insures that Def x0 has a versal formal object (Formal Deformation Theory,
Lemma 13.4).
Step V. If F passes Step IV, then the next question is whether the k-vector space

Inf(Def x0) = Infx0(F)
of infinitesimal automorphisms of x0 is finite dimensional. Namely, if true, this implies
that Def x0 admits a presentation by a smooth prorepresentable groupoid in functors on
CΛ, see Formal Deformation Theory, Theorem 26.4.

4. Finite projective modules

This section is just a warmup. Of course finite projective modules should not have any
“moduli”.

Example 4.1 (Finite projective modules). Let F be the category defined as follows
(1) an object is a pair (A,M) consisting of an object A of CΛ and a finite projective

A-module M , and
(2) a morphism (f, g) : (B,N)→ (A,M) consists of a morphism f : B → A in CΛ

together with a map g : N → M which is f -linear and induces an isomorpism
N ⊗B,f A ∼= M .

The functor p : F → CΛ sends (A,M) to A and (f, g) to f . It is clear that p is cofi-
bred in groupoids. Given a finite dimensional k-vector space V , let x0 = (k, V ) be the
corresponding object of F(k). We set

Def V = Fx0

Since every finite projective module over a local ring is finite free (Algebra, Lemma 78.2)
we see that

isomorphism classes
of objects of F(A) =

∐
n≥0
{∗}

Although this means that the deformation theory of F is essentially trivial, we still work
through the steps outlined in Section 3 to provide an easy example.

Lemma 4.2. Example 4.1 satisfies the Rim-Schlessinger condition (RS). In particular,
Def V is a deformation category for any finite dimensional vector space V over k.

Proof. LetA1 → A andA2 → A be morphisms of CΛ. AssumeA2 → A is surjective.
According to Formal Deformation Theory, Lemma 16.4 it suffices to show that the functor
F(A1 ×A A2)→ F(A1)×F(A) F(A2) is an equivalence of categories.
Thus we have to show that the category of finite projective modules over A1 ×A A2 is
equivalent to the fibre product of the categories of finite projective modules over A1 and
A2 over the category of finite projective modules over A. This is a special case of More
on Algebra, Lemma 6.9. We recall that the inverse functor sends the triple (M1,M2, ϕ)
where M1 is a finite projective A1-module, M2 is a finite projective A2-module, and ϕ :
M1⊗A1A→M2⊗A2A is an isomorphism ofA-module, to the finite projectiveA1×AA2-
module M1 ×ϕM2. �
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Lemma 4.3. In Example 4.1 let V be a finite dimensional k-vector space. Then

TDef V = (0) and Inf(Def V ) = Endk(V )
are finite dimensional.

Proof. WithF as in Example 4.1 setx0 = (k, V ) ∈ Ob(F(k)). Recall thatTDef V =
Tx0F is the set of isomorphism classes of pairs (x, α) consisting of an object x of F over
the dual numbers k[ε] and a morphism α : x→ x0 of F lying over k[ε]→ k.

Up to isomorphism, there is a unique pair (M,α) consisting of a finite projective module
M over k[ε] and k[ε]-linear map α : M → V which induces an isomorphismM⊗k[ε] k →
V . For example, if V = k⊕n, then we take M = k[ε]⊕n with the obvious map α.

Similarly, Inf(Def V ) = Infx0(F) is the set of automorphisms of the trivial deformation
x′

0 of x0 over k[ε]. See Formal Deformation Theory, Definition 19.2 for details.

Given (M,α) as in the second paragraph, we see that an element of Infx0(F) is an auto-
morphism γ : M → M with γ mod ε = id. Then we can write γ = idM + εψ where
ψ : M/εM → M/εM is k-linear. Using α we can think of ψ as an element of Endk(V )
and this finishes the proof. �

5. Representations of a group

The deformation theory of representations can be very interesting.

Example 5.1 (Representations of a group). Let Γ be a group. Let F be the category
defined as follows

(1) an object is a triple (A,M, ρ) consisting of an object A of CΛ, a finite projective
A-module M , and a homomorphism ρ : Γ→ GLA(M), and

(2) a morphism (f, g) : (B,N, τ) → (A,M, ρ) consists of a morphism f : B → A
in CΛ together with a map g : N →M which is f -linear and Γ-equivariant and
induces an isomorpism N ⊗B,f A ∼= M .

The functor p : F → CΛ sends (A,M, ρ) to A and (f, g) to f . It is clear that p is cofibred
in groupoids. Given a finite dimensional k-vector space V and a representation ρ0 : Γ→
GLk(V ), let x0 = (k, V, ρ0) be the corresponding object of F(k). We set

Def V,ρ0 = Fx0

Since every finite projective module over a local ring is finite free (Algebra, Lemma 78.2)
we see that

isomorphism classes
of objects of F(A) =

∐
n≥0

GLn(A)-conjugacy classes of
homomorphisms ρ : Γ→ GLn(A)

This is already more interesting than the discussion in Section 4.

Lemma 5.2. Example 5.1 satisfies the Rim-Schlessinger condition (RS). In particular,
Def V,ρ0 is a deformation category for any finite dimensional representation ρ0 : Γ →
GLk(V ).

Proof. LetA1 → A andA2 → A be morphisms of CΛ. AssumeA2 → A is surjective.
According to Formal Deformation Theory, Lemma 16.4 it suffices to show that the functor
F(A1 ×A A2)→ F(A1)×F(A) F(A2) is an equivalence of categories.

Consider an object
((A1,M1, ρ1), (A2,M2, ρ2), (idA, ϕ))
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of the category F(A1) ×F(A) F(A2). Then, as seen in the proof of Lemma 4.2, we can
consider the finite projective A1 ×A A2-module M1 ×ϕ M2. Since ϕ is compatible with
the given actions we obtain

ρ1 × ρ2 : Γ −→ GLA1×AA2(M1 ×ϕM2)

Then (M1 ×ϕM2, ρ1 × ρ2) is an object of F(A1 ×A A2). This construction determines
a quasi-inverse to our functor. �

Lemma 5.3. In Example 5.1 let ρ0 : Γ → GLk(V ) be a finite dimensional represen-
tation. Then

TDef V,ρ0 = Ext1
k[Γ](V, V ) = H1(Γ,Endk(V )) and Inf(Def V,ρ0) = H0(Γ,Endk(V ))

Thus Inf(Def V,ρ0) is always finite dimensional and TDef V,ρ0 is finite dimensional if Γ is
finitely generated.

Proof. We first deal with the infinitesimal automorphisms. LetM = V ⊗k k[ε] with
induced action ρ′

0 : Γ→ GLn(M). Then an infinitesimal automorphism, i.e., an element
of Inf(Def V,ρ0), is given by an automorphism γ = id + εψ : M → M as in the proof of
Lemma 4.3, where moreover ψ has to commute with the action of Γ (given by ρ0). Thus
we see that

Inf(Def V,ρ0) = H0(Γ,Endk(V ))
as predicted in the lemma.

Next, let (k[ε],M, ρ) be an object of F over k[ε] and let α : M → V be a Γ-equivariant
map inducing an isomorphism M/εM → V . Since M is free as a k[ε]-module we obtain
an extension of Γ-modules

0→ V →M
α−→ V → 0

We omit the detailed construction of the map on the left. Conversely, if we have an ex-
tension of Γ-modules as above, then we can use this to make a k[ε]-module structure onM
and get an object of F(k[ε]) together with a map α as above. It follows that

TDef V,ρ0 = Ext1
k[Γ](V, V )

as predicted in the lemma. This is equal toH1(Γ,Endk(V )) by Étale Cohomology, Lemma
57.4.

The statement on dimensions follows from Étale Cohomology, Lemma 57.5. �

In Example 5.1 if Γ is finitely generated and (V, ρ0) is a finite dimensional representation
of Γ over k, then Def V,ρ0 admits a presentation by a smooth prorepresentable groupoid
in functors over CΛ and a fortiori has a (minimal) versal formal object. This follows from
Lemmas 5.2 and 5.3 and the general discussion in Section 3.

Lemma 5.4. In Example 5.1 assume Γ finitely generated. Let ρ0 : Γ→ GLk(V ) be a
finite dimensional representation. Assume Λ is a complete local ring with residue field k
(the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def V,ρ0(A))/ ∼=

of isomorphism classes of objects has a hull. If H0(Γ,Endk(V )) = k, then F is prorepre-
sentable.
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Proof. The existence of a hull follows from Lemmas 5.2 and 5.3 and Formal Defor-
mation Theory, Lemma 16.6 and Remark 15.7.

AssumeH0(Γ,Endk(V )) = k. To see that F is prorepresentable it suffices to show that F
is a deformation functor, see Formal Deformation Theory, Theorem 18.2. In other words,
we have to show F satisfies (RS). For this we can use the criterion of Formal Deformation
Theory, Lemma 16.7. The required surjectivity of automorphism groups will follow if we
show that

A · idM = EndA[Γ](M)
for any object (A,M, ρ) of F such that M ⊗A k is isomorphic to V as a representation
of Γ. Since the left hand side is contained in the right hand side, it suffices to show
lengthAEndA[Γ](M) ≤ lengthAA. Choose pairwise distinct ideals (0) = In ⊂ . . . ⊂
I1 ⊂ A with n = length(A). By correspondingly filtering M , we see that it suffices
to prove HomA[Γ](M, ItM/It+1M) has length 1. Since ItM/It+1M ∼= M ⊗A k and
since any A[Γ]-module map M → M ⊗A k factors uniquely through the quotient map
M →M ⊗A k to give an element of

EndA[Γ](M ⊗A k) = Endk[Γ](V ) = k

we conclude. �

6. Continuous representations

A very interesting thing one can do is to take an infinite Galois group and study the de-
formation theory of its representations, see [?].

Example 6.1 (Representations of a topological group). Let Γ be a topological group.
Let F be the category defined as follows

(1) an object is a triple (A,M, ρ) consisting of an object A of CΛ, a finite projec-
tive A-module M , and a continuous homomorphism ρ : Γ → GLA(M) where
GLA(M) is given the discrete topology1, and

(2) a morphism (f, g) : (B,N, τ) → (A,M, ρ) consists of a morphism f : B → A
in CΛ together with a map g : N →M which is f -linear and Γ-equivariant and
induces an isomorpism N ⊗B,f A ∼= M .

The functor p : F → CΛ sends (A,M, ρ) toA and (f, g) to f . It is clear that p is cofibred in
groupoids. Given a finite dimensional k-vector space V and a continuous representation
ρ0 : Γ→ GLk(V ), let x0 = (k, V, ρ0) be the corresponding object of F(k). We set

Def V,ρ0 = Fx0

Since every finite projective module over a local ring is finite free (Algebra, Lemma 78.2)
we see that

isomorphism classes
of objects of F(A) =

∐
n≥0

GLn(A)-conjugacy classes of
continuous homomorphisms ρ : Γ→ GLn(A)

Lemma 6.2. Example 6.1 satisfies the Rim-Schlessinger condition (RS). In particular,
Def V,ρ0 is a deformation category for any finite dimensional continuous representation
ρ0 : Γ→ GLk(V ).

Proof. The proof is exactly the same as the proof of Lemma 5.2. �

1An alternative would be to require theA-moduleM withG-action given by ρ is anA-G-module as defined
in Étale Cohomology, Definition 57.1. However, since M is a finite A-module, this is equivalent.
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Lemma 6.3. In Example 6.1 let ρ0 : Γ→ GLk(V ) be a finite dimensional continuous
representation. Then

TDef V,ρ0 = H1(Γ,Endk(V )) and Inf(Def V,ρ0) = H0(Γ,Endk(V ))
Thus Inf(Def V,ρ0) is always finite dimensional and TDef V,ρ0 is finite dimensional if Γ is
topologically finitely generated.

Proof. The proof is exactly the same as the proof of Lemma 5.3. �

In Example 6.1 if Γ is topologically finitely generated and (V, ρ0) is a finite dimensional
continuous representation of Γ over k, then Def V,ρ0 admits a presentation by a smooth
prorepresentable groupoid in functors over CΛ and a fortiori has a (minimal) versal formal
object. This follows from Lemmas 6.2 and 6.3 and the general discussion in Section 3.

Lemma 6.4. In Example 6.1 assume Γ is topologically finitely generated. Let ρ0 :
Γ → GLk(V ) be a finite dimensional representation. Assume Λ is a complete local ring
with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def V,ρ0(A))/ ∼=
of isomorphism classes of objects has a hull. If H0(Γ,Endk(V )) = k, then F is prorepre-
sentable.

Proof. The proof is exactly the same as the proof of Lemma 5.4. �

7. Graded algebras

We will use the example in this section in the proof that the stack of polarized proper
schemes is an algebraic stack. For this reason we will consider commutative graded al-
gebras whose homogeneous parts are finite projective modules (sometimes called “locally
finite”).

Example 7.1 (Graded algebras). Let F be the category defined as follows
(1) an object is a pair (A,P ) consisting of an object A of CΛ and a graded A-algebra

P such that Pd is a finite projective A-module for all d ≥ 0, and
(2) a morphism (f, g) : (B,Q)→ (A,P ) consists of a morphism f : B → A in CΛ

together with a map g : Q → P which is f -linear and induces an isomorpism
Q⊗B,f A ∼= P .

The functor p : F → CΛ sends (A,P ) to A and (f, g) to f . It is clear that p is cofibred in
groupoids. Given a graded k-algebraP with dimk(Pd) <∞ for all d ≥ 0, let x0 = (k, P )
be the corresponding object of F(k). We set

Def P = Fx0

Lemma 7.2. Example 7.1 satisfies the Rim-Schlessinger condition (RS). In particular,
Def P is a deformation category for any graded k-algebra P .

Proof. LetA1 → A andA2 → A be morphisms of CΛ. AssumeA2 → A is surjective.
According to Formal Deformation Theory, Lemma 16.4 it suffices to show that the functor
F(A1 ×A A2)→ F(A1)×F(A) F(A2) is an equivalence of categories.
Consider an object

((A1, P1), (A2, P2), (idA, ϕ))
of the categoryF(A1)×F(A)F(A2). Then we consider P1×ϕP2. Since ϕ : P1⊗A1 A→
P2⊗A2 A is an isomorphism of graded algebras, we see that the graded pieces of P1×ϕ P2
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are finite projective A1 ×A A2-modules, see proof of Lemma 4.2. Thus P1 ×ϕ P2 is an
object of F(A1 ×A A2). This construction determines a quasi-inverse to our functor and
the proof is complete. �

Lemma 7.3. In Example 7.1 let P be a graded k-algebra. Then

TDef P and Inf(Def P ) = Derk(P, P )

are finite dimensional if P is finitely generated over k.

Proof. We first deal with the infinitesimal automorphisms. LetQ = P⊗kk[ε]. Then
an element of Inf(Def P ) is given by an automorphism γ = id + εδ : Q → Q as above
where now δ : P → P . The fact that γ is graded implies that δ is homogeneous of degree
0. The fact that γ is k-linear implies that δ is k-linear. The fact that γ is multiplicative
implies that δ is a k-derivation. Conversely, given a k-derivation δ : P → P homogeneous
of degree 0, we obtain an automorphism γ = id + εδ as above. Thus we see that

Inf(Def P ) = Derk(P, P )

as predicted in the lemma. Clearly, if P is generated in degrees Pi, 0 ≤ i ≤ N , then δ is
determined by the linear maps δi : Pi → Pi for 0 ≤ i ≤ N and we see that

dimk Derk(P, P ) <∞

as desired.

To finish the proof of the lemma we show that there is a finite dimensional deformation
space. To do this we choose a presentation

k[X1, . . . , Xn]/(F1, . . . , Fm) −→ P

of graded k-algebras where deg(Xi) = di and Fj is homogeneous of degree ej . Let Q
be any graded k[ε]-algebra finite free in each degree which comes with an isomorphsm
α : Q/εQ → P so that (Q,α) defines an element of TDef P . Choose a homogeneous
element qi ∈ Q of degree di mapping to the image of Xi in P . Then we obtain

k[ε][X1, . . . , Xn] −→ Q, Xi 7−→ qi

and since P = Q/εQ this map is surjective by Nakayama’s lemma. A small diagram
chase shows we can choose homogeneous elements Fε,j ∈ k[ε][X1, . . . , Xn] of degree ej
mapping to zero in Q and mapping to Fj in k[X1, . . . , Xn]. Then

k[ε][X1, . . . , Xn]/(Fε,1, . . . , Fε,m) −→ Q

is a presentation of Q by flatness of Q over k[ε]. Write

Fε,j = Fj + εGj

There is some ambiguity in the vector (G1, . . . , Gm). First, using different choices of Fε,j
we can modifyGj by an arbitrary element of degree ej in the kernel of k[X1, . . . , Xn]→
P . Hence, instead of (G1, . . . , Gm), we remember the element

(g1, . . . , gm) ∈ Pe1 ⊕ . . .⊕ Pem
where gj is the image of Gj in Pej . Moreover, if we change our choice of qi into qi + εpi
with pi of degree di then a computation (omitted) shows that gj changes into

gnewj = gj −
∑n

i=1
pi∂Fj/∂Xi
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We conclude that the isomorphism class of Q is determined by the image of the vector
(G1, . . . , Gm) in the k-vector space

W = Coker(Pd1 ⊕ . . .⊕ Pdn
(
∂Fj
∂Xi

)
−−−−→ Pe1 ⊕ . . .⊕ Pem)

In this way we see that we obtain an injection

TDef P −→W

Since W visibly has finite dimension, we conclude that the lemma is true. �

In Example 7.1 if P is a finitely generated graded k-algebra, then Def P admits a presen-
tation by a smooth prorepresentable groupoid in functors over CΛ and a fortiori has a
(minimal) versal formal object. This follows from Lemmas 7.2 and 7.3 and the general
discussion in Section 3.

Lemma 7.4. In Example 7.1 assume P is a finitely generated graded k-algebra. As-
sume Λ is a complete local ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def P (A))/ ∼=

of isomorphism classes of objects has a hull.

Proof. This follows immediately from Lemmas 7.2 and 7.3 and Formal Deformation
Theory, Lemma 16.6 and Remark 15.7. �

8. Rings

The deformation theory of rings is the same as the deformation theory of affine schemes.
For rings and schemes when we talk about deformations it means we are thinking about
flat deformations.

Example 8.1 (Rings). Let F be the category defined as follows
(1) an object is a pair (A,P ) consisting of an object A of CΛ and a flat A-algebra P ,

and
(2) a morphism (f, g) : (B,Q)→ (A,P ) consists of a morphism f : B → A in CΛ

together with a map g : Q → P which is f -linear and induces an isomorpism
Q⊗B,f A ∼= P .

The functor p : F → CΛ sends (A,P ) to A and (f, g) to f . It is clear that p is cofibred in
groupoids. Given a k-algebra P , let x0 = (k, P ) be the corresponding object ofF(k). We
set

Def P = Fx0

Lemma 8.2. Example 8.1 satisfies the Rim-Schlessinger condition (RS). In particular,
Def P is a deformation category for any k-algebra P .

Proof. LetA1 → A andA2 → A be morphisms of CΛ. AssumeA2 → A is surjective.
According to Formal Deformation Theory, Lemma 16.4 it suffices to show that the functor
F(A1 ×A A2) → F(A1) ×F(A) F(A2) is an equivalence of categories. This is a special
case of More on Algebra, Lemma 7.7. �

Lemma 8.3. In Example 8.1 let P be a k-algebra. Then

TDef P = Ext1
P (NLP/k, P ) and Inf(Def P ) = Derk(P, P )
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Proof. Recall that Inf(Def P ) is the set of automorphisms of the trivial deformation
P [ε] = P ⊗k k[ε] of P to k[ε] equal to the identity modulo ε. By Deformation The-
ory, Lemma 2.1 this is equal to HomP (ΩP/k, P ) which in turn is equal to Derk(P, P ) by
Algebra, Lemma 131.3.

Recall that TDef P is the set of isomorphism classes of flat deformations Q of P to k[ε],
more precisely, the set of isomorphism classes of Def P (k[ε]). Recall that a k[ε]-algebra Q
with Q/εQ = P is flat over k[ε] if and only if

0→ P
ε−→ Q→ P → 0

is exact. This is proven in More on Morphisms, Lemma 10.1 and more generally in Defor-
mation Theory, Lemma 5.2. Thus we may apply Deformation Theory, Lemma 2.2 to see
that the set of isomorphism classes of such deformations is equal to Ext1

P (NLP/k, P ). �

Lemma 8.4. In Example 8.1 let P be a smooth k-algebra. Then TDef P = (0).

Proof. By Lemma 8.3 we have to show Ext1
P (NLP/k, P ) = (0). Since k → P

is smooth NLP/k is quasi-isomorphic to the complex consisting of a finite projective P -
module placed in degree 0. �

Lemma 8.5. In Lemma 8.3 if P is a finite type k-algebra, then
(1) Inf(Def P ) is finite dimensional if and only if dim(P ) = 0, and
(2) TDef P is finite dimensional if Spec(P )→ Spec(k) is smooth except at a finite

number of points.

Proof. Proof of (1). We view Derk(P, P ) as a P -module. If it has finite dimension
over k, then it has finite length as a P -module, hence it is supported in finitely many
closed points of Spec(P ) (Algebra, Lemma 52.11). Since Derk(P, P ) = HomP (ΩP/k, P )
we see that Derk(P, P )p = Derk(Pp, Pp) for any prime p ⊂ P (this uses Algebra, Lemmas
131.8, 131.15, and 10.2). Let p be a minimal prime ideal ofP corresponding to an irreducible
component of dimension d > 0. ThenPp is an Artinian local ring essentially of finite type
over k with residue field and ΩPp/k is nonzero for example by Algebra, Lemma 140.3. Any
nonzero finite module over an Artinian local ring has both a sub and a quotient module
isomorphic to the residue field. Thus we find that Derk(Pp, Pp) = HomPp

(ΩPp/k, Pp) is
nonzero too. Combining all of the above we find that (1) is true.

Proof of (2). For a prime p of P we will use that NLPp/k = (NLP/k)p (Algebra, Lemma
134.13) and we will use that Ext1

P (NLP/k, P )p = Ext1
Pp

(NLPp/k, Pp) (More on Algebra,
Lemma 65.4). Given a prime p ⊂ P then k → P is smooth at p if and only if (NLP/k)p is
quasi-isomorphic to a finite projective module placed in degree 0 (this follows immediately
from the definition of a smooth ring map but it also follows from the stronger Algebra,
Lemma 137.12).

Assume that P is smooth over k at all but finitely many primes. Then these “bad” primes
are maximal ideals m1, . . . ,mn ⊂ P by Algebra, Lemma 61.3 and the fact that the “bad”
primes form a closed subset of Spec(P ). For p 6∈ {m1, . . . ,mn}we have Ext1

P (NLP/k, P )p =
0 by the results above. Thus Ext1

P (NLP/k, P ) is a finite P -module whose support is con-
tained in {m1, . . . ,mr}. By Algebra, Proposition 63.6 for example, we find that the di-
mension over k of Ext1

P (NLP/k, P ) is a finite integer combination of dimk κ(mi) and
hence finite by the Hilbert Nullstellensatz (Algebra, Theorem 34.1). �
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In Example 8.1, let P be a finite type k-algebra. Then Def P admits a presentation by a
smooth prorepresentable groupoid in functors over CΛ if and only if dim(P ) = 0. Fur-
thermore, Def P has a versal formal object if Spec(P ) → Spec(k) has finitely many sin-
gular points. This follows from Lemmas 8.2 and 8.5 and the general discussion in Section
3.

Lemma 8.6. In Example 8.1 assume P is a finite type k-algebra such that Spec(P )→
Spec(k) is smooth except at a finite number of points. Assume Λ is a complete local ring
with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(Def P (A))/ ∼=
of isomorphism classes of objects has a hull.

Proof. This follows immediately from Lemmas 8.2 and 8.5 and Formal Deformation
Theory, Lemma 16.6 and Remark 15.7. �

Lemma 8.7. In Example 8.1 letP be a k-algebra. LetS ⊂ P be a multiplicative subset.
There is a natural functor

Def P −→ Def S−1P

of deformation categories.

Proof. Given a deformation of P we can take the localization of it to get a deforma-
tion of the localization; this is clear and we encourage the reader to skip the proof. More
precisely, let (A,Q) → (k, P ) be a morphism in F , i.e., an object of Def P . Let SQ ⊂ Q

be the inverse image of S. Then Hence (A,S−1
Q Q) → (k, S−1P ) is the desired object of

Def S−1P . �

Lemma 8.8. In Example 8.1 let P be a k-algebra. Let J ⊂ P be an ideal. Denote
(Ph, Jh) the henselization of the pair (P, J). There is a natural functor

Def P −→ Def Ph
of deformation categories.

Proof. Given a deformation of P we can take the henselization of it to get a defor-
mation of the henselization; this is clear and we encourage the reader to skip the proof.
More precisely, let (A,Q) → (k, P ) be a morphism in F , i.e., an object of Def P . De-
note JQ ⊂ Q the inverse image of J in Q. Let (Qh, JhQ) be the henselization of the pair
(Q, JQ). Recall that Q → Qh is flat (More on Algebra, Lemma 12.2) and hence Qh is
flat over A. By More on Algebra, Lemma 12.7 we see that the map Qh → Ph induces an
isomorphismQh⊗A k = Qh⊗QP = Ph. Hence (A,Qh)→ (k, Ph) is the desired object
of Def Ph . �

Lemma 8.9. In Example 8.1 let P be a k-algebra. Assume P is a local ring and let P sh
be a strict henselization of P . There is a natural functor

Def P −→ Def P sh
of deformation categories.

Proof. Given a deformation of P we can take the strict henselization of it to get a
deformation of the strict henselization; this is clear and we encourage the reader to skip
the proof. More precisely, let (A,Q)→ (k, P ) be a morphism inF , i.e., an object ofDef P .
Since the kernel of the surjectionQ→ P is nilpotent, we find thatQ is a local ring with the
same residue field as P . Let Qsh be the strict henselization of Q. Recall that Q → Qsh is
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flat (More on Algebra, Lemma 45.1) and henceQsh is flat overA. By Algebra, Lemma 156.4
we see that the mapQsh → P sh induces an isomorphismQsh⊗A k = Qsh⊗Q P = P sh.
Hence (A,Qsh)→ (k, P sh) is the desired object of Def P sh . �

Lemma 8.10. In Example 8.1 let P be a k-algebra. Assume P Noetherian and let
J ⊂ P be an ideal. Denote P∧ the J -adic completion. There is a natural functor

Def P −→ Def P∧

of deformation categories.

Proof. Given a deformation of P we can take the completion of it to get a deforma-
tion of the completion; this is clear and we encourage the reader to skip the proof. More
precisely, let (A,Q)→ (k, P ) be a morphism inF , i.e., an object ofDef P . Observe thatQ
is a Noetherian ring: the kernel of the surjective ring mapQ→ P is nilpotent and finitely
generated and P is Noetherian; apply Algebra, Lemma 97.5. Denote JQ ⊂ Q the inverse
image of J in Q. Let Q∧ be the JQ-adic completion of Q. Recall that Q → Q∧ is flat
(Algebra, Lemma 97.2) and hence Q∧ is flat over A. The induced map Q∧ → P∧ induces
an isomorphismQ∧⊗A k = Q∧⊗QP = P∧ by Algebra, Lemma 97.1 for example. Hence
(A,Q∧)→ (k, P∧) is the desired object of Def P∧ . �

Lemma 8.11. In Lemma 8.3 ifP = k[[x1, . . . , xn]]/(f) for some nonzero f ∈ (x1, . . . , xn)2,
then

(1) Inf(Def P ) is finite dimensional if and only if n = 1, and
(2) TDef P is finite dimensional if√

(f, ∂f/∂x1, . . . , ∂f/∂xn) = (x1, . . . , xn)

Proof. Proof of (1). Consider the derivations ∂/∂xi of k[[x1, . . . , xn]] over k. Write
fi = ∂f/∂xi. The derivation

θ =
∑

hi∂/∂xi

of k[[x1, . . . , xn]] induces a derivation ofP = k[[x1, . . . , xn]]/(f) if and only if
∑
hifi ∈

(f). Moreover, the induced derivation ofP is zero if and only if hi ∈ (f) for i = 1, . . . , n.
Thus we find

Ker((f1, . . . , fn) : P⊕n −→ P ) ⊂ Derk(P, P )
The left hand side is a finite dimensional k-vector space only if n = 1; we omit the proof.
We also leave it to the reader to see that the right hand side has finite dimension if n = 1.
This proves (1).
Proof of (2). Let Q be a flat deformation of P over k[ε] as in the proof of Lemma 8.3.
Choose lifts qi ∈ Q of the image of xi in P . ThenQ is a complete local ring with maximal
ideal generated by q1, . . . , qn and ε (small argument omitted). Thus we get a surjection

k[ε][[x1, . . . , xn]] −→ Q, xi 7−→ qi

Choose an element of the form f + εg ∈ k[ε][[x1, . . . , xn]] mapping to zero inQ. Observe
that g is well defined modulo (f). Since Q is flat over k[ε] we get

Q = k[ε][[x1, . . . , xn]]/(f + εg)
Finally, if we changing the choice of qi amounts to changing the coordinates xi into xi +
εhi for some hi ∈ k[[x1, . . . , xn]]. Then f + εg changes into f + ε(g +

∑
hifi) where

fi = ∂f/∂xi. Thus we see that the isomorphism class of the deformationQ is determined
by an element of

k[[x1, . . . , xn]]/(f, ∂f/∂x1, . . . , ∂f/∂xn)
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This has finite dimension over k if and only if its support is the closed point of k[[x1, . . . , xn]]
if and only if

√
(f, ∂f/∂x1, . . . , ∂f/∂xn) = (x1, . . . , xn). �

9. Schemes

The deformation theory of schemes.

Example 9.1 (Schemes). Let F be the category defined as follows
(1) an object is a pair (A,X) consisting of an object A of CΛ and a scheme X flat

over A, and
(2) a morphism (f, g) : (B, Y )→ (A,X) consists of a morphism f : B → A in CΛ

together with a morphism g : X → Y such that

X
g

//

��

Y

��
Spec(A) f // Spec(B)

is a cartesian commutative diagram of schemes.
The functor p : F → CΛ sends (A,X) to A and (f, g) to f . It is clear that p is cofibred
in groupoids. Given a scheme X over k, let x0 = (k,X) be the corresponding object of
F(k). We set

DefX = Fx0

Lemma 9.2. Example 9.1 satisfies the Rim-Schlessinger condition (RS). In particular,
DefX is a deformation category for any scheme X over k.

Proof. LetA1 → A andA2 → A be morphisms of CΛ. AssumeA2 → A is surjective.
According to Formal Deformation Theory, Lemma 16.4 it suffices to show that the functor
F(A1 ×A A2)→ F(A1)×F(A) F(A2) is an equivalence of categories. Observe that

Spec(A) //

��

Spec(A2)

��
Spec(A1) // Spec(A1 ×A A2)

is a pushout diagram as in More on Morphisms, Lemma 14.3. Thus the lemma is a special
case of More on Morphisms, Lemma 14.6. �

Lemma 9.3. In Example 9.1 let X be a scheme over k. Then

Inf(DefX) = Ext0
OX

(NLX/k,OX) = HomOX
(ΩX/k,OX) = Derk(OX ,OX)

and
TDefX = Ext1

OX
(NLX/k,OX)

Proof. Recall that Inf(DefX) is the set of automorphisms of the trivial deformation
X ′ = X×Spec(k) Spec(k[ε]) ofX to k[ε] equal to the identity modulo ε. By Deformation
Theory, Lemma 8.1 this is equal to Ext0

OX
(NLX/k,OX). The equality Ext0

OX
(NLX/k,OX) =

HomOX
(ΩX/k,OX) follows from More on Morphisms, Lemma 13.3. The equality HomOX

(ΩX/k,OX) =
Derk(OX ,OX) follows from Morphisms, Lemma 32.2.
Recall that Tx0DefX is the set of isomorphism classes of flat deformationsX ′ ofX to k[ε],
more precisely, the set of isomorphism classes of DefX(k[ε]). Thus the second statement
of the lemma follows from Deformation Theory, Lemma 8.1. �
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Lemma 9.4. In Lemma 9.3 if X is proper over k, then Inf(DefX) and TDefX are
finite dimensional.

Proof. By the lemma we have to show Ext1
OX

(NLX/k,OX) and Ext0
OX

(NLX/k,OX)
are finite dimensional. By More on Morphisms, Lemma 13.4 and the fact that X is Noe-
therian, we see thatNLX/k has coherent cohomology sheaves zero except in degrees 0 and
−1. By Derived Categories of Schemes, Lemma 11.7 the displayed Ext-groups are finite
k-vector spaces and the proof is complete. �

In Example 9.1 if X is a proper scheme over k, then DefX admits a presentation by a
smooth prorepresentable groupoid in functors over CΛ and a fortiori has a (minimal) versal
formal object. This follows from Lemmas 9.2 and 9.4 and the general discussion in Section
3.

Lemma 9.5. In Example 9.1 assume X is a proper k-scheme. Assume Λ is a complete
local ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(DefX(A))/ ∼=
of isomorphism classes of objects has a hull. If Derk(OX ,OX) = 0, then F is prorepre-
sentable.

Proof. The existence of a hull follows immediately from Lemmas 9.2 and 9.4 and
Formal Deformation Theory, Lemma 16.6 and Remark 15.7.

Assume Derk(OX ,OX) = 0. Then DefX and F are equivalent by Formal Deformation
Theory, Lemma 19.13. Hence F is a deformation functor (because DefX is a deforma-
tion category) with finite tangent space and we can apply Formal Deformation Theory,
Theorem 18.2. �

Lemma 9.6. In Example 9.1 let X be a scheme over k. Let U ⊂ X be an open sub-
scheme. There is a natural functor

DefX −→ Def U
of deformation categories.

Proof. Given a deformation of X we can take the corresponding open of it to get a
deformation of U . We omit the details. �

Lemma 9.7. In Example 9.1 letX = Spec(P ) be an affine scheme over k. WithDef P
as in Example 8.1 there is a natural equivalence

DefX −→ Def P
of deformation categories.

Proof. The functor sends (A, Y ) to Γ(Y,OY ). This works because any deformation
of X is affine by More on Morphisms, Lemma 2.3. �

Lemma 9.8. In Example 9.1 let X be a scheme over k Let p ∈ X be a point. With
Def OX,p

as in Example 8.1 there is a natural functor

DefX −→ Def OX,p

of deformation categories.

Proof. Choose an affine open U = Spec(P ) ⊂ X containing p. Then OX,p is a
localization of P . We combine the functors from Lemmas 9.6, 9.7, and 8.7. �
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Situation 9.9. Let Λ→ k be as in Section 3. LetX be a scheme over k which has an
affine open coveringX = U1∪U2 with U12 = U1∩U2 affine too. Write U1 = Spec(P1),
U2 = Spec(P2) and U12 = Spec(P12). Let DefX , Def U1 , Def U2 , and Def U12 be as in
Example 9.1 and let Def P1 , Def P2 , and Def P12 be as in Example 8.1.

Lemma 9.10. In Situation 9.9 there is an equivalence
DefX = Def P1 ×DefP12

Def P2

of deformation categories, see Examples 9.1 and 8.1.
Proof. It suffices to show that the functors of Lemma 9.6 define an equivalence

DefX −→ Def U1 ×DefU12
Def U2

because then we can apply Lemma 9.7 to translate into rings. To do this we construct a
quasi-inverse. Denote Fi : Def Ui → Def U12 the functor of Lemma 9.6. An object of the
RHS is given by an A in CΛ, objects (A, V1) → (k, U1) and (A, V2) → (k, U2), and a
morphism

g : F1(A, V1)→ F2(A, V2)
NowFi(A, Vi) = (A, Vi,3−i) where Vi,3−i ⊂ Vi is the open subscheme whose base change
to k is U12 ⊂ Ui. The morphism g defines an isomorphism V1,2 → V2,1 of schemes over
A compatible with id : U12 → U12 over k. Thus ({1, 2}, Vi, Vi,3−i, g, g

−1) is a glueing
data as in Schemes, Section 14. Let Y be the glueing, see Schemes, Lemma 14.1. Then Y is
a scheme over A and the compatibilities mentioned above show that there is a canonical
isomorphism Y ×Spec(A) Spec(k) = X . Thus (A, Y )→ (k,X) is an object ofDefX . We
omit the verification that this construction is a functor and is quasi-inverse to the given
one. �

10. Morphisms of Schemes

The deformation theory of morphisms of schemes. Of course this is just an example of
deformations of diagrams of schemes.

Example 10.1 (Morphisms of schemes). Let F be the category defined as follows
(1) an object is a pair (A,X → Y ) consisting of an object A of CΛ and a morphism

X → Y of schemes over A with both X and Y flat over A, and
(2) a morphism (f, g, h) : (A′, X ′ → Y ′) → (A,X → Y ) consists of a morphism

f : A′ → A in CΛ together with morphisms of schemes g : X → X ′ and
h : Y → Y ′ such that

X
g

//

��

X ′

��
Y

h
//

��

Y ′

��
Spec(A) f // Spec(A′)

is a commutative diagram of schemes where both squares are cartesian.
The functor p : F → CΛ sends (A,X → Y ) to A and (f, g, h) to f . It is clear that p is
cofibred in groupoids. Given a morphism of schemesX → Y over k, letx0 = (k,X → Y )
be the corresponding object of F(k). We set

DefX→Y = Fx0
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Lemma 10.2. Example 10.1 satisfies the Rim-Schlessinger condition (RS). In particu-
lar, DefX→Y is a deformation category for any morphism of schemes X → Y over k.

Proof. LetA1 → A andA2 → A be morphisms of CΛ. AssumeA2 → A is surjective.
According to Formal Deformation Theory, Lemma 16.4 it suffices to show that the functor
F(A1 ×A A2)→ F(A1)×F(A) F(A2) is an equivalence of categories. Observe that

Spec(A) //

��

Spec(A2)

��
Spec(A1) // Spec(A1 ×A A2)

is a pushout diagram as in More on Morphisms, Lemma 14.3. Thus the lemma follows im-
mediately from More on Morphisms, Lemma 14.6 as this describes the category of schemes
flat over A1 ×A A2 as the fibre product of the category of schemes flat over A1 with the
category of schemes flat over A2 over the category of schemes flat over A. �

Lemma 10.3. In Example 9.1 let f : X → Y be a morphism of schemes over k. There
is a canonical exact sequence of k-vector spaces

0 // Inf(DefX→Y ) // Inf(DefX ×Def Y ) // Derk(OY , f∗OX)

rr
TDefX→Y

// T (DefX ×Def Y ) // Ext1
OX

(Lf∗ NLY/k,OX)

Proof. The obvious map of deformation categoriesDefX→Y → DefX×Def Y gives
two of the arrows in the exact sequence of the lemma. Recall that Inf(DefX→Y ) is the set
of automorphisms of the trivial deformation

f ′ : X ′ = X ×Spec(k) Spec(k[ε]) f×id−−−→ Y ′ = Y ×Spec(k) Spec(k[ε])
of X → Y to k[ε] equal to the identity modulo ε. This is clearly the same thing as pairs
(α, β) ∈ Inf(DefX ×Def Y ) of infinitesimal automorphisms ofX and Y compatible with
f ′, i.e., such that f ′ ◦α = β ◦f ′. By Deformation Theory, Lemma 7.1 for an arbitrary pair
(α, β) the difference between the morphism f ′ : X ′ → Y ′ and the morphism β−1◦f ′◦α :
X ′ → Y ′ defines an elment in

Derk(OY , f∗OX) = HomOY
(ΩY/k, f∗OX)

Equality by More on Morphisms, Lemma 13.3. This defines the last top horizontal arrow
and shows exactness in the first two places. For the map

Derk(OY , f∗OX)→ TDefX→Y

we interpret elements of the source as morphisms fε : X ′ → Y ′ over Spec(k[ε]) equal
to f modulo ε using Deformation Theory, Lemma 7.1. We send fε to the isomorphism
class of (fε : X ′ → Y ′) in TDefX→Y . Note that (fε : X ′ → Y ′) is isomorphic to
the trivial deformation (f ′ : X ′ → Y ′) exactly when fε = β−1 ◦ f ◦ α for some pair
(α, β) which implies exactness in the third spot. Clearly, if some first order deformation
(fε : Xε → Yε) maps to zero in T (DefX × Def Y ), then we can choose isomorphisms
X ′ → Xε and Y ′ → Yε and we conclude we are in the image of the south-west arrow.
Therefore we have exactness at the fourth spot. Finally, given two first order deformations
Xε, Yε of X , Y there is an obstruction in

ob(Xε, Yε) ∈ Ext1
OX

(Lf∗ NLY/k,OX)
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which vanishes if and only if f : X → Y lifts to Xε → Yε, see Deformation Theory,
Lemma 7.1. This finishes the proof. �

Lemma 10.4. In Lemma 10.3 if X and Y are both proper over k, then Inf(DefX→Y )
and TDefX→Y are finite dimensional.

Proof. Omitted. Hint: argue as in Lemma 9.4 and use the exact sequence of the
lemma. �

In Example 10.1 ifX → Y is a morphism of proper schemes over k, thenDefX→Y admits
a presentation by a smooth prorepresentable groupoid in functors over CΛ and a fortiori
has a (minimal) versal formal object. This follows from Lemmas 10.2 and 10.4 and the
general discussion in Section 3.

Lemma 10.5. In Example 10.1 assume X → Y is a morphism of proper k-schemes.
Assume Λ is a complete local ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(DefX→Y (A))/ ∼=
of isomorphism classes of objects has a hull. If Derk(OX ,OX) = Derk(OY ,OY ) = 0,
then F is prorepresentable.

Proof. The existence of a hull follows immediately from Lemmas 10.2 and 10.4 and
Formal Deformation Theory, Lemma 16.6 and Remark 15.7.
Assume Derk(OX ,OX) = Derk(OY ,OY ) = 0. Then the exact sequence of Lemma
10.3 combined with Lemma 9.3 shows that Inf(DefX→Y ) = 0. Then DefX→Y and F
are equivalent by Formal Deformation Theory, Lemma 19.13. Hence F is a deformation
functor (becauseDefX→Y is a deformation category) with finite tangent space and we can
apply Formal Deformation Theory, Theorem 18.2. �

Lemma 10.6. In Example 9.1 let f : X → Y be a morphism of schemes over k. If
f∗OX = OY and R1f∗OX = 0, then the morphism of deformation categories

DefX→Y → DefX
is an equivalence.

Proof. We construct a quasi-inverse to the forgetful functor of the lemma. Namely,
suppose that (A,U) is an object ofDefX . The given mapX → U is a finite order thicken-
ing and we can use it to identify the underlying topological spaces of U and X , see More
on Morphisms, Section 2. Thus we may and do think ofOU as a sheaf ofA-algebras onX ;
moreover the fact thatU → Spec(A) is flat, means thatOU is flat as a sheaf ofA-modules.
In particular, we have a filtration

0 = mnAOU ⊂ mn−1
A OU ⊂ . . . ⊂ m2

AOU ⊂ mAOU ⊂ OU
with subquotients equal toOX ⊗k miA/m

i+1
A by flatness, see More on Morphisms, Lemma

10.1 or the more general Deformation Theory, Lemma 5.2. Set
OV = f∗OU

viewed as sheaf of A-algebras on Y . Since R1f∗OX = 0 we find by the description above
that R1f∗(miAOU/m

i+1
A OU ) = 0 for all i. This implies that the sequences

0→ (f∗OX)⊗k miA/mi+1
A → f∗(OU/mi+1

A OU )→ f∗(OU/miAOU )→ 0
are exact for all i. Reading the references given above backwards (and using induction)
we find that OV is a flat sheaf of A-algebras with OV /mAOV = OY . Using More on
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Morphisms, Lemma 2.2 we find that (Y,OV ) is a scheme, call it V . The equality OV =
f∗OU defines a morphism of ringed spaces U → V which is easily seen to be a morphism
of schemes. This finishes the proof by the flatness already established. �

11. Algebraic spaces

The deformation theory of algebraic spaces.

Example 11.1 (Algebraic spaces). Let F be the category defined as follows
(1) an object is a pair (A,X) consisting of an object A of CΛ and an algebraic space

X flat over A, and
(2) a morphism (f, g) : (B, Y )→ (A,X) consists of a morphism f : B → A in CΛ

together with a morphism g : X → Y of algebraic spaces over Λ such that

X
g

//

��

Y

��
Spec(A) f // Spec(B)

is a cartesian commutative diagram of algebraic spaces.
The functor p : F → CΛ sends (A,X) to A and (f, g) to f . It is clear that p is cofibred
in groupoids. Given an algebraic space X over k, let x0 = (k,X) be the corresponding
object of F(k). We set

DefX = Fx0

Lemma 11.2. Example 11.1 satisfies the Rim-Schlessinger condition (RS). In particu-
lar, DefX is a deformation category for any algebraic space X over k.

Proof. LetA1 → A andA2 → A be morphisms of CΛ. AssumeA2 → A is surjective.
According to Formal Deformation Theory, Lemma 16.4 it suffices to show that the functor
F(A1 ×A A2)→ F(A1)×F(A) F(A2) is an equivalence of categories. Observe that

Spec(A) //

��

Spec(A2)

��
Spec(A1) // Spec(A1 ×A A2)

is a pushout diagram as in Pushouts of Spaces, Lemma 6.2. Thus the lemma is a special case
of Pushouts of Spaces, Lemma 6.7. �

Lemma 11.3. In Example 11.1 let X be an algebraic space over k. Then

Inf(DefX) = Ext0
OX

(NLX/k,OX) = HomOX
(ΩX/k,OX) = Derk(OX ,OX)

and
TDefX = Ext1

OX
(NLX/k,OX)

Proof. Recall that Inf(DefX) is the set of automorphisms of the trivial deformation
X ′ = X×Spec(k) Spec(k[ε]) ofX to k[ε] equal to the identity modulo ε. By Deformation
Theory, Lemma 14.2 this is equal to Ext0

OX
(NLX/k,OX). The equality Ext0

OX
(NLX/k,OX) =

HomOX
(ΩX/k,OX) follows from More on Morphisms of Spaces, Lemma 21.4. The equal-

ity HomOX
(ΩX/k,OX) = Derk(OX ,OX) follows from More on Morphisms of Spaces,

Definition 7.2 and Modules on Sites, Definition 33.3.
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Recall that Tx0DefX is the set of isomorphism classes of flat deformationsX ′ ofX to k[ε],
more precisely, the set of isomorphism classes of DefX(k[ε]). Thus the second statement
of the lemma follows from Deformation Theory, Lemma 14.2. �

Lemma 11.4. In Lemma 11.3 if X is proper over k, then Inf(DefX) and TDefX are
finite dimensional.

Proof. By the lemma we have to show Ext1
OX

(NLX/k,OX) and Ext0
OX

(NLX/k,OX)
are finite dimensional. By More on Morphisms of Spaces, Lemma 21.5 and the fact thatX
is Noetherian, we see thatNLX/k has coherent cohomology sheaves zero except in degrees
0 and−1. By Derived Categories of Spaces, Lemma 8.4 the displayed Ext-groups are finite
k-vector spaces and the proof is complete. �

In Example 11.1 if X is a proper algebraic space over k, then DefX admits a presentation
by a smooth prorepresentable groupoid in functors over CΛ and a fortiori has a (minimal)
versal formal object. This follows from Lemmas 11.2 and 11.4 and the general discussion
in Section 3.

Lemma 11.5. In Example 11.1 assumeX is a proper algebraic space over k. Assume Λ
is a complete local ring with residue field k (the classical case). Then the functor

F : CΛ −→ Sets, A 7−→ Ob(DefX(A))/ ∼=
of isomorphism classes of objects has a hull. If Derk(OX ,OX) = 0, then F is prorepre-
sentable.

Proof. The existence of a hull follows immediately from Lemmas 11.2 and 11.4 and
Formal Deformation Theory, Lemma 16.6 and Remark 15.7.

Assume Derk(OX ,OX) = 0. Then DefX and F are equivalent by Formal Deformation
Theory, Lemma 19.13. Hence F is a deformation functor (because DefX is a deforma-
tion category) with finite tangent space and we can apply Formal Deformation Theory,
Theorem 18.2. �

12. Deformations of completions

In this section we compare the deformation problem posed by an algebra and its comple-
tion. We first discuss “liftability”.

Lemma 12.1. LetA′ → A be a surjection of rings with nilpotent kernel. LetA′ → P ′

be a flat ring map. Set P = P ′ ⊗A′ A. Let M be an A-flat P -module. Then the following
are equivalent

(1) there is an A′-flat P ′-module M ′ with M ′ ⊗P ′ P = M , and
(2) there is an object K ′ ∈ D−(P ′) with K ′ ⊗L

P ′ P = M .

Proof. Suppose that M ′ is as in (1). Then

M = M ′ ⊗P P ′ = M ′ ⊗A′ A = M ′ ⊗L
A A

′ = M ′ ⊗L
P ′ P

The first two equalities are clear, the third holds becauseM ′ is flat overA′, and the fourth
holds by More on Algebra, Lemma 61.2. Thus (2) holds. Conversely, suppose K ′ is as in
(2). We may and do assume M is nonzero. Let t be the largest integer such that Ht(K ′)
is nonzero (exists because M is nonzero). Then Ht(K ′) ⊗P ′ P = Ht(K ′ ⊗L

P ′ P ) is
zero if t > 0. Since the kernel of P ′ → P is nilpotent this implies Ht(K ′) = 0 by
Nakayama’s lemma a contradiction. Hence t = 0 (the case t < 0 is absurd as well). Then
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M ′ = H0(K ′) is a P ′-module such that M = M ′ ⊗P ′ P and the spectral sequence for
Tor gives an injective map

TorP
′

1 (M ′, P )→ H−1(M ′ ⊗L
P ′ P ) = 0

By the reference on derived base change above 0 = TorP
′

1 (M ′, P ) = TorA
′

1 (M ′, A). We
conclude that M ′ is A′-flat by Algebra, Lemma 99.8. �

Lemma 12.2. Consider a commutative diagram of Noetherian rings

A′

��

// P ′

��

// Q′

��
A // P // Q

with cartesian squares, with flat horizontal arrows, and with surjective vertial arrows
whose kernels are nilpotent. Let J ′ ⊂ P ′ be an ideal such that P ′/J ′ = Q′/J ′Q′. Let M
be an A-flat P -module. Assume for all g ∈ J ′ there exists an A′-flat (P ′)g-module lifting
Mg . Then the following are equivalent

(1) M has an A′-flat lift to a P ′-module, and
(2) M ⊗P Q has an A′-flat lift to a Q′-module.

Proof. Let I = Ker(A′ → A). By induction on the integer n > 1 such that In = 0
we reduce to the case where I is an ideal of square zero; details omitted. We translate the
condition of liftability ofM into the problem of finding an object ofD−(P ′) as in Lemma
12.1. The obstruction to doing this is the element

ω(M) ∈ Ext2
P (M,M ⊗L

P IP ) = Ext2
P (M,M ⊗P IP )

constructed in Deformation Theory, Lemma 15.1. The equality in the displayed formula
holds as M ⊗L

P IP = M ⊗P IP since M and P are A-flat2. The obstruction for lifting
M ⊗P Q is similarly the element

ω(M ⊗P Q) ∈ Ext2
Q(M ⊗P Q, (M ⊗P Q)⊗Q IQ)

which is the image ofω(M) by the functoriality of the constructionω(−) of Deformation
Theory, Lemma 15.1. By More on Algebra, Lemma 99.2 we have

Ext2
Q(M ⊗P Q, (M ⊗P Q)⊗Q IQ) = Ext2

P (M,M ⊗P IP )⊗P Q

here we use that P is Noetherian and M finite. Our assumption on P ′ → Q′ guarantees
that for an P -module E the map E → E ⊗P Q is bijective on J ′-power torsion, see More
on Algebra, Lemma 89.3. Thus we conclude that it suffices to show ω(M) is J ′-power
torsion. In other words, it suffices to show that ω(M) dies in

Ext2
P (M,M ⊗P IP )g = Ext2

Pg (Mg,Mg ⊗Pg IPg)

for all g ∈ J ′. Howeover, by the compatibility of formation of ω(M) with base change
again, we conclude that this is true as Mg is assumed to have a lift (of course you have to
use the whole string of equivalences again). �

2Choose a resolution F• → I by free A-modules. Since A → P is flat, P ⊗A F• is a free resolution of
IP . Hence M ⊗L

P IP is represented by M ⊗P P ⊗A F• = M ⊗A F•. This only has cohomology in degree
0 as M is A-flat.
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Lemma 12.3. Let A′ → A be a surjective map of Noetherian rings with nilpotent
kernel. Let A → B be a finite type flat ring map. Let b ⊂ B be an ideal such that
Spec(B) → Spec(A) is syntomic on the complement of V (b). Then B has a flat lift to
A′ if and only if the b-adic completion B∧ has a flat lift to A′.

Proof. Choose an A-algebra surjection P = A[x1, . . . , xn] → B. Let p ⊂ P be the
inverse image of b. Set P ′ = A′[x1, . . . , xn] and denote p′ ⊂ P ′ the inverse image of p.
(Of course p and p′ do not designate prime ideals here.) We will denote P∧ and (P ′)∧ the
respective completions.

Suppose A′ → B′ is a flat lift of A → B, in other words, A′ → B′ is flat and there is an
A-algebra isomorphism B = B′ ⊗A′ A. Then we can choose an A′-algebra map P ′ → B′

lifting the given surjectionP → B. By Nakayama’s lemma (Algebra, Lemma 20.1) we find
that B′ is a quotient of P ′. In particular, we find that we can endow B′ with an A′-flat
P ′-module structure lifting B as an A-flat P -module. Conversely, if we can lift B to a
P ′-module M ′ flat over A′, then M ′ is a cyclic module M ′ ∼= P ′/J ′ (using Nakayama
again) and setting B′ = P ′/J ′ we find a flat lift of B as an algebra.

Set C = B∧ and c = bC. Suppose that A′ → C ′ is a flat lift of A → C. Then C ′ is
complete with respect to the inverse image c′ of c (Algebra, Lemma 97.10). We choose an
A′-algebra map P ′ → C ′ lifting the A-algebra map P → C. These maps pass through
completions to give surjections P∧ → C and (P ′)∧ → C ′ (for the second again using
Nakayama’s lemma). In particular, we find that we can endow C ′ with an A′-flat (P ′)∧-
module structure lifting C as an A-flat P∧-module. Conversely, if we can lift C to a
(P ′)∧-moduleN ′ flat overA′, thenN ′ is a cyclic moduleN ′ ∼= (P ′)∧/J̃ (using Nakayama
again) and setting C ′ = (P ′)∧/J̃ we find a flat lift of C as an algebra.

Observe that P ′ → (P ′)∧ is a flat ring map which induces an isomorphism P ′/p′ =
(P ′)∧/p′(P ′)∧. We conclude that our lemma is a consequence of Lemma 12.2 provided
we can show that Bg lifts to an A′-flat P ′

g-module for g ∈ p′. However, the ring map
A → Bg is syntomic and hence lifts to an A′-flat algebra B′ by Smoothing Ring Maps,
Proposition 3.2. Since A′ → P ′

g is smooth, we can lift Pg → Bg to a surjective map
P ′
g → B′ as before and we get what we want. �

Notation. Let A→ B be a ring map. Let N be a B-module. We denote ExalA(B,N) the
set of isomorphism classes of extensions

0→ N → C → B → 0

of A-algebras such that N is an ideal of square zero in C. Given a second such 0→ N →
C ′ → B → 0 an isomorphism is a A-algebra isomorpism C → C ′ such that the diagram

0 // N //

id
��

C //

��

B //

id
��

0

0 // N // C ′ // B // 0

commutes. The assignment N 7→ ExalA(B,N) is a functor which transforms prod-
ucts into products. Hence this is an additive functor and ExalA(B,N) has a natural B-
module structure. In fact, by Deformation Theory, Lemma 2.2 we have ExalA(B,N) =
Ext1

B(NLB/A, N).
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Lemma 12.4. Let k be a field. Let B be a finite type k-algebra. Let J ⊂ B be an ideal
such that Spec(B) → Spec(k) is smooth on the complement of V (J). Let N be a finite
B-module. Then there is a canonical bijection

Exalk(B,N)→ Exalk(B∧, N∧)

Here B∧ and N∧ are the J -adic completions.

Proof. The map is given by completion: given 0 → N → C → B → 0 in
Exalk(B,N) we send it to the completion C∧ of C with respect to the inverse image
of J . Compare with the proof of Lemma 8.10.

Since k → B is of finite presentation the complexNLB/k can be represented by a complex
N−1 → N0 where N i is a finite B-module, see Algebra, Section 134 and in particular
Algebra, Lemma 134.2. As B is Noetherian, this means that NLB/k is pseudo-coherent.
For g ∈ J the k-algebraBg is smooth and hence (NLB/k)g = NLBg/k is quasi-isomorphic
to a finite projectiveB-module sitting in degree 0. Thus ExtiB(NLB/k, N)g = 0 for i ≥ 1
and any B-module N . By More on Algebra, Lemma 102.1 we conclude that

Ext1
B(NLB/k, N) −→ limn Ext1

B(NLB/k, N/JnN)

is an isomorphism for any finite B-module N .

Injectivity of the map. Suppose that 0→ N → C → B → 0 is in Exalk(B,N) and maps
to zero in Exalk(B∧, N∧). Choose a splitting C∧ = B∧ ⊕ N∧. Then the induced map
C → C∧ → N∧ gives maps C → N/JnN for all n. Hence we see that our element is in
the kernel of the maps

Ext1
B(NLB/k, N)→ Ext1

B(NLB/k, N/JnN)

for all n. By the previous paragraph we conclude that our element is zero.

Surjectivity of the map. Let 0→ N∧ → C ′ → B∧ → 0 be an element of Exalk(B∧, N∧).
Pulling back byB → B∧ we get an element 0→ N∧ → C ′′ → B → 0 in Exalk(B,N∧).
we have

Ext1
B(NLB/k, N∧) = Ext1

B(NLB/k, N)⊗B B∧ = Ext1
B(NLB/k, N)

The first equality asN∧ = N⊗BB∧ (Algebra, Lemma 97.1) and More on Algebra, Lemma
65.3. The second equality because Ext1

B(NLB/k, N) is J -power torsion (see above), B →
B∧ is flat and induces an isomorphism B/J → B∧/JB∧, and More on Algebra, Lemma
89.3. Thus we can find a C ∈ Exalk(B,N) mapping to C ′′ in Exalk(B,N∧). Thus

0→ N∧ → C ′ → B∧ → 0 and 0→ N∧ → C∧ → B∧ → 0

are two elements of Exalk(B∧, N∧) mapping to the same element of Exalk(B,N∧). Tak-
ing the difference we get an element 0 → N∧ → C ′ → B∧ → 0 of Exalk(B∧, N∧)
whose image in Exalk(B,N∧) is zero. This means there exists

0 // N∧ // C ′ // B∧ // 0

B

σ

OO ==

Let J ′ ⊂ C ′ be the inverse image of JB∧ ⊂ B∧. To finish the proof it suffices to note that
σ is continuous for the J -adic topology on B and the J ′-adic topology on C ′ and that C ′

is J ′-adically complete by Algebra, Lemma 97.10 (here we also use that C ′ is Noetherian;
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small detail omitted). Namely, this means that σ factors through the completion B∧ and
C ′ = 0 in Exalk(B∧, N∧). �

Lemma 12.5. In Example 8.1 let P be a k-algebra. Let J ⊂ P be an ideal. Denote P∧

the J -adic completion. If
(1) k → P is of finite type, and
(2) Spec(P )→ Spec(k) is smooth on the complement of V (J).

then the functor between deformation categories of Lemma 8.10
Def P −→ Def P∧

is smooth and induces an isomorphism on tangent spaces.

Proof. We know that Def P and Def P∧ are deformation categories by Lemma 8.2.
Thus it suffices to check our functor identifies tangent spaces and a correspondence be-
tween liftability, see Formal Deformation Theory, Lemma 20.3. The property on liftabil-
ity is proven in Lemma 12.3 and the isomorphism on tangent spaces is the special case of
Lemma 12.4 where N = B. �

13. Deformations of localizations

In this section we compare the deformation problem posed by an algebra and its localiza-
tion at a multiplicative subset. We first discuss “liftability”.

Lemma 13.1. Let A′ → A be a surjective map of Noetherian rings with nilpotent
kernel. Let A → B be a finite type flat ring map. Let S ⊂ B be a multiplicative subset
such that if Spec(B)→ Spec(A) is not syntomic at q, then S ∩ q = ∅. Then B has a flat
lift to A′ if and only if S−1B has a flat lift to A′.

Proof. This proof is the same as the proof of Lemma 12.3 but easier. We suggest the
reader to skip the proof. Choose an A-algebra surjection P = A[x1, . . . , xn] → B. Let
SP ⊂ P be the inverse image of S. Set P ′ = A′[x1, . . . , xn] and denote SP ′ ⊂ P ′ the
inverse image of SP .
Suppose A′ → B′ is a flat lift of A → B, in other words, A′ → B′ is flat and there is an
A-algebra isomorphism B = B′ ⊗A′ A. Then we can choose an A′-algebra map P ′ → B′

lifting the given surjectionP → B. By Nakayama’s lemma (Algebra, Lemma 20.1) we find
that B′ is a quotient of P ′. In particular, we find that we can endow B′ with an A′-flat
P ′-module structure lifting B as an A-flat P -module. Conversely, if we can lift B to a
P ′-module M ′ flat over A′, then M ′ is a cyclic module M ′ ∼= P ′/J ′ (using Nakayama
again) and setting B′ = P ′/J ′ we find a flat lift of B as an algebra.
Set C = S−1B. Suppose that A′ → C ′ is a flat lift of A→ C. Elements of C ′ which map
to invertible elements of C are invertible. We choose an A′-algebra map P ′ → C ′ lifting
theA-algebra map P → C. By the remark above these maps pass through localizations to
give surjections S−1

P P → C and S−1
P ′ P ′ → C ′ (for the second use Nakayama’s lemma). In

particular, we find that we can endow C ′ with an A′-flat S−1
P ′ P ′-module structure lifting

C as an A-flat S−1
P P -module. Conversely, if we can lift C to a S−1

P ′ P ′-module N ′ flat
over A′, then N ′ is a cyclic module N ′ ∼= S−1

P ′ P ′/J̃ (using Nakayama again) and setting
C ′ = S−1

P ′ P ′/J̃ we find a flat lift of C as an algebra.
The syntomic locus of a morphism of schemes is open by definition. Let JB ⊂ B be an
ideal cutting out the set of points in Spec(B) where Spec(B)→ Spec(A) is not syntomic.
Denote JP ⊂ P and JP ′ ⊂ P ′ the corresponding ideals. Observe that P ′ → S−1

P ′ P ′
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is a flat ring map which induces an isomorphism P ′/JP ′ = S−1
P ′ P ′/JP ′S−1

P ′ P ′ by our
assumption on S in the lemma, namely, the assumption in the lemma is exactly that
B/JB = S−1(B/JB). We conclude that our lemma is a consequence of Lemma 12.2
provided we can show that Bg lifts to an A′-flat P ′

g-module for g ∈ JB . However, the
ring mapA→ Bg is syntomic and hence lifts to anA′-flat algebraB′ by Smoothing Ring
Maps, Proposition 3.2. SinceA′ → P ′

g is smooth, we can lift Pg → Bg to a surjective map
P ′
g → B′ as before and we get what we want. �

Lemma 13.2. Let k be a field. Let B be a finite type k-algebra. Let S ⊂ B be a
multiplicative subset ideal such that if Spec(B)→ Spec(k) is not smooth at q thenS∩q =
∅. Let N be a finite B-module. Then there is a canonical bijection

Exalk(B,N)→ Exalk(S−1B,S−1N)

Proof. This proof is the same as the proof of Lemma 12.4 but easier. We suggest the
reader to skip the proof. The map is given by localization: given 0→ N → C → B → 0
in Exalk(B,N) we send it to the localization S−1

C C ofC with respect to the inverse image
SC ⊂ C of S. Compare with the proof of Lemma 8.7.

The smooth locus of a morphism of schemes is open by definition. Let J ⊂ B be an ideal
cutting out the set of points in Spec(B) where Spec(B)→ Spec(A) is not smooth. Since
k → B is of finite presentation the complex NLB/k can be represented by a complex
N−1 → N0 where N i is a finite B-module, see Algebra, Section 134 and in particular
Algebra, Lemma 134.2. As B is Noetherian, this means that NLB/k is pseudo-coherent.
For g ∈ J the k-algebraBg is smooth and hence (NLB/k)g = NLBg/k is quasi-isomorphic
to a finite projectiveB-module sitting in degree 0. Thus ExtiB(NLB/k, N)g = 0 for i ≥ 1
and any B-module N . Finally, we have

Ext1
S−1B(NLS−1B/k, S

−1N) = Ext1
B(NLB/k, N)⊗B S−1B = Ext1

B(NLB/k, N)

The first equality by More on Algebra, Lemma 99.2 and Algebra, Lemma 134.13. The
second because Ext1

B(NLB/k, N) is J -power torsion and elements of S act invertibly on
J -power torsion modules. This concludes the proof by the description of ExalA(B,N) as
Ext1

B(NLB/A, N) given just above Lemma 12.4. �

Lemma 13.3. In Example 8.1 let P be a k-algebra. Let S ⊂ P be a multiplicative
subset. If

(1) k → P is of finite type, and
(2) Spec(P )→ Spec(k) is smooth at all points of V (g) for all g ∈ S.

then the functor between deformation categories of Lemma 8.7

Def P −→ Def S−1P

is smooth and induces an isomorphism on tangent spaces.

Proof. We know thatDef P andDef S−1P are deformation categories by Lemma 8.2.
Thus it suffices to check our functor identifies tangent spaces and a correspondence be-
tween liftability, see Formal Deformation Theory, Lemma 20.3. The property on liftabil-
ity is proven in Lemma 13.1 and the isomorphism on tangent spaces is the special case of
Lemma 13.2 where N = B. �
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14. Deformations of henselizations

In this section we compare the deformation problem posed by an algebra and its comple-
tion. We first discuss “liftability”.

Lemma 14.1. Let A′ → A be a surjective map of Noetherian rings with nilpotent
kernel. Let A → B be a finite type flat ring map. Let b ⊂ B be an ideal such that
Spec(B) → Spec(A) is syntomic on the complement of V (b). Let (Bh, bh) be the
henselization of the pair (B, b). ThenB has a flat lift toA′ if and only ifBh has a flat lift
to A′.

First proof. This proof is a cheat. Namely, if B has a flat lift B′, then taking the
henselization (B′)h we obtain a flat lift of Bh (compare with the proof of Lemma 8.8).
Conversely, suppose that C ′ is an A′-flat lift of (B′)h. Then let c′ ⊂ C ′ be the inverse
image of the ideal bh. Then the completion (C ′)∧ of C ′ with respect to c′ is a lift of B∧

(details omitted). Hence we see that B has a flat lift by Lemma 12.3. �

Second proof. Choose anA-algebra surjectionP = A[x1, . . . , xn]→ B. Let p ⊂ P
be the inverse image of b. Set P ′ = A′[x1, . . . , xn] and denote p′ ⊂ P ′ the inverse image
of p. (Of course p and p′ do not designate prime ideals here.) We will denote Ph and
(P ′)h the respective henselizations. We will use that taking henselizations is functorial
and that the henselization of a quotient is the corresponding quotient of the henselization,
see More on Algebra, Lemmas 11.16 and 12.7.

Suppose A′ → B′ is a flat lift of A → B, in other words, A′ → B′ is flat and there is an
A-algebra isomorphism B = B′ ⊗A′ A. Then we can choose an A′-algebra map P ′ → B′

lifting the given surjectionP → B. By Nakayama’s lemma (Algebra, Lemma 20.1) we find
that B′ is a quotient of P ′. In particular, we find that we can endow B′ with an A′-flat
P ′-module structure lifting B as an A-flat P -module. Conversely, if we can lift B to a
P ′-module M ′ flat over A′, then M ′ is a cyclic module M ′ ∼= P ′/J ′ (using Nakayama
again) and setting B′ = P ′/J ′ we find a flat lift of B as an algebra.

Set C = Bh and c = bC. Suppose that A′ → C ′ is a flat lift of A → C. Then C ′

is henselian with respect to the inverse image c′ of c (by More on Algebra, Lemma 11.9
and the fact that the kernel of C ′ → C is nilpotent). We choose an A′-algebra map
P ′ → C ′ lifting the A-algebra map P → C. These maps pass through henselizations to
give surjectionsPh → C and (P ′)h → C ′ (for the second again using Nakayama’s lemma).
In particular, we find that we can endowC ′ with anA′-flat (P ′)h-module structure lifting
C as an A-flat Ph-module. Conversely, if we can lift C to a (P ′)h-module N ′ flat over
A′, then N ′ is a cyclic module N ′ ∼= (P ′)h/J̃ (using Nakayama again) and setting C ′ =
(P ′)h/J̃ we find a flat lift of C as an algebra.

Observe that P ′ → (P ′)h is a flat ring map which induces an isomorphism P ′/p′ =
(P ′)h/p′(P ′)h (More on Algebra, Lemma 12.2). We conclude that our lemma is a con-
sequence of Lemma 12.2 provided we can show that Bg lifts to an A′-flat P ′

g-module for
g ∈ p′. However, the ring map A → Bg is syntomic and hence lifts to an A′-flat alge-
bra B′ by Smoothing Ring Maps, Proposition 3.2. Since A′ → P ′

g is smooth, we can lift
Pg → Bg to a surjective map P ′

g → B′ as before and we get what we want. �

Lemma 14.2. Let k be a field. Let B be a finite type k-algebra. Let J ⊂ B be an ideal
such that Spec(B) → Spec(k) is smooth on the complement of V (J). Let N be a finite
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B-module. Then there is a canonical bijection

Exalk(B,N)→ Exalk(Bh, Nh)

Here (Bh, Jh) is the henselization of (B, J) and Nh = N ⊗B Bh.

Proof. This proof is the same as the proof of Lemma 12.4 but easier. We suggest the
reader to skip the proof. The map is given by henselization: given 0→ N → C → B → 0
in Exalk(B,N) we send it to the henselization Ch of C with respect to the inverse image
JC ⊂ C of J . Compare with the proof of Lemma 8.8.

Since k → B is of finite presentation the complexNLB/k can be represented by a complex
N−1 → N0 where N i is a finite B-module, see Algebra, Section 134 and in particular
Algebra, Lemma 134.2. As B is Noetherian, this means that NLB/k is pseudo-coherent.
For g ∈ J the k-algebraBg is smooth and hence (NLB/k)g = NLBg/k is quasi-isomorphic
to a finite projectiveB-module sitting in degree 0. Thus ExtiB(NLB/k, N)g = 0 for i ≥ 1
and any B-module N . Finally, we have

Ext1
Bh(NLBh/k, Nh) = Ext1

Bh(NLB/k ⊗BBh, N ⊗B Bh)
= Ext1

B(NLB/k, N)⊗B Bh

= Ext1
B(NLB/k, N)

The first equality by More on Algebra, Lemma 33.8 (or rather its analogue for henseliza-
tions of pairs). The second by More on Algebra, Lemma 99.2. The third because Ext1

B(NLB/k, N)
isJ -power torsion, the mapB → Bh is flat and induces an isomorphismB/J → Bh/JBh

(More on Algebra, Lemma 12.2), and More on Algebra, Lemma 89.3. This concludes the
proof by the description of ExalA(B,N) as Ext1

B(NLB/A, N) given just above Lemma
12.4. �

Lemma 14.3. In Example 8.1 let P be a k-algebra. Let J ⊂ P be an ideal. Denote
(Ph, Jh) the henselization of the pair (P, J). If

(1) k → P is of finite type, and
(2) Spec(P )→ Spec(k) is smooth on the complement of V (J),

then the functor between deformation categories of Lemma 8.8

Def P −→ Def Ph

is smooth and induces an isomorphism on tangent spaces.

Proof. We know that Def P and Def Ph are deformation categories by Lemma 8.2.
Thus it suffices to check our functor identifies tangent spaces and a correspondence be-
tween liftability, see Formal Deformation Theory, Lemma 20.3. The property on liftabil-
ity is proven in Lemma 14.1 and the isomorphism on tangent spaces is the special case of
Lemma 14.2 where N = B. �

15. Application to isolated singularities

We apply the discussion above to study the deformation theory of a finite type algebra
with finitely many singular points.

Lemma 15.1. In Example 8.1 let P be a k-algebra. Assume that k → P is of finite
type and that Spec(P ) → Spec(k) is smooth except at the maximal ideals m1, . . . ,mn
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of P . Let Pmi , Phmi , P
∧
mi be the local ring, henselization, completion. Then the maps of

deformation categories

Def P →
∏
Def Pmi

→
∏
Def Phmi →

∏
Def P∧

mi

are smooth and induce isomorphisms on their finite dimensional tangent spaces.

Proof. The tangent space is finite dimensional by Lemma 8.5. The functors between
the categories are constructed in Lemmas 8.7, 8.8, and 8.10 (we omit some verifications of
the form: the completion of the henselization is the completion).

Set J = m1 ∩ . . . ∩ mn and apply Lemma 12.5 to get that Def P → Def P∧ is smooth
and induces an isomorphism on tangent spaces where P∧ is the J -adic completion of P .
However, since P∧ =

∏
P∧
mi we see that the map Def P →

∏
Def P∧

mi
is smooth and

induces an isomorphism on tangent spaces.

Let (Ph, Jh) be the henselization of the pair (P, J). Then Ph =
∏
Phmi (look at idempo-

tents and use More on Algebra, Lemma 11.6). Hence we can apply Lemma 14.3 to conclude
as in the case of completion.

To get the final case it suffices to show that Def Pmi
→ Def P∧

mi
is smooth and induce

isomorphisms on tangent spaces for each i separately. To do this, we may replace P by a
principal localization whose only singular point is a maximal idealm (corresponding tomi
in the original P ). Then we can apply Lemma 13.3 with multiplicative subset S = P \m
to conclude. Minor details omitted. �

16. Unobstructed deformation problems

Let p : F → CΛ be a category cofibred in groupoids. Recall that we say F is smooth or
unobstructed if p is smooth. This means that given a surjection ϕ : A′ → A in CΛ and
x ∈ Ob(F(A)) there exists a morphism f : x′ → x in F with p(f) = ϕ. See Formal
Deformation Theory, Section 9. In this section we give some geometrically meaningful
examples.

Lemma 16.1. In Example 8.1 let P be a local complete intersection over k (Algebra,
Definition 135.1). Then Def P is unobstructed.

Proof. Let (A,Q) → (k, P ) be an object of Def P . Then we see that A → Q is a
syntomic ring map by Algebra, Definition 136.1. Hence for any surjection A′ → A in CΛ
we see that there is a morphism (A′, Q′) → (A,Q) lifting A′ → A by Smoothing Ring
Maps, Proposition 3.2. This proves the lemma. �

Lemma 16.2. In Situation 9.9 if U12 → Spec(k) is smooth, then the morphism

DefX −→ Def U1 ×Def U2 = Def P1 ×Def P2

is smooth. If in addition U1 is a local complete intersection over k, then

DefX −→ Def U2 = Def P2

is smooth.

Proof. The equality signs hold by Lemma 9.7. Let us think of CΛ as a deformation
category over CΛ as in Formal Deformation Theory, Section 9. Then

Def P1 ×Def P2 = Def P1 ×CΛ Def P2 ,
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see Formal Deformation Theory, Remarks 5.2 (14). Using Lemma 9.10 the first statement
is that the functor

Def P1 ×DefP12
Def P2 −→ Def P1 ×CΛ Def P2

is smooth. This follows from Formal Deformation Theory, Lemma 20.2 as long as we can
show that TDef P12 = (0). This vanishing follows from Lemma 8.4 as P12 is smooth over
k. For the second statement it suffices to show that Def P1 → CΛ is smooth, see Formal
Deformation Theory, Lemma 8.7. In other words, we have to showDef P1 is unobstructed,
which is Lemma 16.1. �

Lemma 16.3. In Example 9.1 let X be a scheme over k. Assume
(1) X is separated, finite type over k and dim(X) ≤ 1,
(2) X → Spec(k) is smooth except at the closed points p1, . . . , pn ∈ X .

Let OX,p1 , OhX,p1
, O∧

X,p1
be the local ring, henselization, completion. Consider the maps

of deformation categories

DefX −→
∏
Def OX,pi

−→
∏
Def Oh

X,pi

−→
∏
Def O∧

X,pi

The first arrow is smooth and the second and third arrows are smooth and induce isomor-
phisms on tangent spaces.

Proof. Choose an affine open U2 ⊂ X containing p1, . . . , pn and the generic point
of every irreducible component of X . This is possible by Varieties, Lemma 43.3 and
Properties, Lemma 29.5. Then X \ U2 is finite and we can choose an affine open U1 ⊂
X \ {p1, . . . , pn} such that X = U1 ∪ U2. Set U12 = U1 ∩ U2. Then U1 and U12 are
smooth affine schemes over k. We conclude that

DefX −→ Def U2

is smooth by Lemma 16.2. Applying Lemmas 9.7 and 15.1 we win. �

Lemma 16.4. In Example 9.1 let X be a scheme over k. Assume
(1) X is separated, finite type over k and dim(X) ≤ 1,
(2) X is a local complete intersection over k, and
(3) X → Spec(k) is smooth except at finitely many points.

Then DefX is unobstructed.

Proof. Let p1, . . . , pn ∈ X be the points where X → Spec(k) isn’t smooth. Choose
an affine open U2 ⊂ X containing p1, . . . , pn and the generic point of every irreducible
component of X . This is possible by Varieties, Lemma 43.3 and Properties, Lemma 29.5.
Then X \ U2 is finite and we can choose an affine open U1 ⊂ X \ {p1, . . . , pn} such that
X = U1 ∪ U2. Set U12 = U1 ∩ U2. Then U1 and U12 are smooth affine schemes over k.
We conclude that

DefX −→ Def U2

is smooth by Lemma 16.2. Applying Lemmas 9.7 and 16.1 we win. �

17. Smoothings

Suppose given a finite type scheme or algebraic space X over a field k. It is often useful
to find a flat morphism of finite type Y → Spec(k[[t]]) whose generic fibre is smooth and
whose special fibre is isomorphic to X . Such a thing is called a smoothing of X . In this
section we will find a smoothing for 1-dimensional separatedX which have isolated local
complete intersection singularities.
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Lemma 17.1. Let k be a field. Set S = Spec(k[[t]]) and Sn = Spec(k[t]/(tn)). Let
Y → S be a proper, flat morphism of schemes whose special fibre X is Cohen-Macaulay
and equidimensional of dimension d. Denote Xn = Y ×S Sn. If for some n ≥ 1 the dth
Fitting ideal of ΩXn/Sn contains tn−1, then the generic fibre of Y → S is smooth.

Proof. By More on Morphisms, Lemma 22.7 we see thatY → S is a Cohen-Macaulay
morphism. By Morphisms, Lemma 29.4 we see that Y → S has relative dimension d. By
Divisors, Lemma 10.3 the dth Fitting ideal I ⊂ OY of ΩY/S cuts out the singular locus
of the morphism Y → S. In other words, V (I) ⊂ Y is the closed subset of points where
Y → S is not smooth. By Divisors, Lemma 10.1 formation of this Fitting ideal commutes
with base change. By assumption we see that tn−1 is a section of I + tnOY . Thus for
every x ∈ X = V (t) ⊂ Y we conclude that tn−1 ∈ Ix where Ix is the stalk at x. This
implies that V (I) ⊂ V (t) in an open neighbourhood of X in Y . Since Y → S is proper,
this implies V (I) ⊂ V (t) as desired. �

Lemma 17.2. Let k be a field. Let 1 ≤ c ≤ n be integers. Let f1, . . . , fc ∈ k[x1, . . . xn]
be elements. Let aij , 0 ≤ i ≤ n, 1 ≤ j ≤ c be variables. Consider

gj = fj + a0j + a1jx1 + . . .+ anjxn ∈ k[aij ][x1, . . . , xn]

Denote Y ⊂ An+c(n+1)
k the closed subscheme cut out by g1, . . . , gc. Denote π : Y →

Ac(n+1)
k the projection onto the affine space with variables aij . Then there is a nonempty

Zariski open of Ac(n+1)
k over which π is smooth.

Proof. Recall that the set of points where π is smooth is open. Thus the comple-
ment, i.e., the singular locus, is closed. By Chevalley’s theorem (in the form of Morphisms,
Lemma 22.2) the image of the singular locus is constructible. Hence if the generic point
of Ac(n+1)

k is not in the image of the singular locus, then the lemma follows (by Topol-
ogy, Lemma 15.15 for example). Thus we have to show there is no point y ∈ Y where π
is not smooth mapping to the generic point of Ac(n+1)

k . Consider the matrix of partial
derivatives

(∂gj
∂xi

) = (∂fj
∂xi

+ aij)

The image of this matrix in κ(y) must have rank < c since otherwise π would be smooth
at y, see discussion in Smoothing Ring Maps, Section 2. Thus we can find λ1, . . . , λc ∈
κ(y) not all zero such that the vector (λ1, . . . , λc) is in the kernel of this matrix. After
renumbering we may assume λ1 6= 0. Dividing by λ1 we may assume our vector has the
form (1, λ2, . . . , λc). Then we obtain

ai1 = − ∂fj
∂x1
−
∑

j=2,...,c
λj(

∂fj
∂xi

+ aij)

in κ(y) for i = 1, . . . , n. Moreover, since y ∈ Y we also have
a0j = −fj − a1jx1 − . . .− anjxn

in κ(y). This means that the subfield of κ(y) generated by aij is contained in the subfield
of κ(y) generated by the images of x1, . . . , xn, λ2, . . . , λc, and aij except for ai1 and a0j .
We count and we see that the transcendence degree of this is at most c(n+ 1)− 1. Hence
y cannot map to the generic point as desired. �

Lemma 17.3. Let k be a field. Let A be a global complete interesection over k. There
exists a flat finite type ring map k[[t]] → B with B/tB ∼= A such that B[1/t] is smooth
over k((t)).
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Proof. Write A = k[x1, . . . , xn]/(f1, . . . , fc) as in Algebra, Definition 135.1. We
are going to choose aij ∈ (t) ⊂ k[[t]] and set

gj = fj + a0j + a1jx1 + . . .+ anjxn ∈ k[[t]][x1, . . . , xn]

After doing this we take B = k[[t]][x1, . . . , xn]/(g1, . . . , gc). We claim that k[[t]] → B
is flat at every prime ideal lying over (t). Namely, the elements f1, . . . , fc form a regu-
lar sequence in the local ring at any prime ideal p of k[x1, . . . , xn] containing f1, . . . , fc
(Algebra, Lemma 135.4). Thus g1, . . . , gc is locally a lift of a regular sequence and we can
apply Algebra, Lemma 99.3. Flatness at primes lying over (0) ⊂ k[[t]] is automatic because
k((t)) = k[[t]](0) is a field. Thus B is flat over k[[t]].

All that remains is to show that for suitable choices of aij the generic fibreB(0) is smooth
over k((t)). For this we have to show that we can choose our aij so that the induced
morphism

(aij) : Spec(k[[t]]) −→ Ac(n+1)
k

maps into the nonempty Zariski open of Lemma 17.2. This is clear because there is no
nonzero polynomial in the aij which vanishes on (t)⊕c(n+1). (We leave this as an exercise
to the reader.) �

Lemma 17.4. Let k be a field. Let A be a finite dimensional k-algebra which is a local
complete intersection over k. Then there is a finite flat k[[t]]-algebra B with B/tB ∼= A
and B[1/t] étale over k((t)).

Proof. Since A is Artinian (Algebra, Lemma 53.2), we can write A as a product of
local Artinian rings (Algebra, Lemma 53.6). Thus it suffices to prove the lemma if A is
local (this uses that being a local complete intersection is preserved under taking principal
localizations, see Algebra, Lemma 135.2). In this case A is a global complete intersection.
Consider the algebra B constructed in Lemma 17.3. Then k[[t]] → B is quasi-finite at
the unique prime of B lying over (t) (Algebra, Definition 122.3). Observe that k[[t]] is a
henselian local ring (Algebra, Lemma 153.9). Thus B = B′ × C where B′ is finite over
k[[t]] andC has no prime lying over (t), see Algebra, Lemma 153.3. ThenB′ is the ring we
are looking for (recall that étale is the same thing as smooth of relative dimension 0). �

Lemma 17.5. Let k be a field. Let A be a k-algebra. Assume
(1) A is a local ring essentially of finite type over k,
(2) A is a complete intersection over k (Algebra, Definition 135.5).

Set d = dim(A)+ trdegk(κ) where κ is the residue field ofA. Then there exists an integer
n and a flat, essentially of finite type ring map k[[t]]→ B withB/tB ∼= A such that tn is
in the dth Fitting ideal of ΩB/k[[t]].

Proof. By Algebra, Lemma 135.7 we can write A as the localization at a prime p of
a global complete intersection P over k. Observe that dim(P ) = d by Algebra, Lemma
116.3. By Lemma 17.3 we can find a flat, finite type ring map k[[t]] → Q such that P ∼=
Q/tQ and such that k((t))→ Q[1/t] is smooth. It follows from the construction of Q in
the lemma that k[[t]]→ Q is a relative global complete intersection of relative dimension
d; alternatively, Algebra, Lemma 136.15 tells us thatQ or a suitable principal localization of
Q is such a global complete intersection. Hence by Divisors, Lemma 10.3 the dth Fitting
ideal I ⊂ Q of ΩQ/k[[t]] cuts out the singular locus of Spec(Q) → Spec(k[[t]]). Thus
tn ∈ I for some n. Let q ⊂ Q be the inverse image of p. Set B = Qq. The lemma is
proved. �
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Lemma 17.6. Let X be a scheme over a field k. Assume
(1) X is proper over k,
(2) X is a local complete intersection over k,
(3) X has dimension ≤ 1, and
(4) X → Spec(k) is smooth except at finitely many points.

Then there exists a flat projective morphism Y → Spec(k[[t]]) whose generic fibre is
smooth and whose special fibre is isomorphic to X .

Proof. Observe that X is Cohen-Macaulay, see Algebra, Lemma 135.3. Thus X =
X ′ q X ′′ with dim(X ′) = 0 and X ′′ equidimensional of dimension 1, see Morphisms,
Lemma 29.4. SinceX ′ is finite over k (Varieties, Lemma 20.2) we can findY ′ → Spec(k[[t]])
with special fibre X ′ and generic fibre smooth by Lemma 17.4. Thus it suffices to prove
the lemma for X ′′. After replacing X by X ′′ we have X is Cohen-Macaulay and equidi-
mensional of dimension 1.

We are going to use deformation theory for the situation Λ = k → k. Let p1, . . . , pr ∈ X
be the closed singular points of X , i.e., the points where X → Spec(k) isn’t smooth. For
each i we pick an integer ni and a flat, essentially of finite type ring map

k[[t]] −→ Bi

withBi/tBi ∼= OX,pi such that tni is in the 1st Fitting ideal of ΩBi/k[[t]]. This is possible
by Lemma 17.5. Observe that the system (Bi/tnBi) defines a formal object of Def OX,pi

over k[[t]]. By Lemma 16.3 the map

DefX −→
∏

i=1,...,r
Def OX,pi

is a smooth map between deformation categories. Hence by Formal Deformation The-
ory, Lemma 8.8 there exists a formal object (Xn) in DefX mapping to the formal ob-
ject

∏
i(Bi/tn) by the arrow above. By More on Morphisms of Spaces, Lemma 43.5

there exists a projective scheme Y over k[[t]] and compatible isomorphisms Y ×Spec(k[[t]])
Spec(k[t]/(tn)) ∼= Xn. By More on Morphisms, Lemma 12.4 we see thatY → Spec(k[[t]])
is flat. Since X is Cohen-Macaulay and equidimensional of dimension 1 we may apply
Lemma 17.1 to check Y has smooth generic fibre3. Choose n strictly larger than the max-
imum of the integers ni found above. It we can show tn−1 is in the first Fitting ideal of
ΩXn/Sn with Sn = Spec(k[t]/(tn)), then the proof is done. To do this it suffices to prove
this is true in each of the local rings of Xn at closed points p. However, if p corresponds
to a smooth point for X → Spec(k), then ΩXn/Sn,p is free of rank 1 and the first Fitting
ideal is equal to the local ring. If p = pi for some i, then

ΩXn/Sn,pi = Ω(Bi/tnBi)/(k[t]/(tn)) = ΩBi/k[[t]]/t
nΩBi/k[[t]]

Since taking Fitting ideals commutes with base change (with already used this but in this
algebraic setting it follows from More on Algebra, Lemma 8.4), and since n − 1 ≥ ni we
see that tn−1 is in the Fitting ideal of this module over Bi/tnBi as desired. �

Lemma 17.7. Let k be a field and let X be a scheme over k. Assume
(1) X is separated, finite type over k and dim(X) ≤ 1,
(2) X is a local complete intersection over k, and
(3) X → Spec(k) is smooth except at finitely many points.

3Warning: in general it is not true that the local ring of Y at the point pi is isomorphic to Bi. We only
know that this is true after dividing by tn on both sides!
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Then there exists a flat, separated, finite type morphism Y → Spec(k[[t]]) whose generic
fibre is smooth and whose special fibre is isomorphic to X .

Proof. If X is reduced, then we can choose an embedding X ⊂ X as in Varieties,
Lemma 43.6. Writing X = X \ {x1, . . . , xn} we see that OX,xi is a discrete valuation
ring and hence in particular a local complete intersection (Algebra, Definition 135.5). Thus
X is a local complete intersection over k because this holds over the open X and at the
points xi by Algebra, Lemma 135.7. Thus we may apply Lemma 17.6 to find a projective
flat morphism Y → Spec(k[[t]]) whose generic fibre is smooth and whose special fibre is
X . Then we remove x1, . . . , xn from Y to obtain Y .
In the general case, writeX = X ′qX ′′ where with dim(X ′) = 0 andX ′′ equidimensional
of dimension 1. Then X ′′ is reduced and the first paragraph applies to it. On the other
hand, X ′ can be dealt with as in the proof of Lemma 17.6. Some details omitted. �
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CHAPTER 94

Algebraic Stacks

1. Introduction

This is where we define algebraic stacks and make some very elementary observations. The
general philosophy will be to have no separation conditions whatsoever and add those
conditions necessary to make lemmas, propositions, theorems true/provable. Thus the
notions discussed here differ slightly from those in other places in the literature, e.g., [?].

This chapter is not an introduction to algebraic stacks. For an informal discussion of
algebraic stacks, please take a look at Introducing Algebraic Stacks, Section 1.

2. Conventions

The conventions we use in this chapter are the same as those in the chapter on algebraic
spaces. For convenience we repeat them here.

We work in a suitable big fppf site Schfppf as in Topologies, Definition 7.6. So, if not
explicitly stated otherwise all schemes will be objects of Schfppf . We discuss what changes
if you change the big fppf site in Section 18.

We will always work relative to a base S contained in Schfppf . And we will then work
with the big fppf site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute case can
be recovered by taking S = Spec(Z).

If U, T are schemes over S , then we denote U(T ) for the set of T -valued points over S. In
a formula: U(T ) = MorS(T,U).

Note that any fpqc covering is a universal effective epimorphism, see Descent, Lemma
13.7. Hence the topology on Schfppf is weaker than the canonical topology and all rep-
resentable presheaves are sheaves.

3. Notation

We use the letters S, T, U, V,X, Y to indicate schemes. We use the letters X ,Y,Z to
indicate categories (fibred, fibred in groupoids, stacks, ...) over (Sch/S)fppf . We use small
case letters f , g for functors such as f : X → Y over (Sch/S)fppf . We use capital F , G,
H for algebraic spaces over S , and more generally for presheaves of sets on (Sch/S)fppf .
(In future chapters we will revert to using also X , Y , etc for algebraic spaces.)

The reason for these choices is that we want to clearly distinguish between the different
types of objects in this chapter, to build the foundations.

6529
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4. Representable categories fibred in groupoids

Let S be a scheme contained in Schfppf . The basic object of study in this chapter will
be a category fibred in groupoids p : X → (Sch/S)fppf , see Categories, Definition 35.1.
We will often simply say “let X be a category fibred in groupoids over (Sch/S)fppf ” to
indicate this situation. A 1-morphism X → Y of categories fibred in groupoids over
(Sch/S)fppf will be a 1-morphism in the 2-category of categories fibred in groupoids
over (Sch/S)fppf , see Categories, Definition 35.6. It is simply a functor X → Y over
(Sch/S)fppf . We recall this is really a (2, 1)-category and that all 2-fibre products exist.

Let X be a category fibred in groupoids over (Sch/S)fppf . Recall that X is said to be
representable if there exists a scheme U ∈ Ob((Sch/S)fppf ) and an equivalence

j : X −→ (Sch/U)fppf
of categories over (Sch/S)fppf , see Categories, Definition 40.1. We will sometimes say
that X is representable by a scheme to distinguish from the case where X is representable
by an algebraic space (see below).

If X ,Y are fibred in groupoids and representable by U, V , then we have

(4.0.1) MorCat/(Sch/S)fppf (X ,Y)
/

2-isomorphism = MorSch/S(U, V )

see Categories, Lemma 40.3. More precisely, any 1-morphism X → Y gives rise to a
morphism U → V . Conversely, given a morphism of schemes U → V over S there exists
a 1-morphism φ : X → Y which gives rise to U → V and which is unique up to unique
2-isomorphism.

5. The 2-Yoneda lemma

LetU ∈ Ob((Sch/S)fppf ), and letX be a category fibred in groupoids over (Sch/S)fppf .
We will frequently use the 2-Yoneda lemma, see Categories, Lemma 41.2. Technically it
says that there is an equivalence of categories

MorCat/(Sch/S)fppf ((Sch/U)fppf ,X ) −→ XU , f 7−→ f(U/U).

It says that 1-morphisms (Sch/U)fppf → X correspond to objects x of the fibre category
XU . Namely, given a 1-morphism f : (Sch/U)fppf → X we obtain the object x =
f(U/U) ∈ Ob(XU ). Conversely, given a choice of pullbacks for X as in Categories,
Definition 33.6, and an object x of XU , we obtain a functor (Sch/U)fppf → X defined
by the rule

(ϕ : V → U) 7−→ ϕ∗x

on objects. By abuse of notation we use x : (Sch/U)fppf → X to indicate this functor. It
indeed has the property that x(U/U) = x and moreover, given any other functor f with
f(U/U) = x there exists a unique 2-isomorphism x→ f . In other words the functor x is
well determined by the object x up to unique 2-isomorphism.

We will use this without further mention in the following.

6. Representable morphisms of categories fibred in groupoids

Let X , Y be categories fibred in groupoids over (Sch/S)fppf . Let f : X → Y be a
representable 1-morphism, see Categories, Definition 42.3. This means that for every
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U ∈ Ob((Sch/S)fppf ) and any y ∈ Ob(YU ) the 2-fibre product (Sch/U)fppf ×y,Y X is
representable. Choose a representing object Vy and an equivalence

(Sch/Vy)fppf −→ (Sch/U)fppf ×y,Y X .
The projection (Sch/Vy)fppf → (Sch/U)fppf ×Y Y → (Sch/U)fppf comes from a
morphism of schemes fy : Vy → U , see Section 4. We represent this by the diagram

(6.0.1)

Vy //

fy

��

(Sch/Vy)fppf

��

// X

f

��
U // (Sch/U)fppf

y // Y

where the squiggly arrows represent the 2-Yoneda embedding. Here are some lemmas
about this notion that work in great generality (namely, they work for categories fibred
in groupoids over any base category which has fibre products).

Lemma 6.1. Let f : X → Y be a morphism of (Sch/S)fppf . Then the 1-morphism
induced by f

(Sch/X)fppf −→ (Sch/Y )fppf
is a representable 1-morphism.

Proof. This is formal and relies only on the fact that the category (Sch/S)fppf has
fibre products. �

Lemma 6.2. Let S be an object of Schfppf . Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the horizon-
tal arrows are equivalences. Then f is representable if and only if f ′ is representable.

Proof. Omitted. �

Lemma 6.3. Let S be a scheme contained in Schfppf . LetX ,Y,Z be categories fibred
in groupoids over (Sch/S)fppf Let f : X → Y , g : Y → Z be representable 1-morphisms.
Then

g ◦ f : X −→ Z
is a representable 1-morphism.

Proof. This is entirely formal and works in any category. �

Lemma 6.4. Let S be a scheme contained in Schfppf . LetX ,Y,Z be categories fibred
in groupoids over (Sch/S)fppf Let f : X → Y be a representable 1-morphism. Let
g : Z → Y be any 1-morphism. Consider the fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y

Then the base change f ′ is a representable 1-morphism.
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Proof. This is entirely formal and works in any category. �

Lemma 6.5. Let S be a scheme contained in Schfppf . Let Xi,Yi be categories fibred
in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be representable
1-morphisms. Then

f1 × f2 : X1 ×X2 −→ Y1 × Y2

is a representable 1-morphism.

Proof. Write f1 × f2 as the composition X1 × X2 → Y1 × X2 → Y1 × Y2. The
first arrow is the base change of f1 by the map Y1×X2 → Y1, and the second arrow is the
base change of f2 by the map Y1 × Y2 → Y2. Hence this lemma is a formal consequence
of Lemmas 6.3 and 6.4. �

7. Split categories fibred in groupoids

Let S be a scheme contained in Schfppf . Recall that given a “presheaf of groupoids”

F : (Sch/S)oppfppf −→ Groupoids

we get a category fibred in groupoids SF over (Sch/S)fppf , see Categories, Example 37.1.
Any category fibred in groupoids isomorphic (!) to one of these is called a split category
fibred in groupoids. Any category fibred in groupoids is equivalent to a split one.

If F is a presheaf of sets then SF is fibred in sets, see Categories, Definition 38.2, and
Categories, Example 38.5. The rule F 7→ SF is in some sense fully faithful on presheaves,
see Categories, Lemma 38.6. If F,G are presheaves, then

SF×G = SF ×(Sch/S)fppf SG

and if F → H and G→ H are maps of presheaves of sets, then

SF×HG = SF ×SH SG

where the right hand sides are 2-fibre products. This is immediate from the definitions as
the fibre categories of SF ,SG,SH have only identity morphisms.

An even more special case is where F = hX is a representable presheaf. In this case we
have ShX = (Sch/X)fppf , see Categories, Example 38.7.

We will use the notation SF without further mention in the following.

8. Categories fibred in groupoids representable by algebraic spaces

A slightly weaker notion than being representable is the notion of being representable by
algebraic spaces which we discuss in this section. This discussion might have been avoided
had we worked with some category Spacesfppf of algebraic spaces instead of the category
Schfppf . However, it seems to us natural to consider the category of schemes as the natural
collection of “test objects” over which the fibre categories of an algebraic stack are defined.

In analogy with Categories, Definitions 40.1 we make the following definition.

Definition 8.1. LetS be a scheme contained in Schfppf . A category fibred in groupoids
p : X → (Sch/S)fppf is called representable by an algebraic space overS if there exists an
algebraic space F over S and an equivalence j : X → SF of categories over (Sch/S)fppf .
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We continue our abuse of notation in suppressing the equivalence j whenever we en-
counter such a situation. It follows formally from the above that if X is representable
(by a scheme), then it is representable by an algebraic space. Here is the analogue of Cate-
gories, Lemma 40.2.

Lemma 8.2. Let S be a scheme contained in Schfppf . Let p : X → (Sch/S)fppf be a
category fibred in groupoids. Then X is representable by an algebraic space over S if and
only if the following conditions are satisfied:

(1) X is fibred in setoids1, and
(2) the presheaf U 7→ Ob(XU )/∼= is an algebraic space.

Proof. Omitted, but see Categories, Lemma 40.2. �

If X ,Y are fibred in groupoids and representable by algebraic spaces F,G over S , then we
have

(8.2.1) MorCat/(Sch/S)fppf (X ,Y)
/

2-isomorphism = MorSch/S(F,G)

see Categories, Lemma 39.6. More precisely, any 1-morphism X → Y gives rise to a
morphism F → G. Conversely, given a morphism of sheaves F → G over S there exists
a 1-morphism φ : X → Y which gives rise to F → G and which is unique up to unique
2-isomorphism.

9. Morphisms representable by algebraic spaces

In analogy with Categories, Definition 42.3 we make the following definition.

Definition 9.1. Let S be a scheme contained in Schfppf . A 1-morphism f : X → Y
of categories fibred in groupoids over (Sch/S)fppf is called representable by algebraic
spaces if for any U ∈ Ob((Sch/S)fppf ) and any y : (Sch/U)fppf → Y the category
fibred in groupoids

(Sch/U)fppf ×y,Y X
over (Sch/U)fppf is representable by an algebraic space over U .

Choose an algebraic space Fy over U which represents (Sch/U)fppf ×y,Y X . We may
think ofFy as an algebraic space over S which comes equipped with a canonical morphism
fy : Fy → U over S , see Spaces, Section 16. Here is the diagram

(9.1.1)

Fy

fy

��

(Sch/U)fppf ×y,Y Xoo

pr0

��

pr1
// X

f

��
U (Sch/U)fppfoo y // Y

where the squiggly arrows represent the construction which associates to a stack fibred
in setoids its associated sheaf of isomorphism classes of objects. The right square is 2-
commutative, and is a 2-fibre product square.
Here is the analogue of Categories, Lemma 42.5.

Lemma 9.2. LetS be a scheme contained in Schfppf . Let f : X → Y be a 1-morphism
of categories fibred in groupoids over (Sch/S)fppf . The following are necessary and suf-
ficient conditions for f to be representable by algebraic spaces:

1This means that it is fibred in groupoids and objects in the fibre categories have no nontrivial automor-
phisms, see Categories, Definition 38.2.
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(1) for each scheme U/S the functor fU : XU −→ YU between fibre categories is
faithful, and

(2) for each U and each y ∈ Ob(YU ) the presheaf
(h : V → U) 7−→ {(x, φ) | x ∈ Ob(XV ), φ : h∗y → f(x)}/ ∼=

is an algebraic space over U .
Here we have made a choice of pullbacks for Y .

Proof. This follows from the description of fibre categories of the 2-fibre products
(Sch/U)fppf ×y,Y X in Categories, Lemma 42.1 combined with Lemma 8.2. �

Here are some lemmas about this notion that work in great generality.

Lemma 9.3. Let S be an object of Schfppf . Consider a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the horizon-
tal arrows are equivalences. Then f is representable by algebraic spaces if and only if f ′ is
representable by algebraic spaces.

Proof. Omitted. �

Lemma 9.4. Let S be an object of Schfppf . Let f : X → Y be a 1-morphism of
categories fibred in groupoids over S. If X and Y are representable by algebraic spaces
over S , then the 1-morphism f is representable by algebraic spaces.

Proof. Omitted. This relies only on the fact that the category of algebraic spaces
over S has fibre products, see Spaces, Lemma 7.3. �

Lemma 9.5. Let S be an object of Schfppf . Let a : F → G be a map of presheaves
of sets on (Sch/S)fppf . Denote a′ : SF → SG the associated map of categories fibred in
sets. Then a is representable by algebraic spaces (see Bootstrap, Definition 3.1) if and only
if a′ is representable by algebraic spaces.

Proof. Omitted. �

Lemma 9.6. Let S be an object of Schfppf . Let f : X → Y be a 1-morphism of
categories fibred in setoids over (Sch/S)fppf . Let F , resp. G be the presheaf which to T
associates the set of isomorphism classes of objects of XT , resp. YT . Let a : F → G be
the map of presheaves corresponding to f . Then a is representable by algebraic spaces (see
Bootstrap, Definition 3.1) if and only if f is representable by algebraic spaces.

Proof. Omitted. Hint: Combine Lemmas 9.3 and 9.5. �

Lemma 9.7. Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories fi-
bred in groupoids over (Sch/S)fppf . Let f : X → Y be a 1-morphism representable by
algebraic spaces. Let g : Z → Y be any 1-morphism. Consider the fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y
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Then the base change f ′ is a 1-morphism representable by algebraic spaces.

Proof. This is formal. �

Lemma 9.8. Let S be a scheme contained in Schfppf . LetX ,Y,Z be categories fibred
in groupoids over (Sch/S)fppf Let f : X → Y , g : Z → Y be 1-morphisms. Assume

(1) f is representable by algebraic spaces, and
(2) Z is representable by an algebraic space over S.

Then the 2-fibre product Z ×g,Y,f X is representable by an algebraic space.

Proof. This is a reformulation of Bootstrap, Lemma 3.6. First note that Z ×g,Y,f X
is fibred in setoids over (Sch/S)fppf . Hence it is equivalent to SF for some presheaf F on
(Sch/S)fppf , see Categories, Lemma 39.5. Moreover, let G be an algebraic space which
represents Z . The 1-morphism Z ×g,Y,f X → Z is representable by algebraic spaces by
Lemma 9.7. And Z ×g,Y,f X → Z corresponds to a morphism F → G by Categories,
Lemma 39.6. Then F → G is representable by algebraic spaces by Lemma 9.6. Hence
Bootstrap, Lemma 3.6 implies that F is an algebraic space as desired. �

Let S , X , Y , Z , f , g be as in Lemma 9.8. Let F and G be algebraic spaces over S such that
F represents Z ×g,Y,f X and G represents Z . The 1-morphism f ′ : Z ×g,Y,f X → Z
corresponds to a morphism f ′ : F → G of algebraic spaces by (8.2.1). Thus we have the
following diagram

(9.8.1)

F

f ′

��

Z ×g,Y,f Xoo

��

// X

f

��
G Zoo g // Y

where the squiggly arrows represent the construction which associates to a stack fibred in
setoids its associated sheaf of isomorphism classes of objects.

Lemma 9.9. LetS be a scheme contained in Schfppf . LetX ,Y,Z be categories fibred
in groupoids over (Sch/S)fppf . If f : X → Y , g : Y → Z are 1-morphisms representable
by algebraic spaces, then

g ◦ f : X −→ Z
is a 1-morphism representable by algebraic spaces.

Proof. This follows from Lemma 9.8. Details omitted. �

Lemma 9.10. Let S be a scheme contained in Schfppf . LetXi,Yi be categories fibred
in groupoids over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be 1-morphisms
representable by algebraic spaces. Then

f1 × f2 : X1 ×X2 −→ Y1 × Y2

is a 1-morphism representable by algebraic spaces.

Proof. Write f1 × f2 as the composition X1 × X2 → Y1 × X2 → Y1 × Y2. The
first arrow is the base change of f1 by the map Y1×X2 → Y1, and the second arrow is the
base change of f2 by the map Y1 × Y2 → Y2. Hence this lemma is a formal consequence
of Lemmas 9.9 and 9.7. �

Lemma 9.11. Let S be a scheme contained in Schfppf . Let X → Z and Y → Z be 1-
morphisms of categories fibred in groupoids over (Sch/S)fppf . IfX → Z is representable
by algebraic spaces and Y is a stack in groupoids, then X ×Z Y is a stack in groupoids.
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Proof. The property of a morphism being representable by algebraic spaces is pre-
served under base-change (Lemma 9.8), and so, passing to the base-changeX ×Z Y over Y ,
we may reduce to the case of a morphism of categories fibred in groupoids X → Y which
is representable by algebraic spaces, and whose target is a stack in groupoids; our goal is
then to prove that X is also a stack in groupoids. This follows from Stacks, Lemma 6.11
whose assumptions are satisfied as a result of Lemma 9.2. �

10. Properties of morphisms representable by algebraic spaces

Here is the definition that makes this work.

Definition 10.1. Let S be a scheme contained in Schfppf . Let f : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Assume f is representable
by algebraic spaces. Let P be a property of morphisms of algebraic spaces which

(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 10.1.

In this case we say that f has property P if for every U ∈ Ob((Sch/S)fppf ) and any
y ∈ YU the resulting morphism of algebraic spaces fy : Fy → U , see diagram (9.1.1), has
property P .

It is important to note that we will only use this definition for properties of morphisms
that are stable under base change, and local in the fppf topology on the target. This is not
because the definition doesn’t make sense otherwise; rather it is because we may want to
give a different definition which is better suited to the property we have in mind.

Lemma 10.2. Let S be an object of Schfppf . Let P be as in Definition 10.1. Consider
a 2-commutative diagram

X ′ //

f ′

��

X

f

��
Y ′ // Y

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume the horizon-
tal arrows are equivalences and f (or equivalently f ′) is representable by algebraic spaces.
Then f has P if and only if f ′ has P .

Proof. Note that this makes sense by Lemma 9.3. Proof omitted. �

Here is a sanity check.

Lemma 10.3. Let S be a scheme contained in Schfppf . Let a : F → G be a map
of presheaves on (Sch/S)fppf . Let P be as in Definition 10.1. Assume a is representable
by algebraic spaces. Then a : F → G has property P (see Bootstrap, Definition 4.1) if
and only if the corresponding morphism SF → SG of categories fibred in groupoids has
property P .

Proof. Note that the lemma makes sense by Lemma 9.5. Proof omitted. �

Lemma 10.4. Let S be an object of Schfppf . Let P be as in Definition 10.1. Let
f : X → Y be a 1-morphism of categories fibred in setoids over (Sch/S)fppf . Let F , resp.
G be the presheaf which to T associates the set of isomorphism classes of objects of XT ,
resp. YT . Let a : F → G be the map of presheaves corresponding to f . Then a has P if
and only if f has P .
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Proof. The lemma makes sense by Lemma 9.6. The lemma follows on combining
Lemmas 10.2 and 10.3. �

Lemma 10.5. Let S be a scheme contained in Schfppf . Let X , Y , Z be categories
fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition 10.1 which
is stable under composition. Let f : X → Y , g : Y → Z be 1-morphisms which are
representable by algebraic spaces. If f and g have property P so does g ◦ f : X → Z .

Proof. Note that the lemma makes sense by Lemma 9.9. Proof omitted. �

Lemma 10.6. Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition 10.1. Let
f : X → Y be a 1-morphism representable by algebraic spaces. Let g : Z → Y be any
1-morphism. Consider the 2-fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y

If f has P , then the base change f ′ has P .

Proof. The lemma makes sense by Lemma 9.7. Proof omitted. �

Lemma 10.7. Let S be a scheme contained in Schfppf . Let X ,Y,Z be categories
fibred in groupoids over (Sch/S)fppf . Let P be a property as in Definition 10.1. Let
f : X → Y be a 1-morphism representable by algebraic spaces. Let g : Z → Y be any
1-morphism. Consider the fibre product diagram

Z ×g,Y,f X
g′
//

f ′

��

X

f

��
Z

g // Y

Assume that for every scheme U and object x of YU , there exists an fppf covering {Ui →
U} such that x|Ui is in the essential image of the functor g : ZUi → YUi . In this case, if
f ′ has P , then f has P .

Proof. Proof omitted. Hint: Compare with the proof of Spaces, Lemma 5.6. �

Lemma 10.8. Let S be a scheme contained in Schfppf . LetP be a property as in Defi-
nition 10.1 which is stable under composition. LetXi,Yi be categories fibred in groupoids
over (Sch/S)fppf , i = 1, 2. Let fi : Xi → Yi, i = 1, 2 be 1-morphisms representable by
algebraic spaces. If f1 and f2 have property P so does f1 × f2 : X1 ×X2 → Y1 × Y2.

Proof. The lemma makes sense by Lemma 9.10. Proof omitted. �

Lemma 10.9. LetS be a scheme contained in Schfppf . LetX ,Y be categories fibred in
groupoids over (Sch/S)fppf . Let f : X → Y be a 1-morphism representable by algebraic
spaces. Let P , P ′ be properties as in Definition 10.1. Suppose that for any morphism of
algebraic spaces a : F → G we have P(a) ⇒ P ′(a). If f has property P then f has
property P ′.

Proof. Formal. �
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Lemma 10.10. Let S be a scheme contained in Schfppf . Let j : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Assume j is representable
by algebraic spaces and a monomorphism (see Definition 10.1 and Descent on Spaces,
Lemma 11.30). Then j is fully faithful on fibre categories.

Proof. We have seen in Lemma 9.2 that j is faithful on fibre categories. Consider a
scheme U , two objects u, v ofXU , and an isomorphism t : j(u)→ j(v) in YU . We have to
construct an isomorphism in XU between u and v. By the 2-Yoneda lemma (see Section
5) we think of u, v as 1-morphisms u, v : (Sch/U)fppf → X and we consider the 2-fibre
product

(Sch/U)fppf ×j◦v,Y X .
By assumption this is representable by an algebraic space Fj◦v , over U and the morphism
Fj◦v → U is a monomorphism. But since (1U , v, 1j(v)) gives a 1-morphism of (Sch/U)fppf
into the displayed 2-fibre product, we see that Fj◦v = U (here we use that if V → U is
a monomorphism of algebraic spaces which has a section, then V = U ). Therefore the
1-morphism projecting to the first coordinate

(Sch/U)fppf ×j◦v,Y X → (Sch/U)fppf
is an equivalence of fibre categories. Since (1U , u, t) and (1U , v, 1j(v)) give two objects
in ((Sch/U)fppf ×j◦v,Y X )U which have the same first coordinate, there must be a 2-
morphism between them in the 2-fibre product. This is by definition a morphism t̃ : u→ v
such that j(t̃) = t. �

Here is a characterization of those categories fibred in groupoids for which the diagonal is
representable by algebraic spaces.

Lemma 10.11. Let S be a scheme contained in Schfppf . Let X be a category fibred in
groupoids over (Sch/S)fppf . The following are equivalent:

(1) the diagonal X → X ×X is representable by algebraic spaces,
(2) for every scheme U over S , and any x, y ∈ Ob(XU ) the sheaf Isom(x, y) is an

algebraic space over U ,
(3) for every scheme U over S , and any x ∈ Ob(XU ) the associated 1-morphism

x : (Sch/U)fppf → X is representable by algebraic spaces,
(4) for every pair of schemes T1, T2 over S , and any xi ∈ Ob(XTi), i = 1, 2 the

2-fibre product (Sch/T1)fppf ×x1,X ,x2 (Sch/T2)fppf is representable by an al-
gebraic space,

(5) for every representable category fibred in groupoids U over (Sch/S)fppf every
1-morphism U → X is representable by algebraic spaces,

(6) for every pairT1, T2 of representable categories fibred in groupoids over (Sch/S)fppf
and any 1-morphisms xi : Ti → X , i = 1, 2 the 2-fibre product T1 ×x1,X ,x2 T2
is representable by an algebraic space,

(7) for every category fibred in groupoidsU over (Sch/S)fppf which is representable
by an algebraic space every 1-morphism U → X is representable by algebraic
spaces,

(8) for every pair T1, T2 of categories fibred in groupoids over (Sch/S)fppf which
are representable by algebraic spaces, and any 1-morphisms xi : Ti → X the
2-fibre product T1 ×x1,X ,x2 T2 is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 2.5 and the def-
initions. Let us prove the equivalence of (1) and (3). Write C = (Sch/S)fppf for the
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base category. We will use some of the observations of the proof of the similar Cate-
gories, Lemma 42.6. We will use the symbol ∼= to mean “equivalence of categories fibred
in groupoids over C = (Sch/S)fppf ”. Assume (1). Suppose given U and x as in (3). For
any scheme V and y ∈ Ob(XV ) we see (compare reference above) that

C/U ×x,X ,y C/V ∼= (C/U ×S V )×(x,y),X ×X ,∆ X

which is representable by an algebraic space by assumption. Conversely, assume (3). Con-
sider any schemeU over S and a pair (x, x′) of objects ofX overU . We have to show that
X ×∆,X ×X ,(x,x′) U is representable by an algebraic space. This is clear because (compare
reference above)

X ×∆,X ×X ,(x,x′) C/U ∼= (C/U ×x,X ,x′ C/U)×C/U×SU,∆ C/U
and the right hand side is representable by an algebraic space by assumption and the fact
that the category of algebraic spaces over S has fibre products and contains U and S.

The equivalences (3)⇔ (4), (5)⇔ (6), and (7)⇔ (8) are formal. The equivalences (3)⇔ (5)
and (4)⇔ (6) follow from Lemma 9.3. Assume (3), and let U → X be as in (7). To prove
(7) we have to show that for every scheme V and 1-morphism y : (Sch/V )fppf → X the
2-fibre product (Sch/V )fppf ×y,X U is representable by an algebraic space. Property (3)
tells us that y is representable by algebraic spaces hence Lemma 9.8 implies what we want.
Finally, (7) directly implies (3). �

In the situation of the lemma, for any 1-morphism x : (Sch/U)fppf → X as in the
lemma, it makes sense to say that x has property P , for any property as in Definition 10.1.
In particular this holds for P = “surjective”, P = “smooth”, and P = “étale”, see Descent
on Spaces, Lemmas 11.6, 11.26, and 11.28. We will use these three cases in the definitions
of algebraic stacks below.

11. Stacks in groupoids

Let S be a scheme contained in Schfppf . Recall that a category p : X → (Sch/S)fppf
over (Sch/S)fppf is said to be a stack in groupoids (see Stacks, Definition 5.1) if and only
if

(1) p : X → (Sch/S)fppf is fibred in groupoids over (Sch/S)fppf ,
(2) for all U ∈ Ob((Sch/S)fppf ), for all x, y ∈ Ob(XU ) the presheaf Isom(x, y) is

a sheaf on the site (Sch/U)fppf , and
(3) for all coverings U = {Ui → U} in (Sch/S)fppf , all descent data (xi, φij) for
U are effective.

For examples see Examples of Stacks, Section 9 ff.

12. Algebraic stacks

Here is the definition of an algebraic stack. We remark that condition (2) implies we can
make sense out of the condition in part (3) that (Sch/U)fppf → X is smooth and surjec-
tive, see discussion following Lemma 10.11.

Definition 12.1. Let S be a base scheme contained in Schfppf . An algebraic stack
over S is a category

p : X → (Sch/S)fppf
over (Sch/S)fppf with the following properties:

(1) The category X is a stack in groupoids over (Sch/S)fppf .
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(2) The diagonal ∆ : X → X ×X is representable by algebraic spaces.
(3) There exists a schemeU ∈ Ob((Sch/S)fppf ) and a 1-morphism (Sch/U)fppf →
X which is surjective and smooth2.

There are some differences with other definitions found in the literature.

The first is that we require X to be a stack in groupoids in the fppf topology, whereas in
many references the étale topology is used. It somehow seems to us that the fppf topology
is the natural topology to work with. In the end the resulting 2-category of algebraic
stacks ends up being the same. This is explained in Criteria for Representability, Section
19.

The second is that we only require the diagonal map of X to be representable by algebraic
spaces, whereas in most references some other conditions are imposed. Our point of view
is to try to prove a certain number of the results that follow only assuming that the diag-
onal of X be representable by algebraic spaces, and simply add an additional hypothesis
wherever this is necessary. It has the added benefit that any algebraic space (as defined in
Spaces, Definition 6.1) gives rise to an algebraic stack.

The third is that in some papers it is required that there exists a scheme U and a surjective
and étale morphismU → X . In the groundbreaking paper [?] where algebraic stacks were
first introduced Deligne and Mumford used this definition and showed that the moduli
stack of stable genus g > 1 curves is an algebraic stack which has an étale covering by
a scheme. Michael Artin, see [?], realized that many natural results on algebraic stacks
generalize to the case where one only assume a smooth covering by a scheme. Hence our
choice above. To distinguish the two cases one sees the terms “Deligne-Mumford stack”
and “Artin stack” used in the literature. We will reserve the term “Artin stack” for later
use (insert future reference here), and continue to use “algebraic stack”, but we will use
“Deligne-Mumford stack” to indicate those algebraic stacks which have an étale covering
by a scheme.

Definition 12.2. LetS be a scheme contained in Schfppf . LetX be an algebraic stack
over S. We say X is a Deligne-Mumford stack if there exists a scheme U and a surjective
étale morphism (Sch/U)fppf → X .

We will compare our notion of a Deligne-Mumford stack with the notion as defined in
the paper by Deligne and Mumford later (see insert future reference here).

The category of algebraic stacks over S forms a 2-category. Here is the precise definition.

Definition 12.3. Let S be a scheme contained in Schfppf . The 2-category of alge-
braic stacks over S is the sub 2-category of the 2-category of categories fibred in groupoids
over (Sch/S)fppf (see Categories, Definition 35.6) defined as follows:

(1) Its objects are those categories fibred in groupoids over (Sch/S)fppf which are
algebraic stacks over S.

(2) Its 1-morphisms f : X → Y are any functors of categories over (Sch/S)fppf , as
in Categories, Definition 32.1.

(3) Its 2-morphisms are transformations between functors over (Sch/S)fppf , as in
Categories, Definition 32.1.

2In future chapters we will denote this simply U → X as is customary in the literature. Another good
alternative would be to formulate this condition as the existence of a representable category fibred in groupoids
U and a surjective smooth 1-morphism U → X .
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In other words this 2-category is the full sub 2-category of Cat/(Sch/S)fppf whose objects
are algebraic stacks. Note that every 2-morphism is automatically an isomorphism. Hence
this is actually a (2, 1)-category and not just a 2-category.
We will see later (insert future reference here) that this 2-category has 2-fibre products.
Similar to the remark above the 2-category of algebraic stacks over S is a full sub 2-
category of the 2-category of categories fibred in groupoids over (Sch/S)fppf . It turns
out that it is closed under equivalences. Here is the precise statement.

Lemma 12.4. Let S be a scheme contained in Schfppf . Let X , Y be categories over
(Sch/S)fppf . Assume X , Y are equivalent as categories over (Sch/S)fppf . Then X is an
algebraic stack if and only if Y is an algebraic stack. Similarly, X is a Deligne-Mumford
stack if and only if Y is a Deligne-Mumford stack.

Proof. Assume X is an algebraic stack (resp. a Deligne-Mumford stack). By Stacks,
Lemma 5.4 this implies thatY is a stack in groupoids over Schfppf . Choose an equivalence
f : X → Y over Schfppf . This gives a 2-commutative diagram

X
f

//

∆X

��

Y

∆Y

��
X × X

f×f // Y × Y
whose horizontal arrows are equivalences. This implies that ∆Y is representable by al-
gebraic spaces according to Lemma 9.3. Finally, let U be a scheme over S , and let x :
(Sch/U)fppf → X be a 1-morphism which is surjective and smooth (resp. étale). Con-
sidering the diagram

(Sch/U)fppf id
//

x

��

(Sch/U)fppf

f◦x
��

X
f // Y

and applying Lemma 10.2 we conclude that f ◦ x is surjective and smooth (resp. étale) as
desired. �

13. Algebraic stacks and algebraic spaces

In this section we discuss some simple criteria which imply that an algebraic stack is an al-
gebraic space. The main result is that this happens exactly when objects of fibre categories
have no nontrivial automorphisms. This is not a triviality! Before we come to this we first
do a sanity check.

Lemma 13.1. Let S be a scheme contained in Schfppf .
(1) A category fibred in groupoids p : X → (Sch/S)fppf which is representable by

an algebraic space is a Deligne-Mumford stack.
(2) If F is an algebraic space over S , then the associated category fibred in groupoids

p : SF → (Sch/S)fppf is a Deligne-Mumford stack.
(3) If X ∈ Ob((Sch/S)fppf ), then (Sch/X)fppf → (Sch/S)fppf is a Deligne-

Mumford stack.

Proof. It is clear that (2) implies (3). Parts (1) and (2) are equivalent by Lemma 12.4.
Hence it suffices to prove (2). First, we note that SF is stack in sets since F is a sheaf
(Stacks, Lemma 6.3). A fortiori it is a stack in groupoids. Second the diagonal morphism
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SF → SF ×SF is the same as the morphism SF → SF×F which comes from the diagonal
of F . Hence this is representable by algebraic spaces according to Lemma 9.4. Actually it
is even representable (by schemes), as the diagonal of an algebraic space is representable,
but we do not need this. LetU be a scheme and let hU → F be a surjective étale morphism.
We may think of this as a surjective étale morphism of algebraic spaces. Hence by Lemma
10.3 the corresponding 1-morphism (Sch/U)fppf → SF is surjective and étale. �

The following result says that a Deligne-Mumford stack whose inertia is trivial “is” an
algebraic space. This lemma will be obsoleted by the stronger Proposition 13.3 below
which says that this holds more generally for algebraic stacks...

Lemma 13.2. Let S be a scheme contained in Schfppf . Let X be an algebraic stack
over S. The following are equivalent

(1) X is a Deligne-Mumford stack and is a stack in setoids,
(2) X is a Deligne-Mumford stack such that the canonical 1-morphism IX → X is

an equivalence, and
(3) X is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 7.2. The implica-
tion (3)⇒ (1) follows from Lemma 13.1. Finally, assume (1). By Stacks, Lemma 6.3 there
exists a sheaf F on (Sch/S)fppf and an equivalence j : X → SF . By Lemma 9.5 the fact
that ∆X is representable by algebraic spaces, means that ∆F : F → F×F is representable
by algebraic spaces. Let U be a scheme, and let x : (Sch/U)fppf → X be a surjective étale
morphism. The composition j ◦ x : (Sch/U)fppf → SF corresponds to a morphism
hU → F of sheaves. By Bootstrap, Lemma 5.1 this morphism is representable by algebraic
spaces. Hence by Lemma 10.4 we conclude that hU → F is surjective and étale. Finally,
we apply Bootstrap, Theorem 6.1 to see that F is an algebraic space. �

Proposition 13.3. Let S be a scheme contained in Schfppf . Let X be an algebraic
stack over S. The following are equivalent

(1) X is a stack in setoids,
(2) the canonical 1-morphism IX → X is an equivalence, and
(3) X is representable by an algebraic space.

Proof. The equivalence of (1) and (2) follows from Stacks, Lemma 7.2. The implica-
tion (3)⇒ (1) follows from Lemma 13.2. Finally, assume (1). By Stacks, Lemma 6.3 there
exists an equivalence j : X → SF where F is a sheaf on (Sch/S)fppf . By Lemma 9.5
the fact that ∆X is representable by algebraic spaces, means that ∆F : F → F × F is
representable by algebraic spaces. Let U be a scheme and let x : (Sch/U)fppf → X be a
surjective smooth morphism. The composition j ◦x : (Sch/U)fppf → SF corresponds to
a morphism hU → F of sheaves. By Bootstrap, Lemma 5.1 this morphism is representable
by algebraic spaces. Hence by Lemma 10.4 we conclude that hU → F is surjective and
smooth. In particular it is surjective, flat and locally of finite presentation (by Lemma 10.9
and the fact that a smooth morphism of algebraic spaces is flat and locally of finite pre-
sentation, see Morphisms of Spaces, Lemmas 37.5 and 37.7). Finally, we apply Bootstrap,
Theorem 10.1 to see that F is an algebraic space. �

14. 2-Fibre products of algebraic stacks

The 2-category of algebraic stacks has products and 2-fibre products. The first lemma is
really a special case of Lemma 14.3 but its proof is slightly easier.
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Lemma 14.1. Let S be a scheme contained in Schfppf . Let X , Y be algebraic stacks
over S. Then X ×(Sch/S)fppf Y is an algebraic stack, and is a product in the 2-category of
algebraic stacks over S.

Proof. An object ofX×(Sch/S)fppfY overT is just a pair (x, y) wherex is an object of
XT and y is an object ofYT . Hence it is immediate from the definitions thatX×(Sch/S)fppf
Y is a stack in groupoids. If (x, y) and (x′, y′) are two objects of X ×(Sch/S)fppf Y over
T , then

Isom((x, y), (x′, y′)) = Isom(x, x′)× Isom(y, y′).
Hence it follows from the equivalences in Lemma 10.11 and the fact that the category of
algebraic spaces has products that the diagonal of X ×(Sch/S)fppf Y is representable by
algebraic spaces. Finally, suppose thatU, V ∈ Ob((Sch/S)fppf ), and let x, y be surjective
smooth morphisms x : (Sch/U)fppf → X , y : (Sch/V )fppf → Y . Note that

(Sch/U ×S V )fppf = (Sch/U)fppf ×(Sch/S)fppf (Sch/V )fppf .
The object (pr∗

Ux, pr∗
V y) of X ×(Sch/S)fppf Y over (Sch/U ×S V )fppf thus defines a

1-morphism
(Sch/U ×S V )fppf −→ X ×(Sch/S)fppf Y

which is the composition of base changes of x and y, hence is surjective and smooth, see
Lemmas 10.6 and 10.5. We conclude that X ×(Sch/S)fppf Y is indeed an algebraic stack.
We omit the verification that it really is a product. �

Lemma 14.2. Let S be a scheme contained in Schfppf . Let Z be a stack in groupoids
over (Sch/S)fppf whose diagonal is representable by algebraic spaces. Let X , Y be alge-
braic stacks over S. Let f : X → Z , g : Y → Z be 1-morphisms of stacks in groupoids.
Then the 2-fibre product X ×f,Z,g Y is an algebraic stack.

Proof. We have to check conditions (1), (2), and (3) of Definition 12.1. The first
condition follows from Stacks, Lemma 5.6.
The second condition we have to check is that the Isom-sheaves are representable by al-
gebraic spaces. To do this, suppose that T is a scheme over S , and u, v are objects of
(X ×f,Z,g Y)T . By our construction of 2-fibre products (which goes all the way back
to Categories, Lemma 32.3) we may write u = (x, y, α) and v = (x′, y′, α′). Here
α : f(x)→ g(y) and similarly for α′. Then it is clear that

Isom(u, v)

��

// Isom(y, y′)

φ 7→g(φ)◦α
��

Isom(x, x′)
ψ 7→α′◦f(ψ) // Isom(f(x), g(y′))

is a cartesian diagram of sheaves on (Sch/T )fppf . Since by assumption the sheaves Isom(y, y′),
Isom(x, x′), Isom(f(x), g(y′)) are algebraic spaces (see Lemma 10.11) we see that Isom(u, v)
is an algebraic space.
LetU, V ∈ Ob((Sch/S)fppf ), and letx, y be surjective smooth morphismsx : (Sch/U)fppf →
X , y : (Sch/V )fppf → Y . Consider the morphism

(Sch/U)fppf ×f◦x,Z,g◦y (Sch/V )fppf −→ X ×f,Z,g Y.
As the diagonal of Z is representable by algebraic spaces the source of this arrow is repre-
sentable by an algebraic space F , see Lemma 10.11. Moreover, the morphism is the com-
position of base changes of x and y, hence surjective and smooth, see Lemmas 10.6 and
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10.5. Choosing a scheme W and a surjective étale morphism W → F we see that the
composition of the displayed 1-morphism with the corresponding 1-morphism

(Sch/W )fppf −→ (Sch/U)fppf ×f◦x,Z,g◦y (Sch/V )fppf
is surjective and smooth which proves the last condition. �

Lemma 14.3. LetS be a scheme contained in Schfppf . LetX ,Y,Z be algebraic stacks
over S. Let f : X → Z , g : Y → Z be 1-morphisms of algebraic stacks. Then the 2-fibre
product X ×f,Z,g Y is an algebraic stack. It is also the 2-fibre product in the 2-category
of algebraic stacks over (Sch/S)fppf .

Proof. The fact that X ×f,Z,g Y is an algebraic stack follows from the stronger
Lemma 14.2. The fact that X ×f,Z,g Y is a 2-fibre product in the 2-category of algebraic
stacks over S follows formally from the fact that the 2-category of algebraic stacks over
S is a full sub 2-category of the 2-category of stacks in groupoids over (Sch/S)fppf . �

15. Algebraic stacks, overhauled

Some basic results on algebraic stacks.

Lemma 15.1. Let S be a scheme contained in Schfppf . Let f : X → Y be a 1-
morphism of algebraic stacks over S. Let V ∈ Ob((Sch/S)fppf ). Let y : (Sch/V )fppf →
Y be surjective and smooth. Then there exists an object U ∈ Ob((Sch/S)fppf ) and a 2-
commutative diagram

(Sch/U)fppf a
//

x

��

(Sch/V )fppf
y

��
X

f // Y

with x surjective and smooth.

Proof. First choose W ∈ Ob((Sch/S)fppf ) and a surjective smooth 1-morphism
z : (Sch/W )fppf → X . As Y is an algebraic stack we may choose an equivalence

j : SF −→ (Sch/W )fppf ×f◦z,Y,y (Sch/V )fppf
where F is an algebraic space. By Lemma 10.6 the morphism SF → (Sch/W )fppf is
surjective and smooth as a base change of y. Hence by Lemma 10.5 we see that SF →
X is surjective and smooth. Choose an object U ∈ Ob((Sch/S)fppf ) and a surjective
étale morphism U → F . Then applying Lemma 10.5 once more we obtain the desired
properties. �

This lemma is a generalization of Proposition 13.3.

Lemma 15.2. Let S be a scheme contained in Schfppf . Let f : X → Y be a 1-
morphism of algebraic stacks over S. The following are equivalent:

(1) for U ∈ Ob((Sch/S)fppf ) the functor f : XU → YU is faithful,
(2) the functor f is faithful, and
(3) f is representable by algebraic spaces.

Proof. Parts (1) and (2) are equivalent by general properties of 1-morphisms of cat-
egories fibred in groupoids, see Categories, Lemma 35.9. We see that (3) implies (2) by
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Lemma 9.2. Finally, assume (2). Let U be a scheme. Let y ∈ Ob(YU ). We have to prove
that

W = (Sch/U)fppf ×y,Y X
is representable by an algebraic space over U . Since (Sch/U)fppf is an algebraic stack we
see from Lemma 14.3 thatW is an algebraic stack. On the other hand the explicit descrip-
tion of objects of W as triples (V, x, α : y(V ) → f(x)) and the fact that f is faithful,
shows that the fibre categories ofW are setoids. Hence Proposition 13.3 guarantees that
W is representable by an algebraic space. �

Lemma 15.3. Let S be a scheme contained in Schfppf . Let u : U → X be a 1-
morphism of stacks in groupoids over (Sch/S)fppf . If

(1) U is representable by an algebraic space, and
(2) u is representable by algebraic spaces, surjective and smooth,

then X is an algebraic stack over S.

Proof. We have to show that ∆ : X → X × X is representable by algebraic spaces,
see Definition 12.1. Given two schemes T1, T2 over S denote Ti = (Sch/Ti)fppf the asso-
ciated representable fibre categories. Suppose given 1-morphisms fi : Ti → X . According
to Lemma 10.11 it suffices to prove that the 2-fibered product T1 ×X T2 is representable
by an algebraic space. By Stacks, Lemma 6.8 this is in any case a stack in setoids. Thus
T1 ×X T2 corresponds to some sheaf F on (Sch/S)fppf , see Stacks, Lemma 6.3. Let U be
the algebraic space which represents U . By assumption

T ′
i = U ×u,X ,fi Ti

is representable by an algebraic space T ′
i over S. Hence T ′

1 ×U T ′
2 is representable by the

algebraic space T ′
1 ×U T ′

2. Consider the commutative diagram

T1 ×X T2 //

��

T1

��

T ′
1 ×U T ′

2

88

//

��

T ′
1

??

��

T2 // X

T ′
2

//

88

U

??

In this diagram the bottom square, the right square, the back square, and the front square
are 2-fibre products. A formal argument then shows that T ′

1 ×U T ′
2 → T1 ×X T2 is the

“base change” of U → X , more precisely the diagram

T ′
1 ×U T ′

2

��

// U

��
T1 ×X T2 // X

is a 2-fibre square. Hence T ′
1 ×U T ′

2 → F is representable by algebraic spaces, smooth,
and surjective, see Lemmas 9.6, 9.7, 10.4, and 10.6. Therefore F is an algebraic space by
Bootstrap, Theorem 10.1 and we win. �
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An application of Lemma 15.3 is that something which is an algebraic space over an alge-
braic stack is an algebraic stack. This is the analogue of Bootstrap, Lemma 3.6. Actually,
it suffices to assume the morphism X → Y is “algebraic”, as we will see in Criteria for
Representability, Lemma 8.2.

Lemma 15.4. Let S be a scheme contained in Schfppf . Let X → Y be a morphism of
stacks in groupoids over (Sch/S)fppf . Assume that

(1) X → Y is representable by algebraic spaces, and
(2) Y is an algebraic stack over S.

Then X is an algebraic stack over S.

Proof. Let V → Y be a surjective smooth 1-morphism from a representable stack in
groupoids to Y . This exists by Definition 12.1. Then the 2-fibre product U = V ×Y X
is representable by an algebraic space by Lemma 9.8. The 1-morphism U → X is repre-
sentable by algebraic spaces, smooth, and surjective, see Lemmas 9.7 and 10.6. By Lemma
15.3 we conclude that X is an algebraic stack. �

Lemma 15.5. Let S be a scheme contained in Schfppf . Let j : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Assume j is representable
by algebraic spaces. Then, if Y is a stack in groupoids (resp. an algebraic stack), so is X .

Proof. The statement on algebraic stacks will follow from the statement on stacks
in groupoids by Lemma 15.4. If j is representable by algebraic spaces, then j is faithful on
fibre categories and for each U and each y ∈ Ob(YU ) the presheaf

(h : V → U) 7−→ {(x, φ) | x ∈ Ob(XV ), φ : h∗y → f(x)}/ ∼=
is an algebraic space over U . See Lemma 9.2. In particular this presheaf is a sheaf and the
conclusion follows from Stacks, Lemma 6.11. �

16. From an algebraic stack to a presentation

Given an algebraic stack over S we obtain a groupoid in algebraic spaces over S whose
associated quotient stack is the algebraic stack.
Recall that if (U,R, s, t, c) is a groupoid in algebraic spaces over S then [U/R] denotes
the quotient stack associated to this datum, see Groupoids in Spaces, Definition 20.1. In
general [U/R] is not an algebraic stack. In particular the stack [U/R] occurring in the
following lemma is in general not algebraic.

Lemma 16.1. Let S be a scheme contained in Schfppf . Let X be an algebraic stack
over S. Let U be an algebraic stack over S which is representable by an algebraic space.
Let f : U → X be a 1-morphism. Then

(1) the 2-fibre productR = U ×f,X ,f U is representable by an algebraic space,
(2) there is a canonical equivalence

U ×f,X ,f U ×f,X ,f U = R×pr1,U,pr0
R,

(3) the projection pr02 induces via (2) a 1-morphism
pr02 : R×pr1,U,pr0

R −→ R

(4) let U , R be the algebraic spaces representing U ,R and t, s : R → U and c :
R×s,U,tR→ R are the morphisms corresponding to the 1-morphisms pr0, pr1 :
R→ U and pr02 : R×pr1,U,pr0

R→ R above, then the quintuple (U,R, s, t, c)
is a groupoid in algebraic spaces over S ,
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(5) the morphism f induces a canonical 1-morphism fcan : [U/R] → X of stacks
in groupoids over (Sch/S)fppf , and

(6) the 1-morphism fcan : [U/R]→ X is fully faithful.

Proof. Proof of (1). By definition ∆X is representable by algebraic spaces so Lemma
10.11 applies to show that U → X is representable by algebraic spaces. Hence the result
follows from Lemma 9.8.

Let T be a scheme over S. By construction of the 2-fibre product (see Categories, Lemma
32.3) we see that the objects of the fibre category RT are triples (a, b, α) where a, b ∈
Ob(UT ) and α : f(a)→ f(b) is a morphism in the fibre category XT .

Proof of (2). The equivalence comes from repeatedly applying Categories, Lemmas 31.8
and 31.10. Let us identify U ×X U ×X U with (U ×X U)×X U . If T is a scheme over S ,
then on fibre categories over T this equivalence maps the object ((a, b, α), c, β) on the left
hand side to the object ((a, b, α), (b, c, β)) of the right hand side.

Proof of (3). The 1-morphism pr02 is constructed in the proof of Categories, Lemma 31.9.
In terms of the description of objects of the fibre category above we see that ((a, b, α), (b, c, β))
maps to (a, c, β ◦ α).

Unfortunately, this is not compatible with our conventions on groupoids where we always
have j = (t, s) : R → U , and we “think” of a T -valued point r of R as a morphism
r : s(r) → t(r). However, this does not affect the proof of (4), since the opposite of a
groupoid is a groupoid. But in the proof of (5) it is responsible for the inverses in the
displayed formula below.

Proof of (4). Recall that the sheaf U is isomorphic to the sheaf T 7→ Ob(UT )/ ∼=, and
similarly for R, see Lemma 8.2. It follows from Categories, Lemma 39.8 that this descrip-
tion is compatible with 2-fibre products so we get a similar matching of R ×pr1,U,pr0

R
and R ×s,U,t R. The morphisms t, s : R → U and c : R ×s,U,t R → R we get from
the general equality (8.2.1). Explicitly these maps are the transformations of functors that
come from letting pr0, pr0, pr02 act on isomorphism classes of objects of fibre categories.
Hence to show that we obtain a groupoid in algebraic spaces it suffices to show that for
every scheme T over S the structure

(Ob(UT )/∼=,Ob(RT )/∼=, pr1, pr0, pr02)

is a groupoid which is clear from our description of objects ofRT above.

Proof of (5). We will eventually apply Groupoids in Spaces, Lemma 23.2 to obtain the
functor [U/R] → X . Consider the 1-morphism f : U → X . We have a 2-arrow τ :
f ◦ pr1 → f ◦ pr0 by definition ofR as the 2-fibre product. Namely, on an object (a, b, α)
ofR over T it is the map α−1 : b→ a. We claim that

τ ◦ idpr02
= (τ ? idpr0

) ◦ (τ ? idpr1
).

This identity says that given an object ((a, b, α), (b, c, β)) ofR×pr1,U,pr0
R over T , then

the composition of

c
β−1
// b

α−1
// a

is the same as the arrow (β ◦ α)−1 : a→ c. This is clearly true, hence the claim holds. In
this way we see that all the assumption of Groupoids in Spaces, Lemma 23.2 are satisfied for
the structure (U ,R, pr0, pr1, pr02) and the 1-morphism f and the 2-morphism τ . Except,
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to apply the lemma we need to prove this holds for the structure (SU ,SR, s, t, c) with
suitable morphisms.
Now there should be some general abstract nonsense argument which transfer these data
between the two, but it seems to be quite long. Instead, we use the following trick. Pick a
quasi-inverse j−1 : SU → U of the canonical equivalence j : U → SU which comes from
U(T ) = Ob(UT )/∼=. This just means that for every scheme T/S and every object a ∈ UT
we have picked out a particular element of its isomorphism class, namely j−1(j(a)). Using
j−1 we may therefore see SU as a subcategory of U . Having chosen this subcategory we
can consider those objects (a, b, α) of RT such that a, b are objects of (SU )T , i.e., such
that j−1(j(a)) = a and j−1(j(b)) = b. Then it is clear that this forms a subcategory of
R which maps isomorphically to SR via the canonical equivalence R → SR. Moreover,
this is clearly compatible with forming the 2-fibre productR×pr1,U,pr0

R. Hence we see
that we may simply restrict f to SU and restrict τ to a transformation between functors
SR → X . Hence it is clear that the displayed equality of Groupoids in Spaces, Lemma 23.2
holds since it holds even as an equality of transformations of functorsR×pr1,U,pr0

R→ X
before restricting to the subcategory SR×s,U,tR.
This proves that Groupoids in Spaces, Lemma 23.2 applies and we get our desired mor-
phism of stacks fcan : [U/R] → X . We briefly spell out how fcan is defined in this
special case. On an object a of SU over T we have fcan(a) = f(a), where we think of
SU ⊂ U by the chosen embedding above. If a, b are objects of SU over T , then a mor-
phism ϕ : a → b in [U/R] is by definition an object of the form ϕ = (b, a, α) of R over
T . (Note switch.) And the rule in the proof of Groupoids in Spaces, Lemma 23.2 is that

(16.1.1) fcan(ϕ) =
(
f(a) α−1

−−→ f(b)
)
.

Proof of (6). Both [U/R] and X are stacks. Hence given a scheme T/S and objects a, b of
[U/R] over T we obtain a transformation of fppf sheaves

Isom(a, b) −→ Isom(fcan(a), fcan(b))
on (Sch/T )fppf . We have to show that this is an isomorphism. We may work fppf lo-
cally on T , hence we may assume that a, b come from morphisms a, b : T → U . By the
embedding SU ⊂ U above we may also think of a, b as objects of U over T . In Groupoids
in Spaces, Lemma 22.1 we have seen that the left hand sheaf is represented by the algebraic
space

R×(t,s),U×SU,(b,a) T

over T . On the other hand, the right hand side is by Stacks, Lemma 2.5 equal to the sheaf
associated to the following stack in setoids:
X ×X ×X ,(f◦b,f◦a) T = X ×X ×X ,(f,f) (U × U)×U×U,(b,a) T = R×(pr0,pr1),U×U,(b,a) T

which is representable by the fibre product displayed above. At this point we have shown
that the two Isom-sheaves are isomorphic. Our 1-morphism fcan : [U/R] → X induces
this isomorphism on Isom-sheaves by Equation (16.1.1). �

We can use the previous very abstract lemma to produce presentations.

Lemma 16.2. Let S be a scheme contained in Schfppf . Let X be an algebraic stack
over S. Let U be an algebraic space over S. Let f : SU → X be a surjective smooth
morphism. Let (U,R, s, t, c) be the groupoid in algebraic spaces and fcan : [U/R] → X
be the result of applying Lemma 16.1 to U and f . Then

(1) the morphisms s, t are smooth, and
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(2) the 1-morphism fcan : [U/R]→ X is an equivalence.

Proof. The morphisms s, t are smooth by Lemmas 10.2 and 10.3. As the 1-morphism
f is smooth and surjective it is clear that given any scheme T and any object a ∈ Ob(XT )
there exists a smooth and surjective morphism T ′ → T such that a|′T comes from an
object of [U/R]T ′ . Since fcan : [U/R]→ X is fully faithful, we deduce that [U/R]→ X
is essentially surjective as descent data on objects are effective on both sides, see Stacks,
Lemma 4.8. �

Remark 16.3. If the morphism f : SU → X of Lemma 16.2 is only assumed surjective,
flat and locally of finite presentation, then it will still be the case that fcan : [U/R]→ X is
an equivalence. In this case the morphisms s, twill be flat and locally of finite presentation,
but of course not smooth in general.

Lemma 16.2 suggests the following definitions.

Definition 16.4. LetS be a scheme. LetB be an algebraic space overS. Let (U,R, s, t, c)
be a groupoid in algebraic spaces over B. We say (U,R, s, t, c) is a smooth groupoid3 if
s, t : R→ U are smooth morphisms of algebraic spaces.

Definition 16.5. Let X be an algebraic stack over S. A presentation of X is given
by a smooth groupoid (U,R, s, t, c) in algebraic spaces over S , and an equivalence f :
[U/R]→ X .

We have seen above that every algebraic stack has a presentation. Our next task is to show
that every smooth groupoid in algebraic spaces over S gives rise to an algebraic stack.

17. The algebraic stack associated to a smooth groupoid

In this section we start with a smooth groupoid in algebraic spaces and we show that the
associated quotient stack is an algebraic stack.

Lemma 17.1. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a groupoid
in algebraic spaces overS. Then the diagonal of [U/R] is representable by algebraic spaces.

Proof. It suffices to show that the Isom-sheaves are algebraic spaces, see Lemma
10.11. This follows from Bootstrap, Lemma 11.5. �

Lemma 17.2. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a smooth
groupoid in algebraic spaces over S. Then the morphism SU → [U/R] is smooth and
surjective.

Proof. Let T be a scheme and let x : (Sch/T )fppf → [U/R] be a 1-morphism. We
have to show that the projection

SU ×[U/R] (Sch/T )fppf −→ (Sch/T )fppf
is surjective and smooth. We already know that the left hand side is representable by an
algebraic space F , see Lemmas 17.1 and 10.11. Hence we have to show the corresponding
morphism F → T of algebraic spaces is surjective and smooth. Since we are working
with properties of morphisms of algebraic spaces which are local on the target in the fppf
topology we may check this fppf locally on T . By construction, there exists an fppf cov-
ering {Ti → T} of T such that x|(Sch/Ti)fppf comes from a morphism xi : Ti → U .
(Note that F ×T Ti represents the 2-fibre product SU ×[U/R] (Sch/Ti)fppf so everything

3This terminology might be a bit confusing: it does not imply that [U/R] is smooth over anything.
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is compatible with the base change via Ti → T .) Hence we may assume that x comes from
x : T → U . In this case we see that
SU ×[U/R] (Sch/T )fppf = (SU ×[U/R] SU )×SU (Sch/T )fppf = SR ×SU (Sch/T )fppf
The first equality by Categories, Lemma 31.10 and the second equality by Groupoids in
Spaces, Lemma 22.2. Clearly the last 2-fibre product is represented by the algebraic space
F = R ×s,U,x T and the projection R ×s,U,x T → T is smooth as the base change of the
smooth morphism of algebraic spaces s : R → U . It is also surjective as s has a section
(namely the identity e : U → R of the groupoid). This proves the lemma. �

Here is the main result of this section.

Theorem 17.3. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a
smooth groupoid in algebraic spaces over S. Then the quotient stack [U/R] is an alge-
braic stack over S.

Proof. We check the three conditions of Definition 12.1. By construction we have
that [U/R] is a stack in groupoids which is the first condition.
The second condition follows from the stronger Lemma 17.1.
Finally, we have to show there exists a scheme W over S and a surjective smooth 1-
morphism (Sch/W )fppf −→ X . First choose W ∈ Ob((Sch/S)fppf ) and a surjective
étale morphism W → U . Note that this gives a surjective étale morphism SW → SU
of categories fibred in sets, see Lemma 10.3. Of course then SW → SU is also surjective
and smooth, see Lemma 10.9. Hence SW → SU → [U/R] is surjective and smooth by a
combination of Lemmas 17.2 and 10.5. �

18. Change of big site

In this section we briefly discuss what happens when we change big sites. The upshot is
that we can always enlarge the big site at will, hence we may assume any set of schemes
we want to consider is contained in the big fppf site over which we consider our algebraic
space. We encourage the reader to skip this section.
Pullbacks of stacks is defined in Stacks, Section 12.

Lemma 18.1. Suppose given big sites Schfppf and Sch′
fppf . Assume that Schfppf

is contained in Sch′
fppf , see Topologies, Section 12. Let S be an object of Schfppf . Let

f : (Sch′/S)fppf → (Sch/S)fppf the morphism of sites corresponding to the inclu-
sion functor u : (Sch/S)fppf → (Sch′/S)fppf . Let X be a stack in groupoids over
(Sch/S)fppf .

(1) if X is representable by some X ∈ Ob((Sch/S)fppf ), then f−1X is repre-
sentable too, in fact it is representable by the same scheme X , now viewed as
an object of (Sch′/S)fppf ,

(2) if X is representable by F ∈ Sh((Sch/S)fppf ) which is an algebraic space, then
f−1X is representable by the algebraic space f−1F ,

(3) if X is an algebraic stack, then f−1X is an algebraic stack, and
(4) if X is a Deligne-Mumford stack, then f−1X is a Deligne-Mumford stack too.

Proof. Let us prove (3). By Lemma 16.2 we may write X = [U/R] for some smooth
groupoid in algebraic spaces (U,R, s, t, c). By Groupoids in Spaces, Lemma 28.1 we see
that f−1[U/R] = [f−1U/f−1R]. Of course (f−1U, f−1R, f−1s, f−1t, f−1c) is a smooth
groupoid in algebraic spaces too. Hence (3) is proved.
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Now the other cases (1), (2), (4) each mean that X has a presentation [U/R] of a particular
kind, and hence translate into the same kind of presentation for f−1X = [f−1U/f−1R].
Whence the lemma is proved. �

It is not true (in general) that the restriction of an algebraic space over the bigger site is
an algebraic space over the smaller site (simply by reasons of cardinality). Hence we can
only ever use a simple lemma of this kind to enlarge the base category and never to shrink
it.

Lemma 18.2. Suppose Schfppf is contained in Sch′
fppf . LetS be an object of Schfppf .

Denote Algebraic-Stacks/S the 2-category of algebraic stacks overS defined using Schfppf .
Similarly, denote Algebraic-Stacks′/S the 2-category of algebraic stacks overS defined us-
ing Sch′

fppf . The rule X 7→ f−1X of Lemma 18.1 defines a functor of 2-categories

Algebraic-Stacks/S −→ Algebraic-Stacks′/S

which defines equivalences of morphism categories

MorAlgebraic-Stacks/S(X ,Y) −→ MorAlgebraic-Stacks′/S(f−1X , f−1Y)

for every objects X ,Y of Algebraic-Stacks/S. An object X ′ of Algebraic-Stacks′/S is
equivalence to f−1X for someX in Algebraic-Stacks/S if and only if it has a presentation
X = [U ′/R′] with U ′, R′ isomorphic to f−1U , f−1R for some U,R ∈ Spaces/S.

Proof. The statement on morphism categories is a consequence of the more general
Stacks, Lemma 12.12. The characterization of the “essential image” follows from the de-
scription of f−1 in the proof of Lemma 18.1. �

19. Change of base scheme

In this section we briefly discuss what happens when we change base schemes. The upshot
is that given a morphismS → S′ of base schemes, any algebraic stack overS can be viewed
as an algebraic stack over S′.

Lemma 19.1. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this site.
The constructions A and B of Stacks, Section 13 above give isomorphisms of 2-categories{

2-category of algebraic
stacks X over S

}
↔

 2-category of pairs (X ′, f) consisting of an
algebraic stack X ′ over S′ and a morphism

f : X ′ → (Sch/S)fppf of algebraic stacks over S′


Proof. The statement makes sense as the functor j : (Sch/S)fppf → (Sch/S′)fppf

is the localization functor associated to the objectS/S′ of (Sch/S′)fppf . By Stacks, Lemma
13.2 the only thing to show is that the constructions A and B preserve the subcategories
of algebraic stacks. For example, if X = [U/R] then construction A applied to X just
produces X ′ = X . Conversely, if X ′ = [U ′/R′] the morphism p induces morphisms of
algebraic spaces U ′ → S and R′ → S , and then X = [U ′/R′] but now viewed as a stack
over S. Hence the lemma is clear. �

Definition 19.2. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. If p : X → (Sch/S)fppf is an algebraic stack over S , then X viewed as an algebraic
stack over S′ is the algebraic stack

X −→ (Sch/S′)fppf
gotten by applying construction A of Lemma 19.1 to X .
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Conversely, what if we start with an algebraic stack X ′ over S′ and we want to get an
algebraic stack over S? Well, then we consider the 2-fibre product

X ′
S = (Sch/S)fppf ×(Sch/S′)fppf X

′

which is an algebraic stack over S′ according to Lemma 14.3. Moreover, it comes equipped
with a natural 1-morphism p : X ′

S → (Sch/S)fppf and hence by Lemma 19.1 it corre-
sponds in a canonical way to an algebraic stack over S.

Definition 19.3. Let Schfppf be a big fppf site. Let S → S′ be a morphism of this
site. Let X ′ be an algebraic stack over S′. The change of base of X ′ is the algebraic stack
X ′
S over S described above.
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CHAPTER 95

Examples of Stacks

1. Introduction

This is a discussion of examples of stacks in algebraic geometry. Some of them are algebraic
stacks, some are not. We will discuss which are algebraic stacks in a later chapter. This
means that in this chapter we mainly worry about the descent conditions. See [?] for
example.

Some of the notation, conventions and terminology in this chapter is awkward and may
seem backwards to the more experienced reader. This is intentional. Please see Quot,
Section 2 for an explanation.

2. Notation

In this chapter we fix a suitable big fppf site Schfppf as in Topologies, Definition 7.6. So,
if not explicitly stated otherwise all schemes will be objects of Schfppf . We will always
work relative to a base S contained in Schfppf . And we will then work with the big fppf
site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute case can be recovered by
taking S = Spec(Z).

3. Examples of stacks

We first give some important examples of stacks over (Sch/S)fppf .

4. Quasi-coherent sheaves

We define a categoryQCoh as follows:
(1) An object ofQCoh is a pair (X,F), whereX/S is an object of (Sch/S)fppf , and
F is a quasi-coherentOX -module, and

(2) a morphism (f, ϕ) : (Y,G) → (X,F) is a pair consisting of a morphism f :
Y → X of schemes over S and an f -map (see Sheaves, Section 26) ϕ : F → G.

(3) The composition of morphisms

(Z,H) (g,ψ)−−−→ (Y,G) (f,φ)−−−→ (X,F)
is (f ◦ g, ψ ◦ φ) where ψ ◦ φ is the composition of f -maps.

ThusQCoh is a category and

p : QCoh → (Sch/S)fppf , (X,F) 7→ X

is a functor. Note that the fibre category of QCoh over a scheme X is the opposite of the
category QCoh(OX) of quasi-coherent OX -modules. We remark for later use that given
(X,F), (Y,G) ∈ Ob(QCoh) we have

(4.0.1) MorQCoh((Y,G), (X,F)) =
∐

f∈MorS(Y,X)
MorQCoh(OY )(f∗F ,G)

6555
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See the discussion on f -maps of modules in Sheaves, Section 26.

The category QCoh is not a stack over (Sch/S)fppf because its collection of objects is a
proper class. On the other hand we will see that it does satisfy all the axioms of a stack.
We will get around the set theoretical issue in Section 5.

Lemma 4.1. A morphism (f, ϕ) : (Y,G) → (X,F) of QCoh is strongly cartesian if
and only if the map ϕ induces an isomorphism f∗F → G.

Proof. Let (X,F) ∈ Ob(QCoh). Let f : Y → X be a morphism of (Sch/S)fppf .
Note that there is a canonical f -map c : F → f∗F and hence we get a morphism (f, c) :
(Y, f∗F) → (X,F). We claim that (f, c) is strongly cartesian. Namely, for any object
(Z,H) ofQCoh we have

MorQCoh((Z,H), (Y, f∗F)) =
∐

g∈MorS(Z,Y )
MorQCoh(OZ)(g∗f∗F ,H)

=
∐

g∈MorS(Z,Y )
MorQCoh(OZ)((f ◦ g)∗F ,H)

= MorQCoh((Z,H), (X,F))×MorS(Z,X) MorS(Z, Y )

where we have used Equation (4.0.1) twice. This proves that the condition of Categories,
Definition 33.1 holds for (f, c), and hence our claim is true. Now by Categories, Lemma
33.2 we see that isomorphisms are strongly cartesian and compositions of strongly carte-
sian morphisms are strongly cartesian which proves the “if” part of the lemma. For the
converse, note that given (X,F) and f : Y → X , if there exists a strongly cartesian mor-
phism lifting f with target (X,F) then it has to be isomorphic to (f, c) (see discussion
following Categories, Definition 33.1). Hence the ”only if” part of the lemma holds. �

Lemma 4.2. The functor p : QCoh → (Sch/S)fppf satisfies conditions (1), (2) and
(3) of Stacks, Definition 4.1.

Proof. It is clear from Lemma 4.1 thatQCoh is a fibred category over (Sch/S)fppf .
Given covering U = {Xi → X}i∈I of (Sch/S)fppf the functor

QCoh(OX) −→ DD(U)

is fully faithful and essentially surjective, see Descent, Proposition 5.2. Hence Stacks,
Lemma 4.2 applies to show thatQCoh satisfies all the axioms of a stack. �

5. The stack of finitely generated quasi-coherent sheaves

It turns out that we can get a stack of quasi-coherent sheaves if we only consider finite
type quasi-coherent modules. Let us denote

pfg : QCohfg → (Sch/S)fppf
the full subcategory of QCoh over (Sch/S)fppf consisting of pairs (T,F) such that F is
a quasi-coherentOT -module of finite type.

Lemma 5.1. The functor pfg : QCohfg → (Sch/S)fppf satisfies conditions (1), (2)
and (3) of Stacks, Definition 4.1.

Proof. We will verify assumptions (1), (2), (3) of Stacks, Lemma 4.3 to prove this. By
Lemma 4.1 a morphism (Y,G)→ (X,F) is strongly cartesian if and only if it induces an
isomorphism f∗F → G. By Modules, Lemma 9.2 the pullback of a finite typeOX -module
is of finite type. Hence assumption (1) of Stacks, Lemma 4.3 holds. Assumption (2) holds
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trivially. Finally, to prove assumption (3) we have to show: If F is a quasi-coherent OX -
module and {fi : Xi → X} is an fppf covering such that each f∗

i F is of finite type, then
F is of finite type. Considering the restriction of F to an affine open of X this reduces
to the following algebra statement: Suppose thatR→ S is a finitely presented, faithfully
flat ring map and M an R-module. If M ⊗R S is a finitely generated S-module, then
M is a finitely generated R-module. A stronger form of the algebra fact can be found in
Algebra, Lemma 83.2. �

Lemma 5.2. Let (X,OX) be a ringed space.
(1) The category of finite typeOX -modules has a set of isomorphism classes.
(2) The category of finite type quasi-coherentOX -modules has a set of isomorphism

classes.

Proof. Part (2) follows from part (1) as the category in (2) is a full subcategory of the
category in (1). Consider any open covering U : X =

⋃
i∈I Ui. Denote ji : Ui → X the

inclusion maps. Consider any map r : I → N. If F is an OX -module whose restriction
to Ui is generated by at most r(i) sections from F(Ui), then F is a quotient of the sheaf

HU,r =
⊕

i∈I
ji,!O⊕r(i)

Ui

By definition, if F is of finite type, then there exists some open covering with U whose
index set is I = X such that this condition is true. Hence it suffices to show that there is a
set of possible choices forU (obvious), a set of possible choices for r : I → N (obvious), and
a set of possible quotient modules ofHU,r for each U and r. In other words, it suffices to
show that given anOX -moduleH there is at most a set of isomorphism classes of quotients.
This last assertion becomes obvious by thinking of the kernels of a quotient mapH → F
as being parametrized by a subset of the power set of

∏
U⊂X openH(U). �

Lemma 5.3. There exists a subcategoryQCohfg,small ⊂ QCohfg with the following
properties:

(1) the inclusion functor QCohfg,small → QCohfg is fully faithful and essentially
surjective, and

(2) the functor pfg,small : QCohfg,small → (Sch/S)fppf turns QCohfg,small into
a stack over (Sch/S)fppf .

Proof. We have seen in Lemmas 5.1 and 5.2 that pfg : QCohfg → (Sch/S)fppf
satisfies (1), (2) and (3) of Stacks, Definition 4.1 as well as the additional condition (4) of
Stacks, Remark 4.9. Hence we obtain QCohfg,small from the discussion in that remark.

�

We will often perform the replacement

QCohfg  QCohfg,small

without further remarking on it, and by abuse of notation we will simply denoteQCohfg
this replacement.

Remark 5.4. Note that the whole discussion in this section works if we want to
consider those quasi-coherent sheaves which are locally generated by at most κ sections,
for some infinite cardinal κ, e.g., κ = ℵ0.
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6. Finite étale covers

We define a category FÉt as follows:
(1) An object of FÉt is a finite étale morphism Y → X of schemes (by our conven-

tions this means a finite étale morphism in (Sch/S)fppf ),
(2) A morphism (b, a) : (Y → X)→ (Y ′ → X ′) of FÉt is a commutative diagram

Y

��

b
// Y ′

��
X

a
// X ′

in the category of schemes.
Thus FÉt is a category and

p : FÉt→ (Sch/S)fppf , (Y → X) 7→ X

is a functor. Note that the fibre category of FÉt over a schemeX is just the category FÉtX
studied in Fundamental Groups, Section 5.

Lemma 6.1. The functor

p : FÉt −→ (Sch/S)fppf
defines a stack over (Sch/S)fppf .

Proof. Fppf descent for finite étale morphisms follows from Descent, Lemmas 37.1,
23.23, and 23.29. Details omitted. �

7. Algebraic spaces

We define a category Spaces as follows:
(1) An object of Spaces is a morphism X → U of algebraic spaces over S , where U

is representable by an object of (Sch/S)fppf , and
(2) a morphism (f, g) : (X → U)→ (Y → V ) is a commutative diagram

X

��

f
// Y

��
U

g // V

of morphisms of algebraic spaces over S.
Thus Spaces is a category and

p : Spaces → (Sch/S)fppf , (X → U) 7→ U

is a functor. Note that the fibre category of Spaces over a scheme U is just the category
Spaces/U of algebraic spaces overU (see Topologies on Spaces, Section 2). Hence we some-
times think of an object of Spaces as a pairX/U consisting of a schemeU and an algebraic
space X over U . We remark for later use that given (X/U), (Y/V ) ∈ Ob(Spaces) we
have

(7.0.1) MorSpaces(X/U, Y/V ) =
∐

g∈MorS(U,V )
MorSpaces/U (X,U ×g,V Y )

The category Spaces is almost, but not quite a stack over (Sch/S)fppf . The problem is a
set theoretical issue as we will explain below.
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Lemma 7.1. A morphism (f, g) : X/U → Y/V of Spaces is strongly cartesian if and
only if the map f induces an isomorphism X → U ×g,V Y .

Proof. Let Y/V ∈ Ob(Spaces). Let g : U → V be a morphism of (Sch/S)fppf .
Note that the projection p : U×g,V Y → Y gives rise a morphism (p, g) : U×g,V Y/U →
Y/V of Spaces. We claim that (p, g) is strongly cartesian. Namely, for any object Z/W
of Spaces we have

MorSpaces(Z/W,U ×g,V Y/U) =
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×h,U U ×g,V Y )

=
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×g◦h,V Y )

= MorSpaces(Z/W, Y/V )×MorS(W,V ) MorS(W,U)

where we have used Equation (7.0.1) twice. This proves that the condition of Categories,
Definition 33.1 holds for (p, g), and hence our claim is true. Now by Categories, Lemma
33.2 we see that isomorphisms are strongly cartesian and compositions of strongly carte-
sian morphisms are strongly cartesian which proves the “if” part of the lemma. For the
converse, note that given Y/V and g : U → V , if there exists a strongly cartesian mor-
phism lifting g with target Y/V then it has to be isomorphic to (p, g) (see discussion
following Categories, Definition 33.1). Hence the ”only if” part of the lemma holds. �

Lemma 7.2. The functor p : Spaces → (Sch/S)fppf satisfies conditions (1) and (2)
of Stacks, Definition 4.1.

Proof. It is follows from Lemma 7.1 thatSpaces is a fibred category over (Sch/S)fppf
which proves (1). Suppose that {Ui → U}i∈I is a covering of (Sch/S)fppf . Suppose that
X,Y are algebraic spaces over U . Finally, suppose that ϕi : XUi → YUi are morphisms of
Spaces/Ui such that ϕi and ϕj restrict to the same morphisms XUi×UUj → YUi×UUj of
algebraic spaces over Ui ×U Uj . To prove (2) we have to show that there exists a unique
morphism ϕ : X → Y over U whose base change to Ui is equal to ϕi. As a morphism
fromX to Y is the same thing as a map of sheaves this follows directly from Sites, Lemma
26.1. �

Remark 7.3. Ignoring set theoretical difficulties1 Spaces also satisfies descent for ob-
jects and hence is a stack. Namely, we have to show that given

(1) an fppf covering {Ui → U}i∈I ,
(2) for each i ∈ I an algebraic space Xi/Ui, and
(3) for each i, j ∈ I an isomorphism ϕij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui ×U Uj satisfying the cocycle condition over Ui ×U Uj ×U Uk ,
there exists an algebraic space X/U and isomorphisms XUi

∼= Xi over Ui recovering
the isomorphisms ϕij . First, note that by Sites, Lemma 26.4 there exists a sheaf X on
(Sch/U)fppf recovering the Xi and the ϕij . Then by Bootstrap, Lemma 11.1 we see that
X is an algebraic space (if we ignore the set theoretic condition of that lemma). We will
use this argument in the next section to show that if we consider only algebraic spaces of
finite type, then we obtain a stack.

1The difficulty is not that Spaces is a proper class, since by our definition of an algebraic space over S there
is only a set worth of isomorphism classes of algebraic spaces over S. It is rather that arbitrary disjoint unions
of algebraic spaces may end up being too large, hence lie outside of our chosen “partial universe” of sets.
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8. The stack of finite type algebraic spaces

It turns out that we can get a stack of spaces if we only consider spaces of finite type. Let
us denote

pft : Spacesft → (Sch/S)fppf
the full subcategory of Spaces over (Sch/S)fppf consisting of pairsX/U such that X →
U is a morphism of finite type.

Lemma 8.1. The functor pft : Spacesft → (Sch/S)fppf satisfies the conditions (1),
(2) and (3) of Stacks, Definition 4.1.

Proof. We are going to write this out in ridiculous detail (which may make it hard
to see what is going on).

We have seen in Lemma 7.1 that a morphism (f, g) : X/U → Y/V of Spaces is strongly
cartesian if the induced morphism f : X → U ×V Y is an isomorphism. Note that if
Y → V is of finite type then also U ×V Y → U is of finite type, see Morphisms of Spaces,
Lemma 23.3. So if (f, g) : X/U → Y/V of Spaces is strongly cartesian in Spaces and
Y/V is an object of Spacesft then automatically alsoX/U is an object of Spacesft, and of
course (f, g) is also strongly cartesian in Spacesft. In this way we conclude that Spacesft
is a fibred category over (Sch/S)fppf . This proves (1).

The argument above also shows that the inclusion functor Spacesft → Spaces trans-
forms strongly cartesian morphisms into strongly cartesian morphisms. In other words
Spacesft → Spaces is a 1-morphism of fibred categories over (Sch/S)fppf .

Let U ∈ Ob((Sch/S)fppf ). Let X,Y be algebraic spaces of finite type over U . By Stacks,
Lemma 2.3 we obtain a map of presheaves

MorSpacesft(X,Y ) −→ MorSpaces(X,Y )

which is an isomorphism as Spacesft is a full subcategory of Spaces. Hence the left hand
side is a sheaf, because in Lemma 7.2 we showed the right hand side is a sheaf. This proves
(2).

To prove condition (3) of Stacks, Definition 4.1 we have to show the following: Given
(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,
(2) for each i ∈ I an algebraic space Xi of finite type over Ui, and
(3) for each i, j ∈ I an isomorphism ϕij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui ×U Uj satisfying the cocycle condition over Ui ×U Uj ×U Uk ,
there exists an algebraic space X of finite type over U and isomorphisms XUi

∼= Xi over
Ui recovering the isomorphisms ϕij . This follows from Bootstrap, Lemma 11.3 part (2).
By Descent on Spaces, Lemma 11.10 we see that X → U is of finite type which concludes
the proof. �

Lemma 8.2. There exists a subcategory Spacesft,small ⊂ Spacesft with the follow-
ing properties:

(1) the inclusion functor Spacesft,small → Spacesft is fully faithful and essentially
surjective, and

(2) the functor pft,small : Spacesft,small → (Sch/S)fppf turnsSpacesft,small into
a stack over (Sch/S)fppf .
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Proof. We have seen in Lemmas 8.1 that pft : Spacesft → (Sch/S)fppf satis-
fies (1), (2) and (3) of Stacks, Definition 4.1. The additional condition (4) of Stacks, Re-
mark 4.9 holds because every algebraic space X over S is of the form U/R for U,R ∈
Ob((Sch/S)fppf ), see Spaces, Lemma 9.1. Thus there is only a set worth of isomorphism
classes of objects. Hence we obtain Spacesft,small from the discussion in that remark. �

We will often perform the replacement

Spacesft  Spacesft,small
without further remarking on it, and by abuse of notation we will simply denote Spacesft
this replacement.

Remark 8.3. Note that the whole discussion in this section works if we want to con-
sider those algebraic spaces X/U which are locally of finite type such that the inverse
image in X of an affine open of U can be covered by countably many affines. If needed
we can also introduce the notion of a morphism of κ-type (meaning some bound on the
number of generators of ring extensions and some bound on the cardinality of the affines
over a given affine in the base) where κ is a cardinal, and then we can produce a stack

Spacesκ −→ (Sch/S)fppf
in exactly the same manner as above (provided we make sure that Sch is large enough
depending on κ).

9. Examples of stacks in groupoids

The examples above are examples of stacks which are not stacks in groupoids. In the rest
of this chapter we give algebraic geometric examples of stacks in groupoids.

10. The stack associated to a sheaf

Let F : (Sch/S)oppfppf → Sets be a presheaf. We obtain a category fibred in sets

pF : SF → (Sch/S)fppf ,

see Categories, Example 38.5. This is a stack in sets if and only if F is a sheaf, see Stacks,
Lemma 6.3.

11. The stack in groupoids of finitely generated quasi-coherent sheaves

Let p : QCohfg → (Sch/S)fppf be the stack introduced in Section 5 (using the abuse of
notation introduced there). We can turn this into a stack in groupoids p′ : QCoh′

fg →
(Sch/S)fppf by the procedure of Categories, Lemma 35.3, see Stacks, Lemma 5.3. In this
particular case this simply means QCoh′

fg has the same objects as QCohfg but the mor-
phisms are pairs (f, g) : (U,F)→ (U ′,F ′) where g is an isomorphism g : f∗F ′ → F .

12. The stack in groupoids of finite type algebraic spaces

Let p : Spacesft → (Sch/S)fppf be the stack introduced in Section 8 (using the abuse of
notation introduced there). We can turn this into a stack in groupoids p′ : Spaces′

ft →
(Sch/S)fppf by the procedure of Categories, Lemma 35.3, see Stacks, Lemma 5.3. In this
particular case this simply means Spaces′

ft has the same objects as Spacesft, i.e., finite type
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morphisms X → U where X is an algebraic space over S and U is a scheme over S. But
the morphisms (f, g) : X/U → Y/V are now commutative diagrams

X

��

f
// Y

��
U

g // V

which are cartesian.

13. Quotient stacks

Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. In this case the quotient stack

[U/R] −→ (Sch/S)fppf
is a stack in groupoids by construction, see Groupoids in Spaces, Definition 20.1. It is
even the case that the Isom-sheaves are representable by algebraic spaces, see Bootstrap,
Lemma 11.5. These quotient stacks are of fundamental importance to the theory of alge-
braic stacks.

A special case of the construction above is the quotient stack

[X/G] −→ (Sch/S)fppf
associated to a datum (B,G/B,m,X/B, a). Here

(1) B is an algebraic space over S ,
(2) (G,m) is a group algebraic space over B,
(3) X is an algebraic space over B, and
(4) a : G×B X → X is an action of G on X over B.

Namely, by Groupoids in Spaces, Definition 20.1 the stack in groupoids [X/G] is the quo-
tient stack [X/G×BX] given above. It behooves us to spell out what the category [X/G]
really looks like. We will do this in Section 15.

14. Classifying torsors

We want to carefuly explain a number of variants of what it could mean to study the stack
of torsors for a group algebraic space G or a sheaf of groups G.

14.1. Torsors for a sheaf of groups. Let G be a sheaf of groups on (Sch/S)fppf . For
U ∈ Ob((Sch/S)fppf ) we denote G|U the restriction of G to (Sch/U)fppf . We define a
category G-Torsors as follows:

(1) An object of G-Torsors is a pair (U,F) where U is an object of (Sch/S)fppf and
F is a G|U -torsor, see Cohomology on Sites, Definition 4.1.

(2) A morphism (U,F) → (V,H) is given by a pair (f, α), where f : U → V
is a morphism of schemes over S , and α : f−1H → F is an isomorphism of
G|U -torsors.

Thus G-Torsors is a category and

p : G-Torsors −→ (Sch/S)fppf , (U,F) 7−→ U

is a functor. Note that the fibre category ofG-Torsors overU is the category ofG|U -torsors
which is a groupoid.
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Lemma 14.2. Up to a replacement as in Stacks, Remark 4.9 the functor
p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for objects.
Let {Ui → U}i∈I be a covering of (Sch/S)fppf . Suppose that for each i we are given a
G|Ui -torsor Fi, and for each i, j ∈ I an isomorphism ϕij : Fi|Ui×UUj → Fj |Ui×UUj of
G|Ui×UUj -torsors satisfying a suitable cocycle condition on Ui ×U Uj ×U Uk. Then by
Sites, Section 26 we obtain a sheafF on (Sch/U)fppf whose restriction to eachUi recovers
Fi as well as recovering the descent data. By the equivalence of categories in Sites, Lemma
26.5 the action maps G|Ui × Fi → Fi glue to give a map a : G|U × F → F . Now we
have to show that a is an action and that F becomes a G|U -torsor. Both properties may
be checked locally, and hence follow from the corresponding properties of the actions
G|Ui × Fi → Fi. This proves that descent for objects holds in G-Torsors. Some details
omitted. �

14.3. Variant on torsors for a sheaf. The construction of Subsection 14.1 can be gen-
eralized slightly. Namely, let G → B be a map of sheaves on (Sch/S)fppf and let

m : G ×B G −→ G
be a group law on G/B. In other words, the pair (G,m) is a group object of the topos
Sh((Sch/S)fppf )/B. See Sites, Section 30 for information regarding localizations of topoi.
In this setting we can define a category G/B-Torsors as follows (where we use the Yoneda
embedding to think of schemes as sheaves):

(1) An object of G/B-Torsors is a triple (U, b,F) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a section of B over U , and
(c) F is a U ×b,B G-torsor over U .

(2) A morphism (U, b,F)→ (U ′, b′,F ′) is given by a pair (f, g), where f : U → U ′

is a morphism of schemes over S such that b = b′ ◦ f , and g : f−1F ′ → F is an
isomorphism of U ×b,B G-torsors.

Thus G/B-Torsors is a category and
p : G/B-Torsors −→ (Sch/S)fppf , (U, b,F) 7−→ U

is a functor. Note that the fibre category of G/B-Torsors over U is the disjoint union over
b : U → B of the categories of U ×b,B G-torsors, hence is a groupoid.
In the special caseB = S we recover the category G-Torsors introduced in Subsection 14.1.

Lemma 14.4. Up to a replacement as in Stacks, Remark 4.9 the functor
p : G/B-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. This proof is a repeat of the proof of Lemma 14.2. The reader is encouraged
to read that proof first since the notation is less cumbersome. The most difficult part of
the proof is to show that we have descent for objects. Let {Ui → U}i∈I be a covering of
(Sch/S)fppf . Suppose that for each iwe are given a pair (bi,Fi) consisting of a morphism
bi : Ui → B and a Ui ×bi,B G-torsor Fi, and for each i, j ∈ I we have bi|Ui×UUj =
bj |Ui×UUj and we are given an isomorphism ϕij : Fi|Ui×UUj → Fj |Ui×UUj of (Ui ×U
Uj)×BG-torsors satisfying a suitable cocycle condition onUi×UUj×UUk. Then by Sites,



6564 95. EXAMPLES OF STACKS

Section 26 we obtain a sheaf F on (Sch/U)fppf whose restriction to each Ui recovers Fi
as well as recovering the descent data. By the sheaf axiom for B the morphisms bi come
from a unique morphism b : U → B. By the equivalence of categories in Sites, Lemma
26.5 the action maps (Ui×bi,B G)×Ui Fi → Fi glue to give a map (U ×b,B G)×F → F .
Now we have to show that this is an action and that F becomes a U ×b,B G-torsor. Both
properties may be checked locally, and hence follow from the corresponding properties
of the actions on the Fi. This proves that descent for objects holds in G/B-Torsors. Some
details omitted. �

14.5. Principal homogeneous spaces. Let B be an algebraic space over S. Let G be a
group algebraic space over B. We define a category G-Principal as follows:

(1) An object of G-Principal is a triple (U, b,X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S , and
(c) X is a principal homogeneous GU -space over U where GU = U ×b,B G.

See Groupoids in Spaces, Definition 9.3.
(2) A morphism (U, b,X)→ (U ′, b′, X ′) is given by a pair (f, g), where f : U → U ′

is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an isomorphism
of principal homogeneous GU -spaces.

Thus G-Principal is a category and

p : G-Principal −→ (Sch/S)fppf , (U, b,X) 7−→ U

is a functor. Note that the fibre category of G-Principal over U is the disjoint union over
b : U → B of the categories of principal homogeneous U ×b,B G-spaces, hence is a
groupoid.

In the special case S = B the objects are simply pairs (U,X) where U is a scheme over
S , and X is a principal homogeneous GU -space over U . Moreover, morphisms are simply
cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Remark 14.6. We conjecture that up to a replacement as in Stacks, Remark 4.9 the
functor

p : G-Principal −→ (Sch/S)fppf
defines a stack in groupoids over (Sch/S)fppf . This would follow if one could show that
given

(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,
(2) an group algebraic space H over U ,
(3) for every i a principal homogeneous HUi -space Xi over Ui, and
(4) H-equivariant isomorphisms ϕij : Xi,Ui×UUj → Xj,Ui×UUj satisfying the co-

cycle condition,
there exists a principal homogeneous H-space X over U which recovers (Xi, ϕij). The
technique of the proof of Bootstrap, Lemma 11.8 reduces this to a set theoretical question,
so the reader who ignores set theoretical questions will “know” that the result is true. In
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https://math.columbia.edu/~dejong/wordpress/?p=591 there is a suggestion as
to how to approach this problem.

14.7. Variant on principal homogeneous spaces. Let S be a scheme. Let B = S.
Let G be a group scheme over B = S. In this setting we can define a full subcategory
G-Principal-Schemes ⊂ G-Principal whose objects are pairs (U,X) where U is an object
of (Sch/S)fppf and X → U is a principal homogeneous G-space over U which is repre-
sentable, i.e., a scheme.
It is in general not the case thatG-Principal-Schemes is a stack in groupoids over (Sch/S)fppf .
The reason is that in general there really do exist principal homogeneous spaces which are
not schemes, hence descent for objects will not be satisfied in general.

14.8. Torsors in fppf topology. Let B be an algebraic space over S. Let G be a group
algebraic space over B. We define a category G-Torsors as follows:

(1) An object of G-Torsors is a triple (U, b,X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism, and
(c) X is an fppf GU -torsor over U where GU = U ×b,B G.

See Groupoids in Spaces, Definition 9.3.
(2) A morphism (U, b,X)→ (U ′, b′, X ′) is given by a pair (f, g), where f : U → U ′

is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an isomorphism
of GU -torsors.

Thus G-Torsors is a category and
p : G-Torsors −→ (Sch/S)fppf , (U, a,X) 7−→ U

is a functor. Note that the fibre category of G-Torsors over U is the disjoint union over
b : U → B of the categories of fppf U ×b,B G-torsors, hence is a groupoid.
In the special case S = B the objects are simply pairs (U,X) where U is a scheme over S ,
and X is an fppf GU -torsor over U . Moreover, morphisms are simply cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Lemma 14.9. Up to a replacement as in Stacks, Remark 4.9 the functor
p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for ob-
jects, which is Bootstrap, Lemma 11.8. We omit the proof of axioms (1) and (2) of Stacks,
Definition 5.1. �

Lemma 14.10. Let B be an algebraic space over S. Let G be a group algebraic space
over B. Denote G , resp. B the algebraic space G, resp. B seen as a sheaf on (Sch/S)fppf .
The functor

G-Torsors −→ G/B-Torsors
which associates to a triple (U, b,X) the triple (U, b,X ) where X is X viewed as a sheaf
is an equivalence of stacks in groupoids over (Sch/S)fppf .

https://math.columbia.edu/~dejong/wordpress/?p=591
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Proof. We will use the result of Stacks, Lemma 4.8 to prove this. The functor is fully
faithful since the category of algebraic spaces over S is a full subcategory of the category
of sheaves on (Sch/S)fppf . Moreover, all objects (on both sides) are locally trivial torsors
so condition (2) of the lemma referenced above holds. Hence the functor is an equivalence.

�

14.11. Variant on torsors in fppf topology. Let S be a scheme. Let B = S. Let
G be a group scheme over B = S. In this setting we can define a full subcategory
G-Torsors-Schemes ⊂ G-Torsors whose objects are pairs (U,X) where U is an object of
(Sch/S)fppf andX → U is an fppfG-torsor overU which is representable, i.e., a scheme.

It is in general not the case thatG-Torsors-Schemes is a stack in groupoids over (Sch/S)fppf .
The reason is that in general there really do exist fppf G-torsors which are not schemes,
hence descent for objects will not be satisfied in general.

15. Quotients by group actions

At this point we have introduced enough notation that we can work out in more detail
what the stacks [X/G] of Section 13 look like.

Situation 15.1. Here

(1) S is a scheme contained in Schfppf ,
(2) B is an algebraic space over S ,
(3) (G,m) is a group algebraic space over B,
(4) π : X → B is an algebraic space over B, and
(5) a : G×B X → X is an action of G on X over B.

In this situation we construct a category [[X/G]]2 as follows:

(1) An object of [[X/G]] consists of a quadruple (U, b, P, ϕ : P → X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S ,
(c) P is an fppf GU -torsor over U where GU = U ×b,B G, and
(d) ϕ : P → X is a G-equivariant morphism fitting into the commutative

diagram

P

��

ϕ
// X

��
U

b // B

(2) A morphism of [[X/G]] is a pair (f, g) : (U, b, P, ϕ) → (U ′, b′, P ′, ϕ′) where
f : U → U ′ is a morphism of schemes overB and g : P → P ′ is aG-equivariant
morphism over f which induces an isomorphism P ∼= U ×f,U ′ P ′, and has
the property that ϕ = ϕ′ ◦ g. In other words (f, g) fits into the following

2The notation [[X/G]] with double brackets serves to distinguish this category from the stack [X/G]
introduced earlier. In Proposition 15.3 we show that the two are canonically equivalent. Afterwards we will use
the notation [X/G] to indicate either.
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commutative diagram

P

�� ϕ

**

g // P ′

��

ϕ′

&&
U

b
**

f // U ′

b′

&&

X

��
B

Thus [[X/G]] is a category and

p : [[X/G]] −→ (Sch/S)fppf , (U, b, P, ϕ) 7−→ U

is a functor. Note that the fibre category of [[X/G]] over U is the disjoint union over
b ∈ MorS(U,B) of fppf U ×b,B G-torsors P endowed with aG-equivariant morphism to
X . Hence the fibre categories of [[X/G]] are groupoids.

Note that the functor

[[X/G]] −→ G-Torsors, (U, b, P, ϕ) 7−→ (U, b, P )
is a 1-morphism of categories over (Sch/S)fppf .

Lemma 15.2. Up to a replacement as in Stacks, Remark 4.9 the functor

p : [[X/G]] −→ (Sch/S)fppf
defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for objects.
Suppose that {Ui → U}i∈I is a covering in (Sch/S)fppf . Let ξi = (Ui, bi, Pi, ϕi) be
objects of [[X/G]] over Ui, and let ϕij : pr∗

0ξi → pr∗
1ξj be a descent datum. This in

particular implies that we get a descent datum on the triples (Ui, bi, Pi) for the stack in
groupoidsG-Torsors by applying the functor [[X/G]]→ G-Torsors above. We have seen
thatG-Torsors is a stack in groupoids (Lemma 14.9). Hence we may assume that bi = b|Ui
for some morphism b : U → B, and that Pi = Ui ×U P for some fppf GU = U ×b,B G-
torsor P over U . The morphisms ϕi are compatible with the canonical descent datum on
the restrictions Ui×U P and hence define a morphism ϕ : P → X . (For example you can
use Sites, Lemma 26.5 or you can use Descent on Spaces, Lemma 7.2 to get ϕ.) This proves
descent for objects. We omit the proof of axioms (1) and (2) of Stacks, Definition 5.1. �

Proposition 15.3. In Situation 15.1 there exists a canonical equivalence

[X/G] −→ [[X/G]]
of stacks in groupoids over (Sch/S)fppf .

Proof. We write this out in detail, to make sure that all the definitions work out
in exactly the correct manner. Recall that [X/G] is the quotient stack associated to the
groupoid in algebraic spaces (X,G×BX, s, t, c), see Groupoids in Spaces, Definition 20.1.
This means that [X/G] is the stackification of the category fibred in groupoids [X/pG]
associated to the functor

(Sch/S)fppf −→ Groupoids, U 7−→ (X(U), G(U)×B(U) X(U), s, t, c)
where s(g, x) = x, t(g, x) = a(g, x), and c((g, x), (g′, x′)) = (m(g, g′), x′). By the
construction of Categories, Example 37.1 an object of [X/pG] is a pair (U, x) with x ∈
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X(U) and a morphism (f, g) : (U, x) → (U ′, x′) of [X/pG] is given by a morphism of
schemes f : U → U ′ and an element g ∈ G(U) such that a(g, x) = x′ ◦ f . Hence we can
define a 1-morphism of stacks in groupoids

Fp : [X/pG] −→ [[X/G]]
by the following rules: On objects we set

Fp(U, x) = (U, π ◦ x,G×B,π◦x U, a ◦ (idG × x))
This makes sense because the diagram

G×B,π◦x U

��

idG×x
// G×B,π X a

// X

π

��
U

π◦x // B

commutes, and the two horizontal arrows areG-equivariant if we think of the fibre prod-
ucts as trivial G-torsors over U , resp. X . On morphisms (f, g) : (U, x)→ (U ′, x′) we set
Fp(f, g) = (f,Rg−1) whereRg−1 denotes right translation by the inverse of g. More pre-
cisely, the morphism Fp(f, g) : Fp(U, x)→ Fp(U ′, x′) is given by the cartesian diagram

G×B,π◦x U

��

Rg−1

// G×B,π◦x′ U ′

��
U

f // U ′

where Rg−1 on T -valued points is given by
Rg−1(g′, u) = (m(g′, i(g(u))), f(u))

To see that this works we have to verify that
a ◦ (idG × x) = a ◦ (idG × x′) ◦Rg−1

which is true because the right hand side applied to the T -valued point (g′, u) gives the
desired equality

a((idG × x′)(m(g′, i(g(u))), f(u))) = a(m(g′, i(g(u))), x′(f(u)))
= a(g′, a(i(g(u)), x′(f(u))))
= a(g′, x(u))

because a(g, x) = x′ ◦ f and hence a(i(g), x′ ◦ f) = x.
By the universal property of stackification from Stacks, Lemma 9.2 we obtain a canonical
extension F : [X/G] → [[X/G]] of the 1-morphism Fp above. We first prove that F is
fully faithful. To do this, since both source and target are stacks in groupoids, it suffices
to prove that the Isom-sheaves are identified under F . Pick a scheme U and objects ξ, ξ′

of [X/G] over U . We want to show that
F : Isom[X/G](ξ, ξ′) −→ Isom[[X/G]](F (ξ), F (ξ′))

is an isomorphism of sheaves. To do this it suffices to work locally on U , and hence we
may assume that ξ, ξ′ come from objects (U, x), (U, x′) of [X/pG] over U ; this follows
directly from the construction of the stackification, and it is also worked out in detail in
Groupoids in Spaces, Section 24. Either by directly using the description of morphisms in
[X/pG] above, or using Groupoids in Spaces, Lemma 22.1 we see that in this case

Isom[X/G](ξ, ξ′) = U ×(x,x′),X×SX,(s,t) (G×B X)
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A T -valued point of this fibre product corresponds to a pair (u, g) with u ∈ U(T ), and
g ∈ G(T ) such that a(g, x◦u) = x′ ◦u. (Note that this implies π ◦x◦u = π ◦x′ ◦u.) On
the other hand, a T -valued point of Isom[[X/G]](F (ξ), F (ξ′)) by definition corresponds
to a morphism u : T → U such that π ◦ x ◦ u = π ◦ x′ ◦ u : T → B and an isomorphism

R : G×B,π◦x◦u T −→ G×B,π◦x′◦u T

of trivial GT -torsors compatible with the given maps to X . Since the torsors are trivial
we see that R = Rg−1 (right multiplication) by some g ∈ G(T ). Compatibility with the
maps a ◦ (1G, x ◦ u), a ◦ (1G, x′ ◦ u) : G×B T → X is equivalent to the condition that
a(g, x ◦ u) = x′ ◦ u. Hence we obtain the desired equality of Isom-sheaves.

Now that we know that F is fully faithful we see that Stacks, Lemma 4.8 applies. Thus to
show that F is an equivalence it suffices to show that objects of [[X/G]] are fppf locally in
the essential image of F . This is clear as fppf torsors are fppf locally trivial, and hence we
win. �

Lemma 15.4. Let S be a scheme. LetB be an algebraic space over S. LetG be a group
algebraic space over B. Then the stacks in groupoids

[B/G], [[B/G]], G-Torsors, G/B-Torsors

are all canonically equivalent. If G → B is flat and locally of finite presentation, then
these are also equivalent to G-Principal.

Proof. The equivalence G-Torsors → G/B-Torsors is given in Lemma 14.10. The
equivalence [B/G] → [[B/G]] is given in Proposition 15.3. Unwinding the definition of
[[B/G]] given in Section 15 we see that [[B//G]] = G-Torsors.

Finally, assume G→ B is flat and locally of finite presentation. To show that the natural
functor G-Torsors → G-Principal is an equivalence it suffices to show that for a scheme
U over B a principal homogeneous GU -space X → U is fppf locally trivial. By our
definition of principal homogeneous spaces (Groupoids in Spaces, Definition 9.3) there
exists an fpqc covering {Ui → U} such that Ui ×U X ∼= G ×B Ui as algebraic spaces
over Ui. This implies that X → U is surjective, flat, and locally of finite presentation,
see Descent on Spaces, Lemmas 11.6, 11.13, and 11.10. Choose a scheme W and a surjective
étale morphism W → X . Then it follows from what we just said that {W → U} is an
fppf covering such that XW →W has a section. Hence X is an fppf GU -torsor. �

Remark 15.5. Let S be a scheme. Let G be an abstract group. Let X be an algebraic
space over S. LetG→ AutS(X) be a group homomorphism. In this setting we can define
[[X/G]] similarly to the above as follows:

(1) An object of [[X/G]] consists of a triple (U,P, ϕ : P → X) where
(a) U is an object of (Sch/S)fppf ,
(b) P is a sheaf on (Sch/U)fppf which comes with an action ofG that turns it

into a torsor under the constant sheaf with value G, and
(c) ϕ : P → X is a G-equivariant map of sheaves.

(2) A morphism (f, g) : (U,P, ϕ)→ (U ′, P ′, ϕ′) is given by a morphism of schemes
f : T → T ′ and a G-equivariant isomorphism g : P → f−1P ′ such that
ϕ = ϕ′ ◦ g.

In exactly the same manner as above we obtain a functor

[[X/G]] −→ (Sch/S)fppf
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which turns [[X/G]] into a stack in groupoids over (Sch/S)fppf . The constant sheafG is
(provided the cardinality of G is not too large) representable by GS on (Sch/S)fppf and
this version of [[X/G]] is equivalent to the stack [[X/GS ]] introduced above.

16. The Picard stack

In this section we introduce the Picard stack in complete generality. In the chapter on
Quot and Hilb we will show that it is an algebraic stack under suitable hypotheses, see
Quot, Section 10.
Let S be a scheme. Let π : X → B be a morphism of algebraic spaces over S. We define a
category PicX/B as follows:

(1) An object is a triple (U, b,L), where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S , and
(c) L is in invertible sheaf on the base change XU = U ×b,B X .

(2) A morphism (f, g) : (U, b,L)→ (U ′, b′,L′) is given by a morphism of schemes
f : U → U ′ over B and an isomorphism g : f∗L′ → L.

The composition of (f, g) : (U, b,L)→ (U ′, b′,L′) with (f ′, g′) : (U ′, b′,L′)→ (U ′′, b′′,L′′)
is given by (f ◦ f ′, g ◦ f∗(g′)). Thus we get a category PicX/B and

p : PicX/B −→ (Sch/S)fppf , (U, b,L) 7−→ U

is a functor. Note that the fibre category of PicX/B over U is the disjoint union over
b ∈ MorS(U,B) of the categories of invertible sheaves on XU = U ×b,B X . Hence the
fibre categories are groupoids.

Lemma 16.1. Up to a replacement as in Stacks, Remark 4.9 the functor
PicX/B −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. As usual, the hardest part is to show descent for objects. To see this let {Ui →
U} be a covering of (Sch/S)fppf . Let ξi = (Ui, bi,Li) be an object of PicX/B lying over
Ui, and let ϕij : pr∗

0ξi → pr∗
1ξj be a descent datum. This implies in particular that the

morphisms bi are the restrictions of a morphism b : U → B. Write XU = U ×b,B X and
Xi = Ui ×bi,B X = Ui ×U U ×b,B X = Ui ×U XU . Observe that Li is an invertible
OXi -module. Note that {Xi → XU} forms an fppf covering as well. Moreover, the
descent datum ϕij translates into a descent datum on the invertible sheaves Li relative to
the fppf covering {Xi → XU}. Hence by Descent on Spaces, Proposition 4.1 we obtain
a unique invertible sheaf L on XU which recovers Li and the descent data over Xi. The
triple (U, b,L) is therefore the object of PicX/B over U we were looking for. Details
omitted. �

17. Examples of inertia stacks

Here are some examples of inertia stacks.

Example 17.1. Let S be a scheme. Let G be a commutative group. Let X → S be
a scheme over S. Let a : G × X → X be an action of G on X . For g ∈ G we denote
g : X → X the corresponding automorphism. In this case the inertia stack of [X/G] (see
Remark 15.5) is given by

I[X/G] =
∐

g∈G
[Xg/G],



18. FINITE HILBERT STACKS 6571

where, given an element g of G, the symbol Xg denotes the scheme Xg = {x ∈ X |
g(x) = x}. In a formula Xg is really the fibre product

Xg = X ×(1,1),X×SX,(g,1) X.

Indeed, for any S-scheme T , a T -point on the inertia stack of [X/G] consists of a triple
(P/T, φ, α) consisting of an fppf G-torsor P → T together with a G-equivariant mor-
phism φ : P → X , together with an automorphism α of P → T over T such that
φ ◦ α = φ. Since G is a sheaf of commutative groups, α is, locally in the fppf topology
over T , given by multiplication by some element g of G. The condition that φ ◦ α = φ
means that φ factors through the inclusion of Xg in X , i.e., φ is obtained by composing
that inclusion with a morphism P → Xγ . The above discussion allows us to define a mor-
phism of fibred categories I[X/G] →

∐
g∈G[Xg/G] given on T -points by the discussion

above. We omit showing that this is an equivalence.

Example 17.2. Let f : X → S be a morphism of schemes. Assume that for any
T → S the base change fT : XT → T has the property that the map OT → fT,∗OXT
is an isomorphism. (This implies that f is cohomologically flat in dimension 0 (insert
future reference here) but is stronger.) Consider the Picard stack PicX/S , see Section 16.
The points of its inertia stack over an S-scheme T consist of pairs (L, α) where L is a line
bundle on XT and α is an automorphism of that line bundle. I.e., we can think of α as
an element of H0(XT ,OXT )× = H0(T,O∗

T ) by our condition. Note that H0(T,O∗
T ) =

Gm,S(T ), see Groupoids, Example 5.1. Hence the inertia stack of PicX/S is

IPicX/S = Gm,S ×S PicX/S .

as a stack over (Sch/S)fppf .

18. Finite Hilbert stacks

We formulate this in somewhat greater generality than is perhaps strictly needed. Fix a
1-morphism

F : X −→ Y
of stacks in groupoids over (Sch/S)fppf . For each integer d ≥ 1 consider a category
Hd(X/Y) defined as follows:

(1) An object (U,Z, y, x, α) where U,Z are objects of in (Sch/S)fppf and Z is a
finite locally free of degree d over U , where y ∈ Ob(YU ), x ∈ Ob(XZ) and
α : y|Z → F (x) is an isomorphism3.

3This means the data gives rise, via the 2-Yoneda lemma (Categories, Lemma 41.2), to a 2-commutative
diagram

(Sch/Z)fppf x
//

��

X

F

��
(Sch/U)fppf

y // Y

of stacks in groupoids over (Sch/S)fppf . Alternatively, we may picture α as a 2-morphism

(Sch/Z)fppf

y◦(Z→U)
**

F◦x

44�� α Y.
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(2) A morphism (U,Z, y, x, α) → (U ′, Z ′, y′, x′, α′) is given by a morphism of
schemes f : U → U ′, a morphism of schemes g : Z → Z ′ which induces an
isomorphism Z → Z ′ ×U U ′, and isomorphisms b : y → f∗y′, a : x → g∗x′

inducing a commutative diagram

y|Z α
//

b|Z
��

F (x)

F (a)
��

f∗y′|Z
α′

// F (g∗x′)

It is clear from the definitions that there is a canonical forgetful functor

p : Hd(X/Y) −→ (Sch/S)fppf
which assigns to the quintuple (U,Z, y, x, α) the schemeU and to the morphism (f, g, b, a) :
(U,Z, y, x, α)→ (U ′, Z ′, y′, x′, α′) the morphism f : U → U ′.

Lemma 18.1. The category Hd(X/Y) endowed with the functor p above defines a
stack in groupoids over (Sch/S)fppf .

Proof. As usual, the hardest part is to show descent for objects. To see this let {Ui →
U} be a covering of (Sch/S)fppf . Let ξi = (Ui, Zi, yi, xi, αi) be an object of Hd(X/Y)
lying over Ui, and let ϕij : pr∗

0ξi → pr∗
1ξj be a descent datum. First, observe that ϕij

induces a descent datum (Zi/Ui, ϕij) which is effective by Descent, Lemma 37.1 This pro-
duces a scheme Z/U which is finite locally free of degree d by Descent, Lemma 23.30.
From now on we identifyZi withZ×U Ui. Next, the objects yi in the fibre categoriesYUi
descend to an object y in YU because Y is a stack in groupoids. Similarly the objects xi in
the fibre categories XZi descend to an object x in XZ because X is a stack in groupoids.
Finally, the given isomorphisms

αi : (y|Z)Zi = yi|Zi −→ F (xi) = F (x|Zi)

glue to a morphism α : y|Z → F (x) as the Y is a stack and hence IsomY(y|Z , F (x)) is a
sheaf. Details omitted. �

Definition 18.2. We will denote Hd(X/Y) the degree d finite Hilbert stack of X
over Y constructed above. If Y = S we write Hd(X ) = Hd(X/Y). If X = Y = S we
denote itHd.

Note that givenF : X → Y as above we have the following natural 1-morphisms of stacks
in groupoids over (Sch/S)fppf :

(18.2.1)

Hd(X )

%%

Hd(X/Y)

��

oo // Y

Hd

Each of the arrows is given by a ”forgetful functor”.

Lemma 18.3. The 1-morphismHd(X/Y)→ Hd(X ) is faithful.

Proof. To check that Hd(X/Y) → Hd(X ) is faithful it suffices to prove that it is
faithful on fibre categories. Suppose that ξ = (U,Z, y, x, α) and ξ′ = (U,Z ′, y′, x′, α′)
are two objects of Hd(X/Y) over the scheme U . Let (g, b, a), (g′, b′, a′) : ξ → ξ′ be two
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morphisms in the fibre category of Hd(X/Y) over U . The image of these morphisms in
Hd(X ) agree if and only if g = g′ and a = a′. Then the commutative diagram

y|Z α
//

b|Z , b′|Z
��

F (x)

F (a)=F (a′)
��

y′|Z
α′

// F (g∗x′) = F ((g′)∗x′)

implies that b|Z = b′|Z . Since Z → U is finite locally free of degree d we see {Z → U} is
an fppf covering, hence b = b′. �
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CHAPTER 96

Sheaves on Algebraic Stacks

1. Introduction

There is a myriad of ways to think about sheaves on algebraic stacks. In this chapter we
discuss one approach, which is particularly well adapted to our foundations for algebraic
stacks. Whenever we introduce a type of sheaves we will indicate the precise relationship
with similar notions in the literature. The goal of this chapter is to state those results that
are either obviously true or straightforward to prove and leave more intricate construc-
tions till later.
In fact, it turns out that to develop a fully fledged theory of constructible étale sheaves
and/or an adequate discussion of derived categories of complexes O-modules whose co-
homology sheaves are quasi-coherent takes a significant amount of work, see [?]. We will
return to this in Cohomology of Stacks, Section 1.
In the literature and in research papers on sheaves on algebraic stacks the lisse-étale site of
an algebraic stack often plays a prominent role. However, it is a problematic beast, because
it turns out that a morphism of algebraic stacks does not induce a morphism of lisse-étale
topoi. We have therefore made the design decision to avoid any mention of the lisse-étale
site as long as possible. Arguments that traditionally use the lisse-étale site will be replaced
by an argument using a Čech covering in the site Xsmooth defined below.
Some of the notation, conventions and terminology in this chapter is awkward and may
seem backwards to the more experienced reader. This is intentional. Please see Quot,
Section 2 for an explanation.

2. Conventions

The conventions we use in this chapter are the same as those in the chapter on algebraic
stacks, see Algebraic Stacks, Section 2. For convenience we repeat them here.
We work in a suitable big fppf site Schfppf as in Topologies, Definition 7.6. So, if not
explicitly stated otherwise all schemes will be objects of Schfppf . We record what changes
if you change the big fppf site elsewhere (insert future reference here).
We will always work relative to a base S contained in Schfppf . And we will then work
with the big fppf site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute case can
be recovered by taking S = Spec(Z).

3. Presheaves

In this section we define presheaves on categories fibred in groupoids over (Sch/S)fppf ,
but most of the discussion works for categories over any base category. This section also
serves to introduce the notation we will use later on.

Definition 3.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids.

6575
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(1) A presheaf on X is a presheaf on the underlying category of X .
(2) A morphism of presheaves on X is a morphism of presheaves on the underlying

category of X .
We denote PSh(X ) the category of presheaves on X .

This defines presheaves of sets. Of course we can also talk about presheaves of pointed sets,
abelian groups, groups, monoids, rings, modules over a fixed ring, and lie algebras over a
fixed field, etc. The category of abelian presheaves, i.e., presheaves of abelian groups, is
denoted PAb(X ).

Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Recall that this means just that f is a functor over (Sch/S)fppf . The material in Sites,
Section 19 provides us with a pair of adjoint functors1

(3.1.1) fp : PSh(Y) −→ PSh(X ) and pf : PSh(X ) −→ PSh(Y).

The adjointness is
MorPSh(X )(fpG,F) = MorPSh(Y)(G, pfF)

whereF ∈ Ob(PSh(X )) and G ∈ Ob(PSh(Y)). We call fpG the pullback of G. It follows
from the definitions that

fpG(x) = G(f(x))
for any x ∈ Ob(X ). The presheaf pfF is called the pushforward of F . It is described by
the formula

(pfF)(y) = limf(x)→y F(x).
The rest of this section should probably be moved to the chapter on sites and in any case
should be skipped on a first reading.

Lemma 3.2. Let f : X → Y and g : Y → Z be 1-morphisms of categories fibred in
groupoids over (Sch/S)fppf . Then (g◦f)p = fp◦gp and there is a canonical isomorphism
p(g◦f)→ pg◦pf compatible with adjointness of (fp, pf), (gp, pg), and ((g◦f)p, p(g◦f)).

Proof. Let H be a presheaf on Z . Then (g ◦ f)pH = fp(gpH) is given by the
equalities

(g ◦ f)pH(x) = H((g ◦ f)(x)) = H(g(f(x))) = fp(gpH)(x).

We omit the verification that this is compatible with restriction maps.

Next, we define the transformation p(g ◦ f) → pg ◦ pf . Let F be a presheaf on X . If z
is an object of Z then we get a category J of quadruples (x, f(x)→ y, y, g(y)→ z) and
a category I of pairs (x, g(f(x)) → z). There is a canonical functor J → I sending the
object (x, α : f(x)→ y, y, β : g(y)→ z) to (x, β ◦ f(α) : g(f(x))→ z). This gives the
arrow in

(p(g ◦ f)F)(z) = limg(f(x))→z F(x)
= limI F
→ limJ F

= limg(y)→z

(
limf(x)→y F(x)

)
= (pg ◦ pfF)(x)

1These functors will be denoted f−1 and f∗ after Lemma 4.4 has been proved.



3. PRESHEAVES 6577

by Categories, Lemma 14.9. We omit the verification that this is compatible with restric-
tion maps. An alternative to this direct construction is to define p(g ◦ f) ∼= pg ◦ pf as the
unique map compatible with the adjointness properties. This also has the advantage that
one does not need to prove the compatibility.

Compatibility with adjointness of (fp, pf), (gp, pg), and ((g ◦ f)p, p(g ◦ f)) means that
given presheavesH and F as above we have a commutative diagram

MorPSh(X )(fpgpH,F) MorPSh(Y)(gpH, pfF) MorPSh(Y)(H, pgpfF)

MorPSh(X )((g ◦ f)pG,F) MorPSh(Y)(G, p(g ◦ f)F)

OO

Proof omitted. �

Lemma 3.3. Let f, g : X → Y be 1-morphisms of categories fibred in groupoids
over (Sch/S)fppf . Let t : f → g be a 2-morphism of categories fibred in groupoids over
(Sch/S)fppf . Assigned to t there are canonical isomorphisms of functors

tp : gp −→ fp and pt : pf −→ pg

which compatible with adjointness of (fp, pf) and (gp, pg) and with vertical and horizon-
tal composition of 2-morphisms.

Proof. Let G be a presheaf on Y . Then tp : gpG → fpG is given by the family of
maps

gpG(x) = G(g(x)) G(tx)−−−→ G(f(x)) = fpG(x)
parametrized by x ∈ Ob(X ). This makes sense as tx : f(x)→ g(x) and G is a contravari-
ant functor. We omit the verification that this is compatible with restriction mappings.

To define the transformation pt for y ∈ Ob(Y) define fyI , resp. gyI to be the category of
pairs (x, ψ : f(x)→ y), resp. (x, ψ : g(x)→ y), see Sites, Section 19. Note that t defines
a functor yt : gyI → f

yI given by the rule

(x, g(x)→ y) 7−→ (x, f(x) tx−→ g(x)→ y).
Note that forF a presheaf onX the composition of ytwithF : fyIopp → Sets, (x, f(x)→
y) 7→ F(x) is equal to F : gyIopp → Sets. Hence by Categories, Lemma 14.9 we get for
every y ∈ Ob(Y) a canonical map

(pfF)(y) = limf
yI F −→ limg

yI F = (pgF)(y)

We omit the verification that this is compatible with restriction mappings. An alternative
to this direct construction is to define pt as the unique map compatible with the adjointness
properties of the pairs (fp, pf) and (gp, pg) (see below). This also has the advantage that
one does not need to prove the compatibility.

Compatibility with adjointness of (fp, pf) and (gp, pg) means that given presheaves G
and F as above we have a commutative diagram

MorPSh(X )(fpG,F)

−◦tp

��

MorPSh(Y)(G, pfF)

pt◦−
��

MorPSh(X )(gpG,F) MorPSh(Y)(G, pgF)
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Proof omitted. Hint: Work through the proof of Sites, Lemma 19.2 and observe the com-
patibility from the explicit description of the horizontal and vertical maps in the diagram.

We omit the verification that this is compatible with vertical and horizontal compositions.
Hint: The proof of this for tp is straightforward and one can conclude that this holds for
the pt maps using compatibility with adjointness. �

4. Sheaves

We first make an observation that is important and trivial (especially for those readers
who do not worry about set theoretical issues).

Consider a big fppf site Schfppf as in Topologies, Definition 7.6 and denote its underlying
category Schα. Besides being the underlying category of a fppf site, the category Schα
can also can serve as the underlying category for a big Zariski site, a big étale site, a big
smooth site, and a big syntomic site, see Topologies, Remark 11.1. We denote these sites
SchZar , Schétale, Schsmooth, and Schsyntomic. In this situation, since we have defined
the big Zariski site (Sch/S)Zar of S , the big étale site (Sch/S)étale of S , the big smooth
site (Sch/S)smooth of S , the big syntomic site (Sch/S)syntomic of S , and the big fppf
site (Sch/S)fppf of S as the localizations (see Sites, Section 25) SchZar/S , Schétale/S ,
Schsmooth/S , Schsyntomic/S , and Schfppf/S of these (absolute) big sites we see that all
of these have the same underlying category, namely Schα/S.

It follows that if we have a category p : X → (Sch/S)fppf fibred in groupoids, then X
inherits a Zariski, étale, smooth, syntomic, and fppf topology, see Stacks, Definition 10.2.

Definition 4.1. Let X be a category fibred in groupoids over (Sch/S)fppf .
(1) The associated Zariski site, denoted XZar , is the structure of site on X inherited

from (Sch/S)Zar.
(2) The associated étale site, denoted Xétale, is the structure of site on X inherited

from (Sch/S)étale.
(3) The associated smooth site, denoted Xsmooth, is the structure of site on X inher-

ited from (Sch/S)smooth.
(4) The associated syntomic site, denoted Xsyntomic, is the structure of site on X

inherited from (Sch/S)syntomic.
(5) The associated fppf site, denoted Xfppf , is the structure of site on X inherited

from (Sch/S)fppf .

This definition makes sense by the discussion above. If X is an algebraic stack, the liter-
ature calls Xfppf (or a site equivalent to it) the big fppf site of X and similarly for the
other ones. We may occasionally use this terminology to distinguish this construction
from others.

Remark 4.2. We only use this notation when the symbolX refers to a category fibred
in groupoids, and not a scheme, an algebraic space, etc. In this way we will avoid confusion
with the small étale site of a scheme, or algebraic space which is denoted Xétale (in which
case we use a roman capital instead of a calligraphic one).

Now that we have these topologies defined we can say what it means to have a sheaf on
X , i.e., define the corresponding topoi.

Definition 4.3. Let X be a category fibred in groupoids over (Sch/S)fppf . Let F
be a presheaf on X .
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(1) We say F is a Zariski sheaf, or a sheaf for the Zariski topology if F is a sheaf on
the associated Zariski site XZar.

(2) We say F is an étale sheaf, or a sheaf for the étale topology if F is a sheaf on the
associated étale site Xétale.

(3) We sayF is a smooth sheaf, or a sheaf for the smooth topology if F is a sheaf on
the associated smooth site Xsmooth.

(4) We sayF is a syntomic sheaf, or a sheaf for the syntomic topology ifF is a sheaf
on the associated syntomic site Xsyntomic.

(5) We say F is an fppf sheaf, or a sheaf, or a sheaf for the fppf topology if F is a
sheaf on the associated fppf site Xfppf .

A morphism of sheaves is just a morphism of presheaves. We denote these categories of
sheaves Sh(XZar), Sh(Xétale), Sh(Xsmooth), Sh(Xsyntomic), and Sh(Xfppf ).

Of course we can also talk about sheaves of pointed sets, abelian groups, groups, monoids,
rings, modules over a fixed ring, and lie algebras over a fixed field, etc. The category of
abelian sheaves, i.e., sheaves of abelian groups, is denoted Ab(Xfppf ) and similarly for the
other topologies. If X is an algebraic stack, then Sh(Xfppf ) is equivalent (modulo set
theoretical problems) to what in the literature would be termed the category of sheaves
on the big fppf site of X . Similar for other topologies. We may occasionally use this
terminology to distinguish this construction from others.

Since the topologies are listed in increasing order of strength we have the following strictly
full inclusions

Sh(Xfppf ) ⊂ Sh(Xsyntomic) ⊂ Sh(Xsmooth) ⊂ Sh(Xétale) ⊂ Sh(XZar) ⊂ PSh(X )
We sometimes write Sh(Xfppf ) = Sh(X ) and Ab(Xfppf ) = Ab(X ) in accordance with
our terminology that a sheaf on X is an fppf sheaf on X .

With this setup functoriality of these topoi is straightforward, and moreover, is compati-
ble with the inclusion functors above.

Lemma 4.4. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functors pf and fp
of (3.1.1) transform τ sheaves into τ sheaves and define a morphism of topoi f : Sh(Xτ )→
Sh(Yτ ).

Proof. This follows immediately from Stacks, Lemma 10.3. �

In other words, pushforward and pullback of presheaves as defined in Section 3 also pro-
duces pushforward and pullback of τ -sheaves. Having said all of the above we see that we
can write fp = f−1 and pf = f∗ without any possibility of confusion.

Definition 4.5. Let f : X → Y be a morphism of categories fibred in groupoids
over (Sch/S)fppf . We denote

f = (f−1, f∗) : Sh(Xfppf ) −→ Sh(Yfppf )
the associated morphism of fppf topoi constructed above. Similarly for the associated
Zariski, étale, smooth, and syntomic topoi.

As discussed in Sites, Section 44 the same formula (on the underlying sheaf of sets) defines
pushforward and pullback for sheaves (for one of our topologies) of pointed sets, abelian
groups, groups, monoids, rings, modules over a fixed ring, and lie algebras over a fixed
field, etc.
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5. Computing pushforward

Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Let F be a presheaf on X . Let y ∈ Ob(Y). We can compute f∗F(y) in the following
way. Suppose that y lies over the scheme V and using the 2-Yoneda lemma think of y as
a 1-morphism. Consider the projection

pr : (Sch/V )fppf ×y,Y X −→ X
Then we have a canonical identification

(5.0.1) f∗F(y) = Γ
(

(Sch/V )fppf ×y,Y X , pr−1F
)

Namely, objects of the 2-fibre product are triples (h : U → V, x, f(x)→ h∗y). Dropping
the h from the notation we see that this is equivalent to the data of an object x of X and a
morphismα : f(x)→ y ofY . Since f∗F(y) = limf(x)→y F(x) by definition the equality
follows.
As a consequence we have the following “base change” result for pushforwards. This result
is trivial and hinges on the fact that we are using “big” sites.

Lemma 5.1. Let S be a scheme. Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′ g // Y

be a 2-cartesian diagram of categories fibred in groupoids overS. Then we have a canonical
isomorphism

g−1f∗F −→ f ′
∗(g′)−1F

functorial in the presheaf F on X .

Proof. Given an object y′ of Y ′ over V there is an equivalence
(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

Hence by (5.0.1) a bijection g−1f∗F(y′)→ f ′
∗(g′)−1F(y′). We omit the verification that

this is compatible with restriction mappings. �

In the case of a representable morphism of categories fibred in groupoids this formula
(5.0.1) simplifies. We suggest the reader skip the rest of this section.

Lemma 5.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . The following are equivalent

(1) f is representable, and
(2) for every y ∈ Ob(Y) the functor X opp → Sets, x 7→ MorY(f(x), y) is repre-

sentable.

Proof. According to the discussion in Algebraic Stacks, Section 6 we see that f is rep-
resentable if and only if for every y ∈ Ob(Y) lying overU the 2-fibre product (Sch/U)fppf×y,Y
X is representable, i.e., of the form (Sch/Vy)fppf for some scheme Vy over U . Objects in
this 2-fibre products are triples (h : V → U, x, α : f(x) → h∗y) where α lies over
idV . Dropping the h from the notation we see that this is equivalent to the data of an
object x of X and a morphism f(x) → y. Hence the 2-fibre product is representable by
Vy and f(xy) → y where xy is an object of X over Vy if and only if the functor in (2) is
representable by xy with universal object a map f(xy)→ y. �
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Let

X
f

//

p
%%

Y

q
yy

(Sch/S)fppf

be a 1-morphism of categories fibred in groupoids. Assume f is representable. For ev-
ery y ∈ Ob(Y) we choose an object u(y) ∈ Ob(X ) representing the functor x 7→
MorY(f(x), y) of Lemma 5.2 (this is possible by the axiom of choice). The objects come
with canonical morphisms f(u(y))→ y by construction. For every morphism β : y′ → y
in Y we obtain a unique morphism u(β) : u(y′)→ u(y) in X such that the diagram

f(u(y′))

��

f(u(β))
// f(u(y))

��
y′ // y

commutes. In other words, u : Y → X is a functor. In fact, we can say a little bit more.
Namely, suppose that V ′ = q(y′), V = q(y), U ′ = p(u(y′)) and U = p(u(y)). Then

U ′
p(u(β))

//

��

U

��
V ′ q(β) // V

is a fibre product square. This is true becauseU ′ → U represents the base change (Sch/V ′)fppf×y′,Y
X → (Sch/V )fppf ×y,Y X of V ′ → V .

Lemma 5.3. Let f : X → Y be a representable 1-morphism of categories fibred in
groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Then the
functor u : Yτ → Xτ is continuous and defines a morphism of sites Xτ → Yτ which
induces the same morphism of topoi Sh(Xτ ) → Sh(Yτ ) as the morphism f constructed
in Lemma 4.4. Moreover, f∗F(y) = F(u(y)) for any presheaf F on X .

Proof. Let {yi → y} be a τ -covering in Y . By definition this simply means that
{q(yi) → q(y)} is a τ -covering of schemes. By the final remark above the lemma we
see that {p(u(yi)) → p(u(y))} is the base change of the τ -covering {q(yi) → q(y)} by
p(u(y))→ q(y), hence is itself a τ -covering by the axioms of a site. Hence {u(yi)→ u(y)}
is a τ -covering of X . This proves that u is continuous.

Let’s use the notation up, us, up, us of Sites, Sections 5 and 13. If we can show the final
assertion of the lemma, then we see that f∗ = up = us (by continuity of u seen above)
and hence by adjointness f−1 = us which will prove us is exact, hence that u determines
a morphism of sites, and the equality will be clear as well. To see that f∗F(y) = F(u(y))
note that by definition

f∗F(y) = (pfF)(y) = limf(x)→y F(x).

Since u(y) is a final object in the category the limit is taken over we conclude. �
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6. The structure sheaf

Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let p : X → (Sch/S)fppf be a category
fibred in groupoids. The 2-category of categories fibred in groupoids over (Sch/S)fppf
has a final object, namely, id : (Sch/S)fppf → (Sch/S)fppf and p is a 1-morphism from
X to this final object. Hence any presheaf G on (Sch/S)fppf gives a presheaf p−1G on X
defined by the rule p−1G(x) = G(p(x)). Moreover, the discussion in Section 4 shows that
p−1G is a τ sheaf whenever G is a τ -sheaf.

Recall that the site (Sch/S)fppf is a ringed site with structure sheafO defined by the rule

(Sch/S)opp −→ Rings, U/S 7−→ Γ(U,OU )

see Descent, Definition 8.2.

Definition 6.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. The
structure sheaf of X is the sheaf of ringsOX = p−1O.

For an object x of X lying over U we haveOX (x) = O(U) = Γ(U,OU ). Needless to say
OX is also a Zariski, étale, smooth, and syntomic sheaf, and hence each of the sites XZar ,
Xétale, Xsmooth, Xsyntomic, and Xfppf is a ringed site. This construction is functorial as
well.

Lemma 6.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a canonical
identification f−1OY = OX which turns f : Sh(Xτ ) → Sh(Yτ ) into a morphism of
ringed topoi.

Proof. Denote p : X → (Sch/S)fppf and q : Y → (Sch/S)fppf the structural
functors. Then p = q ◦ f , hence p−1 = f−1 ◦ q−1 by Lemma 3.2. SinceOX = p−1O and
OY = q−1O the result follows. �

Remark 6.3. In the situation of Lemma 6.2 the morphism of ringed topoi f : Sh(Xτ )→
Sh(Yτ ) is flat as is clear from the equality f−1OX = OY . This is a bit counter intuitive,
for example because a closed immersion of algebraic stacks is typically not flat (as a mor-
phism of algebraic stacks). However, exactly the same thing happens when taking a closed
immersion i : X → Y of schemes: in this case the associated morphism of big τ -sites
i : (Sch/X)τ → (Sch/Y )τ also is flat.

7. Sheaves of modules

Since we have a structure sheaf we have modules.

Definition 7.1. Let X be a category fibred in groupoids over (Sch/S)fppf .
(1) A presheaf of modules on X is a presheaf of OX -modules. The category of

presheaves of modules is denoted PMod(OX ).
(2) We say a presheaf of modules F is an OX -module, or more precisely a sheaf

of OX -modules if F is an fppf sheaf. The category of OX -modules is denoted
Mod(OX ).

These (pre)sheaves of modules occur in the literature as (pre)sheaves of OX -modules on
the big fppf site ofX . We will occasionally use this terminology if we want to distinguish
these categories from others. We will also encounter presheaves of modules which are
sheaves in the Zariski, étale, smooth, or syntomic topologies (without necessarily being
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sheaves). If need be these will be denoted Mod(Xétale,OX ) and similarly for the other
topologies.

Next, we address functoriality – first for presheaves of modules. Let

X
f

//

p
%%

Y

q
yy

(Sch/S)fppf

be a 1-morphism of categories fibred in groupoids. The functors f−1, f∗ on abelian presheaves
extend to functors

(7.1.1) f−1 : PMod(OY) −→ PMod(OX ) and f∗ : PMod(OX ) −→ PMod(OY)

This is immediate for f−1 because f−1G(x) = G(f(x)) which is a module overOY(f(x)) =
O(q(f(x))) = O(p(x)) = OX (x). Alternatively it follows because f−1OY = OX and
because f−1 commutes with limits (on presheaves). Since f∗ is a right adjoint it commutes
with all limits (on presheaves) in particular products. Hence we can extend f∗ to a functor
on presheaves of modules as in the proof of Modules on Sites, Lemma 12.1. We claim that
the functors (7.1.1) form an adjoint pair of functors:

MorPMod(OX )(f−1G,F) = MorPMod(OY )(G, f∗F).

As f−1OY = OX this follows from Modules on Sites, Lemma 12.3 by endowing X and Y
with the chaotic topology.

Next, we discuss functoriality for modules, i.e., for sheaves of modules in the fppf topol-
ogy. Denote by f also the induced morphism of ringed topoi, see Lemma 6.2 (for the fppf
topologies right now). Note that the functors f−1 and f∗ of (7.1.1) preserve the subcate-
gories of sheaves of modules, see Lemma 4.4. Hence it follows immediately that

(7.1.2) f−1 : Mod(OY) −→Mod(OX ) and f∗ : Mod(OX ) −→Mod(OY)

form an adjoint pair of functors:

MorMod(OX )(f−1G,F) = MorMod(OY )(G, f∗F).

By uniqueness of adjoints we conclude that f∗ = f−1 where f∗ is as defined in Modules
on Sites, Section 13 for the morphism of ringed topoi f above. Of course we could have
seen this directly because f∗(−) = f−1(−)⊗f−1OY OX and because f−1OY = OX .

Similarly for sheaves of modules in the Zariski, étale, smooth, syntomic topology.

8. Representable categories

In this short section we compare our definitions with what happens in case the algebraic
stacks in question are representable.

Lemma 8.1. Let S be a scheme. LetX be a category fibred in groupoids over (Sch/S).
Assume X is representable by a scheme X . For τ ∈ {Zar, étale, smooth, syntomic,
fppf} there is a canonical equivalence

(Xτ ,OX ) = ((Sch/X)τ ,OX)

of ringed sites.
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Proof. This follows by choosing an equivalence (Sch/X)τ → X of categories fibred
in groupoids over (Sch/S)fppf and using the functoriality of the construction X  Xτ .

�

Lemma 8.2. Let S be a scheme. Let f : X → Y be a morphism of categories fibred in
groupoids over S. Assume X , Y are representable by schemes X , Y . Let f : X → Y be
the morphism of schemes corresponding to f . For τ ∈ {Zar, étale, smooth, syntomic,
fppf} the morphism of ringed topoi f : (Sh(Xτ ),OX ) → (Sh(Yτ ),OY) agrees with
the morphism of ringed topoi f : (Sh((Sch/X)τ ),OX)→ (Sh((Sch/Y )τ ),OY ) via the
identifications of Lemma 8.1.

Proof. Follows by unwinding the definitions. �

9. Restriction

A trivial but useful observation is that the localization of a category fibred in groupoids
at an object is equivalent to the big site of the scheme it lies over.

Lemma 9.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let τ ∈
{Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U = p(x). The
functor p induces an equivalence of sites Xτ/x→ (Sch/U)τ .

Proof. Special case of Stacks, Lemma 10.4. �

We use the lemma above to talk about the pullback and the restriction of a (pre)sheaf to a
scheme.

Definition 9.2. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
x ∈ Ob(X ) lying over U = p(x). Let F be a presheaf on X .

(1) The pullback x−1F of F is the restriction F|(X/x) viewed as a presheaf on
(Sch/U)fppf via the equivalence X/x→ (Sch/U)fppf of Lemma 9.1.

(2) The restriction of F to Uétale is x−1F|Uétale , abusively written F|Uétale .

This notation makes sense because to the object x the 2-Yoneda lemma, see Algebraic
Stacks, Section 5 associates a 1-morphism x : (Sch/U)fppf → X/x which is quasi-
inverse to p : X/x → (Sch/U)fppf . Hence x−1F truly is the pullback of F via this
1-morphism. In particular, by the material above, ifF is a sheaf (or a Zariski, étale, smooth,
syntomic sheaf), then x−1F is a sheaf on (Sch/U)fppf (or on (Sch/U)Zar , (Sch/U)étale,
(Sch/U)smooth, (Sch/U)syntomic).
Let p : X → (Sch/S)fppf be a category fibred in groupoids. Letϕ : x→ y be a morphism
of X lying over the morphism of schemes a : U → V . Recall that a induces a morphism
of small étale sites asmall : Uétale → Vétale, see Étale Cohomology, Section 34. Let F be
a presheaf on X . Let F|Uétale and F|Vétale be the restrictions of F via x and y. There is a
natural comparison map
(9.2.1) cϕ : F|Vétale −→ asmall,∗(F|Uétale)
of presheaves on Uétale. Namely, if V ′ → V is étale, set U ′ = V ′ ×V U and define cϕ on
sections over V ′ via

asmall,∗(F|Uétale)(V ′) F|Uétale(U ′) F(x′)

F|Vétale(V ′)

cϕ

OO

F(y′)

F(ϕ′)

OO
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Here ϕ′ : x′ → y′ is a morphism of X fitting into a commutative diagram

x′ //

ϕ′

��

x

ϕ

��
y′ // y

lying over

U ′ //

��

U

a

��
V ′ // V

The existence and uniqueness ofϕ′ follow from the axioms of a category fibred in groupoids.
We omit the verification that cϕ so defined is indeed a map of presheaves (i.e., compatible
with restriction mappings) and that it is functorial in F . In case F is a sheaf for the étale
topology we obtain a comparison map

(9.2.2) cϕ : a−1
small(F|Vétale) −→ F|Uétale

which is also denoted cϕ as indicated (this is the customary abuse of notation in not dis-
tinguishing between adjoint maps).

Lemma 9.3. Let F be an étale sheaf on X → (Sch/S)fppf .
(1) If ϕ : x → y and ψ : y → z are morphisms of X lying over a : U → V and

b : V →W , then the composition

a−1
small(b

−1
small(F|Wétale

))
a−1
small

cψ−−−−−−→ a−1
small(F|Vétale)

cϕ−→ F|Uétale
is equal to cψ◦ϕ via the identification

(b ◦ a)−1
small(F|Wétale

) = a−1
small(b

−1
small(F|Wétale

)).

(2) If ϕ : x → y lies over an étale morphism of schemes a : U → V , then (9.2.2) is
an isomorphism.

(3) Suppose f : Y → X is a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf and y is an object of Y lying over the scheme U with image x =
f(y). Then there is a canonical identification f−1F|Uétale = F|Uétale .

(4) Moreover, given ψ : y′ → y in Y lying over a : U ′ → U the comparison
map cψ : a−1

small(f−1F|Uétale) → f−1F|U ′
étale

is equal to the comparison map
cf(ψ) : a−1

smallF|Uétale → F|U ′
étale

via the identifications in (3).

Proof. The verification of these properties is omitted. �

Next, we turn to the restriction of (pre)sheaves of modules.

Lemma 9.4. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U = p(x).
The equivalence of Lemma 9.1 extends to an equivalence of ringed sites (Xτ/x,OX |x)→
((Sch/U)τ ,O).

Proof. This is immediate from the construction of the structure sheaves. �

Let X be a category fibred in groupoids over (Sch/S)fppf . Let F be a (pre)sheaf of mod-
ules on X as in Definition 7.1. Let x be an object of X lying over U . Then Lemma 9.4
guarantees that the restriction x−1F is a (pre)sheaf of modules on (Sch/U)fppf . We will
sometimes write x∗F = x−1F in this case. Similarly, if F is a sheaf for the Zariski,
étale, smooth, or syntomic topology, then x−1F is as well. Moreover, the restriction
F|Uétale = x−1F|Uétale to U is a presheaf of OUétale -modules. If F is a sheaf for the
étale topology, then F|Uétale is a sheaf of modules. Moreover, if ϕ : x→ y is a morphism



6586 96. SHEAVES ON ALGEBRAIC STACKS

of X lying over a : U → V then the comparison map (9.2.2) is compatible with a]small
(see Descent, Remark 8.4) and induces a comparison map

(9.4.1) cϕ : a∗
small(F|Vétale) −→ F|Uétale

of OUétale -modules. Note that the properties (1), (2), (3), and (4) of Lemma 9.3 hold in
the setting of étale sheaves of modules as well. We will use this in the following without
further mention.

Lemma 9.5. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let τ ∈
{Zar, étale, smooth, syntomic, fppf}. The site Xτ has enough points.

Proof. By Sites, Lemma 38.5 we have to show that there exists a family of objects x
ofX such thatXτ/x has enough points and such that the sheaves h#

x cover the final object
of the category of sheaves. By Lemma 9.1 and Étale Cohomology, Lemma 30.1 we see that
Xτ/x has enough points for every object x and we win. �

10. Restriction to algebraic spaces

In this section we consider sheaves on categories representable by algebraic spaces. The
following lemma is the analogue of Topologies, Lemma 4.14 for algebraic spaces.

Lemma 10.1. Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids. Assume X is representable by an algebraic space F . Then there exists a con-
tinuous and cocontinuous functor Fétale → Xétale which induces a morphism of ringed
sites

πF : (Xétale,OX ) −→ (Fétale,OF )
and a morphism of ringed topoi

iF : (Sh(Fétale),OF ) −→ (Sh(Xétale),OX )
such that πF ◦ iF = id. Moreover πF,∗ = i−1

F .

Proof. Choose an equivalence j : SF → X , see Algebraic Stacks, Sections 7 and 8.
An object of Fétale is a scheme U together with an étale morphism ϕ : U → F . Then ϕ is
an object ofSF overU . Hence j(ϕ) is an object ofX overU . In this way j induces a functor
u : Fétale → X . It is clear that u is continuous and cocontinuous for the étale topology
on X . Since j is an equivalence, the functor u is fully faithful. Also, fibre products and
equalizers exist in Fétale and u commutes with them because these are computed on the
level of underlying schemes in Fétale. Thus Sites, Lemmas 21.5, 21.6, and 21.7 apply. In
particular u defines a morphism of topoi iF : Sh(Fétale)→ Sh(Xétale) and there exists a
left adjoint iF,! of i−1

F which commutes with fibre products and equalizers.

We claim that iF,! is exact. If this is true, then we can define πF by the rules π−1
F = iF,!

and πF,∗ = i−1
F and everything is clear. To prove the claim, note that we already know

that iF,! is right exact and preserves fibre products. Hence it suffices to show that iF,!∗ = ∗
where ∗ indicates the final object in the category of sheaves of sets. Let U be a scheme and
let ϕ : U → F be surjective and étale. Set R = U ×F U . Then

hR
//
// hU // ∗

is a coequalizer diagram in Sh(Fétale). Using the right exactness of iF,!, using iF,! =
(up )#, and using Sites, Lemma 5.6 we see that

hu(R)
//
// hu(U) // iF,!∗
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is a coequalizer diagram in Sh(Fétale). Using that j is an equivalence and that F = U/R
it follows that the coequalizer in Sh(Xétale) of the two maps hu(R) → hu(U) is ∗. We
omit the proof that these morphisms are compatible with structure sheaves. �

Remark 10.2. The constructions in Lemma 10.1 are compatible with étale localiza-
tion. Here is a precise formulation. Let S be a scheme. Let f : X → Y be a morphism of
categories fibred in groupoids over (Sch/S)fppf . Assume X , Y are representable by alge-
braic spaces F , G, and that the induced morphism f : F → G of algebraic spaces is étale.
Denote fsmall : Fétale → Gétale the corresponding morphism of ringed topoi. Then

(Sh(Fétale),OF )
fsmall

//

iF

��

(Sh(Gétale),OG)

iG

��
(Sh(Xétale),OX )

πF

��

f
// (Sh(Yétale),OY)

πG

��
(Sh(Fétale),OF ) fsmall // (Sh(Gétale),OG)

is a commutative diagram of ringed topoi. We omit the details.

Assume X is an algebraic stack represented by the algebraic space F . Let j : SF → X be
an equivalence and denote u : Fétale → Xétale the functor of the proof of Lemma 10.1
above. Given a sheaf F on Xétale we have

πF,∗F(U) = i−1
F F(U) = F(u(U)).

This is why we often think of i−1
F as a restriction functor similarly to Definition 9.2 and

to the restriction of a sheaf on the big étale site of a scheme to the small étale site of a
scheme. We often use the notation
(10.2.1) F|Fétale = i−1

F F = πF,∗F
in this situation.

Lemma 10.3. Let S be a scheme. Let f : X → Y be a morphism of categories fibred
in groupoids over (Sch/S)fppf . Assume X , Y are representable by algebraic spaces F , G.
Denote f : F → G the induced morphism of algebraic spaces, and fsmall : Fétale →
Gétale the corresponding morphism of ringed topoi. Then

(Sh(Xétale),OX )

πF

��

f
// (Sh(Yétale),OY)

πG

��
(Sh(Fétale),OF ) fsmall // (Sh(Gétale),OG)

is a commutative diagram of ringed topoi.

Proof. This is similar to Topologies, Lemma 4.17 (3) but there is a small snag due to
the fact that F → G may not be representable by schemes. In particular we don’t get a
commutative diagram of ringed sites, but only a commutative diagram of ringed topoi.
Before we start the proof proper, we choose equivalences j : SF → X and j′ : SG → Y
which induce functors u : Fétale → X and u′ : Gétale → Y as in the proof of Lemma 10.1.
Because of the 2-functoriality of sheaves on categories fibred in groupoids over Schfppf
(see discussion in Section 3) we may assume thatX = SF and Y = SG and that f : SF →
SG is the functor associated to the morphism f : F → G. Correspondingly we will omit



6588 96. SHEAVES ON ALGEBRAIC STACKS

u and u′ from the notation, i.e., given an object U → F of Fétale we denote U/F the
corresponding object of X . Similarly for G.
Let G be a sheaf on Xétale. To prove (2) we compute πG,∗f∗G and fsmall,∗πF,∗G. To do
this let V → G be an object of Gétale. Then

πG,∗f∗G(V ) = f∗G(V/G) = Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

see (5.0.1). The fibre product in the formula is
(Sch/V )fppf ×Y X = (Sch/V )fppf ×SG SF = SV×GF

i.e., it is the split category fibred in groupoids associated to the algebraic space V ×G F .
And pr−1G is a sheaf on SV×GF for the étale topology.
In particular, if V ×GF is representable, i.e., if it is a scheme, then πG,∗f∗G(V ) = G(V ×G
F/F ) and also

fsmall,∗πF,∗G(V ) = πF,∗G(V ×G F ) = G(V ×G F/F )
which proves the desired equality in this special case.
In general, choose a scheme U and a surjective étale morphism U → V ×G F . Set R =
U ×V×GF U . Then U/V ×G F and R/V ×G F are objects of the fibre product category
above. Since pr−1G is a sheaf for the étale topology on SV×GF the diagram

Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

// pr−1G(U/V ×G F ) //
// pr−1G(R/V ×G F )

is an equalizer diagram. Note that pr−1G(U/V ×G F ) = G(U/F ) and pr−1G(R/V ×G
F ) = G(R/F ) by the definition of pullbacks. Moreover, by the material in Properties of
Spaces, Section 18 (especially, Properties of Spaces, Remark 18.4 and Lemma 18.8) we see
that there is an equalizer diagram

fsmall,∗πF,∗G(V ) // πF,∗G(U/F ) //
// πF,∗G(R/F )

Since we also have πF,∗G(U/F ) = G(U/F ) and πF,∗G(U/F ) = G(U/F ) we obtain a
canonical identification fsmall,∗πF,∗G(V ) = πG,∗f∗G(V ). We omit the proof that this is
compatible with restriction mappings and that it is functorial in G. �

Let f : X → Y and f : F → G be as in the second part of the lemma above. A consequence
of the lemma, using (10.2.1), is that
(10.3.1) (f∗F)|Gétale = fsmall,∗(F|Fétale)
for any sheaf F on Xétale. Moreover, if F is a sheaf of O-modules, then (10.3.1) is an
isomorphism ofOG-modules on Gétale.
Finally, suppose that we have a 2-commutative diagram

U a //

f ��

|� ϕ

V
g

��
X

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf , that F is a sheaf on
Xétale, and that U ,V are representable by algebraic spaces U, V . Then we obtain a com-
parison map

(10.3.2) cϕ : a−1
small(g

−1F|Vétale) −→ f−1F|Uétale
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where a : U → V denotes the morphism of algebraic spaces corresponding to a. This is
the analogue of (9.2.2). We define cϕ as the adjoint to the map

g−1F|Vétale −→ asmall,∗(f−1F|Uétale) = (a∗f
−1F)|Vétale

(equality by (10.3.1)) which is the restriction to V (10.2.1) of the map

g−1F → a∗a
−1g−1F = a∗f

−1F
where the last equality uses the 2-commutativity of the diagram above. In caseF is a sheaf
ofOX -modules cϕ induces a comparison map
(10.3.3) cϕ : a∗

small(g∗F|Vétale) −→ f∗F|Uétale
of OUétale -modules. This is the analogue of (9.4.1). Note that the properties (1), (2), (3),
and (4) of Lemma 9.3 hold in this setting as well.

11. Quasi-coherent modules

At this point we can apply the general definition of a quasi-coherent module to the situa-
tion discussed in this chapter.

Definition 11.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. A
quasi-coherent module on X , or a quasi-coherent OX -module is a quasi-coherent module
on the ringed site (Xfppf ,OX ) as in Modules on Sites, Definition 23.1. The category of
quasi-coherent sheaves on X is denoted QCoh(OX ).

If X is an algebraic stack, then this definition agrees with all definitions in the literature
in the sense that QCoh(OX ) is equivalent (modulo set theoretic issues) to any variant of
this category defined in the literature. For example, we will match our definition with the
definition in [?, Definition 6.1] in Cohomology on Stacks, Lemma 12.2. We will also see
alternative constructions of this category later on.
In general (as is the case for morphisms of schemes) the pushforward of quasi-coherent
sheaf along a 1-morphism is not quasi-coherent. Pullback does preserve quasi-coherence.

Lemma 11.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(OY) → Mod(OX ) preserves
quasi-coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 23.4. �

It turns out that quasi-coherent sheaves have a very simple characterization in terms of
their pullbacks. See also Lemma 12.2 for a characterization in terms of restrictions.

Lemma 11.3. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F be
a sheaf of OX -modules. Then F is quasi-coherent if and only if x∗F is a quasi-coherent
sheaf on (Sch/U)fppf for every object x of X with U = p(x).

Proof. By Lemma 11.2 the condition is necessary. Conversely, since x∗F is just the
restriction to Xfppf/x we see that it is sufficient directly from the definition of a quasi-
coherent sheaf (and the fact that the notion of being quasi-coherent is an intrinsic property
of sheaves of modules, see Modules on Sites, Section 18). �

Lemma 11.4. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F be
a presheaf of modules on X . The following are equivalent

(1) F is an object of Mod(XZar,OX ) andF is a quasi-coherent module on (XZar,OX )
in the sense of Modules on Sites, Definition 23.1,
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(2) F is an object of Mod(Xétale,OX ) andF is a quasi-coherent module on (Xétale,OX )
in the sense of Modules on Sites, Definition 23.1, and

(3) F is a quasi-coherent module on X in the sense of Definition 11.1.

Proof. Assume either (1), (2), or (3) holds. Let x be an object of X lying over the
scheme U . Recall that x∗F = x−1F is just the restriction to X/x = (Sch/U)τ where
τ = fppf , τ = étale, or τ = Zar, see Section 9. By the definition of quasi-coherent
modules on a ringed site this restriction is quasi-coherent provided F is. By Descent,
Proposition 8.9 we see that x∗F is the sheaf associated to a quasi-coherent OU -module
and is therefore a quasi-coherent module in the fppf, étale, and Zariski topology; here we
also use Descent, Lemma 8.1 and Definition 8.2. Since this holds for every object x of X ,
we see that F is a sheaf in any of the three topologies. Moreover, we find that F is quasi-
coherent in any of the three topologies directly from the definition of being quasi-coherent
and the fact that x is an arbitrary object of X . �

12. Locally quasi-coherent modules

Although there is a variant for the Zariski topology, it seems that the étale topology is the
natural topology to use in the following definition.

Definition 12.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be a presheaf ofOX -modules. We sayF is locally quasi-coherent2 ifF is a sheaf for the
étale topology and for every object x of X the restriction x∗F|Uétale is a quasi-coherent
sheaf. Here U = p(x).

We use LQCoh(OX ) to indicate the category of locally quasi-coherent modules. We now
have the following diagram of categories of modules

QCoh(OX ) //

��

Mod(OX )

��
LQCoh(OX ) // Mod(Xétale,OX )

where the arrows are strictly full embeddings. It turns out that many results for quasi-
coherent sheaves have a counter part for locally quasi-coherent modules. Moreover, from
many points of view (as we shall see later) this is a natural category to consider. For
example the quasi-coherent sheaves are exactly those locally quasi-coherent modules that
are “cartesian”, i.e., satisfy the second condition of the lemma below.

Lemma 12.2. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F
be a presheaf of OX -modules. Then F is quasi-coherent if and only if the following two
conditions hold

(1) F is locally quasi-coherent, and
(2) for any morphism ϕ : x → y of X lying over f : U → V the comparison map

cϕ : f∗
smallF|Vétale → F|Uétale of (9.4.1) is an isomorphism.

Proof. Assume F is quasi-coherent. Then F is a sheaf for the fppf topology, hence
a sheaf for the étale topology. Moreover, any pullback of F to a ringed topos is quasi-
coherent, hence the restrictions x∗F|Uétale are quasi-coherent. This proves F is locally
quasi-coherent. Let y be an object of X with V = p(y). We have seen that X/y =

2This is nonstandard notation.
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(Sch/V )fppf . By Descent, Proposition 8.9 it follows that y∗F is the quasi-coherent mod-
ule associated to a (usual) quasi-coherent module FV on the scheme V . Hence certainly
the comparison maps (9.4.1) are isomorphisms.
Conversely, suppose that F satisfies (1) and (2). Let y be an object of X with V = p(y).
Denote FV the quasi-coherent module on the scheme V corresponding to the restriction
y∗F|Vétale which is quasi-coherent by assumption (1), see Descent, Proposition 8.9. Con-
dition (2) now signifies that the restrictions x∗F|Uétale for x over y are each isomorphic
to the (étale sheaf associated to the) pullback of FV via the corresponding morphism of
schemes U → V . Hence y∗F is the sheaf on (Sch/V )fppf associated to FV . Hence it is
quasi-coherent (by Descent, Proposition 8.9 again) and we see thatF is quasi-coherent on
X by Lemma 11.3. �

Lemma 12.3. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(Yétale,OY) → Mod(Xétale,OX )
preserves locally quasi-coherent sheaves.

Proof. Let G be locally quasi-coherent on Y . Choose an object x ofX lying over the
scheme U . The restriction x∗f∗G|Uétale equals (f ◦ x)∗G|Uétale hence is a quasi-coherent
sheaf by assumption on G. �

Lemma 12.4. Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The category LQCoh(OX ) has colimits and they agree with colimits in the cat-

egory Mod(Xétale,OX ).
(2) The category LQCoh(OX ) is abelian with kernels and cokernels computed in

Mod(Xétale,OX ), in other words the inclusion functor is exact.
(3) Given a short exact sequence 0→ F1 → F2 → F3 → 0 of Mod(Xétale,OX ) if

two out of three are locally quasi-coherent so is the third.
(4) Given F ,G in LQCoh(OX ) the tensor product F ⊗OX G in Mod(Xétale,OX )

is an object of LQCoh(OX ).
(5) Given F ,G in LQCoh(OX ) with F of finite presentation on Xétale the sheaf
HomOX (F ,G) in Mod(Xétale,OX ) is an object of LQCoh(OX ).

Proof. In the arguments below x denotes an arbitrary object of X lying over the
schemeU . To show that an objectH of Mod(Xétale,OX ) is in LQCoh(OX ) we will show
that the restriction x∗H|Uétale = H|Uétale is a quasi-coherent object of Mod(Uétale,OU ).
Proof of (1). Let I → LQCoh(OX ), i 7→ Fi be a diagram. Consider the object F =
colimi Fi of Mod(Xétale,OX ). The pullback functorx∗ commutes with all colimits as it is
a left adjoint. Hencex∗F = colimi x

∗Fi. Similarly we havex∗F|Uétale = colimi x
∗Fi|Uétale .

Now by assumption each x∗Fi|Uétale is quasi-coherent. Hence colimi x
∗Fi|Uétale is quasi-

coherent by Descent, Lemma 10.3. Thus x∗F|Uétale is quasi-coherent as desired.
Proof of (2). It follows from (1) that cokernels exist in LQCoh(OX ) and agree with the
cokernels computed in Mod(Xétale,OX ). Let ϕ : F → G be a morphism of LQCoh(OX )
and let K = Ker(ϕ) computed in Mod(Xétale,OX ). If we can show that K is a locally
quasi-coherent module, then the proof of (2) is complete. To see this, note that kernels
are computed in the category of presheaves (no sheafification necessary). Hence K|Uétale
is the kernel of the map F|Uétale → G|Uétale , i.e., is the kernel of a map of quasi-coherent
sheaves on Uétale whence quasi-coherent by Descent, Lemma 10.3. This proves (2).
Proof of (3). Let 0→ F1 → F2 → F3 → 0 be a short exact sequence of Mod(Xétale,OX ).
Since we are using the étale topology, the restriction 0 → F1|Uétale → F2|Uétale →
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F3|Uétale → 0 is a short exact sequence too. Hence (3) follows from the corresponding
statement in Descent, Lemma 10.3.

Proof of (4). Let F and G be in LQCoh(OX ). Since restriction to Uétale is given by
pullback along the morphism of ringed topoiUétale → (Sch/U)étale → Xétale we see that
the restriction of the tensor product F ⊗OX G to Uétale is equal to F|Uétale ⊗OU

G|Uétale ,
see Modules on Sites, Lemma 26.2. Since F|Uétale and G|Uétale are quasi-coherent, so is
their tensor product, see Descent, Lemma 10.3.

Proof of (5). LetF andG be in LQCoh(OX ) withF of finite presentation. Since (Sch/U)étale =
Xétale/x is a localization ofXétale at an object we see that the restriction ofHomOX (F ,G)
to (Sch/U)étale is equal to

H = HomO|(Sch/U)étale
(F|(Sch/U)étale ,G|(Sch/U)étale)

by Modules on Sites, Lemma 27.2. The morphism of ringed topoi (Uétale,OU )→ ((Sch/U)étale,O)
is flat as the pullback of O is OU . Hence the pullback of H by this morphism is equal to
HomOU

(F|Uétale ,G|Uétale) by Modules on Sites, Lemma 31.4. In other words, the restric-
tion ofHomOX (F ,G) toUétale isHomOU

(F|Uétale ,G|Uétale). SinceF|Uétale and G|Uétale
are quasi-coherent, so is HomOU

(F|Uétale ,G|Uétale), see Descent, Lemma 10.3. We con-
clude as before. �

In the generality discussed here the category of quasi-coherent sheaves is not abelian. See
Examples, Section 13. Here is what we can prove without any further work.

Lemma 12.5. Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The category QCoh(OX ) has colimits and they agree with colimits in the cate-

gories Mod(XZar,OX ), Mod(Xétale,OX ), Mod(OX ), and LQCoh(OX ).
(2) GivenF ,G in QCoh(OX ) the tensor productsF⊗OXG computed in Mod(XZar,OX ),

Mod(Xétale,OX ), or Mod(OX ) agree and the common value is an object of
QCoh(OX ).

(3) Given F ,G in QCoh(OX ) with F finite locally free (in fppf, or equivalently
étale, or equivalently Zariski topology) the internal homs HomOX (F ,G) com-
puted in Mod(XZar,OX ), Mod(Xétale,OX ), or Mod(OX ) agree and the com-
mon value is an object of QCoh(OX ).

Proof. Letx be an arbitrary object ofX lying over the schemeU . Let τ ∈ {Zariski, étale, fppf}.
To show that an object H of Mod(Xτ ,OX ) is in QCoh(OX ) it suffices show that the re-
striction x∗H (Section 9) is a quasi-coherent object of Mod((Sch/U)τ ,O). See Lemmas
11.3 and 11.4. Similarly for being finite locally free. Recall that (Sch/U)τ = Xτ/x is a
localization of Xτ at an object. Hence restriction commutes with colimits, tensor prod-
ucts, and forming internal hom (see Modules on Sites, Lemmas 14.3, 26.2, and 27.2). This
reduces the lemma to Descent, Lemma 10.6. �

13. Stackification and sheaves

It turns out that the category of sheaves on a category fibred in groupoids only “knows
about” the stackification.

Lemma 13.1. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . If f induces an equivalence of stackifications, then the morphism of topoi
f : Sh(Xfppf )→ Sh(Yfppf ) is an equivalence.
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Proof. We may assume Y is the stackification of X . We claim that f : X → Y is a
special cocontinuous functor, see Sites, Definition 29.2 which will prove the lemma. By
Stacks, Lemma 10.3 the functor f is continuous and cocontinuous. By Stacks, Lemma 8.1
we see that conditions (3), (4), and (5) of Sites, Lemma 29.1 hold. �

Lemma 13.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . If f induces an equivalence of stackifications, then f∗ induces equivalences
Mod(OX )→Mod(OY) and QCoh(OX )→ QCoh(OY).

Proof. We may assume Y is the stackification of X . The first assertion is clear from
Lemma 13.1 and OX = f−1OY . Pullback of quasi-coherent sheaves are quasi-coherent,
see Lemma 11.2. Hence it suffices to show that if f∗G is quasi-coherent, then G is. To see
this, let y be an object of Y . Translating the condition that Y is the stackification of X we
see there exists an fppf covering {yi → y} in Y such that yi ∼= f(xi) for some xi object
of X . Say xi and yi lie over the scheme Ui. Then f∗G being quasi-coherent, means that
x∗
i f

∗G is quasi-coherent. Since x∗
i f

∗G is isomorphic to y∗
i G (as sheaves on (Sch/Ui)fppf

we see that y∗
i G is quasi-coherent. It follows from Modules on Sites, Lemma 23.3 that the

restriction of G to Y/y is quasi-coherent. Hence G is quasi-coherent by Lemma 11.3. �

14. Quasi-coherent sheaves and presentations

Let us first match quasi-coherent sheaves with our previously defined notions for schemes
and algebraic spaces.

Lemma 14.1. Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids wich is representable by an algebraic space F . If F is in LQCoh(OX ) then the
restriction F|Fétale (10.2.1) is quasi-coherent.

Proof. Let U be a scheme étale over F . Then F|Uétale = (F|Fétale)|Uétale . This is
clear but see also Remark 10.2. Thus the assertion follows from the definitions. �

Lemma 14.2. Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids wich is representable by an algebraic space F . The functor (10.2.1) defines an
equivalence

QCoh(OX )→ QCoh(OF ), F 7−→ F|Fétale
with quasi-inverse given by G 7→ π∗

FG. This equivalence is compatible with pullback for
morphisms between categories fibred in groupoids representable by algebraic spaces.

Proof. By Lemma 11.4 we may work with the étale topology. We will use the no-
tation and results of Lemma 10.1 without further mention. Recall that the restriction
functor Mod(Xétale,OX )→ Mod(Fétale,OF ), F 7→ F|Fétale is given by i∗F . By Lemma
14.1 or by Modules on Sites, Lemma 23.4 we see that F|Fétale is quasi-coherent if F is
quasi-coherent. Hence we get a functor as indicated in the statement of the lemma and we
get a functor π∗

F in the opposite direction. Since πF ◦ iF = id we see that i∗Fπ∗
FG = G.

For F in Mod(Xétale,OX ) there is a canonical map π∗
F (F|Fétale) → F , namely the map

adjoint to the identification F|Fétale = πF,∗F . We will show that this map is an iso-
morphism if F is a quasi-coherent module on X . Choose a scheme U and a surjective
étale morphism U → F . Denote x : U → X the corresponding object of X over
U . It suffices to show that π∗

F (F|Fétale) → F is an isomorphism after restricting to
Xétale/x = (Sch/U)étale. Since U → F is étale, it follows from Remark 10.2 that

π∗
F (F|Fétale)|Xétale/x = π∗

U (F|Uétale)
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and that the restriction of the map π∗
F (F|Fétale) → F to Xétale/x = (Sch/U)étale is

equal to the corresponding map π∗
U (F|Uétale) → F|(Sch/U)étale . Since we have seen the

result is true for schemes in Descent, Section 83 we conclude.

Compatibility with pullbacks follows from the fact that the quasi-inverse is given by π∗
F

and the commutative diagram of ringed topoi in Lemma 10.3. �

In Groupoids in Spaces, Definition 12.1 we have the defined the notion of a quasi-coherent
module on an arbitrary groupoid. The following (formal) proposition tells us that we can
study quasi-coherent sheaves on quotient stacks in terms of quasi-coherent modules on
presentations.

Proposition 14.3. Let (U,R, s, t, c) be a groupoid in algebraic spaces overS. LetX =
[U/R] be the quotient stack. The category of quasi-coherent modules on X is equivalent
to the category of quasi-coherent modules on (U,R, s, t, c).

Proof. We will construct quasi-inverse functors

QCoh(OX )←→ QCoh(U,R, s, t, c).
where QCoh(U,R, s, t, c) denotes the category of quasi-coherent modules on the groupoid
(U,R, s, t, c).

Let F be an object of QCoh(OX ). Denote U , R the categories fibred in groupoids corre-
sponding to U and R. Denote x the (defining) object of X over U . Recall that we have a
2-commutative diagram

R
s
//

t

��

U

x

��
U x // X

See Groupoids in Spaces, Lemma 20.3. By Lemma 3.3 the 2-arrow inherent in the diagram
induces an isomorphism α : t∗x∗F → s∗x∗F which satisfies the cocycle condition over
R ×s,U,t R; this is a consequence of Groupoids in Spaces, Lemma 23.1. Thus if we set
G = x∗F|Uétale then the equivalence of categories in Lemma 14.2 (used several times
compatibly with pullbacks) gives an isomorphism α : t∗smallG → s∗

smallG satisfying the
cocycle condition on R ×s,U,t R, i.e., (G, α) is an object of QCoh(U,R, s, t, c). The rule
F 7→ (G, α) is our functor from left to right.

Construction of the functor in the other direction. Let (G, α) be an object of QCoh(U,R, s, t, c).
According to Lemma 13.2 the stackification map [U/pR] → [U/R] (see Groupoids in
Spaces, Definition 20.1) induces an equivalence of categories of quasi-coherent sheaves.
Thus it suffices to construct a quasi-coherent module F on [U/pR].
Recall that an object x = (T, u) of [U/pR] is given by a scheme T and a morphism u :
T → U . A morphism (T, u) → (T ′, u′) is given by a pair (f, r) where f : T → T ′ and
r : T → R with s◦ r = u and t◦ r = u′ ◦ f . Let us call a special morphism any morphism
of the form (f, e ◦ u′ ◦ f) : (T, u′ ◦ f) → (T ′, u′). The category of (T, u) with special
morphisms is just the category of schemes over U .

3Namely, if U is a scheme and F is quasi-coherent on (Sch/U)étale , then F = Ha for some quasi-
coherent module H on the schemeU by Descent, Proposition 8.9. In other words, F = (idétale,Zar)∗H by De-
scent, Remark 8.6 with notation as in Descent, Lemma 8.5. Then we have idétale,Zar = πU ◦idsmall,étale,Zar
and hence we see that F = π∗

UG where G = (idsmall,étale,Zar)∗H is quasi-coherent. Then π∗
U i

∗
UF =

π∗
U i

∗
Uπ

∗
UG = π∗

UG = F as desired.
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With this notation in place, given an object (T, u) of [U/pR], we set

F(T, u) := Γ(T, u∗
smallG).

Given a morphism (f, r) : (T, u)→ (T ′, u′) we get a map

F(T ′, u′) = Γ(T ′, (u′)∗
smallG)

→ Γ(T, f∗
small(u′)∗

smallG) = Γ(T, (u′ ◦ f)∗
smallG)

= Γ(T, (t ◦ r)∗
smallG) = Γ(T, r∗

smallt
∗
smallG)

→ Γ(T, r∗
smalls

∗
smallG) = Γ(T, (s ◦ r)∗

smallG)
= Γ(T, u∗

smallG)
= F(T, u)

where the first arrow is pullback along f and the second arrow is α. Note that if (T, r) is a
special morphism, then this map is just pullback along f as e∗

smallα = id by the axioms of
a sheaf of quasi-coherent modules on a groupoid. The cocycle condition implies that F is
a presheaf of modules (details omitted). We see that the restriction of F to (Sch/T )fppf
is quasi-coherent by the simple description of the restriction maps ofF in case of a special
morphism. Hence F is a sheaf on [U/pR] and quasi-coherent (Lemma 11.3).

We omit the verification that the functors constructed above are quasi-inverse to each
other. �

We finish this section with a technical lemma on maps out of quasi-coherent sheaves. It
is an analogue of Schemes, Lemma 7.1. We will see later (Criteria for Representability,
Theorem 17.2) that the assumptions on the groupoid imply that X is an algebraic stack.

Lemma 14.4. Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. Assume s, t
are flat and locally of finite presentation. Let X = [U/R] be the quotient stack. Denote x
the object of X over U . Let F be a quasi-coherentOX -module, and letH be any object of
Mod(OX ). The map

HomOX (F ,H) −→ HomOU
(x∗F|Uétale , x∗H|Uétale), φ 7−→ x∗φ|Uétale

is injective and its image consists of exactly those ϕ : x∗F|Uétale → x∗H|Uétale which
give rise to a commutative diagram

s∗
small(x∗F|Uétale) //

s∗
smallϕ

��

(x ◦ s)∗F|Rétale = (x ◦ t)∗F|Rétale t∗small(x∗F|Uétale)oo

t∗smallϕ

��
s∗
small(x∗H|Uétale) // (x ◦ s)∗H|Rétale = (x ◦ t)∗H|Rétale t∗small(x∗H|Uétale)oo

of modules on Rétale where the horizontal arrows are the comparison maps (10.3.3).

Proof. According to Lemma 13.2 the stackification map [U/pR]→ [U/R] (see Groupoids
in Spaces, Definition 20.1) induces an equivalence of categories of quasi-coherent sheaves
and of fppfO-modules. Thus it suffices to prove the lemma with X = [U/pR]. By Propo-
sition 14.3 and its proof there exists a quasi-coherent module (G, α) on (U,R, s, t, c) such
that F is given by the rule F(T, u) = Γ(T, u∗G). In particular x∗F|Uétale = G and it
is clear that the map of the statement of the lemma is injective. Moreover, given a map
ϕ : G → x∗H|Uétale and given any object y = (T, u) of [U/pR] we can consider the map

F(y) = Γ(T, u∗G) u∗
smallϕ−−−−−→ Γ(T, u∗

smallx
∗H|Uétale)→ Γ(T, y∗H|Tétale) = H(y)
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where the second arrow is the comparison map (9.4.1) for the sheafH. This assignment is
compatible with the restriction mappings of the sheavesF and G for morphisms of [U/pR]
if the cocycle condition of the lemma is satisfied. Proof omitted. Hint: the restriction maps
of F are made explicit in terms of (G, α) in the proof of Proposition 14.3. �

15. Quasi-coherent sheaves on algebraic stacks

LetX be an algebraic stack over S. By Algebraic Stacks, Lemma 16.2 we can find an equiv-
alence [U/R]→ X where (U,R, s, t, c) is a smooth groupoid in algebraic spaces. Then

QCoh(OX ) ∼= QCoh(O[U/R]) ∼= QCoh(U,R, s, t, c)

where the second equivalence is Proposition 14.3. Hence the category of quasi-coherent
sheaves on an algebraic stack is equivalent to the category of quasi-coherent modules on
a smooth groupoid in algebraic spaces. In particular, by Groupoids in Spaces, Lemma 12.6
we see that QCoh(OX ) is abelian!

There is something slightly disconcerting about our current setup. It is that the fully
faithful embedding

QCoh(OX ) −→Mod(OX )
is in general not exact. However, exactly the same thing happens for schemes: for most
schemes X the embedding

QCoh(OX) ∼= QCoh((Sch/X)fppf ,OX) −→Mod((Sch/X)fppf ,OX)

isn’t exact, see Descent, Lemma 10.2. Parenthetically, the example in the proof of Descent,
Lemma 10.2 shows that in general the strictly full embedding QCoh(OX )→ LQCoh(OX )
isn’t exact either.

We collect all the results obtained so far in a single statement.

Lemma 15.1. Let X be an algebraic stack over S.
(1) If [U/R] → X is a presentation of X then there is a canonical equivalence

QCoh(OX ) ∼= QCoh(U,R, s, t, c).
(2) The category QCoh(OX ) is abelian.
(3) The inclusion functor QCoh(OX ) → Mod(OX ) is right exact but not exact in

general.
(4) The category QCoh(OX ) has colimits and they agree with colimits in the cate-

gory Mod(OX ).
(5) GivenF ,G in QCoh(OX ) the tensor productF⊗OX G in Mod(OX ) is an object

of QCoh(OX ).
(6) GivenF ,G in QCoh(OX ) withF finite locally free the sheafHomOX (F ,G) in

Mod(OX ) is an object of QCoh(OX ).
(7) Given a short exact sequence 0 → F1 → F2 → F3 → 0 in Mod(OX ) with F1

and F3 quasi-coherent, then F2 is quasi-coherent.

Proof. Properties (4), (5), and (6) were proven in Lemma 12.5. Part (1) is Proposition
14.3. Part (2) follows from part (1) and Groupoids in Spaces, Lemma 12.6 as discussed
above. Right exactness of the inclusion functor in (3) follows from (4); please compare
with Homology, Lemma 7.2. For the nonexactness of the inclusion functor in part (3)
see Descent, Lemma 10.2. To see (7) observe that it suffices to check the restriction of F2
to the big site of a scheme is quasi-coherent (Lemma 11.3), hence this follows from the
corresponding part of Descent, Lemma 10.2. �
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Next we construct the coherator for modules on an algebraic stack.

Proposition 15.2. Let X be an algebraic stack over S.
(1) The category QCoh(OX ) is a Grothendieck abelian category. Consequently,

QCoh(OX ) has enough injectives and all limits.
(2) The inclusion functor QCoh(OX )→Mod(OX ) has a right adjoint4

Q : Mod(OX ) −→ QCoh(OX )
such that for every quasi-coherent sheaf F the adjunction mapping Q(F)→ F
is an isomorphism.

Proof. This proof is a repeat of the proof in the case of schemes, see Properties,
Proposition 23.4 and the case of algebraic spaces, see Properties of Spaces, Proposition
32.2. We advise the reader to read either of those proofs first.

Part (1) means QCoh(OX ) (a) has all colimits, (b) filtered colimits are exact, and (c) has
a generator, see Injectives, Section 10. By Lemma 15.1 colimits in QCoh(OX) exist and
agree with colimits in Mod(OX). By Modules on Sites, Lemma 14.2 filtered colimits are
exact. Hence (a) and (b) hold.

Choose a presentation X = [U/R] so that (U,R, s, t, c) is a smooth groupoid in algebraic
spaces and in particular s and t are flat morphisms of algebraic spaces. By Lemma 15.1
above we have QCoh(OX ) = QCoh(U,R, s, t, c). By Groupoids in Spaces, Lemma 14.2
there exists a set T and a family (Ft)t∈T of quasi-coherent sheaves on X such that every
quasi-coherent sheaf on X is the directed colimit of its subsheaves which are isomorphic
to one of the Ft. Thus

⊕
t Ft is a generator of QCoh(OX) and we conclude that (c)

holds. The assertions on limits and injectives hold in any Grothendieck abelian category,
see Injectives, Theorem 11.7 and Lemma 13.2.

Proof of (2). To construct Q we use the following general procedure. Given an object F
of Mod(OX ) we consider the functor

QCoh(OX )opp −→ Sets, G 7−→ HomX (G,F)
This functor transforms colimits into limits, hence is representable, see Injectives, Lemma
13.1. Thus there exists a quasi-coherent sheafQ(F) and a functorial isomorphism HomX (G,F) =
HomX (G, Q(F)) forG in QCoh(OX ). By the Yoneda lemma (Categories, Lemma 3.5) the
construction F  Q(F) is functorial in F . By construction Q is a right adjoint to the
inclusion functor. The fact that Q(F)→ F is an isomorphism when F is quasi-coherent
is a formal consequence of the fact that the inclusion functor QCoh(OX ) → Mod(OX )
is fully faithful. �

16. Cohomology

Let S be a scheme and let X be a category fibred in groupoids over (Sch/S)fppf . For any
τ ∈ {Zariski, étale, smooth, syntomic, fppf} the categories Ab(Xτ ) and Mod(Xτ ,OX )
have enough injectives, see Injectives, Theorems 7.4 and 8.4. Thus we can use the machin-
ery of Cohomology on Sites, Section 2 to define the cohomology groups

Hp(Xτ ,F) = Hp
τ (X ,F) and Hp(x,F) = Hp

τ (x,F)
for any x ∈ Ob(X ) and any objectF of Ab(Xτ ) or Mod(Xτ ,OX ). Moreover, if f : X →
Y is a 1-morphism of categories fibred in groupoids over (Sch/S)fppf , then we obtain

4This functor is sometimes called the coherator.
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the higher direct images Rif∗F in Ab(Yτ ) or Mod(Yτ ,OY). Of course, as explained in
Cohomology on Sites, Section 3 there are also derived versions of Hp(−) and Rif∗.

Lemma 16.1. LetS be a scheme. LetX be a category fibred in groupoids over (Sch/S)fppf .
Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) be an object lying
over the scheme U . Let F be an object of Ab(Xτ ) or Mod(Xτ ,OX ). Then

Hp
τ (x,F) = Hp((Sch/U)τ , x−1F)

and if τ = étale, then we also have

Hp
étale(x,F) = Hp(Uétale,F|Uétale).

Proof. The first statement follows from Cohomology on Sites, Lemma 7.1 and the
equivalence of Lemma 9.4. The second statement follows from the first combined with
Étale Cohomology, Lemma 20.3. �

17. Injective sheaves

The pushforward of an injective abelian sheaf or module is injective.

Lemma 17.1. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.

(1) f∗I is injective in Ab(Yτ ) for I injective in Ab(Xτ ), and
(2) f∗I is injective in Mod(Yτ ,OY) for I injective in Mod(Xτ ,OX ).

Proof. This follows formally from the fact that f−1 is an exact left adjoint of f∗, see
Homology, Lemma 29.1. �

In the rest of this section we prove that pullback f−1 has a left adjoint f! on abelian sheaves
and modules. If f is representable (by schemes or by algebraic spaces), then it will turn out
that f! is exact and f−1 will preserve injectives. We first prove a few preliminary lemmas
about fibre products and equalizers in categories fibred in groupoids and their behaviour
with respect to morphisms.

Lemma 17.2. Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The category X has fibre products.
(2) If the Isom-presheaves of X are representable by algebraic spaces, then X has

equalizers.
(3) If X is an algebraic stack (or more generally a quotient stack), then X has equal-

izers.

Proof. Part (1) follows Categories, Lemma 35.15 as (Sch/S)fppf has fibre products.

Let a, b : x → y be morphisms of X . Set U = p(x) and V = p(y). The category of
schemes has equalizers hence we can letW → U be the equalizer of p(a) and p(b). Denote
c : z → x a morphism ofX lying overW → U . The equalizer of a and b, if it exists, is the
equalizer of a ◦ c and b ◦ c. Thus we may assume that p(a) = p(b) = f : U → V . As X
is fibred in groupoids, there exists a unique automorphism i : x→ x in the fibre category
of X over U such that a ◦ i = b. Again the equalizer of a and b is the equalizer of idx
and i. Recall that the IsomX (x) is the presheaf on (Sch/U)fppf which to T/U associates
the set of automorphisms of x|T in the fibre category of X over T , see Stacks, Definition
2.2. If IsomX (x) is representable by an algebraic space G → U , then we see that idx and
i define morphisms e, i : U → G over U . Set M = U ×e,G,i U , which by Morphisms of
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Spaces, Lemma 4.7 is a scheme. Then it is clear that x|M → x is the equalizer of the maps
idx and i in X . This proves (2).

If X = [U/R] for some groupoid in algebraic spaces (U,R, s, t, c) over S , then the hy-
pothesis of (2) holds by Bootstrap, Lemma 11.5. If X is an algebraic stack, then we can
choose a presentation [U/R] ∼= X by Algebraic Stacks, Lemma 16.2. �

Lemma 17.3. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf .

(1) The functor f transforms fibre products into fibre products.
(2) If f is faithful, then f transforms equalizers into equalizers.

Proof. By Categories, Lemma 35.15 we see that a fibre product in X is any commu-
tative square lying over a fibre product diagram in (Sch/S)fppf . Similarly for Y . Hence
(1) is clear.

Let x → x′ be the equalizer of two morphisms a, b : x′ → x′′ in X . We will show that
f(x) → f(x′) is the equalizer of f(a) and f(b). Let y → f(x) be a morphism of Y
equalizing f(a) and f(b). Say x, x′, x′′ lie over the schemes U,U ′, U ′′ and y lies over V .
Denote h : V → U ′ the image of y → f(x) in the category of schemes. The morphism
y → f(x) is isomorphic to f(h∗x′)→ f(x′) by the axioms of fibred categories. Hence, as
f is faithful, we see that h∗x′ → x′ equalizes a and b. Thus we obtain a unique morphism
h∗x′ → x whose image y = f(h∗x′)→ f(x) is the desired morphism in Y . �

Lemma 17.4. Let f : X → Y , g : Z → Y be faithful 1-morphisms of categories
fibred in groupoids over (Sch/S)fppf .

(1) the functor X ×Y Z → Y is faithful, and
(2) if X ,Z have equalizers, so does X ×Y Z .

Proof. We think of objects in X ×Y Z as quadruples (U, x, z, α) where α : f(x)→
g(z) is an isomorphism over U , see Categories, Lemma 32.3. A morphism (U, x, z, α) →
(U ′, x′, z′, α′) is a pair of morphisms a : x → x′ and b : z → z′ compatible with α and
α′. Thus it is clear that if f and g are faithful, so is the functor X ×Y Z → Y . Now,
suppose that (a, b), (a′, b′) : (U, x, z, α) → (U ′, x′, z′, α′) are two morphisms of the 2-
fibre product. Then consider the equalizer x′′ → x of a and a′ and the equalizer z′′ → z
of b and b′. Since f commutes with equalizers (by Lemma 17.3) we see that f(x′′)→ f(x)
is the equalizer of f(a) and f(a′). Similarly, g(z′′) → g(z) is the equalizer of g(b) and
g(b′). Picture

f(x′′) //

α′′

��

f(x)

α

��

f(a) //
f(a′)

// f(x′)

α′

��
g(z′′) // g(z)

g(b) //
g(b′)

// g(z′)

It is clear that the dotted arrow exists and is an isomorphism. However, it is not a priori
the case that the image of α′′ in the category of schemes is the identity of its source. On
the other hand, the existence of α′′ means that we can assume that x′′ and z′′ are defined
over the same scheme and that the morphisms x′′ → x and z′′ → z have the same image
in the category of schemes. Redoing the diagram above we see that the dotted arrow now
does project to an identity morphism and we win. Some details omitted. �
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As we are working with big sites we have the following somewhat counter intuitive result
(which also holds for morphisms of big sites of schemes). Warning: This result isn’t true
if we drop the hypothesis that f is faithful.

Lemma 17.5. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor f−1 :
Ab(Yτ ) → Ab(Xτ ) has a left adjoint f! : Ab(Xτ ) → Ab(Yτ ). If f is faithful and X has
equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Ab(Xτ ) for I injective in Ab(Yτ ).

Proof. By Stacks, Lemma 10.3 the functor f is continuous and cocontinuous. Hence
by Modules on Sites, Lemma 16.2 the functor f−1 : Ab(Yτ ) → Ab(Xτ ) has a left adjoint
f! : Ab(Xτ ) → Ab(Yτ ). To see (1) we apply Modules on Sites, Lemma 16.3 and to see
that the hypotheses of that lemma are satisfied use Lemmas 17.2 and 17.3 above. Part (2)
follows from this formally, see Homology, Lemma 29.1. �

Lemma 17.6. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor f∗ :
Mod(Yτ ,OY) → Mod(Xτ ,OX ) has a left adjoint f! : Mod(Xτ ,OX ) → Mod(Yτ ,OY)
which agrees with the functor f! of Lemma 17.5 on underlying abelian sheaves. If f is
faithful and X has equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Mod(Xτ ,OX ) for I injective in Mod(Yτ ,OX ).

Proof. Recall that f is a continuous and cocontinuous functor of sites and that f−1OY =
OX . Hence Modules on Sites, Lemma 41.1 implies f∗ has a left adjoint fMod

! . Let x be an
object of X lying over the scheme U . Then f induces an equivalence of ringed sites

X/x −→ Y/f(x)
as both sides are equivalent to (Sch/U)τ , see Lemma 9.4. Modules on Sites, Remark 41.2
shows that f! agrees with the functor on abelian sheaves.

Assume now that X has equalizers and that f is faithful. Lemma 17.5 tells us that f! is
exact. Finally, Homology, Lemma 29.1 implies the statement on pullbacks of injective
modules. �

18. The Čech complex

To compute the cohomology of a sheaf on an algebraic stack we compare it to the coho-
mology of the sheaf restricted to coverings of the given algebraic stack.

Throughout this section the situation will be as follows. We are given a 1-morphism of
categories fibred in groupoids

(18.0.1)

U
f

//

q %%

X

pyy
(Sch/S)fppf

We are going to think about U as a “covering” of X . Hence we want to consider the
simplicial object

U ×X U ×X U
////// U ×X U //// U



18. THE ČECH COMPLEX 6601

in the category of categories fibred in groupoids over (Sch/S)fppf . However, since this
is a (2, 1)-category and not a category, we should say explicitly what we mean. Namely,
we let Un be the category with objects (u0, . . . , un, x, α0, . . . , αn) where αi : f(ui)→ x
is an isomorphism in X . We denote fn : Un → X the 1-morphism which assigns to
(u0, . . . , un, x, α0, . . . , αn) the object x. Note that U0 = U and f0 = f . Given a map
ϕ : [m]→ [n] we consider the 1-morphism Uϕ : Un −→ Un given by

(u0, . . . , un, x, α0, . . . , αn) 7−→ (uϕ(0), . . . , uϕ(m), x, αϕ(0), . . . , αϕ(m))

on objects. All of these 1-morphisms compose correctly on the nose (no 2-morphisms
required) and all of these 1-morphisms are 1-morphisms over X . We denote U• this sim-
plicial object. If F is a presheaf of sets on X , then we obtain a cosimplicial set

Γ(U0, f
−1
0 F) //// Γ(U1, f

−1
1 F) ////// Γ(U2, f

−1
2 F)

Here the arrows are the pullback maps along the given morphisms of the simplicial object.
If F is a presheaf of abelian groups, this is a cosimplicial abelian group.

Let U → X be as above and let F be an abelian presheaf on X . The Čech complex asso-
ciated to the situation is denoted Č•(U → X ,F). It is the cochain complex associated to
the cosimplicial abelian group above, see Simplicial, Section 25. It has terms

Čn(U → X ,F) = Γ(Un, f−1
n F).

The boundary maps are the maps

dn =
∑n+1

i=0
(−1)iδn+1

i : Γ(Un, f−1
n F) −→ Γ(Un+1, f

−1
n+1F)

where δn+1
i corresponds to the map [n] → [n + 1] omitting the index i. Note that the

map Γ(X ,F)→ Γ(U0, f
−1
0 F0) is in the kernel of the differential d0. Hence we define the

extended Čech complex to be the complex

. . .→ 0→ Γ(X ,F)→ Γ(U0, f
−1
0 F0)→ Γ(U1, f

−1
1 F1)→ . . .

with Γ(X ,F) placed in degree −1. The extended Čech complex is acyclic if and only if
the canonical map

Γ(X ,F)[0] −→ Č•(U → X ,F)
is a quasi-isomorphism of complexes.

Lemma 18.1. Generalities on Čech complexes.
(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,
then there is a morphism of Čech complexes

Č•(U → X ,F) −→ Č•(V → Y, e−1F)

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated Čech complexes are

isomorphic.
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Proof. In the situation of (1) let t : f ◦ h → e ◦ g be a 2-morphism. The map on
complexes is given in degree n by pullback along the 1-morphisms Vn → Un given by the
rule

(v0, . . . , vn, y, β0, . . . , βn) 7−→ (h(v0), . . . , h(vn), e(y), e(β0) ◦ tv0 , . . . , e(βn) ◦ tvn).

For (2), note that pullback on global sections is an isomorphism for any presheaf of sets
when the pullback is along an equivalence of categories. Part (3) follows on combining (1)
and (2). �

Lemma 18.2. If there exists a 1-morphism s : X → U such that f ◦ s is 2-isomorphic
to idX then the extended Čech complex is homotopic to zero.

Proof. SetU ′ = U×XX equal to the fibre product as described in Categories, Lemma
32.3. Set f ′ : U ′ → X equal to the second projection. Then U → U ′, u 7→ (u, f(x), 1)
is an equivalence over X , hence we may replace (U , f) by (U ′, f ′) by Lemma 18.1. The
advantage of this is that now f ′ has a section s′ such that f ′ ◦ s′ = idX on the nose.
Namely, if t : s ◦ f → idX is a 2-isomorphism then we can set s′(x) = (s(x), x, tx). Thus
we may assume that f ◦ s = idX .

In the case that f ◦ s = idX the result follows from general principles. We give the
homotopy explicitly. Namely, for n ≥ 0 define sn : Un → Un+1 to be the 1-morphism
defined by the rule on objects

(u0, . . . , un, x, α0, . . . , αn) 7−→ (u0, . . . , un, s(x), x, α0, . . . , αn, idx).

Define
hn+1 : Γ(Un+1, f

−1
n+1F) −→ Γ(Un, f−1

n F)

as pullback along sn. We also set s−1 = s and h0 : Γ(U0, f
−1
0 F) → Γ(X ,F) equal to

pullback along s−1. Then the family of maps {hn}n≥0 is a homotopy between 1 and 0 on
the extended Čech complex. �

19. The relative Čech complex

Let f : U → X be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf as
in (18.0.1). Consider the associated simplicial object U• and the maps fn : Un → X . Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. Finally, suppose that F is a sheaf (of sets)
on Xτ . Then

f0,∗f
−1
0 F

//// f1,∗f
−1
1 F

////// f2,∗f
−1
2 F

is a cosimplicial sheaf on Xτ where we use the pullback maps introduced in Sites, Section
45. If F is an abelian sheaf, then fn,∗f−1

n F form a cosimplicial abelian sheaf on Xτ . The
associated complex (see Simplicial, Section 25)

. . .→ 0→ f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is called the relative Čech complex associated to the situation. We will denote this complex
K•(f,F). The extended relative Čech complex is the complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

with F in degree −1. The extended relative Čech complex is acyclic if and only if the
map F [0]→ K•(f,F) is a quasi-isomorphism of complexes of sheaves.
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Remark 19.1. We can define the complex K•(f,F) also if F is a presheaf, only we
cannot use the reference to Sites, Section 45 to define the pullback maps. To explain the
pullback maps, suppose given a commutative diagram

V

g ��

h
// U

f��
X

of categories fibred in groupoids over (Sch/S)fppf and a presheaf G on U we can define
the pullback map f∗G → g∗h

−1G as the composition

f∗G −→ f∗h∗h
−1G = g∗h

−1G
where the map comes from the adjunction map G → h∗h

−1G. This works because in our
situation the functors h∗ and h−1 are adjoint in presheaves (and agree with their counter
parts on sheaves). See Sections 3 and 4.

Lemma 19.2. Generalities on relative Čech complexes.
(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,
then there is a morphism e−1K•(f,F)→ K•(g, e−1F).

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated relative Čech complexes

are isomorphic,

Proof. Literally the same as the proof of Lemma 18.1 using the pullback maps of
Remark 19.1. �

Lemma 19.3. If there exists a 1-morphism s : X → U such that f ◦ s is 2-isomorphic
to idX then the extended relative Čech complex is homotopic to zero.

Proof. Literally the same as the proof of Lemma 18.2. �

Remark 19.4. Let us “compute” the value of the relative Čech complex on an object
x of X . Say p(x) = U . Consider the 2-fibre product diagram (which serves to introduce
the notation g : V → Y)

V

g

��

(Sch/U)fppf ×x,X U //

��

U

f

��
Y (Sch/U)fppf

x // X

Note that the morphism Vn → Un of the proof of Lemma 18.1 induces an equivalence
Vn = (Sch/U)fppf ×x,X Un. Hence we see from (5.0.1) that

Γ(x,K•(f,F)) = Č•(V → Y, x−1F)
In words: The value of the relative Čech complex on an object x ofX is the Čech complex
of the base change of f toX/x ∼= (Sch/U)fppf . This implies for example that Lemma 18.2
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implies Lemma 19.3 and more generally that results on the (usual) Čech complex imply
results for the relative Čech complex.

Lemma 19.5. Let
V
g

��

h
// U

f

��
Y e // X

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf and let F be an
abelian presheaf on X . Then the map e−1K•(f,F) → K•(g, e−1F) of Lemma 19.2 is an
isomorphism of complexes of abelian presheaves.

Proof. Let y be an object of Y lying over the scheme T . Set x = e(y). We are going
to show that the map induces an isomorphism on sections over y. Note that

Γ(y, e−1K•(f,F)) = Γ(x,K•(f,F)) = Č•((Sch/T )fppf×x,XU → (Sch/T )fppf , x−1F)

by Remark 19.4. On the other hand,

Γ(y,K•(g, e−1F)) = Č•((Sch/T )fppf ×y,Y V → (Sch/T )fppf , y−1e−1F)

also by Remark 19.4. Note that y−1e−1F = x−1F and since the diagram is 2-cartesian
the 1-morphism

(Sch/T )fppf ×y,Y V → (Sch/T )fppf ×x,X U
is an equivalence. Hence the map on sections over y is an isomorphism by Lemma 18.1. �

Exactness can be checked on a “covering”.

Lemma 19.6. Let f : U → X be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let

F → G → H

be a complex in Ab(Xτ ). Assume that
(1) for every object x ofX there exists a covering {xi → x} inXτ such that each xi

is isomorphic to f(ui) for some object ui of U , and
(2) f−1F → f−1G → f−1H is exact.

Then the sequence F → G → H is exact.

Proof. Let x be an object of X lying over the scheme T . Consider the sequence
x−1F → x−1G → x−1H of abelian sheaves on (Sch/T )τ . It suffices to show this se-
quence is exact. By assumption there exists a τ -covering {Ti → T} such that x|Ti is iso-
morphic to f(ui) for some object ui of U over Ti and moreover the sequence u−1

i f−1F →
u−1
i f−1G → u−1

i f−1H of abelian sheaves on (Sch/Ti)τ is exact. Since u−1
i f−1F =

x−1F|(Sch/Ti)τ we conclude that the sequence x−1F → x−1G → x−1H become exact
after localizing at each of the members of a covering, hence the sequence is exact. �

Proposition 19.7. Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. If

(1) F is an abelian sheaf on Xτ , and
(2) for every object x ofX there exists a covering {xi → x} inXτ such that each xi

is isomorphic to f(ui) for some object ui of U ,
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then the extended relative Čech complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is exact in Ab(Xτ ).

Proof. By Lemma 19.6 it suffices to check exactness after pulling back to U . By
Lemma 19.5 the pullback of the extended relative Čech complex is isomorphic to the ex-
tend relative Čech complex for the morphism U ×X U → U and an abelian sheaf on Uτ .
Since there is a section ∆U/X : U → U ×X U exactness follows from Lemma 19.3. �

Using this we can construct the Čech-to-cohomology spectral sequence as follows. We
first give a technical, precise version. In the next section we give a version that applies
only to algebraic stacks.

Lemma 19.8. Let f : U → X be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x ofX there exists a covering {xi → x} inXτ such that each xi

is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian groups

Ep,q1 = Hq((Up)τ , f−1
p F)⇒ Hp+q(Xτ ,F)

converging to the cohomology of F in the τ -topology.

Proof. Before we start the proof we make some remarks. By Lemma 17.4 (and induc-
tion) all of the categories fibred in groupoids Up have equalizers and all of the morphisms
fp : Up → X are faithful. Let I be an injective object of Ab(Xτ ). By Lemma 17.5 we see
f−1
p I is an injective object of Ab((Up)τ ). Hence fp,∗f−1

p I is an injective object of Ab(Xτ )
by Lemma 17.1. Hence Proposition 19.7 shows that the extended relative Čech complex

. . .→ 0→ I → f0,∗f
−1
0 I → f1,∗f

−1
1 I → f2,∗f

−1
2 I → . . .

is an exact complex in Ab(Xτ ) all of whose terms are injective. Taking global sections of
this complex is exact and we see that the Čech complex Č•(U → X , I) is quasi-isomorphic
to Γ(Xτ , I)[0].
With these preliminaries out of the way consider the two spectral sequences associated to
the double complex (see Homology, Section 25)

Č•(U → X , I•)
where F → I• is an injective resolution in Ab(Xτ ). The discussion above shows that
Homology, Lemma 25.4 applies which shows that Γ(Xτ , I•) is quasi-isomorphic to the
total complex associated to the double complex. By our remarks above the complex f−1

p I•

is an injective resolution of f−1
p F . Hence the other spectral sequence is as indicated in the

lemma. �

To be sure there is a version for modules as well.

Lemma 19.9. Let f : U → X be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),
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(2) for every object x ofX there exists a covering {xi → x} inXτ such that each xi
is isomorphic to f(ui) for some object ui of U ,

(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of Γ(OX )-modules
Ep,q1 = Hq((Up)τ , f∗

pF)⇒ Hp+q(Xτ ,F)
converging to the cohomology of F in the τ -topology.

Proof. The proof of this lemma is identical to the proof of Lemma 19.8 except that
it uses an injective resolution in Mod(Xτ ,OX ) and it uses Lemma 17.6 instead of Lemma
17.5. �

Here is a lemma that translates a more usual kind of covering in the kinds of coverings we
have encountered above.

Lemma 19.10. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf .

(1) Assume that f is representable by algebraic spaces, surjective, flat, and locally
of finite presentation. Then for any object y of Y there exists an fppf covering
{yi → y} and objects xi of X such that f(xi) ∼= yi in Y .

(2) Assume that f is representable by algebraic spaces, surjective, and smooth. Then
for any object y of Y there exists an étale covering {yi → y} and objects xi ofX
such that f(xi) ∼= yi in Y .

Proof. Proof of (1). Suppose that y lies over the scheme V . We may think of y as a
morphism (Sch/V )fppf → Y . By definition the 2-fibre product X ×Y (Sch/V )fppf is
representable by an algebraic space W and the morphism W → V is surjective, flat, and
locally of finite presentation. Choose a schemeU and a surjective étale morphismU →W .
Then U → V is also surjective, flat, and locally of finite presentation (see Morphisms of
Spaces, Lemmas 39.7, 39.8, 5.4, 28.2, and 30.3). Hence {U → V } is an fppf covering.
Denote x the object of X over U corresponding to the 1-morphism (Sch/U)fppf → X .
Then {f(x)→ y} is the desired fppf covering of Y .
Proof of (2). Suppose that y lies over the scheme V . We may think of y as a morphism
(Sch/V )fppf → Y . By definition the 2-fibre productX ×Y (Sch/V )fppf is representable
by an algebraic space W and the morphism W → V is surjective and smooth. Choose a
scheme U and a surjective étale morphism U → W . Then U → V is also surjective
and smooth (see Morphisms of Spaces, Lemmas 39.6, 5.4, and 37.2). Hence {U → V } is
a smooth covering. By More on Morphisms, Lemma 38.7 there exists an étale covering
{Vi → V } such that each Vi → V factors through U . Denote xi the object of X over Vi
corresponding to the 1-morphism

(Sch/Vi)fppf → (Sch/U)fppf → X .
Then {f(xi)→ y} is the desired étale covering of Y . �

Lemma 19.11. Let f : U → X and g : X → Y be composable 1-morphisms of cat-
egories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x ofX there exists a covering {xi → x} inXτ such that each xi

is isomorphic to f(ui) for some object ui of U ,
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(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian sheaves on Yτ
Ep,q1 = Rq(g ◦ fp)∗f

−1
p F ⇒ Rp+qg∗F

where all higher direct images are computed in the τ -topology.

Proof. Note that the assumptions on f : U → X and F are identical to those in
Lemma 19.8. Hence the preliminary remarks made in the proof of that lemma hold here
also. These remarks imply in particular that

0→ g∗I → (g ◦ f0)∗f
−1
0 I → (g ◦ f1)∗f

−1
1 I → . . .

is exact if I is an injective object of Ab(Xτ ). Having said this, consider the two spectral
sequences of Homology, Section 25 associated to the double complex C•,• with terms

Cp,q = (g ◦ fp)∗Iq

whereF → I• is an injective resolution in Ab(Xτ ). The first spectral sequence implies, via
Homology, Lemma 25.4, that g∗I• is quasi-isomorphic to the total complex associated to
C•,•. Since f−1

p I• is an injective resolution of f−1
p F (see Lemma 17.5) the second spectral

sequence has terms Ep,q1 = Rq(g ◦ fp)∗f
−1
p F as in the statement of the lemma. �

Lemma 19.12. Let f : U → X and g : X → Y be composable 1-morphisms of cat-
egories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),
(2) for every object x ofX there exists a covering {xi → x} inXτ such that each xi

is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence in Mod(Yτ ,OY)
Ep,q1 = Rq(g ◦ fp)∗f

−1
p F ⇒ Rp+qg∗F

where all higher direct images are computed in the τ -topology.

Proof. The proof is identical to the proof of Lemma 19.11 except that it uses an in-
jective resolution in Mod(Xτ ,OX ) and it uses Lemma 17.6 instead of Lemma 17.5. �

20. Cohomology on algebraic stacks

Let X be an algebraic stack over S. In the sections above we have seen how to define
sheaves for the étale, ..., fppf topologies on X . In fact, we have constructed a site Xτ for
each τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a notion of an abelian sheaf
F on these sites. In the chapter on cohomology of sites we have explained how to define
cohomology. Putting all of this together, let’s define the derived global sections or total
cohomology

RΓZar(X ,F), RΓétale(X ,F), . . . , RΓfppf (X ,F)
as Γ(Xτ , I•) where F → I• is an injective resolution in Ab(Xτ ). The ith cohomology
group of F is the ith cohomology of the total cohomology. We will denote this

Hi
Zar(X ,F),Hi

étale(X ,F), . . . , Hi
fppf (X ,F).

It will turn out that Hi
étale = Hi

smooth because of More on Morphisms, Lemma 38.7.
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If F is a presheaf ofOX -modules which is a sheaf in the τ -topology, then we use injective
resolutions in Mod(Xτ ,OX ) to compute its total cohomology, resp. cohomology groups;
the end result is quasi-isomorphic, resp. isomorphic to the cohomology of F viewed as a
sheaf of abelian groups by the very general Cohomology on Sites, Lemma 12.4.

So far our only tool to compute cohomology groups is the result on Čech complexes proved
above. We rephrase it here in the language of algebraic stacks for the étale and the fppf
topology. Let f : U → X be a 1-morphism of algebraic stacks. Recall that

fp : Up = U ×X . . .×X U −→ X
is the structure morphism where there are (p + 1)-factors. Also, recall that a sheaf on X
is a sheaf for the fppf topology. Note that if U is an algebraic space, then f : U → X is
representable by algebraic spaces, see Algebraic Stacks, Lemma 10.11. Thus the proposition
applies in particular to a smooth cover of the algebraic stack X by a scheme.

Proposition 20.1. Let f : U → X be a 1-morphism of algebraic stacks.
(1) LetF be an abelian étale sheaf onX . Assume that f is representable by algebraic

spaces, surjective, and smooth. Then there is a spectral sequence

Ep,q1 = Hq
étale(Up, f

−1
p F)⇒ Hp+q

étale(X ,F)

(2) Let F be an abelian sheaf on X . Assume that f is representable by algebraic
spaces, surjective, flat, and locally of finite presentation. Then there is a spectral
sequence

Ep,q1 = Hq
fppf (Up, f−1

p F)⇒ Hp+q
fppf (X ,F)

Proof. To see this we will check the hypotheses (1) – (4) of Lemma 19.8. The 1-
morphism f is faithful by Algebraic Stacks, Lemma 15.2. This proves (4). Hypothesis (3)
follows from the fact that U is an algebraic stack, see Lemma 17.2. To see (2) apply Lemma
19.10. Condition (1) is satisfied by fiat. �

21. Higher direct images and algebraic stacks

Let g : X → Y be a 1-morphism of algebraic stacks over S. In the sections above
we have constructed a morphism of ringed topoi g : Sh(Xτ ) → Sh(Yτ ) for each τ ∈
{Zar, étale, smooth, syntomic, fppf}. In the chapter on cohomology of sites we have
explained how to define higher direct images. Hence the total direct image Rg∗F is de-
fined as g∗I• where F → I• is an injective resolution in Ab(Xτ ). The ith higher direct
imageRig∗F is the ith cohomology of the total direct image. Important: it matters which
topology τ is used here!

If F is a presheaf ofOX -modules which is a sheaf in the τ -topology, then we use injective
resolutions in Mod(Xτ ,OX ) to compute total direct image and higher direct images.

So far our only tool to compute the higher direct images of g∗ is the result on Čech com-
plexes proved above. This requires the choice of a “covering” f : U → X . If U is an
algebraic space, then f : U → X is representable by algebraic spaces, see Algebraic Stacks,
Lemma 10.11. Thus the proposition applies in particular to a smooth cover of the algebraic
stack X by a scheme.

Proposition 21.1. Let f : U → X and g : X → Y be composable 1-morphisms of
algebraic stacks.

(1) Assume that f is representable by algebraic spaces, surjective and smooth.
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(a) If F is in Ab(Xétale) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Ab(Yétale) with higher direct images computed in the étale topology.
(b) If F is in Mod(Xétale,OX ) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Mod(Yétale,OY).
(2) Assume that f is representable by algebraic spaces, surjective, flat, and locally of

finite presentation.
(a) If F is in Ab(X ) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Ab(Y) with higher direct images computed in the fppf topology.
(b) If F is in Mod(OX ) then there is a spectral sequence

Ep,q1 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

in Mod(OY).

Proof. To see this we will check the hypotheses (1) – (4) of Lemma 19.11 and Lemma
19.12. The 1-morphism f is faithful by Algebraic Stacks, Lemma 15.2. This proves (4).
Hypothesis (3) follows from the fact that U is an algebraic stack, see Lemma 17.2. To see
(2) apply Lemma 19.10. Condition (1) is satisfied by fiat in all four cases. �

Here is a description of higher direct images for a morphism of algebraic stacks.

Lemma 21.2. Let S be a scheme. Let f : X → Y be a 1-morphism of algebraic
stacks5 over S. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let F be an object
of Ab(Xτ ) or Mod(Xτ ,OX ). Then the sheafRif∗F is the sheaf associated to the presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
Here y is an object of Y lying over the scheme V .

Proof. Choose an injective resolution F [0]→ I•. By the formula for pushforward
(5.0.1) we see that Rif∗F is the sheaf associated to the presheaf which associates to y the
cohomology of the complex

Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii−1
)

↓
Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii
)

↓
Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii+1
)

Since pr−1 is exact, it suffices to show that pr−1 preserves injectives. This follows from
Lemmas 17.5 and 17.6 as well as the fact that pr is a representable morphism of algebraic
stacks (so that pr is faithful by Algebraic Stacks, Lemma 15.2 and that (Sch/V )fppf×y,YX
has equalizers by Lemma 17.2). �

Here is a trivial base change result.

5This result should hold for any 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
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Lemma 21.3. LetS be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}.
Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′ g // Y

be a 2-cartesian diagram of algebraic stacks over S. Then the base change map is an iso-
morphism

g−1Rf∗F −→ Rf ′
∗(g′)−1F

functorial for F in Ab(Xτ ) or F in Mod(Xτ ,OX ).

Proof. The isomorphism g−1f∗F = f ′
∗(g′)−1F is Lemma 5.1 (and it holds for ar-

bitrary presheaves). For the total direct images, there is a base change map because the
morphisms g and g′ are flat, see Cohomology on Sites, Section 15. To see that this map
is a quasi-isomorphism we can use that for an object y′ of Y ′ over a scheme V there is an
equivalence

(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

We conclude that the induced map g−1Rif∗F → Rif ′
∗(g′)−1F is an isomorphism by

Lemma 21.2. �

22. Comparison

In this section we collect some results on comparing cohomology defined using stacks and
using algebraic spaces.

Lemma 22.1. Let S be a scheme. Let X be an algebraic stack over S representable by
the algebraic space F .

(1) If I injective in Ab(Xétale), then I|Fétale is injective in Ab(Fétale),
(2) If I• is a K-injective complex in Ab(Xétale), then I•|Fétale is a K-injective com-

plex in Ab(Fétale).
The same does not hold for modules.

Proof. This follows formally from the fact that the restriction functor πF,∗ = i−1
F

(see Lemma 10.1) is right adjoint to the exact functor π−1
F , see Homology, Lemma 29.1 and

Derived Categories, Lemma 31.9. To see that the lemma does not hold for modules, we
refer the reader to Étale Cohomology, Lemma 99.1. �

Lemma 22.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic stacks
over S. Assume X , Y are representable by algebraic spaces F , G. Denote f : F → G the
induced morphism of algebraic spaces.

(1) For any F ∈ Ab(Xétale) we have

(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)

in D(Gétale).
(2) For any object F of Mod(Xétale,OX ) we have

(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)

in D(OG).
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Proof. Part (1) follows immediately from Lemma 22.1 and (10.3.1) on choosing an
injective resolution of F .

Part (2) can be proved as follows. In Lemma 10.3 we have seen that πG ◦ f = fsmall ◦ πF
as morphisms of ringed sites. Hence we obtain RπG,∗ ◦ Rf∗ = Rfsmall,∗ ◦ RπF,∗ by
Cohomology on Sites, Lemma 19.2. Since the restriction functors πF,∗ and πG,∗ are exact,
we conclude. �

Lemma 22.3. Let S be a scheme. Consider a 2-fibre product square

X ′
g′
//

f ′

��

X

f

��
Y ′ g // Y

of algebraic stacks over S. Assume that f is representable by algebraic spaces and that Y ′

is representable by an algebraic space G′. Then X ′ is representable by an algebraic space
F ′ and denoting f ′ : F ′ → G′ the induced morphism of algebraic spaces we have

g−1(Rf∗F)|G′
étale

= Rf ′
small,∗((g′)−1F|F ′

étale
)

for any F in Ab(Xétale) or in Mod(Xétale,OX )

Proof. Follows formally on combining Lemmas 21.3 and 22.2. �

23. Change of topology

Here is a technical lemma which tells us that the fppf cohomology of a locally quasi-
coherent sheaf is equal to its étale cohomology provided the comparison maps are iso-
morphisms for morphisms of X lying over flat morphisms.

Lemma 23.1. Let S be a scheme. Let X be an algebraic stack over S. Let F be a
presheaf ofOX -modules. Assume

(a) F is locally quasi-coherent, and
(b) for any morphism ϕ : x → y of X which lies over a morphism of schemes

f : U → V which is flat and locally of finite presentation the comparison map
cϕ : f∗

smallF|Vétale → F|Uétale of (9.4.1) is an isomorphism.
Then F is a sheaf for the fppf topology.

Proof. Let {xi → x} be an fppf covering of X lying over the fppf covering {fi :
Ui → U} of schemes overS. By assumption the restriction G = F|Uétale is quasi-coherent
and the comparison maps f∗

i,smallG → F|Ui,étale are isomorphisms. Hence the sheaf con-
dition for F and the covering {xi → x} is equivalent to the sheaf condition for Ga on
(Sch/U)fppf and the covering {Ui → U} which holds by Descent, Lemma 8.1. �

Lemma 23.2. Let S be a scheme. Let X be an algebraic stack over S. Let F be a
presheafOX -module such that

(a) F is locally quasi-coherent, and
(b) for any morphism ϕ : x → y of X which lies over a morphism of schemes

f : U → V which is flat and locally of finite presentation, the comparison map
cϕ : f∗

smallF|Vétale → F|Uétale of (9.4.1) is an isomorphism.
Then F is anOX -module and we have the following

(1) If ε : Xfppf → Xétale is the comparison morphism, then Rε∗F = ε∗F .
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(2) The cohomology groupsHp
fppf (X ,F) are equal to the cohomology groups com-

puted in the étale topology onX . Similarly for the cohomology groupsHp
fppf (x,F)

and the derived versions RΓ(X ,F) and RΓ(x,F).
(3) If f : X → Y is a 1-morphism of categories fibred in groupoids over (Sch/S)fppf

then Rif∗F is equal to the fppf-sheafification of the higher direct image com-
puted in the étale cohomology. Similarly for derived pullback.

Proof. The assertion that F is an OX -module follows from Lemma 23.1. Note that
ε is a morphism of sites given by the identity functor on X . The sheafRpε∗F is therefore
the sheaf associated to the presheaf x 7→ Hp

fppf (x,F), see Cohomology on Sites, Lemma
7.4. To prove (1) it suffices to show that Hp

fppf (x,F) = 0 for p > 0 whenever x lies over
an affine scheme U . By Lemma 16.1 we have Hp

fppf (x,F) = Hp((Sch/U)fppf , x−1F).
Combining Descent, Lemma 12.4 with Cohomology of Schemes, Lemma 2.2 we see that
these cohomology groups are zero.

We have seen above that ε∗F andF are the sheaves onXétale andXfppf corresponding to
the same presheaf onX (and this is true more generally for any sheaf in the fppf topology
on X ). We often abusively identify F and ε∗F and this is the sense in which parts (2) and
(3) of the lemma should be understood. Thus part (2) follows formally from (1) and the
Leray spectral sequence, see Cohomology on Sites, Lemma 14.6.

Finally we prove (3). The sheaf Rif∗F (resp. Rfétale,∗F ) is the sheaf associated to the
presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
where τ is fppf (resp. étale), see Lemma 21.2. Note that pr−1F satisfies properties (a)
and (b) also (by Lemmas 12.3 and 9.3), hence these two presheaves are equal by (2). This
immediately implies (3). �

We will use the following lemma to compare étale cohomology of sheaves on algebraic
stacks with cohomology on the lisse-étale topos.

Lemma 23.3. Let S be a scheme. Let X be an algebraic stack over S. Let τ = étale
(resp. τ = fppf ). Let X ′ ⊂ X be a full subcategory with the following properties

(1) if x → x′ is a morphism of X which lies over a smooth (resp. flat and locally
finitely presented) morphism of schemes and x′ ∈ Ob(X ′), then x ∈ Ob(X ′),
and

(2) there exists an object x ∈ Ob(X ′) lying over a schemeU such that the associated
1-morphism x : (Sch/U)fppf → X is smooth and surjective.

We get a site X ′
τ by declaring a covering of X ′ to be any family of morphisms {xi → x}

in X ′ which is a covering in Xτ . Then the inclusion functor X ′ → Xτ is fully faithful,
cocontinuous, and continuous, whence defines a morphism of topoi

g : Sh(X ′
τ ) −→ Sh(Xτ )

and Hp(X ′
τ , g

−1F) = Hp(Xτ ,F) for all p ≥ 0 and all F ∈ Ab(Xτ ).

Proof. Note that assumption (1) implies that if {xi → x} is a covering of Xτ and
x ∈ Ob(X ′), then we have xi ∈ Ob(X ′). Hence we see that X ′ → X is continuous and
cocontinuous as the coverings of objects of X ′

τ agree with their coverings seen as objects
of Xτ . We obtain the morphism g and the functor g−1 is identified with the restriction
functor, see Sites, Lemma 21.5.
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In particular, if {xi → x} is a covering in X ′
τ , then for any abelian sheaf F on X then

Ȟp({xi → x}, g−1F) = Ȟp({xi → x},F)

Thus if I is an injective abelian sheaf on Xτ then we see that the higher Čech coho-
mology groups are zero (Cohomology on Sites, Lemma 10.2). Hence Hp(x, g−1I) = 0
for all objects x of X ′ (Cohomology on Sites, Lemma 10.9). In other words injective
abelian sheaves on Xτ are right acyclic for the functor H0(x, g−1−). It follows that
Hp(x, g−1F) = Hp(x,F) for all F ∈ Ab(X ) and all x ∈ Ob(X ′).

Choose an object x ∈ X ′ lying over a schemeU as in assumption (2). In particularX/x→
X is a morphism of algebraic stacks which representable by algebraic spaces, surjective,
and smooth. (Note that X/x is equivalent to (Sch/U)fppf , see Lemma 9.1.) The map of
sheaves

hx −→ ∗
in Sh(Xτ ) is surjective. Namely, for any object x′ ofX there exists a τ -covering {x′

i → x′}
such that there exist morphisms x′

i → x, see Lemma 19.10. Since g is exact, the map of
sheaves

g−1hx −→ ∗ = g−1∗
in Sh(X ′

τ ) is surjective also. Let hx,n be the (n+ 1)-fold product hx × . . .× hx. Then we
have spectral sequences

(23.3.1) Ep,q1 = Hq(hx,p,F)⇒ Hp+q(Xτ ,F)

and

(23.3.2) Ep,q1 = Hq(g−1hx,p, g
−1F)⇒ Hp+q(X ′

τ , g
−1F)

see Cohomology on Sites, Lemma 13.2.

Case I: X has a final object x which is also an object of X ′. This case follows immediately
from the discussion in the second paragraph above.

Case II: X is representable by an algebraic space F . In this case the sheaves hx,n are rep-
resentable by an object xn in X . (Namely, if SF = X and x : U → F is the given
object, then hx,n is representable by the object U ×F . . . ×F U → F of SF .) It follows
that Hq(hx,p,F) = Hq(xp,F). The morphisms xn → x lie over smooth morphisms of
schemes, hence xn ∈ X ′ for all n. Hence Hq(g−1hx,p, g

−1F) = Hq(xp, g−1F). Thus in
the two spectral sequences (23.3.1) and (23.3.2) above the Ep,q1 terms agree by the discus-
sion in the second paragraph. The lemma follows in Case II as well.

Case III: X is an algebraic stack. We claim that in this case the cohomology groups
Hq(hx,p,F) and Hq(g−1hx,n, g

−1F) agree by Case II above. Once we have proved this
the result will follow as before.

Namely, consider the categoryX/hx,n, see Sites, Lemma 30.3. Sincehx,n is the (n+1)-fold
product of hx an object of this category is an (n + 2)-tuple (y, s0, . . . , sn) where y is an
object ofX and each si : y → x is a morphism ofX . This is a category over (Sch/S)fppf .
There is an equivalence

X/hx,n −→ (Sch/U)fppf ×X . . .×X (Sch/U)fppf =: Un
over (Sch/S)fppf . Namely, if x : (Sch/U)fppf → X also denotes the 1-morphism as-
sociated with x and p : X → (Sch/S)fppf the structure functor, then we can think of
(y, s0, . . . , sn) as (y, f0, . . . , fn, α0, . . . , αn) where y is an object of X , fi : p(y) → p(x)



6614 96. SHEAVES ON ALGEBRAIC STACKS

is a morphism of schemes, and αi : y → x(fi) an isomorphism. The category of 2n + 3-
tuples (y, f0, . . . , fn, α0, . . . , αn) is an incarnation of the (n+ 1)-fold fibred product Un
of algebraic stacks displayed above, as we discussed in Section 18. By Cohomology on Sites,
Lemma 13.3 we have

Hp(Un,F|Un) = Hp(X/hx,n,F|X/hx,n) = Hp(hx,n,F).

Finally, we discuss the “primed” analogue of this. Namely, X ′/hx,n corresponds, via the
equivalence above to the full subcategoryU ′

n ⊂ Un consisting of those tuples (y, f0, . . . , fn, α0, . . . , αn)
with y ∈ X ′. Hence certainly property (1) of the statement of the lemma holds for the
inclusion U ′

n ⊂ Un. To see property (2) choose an object ξ = (y, s0, . . . , sn) which lies
over a scheme W such that (Sch/W )fppf → Un is smooth and surjective (this is possible
as Un is an algebraic stack). Then (Sch/W )fppf → Un → (Sch/U)fppf is smooth as a
composition of base changes of the morphismx : (Sch/U)fppf → X , see Algebraic Stacks,
Lemmas 10.6 and 10.5. Thus axiom (1) for X implies that y is an object of X ′ whence ξ is
an object of U ′

n. Using again

Hp(U ′
n,F|U ′

n
) = Hp(X ′/hx,n,F|X ′/hx,n) = Hp(g−1hx,n, g

−1F).

we now can use Case II for U ′
n ⊂ Un to conclude. �

24. Restricting to affines

In this section, given a categoryX fibred in groupoids over (Sch/S)fppf we will consider
the full subcategoryXaffine ofX consisting of objects x lying over affine schemes U . We
will see how, for any topology τ finer than the Zariski topology, the category of sheaves
on X and Xaffine,τ agree.

Definition 24.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. The
associated affine site is the full subcategory Xaffine of X whose objects are those x ∈
Ob(X ) lying over a scheme U such that U is affine. The topology on Xaffine will be the
chaotic one, i.e., such that sheaves on Xaffine are the same as presheaves.

Thus the functor p : X → (Sch/S)fppf restricts to a functor

p : Xaffine −→ (Aff/S)fppf
where the notation on the right hand side is the one introduced in Topologies, Defini-
tion 7.8. It is clear that Xaffine is fibred in groupoids over (Aff/S)fppf . It follows that
Xaffine inherits a Zariski, étale, smooth, syntomic, and fppf topology from (Aff/S)Zar ,
(Aff/S)étale, (Aff/S)smooth, (Aff/S)syntomic, and (Aff/S)fppf , see Stacks, Definition
10.2.

Definition 24.2. Let p : X → (Sch/S)fppf be a category fibred in groupoids.
(1) The associated affine Zariski site Xaffine,Zar is the structure of site on Xaffine

inherited from (Aff/S)Zar.
(2) The associated affine étale site Xaffine,étale is the structure of site on Xaffine

inherited from (Aff/S)étale.
(3) The associated affine smooth siteXaffine,smooth is the structure of site onXaffine

inherited from (Aff/S)smooth.
(4) The associated affine syntomic site Xaffine,syntomic is the structure of site on
Xaffine inherited from (Aff/S)syntomic.

(5) The associated affine fppf site Xaffine,fppf is the structure of site on Xaffine
inherited from (Aff/S)fppf .
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This definition makes sense by the discussion above. For each τ ∈ {Zariski, étale, smooth, syntomic, fppf}
a family of morphisms {xi → x}i∈I with fixed target inXaffine is a covering inXaffine,τ
if and only if the family of morphisms {p(xi)→ p(x)}i∈I of affine schemes is a standard
τ -covering as defined in Topologies, Definitions 3.4, 4.5, 5.5, 6.5, and 7.5.

Lemma 24.3. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let τ ∈
{Zariski, étale, smooth, syntomic, fppf}. The functor Xaffine,τ → Xτ is a special
cocontinuous functor. Hence it induces an equivalence of topoi from Sh(Xaffine,τ ) to
Sh(Xτ ).

Proof. Omitted. Hint: the proof is exactly the same as the proof of Topologies,
Lemmas 3.10, 4.11, 5.9, 6.9, and 7.11. �

Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let us denote O the restric-
tion ofOX to Xaffine. ThenO is a sheaf in the Zariski, étale, smooth, syntomic, and fppf
topologies on Xaffine. Furthermore, the equivalence of topoi of Lemma 24.3 extends to
an equivalence

(24.3.1) (Sh(Xaffine,τ ),O) −→ (Sh(Xτ ),OX )

of ringed topoi for τ ∈ {Zariski, étale, smooth, syntomic, fppf}.

25. Quasi-coherent modules and affines

Let p : X → (Sch/S)fppf be a category fibred in groupoids. In Section 24 we have
associated to this a ringed site (Xaffine,O).

Lemma 25.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F be
anO-module on Xaffine. The following are equivalent

(1) for every morphism x→ x′ of Xaffine the map F(x′)⊗O(x′) O(x)→ F(x) is
an isomorphism,

(2) F is a quasi-coherent module on (Xaffine,O) in the sense of Modules on Sites,
Definition 23.1,

(3) F is a sheaf for the Zariski topology onXaffine and a quasi-coherent module on
(Xaffine,Zar,O) in the sense of Modules on Sites, Definition 23.1,

(4) same as in (3) for the étale topology,
(5) same as in (3) for the smooth topology,
(6) same as in (3) for the syntomic topology,
(7) same as in (3) for the fppf topology, and
(8) F corresponds to a quasi-coherent module on X via the equivalence (24.3.1).

Proof. To make sense out of part (2), recall thatXaffine is a site gotten by endowing
the category Xaffine with the chaotic topology (Definition 24.1) and hence a sheaf ofO-
modulesF is the same thing as a presheaf ofO-modules. Conditions (1) and (2) are equiva-
lent by Modules on Sites, Lemma 24.2. Observe that for τ ∈ {Zariski, étale, smooth, syntomic, fppf}
the presheaf F is a τ -sheaf if and only if for all x ∈ Ob(Xaffine) the restriction to
Xaffine/x is a τ -sheaf. Set U = p(x). Similarly to the discussion in Section 9 the ob-
ject x of Xaffine induces an equivalence Xaffine,étale/x→ (Aff/U)étale of sites. In this
way we see that the equivalence of (1) with (3) – (7) follows from Descent, Lemma 11.1
applied to each of these sites. The equivalence of (8) and (7) is immediate from the fact
that “being quasi-coherent” is an intrinsic property of sheaves of modules, see Modules on
Sites, Section 18 �
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Lemma 25.2. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F be
anO-module on Xaffine. The following are equivalent

(1) for every morphism x → x′ of Xaffine such that p(x) → p(x′) is an étale
morphism (of affine schemes), the map F(x′) ⊗O(x′) O(x) → F(x) is an iso-
morphism,

(2) F is a sheaf for the étale topology on Xaffine and for every object x of Xaffine
the restriction x∗F|Uaffine,étale is quasi-coherent where U = p(x),

(3) F corresponds to a locally quasi-coherent module onX via the equivalence (24.3.1)
for the étale topology.

Proof. To make sense out of condition (2), recall thatUaffine,étale is the full subcat-
egory of Uétale consisting of affine objects, see Topologies, Definition 4.8. Similarly to the
discussion in Section 9 the object x of Xaffine induces an equivalence Xaffine,étale/x→
(Aff/U)étale of sites. Then x∗F is the sheaf of modules on (Aff/U)étale corresponding to
the restrictionF|Xaffine,étale/x. Finally, using the continuous and cocontinuous inclusion
functorUaffine,étale → (Aff/U)étale we can further restrict and obtain x∗F|Uaffine,étale .

The equivalence of (1) and (2) follows from the remarks above and Descent, Lemma 11.2
applied to the restriction ofF to Uaffine,étale for every object x ofX lying over an affine
scheme U . The equivalence of (2) and (3) is immediate from the definitions and the fact
that quasi-coherent modules on Uaffine,étale and Uétale correspond (again by Descent,
Lemma 11.2 for example). �

26. Quasi-coherent objects in the derived category

Algebraic geometers have contemplated invariants for non-representable functorsX (val-
ued in sets or groupoids) on Sch/S for decades. For instance, before the notion of a stack
was invented, Mumford defined [?] the Picard groupoid Pic(X) for the moduli functorX
of elliptic curves as the 2-limit Pic(U) over the category of all schemes U equipped with
a map toX (i.e., with a family of elliptic curves). Similarly, Beilinson-Drinfeld defined [?]
the category QCoh(X) for an ind-scheme X = colimXi as the 2-limit lim QCoh(Xi).
This strategy is sufficient for defining 1-categorical invariants like QCoh(−), but inad-
equate for derived categorical ones (such as the quasi-coherent derived category) as 2-
limits of triangulated categories are poorly behaved. With the advent of higher categor-
ical technology and derived algebraic geometry, this problem can be resolved gracefully:
one can define the quasi-coherent derived ∞-category Dqc(X) of the functor X as the
limit limDqc(U), where U ranges over all derived affines over X (see [?]).

The goal of this section is to attach a triangulated category QC (X) to a functorX (valued
in sets or groupoids) as above. In fact, the construction works for any category p : X →
(Sch/S)fppf fibred in groupoids (not just split ones). In good cases, the category QC (X )
can be shown to agree with the homotopy category of Dqc(X ), though it is outside the
scope of this document to explain this comparison. The salient features of the construction
are:

(a) QC (X ) is a full subcategory of D(Xaffine,O) by construction,
(b) QC (X ) agrees withDQCoh(OX) whenX is representable by the algebraic space

X ,
(c) QC (X ) agrees with DQCoh(OX ) when X is an algebraic stack,
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(d) when X = Spf(A) is an affine formal algebraic space attached to a noetherian
ring A equipped with the I-adic topology for an ideal I , the triangulated cate-
gory QC (X) agrees with the full subcategory Dcomp(A, I) ⊂ D(A) of derived
complete objects.

These results are proven in Proposition 26.4, Derived Categories of Stacks, Proposition
8.4, and Proposition 26.5.
As a motivation for the precise definition of QC (X ) we point the reader to the charac-
terization, in Lemma 25.1, of quasi-coherent modules onX as presheaves ofO-modules on
Xaffine which satisfy a kind of base change property.

Definition 26.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
O be the sheaf of rings on Xaffine introduced in Section 24. We define the triangulated
category of quasi-coherent objects in the derived category by the formula

QC (X ) = QC (Xaffine,O)
where the right hand side is as defined in Cohomology on Sites, Definition 43.1.

Note that this makes sense as Xaffine is a category and is viewed as a site by endowing it
with the chaotic topology andO is a sheaf of rings on this category, exactly as required in
Cohomology on Sites, Definition 43.1.
The relationship of this definition with the category of quasi-coherent modules on X is
not so clear in general! For example, suppose thatM is an object of QC (X ). Then the co-
homology sheavesHi(M) ofM are (pre)sheaves ofO-modules onXaffine, but in general
they are not quasi-coherent. The last nonvanishing cohomology sheaf is quasi-coherent
however.

Lemma 26.2. In the situation of Definition 26.1 suppose thatM is an object of QC (X )
and b ∈ Z such that Hi(M) = 0 for all i > b. Then Hb(M) is a quasi-coherent module
on (Xaffine,O), see Lemma 25.1.

Proof. Special case of Cohomology on Sites, Lemma 43.3. �

Lemma 26.3. Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids. The comparision morphism ε : Xaffine,étale → Xaffine satisfies the assump-
tions and conclusions of Cohomology on Sites, Lemma 43.12.

Proof. Assumption (1) holds by definition of Xaffine. For condition (2) we use
that for x ∈ Ob(X ) lying over the affine scheme U = p(x) we have an equivalence
Xaffine,étale/x = (Aff/U)étale compatible with structure sheaves; see discussion in Sec-
tion 9. Thus it suffices to show: given an affine scheme U = Spec(R) and a complex of
R-modules M• the total cohomology of the complex of modules on (Aff/U)étale associ-
ated toM• is quasi-isomorphic toM•. This follows from a combination of: Derived Cat-
egories of Schemes, Lemma 3.5 (total cohomology of complexes of modules over affines in
the Zariski topology), Derived Categories of Spaces, Remark 6.3 (agreement between total
cohomology in small Zariski and étale topologies for quasi-coherent complexes of mod-
ules), and Étale Cohomology, Lemma 99.3 (to see that the étale cohomology of a complex
of modules on the big étale site of a scheme may be computed after restricting to the small
étale site). �

If we apply the definition in case our category fibred in groupoids X is representable by
an algebraic space X , then we recover DQCoh(OX). We will later state and prove the
analogous result for algebraic stacks (insert future reference here).
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Proposition 26.4. Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids. Assume X is representable by an algebraic space X . Then QC (X ) is canoni-
cally equivalent to DQCoh(OX).

Proof. Denote Xaffine the category of affine schemes étale over X endowed with
the chaotic topology and its structure sheafOX , see Derived Categories of Spaces, Section
30. The functor u : Xétale → Xétale of Lemma 10.1 gives rise to a functor Xaffine →
Xaffine. This is compatible with structure sheaves and produces a functor

G : QC (X ) = QC (Xaffine,O) −→ QC (Xaffine,OX)
See Cohomology on Sites, Lemma 43.10. By Derived Categories of Spaces, Lemma 30.1 the
triangulated category QC (Xaffine,OX) is equivalent to DQCoh(OX). Hence it suffices
to prove that G is an equivalence.
Consider the flat comparision morphisms εX : Xaffine,étale → Xaffine and εX : Xaffine,étale →
Xaffine of ringed sites. Lemma 26.3 and (the proof of) Derived Categories of Spaces,
Lemma 30.1 show that the functors ε∗X and ε∗X identify QC (Xaffine,O) and QC (Xaffine,OX)
with subcategories QX ⊂ D(Xaffine,étale,O) and QX ⊂ D(Xaffine,étale,OX). With
these identifications the functor G in the first paragraph is induced by the functor

Li∗X = RπX,∗ : D(Xaffine,étale,O) −→ D(Xaffine,étale,OX)
where iX and πX are the morphisms from Lemma 10.1 but with the étale sites replaced by
the corresponding affine ones. The reader can show that this replacement is permissible
either by reproving the lemma for the affine sites directly or by using the equivalences of
topoi Sh(Xaffine,étale) = Sh(Xétale) and Sh(Xaffine,étale) = Sh(Xétale). The lemma
also tells us Li∗X has a left adjoint

Lπ∗
X : D(Xaffine,étale,OX) −→ D(Xaffine,étale,O)

and moreover we have Li∗X ◦ Lπ∗
X = id since πX ◦ iX is the identity. Thus it suffices

to show that (a) Lπ∗
X sends QX into QX and (b) the kernel of Li∗X is 0. See Derived

Categories, Lemma 7.2.
Proof of (a). By Derived Categories of Spaces, Lemma 30.1 we haveQX = DQCoh(Xaffine,étale,OX).
Let K be an object of QX . Let x be an object of Xaffine,étale lying over the affine scheme
U = p(x). Denote f : U → X the morphism corresponding to x. Then we see that

RΓ(x, Lπ∗
XK) = RΓ(U,Lf∗K)

This follows from transitivity of pullbacks; see discussion in Section 10. Next, suppose
that x→ x′ is a morphism ofXaffine,étale lying over the morphism h : U → U ′ of affine
schemes. As before denote f : U → X and f ′ : U ′ → X the morphisms corresponding
to x and x′ so that we have f = f ′ ◦ h. Then

RΓ(x, Lπ∗
XK) = RΓ(U,Lf∗K)

= RΓ(U,Lh∗L(f ′)∗K)
= RΓ(U ′, L(f ′)∗K)⊗L

O(U ′) O(U)

= RΓ(x′, Lπ∗
XK)⊗L

O(x′) O(x)

and hence we have (a) by the footnote in the statement of Cohomology on Sites, Lemma
43.12. The third equality is Derived Categories of Schemes, Lemma 3.8.
Proof of (b). Let M be an object of QX such that Li∗XM = 0. Let x′ be an object of
Xaffine,étale lying over the affine scheme U ′ = p(x′) and assume that the corresponding
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morphism f ′ : U ′ → X is étale. Then f ′ : U ′ → X is an object of Xaffine,étale and the
condition Li∗XM = 0 implies that M |U ′

étale
= 0. In particular, we see that RΓ(x′,M) =

0. However, for an arbitrary object x of the siteXaffine,étale there exists a covering {xi →
x} such that for each i there is a morphism xi → x′

i with x′
i corresponding to an object of

Xaffine,étale. Now since M is in QX we have

RΓ(xi,M) = RΓ(x′
i,M)⊗L

O(x′
i
) O(xi) = 0

and we conclude that M is zero as desired. �

To show that the construction produces an interesting category in another case, let us state
and prove a characterization of QC (Spf(A)) for the formal spectrum of a Noetherian adic
ring A.

Proposition 26.5. Let S be a scheme. Let X = Spf(A) where A is an an adic Noe-
therian topological S-algebra with ideal of definition I , see More on Algebra, Definition
36.1 and Formal Spaces, Definition 9.9. Let p : X → (Sch/S)fppf the be category fi-
bred in sets associated to the functor X , see Categories, Example 38.5. Then QC (X ) is
canonically equivalent to the categoryDcomp(A, I) of objects ofD(A) which are derived
complete with respect to I .

Proof. Recall that X = colim Spec(A/In) as an fppf sheaf. An object of Xaffine is
the same thing as an affine scheme U = Spec(R) with a given morphism f : U → X . By
Formal Spaces, Lemma 9.4 there exists ann ≥ 1 such that f factors through the monomor-
phism Spec(A/In) → X . Consider the full subcategory C ⊂ Xaffine consisting of the
objects Spec(A/In) → X . By the remarks just made and Differential Graded Sheaves,
Lemma 34.1 restriction to C is an exact equivalence QC (X )→ QC (C,O|C). For simplic-
ity, let us assume that In 6= In+1 for all n ≥ 1. Then (C,O|C) is isomorphic as a ringed
site to the ringed site (N, (A/In)), see Differential Graded Sheaves, Section 35. Hence we
conclude by Differential Graded Sheaves, Proposition 35.4. �

The following lemma will be used in comparing QC (X ) to DQCoh(OX ) when X is an
algebraic stack.

Lemma 26.6. Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids. The comparision morphism ε : Xaffine,fppf → Xaffine satisfies the assump-
tions and conclusions of Cohomology on Sites, Lemma 43.12.

Proof. The proof is exactly the same as the proof of Lemma 26.3. Assumption (1)
holds by definition of Xaffine. For condition (2) we use that for x ∈ Ob(X ) lying over
the affine scheme U = p(x) we have an equivalenceXaffine,étale/x = (Aff/U)étale com-
patible with structure sheaves; see discussion in Section 9. Thus it suffices to show: given
an affine scheme U = Spec(R) and a complex of R-modules M• the total cohomology
of the complex of modules on (Aff/U)fppf associated to M• is quasi-isomorphic to M•.
This is Étale Cohomology, Lemma 101.3. �
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CHAPTER 97

Criteria for Representability

1. Introduction

The purpose of this chapter is to find criteria guaranteeing that a stack in groupoids over
the category of schemes with the fppf topology is an algebraic stack. Historically, this
often involved proving that certain functors were representable, see Grothendieck’s lec-
tures [?], [?], [?], [?], [?], and [?]. This explains the title of this chapter. Another important
source of this material comes from the work of Artin, see [?], [?], [?], [?], [?], [?], [?], and
[?].

Some of the notation, conventions and terminology in this chapter is awkward and may
seem backwards to the more experienced reader. This is intentional. Please see Quot,
Section 2 for an explanation.

2. Conventions

The conventions we use in this chapter are the same as those in the chapter on algebraic
stacks, see Algebraic Stacks, Section 2.

3. What we already know

The analogue of this chapter for algebraic spaces is the chapter entitled “Bootstrap”, see
Bootstrap, Section 1. That chapter already contains some representability results. More-
over, some of the preliminary material treated there we already have worked out in the
chapter on algebraic stacks. Here is a list:

(1) We discuss morphisms of presheaves representable by algebraic spaces in Boot-
strap, Section 3. In Algebraic Stacks, Section 9 we discuss the notion of a 1-
morphism of categories fibred in groupoids being representable by algebraic spaces.

(2) We discuss properties of morphisms of presheaves representable by algebraic
spaces in Bootstrap, Section 4. In Algebraic Stacks, Section 10 we discuss proper-
ties of 1-morphisms of categories fibred in groupoids representable by algebraic
spaces.

(3) We proved that ifF is a sheaf whose diagonal is representable by algebraic spaces
and which has an étale covering by an algebraic space, then F is an algebraic
space, see Bootstrap, Theorem 6.1. (This is a weak version of the result in the
next item on the list.)

(4) We proved that if F is a sheaf and if there exists an algebraic space U and a
morphism U → F which is representable by algebraic spaces, surjective, flat,
and locally of finite presentation, then F is an algebraic space, see Bootstrap,
Theorem 10.1.

(5) We have also proved the “smooth” analogue of (4) for algebraic stacks: If X is a
stack in groupoids over (Sch/S)fppf and if there exists a stack in groupoids U

6623
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over (Sch/S)fppf which is representable by an algebraic space and a 1-morphism
u : U → X which is representable by algebraic spaces, surjective, and smooth
then X is an algebraic stack, see Algebraic Stacks, Lemma 15.3.

Our first task now is to prove the analogue of (4) for algebraic stacks in general; it is
Theorem 16.1.

4. Morphisms of stacks in groupoids

This section is preliminary and should be skipped on a first reading.

Lemma 4.1. Let X → Y → Z be 1-morphisms of categories fibred in groupoids over
(Sch/S)fppf . If X → Z and Y → Z are representable by algebraic spaces and étale so is
X → Y .

Proof. Let U be a representable category fibred in groupoids over S. Let f : U → Y
be a 1-morphism. We have to show that X ×Y U is representable by an algebraic space
and étale over U . Consider the composition h : U → Z . Then

X ×Z U −→ Y ×Z U

is a 1-morphism between categories fibres in groupoids which are both representable by
algebraic spaces and both étale over U . Hence by Properties of Spaces, Lemma 16.6 this
is represented by an étale morphism of algebraic spaces. Finally, we obtain the result we
want as the morphism f induces a morphism U → Y ×Z U and we have

X ×Y U = (X ×Z U)×(Y×Z U) U .

�

Lemma 4.2. Let X ,Y,Z be stacks in groupoids over (Sch/S)fppf . Suppose that
X → Y and Z → Y are 1-morphisms. If

(1) Y , Z are representable by algebraic spaces Y , Z over S ,
(2) the associated morphism of algebraic spaces Y → Z is surjective, flat and locally

of finite presentation, and
(3) Y ×Z X is a stack in setoids,

then X is a stack in setoids.

Proof. This is a special case of Stacks, Lemma 6.10. �

The following lemma is the analogue of Algebraic Stacks, Lemma 15.3 and will be super-
seded by the stronger Theorem 16.1.

Lemma 4.3. LetS be a scheme. Letu : U → X be a 1-morphism of stacks in groupoids
over (Sch/S)fppf . If

(1) U is representable by an algebraic space, and
(2) u is representable by algebraic spaces, surjective, flat and locally of finite presen-

tation,
then ∆ : X → X ×X representable by algebraic spaces.

Proof. Given two schemes T1, T2 over S denote Ti = (Sch/Ti)fppf the associated
representable fibre categories. Suppose given 1-morphisms fi : Ti → X . According to
Algebraic Stacks, Lemma 10.11 it suffices to prove that the 2-fibered product T1 ×X T2 is
representable by an algebraic space. By Stacks, Lemma 6.8 this is in any case a stack in
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setoids. Thus T1 ×X T2 corresponds to some sheaf F on (Sch/S)fppf , see Stacks, Lemma
6.3. Let U be the algebraic space which represents U . By assumption

T ′
i = U ×u,X ,fi Ti

is representable by an algebraic space T ′
i over S. Hence T ′

1 ×U T ′
2 is representable by the

algebraic space T ′
1 ×U T ′

2. Consider the commutative diagram

T1 ×X T2 //

��

T1

��

T ′
1 ×U T ′

2

88

//

��

T ′
1

??

��

T2 // X

T ′
2

//

88

U

??

In this diagram the bottom square, the right square, the back square, and the front square
are 2-fibre products. A formal argument then shows that T ′

1 ×U T ′
2 → T1 ×X T2 is the

“base change” of U → X , more precisely the diagram

T ′
1 ×U T ′

2

��

// U

��
T1 ×X T2 // X

is a 2-fibre square. Hence T ′
1 ×U T ′

2 → F is representable by algebraic spaces, flat, locally
of finite presentation and surjective, see Algebraic Stacks, Lemmas 9.6, 9.7, 10.4, and 10.6.
Therefore F is an algebraic space by Bootstrap, Theorem 10.1 and we win. �

Lemma 4.4. Let X be a category fibred in groupoids over (Sch/S)fppf . The follow-
ing are equivalent

(1) ∆∆ : X → X ×X ×X X is representable by algebraic spaces,
(2) for every 1-morphism V → X ×X with V representable (by a scheme) the fibre

product Y = X ×∆,X ×X V has diagonal representable by algebraic spaces.

Proof. Although this is a bit of a brain twister, it is completely formal. Namely,
recall thatX ×X ×X X = IX is the inertia ofX and that ∆∆ is the identity section of IX ,
see Categories, Section 34. Thus condition (1) says the following: Given a scheme V , an
object x ofX over V , and a morphismα : x→ x ofXV the condition “α = idx” defines an
algebraic space over V . (In other words, there exists a monomorphism of algebraic spaces
W → V such that a morphism of schemes f : T → V factors through W if and only if
f∗α = idf∗x.)

On the other hand, let V be a scheme and let x, y be objects of X over V . Then (x, y)
define a morphism V = (Sch/V )fppf → X ×X . Next, let h : V ′ → V be a morphism of
schemes and let α : h∗x → h∗y and β : h∗x → h∗y be morphisms of XV ′ . Then (α, β)
define a morphism V ′ = (Sch/V )fppf → Y × Y . Condition (2) now says that (with any
choices as above) the condition “α = β” defines an algebraic space over V .
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To see the equivalence, given (α, β) as in (2) we see that (1) implies that “α−1 ◦β = idh∗x”
defines an algebraic space. The implication (2) ⇒ (1) follows by taking h = idV and
β = idx. �

5. Limit preserving on objects

Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . We will say that p is limit preserving on objects if the following condition
holds: Given any data consisting of

(1) an affine scheme U = limi∈I Ui which is written as the directed limit of affine
schemes Ui over S ,

(2) an object yi of Y over Ui for some i,
(3) an object x of X over U , and
(4) an isomorphism γ : p(x)→ yi|U ,

then there exists an i′ ≥ i, an object xi′ ofX over Ui′ , an isomorphism β : xi′ |U → x, and
an isomorphism γi′ : p(xi′)→ yi|Ui′ such that

(5.0.1)

p(xi′ |U )

p(β)
��

γi′ |U
// (yi|Ui′ )|U

p(x) γ // yi|U

commutes. In this situation we say that “(i′, xi′ , β, γi′) is a solution to the problem posed
by our data (1), (2), (3), (4)”. The motivation for this definition comes from Limits of
Spaces, Lemma 3.2.

Lemma 5.1. Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred in
groupoids over (Sch/S)fppf . If p : X → Y is limit preserving on objects, then so is the
base change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S , let zi be an object of Z over Ui for some i, let w be an object of X ×Y Z over U ,
and let δ : p′(w) → zi|U be an isomorphism. We may write w = (U, x, z, α) for some
object x of X over U and object z of Z over U and isomorphism α : p(x) → q(z). Note
that p′(w) = z hence δ : z → zi|U . Set yi = q(zi) and γ = q(δ) ◦ α : p(x) → yi|U .
As p is limit preserving on objects there exists an i′ ≥ i and an object xi′ of X over Ui′ as
well as isomorphisms β : xi′ |U → x and γi′ : p(xi′)→ yi|Ui′ such that (5.0.1) commutes.
Then we consider the object wi′ = (Ui′ , xi′ , zi|Ui′ , γi′) of X ×Y Z over Ui′ and define
isomorphisms

wi′ |U = (U, xi′ |U , zi|U , γi′ |U ) (β,δ−1)−−−−−→ (U, x, z, α) = w

and
p′(wi′) = zi|Ui′

id−→ zi|Ui′ .
These combine to give a solution to the problem. �

Lemma 5.2. Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are limit preserving on objects, then so is the
composition q ◦ p.
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Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S , let zi be an object of Z over Ui for some i, let x be an object of X over U , and let
γ : q(p(x)) → zi|U be an isomorphism. As q is limit preserving on objects there exist an
i′ ≥ i, an object yi′ of Y over Ui′ , an isomorphism β : yi′ |U → p(x), and an isomorphism
γi′ : q(yi′) → zi|Ui′ such that (5.0.1) is commutative. As p is limit preserving on objects
there exist an i′′ ≥ i′, an object xi′′ of X over Ui′′ , an isomorphism β′ : xi′′ |U → x, and
an isomorphism γ′

i′′ : p(xi′′) → yi′ |Ui′′ such that (5.0.1) is commutative. The solution is
to take xi′′ over Ui′′ with isomorphism

q(p(xi′′))
q(γ′

i′′ )
−−−−→ q(yi′)|Ui′′

γi′ |U
i′′−−−−→ zi|Ui′′

and isomorphism β′ : xi′′ |U → x. We omit the verification that (5.0.1) is commutative.
�

Lemma 5.3. Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . If p is representable by algebraic spaces, then the following are equivalent:

(1) p is limit preserving on objects, and
(2) p is locally of finite presentation (see Algebraic Stacks, Definition 10.1).

Proof. Assume (2). LetU = limi∈I Ui be the directed limit of affine schemesUi over
S , let yi be an object of Y over Ui for some i, let x be an object of X over U , and let γ :
p(x) → yi|U be an isomorphism. Let Xyi denote an algebraic space over Ui representing
the 2-fibre product

(Sch/Ui)fppf ×yi,Y,p X .
Note that ξ = (U,U → Ui, x, γ

−1) defines an object of this 2-fibre product over U . Via
the 2-Yoneda lemma ξ corresponds to a morphism fξ : U → Xyi over Ui. By Limits
of Spaces, Proposition 3.10 there exists an i′ ≥ i and a morphism fi′ : Ui′ → Xyi such
that fξ is the composition of fi′ and the projection morphism U → Ui′ . Also, the 2-
Yoneda lemma tells us that fi′ corresponds to an object ξi′ = (Ui′ , Ui′ → Ui, xi′ , α) of
the displayed 2-fibre product over Ui′ whose restriction to U recovers ξ. In particular we
obtain an isomorphism γ : xi′ |U → x. Note that α : yi|Ui′ → p(xi′). Hence we see that
taking xi′ , the isomorphism γ : xi′ |U → x, and the isomorphism β = α−1 : p(xi′) →
yi|Ui′ is a solution to the problem.

Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y . Let Xy be an
algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,p X . We have
to show thatXy → T is locally of finite presentation. To do this we will use the criterion
in Limits of Spaces, Remark 3.11. Consider an affine scheme U = limi∈I Ui written as the
directed limit of affine schemes over T . Pick any i ∈ I and set yi = y|Ui . Also denote i′
an element of I which is bigger than or equal to i. By the 2-Yoneda lemma morphisms
U → Xy over T correspond bijectively to isomorphism classes of pairs (x, α) where x is
an object of X over U and α : y|U → p(x) is an isomorphism. Of course giving α is, up
to an inverse, the same thing as giving an isomorphism γ : p(x) → yi|U . Similarly for
morphisms Ui′ → Xy over T . Hence (1) guarantees that the canonical map

colimi′≥iXy(Ui′) −→ Xy(U)

is surjective in this situation. It follows from Limits of Spaces, Lemma 3.12 that Xy → T
is locally of finite presentation. �
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Lemma 5.4. Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Assume p is representable by algebraic spaces and an open immersion. Then
p is limit preserving on objects.

Proof. This follows from Lemma 5.3 and (via the general principle Algebraic Stacks,
Lemma 10.9) from the fact that an open immersion of algebraic spaces is locally of finite
presentation, see Morphisms of Spaces, Lemma 28.11. �

Let S be a scheme. In the following lemma we need the notion of the size of an algebraic
space X over S. Namely, given a cardinal κ we will say X has size(X) ≤ κ if and only
if there exists a scheme U with size(U) ≤ κ (see Sets, Section 9) and a surjective étale
morphism U → X .

Lemma 5.5. Let S be a scheme. Let κ = size(T ) for some T ∈ Ob((Sch/S)fppf ).
Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf such
that

(1) Y → (Sch/S)fppf is limit preserving on objects,
(2) for an affine scheme V locally of finite presentation over S and y ∈ Ob(YV ) the

fibre product (Sch/V )fppf ×y,Y X is representable by an algebraic space of size
≤ κ1,

(3) X and Y are stacks for the Zariski topology.
Then f is representable by algebraic spaces.

Proof. LetV be a scheme overS and y ∈ YV . We have to prove (Sch/V )fppf×y,YX
is representable by an algebraic space.

Case I: V is affine and maps into an affine open Spec(Λ) ⊂ S. Then we can write V =
limVi with each Vi affine and of finite presentation over Spec(Λ), see Algebra, Lemma
127.2. Then y comes from an object yi over Vi for some i by assumption (1). By assumption
(3) the fibre product (Sch/Vi)fppf×yi,YX is representable by an algebraic spaceZi. Then
(Sch/V )fppf ×y,Y X is representable by Z ×Vi V .

Case II: V is general. Choose an affine open covering V =
⋃
i∈I Vi such that each Vi

maps into an affine open of S. We first claim that Z = (Sch/V )fppf ×y,Y X is a stack in
setoids for the Zariski topology. Namely, it is a stack in groupoids for the Zariski topology
by Stacks, Lemma 5.6. Then suppose that z is an object of Z over a scheme T . Denote
g : T → V the morphism corresponding to the projection of z in (Sch/V )fppf . Consider
the Zariski sheaf I = IsomZ(z, z). By Case I we see that I |g−1(Vi) = ∗ (the singleton
sheaf). Hence I = ∗. Thus Z is fibred in setoids. To finish the proof we have to show
that the Zariski sheaf Z : T 7→ Ob(ZT )/ ∼= is an algebraic space, see Algebraic Stacks,
Lemma 8.2. There is a map p : Z → V (transformation of functors) and by Case I we
know that Zi = p−1(Vi) is an algebraic space. The morphisms Zi → Z are representable
by open immersions and

∐
Zi → Z is surjective (in the Zariski topology). Hence Z is a

sheaf for the fppf topology by Bootstrap, Lemma 3.11. Thus Spaces, Lemma 8.5 applies and
we conclude that Z is an algebraic space2. �

1The condition on size can be dropped by those ignoring set theoretic issues.
2To see that the set theoretic condition of that lemma is satisfied we argue as follows: First choose the open

covering such that |I| ≤ size(V ). Next, choose schemes Ui of size ≤ max(κ, size(V )) and surjective étale
morphismsUi → Zi; we can do this by assumption (2) and Sets, Lemma 9.6 (details omitted). Then Sets, Lemma
9.9 implies that

∐
Ui is an object of (Sch/S)fppf . Hence

∐
Zi is an algebraic space by Spaces, Lemma 8.4.
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Lemma 5.6. Let S be a scheme. Let f : X → Y be a 1-morphism of categories fibred
in groupoids over (Sch/S)fppf . Let P be a property of morphisms of algebraic spaces as
in Algebraic Stacks, Definition 10.1. If

(1) f is representable by algebraic spaces,
(2) Y → (Sch/S)fppf is limit preserving on objects,
(3) for an affine scheme V locally of finite presentation over S and y ∈ YV the

resulting morphism of algebraic spaces fy : Fy → V , see Algebraic Stacks, Equa-
tion (9.1.1), has property P .

Then f has property P .

Proof. Let V be a scheme over S and y ∈ YV . We have to show that Fy → V has
property P . Since P is fppf local on the base we may assume that V is an affine scheme
which maps into an affine open Spec(Λ) ⊂ S. Thus we can write V = limVi with
each Vi affine and of finite presentation over Spec(Λ), see Algebra, Lemma 127.2. Then
y comes from an object yi over Vi for some i by assumption (2). By assumption (3) the
morphism Fyi → Vi has property P . As P is stable under arbitrary base change and since
Fy = Fyi ×Vi V we conclude that Fy → V has property P as desired. �

6. Formally smooth on objects

Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . We will say that p is formally smooth on objects if the following condition
holds: Given any data consisting of

(1) a first order thickening U ⊂ U ′ of affine schemes over S ,
(2) an object y′ of Y over U ′,
(3) an object x of X over U , and
(4) an isomorphism γ : p(x)→ y′|U ,

then there exists an object x′ of X over U ′ with an isomorphism β : x′|U → x and an
isomorphism γ′ : p(x′)→ y′ such that

(6.0.1)

p(x′|U )

p(β)
��

γ′|U
// y′|U

p(x) γ // y′|U

commutes. In this situation we say that “(x′, β, γ′) is a solution to the problem posed by
our data (1), (2), (3), (4)”.

Lemma 6.1. Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred in
groupoids over (Sch/S)fppf . If p : X → Y is formally smooth on objects, then so is the
base change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let U ⊂ U ′ be a first order thickening of affine schemes
over S , let z′ be an object of Z over U ′, let w be an object of X ×Y Z over U , and let
δ : p′(w) → z′|U be an isomorphism. We may write w = (U, x, z, α) for some object
x of X over U and object z of Z over U and isomorphism α : p(x) → q(z). Note that
p′(w) = z hence δ : z → z|U . Set y′ = q(z′) and γ = q(δ) ◦ α : p(x) → y′|U . As p is
formally smooth on objects there exists an object x′ of X over U ′ as well as isomorphisms
β : x′|U → x and γ′ : p(x′) → y′ such that (6.0.1) commutes. Then we consider the
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object w = (U ′, x′, z′, γ′) of X ×Y Z over U ′ and define isomorphisms

w′|U = (U, x′|U , z′|U , γ′|U ) (β,δ−1)−−−−−→ (U, x, z, α) = w

and
p′(w′) = z′ id−→ z′.

These combine to give a solution to the problem. �

Lemma 6.2. Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . If p and q are formally smooth on objects, then so is the
composition q ◦ p.

Proof. This is formal. Let U ⊂ U ′ be a first order thickening of affine schemes over
S , let z′ be an object ofZ overU ′, letx be an object ofX overU , and let γ : q(p(x))→ z′|U
be an isomorphism. As q is formally smooth on objects there exist an object y′ of Y over
U ′, an isomorphism β : y′|U → p(x), and an isomorphism γ′ : q(y′) → z′ such that
(6.0.1) is commutative. As p is formally smooth on objects there exist an object x′ of X
over U ′, an isomorphism β′ : x′|U → x, and an isomorphism γ′′ : p(x′) → y′ such that
(6.0.1) is commutative. The solution is to take x′ over U ′ with isomorphism

q(p(x′)) q(γ′′)−−−→ q(y′) γ′

−→ z′

and isomorphismβ′ : x′|U → x. We omit the verification that (6.0.1) is commutative. �

Note that the class of formally smooth morphisms of algebraic spaces is stable under arbi-
trary base change and local on the target in the fpqc topology, see More on Morphisms of
Spaces, Lemma 19.3 and 19.11. Hence condition (2) in the lemma below makes sense.

Lemma 6.3. Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . If p is representable by algebraic spaces, then the following are equivalent:

(1) p is formally smooth on objects, and
(2) p is formally smooth (see Algebraic Stacks, Definition 10.1).

Proof. Assume (2). Let U ⊂ U ′ be a first order thickening of affine schemes over S ,
let y′ be an object of Y over U ′, let x be an object of X over U , and let γ : p(x) → y′|U
be an isomorphism. Let Xy′ denote an algebraic space over U ′ representing the 2-fibre
product

(Sch/U ′)fppf ×y′,Y,p X .
Note that ξ = (U,U → U ′, x, γ−1) defines an object of this 2-fibre product over U . Via
the 2-Yoneda lemma ξ corresponds to a morphism fξ : U → Xy′ over U ′. As Xy′ → U ′

is formally smooth by assumption there exists a morphism f ′ : U ′ → Xy′ such that fξ
is the composition of f ′ and the morphism U → U ′. Also, the 2-Yoneda lemma tells
us that f ′ corresponds to an object ξ′ = (U ′, U ′ → U ′, x′, α) of the displayed 2-fibre
product overU ′ whose restriction toU recovers ξ. In particular we obtain an isomorphism
γ : x′|U → x. Note that α : y′ → p(x′). Hence we see that taking x′, the isomorphism
γ : x′|U → x, and the isomorphism β = α−1 : p(x′)→ y′ is a solution to the problem.
Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y . Let Xy be an
algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,p X . We have
to show that Xy → T is formally smooth. Hence it suffices to show that given a first
order thickening U ⊂ U ′ of affine schemes over T , then Xy(U ′) → Xy(U ′) is surjective
(morphisms in the category of algebraic spaces over T ). Set y′ = y|U ′ . By the 2-Yoneda
lemma morphisms U → Xy over T correspond bijectively to isomorphism classes of pairs
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(x, α) where x is an object of X over U and α : y|U → p(x) is an isomorphism. Of
course giving α is, up to an inverse, the same thing as giving an isomorphism γ : p(x)→
y′|U . Similarly for morphisms U ′ → Xy over T . Hence (1) guarantees the surjectivity of
Xy(U ′)→ Xy(U ′) in this situation and we win. �

7. Surjective on objects

Let S be a scheme. Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . We will say that p is surjective on objects if the following condition holds:
Given any data consisting of

(1) a field k over S , and
(2) an object y of Y over Spec(k),

then there exists an extension K/k of fields over S , an object x of X over Spec(K) such
that p(x) ∼= y|Spec(K).

Lemma 7.1. Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred in
groupoids over (Sch/S)fppf . If p : X → Y is surjective on objects, then so is the base
change p′ : X ×Y Z → Z of p by q.

Proof. This is formal. Let z be an object of Z over a field k. As p is surjective on
objects there exists an extension K/k and an object x of X over K and an isomorphism
α : p(x) → q(z)|Spec(K). Then w = (Spec(K), x, z|Spec(K), α) is an object of X ×Y Z
over K with p′(w) = z|Spec(K). �

Lemma 7.2. Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred in
groupoids over (Sch/S)fppf . If p and q are surjective on objects, then so is the composition
q ◦ p.

Proof. This is formal. Let z be an object of Z over a field k. As q is surjective on
objects there exists a field extension K/k and an object y of Y over K such that q(y) ∼=
x|Spec(K). As p is surjective on objects there exists a field extension L/K and an object x
of X over L such that p(x) ∼= y|Spec(L). Then the field extension L/k and the object x of
X over L satisfy q(p(x)) ∼= z|Spec(L) as desired. �

Lemma 7.3. Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . If p is representable by algebraic spaces, then the following are equivalent:

(1) p is surjective on objects, and
(2) p is surjective (see Algebraic Stacks, Definition 10.1).

Proof. Assume (2). Let k be a field and let y be an object of Y over k. Let Xy denote
an algebraic space over k representing the 2-fibre product

(Sch/ Spec(k))fppf ×y,Y,p X .
As we’ve assumed that p is surjective we see thatXy is not empty. Hence we can find a field
extension K/k and a K-valued point x of Xy . Via the 2-Yoneda lemma this corresponds
to an object x of X over K together with an isomorphism p(x) ∼= y|Spec(K) and we see
that (1) holds.

Assume (1). Choose a scheme T and a 1-morphism y : (Sch/T )fppf → Y . Let Xy be
an algebraic space over T representing the 2-fibre product (Sch/T )fppf ×y,Y,p X . We
have to show that Xy → T is surjective. By Morphisms of Spaces, Definition 5.2 we have
to show that |Xy| → |T | is surjective. This means exactly that given a field k over T
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and a morphism t : Spec(k) → T there exists a field extension K/k and a morphism
x : Spec(K)→ Xy such that

Spec(K)

��

x
// Xy

��
Spec(k) t // T

commutes. By the 2-Yoneda lemma this means exactly that we have to find k ⊂ K and
an object x of X over K such that p(x) ∼= t∗y|Spec(K). Hence (1) guarantees that this is
the case and we win. �

8. Algebraic morphisms

The following notion is occasionally useful.

Definition 8.1. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . We say that F is algebraic if for every scheme T and every
object ξ of Y over T the 2-fibre product

(Sch/T )fppf ×ξ,Y X
is an algebraic stack over S.

With this terminology in place we have the following result that generalizes Algebraic
Stacks, Lemma 15.4.

Lemma 8.2. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If

(1) Y is an algebraic stack, and
(2) F is algebraic (see above),

then X is an algebraic stack.

Proof. By assumption (1) there exists a scheme T and an object ξ of Y over T such
that the corresponding 1-morphism ξ : (Sch/T )fppf → Y is smooth an surjective. Then
U = (Sch/T )fppf ×ξ,Y X is an algebraic stack by assumption (2). Choose a schemeU and
a surjective smooth 1-morphism (Sch/U)fppf → U . The projection U −→ X is, as the
base change of the morphism ξ : (Sch/T )fppf → Y , surjective and smooth, see Algebraic
Stacks, Lemma 10.6. Then the composition (Sch/U)fppf → U → X is surjective and
smooth as a composition of surjective and smooth morphisms, see Algebraic Stacks, Lemma
10.5. Hence X is an algebraic stack by Algebraic Stacks, Lemma 15.3. �

Lemma 8.3. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If X is an algebraic stack and ∆ : Y → Y × Y is repre-
sentable by algebraic spaces, then F is algebraic.

Proof. Choose a representable stack in groupoidsU and a surjective smooth 1-morphism
U → X . Let T be a scheme and let ξ be an object of Y over T . The morphism of 2-fibre
products

(Sch/T )fppf ×ξ,Y U −→ (Sch/T )fppf ×ξ,Y X
is representable by algebraic spaces, surjective, and smooth as a base change of U → X , see
Algebraic Stacks, Lemmas 9.7 and 10.6. By our condition on the diagonal of Y we see that
the source of this morphism is representable by an algebraic space, see Algebraic Stacks,
Lemma 10.11. Hence the target is an algebraic stack by Algebraic Stacks, Lemma 15.3. �
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Lemma 8.4. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If F is algebraic and ∆ : Y → Y × Y is representable
by algebraic spaces, then ∆ : X → X ×X is representable by algebraic spaces.

Proof. Assume F is algebraic and ∆ : Y → Y × Y is representable by algebraic
spaces. Take a scheme U over S and two objects x1, x2 of X over U . We have to show
that Isom(x1, x2) is an algebraic space over U , see Algebraic Stacks, Lemma 10.11. Set
yi = F (xi). We have a morphism of sheaves of sets

f : Isom(x1, x2)→ Isom(y1, y2)
and the target is an algebraic space by assumption. Thus it suffices to show that f is rep-
resentable by algebraic spaces, see Bootstrap, Lemma 3.6. Thus we can choose a scheme V
over U and an isomorphism β : y1,V → y2,V and we have to show the functor

(Sch/V )fppf → Sets, T/V 7→ {α : x1,T → x2,T in XT | F (α) = β|T }
is an algebraic space. Consider the objects z1 = (V, x1,V , id) and z2 = (V, x2,V , β) of

Z = (Sch/V )fppf ×y1,V ,Y X
Then it is straightforward to verify that the functor above is equal to Isom(z1, z2) on
(Sch/V )fppf . Hence this is an algebraic space by our assumption that F is algebraic (and
the definition of algebraic stacks). �

9. Spaces of sections

Given morphisms W → Z → U we can consider the functor that associates to a scheme
U ′ over U the set of sections σ : ZU ′ → WU ′ of the base change WU ′ → ZU ′ of the
morphism W → Z. In this section we prove some preliminary lemmas on this functor.

Lemma 9.1. Let Z → U be a finite morphism of schemes. Let W be an algebraic
space and let W → Z be a surjective étale morphism. Then there exists a surjective étale
morphism U ′ → U and a section

σ : ZU ′ →WU ′

of the morphism WU ′ → ZU ′ .

Proof. We may choose a separated schemeW ′ and a surjective étale morphismW ′ →
W . Hence after replacing W by W ′ we may assume that W is a separated scheme. Write
f : W → Z and π : Z → U . Note that f ◦ π : W → U is separated as W is separated
(see Schemes, Lemma 21.13). Let u ∈ U be a point. Clearly it suffices to find an étale
neighbourhood (U ′, u′) of (U, u) such that a section σ exists over U ′. Let z1, . . . , zr be
the points of Z lying above u. For each i choose a point wi ∈ W which maps to zi. We
may pick an étale neighbourhood (U ′, u′)→ (U, u) such that the conclusions of More on
Morphisms, Lemma 41.5 hold for both Z → U and the points z1, . . . , zr andW → U and
the points w1, . . . , wr. Hence, after replacing (U, u) by (U ′, u′) and relabeling, we may
assume that all the field extensions κ(zi)/κ(u) and κ(wi)/κ(u) are purely inseparable,
and moreover that there exist disjoint union decompositions

Z = V1 q . . .q Vr qA, W = W1 q . . .qWr qB
by open and closed subschemes with zi ∈ Vi, wi ∈Wi and Vi → U ,Wi → U finite. After
replacing U by U \π(A) we may assume thatA = ∅, i.e., Z = V1q . . .qVr. After replac-
ing Wi by Wi ∩ f−1(Vi) and B by B ∪

⋃
Wi ∩ f−1(Z \ Vi) we may assume that f maps

Wi into Vi. Then fi = f |Wi
: Wi → Vi is a morphism of schemes finite over U , hence



6634 97. CRITERIA FOR REPRESENTABILITY

finite (see Morphisms, Lemma 44.14). It is also étale (by assumption), f−1
i ({zi}) = wi,

and induces an isomorphism of residue fields κ(zi) = κ(wi) (because both are purely in-
separable extensions of κ(u) and κ(wi)/κ(zi) is separable as f is étale). Hence by Étale
Morphisms, Lemma 14.2 we see that fi is an isomorphism in a neighbourhood V ′

i of zi.
Since π : Z → U is closed, after shrinking U , we may assume that Wi → Vi is an isomor-
phism. This proves the lemma. �

Lemma 9.2. Let Z → U be a finite locally free morphism of schemes. Let W be an
algebraic space and let W → Z be an étale morphism. Then the functor

F : (Sch/U)oppfppf −→ Sets,

defined by the rule
U ′ 7−→ F (U ′) = {σ : ZU ′ →WU ′ section of WU ′ → ZU ′}

is an algebraic space and the morphism F → U is étale.

Proof. Assume first that W → Z is also separated. Let U ′ be a scheme over U and
let σ ∈ F (U ′). By Morphisms of Spaces, Lemma 4.7 the morphism σ is a closed immer-
sion. Moreover, σ is étale by Properties of Spaces, Lemma 16.6. Hence σ is also an open
immersion, see Morphisms of Spaces, Lemma 51.2. In other words, Zσ = σ(ZU ′) ⊂ WU ′

is an open subspace such that the morphism Zσ → ZU ′ is an isomorphism. In particular,
the morphism Zσ → U ′ is finite. Hence we obtain a transformation of functors

F −→ (W/U)fin, σ 7−→ (U ′ → U,Zσ)
where (W/U)fin is the finite part of the morphism W → U introduced in More on
Groupoids in Spaces, Section 12. It is clear that this transformation of functors is injective
(since we can recover σ from Zσ as the inverse of the isomorphism Zσ → ZU ′ ). By More
on Groupoids in Spaces, Proposition 12.11 we know that (W/U)fin is an algebraic space
étale overU . Hence to finish the proof in this case it suffices to show that F → (W/U)fin
is representable and an open immersion. To see this suppose that we are given a morphism
of schemes U ′ → U and an open subspace Z ′ ⊂ WU ′ such that Z ′ → U ′ is finite. Then
it suffices to show that there exists an open subscheme U ′′ ⊂ U ′ such that a morphism
T → U ′ factors through U ′′ if and only if Z ′ ×U ′ T maps isomorphically to Z ×U ′ T .
This follows from More on Morphisms of Spaces, Lemma 49.6 (here we use thatZ → B is
flat and locally of finite presentation as well as finite). Hence we have proved the lemma
in case W → Z is separated as well as étale.
In the general case we choose a separated schemeW ′ and a surjective étale morphismW ′ →
W . Note that the morphisms W ′ → W and W → Z are separated as their source is
separated. Denote F ′ the functor associated to W ′ → Z → U as in the lemma. In the
first paragraph of the proof we showed that F ′ is representable by an algebraic space étale
over U . By Lemma 9.1 the map of functors F ′ → F is surjective for the étale topology
on Sch/U . Moreover, if U ′ and σ : ZU ′ → WU ′ define a point ξ ∈ F (U ′), then the fibre
product

F ′′ = F ′ ×F,ξ U ′

is the functor on Sch/U ′ associated to the morphisms
W ′
U ′ ×WU′ ,σ ZU ′ → ZU ′ → U ′.

Since the first morphism is separated as a base change of a separated morphism, we see that
F ′′ is an algebraic space étale over U ′ by the result of the first paragraph. It follows that
F ′ → F is a surjective étale transformation of functors, which is representable by algebraic
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spaces. HenceF is an algebraic space by Bootstrap, Theorem 10.1. SinceF ′ → F is an étale
surjective morphism of algebraic spaces it follows that F → U is étale because F ′ → U is
étale. �

10. Relative morphisms

We continue the discussion started in More on Morphisms, Section 68.

Let S be a scheme. Let Z → B and X → B be morphisms of algebraic spaces over S.
Given a scheme T we can consider pairs (a, b) where a : T → B is a morphism and
b : T ×a,B Z → T ×a,B X is a morphism over T . Picture

(10.0.1)

T ×a,B Z

$$

b
// T ×a,B X

zz

Z

��

X

��
T

a // B

Of course, we can also think of b as a morphism b : T ×a,B Z → X such that

T ×a,B Z //

��

b **
Z

��

X

��
T

a // B

commutes. In this situation we can define a functor

(10.0.2) MorB(Z,X) : (Sch/S)opp −→ Sets, T 7−→ {(a, b) as above}
Sometimes we think of this as a functor defined on the category of schemes over B, in
which case we drop a from the notation.

Lemma 10.1. Let S be a scheme. Let Z → B and X → B be morphisms of algebraic
spaces over S. Then

(1) MorB(Z,X) is a sheaf on (Sch/S)fppf .
(2) If T is an algebraic space over S , then there is a canonical bijection

MorSh((Sch/S)fppf )(T,MorB(Z,X)) = {(a, b) as in (10.0.1)}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering of
T (as in Topologies on Spaces, Section 7). Suppose that (ai, bi) ∈ MorB(Z,X)(Ti) such
that (ai, bi)|Ti×TTj = (aj , bj)|Ti×TTj for all i, j. Then by Descent on Spaces, Lemma 7.2
there exists a unique morphism a : T → B such that ai is the composition of Ti → T and
a. Then {Ti ×ai,B Z → T ×a,B Z} is an fppf covering too and the same lemma implies
there exists a unique morphism b : T ×a,B Z → T ×a,BX such that bi is the composition
of Ti ×ai,B Z → T ×a,B Z and b. Hence (a, b) ∈ MorB(Z,X)(T ) restricts to (ai, bi)
over Ti for all i.

Note that the result of the preceding paragraph in particular implies (1).

Let T be an algebraic space overS. In order to prove (2) we will construct mutually inverse
maps between the displayed sets. In the following when we say “pair” we mean a pair (a, b)
fitting into (10.0.1).

Let v : T → MorB(Z,X) be a natural transformation. Choose a schemeU and a surjective
étale morphism p : U → T . Then v(p) ∈ MorB(Z,X)(U) corresponds to a pair (aU , bU )
over U . Let R = U ×T U with projections t, s : R → U . As v is a transformation of
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functors we see that the pullbacks of (aU , bU ) by s and t agree. Hence, since {U → T}
is an fppf covering, we may apply the result of the first paragraph that deduce that there
exists a unique pair (a, b) over T .

Conversely, let (a, b) be a pair over T . Let U → T , R = U ×T U , and t, s : R → U
be as above. Then the restriction (a, b)|U gives rise to a transformation of functors v :
hU → MorB(Z,X) by the Yoneda lemma (Categories, Lemma 3.5). As the two pull-
backs s∗(a, b)|U and t∗(a, b)|U are equal, we see that v coequalizes the two maps ht, hs :
hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces, Lemma 9.1 and since
MorB(Z,X) is an fppf sheaf by (1) we conclude that v factors through a map T →
MorB(Z,X).

We omit the verification that the two constructions above are mutually inverse. �

Lemma 10.2. Let S be a scheme. Let Z → B, X → B, and B′ → B be morphisms of
algebraic spaces over S. Set Z ′ = B′ ×B Z and X ′ = B′ ×B X . Then

MorB′(Z ′, X ′) = B′ ×B MorB(Z,X)

in Sh((Sch/S)fppf ).

Proof. The equality as functors follows immediately from the definitions. The equal-
ity as sheaves follows from this because both sides are sheaves according to Lemma 10.1
and the fact that a fibre product of sheaves is the same as the corresponding fibre product
of pre-sheaves (i.e., functors). �

Lemma 10.3. Let S be a scheme. Let Z → B and X ′ → X → B be morphisms of
algebraic spaces over S. Assume

(1) X ′ → X is étale, and
(2) Z → B is finite locally free.

Then MorB(Z,X ′) → MorB(Z,X) is representable by algebraic spaces and étale. If
X ′ → X is also surjective, then MorB(Z,X ′)→ MorB(Z,X) is surjective.

Proof. Let U be a scheme and let ξ = (a, b) be an element of MorB(Z,X)(U). We
have to prove that the functor

hU ×ξ,MorB(Z,X) MorB(Z,X ′)

is representable by an algebraic space étale overU . SetZU = U×a,BZ andW = ZU×b,X
X ′. Then W → ZU → U is as in Lemma 9.2 and the sheaf F defined there is identified
with the fibre product displayed above. Hence the first assertion of the lemma. The second
assertion follows from this and Lemma 9.1 which guarantees that F → U is surjective in
the situation above. �

Proposition 10.4. Let S be a scheme. Let Z → B and X → B be morphisms of
algebraic spaces over S. If Z → B is finite locally free then MorB(Z,X) is an algebraic
space.

Proof. Choose a scheme B′ =
∐
B′
i which is a disjoint union of affine schemes

B′
i and an étale surjective morphism B′ → B. We may also assume that B′

i ×B Z is the
spectrum of a ring which is finite free as a Γ(B′

i,OB′
i
)-module. By Lemma 10.2 and Spaces,

Lemma 5.5 the morphism MorB′(Z ′, X ′) → MorB(Z,X) is surjective étale. Hence by
Bootstrap, Theorem 10.1 it suffices to prove the proposition when B = B′ is a disjoint
union of affine schemes B′

i so that each B′
i ×B Z is finite free over B′

i. Then it actually
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suffices to prove the result for the restriction to each B′
i. Thus we may assume that B is

affine and that Γ(Z,OZ) is a finite free Γ(B,OB)-module.

Choose a schemeX ′ which is a disjoint union of affine schemes and a surjective étale mor-
phism X ′ → X . By Lemma 10.3 the morphism MorB(Z,X ′) → MorB(Z,X) is rep-
resentable by algebraic spaces, étale, and surjective. Hence by Bootstrap, Theorem 10.1 it
suffices to prove the proposition whenX is a disjoint union of affine schemes. This reduces
us to the case discussed in the next paragraph.

AssumeX =
∐
i∈I Xi is a disjoint union of affine schemes,B is affine, and that Γ(Z,OZ)

is a finite free Γ(B,OB)-module. For any finite subset E ⊂ I set

FE = MorB(Z,
∐

i∈E
Xi).

By More on Morphisms, Lemma 68.1 we see that FE is an algebraic space. Consider the
morphism ∐

E⊂I finite
FE −→ MorB(Z,X)

Each of the morphisms FE → MorB(Z,X) is an open immersion, because it is simply
the locus parametrizing pairs (a, b) where b maps into the open subscheme

∐
i∈E Xi of

X . Moreover, if T is quasi-compact, then for any pair (a, b) the image of b is contained
in
∐
i∈E Xi for some E ⊂ I finite. Hence the displayed arrow is in fact an open covering

and we win3 by Spaces, Lemma 8.5. �

11. Restriction of scalars

Suppose X → Z → B are morphisms of algebraic spaces over S. Given a scheme T we
can consider pairs (a, b) where a : T → B is a morphism and b : T ×a,B Z → X is a
morphism over Z. Picture

(11.0.1)

X

��
T ×a,B Z

��

b

::

// Z

��
T

a // B

In this situation we can define a functor

(11.0.2) ResZ/B(X) : (Sch/S)opp −→ Sets, T 7−→ {(a, b) as above}
Sometimes we think of this as a functor defined on the category of schemes over B, in
which case we drop a from the notation.

Lemma 11.1. Let S be a scheme. Let X → Z → B be morphisms of algebraic spaces
over S. Then

(1) ResZ/B(X) is a sheaf on (Sch/S)fppf .
(2) If T is an algebraic space over S , then there is a canonical bijection

MorSh((Sch/S)fppf )(T,ResZ/B(X)) = {(a, b) as in (11.0.1)}

3Modulo some set theoretic arguments. Namely, we have to show that
∐
FE is an algebraic space. This

follows because |I| ≤ size(X) and size(FE) ≤ size(X) as follows from the explicit description of FE in the
proof of More on Morphisms, Lemma 68.1. Some details omitted.



6638 97. CRITERIA FOR REPRESENTABILITY

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering of T
(as in Topologies on Spaces, Section 7). Suppose that (ai, bi) ∈ ResZ/B(X)(Ti) such that
(ai, bi)|Ti×TTj = (aj , bj)|Ti×TTj for all i, j. Then by Descent on Spaces, Lemma 7.2 there
exists a unique morphism a : T → B such that ai is the composition of Ti → T and
a. Then {Ti ×ai,B Z → T ×a,B Z} is an fppf covering too and the same lemma implies
there exists a unique morphism b : T ×a,B Z → X such that bi is the composition of
Ti×ai,B Z → T ×a,B Z and b. Hence (a, b) ∈ ResZ/B(X)(T ) restricts to (ai, bi) over Ti
for all i.

Note that the result of the preceding paragraph in particular implies (1).

Let T be an algebraic space overS. In order to prove (2) we will construct mutually inverse
maps between the displayed sets. In the following when we say “pair” we mean a pair (a, b)
fitting into (11.0.1).

Let v : T → ResZ/B(X) be a natural transformation. Choose a scheme U and a surjective
étale morphism p : U → T . Then v(p) ∈ ResZ/B(X)(U) corresponds to a pair (aU , bU )
over U . Let R = U ×T U with projections t, s : R → U . As v is a transformation of
functors we see that the pullbacks of (aU , bU ) by s and t agree. Hence, since {U → T}
is an fppf covering, we may apply the result of the first paragraph that deduce that there
exists a unique pair (a, b) over T .

Conversely, let (a, b) be a pair over T . Let U → T , R = U ×T U , and t, s : R → U
be as above. Then the restriction (a, b)|U gives rise to a transformation of functors v :
hU → ResZ/B(X) by the Yoneda lemma (Categories, Lemma 3.5). As the two pullbacks
s∗(a, b)|U and t∗(a, b)|U are equal, we see that v coequalizes the two maps ht, hs : hR →
hU . Since T = U/R is the fppf quotient sheaf by Spaces, Lemma 9.1 and since ResZ/B(X)
is an fppf sheaf by (1) we conclude that v factors through a map T → ResZ/B(X).

We omit the verification that the two constructions above are mutually inverse. �

Of course the sheaf ResZ/B(X) comes with a natural transformation of functors ResZ/B(X)→
B. We will use this without further mention in the following.

Lemma 11.2. Let S be a scheme. Let X → Z → B and B′ → B be morphisms of
algebraic spaces over S. Set Z ′ = B′ ×B Z and X ′ = B′ ×B X . Then

ResZ′/B′(X ′) = B′ ×B ResZ/B(X)

in Sh((Sch/S)fppf ).

Proof. The equality as functors follows immediately from the definitions. The equal-
ity as sheaves follows from this because both sides are sheaves according to Lemma 11.1 and
the fact that a fibre product of sheaves is the same as the corresponding fibre product of
pre-sheaves (i.e., functors). �

Lemma 11.3. Let S be a scheme. Let X ′ → X → Z → B be morphisms of algebraic
spaces over S. Assume

(1) X ′ → X is étale, and
(2) Z → B is finite locally free.

Then ResZ/B(X ′) → ResZ/B(X) is representable by algebraic spaces and étale. If X ′ →
X is also surjective, then ResZ/B(X ′)→ ResZ/B(X) is surjective.
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Proof. Let U be a scheme and let ξ = (a, b) be an element of ResZ/B(X)(U). We
have to prove that the functor

hU ×ξ,ResZ/B(X) ResZ/B(X ′)

is representable by an algebraic space étale overU . SetZU = U×a,BZ andW = ZU×b,X
X ′. Then W → ZU → U is as in Lemma 9.2 and the sheaf F defined there is identified
with the fibre product displayed above. Hence the first assertion of the lemma. The second
assertion follows from this and Lemma 9.1 which guarantees that F → U is surjective in
the situation above. �

At this point we can use the lemmas above to prove that ResZ/B(X) is an algebraic space
whenever Z → B is finite locally free in almost exactly the same way as in the proof that
MorB(Z,X) is an algebraic spaces, see Proposition 10.4. Instead we will directly deduce
this result from the following lemma and the fact that MorB(Z,X) is an algebraic space.

Lemma 11.4. Let S be a scheme. Let X → Z → B be morphisms of algebraic spaces
over S. The following diagram

MorB(Z,X) // MorB(Z,Z)

ResZ/B(X) //

OO

B

idZ

OO

is a cartesian diagram of sheaves on (Sch/S)fppf .

Proof. Omitted. Hint: Exercise in the functorial point of view in algebraic geome-
try. �

Proposition 11.5. Let S be a scheme. Let X → Z → B be morphisms of algebraic
spaces over S. If Z → B is finite locally free then ResZ/B(X) is an algebraic space.

Proof. By Proposition 10.4 the functors MorB(Z,X) and MorB(Z,Z) are alge-
braic spaces. Hence this follows from the cartesian diagram of Lemma 11.4 and the fact
that fibre products of algebraic spaces exist and are given by the fibre product in the un-
derlying category of sheaves of sets (see Spaces, Lemma 7.2). �

12. Finite Hilbert stacks

In this section we prove some results concerning the finite Hilbert stacksHd(X/Y) intro-
duced in Examples of Stacks, Section 18.

Lemma 12.1. Consider a 2-commutative diagram

X ′
G
//

F ′

��

X

F

��
Y ′ H // Y

of stacks in groupoids over (Sch/S)fppf with a given 2-isomorphism γ : H ◦ F ′ →
F ◦G. In this situation we obtain a canonical 1-morphismHd(X ′/Y ′)→ Hd(X/Y). This
morphism is compatible with the forgetful 1-morphisms of Examples of Stacks, Equation
(18.2.1).
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Proof. We map the object (U,Z, y′, x′, α′) to the object (U,Z,H(y′), G(x′), γ?idH?
α′) where ? denotes horizontal composition of 2-morphisms, see Categories, Definition
28.1. To a morphism (f, g, b, a) : (U1, Z1, y

′
1, x

′
1, α

′
1) → (U2, Z2, y

′
2, x

′
2, α

′
2) we assign

(f, g,H(b), G(a)). We omit the verification that this defines a functor between categories
over (Sch/S)fppf . �

Lemma 12.2. In the situation of Lemma 12.1 assume that the given square is 2-cartesian.
Then the diagram

Hd(X ′/Y ′) //

��

Hd(X/Y)

��
Y ′ // Y

is 2-cartesian.

Proof. We get a 2-commutative diagram by Lemma 12.1 and hence we get a 1-morphism
(i.e., a functor)

Hd(X ′/Y ′) −→ Y ′ ×Y Hd(X/Y)
We indicate why this functor is essentially surjective. Namely, an object of the cate-
gory on the right hand side is given by a scheme U over S , an object y′ of Y ′

U , an object
(U,Z, y, x, α) ofHd(X/Y) over U and an isomorphism H(y′)→ y in YU . The assump-
tion means exactly that there exists an object x′ of X ′

Z such that there exist isomorphisms
G(x′) ∼= x and α′ : y′|Z → F ′(x′) compatible with α. Then we see that (U,Z, y′, x′, α′)
is an object ofHd(X ′/Y ′) over U . Details omitted. �

Lemma 12.3. In the situation of Lemma 12.1 assume
(1) Y ′ = Y and H = idY ,
(2) G is representable by algebraic spaces and étale.

ThenHd(X ′/Y) → Hd(X/Y) is representable by algebraic spaces and étale. If G is also
surjective, thenHd(X ′/Y)→ Hd(X/Y) is surjective.

Proof. Let U be a scheme and let ξ = (U,Z, y, x, α) be an object ofHd(X/Y) over
U . We have to prove that the 2-fibre product

(12.3.1) (Sch/U)fppf ×ξ,Hd(X/Y) Hd(X ′/Y)

is representable by an algebraic space étale overU . An object of this overU ′ corresponds to
an object x′ in the fibre category of X ′ over ZU ′ such thatG(x′) ∼= x|ZU′ . By assumption
the 2-fibre product

(Sch/Z)fppf ×x,X X ′

is representable by an algebraic space W such that the projection W → Z is étale. Then
(12.3.1) is representable by the algebraic space F parametrizing sections of W → Z over
U introduced in Lemma 9.2. Since F → U is étale we conclude that Hd(X ′/Y) →
Hd(X/Y) is representable by algebraic spaces and étale. Finally, if X ′ → X is surjec-
tive also, then W → Z is surjective, and hence F → U is surjective by Lemma 9.1. Thus
in this caseHd(X ′/Y)→ Hd(X/Y) is also surjective. �

Lemma 12.4. In the situation of Lemma 12.1. Assume that G, H are representable by
algebraic spaces and étale. Then Hd(X ′/Y ′) → Hd(X/Y) is representable by algebraic
spaces and étale. If alsoH is surjective and the induced functorX ′ → Y ′×YX is surjective,
thenHd(X ′/Y ′)→ Hd(X/Y) is surjective.
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Proof. SetX ′′ = Y ′×YX . By Lemma 4.1 the 1-morphismX ′ → X ′′ is representable
by algebraic spaces and étale (in particular the condition in the second statement of the
lemma that X ′ → X ′′ be surjective makes sense). We obtain a 2-commutative diagram

X ′ //

��

X ′′ //

��

X

��
Y ′ // Y ′ // Y

It follows from Lemma 12.2 thatHd(X ′′/Y ′) is the base change ofHd(X/Y) by Y ′ → Y .
In particular we see that Hd(X ′′/Y ′) → Hd(X/Y) is representable by algebraic spaces
and étale, see Algebraic Stacks, Lemma 10.6. Moreover, it is also surjective if H is. Hence
if we can show that the result holds for the left square in the diagram, then we’re done. In
this way we reduce to the case where Y ′ = Y which is the content of Lemma 12.3. �

Lemma 12.5. LetF : X → Y be a 1-morphism of stacks in groupoids over (Sch/S)fppf .
Assume that ∆ : Y → Y × Y is representable by algebraic spaces. Then

Hd(X/Y) −→ Hd(X )× Y
see Examples of Stacks, Equation (18.2.1) is representable by algebraic spaces.

Proof. Let U be a scheme and let ξ = (U,Z, p, x, 1) be an object of Hd(X ) =
Hd(X/S) over U . Here p is just the structure morphism of U . The fifth component 1
exists and is unique since everything is over S. Also, let y be an object of Y over U . We
have to show the 2-fibre product

(12.5.1) (Sch/U)fppf ×ξ×y,Hd(X )×Y Hd(X/Y)
is representable by an algebraic space. To explain why this is so we introduce

I = IsomY(y|Z , F (x))
which is an algebraic space over Z by assumption. Let a : U ′ → U be a scheme over U .
What does it mean to give an object of the fibre category of (12.5.1) overU ′? Well, it means
that we have an object ξ′ = (U ′, Z ′, y′, x′, α′) of Hd(X/Y) over U ′ and isomorphisms
(U ′, Z ′, p′, x′, 1) ∼= (U,Z, p, x, 1)|U ′ and y′ ∼= y|U ′ . Thus ξ′ is isomorphic to (U ′, U ′×a,U
Z, a∗y, x|U ′×a,UZ , α) for some morphism

α : a∗y|U ′×a,UZ −→ F (x|U ′×a,UZ)
in the fibre category ofY overU ′×a,U Z. Hence we can view α as a morphism b : U ′×a,U
Z → I . In this way we see that (12.5.1) is representable by ResZ/U (I) which is an algebraic
space by Proposition 11.5. �

The following lemma is a (partial) generalization of Lemma 12.3.

Lemma 12.6. LetF : X → Y andG : X ′ → X be 1-morphisms of stacks in groupoids
over (Sch/S)fppf . If G is representable by algebraic spaces, then the 1-morphism

Hd(X ′/Y) −→ Hd(X/Y)
is representable by algebraic spaces.

Proof. Let U be a scheme and let ξ = (U,Z, y, x, α) be an object ofHd(X/Y) over
U . We have to prove that the 2-fibre product

(12.6.1) (Sch/U)fppf ×ξ,Hd(X/Y) Hd(X ′/Y)
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is representable by an algebraic space étale over U . An object of this over a : U ′ → U
corresponds to an object x′ of X ′ over U ′ ×a,U Z such that G(x′) ∼= x|U ′×a,UZ . By
assumption the 2-fibre product

(Sch/Z)fppf ×x,X X ′

is representable by an algebraic spaceX over Z. It follows that (12.6.1) is representable by
ResZ/U (X), which is an algebraic space by Proposition 11.5. �

Lemma 12.7. LetF : X → Y be a 1-morphism of stacks in groupoids over (Sch/S)fppf .
Assume F is representable by algebraic spaces and locally of finite presentation. Then

p : Hd(X/Y)→ Y

is limit preserving on objects.

Proof. This means we have to show the following: Given
(1) an affine scheme U = limi Ui which is written as the directed limit of affine

schemes Ui over S ,
(2) an object yi of Y over Ui for some i, and
(3) an object Ξ = (U,Z, y, x, α) ofHd(X/Y) over U such that y = yi|U ,

then there exists an i′ ≥ i and an object Ξi′ = (Ui′ , Zi′ , yi′ , xi′ , αi′) of Hd(X/Y) over
Ui′ with Ξi′ |U = Ξ and yi′ = yi|Ui′ . Namely, the last two equalities will take care of the
commutativity of (5.0.1).

Let Xyi → Ui be an algebraic space representing the 2-fibre product

(Sch/Ui)fppf ×yi,Y,F X .

Note that Xyi → Ui is locally of finite presentation by our assumption on F . Write Ξ.
It is clear that ξ = (Z,Z → Ui, x, α) is an object of the 2-fibre product displayed above,
hence ξ gives rise to a morphism fξ : Z → Xyi of algebraic spaces over Ui (since Xyi is
the functor of isomorphisms classes of objects of (Sch/Ui)fppf ×y,Y,F X , see Algebraic
Stacks, Lemma 8.2). By Limits, Lemmas 10.1 and 8.8 there exists an i′ ≥ i and a finite
locally free morphism Zi′ → Ui′ of degree d whose base change to U is Z. By Limits of
Spaces, Proposition 3.10 we may, after replacing i′ by a bigger index, assume there exists
a morphism fi′ : Zi′ → Xyi such that

Z

��

//

fξ

((
Zi′

��

fi′
// Xyi

��
U // Ui′ // Ui

is commutative. We set Ξi′ = (Ui′ , Zi′ , yi′ , xi′ , αi′) where
(1) yi′ is the object of Y over Ui′ which is the pullback of yi to Ui′ ,
(2) xi′ is the object of X over Zi′ corresponding via the 2-Yoneda lemma to the

1-morphism

(Sch/Zi′)fppf → SXyi → (Sch/Ui)fppf ×yi,Y,F X → X

where the middle arrow is the equivalence which defines Xyi (notation as in
Algebraic Stacks, Sections 8 and 7).
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(3) αi′ : yi′ |Zi′ → F (xi′) is the isomorphism coming from the 2-commutativity of
the diagram

(Sch/Zi′)fppf //

))

(Sch/Ui)fppf ×yi,Y,F X //

��

X

F

��
(Sch/Ui′)fppf // Y

Recall that fξ : Z → Xyi was the morphism corresponding to the object ξ = (Z,Z →
Ui, x, α) of (Sch/Ui)fppf ×yi,Y,F X over Z. By construction fi′ is the morphism corre-
sponding to the object ξi′ = (Zi′ , Zi′ → Ui, xi′ , αi′). As fξ = fi′ ◦ (Z → Zi′) we see
that the object ξi′ = (Zi′ , Zi′ → Ui, xi′ , αi′) pulls back to ξ over Z. Thus xi′ pulls back
to x and αi′ pulls back to α. This means that Ξi′ pulls back to Ξ over U and we win. �

13. The finite Hilbert stack of a point

Let d ≥ 1 be an integer. In Examples of Stacks, Definition 18.2 we defined a stack in
groupoidsHd. In this section we prove thatHd is an algebraic stack. We will throughout
assume that S = Spec(Z). The general case will follow from this by base change. Recall
that the fibre category of Hd over a scheme T is the category of finite locally free mor-
phisms π : Z → T of degree d. Instead of classifying these directly we first study the
quasi-coherent sheaves of algebras π∗OZ .

Let R be a ring. Let us temporarily make the following definition: A free d-dimensional
algebra over R is given by a commutative R-algebra structure m on R⊕d such that e1 =
(1, 0, . . . , 0) is a unit4. We think of m as an R-linear map

m : R⊕d ⊗R R⊕d −→ R⊕d

such that m(e1, x) = m(x, e1) = x and such that m defines a commutative and associa-
tive ring structure. If we write m(ei, ej) =

∑
akijek then we see this boils down to the

conditions 
∑
l a
l
ija

m
lk =

∑
l a
m
il a

l
jk ∀i, j, k,m

akij = akji ∀i, j, k
aji1 = δij ∀i, j

where δij is the Kronecker δ-function. OK, so let’s define

Runiv = Z[akij ]/J

where the ideal J is the ideal generated by the relations displayed above. Denote

muniv : R⊕d
univ ⊗Runiv R

⊕d
univ −→ R⊕d

univ

the free d-dimensional algebra m over Runiv whose structure constants are the classes of
akij modulo J . Then it is clear that given any free d-dimensional algebra m over a ring R
there exists a unique Z-algebra homomorphism ψ : Runiv → R such that ψ∗muniv = m
(this means that m is what you get by applying the base change functor − ⊗Runiv R to
muniv). In other words, setting X = Spec(Runiv) we obtain a canonical identification

X(T ) = {free d-dimensional algebras m over R}

4It may be better to think of this as a pair consisting of a multiplication mapm : R⊕d ⊗R R⊕d → R⊕d

and a ring map ψ : R → R⊕d satisfying a bunch of axioms.
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for varying T = Spec(R). By Zariski localization we obtain the following seemingly
more general identification

(13.0.1) X(T ) = {free d-dimensional algebras m over Γ(T,OT )}
for any scheme T .

Next we talk a little bit about isomorphisms of free d-dimensional R-algebras. Namely,
suppose that m, m′ are two free d-dimensional algebras over a ring R. An isomorphism
from m to m′ is given by an invertible R-linear map

ϕ : R⊕d −→ R⊕d

such that ϕ(e1) = e1 and such that

m ◦ ϕ⊗ ϕ = ϕ ◦m′.

Note that we can compose these so that the collection of free d-dimensional algebras over
R becomes a category. In this way we obtain a functor

(13.0.2) FAd : Schoppfppf −→ Groupoids

from the category of schemes to groupoids: to a scheme T we associate the set of free d-
dimensional algebras over Γ(T,OT ) endowed with the structure of a category using the
notion of isomorphisms just defined.

The above suggests we consider the functor G in groups which associates to any scheme
T the group

G(T ) = {g ∈ GLd(Γ(T,OT )) | g(e1) = e1}
It is clear that G ⊂ GLd (see Groupoids, Example 5.4) is the closed subgroup scheme cut
out by the equations x11 = 1 and xi1 = 0 for i > 1. Hence G is a smooth affine group
scheme over Spec(Z). Consider the action

a : G×Spec(Z) X −→ X

which associates to a T -valued point (g,m) with T = Spec(R) on the left hand side the
free d-dimensional algebra over R given by

a(g,m) = g−1 ◦m ◦ g ⊗ g.

Note that this means that g defines an isomorphism m → a(g,m) of d-dimensional free
R-algebras. We omit the verification that a indeed defines an action of the group scheme
G on the scheme X .

Lemma 13.1. The functor in groupoids FAd defined in (13.0.2) is isomorphic (!) to
the functor in groupoids which associates to a scheme T the category with

(1) set of objects is X(T ),
(2) set of morphisms is G(T )×X(T ),
(3) s : G(T )×X(T )→ X(T ) is the projection map,
(4) t : G(T )×X(T )→ X(T ) is a(T ), and
(5) composition G(T )×X(T )×s,X(T ),t G(T )×X(T )→ G(T )×X(T ) is given

by ((g,m), (g′,m′)) 7→ (gg′,m′).

Proof. We have seen the rule on objects in (13.0.1). We have also seen above that
g ∈ G(T ) can be viewed as a morphism from m to a(g,m) for any free d-dimensional
algebra m. Conversely, any morphism m → m′ is given by an invertible linear map ϕ
which corresponds to an element g ∈ G(T ) such that m′ = a(g,m). �
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In fact the groupoid (X,G × X, s, t, c) described in the lemma above is the groupoid
associated to the action a : G×X → X as defined in Groupoids, Lemma 16.1. Since G is
smooth over Spec(Z) we see that the two morphisms s, t : G ×X → X are smooth: by
symmetry it suffices to prove that one of them is, and s is the base change ofG→ Spec(Z).
Hence (G × X,X, s, t, c) is a smooth groupoid scheme, and the quotient stack [X/G] is
an algebraic stack by Algebraic Stacks, Theorem 17.3.

Proposition 13.2. The stackHd is equivalent to the quotient stack [X/G] described
above. In particularHd is an algebraic stack.

Proof. Note that by Groupoids in Spaces, Definition 20.1 the quotient stack [X/G]
is the stackification of the category fibred in groupoids associated to the “presheaf in
groupoids” which associates to a scheme T the groupoid

(X(T ), G(T )×X(T ), s, t, c).
Since this “presheaf in groupoids” is isomorphic to FAd by Lemma 13.1 it suffices to prove
that the Hd is the stackification of (the category fibred in groupoids associated to the
“presheaf in groupoids”) FAd. To do this we first define a functor

Spec : FAd −→ Hd
Recall that the fibre category of Hd over a scheme T is the category of finite locally
free morphisms Z → T of degree d. Thus given a scheme T and a free d-dimensional
Γ(T,OT )-algebra m we may assign to this the object

Z = Spec
T

(A)

ofHd,T whereA = O⊕d
T endowed with aOT -algebra structure via m. Moreover, if m′ is

a second such free d-dimensional Γ(T,OT )-algebra and if ϕ : m→ m′ is an isomorphism
of these, then the inducedOT -linear map ϕ : O⊕d

T → O⊕d
T induces an isomorphism

ϕ : A′ −→ A
of quasi-coherentOT -algebras. Hence

Spec
T

(ϕ) : Spec
T

(A) −→ Spec
T

(A′)

is a morphism in the fibre categoryHd,T . We omit the verification that this construction
is compatible with base change so we get indeed a functor Spec : FAd → Hd as claimed
above.

To show that Spec : FAd → Hd induces an equivalence between the stackification of
FAd andHd it suffices to check that

(1) Isom(m,m′) = Isom(Spec(m), Spec(m′)) for any m,m′ ∈ FAd(T ).
(2) for any scheme T and any object Z → T ofHd,T there exists a covering {Ti →

T} such that Z|Ti is isomorphic to Spec(m) for some m ∈ FAd(Ti), and
see Stacks, Lemma 9.1. The first statement follows from the observation that any isomor-
phism

Spec
T

(A) −→ Spec
T

(A′)

is necessarily given by a global invertible matrix g when A = A′ = O⊕d
T as modules.

To prove the second statement let π : Z → T be a finite locally free morphism of
degree d. Then A is a locally free sheaf OT -modules of rank d. Consider the element
1 ∈ Γ(T,A). This element is nonzero in A ⊗OT,t

κ(t) for every t ∈ T since the scheme
Zt = Spec(A⊗OT,t

κ(t)) is nonempty being of degree d > 0 over κ(t). Thus 1 : OT → A
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can locally be used as the first basis element (for example you can use Algebra, Lemma 79.4
parts (1) and (2) to see this). Thus, after localizing on T we may assume that there exists
an isomorphism ϕ : A → O⊕d

T such that 1 ∈ Γ(A) corresponds to the first basis ele-
ment. In this situation the multiplication mapA⊗OT

A → A translates via ϕ into a free
d-dimensional algebra m over Γ(T,OT ). This finishes the proof. �

14. Finite Hilbert stacks of spaces

The finite Hilbert stack of an algebraic space is an algebraic stack.

Lemma 14.1. Let S be a scheme. Let X be an algebraic space over S. ThenHd(X) is
an algebraic stack.

Proof. The 1-morphism
Hd(X) −→ Hd

is representable by algebraic spaces according to Lemma 12.6. The stack Hd is an alge-
braic stack according to Proposition 13.2. HenceHd(X) is an algebraic stack by Algebraic
Stacks, Lemma 15.4. �

This lemma allows us to bootstrap.

Lemma 14.2. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf such that

(1) X is representable by an algebraic space, and
(2) F is representable by algebraic spaces, surjective, flat, and locally of finite pre-

sentation.
ThenHd(X/Y) is an algebraic stack.

Proof. Choose a representable stack in groupoids U over S and a 1-morphism f :
U → Hd(X ) which is representable by algebraic spaces, smooth, and surjective. This is
possible becauseHd(X ) is an algebraic stack by Lemma 14.1. Consider the 2-fibre product

W = Hd(X/Y)×Hd(X ),f U .

SinceU is representable (in particular a stack in setoids) it follows from Examples of Stacks,
Lemma 18.3 and Stacks, Lemma 6.7 thatW is a stack in setoids. The 1-morphismW →
Hd(X/Y) is representable by algebraic spaces, smooth, and surjective as a base change of
the morphism f (see Algebraic Stacks, Lemmas 9.7 and 10.6). Thus, if we can show that
W is representable by an algebraic space, then the lemma follows from Algebraic Stacks,
Lemma 15.3.

The diagonal of Y is representable by algebraic spaces according to Lemma 4.3. We may
apply Lemma 12.5 to see that the 1-morphism

Hd(X/Y) −→ Hd(X )× Y

is representable by algebraic spaces. Consider the 2-fibre product

V = Hd(X/Y)×(Hd(X )×Y),f×F (U × X ).

The projection morphism V → U×X is representable by algebraic spaces as a base change
of the last displayed morphism. Hence V is an algebraic space (see Bootstrap, Lemma 3.6 or
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Algebraic Stacks, Lemma 9.8). The 1-morphism V → U fits into the following 2-cartesian
diagram

V

��

// X

F

��
W // Y

because

Hd(X/Y)×(Hd(X )×Y),f×F (U × X ) = (Hd(X/Y)×Hd(X ),f U)×Y,F X .

Hence V → W is representable by algebraic spaces, surjective, flat, and locally of finite
presentation as a base change of F . It follows that the same thing is true for the corre-
sponding sheaves of sets associated to V andW , see Algebraic Stacks, Lemma 10.4. Thus
we conclude that the sheaf associated toW is an algebraic space by Bootstrap, Theorem
10.1. �

15. LCI locus in the Hilbert stack

Please consult Examples of Stacks, Section 18 for notation. Fix a 1-morphismF : X −→ Y
of stacks in groupoids over (Sch/S)fppf . Assume that F is representable by algebraic
spaces. Fix d ≥ 1. Consider an object (U,Z, y, x, α) of Hd. There is an induced 1-
morphism

(Sch/Z)fppf −→ (Sch/U)fppf ×y,Y,F X

(by the universal property of 2-fibre products) which is representable by a morphism of al-
gebraic spaces overU . Namely, sinceF is representable by algebraic spaces, we may choose
an algebraic spaceXy overU which represents the 2-fibre product (Sch/U)fppf×y,Y,FX .
Since α : y|Z → F (x) is an isomorphism we see that ξ = (Z,Z → U, x, α) is an object
of the 2-fibre product (Sch/U)fppf ×y,Y,F X over Z. Hence ξ gives rise to a morphism
xα : Z → Xy of algebraic spaces over U as Xy is the functor of isomorphisms classes of
objects of (Sch/U)fppf ×y,Y,F X , see Algebraic Stacks, Lemma 8.2. Here is a picture

(15.0.1)

Z
xα
//

  

Xy

��
U

(Sch/Z)fppf

))

x,α
// (Sch/U)fppf ×y,Y,F X //

��

X

F

��
(Sch/U)fppf

y // Y

We remark that if (f, g, b, a) : (U,Z, y, x, α)→ (U ′, Z ′, y′, x′, α′) is a morphism between
objects ofHd, then the morphism x′

α′ : Z ′ → X ′
y′ is the base change of the morphism xα

by the morphism g : U ′ → U (details omitted).

Now assume moreover that F is flat and locally of finite presentation. In this situation we
define a full subcategory

Hd,lci(X/Y) ⊂ Hd(X/Y)

consisting of those objects (U,Z, y, x, α) of Hd(X/Y) such that the corresponding mor-
phism xα : Z → Xy is unramified and a local complete intersection morphism (see Mor-
phisms of Spaces, Definition 38.1 and More on Morphisms of Spaces, Definition 48.1 for
definitions).



6648 97. CRITERIA FOR REPRESENTABILITY

Lemma 15.1. Let S be a scheme. Fix a 1-morphism F : X −→ Y of stacks in
groupoids over (Sch/S)fppf . Assume F is representable by algebraic spaces, flat, and lo-
cally of finite presentation. Then Hd,lci(X/Y) is a stack in groupoids and the inclusion
functor

Hd,lci(X/Y) −→ Hd(X/Y)
is representable and an open immersion.

Proof. Let Ξ = (U,Z, y, x, α) be an object of Hd. It follows from the remark fol-
lowing (15.0.1) that the pullback of Ξ by U ′ → U belongs to Hd,lci(X/Y) if and only
if the base change of xα is unramified and a local complete intersection morphism. Note
that Z → U is finite locally free (hence flat, locally of finite presentation and universally
closed) and that Xy → U is flat and locally of finite presentation by our assumption on
F . Then More on Morphisms of Spaces, Lemmas 49.1 and 49.7 imply exists an open sub-
scheme W ⊂ U such that a morphism U ′ → U factors through W if and only if the base
change of xα via U ′ → U is unramified and a local complete intersection morphism. This
implies that

(Sch/U)fppf ×Ξ,Hd(X/Y) Hd,lci(X/Y)
is representable by W . Hence the final statement of the lemma holds. The first statement
(thatHd,lci(X/Y) is a stack in groupoids) follows from this and Algebraic Stacks, Lemma
15.5. �

Local complete intersection morphisms are “locally unobstructed”. This holds in much
greater generality than the special case that we need in this chapter here.

Lemma 15.2. Let U ⊂ U ′ be a first order thickening of affine schemes. Let X ′ be an
algebraic space flat overU ′. SetX = U×U ′ X ′. LetZ → U be finite locally free of degree
d. Finally, let f : Z → X be unramified and a local complete intersection morphism.
Then there exists a commutative diagram

(Z ⊂ Z ′)

&&

(f,f ′)
// (X ⊂ X ′)

xx
(U ⊂ U ′)

of algebraic spaces over U ′ such that Z ′ → U ′ is finite locally free of degree d and Z =
U ×U ′ Z ′.

Proof. By More on Morphisms of Spaces, Lemma 48.12 the conormal sheaf CZ/X
of the unramified morphism Z → X is a finite locally free OZ -module and by More on
Morphisms of Spaces, Lemma 48.13 we have an exact sequence

0→ i∗CX/X′ → CZ/X′ → CZ/X → 0

of conormal sheaves. Since Z is affine this sequence is split. Choose a splitting

CZ/X′ = i∗CX/X′ ⊕ CZ/X
Let Z ⊂ Z ′′ be the universal first order thickening of Z overX ′ (see More on Morphisms
of Spaces, Section 15). Denote I ⊂ OZ′′ the quasi-coherent sheaf of ideals corresponding
to Z ⊂ Z ′′. By definition we have CZ/X′ is I viewed as a sheaf on Z. Hence the splitting
above determines a splitting

I = i∗CX/X′ ⊕ CZ/X
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Let Z ′ ⊂ Z ′′ be the closed subscheme cut out by CZ/X ⊂ I viewed as a quasi-coherent
sheaf of ideals on Z ′′. It is clear that Z ′ is a first order thickening of Z and that we obtain
a commutative diagram of first order thickenings as in the statement of the lemma.

Since X ′ → U ′ is flat and since X = U ×U ′ X ′ we see that CX/X′ is the pullback of
CU/U ′ to X , see More on Morphisms of Spaces, Lemma 18.1. Note that by construction
CZ/Z′ = i∗CX/X′ hence we conclude that CZ/Z′ is isomorphic to the pullback of CU/U ′ to
Z. Applying More on Morphisms of Spaces, Lemma 18.1 once again (or its analogue for
schemes, see More on Morphisms, Lemma 10.1) we conclude that Z ′ → U ′ is flat and that
Z = U ×U ′ Z ′. Finally, More on Morphisms, Lemma 10.3 shows that Z ′ → U ′ is finite
locally free of degree d. �

Lemma 15.3. LetF : X → Y be a 1-morphism of stacks in groupoids over (Sch/S)fppf .
AssumeF is representable by algebraic spaces, flat, and locally of finite presentation. Then

p : Hd,lci(X/Y)→ Y
is formally smooth on objects.

Proof. We have to show the following: Given
(1) an object (U,Z, y, x, α) ofHd,lci(X/Y) over an affine scheme U ,
(2) a first order thickening U ⊂ U ′, and
(3) an object y′ of Y over U ′ such that y′|U = y,

then there exists an object (U ′, Z ′, y′, x′, α′) ofHd,lci(X/Y) overU ′ withZ = U×U ′ Z ′,
with x = x′|Z , and with α = α′|U . Namely, the last two equalities will take care of the
commutativity of (6.0.1).

Consider the morphism xα : Z → Xy constructed in Equation (15.0.1). Denote similarly
X ′
y′ the algebraic space overU ′ representing the 2-fibre product (Sch/U ′)fppf×y′,Y,F X .

By assumption the morphism X ′
y′ → U ′ is flat (and locally of finite presentation). As

y′|U = y we see thatXy = U ×U ′ X ′
y′ . Hence we may apply Lemma 15.2 to find Z ′ → U ′

finite locally free of degree d with Z = U ×U ′ Z ′ and with Z ′ → X ′
y′ extending xα.

By construction the morphism Z ′ → X ′
y′ corresponds to a pair (x′, α′). It is clear that

(U ′, Z ′, y′, x′, α′) is an object ofHd(X/Y) over U ′ with Z = U ×U ′ Z ′, with x = x′|Z ,
and with α = α′|U . As we’ve seen in Lemma 15.1 that Hd,lci(X/Y) ⊂ Hd(X/Y) is an
“open substack” it follows that (U ′, Z ′, y′, x′, α′) is an object of Hd,lci(X/Y) as desired.

�

Lemma 15.4. LetF : X → Y be a 1-morphism of stacks in groupoids over (Sch/S)fppf .
Assume F is representable by algebraic spaces, flat, surjective, and locally of finite presen-
tation. Then ∐

d≥1
Hd,lci(X/Y) −→ Y

is surjective on objects.

Proof. It suffices to prove the following: For any field k and object y of Y over
Spec(k) there exists an integer d ≥ 1 and an object (U,Z, y, x, α) of Hd,lci(X/Y) with
U = Spec(k). Namely, in this case we see that p is surjective on objects in the strong sense
that an extension of the field is not needed.

DenoteXy the algebraic space overU = Spec(k) representing the 2-fibre product (Sch/U ′)fppf×y′,Y,F
X . By assumption the morphism Xy → Spec(k) is surjective and locally of finite presen-
tation (and flat). In particular Xy is nonempty. Choose a nonempty affine scheme V
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and an étale morphism V → Xy . Note that V → Spec(k) is (flat), surjective, and lo-
cally of finite presentation (by Morphisms of Spaces, Definition 28.1). Pick a closed point
v ∈ V where V → Spec(k) is Cohen-Macaulay (i.e., V is Cohen-Macaulay at v), see
More on Morphisms, Lemma 22.7. Applying More on Morphisms, Lemma 23.4 we find
a regular immersion Z → V with Z = {v}. This implies Z → V is a closed immer-
sion. Moreover, it follows that Z → Spec(k) is finite (for example by Algebra, Lemma
122.1). Hence Z → Spec(k) is finite locally free of some degree d. Now Z → Xy is
unramified as the composition of a closed immersion followed by an étale morphism (see
Morphisms of Spaces, Lemmas 38.3, 39.10, and 38.8). Finally, Z → Xy is a local complete
intersection morphism as a composition of a regular immersion of schemes and an étale
morphism of algebraic spaces (see More on Morphisms, Lemma 62.9 and Morphisms of
Spaces, Lemmas 39.6 and 37.8 and More on Morphisms of Spaces, Lemmas 48.6 and 48.5).
The morphism Z → Xy corresponds to an object x of X over Z together with an iso-
morphism α : y|Z → F (x). We obtain an object (U,Z, y, x, α) of Hd(X/Y). By what
was said above about the morphism Z → Xy we see that it actually is an object of the
subcategoryHd,lci(X/Y) and we win. �

16. Bootstrapping algebraic stacks

The following theorem is one of the main results of this chapter.

Theorem 16.1. Let S be a scheme. Let F : X → Y be a 1-morphism of stacks in
groupoids over (Sch/S)fppf . If

(1) X is representable by an algebraic space, and
(2) F is representable by algebraic spaces, surjective, flat and locally of finite presen-

tation,
then Y is an algebraic stack.

Proof. By Lemma 4.3 we see that the diagonal of Y is representable by algebraic
spaces. Hence we only need to verify the existence of a 1-morphism f : V → Y of stacks
in groupoids over (Sch/S)fppf with V representable and f surjective and smooth. By
Lemma 14.2 we know that ∐

d≥1
Hd(X/Y)

is an algebraic stack. It follows from Lemma 15.1 and Algebraic Stacks, Lemma 15.5 that∐
d≥1
Hd,lci(X/Y)

is an algebraic stack as well. Choose a representable stack in groupoidsV over (Sch/S)fppf
and a surjective and smooth 1-morphism

V −→
∐

d≥1
Hd,lci(X/Y).

We claim that the composition

V −→
∐

d≥1
Hd,lci(X/Y) −→ Y

is smooth and surjective which finishes the proof of the theorem. In fact, the smoothness
will be a consequence of Lemmas 12.7 and 15.3 and the surjectivity a consequence of Lemma
15.4. We spell out the details in the following paragraph.
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By construction V →
∐
d≥1Hd,lci(X/Y) is representable by algebraic spaces, surjective,

and smooth (and hence also locally of finite presentation and formally smooth by the gen-
eral principle Algebraic Stacks, Lemma 10.9 and More on Morphisms of Spaces, Lemma
19.6). Applying Lemmas 5.3, 6.3, and 7.3 we see that V →

∐
d≥1Hd,lci(X/Y) is limit pre-

serving on objects, formally smooth on objects, and surjective on objects. The 1-morphism∐
d≥1Hd,lci(X/Y)→ Y is

(1) limit preserving on objects: this is Lemma 12.7 forHd(X/Y)→ Y and we com-
bine it with Lemmas 15.1, 5.4, and 5.2 to get it forHd,lci(X/Y)→ Y ,

(2) formally smooth on objects by Lemma 15.3, and
(3) surjective on objects by Lemma 15.4.

Using Lemmas 5.2, 6.2, and 7.2 we conclude that the composition V → Y is limit pre-
serving on objects, formally smooth on objects, and surjective on objects. Using Lemmas
5.3, 6.3, and 7.3 we see that V → Y is locally of finite presentation, formally smooth,
and surjective. Finally, using (via the general principle Algebraic Stacks, Lemma 10.9) the
infinitesimal lifting criterion (More on Morphisms of Spaces, Lemma 19.6) we see that
V → Y is smooth and we win. �

17. Applications

Our first task is to show that the quotient stack [U/R] associated to a “flat and locally
finitely presented groupoid” is an algebraic stack. See Groupoids in Spaces, Definition
20.1 for the definition of the quotient stack. The following lemma is preliminary and is
the analogue of Algebraic Stacks, Lemma 17.2.

Lemma 17.1. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a groupoid
in algebraic spaces over S. Assume s, t are flat and locally of finite presentation. Then the
morphism SU → [U/R] is flat, locally of finite presentation, and surjective.

Proof. Let T be a scheme and let x : (Sch/T )fppf → [U/R] be a 1-morphism. We
have to show that the projection

SU ×[U/R] (Sch/T )fppf −→ (Sch/T )fppf
is surjective, flat, and locally of finite presentation. We already know that the left hand side
is representable by an algebraic spaceF , see Algebraic Stacks, Lemmas 17.1 and 10.11. Hence
we have to show the corresponding morphism F → T of algebraic spaces is surjective,
locally of finite presentation, and flat. Since we are working with properties of morphisms
of algebraic spaces which are local on the target in the fppf topology we may check this
fppf locally on T . By construction, there exists an fppf covering {Ti → T} of T such that
x|(Sch/Ti)fppf comes from a morphism xi : Ti → U . (Note that F ×T Ti represents the
2-fibre product SU ×[U/R] (Sch/Ti)fppf so everything is compatible with the base change
via Ti → T .) Hence we may assume that x comes from x : T → U . In this case we see
that

SU ×[U/R] (Sch/T )fppf = (SU ×[U/R] SU )×SU (Sch/T )fppf = SR ×SU (Sch/T )fppf
The first equality by Categories, Lemma 31.10 and the second equality by Groupoids in
Spaces, Lemma 22.2. Clearly the last 2-fibre product is represented by the algebraic space
F = R×s,U,xT and the projectionR×s,U,xT → T is flat and locally of finite presentation
as the base change of the flat locally finitely presented morphism of algebraic spaces s :
R → U . It is also surjective as s has a section (namely the identity e : U → R of the
groupoid). This proves the lemma. �
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Here is the first main result of this section.

Theorem 17.2. Let S be a scheme contained in Schfppf . Let (U,R, s, t, c) be a
groupoid in algebraic spaces over S. Assume s, t are flat and locally of finite presenta-
tion. Then the quotient stack [U/R] is an algebraic stack over S.

Proof. We check the two conditions of Theorem 16.1 for the morphism

(Sch/U)fppf −→ [U/R].

The first is trivial (as U is an algebraic space). The second is Lemma 17.1. �

18. When is a quotient stack algebraic?

In Groupoids in Spaces, Section 20 we have defined the quotient stack [U/R] associated to a
groupoid (U,R, s, t, c) in algebraic spaces. Note that [U/R] is a stack in groupoids whose
diagonal is representable by algebraic spaces (see Bootstrap, Lemma 11.5 and Algebraic
Stacks, Lemma 10.11) and such that there exists an algebraic space U and a 1-morphism
(Sch/U)fppf → [U/R] which is an “fppf surjection” in the sense that it induces a map on
presheaves of isomorphism classes of objects which becomes surjective after sheafification.
However, it is not the case that [U/R] is an algebraic stack in general. This is not a con-
tradiction with Theorem 16.1 as the 1-morphism (Sch/U)fppf → [U/R] may not be flat
and locally of finite presentation.

The easiest way to make examples of non-algebraic quotient stacks is to look at quotients
of the form [S/G] where S is a scheme andG is a group scheme over S acting trivially on
S. Namely, we will see below (Lemma 18.3) that if [S/G] is algebraic, then G→ S has to
be flat and locally of finite presentation. An explicit example can be found in Examples,
Section 52.

Lemma 18.1. LetS be a scheme and letB be an algebraic space overS. Let (U,R, s, t, c)
be a groupoid in algebraic spaces overB. The quotient stack [U/R] is an algebraic stack if
and only if there exists a morphism of algebraic spaces g : U ′ → U such that

(1) the composition U ′ ×g,U,t R→ R
s−→ U is a surjection of sheaves, and

(2) the morphisms s′, t′ : R′ → U ′ are flat and locally of finite presentation where
(U ′, R′, s′, t′, c′) is the restriction of (U,R, s, t, c) via g.

Proof. First, assume that g : U ′ → U satisfies (1) and (2). Property (1) implies that
[U ′/R′] → [U/R] is an equivalence, see Groupoids in Spaces, Lemma 25.2. By Theorem
17.2 the quotient stack [U ′/R′] is an algebraic stack. Hence [U/R] is an algebraic stack too,
see Algebraic Stacks, Lemma 12.4.

Conversely, assume that [U/R] is an algebraic stack. We may choose a scheme W and a
surjective smooth 1-morphism

f : (Sch/W )fppf −→ [U/R].

By the 2-Yoneda lemma (Algebraic Stacks, Section 5) this corresponds to an object ξ of
[U/R] over W . By the description of [U/R] in Groupoids in Spaces, Lemma 24.1 we can
find a surjective, flat, locally finitely presented morphism b : U ′ → W of schemes such
that ξ′ = b∗ξ corresponds to a morphism g : U ′ → U . Note that the 1-morphism

f ′ : (Sch/U ′)fppf −→ [U/R].
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corresponding to ξ′ is surjective, flat, and locally of finite presentation, see Algebraic Stacks,
Lemma 10.5. Hence (Sch/U ′)fppf ×[U/R] (Sch/U ′)fppf which is represented by the al-
gebraic space

Isom[U/R](pr∗
0ξ

′, pr∗
1ξ

′) = (U ′ ×S U ′)×(g◦pr0,g◦pr1),U×SU R = R′

(see Groupoids in Spaces, Lemma 22.1 for the first equality; the second is the definition
of restriction) is flat and locally of finite presentation over U ′ via both s′ and t′ (by base
change, see Algebraic Stacks, Lemma 10.6). By this description of R′ and by Algebraic
Stacks, Lemma 16.1 we obtain a canonical fully faithful 1-morphism [U ′/R′] → [U/R].
This 1-morphism is essentially surjective because f ′ is flat, locally of finite presentation,
and surjective (see Stacks, Lemma 4.8); another way to prove this is to use Algebraic Stacks,
Remark 16.3. Finally, we can use Groupoids in Spaces, Lemma 25.2 to conclude that the
composition U ′ ×g,U,t R→ R

s−→ U is a surjection of sheaves. �

Lemma 18.2. Let S be a scheme and let B be an algebraic space over S. Let G be a
group algebraic space overB. LetX be an algebraic space overB and let a : G×BX → X
be an action ofG onX overB. The quotient stack [X/G] is an algebraic stack if and only
if there exists a morphism of algebraic spaces ϕ : X ′ → X such that

(1) G×B X ′ → X , (g, x′) 7→ a(g, ϕ(x′)) is a surjection of sheaves, and
(2) the two projections X ′′ → X ′ of the algebraic space X ′′ given by the rule

T 7−→ {(x′
1, g, x

′
2) ∈ (X ′ ×B G×B X ′)(T ) | ϕ(x′

1) = a(g, ϕ(x′
2))}

are flat and locally of finite presentation.

Proof. This lemma is a special case of Lemma 18.1. Namely, the quotient stack [X/G]
is by Groupoids in Spaces, Definition 20.1 equal to the quotient stack [X/G ×B X] of
the groupoid in algebraic spaces (X,G ×B X, s, t, c) associated to the group action in
Groupoids in Spaces, Lemma 15.1. There is one small observation that is needed to get
condition (1). Namely, the morphism s : G ×B X → X is the second projection and
the morphism t : G ×B X → X is the action morphism a. Hence the morphism h :
U ′ ×g,U,t R→ R

s−→ U from Lemma 18.1 corresponds to the morphism

X ′ ×ϕ,X,a (G×B X)
pr1−−→ X

in the current setting. However, because of the symmetry given by the inverse of G this
morphism is isomorphic to the morphism

(G×B X)×pr1,X,ϕ
X ′ a−→ X

of the statement of the lemma. Details omitted. �

Lemma 18.3. Let S be a scheme and let B be an algebraic space over S. Let G be a
group algebraic space over B. Endow B with the trivial action of G. Then the quotient
stack [B/G] is an algebraic stack if and only if G is flat and locally of finite presentation
over B.

Proof. IfG is flat and locally of finite presentation overB, then [B/G] is an algebraic
stack by Theorem 17.2.
Conversely, assume that [B/G] is an algebraic stack. By Lemma 18.2 and because the action
is trivial, we see there exists an algebraic space B′ and a morphism B′ → B such that (1)
B′ → B is a surjection of sheaves and (2) the projections

B′ ×B G×B B′ → B′
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are flat and locally of finite presentation. Note that the base change B′ ×B G ×B B′ →
G×BB′ ofB′ → B is a surjection of sheaves also. Thus it follows from Descent on Spaces,
Lemma 8.1 that the projectionG×B B′ → B′ is flat and locally of finite presentation. By
(1) we can find an fppf covering {Bi → B} such that Bi → B factors through B′ → B.
HenceG×BBi → Bi is flat and locally of finite presentation by base change. By Descent
on Spaces, Lemmas 11.13 and 11.10 we conclude that G → B is flat and locally of finite
presentation. �

Later we will see that the quotient stack of a smooth S-space by a group algebraic spaceG
is smooth, even when G is not smooth (Morphisms of Stacks, Lemma 33.7).

19. Algebraic stacks in the étale topology

Let S be a scheme. Instead of working with stacks in groupoids over the big fppf site
(Sch/S)fppf we could work with stacks in groupoids over the big étale site (Sch/S)étale.
All of the material in Algebraic Stacks, Sections 4, 5, 6, 7, 8, 9, 10, and 11 makes sense
for categories fibred in groupoids over (Sch/S)étale. Thus we get a second notion of an
algebraic stack by working in the étale topology. This notion is (a priori) weaker than the
notion introduced in Algebraic Stacks, Definition 12.1 since a stack in the fppf topology
is certainly a stack in the étale topology. However, the notions are equivalent as is shown
by the following lemma.

Lemma 19.1. Denote the common underlying category of Schfppf and Schétale by
Schα (see Sheaves on Stacks, Section 4 and Topologies, Remark 11.1). Let S be an object of
Schα. Let

p : X → Schα/S
be a category fibred in groupoids with the following properties:

(1) X is a stack in groupoids over (Sch/S)étale,
(2) the diagonal ∆ : X → X ×X is representable by algebraic spaces5, and
(3) there exists U ∈ Ob(Schα/S) and a 1-morphism (Sch/U)étale → X which is

surjective and smooth.
Then X is an algebraic stack in the sense of Algebraic Stacks, Definition 12.1.

Proof. Note that properties (2) and (3) of the lemma and the corresponding proper-
ties (2) and (3) of Algebraic Stacks, Definition 12.1 are independent of the topology. This
is true because these properties involve only the notion of a 2-fibre product of categories
fibred in groupoids, 1- and 2-morphisms of categories fibred in groupoids, the notion of a
1-morphism of categories fibred in groupoids representable by algebraic spaces, and what
it means for such a 1-morphism to be surjective and smooth. Thus all we have to prove
is that an étale stack in groupoids X with properties (2) and (3) is also an fppf stack in
groupoids.

Using (2) let R be an algebraic space representing

(Schα/U)×X (Schα/U)
By (3) the projections s, t : R→ U are smooth. Exactly as in the proof of Algebraic Stacks,
Lemma 16.1 there exists a groupoid in spaces (U,R, s, t, c) and a canonical fully faithful

5Here we can either mean sheaves in the étale topology whose diagonal is representable and which have an
étale surjective covering by a scheme or algebraic spaces as defined in Algebraic Spaces, Definition 6.1. Namely,
by Bootstrap, Lemma 12.1 there is no difference.
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1-morphism [U/R]étale → X where [U/R]étale is the étale stackification of presheaf in
groupoids

T 7−→ (U(T ), R(T ), s(T ), t(T ), c(T ))
Claim: If V → T is a surjective smooth morphism from an algebraic space V to a scheme
T , then there exists an étale covering {Ti → T} refining the covering {V → T}. This
follows from More on Morphisms, Lemma 38.7 or the more general Sheaves on Stacks,
Lemma 19.10. Using the claim and arguing exactly as in Algebraic Stacks, Lemma 16.2 it
follows that [U/R]étale → X is an equivalence.
Next, let [U/R] denote the quotient stack in the fppf topology which is an algebraic stack
by Algebraic Stacks, Theorem 17.3. Thus we have 1-morphisms

U → [U/R]étale → [U/R].
Both U → [U/R]étale ∼= X and U → [U/R] are surjective and smooth (the first by
assumption and the second by the theorem) and in both cases the fibre product U ×X U
and U ×[U/R] U is representable by R. Hence the 1-morphism [U/R]étale → [U/R] is
fully faithful (since morphisms in the quotient stacks are given by morphisms into R, see
Groupoids in Spaces, Section 24).
Finally, for any scheme T and morphism t : T → [U/R] the fibre product V = T ×U/RU
is an algebraic space surjective and smooth over T . By the claim above there exists an
étale covering {Ti → T}i∈I and morphisms Ti → V over T . This proves that the object
t of [U/R] over T comes étale locally from U . We conclude that [U/R]étale → [U/R]
is an equivalence of stacks in groupoids over (Sch/S)étale by Stacks, Lemma 4.8. This
concludes the proof. �
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CHAPTER 98

Artin’s Axioms

1. Introduction

In this chapter we discuss Artin’s axioms for the representability of functors by algebraic
spaces. As references we suggest the papers [?], [?], [?].

Some of the notation, conventions, and terminology in this chapter is awkward and may
seem backwards to the more experienced reader. This is intentional. Please see Quot,
Section 2 for an explanation.

Let S be a locally Noetherian base scheme. Let

p : X −→ (Sch/S)fppf
be a category fibred in groupoids. Let x0 be an object ofX over a field k of finite type over
S. Throughout this chapter an important role is played by the predeformation category
(see Formal Deformation Theory, Definition 6.2)

FX ,k,x0 −→ {Artinian local S-algebras with residue field k}

associated tox0 over k. We introduce the Rim-Schlessinger condition (RS) forX and show
it guarantees that FX ,k,x0 is a deformation category, i.e., FX ,k,x0 satisies (RS) itself. We
discuss howFX ,k,x0 changes if one replaces k by a finite extension and we discuss tangent
spaces.

Next, we discuss formal objects ξ = (ξn) of X which are inverse systems of objects lying
over the quotientsR/mn whereR is a Noetherian complete local S-algebra whose residue
field is of finite type over S. This is the same thing as having a formal object in FX ,k,x0

for some x0 and k. A formal object is called effective when there is an object of X over R
which gives rise to the inverse system. A formal object of X is called versal if it gives rise
to a versal formal object ofFX ,k,x0 . Finally, given a finite type S-schemeU , an object x of
X over U , and a closed point u0 ∈ U we say x is versal at u0 if the induced formal object
over the complete local ringO∧

U,u0
is versal.

Having worked through this material we can state Artin’s celebrated theorem: our X is
an algebraic stack if the following are true

(1) OS,s is a G-ring for all s ∈ S ,
(2) ∆ : X → X ×X is representable by algebraic spaces,
(3) X is a stack for the étale topology,
(4) X is limit preserving,
(5) X satisfies (RS),
(6) tangent spaces and spaces of infinitesimal automorphisms of the deformation

categories FX ,k,x0 are finite dimensional,
(7) formal objects are effective,
(8) X satisfies openness of versality.

6657



6658 98. ARTIN’S AXIOMS

This is Lemma 17.1; see also Proposition 17.2 for a slight improvement. There is an anal-
ogous proposition characterizing which functors F : (Sch/S)oppfppf → Sets are algebraic
spaces, see Section 16.

Here is a rough outline of the proof of Artin’s theorem. First we show that there are
plenty of versal formal objects using (RS) and the finite dimensionality of tangent and aut
spaces, see for example Formal Deformation Theory, Lemma 27.6. These formal objects
are effective by assumption. Effective formal objects can be “approximated” by objects x
over finite typeS-schemesU , see Lemma 10.1. This approximation uses the local rings ofS
are G-rings and thatX is limit preserving; it is perhaps the most difficult part of the proof
relying as it does on general Néron desingularization to approximate formal solutions of
algebraic equations over a Noetherian local G-ring by solutions in the henselization. Next
openness of versality implies we may (after shrinkingU ) assume x is versal at every closed
point of U . Having done all of this we show that U → X is a smooth morphism. Taking
sufficiently many U → X we show that we obtain a “smooth atlas” for X which shows
that X is an algebraic stack.

In checking Artin’s axioms for a given category X fibred in groupoids, the most difficult
step is often to verify openness of versality. For the discussion that follows, assume that
X/S already satisfies the other conditions listed above. In this chapter we offer two meth-
ods that will allow the reader to prove X satisfies openness of versality:

(1) The first is to assume a stronger Rim-Schlessinger condition, called (RS*) and to
assume a stronger version of formal effectiveness, essentially requiring objects
over inverse systems of thickenings to be effective. It turns out that under these
assumptions, openness of versality comes for free, see Lemma 20.3. Please observe
that here we are using in an essential manner that X is defined on that category
of all schemes over S , not just the category of Noetherian schemes!

(2) The second, following Artin, is to require X to come equipped with an obstruc-
tion theory. If said obstruction theory “commutes with products” in a suitable
sense, then X satisfies openness of versality, see Lemma 22.2.

Obstruction theories can be axiomatized in many different ways and indeed many variants
(often adapted to specific moduli stacks) can be found in the literature. We explain a
variant using the derived category (which often arises naturally from deformation theory
computations done in the literature) in Lemma 24.4.

In Section 26 we discuss what needs to be modified to make things work for functors de-
fined on the category (Noetherian/S)étale of locally Noetherian schemes over S.

In the final section of this chapter as an application of Artin’s axioms we prove Artin’s
theorem on the existence of contractions, see Section 27. The theorem says roughly that
given an algebraic space X ′ separated of finite type over S , a closed subset T ′ ⊂ |X ′|, and
a formal modification

f : X ′
/T ′ −→ X

where X is a Noetherian formal algebraic space over S , there exists a proper morphism
f : X ′ → X which “realizes the contraction”. By this we mean that there exists an
identification X = X/T such that f = f/T ′ : X ′

/T ′ → X/T where T = f(T ′) and
moreover f is an isomorphism over X \ T . The proof proceeds by defining a functor F
on the category of locally Noetherian schemes over S and proving Artin’s axioms for F .
Amusingly, in this application of Artin’s axioms, openness of versality is not the hardest
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thing to prove, instead the proof that F is limit preserving requires a lot of work and
preliminary results.

2. Conventions

The conventions we use in this chapter are the same as those in the chapter on algebraic
stacks, see Algebraic Stacks, Section 2. In this chapter the base scheme S will often be
locally Noetherian (although we will always reiterate this condition when stating results).

3. Predeformation categories

Let S be a locally Noetherian base scheme. Let
p : X −→ (Sch/S)fppf

be a category fibred in groupoids. Let k be a field and let Spec(k)→ S be a morphism of
finite type (see Morphisms, Lemma 16.1). We will sometimes simply say that k is a field
of finite type over S. Let x0 be an object of X lying over Spec(k). Given S , X , k, and x0
we will construct a predeformation category, as defined in Formal Deformation Theory,
Definition 6.2. The construction will resemble the construction of Formal Deformation
Theory, Remark 6.4.
First, by Morphisms, Lemma 16.1 we may pick an affine open Spec(Λ) ⊂ S such that
Spec(k)→ S factors through Spec(Λ) and the associated ring map Λ→ k is finite. This
provides us with the category CΛ, see Formal Deformation Theory, Definition 3.1. The
category CΛ, up to canonical equivalence, does not depend on the choice of the affine open
Spec(Λ) of S. Namely, CΛ is equivalent to the opposite of the category of factorizations
(3.0.1) Spec(k)→ Spec(A)→ S

of the structure morphism such that A is an Artinian local ring and such that Spec(k)→
Spec(A) corresponds to a ring map A→ k which identifies k with the residue field of A.
We let F = FX ,k,x0 be the category whose

(1) objects are morphisms x0 → x of X where p(x) = Spec(A) with A an Artinian
local ring and p(x0)→ p(x)→ S a factorization as in (3.0.1), and

(2) morphisms (x0 → x)→ (x0 → x′) are commutative diagrams

x x′oo

x0

`` >>

in X . (Note the reversal of arrows.)
If x0 → x is an object of F then writing p(x) = Spec(A) we obtain an object A of CΛ.
We often say that x0 → x or x lies over A. A morphism of F between objects x0 → x
lying over A and x0 → x′ lying over A′ corresponds to a morphism x′ → x of X , hence
a morphism p(x′ → x) : Spec(A′) → Spec(A) which in turn corresponds to a ring map
A → A′. As X is a category over the category of schemes over S we see that A → A′ is
Λ-algebra homomorphism. Thus we obtain a functor
(3.0.2) p : F = FX ,k,x0 −→ CΛ.

We will use the notation F(A) to denote the fibre category over an object A of CΛ. An
object of F(A) is simply a morphism x0 → x of X such that x lies over Spec(A) and
x0 → x lies over Spec(k)→ Spec(A).
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Lemma 3.1. The functor p : F → CΛ defined above is a predeformation category.

Proof. We have to show that F is (a) cofibred in groupoids over CΛ and (b) that
F(k) is a category equivalent to a category with a single object and a single morphism.

Proof of (a). The fibre categories ofF over CΛ are groupoids as the fibre categories ofX are
groupoids. LetA→ A′ be a morphism of CΛ and let x0 → x be an object ofF(A). Because
X is fibred in groupoids, we can find a morphismx′ → x lying over Spec(A′)→ Spec(A).
Since the composition A→ A′ → k is equal the given map A→ k we see (by uniqueness
of pullbacks up to isomorphism) that the pullback via Spec(k) → Spec(A′) of x′ is x0,
i.e., that there exists a morphism x0 → x′ lying over Spec(k) → Spec(A′) compatible
with x0 → x and x′ → x. This proves that F has pushforwards. We conclude by (the
dual of) Categories, Lemma 35.2.

Proof of (b). If A = k, then Spec(k) = Spec(A) and since X is fibred in groupoids over
(Sch/S)fppf we see that given any object x0 → x in F(k) the morphism x0 → x is an
isomorphism. Hence every object ofF(k) is isomorphic to x0 → x0. Clearly the only self
morphism of x0 → x0 in F is the identity. �

Let S be a locally Noetherian base scheme. Let F : X → Y be a 1-morphism between
categories fibred in groupoids over (Sch/S)fppf . Let k is a field of finite type over S. Let
x0 be an object of X lying over Spec(k). Set y0 = F (x0) which is an object of Y lying
over Spec(k). Then F induces a functor

(3.1.1) F : FX ,k,x0 −→ FY,k,y0

of categories cofibred over CΛ. Namely, to the object x0 → x of FX ,k,x0(A) we associate
the object F (x0)→ F (x) of FY,k,y0(A).

Lemma 3.2. Let S be a locally Noetherian scheme. Let F : X → Y be a 1-morphism
of categories fibred in groupoids over (Sch/S)fppf . Assume either

(1) F is formally smooth on objects (Criteria for Representability, Section 6),
(2) F is representable by algebraic spaces and formally smooth, or
(3) F is representable by algebraic spaces and smooth.

Then for every finite type field k over S and object x0 of X over k the functor (3.1.1) is
smooth in the sense of Formal Deformation Theory, Definition 8.1.

Proof. Case (1) is a matter of unwinding the definitions. Assumption (2) implies
(1) by Criteria for Representability, Lemma 6.3. Assumption (3) implies (2) by More on
Morphisms of Spaces, Lemma 19.6 and the principle of Algebraic Stacks, Lemma 10.9. �

Lemma 3.3. Let S be a locally Noetherian scheme. Let

W

��

// Z

��
X // Y

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf . Let k be a finite
type field over S and w0 an object ofW over k. Let x0, z0, y0 be the images of w0 under
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the morphisms in the diagram. Then

FW,k,w0

��

// FZ,k,z0

��
FX ,k,x0

// FY,k,y0

is a fibre product of predeformation categories.

Proof. This is a matter of unwinding the definitions. Details omitted. �

4. Pushouts and stacks

In this section we show that algebraic stacks behave well with respect to certain pushouts.
The results in this section hold over any base scheme.
The following lemma is also correct when Y , X ′, X , Y ′ are algebraic spaces, see (insert
future reference here).

Lemma 4.1. Let S be a scheme. Let

X //

��

X ′

��
Y // Y ′

be a pushout in the category of schemes overS whereX → X ′ is a thickening andX → Y
is affine, see More on Morphisms, Lemma 14.3. Let Z be an algebraic stack over S. Then
the functor of fibre categories

ZY ′ −→ ZY ×ZX ZX′

is an equivalence of categories.

Proof. Let y′ be an object of left hand side. The sheaf Isom(y′, y′) on the category
of schemes over Y ′ is representable by an algebraic space I over Y ′, see Algebraic Stacks,
Lemma 10.11. We conclude that the functor of the lemma is fully faithful as Y ′ is the
pushout in the category of algebraic spaces as well as the category of schemes, see Pushouts
of Spaces, Lemma 6.1.
Let (y, x′, f) be an object of the right hand side. Here f : y|X → x′|X is an isomorphism.
To finish the proof we have to construct an object y′ of ZY ′ whose restrictions to Y and
X ′ agree with y and x′ in a manner compatible with f . In fact, it suffices to construct y′

fppf locally on Y ′, see Stacks, Lemma 4.8. Choose a representable algebraic stackW and a
surjective smooth morphismW → Z . Then

(Sch/Y )fppf ×y,Z W and (Sch/X ′)fppf ×x′,Z W
are algebraic stacks representable by algebraic spaces V and U ′ smooth over Y and X ′.
The isomorphism f induces an isomorphism ϕ : V ×Y X → U ′ ×X′ X over X . By
Pushouts of Spaces, Lemmas 6.2 and 6.7 we see that the pushout V ′ = V qV×YX U ′ is
an algebraic space smooth over Y ′ whose base change to Y andX ′ recovers V and U ′ in a
manner compatible with ϕ.
LetW be the algebraic space representingW . The projections V →W andU ′ →W agree
as morphisms over V ×Y X ∼= U ′ ×X′ X hence the universal property of the pushout
determines a morphism of algebraic spaces V ′ →W . Choose a scheme Y ′

1 and a surjective
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étale morphism Y ′
1 → V ′. Set Y1 = Y ×Y ′ Y ′

1 , X ′
1 = X ′ ×Y ′ Y ′

1 , X1 = X ×Y ′ Y ′
1 . The

composition
(Sch/Y ′

1)→ (Sch/V ′)→ (Sch/W ) =W → Z
corresponds by the 2-Yoneda lemma to an object y′

1 of Z over Y ′
1 whose restriction to

Y1 and X ′
1 agrees with y|Y1 and x′|X′

1
in a manner compatible with f |X1 . Thus we have

constructed our desired object smooth locally over Y ′ and we win. �

5. The Rim-Schlessinger condition

The motivation for the following definition comes from Lemma 4.1 and Formal Deforma-
tion Theory, Definition 16.1 and Lemma 16.4.

Definition 5.1. Let S be a locally Noetherian scheme. Let Z be a category fibred in
groupoids over (Sch/S)fppf . We say Z satisfies condition (RS) if for every pushout

X //

��

X ′

��
Y // Y ′ = Y qX X ′

in the category of schemes over S where
(1) X , X ′, Y , Y ′ are spectra of local Artinian rings,
(2) X , X ′, Y , Y ′ are of finite type over S , and
(3) X → X ′ (and hence Y → Y ′) is a closed immersion

the functor of fibre categories
ZY ′ −→ ZY ×ZX ZX′

is an equivalence of categories.

If A is an Artinian local ring with residue field k, then any morphism Spec(A) → S is
affine and of finite type if and only if the induced morphism Spec(k) → S is of finite
type, see Morphisms, Lemmas 11.13 and 16.2.

Lemma 5.2. Let X be an algebraic stack over a locally Noetherian base S. Then X
satisfies (RS).

Proof. Immediate from the definitions and Lemma 4.1. �

Lemma 5.3. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms of
categories fibred in groupoids over (Sch/S)fppf . If X , Y , and Z satisfy (RS), then so does
X ×Y Z .

Proof. This is formal. Let
X //

��

X ′

��
Y // Y ′ = Y qX X ′

be a diagram as in Definition 5.1. We have to show that
(X ×Y Z)Y ′ −→ (X ×Y Z)Y ×(X ×Y Z)X (X ×Y Z)X′

is an equivalence. Using the definition of the 2-fibre product this becomes
(5.3.1) XY ′ ×YY ′ ZY ′ −→ (XY ×YY ZY )×(XX×YXZX) (XX′ ×YX′ ZX′).
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We are given that each of the functors

XY ′ → XY ×YY ZY , YY ′ → XX ×YX ZX , ZY ′ → XX′ ×YX′ ZX′

are equivalences. An object of the right hand side of (5.3.1) is a system

((xY , zY , φY ), (xX′ , zX′ , φX′), (α, β)).

Then (xY , xY ′ , α) is isomorphic to the image of an object xY ′ in XY ′ and (zY , zY ′ , β) is
isomorphic to the image of an object zY ′ of ZY ′ . The pair of morphisms (φY , φX′) corre-
sponds to a morphism ψ between the images of xY ′ and zY ′ in YY ′ . Then (xY ′ , zY ′ , ψ)
is an object of the left hand side of (5.3.1) mapping to the given object of the right hand
side. This proves that (5.3.1) is essentially surjective. We omit the proof that it is fully
faithful. �

6. Deformation categories

We match the notation introduced above with the notation from the chapter “Formal
Deformation Theory”.

Lemma 6.1. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf satisfying (RS). For any field k of finite type over S and any
object x0 of X lying over k the predeformation category p : FX ,k,x0 → CΛ (3.0.2) is a
deformation category, see Formal Deformation Theory, Definition 16.8.

Proof. Set F = FX ,k,x0 . Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ
with f2 surjective. We have to show that the functor

F(A1 ×A A2) −→ F(A1)×F(A) F(A2)

is an equivalence, see Formal Deformation Theory, Lemma 16.4. Set X = Spec(A), X ′ =
Spec(A2), Y = Spec(A1) and Y ′ = Spec(A1 ×A A2). Note that Y ′ = Y qX X ′ in the
category of schemes, see More on Morphisms, Lemma 14.3. We know that in the diagram
of functors of fibre categories

XY ′ //

��

XY ×XX XX′

��
XSpec(k) XSpec(k)

the top horizontal arrow is an equivalence by Definition 5.1. Since F(B) is the category
of objects of XSpec(B) with an identification with x0 over k we win. �

Remark 6.2. Let S be a locally Noetherian scheme. Let X be fibred in groupoids
over (Sch/S)fppf . Let k be a field of finite type over S and x0 an object of X over k. Let
p : F → CΛ be as in (3.0.2). If F is a deformation category, i.e., if F satisfies the Rim-
Schlessinger condition (RS), then we see thatF satisfies Schlessinger’s conditions (S1) and
(S2) by Formal Deformation Theory, Lemma 16.6. Let F be the functor of isomorphism
classes, see Formal Deformation Theory, Remarks 5.2 (10). Then F satisfies (S1) and (S2)
as well, see Formal Deformation Theory, Lemma 10.5. This holds in particular in the
situation of Lemma 6.1.
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7. Change of field

This section is the analogue of Formal Deformation Theory, Section 29. As pointed out
there, to discuss what happens under change of field we need to write CΛ,k instead of CΛ. In
the following lemma we use the notationFl/k introduced in Formal Deformation Theory,
Situation 29.1.

Lemma 7.1. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf . Let k be a field of finite type over S and let l/k be a finite
extension. Let x0 be an object of F lying over Spec(k). Denote xl,0 the restriction of x0
to Spec(l). Then there is a canonical functor

(FX ,k,x0)l/k −→ FX ,l,xl,0

of categories cofibred in groupoids over CΛ,l. If X satisfies (RS), then this functor is an
equivalence.

Proof. Consider a factorization

Spec(l)→ Spec(B)→ S

as in (3.0.1). By definition we have

(FX ,k,x0)l/k(B) = FX ,k,x0(B ×l k)
see Formal Deformation Theory, Situation 29.1. Thus an object of this is a morphism
x0 → x of X lying over the morphism Spec(k) → Spec(B ×l k). Choosing pullback
functor for X we can associate to x0 → x the morphism xl,0 → xB where xB is the
restriction of x to Spec(B) (via the morphism Spec(B) → Spec(B ×l k) coming from
B ×l k ⊂ B). This construction is functorial in B and compatible with morphisms.

Next, assume X satisfies (RS). Consider the diagrams

l Boo

k

OO

B ×l koo

OO

and

Spec(l)

��

// Spec(B)

��
Spec(k) // Spec(B ×l k)

The diagram on the left is a fibre product of rings. The diagram on the right is a pushout
in the category of schemes, see More on Morphisms, Lemma 14.3. These schemes are all of
finite type over S (see remarks following Definition 5.1). Hence (RS) kicks in to give an
equivalence of fibre categories

XSpec(B×lk) −→ XSpec(k) ×XSpec(l) XSpec(B)

This implies that the functor defined above gives an equivalence of fibre categories. Hence
the functor is an equivalence on categories cofibred in groupoids by (the dual of) Cate-
gories, Lemma 35.9. �

8. Tangent spaces

Let S be a locally Noetherian scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let k be a field of finite type over S and let x0 be an object of X over
k. In Formal Deformation Theory, Section 12 we have defined the tangent space

(8.0.1) TFX ,k,x0 =
{

isomorphism classes of morphisms
x0 → x over Spec(k)→ Spec(k[ε])

}
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of the predeformation category FX ,k,x0 . In Formal Deformation Theory, Section 19 we
have defined

(8.0.2) Inf(FX ,k,x0) = Ker
(
AutSpec(k[ε])(x′

0)→ AutSpec(k)(x0)
)

where x′
0 is the pullback of x0 to Spec(k[ε]). If X satisfies the Rim-Schlessinger condi-

tion (RS), then TFX ,k,x0 comes equipped with a natural k-vector space structure by For-
mal Deformation Theory, Lemma 12.2 (assumptions hold by Lemma 6.1 and Remark 6.2).
Moreover, Formal Deformation Theory, Lemma 19.9 shows that Inf(FX ,k,x0) has a natu-
ral k-vector space structure such that addition agrees with composition of automorphisms.
A natural condition is to ask these vector spaces to have finite dimension.

The following lemma tells us this is true ifX is locally of finite type overS (see Morphisms
of Stacks, Section 17).

Lemma 8.1. Let S be a locally Noetherian scheme. Assume
(1) X is an algebraic stack,
(2) U is a scheme locally of finite type over S , and
(3) (Sch/U)fppf → X is a smooth surjective morphism.

Then, for any F = FX ,k,x0 as in Section 3 the tangent space TF and infinitesimal auto-
morphism space Inf(F) have finite dimension over k.

Proof. Let us write U = (Sch/U)fppf . By our definition of algebraic stacks the
1-morphism U → X is representable by algebraic spaces. Hence in particular the 2-fibre
product

Ux0 = (Sch/ Spec(k))fppf ×X U
is representable by an algebraic space Ux0 over Spec(k). Then Ux0 → Spec(k) is smooth
and surjective (in particular Ux0 is nonempty). By Spaces over Fields, Lemma 16.2 we can
find a finite extension l/k and a point Spec(l)→ Ux0 over k. We have

(FX ,k,x0)l/k = FX ,l,xl,0

by Lemma 7.1 and the fact that X satisfies (RS). Thus we see that

TF ⊗k l ∼= TFX ,l,xl,0 and Inf(F)⊗k l ∼= Inf(FX ,l,xl,0)

by Formal Deformation Theory, Lemmas 29.3 and 29.4 (these are applicable by Lemmas
5.2 and 6.1 and Remark 6.2). Hence it suffices to prove that TFX ,l,xl,0 and Inf(FX ,l,xl,0)
have finite dimension over l. Note that xl,0 comes from a point u0 of U over l.

We interrupt the flow of the argument to show that the lemma for infinitesimal automor-
phisms follows from the lemma for tangent spaces. Namely, let R = U ×X U . Let r0 be
the l-valued point (u0, u0, idx0) of R. Combining Lemma 3.3 and Formal Deformation
Theory, Lemma 26.2 we see that

Inf(FX ,l,xl,0) ⊂ TFR,l,r0

Note thatR is an algebraic stack, see Algebraic Stacks, Lemma 14.2. Also,R is representable
by an algebraic spaceR smooth over U (via either projection, see Algebraic Stacks, Lemma
16.2). Hence, choose an schemeU ′ and a surjective étale morphismU ′ → Rwe see thatU ′

is smooth over U , hence locally of finite type over S. As (Sch/U ′)fppf →R is surjective
and smooth, we have reduced the question to the case of tangent spaces.

The functor (3.1.1)
FU,l,u0 −→ FX ,l,xl,0
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is smooth by Lemma 3.2. The induced map on tangent spaces

TFU,l,u0 −→ TFX ,l,xl,0

is l-linear (by Formal Deformation Theory, Lemma 12.4) and surjective (as smooth maps of
predeformation categories induce surjective maps on tangent spaces by Formal Deforma-
tion Theory, Lemma 8.8). Hence it suffices to prove that the tangent space of the deforma-
tion space associated to the representable algebraic stack U at the point u0 is finite dimen-
sional. Let Spec(R) ⊂ U be an affine open such that u0 : Spec(l) → U factors through
Spec(R) and such that Spec(R) → S factors through Spec(Λ) ⊂ S. Let mR ⊂ R be
the kernel of the Λ-algebra map ϕ0 : R → l corresponding to u0. Note that R, being of
finite type over the Noetherian ring Λ, is a Noetherian ring. Hence mR = (f1, . . . , fn) is
a finitely generated ideal. We have

TFU,l,u0 = {ϕ : R→ l[ε] | ϕ is a Λ-algebra map and ϕ mod ε = ϕ0}

An element of the right hand side is determined by its values on f1, . . . , fn hence the
dimension is at most n and we win. Some details omitted. �

Lemma 8.2. Let S be a locally Noetherian scheme. Let p : X → Y and q : Z → Y be
1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume X , Y , Z satisfy
(RS). Let k be a field of finite type over S and let w0 be an object ofW = X ×Y Z over
k. Denote x0, y0, z0 the objects of X ,Y,Z you get from w0. Then there is a 6-term exact
sequence

0 // Inf(FW,k,w0) // Inf(FX ,k,x0)⊕ Inf(FZ,k,z0) // Inf(FY,k,y0)

rr
TFW,k,w0

// TFX ,k,x0 ⊕ TFZ,k,z0
// TFY,k,y0

of k-vector spaces.

Proof. By Lemma 5.3 we see thatW satisfies (RS) and hence the lemma makes sense.
To see the lemma is true, apply Lemmas 3.3 and 6.1 and Formal Deformation Theory,
Lemma 20.1. �

9. Formal objects

In this section we transfer some of the notions already defined in the chapter “Formal
Deformation Theory” to the current setting. In the following we will say “R is an S-
algebra” to indicate that R is a ring endowed with a morphism of schemes Spec(R)→ S.

Definition 9.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids.

(1) A formal object ξ = (R, ξn, fn) of X consists of a Noetherian complete local S-
algebra R, objects ξn of X lying over Spec(R/mnR), and morphisms fn : ξn →
ξn+1 of X lying over Spec(R/mn) → Spec(R/mn+1) such that R/m is a field
of finite type over S.
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(2) A morphism of formal objects a : ξ = (R, ξn, fn) → η = (T, ηn, gn) is given
by morphisms an : ξn → ηn such that for every n the diagram

ξn
fn

//

an

��

ξn+1

an+1

��
ηn

gn // ηn+1

is commutative. Applying the functor p we obtain a compatible collection of
morphisms Spec(R/mnR)→ Spec(T/mnT ) and hence a morphisma0 : Spec(R)→
Spec(T ) over S. We say that a lies over a0.

Thus we obtain a category of formal objects of X .

Remark 9.2. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object. Set k = R/m
and x0 = ξ1. The formal object ξ defines a formal object ξ of the predeformation cate-
gory FX ,k,x0 . This follows immediately from Definition 9.1 above, Formal Deformation
Theory, Definition 7.1, and our construction of the predeformation category FX ,k,x0 in
Section 3.

If F : X → Y is a 1-morphism of categories fibred in groupoids over (Sch/S)fppf , then
F induces a functor between categories of formal objects as well.

Lemma 9.3. Let S be a locally Noetherian scheme. Let F : X → Y be a 1-morphism
of categories fibred in groupoids over (Sch/S)fppf . Let η = (R, ηn, gn) be a formal object
of Y and let ξ1 be an object of X with F (ξ1) ∼= η1. If F is formally smooth on objects (see
Criteria for Representability, Section 6), then there exists a formal object ξ = (R, ξn, fn)
of X such that F (ξ) ∼= η.

Proof. Note that each of the morphisms Spec(R/mn) → Spec(R/mn+1) is a first
order thickening of affine schemes over S. Hence the assumption on F means that we
can successively lift ξ1 to objects ξ2, ξ3, . . . of X endowed with compatible isomorphisms
ηn|Spec(R/mn−1) ∼= ηn−1 and F (ηn) ∼= ξn. �

Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category fibred in
groupoids. Suppose that x is an object of X over R, where R is a Noetherian complete
local S-algebra with residue field of finite type over S. Then we can consider the system
of restrictions ξn = x|Spec(R/mn) endowed with the natural morphisms ξ1 → ξ2 → . . .
coming from transitivity of restriction. Thus ξ = (R, ξn, ξn → ξn+1) is a formal object
of X . This construction is functorial in the object x. Thus we obtain a functor

(9.3.1)

objects x of X such that p(x) = Spec(R)
where R is Noetherian complete local

with R/m of finite type over S

 −→ {
formal objects of X

}
To be precise the left hand side is the full subcategory ofX consisting of objects as indicated
and the right hand side is the category of formal objects of X as in Definition 9.1.

Definition 9.4. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf . A formal object ξ = (R, ξn, fn) of X is called effective if it
is in the essential image of the functor (9.3.1).

If the category fibred in groupoids is an algebraic stack, then every formal object is effective
as follows from the next lemma.
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Lemma 9.5. Let S be a locally Noetherian scheme. Let X be an algebraic stack over
S. The functor (9.3.1) is an equivalence.

Proof. Case I: X is representable (by a scheme). Say X = (Sch/X)fppf for some
scheme X over S. Unwinding the definitions we have to prove the following: Given a
Noetherian complete local S-algebra R with R/m of finite type over S we have

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective. This follows from Formal Spaces, Lemma 33.2.

Case II. X is representable by an algebraic space. Say X is representable by X . Again we
have to show that

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective for R as above. This is Formal Spaces, Lemma 33.3.

Case III: General case of an algebraic stack. A general remark is that the left and right hand
side of (9.3.1) are categories fibred in groupoids over the category of affine schemes over S
which are spectra of Noetherian complete local rings with residue field of finite type over
S. We will also see in the proof below that they form stacks for a certain topology on this
category.

We first prove fully faithfulness. Let R be a Noetherian complete local S-algebra with
k = R/m of finite type over S. Let x, x′ be objects ofX overR. AsX is an algebraic stack
Isom(x, x′) is representable by an algebraic space I over Spec(R), see Algebraic Stacks,
Lemma 10.11. Applying Case II to I over Spec(R) implies immediately that (9.3.1) is fully
faithful on fibre categories over Spec(R). Hence the functor is fully faithful by Categories,
Lemma 35.9.

Essential surjectivity. Let ξ = (R, ξn, fn) be a formal object of X . Choose a scheme U
over S and a surjective smooth morphism f : (Sch/U)fppf → X . For every n consider
the fibre product

(Sch/Spec(R/mn))fppf ×ξn,X ,f (Sch/U)fppf

By assumption this is representable by an algebraic space Vn surjective and smooth over
Spec(R/mn). The morphisms fn : ξn → ξn+1 induce cartesian squares

Vn+1

��

Vn

��

oo

Spec(R/mn+1) Spec(R/mn)oo

of algebraic spaces. By Spaces over Fields, Lemma 16.2 we can find a finite separable ex-
tension k′/k and a point v′

1 : Spec(k′) → V1 over k. Let R ⊂ R′ be the finite étale
extension whose residue field extension is k′/k (exists and is unique by Algebra, Lemmas
153.7 and 153.9). By the infinitesimal lifting criterion of smoothness (see More on Mor-
phisms of Spaces, Lemma 19.6) applied to Vn → Spec(R/mn) for n = 2, 3, 4, . . . we can
successively find morphisms v′

n : Spec(R′/(m′)n) → Vn over Spec(R/mn) fitting into
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commutative diagrams

Spec(R′/(m′)n+1)

v′
n+1

��

Spec(R′/(m′)n)

v′
n

��

oo

Vn+1 Vnoo

Composing with the projection morphisms Vn → U we obtain a compatible system of
morphisms u′

n : Spec(R′/(m′)n) → U . By Case I the family (u′
n) comes from a unique

morphism u′ : Spec(R′) → U . Denote x′ the object of X over Spec(R′) we get by
applying the 1-morphism f to u′. By construction, there exists a morphism of formal
objects

(9.3.1)(x′) = (R′, x′|Spec(R′/(m′)n), . . .) −→ (R, ξn, fn)
lying over Spec(R′) → Spec(R). Note that R′ ⊗R R′ is a finite product of spectra of
Noetherian complete local rings to which our current discussion applies. Denote p0, p1 :
Spec(R′⊗R R′)→ Spec(R′) the two projections. By the fully faithfulness shown above
there exists a canonical isomorphismϕ : p∗

0x
′ → p∗

1x
′ because we have such isomorphisms

over Spec((R′⊗RR′)/mn(R′⊗RR′)). We omit the proof that the isomorphismϕ satisfies
the cocycle condition (see Stacks, Definition 3.1). Since {Spec(R′) → Spec(R)} is an
fppf covering we conclude that x′ descends to an object x of X over Spec(R). We omit
the proof that xn is the restriction of x to Spec(R/mn). �

Lemma 9.6. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms of
categories fibred in groupoids over (Sch/S)fppf . If the functor (9.3.1) is an equivalence
for X , Y , and Z , then it is an equivalence for X ×Y Z .

Proof. The left and the right hand side of (9.3.1) for X ×Y Z are simply the 2-
fibre products of the left and the right hand side of (9.3.1) for X , Z over Y . Hence the
result follows as taking 2-fibre products is compatible with equivalences of categories, see
Categories, Lemma 31.7. �

10. Approximation

A fundamental insight of Michael Artin is that you can approximate objects of a limit
preserving stack. Namely, given an object x of the stack over a Noetherian complete local
ring, you can find an object xA over an algebraic ring which is “close to” x. Here an
algebraic ring means a finite type S-algebra and close means adically close. In this section
we present this in a simple, yet general form.
To formulate the result we need to pull together some definitions from different places in
the Stacks project. First, in Criteria for Representability, Section 5 we introduced limit
preserving on objects for 1-morphisms of categories fibred in groupoids over the category
of schemes. In More on Algebra, Definition 50.1 we defined the notion of a G-ring. Let
S be a locally Noetherian scheme. Let A be an S-algebra. We say that A is of finite type
over S or is a finite type S-algebra if Spec(A) → S is of finite type. In this case A is a
Noetherian ring. Finally, given a ring A and ideal I we denote GrI(A) =

⊕
In/In+1.

Lemma 10.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids. Let x be an object of X lying over Spec(R) where R is a
Noetherian complete local ring with residue field k of finite type over S. Let s ∈ S be the
image of Spec(k) → S. Assume that (a) OS,s is a G-ring and (b) p is limit preserving on
objects. Then for every integer N ≥ 1 there exist
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(1) a finite type S-algebra A,
(2) a maximal ideal mA ⊂ A,
(3) an object xA of X over Spec(A),
(4) an S-isomorphism R/mNR

∼= A/mNA ,
(5) an isomorphism x|Spec(R/mN

R
)
∼= xA|Spec(A/mN

A
) compatible with (4), and

(6) an isomorphism GrmR(R) ∼= GrmA(A) of graded k-algebras.

Proof. Choose an affine open Spec(Λ) ⊂ S such that k is a finite Λ-algebra, see
Morphisms, Lemma 16.1. We may and do replace S by Spec(Λ).
We may write R as a directed colimit R = colimCj where each Cj is a finite type Λ-
algebra (see Algebra, Lemma 127.2). By assumption (b) the object x is isomorphic to the
restriction of an object over one of theCj . Hence we may choose a finite type Λ-algebraC ,
a Λ-algebra map C → R, and an object xC of X over Spec(C) such that x = xC |Spec(R).
The choice of C is a bookkeeping device and could be avoided. For later use, let us write
C = Λ[y1, . . . , yu]/(f1, . . . , fv) and we denote ai ∈ R the image of yi under the map
C → R. Set mC = C ∩mR.
Choose a Λ-algebra surjection Λ[x1, . . . , xs]→ k and denotem′ the kernel. By the univer-
sal property of polynomial rings we may lift this to a Λ-algebra map Λ[x1, . . . , xs]→ R.
We add some variables (i.e., we increase s a bit) mapping to generators of mR. Having
done this we see that Λ[x1, . . . , xs]→ R/m2

R is surjective. Then we see that
(10.1.1) P = Λ[x1, . . . , xs]∧m′ −→ R

is a surjective map of Noetherian complete local rings, see for example Formal Deforma-
tion Theory, Lemma 4.2.
Choose lifts ai ∈ P of ai we found above. Choose generators b1, . . . , br ∈ P for the
kernel of (10.1.1). Choose cji ∈ P such that

fj(a1, . . . , au) =
∑

cjibi

in P which is possible by the choices made so far. Choose generators

k1, . . . , kt ∈ Ker(P⊕r (b1,...,br)−−−−−−→ P )
and write ki = (ki1, . . . , kir) and K = (kij) so that

P⊕t K−→ P⊕r (b1,...,br)−−−−−−→ P → R→ 0
is an exact sequence of P -modules. In particular we have

∑
kijbj = 0. After possibly

increasingN we may assumeN − 1 works in the Artin-Rees lemma for the first two maps
of this exact sequence (see More on Algebra, Section 4 for terminology).
By assumption OS,s = ΛΛ∩m′ is a G-ring. Hence by More on Algebra, Proposition 50.10
the ring Λ[x1, . . . , xs]m′ is aG-ring. Hence by Smoothing Ring Maps, Theorem 13.2 there
exist an étale ring map

Λ[x1, . . . , xs]m′ → B,

a maximal ideal mB of B lying over m′, and elements a′
i, b

′
i, c

′
ij , k

′
ij ∈ B′ such that

(1) κ(m′) = κ(mB) which implies that Λ[x1, . . . , xs]m′ ⊂ BmB ⊂ P and P is
identified with the completion of B at mB , see remark preceding Smoothing
Ring Maps, Theorem 13.2,

(2) ai − a′
i, bi − b′

i, cij − c′
ij , kij − k′

ij ∈ (m′)NP , and
(3) fj(a′

1, . . . , a
′
u) =

∑
c′
jib

′
i and

∑
k′
ijb

′
j = 0.



11. LIMIT PRESERVING 6671

Set A = B/(b′
1, . . . , b

′
r) and denote mA the image of mB in A. (Note that A is essentially

of finite type over Λ; at the end of the proof we will show how to obtain an A which is
of finite type over Λ.) There is a ring map C → A sending yi 7→ a′

i because the a′
i satisfy

the desired equations modulo (b′
1, . . . , b

′
r). Note that A/mNA = R/mNR as quotients of

P = B∧ by property (2) above. Set xA = xC |Spec(A). Since the maps

C → A→ A/mNA
∼= R/mNR and C → R→ R/mNR

are equal we see that xA and x agree modulo mNR via the isomorphism A/mNA = R/mNR .
At this point we have shown properties (1) – (5) of the statement of the lemma. To see (6)
note that

P⊕t K−→ P⊕r (b1,...,br)−−−−−−→ P and P⊕t K′

−−→ P⊕r (b′
1,...,b

′
r)−−−−−−→ P

are two complexes of P -modules which are congruent modulo (m′)N with the first one
being exact. By our choice ofN above we see from More on Algebra, Lemma 4.2 thatR =
P/(b1, . . . , br) and P/(b′

1, . . . , b
′
r) = B∧/(b′

1, . . . , b
′
r) = A∧ have isomorphic associated

graded algebras, which is what we wanted to show.
This last paragraph of the proof serves to clean up the issue that A is essentially of finite
type over S and not yet of finite type. The construction above gives A = B/(b′

1, . . . , b
′
r)

and mA ⊂ A with B étale over Λ[x1, . . . , xs]m′ . Hence A is of finite type over the
Noetherian ring Λ[x1, . . . , xs]m′ . Thus we can write A = (A0)m′ for some finite type
Λ[x1, . . . , xn] algebraA0. ThenA = colim(A0)f where f ∈ Λ[x1, . . . , xn]\m′, see Alge-
bra, Lemma 9.9. Because p : X → (Sch/S)fppf is limit preserving on objects, we see that
xA comes from some object x(A0)f over Spec((A0)f ) for an f as above. After replacing
A by (A0)f and xA by x(A0)f and mA by (A0)f ∩mA the proof is finished. �

11. Limit preserving

The morphism p : X → (Sch/S)fppf is limit preserving on objects, as defined in Criteria
for Representability, Section 5, if the functor of the definition below is essentially surjec-
tive. However, the example in Examples, Section 53 shows that this isn’t equivalent to
being limit preserving.

Definition 11.1. Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . We say X is limit preserving if for every affine scheme T over S which is
a limit T = limTi of a directed inverse system of affine schemes Ti over S , we have an
equivalence

colimXTi −→ XT
of fibre categories.

We spell out what this means. First, given objects x, y of X over Ti we should have
MorXT (x|T , y|T ) = colimi′≥i MorXT

i′
(x|Ti′ , y|Ti′ )

and second every object of XT is isomorphic to the restriction of an object over Ti for
some i. Note that the first condition means that the presheaves IsomX (x, y) (see Stacks,
Definition 2.2) are limit preserving.

Lemma 11.2. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms of
categories fibred in groupoids over (Sch/S)fppf .

(1) If X → (Sch/S)fppf and Z → (Sch/S)fppf are limit preserving on objects
and Y is limit preserving, then X ×Y Z → (Sch/S)fppf is limit preserving on
objects.
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(2) If X , Y , and Z are limit preserving, then so is X ×Y Z .

Proof. This is formal. Proof of (1). Let T = limi∈I Ti be the directed limit of
affine schemes Ti over S. We will prove that the functor colimXTi → XT is essentially
surjective. Recall that an object of the fibre product over T is a quadruple (T, x, z, α)
where x is an object of X lying over T , z is an object of Z lying over T , and α : p(x) →
q(z) is a morphism in the fibre category of Y over T . By assumption on X and Z we
can find an i and objects xi and zi over Ti such that xi|T ∼= T and zi|T ∼= z. Then α
corresponds to an isomorphism p(xi)|T → q(zi)|T which comes from an isomorphism
αi′ : p(xi)|Ti′ → q(zi)|Ti′ by our assumption on Y . After replacing i by i′, xi by xi|Ti′ ,
and zi by zi|Ti′ we see that (Ti, xi, zi, αi) is an object of the fibre product over Ti which
restricts to an object isomorphic to (T, x, z, α) over T as desired.

We omit the arguments showing that colimXTi → XT is fully faithful in (2). �

Lemma 11.3. Let S be a scheme. LetX be an algebraic stack over S. Then the follow-
ing are equivalent

(1) X is a stack in setoids and X → (Sch/S)fppf is limit preserving on objects,
(2) X is a stack in setoids and limit preserving,
(3) X is representable by an algebraic space locally of finite presentation.

Proof. Under each of the three assumptions X is representable by an algebraic space
X over S , see Algebraic Stacks, Proposition 13.3. It is clear that (1) and (2) are equivalent
as a functor between setoids is an equivalence if and only if it is surjective on isomorphism
classes. Finally, (1) and (3) are equivalent by Limits of Spaces, Proposition 3.10. �

Lemma 11.4. LetS be a scheme. LetX be a category fibred in groupoids over (Sch/S)fppf .
Assume ∆ : X → X × X is representable by algebraic spaces and X is limit preserving.
Then ∆ is locally of finite type.

Proof. We apply Criteria for Representability, Lemma 5.6. Let V be an affine scheme
V locally of finite presentation over S and let θ be an object of X × X over V . Let Fθ be
an algebraic space representing X ×∆,X ×X ,θ (Sch/V )fppf and let fθ : Fθ → V be the
canonical morphism (see Algebraic Stacks, Section 9). It suffices to show that Fθ → V
has the corresponding properties. By Lemmas 11.2 and 11.3 we see that Fθ → S is locally
of finite presentation. It follows that Fθ → V is locally of finite type by Morphisms of
Spaces, Lemma 23.6. �

12. Versality

In the previous section we explained how to approximate objects over complete local rings
by algebraic objects. But in order to show that a stack X is an algebraic stack, we need to
find smooth 1-morphisms from schemes towards X . Since we are not going to assume a
priori thatX has a representable diagonal, we cannot even speak about smooth morphisms
towards X . Instead, borrowing terminology from deformation theory, we will introduce
versal objects.

Definition 12.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object. Set k = R/m
and x0 = ξ1. We will say that ξ is versal if ξ as a formal object of FX ,k,x0 (Remark 9.2) is
versal in the sense of Formal Deformation Theory, Definition 8.9.
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We briefly spell out what this means. With notation as in the definition, suppose given
morphisms ξ1 = x0 → y → z ofX lying over closed immersions Spec(k)→ Spec(A)→
Spec(B) whereA,B are Artinian local rings with residue field k. Suppose given an n ≥ 1
and a commutative diagram

y

~~
ξn ξ1

OO

oo

lying over

Spec(A)

xx
Spec(R/mn) Spec(k)

OO

oo

Versality means that for any data as above there exists an m ≥ n and a commutative
diagram

z

~~

y

~~

OO

ξm ξnoo ξ1

OO

oo

lying over

Spec(B)

ww

Spec(A)

xx

OO

Spec(R/mm) Spec(R/mn)oo Spec(k)

OO

oo

Please compare with Formal Deformation Theory, Remark 8.10.
Let S be a locally Noetherian scheme. Let U be a scheme over S with structure morphism
U → S locally of finite type. Let u0 ∈ U be a finite type point of U , see Morphisms,
Definition 16.3. Set k = κ(u0). Note that the composition Spec(k) → S is also of finite
type, see Morphisms, Lemma 15.3. Let p : X → (Sch/S)fppf be a category fibred in
groupoids. Let x be an object of X which lies over U . Denote x0 the pullback of x by u0.
By the 2-Yoneda lemma x corresponds to a 1-morphism

x : (Sch/U)fppf −→ X ,
see Algebraic Stacks, Section 5. We obtain a morphism of predeformation categories
(12.1.1) x̂ : F(Sch/U)fppf ,k,u0 −→ FX ,k,x0 ,

over CΛ see (3.1.1).

Definition 12.2. Let S be a locally Noetherian scheme. LetX be fibred in groupoids
over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let x be an object of
X lying over U . Let u0 be finite type point of U . We say x is versal at u0 if the morphism
x̂ (12.1.1) is smooth, see Formal Deformation Theory, Definition 8.1.

This definition matches our notion of versality for formal objects of X .

Lemma 12.3. With notation as in Definition 12.2. LetR = O∧
U,u0

. Let ξ be the formal
object of X over R associated to x|Spec(R), see (9.3.1). Then

x is versal at u0 ⇔ ξ is versal

Proof. Observe thatOU,u0 is a Noetherian localS-algebra with residue field k. Hence
R = O∧

U,u0
is an object of C∧

Λ , see Formal Deformation Theory, Definition 4.1. Recall that
ξ is versal if ξ : R|CΛ → FX ,k,x0 is smooth and x is versal at u0 if x̂ : F(Sch/U)fppf ,k,u0 →
FX ,k,x0 is smooth. There is an identification of predeformation categories

R|CΛ = F(Sch/U)fppf ,k,u0 ,
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see Formal Deformation Theory, Remark 7.12 for notation. Namely, given an Artinian
local S-algebra A with residue field identified with k we have

MorC∧
Λ

(R,A) = {ϕ ∈ MorS(Spec(A), U) | ϕ|Spec(k) = u0}

Unwinding the definitions the reader verifies that the resulting map

R|CΛ = F(Sch/U)fppf ,k,u0
x̂−→ FX ,k,x0 ,

is equal to ξ and we see that the lemma is true. �

Here is a sanity check.

Lemma 12.4. Let S be a locally Noetherian scheme. Let f : U → V be a morphism
of schemes locally of finite type over S. Let u0 ∈ U be a finite type point. The following
are equivalent

(1) f is smooth at u0,
(2) f viewed as an object of (Sch/V )fppf over U is versal at u0.

Proof. This is a restatement of More on Morphisms, Lemma 12.1. �

It turns out that this notion is well behaved with respect to field extensions.

Lemma 12.5. Let S , X , U , x, u0 be as in Definition 12.2. Let l be a field and let
ul,0 : Spec(l) → U be a morphism with image u0 such that l/k = κ(u0) is finite. Set
xl,0 = x0|Spec(l). If X satisfies (RS) and x is versal at u0, then

F(Sch/U)fppf ,l,ul,0 −→ FX ,l,xl,0

is smooth.

Proof. Note that (Sch/U)fppf satisfies (RS) by Lemma 5.2. Hence the functor of
the lemma is the functor

(F(Sch/U)fppf ,k,u0)l/k −→ (FX ,k,x0)l/k
associated to x̂, see Lemma 7.1. Hence the lemma follows from Formal Deformation The-
ory, Lemma 29.5. �

The following lemma is another sanity check. It more or less signifies that if x is versal at
u0 as in Definition 12.2, then x viewed as a morphism from U to X is smooth whenever
we make a base change by a scheme.

Lemma 12.6. Let S , X , U , x, u0 be as in Definition 12.2. Assume
(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) ∆ is locally of finite type (for example if X is limit preserving), and
(3) X has (RS).

Let V be a scheme locally of finite type over S and let y be an object of X over V . Form
the 2-fibre product

Z //

��

(Sch/U)fppf

x

��
(Sch/V )fppf

y // X

Let Z be the algebraic space representing Z and let z0 ∈ |Z| be a finite type point lying
over u0. If x is versal at u0, then the morphism Z → V is smooth at z0.
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Proof. (The parenthetical remark in the statement holds by Lemma 11.4.) Observe
that Z exists by assumption (1) and Algebraic Stacks, Lemma 10.11. By assumption (2) we
see thatZ → V ×SU is locally of finite type. Choose a schemeW , a closed pointw0 ∈W ,
and an étale morphism W → Z mapping w0 to z0, see Morphisms of Spaces, Definition
25.2. Then W is locally of finite type over S and w0 is a finite type point of W . Let
l = κ(z0). Denote zl,0, vl,0, ul,0, and xl,0 the objects of Z , (Sch/V )fppf , (Sch/U)fppf ,
and X over Spec(l) obtained by pullback to Spec(l) = w0. Consider

F(Sch/W )fppf ,l,w0
// FZ,l,zl,0

��

// F(Sch/U)fppf ,l,ul,0

��
F(Sch/V )fppf ,l,vl,0

// FX ,l,xl,0

By Lemma 3.3 the square is a fibre product of predeformation categories. By Lemma 12.5
we see that the right vertical arrow is smooth. By Formal Deformation Theory, Lemma
8.7 the left vertical arrow is smooth. By Lemma 3.2 we see that the left horizontal arrow
is smooth. We conclude that the map

F(Sch/W )fppf ,l,w0 → F(Sch/V )fppf ,l,vl,0

is smooth by Formal Deformation Theory, Lemma 8.7. Thus we conclude that W → V
is smooth at w0 by More on Morphisms, Lemma 12.1. This exactly means that Z → V is
smooth at z0 and the proof is complete. �

We restate the approximation result in terms of versal objects.

Lemma 12.7. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a
category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object of X with ξ1 lying
over Spec(k)→ S with image s ∈ S. Assume

(1) ξ is versal,
(2) ξ is effective,
(3) OS,s is a G-ring, and
(4) p : X → (Sch/S)fppf is limit preserving on objects.

Then there exist a morphism of finite type U → S , a finite type point u0 ∈ U with
residue field k, and an object x of X over U such that x is versal at u0 and such that
x|Spec(OU,u0/m

n
u0 ) ∼= ξn.

Proof. Choose an object xR ofX lying over Spec(R) whose associated formal object
is ξ. Let N = 2 and apply Lemma 10.1. We obtain A,mA, xA, . . .. Let η = (A∧, ηn, gn)
be the formal object associated to xA|Spec(A∧). We have a diagram

η

��
ξ //

;;

ξ2 = η2

lying over

A∧

��
R //

88

R/m2
R = A/m2

A

The versality of ξ means exactly that we can find the dotted arrows in the diagrams, be-
cause we can successively find morphisms ξ → η3, ξ → η4, and so on by Formal De-
formation Theory, Remark 8.10. The corresponding ring map R → A∧ is surjective by
Formal Deformation Theory, Lemma 4.2. On the other hand, we have dimk m

n
R/m

n+1
R =

dimk m
n
A/m

n+1
A for all n by construction. HenceR/mnR andA/mnA have the same (finite)

length as Λ-modules by additivity of length and Formal Deformation Theory, Lemma
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3.4. It follows that R/mnR → A/mnA is an isomorphism for all n, hence R → A∧ is an
isomorphism. Thus η is isomorphic to a versal object, hence versal itself. By Lemma 12.3
we conclude that xA is versal at the point u0 of U = Spec(A) corresponding to mA. �

Example 12.8. In this example we show that the local ring OS,s has to be a G-ring
in order for the result of Lemma 12.7 to be true. Namely, let Λ be a Noetherian ring and
let m be a maximal ideal of Λ. Set R = Λ∧

m. Let Λ → C → R be a factorization with C
of finite type over Λ. Set S = Spec(Λ), U = S \ {m}, and S′ = U q Spec(C). Consider
the functor F : (Sch/S)oppfppf → Sets defined by the rule

F (T ) =
{
∗ if T → S factors through S′

∅ else

Let X = SF is the category fibred in sets associated to F , see Algebraic Stacks, Section 7.
ThenX → (Sch/S)fppf is limit preserving on objects and there exists an effective, versal
formal object ξ over R. Hence if the conclusion of Lemma 12.7 holds for X , then there
exists a finite type ring map Λ→ A and a maximal ideal mA lying over m such that

(1) κ(m) = κ(mA),
(2) Λ→ A and mA satisfy condition (4) of Algebra, Lemma 141.2, and
(3) there exists a Λ-algebra map C → A.

Thus Λ→ A is smooth at mA by the lemma cited. Slicing A we may assume that Λ→ A
is étale at mA, see for example More on Morphisms, Lemma 38.5 or argue directly. Write
C = Λ[y1, . . . , yn]/(f1, . . . , fm). Then C → R corresponds to a solution in R of the
system of equations f1 = . . . = fm = 0, see Smoothing Ring Maps, Section 13. Thus
if the conclusion of Lemma 12.7 holds for every X as above, then a system of equations
which has a solution in R has a solution in the henselization of Λm. In other words, the
approximation property holds for Λhm. This implies that Λhm is a G-ring (insert future ref-
erence here; see also discussion in Smoothing Ring Maps, Section 1) which in turn implies
that Λm is a G-ring.

13. Openness of versality

Next, we come to openness of versality.

Definition 13.1. Let S be a locally Noetherian scheme.

(1) Let X be a category fibred in groupoids over (Sch/S)fppf . We say X satisfies
openness of versality if given a scheme U locally of finite type over S , an object
x of X over U , and a finite type point u0 ∈ U such that x is versal at u0, then
there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal at every
finite type point of U ′.

(2) Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
We say f satisfies openness of versality if given a scheme U locally of finite type
over S , an object y ofY overU , openness of versality holds for (Sch/U)fppf ×Y
X .

Openness of versality is often the hardest to check. The following example shows that
requiring this is necessary however.
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Example 13.2. Let k be a field and set Λ = k[s, t]. Consider the functorF : Λ-algebras −→
Sets defined by the rule

F (A) =

∗ if there exist f1, . . . , fn ∈ A such that
A = (s, t, f1, . . . , fn) and fis = 0 ∀i

∅ else
Geometrically F (A) = ∗ means there exists a quasi-compact open neighbourhood W
of V (s, t) ⊂ Spec(A) such that s|W = 0. Let X ⊂ (Sch/ Spec(Λ))fppf be the full
subcategory consisting of schemes T which have an affine open covering T =

⋃
Spec(Aj)

with F (Aj) = ∗ for all j. Then X satisfies [0], [1], [2], [3], and [4] but not [5]. Namely,
over U = Spec(k[s, t]/(s)) there exists an object x which is versal at u0 = (s, t) but not
at any other point. Details omitted.

Let S be a locally Noetherian scheme. Let f : X → Y be a 1-morphism of categories fibred
in groupoids over (Sch/S)fppf . Consider the following property

(13.2.1) for all fields k of finite type over S and all x0 ∈ Ob(XSpec(k)) the
map FX ,k,x0 → FY,k,f(x0) of predeformation categories is smooth

We formulate some lemmas around this concept. First we link it with (openness of) ver-
sality.

Lemma 13.3. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let x be an
object of X over U . Assume that x is versal at every finite type point of U and that X
satisfies (RS). Then x : (Sch/U)fppf → X satisfies (13.2.1).

Proof. Let Spec(l)→ U be a morphism with l of finite type over S. Then the image
u0 ∈ U is a finite type point of U and l/κ(u0) is a finite extension, see discussion in
Morphisms, Section 16. Hence we see that F(Sch/U)fppf ,l,ul,0 → FX ,l,xl,0 is smooth by
Lemma 12.5. �

Lemma 13.4. Let S be a locally Noetherian scheme. Let f : X → Y and g : Y → Z
be composable 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f and
g satisfy (13.2.1) so does g ◦ f .

Proof. This follows formally from Formal Deformation Theory, Lemma 8.7. �

Lemma 13.5. Let S be a locally Noetherian scheme. Let f : X → Y and Z → Y be
1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f satisfies (13.2.1) so
does the projection X ×Y Z → Z .

Proof. Follows immediately from Lemma 3.3 and Formal Deformation Theory, Lemma
8.7. �

Lemma 13.6. Let S be a locally Noetherian scheme. Let f : X → Y be a 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If f is formally smooth on objects,
then f satisfies (13.2.1). If f is representable by algebraic spaces and smooth, then f satisfies
(13.2.1).

Proof. A reformulation of Lemma 3.2. �

Lemma 13.7. Let S be a locally Noetherian scheme. Let f : X → Y be a 1-morphism
of categories fibred in groupoids over (Sch/S)fppf . Assume

(1) f is representable by algebraic spaces,
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(2) f satisfies (13.2.1),
(3) X → (Sch/S)fppf is limit preserving on objects, and
(4) Y is limit preserving.

Then f is smooth.

Proof. The key ingredient of the proof is More on Morphisms, Lemma 12.1 which
(almost) says that a morphism of schemes of finite type over S satisfying (13.2.1) is a
smooth morphism. The other arguments of the proof are essentially bookkeeping.
Let V be a scheme over S and let y be an object of Y over V . Let Z be an algebraic space
representing the 2-fibre product Z = X ×f,X ,y (Sch/V )fppf . We have to show that
the projection morphism Z → V is smooth, see Algebraic Stacks, Definition 10.1. In
fact, it suffices to do this when V is an affine scheme locally of finite presentation over
S , see Criteria for Representability, Lemma 5.6. Then (Sch/V )fppf is limit preserving
by Lemma 11.3. Hence Z → S is locally of finite presentation by Lemmas 11.2 and 11.3.
Choose a scheme W and a surjective étale morphism W → Z. Then W is locally of finite
presentation over S.
Since f satisfies (13.2.1) we see that so does Z → (Sch/V )fppf , see Lemma 13.5. Next, we
see that (Sch/W )fppf → Z satisfies (13.2.1) by Lemma 13.6. Thus the composition

(Sch/W )fppf → Z → (Sch/V )fppf
satisfies (13.2.1) by Lemma 13.4. More on Morphisms, Lemma 12.1 shows that the com-
position W → Z → V is smooth at every finite type point w0 of W . Since the smooth
locus is open we conclude that W → V is a smooth morphism of schemes by Morphisms,
Lemma 16.7. Thus we conclude that Z → V is a smooth morphism of algebraic spaces by
definition. �

The lemma below is how we will use openness of versality.

Lemma 13.8. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a
category fibred in groupoids. Let k be a finite type field over S and let x0 be an object of
X over Spec(k) with image s ∈ S. Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [1], [2], [3] (see Section 14),
(3) every formal object of X is effective,
(4) openness of versality holds for X , and
(5) OS,s is a G-ring.

Then there exist a morphism of finite type U → S and an object x of X over U such that
x : (Sch/U)fppf −→ X

is smooth and such that there exists a finite type point u0 ∈ U whose residue field is k and
such that x|u0

∼= x0.

Proof. By axiom [2], Lemma 6.1, and Remark 6.2 we see thatFX ,k,x0 satisfies (S1) and
(S2). Since also the tangent space has finite dimension by axiom [3] we deduce from Formal
Deformation Theory, Lemma 13.4 that FX ,k,x0 has a versal formal object ξ. Assumption
(3) says ξ is effective. By axiom [1] and Lemma 12.7 there exists a morphism of finite type
U → S , an object x of X over U , and a finite type point u0 of U with residue field k such
that x is versal at u0 and such that x|Spec(k) ∼= x0. By openness of versality we may shrink
U and assume that x is versal at every finite type point of U . We claim that

x : (Sch/U)fppf −→ X
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is smooth which proves the lemma. Namely, by Lemma 13.3 x satisfies (13.2.1) whereupon
Lemma 13.7 finishes the proof. �

14. Axioms

Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category fibred in
groupoids. Here are the axioms we will consider on X .

[-1] a set theoretic condition1 to be ignored by readers who are not interested in set
theoretical issues,

[0] X is a stack in groupoids for the étale topology,
[1] X is limit preserving,
[2] X satisfies the Rim-Schlessinger condition (RS),
[3] the spaces TFX ,k,x0 and Inf(FX ,k,x0) are finite dimensional for every k and x0,

see (8.0.1) and (8.0.2),
[4] the functor (9.3.1) is an equivalence,
[5] X and ∆ : X → X ×X satisfy openness of versality.

15. Axioms for functors

Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Denote X = SF the
category fibred in sets associated to F , see Algebraic Stacks, Section 7. In this section we
provide a translation between the material above as it applies toX , to statements about F .

Let S be a locally Noetherian scheme. LetF : (Sch/S)oppfppf → Sets be a functor. Let k be a
field of finite type over S. Let x0 ∈ F (Spec(k)). The associated predeformation category
(3.0.2) corresponds to the functor

Fk,x0 : CΛ −→ Sets, A 7−→ {x ∈ F (Spec(A)) | x|Spec(k) = x0}.

Recall that we do not distinguish between categories cofibred in sets over CΛ and functor
CΛ → Sets, see Formal Deformation Theory, Remarks 5.2 (11). Given a transformation of
functors a : F → G, setting y0 = a(x0) we obtain a morphism

Fk,x0 −→ Gk,y0

see (3.1.1). Lemma 3.2 tells us that if a : F → G is formally smooth (in the sense of More
on Morphisms of Spaces, Definition 13.1), then Fk,x0 −→ Gk,y0 is smooth as in Formal
Deformation Theory, Remark 8.4.

Lemma 4.1 says that if Y ′ = Y qX X ′ in the category of schemes over S where X → X ′

is a thickening and X → Y is affine, then the map

F (Y qX X ′)→ F (Y )×F (X) F (X ′)

is a bijection, provided thatF is an algebraic space. We say a general functorF satisfies the
Rim-Schlessinger condition or we say F satisfies (RS) if given any pushout Y ′ = Y qXX ′

where Y,X,X ′ are spectra of Artinian local rings of finite type over S , then

F (Y qX X ′)→ F (Y )×F (X) F (X ′)

is a bijection. Thus every algebraic space satisfies (RS).

1The condition is the following: the supremum of all the cardinalities | Ob(XSpec(k))/ ∼= | and
|Arrows(XSpec(k))| where k runs over the finite type fields over S is ≤ than the size of some object of
(Sch/S)fppf .
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Lemma 6.1 says that given a functor F which satisfies (RS), then all Fk,x0 are deformation
functors as in Formal Deformation Theory, Definition 16.8, i.e., they satisfy (RS) as in
Formal Deformation Theory, Remark 16.5. In particular the tangent space

TFk,x0 = {x ∈ F (Spec(k[ε])) | x|Spec(k) = x0}
has the structure of a k-vector space by Formal Deformation Theory, Lemma 12.2.

Lemma 8.1 says that an algebraic space F locally of finite type over S gives rise to defor-
mation functors Fk,x0 with finite dimensional tangent spaces TFk,x0 .

A formal object2 ξ = (R, ξn) of F consists of a Noetherian complete local S-algebra R
whose residue field is of finite type over S , together with elements ξn ∈ F (Spec(R/mn))
such that ξn+1|Spec(R/mn) = ξn. A formal object ξ defines a formal object ξ of FR/m,ξ1 .
We say ξ is versal if and only if it is versal in the sense of Formal Deformation Theory,
Definition 8.9. A formal object ξ = (R, ξn) is called effective if there exists an x ∈
F (Spec(R)) such that ξn = x|Spec(R/mn) for all n ≥ 1. Lemma 9.5 says that if F is an
algebraic space, then every formal object is effective.

Let U be a scheme locally of finite type over S and let x ∈ F (U). Let u0 ∈ U be a finite
type point. We say that x is versal at u0 if and only if ξ = (O∧

U,u0
, x|Spec(OU,u0/m

n
u0 )) is

a versal formal object in the sense described above.

Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf → Sch be a functor. Here are
the axioms we will consider on F .

[-1] a set theoretic condition3 to be ignored by readers who are not interested in set
theoretical issues,

[0] F is a sheaf for the étale topology,
[1] F is limit preserving,
[2] F satisfies the Rim-Schlessinger condition (RS),
[3] every tangent space TFk,x0 is finite dimensional,
[4] every formal object is effective,
[5] F satisfies openness of versality.

Here limit preserving is the notion defined in Limits of Spaces, Definition 3.1 and openness
of versality means the following: Given a scheme U locally of finite type over S , given
x ∈ F (U), and given a finite type point u0 ∈ U such that x is versal at u0, then there
exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal at every finite type point
of U ′.

16. Algebraic spaces

The following is our first main result on algebraic spaces.

Proposition 16.1. Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf →
Sets be a functor. Assume that

(1) ∆ : F → F × F is representable by algebraic spaces,
(2) F satisfies axioms [-1], [0], [1], [2], [3], [4], [5] (see Section 15), and
(3) OS,s is a G-ring for all finite type points s of S.

Then F is an algebraic space.

2This is what Artin calls a formal deformation.
3The condition is the following: the supremum of all the cardinalities |F (Spec(k))| where k runs over

the finite type fields over S is ≤ than the size of some object of (Sch/S)fppf .
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Proof. Lemma 13.8 applies to F . Using this we choose, for every finite type field k
over S and x0 ∈ F (Spec(k)), an affine scheme Uk,x0 of finite type over S and a smooth
morphismUk,x0 → F such that there exists a finite type point uk,x0 ∈ Uk,x0 with residue
field k such that x0 is the image of uk,x0 . Then

U =
∐

k,x0
Uk,x0 −→ F

is smooth4. To finish the proof it suffices to show this map is surjective, see Bootstrap,
Lemma 12.3 (this is where we use axiom [0]). By Criteria for Representability, Lemma
5.6 it suffices to show that U ×F V → V is surjective for those V → F where V is an
affine scheme locally of finite presentation over S. Since U ×F V → V is smooth the
image is open. Hence it suffices to show that the image of U ×F V → V contains all finite
type points of V , see Morphisms, Lemma 16.7. Let v0 ∈ V be a finite type point. Then
k = κ(v0) is a finite type field over S. Denote x0 the composition Spec(k) v0−→ V → F .
Then (uk,x0 , v0) : Spec(k)→ U ×F V is a point mapping to v0 and we win. �

Lemma 16.2. Let S be a locally Noetherian scheme. Let a : F → G be a transforma-
tion of functors (Sch/S)oppfppf → Sets. Assume that

(1) a is injective,
(2) F satisfies axioms [0], [1], [2], [4], and [5],
(3) OS,s is a G-ring for all finite type points s of S ,
(4) G is an algebraic space locally of finite type over S ,

Then F is an algebraic space.

Proof. By Lemma 8.1 the functorG satisfies [3]. As F → G is injective, we conclude
that F also satisfies [3]. Moreover, as F → G is injective, we see that given schemes U , V
and morphisms U → F and V → F , then U ×F V = U ×G V . Hence ∆ : F → F × F
is representable (by schemes) as this holds for G by assumption. Thus Proposition 16.1
applies5. �

17. Algebraic stacks

Proposition 17.2 is our first main result on algebraic stacks.

Lemma 17.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a
category fibred in groupoids. Assume that

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3] (see Section 14),
(3) every formal object of X is effective,
(4) X satisfies openness of versality, and
(5) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

Proof. Lemma 13.8 applies to X . Using this we choose, for every finite type field k
over S and every isomorphism class of object x0 ∈ Ob(XSpec(k)), an affine scheme Uk,x0

of finite type over S and a smooth morphism (Sch/Uk,x0)fppf → X such that there exists

4Set theoretical remark: This coproduct is (isomorphic) to an object of (Sch/S)fppf as we have a bound
on the index set by axiom [-1], see Sets, Lemma 9.9.

5The set theoretic condition [-1] holds for F as it holds for G. Details omitted.
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a finite type point uk,x0 ∈ Uk,x0 with residue field k such that x0 is the image of uk,x0 .
Then

(Sch/U)fppf → X , with U =
∐

k,x0
Uk,x0

is smooth6. To finish the proof it suffices to show this map is surjective, see Criteria for Rep-
resentability, Lemma 19.1 (this is where we use axiom [0]). By Criteria for Representabil-
ity, Lemma 5.6 it suffices to show that (Sch/U)fppf ×X (Sch/V )fppf → (Sch/V )fppf
is surjective for those y : (Sch/V )fppf → X where V is an affine scheme locally of finite
presentation overS. By assumption (1) the fibre product (Sch/U)fppf×X (Sch/V )fppf is
representable by an algebraic spaceW . ThenW → V is smooth, hence the image is open.
Hence it suffices to show that the image of W → V contains all finite type points of V ,
see Morphisms, Lemma 16.7. Let v0 ∈ V be a finite type point. Then k = κ(v0) is a finite
type field over S. Denote x0 = y|Spec(k) the pullback of y by v0. Then (uk,x0 , v0) will
give a morphism Spec(k)→W whose composition with W → V is v0 and we win. �

Proposition 17.2. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids. Assume that

(1) ∆∆ : X → X ×X ×X X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3], [4], and [5] (see Section 14),
(3) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

Proof. We first prove that ∆ : X → X ×X is representable by algebraic spaces. To
do this it suffices to show that

Y = X ×∆,X ×X ,y (Sch/V )fppf

is representable by an algebraic space for any affine scheme V locally of finite presenta-
tion over S and object y of X × X over V , see Criteria for Representability, Lemma 5.57.
Observe that Y is fibred in setoids (Stacks, Lemma 2.5) and let Y : (Sch/S)oppfppf → Sets,
T 7→ Ob(YT )/ ∼= be the functor of isomorphism classes. We will apply Proposition 16.1
to see that Y is an algebraic space.

Note that ∆Y : Y → Y × Y (and hence also Y → Y × Y ) is representable by algebraic
spaces by condition (1) and Criteria for Representability, Lemma 4.4. Observe that Y is a
sheaf for the étale topology by Stacks, Lemmas 6.3 and 6.7, i.e., axiom [0] holds. Also Y
is limit preserving by Lemma 11.2, i.e., we have [1]. Note that Y has (RS), i.e., axiom [2]
holds, by Lemmas 5.2 and 5.3. Axiom [3] for Y follows from Lemmas 8.1 and 8.2. Axiom
[4] follows from Lemmas 9.5 and 9.6. Axiom [5] for Y follows directly from openness of
versality for ∆X which is part of axiom [5] forX . Thus all the assumptions of Proposition
16.1 are satisfied and Y is an algebraic space.

At this point it follows from Lemma 17.1 that X is an algebraic stack. �

6Set theoretical remark: This coproduct is (isomorphic to) an object of (Sch/S)fppf as we have a bound
on the index set by axiom [-1], see Sets, Lemma 9.9.

7The set theoretic condition in Criteria for Representability, Lemma 5.5 will hold: the size of the algebraic
space Y representing Y is suitably bounded. Namely, Y → S will be locally of finite type and Y will satisfy
axiom [-1]. Details omitted.
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18. Strong Rim-Schlessinger

In the rest of this chapter the following strictly stronger version of the Rim-Schlessinger
conditions will play an important role.

Definition 18.1. Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . We say X satisfies condition (RS*) if given a fibre product diagram

B′ // B

A′ = A×B B′

OO

// A

OO

of S-algebras, with B′ → B surjective with square zero kernel, the functor of fibre cate-
gories

XSpec(A′) −→ XSpec(A) ×XSpec(B) XSpec(B′)

is an equivalence of categories.

We make some observations: with A→ B ← B′ as in Definition 18.1
(1) we have Spec(A′) = Spec(A) qSpec(B) Spec(B′) in the category of schemes,

see More on Morphisms, Lemma 14.3, and
(2) if X is an algebraic stack, then X satisfies (RS*) by Lemma 18.2.

If S is locally Noetherian, then
(3) if A, B, B′ are of finite type over S and B is finite over A, then A′ is of finite

type over S8, and
(4) if X satisfies (RS*), then X satisfies (RS) because (RS) covers exactly those cases

of (RS*) where A, B, B′ are Artinian local.

Lemma 18.2. Let X be an algebraic stack over a base S. Then X satisfies (RS*).

Proof. This is implied by Lemma 4.1, see remarks following Definition 18.1. �

Lemma 18.3. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If X , Y , and Z satisfy (RS*), then so
does X ×Y Z .

Proof. The proof is exactly the same as the proof of Lemma 5.3. �

19. Versality and generalizations

We prove that versality is preserved under generalizations for stacks which have (RS*) and
are limit preserving. We suggest skipping this section on a first reading.

Lemma 19.1. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf having (RS*). Let x be an object of X over an affine scheme
U of finite type over S. Let u ∈ U be a finite type point such that x is not versal at u.
Then there exists a morphism x→ y of X lying over U → T satisfying

(1) the morphism U → T is a first order thickening,
(2) we have a short exact sequence

0→ κ(u)→ OT → OU → 0
8If Spec(A) maps into an affine open of S this follows from More on Algebra, Lemma 5.1. The general

case follows using More on Algebra, Lemma 5.3.
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(3) there does not exist a pair (W,α) consisting of an open neighbourhood W ⊂ T
of u and a morphism β : y|W → x such that the composition

x|U∩W
restriction of x→y−−−−−−−−−−→ y|W

β−→ x

is the canonical morphism x|U∩W → x.

Proof. Let R = O∧
U,u. Let k = κ(u) be the residue field of R. Let ξ be the formal

object of X overR associated to x. Since x is not versal at u, we see that ξ is not versal, see
Lemma 12.3. By the discussion following Definition 12.1 this means we can find morphisms
ξ1 → xA → xB of X lying over closed immersions Spec(k) → Spec(A) → Spec(B)
where A,B are Artinian local rings with residue field k, an n ≥ 1 and a commutative
diagram

xA

~~
ξn ξ1

OO

oo

lying over

Spec(A)

xx
Spec(R/mn) Spec(k)

OO

oo

such that there does not exist an m ≥ n and a commutative diagram

xB

}}

xA

~~

OO

ξm ξnoo ξ1

OO

oo

lying over

Spec(B)

ww

Spec(A)

xx

OO

Spec(R/mm) Spec(R/mn)oo Spec(k)

OO

oo

We may moreover assume that B → A is a small extension, i.e., that the kernel I of
the surjection B → A is isomorphic to k as an A-module. This follows from Formal
Deformation Theory, Remark 8.10. Then we simply define

T = U qSpec(A) Spec(B)

By property (RS*) we find y over T whose restriction to Spec(B) is xB and whose restric-
tion to U is x (this gives the arrow x → y lying over U → T ). To finish the proof we
verify conditions (1), (2), and (3).

By the construction of the pushout we have a commutative diagram

0 // I // B // A // 0

0 // I //

OO

Γ(T,OT ) //

OO

Γ(U,OU ) //

OO

0

with exact rows. This immediately proves (1) and (2). To finish the proof we will argue
by contradiction. Assume we have a pair (W,β) as in (3). Since Spec(B) → T factors
through W we get the morphism

xB → y|W
β−→ x

Since B is Artinian local with residue field k = κ(u) we see that xB → x lies over a
morphism Spec(B) → U which factors through Spec(OU,u/mmu ) for some m ≥ n. In
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other words, xB → x factors through ξm giving a map xB → ξm. The compatibility
condition on the morphism α in condition (3) translates into the condition that

xB

��

xA

��

oo

ξm ξnoo

is commutative. This gives the contradiction we were looking for. �

Lemma 19.2. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf . Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving.

Letx be an object ofX over a schemeU of finite type overS. Letu u0 be a specialization
of finite type points of U such that x is versal at u0. Then x is versal at u.

Proof. After shrinking U we may assume U is affine and U maps into an affine open
Spec(Λ) of S. If x is not versal at u then we may pick x → y lying over U → T as
in Lemma 19.1. Write U = Spec(R0) and T = Spec(R). The morphism U → T cor-
responds to a surjective ring map R → R0 whose kernel is an ideal of square zero. By
assumption (3) we get that y comes from an object x′ over U ′ = Spec(R′) for some finite
type Λ-subalgebra R′ ⊂ R. After increasing R′ we may and do assume that R′ → R0 is
surjective, so that U ⊂ U ′ is a first order thickening. Thus we now have

x→ y → x′ lying over U → T → U ′

By assumption (1) there is an algebraic space Z over S representing

(Sch/U)fppf ×x,X ,x′ (Sch/U ′)fppf
see Algebraic Stacks, Lemma 10.11. By construction of 2-fibre products, a V -valued point
of Z corresponds to a triple (a, a′, α) consisting of morphisms a : V → U , a′ : V → U ′

and a morphism α : a∗x→ (a′)∗x′. We obtain a commutative diagram

U

��

��

''
Z

p′
//

p

��

U ′

��
U // S

The morphism i : U → Z comes the isomorphism x → x′|U . Let z0 = i(u0) ∈ Z. By
Lemma 12.6 we see that Z → U ′ is smooth at z0. After replacing U by an affine open
neighbourhood of u0, replacing U ′ by the corresponding open, and replacing Z by the
intersection of the inverse images of these opens by p and p′, we reach the situation where
Z → U ′ is smooth along i(U). Since u u0 the point u is in this open. Condition (3) of
Lemma 19.1 is clearly preserved by shrinking U (all of the schemes U , T , U ′ have the same
underlying topological space). Since U → U ′ is a first order thickening of affine schemes,
we can choose a morphism i′ : U ′ → Z such that p′ ◦ i′ = idU ′ and whose restriction to
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U is i (More on Morphisms of Spaces, Lemma 19.6). Pulling back the universal morphism
p∗x→ (p′)∗x′ by i′ we obtain a morphism

x′ → x

lying over p ◦ i′ : U ′ → U such that the composition

x→ x′ → x

is the identity. Recall that we have y → x′ lying over the morphism T → U ′. Composing
we get a morphism y → x whose existence contradicts condition (3) of Lemma 19.1. This
contradiction finishes the proof. �

20. Strong formal effectiveness

In this section we demonstrate how a strong version of effectiveness of formal objects
implies openness of versality. The proof of [?, Theorem 1.1] shows that quasi-compact
and quasi-separated algebraic spaces satisfy the strong formal effectiveness discussed in
Remark 20.2. In addition, the theory we develop is nonempty: we use it later to show
openness of versality for the stack of coherent sheaves and for moduli of complexes, see
Quot, Theorems 6.1 and 16.12.

Lemma 20.1. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf having (RS*). Let x be an object of X over an affine scheme
U of finite type over S. Let un ∈ U , n ≥ 1 be finite type points such that (a) there are no
specializations un  um for n 6= m, and (b) x is not versal at un for all n. Then there
exist morphisms

x→ x1 → x2 → . . . in X lying over U → U1 → U2 → . . .

over S such that
(1) for each n the morphism U → Un is a first order thickening,
(2) for each n we have a short exact sequence

0→ κ(un)→ OUn → OUn−1 → 0

with U0 = U for n = 1,
(3) for eachn there does not exist a pair (W,α) consisting of an open neighbourhood

W ⊂ Un of un and a morphism α : xn|W → x such that the composition

x|U∩W
restriction of x→xn−−−−−−−−−−−→ xn|W

α−→ x

is the canonical morphism x|U∩W → x.

Proof. Since there are no specializations among the points un (and in particular the
un are pairwise distinct), for every n we can find an open U ′ ⊂ U such that un ∈ U ′ and
ui 6∈ U ′ for i = 1, . . . , n− 1. By Lemma 19.1 for each n ≥ 1 we can find

x→ yn in X lying over U → Tn

such that
(1) the morphism U → Tn is a first order thickening,
(2) we have a short exact sequence

0→ κ(un)→ OTn → OU → 0
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(3) there does not exist a pair (W,α) consisting of an open neighbourhoodW ⊂ Tn
of un and a morphism β : yn|W → x such that the composition

x|U∩W
restriction of x→yn−−−−−−−−−−−→ yn|W

β−→ x

is the canonical morphism x|U∩W → x.
Thus we can define inductively

U1 = T1, Un+1 = Un qU Tn+1

Setting x1 = y1 and using (RS*) we find inductively xn+1 over Un+1 restricting to xn
over Un and yn+1 over Tn+1. Property (1) for U → Un follows from the construction of
the pushout in More on Morphisms, Lemma 14.3. Property (2) for Un similarly follows
from property (2) for Tn by the construction of the pushout. After shrinking to an open
neighbourhood U ′ of un as discussed above, property (3) for (Un, xn) follows from prop-
erty (3) for (Tn, yn) simply because the corresponding open subschemes of Tn and Un are
isomorphic. Some details omitted. �

Remark 20.2 (Strong effectiveness). Let S be a locally Noetherian scheme. Let X be
a category fibred in groupoids over (Sch/S)fppf . Assume we have

(1) an affine open Spec(Λ) ⊂ S ,
(2) an inverse system (Rn) of Λ-algebras with surjective transition maps whose ker-

nels are locally nilpotent,
(3) a system (ξn) of objects of X lying over the system (Spec(Rn)).

In this situation, set R = limRn. We say that (ξn) is effective if there exists an object ξ
of X over Spec(R) whose restriction to Spec(Rn) gives the system (ξn).

It is not the case that every algebraic stack X over S satisfies a strong effectiveness axiom
of the form: every system (ξn) as in Remark 20.2 is effective. An example is given in
Examples, Section 72.

Lemma 20.3. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf . Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving,
(4) systems (ξn) as in Remark 20.2 where Ker(Rm → Rn) is an ideal of square zero

for all m ≥ n are effective.
Then X satisfies openness of versality.

Proof. Choose a scheme U locally of finite type over S , a finite type point u0 of U ,
and an object x of X over U such that x is versal at u0. After shrinking U we may assume
U is affine and U maps into an affine open Spec(Λ) of S. Let E ⊂ U be the set of finite
type points u such that x is not versal at u. By Lemma 19.2 if u ∈ E then u0 is not a
specialization of u. If openness of versality does not hold, then u0 is in the closure E of
E. By Properties, Lemma 5.13 we may choose a countable subset E′ ⊂ E with the same
closure asE. By Properties, Lemma 5.12 we may assume there are no specializations among
the points ofE′. Observe thatE′ has to be (countably) infinite asu0 isn’t the specialization
of any point of E′ as pointed out above. Thus we can write E′ = {u1, u2, u3, . . .}, there
are no specializations among the ui, and u0 is in the closure of E′.
Choose x → x1 → x2 → . . . lying over U → U1 → U2 → . . . as in Lemma 20.1.
Write Un = Spec(Rn) and U = Spec(R0). Set R = limRn. Observe that R → R0 is
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surjective with kernel an ideal of square zero. By assumption (4) we get ξ over Spec(R)
whose base change to Rn is xn. By assumption (3) we get that ξ comes from an object ξ′

over U ′ = Spec(R′) for some finite type Λ-subalgebra R′ ⊂ R. After increasing R′ we
may and do assume that R′ → R0 is surjective, so that U ⊂ U ′ is a first order thickening.
Thus we now have

x→ x1 → x2 → . . .→ ξ′ lying over U → U1 → U2 → . . .→ U ′

By assumption (1) there is an algebraic space Z over S representing
(Sch/U)fppf ×x,X ,ξ′ (Sch/U ′)fppf

see Algebraic Stacks, Lemma 10.11. By construction of 2-fibre products, a T -valued point
of Z corresponds to a triple (a, a′, α) consisting of morphisms a : T → U , a′ : T → U ′

and a morphism α : a∗x→ (a′)∗ξ′. We obtain a commutative diagram

U

��

��

''
Z

p′
//

p

��

U ′

��
U // S

The morphism i : U → Z comes the isomorphism x → ξ′|U . Let z0 = i(u0) ∈ Z. By
Lemma 12.6 we see that Z → U ′ is smooth at z0. After replacing U by an affine open
neighbourhood of u0, replacing U ′ by the corresponding open, and replacing Z by the
intersection of the inverse images of these opens by p and p′, we reach the situation where
Z → U ′ is smooth along i(U). Note that this also involves replacing un by a subsequence,
namely by those indices such thatun is in the open. Moreover, condition (3) of Lemma 20.1
is clearly preserved by shrinkingU (all of the schemesU ,Un,U ′ have the same underlying
topological space). Since U → U ′ is a first order thickening of affine schemes, we can
choose a morphism i′ : U ′ → Z such that p′ ◦ i′ = idU ′ and whose restriction to U
is i (More on Morphisms of Spaces, Lemma 19.6). Pulling back the universal morphism
p∗x→ (p′)∗ξ′ by i′ we obtain a morphism

ξ′ → x

lying over p ◦ i′ : U ′ → U such that the composition
x→ ξ′ → x

is the identity. Recall that we have x1 → ξ′ lying over the morphism U1 → U ′. Compos-
ing we get a morphism x1 → x whose existence contradicts condition (3) of Lemma 20.1.
This contradiction finishes the proof. �

Remark 20.4. There is a way to deduce openness of versality of the diagonal of an
category fibred in groupoids from a strong formal effectiveness axiom. Let S be a locally
Noetherian scheme. Let X be a category fibred in groupoids over (Sch/S)fppf . Assume

(1) ∆∆ : X → X ×X ×X X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving,
(4) given an inverse system (Rn) of S-algebras as in Remark 20.2 where Ker(Rm →

Rn) is an ideal of square zero for all m ≥ n the functor
XSpec(limRn) −→ limn XSpec(Rn)
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is fully faithful.
Then ∆ : X → X × X satisfies openness of versality. This follows by applying Lemma
20.3 to fibre products of the form X ×∆,X ×X ,y (Sch/V )fppf for any affine scheme V
locally of finite presentation over S and object y of X × X over V . If we ever need this,
we will change this remark into a lemma and provide a detailed proof.

21. Infinitesimal deformations

In this section we discuss a generalization of the notion of the tangent space introduced in
Section 8. To do this intelligently, we borrow some notation from Formal Deformation
Theory, Sections 11, 17, and 19.

Let S be a scheme. Let X be a category fibred in groupoids over (Sch/S)fppf . Given
a homomorphism A′ → A of S-algebras and an object x of X over Spec(A) we write
Lift(x,A′) for the category of lifts of x to Spec(A′). An object of Lift(x,A′) is a mor-
phism x → x′ of X lying over Spec(A) → Spec(A′) and morphisms of Lift(x,A′) are
defined as commutative diagrams. The set of isomorphism classes of Lift(x,A′) is denoted
Lift(x,A′). See Formal Deformation Theory, Definition 17.1 and Remark 17.2. IfA′ → A
is surjective with locally nilpotent kernel we call an element x′ of Lift(x,A′) a (infinites-
imal) deformation of x. In this case the group of infinitesimal automorphisms of x′ over
x is the kernel

Inf(x′/x) = Ker
(

AutXSpec(A′)(x
′)→ AutXSpec(A)(x)

)
Note that an element of Inf(x′/x) is the same thing as a lift of idx over Spec(A′) for
(the category fibred in sets associated to) AutX (x′). Compare with Formal Deformation
Theory, Definition 19.1 and Formal Deformation Theory, Remark 19.8.

IfM is anA-module we denoteA[M ] theA-algebra whose underlyingA-module isA⊕M
and whose multiplication is given by (a,m) ·(a′,m′) = (aa′, am′ +a′m). WhenM = A
this is the ring of dual numbers over A, which we denote A[ε] as is customary. There is
an A-algebra map A[M ] → A. The pullback of x to Spec(A[M ]) is called the trivial
deformation of x to Spec(A[M ]).

Lemma 21.1. Let S be a scheme. Let f : X → Y be a 1-morphism of categories fibred
in groupoids over (Sch/S)fppf . Let

B′ // B

A′

OO

// A

OO

be a commutative diagram of S-algebras. Let x be an object of X over Spec(A), let y be
an object of Y over Spec(B), and let φ : f(x)|Spec(B) → y be a morphism of Y over
Spec(B). Then there is a canonical functor

Lift(x,A′) −→ Lift(y,B′)
of categories of lifts induced by f andφ. The construction is compatible with compositions
of 1-morphisms of categories fibred in groupoids in an obvious manner.

Proof. This lemma proves itself. �

Let S be a base scheme. Let X be a category fibred in groupoids over (Sch/S)fppf . We
define a category whose objects are pairs (x,A′ → A) where
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(1) A′ → A is a surjection of S-algebras whose kernel is an ideal of square zero,
(2) x is an object of X lying over Spec(A).

A morphism (y,B′ → B)→ (x,A′ → A) is given by a commutative diagram

B′ // B

A′

OO

// A

OO

of S-algebras together with a morphism x|Spec(B) → y over Spec(B). Let us call this the
category of deformation situations.

Lemma 21.2. LetS be a scheme. LetX be a category fibred in groupoids over (Sch/S)fppf .
AssumeX satisfies condition (RS*). LetA be an S-algebra and let x be an object ofX over
Spec(A).

(1) There exists anA-linear functor Infx : ModA →ModA such that given a defor-
mation situation (x,A′ → A) and a lift x′ there is an isomorphism Infx(I) →
Inf(x′/x) where I = Ker(A′ → A).

(2) There exists an A-linear functor Tx : ModA →ModA such that
(a) given M in ModA there is a bijection Tx(M)→ Lift(x,A[M ]),
(b) given a deformation situation (x,A′ → A) there is an action

Tx(I)× Lift(x,A′)→ Lift(x,A′)

where I = Ker(A′ → A). It is simply transitive if Lift(x,A′) 6= ∅.

Proof. We define Infx as the functor

ModA −→ Sets, M −→ Inf(x′
M/x) = Lift(idx, A[M ])

mapping M to the group of infinitesimal automorphisms of the trivial deformation x′
M

of x to Spec(A[M ]) or equivalently the group of lifts of idx in AutX (x′
M ). We define Tx

as the functor
ModA −→ Sets, M −→ Lift(x,A[M ])

of isomorphism classes of infintesimal deformations of x to Spec(A[M ]). We apply For-
mal Deformation Theory, Lemma 11.4 to Infx and Tx. This lemma is applicable, since
(RS*) tells us that

Lift(x,A[M ×N ]) = Lift(x,A[M ])× Lift(x,A[N ])

as categories (and trivial deformations match up too).

Let (x,A′ → A) be a deformation situation. Consider the ring map g : A′ ×A A′ → A[I]
defined by the rule g(a1, a2) = a1 ⊕ a2 − a1. There is an isomorphism

A′ ×A A′ −→ A′ ×A A[I]

given by (a1, a2) 7→ (a1, g(a1, a2)). This isomorphism commutes with the projections to
A′ on the first factor, and hence with the projections to A. Thus applying (RS*) twice we
find equivalences of categories

Lift(x,A′)× Lift(x,A′) = Lift(x,A′ ×A A′)
= Lift(x,A′ ×A A[I])
= Lift(x,A′)× Lift(x,A[I])
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Using these maps and projection onto the last factor of the last product we see that we
obtain “difference maps”

Inf(x′/x)× Inf(x′/x) −→ Infx(I) and Lift(x,A′)× Lift(x,A′) −→ Tx(I)
These difference maps satisfy the transitivity rule “(x′

1 − x′
2) + (x′

2 − x′
3) = x′

1 − x′
3”

because
A′ ×A A′ ×A A′

(a1,a2,a3) 7→(g(a1,a2),g(a2,a3))
//

(a1,a2,a3) 7→g(a1,a3)
,,

A[I]×A A[I] = A[I × I]

+
��

A[I]

is commutative. Inverting the string of equivalences above we obtain an action which is
free and transitive provided Inf(x′/x), resp. Lift(x,A′) is nonempty. Note that Inf(x′/x)
is always nonempty as it is a group. �

Remark 21.3 (Functoriality). Assumptions and notation as in Lemma 21.2. Suppose
A→ B is a ring map and y = x|Spec(B). LetM ∈ModA,N ∈ModB and letM → N an
A-linear map. Then there are canonical maps Infx(M)→ Infy(N) and Tx(M)→ Ty(N)
simply because there is a pullback functor

Lift(x,A[M ])→ Lift(y,B[N ])
coming from the ring map A[M ] → B[N ]. Similarly, given a morphism of deformation
situations (y,B′ → B) → (x,A′ → A) we obtain a pullback functor Lift(x,A′) →
Lift(y,B′). Since the construction of the action, the addition, and the scalar multiplica-
tion on Infx and Tx use only morphisms in the categories of lifts (see proof of Formal
Deformation Theory, Lemma 11.4) we see that the constructions above are functorial. In
other words we obtain A-linear maps

Infx(M)→ Infy(N) and Tx(M)→ Ty(N)
such that the diagrams

Infy(J) // Inf(y′/y)

Infx(I) //

OO

Inf(x′/x)

OO

and

Ty(J)× Lift(y,B′) // Lift(y,B′)

Tx(I)× Lift(x,A′) //

OO

Lift(x,A′)

OO

commute. Here I = Ker(A′ → A), J = Ker(B′ → B), x′ is a lift of x to A′ (which may
not always exist) and y′ = x′|Spec(B′).

Remark 21.4 (Automorphisms). Assumptions and notation as in Lemma 21.2. Let
x′, x′′ be lifts of x to A′. Then we have a composition map

Inf(x′/x)×MorLift(x,A′)(x′, x′′)× Inf(x′′/x) −→ MorLift(x,A′)(x′, x′′).
Since Lift(x,A′) is a groupoid, if MorLift(x,A′)(x′, x′′) is nonempty, then this defines a
simply transitive left action of Inf(x′/x) on MorLift(x,A′)(x′, x′′) and a simply transitive
right action by Inf(x′′/x). Now the lemma says that Inf(x′/x) = Infx(I) = Inf(x′′/x).
We claim that the two actions described above agree via these identifications. Namely,
either x′ 6∼= x′′ in which the claim is clear, or x′ ∼= x′′ and in that case we may assume that
x′′ = x′ in which case the result follows from the fact that Inf(x′/x) is commutative. In
particular, we obtain a well defined action

Infx(I)×MorLift(x,A′)(x′, x′′) −→ MorLift(x,A′)(x′, x′′)
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which is simply transitive as soon as MorLift(x,A′)(x′, x′′) is nonempty.

Remark 21.5. Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let A be an S-algebra. There is a notion of a short exact sequence

(x,A′
1 → A)→ (x,A′

2 → A)→ (x,A′
3 → A)

of deformation situations: we ask the corresponding maps between the kernels Ii = Ker(A′
i →

A) give a short exact sequence

0→ I3 → I2 → I1 → 0

of A-modules. Note that in this case the map A′
3 → A′

1 factors through A, hence there is
a canonical isomorphism A′

1 = A[I1].

Lemma 21.6. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms of
categories fibred in groupoids over (Sch/S)fppf . Assume X , Y , Z satisfy (RS*). Let A be
an S-algebra and let w be an object ofW = X ×Y Z over A. Denote x, y, z the objects of
X ,Y,Z you get from w. For any A-module M there is a 6-term exact sequence

0 // Infw(M) // Infx(M)⊕ Infz(M) // Infy(M)

ss
Tw(M) // Tx(M)⊕ Tz(M) // Ty(M)

of A-modules.

Proof. By Lemma 18.3 we see thatW satisfies (RS*) and hence Tw(M) and Infw(M)
are defined. The horizontal arrows are defined using the functoriality of Lemma 21.1.

Definition of the “boundary” map δ : Infy(M)→ Tw(M). Choose isomorphisms p(x)→
y and y → q(z) such that w = (x, z, p(x) → y → q(z)) in the description of the 2-
fibre product of Categories, Lemma 35.7 and more precisely Categories, Lemma 32.3. Let
x′, y′, z′, w′ denote the trivial deformation of x, y, z, w over A[M ]. By pullback we get
isomorphisms y′ → p(x′) and q(z′) → y′. An element α ∈ Infy(M) is the same thing
as an automorphism α : y′ → y′ over A[M ] which restricts to the identity on y over A.
Thus setting

δ(α) = (x′, z′, p(x′)→ y′ α−→ y′ → q(z′))
we obtain an object of Tw(M). This is a map of A-modules by Formal Deformation The-
ory, Lemma 11.5.

The rest of the proof is exactly the same as the proof of Formal Deformation Theory,
Lemma 20.1. �

Remark 21.7 (Compatibility with previous tangent spaces). Let S be a locally Noe-
therian scheme. Let X be a category fibred in groupoids over (Sch/S)fppf . Assume X
has (RS*). Let k be a field of finite type over S and let x0 be an object of X over Spec(k).
Then we have equalities of k-vector spaces

TFX ,k,x0 = Tx0(k) and Inf(FX ,k,x0) = Infx0(k)

where the spaces on the left hand side of the equality signs are given in (8.0.1) and (8.0.2)
and the spaces on the right hand side are given by Lemma 21.2.



22. OBSTRUCTION THEORIES 6693

Remark 21.8 (Canonical element). Assumptions and notation as in Lemma 21.2. Choose
an affine open Spec(Λ) ⊂ S such that Spec(A) → S corresponds to a ring map Λ → A.
Consider the ring map

A −→ A[ΩA/Λ], a 7−→ (a, dA/Λ(a))

Pulling back x along the corresponding morphism Spec(A[ΩA/Λ])→ Spec(A) we obtain
a deformation xcan of x over A[ΩA/Λ]. We call this the canonical element

xcan ∈ Tx(ΩA/Λ) = Lift(x,A[ΩA/Λ]).

Next, assume that Λ is Noetherian and Λ→ A is of finite type. Let k = κ(p) be a residue
field at a finite type point u0 of U = Spec(A). Let x0 = x|u0 . By (RS*) and the fact that
A[k] = A×kk[k] the space Tx(k) is the tangent space to the deformation functorFX ,k,x0 .
Via

TFU,k,u0 = DerΛ(A, k) = HomA(ΩA/Λ, k)
(see Formal Deformation Theory, Example 11.11) and functoriality of Tx the canonical
element produces the map on tangent spaces induced by the object x over U . Namely,
θ ∈ TFU,k,u0 maps to Tx(θ)(xcan) in Tx(k) = TFX ,k,x0 .

Remark 21.9 (Canonical automorphism). Let S be a locally Noetherian scheme. Let
X be a category fibred in groupoids over (Sch/S)fppf . AssumeX satisfies condition (RS*).
Let A be an S-algebra such that Spec(A) → S maps into an affine open and let x, y be
objects of X over Spec(A). Further, let A → B be a ring map and let α : x|Spec(B) →
y|Spec(B) be a morphism of X over Spec(B). Consider the ring map

B −→ B[ΩB/A], b 7−→ (b, dB/A(b))

Pulling backα along the corresponding morphism Spec(B[ΩB/A])→ Spec(B) we obtain
a morphism αcan between the pullbacks of x and y over B[ΩB/A]. On the other hand,
we can pullback α by the morphism Spec(B[ΩB/A]) → Spec(B) corresponding to the
injection of B into the first summand of B[ΩB/A]. By the discussion of Remark 21.4 we
can take the difference

ϕ(x, y, α) = αcan − α|Spec(B[ΩB/A]) ∈ Infx|Spec(B)(ΩB/A).

We will call this the canonical automorphism. It depends on all the ingredients A, x, y,
A→ B and α.

22. Obstruction theories

In this section we describe what an obstruction theory is. Contrary to the spaces of infin-
itesimal deformations and infinitesimal automorphisms, an obstruction theory is an ad-
ditional piece of data. The formulation is motivated by the results of Lemma 21.2 and
Remark 21.3.

Definition 22.1. Let S be a locally Noetherian base. Let X be a category fibred in
groupoids over (Sch/S)fppf . An obstruction theory is given by the following data

(1) for every S-algebra A such that Spec(A) → S maps into an affine open and
every object x of X over Spec(A) an A-linear functor

Ox : ModA →ModA

of obstruction modules,
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(2) for (x,A) as in (1), a ring mapA→ B,M ∈ModA,N ∈ModB , and anA-linear
mapM → N an inducedA-linear mapOx(M)→ Oy(N) where y = x|Spec(B),
and

(3) for every deformation situation (x,A′ → A) an obstruction element ox(A′) ∈
Ox(I) where I = Ker(A′ → A).

These data are subject to the following conditions
(i) the functoriality maps turn the obstruction modules into a functor from the

category of triples (x,A,M) to sets,
(ii) for every morphism of deformation situations (y,B′ → B)→ (x,A′ → A) the

element ox(A′) maps to oy(B′), and
(iii) we have

Lift(x,A′) 6= ∅ ⇔ ox(A′) = 0
for every deformation situation (x,A′ → A).

This last condition explains the terminology. The module Ox(A′) is called the obstruc-
tion module. The element ox(A′) is the obstruction. Most obstruction theories have ad-
ditional properties, and in order to make them useful additional conditions are needed.
Moreover, this is just a sample definition, for example in the definition we could consider
only deformation situations of finite type over S.

One of the main reasons for introducing obstruction theories is to check openness of ver-
sality. An example of this type of result is Lemma 22.2 below. The initial idea to do this is
due to Artin, see the papers of Artin mentioned in the introduction. It has been taken up
for example in the work by Flenner [?], Hall [?], Hall and Rydh [?], Olsson [?], Olsson and
Starr [?], and Lieblich [?] (random order of references). Moreover, for particular categories
fibred in groupoids, often authors develop a little bit of theory adapted to the problem at
hand. We will develop this theory later (insert future reference here).

Lemma 22.2. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf . Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X has (RS*),
(3) X is limit preserving,
(4) there exists an obstruction theory9,
(5) for an object x of X over Spec(A) and A-modules Mn, n ≥ 1 we have

(a) Tx(
∏
Mn) =

∏
Tx(Mn),

(b) Ox(
∏
Mn)→

∏
Ox(Mn) is injective.

Then X satisfies openness of versality.

Proof. We prove this by verifying condition (4) of Lemma 20.3. Let (ξn) and (Rn)
be as in Remark 20.2 such that Ker(Rm → Rn) is an ideal of square zero for all m ≥ n.
Set A = R1 and x = ξ1. Denote Mn = Ker(Rn → R1). Then Mn is an A-module. Set
R = limRn. Let

R̃ = {(r1, r2, r3 . . .) ∈
∏

Rn such that all have the same image in A}

Then R̃ → A is surjective with kernel M =
∏
Mn. There is a map R → R̃ and a map

R̃→ A[M ], (r1, r2, r3, . . .) 7→ (r1, r2−r1, r3−r2, . . .). Together these give a short exact

9Analyzing the proof the reader sees that in fact it suffices to check the functoriality (ii) of obstruction
classes in Definition 22.1 for maps (y,B′ → B) → (x,A′ → A) with B = A and y = x.
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sequence
(x,R→ A)→ (x, R̃→ A)→ (x,A[M ])

of deformation situations, see Remark 21.5. The associated sequence of kernels 0→ limMn →
M → M → 0 is the canonical sequence computing the limit of the system of modules
(Mn).

Let ox(R̃) ∈ Ox(M) be the obstruction element. Since we have the lifts ξn we see that
ox(R̃) maps to zero in Ox(Mn). By assumption (5)(b) we see that ox(R̃) = 0. Choose a
lift ξ̃ of x to Spec(R̃). Let ξ̃n be the restriction of ξ̃ to Spec(Rn). There exists elements
tn ∈ Tx(Mn) such that tn · ξ̃n = ξn by Lemma 21.2 part (2)(b). By assumption (5)(a)
we can find t ∈ Tx(M) mapping to tn in Tx(Mn). After replacing ξ̃ by t · ξ̃ we find
that ξ̃ restricts to ξn over Spec(Rn) for all n. In particular, since ξn+1 restricts to ξn over
Spec(Rn), the restriction ξ of ξ̃ to Spec(A[M ]) has the property that it restricts to the
trivial deformation over Spec(A[Mn]) for all n. Hence by assumption (5)(a) we find that
ξ is the trivial deformation of x. By axiom (RS*) applied to R = R̃×A[M ] A this implies
that ξ̃ is the pullback of a deformation ξ of x over R. This finishes the proof. �

Example 22.3. Let S = Spec(Λ) for some Noetherian ring Λ. Let W → S be a
morphism of schemes. Let F be a quasi-coherent OW -module flat over S. Consider the
functor

F : (Sch/S)oppfppf −→ Sets, T/S −→ H0(WT ,FT )
where WT = T ×S W is the base change and FT is the pullback of F to WT . If T =
Spec(A) we will write WT = WA, etc. Let X → (Sch/S)fppf be the category fibred in
groupoids associated to F . Then X has an obstruction theory. Namely,

(1) given A over Λ and x ∈ H0(WA,FA) we setOx(M) = H1(WA,FA ⊗AM),
(2) given a deformation situation (x,A′ → A) we let ox(A′) ∈ Ox(A) be the image

of x under the boundary map

H0(WA,FA) −→ H1(WA,FA ⊗A I)
coming from the short exact sequence of modules

0→ FA ⊗A I → FA′ → FA → 0.
We have omitted some details, in particular the construction of the short exact sequence
above (it uses that WA and WA′ have the same underlying topological space) and the
explanation for why flatness of F over S implies that the sequence above is short exact.

Example 22.4 (Key example). Let S = Spec(Λ) for some Noetherian ring Λ. Say
X = (Sch/X)fppf with X = Spec(R) and R = Λ[x1, . . . , xn]/J . The naive cotangent
complex NLR/Λ is (canonically) homotopy equivalent to

J/J2 −→
⊕

i=1,...,n
Rdxi,

see Algebra, Lemma 134.2. Consider a deformation situation (x,A′ → A). Denote I
the kernel of A′ → A. The object x corresponds to (a1, . . . , an) with ai ∈ A such that
f(a1, . . . , an) = 0 in A for all f ∈ J . Set

Ox(A′) = HomR(J/J2, I)/HomR(R⊕n, I)
= Ext1

R(NLR/Λ, I)
= Ext1

A(NLR/Λ⊗RA, I).
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Choose lifts a′
i ∈ A′ of ai inA. Then ox(A′) is the class of the map J/J2 → I defined by

sending f ∈ J to f(a′
1, . . . , a

′
n) ∈ I . We omit the verification that ox(A′) is independent

of choices. It is clear that if ox(A′) = 0 then the map lifts. Finally, functoriality is
straightforward. Thus we obtain an obstruction theory. We observe that ox(A′) can be
described a bit more canonically as the composition

NLR/Λ → NLA/Λ → NLA/A′ = I[1]
in D(A), see Algebra, Lemma 134.6 for the last identification.

23. Naive obstruction theories

The title of this section refers to the fact that we will use the naive cotangent complex
in this section. Let (x,A′ → A) be a deformation situation for a given category fibred
in groupoids over a locally Noetherian scheme S. The key Example 22.4 suggests that
any obstruction theory should be closely related to maps in D(A) with target the naive
cotangent complex ofA. Working this out we find a criterion for versality in Lemma 23.3
which leads to a criterion for openness of versality in Lemma 23.4. We introduce a notion
of a naive obstruction theory in Definition 23.5 to try to formalize the notion a bit further.

In the following we will use the naive cotangent complex as defined in Algebra, Section
134. In particular, if A′ → A is a surjection of Λ-algebras with square zero kernel I , then
there are maps

NLA′/Λ → NLA/Λ → NLA/A′

whose composition is homotopy equivalent to zero (see Algebra, Remark 134.5). This
doesn’t form a distinguished triangle in general as we are using the naive cotangent com-
plex and not the full one. There is a homotopy equivalenceNLA/A′ → I[1] (the complex
consisting of I placed in degree−1, see Algebra, Lemma 134.6). Finally, note that there is
a canonical map NLA/Λ → ΩA/Λ.

Lemma 23.1. Let A → k be a ring map with k a field. Let E ∈ D−(A). Then
ExtiA(E, k) = Homk(H−i(E ⊗L k), k).

Proof. Omitted. Hint: Replace E by a bounded above complex of free A-modules
and compute both sides. �

Lemma 23.2. Let Λ → A → k be finite type ring maps of Noetherian rings with
k = κ(p) for some prime p of A. Let ξ : E → NLA/Λ be morphism of D−(A) such that
H−1(ξ ⊗L k) is not surjective. Then there exists a surjection A′ → A of Λ-algebras such
that

(a) I = Ker(A′ → A) has square zero and is isomorphic to k as an A-module,
(b) ΩA′/Λ ⊗ k = ΩA/Λ ⊗ k, and
(c) E → NLA/A′ is zero.

Proof. Let f ∈ A, f 6∈ p. Suppose thatA′′ → Af satisfies (a), (b), (c) for the induced
map E ⊗A Af → NLAf/Λ, see Algebra, Lemma 134.13. Then we can set A′ = A′′ ×Af A
and get a solution. Namely, it is clear that A′ → A satisfies (a) because Ker(A′ → A) =
Ker(A′′ → A) = I . Pick f ′′ ∈ A′′ lifting f . Then the localization of A′ at (f ′′, f) is
isomorphic toA′′ (for example by More on Algebra, Lemma 5.3). Thus (b) and (c) are clear
forA′ too. In this way we see that we may replaceA by the localizationAf (finitely many
times). In particular (after such a replacement) we may assume that p is a maximal ideal
of A, see Morphisms, Lemma 16.1.
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Choose a presentation A = Λ[x1, . . . , xn]/J . Then NLA/Λ is (canonically) homotopy
equivalent to

J/J2 −→
⊕

i=1,...,n
Adxi,

see Algebra, Lemma 134.2. After localizing if necessary (using Nakayama’s lemma) we can
choose generators f1, . . . , fm of J such that fj⊗1 form a basis for J/J2⊗A k. Moreover,
after renumbering, we can assume that the images of df1, . . . , dfr form a basis for the
image of J/J2 ⊗ k →

⊕
kdxi and that dfr+1, . . . , dfm map to zero in

⊕
kdxi. With

these choices the space

H−1(NLA/Λ⊗L
Ak) = H−1(NLA/Λ⊗Ak)

has basis fr+1⊗ 1, . . . , fm⊗ 1. Changing basis once again we may assume that the image
of H−1(ξ ⊗L k) is contained in the k-span of fr+1 ⊗ 1, . . . , fm−1 ⊗ 1. Set

A′ = Λ[x1, . . . , xn]/(f1, . . . , fm−1, pfm)
By construction A′ → A satisfies (a). Since dfm maps to zero in

⊕
kdxi we see that (b)

holds. Finally, by construction the induced map E → NLA/A′ = I[1] induces the zero
map H−1(E ⊗L

A k)→ I ⊗A k. By Lemma 23.1 we see that the composition is zero. �

The following lemma is our key technical result.

Lemma 23.3. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine scheme of
finite type over S which maps into an affine open Spec(Λ). Let x be an object of X over
U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′) if and
only if E → NLA/Λ → NLA/A′ is zero, and

(ii) there is an isomorphism of functors Tx(−) → Ext0
A(E,−) such that E →

NLA/Λ → Ω1
A/Λ corresponds to the canonical element (see Remark 21.8).

Let u0 ∈ U be a finite type point with residue field k = κ(u0). Consider the following
statements

(1) x is versal at u0, and
(2) ξ : E → NLA/Λ induces a surjectionH−1(E⊗L

A k)→ H−1(NLA/Λ⊗L
Ak) and

an injection H0(E ⊗L
A k)→ H0(NLA/Λ⊗L

Ak).
Then we always have (2)⇒ (1) and we have (1)⇒ (2) if u0 is a closed point.

Proof. Let p = Ker(A→ k) be the prime corresponding to u0.

Assume that x versal at u0 and that u0 is a closed point of U . If H−1(ξ ⊗L
A k) is not

surjective, then let A′ → A be an extension with kernel I as in Lemma 23.2. Because u0 is
a closed point, we see that I is a finite A-module, hence that A′ is a finite type Λ-algebra
(this fails if u0 is not closed). In particularA′ is Noetherian. By property (c) forA′ and (i)
for ξ we see that x lifts to an object x′ overA′. Let p′ ⊂ A′ be kernel of the surjective map
to k. By Artin-Rees (Algebra, Lemma 51.2) there exists an n > 1 such that (p′)n ∩ I = 0.
Then we see that

B′ = A′/(p′)n −→ A/pn = B

is a small, essential extension of local Artinian rings, see Formal Deformation Theory,
Lemma 3.12. On the other hand, as x is versal at u0 and as x′|Spec(B′) is a lift of x|Spec(B),
there exists an integer m ≥ n and a map q : A/pm → B′ such that the composition
A/pm → B′ → B is the quotient map. Since the maximal ideal of B′ has nth power
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equal to zero, this q factors through B which contradicts the fact that B′ → B is an
essential surjection. This contradiction shows that H−1(ξ ⊗L

A k) is surjective.

Assume that x versal at u0. By Lemma 23.1 the map H0(ξ ⊗L
A k) is dual to the map

Ext0
A(NLA/Λ, k)→ Ext0

A(E, k). Note that

Ext0
A(NLA/Λ, k) = DerΛ(A, k) and Tx(k) = Ext0

A(E, k)

Condition (ii) assures us the map Ext0
A(NLA/Λ, k)→ Ext0

A(E, k) sends a tangent vector
θ toU at u0 to the corresponding infinitesimal deformation of x0, see Remark 21.8. Hence
if x is versal, then this map is surjective, see Formal Deformation Theory, Lemma 13.2.
Hence H0(ξ ⊗L

A k) is injective. This finishes the proof of (1)⇒ (2) in case u0 is a closed
point.

For the rest of the proof assume H−1(E ⊗L
A k) → H−1(NLA/Λ⊗L

Ak) is surjective and
H0(E ⊗L

A k) → H0(NLA/Λ⊗L
Ak) injective. Set R = A∧

p and let η be the formal ob-
ject over R associated to x|Spec(R). The map dη on tangent spaces is surjective because it
is identified with the dual of the injective map H0(E ⊗L

A k) → H0(NLA/Λ⊗L
Ak) (see

previous paragraph). According to Formal Deformation Theory, Lemma 13.2 it suffices
to prove the following: Let C ′ → C be a small extension of finite type Artinian local
Λ-algebras with residue field k. Let R → C be a Λ-algebra map compatible with identifi-
cations of residue fields. Let y = x|Spec(C) and let y′ be a lift of y to C ′. To show: we can
lift the Λ-algebra map R→ C to R→ C ′.

Observe that it suffices to lift the Λ-algebra map A → C. Let I = Ker(C ′ → C). Note
that I is a 1-dimensional k-vector space. The obstruction ob to liftingA→ C is an element
of Ext1

A(NLA/Λ, I), see Example 22.4. By Lemma 23.1 and our assumption the map ξ
induces an injection

Ext1
A(NLA/Λ, I) −→ Ext1

A(E, I)
By the construction of ob and (i) the image of ob in Ext1

A(E, I) is the obstruction to lifting
x to A ×C C ′. By (RS*) the fact that y/C lifts to y′/C ′ implies that x lifts to A ×C C ′.
Hence ob = 0 and we are done. �

The key lemma above allows us to conclude that we have openness of versality in some
cases.

Lemma 23.4. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine scheme of
finite type over S which maps into an affine open Spec(Λ). Let x be an object of X over
U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′) if and
only if E → NLA/Λ → NLA/A′ is zero,

(ii) there is an isomorphism of functors Tx(−) → Ext0
A(E,−) such that E →

NLA/Λ → Ω1
A/Λ corresponds to the canonical element (see Remark 21.8),

(iii) the cohomology groups of E are finite A-modules.
If x is versal at a closed point u0 ∈ U , then there exists an open neighbourhood u0 ∈ U ′ ⊂
U such that x is versal at every finite type point of U ′.

Proof. Let C be the cone of ξ so that we have a distinguished triangle

E → NLA/Λ → C → E[1]
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in D−(A). By Lemma 23.3 the assumption that x is versal at u0 implies that H−1(C ⊗L

k) = 0. By More on Algebra, Lemma 76.4 there exists an f ∈ A not contained in the prime
corresponding to u0 such that H−1(C ⊗L

AM) = 0 for any Af -module M . Using Lemma
23.3 again we see that we have versality for all finite type points of the open D(f) ⊂
U . �

The technical lemmas above suggest the following definition.

Definition 23.5. Let S be a locally Noetherian base. Let X be a category fibred in
groupoids over (Sch/S)fppf . Assume that X satisfies (RS*). A naive obstruction theory
is given by the following data

(1) for everyS-algebraA such that Spec(A)→ Smaps into an affine open Spec(Λ) ⊂
S and every object x of X over Spec(A) we are given an object Ex ∈ D−(A)
and a map ξx : E → NLA/Λ,

(2) given (x,A) as in (1) there are transformations of functors

Infx(−)→ Ext−1
A (Ex,−) and Tx(−)→ Ext0

A(Ex,−)

(3) for (x,A) as in (1) and a ring map A → B setting y = x|Spec(B) there is a
functoriality map Ex → Ey in D(A).

These data are subject to the following conditions
(i) in the situation of (3) the diagram

Ey
ξy

// NLB/Λ

Ex

OO

ξx // NLA/Λ

OO

is commutative in D(A),
(ii) given (x,A) as in (1) and A→ B → C setting y = x|Spec(B) and z = x|Spec(C)

the composition of the functoriality maps Ex → Ey and Ey → Ez is the func-
toriality map Ex → Ez ,

(iii) the maps of (2) are isomorphisms compatible with the functoriality maps and
the maps of Remark 21.3,

(iv) the composition Ex → NLA/Λ → ΩA/Λ corresponds to the canonical element
of Tx(ΩA/Λ) = Ext0(Ex,ΩA/Λ), see Remark 21.8,

(v) given a deformation situation (x,A′ → A) with I = Ker(A′ → A) the compo-
sition Ex → NLA/Λ → NLA/A′ is zero in

HomA(Ex, NLA/Λ) = Ext0
A(Ex, NLA/A′) = Ext1

A(Ex, I)

if and only if x lifts to A′.

Thus we see in particular that we obtain an obstruction theory as in Section 22 by setting
Ox(−) = Ext1

A(Ex,−).

Lemma 23.6. Let S andX be as in Definition 23.5 and letX be endowed with a naive
obstruction theory. Let A → B and y → x be as in (3). Let k be a B-algebra which is a
field. Then the functoriality map Ex → Ey induces bijections

Hi(Ex ⊗L
A k)→ Hi(Ey ⊗L

B k)

for i = 0, 1.
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Proof. Let z = x|Spec(k). Then (RS*) implies that

Lift(x,A[k]) = Lift(z, k[k]) and Lift(y,B[k]) = Lift(z, k[k])

becauseA[k] = A×k k[k] andB[k] = B×k k[k]. Hence the properties of a naive obstruc-
tion theory imply that the functoriality mapEx → Ey induces bijections ExtiA(Ex, k)→
ExtiB(Ey, k) for i = −1, 0. By Lemma 23.1 our maps Hi(Ex ⊗L

A k) → Hi(Ey ⊗L
B k),

i = 0, 1 induce isomorphisms on dual vector spaces hence are isomorphisms. �

Lemma 23.7. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)oppfppf

be a category fibred in groupoids. Assume that X satisfies (RS*) and that X has a naive
obstruction theory. Then openness of versality holds for X provided the complexes Ex
of Definition 23.5 have finitely generated cohomology groups for pairs (A, x) where A is
of finite type over S.

Proof. Let U be a scheme locally of finite type over S , let x be an object of X over
U , and let u0 be a finite type point of U such that x is versal at u0. We may first shrink
U to an affine scheme such that u0 is a closed point and such that U → S maps into an
affine open Spec(Λ). Say U = Spec(A). Let ξx : Ex → NLA/Λ be the obstruction map.
At this point we may apply Lemma 23.4 to conclude. �

24. A dual notion

Let (x,A′ → A) be a deformation situation for a given category X fibred in groupoids
over a locally Noetherian scheme S. Assume X has an obstruction theory, see Definition
22.1. In practice one often has a complex K• of A-modules and isomorphisms of functors

Infx(−)→ H0(K• ⊗L
A −), Tx(−)→ H1(K• ⊗L

A −), Ox(−)→ H2(K• ⊗L
A −)

In this section we formalize this a little bit and show how this leads to a verification of
openness of versality in some cases.

Example 24.1. Let Λ, S,W,F be as in Example 22.3. Assume that W → S is proper
and F coherent. By Cohomology of Schemes, Remark 22.2 there exists a finite complex
of finite projective Λ-modules N• which universally computes the cohomology of F . In
particular the obstruction spaces from Example 22.3 areOx(M) = H1(N•⊗ΛM). Hence
with K• = N• ⊗Λ A[−1] we see thatOx(M) = H2(K• ⊗L

AM).

Situation 24.2. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf . Assume thatX has (RS*) so that we can speak of the functor
Tx(−), see Lemma 21.2. Let U = Spec(A) be an affine scheme of finite type over S which
maps into an affine open Spec(Λ). Let x be an object of X over U . Assume we are given

(1) a complex of A-modules K•,
(2) a transformation of functors Tx(−)→ H1(K• ⊗L

A −),
(3) for every deformation situation (x,A′ → A) with kernel I = Ker(A′ → A) an

element ox(A′) ∈ H2(K• ⊗L
A I)

satisfying the following (minimal) conditions
(i) the transformation Tx(−)→ H1(K• ⊗L

A −) is an isomorphism,
(ii) given a morphism (x,A′′ → A) → (x,A′ → A) of deformation situations

the element ox(A′) maps to the element ox(A′′) via the map H2(K• ⊗L
A I) →

H2(K• ⊗L
A I

′) where I ′ = Ker(A′′ → A), and
(iii) x lifts to an object over Spec(A′) if and only if ox(A′) = 0.
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It is possible to incorporate infinitesimal automorphisms as well, but we refrain from doing
so in order to get the sharpest possible result.

In Situation 24.2 an important role will be played byK•⊗L
ANLA/Λ. Suppose we are given

an element ξ ∈ H1(K• ⊗L
A NLA/Λ). Then (1) for any surjection A′ → A of Λ-algebras

with kernel I of square zero the canonical map NLA/Λ → NLA/A′ = I[1] sends ξ to an
element ξA′ ∈ H2(K•⊗L

A I) and (2) the mapNLA/Λ → ΩA/Λ sends ξ to an element ξcan
of H1(K• ⊗L

A ΩA/Λ).

Lemma 24.3. In Situation 24.2. Assume furthermore that
(iv) given a short exact sequence of deformation situations as in Remark 21.5 and

a lift x′
2 ∈ Lift(x,A′

2) then ox(A′
3) ∈ H2(K• ⊗L

A I3) equals ∂θ where θ ∈
H1(K• ⊗L

A I1) is the element corresponding to x′
2|Spec(A′

1) via A′
1 = A[I1] and

the given map Tx(−)→ H1(K• ⊗L
A −).

In this case there exists an element ξ ∈ H1(K• ⊗L
A NLA/Λ) such that

(1) for every deformation situation (x,A′ → A) we have ξA′ = ox(A′), and
(2) ξcan matches the canonical element of Remark 21.8 via the given transformation

Tx(−)→ H1(K• ⊗L
A −).

Proof. Choose a α : Λ[x1, . . . , xn] → A with kernel J . Write P = Λ[x1, . . . , xn].
In the rest of this proof we work with

NL(α) = (J/J2 −→
⊕

Adxi)

which is permissible by Algebra, Lemma 134.2 and More on Algebra, Lemma 58.2. Con-
sider the element ox(P/J2) ∈ H2(K• ⊗L

A J/J
2) and consider the quotient

C = (P/J2 ×
⊕

Adxi)/(J/J2)

whereJ/J2 is embedded diagonally. Note thatC → A is a surjection with kernel
⊕
Adxi.

Moreover there is a sectionA→ C toC → A given by mapping the class of f ∈ P to the
class of (f, df) in the pushout. For later use, denote xC the pullback of x along the cor-
responding morphism Spec(C) → Spec(A). Thus we see that ox(C) = 0. We conclude
that ox(P/J2) maps to zero in H2(K• ⊗L

A

⊕
Adxi). It follows that there exists some

element ξ ∈ H1(K• ⊗L
A NL(α)) mapping to ox(P/J2).

Note that for any deformation situation (x,A′ → A) there exists a Λ-algebra mapP/J2 →
A′ compatible with the augmentations to A. Hence the element ξ satisfies the first prop-
erty of the lemma by construction and property (ii) of Situation 24.2.

Note that our choice of ξ was well defined up to the choice of an element of H1(K• ⊗L
A⊕

Adxi). We will show that after modifying ξ by an element of the aforementioned
group we can arrange it so that the second assertion of the lemma is true. Let C ′ ⊂ C
be the image of P/J2 under the Λ-algebra map P/J2 → C (inclusion of first factor).
Observe that Ker(C ′ → A) = Im(J/J2 →

⊕
Adxi). Set C = A[ΩA/Λ]. The map

P/J2×
⊕
Adxi → C , (f,

∑
fidxi) 7→ (f mod J,

∑
fidxi) factors through a surjective

map C → C. Then

(x,C → A)→ (x,C → A)→ (x,C ′ → A)
is a short exact sequence of deformation situations. The associated splittingC = A[ΩA/Λ]
(from Remark 21.5) equals the given splitting above. Moreover, the section A→ C com-
posed with the map C → C is the map (1, d) : A → A[ΩA/Λ] of Remark 21.8. Thus xC
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restricts to the canonical element xcan of Tx(ΩA/Λ) = Lift(x,A[ΩA/Λ]). By condition
(iv) we conclude that ox(P/J2) maps to ∂xcan in

H1(K• ⊗L
A Im(J/J2 →

⊕
Adxi))

By construction ξ maps to ox(P/J2). It follows that xcan and ξcan map to the same
element in the displayed group which means (by the long exact cohomology sequence)
that they differ by an element of H1(K• ⊗L

A

⊕
Adxi) as desired. �

Lemma 24.4. In Situation 24.2 assume that (iv) of Lemma 24.3 holds and that K• is
a perfect object of D(A). In this case, if x is versal at a closed point u0 ∈ U then there
exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal at every finite type point
of U ′.

Proof. We may assume that K• is a finite complex of finite projective A-modules.
Thus the derived tensor product with K• is the same as simply tensoring with K•. Let
E• be the dual perfect complex to K•, see More on Algebra, Lemma 74.15. (So En =
HomA(K−n, A) with differentials the transpose of the differentials of K•.) Let E ∈
D−(A) denote the object represented by the complex E•[−1]. Let ξ ∈ H1(Tot(K• ⊗A
NLA/Λ)) be the element constructed in Lemma 24.3 and denote ξ : E = E•[−1] →
NLA/Λ the corresponding map (loc.cit.). We claim that the pair (E, ξ) satisfies all the
assumptions of Lemma 23.4 which finishes the proof.

Namely, assumption (i) of Lemma 23.4 follows from conclusion (1) of Lemma 24.3 and the
fact thatH2(K•⊗L

A−) = Ext1(E,−) by loc.cit. Assumption (ii) of Lemma 23.4 follows
from conclusion (2) of Lemma 24.3 and the fact that H1(K• ⊗L

A −) = Ext0(E,−) by
loc.cit. Assumption (iii) of Lemma 23.4 is clear. �

25. Limit preserving functors on Noetherian schemes

It is sometimes convenient to consider functors or stacks defined only on the full subcate-
gory of (locally) Noetherian schemes. In this section we discuss this in the case of algebraic
spaces.

Let S be a locally Noetherian scheme. Let us be a bit pedantic in order to line up our
categories correctly; people who are ignoring set theoretical issues can just replace the sets
of schemes we choose by the collection of all schemes in what follows. As in Topologies,
Remark 11.1 we choose a category Schα of schemes containing S such that we obtain big
sites (Sch/S)Zar , (Sch/S)étale, (Sch/S)smooth, (Sch/S)syntomic, and (Sch/S)fppf all
with the same underlying category Schα/S. Denote

Noetherianα ⊂ Schα
the full subcategory consisting of locally Noetherian schemes. This determines a full sub-
category

Noetherianα/S ⊂ Schα/S
For τ ∈ {Zariski, étale, smooth, syntomic, fppf} we have

(1) if f : X → Y is a morphism of Schα/S with Y in Noetherianα/S and f locally
of finite type, then X is in Noetherianα/S ,

(2) for morphisms f : X → Y and g : Z → Y of Noetherianα/S with f locally of
finite type the fibre product X ×Y Z in Noetherianα/S exists and agrees with
the fibre product in Schα/S ,
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(3) if {Xi → X}i∈I is a covering of (Sch/S)τ and X is in Noetherianα/S , then
the objects Xi are in Noetherianα/S

(4) the category Noetherianα/S endowed with the set of coverings of (Sch/S)τ
whose objects are in Noetherianα/S is a site we will denote (Noetherian/S)τ ,

(5) the inclusion functor (Noetherian/S)τ → (Sch/S)τ is fully faithful, continu-
ous, and cocontinuous.

By Sites, Lemmas 21.1 and 21.5 we obtain a morphism of topoi

gτ : Sh((Noetherian/S)τ ) −→ Sh((Sch/S)τ )
whose pullback functor is the restriction of sheaves along the inclusion functor (Noetherian/S)τ →
(Sch/S)τ .

Remark 25.1 (Warning). The site (Noetherian/S)τ does not have fibre products.
Hence we have to be careful in working with sheaves. For example, the continuous in-
clusion functor (Noetherian/S)τ → (Sch/S)τ does not define a morphism of sites. See
Examples, Section 59 for an example in case τ = fppf .

Let F : (Noetherian/S)oppτ → Sets be a functor. We say F is limit preserving if for
any directed limit of affine schemes X = limXi of (Noetherian/S)τ we have F (X) =
colimF (Xi).

Lemma 25.2. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Restricting along
the inclusion functor (Noetherian/S)τ → (Sch/S)τ defines an equivalence of categories
between

(1) the category of limit preserving sheaves on (Sch/S)τ and
(2) the category of limit preserving sheaves on (Noetherian/S)τ

Proof. Let F : (Noetherian/S)oppτ → Sets be a functor which is both limit pre-
serving and a sheaf. By Topologies, Lemmas 13.1 and 13.3 there exists a unique functor
F ′ : (Sch/S)oppτ → Sets which is limit preserving, a sheaf, and restricts to F . In fact, the
construction of F ′ in Topologies, Lemma 13.1 is functorial in F and this construction is a
quasi-inverse to restriction. Some details omitted. �

Lemma 25.3. Let X be an object of (Noetherian/S)τ . If the functor of points hX :
(Noetherian/S)oppτ → Sets is limit preserving, thenX is locally of finite presentation over
S.

Proof. Let V ⊂ X be an affine open subscheme which maps into an affine open
U ⊂ S. We may write V = limVi as a directed limit of affine schemes Vi of finite
presentation over U , see Algebra, Lemma 127.2. By assumption, the arrow V → X factors
as V → Vi → X for some i. After increasing i we may assume Vi → X factors through
V as the inverse image of V ⊂ X in Vi eventually becomes equal to Vi by Limits, Lemma
4.11. Then the identity morphism V → V factors through Vi for some i in the category
of schemes over U . Thus V → U is of finite presentation; the corresponding algebra fact
is that if B is an A-algebra such that id : B → B factors through a finitely presented
A-algebra, then B is of finite presentation over A (nice exercise). Hence X is locally of
finite presentation over S. �

The following lemma has a variant for transformations representable by algebraic spaces.

Lemma 25.4. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let F ′, G′ :
(Sch/S)oppτ → Sets be limit preserving and sheaves. Let a′ : F ′ → G′ be a transformation
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of functors. Denote a : F → G the restriction of a′ : F ′ → G′ to (Noetherian/S)τ . The
following are equivalent

(1) a′ is representable (as a transformation of functors, see Categories, Definition
6.4), and

(2) for every object V of (Noetherian/S)τ and every map V → G the fibre product
F ×G V : (Noetherian/S)oppτ → Sets is a representable functor, and

(3) same as in (2) but only for V affine finite type over S mapping into an affine
open of S.

Proof. Assume (1). By Limits of Spaces, Lemma 3.4 the transformation a′ is limit
preserving10. Take ξ : V → G as in (2). Denote V ′ = V but viewed as an object of
(Sch/S)τ . Since G is the restriction of G′ to (Noetherian/S)τ we see that ξ ∈ G(V )
corresponds to ξ′ ∈ G′(V ′). By assumption V ′×ξ′,G′ F ′ is representable by a scheme U ′.
The morphism of schemesU ′ → V ′ corresponding to the projection V ′×ξ′,G′ F ′ → V ′ is
locally of finite presentation by Limits of Spaces, Lemma 3.5 and Limits, Proposition 6.1.
Hence U ′ is a locally Noetherian scheme and therefore U ′ is isomorphic to an object U of
(Noetherian/S)τ . Then U represents F ×G V as desired.

The implication (2)⇒ (3) is immediate. Assume (3). We will prove (1). Let T be an object
of (Sch/S)τ and let T → G′ be a morphism. We have to show the functor F ′ ×G′ T
is representable by a scheme X over T . Let B be the set of affine opens of T which map
into an affine open of S. This is a basis for the topology of T . Below we will show that
for W ∈ B the fibre product F ′ ×G′ W is representable by a scheme XW over W . If
W1 ⊂W2 in B, then we obtain an isomorphismXW1 → XW2×W2 W1 because bothXW1

and XW2 ×W2 W1 represent the functor F ′ ×G′ W1. These isomorphisms are canonical
and satisfy the cocycle condition mentioned in Constructions, Lemma 2.1. Hence we can
glue the schemes XW to a scheme X over T . Compatibility of the glueing maps with the
maps XW → F ′ provide us with a map X → F ′. The resulting map X → F ′ ×G′ T is
an isomorphism as we may check this locally on T (as source and target of this arrow are
sheaves for the Zariski topology).

LetW be an affine scheme which maps into an affine open U ⊂ S. LetW → G′ be a map.
Still assuming (3) we have to show that F ′ ×G′ W is representable by a scheme. We may
writeW = limV ′

i as a directed limit of affine schemes V ′
i of finite presentation overU , see

Algebra, Lemma 127.2. Since V ′
i is of finite type over an Noetherian scheme, we see that

V ′
i is a Noetherian scheme. Denote Vi = V ′

i but viewed as an object of (Noetherian/S)τ .
As G′ is limit preserving can choose an i and a map V ′

i → G′ such that W → G′ is the
composition W → V ′

i → G′. Since G is the restriction of G′ to (Noetherian/S)τ the
morphism V ′

i → G′ is the same thing as a morphism Vi → G (see above). By assump-
tion (3) the functor F ×G Vi is representable by an object Xi of (Noetherian/S)τ . The
functor F ×G Vi is limit preserving as it is the restriction of F ′×G′ V ′

i and this functor is
limit preserving by Limits of Spaces, Lemma 3.6, the assumption that F ′ and G′ are limit
preserving, and Limits, Remark 6.2 which tells us that the functor of points of V ′

i is limit
preserving. By Lemma 25.3 we conclude that Xi is locally of finite presentation over S.
Denote X ′

i = Xi but viewed as an object of (Sch/S)τ . Then we see that F ′ ×G′ V ′
i and

the functors of points hX′
i

are both extensions of hXi : (Noetherian/S)oppτ → Sets to
limit preserving sheaves on (Sch/S)τ . By the equivalence of categories of Lemma 25.2 we

10This makes sense even if τ 6= fppf as the underlying category of (Sch/S)τ equals the underlying
category of (Sch/S)fppf and the statement doesn’t refer to the topology.
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deduce that X ′
i represents F ′ ×G′ V ′

i . Then finally

F ′ ×G′ W = F ′ ×G′ V ′
i ×V ′

i
W = X ′

i ×V ′
i
W

is representable as desired. �

26. Algebraic spaces in the Noetherian setting

Let S be a locally Noetherian scheme. Let (Noetherian/S)étale ⊂ (Sch/S)étale denote
the site studied in Section 25. Let F : (Noetherian/S)oppétale → Sets be a functor, i.e., F is
a presheaf on (Noetherian/S)étale. In this setting all the axioms [-1], [0], [1], [2], [3], [4],
[5] of Section 15 make sense. We will review them one by one and make sure the reader
knows exactly what we mean.

Axiom [-1]. This is a set theoretic condition to be ignored by readers who are not interested
in set theoretic questions. It makes sense for F since it concerns the evaluation of F on
spectra of fields of finite type over S which are objects of (Noetherian/S)étale.

Axiom [0]. This is the axiom that F is a sheaf on (Noetherian/S)oppétale, i.e., satisfies the
sheaf condition for étale coverings.

Axiom [1]. This is the axiom that F is limit preserving as defined in Section 25: for any
directed limit of affine schemes X = limXi of (Noetherian/S)étale we have F (X) =
colimF (Xi).

Axiom [2]. This is the axiom thatF satisfies the Rim-Schlessinger condition (RS). Looking
at the definition of condition (RS) in Definition 5.1 and the discussion in Section 15 we
see that this means: given any pushout Y ′ = Y qX X ′ of schemes of finite type over S
where Y,X,X ′ are spectra of Artinian local rings, then

F (Y qX X ′)→ F (Y )×F (X) F (X ′)
is a bijection. This condition makes sense as the schemesX ,X ′,Y , andY ′ are in (Noetherian/S)étale
since they are of finite type over S.

Axiom [3]. This is the axiom that every tangent space TFk,x0 is finite dimensional. This
makes sense as the tangent spaces TFk,x0 are constructed from evaluations ofF at Spec(k)
and Spec(k[ε]) with k a field of finite type over S and hence are obtained by evaluating
at objects of the category (Noetherian/S)étale.

Axiom [4]. This is axiom that the every formal object is effective. Looking at the discus-
sion in Sections 9 and 15 we see that this involves evaluating our functor at Noetherian
schemes only and hence this condition makes sense for F .

Axiom [5]. This is the axiom stating that F satisfies openness of versality. Recall that this
means the following: Given a scheme U locally of finite type over S , given x ∈ F (U),
and given a finite type point u0 ∈ U such that x is versal at u0, then there exists an open
neighbourhood u0 ∈ U ′ ⊂ U such that x is versal at every finite type point of U ′. As
before, verifying this only involves evaluating our functor at Noetherian schemes.

Proposition 26.1. LetS be a locally Noetherian scheme. LetF : (Noetherian/S)oppétale →
Sets be a functor. Assume that

(1) ∆ : F → F ×F is representable (as a transformation of functors, see Categories,
Definition 6.4),

(2) F satisfies axioms [-1], [0], [1], [2], [3], [4], [5] (see above), and
(3) OS,s is a G-ring for all finite type points s of S.
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Then there exists a unique algebraic space F ′ : (Sch/S)oppfppf → Sets whose restriction to
(Noetherian/S)étale is F (see proof for elucidation).

Proof. Recall that the sites (Sch/S)fppf and (Sch/S)étale have the same under-
lying category, see discussion in Section 25. Similarly the sites (Noetherian/S)étale and
(Noetherian/S)fppf have the same underlying categories. By axioms [0] and [1] the func-
torF is a sheaf and limit preserving. LetF ′ : (Sch/S)oppétale → Sets be the unique extension
of F which is a sheaf (for the étale topology) and which is limit preserving, see Lemma
25.2. ThenF ′ satisfies axioms [0] and [1] as given in Section 15. By Lemma 25.4 we see that
∆′ : F ′ → F ′ × F ′ is representable (by schemes). On the other hand, it is immediately
clear that F ′ satisfies axioms [-1], [2], [3], [4], [5] of Section 15 as each of these involves
only evaluating F ′ at objects of (Noetherian/S)étale and we’ve assumed the correspond-
ing conditions for F . Whence F ′ is an algebraic space by Proposition 16.1. �

27. Artin’s theorem on contractions

In this section we will freely use the language of formal algebraic spaces, see Formal Spaces,
Section 1. Artin’s theorem on contractions is one of the two main theorems of Artin’s paper
[?]; the first one is his theorem on dilatations which we stated and proved in Algebraization
of Formal Spaces, Section 29.

Situation 27.1. Let S be a locally Noetherian scheme. Let X ′ be an algebraic space
locally of finite type over S. Let T ′ ⊂ |X ′| be a closed subset. Let U ′ ⊂ X ′ be the open
subspace with |U ′| = |X ′| \T ′. LetW be a locally Noetherian formal algebraic space over
S with Wred locally of finite type over S. Finally, we let

g : X ′
/T ′ −→W

be a formal modification, see Algebraization of Formal Spaces, Definition 24.1. Recall that
X ′
/T ′ denotes the formal completion of X ′ along T ′, see Formal Spaces, Section 14.

In the situation above our goal is to prove that there exists a proper morphism f : X ′ → X
of algebraic spaces over S , a closed subset T ⊂ |X|, and an isomorphism a : X/T →W of
formal algebraic spaces such that

(1) T ′ is the inverse image of T by |f | : |X ′| → |X|,
(2) f : X ′ → X maps U ′ isomorphically to an open subspace U of X , and
(3) g = a ◦ f/T where f/T : X ′

/T ′ → X/T is the induced morphism.
Let us say that (f : X ′ → X,T, a) is a solution.

We will follow Artin’s strategy by constructing a functor F on the category of locally
Noetherian schemes over S , showing that F is an algebraic space using Proposition 26.1,
and proving that setting X = F works.

Remark 27.2. In particular, we cannot prove that the desired result is true for every
Situation 27.1 because we will need to assume the local rings of S are G-rings. If you
can prove the result in general or if you have a counter example, please let us know at
stacks.project@gmail.com.

In Situation 27.1 let V be a locally Noetherian scheme over S. The value of our functor F
on V will be all triples

(Z, u′ : V \ Z → U ′, x̂ : V/Z →W )
satisfying the following conditions

mailto:stacks.project@gmail.com
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(1) Z ⊂ V is a closed subset,
(2) u′ : V \ Z → U ′ is a morphism over S ,
(3) x̂ : V/Z →W is an adic morphism of formal algebraic spaces over S ,
(4) u′ and x̂ are compatible (see below).

The compatibility condition is the following: pulling back the formal modification g we
obtain a formal modification

X ′
/T ′ ×g,W,x̂ V/Z −→ V/Z

See Algebraization of Formal Spaces, Lemma 24.4. By the main theorem on dilatations (Al-
gebraization of Formal Spaces, Theorem 29.1), there is a unique proper morphism V ′ → V
of algebraic spaces which is an isomorphism over V \ Z such that V ′

/Z → V/Z is isomor-
phic to the displayed arrow. In other words, for some morphism x̂′ : V ′

/Z → X ′
/T ′ we

have a cartesian diagram
V ′
/Z

//

x̂′

��

V/Z

x̂

��
X ′
/T ′

g // W

of formal algebraic spaces. We will think of V \ Z as an open subspace of V ′ without
further mention. The compatibility condition is that there should be a morphism x′ :
V ′ → X ′ restricting to u′ and x̂ over V \ Z ⊂ V ′ and V ′

/Z . In other words, such that the
diagram

V \ Z //

u′

��

V ′

x′

��

V ′
/Z

oo

x̂′

��

// V/Z

x̂

��
U ′ // X ′ X ′

/T ′
g //oo W

is commutative. Observe that by Algebraization of Formal Spaces, Lemma 25.5 the mor-
phism x′ is unique if it exists. We will indicate this situation by saying “V ′ → V , x̂′, and
x′ witness the compatibility between u′ and x̂”.

Remark 27.3. In Situation 27.1 let V be a locally Noetherian scheme over S. Let
(Z, u′, x̂) be a triple satisfying (1), (2), and (3) above. We want to explain a way to think
about the compatibility condition (4). It will not be mathematically precise as we are
going use a fictitious category AnS of analytic spaces over S and a fictitious analytification
functor {

locally Noetherian formal
algebraic spaces over S

}
−→ AnS , Y 7−→ Y an

For example if Y = Spf(k[[t]]) over S = Spec(k), then Y an should be thought of as an
open unit disc. If Y = Spec(k), then Y an is a single point. The category AnS should have
open and closed immersions and we should be able to take the open complement of a closed.
GivenY the morphismYred → Y should induces a closed immersionY anred → Y an. We set
Y rig = Y an \ Y anred equal to its open complement. If Y is an algebraic space and if Z ⊂ Y
is closed, then the morphism Y/Z → Y should induce an open immersion Y an/Z → Y an

which in turn should induce an open immersion

can : (Y/Z)rig −→ (Y \ Z)an
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Also, given a formal modification g : Y ′ → Y of locally Noetherian formal algebraic
spaces, the induced morphism grig : (Y ′)rig → Y rig should be an isomorphism. Given
AnS and the analytification functor, we can consider the requirement that

(V/Z)rig
can

//

(grig)−1◦x̂an

��

(V \ Z)an

(u′)an

��
(X ′

/T ′)rig can // (X ′ \ T ′)an

commutes. This makes sense as grig : (X ′
T ′)rig → W rig is an isomorphism and U ′ =

X ′\T ′. Finally, under some assumptions of faithfulness of the analytification functor, this
requirement will be equivalent to the compatibility condition formulated above. We hope
this will motivate the reader to think of the compatibility of u′ and x̂ as the requirement
that some maps be equal, rather than asking for the existence of a certain commutative
diagram.

Lemma 27.4. In Situation 27.1 the rule F that sends a locally Noetherian scheme
V over S to the set of triples (Z, u′, x̂) satisfying the compatibility condition and which
sends a a morphism ϕ : V2 → V1 of locally Noetherian schemes over S to the map

F (ϕ) : F (V1) −→ F (V2)
sending an element (Z1, u

′
1, x̂1) of F (V1) to (Z2, u

′
2, x̂2) in F (V2) given by

(1) Z2 ⊂ V2 is the inverse image of Z1 by ϕ,
(2) u′

2 is the composition of u′
1 and ϕ|V2\Z2 : V2 \ Z2 → V1 \ Z1,

(3) x̂2 is the composition of x̂1 and ϕ/Z2 : V2,/Z2 → V1,/Z1

is a contravariant functor.

Proof. To see the compatibility condition between u′
2 and x̂2, let V ′

1 → V1, x̂′
1, and

x′
1 witness the compatibility between u′

1 and x̂1. Set V ′
2 = V2 ×V1 V

′
1 , set x̂′

2 equal to the
composition of x̂′

1 and V ′
2,/Z2

→ V ′
1,/Z1

, and set x′
2 equal to the composition of x′

1 and
V ′

2 → V ′
1 . Then V ′

2 → V2, x̂′
2, and x′

2 witness the compatibility between u′
2 and x̂2. We

omit the detailed verification. �

Lemma 27.5. In Situation 27.1 if there exists a solution (f : X ′ → X,T, a) then
there is a functorial bijection F (V ) = MorS(V,X) on the category of locally Noetherian
schemes V over S.

Proof. Let V be a locally Noetherian scheme over S. Let x : V → X be a morphism
over S. Then we get an element (Z, u′, x̂) in F (V ) as follows

(1) Z ⊂ V is the inverse image of T by x,
(2) u′ : V \ Z → U ′ = U is the restriction of x to V \ Z ,
(3) x̂ : V/Z → W is the composition of x/Z : V/Z → X/T with the isomorphism

a : X/T →W .
This triple satisfies the compatibility condition because we can take V ′ = V ×x,X X ′, we
can take x̂′ the completion of the projection x′ : V ′ → X ′.
Conversely, suppose given an element (Z, u′, x̂) of F (V ). We claim there is a unique
morphism x : V → X compatible with u′ and x̂. Namely, let V ′ → V , x̂′, and x′ witness
the compatibility between u′ and x̂. Then Algebraization of Formal Spaces, Proposition
26.1 is exactly the result we need to find a unique morphism x : V → X agreeing with x̂
over V/Z and with x′ over V ′ (and a fortiori agreeing with u′ over V \ Z).
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We omit the verification that the two constructions above define inverse bijections be-
tween their respective domains. �

Lemma 27.6. In Situation 27.1 if there exists an algebraic space X locally of finite
type over S and a functorial bijection F (V ) = MorS(V,X) on the category of locally
Noetherian schemes V over S , then X is a solution.

Proof. We have to construct a proper morphism f : X ′ → X , a closed subset T ⊂
|X|, and an isomorphism a : X/T → W with properties (1), (2), (3) listed just below
Situation 27.1.

The discussion in this proof is a bit pedantic because we want to carefully match the un-
derlying categories. In this paragraph we explain how the adventurous reader can proceed
less timidly. Namely, the reader may extend our definition of the functor F to all locally
Noetherian algebraic spaces over S. Doing so the reader may then conclude that F and
X agree as functors on the category of these algebraic spaces, i.e., X represents F . Then
one considers the universal object (T, u′, x̂) in F (X). Then the reader will find that for
the triple X ′′ → X , x̂′, x′ witnessing the compatibility between u′ and x̂ the morphism
x′ : X ′′ → X ′ is an isomorphism and this will produce f : X ′ → X by inverting x′. Fi-
nally, we already have T ⊂ |X| and the reader may show that x̂ is an isomorphism which
can served as the last ingredient namely a.

Denote hX(−) = MorS(−, X) the functor of points of X restricted to the category
(Noetherian/S)étale of Section 25. By Limits of Spaces, Remark 3.11 the algebraic spaces
X and X ′ are limit preserving. Hence so are the restrictions hX and hX′ . To construct f
it therefore suffices to construct a transformation hX′ → hX = F , see Lemma 25.2. Thus
let V → S be an object of (Noetherian/S)étale and let x̃ : V → X ′ be in hX′(V ). Then
we get an element (Z, u′, x̂) in F (V ) as follows

(1) Z ⊂ V is the inverse image of T ′ by x̃,
(2) u′ : V \ Z → U ′ is the restriction of x̃ to V \ Z ,
(3) x̂ : V/Z →W is the composition of x/Z : V/Z → X ′

/T ′ with g : X ′
/T ′ →W .

This triple satisfies the compatibility condition: first we always obtain V ′ → V and x̂′ :
V ′
/Z′ → X ′

/T ′ for free (see discussion preceding Lemma 27.4). Then we just define x′ :
V ′ → X ′ to be the composition of V ′ → V and the morphism x̃ : V → X ′. We omit the
verification that this works.

If ξ : V → X is an étale morphism where V is a scheme, then we obtain ξ = (Z, u′, x̂) ∈
F (V ) = hX(V ) = X(V ). Of course, if ϕ : V ′ → V is a further étale morphism of
schemes, then (Z, u′, x̂) pulled back to F (V ′) corresponds to ξ ◦ ϕ. The closed subset
T ⊂ |X| is just defined as the closed subset such that ξ : V → X for ξ = (Z, u′, x̂) pulls
T back to Z

Consider Noetherian schemes V over S and a morphism ξ : V → X corresponding to
(Z, u′, x̂) as above. Then we see that ξ(V ) is set theoretically contained in T if and only
if V = Z (as topological spaces). Hence we see thatX/T agrees withW as a functor. This
produces the isomorphism a : X/T → W . (We’ve omitted a small detail here which is
that for the locally Noetherian formal algebraic spacesX/T andW it suffices to check one
gets an isomorphism after evaluating on locally Noetherian schemes over S.)

We omit the proof of conditions (1), (2), and (3). �
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Remark 27.7. In Situation 27.1. Let V be a locally Noetherian scheme over S. Let
(Zi, u′

i, x̂i) ∈ F (V ) for i = 1, 2. LetV ′
i → V , x̂′

i andx′
i witness the compatibility between

u′
i and x̂i for i = 1, 2.

Set V ′ = V ′
1 ×V V ′

2 . Let E′ → V ′ denote the equalizer of the morphisms

V ′ → V ′
1
x′

1−→ X ′ and V ′ → V ′
2
x′

2−→ X ′

Set Z = Z1 ∩ Z2. Let EW → V/Z be the equalizer of the morphisms

V/Z → V/Z1
x̂1−→W and V/Z → V/Z2

x̂2−→W

Observe thatE′ → V is separated and locally of finite type and thatEW is a locally Noe-
therian formal algebraic space separated over V . The compatibilities between the various
morphisms involved show that

(1) Im(E′ → V ) ∩ (Z1 ∪ Z2) is contained in Z = Z1 ∩ Z2,
(2) the morphism E′ ×V (V \ Z)→ V \ Z is a monomorphism and is equal to the

equalizer of the restrictions of u′
1 and u′

2 to V \ (Z1 ∪ Z2),
(3) the morphism E′

/Z → V/Z factors through EW and the diagram

E′
/Z

//

��

X ′
/T ′

g

��
EW // W

is cartesian. In particular, the morphismE′
/Z → EW is a formal modification as

the base change of g,
(4) E′, (E′ → V )−1Z , and E′

/Z → EW is a triple as in Situation 27.1 with base
scheme the locally Noetherian scheme V ,

(5) given a morphism ϕ : A→ V of locally Noetherian schemes, the following are
equivalent
(a) (Z1, u

′
1, x̂1) and (Z2, u

′
2, x̂2) restrict to the same element of F (A),

(b) A\ϕ−1(Z)→ V \Z factors throughE′×V (V \Z) andA/ϕ−1(Z) → V/Z
factors through EW .

We conclude, using Lemmas 27.5 and 27.6, that if there is a solution E → V for the triple
in (4), thenE represents F ×∆,F×F V on the category of locally Noetherian schemes over
V .

Lemma 27.8. In Situation 27.1 assume given a closed subset Z ⊂ S such that
(1) the inverse image of Z in X ′ is T ′,
(2) U ′ → S \ Z is a closed immersion,
(3) W → S/Z is a closed immersion.

Then there exists a solution (f : X ′ → X,T, a) and moreover X → S is a closed immer-
sion.

Proof. Suppose we have a closed subscheme X ⊂ S such that X ∩ (S \ Z) = U ′

and X/Z = W . Then X represents the functor F (some details omitted) and hence is a
solution. To find X is clearly a local question on S. In this way we reduce to the case
discussed in the next paragraph.

Assume S = Spec(A) is affine. Let I ⊂ A be the radical ideal cutting out Z. Write
I = (f1, . . . , fr). By assumption we are given
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(1) the closed immersion U ′ → S \ Z determines ideals Ji ⊂ A[1/fi] such that Ji
and Jj generate the same ideal in A[1/fifj ],

(2) the closed immersion W → S/Z is the map Spf(A∧/J ′) → Spf(A∧) for some
ideal J ′ ⊂ A∧ in the I-adic completion A∧ of A.

To finish the proof we need to find an ideal J ⊂ A such that Ji = J [1/fi] and J ′ = JA∧.
By More on Algebra, Proposition 89.15 it suffices to show that Ji and J ′ generate the same
ideal in A∧[1/fi] for all i.

Recall thatA′ = H0(X ′,O) is a finiteA-algebra whose formation commutes with flat base
change (Cohomology of Spaces, Lemmas 20.3 and 11.2). Denote J ′′ = Ker(A → A′)11.
We have Ji = J ′′A[1/fi] as follows from base change to the spectrum ofA[1/fi]. Observe
that we have a commutative diagram

X ′

��

X ′
/T ′ ×S/Z Spf(A∧)oo

��

X ′
/T ′ ×W Spf(A∧/J ′)

��
Spec(A) Spf(A∧)oo Spf(A∧/J ′)oo

The middle vertical arrow is the completion of the left vertical arrow along the obvious
closed subsets. By the theorem on formal functions we have

(A′)∧ = Γ(X ′ ×S Spec(A∧),O) = limH0(X ′ ×S Spec(A/In),O)

See Cohomology of Spaces, Theorem 22.5. From the diagram we conclude that J ′ maps to
zero in (A′)∧. Hence J ′ ⊂ J ′′A∧. Consider the arrows

X ′
/T ′ → Spf(A∧/J ′′A∧)→ Spf(A∧/J ′) = W

We know the composition g is a formal modification (in particular rig-étale and rig-surjective)
and the second arrow is a closed immersion (in particular an adic monomorphism). Hence
X ′
/T ′ → Spf(A∧/J ′′A∧) is rig-surjective and rig-étale, see Algebraization of Formal Spaces,

Lemmas 21.5 and 20.8. Applying Algebraization of Formal Spaces, Lemmas 21.14 and 21.6
we conclude that Spf(A∧/J ′′A∧)→ W is rig-étale and rig-surjective. By Algebraization
of Formal Spaces, Lemma 21.13 we conclude that InJ ′′A∧ ⊂ J ′ for some n > 0. It fol-
lows that J ′′A∧[1/fi] = J ′A∧[1/fi] and we deduce JiA∧[1/fi] = J ′A∧[1/fi] for all i as
desired. �

Lemma 27.9. In Situation 27.1 assume X ′ → S and W → S are separated. Then the
diagonal ∆ : F → F × F is representable by closed immersions.

Proof. Combine Lemma 27.8 with the discussion in Remark 27.7. �

Lemma 27.10. In Situation 27.1 the functor F satisfies the sheaf property for all étale
coverings of locally Noetherian schemes over S.

Proof. Omitted. Hint: morphisms may be defined étale locally. �

Lemma 27.11. In Situation 27.1 the functor F is limit preserving: for any directed
limit V = limVλ of Noetherian affine schemes over S we have F (V ) = colimF (Vλ).

11Contrary to what the reader may expect, the ideals J and J ′′ won’t agreee in general.
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Proof. This is an absurdly long proof. Much of it consists of standard arguments on
limits and étale localization. We urge the reader to skip ahead to the last part of the proof
where something interesting happens.

Let V = limλ∈Λ Vi be a directed limit of schemes over S with V and Vλ Noetherian and
with affine transition morphisms. See Limits, Section 2 for material on limits of schemes.
We will prove that colimF (Vλ)→ F (V ) is bijective.

Proof of injectivity: notation. Let λ ∈ Λ and ξλ,1, ξλ,2 ∈ F (Vλ) be elements which re-
strict to the same element ofF (V ). Write ξλ,1 = (Zλ,1, u′

λ,1, x̂λ,1) and ξλ,2 = (Zλ,2, u′
λ,2, x̂λ,2).

Proof of injectivity: agreement of Zλ,i. Since Zλ,1 and Zλ,2 restrict to the same closed
subset of V , we may after increasing i assume Zλ,1 = Zλ,2, see Limits, Lemma 4.2 and
Topology, Lemma 14.2. Let us denote the common value Zλ ⊂ Vλ, for µ ≥ λ denote
Zµ ⊂ Vµ the inverse image in Vµ and and denote Z the inverse image in V . We will use
below thatZ = limµ≥λ Zµ as schemes if we view Z andZµ as reduced closed subschemes.

Proof of injectivity: agreement of u′
λ,i. Since U ′ is locally of finite type over S and since

the restrictions of u′
λ,1 and u′

λ,2 to V \ Z are the same, we may after increasing λ assume
u′
λ,1 = u′

λ,2, see Limits, Proposition 6.1. Let us denote the common value u′
λ and denote

u′ the restriction to V \ Z.

Proof of injectivity: restatement. At this point we have ξλ,1 = (Zλ, u′
λ, x̂λ,1) and ξλ,2 =

(Zλ, u′
λ, x̂λ,2). The main problem we face in this part of the proof is to show that the

morphisms x̂λ,1 and x̂λ,2 become the same after increasing λ.

Proof of injectivity: agreement of x̂λ,i|Zλ . Consider the morpisms x̂λ,1|Zλ , x̂λ,2|Zλ :
Zλ → Wred. These morphisms restrict to the same morphism Z → Wred. Since Wred

is a scheme locally of finite type over S we see using Limits, Proposition 6.1 that after
replacing λ by a bigger index we may assume x̂λ,1|Zλ = x̂λ,2|Zλ : Zλ →Wred.

Proof of injectivity: end. Next, we are going to apply the discussion in Remark 27.7 to Vλ
and the two elements ξλ,1, ξλ,2 ∈ F (Vλ). This gives us

(1) eλ : E′
λ → Vλ separated and locally of finite type,

(2) e−1
λ (Vλ \ Zλ)→ Vλ \ Zλ is an isomorphism,

(3) a monomorphism EW,λ → Vλ,/Zλ which is the equalizer of x̂λ,1 and x̂λ,2,
(4) a formal modification E′

λ,/Zλ
→ EW,λ

Assertion (2) holds by assertion (2) in Remark 27.7 and the preparatory work we did above
getting u′

λ,1 = u′
λ,2 = u′

λ. Since Zλ = (Vλ,/Zλ)red factors through EW,λ because
x̂λ,1|Zλ = x̂λ,2|Zλ we see from Formal Spaces, Lemma 27.7 that EW,λ → Vλ,/Zλ is a
closed immersion. Then we see from assertion (4) in Remark 27.7 and Lemma 27.8 applied
to the triple E′

λ, e−1
λ (Zλ), E′

λ,/Zλ
→ EW,λ over Vλ that there exists a closed immersion

Eλ → Vλ which is a solution for this triple. Next we use assertion (5) in Remark 27.7
which combined with Lemma 27.5 says that Eλ is the “equalizer” of ξλ,1 and ξλ,2. In par-
ticular, we see that V → Vλ factors through Eλ. Then using Limits, Proposition 6.1 once
more we find µ ≥ λ such that Vµ → Vλ factors through Eλ and hence the pullbacks of
ξλ,1 and ξλ,2 to Vµ are the same as desired.

Proof of surjectivity: statement. Let ξ = (Z, u′, x̂) be an element of F (V ). We have to
find a λ ∈ Λ and an element ξλ ∈ F (Vλ) restricting to ξ.

Proof of surjectivity: the question is étale local. By the unicity proved in the previous
part of the proof and by the sheaf property of F in Lemma 27.10, the problem is local on
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V in the étale topology. More precisely, let v ∈ V . We claim it suffices to find an étale
morphism (Ṽ , ṽ) → (V, v) and some λ, some an étale morphism Ṽλ → Vλ, and some
element ξ̃λ ∈ F (Ṽλ) such that Ṽ = Ṽλ ×Vλ V and ξ|U = ξ̃λ|U . We omit a detailed proof
of this claim12.
Proof of surjectivity: rephrasing the problem. Recall that any étale morphism (Ṽ , ṽ) →
(V, v) with Ṽ affine is the base change of an étale morphism Ṽλ → Vλ with Ṽλ affine for
some λ, see for example Topologies, Lemma 13.2. Given Ṽλ we have Ṽ = limµ≥λ Ṽλ ×Vλ
Vµ. Hence given (Ṽ , ṽ)→ (V, v) étale with Ṽ affine, we may replace (V, v) by (Ṽ , ṽ) and
ξ by the restriction of ξ to Ṽ .

Proof of surjectivity: reduce to base being affine. In particular, suppose S̃ ⊂ S is an
affine open subscheme such that v ∈ V maps to a point of S̃. Then we may according to
the previous paragraph, replace V by Ṽ = S̃ ×S V . Of course, if we do this, it suffices
to solve the problem for the functor F restricted to the category of locally Noetherian
schemes over S̃. This functor is of course the functor associated to the whole situation
base changed to S̃. Thus we may and do assume S = Spec(R) is a Noetherian affine
scheme for the rest of the proof.

Proof of surjectivity: easy case. If v ∈ V \Z , then we can take Ṽ = V \Z. This descends
to an open subscheme Ṽλ ⊂ Vλ for some λ by Limits, Lemma 4.11. Next, after increasing λ
we may assume there is a morphism u′

λ : Ṽλ → U ′ restricting to u′. Taking ξ̃λ = (∅, u′
λ, ∅)

gives the desired element of F (Ṽλ).
Proof of surjectivity: hard case and reduction to affine W . The most difficult case comes
from considering v ∈ Z ⊂ V . We claim that we can reduce this to the case where W
is an affine formal scheme; we urge the reader to skip this argument13. Namely, we can
choose an étale morphism W̃ →W where W̃ is an affine formal algebraic space such that
the image of v by x̂ : V/Z → W is in the image of W̃ → W (on reductions). Then the
morphisms

p : W̃ ×W,g X ′
/T ′ −→ X ′

/T ′

and
q : W̃ ×W,x̂ V/Z → V/Z

are étale morphisms of locally Noetherian formal algebraic spaces. By (an easy case of)
Algebraization of Formal Spaces, Theorem 27.4 there exists a morphism X̃ ′ → X ′ of
algebraic spaces which is locally of finite type, is an isomorphism over U ′, and such that
X̃ ′
/T ′ → X ′

/T ′ is isomorphic to p. By Algebraization of Formal Spaces, Lemma 28.5 the
morphism X̃ ′ → X ′ is étale. Denote T̃ ′ ⊂ |X̃ ′| the inverse image of T ′. Denote Ũ ′ ⊂ X̃ ′

the complementary open subspace. Denote g̃′ : X̃ ′
/T̃ ′ → W̃ the formal modification

which is the base change of g by W̃ →W . Then we see that

X̃ ′, T̃ ′, Ũ ′, W̃ , g̃ : X̃ ′
/T̃ ′ → W̃

12To prove this one assembles a collection of the morphisms Ṽ → V into a finite étale covering and shows
that the corresponding morphisms Ṽλ → Vλ form an étale covering as well (after increasing λ). Next one uses
the injectivity to see that the elements ξ̃λ glue (after increasing λ) and one uses the sheaf property for F to
descend these elements to an element of F (Vλ).

13Artin’s approach to the proof of this lemma is to work around this and consequently he can avoid proving
the injectivity first. Namely, Artin consistently works with a finite affine étale coverings of all spaces in sight
keeping track of the maps between them during the proof. In hindsight that might be preferable to what we do
here.
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is another example of Situation 27.1. Denote F̃ the functor constructed from this triple.
There is a transformation of functors

F̃ −→ F

constructed using the morphisms X̃ ′ → X ′ and W̃ → W in the obvious manner; details
omitted.

Proof of surjectivity: hard case and reduction to affine W , part 2. By the same theorem as
used above, there exists a morphism Ṽ → V of algebraic spaces which is locally of finite
type, is an isomorphism over V \ Z and such that Ṽ/Z → V/Z is isomorphic to q. Denote
Z̃ ⊂ Ṽ the inverse image of Z. By Algebraization of Formal Spaces, Lemmas 28.5 and
28.3 the morphism Ṽ → V is étale and separated. In particular Ṽ is a (locally Noetherian)
scheme, see for example Morphisms of Spaces, Proposition 50.2. We have the morphism
u′ which we may view as a morphism

ũ′ : Ṽ \ Z̃ −→ Ũ ′

where Ũ ′ ⊂ X̃ ′ is the open mapping isomorphically to U ′. We have a morphism
˜̂x : Ṽ/Z̃ = W̃ ×W,x̂ V/Z −→ W̃

Namely, here we just use the projection. Thus we have the triple

ξ̃ = (Z̃, ũ′, ˜̂x) ∈ F̃ (Ṽ )
We omit proving the compatibility condition; hints: if V ′ → V , x̂′, and x′ witness the
compatibility between u′ and x̂, then one sets Ṽ ′ = V ′×V Ṽ which comes with morphsms
˜̂x′ and x̃′ and show this works. The image of ξ̃ under the transformation F̃ → F is the
restriction of ξ to Ṽ .

Proof of surjectivity: hard case and reduction to affine W , part 3. By our choice of W̃ →
W , there is an affine open Ṽopen ⊂ Ṽ (we’re running out of notation) whose image in V
contains our chosen point v ∈ V . Now by the case studied in the next paragraph and
the remarks made earlier, we can descend ξ̃|Ṽopen to some element ξ̃λ of F̃ over Ṽλ,open
for some étale morphism Ṽλ,open → Vλ whose base change to V is Ṽopen. Applying the
transformation of functors F̃ → F we obtain the element of F (Ṽλ,open) we were looking
for. This reduces us to the case discussed in the next paragraph.

Proof of surjectivity: the case of an affine W . We have v ∈ Z ⊂ V and W is an affine
formal algebraic space. Recall that

ξ = (Z, u′, x̂) ∈ F (V )
We may still replace V by an étale neighbourhood of v. In particular we may and do
assume V and Vλ are affine.

Proof of surjectivity: descending Z. We can find a λ and a closed subscheme Zλ ⊂ Vλ
such that Z is the base change of Zλ to V . See Limits, Lemma 10.1. Warning: we don’t
know (and in general it won’t be true) that Zλ is a reduced closed subscheme of Vλ. For
µ ≥ λ denote Zµ ⊂ Vµ the scheme theoretic inverse image in Vµ. We will use below that
Z = limµ≥λ Zµ as schemes.

Proof of surjectivity: descendingu′. SinceU ′ is locally of finite type overSwe may assume
after increasing λ that there exists a morphism u′

λ : Vλ \ Zλ → U ′ whose restriction to
V \Z is u′. See Limits, Proposition 6.1. For µ ≥ λwe will denote u′

µ the restriction of u′
λ

to Vµ \ Zµ.
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Proof of surjectivity: descending a witness. Let V ′ → V , x̂′, and x′ witness the compatibil-
ity between u′ and x̂. Using the same references as above we may assume (after increasing
λ) that there exists a morphism V ′

λ → Vλ of finite type whose base change to V is V ′ → V .
After increasing λwe may assume V ′

λ → Vλ is proper (Limits, Lemma 13.1). Next, we may
assume V ′

λ → Vλ is an isomorphism over Vλ \ Zλ (Limits, Lemma 8.11). Next, we may
assume there is a morphism x′

λ : V ′
λ → X ′ whose restriction to V ′ is x′. Increasing λ

again we may assume x′
λ agrees with u′

λ over Vλ \ Zλ. For µ ≥ λ we denote V ′
µ and x′

µ

the base change of V ′
λ and the restriction of x′

λ.

Proof of surjectivity: algebra. Write W = Spf(B), V = Spec(A), and for µ ≥ λ write
Vµ = Spec(Aµ). Denote Iµ ⊂ Aµ and I ⊂ A the ideals cutting out Zµ and Z. Then
IλAµ = Iµ and IλA = I . The morphism x̂ determines and is determined by a continuous
ring map

(x̂)] : B −→ A∧

whereA∧ is the I-adic completion ofA. To finish the proof we have to show that this map
descends to a map intoA∧

µ for some sufficiently largeµwhereA∧
µ is the Iµ-adic completion

of Aµ. This is a nontrivial fact; Artin writes in his paper [?]: “Since the data (3.5) involve
I-adic completions, which do not commute with direct limits, the verification is somewhat
delicate. It is an algebraic analogue of a convergence proof in analysis.”

Proof of surjectivity: algebra, more rings. Let us denote

Cµ = Γ(V ′
µ,O) and C = Γ(V ′,O)

Observe that A → C and Aµ → Cµ are finite ring maps as V ′ → V and V ′
µ → Vµ

are proper morphisms, see Cohomology of Spaces, Lemma 20.3. Since V = limVµ and
V ′ = limV ′

µ we have

A = colimAµ and C = colimCµ

by Limits, Lemma 4.714. For an element a ∈ I , resp. a ∈ Iµ the maps Aa → Ca, resp.
(Aµ)a → (Cµ)a are isomorphisms by flat base change (Cohomology of Spaces, Lemma
11.2). Hence the kernel and cokernel of A → C is supported on V (I) and similarly for
Aµ → Cµ. We conclude the kernel and cokernel ofA→ C are annihilated by a power of
I and the kernel and cokernel of Aµ → Cµ are annihilated by a power of Iµ, see Algebra,
Lemma 62.4.

Proof of surjectivity: algebra, more ring maps. Denote Zn ⊂ V the nth infinitesimal
neighbourhood of Z and denote Zµ,n ⊂ Vµ the nth infinitesimal neighbourhoof of Zµ.
By the theorem on formal functions (Cohomology of Spaces, Theorem 22.5) we have

C∧ = limnH
0(V ′ ×V Zn,O) and C∧

µ = limnH
0(V ′

µ ×Vµ Zµ,n,O)

whereC∧ andC∧
µ are the completion with respect to I and Iµ. Combining the completion

of the morphism x′
µ : V ′

µ → X ′ with the morphism g : X ′
/T ′ →W we obtain

g ◦ x′
µ,/Zµ

: V ′
µ,/Zµ

= colimV ′
µ ×Vµ Zµ,n −→W

and hence by the description of the completion C∧
µ above we obtain a continuous ring

homomorphism
(g ◦ x′

µ,/Zµ
)] : B −→ C∧

µ

14We don’t know that Cµ = Cλ ⊗Aλ Aµ as the various morphisms aren’t flat.
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The fact that V ′ → V , x̂′, x′ witnesses the compatibility between u′ and x̂ implies the
commutativity of the following diagram

C∧
µ

// C∧

B

(g◦x′
µ,/Zµ

)]
OO

(x̂)] // A∧

OO

Proof of surjectivity: more algebra arguments. Recall that the finiteA-modules Ker(A→
C) and Coker(A → C) are annihilated by a power of I and similarly the finite Aµ-
modules Ker(Aµ → Cµ) and Coker(Aµ → Cµ) are annihilated by a power of Iµ. This
implies that these modules are equal to their completions. Since I-adic completion on the
category of finite A-modules is exact (see Algebra, Section 97) it follows that we have

Coker(A∧ → C∧) = Coker(A→ C)
and similarly for kernels and for the maps Aµ → Cµ. Of course we also have

Ker(A→ C) = colim Ker(Aµ → Cµ) and Coker(A→ C) = colim Coker(Aµ → Cµ)
Recall that S = Spec(R) is affine. All of the ring maps above are R-algebra homomor-
phisms as all of the morphisms are morphisms overS. By Algebraization of Formal Spaces,
Lemma 12.5 we see that B is topologically of finite type over R. Say B is topologically
generated by b1, . . . , bn. Pick some µ (for example λ) and consider the elements

images of (g ◦ x′
µ,/Zµ

)](b1), . . . , (g ◦ x′
µ,/Zµ

)](bn) in Coker(Aµ → Cµ)

The image of these elements in Coker(α) are zero by the commutativity of the square
above. Since Coker(A → C) = colim Coker(Aµ → Cµ) and these cokernels are equal
to their completions we see that after increasing µ we may assume these images are all
zero. This means that the continuous homomorphism (g ◦ x′

µ,/Zµ
)] has image contained

in Im(Aµ → Cµ). Choose elements aµ,j ∈ (Aµ)∧ mapping to (g◦x′
µ,/Zµ

)](b1) in (Cµ)∧.
Then aµ,j ∈ A∧

µ and (x̂)](bj) ∈ A∧ map to the same element ofC∧ by the commutativity
of the square above. Since Ker(A → C) = colim Ker(Aµ → Cµ) and these kernels are
equal to their completions, we may after increasing µ adjust our choices of aµ,j such that
the image of aµ,j in A∧ is equal to (x̂)](bj).

Proof of surjectivity: final algebra arguments. Let b ⊂ B be the ideal of topologically
nilpotent elements. Let J ⊂ R[x1, . . . , xn] be the ideal consisting of those h(x1, . . . , xn)
such that h(b1, . . . , bn) ∈ b. Then we get a continuous surjection of topological R-
algebras

Φ : R[x1, . . . , xn]∧ −→ B, xj 7−→ bj

where the completion on the left hand side is with respect toJ . SinceR[x1, . . . , xn] is Noe-
therian we can choose generators h1, . . . , hm for J . By the commutativity of the square
above we see that hj(aµ,1, . . . , aµ,n) is an element of A∧

µ whose image in A∧ is contained
in IA∧. Namely, the ring map (x̂)] is continuous and IA∧ is the ideal of topological
nilpotent elements of A∧ because A∧/IA∧ = A/I is reduced. (See Algebra, Section 97
for results on completion in Noetherian rings.) Since A/I = colimAµ/Iµ we conclude
that after increasing µ we may assume hj(aµ,1, . . . , aµ,n) is in IµA∧

µ . In particular the
elements hj(aµ,1, . . . , aµ,n) of A∧

µ are topologically nilpotent in A∧
µ . Thus we obtain a

continuous R-algebra homomorphism

Ψ : R[x1, . . . , xn]∧ −→ A∧
µ , xj 7−→ aµ,j
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In order to conclude what we want, we need to see if Ker(Φ) is annihilated by Ψ. This
may not be true, but we can achieve this after increasing µ. Indeed, since R[x1, . . . , xn]∧
is Noetherian, we can choose generators g1, . . . , gl of the ideal Ker(Φ). Then we see that

Ψ(g1), . . . ,Ψ(gl) ∈ Ker(A∧
µ → C∧

µ ) = Ker(Aµ → Cµ)
map to zero in Ker(A → C) = colim Ker(Aµ → Cµ). Hence increasing µ as before we
get the desired result.

Proof of surjectivity: mopping up. The continuous ring homomorphism B → (Aµ)∧

constructed above determines a morphism x̂µ : Vµ,/Zµ → W . The compatibility of x̂µ
and u′

µ follows from the fact that the ring mapB → (Aµ)∧ is by construction compatible
with the ring map Aµ → Cµ. In fact, the compatibility will be witnessed by the proper
morphism V ′

µ → Vµ and the morphisms x′
µ and x̂′

µ = x′
µ,/Zµ

we used in the construction.
This finishes the proof. �

Lemma 27.12. In Situation 27.1 the functorF satisfies the Rim-Schlessinger condition
(RS).

Proof. Recall that the condition only involves the evaluation F (V ) of the functor
F on schemes V over S which are spectra of Artinian local rings and the restriction maps
F (V2)→ F (V1) for morphisms V1 → V2 of schemes over S which are spectra of Artinian
local rings. Thus let V/S be the spetruim of an Artinian local ring. If ξ = (Z, u′, x̂) ∈
F (V ) then either Z = ∅ or Z = V (set theoretically). In the first case we see that x̂ is a
morphism from the empty formal algebraic space intoW . In the second case we see that u′

is a morphism from the empty scheme intoX ′ and we see that x̂ : V →W is a morphism
into W . We conclude that

F (V ) = U ′(V )qW (V )
and moreover for V1 → V2 as above the induced map F (V2) → F (V1) is compatible
with this decomposition. Hence it suffices to prove that both U ′ and W satisfy the Rim-
Schlessinger condition. For U ′ this follows from Lemma 5.2. To see that it is true for W ,
we write W = colimWn as in Formal Spaces, Lemma 20.11. Say V = Spec(A) with
(A,m) an Artinian local ring. Pick n ≥ 1 such that mn = 0. Then we have W (V ) =
Wn(V ). Hence we see that the Rim-Schlessinger condition for W follows from the Rim-
Schlessinger condition for Wn for all n (which in turn follows from Lemma 5.2). �

Lemma 27.13. In Situation 27.1 the tangent spaces of the functor F are finite dimen-
sional.

Proof. In the proof of Lemma 27.12 we have seen that F (V ) = U ′(V ) qW (V ) if
V is the spectrum of an Artinian local ring. The tangent spaces are computed entirely
from evaluations of F on such schemes over S. Hence it suffices to prove that the tangent
spaces of the functors U ′ and W are finite dimensional. For U ′ this follows from Lemma
8.1. Write W = colimWn as in the proof of Lemma 27.12. Then we see that the tangent
spaces of W are equal to the tangent spaces of W2, as to get at the tangent space we only
need to evaluateW on spectra of Artinian local rings (A,m) with m2 = 0. Then again we
see that the tangent spaces of W2 have finite dimension by Lemma 8.1. �

Lemma 27.14. In Situation 27.1 assume X ′ → S is separated. Then every formal
object for F is effective.

Proof. A formal object ξ = (R, ξn) of F consists of a Noetherian complete local
S-algebra R whose residue field is of finite type over S , together with elements ξn ∈
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F (Spec(R/mn)) for all n such that ξn+1|Spec(R/mn) = ξn. By the discussion in the proof
of Lemma 27.12 we see that either ξ is a formal object of U ′ or a formal object of W . In
the first case we see that ξ is effective by Lemma 9.5. The second case is the interesting
case. Set V = Spec(R). We will construct an element (Z, u′, x̂) ∈ F (V ) whose image in
F (Spec(R/mn)) is ξn for all n ≥ 1.

We may view the collection of elements ξn as a morphism

ξ : Spf(R) −→W

of locally Noetherian formal algebraic spaces over S. Observe that ξ is not an adic mor-
phism in general. To fix this, let I ⊂ R be the ideal corresponding to the formal closed
subspace

Spf(R)×ξ,W Wred ⊂ Spf(R)
Note that I ⊂ mR. Set Z = V (I) ⊂ V = Spec(R). Since R is mR-adically complete it
is a fortiori I-adically complete (Algebra, Lemma 96.8). Moreover, we claim that for each
n ≥ 1 the morphism

ξ|Spf(R/In) : Spf(R/In) −→W

actually comes from a morphism

ξ′
n : Spec(R/In) −→W

Namely, this follows from writing W = colimWn as in the proof of Lemma 27.12, notic-
ing that ξ|Spf(R/In) maps into Wn, and applying Formal Spaces, Lemma 33.3 to algebraize
this to a morphism Spec(R/In) → Wn as desired. Let us denote Spf′(R) = V/Z the
formal spectrum of R endowed with the I-adic topology – equivalently the formal com-
pletion of V along Z. Using the morphisms ξ′

n we obtain an adic morphism

x̂ = (ξ′
n) : Spf′(R) −→W

of locally Noetherian formal algebraic spaces over S. Consider the base change

Spf′(R)×x̂,W,g X ′
/T ′ −→ Spf′(R)

This is a formal modification by Algebraization of Formal Spaces, Lemma 24.4. Hence
by the main theorem on dilatations (Algebraization of Formal Spaces, Theorem 29.1) we
obtain a proper morphism

V ′ −→ V = Spec(R)
which is an isomorphism over Spec(R)\V (I) and whose completion recovers the formal
modification above, in other words

V ′ ×Spec(R) Spec(R/In) = Spec(R/In)×ξ′
n,W,g X

′
/T ′

This in particular tells us we have a compatible system of morphisms

V ′ ×Spec(R) Spec(R/In) −→ X ′ ×S Spec(R/In)

Hence by Grothendieck’s algebraization theorem (in the form of More on Morphisms of
Spaces, Lemma 43.3) we obtain a morphism

x′ : V ′ → X ′

over S recovering the morphisms displayed above. Then finally setting u′ : V \ Z → X ′

the restriction of x′ to V \ Z ⊂ V ′ gives the third component of our desired element
(Z, u′, x̂) ∈ F (V ). �
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Lemma 27.15. Let S be a locally Noetherian scheme. Let V be a scheme locally of
finite type over S. Let Z ⊂ V be closed. Let W be a locally Noetherian formal algebraic
space over S such that Wred is locally of finite type over S. Let g : V/Z → W be an adic
morphism of formal algebraic spaces over S. Let v ∈ V be a closed point such that g is
versal at v (as in Section 15). Then after replacing V by an open neighbourhood of v the
morphism g is smooth (see proof).

Proof. Since g is adic it is representable by algebraic spaces (Formal Spaces, Section
23). Thus by saying g is smooth we mean that g should be smooth in the sense of Bootstrap,
Definition 4.1.
Write W = colimWn as in Formal Spaces, Lemma 20.11. Set Vn = V/Z ×x̂,W Wn. Then
Vn is a closed subscheme with underlying set Z. Smoothness of V → W is equivalent
to the smoothness of all the morphisms Vn → Wn (this holds because any morphism
T → W with T a quasi-compact scheme factors through Wn for some n). We know that
the morphism Vn →Wn is smooth at v by Lemma 12.615. Of course this means that given
any n we can shrink V such that Vn → Wn is smooth. The problem is to find an open
which works for all n at the same time.
The question is local on V , hence we may assume S = Spec(R) and V = Spec(A) are
affine.
In this paragraph we reduce to the case whereW is an affine formal algebraic space. Choose
an affine formal scheme W ′ and an étale morphism W ′ → W such that the image of v
in Wred is in the image of W ′

red → Wred. Then V/Z ×g,W W ′ → V/Z is an adic étale
morphism of formal algebraic spaces over S and V/Z×g,WW ′ is an affine fromal algebraic
space. By Algebraization of Formal Spaces, Lemma 25.1 there exists an étale morphism
ϕ : V ′ → V of affine schemes such that the completion of V ′ along Z ′ = ϕ−1(Z) is
isomorphic to V/Z ×g,W W ′ over V/Z . Observe that v is the image of some v′ ∈ V ′. Since
smoothness is preserved under base change we see that V ′

n → W ′
n is smooth for all n. In

the next paragraph we show that after replacing V ′ by an open neighbourhood of v′ the
morphisms V ′

n → W ′
n are smooth for all n. Then, after we replace V by the open image

of V ′ → V , we obtain that Vn → Wn is smooth by étale descent of smoothness. Some
details omitted.
Assume S = Spec(R), V = Spec(A), Z = V (I), and W = Spf(B). Let v correspond
to the maximal ideal I ⊂ m ⊂ A. We are given an adic continuous R-algebra homomor-
phism

B −→ A∧

Let b ⊂ B be the ideal of topologically nilpotent elements (this is the maximal ideal of
definition of the Noetherian adic topological ringB). Observe that bA∧ and IA∧ are both
ideals of definition of the Noetherian adic ring A∧. Also, mA∧ is a maximal ideal of A∧

containing both bA∧ and IA∧. We are given that
Bn = B/bn → A∧/bnA∧ = An

is smooth at m for all n. By the discussion above we may and do assume that B1 → A1
is a smooth ring map. Denote m1 ⊂ A1 the maximal ideal corresponing to m. Since
smoothness implies flatness, we see that: for all n ≥ 1 the map

bn/bn+1 ⊗B1 (A1)m1 −→
(
bnA∧/bn+1A∧)

m1

15The lemma applies since the diagonal ofW is representable by algebraic spaces and locally of finite type,
see Formal Spaces, Lemma 15.5 and we have seen that W has (RS) in the proof of Lemma 27.12.
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is an isomorphism (see Algebra, Lemma 99.9). Consider the Rees algebra

B′ =
⊕

n≥0
bn/bn+1

which is a finite type graded algebra over the Noetherian ring B1 and the Rees algebra

A′ =
⊕

n≥0
bnA∧/bn+1A∧

which is a a finite type graded algebra over the Noetherian ring A1. Consider the homo-
morphism of graded A1-algebras

Ψ : B′ ⊗B1 A1 −→ A′

By the above this map is an isomorphism after localizing at the maximal ideal m1 of A1.
Hence Ker(Ψ), resp. Coker(Ψ) is a finite module over B′ ⊗B1 A1, resp. A′ whose local-
ization at m1 is zero. It follows that after replacing A1 (and correspondingly A) by a
principal localization we may assume Ψ is an isomorphism. (This is the key step of the
proof.) Then working backwards we see that Bn → An is flat, see Algebra, Lemma 99.9.
Hence An → Bn is smooth (as a flat ring map with smooth fibres, see Algebra, Lemma
137.17) and the proof is complete. �

Lemma 27.16. In Situation 27.1 the functor F satisfies openness of versality.

Proof. We have to show the following. Given a scheme V locally of finite type over
S , given ξ ∈ F (V ), and given a finite type point v0 ∈ V such that ξ is versal at v0, after
replacing V by an open neighbourhood of v0 we have that ξ is versal at every finite type
point of V . Write ξ = (Z, u′, x̂).

First case: v0 6∈ Z. Then we can first replace V by V \Z. Hence we see that ξ = (∅, u′, ∅)
and the morphism u′ : V → X ′ is versal at v0. By More on Morphisms of Spaces, Lemma
20.1 this means that u′ : V → X ′ is smooth at v0. Since the set of a points where a
morphism is smooth is open, we can after shrinking V assume u′ is smooth. Then the
same lemma tells us that ξ is versal at every point as desired.

Second case: v0 ∈ Z. WriteW = colimWn as in Formal Spaces, Lemma 20.11. By Lemma
27.15 we may assume x̂ : V/Z → W is a smooth morphism of formal algebraic spaces. It
follows immediately that ξ = (Z, u′, x̂) is versal at all finite type points ofZ. Let V ′ → V ,
x̂′, and x′ witness the compatibility between u′ and x̂. We see that x̂′ : V ′

/Z → X ′
/T ′ is

smooth as a base change of x̂. Since x̂′ is the completion of x′ : V ′ → X ′ this implies that
x′ : V ′ → X ′ is smooth at all points of (V ′ → V )−1(Z) = |x′|−1(T ′) ⊂ |V ′| by the
already used More on Morphisms of Spaces, Lemma 20.1. Since the set of smooth points of
a morphism is open, we see that the closed set of points B ⊂ |V ′| where x′ is not smooth
does not meet (V ′ → V )−1(Z). Since V ′ → V is proper and hence closed, we see that
(V ′ → V )(B) ⊂ V is a closed subset not meeting Z. Hence after shrinking V we may
assume B = ∅, i.e., x′ is smooth. By the discussion in the previous paragraph this exactly
means that ξ is versal at all finite type points of V not contained in Z and the proof is
complete. �

Here is the final result.

Theorem 27.17. Let S be a locally Noetherian scheme such thatOS,s is a G-ring for
all finite type points s ∈ S. Let X ′ be an algebraic space locally of finite type over S. Let
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T ′ ⊂ |X ′| be a closed subset. LetW be a locally Noetherian formal algebraic space over S
with Wred locally of finite type over S. Finally, we let

g : X ′
/T ′ −→W

be a formal modification, see Algebraization of Formal Spaces, Definition 24.1. If X ′ and
W are separated16 over S , then there exists a proper morphism f : X ′ → X of algebraic
spaces over S , a closed subset T ⊂ |X|, and an isomorphism a : X/T → W of formal
algebraic spaces such that

(1) T ′ is the inverse image of T by |f | : |X ′| → |X|,
(2) f : X ′ → X maps X ′ \ T ′ isomorphically to X \ T , and
(3) g = a ◦ f/T where f/T : X ′

/T ′ → X/T is the induced morphism.
In other words, (f : X ′ → X,T, a) is a solution as defined earlier in this section.

Proof. LetF be the functor constructed usingX ′, T ′,W , g in this section. By Lemma
27.6 it suffices to show that F corresponds to an algebraic space X locally of finite type
over S. In order to do this, we will apply Proposition 26.1. Namely, by Lemma 27.9 the
diagonal of F is representable by closed immersions and by Lemmas 27.10, 27.11, 27.12,
27.13, 27.14, and 27.16 we have axioms [0], [1], [2], [3], [4], and [5]. �

Remark 27.18. The proof of Theorem 27.17 uses that X ′ and W are separated over
S in two places. First, the proof uses this in showing ∆ : F → F × F is representable
by algebraic spaces. This use of the assumption can be entirely avoided by proving that
∆ is representable by applying the theorem in the separated case to the triples E′, (E′ →
V )−1Z , and E′

/Z → EW found in Remark 27.7 (this is the usual bootstrap procedure for
the diagonal). Thus the proof of Lemma 27.14 is the only place in our proof of Theorem
27.17 where we really need to use that X ′ → S is separated. The reader checks that
we use the assumption only to obtain the morphism x′ : V ′ → X ′. The existence of
x′ can be shown, using results in the literature, if X ′ → S is quasi-separated, see More
on Morphisms of Spaces, Remark 43.4. We conclude the theorem holds as stated with
“separated” replaced by “quasi-separated”. If we ever need this we will precisely state and
carefully prove this here.
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CHAPTER 99

Quot and Hilbert Spaces

1. Introduction

As initially conceived, the purpose of this chapter was to write about Quot and Hilbert
functors and to prove that these are algebraic spaces provided certain technical conditions
are satisfied. This material, in the setting of schemes, is covered in Grothendieck’s lectures
in the séminair Bourbaki, see [?], [?], [?], [?], [?], and [?]. For projective schemes the Quot
and Hilbert schemes live inside Grassmannians of spaces of sections of suitable very ample
invertible sheaves, and this provides a method of construction for these schemes. Our
approach is different: we use Artin’s axioms to prove Quot and Hilb are algebraic spaces.

Upon further consideration, it turned out to be more convenient for the development of
theory in the Stacks project, to start the discussion with the stack CohX/B of coherent
sheaves (with proper support over the base) as introduced in [?]. For us f : X → B is
a morphism of algebraic spaces satisfying suitable technical conditions, although this can
be generalized (see below). Given modules F and G on X , under suitably hypotheses, the
functor T/B 7→ HomXT (FT ,GT ) is an algebraic space Hom(F ,G) overB. See Section 3.
The subfunctor Isom(F ,G) of isomorphisms is shown to be an algebraic space in Section 4.
This is used in the next sections to show the diagonal of the stack CohX/B is representable.
We prove CohX/B is an algebraic stack in Section 5 when X → B is flat and in Section 6
in general. Please see the introduction of this section for pointers to the literature.

Having proved this, it is rather straightforward to prove that QuotF/X/B , HilbX/B , and
PicX/B are algebraic spaces and that PicX/B is an algebraic stack. See Sections 8, 9, 11,
and 10.

In the usual manner we deduce that the functor MorB(Z,X) of relative morphisms is an
algebraic space (under suitable hypotheses) in Section 12.

In Section 13 we prove that the stack in groupoids

Spaces′
fp,flat,proper

parametrizing flat families of proper algebraic spaces satisfies all of Artin’s axioms (includ-
ing openness of versality) except for formal effectiveness. We’ve chosen the very awkward
notation for this stack intentionally, because the reader should be carefull in using its prop-
erties.

In Section 14 we prove that the stack Polarized parametrizing flat families of polarized
proper algebraic spaces is an algebraic stack. Because of our work on flat families of proper
algebraic spaces, this comes down to proving formal effectiveness for polarized schemes
which is often known as Grothendieck’s algebraization theorem.

In Section 15 we prove that the stack Curves parametrizing families of curves is algebraic.

6725
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In Section 16 we study moduli of complexes on a proper morphism and we obtain an
algebraic stack ComplexesX/B . The idea of the statement and the proof are taken from
[?].

What is not in this chapter? There is almost no discussion of the properties the resulting
moduli spaces and moduli stacks possess (beyond their algebraicity); to read about this
we refer to Moduli Stacks, Section 1. In most of the results discussed, we can generalize
the constructions by considering a morphism X → B of algebraic stacks instead of a
morphism X → B of algebraic space. We will discuss this (insert future reference here).
In the case of Hilbert spaces there is a more general notion of “Hilbert stacks” which we
will discuss in a separate chapter, see (insert future reference here).

2. Conventions

We have intentionally placed this chapter, as well as the chapters “Examples of Stacks”,
“Sheaves on Algebraic Stacks”, “Criteria for Representability”, and “Artin’s Axioms” be-
fore the general development of the theory of algebraic stacks. The reason for this is that
starting with the next chapter (see Properties of Stacks, Section 2) we will no longer dis-
tinguish between a scheme and the algebraic stack it gives rise to. Thus our language will
become more flexible and easier for a human to parse, but also less precise. These first few
chapters, including the initial chapter “Algebraic Stacks”, lay the groundwork that later
allow us to ignore some of the very technical distinctions between different ways of think-
ing about algebraic stacks. But especially in the chapters “Artin’s Axioms” and “Criteria
of Representability” we need to be very precise about what objects exactly we are work-
ing with, as we are trying to show that certain constructions produce algebraic stacks or
algebraic spaces.

Unfortunately, this means that some of the notation, conventions and terminology is awk-
ward and may seem backwards to the more experienced reader. We hope the reader will
forgive us!

The standing assumption is that all schemes are contained in a big fppf site Schfppf . And
all rings A considered have the property that Spec(A) is (isomorphic) to an object of this
big site.

Let S be a scheme and letX be an algebraic space over S. In this chapter and the following
we will writeX×SX for the product ofX with itself (in the category of algebraic spaces
over S), instead of X ×X .

3. The Hom functor

In this section we study the functor of homomorphisms defined below.

Situation 3.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. LetF , G be quasi-coherentOX -modules. For any scheme T overB we will
denoteFT and GT the base changes ofF and G to T , in other words, the pullbacks via the
projection morphism XT = X ×B T → X . We consider the functor

(3.1.1) Hom(F ,G) : (Sch/B)opp −→ Sets, T −→ HomOXT
(FT ,GT )

In Situation 3.1 we sometimes think of Hom(F ,G) as a functor (Sch/S)opp → Sets en-
dowed with a morphism Hom(F ,G) → B. Namely, if T is a scheme over S , then an
element of Hom(F ,G)(T ) consists of a pair (h, u), where h is a morphism h : T → B
and u : FT → GT is an OXT -module map where XT = T ×h,B X and FT and GT are
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the pullbacks to XT . In particular, when we say that Hom(F ,G) is an algebraic space, we
mean that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 3.2. In Situation 3.1 the functor Hom(F ,G) satisfies the sheaf property for
the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi =
X ×S Ti and Fi = uTi and Gi = GTi . Note that {Xi → XT }i∈I is an fpqc covering of
XT , see Topologies on Spaces, Lemma 9.3. Thus a family of maps ui : Fi → Gi such that
ui and uj restrict to the same map on XTi×TTj comes from a unique map u : FT → GT
by descent (Descent on Spaces, Proposition 4.1). �

Sanity check: Hom sheaf plays the same role among algebraic spaces over S.

Lemma 3.3. In Situation 3.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,Hom(F ,G)) = {(h, u) | h : T → B, u : FT → GT }

where FT ,GT denote the pullbacks of F and G to the algebraic space X ×B,h T .

Proof. Choose a scheme U and a surjective étale morphism p : U → T . Let R =
U ×T U with projections t, s : R→ U .

Let v : T → Hom(F ,G) be a natural transformation. Then v(p) corresponds to a pair
(hU , uU ) overU . As v is a transformation of functors we see that the pullbacks of (hU , uU )
by s and t agree. Since T = U/R (Spaces, Lemma 9.1), we obtain a morphism h : T → B
such that hU = h ◦ p. Then FU is the pullback of FT to XU and similarly for GU . Hence
uU descends to aOXT -module map u : FT → GT by Descent on Spaces, Proposition 4.1.

Conversely, let (h, u) be a pair over T . Then we get a natural transformation v : T →
Hom(F ,G) by sending a morphism a : T ′ → T where T ′ is a scheme to (h ◦ a, a∗u). We
omit the verification that the construction of this and the previous paragraph are mutually
inverse. �

Remark 3.4. In Situation 3.1 let B′ → B be a morphism of algebraic spaces over
S. Set X ′ = X ×B B′ and denote F ′, G′ the pullback of F , G to X ′. Then we obtain a
functor Hom(F ′,G′) : (Sch/B′)opp → Sets associated to the base change f ′ : X ′ → B′.
For a scheme T over B′ it is clear that we have

Hom(F ′,G′)(T ) = Hom(F ,G)(T )

where on the right hand side we think of T as a scheme over B via the composition T →
B′ → B. This trivial remark will occasionally be useful to change the base algebraic space.

Lemma 3.5. In Situation 3.1 let {Xi → X}i∈I be an fppf covering and for each
i, j ∈ I let {Xijk → Xi ×X Xj} be an fppf covering. Denote Fi, resp. Fijk the pullback
of F to Xi, resp. Xijk. Similarly define Gi and Gijk. For every scheme T over B the
diagram

Hom(F ,G)(T ) // ∏
i Hom(Fi,Gi)(T )

pr∗
0 //

pr∗
1

//
∏
i,j,k Hom(Fijk,Gijk)(T )

presents the first arrow as the equalizer of the other two.
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Proof. Let ui : Fi,T → Gi,T be an element in the equalizer of pr∗
0 and pr∗

1. Since the
base change of an fppf covering is an fppf covering (Topologies on Spaces, Lemma 7.3) we
see that {Xi,T → XT }i∈I and {Xijk,T → Xi,T ×XT Xj,T } are fppf coverings. Applying
Descent on Spaces, Proposition 4.1 we first conclude that ui and uj restrict to the same
morphism over Xi,T ×XT Xj,T , whereupon a second application shows that there is a
unique morphism u : FT → GT restricting to ui for each i. This finishes the proof. �

Lemma 3.6. In Situation 3.1. IfF is of finite presentation and f is quasi-compact and
quasi-separated, then Hom(F ,G) is limit preserving.

Proof. Let T = limi∈I Ti be a directed limit of affine B-schemes. We have to show
that

Hom(F ,G)(T ) = colim Hom(F ,G)(Ti)
Pick 0 ∈ I . We may replace B by T0, X by XT0 , F by FT0 , G by GT0 , and I by {i ∈ I |
i ≥ 0}. See Remark 3.4. Thus we may assume B = Spec(R) is affine.

When B is affine, then X is quasi-compact and quasi-separated. Choose a surjective étale
morphism U → X where U is an affine scheme (Properties of Spaces, Lemma 6.3). Since
X is quasi-separated, the schemeU ×X U is quasi-compact and we may choose a surjective
étale morphism V → U ×X U where V is an affine scheme. Applying Lemma 3.5 we see
that Hom(F ,G) is the equalizer of two maps between

Hom(F|U ,G|U ) and Hom(F|V ,G|V )

This reduces us to the case that X is affine.

In the affine case the statement of the lemma reduces to the following problem: Given
a ring map R → A, two A-modules M , N and a directed system of R-algebras C =
colimCi. When is it true that the map

colim HomA⊗RCi(M ⊗R Ci, N ⊗R Ci) −→ HomA⊗RC(M ⊗R C,N ⊗R C)

is bijective? By Algebra, Lemma 127.5 this holds if M ⊗R C is of finite presentation over
A⊗R C , i.e., when M is of finite presentation over A. �

Lemma 3.7. Let S be a scheme. Let B be an algebraic space over S. Let i : X ′ → X
be a closed immersion of algebraic spaces over B. Let F be a quasi-coherent OX -module
and let G′ be a quasi-coherentOX′ -module. Then

Hom(F , i∗G′) = Hom(i∗F ,G′)

as functors on (Sch/B).

Proof. Let g : T → B be a morphism where T is a scheme. Denote iT : X ′
T → XT

the base change of i. Denote h : XT → X and h′ : X ′
T → X ′ the projections. Observe

that (h′)∗i∗F = i∗Th
∗F . As a closed immersion is affine (Morphisms of Spaces, Lemma

20.6) we have h∗i∗G = iT,∗(h′)∗G by Cohomology of Spaces, Lemma 11.1. Thus we have

Hom(F , i∗G′)(T ) = HomOXT
(h∗F , h∗i∗G′)

= HomOXT
(h∗F , iT,∗(h′)∗G)

= HomOX′
T

(i∗Th∗F , (h′)∗G)

= HomOX′
T

((h′)∗i∗F , (h′)∗G)

= Hom(i∗F ,G′)(T )
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as desired. The middle equality follows from the adjointness of the functors iT,∗ and
i∗T . �

Lemma 3.8. Let S be a scheme. LetB be an algebraic space over S. LetK be a pseudo-
coherent object of D(OB).

(1) If for all g : T → B in (Sch/B) the cohomology sheaf H−1(Lg∗K) is zero,
then the functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T,H0(Lg∗K))

is an algebraic space affine and of finite presentation over B.
(2) If for all g : T → B in (Sch/B) the cohomology sheaves Hi(Lg∗K) are zero

for i < 0, thenK is perfect,K locally has tor amplitude in [0, b], and the functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T, Lg∗K)

is an algebraic space affine and of finite presentation over B.

Proof. Under the assumptions of (2) we have H0(T,Lg∗K) = H0(T,H0(Lg∗K)).
Let us prove that the rule T 7→ H0(T,H0(Lg∗K)) satisfies the sheaf property for the
fppf topology. To do this assume we have an fppf covering {hi : Ti → T} of a scheme
g : T → B over B. Set gi = g ◦ hi. Note that since hi is flat, we have Lh∗

i = h∗
i and h∗

i

commutes with taking cohomology. Hence

H0(Ti,H0(Lg∗
iK)) = H0(Ti,H0(h∗

iLg
∗K)) = H0(T, h∗

iH
0(Lg∗K))

Similarly for the pullback to Ti ×T Tj . Since Lg∗K is a pseudo-coherent complex on
T (Cohomology on Sites, Lemma 45.3) the cohomology sheaf F = H0(Lg∗K) is quasi-
coherent (Derived Categories of Spaces, Lemma 13.6). Hence by Descent on Spaces, Propo-
sition 4.1 we see that

H0(T,F) = Ker(
∏

H0(Ti, h∗
iF)→

∏
H0(Ti ×T Tj , (Ti ×T Tj → T )∗F))

In this way we see that the rules in (1) and (2) satisfy the sheaf property for fppf cov-
erings. This means we may apply Bootstrap, Lemma 11.2 to see it suffices to prove the
representability étale locally on B. Moreover, we may check whether the end result is
affine and of finite presentation étale locally on B, see Morphisms of Spaces, Lemmas 20.3
and 28.4. Hence we may assume that B is an affine scheme.

Assume B = Spec(A) is an affine scheme. By the results of Derived Categories of Spaces,
Lemmas 13.6, 4.2, and 13.2 we deduce that in the rest of the proof we may think of K
as a perfect object of the derived category of complexes of modules on B in the Zariski
topology. By Derived Categories of Schemes, Lemmas 10.1, 3.5, and 10.2 we can find a
pseudo-coherent complex M• of A-modules such that K is the corresponding object of
D(OB). Our assumption on pullbacks implies that M• ⊗L

A κ(p) has vanishing H−1 for
all primes p ⊂ A. By More on Algebra, Lemma 76.4 we can write

M• = τ≥0M
• ⊕ τ≤−1M

•

with τ≥0M
• perfect with Tor amplitude in [0, b] for some b ≥ 0 (here we also have

used More on Algebra, Lemmas 74.12 and 66.16). Note that in case (2) we also see that
τ≤−1M

• = 0 in D(A) whence M• and K are perfect with tor amplitude in [0, b]. For
any B-scheme g : T → B we have

H0(T,H0(Lg∗K)) = H0(T,H0(Lg∗τ≥0K))
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(by the dual of Derived Categories, Lemma 16.1) hence we may replace K by τ≥0K and
correspondinglyM• by τ≥0M

•. In other words, we may assumeM• has tor amplitude in
[0, b].

Assume M• has tor amplitude in [0, b]. We may assume M• is a bounded above complex
of finite free A-modules (by our definition of pseudo-coherent complexes, see More on
Algebra, Definition 64.1 and the discussion following the definition). By More on Algebra,
Lemma 66.2 we see that M = Coker(M−1 → M0) is flat. By Algebra, Lemma 78.2 we
see that M is finite locally free. Hence M• is quasi-isomorphic to

M →M1 →M2 → . . .→Md → 0 . . .

Note that this is a K-flat complex (Cohomology, Lemma 26.9), hence derived pullback of
K via a morphism T → B is computed by the complex

g∗M̃ → g∗M̃1 → . . .

Thus it suffices to show that the functor

(g : T → B) 7−→ Ker(Γ(T, g∗M̃)→ Γ(T, g∗(M̃1))

is representable by an affine scheme of finite presentation over B.

We may still replace B by the members of an affine open covering in order to prove this
last statement. Hence we may assume that M is finite free (recall that M1 is finite free to
begin with). Write M = A⊕n and M1 = A⊕m. Let the map M → M1 be given by the
m × n matrix (aij) with coefficients in A. Then M̃ = O⊕n

B and M̃1 = O⊕m
B . Thus the

functor above is equal to the functor

(g : T → B) 7−→ {(f1, . . . , fn) ∈ Γ(T,OT ) |
∑

g](aij)fi = 0, j = 1, . . . ,m}

Clearly this is representable by the affine scheme

Spec
(
A[x1, . . . , xn]/(

∑
aijxi; j = 1, . . . ,m)

)
and the lemma has been proved. �

The functor Hom(F ,G) is representable in a number of situations. All of our results will
be based on the following basic case. The proof of this lemma as given below is in some
sense the natural generalization to the proof of [?, III, Cor 7.7.8].

Lemma 3.9. In Situation 3.1 assume that
(1) B is a Noetherian algebraic space,
(2) f is locally of finite type and quasi-separated,
(3) F is a finite typeOX -module, and
(4) G is a finite typeOX -module, flat over B, with support proper over B.

Then the functor Hom(F ,G) is an algebraic space affine and of finite presentation over
B.

Proof. We may replace X by a quasi-compact open neighbourhood of the support
of G , hence we may assume X is Noetherian. In this case X and f are quasi-compact and
quasi-separated. Choose an approximation P → F by a perfect complex P of the triple
(X,F ,−1), see Derived Categories of Spaces, Definition 14.1 and Theorem 14.7). Then
the induced map

HomOX
(F ,G) −→ HomD(OX)(P,G)
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is an isomorphism because P → F induces an isomorphismH0(P )→ F andHi(P ) = 0
for i > 0. Moreover, for any morphism g : T → B denote h : XT = T ×B X → X the
projection and set PT = Lh∗P . Then it is equally true that

HomOXT
(FT ,GT ) −→ HomD(OXT

)(PT ,GT )

is an isomorphism, as PT = Lh∗P → Lh∗F → FT induces an isomorphism H0(PT )→
FT (because h∗ is right exact and Hi(P ) = 0 for i > 0). Thus it suffices to prove the
result for the functor

T 7−→ HomD(OXT
)(PT ,GT ).

By the Leray spectral sequence (see Cohomology on Sites, Remark 14.4) we have

HomD(OXT
)(PT ,GT ) = H0(XT , RHom(PT ,GT )) = H0(T,RfT,∗RHom(PT ,GT ))

where fT : XT → T is the base change of f . By Derived Categories of Spaces, Lemma
21.5 we have

RfT,∗RHom(PT ,GT ) = Lg∗Rf∗RHom(P,G).
By Derived Categories of Spaces, Lemma 22.3 the objectK = Rf∗RHom(P,G) ofD(OB)
is perfect. This means we can apply Lemma 3.8 as long as we can prove that the cohomol-
ogy sheaf Hi(Lg∗K) is 0 for all i < 0 and g : T → B as above. This is clear from the
last displayed formula as the cohomology sheaves of RfT,∗RHom(PT ,GT ) are zero in
negative degrees due to the fact that RHom(PT ,GT ) has vanishing cohomology sheaves
in negative degrees as PT is perfect with vanishing cohomology sheaves in positive de-
grees. �

Here is a cheap consequence of Lemma 3.9.
Proposition 3.10. In Situation 3.1 assume that

(1) f is of finite presentation, and
(2) G is a finitely presentedOX -module, flat over B, with support proper over B.

Then the functor Hom(F ,G) is an algebraic space affine over B. If F is of finite presen-
tation, then Hom(F ,G) is of finite presentation over B.

Proof. By Lemma 3.2 the functor Hom(F ,G) satisfies the sheaf property for fppf
coverings. This mean we may1 apply Bootstrap, Lemma 11.1 to check the representability
étale locally on B. Moreover, we may check whether the end result is affine or of finite
presentation étale locally on B, see Morphisms of Spaces, Lemmas 20.3 and 28.4. Hence
we may assume that B is an affine scheme.
AssumeB is an affine scheme. As f is of finite presentation, it followsX is quasi-compact
and quasi-separated. Thus we can writeF = colimFi as a filtered colimit ofOX -modules
of finite presentation (Limits of Spaces, Lemma 9.1). It is clear that

Hom(F ,G) = lim Hom(Fi,G)
Hence if we can show that each Hom(Fi,G) is representable by an affine scheme, then we
see that the same thing holds for Hom(F ,G). Use the material in Limits, Section 2 and
Limits of Spaces, Section 4. Thus we may assume that F is of finite presentation.
Say B = Spec(R). Write R = colimRi with each Ri a finite type Z-algebra. Set
Bi = Spec(Ri). By the results of Limits of Spaces, Lemmas 7.1 and 7.2 we can find an
i, a morphism of algebraic spaces Xi → Bi, and finitely presented OXi -modules Fi and
Gi such that the base change of (Xi,Fi,Gi) to B recovers (X,F ,G). By Limits of Spaces,

1We omit the verification of the set theoretical condition (3) of the referenced lemma.



6732 99. QUOT AND HILBERT SPACES

Lemma 6.12 we may, after increasing i, assume that Gi is flat over Bi. By Limits of Spaces,
Lemma 12.3 we may similarly assume the scheme theoretic support of Gi is proper over
Bi. At this point we can apply Lemma 3.9 to see that Hi = Hom(Fi,Gi) is an algebraic
space affine of finite presentation over Bi. Pulling back to B (using Remark 3.4) we see
that Hi ×Bi B = Hom(F ,G) and we win. �

4. The Isom functor

In Situation 3.1 we can consider the subfunctor

Isom(F ,G) ⊂ Hom(F ,G)

whose value on a scheme T overB is the set of invertibleOXT -homomorphisms u : FT →
GT .

We sometimes think of Isom(F ,G) as a functor (Sch/S)opp → Sets endowed with a
morphism Isom(F ,G) → B. Namely, if T is a scheme over S , then an element of
Isom(F ,G)(T ) consists of a pair (h, u), where h is a morphism h : T → B and u :
FT → GT is an OXT -module isomorphism where XT = T ×h,B X and FT and GT are
the pullbacks toXT . In particular, when we say that Isom(F ,G) is an algebraic space, we
mean that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 4.1. In Situation 3.1 the functor Isom(F ,G) satisfies the sheaf property for
the fpqc topology.

Proof. We have already seen that Hom(F ,G) satisfies the sheaf property. Hence it
remains to show the following: Given an fpqc covering {Ti → T}i∈I of schemes over B
and an OXT -linear map u : FT → GT such that uTi is an isomorphism for all i, then u
is an isomorphism. Since {Xi → XT }i∈I is an fpqc covering of XT , see Topologies on
Spaces, Lemma 9.3, this follows from Descent on Spaces, Proposition 4.1. �

Sanity check: Isom sheaf plays the same role among algebraic spaces over S.

Lemma 4.2. In Situation 3.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T, Isom(F ,G)) = {(h, u) | h : T → B, u : FT → GT isomorphism}

where FT ,GT denote the pullbacks of F and G to the algebraic space X ×B,h T .

Proof. Observe that the left and right hand side of the equality are subsets of the
left and right hand side of the equality in Lemma 3.3. We omit the verification that these
subsets correspond under the identification given in the proof of that lemma. �

Proposition 4.3. In Situation 3.1 assume that
(1) f is of finite presentation, and
(2) F and G are finitely presented OX -modules, flat over B, with support proper

over B.
Then the functor Isom(F ,G) is an algebraic space affine of finite presentation over B.

Proof. We will use the abbreviations H = Hom(F ,G), I = Hom(F ,F), H ′ =
Hom(G,F), and I ′ = Hom(G,G). By Proposition 3.10 the functors H , I , H ′, I ′ are
algebraic spaces and the morphisms H → B, I → B, H ′ → B, and I ′ → B are affine and
of finite presentation. The composition of maps gives a morphism

c : H ′ ×B H −→ I ×B I ′, (u′, u) 7−→ (u ◦ u′, u′ ◦ u)
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of algebraic spaces over B. Since I ×B I ′ → B is separated, the section σ : B → I ×B
I ′ corresponding to (idF , idG) is a closed immersion (Morphisms of Spaces, Lemma 4.7).
Moreover, σ is of finite presentation (Morphisms of Spaces, Lemma 28.9). Hence

Isom(F ,G) = (H ′ ×B H)×c,I×BI′,σ B

is an algebraic space affine of finite presentation overB as well. Some details omitted. �

5. The stack of coherent sheaves

In this section we prove that the stack of coherent sheaves on X/B is algebraic under
suitable hypotheses. This is a special case of [?, Theorem 2.1.1] which treats the case of the
stack of coherent sheaves on an Artin stack over a base.

Situation 5.1. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Assume that f is of finite presentation. We denote CohX/B the category whose
objects are triples (T, g,F) where

(1) T is a scheme over S ,
(2) g : T → B is a morphism over S , and setting XT = T ×g,B X
(3) F is a quasi-coherent OXT -module of finite presentation, flat over T , with sup-

port proper over T .
A morphism (T, g,F)→ (T ′, g′,F ′) is given by a pair (h, ϕ) where

(1) h : T → T ′ is a morphism of schemes over B (i.e., g′ ◦ h = g), and
(2) ϕ : (h′)∗F ′ → F is an isomorphism of OXT -modules where h′ : XT → XT ′ is

the base change of h.

Thus CohX/B is a category and the rule

p : CohX/B −→ (Sch/S)fppf , (T, g,F) 7−→ T

is a functor. For a scheme T over S we denote CohX/B,T the fibre category of p over T .
These fibre categories are groupoids.

Lemma 5.2. In Situation 5.1 the functor p : CohX/B −→ (Sch/S)fppf is fibred in
groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2) of
Categories, Definition 35.1. Given an object (T ′, g′,F ′) of CohX/B and a morphism h :
T → T ′ of schemes overS we can set g = h◦g′ andF = (h′)∗F ′ where h′ : XT → XT ′ is
the base change of h. Then it is clear that we obtain a morphism (T, g,F)→ (T ′, g′,F ′)
of CohX/B lying over h. This proves (1). For (2) suppose we are given morphisms

(h1, ϕ1) : (T1, g1,F1)→ (T, g,F) and (h2, ϕ2) : (T2, g2,F2)→ (T, g,F)

of CohX/B and a morphism h : T1 → T2 such that h2 ◦ h = h1. Then we can let ϕ be the
composition

(h′)∗F2
(h′)∗ϕ−1

2−−−−−−→ (h′)∗(h2)∗F = (h1)∗F ϕ1−→ F1

to obtain the morphism (h, ϕ) : (T1, g1,F1) → (T2, g2,F2) that witnesses the truth of
condition (2). �

Lemma 5.3. In Situation 5.1. Denote X = CohX/B . Then ∆ : X → X × X is
representable by algebraic spaces.
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Proof. Consider two objects x = (T, g,F) and y = (T, h,G) of X over a scheme
T . We have to show that IsomX (x, y) is an algebraic space over T , see Algebraic Stacks,
Lemma 10.11. If for a : T ′ → T the restrictions x|T ′ and y|T ′ are isomorphic in the fibre
category XT ′ , then g ◦ a = h ◦ a. Hence there is a transformation of presheaves

IsomX (x, y) −→ Equalizer(g, h)

Since the diagonal of B is representable (by schemes) this equalizer is a scheme. Thus we
may replace T by this equalizer and the sheavesF and G by their pullbacks. Thus we may
assume g = h. In this case we have IsomX (x, y) = Isom(F ,G) and the result follows
from Proposition 4.3. �

Lemma 5.4. In Situation 5.1 the functor p : CohX/B −→ (Sch/S)fppf is a stack in
groupoids.

Proof. To prove that CohX/B is a stack in groupoids, we have to show that the
presheaves Isom are sheaves and that descent data are effective. The statement on Isom
follows from Lemma 5.3, see Algebraic Stacks, Lemma 10.11. Let us prove the statement
on descent data. Suppose that {ai : Ti → T} is an fppf covering of schemes over S. Let
(ξi, ϕij) be a descent datum for {Ti → T}with values in CohX/B . For each iwe can write
ξi = (Ti, gi,Fi). Denote pr0 : Ti ×T Tj → Ti and pr1 : Ti ×T Tj → Tj the projections.
The condition that ξi|Ti×TTj = ξj |Ti×TTj implies in particular that gi ◦ pr0 = gj ◦ pr1.
Thus there exists a unique morphism g : T → B such that gi = g ◦ ai, see Descent on
Spaces, Lemma 7.2. DenoteXT = T ×g,BX . SetXi = XTi = Ti×gi,BX = Ti×ai,T XT

and
Xij = XTi ×XT XTj = Xi ×XT Xj

with projections pri and prj to Xi and Xj . Observe that the pullback of (Ti, gi,Fi) by
pr0 : Ti ×T Tj → Ti is given by (Ti ×T Tj , gi ◦ pr0, pr∗

iFi). Hence a descent datum
for {Ti → T} in CohX/B is given by the objects (Ti, g ◦ ai,Fi) and for each pair i, j an
isomorphism ofOXij -modules

ϕij : pr∗
iFi −→ pr∗

jFj

satisfying the cocycle condition over (the pullback of X to) Ti ×T Tj ×T Tk. Ok, and
now we simply use that {Xi → XT } is an fppf covering so that we can view (Fi, ϕij)
as a descent datum for this covering. By Descent on Spaces, Proposition 4.1 this descent
datum is effective and we obtain a quasi-coherent sheaf F over XT restricting to Fi on
Xi. By Morphisms of Spaces, Lemma 31.5 we see that F is flat over T and Descent on
Spaces, Lemma 6.2 guarantees thatQ is of finite presentation as anOXT -module. Finally,
by Descent on Spaces, Lemma 11.19 we see that the scheme theoretic support ofF is proper
over T as we’ve assumed the scheme theoretic support of Fi is proper over Ti (note that
taking scheme theoretic support commutes with flat base change by Morphisms of Spaces,
Lemma 30.10). In this way we obtain our desired object over T . �

Remark 5.5. In Situation 5.1 the rule (T, g,F) 7→ (T, g) defines a 1-morphism

CohX/B −→ SB

of stacks in groupoids (see Lemma 5.4, Algebraic Stacks, Section 7, and Examples of Stacks,
Section 10). Let B′ → B be a morphism of algebraic spaces over S. Let SB′ → SB be the
associated 1-morphism of stacks fibred in sets. Set X ′ = X ×B B′. We obtain a stack in
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groupoids CohX′/B′ → (Sch/S)fppf associated to the base change f ′ : X ′ → B′. In this
situation the diagram

CohX′/B′ //

��

CohX/B

��
SB′ // SB

or in
another
notation

CohX′/B′ //

��

CohX/B

��
Sch/B′ // Sch/B

is 2-fibre product square. This trivial remark will occasionally be useful to change the base
algebraic space.

Lemma 5.6. In Situation 5.1 assume that B → S is locally of finite presentation.
Then p : CohX/B → (Sch/S)fppf is limit preserving (Artin’s Axioms, Definition 11.1).

Proof. Write B(T ) for the discrete category whose objects are the S-morphisms
T → B. Let T = limTi be a filtered limit of affine schemes over S. Assigning to an
object (T, h,F) of CohX/B,T the object h of B(T ) gives us a commutative diagram of
fibre categories

colim CohX/B,Ti //

��

CohX/B,T

��
colimB(Ti) // B(T )

We have to show the top horizontal arrow is an equivalence. Since we have assumed that
B is locally of finite presentation overS we see from Limits of Spaces, Remark 3.11 that the
bottom horizontal arrow is an equivalence. This means that we may assume T = limTi
be a filtered limit of affine schemes over B. Denote gi : Ti → B and g : T → B the
corresponding morphisms. Set Xi = Ti ×gi,B X and XT = T ×g,B X . Observe that
XT = colimXi and that the algebraic spaces Xi and XT are quasi-separated and quasi-
compact (as they are of finite presentation over the affines Ti and T ). By Limits of Spaces,
Lemma 7.2 we see that

colim FP(Xi) = FP(XT ).

where FP(W ) is short hand for the category of finitely presented OW -modules. The re-
sults of Limits of Spaces, Lemmas 6.12 and 12.3 tell us the same thing is true if we replace
FP(Xi) and FP(XT ) by the full subcategory of objects flat over Ti and T with scheme
theoretic support proper over Ti and T . This proves the lemma. �

Lemma 5.7. In Situation 5.1. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over S whereZ → Z ′ is a thickening andZ → Y
is affine, see More on Morphisms, Lemma 14.3. Then the functor on fibre categories

CohX/B,Y ′ −→ CohX/B,Y ×CohX/B,Z CohX/B,Z′

is an equivalence.
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Proof. Observe that the corresponding map
B(Y ′) −→ B(Y )×B(Z) B(Z ′)

is a bijection, see Pushouts of Spaces, Lemma 6.1. Thus using the commutative diagram

CohX/B,Y ′ //

��

CohX/B,Y ×CohX/B,Z CohX/B,Z′

��
B(Y ′) // B(Y )×B(Z) B(Z ′)

we see that we may assume that Y ′ is a scheme over B′. By Remark 5.5 we may replace
B by Y ′ and X by X ×B Y ′. Thus we may assume B = Y ′. In this case the statement
follows from Pushouts of Spaces, Lemma 6.6. �

Lemma 5.8. Let
X

��

i
// X ′

��
T // T ′

be a cartesian square of algebraic spaces where T → T ′ is a first order thickening. Let F ′

be anOX′ -module flat over T ′. Set F = i∗F ′. The following are equivalent
(1) F ′ is a quasi-coherentOX′ -module of finite presentation,
(2) F ′ is anOX′ -module of finite presentation,
(3) F is a quasi-coherentOX -module of finite presentation,
(4) F is anOX -module of finite presentation,

Proof. Recall that a finitely presented module is quasi-coherent hence the equiva-
lence of (1) and (2) and (3) and (4). The equivalence of (2) and (4) is a special case of
Deformation Theory, Lemma 11.3. �

Lemma 5.9. In Situation 5.1 assume thatS is a locally Noetherian scheme andB → S
is locally of finite presentation. Let k be a finite type field overS and letx0 = (Spec(k), g0,G0)
be an object of X = CohX/B over k. Then the spaces TFX ,k,x0 and Inf(FX ,k,x0) (Artin’s
Axioms, Section 8) are finite dimensional.

Proof. Observe that by Lemma 5.7 our stack in groupoids X satisfies property (RS*)
defined in Artin’s Axioms, Section 21. In particular X satisfies (RS). Hence all associated
predeformation categories are deformation categories (Artin’s Axioms, Lemma 6.1) and
the statement makes sense.
In this paragraph we show that we can reduce to the case B = Spec(k). Set X0 =
Spec(k) ×g0,B X and denote X0 = CohX0/k. In Remark 5.5 we have seen that X0
is the 2-fibre product of X with Spec(k) over B as categories fibred in groupoids over
(Sch/S)fppf . Thus by Artin’s Axioms, Lemma 8.2 we reduce to proving that B, Spec(k),
and X0 have finite dimensional tangent spaces and infinitesimal automorphism spaces.
The tangent space of B and Spec(k) are finite dimensional by Artin’s Axioms, Lemma 8.1
and of course these have vanishing Inf. Thus it suffices to deal with X0.
Let k[ε] be the dual numbers over k. Let Spec(k[ε]) → B be the composition of g0 :
Spec(k)→ B and the morphism Spec(k[ε])→ Spec(k) coming from the inclusion k →
k[ε]. SetX0 = Spec(k)×BX andXε = Spec(k[ε])×BX . Observe thatXε is a first order
thickening of X0 flat over the first order thickening Spec(k) → Spec(k[ε]). Unwinding
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the definitions and using Lemma 5.8 we see that TFX0,k,x0 is the set of lifts of G0 to a flat
module on Xε. By Deformation Theory, Lemma 12.1 we conclude that

TFX0,k,x0 = Ext1
OX0

(G0,G0)

Here we have used the identification εk[ε] ∼= k of k[ε]-modules. Using Deformation The-
ory, Lemma 12.1 once more we see that

Inf(FX ,k,x0) = Ext0
OX0

(G0,G0)

These spaces are finite dimensional over k as G0 has support proper over Spec(k). Namely,
X0 is of finite presentation over Spec(k), hence Noetherian. Since G0 is of finite presen-
tation it is a coherent OX0 -module. Thus we may apply Derived Categories of Spaces,
Lemma 8.4 to conclude the desired finiteness. �

Lemma 5.10. In Situation 5.1 assume that S is a locally Noetherian scheme and that
f : X → B is separated. Let X = CohX/B . Then the functor Artin’s Axioms, Equation
(9.3.1) is an equivalence.

Proof. Let A be an S-algebra which is a complete local Noetherian ring with maxi-
mal idealmwhose residue field k is of finite type overS. We have to show that the category
of objects over A is equivalent to the category of formal objects over A. Since we know
this holds for the category SB fibred in sets associated toB by Artin’s Axioms, Lemma 9.5,
it suffices to prove this for those objects lying over a given morphism Spec(A)→ B.
Set XA = Spec(A) ×B X and Xn = Spec(A/mn) ×B X . By Grothendieck’s existence
theorem (More on Morphisms of Spaces, Theorem 42.11) we see that the category of co-
herent modulesF onXA with support proper over Spec(A) is equivalent to the category
of systems (Fn) of coherent modules Fn on Xn with support proper over Spec(A/mn).
The equivalence sends F to the system (F ⊗A A/mn). See discussion in More on Mor-
phisms of Spaces, Remark 42.12. To finish the proof of the lemma, it suffices to show that
F is flat overA if and only if allF ⊗AA/mn are flat overA/mn. This follows from More
on Morphisms of Spaces, Lemma 24.3. �

Lemma 5.11. In Situation 5.1 assume that S is a locally Noetherian scheme, S = B,
and f : X → B is flat. Let X = CohX/B . Then we have openness of versality for X (see
Artin’s Axioms, Definition 13.1).

First proof. This proof is based on the criterion of Artin’s Axioms, Lemma 24.4. Let
U → S be of finite type morphism of schemes, x an object of X over U and u0 ∈ U a
finite type point such that x is versal at u0. After shrinking U we may assume that u0 is a
closed point (Morphisms, Lemma 16.1) and U = Spec(A) with U → S mapping into an
affine open Spec(Λ) of S. Let F be the coherent module on XA = Spec(A) ×S X flat
over A corresponding to the given object x.
According to Deformation Theory, Lemma 12.1 we have an isomorphism of functors

Tx(M) = Ext1
XA(F ,F ⊗AM)

and given any surjection A′ → A of Λ-algebras with square zero kernel I we have an
obstruction class

ξA′ ∈ Ext2
XA(F ,F ⊗A I)

This uses that for any A′ → A as above the base change XA′ = Spec(A′) ×B X is flat
overA′. Moreover, the construction of the obstruction class is functorial in the surjection
A′ → A (for fixedA) by Deformation Theory, Lemma 12.3. Apply Derived Categories of
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Spaces, Lemma 23.3 to the computation of the Ext groups ExtiXA(F ,F ⊗AM) for i ≤ m
with m = 2. We find a perfect object K ∈ D(A) and functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(F ,F ⊗AM)

for i ≤ m compatible with boundary maps. This object K , together with the displayed
identifications above gives us a datum as in Artin’s Axioms, Situation 24.2. Finally, condi-
tion (iv) of Artin’s Axioms, Lemma 24.3 holds by Deformation Theory, Lemma 12.5. Thus
Artin’s Axioms, Lemma 24.4 does indeed apply and the lemma is proved. �

Second proof. This proof is based on Artin’s Axioms, Lemma 22.2. Conditions (1),
(2), and (3) of that lemma correspond to Lemmas 5.3, 5.7, and 5.6.

We have constructed an obstruction theory in the chapter on deformation theory. Namely,
given an S-algebra A and an object x of CohX/B over Spec(A) given by F on XA we set
Ox(M) = Ext2

XA(F ,F ⊗A M) and if A′ → A is a surjection with kernel I , then as
obstruction element we take the element

ox(A′) = o(F ,F ⊗A I, 1) ∈ Ox(I) = Ext2
XA(F ,F ⊗A I)

of Deformation Theory, Lemma 12.1. All properties of an obstruction theory as defined
in Artin’s Axioms, Definition 22.1 follow from this lemma except for functoriality of ob-
struction classes as formulated in condition (ii) of the definition. But as stated in the
footnote to assumption (4) of Artin’s Axioms, Lemma 22.2 it suffices to check functorial-
ity of obstruction classes for a fixed A which follows from Deformation Theory, Lemma
12.3. Deformation Theory, Lemma 12.1 also tells us that Tx(M) = Ext1

XA(F ,F ⊗AM)
for any A-module M .

To finish the proof it suffices to show that Tx(
∏
Mn) =

∏
Tx(Mn) and Ox(

∏
Mn) =∏

Ox(M). Apply Derived Categories of Spaces, Lemma 23.3 to the computation of the
Ext groups ExtiXA(F ,F ⊗A M) for i ≤ m with m = 2. We find a perfect object K ∈
D(A) and functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(F ,F ⊗AM)

for i = 1, 2. A straightforward argument shows that

Hi(K ⊗L
A

∏
Mn) =

∏
Hi(K ⊗L

AMn)

whenever K is a pseudo-coherent object of D(A). In fact, this property (for all i) charac-
terizes pseudo-coherent complexes, see More on Algebra, Lemma 65.5. �

Theorem 5.12 (Algebraicity of the stack of coherent sheaves; flat case). Let S be a
scheme. Let f : X → B be a morphism of algebraic spaces over S. Assume that f is of
finite presentation, separated, and flat2. Then CohX/B is an algebraic stack over S.

Proof. SetX = CohX/B . We have seen thatX is a stack in groupoids over (Sch/S)fppf
with diagonal representable by algebraic spaces (Lemmas 5.4 and 5.3). Hence it suffices to
find a scheme W and a surjective and smooth morphism W → X .

Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ = B′ ×B X
and denote f ′ : X ′ → B′ the projection. Then X ′ = CohX′/B′ is equal to the 2-fibre
product of X with the category fibred in sets associated to B′ over the category fibred
in sets associated to B (Remark 5.5). By the material in Algebraic Stacks, Section 10 the

2This assumption is not necessary. See Section 6.
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morphism X ′ → X is surjective and étale. Hence it suffices to prove the result for X ′. In
other words, we may assume B is a scheme.
Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks, Section
19. Thus we may assume S = B.
Assume S = B. Choose an affine open covering S =

⋃
Ui. Denote Xi the restriction of

X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth morphisms
Wi → Xi, then we setW =

∐
Wi and we obtain a surjective smooth morphismW → X .

Thus we may assume S = B is affine.
Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic spaces
Xi → Spec(Λi) which is of finite presentation, separated, and flat and whose base change
to Λ isX . See Limits of Spaces, Lemmas 7.1, 6.9, and 6.12. If we show that CohXi/ Spec(Λi) is
an algebraic stack, then it follows by base change (Remark 5.5 and Algebraic Stacks, Section
19) that X is an algebraic stack. Thus we may assume that Λ is a finite type Z-algebra.
Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma 17.1 to conclude that X is an
algebraic stack. Note that Λ is a G-ring, see More on Algebra, Proposition 50.12. Hence
all local rings of S are G-rings. Thus (5) holds. By Lemma 5.11 we have that X satisfies
openness of versality, hence (4) holds. To check (2) we have to verify axioms [-1], [0], [1],
[2], and [3] of Artin’s Axioms, Section 14. We omit the verification of [-1] and axioms
[0], [1], [2], [3] correspond respectively to Lemmas 5.4, 5.6, 5.7, 5.9. Condition (3) follows
from Lemma 5.10. Finally, condition (1) is Lemma 5.3. This finishes the proof of the
theorem. �

6. The stack of coherent sheaves in the non-flat case

In Theorem 5.12 the assumption that f : X → B is flat is not necessary. In this section
we give a different proof which avoids the flatness assumption and avoids checking open-
ness of versality by using the results in Flatness on Spaces, Section 12 and Artin’s Axioms,
Section 20.
For a different approach to this problem the reader may wish to consult [?] and follow the
method discussed in the papers [?], [?], [?], [?], [?], [?]. Some of these papers deal with the
more general case of the stack of coherent sheaves on an algebraic stack over an algebraic
stack and others deal with similar problems in the case of Hilbert stacks or Quot functors.
Our strategy will be to show algebraicity of some cases of Hilbert stacks and Quot functors
as a consequence of the algebraicity of the stack of coherent sheaves.

Theorem 6.1 (Algebraicity of the stack of coherent sheaves; general case). Let S be
a scheme. Let f : X → B be morphism of algebraic spaces over S. Assume that f is of
finite presentation and separated. Then CohX/B is an algebraic stack over S.

Proof. Only the last step of the proof is different from the proof in the flat case, but
we repeat all the arguments here to make sure everything works.
Set X = CohX/B . We have seen that X is a stack in groupoids over (Sch/S)fppf with
diagonal representable by algebraic spaces (Lemmas 5.4 and 5.3). Hence it suffices to find
a scheme W and a surjective and smooth morphism W → X .
Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ = B′ ×B X
and denote f ′ : X ′ → B′ the projection. Then X ′ = CohX′/B′ is equal to the 2-fibre
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product of X with the category fibred in sets associated to B′ over the category fibred
in sets associated to B (Remark 5.5). By the material in Algebraic Stacks, Section 10 the
morphism X ′ → X is surjective and étale. Hence it suffices to prove the result for X ′. In
other words, we may assume B is a scheme.

Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks, Section
19. Thus we may assume S = B.

Assume S = B. Choose an affine open covering S =
⋃
Ui. Denote Xi the restriction of

X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth morphisms
Wi → Xi, then we setW =

∐
Wi and we obtain a surjective smooth morphismW → X .

Thus we may assume S = B is affine.

Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic spaces
Xi → Spec(Λi) which is separated and of finite presentation and whose base change to
Λ is X . See Limits of Spaces, Lemmas 7.1 and 6.9. If we show that CohXi/ Spec(Λi) is an
algebraic stack, then it follows by base change (Remark 5.5 and Algebraic Stacks, Section
19) that X is an algebraic stack. Thus we may assume that Λ is a finite type Z-algebra.

Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma 17.1 to conclude that X is an
algebraic stack. Note that Λ is a G-ring, see More on Algebra, Proposition 50.12. Hence
all local rings of S are G-rings. Thus (5) holds. To check (2) we have to verify axioms
[-1], [0], [1], [2], and [3] of Artin’s Axioms, Section 14. We omit the verification of [-1] and
axioms [0], [1], [2], [3] correspond respectively to Lemmas 5.4, 5.6, 5.7, 5.9. Condition (3)
is Lemma 5.10. Condition (1) is Lemma 5.3.

It remains to show condition (4) which is openness of versality. To see this we will use
Artin’s Axioms, Lemma 20.3. We have already seen that X has diagonal representable by
algebraic spaces, has (RS*), and is limit preserving (see lemmas used above). Hence we only
need to see that X satisfies the strong formal effectiveness formulated in Artin’s Axioms,
Lemma 20.3. This is Flatness on Spaces, Theorem 12.8 and the proof is complete. �

7. The functor of quotients

In this section we discuss some generalities regarding the functorQF/X/B defined below.
The notation QuotF/X/B is reserved for a subfunctor of QF/X/B . We urge the reader to
skip this section on a first reading.

Situation 7.1. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Let F be a quasi-coherent OX -module. For any scheme T over B we will denote
XT the base change of X to T and FT the pullback of F via the projection morphism
XT = X ×B T → X . Given such a T we set

QF/X/B(T ) =
{

quotients FT → Q whereQ is a
quasi-coherentOXT -module flat over T

}
We identify quotients if they have the same kernel. Suppose that T ′ → T is a morphism
of schemes over B and FT → Q is an element of QF/X/B(T ). Then the pullback Q′ =
(XT ′ → XT )∗Q is a quasi-coherent OXT ′ -module flat over T ′ by Morphisms of Spaces,
Lemma 31.3. Thus we obtain a functor

(7.1.1) QF/X/B : (Sch/B)opp −→ Sets
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This is the functor of quotients of F/X/B. We define a subfunctor

(7.1.2) Qfp
F/X/B : (Sch/B)opp −→ Sets

which assigns to T the subset of QF/X/B(T ) consisting of those quotients FT → Q such
that Q is of finite presentation as an OXT -module. This is a subfunctor by Properties of
Spaces, Section 30.

In Situation 7.1 we sometimes think of QF/X/B as a functor (Sch/S)opp → Sets endowed
with a morphism QF/X/S → B. Namely, if T is a scheme over S , then an element of
QF/X/B(T ) is a pair (h,Q) where h a morphism h : T → B and Q is a T -flat quotient
FT → Q of finite presentation on XT = X ×B,h T . In particular, when we say that
QF/X/S is an algebraic space, we mean that the corresponding functor (Sch/S)opp → Sets
is an algebraic space. Similar remarks apply to Qfp

F/X/B .

Remark 7.2. In Situation 7.1 let B′ → B be a morphism of algebraic spaces over S.
Set X ′ = X ×B B′ and denote F ′ the pullback of F to X ′. Thus we have the functor
QF ′/X′/B′ on the category of schemes overB′. For a scheme T overB′ it is clear that we
have

QF ′/X′/B′(T ) = QF/X/B(T )
where on the right hand side we think of T as a scheme over B via the composition T →
B′ → B. Similar remarks apply to Qfp

F/X/B . These trivial remarks will occasionally be
useful to change the base algebraic space.

Remark 7.3. Let S be a scheme, X an algebraic space over S , and F a quasi-coherent
OX -module. Suppose that {fi : Xi → X}i∈I is an fpqc covering and for each i, j ∈ I we
are given an fpqc covering {Xijk → Xi ×X Xj}. In this situation we have a bijection{

quotients F → Q where
Q is a quasi-coherent

}
−→

families of quotients f∗
i F → Qi where

Qi is quasi-coherent andQi andQj
restrict to the same quotient on Xijk


Namely, let (f∗

i F → Qi)i∈I be an element of the right hand side. Then since {Xijk →
Xi ×X Xj} is an fpqc covering we see that the pullbacks of Qi and Qj restrict to the
same quotient of the pullback of F to Xi ×X Xj (by fully faithfulness in Descent on
Spaces, Proposition 4.1). Hence we obtain a descent datum for quasi-coherent modules
with respect to {Xi → X}i∈I . By Descent on Spaces, Proposition 4.1 we find a map
of quasi-coherent OX -modules F → Q whose restriction to Xi recovers the given maps
f∗
i F → Qi. Since the family of morphisms {Xi → X} is jointly surjective and flat, for

every point x ∈ |X| there exists an i and a point xi ∈ |Xi| mapping to x. Note that the
induced map on local rings OX,x → OXi,xi is faithfully flat, see Morphisms of Spaces,
Section 30. Thus we see that F → Q is surjective.

Lemma 7.4. In Situation 7.1. The functors QF/X/B and Qfp
F/X/B satisfy the sheaf

property for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and Fi = FTi . Note that {Xi → XT }i∈I is an fpqc covering ofXT (Topologies
on Spaces, Lemma 9.3) and that XTi×TTi′ = Xi ×XT Xi′ . Suppose that Fi → Qi is a
collection of elements of QF/X/B(Ti) such that Qi and Qi′ restrict to the same element
of QF/X/B(Ti×T Ti′). By Remark 7.3 we obtain a surjective map of quasi-coherentOXT -
modules FT → Q whose restriction to Xi recovers the given quotients. By Morphisms
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of Spaces, Lemma 31.5 we see that Q is flat over T . Finally, in the case of Qfp
F/X/B , i.e., if

Qi are of finite presentation, then Descent on Spaces, Lemma 6.2 guarantees that Q is of
finite presentation as anOXT -module. �

Sanity check: QF/X/B , Qfp
F/X/B play the same role among algebraic spaces over S.

Lemma 7.5. In Situation 7.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,QF/X/B) =
{

(h,FT → Q) where h : T → B and
Q is quasi-coherent and flat over T

}
where FT denotes the pullback of F to the algebraic space X ×B,h T . Similarly, we have

MorSh((Sch/S)fppf )(T,Qfp
F/X/B) =

{
(h,FT → Q) where h : T → B and

Q is of finite presentation and flat over T

}
Proof. Choose a scheme U and a surjective étale morphism p : U → T . Let R =

U ×T U with projections t, s : R→ U .

Let v : T → QF/X/B be a natural transformation. Then v(p) corresponds to a pair
(hU ,FU → QU ) over U . As v is a transformation of functors we see that the pullbacks
of (hU ,FU → QU ) by s and t agree. Since T = U/R (Spaces, Lemma 9.1), we obtain a
morphism h : T → B such that hU = h ◦ p. By Descent on Spaces, Proposition 4.1 the
quotient QU descends to a quotient FT → Q over XT . Since U → T is surjective and
flat, it follows from Morphisms of Spaces, Lemma 31.5 thatQ is flat over T .

Conversely, let (h,FT → Q) be a pair over T . Then we get a natural transformation
v : T → QF/X/B by sending a morphism a : T ′ → T where T ′ is a scheme to (h ◦
a,FT ′ → a∗Q). We omit the verification that the construction of this and the previous
paragraph are mutually inverse.

In the case of Qfp
F/X/B we add: given a morphism h : T → B, a quasi-coherent sheaf on

XT is of finite presentation as anOXT -module if and only if the pullback toXU is of finite
presentation as an OXU -module. This follows from the fact that XU → XT is surjective
and étale and Descent on Spaces, Lemma 6.2. �

Lemma 7.6. In Situation 7.1 let {Xi → X}i∈I be an fpqc covering and for each
i, j ∈ I let {Xijk → Xi ×X Xj} be an fpqc covering. Denote Fi, resp. Fijk the pullback
of F to Xi, resp. Xijk. For every scheme T over B the diagram

QF/X/B(T ) // ∏
iQFi/Xi/B(T )

pr∗
0 //

pr∗
1

//
∏
i,j,kQFijk/Xijk/B(T )

presents the first arrow as the equalizer of the other two. The same is true for the functor
Qfp

F/X/B .

Proof. Let Fi,T → Qi be an element in the equalizer of pr∗
0 and pr∗

1. By Remark
7.3 we obtain a surjection FT → Q of quasi-coherent OXT -modules whose restriction to
Xi,T recovers Fi → Qi. By Morphisms of Spaces, Lemma 31.5 we see that Q is flat over
T as desired. In the case of the functor Qfp

F/X/B , i.e., if Qi is of finite presentation, then
Q is of finite presentation too by Descent on Spaces, Lemma 6.2. �
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Lemma 7.7. In Situation 7.1 assume also that (a) f is quasi-compact and quasi-separated
and (b) F is of finite presentation. Then the functor Qfp

F/X/B is limit preserving in
the following sense: If T = limTi is a directed limit of affine schemes over B, then
Qfp

F/X/B(T ) = colim Qfp
F/X/B(Ti).

Proof. Let T = limTi be as in the statement of the lemma. Choose i0 ∈ I and
replace I by {i ∈ I | i ≥ i0}. We may set B = S = Ti0 and we may replace X by XT0

and F by the pullback to XT0 . Then XT = limXTi , see Limits of Spaces, Lemma 4.1. Let
FT → Q be an element of Qfp

F/X/B(T ). By Limits of Spaces, Lemma 7.2 there exists an i
and a mapFTi → Qi ofOXTi -modules of finite presentation whose pullback toXT is the
given quotient map.

We still have to check that, after possibly increasing i, the mapFTi → Qi is surjective and
Qi is flat over Ti. To do this, choose an affine scheme U and a surjective étale morphism
U → X (see Properties of Spaces, Lemma 6.3). We may check surjectivity and flatness
over Ti after pulling back to the étale cover UTi → XTi (by definition). This reduces us
to the case where X = Spec(B0) is an affine scheme of finite presentation over B = S =
T0 = Spec(A0). Writing Ti = Spec(Ai), then T = Spec(A) with A = colimAi we
have reached the following algebra problem. Let Mi → Ni be a map of finitely presented
B0 ⊗A0 Ai-modules such that Mi ⊗Ai A→ Ni ⊗Ai A is surjective and Ni ⊗Ai A is flat
overA. Show that for some i′ ≥ i Mi⊗Ai Ai′ → Ni⊗Ai Ai′ is surjective andNi⊗Ai Ai′
is flat over A. The first follows from Algebra, Lemma 127.5 and the second from Algebra,
Lemma 168.1. �

Lemma 7.8. In Situation 7.1. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes overB whereZ → Z ′ is a thickening andZ → Y
is affine, see More on Morphisms, Lemma 14.3. Then the natural map

QF/X/B(Y ′) −→ QF/X/B(Y )×QF/X/B(Z) QF/X/B(Z ′)

is bijective. If X → B is locally of finite presentation, then the same thing is true for
QfpF/X/B .

Proof. Let us construct an inverse map. Namely, suppose we have FY → A, FZ′ →
B′, and an isomorphism A|XZ → B′|XZ compatible with the given surjections. Then we
apply Pushouts of Spaces, Lemma 6.6 to get a quasi-coherent moduleA′ on XY ′ flat over
Y ′. Since this sheaf is constructed as a fibre product (see proof of cited lemma) there is a
canonical map FY ′ → A′. That this map is surjective can be seen because it factors as

FY ′

↓
(XY → XY ′)∗FY ×(XZ→XY ′ )∗FZ (XZ′ → XY ′)∗FZ′

↓
A′ = (XY → XY ′)∗A×(XZ→XY ′ )∗A|XZ (XZ′ → XY ′)∗B′

and the first arrow is surjective by More on Algebra, Lemma 6.5 and the second by More
on Algebra, Lemma 6.6.
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In the case of QfpF/X/B all we have to show is that the construction above produces a
finitely presented module. This is explained in More on Algebra, Remark 7.8 in the com-
mutative algebra setting. The current case of modules over algebraic spaces follows from
this by étale localization. �

Remark 7.9 (Obstructions for quotients). In Situation 7.1 assume that F is flat over
B. Let T ⊂ T ′ be an first order thickening of schemes over B with ideal sheaf J . Then
XT ⊂ XT ′ is a first order thickening of algebraic spaces whose ideal sheaf I is a quotient
of f∗

TJ . We will think of sheaves on XT ′ , resp. T ′ as sheaves on XT , resp. T using the
fundamental equivalence described in More on Morphisms of Spaces, Section 9. Let

0→ K → FT → Q→ 0

define an element x of QF/X/B(T ). Since FT ′ is flat over T ′ we have a short exact se-
quence

0→ f∗
TJ ⊗OXT

FT
i−→ FT ′

π−→ FT → 0

and we have f∗
TJ ⊗OXT

FT = I ⊗OXT
FT , see Deformation Theory, Lemma 11.2. Let

us use the abbreviation f∗
TJ ⊗OXT

G = G ⊗OT
J for an OXT -module G. SinceQ is flat

over T , we obtain a short exact sequence

0→ K⊗OT
J → FT ⊗OT

J → Q⊗OT
J →→ 0

Combining the above we obtain an canonical extension

0→ Q⊗OT
J → π−1(K)/i(K ⊗OT

J )→ K → 0

ofOXT -modules. This defines a canonical class

ox(T ′) ∈ Ext1
OXT

(K,Q⊗OT
J )

If ox(T ′) is zero, then we obtain a splitting of the short exact sequence defining it, in
other words, we obtain aOXT ′ -submoduleK′ ⊂ π−1(K) sitting in a short exact sequence
0 → K ⊗OT

J → K′ → K → 0. Then it follows from the lemma reference above that
Q′ = FT ′/K′ is a lift of x to an element of QF/X/B(T ′). Conversely, the reader sees
that the existence of a lift implies that ox(T ′) is zero. Moreover, if x ∈ QfpF/X/B(T ), then
automatically x′ ∈ QfpF/X/B(T ′) by Deformation Theory, Lemma 11.3. If we ever need
this remark we will turn this remark into a lemma, precisely formulate the result and give
a detailed proof (in fact, all of the above works in the setting of arbitrary ringed topoi).

Remark 7.10 (Deformations of quotients). In Situation 7.1 assume thatF is flat over
B. We continue the discussion of Remark 7.9. Assume ox(T ′) = 0. Then we claim that
the set of lifts x′ ∈ QF/X/B(T ′) is a principal homogeneous space under the group

HomOXT
(K,Q⊗OT

J )
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Namely, given anyFT ′ → Q′ flat over T ′ lifting the quotientQwe obtain a commutative
diagram with exact rows and columns

0

��

0

��

0

��
0 // K ⊗ J //

��

FT ⊗ J //

��

Q⊗ J //

��

0

0 // K′ //

��

FT ′ //

��

Q′ //

��

0

0 // K

��

// FT

��

// Q

��

// 0

0 0 0
(to see this use the observations made in the previous remark). Given a map ϕ : K →
Q⊗J we can consider the subsheafK′

ϕ ⊂ FT ′ consisting of those local sections s whose
image in FT is a local section k of K and whose image in Q′ is the local section ϕ(k) of
Q ⊗ J . Then set Q′

ϕ = FT ′/K′
ϕ. Conversely, any second lift of x corresponds to one

of the qotients constructed in this manner. If we ever need this remark we will turn this
remark into a lemma, precisely formulate the result and give a detailed proof (in fact, all
of the above works in the setting of arbitrary ringed topoi).

8. The Quot functor

In this section we prove the Quot functor is an algebraic space.

Situation 8.1. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
overS. Assume that f is of finite presentation. LetF be a quasi-coherentOX -module. For
any scheme T over B we will denote XT the base change of X to T and FT the pullback
of F via the projection morphism XT = X ×S T → X . Given such a T we set

QuotF/X/B(T ) =

quotients FT → Q whereQ is a quasi-coherent
OXT -module of finite presentation, flat over T

with support proper over T


By Derived Categories of Spaces, Lemma 7.8 this is a subfunctor of the functor QfpF/X/B
we discussed in Section 7. Thus we obtain a functor
(8.1.1) QuotF/X/B : (Sch/B)opp −→ Sets

This is the Quot functor associated to F/X/B.

In Situation 8.1 we sometimes think of QuotF/X/B as a functor (Sch/S)opp → Sets en-
dowed with a morphism QuotF/X/B → B. Namely, if T is a scheme over S , then an
element of QuotF/X/B(T ) is a pair (h,Q) where h is a morphism h : T → B and Q is
a finitely presented, T -flat quotient FT → Q on XT = X ×B,h T with support proper
over T . In particular, when we say that QuotF/X/B is an algebraic space, we mean that
the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Lemma 8.2. In Situation 8.1. The functor QuotF/X/B satisfies the sheaf property for
the fpqc topology.
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Proof. In Lemma 7.4 we have seen that the functor Qfp
F/X/S is a sheaf. Recall that

for a scheme T over S the subset QuotF/X/S(T ) ⊂ QF/X/S(T ) picks out those quotients
whose support is proper over T . This defines a subsheaf by the result of Descent on Spaces,
Lemma 11.19 combined with Morphisms of Spaces, Lemma 30.10 which shows that taking
scheme theoretic support commutes with flat base change. �

Sanity check: QuotF/X/B plays the same role among algebraic spaces over S.

Lemma 8.3. In Situation 8.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,QuotF/X/B) =

 (h,FT → Q) where h : T → B and
Q is of finite presentation and

flat over T with support proper over T


where FT denotes the pullback of F to the algebraic space X ×B,h T .

Proof. Observe that the left and right hand side of the equality are subsets of the
left and right hand side of the second equality in Lemma 7.5. To see that these subsets
correspond under the identification given in the proof of that lemma it suffices to show:
given h : T → B, a surjective étale morphism U → T , a finite type quasi-coherent OXT -
moduleQ the following are equivalent

(1) the scheme theoretic support ofQ is proper over T , and
(2) the scheme theoretic support of (XU → XT )∗Q is proper over U .

This follows from Descent on Spaces, Lemma 11.19 combined with Morphisms of Spaces,
Lemma 30.10 which shows that taking scheme theoretic support commutes with flat base
change. �

Proposition 8.4. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X . If f is of finite presentation and
separated, then QuotF/X/B is an algebraic space. If F is of finite presentation, then
QuotF/X/B → B is locally of finite presentation.

Proof. By Lemma 8.2 we have that QuotF/X/B is a sheaf in the fppf topology. Let
QuotF/X/B be the stack in groupoids corresponding to QuotF/X/S , see Algebraic Stacks,
Section 7. By Algebraic Stacks, Proposition 13.3 it suffices to show that QuotF/X/B is an
algebraic stack. Consider the 1-morphism of stacks in groupoids

QuotF/X/S −→ CohX/B
on (Sch/S)fppf which associates to the quotient FT → Q the module Q. By Theorem
6.1 we know that CohX/B is an algebraic stack. By Algebraic Stacks, Lemma 15.4 it suffices
to show that this 1-morphism is representable by algebraic spaces.

Let T be a scheme over S and let the object (h,G) of CohX/B over T correspond to a
1-morphism ξ : (Sch/T )fppf → CohX/B . The 2-fibre product

Z = (Sch/T )fppf ×ξ,CohX/B QuotF/X/S

is a stack in setoids, see Stacks, Lemma 6.7. The corresponding sheaf of sets (i.e., functor,
see Stacks, Lemmas 6.7 and 6.2) assigns to a scheme T ′/T the set of surjections u : FT ′ →
GT ′ of quasi-coherent modules on XT ′ . Thus we see that Z is representable by an open
subspace (by Flatness on Spaces, Lemma 9.3) of the algebraic space Hom(FT ,G) from
Proposition 3.10. �
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Remark 8.5 (Quot via Artin’s axioms). Let S be a Noetherian scheme all of whose
local rings are G-rings. Let X be an algebraic space over S whose structure morphism
f : X → S is of finite presentation and separated. Let F be a finitely presented quasi-
coherent sheaf onX flat over S. In this remark we sketch how one can use Artin’s axioms
to prove that QuotF/X/S is an algebraic space locally of finite presentation over S and
avoid using the algebraicity of the stack of coherent sheaves as was done in the proof of
Proposition 8.4.

We check the conditions listed in Artin’s Axioms, Proposition 16.1. Representability of the
diagonal of QuotF/X/S can be seen as follows: suppose we have two quotients FT → Qi,
i = 1, 2. Denote K1 the kernel of the first one. Then we have to show that the locus
of T over which u : K1 → Q2 becomes zero is representable. This follows for exam-
ple from Flatness on Spaces, Lemma 8.6 or from a discussion of the Hom sheaf earlier in
this chapter. Axioms [0] (sheaf), [1] (limits), [2] (Rim-Schlessinger) follow from Lemmas
8.2, 7.7, and 7.8 (plus some extra work to deal with the properness condition). Axiom
[3] (finite dimensionality of tangent spaces) follows from the description of the infinites-
imal deformations in Remark 7.10 and finiteness of cohomology of coherent sheaves on
proper algebraic spaces over fields (Cohomology of Spaces, Lemma 20.2). Axiom [4] (ef-
fectiveness of formal objects) follows from Grothendieck’s existence theorem (More on
Morphisms of Spaces, Theorem 42.11). As usual, the trickiest to verify is axiom [5] (open-
ness of versality). One can for example use the obstruction theory described in Remark
7.9 and the description of deformations in Remark 7.10 to do this using the criterion in
Artin’s Axioms, Lemma 22.2. Please compare with the second proof of Lemma 5.11.

9. The Hilbert functor

In this section we prove the Hilb functor is an algebraic space.

Situation 9.1. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Assume that f is of finite presentation. For any scheme T over B we will denote
XT the base change of X to T . Given such a T we set

HilbX/B(T ) =
{

closed subspaces Z ⊂ XT such that Z → T
is of finite presentation, flat, and proper

}
Since base change preserves the required properties (Spaces, Lemma 12.3 and Morphisms
of Spaces, Lemmas 28.3, 30.4, and 40.3) we obtain a functor

(9.1.1) HilbX/B : (Sch/B)opp −→ Sets

This is the Hilbert functor associated to X/B.

In Situation 9.1 we sometimes think of HilbX/B as a functor (Sch/S)opp → Sets en-
dowed with a morphism HilbX/S → B. Namely, if T is a scheme over S , then an element
of HilbX/B(T ) is a pair (h,Z) where h is a morphism h : T → B and Z ⊂ XT =
X ×B,h T is a closed subscheme, flat, proper, and of finite presentation over T . In par-
ticular, when we say that HilbX/B is an algebraic space, we mean that the corresponding
functor (Sch/S)opp → Sets is an algebraic space.

Of course the Hilbert functor is just a special case of the Quot functor.

Lemma 9.2. In Situation 9.1 we have HilbX/B = QuotOX/X/B .
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Proof. Let T be a scheme over B. Given an element Z ∈ HilbX/B(T ) we can con-
sider the quotient OXT → i∗OZ where i : Z → XT is the inclusion morphism. Note
that i∗OZ is quasi-coherent. Since Z → T and XT → T are of finite presentation, we see
that i is of finite presentation (Morphisms of Spaces, Lemma 28.9), hence i∗OZ is anOXT -
module of finite presentation (Descent on Spaces, Lemma 6.7). Since Z → T is proper
we see that i∗OZ has support proper over T (as defined in Derived Categories of Spaces,
Section 7). Since OZ is flat over T and i is affine, we see that i∗OZ is flat over T (small
argument omitted). HenceOXT → i∗OZ is an element of QuotOX/X/B(T ).

Conversely, given an elementOXT → Q of QuotOX/X/B(T ), we can consider the closed
immersion i : Z → XT corresponding to the quasi-coherent ideal sheaf I = Ker(OXT →
Q) (Morphisms of Spaces, Lemma 13.1). By construction of Z we see that Q = i∗OZ .
Then we can read the arguments given above backwards to see that Z defines an element
of HilbX/B(T ). For example, I is quasi-coherent of finite type (Modules on Sites, Lemma
24.1) hence i : Z → XT is of finite presentation (Morphisms of Spaces, Lemma 28.12)
hence Z → T is of finite presentation (Morphisms of Spaces, Lemma 28.2). Properness of
Z → T follows from the discussion in Derived Categories of Spaces, Section 7. Flatness
of Z → T follows from flatness ofQ over T .

We omit the (immediate) verification that the two constructions given above are mutually
inverse. �

Sanity check: HilbX/B sheaf plays the same role among algebraic spaces over S.

Lemma 9.3. In Situation 9.1. Let T be an algebraic space over S. We have

MorSh((Sch/S)fppf )(T,HilbX/B) =
{

(h,Z) where h : T → B, Z ⊂ XT

finite presentation, flat, proper over T

}
where XT = X ×B,h T .

Proof. By Lemma 9.2 we have HilbX/B = QuotOX/X/B . Thus we can apply Lemma
8.3 to see that the left hand side is bijective with the set of surjections OXT → Q which
are finitely presented, flat over T , and have support proper over T . Arguing exactly as
in the proof of Lemma 9.2 we see that such quotients correspond exactly to the closed
immersions Z → XT such that Z → T is proper, flat, and of finite presentation. �

Proposition 9.4. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. If f is of finite presentation and separated, then HilbX/B is an algebraic
space locally of finite presentation over B.

Proof. Immediate consequence of Lemma 9.2 and Proposition 8.4. �

10. The Picard stack

The Picard stack for a morphism of algebraic spaces was introduced in Examples of Stacks,
Section 16. We will deduce it is an open substack of the stack of coherent sheaves (in good
cases) from the following lemma.

Lemma 10.1. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S which is flat, of finite presentation, and proper. The natural map

PicX/B −→ CohX/B
is representable by open immersions.
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Proof. Observe that the map simply sends a triple (T, g,L) as in Examples of Stacks,
Section 16 to the same triple (T, g,L) but where now we view this as a triple of the kind
described in Situation 5.1. This works because the invertibleOXT -module L is certainly a
finitely presentedOXT -module, it is flat over T becauseXT → T is flat, and the support is
proper over T as XT → T is proper (Morphisms of Spaces, Lemmas 30.4 and 40.3). Thus
the statement makes sense.

Having said this, it is clear that the content of the lemma is the following: given an object
(T, g,F) of CohX/B there is an open subscheme U ⊂ T such that for a morphism of
schemes T ′ → T the following are equivalent

(a) T ′ → T factors through U ,
(b) the pullback FT ′ of F by XT ′ → XT is invertible.

LetW ⊂ |XT | be the set of points x ∈ |XT | such thatF is locally free in a neighbourhood
of x. By More on Morphisms of Spaces, Lemma 23.8. W is open and formation of W
commutes with arbitrary base change. Clearly, if T ′ → T satisfies (b), then |XT ′ | → |XT |
maps intoW . Hence we may replace T by the open T \fT (|XT |\W ) in order to construct
U . After doing so we reach the situation where F is finite locally free. In this case we get
a disjoint union decompositionXT = X0qX1qX2q . . . into open and closed subspaces
such that the restriction of F is locally free of rank i on Xi. Then clearly

U = T \ fT (|X0| ∪ |X2| ∪ |X3| ∪ . . .)

works. (Note that if we assume that T is quasi-compact, then XT is quasi-compact hence
only a finite number of Xi are nonempty and so U is indeed open.) �

Proposition 10.2. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. If f is flat, of finite presentation, and proper, then PicX/B is an algebraic
stack.

Proof. Immediate consequence of Lemma 10.1, Algebraic Stacks, Lemma 15.4 and
either Theorem 5.12 or Theorem 6.1 �

11. The Picard functor

In this section we revisit the Picard functor discussed in Picard Schemes of Curves, Sec-
tion 4. The discussion will be more general as we want to study the Picard functor of a
morphism of algebraic spaces as in the section on the Picard stack, see Section 10.

Let S be a scheme and let X be an algebraic space over S. An invertible sheaf on X is
an invertible OX -module on Xétale, see Modules on Sites, Definition 32.1. The group
of isomorphism classes of invertible modules is denoted Pic(X), see Modules on Sites,
Definition 32.6. Given a morphism f : X → Y of algebraic spaces over S pullback
defines a group homomorphism Pic(Y ) → Pic(X). The assignment X  Pic(X) is
a contravariant functor from the category of schemes to the category of abelian groups.
This functor is not representable, but it turns out that a relative variant of this construction
sometimes is representable.

Situation 11.1. Let S be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. We define

PicX/B : (Sch/B)opp −→ Sets
as the fppf sheafification of the functor which to a scheme T over B associates the group
Pic(XT ).
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In Situation 11.1 we sometimes think of PicX/B as a functor (Sch/S)opp → Sets endowed
with a morphism PicX/B → B. In this point of view, we define PicX/B to be the fppf
sheafification of the functor

T/S 7−→ {(h,L) | h : T → B, L ∈ Pic(X ×B,h T )}

In particular, when we say that PicX/B is an algebraic space, we mean that the correspond-
ing functor (Sch/S)opp → Sets is an algebraic space.

An often used remark is that if T is a scheme over B, then PicXT /T is the restriction of
PicX/B to (Sch/T )fppf .

Lemma 11.2. In Situation 11.1 the functor PicX/B is the sheafification of the functor
T 7→ Ob(PicX/B,T )/ ∼=.

Proof. Since the fibre category PicX/B,T of the Picard stack PicX/B over T is the
category of invertible sheaves on XT (see Section 10 and Examples of Stacks, Section 16)
this is immediate from the definitions. �

It turns out to be nontrivial to see what the value of PicX/B is on schemes T overB. Here
is a lemma that helps with this task.

Lemma 11.3. In Situation 11.1. IfOT → fT,∗OXT is an isomorphism for all schemes
T over B, then

0→ Pic(T )→ Pic(XT )→ PicX/B(T )
is an exact sequence for all T .

Proof. We may replaceB by T andX byXT and assume thatB = T to simplify the
notation. Let N be an invertible OB-module. If f∗N ∼= OX , then we see that f∗f

∗N ∼=
f∗OX ∼= OB by assumption. Since N is locally trivial, we see that the canonical map
N → f∗f

∗N is locally an isomorphism (because OB → f∗f
∗OB is an isomorphism by

assumption). Hence we conclude thatN → f∗f
∗N → OB is an isomorphism and we see

thatN is trivial. This proves the first arrow is injective.

LetL be an invertibleOX -module which is in the kernel of Pic(X)→ PicX/B(B). Then
there exists an fppf covering {Bi → B} such that L pulls back to the trivial invertible
sheaf onXBi . Choose a trivializing section si. Then pr∗

0si and pr∗
1sj are both trivialising

sections of L over XBi×BBj and hence differ by a multiplicative unit

fij ∈ Γ(XSi×BBj ,O∗
XBi×BBj

) = Γ(Bi ×B Bj ,O∗
Bi×NBj )

(equality by our assumption on pushforward of structure sheaves). Of course these el-
ements satisfy the cocycle condition on Bi ×B Bj ×B Bk , hence they define a descent
datum on invertible sheaves for the fppf covering {Bi → B}. By Descent, Proposition
5.2 there is an invertibleOB-moduleN with trivializations over Bi whose associated de-
scent datum is {fij}. (The proposition applies because B is a scheme by the replacement
performed at the start of the proof.) Then f∗N ∼= L as the functor from descent data to
modules is fully faithful. �

Lemma 11.4. In Situation 11.1 let σ : B → X be a section. Assume that OT →
fT,∗OXT is an isomorphism for all T over B. Then

0→ Pic(T )→ Pic(XT )→ PicX/B(T )→ 0

is a split exact sequence with splitting given by σ∗
T : Pic(XT )→ Pic(T ).
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Proof. DenoteK(T ) = Ker(σ∗
T : Pic(XT )→ Pic(T )). Since σ is a section of f we

see that Pic(XT ) is the direct sum of Pic(T ) and K(T ). Thus by Lemma 11.3 we see that
K(T ) ⊂ PicX/B(T ) for all T . Moreover, it is clear from the construction that PicX/B is
the sheafification of the presheafK. To finish the proof it suffices to show thatK satisfies
the sheaf condition for fppf coverings which we do in the next paragraph.
Let {Ti → T} be an fppf covering. Let Li be elements of K(Ti) which map to the same
elements of K(Ti ×T Tj) for all i and j. Choose an isomorphism αi : OTi → σ∗

Ti
Li for

all i. Choose an isomorphism
ϕij : Li|XTi×T Tj

−→ Lj |XTi×T Tj

If the map
αj |Ti×TTj ◦ σ∗

Ti×TTjϕij ◦ αi|Ti×TTj : OTi×TTj → OTi×TTj
is not equal to multiplication by 1 but some uij , then we can scale ϕij by u−1

ij to correct
this. Having done this, consider the self map

ϕki|XTi×T Tj×T Tk
◦ ϕjk|XTi×T Tj×T Tk

◦ ϕij |XTi×T Tj×T Tk
on Li|XTi×T Tj×T Tk

which is given by multiplication by some section fijk of the structure sheaf ofXTi×TTj×TTk .
By our choice ofϕij we see that the pullback of this map by σ is equal to multiplication by
1. By our assumption on functions on X , we see that fijk = 1. Thus we obtain a descent
datum for the fppf covering {XTi → X}. By Descent on Spaces, Proposition 4.1 there is
an invertibleOXT -module L and an isomorphism α : OT → σ∗

TLwhose pullback toXTi

recovers (Li, αi) (small detail omitted). Thus L defines an object of K(T ) as desired. �

In Situation 11.1 let σ : B → X be a section. We denote PicX/B,σ the category defined as
follows:

(1) An object is a quadruple (T, h,L, α), where (T, h,L) is an object ofPicX/B over
T and α : OT → σ∗

TL is an isomorphism.
(2) A morphism (g, ϕ) : (T, h,L, α) → (T ′, h′,L′, α′) is given by a morphism of

schemes g : T → T ′ with h = h′ ◦ g and an isomorphism ϕ : (g′)∗L′ → L such
that σ∗

Tϕ ◦ g∗α′ = α. Here g′ : XT ′ → XT is the base change of g.
There is a natural faithful forgetful functor

PicX/B,σ −→ PicX/B
In this way we view PicX/B,σ as a category over (Sch/S)fppf .

Lemma 11.5. In Situation 11.1 let σ : B → X be a section. Then PicX/B,σ as defined
above is a stack in groupoids over (Sch/S)fppf .

Proof. We already know that PicX/B is a stack in groupoids over (Sch/S)fppf by
Examples of Stacks, Lemma 16.1. Let us show descent for objects for PicX/B,σ . Let {Ti →
T} be an fppf covering and let ξi = (Ti, hi,Li, αi) be an object of PicX/B,σ lying over
Ti, and let ϕij : pr∗

0ξi → pr∗
1ξj be a descent datum. Applying the result for PicX/B we

see that we may assume we have an object (T, h,L) of PicX/B over T which pulls back to
ξi for all i. Then we get

αi : OTi → σ∗
TiLi = (Ti → T )∗σ∗

TL
Since the maps ϕij are compatible with the αi we see that αi and αj pullback to the same
map on Ti ×T Tj . By descent of quasi-coherent sheaves (Descent, Proposition 5.2, we see
that the αi are the restriction of a single map α : OT → σ∗

TL as desired. We omit the
proof of descent for morphisms. �
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Lemma 11.6. In Situation 11.1 letσ : B → X be a section. The morphismPicX/B,σ →
PicX/B is representable, surjective, and smooth.

Proof. Let T be a scheme and let (Sch/T )fppf → PicX/B be given by the object
ξ = (T, h,L) of PicX/B over T . We have to show that

(Sch/T )fppf ×ξ,PicX/B PicX/B,σ
is representable by a scheme V and that the corresponding morphism V → T is surjective
and smooth. See Algebraic Stacks, Sections 6, 9, and 10. The forgetful functorPicX/B,σ →
PicX/B is faithful on fibre categories and for T ′/T the set of isomorphism classes is the
set of isomorphisms

α′ : OT ′ −→ (T ′ → T )∗σ∗
TL

See Algebraic Stacks, Lemma 9.2. We know this functor is representable by an affine
scheme U of finite presentation over T by Proposition 4.3 (applied to id : T → T and
OT and σ∗L). Working Zariski locally on T we may assume that σ∗

TL is isomorphic to
OT and then we see that our functor is representable by Gm × T over T . Hence U → T
Zariski locally on T looks like the projection Gm × T → T which is indeed smooth and
surjective. �

Lemma 11.7. In Situation 11.1 let σ : B → X be a section. If OT → fT,∗OXT is an
isomorphism for all T overB, thenPicX/B,σ → (Sch/S)fppf is fibred in setoids with set
of isomorphism classes over T given by∐

h:T→B
Ker(σ∗

T : Pic(X ×B,h T )→ Pic(T ))

Proof. If ξ = (T, h,L, α) is an object of PicX/B,σ over T , then an automorphism ϕ
of ξ is given by multiplication with an invertible global section u of the structure sheaf of
XT such that moreover σ∗

Tu = 1. Then u = 1 by our assumption thatOT → fT,∗OXT is
an isomorphism. Hence PicX/B,σ is fibred in setoids over (Sch/S)fppf . Given T and h :
T → B the set of isomorphism classes of pairs (L, α) is the same as the set of isomorphism
classes of L with σ∗

TL ∼= OT (isomorphism not specified). This is clear because any two
choices of α differ by a global unit on T and this is the same thing as a global unit on
XT . �

Proposition 11.8. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that

(1) f is flat, of finite presentation, and proper, and
(2) OT → fT,∗OXT is an isomorphism for all schemes T over B.

Then PicX/B is an algebraic space.

In the situation of the proposition the algebraic stack PicX/B is a gerbe over the algebraic
space PicX/B . After developing the general theory of gerbes, this provides a shorter proof
of the proposition (but using more general theory).

Proof. There exists a surjective, flat, finitely presented morphism B′ → B of alge-
braic spaces such that the base change X ′ = X ×B B′ over B′ has a section: namely, we
can take B′ = X . Observe that PicX′/B′ = B′ ×B PicX/B . Hence PicX′/B′ → PicX/B
is representable by algebraic spaces, surjective, flat, and finitely presented. Hence, if we
can show that PicX′/B′ is an algebraic space, then it follows that PicX/B is an algebraic
space by Bootstrap, Theorem 10.1. In this way we reduce to the case described in the next
paragraph.
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In addition to the assumptions of the proposition, assume that we have a section σ : B →
X . By Proposition 10.2 we see that PicX/B is an algebraic stack. By Lemma 11.6 and
Algebraic Stacks, Lemma 15.4 we see that PicX/B,σ is an algebraic stack. By Lemma 11.7
and Algebraic Stacks, Lemma 8.2 we see that T 7→ Ker(σ∗

T : Pic(XT ) → Pic(T )) is an
algebraic space. By Lemma 11.4 this functor is the same as PicX/B . �

Lemma 11.9. With assumptions and notation as in Proposition 11.8. Then the di-
agonal PicX/B → PicX/B ×B PicX/B is representable by immersions. In other words,
PicX/B → B is locally separated.

Proof. Let T be a scheme over B and let s, t ∈ PicX/B(T ). We want to show that
there exists a locally closed subscheme Z ⊂ T such that s|Z = t|Z and such that a mor-
phism T ′ → T factors through Z if and only if s|T ′ = t|T ′ .

We first reduce the general problem to the case where s and t come from invertible modules
on XT . We suggest the reader skip this step. Choose an fppf covering {Ti → T}i∈I such
that s|Ti and t|Ti come from Pic(XTi) for all i. Suppose that we can show the result for
all the pairs s|Ti , t|Ti . Then we obtain locally closed subschemes Zi ⊂ Ti with the desired
universal property. It follows that Zi and Zj have the same scheme theoretic inverse
image in Ti ×T Tj . This determines a descend datum on Zi/Ti. Since Zi → Ti is locally
quasi-finite, it follows from More on Morphisms, Lemma 57.1 that we obtain a locally
quasi-finite morphism Z → T recovering Zi → Ti by base change. Then Z → T is an
immersion by Descent, Lemma 24.1. Finally, because PicX/B is an fppf sheaf, we conclude
that s|Z = t|Z and that Z satisfies the universal property mentioned above.

Assume s and t come from invertible modules V , W on XT . Set L = V ⊗ W⊗−1 We
are looking for a locally closed subscheme Z of T such that T ′ → T factors through Z if
and only if LXT ′ is the pullback of an invertible sheaf on T ′, see Lemma 11.3. Hence the
existence of Z follows from More on Morphisms of Spaces, Lemma 53.1. �

12. Relative morphisms

We continue the discussion from Criteria for Representability, Section 10. In that section,
starting with a scheme S and morphisms of algebraic spaces Z → B and X → B over S
we constructed a functor

MorB(Z,X) : (Sch/B)opp −→ Sets, T 7−→ {f : ZT → XT }

We sometimes think of MorB(Z,X) as a functor (Sch/S)opp → Sets endowed with a
morphism MorB(Z,X) → B. Namely, if T is a scheme over S , then an element of
MorB(Z,X)(T ) is a pair (f, h) where h is a morphism h : T → B and f : Z ×B,h T →
X ×B,h T is a morphism of algebraic spaces over T . In particular, when we say that
MorB(Z,X) is an algebraic space, we mean that the corresponding functor (Sch/S)opp →
Sets is an algebraic space.

Lemma 12.1. Let S be a scheme. Consider morphisms of algebraic spaces Z → B and
X → B over S. If X → B is separated and Z → B is of finite presentation, flat, and
proper, then there is a natural injective transformation of functors

MorB(Z,X) −→ HilbZ×BX/B

which maps a morphism f : ZT → XT to its graph.
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Proof. Given a scheme T over B and a morphism fT : ZT → XT over T , the
graph of f is the morphism Γf = (id, f) : ZT → ZT ×T XT = (Z ×B X)T . Recall that
being separated, flat, proper, or finite presentation are properties of morphisms of algebraic
spaces which are stable under base change (Morphisms of Spaces, Lemmas 4.4, 30.4, 40.3,
and 28.3). Hence Γf is a closed immersion by Morphisms of Spaces, Lemma 4.6. Moreover,
Γf (ZT ) is flat, proper, and of finite presentation over T . Thus Γf (ZT ) defines an element
of HilbZ×BX/B(T ). To show the transformation is injective it suffices to show that two
morphisms with the same graph are the same. This is true because if Y ⊂ (Z ×B X)T is
the graph of a morphism f , then we can recover f by using the inverse of pr1|Y : Y → ZT
composed with pr2|Y . �

Lemma 12.2. Assumption and notation as in Lemma 12.1. The transformation MorB(Z,X) −→
HilbZ×BX/B is representable by open immersions.

Proof. LetT be a scheme overB and letY ⊂ (Z×BX)T be an element of HilbZ×BX/B(T ).
Then we see thatY is the graph of a morphismZT → XT overT if and only if k = pr1|Y :
Y → ZT is an isomorphism. By More on Morphisms of Spaces, Lemma 49.6 there exists
an open subscheme V ⊂ T such that for any morphism of schemes T ′ → T we have
kT ′ : YT ′ → ZT ′ is an isomorphism if and only if T ′ → T factors through V . This proves
the lemma. �

Proposition 12.3. Let S be a scheme. Let Z → B and X → B be morphisms
of algebraic spaces over S. Assume X → B is of finite presentation and separated and
Z → B is of finite presentation, flat, and proper. Then MorB(Z,X) is an algebraic space
locally of finite presentation over B.

Proof. Immediate consequence of Lemma 12.2 and Proposition 9.4. �

13. The stack of algebraic spaces

This section continuous the discussion started in Examples of Stacks, Sections 7, 8, and 12.
Working over Z, the discussion therein shows that we have a stack in groupoids

p′
ft : Spaces′

ft −→ Schfppf

parametrizing (nonflat) families of finite type algebraic spaces. More precisely, an object3

of Spaces′
ft is a finite type morphism X → S from an algebraic space X to a scheme S

and a morphism (X ′ → S′) → (X → S) is given by a pair (f, g) where f : X ′ → X is
a morphism of algebraic spaces and g : S′ → S is a morphism of schemes which fit into a
commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X , in other words, the diagram is cartesian in the
category of algebraic spaces. The functor p′

ft sends (X → S) to S and sends (f, g) to g.
We define a full subcategory

Spaces′
fp,flat,proper ⊂ Spaces′

ft

3We always perform a replacement as in Examples of Stacks, Lemma 8.2.
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consisting of objects X → S of Spaces′
ft such that X → S is of finite presentation, flat,

and proper. We denote

p′
fp,flat,proper : Spaces′

fp,flat,proper −→ Schfppf
the restriction of the functor p′

ft to the indicated subcategory. We first review the results
already obtained in the references listed above, and then we start adding further results.

Lemma 13.1. The category Spaces′
ft is fibred in groupoids over Schfppf . The same

is true for Spaces′
fp,flat,proper.

Proof. We have seen this in Examples of Stacks, Section 12 for the case of Spaces′
ft

and this easily implies the result for the other case. However, let us also prove this directly
by checking conditions (1) and (2) of Categories, Definition 35.1.

Condition (1). Let X → S be an object of Spaces′
ft and let S′ → S be a morphism of

schemes. Then we set X ′ = S′ ×S X . Note that X ′ → S′ is of finite type by Morphisms
of Spaces, Lemma 23.3. to obtain a morphism (X ′ → S′)→ (X → S) lying over S′ → S.
Argue similarly for the other case using Morphisms of Spaces, Lemmas 28.3, 30.4, and 40.3.

Condition (2). Consider morphisms (f, g) : (X ′ → S′) → (X → S) and (a, b) : (Y →
T ) → (X → S) of Spaces′

ft. Given a morphism h : T → S′ with g ◦ h = b we have to
show there is a unique morphism (k, h) : (Y → T ) → (X ′ → S′) of Spaces′

ft such that
(f, g)◦ (k, h) = (a, b). This is clear from the fact thatX ′ = S′×SX . The same therefore
works for any full subcategory of Spaces′

ft satisfying (1). �

Lemma 13.2. The diagonal

∆ : Spaces′
fp,flat,proper −→ Spaces′

fp,flat,proper × Spaces′
fp,flat,proper

is representable by algebraic spaces.

Proof. We will use criterion (2) of Algebraic Stacks, Lemma 10.11. Let S be a scheme
and let X and Y be algebraic spaces of finite presentation over S , flat over S , and proper
over S. We have to show that the functor

IsomS(X,Y ) : (Sch/S)fppf −→ Sets, T 7−→ {f : XT → YT isomorphism}
is an algebraic space. An elementary argument shows that IsomS(X,Y ) sits in a fibre
product

IsomS(X,Y ) //

��

S

(id,id)
��

MorS(X,Y )×MorS(Y,X) // MorS(X,X)×MorS(Y, Y )

The bottom arrow sends (ϕ,ψ) to (ψ ◦ϕ,ϕ ◦ψ). By Proposition 12.3 the functors on the
bottom row are algebraic spaces over S. Hence the result follows from the fact that the
category of algebraic spaces over S has fibre products. �

Lemma 13.3. The category Spaces′
ft is a stack in groupoids over Schfppf . The same

is true for Spaces′
fp,flat,proper.

Proof. The reason this lemma holds is the slogan: any fppf descent datum for alge-
braic spaces is effective, see Bootstrap, Section 11. More precisely, the lemma for Spaces′

ft

follows from Examples of Stacks, Lemma 8.1 as we saw in Examples of Stacks, Section 12.
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However, let us review the proof. We need to check conditions (1), (2), and (3) of Stacks,
Definition 5.1.
Property (1) we have seen in Lemma 13.1.
Property (2) follows from Lemma 13.2 in the case of Spaces′

fp,flat,proper. In the case of
Spaces′

ft it follows from Examples of Stacks, Lemma 7.2 (and this is really the “correct”
reference).
Condition (3) for Spaces′

ft is checked as follows. Suppose given
(1) an fppf covering {Ui → U}i∈I in Schfppf ,
(2) for each i ∈ I an algebraic space Xi of finite type over Ui, and
(3) for each i, j ∈ I an isomorphism ϕij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui ×U Uj satisfying the cocycle condition over Ui ×U Uj ×U Uk.
We have to show there exists an algebraic spaceX of finite type overU and isomorphisms
XUi

∼= Xi overUi recovering the isomorphismsϕij . This follows from Bootstrap, Lemma
11.3 part (2). By Descent on Spaces, Lemma 11.11 we see thatX → U is of finite type. In the
case of Spaces′

fp,flat,proper one additionally uses Descent on Spaces, Lemma 11.12, 11.13,
and 11.19 in the last step. �

Sanity check: the stacks Spaces′
ft and Spaces′

fp,flat,proper play the same role among alge-
braic spaces.

Lemma 13.4. Let T be an algebraic space over Z. Let ST denote the corresponding
algebraic stack (Algebraic Stacks, Sections 7, 8, and 13). We have an equivalence of cate-
gories {

morphisms of algebraic spaces
X → T of finite type

}
−→ MorCat/Schfppf (ST ,Spaces′

ft)

and an equivalence of categories{
morphisms of algebraic spaces X → T
of finite presentation, flat, and proper

}
−→ MorCat/Schfppf (ST ,Spaces′

fp,flat,proper)

Proof. We are going to deduce this lemma from the fact that it holds for schemes
(essentially by construction of the stacks) and the fact that fppf descent data for algebraic
spaces over algerbaic spaces are effective. We strongly encourage the reader to skip the
proof.
The construction from left to right in either arrow is straightforward: given X → T of
finite type the functor ST → Spaces′

ft assigns to U/T the base changeXU → U . We will
explain how to construct a quasi-inverse.
If T is a scheme, then there is a quasi-inverse by the 2-Yoneda lemma, see Categories,
Lemma 41.2. Let p : U → T be a surjective étale morphism where U is a scheme. Let
R = U ×T U with projections s, t : R→ U . Observe that we obtain morphisms

SU×TU×TU

//
//
//
SR

//
// SU // ST

satisfying various compatibilities (on the nose).
Let G : ST → Spaces′

ft be a functor over Schfppf . The restriction of G to SU via the
map displayed above corresponds to a finite type morphism XU → U of algebraic spaces
via the 2-Yoneda lemma. Since p ◦ s = p ◦ t we see that R ×s,U XU and R ×t,U XU

both correspond to the restriction of G to SR. Thus we obtain a canonical isomorphism
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ϕ : XU ×U,t R → R ×s,U XU over R. This isomorphism satisfies the cocycle condition
by the various compatibilities of the diagram given above. Thus a descent datum which is
effective by Bootstrap, Lemma 11.3 part (2). In other words, we obtain an object X → T
of the right hand side category. We omit checking the construction G X is functorial
and that it is quasi-inverse to the other construction. In the case of Spaces′

fp,flat,proper

one additionally uses Descent on Spaces, Lemma 11.12, 11.13, and 11.19 in the last step to
see that X → T is of finite presentation, flat, and proper. �

Remark 13.5. Let B be an algebraic space over Spec(Z). Let B-Spaces′
ft be the cate-

gory consisting of pairs (X → S, h : S → B) where X → S is an object of Spaces′
ft and

h : S → B is a morphism. A morphism (X ′ → S′, h′)→ (X → S, h) in B-Spaces′
ft is a

morphism (f, g) in Spaces′
ft such that h ◦ g = h′. In this situation the diagram

B-Spaces′
ft

//

��

Spaces′
ft

��
(Sch/B)fppf // Schfppf

is 2-fibre product square. This trivial remark will occasionally be useful to deduce results
from the absolute case Spaces′

ft to the case of families over a given base algebraic space.
Of course, a similar construction works for B-Spaces′

fp,flat,proper

Lemma 13.6. The stack p′
fp,flat,proper : Spaces′

fp,flat,proper → Schfppf is limit
preserving (Artin’s Axioms, Definition 11.1).

Proof. Let T = limTi be the limits of a directed inverse system of affine schemes. By
Limits of Spaces, Lemma 7.1 the category of algebraic spaces of finite presentation over T
is the colimit of the categories of algebraic spaces of finite presentation over Ti. To finish
the proof use that flatness and properness descends through the limit, see Limits of Spaces,
Lemmas 6.12 and 6.13. �

Lemma 13.7. Let
T //

��

T ′

��
S // S′

be a pushout in the category of schemes where T → T ′ is a thickening and T → S is
affine, see More on Morphisms, Lemma 14.3. Then the functor on fibre categories

Spaces′
fp,flat,proper,S′

↓
Spaces′

fp,flat,proper,S ×Spaces′
fp,flat,proper,T

Spaces′
fp,flat,proper,T ′

is an equivalence.

Proof. The functor is an equivalence if we drop “proper” from the list of condi-
tions and replace “of finite presentation” by “locally of finite presentation”, see Pushouts
of Spaces, Lemma 6.7. Thus it suffices to show that given a morphism X ′ → S′ of an al-
gebraic space to S′ which is flat and locally of finite presentation, thenX ′ → S′ is proper
if and only if S ×S′ X ′ → S and T ′ ×S′ X ′ → T ′ are proper. One implication follows
from the fact that properness is preserved under base change (Morphisms of Spaces, Lemma
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40.3) and the other from the fact that properness of S ×S′ X ′ → S implies properness of
X ′ → S′ by More on Morphisms of Spaces, Lemma 10.2. �

Lemma 13.8. Let k be a field and let x = (X → Spec(k)) be an object of X =
Spaces′

fp,flat,proper over Spec(k).
(1) If k is of finite type over Z, then the vector spaces TFX ,k,x and Inf(FX ,k,x) (see

Artin’s Axioms, Section 8) are finite dimensional, and
(2) in general the vector spaces Tx(k) and Infx(k) (see Artin’s Axioms, Section 21)

are finite dimensional.

Proof. The discussion in Artin’s Axioms, Section 8 only applies to fields of finite
type over the base scheme Spec(Z). Our stack satisfies (RS*) by Lemma 13.7 and we may
apply Artin’s Axioms, Lemma 21.2 to get the vector spaces Tx(k) and Infx(k) mentioned
in (2). Moreover, in the finite type case these spaces agree with the ones mentioned in (1)
by Artin’s Axioms, Remark 21.7. With this out of the way we can start the proof. Observe
that the first order thickening Spec(k) → Spec(k[ε]) = Spec(k[k]) has conormal mod-
ule k. Hence the formula in Deformation Theory, Lemma 14.2 describing infinitesimal
deformations of X and infinitesimal automorphisms of X become

Tx(k) = Ext1
OX

(NLX/k,OX) and Infx(k) = Ext0
OX

(NLX/k,OX)
By More on Morphisms of Spaces, Lemma 21.5 and the fact that X is Noetherian, we
see that NLX/k has coherent cohomology sheaves zero except in degrees 0 and −1. By
Derived Categories of Spaces, Lemma 8.4 the displayed Ext-groups are finite k-vector
spaces and the proof is complete. �

Beware that openness of versality (as proved in the next lemma) is a bit strange because
our stack does not satisfy formal effectiveness, see Examples, Section 70. Later we will ap-
ply the openness of versality to suitable substacks of Spaces′

fp,flat,proper which do satisfy
formal effectiveness to conclude that these stacks are algebraic.

Lemma 13.9. The stack in groupoids X = Spaces′
fp,flat,proper satisfies openness of

versality over Spec(Z). Similarly, after base change (Remark 13.5) openness of versality
holds over any Noetherian base scheme S.

Proof. For the “usual” proof of this fact, please see the discussion in the remark fol-
lowing this proof. We will prove this using Artin’s Axioms, Lemma 20.3. We have already
seen that X has diagonal representable by algebraic spaces, has (RS*), and is limit preserv-
ing, see Lemmas 13.2, 13.7, and 13.6. Hence we only need to see that X satisfies the strong
formal effectiveness formulated in Artin’s Axioms, Lemma 20.3.
Let (Rn) be an inverse system of rings such that Rn → Rm is surjective with square zero
kernel for all n ≥ m. Let Xn → Spec(Rn) be a finitely presented, flat, proper morphism
where Xn is an algebraic space and let Xn+1 → Xn be a morphism over Spec(Rn+1)
inducing an isomorphism Xn = Xn+1 ×Spec(Rn+1) Spec(Rn). We have to find a flat,
proper, finitely presented morphism X → Spec(limRn) whose source is an algebraic
space such that Xn is the base change of X for all n.
Let In = Ker(Rn → R1). We may think of (X1 ⊂ Xn) → (Spec(R1) ⊂ Spec(Rn)) as
a morphism of first order thickenings. (Please read some of the material on thickenings
of algebraic spaces in More on Morphisms of Spaces, Section 9 before continuing.) The
structure sheaf of Xn is an extension

0→ OX1 ⊗R1 In → OXn → OX1 → 0
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over 0→ In → Rn → R1, see More on Morphisms of Spaces, Lemma 18.1. Let’s consider
the extension

0→ limOX1 ⊗R1 In → limOXn → OX1 → 0
over 0 → lim In → limRn → R1 → 0. The displayed sequence is exact as the R1 lim
of the system of kernels is zero by Derived Categories of Spaces, Lemma 5.4. Observe that
the map

OX1 ⊗R1 lim In −→ limOX1 ⊗R1 In

induces an isomorphism upon applying the functorDQX , see Derived Categories of Spaces,
Lemma 25.6. Hence we obtain a unique extension

0→ OX1 ⊗R1 lim In → O′ → OX1 → 0
over 0 → lim In → limRn → R1 → 0 by the equivalence of categories of Deformation
Theory, Lemma 14.4. The sheafO′ determines a first order thickening of algebraic spaces
X1 ⊂ X over Spec(R1) ⊂ Spec(limRn) by More on Morphisms of Spaces, Lemma
9.7. Observe that X → Spec(limRn) is flat by the already used More on Morphisms
of Spaces, Lemma 18.1. By More on Morphisms of Spaces, Lemma 18.3 we see that X →
Spec(limRn) is proper and of finite presentation. This finishes the proof. �

Remark 13.10. Lemma 13.9 can also be shown using either Artin’s Axioms, Lemma
24.4 (as in the first proof of Lemma 5.11), or using an obstruction theory as in Artin’s
Axioms, Lemma 22.2 (as in the second proof of Lemma 5.11). In both cases one uses the
deformation and obstruction theory developed in Cotangent, Section 23 to translate the
needed properties of deformations and obstructions into Ext-groups to which Derived
Categories of Spaces, Lemma 23.3 can be applied. The second method (using an obstruction
theory and therefore using the full cotangent complex) is perhaps the “standard” method
used in most references.

14. The stack of polarized proper schemes

To study the stack of polarized proper schemes it suffices to work over Z as we can later
pullback to any scheme or algebraic space we want (see Remark 14.5).

Situation 14.1. We define a category Polarized as follows. Objects are pairs (X →
S,L) where

(1) X → S is a morphism of schemes which is proper, flat, and of finite presentation,
and

(2) L is an invertible OX -module which is relatively ample on X/S (Morphisms,
Definition 37.1).

A morphism (X ′ → S′,L′) → (X → S,L) between objects is given by a triple (f, g, ϕ)
where f : X ′ → X and g : S′ → S are morphisms of schemes which fit into a commuta-
tive diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X , in other words, the diagram is cartesian, and
ϕ : f∗L → L′ is an isomorphism. Composition is defined in the obvious manner (see
Examples of Stacks, Sections 7 and 4). The forgetful functor

p : Polarized −→ Schfppf , (X → S,L) 7−→ S
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is how we view Polarized as a category over Schfppf (see Section 2 for notation).

In the previous section we have done a substantial amount of work on the stackSpaces′
fp,flat,proper

of finitely presented, flat, proper algebraic spaces. To use this material we consider the for-
getful functor

(14.1.1) Polarized −→ Spaces′
fp,flat,proper, (X → S,L) 7−→ (X → S)

This functor will be a useful tool in what follows. Observe that if (X → S) is in the
essential image of (14.1.1), then X and S are schemes.

Lemma 14.2. The categoryPolarized is fibred in groupoids overSpaces′
fp,flat,proper.

The category Polarized is fibred in groupoids over Schfppf .

Proof. We check conditions (1) and (2) of Categories, Definition 35.1.

Condition (1). Let (X → S,L) be an object of Polarized and let (X ′ → S′)→ (X → S)
be a morphism of Spaces′

fp,flat,proper. Then we letL′ be the pullback ofL toX ′. Observe
that X,S, S′ are schemes, hence X ′ is a scheme as well (as the fibre product of schemes).
ThenL′ is ample onX ′/S′ by Morphisms, Lemma 37.9. In this way we obtain a morphism
(X ′ → S′,L′)→ (X → S,L) lying over (X ′ → S′)→ (X → S).

Condition (2). Consider morphisms (f, g, ϕ) : (X ′ → S′,L′) → (X → S,L) and
(a, b, ψ) : (Y → T,N ) → (X → S,L) of Polarized . Given a morphism (k, h) : (Y →
T ) → (X ′ → S′) of Spaces′

fp,flat,proper with (f, g) ◦ (k, h) = (a, b) we have to show
there is a unique morphism (k, h, χ) : (Y → T,N ) → (X ′ → S′,L′) of Polarized such
that (f, g, ϕ) ◦ (k, h, χ) = (a, b, ψ). We can just take

χ = ψ ◦ (k∗ϕ)−1

This proves condition (2). A composition of functors defining fibred categories defines
a fibred category, see Categories, Lemma 33.12. This we see that Polarized is fibred in
groupoids over Schfppf (strictly speaking we should check the fibre categories are groupoids
and apply Categories, Lemma 35.2). �

Lemma 14.3. The categoryPolarized is a stack in groupoids overSpaces′
fp,flat,proper

(endowed with the inherited topology, see Stacks, Definition 10.2). The categoryPolarized
is a stack in groupoids over Schfppf .

Proof. We provePolarized is a stack in groupoids overSpaces′
fp,flat,proper by check-

ing conditions (1), (2), and (3) of Stacks, Definition 5.1. We have already seen (1) in Lemma
14.2.

A covering of Spaces′
fp,flat,proper comes about in the following manner: Let X → S be

an object of Spaces′
fp,flat,proper. Suppose that {Si → S}i∈I is a covering of Schfppf . Set

Xi = Si ×S X . Then {(Xi → Si)→ (X → S)}i∈I is a covering of Spaces′
fp,flat,proper

and every covering of Spaces′
fp,flat,proper is isomorphic to one of these. Set Sij = Si ×S

Sj andXij = Sij×SX so that (Xij → Sij) = (Xi → Si)×(X→S)(Xj → Sj). Next, sup-
pose thatL,N are ample invertible sheaves onX/S so that (X → S,L) and (X → S,N )
are two objects of Polarized over the object (X → S). To check descent for morphisms,
we assume we have morphisms (id, id, ϕi) from (Xi → Si,L|Xi) to (Xi → Si,N|Xi)
whose base changes to morphisms from (Xij → Sij ,L|Xij ) to (Xij → Sij ,N|Xij ) agree.
Then ϕi : L|Xi → N|Xi are isomorphisms of invertible modules over Xi such that ϕi
and ϕj restrict to the same isomorphisms overXij . By descent for quasi-coherent sheaves
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(Descent on Spaces, Proposition 4.1) we obtain a unique isomorphism ϕ : L → N whose
restriction to Xi recovers ϕi.

Decent for objects is proved in exactly the same manner. Namely, suppose that {(Xi →
Si) → (X → S)}i∈I is a covering of Spaces′

fp,flat,proper as above. Suppose we have
objects (Xi → Si,Li) of Polarized lying over (Xi → Si) and a descent datum

(id, id, ϕij) : (Xij → Sij ,Li|Xij )→ (Xij → Sij ,Lj |Xij )

satisfying the obvious cocycle condition over (Xijk → Sijk) for every triple of indices.
Then by descent for quasi-coherent sheaves (Descent on Spaces, Proposition 4.1) we obtain
a unique invertible OX -module L and isomorphisms L|Xi → Li recovering the descent
datum ϕij . To show that (X → S,L) is an object of Polarized we have to prove that L is
ample. This follows from Descent on Spaces, Lemma 13.1.

Since we already have seen that Spaces′
fp,flat,proper is a stack in groupoids over Schfppf

(Lemma 13.3) it now follows formally thatPolarized is a stack in groupoids over Schfppf .
See Stacks, Lemma 10.6. �

Sanity check: the stack Polarized plays the same role among algebraic spaces.

Lemma 14.4. Let T be an algebraic space over Z. Let ST denote the corresponding
algebraic stack (Algebraic Stacks, Sections 7, 8, and 13). We have an equivalence of cate-
gories(X → T,L) where X → T is a morphism

of algebraic spaces, is proper, flat, and of
finite presentation and L ample on X/T

 −→ MorCat/Schfppf (ST ,Polarized)

Proof. Omitted. Hints: Argue exactly as in the proof of Lemma 13.4 and use Descent
on Spaces, Proposition 4.1 to descent the invertible sheaf in the construction of the quasi-
inverse functor. The relative ampleness property descends by Descent on Spaces, Lemma
13.1. �

Remark 14.5. Let B be an algebraic space over Spec(Z). Let B-Polarized be the
category consisting of triples (X → S,L, h : S → B) where (X → S,L) is an object
of Polarized and h : S → B is a morphism. A morphism (X ′ → S′,L′, h′) → (X →
S,L, h) in B-Polarized is a morphism (f, g, ϕ) in Polarized such that h ◦ g = h′. In this
situation the diagram

B-Polarized //

��

Polarized

��
(Sch/B)fppf // Schfppf

is 2-fibre product square. This trivial remark will occasionally be useful to deduce results
from the absolute case Polarized to the case of families over a given base algebraic space.

Lemma 14.6. The functor (14.1.1) defines a 1-morphism

Polarized → Spaces′
fp,flat,proper

of stacks in groupoids over Schfppf which is algebraic in the sense of Criteria for Repre-
sentability, Definition 8.1.
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Proof. By Lemmas 13.3 and 14.3 the statement makes sense. To prove it, we choose
a scheme S and an object ξ = (X → S) of Spaces′

fp,flat,proper over S. We have to show
that

X = (Sch/S)fppf ×ξ,Spaces′
fp,flat,proper

Polarized

is an algebraic stack over S. Observe that an object of X is given by a pair (T/S,L)
where T is a scheme over S and L is an invertibleOXT -module which is ample onXT /T .
Morphisms are defined in the obvious manner. In particular, we see immediately that we
have an inclusion

X ⊂ PicX/S
of categories over (Sch/S)fppf , inducing equality on morphism sets. Since PicX/S is an
algebraic stack by Proposition 10.2 it suffices to show that the inclusion above is repre-
sentable by open immersions. This is exactly the content of Descent on Spaces, Lemma
13.2. �

Lemma 14.7. The diagonal

∆ : Polarized −→ Polarized × Polarized

is representable by algebraic spaces.

Proof. This is a formal consequence of Lemmas 14.6 and 13.2. See Criteria for Rep-
resentability, Lemma 8.4. �

Lemma 14.8. The stack in groupoids Polarized is limit preserving (Artin’s Axioms,
Definition 11.1).

Proof. Let I be a directed set and let (Ai, ϕii′) be a system of rings over I . Set S =
Spec(A) and Si = Spec(Ai). We have to show that on fibre categories we have

PolarizedS = colimPolarizedSi
We know that the category of schemes of finite presentation over S is the colimit of the
category of schemes of finite presentation overSi, see Limits, Lemma 10.1. Moreover, given
Xi → Si of finite presentation, with limit X → S , then the category of invertible OX -
modulesL is the colimit of the categories of invertibleOXi -modulesLi, see Limits, Lemma
10.2 and 10.3. If X → S is proper and flat, then for sufficiently large i the morphism
Xi → Si is proper and flat too, see Limits, Lemmas 13.1 and 8.7. Finally, if L is ample
on X then Li is ample on Xi for i sufficiently large, see Limits, Lemma 4.15. Putting
everything together finishes the proof. �

Lemma 14.9. In Situation 5.1. Let

T //

��

T ′

��
S // S′

be a pushout in the category of schemes where T → T ′ is a thickening and T → S is
affine, see More on Morphisms, Lemma 14.3. Then the functor on fibre categories

PolarizedS′ −→ PolarizedS ×PolarizedT PolarizedT ′

is an equivalence.
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Proof. By More on Morphisms, Lemma 14.6 there is an equivalence
flat-lfpS′ −→ flat-lfpS ×flat-lfpT flat-lfpT ′

where flat-lfpS signifies the category of schemes flat and locally of finite presentation over
S. Let X ′/S′ on the left hand side correspond to the triple (X/S, Y ′/T ′, ϕ) on the right
hand side. Set Y = T ×T ′ Y ′ which is isomorphic with T ×S X via ϕ. Then More on
Morphisms, Lemma 14.5 shows that we have an equivalence

QCoh-flatX′/S′ −→ QCoh-flatX/S ×QCoh-flatY/T QCoh-flatY ′/T ′

where QCoh-flatX/S signifies the category of quasi-coherent OX -modules flat over S.
Since X → S , Y → T , X ′ → S′, Y ′ → T ′ are flat, this will in particular apply to
invertible modules to give an equivalence of categories

Pic(X ′) −→ Pic(X)×Pic(Y ) Pic(Y ′)
where Pic(X) signifies the category of invertibleOX -modules. There is a small point here:
one has to show that if an objectF ′ of QCoh-flatX′/S′ pulls back to invertible modules on
X and Y ′, then F ′ is an invertibleOX′ -module. It follows from the cited lemma that F ′

is an OX′ -module of finite presentation. By More on Morphisms, Lemma 16.7 it suffices
to check the restriction ofF ′ to fibres ofX ′ → S′ is invertible. But the fibres ofX ′ → S′

are the same as the fibres of X → S and hence these restrictions are invertible.
Having said the above we obtain an equivalence of categories if we drop the assumption
(for the category of objects over S) that X → S be proper and the assumption that L be
ample. Now it is clear that if X ′ → S′ is proper, then X → S and Y ′ → T ′ are proper
(Morphisms, Lemma 41.5). Conversely, ifX → S and Y ′ → T ′ are proper, thenX ′ → S′

is proper by More on Morphisms, Lemma 3.3. Similarly, ifL′ is ample onX ′/S′, thenL′|X
is ample onX/S and L′|Y ′ is ample on Y ′/T ′ (Morphisms, Lemma 37.9). Finally, if L′|X
is ample on X/S and L′|Y ′ is ample on Y ′/T ′, then L′ is ample on X ′/S′ by More on
Morphisms, Lemma 3.2. �

Lemma 14.10. Let k be a field and let x = (X → Spec(k),L) be an object of X =
Polarized over Spec(k).

(1) If k is of finite type over Z, then the vector spaces TFX ,k,x and Inf(FX ,k,x) (see
Artin’s Axioms, Section 8) are finite dimensional, and

(2) in general the vector spaces Tx(k) and Infx(k) (see Artin’s Axioms, Section 21)
are finite dimensional.

Proof. The discussion in Artin’s Axioms, Section 8 only applies to fields of finite
type over the base scheme Spec(Z). Our stack satisfies (RS*) by Lemma 14.9 and we may
apply Artin’s Axioms, Lemma 21.2 to get the vector spaces Tx(k) and Infx(k) mentioned
in (2). Moreover, in the finite type case these spaces agree with the ones mentioned in part
(1) by Artin’s Axioms, Remark 21.7. With this out of the way we can start the proof.
One proof is to use an argument as in the proof of Lemma 13.8; this would require us
to develop a deformation theory for pairs consisting of a scheme and a quasi-coherent
module. Another proof would be the use the result from Lemma 13.8, the algebraicity
of Polarized → Spaces′

fp,flat,proper , and a computation of the deformation space of an
invertible module. However, what we will do instead is to translate the question into a
deformation question on graded k-algebras and deduce the result that way.
Let Ck be the category of Artinian local k-algebras A with residue field k. We get a pre-
deformation category p : F → Ck from our object x of X over k, see Artin’s Axioms,
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Section 3. Thus F(A) is the category of triples (XA,LA, α), where (XA,LA) is an object
of Polarized over A and α is an isomorphism (XA,LA)×Spec(A) Spec(k) ∼= (X,L). On
the other hand, let q : G → Ck be the category cofibred in groupoids defined in Defor-
mation Problems, Example 7.1. Choose d0 � 0 (we’ll see below how large). Let P be the
graded k-algebra

P = k ⊕
⊕

d≥d0
H0(X,L⊗d)

Then y = (k, P ) is an object of G(k). Let Gy be the predeformation category of Formal
Deformation Theory, Remark 6.4. Given (XA,FA, α) as above we set

Q = A⊕
⊕

d≥d0
H0(XA,L⊗d

A )

The isomorphism α induces a map β : Q → P . By deformation theory of projective
schemes (More on Morphisms, Lemma 10.6) we obtain a 1-morphism

F −→ Gy, (XA,FA, α) 7−→ (Q, β : Q→ P )
of categories cofibred in groupoids over Ck. In fact, this functor is an equivalence with
quasi-inverse given by Q 7→ Proj

A
(Q). Namely, the scheme XA = Proj

A
(Q) is flat over

A by Divisors, Lemma 30.6. Set LA = OXA(1); this is flat overA by the same lemma. We
get an isomorphism (XA,LA)×Spec(A)Spec(k) = (X,L) from β. Then we can deduce all
the desired properties of the pair (XA,LA) from the corresponding properties of (X,L)
using the techniques in More on Morphisms, Sections 3 and 10. Some details omitted.
In conclusion, we see that TF = TGy = TyG and Inf(F) = Infy(G). These vector spaces
are finite dimensional by Deformation Problems, Lemma 7.3 and the proof is complete.

�

Lemma 14.11 (Strong formal effectiveness for polarized schemes). Let (Rn) be an
inverse system of rings with surjective transition maps whose kernels are locally nilpotent.
SetR = limRn. SetSn = Spec(Rn) andS = Spec(R). Consider a commutative diagram

X1
i1
//

��

X2
i2
//

��

X3 //

��

. . .

S1 // S2 // S3 // . . .

of schemes with cartesian squares. Suppose given (Ln, ϕn) where each Ln is an invertible
sheaf on Xn and ϕn : i∗nLn+1 → Ln is an isomorphism. If

(1) Xn → Sn is proper, flat, of finite presentation, and
(2) L1 is ample on X1

then there exists a morphism of schemes X → S proper, flat, and of finite presentation
and an ample invertibleOX -moduleL and isomorphismsXn

∼= X×SSn andLn ∼= L|Xn
compatible with the morphisms in and ϕn.

Proof. Choose d0 for X1 → S1 and L1 as in More on Morphisms, Lemma 10.6. For
any n ≥ 1 set

An = Rn ⊕
⊕

d≥d0
H0(Xn,L⊗d

n )

By the lemma eachAn is a finitely presented gradedRn-algebra whose homogeneous parts
(An)d are finite projectiveRn-modules such thatXn = Proj(An) andLn = OProj(An)(1).
The lemma also guarantees that the maps

A1 ← A2 ← A3 ← . . .
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induce isomorphisms An = Am ⊗Rm Rn for n ≤ m. We set

B =
⊕

d≥0
Bd with Bd = limn(An)d

By More on Algebra, Lemma 13.3 we see that Bd is a finite projective R-module and that
B ⊗R Rn = An. Thus the scheme

X = Proj(B) and L = OX(1)

is flat over S and L is a quasi-coherentOX -module flat over S , see Divisors, Lemma 30.6.
Because formation of Proj commutes with base change (Constructions, Lemma 11.6) we
obtain canonical isomorphisms

X ×S Sn = Xn and L|Xn ∼= Ln
compatible with the transition maps of the system. Thus we may think of X1 ⊂ X as a
closed subscheme. Below we will show thatB is of finite presentation overR. By Divisors,
Lemmas 30.4 and 30.7 this implies that X → S is of finite presentation and proper and
that L = OX(1) is of finite presentation as an OX -module. Since the restriction of L to
the base changeX1 → S1 is invertible, we see from More on Morphisms, Lemma 16.8 that
L is invertible on an open neighbourhood of X1 in X . Since X → S is closed and since
Ker(R→ R1) is contained in the Jacobson radical (More on Algebra, Lemma 11.3) we see
that any open neighbourhood ofX1 inX is equal toX . Thus L is invertible. Finally, the
set of points in S where L is ample on the fibre is open in S (More on Morphisms, Lemma
50.3) and contains S1 hence equals S. ThusX → S andL have all the properties required
of them in the statement of the lemma.

We prove the claim above. Choose a presentation A1 = R1[X1, . . . , Xs]/(F1, . . . , Ft)
where Xi are variables having degrees di and Fj are homogeneous polynomials in Xi of
degree ej . Then we can choose a map

Ψ : R[X1, . . . , Xs] −→ B

lifting the map R1[X1, . . . , Xs] → A1. Since each Bd is finite projective over R we
conclude from Nakayama’s lemma (Algebra, Lemma 20.1 using again that Ker(R→ R1) is
contained in the Jacobson radical of R) that Ψ is surjective. Since −⊗R R1 is right exact
we can find G1, . . . , Gt ∈ Ker(Ψ) mapping to F1, . . . , Ft in R1[X1, . . . , Xs]. Observe
that Ker(Ψ)d is a finite projective R-module for all d ≥ 0 as the kernel of the surjection
R[X1, . . . , Xs]d → Bd of finite projective R-modules. We conclude from Nakayama’s
lemma once more that Ker(Ψ) is generated by G1, . . . , Gt. �

Lemma 14.12. Consider the stack Polarized over the base scheme Spec(Z). Then
every formal object is effective.

Proof. For definitions of the notions in the lemma, please see Artin’s Axioms, Section
9. From the definitions we see the lemma follows immediately from the more general
Lemma 14.11. �

Lemma 14.13. The stack in groupoids Polarized satisfies openness of versality over
Spec(Z). Similarly, after base change (Remark 14.5) openness of versality holds over any
Noetherian base scheme S.

Proof. This follows from Artin’s Axioms, Lemma 20.3 and Lemmas 14.7, 14.9, 14.8,
and 14.11. For the “usual” proof of this fact, please see the discussion in the remark fol-
lowing this proof. �
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Remark 14.14. Lemma 14.13 can also be shown using an obstruction theory as in
Artin’s Axioms, Lemma 22.2 (as in the second proof of Lemma 5.11). To do this one has
to generalize the deformation and obstruction theory developed in Cotangent, Section 23
to the case of pairs of algebraic spaces and quasi-coherent modules. Another possibility is
to use that the 1-morphism Polarized → Spaces′

fp,flat,proper is algebraic (Lemma 14.6)
and the fact that we know openness of versality for the target (Lemma 13.9 and Remark
13.10).

Theorem 14.15 (Algebraicity of the stack of polarized schemes). The stackPolarized
(Situation 14.1) is algebraic. In fact, for any algebraic space B the stack B-Polarized (Re-
mark 14.5) is algebraic.

Proof. The absolute case follows from Artin’s Axioms, Lemma 17.1 and Lemmas
14.7, 14.9, 14.8, 14.12, and 14.13. The case over B follows from this, the description of
B-Polarized as a 2-fibre product in Remark 14.5, and the fact that algebraic stacks have
2-fibre products, see Algebraic Stacks, Lemma 14.3. �

15. The stack of curves

In this section we prove the stack of curves is algebraic. For a further discussion of moduli
of curves, we refer the reader to Moduli of Curves, Section 1.

A curve in the Stacks project is a variety of dimension 1. However, when we speak of
families of curves, we often allow the fibres to be reducible and/or nonreduced. In this
section, the stack of curves will “parametrize proper schemes of dimension≤ 1”. However,
it turns out that in order to get the correct notion of a family we need to allow the total
space of our family to be an algebraic space. This leads to the following definition.

Situation 15.1. We define a category Curves as follows:
(1) Objects are families of curves. More precisely, an object is a morphism f : X →

S where the base S is a scheme, the total space X is an algebraic space, and f is
flat, proper, of finite presentation, and has relative dimension ≤ 1 (Morphisms
of Spaces, Definition 33.2).

(2) A morphism (X ′ → S′) → (X → S) between objects is given by a pair (f, g)
where f : X ′ → X is a morphism of algebraic spaces and g : S′ → S is a
morphism of schemes which fit into a commutative diagram

X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X , in other words, the diagram is carte-
sian.

The forgetful functor

p : Curves −→ Schfppf , (X → S) 7−→ S

is how we view Curves as a category over Schfppf (see Section 2 for notation).

It follows from Spaces over Fields, Lemma 9.3 and more generally More on Morphisms
of Spaces, Lemma 43.6 that if S is the spectrum of a field, or an Artinian local ring, or a
Noetherian complete local ring, then for any family of curves X → S the total space X
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is a scheme. On the other hand, there are families of curves over A1
k where the total space

is not a scheme, see Examples, Section 66.
It is clear that
(15.1.1) Curves ⊂ Spaces′

fp,flat,proper

and that an object X → S of Spaces′
fp,flat,proper is in Curves if and only if X → S has

relative dimension ≤ 1. We will use this to verify Artin’s axioms for Curves.

Lemma 15.2. The category Curves is fibred in groupoids over Schfppf .

Proof. Using the embedding (15.1.1), the description of the image, and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 13.1) this reduces to the following state-
ment: Given a morphism

X ′ //

��

X

��
S′ // S

in Spaces′
fp,flat,proper (recall that this implies in particular the diagram is cartesian) if

X → S has relative dimension ≤ 1, then X ′ → S′ has relative dimension ≤ 1. This
follows from Morphisms of Spaces, Lemma 34.3. �

Lemma 15.3. The category Curves is a stack in groupoids over Schfppf .

Proof. Using the embedding (15.1.1), the description of the image, and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 13.3) this reduces to the following state-
ment: Given an object X → S of Spaces′

fp,flat,proper and an fppf covering {Si → S}i∈I
the following are equivalent:

(1) X → S has relative dimension ≤ 1, and
(2) for each i the base change Xi → Si has relative dimension ≤ 1.

This follows from Morphisms of Spaces, Lemma 34.3. �

Lemma 15.4. The diagonal
∆ : Curves −→ Curves × Curves

is representable by algebraic spaces.

Proof. This is immediate from the fully faithful embedding (15.1.1) and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 13.2). �

Remark 15.5. LetB be an algebraic space over Spec(Z). LetB-Curves be the category
consisting of pairs (X → S, h : S → B) where X → S is an object of Curves and
h : S → B is a morphism. A morphism (X ′ → S′, h′) → (X → S, h) in B-Curves is a
morphism (f, g) in Curves such that h ◦ g = h′. In this situation the diagram

B-Curves //

��

Curves

��
(Sch/B)fppf // Schfppf

is 2-fibre product square. This trivial remark will occasionally be useful to deduce results
from the absolute case Curves to the case of families of curves over a given base algebraic
space.
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Lemma 15.6. The stack Curves → Schfppf is limit preserving (Artin’s Axioms, Def-
inition 11.1).

Proof. Using the embedding (15.1.1), the description of the image, and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 13.6) this reduces to the following state-
ment: Let T = limTi be the limits of a directed inverse system of affine schemes. Let i ∈ I
and let Xi → Ti be an object of Spaces′

fp,flat,proper over Ti. Assume that T ×Ti Xi → T

has relative dimension ≤ 1. Then for some i′ ≥ i the morphism Ti′ ×Ti Xi → Ti has
relative dimension ≤ 1. This follows from Limits of Spaces, Lemma 6.14. �

Lemma 15.7. Let
T //

��

T ′

��
S // S′

be a pushout in the category of schemes where T → T ′ is a thickening and T → S is
affine, see More on Morphisms, Lemma 14.3. Then the functor on fibre categories

CurvesS′ −→ CurvesS ×CurvesT CurvesT ′

is an equivalence.

Proof. Using the embedding (15.1.1), the description of the image, and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 13.7) this reduces to the following state-
ment: given a morphism X ′ → S′ of an algebraic space to S′ which is of finite presenta-
tion, flat, proper then X ′ → S′ has relative dimension ≤ 1 if and only if S ×S′ X ′ → S
and T ′ ×S′ X ′ → T ′ have relative dimension ≤ 1. One implication follows from the
fact that having relative dimension ≤ 1 is preserved under base change (Morphisms of
Spaces, Lemma 34.3). The other follows from the fact that having relative dimension≤ 1
is checked on the fibres and that the fibres of X ′ → S′ (over points of the scheme S′)
are the same as the fibres of S ×S′ X ′ → S since S → S′ is a thickening by More on
Morphisms, Lemma 14.3. �

Lemma 15.8. Let k be a field and let x = (X → Spec(k)) be an object ofX = Curves
over Spec(k).

(1) If k is of finite type over Z, then the vector spaces TFX ,k,x and Inf(FX ,k,x) (see
Artin’s Axioms, Section 8) are finite dimensional, and

(2) in general the vector spaces Tx(k) and Infx(k) (see Artin’s Axioms, Section 21)
are finite dimensional.

Proof. This is immediate from the fully faithful embedding (15.1.1) and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 13.8). �

Lemma 15.9. Consider the stack Curves over the base scheme Spec(Z). Then every
formal object is effective.

Proof. For definitions of the notions in the lemma, please see Artin’s Axioms, Section
9. Let (A,m, κ) be a Noetherian complete local ring. Let (Xn → Spec(A/mn)) be a
formal object of Curves over A. By More on Morphisms of Spaces, Lemma 43.5 there
exists a projective morphism X → Spec(A) and a compatible system of ismomorphisms
X ×Spec(A) Spec(A/mn) ∼= Xn. By More on Morphisms, Lemma 12.4 we see that X →
Spec(A) is flat. By More on Morphisms, Lemma 30.6 we see that X → Spec(A) has
relative dimension ≤ 1. This proves the lemma. �
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Lemma 15.10. The stack in groupoidsX = Curves satisfies openness of versality over
Spec(Z). Similarly, after base change (Remark 15.5) openness of versality holds over any
Noetherian base scheme S.

Proof. This is immediate from the fully faithful embedding (15.1.1) and the corre-
sponding fact for Spaces′

fp,flat,proper (Lemma 13.9). �

Theorem 15.11 (Algebraicity of the stack of curves). The stack Curves (Situation
15.1) is algebraic. In fact, for any algebraic space B the stack B-Curves (Remark 15.5) is
algebraic.

Proof. The absolute case follows from Artin’s Axioms, Lemma 17.1 and Lemmas 15.4,
15.7, 15.6, 15.9, and 15.10. The case over B follows from this, the description of B-Curves
as a 2-fibre product in Remark 15.5, and the fact that algebraic stacks have 2-fibre products,
see Algebraic Stacks, Lemma 14.3. �

Lemma 15.12. The 1-morphism (15.1.1)

Curves −→ Spaces′
fp,flat,proper

is representable by open and closed immersions.

Proof. Since (15.1.1) is a fully faithful embedding of categories it suffices to show the
following: given an object X → S of Spaces′

fp,flat,proper there exists an open and closed
subscheme U ⊂ S such that a morphism S′ → S factors through U if and only if the base
change X ′ → S′ of X → S has relative dimension ≤ 1. This follows immediately from
More on Morphisms of Spaces, Lemma 31.5. �

Remark 15.13. Consider the 2-fibre product

Curves ×Spaces′
fp,flat,proper

Polarized //

��

Polarized

��
Curves // Spaces′

fp,flat,proper

This fibre product parametrized polarized curves, i.e., families of curves endowed with a
relatively ample invertible sheaf. It turns out that the left vertical arrow

PolarizedCurves −→ Curves
is algebraic, smooth, and surjective. Namely, this 1-morphism is algebraic (as base change
of the arrow in Lemma 14.6), every point is in the image, and there are no obstructions to
deforming invertible sheaves on curves (see proof of Lemma 15.9). This gives another ap-
proach to the algebraicity of Curves. Namely, by Lemma 15.12 we see that PolarizedCurves
is an open and closed substack of the algebraic stack Polarized and any stack in groupoids
which is the target of a smooth algebraic morphism from an algebraic stack is an algebraic
stack.

16. Moduli of complexes on a proper morphism

The title and the material of this section are taken from [?]. Let S be a scheme and let
f : X → B be a proper, flat, finitely presented morphism of algebraic spaces. We will
prove that there is an algebraic stack

ComplexesX/B
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parametrizing “families” of objects ofDb
Coh of the fibres with vanishing negative self-exts.

More precisely a family is given by a relatively perfect object of the derived category of the
total space; this somewhat technical notion is studied in More on Morphisms of Spaces,
Section 52.

Already ifX is a proper algebraic space over a field kwe obtain a very interesting algebraic
stack. Namely, there is an embedding

CohX/k −→ ComplexesX/k

since for any O-module F (on any ringed topos) we have ExtiO(F ,F) = 0 for i < 0.
Although this certainly shows our stack is nonempty, the true motivation for the study of
ComplexesX/k is that there are often objects of the derived categoryDb

Coh(OX) with van-
ishing negative self-exts and nonvanishing cohomology sheaves in more than one degree.
For example, X could be derived equivalent to another proper algebraic space Y over k,
i.e., we have a k-linear equivalence

F : Db
Coh(OY ) −→ Db

Coh(OX)

There are cases where this happens andF is not given by an automorphism betweenX and
Y ; for example in the case of an abelian variety and its dual. In this situation F induces
an isomorphism of algebraic stacks

ComplexesY/k −→ ComplexesX/k
(insert future reference here) and in particular the stack of coherent sheaves on Y maps
into the stack of complexes onX . Turning this around, if we can understand well enough
the geometry of ComplexesX/k , then we can try to use this to study all possible derived
equivalent Y .

Lemma 16.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is proper, flat, and of finite presentation. Let K,E ∈ D(OX). Assume
K is pseudo-coherent andE is Y -perfect (More on Morphisms of Spaces, Definition 52.1).
For a field k and a morphism y : Spec(k) → Y denote Ky , Ey the pullback to the fibre
Xy .

(1) There is an open W ⊂ Y characterized by the property

y ∈ |W | ⇔ ExtiOXy
(Ky, Ey) = 0 for i < 0.

(2) For any morphism V → Y factoring through W we have

ExtiOXV
(KV , EV ) = 0 for i < 0

where XV is the base change of X and KV and EV are the derived pullbacks of
K and E to XV .

(3) The functor V 7→ HomOXV
(KV , EV ) is a sheaf on (Spaces/W )fppf repre-

sentable by an algebraic space affine and of finite presentation over W .

Proof. For any morphism V → Y the complex KV is pseudo-coherent (Cohomol-
ogy on Sites, Lemma 45.3) and EV is V -perfect (More on Morphisms of Spaces, Lemma
52.6). Another observation is that given y : Spec(k)→ Y and a field extension k′/k with
y′ : Spec(k′)→ Y the induced morphism, we have

ExtiOX
y′

(Ky′ , Ey′) = ExtiOXy
(Ky, Ey)⊗k k′
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by Derived Categories of Schemes, Lemma 22.6. Thus the vanishing in (1) is really a prop-
erty of the induced point y ∈ |Y |. We will use these two observations without further
mention in the proof.
Assume first Y is an affine scheme. Then we may apply More on Morphisms of Spaces,
Lemma 52.11 and find a pseudo-coherent L ∈ D(OY ) which “universally computes”
Rf∗RHom(K,E) in the sense described in that lemma. Unwinding the definitions, we
obtain for a point y ∈ Y the equality

Extiκ(y)(L⊗L
OY

κ(y), κ(y)) = ExtiOXy
(Ky, Ey)

We conclude that
Hi(L⊗L

OY
κ(y)) = 0 for i > 0⇔ ExtiOXy

(Ky, Ey) = 0 for i < 0.

By Derived Categories of Schemes, Lemma 31.1 the set W of y ∈ Y where this happens
defines an open of Y . This openW then satisfies the requirement in (1) for all morphisms
from spectra of fields, by the “universality” of L.
Let’s go back to Y a general algebraic space. Choose an étale covering {Vi → Y } by affine
schemes Vi. Then we see that the subset W ⊂ |Y | pulls back to the corresponding subset
Wi ⊂ |Vi| for XVi , KVi , EVi . By the previous paragraph we find that Wi is open, hence
W is open. This proves (1) in general. Moreover, parts (2) and (3) are entirely formulated
in terms of the category Spaces/W and the restrictionsXW ,KW , EW . This reduces us to
the case W = Y .
AssumeW = Y . We claim that for any algebraic spaceV overY we haveRfV,∗RHom(KV , EV )
has vanishing cohomology sheaves in degrees < 0. This will prove (2) because

ExtiOXV
(KV , EV ) = Hi(XV , RHom(KV , EV )) = Hi(V,RfV,∗RHom(KV , EV ))

by Cohomology on Sites, Lemmas 35.1 and 20.5 and the vanishing of the cohomology
sheaves implies the cohomology groupHi is zero for i < 0 by Derived Categories, Lemma
16.1.
To prove the claim, we may work étale locally on V . In particular, we may assume Y is
affine and W = Y . Let L ∈ D(OY ) be as in the second paragraph of the proof. For
an algebraic space V over Y denote LV the derived pullback of L to V . (An important
feature we will use is that L “works” for all algebraic spaces V over Y and not just affine
V .) As W = Y we have Hi(L) = 0 for i > 0 (use More on Algebra, Lemma 75.5 to go
from fibres to stalks). Hence Hi(LV ) = 0 for i > 0. The property defining L is that

RfV,∗RHom(KV , EV ) = RHom(LV ,OV )
SinceLV sits in degrees≤ 0, we conclude thatRHom(LV ,OV ) sits in degrees≥ 0 thereby
proving the claim. This finishes the proof of (2).
Assume W = Y but make no assumptions on the algebraic space Y . Since we have
(2), we see from Simplicial Spaces, Lemma 35.1 that the functor F given by F (V ) =
HomOXV

(KV , EV ) is a sheaf4 on (Spaces/Y )fppf . Thus to prove that F is an algebraic
space and that F → Y is affine and of finite presentation, we may work étale locally on Y ;
see Bootstrap, Lemma 11.2 and Morphisms of Spaces, Lemmas 20.3 and 28.4. We conclude
that it suffices to prove F is an affine algebraic space of finite presentation over Y when Y

4To check the sheaf property for a covering {Vi → V }i∈I first consider the Čech fppf hypercovering
a : V• → V with Vn =

∐
i0...in

Vi0 ×V . . .×V Vin and then set U• = V• ×a,V XV . Then U• → XV is
an fppf hypercovering to which we may apply Simplicial Spaces, Lemma 35.1.
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is an affine scheme. In this case we go back to our pseudo-coherent complex L ∈ D(OY ).
Since Hi(L) = 0 for i > 0, we can represent L by a complex of the form

. . .→ O⊕m1
Y → O⊕m0

Y → 0→ . . .

with the last term in degree 0, see More on Algebra, Lemma 64.5. Combining the two
displayed formulas earlier in the proof we find that

F (V ) = Ker(HomV (O⊕m0
V ,OV )→ HomV (O⊕m1

V ,OV ))

In other words, there is a fibre product diagram

F

��

// Y

0
��

Am0
Y

// Am1
Y

which proves what we want. �

Lemma 16.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is proper, flat, and of finite presentation. Let E ∈ D(OX). Assume

(1) E is S-perfect (More on Morphisms of Spaces, Definition 52.1), and
(2) for every point s ∈ S we have

ExtiOXs
(Es, Es) = 0 for i < 0

where Es is the pullback to the fibre Xs.
Then

(a) (1) and (2) are preserved by arbitrary base change V → Y ,
(b) ExtiOXV

(EV , EV ) = 0 for i < 0 and all V over Y ,
(c) V 7→ HomOXV

(EV , EV ) is representable by an algebraic space affine and of
finite presentation over Y .

Here XV is the base change of X and EV is the derived pullback of E to XV .

Proof. Immediate consequence of Lemma 16.1. �

Situation 16.3. LetS be a scheme. Let f : X → B be a morphism of algebraic spaces
over S. Assume f is proper, flat, and of finite presentation. We denote ComplexesX/B the
category whose objects are triples (T, g, E) where

(1) T is a scheme over S ,
(2) g : T → B is a morphism over S , and setting XT = T ×g,B X
(3) E is an object of D(OXT ) satisfying conditions (1) and (2) of Lemma 16.2.

A morphism (T, g, E)→ (T ′, g′, E′) is given by a pair (h, ϕ) where
(1) h : T → T ′ is a morphism of schemes over B (i.e., g′ ◦ h = g), and
(2) ϕ : L(h′)∗E′ → E is an isomorphism of D(OXT ) where h′ : XT → XT ′ is the

base change of h.

Thus ComplexesX/B is a category and the rule

p : ComplexesX/B −→ (Sch/S)fppf , (T, g, E) 7−→ T

is a functor. For a scheme T over S we denote ComplexesX/B,T the fibre category of p
over T . These fibre categories are groupoids.
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Lemma 16.4. In Situation 16.3 the functor p : ComplexesX/B −→ (Sch/S)fppf is
fibred in groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2) of
Categories, Definition 35.1. Given an object (T ′, g′, E′) of ComplexesX/B and a morphism
h : T → T ′ of schemes over S we can set g = h ◦ g′ andE = L(h′)∗E′ where h′ : XT →
XT ′ is the base change of h. Then it is clear that we obtain a morphism (T, g, E) →
(T ′, g′, E′) of ComplexesX/B lying over h. This proves (1). For (2) suppose we are given
morphisms

(h1, ϕ1) : (T1, g1, E1)→ (T, g, E) and (h2, ϕ2) : (T2, g2, E2)→ (T, g, E)
of ComplexesX/B and a morphism h : T1 → T2 such that h2 ◦ h = h1. Then we can let ϕ
be the composition

L(h′)∗E2
L(h′)∗ϕ−1

2−−−−−−−→ L(h′)∗L(h2)∗E = L(h1)∗E
ϕ1−→ E1

to obtain the morphism (h, ϕ) : (T1, g1, E1) → (T2, g2, E2) that witnesses the truth of
condition (2). �

Lemma 16.5. In Situation 16.3. DenoteX = ComplexesX/B . Then ∆ : X → X ×X
is representable by algebraic spaces.

Proof. Consider two objects x = (T, g, E) and y = (T, g′, E′) of X over a scheme
T . We have to show that IsomX (x, y) is an algebraic space over T , see Algebraic Stacks,
Lemma 10.11. If for h : T ′ → T the restrictions x|T ′ and y|T ′ are isomorphic in the fibre
category XT ′ , then g ◦ h = g′ ◦ h. Hence there is a transformation of presheaves

IsomX (x, y) −→ Equalizer(g, g′)
Since the diagonal of B is representable (by schemes) this equalizer is a scheme. Thus we
may replace T by this equalizer and E and E′ by their pullbacks. Thus we may assume
g = g′.

Assume g = g′. After replacingB by T andX byXT we arrive at the following problem.
Given E,E′ ∈ D(OX) satisfying conditions (1), (2) of Lemma 16.2 we have to show that
Isom(E,E′) is an algebraic space. Here Isom(E,E′) is the functor

(Sch/B)opp → Sets, T 7→ {ϕ : ET → E′
T isomorphism in D(OXT )}

where ET and E′
T are the derived pullbacks of E and E′ to XT . Now, let W ⊂ B, resp.

W ′ ⊂ B be the open subspace of B associated to E,E′, resp. to E′, E by Lemma 16.1.
Clearly, if there exists an isomorphism ET → E′

T as in the definition of Isom(E,E′),
then we see that T → B factors into bothW andW ′ (because we have condition (1) forE
and E′ and we’ll obviously have Et ∼= E′

t so no nonzero maps Et[i]→ Et or E′
t[i]→ Et

over the fibre Xt for i > 0. Thus we may replace B by the open W ∩W ′. In this case the
functor H = Hom(E,E′)

(Sch/B)opp → Sets, T 7→ HomOXT
(ET , E′

T )

is an algebraic space affine and of finite presentation over B by Lemma 16.1. The same is
true for H ′ = Hom(E′, E), I = Hom(E,E), and I ′ = Hom(E′, E′). Therefore we can
repeat the argument of the proof of Proposition 4.3 to see that

Isom(E,E′) = (H ′ ×B H)×c,I×BI′,σ B

for some morphisms c and σ. Thus Isom(E,E′) is an algebraic space. �
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Lemma 16.6. In Situation 16.3 the functor p : ComplexesX/B −→ (Sch/S)fppf is a
stack in groupoids.

Proof. To prove that ComplexesX/B is a stack in groupoids, we have to show that the
presheaves Isom are sheaves and that descent data are effective. The statement on Isom
follows from Lemma 16.5, see Algebraic Stacks, Lemma 10.11. Let us prove the statement
on descent data.
Suppose that {ai : Ti → T} is an fppf covering of schemes over S. Let (ξi, ϕij) be a
descent datum for {Ti → T} with values in ComplexesX/B . For each i we can write
ξi = (Ti, gi, Ei). Denote pr0 : Ti ×T Tj → Ti and pr1 : Ti ×T Tj → Tj the projections.
The condition that ξi|Ti×TTj ∼= ξj |Ti×TTj implies in particular that gi ◦ pr0 = gj ◦ pr1.
Thus there exists a unique morphism g : T → B such that gi = g ◦ ai, see Descent on
Spaces, Lemma 7.2. DenoteXT = T ×g,BX . SetXi = XTi = Ti×gi,BX = Ti×ai,T XT

and
Xij = XTi ×XT XTj = Xi ×XT Xj

with projections pri and prj to Xi and Xj . Observe that the pullback of (Ti, gi, Ei) by
pr0 : Ti ×T Tj → Ti is given by (Ti ×T Tj , gi ◦ pr0, Lpr∗

iEi). Hence a descent datum for
{Ti → T} in ComplexesX/B is given by the objects (Ti, g ◦ ai, Ei) and for each pair i, j
an isomorphism in DOXij )

ϕij : Lpr∗
iEi −→ Lpr∗

jEj

satisfying the cocycle condition over the pullback of X to Ti ×T Tj ×T Tk. Using the
vanishing of negative Exts provided by (b) of Lemma 16.2, we may apply Simplicial Spaces,
Lemma 35.2 to obtain descent5 for these complexes. In other words, we find there exists
an object E in DQCoh(OXT ) restricting to Ei on XTi compatible with ϕij . Recall that
being T -perfect signifies being pseudo-coherent and having locally finite tor dimension
over f−1OT . Thus E is T -perfect by an application of More on Morphisms of Spaces,
Lemmas 54.1 and 54.2. Finally, we have to check condition (2) from Lemma 16.2 for E.
This immediately follows from the description of the open W in Lemma 16.1 and the fact
that (2) holds for Ei on XTi/Ti. �

Remark 16.7. In Situation 16.3 the rule (T, g, E) 7→ (T, g) defines a 1-morphism
ComplexesX/B −→ SB

of stacks in groupoids (see Lemma 16.6, Algebraic Stacks, Section 7, and Examples of Stacks,
Section 10). Let B′ → B be a morphism of algebraic spaces over S. Let SB′ → SB be the
associated 1-morphism of stacks fibred in sets. Set X ′ = X ×B B′. We obtain a stack in
groupoids ComplexesX′/B′ → (Sch/S)fppf associated to the base change f ′ : X ′ → B′.
In this situation the diagram

ComplexesX′/B′ //

��

ComplexesX/B

��
SB′ // SB

or in
another
notation

ComplexesX′/B′ //

��

ComplexesX/B

��
Sch/B′ // Sch/B

is 2-fibre product square. This trivial remark will occasionally be useful to change the base
algebraic space.

5To check this, first consider the Čech fppf hypercovering a : T• → T with Tn =
∐
i0...in

Ti0 ×T
. . . ×T Tin and then set U• = T• ×a,T XT . Then U• → XT is an fppf hypercovering to which we may
apply Simplicial Spaces, Lemma 35.2.
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Lemma 16.8. In Situation 16.3 assume that B → S is locally of finite presentation.
Then p : ComplexesX/B → (Sch/S)fppf is limit preserving (Artin’s Axioms, Definition
11.1).

Proof. Write B(T ) for the discrete category whose objects are the S-morphisms
T → B. Let T = limTi be a filtered limit of affine schemes over S. Assigning to an
object (T, h,E) of ComplexesX/B,T the object h ofB(T ) gives us a commutative diagram
of fibre categories

colim ComplexesX/B,Ti //

��

ComplexesX/B,T

��
colimB(Ti) // B(T )

We have to show the top horizontal arrow is an equivalence. Since we have assume thatB
is locally of finite presentation over S we see from Limits of Spaces, Remark 3.11 that the
bottom horizontal arrow is an equivalence. This means that we may assume T = limTi
be a filtered limit of affine schemes over B. Denote gi : Ti → B and g : T → B the
corresponding morphisms. Set Xi = Ti ×gi,B X and XT = T ×g,B X . Observe that
XT = colimXi. By More on Morphisms of Spaces, Lemma 52.9 the category of T -perfect
objects ofD(OXT ) is the colimit of the categories of Ti-perfect objects ofD(OXTi ). Thus
all we have to prove is that given an Ti-perfect objectEi ofD(OXTi ) such that the derived
pullback E of Ei to XT satisfies condition (2) of Lemma 16.2, then after increasing i we
have that Ei satisfies condition (2) of Lemma 16.2. Let W ⊂ |Ti| be the open constructed
in Lemma 16.1 for Ei and Ei. By assumption on E we find that T → Ti factors through
T . Hence there is an i′ ≥ i such that Ti′ → Ti factors throughW , see Limits, Lemma 4.10
Then i′ works by construction of W . �

Lemma 16.9. In Situation 16.3. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over S where Z → Z ′ is a finite order thickening
and Z → Y is affine, see More on Morphisms, Lemma 14.3. Then the functor on fibre
categories

ComplexesX/B,Y ′ −→ ComplexesX/B,Y ×ComplexesX/B,Z ComplexesX/B,Z′

is an equivalence.

Proof. Observe that the corresponding map

B(Y ′) −→ B(Y )×B(Z) B(Z ′)

is a bijection, see Pushouts of Spaces, Lemma 6.1. Thus using the commutative diagram

ComplexesX/B,Y ′ //

��

ComplexesX/B,Y ×ComplexesX/B,Z ComplexesX/B,Z′

��
B(Y ′) // B(Y )×B(Z) B(Z ′)
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we see that we may assume that Y ′ is a scheme over B′. By Remark 16.7 we may replace
B by Y ′ and X by X ×B Y ′. Thus we may assume B = Y ′.

Assume B = Y ′. We first prove fully faithfulness of our functor. To do this, let ξ1, ξ2 be
two objects of ComplexesX/B over Y ′. Then we have to show that

Isom(ξ1, ξ2)(Y ′) −→ Isom(ξ1, ξ2)(Y )×Isom(ξ1,ξ2)(Z) Isom(ξ1, ξ2)(Z ′)
is bijective. However, we already know that Isom(ξ1, ξ2) is an algebraic space over B =
Y ′. Thus this bijectivity follows from Artin’s Axioms, Lemma 4.1 (or the aforementioned
Pushouts of Spaces, Lemma 6.1).

Essential surjectivity. Let (EY , EZ′ , α) be a triple, where EY ∈ D(OY ) and EZ′ ∈
D(OXZ′ ) are objects such that (Y, Y → B,EY ) is an object of ComplexesX/B over Y ,
such that (Z ′, Z ′ → B,EZ′) is an object of ComplexesX/B over Z ′, and α : L(XZ →
XY )∗EY → L(XZ → XZ′)∗EZ′ is an isomorphism in D(OZ′). That is to say

((Y, Y → B,EY ), (Z ′, Z ′ → B,EZ′), α)
is an object of the target of the arrow of our lemma. Observe that the diagram

XZ
//

��

XZ′

��
XY

// XY ′

is a pushout with XZ → XY affine and XZ → XZ′ a thickening (see Pushouts of Spaces,
Lemma 6.7). Hence by Pushouts of Spaces, Lemma 8.1 we find an object EY ′ ∈ D(OXY ′ )
together with isomorphisms L(XY → XY ′)∗EY ′ → EY and L(XZ′ → XY ′)∗EY ′ →
EZ compatible with α. Clearly, if we show that EY ′ is Y ′-perfect, then we are done,
because property (2) of Lemma 16.2 is a property on points (and Y and Y ′ have the same
points). This follows from More on Morphisms of Spaces, Lemma 54.4. �

Lemma 16.10. In Situation 16.3 assume that S is a locally Noetherian scheme and
B → S is locally of finite presentation. Let k be a finite type field over S and let x0 =
(Spec(k), g0, E0) be an object of X = ComplexesX/B over k. Then the spaces TFX ,k,x0

and Inf(FX ,k,x0) (Artin’s Axioms, Section 8) are finite dimensional.

Proof. Observe that by Lemma 16.9 our stack in groupoidsX satisfies property (RS*)
defined in Artin’s Axioms, Section 18. In particular X satisfies (RS). Hence all associated
predeformation categories are deformation categories (Artin’s Axioms, Lemma 6.1) and
the statement makes sense.

In this paragraph we show that we can reduce to the case B = Spec(k). Set X0 =
Spec(k) ×g0,B X and denote X0 = ComplexesX0/k. In Remark 16.7 we have seen that
X0 is the 2-fibre product of X with Spec(k) over B as categories fibred in groupoids over
(Sch/S)fppf . Thus by Artin’s Axioms, Lemma 8.2 we reduce to proving that B, Spec(k),
and X0 have finite dimensional tangent spaces and infinitesimal automorphism spaces.
The tangent space of B and Spec(k) are finite dimensional by Artin’s Axioms, Lemma 8.1
and of course these have vanishing Inf. Thus it suffices to deal with X0.

Let k[ε] be the dual numbers over k. Let Spec(k[ε]) → B be the composition of g0 :
Spec(k)→ B and the morphism Spec(k[ε])→ Spec(k) coming from the inclusion k →
k[ε]. SetX0 = Spec(k)×BX andXε = Spec(k[ε])×BX . Observe thatXε is a first order
thickening ofX0 flat over the first order thickening Spec(k)→ Spec(k[ε]). Observe that
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X0 and Xε give rise to canonically equivalent small étale topoi, see More on Morphisms
of Spaces, Section 9. By More on Morphisms of Spaces, Lemma 54.4 we see that TFX0,k,x0

is the set of isomorphism classes of lifts of E0 to Xε in the sense of Deformation Theory,
Lemma 16.7. We conclude that

TFX0,k,x0 = Ext1
OX0

(E0, E0)

Here we have used the identification εk[ε] ∼= k of k[ε]-modules. Using Deformation The-
ory, Lemma 16.7 once more we see that there is a surjection

Inf(FX ,k,x0)← Ext0
OX0

(E0, E0)

of k-vector spaces. As E0 is pseudo-coherent it lies in D−
Coh(OX0) by Derived Categories

of Spaces, Lemma 13.7. Since E0 locally has finite tor dimension and X0 is quasi-compact
we see E0 ∈ Db

Coh(OX0). Thus the Exts above are finite dimensional k-vector spaces by
Derived Categories of Spaces, Lemma 8.4. �

Lemma 16.11. In Situation 16.3 assumeB = S is locally Noetherian. Then strong for-
mal effectiveness in the sense of Artin’s Axioms, Remark 20.2 holds for p : ComplexesX/S →
(Sch/S)fppf .

Proof. Let (Rn) be an inverse system of S-algebras with surjective transition maps
whose kernels are locally nilpotent. Set R = limRn. Let (ξn) be a system of objects of
ComplexesX/B lying over (Spec(Rn)). We have to show (ξn) is effective, i.e., there exists
an object ξ of ComplexesX/B lying over Spec(R).

Write XR = Spec(R) ×S X and Xn = Spec(Rn) ×S X . Of course Xn is the base
change of XR by R → Rn. Since S = B, we see that ξn corresponds simply to an Rn-
perfect object En ∈ D(OXn) satisfying condition (2) of Lemma 16.2. In particular En
is pseudo-coherent. The isomorphisms ξn+1|Spec(Rn) ∼= ξn correspond to isomorphisms
L(Xn → Xn+1)∗En+1 → En. Therefore by Flatness on Spaces, Theorem 13.6 we find a
pseudo-coherent object E of D(OXR) with En equal to the derived pullback of E for all
n compatible with the transition isomorphisms.
Observe that (R,Ker(R→ R1)) is a henselian pair, see More on Algebra, Lemma 11.3. In
particular, Ker(R → R1) is contained in the Jacobson radical of R. Then we may apply
More on Morphisms of Spaces, Lemma 54.5 to see that E is R-perfect.
Finally, we have to check condition (2) of Lemma 16.2. By Lemma 16.1 the set of points
t of Spec(R) where the negative self-exts of Et vanish is an open. Since this condition is
true in V (Ker(R→ R1)) and since Ker(R→ R1) is contained in the Jacobson radical of
R we conclude it holds for all points. �

Theorem 16.12 (Algebraicity of moduli of complexes on a proper morphism). Let S
be a scheme. Let f : X → B be morphism of algebraic spaces over S. Assume that f is
proper, flat, and of finite presentation. Then ComplexesX/B is an algebraic stack over S.

Proof. Set X = ComplexesX/B . We have seen that X is a stack in groupoids over
(Sch/S)fppf with diagonal representable by algebraic spaces (Lemmas 16.6 and 16.5).
Hence it suffices to find a scheme W and a surjective and smooth morphism W → X .
Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ = B′ ×B X
and denote f ′ : X ′ → B′ the projection. Then X ′ = ComplexesX′/B′ is equal to the
2-fibre product of X with the category fibred in sets associated to B′ over the category
fibred in sets associated to B (Remark 16.7). By the material in Algebraic Stacks, Section
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10 the morphism X ′ → X is surjective and étale. Hence it suffices to prove the result for
X ′. In other words, we may assume B is a scheme.
Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks, Section
19. Thus we may assume S = B.
Assume S = B. Choose an affine open covering S =

⋃
Ui. Denote Xi the restriction of

X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth morphisms
Wi → Xi, then we setW =

∐
Wi and we obtain a surjective smooth morphismW → X .

Thus we may assume S = B is affine.
Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered colimit
with each Λi of finite type over Z. For some i we can find a morphism of algebraic spaces
Xi → Spec(Λi) which is proper, flat, of finite presentation and whose base change to Λ is
X . See Limits of Spaces, Lemmas 7.1, 6.12, and 6.13. If we show that ComplexesXi/ Spec(Λi)
is an algebraic stack, then it follows by base change (Remark 16.7 and Algebraic Stacks,
Section 19) that X is an algebraic stack. Thus we may assume that Λ is a finite type Z-
algebra.
Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), (4), and (5) of Artin’s Axioms, Lemma 17.1 to conclude that X is an
algebraic stack. Note that Λ is a G-ring, see More on Algebra, Proposition 50.12. Hence all
local rings of S are G-rings. Thus (5) holds. To check (2) we have to verify axioms [-1], [0],
[1], [2], and [3] of Artin’s Axioms, Section 14. We omit the verification of [-1] and axioms
[0], [1], [2], [3] correspond respectively to Lemmas 16.6, 16.8, 16.9, 16.10. Condition (3)
follows from Lemma 16.11. Condition (1) is Lemma 16.5.
It remains to show condition (4) which is openness of versality. To see this we will use
Artin’s Axioms, Lemma 20.3. We have already seen that X has diagonal representable by
algebraic spaces, has (RS*), and is limit preserving (see lemmas used above). Hence we only
need to see that X satisfies the strong formal effectiveness formulated in Artin’s Axioms,
Lemma 20.3. This follows from Lemma 16.11 and the proof is complete. �
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CHAPTER 100

Properties of Algebraic Stacks

1. Introduction

Please see Algebraic Stacks, Section 1 for a brief introduction to algebraic stacks, and please
read some of that chapter for our foundations of algebraic stacks. The intent is that in that
chapter we are careful to distinguish between schemes, algebraic spaces, algebraic stacks,
and starting with this chapter we employ the customary abuse of language where all of
these concepts are used interchangeably.
The goal of this chapter is to introduce some basic notions and properties of algebraic
stacks. A fundamental reference for the case of quasi-separated algebraic stacks with rep-
resentable diagonal is [?].

2. Conventions and abuse of language

We choose a big fppf site Schfppf . All schemes are contained in Schfppf . And all ringsA
considered have the property that Spec(A) is (isomorphic) to an object of this big site.
We also fix a base scheme S , by the conventions above an element of Schfppf . The reader
who is only interested in the absolute case can take S = Spec(Z).
Here are our conventions regarding algebraic stacks:

(1) When we say algebraic stack we will mean an algebraic stacks over S , i.e., a cat-
egory fibred in groupoids p : X → (Sch/S)fppf which satisfies the conditions
of Algebraic Stacks, Definition 12.1.

(2) We will say f : X → Y is a morphism of algebraic stacks to indicate a 1-
morphism of algebraic stacks over S , i.e., a 1-morphism of categories fibred in
groupoids over (Sch/S)fppf , see Algebraic Stacks, Definition 12.3.

(3) A 2-morphism α : f → g will indicate a 2-morphism in the 2-category of alge-
braic stacks over S , see Algebraic Stacks, Definition 12.3.

(4) Given morphisms X → Z and Y → Z of algebraic stacks we abusively call the
2-fibre product X ×Z Y the fibre product.

(5) We will write X ×S Y for the product of the algebraic stacks X , Y .
(6) We will often abuse notation and say two algebraic stacks X and Y are isomor-

phic if they are equivalent in this 2-category.
Here are our conventions regarding algebraic spaces.

(1) If we say X is an algebraic space then we mean that X is an algebraic space over
S , i.e., X is a presheaf on (Sch/S)fppf which satisfies the conditions of Spaces,
Definition 6.1.

(2) A morphism of algebraic spaces f : X → Y is a morphism of algebraic spaces
over S as defined in Spaces, Definition 6.3.

(3) We will not distinguish between an algebraic space X and the algebraic stack
SX → (Sch/S)fppf it gives rise to, see Algebraic Stacks, Lemma 13.1.

6781
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(4) In particular, a morphism f : X → Y from X to an algebraic stack Y means a
morphism f : SX → Y of algebraic stacks. Similarly for morphisms Y → X .

(5) Moreover, given an algebraic stack X we say X is an algebraic space to indicate
thatX is representable by an algebraic space, see Algebraic Stacks, Definition 8.1.

(6) We will use the following notational convention: If we indicate an algebraic
stack by a roman capital (such as X,Y, Z,A,B, . . .) then it will be the case that
its inertia stack is trivial, and hence it is an algebraic space, see Algebraic Stacks,
Proposition 13.3.

Here are our conventions regarding schemes.
(1) If we say X is a scheme then we mean that X is a scheme over S , i.e., X is an

object of (Sch/S)fppf .
(2) By a morphism of schemes we mean a morphism of schemes over S.
(3) We will not distinguish between a scheme X and the algebraic stack SX →

(Sch/S)fppf it gives rise to, see Algebraic Stacks, Lemma 13.1.
(4) In particular, a morphism f : X → Y from a scheme X to an algebraic stack Y

means a morphism f : SX → Y of algebraic stacks. Similarly for morphisms
Y → X .

(5) Moreover, given an algebraic stack X we say X is a scheme to indicate that X is
representable, see Algebraic Stacks, Section 4.

Here are our conventions regarding morphisms of algebraic stacks:
(1) A morphism f : X → Y of algebraic stacks is representable, or representable by

schemes if for every scheme T and morphism T → Y the fibre product T ×Y X
is a scheme. See Algebraic Stacks, Section 6.

(2) A morphism f : X → Y of algebraic stacks is representable by algebraic spaces
if for every scheme T and morphism T → Y the fibre product T ×Y X is an
algebraic space. See Algebraic Stacks, Definition 9.1. In this case Z ×Y X is an
algebraic space whenever Z → Y is a morphism whose source is an algebraic
space, see Algebraic Stacks, Lemma 9.8.

(3) We may abuse notation and say that a diagram of algebraic stacks commutes if
the diagram is 2-commutative in the 2-category of algebraic stacks.

Note that every morphism X → Y from an algebraic space to an algebraic stack is rep-
resentable by algebraic spaces, see Algebraic Stacks, Lemma 10.11. We will use this basic
result without further mention.

3. Properties of morphisms representable by algebraic spaces

We will study properties of (arbitrary) morphisms of algebraic stacks in its own chapter.
For morphisms representable by algebraic spaces we know what it means to be surjective,
smooth, or étale, etc. This applies in particular to morphisms X → Y from algebraic
spaces to algebraic stacks. In this section, we recall how this works, we list the properties
to which this applies, and we prove a few easy lemmas.

Our first lemma says a morphism is representable by algebraic spaces if it is so after a base
change by a flat, locally finitely presented, surjective morphism.

Lemma 3.1. Let f : X → Y be a morphism of algebraic stacks. LetW be an algebraic
space and let W → Y be surjective, locally of finite presentation, and flat. The following
are equivalent

(1) f is representable by algebraic spaces, and
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(2) W ×Y X is an algebraic space.

Proof. The implication (1) ⇒ (2) is Algebraic Stacks, Lemma 9.8. Conversely, let
W → Y be as in (2). To prove (1) it suffices to show that f is faithful on fibre categories,
see Algebraic Stacks, Lemma 15.2. Assumption (2) implies in particular thatW×YX →W
is faithful. Hence the faithfulness of f follows from Stacks, Lemma 6.9. �

Let P be a property of morphisms of algebraic spaces which is fppf local on the target and
preserved by arbitrary base change. Let f : X → Y be a morphism of algebraic stacks
representable by algebraic spaces. Then we say f has property P if and only if for every
scheme T and morphism T → Y the morphism of algebraic spaces T ×Y X → T has
property P , see Algebraic Stacks, Definition 10.1.

It turns out that if f : X → Y is representable by algebraic spaces and has property P ,
then for any morphism of algebraic stacks Y ′ → Y the base change Y ′ ×Y X → Y ′ has
property P , see Algebraic Stacks, Lemmas 9.7 and 10.6. If the property P is preserved
under compositions, then this holds also in the setting of morphisms of algebraic stacks
representable by algebraic spaces, see Algebraic Stacks, Lemmas 9.9 and 10.5. Moreover,
in this case products X1×X2 → Y1×Y2 of morphisms representable by algebraic spaces
having property P have property P , see Algebraic Stacks, Lemma 10.8.

Finally, if we have two properties P, P ′ of morphisms of algebraic spaces which are fppf
local on the target and preserved by arbitrary base change and if P (f)⇒ P ′(f) for every
morphism f , then the same implication holds for the corresponding property of mor-
phisms of algebraic stacks representable by algebraic spaces, see Algebraic Stacks, Lemma
10.9. We will use this without further mention in the following and in the following
chapters.

The discussion above applies to each of the following properties of morphisms of algebraic
spaces

(1) quasi-compact, see Morphisms of Spaces, Lemma 8.4 and Descent on Spaces, Lemma
11.1,

(2) quasi-separated, see Morphisms of Spaces, Lemma 4.4 and Descent on Spaces,
Lemma 11.2,

(3) universally closed, see Morphisms of Spaces, Lemma 9.3 and Descent on Spaces,
Lemma 11.3,

(4) universally open, see Morphisms of Spaces, Lemma 6.3 and Descent on Spaces,
Lemma 11.4,

(5) universally submersive, see Morphisms of Spaces, Lemma 7.3 and Descent on
Spaces, Lemma 11.5,

(6) universal homeomorphism, see Morphisms of Spaces, Lemma 53.4 and Descent
on Spaces, Lemma 11.8,

(7) surjective, see Morphisms of Spaces, Lemma 5.5 and Descent on Spaces, Lemma
11.6,

(8) universally injective, see Morphisms of Spaces, Lemma 19.5 and Descent on Spaces,
Lemma 11.7,

(9) locally of finite type, see Morphisms of Spaces, Lemma 23.3 and Descent on
Spaces, Lemma 11.9,

(10) locally of finite presentation, see Morphisms of Spaces, Lemma 28.3 and Descent
on Spaces, Lemma 11.10,
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(11) finite type, see Morphisms of Spaces, Lemma 23.3 and Descent on Spaces, Lemma
11.11,

(12) finite presentation, see Morphisms of Spaces, Lemma 28.3 and Descent on Spaces,
Lemma 11.12,

(13) flat, see Morphisms of Spaces, Lemma 30.4 and Descent on Spaces, Lemma 11.13,
(14) open immersion, see Morphisms of Spaces, Section 12 and Descent on Spaces,

Lemma 11.14,
(15) isomorphism, see Descent on Spaces, Lemma 11.15,
(16) affine, see Morphisms of Spaces, Lemma 20.5 and Descent on Spaces, Lemma 11.16,
(17) closed immersion, see Morphisms of Spaces, Section 12 and Descent on Spaces,

Lemma 11.17,
(18) separated, see Morphisms of Spaces, Lemma 4.4 and Descent on Spaces, Lemma

11.18,
(19) proper, see Morphisms of Spaces, Lemma 40.3 and Descent on Spaces, Lemma

11.19,
(20) quasi-affine, see Morphisms of Spaces, Lemma 21.5 and Descent on Spaces, Lemma

11.20,
(21) integral, see Morphisms of Spaces, Lemma 45.5 and Descent on Spaces, Lemma

11.22,
(22) finite, see Morphisms of Spaces, Lemma 45.5 and Descent on Spaces, Lemma 11.23,
(23) (locally) quasi-finite, see Morphisms of Spaces, Lemma 27.4 and Descent on Spaces,

Lemma 11.24,
(24) syntomic, see Morphisms of Spaces, Lemma 36.3 and Descent on Spaces, Lemma

11.25,
(25) smooth, see Morphisms of Spaces, Lemma 37.3 and Descent on Spaces, Lemma

11.26,
(26) unramified, see Morphisms of Spaces, Lemma 38.4 and Descent on Spaces, Lemma

11.27,
(27) étale, see Morphisms of Spaces, Lemma 39.4 and Descent on Spaces, Lemma 11.28,
(28) finite locally free, see Morphisms of Spaces, Lemma 46.5 and Descent on Spaces,

Lemma 11.29,
(29) monomorphism, see Morphisms of Spaces, Lemma 10.5 and Descent on Spaces,

Lemma 11.30,
(30) immersion, see Morphisms of Spaces, Section 12 and Descent on Spaces, Lemma

12.1,
(31) locally separated, see Morphisms of Spaces, Lemma 4.4 and Descent on Spaces,

Lemma 12.2,

Lemma 3.2. Let P be a property of morphisms of algebraic spaces as above. Let f :
X → Y be a morphism of algebraic stacks representable by algebraic spaces. The following
are equivalent:

(1) f has P ,
(2) for every algebraic space Z and morphism Z → Y the morphism Z ×Y X → Z

has P .

Proof. The implication (2)⇒ (1) is immediate. Assume (1). Let Z → Y be as in (2).
Choose a schemeU and a surjective étale morphismU → Z. By assumption the morphism



3. PROPERTIES OF MORPHISMS REPRESENTABLE BY ALGEBRAIC SPACES 6785

U ×Y X → U has P . But the diagram

U ×Y X

��

// Z ×Y X

��
U // Z

is cartesian, hence the right vertical arrow has P as {U → Z} is an fppf covering. �

The following lemma tells us it suffices to check P after a base change by a surjective, flat,
locally finitely presented morphism.

Lemma 3.3. Let P be a property of morphisms of algebraic spaces as above. Let f :
X → Y be a morphism of algebraic stacks representable by algebraic spaces. Let W be an
algebraic space and let W → Y be surjective, locally of finite presentation, and flat. Set
V = W ×Y X . Then

(f has P )⇔ (the projection V →W has P ).

Proof. The implication from left to right follows from Lemma 3.2. Assume V →W
has P . Let T be a scheme, and let T → Y be a morphism. Consider the commutative
diagram

T ×Y X

��

T ×Y V

��

oo // V

��
T T ×Y Woo // W

of algebraic spaces. The squares are cartesian. The bottom left morphism is a surjective,
flat morphism which is locally of finite presentation, hence {T ×Y V → T} is an fppf
covering. Hence the fact that the right vertical arrow has property P implies that the left
vertical arrow has property P . �

Lemma 3.4. Let P be a property of morphisms of algebraic spaces as above. Let f :
X → Y be a morphism of algebraic stacks representable by algebraic spaces. Let Z → Y
be a morphism of algebraic stacks which is representable by algebraic spaces, surjective,
flat, and locally of finite presentation. SetW = Z ×Y X . Then

(f has P )⇔ (the projectionW → Z has P ).

Proof. Choose an algebraic space W and a morphism W → Z which is surjective,
flat, and locally of finite presentation. By the discussion above the compositionW → Y is
also surjective, flat, and locally of finite presentation. Denote V = W ×Z W = V ×Y X .
By Lemma 3.3 we see that f has P if and only if V → W does and thatW → Z has P if
and only if V →W does. The lemma follows. �

Lemma 3.5. Let P be a property of morphisms of algebraic spaces as above. Let τ ∈
{étale, smooth, syntomic, fppf}. Let X → Y and Y → Z be morphisms of algebraic
stacks representable by algebraic spaces. Assume

(1) X → Y is surjective and étale, smooth, syntomic, or flat and locally of finite
presentation,

(2) the composition has P , and
(3) P is local on the source in the τ topology.

Then Y → Z has property P .
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Proof. Let Z be a scheme and let Z → Z be a morphism. Set X = X ×Z Z , Y =
Y ×Z Z. By (1) {X → Y } is a τ covering of algebraic spaces and by (2) X → Z has
property P . By (3) this implies that Y → Z has property P and we win. �

Lemma 3.6. Let g : X ′ → X be a morphism of algebraic stacks which is representable
by algebraic spaces. Let [U/R] → X be a presentation. Set U ′ = U ×X X ′, and R′ =
R ×X X ′. Then there exists a groupoid in algebraic spaces of the form (U ′, R′, s′, t′, c′),
a presentation [U ′/R′]→ X ′, and the diagram

[U ′/R′]

[pr]
��

// X ′

g

��
[U/R] // X

is 2-commutative where the morphism [pr] comes from a morphism of groupoids pr :
(U ′, R′, s′, t′, c′)→ (U,R, s, t, c).

Proof. Since U → Y is surjective and smooth, see Algebraic Stacks, Lemma 17.2
the base change U ′ → X ′ is also surjective and smooth. Hence, by Algebraic Stacks,
Lemma 16.2 it suffices to show that R′ = U ′ ×X ′ U ′ in order to get a smooth groupoid
(U ′, R′, s′, t′, c′) and a presentation [U ′/R′] → X ′. Using that R = V ×Y V (see
Groupoids in Spaces, Lemma 22.2) this follows from

R′ = U ×X U ×X X ′ = (U ×X X ′)×X ′ (U ×X X ′)
see Categories, Lemmas 31.8 and 31.10. Clearly the projection morphisms U ′ → U and
R′ → R give the desired morphism of groupoids pr : (U ′, R′, s′, t′, c′) → (U,R, s, t, c).
Hence the morphism [pr] of quotient stacks by Groupoids in Spaces, Lemma 21.1.
We still have to show that the diagram 2-commutes. It is clear that the diagram

U ′

prU
��

f ′
// X ′

g

��
U

f // X
2-commutes where prU : U ′ → U is the projection. There is a canonical 2-arrow τ :
f ◦ t → f ◦ s in Mor(R,X ) coming from R = U ×X U , t = pr0, and s = pr1. Using
the isomorphism R′ → U ′ ×X ′ U ′ we get similarly an isomorphism τ ′ : f ′ ◦ t′ → f ′ ◦ s′.
Note that g ◦ f ′ ◦ t′ = f ◦ t ◦ prR and g ◦ f ′ ◦ s′ = f ◦ s ◦ prR, where prR : R′ → R is
the projection. Thus it makes sense to ask if
(3.6.1) τ ? idprR = idg ? τ ′.

Now we make two claims: (1) if Equation (3.6.1) holds, then the diagram 2-commutes, and
(2) Equation (3.6.1) holds. We omit the proof of both claims. Hints: part (1) follows from
the construction of f = fcan and f ′ = f ′

can in Algebraic Stacks, Lemma 16.1. Part (2)
follows by carefuly working through the definitions. �

Remark 3.7. Let Y be an algebraic stack. Consider the following 2-category:
(1) An object is a morphism f : X → Y which is representable by algebraic spaces,
(2) a 1-morphism (g, β) : (f1 : X1 → Y)→ (f2 : X2 → Y) consists of a morphism

g : X1 → X2 and a 2-morphism β : f1 → f2 ◦ g, and
(3) a 2-morphism between (g, β), (g′, β′) : (f1 : X1 → Y) → (f2 : X2 → Y) is a

2-morphism α : g → g′ such that (idf2 ? α) ◦ β = β′.
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Let us denote this 2-category Spaces/Y by analogy with the notation of Topologies on
Spaces, Section 2. Now we claim that in this 2-category the morphism categories

MorSpaces/Y((f1 : X1 → Y), (f2 : X2 → Y))

are all setoids. Namely, a 2-morphism α is a rule which to each object x1 of X1 assigns an
isomorphism αx1 : g(x1) −→ g′(x1) in the relevant fibre category of X2 such that the
diagram

f2(x1)
βx1

yy

β′
x1

%%
f2(g(x1))

f2(αx1 ) // f2(g′(x1))

commutes. But since f2 is faithful (see Algebraic Stacks, Lemma 15.2) this means that if
αx1 exists, then it is unique! In other words the 2-category Spaces/Y is very close to being
a category. Namely, if we replace 1-morphisms by isomorphism classes of 1-morphisms
we obtain a category. We will often perform this replacement without further mention.

4. Points of algebraic stacks

Let X be an algebraic stack. Let K,L be two fields and let p : Spec(K) → X and q :
Spec(L) → X be morphisms. We say that p and q are equivalent if there exists a field Ω
and a 2-commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K) p // X .

Lemma 4.1. The notion above does indeed define an equivalence relation on mor-
phisms from spectra of fields into the algebraic stack X .

Proof. It is clear that the relation is reflexive and symmetric. Hence we have to prove
that it is transitive. This comes down to the following: Given a diagram

Spec(Ω)
b
//

a

��

Spec(L)

q

��

Spec(Ω′)
b′

oo

a′

��
Spec(K) p // X Spec(K ′)p′

oo

with both squares 2-commutative we have to show that p is equivalent to p′. By the 2-
Yoneda lemma (see Algebraic Stacks, Section 5) the morphisms p, p′, and q are given by
objects x, x′, and y in the fibre categories ofX over Spec(K), Spec(K ′), and Spec(L). The
2-commutativity of the squares means that there are isomorphisms α : a∗x → b∗y and
α′ : (a′)∗x′ → (b′)∗y in the fibre categories of X over Spec(Ω) and Spec(Ω′). Choose
any field Ω′′ and embeddings Ω→ Ω′′ and Ω′ → Ω′′ agreeing on L. Then we can extend
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the diagram above to

Spec(Ω′′)
c

xx
q′

��

c′

&&
Spec(Ω)

b
//

a

��

Spec(L)

q

��

Spec(Ω′)
b′

oo

a′

��
Spec(K) p // X Spec(K ′)p′

oo

with commutative triangles and

(q′)∗(α′)−1 ◦ (q′)∗α : (a ◦ c)∗x −→ (a′ ◦ c′)∗x′

is an isomorphism in the fibre category over Spec(Ω′′). Hence p is equivalent to p′ as
desired. �

Definition 4.2. Let X be an algebraic stack. A point of X is an equivalence class of
morphisms from spectra of fields into X . The set of points of X is denoted |X |.

This agrees with our definition of points of algebraic spaces, see Properties of Spaces, Defi-
nition 4.1. Moreover, for a scheme we recover the usual notion of points, see Properties of
Spaces, Lemma 4.2. If f : X → Y is a morphism of algebraic stacks then there is an induced
map |f | : |X | → |Y|which maps a representative x : Spec(K)→ X to the representative
f ◦ x : Spec(K) → Y . This is well defined: namely 2-isomorphic 1-morphisms remain
2-isomorphic after pre- or post-composing by a 1-morphism because you can horizontally
pre- or post-compose by the identity of the given 1-morphism. This holds in any (strict)
(2, 1)-category. If

X

��

// Y

��
W // Z

is a 2-commutative diagram of algebraic stacks, then the diagram of sets

|X |

��

// |Y|

��
|W| // |Z|

is commutative. In particular, if X → Y is an equivalence then |X | → |Y| is a bijection.

Lemma 4.3. Let
Z ×Y X //

��

X

��
Z // Y

be a fibre product of algebraic stacks. Then the map of sets of points

|Z ×Y X| −→ |Z| ×|Y| |X |

is surjective.
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Proof. Namely, suppose given fieldsK ,L and morphisms Spec(K)→ X , Spec(L)→
Z , then the assumption that they agree as elements of |Y| means that there is a common
extension M/K and M/L such that Spec(M)→ Spec(K)→ X → Y and Spec(M)→
Spec(L) → Z → Y are 2-isomorphic. And this is exactly the condition which says you
get a morphism Spec(M)→ Z ×Y X . �

Lemma 4.4. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent:

(1) |f | : |X | → |Y| is surjective, and
(2) f is surjective (in the sense of Section 3).

Proof. Assume (1). Let T → Y be a morphism whose source is a scheme. To prove
(2) we have to show that the morphism of algebraic spaces T ×Y X → T is surjective. By
Morphisms of Spaces, Definition 5.2 this means we have to show that |T ×Y X| → |T | is
surjective. Applying Lemma 4.3 we see that this follows from (1).

Conversely, assume (2). Let y : Spec(K) → Y be a morphism from the spectrum of a
field into Y . By assumption the morphism Spec(K) ×y,Y X → Spec(K) of algebraic
spaces is surjective. By Morphisms of Spaces, Definition 5.2 this means there exists a field
extensionK ′/K and a morphism Spec(K ′)→ Spec(K)×y,Y X such that the left square
of the diagram

Spec(K ′) //

��

Spec(K)×y,Y X

��

// X

��
Spec(K) Spec(K) y // Y

is commutative. This shows that |X| → |Y| is surjective. �

Here is a lemma explaining how to compute the set of points in terms of a presentation.

Lemma 4.5. Let X be an algebraic stack. Let X = [U/R] be a presentation of X , see
Algebraic Stacks, Definition 16.5. Then the image of |R| → |U | × |U | is an equivalence
relation and |X | is the quotient of |U | by this equivalence relation.

Proof. The assumption means that we have a smooth groupoid (U,R, s, t, c) in al-
gebraic spaces, and an equivalence f : [U/R] → X . We may assume X = [U/R]. The
induced morphism p : U → X is smooth and surjective, see Algebraic Stacks, Lemma 17.2.
Hence |U | → |X | is surjective by Lemma 4.4. Note that R = U ×X U , see Groupoids in
Spaces, Lemma 22.2. Hence Lemma 4.3 implies the map

|R| −→ |U | ×|X | |U |
is surjective. Hence the image of |R| → |U | × |U | is exactly the set of pairs (u1, u2) ∈
|U |×|U | such that u1 and u2 have the same image in |X |. Combining these two statements
we get the result of the lemma. �

Remark 4.6. The result of Lemma 4.5 can be generalized as follows. Let X be an
algebraic stack. Let U be an algebraic space and let f : U → X be a surjective morphism
(which makes sense by Section 3). Let R = U ×X U , let (U,R, s, t, c) be the groupoid
in algebraic spaces, and let fcan : [U/R] → X be the canonical morphism as constructed
in Algebraic Stacks, Lemma 16.1. Then the image of |R| → |U | × |U | is an equivalence
relation and |X | = |U |/|R|. The proof of Lemma 4.5 works without change. (Of course
in general [U/R] is not an algebraic stack, and in general fcan is not an isomorphism.)
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Lemma 4.7. There exists a unique topology on the sets of points of algebraic stacks
with the following properties:

(1) for every morphism of algebraic stacksX → Y the map |X | → |Y| is continuous,
and

(2) for every morphism U → X which is flat and locally of finite presentation with
U an algebraic space the map of topological spaces |U | → |X | is continuous and
open.

Proof. Choose a morphism p : U → X which is surjective, flat, and locally of finite
presentation with U an algebraic space. Such exist by the definition of an algebraic stack,
as a smooth morphism is flat and locally of finite presentation (see Morphisms of Spaces,
Lemmas 37.5 and 37.7). We define a topology on |X | by the rule: W ⊂ |X | is open if and
only if |p|−1(W ) is open in |U |. To show that this is independent of the choice of p, let
p′ : U ′ → X be another morphism which is surjective, flat, locally of finite presentation
from an algebraic space toX . SetU ′′ = U×XU

′ so that we have a 2-commutative diagram

U ′′ //

��

U ′

��
U // X

As U → X and U ′ → X are surjective, flat, locally of finite presentation we see that
U ′′ → U ′ and U ′′ → U are surjective, flat and locally of finite presentation, see Lemma
3.2. Hence the maps |U ′′| → |U ′| and |U ′′| → |U | are continuous, open and surjective,
see Morphisms of Spaces, Definition 5.2 and Lemma 30.6. This clearly implies that our
definition is independent of the choice of p : U → X .

Let f : X → Y be a morphism of algebraic stacks. By Algebraic Stacks, Lemma 15.1 we
can find a 2-commutative diagram

U

x

��

a
// V

y

��
X

f // Y

with surjective smooth vertical arrows. Consider the associated commutative diagram

|U |

|x|
��

|a|
// |V |

|y|
��

|X |
|f | // |Y|

of sets. IfW ⊂ |Y| is open, then by the definition above this means exactly that |y|−1(W )
is open in |V |. Since |a| is continuous we conclude that |a|−1|y|−1(W ) = |x|−1|f |−1(W )
is open in |W | which means by definition that |f |−1(W ) is open in |X |. Thus |f | is con-
tinuous.

Finally, we have to show that if U is an algebraic space, and U → X is flat and locally of
finite presentation, then |U | → |X | is open. Let V → X be surjective, flat, and locally of
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finite presentation with V an algebraic space. Consider the commutative diagram

|U ×X V |
e
//

f
&&

|U | ×|X | |V |

c

��

d
// |V |

b

��
|U | a // |X |

Now the morphism U ×X V → U is surjective, i.e, f : |U ×X V | → |U | is surjective.
The left top horizontal arrow is surjective, see Lemma 4.3. The morphism U ×X V → V
is flat and locally of finite presentation, hence d ◦ e : |U ×X V | → |V | is open, see
Morphisms of Spaces, Lemma 30.6. Pick W ⊂ |U | open. The properties above imply that
b−1(a(W )) = (d ◦ e)(f−1(W )) is open, which by construction means that a(W ) is open
as desired. �

Definition 4.8. Let X be an algebraic stack. The underlying topological space of X
is the set of points |X | endowed with the topology constructed in Lemma 4.7.
This definition does not conflict with the already existing topology on |X | if X is an
algebraic space.

Lemma 4.9. LetX be an algebraic stack. Every point of |X | has a fundamental system
of quasi-compact open neighbourhoods. In particular |X | is locally quasi-compact in the
sense of Topology, Definition 13.1.

Proof. This follows formally from the fact that there exists a scheme U and a sur-
jective, open, continuous map U → |X | of topological spaces. Namely, if U → X is sur-
jective and smooth, then Lemma 4.7 guarantees that |U | → |X | is continuous, surjective,
and open. �

5. Surjective morphisms

Let f : X → Y be a morphism of algebraic stacks which is representable by algebraic
spaces. In Section 3 we have already defined what it means for f to be surjective. In Lemma
4.4 we have seen that this is equivalent to requiring |f | : |X | → |Y| to be surjective. This
clears the way for the following definition.

Definition 5.1. Let f : X → Y be a morphism of algebraic stacks. We say f is
surjective if the map |f | : |X | → |Y| of associated topological spaces is surjective.
Here are some lemmas.

Lemma 5.2. The composition of surjective morphisms is surjective.
Proof. Omitted. �

Lemma 5.3. The base change of a surjective morphism is surjective.
Proof. Omitted. Hint: Use Lemma 4.3. �

Lemma 5.4. Let f : X → Y be a morphism of algebraic stacks. Let Y ′ → Y be a
surjective morphism of algebraic stacks. If the base change f ′ : Y ′ ×Y X → Y ′ of f is
surjective, then f is surjective.

Proof. Immediate from Lemma 4.3. �

Lemma 5.5. Let X → Y → Z be morphisms of algebraic stacks. If X → Z is
surjective so is Y → Z .

Proof. Immediate. �
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6. Quasi-compact algebraic stacks

The following definition is equivalent with the definition for algebraic spaces by Proper-
ties of Spaces, Lemma 5.2.

Definition 6.1. Let X be an algebraic stack. We say X is quasi-compact if and only
if |X | is quasi-compact.

Lemma 6.2. Let X be an algebraic stack. The following are equivalent:
(1) X is quasi-compact,
(2) there exists a surjective smooth morphism U → X with U an affine scheme,
(3) there exists a surjective smooth morphism U → X with U a quasi-compact

scheme,
(4) there exists a surjective smooth morphism U → X with U a quasi-compact al-

gebraic space, and
(5) there exists a surjective morphism U → X of algebraic stacks such that U is

quasi-compact.

Proof. We will use Lemma 4.4. Suppose U and U → X are as in (5). Then since
|U| → |X | is surjective and continuous we conclude that |X | is quasi-compact. Thus (5)
implies (1). The implications (2)⇒ (3)⇒ (4)⇒ (5) are immediate. Assume (1), i.e., X is
quasi-compact, i.e., that |X | is quasi-compact. Choose a scheme U and a surjective smooth
morphismU → X . Then since |U | → |X | is open we see that there exists a quasi-compact
open U ′ ⊂ U such that |U ′| → |X| is surjective (and still smooth). Choose a finite affine
open covering U ′ = U1 ∪ . . . ∪ Un. Then U1 q . . . q Un → X is a surjective smooth
morphism whose source is an affine scheme (Schemes, Lemma 6.8). Hence (2) holds. �

Lemma 6.3. A finite disjoint union of quasi-compact algebraic stacks is a quasi-compact
algebraic stack.

Proof. This is clear from the corresponding topological fact. �

7. Properties of algebraic stacks defined by properties of schemes

Any smooth local property of schemes gives rise to a corresponding property of algebraic
stacks via the following lemma. Note that a property of schemes which is smooth local is
also étale local as any étale covering is also a smooth covering. Hence for a smooth local
property P of schemes we know what it means to say that an algebraic space has P , see
Properties of Spaces, Section 7.

Lemma 7.1. Let P be a property of schemes which is local in the smooth topology,
see Descent, Definition 15.1. Let X be an algebraic stack. The following are equivalent

(1) for some scheme U and some surjective smooth morphism U → X the scheme
U has property P ,

(2) for every scheme U and every smooth morphism U → X the scheme U has
property P ,

(3) for some algebraic space U and some surjective smooth morphism U → X the
algebraic space U has property P , and

(4) for every algebraic space U and every smooth morphism U → X the algebraic
space U has property P .

If X is a scheme this is equivalent to P(U). If X is an algebraic space this is equivalent to
X having property P .
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Proof. Let U → X surjective and smooth with U an algebraic space. Let V → X be
a smooth morphism with V an algebraic space. Choose schemes U ′ and V ′ and surjective
étale morphisms U ′ → U and V ′ → V . Finally, choose a scheme W and a surjective
étale morphism W → V ′ ×X U ′. Then W → V ′ and W → U ′ are smooth morphisms of
schemes as compositions of étale and smooth morphisms of algebraic spaces, see Morphisms
of Spaces, Lemmas 39.6 and 37.2. Moreover,W → V ′ is surjective asU ′ → X is surjective.
Hence, we have

P(U)⇔ P(U ′)⇒ P(W )⇒ P(V ′)⇔ P(V )
where the equivalences are by definition of property P for algebraic spaces, and the two
implications come from Descent, Definition 15.1. This proves (3)⇒ (4).

The implications (2)⇒ (1), (1)⇒ (3), and (4)⇒ (2) are immediate. �

Definition 7.2. LetX be an algebraic stack. LetP be a property of schemes which is
local in the smooth topology. We sayX has propertyP if any of the equivalent conditions
of Lemma 7.1 hold.

Remark 7.3. Here is a list of properties which are local for the smooth topology
(keep in mind that the fpqc, fppf, and syntomic topologies are stronger than the smooth
topology):

(1) locally Noetherian, see Descent, Lemma 16.1,
(2) Jacobson, see Descent, Lemma 16.2,
(3) locally Noetherian and (Sk), see Descent, Lemma 17.1,
(4) Cohen-Macaulay, see Descent, Lemma 17.2,
(5) reduced, see Descent, Lemma 18.1,
(6) normal, see Descent, Lemma 18.2,
(7) locally Noetherian and (Rk), see Descent, Lemma 18.3,
(8) regular, see Descent, Lemma 18.4,
(9) Nagata, see Descent, Lemma 18.5.

Any smooth local property of germs of schemes gives rise to a corresponding property of
algebraic stacks. Note that a property of germs which is smooth local is also étale local.
Hence for a smooth local property of germs of schemes P we know what it means to say
that an algebraic space X has property P at x ∈ |X|, see Properties of Spaces, Section 7.

Lemma 7.4. Let X be an algebraic stack. Let x ∈ |X | be a point of X . Let P be
a property of germs of schemes which is smooth local, see Descent, Definition 21.1. The
following are equivalent

(1) for any smooth morphism U → X with U a scheme and u ∈ U with a(u) = x
we have P(U, u),

(2) for some smooth morphism U → X with U a scheme and some u ∈ U with
a(u) = x we have P(U, u),

(3) for any smooth morphism U → X with U an algebraic space and u ∈ |U | with
a(u) = x the algebraic space U has property P at u, and

(4) for some smooth morphism U → X with U a an algebraic space and some u ∈
|U | with a(u) = x the algebraic space U has property P at u.

If X is representable, then this is equivalent to P(X , x). If X is an algebraic space then
this is equivalent to X having property P at x.

Proof. Let a : U → X and u ∈ |U | as in (3). Let b : V → X be another smooth
morphism with V an algebraic space and v ∈ |V | with b(v) = x also. Choose a scheme



6794 100. PROPERTIES OF ALGEBRAIC STACKS

U ′, an étale morphism U ′ → U and u′ ∈ U ′ mapping to u. Choose a scheme V ′, an
étale morphism V ′ → V and v′ ∈ V ′ mapping to v. By Lemma 4.3 there exists a point
w ∈ |V ′ ×X U ′| mapping to u′ and v′. Choose a scheme W and a surjective étale mor-
phism W → V ′ ×X U ′. We may choose a w ∈ |W | mapping to w (see Properties of
Spaces, Lemma 4.4). Then W → V ′ and W → U ′ are smooth morphisms of schemes as
compositions of étale and smooth morphisms of algebraic spaces, see Morphisms of Spaces,
Lemmas 39.6 and 37.2. Hence

P(U, u)⇔ P(U ′, u′)⇔ P(W,w)⇔ P(V ′, v′)⇔ P(V, v)

The outer two equivalences by Properties of Spaces, Definition 7.5 and the other two by
what it means to be a smooth local property of germs of schemes. This proves (4)⇒ (3).

The implications (1)⇒ (2), (2)⇒ (4), and (3)⇒ (1) are immediate. �

Definition 7.5. Let P be a property of germs of schemes which is smooth local. Let
X be an algebraic stack. Let x ∈ |X |. We sayX has propertyP at x if any of the equivalent
conditions of Lemma 7.4 holds.

8. Monomorphisms of algebraic stacks

We define a monomorphism of algebraic stacks in the following way. We will see in
Lemma 8.4 that this is compatible with the corresponding 2-category theoretic notion.

Definition 8.1. Let f : X → Y be a morphism of algebraic stacks. We say f is a
monomorphism if it is representable by algebraic spaces and a monomorphism in the sense
of Section 3.

First some basic lemmas.

Lemma 8.2. Let X → Y be a morphism of algebraic stacks. Let Z → Y be a
monomorphism. Then Z ×Y X → X is a monomorphism.

Proof. This follows from the general discussion in Section 3. �

Lemma 8.3. Compositions of monomorphisms of algebraic stacks are monomorphisms.

Proof. This follows from the general discussion in Section 3 and Morphisms of Spaces,
Lemma 10.4. �

Lemma 8.4. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent:

(1) f is a monomorphism,
(2) f is fully faithful,
(3) the diagonal ∆f : X → X ×Y X is an equivalence, and
(4) there exists an algebraic spaceW and a surjective, flat morphismW → Y which

is locally of finite presentation such that V = X ×Y W is an algebraic space, and
the morphism V →W is a monomorphism of algebraic spaces.

Proof. The equivalence of (1) and (4) follows from the general discussion in Section
3 and in particular Lemmas 3.1 and 3.3.

The equivalence of (2) and (3) is Categories, Lemma 35.10.
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Assume the equivalent conditions (2) and (3). Then f is representable by algebraic spaces
according to Algebraic Stacks, Lemma 15.2. Moreover, the 2-Yoneda lemma combined
with the fully faithfulness implies that for every scheme T the functor

Mor(T,X ) −→ Mor(T,Y)

is fully faithful. Hence given a morphism y : T → Y there exists up to unique 2-
isomorphism at most one morphism x : T → X such that y ∼= f ◦ x. In particular,
given a morphism of schemes h : T ′ → T there exists at most one lift h̃ : T ′ → T ×Y X
of h. Thus T ×Y X → T is a monomorphism of algebraic spaces, which proves that (1)
holds.

Finally, assume that (1) holds. Then for any scheme T and morphism y : T → Y the fibre
product T ×Y X is an algebraic space, and T ×Y X → T is a monomorphism. Hence there
exists up to unique isomorphism exactly one pair (x, α) where x : T → X is a morphism
and α : f ◦ x→ y is a 2-morphism. Applying the 2-Yoneda lemma this says exactly that
f is fully faithful, i.e., that (2) holds. �

Lemma 8.5. A monomorphism of algebraic stacks induces an injective map of sets of
points.

Proof. Let f : X → Y be a monomorphism of algebraic stacks. Suppose that xi :
Spec(Ki)→ X be morphisms such that f ◦ x1 and f ◦ x2 define the same element of |Y|.
Applying the definition we find a common extension Ω with corresponding morphisms
ci : Spec(Ω)→ Spec(Ki) and a 2-isomorphism β : f ◦x1 ◦ c1 → f ◦x1 ◦ c2. As f is fully
faithful, see Lemma 8.4, we can lift β to an isomorphism α : x1 ◦ c1 → x1 ◦ c2. Hence x1
and x2 define the same point of |X | as desired. �

Lemma 8.6. Let X → X ′ → Y be morphisms of algebraic stacks. If X → X ′ is a
monomorphism then the canonical diagram

X //

��

X ×Y X

��
X ′ // X ′ ×Y X ′

is a fibre product square.

Proof. We have X = X ×X ′ X by Lemma 8.4. Thus the result by applying Cate-
gories, Lemma 31.13. �

9. Immersions of algebraic stacks

Immersions of algebraic stacks are defined as follows.

Definition 9.1. Immersions.
(1) A morphism of algebraic stacks is called an open immersion if it is representable,

and an open immersion in the sense of Section 3.
(2) A morphism of algebraic stacks is called a closed immersion if it is representable,

and a closed immersion in the sense of Section 3.
(3) A morphism of algebraic stacks is called an immersion if it is representable, and

an immersion in the sense of Section 3.
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This is not the most convenient way to think about immersions for us. For us it is a little
bit more convenient to think of an immersion as a morphism of algebraic stacks which is
representable by algebraic spaces and is an immersion in the sense of Section 3. Similarly
for closed and open immersions. Since this is clearly equivalent to the notion just defined
we shall use this characterization without further mention. We prove a few simple lemmas
about this notion.

Lemma 9.2. Let X → Y be a morphism of algebraic stacks. Let Z → Y be a (closed,
resp. open) immersion. Then Z ×Y X → X is a (closed, resp. open) immersion.

Proof. This follows from the general discussion in Section 3. �

Lemma 9.3. Compositions of immersions of algebraic stacks are immersions. Simi-
larly for closed immersions and open immersions.

Proof. This follows from the general discussion in Section 3 and Spaces, Lemma 12.2.
�

Lemma 9.4. Let f : X → Y be a morphism of algebraic stacks. letW be an algebraic
space and letW → Y be a surjective, flat morphism which is locally of finite presentation.
The following are equivalent:

(1) f is an (open, resp. closed) immersion, and
(2) V = W ×Y X is an algebraic space, and V → W is an (open, resp. closed)

immersion.

Proof. This follows from the general discussion in Section 3 and in particular Lem-
mas 3.1 and 3.3. �

Lemma 9.5. An immersion is a monomorphism.

Proof. See Morphisms of Spaces, Lemma 10.7. �

Lemma 9.6. If f : X → Y is an immersion, then |f | : |X | → |Y| is a homeomorphism
onto a locally closed subset. If f is a closed, resp. open immersion, then |f | is closed, resp.
open.

Proof. Omitted. �

The following two lemmas explain how to think about immersions in terms of presenta-
tions.

Lemma 9.7. Let (U,R, s, t, c) be a smooth groupoid in algebraic spaces. Let i : Z →
[U/R] be an immersion. Then there exists an R-invariant locally closed subspace Z ⊂ U
and a presentation [Z/RZ ]→ Z where RZ is the restriction of R to Z such that

[Z/RZ ]

$$

// Z

i}}
[U/R]

is 2-commutative. If i is a closed (resp. open) immersion then Z is a closed (resp. open)
subspace of U .
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Proof. By Lemma 3.6 we get a commutative diagram

[U ′/R′]

$$

// Z

}}
[U/R]

where U ′ = Z ×[U/R] U and R′ = Z ×[U/R] R. Since Z → [U/R] is an immersion we
see that U ′ → U is an immersion of algebraic spaces. Let Z ⊂ U be the locally closed
subspace such that U ′ → U factors through Z and induces an isomorphism U ′ → Z. It
is clear from the construction of R′ that R′ = U ′ ×U,t R = R×s,U U ′. This implies that
Z ∼= U ′ is R-invariant and that the image of R′ → R identifies R′ with the restriction
RZ = s−1(Z) = t−1(Z) of R to Z. Hence the lemma holds. �

Lemma 9.8. Let (U,R, s, t, c) be a smooth groupoid in algebraic spaces. Let X =
[U/R] be the associated algebraic stack, see Algebraic Stacks, Theorem 17.3. Let Z ⊂ U be
an R-invariant locally closed subspace. Then

[Z/RZ ] −→ [U/R]
is an immersion of algebraic stacks, whereRZ is the restriction ofR toZ. IfZ ⊂ U is open
(resp. closed) then the morphism is an open (resp. closed) immersion of algebraic stacks.

Proof. Recall that by Groupoids in Spaces, Definition 18.1 (see also discussion fol-
lowing the definition) we have RZ = s−1(Z) = t−1(Z) as locally closed subspaces of
R. Hence the two morphisms RZ → Z are smooth as base changes of s and t. Hence
(Z,RZ , s|RZ , t|RZ , c|RZ×s,Z,tRZ ) is a smooth groupoid in algebraic spaces, and we see
that [Z/RZ ] is an algebraic stack, see Algebraic Stacks, Theorem 17.3. The assumptions
of Groupoids in Spaces, Lemma 25.3 are all satisfied and it follows that we have a 2-fibre
square

Z

��

// [Z/RZ ]

��
U // [U/R]

It follows from this and Lemma 3.1 that [Z/RZ ] → [U/R] is representable by algebraic
spaces, whereupon it follows from Lemma 3.3 that the right vertical arrow is an immersion
(resp. closed immersion, resp. open immersion) if and only if the left vertical arrow is. �

We can define open, closed, and locally closed substacks as follows.

Definition 9.9. Let X be an algebraic stack.
(1) An open substack of X is a strictly full subcategory X ′ ⊂ X such that X ′ is an

algebraic stack and X ′ → X is an open immersion.
(2) A closed substack of X is a strictly full subcategory X ′ ⊂ X such that X ′ is an

algebraic stack and X ′ → X is a closed immersion.
(3) A locally closed substack of X is a strictly full subcategory X ′ ⊂ X such that
X ′ is an algebraic stack and X ′ → X is an immersion.

This definition should be used with caution. Namely, if f : X → Y is an equivalence of
algebraic stacks andX ′ ⊂ X is an open substack, then it is not necessarily the case that the
subcategory f(X ′) is an open substack of Y . The problem is that it may not be a strictly
full subcategory; but this is also the only problem. Here is a formal statement.



6798 100. PROPERTIES OF ALGEBRAIC STACKS

Lemma 9.10. For any immersion i : Z → X there exists a unique locally closed
substack X ′ ⊂ X such that i factors as the composition of an equivalence i′ : Z → X ′

followed by the inclusion morphismX ′ → X . If i is a closed (resp. open) immersion, then
X ′ is a closed (resp. open) substack of X .

Proof. Omitted. �

Lemma 9.11. Let [U/R] → X be a presentation of an algebraic stack. There is a
canonical bijection

locally closed substacks Z of X −→ R-invariant locally closed subspaces Z of U

which sends Z to U ×X Z . Moreover, a morphism of algebraic stacks f : Y → X factors
through Z if and only if Y ×X U → U factors through Z. Similarly for closed substacks
and open substacks.

Proof. By Lemmas 9.7 and 9.8 we find that the map is a bijection. If Y → X factors
through Z then of course the base change Y ×X U → U factors through Z. Converse,
suppose that Y → X is a morphism such that Y ×X U → U factors through Z. We will
show that for every scheme T and morphism T → Y , given by an object y of the fibre
category of Y over T , the object y is in fact in the fibre category of Z over T . Namely,
the fibre product T ×X U is an algebraic space and T ×X U → T is a surjective smooth
morphism. Hence there is an fppf covering {Ti → T} such that Ti → T factors through
T ×X U → T for all i. Then Ti → X factors throughY×X U and hence throughZ ⊂ U .
Thus y|Ti is an object of Z (as Z is the fibre product of U with Z over X ). Since Z is a
strictly full substack, we conclude that y is an object of Z as desired. �

Lemma 9.12. Let X be an algebraic stack. The rule U 7→ |U| defines an inclusion
preserving bijection between open substacks of X and open subsets of |X |.

Proof. Choose a presentation [U/R] → X , see Algebraic Stacks, Lemma 16.2. By
Lemma 9.11 we see that open substacks correspond to R-invariant open subschemes of U .
On the other hand Lemmas 4.5 and 4.7 guarantee these correspond bijectively to open
subsets of |X |. �

Lemma 9.13. Let X be an algebraic stack. Let U be an algebraic space and U → X
a surjective smooth morphism. For an open immersion V ↪→ U , there exists an algebraic
stack Y , an open immersion Y → X , and a surjective smooth morphism V → Y .

Proof. We define a category fibred in groupoids Y by letting the fiber category YT
over an object T of (Sch/S)fppf be the full subcategory of XT consisting of all y ∈
Ob(XT ) such that the projection morphism V ×X ,y T → T surjective. Now for any
morphism x : T → X , the 2-fibred product T ×x,X Y has fiber category over T ′ consist-
ing of triples (f : T ′ → T, y ∈ XT ′ , f∗x ' y) such that V ×X ,y T

′ → T ′ is surjective.
Note that T ×x,X Y is fibered in setoids since Y → X is faithful (see Stacks, Lemma 6.7).
Now the isomorphism f∗x ' y gives the diagram

V ×X ,y T
′

��

// V ×X ,x T //

��

V

��
T ′ f // T

x // X
where both squares are cartesian. The morphism V ×X ,xT → T is smooth by base change,
and hence open. Let T0 ⊂ T be its image. From the cartesian squares we deduce that
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V ×X ,y T
′ → T ′ is surjective if and only if f lands in T0. Therefore T ×x,X Y is rep-

resentable by T0, so the inclusion Y → X is an open immersion. By Algebraic Stacks,
Lemma 15.5 we conclude that Y is an algebraic stack. Lastly if we denote the morphism
V → X by g, we have V ×X V → V is surjective (the diagonal gives a section). Hence
g is in the image of YV → XV , i.e., we obtain a morphism g′ : V → Y fitting into the
commutative diagram

V //

g′

��

U

��
Y // X

Since V ×g,X Y → V is a monomorphism, it is in fact an isomorphism since (1, g′) defines
a section. Therefore g′ : V → Y is a smooth morphism, as it is the base change of the
smooth morphism g : V → X . It is surjective by our construction of Y which finishes
the proof of the lemma. �

Lemma 9.14. Let X be an algebraic stack and Xi ⊂ X a collection of open substacks
indexed by i ∈ I . Then there exists an open substack, which we denote

⋃
i∈I Xi ⊂ X ,

such that the Xi are open substacks covering it.

Proof. We define a fibred subcategory X ′ =
⋃
i∈I Xi by letting the fiber category

over an object T of (Sch/S)fppf be the full subcategory of XT consisting of all x ∈
Ob(XT ) such that the morphism

∐
i∈I(Xi×X T )→ T is surjective. Let xi ∈ Ob((Xi)T ).

Then (xi, 1) gives a section of Xi×X T → T , so we have an isomorphism. Thus Xi ⊂ X ′

is a full subcategory. Now let x ∈ Ob(XT ). Then Xi ×X T is representable by an
open subscheme Ti ⊂ T . The 2-fibred product X ′ ×X T has fiber over T ′ consisting
of (y ∈ XT ′ , f : T ′ → T, f∗x ' y) such that

∐
(Xi ×X ,y T

′) → T ′ is surjective. The
isomorphism f∗x ' y induces an isomorphismXi×X ,yT

′ ' Ti×T T ′. Then the Ti×T T ′

cover T ′ if and only if f lands in
⋃
Ti. Therefore we have a diagram

Ti //

��

⋃
Ti //

��

T

��
Xi // X ′ // X

with both squares cartesian. By Algebraic Stacks, Lemma 15.5 we conclude that X ′ ⊂ X
is algebraic and an open substack. It is also clear from the cartesian squares above that the
morphism

∐
i∈I Xi → X ′ which finishes the proof of the lemma. �

Lemma 9.15. LetX be an algebraic stack andX ′ ⊂ X a quasi-compact open substack.
Suppose that we have a collection of open substacks Xi ⊂ X indexed by i ∈ I such that
X ′ ⊂

⋃
i∈I Xi, where we define the union as in Lemma 9.14. Then there exists a finite

subset I ′ ⊂ I such that X ′ ⊂
⋃
i∈I′ Xi.

Proof. Since X is algebraic, there exists a scheme U with a surjective smooth mor-
phismU → X . LetUi ⊂ U be the open subscheme representingXi×X U andU ′ ⊂ U the
open subscheme representing X ′ ×X U . By hypothesis, U ′ ⊂

⋃
i∈I Ui. From the proof

of Lemma 6.2, there is a quasi-compact open V ⊂ U ′ such that V → X ′ is a surjective
smooth morphism. Therefore there exists a finite subset I ′ ⊂ I such that V ⊂

⋃
i∈I′ Ui.

We claim that X ′ ⊂
⋃
i∈I′ Xi. Take x ∈ Ob(X ′

T ) for T ∈ Ob((Sch/S)fppf ). Since
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X ′ → X is a monomorphism, we have cartesian squares

V ×X T //

��

T

x

��

T

x

��
V // X ′ // X

By base change, V ×X T → T is surjective. Therefore
⋃
i∈I′ Ui ×X T → T is also surjec-

tive. Let Ti ⊂ T be the open subscheme representing Xi×X T . By a formal argument, we
have a Cartesian square

Ui ×Xi Ti
//

��

U ×X T

��
Ti // T

where the vertical arrows are surjective by base change. Since Ui ×Xi Ti ' Ui ×X T , we
find that

⋃
i∈I′ Ti = T . Hence x is an object of (

⋃
i∈I′ Xi)T by definition of the union.

Observe that the inclusion X ′ ⊂
⋃
i∈I′ Xi is automatically an open substack. �

Lemma 9.16. Let X be an algebraic stack. Let Xi, i ∈ I be a set of open substacks of
X . Assume

(1) X =
⋃
i∈I Xi, and

(2) each Xi is an algebraic space.
Then X is an algebraic space.

Proof. Apply Stacks, Lemma 6.10 to the morphism
∐
i∈I Xi → X and the morphism

id : X → X to see thatX is a stack in setoids. HenceX is an algebraic space, see Algebraic
Stacks, Proposition 13.3. �

Lemma 9.17. Let X be an algebraic stack. Let Xi, i ∈ I be a set of open substacks of
X . Assume

(1) X =
⋃
i∈I Xi, and

(2) each Xi is a scheme
Then X is a scheme.

Proof. By Lemma 9.16 we see that X is an algebraic space. Since any algebraic space
has a largest open subspace which is a scheme, see Properties of Spaces, Lemma 13.1 we see
that X is a scheme. �

The following lemma is the analogue of More on Groupoids, Lemma 6.1.

Lemma 9.18. Let P,Q,R be properties of morphisms of algebraic spaces. Assume
(1) P,Q,R are fppf local on the target and stable under arbitrary base change,
(2) smooth⇒R,
(3) for any morphism f : X → Y which hasQ there exists a largest open subspace

W (P, f) ⊂ X such that f |W (P,f) has P , and
(4) for any morphism f : X → Y which hasQ, and any morphism Y ′ → Y which

hasR we have Y ′ ×Y W (P, f) = W (P, f ′), where f ′ : XY ′ → Y ′ is the base
change of f .

Let f : X → Y be a morphism of algebraic stacks representable by algebraic spaces.
Assume f hasQ. Then

(A) there exists a largest open substack X ′ ⊂ X such that f |X ′ has P , and



9. IMMERSIONS OF ALGEBRAIC STACKS 6801

(B) if Z → Y is a morphism of algebraic stacks representable by algebraic spaces
which hasR then Z ×Y X ′ is the largest open substack of Z ×Y X over which
the base change idZ × f has property P .

Proof. Choose a scheme V and a surjective smooth morphism V → Y . Set U =
V ×Y X and let f ′ : U → V be the base change of f . The morphism of algebraic spaces
f ′ : U → V has propertyQ. Thus we obtain the open W (P, f ′) ⊂ U by assumption (3).
Note thatU×X U = (V ×Y V )×YX hence the morphism f ′′ : U×X U → V ×Y V is the
base change of f via either projection V ×Y V → V . By our choice of V these projections
are smooth, hence have property R by (2). Thus by (4) we see that the inverse images of
W (P, f ′) under the two projections pri : U ×X U → U agree. In other words, W (P, f ′)
is an R-invariant subspace of U (where R = U ×X U ). Let X ′ be the open substack of X
corresponding to W (P, f) via Lemma 9.7. By construction W (P, f ′) = X ′ ×Y V hence
f |X ′ has property P by Lemma 3.3. Also, X ′ is the largest open substack such that f |X ′

has P as the same maximality holds for W (P, f). This proves (A).

Finally, if Z → Y is a morphism of algebraic stacks representable by algebraic spaces
which hasR then we set T = V ×Y Z and we see that T → V is a morphism of algebraic
spaces having propertyR. Set f ′

T : T ×V U → T the base change of f ′. By (4) again we
see that W (P, f ′

T ) is the inverse image of W (P, f) in T ×V U . This implies (B); some
details omitted. �

Remark 9.19. Warning: Lemma 9.18 should be used with care. For example, it ap-
plies to P =“flat”, Q =“empty”, and R =“flat and locally of finite presentation”. But
given a morphism of algebraic spaces f : X → Y the largest open subspace W ⊂ X such
that f |W is flat is not the set of points where f is flat!

Remark 9.20. Notwithstanding the warning in Remark 9.19 there are some cases
where Lemma 9.18 can be used without causing ambiguity. We give a list. In each case we
omit the verification of assumptions (1) and (2) and we give references which imply (3)
and (4). Here is the list:

(1) Q =“locally of finite type”, R = ∅, and P =“relative dimension ≤ d”. See
Morphisms of Spaces, Definition 33.2 and Morphisms of Spaces, Lemmas 34.4
and 34.3.

(2) Q =“locally of finite type”, R = ∅, and P =“locally quasi-finite”. This is the
case d = 0 of the previous item, see Morphisms of Spaces, Lemma 34.6. On the
other hand, properties (3) and (4) are spelled out in Morphisms of Spaces, Lemma
34.7.

(3) Q =“locally of finite type”,R = ∅, and P =“unramified”. This is Morphisms of
Spaces, Lemma 38.10.

(4) Q =“locally of finite presentation”,R =“flat and locally of finite presentation”,
andP =“flat”. See More on Morphisms of Spaces, Theorem 22.1 and Lemma 22.2.
Note that here W (P, f) is always exactly the set of points where the morphism
f is flat because we only consider this open when f hasQ (see loc.cit.).

(5) Q =“locally of finite presentation”,R =“flat and locally of finite presentation”,
and P =“étale”. This follows on combining (3) and (4) because an unramified
morphism which is flat and locally of finite presentation is étale, see Morphisms
of Spaces, Lemma 39.12.

(6) Add more here as needed (compare with the longer list at More on Groupoids,
Remark 6.3).
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10. Reduced algebraic stacks

We have already defined reduced algebraic stacks in Section 7.

Lemma 10.1. LetX be an algebraic stack. Let T ⊂ |X | be a closed subset. There exists
a unique closed substack Z ⊂ X with the following properties: (a) we have |Z| = T , and
(b) Z is reduced.

Proof. Let U → X be a surjective smooth morphism, where U is an algebraic space.
SetR = U ×X U , so that there is a presentation [U/R]→ X , see Algebraic Stacks, Lemma
16.2. As usual we denote s, t : R→ U the two smooth projection morphisms. By Lemma
4.5 we see that T corresponds to a closed subset T ′ ⊂ |U | such that |s|−1(T ′) = |t|−1(T ′).
LetZ ⊂ U be the reduced induced algebraic space structure on T ′, see Properties of Spaces,
Definition 12.5. The fibre products Z ×U,t R and R ×s,U Z are closed subspaces of R
(Spaces, Lemma 12.3). The projections Z ×U,t R → Z and R ×s,U Z → Z are smooth
by Morphisms of Spaces, Lemma 37.3. Thus as Z is reduced, it follows that Z ×U,t R and
R×s,U Z are reduced, see Remark 7.3. Since

|Z ×U,t R| = |t|−1(T ′) = |s|−1(T ′) = R×s,U Z
we conclude from the uniqueness in Properties of Spaces, Lemma 12.3 that Z ×U,t R =
R ×s,U Z. Hence Z is an R-invariant closed subspace of U . By the correspondence of
Lemma 9.11 we obtain a closed substack Z ⊂ X with Z = Z ×X U . Then [Z/RZ ]→ Z
is a presentation (Lemma 9.7). Then |Z| = |Z|/|RZ | = |T ′|/ ∼ is the given closed subset
T . We omit the proof of unicity. �

Lemma 10.2. LetX be an algebraic stack. IfX ′ ⊂ X is a closed substack,X is reduced
and |X ′| = |X |, then X ′ = X .

Proof. Choose a presentation [U/R] → X with U a scheme. As X is reduced, we
see that U is reduced (by definition of reduced algebraic stacks). By Lemma 9.11 X ′ cor-
responds to an R-invariant closed subscheme Z ⊂ U . But now |Z| ⊂ |U | is the inverse
image of |X ′|, and hence |Z| = |U |. Hence Z is a closed subscheme of U whose underly-
ing sets of points agree. By Schemes, Lemma 12.7 the map idU : U → U factors through
Z → U , and hence Z = U , i.e., X ′ = X . �

Lemma 10.3. Let X , Y be algebraic stacks. Let Z ⊂ X be a closed substack Assume
Y is reduced. A morphism f : Y → X factors through Z if and only if f(|Y|) ⊂ |Z|.

Proof. Assume f(|Y|) ⊂ |Z|. Consider Y ×X Z → Y . There is an equivalence
Y×X Z → Y ′ whereY ′ is a closed substack ofY , see Lemmas 9.2 and 9.10. Using Lemmas
4.3, 8.5, and 9.5 we see that |Y ′| = |Y|. Hence we have reduced the lemma to Lemma
10.2. �

Definition 10.4. Let X be an algebraic stack. Let Z ⊂ |X | be a closed subset. An
algebraic stack structure on Z is given by a closed substack Z of X with |Z| equal to Z.
The reduced induced algebraic stack structure on Z is the one constructed in Lemma 10.1.
The reduction Xred of X is the reduced induced algebraic stack structure on |X |.

In fact we can use this to define the reduced induced algebraic stack structure on a locally
closed subset.

Remark 10.5. Let X be an algebraic stack. Let T ⊂ |X | be a locally closed subset.
Let ∂T be the boundary of T in the topological space |X |. In a formula

∂T = T \ T.
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Let U ⊂ X be the open substack of X with |U| = |X | \ ∂T , see Lemma 9.12. Let Z be the
reduced closed substack of U with |Z| = T obtained by taking the reduced induced closed
subspace structure, see Definition 10.4. By construction Z → U is a closed immersion
of algebraic stacks and U → X is an open immersion, hence Z → X is an immersion of
algebraic stacks by Lemma 9.3. Note that Z is a reduced algebraic stack and that |Z| = T
as subsets of |X|. We sometimes say Z is the reduced induced substack structure on T .

11. Residual gerbes

In the Stacks project we would like to define the residual gerbe of an algebraic stack X at
a point x ∈ |X | to be a monomorphism of algebraic stacks mx : Zx → X where Zx is a
reduced algebraic stack having a unique point which is mapped by mx to x. It turns out
that there are many issues with this notion; existence is not clear in general and neither is
uniqueness. We resolve the uniqueness issue by imposing a slightly stronger condition on
the algebraic stacks Zx. We discuss this in more detail by working through a few simple
lemmas regarding reduced algebraic stacks having a unique point.

Lemma 11.1. Let Z be an algebraic stack. Let k be a field and let Spec(k) → Z be
surjective and flat. Then any morphism Spec(k′)→ Z where k′ is a field is surjective and
flat.

Proof. Consider the fibre square

T

��

// Spec(k)

��
Spec(k′) // Z

Note that T → Spec(k′) is flat and surjective hence T is not empty. On the other hand
T → Spec(k) is flat as k is a field. Hence T → Z is flat and surjective. It follows from
Morphisms of Spaces, Lemma 31.5 (via the discussion in Section 3) that Spec(k′) → Z is
flat. It is clear that it is surjective as by assumption |Z| is a singleton. �

Lemma 11.2. Let Z be an algebraic stack. The following are equivalent
(1) Z is reduced and |Z| is a singleton,
(2) there exists a surjective flat morphism Spec(k)→ Z where k is a field, and
(3) there exists a locally of finite type, surjective, flat morphism Spec(k)→ Z where

k is a field.

Proof. Assume (1). Let W be a scheme and let W → Z be a surjective smooth mor-
phism. Then W is a reduced scheme. Let η ∈ W be a generic point of an irreducible
component of W . Since W is reduced we have OW,η = κ(η). It follows that the canon-
ical morphism η = Spec(κ(η)) → W is flat. We see that the composition η → Z is flat
(see Morphisms of Spaces, Lemma 30.3). It is also surjective as |Z| is a singleton. In other
words (2) holds.

Assume (2). LetW be a scheme and letW → Z be a surjective smooth morphism. Choose
a field k and a surjective flat morphism Spec(k)→ Z . ThenW×Z Spec(k) is an algebraic
space smooth over k, hence regular (see Spaces over Fields, Lemma 16.1) and in particular
reduced. Since W ×Z Spec(k)→W is surjective and flat we conclude that W is reduced
(Descent on Spaces, Lemma 9.2). In other words (1) holds.
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It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme W
and a smooth morphism W → Z . Pick a closed point w ∈ W and set k = κ(w). The
composition

Spec(k) w−→W −→ Z
is locally of finite type by Morphisms of Spaces, Lemmas 23.2 and 37.6. It is also flat and
surjective by Lemma 11.1. Hence (3) holds. �

The following lemma singles out a slightly better class of singleton algebraic stacks than
the preceding lemma.

Lemma 11.3. Let Z be an algebraic stack. The following are equivalent
(1) Z is reduced, locally Noetherian, and |Z| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism Spec(k) → Z

where k is a field.

Proof. Assume (2) holds. By Lemma 11.2 we see that Z is reduced and |Z| is a sin-
gleton. Let W be a scheme and let W → Z be a surjective smooth morphism. Choose
a field k and a locally finitely presented, surjective, flat morphism Spec(k) → Z . Then
W ×Z Spec(k) is an algebraic space smooth over k, hence locally Noetherian (see Mor-
phisms of Spaces, Lemma 23.5). Since W ×Z Spec(k)→ W is flat, surjective, and locally
of finite presentation, we see that {W ×Z Spec(k) → W} is an fppf covering and we
conclude that W is locally Noetherian (Descent on Spaces, Lemma 9.3). In other words
(1) holds.

Assume (1). Pick a nonempty affine scheme W and a smooth morphism W → Z . Pick a
closed point w ∈ W and set k = κ(w). Because W is locally Noetherian the morphism
w : Spec(k) → W is of finite presentation, see Morphisms, Lemma 21.7. Hence the
composition

Spec(k) w−→W −→ Z
is locally of finite presentation by Morphisms of Spaces, Lemmas 28.2 and 37.5. It is also
flat and surjective by Lemma 11.1. Hence (2) holds. �

Lemma 11.4. Let Z ′ → Z be a monomorphism of algebraic stacks. Assume there
exists a field k and a locally finitely presented, surjective, flat morphism Spec(k) → Z .
Then either Z ′ is empty or Z ′ → Z is an equivalence.

Proof. We may assume that Z ′ is nonempty. In this case the fibre product T =
Z ′ ×Z Spec(k) is nonempty, see Lemma 4.3. Now T is an algebraic space and the projec-
tion T → Spec(k) is a monomorphism. Hence T = Spec(k), see Morphisms of Spaces,
Lemma 10.8. We conclude that Spec(k)→ Z factors through Z ′. Suppose the morphism
z : Spec(k) → Z is given by the object ξ over Spec(k). We have just seen that ξ is iso-
morphic to an object ξ′ of Z ′ over Spec(k). Since z is surjective, flat, and locally of finite
presentation we see that every object of Z over any scheme is fppf locally isomorphic to a
pullback of ξ, hence also to a pullback of ξ′. By descent of objects for stacks in groupoids
this implies thatZ ′ → Z is essentially surjective (as well as fully faithful, see Lemma 8.4).
Hence we win. �

Lemma 11.5. LetZ be an algebraic stack. AssumeZ satisfies the equivalent conditions
of Lemma 11.2. Then there exists a unique strictly full subcategoryZ ′ ⊂ Z such thatZ ′ is
an algebraic stack which satisfies the equivalent conditions of Lemma 11.3. The inclusion
morphism Z ′ → Z is a monomorphism of algebraic stacks.
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Proof. The last part is immediate from the first part and Lemma 8.4. Pick a field k
and a morphism Spec(k)→ Z which is surjective, flat, and locally of finite type. Set U =
Spec(k) and R = U ×Z U . The projections s, t : R→ U are locally of finite type. Since
U is the spectrum of a field, it follows that s, t are flat and locally of finite presentation
(by Morphisms of Spaces, Lemma 28.7). We see that Z ′ = [U/R] is an algebraic stack by
Criteria for Representability, Theorem 17.2. By Algebraic Stacks, Lemma 16.1 we obtain a
canonical morphism

f : Z ′ −→ Z
which is fully faithful. Hence this morphism is representable by algebraic spaces, see Al-
gebraic Stacks, Lemma 15.2 and a monomorphism, see Lemma 8.4. By Criteria for Rep-
resentability, Lemma 17.1 the morphism U → Z ′ is surjective, flat, and locally of finite
presentation. Hence Z ′ is an algebraic stack which satisfies the equivalent conditions of
Lemma 11.3. By Algebraic Stacks, Lemma 12.4 we may replace Z ′ by its essential image
in Z . Hence we have proved all the assertions of the lemma except for the uniqueness of
Z ′ ⊂ Z . Suppose that Z ′′ ⊂ Z is a second such algebraic stack. Then the projections

Z ′ ←− Z ′ ×Z Z ′′ −→ Z ′′

are monomorphisms. The algebraic stack in the middle is nonempty by Lemma 4.3. Hence
the two projections are isomorphisms by Lemma 11.4 and we win. �

Example 11.6. Here is an example where the morphism constructed in Lemma 11.5
isn’t an isomorphism. This example shows that imposing that residual gerbes are locally
Noetherian is necessary in Definition 11.8. In fact, the example is even an algebraic space!
Let Gal(Q/Q) be the absolute Galois group of Q with the pro-finite topology. Let

U = Spec(Q)×Spec(Q) Spec(Q) = Gal(Q/Q)× Spec(Q)

(we omit a precise explanation of the meaning of the last equal sign). Let G denote the
absolute Galois group Gal(Q/Q) with the discrete topology viewed as a constant group
scheme over Spec(Q), see Groupoids, Example 5.6. Then G acts freely and transitively
on U . Let X = U/G, see Spaces, Definition 14.4. Then X is a non-noetherian reduced
algebraic space with exactly one point. Furthermore, X has a (locally) finite type point:

x : Spec(Q) −→ U −→ X

Indeed, every point of U is actually closed! As X is an algebraic space over Q it follows
that x is a monomorphism. So x is the morphism constructed in Lemma 11.5 but x is not
an isomorphism. In fact Spec(Q)→ X is the residual gerbe of X at x.

It will turn out later that under mild assumptions on the algebraic stack X the equivalent
conditions of the following lemma are satisfied for every point x ∈ |X | (see Morphisms
of Stacks, Section 31).

Lemma 11.7. Let X be an algebraic stack. Let x ∈ |X | be a point. The following are
equivalent

(1) there exists an algebraic stack Z and a monomorphism Z → X such that |Z| is
a singleton and such that the image of |Z| in |X | is x,

(2) there exists a reduced algebraic stackZ and a monomorphismZ → X such that
|Z| is a singleton and such that the image of |Z| in |X | is x,

(3) there exists an algebraic stack Z , a monomorphism f : Z → X , and a surjective
flat morphism z : Spec(k)→ Z where k is a field such that x = f(z).



6806 100. PROPERTIES OF ALGEBRAIC STACKS

Moreover, if these conditions hold, then there exists a unique strictly full subcategory
Zx ⊂ X such that Zx is a reduced, locally Noetherian algebraic stack and |Zx| is a single-
ton which maps to x via the map |Zx| → |X |.

Proof. If Z → X is as in (1), then Zred → X is as in (2). (See Section 10 for the
notion of the reduction of an algebraic stack.) Hence (1) implies (2). It is immediate that
(2) implies (1). The equivalence of (2) and (3) is immediate from Lemma 11.2.
At this point we’ve seen the equivalence of (1) – (3). Pick a monomorphism f : Z → X as
in (2). Note that this implies that f is fully faithful, see Lemma 8.4. Denote Z ′ ⊂ X the
essential image of the functor f . Then f : Z → Z ′ is an equivalence and hence Z ′ is an
algebraic stack, see Algebraic Stacks, Lemma 12.4. Apply Lemma 11.5 to get a strictly full
subcategory Zx ⊂ Z ′ as in the statement of the lemma. This proves all the statements of
the lemma except for uniqueness.
In order to prove the uniqueness suppose that Zx ⊂ X and Z ′

x ⊂ X are two strictly full
subcategories as in the statement of the lemma. Then the projections

Z ′
x ←− Z ′

x ×X Zx −→ Zx
are monomorphisms. The algebraic stack in the middle is nonempty by Lemma 4.3. Hence
the two projections are isomorphisms by Lemma 11.4 and we win. �

Having explained the above we can now make the following definition.

Definition 11.8. Let X be an algebraic stack. Let x ∈ |X |.
(1) We say the residual gerbe of X at x exists if the equivalent conditions (1), (2),

and (3) of Lemma 11.7 hold.
(2) If the residual gerbe of X at x exists, then the residual gerbe of X at x1 is the

strictly full subcategory Zx ⊂ X constructed in Lemma 11.7.

In particular we know thatZx (if it exists) is a locally Noetherian, reduced algebraic stack
and that there exists a field and a surjective, flat, locally finitely presented morphism

Spec(k) −→ Zx.
We will see in Morphisms of Stacks, Lemma 28.12 thatZx is a gerbe. Existence of residual
gerbes is discussed in Morphisms of Stacks, Section 31.

Example 11.9. LetX be a scheme and let x ∈ X be a point. Then the monomorphism
x → X is the residual gerbe of X at x where we, as usual, identify x with the scheme
x = Spec(κ(x)). If X is an algebraic space and x ∈ |X|, then the residual gerbe at x
(which is called the residual space) always exists, see Decent Spaces, Section 13.

The residual gerbe, if it exists, is a regular algebraic stack by the following lemma.

Lemma 11.10. A reduced, locally Noetherian algebraic stack Z such that |Z| is a
singleton is regular.

Proof. LetW → Z be a surjective smooth morphism whereW is a scheme. Let k be a
field and let Spec(k)→ Z be surjective, flat, and locally of finite presentation (see Lemma
11.3). The algebraic space T = W ×Z Spec(k) is smooth over k in particular regular, see

1This clashes with [?] in spirit, but not in fact. Namely, in Chapter 11 they associate to any point on any
quasi-separated algebraic stack a gerbe (not necessarily algebraic) which they call the residual gerbe. We will see
in Morphisms of Stacks, Lemma 31.1 that on a quasi-separated algebraic stack every point has a residual gerbe in
our sense which is then equivalent to theirs. For more information on this topic see [?, Appendix B].
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Spaces over Fields, Lemma 16.1. Since T → W is locally of finite presentation, flat, and
surjective it follows that W is regular, see Descent on Spaces, Lemma 9.4. By definition
this means that Z is regular. �

Lemma 11.11. Let X be an algebraic stack. Let x ∈ |X |. Assume that the residual
gerbe Zx of X exists. Let f : Spec(K) → X be a morphism where K is a field in the
equivalence class of x. Then f factors through the inclusion morphism Zx → X .

Proof. Choose a field k and a surjective flat locally finite presentation morphism
Spec(k)→ Zx. Set T = Spec(K)×X Zx. By Lemma 4.3 we see that T is nonempty. As
Zx → X is a monomorphism we see that T → Spec(K) is a monomorphism. Hence by
Morphisms of Spaces, Lemma 10.8 we see that T = Spec(K) which proves the lemma. �

Lemma 11.12. Let X be an algebraic stack. Let x ∈ |X |. Let Z be an algebraic stack
satisfying the equivalent conditions of Lemma 11.3 and let Z → X be a monomorphism
such that the image of |Z| → |X | is x. Then the residual gerbe Zx of X at x exists and
Z → X factors as Z → Zx → X where the first arrow is an equivalence.

Proof. Let Zx ⊂ X be the full subcategory corresponding to the essential image of
the functor Z → X . Then Z → Zx is an equivalence, hence Zx is an algebraic stack,
see Algebraic Stacks, Lemma 12.4. Since Zx inherits all the properties of Z from this
equivalence it is clear from the uniqueness in Lemma 11.7 that Zx is the residual gerbe of
X at x. �

Lemma 11.13. Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X | with
image y ∈ |Y|. If the residual gerbesZx ⊂ X andZy ⊂ Y of x and y exist, then f induces
a commutative diagram

X

f

��

Zxoo

��
Y Zyoo

Proof. Choose a field k and a surjective, flat, locally finitely presented morphism
Spec(k)→ Zx. The morphism Spec(k)→ Y factors through Zy by Lemma 11.11. Thus
Zx ×Y Zy is a nonempty substack of Zx hence equal to Zx by Lemma 11.4. �

Lemma 11.14. Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X | with
image y ∈ |Y|. Assume the residual gerbes Zx ⊂ X and Zy ⊂ Y of x and y exist and that
there exists a morphism Spec(k)→ X in the equivalence class of x such that

Spec(k)×X Spec(k) −→ Spec(k)×Y Spec(k)
is an isomorphism. Then Zx → Zy is an isomorphism.

Proof. Let k′/k be an extension of fields. Then

Spec(k′)×X Spec(k′) −→ Spec(k′)×Y Spec(k′)
is the base change of the morphism in the lemma by the faithfully flat morphism Spec(k′⊗
k′)→ Spec(k⊗k). Thus the property described in the lemma is independent of the choice
of the morphism Spec(k) → X in the equivalence class of x. Thus we may assume that
Spec(k) → Zx is surjective, flat, and locally of finite presentation. In this situation we
have

Zx = [Spec(k)/R]
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with R = Spec(k) ×X Spec(k). See proof of Lemma 11.5. Since also R = Spec(k) ×Y
Spec(k) we conclude that the morphism Zx → Zy of Lemma 11.13 is fully faithful by
Algebraic Stacks, Lemma 16.1. We conclude for example by Lemma 11.12. �

12. Dimension of a stack

We can define the dimension of an algebraic stack X at a point x, using the notion of
dimension of an algebraic space at a point (Properties of Spaces, Definition 9.1). In the
following lemma the output may be∞ either because X is not quasi-compact or because
we run into the phenomenon described in Examples, Section 15.

Lemma 12.1. Let X be a locally Noetherian algebraic stack over a scheme S. Let
x ∈ |X | be a point of X . Let [U/R] → X be a presentation (Algebraic Stacks, Definition
16.5) where U is a scheme. Let u ∈ U be a point that maps to x. Let e : U → R be the
“identity” map and let s : R → U be the “source” map, which is a smooth morphism of
algebraic spaces. Let Ru be the fiber of s : R→ U over u. The element

dimx(X ) = dimu(U)− dime(u)(Ru) ∈ Z ∪∞

is independent of the choice of presentation and the point u over x.

Proof. Since R → U is smooth, the scheme Ru is smooth over κ(u) and hence has
finite dimension. On the other hand, the schemeU is locally Noetherian, but this does not
guarantee that dimu(U) is finite. Thus the difference is an element of Z ∪ {∞}.

Let [U ′/R′]→ X and u′ ∈ U ′ be a second presentation where U ′ is a scheme and u′ maps
to x. Consider the algebraic space P = U ×X U ′. By Lemma 4.3 there exists a p ∈ |P |
mapping to u and u′. Since P → U and P → U ′ are smooth we see that dimp(P ) =
dimu(U)+dimp(Pu) and dimp(P ) = dimu′(U ′)+dimp(Pu′), see Morphisms of Spaces,
Lemma 37.10. Note that

R′
u′ = Spec(κ(u′))×X U ′ and Pu = Spec(κ(u))×X U ′

Let us represent p ∈ |P | by a morphism Spec(Ω) → P . Since p maps to both u and u′

it induces a 2-morphism between the compositions Spec(Ω) → Spec(κ(u′)) → X and
Spec(Ω)→ Spec(κ(u))→ X which in turn defines an isomorphism

Spec(Ω)×Spec(κ(u′)) R
′
u′ ∼= Spec(Ω)×Spec(κ(u)) Pu

as algebraic spaces over Spec(Ω) mapping the Ω-rational point (1, e′(u′)) to (1, p) (some
details omitted). We conclude that

dime′(u′)(R′
u′) = dimp(Pu)

by Morphisms of Spaces, Lemma 34.3. By symmetry we have dime(u)(Ru) = dimp(Pu′).
Putting everything together we obtain the independence of choices. �

We can use the lemma above to make the following definition.

Definition 12.2. Let X be a locally Noetherian algebraic stack over a scheme S. Let
x ∈ |X | be a point of X . Let [U/R] → X be a presentation (Algebraic Stacks, Definition
16.5) whereU is a scheme and letu ∈ U be a point that maps tox. We define the dimension
of X at x to be the element dimx(X ) ∈ Z ∪∞ such that

dimx(X ) = dimu(U)− dime(u)(Ru).

with notation as in Lemma 12.1.
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The dimension of a stack at a point agrees with the usual notion when X is a scheme
(Topology, Definition 10.1), or more generally when X is a locally Noetherian algebraic
space (Properties of Spaces, Definition 9.1).

Definition 12.3. Let S be a scheme. Let X be a locally Noetherian algebraic stack
over S. The dimension dim(X ) of X is defined to be

dim(X ) = supx∈|X | dimx(X )

This definition of dimension agrees with the usual notion if X is a scheme (Properties,
Lemma 10.2) or an algebraic space (Properties of Spaces, Definition 9.2).

Remark 12.4. If X is a nonempty stack of finite type over a field, then dim(X ) is an
integer. For an arbitrary locally Noetherian algebraic stack X , dim(X ) is in Z ∪ {±∞},
and dim(X ) = −∞ if and only if X is empty.

Example 12.5. Let X be a scheme of finite type over a field k, and let G be a group
scheme of finite type over k which acts on X . Then the dimension of the quotient stack
[X/G] is equal to dim(X)− dim(G). In particular, the dimension of the classifying stack
BG = [Spec(k)/G] is −dim(G). Thus the dimension of an algebraic stack can be a
negative integer, in contrast to what happens for schemes or algebraic spaces.

13. Local irreducibility

We have defined the geometric number of branches of a scheme at a point in Properties,
Section 15 and for an algebraic space at a point in Properties of Spaces, Section 23. Let
n ∈ N. For a local ring A set

Pn(A) = the number of geometric branches of A is n

For a smooth ring map A→ B and a prime ideal q of B lying over p of A we have

Pn(Ap)⇔ Pn(Bq)

by More on Algebra, Lemma 106.8. As in Properties of Spaces, Remark 7.6 we may use
Pn to define an étale local property Pn of germs (U, u) of schemes by setting Pn(U, u) =
Pn(OU,u). The corresponding propertyPn of an algebraic spaceX at a point x (see Prop-
erties of Spaces, Definition 7.5) is just the property “the number of geometric branches
of X at x is n”, see Properties of Spaces, Definition 23.4. Moreover, the property Pn is
smooth local, see Descent, Definition 21.1. This follows either from the equivalence dis-
played above or More on Morphisms, Lemma 36.4. Thus Definition 7.5 applies and we
obtain a notion for algebraic stacks at a point.

Definition 13.1. Let X be an algebraic stack. Let x ∈ |X |.
(1) The number of geometric branches of X at x is either n ∈ N if the equivalent

conditions of Lemma 7.4 hold for Pn defined above, or else∞.
(2) We say X is geometrically unibranch at x if the number of geometric branches

of X at x is 1.

14. Finiteness conditions and points

This section is the analogue of Decent Spaces, Section 4 for points of algebraic stacks.

Lemma 14.1. Let X be an algebraic stack. Let x ∈ |X | be a point. The following are
equivalent
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(1) some morphism Spec(k) → X in the equivalence class of x is quasi-compact,
and

(2) any morphism Spec(k)→ X in the equivalence class of x is quasi-compact.

Proof. Let Spec(k) → X be in the equivalence class of x. Let k′/k be a field exten-
sion. Then we have to show that Spec(k)→ X is quasi-compact if and only if Spec(k′)→
X is quasi-compact. This follows from Morphisms of Spaces, Lemma 8.6 and the principle
of Algebraic Stacks, Lemma 10.9. �

Sometimes people say that a point x ∈ |X | satisfying the equivalent conditions of Lemma
14.1 is a “quasi-compact point”.
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CHAPTER 101

Morphisms of Algebraic Stacks

1. Introduction

In this chapter we introduce some types of morphisms of algebraic stacks. A reference in
the case of quasi-separated algebraic stacks with representable diagonal is [?].

The goal is to extend the definition of each of the types of morphisms of algebraic spaces
to morphisms of algebraic stacks. Each case is slightly different and it seems best to treat
them all separately.

For morphisms of algebraic stacks which are representable by algebraic spaces we have
already defined a large number of types of morphisms, see Properties of Stacks, Section
3. For each corresponding case in this chapter we have to make sure the definition in the
general case is compatible with the definition given there.

2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Properties of
Stacks, Section 2.

3. Properties of diagonals

The diagonal of an algebraic stack is closely related to the Isom-sheaves, see Algebraic
Stacks, Lemma 10.11. By the second defining property of an algebraic stack these Isom-
sheaves are always algebraic spaces.

Lemma 3.1. Let X be an algebraic stack. Let T be a scheme and let x, y be objects of
the fibre category of X over T . Then the morphism IsomX (x, y)→ T is locally of finite
type.

Proof. By Algebraic Stacks, Lemma 16.2 we may assume that X = [U/R] for some
smooth groupoid in algebraic spaces. By Descent on Spaces, Lemma 11.9 it suffices to
check the property fppf locally on T . Thus we may assume that x, y come from mor-
phisms x′, y′ : T → U . By Groupoids in Spaces, Lemma 22.1 we see that in this case
IsomX (x, y) = T ×(y′,x′),U×SU R. Hence it suffices to prove thatR→ U ×S U is locally
of finite type. This follows from the fact that the composition s : R → U ×S U → U is
smooth (hence locally of finite type, see Morphisms of Spaces, Lemmas 37.5 and 28.5) and
Morphisms of Spaces, Lemma 23.6. �

Lemma 3.2. Let X be an algebraic stack. Let T be a scheme and let x, y be objects of
the fibre category of X over T . Then

(1) IsomX (y, y) is a group algebraic space over T , and
(2) IsomX (x, y) is a pseudo torsor for IsomX (y, y) over T .

6813
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Proof. See Groupoids in Spaces, Definitions 5.1 and 9.1. The lemma follows imme-
diately from the fact that X is a stack in groupoids. �

Let f : X → Y be a morphism of algebraic stacks. The diagonal of f is the morphism
∆f : X −→ X ×Y X

Here are two properties that every diagonal morphism has.
Lemma 3.3. Let f : X → Y be a morphism of algebraic stacks. Then

(1) ∆f is representable by algebraic spaces, and
(2) ∆f is locally of finite type.

Proof. Let T be a scheme and let a : T → X ×Y X be a morphism. By definition
of the fibre product and the 2-Yoneda lemma the morphism a is given by a triple a =
(x, x′, α) where x, x′ are objects of X over T , and α : f(x)→ f(x′) is a morphism in the
fibre category of Y over T . By definition of an algebraic stack the sheaves IsomX (x, x′)
and IsomY(f(x), f(x′)) are algebraic spaces over T . In this languageα defines a section of
the morphism IsomY(f(x), f(x′))→ T . A T ′-valued point ofX×X ×Y X ,aT for T ′ → T
a scheme over T is the same thing as an isomorphism x|T ′ → x′|T ′ whose image under f
is α|T ′ . Thus we see that

(3.3.1)

X ×X ×Y X ,a T

��

// IsomX (x, x′)

��
T

α // IsomY(f(x), f(x′))

is a fibre square of sheaves over T . In particular we see that X ×X ×Y X ,a T is an algebraic
space which proves part (1) of the lemma.
To prove the second statement we have to show that the left vertical arrow of Diagram
(3.3.1) is locally of finite type. By Lemma 3.1 the algebraic space IsomX (x, x′) and is
locally of finite type over T . Hence the right vertical arrow of Diagram (3.3.1) is locally
of finite type, see Morphisms of Spaces, Lemma 23.6. We conclude by Morphisms of Spaces,
Lemma 23.3. �

Lemma 3.4. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. Then

(1) ∆f is representable (by schemes),
(2) ∆f is locally of finite type,
(3) ∆f is a monomorphism,
(4) ∆f is separated, and
(5) ∆f is locally quasi-finite.

Proof. We have already seen in Lemma 3.3 that ∆f is representable by algebraic
spaces. Hence the statements (2) – (5) make sense, see Properties of Stacks, Section 3. Also
Lemma 3.3 guarantees (2) holds. Let T → X ×Y X be a morphism and contemplate
Diagram (3.3.1). By Algebraic Stacks, Lemma 9.2 the right vertical arrow is injective as
a map of sheaves, i.e., a monomorphism of algebraic spaces. Hence also the morphism
T ×X ×Y X X → T is a monomorphism. Thus (3) holds. We already know that T ×X ×Y X
X → T is locally of finite type. Thus Morphisms of Spaces, Lemma 27.10 allows us to
conclude that T ×X ×Y X X → T is locally quasi-finite and separated. This proves (4) and
(5). Finally, Morphisms of Spaces, Proposition 50.2 implies that T ×X ×Y X X is a scheme
which proves (1). �
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Lemma 3.5. Let f : X → Y be a morphism of algebraic stacks representable by
algebraic spaces. Then the following are equivalent

(1) f is separated,
(2) ∆f is a closed immersion,
(3) ∆f is proper, or
(4) ∆f is universally closed.

Proof. The statements “f is separated”, “∆f is a closed immersion”, “∆f is univer-
sally closed”, and “∆f is proper” refer to the notions defined in Properties of Stacks, Section
3. Choose a scheme V and a surjective smooth morphism V → Y . SetU = X ×Y V which
is an algebraic space by assumption, and the morphism U → X is surjective and smooth.
By Categories, Lemma 31.14 and Properties of Stacks, Lemma 3.3 we see that for any prop-
erty P (as in that lemma) we have: ∆f has P if and only if ∆U/V : U → U ×V U has
P . Hence the equivalence of (2), (3) and (4) follows from Morphisms of Spaces, Lemma
40.9 applied to U → V . Moreover, if (1) holds, then U → V is separated and we see that
∆U/V is a closed immersion, i.e., (2) holds. Finally, assume (2) holds. Let T be a scheme,
and a : T → Y a morphism. Set T ′ = X ×Y T . To prove (1) we have to show that the
morphism of algebraic spaces T ′ → T is separated. Using Categories, Lemma 31.14 once
more we see that ∆T ′/T is the base change of ∆f . Hence our assumption (2) implies that
∆T ′/T is a closed immersion, hence T ′ → T is separated as desired. �

Lemma 3.6. Let f : X → Y be a morphism of algebraic stacks representable by
algebraic spaces. Then the following are equivalent

(1) f is quasi-separated,
(2) ∆f is quasi-compact, or
(3) ∆f is of finite type.

Proof. The statements “f is quasi-separated”, “∆f is quasi-compact”, and “∆f is of
finite type” refer to the notions defined in Properties of Stacks, Section 3. Note that (2) and
(3) are equivalent in view of the fact that ∆f is locally of finite type by Lemma 3.4 (and
Algebraic Stacks, Lemma 10.9). Choose a scheme V and a surjective smooth morphism
V → Y . Set U = X ×Y V which is an algebraic space by assumption, and the morphism
U → X is surjective and smooth. By Categories, Lemma 31.14 and Properties of Stacks,
Lemma 3.3 we see that we have: ∆f is quasi-compact if and only if ∆U/V : U → U×V U is
quasi-compact. If (1) holds, then U → V is quasi-separated and we see that ∆U/V is quasi-
compact, i.e., (2) holds. Assume (2) holds. Let T be a scheme, and a : T → Y a morphism.
Set T ′ = X ×Y T . To prove (1) we have to show that the morphism of algebraic spaces
T ′ → T is quasi-separated. Using Categories, Lemma 31.14 once more we see that ∆T ′/T

is the base change of ∆f . Hence our assumption (2) implies that ∆T ′/T is quasi-compact,
hence T ′ → T is quasi-separated as desired. �

Lemma 3.7. Let f : X → Y be a morphism of algebraic stacks representable by
algebraic spaces. Then the following are equivalent

(1) f is locally separated, and
(2) ∆f is an immersion.

Proof. The statements “f is locally separated”, and “∆f is an immersion” refer to the
notions defined in Properties of Stacks, Section 3. Proof omitted. Hint: Argue as in the
proofs of Lemmas 3.5 and 3.6. �
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4. Separation axioms

LetX = [U/R] be a presentation of an algebraic stack. Then the properties of the diagonal
of X over S , are the properties of the morphism j : R → U ×S U . For example, if
X = [S/G] for some smooth group G in algebraic spaces over S then j is the structure
morphism G → S. Hence the diagonal is not automatically separated itself (contrary to
what happens in the case of schemes and algebraic spaces). To say that [S/G] is quasi-
separated over S should certainly imply that G→ S is quasi-compact, but we hesitate to
say that [S/G] is quasi-separated over S without also requiring the morphism G → S to
be quasi-separated. In other words, requiring the diagonal morphism to be quasi-compact
does not really agree with our intuition for a “quasi-separated algebraic stack”, and we
should also require the diagonal itself to be quasi-separated.
What about “separated algebraic stacks”? We have seen in Morphisms of Spaces, Lemma
40.9 that an algebraic space is separated if and only if the diagonal is proper. This is the
condition that is usually used to define separated algebraic stacks too. In the example
[S/G]→ S above this means thatG→ S is a proper group scheme. This means algebraic
stacks of the form [Spec(k)/E] are proper over kwhereE is an elliptic curve over k (insert
future reference here). In certain situations it may be more natural to assume the diagonal
is finite.

Definition 4.1. Let f : X → Y be a morphism of algebraic stacks.
(1) We say f is DM if ∆f is unramified1.
(2) We say f is quasi-DM if ∆f is locally quasi-finite2.
(3) We say f is separated if ∆f is proper.
(4) We say f is quasi-separated if ∆f is quasi-compact and quasi-separated.

In this definition we are using that ∆f is representable by algebraic spaces and we are using
Properties of Stacks, Section 3 to make sense out of imposing conditions on ∆f . We note
that these definitions do not conflict with the already existing notions if f is representable
by algebraic spaces, see Lemmas 3.6 and 3.5. There is an interesting way to characterize
these conditions by looking at higher diagonals, see Lemma 6.5.

Definition 4.2. LetX be an algebraic stack over the base schemeS. Denote p : X →
S the structure morphism.

(1) We say X is DM over S if p : X → S is DM.
(2) We say X is quasi-DM over S if p : X → S is quasi-DM.
(3) We say X is separated over S if p : X → S is separated.
(4) We say X is quasi-separated over S if p : X → S is quasi-separated.
(5) We say X is DM if X is DM3 over Spec(Z).
(6) We say X is quasi-DM if X is quasi-DM over Spec(Z).
(7) We say X is separated if X is separated over Spec(Z).
(8) We say X is quasi-separated if X is quasi-separated over Spec(Z).

1The letters DM stand for Deligne-Mumford. If f is DM then given any scheme T and any morphism
T → Y the fibre product XT = X ×Y T is an algebraic stack over T whose diagonal is unramified, i.e., XT
is DM. This implies XT is a Deligne-Mumford stack, see Theorem 21.6. In other words a DM morphism is one
whose “fibres” are Deligne-Mumford stacks. This hopefully at least motivates the terminology.

2If f is quasi-DM, then the “fibres” XT of X → Y are quasi-DM. An algebraic stack X is quasi-DM exactly
if there exists a scheme U and a surjective flat morphism U → X of finite presentation which is locally quasi-
finite, see Theorem 21.3. Note the similarity to being Deligne-Mumford, which is defined in terms of having an
étale covering by a scheme.

3Theorem 21.6 shows that this is equivalent to X being a Deligne-Mumford stack.
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In the last 4 definitions we viewX as an algebraic stack over Spec(Z) via Algebraic Stacks,
Definition 19.2.

Thus in each case we have an absolute notion and a notion relative to our given base scheme
(mention of which is usually suppressed by our abuse of notation introduced in Properties
of Stacks, Section 2). We will see that (1)⇔ (5) and (2)⇔ (6) in Lemma 4.13. We spend
some time proving some standard results on these notions.

Lemma 4.3. Let f : X → Y be a morphism of algebraic stacks.
(1) If f is separated, then f is quasi-separated.
(2) If f is DM, then f is quasi-DM.
(3) If f is representable by algebraic spaces, then f is DM.

Proof. To see (1) note that a proper morphism of algebraic spaces is quasi-compact
and quasi-separated, see Morphisms of Spaces, Definition 40.1. To see (2) note that an
unramified morphism of algebraic spaces is locally quasi-finite, see Morphisms of Spaces,
Lemma 38.7. Finally (3) follows from Lemma 3.4. �

Lemma 4.4. All of the separation axioms listed in Definition 4.1 are stable under base
change.

Proof. Let f : X → Y and Y ′ → Y be morphisms of algebraic stacks. Let f ′ :
Y ′ ×Y X → Y ′ be the base change of f by Y ′ → Y . Then ∆f ′ is the base change of ∆f

by the morphism X ′ ×Y′ X ′ → X ×Y X , see Categories, Lemma 31.14. By the results of
Properties of Stacks, Section 3 each of the properties of the diagonal used in Definition 4.1
is stable under base change. Hence the lemma is true. �

Lemma 4.5. Let f : X → Y be a morphism of algebraic stacks. Let W → Y be a
surjective, flat, and locally of finite presentation whereW is an algebraic space. If the base
changeW ×Y X →W has one of the separation properties of Definition 4.1 then so does
f .

Proof. Denote g : W ×Y X → W the base change. Then ∆g is the base change of
∆f by the morphism q : W ×Y (X ×Y X ) → X ×Y X . Since q is the base change of
W → Y we see that q is representable by algebraic spaces, surjective, flat, and locally of
finite presentation. Hence the result follows from Properties of Stacks, Lemma 3.4. �

Lemma 4.6. Let S be a scheme. The property of being quasi-DM over S , quasi-
separated over S , or separated over S (see Definition 4.2) is stable under change of base
scheme, see Algebraic Stacks, Definition 19.3.

Proof. Follows immediately from Lemma 4.4. �

Lemma 4.7. Let f : X → Z , g : Y → Z and Z → T be morphisms of algebraic
stacks. Consider the induced morphism i : X ×Z Y → X ×T Y . Then

(1) i is representable by algebraic spaces and locally of finite type,
(2) if ∆Z/T is quasi-separated, then i is quasi-separated,
(3) if ∆Z/T is separated, then i is separated,
(4) if Z → T is DM, then i is unramified,
(5) if Z → T is quasi-DM, then i is locally quasi-finite,
(6) if Z → T is separated, then i is proper, and
(7) if Z → T is quasi-separated, then i is quasi-compact and quasi-separated.
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Proof. The following diagram

X ×Z Y
i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z
is a 2-fibre product diagram, see Categories, Lemma 31.13. Hence i is the base change of
the diagonal morphism ∆Z/T . Thus the lemma follows from Lemma 3.3, and the material
in Properties of Stacks, Section 3. �

Lemma 4.8. Let T be an algebraic stack. Let g : X → Y be a morphism of algebraic
stacks over T . Consider the graph i : X → X ×T Y of g. Then

(1) i is representable by algebraic spaces and locally of finite type,
(2) if Y → T is DM, then i is unramified,
(3) if Y → T is quasi-DM, then i is locally quasi-finite,
(4) if Y → T is separated, then i is proper, and
(5) if Y → T is quasi-separated, then i is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 4.7 applied to the morphismX = X ×Y Y →
X ×T Y . �

Lemma 4.9. Let f : X → T be a morphism of algebraic stacks. Let s : T → X be a
morphism such that f ◦ s is 2-isomorphic to idT . Then

(1) s is representable by algebraic spaces and locally of finite type,
(2) if f is DM, then s is unramified,
(3) if f is quasi-DM, then s is locally quasi-finite,
(4) if f is separated, then s is proper, and
(5) if f is quasi-separated, then s is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 4.8 applied to g = s and Y = T in which case
i : T → T ×T X is 2-isomorphic to s. �

Lemma 4.10. All of the separation axioms listed in Definition 4.1 are stable under
composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks to which
the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X .
Our separation axiom is defined by requiring the diagonal to have some property P . By
Lemma 4.7 above we see that the second arrow also has this property. Hence the lemma fol-
lows since the composition of morphisms which are representable by algebraic spaces with
property P also is a morphism with property P , see our general discussion in Properties
of Stacks, Section 3 and Morphisms of Spaces, Lemmas 38.3, 27.3, 40.4, 8.5, and 4.8. �

Lemma 4.11. Let f : X → Y be a morphism of algebraic stacks over the base scheme
S.

(1) If Y is DM over S and f is DM, then X is DM over S.
(2) If Y is quasi-DM over S and f is quasi-DM, then X is quasi-DM over S.
(3) If Y is separated over S and f is separated, then X is separated over S.
(4) If Y is quasi-separated over S and f is quasi-separated, then X is quasi-separated

over S.
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(5) If Y is DM and f is DM, then X is DM.
(6) If Y is quasi-DM and f is quasi-DM, then X is quasi-DM.
(7) If Y is separated and f is separated, then X is separated.
(8) If Y is quasi-separated and f is quasi-separated, then X is quasi-separated.

Proof. Parts (1), (2), (3), and (4) follow immediately from Lemma 4.10 and Definition
4.2. For (5), (6), (7), and (8) think of X and Y as algebraic stacks over Spec(Z) and apply
Lemma 4.10. Details omitted. �

The following lemma is a bit different to the analogue for algebraic spaces. To compare
take a look at Morphisms of Spaces, Lemma 4.10.

Lemma 4.12. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks.
(1) If g ◦ f is DM then so is f .
(2) If g ◦ f is quasi-DM then so is f .
(3) If g ◦ f is separated and ∆g is separated, then f is separated.
(4) If g ◦ f is quasi-separated and ∆g is quasi-separated, then f is quasi-separated.

Proof. Consider the factorization

X → X ×Y X → X ×Z X

of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic spaces,
see Lemmas 3.3 and 4.7. Hence for any scheme T and morphism T → X ×Y X we get
morphisms of algebraic spaces

A = X ×(X ×Z X ) T −→ B = (X ×Y X )×(X ×Z X ) T −→ T.

If g ◦ f is DM (resp. quasi-DM), then the compositionA→ T is unramified (resp. locally
quasi-finite). Hence (1) (resp. (2)) follows on applying Morphisms of Spaces, Lemma 38.11
(resp. Morphisms of Spaces, Lemma 27.8). This proves (1) and (2).

Proof of (4). Assume g ◦ f is quasi-separated and ∆g is quasi-separated. Consider the
factorization

X → X ×Y X → X ×Z X
of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic spaces
and the second one is quasi-separated, see Lemmas 3.3 and 4.7. Hence for any scheme T
and morphism T → X ×Y X we get morphisms of algebraic spaces

A = X ×(X ×Z X ) T −→ B = (X ×Y X )×(X ×Z X ) T −→ T

such thatB → T is quasi-separated. The compositionA→ T is quasi-compact and quasi-
separated as we have assumed that g◦f is quasi-separated. HenceA→ B is quasi-separated
by Morphisms of Spaces, Lemma 4.10. And A → B is quasi-compact by Morphisms of
Spaces, Lemma 8.9. Thus f is quasi-separated.

Proof of (3). Assume g ◦ f is separated and ∆g is separated. Consider the factorization

X → X ×Y X → X ×Z X

of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic spaces
and the second one is separated, see Lemmas 3.3 and 4.7. Hence for any scheme T and
morphism T → X ×Y X we get morphisms of algebraic spaces

A = X ×(X ×Z X ) T −→ B = (X ×Y X )×(X ×Z X ) T −→ T
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such thatB → T is separated. The compositionA→ T is proper as we have assumed that
g ◦ f is quasi-separated. Hence A → B is proper by Morphisms of Spaces, Lemma 40.6
which means that f is separated. �

Lemma 4.13. Let X be an algebraic stack over the base scheme S.
(1) X is DM⇔X is DM over S.
(2) X is quasi-DM⇔X is quasi-DM over S.
(3) If X is separated, then X is separated over S.
(4) If X is quasi-separated, then X is quasi-separated over S.

Let f : X → Y be a morphism of algebraic stacks over the base scheme S.
(5) If X is DM over S , then f is DM.
(6) If X is quasi-DM over S , then f is quasi-DM.
(7) If X is separated over S and ∆Y/S is separated, then f is separated.
(8) If X is quasi-separated over S and ∆Y/S is quasi-separated, then f is quasi-

separated.

Proof. Parts (5), (6), (7), and (8) follow immediately from Lemma 4.12 and Spaces,
Definition 13.2. To prove (3) and (4) think of X and Y as algebraic stacks over Spec(Z)
and apply Lemma 4.12. Similarly, to prove (1) and (2), think of X as an algebraic stack
over Spec(Z) consider the morphisms

X −→ X ×S X −→ X ×Spec(Z) X

Both arrows are representable by algebraic spaces. The second arrow is unramified and
locally quasi-finite as the base change of the immersion ∆S/Z. Hence the composition
is unramified (resp. locally quasi-finite) if and only if the first arrow is unramified (resp.
locally quasi-finite), see Morphisms of Spaces, Lemmas 38.3 and 38.11 (resp. Morphisms of
Spaces, Lemmas 27.3 and 27.8). �

Lemma 4.14. Let X be an algebraic stack. Let W be an algebraic space, and let f :
W → X be a surjective, flat, locally finitely presented morphism.

(1) If f is unramified (i.e., étale, i.e., X is Deligne-Mumford), then X is DM.
(2) If f is locally quasi-finite, then X is quasi-DM.

Proof. Note that if f is unramified, then it is étale by Morphisms of Spaces, Lemma
39.12. This explains the parenthetical remark in (1). Assume f is unramified (resp. locally
quasi-finite). We have to show that ∆X : X → X × X is unramified (resp. locally quasi-
finite). Note thatW×W → X×X is also surjective, flat, and locally of finite presentation.
Hence it suffices to show that

W ×X ×X ,∆X X = W ×X W −→W ×W

is unramified (resp. locally quasi-finite), see Properties of Stacks, Lemma 3.3. By assump-
tion the morphism pri : W ×X W → W is unramified (resp. locally quasi-finite). Hence
the displayed arrow is unramified (resp. locally quasi-finite) by Morphisms of Spaces,
Lemma 38.11 (resp. Morphisms of Spaces, Lemma 27.8). �

Lemma 4.15. A monomorphism of algebraic stacks is separated and DM. The same
is true for immersions of algebraic stacks.

Proof. If f : X → Y is a monomorphism of algebraic stacks, then ∆f is an iso-
morphism, see Properties of Stacks, Lemma 8.4. Since an isomorphism of algebraic spaces
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is proper and unramified we see that f is separated and DM. The second assertion fol-
lows from the first as an immersion is a monomorphism, see Properties of Stacks, Lemma
9.5. �

Lemma 4.16. LetX be an algebraic stack. Let x ∈ |X |. Assume the residual gerbeZx
of X at x exists. If X is DM, resp. quasi-DM, resp. separated, resp. quasi-separated, then
so is Zx.

Proof. This is true because Zx → X is a monomorphism hence DM and separated
by Lemma 4.15. Apply Lemma 4.11 to conclude. �

5. Inertia stacks

The (relative) inertia stack of a stack in groupoids is defined in Stacks, Section 7. The actual
construction, in the setting of fibred categories, and some of its properties is in Categories,
Section 34.

Lemma 5.1. Let X be an algebraic stack. Then the inertia stack IX is an algebraic
stack as well. The morphism

IX −→ X
is representable by algebraic spaces and locally of finite type. More generally, let f : X →
Y be a morphism of algebraic stacks. Then the relative inertia IX/Y is an algebraic stack
and the morphism

IX/Y −→ X
is representable by algebraic spaces and locally of finite type.

Proof. By Categories, Lemma 34.1 there are equivalences

IX → X ×∆,X ×SX ,∆ X and IX/Y → X ×∆,X ×Y X ,∆ X

which shows that the inertia stacks are algebraic stacks. Let T → X be a morphism given
by the object x of the fibre category of X over T . Then we get a 2-fibre product square

IsomX (x, x)

��

// IX

��
T

x // X

This follows immediately from the definition of IX . Since IsomX (x, x) is always an al-
gebraic space locally of finite type over T (see Lemma 3.1) we conclude that IX → X is
representable by algebraic spaces and locally of finite type. Finally, for the relative inertia
we get

IsomX (x, x)

��

Koo

��

// IX/Y

��
IsomY(f(x), f(x)) T

eoo x // X

with both squares 2-fibre products. This follows from Categories, Lemma 34.3. The left
vertical arrow is a morphism of algebraic spaces locally of finite type over T , and hence is
locally of finite type, see Morphisms of Spaces, Lemma 23.6. Thus K is an algebraic space
and K → T is locally of finite type. This proves the assertion on the relative inertia. �
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Remark 5.2. Let f : X → Y be a morphism of algebraic stacks. In Properties of
Stacks, Remark 3.7 we have seen that the 2-category of morphisms Z → X representable
by algebraic spaces with target X forms a category. In this category the inertia stack of
X/Y is a group object. Recall that an object of IX/Y is just a pair (x, α) where x is an
object of X and α is an automorphism of x in the fibre category of X that x lives in with
f(α) = id. The composition

c : IX/Y ×X IX/Y −→ IX/Y

is given by the rule on objects

((x, α), (x′, α′), β) 7→ (x, α ◦ β−1 ◦ α′ ◦ β)
which makes sense as β : x→ x′ is an isomorphism in the fibre category by our definition
of fibre products. The neutral element e : X → IX/Y is given by the functorx 7→ (x, idx).
We omit the proof that the axioms of a group object hold.

Let f : X → Y be a morphism of algebraic stacks and let IX/Y be its inertia stack. Let T
be a scheme and let x be an object of X over T . Set y = f(x). We have seen in the proof
of Lemma 5.1 that for any scheme T and object x of X over T there is an exact sequence
of sheaves of groups

(5.2.1) 0→ IsomX/Y(x, x)→ IsomX (x, x)→ IsomY(y, y)
The group structure on the second and third term is the one defined in Lemma 3.2 and the
sequence gives a meaning to the first term. Also, there is a canonical cartesian square

IsomX/Y(x, x)

��

// IX/Y

��
T

x // X
In fact, the group structure on IX/Y discussed in Remark 5.2 induces the group structure
on IsomX/Y(x, x). This allows us to define the sheaf IsomX/Y(x, x) also for morphisms
from algebraic spaces to X . We formalize this in the following definition.

Definition 5.3. Let f : X → Y be a morphism of algebraic stacks. Let Z be an
algebraic space.

(1) Let x : Z → X be a morphism. We set

IsomX/Y(x, x) = Z ×x,X IX/Y

We endow it with the structure of a group algebraic space over Z by pulling
back the composition law discussed in Remark 5.2. We will sometimes refer to
IsomX/Y(x, x) as the relative sheaf of automorphisms of x.

(2) Let x1, x2 : Z → X be morphisms. Set yi = f ◦ xi. Let α : y1 → y2 be a
2-morphism. Then α determines a morphism ∆α : Z → Z ×y1,Y,y2 Z and we
set

Isomα
X/Y(x1, x2) = (Z ×x1,X ,x2 Z)×Z×y1,Y,y2Z,∆α Z.

We will sometimes refer to Isomα
X/Y(x1, x2) as the relative sheaf of isomor-

phisms from x1 to x2.
If Y = Spec(Z) or more generally when Y is an algebraic space, then we use the notation
IsomX (x, x) and IsomX (x1, x2) and we use the terminology sheaf of automorphisms of
x and sheaf of isomorphisms from x1 to x2.
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Lemma 5.4. Let f : X → Y be a morphism of algebraic stacks. Let Z be an algebraic
space and let xi : Z → X , i = 1, 2 be morphisms. Then

(1) IsomX/Y(x2, x2) is a group algebraic space over Z ,
(2) there is an exact sequence of groups

0→ IsomX/Y(x2, x2)→ IsomX (x2, x2)→ IsomY(f ◦ x2, f ◦ x2)

(3) there is a map of algebraic spaces IsomX (x1, x2)→ IsomY(f ◦ x1, f ◦ x2) such
that for any 2-morphism α : f ◦ x1 → f ◦ x2 we obtain a cartesian diagram

Isomα
X/Y(x1, x2)

��

// Z

α

��
IsomX (x1, x2) // IsomY(f ◦ x1, f ◦ x2)

(4) for any 2-morphism α : f ◦ x1 → f ◦ x2 the algebraic space Isomα
X/Y(x1, x2)

is a pseudo torsor for IsomX/Y(x2, x2) over Z.

Proof. Part (1) follows from Definition 5.3. Part (2) comes from the exact sequence
(5.2.1) étale locally on Z. Part (3) can be seen by unwinding the definitions. Locally on Z
in the étale topology part (4) reduces to part (2) of Lemma 3.2. �

Lemma 5.5. Let π : X → Y and f : Y ′ → Y be morphisms of algebraic stacks. Set
X ′ = X ×Y Y ′. Then both squares in the diagram

IX ′/Y′ //

Categories, Equation (34.2.3)
��

X ′
π′
//

��

Y ′

f

��
IX/Y // X π // Y

are fibre product squares.

Proof. The inertia stack IX ′/Y′ is defined as the category of pairs (x′, α′) where
x′ is an object of X ′ and α′ is an automorphism of x′ with π′(α′) = id, see Categories,
Section 34. Suppose that x′ lies over the scheme U and maps to the object x of X . By the
construction of the 2-fibre product in Categories, Lemma 32.3 we see thatx′ = (U, x, y′, β)
where y′ is an object of Y ′ over U and β is an isomorphism β : π(x)→ f(y′) in the fibre
category of Y over U . By the very construction of the 2-fibre product the automorphism
α′ is a pair (α, γ) where α is an automorphism of x over U and γ is an automorphism of
y′ over U such that α and γ are compatible via β. The condition π′(α′) = id signifies
that γ = id whereupon the condition that α, β, γ are compatible is exactly the condition
π(α) = id, i.e., means exactly that (x, α) is an object of IX/Y . In this way we see that the
left square is a fibre product square (some details omitted). �

Lemma 5.6. Let f : X → Y be a monomorphism of algebraic stacks. Then the
diagram

IX //

��

X

��
IY // Y

is a fibre product square.
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Proof. This follows immediately from the fact that f is fully faithful (see Properties
of Stacks, Lemma 8.4) and the definition of the inertia in Categories, Section 34. Namely,
an object of IX over a scheme T is the same thing as a pair (x, α) consisting of an object
x of X over T and a morphism α : x → x in the fibre category of X over T . As f is
fully faithful we see that α is the same thing as a morphism β : f(x)→ f(x) in the fibre
category of Y over T . Hence we can think of objects of IX over T as triples ((y, β), x, γ)
where y is an object of Y over T , β : y → y in YT and γ : y → f(x) is an isomorphism
over T , i.e., an object of IY ×Y X over T . �

Lemma 5.7. LetX be an algebraic stack. Let [U/R]→ X be a presentation. LetG/U
be the stabilizer group algebraic space associated to the groupoid (U,R, s, t, c). Then

G

��

// U

��
IX // X

is a fibre product diagram.

Proof. Immediate from Groupoids in Spaces, Lemma 26.2. �

6. Higher diagonals

Let f : X → Y be a morphism of algebraic stacks. In this situation it makes sense to
consider not only the diagonal

∆f : X → X ×Y X
but also the diagonal of the diagonal, i.e., the morphism

∆∆f
: X −→ X ×(X ×Y X ) X

Because of this we sometimes use the following terminology. We denote ∆f,0 = f the
zeroth diagonal, we denote ∆f,1 = ∆f the first diagonal, and we denote ∆f,2 = ∆∆f

the
second diagonal. Note that ∆f,1 is representable by algebraic spaces and locally of finite
type, see Lemma 3.3. Hence ∆f,2 is representable, a monomorphism, locally of finite type,
separated, and locally quasi-finite, see Lemma 3.4.

We can describe the second diagonal using the relative inertia stack. Namely, the fibre
product X ×(X ×Y X ) X is equivalent to the relative inertia stack IX/Y by Categories,
Lemma 34.1. Moreover, via this identification the second diagonal becomes the neutral
section

∆f,2 = e : X → IX/Y

of the relative inertia stack. By analogy with what happens for groupoids in algebraic
spaces (Groupoids in Spaces, Lemma 29.2) we have the following equivalences.

Lemma 6.1. Let f : X → Y be a morphism of algebraic stacks.
(1) The following are equivalent

(a) IX/Y → X is separated,
(b) ∆f,1 = ∆f : X → X ×Y X is separated, and
(c) ∆f,2 = e : X → IX/Y is a closed immersion.

(2) The following are equivalent
(a) IX/Y → X is quasi-separated,
(b) ∆f,1 = ∆f : X → X ×Y X is quasi-separated, and
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(c) ∆f,2 = e : X → IX/Y is a quasi-compact.
(3) The following are equivalent

(a) IX/Y → X is locally separated,
(b) ∆f,1 = ∆f : X → X ×Y X is locally separated, and
(c) ∆f,2 = e : X → IX/Y is an immersion.

(4) The following are equivalent
(a) IX/Y → X is unramified,
(b) f is DM.

(5) The following are equivalent
(a) IX/Y → X is locally quasi-finite,
(b) f is quasi-DM.

Proof. Proof of (1), (2), and (3). Choose an algebraic spaceU and a surjective smooth
morphism U → X . Then G = U ×X IX/Y is an algebraic space over U (Lemma 5.1). In
fact, G is a group algebraic space over U by the group law on relative inertia constructed
in Remark 5.2. Moreover,G→ IX/Y is surjective and smooth as a base change ofU → X .
Finally, the base change of e : X → IX/Y by G→ IX/Y is the identity U → G of G/U .
Thus the equivalence of (a) and (c) follows from Groupoids in Spaces, Lemma 6.1. Since
∆f,2 is the diagonal of ∆f we have (b)⇔ (c) by definition.

Proof of (4) and (5). Recall that (4)(b) means ∆f is unramified and (5)(b) means that ∆f

is locally quasi-finite. Choose a scheme Z and a morphism a : Z → X ×Y X . Then
a = (x1, x2, α) where xi : Z → X and α : f ◦ x1 → f ◦ x2 is a 2-morphism. Recall that

Isomα
X/Y(x1, x2)

��

// Z

��
X

∆f // X ×Y X

and

IsomX/Y(x2, x2)

��

// Z

x2

��
IX/Y // X

are cartesian squares. By Lemma 5.4 the algebraic space Isomα
X/Y(x1, x2) is a pseudo

torsor for IsomX/Y(x2, x2) over Z. Thus the equivalences in (4) and (5) follow from
Groupoids in Spaces, Lemma 9.5. �

Lemma 6.2. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent:

(1) the morphism f is representable by algebraic spaces,
(2) the second diagonal of f is an isomorphism,
(3) the group stack IX/Y is trivial over X , and
(4) for a scheme T and a morphism x : T → X the kernel of IsomX (x, x) →

IsomY(f(x), f(x)) is trivial.

Proof. We first prove the equivalence of (1) and (2). Namely, f is representable by
algebraic spaces if and only if f is faithful, see Algebraic Stacks, Lemma 15.2. On the other
hand, f is faithful if and only if for every object x of X over a scheme T the functor f
induces an injection IsomX (x, x) → IsomY(f(x), f(x)), which happens if and only if
the kernel K is trivial, which happens if and only if e : T → K is an isomorphism for
every x : T → X . SinceK = T×x,X IX/Y as discussed above, this proves the equivalence
of (1) and (2). To prove the equivalence of (2) and (3), by the discussion above, it suffices
to note that a group stack is trivial if and only if its identity section is an isomorphism.
Finally, the equivalence of (3) and (4) follows from the definitions: in the proof of Lemma
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5.1 we have seen that the kernel in (4) corresponds to the fibre product T ×x,X IX/Y over
T . �

This lemma leads to the following hierarchy for morphisms of algebraic stacks.

Lemma 6.3. A morphism f : X → Y of algebraic stacks is
(1) a monomorphism if and only if ∆f,1 is an isomorphism, and
(2) representable by algebraic spaces if and only if ∆f,1 is a monomorphism.

Moreover, the second diagonal ∆f,2 is always a monomorphism.

Proof. Recall from Properties of Stacks, Lemma 8.4 that a morphism of algebraic
stacks is a monomorphism if and only if its diagonal is an isomorphism of stacks. Thus
Lemma 6.2 can be rephrased as saying that a morphism is representable by algebraic spaces
if the diagonal is a monomorphism. In particular, it shows that condition (3) of Lemma
3.4 is actually an if and only if, i.e., a morphism of algebraic stacks is representable by
algebraic spaces if and only if its diagonal is a monomorphism. �

Lemma 6.4. Let f : X → Y be a morphism of algebraic stacks. Then
(1) ∆f,1 separated ⇔ ∆f,2 closed immersion ⇔ ∆f,2 proper ⇔ ∆f,2 universally

closed,
(2) ∆f,1 quasi-separated⇔∆f,2 finite type⇔∆f,2 quasi-compact, and
(3) ∆f,1 locally separated⇔∆f,2 immersion.

Proof. Follows from Lemmas 3.5, 3.6, and 3.7 applied to ∆f,1. �

The following lemma is kind of cute and it may suggest a generalization of these conditions
to higher algebraic stacks.

Lemma 6.5. Let f : X → Y be a morphism of algebraic stacks. Then
(1) f is separated if and only if ∆f,1 and ∆f,2 are universally closed, and
(2) f is quasi-separated if and only if ∆f,1 and ∆f,2 are quasi-compact.
(3) f is quasi-DM if and only if ∆f,1 and ∆f,2 are locally quasi-finite.
(4) f is DM if and only if ∆f,1 and ∆f,2 are unramified.

Proof. Proof of (1). Assume that ∆f,2 and ∆f,1 are universally closed. Then ∆f,1
is separated and universally closed by Lemma 6.4. By Morphisms of Spaces, Lemma 9.7
and Algebraic Stacks, Lemma 10.9 we see that ∆f,1 is quasi-compact. Hence it is quasi-
compact, separated, universally closed and locally of finite type (by Lemma 3.3) so proper.
This proves “⇐” of (1). The proof of the implication in the other direction is omitted.

Proof of (2). This follows immediately from Lemma 6.4.

Proof of (3). This follows from the fact that ∆f,2 is always locally quasi-finite by Lemma
3.4 applied to ∆f = ∆f,1.

Proof of (4). This follows from the fact that ∆f,2 is always unramified as Lemma 3.4
applied to ∆f = ∆f,1 shows that ∆f,2 is locally of finite type and a monomorphism. See
More on Morphisms of Spaces, Lemma 14.8. �

Lemma 6.6. Let f : X → Y be a separated (resp. quasi-separated, resp. quasi-DM,
resp. DM) morphism of algebraic stacks. Then



7. QUASI-COMPACT MORPHISMS 6827

(1) given algebraic spaces Ti, i = 1, 2 and morphisms xi : Ti → X , with yi = f ◦xi
the morphism

T1 ×x1,X ,x2 T2 −→ T1 ×y1,Y,y2 T2

is proper (resp. quasi-compact and quasi-separated, resp. locally quasi-finite, resp.
unramified),

(2) given an algebraic space T and morphisms xi : T → X , i = 1, 2, with yi = f ◦xi
the morphism

IsomX (x1, x2) −→ IsomY(y1, y2)
is proper (resp. quasi-compact and quasi-separated, resp. locally quasi-finite, resp.
unramified).

Proof. Proof of (1). Observe that the diagram

T1 ×x1,X ,x2 T2

��

// T1 ×y1,Y,y2 T2

��
X // X ×Y X

is cartesian. Hence this follows from the fact that f is separated (resp. quasi-separated,
resp. quasi-DM, resp. DM) if and only if the diagonal is proper (resp. quasi-compact and
quasi-separated, resp. locally quasi-finite, resp. unramified).
Proof of (2). This is true because

IsomX (x1, x2) = (T ×x1,X ,x2 T )×T×T,∆T
T

hence the morphism in (2) is a base change of the morphism in (1). �

7. Quasi-compact morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces. In
Properties of Stacks, Section 3 we have defined what it means for f to be quasi-compact.
Here is another characterization.

Lemma 7.1. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent:

(1) f is quasi-compact (as in Properties of Stacks, Section 3), and
(2) for every quasi-compact algebraic stack Z and any morphism Z → Y the alge-

braic stack Z ×Y X is quasi-compact.

Proof. Assume (1), and let Z → Y be a morphism of algebraic stacks with Z quasi-
compact. By Properties of Stacks, Lemma 6.2 there exists a quasi-compact scheme U and
a surjective smooth morphism U → Z . Since f is representable by algebraic spaces and
quasi-compact we see by definition thatU×Y X is an algebraic space, and thatU×Y X →
U is quasi-compact. Hence U ×Y X is a quasi-compact algebraic space. The morphism
U ×Y X → Z ×Y X is smooth and surjective (as the base change of the smooth and
surjective morphism U → Z). Hence Z ×Y X is quasi-compact by another application of
Properties of Stacks, Lemma 6.2
Assume (2). Let Z → Y be a morphism, where Z is a scheme. We have to show that the
morphism of algebraic spaces p : Z ×Y X → Z is quasi-compact. Let U ⊂ Z be affine
open. Then p−1(U) = U ×Y Z and the algebraic space U ×Y Z is quasi-compact by
assumption (2). Hence p is quasi-compact, see Morphisms of Spaces, Lemma 8.8. �
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This motivates the following definition.

Definition 7.2. Let f : X → Y be a morphism of algebraic stacks. We say f is
quasi-compact if for every quasi-compact algebraic stack Z and morphism Z → Y the
fibre product Z ×Y X is quasi-compact.

By Lemma 7.1 above this agrees with the already existing notion for morphisms of alge-
braic stacks representable by algebraic spaces. In particular this notion agrees with the
notions already defined for morphisms between algebraic stacks and schemes.

Lemma 7.3. The base change of a quasi-compact morphism of algebraic stacks by any
morphism of algebraic stacks is quasi-compact.

Proof. Omitted. �

Lemma 7.4. The composition of a pair of quasi-compact morphisms of algebraic
stacks is quasi-compact.

Proof. Omitted. �

Lemma 7.5. A closed immersion of algebraic stacks is quasi-compact.

Proof. This follows from the fact that immersions are always representable and the
corresponding fact for closed immersion of algebraic spaces. �

Lemma 7.6. Let
X

f
//

p
��

Y

q
��

Z
be a 2-commutative diagram of morphisms of algebraic stacks. If f is surjective and p is
quasi-compact, then q is quasi-compact.

Proof. Let T be a quasi-compact algebraic stack, and let T → Z be a morphism. By
Properties of Stacks, Lemma 5.3 the morphism T ×Z X → T ×Z Y is surjective and by
assumption T ×Z X is quasi-compact. Hence T ×Z Y is quasi-compact by Properties of
Stacks, Lemma 6.2. �

Lemma 7.7. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks. If
g ◦ f is quasi-compact and g is quasi-separated then f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y .
The first map is quasi-compact by Lemma 4.9 because it is a section of the quasi-separated
morphism X ×Z Y → X (a base change of g, see Lemma 4.4). The second map is quasi-
compact as it is the base change of f , see Lemma 7.3. And compositions of quasi-compact
morphisms are quasi-compact, see Lemma 7.4. �

Lemma 7.8. Let f : X → Y be a morphism of algebraic stacks.
(1) If X is quasi-compact and Y is quasi-separated, then f is quasi-compact.
(2) If X is quasi-compact and quasi-separated and Y is quasi-separated, then f is

quasi-compact and quasi-separated.
(3) A fibre product of quasi-compact and quasi-separated algebraic stacks is quasi-

compact and quasi-separated.
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Proof. Part (1) follows from Lemma 7.7. Part (2) follows from (1) and Lemma 4.12.
For (3) let X → Y and Z → Y be morphisms of quasi-compact and quasi-separated
algebraic stacks. ThenX×YZ → Z is quasi-compact and quasi-separated as a base change
of X → Y using (2) and Lemmas 7.3 and 4.4. Hence X ×Y Z is quasi-compact and quasi-
separated as an algebraic stack quasi-compact and quasi-separated overZ , see Lemmas 4.11
and 7.4. �

Lemma 7.9. Let f : X → Y be a quasi-compact morphism of algebraic stacks. Let
y ∈ |Y| be a point in the closure of the image of |f |. There exists a valuation ring A with
fraction field K and a commutative diagram

Spec(K) //

��

X

��
Spec(A) // Y

such that the closed point of Spec(A) maps to y.

Proof. Choose an affine scheme V and a point v ∈ V and a smooth morphism V →
Y sending v to y. Consider the base change diagram

V ×Y X //

g

��

X

f

��
V // Y

Recall that |V ×Y X| → |V | ×|Y| |X | is surjective (Properties of Stacks, Lemma 4.3).
Because |V | → |Y| is open (Properties of Stacks, Lemma 4.7) we conclude that v is in
the closure of the image of |g|. Thus it suffices to prove the lemma for the quasi-compact
morphism g (Lemma 7.3) which we do in the next paragraph.
Assume Y = Y is an affine scheme. Then X is quasi-compact as f is quasi-compact (Def-
inition 7.2). Choose an affine scheme W and a surjective smooth morphism W → X .
Then the image of |f | is the image of W → Y . By Morphisms, Lemma 6.5 we can choose
a diagram

Spec(K) //

��

W

��

// X

��
Spec(A) // Y // Y

such that the closed point of Spec(A) maps to y. Composing with W → X we obtain a
solution. �

Lemma 7.10. Let f : X → Y be a morphism of algebraic stacks. Let W → Y be
surjective, flat, and locally of finite presentation whereW is an algebraic space. If the base
change W ×Y X →W is quasi-compact, then f is quasi-compact.

Proof. Assume W ×Y X → W is quasi-compact. Let Z → Y be a morphism with
Z a quasi-compact algebraic stack. Choose a scheme U and a surjective smooth morphism
U →W ×Y Z . Since U → Z is flat, surjective, and locally of finite presentation and Z is
quasi-compact, we can find a quasi-compact open subscheme U ′ ⊂ U such that U ′ → Z
is surjective. Then U ′ ×Y X = U ′ ×W (W ×Y X ) is quasi-compact by assumption and
surjects onto Z ×Y X . Hence Z ×Y X is quasi-compact as desired. �
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8. Noetherian algebraic stacks

We have already defined locally Noetherian algebraic stacks in Properties of Stacks, Sec-
tion 7.

Definition 8.1. Let X be an algebraic stack. We say X is Noetherian if X is quasi-
compact, quasi-separated and locally Noetherian.
Note that a Noetherian algebraic stackX is not just quasi-compact and locally Noetherian,
but also quasi-separated. In the language of Section 6 if we denote p : X → Spec(Z) the
“absolute” structure morphism (i.e., the structure morphism of X viewed as an algebraic
stack over Z), then

X Noetherian⇔ X locally Noetherian and ∆p,0,∆p,1,∆p,2 quasi-compact.
This will later mean that an algebraic stack of finite type over a Noetherian algebraic stack
is not automatically Noetherian.

Lemma 8.2. Let j : X → Y be an immersion of algebraic stacks.
(1) If Y is locally Noetherian, then X is locally Noetherian and j is quasi-compact.
(2) If Y is Noetherian, then X is Noetherian.

Proof. Choose a scheme V and a surjective smooth morphism V → Y . Then U =
X ×Y V is a scheme and V → U is an immersion, see Properties of Stacks, Definition 9.1.
Recall that Y is locally Noetherian if and only if V is locally Noetherian. In this case U is
locally Noetherian too (Morphisms, Lemmas 15.5 and 15.6) and U → V is quasi-compact
(Properties, Lemma 5.3). This shows that j is quasi-compact (Lemma 7.10) and that X
is locally Noetherian. Finally, if Y is Noetherian, then we see from the above that X is
quasi-compact and locally Noetherian. To finish the proof observe that j is separated and
hence X is quasi-separated because Y is so by Lemma 4.11. �

Lemma 8.3. Let X be an algebraic stack.
(1) If X is locally Noetherian then |X | is a locally Noetherian topological space.
(2) If X is quasi-compact and locally Noetherian, then |X | is a Noetherian topolog-

ical space.
Proof. AssumeX is locally Noetherian. Choose a scheme U and a surjective smooth

morphism U → X . As X is locally Noetherian we see that U is locally Noetherian. By
Properties, Lemma 5.5 this means that |U | is a locally Noetherian topological space. Since
|U | → |X | is open and surjective we conclude that |X | is locally Noetherian by Topology,
Lemma 9.3. This proves (1). If X is quasi-compact and locally Noetherian, then |X | is
quasi-compact and locally Noetherian. Hence |X | is Noetherian by Topology, Lemma
12.14. �

Lemma 8.4. Let X be a locally Noetherian algebraic stack. Then |X | is quasi-sober
(Topology, Definition 8.6).

Proof. We have to prove that every irreducible closed subset T ⊂ |X | has a generic
point. Choose an affine scheme U and a smooth morphism f : U → X such that
f−1(T ) ⊂ |U | is nonempty. Since U is Noetherian, the closed subset f−1(T ) has finitely
many irreducible components (Topology, Lemma 9.2). Say f−1(T ) = Z1 ∪ . . . ∪ Zn is
the decomposition into irreducible components. As f is open, the image of f |f−1(T ) :
f−1(T ) → T contains a nonempty open subset of T . Since T is irreducible, this means
that f(f−1(T )) is dense. Since T is irreducible, it follows that f(Zi) is dense for some i.
Then if ξi ∈ Zi is the generic point we see that f(ξi) is a generic point of T . �
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9. Affine morphisms

Affine morphisms of algebraic stacks are defined as follows.

Definition 9.1. A morphism of algebraic stacks is said to be affine if it is repre-
sentable and affine in the sense of Properties of Stacks, Section 3.

For us it is a little bit more convenient to think of an affine morphism of algebraic stacks as
a morphism of algebraic stacks which is representable by algebraic spaces and affine in the
sense of Properties of Stacks, Section 3. (Recall that the default for “representable” in the
Stacks project is representable by schemes.) Since this is clearly equivalent to the notion
just defined we shall use this characterization without further mention. We prove a few
simple lemmas about this notion.

Lemma 9.2. Let X → Y be a morphism of algebraic stacks. Let Z → Y be an affine
morphism of algebraic stacks. Then Z ×Y X → X is an affine morphism of algebraic
stacks.

Proof. This follows from the discussion in Properties of Stacks, Section 3. �

Lemma 9.3. Compositions of affine morphisms of algebraic stacks are affine.

Proof. This follows from the discussion in Properties of Stacks, Section 3 and Mor-
phisms of Spaces, Lemma 20.4. �

Lemma 9.4. Let
X

f
//

a
��

Y

b��
Z

be a commutative diagram of morphisms of algebraic stacks. If a is affine and ∆b is affine,
then f is affine.

Proof. The base change pr2 : X ×Z Y → Y of a is affine by Lemma 9.2. The
morphism (1, f) : X → X ×Z Y is the base change of ∆b : Y → Y ×Z Y by the
morphism X ×Z Y → Y ×Z Y (see material in Categories, Section 31). Hence it is affine
by Lemma 9.2. The composition f = pr2 ◦ (1, f) of affine morphisms is affine by Lemma
9.3 and the proof is done. �

10. Integral and finite morphisms

Integral and finite morphisms of algebraic stacks are defined as follows.

Definition 10.1. Let f : X → Y be a morphism of algebraic stacks.
(1) We say f is integral if f is representable and integral in the sense of Properties

of Stacks, Section 3.
(2) We say f is finite if f is representable and finite in the sense of Properties of

Stacks, Section 3.

For us it is a little bit more convenient to think of an integral, resp. finite morphism of
algebraic stacks as a morphism of algebraic stacks which is representable by algebraic spaces
and integral, resp. finite in the sense of Properties of Stacks, Section 3. (Recall that the
default for “representable” in the Stacks project is representable by schemes.) Since this
is clearly equivalent to the notion just defined we shall use this characterization without
further mention. We prove a few simple lemmas about this notion.
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Lemma 10.2. Let X → Y be a morphism of algebraic stacks. Let Z → Y be an
integral (or finite) morphism of algebraic stacks. Then Z ×Y X → X is an integral (or
finite) morphism of algebraic stacks.

Proof. This follows from the discussion in Properties of Stacks, Section 3. �

Lemma 10.3. Compositions of integral, resp. finite morphisms of algebraic stacks are
integral, resp. finite.

Proof. This follows from the discussion in Properties of Stacks, Section 3 and Mor-
phisms of Spaces, Lemma 45.4. �

11. Open morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces. In
Properties of Stacks, Section 3 we have defined what it means for f to be universally open.
Here is another characterization.

Lemma 11.1. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent

(1) f is universally open (as in Properties of Stacks, Section 3), and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is open.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
smooth morphism V → Z . By assumption the morphism V ×Y X → V of algebraic
spaces is universally open, in particular the map |V ×Y X| → |V | is open. By Properties
of Stacks, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|
is surjective. Hence as the left vertical arrow is open it follows that the right vertical arrow
is open. This proves (2). The implication (2)⇒ (1) follows from the definitions. �

Thus we may use the following natural definition.

Definition 11.2. Let f : X → Y be a morphism of algebraic stacks.
(1) We say f is open if the map of topological spaces |X | → |Y| is open.
(2) We say f is universally open if for every morphism of algebraic stacks Z → Y

the morphism of topological spaces

|Z ×Y X| → |Z|
is open, i.e., the base change Z ×Y X → Z is open.

Lemma 11.3. The base change of a universally open morphism of algebraic stacks by
any morphism of algebraic stacks is universally open.

Proof. This is immediate from the definition. �
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Lemma 11.4. The composition of a pair of (universally) open morphisms of algebraic
stacks is (universally) open.

Proof. Omitted. �

12. Submersive morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces. In Prop-
erties of Stacks, Section 3 we have defined what it means for f to be universally submersive.
Here is another characterization.

Lemma 12.1. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent

(1) f is universally submersive (as in Properties of Stacks, Section 3), and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is submersive.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
smooth morphism V → Z . By assumption the morphism V ×Y X → V of algebraic
spaces is universally submersive, in particular the map |V ×Y X| → |V | is submersive. By
Properties of Stacks, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|
is surjective. Hence as the left vertical arrow is submersive it follows that the right ver-
tical arrow is submersive. This proves (2). The implication (2) ⇒ (1) follows from the
definitions. �

Thus we may use the following natural definition.

Definition 12.2. Let f : X → Y be a morphism of algebraic stacks.
(1) We say f is submersive4 if the continuous map |X | → |Y| is submersive, see

Topology, Definition 6.3.
(2) We say f is universally submersive if for every morphism of algebraic stacks
Y ′ → Y the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

Lemma 12.3. The base change of a universally submersive morphism of algebraic
stacks by any morphism of algebraic stacks is universally submersive.

Proof. This is immediate from the definition. �

Lemma 12.4. The composition of a pair of (universally) submersive morphisms of
algebraic stacks is (universally) submersive.

Proof. Omitted. �

4This is very different from the notion of a submersion of differential manifolds.
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13. Universally closed morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces. In
Properties of Stacks, Section 3 we have defined what it means for f to be universally closed.
Here is another characterization.

Lemma 13.1. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent

(1) f is universally closed (as in Properties of Stacks, Section 3), and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is closed.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
smooth morphismV → Z . By assumption the morphismV ×YX → V of algebraic spaces
is universally closed, in particular the map |V ×Y X| → |V | is closed. By Properties of
Stacks, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|
is surjective. Hence as the left vertical arrow is closed it follows that the right vertical
arrow is closed. This proves (2). The implication (2)⇒ (1) follows from the definitions.

�

Thus we may use the following natural definition.

Definition 13.2. Let f : X → Y be a morphism of algebraic stacks.
(1) We say f is closed if the map of topological spaces |X | → |Y| is closed.
(2) We say f is universally closed if for every morphism of algebraic stacks Z → Y

the morphism of topological spaces

|Z ×Y X| → |Z|
is closed, i.e., the base change Z ×Y X → Z is closed.

Lemma 13.3. The base change of a universally closed morphism of algebraic stacks
by any morphism of algebraic stacks is universally closed.

Proof. This is immediate from the definition. �

Lemma 13.4. The composition of a pair of (universally) closed morphisms of alge-
braic stacks is (universally) closed.

Proof. Omitted. �

Lemma 13.5. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent

(1) f is universally closed,
(2) for every schemeZ and every morphismZ → Y the projection |Z×YX| → |Z|

is closed,
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(3) for every affine scheme Z and every morphism Z → Y the projection |Z ×Y
X| → |Z| is closed, and

(4) there exists an algebraic space V and a surjective smooth morphism V → Y such
that V ×Y X → V is a universally closed morphism of algebraic stacks.

Proof. We omit the proof that (1) implies (2), and that (2) implies (3).

Assume (3). Choose a surjective smooth morphism V → Y . We are going to show that
V ×Y X → V is a universally closed morphism of algebraic stacks. Let Z → V be a
morphism from an algebraic stack to V . Let W → Z be a surjective smooth morphism
where W =

∐
Wi is a disjoint union of affine schemes. Then we have the following

commutative diagram∐
i |Wi ×Y X|

��

|W ×Y X| //

��

|Z ×Y X|

��

|Z ×V (V ×Y X )|

vv∐
|Wi| |W | // |Z|

We have to show the south-east arrow is closed. The middle horizontal arrows are sur-
jective and open (Properties of Stacks, Lemma 4.7). By assumption (3), and the fact that
Wi is affine we see that the left vertical arrows are closed. Hence it follows that the right
vertical arrow is closed.

Assume (4). We will show that f is universally closed. Let Z → Y be a morphism of
algebraic stacks. Consider the diagram

|(V ×Y Z)×V (V ×Y X )|

))

|V ×Y X| //

��

|Z ×Y X|

��
|V ×Y Z| // |Z|

The south-west arrow is closed by assumption. The horizontal arrows are surjective and
open because the corresponding morphisms of algebraic stacks are surjective and smooth
(see reference above). It follows that the right vertical arrow is closed. �

14. Universally injective morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces. In Prop-
erties of Stacks, Section 3 we have defined what it means for f to be universally injective.
Here is another characterization.

Lemma 14.1. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent

(1) f is universally injective (as in Properties of Stacks, Section 3), and
(2) for every morphism of algebraic stacks Z → Y the map |Z ×Y X| → |Z| is

injective.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
smooth morphism V → Z . By assumption the morphism V ×Y X → V of algebraic
spaces is universally injective, in particular the map |V ×Y X| → |V | is injective. By



6836 101. MORPHISMS OF ALGEBRAIC STACKS

Properties of Stacks, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is injective it follows that the right vertical
arrow is injective. This proves (2). The implication (2)⇒ (1) follows from the definitions.

�

Thus we may use the following natural definition.

Definition 14.2. Let f : X → Y be a morphism of algebraic stacks. We say f is
universally injective if for every morphism of algebraic stacks Z → Y the map

|Z ×Y X| → |Z|

is injective.

Lemma 14.3. The base change of a universally injective morphism of algebraic stacks
by any morphism of algebraic stacks is universally injective.

Proof. This is immediate from the definition. �

Lemma 14.4. The composition of a pair of universally injective morphisms of alge-
braic stacks is universally injective.

Proof. Omitted. �

Lemma 14.5. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent

(1) f is universally injective,
(2) ∆ : X → X ×Y X is surjective, and
(3) for an algebraically closed field, for x1, x2 : Spec(k) → X , and for a 2-arrow

β : f ◦ x1 → f ◦ x2 there is a 2-arrow α : x1 → x2 with β = idf ? α.

Proof. (1)⇒ (2). If f is universally injective, then the first projection |X ×Y X| →
|X | is injective, which implies that |∆| is surjective.

(2)⇒ (1). Assume ∆ is surjective. Then any base change of ∆ is surjective (see Properties
of Stacks, Section 5). Since the diagonal of a base change of f is a base change of ∆, we
see that it suffices to show that |X | → |Y| is injective. If not, then by Properties of Stacks,
Lemma 4.3 we find that the first projection |X ×Y X| → |X | is not injective. Of course
this means that |∆| is not surjective.

(3)⇒ (2). Let t ∈ |X ×Y X|. Then we can represent t by a morphism t : Spec(k) →
X ×Y X with k an algebraically closed field. By our construction of 2-fibre products we
can represent t by (x1, x2, β) where x1, x2 : Spec(k) → X and β : f ◦ x1 → f ◦ x2 is
a 2-morphism. Then (3) implies that there is a 2-morphism α : x1 → x2 mapping to β.
This exactly means that ∆(x1) = (x1, x1, id) is isomorphic to t. Hence (2) holds.
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(2)⇒ (3). Let x1, x2 : Spec(k) → X be morphisms with k an algebraically closed field.
Let β : f ◦ x1 → f ◦ x2 be a 2-morphism. As in the previous paragraph, we obtain a
morphism t = (x1, x2, β) : Spec(k)→ X ×Y X . By Lemma 3.3

T = X ×∆,X ×Y X ,t Spec(k)

is an algebraic space locally of finite type over Spec(k). Condition (2) implies that T is
nonempty. Then since k is algebraically closed, there is a k-point in T . Unwinding the
definitions this means there is a morphism α : x1 → x2 in Mor(Spec(k),X ) such that
β = idf ? α. �

Lemma 14.6. Let f : X → Y be a universally injective morphism of algebraic stacks.
Let y : Spec(k)→ Y be a morphism where k is an algebraically closed field. If y is in the
image of |X | → |Y|, then there is a morphism x : Spec(k)→ X with y = f ◦ x.

Proof. We first remark this lemma is not a triviality, because the assumption that y
is in the image of |f | means only that we can lift y to a morphism into X after possibly
replacing k by an extension field. To prove the lemma we may base change f by y, hence we
may assume we have a nonempty algebraic stack X and a universally injective morphism
X → Spec(k) and we want to find a k-valued point of X . We may replace X by its
reduction. We may choose a field k′ and a surjective, flat, locally finite type morphism
Spec(k′) → X , see Properties of Stacks, Lemma 11.2. Since X → Spec(k) is universally
injective, we find that

Spec(k′)×X Spec(k′)→ Spec(k′ ⊗k k′)

is surjective as the base change of the surjective morphism ∆ : X → X×Spec(k)X (Lemma
14.5). Since k is algebraically closed k′ ⊗k k′ is a domain (Algebra, Lemma 49.4). Let
ξ ∈ Spec(k′) ×X Spec(k′) be a point mapping to the generic point of Spec(k′ ⊗k k′).
Let U be the reduced induced closed subscheme structure on the connected component of
Spec(k′)×X Spec(k′) containing ξ. Then the two projections U → Spec(k′) are locally
of finite type, as this was true for the projections Spec(k′) ×X Spec(k′) → Spec(k′) as
base changes of the morphism Spec(k′) → X . Applying Varieties, Proposition 31.1 we
find that the integral closures of the two images of k′ in Γ(U,OU ) are equal. Looking in
κ(ξ) means that any element of the form λ⊗ 1 is algebraically dependend on the subfield

1⊗ k′ ⊂ (fraction field of k′ ⊗k k′) ⊂ κ(ξ).

Since k is algebraically closed, this is only possible if k′ = k and the proof is complete. �

Lemma 14.7. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent:

(1) f is universally injective,
(2) for every affine scheme Z and any morphism Z → Y the morphism Z ×Y X →

Z is universally injective, and
(3) add more here.

Proof. The implication (1)⇒ (2) is immediate. Assume (2) holds. We will show that
∆f : X → X ×Y X is surjective, which implies (1) by Lemma 14.5. Consider an affine
scheme V and a smooth morphism V → Y . Since g : V ×YX → V is universally injective
by (2), we see that ∆g is surjective. However, ∆g is the base change of ∆f by the smooth
morphism V → Y . Since the collection of these morphisms V → Y are jointly surjective,
we conclude ∆f is surjective. �



6838 101. MORPHISMS OF ALGEBRAIC STACKS

Lemma 14.8. Let f : X → Y be a morphism of algebraic stacks. Let W → Y be
surjective, flat, and locally of finite presentation whereW is an algebraic space. If the base
change W ×Y X →W is universally injective, then f is universally injective.

Proof. Observe that the diagonal ∆g of the morphism g : W ×Y X →W is the base
change of ∆f byW → Y . Hence if ∆g is surjective, then so is ∆f by Properties of Stacks,
Lemma 3.3. Thus the lemma follows from the characterization (2) in Lemma 14.5. �

15. Universal homeomorphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces. In
Properties of Stacks, Section 3 we have defined what it means for f to be a universal home-
omorphism. Here is another characterization.

Lemma 15.1. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. The following are equivalent

(1) f is a universal homeomorphism (Properties of Stacks, Section 3), and
(2) for every morphism of algebraic stacks Z → Y the map of topological spaces
|Z ×Y X| → |Z| is a homeomorphism.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a surjective
smooth morphism V → Z . By assumption the morphism V ×Y X → V of algebraic
spaces is a universal homeomorphism, in particular the map |V ×Y X| → |V | is a homeo-
morphism. By Properties of Stacks, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|
is surjective. Hence as the left vertical arrow is a homeomorphism it follows that the right
vertical arrow is a homeomorphism. This proves (2). The implication (2)⇒ (1) follows
from the definitions. �

Thus we may use the following natural definition.

Definition 15.2. Let f : X → Y be a morphism of algebraic stacks. We say f is a
universal homeomorphism if for every morphism of algebraic stacks Z → Y the map of
topological spaces

|Z ×Y X| → |Z|
is a homeomorphism.

Lemma 15.3. The base change of a universal homeomorphism of algebraic stacks by
any morphism of algebraic stacks is a universal homeomorphism.

Proof. This is immediate from the definition. �

Lemma 15.4. The composition of a pair of universal homeomorphisms of algebraic
stacks is a universal homeomorphism.

Proof. Omitted. �
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Lemma 15.5. Let f : X → Y be a morphism of algebraic stacks. Let W → Y be
surjective, flat, and locally of finite presentation whereW is an algebraic space. If the base
change W ×Y X → W is a universal homeomorphism, then f is a universal homeomor-
phism.

Proof. Assume g : W ×Y X → W is a universal homeomorphism. Then g is uni-
versally injective, hence f is universally injective by Lemma 14.8. On the other hand, let
Z → Y be a morphism with Z an algebraic stack. Choose a scheme U and a surjective
smooth morphism U →W ×Y Z . Consider the diagram

W ×Y X

g

��

U ×Y X

��

oo // Z ×Y X

��
W Uoo // Z

The middle vertical arrow induces a homeomorphism on topological space by assumption
on g. The morphism U → Z and U ×Y X → Z ×Y X are surjective, flat, and locally
of finite presentation hence induce open maps on topological spaces. We conclude that
|Z ×Y X| → |Z| is open. Surjectivity is easy to prove; we omit the proof. �

16. Types of morphisms smooth local on source-and-target

Given a property of morphisms of algebraic spaces which is smooth local on the source-
and-target, see Descent on Spaces, Definition 20.1 we may use it to define a corresponding
property of morphisms of algebraic stacks, namely by imposing either of the equivalent
conditions of the lemma below.

Lemma 16.1. Let P be a property of morphisms of algebraic spaces which is smooth
local on the source-and-target. Let f : X → Y be a morphism of algebraic stacks. Consider
commutative diagrams

U

a

��

h
// V

b

��
X

f // Y
where U and V are algebraic spaces and the vertical arrows are smooth. The following are
equivalent

(1) for any diagram as above such that in addition U → X ×Y V is smooth the
morphism h has property P , and

(2) for some diagram as above with a : U → X surjective the morphism h has
property P .

If X and Y are representable by algebraic spaces, then this is also equivalent to f (as a
morphism of algebraic spaces) having property P . If P is also preserved under any base
change, and fppf local on the base, then for morphisms f which are representable by al-
gebraic spaces this is also equivalent to f having property P in the sense of Properties of
Stacks, Section 3.

Proof. Let us prove the implication (1)⇒ (2). Pick an algebraic space V and a sur-
jective and smooth morphism V → Y . Pick an algebraic space U and a surjective and
smooth morphism U → X ×Y V . Note that U → X is surjective and smooth as well, as a
composition of the base change X ×Y V → X and the chosen map U → X ×Y V . Hence
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we obtain a diagram as in (1). Thus if (1) holds, then h : U → V has property P , which
means that (2) holds as U → X is surjective.

Conversely, assume (2) holds and let U, V, a, b, h be as in (2). Next, let U ′, V ′, a′, b′, h′ be
any diagram as in (1). Picture

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y

To show that (2) implies (1) we have to prove that h′ has P . To do this consider the
commutative diagram

U

h

��

U ×X U ′

��

oo

(h,h′)

��

// U ′

h′

��

U ×Y V ′

cc

��
V V ×Y V ′oo // V ′

of algebraic spaces. Note that the horizontal arrows are smooth as base changes of the
smooth morphisms V → Y , V ′ → Y , U → X , and U ′ → X . Note that

U ×X U ′

��

// U ′

��
U ×Y V ′ // X ×Y V ′

is cartesian, hence the left vertical arrow is smooth as U ′, V ′, a′, b′, h′ is as in (1). Since
P is smooth local on the target by Descent on Spaces, Lemma 20.2 part (2) we see that
the base change U ×Y V ′ → V ×Y V ′ has P . Since P is smooth local on the source
by Descent on Spaces, Lemma 20.2 part (1) we can precompose by the smooth morphism
U ×X U ′ → U ×Y V ′ and conclude (h, h′) has P . Since V ×Y V ′ → V ′ is smooth we
conclude U ×X U ′ → V ′ has P by Descent on Spaces, Lemma 20.2 part (3). Finally, since
U×XU ′ → U ′ is surjective and smooth andP is smooth local on the source (same lemma)
we conclude that h′ has P . This finishes the proof of the equivalence of (1) and (2).

If X and Y are representable, then Descent on Spaces, Lemma 20.3 applies which shows
that (1) and (2) are equivalent to f having P .

Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma, and
that P is preserved under arbitrary base change. We have to show that for any scheme
Z and morphism Z → X the base change Z ×Y X → Z has property P . Consider the
diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z
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Note that the top horizontal arrow is a base change of h and hence has property P . The
left vertical arrow is smooth and surjective and the right vertical arrow is smooth. Thus
Descent on Spaces, Lemma 20.3 kicks in and shows thatZ×YX → Z has propertyP . �

Definition 16.2. Let P be a property of morphisms of algebraic spaces which is
smooth local on the source-and-target. We say a morphism f : X → Y of algebraic
stacks has property P if the equivalent conditions of Lemma 16.1 hold.

Remark 16.3. Let P be a property of morphisms of algebraic spaces which is smooth
local on the source-and-target and stable under composition. Then the property of mor-
phisms of algebraic stacks defined in Definition 16.2 is stable under composition. Namely,
let f : X → Y and g : Y → Z be morphisms of algebraic stacks having property P .
Choose an algebraic space W and a surjective smooth morphism W → Z . Choose an
algebraic space V and a surjective smooth morphism V → Y ×Z W . Finally, choose
an algebraic space U and a surjective and smooth morphism U → X ×Y V . Then the
morphisms V → W and U → V have property P by definition. Whence U → W has
property P as we assumed that P is stable under composition. Thus, by definition again,
we see that g ◦ f : X → Z has property P .

Remark 16.4. Let P be a property of morphisms of algebraic spaces which is smooth
local on the source-and-target and stable under base change. Then the property of mor-
phisms of algebraic stacks defined in Definition 16.2 is stable under base change. Namely,
let f : X → Y and g : Y ′ → Y be morphisms of algebraic stacks and assume f has prop-
erty P . Choose an algebraic space V and a surjective smooth morphism V → Y . Choose
an algebraic space U and a surjective smooth morphism U → X ×Y V . Finally, choose
an algebraic space V ′ and a surjective and smooth morphism V ′ → Y ′ ×Y V . Then the
morphism U → V has property P by definition. Whence V ′ ×V U → V ′ has property
P as we assumed that P is stable under base change. Considering the diagram

V ′ ×V U //

��

Y ′ ×Y X //

��

X

��
V ′ // Y ′ // Y

we see that the left top horizontal arrow is smooth and surjective, whence by definition
we see that the projection Y ′ ×Y X → Y ′ has property P .

Remark 16.5. Let P,P ′ be properties of morphisms of algebraic spaces which are
smooth local on the source-and-target. Suppose that we have P ⇒ P ′ for morphisms of
algebraic spaces. Then we also have P ⇒ P ′ for the properties of morphisms of algebraic
stacks defined in Definition 16.2 using P and P ′. This is clear from the definition.

17. Morphisms of finite type

The property “locally of finite type” of morphisms of algebraic spaces is smooth local on
the source-and-target, see Descent on Spaces, Remark 20.5. It is also stable under base
change and fpqc local on the target, see Morphisms of Spaces, Lemma 23.3 and Descent
on Spaces, Lemma 11.9. Hence, by Lemma 16.1 above, we may define what it means for a
morphism of algebraic spaces to be locally of finite type as follows and it agrees with the
already existing notion defined in Properties of Stacks, Section 3 when the morphism is
representable by algebraic spaces.

Definition 17.1. Let f : X → Y be a morphism of algebraic stacks.
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(1) We say f locally of finite type if the equivalent conditions of Lemma 16.1 hold
with P = locally of finite type.

(2) We say f is of finite type if it is locally of finite type and quasi-compact.

Lemma 17.2. The composition of finite type morphisms is of finite type. The same
holds for locally of finite type.

Proof. Combine Remark 16.3 with Morphisms of Spaces, Lemma 23.2. �

Lemma 17.3. A base change of a finite type morphism is finite type. The same holds
for locally of finite type.

Proof. Combine Remark 16.4 with Morphisms of Spaces, Lemma 23.3. �

Lemma 17.4. An immersion is locally of finite type.

Proof. Combine Remark 16.5 with Morphisms of Spaces, Lemma 23.7. �

Lemma 17.5. Let f : X → Y be a morphism of algebraic stacks. If f is locally of
finite type and Y is locally Noetherian, then X is locally Noetherian.

Proof. Let
U

��

// V

��
X // Y

be a commutative diagram where U , V are schemes, V → Y is surjective and smooth, and
U → V ×Y X is surjective and smooth. Then U → V is locally of finite type. If Y is
locally Noetherian, then V is locally Noetherian. By Morphisms, Lemma 15.6 we see that
U is locally Noetherian, which means that X is locally Noetherian. �

The following two lemmas will be improved on later (after we have discussed morphisms
of algebraic stacks which are locally of finite presentation).

Lemma 17.6. Let f : X → Y be a morphism of algebraic stacks. Let W → Y be a
surjective, flat, and locally of finite presentation whereW is an algebraic space. If the base
change W ×Y X →W is locally of finite type, then f is locally of finite type.

Proof. Choose an algebraic space V and a surjective smooth morphism V → Y .
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We have
to show that U → V is locally of finite presentation. Now we base change everything by
W → Y : Set U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and Y ′ = W ×Y Y = W .
Then it is still true thatU ′ → V ′×Y′X ′ is smooth by base change. Hence by our definition
of locally finite type morphisms of algebraic stacks and the assumption that X ′ → Y ′ is
locally of finite type, we see that U ′ → V ′ is locally of finite type. Then, since V ′ → V
is surjective, flat, and locally of finite presentation as a base change ofW → Y we see that
U → V is locally of finite type by Descent on Spaces, Lemma 11.9 and we win. �

Lemma 17.7. Let X → Y → Z be morphisms of algebraic stacks. Assume X → Z is
locally of finite type and that X → Y is representable by algebraic spaces, surjective, flat,
and locally of finite presentation. Then Y → Z is locally of finite type.



18. POINTS OF FINITE TYPE 6843

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z .
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y . Set
U = V ×Y X which is an algebraic space. We know that U → V is surjective, flat, and
locally of finite presentation and that U → W is locally of finite type. Hence the lemma
reduces to the case of morphisms of algebraic spaces. The case of morphisms of algebraic
spaces is Descent on Spaces, Lemma 16.2. �

Lemma 17.8. Let f : X → Y , g : Y → Z be morphisms of algebraic stacks. If
g ◦ f : X → Z is locally of finite type, then f : X → Y is locally of finite type.

Proof. We can find a diagram

U //

��

V //

��

W

��
X // Y // Z

where U , V , W are schemes, the vertical arrow W → Z is surjective and smooth, the
arrow V → Y ×Z W is surjective and smooth, and the arrow U → X ×Y V is surjective
and smooth. Then also U → X ×Z V is surjective and smooth (as a composition of a
surjective and smooth morphism with a base change of such). By definition we see that
U → W is locally of finite type. Hence U → V is locally of finite type by Morphisms,
Lemma 15.8 which in turn means (by definition) that X → Y is locally of finite type. �

18. Points of finite type

LetX be an algebraic stack. A finite type point x ∈ |X | is a point which can be represented
by a morphism Spec(k) → X which is locally of finite type. Finite type points are a
suitable replacement of closed points for algebraic spaces and algebraic stacks. There are
always “enough of them” for example.

Lemma 18.1. Let X be an algebraic stack. Let x ∈ |X |. The following are equivalent:
(1) There exists a morphism Spec(k) → X which is locally of finite type and rep-

resents x.
(2) There exists a schemeU , a closed point u ∈ U , and a smooth morphism ϕ : U →
X such that ϕ(u) = x.

Proof. Let u ∈ U and U → X be as in (2). Then Spec(κ(u)) → U is of finite type,
and U → X is representable and locally of finite type (by Morphisms of Spaces, Lemmas
39.8 and 28.5). Hence we see (1) holds by Lemma 17.2.
Conversely, assume Spec(k)→ X is locally of finite type and represents x. LetU → X be
a surjective smooth morphism where U is a scheme. By assumption U ×X Spec(k)→ U
is a morphism of algebraic spaces which is locally of finite type. Pick a finite type point
v of U ×X Spec(k) (there exists at least one, see Morphisms of Spaces, Lemma 25.3). By
Morphisms of Spaces, Lemma 25.4 the image u ∈ U of v is a finite type point of U . Hence
by Morphisms, Lemma 16.4 after shrinking U we may assume that u is a closed point of
U , i.e., (2) holds. �

Definition 18.2. Let X be an algebraic stack. We say a point x ∈ |X | is a finite type
point5 if the equivalent conditions of Lemma 18.1 are satisfied. We denoteXft-pts the set of
finite type points of X .

5This is a slight abuse of language as it would perhaps be more correct to say “locally finite type point”.
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We can describe the set of finite type points as follows.

Lemma 18.3. Let X be an algebraic stack. We have

Xft-pts =
⋃

ϕ:U→X smooth
|ϕ|(U0)

whereU0 is the set of closed points ofU . Here we may letU range over all schemes smooth
over X or over all affine schemes smooth over X .

Proof. Immediate from Lemma 18.1. �

Lemma 18.4. Let f : X → Y be a morphism of algebraic stacks. If f is locally of
finite type, then f(Xft-pts) ⊂ Yft-pts.

Proof. Takex ∈ Xft-pts. Representx by a locally finite type morphismx : Spec(k)→
X . Then f ◦ x is locally of finite type by Lemma 17.2. Hence f(x) ∈ Yft-pts. �

Lemma 18.5. Let f : X → Y be a morphism of algebraic stacks. If f is locally of
finite type and surjective, then f(Xft-pts) = Yft-pts.

Proof. We have f(Xft-pts) ⊂ Yft-pts by Lemma 18.4. Let y ∈ |Y| be a finite type point.
Represent y by a morphism Spec(k)→ Y which is locally of finite type. As f is surjective
the algebraic stack Xk = Spec(k) ×Y X is nonempty, therefore has a finite type point
x ∈ |Xk| by Lemma 18.3. Now Xk → X is a morphism which is locally of finite type as
a base change of Spec(k) → Y (Lemma 17.3). Hence the image of x in X is a finite type
point by Lemma 18.4 which maps to y by construction. �

Lemma 18.6. Let X be an algebraic stack. For any locally closed subset T ⊂ |X | we
have

T 6= ∅ ⇒ T ∩ Xft-pts 6= ∅.
In particular, for any closed subset T ⊂ |X | we see that T ∩ Xft-pts is dense in T .

Proof. Let i : Z → X be the reduced induced substack structure on T , see Properties
of Stacks, Remark 10.5. An immersion is locally of finite type, see Lemma 17.4. Hence by
Lemma 18.4 we see Zft-pts ⊂ Xft-pts ∩ T . Finally, any nonempty affine scheme U with a
smooth morphism towards Z has at least one closed point, hence Z has at least one finite
type point by Lemma 18.3. The lemma follows. �

Here is another, more technical, characterization of a finite type point on an algebraic
stack. It tells us in particular that the residual gerbe of X at x exists whenever x is a finite
type point!

Lemma 18.7. LetX be an algebraic stack. Let x ∈ |X |. The following are equivalent:
(1) x is a finite type point,
(2) there exists an algebraic stack Z whose underlying topological space |Z| is a

singleton, and a morphism f : Z → X which is locally of finite type such that
{x} = |f |(|Z|), and

(3) the residual gerbe Zx of X at x exists and the inclusion morphism Zx → X is
locally of finite type.

Proof. (All of the morphisms occurring in this paragraph are representable by alge-
braic spaces, hence the conventions and results of Properties of Stacks, Section 3 are appli-
cable.) Assume x is a finite type point. Choose an affine scheme U , a closed point u ∈ U ,
and a smooth morphism ϕ : U → X with ϕ(u) = x, see Lemma 18.3. Set u = Spec(κ(u))
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as usual. Set R = u ×X u so that we obtain a groupoid in algebraic spaces (u,R, s, t, c),
see Algebraic Stacks, Lemma 16.1. The projection morphismsR→ u are the compositions

R = u×X u→ u×X U → u×X X = u

where the first arrow is of finite type (a base change of the closed immersion of schemes
u→ U ) and the second arrow is smooth (a base change of the smooth morphismU → X ).
Hence s, t : R → u are locally of finite type (as compositions, see Morphisms of Spaces,
Lemma 23.2). Since u is the spectrum of a field, it follows that s, t are flat and locally of
finite presentation (by Morphisms of Spaces, Lemma 28.7). We see that Z = [u/R] is
an algebraic stack by Criteria for Representability, Theorem 17.2. By Algebraic Stacks,
Lemma 16.1 we obtain a canonical morphism

f : Z −→ X
which is fully faithful. Hence this morphism is representable by algebraic spaces, see Al-
gebraic Stacks, Lemma 15.2 and a monomorphism, see Properties of Stacks, Lemma 8.4. It
follows that the residual gerbe Zx ⊂ X of X at x exists and that f factors through an
equivalence Z → Zx, see Properties of Stacks, Lemma 11.12. By construction the diagram

u

��

// U

��
Z

f // X
is commutative. By Criteria for Representability, Lemma 17.1 the left vertical arrow is
surjective, flat, and locally of finite presentation. Consider

u×X U

��

// Z ×X U //

��

U

��
u // Z

f // X
As u → X is locally of finite type, we see that the base change u ×X U → U is locally
of finite type. Moreover, u ×X U → Z ×X U is surjective, flat, and locally of finite
presentation as a base change of u→ Z . Thus {u×X U → Z ×X U} is an fppf covering
of algebraic spaces, and we conclude thatZ×X U → U is locally of finite type by Descent
on Spaces, Lemma 16.1. By definition this means that f is locally of finite type (because
the vertical arrow Z ×X U → Z is smooth as a base change of U → X and surjective as
Z has only one point). Since Z = Zx we see that (3) holds.

It is clear that (3) implies (2). If (2) holds then x is a finite type point of X by Lemma 18.4
and Lemma 18.6 to see that Zft-pts is nonempty, i.e., the unique point of Z is a finite type
point of Z . �

19. Automorphism groups

LetX be an algebraic stack. Let x ∈ |X | correspond to x : Spec(k)→ X . In this situation
we often use the phrase “let Gx/k be the automorphism group algebraic space of x”. This
just means that

Gx = IsomX (x, x) = Spec(k)×X IX

is the group algebraic space of automorphism of x. This is a group algebraic space over
Spec(k). If k′/k is an extension of fields then the automorphism group algebraic space of
the induced morphism x′ : Spec(k′)→ X is the base change of Gx to Spec(k′).
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Lemma 19.1. In the situation above Gx is a scheme if one of the following holds
(1) ∆ : X → X ×X is quasi-separated
(2) ∆ : X → X ×X is locally separated,
(3) X is quasi-DM,
(4) IX → X is quasi-separated,
(5) IX → X is locally separated, or
(6) IX → X is locally quasi-finite.

Proof. Observe that (1)⇒ (4), (2)⇒ (5), and (3)⇒ (6) by Lemma 6.1. In case (4)
we see that Gx is a quasi-separated algebraic space and in case (5) we see that Gx is a
locally separated algebraic space. In both cases Gx is a decent algebraic space (Decent
Spaces, Section 6 and Lemma 15.2). ThenGx is separated by More on Groupoids in Spaces,
Lemma 9.4 whereupon we conclude thatGx is a scheme by More on Groupoids in Spaces,
Proposition 10.3. In case (6) we see that Gx → Spec(k) is locally quasi-finite and hence
Gx is a scheme by Spaces over Fields, Lemma 10.8. �

Lemma 19.2. Let X be an algebraic stack. Let x ∈ |X | be a point. Let P be a prop-
erty of algebraic spaces over fields which is invariant under ground field extensions; for
example P (X/k) = X → Spec(k) is finite. The following are equivalent

(1) for some morphism x : Spec(k)→ X in the class of x the automorphism group
algebraic space Gx/k has P , and

(2) for any morphism x : Spec(k) → X in the class of x the automorphism group
algebraic space Gx/k has P .

Proof. Omitted. �

Remark 19.3. Let P be a property of algebraic spaces over fields which is invariant
under ground field extensions. Given an algebraic stack X and x ∈ |X |, we say the auto-
morphism group of X at x has P if the equivalent conditions of Lemma 19.2 are satisfied.
For example, we say the automorphism group of X at x is finite, if Gx → Spec(k) is fi-
nite whenever x : Spec(k) → X is a representative of x. Similarly for smooth, proper,
etc. (There is clearly an abuse of language going on here, but we believe it will not cause
confusion or imprecision.)

Lemma 19.4. Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X | be a
point. The following are equivalent

(1) for some morphism x : Spec(k)→ X in the class of x setting y = f ◦x the map
Gx → Gy of automorphism group algebraic spaces is an isomorphism, and

(2) for any morphism x : Spec(k)→ X in the class of x setting y = f ◦ x the map
Gx → Gy of automorphism group algebraic spaces is an isomorphism.

Proof. This comes down to the fact that being an isomorphism is fpqc local on the
target, see Descent on Spaces, Lemma 11.15. Namely, suppose that k′/k is an extension
of fields and denote x′ : Spec(k′) → X the composition and set y′ = f ◦ x′. Then the
morphism Gx′ → Gy′ is the base change of Gx → Gy by Spec(k′) → Spec(k). Hence
Gx → Gy is an isomorphism if and only if Gx′ → Gy′ is an isomorphism. Thus we see
that the property propagates through the equivalence class if it holds for one. �

Remark 19.5. Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X | be a
point. To indicate the equivalent conditions of Lemma 19.4 are satisfied for f and x in the
literature the terminology f is stabilizer preserving at x or f is fixed-point reflecting at x
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is used. We prefer to say f induces an isomorphism between automorphism groups at x
and f(x).

20. Presentations and properties of algebraic stacks

Let (U,R, s, t, c) be a groupoid in algebraic spaces. If s, t : R → U are flat and locally
of finite presentation, then the quotient stack [U/R] is an algebraic stack, see Criteria for
Representability, Theorem 17.2. In this section we study what properties of (U,R, s, t, c)
imply for the algebraic stack [U/R].

Lemma 20.1. Let (U,R, s, t, c) be a groupoid in algebraic spaces such that s, t : R→
U are flat and locally of finite presentation. Consider the algebraic stack X = [U/R] (see
above).

(1) If R→ U × U is separated, then ∆X is separated.
(2) If U , R are separated, then ∆X is separated.
(3) If R→ U × U is locally quasi-finite, then X is quasi-DM.
(4) If s, t : R→ U are locally quasi-finite, then X is quasi-DM.
(5) If R→ U × U is proper, then X is separated.
(6) If s, t : R→ U are proper and U is separated, then X is separated.
(7) Add more here.

Proof. Observe that the morphism U → X is surjective, flat, and locally of finite
presentation by Criteria for Representability, Lemma 17.1. Hence the same is true for
U × U → X ×X . We have the cartesian diagram

R = U ×X U //

��

U × U

��
X // X × X

(see Groupoids in Spaces, Lemma 22.2). Thus we see that ∆X has one of the properties
listed in Properties of Stacks, Section 3 if and only if the morphism R→ U × U does, see
Properties of Stacks, Lemma 3.3. This explains why (1), (3), and (5) are true. The condition
in (2) implies R → U × U is separated hence (2) follows from (1). The condition in (4)
implies the condition in (3) hence (4) follows from (3). The condition in (6) implies the
condition in (5) by Morphisms of Spaces, Lemma 40.6 hence (6) follows from (5). �

Lemma 20.2. Let (U,R, s, t, c) be a groupoid in algebraic spaces such that s, t : R→
U are flat and locally of finite presentation. Consider the algebraic stack X = [U/R]
(see above). Then the image of |R| → |U | × |U | is an equivalence relation and |X | is the
quotient of |U | by this equivalence relation.

Proof. The induced morphism p : U → X is surjective, flat, and locally of finite
presentation, see Criteria for Representability, Lemma 17.1. Hence |U | → |X | is surjective
by Properties of Stacks, Lemma 4.4. Note that R = U ×X U , see Groupoids in Spaces,
Lemma 22.2. Hence Properties of Stacks, Lemma 4.3 implies the map

|R| −→ |U | ×|X | |U |

is surjective. Hence the image of |R| → |U | × |U | is exactly the set of pairs (u1, u2) ∈
|U |×|U | such that u1 and u2 have the same image in |X |. Combining these two statements
we get the result of the lemma. �
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21. Special presentations of algebraic stacks

In this section we prove two important theorems. The first is the characterization of quasi-
DM stacks X as the stacks of the form X = [U/R] with s, t : R→ U locally quasi-finite
(as well as flat and locally of finite presentation). The second is the statement that DM
algebraic stacks are Deligne-Mumford.

The following lemma gives a criterion for when a “slice” of a presentation is still flat over
the algebraic stack.

Lemma 21.1. Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is flat and locally of finite pre-
sentation. Let f1, . . . , fr ∈ Γ(U,OU ) and z ∈ |F | such that f1, . . . , fr map to a regular
sequence in the local ring OF,z . Then, after replacing U by an open subspace containing
p(z), the morphism

V (f1, . . . , fr) −→ X

is flat and locally of finite presentation.

Proof. Choose a scheme W and a surjective smooth morphism W → X . Choose an
extension of fields k′/k and a morphism w : Spec(k′)→W such that Spec(k′)→W →
X is 2-isomorphic to Spec(k′)→ Spec(k)→ X . This is possible asW → X is surjective.
Consider the commutative diagram

U

��

U ×X Wpr0
oo

��

F ′
p′

oo

��
X Woo Spec(k′)oo

both of whose squares are cartesian. By our choice of w we see that F ′ = F ×Spec(k)
Spec(k′). Thus F ′ → F is surjective and we can choose a point z′ ∈ |F ′| mapping to
z. Since F ′ → F is flat we see that OF,z → OF ′,z′ is flat, see Morphisms of Spaces,
Lemma 30.8. Hence f1, . . . , fr map to a regular sequence in OF ′,z′ , see Algebra, Lemma
68.5. Note that U ×X W →W is a morphism of algebraic spaces which is flat and locally
of finite presentation. Hence by More on Morphisms of Spaces, Lemma 28.1 we see that
there exists an open subspace U ′ of U ×X W containing p(z′) such that the intersection
U ′ ∩ (V (f1, . . . , fr) ×X W ) is flat and locally of finite presentation over W . Note that
pr0(U ′) is an open subspace of U containing p(z) as pr0 is smooth hence open. Now we
see that U ′ ∩ (V (f1, . . . , fr)×X W )→ X is flat and locally of finite presentation as the
composition

U ′ ∩ (V (f1, . . . , fr)×X W )→W → X .

Hence Properties of Stacks, Lemma 3.5 implies pr0(U ′) ∩ V (f1, . . . , fr) → X is flat and
locally of finite presentation as desired. �
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Lemma 21.2. Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is locally of finite type. Let z ∈ |F |
be such that dimz(F ) = 0. Then, after replacing U by an open subspace containing p(z),
the morphism

U −→ X
is locally quasi-finite.

Proof. Since f : U → X is locally of finite type there exists a maximal openW (f) ⊂
U such that the restriction f |W (f) : W (f) → X is locally quasi-finite, see Properties of
Stacks, Remark 9.20 (2). Hence all we need to do is prove that p(z) is a point of W (f).
Moreover, the remark referenced above also shows the formation ofW (f) commutes with
arbitrary base change by a morphism which is representable by algebraic spaces. Hence it
suffices to show that the morphism F → Spec(k) is locally quasi-finite at z. This follows
immediately from Morphisms of Spaces, Lemma 34.6. �

A quasi-DM stack has a locally quasi-finite “covering” by a scheme.

Theorem 21.3. Let X be an algebraic stack. The following are equivalent
(1) X is quasi-DM, and
(2) there exists a scheme W and a surjective, flat, locally finitely presented, locally

quasi-finite morphism W → X .

Proof. The implication (2)⇒ (1) is Lemma 4.14. Assume (1). Let x ∈ |X | be a finite
type point. We will produce a scheme overX which “works” in a neighbourhood of x. At
the end of the proof we will take the disjoint union of all of these to conclude.

Let U be an affine scheme, U → X a smooth morphism, and u ∈ U a closed point which
maps to x, see Lemma 18.1. Denote u = Spec(κ(u)) as usual. Consider the following
commutative diagram

u

��

Roo

��
U

��

F

��

p
oo

X uoo

with both squares fibre product squares, in particularR = u×X u. In the proof of Lemma
18.7 we have seen that (u,R, s, t, c) is a groupoid in algebraic spaces with s, t locally of
finite type. Let G → u be the stabilizer group algebraic space (see Groupoids in Spaces,
Definition 16.2). Note that

G = R×(u×u) u = (u×X u)×(u×u) u = X ×X ×X u.

As X is quasi-DM we see that G is locally quasi-finite over u. By More on Groupoids in
Spaces, Lemma 9.11 we have dim(R) = 0.
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Let e : u → R be the identity of the groupoid. Thus both compositions u → R → u are
equal to the identity morphism of u. Note that R ⊂ F is a closed subspace as u ⊂ U is
a closed subscheme. Hence we can also think of e as a point of F . Consider the maps of
étale local rings

OU,u
p]−→ OF,e −→ OR,e

Note that OR,e has dimension 0 by the result of the first paragraph. On the other hand,
the kernel of the second arrow is p](mu)OF,e asR is cut out in F by mu. Thus we see that

mz =
√
p](mu)OF,e

On the other hand, as the morphism U → X is smooth we see that F → u is a smooth
morphism of algebraic spaces. This means that F is a regular algebraic space (Spaces over
Fields, Lemma 16.1). Hence OF,e is a regular local ring (Properties of Spaces, Lemma
25.1). Note that a regular local ring is Cohen-Macaulay (Algebra, Lemma 106.3). Let
d = dim(OF,e). By Algebra, Lemma 104.10 we can find f1, . . . , fd ∈ OU,u whose images
ϕ(f1), . . . , ϕ(fd) form a regular sequence in OF,z . By Lemma 21.1 after shrinking U we
may assume that Z = V (f1, . . . , fd) → X is flat and locally of finite presentation. Note
that by construction FZ = Z ×X u is a closed subspace of F = U ×X u, that e is a point
of this closed subspace, and that

dim(OFZ ,e) = 0.
By Morphisms of Spaces, Lemma 34.1 it follows that dime(FZ) = 0 because the transcen-
dence degree of e relative to u is zero. Hence it follows from Lemma 21.2 that after possibly
shrinking U the morphism Z → X is locally quasi-finite.

We conclude that for every finite type point x of X there exists a locally quasi-finite,
flat, locally finitely presented morphism fx : Zx → X with x in the image of |fx|. Set
W =

∐
x Zx and f =

∐
fx. Then f is flat, locally of finite presentation, and locally

quasi-finite. In particular the image of |f | is open, see Properties of Stacks, Lemma 4.7. By
construction the image contains all finite type points ofX , hence f is surjective by Lemma
18.6 (and Properties of Stacks, Lemma 4.4). �

Lemma 21.4. Let Z be a DM, locally Noetherian, reduced algebraic stack with |Z| a
singleton. Then there exists a field k and a surjective étale morphism Spec(k)→ Z .

Proof. By Properties of Stacks, Lemma 11.3 there exists a field k and a surjective, flat,
locally finitely presented morphism Spec(k) → Z . Set U = Spec(k) and R = U ×Z U
so we obtain a groupoid in algebraic spaces (U,R, s, t, c), see Algebraic Stacks, Lemma 9.2.
Note that by Algebraic Stacks, Remark 16.3 we have an equivalence

fcan : [U/R] −→ Z
The projections s, t : R → U are locally of finite presentation. As Z is DM we see that
the stabilizer group algebraic space

G = U ×U×U R = U ×U×U (U ×Z U) = U ×Z×Z,∆Z Z
is unramified over U . In particular dim(G) = 0 and by More on Groupoids in Spaces,
Lemma 9.11 we have dim(R) = 0. This implies that R is a scheme, see Spaces over Fields,
Lemma 9.1. By Varieties, Lemma 20.2 we see that R (and also G) is the disjoint union of
spectra of Artinian local rings finite over k via either s or t. Let P = Spec(A) ⊂ R be
the open and closed subscheme whose underlying point is the identity e of the groupoid
scheme (U,R, s, t, c). As s ◦ e = t ◦ e = idSpec(k) we see that A is an Artinian local ring
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whose residue field is identified with k via either s] : k → A or t] : k → A. Note that
s, t : Spec(A)→ Spec(k) are finite (by the lemma referenced above). SinceG→ Spec(k)
is unramified we see that

G ∩ P = P ×U×U U = Spec(A⊗k⊗k k)

is unramified over k. On the other hand A⊗k⊗k k is local as a quotient of A and surjects
onto k. We conclude that A ⊗k⊗k k = k. It follows that P → U × U is universally
injective (as P has only one point with residue field k), unramified (by the computation of
the fibre over the unique image point above), and of finite type (because s, t are) hence a
monomorphism (see Étale Morphisms, Lemma 7.1). Thus s|P , t|P : P → U define a finite
flat equivalence relation. Thus we may apply Groupoids, Proposition 23.9 to conclude that
U/P exists and is a scheme U . Moreover, U → U is finite locally free and P = U ×U U .
In fact U = Spec(k0) where k0 ⊂ k is the ring of R-invariant functions. As k is a field it
follows from the definition Groupoids, Equation (23.0.1) that k0 is a field.

We claim that

(21.4.1) Spec(k0) = U = U/P → [U/R] = Z

is the desired surjective étale morphism. It follows from Properties of Stacks, Lemma 11.1
that this morphism is surjective. Thus it suffices to show that (21.4.1) is étale6. Instead of
proving the étaleness directly we first apply Bootstrap, Lemma 9.1 to see that there exists
a groupoid scheme (U,R, s, t, c) such that (U,R, s, t, c) is the restriction of (U,R, s, t, c)
via the quotient morphism U → U . (We verified all the hypothesis of the lemma above
except for the assertion that j : R → U × U is separated and locally quasi-finite which
follows from the fact that R is a separated scheme locally quasi-finite over k.) Since U →
U is finite locally free we see that [U/R] → [U/R] is an equivalence, see Groupoids in
Spaces, Lemma 25.2.

Note that s, t are the base changes of the morphisms s, t by U → U . As {U → U} is
an fppf covering we conclude s, t are flat, locally of finite presentation, and locally quasi-
finite, see Descent, Lemmas 23.15, 23.11, and 23.24. Consider the commutative diagram

U ×U U

##

P //

��

R

��
U

e // R

It is a general fact about restrictions that the outer four corners form a cartesian diagram.
By the equality we see the inner square is cartesian. Since P is open inRwe conclude that
e is an open immersion by Descent, Lemma 23.16.

But of course, if e is an open immersion and s, t are flat and locally of finite presentation
then the morphisms t, s are étale. For example you can see this by applying More on
Groupoids, Lemma 4.1 which shows that ΩR/U = 0 implies that s, t : R→ U is unrami-
fied (see Morphisms, Lemma 35.2), which in turn implies that s, t are étale (see Morphisms,
Lemma 36.16). Hence Z = [U/R] is an étale presentation of the algebraic stack Z and we
conclude that U → Z is étale by Properties of Stacks, Lemma 3.3. �

6We urge the reader to find his/her own proof of this fact. In fact the argument has a lot in common with
the final argument of the proof of Bootstrap, Theorem 10.1 hence probably should be isolated into its own lemma
somewhere.



6852 101. MORPHISMS OF ALGEBRAIC STACKS

Lemma 21.5. Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is flat and locally of finite presen-
tation. Let z ∈ |F | be such that F → Spec(k) is unramified at z. Then, after replacing U
by an open subspace containing p(z), the morphism

U −→ X

is étale.

Proof. Since f : U → X is flat and locally of finite presentation there exists a
maximal open W (f) ⊂ U such that the restriction f |W (f) : W (f) → X is étale, see
Properties of Stacks, Remark 9.20 (5). Hence all we need to do is prove that p(z) is a
point ofW (f). Moreover, the remark referenced above also shows the formation ofW (f)
commutes with arbitrary base change by a morphism which is representable by algebraic
spaces. Hence it suffices to show that the morphism F → Spec(k) is étale at z. Since it is
flat and locally of finite presentation as a base change ofU → X and sinceF → Spec(k) is
unramified at z by assumption, this follows from Morphisms of Spaces, Lemma 39.12. �

A DM stack is a Deligne-Mumford stack.

Theorem 21.6. Let X be an algebraic stack. The following are equivalent
(1) X is DM,
(2) X is Deligne-Mumford, and
(3) there exists a scheme W and a surjective étale morphism W → X .

Proof. Recall that (3) is the definition of (2), see Algebraic Stacks, Definition 12.2.
The implication (3)⇒ (1) is Lemma 4.14. Assume (1). Let x ∈ |X | be a finite type point.
We will produce a scheme over X which “works” in a neighbourhood of x. At the end of
the proof we will take the disjoint union of all of these to conclude.

By Lemma 18.7 the residual gerbe Zx of X at x exists and Zx → X is locally of finite
type. By Lemma 4.16 the algebraic stack Zx is DM. By Lemma 21.4 there exists a field
k and a surjective étale morphism z : Spec(k) → Zx. In particular the composition
x : Spec(k) → X is locally of finite type (by Morphisms of Spaces, Lemmas 23.2 and
39.9).

Pick a schemeU and a smooth morphismU → X such that x is in the image of |U | → |X |.
Consider the following fibre square

U

��

Foo

��
X Spec(k)xoo

in other words F = U ×X ,x Spec(k). By Properties of Stacks, Lemma 4.3 we see that F
is nonempty. As Zx → X is a monomorphism we have

Spec(k)×z,Zx,z Spec(k) = Spec(k)×x,X ,x Spec(k)
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with étale projection maps to Spec(k) by construction of z. Since

F ×U F = (Spec(k)×X Spec(k))×Spec(k) F

we see that the projections maps F ×U F → F are étale as well. It follows that ∆F/U :
F → F ×U F is étale (see Morphisms of Spaces, Lemma 39.11). By Morphisms of Spaces,
Lemma 51.2 this implies that ∆F/U is an open immersion, which finally implies by Mor-
phisms of Spaces, Lemma 38.9 that F → U is unramified.

Pick a nonempty affine scheme V and an étale morphism V → F . (This could be avoided
by working directly with F , but it seems easier to explain what’s going on by doing so.)
Picture

U

��

Foo

��

Voo

{{
X Spec(k)xoo

Then V → Spec(k) is a smooth morphism of schemes and V → U is an unramified
morphism of schemes (see Morphisms of Spaces, Lemmas 37.2 and 38.3). Pick a closed
point v ∈ V with k ⊂ κ(v) finite separable, see Varieties, Lemma 25.6. Let u ∈ U be the
image point. The local ring OV,v is regular (see Varieties, Lemma 25.3) and the local ring
homomorphism

ϕ : OU,u −→ OV,v
coming from the morphism V → U is such that ϕ(mu)OV,v = mv , see Morphisms,
Lemma 35.14. Hence we can find f1, . . . , fd ∈ OU,u such that the imagesϕ(f1), . . . , ϕ(fd)
form a basis for mv/m

2
v over κ(v). Since OV,v is a regular local ring this implies that

ϕ(f1), . . . , ϕ(fd) form a regular sequence in OV,v (see Algebra, Lemma 106.3). After re-
placing U by an open neighbourhood of u we may assume f1, . . . , fd ∈ Γ(U,OU ). After
replacing U by a possibly even smaller open neighbourhood of u we may assume that
V (f1, . . . , fd)→ X is flat and locally of finite presentation, see Lemma 21.1. By construc-
tion

V (f1, . . . , fd)×X Spec(k)←− V (f1, . . . , fd)×U V
is étale and V (f1, . . . , fd)×U V is the closed subscheme T ⊂ V cut out by f1|V , . . . , fd|V .
Hence by construction v ∈ T and

OT,v = OV,v/(ϕ(f1), . . . , ϕ(fd)) = κ(v)
a finite separable extension of k. It follows that T → Spec(k) is unramified at v, see
Morphisms, Lemma 35.14. By definition of an unramified morphism of algebraic spaces
this means that V (f1, . . . , fd) ×X Spec(k) → Spec(k) is unramified at the image of v
in V (f1, . . . , fd) ×X Spec(k). Applying Lemma 21.5 we see that on shrinking U to yet
another open neighbourhood of u the morphism V (f1, . . . , fd)→ X is étale.

We conclude that for every finite type point x of X there exists an étale morphism fx :
Wx → X with x in the image of |fx|. SetW =

∐
xWx and f =

∐
fx. Then f is étale. In

particular the image of |f | is open, see Properties of Stacks, Lemma 4.7. By construction
the image contains all finite type points of X , hence f is surjective by Lemma 18.6 (and
Properties of Stacks, Lemma 4.4). �

Here is a useful corollary which tells us that the “fibres” of a DM morphism of algebraic
stacks are Deligne-Mumford.

Lemma 21.7. Let f : X → Y be a DM morphism of algebraic stacks. Then
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(1) For every DM algebraic stack Z and morphism Z → Y there exists a scheme
and a surjective étale morphism U → X ×Y Z .

(2) For every algebraic space Z and morphism Z → Y there exists a scheme and a
surjective étale morphism U → X ×Y Z.

Proof. Proof of (1). As f is DM we see that the base change X ×Y Z → Z is DM
by Lemma 4.4. Since Z is DM this implies that X ×Y Z is DM by Lemma 4.11. Hence
there exists a scheme U and a surjective étale morphism U → X ×Y Z , see Theorem 21.6.
Part (2) is a special case of (1) since an algebraic space (when viewed as an algebraic stack)
is DM by Lemma 4.3. �

22. The Deligne-Mumford locus

Every algebraic stack has a largest open substack which is a Deligne-Mumford stack; this
is more or less clear but we also write out the proof below. Of course this substack may
be empty, for example if X = [Spec(Z)/Gm,Z]. Below we will characterize the points of
the DM locus.

Lemma 22.1. Let X be an algebraic stack. There exist open substacks

X ′′ ⊂ X ′ ⊂ X

such that X ′′ is DM, X ′ is quasi-DM, and such that these are the largest open substacks
with these properties.

Proof. All we are really saying here is that if U ⊂ X and V ⊂ X are open substacks
which are DM, then the open substack W ⊂ X with |W| = |U| ∪ |V| is DM as well.
(Similarly for quasi-DM.) Although this is a cheat, let us use Theorem 21.6 to prove this.
By that theorem we can choose schemes U and V and surjective étale morphisms U → U
and V → V . Then of course U q V → W is surjective and étale. The quasi-DM case is
proven by exactly the same method using Theorem 21.3. �

Lemma 22.2. Let X be an algebraic stack. Let x ∈ |X | correspond to x : Spec(k)→
X . Let Gx/k be the automorphism group algebraic space of x. Then

(1) x is in the DM locus of X if and only if Gx → Spec(k) is unramified, and
(2) x is in the quasi-DM locus of X if and only if Gx → Spec(k) is locally quasi-

finite.

Proof. Proof of (2). Choose a scheme U and a surjective smooth morphism U → X .
Consider the fibre product

G //

��

IX

��
U // X

Recall that G is the automorphism group algebraic space of U → X . By Groupoids in
Spaces, Lemma 6.3 there is a maximal open subscheme U ′ ⊂ U such that GU ′ → U ′

is locally quasi-finite. Moreover, formation of U ′ commutes with arbitrary base change.
In particular the two inverse images of U ′ in R = U ×X U are the same open subspace
of R (since after all the two maps R → X are isomorphic and hence have isomorphic
automorphism group spaces). Hence U ′ is the inverse image of an open substack X ′ ⊂ X
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by Properties of Stacks, Lemma 9.11 and we have a cartesian diagram

GU ′ //

��

IX ′

��
U ′ // X ′

Thus the morphism IX ′ → X ′ is locally quasi-finite and we conclude thatX ′ is quasi-DM
by Lemma 6.1 part (5). On the other hand, ifW ⊂ X is an open substack which is quasi-
DM, then the inverse imageW ⊂ U ofW must be contained inU ′ by our construction of
U ′ since IW =W ×X IX is locally quasi-finite overW . Thus X ′ is the quasi-DM locus.
Finally, choose a field extension K/k and a 2-commutative diagram

Spec(K) //

��

Spec(k)

x

��
U // X

Then we find an isomorphismGx×Spec(k) Spec(K) ∼= G×U Spec(K) of group algebraic
spaces over K. Hence Gx is locally quasi-finite over k if and only if Spec(K)→ U maps
into U ′ (use the commutation of formation of U ′ and Groupoids in Spaces, Lemma 6.3
applied to Spec(K) → Spec(k) and Gx to see this). This finishes the proof of (2). The
proof of (1) is exactly the same. �

23. Locally quasi-finite morphisms

The property “locally quasi-finite” of morphisms of algebraic spaces is not smooth local on
the source-and-target so we cannot use the material in Section 16 to define locally quasi-
finite morphisms of algebraic stacks. We do already know what it means for a morphism of
algebraic stacks representable by algebraic spaces to be locally quasi-finite, see Properties
of Stacks, Section 3. To find a condition suitable for general morphisms we make the
following observation.

Lemma 23.1. Let f : X → Y be a morphism of algebraic stacks. Assume f is repre-
sentable by algebraic spaces. The following are equivalent

(1) f is locally quasi-finite (as in Properties of Stacks, Section 3), and
(2) f is locally of finite type and for every morphism Spec(k) → Y where k is a

field the space | Spec(k)×Y X| is discrete.

Proof. Assume (1). In this case the morphism of algebraic spaces Xk → Spec(k) is
locally quasi-finite as a base change of f . Hence |Xk| is discrete by Morphisms of Spaces,
Lemma 27.5. Conversely, assume (2). Pick a surjective smooth morphism V → Y where
V is a scheme. It suffices to show that the morphism of algebraic spaces V ×Y X → V is
locally quasi-finite, see Properties of Stacks, Lemma 3.3. The morphism V ×Y X → V is
locally of finite type by assumption. For any morphism Spec(k)→ V where k is a field

Spec(k)×V (V ×Y X ) = Spec(k)×Y X

has a discrete space of points by assumption. Hence we conclude that V ×Y X → V is
locally quasi-finite by Morphisms of Spaces, Lemma 27.5. �

A morphism of algebraic stacks which is representable by algebraic spaces is quasi-DM, see
Lemma 4.3. Combined with the lemma above we see that the following definition does
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not conflict with the already existing notion in the case of morphisms representable by
algebraic spaces.

Definition 23.2. Let f : X → Y be a morphism of algebraic stacks. We say f
is locally quasi-finite if f is quasi-DM, locally of finite type, and for every morphism
Spec(k)→ Y where k is a field the space |Xk| is discrete.

The condition that f be quasi-DM is natural. For example, let k be a field and consider
the morphism π : [Spec(k)/Gm] → Spec(k) which has singleton fibres and is locally of
finite type. As we will see later this morphism is smooth of relative dimension −1, and
we’d like our locally quasi-finite morphisms to have relative dimension 0. Also, note that
the section Spec(k) → [Spec(k)/Gm] does not have discrete fibres, hence is not locally
quasi-finite, and we’d like to have the following permanence property for locally quasi-
finite morphisms: If f : X → X ′ is a morphism of algebraic stacks locally quasi-finite
over the algebraic stack Y , then f is locally quasi-finite (in fact something a bit stronger
holds, see Lemma 23.8).

Another justification for the definition above is Lemma 23.7 below which characterizes be-
ing locally quasi-finite in terms of the existence of suitable “presentations” or “coverings”
of X and Y .

Lemma 23.3. A base change of a locally quasi-finite morphism is locally quasi-finite.

Proof. We have seen this for quasi-DM morphisms in Lemma 4.4 and for locally
finite type morphisms in Lemma 17.3. It is immediate that the condition on fibres is in-
herited by a base change. �

Lemma 23.4. Let X → Spec(k) be a locally quasi-finite morphism where X is an
algebraic stack and k is a field. Let f : V → X be a locally quasi-finite morphism where
V is a scheme. Then V → Spec(k) is locally quasi-finite.

Proof. By Lemma 17.2 we see that V → Spec(k) is locally of finite type. Assume,
to get a contradiction, that V → Spec(k) is not locally quasi-finite. Then there exists a
nontrivial specialization v  v′ of points of V , see Morphisms, Lemma 20.6. In particular
trdegk(κ(v)) > trdegk(κ(v′)), see Morphisms, Lemma 28.7. Because |X | is discrete we
see that |f |(v) = |f |(v′). Consider R = V ×X V . Then R is an algebraic space and
the projections s, t : R → V are locally quasi-finite as base changes of V → X (which
is representable by algebraic spaces so this follows from the discussion in Properties of
Stacks, Section 3). By Properties of Stacks, Lemma 4.3 we see that there exists an r ∈ |R|
such that s(r) = v and t(r) = v′. By Morphisms of Spaces, Lemma 33.3 we see that the
transcendence degree of v/k is equal to the transcendence degree of r/k is equal to the
transcendence degree of v′/k. This contradiction proves the lemma. �

Lemma 23.5. A composition of a locally quasi-finite morphisms is locally quasi-finite.

Proof. We have seen this for quasi-DM morphisms in Lemma 4.10 and for locally
finite type morphisms in Lemma 17.2. Let X → Y and Y → Z be locally quasi-finite. Let
k be a field and let Spec(k) → Z be a morphism. It suffices to show that |Xk| is discrete.
By Lemma 23.3 the morphisms Xk → Yk and Yk → Spec(k) are locally quasi-finite.
In particular we see that Yk is a quasi-DM algebraic stack, see Lemma 4.13. By Theorem
21.3 we can find a scheme V and a surjective, flat, locally finitely presented, locally quasi-
finite morphism V → Yk. By Lemma 23.4 we see that V is locally quasi-finite over k, in
particular |V | is discrete. The morphism V ×Yk Xk → Xk is surjective, flat, and locally
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of finite presentation hence |V ×Yk Xk| → |Xk| is surjective and open. Thus it suffices to
show that |V ×Yk Xk| is discrete. Note that V is a disjoint union of spectra of Artinian
local k-algebras Ai with residue fields ki, see Varieties, Lemma 20.2. Thus it suffices to
show that each

|Spec(Ai)×Yk Xk| = | Spec(ki)×Yk Xk| = |Spec(ki)×Y X|

is discrete, which follows from the assumption that X → Y is locally quasi-finite. �

Before we characterize locally quasi-finite morphisms in terms of coverings we do it for
quasi-DM morphisms.

Lemma 23.6. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent

(1) f is quasi-DM,
(2) for any morphism V → Y with V an algebraic space there exists a surjective, flat,

locally finitely presented, locally quasi-finite morphism U → X ×Y V where U
is an algebraic space, and

(3) there exist algebraic spaces U , V and a morphism V → Y which is surjective,
flat, and locally of finite presentation, and a morphism U → X ×Y V which is
surjective, flat, locally of finite presentation, and locally quasi-finite.

Proof. The implication (2)⇒ (3) is immediate.

Assume (1) and let V → Y be as in (2). Then X ×Y V → V is quasi-DM, see Lemma 4.4.
By Lemma 4.3 the algebraic space V is DM, hence quasi-DM. Thus X ×Y V is quasi-DM
by Lemma 4.11. Hence we may apply Theorem 21.3 to get the morphism U → X ×Y V as
in (2).

Assume (3). Let V → Y and U → X ×Y V be as in (3). To prove that f is quasi-DM
it suffices to show that X ×Y V → V is quasi-DM, see Lemma 4.5. By Lemma 4.14 we
see that X ×Y V is quasi-DM. Hence X ×Y V → V is quasi-DM by Lemma 4.13 and (1)
holds. This finishes the proof of the lemma. �

Lemma 23.7. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent

(1) f is locally quasi-finite,
(2) f is quasi-DM and for any morphism V → Y with V an algebraic space and any

locally quasi-finite morphism U → X ×Y V where U is an algebraic space the
morphism U → V is locally quasi-finite,

(3) for any morphism V → Y from an algebraic space V there exists a surjective,
flat, locally finitely presented, and locally quasi-finite morphism U → X ×Y V
where U is an algebraic space such that U → V is locally quasi-finite,

(4) there exists algebraic spaces U , V , a surjective, flat, and locally of finite presenta-
tion morphism V → Y , and a morphism U → X ×Y V which is surjective, flat,
locally of finite presentation, and locally quasi-finite such that U → V is locally
quasi-finite.

Proof. Assume (1). Then f is quasi-DM by assumption. Let V → Y and U →
X ×Y V be as in (2). By Lemma 23.5 the composition U → X ×Y V → V is locally
quasi-finite. Thus (1) implies (2).
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Assume (2). Let V → Y be as in (3). By Lemma 23.6 we can find an algebraic space U and
a surjective, flat, locally finitely presented, locally quasi-finite morphism U → X ×Y V .
By (2) the composition U → V is locally quasi-finite. Thus (2) implies (3).

It is immediate that (3) implies (4).

Assume (4). We will prove (1) holds, which finishes the proof. By Lemma 23.6 we see
that f is quasi-DM. To prove that f is locally of finite type it suffices to prove that g :
X ×Y V → V is locally of finite type, see Lemma 17.6. Then it suffices to check that
g precomposed with h : U → X ×Y V is locally of finite type, see Lemma 17.7. Since
g ◦h : U → V was assumed to be locally quasi-finite this holds, hence f is locally of finite
type. Finally, let k be a field and let Spec(k) → Y be a morphism. Then V ×Y Spec(k)
is a nonempty algebraic space which is locally of finite presentation over k. Hence we can
find a finite extension k′/k and a morphism Spec(k′)→ V such that

Spec(k′) //

��

V

��
Spec(k) // Y

commutes (details omitted). ThenXk′ → Xk is representable (by schemes), surjective, and
finite locally free. In particular |Xk′ | → |Xk| is surjective and open. Thus it suffices to
prove that |Xk′ | is discrete. Since

U ×V Spec(k′) = U ×X ×YV Xk′

we see that U ×V Spec(k′) → Xk′ is surjective, flat, and locally of finite presentation
(as a base change of U → X ×Y V ). Hence |U ×V Spec(k′)| → |Xk′ | is surjective and
open. Thus it suffices to show that |U ×V Spec(k′)| is discrete. This follows from the fact
that U → V is locally quasi-finite (either by our definition above or from the original
definition for morphisms of algebraic spaces, via Morphisms of Spaces, Lemma 27.5). �

Lemma 23.8. Let X → Y → Z be morphisms of algebraic stacks. Assume that
X → Z is locally quasi-finite and Y → Z is quasi-DM. Then X → Y is locally quasi-
finite.

Proof. Write X → Y as the composition

X −→ X ×Z Y −→ Y

The second arrow is locally quasi-finite as a base change of X → Z , see Lemma 23.3. The
first arrow is locally quasi-finite by Lemma 4.8 as Y → Z is quasi-DM. Hence X → Y is
locally quasi-finite by Lemma 23.5. �

24. Quasi-finite morphisms

We have defined “locally quasi-finite” morphisms of algebraic stacks in Section 23 and
“quasi-compact” morphisms of algebraic stacks in Section 7. Since a morphism of alge-
braic spaces is by definition quasi-finite if and only if it is both locally quasi-finite and
quasi-compact (Morphisms of Spaces, Definition 27.1), we may define what it means for a
morphism of algebraic stacks to be quasi-finite as follows and it agrees with the already ex-
isting notion defined in Properties of Stacks, Section 3 when the morphism is representable
by algebraic spaces.
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Definition 24.1. Let f : X → Y be a morphism of algebraic stacks. We say f
is quasi-finite if f is locally quasi-finite (Definition 23.2) and quasi-compact (Definition
7.2).

Lemma 24.2. The composition of quasi-finite morphisms is quasi-finite.

Proof. Combine Lemmas 23.5 and 7.4. �

Lemma 24.3. A base change of a quasi-finite morphism is quasi-finite.

Proof. Combine Lemmas 23.3 and 7.3. �

Lemma 24.4. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks. If
g ◦ f is quasi-finite and g is quasi-separated and quasi-DM then f is quasi-finite.

Proof. Combine Lemmas 23.8 and 7.7. �

25. Flat morphisms

The property “being flat” of morphisms of algebraic spaces is smooth local on the source-
and-target, see Descent on Spaces, Remark 20.5. It is also stable under base change and
fpqc local on the target, see Morphisms of Spaces, Lemma 30.4 and Descent on Spaces,
Lemma 11.13. Hence, by Lemma 16.1 above, we may define what it means for a morphism of
algebraic spaces to be flat as follows and it agrees with the already existing notion defined
in Properties of Stacks, Section 3 when the morphism is representable by algebraic spaces.

Definition 25.1. Let f : X → Y be a morphism of algebraic stacks. We say f is flat
if the equivalent conditions of Lemma 16.1 hold with P = flat.

Lemma 25.2. The composition of flat morphisms is flat.

Proof. Combine Remark 16.3 with Morphisms of Spaces, Lemma 30.3. �

Lemma 25.3. A base change of a flat morphism is flat.

Proof. Combine Remark 16.4 with Morphisms of Spaces, Lemma 30.4. �

Lemma 25.4. Let f : X → Y be a morphism of algebraic stacks. Let Z → Y be a
surjective flat morphism of algebraic stacks. If the base change Z ×Y X → Z is flat, then
f is flat.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z .
Then W → Z is surjective and flat (Morphisms of Spaces, Lemma 37.7) hence W → Y
is surjective and flat (by Properties of Stacks, Lemma 5.2 and Lemma 25.2). Since the base
change of Z ×Y X → Z by W → Z is a flat morphism (Lemma 25.3) we may replace Z
by W .

Choose an algebraic space V and a surjective smooth morphism V → Y . Choose an al-
gebraic space U and a surjective smooth morphism U → V ×Y X . We have to show
that U → V is flat. Now we base change everything by W → Y : Set U ′ = W ×Y U ,
V ′ = W ×Y V , X ′ = W ×Y X , and Y ′ = W ×Y Y = W . Then it is still true that
U ′ → V ′ ×Y′ X ′ is smooth by base change. Hence by our definition of flat morphisms
of algebraic stacks and the assumption that X ′ → Y ′ is flat, we see that U ′ → V ′ is flat.
Then, since V ′ → V is surjective as a base change of W → Y we see that U → V is flat
by Morphisms of Spaces, Lemma 31.3 (2) and we win. �
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Lemma 25.5. Let X → Y → Z be morphisms of algebraic stacks. If X → Z is flat
and X → Y is surjective and flat, then Y → Z is flat.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z .
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y . Choose
an algebraic space U and a surjective smooth morphism U → V ×Y X . We know that
U → V is flat and that U →W is flat. Also, as X → Y is surjective we see that U → V is
surjective (as a composition of surjective morphisms). Hence the lemma reduces to the case
of morphisms of algebraic spaces. The case of morphisms of algebraic spaces is Morphisms
of Spaces, Lemma 31.5. �

Lemma 25.6. Let f : X → Y be a flat morphism of algebraic stacks. Let Spec(A)→
Y be a morphism where A is a valuation ring. If the closed point of Spec(A) maps to a
point of |Y| in the image of |X | → |Y|, then there exists a commutative diagram

Spec(A′) //

��

X

��
Spec(A) // Y

where A→ A′ is an extension of valuation rings (More on Algebra, Definition 123.1).

Proof. The base change XA → Spec(A) is flat (Lemma 25.3) and the closed point of
Spec(A) is in the image of |XA| → | Spec(A)| (Properties of Stacks, Lemma 4.3). Thus
we may assume Y = Spec(A). Let U → X be a surjective smooth morphism where
U is a scheme. Then we can apply Morphisms of Spaces, Lemma 42.4 to the morphism
U → Spec(A) to conclude. �

26. Flat at a point

We still have to develop the general machinery needed to say what it means for a morphism
of algebraic stacks to have a given property at a point. For the moment the following
lemma is sufficient.

Lemma 26.1. Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |.
Consider commutative diagrams

U

a

��

h
// V

b

��
X

f // Y

with points

u ∈ |U |

��
x ∈ |X |

where U and V are algebraic spaces, b is flat, and (a, h) : U → X ×Y V is flat. The
following are equivalent

(1) h is flat at u for one diagram as above,
(2) h is flat at u for every diagram as above.

Proof. Suppose we are given a second diagram U ′, V ′, u′, a′, b′, h′ as in the lemma.
Then we can consider

U

��

U ×X U ′oo

��

// U ′

��
V V ×Y V ′oo // V ′
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By Properties of Stacks, Lemma 4.3 there is a point u′′ ∈ |U ×X U ′|mapping to u and u′.
If h is flat at u, then the base change U ×V (V ×Y V ′) → V ×Y V ′ is flat at any point
over u, see Morphisms of Spaces, Lemma 31.3. On the other hand, the morphism

U ×X U ′ → U ×X (X ×Y V ′) = U ×Y V ′ = U ×V (V ×Y V ′)

is flat as a base change of (a′, h′), see Lemma 25.3. Composing and using Morphisms of
Spaces, Lemma 31.4 we conclude that U ×X U ′ → V ×Y V

′ is flat at u′′. Then we can use
composition by the flat map V ×Y V

′ → V ′ to conclude that U ×X U ′ → V ′ is flat at u′′.
Finally, since U ×X U ′ → U ′ is flat at u′′ and u′′ maps to u′ we conclude that U ′ → V ′

is flat at u′ by Morphisms of Spaces, Lemma 31.5. �

Definition 26.2. Let f : X → Y be a morphism of algebraic stacks. Let x ∈ |X |.
We say f is flat at x if the equivalent conditions of Lemma 26.1 hold.

27. Morphisms of finite presentation

The property “locally of finite presentation” of morphisms of algebraic spaces is smooth
local on the source-and-target, see Descent on Spaces, Remark 20.5. It is also stable under
base change and fpqc local on the target, see Morphisms of Spaces, Lemma 28.3 and De-
scent on Spaces, Lemma 11.10. Hence, by Lemma 16.1 above, we may define what it means
for a morphism of algebraic stacks to be locally of finite presentation as follows and it
agrees with the already existing notion defined in Properties of Stacks, Section 3 when the
morphism is representable by algebraic spaces.

Definition 27.1. Let f : X → Y be a morphism of algebraic stacks.
(1) We say f locally of finite presentation if the equivalent conditions of Lemma

16.1 hold with P = locally of finite presentation.
(2) We say f is of finite presentation if it is locally of finite presentation, quasi-

compact, and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism which
is locally of finite presentation.

Lemma 27.2. The composition of finitely presented morphisms is of finite presenta-
tion. The same holds for morphisms which are locally of finite presentation.

Proof. Combine Remark 16.3 with Morphisms of Spaces, Lemma 28.2. �

Lemma 27.3. A base change of a finitely presented morphism is of finite presentation.
The same holds for morphisms which are locally of finite presentation.

Proof. Combine Remark 16.4 with Morphisms of Spaces, Lemma 28.3. �

Lemma 27.4. A morphism which is locally of finite presentation is locally of finite
type. A morphism of finite presentation is of finite type.

Proof. Combine Remark 16.5 with Morphisms of Spaces, Lemma 28.5. �

Lemma 27.5. Let f : X → Y be a morphism of algebraic stacks.
(1) If Y is locally Noetherian and f locally of finite type then f is locally of finite

presentation.
(2) If Y is locally Noetherian and f of finite type and quasi-separated then f is of

finite presentation.
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Proof. Assume f : X → Y locally of finite type and Y locally Noetherian. This
means there exists a diagram as in Lemma 16.1 with h locally of finite type and surjective
vertical arrow a. By Morphisms of Spaces, Lemma 28.7 h is locally of finite presentation.
Hence X → Y is locally of finite presentation by definition. This proves (1). If f is of
finite type and quasi-separated then it is also quasi-compact and quasi-separated and (2)
follows immediately. �

Lemma 27.6. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks If
g◦f is locally of finite presentation and g is locally of finite type, then f is locally of finite
presentation.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z .
Choose an algebraic space V and a surjective smooth morphism V → Y ×Z W . Choose
an algebraic spaceU and a surjective smooth morphismU → X×Y V . The lemma follows
upon applying Morphisms of Spaces, Lemma 28.9 to the morphisms U → V →W . �

Lemma 27.7. Let f : X → Y be a morphism of algebraic stacks with diagonal ∆ :
X → X ×Y X . If f is locally of finite type then ∆ is locally of finite presentation. If f is
quasi-separated and locally of finite type, then ∆ is of finite presentation.

Proof. Note that ∆ is a morphism over X (via the second projection). If f is locally
of finite type, then X is of finite presentation over X and pr2 : X ×Y X → X is locally
of finite type by Lemma 17.3. Thus the first statement holds by Lemma 27.6. The second
statement follows from the first and the definitions (because f being quasi-separated means
by definition that ∆f is quasi-compact and quasi-separated). �

Lemma 27.8. An open immersion is locally of finite presentation.

Proof. In view of Properties of Stacks, Definition 9.1 this follows from Morphisms
of Spaces, Lemma 28.11. �

Lemma 27.9. LetP be a property of morphisms of algebraic spaces which is fppf local
on the target and preserved by arbitrary base change. Let f : X → Y be a morphism of
algebraic stacks representable by algebraic spaces. Let Z → Y be a morphism of algebraic
stacks which is surjective, flat, and locally of finite presentation. SetW = Z ×Y X . Then

(f has P )⇔ (the projectionW → Z has P ).
For the meaning of this statement see Properties of Stacks, Section 3.

Proof. Choose an algebraic space W and a morphism W → Z which is surjective,
flat, and locally of finite presentation. By Properties of Stacks, Lemma 5.2 and Lemmas 25.2
and 27.2 the compositionW → Y is also surjective, flat, and locally of finite presentation.
Denote V = W ×Z W = V ×Y X . By Properties of Stacks, Lemma 3.3 we see that f has
P if and only if V → W does and thatW → Z has P if and only if V → W does. The
lemma follows. �

Lemma 27.10. Let P be a property of morphisms of algebraic spaces which is smooth
local on the source-and-target and fppf local on the target. Let f : X → Y be a morphism
of algebraic stacks. Let Z → Y be a surjective, flat, locally finitely presented morphism of
algebraic stacks. If the base change Z ×Y X → Z has P , then f has P .

Proof. Assume Z ×Y X → Z has P . Choose an algebraic space W and a surjective
smooth morphism W → Z . Observe that W ×Z Z ×Y X = W ×Y X . Thus by the very
definition of what it means for Z ×Y X → Z to have P (see Definition 16.2 and Lemma
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16.1) we see thatW ×Y X →W has P . On the other hand,W → Z is surjective, flat, and
locally of finite presentation (Morphisms of Spaces, Lemmas 37.7 and 37.5) henceW → Y
is surjective, flat, and locally of finite presentation (by Properties of Stacks, Lemma 5.2 and
Lemmas 25.2 and 27.2). Thus we may replace Z by W .

Choose an algebraic space V and a surjective smooth morphism V → Y . Choose an al-
gebraic space U and a surjective smooth morphism U → V ×Y X . We have to show
that U → V has P . Now we base change everything by W → Y : Set U ′ = W ×Y U ,
V ′ = W ×Y V , X ′ = W ×Y X , and Y ′ = W ×Y Y = W . Then it is still true that
U ′ → V ′×Y′ X ′ is smooth by base change. Hence by Lemma 16.1 used in the definition of
X ′ → Y ′ = W having P we see that U ′ → V ′ has P . Then, since V ′ → V is surjective,
flat, and locally of finite presentation as a base change of W → Y we see that U → V has
P as P is local in the fppf topology on the target. �

Lemma 27.11. Let f : X → Y be a morphism of algebraic stacks. Let Z → Y be a
surjective, flat, locally finitely presented morphism of algebraic stacks. If the base change
Z ×Y X → Z is locally of finite presentation, then f is locally of finite presentation.

Proof. The property “locally of finite presentation” satisfies the conditions of Lemma
27.10. Smooth local on the source-and-target we have seen in the introduction to this
section and fppf local on the target is Descent on Spaces, Lemma 11.10. �

Lemma 27.12. Let X → Y → Z be morphisms of algebraic stacks. If X → Z is lo-
cally of finite presentation andX → Y is surjective, flat, and locally of finite presentation,
then Y → Z is locally of finite presentation.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z .
Choose an algebraic space V and a surjective smooth morphism V →W ×Z Y . Choose an
algebraic spaceU and a surjective smooth morphismU → V ×YX . We know thatU → V
is flat and locally of finite presentation and that U → W is locally of finite presentation.
Also, asX → Y is surjective we see thatU → V is surjective (as a composition of surjective
morphisms). Hence the lemma reduces to the case of morphisms of algebraic spaces. The
case of morphisms of algebraic spaces is Descent on Spaces, Lemma 16.1. �

Lemma 27.13. Let f : X → Y be a morphism of algebraic stacks which is surjective,
flat, and locally of finite presentation. Then for every scheme U and object y of Y over U
there exists an fppf covering {Ui → U} and objectsxi ofX overUi such that f(xi) ∼= y|Ui
in YUi .

Proof. We may think of y as a morphism U → Y . By Properties of Stacks, Lemma
5.3 and Lemmas 27.3 and 25.3 we see that X ×Y U → U is surjective, flat, and locally of
finite presentation. Let V be a scheme and let V → X ×Y U smooth and surjective. Then
V → X ×Y U is also surjective, flat, and locally of finite presentation (see Morphisms
of Spaces, Lemmas 37.7 and 37.5). Hence also V → U is surjective, flat, and locally of
finite presentation, see Properties of Stacks, Lemma 5.2 and Lemmas 27.2, and 25.2. Hence
{V → U} is the desired fppf covering and x : V → X is the desired object. �

Lemma 27.14. Let fj : Xj → X , j ∈ J be a family of morphisms of algebraic stacks
which are each flat and locally of finite presentation and which are jointly surjective, i.e.,
|X | =

⋃
|fj |(|Xj |). Then for every scheme U and object x of X over U there exists an

fppf covering {Ui → U}i∈I , a map a : I → J , and objects xi of Xa(i) over Ui such that
fa(i)(xi) ∼= y|Ui in XUi .
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Proof. Apply Lemma 27.13 to the morphism
∐
j∈J Xj → X . (There is a slight set

theoretic issue here – due to our setup of things – which we ignore.) To finish, note that
a morphism xi : Ui →

∐
j∈J Xj is given by a disjoint union decomposition Ui =

∐
Ui,j

and morphisms Ui,j → Xj . Then the fppf covering {Ui,j → U} and the morphisms
Ui,j → Xj do the job. �

Lemma 27.15. Let f : X → Y be flat and locally of finite presentation. Then |f | :
|X | → |Y| is open.

Proof. Choose a scheme V and a smooth surjective morphism V → Y . Choose a
schemeU and a smooth surjective morphismU → V ×YX . By assumption the morphism
of schemes U → V is flat and locally of finite presentation. Hence U → V is open by
Morphisms, Lemma 25.10. By construction of the topology on |Y| the map |V | → |Y| is
open. The map |U | → |X | is surjective. The result follows from these facts by elementary
topology. �

Lemma 27.16. Let f : X → Y be a morphism of algebraic stacks. Let Z → Y be a
surjective, flat, locally finitely presented morphism of algebraic stacks. If the base change
Z ×Y X → Z is quasi-compact, then f is quasi-compact.

Proof. We have to show that givenY ′ → Y withY ′ quasi-compact, we haveY ′×YX
is quasi-compact. Denote Z ′ = Z ×Y Y ′. Then |Z ′| → |Y ′| is open, see Lemma 27.15.
Hence we can find a quasi-compact open substack W ⊂ Z ′ mapping onto Y ′. Because
Z ×Y X → Z is quasi-compact, we know that

W ×Z Z ×Y X =W ×Y X
is quasi-compact. And the mapW ×Y X → Y ′ ×Y X is surjective, hence we win. Some
details omitted. �

Lemma 27.17. Let f : X → Y , g : Y → Z be composable morphisms of algebraic
stacks with composition h = g ◦ f : X → Z . If f is surjective, flat, locally of finite
presentation, and universally injective and if h is separated, then g is separated.

Proof. Consider the diagram

X
∆
//

##

X ×Y X //

��

X ×Z X

��
Y // Y ×Z Y

The square is cartesian. We have to show the bottom horizontal arrow is proper. We
already know that it is representable by algebraic spaces and locally of finite type (Lemma
3.3). Since the right vertical arrow is surjective, flat, and locally of finite presentation it
suffices to show the top right horizontal arrow is proper (Lemma 27.9). Sinceh is separated,
the composition of the top horizontal arrows is proper.
Since f is universally injective ∆ is surjective (Lemma 14.5). Since the composition of ∆
with the projection X ×Y X → X is the identity, we see that ∆ is universally closed. By
Morphisms of Spaces, Lemma 9.8 we conclude that X ×Y X → X ×Z X is separated as
X → X×ZX is separated. Here we use that implications between properties of morphisms
of algebraic spaces can be transferred to the same implications between properties of mor-
phisms of algebraic stacks representable by algebraic spaces; this is discussed in Properties
of Stacks, Section 3. Finally, we use the same principle to conlude thatX×YX → X×ZX
is proper from Morphisms of Spaces, Lemma 40.7. �



28. GERBES 6865

28. Gerbes

An important type of algebraic stack are the stacks of the form [B/G] where B is an
algebraic space and G is a flat and locally finitely presented group algebraic space over B
(acting trivially on B), see Criteria for Representability, Lemma 18.3. It turns out that an
algebraic stack is a gerbe when it locally in the fppf topology is of this form, see Lemma
28.7. In this section we briefly discuss this notion and the corresponding relative notion.

Definition 28.1. Let f : X → Y be a morphism of algebraic stacks. We say X is a
gerbe over Y if X is a gerbe over Y as stacks in groupoids over (Sch/S)fppf , see Stacks,
Definition 11.4. We say an algebraic stack X is a gerbe if there exists a morphism X → X
where X is an algebraic space which turns X into a gerbe over X .

The condition that X be a gerbe over Y is defined purely in terms of the topology and
category theory underlying the given algebraic stacks; but as we will see later this condi-
tion has geometric consequences. For example it implies that X → Y is surjective, flat,
and locally of finite presentation, see Lemma 28.8. The absolute notion is trickier to parse,
because it may not be at first clear that X is well determined. Actually, it is.

Lemma 28.2. Let X be an algebraic stack. If X is a gerbe, then the sheafification of
the presheaf

(Sch/S)oppfppf → Sets, U 7→ Ob(XU )/∼=
is an algebraic space and X is a gerbe over it.

Proof. (In this proof the abuse of language introduced in Section 2 really pays off.)
Choose a morphism π : X → X whereX is an algebraic space which turnsX into a gerbe
over X . It suffices to prove that X is the sheafification of the presheaf F displayed in the
lemma. It is clear that there is a map c : F → X . We will use Stacks, Lemma 11.3 properties
(2)(a) and (2)(b) to see that the map c# : F# → X is surjective and injective, hence an
isomorphism, see Sites, Lemma 11.2. Surjective: Let T be a scheme and let f : T → X . By
property (2)(a) there exists an fppf covering {hi : Ti → T} and morphisms xi : Ti → X
such that f ◦hi corresponds to π◦xi. Hence we see that f |Ti is in the image of c. Injective:
Let T be a scheme and let x, y : T → X be morphisms such that c ◦ x = c ◦ y. By (2)(b)
we can find a covering {Ti → T} and morphisms x|Ti → y|Ti in the fibre category XTi .
Hence the restrictions x|Ti , y|Ti are equal in F(Ti). This proves that x, y give the same
section of F# over T as desired. �

Lemma 28.3. Let
X ′ //

��

X

��
Y ′ // Y

be a fibre product of algebraic stacks. If X is a gerbe over Y , then X ′ is a gerbe over Y ′.

Proof. Immediate from the definitions and Stacks, Lemma 11.5. �

Lemma 28.4. Let X → Y and Y → Z be morphisms of algebraic stacks. If X is a
gerbe over Y and Y is a gerbe over Z , then X is a gerbe over Z .

Proof. Immediate from Stacks, Lemma 11.6. �
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Lemma 28.5. Let
X ′ //

��

X

��
Y ′ // Y

be a fibre product of algebraic stacks. If Y ′ → Y is surjective, flat, and locally of finite
presentation and X ′ is a gerbe over Y ′, then X is a gerbe over Y .

Proof. Follows immediately from Lemma 27.13 and Stacks, Lemma 11.7. �

Lemma 28.6. Let π : X → U be a morphism from an algebraic stack to an algebraic
space and let x : U → X be a section of π. Set G = IsomX (x, x), see Definition 5.3. If X
is a gerbe over U , then

(1) there is a canonical equivalence of stacks in groupoids

xcan : [U/G] −→ X .

where [U/G] is the quotient stack for the trivial action of G on U ,
(2) G→ U is flat and locally of finite presentation, and
(3) U → X is surjective, flat, and locally of finite presentation.

Proof. Set R = U ×x,X ,x U . The morphism R → U × U factors through the
diagonal ∆U : U → U × U as it factors through U ×U U = U . Hence R = G because

G = IsomX (x, x)
= U ×x,X IX

= U ×x,X (X ×∆,X ×SX ,∆ X )
= (U ×x,X ,x U)×U×U,∆U

U

= R×U×U,∆U
U

= R

for the fourth equality use Categories, Lemma 31.12. Let t, s : R → U be the projections.
The composition law c : R ×s,U,t R → R constructed on R in Algebraic Stacks, Lemma
16.1 agrees with the group law on G (proof omitted). Thus Algebraic Stacks, Lemma 16.1
shows we obtain a canonical fully faithful 1-morphism

xcan : [U/G] −→ X

of stacks in groupoids over (Sch/S)fppf . To see that it is an equivalence it suffices to
show that it is essentially surjective. To do this it suffices to show that any object of X
over a scheme T comes fppf locally from x via a morphism T → U , see Stacks, Lemma
4.8. However, this follows the condition that π turns X into a gerbe over U , see property
(2)(a) of Stacks, Lemma 11.3.

By Criteria for Representability, Lemma 18.3 we conclude that G→ U is flat and locally
of finite presentation. Finally, U → X is surjective, flat, and locally of finite presentation
by Criteria for Representability, Lemma 17.1. �

Lemma 28.7. Let π : X → Y be a morphism of algebraic stacks. The following are
equivalent

(1) X is a gerbe over Y , and
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(2) there exists an algebraic space U , a group algebraic space G flat and locally of
finite presentation over U , and a surjective, flat, and locally finitely presented
morphism U → Y such that X ×Y U ∼= [U/G] over U .

Proof. Assume (2). By Lemma 28.5 to prove (1) it suffices to show that [U/G] is a
gerbe over U . This is immediate from Groupoids in Spaces, Lemma 27.2.

Assume (1). Any base change of π is a gerbe, see Lemma 28.3. As a first step we choose
a scheme V and a surjective smooth morphism V → Y . Thus we may assume that π :
X → V is a gerbe over a scheme. This means that there exists an fppf covering {Vi → V }
such that the fibre category XVi is nonempty, see Stacks, Lemma 11.3 (2)(a). Note that
U =

∐
Vi → V is surjective, flat, and locally of finite presentation. Hence we may

replace V by U and assume that π : X → U is a gerbe over a scheme U and that there
exists an object x of X over U . By Lemma 28.6 we see that X = [U/G] over U for some
flat and locally finitely presented group algebraic space G over U . �

Lemma 28.8. Let π : X → Y be a morphism of algebraic stacks. If X is a gerbe over
Y , then π is surjective, flat, and locally of finite presentation.

Proof. By Properties of Stacks, Lemma 5.4 and Lemmas 25.4 and 27.11 it suffices to
prove to the lemma after replacing π by a base change with a surjective, flat, locally finitely
presented morphism Y ′ → Y . By Lemma 28.7 we may assume Y = U is an algebraic
space and X = [U/G] over U . Then U → [U/G] is surjective, flat, and locally of finite
presentation, see Lemma 28.6. This implies that π is surjective, flat, and locally of finite
presentation by Properties of Stacks, Lemma 5.5 and Lemmas 25.5 and 27.12. �

Proposition 28.9. Let X be an algebraic stack. The following are equivalent
(1) X is a gerbe, and
(2) IX → X is flat and locally of finite presentation.

Proof. Assume (1). Choose a morphism X → X into an algebraic space X which
turns X into a gerbe over X . Let X ′ → X be a surjective, flat, locally finitely presented
morphism and set X ′ = X ′×X X . Note that X ′ is a gerbe over X ′ by Lemma 28.3. Then
both squares in

IX ′ //

��

X ′ //

��

X ′

��
IX // X // X

are fibre product squares, see Lemma 5.5. Hence to prove IX → X is flat and locally of
finite presentation it suffices to do so after such a base change by Lemmas 25.4 and 27.11.
Thus we can apply Lemma 28.7 to assume thatX = [U/G]. By Lemma 28.6 we seeG is flat
and locally of finite presentation over U and that x : U → [U/G] is surjective, flat, and
locally of finite presentation. Moreover, the pullback of IX by x is G and we conclude
that (2) holds by descent again, i.e., by Lemmas 25.4 and 27.11.

Conversely, assume (2). Choose a smooth presentation X = [U/R], see Algebraic Stacks,
Section 16. DenoteG→ U the stabilizer group algebraic space of the groupoid (U,R, s, t, c, e, i),
see Groupoids in Spaces, Definition 16.2. By Lemma 5.7 we see that G → U is flat and
locally of finite presentation as a base change of IX → X , see Lemmas 25.3 and 27.3.
Consider the following action

a : G×U,t R→ R, (g, r) 7→ c(g, r)
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of G on R. This action is free on T -valued points for any scheme T as R is a groupoid.
Hence R′ = R/G is an algebraic space and the quotient morphism π : R → R′ is sur-
jective, flat, and locally of finite presentation by Bootstrap, Lemma 11.7. The projections
s, t : R → U are G-invariant, hence we obtain morphisms s′, t′ : R′ → U such that
s = s′ ◦ π and t = t′ ◦ π. Since s, t : R → U are flat and locally of finite presentation
we conclude that s′, t′ are flat and locally of finite presentation, see Morphisms of Spaces,
Lemmas 31.5 and Descent on Spaces, Lemma 16.1. Consider the morphism

j′ = (t′, s′) : R′ −→ U × U.
We claim this is a monomorphism. Namely, suppose that T is a scheme and that a, b : T →
R′ are morphisms which have the same image in U × U . By definition of the quotient
R′ = R/G there exists an fppf covering {hj : Tj → T} such that a ◦ hj = π ◦ aj and
b ◦ hj = π ◦ bj for some morphisms aj , bj : Tj → R. Since aj , bj have the same image in
U ×U we see that gj = c(aj , i(bj)) is a Tj-valued point of G such that c(gj , bj) = aj . In
other words, aj and bj have the same image in R′ and the claim is proved. Since j : R→
U × U is a pre-equivalence relation (see Groupoids in Spaces, Lemma 11.2) and R → R′

is surjective (as a map of sheaves) we see that j′ : R′ → U × U is an equivalence relation.
Hence Bootstrap, Theorem 10.1 shows that X = U/R′ is an algebraic space. Finally, we
claim that the morphism

X = [U/R] −→ X = U/R′

turns X into a gerbe overX . This follows from Groupoids in Spaces, Lemma 27.1 asR→
R′ is surjective, flat, and locally of finite presentation (if needed use Bootstrap, Lemma 4.6
to see this implies the required hypothesis). �

Lemma 28.10. Let f : X → Y be a morphism of algebraic stacks which makes X a
gerbe over Y . Then

(1) IX/Y → X is flat and locally of finite presentation,
(2) X → X ×Y X is surjective, flat, and locally of finite presentation,
(3) given algebraic spaces Ti, i = 1, 2 and morphisms xi : Ti → X , with yi = f ◦xi

the morphism

T1 ×x1,X ,x2 T2 −→ T1 ×y1,Y,y2 T2

is surjective, flat, and locally of finite presentation,
(4) given an algebraic space T and morphisms xi : T → X , i = 1, 2, with yi = f ◦xi

the morphism

IsomX (x1, x2) −→ IsomY(y1, y2)
is surjective, flat, and locally of finite presentation.

Proof. Proof of (1). Choose a scheme Y and a surjective smooth morphism Y → Y .
Set X ′ = X ×Y Y . By Lemma 5.5 we obtain cartesian squares

IX ′ //

��

X ′ //

��

Y

��
IX/Y // X // Y

By Lemmas 25.4 and 27.11 it suffices to prove that IX ′ → X ′ is flat and locally of finite
presentation. This follows from Proposition 28.9 (becauseX ′ is a gerbe over Y by Lemma
28.3).
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Proof of (2). With notation as above, note that we may assume that X ′ = [Y/G] for some
group algebraic spaceG flat and locally of finite presentation over Y , see Lemma 28.7. The
base change of the morphism ∆ : X → X ×Y X over Y by the morphism Y → Y is the
morphism ∆′ : X ′ → X ′ ×Y X ′. Hence it suffices to show that ∆′ is surjective, flat, and
locally of finite presentation (see Lemmas 25.4 and 27.11). In other words, we have to show
that

[Y/G] −→ [Y/G×Y G]
is surjective, flat, and locally of finite presentation. This is true because the base change by
the surjective, flat, locally finitely presented morphism Y → [Y/G×Y G] is the morphism
G→ Y .

Proof of (3). Observe that the diagram

T1 ×x1,X ,x2 T2

��

// T1 ×y1,Y,y2 T2

��
X // X ×Y X

is cartesian. Hence (3) follows from (2).

Proof of (4). This is true because

IsomX (x1, x2) = (T ×x1,X ,x2 T )×T×T,∆T
T

hence the morphism in (4) is a base change of the morphism in (3). �

Proposition 28.11. Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) X is a gerbe over Y , and
(2) f : X → Y and ∆ : X → X ×Y X are surjective, flat, and locally of finite

presentation.

Proof. The implication (1)⇒ (2) follows from Lemmas 28.8 and 28.10.

Assume (2). It suffices to prove (1) for the base change of f by a surjective, flat, and locally
finitely presented morphism Y ′ → Y , see Lemma 28.5 (note that the base change of the
diagonal of f is the diagonal of the base change). Thus we may assumeY is a scheme Y . In
this case IX → X is a base change of ∆ and we conclude that X is a gerbe by Proposition
28.9. We still have to show that X is a gerbe over Y . Let X → X be the morphism of
Lemma 28.2 turning X into a gerbe over the algebraic space X classifying isomorphism
classes of objects of X . It is clear that f : X → Y factors as X → X → Y . Since f is
surjective, flat, and locally of finite presentation, we conclude that X → Y is surjective
as a map of fppf sheaves (for example use Lemma 27.13). On the other hand, X → Y is
injective too: for any scheme T and any two T -valued points x1, x2 of X which map to
the same point of Y , we can first fppf locally on T lift x1, x2 to objects ξ1, ξ2 of X over
T and second deduce that ξ1 and ξ2 are fppf locally isomorphic by our assumption that
∆ : X → X ×Y X is surjective, flat, and locally of finite presentation. Whence x1 = x2
by construction of X . Thus X = Y and the proof is complete. �

At this point we have developed enough machinery to prove that residual gerbes (when
they exist) are gerbes.
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Lemma 28.12. Let Z be a reduced, locally Noetherian algebraic stack such that |Z| is
a singleton. Then Z is a gerbe over a reduced, locally Noetherian algebraic space Z with
|Z| a singleton.

Proof. By Properties of Stacks, Lemma 11.3 there exists a surjective, flat, locally
finitely presented morphism Spec(k) → Z where k is a field. Then IZ ×Z Spec(k) →
Spec(k) is representable by algebraic spaces and locally of finite type (as a base change
of IZ → Z , see Lemmas 5.1 and 17.3). Therefore it is locally of finite presentation, see
Morphisms of Spaces, Lemma 28.7. Of course it is also flat as k is a field. Hence we may
apply Lemmas 25.4 and 27.11 to see that IZ → Z is flat and locally of finite presentation.
We conclude that Z is a gerbe by Proposition 28.9. Let π : Z → Z be a morphism to an
algebraic space such thatZ is a gerbe overZ. Then π is surjective, flat, and locally of finite
presentation by Lemma 28.8. Hence Spec(k) → Z is surjective, flat, and locally of finite
presentation as a composition, see Properties of Stacks, Lemma 5.2 and Lemmas 25.2 and
27.2. Hence by Properties of Stacks, Lemma 11.3 we see that |Z| is a singleton and that Z
is locally Noetherian and reduced. �

Lemma 28.13. Let f : X → Y be a morphism of algebraic stacks. If X is a gerbe over
Y then f is a universal homeomorphism.

Proof. By Lemma 28.3 the assumption on f is preserved under base change. Hence
it suffices to show that the map |X | → |Y| is a homeomorphism of topological spaces.
Let k be a field and let y be an object of Y over Spec(k). By Stacks, Lemma 11.3 property
(2)(a) there exists an fppf covering {Ti → Spec(k)} and objects xi of X over Ti with
f(xi) ∼= y|Ti . Choose an i such that Ti 6= ∅. Choose a morphism Spec(K) → Ti for
some field K. Then k ⊂ K and xi|K is an object of X lying over y|K . Thus we see that
|Y| → |X |. is surjective. The map |Y| → |X | is also injective. Namely, if x, x′ are objects
of X over Spec(k) whose images f(x), f(x′) become isomorphic (over an extension) in
Y , then Stacks, Lemma 11.3 property (2)(b) guarantees the existence of an extension of k
over which x and x′ become isomorphic (details omitted). Hence |X | → |Y| is continuous
and bijective and it suffices to show that it is also open. This follows from Lemmas 28.8
and 27.15. �

Lemma 28.14. Let f : X → Y be a morphism of algebraic stacks such that X is a
gerbe over Y . If ∆X is quasi-compact, so is ∆Y .

Proof. Consider the diagram

X // X ×Y X //

��

X × X

��
Y // Y × Y

By Proposition 28.11 we find that the arrow on the top left is surjective. Since the compo-
sition of the top horizontal arrows is quasi-compact, we conclude that the top right arrow
is quasi-compact by Lemma 7.6. The square is cartesian and the right vertical arrow is
surjective, flat, and locally of finite presentation. Thus we conclude by Lemma 27.16. �

The following lemma tells us that residual gerbes exist for all points on any algebraic stack
which is a gerbe.

Lemma 28.15. Let X be an algebraic stack. If X is a gerbe then for every x ∈ |X | the
residual gerbe of X at x exists.
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Proof. Let π : X → X be a morphism from X into an algebraic space X which
turns X into a gerbe over X . Let Zx → X be the residual space of X at x, see Decent
Spaces, Definition 13.6. Let Z = X ×X Zx. By Lemma 28.3 the algebraic stack Z is a
gerbe over Zx. Hence |Z| = |Zx| (Lemma 28.13) is a singleton. Since Z → Zx is locally
of finite presentation as a base change of π (see Lemmas 28.8 and 27.3) we see that Z is
locally Noetherian, see Lemma 17.5. Thus the residual gerbe Zx of X at x exists and is
equal to Zx = Zred the reduction of the algebraic stack Z . Namely, we have seen above
that |Zred| is a singleton mapping to x ∈ |X |, it is reduced by construction, and it is locally
Noetherian (as the reduction of a locally Noetherian algebraic stack is locally Noetherian,
details omitted). �

29. Stratification by gerbes

The goal of this section is to show that many algebraic stacks X have a “stratification” by
locally closed substacks Xi ⊂ X such that each Xi is a gerbe. This shows that in some
sense gerbes are the building blocks out of which any algebraic stack is constructed. Note
that by stratification we only mean that

|X | =
⋃

i
|Xi|

is a stratification of the topological space associated to X and nothing more (in this sec-
tion). Hence it is harmless to replace X by its reduction (see Properties of Stacks, Section
10) in order to study this stratification.
The following proposition tells us there is (almost always) a dense open substack of the
reduction of X

Proposition 29.1. Let X be a reduced algebraic stack such that IX → X is quasi-
compact. Then there exists a dense open substack U ⊂ X which is a gerbe.

Proof. According to Proposition 28.9 it is enough to find a dense open substack U
such that IU → U is flat and locally of finite presentation. Note that IU = IX ×X U , see
Lemma 5.5.
Choose a presentation X = [U/R]. Let G → U be the stabilizer group algebraic space of
the groupoid R. By Lemma 5.7 we see that G → U is the base change of IX → X hence
quasi-compact (by assumption) and locally of finite type (by Lemma 5.1). Let W ⊂ U
be the largest open (possibly empty) subscheme such that the restriction GW → W is
flat and locally of finite presentation (we omit the proof that W exists; hint: use that the
properties are local). By Morphisms of Spaces, Proposition 32.1 we see that W ⊂ U is
dense. Note that W ⊂ U is R-invariant by More on Groupoids in Spaces, Lemma 6.2.
Hence W corresponds to an open substack U ⊂ X by Properties of Stacks, Lemma 9.11.
Since |U | → |X | is open and |W | ⊂ |U | is dense we conclude that U is dense inX . Finally,
the morphism IU → U is flat and locally of finite presentation because the base change
by the surjective smooth morphismW → U is the morphismGW →W which is flat and
locally of finite presentation by construction. See Lemmas 25.4 and 27.11. �

The above proposition immediately implies that any point has a residual gerbe on an al-
gebraic stack with quasi-compact inertia, as we will show in Lemma 31.1. It turns out that
there doesn’t always exist a finite stratification by gerbes. Here is an example.

Example 29.2. Let k be a field. Take U = Spec(k[x0, x1, x2, . . .]) and let Gm act by
t(x0, x1, x2, . . .) = (tx0, t

px1, t
p2
x2, . . .) where p is a prime number. Let X = [U/Gm].

This is an algebraic stack. There is a stratification of X by strata
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(1) X0 is where x0 is not zero,
(2) X1 is where x0 is zero but x1 is not zero,
(3) X2 is where x0, x1 are zero, but x2 is not zero,
(4) and so on, and
(5) X∞ is where all the xi are zero.

Each stratum is a gerbe over a scheme with group µpi for Xi and Gm for X∞. The strata
are reduced locally closed substacks. There is no coarser stratification with the same prop-
erties.

Nonetheless, using transfinite induction we can use Proposition 29.1 find possibly infinite
stratifications by gerbes...!

Lemma 29.3. Let X be an algebraic stack such that IX → X is quasi-compact. Then
there exists a well-ordered index set I and for every i ∈ I a reduced locally closed substack
Ui ⊂ X such that

(1) each Ui is a gerbe,
(2) we have |X | =

⋃
i∈I |Ui|,

(3) Ti = |X | \
⋃
i′<i |Ui′ | is closed in |X | for all i ∈ I , and

(4) |Ui| is open in Ti.
We can moreover arrange it so that either (a) |Ui| ⊂ Ti is dense, or (b) Ui is quasi-compact.
In case (a), if we choose Ui as large as possible (see proof for details), then the stratification
is canonical.

Proof. Let T ⊂ |X | be a nonempty closed subset. We are going to find (resp. choose)
for every such T a reduced locally closed substackU(T ) ⊂ X with |U(T )| ⊂ T open dense
(resp. nonempty quasi-compact). Namely, by Properties of Stacks, Lemma 10.1 there exists
a unique reduced closed substack X ′ ⊂ X such that T = |X ′|. Note that IX ′ = IX ×X
X ′ by Lemma 5.6. Hence IX ′ → X ′ is quasi-compact as a base change, see Lemma 7.3.
Therefore Proposition 29.1 implies there exists a dense maximal (see proof proposition)
open substack U ⊂ X ′ which is a gerbe. In case (a) we set U(T ) = U (this is canonical) and
in case (b) we simply choose a nonempty quasi-compact open U(T ) ⊂ U , see Properties of
Stacks, Lemma 4.9 (we can do this for all T simultaneously by the axiom of choice).

Using transfinite recursion we construct for every ordinal α a closed subset Tα ⊂ |X |. For
α = 0 we set T0 = |X |. Given Tα set

Tα+1 = Tα \ |U(Tα)|.

If β is a limit ordinal we set
Tβ =

⋂
α<β

Tα.

We claim that Tα = ∅ for all α large enough. Namely, assume that Tα 6= ∅ for all α. Then
we obtain an injective map from the class of ordinals into the set of subsets of |X | which
is a contradiction.

The claim implies the lemma. Namely, let

I = {α | Uα 6= ∅}.

This is a well-ordered set by the claim. For i = α ∈ I we set Ui = Uα. So Ui is a reduced
locally closed substack and a gerbe, i.e., (1) holds. By construction Ti = Tα if i = α ∈ I ,
hence (3) holds. Also, (4) and (a) or (b) hold by our choice of U(T ) as well. Finally, to see
(2) let x ∈ |X |. There exists a smallest ordinal β with x 6∈ Tβ (because the ordinals are
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well-ordered). In this case β has to be a successor ordinal by the definition of Tβ for limit
ordinals. Hence β = α+ 1 and x ∈ |U(Tα)| and we win. �

Remark 29.4. We can wonder about the order type of the canonical stratifications
which occur as output of the stratifications of type (a) constructed in Lemma 29.3. A
natural guess is that the well-ordered set I has cardinality at most ℵ0. We have no idea if
this is true or false. If you do please email stacks.project@gmail.com.

30. The topological space of an algebraic stack

In this section we apply the previous results to the topological space |X | associated to an
algebraic stack.

Lemma 30.1. Let X be a quasi-compact algebraic stack whose diagonal ∆ is quasi-
compact. Then |X | is a spectral topological space.

Proof. Choose an affine scheme U and a surjective smooth morphism U → X , see
Properties of Stacks, Lemma 6.2. Then |U | → |X | is continuous, open, and surjective, see
Properties of Stacks, Lemma 4.7. Hence the quasi-compact opens of |X | form a basis for
the topology. For W1,W2 ⊂ |X | quasi-compact open, we may choose a quasi-compact
opens V1, V2 of U mapping to W1 and W2. Since ∆ is quasi-compact, we see that

V1 ×X V2 = (V1 × V2)×X ×X ,∆ X
is quasi-compact. Then image of |V1 ×X V2| in |X | is W1 ∩W2 by Properties of Stacks,
Lemma 4.3. Thus W1 ∩W2 is quasi-compact. To finish the proof, it suffices to show that
|X | is sober, see Topology, Definition 23.1.
LetT ⊂ |X | be an irreducible closed subset. We have to showT has a unique generic point.
Let Z ⊂ X be the reduced induced closed substack corresponding to T , see Properties of
Stacks, Definition 10.4. Since Z → X is a closed immersion, we see that ∆Z is quasi-
compact: first show that Z → X × X is quasi-compact as the composition of Z → X
with ∆, then write Z → X ×X as the composition of ∆Z and Z ×Z → X ×X and use
Lemma 7.7 and the fact that Z × Z → X × X is separated. Thus we reduce to the case
discussed in the next paragraph.
Assume X is quasi-compact, ∆ is quasi-compact, X is reduced, and |X | irreducible. We
have to show |X | has a unique generic point. Since IX → X is a base change of ∆, we
see that IX → X is quasi-compact (Lemma 7.3). Thus there exists a dense open substack
U ⊂ X which is a gerbe by Proposition 29.1. In other words, |U| ⊂ |X | is open dense.
Thus we may assume thatX is a gerbe. SayX → X turnsX into a gerbe over the algebraic
space X . Then |X | ∼= |X| by Lemma 28.13. In particular, X is quasi-compact. By Lemma
28.14 we see thatX has quasi-compact diagonal, i.e.,X is a quasi-separated algebraic space.
Then |X| is spectral by Properties of Spaces, Lemma 15.2 which implies what we want is
true. �

Lemma 30.2. LetX be a quasi-compact and quasi-separated algebraic stack. Then |X |
is a spectral topological space.

Proof. This is a special case of Lemma 30.1. �

Lemma 30.3. LetX be an algebraic stack whose diagonal is quasi-compact (for exam-
ple if X is quasi-separated). Then there is an open covering |X | =

⋃
Ui with Ui spectral.

In particular |X | is a sober topological space.

Proof. Immediate consequence of Lemma 30.1. �

mailto:stacks.project@gmail.com
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31. Existence of residual gerbes

The definition of a residual gerbe of a point on an algebraic stack is Properties of Stacks,
Definition 11.8. We have already shown that residual gerbes exist for finite type points
(Lemma 18.7) and for any point of a gerbe (Lemma 28.15). In this section we prove that
residual gerbes exist on many algebraic stacks. First, here is the promised application of
Proposition 29.1.

Lemma 31.1. Let X be an algebraic stack such that IX → X is quasi-compact. Then
the residual gerbe of X at x exists for every x ∈ |X |.

Proof. Let T = {x} ⊂ |X | be the closure of x. By Properties of Stacks, Lemma 10.1
there exists a reduced closed substack X ′ ⊂ X such that T = |X ′|. Note that IX ′ =
IX ×X X ′ by Lemma 5.6. Hence IX ′ → X ′ is quasi-compact as a base change, see Lemma
7.3. Therefore Proposition 29.1 implies there exists a dense open substack U ⊂ X ′ which
is a gerbe. Note that x ∈ |U| because {x} ⊂ T is a dense subset too. Hence a residual
gerbe Zx ⊂ U of U at x exists by Lemma 28.15. It is immediate from the definitions that
Zx → X is a residual gerbe of X at x. �

If the stack is quasi-DM then residual gerbes exist too. In particular, residual gerbes always
exist for Deligne-Mumford stacks.

Lemma 31.2. Let X be a quasi-DM algebraic stack. Then the residual gerbe of X at
x exists for every x ∈ |X |.

Proof. Choose a scheme U and a surjective, flat, locally finite presented, and locally
quasi-finite morphism U → X , see Theorem 21.3. Set R = U ×X U . The projections
s, t : R → U are surjective, flat, locally of finite presentation, and locally quasi-finite
as base changes of the morphism U → X . There is a canonical morphism [U/R] → X
(see Algebraic Stacks, Lemma 16.1) which is an equivalence because U → X is surjective,
flat, and locally of finite presentation, see Algebraic Stacks, Remark 16.3. Thus we may
assume that X = [U/R] where (U,R, s, t, c) is a groupoid in algebraic spaces such that
s, t : R→ U are surjective, flat, locally of finite presentation, and locally quasi-finite. Set

U ′ =
∐

u∈U lying over x
Spec(κ(u)).

The canonical morphism U ′ → U is a monomorphism. Let

R′ = U ′ ×X U ′ = R×(U×U) (U ′ × U ′)
Because U ′ → U is a monomorphism we see that both projections s′, t′ : R′ → U ′ factor
as a monomorphism followed by a locally quasi-finite morphism. Hence, as U ′ is a dis-
joint union of spectra of fields, using Spaces over Fields, Lemma 10.9 we conclude that the
morphisms s′, t′ : R′ → U ′ are locally quasi-finite. Again since U ′ is a disjoint union
of spectra of fields, the morphisms s′, t′ are also flat. Finally, s′, t′ locally quasi-finite im-
plies s′, t′ locally of finite type, hence s′, t′ locally of finite presentation (because U ′ is
a disjoint union of spectra of fields in particular locally Noetherian, so that Morphisms
of Spaces, Lemma 28.7 applies). Hence Z = [U ′/R′] is an algebraic stack by Criteria for
Representability, Theorem 17.2. As R′ is the restriction of R by U ′ → U we see Z → X
is a monomorphism by Groupoids in Spaces, Lemma 25.1 and Properties of Stacks, Lemma
8.4. Since Z → X is a monomorphism we see that |Z| → |X | is injective, see Properties
of Stacks, Lemma 8.5. By Properties of Stacks, Lemma 4.3 we see that

|U ′| = |Z ×X U ′| −→ |Z| ×|X | |U ′|
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is surjective which implies (by our choice of U ′) that |Z| → |X | has image {x}. We
conclude that |Z| is a singleton. Finally, by construction U ′ is locally Noetherian and
reduced, i.e., Z is reduced and locally Noetherian. This means that the essential image of
Z → X is the residual gerbe of X at x, see Properties of Stacks, Lemma 11.12. �

Lemma 31.3. Let X be a locally Noetherian algebraic stack. Then the residual gerbe
of X at x exists for every x ∈ |X |.

Proof. Choose an affine scheme U and a smooth morphism U → X such that x is
in the image of the open continuous map |U | → |X |. We may and do replace X with the
open substack corresponding to the image of |U | → |X |, see Properties of Stacks, Lemma
9.12. Thus we may assume X = [U/R] for a smooth groupoid (U,R, s, t, c) in algebraic
spaces where U is a Noetherian affine scheme, see Algebraic Stacks, Section 16.
Let E ⊂ |U | be the inverse image of {x} ⊂ |X |. Of course E 6= ∅. Since |U | is a
Noetherian topological space, we can choose an element u ∈ E such that {u} ∩E = {u}.
As usual, we think of u = Spec(κ(u)) as the spectrum of its residue field. Let us write

F = u×U,t R = u×X U and R′ = (u× u)×(U×U),(t,s) R = u×X u

Furthermore, denote Z = {u} ⊂ U with the reduced induced scheme structure. Denote
p : F → U the morphism induced by the second projection (using s : R→ U in the first
fibre product description of F ). Then E is the set theoretic image of p. The morphism
R′ → F is a monomorphism which factors through the inverse image p−1(Z) of Z. This
inverse image p−1(Z) ⊂ F is a closed subscheme and the restriction p|p−1(Z) : p−1(Z)→
Z has image set theoretically contained in {u} ⊂ Z by our careful choice of u ∈ E
above. Since u = limW where the limit is over the nonempty affine open subschemes of
the irreducible reduced scheme Z , we conclude that the morphism p|p−1(Z) : p−1(Z) →
Z factors through the morphism u → Z. Clearly this implies that R′ = p−1(Z). In
particular the morphism t′ : R′ → u is locally of finite presentation as the composition
of the closed immersion p−1(Z) → F of locally Noetherian algebraic spaces with the
smooth morphism pr1 : F → u; use Morphisms of Spaces, Lemmas 23.5, 28.12, and 28.2.
Hence the restriction (u,R′, s′, t′, c′) of (U,R, s, t, c) by u→ U is a groupoid in algebraic
spaces where s′ and t′ are flat and locally of finite presentation. Therefore Z = [u/R′] is
an algebraic stack by Criteria for Representability, Theorem 17.2. As R′ is the restriction
of R by u → U we see Z → X is a monomorphism by Groupoids in Spaces, Lemma 25.1
and Properties of Stacks, Lemma 8.4. Then Z is (isomorphic to) the residual gerbe by the
material in Properties of Stacks, Section 11. �

32. Étale local structure

In this section we start discussing what we can say about the étale local structure of an
algebraic stack.

Lemma 32.1. Let Y be an algebraic space. Let (U,R, s, t, c) be a groupoid in algebraic
spaces over Y . Assume U → Y is flat and locally of finite presentation andR→ U ×Y U
an open immersion. Then X = [U/R] = U/R is an algebraic space and X → Y is étale.

Proof. The quotient stack [U/R] is an algebraic stacks by Criteria for Representabil-
ity, Theorem 17.2. On the other hand, since R → U × U is a monomorphism, it is an
algebraic space (by our abuse of language and Algebraic Stacks, Proposition 13.3) and of
course it is equal to the algebraic spaceU/R (of Bootstrap, Theorem 10.1). SinceU → X is
surjective, flat, and locally of finite presenation (Bootstrap, Lemma 11.6) we conclude that
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X → Y is flat and locally of finite presentation by Morphisms of Spaces, Lemma 31.5 and
Descent on Spaces, Lemma 8.2. Finally, consider the cartesian diagram

R

��

// U ×Y U

��
X // X ×Y X

Since the right vertical arrow is surjective, flat, and locally of finite presentation (small
detail omitted), we find that X → X ×Y X is an open immersion as the top horizonal
arrow has this property by assumption (use Properties of Stacks, Lemma 3.3). Thus X →
Y is unramified by Morphisms of Spaces, Lemma 38.9. We conclude by Morphisms of
Spaces, Lemma 39.12. �

Lemma 32.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid in algebraic spaces
over S. Assume s, t are flat and locally of finite presentation. Let P ⊂ R be an open
subspace such that (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over S.
Then

[U/P ] −→ [U/R]
is a morphism of algebraic stacks which is representable by algebraic spaces, surjective, and
étale.

Proof. Since P ⊂ R is open, we see that s|P and t|P are flat and locally of finite
presentation. Thus [U/R] and [U/P ] are algebraic stacks by Criteria for Representability,
Theorem 17.2. To see that the morphism is representable by algebraic spaces, it suffices
to show that [U/P ] → [U/R] is faithful on fibre categories, see Algebraic Stacks, Lemma
15.2. This follows immediately from the fact that P → R is a monomorphism and the
explicit description of quotient stacks given in Groupoids in Spaces, Lemma 24.1. Hav-
ing said this, we know what it means for [U/P ] → [U/R] to be surjective and étale by
Algebraic Stacks, Definition 10.1. Surjectivity follows for example from Criteria for Rep-
resentability, Lemma 7.3 and the description of objects of quotient stacks (see lemma cited
above) over spectra of fields. It remains to prove that our morphism is étale.

To do this it suffices to show that U ×[U/R] [U/P ] → U is étale, see Properties of Stacks,
Lemma 3.3. By Groupoids in Spaces, Lemma 21.2 the fibre product is equal to [R/P ×s,U,t
R] with morphism to U induced by s : R → U . The maps s′, t′ : P ×s,U,t R → R are
given by s′ : (p, r) 7→ r and t′ : (p, r) 7→ c(p, r). Since P ⊂ R is open we conclude that
(t′, s′) : P ×s,U,tR→ R×s,U,sR is an open immersion. Thus we may apply Lemma 32.1
to conclude. �

Lemma 32.3. Let X be an algebraic stack. Assume X is quasi-DM with separated
diagonal (equivalently IX → X is locally quasi-finite and separated). Let x ∈ |X |. Then
there exists a morphism of algebraic stacks

U −→ X

with the following properties
(1) there exists a point u ∈ |U| mapping to x,
(2) U → X is representable by algebraic spaces and étale,
(3) U = [U/R] where (U,R, s, t, c) is a groupoid scheme with U , R affine, and s, t

finite, flat, and locally of finite presentation.
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Proof. (The parenthetical statement follows from the equivalences in Lemma 6.1).
Choose an affine scheme U and a flat, locally finitely presented, locally quasi-finite mor-
phism U → X such that x is the image of some point u ∈ U . This is possible by Theorem
21.3 and the assumption thatX is quasi-DM. Let (U,R, s, t, c) be the groupoid in algebraic
spaces we obtain by setting R = U ×X U , see Algebraic Stacks, Lemma 16.1. Let X ′ ⊂ X
be the open substack corresponding to the open image of |U | → |X | (Properties of Stacks,
Lemmas 4.7 and 9.12). Clearly, we may replace X by the open substack X ′. Thus we may
assume U → X is surjective and then Algebraic Stacks, Remark 16.3 gives X = [U/R].
Observe that s, t : R → U are flat, locally of finite presentation, and locally quasi-finite.
Since R = U × U ×(X ×X ) X and since the diagonal of X is separated, we find that R is
separated. Hence s, t : R→ U are separated. It follows that R is a scheme by Morphisms
of Spaces, Proposition 50.2 applied to s : R→ U .

Above we have verified all the assumptions of More on Groupoids in Spaces, Lemma 15.13
are satisfied for (U,R, s, t, c) and u. Hence we can find an elementary étale neighbour-
hood (U ′, u′)→ (U, u) such that the restriction R′ of R to U ′ is quasi-split over u. Note
that R′ = U ′ ×X U ′ (small detail omitted; hint: transitivity of fibre products). Re-
placing (U,R, s, t, c) by (U ′, R′, s′, t′, c′) and shrinking X as above, we may assume that
(U,R, s, t, c) has a quasi-splitting over u (the point u is irrelevant from now on as can be
seen from the footnote in More on Groupoids in Spaces, Definition 15.1). Let P ⊂ R be a
quasi-splitting of R over u. Apply Lemma 32.2 to see that

U = [U/P ] −→ [U/R] = X

has all the desired properties. �

Lemma 32.4. Let X be an algebraic stack. Assume X is quasi-DM with separated di-
agonal (equivalently IX → X is locally quasi-finite and separated). Let x ∈ |X |. Assume
the automorphism group of X at x is finite (Remark 19.3). Then there exists a morphism
of algebraic stacks

g : U −→ X
with the following properties

(1) there exists a point u ∈ |U|mapping to x and g induces an isomorphism between
automorphism groups at u and x (Remark 19.5),

(2) U → X is representable by algebraic spaces and étale,
(3) U = [U/R] where (U,R, s, t, c) is a groupoid scheme with U , R affine, and s, t

finite, flat, and locally of finite presentation.

Proof. Observe that Gx is a group scheme by Lemma 19.1. The first part of the
proof is exactly the same as the first part of the proof of Lemma 32.3. Thus we may assume
X = [U/R] where (U,R, s, t, c) and u ∈ U mapping to x satisfy all the assumptions of
More on Groupoids in Spaces, Lemma 15.13. Our assumption on Gx implies that Gu is
finite over u. Hence all the assumptions of More on Groupoids in Spaces, Lemma 15.12 are
satisfied. Hence we can find an elementary étale neighbourhood (U ′, u′) → (U, u) such
that the restriction R′ of R to U ′ is split over u. Note that R′ = U ′ ×X U ′ (small detail
omitted; hint: transitivity of fibre products). Replacing (U,R, s, t, c) by (U ′, R′, s′, t′, c′)
and shrinking X as above, we may assume that (U,R, s, t, c) has a splitting over u. Let
P ⊂ R be a splitting of R over u. Apply Lemma 32.2 to see that

U = [U/P ] −→ [U/R] = X
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is representable by algebraic spaces and étale. By constructionGu is contained in P , hence
this morphism defines an isomorphism on automorphism groups at u as desired. �

Lemma 32.5. Let X be an algebraic stack. Assume X is quasi-DM with separated di-
agonal (equivalently IX → X is locally quasi-finite and separated). Let x ∈ |X |. Assume
x can be represented by a quasi-compact morphism Spec(k) → X . Then there exists a
morphism of algebraic stacks

g : U −→ X
with the following properties

(1) there exists a point u ∈ |U|mapping to x and g induces an isomorphism between
the residual gerbes at u and x,

(2) U → X is representable by algebraic spaces and étale,
(3) U = [U/R] where (U,R, s, t, c) is a groupoid scheme with U , R affine, and s, t

finite, flat, and locally of finite presentation.

Proof. The first part of the proof is exactly the same as the first part of the proof of
Lemma 32.3. Thus we may assumeX = [U/R] where (U,R, s, t, c) and u ∈ U mapping to
x satisfy all the assumptions of More on Groupoids in Spaces, Lemma 15.13. Observe that
u = Spec(κ(u)) → X is quasi-compact, see Properties of Stacks, Lemma 14.1. Consider
the cartesian diagram

F

��

// U

��
u

u // X
Since U is an affine scheme and F → U is quasi-compact, we see that F is quasi-compact.
Since U → X is locally quasi-finite, we see that F → u is locally quasi-finite. Hence
F → u is quasi-finite and F is an affine scheme whose underlying topological space is
finite discrete (Spaces over Fields, Lemma 10.8). Observe that we have a monomorphism
u ×X u → F . In particular the set {r ∈ R : s(r) = u, t(r) = u} which is the image of
|u ×X u| → |R| is finite. we conclude that all the assumptions of More on Groupoids in
Spaces, Lemma 15.11 hold.

Thus we can find an elementary étale neighbourhood (U ′, u′) → (U, u) such that the
restriction R′ of R to U ′ is strongly split over u′. Note that R′ = U ′ ×X U ′ (small detail
omitted; hint: transitivity of fibre products). Replacing (U,R, s, t, c) by (U ′, R′, s′, t′, c′)
and shrinking X as above, we may assume that (U,R, s, t, c) has a strong splitting over u.
Let P ⊂ R be a strong splitting of R over u. Apply Lemma 32.2 to see that

U = [U/P ] −→ [U/R] = X
is representable by algebraic spaces and étale. Since P ⊂ R is open and contains {r ∈ R :
s(r) = u, t(r) = u} by construction we see that u ×U u → u ×X u is an isomorphism.
The statement on residual gerbes then follows from Properties of Stacks, Lemma 11.14 (we
observe that the residual gerbes in question exist by Lemma 31.2). �

33. Smooth morphisms

The property “being smooth” of morphisms of algebraic spaces is smooth local on the
source-and-target, see Descent on Spaces, Remark 20.5. It is also stable under base change
and fpqc local on the target, see Morphisms of Spaces, Lemma 37.3 and Descent on Spaces,
Lemma 11.26. Hence, by Lemma 16.1 above, we may define what it means for a morphism
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of algebraic spaces to be smooth as follows and it agrees with the already existing notion
defined in Properties of Stacks, Section 3 when the morphism is representable by algebraic
spaces.

Definition 33.1. Let f : X → Y be a morphism of algebraic stacks. We say f is
smooth if the equivalent conditions of Lemma 16.1 hold with P = smooth.

Lemma 33.2. The composition of smooth morphisms is smooth.

Proof. Combine Remark 16.3 with Morphisms of Spaces, Lemma 37.2. �

Lemma 33.3. A base change of a smooth morphism is smooth.

Proof. Combine Remark 16.4 with Morphisms of Spaces, Lemma 37.3. �

Lemma 33.4. Let f : X → Y be a morphism of algebraic stacks. Let Z → Y be a
surjective, flat, locally finitely presented morphism of algebraic stacks. If the base change
Z ×Y X → Z is smooth, then f is smooth.

Proof. The property “smooth” satisfies the conditions of Lemma 27.10. Smooth local
on the source-and-target we have seen in the introduction to this section and fppf local on
the target is Descent on Spaces, Lemma 11.26. �

Lemma 33.5. A smooth morphism of algebraic stacks is locally of finite presentation.

Proof. Omitted. �

Lemma 33.6. Let f : X → Y be a morphism of algebraic stacks. There is a maximal
open substack U ⊂ X such that f |U : U → Y is smooth. Moreover, formation of this
open commutes with

(1) precomposing by smooth morphisms,
(2) base change by morphisms which are flat and locally of finite presentation,
(3) base change by flat morphisms provided f is locally of finite presentation.

Proof. Choose a commutative diagram

U

a

��

h
// V

b

��
X

f // Y
where U and V are algebraic spaces, the vertical arrows are smooth, and a : U → X
surjective. There is a maximal open subspace U ′ ⊂ U such that hU ′ : U ′ → V is smooth,
see Morphisms of Spaces, Lemma 37.9. Let U ⊂ X be the open substack corresponding to
the image of |U ′| → |X | (Properties of Stacks, Lemmas 4.7 and 9.12). By the equivalence
in Lemma 16.1 we find that f |U : U → Y is smooth and that U is the largest open substack
with this property.
Assertion (1) follows from the fact that being smooth is smooth local on the source (this
property was used to even define smooth morphisms of algebraic stacks). Assertions (2)
and (3) follow from the case of algebraic spaces, see Morphisms of Spaces, Lemma 37.9. �

Lemma 33.7. LetX → Y be a smooth morphism of algebraic spaces. LetG be a group
algebraic space over Y which is flat and locally of finite presentation over Y . LetG act on
X over Y . Then the quotient stack [X/G] is smooth over Y .

This holds even if G is not smooth over S!
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Proof. The quotient [X/G] is an algebraic stack by Criteria for Representability,
Theorem 17.2. The smoothness of [X/G] over Y follows from the fact that smoothness
descends under fppf coverings: Choose a surjective smooth morphism U → [X/G] where
U is a scheme. Smoothness of [X/G] over Y is equivalent to smoothness ofU over Y . Ob-
serve that U ×[X/G]X is smooth overX and hence smooth over Y (because compositions
of smooth morphisms are smooth). On the other hand, U ×[X/G] X → U is locally of
finite presentation, flat, and surjective (because it is the base change ofX → [X/G] which
has those properties for example by Criteria for Representability, Lemma 17.1). Therefore
we may apply Descent on Spaces, Lemma 8.4. �

Lemma 33.8. Let π : X → Y be a morphism of algebraic stacks. If X is a gerbe over
Y , then π is surjective and smooth.

Proof. We have seen surjectivity in Lemma 28.8. By Lemma 33.4 it suffices to prove
to the lemma after replacing π by a base change with a surjective, flat, locally finitely
presented morphism Y ′ → Y . By Lemma 28.7 we may assume Y = U is an algebraic
space and X = [U/G] over U with G → U flat and locally of finite presentation. Then
we win by Lemma 33.7. �

34. Types of morphisms étale-smooth local on source-and-target

Given a property of morphisms of algebraic spaces which is étale-smooth local on the
source-and-target, see Descent on Spaces, Definition 21.1 we may use it to define a corre-
sponding property of DM morphisms of algebraic stacks, namely by imposing either of
the equivalent conditions of the lemma below.

Lemma 34.1. Let P be a property of morphisms of algebraic spaces which is étale-
smooth local on the source-and-target. Let f : X → Y be a DM morphism of algebraic
stacks. Consider commutative diagrams

U

a

��

h
// V

b

��
X

f // Y
where U and V are algebraic spaces, V → Y is smooth, and U → X ×Y V is étale. The
following are equivalent

(1) for any diagram as above the morphism h has property P , and
(2) for some diagram as above with a : U → X surjective the morphism h has

property P .
If X and Y are representable by algebraic spaces, then this is also equivalent to f (as a
morphism of algebraic spaces) having property P . If P is also preserved under any base
change, and fppf local on the base, then for morphisms f which are representable by al-
gebraic spaces this is also equivalent to f having property P in the sense of Properties of
Stacks, Section 3.

Proof. Let us prove the implication (1)⇒ (2). Pick an algebraic space V and a surjec-
tive and smooth morphism V → Y . As f is DM there exists a scheme U and a surjective
étale morphism U → V ×Y X , see Lemma 21.7. Thus we see that (2) holds. Note that
U → X is surjective and smooth as well, as a composition of the base changeX×Y V → X
and the chosen map U → X ×Y V . Hence we obtain a diagram as in (1). Thus if (1) holds,
then h : U → V has property P , which means that (2) holds as U → X is surjective.
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Conversely, assume (2) holds and let U, V, a, b, h be as in (2). Next, let U ′, V ′, a′, b′, h′ be
any diagram as in (1). Picture

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y

To show that (2) implies (1) we have to prove that h′ has P . To do this consider the
commutative diagram

U

h

��

U ×X U ′oo

(h,h′)
��

// U ′

h′

��
V V ×Y V ′oo // V ′

of algebraic spaces. Note that the horizontal arrows are smooth as base changes of the
smooth morphisms V → Y , V ′ → Y , U → X , and U ′ → X . Note that the squares

U

��

U ×X U ′oo

��

U ×X U ′

��

// U ′

��
V ×Y X V ×Y U ′oo U ×Y V ′ // X ×Y V ′

are cartesian, hence the vertical arrows are étale by our assumptions on U ′, V ′, a′, b′, h′

and U, V, a, b, h. Since P is smooth local on the target by Descent on Spaces, Lemma 21.2
part (2) we see that the base change t : U ×Y V ′ → V ×Y V ′ of h has P . Since P is étale
local on the source by Descent on Spaces, Lemma 21.2 part (1) and s : U×X U

′ → U×Y V
′

is étale, we see the morphism (h, h′) = t ◦ s has P . Consider the diagram

U ×X U ′
(h,h′)

//

��

V ×Y V ′

��
U ′ h′

// V ′

The left vertical arrow is surjective, the right vertical arrow is smooth, and the induced
morphism

U ×X U ′ −→ U ′ ×V ′ (V ×Y V ′) = V ×Y U ′

is étale as seen above. Hence by Descent on Spaces, Definition 21.1 part (3) we conclude
that h′ has P . This finishes the proof of the equivalence of (1) and (2).

If X and Y are representable, then Descent on Spaces, Lemma 21.3 applies which shows
that (1) and (2) are equivalent to f having P .

Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma, and
that P is preserved under arbitrary base change. We have to show that for any scheme
Z and morphism Z → X the base change Z ×Y X → Z has property P . Consider the
diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z
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Note that the top horizontal arrow is a base change of h and hence has property P . The
left vertical arrow is surjective, the induced morphism

Z ×Y U −→ (Z ×Y X )×Z (Z ×Y V )

is étale, and the right vertical arrow is smooth. Thus Descent on Spaces, Lemma 21.3 kicks
in and shows that Z ×Y X → Z has property P . �

Definition 34.2. LetP be a property of morphisms of algebraic spaces which is étale-
smooth local on the source-and-target. We say a DM morphism f : X → Y of algebraic
stacks has property P if the equivalent conditions of Lemma 16.1 hold.

Remark 34.3. Let P be a property of morphisms of algebraic spaces which is étale-
smooth local on the source-and-target and stable under composition. Then the property of
DM morphisms of algebraic stacks defined in Definition 34.2 is stable under composition.
Namely, let f : X → Y and g : Y → Z be DM morphisms of algebraic stacks having
property P . By Lemma 4.10 the composition g ◦ f is DM. Choose an algebraic space W
and a surjective smooth morphism W → Z . Choose an algebraic space V and a surjective
étale morphism V → Y×ZW (Lemma 21.7). Choose an algebraic spaceU and a surjective
étale morphism U → X ×Y V . Then the morphisms V →W and U → V have property
P by definition. Whence U → W has property P as we assumed that P is stable under
composition. Thus, by definition again, we see that g ◦ f : X → Z has property P .

Remark 34.4. Let P be a property of morphisms of algebraic spaces which is étale-
smooth local on the source-and-target and stable under base change. Then the property of
DM morphisms of algebraic stacks defined in Definition 34.2 is stable under arbitrary base
change. Namely, let f : X → Y be a DM morphism of algebraic stacks and g : Y ′ → Y
be a morphism of algebraic stacks and assume f has property P . Then the base change
Y ′ ×Y X → Y ′ is a DM morphism by Lemma 4.4. Choose an algebraic space V and
a surjective smooth morphism V → Y . Choose an algebraic space U and a surjective
étale morphism U → X ×Y V (Lemma 21.7). Finally, choose an algebraic space V ′ and
a surjective and smooth morphism V ′ → Y ′ ×Y V . Then the morphism U → V has
property P by definition. Whence V ′ ×V U → V ′ has property P as we assumed that P
is stable under base change. Considering the diagram

V ′ ×V U //

��

Y ′ ×Y X //

��

X

��
V ′ // Y ′ // Y

we see that the left top horizontal arrow is surjective and

V ′ ×V U → V ′ ×Y (Y ′ ×Y′ X ) = V ′ ×V (X ×Y V )

is étale as a base change of U → X ×Y V , whence by definition we see that the projection
Y ′ ×Y X → Y ′ has property P .

Remark 34.5. Let P,P ′ be properties of morphisms of algebraic spaces which are
étale-smooth local on the source-and-target. Suppose that we have P ⇒ P ′ for mor-
phisms of algebraic spaces. Then we also have P ⇒ P ′ for the properties of morphisms
of algebraic stacks defined in Definition 34.2 using P and P ′. This is clear from the defi-
nition.
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35. Étale morphisms

An étale morphism of algebraic stacks should not be defined as a smooth morphism of
relative dimension 0. Namely, the morphism

[A1
k/Gm,k] −→ Spec(k)

is smooth of relative dimension 0 for any choice of action of the group scheme Gm,k

on A1
k. This does not correspond to our usual idea that étale morphisms should identify

tangent spaces. The example above isn’t quasi-finite, but the morphism
X = [Spec(k)/µp,k] −→ Spec(k)

is smooth and quasi-finite (Section 23). However, if the characteristic of k is p > 0, then
we see that the representable morphism Spec(k)→ X isn’t étale as the base change µp,k =
Spec(k)×X Spec(k)→ Spec(k) is a morphism from a nonreduced scheme to the spectrum
of a field. Thus if we define an étale morphism as smooth and locally quasi-finite, then the
analogue of Morphisms of Spaces, Lemma 39.11 would fail.
Instead, our approach will be to start with the requirements that “étaleness” should be a
property preserved under base change and that if X → X is an étale morphism from an
algebraic stack to a scheme, then X should be Deligne-Mumford. In other words, we will
require étale morphisms to be DM and we will use the material in Section 34 to define
étale morphisms of algebraic stacks.
In Lemma 36.10 we will characterize étale morphisms of algebraic stacks as morphisms
which are (a) locally of finite presentation, (b) flat, and (c) have étale diagonal.
The property “étale” of morphisms of algebraic spaces is étale-smooth local on the source-
and-target, see Descent on Spaces, Remark 21.5. It is also stable under base change and
fpqc local on the target, see Morphisms of Spaces, Lemma 39.4 and Descent on Spaces,
Lemma 11.28. Hence, by Lemma 34.1 above, we may define what it means for a morphism
of algebraic spaces to be étale as follows and it agrees with the already existing notion
defined in Properties of Stacks, Section 3 when the morphism is representable by algebraic
spaces because such a morphism is automatically DM by Lemma 4.3.

Definition 35.1. Let f : X → Y be a morphism of algebraic stacks. We say f is
étale if f is DM and the equivalent conditions of Lemma 34.1 hold with P = étale.

We will use without further mention that this agrees with the already existing notion of
étale morphisms in case f is representable by algebraic spaces or if X and Y are repre-
sentable by algebraic spaces.

Lemma 35.2. The composition of étale morphisms is étale.

Proof. Combine Remark 34.3 with Morphisms of Spaces, Lemma 39.3. �

Lemma 35.3. A base change of an étale morphism is étale.

Proof. Combine Remark 34.4 with Morphisms of Spaces, Lemma 39.4. �

Lemma 35.4. An open immersion is étale.

Proof. Let j : U → X be an open immersion of algebraic stacks. Since j is repre-
sentable, it is DM by Lemma 4.3. On the other hand, ifX → X is a smooth and surjective
morphism where X is a scheme, then U = U ×X X is an open subscheme of X . Hence
U → X is étale (Morphisms, Lemma 36.9) and we conclude that j is étale from the defi-
nition. �
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Lemma 35.5. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent

(1) f is étale,
(2) f is DM and for any morphism V → Y where V is an algebraic space and any

étale morphism U → V ×Y X where U is an algebraic space, the morphism
U → V is étale,

(3) there exists some surjective, locally of finite presentation, and flat morphism
W → Y where W is an algebraic space and some surjective étale morphism
T →W ×Y X where T is an algebraic space such that the morphism T →W is
étale.

Proof. Assume (1). Then f is DM and since being étale is preserved by base change,
we see that (2) holds.

Assume (2). Choose a scheme V and a surjective étale morphism V → Y . Choose a scheme
U and a surjective étale morphismU → V ×YX (Lemma 21.7). Thus we see that (3) holds.

Assume W → Y and T → W ×Y X are as in (3). We first check f is DM. Namely, it
suffices to checkW ×Y X →W is DM, see Lemma 4.5. By Lemma 4.12 it suffices to check
W ×Y X is DM. This follows from the existence of T →W ×Y X by (the easy direction
of) Theorem 21.6.

Assume f is DM and W → Y and T → W ×Y X are as in (3). Let V be an algebraic
space, let V → Y be surjective smooth, let U be an algebraic space, and let U → V ×Y X
is surjective and étale (Lemma 21.7). We have to check that U → V is étale. It suffices to
prove U ×Y W → V ×Y W is étale by Descent on Spaces, Lemma 11.28. We may replace
X ,Y,W, T, U, V by X ×Y W,W,W, T, U ×Y W,V ×Y W (small detail omitted). Thus
we may assume that Y = Y is an algebraic space, there exists an algebraic space T and a
surjective étale morphism T → X such that T → Y is étale, and U and V are as before.
In this case we know that

U → V is étale⇔ X → Y is étale⇔ T → Y is étale

by the equivalence of properties (1) and (2) of Lemma 34.1 and Definition 35.1. This fin-
ishes the proof. �

Lemma 35.6. Let X ,Y be algebraic stacks étale over an algebraic stack Z . Any mor-
phism X → Y over Z is étale.

Proof. The morphism X → Y is DM by Lemma 4.12. Let W → Z be a surjective
smooth morphism whose source is an algebraic space. Let V → Y ×Z W be a surjective
étale morphism whose source is an algebraic space (Lemma 21.7). Let U → X ×Y V be a
surjective étale morphism whose source is an algebraic space (Lemma 21.7). Then

U −→ X ×Z W

is surjective étale as the composition ofU → X×YV and the base change ofV → Y×ZW
by X ×Z W → Y ×Z W . Hence it suffices to show that U → W is étale. Since U → W
and V →W are étale becauseX → Z and Y → Z are étale, this follows from the version
of the lemma for algebraic spaces, namely Morphisms of Spaces, Lemma 39.11. �
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36. Unramified morphisms

For a justification of our choice of definition of unramified morphisms we refer the reader
to the discussion in the section on étale morphisms Section 35.

In Lemma 36.9 we will characterize unramified morphisms of algebraic stacks as mor-
phisms which are locally of finite type and have étale diagonal.

The property “unramified” of morphisms of algebraic spaces is étale-smooth local on the
source-and-target, see Descent on Spaces, Remark 21.5. It is also stable under base change
and fpqc local on the target, see Morphisms of Spaces, Lemma 38.4 and Descent on Spaces,
Lemma 11.27. Hence, by Lemma 34.1 above, we may define what it means for a morphism of
algebraic spaces to be unramified as follows and it agrees with the already existing notion
defined in Properties of Stacks, Section 3 when the morphism is representable by algebraic
spaces because such a morphism is automatically DM by Lemma 4.3.

Definition 36.1. Let f : X → Y be a morphism of algebraic stacks. We say f is
unramified if f is DM and the equivalent conditions of Lemma 34.1 hold with P =“un-
ramified”.

We will use without further mention that this agrees with the already existing notion
of unramified morphisms in case f is representable by algebraic spaces or if X and Y are
representable by algebraic spaces.

Lemma 36.2. The composition of unramified morphisms is unramified.

Proof. Combine Remark 34.3 with Morphisms of Spaces, Lemma 38.3. �

Lemma 36.3. A base change of an unramified morphism is unramified.

Proof. Combine Remark 34.4 with Morphisms of Spaces, Lemma 38.4. �

Lemma 36.4. An étale morphism is unramified.

Proof. Follows from Remark 34.5 and Morphisms of Spaces, Lemma 39.10. �

Lemma 36.5. An immersion is unramified.

Proof. Let j : Z → X be an immersion of algebraic stacks. Since j is representable, it
is DM by Lemma 4.3. On the other hand, ifX → X is a smooth and surjective morphism
whereX is a scheme, thenZ = Z×X X is a locally closed subscheme ofX . HenceZ → X
is unramified (Morphisms, Lemmas 35.7 and 35.8) and we conclude that j is unramified
from the definition. �

Lemma 36.6. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent

(1) f is unramified,
(2) f is DM and for any morphism V → Y where V is an algebraic space and any

étale morphism U → V ×Y X where U is an algebraic space, the morphism
U → V is unramified,

(3) there exists some surjective, locally of finite presentation, and flat morphism
W → Y where W is an algebraic space and some surjective étale morphism
T →W ×Y X where T is an algebraic space such that the morphism T →W is
unramified.
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Proof. Assume (1). Then f is DM and since being unramified is preserved by base
change, we see that (2) holds.
Assume (2). Choose a scheme V and a surjective étale morphism V → Y . Choose a scheme
U and a surjective étale morphismU → V ×YX (Lemma 21.7). Thus we see that (3) holds.
Assume W → Y and T → W ×Y X are as in (3). We first check f is DM. Namely, it
suffices to checkW ×Y X →W is DM, see Lemma 4.5. By Lemma 4.12 it suffices to check
W ×Y X is DM. This follows from the existence of T →W ×Y X by (the easy direction
of) Theorem 21.6.
Assume f is DM and W → Y and T → W ×Y X are as in (3). Let V be an algebraic
space, let V → Y be surjective smooth, letU be an algebraic space, and letU → V ×Y X is
surjective and étale (Lemma 21.7). We have to check that U → V is unramified. It suffices
to prove U ×Y W → V ×Y W is unramified by Descent on Spaces, Lemma 11.27. We may
replace X ,Y,W, T, U, V by X ×Y W,W,W, T, U ×Y W,V ×Y W (small detail omitted).
Thus we may assume that Y = Y is an algebraic space, there exists an algebraic space T
and a surjective étale morphism T → X such that T → Y is unramified, and U and V are
as before. In this case we know that

U → V is unramified⇔ X → Y is unramified⇔ T → Y is unramified
by the equivalence of properties (1) and (2) of Lemma 34.1 and Definition 36.1. This fin-
ishes the proof. �

Lemma 36.7. An unramified morphism of algebraic stacks is locally quasi-finite.

Proof. This follows from Lemma 36.6 (characterizing unramified morphisms), Lemma
23.7 (characterizing locally quasi-finite morphisms), and Morphisms of Spaces, Lemma
38.7 (the corresponding result for algebraic spaces). �

Lemma 36.8. Let X → Y → Z be morphisms of algebraic stacks. If X → Z is
unramified and Y → Z is DM, then X → Y is unramified.

Proof. AssumeX → Z is unramified. By Lemma 4.12 the morphismX → Y is DM.
Choose a commutative diagram

U

��

// V

��

// W

��
X // Y // Z

with U, V,W algebraic spaces, with W → Z surjective smooth, V → Y ×Z W surjective
étale, and U → X ×Y V surjective étale (see Lemma 21.7). Then also U → X ×Z W is
surjective and étale. Hence we know that U →W is unramified and we have to show that
U → V is unramified. This follows from Morphisms of Spaces, Lemma 38.11. �

Lemma 36.9. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent

(1) f is unramified, and
(2) f is locally of finite type and its diagonal is étale.

Proof. Assume f is unramified. Then f is DM hence we can choose algebraic spaces
U , V , a smooth surjective morphismV → Y and a surjective étale morphismU → X×YV
(Lemma 21.7). Since f is unramified the induced morphism U → V is unramified. Thus
U → V is locally of finite type (Morphisms of Spaces, Lemma 38.6) and we conclude that
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f is locally of finite type. The diagonal ∆ : X → X ×Y X is a morphism of algebraic
stacks over Y . The base change of ∆ by the surjective smooth morphism V → Y is the
diagonal of the base change of f , i.e., ofXV = X ×Y V → V . In other words, the diagram

XV //

��

XV ×V XV

��
X // X ×Y X

is cartesian. Since the right vertical arrow is surjective and smooth it suffices to show
that the top horizontal arrow is étale by Properties of Stacks, Lemma 3.4. Consider the
commutative diagram

U

��

// U ×V U

��
XV // XV ×V XV

All arrows are representable by algebraic spaces, the vertical arrows are étale, the left one
is surjective, and the top horizontal arrow is an open immersion by Morphisms of Spaces,
Lemma 38.9. This implies what we want: first we see that U → XV ×V XV is étale as a
composition of étale morphisms, and then we can use Properties of Stacks, Lemma 3.5 to
see that XV → XV ×V XV is étale because being étale (for morphisms of algebraic spaces)
is local on the source in the étale topology (Descent on Spaces, Lemma 19.1).
Assume f is locally of finite type and that its diagonal is étale. Then f is DM by defini-
tion (as étale morphisms of algebraic spaces are unramified). As above this means we can
choose algebraic spaces U , V , a smooth surjective morphism V → Y and a surjective étale
morphism U → X ×Y V (Lemma 21.7). To finish the proof we have to show that U → V
is unramified. We already know that U → V is locally of finite type. Arguing as above
we find a commutative diagram

U

��

// U ×V U

��
XV // XV ×V XV

where all arrows are representable by algebraic spaces, the vertical arrows are étale, and
the lower horizontal one is étale as a base change of ∆. It follows that U → U ×V U is
étale for example by Lemma 35.67. Thus U → U ×V U is an étale monomorphism hence
an open immersion (Morphisms of Spaces, Lemma 51.2). Then U → V is unramified by
Morphisms of Spaces, Lemma 38.9. �

Lemma 36.10. Let f : X → Y be a morphism of algebraic stacks. The following are
equivalent

(1) f is étale, and
(2) f is locally of finite presentation, flat, and unramified,
(3) f is locally of finite presentation, flat, and its diagonal is étale.

Proof. The equivalence of (2) and (3) follows immediately from Lemma 36.9. Thus
in each case the morphism f is DM. Then we can choose Then we can choose algebraic
spaces U , V , a smooth surjective morphism V → Y and a surjective étale morphism U →

7It is quite easy to deduce this directly from Morphisms of Spaces, Lemma 39.11.
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X×YV (Lemma 21.7). To finish the proof we have to show thatU → V is étale if and only
if it is locally of finite presentation, flat, and unramified. This follows from Morphisms of
Spaces, Lemma 39.12 (and the more trivial Morphisms of Spaces, Lemmas 39.10, 39.8, and
39.7). �

37. Proper morphisms

The notion of a proper morphism plays an important role in algebraic geometry. Here is
the definition of a proper morphism of algebraic stacks.

Definition 37.1. Let f : X → Y be a morphism of algebraic stacks. We say f is
proper if f is separated, finite type, and universally closed.

This does not conflict with the already existing notion of a proper morphism of algebraic
spaces: a morphism of algebraic spaces is proper if and only if it is separated, finite type,
and universally closed (Morphisms of Spaces, Definition 40.1) and we’ve already checked
the compatibility of these notions in Lemma 3.5, Section 17, and Lemmas 13.1. Similarly,
if f : X → Y is a morphism of algebraic stacks which is representable by algebraic spaces
then we have defined what it means for f to be proper in Properties of Stacks, Section
3. However, the discussion in that section shows that this is equivalent to requiring f to
be separated, finite type, and universally closed and the same references as above give the
compatibility.

Lemma 37.2. A base change of a proper morphism is proper.

Proof. See Lemmas 4.4, 17.3, and 13.3. �

Lemma 37.3. A composition of proper morphisms is proper.

Proof. See Lemmas 4.10, 17.2, and 13.4. �

Lemma 37.4. A closed immersion of algebraic stacks is a proper morphism of alge-
braic stacks.

Proof. A closed immersion is by definition representable (Properties of Stacks, Def-
inition 9.1). Hence this follows from the discussion in Properties of Stacks, Section 3
and the corresponding result for morphisms of algebraic spaces, see Morphisms of Spaces,
Lemma 40.5. �

Lemma 37.5. Consider a commutative diagram

X //

��

Y

��
Z

of algebraic stacks.
(1) If X → Z is universally closed and Y → Z is separated, then the morphism
X → Y is universally closed. In particular, the image of |X | in |Y| is closed.

(2) If X → Z is proper and Y → Z is separated, then the morphism X → Y is
proper.

Proof. Assume X → Z is universally closed and Y → Z is separated. We factor
the morphism as X → X ×Z Y → Y . The first morphism is proper (Lemma 4.8) hence
universally closed. The projectionX ×Z Y → Y is the base change of a universally closed
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morphism and hence universally closed, see Lemma 13.3. Thus X → Y is universally
closed as the composition of universally closed morphisms, see Lemma 13.4. This proves
(1). To deduce (2) combine (1) with Lemmas 4.12, 7.7, and 17.8. �

Lemma 37.6. LetZ be an algebraic stack. Let f : X → Y be a morphism of algebraic
stacks over Z . If X is universally closed over Z and f is surjective then Y is universally
closed over Z . In particular, if also Y is separated and of finite type over Z , then Y is
proper over Z .

Proof. Assume X is universally closed and f surjective. Denote p : X → Z , q :
Y → Z the structure morphisms. LetZ ′ → Z be a morphism of algebraic stacks. The base
change f ′ : X ′ → Y ′ of f by Z ′ → Z is surjective (Properties of Stacks, Lemma 5.3) and
the base change p′ : X ′ → Z ′ of p is closed. If T ⊂ |Y ′| is closed, then (f ′)−1(T ) ⊂ |X ′|
is closed, hence p′((f ′)−1(T )) = q′(T ) is closed. So q′ is closed. �

38. Scheme theoretic image

Here is the definition.

Definition 38.1. Let f : X → Y be a morphism of algebraic stacks. The scheme
theoretic image of f is the smallest closed substack Z ⊂ Y through which f factors8.

We often denote f : X → Z the factorization of f . If the morphism f is not quasi-
compact, then (in general) the construction of the scheme theoretic image does not com-
mute with restriction to open substacks of Y . However, if f is quasi-compact then the
scheme theoretic image commutes with flat base change (Lemma 38.5).

Lemma 38.2. Let f : X → Y be a morphism of algebraic stacks. Let g : W → X be
a morphism of algebraic stacks which is surjective, flat, and locally of finite presentation.
Then the scheme theoretic image of f exists if and only if the scheme theoretic image of
f ◦ g exists and if so then these scheme theoretic images are the same.

Proof. AssumeZ ⊂ Y is a closed substack and f ◦g factors throughZ . To prove the
lemma it suffices to show that f factors through Z . Consider a scheme T and a morphism
T → X given by an objectx of the fibre category ofX overT . We will show that f(x) is in
fact in the fibre category ofZ over T . Namely, the projection T×XW → T is a surjective,
flat, locally finitely presented morphism. Hence there is an fppf covering {Ti → T} such
that Ti → T factors through T ×X W → T for all i. Then Ti → X factors throughW
and hence Ti → Y factors through Z . Thus x|Ti is an object of Z . Since Z is a strictly
full substack, we conclude that x is an object of Z as desired. �

Lemma 38.3. Let f : Y → X be a morphism of algebraic stacks. Then the scheme
theoretic image of f exists.

Proof. Choose a scheme V and a surjective smooth morphism V → Y . By Lemma
38.2 we may replace Y by V . Thus it suffices to show that if X → X is a morphism
from a scheme to an algebraic stack, then the scheme theoretic image exists. Choose a
scheme U and a surjective smooth morphism U → X . Set R = U ×X U . We have
X = [U/R] by Algebraic Stacks, Lemma 16.2. By Properties of Stacks, Lemma 9.11 the
closed substacksZ ofX are in 1-to-1 correspondence withR-invariant closed subschemes
Z ⊂ U . Let Z1 ⊂ U be the scheme theoretic image of X ×X U → U . Observe that
X → X factors throughZ if and only ifX×X U → U factors through the corresponding

8We will see in Lemma 38.3 that the scheme theoretic image always exists.
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R-invariant closed subschemeZ (details omitted; hint: this follows becauseX×X U → X
is surjective and smooth). Thus we have to show that there exists a smallest R-invariant
closed subscheme Z ⊂ U containing Z1.

Let I1 ⊂ OU be the quasi-coherent ideal sheaf corresponding to the closed subscheme
Z1 ⊂ U . Let Zα, α ∈ A be the set of all R-invariant closed subschemes of U containing
Z1. For α ∈ A, let Iα ⊂ OU be the quasi-coherent ideal sheaf corresponding to the closed
subscheme Zα ⊂ U . The containment Z1 ⊂ Zα means Iα ⊂ I1. TheR-invariance of Zα
means that

s−1Iα · OR = t−1Iα · OR
as (quasi-coherent) ideal sheaves on (the algebraic space) R. Consider the image

I = Im
(⊕

α∈A
Iα → I1

)
= Im

(⊕
α∈A
Iα → OX

)
Since direct sums of quasi-coherent sheaves are quasi-coherent and since images of maps
between quasi-coherent sheaves are quasi-coherent, we find that I is quasi-coherent. Since
pull back is exact and commutes with direct sums we find

s−1I · OR = t−1I · OR
Hence I defines an R-invariant closed subscheme Z ⊂ U which is contained in every Zα
and containes Z1 as desired. �

Lemma 38.4. Let
X1

��

f1

// Y1

��
X2

f2 // Y2

be a commutative diagram of algebraic stacks. Let Zi ⊂ Yi, i = 1, 2 be the scheme the-
oretic image of fi. Then the morphism Y1 → Y2 induces a morphism Z1 → Z2 and a
commutative diagram

X1 //

��

Z1

��

// Y1

��
X2 // Z2 // Y2

Proof. The scheme theoretic inverse image of Z2 in Y1 is a closed substack of Y1
through which f1 factors. Hence Z1 is contained in this. This proves the lemma. �

Lemma 38.5. Let f : X → Y be a quasi-compact morphism of algebraic stacks. Then
formation of the scheme theoretic image commutes with flat base change.

Proof. Let Y ′ → Y be a flat morphism of algebraic stacks. Choose a scheme V and
a surjective smooth morphism V → Y . Choose a scheme V ′ and a surjective smooth
morphism V ′ → Y ′ ×Y V . We may and do assume that V =

∐
i∈I Vi is a disjoint union

of affine schemes and that V ′ =
∐
i∈I
∐
j∈Ji Vi,j is a disjoint union of affine schemes with

each Vi,j mapping into Vi. Let
(1) Z ⊂ Y be the scheme theoretic image of f ,
(2) Z ′ ⊂ Y ′ be the scheme theoretic image of the base change of f by Y ′ → Y ,
(3) Z ⊂ V be the scheme theoretic image of the base change of f by V → Y ,
(4) Z ′ ⊂ V ′ be the scheme theoretic image of the base change of f by V ′ → Y .
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If we can show that (a) Z = V ×Y Z , (b) Z ′ = V ′ ×Y′ Z ′, and (c) Z ′ = V ′ ×V Z then
the lemma follows: the inclusion Z ′ → Z ×Y Y ′ (Lemma 38.4) has to be an isomorphism
because after base change by the surjective smooth morphism V ′ → Y ′ it is.
Proof of (a). Set R = V ×Y V . By Properties of Stacks, Lemma 9.11 the rule Z 7→
Z ×Y V defines a 1-to-1 correspondence between closed substacks of Y and R-invariant
closed subspaces of V . Moreover, f : X → Y factors through Z if and only if the base
change g : X ×Y V → V factors throughZ×Y V . We claim: the scheme theoretic image
Z ⊂ V of g is R-invariant. The claim implies (a) by what we just said.
For each i the morphism X ×Y Vi → Vi is quasi-compact and hence X ×Y Vi is quasi-
compact. Thus we can choose an affine scheme Wi and a surjective smooth morphism
Wi → X ×Y Vi. Observe that W =

∐
Wi is a scheme endowed with a smooth and

surjective morphism W → X ×Y V such that the composition W → V with g is quasi-
compact. Let Z → V be the scheme theoretic image of W → V , see Morphisms, Section
6 and Morphisms of Spaces, Section 16. It follows from Lemma 38.2 that Z ⊂ V is the
scheme theoretic image of g. To show that Z is R-invariant we claim that both

pr−1
0 (Z), pr−1

1 (Z) ⊂ R = V ×Y V

are the scheme theoretic image of X ×Y R → R. Namely, we first use Morphisms of
Spaces, Lemma 30.12 to see that pr−1

0 (Z) is the scheme theoretic image of the composition
W ×V,pr0

R = W ×Y V → X ×Y R→ R

Since the first arrow here is surjective and smooth we see that pr−1
0 (Z) is the scheme the-

oretic image of X ×Y R → R. The same argument applies that pr−1
1 (Z). Hence Z is

R-invariant.
Statement (b) is proved in exactly the same way as one proves (a).
Proof of (c). Let Zi ⊂ Vi be the scheme theoretic image of X ×Y Vi → Vi and let Zi,j ⊂
Vi,j be the scheme theoretic image ofX×Y Vi,j → Vi,j . Clearly it suffices to show that the
inverse image of Zi in Vi,j is Zi,j . Above we’ve seen that Zi is the scheme theoretic image
of Wi → Vi and by the same token Zi,j is the scheme theoretic image of Wi ×Vi Vi,j →
Vi,j . Hence the equality follows from the case of schemes (Morphisms, Lemma 25.16) and
the fact that Vi,j → Vi is flat. �

Lemma 38.6. Let f : X → Y be a quasi-compact morphism of algebraic stacks. Let
Z ⊂ Y be the scheme theoretic image of f . Then |Z| is the closure of the image of |f |.

Proof. Let z ∈ |Z| be a point. Choose an affine scheme V , a point v ∈ V , and a
smooth morphism V → Y mapping v to z. Then X ×Y V is a quasi-compact algebraic
stack. Hence we can find an affine scheme W and a surjective smooth morphism W →
X ×Y V . By Lemma 38.5 the scheme theoretic image of X ×Y V → V is Z = Z ×Y V .
Hence the inverse image of |Z| in |V | is |Z| by Properties of Stacks, Lemma 4.3. By Lemma
38.2Z is the scheme theoretic image ofW → V . By Morphisms of Spaces, Lemma 16.3 we
see that the image of |W | → |Z| is dense. Hence the image of |X ×Y V | → |Z| is dense.
Observe that v ∈ Z. Since |V | → |Y| is open, a topology argument tells us that z is in the
closure of the image of |f | as desired. �

Lemma 38.7. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces and separated. Let V ⊂ Y be an open substack such that V → Y is
quasi-compact. Let s : V → X be a morphism such that f ◦ s = idV . Let Y ′ be the scheme
theoretic image of s. Then Y ′ → Y is an isomorphism over V .
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Proof. By Lemma 7.7 the morphism s : V → Y is quasi-compact. Hence the con-
struction of the scheme theoretic image Y ′ of s commutes with flat base change by Lemma
38.5. Thus to prove the lemma we may assumeY is representable by an algebraic space and
we reduce to the case of algebraic spaces which is Morphisms of Spaces, Lemma 16.7. �

39. Valuative criteria

We need to be careful when stating the valuative criterion. Namely, in the formulation
we need to speak about commutative diagrams but we are working in a 2-category and we
need to make sure the 2-morphisms compose correctly as well!

Definition 39.1. Let f : X → Y be a morphism of algebraic stacks. Consider a
2-commutative solid diagram

(39.1.1)

Spec(K)
x
//

j

��

X

f

��
Spec(A) y //

;;

Y

where A is a valuation ring with field of fractions K. Let

γ : y ◦ j −→ f ◦ x

be a 2-morphism witnessing the 2-commutativity of the diagram. (Notation as in Cate-
gories, Sections 28 and 29.) Given (39.1.1) and γ a dotted arrow is a triple (a, α, β) con-
sisting of a morphism a : Spec(A)→ X and 2-arrows α : a ◦ j → x, β : y → f ◦ a such
that γ = (idf ? α) ◦ (β ? idj), in other words such that

f ◦ a ◦ j
idf?α

$$
y ◦ j

β?idj
::

γ // f ◦ x

is commutative. A morphism of dotted arrows (a, α, β) → (a′, α′, β′) is a 2-arrow θ :
a→ a′ such that α = α′ ◦ (θ ? idj) and β′ = (idf ? θ) ◦ β.

The preceding definition is a special case of Categories, Definition 44.1. The category of
dotted arrows depends on γ in general. If Y is representable by an algebraic space (or
if automorphism groups of objects over fields are trivial), then of course there is at most
one γ and one does not need to check the commutativity of the triangle. More generally,
we have Lemma 39.3. The commutativity of the triangle is important in the proof of
compatibility with base change, see proof of Lemma 39.4.

Lemma 39.2. In the situation of Definition 39.1 the category of dotted arrows is a
groupoid. If ∆f is separated, then it is a setoid.

Proof. Since 2-arrows are invertible it is clear that the category of dotted arrows is
a groupoid. Given a dotted arrow (a, α, β) an automorphism of (a, α, β) is a 2-morphism
θ : a → a satisfying two conditions. The first condition β = (idf ? θ) ◦ β signifies that
θ defines a morphism (a, θ) : Spec(A)→ IX/Y . The second condition α = α ◦ (θ ? idj)
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implies that the restriction of (a, θ) to Spec(K) is the identity. Picture

IX/Y

��

Spec(K)

j

��

(a◦j,id)oo

X Spec(A)aoo

(a,θ)
hh

In other words, if G → Spec(A) is the group algebraic space we get by pulling back the
relative inertia by a, then θ defines a point θ ∈ G(A) whose image in G(K) is trivial.
Certainly, if the identity e : Spec(A) → G is a closed immersion, then this can happen
only if θ is the identity. Looking at Lemma 6.1 we obtain the result we want. �

Lemma 39.3. In Definition 39.1 assume IY → Y is proper (for example if Y is sep-
arated or if Y is separated over an algebraic space). Then the category of dotted arrows
is independent (up to noncanonical equivalence) of the choice of γ and the existence of
a dotted arrow (for some and hence equivalently all γ) is equivalent to the existence of a
diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) y //

a

;;

Y

with 2-commutative triangles (without checking the 2-morphisms compose correctly).

Proof. Let γ, γ′ : y ◦ j −→ f ◦x be two 2-morphisms. Then γ−1 ◦γ′ is an automor-
phism of y over Spec(K). Hence if IsomY(y, y) → Spec(A) is proper, then by the val-
uative criterion of properness (Morphisms of Spaces, Lemma 44.1) we can find δ : y → y
whose restriction to Spec(K) is γ−1 ◦ γ′. Then we can use δ to define an equivalence
between the category of dotted arrows for γ to the category of dotted arrows for γ′ by
sending (a, α, β) to (a, α, β ◦ δ). The final statement is clear. �

Lemma 39.4. Assume given a 2-commutative diagram

Spec(K)
x′
//

j

��

X ′

p

��

q
// X

f

��
Spec(A) y′

// Y ′ g // Y

with the right square 2-cartesian. Choose a 2-arrow γ′ : y′ ◦ j → p ◦ x′. Set x = q ◦ x′,
y = g ◦ y′ and let γ : y ◦ j → f ◦ x be the composition of γ′ with the 2-arrow implicit in
the 2-commutativity of the right square. Then the category of dotted arrows for the left
square and γ′ is equivalent to the category of dotted arrows for the outer rectangle and γ.

Proof. (We do not know how to prove the analogue of this lemma if instead of the
category of dotted arrows we look at the set of isomorphism classes of morphisms produc-
ing two 2-commutative triangles as in Lemma 39.3; in fact this analogue may very well be
wrong.) First proof: this lemma is a special case of Categories, Lemma 44.2. Second proof:
we are allowed to replace X ′ by the 2-fibre product Y ′ ×Y X as described in Categories,
Lemma 32.3. Then the object x′ becomes the triple (y′ ◦ j, x, γ). Then we can go from
a dotted arrow (a, α, β) for the outer rectangle to a dotted arrow (a′, α′, β′) for the left
square by taking a′ = (y′, a, β) and α′ = (idy′◦j , α) and β′ = idy′ . Details omitted. �
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Lemma 39.5. Assume given a 2-commutative diagram

Spec(K)
x
//

j

��

X

f

��
Y

g

��
Spec(A) z // Z

Choose a 2-arrow γ : z ◦ j → g ◦ f ◦ x. Let C be the category of dotted arrows for the
outer rectangle and γ. Let C′ be the category of dotted arrows for the square

Spec(K)
f◦x
//

j

��

Y

g

��
Spec(A) z // Z

and γ. Then C is equivalent to a category C′′ which has the following property: there is
a functor C′′ → C′ which turns C′′ into a category fibred in groupoids over C′ and whose
fibre categories are categories of dotted arrows for certain squares of the form

Spec(K)
x
//

j

��

X

f

��
Spec(A) y // Y

and some choices of y ◦ j → f ◦ x.

Proof. This lemma is a special case of Categories, Lemma 44.3. �

Definition 39.6. Let f : X → Y be a morphism of algebraic stacks. We say f
satisfies the uniqueness part of the valuative criterion if for every diagram (39.1.1) and γ
as in Definition 39.1 the category of dotted arrows is either empty or a setoid with exactly
one isomorphism class.

Lemma 39.7. The base change of a morphism of algebraic stacks which satisfies the
uniqueness part of the valuative criterion by any morphism of algebraic stacks is a mor-
phism of algebraic stacks which satisfies the uniqueness part of the valuative criterion.

Proof. Follows from Lemma 39.4 and the definition. �

Lemma 39.8. The composition of morphisms of algebraic stacks which satisfy the
uniqueness part of the valuative criterion is another morphism of algebraic stacks which
satisfies the uniqueness part of the valuative criterion.

Proof. Follows from Lemma 39.5 and the definition. �

Lemma 39.9. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. Then the following are equivalent

(1) f satisfies the uniqueness part of the valuative criterion,
(2) for every scheme T and morphism T → Y the morphism X ×Y T → T satisfies

the uniqueness part of the valuative criterion as a morphism of algebraic spaces.
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Proof. Follows from Lemma 39.4 and the definition. �

Definition 39.10. Let f : X → Y be a morphism of algebraic stacks. We say f
satisfies the existence part of the valuative criterion if for every diagram (39.1.1) and γ
as in Definition 39.1 there exists an extension K ′/K of fields, a valuation ring A′ ⊂ K ′

dominating A such that the category of dotted arrows for the outer rectangle of the dia-
gram

Spec(K ′) //
x′

&&

j′

��

Spec(K)

j

��

x
// X

f

��
Spec(A′) //

y′
88Spec(A) y // Y

with induced 2-arrow γ′ : y′ ◦ j′ → f ◦ x′ is nonempty.

We have already seen in the case of morphisms of algebraic spaces, that it is necessary
to allow extensions of the fractions fields in order to get the correct notion of the val-
uative criterion. See Morphisms of Spaces, Example 41.6. Still, for morphisms between
separated algebraic spaces, such an extension is not needed (Morphisms of Spaces, Lemma
41.5). However, for morphisms between algebraic stacks, an extension may be needed even
if X and Y are both separated. For example consider the morphism of algebraic stacks

[Spec(C)/G]→ Spec(C)
over the base scheme Spec(C) where G is a group of order 2. Both source and target are
separated algebraic stacks and the morphism is proper. Whence it satisfies the uniqueness
and existence parts of the valuative criterion (see Lemma 43.1). But on the other hand,
there is a diagram

Spec(K) //

��

[Spec(C)/G]

��
Spec(A) // Spec(C)

where no dotted arrow exists with A = C[[t]] and K = C((t)). Namely, the top hori-
zontal arrow is given by aG-torsor over the spectrum ofK = C((t)). Since anyG-torsor
over the strictly henselian local ring A = C[[t]] is trivial, we see that if a dotted arrow al-
ways exists, then everyG-torsor overK is trivial. This is not true becauseG = {+1,−1}
and by Kummer theoryG-torsors overK are classified byK∗/(K∗)2 which is nontrivial.

Lemma 39.11. The base change of a morphism of algebraic stacks which satisfies the
existence part of the valuative criterion by any morphism of algebraic stacks is a morphism
of algebraic stacks which satisfies the existence part of the valuative criterion.

Proof. Follows from Lemma 39.4 and the definition. �

Lemma 39.12. The composition of morphisms of algebraic stacks which satisfy the
existence part of the valuative criterion is another morphism of algebraic stacks which
satisfies the existence part of the valuative criterion.

Proof. Follows from Lemma 39.5 and the definition. �

Lemma 39.13. Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. Then the following are equivalent
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(1) f satisfies the existence part of the valuative criterion,
(2) for every scheme T and morphism T → Y the morphism X ×Y T → T satisfies

the existence part of the valuative criterion as a morphism of algebraic spaces.

Proof. Follows from Lemma 39.4 and the definition. �

Lemma 39.14. A closed immersion of algebraic stacks satisfies both the existence and
uniqueness part of the valuative criterion.

Proof. Omitted. Hint: reduce to the case of a closed immersion of schemes by Lem-
mas 39.9 and 39.13. �

40. Valuative criterion for second diagonal

The converse statement has already been proved in Lemma 39.2. The criterion itself is the
following.

Lemma 40.1. Let f : X → Y be a morphism of algebraic stacks. If ∆f is quasi-
separated and if for every diagram (39.1.1) and choice of γ as in Definition 39.1 the cate-
gory of dotted arrows is a setoid, then ∆f is separated.

Proof. We are going to write out a detailed proof, but we strongly urge the reader to
find their own proof, inspired by reading the argument given in the proof of Lemma 39.2.
Assume ∆f is quasi-separated and for every diagram (39.1.1) and choice of γ as in Def-
inition 39.1 the category of dotted arrows is a setoid. By Lemma 6.1 it suffices to show
that e : X → IX/Y is a closed immersion. By Lemma 6.4 it in fact suffices to show that
e = ∆f,2 is universally closed. Either of these lemmas tells us that e = ∆f,2 is quasi-
compact by our assumption that ∆f is quasi-separated.
In this paragraph we will show that e satisfies the existence part of the valuative criterion.
Consider a 2-commutative solid diagram

Spec(K)
x

//

j

��

X

e

��
Spec(A)

(a,θ) // IX/Y

and let α : (a, θ) ◦ j → e ◦ x be any 2-morphism witnessing the 2-commutativity of the
diagram (we use α instead of the letter γ used in Definition 39.1). Note that f ◦ θ = id;
we will use this below. Observe that e ◦x = (x, idx) and (a, θ) ◦ j = (a ◦ j, θ ? idj). Thus
we see that α is a 2-arrow α : a ◦ j → x compatible with θ ? idj and idx. Set y = f ◦ x
and β = idf◦a. Reading the arguments given in the proof of Lemma 39.2 backwards, we
see that θ is an automorphism of the dotted arrow (a, α, β) with

γ : y ◦ j → f ◦ x equal to idf ? α : f ◦ a ◦ j → f ◦ x
On the other hand, ida is an automorphism too, hence we conclude θ = ida from the
assumption on f . Then we can take as dotted arrow for the displayed diagram above the
morphism a : Spec(A) → X with 2-morphisms (a, ida) ◦ j → (x, idx) given by α and
(a, θ)→ e ◦ a given by ida.
By Lemma 39.11 any base change of e satisfies the existence part of the valuative criterion.
Since e is representable by algebraic spaces, it suffices to show that e is universally closed
after a base change by a morphism I → IX/Y which is surjective and smooth and with
I an algebraic space (see Properties of Stacks, Section 3). This base change e′ : X ′ →
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I ′ is a quasi-compact morphism of algebraic spaces which satisfies the existence part of
the valuative criterion and hence is universally closed by Morphisms of Spaces, Lemma
42.1. �

41. Valuative criterion for the diagonal

The result is Lemma 41.2. We first state and prove a formal helper lemma.

Lemma 41.1. Let f : X → Y be a morphism of algebraic stacks. Consider a 2-
commutative solid diagram

Spec(K)
x

//

j

��

X

∆f

��
Spec(A)

(a1,a2,ϕ) //

66

X ×Y X

where A is a valuation ring with field of fractions K. Let γ : (a1, a2, ϕ) ◦ j −→ ∆f ◦ x
be a 2-morphism witnessing the 2-commutativity of the diagram. Then

(1) Writing γ = (α1, α2) with αi : ai ◦ j → x we obtain two dotted arrows
(a1, α1, id) and (a2, α2, ϕ) in the diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) f◦a1 //

;;

Y

(2) The category of dotted arrows for the original diagram and γ is a setoid whose
set of isomorphism classes of objects equal to the set of morphisms (a1, α1, id)→
(a2, α2, ϕ) in the category of dotted arrows.

Proof. Since ∆f is representable by algebraic spaces (hence the diagonal of ∆f is sep-
arated), we see that the category of dotted arrows in the first commutative diagram of the
lemma is a setoid by Lemma 39.2. All the other statements of the lemma are consequences
of 2-diagramatic computations which we omit. �

Lemma 41.2. Let f : X → Y be a morphism of algebraic stacks. Assume f is quasi-
separated. If f satisfies the uniqueness part of the valuative criterion, then f is separated.

Proof. The assumption on f means that ∆f is quasi-compact and quasi-separated
(Definition 4.1). We have to show that ∆f is proper. Lemma 40.1 says that ∆f is separated.
By Lemma 3.3 we know that ∆f is locally of finite type. To finish the proof we have to
show that ∆f is universally closed. A formal argument (see Lemma 41.1) shows that the
uniqueness part of the valuative criterion implies that we have the existence of a dotted
arrow in any solid diagram like so:

Spec(K)

��

// X

∆f

��
Spec(A) //

99

X ×Y X

Using that this property is preserved by any base change we conclude that any base change
by ∆f by an algebraic space mapping into X ×Y X has the existence part of the valuative
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criterion and we conclude is universally closed by the valuative criterion for morphisms
of algebraic spaces, see Morphisms of Spaces, Lemma 42.1. �

Here is a converse.

Lemma 41.3. Let f : X → Y be a morphism of algebraic stacks. If f is separated,
then f satisfies the uniqueness part of the valuative criterion.

Proof. Since f is separated we see that all categories of dotted arrows are setoids by
Lemma 39.2. Consider a diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) y //

;;

Y

and a 2-morphism γ : y ◦ j → f ◦ x as in Definition 39.1. Consider two objects (a, α, β)
and (a′, β′, α′) of the category of dotted arrows. To finish the proof we have to show these
objects are isomorphic. The isomorphism

f ◦ a β−1

−−→ y
β′

−→ f ◦ a′

means that (a, a′, β′ ◦ β−1) is a morphism Spec(A) → X ×Y X . On the other hand, α
and α′ define a 2-arrow

(a, a′, β′ ◦ β−1) ◦ j = (a ◦ j, a′ ◦ j, (β′ ? idj) ◦ (β ? idj)−1) (α,α′)−−−−→ (x, x, id) = ∆f ◦ x
Here we use that both (a, α, β) and (a′, α′, β′) are dotted arrows with respect to γ. We
obtain a commutative diagram

Spec(K)

j

��

x
// X

∆f

��
Spec(A)

(a,a′,β′◦β−1) // X ×Y X

with 2-commutativity witnessed by (α, α′). Now ∆f is representable by algebraic spaces
(Lemma 3.3) and proper as f is separated. Hence by Lemma 39.13 and the valuative cri-
terion for properness for algebraic spaces (Morphisms of Spaces, Lemma 44.1) we see that
there exists a dotted arrow. Unwinding the construction, we see that this means (a, α, β)
and (a′, α′, β′) are isomorphic in the category of dotted arrows as desired. �

42. Valuative criterion for universal closedness

Here is a statement.

Lemma 42.1. Let f : X → Y be a morphism of algebraic stacks. Assume
(1) f is quasi-compact, and
(2) f satisfies the existence part of the valuative criterion.

Then f is universally closed.

Proof. By Lemmas 7.3 and 39.11 properties (1) and (2) are preserved under any base
change. By Lemma 13.5 we only have to show that |T ×Y X| → |T | is closed, whenever
T is an affine scheme mapping into Y . Hence it suffices to show: if f : X → Y is a quasi-
compact morphism from an algebraic stack to an affine scheme satisfying the existence
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part of the valuative criterion, then |f | is closed. Let T ⊂ |X | be a closed subset. We have
to show that f(T ) is closed to finish the proof.

Let Z ⊂ X be the reduced induced algebraic stack structure on T (Properties of Stacks,
Definition 10.4). Then i : Z → X is a closed immersion and we have to show that the
image of |Z| → |Y | is closed. Since closed immersions are quasi-compact (Lemma 7.5) and
satisfies the existence part of the valuative criterion (Lemma 39.14) and since compositions
of quasi-compact morphisms are quasi-compact (Lemma 7.4) and since compositions pre-
serve the property of satisfying the existence part of the valuative criterion (Lemma 39.12)
we conclude that it suffices to show: if f : X → Y is a quasi-compact morphism from an
algebraic stack to an affine scheme satisfying the existence part of the valuative criterion,
then |f |(|X |) is closed.

Since X is quasi-compact (being quasi-compact over the affine Y ), we can choose an affine
scheme U and a surjective smooth morphism U → X (Properties of Stacks, Lemma 6.2).
Suppose that y ∈ Y is in the closure of the image ofU → Y (in other words, in the closure
of the image of |f |). Then by Morphisms, Lemma 6.5 we can find a valuation ring A with
fraction field K and a commutative diagram

Spec(K) //

��

U

��
Spec(A) // Y

such that the closed point of Spec(A) maps to y. By assumption we get an extension
K ′/K and a valuation ringA′ ⊂ K ′ dominatingA and the dotted arrow in the following
diagram

Spec(K ′) //

��

Spec(K) //

��

U

��

// X

f

��
Spec(A′) //

33

Spec(A) // Y Y

Thus y is in the image of |f | and we win. �

Here is a converse.

Lemma 42.2. Let f : X → Y be a morphism of algebraic stacks. Assume
(1) f is quasi-separated, and
(2) f is universally closed.

Then f satisfies the existence part of the valuative criterion.

Proof. Consider a solid diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) y //

;;

Y

whereA is a valuation ring with field of fractionsK and γ : y◦j −→ f ◦x as in Definition
39.1. By Lemma 39.4 in order to find a dotted arrow (after possibly replacing K by an
extension and A by a valuation ring dominating it) we may replace Y by Spec(A) and
X by Spec(A) ×Y X . Of course we use here that being quasi-separated and universally
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closed are preserved under base change. Thus we reduce to the case discussed in the next
paragraph.

Consider a solid diagram
Spec(K)

x
//

j

��

X

f

��
Spec(A)

99

Spec(A)
where A is a valuation ring with field of fractions K as in Definition 39.1. By Lemma 7.7
and the fact that f is quasi-separated we have that the morphism x is quasi-compact. Since
f is universally closed, we have in particular that |f |({x}) is closed in Spec(A). Since this
image contains the generic point of Spec(A) there exists a point x′ ∈ |X | in the closure
of x mapping to the closed point of Spec(A). By Lemma 7.9 we can find a commutative
diagram

Spec(K ′) //

��

Spec(K)

��
Spec(A′) // X

such that the closed point of Spec(A′) maps to x′ ∈ |X |. It follows that Spec(A′) →
Spec(A) maps the closed point to the closed point, i.e., A′ dominates A and this finishes
the proof. �

43. Valuative criterion for properness

Here is the statement.

Lemma 43.1. Let f : X → Y be a morphism of algebraic stacks. Assume f is of finite
type and quasi-separated. Then the following are equivalent

(1) f is proper, and
(2) f satisfies both the uniqueness and existence parts of the valuative criterion.

Proof. A proper morphism is the same thing as a separated, finite type, and uni-
versally closed morphism. Thus this lemma follows from Lemmas 41.2, 41.3, 42.1, and
42.2. �

44. Local complete intersection morphisms

The property “being a local complete intersection morphism” of morphisms of algebraic
spaces is smooth local on the source-and-target, see Descent on Spaces, Lemma 20.4 and
More on Morphisms of Spaces, Lemmas 48.9 and 48.10. By Lemma 16.1 above, we may
define what it means for a morphism of algebraic spaces to be a local complete intersection
morphism as follows and it agrees with the already existing notion defined in More on
Morphisms of Spaces, Section 48 when both source and target are algebraic spaces.

Definition 44.1. Let f : X → Y be a morphism of algebraic stacks. We say f is
a local complete intersection morphism or Koszul if the equivalent conditions of Lemma
16.1 hold with P = local complete intersection.

Lemma 44.2. The composition of local complete intersection morphisms is a local
complete intersection.
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Proof. Combine Remark 16.3 with More on Morphisms of Spaces, Lemma 48.5. �

Lemma 44.3. A flat base change of a local complete intersection morphism is a local
complete intersection morphism.

Proof. Omitted. Hint: Argue exactly as in Remark 16.4 (but only for flat Y ′ → Y)
using More on Morphisms of Spaces, Lemma 48.4. �

Lemma 44.4. Let
X

f
//

��

Y

��
Z

be a commutative diagram of morphisms of algebraic stacks. Assume Y → Z is smooth
and X → Z is a local complete intersection morphism. Then f : X → Y is a local
complete intersection morphism.

Proof. Choose a scheme W and a surjective smooth morphism W → Z . Choose a
scheme V and a surjective smooth morphism V → W ×Z Y . Choose a scheme U and a
surjective smooth morphismU → V ×YX . ThenU →W is a local complete intersection
morphism of schemes and V → W is a smooth morphism of schemes. By the result for
schemes (More on Morphisms, Lemma 62.10) we conclude that U → V is a local complete
intersection morphism. By definition this means that f is a local complete intersection
morphism. �

45. Stabilizer preserving morphisms

In the literature a morphism f : X → Y of algebraic stacks is said to be stabilizer preserv-
ing or fixed-point reflecting if the induced morphism IX → X ×Y IY is an isomorphism.
Such a morphism induces an isomorphism between automorphism groups (Remark 19.5)
in every point of X . In this section we prove some simple lemmas around this concept.

Lemma 45.1. Let f : X → Y be a morphism of algebraic stacks. If IX → X ×Y IY
is an isomorphism, then f is representable by algebraic spaces.

Proof. Immediate from Lemma 6.2. �

Remark 45.2. Let f : X → Y be a morphism of algebraic stacks. Let U → X be a
morphism whose source is an algebraic space. LetG→ H be the pullback of the morphism
IX → X ×Y IY to U . If ∆f is unramified, étale, etc, so is G→ H . This is true because

U ×X U //

��

X

∆f

��
U ×Y U // X ×Y X

is cartesian and the morphism G→ H is the base change of the left vertical arrow by the
diagonal U → U × U . Compare with the proof of Lemma 6.6.

Lemma 45.3. Let f : X → Y be an unramified morphism of algebraic stacks. The
following are equivalent

(1) IX → X ×Y IY is an isomorphism, and
(2) f induces an isomorphism between automorphism groups at x and f(x) (Remark

19.5) for all x ∈ |X |.
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Proof. Choose a scheme U and a surjective smooth morphism U → X . Denote
G→ H the pullback of the morphism IX → X ×Y IY toU . By Remark 45.2 and Lemma
36.9 the morphismG→ H is étale. Condition (1) is equivalent to the condition thatG→
H is an isomorphism (this follows for example by applying Properties of Stacks, Lemma
3.3). Condition (2) is equivalent to the condition that for every u ∈ U the morphism
Gu → Hu of fibres is an isomorphism. Thus (1)⇒ (2) is trivial. If (2) holds, thenG→ H
is a surjective, universally injective, étale morphism of algebraic spaces. Such a morphism
is an isomorphism by Morphisms of Spaces, Lemma 51.2. �

Lemma 45.4. Let f : X → Y be a morphism of algebraic stacks. Assume
(1) f is representable by algebraic spaces and unramified, and
(2) IY → Y is proper.

Then the set of x ∈ |X | such that f induces an isomorphism between automorphism
groups at x and f(x) (Remark 19.5) is open. Letting U ⊂ X be the corresponding open
substack, the morphism IU → U ×Y IY is an isomorphism.

Proof. Choose a scheme U and a surjective smooth morphism U → X . Denote
G→ H the pullback of the morphism IX → X ×Y IY toU . By Remark 45.2 and Lemma
36.9 the morphism G → H is étale. Since f is representable by algebraic spaces, we see
that G → H is a monomorphism. Hence G → H is an open immersion, see Morphisms
of Spaces, Lemma 51.2. By assumption H → U is proper.

With these preparations out of the way, we can prove the lemma as follows. The inverse
image of the subset of |X | of the lemma is clearly the set of u ∈ U such thatGu → Hu is an
isomorphism (since after allGu is an open sub group algebraic space ofHu). This is an open
subset because the complement is the image of the closed subset |H| \ |G| and |H| → |U |
is closed. By Properties of Stacks, Lemma 9.12 we can consider the corresponding open
substack U of X . The final statement of the lemma follows from applying Lemma 45.3 to
U → Y . �

Lemma 45.5. Let
X ′ //

f ′

��

X

f

��
Y ′ // Y

be a cartesian diagram of algebraic stacks.
(1) Let x′ ∈ |X ′| with image x ∈ |X |. If f induces an isomorphism between auto-

morphism groups at x and f(x) (Remark 19.5), then f ′ induces an isomorphism
between automorphism groups at x′ and f(x′).

(2) If IX → X×YIY is an isomorphism, then IX ′ → X ′×Y′IY′ is an isomorphism.

Proof. Omitted. �

Lemma 45.6. Let
X ′ //

f ′

��

X

f

��
Y ′ g // Y
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be a cartesian diagram of algebraic stacks. If f induces an isomorphism between automor-
phism groups at points (Remark 19.5), then

Mor(Spec(k),X ′) −→ Mor(Spec(k),Y ′)×Mor(Spec(k),X )
is injective on isomorphism classes for any field k.

Proof. We have to show that given (y′, x) there is at most one x′ mapping to it. By
our construction of 2-fibre products, a morphism x′ is given by a triple (x, y′, α) where
α : g ◦ y′ → f ◦ x is a 2-morphism. Now, suppose we have a second such triple (x, y′, β).
Then α and β differ by a k-valued point ε of the automorphism group algebraic space
Gf(x). Since f induces an isomorphism Gx → Gf(x) by assumption, this means we can
lift ε to a k-valued point γ ofGx. Then (γ, id) : (x, y′, α)→ (x, y′, β) is an isomorphism
as desired. �

Lemma 45.7. Let f : X → Y be a morphism of algebraic stacks. Assume f is étale, f
induces an isomorphism between automorphism groups at points (Remark 19.5), and for
every algebraically closed field k the functor

f : Mor(Spec(k),X ) −→ Mor(Spec(k),Y)
is an equivalence. Then f is an isomorphism.

Proof. By Lemma 14.5 we see that f is universally injective. Combining Lemmas
45.1 and 45.3 we see that f is representable by algebraic spaces. Hence f is an open im-
mersion by Morphisms of Spaces, Lemma 51.2. To finish we remark that the condition in
the lemma also guarantees that f is surjective. �

46. Normalization

This section is the analogue of Morphisms of Spaces, Section 49.

Lemma 46.1. Let X be an algebraic stack. The following are equivalent
(1) there is a surjective smooth morphism U → X where U is a scheme such that

every quasi-compact open of U has finitely many irreducible components,
(2) for every scheme U and every smooth morphism U → X every quasi-compact

open of U has finitely many irreducible components,
(3) for every algebraic space Y and smooth morphism Y → X the space Y satisfies

the equivalent conditions of Morphisms of Spaces, Lemma 49.1, and
(4) for every quasi-compact algebraic stackY smooth overX the space |Y|has finitely

many irreducible components.

Proof. The equivalence of (1), (2), and (3) follow from Descent, Lemma 16.3, Prop-
erties of Stacks, Lemma 7.1, and Morphisms of Spaces, Lemma 49.1. It is also clear from
these references that condition (4) implies condition (1). Conversely, assume the equiva-
lent conditions (1), (2), and (3) hold and let Y → X be a smooth morphism of algebraic
stacks with Y quasi-compact. Then we can choose an affine scheme V and a surjective
smooth morphism V → Y by Properties of Stacks, Lemma 6.2. Since V has finitely many
irreducible components by (2) and since |V | → |Y| is surjective and continuous, we con-
clude that |Y| has finitely many irreducible components by Topology, Lemma 8.5. �

Lemma 46.2. Let X be an algebraic stack satisfying the equivalent conditions of
Lemma 46.1. Then there exists an integral morphism of algebraic stacks

X ν −→ X
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such that for every scheme U and smooth morphism U → X the fibre product X ν ×X U
is the normalization of U .

Proof. Let U → X be a surjective smooth morphism where U is a scheme. Set
R = U ×X U . Recall that we obtain a smooth groupoid (U,R, s, t, c) in algebraic spaces
and a presentation X = [U/R] of X , see Algebraic Stacks, Lemmas 16.1 and 16.2 and Def-
inition 16.5. The assumption on X means that the normalization Uν of U is defined, see
Morphisms, Definition 54.1. By Morphisms of Spaces, Lemma 49.5 taking normalization
commutes with smooth morphisms of algebraic spaces. Thus we see that the normaliza-
tionRν ofR is isomorphic to bothR×s,U Uν andUν×U,tR. Thus we obtain two smooth
morphisms sν : Rν → Uν and tν : Rν → Uν of algebraic spaces. A formal computa-
tion with fibre products shows that Rν ×sν ,Uν ,tν Rν is the normalization of R ×s,U,t R.
Hence the smooth morphism c : R ×s,U,t R → R extends to cν as well. Similarly, the
inverse i : R → R (an isomorphism) induces an isomorphism iν : Rν → Rν . Finally,
the identity e : U → R lifts to eν : Uν → Rν for example because e is a section of
s and Rν = R ×U,s Uν . We claim that (Uν , Rν , sν , tν , cν) is a smooth groupoid in
algebraic spaces. To see this involves checking the axioms (1), (2)(a), (2)(b), (3)(a), and
(3)(b) of Groupoids, Section 13 for (Uν , Rν , sν , tν , cν , eν , iν). For example, for (1) we
have to see that the two morphisms a, b : Rν ×sν ,Uν ,tν Rν ×sν ,Uν ,tν Rν → Rν we ob-
tain are the same. This holds because we know that the corresponding pair of morphisms
R×s,U,tR×s,U,tR→ R are the same and the morphisms a and b are the unique extensions
of this morphism to the normalizations. Similarly for the other axioms.

Consider the algebraic stack X ν = [Uν/Rν ] (Algebraic Stacks, Theorem 17.3). Since we
have a morphism (Uν , Rν , sν , tν , cν) → (U,R, s, t, c) of groupoids in algebraic spaces,
we obtain a morphism ν : X ν → X of algebraic stacks. Since Rν = R ×s,U Uν we see
that Uν = X ν ×X U by Groupoids in Spaces, Lemma 25.3. In particular, as Uν → U is
integral, we see that ν is integral. We omit the verification that the base change property
stated in the lemma holds for every smooth morphism from a scheme to X . �

This leads us to the following definition.

Definition 46.3. Let X be an algebraic stack satisfying the equivalent conditions of
Lemma 46.1. We define the normalization of X as the morphism

ν : X ν −→ X

constructed in Lemma 46.2.

47. Points and specializations

This section is the analogue of Decent Spaces, Section 7.

Lemma 47.1. Let X be an algebraic stack. Let f : U → X be a smooth morphism
where U is an algebraic space. Let x′  x be a specialization of points of |X |. Let u ∈ |U |
with f(u) = x. If (X , x′) satisfy the equivalent conditions of Properties of Stacks, Lemma
14.1, then there exists a specialization u′  u in |U | with f(u′) = x′.

Proof. Choose an étale morphism (U1, u1) → (U, u) where U1 is an affine scheme.
Then we may and do replaceU byU1. Thus we may assumeU is an affine scheme. Consider
the algebraic space R = U ×X U with smooth projections t, s : R → U . Choose a point
w ∈ U mapping to x′; this is possible as f : |U | → |X | is open. By our assumption on
x′ the fibre F ′ = t−1(w) = R ×t,U w of t : R → U over w is a quasi-compact algebraic
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space. Choose an affine scheme T and a surjective étale morphism T → F ′. The fact that
x′  x means that u is in the closure of the image of the morphism

T → F ′ → R
s−→ U

Namely, this image is the fibre of |U | → |X ′| over x′; if some u ∈ V ⊂ |U | open is disjoint
from this fibre, then f(V ) is an open neighbourhood of x not containing x′; contradiction.
Thus by Morphisms, Lemma 6.5 we see that there exists u′ ∈ |U | in the fibre of |U | → |X |
over x′ which specializes to u. �

48. Decent algebraic stacks

This section is the analogue of Decent Spaces, Section 6. In particular, the following defi-
nition is compatible with the notion of a decent algebraic space defined there.

Definition 48.1. LetX be an algebraic stack. We sayX is decent if for every x ∈ |X |
the equivalent conditions of Properties of Stacks, Lemma 14.1 are satisfied.

Some people would rephrase this definition by saying that every point of X is quasi-
compact. A slightly stronger condition would be to ask that any morphism Spec(k)→ X
in the equivalence class of x is quasi-separated as well as quasi-compact.

Lemma 48.2. A quasi-separated algebraic stack X is decent. More generally, if ∆ :
X → X ×X is quasi-compact, then X is decent.

Proof. Namely, if X is quasi-separated, then any morphism f : T → X whose
source is a quasi-compact scheme T , is quasi-compact, see Lemma 7.7. If ∆ is on known to
be quasi-compact, then one uses the description

T ×f,X ,f ′ T ′ = (T × T ′)×(f,f ′),X ×X ,∆ X

to prove this. Details omitted. �

Lemma 48.3. Let f : X → Y be a morphism of algebraic stacks. Assume Y is decent
and f is representable (by schemes) or f is representable by algebraic spaces and quasi-
separated. Then X is decent.

Proof. Let x ∈ |X |with image y ∈ |Y|. Choose a morphism y : Spec(k)→ Y in the
equivalence class defining y. SetXy = Spec(k)×y,YX . Choose a pointx′ ∈ |Xy|mapping
to x, see Properties of Stacks, Lemma 4.3. Choose a morphism x′ : Spec(k′)→ Xy in the
equivalence class of x′. Diagram

Spec(k′)
x′

// Xy //

��

X

��
Spec(k) y // Y

The morphism y is quasi-compact ifY is decent. HenceXy → X is quasi-compact as a base
change (Lemma 7.3). Thus to conclude it suffices to prove that x′ is quasi-compact (Lemma
7.4). If f is representable, thenXy is a scheme and x′ is quasi-compact. If f is representable
by algebraic spaces and quasi-separated, then Xy is a quasi-separated algebraic space and
hence decent (Decent Spaces, Lemma 17.2). �

Lemma 48.4. Let f : X → Y be a morphism of algebraic stacks. If f is quasi-compact
and surjective and X is decent, then Y is decent.
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Proof. Let x : Spec(k)→ X be a morphism where k is a field and denote y = f ◦x.
Since f is surjective, every point of |Y| arises in this manner, see Properties of Stacks,
Lemma 4.4. Consider an affine scheme T and morphism T → Y . It suffices to show that
T ×Y,y Spec(k) is quasi-compact, see Lemma 7.10. We have

(T ×Y X )×X ,x Spec(k) = T ×Y,y Spec(k)

The morphism T ×Y X → T is quasi-compact hence T ×Y X is quasi-compact. Since
x is a quasi-compact morphism as X is decent we see that the displayed fibre product is
quasi-compact. �

Lemma 48.5. Let f : X → Y be a morphism of algebraic stacks. If X is a gerbe over
Y and X is decent, then Y is decent.

Proof. AssumeX is a gerbe overY andX is decent. Note that f is a universal home-
omorphism by Lemma 28.13. Thus the lemma follows from Lemma 48.4. �

49. Points on decent stacks

This section is the analogue of Decent Spaces, Section 12. We do not know whether or not
the topological space associated to a decent algebraic stack is always sober; see Proposition
49.3 for a slightly weaker result.

Lemma 49.1. Let X be a decent algebraic stack. Then |X | is Kolmogorov (see Topol-
ogy, Definition 8.6).

Proof. Let x1, x2 ∈ |X |with x1  x2 and x2  x1. We have to show that x1 = x2.
Let Z ⊂ X be the reduced closed substack with |Z| equal to {x1} = {x2}. By Lemma
48.3 we see that Z is decent. After replacing X by Z we reduce to the case discussed in
the next paragraph.

Assume |X | is irreducible with generic points x1 and x2. Pick an affine scheme U and
u1, u2 ∈ U and a smooth morphism f : U → X such that f(ui) = xi. Then we find a
third point u3 ∈ U which is the generic point of an irreducible component of U whose
image x3 ∈ |X | is also a generic point of |X |. Namely, we can simply choose u3 any
generic point of an irreducible component passing through u1 (or u2 if you like). In the
next paragraph we will show that x1 = x3 and x2 = x3 which will prove what we want.

By symmetry it suffices to prove that x1 = x3. Since x1 is a generic point of |X | we have
a specialization x1  x3. By Lemma 47.1 we can find a specialization u′

1  u3 in U (!)
mapping to x1  x3. However, u3 is the generic point of an irreducible component and
hence u′

1 = u3 as desired. �

Lemma 49.2. Let X be a decent, locally Noetherian algebraic stack. Then |X | is a
sober locally Noetherian topological space.

Proof. By Lemma 8.3 the topological space |X | is locally Noetherian. By Lemma
49.1 the topological space |X | is Kolmogorov. By Lemma 8.4 the topological space |X | is
quasi-sober. This finishes the proof, see Topology, Definition 8.6. �

Proposition 49.3. Let X be a decent algebraic stack such that IX → X is quasi-
compact. Then |X | is sober.
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Proof. By Lemma 49.1 we know that |X | is Kolmogorov (in fact we will reprove
this). Let T ⊂ |X | be an irreducible closed subset. We have to show T has a generic point.
Let Z ⊂ X be the reduced induced closed substack corresponding to T , see Properties of
Stacks, Definition 10.4. Since Z → X is a closed immersion, we see that Z is a decent
algebraic stack, see Lemma 48.3. Also, the morphism IZ → Z is the base change of IX →
X (Lemma 5.6). Hence IZ → Z is quasi-compact (Lemma 7.3). Thus we reduce to the
case discussed in the next paragraph.
Assume X is decent, IX → X is quasi-compact, X is reduced, and |X | irreducible. We
have to show |X | has a generic point. By Proposition 29.1. there exists a dense open
substack U ⊂ X which is a gerbe. In other words, |U| ⊂ |X | is open dense. Thus we may
assume that X is a gerbe in addition to all the other properties. Say X → X turns X into
a gerbe over the algebraic space X . Then |X | ∼= |X| by Lemma 28.13. In particular, X
is quasi-compact and |X| is irreducible. Also, by Lemma 48.5 we see that X is a decent
algebraic space. Then |X | = |X| is sober by Decent Spaces, Proposition 12.4 and hence
has a (unique) generic point. �

50. Integral algebraic stacks

This section is the analogue of Spaces over Fields, Section 4. Motivated by the considera-
tions in that section and by the result of Proposition 49.3 we define an integral algebraic
stack as follows (and it does not conflict with the already existing definitions of integral
schemes and integral algebraic spaces).

Definition 50.1. We say an algebraic stack X is integral if it is reduced, decent,
IX → X is quasi-compact, and |X | is irreducible.

Note that ifX is quasi-separated, then for it to be integral, it suffices thatX is reduced and
that |X | is irreducible, see Lemma 50.3.

Lemma 50.2. Let X be an integral algebraic stack. Then
(1) |X | is sober, irreducible, and has a unique generic point,
(2) there exists an open substack U ⊂ X which is a gerbe over an integral scheme

U .

Proof. Proposition 49.3 tells us that |X | is sober. Of course it is also irreducible and
hence has a unique generic point x (by the definition of sobriety). Proposition 29.1 shows
the existence of a dense open U ⊂ X which is a gerbe over an algebraic space U . Then U
is a decent algebraic space by Lemma 48.5 (and the fact that U is decent by Lemma 48.3).
Since |U | = |U| we see that |U | is irreducible. Finally, since U is reduced the morphism
U → U factors through Ured, see Properties of Stacks, Lemma 10.3. Now since U → U is
flat, locally of finite presentation, and surjective (Lemma 28.8), this implies thatU = Ured,
i.e., U is reduced (small detail omitted). It follows that U is an integral algebraic space, see
Spaces over Fields, Definition 4.1. Then finally, we may replace U (and correspondingly
U ) by an open subspace and assume that U is an integral scheme, see discussion in Spaces
over Fields, Section 4. �

Lemma 50.3. Let X be an algebraic stack which is reduced and quasi-separated and
whose associated topological space |X | is irreducible. Then X is integral.

Proof. If X is quasi-separated, then X is decent by Lemma 48.2. If X is quasi-
separated, then ∆ : X → X × X is quasi-compact, hence IX → X is quasi-compact
as the base change of ∆ by ∆, see Lemma 7.3. Thus we see that all the hypotheses of
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Definition 50.1 hold (and we also see that we may replace “quasi-separated” by “∆X is
quasi-compact”). �

Lemma 50.4. Let X be a decent algebraic stack such that IX → X is quasi-compact.
There are canonical bijections between the following sets:

(1) the set of points of X , i.e., |X |,
(2) the set of irreducible closed subsets of |X |,
(3) the set of integral closed substacks of X .

The bijection from (1) to (2) sends x to {x}. The bijection from (3) to (2) sends Z to |Z|.

Proof. Our map defines a bijection between (1) and (2) as |X | is sober by Proposition
49.3. Given T ⊂ |X | closed and irreducible, there is a unique reduced closed substack
Z ⊂ X such that |Z| = T , namely, Z is the reduced induced subspace structure on T ,
see Properties of Stacks, Definition 10.4. Then Z is an integral algebraic stack because it
is decent (Lemma 48.3), the morphism IZ → Z is quasi-compact (as the base change of
IX → X , see Lemma 5.6), Z is reduced, and |Z| is irreducible. �

51. Residual gerbes

This section is the continuation of Properties of Stacks, Section 11.

Lemma 51.1. Let π : X → Y be a morphism of algebraic stacks. Let x ∈ |X | with
image y ∈ |Y|. Assume the residual gerbe Zy ⊂ Y of Y at y exists and that X is a gerbe
over Y . Then Zx = Zy ×Y X is the residual gerbe of X at x.

Proof. The morphismZx → X is a monomorphism as the base change of the monomor-
phism Zy → Y . The morphism π is a univeral homeomorphism by Lemma 28.13 and
hence |Zx| = {x}. Finally, the morphism Zx → Zy is smooth as a base change of the
smooth morphism π, see Lemma 33.8. Hence as Zy is reduced and locally Noetherian, so
is Zx (details omitted). Thus Zx is the residual gerbe of X at x by Properties of Stacks,
Definition 11.8. �

Lemma 51.2. Let f : Y → X be a morphism of algebraic stacks. Let x ∈ |X | be a
point. Assume

(1) X is decent or locally Noetherian (or both),
(2) IX → X is quasi-compact,
(3) |f |(|Y|) is contained in {x} ⊂ |X |, and
(4) Y is reduced.

Then f factors through the residual gerbe Zx of X at x (whose existence is guaranteed by
Lemma 31.1 or 31.3).

Proof. Let T = {x} ⊂ |X | be the closure of x. By Properties of Stacks, Lemma
10.1 there exists a reduced closed substack X ′ ⊂ X such that T = |X ′|. By Properties of
Stacks, Lemma 10.3 the morphism f factors through X ′. If X is decent, then by Lemma
48.3 the stack X ′ is decent. If X is locally Noetherian, then X ′ is locally Noetherian
(details omitted). Note that IX ′ → X ′ is the base change of IX → X by Lemma 5.6 we
see that IX ′ → X ′ is quasi-compact by Lemma 7.3. This reduces us to the case discussed
in the next paragraph.

Assume X is reduced and x ∈ |X | is a generic point. By Proposition 29.1 implies there
exists a dense open substack U ⊂ X ′ which is a gerbe. Note that x ∈ |U|. Repeating the
arguments above we reduce to the case discussed in the next paragraph.
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AssumeX → X is a gerbe over the algebraic spaceX . IfX is decent, then by Lemmas 28.13
and 48.4 the space X is decent. If X is locally Noetherian, then X is locally Noetherian
by fppf descent (details omitted). Hence the corresponding result holds forX , see Decent
Spaces, Lemma 13.10 or 13.9 (small detail omitted). Applying Lemma 51.1 we conclude
that the result holds for X as well. �

Remark 51.3. We do not know whether Lemma 51.2 holds if we only assume X is
locally Noetherian, i.e., we drop the assumption on the inertia being quasi-compact. In
this case, if x is a closed point, this is certainly true as follows from the following much
simpler lemma.

Lemma 51.4. LetX be a locally Noetherian algebraic stack. Let x ∈ |X |with residual
gerbe Zx ⊂ X (Lemma 31.3). Then x is a closed point of |X | if and only if the morphism
Zx → X is a closed immersion.

Proof. If Zx → X is a closed immersion, then x is a closed point of |X |, see for
example Lemma 37.4. Conversely, assume x is a closed point of |X |. Let Z ⊂ X be the
reduced closed substack with |Z| = {x} (Properties of Stacks, Lemma 10.1). Then Z is a
locally Noetherian algebraic stack by Lemmas 17.4 and 17.5. Since also Z is reduced and
|Z| = {x} it follows that Z = Zx is the residual gerbe by definition. �
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CHAPTER 102

Limits of Algebraic Stacks

1. Introduction

In this chapter we put material related to limits of algebraic stacks. Many results on limits
of algebraic stacks and algebraic spaces have been obtained by David Rydh in [?].

2. Conventions

We continue to use the conventions and the abuse of language introduced in Properties of
Stacks, Section 2.

3. Morphisms of finite presentation

This section is the analogue of Limits of Spaces, Section 3. There we defined what it means
for a transformation of functors on Sch to be limit preserving (we suggest looking at the
characterization in Limits of Spaces, Lemma 3.2). In Criteria for Representability, Section 5
we defined the notion “limit preserving on objects”. Recall that in Artin’s Axioms, Section
11 we have defined what it means for a category fibred in groupoids over Sch to be limit
preserving. Combining these we get the following notion.

Definition 3.1. Let S be a scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . We say f is limit preserving if for every directed
limit U = limUi of affine schemes over S the diagram

colimXUi //

f

��

XU

f

��
colimYUi // YU

of fibre categories is 2-cartesian.

Lemma 3.2. Let S be a scheme. Let f : X → Y be a 1-morphism of categories fibred
in groupoids over (Sch/S)fppf . If f is limit preserving (Definition 3.1), then f is limit
preserving on objects (Criteria for Representability, Section 5).

Proof. If for every directed limit U = limUi of affine schemes over U , the functor

colimXUi −→ (colimYUi)×YU XU
is essentially surjective, then f is limit preserving on objects. �

Lemma 3.3. Let p : X → Y and q : Z → Y be 1-morphisms of categories fibred in
groupoids over (Sch/S)fppf . If p : X → Y is limit preserving, then so is the base change
p′ : X ×Y Z → Z of p by q.

6911
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Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S. For each i we have

(X ×Y Z)Ui = XUi ×YUi ZUi
Filtered colimits commute with 2-fibre products of categories (details omitted) hence if p
is limit preserving we get

colim(X ×Y Z)Ui = colimXUi ×colim YUi colimZUi
= XU ×YU colimYUi ×colim YUi colimZUi
= XU ×YU colimZUi
= XU ×YU ZU ×ZU colimZUi
= (X ×Y Z)U ×ZU colimZUi

as desired. �

Lemma 3.4. Let p : X → Y and q : Y → Z be 1-morphisms of categories fibred in
groupoids over (Sch/S)fppf . If p and q are limit preserving, then so is the composition
q ◦ p.

Proof. This is formal. Let U = limi∈I Ui be the directed limit of affine schemes Ui
over S. If p and q are limit preserving we get

colimXUi = XU ×YU colimYUi
= XU ×YU YU ×ZU colimZUi
= XU ×ZU colimZUi

as desired. �

Lemma 3.5. Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . If p is representable by algebraic spaces, then the following are equivalent:

(1) p is limit preserving,
(2) p is limit preserving on objects, and
(3) p is locally of finite presentation (see Algebraic Stacks, Definition 10.1).

Proof. In Criteria for Representability, Lemma 5.3 we have seen that (2) and (3) are
equivalent. Thus it suffices to show that (1) and (2) are equivalent. One direction we saw
in Lemma 3.2. For the other direction, let U = limi∈I Ui be the directed limit of affine
schemes Ui over S. We have to show that

colimXUi −→ XU ×YU colimYUi
is an equivalence. Since we are assuming (2) we know that it is essentially surjective. Hence
we need to prove it is fully faithful. Since p is faithful on fibre categories (Algebraic Stacks,
Lemma 9.2) we see that the functor is faithful. Let xi and x′

i be objects in the fibre category
ofX over Ui. The functor above sends xi to (xi|U , p(xi), can) where can is the canonical
isomorphism p(xi|U )→ p(xi)|U . Thus we assume given a morphism

(α, βi) : (xi|U , p(xi), can) −→ (x′
i|U , p(x′

i), can)
in the category of the right hand side of the first displayed arrow of this proof. Our task
is to produce an i′ ≥ i and a morphism xi|Ui′ → x′

i|Ui′ which maps to (α, βi|Ui′ ).

Set yi = p(xi) and y′
i = p(x′

i). By (Algebraic Stacks, Lemma 9.2) the functor

Xyi : (Sch/Ui)opp → Sets, V/Ui 7→ {(x, φ) | x ∈ Ob(XV ), φ : f(x)→ yi|V }/ ∼=
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is an algebraic space over Ui and the same is true for the analogously defined functor
Xy′

i
. Since (2) is equivalent to (3) we see that Xy′

i
is locally of finite presentation over

Ui. Observe that (xi, id) and (x′
i, id) define Ui-valued points of Xyi and Xy′

i
. There is a

transformation of functors

βi : Xyi → Xy′
i
, (x/V, φ) 7→ (x/V, βi|V ◦ φ)

in other words, this is a morphism of algebraic spaces over Ui. We claim that

U

��

// Ui

(x′
i,id)

��
Ui

(xi,id)// Xyi

βi // Xy′
i

commutes. Namely, this is equivalent to the condition that the pairs (xi|U , βi|U ) and
(x′
i|U , id) as in the definition of the functor Xy′

i
are isomorphic. And the morphism α :

xi|U → x′
i|U exactly produces such an isomorphism. Arguing backwards the reader sees

that if we can find an i′ ≥ i such that the diagram

Ui′

��

// Ui

(x′
i,id)

��
Ui

(xi,id) // Xyi

βi // Xy′
i

commutes, then we obtain an isomorphism xi|Ui′ → x′
i|Ui′ which is a solution to the

problem posed in the preceding paragraph. However, the diagonal morphism

∆ : Xy′
i
→ Xy′

i
×Ui Xy′

i

is locally of finite presentation (Morphisms of Spaces, Lemma 28.10) hence the fact that
U → Ui equalizes the two morphisms to Xy′

i
, means that for some i′ ≥ i the morphism

Ui′ → Ui equalizes the two morphisms, see Limits of Spaces, Proposition 3.10. �

Lemma 3.6. Let p : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . The following are equivalent

(1) the diagonal ∆ : X → X ×Y X is limit preserving, and
(2) for every directed limit U = limUi of affine schemes over S the functor

colimXUi −→ XU ×YU colimYUi
is fully faithful.

In particular, if p is limit preserving, then ∆ is too.

Proof. Let U = limUi be a directed limit of affine schemes over S. We claim that
the functor

colimXUi −→ XU ×YU colimYUi
is fully faithful if and only if the functor

colimXUi −→ XU ×(X ×Y X )U colim(X ×Y X )Ui
is an equivalence. This will prove the lemma. Since (X ×Y X )U = XU ×YU XU and
(X ×Y X )Ui = XUi ×YUi XUi this is a purely category theoretic assertion which we
discuss in the next paragraph.
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Let I be a filtered index category. Let (Ci) and (Di) be systems of groupoids over I . Let
p : (Ci) → (Di) be a map of systems of groupoids over I . Suppose we have a functor
p : C → D of groupoids and functors f : colim Ci → C and g : colimDi → D fitting into
a commutative diagram

colim Ci
p

��

f
// C

p

��
colimDi

g // D
Then we claim that

A : colim Ci −→ C ×D colimDi
is fully faithful if and only if the functor

B : colim Ci −→ C ×∆,C×DC,f×gf colim(Ci ×Di Ci)
is an equivalence. Set C′ = colim Ci and D′ = colimDi. Since 2-fibre products commute
with filtered colimits we see that A and B become the functors

A′ : C′ → C ×D D′ and B′ : C′ −→ C ×∆,C×DC,f×gf (C′ ×D′ C′)
Thus it suffices to prove that if

C′

p

��

f
// C

p

��
D′ g // D

is a commutative diagram of groupoids, then A′ is fully faithful if and only if B′ is an
equivalence. This follows from Categories, Lemma 35.10 (with trivial, i.e., punctual, base
category) because

C ×∆,C×DC,f×gf (C′ ×D′ C′) = C′ ×A′,C×DD′,A′ C′

This finishes the proof. �

Lemma 3.7. Let S be a scheme. Let X be an algebraic stack over S. If X → S is
locally of finite presentation, then X is limit preserving in the sense of Artin’s Axioms,
Definition 11.1 (equivalently: the morphism X → S is limit preserving).

Proof. Choose a surjective smooth morphism U → X for some scheme U . Then
U → S is locally of finite presentation, see Morphisms of Stacks, Section 27. We can write
X = [U/R] for some smooth groupoid in algebraic spaces (U,R, s, t, c), see Algebraic
Stacks, Lemma 16.2. Since U is locally of finite presentation over S it follows that the
algebraic space R is locally of finite presentation over S. Recall that [U/R] is the stack
in groupoids over (Sch/S)fppf obtained by stackyfying the category fibred in groupoids
whose fibre category over T is the groupoid (U(T ), R(T ), s, t, c). Since U and R are
limit preserving as functors (Limits of Spaces, Proposition 3.10) this category fibred in
groupoids is limit preserving. Thus it suffices to show that fppf stackyfication preserves
the property of being limit preserving. This is true (hint: use Topologies, Lemma 13.2).
However, we give a direct proof below using that in this case we know what the stackyfi-
cation amounts to.

Let T = limTλ be a directed limit of affine schemes over S. We have to show that the
functor

colim[U/R]Tλ −→ [U/R]T
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is an equivalence of categories. Let us show this functor is essentially surjective. Let x ∈
Ob([U/R]T ). In Groupoids in Spaces, Lemma 24.1 the reader finds a description of the
category [U/R]T . In particular x corresponds to an fppf covering {Ti → T}i∈I and a
[U/R]-descent datum (ui, rij) relative to this covering. After refining this covering we
may assume it is a standard fppf covering of the affine scheme T . By Topologies, Lemma
13.2 we may choose a λ and a standard fppf covering {Tλ,i → Tλ}i∈I whose base change
to T is equal to {Ti → T}i∈I . For each i, after increasing λ, we can find a uλ,i : Tλ,i → U
whose composition with Ti → Tλ,i is the given morphism ui (this is where we use that
U is limit preserving). Similarly, for each i, j , after increasing λ, we can find a rλ,ij :
Tλ,i ×Tλ Tλ,j → R whose composition with Tij → Tλ,ij is the given morphism rij (this
is where we use that R is limit preserving). After increasing λ we can further assume that

s ◦ rλ,ij = uλ,i ◦ pr0 and t ◦ rλ,ij = uλ,j ◦ pr1,

and
c ◦ (rλ,jk ◦ pr12, rλ,ij ◦ pr01) = rλ,ik ◦ pr02.

In other words, we may assume that (uλ,i, rλ,ij) is a [U/R]-descent datum relative to the
covering {Tλ,i → Tλ}i∈I . Then we obtain a corresponding object of [U/R] over Tλ whose
pullback toT is isomorphic tox as desired. The proof of fully faithfulness works in exactly
the same way using the description of morphisms in the fibre categories of [U/T ] given in
Groupoids in Spaces, Lemma 24.1. �

Proposition 3.8. Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is limit preserving,
(2) f is limit preserving on objects, and
(3) f is locally of finite presentation.

Proof. Assume (3). Let T = limTi be a directed limit of affine schemes. Consider
the functor

colimXTi −→ XT ×YT colimYTi
Let (x, yi, β) be an object on the right hand side, i.e., x ∈ Ob(XT ), yi ∈ Ob(YTi), and
β : f(x)→ yi|T in YT . Then we can consider (x, yi, β) as an object of the algebraic stack
Xyi = X×Y,yiTi over T . SinceXyi → Ti is locally of finite presentation (as a base change
of f ) we see that it is limit preserving by Lemma 3.7. This means that (x, yi, β) comes from
an object over Ti′ for some i′ ≥ i and unwinding the definitions we find that (x, yi, β)
is in the essential image of the displayed functor. In other words, the displayed functor
is essentially surjective. Another formulation is that this means f is limit preserving on
objects. Now we apply this to the diagonal ∆ of f . Namely, by Morphisms of Stacks,
Lemma 27.7 the morphism ∆ is locally of finite presentation. Thus the argument above
shows that ∆ is limit preserving on objects. By Lemma 3.5 this implies that ∆ is limit
preserving. By Lemma 3.6 we conclude that the displayed functor above is fully faithful.
Thus it is an equivalence (as we already proved essential surjectivity) and we conclude that
(1) holds.
The implication (1) ⇒ (2) is trivial. Assume (2). Choose a scheme V and a surjective
smooth morphism V → Y . By Criteria for Representability, Lemma 5.1 the base change
X ×Y V → V is limit preserving on objects. Choose a scheme U and a surjective smooth
morphism U → X ×Y V . Since a smooth morphism is locally of finite presentation, we
see that U → X ×Y V is limit preserving (first part of the proof). By Criteria for Repre-
sentability, Lemma 5.2 we find that the compositionU → V is limit preserving on objects.



6916 102. LIMITS OF ALGEBRAIC STACKS

We conclude that U → V is locally of finite presentation, see Criteria for Representabil-
ity, Lemma 5.3. This is exactly the condition that f is locally of finite presentation, see
Morphisms of Stacks, Definition 27.1. �

4. Descending properties

This section is the analogue of Limits, Section 4.

Situation 4.1. Let Y = limi∈I Yi be a limit of a directed system of algebraic spaces
with affine transition morphisms. We assume thatXi is quasi-compact and quasi-separated
for all i ∈ I . We also choose an element 0 ∈ I .

Lemma 4.2. In Situation 4.1 assume thatX0 → Y0 is a morphism from algebraic stack
to Y0. Assume X0 is quasi-compact and quasi-separated. If Y ×Y0 X0 → Y is separated,
then Yi ×Y0 X0 → Yi is separated for all sufficiently large i ∈ I .

Proof. Write X = Y ×Y0 X0 and Xi = Yi×Y0 X0. Choose an affine scheme U0 and
a surjective smooth morphismU0 → X0. SetU = Y ×Y0 U0 andUi = Yi×Y0 U0. ThenU
andUi are affine andU → X andUi → Xi are smooth and surjective. SetR0 = U0×X0U0.
Set R = Y ×Y0 R0 and Ri = Yi ×Y0 R0. Then R = U ×X U and Ri = Ui ×Xi Ui.
With this notation note that X → Y is separated implies that R→ U ×Y U is proper as
the base change ofX → X×Y X byU×Y U → X×Y X . Conversely, we see thatXi → Yi
is separated if Ri → Ui ×Yi Ui is proper because Ui ×Yi Ui → Xi ×Yi Xi is surjective and
smooth, see Properties of Stacks, Lemma 3.3. Observe that R0 → U0 ×Y0 U0 is locally of
finite type and that R0 is quasi-compact and quasi-separated. By Limits of Spaces, Lemma
6.13 we see thatRi → Ui×Yi Ui is proper for large enough iwhich finishes the proof. �

5. Descending relative objects

This section is the analogue of Limits of Spaces, Section 7.

Lemma 5.1. Let I be a directed set. Let (Xi, fii′) be an inverse system of algebraic
spaces over I . Assume

(1) the morphisms fii′ : Xi → Xi′ are affine,
(2) the spaces Xi are quasi-compact and quasi-separated.

Let X = limXi. If X is an algebraic stack of finite presentation over X , then there exists
an i ∈ I and an algebraic stack Xi of finite presentation over Xi with X ∼= Xi ×Xi X as
algebraic stacks over X .

Proof. By Morphisms of Stacks, Definition 27.1 the morphism X → X is quasi-
compact, locally of finite presentation, and quasi-separated. SinceX is quasi-compact and
X → X is quasi-compact, we see thatX is quasi-compact (Morphisms of Stacks, Definition
7.2). Hence we can find an affine scheme U and a surjective smooth morphism U → X
(Properties of Stacks, Lemma 6.2). Set R = U ×X U . We obtain a smooth groupoid in
algebraic spaces (U,R, s, t, c) over X such that X = [U/R], see Algebraic Stacks, Lemma
16.2. Since X → X is quasi-separated and X is quasi-separated we see that X is quasi-
separated (Morphisms of Stacks, Lemma 4.10). Thus R → U × U is quasi-compact and
quasi-separated (Morphisms of Stacks, Lemma 4.7) and hence R is a quasi-separated and
quasi-compact algebraic space. On the other hand U → X is locally of finite presentation
and hence alsoR→ X is locally of finite presentation (because s : R→ U is smooth hence
locally of finite presentation). Thus (U,R, s, t, c) is a groupoid object in the category of
algebraic spaces which are of finite presentation over X . By Limits of Spaces, Lemma
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7.1 there exists an i and a groupoid in algebraic spaces (Ui, Ri, si, ti, ci) over Xi whose
pullback to X is isomorphic to (U,R, s, t, c). After increasing i we may assume that si
and ti are smooth, see Limits of Spaces, Lemma 6.3. The quotient stack Xi = [Ui/Ri] is an
algebraic stack (Algebraic Stacks, Theorem 17.3).

There is a morphism [U/R] → [Ui/Ri], see Groupoids in Spaces, Lemma 21.1. We claim
that combined with the morphisms [U/R]→ X and [Ui/Ri]→ Xi (Groupoids in Spaces,
Lemma 20.2) we obtain an isomorphism (i.e., equivalence)

[U/R] −→ [Ui/Ri]×Xi X
The corresponding map

[U/pR] −→ [Ui/pRi]×Xi X
on the level of “presheaves of groupoids” as in Groupoids in Spaces, Equation (20.0.1) is
an isomorphism. Thus the claim follows from the fact that stackification commutes with
fibre products, see Stacks, Lemma 8.4. �

6. Finite type closed in finite presentation

This section is the analogue of Limits of Spaces, Section 11.

Lemma 6.1. Let f : X → Y be a morphism from an algebraic stack to an algebraic
space. Assume:

(1) f is of finite type and quasi-separated,
(2) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed immersion
X → X ′ of algebraic stacks over Y .

Proof. Write Y = limi∈I Yi as a limit of algebraic spaces over a directed set I with
affine transition morphisms and with Yi Noetherian, see Limits of Spaces, Proposition 8.1.
We will use the material from Limits of Spaces, Section 23.

Choose a presentationX = [U/R]. Denote (U,R, s, t, c, e, i) the corresponding groupoid
in algebraic spaces over Y . We may and do assume U is affine. Then U , R, R×s,U,t R are
quasi-separated algebraic spaces of finite type over Y . We have two morpisms s, t : R →
U , three morphisms c : R×s,U,t R→ R, pr1 : R×s,U,t R→ R, pr2 : R×s,U,t R→ R, a
morphism e : U → R, and finally a morphism i : R → R. These morphisms satisfy a list
of axioms which are detailed in Groupoids, Section 13.

According to Limits of Spaces, Remark 23.5 we can find an i0 ∈ I and inverse systems
(1) (Ui)i≥i0 ,
(2) (Ri)i≥i0 ,
(3) (Ti)i≥i0

over (Yi)i≥i0 such that U = limi≥i0 Ui, R = limi≥i0 Ri, and R ×s,U,t R = limi≥i0 Ti
and such that there exist morphisms of systems

(1) (si)i≥i0 : (Ri)i≥i0 → (Ui)i≥i0 ,
(2) (ti)i≥i0 : (Ri)i≥i0 → (Ui)i≥i0 ,
(3) (ci)i≥i0 : (Ti)i≥i0 → (Ri)i≥i0 ,
(4) (pi)i≥i0 : (Ti)i≥i0 → (Ri)i≥i0 ,
(5) (qi)i≥i0 : (Ti)i≥i0 → (Ri)i≥i0 ,
(6) (ei)i≥i0 : (Ui)i≥i0 → (Ri)i≥i0 ,
(7) (ii)i≥i0 : (Ri)i≥i0 → (Ri)i≥i0



6918 102. LIMITS OF ALGEBRAIC STACKS

with s = limi≥i0 si, t = limi≥i0 ti, c = limi≥i0 ci, pr1 = limi≥i0 pi, pr2 = limi≥i0 qi,
e = limi≥i0 ei, and i = limi≥i0 ii. By Limits of Spaces, Lemma 23.7 we see that we may
assume that si and ti are smooth (this may require increasing i0). By Limits of Spaces,
Lemma 23.6 we may assume that the maps R→ U ×Ui,si Ri given by s and R→ Ri and
R → U ×Ui,ti Ri given by t and R → Ri are isomorphisms for all i ≥ i0. By Limits of
Spaces, Lemma 23.9 we see that we may assume that the diagrams

Ti qi
//

pi

��

Ri

ti

��
Ri

si // Ui

are cartesian. The uniqueness of Limits of Spaces, Lemma 23.4 then guarantees that for
a sufficiently large i the relations between the morphisms s, t, c, e, i mentioned above are
satisfied by si, ti, ci, ei, ii. Fix such an i.

It follows that (Ui, Ri, si, ti, ci, ei, ii) is a smooth groupoid in algebraic spaces over Yi.
HenceXi = [Ui/Ri] is an algebraic stack (Algebraic Stacks, Theorem 17.3). The morphism
of groupoids

(U,R, s, t, c, e, i)→ (Ui, Ri, si, ti, ci, ei, ii)
over Y → Yi determines a commutative diagram

X

��

// Xi

��
Y // Yi

(Groupoids in Spaces, Lemma 21.1). We claim that the morphism X → Y ×Yi Xi is a
closed immersion. The claim finishes the proof because the algebraic stack Xi → Yi is of
finite presentation by construction. To prove the claim, note that the left diagram

U

��

// Ui

��
X // Xi

U

��

// Y ×Yi Ui

��
X // Y ×Yi Xi

is cartesian by Groupoids in Spaces, Lemma 25.3 and the results mentioned above. Hence
the right commutative diagram is cartesian too. Then the desired result follows from the
fact thatU → Y ×YiUi is a closed immersion by construction of the inverse system (Ui) in
Limits of Spaces, Lemma 23.3, the fact that Y ×Yi Ui → Y ×Yi Xi is smooth and surjective,
and Properties of Stacks, Lemma 9.4. �

There is a version for separated algebraic stacks.

Lemma 6.2. Let f : X → Y be a morphism from an algebraic stack to an algebraic
space. Assume:

(1) f is of finite type and separated,
(2) Y is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ of algebraic stacks over Y .
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Proof. First we use exactly the same procedure as in the proof of Lemma 6.1 (and
we borrow its notation) to construct the embedding X → X ′ as a morphism X → X ′ =
Y ×Yi Xi with Xi = [Ui/Ri]. Thus it is enough to show that Xi → Yi is separated for
sufficiently large i. In other words, it is enough to show that Xi → Xi ×Yi Xi is proper
for i sufficiently large. Since the morphism Ui ×Yi Ui → Xi ×Yi Xi is surjective and
smooth and since Ri = Xi ×Xi×YiXi Ui ×Yi Ui it is enough to show that the morphism
(si, ti) : Ri → Ui×Yi Ui is proper for i sufficiently large, see Properties of Stacks, Lemma
3.3. We prove this in the next paragraph.

Observe that U ×Y U → Y is quasi-separated and of finite type. Hence we can use the
construction of Limits of Spaces, Remark 23.5 to find an i1 ∈ I and an inverse system
(Vi)i≥i1 with U ×Y U = limi≥i1 Vi. By Limits of Spaces, Lemma 23.9 for i sufficiently
large the functoriality of the construction applied to the projections U ×Y U → U gives
closed immersions

Vi → Ui ×Yi Ui

(There is a small mismatch here because in truth we should replace Yi by the scheme the-
oretic image of Y → Yi, but clearly this does not change the fibre product.) On the other
hand, by Limits of Spaces, Lemma 23.8 the functoriality applied to the proper morphism
(s, t) : R→ U×Y U (here we use thatX is separated) leads to morphismsRi → Vi which
are proper for large enough i. Composing these morphisms we obtain a proper morphisms
Ri → Ui ×Yi Ui for all i large enough. The functoriality of the construction of Limits of
Spaces, Remark 23.5 shows that this is the morphism is the same as (si, ti) for large enough
i and the proof is complete. �

7. Universally closed morphisms

This section is the analogue of Limits of Spaces, Section 20.

Lemma 7.1. Let g : Z → Y be a morphism of affine schemes. Let f : X → Y be
a quasi-compact morphism of algebraic stacks. Let z ∈ Z and let T ⊂ |X ×Y Z| be a
closed subset with z 6∈ Im(T → |Z|). If X is quasi-compact, then there exist an open
neighbourhood V ⊂ Z of z, a commutative diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that

(1) Z ′ is an affine scheme of finite presentation over Y ,
(2) with z′ = a(z) we have z′ 6∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X ×Y V | maps into T ′ via |X ×Y V | → |X ×Y Z ′|.

Proof. We will deduce this from the corresponding result for morphisms of schemes.
SinceX is quasi-compact, we may choose an affine schemeW and a surjective smooth mor-
phism W → X . Let TW ⊂ |W ×Y Z| be the inverse image of T . Then z is not in the
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image of TW . By the schemes case (Limits, Lemma 14.1) we can find an open neighbour-
hood V ⊂ Z of z a commutative diagram of schemes

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |W ×Y Z ′| such that
(1) Z ′ is an affine scheme of finite presentation over Y ,
(2) with z′ = a(z) we have z′ 6∈ Im(T ′ → |Z ′|), and
(3) T1 = TW ∩ |W ×Y V | maps into T ′ via |W ×Y V | → |W ×Y Z ′|.

The commutative diagram

W ×Y Z

��

W ×Y Voo
a1

//

c

��

W ×Y Z ′

q

��
X ×Y Z X ×Y Voo a2 // X ×Y Z ′

has cartesian squares and the vertical maps are surjective, smooth, and a fortiori open.
Looking at the left hand square we see that T1 = TW ∩ |W ×Y V | is the inverse image of
T2 = T∩|X×Y V | by c. By Properties of Stacks, Lemma 4.3 we get a1(T1) = q−1(a2(T2)).
By Topology, Lemma 6.4 we get

q−1
(
a2(T2)

)
= q−1(a2(T2)) = a1(T1) ⊂ T ′

As q is surjective the image of a2(T2)→ |Z ′| does not contain z′ since the same is true for
T ′. Thus we can take the diagram with Z ′, V, a, b above and the closed subset a2(T2) ⊂
|X ×Y Z ′| as a solution to the problem posed by the lemma. �

Lemma 7.2. Let f : X → Y be a quasi-compact morphism of algebraic stacks. The
following are equivalent

(1) f is universally closed,
(2) for every morphism Z → Y which is locally of finite presentation and where Z

is an affine scheme the map |X ×Y Z| → |Z| is closed, and
(3) there exists a scheme V and a surjective smooth morphism V → Y such that
|An × (X ×Y V )| → |An × V | is closed for all n ≥ 0.

Proof. It is clear that (1) implies (2).

Assume (2). Choose a scheme V which is the disjoint union of affine schemes and a sur-
jective smooth morphism V → Y . In order to show that f is universally closed, it suffices
to show that the base change X ×Y V → V of f is universally closed, see Morphisms of
Stacks, Lemma 13.5. Note that property (2) holds for this base change. Hence in order to
prove that (2) implies (1) we may assume Y = Y is an affine scheme.

Assume (2) and assumeY = Y is an affine scheme. If f is not universally closed, then there
exists an affine scheme Z over Y such that |X ×Y Z| → |Z| is not closed, see Morphisms
of Stacks, Lemma 13.5. This means that there exists some closed subset T ⊂ |X ×Y Z|
such that Im(T → |Z|) is not closed. Pick z ∈ |Z| in the closure of the image of T but not
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in the image. Apply Lemma 7.1. We find an open neighbourhood V ⊂ Z , a commutative
diagram

V

��

a
// Z ′

b

��
Z

g // Y,

and a closed subset T ′ ⊂ |X ×Y Z ′| such that
(1) Z ′ is an affine scheme of finite presentation over Y ,
(2) with z′ = a(z) we have z′ 6∈ Im(T ′ → |Z ′|), and
(3) the inverse image of T in |X ×Y V | maps into T ′ via |X ×Y V | → |X ×Y Z ′|.

We claim that z′ is in the closure of Im(T ′ → |Z ′|). This implies that |X ×Y Z ′| → |Z ′|
is not closed and this is absurd as we assumed (2), in other words, the claim shows that (2)
implies (1). To see the claim is true we contemplate the following commutative diagram

X ×Y Z

��

X ×Y Voo

��

// X ×Y Z ′

��
Z Voo a // Z ′

Let TV ⊂ |X ×Y V | be the inverse image of T . By Properties of Stacks, Lemma 4.3 the
image of TV in |V | is the inverse image of the image of T in |Z|. Then since z is in the
closure of the image of T → |Z| and since |V | → |Z| is open, we see that z is in the closure
of the image of TV → |V |. Since the image of TV in |X ×Y Z ′| is contained in |T ′| it
follows immediately that z′ = a(z) is in the closure of the image of T ′.
It is clear that (1) implies (3). Let V → Y be as in (3). If we can show that X ×Y V → V
is universally closed, then f is universally closed by Morphisms of Stacks, Lemma 13.5.
Thus it suffices to show that f : X → Y satisfies (2) if f is a quasi-compact morphism of
algebraic stacks, Y = Y is a scheme, and |An × X| → |An × Y | is closed for all n. Let
Z → Y be locally of finite presentation where Z is an affine scheme. We have to show the
map |X ×Y Z| → |Z| is closed. Since Y is a scheme, Z is affine, and Z → Y is locally of
finite presentation we can find an immersion Z → An × Y , see Morphisms, Lemma 39.2.
Consider the cartesian diagram

X ×Y Z

��

// An ×X

��
Z // An × Y

inducing the
cartesian square

|X ×Y Z|

��

// |An ×X|

��
|Z| // |An × Y |

of topological spaces whose horizontal arrows are homeomorphisms onto locally closed
subsets (Properties of Stacks, Lemma 9.6). Thus every closed subset T of |X ×Y Z| is the
pullback of a closed subset T ′ of |An × Y |. Since the assumption is that the image of T ′

in |An ×X| is closed we conclude that the image of T in |Z| is closed as desired. �
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CHAPTER 103

Cohomology of Algebraic Stacks

1. Introduction

In this chapter we write about cohomology of algebraic stacks. This means in particu-
lar cohomology of quasi-coherent sheaves, i.e., we prove analogues of the results in the
chapters entitled “Cohomology of Schemes” and “Cohomology of Algebraic Spaces”. The
results in this chapter are different from those in [?] mainly because we consistently use
the “big sites”. Before reading this chapter please take a quick look at the chapter “Sheaves
on Algebraic Stacks” in order to become familiar with the terminology introduced there,
see Sheaves on Stacks, Section 1.

2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Properties of
Stacks, Section 2.

3. Notation

Different topologies. If we indicate an algebraic stack by a calligraphic letter, such as
X ,Y,Z , then the notation XZar,Xétale,Xsmooth,Xsyntomic,Xfppf indicates the site in-
troduced in Sheaves on Stacks, Definition 4.1. (Think “big site”.) Correspondingly the
structure sheaf of X is a sheaf on Xfppf . On the other hand, algebraic spaces and schemes
are usually indicated by roman capitals, such as X,Y, Z , and in this case Xétale indicates
the small étale site of X (as defined in Topologies, Definition 4.8 or Properties of Spaces,
Definition 18.1). It seems that the distinction should be clear enough.

The default topology is the fppf topology. Hence we will sometimes say “sheaf on X ” or
“sheaf ofOX -modules” when we mean sheaf on Xfppf or object of Mod(Xfppf ,OX ).

If f : X → Y is a morphism of algebraic stacks, then the functors f∗ and f−1 defined
on presheaves preserves sheaves for any of the topologies mentioned above. In particular
when we discuss the pushforward or pullback of a sheaf we don’t have to mention which
topology we are working with. The same isn’t true when we compute cohomology groups
and/or higher direct images. In this case we will always mention which topology we are
working with.

Suppose that f : X → Y is a morphism from an algebraic spaceX to an algebraic stack Y .
Let G be a sheaf on Yτ for some topology τ . In this case f−1G is a sheaf for the τ topology
on SX (the algebraic stack associated to X) because (by our conventions) f really is a 1-
morphism f : SX → Y . If τ = étale or stronger, then we write f−1G|Xétale to denote the
restriction to the étale site of X , see Sheaves on Stacks, Section 22. If G is an OX -module
we sometimes write f∗G and f∗G|Xétale instead.
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4. Pullback of quasi-coherent modules

Let f : X → Y be a morphism of algebraic stacks. It is a very general fact that quasi-
coherent modules on ringed topoi are compatible with pullbacks. In particular the pull-
back f∗ preserves quasi-coherent modules and we obtain a functor

f∗ : QCoh(OY) −→ QCoh(OX ),
see Sheaves on Stacks, Lemma 11.2. In general this functor isn’t exact, but if f is flat then
it is.

Lemma 4.1. If f : X → Y is a flat morphism of algebraic stacks then f∗ : QCoh(OY)→
QCoh(OX ) is an exact functor.

Proof. Choose a scheme V and a surjective smooth morphism V → Y . Choose a
scheme U and a surjective smooth morphism U → V ×Y X . Then U → X is still smooth
and surjective as a composition of two such morphisms. From the commutative diagram

U

��

f ′
// V

��
X

f // Y
we obtain a commutative diagram

QCoh(OU ) QCoh(OV )oo

QCoh(OX )

OO

QCoh(OY)oo

OO

of abelian categories. Our proof that the bottom two categories in this diagram are abelian
showed that the vertical functors are faithful exact functors (see proof of Sheaves on
Stacks, Lemma 15.1). Since f ′ is a flat morphism of schemes (by our definition of flat mor-
phisms of algebraic stacks) we see that (f ′)∗ is an exact functor on quasi-coherent sheaves
on V . Thus we win. �

Lemma 4.2. LetX be an algebraic stack. Let I be a set and for i ∈ I let xi : Ui → X be
an object of X . Assume that xi is flat and

∐
xi :

∐
Ui → X is surjective. Let ϕ : F → G

be an arrow of QCoh(OX ). Denoteϕi the restriction ofϕ to (Ui)étale. Thenϕ is injective,
resp. surjective, resp. an isomorphism if and only if each ϕi is so.

Proof. Choose a scheme U and a surjective smooth morphism x : U → X . We may
and do think of x as an object of X . This produces a presentation X = [U/R] for some
groupoid in spaces (U,R, s, t, c) and correspondingly an equivalence

QCoh(OX ) = QCoh(U,R, s, t, c)
See discussion in Sheaves on Stacks, Section 15. The structure of abelian category on the
right hand is such that ϕ is injective, resp. surjective, resp. an isomorphism if and only if
the restriction ϕ|Uétale is so, see Groupoids in Spaces, Lemma 12.6.
For each i we choose an étale covering {Wi,j → V ×X Ui}j∈Ji by schemes. Denote
gi,j : Wi,j → V and hi,j : Wi,j → Ui the obvious arrows. Each of the morphisms of
schemes gi,j : Wi,j → U is flat and they are jointly surjective. Similarly, for each fixed i
the morphisms of schemes hi,j : Wi,j → Ui are flat and jointly surjective. By Sheaves on
Stacks, Lemma 12.2 the pullback by (gi,j)small of the restriction ϕ|Uétale is the restriction
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ϕ|(Wi,j)étale and the pullback by (hi,j)small of the restriction ϕ|(Ui)étale is the restriction
ϕ|(Wi,j)étale . Pullback of quasi-coherent modules by a flat morphism of schemes is exact
and pullback by a jointly surjective family of flat morphisms of schemes reflects injective,
resp. surjective, resp. bijective maps of quasi-coherent modules (in fact this holds for all
modules as we can check exactness at stalks). Thus we see

ϕ|Uétale injective⇔ ϕ|(Wi,j)étale injective for all i, j ⇔ ϕ|(Ui)étale injective for all i

This finishes the proof. �

5. Higher direct images of types of modules

The following lemma is the basis for our understanding of higher direct images of certain
types of sheaves of modules. There are two versions: one for the étale topology and one
for the fppf topology.

Lemma 5.1. LetM be a rule which associates to every algebraic stackX a subcategory
MX of Mod(Xétale,OX ) such that

(1) MX is a weak Serre subcategory of Mod(Xétale,OX ) (see Homology, Definition
10.1) for all algebraic stacks X ,

(2) for a smooth morphism of algebraic stacks f : Y → X the functor f∗ mapsMX
intoMY ,

(3) if fi : Xi → X is a family of smooth morphisms of algebraic stacks with |X | =⋃
|fi|(|Xi|), then an object F of Mod(Xétale,OX ) is inMX if and only if f∗

i F
is inMXi for all i, and

(4) if f : Y → X is a morphism of algebraic stacks such that X and Y are repre-
sentable by affine schemes, then Rif∗ mapsMY intoMX .

Then for any quasi-compact and quasi-separated morphism f : Y → X of algebraic stacks
Rif∗ mapsMY intoMX . (Higher direct images computed in étale topology.)

Proof. Let f : Y → X be a quasi-compact and quasi-separated morphism of algebraic
stacks and let F be an object of MY . Choose a surjective smooth morphism U → X
where U is representable by a scheme. By Sheaves on Stacks, Lemma 21.3 taking higher
direct images commutes with base change. Assumption (2) shows that the pullback of
F to U ×X Y is in MU×X Y because the projection U ×X Y → Y is smooth as a base
change of a smooth morphism. Hence (3) shows we may replace Y → X by the projection
U ×X Y → U . In other words, we may assume that X is representable by a scheme. Using
(3) once more, we see that the question is Zariski local on X , hence we may assume that X
is representable by an affine scheme. Since f is quasi-compact this implies that also Y is
quasi-compact. Thus we may choose a surjective smooth morphism g : V → Y where V
is representable by an affine scheme.

In this situation we have the spectral sequence

Ep,q2 = Rq(f ◦ gp)∗g
∗
pF ⇒ Rp+qf∗F

of Sheaves on Stacks, Proposition 21.1. Recall that this is a first quadrant spectral sequence
hence we may use the last part of Homology, Lemma 25.3. Note that the morphisms

gp : Vp = V ×Y . . .×Y V −→ Y

are smooth as compositions of base changes of the smooth morphism g. Thus the sheaves
g∗
pF are inMVp by (2). Hence it suffices to prove that the higher direct images of objects
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ofMVp under the morphisms
Vp = V ×Y . . .×Y V −→ X

are inMX . The algebraic stacks Vp are quasi-compact and quasi-separated by Morphisms
of Stacks, Lemma 7.8. Of course eachVp is representable by an algebraic space (the diagonal
of the algebraic stack Y is representable by algebraic spaces). This reduces us to the case
where Y is representable by an algebraic space and X is representable by an affine scheme.
In the situation where Y is representable by an algebraic space and X is representable
by an affine scheme, we choose anew a surjective smooth morphism V → Y where V is
representable by an affine scheme. Going through the argument above once again we once
again reduce to the morphisms Vp → X . But in the current situation the algebraic stacks
Vp are representable by quasi-compact and quasi-separated schemes (because the diagonal
of an algebraic space is representable by schemes).
Thus we may assume Y is representable by a scheme and X is representable by an affine
scheme. Choose (again) a surjective smooth morphism V → Y where V is representable
by an affine scheme. In this case all the algebraic stacks Vp are representable by separated
schemes (because the diagonal of a scheme is separated).
Thus we may assume Y is representable by a separated scheme and X is representable by
an affine scheme. Choose (yet again) a surjective smooth morphism V → Y where V is
representable by an affine scheme. In this case all the algebraic stacks Vp are representable
by affine schemes (because the diagonal of a separated scheme is a closed immersion hence
affine) and this case is handled by assumption (4). This finishes the proof. �

Here is the version for the fppf topology.

Lemma 5.2. LetM be a rule which associates to every algebraic stackX a subcategory
MX of Mod(OX ) such that

(1) OX is a weak Serre subcategory of Mod(OX ) for all algebraic stacks X ,
(2) for a smooth morphism of algebraic stacks f : Y → X the functor f∗ mapsMX

intoMY ,
(3) if fi : Xi → X is a family of smooth morphisms of algebraic stacks with |X | =⋃

|fi|(|Xi|), then an object F of Mod(OX ) is inMX if and only if f∗
i F is in

MXi for all i, and
(4) if f : Y → X is a morphism of algebraic stacks and X and Y are representable

by affine schemes, then Rif∗ mapsMY intoMX .
Then for any quasi-compact and quasi-separated morphism f : Y → X of algebraic stacks
Rif∗ mapsMY intoMX . (Higher direct images computed in fppf topology.)

Proof. Identical to the proof of Lemma 5.1. �

6. Locally quasi-coherent modules

Let X be an algebraic stack. LetF be a presheaf ofOX -modules. We can ask whether F is
locally quasi-coherent, see Sheaves on Stacks, Definition 12.1. Briefly, this means F is an
OX -module for the étale topology such that for any morphism f : U → X the restriction
f∗F|Uétale is quasi-coherent on Uétale. (The actual definition is slightly different, but
equivalent.) A useful fact is that

LQCoh(OX ) ⊂Mod(Xétale,OX )
is a weak Serre subcategory, see Sheaves on Stacks, Lemma 12.4.
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Lemma 6.1. Let X be an algebraic stack. Let fj : Xj → X be a family of smooth
morphisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules

on Xétale. If each f−1
j F is locally quasi-coherent, then so is F .

Proof. We may replace each of the algebraic stacks Xj by a scheme Uj (using that
any algebraic stack has a smooth covering by a scheme and that compositions of smooth
morphisms are smooth, see Morphisms of Stacks, Lemma 33.2). The pullback of F to
(Sch/Uj)étale is still locally quasi-coherent, see Sheaves on Stacks, Lemma 12.3. Then
f =

∐
fj : U =

∐
Uj → X is a surjective smooth morphism. Let x be an object ofX . By

Sheaves on Stacks, Lemma 19.10 there exists an étale covering {xi → x}i∈I such that each
xi lifts to an object ui of (Sch/U)étale. This just means that x, xi live over schemes V , Vi,
that {Vi → V } is an étale covering, and that xi comes from a morphism ui : Vi → U . The
restriction x∗

iF|Vi,étale is equal to the restriction of f∗F to Vi,étale, see Sheaves on Stacks,
Lemma 9.3. Hence x∗F|Vétale is a sheaf on the small étale site of V which is quasi-coherent
when restricted to Vi,étale for each i. This implies that it is quasi-coherent (as desired), for
example by Properties of Spaces, Lemma 29.6. �

Lemma 6.2. Let f : X → Y be a quasi-compact and quasi-separated morphism of
algebraic stacks. Let F be a locally quasi-coherent OX -module on Xétale. Then Rif∗F
(computed in the étale topology) is locally quasi-coherent on Yétale.

Proof. We will use Lemma 5.1 to prove this. We will check its assumptions (1) –
(4). Parts (1) and (2) follows from Sheaves on Stacks, Lemma 12.4. Part (3) follows from
Lemma 6.1. Thus it suffices to show (4).
Suppose f : X → Y is a morphism of algebraic stacks such thatX andY are representable
by affine schemes X and Y . Choose any object y of Y lying over a scheme V . For clarity,
denote V = (Sch/V )fppf the algebraic stack corresponding to V . Consider the cartesian
diagram

Z

��

g
//

f ′

��

X

f

��
V

y // Y
ThusZ is representable by the schemeZ = V ×Y X and f ′ is quasi-compact and separated
(even affine). By Sheaves on Stacks, Lemma 22.3 we have

Rif∗F|Vétale = Rif ′
small,∗

(
g∗F|Zétale

)
The right hand side is a quasi-coherent sheaf on Vétale by Cohomology of Spaces, Lemma
3.1. This implies the left hand side is quasi-coherent which is what we had to prove. �

Lemma 6.3. Let X be an algebraic stack. Let fj : Xj → X be a family of flat and
locally finitely presented morphisms of algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F

be a sheaf ofOX -modules on Xfppf . If each f−1
j F is locally quasi-coherent, then so is F .

Proof. First, suppose there is a morphism a : U → X which is surjective, flat, locally
of finite presentation, quasi-compact, and quasi-separated such that a∗F is locally quasi-
coherent. Then there is an exact sequence

0→ F → a∗a
∗F → b∗b

∗F
where b is the morphism b : U ×X U → X , see Sheaves on Stacks, Proposition 19.7 and
Lemma 19.10. Moreover, the pullback b∗F is the pullback of a∗F via one of the projection
morphisms, hence is locally quasi-coherent (Sheaves on Stacks, Lemma 12.3). The modules
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a∗a
∗F and b∗b

∗F are locally quasi-coherent by Lemma 6.2. (Note that a∗ and b∗ don’t
care about which topology is used to calculate them.) We conclude thatF is locally quasi-
coherent, see Sheaves on Stacks, Lemma 12.4.
We are going to reduce the proof of the general case the situation in the first paragraph.
Let x be an object of X lying over the scheme U . We have to show that F|Uétale is a
quasi-coherent OU -module. It suffices to do this (Zariski) locally on U , hence we may
assume thatU is affine. By Morphisms of Stacks, Lemma 27.14 there exists an fppf covering
{ai : Ui → U} such that each x ◦ ai factors through some fj . Hence a∗

iF is locally quasi-
coherent on (Sch/Ui)fppf . After refining the covering we may assume {Ui → U}i=1,...,n
is a standard fppf covering. Then x∗F is an fppf module on (Sch/U)fppf whose pullback
by the morphism a : U1 q . . . q Un → U is locally quasi-coherent. Hence by the first
paragraph we see that x∗F is locally quasi-coherent, which certainly implies thatF|Uétale
is quasi-coherent. �

7. Flat comparison maps

Let X be an algebraic stack and let F be an object of Mod(Xétale,OX ). Given an object
x of X lying over the scheme U the restriction F|Uétale is the restriction of x−1F to the
small étale site of U , see Sheaves on Stacks, Definition 9.2. Next, let ϕ : x → x′ be a
morphism of X lying over a morphism of schemes f : U → U ′. Thus a 2-commutative
diagram

U

x
��

f
// U ′

x′
~~

X
Associated to ϕ we obtain a comparison map between restrictions
(7.0.1) cϕ : f∗

small(F|U ′
étale

) −→ F|Uétale
see Sheaves on Stacks, Equation (9.4.1). In this situation we can consider the following
property of F .

Definition 7.1. Let X be an algebraic stack and let F in Mod(Xétale,OX ). We say
F has the flat base change property1 if and only if cϕ is an isomorphism whenever f is
flat.
Here is a lemma with some properties of this notion.

Lemma 7.2. Let X be an algebraic stack. Let F be anOX -module on Xétale.
(1) If F has the flat base change property then for any morphism g : Y → X of

algebraic stacks, the pullback g∗F does too.
(2) The full subcategory of Mod(Xétale,OX ) consisting of modules with the flat

base change property is a weak Serre subcategory.
(3) Let fi : Xi → X be a family of smooth morphisms of algebraic stacks such that
|X | =

⋃
i |fi|(|Xi|). If each f∗

i F has the flat base change property then so does
F .

(4) The category of OX -modules on Xétale with the flat base change property has
colimits and they agree with colimits in Mod(Xétale,OX ).

(5) GivenF and G in Mod(Xétale,OX ) with the flat base change property then the
tensor product F ⊗OX G has the flat base change property.

1This may be nonstandard notation.
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(6) Given F and G in Mod(Xétale,OX ) with F of finite presentation and G hav-
ing the flat base change property then the sheafHomOX (F ,G) has the flat base
change property.

Proof. Let g : Y → X be as in (1). Let y be an object of Y lying over a scheme V . By
Sheaves on Stacks, Lemma 9.3 we have (g∗F)|Vétale = F|Vétale . Moreover a comparison
mapping for the sheaf g∗F on Y is a special case of a comparison map for the sheaf F on
X , see Sheaves on Stacks, Lemma 9.3. In this way (1) is clear.

Proof of (2). We use the characterization of weak Serre subcategories of Homology, Lemma
10.3. Kernels and cokernels of maps between sheaves having the flat base change property
also have the flat base change property. This is clear because f∗

small is exact for a flat
morphism of schemes and since the restriction functors (−)|Uétale are exact (because we
are working in the étale topology). Finally, if 0 → F1 → F2 → F3 → 0 is a short
exact sequence of Mod(Xétale,OX ) and the outer two sheaves have the flat base change
property then the middle one does as well, again because of the exactness of f∗

small and
the restriction functors (and the 5 lemma).

Proof of (3). Let fi : Xi → X be a jointly surjective family of smooth morphisms of alge-
braic stacks and assume each f∗

i F has the flat base change property. By part (1), the defini-
tion of an algebraic stack, and the fact that compositions of smooth morphisms are smooth
(see Morphisms of Stacks, Lemma 33.2) we may assume that each Xi is representable by
a scheme. Let ϕ : x → x′ be a morphism of X lying over a flat morphism a : U → U ′

of schemes. By Sheaves on Stacks, Lemma 19.10 there exists a jointly surjective family of
étale morphisms U ′

i → U ′ such that U ′
i → U ′ → X factors through Xi. Thus we obtain

commutative diagrams

Ui = U ×U ′ U ′
i ai

//

��

U ′
i

x′
i

//

��

Xi

fi

��
U

a // U ′ x′
// X

Note that each ai is a flat morphism of schemes as a base change of a. Denote ψi : xi → x′
i

the morphism of Xi lying over ai with target x′
i. By assumption the comparison maps

cψi : (ai)∗
small

(
f∗
i F|(U ′

i
)étale

)
→ f∗

i F|(Ui)étale is an isomorphism. Because the vertical
arrowsU ′

i → U ′ andUi → U are étale, the sheaves f∗
i F|(U ′

i
)étale and f∗

i F|(Ui)étale are the
restrictions of F|U ′

étale
and F|Uétale and the map cψi is the restriction of cϕ to (Ui)étale,

see Sheaves on Stacks, Lemma 9.3. Since {Ui → U} is an étale covering, this implies that
the comparison map cϕ is an isomorphism which is what we wanted to prove.

Proof of (4). Let I →Mod(Xétale,OX ), i 7→ Fi be a diagram and assume each Fi has the
flat base change property. Letϕ : x→ x′ be a morphism ofX lying over the flat morphism
of schemes f : U → U ′. Recall that colimi Fi is the sheafification of the presheaf colimit.
As we are using the étale topology, it is clear that

(colimi Fi)|Uétale = colimi Fi|Uétale
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and similarly for the restriction to U ′
étale. Hence

f∗
small((colimi Fi)|U ′

étale
) = f∗

small(colimi Fi|U ′
étale

)
= colimi f

∗
small(Fi|U ′

étale
)

colim cϕ−−−−−→ colimi Fi|Uétale
= (colimi Fi)|Uétale

For the second equality we used that f∗
small commutes with colimits (as a left adjoint). The

arrow is an isomorphism as each Fi has the flat base change property. Thus the colimit
has the flat base change property and (4) is true.

Part (5) holds because tensor products commute with pullbacks, see Modules on Sites,
Lemma 26.2. Details omitted.

Let F and G be as in (6). Since F is quasi-coherent it has the flat base change property by
Sheaves on Stacks, Lemma 12.2. Let ϕ : x → x′ be a morphism of X lying over the flat
morphism of schemes f : U → U ′. As we are using the étale topology, we have

HomOX (F ,G)|Uétale = HomOU
(F|Uétale ,G|Uétale)

and similarly for the restriction to U ′
étale (details omitted). Hence

f∗
small(HomOX (F ,G)|U ′

étale
) = f∗

small(HomOU′ (F|U ′
étale

,G|U ′
étale

))
= HomOU′ (f∗

small(F|U ′
étale

), f∗
small(G|U ′

étale
))

cϕ−→ HomOU
(F|Uétale ,G|Uétale)

= HomOX (F ,G)|Uétale
Here the second equality is Modules on Sites, Lemma 31.4 which uses that f : U → U ′ is
flat and hence the morphism of ringed sites fsmall is flat too. The arrow is an isomorphism
as bothF and G have the flat base change property. Thus ourHom has the flat base change
property too as desired. �

Lemma 7.3. Let f : X → Y be a quasi-compact and quasi-separated morphism of
algebraic stacks. Let F be an object of Mod(Xétale,OX ) which is locally quasi-coherent
and has the flat base change property. Then eachRif∗F (computed in the étale topology)
has the flat base change property.

Proof. We will use Lemma 5.1 to prove this. For every algebraic stackX let LQCohfbc(OX )
denote the full subcategory of Mod(Xétale,OX ) consisting of locally quasi-coherent sheaves
with the flat base change property. Once we verify conditions (1) – (4) of Lemma 5.1 the
lemma will follow. Properties (1), (2), and (3) follow from Sheaves on Stacks, Lemmas 12.3
and 12.4 and Lemmas 6.1 and 7.2. Thus it suffices to show part (4).

Suppose f : X → Y is a morphism of algebraic stacks such thatX andY are representable
by affine schemesX and Y . In this case, suppose that ψ : y → y′ is a morphism of Y lying
over a flat morphism b : V → V ′ of schemes. For clarity denote V = (Sch/V )fppf and
V ′ = (Sch/V ′)fppf the corresponding algebraic stacks. Consider the diagram of algebraic
stacks

Z

f ′′

��

a
// Z ′

x′
//

f ′

��

X

f

��
V b // V ′ y′

// Y
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with both squares cartesian. As f is representable by schemes (and quasi-compact and
separated – even affine) we see that Z and Z ′ are representable by schemes Z and Z ′ and
in fact Z = V ×V ′ Z ′. Since F has the flat base change property we see that

a∗
small

(
F|Z′

étale

)
−→ F|Zétale

is an isomorphism. Moreover,

Rif∗F|V ′
étale

= Ri(f ′)small,∗
(
F|Z′

étale

)
and

Rif∗F|Vétale = Ri(f ′′)small,∗
(
F|Zétale

)
by Sheaves on Stacks, Lemma 22.3. Hence we see that the comparison map

cψ : b∗
small(Rif∗F|V ′

étale
) −→ Rif∗F|Vétale

is an isomorphism by Cohomology of Spaces, Lemma 11.2. Thus Rif∗F has the flat base
change property. Since Rif∗F is locally quasi-coherent by Lemma 6.2 we win. �

8. Locally quasi-coherent modules with the flat base change property

Let X be an algebraic stack. We2 will denote

LQCohfbc(OX ) ⊂Mod(Xétale,OX )

the full subcategory whose objects are étale OX -modules F which are both locally quasi-
coherent (Section 6) and have the flat base change property (Section 7). We have

QCoh(OX ) ⊂ LQCohfbc(OX )

by Sheaves on Stacks, Lemma 12.2.

Proposition 8.1. Summary of results on locally quasi-coherent modules having the
flat base change property.

(1) Let X be an algebraic stack. If F is in LQCohfbc(OX ), then F is a sheaf for the
fppf topology, i.e., it is an object of Mod(OX ).

(2) The category LQCohfbc(OX ) is a weak Serre subcategory of both Mod(OX ) and
Mod(Xétale,OX ).

(3) Pullback f∗ along any morphism of algebraic stacks f : X → Y induces a
functor f∗ : LQCohfbc(OY)→ LQCohfbc(OX ).

(4) If f : X → Y is a quasi-compact and quasi-separated morphism of algebraic
stacks and F is an object of LQCohfbc(OX ), then
(a) the total direct image Rf∗F and the higher direct images Rif∗F can be

computed in either the étale or the fppf topology with the same result, and
(b) each Rif∗F is an object of LQCohfbc(OY).

(5) The category LQCohfbc(OX ) has colimits and they agree with colimits in Mod(Xétale,OX )
as well as in Mod(OX ).

(6) Given F and G in LQCohfbc(OX ) then the tensor product F ⊗OX G is in
LQCohfbc(OX ).

(7) Given F of finite presentation and G in LQCohfbc(OX ) thenHomOX (F ,G) is
in LQCohfbc(OX ).

2Apologies for the horrendous notation.
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Proof. Part (1) is Sheaves on Stacks, Lemma 23.1.

Part (2) for the embedding LQCohfbc(OX ) ⊂ Mod(Xétale,OX ) we have seen in the
proof of Lemma 7.3. Let us prove (2) for the embedding LQCohfbc(OX ) ⊂ Mod(OX ).
Let ϕ : F → G be a morphism between objects of LQCohfbc(OX ). Since Ker(ϕ) is
the same whether computed in the étale or the fppf topology, we see that Ker(ϕ) is in
LQCohfbc(OX ) by the étale case. On the other hand, the cokernel computed in the fppf
topology is the fppf sheafification of the cokernel computed in the étale topology. How-
ever, this étale cokernel is in LQCohfbc(OX ) hence an fppf sheaf by (1) and we see that
the cokernel is in LQCohfbc(OX ). Finally, suppose that

0→ F1 → F2 → F3 → 0
is an exact sequence in Mod(OX ) (i.e., using the fppf topology) withF1,F2 in LQCohfbc(OX ).
In order to show that F2 is an object of LQCohfbc(OX ) it suffices to show that the se-
quence is also exact in the étale topology. To do this it suffices to show that any element
of H1

fppf (x,F1) becomes zero on the members of an étale covering of x (for any object x
of X ). This is true because H1

fppf (x,F1) = H1
étale(x,F1) by Sheaves on Stacks, Lemma

23.2 and because of locality of cohomology, see Cohomology on Sites, Lemma 7.3. This
proves (2).

Part (3) follows from Lemma 7.2 and Sheaves on Stacks, Lemma 12.3.

Part (4)(b) forRif∗F computed in the étale cohomology follows from Lemma 7.3. Where-
upon part (4)(a) follows from Sheaves on Stacks, Lemma 23.2 combined with (1) above.

Part (5) for the étale topology follows from Sheaves on Stacks, Lemma 12.4 and Lemma
7.2. The fppf version then follows as the colimit in the étale topology is already an fppf
sheaf by part (1).

Parts (6) and (7) follow from the corresponding parts of Lemma 7.2 and Sheaves on Stacks,
Lemma 12.4. �

Lemma 8.2. Let X be an algebraic stack.
(1) Let fj : Xj → X be a family of smooth morphisms of algebraic stacks with
|X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules on Xétale. If each f−1

j F is
in LQCohfpc(OXi), then F is in LQCohfbc(OX ).

(2) Let fj : Xj → X be a family of flat and locally finitely presented morphisms of
algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules on

Xfppf . If each f−1
j F is in LQCohfbc(OXi), then F is in LQCohfbc(OX ).

Proof. Part (1) follows from a combination of Lemmas 6.1 and 7.2. The proof of (2)
is analogous to the proof of Lemma 6.3. Let F of a sheaf ofOX -modules on Xfppf .

First, suppose there is a morphism a : U → X which is surjective, flat, locally of finite
presentation, quasi-compact, and quasi-separated such that a∗F is locally quasi-coherent
and has the flat base change property. Then there is an exact sequence

0→ F → a∗a
∗F → b∗b

∗F
where b is the morphism b : U ×X U → X , see Sheaves on Stacks, Proposition 19.7 and
Lemma 19.10. Moreover, the pullback b∗F is the pullback of a∗F via one of the projec-
tion morphisms, hence is locally quasi-coherent and has the flat base change property, see
Proposition 8.1. The modules a∗a

∗F and b∗b
∗F are locally quasi-coherent and have the
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flat base change property by Proposition 8.1. We conclude thatF is locally quasi-coherent
and has the flat base change property by Proposition 8.1.

Choose a scheme U and a surjective smooth morphism x : U → X . By part (1) it suffices
to show that x∗F is locally quasi-coherent and has the flat base change property. Again by
part (1) it suffices to do this (Zariski) locally onU , hence we may assume thatU is affine. By
Morphisms of Stacks, Lemma 27.14 there exists an fppf covering {ai : Ui → U} such that
each x ◦ ai factors through some fj . Hence the module a∗

iF on (Sch/Ui)fppf is locally
quasi-coherent and has the flat base change property. After refining the covering we may
assume {Ui → U}i=1,...,n is a standard fppf covering. Then x∗F is an fppf module on
(Sch/U)fppf whose pullback by the morphism a : U1 q . . . q Un → U is locally quasi-
coherent and has the flat base change property. Hence by the previous paragraph we see
that x∗F is locally quasi-coherent and has the flat base change property as desired. �

Lemma 8.3. Let f : X → Y be a morphism of algebraic stacks which is quasi-compact,
quasi-separated, and representable by algebraic spaces. LetF be in LQCohfbc(OX ). Then
for an object y : V → Y of Y we have

(Rif∗F)|Vétale = Rif ′
small,∗(F|Uétale)

where f ′ : U = V ×Y X → V is the base change of f .

Proof. By Sheaves on Stacks, Lemma 21.3 we can reduce to the case where X is rep-
resented by U and Y is represented by V . Of course this also uses that the pullback of
F to U is in LQCohfbc(OU ) by Proposition 8.1. Then the result follows from Sheaves
on Stacks, Lemma 22.2 and the fact that Rif∗ may be computed in the étale topology by
Proposition 8.1. �

Lemma 8.4. Let f : X → Y be an affine morphism of algebraic stacks. The functor
f∗ : LQCohfbc(OX ) → LQCohfbc(OY) is exact and commutes with direct sums. The
functors Rif∗ for i > 0 vanish on LQCohfbc(OX ).

Proof. The functors exist by Proposition 8.1. By Lemma 8.3 this reduces to the case
of an affine morphism of algebraic spaces taking higher direct images in the setting of
quasi-coherent modules on algebraic spaces. By the discussion in Cohomology of Spaces,
Section 3 we reduce to the case of an affine morphism of schemes. For affine morphisms
of schemes we have the vanishing of higher direct images on quasi-coherent modules by
Cohomology of Schemes, Lemma 2.3. The vanishing for R1f∗ implies exactness of f∗.
Commuting with direct sums follows from Morphisms, Lemma 11.6 for example. �

9. Parasitic modules

The following definition is compatible with Descent, Definition 12.1.

Definition 9.1. LetX be an algebraic stack. A presheaf ofOX -modulesF is parasitic
if we have F(x) = 0 for any object x of X which lies over a scheme U such that the
corresponding morphism x : U → X is flat.

Here is a lemma with some properties of this notion.

Lemma 9.2. Let X be an algebraic stack. Let F be a presheaf ofOX -modules.
(1) If F is parasitic and g : Y → X is a flat morphism of algebraic stacks, then g∗F

is parasitic.
(2) For τ ∈ {Zariski, étale, smooth, syntomic, fppf} we have
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(a) the τ sheafification of a parasitic presheaf of modules is parasitic, and
(b) the full subcategory of Mod(Xτ ,OX ) consisting of parasitic modules is a

Serre subcategory.
(3) Suppose F is a sheaf for the étale topology. Let fi : Xi → X be a family of

smooth morphisms of algebraic stacks such that |X | =
⋃
i |fi|(|Xi|). If each

f∗
i F is parasitic then so is F .

(4) Suppose F is a sheaf for the fppf topology. Let fi : Xi → X be a family of
flat and locally finitely presented morphisms of algebraic stacks such that |X | =⋃
i |fi|(|Xi|). If each f∗

i F is parasitic then so is F .

Proof. To see part (1) let y be an object of Y which lies over a scheme V such that
the corresponding morphism y : V → Y is flat. Then g(y) : V → Y → X is flat as a
composition of flat morphisms (see Morphisms of Stacks, Lemma 25.2) hence F(g(y)) is
zero by assumption. Since g∗F = g−1F(y) = F(g(y)) we conclude g∗F is parasitic.

To see part (2)(a) note that if {xi → x} is a τ -covering of X , then each of the morphisms
xi → x lies over a flat morphism of schemes. Hence if x lies over a scheme U such that
x : U → X is flat, so do all of the objects xi. Hence the presheaf F+ (see Sites, Section
10) is parasitic if the presheaf F is parasitic. This proves (2)(a) as the sheafification of F is
(F+)+.

Let F be a parasitic τ -module. It is immediate from the definitions that any submodule
of F is parasitic. On the other hand, if F ′ ⊂ F is a submodule, then it is equally clear
that the presheaf x 7→ F(x)/F ′(x) is parasitic. Hence the quotient F/F ′ is a parasitic
module by (2)(a). Finally, we have to show that given a short exact sequence 0 → F1 →
F2 → F3 → 0 with F1 and F3 parasitic, then F2 is parasitic. This follows immediately
on evaluating on x lying over a scheme flat over X . This proves (2)(b), see Homology,
Lemma 10.2.

Let fi : Xi → X be a jointly surjective family of smooth morphisms of algebraic stacks
and assume each f∗

i F is parasitic. Let x be an object of X which lies over a scheme U such
that x : U → X is flat. Consider a surjective smooth covering Wi → U ×x,X Xi. Denote
yi : Wi → Xi the projection. It follows that {fi(yi) → x} is a covering for the smooth
topology on X . Since a composition of flat morphisms is flat we see that f∗

i F(yi) = 0.
On the other hand, as we saw in the proof of (1), we have f∗

i F(yi) = F(fi(yi)). Hence we
see that for some smooth covering {xi → x}i∈I in X we have F(xi) = 0. This implies
F(x) = 0 because the smooth topology is the same as the étale topology, see More on
Morphisms, Lemma 38.7. Namely, {xi → x}i∈I lies over a smooth covering {Ui → U}i∈I
of schemes. By the lemma just referenced there exists an étale covering {Vj → U}j∈J
which refines {Ui → U}i∈I . Denote x′

j = x|Vj . Then {x′
j → x} is an étale covering in

X refining {xi → x}i∈I . This means the map F(x) →
∏
j∈J F(x′

j), which is injective
as F is a sheaf in the étale topology, factors through F(x) →

∏
i∈I F(xi) which is zero.

Hence F(x) = 0 as desired.

Proof of (4): omitted. Hint: similar, but simpler, than the proof of (3). �

Parasitic modules are preserved under absolutely any pushforward.

Lemma 9.3. Let τ ∈ {étale, fppf}. Let X be an algebraic stack. Let F be a parasitic
object of Mod(Xτ ,OX ).

(1) Hi
τ (X ,F) = 0 for all i.
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(2) Let f : X → Y be a morphism of algebraic stacks. Then Rif∗F (computed in
τ -topology) is a parasitic object of Mod(Yτ ,OY).

Proof. We first reduce (2) to (1). By Sheaves on Stacks, Lemma 21.2 we see that
Rif∗F is the sheaf associated to the presheaf

y 7−→ Hi
τ

(
V ×y,Y X , pr−1F

)
Here y is a typical object of Y lying over the scheme V . By Lemma 9.2 it suffices to show
that these cohomology groups are zero when y : V → Y is flat. Note that pr : V ×y,YX →
X is flat as a base change of y. Hence by Lemma 9.2 we see that pr−1F is parasitic. Thus
it suffices to prove (1).

To see (1) we can use the spectral sequence of Sheaves on Stacks, Proposition 20.1 to reduce
this to the case whereX is an algebraic stack representable by an algebraic space. Note that
in the spectral sequence each f−1

p F = f∗
pF is a parasitic module by Lemma 9.2 because

the morphisms fp : Up = U×X . . .×X U → X are flat. Reusing this spectral sequence one
more time (as in the proof of Lemma 5.1) we reduce to the case where the algebraic stack
X is representable by a scheme X . Then Hi

τ (X ,F) = Hi((Sch/X)τ ,F). In this case
the vanishing follows easily from an argument with Čech coverings, see Descent, Lemma
12.2. �

The following lemma is one of the major reasons we care about parasitic modules. To
understand the statement, recall that the functors QCoh(OX ) → Mod(Xétale,OX ) and
QCoh(OX )→Mod(OX ) aren’t exact in general.

Lemma 9.4. Let X be an algebraic stack. Let α : F → G and β : G → H be maps in
QCoh(OX ) with β ◦ α = 0. The following are equivalent:

(1) in the abelian category QCoh(OX ) the complex F → G → H is exact at G ,
(2) Ker(β)/ Im(α) computed in either Mod(Xétale,OX ) or Mod(Xfppf ,OX ) is

parasitic.

Proof. We have QCoh(OX ) ⊂ LQCohfbc(OX ), see Section 8. Hence Ker(β)/ Im(α)
computed in Mod(Xétale,OX ) or Mod(Xfppf ,OX ) agree, see Proposition 8.1. From now
on we will use the étale topology on X .

Let E be the cohomology of F → G → H computed in the abelian category QCoh(OX ).
Let x : U → X be a flat morphism where U is a scheme. As we are using the étale
topology, the restriction functor Mod(Xétale,OX )→ Mod(Uétale,OU ) is exact. On the
other hand, by Lemma 4.1 and Sheaves on Stacks, Lemma 14.2 the restriction functor

QCoh(OX ) x∗

−→ QCoh((Sch/U)étale,O)
−|Uétale−−−−−→ QCoh(Uétale,OU )

is exact too. We conclude that E|Uétale = (Ker(β)/ Im(α))|Uétale .

If (1) holds, then E = 0 hence Ker(β)/ Im(α) restricts to zero on Uétale for all U flat
over X and this is the definition of a parasitic module. If (2) holds, then Ker(β)/ Im(α)
restricts to zero on Uétale for all U flat over X hence E restricts to zero on Uétale for all U
flat over X . This certainly implies that the quasi-coherent module E is zero, for example
apply Lemma 4.2 to the map 0→ E . �
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10. Quasi-coherent modules

We have seen that the category of quasi-coherent modules on an algebraic stack is equiv-
alent to the category of quasi-coherent modules on a presentation, see Sheaves on Stacks,
Section 15. This fact is the basis for the following.

Lemma 10.1. Let X be an algebraic stack. Let LQCohfbc(OX ) be the category of
locally quasi-coherent modules with the flat base change property, see Section 8. The
inclusion functor i : QCoh(OX )→ LQCohfbc(OX ) has a right adjoint

Q : LQCohfbc(OX )→ QCoh(OX )

such that Q ◦ i is the identity functor.

Proof. Choose a scheme U and a surjective smooth morphism f : U → X . Set
R = U ×X U so that we obtain a smooth groupoid (U,R, s, t, c) in algebraic spaces with
the property that X = [U/R], see Algebraic Stacks, Lemma 16.2. We may and do replace
X by [U/R]. By Sheaves on Stacks, Proposition 14.3 there is an equivalence

q1 : QCoh(U,R, s, t, c) −→ QCoh(OX )

Let us construct a functor

q2 : LQCohfbc(OX ) −→ QCoh(U,R, s, t, c)

by the following rule: if F is an object of LQCohfbc(OX ) then we set

q2(F) = (f∗F|Uétale , α)

where α is the isomorphism

t∗small(f∗F|Uétale)→ t∗f∗F|Rétale → s∗f∗F|Rétale → s∗
small(f∗F|Uétale)

where the outer two morphisms are the comparison maps. Note that q2(F) is quasi-
coherent precisely because F is locally quasi-coherent and that we used (and needed) the
flat base change property in the construction of the descent datum α. We omit the verifi-
cation that the cocycle condition (see Groupoids in Spaces, Definition 12.1) holds. Looking
at the proof of Sheaves on Stacks, Proposition 14.3 we see that q2 ◦ i is the quasi-inverse
to q1. We defineQ = q1 ◦ q2. Let F be an object of LQCohfbc(OX ) and let G be an object
of QCoh(OX ). We have

MorLQCohfbc(OX )(i(G),F) = MorQCoh(U,R,s,t,c)(q2(i(G)), q2(F))
= MorQCoh(OX )(G, Q(F))

where the first equality is Sheaves on Stacks, Lemma 14.4 and the second equality holds
because q1 ◦ i and q2 are quasi-inverse equivalences of categories. The assertionQ ◦ i ∼= id
is a formal consequence of the fact that i is fully faithful. �

Lemma 10.2. Let X be an algebraic stack. Let Q : LQCohfbc(OX ) → QCoh(OX )
be the functor constructed in Lemma 10.1.

(1) The kernel of Q is exactly the collection of parasitic objects of LQCohfbc(OX ).
(2) For any object F of LQCohfbc(OX ) both the kernel and the cokernel of the

adjunction map Q(F)→ F are parasitic.
(3) The functor Q is exact and commutes with all limits and colimits.
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Proof. Write X = [U/R] as in the proof of Lemma 10.1. Let F be an object of
LQCohfbc(OX ). It is clear from the proof of Lemma 10.1 that F is in the kernel of Q if
and only if F|Uétale = 0. In particular, if F is parasitic then F is in the kernel. Next, let
x : V → X be a flat morphism, where V is a scheme. Set W = V ×X U and consider the
diagram

W

p

��

q
// V

��
U // X

Note that the projection p : W → U is flat and the projection q : W → V is smooth
and surjective. This implies that q∗

small is a faithful functor on quasi-coherent modules.
By assumption F has the flat base change property so that we obtain p∗

smallF|Uétale ∼=
q∗
smallF|Vétale . Thus if F is in the kernel of Q, then F|Vétale = 0 which completes the

proof of (1).

Part (2) follows from the discussion above and the fact that the map Q(F)→ F becomes
an isomorphism after restricting to Uétale.

To see part (3) note that Q is left exact as a right adjoint. Let 0→ F → G → H → 0 be a
short exact sequence in LQCohfbc(OX ). Consider the following commutative diagram

0 // Q(F) //

a

��

Q(G) //

b

��

Q(H) //

c

��

0

0 // F // G // H // 0

Since the kernels and cokernels of a, b, and c are parasitic by part (2) and since the bot-
tom row is a short exact sequence, we see that the top row as a complex of OX -modules
has parasitic cohomology sheaves (details omitted; this uses that the category of parasitic
modules is a Serre subcategory of the category of all modules). By left exactness of Q we
see that only exactness at Q(H) is at issue. However, the cokernel Q of Q(G) → Q(H))
may be computed either in Mod(OX ) or in QCoh(OX ) with the same result because the
inclusion functor QCoh(OX ) → LQCohfbc(OX ) is a left adjoint and hence right exact.
HenceQ = Q(Q) is both quasi-coherent and parasitic, whence 0 by part (1) as desired.

As a right adjoint Q commutes with all limits. Since Q is exact, to show that Q com-
mutes with all colimits it suffices to show that Q commutes with direct sums, see Cate-
gories, Lemma 14.12. Let Fi, i ∈ I be a family of objects of LQCohfbc(OX ). To see that
Q(
⊕
Fi) is equal to

⊕
Q(Fi) we look at the construction of Q in the proof of Lemma

10.1. This uses a presentation X = [U/R] where U is a scheme. Then Q(F) is computed
by first taking the pair (F|Uétale , α) in QCoh(U,R, s, t, c) and then using the equiva-
lence QCoh(U,R, s, t, c) ∼= QCoh(OX ). Since the restriction functor Mod(OX ) →
Mod(OUétale),F 7→ F|Uétale commutes with direct sums, the desired equality is clear. �

Lemma 10.3. Let f : X → Y be a flat morphism of algebraic stacks. ThenQX ◦f∗ =
f∗ ◦QY where QX and QY are as in Lemma 10.1.

Proof. Observe that f∗ preserves both QCoh and LQCohfbc, see Sheaves on Stacks,
Lemma 11.2 and Proposition 8.1. IfF is in LQCohfbc(OY) thenQY(F)→ F has parasitic
kernel and cokernel by Lemma 10.2. As f is flat we get that f∗QY(F)→ f∗F has parasitic
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kernel and cokernel by Lemma 9.2. Thus the induced map f∗QY(F) → QX (f∗F) has
parasitic kernel and cokernel and hence is an isomorphism for example by Lemma 9.4. �

Lemma 10.4. Let X be an algebraic stack. Let x be an object of X lying over the
schemeU such thatx : U → X is flat. Then forF in QCohfbc(OX ) we haveQ(F)|Uétale =
F|Uétale .

Proof. True because the kernel and cokernel ofQ(F)→ F are parasitic, see Lemma
10.2. �

Remark 10.5. Let X be an algebraic stack. The category QCoh(OX ) is abelian, the
inclusion functor QCoh(OX ) → Mod(OX ) is right exact, but not exact in general, see
Sheaves on Stacks, Lemma 15.1. We can use the functor Q from Lemmas 10.1 and 10.2 to
understand this. Namely, let ϕ : F → G be a map of quasi-coherentOX -modules. Then

(1) the cokernel Coker(ϕ) computed in Mod(OX ) is quasi-coherent and is the cok-
ernel of ϕ in QCoh(OX ),

(2) the image Im(ϕ) computed in Mod(OX ) is quasi-coherent and is the image of ϕ
in QCoh(OX ), and

(3) the kernel Ker(ϕ) computed in Mod(OX ) is in LQCohfbc(OX ) by Proposition
8.1 and Q(Ker(ϕ)) is the kernel in QCoh(OX ).

This follows from the references given.

Remark 10.6. Let X be an algebraic stack. Given two quasi-coherent OX -modules
F and G the tensor product module F ⊗OX G is quasi-coherent, see Sheaves on Stacks,
Lemma 15.1 part (5). Similarly, given two locally quasi-coherent modules with the flat
base change property, their tensor product has the same property, see Proposition 8.1.
Thus the inclusion functors

QCoh(OX )→ LQCohfbc(OX )→Mod(OX )

are functors of symmetric monoidal categories. What is more interesting is that the func-
tor

Q : LQCohfbc(OX ) −→ QCoh(OX )
is a functor of symmetric monoidal categories as well. Namely, givenF andG in LQCohfbc(OX )
we obtain

Q(F)⊗OX Q(G) //

((

F ⊗OX G

Q(F ⊗OX G)

77

where the south-west arrow comes from the universal property of the north-west arrow
(and the fact already mentioned that the object in the upper left corner is quasi-coherent).
If we restrict this diagram to Uétale for U → X flat, then all three arrows become iso-
morphisms (see Lemmas 10.1 and 10.2 and Definition 9.1). Hence Q(F) ⊗OX Q(G) →
Q(F ⊗OX G) is an isomorphism, see for example Lemma 4.2.

Remark 10.7. Let X be an algebraic stack. Let Parasitic(OX ) ⊂ Mod(OX ) denote
the full subcategory consiting of parasitic modules. The results of Lemmas 10.1 and 10.2
imply that

QCoh(OX ) = LQCohfbc(OX )/Parasitic(OX ) ∩ LQCohfbc(OX )
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in words: the category of quasi-coherent modules is the category of locally quasi-coherent
modules with the flat base change property divided out by the Serre subcategory consisting
of parasitic objects. See Homology, Lemma 10.6. The existence of the inclusion functor
i : QCoh(OX ) → LQCohfbc(OX ) which is left adjoint to the quotient functor is a key
feature of the situation. In Derived Categories of Stacks, Section 5 and especially Lemma
5.4 we prove that a similar result holds on the level of derived categories.

Lemma 10.8. Let X be an algebraic stack. Let F be an OX -module of finite pre-
sentation and let G be a quasi-coherent OX -module. The internal homs HomOX (F ,G)
computed in Mod(Xétale,OX ) or Mod(OX ) agree and the common value is an object of
LQCohfbc(OX ). The quasi-coherent module hom(F ,G) = Q(HomOX (F ,G)) has the
following universal property

HomX (H, hom(F ,G)) = HomX (H⊗OX F ,G)
forH in QCoh(OX ).

Proof. The construction ofHomOX (F ,G) in Modules on Sites, Section 27 depends
only on F and G as presheaves of modules; the output Hom is a sheaf for the fppf topol-
ogy because F and G are assumed sheaves in the fppf topology, see Modules on Sites,
Lemma 27.1. By Sheaves on Stacks, Lemma 12.4 we see that HomOX (F ,G) is locally
quasi-coherent. By Lemma 7.2 we see that HomOX (F ,G) has the flat base change prop-
erty. HenceHomOX (F ,G) is an object of LQCohfbc(OX ) and it makes sense to apply the
functor Q of Lemma 10.1 to it. By the universal property of Q we have

HomX (H, Q(HomOX (F ,G))) = HomX (H,HomOX (F ,G))
forH quasi-coherent, hence the displayed formula of the lemma follows from Modules on
Sites, Lemma 27.6. �

Lemma 10.9. Let f : X → Y be a flat morphism of algebraic stacks. Let F be
an OY -module of finite presentation and let G be a quasi-coherent OY -module. Then
f∗hom(F ,G) = hom(f∗F , f∗G) with notation as in Lemma 10.8.

Proof. We have f∗HomOY (F ,G) = HomOX (f∗F , f∗G) by Modules on Sites, Lemma
31.4. (Observe that this step is not where the flatness of f is used as the morphism of ringed
topoi associated to f is always flat, see Sheaves on Stacks, Remark 6.3.) Then apply Lemma
10.3 (and here we do use flatness of f ). �

11. Pushforward of quasi-coherent modules

Let f : X → Y be a morphism of algebraic stacks. Consider the pushforward

f∗ : Mod(OX ) −→Mod(OY)
It turns out that this functor almost never preserves the subcategories of quasi-coherent
sheaves. For example, consider the morphism of schemes

j : X = A2
k \ {0} −→ A2

k = Y.

Associated to this we have the corresponding morphism of algebraic stacks

f = jbig : X = (Sch/X)fppf → (Sch/Y )fppf = Y
The pushforward f∗OX of the structure sheaf has global sections k[x, y]. Hence if f∗OX
is quasi-coherent on Y then we would have f∗OX = OY . However, consider T =
Spec(k) → A2

k = Y mapping to 0. Then Γ(T, f∗OX ) = 0 because X ×Y T = ∅
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whereas Γ(T,OY) = k. On the positive side, for any flat morphism T → Y we have the
equality Γ(T, f∗OX ) = Γ(T,OY) as follows from Cohomology of Schemes, Lemma 5.2
using that j is quasi-compact and quasi-separated.
Let f : X → Y be a quasi-compact and quasi-separated morphism of algebraic stacks. We
work around the problem mentioned above using the following three observations:

(1) f∗ does preserve locally quasi-coherent modules (Lemma 6.2),
(2) f∗ transforms a quasi-coherent sheaf into a locally quasi-coherent sheaf whose

flat comparison maps are isomorphisms (Lemma 7.3), and
(3) locally quasi-coherent OY -modules with the flat base change property give rise

to quasi-coherent modules on a presentation ofY and hence quasi-coherent mod-
ules on Y , see Sheaves on Stacks, Section 15.

Thus we obtain a functor
fQCoh,∗ : QCoh(OX ) −→ QCoh(OY)

which is a right adjoint to f∗ : QCoh(OY)→ QCoh(OX ) such that moreover
Γ(y, f∗F) = Γ(y, fQCoh,∗F)

for any y ∈ Ob(Y) such that the associated 1-morphism y : V → Y is flat, see Lemma
11.2. Moreover, a similar construction will produce functors RifQCoh,∗. However, these
results will not be sufficient to produce a total direct image functor (of complexes with
quasi-coherent cohomology sheaves).

Proposition 11.1. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. The functor f∗ : QCoh(OY)→ QCoh(OX ) has a right adjoint

fQCoh,∗ : QCoh(OX ) −→ QCoh(OY)
which can be defined as the composition

QCoh(OX )→ LQCohfbc(OX ) f∗−→ LQCohfbc(OY) Q−→ QCoh(OY)
where the functors f∗ and Q are as in Proposition 8.1 and Lemma 10.1. Moreover, if we
define RifQCoh,∗ as the composition

QCoh(OX )→ LQCohfbc(OX ) Rif∗−−−→ LQCohfbc(OY) Q−→ QCoh(OY)
then the sequence of functors {RifQCoh,∗}i≥0 forms a cohomological δ-functor.

Proof. This is a combination of the results mentioned in the statement. The ad-
jointness can be shown as follows: Let F be a quasi-coherent OX -module and let G be a
quasi-coherentOY -module. Then we have

MorQCoh(OX )(f∗G,F) = MorLQCohfbc(OY )(G, f∗F)
= MorQCoh(OY )(G, Q(f∗F))
= MorQCoh(OY )(G, fQCoh,∗F)

the first equality by adjointness of f∗ and f∗ (for arbitrary sheaves of modules). By Propo-
sition 8.1 we see that f∗F is an object of LQCohfbc(OY) (and can be computed in either
the fppf or étale topology) and we obtain the second equality by Lemma 10.1. The third
equality is the definition of fQCoh,∗.
To see that {RifQCoh,∗}i≥0 is a cohomological δ-functor as defined in Homology, Defi-
nition 12.1 let

0→ F1 → F2 → F3 → 0
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be a short exact sequence of QCoh(OX ). This sequence may not be an exact sequence in
Mod(OX ) but we know that it is up to parasitic modules, see Lemma 9.4. Thus we may
break up the sequence into short exact sequences

0→ P1 → F1 → I2 → 0
0→ I2 → F2 → Q2 → 0
0→ P2 → Q2 → I3 → 0
0→ I3 → F3 → P3 → 0

of Mod(OX ) with Pi parasitic. Note that each of the sheaves Pj , Ij , Qj is an object of
LQCohfbc(OX ), see Proposition 8.1. Applying Rif∗ we obtain long exact sequences

0→ f∗P1 → f∗F1 → f∗I2 → R1f∗P1 → . . .
0→ f∗I2 → f∗F2 → f∗Q2 → R1f∗I2 → . . .
0→ f∗P2 → f∗Q2 → f∗I3 → R1f∗P2 → . . .
0→ f∗I3 → f∗F3 → f∗P3 → R1f∗I3 → . . .

where are the terms are objects of LQCohfbc(OY) by Proposition 8.1. By Lemma 9.3 the
sheaves Rif∗Pj are parasitic, hence vanish on applying the functor Q, see Lemma 10.2.
Since Q is exact the maps

Q(Rif∗F3) ∼= Q(Rif∗I3) ∼= Q(Rif∗Q2)→ Q(Ri+1f∗I2) ∼= Q(Ri+1f∗F1)

can serve as the connecting map which turns the family of functors {RifQCoh,∗}i≥0 into
a cohomological δ-functor. �

Lemma 11.2. Let f : X → Y be a quasi-compact and quasi-separated morphism of
algebraic stacks. Let y : V → Y in Ob(Y) with y a flat morphism. LetF be in QCoh(OX ).
Then (f∗F)(y) = (fQCoh,∗F)(y) and (Rif∗F)(y) = (RifQCoh,∗F)(y) for all i ∈ Z.

Proof. This follows from the construction of the functorsRifQCoh,∗ in Proposition
11.1, the definition of parasitic modules in Definition 9.1, and Lemma 10.2 part (2). �

Remark 11.3. Let f : X → Y be a quasi-compact and quasi-separated morphism of
algebraic stacks. Let F and G be in QCoh(OX ). Then there is a canonical commutative
diagram

fQCoh,∗F ⊗OY fQCoh,∗G //

��

f∗F ⊗OY f∗G

c

��
fQCoh,∗(F ⊗OX G) // f∗(F ⊗OX G)

The vertical arrow c on the right is the naive relative cup product (in degree 0), see Co-
homology on Sites, Section 33. The source and target of c are in LQCohfbc(OX ), see
Proposition 8.1. Applying Q to c we obtain the left vertical arrow as Q commutes with
tensor products, see Remark 10.6. This construction is functorial in F and G.

Lemma 11.4. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. Let F be a quasi-coherent sheaf on X . Then there exists a spectral
sequence with E2-page

Ep,q2 = Hp(Y, RqfQCoh,∗F)
converging to Hp+q(X ,F).
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Proof. By Cohomology on Sites, Lemma 14.5 the Leray spectral sequence with

Ep,q2 = Hp(Y, Rqf∗F)
converges to Hp+q(X ,F). The kernel and cokernel of the adjunction map

RqfQCoh,∗F −→ Rqf∗F
are parasitic modules on Y (Lemma 10.2) hence have vanishing cohomology (Lemma 9.3).
It follows formally that Hp(Y, RqfQCoh,∗F) = Hp(Y, Rqf∗F) and we win. �

Lemma 11.5. Let f : X → Y and g : Y → Z be quasi-compact and quasi-separated
morphisms of algebraic stacks. Let F be a quasi-coherent sheaf on X . Then there exists a
spectral sequence with E2-page

Ep,q2 = RpgQCoh,∗(RqfQCoh,∗F)
converging to Rp+q(g ◦ f)QCoh,∗F .

Proof. By Cohomology on Sites, Lemma 14.7 the Leray spectral sequence with

Ep,q2 = Rpg∗(Rqf∗F)
converges toRp+q(g◦f)∗F . By the results of Proposition 8.1 all the terms of this spectral
sequence are objects of LQCohfbc(OZ). Applying the exact functorQZ : LQCohfbc(OZ)→
QCoh(OZ) we obtain a spectral sequence in QCoh(OZ) covering toRp+q(g◦f)QCoh,∗F .
Hence the result follows if we can show that

QZ(Rpg∗(Rqf∗F)) = QZ(Rpg∗(QX (Rqf∗F))
This follows from the fact that the kernel and cokernel of the map

QX (Rqf∗F) −→ Rqf∗F
are parasitic (Lemma 10.2) and thatRpg∗ transforms parasitic modules into parasitic mod-
ules (Lemma 9.3). �

To end this section we make explicit the spectral sequences associated to a smooth covering
by a scheme. Please compare with Sheaves on Stacks, Sections 20 and 21.

Proposition 11.6. Let f : U → X be a morphism of algebraic stacks. Assume f is
representable by algebraic spaces, surjective, flat, and locally of finite presentation. Let F
be a quasi-coherentOX -module. Then there is a spectral sequence

Ep,q2 = Hq(Up, f∗
pF)⇒ Hp+q(X ,F)

where fp is the morphism U ×X . . .×X U → X (p+ 1 factors).

Proof. This is a special case of Sheaves on Stacks, Proposition 20.1. �

Proposition 11.7. Let f : U → X and g : X → Y be composable morphisms of
algebraic stacks. Assume that

(1) f is representable by algebraic spaces, surjective, flat, locally of finite presenta-
tion, quasi-compact, and quasi-separated, and

(2) g is quasi-compact and quasi-separated.
If F is in QCoh(OX ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)QCoh,∗f
∗
pF ⇒ Rp+qgQCoh,∗F

in QCoh(OY).
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Proof. Note that each of the morphisms fp : U ×X . . .×X U → X is quasi-compact
and quasi-separated, hence g ◦fp is quasi-compact and quasi-separated, hence the assertion
makes sense (i.e., the functors Rq(g ◦ fp)QCoh,∗ are defined). There is a spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f
−1
p F ⇒ Rp+qg∗F

by Sheaves on Stacks, Proposition 21.1. Applying the exact functorQY : LQCohfbc(OY)→
QCoh(OY) gives the desired spectral sequence in QCoh(OY). �

12. Further remarks on quasi-coherent modules

In this section we collect some results that to help understand how to use quasi-coherent
modules on algebraic stacks.

Let f : U → X be a morphism of algebraic stacks. AssumeU is represented by the algebraic
space U . Consider the functor

a : Mod(Xétale,OX ) −→Mod(Uétale,OU ), F 7−→ f∗F|Uétale
given by pullback (Sheaves on Stacks, Section 7) followed by restriction (Sheaves on Stacks,
Section 10). Applying this functor to locally quasi-coherent modules we obtain a functor

b : LQCoh(OX ) −→ QCoh(Uétale,OU )
See Sheaves on Stacks, Lemmas 12.3 and 14.1. We can further limit our functor to even
smaller subcategories to obtain

c : LQCohfbc(OX ) −→ QCoh(Uétale,OU )
and

d : QCoh(OX ) −→ QCoh(Uétale,OU )
About these functors we can say the following:3

(1) The functor a is exact. Namely, pullback f∗ = f−1 is exact (Sheaves on Stacks,
Section 7) and restriction to Uétale is exact, see Sheaves on Stacks, Equation
(10.2.1).

(2) The functor b is exact. Namely, by Sheaves on Stacks, Lemma 12.4 the inclusion
LQCoh(OX )→Mod(Xétale,OX ) is exact.

(3) The functor c is exact. Namely, by Proposition 8.1 the inclusion functor LQCohfbc(OX )→
Mod(Xétale,OX ) is exact.

(4) The functor d is right exact but not exact in general. Namely, by Sheaves on
Stacks, Lemma 12.5 the inclusion functor QCoh(OX ) → Mod(Xétale,OX ) is
right exact. We omit giving an example showing non-exactness.

(5) If f is flat, then d is exact. This follows on combining Lemma 4.1 and Sheaves
on Stacks, Lemma 14.2.

(6) If f is flat, then c kills parasitic objects. Namely, f∗ preserves parasitic object by
Lemma 9.2. Then for any scheme V étale over U and hence flat over X we see
that 0 = f∗F|Vétale = c(F)|Vétale by the compatibility of restriction with étale
localization Sheaves on Stacks, Remark 10.2. Hence clearly c(F) = 0.

(7) If f is flat, then c = d ◦Q. Namely, the kernel and cokernel of Q(F) → F are
parasitic by Lemma 10.2. Thus, since c is exact (3) and kills parasitic objects (6),
we see that c applied to Q(F)→ F is an isomorphism.

3We suggest working out why these statements are true on a napkin instead of following the references
given.
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(8) The functors a, b, c, d commute with colimits and arbitrary direct sums. This
is true for f∗ and restriction as left adjoints and hence it holds for a. Then it
follows for b, c, d by the references given above.

(9) The functors a, b, c, d commute with tensor products.
(10) If f is flat and surjective, F is in LQCohfbc(OX ), and c(F) = 0, then F is

parasitic. Namely, by (7) we get d(Q(F)) = 0. We may assume U is a scheme
by the compatibility of restriction with étale localization (see reference above).
Then Lemma 4.2 applied to 0 → Q(F) and the morphism f : U → X shows
that Q(F) = 0. Thus F is parasitic by Lemma 10.2.

(11) If f is flat and surjective, then the functor d reflects exactness. More precisely,
letF• be a complex in QCoh(OX ). ThenF• is exact in QCoh(OX ) if and only
if d(F•) is exact. Namely, we have seen one implication in (5). For the other,
suppose that Hi(d(F•)) = 0. Then G = Hi(F•) is an object of QCoh(OX )
with d(G) = 0. Hence G is both quasi-coherent and parasitic by (10), whence 0
for example by Remark 10.7.

(12) If f is flat, F ,G ∈ Ob(QCoh(OX )), and F of finite presentation and let then
we have

d(hom(F ,G)) = HomOU
(d(F), d(G))

with notation as in Lemma 10.8. Perhaps the easiest way to see this is as follows

d(hom(F ,G)) = d(Q(HomOX (F ,G)))
= c(HomOX (F ,G))
= f∗HomOX (F ,G)|Uétale
= HomOU (f∗F , f∗G)|Uétale
= HomOU

(f∗F|Uétale , f∗G|Uétale)

The first equality by construction of hom. The second equality by (7). The third
equality by definition of c. The fourth equality by Modules on Sites, Lemma 31.4.
The final equality by the same reference applied to the flat morphism of ringed
topoi iU (Uétale,OU )→ (Uétale,OU ) of Sheaves on Stacks, Lemma 10.1.

(13) add more here.

13. Colimits and cohomology

The following lemma in particular applies to diagrams of quasi-coherent sheaves.

Lemma 13.1. Let X be a quasi-compact and quasi-separated algebraic stack. Then

colimiH
p(X ,Fi) −→ Hp(X , colimi Fi)

is an isomorphism for every filtered diagram of abelian sheaves onX . The same is true for
abelian sheaves on Xétale taking cohomology in the étale topology.

Proof. Let τ = fppf , resp. τ = étale. The lemma follows from Cohomology on
Sites, Lemma 16.2 applied to the site Xτ . In order to check the assumptions we use Coho-
mology on Sites, Remark 16.3. Namely, let B ⊂ Ob(Xτ ) be the set of objects lying over
affine schemes. In other words, an element of B is a morphism x : U → X with U affine.
We check each of the conditions (1) – (4) of the remark in turn:

(1) SinceX is quasi-compact, there exists a surjetive and smooth morphism x : U →
X with U affine (Properties of Stacks, Lemma 6.2). Then h#

x → ∗ is a surjective
map of sheaves on Xτ .
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(2) Since coverings in Xτ are fppf, resp. étale coverings, we see that every covering
of U ∈ B is refined by a finite affine fppf covering, see Topologies, Lemma 7.4,
resp. Lemma 4.4.

(3) Let x : U → X and x′ : U ′ → X be in B. The product h#
x × h

#
x′ in Sh(Xτ ) is

equal to the sheaf on Xτ determined by the algebraic space W = U ×x,X ,x′ U ′

overX : for an object y : V → X ofXτ we have (h#
x ×h

#
x′)(y) = {f : V →W |

y = x ◦ pr1 ◦ f = x′ ◦ pr2 ◦ f}. The algebraic spaceW is quasi-compact because
X is quasi-separated, see Morphisms of Stacks, Lemma 7.8 for example. Hence
we can choose an affine scheme U ′′ and a surjective étale morphism U ′′ → W .
Denote x′′ : U ′′ → X the composition of U ′′ → W and W → X . Then
h#
x′′ → h#

x × h
#
x′ is surjective as desired.

(4) Let x : U → X and x′ : U ′ → X be in B. Let a, b : U → U ′ be a morphism
over X , i.e., a, b : x→ x′ is a morphism in Xτ . Then the equalizer of ha and hb
is represented by the equalizer of a, b : U → U ′ which is affine scheme over X
and hence in B.

This finished the proof. �

Lemma 13.2. Let f : X → Y be a quasi-compact and quasi-separated morphism of
algebraic stacks. Let F = colimFi be a filtered colimit of abelian sheaves on X . Then for
any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.
The same is true for abelian sheaves on Xétale taking higher direct images in the étale
topology.

Proof. We will prove this for the fppf topology; the proof for the étale topology is
the same. Recall that Rif∗F is the sheaf on Yfppf associated to the presheaf

(y : V → Y) 7−→ Hi(V ×y,Y X , pr−1F)

See Sheaves on Stacks, Lemma 21.2. Recall that the colimit is the sheaf associated to the
presheaf colimit. When V is affine, the fibre product V ×Y X is quasi-compact and quasi-
separated. Hence we can apply Lemma 13.1 to Hp(V ×Y X ,−) where V is affine. Since
everyV has an fppf covering by affine objects this proves the lemma. Some details omitted.

�

Lemma 13.3. Let f : X → Y be a quasi-compact and quasi-separated morphism of
algebraic stacks. The functor fQCoh,∗ and the functors RifQCoh,∗ commute with direct
sums and filtered colimits.

Proof. The functors f∗ andRif∗ commute with direct sums and filtered colimits on
all modules by Lemma 13.2. The lemma follows as fQCoh,∗ = Q ◦ f∗ and RifQCoh,∗ =
Q ◦Rif∗ and Q commutes with all colimits, see Lemma 10.2. �

Lemma 13.4. Let f : X → Y be an affine morphism of algebraic stacks. The functors
RifQCoh,∗, i > 0 vanish and the functor fQCoh,∗ is exact and commutes with direct sums
and all colimits.

Proof. Since we have RifQCoh,∗ = Q ◦Rif∗ we obtain the vanishing from Lemma
8.4. The vanishing implies that fQCoh,∗ is exact as {RifQCoh,∗}i≥0 form a δ-functor, see
Proposition 11.1. Then fQCoh,∗ commutes with direct sums for example by Lemma 13.3.
An exact functor which commutes with direct sums commutes with all colimits. �
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The following lemma tells us that finitely presented modules behave as expected in quasi-
compact and quasi-separated algebraic stacks.

Lemma 13.5. LetX be a quasi-compact and quasi-separated algebraic stack. Let I be a
directed set and let (Fi, ϕii′) be a system over I ofOX -modules. Let G be anOX -module
of finite presentation. Then we have

colimi HomX (G,Fi) = HomX (G, colimi Fi).

In particular, HomX (G,−) commutes with filtered colimits in QCoh(OX ).

Proof. The displayed equality is a special case of Modules on Sites, Lemma 27.12. In
order to apply it, we need to check the hypotheses of Sites, Lemma 17.8 part (4) for the site
Xfppf . In order to do this, we will check hypotheses (2)(a), (2)(b), (2)(c) of Sites, Remark
17.9. Namely, let B ⊂ Ob(Xfppf ) be the set of objects lying over affine schemes. In other
words, an element of B is a morphism x : U → X with U affine. We check each of the
conditions (2)(a), (2)(b), and (2)(c) of the remark in turn:

(1) SinceX is quasi-compact, there exists a surjetive and smooth morphism x : U →
X with U affine (Properties of Stacks, Lemma 6.2). Then h#

x → ∗ is a surjective
map of sheaves on Xfppf .

(2) Since coverings inXfppf are fppf coverings, we see that every covering ofU ∈ B
is refined by a finite affine fppf covering, see Topologies, Lemma 7.4.

(3) Let x : U → X and x′ : U ′ → X be in B. The product h#
x ×h

#
x′ in Sh(Xfppf ) is

equal to the sheaf onXfppf determined by the algebraic spaceW = U×x,X ,x′U ′

over X : for an object y : V → X of Xfppf we have (h#
x × h

#
x′)(y) = {f : V →

W | y = x ◦ pr1 ◦ f = x′ ◦ pr2 ◦ f}. The algebraic space W is quasi-compact
because X is quasi-separated, see Morphisms of Stacks, Lemma 7.8 for example.
Hence we can choose an affine schemeU ′′ and a surjective étale morphismU ′′ →
W . Denote x′′ : U ′′ → X the composition of U ′′ → W and W → X . Then
h#
x′′ → h#

x × h
#
x′ is surjective as desired.

For the final statement, observe that the inclusion functor QCoh(OX)→Mod(OX) com-
mutes with colimits and that finitely presented modules are quasi-coherent. See Sheaves
on Stacks, Lemma 15.1. �

14. The lisse-étale and the flat-fppf sites

In the book [?] many of the results above are proved using the lisse-étale site of an algebraic
stack. We define this site here. In Examples, Section 58 we show that the lisse-étale site
isn’t functorial. We also define its analogue, the flat-fppf site, which is better suited to
the development of algebraic stacks as given in the Stacks project (because we use the fppf
topology as our base topology). Of course the flat-fppf site isn’t functorial either.

Definition 14.1. Let X be an algebraic stack.
(1) The lisse-étale site of X is the full subcategory Xlisse,étale4 of X whose objects

are those x ∈ Ob(X ) lying over a scheme U such that x : U → X is smooth.
A covering of Xlisse,étale is a family of morphisms {xi → x}i∈I of Xlisse,étale
which forms a covering of Xétale.

4In the literature the site is denoted Lis-ét(X ) or Lis-Et(X ) and the associated topos is denoted Xlis-ét or
Xlis-et. In the Stacks project our convention is to name the site and denote the corresponding topos by Sh(C).
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(2) The flat-fppf site of X is the full subcategory Xflat,fppf of X whose objects are
those x ∈ Ob(X ) lying over a schemeU such that x : U → X is flat. A covering
of Xflat,fppf is a family of morphisms {xi → x}i∈I of Xflat,fppf which forms
a covering of Xfppf .

We denoteOXlisse,étale the restriction ofOX to the lisse-étale site and similarly forOXflat,fppf .
The relationship between the lisse-étale site and the étale site is as follows (we mainly stick
to “topological” properties in this lemma).

Lemma 14.2. Let X be an algebraic stack.
(1) The inclusion functor Xlisse,étale → Xétale is fully faithful, continuous and

cocontinuous. It follows that
(a) there is a morphism of topoi

g : Sh(Xlisse,étale) −→ Sh(Xétale)

with g−1 given by restriction,
(b) the functor g−1 has a left adjoint gSh! on sheaves of sets,
(c) the adjunction maps g−1g∗ → id and id→ g−1gSh! are isomorphisms,
(d) the functor g−1 has a left adjoint g! on abelian sheaves,
(e) the adjunction map id→ g−1g! is an isomorphism, and
(f) we have g−1OX = OXlisse,étale hence g induces a flat morphism of ringed

topoi such that g−1 = g∗.
(2) The inclusion functor Xflat,fppf → Xfppf is fully faithful, continuous and co-

continuous. It follows that
(a) there is a morphism of topoi

g : Sh(Xflat,fppf ) −→ Sh(Xfppf )

with g−1 given by restriction,
(b) the functor g−1 has a left adjoint gSh! on sheaves of sets,
(c) the adjunction maps g−1g∗ → id and id→ g−1gSh! are isomorphisms,
(d) the functor g−1 has a left adjoint g! on abelian sheaves,
(e) the adjunction map id→ g−1g! is an isomorphism, and
(f) we have g−1OX = OXflat,fppf hence g induces a flat morphism of ringed

topoi such that g−1 = g∗.

Proof. In both cases it is immediate that the functor is fully faithful, continuous,
and cocontinuous (see Sites, Definitions 13.1 and 20.1). Hence properties (a), (b), (c) follow
from Sites, Lemmas 21.5 and 21.7. Parts (d), (e) follow from Modules on Sites, Lemmas 16.2
and 16.4. Part (f) is immediate. �

Lemma 14.3. Let X be an algebraic stack. Notation as in Lemma 14.2.
(1) For an abelian sheaf F on Xétale we have

(a) Hp(Xétale,F) = Hp(Xlisse,étale, g−1F), and
(b) Hp(x,F) = Hp(Xlisse,étale/x, g−1F) for any object x of Xlisse,étale.

The same holds for sheaves of modules.
(2) For an abelian sheaf F on Xfppf we have

(a) Hp(Xfppf ,F) = Hp(Xflat,fppf , g−1F), and
(b) Hp(x,F) = Hp(Xflat,fppf/x, g−1F) for any object x of Xflat,fppf .

The same holds for sheaves of modules.
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Proof. Part (1)(a) follows from Sheaves on Stacks, Lemma 23.3 applied to the inclu-
sion functor Xlisse,étale → Xétale. Part (1)(b) follows from part (1)(a). Namely, if x lies
over the scheme U , then the site Xétale/x is equivalent to (Sch/U)étale and Xlisse,étale is
equivalent to Ulisse,étale. Part (2) is proved in the same manner. �

Lemma 14.4. Let X be an algebraic stack. Notation as in Lemma 14.2.
(1) There exists a functor

g! : Mod(Xlisse,étale,OXlisse,étale) −→Mod(Xétale,OX )
which is left adjoint to g∗. Moreover it agrees with the functor g! on abelian
sheaves and g∗g! = id.

(2) There exists a functor

g! : Mod(Xflat,fppf ,OXflat,fppf ) −→Mod(Xfppf ,OX )
which is left adjoint to g∗. Moreover it agrees with the functor g! on abelian
sheaves and g∗g! = id.

Proof. In both cases, the existence of the functor g! follows from Modules on Sites,
Lemma 41.1. To see that g! agrees with the functor on abelian sheaves we will show the
maps Modules on Sites, Equation (41.2.1) are isomorphisms.

Lisse-étale case. Let x ∈ Ob(Xlisse,étale) lying over a scheme U with x : U → X smooth.
Consider the induced fully faithful functor

g′ : Xlisse,étale/x −→ Xétale/x
The right hand side is identified with (Sch/U)étale and the left hand side with the full
subcategory of schemes U ′/U such that the composition U ′ → U → X is smooth. Thus
Étale Cohomology, Lemma 49.2 applies.

Flat-fppf case. Let x ∈ Ob(Xflat,fppf ) lying over a scheme U with x : U → X flat.
Consider the induced fully faithful functor

g′ : Xflat,fppf/x −→ Xfppf/x
The right hand side is identified with (Sch/U)fppf and the left hand side with the full
subcategory of schemes U ′/U such that the composition U ′ → U → X is flat. Thus Étale
Cohomology, Lemma 49.2 applies.

In both cases the equality g∗g! = id follows from g∗ = g−1 and the equality for abelian
sheaves in Lemma 14.2. �

Lemma 14.5. Let X be an algebraic stack. Notation as in Lemmas 14.2 and 14.4.
(1) We have g!OXlisse,étale = OX .
(2) We have g!OXflat,fppf = OX .

Proof. In this proof we write C = Xétale (resp. C = Xfppf ) and we denote C′ =
Xlisse,étale (resp. C′ = Xflat,fppf ). Then C′ is a full subcategory of C. In this proof we
will think of objects V of C as schemes overX and objectsU of C′ as schemes smooth (resp.
flat) over X . Finally, we write O = OX and O′ = OXlisse,étale (resp. O′ = OXflat,fppf ).
In the notation above we have O(V ) = Γ(V,OV ) andO′(U) = Γ(U,OU ). Consider the
O-module homomorphism g!O′ → O adjoint to the identificationO′ = g−1O.

Recall that g!O′ is the sheaf associated to the presheaf gp!O′ given by the rule

V 7−→ colimV→U O′(U)
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where the colimit is taken in the category of abelian groups (Modules on Sites, Definition
16.1). Below we will use frequently that if

V → U → U ′

are morphisms and if f ′ ∈ O′(U ′) restricts to f ∈ O′(U), then (V → U, f) and (V →
U ′, f ′) define the same element of the colimit. Also, g!O′ → O maps the element (V →
U, f) simply to the pullback of f to V .

Let us prove that g!O′ → O is surjective. Let h ∈ O(V ) for some object V of C. It
suffices to show that h is locally in the image. Choose an object U of C′ corresponding
to a surjective smooth morphism U → X . Since U ×X V → V is surjective smooth,
after replacing V by the members of an étale covering of V we may assume there exists a
morphism V → U , see Topologies on Spaces, Lemma 4.4. Using h we obtain a morphism
V → U ×A1 such that writing A1 = Spec(Z[t]) the element t ∈ O(U ×A1) pulls back
to h. Since U ×A1 is an object of C′ we see that (V → U ×A1, t) is an element of the
colimit above which maps to h ∈ O(V ) as desired.

Suppose that s ∈ g!O′(V ) is a section mapping to zero in O(V ). To finish the proof
we have to show that s is zero. After replacing V by the members of a covering we may
assume s is an element of the colimit

colimV→U O′(U)
Say s =

∑
(ϕi, si) is a finite sum with ϕi : V → Ui, Ui smooth (resp. flat) over X ,

and si ∈ Γ(Ui,OUi). Choose a scheme W surjective étale over the algebraic space U =
U1×X . . .×X Un. Note thatW is still smooth (resp. flat) over X , i.e., defines an object of
C′. The fibre product

V ′ = V ×(ϕ1,...,ϕn),U W

is surjective étale over V , hence it suffices to show that s maps to zero in g!O′(V ′). Note
that the restriction

∑
(ϕi, si)|V ′ corresponds to the sum of the pullbacks of the functions

si to W . In other words, we have reduced to the case of (ϕ, s) where ϕ : V → U is a
morphism with U in C′ and s ∈ O′(U) restricts to zero in O(V ). By the commutative
diagram

V
(ϕ,0)

//

ϕ

''

U ×A1

U

(id,0)

OO

we see that ((ϕ, 0) : V → U ×A1, pr∗
2x) represents zero in the colimit above. Hence we

may replace U by U ×A1, ϕ by (ϕ, 0) and s by pr∗
1s + pr∗

2x. Thus we may assume that
the vanishing locus Z : s = 0 in U of s is smooth (resp. flat) over X . Then we see that
(V → Z, 0) and (ϕ, s) have the same value in the colimit, i.e., we see that the element s is
zero as desired. �

The lisse-étale and the flat-fppf sites can be used to characterize parasitic modules as fol-
lows.

Lemma 14.6. Let X be an algebraic stack.
(1) Let F be an OX -module with the flat base change property on Xétale. The fol-

lowing are equivalent
(a) F is parasitic, and
(b) g∗F = 0 where g : Sh(Xlisse,étale)→ Sh(Xétale) is as in Lemma 14.2.
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(2) Let F be anOX -module on Xfppf . The following are equivalent
(a) F is parasitic, and
(b) g∗F = 0 where g : Sh(Xflat,fppf )→ Sh(Xfppf ) is as in Lemma 14.2.

Proof. Part (2) is immediate from the definitions (this is one of the advantages of
the flat-fppf site over the lisse-étale site). The implication (1)(a)⇒ (1)(b) is immediate as
well. To see (1)(b)⇒ (1)(a) let U be a scheme and let x : U → X be a surjective smooth
morphism. Then x is an object of the lisse-étale site of X . Hence we see that (1)(b) implies
thatF|Uétale = 0. Let V → X be an flat morphism where V is a scheme. SetW = U×X V
and consider the diagram

W

p

��

q
// V

��
U // X

Note that the projection p : W → U is flat and the projection q : W → V is smooth
and surjective. This implies that q∗

small is a faithful functor on quasi-coherent modules.
By assumption F has the flat base change property so that we obtain p∗

smallF|Uétale ∼=
q∗
smallF|Vétale . Thus if F is in the kernel of g∗, then F|Vétale = 0 as desired. �

15. Functoriality of the lisse-étale and flat-fppf sites

The lisse-étale site is functorial for smooth morphisms of algebraic stacks and the flat-
fppf site is functorial for flat morphisms of algebraic stacks. We warn the reader that the
lisse-étale and flat-fppf topoi are not functorial with respect to all morphisms of algebraic
stacks, see Examples, Section 58.

Lemma 15.1. Let f : X → Y be a morphism of algebraic stacks.
(1) If f is smooth, then f restricts to a continuous and cocontinuous functorXlisse,étale →
Ylisse,étale which gives a morphism of ringed topoi fitting into the following
commutative diagram

Sh(Xlisse,étale)
g′

//

f ′

��

Sh(Xétale)

f

��
Sh(Ylisse,étale)

g // Sh(Yétale)

We have f ′
∗(g′)−1 = g−1f∗ and g′

!(f ′)−1 = f−1g!.
(2) If f is flat, then f restricts to a continuous and cocontinuous functorXflat,fppf →
Yflat,fppf which gives a morphism of ringed topoi fitting into the following
commutative diagram

Sh(Xflat,fppf )
g′
//

f ′

��

Sh(Xfppf )

f

��
Sh(Yflat,fppf ) g // Sh(Yfppf )

We have f ′
∗(g′)−1 = g−1f∗ and g′

!(f ′)−1 = f−1g!.

Proof. The initial statement comes from the fact that if x ∈ Ob(X ) lies over a
scheme U such that x : U → X is smooth (resp. flat) and if f is smooth (resp. flat) then
f(x) : U → Y is smooth (resp. flat), see Morphisms of Stacks, Lemmas 33.2 and 25.2.
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The induced functor Xlisse,étale → Ylisse,étale (resp. Xflat,fppf → Yflat,fppf ) is con-
tinuous and cocontinuous by our definition of coverings in these categories. Finally, the
commutativity of the diagram is a consequence of the fact that the horizontal morphisms
are given by the inclusion functors (see Lemma 14.2) and Sites, Lemma 21.2.
To show that f ′

∗(g′)−1 = g−1f∗ let F be a sheaf on Xétale (resp. Xfppf ). There is a
canonical pullback map

g−1f∗F −→ f ′
∗(g′)−1F

see Sites, Section 45. We claim this map is an isomorphism. To prove this pick an object
y of Ylisse,étale (resp. Yflat,fppf ). Say y lies over the scheme V such that y : V → Y is
smooth (resp. flat). Since g−1 is the restriction we find that(

g−1f∗F
)

(y) = Γ(V ×y,Y X , pr−1F)
by Sheaves on Stacks, Equation (5.0.1). Let (V×y,YX )′ ⊂ V×y,YX be the full subcategory
consisting of objects z : W → V ×y,Y X such that the induced morphism W → X is
smooth (resp. flat). Denote

pr′ : (V ×y,Y X )′ −→ Xlisse,étale (resp. Xflat,fppf )
the restriction of the functor pr used in the formula above. Exactly the same argument
that proves Sheaves on Stacks, Equation (5.0.1) shows that for any sheafH on Xlisse,étale
(resp. Xflat,fppf ) we have

(15.1.1) f ′
∗H(y) = Γ((V ×y,Y X )′, (pr′)−1H)

Since (g′)−1 is restriction we see that(
f ′

∗(g′)−1F
)

(y) = Γ((V ×y,Y X )′, pr−1F|(V×y,Y X )′)
By Sheaves on Stacks, Lemma 23.3 we see that

Γ((V ×y,Y X )′, pr−1F|(V×y,Y X )′) = Γ(V ×y,Y X , pr−1F)
are equal as desired; although we omit the verification of the assumptions of the lemma we
note that the fact that V → Y is smooth (resp. flat) is used to verify the second condition.
Finally, the equality g′

!(f ′)−1 = f−1g! follows formally from the equality f ′
∗(g′)−1 =

g−1f∗ by the adjointness of f−1 and f∗, the adjointness of g! and g−1, and their “primed”
versions. �

Lemma 15.2. With assumptions and notation as in Lemma 15.1. LetH be an abelian
sheaf on Xlisse,étale (resp. Xflat,fppf ). Then

(15.2.1) Rpf ′
∗H = sheaf associated to y 7−→ Hp((V ×y,Y X )′, (pr′)−1H)

Here y is an object of Ylisse,étale (resp. Yflat,fppf ) lying over the scheme V and the nota-
tion (V ×y,Y X )′ and pr′ are explained in the proof.

Proof. As in the proof of Lemma 15.1 let (V ×y,Y X )′ ⊂ V ×y,Y X be the full sub-
category consisting of objects (x, ϕ) where x is an object of Xlisse,étale (resp. Xflat,fppf )
and ϕ : f(x)→ y is a morphism in Y . By Equation (15.1.1) we have

f ′
∗H(y) = Γ((V ×y,Y X )′, (pr′)−1H)

where pr′ is the projection. For an object (x, ϕ) of (V ×y,Y X )′ we can think of ϕ as a
section of (f ′)−1hy over x. Thus (V ×YX )′ is the localization of the siteXlisse,étale (resp.
Xflat,fppf ) at the sheaf of sets (f ′)−1hy , see Sites, Lemma 30.3. The morphism

pr′ : (V ×y,Y X )′ → Xlisse,étale (resp. pr′ : (V ×y,Y X )′ → Xflat,fppf )



6954 103. COHOMOLOGY OF ALGEBRAIC STACKS

is the localization morphism. In particular, the pullback (pr′)−1 preserves injective abelian
sheaves, see Cohomology on Sites, Lemma 13.3.

Choose an injective resolutionH → I• on Xlisse,étale (resp. Xflat,fppf ). By the formula
for pushforward we see thatRif ′

∗H is the sheaf associated to the presheaf which associates
to y the cohomology of the complex

Γ
(

(V ×y,Y X )′, (pr′)−1Ii−1
)

↓
Γ
(

(V ×y,Y X )′, (pr′)−1Ii
)

↓
Γ
(

(V ×y,Y X )′, (pr′)−1Ii+1
)

Since (pr′)−1 is exact and preserves injectives the complex (pr′)−1I• is an injective reso-
lution of (pr′)−1H and the proof is complete. �

Lemma 15.3. With assumptions and notation as in Lemma 15.1 the canonical (base
change) map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism for any abelian sheaf F on Xétale (resp. Xfppf ).

Proof. Comparing the formula for g−1Rpf∗F and Rpf ′
∗(g′)−1F given in Sheaves

on Stacks, Lemma 21.2 and Lemma 15.2 we see that it suffices to show

Hp((V ×y,Y X )′, pr−1F|(V×y,Y X )′) = Hp
τ (V ×y,Y X , pr−1F)

where τ = étale (resp. τ = fppf ). Here y is an object of Y lying over a scheme V
such that the morphism y : V → Y is smooth (resp. flat). This equality follows from
Sheaves on Stacks, Lemma 23.3. Although we omit the verification of the assumptions of
the lemma, we note that the fact that V → Y is smooth (resp. flat) is used to verify the
second condition. �

16. Quasi-coherent modules and the lisse-étale and flat-fppf sites

In this section we explain how to think of quasi-coherent modules on an algebraic stack
in terms of its lisse-étale or flat-fppf site.

Lemma 16.1. Let X be an algebraic stack.
(1) Let fj : Xj → X be a family of smooth morphisms of algebraic stacks with
|X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules on Xétale. If each f−1

j F is
quasi-coherent, then so is F .

(2) Let fj : Xj → X be a family of flat and locally finitely presented morphisms of
algebraic stacks with |X | =

⋃
|fj |(|Xj |). Let F be a sheaf of OX -modules on

Xfppf . If each f−1
j F is quasi-coherent, then so is F .

Proof. Proof of (1). We may replace each of the algebraic stacks Xj by a scheme Uj
(using that any algebraic stack has a smooth covering by a scheme and that compositions
of smooth morphisms are smooth, see Morphisms of Stacks, Lemma 33.2). The pullback
of F to (Sch/Uj)étale is still quasi-coherent, see Modules on Sites, Lemma 23.4. Then
f =

∐
fj : U =

∐
Uj → X is a smooth surjective morphism. Let x : V → X be an object

ofX . By Sheaves on Stacks, Lemma 19.10 there exists an étale covering {xi → x}i∈I such
that eachxi lifts to an objectui of (Sch/U)étale. This just means thatxi lives over a scheme
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Vi, that {Vi → V } is an étale covering, and that xi comes from a morphism ui : Vi → U .
Then x∗

iF = u∗
i f

∗F is quasi-coherent. This implies that x∗F on (Sch/V )étale is quasi-
coherent, for example by Modules on Sites, Lemma 23.3. By Sheaves on Stacks, Lemma 11.4
we see that x∗F is an fppf sheaf and since x was arbitrary we see that F is a sheaf in the
fppf topology. Applying Sheaves on Stacks, Lemma 11.3 we see that F is quasi-coherent.

Proof of (2). This is proved using exactly the same argument, which we fully write out
here. We may replace each of the algebraic stacks Xj by a scheme Uj (using that any
algebraic stack has a smooth covering by a scheme and that flat and locally finite presented
morphisms are preserved by composition, see Morphisms of Stacks, Lemmas 25.2 and 27.2).
The pullback of F to (Sch/Uj)étale is still locally quasi-coherent, see Sheaves on Stacks,
Lemma 11.2. Then f =

∐
fj : U =

∐
Uj → X is a surjective, flat, and locally finitely

presented morphism. Let x : V → X be an object of X . By Sheaves on Stacks, Lemma
19.10 there exists an fppf covering {xi → x}i∈I such that each xi lifts to an object ui
of (Sch/U)étale. This just means that xi lives over a scheme Vi, that {Vi → V } is an
fppf covering, and that xi comes from a morphism ui : Vi → U . Then x∗

iF = u∗
i f

∗F
is quasi-coherent. This implies that x∗F on (Sch/V )étale is quasi-coherent, for example
by Modules on Sites, Lemma 23.3. By Sheaves on Stacks, Lemma 11.3 we see that F is
quasi-coherent. �

We recall that we have defined the notion of a quasi-coherent module on any ringed topos
in Modules on Sites, Section 23.

Lemma 16.2. Let X be an algebraic stack. Notation as in Lemma 14.2.
(1) LetH be a quasi-coherentOXlisse,étale -module on the lisse-étale site of X . Then

g!H is a quasi-coherent module on X .
(2) Let H be a quasi-coherent OXflat,fppf -module on the flat-fppf site of X . Then

g!H is a quasi-coherent module on X .

Proof. Pick a schemeU and a surjective smooth morphism x : U → X . By Modules
on Sites, Definition 23.1 there exists an étale (resp. fppf) covering {Ui → U}i∈I such that
each pullback f−1

i H has a global presentation (see Modules on Sites, Definition 17.1). Here
fi : Ui → X is the composition Ui → U → X which is a morphism of algebraic stacks.
(Recall that the pullback “is” the restriction to X/fi, see Sheaves on Stacks, Definition 9.2
and the discussion following.) Since each fi is smooth (resp. flat) by Lemma 15.1 we see
that f−1

i g!H = gi,!(f ′
i)−1H. Using Lemma 16.1 we reduce the statement of the lemma to

the case whereH has a global presentation. Say we have⊕
j∈J
O −→

⊕
i∈I
O −→ H −→ 0

of O-modules where O = OXlisse,étale (resp. O = OXflat,fppf ). Since g! commutes with
arbitrary colimits (as a left adjoint functor, see Lemma 14.4 and Categories, Lemma 24.5)
we conclude that there exists an exact sequence⊕

j∈J
g!O −→

⊕
i∈I

g!O −→ g!H −→ 0

Lemma 14.5 shows that g!O = OX . In case (2) we are done. In case (1) we apply Sheaves
on Stacks, Lemma 11.4 to conclude. �

Lemma 16.3. Let X be an algebraic stack.
(1) With g as in Lemma 14.2 for the lisse-étale site we have
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(a) the functors g−1 and g! define mutually inverse functors

QCoh(OX )
g−1
// QCoh(Xlisse,étale,OXlisse,étale)

g!
oo

(b) if F is in LQCohfbc(OX ) then g−1F is in QCoh(OXlisse,étale) and
(c) Q(F) = g!g

−1F where Q is as in Lemma 10.1.
(2) With g as in Lemma 14.2 for the flat-fppf site we have

(a) the functors g−1 and g! define mutually inverse functors

QCoh(OX )
g−1
// QCoh(Xflat,fppf ,OXflat,fppf )

g!
oo

(b) if F is in LQCohfbc(OX ) then g−1F is in QCoh(OXflat,fppf ) and
(c) Q(F) = g!g

−1F where Q is as in Lemma 10.1.

Proof. Pullback by any morphism of ringed topoi preserves categories of quasi-coherent
modules, see Modules on Sites, Lemma 23.4. Hence g−1 preserves the categories of quasi-
coherent modules; here we use that QCoh(OX ) = QCoh(Xétale,OX ) by Sheaves on
Stacks, Lemma 11.4. The same is true for g! by Lemma 16.2. We know thatH → g−1g!H
is an isomorphism by Lemma 14.2. Conversely, if F is in QCoh(OX ) then the map
g!g

−1F → F is a map of quasi-coherent modules on X whose restriction to any scheme
smooth over X is an isomorphism. Then the discussion in Sheaves on Stacks, Sections 14
and 15 (comparing with quasi-coherent modules on presentations) shows it is an isomor-
phism. This proves (1)(a) and (2)(a).

LetF be an object of LQCohfbc(OX ). By Lemma 10.2 the kernel and cokernel of the map
Q(F)→ F are parasitic. Hence by Lemma 14.6 and since g∗ = g−1 is exact, we conclude
g∗Q(F) → g∗F is an isomorphism. Thus g∗F is quasi-coherent. This proves (1)(b) and
(2)(b). Finally, (1)(c) and (2)(c) follow because g!g

∗Q(F) → Q(F) is an isomorphism by
our arguments above. �

Lemma 16.4. Let X be an algebraic stack.
(1) QCoh(OXlisse,étale) is a weak Serre subcategory of Mod(OXlisse,étale).
(2) QCoh(OXflat,fppf ) is a weak Serre subcategory of Mod(OXflat,fppf ).

Proof. We will verify conditions (1), (2), (3), (4) of Homology, Lemma 10.3.

Since 0 is a quasi-coherent module on any ringed site we see that (1) holds.

By definition QCoh(O) is a strictly full subcategory Mod(O), so (2) holds.

Let ϕ : G → F be a morphism of quasi-coherent modules on Xlisse,étale or Xflat,fppf .
We have g∗g!F = F and similarly for G and ϕ, see Lemma 14.4. By Lemma 16.2 we see
that g!F and g!G are quasi-coherent OX -modules. By Sheaves on Stacks, Lemma 15.1 we
have that Coker(g!ϕ) is a quasi-coherent module on X (and the cokernel in the category
of quasi-coherent modules on X ). Since g∗ is exact (see Lemma 14.2) g∗ Coker(g!ϕ) =
Coker(g∗g!ϕ) = Coker(ϕ) is quasi-coherent too (see Lemma 16.3). By Proposition 8.1
the kernel Ker(g!ϕ) is in LQCohfbc(OX ). Since g∗ is exact, we have g∗ Ker(g!ϕ) =
Ker(g∗g!ϕ) = Ker(ϕ). Since g∗ maps objects of LQCohfbc(OX ) to quasi-coherent mod-
ules by Lemma 16.3 we conclude that Ker(ϕ) is quasi-coherent as well. This proves (3).
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Finally, suppose that
0→ F → E → G → 0

is an extension of OXlisse,étale -modules (resp. OXflat,fppf -modules) with F and G quasi-
coherent. To prove (4) and finish the proof we have to show that E is quasi-coherent on
Xlisse,étale (resp.Xflat,fppf ). Let U be an object ofXlisse,étale (resp.Xflat,fppf ; we think
of U as a scheme smooth (resp. flat) over X . We have to show that the restriction of E to
Ulisse,étale (resp. = Uflat,fppf ) is quasi-coherent. Thus we may assume that X = U is a
scheme. BecauseG is quasi-coherent onUlisse,étale (resp.Uflat,fppf ), we may assume, after
replacing U by the members of an étale (resp. fppf) covering, that G has a presentation⊕

j∈J
O −→

⊕
i∈I
O −→ G −→ 0

on Ulisse,étale (resp. Uflat,fppf ) where O is the structure sheaf on the site. We may also
assume U is affine. Since F is quasi-coherent, we have

H1(Ulisse,étale,F) = 0, resp. H1(Uflat,fppf ,F) = 0
Namely, F is the pullback of a quasi-coherent module F ′ on the big site of U (by Lemma
16.3), cohomology ofF andF ′ agree (by Lemma 14.3), and we know that the cohomology
of F ′ on the big site of the affine scheme U is zero (to get this in the current situation you
have to combine Descent, Propositions 8.9 and 9.3 with Cohomology of Schemes, Lemma
2.2). Thus we can lift the map

⊕
i∈I O → G to E . A diagram chase shows that we obtain

an exact sequence ⊕
j∈J
O → F ⊕

⊕
i∈I
O → E → 0

By (3) proved above, we conclude that E is quasi-coherent as desired. �

17. Coherent sheaves on locally Noetherian stacks

This section is the analogue of Cohomology of Spaces, Section 12. We have defined the
notion of a coherent module on any ringed topos in Modules on Sites, Section 23. How-
ever, for any algebraic stack X the category of coherent OX -modules is zero, essentially
because the site X contains too many non-Noetherian objects (even if X is itself locally
Noetherian). Instead, we will define coherent modules using the following lemma.

Lemma 17.1. Let X be a locally Noetherian algebraic stack. Let F be anOX -module.
The following are equivalent

(1) F is a quasi-coherent, finite typeOX -module,
(2) F is anOX -module of finite presentation,
(3) F is quasi-coherent and for any morphism f : U → X where U is a locally

Noetherian algebraic space, the pullback f∗F|Uétale is coherent, and
(4) F is quasi-coherent and there exists an algebraic space U and a morphism f :

U → X which is locally of finite type, flat, and surjective, such that the pullback
f∗F|Uétale is coherent.

Proof. Let f : U → X be as in (4). Then U is locally Noetherian (Morphisms of
Stacks, Lemma 17.5) and we see that the statement of the lemma makes sense. Addition-
ally, f is locally of finite presentation by Morphisms of Stacks, Lemma 27.5. Let x be an
object of X lying over the scheme V . In order to prove (2) we have to show that, after
replacing V by the members of an fppf covering of V , the restriction x∗F has a global
finite presentation on X/x ∼= (Sch/V )fppf . The projection W = U ×X V → V is lo-
cally of finite presentation, flat, and surjective. Hence we may replace V by the members
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of an étale covering of W by schemes and assume we have a morphism h : V → U with
f ◦ h = x. Since F is quasi-coherent, we see that the restriction x∗F is the pullback of
h∗
small(f∗F)|Uétale by πV , see Sheaves on Stacks, Lemma 14.2. Since f∗F|Uétale locally in

the étale topology has a finite presentation by assumption, we conclude (4)⇒ (2).

Part (2) implies (1) for any ringed topos (immediate from the definition). The properties
“finite type” and “quasi-coherent” are preserved under pullback by any morphism of ringed
topoi, see Modules on Sites, Lemma 23.4. Hence (1) implies (3), see Cohomology of Spaces,
Lemma 12.2. Finally, (3) trivially implies (4). �

Definition 17.2. Let X be a locally Noetherian algebraic stack. An OX -module F
is called coherent if F satisfies one (and hence all) of the equivalent conditions of Lemma
17.1. The category of coherentOX -modules is denote Coh(OX ).

Lemma 17.3. Let X be a locally Noetherian algebraic stack. The module OX is co-
herent, any invertible OX -module is coherent, and more generally any finite locally free
OX -module is coherent.

Proof. Follows from the definition and Cohomology of Spaces, Lemma 12.2. �

Lemma 17.4. Let f : X → Y be a morphism of locally Noetherian algebraic stacks.
Then f∗ sends coherent modules on Y to coherent modules on X .

Proof. Immediate from the definition and the fact that pullback for any morphism of
ringed topoi preserves finitely presented modules, see Modules on Sites, Lemma 23.4. �

Lemma 17.5. LetX be a locally Noetherian algebraic stack. The category of coherent
OX -modules is abelian. If ϕ : F → G is a map of coherentOX -modules, then

(1) the cokernel Coker(ϕ) computed in Mod(OX ) is a coherentOX -module,
(2) the image Im(ϕ) computed in Mod(OX ) is a coherentOX -module, and
(3) the kernel Ker(ϕ) computed in Mod(OX ) may not be coherent, but it is in

LQCohfbc(OX ) andQ(Ker(ϕ)) is coherent and is the kernel of ϕ in Coh(OX ).
The inclusion functor Coh(OX )→ QCoh(OX ) is exact.

Proof. The rules given for taking kernels, images, and cokernels in Coh(OX ) agree
with the prescription for quasi-coherent modules in Remark 10.5. Hence the lemma will
follow if we can show that the quasi-coherent modules Coker(ϕ), Im(ϕ), andQ(Ker(ϕ))
are coherent. By Lemma 17.1 it suffices to prove this after restricting to Uétale for some
surjective smooth morphism f : U → X . The functor F 7→ f∗F|Uétale is exact. Hence
f∗ Coker(ϕ) and f∗ Im(ϕ) are the cokernel and image of a map between coherent OU -
modules hence coherent as desired. The functor F 7→ f∗F|Uétale kills parasitic modules
by Lemma 9.2. Hence f∗Q(Ker(ϕ))|Uétale = f∗ Ker(ϕ)|Uétale by part (2) of Lemma 10.2.
Thus we conclude that Q(Ker(ϕ)) is coherent in the same way. �

Lemma 17.6. Let X be a locally Noetherian algebraic stack. Given a short exact
sequence 0 → F1 → F2 → F3 → 0 in Mod(OX ) with F1 and F3 coherent, then F2
is coherent.

Proof. By Sheaves on Stacks, Lemma 15.1 part (7) we see that F2 is quasi-coherent.
Then we can check thatF2 is coherent by restricting toUétale for someU → X surjective
and smooth. This follows from Cohomology of Spaces, Lemma 12.3. Some details omitted.

�
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Coherent modules form a Serre subcategory of the category of quasi-coherentOX -modules.
This does not hold for modules on a general ringed topos.

Lemma 17.7. LetX be a locally Noetherian algebraic stack. Then Coh(OX ) is a Serre
subcategory of QCoh(OX ). Let ϕ : F → G be a map of quasi-coherentOX -modules. We
have

(1) if F is coherent and ϕ surjective, then G is coherent,
(2) if F is coherent, then Im(ϕ) is coherent, and
(3) if G coherent and Ker(ϕ) parasitic, then F is coherent.

Proof. Choose a schemeU and a surjective smooth morphism f : U → X . Then the
functor f∗ : QCoh(OX )→ QCoh(OU ) is exact (Lemma 4.1) and moreover by definition
Coh(OX ) is the full subcategory of QCoh(OX ) consisting of objects F such that f∗F is
in Coh(OU ). The statement that Coh(OX ) is a Serre subcategory of QCoh(OX ) follows
immediately from this and the corresponding fact for U , see Cohomology of Spaces, Lem-
mas 12.3 and 12.4. We omit the proof of (1), (2), and (3). Hint: compare with the proof of
Lemma 17.5. �

Let X be a locally Noetherian algebraic stack. Let U be an algebraic space and let f : U →
X be surjective, locally of finite presentation, and flat. Observe that U is locally Noether-
ian (Morphisms of Stacks, Lemma 17.5). Let (U,R, s, t, c) be the groupoid in algebraic
spaces and fcan : [U/R] → X the isomorphism constructed in Algebraic Stacks, Lemma
16.1 and Remark 16.3. As in Sheaves on Stacks, Section 15 we obtain equivalences

QCoh(OX ) ∼= QCoh(O[U/R]) ∼= QCoh(U,R, s, t, c)

where the second equivalence is Sheaves on Stacks, Proposition 14.3. Recall that in Groupoids
in Spaces, Section 13 we have defined the full subcategory

Coh(U,R, s, t, c) ⊂ QCoh(U,R, s, t, c)

of coherent modules as those (G, α) such that G is a coherentOU -module.

Lemma 17.8. In the situation discussed above, the equivalence QCoh(OX ) ∼= QCoh(U,R, s, t, c)
sends coherent sheaves to coherent sheaves and vice versa, i.e., induces an equivalence
Coh(OX ) ∼= Coh(U,R, s, t, c).

Proof. This is immediate from the definition of coherent OX -modules. For book-
keeping purposes: the material above uses Morphisms of Stacks, Lemma 17.5, Algebraic
Stacks, Lemma 16.1 and Remark 16.3, Sheaves on Stacks, Section 15, Sheaves on Stacks,
Proposition 14.3, and Groupoids in Spaces, Section 13. �

Lemma 17.9. Let X be a locally Noetherian algebraic stack. Let F and G be coher-
ent be OX -modules. Then the internal hom hom(F ,G) constructed in Lemma 10.8 is a
coherentOX -module.

Proof. Let U → X be a smooth surjective morphism from a scheme. By item (12)
in Section 12 we see that the restriction of hom(F ,G) to U is the Hom sheaf of the re-
strictions. Hence this lemma follows from the case of algebraic spaces, see Cohomology of
Spaces, Lemma 12.5. �
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18. Coherent sheaves on Noetherian stacks

This section is the analogue of Cohomology of Spaces, Section 13.

Lemma 18.1. LetX be a Noetherian algebraic stack. Every quasi-coherentOX -module
is the filtered colimit of its coherent submodules.

Proof. Let F be a quasi-coherent OX -module. If G,H ⊂ F are coherent OX -
submodules then the image of G ⊕ H → F is another coherent OX -submodule which
contains both of them, see Lemma 17.7. In this way we see that the system is directed.
Hence it now suffices to show that F can be written as a filtered colimit of coherent mod-
ules, as then we can take the images of these modules in F to conclude there are enough
of them.
Let U be an affine scheme and U → X a surjective smooth morphism (Properties of
Stacks, Lemma 6.2). Set R = U ×X U so that X = [U/R] as in Algebraic Stacks,
Lemma 16.2. By Lemma 17.8 we have QCoh(OX) = QCoh(U,R, s, t, c) and Coh(OX) =
Coh(U,R, s, t, c). In this way we reduce to the problem of proving the corresponding
thing for QCoh(U,R, s, t, c). This is Groupoids in Spaces, Lemma 13.4; we check its as-
sumptions in the next paragraph.
We urge the reader to skip the rest of the proof. The affine scheme U is Noetherian;
this follows from our definition of X being locally Noetherian, see Properties of Stacks,
Definition 7.2 and Remark 7.3. The projection morphisms s, t : R → U are smooth
(see reference given above) and quasi-separated and quasi-compact (Morphisms of Stacks,
Lemma 7.8). In particular,R is a quasi-compact and quasi-separated algebraic space smooth
over U and hence Noetherian (Morphisms of Spaces, Lemma 28.6). �
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CHAPTER 104

Derived Categories of Stacks

1. Introduction

In this chapter we write about derived categories associated to algebraic stacks. This means
in particular derived categories of quasi-coherent sheaves, i.e., we prove analogues of the
results on schemes (see Derived Categories of Schemes, Section 1) and algebraic spaces (see
Derived Categories of Spaces, Section 1). The results in this chapter are different from
those in [?] mainly because we consistently use the “big sites”. Before reading this chapter
please take a quick look at the chapters “Sheaves on Algebraic Stacks” and “Cohomology
of Algebraic Stacks” where the terminology we use here is introduced.

2. Conventions, notation, and abuse of language

We continue to use the conventions and the abuse of language introduced in Properties of
Stacks, Section 2. We use notation as explained in Cohomology of Stacks, Section 3.

3. The lisse-étale and the flat-fppf sites

The section is the analogue of Cohomology of Stacks, Section 14 for derived categories.

Lemma 3.1. Let X be an algebraic stack. Notation as in Cohomology of Stacks, Lem-
mas 14.2 and 14.4.

(1) The functor g! : Ab(Xlisse,étale)→ Ab(Xétale) has a left derived functor

Lg! : D(Xlisse,étale) −→ D(Xétale)

which is left adjoint to g−1 and such that g−1Lg! = id.
(2) The functor g! : Mod(Xlisse,étale,OXlisse,étale) → Mod(Xétale,OX ) has a left

derived functor

Lg! : D(OXlisse,étale) −→ D(Xétale,OX )

which is left adjoint to g∗ and such that g∗Lg! = id.
(3) The functor g! : Ab(Xflat,fppf )→ Ab(Xfppf ) has a left derived functor

Lg! : D(Xflat,fppf ) −→ D(Xfppf )

which is left adjoint to g−1 and such that g−1Lg! = id.
(4) The functor g! : Mod(Xflat,fppf ,OXflat,fppf ) → Mod(Xfppf ,OX ) has a left

derived functor

Lg! : D(OXflat,fppf ) −→ D(OX )

which is left adjoint to g∗ and such that g∗Lg! = id.
Warning: It is not clear (a priori) that Lg! on modules agrees with Lg! on abelian sheaves,
see Cohomology on Sites, Remark 37.3.

6963
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Proof. The existence of the functor Lg! and adjointness to g∗ is Cohomology on
Sites, Lemma 37.2. (For the case of abelian sheaves use the constant sheaf Z as the structure
sheaves.) Moreover, it is computed on a complex H• by taking a suitable left resolution
K• → H• and applying the functor g! to K•. Since g−1g!K• = K• by Cohomology of
Stacks, Lemmas 14.4 and 14.2 we see that the final assertion holds in each case. �

Lemma 3.2. With assumptions and notation as in Cohomology of Stacks, Lemma
15.1. We have

g−1 ◦Rf∗ = Rf ′
∗ ◦ (g′)−1 and L(g′)! ◦ (f ′)−1 = f−1 ◦ Lg!

on unbounded derived categories (both for the case of modules and for the case of abelian
sheaves).

Proof. Let τ = étale (resp. τ = fppf ). Let F be an abelian sheaf on Xτ . By Coho-
mology of Stacks, Lemma 15.3 the canonical (base change) map

g−1Rf∗F −→ Rf ′
∗(g′)−1F

is an isomorphism. The rest of the proof is formal. Since cohomology of abelian groups
and sheaves of modules agree we also conclude that g−1Rf∗F = Rf ′

∗(g′)−1F when F is
a sheaf of modules on Xτ .

Next we show that for G (either sheaf of modules or abelian groups) on Ylisse,étale (resp.
Yflat,fppf ) the canonical map

L(g′)!(f ′)−1G → f−1Lg!G
is an isomorphism. To see this it is enough to prove for any injective sheaf I on Xτ the
induced map

Hom(L(g′)!(f ′)−1G, I[n])← Hom(f−1Lg!G, I[n])
is an isomorphism for all n ∈ Z. (Hom’s taken in suitable derived categories.) By the
adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and their “primed” versions
this follows from the isomorphism g−1Rf∗I → Rf ′

∗(g′)−1I proved above.

In the case of a bounded complex G• (of modules or abelian groups) on Ylisse,étale (resp.
Yfppf ) the canonical map

(3.2.1) L(g′)!(f ′)−1G• → f−1Lg!G•

is an isomorphism as follows from the case of a sheaf by the usual arguments involving
truncations and the fact that the functors L(g′)!(f ′)−1 and f−1Lg! are exact functors of
triangulated categories.

Suppose that G• is a bounded above complex (of modules or abelian groups) onYlisse,étale
(resp. Yfppf ). The canonical map (3.2.1) is an isomorphism because we can use the stupid
truncations σ≥−n (see Homology, Section 15) to write G• as a colimit G• = colimG•

n of
bounded complexes. This gives a distinguished triangle⊕

n≥1
G•
n →

⊕
n≥1
G•
n → G• → . . .

and each of the functors L(g′)!, (f ′)−1, f−1, Lg! commutes with direct sums (of com-
plexes).

If G• is an arbitrary complex (of modules or abelian groups) on Ylisse,étale (resp. Yfppf )
then we use the canonical truncations τ≤n (see Homology, Section 15) to write G• as a
colimit of bounded above complexes and we repeat the argument of the paragraph above.
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Finally, by the adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and their
“primed” versions we conclude that the first identity of the lemma follows from the second
in full generality. �

Lemma 3.3. Let X be an algebraic stack. Notation as in Cohomology of Stacks,
Lemma 14.2.

(1) Let H be a quasi-coherent OXlisse,étale -module on the lisse-étale site of X . For
all p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with the flat
base change property on X .

(2) LetH be a quasi-coherent OXflat,fppf -module on the flat-fppf site of X . For all
p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with the flat base
change property on X .

Proof. Pick a schemeU and a surjective smooth morphism x : U → X . By Modules
on Sites, Definition 23.1 there exists an étale (resp. fppf) covering {Ui → U}i∈I such that
each pullback f−1

i H has a global presentation (see Modules on Sites, Definition 17.1). Here
fi : Ui → X is the composition Ui → U → X which is a morphism of algebraic stacks.
(Recall that the pullback “is” the restriction to X/fi, see Sheaves on Stacks, Definition 9.2
and the discussion following.) After refining the covering we may assume each Ui is an
affine scheme. Since each fi is smooth (resp. flat) by Lemma 3.2 we see that f−1

i Lg!H =
Lgi,!(f ′

i)−1H. Using Cohomology of Stacks, Lemma 8.2 we reduce the statement of the
lemma to the case where H has a global presentation and where X = (Sch/X)fppf for
some affine scheme X = Spec(A).

Say our presentation looks like⊕
j∈J
O −→

⊕
i∈I
O −→ H −→ 0

where O = OXlisse,étale (resp. O = OXflat,fppf ). Note that the site Xlisse,étale (resp.
Xflat,fppf ) has a final object, namely X/X which is quasi-compact (see Cohomology on
Sites, Section 16). Hence we have

Γ(
⊕

i∈I
O) =

⊕
i∈I

A

by Sites, Lemma 17.7. Hence the map in the presentation corresponds to a similar presen-
tation ⊕

j∈J
A −→

⊕
i∈I

A −→M −→ 0

of an A-module M . Moreover, H is equal to the restriction to the lisse-étale (resp. flat-
fppf) site of the quasi-coherent sheaf Ma associated to M . Choose a resolution

. . .→ F2 → F1 → F0 →M → 0

by free A-modules. The complex

. . .O ⊗A F2 → O⊗A F1 → O⊗A F0 → H→ 0

is a resolution of H by free O-modules because for each object U/X of Xlisse,étale (resp.
Xflat,fppf ) the structure morphism U → X is flat. Hence by construction the value of
Lg!H is

. . .→ OX ⊗A F2 → OX ⊗A F1 → OX ⊗A F0 → 0→ . . .

Since this is a complex of quasi-coherent modules on Xétale (resp. Xfppf ) it follows from
Cohomology of Stacks, Proposition 8.1 that Hp(Lg!H) is quasi-coherent. �
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4. Cohomology and the lisse-étale and flat-fppf sites

We have already seen that cohomology of a sheaf on an algebraic stackX can be computed
on flat-fppf site. In this section we prove the same is true for (possibly) unbounded objects
of the direct category of X .

Lemma 4.1. Let X be an algebraic stack. We have Lg!Z = Z for either Lg! as in
Lemma 3.1 part (1) or Lg! as in Lemma 3.1 part (3).

Proof. We prove this for the comparison between the flat-fppf site with the fppf site;
the case of the lisse-étale site is exactly the same. We have to show that Hi(Lg!Z) is 0 for
i 6= 0 and that the canonical map H0(Lg!Z) → Z is an isomorphism. Let f : U → X
be a surjective, flat morphism where U is a scheme such that f is also locally of finite
presentation. (For example, pick a presentation U → X and let U be the algebraic stack
corresponding toU .) By Sheaves on Stacks, Lemmas 19.6 and 19.10 it suffices to show that
the pullback f−1Hi(Lg!Z) is 0 for i 6= 0 and that the pullback H0(Lg!Z)→ f−1Z is an
isomorphism. By Lemma 3.2 we find f−1Lg!Z = L(g′)!Z where g′ : Sh(Uflat,fppf ) →
Sh(Ufppf ) is the corresponding comparision morphism for U . This reduces us to the case
studied in the next paragraph.

Assume X = (Sch/X)fppf for some scheme X . In this case the category Xflat,fppf has
a final object e, namely X/X , and moreover the functor u : Xflat,fppf → Xfppf sends e
to the final object. Since Z is the free abelian sheaf on the final object (provided the final
object exists) we find that Lg!Z = Z by the very construction of Lg! in Cohomology on
Sites, Lemma 37.2. �

Lemma 4.2. Let X be an algebraic stack. Notation as in Lemma 3.1.

(1) For K in D(Xétale) we have
(a) RΓ(Xétale,K) = RΓ(Xlisse,étale, g−1K), and
(b) RΓ(x,K) = RΓ(Xlisse,étale/x, g−1K) for any object x of Xlisse,étale.

(2) For K in D(Xfppf ) we have
(a) RΓ(Xfppf ,K) = RΓ(Xflat,fppf , g−1K), and
(b) Hp(x,K) = RΓ(Xflat,fppf/x, g−1K) for any object x of Xflat,fppf .

In both cases, the same holds for modules, since we have g−1 = g∗ and there is no difference
in computing cohomology by Cohomology on Sites, Lemma 20.7.

Proof. We prove this for the comparison between the flat-fppf site with the fppf
site; the case of the lisse-étale site is exactly the same. By Lemma 4.1 we have Lg!Z = Z.
Then we obtain

RΓ(Xfppf ,K) = RHom(Z,K)
= RHom(Lg!Z,K)
= RHom(Z, g−1K)
= RΓ(Xlisse,étale, g−1K)

This proves (1)(a). Part (1)(b) follows from part (1)(a). Namely, if x lies over the scheme
U , then the site Xétale/x is equivalent to (Sch/U)étale and Xlisse,étale is equivalent to
Ulisse,étale. �
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5. Derived categories of quasi-coherent modules

LetX be an algebraic stack. As the inclusion functor QCoh(OX )→Mod(OX ) isn’t exact,
we cannot define DQCoh(OX ) as the full subcategory of D(OX ) consisting of complexes
with quasi-coherent cohomology sheaves. Instead we define the derived category of quasi-
coherent modules as a quotient by analogy with Cohomology of Stacks, Remark 10.7.

Recall that LQCohfbc(OX ) ⊂ Mod(OX ) denotes the full subcategory of locally quasi-
coherentOX -modules with the flat base change property, see Cohomology of Stacks, Sec-
tion 8. We will abbreviate

DLQCohfbc(OX ) = DLQCohfbc(OX )(OX )
From Derived Categories, Lemma 17.1 and Cohomology of Stacks, Proposition 8.1 part
(2) we deduce that DLQCohfbc(OX ) is a strictly full, saturated triangulated subcategory of
D(OX ).
Let Parasitic(OX ) ⊂Mod(OX ) denote the full subcategory of parasitic OX -modules, see
Cohomology of Stacks, Section 9. Let us abbreviate

DParasitic(OX ) = DParasitic(OX )(OX )
As before this is a strictly full, saturated triangulated subcategory ofD(OX ) since Parasitic(OX )
is a Serre subcategory of Mod(OX ), see Cohomology of Stacks, Lemma 9.2.

The intersection of the weak Serre subcategories Parasitic(OX )∩LQCohfbc(OX ) of Mod(OX )
is another one. Let us similarly abbreviate

DParasitic∩LQCohfbc(OX ) = DParasitic(OX )∩LQCohfbc(OX )(OX )
= DParasitic(OX ) ∩DLQCohfbc(OX )

As before this is a strictly full, saturated triangulated subcategory of D(OX ). Hence a
fortiori it is a strictly full, saturated triangulated subcategory of DLQCohfbc(OX ).

Definition 5.1. Let X be an algebraic stack. With notation as above we define the
derived category ofOX -modules with quasi-coherent cohomology sheaves as the Verdier
quotient1

DQCoh(OX ) = DLQCohfbc(OX )/DParasitic∩LQCohfbc(OX )
The Verdier quotient is defined in Derived Categories, Section 6. A morphism a : E → E′

of DLQCohfbc(OX ) becomes an isomorphism in DQCoh(OX ) if and only if the cone C(a)
has parasitic cohomology sheaves, see Derived Categories, Lemma 6.10.
Consider the functors

DLQCohfbc(OX ) Hi−−→ LQCohfbc(OX ) Q−→ QCoh(OX )

Note that Q annihilates the subcategory Parasitic(OX ) ∩ LQCohfbc(OX ), see Cohomol-
ogy of Stacks, Lemma 10.2. By Derived Categories, Lemma 6.8 we obtain a cohomological
functor
(5.1.1) Hi : DQCoh(OX ) −→ QCoh(OX )
Moreover, note thatE ∈ DQCoh(OX ) is zero if and only ifHi(E) = 0 for all i ∈ Z since
the kernel of Q is exactly equal to Parasitic(OX ) ∩ LQCohfbc(OX ) by Cohomology of
Stacks, Lemma 10.2.

1This definition is different from the one in the literature, see [?, 6.3], but it agrees with that definition by
Lemma 5.3.
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Note that the categories Parasitic(OX ) ∩ LQCohfbc(OX ) and LQCohfbc(OX ) are also
weak Serre subcategories of the abelian category Mod(Xétale,OX ) of modules in the étale
topology, see Cohomology of Stacks, Proposition 8.1 and Lemma 9.2. Hence the statement
of the following lemma makes sense.

Lemma 5.2. LetX be an algebraic stack. AbbreviatePX = Parasitic(OX )∩LQCohfbc(OX ).
The comparison morphism ε : Xfppf → Xétale induces a commutative diagram

DParasitic∩LQCohfbc(OX ) // DLQCohfbc(OX ) // D(OX )

DPX (Xétale,OX ) //

ε∗

OO

DLQCohfbc(OX )(Xétale,OX ) //

ε∗

OO

D(Xétale,OX )

ε∗

OO

Moreover, the left two vertical arrows are equivalences of triangulated categories, hence
we also obtain an equivalence

DLQCohfbc(OX )(Xétale,OX )/DPX (Xétale,OX ) −→ DQCoh(OX )

Proof. Since ε∗ is exact it is clear that we obtain a diagram as in the statement of
the lemma. We will show the middle vertical arrow is an equivalence by applying Coho-
mology on Sites, Lemma 29.1 to the following situation: C = X , τ = fppf , τ ′ = étale,
O = OX ,A = LQCohfbc(OX ), and B is the set of objects ofX lying over affine schemes.
To see the lemma applies we have to check conditions (1), (2), (3), (4). Conditions (1) and
(2) are clear from the discussion above (explicitly this follows from Cohomology of Stacks,
Proposition 8.1). Condition (3) holds because every scheme has a Zariski open covering
by affines. Condition (4) follows from Descent, Lemma 12.4.

We omit the verification that the equivalence of categories ε∗ : DLQCohfbc(OX )(Xétale,OX )→
DLQCohfbc(OX ) induces an equivalence of the subcategories of complexes with parasitic
cohomology sheaves. �

Let X be an algebraic stack. By Cohomology of Stacks, Lemma 16.4 the category of quasi-
coherent modules QCoh(OXlisse,étale) forms a weak Serre subcategory of Mod(OXlisse,étale)
and the category of quasi-coherent modules QCoh(OXflat,fppf ) forms a weak Serre sub-
category of Mod(OXflat,fppf ). Thus we can consider

DQCoh(OXlisse,étale) = DQCoh(OXlisse,étale )(OXlisse,étale) ⊂ D(OXlisse,étale)

and similarly

DQCoh(OXflat,fppf ) = DQCoh(OXflat,fppf )(OXflat,fppf ) ⊂ D(OXflat,fppf )

As above these are strictly full, saturated triangulated subcategories. It turns out that
DQCoh(OX ) is equivalent to either of these.

Lemma 5.3. LetX be an algebraic stack. SetPX = Parasitic(OX )∩LQCohfbc(OX ).
(1) Let F• be an object of DLQCohfbc(OX )(Xétale,OX ). With g as in Cohomology

of Stacks, Lemma 14.2 for the lisse-étale site we have
(a) g∗F• is in DQCoh(OXlisse,étale),
(b) g∗F• = 0 if and only if F• is in DPX (Xétale,OX ),
(c) Lg!H• is in DLQCohfbc(OX )(Xétale,OX ) for H• in DQCoh(OXlisse,étale),

and
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(d) the functors g∗ and Lg! define mutually inverse functors

DQCoh(OX )
g∗
//
DQCoh(OXlisse,étale)

Lg!

oo

(2) Let F• be an object of DLQCohfbc(OX ). With g as in Cohomology of Stacks,
Lemma 14.2 for the flat-fppf site we have
(a) g∗F• is in DQCoh(OXflat,fppf ),
(b) g∗F• = 0 if and only if F• is in DPX (OX ),
(c) Lg!H• is in DLQCohfbc(OX ) forH• in DQCoh(OXflat,fppf ), and
(d) the functors g∗ and Lg! define mutually inverse functors

DQCoh(OX )
g∗
//
DQCoh(OXflat,fppf )

Lg!

oo

Proof. The functor g∗ = g−1 is exact, hence (1)(a), (2)(a), (1)(b), and (2)(b) follow
from Cohomology of Stacks, Lemmas 16.3 and 14.6.

Proof of (1)(c) and (2)(c). The construction ofLg! in Lemma 3.1 (via Cohomology on Sites,
Lemma 37.2 which in turn uses Derived Categories, Proposition 29.2) shows that Lg! on
any objectH• of D(OXlisse,étale) is computed as

Lg!H• = colim g!K•
n = g! colimK•

n

(termwise colimits) where the quasi-isomorphism colimK•
n → H• induces quasi-isomorphisms

K•
n → τ≤nH•. Since the inclusion functors

LQCohfbc(OX ) ⊂Mod(Xétale,OX ) and LQCohfbc(OX ) ⊂Mod(OX )

are compatible with filtered colimits we see that it suffices to prove (c) on bounded above
complexes H• in DQCoh(OXlisse,étale) and in DQCoh(OXflat,fppf ). In this case to show
that Hn(Lg!H•) is in LQCohfbc(OX ) we can argue by induction on the integer m such
thatHi = 0 for i > m. If m < n, then Hn(Lg!H•) = 0 and the result holds. In general
consider the distinguished triangle

τ≤m−1H• → H• → Hm(H•)[−m]→ . . .

(Derived Categories, Remark 12.4) and apply the functor Lg!. Since LQCohfbc(OX ) is
a weak Serre subcategory of the module category it suffices to prove (c) for two out of
three. We have the result for Lg!τ≤m−1H• by induction and we have the result for
Lg!H

m(H•)[−m] by Lemma 3.3. Whence (c) holds.

Let us prove (2)(d). By (2)(a) and (2)(b) the functor g−1 = g∗ induces a functor

c : DQCoh(OX ) −→ DQCoh(OXflat,fppf )

see Derived Categories, Lemma 6.8. Thus we have the following diagram of triangulated
categories

DLQCohfbc(OX )
g−1

))

q
// DQCoh(OX )

c
vv

DQCoh(OXflat,fppf )
Lg!

ii
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where q is the quotient functor, the inner triangle is commutative, and g−1Lg! = id.
For any object of E of DLQCohfbc(OX ) the map a : Lg!g

−1E → E maps to a quasi-
isomorphism in D(OXflat,fppf ). Hence the cone on a maps to zero under g−1 and by
(2)(b) we see that q(a) is an isomorphism. Thus q ◦ Lg! is a quasi-inverse to c.

In the case of the lisse-étale site exactly the same argument as above proves that

DLQCohfbc(OX )(Xétale,OX )/DPX (Xétale,OX )

is equivalent toDQCoh(OXlisse,étale). Applying the last equivalence of Lemma 5.2 finishes
the proof. �

The following lemma tells us that the quotient functor DLQCohfbc(OX ) → DQCoh(OX )
has a left adjoint. See Remark 5.5.

Lemma 5.4. LetX be an algebraic stack. LetE be an object ofDLQCohfbc(OX ). There
exists a canonical distinguished triangle

E′ → E → P → E′[1]

in DLQCohfbc(OX ) such that P is in DParasitic∩LQCohfbc(OX ) and

HomD(OX )(E′, P ′) = 0

for all P ′ in DParasitic∩LQCohfbc(OX ).

Proof. Consider the morphism of ringed topoi g : Sh(Xflat,fppf ) −→ Sh(Xfppf )
studied in Cohomology of Stacks, Section 14. Set E′ = Lg!g

∗E and let P be the cone
on the adjunction map E′ → E , see Lemma 3.1 part (4). By Lemma 5.3 parts (2)(a) and
(2)(c) we have that E′ is in DLQCohfbc(OX ). Hence also P is in DLQCohfbc(OX ). The map
g∗E′ → g∗E is an isomorphism as g∗Lg! = id by Lemma 3.1 part (4). Hence g∗P = 0
and whence P is an object of DParasitic∩LQCohfbc(OX ) by Lemma 5.3 part (2)(b). Finally,
for P ′ in DParasitic∩LQCohfbc(OX ) we have

Hom(E′, P ′) = Hom(Lg!g
∗E,P ′) = Hom(g∗E, g∗P ′) = 0

as g∗P ′ = 0 by Lemma 5.3 part (2)(b). The distinguished triangle E′ → E → P → E′[1]
is canonical (more precisely unique up to isomorphism of triangles induces the identity
on E) by the discussion in Derived Categories, Section 40. �

Remark 5.5. The result of Lemma 5.4 tells us that

DParasitic∩LQCohfbc(OX ) ⊂ DLQCohfbc(OX )

is a left admissible subcategory, see Derived Categories, Section 40. In particular, if A ⊂
DLQCohfbc(OX ) denotes its left orthogonal, then Derived Categories, Proposition 40.10
implies thatA is right admissible in DLQCohfbc(OX ) and that the composition

A −→ DLQCohfbc(OX ) −→ DQCoh(OX )

is an equivalence. This means that we can view DQCoh(OX ) as a strictly full saturated
triangulated subcategory of DLQCohfbc(OX ) and also of D(Xfppf ,OX ).
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6. Derived pushforward of quasi-coherent modules

As a first application of the material above we construct the derived pushforward. In Ex-
amples, Section 60 the reader can find an example of a quasi-compact and quasi-separated
morphism f : X → Y of algebraic stacks such that the direct image functor Rf∗ does
not induce a functor DQCoh(OX ) → DQCoh(OY). Thus restricting to bounded below
complexes is necessary.

Proposition 6.1. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. The functor Rf∗ induces a commutative diagram

D+
Parasitic∩LQCohfbc(OX ) //

Rf∗

��

D+
LQCohfbc(OX ) //

Rf∗

��

D(OX )

Rf∗

��
D+

Parasitic∩LQCohfbc(OY) // D+
LQCohfbc(OY) // D(OY)

and hence induces a functor

RfQCoh,∗ : D+
QCoh(OX ) −→ D+

QCoh(OY)

on quotient categories. Moreover, the functorRifQCoh of Cohomology of Stacks, Propo-
sition 11.1 are equal to Hi ◦RfQCoh,∗ with Hi as in (5.1.1).

Proof. We have to show thatRf∗E is an object ofD+
LQCohfbc(OY) forE inD+

LQCohfbc(OX ).
This follows from Cohomology of Stacks, Proposition 8.1 and the spectral sequenceRif∗H

j(E)⇒
Ri+jf∗E. The case of parasitic modules works the same way using Cohomology of Stacks,
Lemma 9.3. The final statement is clear from the definition of Hi in (5.1.1). �

7. Derived pullback of quasi-coherent modules

Derived pullback of complexes with quasi-coherent cohomology sheaves exists in general.

Proposition 7.1. Let f : X → Y be a morphism of algebraic stacks. The exact
functor f∗ induces a commutative diagram

DLQCohfbc(OX ) // D(OX )

DLQCohfbc(OY) //

f∗

OO

D(OY)

f∗

OO

The composition

DLQCohfbc(OY) f∗

−→ DLQCohfbc(OX ) qX−−→ DQCoh(OX )

is left derivable with respect to the localization DLQCohfbc(OY) → DQCoh(OY) and we
may define Lf∗

QCoh as its left derived functor

Lf∗
QCoh : DQCoh(OY) −→ DQCoh(OX )

(see Derived Categories, Definitions 14.2 and 14.9). If f is quasi-compact and quasi-separated,
then Lf∗

QCoh and RfQCoh,∗ satisfy the following adjointness:

HomDQCoh(OX )(Lf∗
QCohA,B) = HomDQCoh(OY )(A,RfQCoh,∗B)

for A ∈ DQCoh(OY) and B ∈ D+
QCoh(OX ).
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Proof. To prove the first statement, we have to show that f∗E is an object ofDLQCohfbc(OX )
for E in DLQCohfbc(OY). Since f∗ = f−1 is exact this follows immediately from the fact
that f∗ maps LQCohfbc(OY) into LQCohfbc(OX ) by Cohomology of Stacks, Proposi-
tion 8.1.
Set D = DLQCohfbc(OY). Let S be the collection of morphisms in D whose cone is an
object of DParasitic∩LQCohfbc(OY). Set D′ = DQCoh(OX ). Set F = qX ◦ f∗ : D → D′.
Then D, S,D′, F are as in Derived Categories, Situation 14.1 and Definition 14.2. Let us
prove that LF (E) is defined for any object E of D. Namely, consider the triangle

E′ → E → P → E′[1]
constructed in Lemma 5.4. Note that s : E′ → E is an element of S. We claim that E′

computes LF . Namely, suppose that s′ : E′′ → E is another element of S , i.e., fits into
a triangle E′′ → E → P ′ → E′′[1] with P ′ in DParasitic∩LQCohfbc(OY). By Lemma 5.4
(and its proof) we see that E′ → E factors through E′′ → E. Thus we see that E′ → E
is cofinal in the system S/E. Hence it is clear that E′ computes LF .
To see the final statement, write B = qX (H) and A = qY(E). Choose E′ → E as
above. We will use on the one hand that RfQCoh,∗(B) = qY(Rf∗H) and on the other
that Lf∗

QCoh(A) = qX (f∗E′).

HomDQCoh(OX )(Lf∗
QCohA,B) = HomDQCoh(OX )(qX (f∗E′), qX (H))

= colimH→H′ HomD(OX )(f∗E′,H ′)
= colimH→H′ HomD(OY )(E′, Rf∗H

′)
= HomD(OY )(E′, Rf∗H)
= HomDQCoh(OY )(A,RfQCoh,∗B)

Here the colimit is over morphisms s : H → H ′ inD+
LQCohfbc(OX ) whose cone P (s) is an

object ofD+
Parasitic∩LQCohfbc(OX ). The first equality we’ve seen above. The second equality

holds by construction of the Verdier quotient. The third equality holds by Cohomology
on Sites, Lemma 19.1. SinceRf∗P (s) is an object ofD+

Parasitic∩LQCohfbc(OY) by Proposition
6.1 we see that HomD(OY )(E′, Rf∗P (s)) = 0. Thus the fourth equality holds. The final
equality holds by construction of E′. �

8. Quasi-coherent objects in the derived category

This section is the continuation of Sheaves on Stacks, Section 26. Let X be an algebraic
stack. In that section we defined a triangulated category

QC (X ) = QC (Xaffine,O)
and we proved that ifX is representable by an algebraic spaceX then QC (X ) is equivalent
toDQCoh(OX). It turns out that we have developed just enough theory to prove the same
thing is true for any algebraic stack.

Lemma 8.1. Let X be an algebraic stack. Let K be an object of D(Xfppf ) whose
cohomology sheaves are parasitic. Then RΓ(x,K) = 0 for all objects x of X lying over a
scheme U such that U → X is flat.

Proof. Denote g : Sh(Xflat,fppf )→ Sh(Xfppf ) the morphism of topoi discussed in
Section 3. Let x be an object ofX lying over a schemeU such thatU → X is flat, i.e., x is an
object ofXflat,fppf . By Lemma 4.2 part (2)(b) we haveRΓ(x,K) = RΓ(Xflat,fppf/x, g−1K).
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However, our assumption means that the cohomology sheaves of the object g−1K ofD(Xflat,fppf )
are zero, see Cohomology of Stacks, Definition 9.1. Hence g−1K = 0 and we win. �

Lemma 8.2. Let X be an algebraic stack. Let K be an object of D(Xfppf ) such that
RΓ(x,K) = 0 for all objects x of X lying over an affine scheme U such that U → X is
flat. Then Hi(X ,K) = 0 for all i.

Proof. Denote g : Sh(Xflat,fppf )→ Sh(Xfppf ) the morphism of topoi discussed in
Section 3. By Lemma 4.2 part (2)(b) our assumption means that g−1K has vanishing coho-
mology over every object ofXflat,fppf which lies over an affine scheme. Since every object
x ofXflat,fppf has a covering by such objects, we conclude that g−1K has vanishing coho-
mology sheaves, i.e., we conclude g−1K = 0. Then of course RΓ(Xflat,fppf , g−1K) = 0
which in turn implies what we want by Lemma 4.2 part (2)(a). �

Lemma 8.3. Let X be an algebraic stack. Let K be an object of DQCoh(OXflat,fppf ).
Then Lg!K satisfies the following property: for any morphism x → x′ of Xaffine the
map

RΓ(x′, Lg!K)⊗L
O(x′) O(x) −→ RΓ(x, Lg!K)

is a quasi-isomorphism.

Proof. By Lemma 5.3 part (2)(c) the object Lg!K is in DLQCohfbc(OX ). It follows
readily from this that the map displayed in the lemma is an isomorphism ifO(x′)→ O(x)
is a flat ring map; we omit the details.

In this paragraph we argue that the question is local for the étale topology. Let x → x′

be a general morphism of Xaffine. Let {x′
i → x′} be a covering in Xaffine,étale. Set

xi = x×x′x′
i so that {xi → x} is a covering ofXaffine,étale too. ThenO(x′)→

∏
O(x′

i)
is a faithfully flat étale ring map and∏

O(xi) = O(x)⊗O(x′)

(∏
O(x′

i)
)

Thus a simple algebra argument we omit shows that it suffices to prove the result in the
statement of the lemma holds for each of the morphisms xi → x′

i in Xaffine. In other
words, the problem is local in the étale topology.

Choose a scheme X and a surjective smooth morphism f : X → X . We may view f
as an object of X (by our abuse of notation) and then (Sch/X)fppf = X/f , see Sheaves
on Stacks, Section 9. By Sheaves on Stacks, Lemma 19.10 for example, there exist an étale
covering {x′

i → x′} such that x′
i : U ′

i = p(x′
i) → X factors through f . By the result of

the previous paragraph, we may assume that x→ x′ is a morphism which is the image of a
morphism U → U ′ of (Aff/X)fppf by the functor (Sch/X)fppf → X . At this point we
see use that the restriction to (Sch/X)fppf of Lg!K is equal to f∗Lg!K = L(g′)!(f ′)∗K
by Lemma 3.2. This reduces us to the case discussed in the next paragraph.

Assume X = (Sch/X)fppf and x → x′ corresponds to the morphism of affine schemes
U → U ′. We may still work étale (or Zariski) locally on U ′ and hence we may assume
U ′ → X factors through some affine open of X . This reduces us to the case discussed in
the next paragraph.

Assume X = (Sch/X)fppf where X = Spec(R) is an affine scheme and x → x′ corre-
sponds to the morphism of affine schemes U → U ′. Let M• be a complex of R-modules
representing RΓ(X,K). By the construction in More on Algebra, Lemma 59.10 we may
assume M• = colimP •

n where each P •
n is a bounded above complex of free R-modules.
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Details omitted; see also More on Algebra, Remark 59.11. Consider the complex of mod-
ules M•

flat,fppf on Xflat,fppf = (Sch/X)flat,fppf given by the rule

U 7−→ Γ(U,M• ⊗R OU )

This is a complex of sheaves by the discussion in Descent, Section 8. There is a canonical
mapM•

flat,fppf → K which by our initial remarks of the proof produces an isomorphism
on sections over the affine objects of Xflat,fppf . Since every object of Xflat,fppf has a
covering by affine objects we see that M•

flat,fppf agrees with K.

Let M•
fppf be the complex of modules on Xfppf given by the same formula as displayed

above. Recall that Lg!O = g!O = O. Since Lg! is the left derived functor of g! we con-
clude that Lg!P

•
n,flat,fppf = P •

n,fppf . Since the functor Lg! commutes with homotopy
colimits (or by its construction in Cohomology on Sites, Lemma 37.2) and since M• =
colimP •

n we conclude that Lg!M
•
flat,fppf = M•

fppf . Say U = Spec(A), U ′ = Spec(A′)
and U → U ′ corresponds to the ring map A′ → A. From the above we see that

RΓ(U,Lg!K) = M• ⊗R A and RΓ(U ′, Lg!K) = M• ⊗R A′

Since M• is a K-flat complex of R-modules, by transitivity of tensor product it follows
that

RΓ(U ′, Lg!K)⊗L
A′ A −→ RΓ(U,Lg!K)

is a quasi-isomorphism as desired. �

Proposition 8.4. LetX be an algebraic stack. Then QC (X ) is canonically equivalent
to DQCoh(OX ).

Proof. By Sheaves on Stacks, Lemma 26.6 pullback by the comparison morphism ε :
Xaffine,fppf → Xaffine identifies QC (X ) with a full subcategoryQX ⊂ D(Xaffine,fppf ,O).
Using the equivalence of ringed topoi in Sheaves on Stacks, Equation (24.3.1) we may and
do view QX as a full subcategory of D(Xfppf ,O).

Similarly by Lemma 5.4 and Remark 5.5 we find that DQCoh(OX ) may be viewed as the
left orthogonalA of the left admissible subcategoryDParasitic∩LQCohfbc(OX ) ofDLQCohfbc(OX ).

To finish we will show that QX is equal toA as subcategories of D(Xfppf ,O).

Step 1: QX is contained in DLQCohfbc(OX ). An object K of QX is characterized by the
property that K , viewed as an object of D(Xaffine,fppf ,O) satisfies Rε∗K is an object of
QC (Xaffine,O). This in turn means exactly that for all morphisms x → x′ of Xaffine
the map

RΓ(x′,K)⊗L
O(x′) O(x) −→ RΓ(x,K)

is an isomorphism, see footnote in statement of Cohomology on Sites, Lemma 43.12. Now,
if x′ → x lies over a flat morphism of affine schemes, then this means that

Hi(x′,K)⊗O(x′) O(x) ∼= Hi(x,K)

This clearly means thatHi(K) is a sheaf for the étale topology (Sheaves on Stacks, Lemma
25.1) and that it has the flat base change property (small detail omitted).

Step 2: QX is contained in A. To see this it suffices to show that for K in QX we have
Hom(K,P ) = 0 for all P in DParasitic∩LQCohfbc(OX ). Consider the object

H = RHomOX (K,P )
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Let x be an object of X which lies over an affine scheme U = p(x). By Cohomology on
Sites, Lemma 35.1 we have the first equality in

RΓ(x,H) = RHomOX (K|X/x, P |X/x) = RHomO(K|Xaffine/x, P |Xaffine/x)
The second equality stems from the fact that the topos of the site X/x is equivalent to
the topos of the site Xaffine/x, see Sheaves on Stacks, Equation (24.3.1). We may write
K = ε∗N for some N in QC (O). Then by Cohomology on Sites, Lemma 43.13 we see
that

RΓ(x,H) = RHomD(O(x))(RΓ(x,N), RΓ(x, P ))
By Lemma 8.1 we see that RΓ(x, P ) = 0 if U → X is flat and hence RΓ(x,H) = 0
under the same hypothesis. By Lemma 8.2 we conclude thatRΓ(X ,H) = 0 and therefore
Hom(K,P ) = 0.
Step 3: A is contained in QX . Let K be an object of A and let x → x′ be a morphism of
Xaffine. We have to show that

RΓ(x′,K)⊗L
O(x′) O(x) −→ RΓ(x,K)

is a quasi-isomorphism, see footnote in statement of Cohomology on Sites, Lemma 43.12.
By the proof of Lemma 5.4 and the discussion in Remark 5.5 we see thatA is the image of
the restriction of Lg! to DQCoh(OXflat,fppf ). Thus we may assume K = Lg!M for some
M in DQCoh(OXflat,fppf ). Then the desired equality follow from Lemma 8.3. �
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CHAPTER 105

Introducing Algebraic Stacks

1. Why read this?

We give an informal introduction to algebraic stacks. The goal is to quickly introduce
a simple language which you can use to think about local and global properties of your
favorite moduli problem. Having done this it should be possible to ask yourself well-posed
questions about moduli problems and to start solving them, whilst assuming a general
theory exists. If you end up with an interesting result, you can go back to the general
theory in the other parts of the stacks project and fill in the gaps as needed.

The point of view we take here is close to the point of view taken in [?] and [?].

2. Preliminary

Let S be a scheme. An elliptic curve over S is a triple (E, f, 0) where E is a scheme and
f : E → S and 0 : S → E are morphisms of schemes such that

(1) f : E → S is proper, smooth of relative dimension 1,
(2) for every s ∈ S the fibreEs is a connected curve of genus 1, i.e.,H0(Es,O) and

H1(Es,O) both are 1-dimensional κ(s)-vector spaces, and
(3) 0 is a section of f .

Given elliptic curves (E, f, 0)/S and (E′, f ′, 0′)/S′ a morphism of elliptic curves over
a : S → S′ is a morphism α : E → E′ such that the diagram

E
α

//

f

��

E′

f ′

��
S

0

88

a // S′

0′

ff

is commutative and the inner square is cartesian, in other words the morphism α induces
an isomorphism E → S ×S′ E′. We are going to define the stack of elliptic curvesM1,1.
In the rest of the Stacks project we work out the method introduced in Deligne and Mum-
ford’s paper [?] which consists in presentingM1,1 as a category endowed with a functor

p :M1,1 −→ Sch, (E, f, 0)/S 7−→ S

This means you work with fibred categories over the categories of schemes, topologies,
stacks fibred in groupoids, coverings, etc, etc. In this chapter we throw all of that out of
the window and we think about it a bit differently – probably closer to how the initiators
of the theory started thinking about it themselves.

3. The moduli stack of elliptic curves

Here is what we are going to do:
(1) Start with your favorite category of schemes Sch.

6977
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(2) Add a new symbolM1,1.
(3) A morphism S →M1,1 is an elliptic curve (E, f, 0) over S.
(4) A diagram

S
a

//

(E,f,0) !!

S′

(E′,F ′,0′)||
M1,1

is commutative if and only if there exists a morphism α : E → E′ of elliptic
curves over a : S → S′. We say α witnesses the commutativity of the diagram.

(5) Note that commutative diagrams glue as follows

S
a

//

(E,f,0)
))

S′

(E′,F ′,0′)
��

a′
// S′′

(E′′,F ′′,0′′)uu
M1,1

because α′ ◦ α witnesses the commutativity of the outer triangle if α and α′

witness the commutativity of the left and right triangles.
(6) The composition

S
a−→ S′ (E′,f ′,0′)−−−−−−→M1,1

is given by (E′ ×S′ S, f ′ ×S′ S, 0′ ×S′ S).
At the end of this procedure we have enlarged the category Sch of schemes with exactly
one object...

Except that we haven’t defined what a morphism fromM1,1 to a scheme T is. The an-
swer is that it is the weakest possible notion such that compositions make sense. Thus a
morphism F : M1,1 → T is a rule which to every elliptic curve (E, f, 0)/S associates a
morphism F (E, f, 0) : S → T such that given any commutative diagram

S
a

//

(E,f,0) !!

S′

(E′,F ′,0′)||
M1,1

the diagram
S

a
//

F (E,f,0) ��

S′

F (E′,F ′,0′)��
T

is commutative also. An example is the j-invariant

j :M1,1 −→ A1
Z

which you may have heard of. Aha, so now we’re done...

Except, no we’re not! We still have to define a notion of morphismsM1,1 →M1,1. This
we do in exactly the same way as before, i.e., a morphismF :M1,1 →M1,1 is a rule which
to every elliptic curve (E, f, 0)/S associates another elliptic curve F (E, f, 0) preserving
commutativity of diagrams as above. However, since I don’t know of a nontrivial example
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of such a functor, I’ll just define the set of morphisms fromM1,1 to itself to consist of the
identity for now.
I hope you see how to add other objects to this enlarged category. Somehow it seems
intuitively clear that given any “well-behaved” moduli problem we can perform the con-
struction above and add an object to our category. In fact, much of modern day algebraic
geometry takes place in such a universe where Sch is enlarged with countably many (ex-
plicitly constructed) moduli stacks.
You may object that the category we obtain isn’t a category because there is a “vagueness”
about when diagrams commute and which combinations of diagrams continue to commute
as we have to produce a witness to the commutativity. However, it turns out that this, the
idea of having witnesses to commutativity, is a valid approach to 2-categories! Thus we
stick with it.

4. Fibre products

The question we pose here is what should be the fibre product

?

""||
S

(E,f,0) !!

S′

(E′,f ′,0′)||
M1,1

The answer: A morphism from a scheme T into ? should be a triple (a, a′, α) where a :
T → S , a′ : T → S′ are morphisms of schemes and where α : E ×S,a T → E′ ×S′,a′ T
is an isomorphism of elliptic curves over T . This makes sense because of our definition of
composition and commutative diagrams earlier in the discussion.

Lemma 4.1 (Key fact). The functor Schopp → Sets, T 7→ {(a, a′, α) as above} is
representable by a scheme S ×M1,1 S

′.

Proof. Idea of proof. Relate this functor to
IsomS×S′(E × S′, S × E′)

and use Grothendieck’s theory of Hilbert schemes. �

Remark 4.2. We have the formula S×M1,1S
′ = (S×S′)×M1,1×M1,1M1,1. Hence

the key fact is a property of the diagonal ∆M1,1 ofM1,1.

In any case the key fact allows us to make the following definition.

Definition 4.3. We say a morphism S → M1,1 is smooth if for every morphism
S′ →M1,1 the projection morphism

S ×M1,1 S
′ −→ S′

is smooth.

Note that this is compatible with the notion of a smooth morphism of schemes as the base
change of a smooth morphism is smooth. Moreover, it is clear how to extend this defini-
tion to other properties of morphisms intoM1,1 (or your own favorite moduli stack). In
particular we will use it below for surjective morphisms.



6980 105. INTRODUCING ALGEBRAIC STACKS

5. The definition

We’ll formulate it as a definition and not as a result since we expect the reader to try out
other cases (not just the stackM1,1 and not just Sch the category of all schemes).

Definition 5.1. We sayM1,1 is an algebraic stack if and only if
(1) We have descent for objects for the étale topology on Sch.
(2) The key fact holds.
(3) there exists a surjective and smooth morphism S →M1,1.

The first condition is a “sheaf property”. We’re going to spell it out since there is a technical
point we should make. Suppose given a scheme S and an étale covering {Si → S} and
morphisms ei : Si →M1,1 such that the diagrams

Si ×S Sj

ei◦pr1 $$

id
// Si ×S Sj

ej◦pr2zz
M1,1

commute. The sheaf condition does not guarantee the existence of a morphism e : S →
M1,1 in this situation. Namely, we need to pick witnesses αij for the diagrams above and
require that

pr∗
02αik = pr∗

12αjk ◦ pr∗
01αij

as witnesses overSi×SSj×SSk. I think it is clear what this means... If not, then I’m afraid
you’ll have to read some of the material on categories fibred in groupoids, etc. In any case,
the displayed equation is often called the cocycle condition. A more precise statement of
the “sheaf property” is: given {Si → S}, ei : Si →M1,1 and witnesses αij satisfying the
cocycle condition, there exists a unique (up to unique isomorphism) e : S →M1,1 with
ei ∼= e|Si recovering the αij .

As you can see even formulating a precise statement takes a bit of work. The proof of
this “sheaf property” relies on a fundamental technique in algebraic geometry, namely
descent theory. My suggestion is to initially simply accept the “sheaf property” holds,
and see what it implies in practice. In fact, a certain amount of mental agility is required
to boil the “sheaf property” down to a manageable statement that you can fit on a napkin.
Perhaps the simplest variant which is already a bit interesting is the following: Suppose
we have a finite Galois extension L/K of fields with Galois group G = Gal(L/K). Set
T = Spec(L) and S = Spec(K). Then {T → S} is an étale covering. Let (E, f, 0) be an
elliptic curve overL. (Yes, this just means thatE ⊂ P2

L is given by a Weierstrass equation
and 0 is the usual point at infinity.) Denote Eσ = E ×T,Spec(σ) T the base change. (Yes,
this corresponds to applying σ to the coefficients of the Weierstrass equation, or is it σ−1?)
Now, suppose moreover that for every σ ∈ G we are given an isomorphism

ασ : E −→ Eσ

over T . The cocycle condition above means in this situation that

(ατ )σ ◦ ασ = ατσ

for σ, τ ∈ G. If you’ve ever done any group cohomology then this should be familiar.
Anyway, the “glueing” condition onM1,1 says that if you have a solution to this set of
equations, then there exists an elliptic curve E′ over S such that E ∼= E′ ×S T (it says a
little bit more because it also tells you how to recover the ασ).
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Challenge: Can you prove this entirely using only elliptic curves defined in terms of
Weierstrass equations?

6. A smooth cover

The last thing we have to do is find a smooth cover ofM1,1. In fact, in some sense the
existence of a smooth cover implies1 the key fact! In the case of elliptic curves we use the
Weierstrass equation to construct one.

Set
W = Spec(Z[a1, a2, a3, a4, a6, 1/∆])

where ∆ ∈ Z[a1, a2, a3, a4, a6] is a certain polynomial (see below). Set

P2
W ⊃ EW : zy2 + a1xyz + a3yz

2 = x3 + a2x
2z + a4xz

2 + a6z
3.

Denote fW : EW → W the projection. Finally, denote 0W : W → EW the section of
fW given by (0 : 1 : 0). It turns out that there is a degree 12 homogeneous polynomial
∆ in ai where deg(ai) = i such that EW → W is smooth. You can find it explicitly by
computing partials of the Weierstrass equation – of course you can also look it up. You
can also use pari/gp to compute it for you. Here it is

∆ = −a6a
6
1 + a4a3a

5
1 + ((−a2

3 − 12a6)a2 + a2
4)a4

1+
(8a4a3a2 + (a3

3 + 36a6a3))a3
1+

((−8a2
3 − 48a6)a2

2 + 8a2
4a2 + (−30a4a

2
3 + 72a6a4))a2

1+
(16a4a3a

2
2 + (36a3

3 + 144a6a3)a2 − 96a2
4a3)a1+

(−16a2
3 − 64a6)a3

2 + 16a2
4a

2
2 + (72a4a

2
3 + 288a6a4)a2+

− 27a4
3 − 216a6a

2
3 − 64a3

4 − 432a2
6

You may recognize the last two terms from the case y2 = x3+Ax+B having discriminant
−64A3 − 432B2 = −16(4A3 + 27B2).

Lemma 6.1. The morphism W
(EW ,fW ,0W )−−−−−−−−→M1,1 is smooth and surjective.

Proof. Surjectivity follows from the fact that every elliptic curve over a field has a
Weierstrass equation. We give a rough sketch of one way to prove smoothness. Consider
the sub group scheme

H =


u2 s 0

0 u3 0
r t 1

∣∣∣∣∣∣ u unit
s, r, t arbitrary

 ⊂ GL3,Z

There is an actionH×W →W ofH on the Weierstrass schemeW . To find the equations
for this action write out what a coordinate change given by a matrix in H does to the
general Weierstrass equation. Then it turns out the following statements hold

(1) any elliptic curve (E, f, 0)/S has Zariski locally on S a Weierstrass equation,
(2) any two Weierstrass equations for (E, f, 0) differ (Zariski locally) by an element

of H .

1This is a bit of a cheat because in checking the smoothness you have to prove something close to the key
fact – after all smoothness is defined in terms of fibre products. The advantage is that you only have to prove
the existence of these fibre products in the case that on one side you have the morphism that you are trying to
show provides the smooth cover.
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Considering the fibre product S ×M1,1 W = IsomS×W (E ×W,S × EW ) we conclude
that this means that the morphism W → M1,1 is an H-torsor. Since H → Spec(Z) is
smooth, and since torsors over smooth group schemes are smooth we win. �

Remark 6.2. The argument sketched above actually shows thatM1,1 = [W/H] is a
global quotient stack. It is true about 50% of the time that an argument proving a moduli
stack is algebraic will show that it is a global quotient stack.

7. Properties of algebraic stacks

Ok, so now we know thatM1,1 is an algebraic stack. What can we do with this? Well,
it isn’t so much the fact that it is an algebraic stack that helps us here, but more the point
of view that properties ofM1,1 should be encoded in the properties of morphisms S →
M1,1, i.e., in families of elliptic curves. We list some examples

Local properties:

M1,1 → Spec(Z) is smooth⇔W → Spec(Z) is smooth

Idea. Local properties of an algebraic stack are encoded in the local properties of its smooth
cover.

Global properties:

M1,1 is quasi-compact⇐W is quasi-compact
M1,1 is irreducible⇐W is irreducible

Idea. Some global properties of an algebraic stack can be read off from the corresponding
property of a suitable2 smooth cover.

Quasi-coherent sheaves:

QCoh(OM1,1) = H-equivariant quasi-coherent modules on W

Idea. On the one hand a quasi-coherent module onM1,1 should correspond to a quasi-
coherent sheaf FS,e on S for each morphism e : S → M1,1. In particular for the
morphism (EW , fW , 0W ) : W → M1,1. Since this morphism is H-equivariant we
see the quasi-coherent module FW we obtain is H-equivariant. Conversely, given an H-
equivariant module we can recover the sheaves FS,e by descent theory starting with the
observation that S ×e,M1,1 W is an H-torsor.

Picard group:
Pic(M1,1) = PicH(W ) = Z/12Z

Idea. We have seen the first equality above. Note that Pic(W ) = 0 because the ring
Z[a1, a2, a3, a4, a6, 1/∆] has trivial class group. There is an exact sequence

Z∆→ PicH(A5
Z)→ PicH(W )→ 0

The middle group equals Hom(H,Gm) = Z. The image ∆ is 12 because ∆ has degree 12.
This argument is roughly correct, see [?].

Étale cohomology: Let Λ be a ring. There is a first quadrant spectral sequence converging
to Hp+q

étale(M1,1,Λ) with E2-page

Ep,q2 = Hq
étale(W ×H × . . .×H,Λ) (p factors H)

2I suppose that it is possible an irreducible algebraic stack exists which doesn’t have an irreducible smooth
cover – but if so it is going to be quite nasty!
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Idea. Note that
W ×M1,1 W ×M1,1 . . .×M1,1 W = W ×H × . . .×H

becauseW →M1,1 is aH-torsor. The spectral sequence is the Čech-to-cohomology spec-
tral sequence for the smooth cover {W →M1,1}. For example we see thatH0

étale(M1,1,Λ) =
Λ becauseW is connected, andH1

étale(M1,1,Λ) = 0 becauseH1
étale(W,Λ) = 0 (of course

this requires a proof). Of course, the smooth covering W →M1,1 may not be “optimal”
for the computation of étale cohomology.
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CHAPTER 106

More on Morphisms of Stacks

1. Introduction

In this chapter we continue our study of properties of morphisms of algebraic stacks. A
reference in the case of quasi-separated algebraic stacks with representable diagonal is [?].

2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Properties of
Stacks, Section 2.

3. Thickenings

The following terminology may not be completely standard, but it is convenient. If Y is
a closed substack of an algebraic stack X , then the morphism Y → X is representable.

Definition 3.1. Thickenings.
(1) We say an algebraic stack X ′ is a thickening of an algebraic stack X if X is a

closed substack of X ′ and the associated topological spaces are equal.
(2) Given two thickenings X ⊂ X ′ and Y ⊂ Y ′ a morphism of thickenings is a

morphism f ′ : X ′ → Y ′ of algebraic stacks such that f ′|X factors through the
closed substack Y . In this situation we set f = f ′|X : X → Y and we say that
(f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of thickenings.

(3) Let Z be an algebraic stack. We similarly define thickenings over Z and mor-
phisms of thickenings over Z . This means that the algebraic stacks X ′ and Y ′

are endowed with a structure morphism to Z and that f ′ fits into a suitable 2-
commutative diagram of algebraic stacks.

Let X ⊂ X ′ be a thickening of algebraic stacks. Let U ′ be a scheme and let U ′ → X ′ be a
surjective smooth morphism. SettingU = X×X ′U ′ we obtain a morphism of thickenings

(U ⊂ U ′) −→ (X ⊂ X ′)
and U → X is a surjective smooth morphism. We can often deduce properties of the
thickening X ⊂ X ′ from the corresponding properties of the thickening U ⊂ U ′. Some-
times, by abuse of language, we say that a morphism X → X ′ is a thickening if it is a
closed immersion inducing a bijection |X | → |X ′|.

Lemma 3.2. Let i : X → X ′ be a morphism of algebraic stacks. The following are
equivalent

(1) i is a thickening of algebraic stacks (abuse of language as above), and
(2) i is representable by algebraic spaces and is a thickening in the sense of Properties

of Stacks, Section 3.
In this case i is a closed immersion and a universal homeomorphism.
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Proof. By More on Morphisms of Spaces, Lemmas 9.10 and 9.8 the property P that
a morphism of algebraic spaces is a (first order) thickening is fpqc local on the base and
stable under base change. Thus the discussion in Properties of Stacks, Section 3 indeed
applies. Having said this the equivalence of (1) and (2) follows from the fact that P =
P1 + P2 where P1 is the property of being a closed immersion and P2 is the property of
being surjective. (Strictly speaking, the reader should also consult More on Morphisms of
Spaces, Definition 9.1, Properties of Stacks, Definition 9.1 and the discussion following,
Morphisms of Spaces, Lemma 5.1, Properties of Stacks, Section 5 to see that all the concepts
all match up.) The final assertion is clear from the foregoing. �

We will use the lemma without further mention. Using the same references More on
Morphisms of Spaces, Lemmas 9.10 and 9.8 as used in the lemma, allows us to define a first
order thickening as follows.

Definition 3.3. We say an algebraic stack X ′ is a first order thickening of an alge-
braic stack X if X is a closed substack of X ′ and X → X ′ is a first order thickening in the
sense of Properties of Stacks, Section 3.

If (U ⊂ U ′)→ (X ⊂ X ′) is a smooth cover by a scheme as above, then this simply means
that U ⊂ U ′ is a first order thickening. Next we formulate the obligatory lemmas.

Lemma 3.4. Let Y ⊂ Y ′ be a thickening of algebraic stacks. Let X ′ → Y ′ be a
morphism of algebraic stacks and set X = Y ×Y′ X ′. Then (X ⊂ X ′) → (Y ⊂ Y ′) is
a morphism of thickenings. If Y ⊂ Y ′ is a first order thickening, then X ⊂ X ′ is a first
order thickening.

Proof. See discussion above, Properties of Stacks, Section 3, and More on Morphisms
of Spaces, Lemma 9.8. �

Lemma 3.5. If X ⊂ X ′ and X ′ ⊂ X ′′ are thickenings of algebraic stacks, then so is
X ⊂ X ′′.

Proof. See discussion above, Properties of Stacks, Section 3, and More on Morphisms
of Spaces, Lemma 9.9 �

Example 3.6. Let X ′ be an algebraic stack. Then X ′ is a thickening of the reduction
X ′
red, see Properties of Stacks, Definition 10.4. Moreover, if X ⊂ X ′ is a thickening of

algebraic stacks, then X ′
red = Xred ⊂ X . In other words, X = X ′

red if and only if X is a
reduced algebraic stack.

Lemma 3.7. Let (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a morphism of thickenings of
algebraic stacks. Then X ×Y X → X ′ ×Y′ X ′ is a thickening and the canonical diagram

X
∆
//

��

X ×Y X

��
X ′ ∆′

// X ′ ×Y′ X ′

is cartesian.

Proof. Since X → Y ′ factors through the closed substack Y we see that X ×Y X =
X ×Y′ X . Hence X ×Y X → X ′ ×Y′ X ′ is isomorphic to the composition

X ×Y′ X → X ×Y′ X ′ → X ′ ×Y′ X ′
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both of which are thickenings as base changes of thickenings (Lemma 3.4). Hence so is the
composition (Lemma 3.5). Since X → X ′ is a monomorphism, the final statement of the
lemma follows from Properties of Stacks, Lemma 8.6 applied to X → X ′ → Y ′. �

Lemma 3.8. Let (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a morphism of thickenings
of algebraic stacks. Let ∆ : X → X ×Y X and ∆′ : X ′ → X ′ ×Y′ X ′ be the corre-
sponding diagonal morphisms. Then each property from the following list is satisfied by
∆ if and only if it is satisfied by ∆′: (a) representable by schemes, (b) affine, (c) surjective,
(d) quasi-compact, (e) universally closed, (f) integral, (g) quasi-separated, (h) separated, (i)
universally injective, (j) universally open, (k) locally quasi-finite, (l) finite, (m) unramified,
(n) monomorphism, (o) immersion, (p) closed immersion, and (q) proper.

Proof. Observe that

(∆,∆′) : (X ⊂ X ′) −→ (X ×Y X ⊂ X ′ ×Y′ X ′)

is a morphism of thickenings (Lemma 3.7). Moreover ∆ and ∆′ are representable by alge-
braic spaces by Morphisms of Stacks, Lemma 3.3. Hence, via the discussion in Properties
of Stacks, Section 3 the lemma follows for cases (a), (b), (c), (d), (e), (f), (g), (h), (i), and (j)
by using More on Morphisms of Spaces, Lemma 10.1.

Lemma 3.7 tells us that X = (X ×Y X )×(X ′×Y′ X ′) X ′. Moreover, ∆ and ∆′ are locally
of finite type by the aforementioned Morphisms of Stacks, Lemma 3.3. Hence the result
for cases (k), (l), (m), (n), (o), (p), and (q) by using More on Morphisms of Spaces, Lemma
10.3. �

As a consequence we obtain the following pleasing result.

Lemma 3.9. Let X ⊂ X ′ be a thickening of algebraic stacks. Then
(1) X is an algebraic space if and only if X ′ is an algebraic space,
(2) X is a scheme if and only if X ′ is a scheme,
(3) X is DM if and only if X ′ is DM,
(4) X is quasi-DM if and only if X ′ is quasi-DM,
(5) X is separated if and only if X ′ is separated,
(6) X is quasi-separated if and only if X ′ is quasi-separated, and
(7) add more here.

Proof. In each case we reduce to a question about the diagonal and then we use
Lemma 3.8 applied to the morphism of thickenings

(X ⊂ X ′)→ (Spec(Z) ⊂ Spec(Z))

We do this after viewing X ⊂ X ′ as a thickening of algebraic stacks over Spec(Z) via
Algebraic Stacks, Definition 19.2.

Case (1). An algebraic stack is an algebraic space if and only if its diagonal is a monomor-
phism, see Morphisms of Stacks, Lemma 6.3 (this also follows immediately from Algebraic
Stacks, Proposition 13.3).

Case (2). By (1) we may assume that X and X ′ are algebraic spaces and then we can use
More on Morphisms of Spaces, Lemma 9.5.

Case (3) – (6). Each of these cases corresponds to a condition on the diagonal, see Mor-
phisms of Stacks, Definitions 4.1 and 4.2. �
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4. Morphisms of thickenings

If (f, f ′) : (X ⊂ X ′)→ (Y ⊂ Y ′) is a morphism of thickenings of algebraic stacks, then
often properties of the morphism f are inherited by f ′. There are several variants.

Lemma 4.1. Let (f, f ′) : (X ⊂ X ′) → (Y ⊂ Y ′) be a morphism of thickenings of
algebraic stacks. Then

(1) f is an affine morphism if and only if f ′ is an affine morphism,
(2) f is a surjective morphism if and only if f ′ is a surjective morphism,
(3) f is quasi-compact if and only if f ′ quasi-compact,
(4) f is universally closed if and only if f ′ is universally closed,
(5) f is integral if and only if f ′ is integral,
(6) f is universally injective if and only if f ′ is universally injective,
(7) f is universally open if and only if f ′ is universally open,
(8) f is quasi-DM if and only if f ′ is quasi-DM,
(9) f is DM if and only if f ′ is DM,

(10) f is (quasi-)separated if and only if f ′ is (quasi-)separated,
(11) f is representable if and only if f ′ is representable,
(12) f is representable by algebraic spaces if and only if f ′ is representable by algebraic

spaces,
(13) add more here.

Proof. By Lemma 3.2 the morphisms X → X ′ and Y → Y ′ are universal homeo-
morphisms. Thus any condition on |f | : |X | → |Y| is equivalent with the corresponding
condition on |f ′| : |X ′| → |Y ′| and the same is true after arbitrary base change by a
morphism Z ′ → Y ′. This proves that (2), (3), (4), (6), (7) hold.

In cases (8), (9), (10), (12) we can translate the conditions on f and f ′ into conditions on
the diagonals ∆ and ∆′ as in Lemma 3.8. See Morphisms of Stacks, Definition 4.1 and
Lemma 6.3. Hence these cases follow from Lemma 3.8.

Proof of (11). If f ′ is representable, then so is f , because for a scheme T and a morphism
T → Y we haveX ×Y T = X ×X ′ (X ′×Y′ T ) andX → X ′ is a closed immersion (hence
representable). Conversely, assume f is representable, and let T ′ → Y ′ be a morphism
where T ′ is a scheme. Then

X ×Y (Y ×Y′ T ′) = X ×X ′ (X ′ ×Y′ T ′)→ X ′ ×Y′ T ′

is a thickening (by Lemma 3.4) and the source is a scheme. Hence the target is a scheme
by Lemma 3.9.

In cases (1) and (5) if either f or f ′ has the stated property, then both f and f ′ are rep-
resentable by (11). In this case choose an algebraic space V ′ and a surjective smooth mor-
phism V ′ → Y ′. Set V = Y×Y′V ′,U ′ = X ′×Y′V ′, andU = X×Y′V ′. Then the desired
results follow from the corresponding results for the morphism (U ⊂ U ′) → (V ⊂ V ′)
of thickenings of algebraic spaces via the principle of Properties of Stacks, Lemma 3.3. See
More on Morphisms of Spaces, Lemma 10.1 for the corresponding results in the case of
algebraic spaces. �

5. Infinitesimal deformations of algebraic stacks

This section is the analogue of More on Morphisms of Spaces, Section 18.
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Lemma 5.1. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic stacks. Assume
(1) Y ′ → B′ is locally of finite type,
(2) X ′ → B′ is flat and locally of finite presentation,
(3) f is flat, and
(4) X = B ×B′ X ′ and Y = B ×B′ Y ′.

Then f ′ is flat and for all y′ ∈ |Y ′| in the image of |f ′| the morphism Y ′ → B′ is flat at y′.

Proof. Choose an algebraic space U ′ and a surjective smooth morphism U ′ → B′.
Choose an algebraic space V ′ and a surjective smooth morphism V ′ → U ′×B′ Y ′. Choose
an algebraic space W ′ and a surjective smooth morphism W ′ → V ′ ×Y′ X ′. Let U, V,W
be the base change of U ′, V ′,W ′ by B → B′. Then flatness of f ′ is equivalent to flatness
ofW ′ → V ′ and we are given thatW → V is flat. Hence we may apply the lemma in the
case of algebraic spaces to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of algebraic spaces. See More on Morphisms of Spaces, Lemma 18.4. The
statement about flatness ofY ′/B′ at points in the image of |f ′| follows in the same manner.

�

Lemma 5.2. Consider a commutative diagram

(X ⊂ X ′)
(f,f ′)

//

&&

(Y ⊂ Y ′)

xx
(B ⊂ B′)

of thickenings of algebraic stacks. Assume Y ′ → B′ locally of finite type, X ′ → B′ flat
and locally of finite presentation, X = B ×B′ X ′, and Y = B ×B′ Y ′. Then

(1) f is flat if and only if f ′ is flat,
(2) f is an isomorphism if and only if f ′ is an isomorphism,
(3) f is an open immersion if and only if f ′ is an open immersion,
(4) f is a monomorphism if and only if f ′ is a monomorphism,
(5) f is locally quasi-finite if and only if f ′ is locally quasi-finite,
(6) f is syntomic if and only if f ′ is syntomic,
(7) f is smooth if and only if f ′ is smooth,
(8) f is unramified if and only if f ′ is unramified,
(9) f is étale if and only if f ′ is étale,

(10) f is finite if and only if f ′ is finite, and
(11) add more here.
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Proof. In case (1) this follows from Lemma 5.1.

In cases (6), (7) this can be proved by the method used in the proof of Lemma 5.1. Namely,
choose an algebraic space U ′ and a surjective smooth morphism U ′ → B′. Choose an
algebraic spaceV ′ and a surjective smooth morphismV ′ → U ′×B′Y ′. Choose an algebraic
space W ′ and a surjective smooth morphism W ′ → V ′ ×Y′ X ′. Let U, V,W be the base
change of U ′, V ′,W ′ by B → B′. Then the property for f , resp. f ′ is equivalent to the
property for of W ′ → V ′, resp. W → V . Hence we may apply the lemma in the case of
algebraic spaces to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of algebraic spaces. See More on Morphisms of Spaces, Lemma 18.5.

In cases (8) and (9) we first see that the assumption for f or f ′ implies that both f and f ′

are DM morphisms of algebraic stacks, see Lemma 4.1. Then we can choose an algebraic
space U ′ and a surjective smooth morphism U ′ → B′. Choose an algebraic space V ′ and a
surjective smooth morphism V ′ → U ′×B′ Y ′. Choose an algebraic spaceW ′ and a surjec-
tive étale(!) morphismW ′ → V ′×Y′ X ′. LetU, V,W be the base change ofU ′, V ′,W ′ by
B → B′. Then W → V ×Y X is surjective étale as well. Hence the property for f , resp.
f ′ is equivalent to the property for of W ′ → V ′, resp. W → V . Hence we may apply the
lemma in the case of algebraic spaces to the diagram

(W ⊂W ′) //

&&

(V ⊂ V ′)

xx
(U ⊂ U ′)

of thickenings of algebraic spaces. See More on Morphisms of Spaces, Lemma 18.5.

In cases (2), (3), (4), (10) we first conclude by Lemma 4.1 that f and f ′ are representable
by algebraic spaces. Thus we may choose an algebraic space U ′ and a surjective smooth
morphismU ′ → B′, an algebraic spaceV ′ and a surjective smooth morphismV ′ → U ′×B′

Y ′, and thenW ′ = V ′×Y′X ′ will be an algebraic space. LetU, V,W be the base change of
U ′, V ′,W ′ by B → B′. ThenW = V ×Y X as well. Then we have to see thatW ′ → V ′ is
an isomorphism, resp. an open immersion, resp. a monomorphism, resp. finite, if and only
ifW → V has the same property. See Properties of Stacks, Lemma 3.3. Thus we conclude
by applying the results for algebraic spaces as above.

In the case (5) we first observe that f and f ′ are locally of finite type by Morphisms of
Stacks, Lemma 17.8. On the other hand, the morphism f is quasi-DM if and only if f ′ is
by Lemma 4.1. The last thing to check to see if f or f ′ is locally quasi-finite (Morphisms
of Stacks, Definition 23.2) is a condition on underlying topological spaces which holds for
f if and only if it holds for f ′ by the discussion in the first paragraph of the proof. �
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6. Lifting affines

Consider a solid diagram

W

��

// W ′

��
X // X ′

where X ⊂ X ′ is a thickening of algebraic stacks, W is an affine scheme and W → X is
smooth. The question we address in this section is whether we can findW ′ and the dotted
arrows so that the square is cartesian andW ′ → X ′ is smooth. We do not know the answer
in general, but if X ⊂ X ′ is a first order thickening we will prove the answer is yes.

To study this problem we introduce the following category.

Remark 6.1 (Category of lifts). Consider a diagram

W

x

��
X // X ′

where X ⊂ X ′ is a thickening of algebraic stacks, W is an algebraic space, and W → X is
smooth. We will construct a category C and a functor

p : C −→Wspaces,étale

(see Properties of Spaces, Definition 18.2 for notation) as follows. An object of C will be a
system (U,U ′, a, i, x′, α) which forms a commutative diagram

(6.1.1)

U

a

��

i
// U ′

x′

��

W

x

��
X // X ′

with commutativity witnessed by the 2-morphism α : x ◦ a → x′ ◦ i such that U and
U ′ are algebraic spaces, a : U → W is étale, x′ : U ′ → X ′ is smooth, and such that
U = X ×X ′ U ′. In particular U ⊂ U ′ is a thickening. A morphism

(U,U ′, a, i, x′, α)→ (V, V ′, b, j, y′, β)

is given by (f, f ′, γ) where f : U → V is a morphism over W , f ′ : U ′ → V ′ is a
morphism whose restriction to U gives f , and γ : x′ ◦f ′ → y′ is a 2-morphism witnessing
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the commutativity in right triangle of the diagram below

(6.1.2)

V
f

~~
b

��

j
// V ′

f ′

~~

y′

		

U

a

��

i
// U ′

x′

��

W

x

��
X // X ′

Finally, we require that γ is compatible with α and β: in the calculus of 2-categories of
Categories, Sections 28 and 29 this reads

β = (γ ? idj) ◦ (α ? idf )

(more succinctly: β = j∗γ ◦ f∗α). Another formulation is that objects are commutative
diagrams (6.1.1) with some additional properties and morphisms are commutative dia-
grams (6.1.2) in the category Spaces/X ′ introduced in Properties of Stacks, Remark 3.7.
This makes it clear that C is a category and that the rule p : C → Wspaces,étale sending
(U,U ′, a, i, x′, α) to a : U →W is a functor.

Lemma 6.2. For any morphism (6.1.2) the map f ′ : V ′ → U ′ is étale.

Proof. Namely f : V → U is étale as a morphism in Wspaces,étale and we can
apply Lemma 5.2 because U ′ → X ′ and V ′ → X ′ are smooth and U = X ×X ′ U ′ and
V = X ×X ′ V ′. �

Lemma 6.3. The category p : C → Wspaces,étale constructed in Remark 6.1 is fibred
in groupoids.

Proof. We claim the fibre categories of p are groupoids. If (f, f ′, γ′) as in (6.1.2) is a
morphism such that f : U → V is an isomorphism, then f ′ is an isomorphism by Lemma
5.2 and hence (f, f ′, γ′) is an isomorphism.

Consider a morphism f : V → U in Wspaces,étale and an object ξ = (U,U ′, a, i, x′, α) of
C over U . We are going to construct the “pullback” f∗ξ over V . Namely, set b = a ◦ f .
Let f ′ : V ′ → U ′ be the étale morphism whose restriction to V is f (More on Morphisms
of Spaces, Lemma 8.2). Denote j : V → V ′ the corresponding thickening. Let y′ = x′ ◦f ′

and γ = id : x′ ◦ f ′ → y′. Set

β = α ? idf : x ◦ b = x ◦ a ◦ f → x′ ◦ i ◦ f = x′ ◦ f ′ ◦ j = y′ ◦ j

It is clear that (f, f ′, γ) : (V, V ′, b, j, y′, β) → (U,U ′, a, i, x′, α) is a morphism as in
(6.1.2). The morphisms (f, f ′, γ) so constructed are strongly cartesian (Categories, Defini-
tion 33.1). We omit the detailed proof, but essentially the reason is that given a morphism
(g, g′, ε) : (Y, Y ′, c, k, z′, δ) → (U,U ′, a, i, x′, α) in C such that g factors as g = f ◦ h
for some h : Y → V , then we get a unique factorization g′ = f ′ ◦ h′ from More on
Morphisms of Spaces, Lemma 8.2 and after that one can produce the necessary ζ such that
(h, h′, ζ) : (Y, Y ′, c, k, z′, δ) → (V, V ′, b, j, y′, β) is a morphism of C with (g, g′, ε) =
(f, f ′, γ) ◦ (h, h′, ζ).
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Therefore p : C → Wétale is a fibred category (Categories, Definition 33.5). Combined
with the fact that the fibre categories are groupoids seen above we conclude that p : C →
Wétale is fibred in groupoids by Categories, Lemma 35.2. �

Lemma 6.4. The category p : C →Wspaces,étale constructed in Remark 6.1 is a stack
in groupoids.

Proof. By Lemma 6.3 we see the first condition of Stacks, Definition 5.1 holds. As
is customary we check descent of objects and we leave it to the reader to check descent
of morphisms. Thus suppose we have a : U → W in Wspaces,étale, a covering {Uk →
U}k∈K inWspaces,étale, objects ξk = (Uk, U ′

k, ak, ik, x
′
k, αk) of C overUk , and morphisms

ϕkk′ = (fkk′ , f ′
kk′ , γkk′) : ξk|Uk×UUk′ → ξk′ |Uk×UUk′

between restrictions satisfying the cocycle condition. In order to prove effectivity we may
first refine the covering. Hence we may assume each Uk is a scheme (even an affine scheme
if you like). Let us write

ξk|Uk×UUk′ = (Uk ×U Uk′ , U ′
kk′ , akk′ , x′

kk′ , αkk′)

Then we get an étale (by Lemma 6.2) morphism skk′ : U ′
kk′ → U ′

k as the second component
of the morphism ξk|Uk×UUk′ → ξk of C. Similarly we obtain an étale morphism tkk′ :
U ′
kk′ → U ′

k′ by looking at the second component of the composition

ξk|Uk×UUk′
ϕkk′−−−→ ξk′ |Uk×UUk′ → ξk′

We claim that

j :
∐

(k,k′)∈K×K
U ′
kk′

(
∐

skk′ ,
∐

tkk′ )
−−−−−−−−−−→ (

∐
k∈K

U ′
k)× (

∐
k∈K

U ′
k)

is an étale equivalence relation. First, we have already seen that the components s, t of the
displayed morphism are étale. The base change of the morphism j by (

∐
Uk)×(

∐
Uk)→

(
∐
U ′
k)× (

∐
U ′
k) is a monomorphism because it is the map∐

(k,k′)∈K×K
Uk ×U Uk′ −→ (

∐
k∈K

Uk)× (
∐

k∈K
Uk)

Hence j is a monomorphism by More on Morphisms, Lemma 3.4. Finally, symmetry of
the relation j comes from the fact that ϕ−1

kk′ is the “flip” of ϕk′k (see Stacks, Remarks 3.2)
and transitivity comes from the cocycle condition (details omitted). Thus the quotient of∐
U ′
k by j is an algebraic space U ′ (Spaces, Theorem 10.5). Above we have already shown

that there is a thickening i : U → U ′ as we saw that the restriction of j on
∐
Uk gives

(
∐
Uk) ×U (

∐
Uk). Finally, if we temporarily view the 1-morphisms x′

k : U ′
k → X ′ as

objects of the stackX ′ overU ′
k then we see that these come endowed with a descent datum

with respect to the étale covering {U ′
k → U ′} given by the third component γkk′ of the

morphisms ϕkk′ in C. Since X ′ is a stack this descent datum is effective and translating
back we obtain a 1-morphism x′ : U ′ → X ′ such that the compositions U ′

k → U ′ →
X ′ come equipped with isomorphisms to x′

k compatible with γkk′ . This means that the
morphisms αk : x ◦ ak → x′

k ◦ ik glue to a morphism α : x ◦ a → x′ ◦ i. Then
ξ = (U,U ′, a, i, x′, α) is the desired object over U . �

Lemma 6.5. Let X ⊂ X ′ be a thickening of algebraic stacks. Let W be an algebraic
space and let W → X be a smooth morphism. There exists an étale covering {Wi →
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W}i∈I and for each i a cartesian diagram

Wi
//

��

W ′
i

��
X // X ′

with W ′
i → X ′ smooth.

Proof. Choose a scheme U ′ and a surjective smooth morphism U ′ → X ′. As usual
we set U = X ×X ′ U ′. Then U → X is a surjective smooth morphism. Therefore the base
change

V = W ×X U −→W

is a surjective smooth morphism of algebraic spaces. By Topologies on Spaces, Lemma 4.4
we can find an étale covering {Wi → W} such that Wi → W factors through V → W .
After covering Wi by affines (Properties of Spaces, Lemma 6.1) we may assume each Wi is
affine. We may and do replaceW byWi which reduces us to the situation discussed in the
next paragraph.

Assume W is affine and the given morphism W → X factors through U . Picture

W
i−→ U → X

Since W and U are smooth over X we see that i is locally of finite type (Morphisms of
Stacks, Lemma 17.8). After replacing U by An

U we may assume that i is an immersion,
see Morphisms, Lemma 39.2. By Morphisms of Stacks, Lemma 44.4 the morphism i is a
local complete intersection. Hence i is a Koszul-regular immersion (as defined in Divisors,
Definition 21.1) by More on Morphisms, Lemma 62.3.

We may still replaceW by an affine open covering. For every pointw ∈W we can choose
an affine open U ′

w ⊂ U ′ such that if Uw ⊂ U is the corresponding affine open, then w ∈
i−1(Uw) and i−1(Uw) → Uw is a closed immersion cut out by a Koszul-regular sequence
f1, . . . , fr ∈ Γ(Uw,OUw). This follows from the definition of Koszul-regular immersions
and Divisors, Lemma 20.7. Set Ww = i−1(Uw); this is an affine open neighbourhood
of w ∈ W . Choose lifts f ′

1, . . . , f
′
r ∈ Γ(U ′

w,OU ′
w

) of f1, . . . , fr. This is possible as
Uw → U ′

w is a closed immersion of affine schemes. LetW ′
w ⊂ U ′

w be the closed subscheme
cut out by f ′

1, . . . , f
′
r. We claim that W ′

w → X ′ is smooth. The claim finishes the proof
as Ww = X ×X ′ W ′

w by construction.

To check the claim it suffices to check that the base change W ′
w ×X ′ X ′ → X ′ is smooth

for every affine scheme X ′ smooth over X ′. Choose an étale morphism

Y ′ → U ′
w ×X ′ X ′

with Y ′ affine. Because U ′
w ×X ′ X ′ is covered by the images of such morphisms, it is

enough to show that the closed subscheme Z ′ of Y ′ cut out by f ′
1, . . . , f

′
r is smooth over
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X ′. Picture
Z ′ //

��

Y ′

��
W ′
w ×X ′ X ′

��

// U ′
w ×X ′ X ′

��

// X ′

W ′
w = V (f ′

1, . . . , f
′
r) // U ′

w

SetX = X×X ′X ′, Y = X×X′Y ′ = X×X ′Y ′, andZ = Y ×Y ′Z ′ = X×X′Z ′ = X×X ′

Z ′. Then (Z ⊂ Z ′)→ (Y ⊂ Y ′) ⊂ (X ⊂ X ′) are (cartesian) morphisms of thickenings
of affine schemes and we are given that Z → X and Y ′ → X ′ are smooth. Finally, the
sequence of functions f ′

1, . . . , f
′
r map to a Koszul-regular sequence in Γ(Y ′,OY ′) by More

on Algebra, Lemma 30.5 because Y ′ → U ′
w is smooth and hence flat. By More on Algebra,

Lemma 31.6 (and the fact that Koszul-regular sequences are quasi-regular sequences by
More on Algebra, Lemmas 30.2, 30.3, and 30.6) we conclude that Z ′ → X ′ is smooth as
desired. �

Lemma 6.6. LetX ⊂ X ′ be a thickening of algebraic stacks. Consider a commutative
diagram

W ′′

x′′

��

Woo //

x

��

W ′

x′

��
X ′ Xoo // X ′

with cartesian squares where W ′,W,W ′′ are algebraic spaces and the vertical arrows are
smooth. Then there exist

(1) an étale covering {f ′
k : W ′

k →W ′}k∈K ,
(2) étale morphisms f ′′

k : W ′
k →W ′′, and

(3) 2-morphisms γk : x′′ ◦ f ′′
k → x′ ◦ f ′

k

such that (a) (f ′
k)−1(W ) = (f ′′

k )−1(W ), (b) f ′
k|(f ′

k
)−1(W ) = f ′′

k |(f ′′
k

)−1(W ), and (c) pulling
back γk to the closed subscheme of (a) agrees with the 2-morphism given by the commu-
tativity of the initial diagram over W .

Proof. Denote i : W → W ′ and i′′ : W → W ′′ the given thickenings. The
commutativity of the diagram in the statement of the lemma means there is a 2-morphism
δ : x′ ◦ i′ → x′′ ◦ i′′ This is the 2-morphism referred to in part (c) of the statement.
Consider the algebraic space

I ′ = W ′ ×x′,X ′,x′′ W ′′

with projections p′ : I ′ → W ′ and q′ : I ′ → W ′′. Observe that there is a “universal”
2-morphism γ : x′ ◦ p′ → x′′ ◦ q′ (we will use this later). The choice of δ defines a
morphism

W
δ

// I ′

p′~~ q′ !!
W ′ W ′′

such that the compositions W → I ′ → W ′ and W → I ′ → W ′′ are i : W → W ′ and
i′ : W →W ′′. Since x′′ is smooth, the morphism p′ : I ′ →W ′ is smooth as a base change
of x′′.
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Suppose we can find an étale covering {f ′
k : W ′

k → W ′} and morphisms δk : W ′
k → I ′

such that the restriction of δk to Wk = (f ′
k)−1 is equal to δ ◦ fk where fk = f ′

k|Wk
.

Picture

Wk
fk //

��

W
δ // I ′

p′

��
W ′
k

f ′
k //

δk

66

W ′

In other words, we want to be able to extend the given section δ : W → I ′ of p′ to a
section over W ′ after possibly replacing W ′ by an étale covering.

If this is true, then we can set f ′′
k = q′ ◦ δk and γk = γ ? idδk (more succinctly γk =

δ∗
kγ). Namely, the only thing left to show at this is that the morphism f ′′

k is étale. By
construction the morphism x′◦p′ is 2-isomorphic to x′′◦q′. Hence x′′◦f ′′

k is 2-isomorphic
to x′ ◦ f ′

k. We conclude that the composition

W ′
k

f ′′
k−−→W ′′ x′′

−−→ X ′

is smooth because x′ ◦ f ′
k is so. As fk is étale we conclude f ′′

k is étale by Lemma 5.2.

If the thickening is a first order thickening, then we can choose any étale covering {W ′
k →

W ′} with W ′
k affine. Namely, since p′ is smooth we see that p′ is formally smooth by the

infinitesimal lifting criterion (More on Morphisms of Spaces, Lemma 19.6). AsWk is affine
and as Wk →W ′

k is a first order thickening (as a base change of X → X ′, see Lemma 3.4)
we get δk as desired.

In the general case the existence of the covering and the morphisms δk follows from More
on Morphisms of Spaces, Lemma 19.7. �

Lemma 6.7. The category p : C →Wspaces,étale constructed in Remark 6.1 is a gerbe.

Proof. In Lemma 6.4 we have seen that it is a stack in groupoids. Thus it remains to
check conditions (2) and (3) of Stacks, Definition 11.1. Condition (2) follows from Lemma
6.5. Condition (3) follows from Lemma 6.6. �

Lemma 6.8. In Remark 6.1 assume X ⊂ X ′ is a first order thickening. Then
(1) the automorphism sheaves of objects of the gerbe p : C → Wspaces,étale con-

structed in Remark 6.1 are abelian, and
(2) the sheaf of groups G constructed in Stacks, Lemma 11.8 is a quasi-coherentOW -

module.

Proof. We will prove both statements at the same time. Namely, given an object
ξ = (U,U ′, a, i, x′, α) we will endow Aut(ξ) with the structure of a quasi-coherent OU -
module onUspaces,étale and we will show that this structure is compatible with pullbacks.
This will be sufficient by glueing of sheaves (Sites, Section 26) and the construction of G
in the proof of Stacks, Lemma 11.8 as the glueing of the automorphism sheaves Aut(ξ) and
the fact that it suffices to check a module is quasi-coherent after going to an étale covering
(Properties of Spaces, Lemma 29.6).

We will describe the sheaf Aut(ξ) using the same method as used in the proof of Lemma
6.6. Consider the algebraic space

I ′ = U ′ ×x′,X ′,x′ U ′
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with projections p′ : I ′ → U ′ and q′ : I ′ → U ′. Over I ′ there is a universal 2-morphism
γ : x′ ◦ p′ → x′ ◦ q′. The identity x′ → x′ defines a diagonal morphism

U ′
∆′

// I ′

p′~~ q′   
U ′ U ′

such that the compositionsU ′ → I ′ → U ′ andU ′ → I ′ → U ′ are the identity morphisms.
We will denote the base change of U ′, I ′, p′, q′,∆′ to X by U, I, p, q,∆. Since W ′ → X ′

is smooth, we see that p′ : I ′ → U ′ is smooth as a base change.

A section of Aut(ξ) over U is a morphism δ′ : U ′ → I ′ such that δ′|U = ∆ and such
that p′ ◦ δ′ = idU ′ . To be explicit, (idU , q′ ◦ δ′, (δ′)∗γ) : ξ → ξ is a formula for the
corresponding automorphism. More generally, if f : V → U is an étale morphism, then
there is a thickening j : V → V ′ and an étale morphism f ′ : V ′ → U ′ whose restriction
to V is f and f∗ξ corresponds to (V, V ′, a ◦ f, j, x′ ◦ f ′, f∗α), see proof of Lemma 6.3.
a section of Aut(ξ) over V is a morphism δ′ : V ′ → I ′ such that δ′|V = ∆ ◦ f and
p′ ◦ δ′ = f ′1.

We conclude that Aut(ξ) as a sheaf of sets agrees with the sheaf defined in More on Mor-
phisms of Spaces, Remark 17.7 for the thickenings (U ⊂ U ′) and (I ⊂ I ′) over (U ⊂ U ′)
via idU ′ and p′. The diagonal ∆′ is a section of this sheaf and by acting on this section
using More on Morphisms of Spaces, Lemma 17.5 we get an isomorphism

(6.8.1) HomOU
(∆∗ΩI/U , CU/U ′) −→ Aut(ξ)

on Uspaces,étale. There three things left to check
(1) the construction of (6.8.1) commutes with étale localization,
(2) HomOU

(∆∗ΩI/U , CU/U ′) is a quasi-coherent module on U ,
(3) the composition in Aut(ξ) corresponds to addition of sections in this quasi-

coherent module.
We will check these in order.

To see (1) we have to show that if f : V → U is étale, then (6.8.1) constructed using ξ over
U , restricts to the map (6.8.1)

HomOV
(∆∗

V ΩV×XV/V , CV/V ′)→ Aut(ξ|V )

constructed using ξ|V over V on Vspaces,étale. This follows from the discussion in the
footnote above and More on Morphisms of Spaces, Lemma 17.8.

1A formula for the corresponding automorphism is (idV , h′, (δ′)∗γ). Here h′ : V ′ → V ′ is the unique
(iso)morphism such that h′|V = idV and such that

V ′
h′
//

q′◦δ′
  

V ′

f ′

��
U ′

commutes. Uniqueness and existence of h′ by topological invariance of the étale site, see More on Morphisms
of Spaces, Theorem 8.1. The reader may feel we should instead look at morphisms δ′′ : V ′ → V ′ ×X ′ V ′

with δ′′ ◦ j = ∆V ′/X ′ and pr1 ◦ δ′′ = idV ′ . This would be fine too: as V ′ ×X ′ V ′ → I′ is étale, the same
topological invariance tells us that sending δ′′ to δ′ = (V ′ ×X ′ V ′ → I′) ◦ δ′′ is a bijection between the two
sets of morphisms.
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Proof of (2). Since p′ is smooth, the morphism I → U is smooth, and hence the relative
module of differentials ΩI/U is finite locally free (More on Morphisms of Spaces, Lemma
7.16). On the other hand, CU/U ′ is quasi-coherent (More on Morphisms of Spaces, Defini-
tion 5.1). By Properties of Spaces, Lemma 29.7 we conclude.

Proof of (3). There exists a morphism c′ : I ′ ×p′,U ′,q′ I ′ → I ′ such that (U ′, I ′, p′, q′, c′)
is a groupoid in algebraic spaces with identity ∆′. See Algebraic Stacks, Lemma 16.1 for
example. Composition in Aut(ξ) is induced by the morphism c′ as follows. Suppose we
have two morphisms

δ′
1, δ

′
2 : U ′ −→ I ′

corresponding to sections of Aut(ξ) over U as above, in other words, we have δ′
i|U = ∆U

and p′ ◦ δ′
i = idU ′ . Then the composition in Aut(ξ) is

δ′
1 ◦ δ′

2 = c′(δ′
1 ◦ q′ ◦ δ′

2, δ
′
2)

We omit the detailed verification2. Thus we are in the situation described in More on
Groupoids in Spaces, Section 5 and the desired result follows from More on Groupoids in
Spaces, Lemma 5.2. �

Proposition 6.9 (Emerton). Let X ⊂ X ′ be a first order thickening of algebraic
stacks. Let W be an affine scheme and let W → X be a smooth morphism. Then there
exists a cartesian diagram

W

��

// W ′

��
X // X ′

with W ′ → X ′ smooth and W ′ affine.

Proof. Consider the category p : C →Wspaces,étale introduced in Remark 6.1. The
proposition states that there exists an object of C lying over W . Namely, if we have such
an object (W,W ′, a, i, y′, α) then W = X ×X ′ W ′. Hence W → W ′ is a thickening of
algebraic spaces soW ′ is affine by More on Morphisms of Spaces, Lemma 9.5 and More on
Morphisms, Lemma 2.3.

Lemma 6.7 tells us C is a gerbe over Wspaces,étale. This means we can étale locally find a
solution and these local solutions are étale locally isomorphic; this part does not require
the assumption that the thickening is first order. By Lemma 6.8 the automorphism sheaves
of objects of our gerbe are abelian and fit together to form a quasi-coherent module G on
Wspaces,étale. We will verify conditions (1) and (2) of Cohomology on Sites, Lemma 11.1
to conclude the existence of an object of C lying over W . Condition (1) is true: the étale
coverings {Wi → W} with each Wi affine are cofinal in the collection of all coverings.
For such a coveringWi andWi×W Wj are affine andH1(Wi,G) andH1(Wi×W Wj ,G)
are zero: the cohomology of a quasi-coherent module over an affine algebraic space is
zero for example by Cohomology of Spaces, Proposition 7.2. Finally, condition (2) is that
H2(W,G) = 0 for our quasi-coherent sheaf G which again follows from Cohomology of
Spaces, Proposition 7.2. This finishes the proof. �

2The reader can see immediately that it is necessary to precompose δ′
1 by q′ ◦ δ′

2 to get a well defined
U ′-valued point of the fibre product I′ ×p′,U′,q′ I′.
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7. Infinitesimal deformations

We continue the discussion from Artin’s Axioms, Section 21.

Lemma 7.1. Let X be an algebraic stack over a scheme S. Assume IX → X is locally
of finite presentation. Let A → B be a flat S-algebra homomorphism. Let x be an object
of X over A and set y = x|B . Then Infx(M)⊗A B = Infy(M ⊗A B).

Proof. Recall that Infx(M) is the set of automorphisms of the trivial deformation of
x toA[M ] which induce the identity automorphism of x overA. The trivial deformation
is the pullback of x to Spec(A[M ]) via Spec(A[M ]) → Spec(A). Let G → Spec(A) be
the automorphism group algebraic space of x (this exists because X is an algebraic space).
Let e : Spec(A) → G be the neutral element. The discussion in More on Morphisms of
Spaces, Section 17 gives

Infx(M) = HomA(e∗ΩG/A,M)

By the same token

Infy(M ⊗A B) = HomB(e∗
BΩGB/B ,M ⊗A B)

Since G → Spec(A) is locally of finite presentation by assumption, we see that ΩG/A
is locally of finite presentation, see More on Morphisms of Spaces, Lemma 7.15. Hence
e∗ΩG/A is a finitely presented A-module. Moreover, ΩGB/B is the pullback of ΩG/A by
More on Morphisms of Spaces, Lemma 7.12. Therefore e∗

BΩGB/B = e∗ΩG/A ⊗A B. we
conclude by More on Algebra, Lemma 65.4. �

Lemma 7.2. Let X be an algebraic stack over a base scheme S. Assume IX → X
is locally of finite presentation. Let (A′ → A, x) be a deformation situation. Then the
functor

F : B′ 7−→ {lifts of x|B′⊗A′A to B′}/isomorphisms
is a sheaf on the site (Aff/ Spec(A′))fppf of Topologies, Definition 7.8.

Proof. Let {T ′
i → T ′}i=1,...n be a standard fppf covering of affine schemes over A′.

Write T ′ = Spec(B′). As usual denote

T ′
i0...ip = T ′

i0 ×T ′ . . .×T ′ T ′
ip = Spec(B′

i0...ip)

where the ring is a suitable tensor product. SetB = B′⊗A′A andBi0...ip = B′
i0...ip

⊗A′A.
Denote y = x|B and yi0...ip = x|Bi0...ip . Let γi ∈ F (B′

i) such that γi0 and γi1 map to the
same element of F (B′

i0i1
). We have to find a unique γ ∈ F (B′) mapping to γi in F (B′

i).

Choose an actual object y′
i of Lift(yi, B′

i) in the isomorphism class γi. Choose isomor-
phisms ϕi0i1 : y′

i0
|B′
i0i1
→ y′

i1
|B′
i0i1

in the category Lift(yi0i1 , B′
i0i1

). If the maps ϕi0i1
satisfy the cocycle condition, then we obtain our object γ because X is a stack in the fppf
topology. The cocycle condition is that the composition

y′
i0 |B′

i0i1i2

ϕi0i1 |B′
i0i1i2−−−−−−−−→ y′

i1 |B′
i0i1i2

ϕi1i2 |B′
i0i1i2−−−−−−−−→ y′

i2 |B′
i0i1i2

ϕi2i0 |B′
i0i1i2−−−−−−−−→ y′

i0 |B′
i0i1i2

is the identity. If not, then these maps give elements

δi0i1i2 ∈ Infyi0i1i2 (Ji0i1i2) = Infy(J)⊗B Bi0i1i2
Here J = Ker(B′ → B) and Ji0...ip = Ker(B′

i0...ip
→ Bi0...ip). The equality in the

displayed equation holds by Lemma 7.1 applied to B′ → B′
i0...ip

and y and yi0...ip , the
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flatness of the maps B′ → B′
i0...ip

which also guarantees that Ji0...ip = J ⊗B′ B′
i0...ip

. A
computation (omitted) shows that δi0i1i2 gives a 2-cocycle in the Čech complex∏

Infy(J)⊗B Bi0 →
∏

Infy(J)⊗B Bi0i1 →
∏

Infy(J)⊗B Bi0i1i2 → . . .

By Descent, Lemma 9.2 this complex is acyclic in positive degrees and has H0 = Infy(J).
Since Infyi0i1 (Ji0i1) acts on morphisms (Artin’s Axioms, Remark 21.4) this means we can
modify our choice of ϕi0i1 to get to the case where δi0i1i2 = 0.

Uniqueness. We still have to show there is at most one γ restricting to γi for all i. Suppose
we have objects y′, z′ of Lift(y,B′) and isomorphisms ψi : y′|B′

i
→ z′|B′

i
in Lift(yi, B′

i).
Then we can consider

ψ−1
i1
◦ ψi0 ∈ Infyi0i1 (Ji0i1) = Infy(J)⊗B Bi0i1

Arguing as before, the obstruction to finding an isomorphism between y′ and z′ over B′

is an element in the H1 of the Čech complex displayed above which is zero. �

Lemma 7.3. Let X be an algebraic stack over a scheme S whose structure morphism
X → S is locally of finite presentation. Let A → B be a flat S-algebra homomorphism.
Let x be an object of X over A. Then Tx(M)⊗A B = Ty(M ⊗A B).

Proof. Choose a scheme U and a surjective smooth morphism U → X . We first re-
duce the lemma to the case where x lifts toU . Recall that Tx(M) is the set of isomorphism
classes of lifts of x to A[M ]. Therefore Lemma 7.23 says that the rule

A1 7→ Tx|A1
(M ⊗A A1)

is a sheaf on the small étale site of Spec(A); the tensor product is needed to makeA[M ]→
A1[M ⊗A A1] a flat ring map. We may choose a faithfully flat étale ring map A → A1
such that x|A1 lifts to a morphism u1 : Spec(A1)→ U , see for example Sheaves on Stacks,
Lemma 19.10. WriteA2 = A1⊗AA1 and setB1 = B⊗AA1 andB2 = B⊗AA2. Consider
the diagram

0 // Ty(M ⊗A B) // Ty|B1
(M ⊗A B1) // Ty|B2

(M ⊗A B2)

0 // Tx(M) //

OO

Tx|A1
(M ⊗A A1) //

OO

Tx|A2
(M ⊗A A2)

OO

The rows are exact by the sheaf condition. We have M ⊗A Bi = (M ⊗A Ai) ⊗Ai Bi.
Thus if we prove the result for the middle and right vertical arrow, then the result follows.
This reduces us to the case discussed in the next paragraph.

Assume that x is the image of a morphism u : Spec(A) → U . Observe that Tu(M) →
Tx(M) is surjective since U → X is smooth and representable by algebraic spaces, see
Criteria for Representability, Lemma 6.3 (see discussion preceding it for explanation) and
More on Morphisms of Spaces, Lemma 19.6. Set R = U ×X U . Recall that we obtain
a groupoid (U,R, s, t, c, e, i) in algebraic spaces with X = [U/R]. By Artin’s Axioms,
Lemma 21.6 we have an exact sequence

Te◦u(M)→ Tu(M)⊕ Tu(M)→ Tx(M)→ 0

3This lemma applies: ∆ : X → X ×S X is locally of finite presentation by Morphisms of Stacks, Lemma
27.6 and the assumption that X → S is locally of finite presentation. Therefore IX → X is locally of finite
presentation as a base change of ∆.
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where the zero on the right was shown above. A similar sequence holds for the base change
to B. Thus the result we want follows if we can prove the result of the lemma for Tu(M)
and Te◦u(M). This reduces us to the case discussed in the next paragraph.

Assume that X = X is an algebraic space locally of finite presentation over S. Then we
have

Tx(M) = HomA(x∗ΩX/S ,M)
by the discussion in More on Morphisms of Spaces, Section 17. By the same token

Ty(M ⊗A B) = HomB(y∗ΩX/S ,M ⊗A B)
SinceX → S is locally of finite presentation, we see that ΩX/S is locally of finite presenta-
tion, see More on Morphisms of Spaces, Lemma 7.15. Hence x∗ΩX/S is a finitely presented
A-module. Clearly, we have y∗ΩX/S = x∗ΩX/S⊗AB. we conclude by More on Algebra,
Lemma 65.4. �

Lemma 7.4. Let X be an algebraic stack over a scheme S whose structure morphism
X → S is locally of finite presentation. Let (A′ → A, x) be a deformation situation. If
there exists a faithfully flat finitely presentedA′-algebraB′ and an object y′ ofX overB′

lifting x|B′⊗A′A, then there exists an object x′ over A′ lifting x.

Proof. Let I = Ker(A′ → A). Set B′
1 = B′ ⊗A′ B′ and B′

2 = B′ ⊗A′ B′ ⊗A′ B′.
Let J = IB′, J1 = IB′

1, J2 = IB′
2 and B = B′/J , B1 = B′

1/J1, B2 = B′
2/J2. Set

y = x|B , y1 = x|B1 , y2 = x|B2 . Let F be the fppf sheaf of Lemma 7.2 (which applies, see
footnote in the proof of Lemma 7.3). Thus we have an equalizer diagram

F (A′) // F (B′) //
// F (B′

1)

On the other hand, we have F (B′) = Lift(y,B′), F (B′
1) = Lift(y1, B

′
1), and F (B′

2) =
Lift(y2, B

′
2) in the terminology from Artin’s Axioms, Section 21. These sets are nonempty

and are (canonically) principal homogeneous spaces forTy(J),Ty1(J1),Ty2(J2), see Artin’s
Axioms, Lemma 21.2. Thus the difference of the two images of y′ in F (B′

1) is an element

δ1 ∈ Ty1(J1) = Tx(I)⊗A B1

The equality in the displayed equation holds by Lemma 7.3 applied toA′ → B′
1 and x and

y1, the flatness of A′ → B′
1 which also guarantees that J1 = I ⊗A′ B′

1. We have similar
equalities for B′ and B′

2. A computation (omitted) shows that δ1 gives a 1-cocycle in the
Čech complex

Tx(I)⊗A B → Tx(I)⊗A B1 → Tx(I)⊗A B2 → . . .

By Descent, Lemma 9.2 this complex is acyclic in positive degrees and has H0 = Tx(I).
Thus we may choose an element in Tx(I)⊗AB = Ty(J) whose boundary is δ1. Replacing
y′ by the result of this element acting on it, we find a new choice y′ with δ1 = 0. Thus y′

maps to the same element under the two maps F (B′)→ F (B′
1) and we obtain an element

o F (A′) by the sheaf condition. �

8. Formally smooth morphisms

In this section we introduce the notion of a formally smooth morphism X → Y of alge-
braic stacks. Such a morphism is characterized by the property that T -valued points of X
lift to infinitesimal thickenings of T provided T is affine. The main result is that a mor-
phism which is formally smooth and locally of finite presentation is smooth, see Lemma
8.7. It turns out that this criterion is often easier to use than the Jacobian criterion.
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Definition 8.1. A morphism f : X → Y of algebraic stacks is said to be formally
smooth if it is formally smooth on objects as a 1-morphism in categories fibred in groupoids
as explained in Criteria for Representability, Section 6.

We translate the condition of the definition into the language we are currently using (see
Properties of Stacks, Section 2). Let f : X → Y be a morphism of algebraic stacks. Con-
sider a 2-commutative solid diagram

(8.1.1)

T
x
//

i
��

X

f

��
T ′ y //

>>

Y

where i : T → T ′ is a first order thickening of affine schemes. Let

γ : y ◦ i −→ f ◦ x

be a 2-morphism witnessing the 2-commutativity of the diagram. (Notation as in Cate-
gories, Sections 28 and 29.) Given (8.1.1) and γ a dotted arrow is a triple (x′, α, β) con-
sisting of a morphism x′ : T ′ → X and 2-arrows α : x′ ◦ i→ x, β : y → f ◦ x′ such that
γ = (idf ? α) ◦ (β ? idi), in other words such that

f ◦ x′ ◦ i
idf?α

$$
y ◦ i

β?idi
::

γ // f ◦ x

is commutative. A morphism of dotted arrows (x′
1, α1, β1) → (x′

2, α2, β2) is a 2-arrow
θ : x′

1 → x′
2 such that α1 = α2 ◦ (θ ? idi) and β2 = (idf ? θ) ◦ β1.

The category of dotted arrows just described is a special case of Categories, Definition 44.1.

Lemma 8.2. A morphism f : X → Y of algebraic stacks is formally smooth (Defi-
nition 8.1) if and only if for every diagram (8.1.1) and γ the category of dotted arrows is
nonempty.

Proof. Translation between different languages omitted. �

Lemma 8.3. The base change of a formally smooth morphism of algebraic stacks by
any morphism of algebraic stacks is formally smooth.

Proof. Follows from Categories, Lemma 44.2 and the definition. �

Lemma 8.4. The composition of formally smooth morphisms of algebraic stacks is
formally smooth.

Proof. Follows from Categories, Lemma 44.3 and the definition. �

Lemma 8.5. Let f : X → Y be a morphism of algebraic stacks which is representable
by algebraic spaces. Then the following are equivalent

(1) f is formally smooth,
(2) for every scheme T and morphism T → Y the morphism X ×Y T → T is

formally smooth as a morphism of algebraic spaces.

Proof. Follows from Categories, Lemma 44.2 and the definition. �
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Lemma 8.6. Let T → T ′ be a first order thickening of affine schemes. Let X ′ be an
algebraic stack over T ′ whose structure morphismX ′ → T ′ is smooth. Let x : T → X ′ be
a morphism over T ′. Then there exists a morphsm x′ : T ′ → X ′ over T ′ with x′|T = x.

Proof. We may apply the result of Lemma 7.4. Thus it suffices to construct a smooth
surjective morphism W ′ → T ′ with W ′ affine such that x|T×W ′T ′ lifts to W ′. (We urge
the reader to find their own proof of this fact using the analogous result for algebraic
spaces already established.) We choose a scheme U ′ and a surjective smooth morphism
U ′ → X ′. Observe that U ′ → T ′ is smooth and that the projection T ×X ′ U ′ → T is
surjective smooth. Choose an affine scheme W and an étale morphism W → T ×X ′ U ′

such that W → T is surjective. Then W → T is a smooth morphism of affine schemes.
After replacingW by a disjoint union of principal affine opens, we may assume there exists
a smooth morphism of affines W ′ → T ′ such that W = T ×T ′ W ′, see Algebra, Lemma
137.20. By More on Morphisms of Spaces, Lemma 19.6 we can find a morphismW ′ → U ′

over T ′ lifting the given morphism W → U ′. This finishes the proof. �

The following lemma is the main result of this section. It implies, combined with Limits
of Stacks, Proposition 3.8, that we can recognize whether a morphism of algebraic stacks
f : X → Y is smooth in terms of “simple” properties of the 1-morphism of stacks in
groupoids X → Y .

Lemma 8.7 (Infinitesimal lifting criterion). Let f : X → Y be a morphism of alge-
braic stacks. The following are equivalent:

(1) The morphism f is smooth.
(2) The morphism f is locally of finite presentation and formally smooth.

Proof. Assume f is smooth. Then f is locally of finite presentation by Morphisms
of Stacks, Lemma 33.5. Hence it suffices given a diagram (8.1.1) and a γ : y ◦ i→ f ◦ x to
find a dotted arrow (see Lemma 8.2). Forming fibre products we obtain

T

��

// T ′ ×Y X

��

// X

��
T ′ // T ′ // Y

Thus we see it is sufficient to find a dotted arrow in the left square. Since T ′×Y X → T ′ is
smooth (Morphisms of Stacks, Lemma 33.3) existence of a dotted arrow in the left square
is guaranteed by Lemma 8.6.

Conversely, suppose that f is locally of finite presentation and formally smooth. Choose
a scheme U and a surjective smooth morphism U → X . Then a : U → X and b : U → Y
are representable by algebraic spaces and locally of finite presentation (use Morphisms of
Stacks, Lemma 27.2 and the fact seen above that a smooth morphism is locally of finite
presentation). We will apply the general principle of Algebraic Stacks, Lemma 10.9 with
as input the equivalence of More on Morphisms of Spaces, Lemma 19.6 and simultaneously
use the translation of Criteria for Representability, Lemma 6.3. We first apply this to a
to see that a is formally smooth on objects. Next, we use that f is formally smooth on
objects by assumption (see Lemma 8.2) and Criteria for Representability, Lemma 6.2 to see
that b = f ◦ a is formally smooth on objects. Then we apply the principle once more to
conclude that b is smooth. This means that f is smooth by the definition of smoothness
for morphisms of algebraic stacks and the proof is complete. �
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9. Blowing up and flatness

This section quickly discusses what you can deduce from More on Morphisms of Spaces,
Sections 38 and 39 for algebraic stacks over algebraic spaces.

Lemma 9.1. Let f : X → Y be a morphism from an algebraic stack to an algebraic
space. Let V ⊂ Y be an open subspace. Assume

(1) Y is quasi-compact and quasi-separated,
(2) f is of finite type and quasi-separated,
(3) V is quasi-compact, and
(4) XV is flat and locally of finite presentation over V .

Then there exists a V -admissible blowup Y ′ → Y and a closed substack X ′ ⊂ XY ′ with
X ′
V = XV such that X ′ → Y ′ is flat and of finite presentation.

Proof. Observe thatX is quasi-compact. Choose an affine schemeU and a surjective
smooth morphismU → X . LetR = U×X U so that we obtain a groupoid (U,R, s, t, c) in
algebraic spaces over Y with X = [U/R] (Algebraic Stacks, Lemma 16.2). We may apply
More on Morphisms of Spaces, Lemma 39.1 to U → Y and the open V ⊂ Y . Thus we
obtain a V -admissible blowup Y ′ → Y such that the strict transformU ′ ⊂ UY ′ is flat and
of finite presentation over Y ′. Let R′ ⊂ RY ′ be the strict transform of R. Since s and t
are smooth (and in particular flat) it follows from Divisors on Spaces, Lemma 18.4 that we
have cartesian diagrams

R′ //

��

RY ′

sY ′

��
U ′ // UY ′

and

R′ //

��

RY ′

tY ′

��
U ′ // UY ′

In other words, U ′ is an RY ′ -invariant closed subspace of UY ′ . Thus U ′ defines a closed
substack X ′ ⊂ XY ′ by Properties of Stacks, Lemma 9.11. The morphism X ′ → Y ′ is flat
and locally of finite presentation because this is true for U ′ → Y ′. On the other hand, we
already know X ′ → Y ′ is quasi-compact and quasi-separated (by our assumptions on f
and because this is true for closed immersions). This finishes the proof. �

10. Chow’s lemma for algebraic stacks

In this section we discuss Chow’s lemma for algebraic stacks.

Lemma 10.1. Let Y be a quasi-compact and quasi-separated algebraic space. Let V ⊂
Y be a quasi-compact open. Let f : X → V be surjective, flat, and locally of finite
presentation. Then there exists a finite surjective morphism g : Y ′ → Y such that
V ′ = g−1(V )→ Y factors Zariski locally through f .

Proof. We first prove this when Y is a scheme. We may choose a scheme U and a
surjective smooth morphism U → X . Then {U → V } is an fppf covering of schemes. By
More on Morphisms, Lemma 48.6 there exists a finite surjective morphism V ′ → V such
that V ′ → V factors Zariski locally through U . By More on Morphisms, Lemma 48.4
we can find a finite surjective morphism Y ′ → Y whose restriction to V is V ′ → V as
desired.
If Y is an algebraic space, then we see the lemma is true by first doing a finite base change
by a finite surjective morphism Y ′ → Y where Y ′ is a scheme. See Limits of Spaces,
Proposition 16.1. �
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Lemma 10.2. Let f : X → Y be a morphism from an algebraic stack to an algebraic
space. Let V ⊂ Y be an open subspace. Assume

(1) f is separated and of finite type,
(2) Y is quasi-compact and quasi-separated,
(3) V is quasi-compact, and
(4) XV is a gerbe over V .

Then there exists a commutative diagram

Z

g ��

Z
j

oo

g

��

h
// X

f��
Y

with j an open immersion, g and h proper, and such that |V | is contained in the image of
|g|.

Proof. Suppose we have a commutative diagram

X ′

f ′

��

// X

f

��
Y ′ // Y

and a quasi-compact open V ′ ⊂ Y ′, such that Y ′ → Y is a proper morphism of algebraic
spaces, X ′ → X is a proper morphism of algebraic stacks, V ′ ⊂ Y ′ maps surjectively
onto V , and X ′

V ′ is a gerbe over V ′. Then it suffices to prove the lemma for the pair
(f ′ : X ′ → Y ′, V ′). Some details omitted.

Overall strategy of the proof. We will reduce to the case where the image of f is open
and f has a section over this open by repeatedly applying the above remark. Each step is
straightforward, but there are quite a few of them which makes the proof a bit involved.

Using Limits of Spaces, Proposition 16.1 we reduce to the case where Y is a scheme. (Let
Y ′ → Y be a finite surjective morphism where Y ′ is a scheme. Set X ′ = XY ′ and apply
the initial remark of the proof.)

Using Lemma 9.1 (and Morphisms of Stacks, Lemma 28.8 to see that a gerbe is flat and lo-
cally of finite presentation) we reduce to the case where f is flat and of finite presentation.

Since f is flat and locally of finite presentation, we see that the image of |f | is an open
W ⊂ Y . Since X is quasi-compact (as f is of finite type and Y is quasi-compact) we
see that W is quasi-compact. By Lemma 10.1 we can find a finite surjective morphism
g : Y ′ → Y such that g−1(W ) → Y factors Zariski locally through X → Y . After
replacing Y by Y ′ and X by X ×Y Y ′ we reduce to the situation described in the next
paragraph.

Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and morphisms
xi : Wi → X such that (a) f ◦ xi = idWi , (b) W =

⋃
i=1,...,nWi contains V , and (c)

W is the image of |f |. We will use induction on n. The base case is n = 0: this implies
V = ∅ and in this case we can take Z = ∅. If n > 0, then for i = 1, . . . , n consider the
reduced closed subschemes Yi with underlying topological space Y \ Wi. Consider the
finite morphism

Y ′ = Y q
∐

i=1,...,n
Yi −→ Y
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and the quasi-compact open

V ′ = (W1 ∩ . . . ∩Wn ∩ V )q
∐

i=1,...,n
(V ∩ Yi).

By the initial remark of the proof, if we can prove the lemma for the pairs

(X → Y,W1 ∩ . . . ∩Wn ∩ V ) and (X ×Y Yi → Yi, V ∩ Yi), i = 1, . . . , n
then the result is true. Here we use the settheoretic equality V = (W1 ∩ . . .∩Wn ∩ V )∪⋃
i=1,...n(V ∩ Yi). The induction hypothesis applies to the second type of pairs above.

Hence we reduce to the situation described in the next paragraph.

Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and morphisms
xi : Wi → X such that (a) f ◦ xi = idWi

, (b) W =
⋃
i=1,...,nWi contains V , (c) W is the

image of |f |, and (d) V ⊂W1 ∩ . . . ∩Wn. The morphisms

Tij = IsomX (xi|Wi∩Wj∩V , xj |Wi∩Wj∩V ) −→Wi ∩Wj ∩ V

are surjective, flat, and locally of finite presentation (Morphisms of Stacks, Lemma 28.10).
We apply Lemma 10.1 to each quasi-compact openWi∩Wj∩V and the morphisms Tij →
Wi ∩Wj ∩ V to get finite surjective morphisms Y ′

ij → Y . After replacing Y by the fibre
product of all of the Y ′

ij over Y we reduce to the situation described in the next paragraph.

Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and morphisms
xi : Wi → X such that (a) f ◦ xi = idWi

, (b) W =
⋃
i=1,...,nWi contains V , (c) W is the

image of |f |, (d) V ⊂W1∩ . . .∩Wn, and (e) xi and xj are Zariski locally isomorphic over
Wi ∩Wj ∩ V . Let y ∈ V be arbitrary. Suppose that we can find a quasi-compact open
neighbourhood y ∈ Vy ⊂ V such that the lemma is true for the pair (X → Y, Vy), say
with solution Zy, Zy, gy, gy, hy . Since V is quasi-compact, we can find a finite number
y1, . . . , ym such that V = Vy1 ∪ . . . ∪ Vym . Then it follows that setting

Z =
∐

Zyj , Z =
∐

Zyj , g =
∐

gyj , g =
∐

gyj , h =
∐

hyj

is a solution for the lemma. Given y by condition (e) we can choose a quasi-compact open
neighbourhood y ∈ Vy ⊂ V and isomorphisms ϕi : x1|Vy → xi|Vy for i = 2, . . . , n. Set
ϕij = ϕj ◦ ϕ−1

i . This leads us to the situation described in the next paragraph.

Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and morphisms
xi : Wi → X such that (a) f ◦ xi = idWi

, (b) W =
⋃
i=1,...,nWi contains V , (c) W is the

image of |f |, (d) V ⊂ W1 ∩ . . . ∩Wn, and (f) there are isomorphisms ϕij : xi|V → xj |V
satisfying ϕjk ◦ ϕij = ϕik. The morphisms

Iij = IsomX (xi|Wi∩Wj
, xj |Wi∩Wj

) −→Wi ∩Wj

are proper because f is separated (Morphisms of Stacks, Lemma 6.6). Observe that ϕij
defines a section V → Iij of Iij → Wi ∩Wj over V . By More on Morphisms of Spaces,
Lemma 39.6 we can find V -admissible blowups pij : Yij → Y such that sij extends to
p−1
ij (Wi ∩Wj). After replacing Y by the fibre product of all the Yij over Y we get to the

situation described in the next paragraph.

Assume there exists n ≥ 0, quasi-compact opens Wi ⊂ Y , i = 1, . . . , n, and morphisms
xi : Wi → X such that (a) f ◦ xi = idWi

, (b) W =
⋃
i=1,...,nWi contains V , (c) W is the

image of |f |, (d) V ⊂ W1 ∩ . . . ∩Wn, and (g) there are isomorphisms ϕij : xi|Wi∩Wj
→

xj |Wi∩Wj
satisfying

ϕjk|V ◦ ϕij |V = ϕik|V .
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After replacing Y by another V -admissible blowup if necessary we may assume that V is
dense and scheme theoretically dense inY and hence in any open subspace ofY containing
V . After such a replacement we conclude that

ϕjk|Wi∩Wj∩Wk
◦ ϕij |Wi∩Wj∩Wk

= ϕik|Wi∩Wj∩Wk

by appealing to Morphisms of Spaces, Lemma 17.8 and the fact that Iik → Wi ∩Wj is
proper (hence separated). Of course this means that (xi, ϕij) is a desent datum and we
obtain a morphism x : W → X agreeing with xi over Wi because X is a stack. Since x
is a section of the separated morphism X → W we see that x is proper (Morphisms of
Stacks, Lemma 4.9). Thus the lemma now holds with Z = Y , Z = W , g = idY , g = idW ,
h = x. �

Theorem 10.3 (Chow’s lemma). Let f : X → Y be a morphism from an algebraic
stack to an algebraic space. Assume

(1) Y is quasi-compact and quasi-separated,
(2) f is separated of finite type.

Then there exists a commutative diagram

X

��

Xoo

��

// X

��
Y

where X → X is proper surjective, X → X is an open immersion, and X → Y is proper
morphism of algebraic spaces.

Proof. The rough idea is to use thatX has a dense open which is a gerbe (Morphisms
of Stacks, Proposition 29.1) and appeal to Lemma 10.2. The reason this does not work is
that the open may not be quasi-compact and one runs into technical problems. Thus we
first do a (standard) reduction to the Noetherian case.

First we choose a closed immersion X → X ′ where X ′ is an algebraic stack separated and
of finite type over Y . See Limits of Stacks, Lemma 6.2. Clearly it suffices to prove the
theorem for X ′, hence we may assume X → Y is separated and of finite presentation.

Assume X → Y is separated and of finite presentation. By Limits of Spaces, Proposition
8.1 we can write Y = lim Yi as the directed limit of a system of Noetherian algebraic
spaces with affine transition morphisms. By Limits of Stacks, Lemma 5.1 there is an i
and a morphism Xi → Yi of finite presentation from an algebraic stack to Yi such that
X = Y ×Yi Xi. After increasing i we may assume that Xi → Yi is separated, see Limits of
Stacks, Lemma 4.2. Then it suffices to prove the theorem for Xi → Yi. This reduces us to
the case discussed in the next paragraph.

Assume Y is Noetherian. We may replace X by its reduction (Properties of Stacks, Defi-
nition 10.4). This reduces us to the case discussed in the next paragraph.

Assume Y is Noetherian and X is reduced. Since X → Y is separated and Y quasi-
separated, we see thatX is quasi-separated as an algebraic stack. Hence the inertia IX → X
is quasi-compact. Thus by Morphisms of Stacks, Proposition 29.1 there exists a dense open
substack V ⊂ X which is a gerbe. Let V → V be the morphism which expresses V as a
gerbe over the algebraic space V . See Morphisms of Stacks, Lemma 28.2 for a construction
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of V → V . This construction in particular shows that the morphism V → Y factors as
V → V → Y . Picture

V //

��

X

��
V // Y

Since the morphism V → V is surjective, flat, and of finite presentation (Morphisms of
Stacks, Lemma 28.8) and since V → Y is locally of finite presentation, it follows that
V → Y is locally of finite presentation (Morphisms of Stacks, Lemma 27.12). Note that
V → V is a universal homeomorphism (Morphisms of Stacks, Lemma 28.13). Since V
is quasi-compact (see Morphisms of Stacks, Lemma 8.2) we see that V is quasi-compact.
Finally, since V → Y is separated the same is true for V → Y by Morphisms of Stacks,
Lemma 27.17 applied to V → V → Y (whose assumptions are satisfied as we’ve already
seen).

All of the above means that the assumptions of Limits of Spaces, Lemma 13.3 apply to the
morphism V → Y . Thus we can find a dense open subspace V ′ ⊂ V and an immersion
V ′ → Pn

Y over Y . Clearly we may replace V by V ′ and V by the inverse image of V ′ in
V (recall that |V| = |V | as we’ve seen above). Thus we may assume we have a diagram

V //

��

X

��
V // Pn

Y
// Y

where the arrow V → Pn
Y is an immersion. Let X ′ be the scheme theoretic image of the

morphism
j : V −→ Pn

Y ×Y X
and let Y ′ be the scheme theoretic image of the morphism V → Pn

Y . We obtain a com-
mutative diagram

V //

��

X ′ //

��

Pn
Y ×Y X

��

// X

��
V // Y ′ // Pn

Y
// Y

(See Morphisms of Stacks, Lemma 38.4). We claim that V = V ×Y ′ X ′ and that Lemma
10.2 applies to the morphism X ′ → Y ′ and the open subspace V ⊂ Y ′. If the claim is
true, then we obtain

X

g   

Xoo

g

��

h
// X ′

f~~
Y ′

with X → X an open immersion, g and h proper, and such that |V | is contained in
the image of |g|. Then the composition X → X ′ → X is proper (as a composition of
proper morphisms) and its image contains |V|, hence this composition is surjective. As
well, X → Y ′ → Y is proper as a composition of proper morphisms.

The last step is to prove the claim. Observe that X ′ → Y ′ is separated and of finite
type, that Y ′ is quasi-compact and quasi-separated, and that V is quasi-compact (we omit
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checking all the details completely). Next, we observe that b : X ′ → X is an isomorphism
over V by Morphisms of Stacks, Lemma 38.7. In particular V is identified with an open
substack of X ′. The morphism j is quasi-compact (source is quasi-compact and target is
quasi-separated), so formation of the scheme theoretic image of j commutes with flat base
change by Morphisms of Stacks, Lemma 38.5. In particular we see that V ×Y ′ X ′ is the
scheme theoretic image of V → V ×Y ′X ′. However, by Morphisms of Stacks, Lemma 37.5
the image of |V| → |V ×Y ′ X ′| is closed (use that V → V is a universal homeomorphism
as we’ve seen above and hence is universally closed). Also the image is dense (combine
what we just said with Morphisms of Stacks, Lemma 38.6) we conclude |V| = |V ×Y ′ X ′|.
Thus V → V ×Y ′ X ′ is an isomorphism and the proof of the claim is complete. �

11. Noetherian valuative criterion

In this section we will discuss (refined) valuative criteria for morphisms of algebraic stacks
using only discrete valuation rings in the Noetherian setting. There are many different
variants and we will add more here over time as needed.

Let f : X → Y be a morphism of algebraic stacks (or algebraic spaces or schemes). A
refined valuative criterion is one where we are given a morphism U → X (with some
properties) and we only look at existence or uniqueness of dotted arrows in solid diagrams
of the form

Spec(K)

��

// U // X

��
Spec(A) //

66

Y

We use this terminology below to describe the results we have obtained sofar.

Non-Noetherian valuative criteria for morphisms of algebraic stacks
(1) Morphisms of Stacks, Section 40 (for separatedness of the diagonal),
(2) Morphisms of Stacks, Section 41 (for separatedness),
(3) Morphisms of Stacks, Section 42 (for universal closedness),
(4) Morphisms of Stacks, Section 43 (for properness).

For algebraic spaces we have the following valuative criteria
(1) Morphisms of Spaces, Section 42 (for universal closedness),
(2) Morphisms of Spaces, Lemma 42.5 (refined for universal closedness)
(3) Morphisms of Spaces, Section 43 (for separatedness),
(4) Morphisms of Spaces, Section 44 (for properness),
(5) Decent Spaces, Section 16 (for universal closedness for decent spaces),
(6) Decent Spaces, Lemma 17.11 (for universal closedness for decent morphisms be-

tween algebraic spaces),
(7) Cohomology of Spaces, Section 19 contains Noetherian valuative criteria

(a) Cohomology of Spaces, Lemma 19.1 (for separatedness using discrete valu-
ation rings),

(b) Cohomology of Spaces, Lemma 19.2 (for properness using discrete valuation
rings),

(c) Cohomology of Spaces, Remark 19.3 (discusses how to reduce to complete
discrete valuation rings),

(8) Limits of Spaces, Section 21 discussing Noetherian valuative criteria
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(a) Limits of Spaces, Lemma 21.2 (for separatedness using discrete valuation
rings and generic points)

(b) Limits of Spaces, Lemma 21.3 (for properness using discrete valuation rings
and generic points)

(c) Limits of Spaces, Lemma 21.4 (for universal closedness using discrete valua-
tion rings).

(9) Limits of Spaces, Section 22 discussing refined Noetherian valuative criteria
(a) Limits of Spaces, Lemmas 22.1 and 22.3 (refined for properness using discrete

valuation rings),
(b) Limits of Spaces, Lemma 22.2 (refined for separatedness using discrete valu-

ation rings),
For schemes we have the following valuative criteria

(1) Schemes, Section 20 (for universal closedness)
(2) Schemes, Section 22 (for separatedness),
(3) Morphisms, Section 42 (for properness)
(4) Morphisms, Lemma 42.2 (refined for universal closedness),
(5) Limits, Section 15 discussing Noetherian valuative criteria

(a) Limits, Lemma 15.2 (for separatedness using discrete valuation rings and
generic points)

(b) Limits, Lemma 15.3 (for properness using discrete valuation rings and generic
points)

(c) Limits, Lemma 15.4 (for universal closedness using discrete valuation rings).
(6) Limits, Section 16 discussing refined Noetherian valuative criteria

(a) Limits, Lemmas 16.1 and 16.3 (refined for properness using discrete valua-
tion rings),

(b) Limits, Lemma 16.2 (refined for separatedness using discrete valuation rings),
(7) Limits, Section 17 discussing valuative criteria over a Noetherian base where one

can get discrete valuation rings essentially of finite type over the base.
This ends our list of previous results.

Many of the results in this section can (and perhaps should) be proved by appealing to the
following lemma, although we have not always done so.

Lemma 11.1. Let f : X → Y be a morphism of algebraic stacks. Assume f finite type
and Y locally Noetherian. Let y ∈ |Y| be a point in the closure of the image of |f |. Then
there exists a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

of algebraic stacks where A is a discrete valuation ring and K is its field of fractions map-
ping the closed point of Spec(A) to y.

Proof. Choose an affine scheme V , a point v ∈ V and a smooth morphism V → Y
mapping v to y. The map |V | → |Y| is open and by Properties of Stacks, Lemma 4.3 the
image of |X ×Y V | → |V | is the inverse image of the image of |f |. We conclude that the
point v is in the closure of the image of |X ×Y V | → |V |. If we prove the lemma for
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X ×Y V → V and the point v, then the lemma follows for f and y. In this way we reduce
to the situation described in the next paragraph.

Assume we have f : X → Y and y ∈ |Y | as in the lemma where Y is a Noetherian affine
scheme. Since f is quasi-compact, we conclude that X is quasi-compact. Hence we can
choose an affine scheme W and a surjective smooth morphism W → X . Then the image
of |f | is the same as the image of |W | → |Y |. In this way we reduce to the case of schemes
which is Limits, Lemma 15.1. �

Lemma 11.2. Let f : X → Y be a morphism of algebraic stacks. Assume
(1) Y is locally Noetherian,
(2) f is locally of finite type and quasi-separated,
(3) for every commutative diagram

Spec(K)
x

//

j

��

X

f

��
Spec(A) y //

;;

Y

where A is a discrete valuation ring and K its fraction field and any 2-arrow
γ : y◦j → f ◦x the category of dotted arrows (Morphisms of Stacks, Definition
39.1) is either empty or a setoid with exactly one isomorphism class.

Then f is separated.

Proof. To prove that f is separated we have to show that ∆ : X → X ×Y X is
proper. We already know that ∆ is representable by algebraic spaces, locally of finite type
(Morphisms of Stacks, Lemma 3.3) and quasi-compact and quasi-separated (by definition
of f being quasi-separated). Choose a scheme U and a surjective smooth morphism U →
X ×Y X . Set

V = X ×∆,X ×Y X U

It suffices to show that the morphism of algebraic spaces V → U is proper (Properties
of Stacks, Lemma 3.3). Observe that U is locally Noetherian (use Morphisms of Stacks,
Lemma 17.5 and the fact that U → Y is locally of finite type) and V → U is of finite type
and quasi-separated (as the base change of ∆ and properties of ∆ listed above). Applying
Cohomology of Spaces, Lemma 19.2 it suffices to show: Given a commutative diagram

Spec(K)
v

//

j

��

V

g

��

// X

∆
��

Spec(A) u //

;; 55

U // X ×Y X

whereA is a discrete valuation ring andK its fraction field, there is a unique dashed arrow
making the diagram commute. By Morphisms of Stacks, Lemma 39.4 the categories of
dashed and dotted arrows are equivalent. Assumption (3) implies there is a unique dotted
arrow up to isomorphism, see Morphisms of Stacks, Lemma 41.1. We conclude there is a
unique dashed arrow as desired. �

Lemma 11.3. Let f : X → Y and h : U → X be morphisms of algebraic stacks.
Assume that Y is locally Noetherian, that f and h are of finite type, that f is separated,
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and that the image of |h| : |U| → |X | is dense in |X |. If given any 2-commutative diagram

Spec(K)
u
//

j

��

U
h
// X

f

��
Spec(A) y // Y

where A is a discrete valuation ring with field of fractions K and γ : y ◦ j → f ◦ h ◦ u
there exist an extensionK ′/K of fields, a valuation ringA′ ⊂ K ′ dominatingA such that
the category of dotted arrows for the induced diagram

Spec(K ′)
x′
//

j′

��

X

f

��
Spec(A′) y′

//

;;

Y

with induced 2-arrow γ′ : y′ ◦ j′ → f ◦ x′ is nonempty (Morphisms of Stacks, Definition
39.1), then f is proper.

Proof. It suffices to prove that f is universally closed. Let V → Y be a smooth
morphism where V is an affine scheme. By Properties of Stacks, Lemma 4.3 the image I of
|U ×Y V | → |X ×Y V | is the inverse image of the image of |h|. Since |X ×Y V | → |X | is
open (Morphisms of Stacks, Lemma 27.15) we conclude that I is dense in |X ×Y V |. Also
since the category of dotted arrows behaves well with respect to base change (Morphisms
of Stacks, Lemma 39.4) the assumption on existence of dotted arrows (after extension) is
inherited by the morphisms U ×Y V → X ×Y V → V . Therefore the assumptions of the
lemma are satisfied for the morphisms U ×Y V → X ×Y V → V . Hence we may assume
Y is an affine scheme.

Assume Y = Y is an affine scheme. (From now on we no longer have to worry about
the 2-arrows γ and γ′, see Morphisms of Stacks, Lemma 39.3.) Then U is quasi-compact.
Choose an affine scheme U and a surjective smooth morphism U → U . Then we may and
do replace U by U . Thus we may assume that U is an affine scheme.

Assume Y = Y and U = U are affine schemes. By Chow’s lemma (Theorem 10.3) we can
choose a surjective proper morphism X → X where X is an algebraic space. We will use
below that X → Y is separated as a composition of separated morphisms. Consider the
algebraic space W = X ×X U . The projection morphism W → X is of finite type. We
may replace X by the scheme theoretic image of W → X and hence we may assume that
the image of |W | in |X| is dense in |X| (here we use that the image of |h| is dense in |X |, so
after this replacement, the morphism X → X is still surjective). We claim that for every
solid commutative diagram

Spec(K) //

��

W // X

��
Spec(A) //

66

Y

where A is a discrete valuation ring with field of fractions K , there exists a dotted arrow
making the diagram commute. First, it is enough to prove there exists a dotted arrow after
replacing K by an extension and A by a valuation ring in this extension dominating A,
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see Morphisms of Spaces, Lemma 41.4. By the assumption of the lemma we get an exten-
sion K ′/K and a valuation ring A′ ⊂ K ′ dominating A and an arrow Spec(A′) → X
lifting the composition Spec(A′) → Spec(A) → Y and compatible with the composi-
tion Spec(K ′) → Spec(K) → W → X . Because X → X is proper, we can use the
valuative criterion of properness (Morphisms of Stacks, Lemma 43.1) to find an extension
K ′′/K ′ and a valuation ring A′′ ⊂ K ′′ dominating A′ and a morphism Spec(A′′) → X
lifting the composition Spec(A′′) → Spec(A′) → X and compatible with the composi-
tion Spec(K ′′) → Spec(K ′) → Spec(K) → X . Then K ′′/K and A′′ ⊂ K ′′ and the
morphism Spec(A′′)→ X is a solution to the problem posed above and the claim holds.

The claim implies the morphism X → Y is proper by the case of the lemma for algebraic
spaces (Limits of Spaces, Lemma 22.1). By Morphisms of Stacks, Lemma 37.6 we conclude
that X → Y is proper as desired. �

Lemma 11.4. Let f : X → Y and h : U → X be morphisms of algebraic stacks.
Assume that Y is locally Noetherian, that f is locally of finite type and quasi-separated,
that h is of finite type, and that the image of |h| : |U| → |X | is dense in |X |. If given any
2-commutative diagram

Spec(K)
u
//

j

��

U
h
// X

f

��
Spec(A) y //

66

Y

whereA is a discrete valuation ring with field of fractionsK and γ : y ◦ j → f ◦h◦u, the
category of dotted arrows is either empty or a setoid with exactly one isomorphism class,
then f is separated.

Proof. We have to prove ∆ is a proper morphism. Assume first that ∆ is separated.
Then we may apply Lemma 11.3 to the morphismsU → X and ∆ : X → X×YX . Observe
that ∆ is quasi-compact as f is quasi-separated. Of course ∆ is locally of finite type (true
for any diagonal morphism, see Morphisms of Stacks, Lemma 3.3). Finally, suppose given
a 2-commutative diagram

Spec(K)
u
//

j

��

U
h

// X

∆
��

Spec(A) y //

55

X ×Y X

whereA is a discrete valuation ring with field of fractionsK and γ : y ◦j → ∆◦h◦u. By
Morphisms of Stacks, Lemma 41.1 and the assumption in the lemma we find there exists a
unique dotted arrow. This proves the last assumption of Lemma 11.3 holds and the result
follows.

In the general case, it suffices to prove ∆ is separated since then we’ll be back in the previous
case. In fact, we claim that the assumptions of the lemma hold for

U → X and ∆ : X → X ×Y X

Namely, since ∆ is representable by algebraic spaces, the category of dotted arrows for a
diagram as in the previous paragraph is a setoid (see for example Morphisms of Stacks,
Lemma 39.2). The argument in the preceding paragraph shows these categories are either
empty or have one isomorphism class. Thus ∆ is separated. �
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Lemma 11.5. Let f : X → Y be a morphism of algebraic stacks. Assume that Y is
locally Noetherian and that f is of finite type. If given any 2-commutative diagram

Spec(K)
x
//

j

��

X

f

��
Spec(A) y // Y

where A is a discrete valuation ring with field of fractions K and γ : y ◦ j → f ◦ x there
exist an extension K ′/K of fields, a valuation ring A′ ⊂ K ′ dominating A such that the
category of dotted arrows for the induced diagram

Spec(K ′)
x′
//

j′

��

X

f

��
Spec(A′) y′

//

;;

Y

with induced 2-arrow γ′ : y′ ◦ j′ → f ◦ x′ is nonempty (Morphisms of Stacks, Definition
39.1), then f is universally closed.

Proof. Let V → Y be a smooth morphism where V is an affine scheme. The category
of dotted arrows behaves well with respect to base change (Morphisms of Stacks, Lemma
39.4). Hence the assumption on existence of dotted arrows (after extension) is inherited
by the morphismX ×Y V → V . Therefore the assumptions of the lemma are satisfied for
the morphism X ×Y V → V . Hence we may assume Y is an affine scheme.

Assume Y = Y is a Noetherian affine scheme. (From now on we no longer have to worry
about the 2-arrows γ and γ′, see Morphisms of Stacks, Lemma 39.3.) To prove that f is
universally closed it suffices to show that |X × An| → |Y × An| is closed for all n by
Limits of Stacks, Lemma 7.2. Since the assumption in the lemma is inherited by the product
morphism X ×An → Y ×An (details omitted) we reduce to proving that |X | → |Y | is
closed.

Assume Y is a Noetherian affine scheme. Let T ⊂ |X | be a closed subset. We have to show
that the image of T in |Y | is closed. We may replace X by the reduced induced closed
subspace structure on T ; we omit the verification that property on the existence of dotted
arrows is preserved by this replacement. Thus we reduce to proving that the image of
|X | → |Y | is closed.

Let y ∈ |Y | be a point in the closure of the image of |X | → |Y |. By Lemma 11.1 we may
choose a commutative diagram

Spec(K) //

��

X

f

��
Spec(A) // Y

whereA is a discrete valuation ring andK is its field of fractions mapping the closed point
of Spec(A) to y. It follows immediately from the assumption in the lemma that y is in
the image of |X | → |Y | and the proof is complete. �
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12. Moduli spaces

This section discusses morphisms f : X → Y from algebraic stacks to algebraic spaces.
Under suitable hypothesesY is called a moduli space forX . IfX = [U/R] is a presentation,
then we obtain an R-invariant morphism U → Y and (under suitable hypotheses) Y is
a quotient of the groupoid (U,R, s, t, c). A discussion of the different types of quotients
can be found starting with Quotients of Groupoids, Section 1.

Definition 12.1. Let X be an algebraic stack. Let f : X → Y be a morphism to an
algebraic space Y .

(1) We say f is a categorical moduli space if any morphism X →W to an algebraic
space W factors uniquely through f .

(2) We say f is a uniform categorical moduli space if for any flat morphism Y ′ → Y
of algebraic spaces the base change f ′ : Y ′ ×Y X → Y ′ is a categorical moduli
space.

Let C be a full subcategory of the category of algebraic spaces.
(3) We say f is a categorical moduli space in C if Y ∈ Ob(C) and any morphism
X →W with W ∈ Ob(C) factors uniquely through f .

(4) We say is a uniform categorical moduli space in C if Y ∈ Ob(C) and for every
flat morphism Y ′ → Y in C the base change f ′ : Y ′×Y X → Y ′ is a categorical
moduli space in C.

By the Yoneda lemma a categorical moduli space, if it exists, is unique. Let us match this
with the language introduced for quotients.

Lemma 12.2. Let (U,R, s, t, c) be a groupoid in algebraic spaces with s, t : R → U
flat and locally of finite presentation. Consider the algebraic stack X = [U/R]. Given an
algebraic space Y there is a 1-to-1 correspondence between morphisms f : X → Y and
R-invariant morphisms φ : U → Y .

Proof. Criteria for Representability, Theorem 17.2 tells us X is an algebraic stack.
Given a morphism f : X → Y we let φ : U → Y be the compositionU → X → Y . Since
R = U ×X U (Groupoids in Spaces, Lemma 22.2) it is immediate that φ is R-invariant.
Conversely, if φ : U → Y is an R-invariant morphism towards an algebraic space, we
obtain a morphism f : X → Y by Groupoids in Spaces, Lemma 23.2. You can also
construct f from φ using the explicit description of the quotient stack in Groupoids in
Spaces, Lemma 24.1. �

Lemma 12.3. With assumption and notation as in Lemma 12.2. Then f is a (uniform)
categorical moduli space if and only if φ is a (uniform) categorical quotient. Similarly for
moduli spaces in a full subcategory.

Proof. It is immediate from the 1-to-1 correspondence established in Lemma 12.2
that f is a categorical moduli space if and only if φ is a categorical quotient (Quotients of
Groupoids, Definition 4.1). If Y ′ → Y is a morphism, thenU ′ = Y ′×Y U → Y ′×Y X =
X ′ is a surjective, flat, locally finitely presented morphism as a base change of U → X
(Criteria for Representability, Lemma 17.1). And R′ = Y ′ ×Y R is equal to U ′ ×X ′ U ′

by transitivity of fibre products. Hence X ′ = [U ′/R′], see Algebraic Stacks, Remark 16.3.
Thus the base change of our situation to Y ′ is another situation as in the statement of the
lemma. From this it immediately follows that f is a uniform categorical moduli space if
and only if φ is a uniform categorical quotient. �
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Lemma 12.4. Let f : X → Y be a morphism from an algebraic stack to an algebraic
space. If for every affine scheme Y ′ and flat morphism Y ′ → Y the base change f ′ :
Y ′ ×Y X → Y ′ is a categorical moduli space, then f is a uniform categorical moduli
space.

Proof. Choose an étale covering {Yi → Y } where Yi is an affine scheme. For each i
and j choose a affine open covering Yi ×Y Yj =

⋃
Yijk. Set Xi = Yi ×Y X and Xijk =

Yijk ×Y X . Let g : X →W be a morphism towards an algebraic space. Then we consider
the diagram

Xi //

��

X

��

g
// W

Yi //

77

Y

The assumption that Xi → Yi is a categorical moduli space, produces a unique dotted
arrow hi : Yi → W . The assumption that Xijk → Yijk is a categorical moduli space,
implies the restriction of hi and hj to Yijk are equal. Hence hi and hj agree on Yi ×Y Yj .
Since Y =

∐
Yi/
∐
Yi ×Y Yj (by Spaces, Section 9) we conclude that there is a unique

morphism Y → W through which g factors. Thus f is a categorical moduli space. The
same argument applies after a flat base change, hence f is a uniform categorical moduli
space. �

13. The Keel-Mori theorem

In this section we start discussing the theorem of Keel and Mori in the setting of algebraic
stacks. For a discussion of the literature, please see Guide to Literature, Subsection 5.2.

Definition 13.1. Let X be an algebraic stack. We say X is well-nigh affine if there
exists an affine scheme U and a surjective, flat, finite, and finitely presented morphism
U → X .

We give this property a somewhat ridiculous name because we do not intend to use it too
much.

Lemma 13.2. Let X be an algebraic stack. The following are equivalent
(1) X is well-nigh affine, and
(2) there exists a groupoid scheme (U,R, s, t, c) with U andR affine and s, t : R→

U finite locally free such that X = [U/R].
If true then X is quasi-compact, quasi-DM, and separated.

Proof. Assume X is well-nigh affine. Choose an affine scheme U and a surjective,
flat, finite, and finitely presented morphism U → X . SetR = U ×X U . Then we obtain a
groupoid (U,R, s, t, c) in algebraic spaces and an isomorphism [U/R]→ X , see Algebraic
Stacks, Lemma 16.1 and Remark 16.3. Since s, t : R → U are flat, finite, and finitely
presented morphisms (as base changes of U → X ) we see that s, t are finite locally free
(Morphisms, Lemma 48.2). This implies that R is affine (as finite morphisms are affine)
and hence (2) holds.
Suppose that we have a groupoid scheme (U,R, s, t, c) with U and R are affine and s, t :
R → U finite locally free. Set X = [U/R]. Then X is an algebraic stack by Criteria for
Representability, Theorem 17.2 (strictly speaking we don’t need this here, but it can’t be
stressed enough that this is true). The morphism U → X is surjective, flat, and locally
of finite presentation by Criteria for Representability, Lemma 17.1. Thus we can check
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whether U → X is finite by checking whether the projection U ×X U → U has this
property, see Properties of Stacks, Lemma 3.3. Since U ×X U = R by Groupoids in
Spaces, Lemma 22.2 we see that this is true. Thus X is well-nigh affine.
Proof of the final statement. We see that X is quasi-compact by Properties of Stacks,
Lemma 6.2. We see that X = [U/R] is quasi-DM and separated by Morphisms of Stacks,
Lemma 20.1. �

Lemma 13.3. Let the algebraic stack X be well-nigh affine.
(1) If X is an algebraic space, then it is affine.
(2) If X ′ → X is an affine morphism of algebraic stacks, then X ′ is well-nigh affine.

Proof. Part (1) follows from immediately from Limits of Spaces, Lemma 15.1. How-
ever, this is overkill, since (1) also follows from Lemma 13.2 combined with Groupoids,
Proposition 23.9.
To prove (2) we choose an affine scheme U and a surjective, flat, finite, and finitely pre-
sented morphism U → X . Then U ′ = X ′ ×X U admits an affine morphism to U (Mor-
phisms of Stacks, Lemma 9.2). Therefore U ′ is an affine scheme. Of course U ′ → X ′ is
surjective, flat, finite, and finitely presented as a base change of U → X . �

Lemma 13.4. Let the algebraic stack X be well-nigh affine. There exists a uniform
categorical moduli space

f : X −→M

in the category of affine schemes. Moreover f is separated, quasi-compact, and a universal
homeomorphism.

Proof. Write X = [U/R] with (U,R, s, t, c) as in Lemma 13.2. Let C be the ring
of R-invariant functions on U , see Groupoids, Section 23. We set M = Spec(C). The
R-invariant morphism U → M corresponds to a morphism f : X → M by Lemma
12.2. The characterization of morphisms into affine schemes given in Schemes, Lemma 6.4
immediately guarantees that φ : U →M is a categorical quotient in the category of affine
schemes. Hence f is a categorical moduli space in the category of affine schemes (Lemma
12.3).
Since X is separated by Lemma 13.2 we find that f is separated by Morphisms of Stacks,
Lemma 4.12.
Since U → X is surjective and since U → M is quasi-compact, we see that f is quasi-
compact by Morphisms of Stacks, Lemma 7.6.
By Groupoids, Lemma 23.4 the composition

U → X →M

is an integral morphism of affine schemes. In particular, it is universally closed (Mor-
phisms, Lemma 44.7). Since U → X is surjective, it follows that X → M is universally
closed (Morphisms of Stacks, Lemma 37.6). To conclude that X → M is a universal
homeomorphism, it is enough to show that it is universally bijective, i.e., surjective and
universally injective.
We have |X | = |U |/|R| by Morphisms of Stacks, Lemma 20.2. Thus |f | is surjective and
even bijective by Groupoids, Lemma 23.6.
Let C → C ′ be a ring map. Let (U ′, R′, s′, t′, c′) be the base change of (U,R, s, t, c) by
M ′ = Spec(C ′) → M . Setting X ′ = [U ′/R′], we observe that M ′ ×M X = X ′ by
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Quotients of Groupoids, Lemma 3.6. Let C1 be the ring of R′-invariant functions on U ′.
Set M1 = Spec(C1) and consider the diagram

X ′

f ′

��

// X

f

��

M1

��
M ′ // M

By Groupoids, Lemma 23.5 and Algebra, Lemma 46.11 the morphism M1 → M ′ is a
homeomorphism. On the other hand, the previous paragraph applied to (U ′, R′, s′, t′, c′)
shows that |f ′| is bijective. We conclude that f induces a bijection on points after any
base change by an affine scheme. Thus f is universally injective by Morphisms of Stacks,
Lemma 14.7.

Finally, we still have to show that f is a uniform moduli space in the category of affine
schemes. This follows from the discussion above and the fact that if the ring mapC → C ′

is flat, then C ′ → C1 is an isomorphism by Groupoids, Lemma 23.5. �

Lemma 13.5. Let h : X ′ → X be a morphism of algebraic stacks. Assume X ′ and
X are well-nigh affine, h is étale, and h induces isomorphisms on automorphism groups
(Morphisms of Stacks, Remark 19.5). Then there exists a cartesian diagram

X ′

��

// X

��
M ′ // M

where M ′ → M is étale and the vertical arrows are the moduli spaces constructed in
Lemma 13.4.

Proof. Observe that h is representable by algebraic spaces by Morphisms of Stacks,
Lemmas 45.3 and 45.1. Choose an affine scheme U and a surjective, flat, finite, and finitely
presented morphism U → X . Then U ′ = X ′ ×X U is an algebraic space with a fi-
nite (in particular affine) morphism U ′ → X ′. By Lemma 13.3 we conclude that U ′ is
affine. Setting R = U ×X U and R′ = U ′ ×X ′ U ′ we obtain groupoids (U,R, s, t, c) and
(U ′, R′, s′, t′, c′) such that X = [U/R] and X ′ = [U ′/R′], see proof of Lemma 13.2. we
see that the diagrams

R′

s′

��

f
// R

s

��
U ′ f // U

R′

t′

��

f
// R

t

��
U ′ f // U

G′

��

f
// G

��
U ′ f // U

are cartesian where G and G′ are the stabilizer group schemes. This follows for the first
two by transitivity of fibre products and for the last one this follows because it is the
pullback of the isomorphism IX ′ → X ′×X IX (by the already used Morphisms of Stacks,
Lemma 45.3). Recall that M , resp. M ′ was constructed in Lemma 13.4 as the spectrum of
the ring of R-invariant functions on U , resp. the ring of R′-invariant functions on U ′.
Thus M ′ → M is étale and U ′ = M ′ ×M U by Groupoids, Lemma 23.7. It follows
that R′ = M ′ ×M U , in other words the groupoid (U ′, R′, s′, t′, c′) is the base change of
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(U,R, s, t, c) by M ′ → M . This implies that the diagram in the lemma is cartesian by
Quotients of Groupoids, Lemma 3.6. �

Lemma 13.6. Let the algebraic stack X be well-nigh affine. The morphism

f : X −→M

of Lemma 13.4 is a uniform categorical moduli space.

Proof. We already know that M is a uniform categorical moduli space in the cat-
egory of affine schemes. By Lemma 12.4 it suffices to show that the base change f ′ :
M ′ ×M X → M ′ is a categorical moduli space for any flat morphism M ′ → M of affine
schemes. Observe that X ′ = M ′ ×M X is well-nigh affine by Lemma 13.3. This after
replacing X by X ′ and M by M ′, we reduce to proving f is a categorical moduli space.

Let g : X → Y be a morphism where Y is an algebraic space. We have to show that
g = h ◦ f for a unique morphism h : M → Y .

Uniqueness. Suppose we have two morphisms hi : M → Y with g = h1 ◦ f = h2 ◦ f . Let
M ′ ⊂M be the equalizer of h1 and h2. ThenM ′ →M is a monomorphism and f : X →
M factors through M ′. Thus M ′ →M is a universal homeomorphism. We conclude M ′

is affine (Morphisms, Lemma 45.5). But then since f : X → M is a categorical moduli
space in the category of affine schemes, we see M ′ = M .

Existence. Below we will show that for every p ∈M there exists a cartesian square

X ′ //

��

X

��
M ′ // M

withM ′ →M an étale morphism of affines and p in the image such that the composition
X ′ → X → Y factors through M ′. This means we can construct the map h : M → Y
étale locally on M . Since Y is a sheaf for the étale topology and by the uniqueness shown
above, this is enough (small detail omitted).

Let y ∈ |Y | be the image of p. Let (V, v) → (Y, y) be an étale morphism with V affine.
ConsiderX ′ = V ×Y X . Observe thatX ′ → X is separated and étale as the base change of
V → Y . Moreover,X ′ → X induces isomorphisms on automorphism groups (Morphisms
of Stacks, Remark 19.5) as this is true for V → Y , see Morphisms of Stacks, Lemma 45.5.
Choose a presentation X = [U/R] as in Lemma 13.2. Set U ′ = X ′ ×X U = V ×Y U and
choose u′ ∈ U ′ mapping to p and v (possible by Properties of Spaces, Lemma 4.3). Since
U ′ → U is separated and étale we see that every finite set of points of U ′ is contained in
an affine open, see More on Morphisms, Lemma 45.1. On the other hand, the morphism
U ′ → X ′ is surjective, finite, flat, and locally of finite presentation. SettingR′ = U ′×X ′U ′

we see that s′, t′ : R′ → U ′ are finite locally free. By Groupoids, Lemma 24.1 there exists
an R′-invariant affine open subscheme U ′′ ⊂ U ′ containing u′. Let X ′′ ⊂ X ′ be the
corresponding open substack. Then X ′′ is well-nigh affine. By Lemma 13.5 we obtain a
cartesian square

X ′′ //

��

X

��
M ′′ // M
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with M ′′ → M étale. Since X ′′ → M ′′ is a categorical moduli space in the category of
affine schemes we obtain a morphismM ′′ → V such that the compositionX ′′ → X ′ → V
is equal to the composition X ′′ → M ′′ → V . This proves our claim and finishes the
proof. �

Lemma 13.7. Let h : X ′ → X be a morphism of algebraic stacks. Assume X is well-
nigh affine, h is étale, h is separated, and h induces isomorphisms on automorphism groups
(Morphisms of Stacks, Remark 19.5). Then there exists a cartesian diagram

X ′

��

// X

��
M ′ // M

where M ′ → M is a separated étale morphism of schemes and X → M is the moduli
space constructed in Lemma 13.4.

Proof. Choose an affine scheme U and a surjective, flat, finite, and locally finitely
presented morphism U → X . Since h is representable by algebraic spaces (Morphisms
of Stacks, Lemmas 45.3 and 45.1) we see that U ′ = X ′ ×X U is an algebraic space. Since
U ′ → U is separated and étale, we see thatU ′ is a scheme and that every finite set of points
of U ′ is contained in an affine open, see Morphisms of Spaces, Lemma 51.1 and More on
Morphisms, Lemma 45.1. Setting R′ = U ′ ×X ′ U ′ we see that s′, t′ : R′ → U ′ are finite
locally free. By Groupoids, Lemma 24.1 there exists an open covering U ′ =

⋃
U ′
i by

R′-invariant affine open subschemes U ′
i ⊂ U ′. Let X ′

i ⊂ X ′ be the corresponding open
substacks. These are well-nigh affine as U ′

i → X ′
i is surjective, flat, finite and of finite

presentation. By Lemma 13.5 we obtain cartesian diagrams

X ′
i

//

��

X

��
M ′
i

// M

with M ′
i → M an étale morphism of affine schemes and vertical arrows as in Lemma

13.4. Observe that X ′
ij = X ′

i ∩ X ′
j is an open subspace of X ′

i and X ′
j . Hence we get

corresponding open subschemes Vij ⊂ M ′
i and Vji ⊂ M ′

j . By the result of Lemma 13.6
we see that both X ′

ij → Vij and X ′
ji → Vji are categorical moduli spaces! Thus we get a

unique isomorphism ϕij : Vij → Vji such that

X ′
i

��

X ′
i ∩ X ′

j
//oo

{{ ##

X ′
j

��
M ′
i Vijoo ϕij // Vji // M ′

j

is commutative. These isomorphisms satisfy the cocyclce condition of Schemes, Section 14
by a computation (and another application of the previous lemma) which we omit. Thus
we can glue the affine schemes in to scheme M ′, see Schemes, Lemma 14.1. Let us identify
the M ′

i with their image in M ′. We claim there is a morphism X ′ → M ′ fitting into
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cartesian diagrams
X ′
i

//

��

X ′

��
M ′
i

// M ′

This is clear from the description of the morphisms into the glued schemeM ′ in Schemes,
Lemma 14.1 and the fact that to give a morphism X ′ → M ′ is the same thing as given a
morphism T →M ′ for any morphism T → X ′. Similarly, there is a morphismM ′ →M
restricting to the given morphisms M ′

i → M on M ′
i . The morphism M ′ → M is étale

(being étale on the members of an étale covering) and the fibre product property holds as it
can be checked on members of the (affine) open covering M ′ =

⋃
M ′
i . Finally, M ′ →M

is separated because the composition U ′ → X ′ → M ′ is surjective and universally closed
and we can apply Morphisms, Lemma 41.11. �

Lemma 13.8. LetX be an algebraic stack. Assume IX → X is finite. Then there exist
a set I and for i ∈ I a morphism of algebraic stacks

gi : Xi −→ X

with the following properties
(1) |X | =

⋃
|gi|(|Xi|),

(2) Xi is well-nigh affine,
(3) IXi → Xi ×X IX is an isomorphism, and
(4) gi : Xi → X is representable by algebraic spaces, separated, and étale,

Proof. For any x ∈ |X | we can choose g : U → X , U = [U/R], and u as in Mor-
phisms of Stacks, Lemma 32.4. Then by Morphisms of Stacks, Lemma 45.4 we see that
there exists an open substack U ′ ⊂ U containing u such that IU ′ → U ′ ×X IX is an
isomorphism. Let U ′ ⊂ U be the R-invariant open corresponding to the open substack
U ′. Let u′ ∈ U ′ be a point of U ′ mapping to u. Observe that t(s−1({u′})) is finite as
s : R → U is finite. By Properties, Lemma 29.5 and Groupoids, Lemma 24.1 we can
find an R-invariant affine open U ′′ ⊂ U ′ containing u′. Let R′′ be the restriction of R
to U ′′. Then U ′′ = [U ′′/R′′] is an open substack of U ′ containing u, is well-nigh affine,
IU ′′ → U ′′×X IX is an isomorphism, andU ′′ → X and is representable by algebraic spaces
and étale. Finally, U ′′ → X is separated as U ′′ is separated (Lemma 13.2) the diagonal ofX
is separated (Morphisms of Stacks, Lemma 6.1) and separatedness follows from Morphisms
of Stacks, Lemma 4.12. Since the point x ∈ |X | is arbitrary the proof is complete. �

Theorem 13.9 (Keel-Mori). Let X be an algebraic stack. Assume IX → X is finite.
Then there exists a uniform categorical moduli space

f : X −→M

and f is separated, quasi-compact, and a universal homeomorphism.

Proof. We choose a set I4 and for i ∈ I a morphism of algebraic stacks gi : Xi → X
as in Lemma 13.8; we will use all of the properties listed in this lemma without further
mention. Let

fi : Xi →Mi

4The reader who is still keeping track of set theoretic issues should make sure I is not too large.
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be as in Lemma 13.4. Consider the stacks

Xij = Xi ×gi,X ,gj Xj
for i, j ∈ I . The projections Xij → Xi and Xij → Xj are separated by Morphisms
of Stacks, Lemma 4.4, étale by Morphisms of Stacks, Lemma 35.3, and induce isomor-
phisms on automorphism groups (as in Morphisms of Stacks, Remark 19.5) by Morphisms
of Stacks, Lemma 45.5. Thus we may apply Lemma 13.7 to find a commutative diagram

Xi

fi

��

Xij

fij

��

oo // Xj

fj

��
Mi Mij
oo // Mj

with cartesian squares whereMij →Mi andMij →Mj are separated étale morphisms of
schemes; here we also use that fi is a uniform categorical quotient by Lemma 13.6. Claim:∐

Mij −→
∐

Mi ×
∐

Mi

is an étale equivalence relation.

Proof of the claim. SetR =
∐
Mij andU =

∐
Mi. We have already seen that t : R→ U

and s : R → U are étale. Let us construct a morphism c : R ×s,U,t R → R compatible
with pr13 : U × U × U → U × U . Namely, for i, j, k ∈ I we consider

Xijk = Xi ×gi,X ,gj Xj ×gj ,X ,gk Xk = Xij ×Xj Xjk
Arguing exactly as in the previous paragraph, we find that Mijk = Mij ×Mj

Mjk is a
categorical moduli space for Xijk. In particular, there is a canonical morphism Mijk =
Mij×MjMjk →Mik coming from the projectionXijk → Xik. Putting these morphisms
together we obtain the morphism c. In a similar fashion we construct a morphism e :
U → R compatible with ∆ : U → U × U and i : R → R compatible with the flip
U × U → U × U . Let k be an algebraically closed field. Then

Mor(Spec(k),Xi)→ Mor(Spec(k),Mi) = Mi(k)

is bijective on isomorphism classes and the same remains true after any base change by
a morphism M ′ → M . This follows from our choice of fi and Morphisms of Stacks,
Lemmas 14.5 and 14.6. By construction of 2-fibred products the diagram

Mor(Spec(k),Xij)

��

// Mor(Spec(k),Xj)

��
Mor(Spec(k),Xi) // Mor(Spec(k),X )

is a fibre product of categories. By our choice of gi the functors in this diagram induce
bijections on automorphism groups. It follows that this diagram induces a fibre product
diagram on sets of isomorphism classes! Thus we see that

R(k) = U(k)×| Mor(Spec(k),X )| U(k)

where |Mor(Spec(k),X )| denotes the set of isomorphism classes. In particular, for any
algebraically closed field k the map on k-valued point is an equivalence relation. We con-
clude the claim holds by Groupoids, Lemma 3.5.
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Let M = U/R be the algebraic space which is the quotient of the above étale equivalence
relation, see Spaces, Theorem 10.5. There is a canonical morphism f : X → M fitting
into commutative diagrams

(13.9.1) Xi gi
//

fi

��

X

f

��
Mi

// M

Namely, such a morphism f is given by a functor

f : Mor(T,X ) −→ Mor(T,M)

for any scheme T compatible with base change. Let a : T → X be an object of the left
hand side. We obtain an étale covering {Ti → T} with Ti = Xi ×X T and morphisms
ai : Ti → Xi. Then we get bi = fi ◦ ai : Ti → Mi. Since Ti ×T Tj = Xij ×X T we
moreover get a morphism aij : Ti ×T Tj → Xij . Setting bij = fij ◦ aij we find that
bi × bj factors through the monomorphism Mij →Mi ×Mj . Hence the morphisms

Ti
bi−→Mi →M

agree on Ti×T Tj . AsM is a sheaf for the étale topology, we see that these morphisms glue
to a unique morphism b = f(a) : T →M . We omit the verification that this construction
is compatible with base change and we omit the verification that the diagrams (13.9.1)
commute.

Claim: the diagrams (13.9.1) are cartesian. To see this we study the induced morphism

hi : Xi −→Mi ×M X

This is a morphism of stacks étale over X and hence hi is étale (Morphisms of Stacks,
Lemma 35.6). Since gi is separated, we see hi is separated (use Morphisms of Stacks, Lemma
4.12 and the fact seen above that the diagonal ofX is separated). The morphism hi induces
isomorphisms on automorphism groups (Morphisms of Stacks, Remark 19.5) as this is true
for gi. For an algebraically closed field k the diagram

Mor(Spec(k),Mi ×M X ) //

��

Mor(Spec(k),X )

��
Mi(k) // M(k)

is a catesian diagram of categories and the top arrow induces bijections on automorphism
groups. On the other hand, we have

M(k) = U(k)/R(k) = U(k)/U(k)×| Mor(Spec(k),X )| U(k) = |Mor(Spec(k),X )|

by what we said above. Thus the right vertical arrow in the cartesian diagram above is a
bijection on isomorphism classes. We conclude that |Mor(Spec(k),Mi×MX )| →Mi(k)
is bijective. Review: hi is a separated, étale, induces isomorphisms on automorphism
groups (as in Morphisms of Stacks, Remark 19.5), and induces an equivalence on fibre
categories over algebraically closed fields. Hence it is an isomorphism by Morphisms of
Stacks, Lemma 45.7.
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From the claim we get in particular the following: we have a surjective étale morphism
U →M such that the base change of f is separated, quasi-compact, and a universal homeo-
morphism. It follows that f is separated, quasi-compact, and a universal homeomorphism.
See Morphisms of Stacks, Lemma 4.5, 7.10, and 15.5
To finish the proof we have to show that f : X → M is a uniform categorical moduli
space. To prove this it suffices to show that given a flat morphism M ′ → M of algebraic
spaces, the base change

M ′ ×M X −→M ′

is a categorical moduli space. Thus we consider a morphism
θ : M ′ ×M X −→ E

where E is an algebraic space. For each i we know that fi is a uniform categorical moduli
space. Hence we obtain

M ′ ×M Xi

��

// M ′ ×M X

θ

��
M ′ ×M Mi

ψi // E

Since {M ′×MMi →M ′} is an étale covering, to obtain the desired morphism ψ : M ′ →
E it suffices to show that ψi and ψj agree over M ′ ×M Mi ×M Mj = M ′ ×M Mij . This
follows easily from the fact that fij : Xij = Xi ×X Xj → Mij is a uniform categorical
quotient; details omitted. Then finally one shows thatψ fits into the commutative diagram

M ′ ×M X

��

θ

$$
M ′ ψ // E

because “{M ′ ×M Xi → M ′ ×M X} is an étale covering” and the morphisms ψi fit into
the corresponding commutative diagrams by construction. This finishes the proof of the
Keel-Mori theorem. �

The following lemma emphasizes the étale local nature of the construction.

Lemma 13.10. Let h : X ′ → X be a morphism of algebraic stacks. Assume
(1) IX → X is finite,
(2) h is étale, separated, and induces isomorphisms on automorphism groups (Mor-

phisms of Stacks, Remark 19.5).
Then there exists a cartesian diagram

X ′

��

// X

��
M ′ // M

where M ′ →M is a separated étale morphism of algebraic spaces and the vertical arrows
are the moduli spaces constructed in Theorem 13.9.

Proof. By Morphisms of Stacks, Lemma 45.3 we see that IX ′ → X ′ ×X IX is an
isomorphism. Hence IX ′ → X ′ is finite as a base change of IX → X . Let f ′ : X ′ → M ′

and f : X →M be as in Theorem 13.9. We obtain a commutative diagram as in the lemma
because f ′ is categorical moduli space. Choose I and g′

i : X ′
i → X ′ as in Lemma 13.8.
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Observe that gi = h ◦ g′
i is étale, separated, and induces isomorphisms on automorphism

groups (Morphisms of Stacks, Remark 19.5). Let f ′
i : X ′

i → M ′
i be as in Lemma 13.4. In

the proof of Theorem 13.9 we have seen that the diagrams

X ′
i

f ′
i

��

g′
i

// X ′

f ′

��
M ′
i

// M ′

and X ′
i

f ′
i

��

gi
// X

f

��
M ′
i

// M

are cartesian and that M ′
i → M ′ and M ′

i → M are étale (this also follows directly from
the properties of the morphisms g′

i, gi, f
′, f ′

i , f listed sofar by arguing in exactly the same
way). This first implies that M ′ → M is étale and second that the diagram in the lemma
is cartesian. We still need to show that M ′ →M is separated. To do this we contemplate
the diagram

X ′ //

��

X ′ ×X X ′

��
M ′ // M ′ ×M M ′

The top horizontal arrow is universally closed asX ′ → X is separated. The vertical arrows
are as in Theorem 13.9 (as flat base changes ofX →M ) hence universal homeomorphisms.
Thus the lower horizontal arrow is universally closed. This (combined with it being an
étale monomorphism of algebraic spaces) proves it is a closed immersion as desired. �

14. Properties of moduli spaces

Once the existence of a moduli space has been proven, it becomes possible (and is usually
straightforward) to esthablish properties of these moduli spaces.

Lemma 14.1. Let p : X → Y be a morphism of an algebraic stack to an algebraic
space. Assume

(1) IX → X is finite,
(2) Y is locally Noetherian, and
(3) p is locally of finite type.

Let f : X → M be the moduli space constructed in Theorem 13.9. Then M → Y is
locally of finite type.

Proof. Since f is a uniform categorical moduli space we obtain the morphismM →
Y . It suffices to check thatM → Y is locally of finite type étale locally onM and Y . Since
f is a uniform categorical moduli space, we may first replace Y by an affine scheme étale
over Y . Next, we may choose I and gi : Xi → X as in Lemma 13.8. Then by Lemma 13.10
we reduce to the caseX = Xi. In other words, we may assumeX is well-nigh affine. In this
case we have Y = Spec(A0), we haveX = [U/R] with U = Spec(A) andM = Spec(C)
whereC ⊂ A is the set ofR-invariant functions onU . See Lemmas 13.2 and 13.4. ThenA0
is Noetherian andA0 → A is of finite type. MoreoverA is integral over C by Groupoids,
Lemma 23.4, hence finite overC (being of finite type overA0). Thus we may finally apply
Algebra, Lemma 51.7 to conclude. �

Lemma 14.2. LetX be an algebraic stack. Assume IX → X is finite. Let f : X →M
be the moduli space constructed in Theorem 13.9.

(1) If X is quasi-separated, then M is quasi-separated.
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(2) If X is separated, then M is separated.
(3) Add more here, for example relative versions of the above.

Proof. To prove this consider the following diagram

X

f

��

∆X

// X × X

f×f
��

M
∆M // M ×M

Since f is a universal homeomorphism, we see that f × f is a universal homeomorphism.
If X is separated, then ∆X is proper, hence ∆X is universally closed, hence ∆M is univer-
sally closed, hence M is separated by Morphisms of Spaces, Lemma 40.9.
If X is quasi-separated, then ∆X is quasi-compact, hence ∆M is quasi-compact, hence M
is quasi-separated. �

Lemma 14.3. Let p : X → Y be a morphism from an algebraic stack to an algebraic
space. Assume

(1) IX → X is finite,
(2) p is proper, and
(3) Y is locally Noetherian.

Let f : X → M be the moduli space constructed in Theorem 13.9. Then M → Y is
proper.

Proof. By Lemma 14.1 we see that M → Y is locally of finite type. By Lemma 14.2
we see that M → Y is separated. Of course M → Y is quasi-compact and universally
closed as these are topological properties and X → Y has these properties and X →M is
a universal homeomorphism. �

15. Stacks and fpqc coverings

Certain algebraic stacks satisfy fpqc descent. The analogue of this section for algebraic
spaces is Properties of Spaces, Section 17.

Proposition 15.1. Let X be an algebraic stack with quasi-affine5 diagonal. Then X
satisfies descent for fpqc coverings.

Proof. Our conventions are that X is a stack in groupoids p : X → (Sch/S)fppf
over the category of schemes over a base scheme S endowed with the fppf topology. The
statement means the following: given an fpqc covering U = {Ui → U}i∈I of schemes
over S the functor

XU −→ DD(U)
is an equivalence. Here on the left we have the category of objects of X over U and on
the right we have the category of descent data in X relative to U . See discussion in Stacks,
Section 3.
Fully faithfulness. Suppose we have two objects x, y of X over U . Then I = Isom(x, y)
is an algebraic space over U . Hence a collection of sections of I over Ui whose restrictions
to Ui×U Uj agree, come from a unique section over U by the analogue of the proposition
for algebraic spaces, see Properties of Spaces, Proposition 17.1. Thus our functor is fully
faithful.

5It suffices to assume ind-quasi-affine.
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Essential surjectivity. Here we are given objectsxi overUi and isomorphismsϕij : pr∗
0xi →

pr∗
1xj over Ui ×U Uj satisfying the cocyle condition over Ui ×U Uj ×U Uk.

Let W be an affine scheme and let W → X be a morphism. For each i we can form

Wi = Ui ×xi,X W

The projection Wi → Ui is quasi-affine as the diagonal of X is quasi-affine. For each pair
i, j ∈ I the isomorphism ϕij induces an isomorphism

Wi ×U Uj = (Ui ×U Uj)×xi◦pr0,X W → (Ui ×U Uj)×xj◦pr1,X W = Ui ×U Wj

Moreover, these isomorphisms satisfy the cocycle condition over Ui ×U Uj ×U Uk. In
other words, these isomorphisms define a descent datum on the schemesWi/Ui relative to
U . By Descent, Lemma 38.1 we see that this descent datum is effective6. We conclude that
there exists a quasi-affine morphism W ′ → U and a commutative diagram

W ′

��

Wi
oo

��

// W

��
U Uioo xi // X

whose squares are cartesian. Since {Wi → W ′}i∈I is the base change of U by W ′ → U
we conclude that it is an fpqc covering. Since W satisfies the sheaf condition for fpqc
coverings, we obtain a unique morphism W ′ → W such that Wi → W ′ → W is the
given morphism Wi →W . In other words, we have the commutative diagrams

Wi

��

// W ′

��

// W

��
Ui //

xi

66U X

compatible with the isomorphisms ϕij and whose square and rectangle are cartesian.

Choose a collection of affine schemes Wα, α ∈ A and smooth morphisms Wα → X such
that

∐
Wα → X is surjective. By the procedure of the preceding paragraph we produce

a diagram
Wα,i

��

// W ′
α

��

// Wα

��
Ui //

xi

66U X

for each α. Then the morphisms W ′
α → U are smooth and jointly surjective.

Denote xα the object of X over W ′
α corresponding to W ′

α → Wα → X . Since X is
an fppf stack and since {W ′

α → U} is an fppf covering, it suffices to show that there
are isomorphisms pr∗

0xα → pr∗
1xβ over W ′

α ×U W ′
β satisfying the cocycle condition.

However, after pulling back toWα,i we do have such isomorphisms overWα,i×UiWβ,i =
Ui ×U (W ′

α ×U W ′
β) since the pullback of xα to Wα,i is isomorphic to the pullback of

xi to Wα,i. Since {Ui ×U (W ′
α ×U W ′

β) → W ′
α ×U W ′

β}i∈I is an fpqc covering and

6Or use More on Groupoids, Lemma 15.3 in the case of ind-quasi-affine diagonal.
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by the aforementioned compatibility of the diagrams above with ϕij these isomorphisms
descend to W ′

α ×U W ′
β and the proof is complete. �

16. Tensor functors

Let f : Y → X be a morphism of Noetherian algebraic stacks. The pullback functor

f∗ : Coh(OX ) −→ Coh(OY)
is a right exact tensor functor: it is additive, right exact, and commutes with tensor prod-
ucts of coherent modules. We can ask to what extent any right exact tensor functor
F : Coh(OX ) → Coh(OY) comes from a morphism f : Y → X . The reader may
consult [?] for a very general result of this nature. The aim of this section is to give a short
proof of Theorem 16.8 as an introduction to these ideas.

We begin with some lemmas.

Lemma 16.1. Let X and Y be Noetherian algebraic stacks. Any right exact tensor
functor F : Coh(OX ) → Coh(OY) extends uniquely to a right exact tensor functor
F : QCoh(OX )→ QCoh(OY) commuting with all colimits.

Proof. The existence and uniqueness of the extension is a general fact, see Categories,
Lemma 26.2. To see that the lemma applies observe that coherent modules on locally Noe-
therian algebraic stacks are by definition modules of finite presentation, see Cohomology
of Stacks, Definition 17.2. Hence a coherent module on X is a categorically compact ob-
ject of QCoh(OX ) by Cohomology of Stacks, Lemma 13.5. Finally, every quasi-coherent
module is a filtered colimit of its coherent submodules by Cohomology of Stacks, Lemma
18.1.

Since F is additive, also the extension of F is additive (details omitted). Since F is a
tensor functor and since colimits of modules commute with taking tensor products, also
the extension of F is a tensor functor (details omitted).

In this paragraph we show the extension commutes with arbitrary direct sums. If F =⊕
j∈J Hj with Hj quasi-coherent, then F = colimJ′⊂J finite

⊕
j∈J′ Hj . Denoting the

extension of F also by F we obtain

F (F) = colimJ′⊂J finite F (
⊕

j∈J′
Hj)

= colimJ′⊂J finite
⊕

j∈J′
F (Hj)

=
⊕

j∈J
F (Hj)

Thus F commutes with arbitrary direct sums.

In this paragraph we show that the extension is right exact. Suppose 0 → F → F ′ →
F ′′ → 0 is a short exact sequence of quasi-coherent OX -modules. Then we write F ′ =⋃
F ′
i as the union of its coherent submodules (see reference given above). Denote F ′′

i ⊂
F ′′ the image of F ′

i and denote Fi = F ∩ F ′
i = Ker(F ′

i → F ′′
i ). Then it is clear that

F =
⋃
Fi and F ′′ =

⋃
F ′′
i and that we have short exact sequences

0→ Fi → F ′
i → F ′′

i → 0
Since the extension commutes with filtered colimits we have F (F) = colimi∈I F (Fi),
F (F ′) = colimi∈I F (F ′

i), and F (F ′′) = colimi∈I F (F ′′
i ). Since filtered colimits of

sheaves of modules is exact we conclude that the extension of F is right exact.
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The proof is finished as a right exact functor which commutes with all coproducts com-
mutes with all colimits, see Categories, Lemma 14.12. �

Lemma 16.2. Let X be an algebraic stack with affine diagonal. Let B be a ring. Let
F : QCoh(OX ) → ModB be a right exact tensor functor which commutes with direct
sums. Let g : U → X be a morphism with U = Spec(A) affine. Then

(1) C = F (gQCoh,∗OU ) is a commutative B-algebra and
(2) there is a ring map A→ C

such that F ◦ gQCoh,∗ : ModA →ModB sends M to M ⊗A C seen as B-module.

Proof. We note that g is quasi-compact and quasi-separated, see Morphisms of Stacks,
Lemma 7.8. In Cohomology of Stacks, Proposition 11.1 we have constructed the functor
gQCoh,∗ : QCoh(OU )→ QCoh(OX ). By Cohomology of Stacks, Remarks 11.3 and 10.6
we obtain a multiplication

µ : gQCoh,∗OU ⊗OX gQCoh,∗OU −→ gQCoh,∗OU
which turns gQCoh,∗OU into a commutative OX -algebra. Hence C = F (gQCoh,∗OU ) is
a commutative algebra object in ModB , in other words, C is a commutative B-algebra.
Observe that we have a map κ : A → EndOX (gQCoh,∗OU ) such that for any a ∈ A the
diagram

gQCoh,∗OU ⊗OX gQCoh,∗OU

κ(r)⊗1
��

µ
// gQCoh,∗OU

κ(r)
��

gQCoh,∗OU ⊗OX gQCoh,∗OU
µ // gQCoh,∗OU

commutes. It follows that we get a mapκ′ = F (κ) : A→ EndB(C) such thatκ′(a)(c)c′ =
κ′(a)(cc′) and of course this means that a 7→ κ′(a)(1) is a ring map A→ C.

The morphism g : U → X is affine, see Morphisms of Stacks, Lemma 9.4. Hence gQCoh,∗
is exact and commutes with direct sums by Cohomology of Stacks, Lemma 13.4. Thus
F ◦ gQCoh,∗ : ModA →ModB is a right exact functor which commutes with direct sums
and which sends A to C. By Functors and Morphisms, Lemma 3.1 we see that the functor
F ◦ gQCoh,∗ sends an A-module M to M ⊗A C viewed as a B-module. �

Lemma 16.3. Notation as in Lemma 16.2. AssumeX is Noetherian and g is surjective
and flat. Then B → C is universally injective.

Proof. Consider the natural map 1 : OX → gQCoh,∗OU in QCoh(OX ). Pulling
back to U and using adjunction we find that the composition

OU = g∗OX
g∗1−−→ g∗gQCoh,∗OU → OU

is the identity in QCoh(OU ). Write gQCoh,∗OU = colimFi as a filtered colimit of co-
herent OX -modules, see Cohomology of Stacks, Lemma 18.1. For i large enough the map
1 : OX → gQCoh,∗OU factors through Fi, see Cohomology of Stacks, Lemma 13.5. Say
s : OX → Fi is the factorization. Then

OU
g∗s−−→ g∗Fi → g∗gQCoh,∗OU → OU

is the identity. In other words, we see that s becomes the inclusion of a direct summand
upon pullback to U . Set F∨

i = hom(Fi,OX ) with notation as in Cohomology of Stacks,
Lemma 10.8. In particular there is an evaluation map ev : Fi⊗OX F∨

i → OX . Evaluation
at s defines a map s∨ : F∨

i → OX . Dual to the statement about s we see that g∗(s∨) is
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surjective, see see Cohomology of Stacks, Section 12 for compatibility of hom and⊗ with
restriction to U . Since g is surjective and flat, we conclude that s∨ is surjective (see locus
citatus). Since F is right exact, we conclude that F (F∨

i ) → F (OX ) = B is surjective.
Choose λ ∈ F (F∨

i ) mapping to 1 ∈ B. Denote e = F (s)(1) ∈ F (Fi) the image of 1 by
the map F (s) : B = F (OX )→ F (Fi). Then the map

F (ev) : F (Fi)⊗B F (F∨
i ) = F (Fi ⊗OX F∨

i ) −→ F (OX ) = B

sends e ⊗ λ to 1 by construction. Hence the map B → F (Fi), b 7→ be is universally
injective because we have the one-sided inverse F (Fi) → B, ξ 7→ F (ev)(ξ ⊗ λ). Since
this is true for all i large enough we conclude. �

Lemma 16.4. Let B → C be a ring map. If
(1) the coprojections C → C ⊗B C are flat and
(2) B → C is universally injective,

then B → C is faithfully flat.

Proof. The map Spec(C) → Spec(B) is surjective as B → C is universally injec-
tive. Thus it suffices to show that B → C is flat which follows from Descent, Theorem
4.25. �

The following very simple version of Künneth should become obsoleted when we write
a section on Künneth theorems for cohomology of quasi-coherent modues on algebraic
stacks.

Lemma 16.5. Let a : Y → X and b : Z → X be representable by schemes, quasi-
compact, quasi-separated, and flat. Then aQCoh,∗OY⊗OX bQCoh,∗OZ = fQCoh,∗OY×X Z
where f : Y ×X Z → X is the obvious morphism.

Proof. We abbreviate P = Y ×X Z . Since a ◦ pr1 = f and b ◦ pr2 = f we obtain
maps a∗OY → f∗OP and b∗OZ → f∗OP (using relative pullback maps, see Sites, Section
45). Hence we obtain a relative cup product

µ : a∗OY ⊗OX b∗OZ −→ f∗OY×X Z

Applying Q and its compatibility with tensor products (Cohomology of Stacks, Remark
10.6) we obtain an arrow Q(µ) : aQCoh,∗OY ⊗OX bQCoh,∗OZ → fQCoh,∗OY×X Z in
QCoh(OX ). Next, choose a scheme U and a surjective smooth morphism U → X . It
suffices to prove the restriction of Q(µ) to Uétale is an isomorphism, see Cohomology of
Stacks, Section 12. In turn, by the material in the same section, it suffices to prove the
restriction of µ to Uétale is an isomorphism (this uses that the source and target of µ are
locally quasi-coherent modules with the base change property). Moreover, we may com-
pute pushforwards in the étale topology, see Cohomology of Stacks, Proposition 8.1. Then
finally, we see that a∗OY |Uétale = (V → U)small,∗OV where V = U×X Y . Similarly for
b∗ and f∗. Thus the result follows from the Künneth formula for flat, quasi-compact, quasi-
separated morphisms of schemes, see Derived Categories of Schemes, Lemma 23.1. �

Lemma 16.6. Let X be an algebraic stack with affine diagonal. Let B be a ring. Let
fi : Spec(B)→ X , i = 1, 2 be two morphisms. Let t : f∗

1 → f∗
2 be an isomorphism of the

tensor functors f∗
i : QCoh(OX )→ModB . Then there is a 2-arrow f1 → f2 inducing t.

Proof. Choose an affine scheme U = Spec(A) and a surjective smooth morphism
g : U → X , see Properties of Stacks, Lemma 6.2. Since the diagonal of X is affine, we see
that Ui = Spec(B) ×fi,X ,g U is affine. Say Ui = Spec(Ci). Then Ci is the B-algebra
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endowed with ring map A → Ci constructed in Lemma 16.2 using the functor F = f∗
i .

Therefore t induces an isomorphism C1 → C2 of B-algebras, compatible with the ring
maps A→ C1 and A→ C2. In other words, we have a commutative diagrams

Ui //

��

U

g

��
Spec(B) fi // X

U2

{{
∼=
�� ��

Spec(B) U1oo // U

This already shows that the objects f1 and f2 ofX over Spec(B) become isomorphic after
the smooth covering {U1 → Spec(B)}. To show that this descends to an isomorphism of
f1 and f2 over Spec(B), we have to show that our isomorphism (which comes from the
commutative diagrams above) is compatible with the descent data over U1 ×Spec(B) U1.
For this we observe that U ×X U is affine too, that we have the morphism g′ : U ×X U →
X , and that

Ui ×Spec(B) Ui = Spec(B)×fi,X ,g′ (U ×X U)

It follows that the isomorphism C1 ⊗B C1 → C2 ⊗B C2 coming from the isomorphism
C1 → C2 is compatible with the morphisms Ui ×Spec(B) Ui → U ×X U . Some details
omitted. �

Lemma 16.7. Let X be a Noetherian algebraic stack with affine diagonal. Let B be a
ring. Let F : QCoh(OX )→ModB be a right exact tensor functor which commutes with
direct sums. Then F comes from a unique morphism Spec(B)→ X .

Proof. Choose a surjective smooth morphism g : U → X with U = Spec(A) affine,
see Properties of Stacks, Lemma 6.2. Apply Lemma 16.2 to get the finite type commutative
B-algebra C = F (gQCoh,∗OU ) and the ring map A → C. By Lemma 16.3 the ring map
B → C is universally injective. Consider the algebra

C ⊗B C = F (gQCoh,∗OU ⊗OX gQCoh,∗OU )

Since g is flat, quasi-compact, and quasi-separated by Lemma 16.5 we have the first equality
in

gQCoh,∗OU ⊗OX gQCoh,∗OU = fQCoh,∗OU×XU = gQCoh,∗(pr2,∗OU×XU )

where f : U ×X U → X is the obvious morphism and pr2 : U ×X U → U is the
second projection. The second equality follows from Cohomology of Stacks, Lemma 11.5
and f = g ◦ pr2. Since the diagonal of X is affine, we see that U ×X U = Spec(R) is
affine. Let us use pr2 : A→ R to view R as an A-algebra. All in all we obtain

C ⊗B C = F (gQCoh,∗OU ⊗OX gQCoh,∗OU ) = F (gQCoh,∗(pr2,∗OU×XU )) = R⊗A C

where the final equality follows from the final statement of Lemma 16.2. Since A→ R is
flat (because pr2 is flat as a base change of U → X ), we conclude that C ⊗B C is flat over
C. By Lemma 16.4 we conclude that B → C is faithfully flat.
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We claim there is a solid commutative diagram

Spec(C ⊗B C)

����

// U ×X U

����
Spec(C)

��

// U

��
Spec(B) // X

The arrow Spec(C)→ U = Spec(A) comes from the ring map A→ C in the statement
of Lemma 16.2. The arrow Spec(C ⊗B C)→ U ×X U simlarly comes from the ring map
R → C ⊗B C. To verify the top square commutes use Lemma 16.6; details omitted. We
conclude we get the dotted arrow Spec(B)→ X by Proposition 15.1.
The statement that F is the functor corresponding to pullback by the dotted arrow is also
clear from this and the corresponding statement in Lemma 16.2. Details omitted. �

For a ring B let us denote ModfgB the category of finitely generated B-modules (AKA
finite B-modules).

Theorem 16.8. Let X be a Noetherian algebraic stack with affine diagonal. Let B be
a Noetherian ring. Let F : Coh(OX ) → ModfgB be a right exact tensor functor. Then F
comes from a unique morphism Spec(B)→ X .

Proof. By Lemma 16.1 we can extend F uniquely to a right exact tensor functor
F : QCoh(OX ) → ModB commuting with all direct susms. Then we can apply Lemma
16.7. �
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CHAPTER 107

The Geometry of Algebraic Stacks

1. Introduction

This chapter discusses a few geometric properties of algebraic stacks. The initial versions
of Sections 3 and 5 were written by Matthew Emerton and Toby Gee and can be found in
their original form in [?].

2. Versal rings

In this section we elucidate the relationship between deformation rings and local rings on
algebraic stacks of finite type over a locally Noetherian base.

Situation 2.1. Here X is an algebraic stack locally of finite type over a locally Noe-
therian scheme S.

Here is the definition.

Definition 2.2. In Situation 2.1 let x0 : Spec(k) → X be a morphism, where k is a
finite type field over S. A versal ring to X at x0 is a complete Noetherian local S-algebra
A with residue field k such that there exists a versal formal object (A, ξn, fn) as in Artin’s
Axioms, Definition 12.1 with ξ1 ∼= x0 (a 2-isomorphism).

We want to prove that versal rings exist and are unique up to smooth factors. To do this,
we will use the predeformation categories of Artin’s Axioms, Section 3. These are always
deformation categories in our situation.

Lemma 2.3. In Situation 2.1 let x0 : Spec(k)→ X be a morphism, where k is a finite
type field over S. ThenFX ,k,x0 is a deformation category and TFX ,k,x0 and Inf(FX ,k,x0)
are finite dimensional k-vector spaces.

Proof. Choose an affine open Spec(Λ) ⊂ S such that Spec(k)→ S factors through
it. By Artin’s Axioms, Section 3 we obtain a predeformation category FX ,k,x0 over the
category CΛ. (As pointed out in locus citatus this category only depends on the morphism
Spec(k)→ S and not on the choice of Λ.) By Artin’s Axioms, Lemmas 6.1 and 5.2FX ,k,x0

is actually a deformation category. By Artin’s Axioms, Lemma 8.1 we find that TFX ,k,x0

and Inf(FX ,k,x0) are finite dimensional k-vector spaces. �

Lemma 2.4. In Situation 2.1 let x0 : Spec(k)→ X be a morphism, where k is a finite
type field over S. Then a versal ring to X at x0 exists. Given a pair A, A′ of these, then
A ∼= A′[[t1, . . . , tr]] or A′ ∼= A[[t1, . . . , tr]] as S-algebras for some r.

Proof. By Lemma 2.3 and Formal Deformation Theory, Lemma 13.4 (note that the
assumptions of this lemma hold by Formal Deformation Theory, Lemmas 16.6 and Def-
inition 16.8). By the uniquness result of Formal Deformation Theory, Lemma 14.5 there
exists a “minimal” versal ring A of X at x0 such that any other versal ring of X at x0 is
isomorphic to A[[t1, . . . , tr]] for some r. This clearly implies the second statement. �

7035
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Lemma 2.5. In Situation 2.1 let x0 : Spec(k)→ X be a morphism, where k is a finite
type field over S. Let l/k be a finite extension of fields and denote xl,0 : Spec(l)→ X the
induced morphism. Given a versal ring A to X at x0 there exists a versal ring A′ to X at
xl,0 such that there is a S-algebra map A → A′ which induces the given field extension
l/k and is formally smooth in the mA′ -adic topology.

Proof. Follows immediately from Artin’s Axioms, Lemma 7.1 and Formal Deforma-
tion Theory, Lemma 29.6. (We also use that X satisfies (RS) by Artin’s Axioms, Lemma
5.2.) �

Lemma 2.6. In Situation 2.1 let x : U → X be a morphism where U is a scheme
locally of finite type over S. Let u0 ∈ U be a finite type point. Set k = κ(u0) and denote
x0 : Spec(k)→ X the induced map. The following are equivalent

(1) x is versal at u0 (Artin’s Axioms, Definition 12.2),
(2) x̂ : FU,k,u0 → FX ,k,x0 is smooth,
(3) the formal object associated to x|Spec(O∧

U,u0
) is versal, and

(4) there is an open neighbourhoodU ′ ⊂ U of x such that x|U ′ : U ′ → X is smooth.
Moreover, in this case the completionO∧

U,u0
is a versal ring to X at x0.

Proof. Since U → S is locally of finite type (as a composition of such morphisms),
we see that Spec(k) → S is of finite type (again as a composition). Thus the statement
makes sense. The equivalence of (1) and (2) is the definition of x being versal at u0. The
equivalence of (1) and (3) is Artin’s Axioms, Lemma 12.3. Thus (1), (2), and (3) are equiva-
lent.

If x|U ′ is smooth, then the functor x̂ : FU,k,u0 → FX ,k,x0 is smooth by Artin’s Axioms,
Lemma 3.2. Thus (4) implies (1), (2), and (3). For the converse, assume x is versal at u0.
Choose a surjective smooth morphism y : V → X where V is a scheme. Set Z = V ×X U
and pick a finite type point z0 ∈ |Z| lying over u0 (this is possible by Morphisms of Spaces,
Lemma 25.5). By Artin’s Axioms, Lemma 12.6 the morphism Z → V is smooth at z0. By
definition we can find an open neighbourhoodW ⊂ Z of z0 such thatW → V is smooth.
Since Z → U is open, let U ′ ⊂ U be the image ofW . Then we see that U ′ → X is smooth
by our definition of smooth morphisms of stacks.

The final statement follows from the definitions asO∧
U,u0

prorepresents FU,k,u0 . �

Lemma 2.7. In Situation 2.1. Let x0 : Spec(k) → X be a morphism such that
Spec(k) → S is of finite type with image s. Let A be a versal ring to X at x0. The
following are equivalent

(1) x0 is in the smooth locus of X → S (Morphisms of Stacks, Lemma 33.6),
(2) OS,s → A is formally smooth in the mA-adic topology, and
(3) FX ,k,x0 is unobstructed.

Proof. The equivalence of (2) and (3) follows immediately from Formal Deforma-
tion Theory, Lemma 9.4.

Note that OS,s → A is formally smooth in the mA-adic topology if and only if OS,s →
A′ = A[[t1, . . . , tr]] is formally smooth in the mA′ -adic topology. Hence (2) does not
depend on the choice of our versal ring by Lemma 2.4. Next, let l/k be a finite extension
and choose A → A′ as in Lemma 2.5. If OS,s → A is formally smooth in the mA-adic
topology, then OS,s → A′ is formally smooth in the mA′ -adic topology, see More on
Algebra, Lemma 37.7. Conversely, if OS,s → A′ is formally smooth in the mA′ -adic
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topology, then O∧
S,s → A′ and A → A′ are regular (More on Algebra, Proposition 49.2)

and hence O∧
S,s → A is regular (More on Algebra, Lemma 41.7), hence OS,s → A is

formally smooth in the mA-adic topology (same lemma as before). Thus the equivalence
of (2) and (1) holds for k and x0 if and only if it holds for l and x0,l.

Choose a schemeU and a smooth morphismU → X such that Spec(k)×XU is nonempty.
Choose a finite extension l/k and a point w0 : Spec(l) → Spec(k) ×X U . Let u0 ∈ U
be the image of w0. We may apply the above to l/k and to l/κ(u0) to see that we can
reduce to u0. Thus we may assume A = O∧

U,u0
, see Lemma 2.6. Observe that x0 is in the

smooth locus ofX → S if and only if u0 is in the smooth locus ofU → S , see for example
Morphisms of Stacks, Lemma 33.6. Thus the equivalence of (1) and (2) follows from More
on Algebra, Lemma 38.6. �

We recall a consequence of Artin approximation.

Lemma 2.8. In Situation 2.1. Let x0 : Spec(k) → X be a morphism such that
Spec(k) → S is of finite type with image s. Let A be a versal ring to X at x0. If OS,s is
a G-ring, then we may find a smooth morphism U → X whose source is a scheme and a
point u0 ∈ U with residue field k, such that

(1) Spec(k)→ U → X coincides with the given morphism x0,
(2) there is an isomorphismO∧

U,u0
∼= A.

Proof. Let (ξn, fn) be the versal formal object over A. By Artin’s Axioms, Lemma
9.5 we know that ξ = (A, ξn, fn) is effective. By assumption X is locally of finite pre-
sentation over S (use Morphisms of Stacks, Lemma 27.5), and hence limit preserving by
Limits of Stacks, Proposition 3.8. Thus Artin approximation as in Artin’s Axioms, Lemma
12.7 shows that we may find a morphism U → X with source a finite type S-scheme, con-
taining a point u0 ∈ U of residue field k satisfying (1) and (2) such that U → X is versal
at u0. By Lemma 2.6 after shrinking U we may assume U → X is smooth. �

Remark 2.9 (Upgrading versal rings). In Situation 2.1 let x0 : Spec(k) → X be a
morphism, where k is a finite type field over S. Let A be a versal ring to X at x0. By
Artin’s Axioms, Lemma 9.5 our versal formal object in fact comes from a morphism

Spec(A) −→ X

over S. Moreover, the results above each can be upgraded to be compatible with this
morphism. Here is a list:

(1) in Lemma 2.4 the isomorphism A ∼= A′[[t1, . . . , tr]] or A′ ∼= A[[t1, . . . , tr]] may
be chosen compatible with these morphisms,

(2) in Lemma 2.5 the homomorphismA→ A′ may be chosen compatible with these
morphisms,

(3) in Lemma 2.6 the morphism Spec(O∧
U,u0

)→ X is the composition of the canon-
ical map Spec(O∧

U,u0
)→ U and the given map U → X ,

(4) in Lemma 2.8 the isomorphism O∧
U,u0

∼= A may be chosen so Spec(A) → X
corresponds to the canonical map in the item above.

In each case the statement follows from the fact that our maps are compatible with versal
formal elements; we note however that the implied diagrams are 2-commutative only up
to a (noncanonical) choice of a 2-arrow. Still, this means that the implied mapA′ → A or
A → A′ in (1) is well defined up to formal homotopy, see Formal Deformation Theory,
Lemma 28.3.
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Lemma 2.10. In Situation 2.1 let x0 : Spec(k)→ X be a morphism, where k is a finite
type field over S. LetA be a versal ring to X at x0. Then the morphism Spec(A)→ X of
Remark 2.9 is flat.

Proof. If the local ring of S at the image point is a G-ring, then this follows im-
mediately from Lemma 2.8 and the fact that the map from a Noetherian local ring to its
completion is flat. In general we prove it as follows.

Step I. IfA andA′ are two versal rings to X at x0, then the result is true forA if and only
if it is true for A′. Namely, after possible swapping A and A′, we may assume there is a
formally smooth map ϕ : A→ A′ such that the composition

Spec(A′)→ Spec(A)→ X

is the morphism Spec(A′) → X , see Lemma 2.4 and Remark 2.9. Since A → A′ is faith-
fully flat we obtain the equivalence from Morphisms of Stacks, Lemmas 25.2 and 25.5.

Step II. Let l/k be a finite extension of fields. Let xl,0 : Spec(l) → X be the induced
morphism. Let A be a versal ring to X at x0 and let A → A′ be as in Lemma 2.5. Then
again the composition

Spec(A′)→ Spec(A)→ X
is the morphism Spec(A′) → X , see Remark 2.9. Arguing as before and using step I to
see choice of versal rings is irrelevant, we see that the lemma holds for x0 if and only if it
holds for xl,0.

Step III. Choose a scheme U and a surjective smooth morphism U → X . Then we can
choose a finite type point z0 on Z = U ×X x0 (this is a nonempty algebraic space). Let
u0 ∈ U be the image of z0 in U . Choose a scheme and a surjective étale mapW → Z such
that z0 is the image of a closed pointw0 ∈W (see Morphisms of Spaces, Section 25). Since
W → Spec(k) and W → U are of finite type, we see that κ(w0)/k and κ(w0)/κ(u0)
are finite extensions of fields (see Morphisms, Section 16). Applying Step II twice we may
replace x0 by u0 → U → X . Then we see our morphism is the composition

Spec(O∧
U,u0

)→ U → X

The first arrow is flat because completion of Noetherian local rings are flat (Algebra, Lemma
97.2) and the second arrow is flat as a smooth morphism is flat. The composition is flat as
composition preserves flatness. �

Remark 2.11. In Situation 2.1 let x0 : Spec(k) → X be a morphism, where k is a
finite type field over S. By Lemma 2.3 and Formal Deformation Theory, Theorem 26.4 we
know that FX ,k,x0 has a presentation by a smooth prorepresentable groupoid in functors
on CΛ. Unwinding the definitions, this means we can choose

(1) a Noetherian complete local Λ-algebraAwith residue field k and a versal formal
object ξ of FX ,k,x0 over A,

(2) a Noetherian complete local Λ-algebra B with residue field k and an isomor-
phism

B|CΛ −→ A|CΛ ×ξ,FX ,k,x0 ,ξ
A|CΛ

The projections correspond to formally smooth maps t : A → B and s : A → B (be-
cause ξ is versal). There is a map c : B → B⊗̂s,A,tB which turns (A,B, s, t, c) into
a cogroupoid in the category of Noetherian complete local Λ-algebras with residue field
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k (on prorepresentable functors this map is constructed in Formal Deformation Theory,
Lemma 25.2). Finally, the cited theorem tells us that ξ induces an equivalence

[A|CΛ/B|CΛ ] −→ FX ,k,x0

of groupoids cofibred over CΛ. In fact, we also get an equivalence

[A/B] −→ F̂X ,k,x0

of groupoids cofibred over the completed category ĈΛ (see discussion in Formal Defor-
mation Theory, Section 22 as to why this works). Of course A is a versal ring to X at
x0.

3. Multiplicities of components of algebraic stacks

If X is a locally Noetherian scheme, then we may write X (thought of simply as a topo-
logical space) as a union of irreducible components, say X =

⋃
Ti. Each irreducible com-

ponent is the closure of a unique generic point ξi, and the local ringOX,ξi is a local Artin
ring. We may define the multiplicity of X along Ti or the multiplicity of Ti in X by

mTi,X = lengthOX,ξi
OX,ξi

In other words, it is the length of the local Artinian ring. Please compare with Chow
Homology, Section 9.

Our goal here is to generalise this definition to locally Noetherian algebraic stacks. If X
is a stack, then its topological space |X | (see Properties of Stacks, Definition 4.8) is locally
Noetherian (Morphisms of Stacks, Lemma 8.3). The irreducible components of |X | are
sometimes referred to as the irreducible components ofX . IfX is quasi-separated, then |X |
is sober (Morphisms of Stacks, Lemma 30.3), but it need not be in the non-quasi-separated
case. Consider for example the non-quasi-separated algebraic spaceX = A1

C/Z. Further-
more, there is no structure sheaf on |X | whose stalks can be used to define multiplicities.

Lemma 3.1. Let f : U → X be a smooth morphism from a scheme to a locally Noe-
therian algebraic stack. The closure of the image of any irreducible component of |U | is
an irreducible component of |X |. If U → X is surjective, then all irreducible components
of |X | are obtained in this way.

Proof. The map |U | → |X | is continuous and open by Properties of Stacks, Lemma
4.7. Let T ⊂ |U | be an irreducible component. Since U is locally Noetherian, we can find
a nonempty affine open W ⊂ U contained in T . Then f(T ) ⊂ |X | is irreducible and
contains the nonempty open subset f(W ). Thus the closure of f(T ) is irreducible and
contains a nonempty open. It follows that this closure is an irreducible component.

Assume U → X is surjective and let Z ⊂ |X | be an irreducible component. Choose a
Noetherian open subset V of |X | meeting Z. After removing the other irreducible com-
ponents from V we may assume that V ⊂ Z. Take an irreducible component of the
nonempty open f−1(V ) ⊂ |U | and let T ⊂ |U | be its closure. This is an irreducible
component of |U | and the closure of f(T ) must agree with Z by our choice of T . �

The preceding lemma applies in particular in the case of smooth morphisms between lo-
cally Noetherian schemes. This particular case is implicitly invoked in the statement of
the following lemma.
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Lemma 3.2. Let U → X be a smooth morphism of locally Noetherian schemes. Let
T ′ is an irreducible component of U . Let T be the irreducible component of X obtained
as the closure of the image of T ′. Then mT ′,U = mT,X .

Proof. Write ξ′ for the generic point of T ′, and ξ for the generic point of T . Let
A = OX,ξ and B = OU,ξ′ . We need to show that lengthAA = lengthBB. Since A→ B
is a flat local homomorphism of rings (since smooth morphisms are flat), we have

lengthA(A)lengthB(B/mAB) = lengthB(B)
by Algebra, Lemma 52.13. Thus it suffices to show mAB = mB , or equivalently, that
B/mAB is reduced. Since U → X is smooth, so is its base change Uξ → Specκ(ξ). As
Uξ is a smooth scheme over a field, it is reduced, and thus so its local ring at any point
(Varieties, Lemma 25.4). In particular,

B/mAB = OU,ξ′/mX,ξOU,ξ′ = OUξ,ξ′

is reduced, as required. �

Using this result, we may show that there exists a good notion of multiplicity by looking
smooth locally.

Lemma 3.3. Let U1 → X and U2 → X be two smooth morphisms from schemes to a
locally Noetherian algebraic stackX . Let T ′

1 and T ′
2 be irreducible components of |U1| and

|U2| respectively. Assume the closures of the images of T ′
1 and T ′

2 are the same irreducible
component T of |X |. Then mT ′

1,U1 = mT ′
2,U2 .

Proof. Let V1 and V2 be dense subsets of T ′
1 and T ′

2, respectively, that are open in U1
and U2 respectively (see proof of Lemma 3.1). The images of |V1| and |V2| in |X | are non-
empty open subsets of the irreducible subsetT , and therefore have non-empty intersection.
By Properties of Stacks, Lemma 4.3, the map |V1 ×X V2| → |V1| ×|X | |V2| is surjective.
Consequently V1×X V2 is a non-empty algebraic space; we may therefore choose an étale
surjection V → V1 ×X V2 whose source is a (non-empty) scheme. If we let T ′ be any
irreducible component of V , then Lemma 3.1 shows that the closure of the image of T ′ in
U1 (respectively U2) is equal to T ′

1 (respectively T ′
2).

Applying Lemma 3.2 twice we find that
mT ′

1,U1 = mT ′,V = mT ′
2,U2 ,

as required. �

At this point we have done enough work to show the following definition makes sense.

Definition 3.4. Let X be a locally Noetherian algebraic stack. Let T ⊂ |X | be an
irreducible component. The multiplicity of T inX is defined asmT,X = mT ′,U where f :
U → X is a smooth morphism from a scheme and T ′ ⊂ |U | is an irreducible component
with f(T ′) ⊂ T .

This is independent of the choice of f : U → X and the choice of the irreducible compo-
nent T ′ mapping to T by Lemmas 3.1 and 3.3.
As a closing remark, we note that it is sometimes convenient to think of an irreducible
component ofX as a closed substack. To this end, if T ⊂ |X | is an irreducible component,
then we may consider the unique reduced closed substack T ⊂ X with |T | = T , see Prop-
erties of Stacks, Definition 10.4. If X is quasi-separated, then an irreducible component is
an integral stack; see Morphisms of Stacks, Section 50 for further discussion.



4. FORMAL BRANCHES AND MULTIPLICITIES 7041

4. Formal branches and multiplicities

It will be convenient to have a comparison between the notion of multiplicity of an ir-
reducible component given by Definition 3.4 and the related notion of multiplicities of
irreducible components of (the spectra of) versal rings of X at finite type points.
In Situation 2.1 let x0 : Spec(k) → X be a morphism, where k is a finite type field over
S. Let A, A′ be versal rings to X at x0. After possibly swapping A and A′, we know there
is a formally smooth1 map ϕ : A→ A′ compatible with versal formal objects, see Lemma
2.4 and Remark 2.9. Moreover, ϕ is well defined up to formal homotopy, see Formal
Deformation Theory, Lemma 28.3. In particular, we find thatϕ(p)A′ is a well defined ideal
of A′ by Formal Deformation Theory, Lemma 28.4. Since A → A′ is formally smooth,
in fact ϕ(p)A′ is a minimal prime of A′ and every minimal prime of A′ is of this form
for a unique minimal prime p ⊂ A (all of this is easy to prove by writing A′ as a power
series ring over A). Therefore, recalling that minimal primes correspond to irreducible
components, the following definition makes sense.

Definition 4.1. Let X be an algebraic stack locally of finite type over a locally Noe-
therian scheme S. Let x0 : Spec(k) → X is a morphism where k is a field of finite type
over S. The formal branches of X through x0 is the set of irreducible components of
Spec(A) for any choice of versal ring to X at x0 identified for different choices of A by
the procedure described above.
Suppose in the situation of Definition 4.1 we are given a finite extension l/k. Set xl,0 :
Spec(l)→ X equal to the composition of Spec(l)→ Spec(k) with x0. Let A→ A′ be as
in Lemma 2.5. Since A→ A′ is faithfully flat, the morphism

Spec(A′)→ Spec(A)
sends (generic points of) irreducible components to (generic points of) irreducible com-
ponents. This will be a surjective map, but in general this map will not be a bijection. In
other words, we obtain a surjective map

formal branches of X through xl,0 −→ formal branches of X through x0

It turns out that if l/k is purely inseparable, then the map is injective as well (we’ll add a
precise statement and proof here if we ever need this).

Lemma 4.2. In the situation of Definition 4.1 there is a canonical surjection from
the set of formal branches of X through x0 to the set of irreducible components of |X |
containing x0 in |X |.

Proof. Let A be as in Definition 4.1 and let Spec(A)→ X be as in Remark 2.9. We
claim that the generic point of an irreducible component of Spec(A) maps to a generic
point of an irreducible component of |X |. Choose a scheme U and a surjective smooth
morphism U → X . Consider the diagram

Spec(A)×X U

p

��

q
// U

f

��
Spec(A) j // X

By Lemma 2.10 we see that j is flat. Hence q is flat. On the other hand, f is surjective
smooth hence p is surjective smooth. This implies that any generic point η ∈ Spec(A) of

1In the sense that A′ becomes isomorphic to a power series ring over A.



7042 107. THE GEOMETRY OF ALGEBRAIC STACKS

an irreducible component is the image of a codimension 0 point η′ of the algebraic space
Spec(A) ×X U (see Properties of Spaces, Section 11 for notation and use going down on
étale local rings). Since q is flat, q(η′) is a codimension 0 point of U (same argument).
Since U is a scheme, q(η′) is the generic point of an irreducible component of U . Thus the
closure of the image of q(η′) in |X | is an irreducible component by Lemma 3.1 as claimed.

Clearly the claim provides a mechanism for defining the desired map. To see that it is
surjective, we choose u0 ∈ U mapping to x0 in |X |. Choose an affine open U ′ ⊂ U
neighbourhood of u0. After shrinking U ′ we may assume every irreducible component of
U ′ passes through u0. Then we may replace X by the open substack corresponding to the
image of |U ′| → |X |. Thus we may assume U is affine has a point u0 mapping to x0 ∈ |X |
and every irreducible component of U passes through u0. By Properties of Stacks, Lemma
4.3 there is a point t ∈ | Spec(A) ×X U | mapping to the closed point of Spec(A) and to
u0. Using going down for the flat local ring homomorphisms

A −→ OSpec(A)×XU,t
←− OU,u0

we see that every minimal prime of OU,u0 is the image of a minimal prime of the local
ring in the middle and such a minimal prime maps to a minimal prime of A. This proves
the surjectivity. Some details omitted. �

Let A be a Noetherian complete local ring. Then the irreducible components of Spec(A)
have multiplicities, see introduction to Section 3. If A′ = A[[t1, . . . , tr]], then the mor-
phism Spec(A′) → Spec(A) induces a bijection on irreducible components preserving
multiplicities (we omit the easy proof). This and the discussion preceding Definition 4.1
mean that the following definition makes sense.

Definition 4.3. Let X be an algebraic stack locally of finite type over a locally Noe-
therian scheme S. Let x0 : Spec(k) → X is a morphism where k is a field of finite type
over S. The multiplicity of a formal branch of X through x0 is the multiplicity of the
corresponding irreducible component of Spec(A) for any choice of versal ring to X at x0
(see discussion above).

Lemma 4.4. LetX be an algebraic stack locally of finite type over a locally Noetherian
scheme S. Let x0 : Spec(k) → X is a morphism where k is a field of finite type over S
with image s ∈ S. IfOS,s is a G-ring, then the map of Lemma 4.2 preserves multiplicities.

Proof. By Lemma 2.8 we may assume there is a smooth morphism U → X where
U is a scheme and a k-valued point u0 of U such that O∧

U,u0
is a versal ring to X at x0.

By construction of our map in the proof of Lemma 4.2 (which simplifies greatly because
A = O∧

U,u0
) we find that it suffices to show: the multiplicity of an irreducible component

of U passing through u0 is the same as the multiplicity of any irreducible component of
Spec(O∧

U,u0
) mapping into it.

Translated into commutative algebra we find the following: Let C = OU,u0 . This is
essentially of finite type over OS,s and hence is a G-ring (More on Algebra, Proposition
50.10). Then A = C∧. Therefore C → A is a regular ring map. Let q ⊂ C be a minimal
prime and let p ⊂ A be a minimal prime lying over q. Then

R = Cp −→ Ap = R′

is a regular ring map of Artinian local rings. For such a ring map it is always the case that

lengthRR = lengthR′R
′
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This is what we have to show because the left hand side is the multiplicity of our compo-
nent on U and the right hand side is the multiplicity of our component on Spec(A). To
see the equality, first we use that

lengthR(R)lengthR′(R′/mRR
′) = lengthR′(R′)

by Algebra, Lemma 52.13. Thus it suffices to show mRR
′ = mR′ , which is a consequence

of being a regular homomorphism of zero dimensional local rings. �

5. Dimension theory of algebraic stacks

The main results on the dimension theory of algebraic stacks in the literature that we are
aware of are those of [?], which makes a study of the notions of codimension and relative
dimension. We make a more detailed examination of the notion of the dimension of an
algebraic stack at a point, and prove various results relating the dimension of the fibres
of a morphism at a point in the source to the dimension of its source and target. We also
prove a result (Lemma 6.4 below) which allow us (under suitable hypotheses) to compute
the dimension of an algebraic stack at a point in terms of a versal ring.
While we haven’t always tried to optimise our results, we have largely tried to avoid mak-
ing unnecessary hypotheses. However, in some of our results, in which we compare certain
properties of an algebraic stack to the properties of a versal ring to this stack at a point,
we have restricted our attention to the case of algebraic stacks that are locally finitely pre-
sented over a locally Noetherian scheme base, all of whose local rings are G-rings. This
gives us the convenience of having Artin approximation available to compare the geom-
etry of the versal ring to the geometry of the stack itself. However, this restrictive hy-
pothesis may not be necessary for the truth of all of the various statements that we prove.
Since it is satisfied in the applications that we have in mind, though, we have been content
to make it when it helps.
If X is a scheme, then we define the dimension dim(X) of X to be the Krull dimension
of the topological space underlying X , while if x is a point of X , then we define the
dimension dimx(X) of X at x to be the minimum of the dimensions of the open subsets
U of X containing x, see Properties, Definition 10.1. One has the relation dim(X) =
supx∈X dimx(X), see Properties, Lemma 10.2. If X is locally Noetherian, then dimx(X)
coincides with the supremum of the dimensions at x of the irreducible components of X
passing through x.
If X is an algebraic space and x ∈ |X|, then we define dimxX = dimu U, where U is any
scheme admitting an étale surjection U → X , and u ∈ U is any point lying over x, see
Properties of Spaces, Definition 9.1. We set dim(X) = supx∈|X| dimx(X), see Properties
of Spaces, Definition 9.2.

Remark 5.1. In general, the dimension of the algebraic spaceX at a point xmay not
coincide with the dimension of the underlying topological space |X| at x. E.g. if k is a field
of characteristic zero and X = A1

k/Z, then X has dimension 1 (the dimension of A1
k) at

each of its points, while |X| has the indiscrete topology, and hence is of Krull dimension
zero. On the other hand, in Algebraic Spaces, Example 14.9 there is given an example of
an algebraic space which is of dimension 0 at each of its points, while |X| is irreducible of
Krull dimension 1, and admits a generic point (so that the dimension of |X| at any of its
points is 1); see also the discussion of this example in Properties of Spaces, Section 9.
On the other hand, ifX is a decent algebraic space, in the sense of Decent Spaces, Definition
6.1 (in particular, if X is quasi-separated; see Decent Spaces, Section 6) then in fact the
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dimension of X at x does coincide with the dimension of |X| at x; see Decent Spaces,
Lemma 12.5.

In order to define the dimension of an algebraic stack, it will be useful to first have the
notion of the relative dimension, at a point in the source, of a morphism whose source
is an algebraic space, and whose target is an algebraic stack. The definition is slightly
involved, just because (unlike in the case of schemes) the points of an algebraic stack, or
an algebraic space, are not describable as morphisms from the spectrum of a field, but only
as equivalence classes of such.

Definition 5.2. If f : T → X is a locally of finite type morphism from an algebraic
space to an algebraic stack, and if t ∈ |T | is a point with image x ∈ |X |, then we define the
relative dimension of f at t, denoted dimt(Tx), as follows: choose a morphism Spec k →
X , with source the spectrum of a field, which represents x, and choose a point t′ ∈ |T ×X
Spec k| mapping to t under the projection to |T | (such a point t′ exists, by Properties of
Stacks, Lemma 4.3); then

dimt(Tx) = dimt′(T ×X Spec k).

Note that since T is an algebraic space and X is an algebraic stack, the fibre product T ×X
Spec k is an algebraic space, and so the quantity on the right hand side of this proposed
definition is in fact defined (see discussion above).

Remark 5.3. (1) One easily verifies (for example, by using the invariance of the rel-
ative dimension of locally of finite type morphisms of schemes under base-change; see for
example Morphisms, Lemma 28.3) that dimt(Tx) is well-defined, independently of the
choices used to compute it.
(2) In the case that X is also an algebraic space, it is straightforward to confirm that this
definition agrees with the definition of relative dimension given in Morphisms of Spaces,
Definition 33.1.

We next recall the following lemma, on which our study of the dimension of a locally
Noetherian algebraic stack is founded.

Lemma 5.4. If f : U → X is a smooth morphism of locally Noetherian algebraic
spaces, and if u ∈ |U | with image x ∈ |X|, then

dimu(U) = dimx(X) + dimu(Ux)
where dimu(Ux) is defined via Definition 5.2.

Proof. See Morphisms of Spaces, Lemma 37.10 noting that the definition of dimu(Ux)
used here coincides with the definition used there, by Remark 5.3 (2). �

Lemma 5.5. If X is a locally Noetherian algebraic stack and x ∈ |X |. Let U → X be
a smooth morphism from an algebraic space to X , let u be any point of |U |mapping to x.
Then we have

dimx(X ) = dimu(U)− dimu(Ux)
where the relative dimension dimu(Ux) is defined by Definition 5.2 and the dimension of
X at x is as in Properties of Stacks, Definition 12.2.

Proof. Lemma 5.4 can be used to verify that the right hand side dimu(U)+dimu(Ux)
is independent of the choice of the smooth morphism U → X and u ∈ |U |. We omit the
details. In particular, we may assumeU is a scheme. In this case we can compute dimu(Ux)
by choosing the representative of x to be the composite Specκ(u)→ U → X , where the
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first morphism is the canonical one with image u ∈ U . Then, if we write R = U ×X U ,
and let e : U → R denote the diagonal morphism, the invariance of relative dimension
under base-change shows that dimu(Ux) = dime(u)(Ru). Thus we see that the right hand
side is equal to dimu(U)− dime(u)(Ru) = dimx(X ) as desired. �

Remark 5.6. For Deligne–Mumford stacks which are suitably decent (e.g. quasi-
separated), it will again be the case that dimx(X ) coincides with the topologically defined
quantity dimx |X |. However, for more general Artin stacks, this will typically not be the
case. For example, if X = [A1/Gm] (over some field, with the quotient being taken with
respect to the usual multiplication action of Gm on A1), then |X | has two points, one the
specialisation of the other (corresponding to the two orbits of Gm on A1), and hence is of
dimension 1 as a topological space; but dimx(X ) = 0 for both points x ∈ |X |. (An even
more extreme example is given by the classifying space [Spec k/Gm], whose dimension at
its unique point is equal to −1.)

We can now extend Definition 5.2 to the context of (locally finite type) morphisms be-
tween (locally Noetherian) algebraic stacks.

Definition 5.7. If f : T → X is a locally of finite type morphism between locally
Noetherian algebraic stacks, and if t ∈ |T | is a point with image x ∈ |X |, then we de-
fine the relative dimension of f at t, denoted dimt(Tx), as follows: choose a morphism
Spec k → X , with source the spectrum of a field, which represents x, and choose a point
t′ ∈ |T ×X Spec k| mapping to t under the projection to |T | (such a point t′ exists, by
Properties of Stacks, Lemma 4.3; then

dimt(Tx) = dimt′(T ×X Spec k).

Note that since T is an algebraic stack and X is an algebraic stack, the fibre product
T ×X Spec k is an algebraic stack, which is locally Noetherian by Morphisms of Stacks,
Lemma 17.5. Thus the quantity on the right side of this proposed definition is defined by
Properties of Stacks, Definition 12.2.

Remark 5.8. Standard manipulations show that dimt(Tx) is well-defined, indepen-
dently of the choices made to compute it.

We now establish some basic properties of relative dimension, which are obvious general-
isations of the corresponding statements in the case of morphisms of schemes.

Lemma 5.9. Suppose given a Cartesian square of morphisms of locally Noetherian
stacks

T ′

��

// T

��
X ′ // X

in which the vertical morphisms are locally of finite type. If t′ ∈ |T ′|, with images t, x′,
and x in |T |, |X ′|, and |X | respectively, then dimt′(T ′

x′) = dimt(Tx).

Proof. Both sides can (by definition) be computed as the dimension of the same fibre
product. �

Lemma 5.10. If f : U → X is a smooth morphism of locally Noetherian algebraic
stacks, and if u ∈ |U| with image x ∈ |X |, then

dimu(U) = dimx(X ) + dimu(Ux).
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Proof. Choose a smooth surjective morphism V → U whose source is a scheme,
and let v ∈ |V | be a point mapping to u. Then the composite V → U → X is also
smooth, and by Lemma 5.4 we have dimx(X ) = dimv(V )−dimv(Vx),while dimu(U) =
dimv(V )− dimv(Vu). Thus

dimu(U)− dimx(X ) = dimv(Vx)− dimv(Vu).

Choose a representative Spec k → X of x and choose a point v′ ∈ |V ×X Spec k| lying
over v, with image u′ in |U ×X Spec k|; then by definition dimu(Ux) = dimu′(U ×X
Spec k), and dimv(Vx) = dimv′(V ×X Spec k).

Now V ×X Spec k → U ×X Spec k is a smooth surjective morphism (being the base-
change of such a morphism) whose source is an algebraic space (since V and Spec k are
schemes, and X is an algebraic stack). Thus, again by definition, we have

dimu′(U ×X Spec k) = dimv′(V ×X Spec k)− dimv′(V ×X Spec k)u′)
= dimv(Vx)− dimv′((V ×X Spec k)u′).

Now V ×X Spec k ∼= V ×U (U ×X Spec k), and so Lemma 5.9 shows that dimv′((V ×X
Spec k)u′) = dimv(Vu). Putting everything together, we find that

dimu(U)− dimx(X ) = dimu(Ux),

as required. �

Lemma 5.11. Let f : T → X be a locally of finite type morphism of algebraic stacks.
(1) The function t 7→ dimt(Tf(t)) is upper semi-continuous on |T |.
(2) If f is smooth, then the function t 7→ dimt(Tf(t)) is locally constant on |T |.

Proof. Suppose to begin with that T is a scheme T , letU → X be a smooth surjective
morphism whose source is a scheme, and let T ′ = T ×X U . Let f ′ : T ′ → U be the pull-
back of f over U , and let g : T ′ → T be the projection.

Lemma 5.9 shows that dimt′(T ′
f ′(t′)) = dimg(t′)(Tf(g(t′))), for t′ ∈ T ′, while, since g is

smooth and surjective (being the base-change of a smooth surjective morphism) the map
induced by g on underlying topological spaces is continuous and open (by Properties of
Spaces, Lemma 4.6), and surjective. Thus it suffices to note that part (1) for the morphism
f ′ follows from Morphisms of Spaces, Lemma 34.4, and part (2) from either of Morphisms,
Lemma 29.4 or Morphisms, Lemma 34.12 (each of which gives the result for schemes, from
which the analogous results for algebraic spaces can be deduced exactly as in Morphisms
of Spaces, Lemma 34.4.

Now return to the general case, and choose a smooth surjective morphism h : V → T
whose source is a scheme. If v ∈ V , then, essentially by definition, we have

dimh(v)(Tf(h(v))) = dimv(Vf(h(v)))− dimv(Vh(v)).

Since V is a scheme, we have proved that the first of the terms on the right hand side of
this equality is upper semi-continuous (and even locally constant if f is smooth), while the
second term is in fact locally constant. Thus their difference is upper semi-continuous (and
locally constant if f is smooth), and hence the function dimh(v)(Tf(h(v))) is upper semi-
continuous on |V | (and locally constant if f is smooth). Since the morphism |V | → |T |
is open and surjective, the lemma follows. �



5. DIMENSION THEORY OF ALGEBRAIC STACKS 7047

Before continuing with our development, we prove two lemmas related to the dimension
theory of schemes.
To put the first lemma in context, we note that if X is a finite dimensional scheme, then
since dimX is defined to equal the supremum of the dimensions dimxX , there exists a
point x ∈ X such that dimxX = dimX . The following lemma shows that we may
furthermore take the point x to be of finite type.

Lemma 5.12. IfX is a finite dimensional scheme, then there exists a closed (and hence
finite type) point x ∈ X such that dimxX = dimX .

Proof. Let d = dimX , and choose a maximal strictly decreasing chain of irreducible
closed subsets of X , say
(5.12.1) Z0 ⊃ Z1 ⊃ . . . ⊃ Zd.
The subset Zd is a minimal irreducible closed subset of X , and thus any point of Zd is a
generic point of Zd. Since the underlying topological space of the scheme X is sober, we
conclude that Zd is a singleton, consisting of a single closed point x ∈ X . If U is any
neighbourhood of x, then the chain

U ∩ Z0 ⊃ U ∩ Z1 ⊃ . . . ⊃ U ∩ Zd = Zd = {x}
is then a strictly descending chain of irreducible closed subsets ofU , showing that dimU ≥
d. Thus we find that dimxX ≥ d. The other inequality being obvious, the lemma is
proved. �

The next lemma shows that dimxX is a constant function on an irreducible scheme sat-
isfying some mild additional hypotheses.

Lemma 5.13. IfX is an irreducible, Jacobson, catenary, and locally Noetherian scheme
of finite dimension, then dimU = dimX for every non-empty open subset U of X .
Equivalently, dimxX is a constant function on X .

Proof. The equivalence of the two claims follows directly from the definitions. Sup-
pose, then, that U ⊂ X is a non-empty open subset. Certainly dimU ≤ dimX , and we
have to show that dimU ≥ dimX. Write d = dimX , and choose a maximal strictly
decreasing chain of irreducible closed subsets of X , say

X = Z0 ⊃ Z1 ⊃ . . . ⊃ Zd.
Since X is Jacobson, the minimal irreducible closed subset Zd is equal to {x} for some
closed point x.
If x ∈ U, then

U = U ∩ Z0 ⊃ U ∩ Z1 ⊃ . . . ⊃ U ∩ Zd = {x}
is a strictly decreasing chain of irreducible closed subsets of U , and so we conclude that
dimU ≥ d, as required. Thus we may suppose that x 6∈ U.
Consider the flat morphism SpecOX,x → X . The non-empty (and hence dense) open
subset U ofX pulls back to an open subset V ⊂ SpecOX,x. Replacing U by a non-empty
quasi-compact, and hence Noetherian, open subset, we may assume that the inclusionU →
X is a quasi-compact morphism. Since the formation of scheme-theoretic images of quasi-
compact morphisms commutes with flat base-change Morphisms, Lemma 25.16 we see that
V is dense in SpecOX,x, and so in particular non-empty, and of coursex 6∈ V. (Here we use
x also to denote the closed point of SpecOX,x, since its image is equal to the given point
x ∈ X .) Now SpecOX,x \ {x} is Jacobson Properties, Lemma 6.4 and hence V contains a
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closed point z of SpecOX,x\{x}. The closure inX of the image of z is then an irreducible
closed subsetZ ofX containing x, whose intersection withU is non-empty, and for which
there is no irreducible closed subset properly contained in Z and properly containing {x}
(because pull-back to SpecOX,x induces a bijection between irreducible closed subsets of
X containing x and irreducible closed subsets of SpecOX,x). Since U ∩Z is a non-empty
closed subset of U , it contains a point u that is closed in X (since X is Jacobson), and
since U ∩Z is a non-empty (and hence dense) open subset of the irreducible set Z (which
contains a point not lying in U , namely x), the inclusion {u} ⊂ U ∩ Z is proper.

As X is catenary, the chain

X = Z0 ⊃ Z ⊃ {x} = Zd

can be refined to a chain of length d+ 1, which must then be of the form

X = Z0 ⊃W1 ⊃ . . . ⊃Wd−1 = Z ⊃ {x} = Zd.

Since U ∩ Z is non-empty, we then find that

U = U ∩ Z0 ⊃ U ∩W1 ⊃ . . . ⊃ U ∩Wd−1 = U ∩ Z ⊃ {u}
is a strictly decreasing chain of irreducible closed subsets of U of length d + 1, showing
that dimU ≥ d, as required. �

We will prove a stack-theoretic analogue of Lemma 5.13 in Lemma 5.17 below, but be-
fore doing so, we have to introduce an additional definition, necessitated by the fact that
the notion of a scheme being catenary is not an étale local one (see the example of Alge-
bra, Remark 164.8 which makes it difficult to define what it means for an algebraic space
or algebraic stack to be catenary (see the discussion of [?, page 3]). For certain aspects
of dimension theory, the following definition seems to provide a good substitute for the
missing notion of a catenary algebraic stack.

Definition 5.14. We say that a locally Noetherian algebraic stack X is pseudo-
catenary if there exists a smooth and surjective morphism U → X whose source is a
universally catenary scheme.

Example 5.15. If X is locally of finite type over a universally catenary locally Noe-
therian scheme S , and U → X is a smooth surjective morphism whose source is a scheme,
then the composite U → X → S is locally of finite type, and so U is universally catenary
Morphisms, Lemma 17.2. Thus X is pseudo-catenary.

The following lemma shows that the property of being pseudo-catenary passes through
finite-type morphisms.

Lemma 5.16. IfX is a pseudo-catenary locally Noetherian algebraic stack, and ifY →
X is a locally of finite type morphism, then there exists a smooth surjective morphism
V → Y whose source is a universally catenary scheme; thus Y is again pseudo-catenary.

Proof. By assumption we may find a smooth surjective morphism U → X whose
source is a universally catenary scheme. The base-change U ×X Y is then an algebraic
stack; let V → U ×X Y be a smooth surjective morphism whose source is a scheme.
The composite V → U ×X Y → Y is then smooth and surjective (being a composite of
smooth and surjective morphisms), while the morphism V → U ×X Y → U is locally
of finite type (being a composite of morphisms that are locally finite type). Since U is
universally catenary, we see that V is universally catenary (by Morphisms, Lemma 17.2),
as claimed. �
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We now study the behaviour of the function dimx(X ) on |X | (for some locally Noetherian
stackX ) with respect to the irreducible components of |X |, as well as various related topics.

Lemma 5.17. If X is a Jacobson, pseudo-catenary, and locally Noetherian algebraic
stack for which |X | is irreducible, then dimx(X ) is a constant function on |X |.

Proof. It suffices to show that dimx(X ) is locally constant on |X |, since it will then
necessarily be constant (as |X | is connected, being irreducible). SinceX is pseudo-catenary,
we may find a smooth surjective morphism U → X with U being a universally catenary
scheme. If {Ui} is an cover of U by quasi-compact open subschemes, we may replace U
by
∐
Ui,, and it suffices to show that the function u 7→ dimf(u)(X ) is locally constant

on Ui. Since we check this for one Ui at a time, we now drop the subscript, and write
simply U rather than Ui. Since U is quasi-compact, it is the union of a finite number
of irreducible components, say T1 ∪ . . . ∪ Tn. Note that each Ti is Jacobson, catenary,
and locally Noetherian, being a closed subscheme of the Jacobson, catenary, and locally
Noetherian scheme U .

By Lemma 5.4, we have dimf(u)(X ) = dimu(U) − dimu(Uf(u)). Lemma 5.11 (2) shows
that the second term in the right hand expression is locally constant on U , as f is smooth,
and hence we must show that dimu(U) is locally constant on U . Since dimu(U) is the
maximum of the dimensions dimu Ti, as Ti ranges over the components of U containing
u, it suffices to show that if a point u lies on two distinct components, say Ti and Tj (with
i 6= j), then dimu Ti = dimu Tj , and then to note that t 7→ dimt T is a constant function
on an irreducible Jacobson, catenary, and locally Noetherian scheme T (as follows from
Lemma 5.13).

Let V = Ti\(
⋃
i′ 6=i Ti′) andW = Tj \(

⋃
i′ 6=j Ti′). Then each of V andW is a non-empty

open subset ofU , and so each has non-empty open image in |X |. As |X | is irreducible, these
two non-empty open subsets of |X | have a non-empty intersection. Let x be a point lying
in this intersection, and let v ∈ V and w ∈W be points mapping to x. We then find that

dimTi = dimV = dimv(U) = dimx(X ) + dimv(Ux)

and similarly that

dimTj = dimW = dimw(U) = dimx(X ) + dimw(Ux).

Since u 7→ dimu(Uf(u)) is locally constant on U , and since Ti ∪ Tj is connected (being
the union of two irreducible, hence connected, sets that have non-empty intersection), we
see that dimv(Ux) = dimw(Ux), and hence, comparing the preceding two equations, that
dimTi = dimTj , as required. �

Lemma 5.18. IfZ ↪→ X is a closed immersion of locally Noetherian algebraic stacks,
and if z ∈ |Z| has image x ∈ |X |, then dimz(Z) ≤ dimx(X ).

Proof. Choose a smooth surjective morphism U → X whose source is a scheme; the
base-changed morphism V = U ×X Z → Z is then also smooth and surjective, and the
projection V → U is a closed immersion. If v ∈ |V |maps to z ∈ |Z|, and if we let u denote
the image of v in |U |, then clearly dimv(V ) ≤ dimu(U), while dimv(Vz) = dimu(Ux),
by Lemma 5.9. Thus

dimz(Z) = dimv(V )− dimv(Vz) ≤ dimu(U)− dimu(Ux) = dimx(X ),

as claimed. �
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Lemma 5.19. If X is a locally Noetherian algebraic stack, and if x ∈ |X |, then
dimx(X ) = supT {dimx(T )}, where T runs over all the irreducible components of |X |
passing through x (endowed with their induced reduced structure).

Proof. Lemma 5.18 shows that dimx(T ) ≤ dimx(X ) for each irreducible compo-
nent T passing through the point x. Thus to prove the lemma, it suffices to show that
(5.19.1) dimx(X ) ≤ sup

T
{dimx(T )}.

Let U → X be a smooth cover by a scheme. If T is an irreducible component of U then
we let T denote the closure of its image in X , which is an irreducible component of X .
Let u ∈ U be a point mapping to x. Then we have dimx(X ) = dimu U − dimu Ux =
supT dimu T − dimu Ux, where the supremum is over the irreducible components of U
passing through u. Choose a component T for which the supremum is achieved, and note
that dimx(T ) = dimu T − dimu Tx. The desired inequality (5.19.1) now follows from
the evident inequality dimu Tx ≤ dimu Ux. (Note that if Spec k → X is a representative
of x, then T ×X Spec k is a closed subspace of U ×X Spec k.) �

Lemma 5.20. If X is a locally Noetherian algebraic stack, and if x ∈ |X |, then for
any open substack V of X containing x, there is a finite type point x0 ∈ |V| such that
dimx0(X ) = dimx(V).

Proof. Choose a smooth surjective morphism f : U → X whose source is a scheme,
and consider the function u 7→ dimf(u)(X ); since the morphism |U | → |X | induced
by f is open (as f is smooth) as well as surjective (by assumption), and takes finite type
points to finite type points (by the very definition of the finite type points of |X |), it
suffices to show that for any u ∈ U , and any open neighbourhood of u, there is a finite
type point u0 in this neighbourhood such that dimf(u0)(X ) = dimf(u)(X ). Since, with
this reformulation of the problem, the surjectivity of f is no longer required, we may
replace U by the open neighbourhood of the point u in question, and thus reduce to the
problem of showing that for each u ∈ U , there is a finite type point u0 ∈ U such that
dimf(u0)(X ) = dimf(u)(X ). By Lemma 5.4 dimf(u)(X ) = dimu(U) − dimu(Uf(u)),
while dimf(u0)(X ) = dimu0(U) − dimu0(Uf(u0)). Since f is smooth, the expression
dimu0(Uf(u0)) is locally constant as u0 varies overU (by Lemma 5.11 (2)), and so shrinking
U further around u if necessary, we may assume it is constant. Thus the problem becomes
to show that we may find a finite type point u0 ∈ U for which dimu0(U) = dimu(U).
Since by definition dimu U is the minimum of the dimensions dimV , as V ranges over
the open neighbourhoods V of u in U , we may shrink U down further around u so that
dimu U = dimU . The existence of desired point u0 then follows from Lemma 5.12. �

Lemma 5.21. Let T ↪→ X be a locally of finite type monomorphism of algebraic
stacks, withX (and thus also T ) being Jacobson, pseudo-catenary, and locally Noetherian.
Suppose further that T is irreducible of some (finite) dimension d, and that X is reduced
and of dimension less than or equal to d. Then there is a non-empty open substack V of T
such that the induced monomorphism V ↪→ X is an open immersion which identifies V
with an open subset of an irreducible component of X .

Proof. Choose a smooth surjective morphism f : U → X with source a scheme, nec-
essarily reduced sinceX is, and writeU ′ = T ×XU . The base-changed morphismU ′ → U
is a monomorphism of algebraic spaces, locally of finite type, and thus representable Mor-
phisms of Spaces, Lemma 51.1 and 27.10; since U is a scheme, so is U ′. The projection
f ′ : U ′ → T is again a smooth surjection. Let u′ ∈ U ′, with image u ∈ U . Lemma 5.9
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shows that dimu′(U ′
f(u′)) = dimu(Uf(u)), while dimf ′(u′)(T ) = d ≥ dimf(u)(X ) by

Lemma 5.17 and our assumptions on T and X . Thus we see that
(5.21.1)
dimu′(U ′) = dimu′(U ′

f(u′)) + dimf ′(u′)(T ) ≥ dimu(Uf(u)) + dimf(u)(X ) = dimu(U).

SinceU ′ → U is a monomorphism, locally of finite type, it is in particular unramified, and
so by the étale local structure of unramified morphisms Étale Morphisms, Lemma 17.3, we
may find a commutative diagram

V ′ //

��

V

��
U ′ // U

in which the scheme V ′ is non-empty, the vertical arrows are étale, and the upper hori-
zontal arrow is a closed immersion. Replacing V by a quasi-compact open subset whose
image has non-empty intersection with the image of U ′, and replacing V ′ by the preim-
age of V , we may further assume that V (and thus V ′) is quasi-compact. Since V is also
locally Noetherian, it is thus Noetherian, and so is the union of finitely many irreducible
components.

Since étale morphisms preserve pointwise dimension Descent, Lemma 21.2 we deduce from
(5.21.1) that for any point v′ ∈ V ′, with image v ∈ V , we have dimv′(V ′) ≥ dimv(V ).
In particular, the image of V ′ can’t be contained in the intersection of two distinct irre-
ducible components of V , and so we may find at least one irreducible open subset of V
which has non-empty intersection with V ′; replacing V by this subset, we may assume
that V is integral (being both reduced and irreducible). From the preceding inequality on
dimensions, we conclude that the closed immersion V ′ ↪→ V is in fact an isomorphism.
If we let W denote the image of V ′ in U ′, then W is a non-empty open subset of U ′ (as
étale morphisms are open), and the induced monomorphismW → U is étale (since it is so
étale locally on the source, i.e. after pulling back to V ′), and hence is an open immersion
(being an étale monomorphism). Thus, if we let V denote the image of W in T , then V
is a dense (equivalently, non-empty) open substack of T , whose image is dense in an irre-
ducible component of X . Finally, we note that the morphism is V → X is smooth (since
its composite with the smooth morphism W → V is smooth), and also a monomorphism,
and thus is an open immersion. �

Lemma 5.22. Let f : T → X be a locally of finite type morphism of Jacobson, pseudo-
catenary, and locally Noetherian algebraic stacks, whose source is irreducible and whose
target is quasi-separated, and let Z ↪→ X denote the scheme-theoretic image of T . Then
for all t ∈ |T |, we have that dimt(Tf(t)) ≥ dim T − dimZ , and there is a non-empty
(equivalently, dense) open subset of |T | over which equality holds.

Proof. Replacing X by Z , we may and do assume that f is scheme theoretically
dominant, and also thatX is irreducible. By the upper semi-continuity of fibre dimensions
(Lemma 5.11 (1)), it suffices to prove that the equality dimt(Tf(t)) = dim T −dimZ holds
for t lying in some non-empty open substack of T . For this reason, in the argument we
are always free to replace T by a non-empty open substack.

Let T ′ → T be a smooth surjective morphism whose source is a scheme, and let T be
a non-empty quasi-compact open subset of T ′. Since Y is quasi-separated, we find that
T → Y is quasi-compact (by Morphisms of Stacks, Lemma 7.7, applied to the morphisms



7052 107. THE GEOMETRY OF ALGEBRAIC STACKS

T → Y → Spec Z). Thus, if we replace T by the image of T in T , then we may assume
(appealing to Morphisms of Stacks, Lemma 7.6 that the morphism f : T → X is quasi-
compact.

If we choose a smooth surjection U → X with U a scheme, then Lemma 3.1 ensures that
we may find an irreducible open subset V of U such that V → X is smooth and scheme-
theoretically dominant. Since scheme-theoretic dominance for quasi-compact morphisms
is preserved by flat base-change, the base-change T ×X V → V of the scheme-theoretically
dominant morphism f is again scheme-theoretically dominant. We let Z denote a scheme
admitting a smooth surjection onto this fibre product; then Z → T ×X V → V is
again scheme-theoretically dominant. Thus we may find an irreducible component C of
Z which scheme-theoretically dominates V . Since the composite Z → T ×X V → T is
smooth, and since T is irreducible, Lemma 3.1 shows that any irreducible component of the
source has dense image in |T |. We now replace C by a non-empty open subset W which
is disjoint from every other irreducible component of Z , and then replace T andX by the
images of W and V (and apply Lemma 5.17 to see that this doesn’t change the dimension
of either T or X ). If we letW denote the image of the morphism W → T ×X V , then
W is open in T ×X V (since the morphism W → T ×X V is smooth), and is irreducible
(being the image of an irreducible scheme). Thus we end up with a commutative diagram

W

!!

// W //

��

V

��
T // X

in whichW and V are schemes, the vertical arrows are smooth and surjective, the diagonal
arrows and the left-hand upper horizontal arroware smooth, and the induced morphism
W → T ×X V is an open immersion. Using this diagram, together with the definitions
of the various dimensions involved in the statement of the lemma, we will reduce our
verification of the lemma to the case of schemes, where it is known.

Fix w ∈ |W | with image w′ ∈ |W|, image t ∈ |T |, image v in |V |, and image x in |X |.
Essentially by definition (using the fact thatW is open in T ×X V , and that the fibre of
a base-change is the base-change of the fibre), we obtain the equalities

dimv Vx = dimw′Wt

and
dimt Tx = dimw′Wv.

By Lemma 5.4 (the diagonal arrow and right-hand vertical arrow in our diagram realise
W and V as smooth covers by schemes of the stacks T and X ), we find that

dimt T = dimwW − dimwWt

and
dimx X = dimv V − dimv Vx.

Combining the equalities, we find that

dimt Tx−dimt T + dimx X = dimw′Wv−dimwW + dimwWt+ dimv V −dimw′Wt

SinceW →W is a smooth surjection, the same is true if we base-change over the morphism
Specκ(v) → V (thinking of W → W as a morphism over V ), and from this smooth
morphism we obtain the first of the following two equalities

dimwWv − dimw′Wv = dimw(Wv)w′ = dimwWw′ ;
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the second equality follows via a direct comparison of the two fibres involved. Similarly,
if we think of W → W as a morphism of schemes over T , and base-change over some
representative of the point t ∈ |T |, we obtain the equalities

dimwWt − dimw′Wt = dimw(Wt)w′ = dimwWw′ .

Putting everything together, we find that

dimt Tx − dimt T + dimx X = dimwWv − dimwW + dimv V.

Our goal is to show that the left-hand side of this equality vanishes for a non-empty open
subset of t. As w varies over a non-empty open subset of W , its image t ∈ |T | varies over
a non-empty open subset of |T | (as W → T is smooth).

We are therefore reduced to showing that if W → V is a scheme-theoretically dominant
morphism of irreducible locally Noetherian schemes that is locally of finite type, then
there is a non-empty open subset of points w ∈ W such that dimwWv = dimwW −
dimv V (where v denotes the image of w in V ). This is a standard fact, whose proof we
recall for the convenience of the reader.

We may replace W and V by their underlying reduced subschemes without altering the
validity (or not) of this equation, and thus we may assume that they are in fact integral
schemes. Since dimwWv is locally constant on W, replacing W by a non-empty open
subset if necessary, we may assume that dimwWv is constant, say equal to d. Choosing
this open subset to be affine, we may also assume that the morphism W → V is in fact
of finite type. Replacing V by a non-empty open subset if necessary (and then pulling
back W over this open subset; the resulting pull-back is non-empty, since the flat base-
change of a quasi-compact and scheme-theoretically dominant morphism remains scheme-
theoretically dominant), we may furthermore assume thatW is flat overV . The morphism
W → V is thus of relative dimension d in the sense of Morphisms, Definition 29.1 and it
follows from Morphisms, Lemma 29.6 that dimw(W ) = dimv(V ) + d, as required. �

Remark 5.23. We note that in the context of the preceding lemma, it need not be that
dim T ≥ dimZ ; this does not contradict the inequality in the statement of the lemma,
because the fibres of the morphism f are again algebraic stacks, and so may have negative
dimension. This is illustrated by taking k to be a field, and applying the lemma to the
morphism [Spec k/Gm]→ Spec k.

If the morphism f in the statement of the lemma is assumed to be quasi-DM (in the sense
of Morphisms of Stacks, Definition 4.1; e.g. morphisms that are representable by algebraic
spaces are quasi-DM), then the fibres of the morphism over points of the target are quasi-
DM algebraic stacks, and hence are of non-negative dimension. In this case, the lemma
implies that indeed dim T ≥ dimZ . In fact, we obtain the following more general result.

Lemma 5.24. Let f : T → X be a locally of finite type morphism of Jacobson, pseudo-
catenary, and locally Noetherian algebraic stacks which is quasi-DM, whose source is irre-
ducible and whose target is quasi-separated, and let Z ↪→ X denote the scheme-theoretic
image of T . Then dimZ ≤ dim T , and furthermore, exactly one of the following two
conditions holds:

(1) for every finite type point t ∈ |T |, we have dimt(Tf(t)) > 0, in which case
dimZ < dim T ; or

(2) T and Z are of the same dimension.
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Proof. As was observed in the preceding remark, the dimension of a quasi-DM stack
is always non-negative, from which we conclude that dimt Tf(t) ≥ 0 for all t ∈ |T |, with
the equality

dimt Tf(t) = dimt T − dimf(t)Z
holding for a dense open subset of points t ∈ |T |. �

6. The dimension of the local ring

An algebraic stack doesn’t really have local rings in the usual sense, but we can define the
dimension of the local ring as follows.

Lemma 6.1. Let X be a locally Noetherian algebraic stack. Let U → X be a smooth
morphism and let u ∈ U . Then

dim(OU,u)− dim(ORu,e(u)) = 2 dim(OU,u)− dim(OR,e(u))

Here R = U ×X U with projections s, t : R→ U and diagonal e : U → R and Ru is the
fibre of s : R→ U over u.

Proof. This is true because s : OU,u → OR,e(u) is a flat local homomorphism of
Noetherian local rings and hence

dim(OR,e(u)) = dim(OU,u) + dim(ORu,e(u))

by Algebra, Lemma 112.7. �

Lemma 6.2. LetX be a locally Noetherian algebraic stack. Let x ∈ |X | be a finite type
point Morphisms of Stacks, Definition 18.2). Let d ∈ Z. The following are equivalent

(1) there exists a scheme U , a smooth morphism U → X , and a finite type point
u ∈ U mapping to x such that 2 dim(OU,u)− dim(OR,e(u)) = d, and

(2) for any scheme U , a smooth morphism U → X , and finite type point u ∈ U
mapping to x we have 2 dim(OU,u)− dim(OR,e(u)) = d.

Here R = U ×X U with projections s, t : R→ U and diagonal e : U → R and Ru is the
fibre of s : R→ U over u.

Proof. Suppose we have two smooth neighbourhoods (U, u) and (U ′, u′) of xwith u
and u′ finite type points. After shrinkingU andU ′ we may assume that u and u′ are closed
points (by definition of finite type points). Then we choose a surjective étale morphism
W → U×X U

′. LetWu be the fibre ofW → U over u and letWu′ be the fibre ofW → U ′

over u′. Since u and u′ map to the same point of |X | we see that Wu ∩Wu′ is nonempty.
Hence we may choose a closed point w ∈ W mapping to both u and u′. This reduces us
to the discussion in the next paragraph.

Assume (U ′, u′) → (U, u) is a smooth morphism of smooth neightbourhoods of x with
u and u′ closed points. Goal: prove the invariant defined for (U, u) is the same as the
invariant defined for (U ′, u′). To see this observe that OU,u → OU ′,u′ is a flat local
homomorphism of Noetherian local rings and hence

dim(OU ′,u′) = dim(OU,u) + dim(OU ′
u,u

′)

by Algebra, Lemma 112.7. (We omit working through all the steps to relate properties of
local rings and their strict henselizations, see More on Algebra, Section 45). On the other
hand we have

R′ = U ′ ×U,t R×s,U U ′
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Thus we see that
dim(OR′,e(u′)) = dim(OR,e(u)) + dim(OU ′

u×uU ′
u,(u′,u′))

To prove the lemma it suffices to show that
dim(OU ′

u×uU ′
u,(u′,u′)) = 2 dim(OU ′

u,u
′)

Observe that this isn’t always true (example: if U ′
u is a curve and u′ is the generic point of

this curve). However, we know that u′ is a closed point of the algebraic space U ′
u locally

of finite type over u. In this case the equality holds because, first dim(u′,u′)(U ′
u×u U ′

u) =
2 dimu′(U ′

u) by Varieties, Lemma 20.5 and second the agreement of dimension with di-
mension of local rings in closed points of locally algebraic schemes, see Varieties, Lemma
20.3. We omit the translation of these results for schemes into the language of algebraic
spaces. �

Definition 6.3. LetX be a locally Noetherian algebraic stack. Let x ∈ |X | be a finite
type point. The dimension of the local ring ofX at x is d ∈ Z if the equivalent conditions
of Lemma 6.2 are satisfied.

To be sure, this is motivated by Lemma 6.1 and Properties of Stacks, Definition 12.2. We
close this section by establishing a formula allowing us to compute dimx(X ) in terms of
properties of the versal ring to X at x.

Lemma 6.4. Suppose that X is an algebraic stack, locally of finite type over a locally
Noetherian scheme S. Let x0 : Spec(k) → X be a morphism where k is a field of fi-
nite type over S. Represent FX ,k,x0 as in Remark 2.11 by a cogroupoid (A,B, s, t, c) of
Noetherian complete local S-algebras with residue field k. Then

the dimension of the local ring of X at x0 = 2 dimA− dimB

Proof. Let s ∈ S be the image of x0. If OS,s is a G-ring (a condition that is almost
always satisfied in practice), then we can prove the lemma as follows. By Lemma 2.8, we
may find a smooth morphismU → X , whose source is a scheme, containing a pointu0 ∈ U
of residue field k, such that induced morphism Spec(k)→ U → X coincides with x0 and
such that A = O∧

U,u0
. Write R = U ×X U . Then we may identify O∧

R,e(u0) with B.
Hence the equality follows from the definitions.
In the rest of this proof we explain how to prove the lemma in general, but we urge the
reader to skip this.
First let us show that the right hand side is independent of the choice of (A,B, s, t, c).
Namely, suppose that (A′, B′, s′, t′, c′) is a second choice. Since A and A′ are versal rings
to X at x0, we can choose, after possibly switching A and A′, a formally smooth map
A→ A′ compatible with the given versal formal objects ξ and ξ′ overA andA′. Recall that
ĈΛ has coproducts and that these are given by completed tensor product over Λ, see Formal
Deformation Theory, Lemma 4.4. Then B prorepresents the functor of isomorphisms
between the two pushforwards of ξ to A⊗̂ΛA. Similarly for B′. We conclude that

B′ = B ⊗(A⊗̂ΛA) (A′⊗̂ΛA
′)

It is straightforward to see that

A⊗̂ΛA −→ A⊗̂ΛA
′ −→ A′⊗̂ΛA

′

is formally smooth of relative dimension equal to 2 times the relative dimension of the
formally smooth map A → A′. (This follows from general principles, but also because
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in this particular case A′ is a power series ring over A in r variables.) Hence B → B′ is
formally smooth of relative dimension 2(dim(A′)− dim(A)) as desired.
Next, let l/k be a finite extension. let xl,0 : Spec(l)→ X be the induced point. We claim
that the right hand side of the formula is the same for x0 as it is for xl,0. This can be shown
by choosing A→ A′ as in Lemma 2.5 and arguing exactly as in the preceding paragraph.
We omit the details.
Finally, arguing as in the proof of Lemma 2.10 we can use the compatibilities in the previ-
ous two paragraphs to reduce to the case (discussed in the first paragraph) where A is the
complete local ring of U at u0 for some scheme smooth over X and finite type point u0.
Details omitted. �
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CHAPTER 108

Moduli Stacks

1. Introduction

In this chapter we verify basic properties of moduli spaces and moduli stacks such as Hom,
Isom, CohX/B , QuotF/X/B , HilbX/B ,PicX/B , PicX/B , MorB(Z,X),Spaces′

fp,flat,proper ,
Polarized , and ComplexesX/B . We have already shown these algebraic spaces or algebraic
stacks under suitable hypotheses, see Quot, Sections 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, and
16. The stack of curves, denoted Curves and introduced in Quot, Section 15, is discussed
in the chapter on moduli of curves, see Moduli of Curves, Section 3.

In some sense this chapter is following the footsteps of Grothendieck’s lectures [?], [?], [?],
[?], [?], and [?].

2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Properties of
Stacks, Section 2. Unless otherwise mentioned our base scheme will be Spec(Z).

3. Properties of Hom and Isom

Let f : X → B be a morphism of algebraic spaces which is of finite presentation. Assume
F and G are quasi-coherent OX -modules. If G is of finite presentation, flat over B with
support proper over B, then the functor Hom(F ,G) defined by

T/B 7−→ HomOXT
(FT ,GT )

is an algebraic space affine over B. If F is of finite presentation, then Hom(F ,G)→ B is
of finite presentation. See Quot, Proposition 3.10.

If both F and G are of finite presentation, flat over B with support proper over B, then
the subfunctor

Isom(F ,G) ⊂ Hom(F ,G)
is an algebraic space affine of finite presentation over B. See Quot, Proposition 4.3.

4. Properties of the stack of coherent sheaves

Let f : X → B be a morphism of algebraic spaces which is separated and of finite pre-
sentation. Then the stack CohX/B parametrizing flat families of coherent modules with
proper support is algebraic. See Quot, Theorem 6.1.

Lemma 4.1. The diagonal of CohX/B over B is affine and of finite presentation.

Proof. The representability of the diagonal by algebraic spaces was shown in Quot,
Lemma 5.3. From the proof we find that we have to show Isom(F ,G) → T is affine and
of finite presentation for a pair of finitely presented OXT -modules F , G flat over T with
support proper over T . This was discussed in Section 3. �

7061
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Lemma 4.2. The morphism CohX/B → B is quasi-separated and locally of finite
presentation.

Proof. To check CohX/B → B is quasi-separated we have to show that its diagonal
is quasi-compact and quasi-separated. This is immediate from Lemma 4.1. To prove that
CohX/B → B is locally of finite presentation, we have to show that CohX/B → B is
limit preserving, see Limits of Stacks, Proposition 3.8. This follows from Quot, Lemma
5.6 (small detail omitted). �

Lemma 4.3. AssumeX → B is proper as well as of finite presentation. ThenCohX/B →
B satisfies the existence part of the valuative criterion (Morphisms of Stacks, Definition
39.10).

Proof. Taking base change, this immediately reduces to the following problem: given
a valuation ring R with fraction field K and an algebraic space X proper over R and
a coherent OXK -module FK , show there exists a finitely presented OX -module F flat
over R whose generic fibre is FK . Observe that by Flatness on Spaces, Theorem 4.5 any
finite type quasi-coherent OX -module F flat over R is of finite presentation. Denote
j : XK → X the embedding of the generic fibre. As a base change of the affine morphism
Spec(K)→ Spec(R) the morphism j is affine. Thus j∗FK is quasi-coherent. Write

j∗FK = colimFi
as a filtered colimit of its finite type quasi-coherentOX -submodules, see Limits of Spaces,
Lemma 9.2. Since j∗FK is a sheaf of K-vector spaces over X , it is flat over Spec(R).
Thus each Fi is flat over R as flatness over a valuation ring is the same as being torsion
free (More on Algebra, Lemma 22.10) and torsion freeness is inherited by submodules.
Finally, we have to show that the map j∗Fi → FK is an isomorphism for some i. Since
j∗j∗FK = FK (small detail omitted) and since j∗ is exact, we see that j∗Fi → FK is
injective for all i. Since j∗ commutes with colimits, we haveFK = j∗j∗FK = colim j∗Fi.
Since FK is coherent (i.e., finitely presented), there is an i such that j∗Fi contains all the
(finitely many) generators over an affine étale cover of X . Thus we get surjectivity of
j∗Fi → FK for i large enough. �

Lemma 4.4. Let B be an algebraic space. Let π : X → Y be a quasi-finite morphism
of algebraic spaces which are separated and of finite presentation overB. Then π∗ induces
a morphism CohX/B → CohY/B .

Proof. Let (T → B,F) be an object of CohX/B . We claim
(a) (T → B, πT,∗F) is an object of CohY/B and
(b) for T ′ → T we have πT ′,∗(XT ′ → XT )∗F = (YT ′ → YT )∗πT,∗F .

Part (b) guarantees that this construction defines a functor CohX/B → CohY/B as desired.

Let i : Z → XT be the closed subspace cut out by the zeroth fitting ideal of F (Divisors
on Spaces, Section 5). Then Z → B is proper by assumption (see Derived Categories
of Spaces, Section 7). On the other hand i is of finite presentation (Divisors on Spaces,
Lemma 5.2 and Morphisms of Spaces, Lemma 28.12). There exists a quasi-coherent OZ -
module G of finite type with i∗G = F (Divisors on Spaces, Lemma 5.3). In fact G is of
finite presentation as an OZ -module by Descent on Spaces, Lemma 6.7. Observe that G
is flat over B, for example because the stalks of G and F agree (Morphisms of Spaces,
Lemma 13.6). Observe that πT ◦ i : Z → YT is quasi-finite as a composition of quasi-finite
morphisms and that πT,∗F = (πT ◦ i)∗G). Since i is affine, formation of i∗ commutes
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with base change (Cohomology of Spaces, Lemma 11.1). Therefore we may replace B by
T , X by Z , F by G , and Y by YT to reduce to the case discussed in the next paragraph.
Assume that X → B is proper. Then π is proper by Morphisms of Spaces, Lemma 40.6
and hence finite by More on Morphisms of Spaces, Lemma 35.1. Since a finite morphism
is affine we see that (b) holds by Cohomology of Spaces, Lemma 11.1. On the other hand,
π is of finite presentation by Morphisms of Spaces, Lemma 28.9. Thus πT,∗F is of finite
presentation by Descent on Spaces, Lemma 6.7. Finally, πT,∗F is flat over B for example
by looking at stalks using Cohomology of Spaces, Lemma 4.2. �

Lemma 4.5. Let B be an algebraic space. Let π : X → Y be an open immersion of
algebraic spaces which are separated and of finite presentation overB. Then the morphism
CohX/B → CohY/B of Lemma 4.4 is an open immersion.

Proof. Omitted. Hint: If F is an object of CohY/B over T and for t ∈ T we have
Supp(Ft) ⊂ |Xt|, then the same is true for t′ ∈ T in a neighbourhood of t. �

Lemma 4.6. Let B be an algebraic space. Let π : X → Y be a closed immersion of
algebraic spaces which are separated and of finite presentation overB. Then the morphism
CohX/B → CohY/B of Lemma 4.4 is a closed immersion.

Proof. Let I ⊂ OY be the sheaf of ideals cutting out X as a closed subspace of
Y . Recall that π∗ induces an equivalence between the category of quasi-coherent OX -
modules and the category of quasi-coherentOY -modules annihilated by I , see Morphisms
of Spaces, Lemma 14.1. The same, mutatis mutandis, is true after base by T → B with I
replaced by the ideal sheaf IT = Im((YT → Y )∗I → OYT ). Analyzing the proof of
Lemma 4.4 we find that the essential image of CohX/B → CohY/B is exactly the objects
ξ = (T → B,F) whereF is annihilated by IT . In other words, ξ is in the essential image
if and only if the multiplication map

F ⊗OYT
(YT → Y )∗I −→ F

is zero and similarly after any further base change T ′ → T . Note that
(YT ′ → YT )∗(F ⊗OYT

(YT → Y )∗I) = (YT ′ → YT )∗F ⊗OY
T ′

(YT ′ → Y )∗I)

Hence the vanishing of the multiplication map on T ′ is representable by a closed subspace
of T by Flatness on Spaces, Lemma 8.6. �

Situation 4.7 (Numerical invariants). Let f : X → B be as in the introduction to
this section. Let I be a set and for i ∈ I let Ei ∈ D(OX) be perfect. Given an object
(T → B,F) of CohX/B denote Ei,T the derived pullback of Ei to XT . The object

Ki = RfT,∗(Ei,T ⊗L
OXT

F)

ofD(OT ) is perfect and its formation commutes with base change, see Derived Categories
of Spaces, Lemma 25.1. Thus the function

χi : |T | −→ Z, χi(t) = χ(Xt, Ei,t ⊗L
OXt
Ft) = χ(Ki ⊗L

OT
κ(t))

is locally constant by Derived Categories of Spaces, Lemma 26.3. Let P : I → Z be a map.
Consider the substack

CohPX/B ⊂ CohX/B
consisting of flat families of coherent sheaves with proper support whose numerical in-
variants agree with P . More precisely, an object (T → B,F) of CohX/B is in CohPX/B if
and only if χi(t) = P (i) for all i ∈ I and t ∈ T .
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Lemma 4.8. In Situation 4.7 the stack CohPX/B is algebraic and

CohPX/B −→ CohX/B
is a flat closed immersion. If I is finite orB is locally Noetherian, then CohPX/B is an open
and closed substack of CohX/B .

Proof. This is immediately clear if I is finite, because the functions t 7→ χi(t) are
locally constant. If I is infinite, then we write

I =
⋃

I′⊂I finite
I ′

and we denote P ′ = P |I′ . Then we have

CohPX/B =
⋂

I′⊂I finite
CohP

′

X/B

Therefore, CohPX/B is always an algebraic stack and the morphism CohPX/B ⊂ CohX/B is
always a flat closed immersion, but it may no longer be an open substack. (We leave it to
the reader to make examples). However, if B is locally Noetherian, then so is CohX/B by
Lemma 4.2 and Morphisms of Stacks, Lemma 17.5. Hence if U → CohX/B is a smooth
surjective morphism where U is a locally Noetherian scheme, then the inverse images of
the open and closed substacks CohP

′

X/B have an open intersection in U (because connected
components of locally Noetherian topological spaces are open). Thus the result in this
case. �

Lemma 4.9. Let f : X → B be as in the introduction to this section. LetE1, . . . , Er ∈
D(OX) be perfect. Let I = Z⊕r and consider the map

I −→ D(OX), (n1, . . . , nr) 7−→ E⊗n1
1 ⊗ . . .⊗ E⊗nr

r

Let P : I → Z be a map. Then CohPX/B ⊂ CohX/B as defined in Situation 4.7 is an open
and closed substack.

Proof. We may work étale locally on B, hence we may assume that B is affine. In
this case we may perform absolute Noetherian reduction; we suggest the reader skip the
proof. Namely, say B = Spec(Λ). Write Λ = colim Λi as a filtered colimit with each
Λi of finite type over Z. For some i we can find a morphism of algebraic spaces Xi →
Spec(Λi) which is separated and of finite presentation and whose base change to Λ is X .
See Limits of Spaces, Lemmas 7.1 and 6.9. Then after increasing iwe may assume there exist
perfect objects E1,i, . . . , Er,i in D(OXi) whose derived pullback to X are isomorphic to
E1, . . . , Er , see Derived Categories of Spaces, Lemma 24.3. Clearly we have a cartesian
square

CohPX/B //

��

CohX/B

��
CohPXi/ Spec(Λi)

// CohXi/ Spec(Λi)

and hence we may appeal to Lemma 4.8 to finish the proof. �

Example 4.10 (Coherent sheaves with fixed Hilbert polynomial). Let f : X → B be
as in the introduction to this section. Let L be an invertible OX -module. Let P : Z→ Z
be a numerical polynomial. Then we can consider the open and closed algebraic substack

CohPX/B = CohP,LX/B ⊂ CohX/B
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consisting of flat families of coherent sheaves with proper support whose numerical in-
variants agree with P : an object (T → B,F) of CohX/B lies in CohPX/B if and only if

P (n) = χ(Xt,Ft ⊗OXt
L⊗n
t )

for all n ∈ Z and t ∈ T . Of course this is a special case of Situation 4.7 where I =
Z → D(OX) is given by n 7→ L⊗n. It follows from Lemma 4.9 that this is an open
and closed substack. Since the functions n 7→ χ(Xt,Ft ⊗OXt

L⊗n
t ) are always numerical

polynomials (Spaces over Fields, Lemma 18.1) we conclude that

CohX/B =
∐

P numerical polynomial
CohPX/B

is a disjoint union decomposition.

5. Properties of Quot

Let f : X → B be a morphism of algebraic spaces which is separated and of finite pre-
sentation. LetF be a quasi-coherentOX -module. Then QuotF/X/B is an algebraic space.
If F is of finite presentation, then QuotF/X/B → B is locally of finite presentation. See
Quot, Proposition 8.4.

Lemma 5.1. The diagonal of QuotF/X/B → B is a closed immersion. IfF is of finite
type, then the diagonal is a closed immersion of finite presentation.

Proof. Suppose we have a scheme T/B and two quotients FT → Qi, i = 1, 2 cor-
responding to T -valued points of QuotF/X/B over B. Denote K1 the kernel of the first
one and set u : K1 → Q2 the composition. By Flatness on Spaces, Lemma 8.6 there is a
closed subspace of T such that T ′ → T factors through it if and only if the pullback uT ′

is zero. This proves the diagonal is a closed immersion. Moreover, if F is of finite type,
thenK1 is of finite type (Modules on Sites, Lemma 24.1) and we see that the diagonal is of
finite presentation by the same lemma. �

Lemma 5.2. The morphism QuotF/X/B → B is separated. If F is of finite presenta-
tion, then it is also locally of finite presentation.

Proof. To check QuotF/X/B → B is separated we have to show that its diagonal
is a closed immersion. This is true by Lemma 5.1. The second statement is part of Quot,
Proposition 8.4. �

Lemma 5.3. Assume X → B is proper as well as of finite presentation and F quasi-
coherent of finite type. Then QuotF/X/B → B satisfies the existence part of the valuative
criterion (Morphisms of Spaces, Definition 41.1).

Proof. Taking base change, this immediately reduces to the following problem: given
a valuation ringR with fraction fieldK , an algebraic spaceX proper overR, a finite type
quasi-coherent OX -module F , and a coherent quotient FK → QK , show there exists a
quotientF → QwhereQ is a finitely presentedOX -module flat overRwhose generic fi-
bre isQK . Observe that by Flatness on Spaces, Theorem 4.5 any finite type quasi-coherent
OX -moduleF flat overR is of finite presentation. We first solve the existence ofQ affine
locally.
Affine locally we arrive at the following problem: let R→ A be a finitely presented ring
map, let M be a finite A-module, let ϕ : MK → NK be an AK -quotient module. Then
we may consider

L = {x ∈M | ϕ(x⊗ 1) = 0}
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The M → M/L is an A-module quotient which is torsion free as an R-module. Hence it
is flat as an R-module (More on Algebra, Lemma 22.10). Since M is finite as an A-module
so is L and we conclude that L is of finite presentation as an A-module (by the reference
above). Clearly M/L is the unqiue such quotient with (M/L)K = NK .

The uniqueness in the construction of the previous paragraph guarantees these quotients
glue and give the desiredQ. Here is a bit more detail. Choose a surjective étale morphism
U → X where U is an affine scheme. Use the above construction to construct a quotient
F|U → QU which is quasi-coherent, is flat over R, and recovers QK |U on the generic
fibre. Since X is separated, we see that U ×X U is an affine scheme étale over X as well.
Then F|U×XU → pr∗

1QU and F|U×XU → pr∗
2QU agree as quotients by the uniquess in

the construction. Hence we may descend F|U → QU to a surjection F → Q as desired
(Properties of Spaces, Proposition 32.1). �

Lemma 5.4. LetB be an algebraic space. Let π : X → Y be an affine quasi-finite mor-
phism of algebraic spaces which are separated and of finite presentation overB. LetF be a
quasi-coherentOX -module. Then π∗ induces a morphism QuotF/X/B → Quotπ∗F/Y/B .

Proof. Set G = π∗F . Since π is affine we see that for any scheme T over B we have
GT = πT,∗FT by Cohomology of Spaces, Lemma 11.1. Moreover πT is affine, hence πT,∗
is exact and transforms quotients into quotients. Observe that a quasi-coherent quotient
FT → Q defines a point of QuotX/B if and only if Q defines an object of CohX/B over
T (similarly for G and Y ). Since we’ve seen in Lemma 4.4 that π∗ induces a morphism
CohX/B → CohY/B we see that if FT → Q is in QuotF/X/B(T ), then GT → πT,∗Q is in
QuotG/Y/B(T ). �

Lemma 5.5. LetB be an algebraic space. Let π : X → Y be an affine open immersion
of algebraic spaces which are separated and of finite presentation overB. LetF be a quasi-
coherent OX -module. Then the morphism QuotF/X/B → Quotπ∗F/Y/B of Lemma 5.4
is an open immersion.

Proof. Omitted. Hint: If (π∗F)T → Q is an element of Quotπ∗F/Y/B(T ) and for
t ∈ T we have Supp(Qt) ⊂ |Xt|, then the same is true for t′ ∈ T in a neighbourhood of
t. �

Lemma 5.6. Let B be an algebraic space. Let j : X → Y be an open immersion of
algebraic spaces which are separated and of finite presentation over B. Let G be a quasi-
coherentOY -module and set F = j∗G. Then there is an open immersion

QuotF/X/B −→ QuotG/Y/B

of algebraic spaces over B.

Proof. If FT → Q is an element of QuotF/X/B(T ) then we can consider GT →
jT,∗FT → jT,∗Q. Looking at stalks one finds that this is surjective. By Lemma 4.4 we see
that jT,∗Q is finitely presented, flat over B with support proper over B. Thus we obtain
a T -valued point of QuotG/Y/B . This defines the morphism of the lemma. We omit the
proof that this is an open immersion. Hint: If GT → Q is an element of QuotG/Y/B(T )
and for t ∈ T we have Supp(Qt) ⊂ |Xt|, then the same is true for t′ ∈ T in a neighbour-
hood of t. �



5. PROPERTIES OF QUOT 7067

Lemma 5.7. Let B be an algebraic space. Let π : X → Y be a closed immersion of
algebraic spaces which are separated and of finite presentation over B. Let F be a quasi-
coherent OX -module. Then the morphism QuotF/X/B → Quotπ∗F/Y/B of Lemma 5.4
is an isomorphism.

Proof. For every scheme T overB the morphism πT : XT → YT is a closed immer-
sion. Then πT,∗ is an equivalence of categories between QCoh(OXT ) and the full subcat-
egory of QCoh(OYT ) whose objects are those quasi-coherent modules annihilated by the
ideal sheaf ofXT , see Morphisms of Spaces, Lemma 14.1. Since a qotient of (π∗F)T is anni-
hilated by this ideal we obtain the bijectivity of the map QuotF/X/B(T )→ Quotπ∗F/Y/B(T )
for all T as desired. �

Lemma 5.8. Let X → B be as in the introduction to this section. Let F → G be
a surjection of quasi-coherent OX -modules. Then there is a canonical closed immersion
QuotG/X/B → QuotF/X/B .

Proof. Let K = Ker(F → G). By right exactness of pullbacks we find that KT →
FT → GT → 0 is an exact sequecnce for all schemes T over B. In particular, a quo-
tient of GT determines a quotient of FT and we obtain our transformation of functors
QuotG/X/B → QuotF/X/B . This transformation is a closed immersion by Flatness on
Spaces, Lemma 8.6. Namely, given an element FT → Q of QuotF/X/B(T ), then we see
that the pull back to T ′/T is in the image of the transformation if and only ifKT ′ → QT ′

is zero. �

Remark 5.9 (Numerical invariants). Let f : X → B andF be as in the introduction
to this section. Let I be a set and for i ∈ I let Ei ∈ D(OX) be perfect. Let P : I → Z be
a function. Recall that we have a morphism

QuotF/X/B −→ CohX/B

which sends the element FT → Q of QuotF/X/B(T ) to the object Q of CohX/B over T ,
see proof of Quot, Proposition 8.4. Hence we can form the fibre product diagram

QuotPF/X/B //

��

CohPX/B

��
QuotF/X/B

// CohX/B

This is the defining diagram for the algebraic space in the upper left corner. The left ver-
tical arrow is a flat closed immersion which is an open and closed immersion for example
if I is finite, or B is locally Noetherian, or I = Z and Ei = L⊗i for some invertible OX -
module L (in the last case we sometimes use the notation QuotP,LF/X/B). See Situation 4.7
and Lemmas 4.8 and 4.9 and Example 4.10.

Lemma 5.10. Let f : X → B and F be as in the introduction to this section. Let L
be an invertibleOX -module. Then tensoring with L defines an isomorphism

QuotF/X/B −→ QuotF⊗OXL/X/B

Given a numerical polynomial P (t), then setting P ′(t) = P (t + 1) this map induces an
isomorphism QuotPF/X/B −→ QuotP

′

F⊗OXL/X/B of open and closed substacks.
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Proof. Set G = F ⊗OX
L. Observe that GT = FT ⊗OXT

LT . If FT → Q is
an element of QuotF/X/B(T ), then we send it to the element GT → Q ⊗OXT

LT of
QuotF⊗OXL/X/B(T ). This is compatible with pullbacks and hence defines a transfor-
mation of functors as desired. Since there is an obvious inverse transformation, it is an
isomorphism. We omit the proof of the final statement. �

Lemma 5.11. Let f : X → B and F be as in the introduction to this section. Let L
be an invertibleOX -module. Then

QuotP,LF/X/B = QuotP
′,L⊗n

F/X/B

where P ′(t) = P (nt).

Proof. Follows immediately after unwinding all the definitions. �

6. Boundedness for Quot

Contrary to what happens classically, we already know the Quot functor is an algebraic
space, but we don’t know that it is ever represented by a finite type algebraic space.

Lemma 6.1. Let n ≥ 0, r ≥ 1, P ∈ Q[t]. The algebraic space

X = QuotPO⊕r
PnZ

/PnZ/Z

parametrizing quotients ofO⊕r
PnZ

with Hilbert polynomial P is proper over Spec(Z).

Proof. We already know that X → Spec(Z) is separated and locally of finite pre-
sentation (Lemma 5.2). We also know that X → Spec(Z) satisfies the existence part of
the valuative criterion, see Lemma 5.3. By the valuative criterion for properness, it suffices
to prove our Quot space is quasi-compact, see Morphisms of Spaces, Lemma 44.1. Thus it
suffices to find a quasi-compact scheme T and a surjective morphism T → X . Let m be
the integer found in Varieties, Lemma 35.18. Let

N = r

(
m+ n

n

)
− P (m)

We will write Pn for Pn
Z = Proj(Z[T0, . . . , Tn]) and unadorned products will mean prod-

ucts over Spec(Z). The idea of the proof is to construct a “universal” map

Ψ : OT×Pn(−m)⊕N −→ O⊕r
T×Pn

over an affine scheme T and show that every point of X corresponds to a cokernel of this
in some point of T .

Definition of T and Ψ. We take T = Spec(A) where

A = Z[ai,j,E ]

where i ∈ {1, . . . , r}, j ∈ {1, . . . , N} and E = (e0, . . . , en) runs through the multi-
indices of total degree |E| =

∑
k=0,...n ek = m. Then we define Ψ to be the map whose

(i, j) matrix entry is the map∑
E=(e0,...,en)

ai,j,ET
e0
0 . . . T enn : OT×Pn(−m) −→ OT×Pn

where the sum is over E as above (but i and j are fixed of course).
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Consider the quotient Q = Coker(Ψ) on T ×Pn. By More on Morphisms, Lemma 54.1
there exists a t ≥ 0 and closed subschemes

T = T0 ⊃ T1 ⊃ . . . ⊃ Tt = ∅
such that the pullbackQp ofQ to (Tp \ Tp+1)×Pn is flat over Tp \ Tp+1. Observe that
we have an exact sequence

O(Tp\Tp+1)×Pn(−m)⊕N → O⊕r
(Tp\Tp+1)×Pn → Qp → 0

by pulling back the exact sequence defining Q = Coker(Ψ). Therefore we obtain a mor-
phism ∐

(Tp \ Tp+1) −→ QuotO⊕r/P/Z ⊃ QuotPO⊕r/P/Z = X

Since the left hand side is a Noetherian scheme and the inclusion on the right hand side is
open, it suffices to show that any point of X is in the image of this morphism.

Let k be a field and let x ∈ X(k). Then x corresponds to a surjection O⊕r
Pn
k
→ F of

coherent OPn
k

-modules such that the Hilbert polynomial of F is P . Consider the short
exact sequence

0→ K → O⊕r
Pn
k
→ F → 0

By Varieties, Lemma 35.18 and our choice of m we see that K is m-regular. By Varieties,
Lemma 35.12 we see that K(m) is globally generated. By Varieties, Lemma 35.10 and the
definition of m-regularity we see that Hi(Pn

k ,K(m)) = 0 for i > 0. Hence we see that

dimkH
0(Pn

k ,K(m)) = χ(K(m)) = χ(OPn
k
(m)⊕r)− χ(F(m)) = N

by our choice of N . This gives a surjection

O⊕N
Pn
k
−→ K(m)

Twisting back down and using the short exact sequence above we see thatF is the cokernel
of a map

Ψx : OPn
k
(−m)⊕N → O⊕r

Pn
k

There is a unique ring map τ : A→ k such that the base change of Ψ by the corresponding
morphism t = Spec(τ) : Spec(k) → T is Ψx. This is true because the entries of the
N × r matrix defining Ψx are homogeneous polynomials

∑
λi,j,ET

e0
0 . . . T enn of degree

m in T0, . . . , Tn with coefficients λi,j,E ∈ k and we can set τ(ai,j,E) = λi,j,E . Then
t ∈ Tp \Tp+1 for some p and the image of t under the morphism above is x as desired. �

Lemma 6.2. Let B be an algebraic space. Let X = B × Pn
Z. Let L be the pullback

of OPn(1) to X . Let F be an OX -module of finite presentation. The algebraic space
QuotPF/X/B parametrizing quotients of F having Hilbert polynomial P with respect to
L is proper over B.

Proof. The question is étale local over B, see Morphisms of Spaces, Lemma 40.2.
Thus we may assume B is an affine scheme. In this case L is an ample invertible module
on X (by Constructions, Lemma 10.6 and the definition of ample invertible modules in
Properties, Definition 26.1). Thus we can find r′ ≥ 0 and r ≥ 0 and a surjection

O⊕r
X −→ F ⊗OX

L⊗r′

by Properties, Proposition 26.13. By Lemma 5.10 we may replace F by F ⊗OX
L⊗r′

and
P (t) by P (t+ r′). By Lemma 5.8 we obtain a closed immersion

QuotPF/X/B −→ QuotPO⊕r
X
/X/B
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Since we’ve shown that QuotPO⊕r
X
/X/B

→ B is proper in Lemma 6.1 we conclude. �

Lemma 6.3. Let f : X → B be a proper morphism of finite presentation of algebraic
spaces. Let F be a finitely presented OX -module. Let L be an invertible OX -module
ample on X/B, see Divisors on Spaces, Definition 14.1. The algebraic space QuotPF/X/B
parametrizing quotients of F having Hilbert polynomial P with respect to L is proper
over B.

Proof. The question is étale local over B, see Morphisms of Spaces, Lemma 40.2.
Thus we may assumeB is an affine scheme. Then we can find a closed immersion i : X →
Pn
B such that i∗OPn

B
(1) ∼= L⊗d for some d ≥ 1. See Morphisms, Lemma 39.3. Changing

L intoL⊗d and the numerical polynomial P (t) into P (dt) leaves QuotPF/X/B unaffected;
some details omitted. Hence we may assume L = i∗OPn

B
(1). Then the isomorphism

QuotF/X/B → Quoti∗F/Pn
B
/B of Lemma 5.7 induces an isomorphism QuotPF/X/B ∼=

QuotPi∗F/Pn
B
/B . Since QuotPi∗F/Pn

B
/B is proper over B by Lemma 6.2 we conclude. �

Lemma 6.4. Let f : X → B be a separated morphism of finite presentation of alge-
braic spaces. LetF be a finitely presentedOX -module. Let L be an invertibleOX -module
ample on X/B, see Divisors on Spaces, Definition 14.1. The algebraic space QuotPF/X/B
parametrizing quotients of F having Hilbert polynomial P with respect to L is separated
of finite presentation over B.

Proof. We have already seen that QuotF/X/B → B is separated and locally of finite
presentation, see Lemma 5.2. Thus it suffices to show that the open subspace QuotPF/X/B
of Remark 5.9 is quasi-compact over B.

The question is étale local on B (Morphisms of Spaces, Lemma 8.8). Thus we may assume
B is affine.

AssumeB = Spec(Λ). Write Λ = colim Λi as the colimit of its finite type Z-subalgebras.
Then we can find an i and a systemXi,Fi,Li as in the lemma overBi = Spec(Λi) whose
base change to B gives X,F ,L. This follows from Limits of Spaces, Lemmas 7.1 (to find
Xi), 7.2 (to find Fi), 7.3 (to find Li), and 5.9 (to make Xi separated). Because

QuotF/X/B = B ×Bi QuotFi/Xi/Bi

and similarly for QuotPF/X/B we reduce to the case discussed in the next paragraph.

AssumeB is affine and Noetherian. We may replaceL by a positive power, see Lemma 5.11.
Thus we may assume there exists an immersion i : X → Pn

B such that i∗OPn(1) = L.
By Morphisms, Lemma 7.7 there exists a closed subscheme X ′ ⊂ Pn

B such that i factors
through an open immersion j : X → X ′. By Properties, Lemma 22.5 there exists a finitely
presentedOX′ -module G such that j∗G = F . Thus we obtain an open immersion

QuotF/X/B −→ QuotG/X′/B

by Lemma 5.6. Clearly this open immersion sends QuotPF/X/B into QuotPG/X′/B . Now
QuotPG/X′/B is proper over B by Lemma 6.3. Therefore it is Noetherian and since any
open of a Noetherian algebraic space is quasi-compact we win. �
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7. Properties of the Hilbert functor

Let f : X → B be a morphism of algebraic spaces which is separated and of finite pre-
sentation. Then HilbX/B is an algebraic space locally of finite presentation over B. See
Quot, Proposition 9.4.

Lemma 7.1. The diagonal of HilbX/B → B is a closed immersion of finite presenta-
tion.

Proof. In Quot, Lemma 9.2 we have seen that HilbX/B = QuotOX/X/B . Hence this
follows from Lemma 5.1. �

Lemma 7.2. The morphism HilbX/B → B is separated and locally of finite presen-
tation.

Proof. To check HilbX/B → B is separated we have to show that its diagonal is
a closed immersion. This is true by Lemma 7.1. The second statement is part of Quot,
Proposition 9.4. �

Lemma 7.3. AssumeX → B is proper as well as of finite presentation. Then HilbX/B →
B satisfies the existence part of the valuative criterion (Morphisms of Spaces, Definition
41.1).

Proof. In Quot, Lemma 9.2 we have seen that HilbX/B = QuotOX/X/B . Hence this
follows from Lemma 5.3. �

Lemma 7.4. Let B be an algebraic space. Let π : X → Y be an open immersion of
algebraic spaces which are separated and of finite presentation overB. Then π induces an
open immersion HilbX/B → HilbY/B .

Proof. Omitted. Hint: If Z ⊂ XT is a closed subscheme which is proper over T ,
then Z is also closed in YT . Thus we obtain the transformation HilbX/B → HilbY/B . If
Z ⊂ YT is an element of HilbY/B(T ) and for t ∈ T we have |Zt| ⊂ |Xt|, then the same is
true for t′ ∈ T in a neighbourhood of t. �

Lemma 7.5. Let B be an algebraic space. Let π : X → Y be a closed immersion of
algebraic spaces which are separated and of finite presentation over B. Then π induces a
closed immersion HilbX/B → HilbY/B .

Proof. Since π is a closed immersion, it is immediate that given a closed subscheme
Z ⊂ XT , we can view Z as a closed subscheme ofXT . Thus we obtain the transformation
HilbX/B → HilbY/B . This transformation is immediately seen to be a monomorphism.
To prove that it is a closed immersion, you can use Lemma 5.8 for the mapOY → OX and
the identifications HilbX/B = QuotOX/X/B , HilbY/B = QuotOY /Y/B of Quot, Lemma
9.2. �

Remark 7.6 (Numerical invariants). Let f : X → B be as in the introduction to
this section. Let I be a set and for i ∈ I let Ei ∈ D(OX) be perfect. Let P : I → Z be a
function. Recall that HilbX/B = QuotOX/X/B , see Quot, Lemma 9.2. Thus we can define

HilbPX/B = QuotPOX/X/B

where QuotPOX/X/B is as in Remark 5.9. The morphism

HilbPX/B −→ HilbX/B
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is a flat closed immersion which is an open and closed immersion for example if I is finite,
or B is locally Noetherian, or I = Z and Ei = L⊗i for some invertibleOX -module L. In
the last case we sometimes use the notation HilbP,LX/B .

Lemma 7.7. Let f : X → B be a proper morphism of finite presentation of algebraic
spaces. Let L be an invertible OX -module ample on X/B, see Divisors on Spaces, Defini-
tion 14.1. The algebraic space HilbPX/B parametrizing closed subschemes having Hilbert
polynomial P with respect to L is proper over B.

Proof. Recall that HilbX/B = QuotOX/X/B , see Quot, Lemma 9.2. Thus this lemma
is an immediate consequence of Lemma 6.3. �

Lemma 7.8. Let f : X → B be a separated morphism of finite presentation of alge-
braic spaces. Let L be an invertible OX -module ample on X/B, see Divisors on Spaces,
Definition 14.1. The algebraic space HilbPX/B parametrizing closed subschemes having
Hilbert polynomial P with respect to L is separated of finite presentation over B.

Proof. Recall that HilbX/B = QuotOX/X/B , see Quot, Lemma 9.2. Thus this lemma
is an immediate consequence of Lemma 6.4. �

8. Properties of the Picard stack

Let f : X → B be a morphism of algebraic spaces which is flat, proper, and of finite pre-
sentation. Then the stack PicX/B parametrizing invertible sheaves on X/B is algebraic,
see Quot, Proposition 10.2.

Lemma 8.1. The diagonal of PicX/B over B is affine and of finite presentation.

Proof. In Quot, Lemma 10.1 we have seen thatPicX/B is an open substack of CohX/B .
Hence this follows from Lemma 4.1. �

Lemma 8.2. The morphism PicX/B → B is quasi-separated and locally of finite
presentation.

Proof. In Quot, Lemma 10.1 we have seen thatPicX/B is an open substack of CohX/B .
Hence this follows from Lemma 4.2. �

Lemma 8.3. AssumeX → B is smooth in addition to being proper. ThenPicX/B →
B satisfies the existence part of the valuative criterion (Morphisms of Stacks, Definition
39.10).

Proof. Taking base change, this immediately reduces to the following problem: given
a valuation ring R with fraction field K and an algebraic space X proper and smooth
over R and an invertible OXK -module LK , show there exists an invertible OX -module
L whose generic fibre is LK . Observe that XK is Noetherian, separated, and regular (use
Morphisms of Spaces, Lemma 28.6 and Spaces over Fields, Lemma 16.1). Thus we can write
LK as the difference in the Picard group of OXK (DK) and OXK (D′

K) for two effective
Cartier divisors DK , D

′
K in XK , see Divisors on Spaces, Lemma 8.4. Finally, we know

that DK and D′
K are restrictions of effective Cartier divisors D,D′ ⊂ X , see Divisors on

Spaces, Lemma 8.5. �

Lemma 8.4. Assume fT,∗OXT ∼= OT for all schemes T over B. Then the inertia
stack of PicX/B is equal to Gm × PicX/B .

Proof. This is explained in Examples of Stacks, Example 17.2. �
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Lemma 8.5. Assume f : X → B has relative dimension≤ 1 in addition to the other
assumptions in this section. Then PicX/B → B is smooth.

Proof. We already know that PicX/B → B is locally of finite presentation, see
Lemma 8.2. Thus it suffices to show that PicX/B → B is formally smooth, see More
on Morphisms of Stacks, Lemma 8.7. Taking base change, this immediately reduces to the
following problem: given a first order thickening T ⊂ T ′ of affine schemes, given X ′ →
T ′ proper, flat, of finite presentation and of relative dimension≤ 1, and forX = T×T ′X ′

given an invertible OX -module L, prove that there exists an invertible OX′ -module L′

whose restriction to X is L. Since T ⊂ T ′ is a first order thickening, the same is true
for X ⊂ X ′, see More on Morphisms of Spaces, Lemma 9.8. By More on Morphisms of
Spaces, Lemma 11.1 we see that it suffices to show H2(X, I) = 0 where I is the quasi-
coherent ideal cutting out X in X ′. Denote f : X → T the structure morphism. By
Cohomology of Spaces, Lemma 22.9 we see that Rpf∗I = 0 for p > 1. Hence we get
the desired vanishing by Cohomology of Spaces, Lemma 3.2 (here we finally use that T is
affine). �

9. Properties of the Picard functor

Let f : X → B be a morphism of algebraic spaces which is flat, proper, and of finite
presentation such that moreover for every T/B the canonical map

OT −→ fT,∗OXT
is an isomorphism. Then the Picard functor PicX/B is an algebraic space, see Quot, Propo-
sition 11.8. There is a closed relationship with the Picard stack.

Lemma 9.1. The morphism PicX/B → PicX/B turns the Picard stack into a gerbe
over the Picard functor.

Proof. The definition of PicX/B → PicX/B being a gerbe is given in Morphisms of
Stacks, Definition 28.1, which in turn refers to Stacks, Definition 11.4. To prove it, we will
check conditions (2)(a) and (2)(b) of Stacks, Lemma 11.3. This follows immediately from
Quot, Lemma 11.2; here is a detailed explanation.
Condition (2)(a). Suppose that ξ ∈ PicX/B(U) for some scheme U overB. Since PicX/B
is the fppf sheafification of the rule T 7→ Pic(XT ) on schemes over B (Quot, Situation
11.1), we see that there exists an fppf covering {Ui → U} such that ξ|Ui corresponds to
some invertible module Li on XUi . Then (Ui → B,Li) is an object of PicX/B over Ui
mapping to ξ|Ui .
Condition (2)(b). Suppose that U is a scheme over B and L,N are invertible modules on
XU which map to the same element of PicX/B(U). Then there exists an fppf covering
{Ui → U} such that L|XUi is isomorphic toN|XUi . Thus we find isomorphisms between
(U → B,L)|Ui → (U → B,N )|Ui as desired. �

Lemma 9.2. The diagonal of PicX/B over B is a quasi-compact immersion.

Proof. The diagonal is an immersion by Quot, Lemma 11.9. To finish we show that
the diagonal is quasi-compact. The diagonal of PicX/B is quasi-compact by Lemma 8.1
and PicX/B is a gerbe over PicX/B by Lemma 9.1. We conclude by Morphisms of Stacks,
Lemma 28.14. �

Lemma 9.3. The morphism PicX/B → B is quasi-separated and locally of finite
presentation.
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Proof. To check PicX/B → B is quasi-separated we have to show that its diagonal
is quasi-compact. This is immediate from Lemma 9.2. Since the morphism PicX/B →
PicX/B is surjective, flat, and locally of finite presentation (by Lemma 9.1 and Morphisms
of Stacks, Lemma 28.8) it suffices to prove that PicX/B → B is locally of finite presenta-
tion, see Morphisms of Stacks, Lemma 27.12. This follows from Lemma 8.2. �

Lemma 9.4. Assume the geometric fibres of X → B are integral in addition to the
other assumptions in this section. Then PicX/B → B is separated.

Proof. Since PicX/B → B is quasi-separated, it suffices to check the uniqueness part
of the valuative criterion, see Morphisms of Spaces, Lemma 43.2. This immediately reduces
to the following problem: given

(1) a valuation ring R with fraction field K ,
(2) an algebraic space X proper and flat over R with integral geometric fibre,
(3) an element a ∈ PicX/R(R) with a|Spec(K) = 0,

then we have to prove a = 0. Applying Morphisms of Stacks, Lemma 25.6 to the surjective
flat morphism PicX/R → PicX/R (surjective and flat by Lemma 9.1 and Morphisms of
Stacks, Lemma 28.8) after replacing R by an extension we may assume a is given by an
invertibleOX -module L. Since a|Spec(K) = 0 we find LK ∼= OXK by Quot, Lemma 11.3.

Denote f : X → Spec(R) the structure morphism. Let η, 0 ∈ Spec(R) be the generic
and closed point. Consider the perfect complexes K = Rf∗L and M = Rf∗(L⊗−1) on
Spec(R), see Derived Categories of Spaces, Lemma 25.4. Consider the functionsβK,i, βM,i :
Spec(R)→ Z of Derived Categories of Spaces, Lemma 26.1 associated toK andM . Since
the formation of K amd M commutes with base change (see lemma cited above) we find
βK,0(η) = βM,0(β) = 1 by Spaces over Fields, Lemma 14.3 and our assumption on the
fibres of f . By upper semi-continuity we find βK,0(0) ≥ 1 and βM,0 ≥ 1. By Spaces over
Fields, Lemma 14.4 we conclude that the restriction of L to the special fibre X0 is trivial.
In turn this gives βK,0(0) = βM,0 = 1 as above. Then by More on Algebra, Lemma 75.5
we can represent K by a complex of the form

. . .→ 0→ R→ R⊕βK,1(0) → R⊕βK,2(0) → . . .

Now R → R⊕βK,1(0) is zero because βK,0(η) = 1. In other words K = R ⊕ τ≥1(K)
in D(R) where τ≥1(K) has tor amplitude in [1, b] for some b ∈ Z. Hence there is a
global section s ∈ H0(X,L) whose restriction s0 to X0 is nonvanishing (again because
formation of K commutes with base change). Then s : OX → L is a map of invertible
sheaves whose restriction toX0 is an isomorphism and hence is an isomorphism as desired.

�

Lemma 9.5. Assume f : X → B has relative dimension≤ 1 in addition to the other
assumptions in this section. Then PicX/B → B is smooth.

Proof. By Lemma 8.5 we know thatPicX/B → B is smooth. The morphismPicX/B →
PicX/B is surjective and smooth by combining Lemma 9.1 with Morphisms of Stacks,
Lemma 33.8. Thus if U is a scheme and U → PicX/B is surjective and smooth, then
U → PicX/B is surjective and smooth andU → B is surjective and smooth (because these
properties are preserved by composition). Thus PicX/B → B is smooth for example by
Descent on Spaces, Lemma 8.3. �
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10. Properties of relative morphisms

Let B be an algebraic space. Let X and Y be algebraic spaces over B such that Y → B is
flat, proper, and of finite presentation and X → B is separated and of finite presentation.
Then the functor MorB(Y,X) of relative morphisms is an algebraic space locally of finite
presentation over B. See Quot, Proposition 12.3.

Lemma 10.1. The diagonal of MorB(Y,X) → B is a closed immersion of finite
presentation.

Proof. There is an open immersion MorB(Y,X)→ HilbY×BX/B , see Quot, Lemma
12.2. Thus the lemma follows from Lemma 7.1. �

Lemma 10.2. The morphism MorB(Y,X) → B is separated and locally of finite
presentation.

Proof. To check MorB(Y,X) → B is separated we have to show that its diagonal
is a closed immersion. This is true by Lemma 10.1. The second statement is part of Quot,
Proposition 12.3. �

Lemma 10.3. WithB,X, Y as in the introduction of this section, in addition assume
X → B is proper. Then the subfunctor IsomB(Y,X) ⊂ MorB(Y,X) of isomorphisms
is an open subspace.

Proof. Follows immediately from More on Morphisms of Spaces, Lemma 49.6. �

Remark 10.4 (Numerical invariants). Let B,X, Y be as in the introduction to this
section. Let I be a set and for i ∈ I let Ei ∈ D(OY×BX) be perfect. Let P : I → Z be a
function. Recall that

MorB(Y,X) ⊂ HilbY×BX/B

is an open subspace, see Quot, Lemma 12.2. Thus we can define

MorPB(Y,X) = MorB(Y,X) ∩HilbPY×BX/B

where HilbPY×BX/B is as in Remark 7.6. The morphism

MorPB(Y,X) −→ MorB(Y,X)
is a flat closed immersion which is an open and closed immersion for example if I is finite,
or B is locally Noetherian, or I = Z, Ei = L⊗i for some invertible OY×BX -module L.
In the last case we sometimes use the notation MorP,LB (Y,X).

Lemma 10.5. With B,X, Y as in the introduction of this section, let L be ample on
X/B and let N be ample on Y/B. See Divisors on Spaces, Definition 14.1. Let P be a
numerical polynomial. Then

MorP,MB (Y,X) −→ B

is separated and of finite presentation whereM = pr∗
1N ⊗OY×BX

pr∗
2L.

Proof. By Lemma 10.2 the morphism MorB(Y,X)→ B is separated and locally of
finite presentation. Thus it suffices to show that the open and closed subspace MorP,MB (Y,X)
of Remark 10.4 is quasi-compact over B.

The question is étale local on B (Morphisms of Spaces, Lemma 8.8). Thus we may assume
B is affine.
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Assume B = Spec(Λ). Note that X and Y are schemes and that L and N are ample
invertible sheaves on X and Y (this follows immediately from the definitions). Write
Λ = colim Λi as the colimit of its finite type Z-subalgebras. Then we can find an i and a
system Xi, Yi,Li,Ni as in the lemma over Bi = Spec(Λi) whose base change to B gives
X,Y,L,N . This follows from Limits, Lemmas 10.1 (to find Xi, Yi), 10.3 (to find Li, Ni),
8.6 (to make Xi → Bi separated), 13.1 (to make Yi → Bi proper), and 4.15 (to make Li,
Ni ample). Because

MorB(Y,X) = B ×Bi MorBi(Yi, Xi)
and similarly for MorPB(Y,X) we reduce to the case discussed in the next paragraph.
Assume B is a Noetherian affine scheme. By Properties, Lemma 26.15 we see thatM is
ample. By Lemma 7.8 we see that HilbP,MY×BX/B is of finite presentation over B and hence
Noetherian. By construction

MorP,MB (Y,X) = MorB(Y,X) ∩HilbP,MY×BX/B

is an open subspace of HilbP,MY×BX/B and hence quasi-compact (as an open of a Noetherian
algebraic space is quasi-compact). �

11. Properties of the stack of polarized proper schemes

In this section we discuss properties of the moduli stack
Polarized −→ Spec(Z)

whose category of sections over a schemeS is the category of proper, flat, finitely presented
scheme over S endowed with a relatively ample invertible sheaf. This is an algebraic stack
by Quot, Theorem 14.15.

Lemma 11.1. The diagonal of Polarized is separated and of finite presentation.

Proof. Recall that Polarized is a limit preserving algebraic stack, see Quot, Lemma
14.8. By Limits of Stacks, Lemma 3.6 this implies that ∆ : Polarized → Polarized ×
Polarized is limit preserving. Hence ∆ is locally of finite presentation by Limits of Stacks,
Proposition 3.8.
Let us prove that ∆ is separated. To see this, it suffices to show that given an affine scheme
U and two objects υ = (Y,N ) and χ = (X,L) of Polarized over U , the algebraic space

IsomPolarized(υ, χ)
is separated. The rule which to an isomorphism υT → χT assigns the underlying isomor-
phism YT → XT defines a morphism

IsomPolarized(υ, χ) −→ IsomU (Y,X)
Since we have seen in Lemmas 10.2 and 10.3 that the target is a separated algebraic space,
it suffices to prove that this morphism is separated. Given an isomorphism f : YT → XT

over some scheme T/U , then clearly
IsomPolarized(υ, χ)×IsomU (Y,X),[f ] T = Isom(NT , f∗LT )

Here [f ] : T → IsomU (Y,X) indicates the T -valued point corresponding to f and
Isom(NT , f∗LT ) is the algebraic space discussed in Section 3. Since this algebraic space
is affine over U , the claim implies ∆ is separated.
To finish the proof we show that ∆ is quasi-compact. Since ∆ is representable by algebraic
spaces, it suffice to check the base change of ∆ by a surjective smooth morphism U →



11. PROPERTIES OF THE STACK OF POLARIZED PROPER SCHEMES 7077

Polarized×Polarized is quasi-compact (see for example Properties of Stacks, Lemma 3.3).
We can assume U =

∐
Ui is a disjoint union of affine opens. Since Polarized is limit

preserving (see above), we see that Polarized → Spec(Z) is locally of finite presentation,
hence Ui → Spec(Z) is locally of finite presentation (Limits of Stacks, Proposition 3.8
and Morphisms of Stacks, Lemmas 27.2 and 33.5). In particular, Ui is Noetherian affine.
This reduces us to the case discussed in the next paragraph.

In this paragraph, given a Noetherian affine scheme U and two objects υ = (Y,N ) and
χ = (X,L) of Polarized over U , we show the algebraic space

IsomPolarized(υ, χ)
is quasi-compact. Since the connected components of U are open and closed we may re-
place U by these. Thus we may and do assume U is connected. Let u ∈ U be a point.
Let P be the Hilbert polynomial n 7→ χ(Yu,N⊗n

u ), see Varieties, Lemma 45.1. Since
U is connected and since the functions u 7→ χ(Yu,N⊗n

u ) are locally constant (see De-
rived Categories of Schemes, Lemma 32.2) we see that we get the same Hilbert polyno-
mial in every point of U . SetM = pr∗

1N ⊗OY×UX
pr∗

2L on Y ×U X . Given (f, ϕ) ∈
IsomPolarized(υ, χ)(T ) for some scheme T over U then for every t ∈ T we have

χ(Yt, (id× f)∗M⊗n) = χ(Yt,N⊗n
t ⊗OYt

f∗
t L⊗n

t ) = χ(Yt,N⊗2n
t ) = P (2n)

where in the middle equality we use the isomorphism ϕ : f∗LT → NT . Setting P ′(t) =
P (2t) we find that the morphism

IsomPolarized(υ, χ) −→ IsomU (Y,X)
(see earlier) has image contained in the intersection

IsomU (Y,X) ∩MorP
′,M

U (Y,X)
The intersection is an intersection of open subspaces of MorU (Y,X) (see Lemma 10.3
and Remark 10.4). Now MorP

′,M
U (Y,X) is a Noetherian algebraic space as it is of finite

presentation over U by Lemma 10.5. Thus the intersection is a Noetherian algebraic space
too. Since the morphism

IsomPolarized(υ, χ) −→ IsomU (Y,X) ∩MorP
′,M

U (Y,X)
is affine (see above) we conclude. �

Lemma 11.2. The morphism Polarized → Spec(Z) is quasi-separated and locally of
finite presentation.

Proof. To check Polarized → Spec(Z) is quasi-separated we have to show that its
diagonal is quasi-compact and quasi-separated. This is immediate from Lemma 11.1. To
prove that Polarized → Spec(Z) is locally of finite presentation, it suffices to show that
Polarized is limit preserving, see Limits of Stacks, Proposition 3.8. This is Quot, Lemma
14.8. �

Lemma 11.3. Let n ≥ 1 be an integer and let P be a numerical polynomial. Let

T ⊂ |Polarized|
be a subset with the following property: for every ξ ∈ T there exists a field k and an object
(X,L) of Polarized over k representing ξ such that

(1) the Hilbert polynomial of L on X is P , and
(2) there exists a closed immersion i : X → Pn

k such that i∗OPn(1) ∼= L.
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Then T is a Noetherian topological space, in particular quasi-compact.
Proof. Observe that |Polarized| is a locally Noetherian topological space, see Mor-

phisms of Stacks, Lemma 8.3 (this also uses that Spec(Z) is Noetherian and hencePolarized
is a locally Noetherian algebraic stack by Lemma 11.2 and Morphisms of Stacks, Lemma
17.5). Thus any quasi-compact subset of |Polarized| is a Noetherian topological space and
any subset of such is also Noetherian, see Topology, Lemmas 9.4 and 9.2. Thus all we have
to do is a find a quasi-compact subset containing T .
By Lemma 7.7 the algebraic space

H = HilbP,O(1)
PnZ/ Spec(Z)

is proper over Spec(Z). By Quot, Lemma 9.31 the identity morphism of H corresponds
to a closed subspace

Z ⊂ Pn
H

which is proper, flat, and of finite presentation over H and such that the restrictionN =
O(1)|Z is relatively ample onZ/H and has Hilbert polynomialP on the fibres ofZ → H .
In particular, the pair (Z → H,N ) defines a morphism

H −→ Polarized
which sends a morphism of schemes U → H to the classifying morphism of the family
(ZU → U,NU ), see Quot, Lemma 14.4. Since H is a Noetherian algebraic space (as it is
proper over Z)) we see that |H| is Noetherian and hence quasi-compact. The map

|H| −→ |Polarized|
is continuous, hence the image is quasi-compact. Thus it suffices to prove T is contained in
the image of |H| → |Polarized|. However, assumptions (1) and (2) exactly express the fact
that this is the case: any choice of a closed immersion i : X → Pn

k with i∗OPn(1) ∼= L
we get a k-valued point of H by the moduli interpretation of H . This finishes the proof
of the lemma. �

12. Properties of moduli of complexes on a proper morphism

Let f : X → B be a morphism of algebraic spaces which is proper, flat, and of finite
presentation. Then the stack ComplexesX/B parametrizing relatively perfect complexes
with vanishing negative self-exts is algebraic. See Quot, Theorem 16.12.

Lemma 12.1. The diagonal of ComplexesX/B over B is affine and of finite presenta-
tion.

Proof. The representability of the diagonal by algebraic spaces was shown in Quot,
Lemma 16.5. From the proof we find that we have to show: given a scheme T over B and
objects E,E′ ∈ D(OXT ) such that (T,E) and (T,E′) are objects of the fibre category of
ComplexesX/B over T , then Isom(E,E′) → T is affine and of finite presentation. Here
Isom(E,E′) is the functor

(Sch/T )opp → Sets, T ′ 7→ {ϕ : ET ′ → E′
T ′ isomorphism in D(OXT ′ )}

where ET ′ and E′
T ′ are the derived pullbacks of E and E′ to XT ′ . Consider the functor

H = Hom(E,E′) defined by the rule
(Sch/T )opp → Sets, T ′ 7→ HomOX

T ′
(ET , E′

T )

1We will see later (insert future reference here) that H is a scheme and hence the use of this lemma and
Quot, Lemma 14.4 isn’t necessary.
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By Quot, Lemma 16.1 this is an algebraic space affine and of finite presentation over T . The
same is true for H ′ = Hom(E′, E), I = Hom(E,E), and I ′ = Hom(E′, E′). Therefore
we see that

Isom(E,E′) = (H ′ ×T H)×c,I×T I′,σ T

where c(ϕ′, ϕ) = (ϕ ◦ ϕ′, ϕ′ ◦ ϕ) and σ = (id, id) (compare with the proof of Quot,
Proposition 4.3). Thus Isom(E,E′) is affine over T as a fibre product of schemes affine
over T . Similarly, Isom(E,E′) is of finite presentation over T . �

Lemma 12.2. The morphism ComplexesX/B → B is quasi-separated and locally of
finite presentation.

Proof. To check ComplexesX/B → B is quasi-separated we have to show that its
diagonal is quasi-compact and quasi-separated. This is immediate from Lemma 12.1. To
prove that ComplexesX/B → B is locally of finite presentation, we have to show that
ComplexesX/B → B is limit preserving, see Limits of Stacks, Proposition 3.8. This follows
from Quot, Lemma 16.8 (small detail omitted). �
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CHAPTER 109

Moduli of Curves

1. Introduction

In this chapter we discuss some of the familiar moduli stacks of curves. A reference is the
celebrated article of Deligne and Mumford, see [?].

2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Properties of
Stacks, Section 2. Unless otherwise mentioned our base scheme will be Spec(Z).

3. The stack of curves

This section is the continuation of Quot, Section 15. Let Curves be the stack whose category
of sections over a scheme S is the category of families of curves over S. It is somewhat
important to keep in mind that a family of curves is a morphism f : X → S where X is
an algebraic space (!) and f is flat, proper, of finite presentation and of relative dimension
≤ 1. We already know that Curves is an algebraic stack over Z, see Quot, Theorem 15.11.
If we did not allow algebraic spaces in the definition of our stack, then this theorem would
be false.

Often base change is denoted by a subscript, but we cannot use this notation for Curves
because CurvesS is our notation for the fibre category overS. This is why in Quot, Remark
15.5 we used B-Curves for the base change

B-Curves = Curves ×B
to the algebraic space B. The product on the right is over the final object, i.e., over
Spec(Z). The object on the left is the stack classifying families of curves on the category
of schemes over B. In particular, if k is a field, then

k-Curves = Curves × Spec(k)
is the moduli stack classifying families of curves on the category of schemes over k. Before
we continue, here is a sanity check.

Lemma 3.1. Let T → B be a morphism of algebraic spaces. The category

MorB(T,B-Curves) = Mor(T, Curves)
is the category of families of curves over T .

Proof. A family of curves over T is a morphism f : X → T of algebraic spaces,
which is flat, proper, of finite presentation, and has relative dimension ≤ 1 (Morphisms
of Spaces, Definition 33.2). This is exactly the same as the definition in Quot, Situation
15.1 except that T the base is allowed to be an algebraic space. Our default base category
for algebraic stacks/spaces is the category of schemes, hence the lemma does not follow

7081
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immediately from the definitions. Having said this, we encourage the reader to skip the
proof.

By the product description of B-Curves given above, it suffices to prove the lemma in
the absolute case. Choose a scheme U and a surjective étale morphism p : U → T . Let
R = U ×T U with projections s, t : R→ U .

Let v : T → Curves be a morphism. Then v◦p corresponds to a family of curvesXU → U .
The canonical 2-morphism v ◦ p ◦ t → v ◦ p ◦ s is an isomorphism ϕ : XU ×U,s R →
XU ×U,t R. This isomorphism satisfies the cocycle condition on R×s,t R. By Bootstrap,
Lemma 11.3 we obtain a morphism of algebraic spaces X → T whose pullback to U is
equal to XU compatible with ϕ. Since {U → T} is an étale covering, we see that X → T
is flat, proper, of finite presentation by Descent on Spaces, Lemmas 11.13, 11.19, and 11.12.
Also X → T has relative dimension ≤ 1 because this is an étale local property. Hence
X → T is a family of curves over T .

Conversely, let X → T be a family of curves. Then the base change XU determines a
morphism w : U → Curves and the canonical isomorphism XU ×U,s R → XU ×U,t R
determines a 2-arrow w ◦ s → w ◦ t satisfying the cocycle condition. Thus a morphism
v : T = [U/R]→ Curves by the universal property of the quotient [U/R], see Groupoids
in Spaces, Lemma 23.2. (Actually, it is much easier in this case to go back to before we
introduced our abuse of language and direct construct the functor Sch/T → Curves which
“is” the morphism T → Curves.)

We omit the verification that the constructions given above extend to morphisms between
objects and are mutually quasi-inverse. �

4. The stack of polarized curves

In this section we work out some of the material discussed in Quot, Remark 15.13. Consider
the 2-fibre product

Curves ×Spaces′
fp,flat,proper

Polarized //

��

Polarized

��
Curves // Spaces′

fp,flat,proper

We denote this 2-fibre product by

PolarizedCurves = Curves ×Spaces′
fp,flat,proper

Polarized

This fibre product parametrizes polarized curves, i.e., families of curves endowed with a
relatively ample invertible sheaf. More precisely, an object of PolarizedCurves is a pair
(X → S,L) where

(1) X → S is a morphism of schemes which is proper, flat, of finite presentation,
and has relative dimension ≤ 1, and

(2) L is an invertibleOX -module which is relatively ample on X/S.
A morphism (X ′ → S′,L′) → (X → S,L) between objects of PolarizedCurves is given
by a triple (f, g, ϕ) where f : X ′ → X and g : S′ → S are morphisms of schemes which
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fit into a commutative diagram
X ′

��

f
// X

��
S′ g // S

inducing an isomorphism X ′ → S′ ×S X , in other words, the diagram is cartesian, and
ϕ : f∗L → L′ is an isomorphism. Composition is defined in the obvious manner.

Lemma 4.1. The morphism PolarizedCurves → Polarized is an open and closed
immersion.

Proof. This is true because the 1-morphism Curves → Spaces′
fp,flat,proper is repre-

sentable by open and closed immersions, see Quot, Lemma 15.12. �

Lemma 4.2. The morphism PolarizedCurves→ Curves is smooth and surjective.

Proof. Surjective. Given a field k and a proper algebraic spaceX over k of dimension
≤ 1, i.e., an object of Curves over k. By Spaces over Fields, Lemma 9.3 the algebraic space
X is a scheme. HenceX is a proper scheme of dimension≤ 1 over k. By Varieties, Lemma
43.4 we see that X is H-projective over κ. In particular, there exists an ample invertible
OX -module L on X . Then (X,L) is an object of PolarizedCurves over k which maps to
X .

Smooth. Let X → S be an object of Curves, i.e., a morphism S → Curves. It is clear that

PolarizedCurves×Curves S ⊂ PicX/S
is the substack of objects (T/S,L/XT ) such that L is ample on XT /T . This is an open
substack by Descent on Spaces, Lemma 13.2. Since PicX/S → S is smooth by Moduli
Stacks, Lemma 8.5 we win. �

Lemma 4.3. Let X → S be a family of curves. Then there exists an étale covering
{Si → S} such that Xi = X ×S Si is a scheme. We may even assume Xi is H-projective
over Si.

Proof. This is an immediate corollary of Lemma 4.2. Namely, unwinding the defi-
nitions, this lemma gives there is a surjective smooth morphism S′ → S such that X ′ =
X ×S S′ comes endowed with an invertible OX′ -module L′ which is ample on X ′/S′.
Then we can refine the smooth covering {S′ → S} by an étale covering {Si → S},
see More on Morphisms, Lemma 38.7. After replacing Si by a suitable open covering we
may assume Xi → Si is H-projective, see Morphisms, Lemmas 43.6 and 43.4 (this is also
discussed in detail in More on Morphisms, Section 50). �

5. Properties of the stack of curves

The following lemma isn’t true for moduli of surfaces, see Remark 5.2.

Lemma 5.1. The diagonal of Curves is separated and of finite presentation.

Proof. Recall that Curves is a limit preserving algebraic stack, see Quot, Lemma 15.6.
By Limits of Stacks, Lemma 3.6 this implies that ∆ : Polarized → Polarized×Polarized is
limit preserving. Hence ∆ is locally of finite presentation by Limits of Stacks, Proposition
3.8.
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Let us prove that ∆ is separated. To see this, it suffices to show that given a scheme U and
two objects Y → U and X → U of Curves over U , the algebraic space

IsomU (Y,X)
is separated. This we have seen in Moduli Stacks, Lemmas 10.2 and 10.3 that the target is
a separated algebraic space.

To finish the proof we show that ∆ is quasi-compact. Since ∆ is representable by algebraic
spaces, it suffices to check the base change of ∆ by a surjective smooth morphism U →
Curves × Curves is quasi-compact (see for example Properties of Stacks, Lemma 3.3). We
chooseU =

∐
Ui to be a disjoint union of affine opens with a surjective smooth morphism

U −→ PolarizedCurves× PolarizedCurves

Then U → Curves × Curves will be surjective and smooth since PolarizedCurves →
Curves is surjective and smooth by Lemma 4.2. Since PolarizedCurves is limit preserv-
ing (by Artin’s Axioms, Lemma 11.2 and Quot, Lemmas 15.6, 14.8, and 13.6), we see that
PolarizedCurves → Spec(Z) is locally of finite presentation, hence Ui → Spec(Z) is
locally of finite presentation (Limits of Stacks, Proposition 3.8 and Morphisms of Stacks,
Lemmas 27.2 and 33.5). In particular, Ui is Noetherian affine. This reduces us to the case
discussed in the next paragraph.

In this paragraph, given a Noetherian affine scheme U and two objects (Y,N ) and (X,L)
of PolarizedCurves over U , we show the algebraic space

IsomU (Y,X)
is quasi-compact. Since the connected components of U are open and closed we may re-
place U by these. Thus we may and do assume U is connected. Let u ∈ U be a point. Let
Q, P be the Hilbert polynomials of these families, i.e.,

Q(n) = χ(Yu,N⊗n
u ) and P (n) = χ(Xu,L⊗n

u )
see Varieties, Lemma 45.1. Since U is connected and since the functions u 7→ χ(Yu,N⊗n

u )
and u 7→ χ(Xu,L⊗n

u ) are locally constant (see Derived Categories of Schemes, Lemma
32.2) we see that we get the same Hilbert polynomial in every point of U . Set

M = pr∗
1N ⊗OY×UX

pr∗
2L

on Y ×U X . Given (f, ϕ) ∈ IsomU (Y,X)(T ) for some scheme T over U then for every
t ∈ T we have

χ(Yt, (id× f)∗M⊗n) = χ(Yt,N⊗n
t ⊗OYt

f∗
t L⊗n

t )
= n deg(Nt) + n deg(f∗

t Lt) + χ(Yt,OYt)
= Q(n) + n deg(Lt)
= Q(n) + P (n)− P (0)

by Riemann-Roch for proper curves, more precisely by Varieties, Definition 44.1 and
Lemma 44.7 and the fact that ft is an isomorphism. Setting P ′(t) = Q(t) + P (t)− P (0)
we find

IsomU (Y,X) = IsomU (Y,X) ∩MorP
′,M

U (Y,X)
The intersection is an intersection of open subspaces of MorU (Y,X), see Moduli Stacks,
Lemma 10.3 and Remark 10.4. Now MorP

′,M
U (Y,X) is a Noetherian algebraic space as it

is of finite presentation over U by Moduli Stacks, Lemma 10.5. Thus the intersection is a
Noetherian algebraic space too and the proof is finished. �
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Remark 5.2. The boundedness argument in the proof of Lemma 5.1 does not work
for moduli of surfaces and in fact, the result is wrong, for example because K3 surfaces
over fields can have infinite discrete automorphism groups. The “reason” the argument
does not work is that on a projective surface S over a field, given ample invertible sheaves
N and L with Hilbert polynomials Q and P , there is no a priori bound on the Hilbert
polynomial of N ⊗OS

L. In terms of intersection theory, if H1, H2 are ample effective
Cartier divisors on S , then there is no (upper) bound on the intersection number H1 ·H2
in terms of H1 ·H1 and H2 ·H2.

Lemma 5.3. The morphism Curves → Spec(Z) is quasi-separated and locally of finite
presentation.

Proof. To check Curves → Spec(Z) is quasi-separated we have to show that its
diagonal is quasi-compact and quasi-separated. This is immediate from Lemma 5.1. To
prove that Curves → Spec(Z) is locally of finite presentation, it suffices to show that
Curves is limit preserving, see Limits of Stacks, Proposition 3.8. This is Quot, Lemma
15.6. �

6. Open substacks of the stack of curves

Below we will often characterize an open substack of Curves by a propery P of morphisms
of algebraic spaces. To see that P defines an open substack it suffices to check

(o) given a family of curves f : X → S there exists a largest open subscheme S′ ⊂
S such that f |f−1(S′) : f−1(S′) → S′ has P and such that formation of S′

commutes with arbitrary base change.
Namely, suppose (o) holds. Choose a scheme U and a surjective smooth morphism m :
U → Curves. Let R = U ×Curves U and denote t, s : R → U the projections. Recall
that Curves = [U/R] is a presentation, see Algebraic Stacks, Lemma 16.2 and Definition
16.5. By construction of Curves as the stack of curves, the morphism m is the classifying
morphism for a family of curves C → U . The 2-commutativity of the diagram

R
s
//

t

��

U

��
U // Curves

implies thatC×U,sR ∼= C×U,tR (isomorphism of families of curves overR). LetW ⊂ U
be the largest open subscheme such that f |f−1(W ) : f−1(W )→ W has P as in (o). Since
formation of W commutes with base change according to (o) and by the isomorphism
above we find that s−1(W ) = t−1(W ). Thus W ⊂ U corresponds to an open substack

CurvesP ⊂ Curves
according to Properties of Stacks, Lemma 9.8.
Continuing with the setup of the previous paragrpah, we claim the open substack CurvesP
has the following two universal properties:

(1) given a family of curves X → S the following are equivalent
(a) the classifying morphism S → Curves factors through CurvesP ,
(b) the morphism X → S has P ,

(2) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesP ,
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(b) the morphism X → Spec(k) has P .
This follows by considering the 2-fibre product

T
p
//

q

��

U

��
S // Curves

Observe that T → S is surjective and smooth as the base change of U → Curves. Thus
the open S′ ⊂ S given by (o) is determined by its inverse image in T . However, by the
invariance under base change of these opens in (o) and becauseX ×S T ∼= C ×U T by the
2-commutativity, we find q−1(S′) = p−1(W ) as opens of T . This immediately implies
(1). Part (2) is a special case of (1).

Given two properties P and Q of morphisms of algebraic spaces, supposing we already
have established CurvesQ is an open substack of Curves, then we can use exactly the same
method to prove openness of CurvesQ,P ⊂ CurvesQ. We omit a precise explanation.

7. Curves with finite reduced automorphism groups

Let X be a proper scheme over a field k of dimension ≤ 1, i.e., an object of Curves over
k. By Lemma 5.1 the automorphism group algebraic space Aut(X) is finite type and sep-
arated over k. In particular, Aut(X) is a group scheme, see More on Groupoids in Spaces,
Lemma 10.2. If the characteristic of k is zero, then Aut(X) is reduced and even smooth
over k (Groupoids, Lemma 8.2). However, in general Aut(X) is not reduced, even if X is
geometrically reduced.

Example 7.1 (Non-reduced automorphism group). Let k be an algebraically closed
field of characteristic 2. Set Y = Z = P1

k. Choose three pairwise distinct k-valued points
a, b, c in A1

k. Thinking of A1
k ⊂ P1

k = Y = Z as an open subschemes, we get a closed
immersion

T = Spec(k[t]/(t− a)2)q Spec(k[t]/(t− b)2)q Spec(k[t]/(t− c)2) −→ P1
k

Let X be the pushout in the diagram

T //

��

Y

��
Z // X

Let U ⊂ X be the affine open part which is the image of A1
k q A1

k. Then we have an
equalizer diagram

OX(U) // k[t]× k[t] //
// k[t]/(t− a)2 × k[t]/(t− b)2 × k[t]/(t− c)2

Over the dual numbers A = k[ε] we have a nontrivial automorphism of this equalizer
diagram sending t to t+ε. We leave it to the reader to see that this automorphism extends
to an automorphism of X over A. On the other hand, the reader easily shows that the
automorphism group of X over k is finite. Thus Aut(X) must be non-reduced.

Let X be a proper scheme over a field k of dimension ≤ 1, i.e., an object of Curves over k.
If Aut(X) is geometrically reduced, then it need not be the case that it has dimension 0,
even if X is smooth and geometrically connected.
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Example 7.2 (Smooth positive dimensional automorphism group). Let k be an al-
gebraically closed field. If X is a smooth genus 0, resp. 1 curve, then the automorphism
group has dimension 3, resp. 1. Namely, in the genus 0 case we haveX ∼= P1

k by Algebraic
Curves, Proposition 10.4. Since

Aut(P1
k) = PGL2,k

as functors we see that the dimension is 3. On the other hand, if the genus of X is 1, then
we see that the map X = Hilb1

X/k → Pic1
X/k is an isomorphism, see Picard Schemes

of Curves, Lemma 6.7 and Algebraic Curves, Theorem 2.6. Thus X has the structure
of an abelian variety (since Pic1

X/k
∼= Pic0

X/k). In particular the (co)tangent bundle of
X are trivial (Groupoids, Lemma 6.3). We conclude that dimkH

0(X,TX) = 1 hence
dim Aut(X) ≤ 1. On the other hand, the translations (viewing X as a group scheme)
provide a 1-dimensional piece of Aut(X) and we conlude its dimension is indeed 1.

It turns out that there is an open substack of Curves parametrizing curves whose automor-
phism group is geometrically reduced and finite. Here is a precise statement.

Lemma 7.3. There exist an open substack CurvesDM ⊂ Curves with the following
properties

(1) CurvesDM ⊂ Curves is the maximal open substack which is DM,
(2) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesDM ,
(b) the group algebraic space AutS(X) is unramified over S ,

(3) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesDM ,
(b) Aut(X) is geometrically reduced over k and has dimension 0,
(c) Aut(X)→ Spec(k) is unramified.

Proof. The existence of an open substack with property (1) is Morphisms of Stacks,
Lemma 22.1. The points of this open substack are characterized by (3)(c) by Morphisms of
Stacks, Lemma 22.2. The equivalence of (3)(b) and (3)(c) is the statement that an algebraic
space G which is locally of finite type, geometrically reduced, and of dimension 0 over
a field k, is unramified over k. First, G is a scheme by Spaces over Fields, Lemma 9.1.
Then we can take an affine open in G and observe that it will be proper over k and apply
Varieties, Lemma 9.3. Minor details omitted.

Part (2) is true because (3) holds. Namely, the morphism AutS(X)→ S is locally of finite
type. Thus we can check whether AutS(X)→ S is unramified at all points of AutS(X) by
checking on fibres at points of the scheme S , see Morphisms of Spaces, Lemma 38.10. But
after base change to a point of S we fall back into the equivalence of (3)(a) and (3)(c). �

Lemma 7.4. Let X be a proper scheme over a field k of dimension ≤ 1. Then prop-
erties (3)(a), (b), (c) are also equivalent to Derk(OX ,OX) = 0.

Proof. In the discussion above we have seen thatG = Aut(X) is a group scheme over
Spec(k) which is finite type and separated; this uses Lemma 5.1 and More on Groupoids
in Spaces, Lemma 10.2. ThenG is unramified over k if and only if ΩG/k = 0 (Morphisms,
Lemma 35.2). By Groupoids, Lemma 6.3 the vanishing holds if TG/k,e = 0, where TG/k,e
is the tangent space to G at the identity element e ∈ G(k), see Varieties, Definition 16.3
and the formula in Varieties, Lemma 16.4. Since κ(e) = k the tangent space is defined in
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terms of morphisms α : Spec(k[ε])→ G = Aut(X) whose restriction to Spec(k) is e. It
follows that it suffices to show any automorphism

α : X ×Spec(k) Spec(k[ε]) −→ X ×Spec(k) Spec(k[ε])
over Spec(k[ε]) whose restriction to Spec(k) is idX . Such automorphisms are called in-
finitesimal automorphisms.

The infinitesimal automorphisms of X correspond 1-to-1 with derivations ofOX over k.
This follows from More on Morphisms, Lemmas 9.1 and 9.2 (we only need the first one as
we don’t care about the reverse direction; also, please look at More on Morphisms, Remark
9.7 for an elucidation). For a different argument proving this equality we refer the reader
to Deformation Problems, Lemma 9.3. �

8. Cohen-Macaulay curves

There is an open substack of Curves parametrizing the Cohen-Macaulay “curves”.

Lemma 8.1. There exist an open substack CurvesCM ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesCM ,
(b) the morphism X → S is Cohen-Macaulay,

(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesCM ,
(b) X is Cohen-Macaulay.

Proof. Let f : X → S be a family of curves. By More on Morphisms of Spaces,
Lemma 26.7 the set

W = {x ∈ |X| : f is Cohen-Macaulay at x}
is open in |X| and formation of this open commutes with arbitrary base change. Since f
is proper the subset

S′ = S \ f(|X| \W )
of S is open andX×SS′ → S′ is Cohen-Macaulay. Moreover, formation of S′ commutes
with arbitrary base change because this is true for W Thus we get the open substack with
the desired properties by the method discussed in Section 6. �

Lemma 8.2. There exist an open substack CurvesCM,1 ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesCM,1,
(b) the morphism X → S is Cohen-Macaulay and has relative dimension 1

(Morphisms of Spaces, Definition 33.2),
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesCM,1,
(b) X is Cohen-Macaulay and X is equidimensional of dimension 1.

Proof. By Lemma 8.1 it is clear that we have CurvesCM,1 ⊂ CurvesCM if it exists.
Let f : X → S be a family of curves such that f is a Cohen-Macaulay morphism. By
More on Morphisms of Spaces, Lemma 26.8 we have a decomposition

X = X0 qX1



9. CURVES OF A GIVEN GENUS 7089

by open and closed subspaces such that X0 → S has relative dimension 0 and X1 → S
has relative dimension 1. Since f is proper the subset

S′ = S \ f(|X0|)
of S is open and X ×S S′ → S′ is Cohen-Macaulay and has relative dimension 1. More-
over, formation of S′ commutes with arbitrary base change because this is true for the
decomposition above (as relative dimension behaves well with respect to base change, see
Morphisms of Spaces, Lemma 34.3). Thus we get the open substack with the desired prop-
erties by the method discussed in Section 6. �

9. Curves of a given genus

The convention in the Stacks project is that the genus g of a proper 1-dimensional scheme
X over a field k is defined only if H0(X,OX) = k. In this case g = dimkH

1(X,OX).
See Algebraic Curves, Section 8. The conditions needed to define the genus define an open
substack which is then a disjoint union of open substacks, one for each genus.

Lemma 9.1. There exist an open substack Curvesh0,1 ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesh0,1,
(b) f∗OX = OS , this holds after arbitrary base change, and the fibres of f have

dimension 1,
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesh0,1,
(b) H0(X,OX) = k and dim(X) = 1.

Proof. Given a family of curvesX → S the set of s ∈ Swhereκ(s) = H0(Xs,OXs)
is open in S by Derived Categories of Spaces, Lemma 26.2. Also, the set of points in S
where the fibre has dimension 1 is open by More on Morphisms of Spaces, Lemma 31.5.
Moreover, if f : X → S is a family of curves all of whose fibres have dimension 1 (and in
particular f is surjective), then condition (1)(b) is equivalent to κ(s) = H0(Xs,OXs) for
every s ∈ S , see Derived Categories of Spaces, Lemma 26.7. Thus we see that the lemma
follows from the general discussion in Section 6. �

Lemma 9.2. We have Curvesh0,1 ⊂ CurvesCM,1 as open substacks of Curves.

Proof. See Algebraic Curves, Lemma 6.1 and Lemmas 9.1 and 8.2. �

Lemma 9.3. Let f : X → S be a family of curves such that κ(s) = H0(Xs,OXs) for
all s ∈ S , i.e., the classifying morphism S → Curves factors through Curvesh0,1 (Lemma
9.1). Then

(1) f∗OX = OS and this holds universally,
(2) R1f∗OX is a finite locally freeOS-module,
(3) for any morphism h : S′ → S if f ′ : X ′ → S′ is the base change, then

h∗(R1f∗OX) = R1f ′
∗OX′ .

Proof. We apply Derived Categories of Spaces, Lemma 26.7. This proves part (1).
It also implies that locally on S we can write Rf∗OX = OS ⊕ P where P is perfect of
tor amplitude in [1,∞). Recall that formation of Rf∗OX commutes with arbitrary base
change (Derived Categories of Spaces, Lemma 25.4). Thus for s ∈ S we have

Hi(P ⊗L
OS

κ(s)) = Hi(Xs,OXs) for i ≥ 1
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This is zero unless i = 1 sinceXs is a 1-dimensional Noetherian scheme, see Cohomology,
Proposition 20.7. Then P = H1(P )[−1] and H1(P ) is finite locally free for example by
More on Algebra, Lemma 75.6. Since everything is compatible with base change we also
see that (3) holds. �

Lemma 9.4. There is a decomposition into open and closed substacks

Curvesh0,1 =
∐

g≥0
Curvesg

where each Curvesg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesg ,
(b) f∗OX = OS , this holds after arbitrary base change, the fibres of f have

dimension 1, and R1f∗OX is a locally freeOS-module of rank g,
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesg ,
(b) dim(X) = 1, k = H0(X,OX), and the genus of X is g.

Proof. We already have the existence of Curvesh0,1 as an open substack of Curves
characterized by the conditions of the lemma not involving R1f∗ or H1, see Lemma 9.1.
The existence of the decomposition into open and closed substacks follows immediately
from the discussion in Section 6 and Lemma 9.3. This proves the characterization in (1).
The characterization in (2) follows from the definition of the genus in Algebraic Curves,
Definition 8.1. �

10. Geometrically reduced curves

There is an open substack of Curves parametrizing the geometrically reduced “curves”.

Lemma 10.1. There exist an open substack Curvesgeomred ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesgeomred,
(b) the fibres of the morphism X → S are geometrically reduced (More on

Morphisms of Spaces, Definition 29.2),
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesgeomred,
(b) X is geometrically reduced over k.

Proof. Let f : X → S be a family of curves. By More on Morphisms of Spaces,
Lemma 29.6 the set

E = {s ∈ S : the fibre of X → S at s is geometrically reduced}

is open in S. Formation of this open commutes with arbitrary base change by More on
Morphisms of Spaces, Lemma 29.3. Thus we get the open substack with the desired prop-
erties by the method discussed in Section 6. �

Lemma 10.2. We have Curvesgeomred ⊂ CurvesCM as open substacks of Curves.

Proof. This is true because a reduced Noetherian scheme of dimension≤ 1 is Cohen-
Macaulay. See Algebra, Lemma 157.3. �
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11. Geometrically reduced and connected curves

There is an open substack of Curves parametrizing the geometrically reduced and con-
nected “curves”. We will get rid of 0-dimensional objects right away.

Lemma 11.1. There exist an open substack Curvesgrc,1 ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesgrc,1,
(b) the geometric fibres of the morphism X → S are reduced, connected, and

have dimension 1,
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesgrc,1,
(b) X is geometrically reduced, geometrically connected, and has dimension 1.

Proof. By Lemmas 10.1, 10.2, 8.1, and 8.2 it is clear that we have

Curvesgrc,1 ⊂ Curvesgeomred ∩ CurvesCM,1

if it exists. Let f : X → S be a family of curves such that f is Cohen-Macaulay, has
geometrically reduced fibres, and has relative dimension 1. By More on Morphisms of
Spaces, Lemma 36.9 in the Stein factorization

X → T → S

the morphism T → S is étale. This implies that there is an open and closed subscheme
S′ ⊂ S such thatX×S S′ → S′ has geometrically connected fibres (in the decomposition
of Morphisms, Lemma 48.5 for the finite locally free morphism T → S this corresponds
to S1). Formation of this open commutes with arbitrary base change because the number
of connected components of geometric fibres is invariant under base change (it is also true
that the Stein factorization commutes with base change in our particular case but we don’t
need this to conclude). Thus we get the open substack with the desired properties by the
method discussed in Section 6. �

Lemma 11.2. We have Curvesgrc,1 ⊂ Curvesh0,1 as open substacks of Curves. In par-
ticular, given a family of curves f : X → S whose geometric fibres are reduced, connected
and of dimension 1, then R1f∗OX is a finite locally free OS-module whose formation
commutes with arbitrary base change.

Proof. This follows from Varieties, Lemma 9.3 and Lemmas 9.1 and 11.1. The final
statement follows from Lemma 9.3. �

Lemma 11.3. There is a decomposition into open and closed substacks

Curvesgrc,1 =
∐

g≥0
Curvesgrc,1g

where each Curvesgrc,1g is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesgrc,1g ,
(b) the geometric fibres of the morphism f : X → S are reduced, connected,

of dimension 1 and R1f∗OX is a locally freeOS-module of rank g,
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesgrc,1g ,
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(b) X is geometrically reduced, geometrically connected, has dimension 1, and
has genus g.

Proof. First proof: set Curvesgrc,1g = Curvesgrc,1 ∩ Curvesg and combine Lemmas
11.2 and 9.4. Second proof: The existence of the decomposition into open and closed sub-
stacks follows immediately from the discussion in Section 6 and Lemma 11.2. This proves
the characterization in (1). The characterization in (2) follows as well since the genus of a
geometrically reduced and connected proper 1-dimensional schemeX/k is defined (Alge-
braic Curves, Definition 8.1 and Varieties, Lemma 9.3) and is equal to dimkH

1(X,OX).
�

12. Gorenstein curves

There is an open substack of Curves parametrizing the Gorenstein “curves”.

Lemma 12.1. There exist an open substack CurvesGorenstein ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesGorenstein,
(b) the morphism X → S is Gorenstein,

(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesGorenstein,
(b) X is Gorenstein.

Proof. Let f : X → S be a family of curves. By More on Morphisms of Spaces,
Lemma 27.7 the set

W = {x ∈ |X| : f is Gorenstein at x}

is open in |X| and formation of this open commutes with arbitrary base change. Since f
is proper the subset

S′ = S \ f(|X| \W )

of S is open andX×S S′ → S′ is Gorenstein. Moreover, formation of S′ commutes with
arbitrary base change because this is true for W Thus we get the open substack with the
desired properties by the method discussed in Section 6. �

Lemma 12.2. There exist an open substack CurvesGorenstein,1 ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through CurvesGorenstein,1,
(b) the morphism X → S is Gorenstein and has relative dimension 1 (Mor-

phisms of Spaces, Definition 33.2),
(2) given a scheme X proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through CurvesGorenstein,1,
(b) X is Gorenstein and X is equidimensional of dimension 1.

Proof. Recall that a Gorenstein scheme is Cohen-Macaulay (Duality for Schemes,
Lemma 24.2) and that a Gorenstein morphism is a Cohen-Macaulay morphism (Duality
for Schemes, Lemma 25.4. Thus we can set CurvesGorenstein,1 equal to the intersection of
CurvesGorenstein and CurvesCM,1 inside of Curves and use Lemmas 12.1 and 8.2. �
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13. Local complete intersection curves

There is an open substack of Curves parametrizing the local complete intersection “curves”.

Lemma 13.1. There exist an open substack Curveslci ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curveslci,
(b) X → S is a local complete intersection morphism, and
(c) X → S is a syntomic morphism.

(2) given X a proper scheme over a field k of dimension ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curveslci,
(b) X is a local complete intersection over k.

Proof. Recall that being a syntomic morphism is the same as being flat and a local
complete intersection morphism, see More on Morphisms of Spaces, Lemma 48.6. Thus
(1)(b) is equivalent to (1)(c). In Section 6 we have seen it suffices to show that given a
family of curves f : X → S , there is an open subscheme S′ ⊂ S such that S′×S X → S′

is a local complete intersection morphism and such that formation of S′ commutes with
arbitrary base change. This follows from the more general More on Morphisms of Spaces,
Lemma 49.7. �

14. Curves with isolated singularities

We can look at the open substack of Curves parametrizing “curves” with only a finite
number of singular points (these may correspond to 0-dimensional components in our
setup).

Lemma 14.1. There exist an open substack Curves+ ⊂ Curves such that
(1) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curves+,
(b) the singular locus ofX → S endowed with any/some closed subspace struc-

ture is finite over S.
(2) given X a proper scheme over a field k of dimension ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curves+,
(b) X → Spec(k) is smooth except at finitely many points.

Proof. To prove the lemma it suffices to show that given a family of curves f : X →
S , there is an open subscheme S′ ⊂ S such that the fibre of S′×S X → S′ have property
(2). (Formation of the open will automatically commute with base change.) By definition
the locus T ⊂ |X| of points where X → S is not smooth is closed. Let Z ⊂ X be the
closed subspace given by the reduced induced algebraic space structure on T (Properties
of Spaces, Definition 12.5). Now if s ∈ S is a point where Zs is finite, then there is an
open neighbourhood Us ⊂ S of s such that Z ∩ f−1(Us) → Us is finite, see More on
Morphisms of Spaces, Lemma 35.2. This proves the lemma. �

15. The smooth locus of the stack of curves

The morphism
Curves −→ Spec(Z)
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is smooth over a maximal open substack, see Morphisms of Stacks, Lemma 33.6. We want
to give a criterion for when a curve is in this locus. We will do this using a bit of defor-
mation theory.

Let k be a field. Let X be a proper scheme of dimension≤ 1 over k. Choose a Cohen ring
Λ for k, see Algebra, Lemma 160.6. Then we are in the situation described in Deformation
Problems, Example 9.1 and Lemma 9.2. Thus we obtain a deformation category DefX on
the category CΛ of Artinian local Λ-algebras with residue field k.

Lemma 15.1. In the situation above the following are equivalent
(1) the classifying morphism Spec(k) → Curves factors through the open where
Curves → Spec(Z) is smooth,

(2) the deformation category DefX is unobstructed.

Proof. Since Curves −→ Spec(Z) is locally of finite presentation (Lemma 5.3) for-
mation of the open substack where Curves −→ Spec(Z) is smooth commutes with flat
base change (Morphisms of Stacks, Lemma 33.6). Since the Cohen ring Λ is flat over Z,
we may work over Λ. In other words, we are trying to prove that

Λ-Curves −→ Spec(Λ)
is smooth in an open neighbourhood of the point x0 : Spec(k) → Λ-Curves defined by
X/k if and only if DefX is unobstructed.

The lemma now follows from Geometry of Stacks, Lemma 2.7 and the equality

DefX = FΛ-Curves,k,x0

This equality is not completely trivial to esthablish. Namely, on the left hand side we have
the deformation category classifying all flat deformations Y → Spec(A) ofX as a scheme
over A ∈ Ob(CΛ). On the right hand side we have the deformation category classifying
all flat morphisms Y → Spec(A) with special fibre X where Y is an algebraic space and
Y → Spec(A) is proper, of finite presentation, and of relative dimension ≤ 1. Since A is
Artinian, we find that Y is a scheme for example by Spaces over Fields, Lemma 9.3. Thus
it remains to show: a flat deformation Y → Spec(A) of X as a scheme over an Artinian
local ringAwith residue field k is proper, of finite presentation, and of relative dimension
≤ 1. Relative dimension is defined in terms of fibres and hence holds automatically for
Y/A since it holds for X/k. The morphism Y → Spec(A) is proper and locally of finite
presentation as this is true for X → Spec(k), see More on Morphisms, Lemma 10.3. �

Here is a “large” open of the stack of curves which is contained in the smooth locus.

Lemma 15.2. The open substack

Curveslci+ = Curveslci ∩ Curves+ ⊂ Curves
has the following properties

(1) Curveslci+ → Spec(Z) is smooth,
(2) given a family of curves X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curveslci+,
(b) X → S is a local complete intersection morphism and the singular locus of

X → S endowed with any/some closed subspace structure is finite over S ,
(3) given X a proper scheme over a field k of dimension ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curveslci+,
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(b) X is a local complete intersection over k and X → Spec(k) is smooth ex-
cept at finitely many points.

Proof. If we can show that there is an open substack Curveslci+ whose points are
characterized by (2), then we see that (1) holds by combining Lemma 15.1 with Deforma-
tion Problems, Lemma 16.4. Since

Curveslci+ = Curveslci ∩ Curves+

inside Curves, we conclude by Lemmas 13.1 and 14.1. �

16. Smooth curves

In this section we study open substacks of Curves parametrizing smooth “curves”.

Lemma 16.1. There exist an open substacks

Curvessmooth,1 ⊂ Curvessmooth ⊂ Curves
such that

(1) given a family of curves f : X → S the following are equivalent
(a) the classifying morphism S → Curves factors through Curvessmooth, resp.
Curvessmooth,1,

(b) f is smooth, resp. smooth of relative dimension 1,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvessmooth,

resp. Curvessmooth,1,
(b) X is smooth over k, resp. X is smooth over k and X is equidimensional of

dimension 1.

Proof. To prove the statements regarding Curvessmooth it suffices to show that given
a family of curves f : X → S , there is an open subscheme S′ ⊂ S such that S′×SX → S′

is smooth and such that the formation of this open commutes with base change. We know
that there is a maximal open U ⊂ X such that U → S is smooth and that formation
of U commutes with arbitrary base change, see Morphisms of Spaces, Lemma 37.9. If
T = |X| \ |U | then f(T ) is closed in S as f is proper. Setting S′ = S \ f(T ) we obtain
the desired open.

Let f : X → S be a family of curves with f smooth. Then the fibres Xs are smooth over
κ(s) and hence Cohen-Macaulay (for example you can see this using Algebra, Lemmas
137.5 and 135.3). Thus we see that we may set

Curvessmooth,1 = Curvessmooth ∩ CurvesCM,1

and the desired equivalences follow from what we’ve already shown for Curvessmooth and
Lemma 8.2. �

Lemma 16.2. The morphism Curvessmooth → Spec(Z) is smooth.

Proof. Follows immediately from the observation that Curvessmooth ⊂ Curveslci+
and Lemma 15.2. �

Lemma 16.3. There exist an open substack Curvessmooth,h0 ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvessmooth,
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(b) f∗OX = OS , this holds after any base change, and f is smooth of relative
dimension 1,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvessmooth,h0,
(b) X is smooth, dim(X) = 1, and k = H0(X,OX),
(c) X is smooth, dim(X) = 1, and X is geometrically connected,
(d) X is smooth, dim(X) = 1, and X is geometrically integral, and
(e) Xk is a smooth curve.

Proof. If we set

Curvessmooth,h0 = Curvessmooth ∩ Curvesh0,1

then we see that (1) holds by Lemmas 9.1 and 16.1. In fact, this also gives the equivalence
of (2)(a) and (2)(b). To finish the proof we have to show that (2)(b) is equivalent to each
of (2)(c), (2)(d), and (2)(e).

A smooth scheme over a field is geometrically normal (Varieties, Lemma 25.4), smoothness
is preserved under base change (Morphisms, Lemma 34.5), and being smooth is fpqc local
on the target (Descent, Lemma 23.27). Keeping this in mind, the equivalence of (2)(b),
(2)(c), 2(d), and (2)(e) follows from Varieties, Lemma 10.7. �

Definition 16.4. We denoteM and we name it the moduli stack of smooth proper
curves the algebraic stack Curvessmooth,h0 parametrizing families of curves introduced in
Lemma 16.3. For g ≥ 0 we denoteMg and we name it the moduli stack of smooth proper
curves of genus g the algebraic stack introduced in Lemma 16.5.

Here is the obligatory lemma.

Lemma 16.5. There is a decomposition into open and closed substacks

M =
∐

g≥0
Mg

where eachMg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors throughMg ,
(b) X → S is smooth, f∗OX = OS , this holds after any base change, and

R1f∗OX is a locally freeOS-module of rank g,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors throughMg ,
(b) X is smooth, dim(X) = 1, k = H0(X,OX), and X has genus g,
(c) X is smooth, dim(X) = 1, X is geometrically connected, and X has genus

g,
(d) X is smooth, dim(X) = 1, X is geometrically integral, and X has genus g,

and
(e) Xk is a smooth curve of genus g.

Proof. Combine Lemmas 16.3 and 9.4. You can also use Lemma 11.3 instead. �

Lemma 16.6. The morphismsM→ Spec(Z) andMg → Spec(Z) are smooth.

Proof. SinceM is an open substack of Curveslci+ this follows from Lemma 15.2. �
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17. Density of smooth curves

The title of this section is misleading as we don’t claim Curvessmooth is dense in Curves. In
fact, this is false as was shown by Mumford in [?]. However, we will see that the smooth
“curves” are dense in a large open.

Lemma 17.1. The inclusion

|Curvessmooth| ⊂ |Curveslci+|
is that of an open dense subset.

Proof. By the very construction of the topology on |Curveslci+| in Properties of
Stacks, Section 4 we find that |Curvessmooth| is an open subset. Let ξ ∈ |Curveslci+| be
a point. Then there exists a field k and a scheme X over k with X proper over k, with
dim(X) ≤ 1, with X a local complete intersection over k, and with X is smooth over
k except at finitely many points, such that ξ is the equivalence class of the classifying
morphism Spec(k) → Curveslci+ determined by X . See Lemma 15.2. By Deformation
Problems, Lemma 17.6 there exists a flat projective morphism Y → Spec(k[[t]]) whose
generic fibre is smooth and whose special fibre is isomorphic toX . Consider the classifying
morphism

Spec(k[[t]]) −→ Curveslci+

determined by Y . The image of the closed point is ξ and the image of the generic point is
in |Curvessmooth|. Since the generic point specializes to the closed point in | Spec(k[[t]])|
we conclude that ξ is in the closure of |Curvessmooth| as desired. �

18. Nodal curves

In algebraic geometry a special role is played by nodal curves. We suggest the reader take
a brief look at some of the discussion in Algebraic Curves, Sections 19 and 20 and More on
Morphisms of Spaces, Section 55.

Lemma 18.1. There exist an open substack Curvesnodal ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesnodal,
(b) f is at-worst-nodal of relative dimension 1,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesnodal,
(b) the singularities of X are at-worst-nodal and X is equidimensional of di-

mension 1.

Proof. In fact, it suffices to show that given a family of curves f : X → S , there
is an open subscheme S′ ⊂ S such that S′ ×S X → S′ is at-worst-nodal of relative
dimension 1 and such that formation of S′ commutes with arbitrary base change. By
More on Morphisms of Spaces, Lemma 55.4 there is a maximal open subspace X ′ ⊂ X
such that f |X′ : X ′ → S is at-worst-nodal of relative dimension 1. Moreover, formation
of X ′ commutes with base change. Hence we can take

S′ = S \ |f |(|X| \ |X ′|)
This is open because a proper morphism is universally closed by definition. �

Lemma 18.2. The morphism Curvesnodal → Spec(Z) is smooth.
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Proof. Follows immediately from the observation that Curvesnodal ⊂ Curveslci+
and Lemma 15.2. �

19. The relative dualizing sheaf

This section serves mainly to introduce notation in the case of families of curves. Most of
the work has already been done in the chapter on duality.
Let f : X → S be a family of curves. There exists an object ω•

X/S in DQCoh(OX), called
the relative dualizing complex, having the following property: for every base change di-
agram

XU

f ′

��

g′
// X

f

��
U

g // S

with U = Spec(A) affine the complex ω•
XU/U

= L(g′)∗ω•
X/S represents the functor

DQCoh(OXU ) −→ModA, K 7−→ HomU (Rf∗K,OU )
More precisely, let (ω•

X/S , τ) be the relative dualizing complex of the family as defined
in Duality for Spaces, Definition 9.1. Existence is shown in Duality for Spaces, Lemma
9.5. Moreover, formation of (ω•

X/S , τ) commutes with arbitrary base change (essentially
by definition; a precise reference is Duality for Spaces, Lemma 9.6). From now on we will
identify the base change of ω•

X/S with the relative dualizing complex of the base changed
family without further mention.
Let {Si → S} be an étale covering with Si affine such thatXi = X ×S Si is a scheme, see
Lemma 4.3. By Duality for Spaces, Lemma 10.1 we find thatω•

Xi/Si
agrees with the relative

dualizing complex for the proper, flat, and finitely presented morphism fi : Xi → Si of
schemes discussed in Duality for Schemes, Remark 12.5. Thus to prove a property of ω•

X/S

which is étale local, we may assume X → S is a morphism of schemes and use the theory
developped in the chapter on duality for schemes. More generally, for any base change
of X which is a scheme, the relative dualizing complex agrees with the relative dualizing
complex of Duality for Schemes, Remark 12.5. From now on we will use this identification
without further mention.
In particular, let Spec(k) → S be a morphism where k is a field. Denote Xk the base
change (this is a scheme by Spaces over Fields, Lemma 9.3). Then ω•

Xk/k
is isomorphic to

the complex ω•
Xk

of Algebraic Curves, Lemma 4.1 (both represent the same functor and
so we can use the Yoneda lemma, but really this holds because of the remarks above). We
conclude that the cohomology sheavesHi(ω•

Xk/k
) are nonzero only for i = 0,−1. IfXk is

Cohen-Macaulay and equidimensional of dimension 1, then we only haveH−1 and ifXk

is in addition Gorenstein, then H−1(ωXk/k) is invertible, see Algebraic Curves, Lemmas
4.2 and 5.2.

Lemma 19.1. Let X → S be a family of curves with Cohen-Macaulay fibres equidi-
mensional of dimension 1 (Lemma 8.2). Then ω•

X/S = ωX/S [1] where ωX/S is a pseudo-
coherentOX -module flat over S whose formation commutes with arbitrary base change.

Proof. We urge the reader to deduce this directly from the discussion above of what
happens after base change to a field. Our proof will use a somewhat cumbersome reduction
to the Noetherian schemes case.
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Once we show ω•
X/S = ωX/S [1] with ωX/S flat over S , the statement on base change

will follow as we already know that formation of ω•
X/S commutes with arbitrary base

change. Moreover, the pseudo-coherence will be automatic as ω•
X/S is pseudo-coherent

by definition. Vanishing of the other cohomology sheaves and flatness may be checked
étale locally. Thus we may assume f : X → S is a morphism of schemes with S affine (see
discussion above). Write S = limSi as a cofiltered limit of affine schemes Si of finite type
over Z. Since CurvesCM,1 is locally of finite presentation over Z (as an open substack
of Curves, see Lemmas 8.2 and 5.3), we can find an i and a family of curves Xi → Si
whose pullback is X → S (Limits of Stacks, Lemma 3.5). After increasing i if necessary
we may assumeXi is a scheme, see Limits of Spaces, Lemma 5.11. Since formation of ω•

X/S

commutes with arbitrary base change, we may replace S by Si. Doing so we may and
do assume Si is Noetherian. Then f is clearly a Cohen-Macaulay morphism (More on
Morphisms, Definition 22.1) by our assumption on the fibres. Also then ω•

X/S = f !OS
by the very construction of f ! in Duality for Schemes, Section 16. Thus the lemma by
Duality for Schemes, Lemma 23.3. �

Definition 19.2. Let f : X → S be a family of curves with Cohen-Macaulay fibres
equidimensional of dimension 1 (Lemma 8.2). Then theOX -module

ωX/S = H−1(ω•
X/S)

studied in Lemma 19.1 is called the relative dualizing sheaf of f .

In the situation of Definition 19.2 the relative dualizing sheaf ωX/S has the following
property (which moreover characterizes it locally on S): for every base change diagram

XU

f ′

��

g′
// X

f

��
U

g // S

with U = Spec(A) affine the module ωXU/U = (g′)∗ωX/S represents the functor

QCoh(OXU ) −→ModA, F 7−→ HomA(H1(X,F), A)
This follows immediately from the corresponding property of the relative dualizing com-
plex given above. In particular, if A = k is a field, then we recover the dualizing module
of Xk as introduced and studied in Algebraic Curves, Lemmas 4.1, 4.2, and 5.2.

Lemma 19.3. Let X → S be a family of curves with Gorenstein fibres equidimen-
sional of dimension 1 (Lemma 12.2). Then the relative dualizing sheafωX/S is an invertible
OX -module whose formation commutes with arbitrary base change.

Proof. This is true because the pullback of the relative dualizing module to a fibre is
invertible by the discussion above. Alternatively, you can argue exactly as in the proof of
Lemma 19.1 and deduce the result from Duality for Schemes, Lemma 25.10. �

20. Prestable curves

The following definition is equivalent to what appears to be the generally accepted notion
of a prestable family of curves.

Definition 20.1. Let f : X → S be a family of curves. We say f is a prestable family
of curves if
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(1) f is at-worst-nodal of relative dimension 1, and
(2) f∗OX = OS and this holds after any base change1.

LetX be a proper scheme over a field k with dim(X) ≤ 1. ThenX → Spec(k) is a family
of curves and hence we can ask whether or not it is prestable2 in the sense of the definition.
Unwinding the definitions we see the following are equivalent

(1) X is prestable,
(2) the singularities of X are at-worst-nodal, dim(X) = 1, and k = H0(X,OX),
(3) Xk is connected and it is smooth over k apart from a finite number of nodes

(Algebraic Curves, Definition 16.2).
This shows that our definition agrees with most definitions one finds in the literature.

Lemma 20.2. There exist an open substack Curvesprestable ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesprestable,
(b) X → S is a prestable family of curves,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesprestable,
(b) the singularities ofX are at-worst-nodal, dim(X) = 1, and k = H0(X,OX).

Proof. Given a family of curves X → S we see that it is prestable if and only if the
classifying morphism factors both through Curvesnodal and Curvesh0,1. An alternative is
to use Curvesgrc,1 (since a nodal curve is geometrically reduced hence hasH0 equal to the
ground field if and only if it is connected). In a formula

Curvesprestable = Curvesnodal ∩ Curvesh0,1 = Curvesnodal ∩ Curvesgrc,1

Thus the lemma follows from Lemmas 9.1 and 18.1. �

For each genus g ≥ 0 we have the algebraic stack classifying the prestable curves of genus
g. In fact, from now on we will say that X → S is a prestable family of curves of genus
g if and only if the classifying morphism S → Curves factors through the open substack
Curvesprestableg of Lemma 20.3.

Lemma 20.3. There is a decomposition into open and closed substacks

Curvesprestable =
∐

g≥0
Curvesprestableg

where each Curvesprestableg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesprestableg ,
(b) X → S is a prestable family of curves and R1f∗OX is a locally free OS-

module of rank g,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesprestableg ,

1In fact, it suffices to require f∗OX = OS because the Stein factorization of f is étale in this case, see More
on Morphisms of Spaces, Lemma 36.9. The condition may also be replaced by asking the geometric fibres to be
connected, see Lemma 11.2.

2We can’t use the term “prestable curve” here because curve implies irreducible. See discussion in Algebraic
Curves, Section 20.
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(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X,OX),
and the genus of X is g.

Proof. Since we have seen that Curvesprestable is contained in Curvesh0,1, this fol-
lows from Lemmas 20.2 and 9.4. �

Lemma 20.4. The morphisms Curvesprestable → Spec(Z) and Curvesprestableg →
Spec(Z) are smooth.

Proof. Since Curvesprestable is an open substack of Curvesnodal this follows from
Lemma 18.2. �

21. Semistable curves

The following lemma will help us understand families of semistable curves.

Lemma 21.1. Let f : X → S be a prestable family of curves of genus g ≥ 1. Let
s ∈ S be a point of the base scheme. Let m ≥ 2. The following are equivalent

(1) Xs does not have a rational tail (Algebraic Curves, Example 22.1), and
(2) f∗f∗ω

⊗m
X/S → ω⊗m

X/S , is surjective over f−1(U) for some s ∈ U ⊂ S open.

Proof. Assume (2). Using the material in Section 19 we conclude that ω⊗m
Xs

is glob-
ally generated. However, if C ⊂ Xs is a rational tail, then deg(ωXs |C) < 0 by Algebraic
Curves, Lemma 22.2 hence H0(C,ωXs |C) = 0 by Varieties, Lemma 44.12 which contra-
dicts the fact that it is globally generated. This proves (1).

Assume (1). First assume that g ≥ 2. Assumption (1) implies ω⊗m
Xs

is globally generated,
see Algebraic Curves, Lemma 22.6. Moreover, we have

Homκ(s)(H1(Xs, ω
⊗m
Xs

), κ(s)) = H0(Xs, ω
⊗1−m
Xs

)

by duality, see Algebraic Curves, Lemma 4.2. Since ω⊗m
Xs

is globally generated we find that
the restriction to each irreducible component has nonegative degree. Hence the restriction
of ω⊗1−m

Xs
to each irreducible component has nonpositive degree. Since deg(ω⊗1−m

Xs
) =

(1−m)(2g − 2) < 0 by Riemann-Roch (Algebraic Curves, Lemma 5.2) we conclude that
the H0 is zero by Varieties, Lemma 44.13. By cohomology and base change we conclude
that

E = Rf∗ω
⊗m
X/S

is a perfect complex whose formation commutes with arbitrary base change (Derived Cat-
egories of Spaces, Lemma 25.4). The vanishing proved above tells us that E ⊗L κ(s) is
equal to H0(Xs, ω

⊗m
Xs

) placed in degree 0. After shrinking S we find E = f∗ω
⊗m
X/S is

a locally free OS-module placed in degree 0 (and its formation commutes with arbitrary
base change as we’ve already said), see Derived Categories of Spaces, Lemma 26.5. The map
f∗f∗ω

⊗m
X/S → ω⊗m

X/S is surjective after restricting to Xs. Thus it is surjective in an open
neighbourhood of Xs. Since f is proper, this open neighbourhood contains f−1(U) for
some open neighbourhood U of s in S.

Assume (1) and g = 1. By Algebraic Curves, Lemma 22.6 the assumption (1) means that
ωXs is isomorphic toOXs . If we can show that after shrinkingS the invertible sheafωX/S
because trivial, then we are done. We may assume S is affine. After shrinking S further,
we can write

Rf∗OX = (OS
0−→ OS)
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sitting in degrees 0 and 1 compatibly with further base change, see Lemma 9.3. By duality
this means that

Rf∗ωX/S = (OS
0−→ OS)

sitting in degrees 0 and 13. In particular we obtain an isomorphism OS → f∗ωX/S
which is compatible with base change since formation of Rf∗ωX/S is compatible with
base change (see reference given above). By adjointness, we get a global section σ ∈
Γ(X,ωX/S). The restriction of this section to the fibre Xs is nonzero (a basis element
in fact) and as ωXs is trivial on the fibres, this section is nonwhere zero on Xs. Thus it
nowhere zero in an open neighbourhood of Xs. Since f is proper, this open neighbour-
hood contains f−1(U) for some open neighbourhood U of s in S. �

Motivated by Lemma 21.1 we make the following definition.

Definition 21.2. Let f : X → S be a family of curves. We say f is a semistable
family of curves if

(1) X → S is a prestable family of curves, and
(2) Xs has genus ≥ 1 and does not have a rational tail for all s ∈ S.

In particular, a prestable family of curves of genus 0 is never semistable. LetX be a proper
scheme over a field k with dim(X) ≤ 1. Then X → Spec(k) is a family of curves and
hence we can ask whether or not it is semistable. Unwinding the definitions we see the
following are equivalent

(1) X is semistable,
(2) X is prestable, has genus ≥ 1, and does not have a rational tail,
(3) Xk is connected, is smooth over k apart from a finite number of nodes, has genus
≥ 1, and has no irreducible component isomorphic to P1

k
which meets the rest

of Xk in only one point.
To see the equivalence of (2) and (3) use that X has no rational tails if and only if Xk has
no rational tails by Algebraic Curves, Lemma 22.6. This shows that our definition agrees
with most definitions one finds in the literature.

Lemma 21.3. There exist an open substack Curvessemistable ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvessemistable,
(b) X → S is a semistable family of curves,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvessemistable,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is ≥ 1, and X has no rational tails,
(c) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

and ω⊗m
Xs

is globally generated for m ≥ 2.

Proof. The equivalence of (2)(b) and (2)(c) is Algebraic Curves, Lemma 22.6. In the
rest of the proof we will work with (2)(b) in accordance with Definition 21.2.
By the discussion in Section 6 it suffices to look at families f : X → S of prestable curves.
By Lemma 21.1 we obtain the desired openness of the locus in question. Formation of this

3Use that Rf∗ω•
X/S

= Rf∗RHomOX (OX .ω
•
X/S

) = RHomOS (Rf∗OX ,OS) by Duality for
Spaces, Lemma 3.3 and Remark 3.5 and then that ω•

X/S
= ωX/S [1] by our definitions in Section 19.
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open commutes with arbitrary base change, because the (non)existence of rational tails is
insensitive to ground field extensions by Algebraic Curves, Lemma 22.6. �

Lemma 21.4. There is a decomposition into open and closed substacks

Curvessemistable =
∐

g≥1
Curvessemistableg

where each Curvessemistableg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvessemistableg ,
(b) X → S is a semistable family of curves and R1f∗OX is a locally free OS-

module of rank g,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvessemistableg ,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is g, and X has no rational tail,
(c) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is g, and ω⊗m
Xs

is globally generated for m ≥ 2.

Proof. Combine Lemmas 21.3 and 20.3. �

Lemma 21.5. The morphisms Curvessemistable → Spec(Z) and Curvessemistableg →
Spec(Z) are smooth.

Proof. Since Curvessemistable is an open substack of Curvesnodal this follows from
Lemma 18.2. �

22. Stable curves

The following lemma will help us understand families of stable curves.

Lemma 22.1. Let f : X → S be a prestable family of curves of genus g ≥ 2. Let
s ∈ S be a point of the base scheme. The following are equivalent

(1) Xs does not have a rational tail and does not have a rational bridge (Algebraic
Curves, Examples 22.1 and 23.1), and

(2) ωX/S is ample on f−1(U) for some s ∈ U ⊂ S open.

Proof. Assume (2). Then ωXs is ample on Xs. By Algebraic Curves, Lemmas 22.2
and 23.2 we conclude that (1) holds (we also use the characterization of ample invertible
sheaves in Varieties, Lemma 44.15).

Assume (1). Then ωXs is ample on Xs by Algebraic Curves, Lemmas 23.6. We conclude
by Descent on Spaces, Lemma 13.2. �

Motivated by Lemma 22.1 we make the following definition.

Definition 22.2. Let f : X → S be a family of curves. We say f is a stable family
of curves if

(1) X → S is a prestable family of curves, and
(2) Xs has genus ≥ 2 and does not have a rational tails or bridges for all s ∈ S.
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In particular, a prestable family of curves of genus 0 or 1 is never stable. LetX be a proper
scheme over a field k with dim(X) ≤ 1. Then X → Spec(k) is a family of curves
and hence we can ask whether or not it is stable. Unwinding the definitions we see the
following are equivalent

(1) X is stable,
(2) X is prestable, has genus ≥ 2, does not have a rational tail, and does not have a

rational bridge,
(3) X is geometrically connected, is smooth over k apart from a finite number of

nodes, and ωX is ample.
To see the equivalence of (2) and (3) use Lemma 22.1 above. This shows that our definition
agrees with most definitions one finds in the literature.

Lemma 22.3. There exist an open substack Curvesstable ⊂ Curves such that
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors through Curvesstable,
(b) X → S is a stable family of curves,

(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are
equivalent
(a) the classifying morphism Spec(k)→ Curves factors through Curvesstable,
(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

the genus of X is ≥ 2, and X has no rational tails or bridges,
(c) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X,OX),

and ωXs is ample.

Proof. By the discussion in Section 6 it suffices to look at families f : X → S of
prestable curves. By Lemma 22.1 we obtain the desired openness of the locus in question.
Formation of this open commutes with arbitrary base change, either because the (non)ex-
istence of rational tails or bridges is insensitive to ground field extensions by Algebraic
Curves, Lemmas 22.6 and 23.6 or because ampleness is insenstive to base field extensions
by Descent, Lemma 25.6. �

Definition 22.4. We denoteM and we name the moduli stack of stable curves the
algebraic stack Curvesstable parametrizing stable families of curves introduced in Lemma
22.3. For g ≥ 2 we denoteMg and we name the moduli stack of stable curves of genus g
the algebraic stack introduced in Lemma 22.5.

Here is the obligatory lemma.

Lemma 22.5. There is a decomposition into open and closed substacks

M =
∐

g≥2
Mg

where eachMg is characterized as follows:
(1) given a family of curves f : X → S the following are equivalent

(a) the classifying morphism S → Curves factors throughMg ,
(b) X → S is a stable family of curves andR1f∗OX is a locally freeOS-module

of rank g,
(2) given X a scheme proper over a field k with dim(X) ≤ 1 the following are

equivalent
(a) the classifying morphism Spec(k)→ Curves factors throughMg ,
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(b) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X,OX),
the genus of X is g, and X has no rational tails or bridges.

(c) the singularities of X are at-worst-nodal, dim(X) = 1, k = H0(X,OX),
the genus of X is g, and ωXs is ample.

Proof. Combine Lemmas 22.3 and 20.3. �

Lemma 22.6. The morphismsM→ Spec(Z) andMg → Spec(Z) are smooth.

Proof. SinceM is an open substack of Curvesnodal this follows from Lemma 18.2.
�

Lemma 22.7. The stacksM andMg are open substacks of CurvesDM . In particular,
M andMg are DM (Morphisms of Stacks, Definition 4.2) as well as Deligne-Mumford
stacks (Algebraic Stacks, Definition 12.2).

Proof. Proof of the first assertion. Let X be a scheme proper over a field k whose
singularities are at-worst-nodal, dim(X) = 1, k = H0(X,OX), the genus of X is ≥ 2,
and X has no rational tails or bridges. We have to show that the classifying morphism
Spec(k)→M→ Curves factors through CurvesDM . We may first replace k by the alge-
braic closure (since we already know the relevant stacks are open substacks of the algebraic
stack Curves). By Lemmas 22.3, 7.3, and 7.4 it suffices to show that Derk(OX ,OX) = 0.
This is proven in Algebraic Curves, Lemma 25.3.

Since CurvesDM is the maximal open substack of Curves which is DM, we see this is true
also for the open substack M of CurvesDM . Finally, a DM algebraic stack is Deligne-
Mumford by Morphisms of Stacks, Theorem 21.6. �

Lemma 22.8. Let g ≥ 2. The inclusion

|Mg| ⊂ |Mg|

is that of an open dense subset.

Proof. SinceMg ⊂ Curveslci+ is open and since Curvessmooth ∩Mg = Mg this
follows immediately from Lemma 17.1. �

23. Contraction morphisms

We urge the reader to familiarize themselves with Algebraic Curves, Sections 22, 23, and 24
before continuing here. The main result of this section is the existence of a “stabilization”
morphism

Curvesprestableg −→Mg

See Lemma 23.5. Loosely speaking, this morphism sends the moduli point of a nodal genus
g curve to the moduli point of the associated stable curve constructed in Algebraic Curves,
Lemma 24.2.

Lemma 23.1. Let S be a scheme and s ∈ S a point. Let f : X → S and g : Y → S
be families of curves. Let c : X → Y be a morphism over S. If cs,∗OXs = OYs and
R1cs,∗OXs = 0, then after replacing S by an open neighbourhood of s we have OY =
c∗OX andR1c∗OX = 0 and this remains true after base change by any morphismS′ → S.
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Proof. Let (U, u) → (S, s) be an étale neighbourhood such that OYU = (XU →
YU )∗OXU and R1(XU → YU )∗OXU = 0 and the same is true after base change by U ′ →
U . Then we replace S by the open image of U → S. Given S′ → S we set U ′ = U ×S S′

and we obtain étale coverings {U ′ → S′} and {YU ′ → YS′}. Thus the truth of the
statement for the base change of c by S′ → S follows from the truth of the statement for
the base change ofXU → YU byU ′ → U . In other words, the question is local in the étale
topology on S. Thus by Lemma 4.3 we may assume X and Y are schemes. By More on
Morphisms, Lemma 72.7 there exists an open subscheme V ⊂ Y containing Ys such that
c∗OX |V = OV andR1c∗OX |V = 0 and such that this remains true after any base change
by S′ → S. Since g : Y → S is proper, we can find an open neighbourhood U ⊂ S of s
such that g−1(U) ⊂ V . Then U works. �

Lemma 23.2. Let S be a scheme and s ∈ S a point. Let f : X → S and gi : Yi → S ,
i = 1, 2 be families of curves. Let ci : X → Yi be morphisms over S. Assume there is an
isomorphism Y1,s ∼= Y2,s of fibres compatible with c1,s and c2,s. If c1,s,∗OXs = OY1,s and
R1c1,s,∗OXs = 0, then there exist an open neighbourhood U of s and an isomorphism
Y1,U ∼= Y2,U of families of curves overU compatible with the given isomorphism of fibres
and with c1 and c2.

Proof. Recall that OS,s = colimOS(U) where the colimit is over the system of
affine neighbourhoods U of s. Thus the category of algebraic spaces of finite presentation
over the local ring is the colimit of the categories of algebraic spaces of finite presentation
over the affine neighbourhoods of s. See Limits of Spaces, Lemma 7.1. In this way we
reduce to the case where S is the spectrum of a local ring and s is the closed point.
Assume S = Spec(A) where A is a local ring and s is the closed point. Write A =
colimAj with Aj local Noetherian (say essentially of finite type over Z) and local tran-
sition homomorphisms. Set Sj = Spec(Aj) with closed point sj . We can find a j and
families of curves Xj → Sj , Yj,i → Sj , see Lemma 5.3 and Limits of Stacks, Lemma 3.5.
After possibly increasing j we can find morphisms cj,i : Xj → Yj,i whose base change
to s is ci, see Limits of Spaces, Lemma 7.1. Since κ(s) = colim κ(sj) we can similarly
assume there is an isomorphism Yj,1,sj

∼= Yj,2,sj compatible with cj,1,sj and cj,2,sj . Fi-
nally, the assumptions c1,s,∗OXs = OY1,s and R1c1,s,∗OXs = 0 are inherited by cj,1,sj
because {sj → s} is an fpqc covering and c1,s is the base of cj,1,sj by this covering (details
omitted). In this way we reduce the lemma to the case discussed in the next paragraph.
Assume S is the spectrum of a Noetherian local ring Λ and s is the closed point. Consider
the scheme theoretic image Z of

(c1, c2) : X −→ Y1 ×S Y2

The statement of the lemma is equivalent to the assertion that Z maps isomorphically to
Y1 and Y2 via the projection morphisms. Since taking the scheme theoretic image of this
morphism commutes with flat base change (Morphisms of Spaces, Lemma 30.12, we may
replace Λ by its completion (More on Algebra, Section 43).
Assume S is the spectrum of a complete Noetherian local ring Λ. Observe that X , Y1, Y2
are schemes in this case (More on Morphisms of Spaces, Lemma 43.6). Denote Xn, Y1,n,
Y2,n the base changes of X , Y1, Y2 to Spec(Λ/mn+1). Recall that the arrow

DefXs→Y2,s
∼= DefXs→Y1,s −→ DefXs

is an equivalence, see Deformation Problems, Lemma 10.6. Thus there is an isomorphism of
formal objects (Xn → Y1,n) ∼= (Xn → Y2,n) of DefXs→Y1,s . Finally, by Grothendieck’s
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algebraization theorem (Cohomology of Schemes, Lemma 28.3) this produces an isomor-
phism Y1 → Y2 compatible with c1 and c2. �

Lemma 23.3. Let f : X → S be a family of curves. Let s ∈ S be a point. Let h0 :
Xs → Y0 be a morphism to a proper scheme Y0 over κ(s) such that h0,∗OXs = OY0 and
R1h0,∗OXs = 0. Then there exist an elementary étale neighbourhood (U, u) → (S, s),
a family of curves Y → U , and a morphism h : XU → Y over U whose fibre in u is
isomorphic to h0.

Proof. We first do some reductions; we urge the reader to skip ahead. The question
is local on S , hence we may assume S is affine. Write S = limSi as a cofiltered limit of
affine schemes Si of finite type over Z. For some iwe can find a family of curvesXi → Si
whose base change is X → S. This follows from Lemma 5.3 and Limits of Stacks, Lemma
3.5. Let si ∈ Si be the image of s. Observe that κ(s) = colim κ(si) and that Xs is a
scheme (Spaces over Fields, Lemma 9.3). After increasing i we may assume there exists a
morphism hi,0 : Xi,si → Yi of finite type schemes over κ(si) whose base change to κ(s)
is h0, see Limits, Lemma 10.1. After increasing iwe may assume Yi is proper over κ(si), see
Limits, Lemma 13.1. Let gi,0 : Y0 → Yi,0 be the projection. Observe that this is a faithfully
flat morphism as the base change of Spec(κ(s)) → Spec(κ(si)). By flat base change we
have

h0,∗OXs = g∗
i,0hi,0,∗OXi,si and R1h0,∗OXs = g∗

i,0Rhi,0,∗OXi,si
see Cohomology of Schemes, Lemma 5.2. By faithful flatness we see thatXi → Si, si ∈ Si,
and Xi,si → Yi satisfies all the assumptions of the lemma. This reduces us to the case
discussed in the next paragraph.

Assume S is affine of finite type over Z. LetOhS,s be the henselization of the local ring of
S at s. Observe that OhS,s is a G-ring by More on Algebra, Lemma 50.8 and Proposition
50.12. Suppose we can construct a family of curves Y ′ → Spec(OhS,s) and a morphism

h′ : X ×S Spec(OhS,s) −→ Y ′

over Spec(OhS,s) whose base change to the closed point ish0. This will be enough. Namely,
first we use that

OhS,s = colim(U,u)OU (U)

where the colimit is over the filtered category of elementary étale neighbourhoods (More
on Morphisms, Lemma 35.5). Next, we use again that givenY ′ we can descend it toY → U
for some U (see references given above). Then we use Limits, Lemma 10.1 to descend h′ to
some h. This reduces us to the case discussed in the next paragraph.

Assume S = Spec(Λ) where (Λ,m, κ) is a henselian Noetherian local G-ring and s is the
closed point of S. Recall that the map

DefXs→Y0 → DefXs

is an equivalence, see Deformation Problems, Lemma 10.6. (This is the only important
step in the proof; everything else is technique.) Denote Λ∧ the m-adic completion. The
pullbacks Xn of X to Λ/mn+1 define a formal object ξ of DefXs over Λ∧. From the
equivalence we obtain a formal object ξ′ of DefXs→Y0 over Λ∧. Thus we obtain a huge
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commutative diagram

. . . // Xn
//

��

Xn−1 //

��

. . . // Xs

��
. . . // Yn //

��

Yn−1 //

��

. . . // Y0

��
. . . // Spec(Λ/mn+1) // Spec(Λ/mn) // . . . // Spec(κ)

The formal object (Yn) comes from a family of curves Y ′ → Spec(Λ∧) by Quot, Lemma
15.9. By More on Morphisms of Spaces, Lemma 43.3 we get a morphism h′ : XΛ∧ → Y ′

inducing the given morphisms Xn → Yn for all n and in particular the given morphism
Xs → Y0.

To finish we do a standard algebraization/approximation argument. First, we observe
that we can find a finitely generated Λ-subalgebra Λ ⊂ A ⊂ Λ∧, a family of curves
Y ′′ → Spec(A) and a morphism h′′ : XA → Y ′′ over A whose base change to Λ∧ is
h′. This is true because Λ∧ is the filtered colimit of these rings A and we can argue as
before using that Curves is locally of finite presentation (which gives us Y ′′ over A by
Limits of Stacks, Lemma 3.5) and using Limits of Spaces, Lemma 7.1 to descend h′ to some
h′′. Then we can apply the approximation property for G-rings (in the form of Smoothing
Ring Maps, Theorem 13.1) to find a map A → Λ which induces the same map A → κ as
we obtain from A→ Λ∧. Base changing h′′ to Λ the proof is complete. �

Lemma 23.4. Let f : X → S be a prestable family of curves of genus g ≥ 2. There
is a factorization X → Y → S of f where g : Y → S is a stable family of curves and
c : X → Y has the following properties

(1) OY = c∗OX and R1c∗OX = 0 and this remains true after base change by any
morphism S′ → S , and

(2) for any s ∈ S the morphism cs : Xs → Ys is the contraction of rational tails
and bridges discussed in Algebraic Curves, Section 24.

Moreover c : X → Y is unique up to unique isomorphism.

Proof. Let s ∈ S. Let c0 : Xs → Y0 be the contraction of Algebraic Curves, Section
24 (more precisely Algebraic Curves, Lemma 24.2). By Lemma 23.3 there exists an elemen-
tary étale neighbourhood (U, u) and a morphism c : XU → Y of families of curves overU
which recovers c0 as the fibre at u. Since ωY0 is ample, after possibly shrinking U , we see
thatY → U is a stable family of genus g by the openness inherent in Lemmas 22.3 and 22.5.
After possibly shrinking U once more, assertion (1) of the lemma for c : XU → Y fol-
lows from Lemma 23.1. Moreover, part (2) holds by the uniqueness in Algebraic Curves,
Lemma 24.2. We conclude that a morphism c as in the lemma exists étale locally on S.
More precisely, there exists an étale covering {Ui → S} and morphisms ci : XUi → Yi
over Ui where Yi → Ui is a stable family of curves having properties (1) and (2) stated in
the lemma.

To finish the proof it suffices to prove uniqueness of c : X → Y (up to unique isomor-
phism). Namely, once this is done, then we obtain isomorphisms

ϕij : Yi ×Ui (Ui ×S Uj) −→ Yi ×Uj (Ui ×S Uj)



24. STABLE REDUCTION THEOREM 7109

satisfying the cocycle condition (by uniqueness) over Ui ×Uj ×Uk. SinceMg is an alge-
braic stack, we have effectiveness of descent data and we obtain Y → S. The morphisms
ci descend to a morphism c : X → Y over S. Finally, properties (1) and (2) for c are
immediate from properties (1) and (2) for ci.
Finally, if c1 : X → Yi, i = 1, 2 are two morphisms towards stably families of curves
over S satisfying (1) and (2), then we obtain a morphism Y1 → Y2 compatible with c1 and
c2 at least locally on S by Lemma 23.3. We omit the verification that these morphisms
are unique (hint: this follows from the fact that the scheme theoretic image of c1 is Y1).
Hence these locally given morphisms glue and the proof is complete. �

Lemma 23.5. Let g ≥ 2. There is a morphism of algebraic stacks over Z
stabilization : Curvesprestableg −→Mg

which sends a prestable family of curves X → S of genus g to the stable family Y → S
asssociated to it in Lemma 23.4.

Proof. To see this is true, it suffices to check that the construction of Lemma 23.4 is
compatible with base change (and isomorphisms but that’s immediate), see the (abuse of)
language for algebraic stacks introduced in Properties of Stacks, Section 2. To see this it
suffices to check properties (1) and (2) of Lemma 23.4 are stable under base change. This
is immediately clear for (1). For (2) this follows either from the fact that the contractions
of Algebraic Curves, Lemmas 22.6 and 23.6 are stable under ground field extensions, or
because the conditions characterizing the morphisms on fibres in Algebraic Curves, Lemma
24.2 are preserved under ground field extensions. �

24. Stable reduction theorem

In the chapter on semistable reduction we have proved the celebrated theorem on semistable
reduction of curves. Let K be the fraction field of a discrete valuation ring R. Let C be a
projective smooth curve over K with K = H0(C,OC). According to Semistable Reduc-
tion, Definition 14.6 we sayC has semistable reduction if either there is a prestable family
of curves over R with generic fibre C , or some (equivalently any) minimal regular model
ofC overR is prestable. In this section we show that for curves of genus g ≥ 2 this is also
equivalent to stable reduction.

Lemma 24.1. Let R be a discrete valuation ring with fraction field K. Let C be a
smooth projective curve over K with K = H0(C,OC) having genus g ≥ 2. The follow-
ing are equivalent

(1) C has semistable reduction (Semistable Reduction, Definition 14.6), or
(2) there is a stable family of curves over R with generic fibre C.

Proof. Since a stable family of curves is also prestable, it is immediate that (2) implies
(1). Conversely, given a prestable family of curves over R with generic fibre C , we can
contract it to a stable family of curves by Lemma 23.4. Since the generic fibre already is
stable, it does not get changed by this procedure and the proof is complete. �

The following lemma tells us the stable family of curves over R promised in Lemma 24.1
is unique up to unique isomorphism.

Lemma 24.2. Let R be a discrete valuation ring with fraction field K. Let C be a
smooth proper curve over K with K = H0(C,OC) and genus g. If X and X ′ are models
of C (Semistable Reduction, Section 8) and X and X ′ are stable families of genus g curves
over R, then there exists an unique isomorphism X → X ′ of models.
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Proof. Let Y be the minimal model for C. Recall that Y exists, is unique, and is
at-worst-nodal of relative dimension 1 over R, see Semistable Reduction, Proposition 8.6
and Lemmas 10.1 and 14.5 (applies because we have X). There is a contraction morphism

Y −→ Z

such that Z is a stable family of curves of genus g overR (Lemma 23.4). We claim there is
a unique isomorphism of models X → Z. By symmetry the same is true for X ′ and this
will finish the proof.

By Semistable Reduction, Lemma 14.3 there exists a sequence

Xm → . . .→ X1 → X0 = X

such that Xi+1 → Xi is the blowing up of a closed point xi where Xi is singular, Xi →
Spec(R) is at-worst-nodal of relative dimension 1, and Xm is regular. By Semistable Re-
duction, Lemma 8.5 there is a sequence

Xm = Yn → Yn−1 → . . .→ Y1 → Y0 = Y

of proper regular models ofC , such that each morphism is a contraction of an exceptional
curve of the first kind4. By Semistable Reduction, Lemma 14.4 each Yi is at-worst-nodal
of relative dimension 1 over R. To prove the claim it suffices to show that there is an
isomorphism X → Z compatible with the morphisms Xm → X and Xm = Yn → Y →
Z. Let s ∈ Spec(R) be the closed point. By either Lemma 23.2 or Lemma 23.4 we reduce to
proving that the morphismsXm,s → Xs andXm,s → Zs are both equal to the canonical
morphism of Algebraic Curves, Lemma 24.2.

For a morphism c : U → V of schemes over κ(s) we say c has property (*) if dim(Uv) ≤ 1
for v ∈ V , OV = c∗OU , and R1c∗OU = 0. This property is stable under composition.
Since both Xs and Zs are stable genus g curves over κ(s), it suffices to show that each
of the morphisms Ys → Zs, Xi+1,s → Xi,s, and Yi+1,s → Yi,s, satisfy property (*), see
Algebraic Curves, Lemma 24.2.

Property (*) holds for Ys → Zs by construction.

The morphisms c : Xi+1,s → Xi,s are constructed and studied in the proof of Semistable
Reduction, Lemma 14.3. It suffices to check (*) étale locally on Xi,s. Hence it suffices
to check (*) for the base change of the morphism “X1 → X0” in Semistable Reduction,
Example 14.1 to R/πR. We leave the explicit calculation to the reader.

The morphism c : Yi+1,s → Yi,s is the restriction of the blow down of an exceptional
curve E ⊂ Yi+1 of the first kind, i.e., b : Yi+1 → Yi is a contraction of E , i.e., b is a
blowing up of a regular point on the surface Yi (Resolution of Surfaces, Section 16). Then
OYi = b∗OYi+1 and R1b∗OYi+1 = 0, see for example Resolution of Surfaces, Lemma
3.4. We conclude that OYi,s = c∗OYi+1,s and R1c∗OYi+1,s = 0 by More on Morphisms,
Lemmas 72.1, 72.2, and 72.4 (only gives surjectivity of OYi,s → c∗OYi+1,s but injectivity
follows easily from the fact that Yi,s is reduced and c changes things only over one closed
point). This finishes the proof. �

From Lemma 24.1 and Semistable Reduction, Theorem 18.1 we immediately deduce the
stable reduction theorem.

4In fact we haveXm = Y , i.e.,Xm does not contain any exceptional curves of the first kind. We encourage
the reader to think this through as it simplifies the proof somewhat.
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Theorem 24.3. Let R be a discrete valuation ring with fraction field K. Let C be a
smooth projective curve over K with H0(C,OC) = K and genus g ≥ 2. Then

(1) there exists an extension of discrete valuation rings R ⊂ R′ inducing a finite
separable extension of fraction fields K ′/K and a stable family of curves Y →
Spec(R′) of genus g with YK′ ∼= CK′ over K ′, and

(2) there exists a finite separable extension L/K and a stable family of curves Y →
Spec(A) of genus g where A ⊂ L is the integral closure of R in L such that
YL ∼= CL over L.

Proof. Part (1) is an immediate consequence of Lemma 24.1 and Semistable Reduc-
tion, Theorem 18.1.

Proof of (2). Let L/K be the finite separable extension found in part (3) of Semistable
Reduction, Theorem 18.1. Let A ⊂ L be the integral closure of R. Recall that A is a
Dedekind domain finite over R with finitely many maximal ideals m1, . . . ,mn, see More
on Algebra, Remark 111.6. Set S = Spec(A), Si = Spec(Ami), U = Spec(L), and
Ui = Si \ {mi}. Observe that U ∼= Ui for i = 1, . . . , n. Set X = CL viewed as a scheme
over the open subschemeU of S. By our choice ofL andA and Lemma 24.1 we have stable
families of curvesXi → Si and isomorphismsX×U Ui ∼= Xi×SiUi. By Limits of Spaces,
Lemma 18.4 we can find a finitely presented morphism Y → S whose base change to Si
is isomorphic to Xi for i = 1, . . . , n. Alternatively, you can use that S =

⋃
i=1,...,n Si is

an open covering of S and Si ∩ Sj = U for i 6= j and use n − 1 applications of Limits
of Spaces, Lemma 18.1 to get Y → S whose base change to Si is isomorphic to Xi for
i = 1, . . . , n. Clearly Y → S is the stable family of curves we were looking for. �

25. Properties of the stack of stable curves

In this section we prove the basic structure result forMg for g ≥ 2.

Lemma 25.1. Let g ≥ 2. The stackMg is separated.

Proof. The statement means that the morphismMg → Spec(Z) is separated. We
will prove this using the refined Noetherian valuative criterion as stated in More on Mor-
phisms of Stacks, Lemma 11.4

SinceMg is an open substack of Curves, we seeMg → Spec(Z) is quasi-separated and lo-
cally of finite presentation by Lemma 5.3. In particular the stackMg is locally Noetherian
(Morphisms of Stacks, Lemma 17.5). By Lemma 22.8 the open immersionMg →Mg has
dense image. Also,Mg →Mg is quasi-compact (Morphisms of Stacks, Lemma 8.2), hence
of finite type. Thus all the preliminary assumptions of More on Morphisms of Stacks,
Lemma 11.4 are satisfied for the morphisms

Mg →Mg and Mg → Spec(Z)
and it suffices to check the following: given any 2-commutative diagram

Spec(K) //

��

Mg
//Mg

��
Spec(R) //

55

Spec(Z)

whereR is a discrete valuation ring with field of fractionsK the category of dotted arrows
is either empty or a setoid with exactly one isomorphism class. (Observe that we don’t need
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to worry about 2-arrows too much, see Morphisms of Stacks, Lemma 39.3). Unwinding
what this means using thatMg , resp.Mg are the algebraic stacks parametrizing smooth,
resp. stable families of genus g curves, we find that what we have to prove is exactly the
uniqueness result stated and proved in Lemma 24.2. �

Lemma 25.2. Let g ≥ 2. The stackMg is quasi-compact.

Proof. We will use the notation from Section 4. Consider the subset

T ⊂ |PolarizedCurves|
of points ξ such that there exists a field k and a pair (X,L) over k representing ξ with the
following two properties

(1) X is a stable genus g curve, and
(2) L = ω⊗3

X .
Clearly, under the continuous map

|PolarizedCurves| −→ |Curves|
the image of the set T is exactly the open subset

|Mg| ⊂ |Curves|
Thus it suffices to show that T is quasi-compact. By Lemma 4.1 we see that

|PolarizedCurves| ⊂ |Polarized|
is an open and closed immersion. Thus it suffices to prove quasi-compactness of T as a
subset of |Polarized|. For this we use the criterion of Moduli Stacks, Lemma 11.3. First,
we observe that for (X,L) as above the Hilbert polynomial P is the function P (t) =
(6g−6)t+ (1−g) by Riemann-Roch, see Algebraic Curves, Lemma 5.2. Next, we observe
that H1(X,L) = 0 and L is very ample by Algebraic Curves, Lemma 24.3. This means
exactly that with n = P (3)− 1 there is a closed immersion

i : X −→ Pn
k

such that L = i∗OP1
k
(1) as desired. �

Here is the main theorem of this section.

Theorem 25.3. Let g ≥ 2. The algebraic stack Mg is a Deligne-Mumford stack,
proper and smooth over Spec(Z). Moreover, the locusMg parametrizing smooth curves
is a dense open substack.

Proof. Most of the properties mentioned in the statement have already been shown.
Smoothness is Lemma 22.6. Deligne-Mumford is Lemma 22.7. Openness ofMg is Lemma
22.8. We know thatMg → Spec(Z) is separated by Lemma 25.1 and we know thatMg

is quasi-compact by Lemma 25.2. Thus, to show thatMg → Spec(Z) is proper and finish
the proof, we may apply More on Morphisms of Stacks, Lemma 11.3 to the morphisms
Mg → Mg and Mg → Spec(Z). Thus it suffices to check the following: given any
2-commutative diagram

Spec(K) //

j

��

Mg
//Mg

��
Spec(A) // Spec(Z)
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where A is a discrete valuation ring with field of fractions K , there exist an extension
K ′/K of fields, a valuation ring A′ ⊂ K ′ dominating A such that the category of dotted
arrows for the induced diagram

Spec(K ′) //

j′

��

Mg

��
Spec(A′) //

99

Spec(Z)

is nonempty (Morphisms of Stacks, Definition 39.1). (Observe that we don’t need to worry
about 2-arrows too much, see Morphisms of Stacks, Lemma 39.3). Unwinding what this
means using thatMg , resp.Mg are the algebraic stacks parametrizing smooth, resp. sta-
ble families of genus g curves, we find that what we have to prove is exactly the result
contained in the stable reduction theorem, i.e., Theorem 24.3. �
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CHAPTER 110

Examples

1. Introduction

This chapter will contain examples which illuminate the theory.

2. An empty limit

This example is due to Waterhouse, see [?]. Let S be an uncountable set. For every finite
subset T ⊂ S consider the set MT of injective maps T → N. For T ⊂ T ′ ⊂ S finite the
restriction MT ′ → MT is surjective. Thus we have an inverse system over the directed
partially ordered set of finite subsets ofS with surjective transition maps. But limMT = ∅
as an element in the limit would define an injective map S → N.

3. A zero limit

Let (Si)i∈I be a directed inverse system of nonempty sets with surjective transition maps
and with limSi = ∅, see Section 2. Let K be a field and set

Vi =
⊕

s∈Si
K

Then the transition maps Vi → Vj are surjective for i ≥ j. However, limVi = 0. Namely,
if v = (vi) is an element of the limit, then the support of vi would be a finite subsetTi ⊂ Si
with limTi 6= ∅, see Categories, Lemma 21.7.

For each i consider the uniqueK-linear map Vi → K which sends each basis vector s ∈ Si
to 1. Let Wi ⊂ Vi be the kernel. Then

0→ (Wi)→ (Vi)→ (K)→ 0
is a nonsplit short exact sequence of inverse systems of vector spaces over the directed
set I . Hence Wi is a directed system of K-vector spaces with surjective transition maps,
vanishing limit, and nonvanishing R1 lim.

4. Non-quasi-compact inverse limit of quasi-compact spaces

Let N denote the set of natural numbers. For every integern, let In denote the set of all nat-
ural numbers> n. Define Tn to be the unique topology on N with basis {1}, . . . , {n}, In.
Denote by Xn the topological space (N, Tn). For each m < n, the identity map,

fn,m : Xn −→ Xm

is continuous. Obviously for m < n < p, the composition fp,n ◦ fn,m equals fp,m. So
((Xn), (fn,m)) is a directed inverse system of quasi-compact topological spaces.

Let T be the discrete topology on N, and let X be (N, T ). Then for every integer n, the
identity map,

fn : X −→ Xn

7117



7118 110. EXAMPLES

is continuous. We claim that this is the inverse limit of the directed system above. Let
(Y, S) be any topological space. For every integer n, let

gn : (Y, S) −→ (N, Tn)

be a continuous map. Assume that for every m < n we have fn,m ◦ gn = gm, i.e., the
system (gn) is compatible with the directed system above. In particular, all of the set maps
gn are equal to a common set map

g : Y −→ N.

Moreover, for every integer n, since {n} is open inXn, also g−1({n}) = g−1
n ({n}) is open

in Y . Therefore the set map g is continuous for the topology S on Y and the topology T
on N. Thus (X, (fn)) is the inverse limit of the directed system above.

However, clearlyX is not quasi-compact, since the infinite open covering by singleton sets
has no inverse limit.

Lemma 4.1. There exists an inverse system of quasi-compact topological spaces over
N whose limit is not quasi-compact.

Proof. See discussion above. �

5. The structure sheaf on the fibre product

LetX,Y, S, a, b, p, q, f be as in the introduction to Derived Categories of Schemes, Section
23. Picture:

X ×S Y

p
{{

q
##

f

��

X

a
$$

Y

b
zz

S

Then we have a canonical map

can : p−1OX ⊗f−1OS
q−1OY −→ OX×SY

which is not an isomorphism in general.

For example, let S = Spec(R), X = Spec(C), and Y = Spec(C). Then X ×S Y =
Spec(C) q Spec(C) is a discrete space with two points and the sheaves p−1OX , q−1OY
and f−1OS are the constant sheaves with values C, C, and R. Hence the source of can
is the constant sheaf with value C ⊗R C on the discrete space with two points. Thus its
global sections have dimension 8 as an R-vector space whereas taking global sections of
the target of can we obtain C×C which has dimension 4 as an R-vector space.

Another example is the following. Let k be an algebraically closed field. Consider S =
Spec(k), X = A1

k , and Y = A1
k. Then for U ⊂ X ×S Y = A2

k nonempty open the
images p(U) ⊂ X = A1

k and q(U) ⊂ A1
k are open and the reader can show that(

p−1OX ⊗f−1OS
q−1OY

)
(U) = OX(p(U))⊗k OY (q(U))

This is not equal toOX×SY (U) ifU is the complement of an irreducible curveC inX×S
Y = A2

k such that both p|C and q|C are nonconstant.
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Returning to the general case, let z = (x, y, s, p) be a point of X ×S Y as in Schemes,
Lemma 17.5. Then on stalks at z the map can gives the map

canz : OX,x ⊗OS,s
OY,y −→ OX×SY,z

This is a flat ring homomorphism as the target is a localization of the source (details omit-
ted; hint reduce to the case that X , Y , and S are affine). Observe that the source is in
general not a local ring, and this gives another way to see that can is not an isomorphism
in general.
More generally, suppose we have anOX -module F and anOY -module G. Then there is a
canonical map

p−1F ⊗f−1OS
q−1G

= p−1(F ⊗OX
OX)⊗f−1OS

q−1(OY ⊗OY
G)

= p−1F ⊗p−1OX
p−1OX ⊗f−1OS

q−1OY ⊗q−1OY
q−1G

can−−→ p−1F ⊗q−1OX
OX×SY ⊗q−1OY

q−1G
= p−1F ⊗q−1OX

OX×SY ⊗OX×SY
OX×SY ⊗q−1OY

q−1G
= p∗F ⊗OX×SY

q∗G
which is rarely an isomorphism.

6. A nonintegral connected scheme whose local rings are domains

We give an example of an affine scheme X = Spec(A) which is connected, all of whose
local rings are domains, but which is not integral. Connectedness of X means A has no
nontrivial idempotents, see Algebra, Lemma 21.3. The local rings of X are domains if,
whenever fg = 0 inA, every point ofX has a neighborhood where either f or g vanishes.
As long as A is not a domain, then X is not integral (Properties, Definition 3.1).
Roughly speaking, the construction is as follows: let X0 be the cross (the union of coor-
dinate axes) on the affine plane. Then let X1 be the (reduced) full preimage of X0 on the
blowup of the plane (X1 has three rational components forming a chain). Then blow up
the resulting surface at the two singularities ofX1, and letX2 be the reduced preimage of
X1 (which has five rational components), etc. Take X to be the inverse limit. The only
problem with this construction is that blowups glue in a projective line, soX1 is not affine.
Let us correct this by glueing in an affine line instead (so our scheme will be an open subset
in what was described above).
Here is a completely algebraic construction: For every k ≥ 0, let Ak be the following
ring: its elements are collections of polynomials pi ∈ C[x] where i = 0, . . . , 2k such that
pi(1) = pi+1(0). Set Xk = Spec(Ak). Observe that Xk is a union of 2k + 1 affine lines
that meet transversally in a chain. Define a ring homomorphism Ak → Ak+1 by

(p0, . . . , p2k) 7−→ (p0, p0(1), p1, p1(1), . . . , p2k),
in other words, every other polynomial is constant. This identifies Ak with a subring of
Ak+1. Let A be the direct limit of Ak (basically, their union). Set X = Spec(A). For
every k, we have a natural embedding Ak → A, that is, a map X → Xk. Each Ak is
connected but not integral; this implies that A is connected but not integral. It remains
to show that the local rings of A are domains.
Take f, g ∈ A with fg = 0 and x ∈ X . Let us construct a neighborhood of x on which
one of f and g vanishes. Choose k such that f, g ∈ Ak−1 (note the k − 1 index). Let y be
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the image of x in Xk. It suffices to prove that y has a neighborhood on which either f or
g viewed as sections of OXk vanishes. If y is a smooth point of Xk , that is, it lies on only
one of the 2k + 1 lines, this is obvious. We can therefore assume that y is one of the 2k
singular points, so two components of Xk pass through y. However, on one of these two
components (the one with odd index), both f and g are constant, since they are pullbacks
of functions on Xk−1. Since fg = 0 everywhere, either f or g (say, f ) vanishes on the
other component. This implies that f vanishes on both components, as required.

7. Noncomplete completion

Let R be a ring and let m be a maximal ideal. Consider the completion

R∧ = limR/mn.

Note that R∧ is a local ring with maximal ideal m′ = Ker(R∧ → R/m). Namely, if
x = (xn) ∈ R∧ is not in m′, then y = (x−1

n ) ∈ R∧ satisfies xy = 1, whence R∧ is local
by Algebra, Lemma 18.2. Now it is always true thatR∧ complete in its limit topology (see
the discussion in More on Algebra, Section 36). But beyond that, we have the following
questions:

(1) Is it true that mR∧ = m′?
(2) Is R∧ viewed as an R∧-module m′-adically complete?
(3) Is R∧ viewed as an R-module m-adically complete?

It turns out that these questions all have a negative answer. The example below was taken
from an unpublished note of Bart de Smit and Hendrik Lenstra. See also [?, Exercise
III.2.12] and [?, Example 1.8]

Let k be a field, R = k[x1, x2, x3, . . .], and m = (x1, x2, x3, . . .). We will think of an
element f of R∧ as a (possibly) infinite sum

f =
∑

aIx
I

(using multi-index notation) such that for each d ≥ 0 there are only finitely many nonzero
aI for |I| = d. The maximal ideal m′ ⊂ R∧ is the collection of f with zero constant term.
In particular, the element

f = x1 + x2
2 + x3

3 + . . .

is in m′ but not in mR∧ which shows that (1) is false in this example. However, if (1)
is false, then (3) is necessarily false because m′ = Ker(R∧ → R/m) and we can apply
Algebra, Lemma 96.5 with n = 1.

To finish we prove that R∧ is not m′-adically complete. For n ≥ 1 let Kn = Ker(R∧ →
R/mn). Then we have short exact sequences

0→ Kn/(m′)n → R∧/(m′)n → R/mn → 0

The projection mapR∧ → R/mn+1 sends (m′)n onto mn/mn+1. It follows thatKn+1 →
Kn/(m′)n is surjective. Hence the inverse system (Kn/(m′)n) has surjective transition
maps and taking inverse limits we obtain an exact sequence

0→ limKn/(m′)n → limR∧/(m′)n → limR/mn → 0

by Algebra, Lemma 87.1. Thus we see that R∧ is complete with respect to m′ if and only
if Kn = (m′)n for all n ≥ 1.
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To show thatR∧ is notm′-adically complete in our example we show thatK2 = Ker(R∧ →
R/m2) is not equal to (m′)2. Note that an element of (m′)2 can be written as a finite sum

(7.0.1)
∑

i=1,...,t
figi

with fi, gi ∈ R∧ having vanishing constant terms. To get an example we are going to
choose an z ∈ K2 of the form

z = z1 + z2 + z3 + . . .

with the following properties
(1) there exist sequences 1 < d1 < d2 < d3 < . . . and 0 < n1 < n2 < n3 < . . .

such that zi ∈ k[xni , xni+1, . . . , xni+1−1] homogeneous of degree di, and
(2) in the ring k[[xni , xni+1, . . . , xni+1−1]] the element zi cannot be written as a

sum (7.0.1) with t ≤ i.
Clearly this implies that z is not in (m′)2 because the image of the relation (7.0.1) in
the ring k[[xni , xni+1, . . . , xni+1−1]] for i large enough would produce a contradiction.
Hence it suffices to prove that for all t > 0 there exists a d � 0 and an integer n such
that we can find an homogeneous element z ∈ k[x1, . . . , xn] of degree d which cannot be
written as a sum (7.0.1) for the given t in k[[x1, . . . , xn]]. Take n > 2t and any d > 1
prime to the characteristic of k and set z =

∑
i=1,...,n x

d
i . Then the vanishing locus of the

ideal
( ∂z
∂x1

, . . . ,
∂z

∂xn
) = (dxd−1

1 , . . . , dxd−1
n )

consists of one point. On the other hand,
∂(
∑
i=1,...,t figi)
∂xj

∈ (f1, . . . , ft, g1, . . . , gt)

by the Leibniz rule and hence the vanishing locus of these derivatives contains at least

V (f1, . . . , ft, g1, . . . , gt) ⊂ Spec(k[[x1, . . . , xn]]).

Hence this is a contradiction as the dimension of V (f1, . . . , ft, g1, . . . , gt) is at least n −
2t ≥ 1.

Lemma 7.1. There exists a local ring R and a maximal ideal m such that the comple-
tion R∧ of R with respect to m has the following properties

(1) R∧ is local, but its maximal ideal is not equal to mR∧,
(2) R∧ is not a complete local ring, and
(3) R∧ is not m-adically complete as an R-module.

Proof. This follows from the discussion above as (with R = k[x1, x2, x3, . . .]) the
completion of the localization Rm is equal to the completion of R. �

8. Noncomplete quotient

Let k be a field. Let

R = k[t, z1, z2, z3, . . . , w1, w2, w3, . . . , x]/(zit− xiwi, ziwj)

Note that in particular zizjt = 0 in this ring. Any element f ofR can be uniquely written
as a finite sum

f =
∑

i=0,...,d
fix

i
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where each fi ∈ k[t, zi, wj ] has no terms involving the products zit or ziwj . Moreover,
if f is written in this way, then f ∈ (xn) if and only if fi = 0 for i < n. So x is a
nonzerodivisor and

⋂
(xn) = 0. Let R∧ be the completion of R with respect to the ideal

(x). Note thatR∧ is (x)-adically complete, see Algebra, Lemma 96.3. By the above we see
that an element of R∧ can be uniquely written as an infinite sum

f =
∑∞

i=0
fix

i

where each fi ∈ k[t, zi, wj ] has no terms involving the products zit or ziwj . Consider
the element

f =
∑∞

i=1
xiwi = xw1 + x2w2 + x3w3 + . . .

i.e., we have fn = wn. Note that f ∈ (t, xn) for every n because xmwm ∈ (t) for all m.
We claim that f 6∈ (t). To prove this assume that tg = f where g =

∑
glx

l in canonical
form as above. Since tzizj = 0 we may as well assume that none of the gl have terms
involving the products zizj . Examining the process to get tg in canonical form we see the
following: Given any term cm of gl where c ∈ k and m is a monomial in t, zi, wj and we
make the following replacement

(1) if the monomial m does not involve any zi, then ctm is a term of fl, and
(2) if the monomial m does involve a zi then it is equal to m = zi and we see that

cwi is term of fl+i.
Since g0 is a polynomial only finitely many of the variables zi occur in it. Pick n such that
zn does not occur in g0. Then the rules above show that wn does not occur in fn which is
a contradiction. It follows that R∧/(t) is not complete, see Algebra, Lemma 96.10.

Lemma 8.1. There exists a ring R complete with respect to a principal ideal I and a
principal ideal J such that R/J is not I-adically complete.

Proof. See discussion above. �

9. Completion is not exact

A quick example is the following. Suppose that R = k[t]. Let P = K =
⊕

n∈N R and
M =

⊕
n∈N R/(tn). Then there is a short exact sequence 0 → K → P → M → 0

where the first map is given by multiplication by tn on the nth summand. We claim that
0 → K∧ → P∧ → M∧ → 0 is not exact in the middle. Namely, ξ = (t2, t3, t4, . . .) ∈
P∧ maps to zero in M∧ but is not in the image of K∧ → P∧, because it would be the
image of (t, t, t, . . .) which is not an element of K∧.

A “smaller” example is the following. In the situation of Lemma 8.1 the short exact se-
quence 0 → J → R → R/J → 0 does not remain exact after completion. Namely, if
f ∈ J is a generator, then f : R → J is surjective, hence R → J∧ is surjective, hence
the image of J∧ → R is (f) = J but the fact that R/J is noncomplete means that the
kernel of the surjection R → (R/J)∧ is strictly bigger than J , see Algebra, Lemmas 96.1
and 96.10. By the same token the sequence R→ R→ R/(f)→ 0 does not remain exact
on completion.

Lemma 9.1. Completion is not an exact functor in general; it is not even right exact in
general. This holds even when I is finitely generated on the category of finitely presented
modules.

Proof. See discussion above. �
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10. The category of complete modules is not abelian

Let R be a ring and let I ⊂ R be a finitely generated ideal. Consider the category A
of I-adically complete R-modules, see Algebra, Definition 96.2. Let ϕ : M → N be
a morphism of A. The cokernel of ϕ in A is the completion (Coker(ϕ))∧ of the usual
cokernel (as I is finitely generated this completion is complete, see Algebra, Lemma 96.3).
LetK = Ker(ϕ). We claim thatK is complete and hence is the kernel of ϕ inA. Namely,
let K∧ be the completion. As M is complete we obtain a factorization

K → K∧ →M
ϕ−→ N

Sinceϕ is continuous for the I-adic topology,K → K∧ has dense image, andK = Ker(ϕ)
we conclude that K∧ maps into K. Thus K∧ = K ⊕ C and K is a direct summand of a
complete module, hence complete.
We will give an example that shows that Im 6= Coim in general. We take R = Zp =
limn Z/pnZ to be the ring of p-adic integers and we take I = (p). Consider the map

diag(1, p, p2, . . .) :
(⊕

n≥1
Zp
)∧
−→

∏
n≥1

Zp

where the left hand side is the p-adic completion of the direct sum. Hence an element of the
left hand side is a vector (x1, x2, x3, . . .) with xi ∈ Zp with p-adic valuation vp(xi)→∞
as i → ∞. This maps to (x1, px2, p

2x3, . . .). Hence we see that (1, p, p2, . . .) is in the
closure of the image but not in the image. By our description of kernels and cokernels
above it is clear that Im 6= Coim for this map.

Lemma 10.1. LetR be a ring and let I ⊂ R be a finitely generated ideal. The category
of I-adically complete R-modules has kernels and cokernels but is not abelian in general.

Proof. See above. �

11. The category of derived complete modules

Please read More on Algebra, Section 92 before reading this section.
Let A be a ring, let I be an ideal of A, and denote C the category of derived complete
modules as defined in More on Algebra, Definition 91.4.
Let T be a set and letMt, t ∈ T be a family of derived complete modules. We claim that in
general

⊕
Mt is not a derived complete module. For a specific example, let A = Zp and

I = (p) and consider
⊕

n∈N Zp. The map from
⊕

n∈N Zp to its p-adic completion isn’t
surjective. This means that

⊕
n∈N Zp cannot be derived complete as this would imply

otherwise, see More on Algebra, Lemma 91.3. Hence the inclusion functor C → ModA
does not commute with either direct sums or (filtered) colimits.
Assume I is finitely generated. By the discussion in More on Algebra, Section 92 the
category C has arbitrary colimits. However, we claim that filtered colimits are not exact
in the category C. Namely, suppose that A = Zp and I = (p). One has inclusions
fn : Zp/pZp → Zp/pnZp of p-adically complete A-modules given by multiplication
by pn−1. There are commutative diagrams

Zp/pZp
fn

//

1
��

Zp/pnZp

p

��
Zp/pZp

fn+1// Zp/pn+1Zp
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We claim: the colimit of these inclusions in the category C gives the map Zp/pZp → 0.
Namely, the colimit in ModA of the system on the right is Qp/Zp. Thus the colimit in C
is

H0((Qp/Zp)∧) = H0(Zp[1]) = 0
by More on Algebra, Section 92 where ∧ is derived completion. This proves our claim.

Lemma 11.1. Let A be a ring and let I ⊂ A be an ideal. The category C of derived
complete modules is abelian and the inclusion functor F : C → ModA is exact and com-
mutes with arbitrary limits. If I is finitely generated, then C has arbitrary direct sums and
colimits, but F does not commute with these in general. Finally, filtered colimits are not
exact in C in general, hence C is not a Grothendieck abelian category.

Proof. See More on Algebra, Lemma 92.1 and discussion above. �

12. Nonflat completions

The completion of a ring with respect to an ideal isn’t always flat, contrary to the Noether-
ian case. We have seen two examples of this phenomenon in More on Algebra, Example
90.10. In this section we give two more examples.

Lemma 12.1. Let R be a ring. Let M be an R-module which is countable. Then M is
a finite R-module if and only if M ⊗R RN →MN is surjective.

Proof. If M is a finite module, then the map is surjective by Algebra, Proposition
89.2. Conversely, assume the map is surjective. Let m1,m2,m3, . . . be an enumeration of
the elements of M . Let

∑
j=1,...,m xj ⊗ aj be an element of the tensor product mapping

to the element (mn) ∈ MN. Then we see that x1, . . . , xm generate M over R as in the
proof of Algebra, Proposition 89.2. �

Lemma 12.2. Let R be a countable ring. Let M be a countable R-module. Then M is
finitely presented if and only if the canonical map M ⊗R RN →MN is an isomorphism.

Proof. IfM is a finitely presented module, then the map is an isomorphism by Alge-
bra, Proposition 89.3. Conversely, assume the map is an isomorphism. By Lemma 12.1 the
module M is finite. Choose a surjection R⊕m →M with kernel K. Then K is countable
as a submodule of R⊕m. Arguing as in the proof of Algebra, Proposition 89.3 we see that
K⊗RRN → KN is surjective. Hence we conclude thatK is a finiteR-module by Lemma
12.1. Thus M is finitely presented. �

Lemma 12.3. LetR be a countable ring. ThenR is coherent if and only ifRN is a flat
R-module.

Proof. If R is coherent, then RN is a flat module by Algebra, Proposition 90.6. As-
sume RN is flat. Let I ⊂ R be a finitely generated ideal. To prove the lemma we show
that I is finitely presented as anR-module. Namely, the map I⊗RRN → RN is injective
as RN is flat and its image is IN by Lemma 12.1. Thus we conclude by Lemma 12.2. �

Let R be a countable ring. Observe that R[[x]] is isomorphic to RN as an R-module. By
Lemma 12.3 we see that R → R[[x]] is flat if and only if R is coherent. There are plenty
of noncoherent countable rings, for example

R = k[y, z, a1, b1, a2, b2, a3, b3, . . .]/(a1y + b1z, a2y + b2z, a3y + b3z, . . .)
where k is a countable field. This ring is not coherent because the ideal (y, z) ofR is not a
finitely presented R-module. Note that R[[x]] is the completion of R[x] by the principal
ideal (x).
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Lemma 12.4. There exists a ring such that the completionR[[x]] ofR[x] at (x) is not
flat over R and a fortiori not flat over R[x].

Proof. See discussion above. �

It turns out there is a ringR such thatR[[x]] is flat overR, butR[[x]] is not flat overR[x].
See this post by Badam Baplan. Namely, let R be a valuation ring. Then R is coherent
(Algebra, Example 90.2) and hence R[[x]] is flat over R by Algebra, Proposition 90.6. On
the other hand, we have the following lemma.

Lemma 12.5. LetR be a domain with fraction fieldK. IfR[[x]] is flat overR[x], then
R is normal if and only if R is completely normal (Algebra, Definition 37.3).

Proof. Suppose we have α ∈ K and a nonzero r ∈ R such that rαn ∈ R for all
n ≥ 1. Then we consider f =

∑
rαn−1xn in R[[x]]. Write α = a/b for a, b ∈ R

with b nonzero. Then we see that (ax − b)f = −rb. It follows that rb is in the ideal
(ax−b)R[[x]]. LetS = {h ∈ R[x] : h(0) = 1}. This is a multiplicative subset and flatness
of R[x] → R[[x]] implies that S−1R[x] → R[[x]] is faithfully flat (details omitted; hint:
use Algebra, Lemma 39.16). Hence

S−1R/(ax− b)S−1R→ R[[x]]/(ax− b)R[[x]]

is injective. We conclude that hrb = (ax − b)g for some h ∈ S and g ∈ R[x]. Writing
h = 1 + h1x+ . . .+ hdx

d shows that we obtain

1 + h1x+ . . .+ hdx
d = (1/r)(αx− 1)g

This factorization in K[x] gives a corresponding factorization in K[x−1] which shows
that α is the root of a monic polynomial with coefficients in R as desired. �

Lemma 12.6. If R is a valuation ring of dimension > 1, then R[[x]] is flat over R but
not flat over R[x].

Proof. The arguments above show that this is true if we can show that R is not
completely normal (valuation rings are normal, see Algebra, Lemma 50.3). Let p ⊂ m ⊂ R
be a chain of primes. Pick nonzero x ∈ p and y ∈ m \ p. Then xy−n ∈ R for all n ≥ 1 (if
not then yn/x ∈ R which is absurd because y 6∈ p). Hence 1/y is almost integral over R
but not in R. �

Next, we will construct an example where the completion of a localization is nonflat. To
do this consider the ring

R = k[y, z, a1, a2, a3, . . .]/(yai, aiaj)

Denote f ∈ R the residue class of z. We claim the ring map

(12.6.1) R[[x]] −→ Rf [[x]]

isn’t flat. Let I be the kernel of y : R[[x]] → R[[x]]. A typical element g of I looks like
g =

∑
gn,mamx

n where gn,m ∈ k[z] and for a given n only a finite number of nonzero
gn,m. Let J be the kernel of y : Rf [[x]]→ Rf [[x]]. We claim that J 6= IRf [[x]]. Namely,
if this were true then we would have∑

z−nanx
n =

∑
i=1,...,m

higi

https://math.stackexchange.com/users/164860/badam-baplan
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for some m ≥ 1, gi ∈ I , and hi ∈ Rf [[x]]. Say hi = h̄i mod (y, a1, a2, a3, . . .) with
h̄i ∈ k[z, 1/z][[x]]. Looking at the coefficient of an and using the description of the
elements gi above we would get

z−nxn =
∑

h̄iḡi,n

for some ḡi,n ∈ k[z][[x]]. This would mean that all z−nxn are contained in the finite
k[z][[x]]-module generated by the elements h̄i. Since k[z][[x]] is Noetherian this implies
that the R[z][[x]]-submodule of k[z, 1/z][[x]] generated by 1, z−1x, z−2x2, . . . is finite.
By Algebra, Lemma 36.2 we would conclude that z−1x is integral over k[z][[x]] which
is absurd. On the other hand, if (12.6.1) were flat, then we would get J = IRf [[x]] by
tensoring the exact sequence 0→ I → R[[x]] y−→ R[[x]] with Rf [[x]].

Lemma 12.7. There exists a ring A complete with respect to a principal ideal I and
an element f ∈ A such that the I-adic completion A∧

f of Af is not flat over A.

Proof. Set A = R[[x]] and I = (x) and observe that Rf [[x]] is the completion of
R[[x]]f . �

13. Nonabelian category of quasi-coherent modules

In Sheaves on Stacks, Section 11 we defined the category of quasi-coherent modules on a
category fibred in groupoids over Sch. Although we show in Sheaves on Stacks, Section
15 that this category is abelian for algebraic stacks, in this section we show that this is not
the case for formal algebraic spaces.

Namely, consider Zp viewed as topological ring using the p-adic topology. Let X =
Spf(Zp), see Formal Spaces, Definition 9.9. ThenX is a sheaf in sets on (Sch/Z)fppf and
gives rise to a stack in setoids X , see Stacks, Lemma 6.2. Thus the discussion of Sheaves on
Stacks, Section 15 applies.

Let F be a quasi-coherent module on X . Since X = colim Spec(Z/pnZ) it is clear from
Sheaves on Stacks, Lemma 12.2 that F is given by a sequence (Fn) where

(1) Fn is a quasi-coherent module on Spec(Z/pnZ), and
(2) the transition maps give isomorphisms Fn = Fn+1/p

nFn+1.
Converting into modules we see that F corresponds to a system (Mn) where each Mn is
an abelian group annihilated by pn and the transition maps induce isomorphisms Mn =
Mn+1/p

nMn+1. In this situation the moduleM = limMn is a p-adically complete mod-
ule and Mn = M/pnM , see Algebra, Lemma 98.2. We conclude that the category of
quasi-coherent modules on X is equivalent to the category of p-adically complete abelian
groups. This category is not abelian, see Section 10.

Lemma 13.1. The category of quasi-coherent1 modules on a formal algebraic spaceX
is not abelian in general, even if X is a Noetherian affine formal algebraic space.

Proof. See discussion above. �

1With quasi-coherent modules as defined above. Due to how things are setup in the Stacks project, this is
really the correct definition; as seen above our definition agrees with what one would naively have defined to be
quasi-coherent modules on Spf(A), namely complete A-modules.
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14. Regular sequences and base change

We are going to construct a ring R with a regular sequence (x, y, z) such that there exists
a nonzero element δ ∈ R/zR with xδ = yδ = 0.

To construct our example we first construct a peculiar module E over the ring k[x, y, z]
where k is any field. Namely, E will be a push-out as in the following diagram

xk[x,y,z,y−1]
xyk[x,y,z]

//

z/x

��

k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]

//

��

k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]+xk[x,y,z,y−1]

��
k[x,y,z,y−1]
yzk[x,y,z]

// E // k[x,y,z,x−1,y−1]
yk[x,y,z,x−1]+xk[x,y,z,y−1]

where the rows are short exact sequences (we dropped the outer zeros due to typesetting
problems). Another way to describe E is as

E = {(f, g) | f ∈ k[x, y, z, x−1, y−1], g ∈ k[x, y, z, y−1]}/ ∼

where (f, g) ∼ (f ′, g′) if and only if there exists a h ∈ k[x, y, z, y−1] such that

f = f ′ + xh mod yk[x, y, z, x−1], g = g′ − zh mod yzk[x, y, z]

We claim: (a) x : E → E is injective, (b) y : E/xE → E/xE is injective, (c)E/(x, y)E =
0, (d) there exists a nonzero element δ ∈ E/zE such that xδ = yδ = 0.

To prove (a) suppose that (f, g) is a pair that gives rise to an element of E and that
(xf, xg) ∼ 0. Then there exists a h ∈ k[x, y, z, y−1] such that xf +xh ∈ yk[x, y, z, x−1]
and xg−zh ∈ yzk[x, y, z]. We may assume that h =

∑
ai,j,kx

iyjzk is a sum of monomi-
als where only j ≤ 0 occurs. Then xg − zh ∈ yzk[x, y, z] implies that only i > 0 occurs,
i.e., h = xh′ for some h′ ∈ k[x, y, z, y−1]. Then (f, g) ∼ (f + xh′, g − zh′) and we see
that we may assume that g = 0 and h = 0. In this case xf ∈ yk[x, y, z, x−1] implies
f ∈ yk[x, y, z, x−1] and we see that (f, g) ∼ 0. Thus x : E → E is injective.

Since multiplication by x is an isomorphism on k[x,y,z,x−1,y−1]
yk[x,y,z,x−1] we see that E/xE is iso-

morphic to

k[x, y, z, y−1]
yzk[x, y, z] + xk[x, y, z, y−1] + zk[x, y, z, y−1] = k[x, y, z, y−1]

xk[x, y, z, y−1] + zk[x, y, z, y−1]

and hence multiplication by y is an isomorphism on E/xE. This clearly implies (b) and
(c).

Let e ∈ E be the equivalence class of (1, 0). Suppose that e ∈ zE. Then there exist
f ∈ k[x, y, z, x−1, y−1], g ∈ k[x, y, z, y−1], and h ∈ k[x, y, z, y−1] such that

1 + zf + xh ∈ yk[x, y, z, x−1], 0 + zg − zh ∈ yzk[x, y, z].

This is impossible: the monomial 1 cannot occur in zf , nor in xh. On the other hand,
we have ye = 0 and xe = (x, 0) ∼ (0,−z) = z(0,−1). Hence setting δ equal to the
congruence class of e in E/zE we obtain (d).

Lemma 14.1. There exists a local ringR and a regular sequencex, y, z (in the maximal
ideal) such that there exists a nonzero element δ ∈ R/zR with xδ = yδ = 0.
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Proof. Let R = k[x, y, z] ⊕ E where E is the module above considered as a square
zero ideal. Then it is clear that x, y, z is a regular sequence in R, and that the element
δ ∈ E/zE ⊂ R/zR gives an element with the desired properties. To get a local example
we may localize R at the maximal ideal m = (x, y, z, E). The sequence x, y, z remains
a regular sequence (as localization is exact), and the element δ remains nonzero as it is
supported at m. �

Lemma 14.2. There exists a local homomorphism of local ringsA→ B and a regular
sequence x, y in the maximal ideal ofB such thatB/(x, y) is flat overA, but such that the
images x, y of x, y in B/mAB do not form a regular sequence, nor even a Koszul-regular
sequence.

Proof. Set A = k[z](z) and let B = (k[x, y, z] ⊕ E)(x,y,z,E). Since x, y, z is a
regular sequence in B, see proof of Lemma 14.1, we see that x, y is a regular sequence in
B and that B/(x, y) is a torsion free A-module, hence flat. On the other hand, there
exists a nonzero element δ ∈ B/mAB = B/zB which is annihilated by x, y. Hence
H2(K•(B/mAB, x, y)) 6= 0. Thus x, y is not Koszul-regular, in particular it is not a
regular sequence, see More on Algebra, Lemma 30.2. �

15. A Noetherian ring of infinite dimension

A Noetherian local ring has finite dimension as we saw in Algebra, Proposition 60.9. But
there exist Noetherian rings of infinite dimension. See [?, Appendix, Example 1].
Namely, let k be a field, and consider the ring

R = k[x1, x2, x3, . . .].
Let pi = (x2i−1 , x2i−1+1, . . . , x2i−1) for i = 1, 2, . . . which are prime ideals of R. Let S
be the multiplicative subset

S =
⋂

i≥1
(R \ pi).

Consider the ring A = S−1R. We claim that
(1) The maximal ideals of the ring A are the ideals mi = piA.
(2) We have Ami = Rpi which is a Noetherian local ring of dimension 2i.
(3) The ring A is Noetherian.

Hence it is clear that this is the example we are looking for. Details omitted.

16. Local rings with nonreduced completion

In Algebra, Example 119.5 we gave an example of a characteristic p Noetherian local do-
main R of dimension 1 whose completion is nonreduced. In this section we present the
example of [?, Proposition 3.1] which gives a similar ring in characteristic zero.
Let C{x} be the ring of convergent power series over the field C of complex numbers.
The ring of all power series C[[x]] is its completion. Let K = C{x}[1/x] be the field of
convergent Laurent series. The K-module ΩK/C of algebraic differentials of K over C
is an infinite dimensional K-vector space (proof omitted). We may choose fn ∈ xC{x},
n ≥ 1 such that dx, df1, df2, . . . are part of a basis of ΩK/C. Thus we can find a C-
derivation

D : C{x} −→ C((x))
such that D(x) = 0 and D(fi) = x−n. Let

A = {f ∈ C{x} | D(f) ∈ C[[x]]}
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We claim that
(1) C{x} is integral over A,
(2) A is a local domain,
(3) dim(A) = 1,
(4) the maximal ideal of A is generated by x and xf1,
(5) A is Noetherian, and
(6) the completion of A is equal to the ring of dual numbers over C[[x]].

Since the dual numbers are nonreduced the ring A gives the example.

Note that if 0 6= f ∈ xC{x} then we may write D(f) = h/fn for some n ≥ 0 and
h ∈ C[[x]]. Hence D(fn+1/(n+ 1)) ∈ C[[x]] and D(fn+2/(n+ 2)) ∈ C[[x]]. Thus we
see fn+1, fn+2 ∈ A! In particular we see (1) holds. We also conclude that the fraction field
of A is equal to the fraction field of C{x}. It also follows immediately that A ∩ xC{x}
is the set of nonunits of A, hence A is a local domain of dimension 1. If we can show (4)
then it will follow that A is Noetherian (proof omitted). Suppose that f ∈ A ∩ xC{x}.
Write D(f) = h, h ∈ C[[x]]. Write h = c + xh′ with c ∈ C, h′ ∈ C[[x]]. Then
D(f − cxf1) = c + xh′ − c = xh′. On the other hand f − cxf1 = xg with g ∈ C{x},
but by the computation above we have D(g) = h′ ∈ C[[x]] and hence g ∈ A. Thus
f = cxf1 + xg ∈ (x, xf1) as desired.

Finally, why is the completion of A nonreduced? Denote Â the completion of A. Of
course this maps surjectively to the completion C[[x]] of C{x} because x ∈ A. Denote
this mapψ : Â→ C[[x]]. Above we saw that mA = (x, xf1) and henceD(mnA) ⊂ (xn−1)
by an easy computation. ThusD : A→ C[[x]] is continuous and gives rise to a continuous
derivation D̂ : Â→ C[[x]] over ψ. Hence we get a ring map

ψ + εD̂ : Â −→ C[[x]][ε].

Since Â is a one dimensional Noetherian complete local ring, if we can show this arrow is
surjective then it will follow that Â is nonreduced. Actually the map is an isomorphism
but we omit the verification of this. The subring C[x](x) ⊂ A gives rise to a map i :
C[[x]]→ Â on completions such that i ◦ψ = id and such thatD ◦ i = 0 (asD(x) = 0 by
construction). Consider the elements xnfn ∈ A. We have

(ψ + εD)(xnfn) = xnfn + ε

for all n ≥ 1. Surjectivity easily follows from these remarks.

17. Another local ring with nonreduced completion

In this section we make an example of a Noetherian local domain of dimension 2 complete
with respect to a principal ideal such that the recompletion of a localization is nonreduced.

Let p be a prime number. Let k be a field of characteristic p such that k has infinite degree
over its subfield kp of pth powers. For example k = Fp(t1, t2, t3, . . .). Consider the ring

A =
{ ∑

ai,jx
iyj ∈ k[[x, y]] such that for all n ≥ 0 we have

[kp(an,n, an,n+1, an+1,n, an,n+2, an+2,n, . . .) : kp] <∞

}
As a set we have

kp[[x, y]] ⊂ A ⊂ k[[x, y]]
Every element f of A can be uniquely written as a series

f = f0 + f1xy + f2(xy)2 + f3(xy)3 + . . .
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with
fn = an,n + an,n+1y + an+1,nx+ an,n+2y

2 + an+2,nx
2 + . . .

and the condition in the formula defining A means that the coefficients of fn generate a
finite extension of kp. From this presentation it is clear that A is an kp[[x, y]]-subalgebra
of k[[x, y]] complete with respect to the ideal xy. Moreover, we clearly have

A/xyA = C ×k D
where kp[[x]] ⊂ C ⊂ k[[x]] and kp[[y]] ⊂ D ⊂ k[[y]] are the subrings of power series from
Algebra, Example 119.5. Hence C and D are dvrs and we see that A/xyA is Noetherian.
By Algebra, Lemma 97.5 we conclude thatA is Noetherian. Since dim(k[[x, y]]) = 2 using
Algebra, Lemma 112.4 we conclude that dim(A) = 2.

Let f =
∑
aix

i be a power series such that kp(a0, a1, a2, . . .) has infinite degree over kp.
Then f 6∈ A but fp ∈ A. We set

B = A[f ] ⊂ k[[x, y]]
Since B is finite over A we see that B is Noetherian. Also, B is complete with respect to
the ideal generated by xy, see Algebra, Lemma 97.1. In fact B is free over A with basis
1, f, f2, . . . , fp−1; we omit the proof.

We claim the ring

(By)∧ = (B[1/y])∧ = limB[1/y]/(xy)nB[1/y] = limB[1/y]/xnB[1/y]
is nonreduced. Namely, this ring is free over

(Ay)∧ = (A[1/y])∧ = limA[1/y]/(xy)nA[1/y] = limA[1/y]/xnA[1/y]
with basis 1, f, . . . , fp−1. However, there is an element g ∈ (Ay)∧ such that fp = gp.
Namely, we can just take g =

∑
aix

i (the same expression as we used for f ) which makes
sense in (Ay)∧. Hence we see that

(By)∧ = (Ay)∧[f ]/(fp − gp) ∼= (Ay)∧[τ ]/(τp)
is nonreduced. In fact, this example shows slightly more. Namely, observe that (Ay)∧

is a dvr with uniformizer x and residue field the fraction field of the dvr D given above.
Hence we see that even

(By)∧[1/(xy)] = ((By)∧)xy
is nonreduced. This produces an example of the following kind.

Lemma 17.1. There exists a local Noetherian 2-dimensional domain (B,m) complete
with respect to a principal ideal I = (b) and an element f ∈ m, f 6∈ I such that the I-adic
completionC = (Bf )∧ of the principal localizationBf is nonreduced and even such that
Cb = C[1/b] = (Bf )∧[1/b] is nonreduced.

Proof. See discussion above. �

18. A non catenary Noetherian local ring

Even though there is a succesful dimension theory of Noetherian local rings there are non-
catenary Noetherian local rings. An example may be found in [?, Appendix, Example 2].
In fact, we will present this example in the simplest case. Namely, we will construct a local
Noetherian domain A of dimension 2 which is not universally catenary. (Note that A is
automatically catenary, see Exercises, Exercise 18.3.) The existence of a Noetherian local
ring which is not universally catenary implies the existence of a Noetherian local ring
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which is not catenary – and we spell this out at the end of this section in the particular
example at hand.

Let k be a field, and consider the formal power series ring k[[x]] in one variable over k. Let

z =
∑∞

i=1
aix

i

be a formal power series. We assume z as an element of the Laurent series field k((x)) =
k[[x]][1/x] is transcendental over k(x). Put

zj = x−j(z −
∑

i=1,...,j−1
aix

i) =
∑∞

i=j
aix

i−j ∈ k[[x]].

Note that z = xz1. Let R be the subring of k[[x]] generated by x, z and all of the zj , in
other words

R = k[x, z1, z2, z3, . . .] ⊂ k[[x]].
Consider the ideals m = (x) and n = (x− 1, z1, z2, . . .) of R.

We have xzj+1 + aj = zj . Hence R/m = k and m is a maximal ideal. Moreover, any
element of R not in m maps to a unit in k[[x]] and hence Rm ⊂ k[[x]]. In fact it is easy to
deduce that Rm is a discrete valuation ring and residue field k.

We claim that
R/(x− 1) = k[x, z1, z2, z3, . . .]/(x− 1) ∼= k[z].

Namely, the relation above implies that zj+1 = zj −aj − (x− 1)zj+1, and hence we may
express the class of zj+1 in terms of zj in the quotient R/(x− 1). Since the fraction field
of R has transcendence degree 2 over k by construction we see that z is transcendental
over k in R/(x − 1), whence the desired isomorphism. Hence n = (x − 1, z) and is a
maximal ideal. In fact the map

k[x, x−1, z](x−1,z) −→ Rn

is an isomorphism (since x−1 is invertible in Rn and since zj+1 = x−1zj − aj = . . . =
fj(x, x−1, z)). This shows that Rn is a regular local ring of dimension 2 and residue field
k.

Let S be the multiplicative subset

S = (R \m) ∩ (R \ n) = R \ (m ∪ n)
and set B = S−1R. We claim that

(1) The ring B is a k-algebra.
(2) The maximal ideals of the ring B are the two ideals mB and nB.
(3) The residue field at these maximal ideals is k.
(4) We have BmB = Rm and BnB = Rn which are Noetherian regular local rings

of dimensions 1 and 2.
(5) The ring B is Noetherian.

We omit the details of the verifications.

Whenever given a k-algebra B with the properties listed above we get an example as fol-
lows. Take A = k + rad(B) ⊂ B with rad(B) = mB ∩ nB the Jacobson radical. It is
easy to see that B is finite over A and hence A is Noetherian by Eakin’s theorem (see [?],
or [?, Appendix A1], or insert future reference here). Also A is a local domain with the
same fraction field as B and residue field k. Since the dimension of B is 2 we see that A
has dimension 2 as well, by Algebra, Lemma 112.4.
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If A were universally catenary then the dimension formula, Algebra, Lemma 113.1 would
give dim(BmB) = 2 contradiction.

Note that B is generated by one element over A. Hence B = A[x]/p for some prime p of
A[x]. Let m′ ⊂ A[x] be the maximal ideal corresponding to mB. Then on the one hand
dim(A[x]m′) = 3 and on the other hand

(0) ⊂ pA[x]m′ ⊂ m′A[x]m′

is a maximal chain of primes. Hence A[x]m′ is an example of a non catenary Noetherian
local ring.

19. Existence of bad local Noetherian rings

Let (A,m, κ) be a Noetherian complete local ring. In [?] it was shown that A is the com-
pletion of a Noetherian local domain if depth(A) ≥ 1 and A contains either Q or Fp as
a subring, or contains Z as a subring and A is torsion free as a Z-module. This produces
many examples of Noetherian local domains with “bizarre” properties.

Applying this for example toA = C[[x, y]]/(y2) we find a Noetherian local domain whose
completion is nonreduced. Please compare with Section 16.

In [?] conditions were found that characterize whenA is the completion of a reduced local
Noetherian ring.

In [?] it was shown thatA is the completion of a local Noetherian UFDR if depth(A) ≥ 2
andA contains either Q or Fp as a subring, or contains Z as a subring andA is torsion free
as a Z-module. In particularR is normal (Algebra, Lemma 120.11) hence the henselization
of R is a normal domain too (More on Algebra, Lemma 45.6). Thus A as above is the
completion of a henselian Noetherian local normal domain (because the completion of R
and its henselization agree, see More on Algebra, Lemma 45.3).

Apply this to find a Noetherian local UFD R such that R∧ ∼= C[[x, y, z, w]]/(wx,wy).
Note that Spec(R∧) is the union of a regular 2-dimensional and a regular 3-dimensional
component. The ring R cannot be universally catenary: Let

X −→ Spec(R)

be the blowing up of the maximal ideal. Then X is an integral scheme. There is a closed
point x ∈ X such that dim(OX,x) = 2, namely, on the level of the complete local ring we
pick x to lie on the strict transform of the 2-dimensional component and not on the strict
transform of the 3-dimensional component. By Morphisms, Lemma 52.1 we see that R is
not universally catenary. Please compare with Section 18.

The ring above is catenary (being a 3-dimensional local Noetherian UFD). However, in [?]
the author constructs a normal local Noetherian domainRwithR∧ ∼= C[[x, y, z, w]]/(wx,wy)
such that R is not catenary. See also [?] and [?].

In [?] it was shown that A is the completion of a local Noetherian ring R with an isolated
singularity providedA contains either Q or Fp as a subring orA has residue characteristic
p > 0 and p cannot map to a nonzero zerodivisor in any proper localization of A. Here
we say a Noetherian local ring R has an isolated singularity if Rp is a regular local ring
for all nonmaximal primes p ⊂ R.
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The papers [?] and [?] contain long lists of “bad” Noetherian local rings with given comple-
tions. In particular it constructs an example of a 2-dimensional Nagata local normal do-
main whose completion is C[[x, y, z]]/(yz) and one whose completion is C[[x, y, z]]/(y2−
z3).

As an aside, in [?] it was shown that A is the completion of an excellent Noetherian local
domain if A is reduced, equidimensional, and no integer in A is a zero divisor. However,
this doesn’t lead to “bad” Noetherian local rings as we obtain excellent ones!

20. Dimension in Noetherian Jacobson rings

Let k be the algebraic closure of a finite field. Let A = k[x, y] and X = Spec(A). Let
C = V (x) be the y-axis (this could be any other 1-dimensional integral closed subscheme
ofX). LetC1, C2, C3, . . . be an enumeration of the other integral closed subschemes ofX
of dimension 1. Let p1, p2, p3, . . . be an enumeration of the closed points of C.

Claim: for every n there exists an irreducible closed Zn ⊂ X of dimension 1 such that

{pn} = Zn ∩ (C ∪ C1 ∪ . . . ∪ Cn)
set theoretically. To do this setY = C∪C1∪C2∪. . .∪Cn. This is a reduced affine algebraic
scheme of dimension 1 over k. It is enough to find f ∈ k[x, y] with V (f)∩ Y = {pn} set
theoretically because then we can take Zn to be a suitable irreducible component of V (f).
Since the restriction map

k[x, y] −→ Γ(Y,OY )
is surjective, it suffices to find a regular function g on Y whose zero set is {pn} set the-
oretically. To see this is possible, we choose an effective Cartier divisor D ⊂ Y whose
support is pn (this is possible by Varieties, Lemma 38.3). Thus it suffices to show that
OX(ND) ∼= OX for some N > 0. But the Picard group of an affine 1-dimensional alge-
braic scheme over the algebraic closure of a finite field is torsion (insert future reference
here) and we conclude the claim is true.

Choose Zn as above for all n. Since k[x, y] is a UFD we may write Zn = V (fn) for some
irreducible element fn ∈ A. Let S ⊂ k[x, y] be the multiplicative subset generated by
f1, f2, f3, . . .. Consider the Noetherian ring B = S−1A.

Obviously, the ring mapA→ B identifies local rings and induces an injection Spec(B)→
Spec(A). Moreover, looking at the curve C1 we see that only the points of C ∩ C1 are
removed when passing from Spec(A) to Spec(B). In particular, we see that Spec(B) has
an infinite number of maximal ideals corresponding to maximal ideals ofA. On the other
hand, xB is a maximal ideal because the spectrum ofB/xB consists of a unique prime ideal
as we removed all the closed points of C = V (x) (but not the generic point). Finally, for
i ≥ 1 consider the curve Ci. Write Ci = V (gi) for gi ∈ A irreducible. If Ci = Zn for
some n, then giB is the unit ideal. If not, then all but finitely many of the closed points of
Ci survive the passage fromA toB: namely, only the points of (Z1∪ . . .∪Zi−1∪C)∩Ci
are removed from Ci.

The structure of the prime spectrum ofB given above shows thatB is Jacobson by Algebra,
Lemma 61.4. The maximal ideals are the maximal ideals of A which are in Spec(B) (and
there an inifinitude of these) together with the maximal ideal xB. Thus we see that we
have local rings of dimensions 1 and 2.

Lemma 20.1. There exists a Jacobson, universally catenary, Noetherian domain B
with maximal ideals m1,m2 such that dim(Bm1) = 1 and dim(Bm2) = 2.
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Proof. The construction ofB is given above. We just point out thatB is universally
catenary by Algebra, Lemma 105.4 and Morphisms, Lemma 17.5. �

21. Underlying space Noetherian not Noetherian

We give two examples to show that a scheme whose underlying topological space is Noe-
therian may not be a Noetherian scheme.

Example 21.1. Let k be a field, and let A = k[x1, x2, x3, . . . ]/(x2
1, x

2
2, x

2
3, . . . ). Any

prime ideal ofA contains the nilpotents x1, x2, x3, . . . , so p = (x1, x2, x3, . . . ) is the only
prime ideal of A. Therefore the underlying topological space of SpecA is a single point
and in particular is Noetherian. However p is clearly not finitely generated.

Example 21.2. Let k be a field, and let A ⊆ k[x, y] be the subring generated by k
and the monomials {xyi}i≥0. The prime ideals of A that do not contain x are in one-
to-one correspondence with the prime ideals of Ax ∼= k[x, x−1, y]. If p is a prime ideal
that does contain x, then it contains every xyi, i ≥ 0, because (xyi)2 = x(xy2i) ∈ p
and p is radical. Consequently p = ({xyi}i≥0). Therefore the underlying topological
space of SpecA is Noetherian, since it consists of the points of the Noetherian scheme
Spec(A[x, x−1, y]) and the prime ideal p. But the ring A is non-Noetherian because p
is not finitely generated. Note that in this example, A also has the property of being a
domain.

22. Non-quasi-affine variety with quasi-affine normalization

The existence of an example of this kind is mentioned in [?, II Remark 6.6.13]. They refer
to the fifth volume of EGA for such an example, but the fifth volume did not appear.

Let k be a field. Let Y = A2
k \ {(0, 0)}. We are going to construct a finite surjective

birational morphism π : Y −→ X with X a variety over k such that X is not quasi-
affine. Namely, consider the following curves in Y :

C1 : x = 0
C2 : y = 0

Note that C1 ∩ C2 = ∅. We choose the isomorphism ϕ : C1 → C2, (0, y) 7→ (y−1, 0).
We claim there is a unique morphism π : Y → X as above such that

C1
id //

ϕ
// Y

π // X

is a coequalizer diagram in the category of varieties (and even in the category of schemes).
Accepting this for the moment let us show that such anX cannot be quasi-affine. Namely,
it is clear that we would get

Γ(X,OX) = {f ∈ k[x, y] | f(0, y) = f(y−1, 0)} = k ⊕ (xy) ⊂ k[x, y].

In particular these functions do not separate the points (1, 0) and (−1, 0) whose images
in X (we will see below) are distinct (if the characteristic of k is not 2).

To show thatX exists consider the Zariski openD(x+y) ⊂ Y of Y . This is the spectrum
of the ring k[x, y, 1/(x+y)] and the curvesC1,C2 are completely contained inD(x+y).
Moreover the morphism

C1 q C2 −→ D(x+ y) ∩ Y = Spec(k[x, y, 1/(x+ y)])
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is a closed immersion. It follows from More on Algebra, Lemma 5.1 that the ring

A = {f ∈ k[x, y, 1/(x+ y)] | f(0, y) = f(y−1, 0)}
is of finite type over k. On the other hand we have the open D(xy) ⊂ Y of Y which is
disjoint from the curves C1 and C2. It is the spectrum of the ring

B = k[x, y, 1/xy].
Note that we have Axy ∼= Bx+y (since A clearly contains the elements xyP (x, y) any
polynomial P and the element xy/(x + y)). The scheme X is obtained by glueing the
affine schemes Spec(A) and Spec(B) using the isomorphism Axy ∼= Bx+y and hence
is clearly of finite type over k. To see that it is separated one has to show that the ring
map A ⊗k B → Bx+y is surjective. To see this use that A ⊗k B contains the element
xy/(x+y)⊗1/xywhich maps to 1/(x+y). The morphismY → X is given by the natural
mapsD(x+y)→ Spec(A) andD(xy)→ Spec(B). Since these are both finite we deduce
that Y → X is finite as desired. We omit the verification thatX is indeed the coequalizer
of the displayed diagram above, however, see (insert future reference for pushouts in the
category of schemes here). Note that the morphism π : Y → X does map the points
(1, 0) and (−1, 0) to distinct points inX because the function (x+ y3)/(x+ y)2 ∈ A has
value 1/1, resp. −1/(−1)2 = −1 which are always distinct (unless the characteristic is 2
– please find your own points for characteristic 2). We summarize this discussion in the
form of a lemma.

Lemma 22.1. Let k be a field. There exists a variety X whose normalization is quasi-
affine but which is itself not quasi-affine.

Proof. See discussion above and (insert future reference on normalization here). �

23. Taking scheme theoretic images

Let k be a field. Let t be a variable. Let Y = Spec(k[t]) and X =
∐
n≥1 Spec(k[t]/(tn)).

Denote f : X → Y the morphism using the closed immersion Spec(k[t]/(tn)) →
Spec(k[t]) for each n ≥ 1. In this case we have

(1) The scheme theoretic image (Morphisms, Definition 6.2) of f is Y . On the other
hand, the image of f is the closed point t = 0 in Y . Thus the underlying closed
subset of the scheme theoretic image of f is not equal to the closure of the image
of f .

(2) The formation of the scheme theoretic image does not commute with restriction
to the open subscheme V = Spec(k[t, 1/t]) ⊂ Y . Namely, the preimage of V in
X is empty and hence the scheme theoretic image of f |f−1(V ) : f−1(V )→ V is
the empty scheme. This is not equal to Y ∩ V .

24. Images of locally closed subsets

Chevalley’s theorem says that the image of a constructible set by a finitely presented mor-
phism of affine schemes is constructible, see Algebra, Theorem 29.10 and Morphisms, Sec-
tion 22. We will see the same thing does not hold for images of locally closed subsets.
Let k be a field of characteristic 0. Consider the projection morphism
f : X = Spec(k[t, x1, x2, . . . , y1, y2, . . .]) −→ Spec(k[x1, x2, . . . , y1, y2, . . .]) = Y

This is a morphism of finite presentation. Let Z be the closed subset of X defined by
x1(t− 1) = 0, x2(t− 1)(t− 2) = 0, x3(t− 1)(t− 2)(t− 3) = 0, . . .
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Let U =
⋃
j≥1 Uj be the open of X defined by

Uj = points where yj(t− 1)(t− 2)...(t− j) is nonzero

Then we have

f(Z ∩ Uj) = points where x1, . . . , xj are zero and yj is nonzero

We claim that B = f(Z ∩ U) =
⋃
j≥1 f(Z ∩ Uj) is not a finite union of locally closed

subsets of Y .

Proof of the claim. Suppose thatB = A1∪· · ·∪Am is a finite cover ofB by locally closed
subsets of Y . We will show by induction on n that m ≥ n. The base case n = 1 is OK as
B is nonempty. Assume n > 1 and that the induction hypothesis holds for n − 1. Since
the closure of B is (x1 = 0), one of the Ai must contain some nonempty open subset of
(x1 = 0). Then Ai must be open in (x1 = 0). But any such open subset cannot contain
a point with y1 = 0; indeed, for points of B, y1 = 0 forces x2 = 0, and this shows B
contains no neighborhood of (x, y) inside (x1 = 0). Therefore, the remaining m − 1
elements restrict to a constructible cover ofB∩(y1 = 0). However, observe that the right
shift map xi 7→ xi+1, yi 7→ yi+1 identifies B with B ∩ (y1 = 0)! Thus by induction
hypothesis, we see that m− 1 ≥ n− 1 and we conclde m ≥ n. This finishes the proof of
the induction step and thereby establishes the claim.

Lemma 24.1. There exists a morphism f : X → Y of finite presentation between
affine schemes and a locally closed subset T of X such that f(T ) is not a finite union of
locally closed subsets of Y .

Proof. See discussion above. �

25. A locally closed subscheme which is not open in closed

This is a copy of Morphisms, Example 3.4. Here is an example of an immersion which
is not a composition of an open immersion followed by a closed immersion. Let k be a
field. Let X = Spec(k[x1, x2, x3, . . .]). Let U =

⋃∞
n=1 D(xn). Then U → X is an open

immersion. Consider the ideals

In = (xn1 , xn2 , . . . , xnn−1, xn − 1, xn+1, xn+2, . . .) ⊂ k[x1, x2, x3, . . .][1/xn].
Note that Ink[x1, x2, x3, . . .][1/xnxm] = (1) for any m 6= n. Hence the quasi-coherent
ideals Ĩn on D(xn) agree on D(xnxm), namely Ĩn|D(xnxm) = OD(xnxm) if n 6= m.
Hence these ideals glue to a quasi-coherent sheaf of ideals I ⊂ OU . Let Z ⊂ U be the
closed subscheme corresponding to I . Thus Z → X is an immersion.

We claim that we cannot factor Z → X as Z → Z → X , where Z → X is closed and
Z → Z is open. Namely, Z would have to be defined by an ideal I ⊂ k[x1, x2, x3, . . .]
such that In = Ik[x1, x2, x3, . . .][1/xn]. But the only element f ∈ k[x1, x2, x3, . . .]
which ends up in all In is 0! Hence I does not exist.

The morphismZ → X also gives an example of bad behaviour of scheme theoretic images
of immersions. Namely, the arguments above show that the scheme theoretic image of the
immersion Z → X is X . On the other hand, we see

(1) Z is not topologically dense in X , and
(2) the scheme theoretic image of Z = Z ∩ U → U is just Z. This is not equal to

U ∩X = U and hence formation of the scheme theoretic image in this case does
not commute with restrictions to opens.
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26. Nonexistence of suitable opens

This section complements the results of Properties, Section 29.

Let k be a field and letA = k[z1, z2, z3, . . .]/I where I is the ideal generated by all pairwise
products zizj , i 6= j , i, j ∈ N. Set S = Spec(A). Let s ∈ S be the closed point corre-
sponding to the maximal ideal (zi). We claim there is no quasi-compact open V ⊂ S \{s}
which is dense in S \ {s}. Note that S \ {s} =

⋃
D(zi). Each D(zi) is open and irre-

ducible with generic point ηi. We conclude that ηi ∈ V for all i. However, a principal
affine open of S \ {s} is of the form D(f) where f ∈ (z1, z2, . . .). Then f ∈ (z1, . . . , zn)
for some n and we see that D(f) contains only finitely many of the points ηi. Thus V
cannot be quasi-compact.

Let k be a field and let B = k[x, z1, z2, z3, . . .]/J where J is the ideal generated by the
products xzi, i ∈ N and by all pairwise products zizj , i 6= j , i, j ∈ N. Set T = Spec(B).
Consider the principal open U = D(x). We claim there is no quasi-compact open V ⊂ S
such that V ∩U = ∅ and V ∪U is dense in S. Let t ∈ T be the closed point corresponding
to the maximal ideal (x, zi). The closure of U in T is U = U ∪ {t}. Hence V ⊂

⋃
iD(zi)

is a quasi-compact open. By the arguments of the previous paragraph we see that V cannot
be dense in

⋃
D(zi).

Lemma 26.1. Nonexistence quasi-compact opens of affines:
(1) There exist an affine scheme S and affine open U ⊂ S such that there is no

quasi-compact open V ⊂ S with U ∩ V = ∅ and U ∪ V dense in S.
(2) There exists an affine scheme S and a closed point s ∈ S such that S \ {s} does

not contain a quasi-compact dense open.

Proof. See discussion above. �

Let X be the glueing of two copies of the affine scheme T (see above) along the affine
open U . Thus there is a morphism π : X → T and X = U1 ∪ U2 such that π maps Ui
isomorphically to T and U1 ∩U2 isomorphically to U . Note thatX is quasi-separated (by
Schemes, Lemma 21.6) and quasi-compact. We claim there does not exist a separated, dense,
quasi-compact open W ⊂ X . Namely, consider the two closed points x1 ∈ U1, x2 ∈ U2
mapping to the closed point t ∈ T introduced above. Let η̃ ∈ U1 ∩ U2 be the generic
point mapping to the (unique) generic point η of U . Note that η̃  x1 and η̃  x2
lying over the specialization η  s. Since π|W : W → T is separated we conclude
that we cannot have both x1 and x2 ∈ W (by the valuative criterion of separatedness
Schemes, Lemma 22.2). Say x1 6∈ W . Then W ∩ U1 is a quasi-compact (as X is quasi-
separated) dense open of U1 which does not contain x1. Now observe that there exists an
isomorphism (T, t) ∼= (S, s) of schemes (by sending x to z1 and zi to zi+1). Hence by the
first paragraph of this section we arrive at a contradiction.

Lemma 26.2. There exists a quasi-compact and quasi-separated schemeX which does
not contain a separated quasi-compact dense open.

Proof. See discussion above. �

27. Nonexistence of quasi-compact dense open subscheme

LetX be a quasi-compact and quasi-separated algebraic space over a field k. We know that
the schematic locusX ′ ⊂ X is a dense open subspace, see Properties of Spaces, Proposition
13.3. In fact, this result holds when X is reasonable, see Decent Spaces, Proposition 10.1.
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A natural question is whether one can find a quasi-compact dense open subscheme of X .
It turns out this is not possible in general.
Assume the characteristic of k is not 2. LetB = k[x, z1, z2, z3, . . .]/J where J is the ideal
generated by the products xzi, i ∈ N and by all pairwise products zizj , i 6= j , i, j ∈ N.
Set U = Spec(B). Denote 0 ∈ U the closed point all of whose coordinates are zero. Set

j : R = ∆q Γ −→ U ×k U
where ∆ is the image of the diagonal morphism of U over k and

Γ = {((x, 0, 0, 0, . . .), (−x, 0, 0, 0, . . .)) | x ∈ A1
k, x 6= 0}.

It is clear that s, t : R → U are étale, and hence j is an étale equivalence relation. The
quotient X = U/R is an algebraic space (Spaces, Theorem 10.5). Note that j is not an
immersion because (0, 0) ∈ ∆ is in the closure of Γ. Hence X is not a scheme. On the
other hand,X is quasi-separated asR is quasi-compact. Denote 0X the image of the point
0 ∈ U . We claim that X \ {0X} is a scheme, namely

X \ {0X} = Spec
(
k[x2, x−2]

)
q Spec (k[z1, z2, z3, . . .]/(zizj)) \ {0}

(details omitted). On the other hand, we have seen in Section 26 that the scheme on the
right hand side does not contain a quasi-compact dense open.

Lemma 27.1. There exists a quasi-compact and quasi-separated algebraic space which
does not contain a quasi-compact dense open subscheme.

Proof. See discussion above. �

Using the construction of Spaces, Example 14.2 in the same manner as we used the con-
struction of Spaces, Example 14.1 above, one obtains an example of a quasi-compact, quasi-
separated, and locally separated algebraic space which does not contain a quasi-compact
dense open subscheme.

28. Affines over algebraic spaces

Suppose that f : Y → X is a morphism of schemes with f locally of finite type and Y
affine. Then there exists an immersion Y → An

X of Y into affine n-space over X . See the
slightly more general Morphisms, Lemma 39.2.
Now suppose that f : Y → X is a morphism of algebraic spaces with f locally of finite
type and Y an affine scheme. Then it is not true in general that we can find an immersion
of Y into affine n-space over X .
A first (nasty) counter example is Y = Spec(k) and X = [A1

k/Z] where k is a field of
characteristic zero and Z acts on A1

k by translation (n, t) 7→ t + n. Namely, for any
morphism Y → An

X over X we can pullback to the covering A1
k of X and we get an

infinite disjoint union of A1
k ’s mapping into An+1

k which is not an immersion.
A second counter example isY = A1

k → X = A1
k/RwithR = {(t, t)}q{(t,−t), t 6= 0}.

Namely, in this case the morphism Y → An
X would be given by some regular functions

f1, . . . , fn on Y and hence the fibre product of Y with the covering An+1
k → An

X would
be the scheme

{(f1(t), . . . , fn(t), t)} q {(f1(t), . . . , fn(t),−t), t 6= 0}
with obvious morphism to An+1

k which is not an immersion. Note that this gives a counter
example with X quasi-separated.
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Lemma 28.1. There exists a finite type morphism of algebraic spaces Y → X with Y
affine and X quasi-separated, such that there does not exist an immersion Y → An

X over
X .

Proof. See discussion above. �

29. Pushforward of quasi-coherent modules

In Schemes, Lemma 24.1 we proved that f∗ transforms quasi-coherent modules into quasi-
coherent modules when f is quasi-compact and quasi-separated. Here are some examples
to show that these conditions are both necessary.
Suppose that Y = Spec(A) is an affine scheme and that X =

∐
n∈N Y . We claim that

f∗OX is not quasi-coherent where f : X → Y is the obvious morphism. Namely, for
a ∈ A we have

f∗OX(D(a)) =
∏

n∈N
Aa

Hence, in order for f∗OX to be quasi-coherent we would need∏
n∈N

Aa =
(∏

n∈N
A
)
a

for all a ∈ A. This isn’t true in general, for example if A = Z and a = 2, then
(1, 1/2, 1/4, 1/8, . . .) is an element of the left hand side which is not in the right hand
side. Note that f is a non-quasi-compact separated morphism.
Let k be a field. Set

A = k[t, z, x1, x2, x3, . . .]/(tx1z, t
2x2

2z, t
3x3

3z, . . .)
Let Y = Spec(A). Let V ⊂ Y be the open subscheme V = D(x1) ∪D(x2) ∪ . . .. Let X
be two copies of Y glued along V . Let f : X → Y be the obvious morphism. Then we
have an exact sequence

0→ f∗OX → OY ⊕OY
(1,−1)−−−−→ j∗OV

where j : V → Y is the inclusion morphism. Since

A −→
∏

Axn

is injective (details omitted) we see that Γ(Y, f∗OX) = A. On the other hand, the kernel
of the map

At −→
∏

Atxn

is nonzero because it contains the element z. Hence Γ(D(t), f∗OX) is strictly bigger than
At because it contains (z, 0). Thus we see that f∗OX is not quasi-coherent. Note that f is
quasi-compact but non-quasi-separated.

Lemma 29.1. Schemes, Lemma 24.1 is sharp in the sense that one can neither drop the
assumption of quasi-compactness nor the assumption of quasi-separatedness.

Proof. See discussion above. �

30. A nonfinite module with finite free rank 1 stalks

Let R = Q[x]. Set M =
∑
n∈N

1
x−nR as a submodule of the fraction field of R. Then M

is not finitely generated, but for every prime p of R we have Mp
∼= Rp as an Rp-module.

An example of a similar flavor isR = Z andM =
∑
p prime

1
pZ ⊂ Q, which equals the set

of fractions ab with b nonzero and squarefree.
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31. A noninvertible ideal invertible in stalks

LetA be a domain and let I ⊂ A be a nonzero ideal. Recall that when we say I is invertible,
we mean that I is invertible as an A-module. We are going to make an example of this
situation where I is not invertible, yet Iq = (f) ⊂ Aq is a (nonzero) principal ideal
for every prime ideal q ⊂ A. In the literature the property that Iq is principal for all
primes q is sometimes expressed by saying “I is a locally principal ideal”. We can’t use
this terminology as our “local” always means “local in the Zariski topology” (or whatever
topology we are currently working with).

Let R = Q[x] and let M =
∑ 1

x−nR be the module constructed in Section 30. Consider
the ring2

A = Sym∗
R(M)

and the ideal I = MA =
⊕

d≥1 Symd
R(M). Since M is not finitely generated as an R-

module we see that I cannot be generated by finitely many elements as an ideal inA. Since
an invertible module is finitely generated, this means that I is not invertible. On the other
hand, let p ⊂ R be a prime ideal. By construction Mp

∼= Rp. Hence

Ap = Sym∗
Rp

(Mp) ∼= Sym∗
Rp

(Rp) = Rp[T ]

as a graded Rp-algebra. It follows that Ip ⊂ Ap is generated by the nonzerodivisor T .
Thus certainly for any prime ideal q ⊂ A we see that Iq is generated by a single element.

Lemma 31.1. There exists a domain A and a nonzero ideal I ⊂ A such that Iq ⊂ Aq

is a principal ideal for all primes q ⊂ A but I is not an invertible A-module.

Proof. See discussion above. �

32. A finite flat module which is not projective

This is a copy of Algebra, Remark 78.4. It is not true that a finite R-module which is
R-flat is automatically projective. A counter example is where R = C∞(R) is the ring
of infinitely differentiable functions on R, and M = Rm = R/I where m = {f ∈ R |
f(0) = 0} and I = {f ∈ R | ∃ε, ε > 0 : f(x) = 0 ∀x, |x| < ε}.

The morphism Spec(R/I)→ Spec(R) is also an example of a flat closed immersion which
is not open.

Lemma 32.1. Strange flat modules.
(1) There exists a ring R and a finite flat R-module M which is not projective.
(2) There exists a closed immersion which is flat but not open.

Proof. See discussion above. �

33. A projective module which is not locally free

We give two examples. One where the rank is between 0 and 1 and one where the rank is
ℵ0.

Lemma 33.1. Let R be a ring. Let I ⊂ R be an ideal generated by a countable collec-
tion of idempotents. Then I is projective as an R-module.

2The ring A is an example of a non-Noetherian domain whose local rings are Noetherian.
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Proof. Say I = (e1, e2, e3, . . .) with en an idempotent of R. After inductively re-
placing en+1 by en + (1 − en)en+1 we may assume that (e1) ⊂ (e2) ⊂ (e3) ⊂ . . . and
hence I =

⋃
n≥1(en) = colimn enR. In this case

HomR(I,M) = HomR(colimn enR,M) = limn HomR(enR,M) = limn enM

Note that the transition maps en+1M → enM are given by multiplication by en and are
surjective. Hence by Algebra, Lemma 86.4 the functor HomR(I,M) is exact, i.e., I is a
projective R-module. �

Suppose that P ⊂ Q is an inclusion ofR-modules withQ a finiteR-module and P locally
free, see Algebra, Definition 78.1. Suppose that Q can be generated by N elements as an
R-module. Then it follows from Algebra, Lemma 15.7 that P is finite locally free (with
the free parts having rank at mostN ). And in this case P is a finiteR-module, see Algebra,
Lemma 78.2.

Combining this with the above we see that a non-finitely-generated ideal which is gener-
ated by a countable collection of idempotents is projective but not locally free. An explicit
example is R =

∏
n∈N F2 and I the ideal generated by the idempotents

en = (1, 1, . . . , 1, 0, . . .)
where the sequence of 1’s has length n.

Lemma 33.2. There exists a ring R and an ideal I such that I is projective as an R-
module but not locally free as an R-module.

Proof. See above. �

Lemma 33.3. Let K be a field. Let Ci, i = 1, . . . , n be smooth, projective, geometri-
cally irreducible curves over K. Let Pi ∈ Ci(K) be a rational point and let Qi ∈ Ci be a
point such that [κ(Qi) : K] = 2. Then [P1×. . .×Pn] is nonzero in CH0(U1×K . . .×KUn)
where Ui = Ci \ {Qi}.

Proof. There is a degree map deg : CH0(C1 ×K . . .×K Cn)→ Z Because each Qi
has degree 2 over K we see that any zero cycle supported on the “boundary”

C1 ×K . . .×K Cn \ U1 ×K . . .×K Un

has degree divisible by 2. �

We can construct another example of a projective but not locally free module using the
lemma above as follows. Let Cn, n = 1, 2, 3, . . . be smooth, projective, geometrically
irreducible curves over Q each with a pair of points Pn, Qn ∈ Cn such that κ(Pn) = Q
and κ(Qn) is a quadratic extension of Q. Set Un = Cn \ {Qn}; this is an affine curve. Let
Ln be the inverse of the ideal sheaf of Pn on Un. Note that c1(Ln) = [Pn] in the group
of zero cycles CH0(Un). Set An = Γ(Un,OUn). Let Ln = Γ(Un,Ln) which is a locally
free module of rank 1 over An. Set

Bn = A1 ⊗Q A2 ⊗Q . . .⊗Q An

so that Spec(Bn) = U1 × . . .× Un all products over Spec(Q). For i ≤ n we set

Ln,i = A1 ⊗Q . . .⊗Q Mi ⊗Q . . .⊗Q An

which is a locally free Bn-module of rank 1. Note that this is also the global sections of
pr∗
iLn. Set

B∞ = colimnBn and L∞,i = colimn Ln,i
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Finally, set
M =

⊕
i≥1

L∞,i.

This is a direct sum of finite locally free modules, hence projective. We claim that M is
not locally free. Namely, suppose that f ∈ B∞ is a nonzero function such thatMf is free
over (B∞)f . Let e1, e2, . . . be a basis. Choose n ≥ 1 such that f ∈ Bn. Choosem ≥ n+1
such that e1, . . . , en+1 are in ⊕

1≤i≤m
Lm,i.

Because the elements e1, . . . , en+1 are part of a basis after a faithfully flat base change we
conclude that the Chern classes

ci(pr∗
1L1 ⊕ . . .⊕ pr∗

mLm), i = m,m− 1, . . . ,m− n
are zero in the chow group of

D(f) ⊂ U1 × . . .× Um
Since f is the pullback of a function on U1 × . . .× Un this implies in particular that

cm−n(O⊕n
W ⊕ pr∗

1Ln+1 ⊕ . . .⊕ pr∗
m−nLm) = 0.

on the variety
W = (Cn+1 × . . .× Cm)K

over the field K = Q(C1 × . . .× Cn). In other words the cycle

[(Pn+1 × . . .× Pm)K ]
is zero in the chow group of zero cycles onW . This contradicts Lemma 33.3 above because
the points Qi, n + 1 ≤ i ≤ m induce corresponding points Q′

i on (Cn)K and as K/Q is
geometrically irreducible we have [κ(Q′

i) : K] = 2.

Lemma 33.4. There exists a countable ring R and a projective module M which is a
direct sum of countably many locally free rank 1 modules such that M is not locally free.

Proof. See above. �

34. Zero dimensional local ring with nonzero flat ideal

In [?] and [?] there is an example of a zero dimensional local ring with a nonzero flat
ideal. Here is the construction. Let k be a field. Let Xi, Yi, i ≥ 1 be variables. Take
R = k[Xi, Yi]/(Xi − YiXi+1, Y

2
i ). Denote xi, resp. yi the image of Xi, resp. Yi in this

ring. Note that

xi = yixi+1 = yiyi+1xi+2 = yiyi+1yi+2xi+3 = . . .

in this ring. The ringR has only one prime ideal, namely m = (xi, yi). We claim that the
ideal I = (xi) is flat as an R-module.

Note that the annihilator of xi in R is the ideal (x1, x2, x3, . . . , yi, yi+1, yi+2, . . .). Con-
sider the R-module M generated by elements ei, i ≥ 1 and relations ei = yiei+1. Then
M is flat as it is the colimit colimiR of copies of R with transition maps

R
y1−→ R

y2−→ R
y3−→ . . .

Note that the annihilator of ei inM is the ideal (x1, x2, x3, . . . , yi, yi+1, yi+2, . . .). Since
every element of M , resp. I can be written as fei, resp. hxi for some f, h ∈ R we see that
the map M → I , ei → xi is an isomorphism and I is flat.
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Lemma 34.1. There exists a local ring R with a unique prime ideal and a nonzero
ideal I ⊂ R which is a flat R-module

Proof. See discussion above. �

35. An epimorphism of zero-dimensional rings which is not surjective

In [?] and [?] one can find the following example. Let k be a field. Consider the ring
homomorphism

k[x1, x2, . . . , z1, z2, . . .]/(x4i
i , z

4i
i ) −→ k[x1, x2, . . . , y1, y2, . . .]/(x4i

i , yi − xi+1y
2
i+1)

which maps xi to xi and zi to xiyi. Note that y4i+1

i is zero in the right hand side but that
y1 is not zero (details omitted). This map is not surjective: we can think of the above as
a map of Z-graded algebras by setting deg(xi) = −1, deg(zi) = 0, and deg(yi) = 1 and
then it is clear that y1 is not in the image. Finally, the map is an epimorphism because

yi−1 ⊗ 1 = xiy
2
i ⊗ 1 = yi ⊗ xiyi = xiyi ⊗ yi = 1⊗ xiy2

i .

hence the tensor product of the target over the source is isomorphic to the target.

Lemma 35.1. There exists an epimorphism of local rings of dimension 0 which is not
a surjection.

Proof. See discussion above. �

36. Finite type, not finitely presented, flat at prime

Let k be a field. Consider the local ringA0 = k[x, y](x,y). Denote p0,n = (y+xn+x2n+1).
This is a prime ideal. Set

A = A0[z1, z2, z3, . . .]/(znzm, zn(y + xn + x2n+1))
Note that A→ A0 is a surjection whose kernel is an ideal of square zero. Hence A is also
a local ring and the prime ideals of A are in one-to-one correspondence with the prime
ideals of A0. Denote pn the prime ideal of A corresponding to p0,n. Observe that pn is
the annihilator of zn in A. Let

C = A[z]/(xz2 + z + y)[ 1
2zx+ 1]

Note that A → C is an étale ring map, see Algebra, Example 137.8. Let q ⊂ C be the
maximal ideal generated by x, y, z and all zn. AsA→ C is flat we see that the annihilator
of zn in C is pnC. We compute

C/pnC = A0[z]/(xz2 + z + y, y + xn + x2n+1)[1/(2zx+ 1)]
= k[x](x)[z]/(xz2 + z − xn − x2n+1)[1/(2zx+ 1)]
= k[x](x)[z]/(z − xn)× k[x](x)[z]/(xz + xn+1 + 1)[1/(2zx+ 1)]
= k[x](x) × k(x)

because (z−xn)(xz+xn+1+1) = xz2+z−xn−x2n+1. Hence we see that pnC = rn∩qn
with rn = pnC + (z− xn)C and qn = pnC + (xz+ xn+1 + 1)C. Since qn + rn = C we
also get pnC = rnqn. It follows that qn is the annihilator of ξn = (z − xn)zn. Observe
that on the one hand rn ⊂ q, and on the other hand qn+q = C. This follows for example
because qn is a maximal ideal of C distinct from q. Similarly we have qn + qm = C for
n 6= m. At this point we let

B = Im(C −→ Cq)
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We observe that the elements ξn map to zero in B as xz + xn+1 + 1 is not in q. Denote
q′ ⊂ B the image of q. By construction B is a finite type A-algebra, with Bq′ ∼= Cq. In
particular we see that Bq′ is flat over A.
We claim there does not exist an element g′ ∈ B, g′ 6∈ q′ such that Bg′ is of finite presen-
tation over A. We sketch a proof of this claim. Choose an element g ∈ C which maps to
g′ ∈ B. Consider the map Cg → Bg′ . By Algebra, Lemma 6.3 we see that Bg is finitely
presented over A if and only if the kernel of Cg → Bg′ is finitely generated. But the ele-
ment g ∈ C is not contained in q, hence maps to a nonzero element ofA0[z]/(xz2 +z+y).
Hence g can only be contained in finitely many of the prime ideals qn, because the primes
(y+xn +x2n+1, xz+xn+1 + 1) are an infinite collection of codimension 1 points of the
2-dimensional irreducible Noetherian space Spec(k[x, y, z]/(xz2 + z + y)). The map⊕

g 6∈qn
C/qn −→ Cg, (cn) −→

∑
cnξn

is injective and its image is the kernel of Cg → Bg′ . We omit the proof of this statement.
(Hint: Write A = A0 ⊕ I as an A0-module where I is the kernel of A → A0. Similarly,
write C = C0 ⊕ IC. Write IC =

⊕
Czn ∼=

⊕
(C/rn ⊕ C/qn) and study the effect

of multiplication by g on the summands.) This concludes the sketch of the proof of the
claim. This also proves that Bg′ is not flat over A for any g′ as above. Namely, if it were
flat, then the annihilator of the image of zn inBg′ would be pnBg′ , and would not contain
z − xn.
As a consequence we can answer (negatively) a question posed in [?, Part I, Remarques
(3.4.7) (v)]. Here is a precise statement.

Lemma 36.1. There exists a local ring A, a finite type ring map A→ B and a prime
q lying over mA such thatBq is flat overA, and for any element g ∈ B, g 6∈ q the ringBg
is neither finitely presented over A nor flat over A.

Proof. See discussion above. �

37. Finite type, flat and not of finite presentation

In this section we give some examples of ring maps and morphisms which are of finite type
and flat but not of finite presentation.
LetR be a ring which has an ideal I such thatR/I is a finite flat module but not projective,
see Section 32 for an explicit example. Note that this means that I is not finitely generated,
see Algebra, Lemma 108.5. Note that I = I2, see Algebra, Lemma 108.2. The base ring in
our examples will be R and correspondingly the base scheme S = Spec(R).
Consider the ring map R → R ⊕ R/Iε where ε2 = 0 by convention. This is a finite, flat
ring map which is not of finite presentation. All the fibre rings are complete intersections
and geometrically irreducible.
Let A = R[x, y]/(xy, ay; a ∈ I). Note that as an R-module we have A =

⊕
i≥0 Ry

i ⊕⊕
j>0 R/Ix

j . Hence R→ A is a flat finite type ring map which is not of finite presenta-
tion. Each fibre ring is isomorphic to either κ(p)[x, y]/(xy) or κ(p)[x].
We can turn the previous example into a projective morphism by takingB = R[X0, X1, X2]/(X1X2, aX2; a ∈
I). In this case X = Proj(B) → S is a proper flat morphism which is not of finite pre-
sentation such that for each s ∈ S the fibreXs is isomorphic either to P1

s or to the closed
subscheme of P2

s defined by the vanishing of X1X2 (this is a projective nodal curve of
arithmetic genus 0).
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Let M = R ⊕ R ⊕ R/I . Set B = SymR(M) the symmetric algebra on M . Set X =
Proj(B). Then X → S is a proper flat morphism, not of finite presentation such that for
s ∈ S the geometric fibre is isomorphic to either P1

s or P2
s. In particular these fibres are

smooth and geometrically irreducible.

Lemma 37.1. There exist examples of

(1) a flat finite type ring map with geometrically irreducible complete intersection
fibre rings which is not of finite presentation,

(2) a flat finite type ring map with geometrically connected, geometrically reduced,
dimension 1, complete intersection fibre rings which is not of finite presentation,

(3) a proper flat morphism of schemes X → S each of whose fibres is isomorphic
to either P1

s or to the vanishing locus of X1X2 in P2
s which is not of finite

presentation, and
(4) a proper flat morphism of schemesX → S each of whose fibres is isomorphic to

either P1
s or P2

s which is not of finite presentation.

Proof. See discussion above. �

38. Topology of a finite type ring map

Let A → B be a local map of local domains. If A is Noetherian, A → B is essentially
of finite type, and A/mA ⊂ B/mB is finite then there exists a prime q ⊂ B, q 6= mB
such thatA→ B/q is the localization of a quasi-finite ring map. See More on Morphisms,
Lemma 52.6.

In this section we give an example that shows this result is falseA is no longer Noetherian.
Namely, let k be a field and set

A = {a0 + a1x+ a2x
2 + . . . | a0 ∈ k, ai ∈ k((y)) for i ≥ 1}

and

C = {a0 + a1x+ a2x
2 + . . . | a0 ∈ k[y], ai ∈ k((y)) for i ≥ 1}.

The inclusion A→ C is of finite type as C is generated by y over A. We claim that A is a
local ring with maximal ideal m = {a1x + a2x

2 + . . . ∈ A} and no prime ideals besides
(0) and m. Namely, an element f = a0 + a1x + a2x

2 + . . . of A is invertible as soon as
a0 6= 0. If q ⊂ A is a nonzero prime ideal, and f = aix

i + . . . ∈ q, then using properties
of power series one sees that for any g ∈ k((y)) the element gi+1xi+1 ∈ q, i.e., gx ∈ q.
This proves that q = m.

As to the spectrum of the ringC , arguing in the same way as above we see that any nonzero
prime ideal contains the prime p = {a1x + a2x

2 + . . . ∈ C} which lies over m. Thus
the only prime of C which lies over (0) is (0). Set mC = yC + p and B = CmC . Then
A→ B is the desired example.

Lemma 38.1. There exists a local homomorphism A→ B of local domains which is
essentially of finite type and such thatA/mA → B/mB is finite such that for every prime
q 6= mB of B the ring map A→ B/q is not the localization of a quasi-finite ring map.

Proof. See the discussion above. �
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39. Pure not universally pure

Let k be a field. Let
R = k[[x, xy, xy2, . . .]] ⊂ k[[x, y]].

In other words, a power series f ∈ k[[x, y]] is in R if and only if f(0, y) is a constant. In
particular R[1/x] = k[[x, y]][1/x] and R/xR is a local ring with a maximal ideal whose
square is zero. Denote R[y] ⊂ k[[x, y]] the set of power series f ∈ k[[x, y]] such that
f(0, y) is a polynomial in y. Then R → R[y] is a finite type but not finitely presented
ring map which induces an isomorphism after inverting x. Also there is a surjection
R[y]/xR[y] → k[y] whose kernel has square zero. Consider the finitely presented ring
map R → S = R[t]/(xt − xy). Again R[1/x] → S[1/x] is an isomorphism and in this
case S/xS ∼= (R/xR)[t]/(xy) maps onto k[t] with nilpotent kernel. There is a surjec-
tion S → R[y], t 7−→ y which induces an isomorphism on inverting x and a surjection
with nilpotent kernel modulo x. Hence the kernel of S → R[y] is locally nilpotent. In
particular S → R[y] induces a universal homeomorphism on spectra.

First we claim that S is an S-module which is relatively pure overR. Since on inverting x
we obtain an isomorphism we only need to check this at the maximal ideal m ⊂ R. Since
R is complete with respect to its maximal ideal it is henselian hence we need only check
that every prime p ⊂ R, p 6= m, the unique prime q of S lying over p satisfies mS+q 6= S.
Since p 6= m it corresponds to a unique prime ideal of k[[x, y]][1/x]. Hence either p = (0)
or p = (f) for some irreducible element f ∈ k[[x, y]] which is not associated to x (here we
use that k[[x, y]] is a UFD – insert future reference here). In the first case q = (0) and the
result is clear. In the second case we may multiply f by a unit so that f ∈ R[y] (Weierstrass
preparation; details omitted). Then it is easy to see thatR[y]/fR[y] ∼= k[[x, y]]/(f) hence
f defines a prime ideal of R[y] and mR[y] + fR[y] 6= R[y]. Since S → R[y] induces a
universal homeomorphism on spectra we deduce the desired result for S also.

Second we claim that S is not universally relatively pure over R. Namely, to see this it
suffices to find a valuation ring O and a local ring map R → O such that Spec(R[y] ⊗R
O) → Spec(O) does not hit the closed point of Spec(O). Equivalently, we have to find
ϕ : R → O such that ϕ(x) 6= 0 and v(ϕ(x)) > v(ϕ(xy)) where v is the valuation of O.
(Because this means that the valuation of y is negative.) To do this consider the ring map

R −→ {a0 + a1x+ a2x
2 + . . . | a0 ∈ k[y−1], ai ∈ k((y))}

defined in the obvious way. We can find a valuation ring O dominating the localization
of the right hand side at the maximal ideal (y−1, x) and we win.

Lemma 39.1. There exists a morphism of affine schemes of finite presentationX → S
and an OX -module F of finite presentation such that F is pure relative to S , but not
universally pure relative to S.

Proof. See discussion above. �

40. A formally smooth non-flat ring map

Let k be a field. Consider the k-algebra k[Q]. This is the k-algebra with basis xα, α ∈ Q
and multiplication determined by xαxβ = xα+β . (In particular x0 = 1.) Consider the
k-algebra homomorphism

k[Q] −→ k, xα 7−→ 1.
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It is surjective with kernel J generated by the elements xα − 1. Let us compute J/J2.
Note that multiplication by xα on J/J2 is the identity map. Denote zα the class of xα−1
modulo J2. These classes generate J/J2. Since

(xα − 1)(xβ − 1) = xα+β − xα − xβ + 1 = (xα+β − 1)− (xα − 1)− (xβ − 1)
we see that zα+β = zα + zβ in J/J2. A general element of J/J2 is of the form

∑
λαzα

with λα ∈ k (only finitely many nonzero). Note that if the characteristic of k is p > 0
then

0 = pzα/p = zα/p + . . .+ zα/p = zα

and we see that J/J2 = 0. If the characteristic of k is zero, then
J/J2 = Q⊗Z k ∼= k

(details omitted) is not zero.
We claim that k[Q]→ k is a formally smooth ring map if the characteristic of k is positive.
Namely, suppose given a solid commutative diagram

k //

!!

A

k[Q]

OO

ϕ // A′

OO

with A′ → A a surjection whose kernel I has square zero. To show that k[Q] → k is
formally smooth we have to prove that ϕ factors through k. Since ϕ(xα−1) maps to zero
inA we see that ϕ induces a map ϕ : J/J2 → I whose vanishing is the obstruction to the
desired factorization. Since J/J2 = 0 if the characteristic is p > 0 we get the result we
want, i.e., k[Q]→ k is formally smooth in this case. Finally, this ring map is not flat, for
example as the nonzerodivisor x2 − 1 is mapped to zero.

Lemma 40.1. There exists a formally smooth ring map which is not flat.

Proof. See discussion above. �

41. A formally étale non-flat ring map

In this section we give a counterexample to the final sentence in [?, 0, Example 19.10.3(i)]
(this was not one of the items caught in their later errata lists). Consider A→ A/J for a
local ringA and a nonzero proper ideal J such that J2 = J (so J isn’t finitely generated);
the valuation ring of an algebraically closed non-archimedean field with J its maximal
ideal is a source of such (A, J). These non-flat quotient maps are formally étale. Namely,
suppose given a commutative diagram

A/J // R/I

A

OO

ϕ // R

OO

where I is an ideal of the ring R with I2 = 0. Then A → R factors uniquely through
A/J because

ϕ(J) = ϕ(J2) ⊂ (ϕ(J)A)2 ⊂ I2 = 0.
Hence this also provides a counterexample to the formally étale case of the “structure the-
orem” for locally finite type and formally étale morphisms in [?, IV, Theorem 18.4.6(i)]
(but not a counterexample to part (ii), which is what people actually use in practice). The
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error in the proof of the latter is that the very last step of the proof is to invoke the in-
correct [?, 0, Example 19.3.10(i)], which is how the counterexample just mentioned creeps
in.

Lemma 41.1. There exist formally étale nonflat ring maps.

Proof. See discussion above. �

42. A formally étale ring map with nontrivial cotangent complex

Let k be a field. Consider the ring

R = k[{xn}n≥1, {yn}n≥1]/(x1y1, x
m
nm − xn, ymnm − yn)

Let A be the localization at the maximal ideal generated by all xn, yn and denote J ⊂ A
the maximal ideal. Set B = A/J . By construction J2 = J and hence A→ B is formally
étale (see Section 41). We claim that the element x1⊗y1 is a nonzero element in the kernel
of

J ⊗A J −→ J.

Namely, (A, J) is the colimit of the localizations (An, Jn) of the rings

Rn = k[xn, yn]/(xnnynn)
at their corresponding maximal ideals. Then x1⊗y1 corresponds to the element xnn⊗ynn ∈
Jn⊗An Jn and is nonzero (by an explicit computation which we omit). Since⊗ commutes
with colimits we conclude. By [?, III Section 3.3] we see thatJ is not weakly regular. Hence
by [?, III Proposition 3.3.3] we see that the cotangent complexLB/A is not zero. In fact, we
can be more precise. We haveH0(LB/A) = ΩB/A andH1(LB/A) = 0 because J/J2 = 0.
But from the five-term exact sequence of Quillen’s fundamental spectral sequence (see
Cotangent, Remark 12.5 or [?, Corollary 8.2.6]) and the nonvanishing of TorA2 (B,B) =
Ker(J ⊗A J → J) we conclude that H2(LB/A) is nonzero.

Lemma 42.1. There exists a formally étale surjective ring map A → B with LB/A
not equal to zero.

Proof. See discussion above. �

43. Flat and formally unramified is not formally étale

In More on Morphisms, Lemma 8.7 it is shown that an unramified flat morphism of schemes
X → S is formally étale. The goal of this section is to give two examples that illustrate
that we cannot replace ‘unramified’ by ‘formally unramified’. The first example exploits
special properties of perfect rings, while the second example shows the result fails even
for maps of Noetherian regular rings.

Lemma 43.1. Let A = Fp[T ] be the polynomial ring in one variable over Fp. Let
Aperf denote the perfect closure of A. Then A → Aperf is flat and formally unramified,
but not formally étale.

Proof. Note that under the Frobenius map FA : A → A, the target copy of A is
a free-module over the domain with basis {1, T, . . . , T p−1}. Thus, FA is faithfully flat,
and consequently, so is A → Aperf since it is a colimit of faithfully flat maps. Since
Aperf is a perfect ring, the relative Frobenius FAperf/A is a surjection. In other words,
Aperf = A[Apperf ], which readily implies ΩAperf/A = 0. Then A → Aperf is formally
unramified by More on Morphisms, Lemma 6.7
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It suffices to show that A→ Aperf is not formally smooth. Note that since A is a smooth
Fp-algebra, the cotangent complex LA/FP ' ΩA/Fp [0] is concentrated in degree 0, see
Cotangent, Lemma 9.1. Moreover, LAperf/Fp = 0 in D(Aperf ) by Cotangent, Lemma
10.3. Consider the distinguished triangle of cotangent complexes

LA/Fp ⊗A Aperf → LAperf/Fp → LAperf/A → (LA/Fp ⊗A Aperf )[1]
in D(Aperf ), see Cotangent, Section 7. We find LAperf/A = ΩA/Fp ⊗A Aperf [1], that
is, LAperf/A is equal to a free rank 1 Aperf module placed in degree −1. Thus A →
Aperf is not formally smooth by More on Morphisms, Lemma 13.5 and Cotangent, Lemma
11.3. �

The next example also involves rings of prime characteristic, but is perhaps a little more
surprising. The drawback is that it requires more knowledge of characteristic p phenom-
ena than the previous example. Recall that we say a ring A of prime characteristic is
F -finite if the Frobenius map on A is finite.

Lemma 43.2. Let (A,m, κ) be a Noetherian local ring of prime characteristic p > 0
such that [κ : κp] < ∞. Then the canonical map A → A∧ to the completion of A is flat
and formally unramified. However, if A is regular but not excellent, then this map is not
formally étale.

Proof. Flatness of the completion is Algebra, Lemma 97.2. To show that the map is
formally unramified, it suffices to show that ΩA∧/A = 0, see Algebra, Lemma 148.2.
We sketch a proof. Choosex1, . . . , xr ∈ Awhich map to a p-basisx1, . . . , xr ofκ, i.e., such
that κ is minimally generated by xi over κp. Choose a minimal set of generators y1, . . . , ys
of m. For each n the elements x1, . . . , xr, y1, . . . , ys generate A/mn over (A/mn)p by
Frobenius. Some details omitted. We conclude that F : A∧ → A∧ is finite. Hence ΩA∧/A

is a finite A∧-module. On the other hand, for any a ∈ A∧ and n we can find a0 ∈ A such
that a − a0 ∈ mnA∧. We conclude that d(a) ∈

⋂
mnΩA∧/A which implies that d(a) is

zero by Algebra, Lemma 51.4. Thus ΩA∧/A = 0.
SupposeA is regular. Then, using the Cohen structure theorem x1, . . . , xr, y1, . . . , ys is a
p-basis for the ring A∧, i.e., we have

A∧ =
⊕

I,J
(A∧)pxi11 . . . xirr y

j1
1 . . . yjss

with I = (i1, . . . , ir), J = (j1, . . . , js) and 0 ≤ ia, jb ≤ p−1. Details omitted. In partic-
ular, we see that ΩA∧ is a free A∧-module with basis d(x1), . . . , d(xr), d(y1), . . . , d(ys).
Now ifA→ A∧ is formally étale or even just formally smooth, then we see thatNLA∧/A

has vanishing cohomology in degrees−1, 0 by Algebra, Proposition 138.8. It follows from
the Jacobi-Zariski sequence (Algebra, Lemma 134.4) for the ring maps Fp → A → A∧

that we get an isomorphism ΩA ⊗A A∧ ∼= ΩA∧ . Hence we find that ΩA is free on
d(x1), . . . , d(xr), d(y1), . . . , d(ys). Looking at fraction fields and using that A is normal
we conclude that a ∈ A is a pth power if and only if its image inA∧ is a pth power (details
omitted; use Algebra, Lemma 158.2). A second consequence is that the operators ∂/∂xa
and ∂/∂yb are defined on A.
We will show that the above lead to the conclusion that A is finite over Ap with p-basis
x1, . . . , xr, y1, . . . , ys. This will contradict the non-excellency of A by a result of Kunz,
see [?, Corollary 2.6]. Namely, say a ∈ A and write

a =
∑

I,J
(aI,J)pxi11 . . . xirr y

j1
1 . . . yjss
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with aI,J ∈ A∧. To finish the proof it suffices to show that aI,J ∈ A. Applying the
operator

(∂/∂x1)p−1 . . . (∂/∂xr)p−1(∂/∂y1)p−1 . . . (∂/∂ys)p−1

to both sides we conclude that apI,J ∈ A where I = (p − 1, . . . , p − 1) and J = (p −
1, . . . , p− 1). By our remark above, this also implies aI,J ∈ A. After replacing a by a′ =
a − apI,JxIyJ we can use a 1-order lower differential operators to get another coefficient
aI,J to be in A. Etc. �

Remark 43.3. Non-excellent regular rings whose residue fields have a finite p-basis
can be constructed even in the function field of P2

k , over a characteristic p field k = k. See
[?, §4.1].

The proof of Lemma 43.2 actually shows a little more.

Lemma 43.4. Let (A,m, κ) be a regular local ring of characteristic p > 0. Suppose
[κ : κp] <∞. Then A is excellent if and only if A→ A∧ is formally étale.

Proof. The backward implication follows from Lemma 43.2. For the forward impli-
cation, note that we already know from Lemma 43.2 thatA→ A∧ is formally unramified
or equivalently that ΩA∧/A is zero. Thus, it suffices to show that the completion map
is formally smooth when A is excellent. By Néron-Popescu desingularization A → A∧

can be written as a filtered colimit of smoothA-algebras (Smoothing Ring Maps, Theorem
12.1). HenceNLA∧/A has vanishing cohomology in degree−1. ThusA→ A∧ is formally
smooth by Algebra, Proposition 138.8. �

44. Ideals generated by sets of idempotents and localization

Let R be a ring. Consider the ring
B(R) = R[xn;n ∈ Z]/(xn(xn − 1), xnxm;n 6= m)

It is easy to show that every prime q ⊂ B(R) is either of the form
q = pB(R) + (xn;n ∈ Z)

or of the form
q = pB(R) + (xn − 1) + (xm;n 6= m,m ∈ Z).

Hence we see that
Spec(B(R)) = Spec(R)q

∐
n∈Z

Spec(R)

where the topology is not just the disjoint union topology. It has the following properties:
Each of the copies indexed by n ∈ Z is an open subscheme, namely it is the standard open
D(xn). The ”central” copy of Spec(R) is in the closure of the union of any infinitely many
of the other copies of Spec(R). Note that this last copy of Spec(R) is cut out by the ideal
(xn, n ∈ Z) which is generated by the idempotents xn. Hence we see that if Spec(R)
is connected, then the decomposition above is exactly the decomposition of Spec(B(R))
into connected components.
Next, let A = C[x, y]/((y − x2 + 1)(y + x2 − 1)). The spectrum of A consists of two
irreducible componentsC1 = Spec(A1),C2 = Spec(A2) withA1 = C[x, y]/(y−x2 +1)
and A2 = C[x, y]/(y + x2 − 1). Note that these are parametrized by (x, y) = (t, t2 − 1)
and (x, y) = (t,−t2 + 1) which meet in P = (−1, 0) and Q = (1, 0). We can make a
twisted version of B(A) where we glue B(A1) to B(A2) in the following way: Above
P we let xn ∈ B(A1) ⊗ κ(P ) correspond to xn ∈ B(A2) ⊗ κ(P ), but above Q we let
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xn ∈ B(A1) ⊗ κ(Q) correspond to xn+1 ∈ B(A2) ⊗ κ(Q). Let Btwist(A) denote the
resulting A-algebra. Details omitted. By construction Btwist(A) is Zariski locally over
A isomorphic to the untwisted version. Namely, this happens over both the principal
open Spec(A) \ {P} and the principal open Spec(A) \ {Q}. However, our choice of
glueing produces enough ”monodromy” such that Spec(Btwist(A)) is connected (details
omitted). Finally, there is a central copy of Spec(A) → Spec(Btwist(A)) which gives a
closed subscheme whose ideal is Zariski locally on Btwist(A) cut out by ideals generated
by idempotents, but not globally (as Btwist(A) has no nontrivial idempotents).

Lemma 44.1. There exists an affine scheme X = Spec(A) and a closed subscheme
T ⊂ X such that T is Zariski locally on X cut out by ideals generated by idempotents,
but T is not cut out by an ideal generated by idempotents.

Proof. See above. �

45. A ring map which identifies local rings which is not ind-étale

Note that the ring mapR→ B(R) constructed in Section 44 is a colimit of finite products
of copies ofR. HenceR→ B(R) is ind-Zariski, see Pro-étale Cohomology, Definition 4.1.
Next, consider the ring map A → Btwist(A) constructed in Section 44. Since this ring
map is Zariski locally on Spec(A) isomorphic to an ind-Zariski ring map R → B(R) we
conclude that it identifies local rings (see Pro-étale Cohomology, Lemma 4.6). The discus-
sion in Section 44 shows there is a section Btwist(A)→ A whose kernel is not generated
by idempotents. Now, if A→ Btwist(A) were ind-étale, i.e., Btwist(A) = colimAi with
A→ Ai étale, then the kernel ofAi → Awould be generated by an idempotent (Algebra,
Lemmas 143.8 and 143.9). This would contradict the result mentioned above.

Lemma 45.1. There is a ring map A → B which identifies local rings but which is
not ind-étale. A fortiori it is not ind-Zariski.

Proof. See discussion above. �

46. Non flasque quasi-coherent sheaf associated to injective module

For more examples of this type see [?, Exposé II, Appendix I] where Illusie explains some
examples due to Verdier.
Consider the affine scheme X = Spec(A) where

A = k[x, y, z1, z2, . . .]/(xnzn)
is the ring from Properties, Example 25.2. Set I = (x) ⊂ A. Consider the quasi-compact
open U = D(x) of X . We have seen in loc. cit. that there is a section s ∈ OX(U) which
does not come from an A-module map In → A for any n ≥ 0.
Let α : A→ J be the embedding of A into an injective A-module. Let Q = J/α(A) and
denote β : J → Q the quotient map. We claim that the map

Γ(X, J̃) −→ Γ(U, J̃)
is not surjective. Namely, we claim that α(s) is not in the image. To see this, we argue by
contradiction. So assume that x ∈ J is an element which restricts to α(s) over U . Then
β(x) ∈ Q is an element which restricts to 0 over U . Hence we know that Inβ(x) = 0 for
some n, see Properties, Lemma 25.1. This implies that we get a morphism ϕ : In → A,
h 7→ α−1(hx). It is easy to see that this morphism ϕ gives rise to the section s via the map
of Properties, Lemma 25.1 which is a contradiction.
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Lemma 46.1. There exists an affine schemeX = Spec(A) and an injectiveA-module
J such that J̃ is not a flasque sheaf on X . Even the restriction Γ(X, J̃) → Γ(U, J̃) with
U a standard open need not be surjective.

Proof. See above. �

In fact, we can use a similar construction to get an example of an injective module whose as-
sociated quasi-coherent sheaf has nonzero cohomology over a quasi-compact open. Namely,
we start with the ring

A = k[x, y, w1, u1, w2, u2, . . .]/(xnwn, ynun, u2
n, w

2
n)

where k is a field. Choose an injective map A→ I where I is an injective A-module. We
claim that the element 1/xy in Axy ⊂ Ixy is not in the image of Ix ⊕ Iy → Ixy . Arguing
by contradiction, suppose that

1
xy

= i

xn
+ j

yn

for some n ≥ 1 and i, j ∈ I . Clearing denominators we obtain
(xy)n+m−1 = xmyn+mi+ xn+mymj

for some m ≥ 0. Multiplying with un+mwn+m we see that un+mwn+m(xy)n+m−1 = 0
inAwhich is the desired contradiction. Let U = D(x)∪D(y) ⊂ X = Spec(A). For any
A-module M we have an exact sequence

0→ H0(U, M̃)→Mx ⊕My →Mxy → H1(U, M̃)→ 0

by Mayer-Vietoris. We conclude that H1(U, Ĩ) is nonzero.

Lemma 46.2. There exists an affine scheme X = Spec(A) whose underlying topo-
logical space is Noetherian and an injectiveA-module I such that Ĩ has nonvanishingH1

on some quasi-compact open U of X .

Proof. See above. Note that Spec(A) = Spec(k[x, y]) as topological spaces. �

47. A non-separated flat group scheme

Every group scheme over a field is separated, see Groupoids, Lemma 7.3. This is not true
for group schemes over a base.
Let k be a field. Let S = Spec(k[x]) = A1

k. Let G be the affine line with 0 doubled
(see Schemes, Example 14.3) seen as a scheme over S. Thus a fibre of G → S is either a
singleton or a set with two elements (one in U and one in V ). Thus we can endow these
fibres with the structure of a group (by letting the element in U be the zero of the group
structure). More precisely, G has two opens U, V which map isomorphically to S such
that U ∩ V is mapped isomorphically to S \ {0}. Then

G×S G = U ×S U ∪ V ×S U ∪ U ×S V ∪ V ×S V
where each piece is isomorphic to S. Hence we can define a multiplicationm : G×SG→
G as the unique S-morphism which maps the first and the last piece into U and the two
middle pieces into V . This matches the pointwise description given above. We omit the
verification that this defines a group scheme structure.

Lemma 47.1. There exists a flat group scheme of finite type over the affine line which
is not separated.

Proof. See the discussion above. �
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Lemma 47.2. There exists a flat group scheme of finite type over the infinite dimen-
sional affine space which is not quasi-separated.

Proof. The same construction as above can be carried out with the infinite dimen-
sional affine space S = A∞

k = Spec k[x1, x2, . . .] as the base and the origin 0 ∈ S corre-
sponding to the maximal ideal (x1, x2, . . .) as the closed point which is doubled inG. The
resulting group scheme G → S is not quasi-separated as explained in Schemes, Example
21.4. �

48. A non-flat group scheme with flat identity component

Let X → S be a monomorphism of schemes. Let G = S qX . Let m : G ×S G → G be
the S-morphism

G×S G = X ×S X qX qX q S −→ G = X q S
which maps the summands X ×S X and S into S and maps the summands X into X
by the identity morphism. This defines a group law. To see this we have to show that
m◦(m× idG) = m◦(idG×m) as mapsG×SG×SG→ G. DecomposingG×SG×SG
into components as above, we see that we need to verify this for the restriction to each
of the 8-pieces. Each piece is isomorphic to either S , X , X ×S X , or X ×S X ×S X .
Moreover, both maps map these pieces to S , X , S , X respectively. Having said this, the
fact thatX → S is a monomorphism implies thatX×SX ∼= X andX×SX×SX ∼= X
and that there is in each case exactly oneS-morphismS → S orX → X . Thus we see that
m ◦ (m× idG) = m ◦ (idG ×m). Thus taking X → S to be any nonflat monomorphism
of schemes (e.g., a closed immersion) we get an example of a group scheme over a base S
whose identity component is S (hence flat) but which is not flat.

Lemma 48.1. There exists a group schemeG over a base S whose identity component
is flat over S but which is not flat over S.

Proof. See discussion above. �

49. A non-separated group algebraic space over a field

Every group scheme over a field is separated, see Groupoids, Lemma 7.3. This is not true
for group algebraic spaces over a field (but see end of this section for positive results).

Let k be a field of characteristic zero. Consider the algebraic spaceG = A1
k/Z from Spaces,

Example 14.8. By construction G is the fppf sheaf associated to the presheaf

T 7−→ Γ(T,OT )/Z
on the category of schemes over k. The obvious addition rule on the presheaf induces an
additionm : G×G→ Gwhich turnsG into a group algebraic space over Spec(k). Note
that G is not separated (and not even quasi-separated or locally separated). On the other
hand G→ Spec(k) is of finite type!

Lemma 49.1. There exists a group algebraic space of finite type over a field which is
not separated (and not even quasi-separated or locally separated).

Proof. See discussion above. �

Positive results: If the group algebraic space G is either quasi-separated, or locally sepa-
rated, or more generally a decent algebraic space, then G is in fact separated, see More on
Groupoids in Spaces, Lemma 9.4. Moreover, a finite type, separated group algebraic space
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over a field is in fact a scheme by More on Groupoids in Spaces, Lemma 10.2. The idea of
the proof is that the schematic locus is open dense, see Properties of Spaces, Proposition
13.3 or Decent Spaces, Theorem 10.2. By translating this open we see that every point of
G has an open neighbourhood which is a scheme.

50. Specializations between points in fibre étale morphism

If f : X → Y is an étale, or more generally a locally quasi-finite morphism of schemes,
then there are no specializations between points of fibres, see Morphisms, Lemma 20.8.
However, for morphisms of algebraic spaces this doesn’t hold in general.

To give an example, let k be a field. Set

P = k[u, u−1, y, {xn}n∈Z].
Consider the action of Z on P by k-algebra maps generated by the automorphism τ given
by the rules τ(u) = u, τ(y) = uy, and τ(xn) = xn+1. For d ≥ 1 set Id = ((1 −
ud)y, xn− xn+d, n ∈ Z). Then V (Id) ⊂ Spec(P ) is the fix point locus of τd. Let S ⊂ P
be the multiplicative subset generated by y and all 1−ud, d ∈ N. Then we see that Z acts
freely on U = Spec(S−1P ). Let X = U/Z be the quotient algebraic space, see Spaces,
Definition 14.4.

Consider the prime ideals pn = (xn, xn+1, . . .) inS−1P . Note that τ(pn) = pn+1. Hence
each of these define point ξn ∈ U whose image in X is the same point x of X . Moreover
we have the specializations

. . . ξn  ξn−1  . . .

We conclude that U → X is an example of the promised type.

Lemma 50.1. There exists an étale morphism of algebraic spaces f : X → Y and a
nontrivial specialization of points x x′ in |X| with f(x) = f(x′) in |Y |.

Proof. See discussion above. �

51. A torsor which is not an fppf torsor

In Groupoids, Remark 11.5 we raise the question whether any G-torsor is a G-torsor for
the fppf topology. In this section we show that this is not always the case.

Let k be a field. All schemes and stacks are over k in what follows. Let G → Spec(k) be
the group scheme

G = (µ2,k)∞ = µ2,k ×k µ2,k ×k µ2,k ×k . . . = limn(µ2,k)n

where µ2,k is the group scheme of second roots of unity over Spec(k), see Groupoids,
Example 5.2. As an inverse limit of affine schemes we see thatG is an affine group scheme.
In fact it is the spectrum of the ring k[t1, t2, t3, . . .]/(t2i − 1). The multiplication map
m : G×k G→ G is on the algebra level given by ti 7→ ti ⊗ ti.
We claim that any G-torsor over k is of the form

P = Spec(k[x1, x2, x3, . . .]/(x2
i − ai))

for certain ai ∈ k∗ and withG-actionG×k P → P given by xi → ti⊗xi on the algebra
level. We omit the proof. Actually for the example we only need that P is a G-torsor
which is clear since over k′ = k(√a1,

√
a2, . . .) the scheme P becomes isomorphic to G

in a G-equivariant manner. Note that P is trivial if and only if k′ = k since if P has a
k-rational point then all of the ai are squares.
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We claim thatP is an fppf torsor if and only if the field extension k′ = k(√a1,
√
a2, . . .)/k

is finite. If k′ is finite over k, then {Spec(k′)→ Spec(k)} is an fppf covering which triv-
ializes P and we see that P is indeed an fppf torsor. Conversely, suppose that P is an
fppf G-torsor. This means that there exists an fppf covering {Si → Spec(k)} such that
each PSi is trivial. Pick an i such that Si is not empty. Let s ∈ Si be a closed point. By
Varieties, Lemma 14.1 the field extension κ(s)/k is finite, and by construction Pκ(s) has a
κ(s)-rational point. Thus we see that k ⊂ k′ ⊂ κ(s) and k′ is finite over k.
To get an explicit example take k = Q and ai = i for example (or ai is the ith prime if
you like).

Lemma 51.1. LetS be a scheme. LetG be a group scheme overS. The stackG-Principal
classifying principal homogeneousG-spaces (see Examples of Stacks, Subsection 14.5) and
the stack G-Torsors classifying fppf G-torsors (see Examples of Stacks, Subsection 14.8)
are not equivalent in general.

Proof. The discussion above shows that the functor G-Torsors→ G-Principal isn’t
essentially surjective in general. �

52. Stack with quasi-compact flat covering which is not algebraic

In this section we briefly describe an example due to Brian Conrad. You can find the
example online at this location. Our example is slightly different.
Let k be an algebraically closed field. All schemes and stacks are over k in what follows.
Let G→ Spec(k) be an affine group scheme. In Examples of Stacks, Lemma 15.4 we have
given several different equivalent ways to view X = [Spec(k)/G] as a stack in groupoids
over (Sch/ Spec(k))fppf . In particular X classifies fppf G-torsors. More precisely, a 1-
morphism T → X corresponds to an fppf GT -torsor P over T and 2-arrows correspond
to isomorphisms of torsors. It follows that the diagonal 1-morphism

∆ : X −→ X ×Spec(k) X
is representable and affine. Namely, given any pair of fppfGT -torsorsP1, P2 over a scheme
T/k the scheme Isom(P1, P2) is affine over T . The trivial G-torsor over Spec(k) defines
a 1-morphism

f : Spec(k) −→ X .
We claim that this is a surjective 1-morphism. The reason is simply that by definition for
any 1-morphism T → X there exists a fppf covering {Ti → T} such that PTi is isomor-
phic to the trivial GTi -torsor. Hence the compositions Ti → T → X factor through f .
Thus it is clear that the projection T ×X Spec(k) → T is surjective (which is how we
define the property that f is surjective, see Algebraic Stacks, Definition 10.1). In a similar
way you show that f is quasi-compact and flat (details omitted). We also record here the
observation that

Spec(k)×X Spec(k) ∼= G

as schemes over k.
Suppose there exists a surjective smooth morphism p : U → X where U is a scheme.
Consider the fibre product

W

��

// U

��
Spec(k) // X

https://mathoverflow.net/questions/15082/fpqc-covers-of-stacks/15269#15269
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Then we see thatW is a nonempty smooth scheme over k which hence has a k-point. This
means that we can factor f through U . Hence we obtain

G ∼= Spec(k)×X Spec(k) ∼= (Spec(k)×k Spec(k))×(U×kU) (U ×X U)
and since the projectionsU×X U → U were assumed smooth we conclude thatU×X U →
U ×k U is locally of finite type, see Morphisms, Lemma 15.8. It follows that in this case
G is locally of finite type over k. Altogether we have proved the following lemma (which
can be significantly generalized).

Lemma 52.1. Let k be a field. Let G be an affine group scheme over k. If the stack
[Spec(k)/G] has a smooth covering by a scheme, then G is of finite type over k.

Proof. See discussion above. �

To get an explicit example as in the title of this section, take for exampleG = (µ2,k)∞ the
group scheme of Section 51, which is not locally of finite type over k. By the discussion
above we see that X = [Spec(k)/G] has properties (1) and (2) of Algebraic Stacks, Defini-
tion 12.1, but not property (3). HenceX is not an algebraic stack. On the other hand, there
does exist a scheme U and a surjective, flat, quasi-compact morphism U → X , namely the
morphism f : Spec(k)→ X we studied above.

53. Limit preserving on objects, not limit preserving

Let S be a nonempty scheme. Let G be an injective abelian sheaf on (Sch/S)fppf . We
obtain a stack in groupoids

G-Torsors −→ (Sch/S)fppf
over S , see Examples of Stacks, Lemma 14.2. This stack is limit preserving on objects
over (Sch/S)fppf (see Criteria for Representability, Section 5) because every G-torsor is
trivial. On the other hand, G-Torsors is in general not limit preserving (see Artin’s Axioms,
Definition 11.1) asG need not be limit preserving as a sheaf. For example, take any nonzero
injective sheaf I and set G =

∏
n∈Z I to get an example.

Lemma 53.1. Let S be a nonempty scheme. There exists a stack in groupoids p : X →
(Sch/S)fppf such that p is limit preserving on objects, but X is not limit preserving.

Proof. See discussion above. �

54. A non-algebraic classifying stack

Let S = Spec(Fp) and let µp denote the group scheme of pth roots of unity over S.
In Groupoids in Spaces, Section 20 we have introduced the quotient stack [S/µp] and in
Examples of Stacks, Section 15 we have shown [S/µp] is the classifying stack for fppf µp-
torsors: Given a scheme T over S the category MorS(T, [S/µp]) is canonically equivalent
to the category of fppf µp-torsors over T . Finally, in Criteria for Representability, Theo-
rem 17.2 we have seen that [S/µp] is an algebraic stack.

Now we can ask the question: “How about the category fibred in groupoids S classifying
étale µp-torsors?” (In other words S is a category over Sch/S whose fibre category over a
scheme T is the category of étale µp-torsors over T .)

The first objection is that this isn’t a stack for the fppf topology, because descent for
objects isn’t going to hold. For example the µp-torsor Spec(Fp(t)[x]/(xp − t)) over
T = Spec(Fp(T )) is fppf locally trivial, but not étale locally trivial.
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A fix for this first problem is to work with the étale topology and in this case descent
for objects does work. Indeed it is true that S is a stack in groupoids over (Sch/S)étale.
Moreover, it is also the case that the diagonal ∆ : S → S×S is representable (by schemes).
This is true because given two µp-torsors (whether they be étale locally trivial or not) the
sheaf of isomorphisms between them is representable by a scheme.

Thus we can finally ask if there exists a schemeU and a smooth and surjective 1-morphism
U → S . We will show in two ways that this is impossible: by a direct argument (which
we advise the reader to skip) and by an argument using a general result.

Direct argument (sketch): Note that the 1-morphism S → Spec(Fp) satisfies the infin-
itesimal lifting criterion for formal smoothness. This is true because given a first order
infinitesimal thickening of schemes T → T ′ the kernel of µp(T ′)→ µp(T ) is isomorphic
to the sections of the ideal sheaf of T in T ′, and hence H1

étale(T, µp) = H1
étale(T ′, µp).

Moreover, S is a limit preserving stack. Hence ifU → S is smooth, thenU → Spec(Fp) is
limit preserving and satisfies the infinitesimal lifting criterion for formal smoothness. This
implies that U is smooth over Fp. In particular U is reduced, hence H1

étale(U, µp) = 0.
Thus U → S factors as U → Spec(Fp) → S and the first arrow is smooth. By descent
of smoothness, we see that U → S being smooth would imply Spec(Fp)→ S is smooth.
However, this is not the case as Spec(Fp) ×S Spec(Fp) is µp which is not smooth over
Spec(Fp).

Structural argument: In Criteria for Representability, Section 19 we have seen that we can
think of algebraic stacks as those stacks in groupoids for the étale topology with diagonal
representable by algebraic spaces having a smooth covering. Hence if a smooth surjective
U → S exists then S is an algebraic stack, and in particular satisfies descent in the fppf
topology. But we’ve seen above that S does not satisfies descent in the fppf topology.

Loosely speaking the arguments above show that the classifying stack in the étale topology
for étale locally trivial torsors for a group scheme G over a base B is algebraic if and only
ifG is smooth overB. One of the advantages of working with the fppf topology is that it
suffices to assume thatG→ B is flat and locally of finite presentation. In fact the quotient
stack (for the fppf topology) [B/G] is algebraic if and only if G → B is flat and locally
of finite presentation, see Criteria for Representability, Lemma 18.3.

55. Sheaf with quasi-compact flat covering which is not algebraic

Consider the functor F = (P1)∞, i.e., for a scheme T the value F (T ) is the set of f =
(f1, f2, f3, . . .) where each fi : T → P1 is a morphism of schemes. Note that P1 satisfies
the sheaf property for fpqc coverings, see Descent, Lemma 13.7. A product of sheaves is
a sheaf, so F also satisfies the sheaf property for the fpqc topology. The diagonal of F is
representable: if f : T → F and g : S → F are morphisms, then T ×F S is the scheme
theoretic intersection of the closed subschemes T ×fi,P1,gi S inside the scheme T × S.
Consider the group scheme SL2 which comes with a surjective smooth affine morphism
SL2 → P1. Next, consider U = (SL2)∞ with its canonical (product) morphism U → F .
Note that U is an affine scheme. We claim the morphism U → F is flat, surjective, and
universally open. Namely, suppose f : T → F is a morphism. Then Z = T ×F U is the
infinite fibre product of the schemes Zi = T ×fi,P1 SL2 over T . Each of the morphisms
Zi → T is surjective smooth and affine which implies that

Z = Z1 ×T Z2 ×T Z3 ×T . . .
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is a scheme flat and affine over Z. A simple limit argument shows that Z → T is open as
well.
On the other hand, we claim that F isn’t an algebraic space. Namely, if F where an alge-
braic space it would be a quasi-compact and separated (by our description of fibre products
overF ) algebraic space. Hence cohomology of quasi-coherent sheaves would vanish above
a certain cutoff (see Cohomology of Spaces, Proposition 7.2 and remarks preceding it). But
clearly by taking the pullback ofO(−2,−2, . . . ,−2) under the projection

(P1)∞ −→ (P1)n

(which has a section) we can obtain a quasi-coherent sheaf whose cohomology is nonzero
in degree n. Altogether we obtain an answer to a question asked by Anton Geraschenko
on mathoverflow.

Lemma 55.1. There exists a functor F : Schopp → Sets which satisfies the sheaf
condition for the fpqc topology, has representable diagonal ∆ : F → F × F , and such
that there exists a surjective, flat, universally open, quasi-compact morphism U → F
where U is a scheme, but such that F is not an algebraic space.

Proof. See discussion above. �

56. Sheaves and specializations

In the following we fix a big étale site Schétale as constructed in Topologies, Definition
4.6. Moreover, a scheme will be an object of this site. Recall that if x, x′ are points of a
schemeX we say x is a specialization of x′ or we write x′  x if x ∈ {x′}. This is true in
particular if x = x′.
Consider the functor F : Schétale → Ab defined by the following rules:

F (X) =
∏

x∈X

∏
x′∈X,x′ x,x′ 6=x

Z/2Z

Given a schemeX we denote |X| the underlying set of points. An element a ∈ F (X) will
be viewed as a map of sets |X| × |X| → Z/2Z, (x, x′) 7→ a(x, x′) which is zero if x = x′

or if x is not a specialization of x′. Given a morphism of schemes f : X → Y we define
F (f) : F (Y ) −→ F (X)

by the rule that for b ∈ F (Y ) we set

F (f)(b)(x, x′) =
{

0 if x is not a specialization of x′

b(f(x), f(x′)) else.
Note that this really does define an element of F (X). We claim that if f : X → Y
and g : Y → Z are composable morphisms then F (f) ◦ F (g) = F (g ◦ f). Namely, let
c ∈ F (Z) and let x′  x be a specialization of points in X , then

F (g ◦ f)(x, x′) = c(g(f(x)), g(f(x′))) = F (g)(F (f)(c))(x, x′)
because f(x′) f(x). (This also works if f(x) = f(x′).)
Let G be the sheafification of F in the étale topology.
I claim that if X is a scheme and x′  x is a specialization and x′ 6= x, then G(X) 6=
0. Namely, let a ∈ F (X) be an element such that when we think of a as a function
|X| × |X| → Z/2Z it is nonzero at (x, x′). Let {fi : Ui → X} be an étale covering of X .
Then we can pick an i and a pointui ∈ Ui with fi(ui) = x. Since generalizations lift along
flat morphisms (see Morphisms, Lemma 25.9) we can find a specialization u′

i  ui with
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fi(u′
i) = x′. By our construction above we see that F (fi)(a) 6= 0. Hence a determines a

nonzero element of G(X).

Note that if X = Spec(k) where k is a field (or more generally a ring all of whose prime
ideals are maximal), then F (X) = 0 and for every étale morphism U → X we have
F (U) = 0 because there are no specializations between distinct points in fibres of an étale
morphism. Hence G(X) = 0.

Suppose that X ⊂ X ′ is a thickening, see More on Morphisms, Definition 2.1. Then
the category of schemes étale over X ′ is equivalent to the category of schemes étale over
X by the base change functor U ′ 7→ U = U ′ ×X′ X , see Étale Cohomology, Theorem
45.2. Since it is always the case that F (U) = F (U ′) in this situation we see that also
G(X) = G(X ′).

As a variant we can consider the presheafFn which associates to a schemeX the collection
of maps a : |X|n+1 → Z/2Z where a(x0, . . . , xn) is nonzero only if xn  . . . x0 is a
sequence of specializations and xn 6= xn−1 6= . . . 6= x0. Let Gn be the sheaf associated to
Fn. In exactly the same way as above one shows thatGn is nonzero if dim(X) ≥ n and is
zero if dim(X) < n.

Lemma 56.1. There exists a sheaf of abelian groupsG on Schétale with the following
properties

(1) G(X) = 0 whenever dim(X) < n,
(2) G(X) is not zero if dim(X) ≥ n, and
(3) if X ⊂ X ′ is a thickening, then G(X) = G(X ′).

Proof. See the discussion above. �

Remark 56.2. Here are some remarks:
(1) The presheaves F and Fn are separated presheaves.
(2) It turns out that F , Fn are not sheaves.
(3) One can show that G, Gn is actually a sheaf for the fppf topology.

We will prove these results if we need them.

57. Sheaves and constructible functions

In the following we fix a big étale site Schétale as constructed in Topologies, Definition 4.6.
Moreover, a scheme will be an object of this site. In this section we say that a constructible
partition of a scheme X is a locally finite disjoint union decomposition X =

∐
i∈I Xi

such that eachXi ⊂ X is a locally constructible subset ofX . Locally finite means that for
any quasi-compact openU ⊂ X there are only finitely many i ∈ I such thatXi∩U is not
empty. Note that if f : X → Y is a morphism of schemes and Y =

∐
Yj is a constructible

partition, then X =
∐
f−1(Yj) is a constructible partition of X . Given a set S and a

scheme X a constructible function f : |X| → S is a map such that X =
∐
s∈S f

−1(s)
is a constructible partition of X . If G is an (abstract group) and a, b : |X| → G are
constructible functions, then ab : |X| → G, x 7→ a(x)b(x) is a constructible function
too. The reason is that given any two constructible partitions there is a third one refining
both.

Let A be any abelian group. For any scheme X we define

F (X) = {a : |X| → A | a is a constructible function}
{locally constant functions |X| → A}
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We think of an element a of F (X) simply as a function well defined up to adding a locally
constant one. Given a morphism of schemes f : X → Y and an element b ∈ F (Y ), then
we define F (f)(b) = b ◦ f . Thus F is a presheaf on Schétale.

Note that if {fi : Ui → X} is an fppf covering, and a ∈ F (X) is such that F (fi)(a) = 0
in F (Ui), then a ◦ fi is a locally constant function for each i. This means in turn that a
is a locally constant function as the morphisms fi are open. Hence a = 0 in F (X). Thus
we see that F is a separated presheaf (in the fppf topology hence a fortiori in the étale
topology).

Let G be the sheafification of F in the étale topology. Since F is separated, and since
F (X) 6= 0 for example when X is the spectrum of a discrete valuation ring, we see that
G is not zero.

Let X = Spec(k) where k is a field. Then any étale covering of X can be dominated by
a covering {Spec(k′) → Spec(k)} with k′/k a finite separable extension of fields. Since
F (Spec(k′)) = 0 we see that G(X) = 0.

Suppose that X ⊂ X ′ is a thickening, see More on Morphisms, Definition 2.1. Then the
category of schemes étale over X ′ is equivalent to the category of schemes étale over X
by the base change functor U ′ 7→ U = U ′ ×X′ X , see Étale Cohomology, Theorem 45.2.
Since F (U) = F (U ′) in this situation we see that also G(X) = G(X ′).

The sheaf G is limit preserving, see Limits of Spaces, Definition 3.1. Namely, let R be a
ring which is written as a directed colimit R = colimiRi of rings. Set X = Spec(R) and
Xi = Spec(Ri), so that X = limiXi. Then G(X) = colimiG(Xi). To prove this one
first proves that a constructible partition of Spec(R) comes from a constructible partitions
of some Spec(Ri). Hence the result for F . To get the result for the sheafification, use that
any étale ring map R → R′ comes from an étale ring map Ri → R′

i for some i. Details
omitted.

Lemma 57.1. There exists a sheaf of abelian groupsG on Schétale with the following
properties

(1) G(Spec(k)) = 0 whenever k is a field,
(2) G is limit preserving,
(3) if X ⊂ X ′ is a thickening, then G(X) = G(X ′), and
(4) G is not zero.

Proof. See discussion above. �

58. The lisse-étale site is not functorial

The lisse-étale site Xlisse,étale of X is the category of schemes smooth over X endowed
with (usual) étale coverings, see Cohomology of Stacks, Section 14. Let f : X → Y be a
morphism of schemes. There is a functor

u : Ylisse,étale −→ Xlisse,étale, V/Y 7−→ V ×Y X

which is continuous. Hence we obtain an adjoint pair of functors

us : Sh(Xlisse,étale) −→ Sh(Ylisse,étale), us : Sh(Ylisse,étale) −→ Sh(Xlisse,étale),

see Sites, Section 13. We claim that, in general, u does not define a morphism of sites, see
Sites, Definition 14.1. In other words, we claim that us is not left exact in general. Note
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that representable presheaves are sheaves on lisse-étale sites. Hence, by Sites, Lemma 13.5
we see that ushV = hV×YX . Now consider two morphisms

V1

  

a //

b
// V2

~~
Y

of schemes V1, V2 smooth over Y . Now if us is left exact, then we would have

usEqualizer(ha, hb : hV1 → hV2) = Equalizer(ha×1, hb×1 : hV1×YX → hV2×YX)
We will take the morphisms a, b : V1 → V2 such that there exists no morphism from a
scheme smooth over Y into (a = b) ⊂ V1, i.e., such that the left hand side is the empty
sheaf, but such that after base change to X the equalizer is nonempty and smooth over
X . A silly example is to take X = Spec(Fp), Y = Spec(Z) and V1 = V2 = A1

Z with
morphisms a(x) = x and b(x) = x + p. Note that the equalizer of a and b is the fibre of
A1

Z over (p).

Lemma 58.1. The lisse-étale site is not functorial, even for morphisms of schemes.

Proof. See discussion above. �

59. Sheaves on the category of Noetherian schemes

Let S be a locally Noetherian scheme. As in Artin’s Axioms, Section 25 consider the inclu-
sion functor

u : (Noetherian/S)fppf −→ (Sch/S)fppf
of the fppf site of locally Noetherian schemes over S into a big fppf site of S. As explained
in the section referenced, this functor is continuous. Hence we obtain an adjoint pair of
functors

us : Sh((Sch/S)fppf ) −→ Sh((Noetherian/S)fppf )
and

us : Sh((Noetherian/S)fppf ) −→ Sh((Sch/S)fppf )
see Sites, Section 13. However, we claim that u in general does not define a morphism of
sites, see Sites, Definition 14.1. In other words, we claim that the functor us is not left
exact in general.

Let p be a prime number and set S = Spec(Fp). Consider the injective map of sheaves

a : F −→ G
on (Noetherian/S)fppf defined as follows: for U a locally Noetherian scheme over S we
define

G(U) = Γ(U,OU )∗ = MorS(U,Gm,S)
and we take

F(U) = {f ∈ G(U) | fppf locally f has arbitrary p-power roots}
A Noetherian Fp-algebra A has a nilpotent nilradical I ⊂ A, the p-power roots of 1 in A
are of the elements of the form 1 + a, a ∈ I , and hence no-nontrivial p-power root of 1
has arbitrary p-power roots. We conclude that F(U) is a p-torsion free abelian group for
any locally Noetherian scheme U ; some details omitted. It follows that p : F → F is an
injective map of abelian sheaves on (Noetherian/S)fppf .
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To get a contradiction, assume us is exact. Then p : usF → usF is injective too and we
find that (usF)(V ) is a p-torsion free abelian group for any V over S. Since representable
presheaves are sheaves on fppf sites, by Sites, Lemma 13.5, we see that usG is represented
by Gm,S . Using that usF → usG is injective, we find a p-torsion free subgroup

(usF)(V ) ⊂ Γ(V,OV )∗

for every scheme V over S with the following property: for every morphism V → U of
schemes over S with U locally Noetherian the subgroup

F(U) ⊂ Γ(U,OU )∗

maps into the subgroup (usF)(V ) by the restriction mapping Γ(U,OU )∗ → Γ(V,OV )∗.

The actual contradiction now is obtained as follows: let k =
⋃
n≥0 Fp(t1/p

n) and set

B = k ⊗Fp(t) k

and V = Spec(B). Since we have the two projection morphisms V → Spec(k) corre-
sponding to the two coprojections k → B and since Spec(k) is Noetherian, we conclude
the subgroup

(usF)(V ) ⊂ B∗

contains k∗ ⊗ 1 and 1⊗ k∗. This is a contradiction because

(t1/p ⊗ 1) · (1⊗ t−1/p) = t1/p ⊗ t−1/p

is a nontrivial p-torsion unit of B.

Lemma 59.1. With S = Spec(Fp) the inclusion functor (Noetherian/S)fppf →
(Sch/S)fppf does not define a morphism of sites.

Proof. See discussion above. �

60. Derived pushforward of quasi-coherent modules

Let k be a field of characteristic p > 0. Let S = Spec(k[x]). Let G = Z/pZ viewed either
as an abstract group or as a constant group scheme over S. Consider the algebraic stack
X = [S/G] whereG acts trivially on S , see Examples of Stacks, Remark 15.5 and Criteria
for Representability, Lemma 18.3. Consider the structure morphism

f : X −→ S

This morphism is quasi-compact and quasi-separated. Hence we get a functor

RfQCoh,∗ : D+
QCoh(OX ) −→ D+

QCoh(OS),

see Derived Categories of Stacks, Proposition 6.1. Let’s compute RfQCoh,∗OX . Since
DQCoh(OS) is equivalent to the derived category of k[x]-modules (see Derived Categories
of Schemes, Lemma 3.5) this is equivalent to computing RΓ(X ,OX ). For this we can use
the covering S → X and the spectral sequence

Hq(S ×X . . .×X S,O)⇒ Hp+q(X ,OX )
see Cohomology of Stacks, Proposition 11.6. Note that

S ×X . . .×X S = S ×Gp

which is affine. Thus the complex

k[x]→Map(G, k[x])→Map(G2, k[x])→ . . .
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computes RΓ(X ,OX ). Here for ϕ ∈ Map(Gp−1, k[x]) its differential is the map which
sends (g1, . . . , gp) to

ϕ(g2, . . . , gp) +
∑p−1

i=1
(−1)iϕ(g1, . . . , gi + gi+1, . . . , gp) + (−1)pϕ(g1, . . . , gp−1).

This is just the complex computing the group cohomology of G acting trivially on k[x]
(insert future reference here). The cohomology of the cyclic group G on k[x] is exactly
one copy of k[x] in each cohomological degree ≥ 0 (insert future reference here). We
conclude that

Rf∗OX =
⊕

n≥0
OS [−n]

Now, consider the complex
E =

⊕
m≥0
OX [m]

This is an object of DQCoh(OX ). We interrupt the discussion for a general result.

Lemma 60.1. Let X be an algebraic stack. LetK be an object ofD(OX ) whose coho-
mology sheaves are locally quasi-coherent (Sheaves on Stacks, Definition 12.1) and satisfy
the flat base change property (Cohomology of Stacks, Definition 7.1). Then there exists a
distinguished triangle

K →
∏

n≥0
τ≥−nK →

∏
n≥0

τ≥−nK → K[1]

in D(OX ). In other words, K is the derived limit of its canonical truncations.

Proof. Recall that we work on the “big fppf site”Xfppf ofX (by our conventions for
sheaves ofOX -modules in the chapters Sheaves on Stacks and Cohomology on Stacks). Let
B be the set of objects x of Xfppf which lie over an affine scheme U . Combining Sheaves
on Stacks, Lemmas 23.2, 16.1, Descent, Lemma 12.4, and Cohomology of Schemes, Lemma
2.2 we see that Hp(x,F) = 0 if F is locally quasi-coherent and x ∈ B. Now the claim
follows from Cohomology on Sites, Lemma 23.10 with d = 0. �

Lemma 60.2. Let X be an algebraic stack. If Fn is a collection of locally quasi-
coherent sheaves with the flat base change property on X , then⊕nFn[n]→

∏
n Fn[n] is

an isomorphism in D(OX ).

Proof. This is true because by Lemma 60.1 we see that the direct sum is isomorphic
to the product. �

We continue our discussion. Since a quasi-coherent module is locally quasi-coherent and
satisfies the flat base change property (Sheaves on Stacks, Lemma 12.2) we get

E =
∏

m≥0
OX [m]

Since cohomology commutes with limits we see that

Rf∗E =
∏

m≥0

(⊕
n≥0
OS [m− n]

)
Note that this complex is not an object of DQCoh(OS) because the cohomology sheaf in
degree 0 is an infinite product of copies of OS which is not even a locally quasi-coherent
OS-module.

Lemma 60.3. A quasi-compact and quasi-separated morphism f : X → Y of alge-
braic stacks need not induce a functor Rf∗ : DQCoh(OX )→ DQCoh(OY).

Proof. See discussion above. �
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61. A big abelian category

The purpose of this section is to give an example of a “big” abelian categoryA and objects
M,N such that the collection of isomorphism classes of extensions ExtA(M,N) is not a
set. The example is due to Freyd, see [?, page 131, Exercise A].

We defineA as follows. An object ofA consists of a triple (M,α, f) whereM is an abelian
group and α is an ordinal and f : α → End(M) is a map. A morphism (M,α, f) →
(M ′, α′, f ′) is given by a homomorphism of abelian groups ϕ : M → M ′ such that for
any ordinal β we have

ϕ ◦ f(β) = f ′(β) ◦ ϕ
Here the rule is that we set f(β) = 0 if β is not in α and similarly we set f ′(β) equal to
zero if β is not an element of α′. We omit the verification that the category so defined is
abelian.

Consider the object Z = (Z, ∅, f), i.e., all the operators are zero. The observation is that
computed in A the group Ext1

A(Z,Z) is a proper class and not a set. Namely, for each
ordinal α we can find an extension (M,α + 1, f) of Z by Z whose underlying group is
M = Z⊕ Z and where the value of f is always zero except for

f(α) =
(

0 1
0 0

)
.

This clearly produces a proper class of isomorphism classes of extensions. In particular,
the derived category of A has proper classes for its collections of morphism, see Derived
Categories, Lemma 27.6. This means that some care has to be exercised when defining
Verdier quotients of triangulated categories.

Lemma 61.1. There exists a “big” abelian category A whose Ext-groups are proper
classes.

Proof. See discussion above. �

62. Weakly associated points and scheme theoretic density

Let k be a field. Let R = k[z, xi, yi]/(z2, zxiyi) where i runs over the elements of N.
Note that R = R0 ⊕M0 where R0 = k[xi, yi] is a subring and M0 is an ideal of square
zero with M0 ∼= R0/(xiyi) as R0-module. The prime p = (z, xi) is weakly associated to
R as an R-module (Algebra, Definition 66.1). Indeed, the element z in Rp is nonzero but
annihilated by pRp. On the other hand, consider the open subscheme

U =
⋃
D(xi) ⊂ Spec(R) = S

We claim thatU ⊂ S is scheme theoretically dense (Morphisms, Definition 7.1). To prove
this it suffices to show that OS → j∗OU is injective where j : U → S is the inclusion
morphism, see Morphisms, Lemma 7.5. Translated back into algebra, we have to show that
for all g ∈ R the map

Rg −→
∏

Rxig

is injective. Write g = g0 + m0 with g0 ∈ R0 and m0 ∈ M0. Then Rg = Rg0 (details
omitted). Hence we may assume g ∈ R0. We may also assume g is not zero. Now Rg =
(R0)g ⊕ (M0)g . Since R0 is a domain, the map (R0)g →

∏
(R0)xig is injective. If g ∈

(xiyi) then (M0)g = 0 and there is nothing to prove. If g 6∈ (xiyi) then, since (xiyi) is
a radical ideal of R0, we have to show that M0 →

∏
(M0)xig is injective. The kernel of
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R0 → M0 → (M0)xn is (xiyi, yn). Since (xiyi, yn) is a radical ideal, if g 6∈ (xiyi, yn)
then the kernel of R0 → M0 → (M0)xng is (xiyi, yn). As g 6∈ (xiyi, yn) for all n � 0
we conclude that the kernel is contained in

⋂
n�0(xiyi, yn) = (xiyi) as desired.

Second example due to Ofer Gabber. Let k be a field and let R, resp. R′ be the ring of
functions N→ k, resp. the ring of eventually constant functions N→ k. Then Spec(R),
resp. Spec(R′) is the Stone-Čech compactification3 βN, resp. the one point compactifica-
tion4 N∗ = N ∪ {∞}. All points are weakly associated since all primes are minimal in
the rings R and R′.

Lemma 62.1. There exists a reduced schemeX and a schematically dense openU ⊂ X
such that some weakly associated point x ∈ X is not in U .

Proof. In the first example we have p 6∈ U by construction. In Gabber’s examples
the schemes Spec(R) or Spec(R′) are reduced. �

63. Example of non-additivity of traces

Let k be a field and let R = k[ε] be the ring of dual numbers over k. In other words,
R = k[x]/(x2) and ε is the congruence class of x in R. Consider the short exact sequence
of complexes

0

��

// R

ε

��

1
// R

��
R

1 // R // 0

Here the columns are the complexes, the first row is placed in degree 0, and the second row
in degree 1. Denote the first complex (i.e., the left column) by A•, the second by B• and
the third C•. We claim that the diagram

(63.0.1)

A•

1+ε
��

// B• //

1
��

C•

1
��

A• // B• // C•

commutes in K(R), i.e., is a diagram of complexes commuting up to homotopy. Namely,
the square on the right commutes and the one on the left is off by the homotopy 1 : A1 →
B0. On the other hand,

TrA•(1 + ε) + TrC•(1) 6= TrB•(1).

Lemma 63.1. There exists a ringR, a distinguished triangle (K,L,M,α, β, γ) in the
homotopy category K(R), and an endomorphism (a, b, c) of this distinguished triangle,
such that K , L, M are perfect complexes and TrK(a) + TrM (c) 6= TrL(b).

3Every element f ∈ R is of the form ue where u is a unit and e is an idempotent. Then Algebra, Lemma
26.5 shows Spec(R) is Hausdorff. On the other hand, N with the discrete topology can be viewed as a dense
open subset. Given a set map N → X to a Hausdorff, quasi-compact topological spaceX , we obtain a ring map
C0(X; k) → R where C0(X; k) is the k-algebra of locally constant maps X → k. This gives Spec(R) →
Spec(C0(X; k)) = X proving the universal property.

4Here one argues that there is really only one extra maximal ideal in R′.
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Proof. Consider the example above. The map γ : C• → A•[1] is given by multi-
plication by ε in degree 0, see Derived Categories, Definition 10.1. Hence it is also true
that

C•

��

γ
// A•[1]

��
C• γ // A•[1]

commutes in K(R) as ε(1 + ε) = ε. Thus we indeed have a morphism of distinguished
triangles. �

64. Being projective is not local on the base

In the chapter on descent we have seen that many properties of morphisms are local on
the base, even in the fpqc topology. See Descent, Sections 22, 23, and 24. This is not true
for projectivity of morphisms.

Lemma 64.1. The properties
P(f) =“f is projective”, and
P(f) =“f is quasi-projective”

are not Zariski local on the base. A fortiori, they are not fpqc local on the base.

Proof. Following Hironaka [?, Example B.3.4.1], we define a proper morphism of
smooth complex 3-folds f : VY → Y which is Zariski-locally projective, but not projec-
tive. Since f is proper and not projective, it is also not quasi-projective.

Let Y be projective 3-space over the complex numbers C. Let C and D be smooth conics
in Y such that the closed subscheme C ∩D is reduced and consists of two complex points
P and Q. (For example, let C = {[x, y, z, w] : xy = z2, w = 0}, D = {[x, y, z, w] :
xy = w2, z = 0}, P = [1, 0, 0, 0], andQ = [0, 1, 0, 0].) On Y −Q, first blow up the curve
C , and then blow up the strict transform of the curve D (Divisors, Definition 33.1). On
Y − P , first blow up the curve D, and then blow up the strict transform of the curve C.
Over Y − P −Q, the two varieties we have constructed are canonically isomorphic, and
so we can glue them over Y − P − Q. The result is a smooth proper 3-fold VY over C.
The morphism f : VY → Y is proper and Zariski-locally projective (since it is a blowup
over Y − P and over Y − Q), by Divisors, Lemma 32.13. We will show that VY is not
projective over C. That will imply that f is not projective.

To do this, let L be the inverse image in VY of a complex point of C − P − Q, and M
the inverse image of a complex point of D − P − Q. Then L and M are isomorphic to
the projective line P1

C. Next, let E be the inverse image in VY of C ∪ D ⊂ Y in VY ;
thus E → C ∪ D is a proper morphism, with fibers isomorphic to P1 over (C ∪ D) −
{P,Q}. The inverse image of P in E is a union of two lines L0 and M0, and we have
rational equivalences of cycles L ∼ L0 + M0 and M ∼ M0 on E (using that C and D
are isomorphic to P1). Note the asymmetry resulting from the order in which we blew
up the two curves. Near Q, the opposite happens. So the inverse image of Q is the union
of two lines L′

0 and M ′
0, and we have rational equivalences L ∼ L′

0 and M ∼ L′
0 + M ′

0
on E. Combining these equivalences, we find that L0 +M ′

0 ∼ 0 on E and hence on VY .
If VY were projective over C, it would have an ample line bundle H , which would have
degree > 0 on all curves in VY . In particular H would have positive degree on L0 +M ′

0,
contradicting that the degree of a line bundle is well-defined on 1-cycles modulo rational
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equivalence on a proper scheme over a field (Chow Homology, Lemma 20.3 and Lemma
28.2). So VY is not projective over C. �

In different terminology, Hironaka’s 3-fold VY is a small resolution of the blowup Y ′ of
Y along the reduced subscheme C ∪ D; here Y ′ has two node singularities. If we define
Z by blowing up Y along C and then along the strict transform of D, then Z is a smooth
projective 3-fold, and the non-projective 3-fold VY differs from Z by a “flop” over Y −P .

65. Non-effective descent data for projective schemes

In the chapter on descent we have seen that descent data for schemes relative to an fpqc
morphism are effective for several classes of morphisms. In particular, affine morphisms
and more generally quasi-affine morphisms satisfy descent for fpqc coverings (Descent,
Lemma 38.1). This is not true for projective morphisms.

Lemma 65.1. There is an etale covering X → S of schemes and a descent datum
(V/X,ϕ) relative to X → S such that V → X is projective, but the descent datum is not
effective in the category of schemes.

Proof. We imitate Hironaka’s example of a smooth separated complex algebraic space
of dimension 3 which is not a scheme [?, Example B.3.4.2].

Consider the action of the group G = Z/2 = {1, g} on projective 3-space P3 over the
complex numbers by

g[x, y, z, w] = [y, x, w, z].
The action is free outside the two disjoint linesL1 = {[x, x, z, z]} andL2 = {[x,−x, z,−z]}
in P3. Let Y = P3 − (L1 ∪ L2). There is a smooth quasi-projective scheme S = Y/G
over C such that Y → S is a G-torsor (Groupoids, Definition 11.3). Explicitly, we can
define S as the image of the open subset Y in P3 under the morphism

P3 → Proj C[x, y, z, w]G

= Proj C[u0, u1, v0, v1, v2]/(v0v1 = v2
2),

where u0 = x+ y, u1 = z +w, v0 = (x− y)2, v1 = (z −w)2, and v2 = (x− y)(z −w),
and the ring is graded with u0, u1 in degree 1 and v0, v1, v2 in degree 2.

Let C = {[x, y, z, w] : xy = z2, w = 0} and D = {[x, y, z, w] : xy = w2, z = 0}.
These are smooth conic curves in P3, contained in the G-invariant open subset Y , with
g(C) = D. Also, C ∩D consists of the two points P := [1, 0, 0, 0] and Q := [0, 1, 0, 0],
and these two points are switched by the action of G.

Let VY → Y be the scheme which over Y − P is defined by blowing up D and then the
strict transform of C , and over Y − Q is defined by blowing up C and then the strict
transform of D. (This is the same construction as in the proof of Lemma 64.1, except that
Y here denotes an open subset of P3 rather than all of P3.) Then the action of G on Y
lifts to an action of G on VY , which switches the inverse images of Y − P and Y − Q.
This action ofG on VY gives a descent datum (VY /Y, ϕY ) on VY relative to theG-torsor
Y → S. The morphism VY → Y is proper but not projective, as shown in the proof of
Lemma 64.1.

LetX be the disjoint union of the open subsets Y −P and Y −Q; then we have surjective
etale morphisms X → Y → S. Let V be the pullback of VY → Y to X ; then the
morphism V → X is projective, since VY → Y is a blowup over each of the open subsets
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Y − P and Y − Q. Moreover, the descent datum (VY /Y, ϕY ) pulls back to a descent
datum (V/X,ϕ) relative to the etale covering X → S.

Suppose that this descent datum is effective in the category of schemes. That is, there is
a scheme U → S which pulls back to the morphism V → X together with its descent
datum. Then U would be the quotient of VY by its G-action.

V //

��

X

��
VY //

��

Y

��
U // S

Let E be the inverse image of C ∪D ⊂ Y in VY ; thus E → C ∪D is a proper morphism,
with fibers isomorphic to P1 over (C ∪ D) − {P,Q}. The inverse image of P in E is a
union of two lines L0 and M0. It follows that the inverse image of Q = g(P ) in E is the
union of two lines L′

0 = g(M0) and M ′
0 = g(L0). As shown in the proof of Lemma 64.1,

we have a rational equivalence L0 +M ′
0 = L0 + g(L0) ∼ 0 on E.

By descent of closed subschemes, there is a curveL1 ⊂ U (isomorphic to P1) whose inverse
image in VY isL0∪g(L0). (Use Descent, Lemma 37.1, noting that a closed immersion is an
affine morphism.) Let R be a complex point of L1. Since we assumed that U is a scheme,
we can choose a function f in the local ringOU,R that vanishes atR but not on the whole
curveL1. LetDloc be an irreducible component of the closed subset {f = 0} in SpecOU,R;
then Dloc has codimension 1. The closure of Dloc in U is an irreducible divisor DU in U
which contains the point R but not the whole curve L1. The inverse image of DU in VY
is an effective divisorD which intersects L0 ∪ g(L0) but does not contain either curve L0
or g(L0).

Since the complex 3-fold VY is smooth, O(D) is a line bundle on VY . We use here that
a regular local ring is factorial, or in other words is a UFD, see More on Algebra, Lemma
121.2. The restriction of O(D) to the proper surface E ⊂ VY is a line bundle which has
positive degree on the 1-cycleL0 +g(L0), by our information onD. SinceL0 +g(L0) ∼ 0
on E , this contradicts that the degree of a line bundle is well-defined on 1-cycles modulo
rational equivalence on a proper scheme over a field (Chow Homology, Lemma 20.3 and
Lemma 28.2). Therefore the descent datum (V/X,ϕ) is in fact not effective; that is, U
does not exist as a scheme. �

In this example, the descent datum is effective in the category of algebraic spaces. More
precisely,U exists as a smooth separated algebraic space of dimension 3 over C, for example
by Algebraic Spaces, Lemma 14.3. Hironaka’s 3-fold U is a small resolution of the blowup
S′ of the smooth quasi-projective 3-fold S along the irreducible nodal curve (C ∪D)/G;
the 3-fold S′ has a node singularity. The other small resolution of S′ (differing from U
by a “flop”) is again an algebraic space which is not a scheme.

66. A family of curves whose total space is not a scheme

In Quot, Section 15 we define a family of curves over a schemeS to be a proper, flat, finitely
presented morphism of relative dimension≤ 1 from an algebraic spaceX to S. If S is the
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spectrum of a complete Noetherian local ring, thenX is a scheme, see More on Morphisms
of Spaces, Lemma 43.6. In this section we show this is not true in general.

Let k be a field. We start with a proper flat morphism

Y −→ A1
k

and a point y ∈ Y (k) lying over 0 ∈ A1
k(k) with the following properties

(1) the fibre Y0 is a smooth geometrically irreducible curve over k,
(2) for any proper closed subscheme T ⊂ Y dominating A1

k the intersection T ∩Y0
contains at least one point distinct from y.

Given such a surface we construct our example as follows.

Y

  

Z

��

oo // X

~~
A1
k

Here Z → Y is the blowup of Y in y. Let E ⊂ Z be the exceptional divisor and let
C ⊂ Z be the strict transform of Y0. We have Z0 = E ∪ C scheme theoretically (to see
this use that Y is smooth at y and moreover Y → A1

k is smooth at y). By Artin’s results
([?]; use Semistable Reduction, Lemma 9.7 to see that the normal bundle of C is negative)
we can blow down the curve C in Z to obtain an algebraic space X as in the diagram. Let
x ∈ X(k) be the image of C.

We claim that X is not a scheme. Namely, if it were a scheme, then there would be an
affine open neighbourhood U ⊂ X of x. Set T = X \ U . Then T dominates A1

k (as the
fibres of X → A1

k are proper of dimension 1 and the fibres of U → A1
k are affine hence

different). Let T ′ ⊂ Z be the closed subscheme mapping isomorphically to T (as x 6∈ T ).
Then the image of T ′ in X contradicts condition (2) above (as T ′ ∩Z0 is contained in the
exceptional divisor E of the blowing up Z → Y ).

To finish the discussion we need to construct our Y . We will assume the characteristic of
k is not 3. Write A1

k = Spec(k[t]) and take

Y : T 3
0 + T 3

1 + T 3
2 − tT0T1T2 = 0

in P2
k[t]. The fibre of this for t = 0 is a smooth projective genus 1 curve. On the affine

piece V+(T0) we get the affine equation

1 + x3 + y3 − txy = 0
which defines a smooth surface over k. Since the same is true on the other affine pieces
by symmetry we see that Y is a smooth surface. Finally, we see from the affine equation
also that the fraction field is k(x, y) hence Y is a rational surface. Now the Picard group
of a rational surface is finitely generated (insert future reference here). Hence in order to
choose y ∈ Y0(k) with property (2) it suffices to choose y such that

(66.0.1) OY0(ny) 6∈ Im(Pic(Y )→ Pic(Y0)) for all n > 0
Namely, the sum of the 1-dimensional irreducible components of a T contradicting (2)
would give an effective Cartier divisor intersection Y0 in the divisor ny for some n ≥ 1
and we would conclude thatOY0(ny) is in the image of the restriction map. Observe that
since Y0 has genus ≥ 1 the map

Y0(k)→ Pic(Y0), y 7→ OY0(y)
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is injective. Now if k is an uncountable algebraically closed field, then using the count-
ability of Pic(Y ) and the remark just made, we can find a y ∈ Y0(k) satisfying (66.0.1)
and hence (2).

Lemma 66.1. There exists a field k and a family of curves X → A1
k such that X is

not a scheme.

Proof. See discussion above. �

67. Derived base change

Let R → R′ be a ring map. In More on Algebra, Section 60 we construct a derived base
change functor − ⊗L

R R′ : D(R) → D(R′). Next, let R → A be a second ring map.
Picture

A // A⊗R R′ A′

R

OO

// R′

OO ::

Given an A-module M the tensor product M ⊗R R′ is a A ⊗R R′-module, i.e., an A′-
module. For the ring map A→ A′ there is a derived functor

−⊗L
A A

′ : D(A) −→ D(A′)

but this functor does not agree with −⊗L
R R

′ in general. More precisely, for K ∈ D(A)
the canonical map

K ⊗L
R R

′ −→ K ⊗L
A A

′

in D(R′) constructed in More on Algebra, Equation (61.0.1) isn’t an isomorphism in gen-
eral. Thus one may wonder if there exists a “derived base change functor” T : D(A) →
D(A′), i.e., a functor such that T (K) maps toK⊗L

RR
′ inD(R′). In this section we show

it does not exist in general.

Let k be a field. Set R = k[x, y]. Set R′ = R/(xy) and A = R/(x2). The object A⊗L
R R

′

in D(R′) is represented by
x2 : R′ −→ R′

and we haveH0(A⊗L
RR

′) = A⊗RR′. We claim that there does not exist an objectE of
D(A⊗R R′) mapping to A⊗L

R R
′ in D(R′). Namely, for such an E the module H0(E)

would be free, hence E would decompose as H0(E)[0]⊕H−1(E)[1]. But it is easy to see
that A⊗L

R R
′ is not isomorphic to the sum of its cohomology groups in D(R′).

Lemma 67.1. Let R → R′ and R → A be ring maps. In general there does not
exist a functor T : D(A) → D(A ⊗R R′) of triangulated categories such that an A-
moduleM gives an object T (M) ofD(A⊗RR′) which maps toM ⊗L

RR
′ under the map

D(A⊗R R′)→ D(R′).

Proof. See discussion above. �

68. An interesting compact object

Let R be a ring. Let (A, d) be a differential graded R-algebra. If A = R, then we know
that every compact object of D(A, d) = D(R) is represented by a finite complex of finite
projective modules. In other words, compact objects are perfect, see More on Algebra,
Proposition 78.3. The analogue in the language of differential graded modules would be
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the question: “Is every compact object of D(A, d) represented by a differential graded
A-module P which is finite and graded projective?”

For general differential graded algebras, this is not true. Namely, let k be a field of char-
acteristic 2 (so we don’t have to worry about signs). Let A = k[x, y]/(y2) with

(1) x of degree 0
(2) y of degree −1,
(3) d(x) = 0, and
(4) d(y) = x2 + x.

Then x : A→ A is a projector in K(A, d). Hence we see that

A = Ker(x)⊕ Im(1− x)
in K(A, d), see Differential Graded Algebra, Lemma 5.4 and Derived Categories, Lemma
4.14. It is clear that A is a compact object of D(A, d). Then Ker(x) is a compact object of
D(A, d) as follows from Derived Categories, Lemma 37.2.

Next, suppose that M is a differential graded (right) A-module representing Ker(x) and
suppose that M is finite and projective as a graded A-module. Because every finite graded
projective module over k[x, y]/(y2) is graded free, we see that M is finite free as a graded
k[x, y]/(y2)-module (i.e., when we forget the differential). We set N = M/M(x2 + x).
Consider the exact sequence

0→M
x2+x−−−→M → N → 0

Since x2 +x is of degree 0, in the center ofA, and d(x2 +x) = 0 we see that this is a short
exact sequence of differential graded A-modules. Moreover, as d(y) = x2 + x we see that
the differential on N is linear. The maps

H−1(N)→ H0(M) and H0(M)→ H0(N)
are isomorphisms as H∗(M) = H0(M) = k since M ∼= Ker(x) in D(A, d). A compu-
tation of the boundary map shows that H∗(N) = k[x, y]/(x, y2) as a graded module; we
omit the details. Since N is a free k[x, y]/(y2, x2 + x)-module we have a resolution

. . .→ N [2] y−→ N [1] y−→ N → N/Ny → 0
compatible with differentials. Since N is bounded and since H0(N) = k[x, y]/(x, y2)
it follows from Homology, Lemma 25.3 that H0(N/Ny) = k[x]/(x). But as N/Ny is a
finite complex of free k[x]/(x2 + x) = k × k-modules, we see that its cohomology has to
have even dimension, a contradiction.

Lemma 68.1. There exists a differential graded algebra (A, d) and a compact objectE
ofD(A, d) such thatE cannot be represented by a finite and graded projective differential
graded A-module.

Proof. See discussion above. �

69. Two differential graded categories

In this section we construct two differential graded categories satisfying axioms (A), (B),
and (C) as in Differential Graded Algebra, Situation 27.2 whose objects do not come with
a Z-grading.

Example I. Let X be a topological space. Denote Z the constant sheaf with value Z. Let
A be an Z-torsor. In this setting we say a sheaf of abelian groups F is A-graded if given a
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local section a ∈ A(U) there is a projector pa : F|U → F|U such that whenever we have
a local isomorphism Z|U → A|U then F|U =

⊕
n∈Z pn(F). Another way to say this is

that locally onX the abelian sheafF has a Z-grading, but on overlaps the different choices
of gradings differ by a shift in degree given by the transition functions for the torsor A.
We say that a pair (F , d) is an A-graded complex of abelian sheaves, if F is an A-graded
abelian sheaf and d : F → F is a differential, i.e., d2 = 0 such that pa+1 ◦ d = d ◦ pa for
every local section a of A. In other words, d(pa(F)) is contained in pa+1(F).

Next, consider the categoryA with
(1) objects are A-graded complexes of abelian sheaves, and
(2) for objects (F , d), (G, d) we set

HomA((F , d), (G, d)) =
⊕

Homn(F ,G)

where Homn(F ,G) is the group of maps of abelian sheaves f such that f(pa(F)) ⊂
pa+n(G) for all local sections a of A. As differential we take d(f) = d ◦ f −
(−1)nf ◦ d, see Differential Graded Algebra, Example 26.6.

We omit the verification that this is indeed a differential graded category satisfying (A),
(B), and (C). All the properties may be verified locally on X where one just recovers the
differential graded category of complexes of abelian sheaves. Thus we obtain a triangu-
lated category K(A).

Twisted derived category of X . Observe that given an object (F , d) of A, there is a well
defined A-graded cohomology sheaf H(F , d). Hence it is clear what is meant by a quasi-
isomorphism in K(A). We can invert quasi-isomorphisms to obtain the derived category
D(A) of complexes of A-graded sheaves. If A is the trivial torsor, then D(A) is equal to
D(X), but for nonzero torsors, one obtains a kind of twisted derived category of X .

Example II. Let C be a smooth curve over a perfect field k of characteristic 2. Then ΩC/k
comes endowed with a canonical square root. Namely, we can write ΩC/k = L⊗2 such
that for every local function f onC the section d(f) is equal to s⊗2 for some local section
s of L. The “reason” is that

d(a0 + a1t+ . . .+ adt
d) = (

∑
i odd

a
1/2
i t(i−1)/2)2dt

(insert future reference here). This in particular determines a canonical connection

∇can : ΩC/k −→ ΩC/k ⊗OC
ΩC/k

whose 2-curvature is zero (namely, the unique connection such that the squares have de-
rivative equal to zero). Observe that the category of vector bundles with connections
is a tensor category, hence we also obtain canonical connections ∇can on the invertible
sheaves Ω⊗n

C/k for all n ∈ Z.

LetA be the category with
(1) objects are pairs (F ,∇) consisting of a finite locally free sheaf F endowed with

a connection
∇ : F −→ F ⊗OC

ΩC/k
whose 2-curvature is zero, and

(2) morphisms between (F ,∇F ) and (G,∇G) are given by

HomA((F ,∇F ), (G,∇G)) =
⊕

HomOC
(F ,G ⊗OC

Ω⊗n
C/k)
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For an element f : F → G ⊗ Ω⊗n
C/k of degree n we set

d(f) = ∇G⊗Ω⊗n
C/k
◦ f + f ◦ ∇F

with suitable identifications.
We omit the verification that this forms a differential graded category with properties (A),
(B), (C). Thus we obtain a triangulated homotopy category K(A).

If C = P1
k , then K(A) is the zero category. However, if C is a smooth proper curve

of genus > 1, then K(A) is not zero. Namely, suppose that N is an invertible sheaf of
degree 0 ≤ d < g − 1 with a nonzero section σ. Then set (F ,∇F ) = (OC , d) and
(G,∇G) = (N⊗2,∇can). We see that

Homn
A((F ,∇F ), (G,∇G)) =

 0 if n < 0
Γ(C,N⊗2) if n = 0

Γ(C,N⊗2 ⊗ ΩC/k) if n = 1

The first 0 because the degree of N⊗2 ⊗ Ω⊗−1
C/k is negative by the condition d < g − 1.

Now, the section σ⊗2 has derivative equal zero, hence the homomorphism group

HomK(A)((F ,∇F ), (G,∇G))
is nonzero.

70. The stack of proper algebraic spaces is not algebraic

In Quot, Section 13 we introduced and studied the stack in groupoids

p′
fp,flat,proper : Spaces′

fp,flat,proper −→ Schfppf
the stack whose category of sections over a scheme S is the category of flat, proper, finitely
presented algebraic spaces over S. We proved that this satisfies many of Artin’s axioms.
In this section we why this stack is not algebraic by showing that formal effectiveness fails
in general.

The canonical example uses that the universal deformation space of an abelian variety
of dimension g has g2 formal parameters whereas any effective formal deformation can
be defined over a complete local ring of dimension ≤ g(g + 1)/2. Our example will be
constructed by writing down a suitable non-effective deformation of a K3 surface. We
will only sketch the argument and not give all the details.

Let k = C be the field of complex numbers. Let X ⊂ P3
k be a smooth degree 4 sur-

face over k. We have ωX ∼= Ω2
X/k
∼= OX . Finally, we have dimkH

0(X,TX/k) = 0,
dimkH

1(X,TX/k) = 20, and dimkH
2(X,TX/k) = 0. Since LX/k = ΩX/k because

X is smooth over k, and since ExtiOX
(ΩX/k,OX) = Hi(X,TX/k), and because we have

Cotangent, Lemma 23.1 we find that there is a universal deformation of X over

k[[x1, . . . , x20]]
Suppose that this universal deformation is effective (as in Artin’s Axioms, Section 9). Then
we would get a flat, proper morphism

f : Y −→ Spec(k[[x1, . . . , x20]])
where Y is an algebraic space recovering the universal deformation. This is impossible for
the following reason. Since Y is separated we can find an affine open subscheme V ⊂ Y .
Since the special fibre X of Y is smooth, we see that f is smooth. Hence Y is regular
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being smooth over regular and it follows that the complement D of V in Y is an effec-
tive Cartier divisor. Then OY (D) is a nontrivial element of Pic(Y ) (to prove this you
show that the complement of a nonempty affine open in a proper smooth algebraic space
over a field is always a nontrivial in the Picard group and you apply this to the generic
fibre of f ). Finally, to get a contradiction, we show that Pic(Y ) = 0. Namely, the map
Pic(Y ) → Pic(X) is injective, because H1(X,OX) = 0 (hence all deformations of OX
to Y × Spec(k[[xi]]/mn) are trivial) and Grothendieck’s existence theorem (which says
that coherent modules giving rise to the same sheaves on thickenings are isomorphic). If
X is general enough, then Pic(X) = Z generated by OX(1). Hence it suffices to show
that OX(n), n > 0 does not deform to the first order neighbourhood5. Consider the
cup-product

H1(X,ΩX/k)×H1(X,TX/k) −→ H2(X,OX)
This is a nondegenerate pairing by coherent duality. A computation shows that the Chern
class c1(OX(n)) ∈ H1(X,ΩX/k) in Hodge cohomology is nonzero. Hence there is a
first order deformation whose cup product with c1(OX(n)) is nonzero. Then finally, one
shows this cup product is the obstruction class to lifting.

Lemma 70.1. The stack in groupoids

p′
fp,flat,proper : Spaces′

fp,flat,proper −→ Schfppf
whose category of sections over a schemeS is the category of flat, proper, finitely presented
algebraic spaces over S (see Quot, Section 13) is not an algebraic stack.

Proof. If it was an algebraic stack, then every formal object would be effective, see
Artin’s Axioms, Lemma 9.5. The discussion above show this is not the case after base
change to Spec(C). Hence the conclusion. �

71. An example of a non-algebraic Hom-stack

Let Y,Z be algebraic stacks over a scheme S. The Hom-stack MorS(Y,Z) is the stack in
groupoids over S whose category of sections over a scheme T is given by the category

MorT (Y ×S T,Z ×S T )

whose objects are 1-morphisms and whose morphisms are 2-morphisms. We omit the proof
this is indeed a stack in groupoids over (Sch/S)fppf (insert future reference here). Of
course, in general the Hom-stack will not be algebraic. In this section we give an example
where it is not true and where Y is representable by a proper flat scheme over S and Z is
smooth and proper over S.

Let k be an algebraically closed field which is not the algebraic closure of a finite field. Let
S = Spec(k[[t]]) and Sn = Spec(k[t]/(tn)) ⊂ S. Let f : X → S be a map satisfying the
following

(1) f is projective and flat, and its fibres are geometrically connected curves,
(2) the fibre X0 = X ×S S0 is a nodal curve with smooth irreducible components

whose dual graph has a loop consisting of rational curves,
(3) X is a regular scheme.

5This argument works as long as the map c1 : Pic(X) → H1(X,ΩX/k) is injective, which is true for k
any field of characteristic zero and any smooth hypersurface X of degree 4 in P3

k .
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To make such a surface X we can take for example
X : T0T1T2 − t(T 3

0 + T 3
1 + T 3

2 ) = 0
in P2

k[[t]]. Let A0 be a non-zero abelian variety over k for example an elliptic curve. Let
A = A0×Spec(k) S be the constant abelian scheme over S associated toA0. We will show
that the stack X = MorS(X, [S/A])) is not algebraic.
Recall that [S/A] is on the one hand the quotient stack of A acting trivially on S and
on the other hand equal to the stack classifying fppf A-torsors, see Examples of Stacks,
Proposition 15.3. Observe that [S/A] = [Spec(k)/A0] ×Spec(k) S. This allows us to
describe the fibre category over a scheme T as follows

XT = MorS(X, [S/A])T
= MorT (X ×S T, [S/A]×S T )
= MorS(X ×S T, [S/A])
= MorSpec(k)(X ×S T, [Spec(k)/A0])

for any S-scheme T . In other words, the groupoid XT is the groupoid of fppf A0-torsors
on X ×S T . Before we discuss why X is not an algebraic stack, we need a few lemmas.

Lemma 71.1. Let W be a two dimensional regular integral Noetherian scheme with
function field K. Let G → W be an abelian scheme. Then the map H1

fppf (W,G) →
H1
fppf (Spec(K), G) is injective.

Sketch of proof. Let P → W be an fppf G-torsor which is trivial in the generic
point. Then we have a morphism Spec(K) → P over W and we can take its scheme
theoretic image Z ⊂ P . Since P → W is proper (as a torsor for a proper group algebraic
space over W ) we see that Z → W is a proper birational morphism. By Spaces over
Fields, Lemma 3.2 the morphism Z → W is finite away from finitely many closed points
of W . By (insert future reference on resolving indeterminacies of morphisms by blowing
quadratic transformations for surfaces) the irreducible components of the geometric fibres
of Z →W are rational curves. By More on Groupoids in Spaces, Lemma 11.3 there are no
nonconstant morphisms from rational curves to group schemes or torsors over such. Hence
Z → W is finite, whence Z is a scheme and Z → W is an isomorphism by Morphisms,
Lemma 54.8. In other words, the torsor P is trivial. �

Lemma 71.2. Let G be a smooth commutative group algebraic space over a field K.
Then H1

fppf (Spec(K), G) is torsion.

Proof. Every G-torsor P over Spec(K) is smooth over K as a form of G. Hence P
has a point over a finite separable extensionL/K. Say [L : K] = n. Let [n](P ) denote the
G-torsor whose class is n times the class of P inH1

fppf (Spec(K), G). There is a canonical
morphism

P ×Spec(K) . . .×Spec(K) P → [n](P )
of algebraic spaces over K. This morphism is symmetric as G is abelian. Hence it factors
through the quotient

(P ×Spec(K) . . .×Spec(K) P )/Sn
On the other hand, the morphism Spec(L)→ P defines a morphism

(Spec(L)×Spec(K) . . .×Spec(K) Spec(L))/Sn −→ (P ×Spec(K) . . .×Spec(K) P )/Sn
and the reader can verify that the scheme on the left has a K-rational point. Thus we see
that [n](P ) is the trivial torsor. �
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To prove X = MorS(X, [S/A]) is not an algebraic stack, by Artin’s Axioms, Lemma 9.5,
it is enough to show the following.

Lemma 71.3. The canonical map X (S)→ limX (Sn) is not essentially surjective.

Sketch of proof. Unwinding definitions, it is enough to check that H1(X,A0)→
limH1(Xn, A0) is not surjective. As X is regular and projective, by Lemmas 71.2 and
71.1 each A0-torsor over X is torsion. In particular, the group H1(X,A0) is torsion.
It is thus enough to show: (a) the group H1(X0, A0) is non-torsion, and (b) the maps
H1(Xn+1, A0)→ H1(Xn, A0) are surjective for all n.

Ad (a). One constructs a nontorsionA0-torsorP0 on the nodal curveX0 by glueing trivial
A0-torsors on each component ofX0 using non-torsion points onA0 as the isomorphisms
over the nodes. More precisely, let x ∈ X0 be a node which occurs in a loop consisting of
rational curves. Let X ′

0 → X0 be the normalization of X0 in X0 \ {x}. Let x′, x′′ ∈ X ′
0

be the two points mapping to x0. Then we take A0 ×Spec(k) X
′
0 and we identify A0 × x′

with A0 × {x′′} using translation A0 → A0 by a nontorsion point a0 ∈ A0(k) (there is
such a nontorsion point as k is algebraically closed and not the algebraic closure of a finite
field – this is actually not trivial to prove). One can show that the glueing is an algebraic
space (in fact one can show it is a scheme) and that it is an nontorsion A0-torsor over X0.
The reason that it is nontorsion is that if [n](P0) has a section, then that section produces
a morphism s : X ′

0 → A0 such that [n](a0) = s(x′)− s(x′′) in the group law on A0(k).
However, since the irreducible components of the loop are rational to section s is constant
on them ( More on Groupoids in Spaces, Lemma 11.3). Hence s(x′) = s(x′′) and we obtain
a contradiction.

Ad (b). Deformation theory shows that the obstruction to deforming an A0-torsor Pn →
Xn to an A0-torsor Pn+1 → Xn+1 lies in H2(X0, ω) for a suitable vector bundle ω on
X0. The latter vanishes as X0 is a curve, proving the claim. �

Proposition 71.4. The stack X = MorS(X, [S/A]) is not algebraic.

Proof. See discussion above. �

Remark 71.5. Proposition 71.4 contradicts [?, Theorem 1.1]. The problem is the non-
effectivity of formal objects for MorS(X, [S/A]). The same problem is mentioned in the
Erratum [?] to [?]. Unfortunately, the Erratum goes on to assert that MorS(Y,Z) is alge-
braic if Z is separated, which also contradicts Proposition 71.4 as [S/A] is separated.

72. An algebraic stack not satisfying strong formal effectiveness

This is [?, Example 4.12]. Let k be an algebraically closed field. LetA be an abelian variety
over k. Assume thatA(k) is not torsion (this always holds if k is not the algebraic closure
of a finite field). Let X = [Spec(k)/A]. We claim there exists an ideal I ⊂ k[x, y] such
that

XSpec(k[x,y]∧) −→ limXSpec(k[x,y]/In)

is not essentially surjective. Namely, let I be the ideal generated by xy(x+ y − 1). Then
X0 = V (I) consists of three copies of A1

k glued into a triangle at three points. Hence we
can make an infinite order torsor P0 for A over X0 by taking the trivial torsor over the
irreducible components ofX0 and glueing using translation by nontorsion points. Exactly
as in the proof of Lemma 71.3 we can lift P0 to a torsor Pn over Xn = Spec(k[x, y]/In).
Since k[x, y]∧ is a two dimensional regular domain we see that any torsor P for A over
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Spec(k[x, y]∧) is torsion (Lemmas 71.1 and 71.2). Hence the system of torsors is not in the
image of the displayed functor.

Lemma 72.1. Let k be an algebraically closed field which is not the closure of a finite
field. Let A be an abelian variety over k. Let X = [Spec(k)/A]. There exists an inverse
system of k-algebrasRn with surjective transition maps whose kernels are locally nilpotent
and a system (ξn) of X lying over the system (Spec(Rn)) such that this system is not
effective in the sense of Artin’s Axioms, Remark 20.2.

Proof. See discussion above. �

73. A counter example to Grothendieck’s existence theorem

Let k be a field and let A = k[[t]]. Let X be the glueing of U = Spec(A[x]) and V =
Spec(A[y]) by the identification

U \ {0U} −→ V \ {0V }
sending x to y where 0U ∈ U and OV ∈ V are the points corresponding to the maximal
ideals (x, t) and (y, t). Set An = A/(tn) and set Xn = X ×Spec(A) Spec(An). Let Fn be
the coherent sheaf on Xn corresponding to the An[x]-module An[x]/(x) ∼= An and the
An[y] module 0 with obvious glueing. Let I ⊂ OX be the sheaf of ideals generate by t.
Then (Fn) is an object of the category Cohsupport proper overA(X, I) defined in Cohomology
of Schemes, Section 27. On the other hand, this object is not in the image of the functor
Cohomology of Schemes, Equation (27.0.1). Namely, if it where there would be a finite
A[x]-moduleM , a finiteA[y]-moduleN and an isomorphismM [1/t] ∼= N [1/t] such that
M/tnM ∼= An[x]/(x) and N/tnN = 0 for all n. It is easy to see that this is impossible.

Lemma 73.1. Counter examples to algebraization of coherent sheaves.
(1) Grothendieck’s existence theorem as stated in Cohomology of Schemes, Theo-

rem 27.1 is false if we drop the assumption that X → Spec(A) is separated.
(2) The stack of coherent sheaves CohX/B of Quot, Theorems 6.1 and 5.12 is in gen-

eral not algebraic if we drop the assumption that X → S is separated
(3) The functor QuotF/X/B of Quot, Proposition 8.4 is not an algebraic space in

general if we drop the assumption that X → B is separated.

Proof. Part (1) we saw above. This shows that CohX/A fails axiom [4] of Artin’s
Axioms, Section 14. Hence it cannot be an algebraic stack by Artin’s Axioms, Lemma 9.5.
In this way we see that (2) is true. To see (3), note that there are compatible surjections
OXn → Fn for all n. Thus we see that QuotOX/X/A fails axiom [4] and we see that (3) is
true as before. �

74. Affine formal algebraic spaces

Let K be a field and let (Vi)i∈I be a directed inverse system of nonzero vector spaces over
K with surjective transition maps and with limVi = 0, see Section 3. Let Ri = K ⊕ Vi as
K-algebra where Vi is an ideal of square zero. ThenRi is an inverse system of K-algebras
with surjective transition maps with nilpotent kernels and with limRi = K. The affine
formal algebraic space X = colim Spec(Ri) is an example of an affine formal algebraic
space which is not McQuillan.

Lemma 74.1. There exists an affine formal algebraic space which is not McQuillan.

Proof. See discussion above. �
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Let 0 → Wi → Vi → K → 0 be a system of exact sequences as in Section 3. Let Ai =
K[Vi]/(ww′;w,w′ ∈ Wi). Then there is a compatible system of surjections Ai → K[t]
with nilpotent kernels and the transition maps Ai → Aj are surjective with nilpotent
kernels as well. Recall that Vi is free over K with basis given by s ∈ Si. Then, if the
characteristic of K is zero, the degree d part of Ai is free over K with basis given by sd,
s ∈ Si each of which map to td. Hence the inverse system of the degree d parts of the Ai
is isomorphic to the inverse system of the vector spaces Vi. As limVi = 0 we conclude
that limAi = K , at least when the characteristic of K is zero. This gives an example of
an affine formal algebraic space whose “regular functions” do not separate points.

Lemma 74.2. There exists an affine formal algebraic spaceX whose regular functions
do not separate points, in the following sense: If we write X = colimXλ as in Formal
Spaces, Definition 9.1 then lim Γ(Xλ,OXλ) is a field, butXred has infinitely many points.

Proof. See discussion above. �

Let K , I , and (Vi) be as above. Consider systems
Φ = (Λ, Ji ⊂ Λ, (Mi)→ (Vi))

where Λ is an augmented K-algebra, Ji ⊂ Λ for i ∈ I is an ideal of square zero, (Mi) →
(Vi) is a map of inverse systems of K-vector spaces such that Mi → Vi is surjective for
each i, such that Mi has a Λ-module structure, such that the transition maps Mi → Mj ,
i > j are Λ-linear, and such that JjMi ⊂ Ker(Mi →Mj) for i > j. Claim: There exists
a system as above such that Mj = Mi/JjMi for all i > j.
If the claim is true, then we obtain a representable morphism

colimi∈I Spec(Λ/Ji ⊕Mi) −→ Spf(lim Λ/Ji)
of affine formal algebraic spaces whose source is not McQuillan but the target is. Here
Λ/Ji⊕Mi has the usual Λ/Ji-algebra structure whereMi is an ideal of square zero. Rep-
resentability translates exactly into the condition that Mi/JjMi = Mj for i > j. The
source of the morphism is not McQuillan as the projections limi∈IMi → Mi are not be
surjective. This is true because the maps limVi → Vi are not surjective and we have the
surjection Mi → Vi. Some details omitted.
Proof of the claim. First, note that there exists at least one system, namely

Φ0 = (K,Ji = (0), (Vi)
id−→ (Vi))

Given a system Φ we will prove there exists a morphism of systems Φ → Φ′ (morphisms
of systems defined in the obvious manner) such that Ker(Mi/JjMi →Mj) maps to zero
inM ′

i/J
′
jM

′
i . Once this is done we can do the usual trick of setting Φn = (Φn−1)′ induc-

tively for n ≥ 1 and taking Φ = colim Φn to get a system with the desired properties.
Details omitted.
Construction of Φ′ given Φ. Consider the set U of triples u = (i, j, ξ) where i > j and
ξ ∈ Ker(Mi → Mj). We will let s, t : U → I denote the maps s(i, j, ξ) = i and
t(i, j, ξ) = j. Then we set ξu ∈Ms(u) the third component of u. We take

Λ′ = Λ[xu;u ∈ U ]/(xuxu′ ;u, u′ ∈ U)
with augmentation Λ′ → K given by the augmentation of Λ and sending xu to zero. We
take J ′

k = JkΛ′ + (xu, t(u)≥k). We set

M ′
i = Mi ⊕

⊕
s(u)≥i

Kεi,u
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As transition maps M ′
i → M ′

j for i > j we use the given map Mi → Mj and we send
εi,u to εj,u. The map M ′

i → Vi induces the given map Mi → Vi and sends εi,u to zero.
Finally, we let Λ′ act on M ′

i as follows: for λ ∈ Λ we act by the Λ-module structure on
Mi and via the augmentation Λ → K on εi,u. The element xu acts as 0 on Mi for all i.
Finally, we define

xuεi,u = image of ξu in Mi

and we set all other products xu′εi,u equal to zero. The displayed formula makes sense
because s(u) ≥ i and ξu ∈ Ms(u). The main things the check are J ′

jM
′
i ⊂ M ′

i maps to
zero in M ′

j for i > j and that Ker(Mi →Mj) maps to zero in M ′
i/JjM

′
i . The reason for

the last fact is that ξ = x(i,j,ξ)εi,(i,j,ξ) ∈ J ′
jM

′
i for any ξ ∈ Ker(Mi → Mj). We omit

the details.

Lemma 74.3. There exists a representable morphism f : X → Y of affine formal
algebraic spaces with Y McQuillan, but X not McQuillan.

Proof. See discussion above. �

75. Flat maps are not directed limits of finitely presented flat maps

The goal of this section is to give an example of a flat ring map which is not a filtered
colimit of flat and finitely presented ring maps. In [?] it is shown that ifA is a nonexcellent
local ring of dimension 1 and residue characteristic zero, then the (flat) ring mapA→ A∧

to its completion is not a filtered colimit of finite type flat ring maps. The example in this
section will have a source which is an excellent ring. We encourage the reader to submit
other examples; please email stacks.project@gmail.com if you have one.

For the construction, fix a prime p, and let A = Fp[x1, . . . , xn]. Choose an absolute
integral closure A+ of A, i.e., A+ is the integral closure of A in an algebraic closure of its
fraction field. In [?, §6.7] it is shown that A→ A+ is flat.

We claim that the A-algebra A+ is not a filtered colimit of finitely presented flat A-
algebras if n ≥ 3.

We sketch the argument in the case n = 3, and we leave the generalization to higher n to
the reader. It is enough to prove the analogous statement for the mapR→ R+, whereR is
the strict henselization of A at the origin and R+ is its absolute integral closure. Observe
that R is a henselian regular local ring whose residue field k is an algebraic closure of Fp.

Choose an ordinary abelian surface X over k and a very ample line bundle L on X . The
section ring Γ∗(X,L) =

⊕
nH

0(X,Ln) is the coordinate ring of the affine cone over
X with respect to L. It is a normal ring for L sufficiently positive. Let S denote the
henselization of Γ∗(X,L) at vertex of the cone. Then S is a henselian Noetherian normal
domain of dimension 3. We obtain a finite injective map R → S as the henselization
of a Noether normalization for the finite type k-algebra Γ∗(X,L). As R+ is an absolute
integral closure ofR, we can also fix an embedding S → R+. ThusR+ is also the absolute
integral closure of S. To show R+ is not a filtered colimit of flat R-algebras, it suffices to
show:

(1) If there exists a factorization S → P → R+ with P flat and finite type over R,
then there exists a factorization S → T → R+ with T finite flat over R.

(2) For any factorization S → T → R+ with S → T finite, the ring T is notR-flat.

mailto:stacks.project@gmail.com
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Indeed, since S is finitely presented overR, if one could writeR+ = colimi Pi as a filtered
colimit of finitely presented flat R-algebras Pi, then S → R+ would factor as S → Pi →
R+ for i � 0, which contradicts the above pair of assertions. Assertion (1) follows from
the fact that R is henselian and a slicing argument, see More on Morphisms, Lemma 23.5.
Part (2) was proven in [?]; for the convenience of the reader, we recall the argument.

Let U ⊂ Spec(S) be the punctured spectrum, so there are natural maps X ← U ⊂
Spec(S). The first map gives an identification H1(U,OU ) ' H1(X,OX). By passing
to the Witt vectors of the perfection and using the Artin-Schreier sequence6, this gives
an identification H1

étale(U,Zp) ' H1
étale(X,Zp). In particular, this group is a finite free

Zp-module of rank 2 (since X is ordinary). To get a contradiction assume there exists
an R-flat T as in (2) above. Let V ⊂ Spec(T ) denote the preimage of U , and write f :
V → U for the induced finite surjective map. Since U is normal, there is a trace map
f∗Zp → Zp onUétale whose composition with the pullback Zp → f∗Zp is multiplication
by d = deg(f). Passing to cohomology, and using that H1

étale(U,Zp) is nontorsion, then
shows thatH1

étale(V,Zp) is nonzero. SinceH1
étale(V,Zp) ' limH1

étale(V,Z/pn) as there
is no R1 lim interference, the group H1(Vétale,Z/p) must be non-zero. Since T is R-flat
we have Γ(V,OV ) = T which is strictly henselian and the Artin-Schreier sequence shows
H1(V,OV ) 6= 0. This is equivalent to H2

m(T ) 6= 0, where m ⊂ R is the maximal ideal.
Thus, we obtain a contradiction since T is finite flat (i.e., finite free) as an R-module and
H2

m(R) = 0. This contradiction proves (2).

Lemma 75.1. There exists a commutative ringA and a flatA-algebraB which cannot
be written as a filtered colimit of finitely presented flat A-algebras. In fact, we may either
choose A to be a finite type Fp-algebra or a 1-dimensional Noetherian local ring with
residue field of characteristic 0.

Proof. See discussion above. �

76. The category of modules modulo torsion modules

The category of torsion groups is a Serre subcategory (Homology, Definition 10.1) of the
category of all abelian groups. More generally, for any ring A, the category of torsion
A-modules is a Serre subcategory of the category of all A-modules, see More on Alge-
bra, Section 53. If A is a domain, then the quotient category (Homology, Lemma 10.6) is
equivalent to the category of vector spaces over the fraction field. This follows from the
following more general proposition.

Proposition 76.1. LetA be a ring. LetS be a multiplicative subset ofA. Let ModA de-
note the category ofA-modules and T its Serre subcategory of modules for which any ele-
ment is annihilated by some element ofS. Then there is a canonical equivalence ModA/T →
ModS−1A.

Proof. The functor ModA → ModS−1A given by M 7→ M ⊗A S−1A is exact (by
Algebra, Proposition 9.12) and maps modules in T to zero. Thus, by the universal prop-
erty given in Homology, Lemma 10.6, the functor descends to a functor ModA/T →
ModS−1A.

6Here we use that S is a strictly henselian local ring of characteristic p and hence S → S, f 7→ fp − f

is surjective. Also S is a normal domain and hence Γ(U,OU ) = S. Thus H1
étale(U,Z/p) is the kernel of the

map H1(U,OU ) → H1(U,OU ) induced by f 7→ fp − f .
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Conversely, any A-module M with M ⊗A S−1A = 0 is an object of T , since M ⊗A
S−1A ∼= S−1M (Algebra, Lemma 12.15). Thus Homology, Lemma 10.7 shows that the
functor ModA/T →ModS−1A is faithful.

Furthermore, this embedding is essentially surjective: a preimage to an S−1A-module N
is NA, that is N regarded as an A-module, since the canonical map NA ⊗A S−1A → N
which maps x⊗ a/s to (a/s) · x is an isomorphism of S−1A-modules. �

Proposition 76.2. Let A be a ring. Let Q(A) denote its total quotient ring (as in
Algebra, Example 9.8). Let ModA denote the category of A-modules and T its Serre sub-
category of torsion modules. Let ModQ(A) denote the category of Q(A)-modules. Then
there is a canonical equivalence ModA/T →ModQ(A).

Proof. Follows immediately from applying Proposition 76.1 to the multiplicative
subset S = {f ∈ A | f is not a zerodivisor in A}, since a module is a torsion module if
and only if all of its elements are each annihilated by some element of S. �

Proposition 76.3. Let A be a Noetherian integral domain. Let K denote its field of
fractions. Let ModfgA denote the category of finitely generated A-modules and T fg its
Serre subcategory of finitely generated torsion modules. Then ModfgA /T fg is canonically
equivalent to the category of finite dimensional K-vector spaces.

Proof. The equivalence given in Proposition 76.2 restricts along the embedding ModfgA /T fg →
ModA/T to an equivalence ModfgA /T fg → VectfdK . The Noetherian assumption guaran-
tees that ModfgA is an abelian category (see More on Algebra, Section 53) and that the
canonical functor ModfgA /T fg → ModA/T is full (else torsion submodules of finitely
generated modules might not be objects of T fg). �

Proposition 76.4. The quotient of the category of abelian groups modulo its Serre
subcategory of torsion groups is the category of Q-vector spaces.

Proof. The claim follows directly from Proposition 76.2. �

77. Different colimit topologies

This example is [?, Example 1.2, page 553]. LetGn = Q×Rn, n ≥ 1 seen as a topological
group for addition endowed with the usual (Euclidean) topology. Consider the closed
embeddings Gn → Gn+1 mapping (x0, . . . , xn) to (x0, . . . , xn, 0). We claim that G =
colimGn endowed with the topology

U ⊂ G open⇔ Gn ∩ U open ∀n

is not a topological group.

To see this we consider the set

U = {(x0, x1, x2, . . .) such that |xj | < | cos(jx0)| for j > 0}

Using that jx0 is never an integral multiple of π/2 as π is not rational it is easy to show
that U ∩Gn is open. Since 0 ∈ U , if the topology above madeG into a topological group,
then there would be an open neighbourhood V ⊂ G of 0 such that V + V ⊂ U . Then,
for every j ≥ 0 there would exist εj > 0 such that (0, . . . , 0, xj , 0, . . .) ∈ V for |xj | < εj .
Since V + V ⊂ U we would have

(x0, 0, . . . , 0, xj , 0, . . .) ∈ U
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for |x0| < ε0 and |xj | < εj . However, if we take j large enough such that jε0 > π/2,
then we can choose x0 ∈ Q such that | cos(jx0)| is smaller than εj , hence there exists an
xj with | cos(jx0)| < |xj | < εj . This contradiction proves the claim.

Lemma 77.1. There exists a system G1 → G2 → G3 → . . . of (abelian) topological
groups such that colimGn taken in the category of topological spaces is different from
colimGn taken in the category of topological groups.

Proof. See discussion above. �

78. Universally submersive but not V covering

Let A be a valuation ring. Let p ⊂ A be a prime ideal which is neither the minimal prime
nor the maximal ideal. (A good case to keep in mind is whenA has three prime ideals and
p is the one in the “middle”.) Consider the morphism of affine schemes

Spec(Ap)q Spec(A/p) −→ Spec(A)

We claim this is universally submersive. In order to prove this, let Spec(B) → Spec(A)
be a morphism of affine schemes given by the ring map A → B. Then we have to show
that

Spec(Bp)q Spec(B/pB)→ Spec(B)

is submersive. First of all it is surjective. Next, suppose that T ⊂ Spec(B) is a subset such
that T1 = Spec(Bp)∩T and T2 = Spec(B/pB)∩T are closed. Then we see that T is the
image of the spectrum of a B-algebra because both T1 and T2 are spectra of B-algebras.
Hence to show that T is closed it suffices to show that T is stable under specialization,
see Algebra, Lemma 41.5. To see this, suppose that p  q is a specialization of points
in Spec(B) with p ∈ T . Let A′ be a valuation ring and let Spec(A′) → Spec(B) be a
morphism such that the generic point η of Spec(A′) maps to p and the closed point s of
Spec(A′) maps to q, see Schemes, Lemma 20.4. Observe that the image of the composition
γ : Spec(A′)→ Spec(A) is exactly the set of points ξ ∈ Spec(A) with γ(η) ξ  γ(s)
(details omitted). If p 6∈ Im(γ), then we see that either both p, q ∈ Spec(Bp) or both
p, q ∈ Spec(B/pB). In this case the fact that T1, resp. T2 is closed implies that q ∈ T1,
resp. q ∈ T2 and hence q ∈ T . Finally, suppose p ∈ Im(γ), say p = γ(r). Then we have
specializations p  r and r  q. In this case p, r ∈ Spec(Bp) and r, q ∈ Spec(B/pB).
Then we fist conclude r ∈ T1 ⊂ T , then r ∈ T2 as r maps to p, and then q ∈ T2 ⊂ T as
desired.

On the other hand, we claim that the singleton family

{Spec(Ap)q Spec(A/p) −→ Spec(A)}

is not a V covering. See Topologies, Definition 10.7. Namely, if it where a V covering,
there would be an extension of valuation ring A ⊂ B such that Spec(B) → Spec(A)
factors through Spec(Ap) q Spec(A/p). This would imply Spec(A′) is disconnected
which is absurd.

Lemma 78.1. There exists a morphismX → Y of affine schemes which is universally
submersive such that {X → Y } is not a V covering.

Proof. See discussion above. �
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79. The spectrum of the integers is not quasi-compact

Of course the title of this section doesn’t refer to the spectrum of the integers as a topolog-
ical space, because any spectrum is quasi-compact as a topological space (Algebra, Lemma
17.10). No, it refers to the spectrum of the integers in the canonical topology on the cat-
egory of schemes, and the definition of a quasi-compact object in a site (Sites, Definition
17.1).

Let U be a nonprincipal ultrafilter on the set P of prime numbers. For a subset T ⊂ P we
denote T c = P \ T the complement. For A ∈ U let SA ⊂ Z be the multiplicative subset
generated by p ∈ A. Set

ZA = S−1
A Z

Observe that Spec(ZA) = {(0)} ∪ Ac ⊂ Spec(Z) if we think of P as the set of closed
points of Spec(Z). If A,B ∈ U , then A ∩B ∈ U and A ∪B ∈ U and we have

ZA∩B = ZA ×ZA∪B ZB
(fibre product of rings). In particular, for any integer n and elementsA1, . . . , An ∈ U the
morphisms

Spec(ZA1)q . . .q Spec(ZAn) −→ Spec(Z)
factors through Spec(Z[1/p]) for some p (namely for any p ∈ A1∩. . .∩An). We conclude
that the family of flat morphisms {Spec(ZA) → Spec(Z)}A∈U is jointly surjective, but
no finite subset is.

For a Z-module M we set

MA = S−1
A M = M ⊗Z ZA

Claim I: for every Z-module M we have

M = Equalizer
( ∏

A∈U MA
//
//
∏
A,B∈U MA∪B

)
First, assume M is torsion free. Then MA ⊂ MP for all A ∈ U . Hence we see that we
have to prove

M =
⋂

A∈U
MA inside MP = M ⊗Q

Namely, since U is nonprincipal, for any prime p we have {p}c ∈ U . Also, M{p}c =
M(p) is equal to the localization at the prime (p). Thus the above is clear because already
M(2) ∩M(3) = M . Next, assume M is torsion. Then we have

M =
⊕

p∈P
M [p∞]

and correspondingly we have

MA =
⊕

p 6∈A
M [p∞]

because we are localizing at the primes in A. Suppose that (xA) ∈
∏
MA is in the equal-

izer. Denote xp = x{p}c ∈M [p∞]. Then the equalizer property says

xA = (xp)p 6∈A

and in particular it says that xp is zero for all but a finite number of p 6∈ A. To finish the
proof in the torsion case it suffices to show that xp is zero for all but a finite number of
primes p. If not write {p ∈ P | xp 6= 0} = T q T ′ as the disjoint union of two infinite
sets. Then either T 6∈ U or T ′ 6∈ U because U is an ultrafilter (namely if both T, T ′ are in
U then U contains T ∩ T ′ = ∅ which is not allowed). Say T 6∈ U . Then T = Ac and this
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contradicts the finiteness mentioned above. Finally, suppose that M is a general module.
Then we look at the short exact sequence

0→Mtors →M →M/Mtors → 0
and we look at the following large diagram

Mtors
//

��

∏
A∈U Mtors,A

//
//

��

∏
A,B∈U Mtors,A∪B

��
M //

��

∏
A∈U MA

//
//

��

∏
A,B∈U MA∪B

��
M/Mtors

// ∏
A∈U (M/Mtors)A

//
//
∏
A,B∈U (M/Mtors)A∪B

Doing a diagram chase using exactness of the columns and the result for the torsion mod-
ule Mtors and the torsion free module M/Mtors proving Claim I for M . This gives an
example of the phenomenon in the following lemma.

Lemma 79.1. There exists a ring A and an infinite family of flat ring maps {A →
Ai}i∈I such that for every A-module M

M = Equalizer
( ∏

i∈IM ⊗A Ai
//
//
∏
i,j∈IM ⊗A Ai ⊗A Aj

)
but there is no finite subfamily where the same thing is true.

Proof. See discussion above. �

We continue working with our nonprincipal ultrafilter U on the set P of prime numbers.
LetR be a ring. DenoteRA = S−1

A R = R⊗ZA forA ∈ U . Claim II: given closed subsets
TA ⊂ Spec(RA), A ∈ U such that

(Spec(RA∪B)→ Spec(RA))−1TA = (Spec(RA∪B)→ Spec(RB))−1TB

for all A,B ∈ U , there is a closed subset T ⊂ Spec(R) with TA = (Spec(RA) →
Spec(R))−1(T ) for all A ∈ U . Let IA ⊂ RA for A ∈ U be the radical ideal cutting out
TA. Then the glueing condition implies S−1

A∪BIA = S−1
A∪BIB in RA∪B for all A,B ∈ U

(because localization preserves being a radical ideal). Let I ′ ⊂ R be the set of elements
mapping into IP ⊂ RP = R⊗Q. Then we see for A ∈ U that

(1) IA ⊂ I ′
A = S−1

A I ′, and
(2) MA = I ′

A/IA is a torsion module.
Of course we obtain canonical identifications S−1

A∪BMA = S−1
A∪BMB for A,B ∈ U .

Decomposing the torsion modulesMA into their p-primary components, the reader easily
shows that there exist p-power torsion R-modules Mp such that

MA =
⊕

p6∈A
Mp

compatible with the canonical identifications given above. Setting M =
⊕

p∈P Mp we
find canonical isomorphisms MA = S−1

A M compatible with the above canonical identi-
fications. Then we get a canonical map

I ′ −→M

of R-modules wich recovers the map IA → MA for all A ∈ U . This is true by all the
compatibilities mentioned above and the claim proved previously that M is the equalizer
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of the two maps from
∏
A∈U MA to

∏
A,B∈U MA∪B . Let I = Ker(I ′ → M). Then I

is an ideal and T = V (I) is a closed subset which recovers the closed subsets TA for all
A ∈ U . This proves Claim II.

Lemma 79.2. The scheme Spec(Z) is not quasi-compact in the canonical topology
on the category of schemes.

Proof. With notation as above consider the family of morphisms
W = {Spec(ZA)→ Spec(Z)}A∈U

By Descent, Lemma 13.5 and the two claims proved above this is a universal effective
epimorphism. In any category with fibre products, the universal effective epimorphisms
give C the structure of a site (modulo some set theoretical issues which are easy to fix)
defining the canonical topology. ThusW is a covering for the canonical topology. On
the other hand, we have seen above that any finite subfamily

{Spec(ZAi)→ Spec(Z)}i=1,...,n, n ∈ N, A1, . . . , An ∈ U
factors through Spec(Z[1/p]) for some p. Hence this finite family cannot be a univer-
sal effective epimorphism and more generally no universal effective epimorphism {gj :
Tj → Spec(Z)} can refine {Spec(ZAi) → Spec(Z)}i=1,...,n. By Sites, Definition 17.1
this means that Spec(Z) is not quasi-compact in the canonical topology. To see that our
notion of quasi-compactness agrees with the usual topos theoretic definition, see Sites,
Lemma 17.3. �
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CHAPTER 111

Exercises

1. Algebra

This first section just contains some assorted questions.

Exercise 1.1. Let A be a ring, and m a maximal ideal. In A[X] let m̃1 = (m, X) and
m̃2 = (m, X − 1). Show that

A[X]m̃1
∼= A[X]m̃2 .

Exercise 1.2. Find an example of a non Noetherian ring R such that every finitely
generated ideal of R is finitely presented as an R-module. (A ring is said to be coherent if
the last property holds.)

Exercise 1.3. Suppose that (A,m, k) is a Noetherian local ring. For any finite A-
module M define r(M) to be the minimum number of generators of M as an A-module.
This number equals dimkM/mM = dimkM ⊗A k by NAK.

(1) Show that r(M ⊗A N) = r(M)r(N).
(2) Let I ⊂ A be an ideal with r(I) > 1. Show that r(I2) < r(I)2.
(3) Conclude that if every ideal in A is a flat module, then A is a PID (or a field).

Exercise 1.4. Let k be a field. Show that the following pairs of k-algebras are not
isomorphic:

(1) k[x1, . . . , xn] and k[x1, . . . , xn+1] for any n ≥ 1.
(2) k[a, b, c, d, e, f ]/(ab+ cd+ ef) and k[x1, . . . , xn] for n = 5.
(3) k[a, b, c, d, e, f ]/(ab+ cd+ ef) and k[x1, . . . , xn] for n = 6.

Remark 1.5. Of course the idea of this exercise is to find a simple argument in each
case rather than applying a “big” theorem. Nonetheless it is good to be guided by general
principles.

Exercise 1.6. Algebra. (Silly and should be easy.)
(1) Give an example of a ring A and a nonsplit short exact sequence of A-modules

0→M1 →M2 →M3 → 0.

(2) Give an example of a nonsplit sequence of A-modules as above and a faithfully
flat A→ B such that

0→M1 ⊗A B →M2 ⊗A B →M3 ⊗A B → 0.

is split as a sequence of B-modules.

Exercise 1.7. Suppose that k is a field having a primitive nth root of unity ζ . This
means that ζn = 1, but ζm 6= 1 for 0 < m < n.

(1) Show that the characteristic of k is prime to n.

7187
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(2) Suppose that a ∈ k is an element of k which is not an dth power in k for any
divisor d of n for n ≥ d > 1. Show that k[x]/(xn−a) is a field. (Hint: Consider
a splitting field for xn − a and use Galois theory.)

Exercise 1.8. Let ν : k[x]\{0} → Z be a map with the following properties: ν(fg) =
ν(f)+ν(g) whenever f , g not zero, and ν(f+g) ≥ min(ν(f), ν(g)) whenever f , g, f+g
are not zero, and ν(c) = 0 for all c ∈ k∗.

(1) Show that if f , g, and f + g are nonzero and ν(f) 6= ν(g) then we have equality
ν(f + g) = min(ν(f), ν(g)).

(2) Show that if f =
∑
aix

i, f 6= 0, then ν(f) ≥ min({iν(x)}ai 6=0). When does
equality hold?

(3) Show that if ν attains a negative value then ν(f) = −n deg(f) for some n ∈ N.
(4) Suppose ν(x) ≥ 0. Show that {f | f = 0, or ν(f) > 0} is a prime ideal of k[x].
(5) Describe all possible ν.

LetA be a ring. An idempotent is an element e ∈ A such that e2 = e. The elements 1 and
0 are always idempotent. A nontrivial idempotent is an idempotent which is not equal to
zero. Two idempotents e, e′ ∈ A are called orthogonal if ee′ = 0.

Exercise 1.9. Let A be a ring. Show that A is a product of two nonzero rings if and
only if A has a nontrivial idempotent.

Exercise 1.10. Let A be a ring and let I ⊂ A be a locally nilpotent ideal. Show that
the map A → A/I induces a bijection on idempotents. (Hint: It may be easier to prove
this when I is nilpotent. Do this first. Then use “absolute Noetherian reduction” to reduce
to the nilpotent case.)

2. Colimits

Definition 2.1. A directed set is a nonempty set I endowed with a preorder≤ such
that given any pair i, j ∈ I there exists a k ∈ I such that i ≤ k and j ≤ k. A system
of rings over I is given by a ring Ai for each i ∈ I and a map of rings ϕij : Ai → Aj
whenever i ≤ j such that the compositionAi → Aj → Ak is equal toAi → Ak whenever
i ≤ j ≤ k.

One similarly defines systems of groups, modules over a fixed ring, vector spaces over a
field, etc.

Exercise 2.2. Let I be a directed set and let (Ai, ϕij) be a system of rings over I .
Show that there exists a ring A and maps ϕi : Ai → A such that ϕj ◦ ϕij = ϕi for all
i ≤ j with the following universal property: Given any ring B and maps ψi : Ai → B
such that ψj ◦ϕij = ψi for all i ≤ j , then there exists a unique ring map ψ : A→ B such
that ψi = ψ ◦ ϕi.

Definition 2.3. The ring A constructed in Exercise 2.2 is called the colimit of the
system. Notation colimAi.

Exercise 2.4. Let (I,≥) be a directed set and let (Ai, ϕij) be a system of rings over
I with colimit A. Prove that there is a bijection

Spec(A) = {(pi)i∈I | pi ⊂ Ai and pi = ϕ−1
ij (pj) ∀i ≤ j} ⊂

∏
i∈I

Spec(Ai)

The set on the right hand side of the equality is the limit of the sets Spec(Ai). Notation
lim Spec(Ai).
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Exercise 2.5. Let (I,≥) be a directed set and let (Ai, ϕij) be a system of rings over
I with colimit A. Suppose that Spec(Aj) → Spec(Ai) is surjective for all i ≤ j. Show
that Spec(A)→ Spec(Ai) is surjective for all i. (Hint: You can try to use Tychonoff, but
there is also a basically trivial direct algebraic proof based on Algebra, Lemma 17.9.)

Exercise 2.6. Let A ⊂ B be an integral ring extension. Prove that Spec(B) →
Spec(A) is surjective. Use the exercises above, the fact that this holds for a finite ring
extension (proved in the lectures), and by proving thatB = colimBi is a directed colimit
of finite extensions A ⊂ Bi.

Exercise 2.7. Let (I,≥) be a directed set. Let A be a ring and let (Ni, ϕi,i′) be a
directed system ofA-modules indexed by I . Suppose thatM is anotherA-module. Prove
that

colimi∈IM ⊗A Ni ∼= M ⊗A
(

colimi∈I Ni

)
.

Definition 2.8. A module M over R is said to be of finite presentation over R if it
is isomorphic to the cokernel of a map of finite free modules R⊕n → R⊕m.

Exercise 2.9. Prove that any module over any ring is
(1) the colimit of its finitely generated submodules, and
(2) in some way a colimit of finitely presented modules.

3. Additive and abelian categories

Exercise 3.1. Let k be a field. Let C be the category of filtered vector spaces over k,
see Homology, Definition 19.1 for the definition of a filtered object of any category.

(1) Show that this is an additive category (explain carefuly what the direct sum of
two objects is).

(2) Let f : (V, F ) → (W,F ) be a morphism of C. Show that f has a kernel and
cokernel (explain precisely what the kernel and cokernel of f are).

(3) Give an example of a map of C such that the canonical map Coim(f)→ Im(f)
is not an isomorphism.

Exercise 3.2. Let R be a Noetherian domain. Let C be the category of finitely gener-
ated torsion free R-modules.

(1) Show that this is an additive category.
(2) Let f : N → M be a morphism of C. Show that f has a kernel and cokernel

(make sure you define precisely what the kernel and cokernel of f are).
(3) Give an example of a Noetherian domainR and a map of C such that the canon-

ical map Coim(f)→ Im(f) is not an isomorphism.

Exercise 3.3. Give an example of a category which is additive and has kernels and
cokernels but which is not as in Exercises 3.1 and 3.2.

4. Tensor product

Tensor products are introduced in Algebra, Section 12. Let R be a ring. Let ModR be the
category of R-modules. We will say that a functor F : ModR →ModR

(1) is additive if F : HomR(M,N) → HomR(F (M), F (N)) is a homomorphism
of abelian groups for any R-modules M,N , see Homology, Definition 3.1.

(2) R-linear if F : HomR(M,N) → HomR(F (M), F (N)) is R-linear for any R-
modules M,N ,
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(3) right exact if for any short exact sequence 0 → M1 → M2 → M3 → 0 the
sequence F (M1)→ F (M2)→ F (M3)→ 0 is exact,

(4) left exact if for any short exact sequence 0 → M1 → M2 → M3 → 0 the
sequence 0→ F (M1)→ F (M2)→ F (M3) is exact,

(5) commutes with direct sums, if given a set I andR-modulesMi the mapsF (Mi)→
F (
⊕
Mi) induce an isomorphism

⊕
F (Mi) = F (

⊕
Mi).

Exercise 4.1. Let R be a ring. With notation as above.
(1) Give an example of a ringR and an additive functor F : ModR →ModR which

is not R-linear.
(2) Let N be an R-module. Show that the functor F (M) = M ⊗R N is R-linear,

right exact, and commutes with direct sums,
(3) Conversely, show that any functor F : ModR →ModR which isR-linear, right

exact, and commutes with direct sums is of the formF (M) = M⊗RN for some
R-module N .

(4) Show that if in (3) we drop the assumption that F commutes with direct sums,
then the conclusion no longer holds.

5. Flat ring maps

Exercise 5.1. Let S be a multiplicative subset of the ring A.
(1) For an A-module M show that S−1M = S−1A⊗AM .
(2) Show that S−1A is flat over A.

Exercise 5.2. Find an injection M1 → M2 of A-modules such that M1 ⊗ N →
M2 ⊗N is not injective in the following cases:

(1) A = k[x, y] and N = (x, y) ⊂ A. (Here and below k is a field.)
(2) A = k[x, y] and N = A/(x, y).

Exercise 5.3. Give an example of a ring A and a finite A-module M which is a flat
but not a projective A-module.

Remark 5.4. IfM is of finite presentation and flat overA, thenM is projective over
A. Thus your example will have to involve a ring A which is not Noetherian. I know of
an example where A is the ring of C∞-functions on R.

Exercise 5.5. Find a flat but not free module over Z(2).

Exercise 5.6. Flat deformations.
(1) Suppose that k is a field and k[ε] is the ring of dual numbers k[ε] = k[x]/(x2)

and ε = x̄. Show that for any k-algebraA there is a flat k[ε]-algebraB such that
A is isomorphic to B/εB.

(2) Suppose that k = Fp = Z/pZ and
A = k[x1, x2, x3, x4, x5, x6]/(xp1, x

p
2, x

p
3, x

p
4, x

p
5, x

p
6).

Show that there exists a flat Z/p2Z-algebra B such that B/pB is isomorphic to
A. (So here p plays the role of ε.)

(3) Now let p = 2 and consider the same question for k = F2 = Z/2Z and

A = k[x1, x2, x3, x4, x5, x6]/(x2
1, x

2
2, x

2
3, x

2
4, x

2
5, x

2
6, x1x2 + x3x4 + x5x6).

However, in this case show that there does not exist a flat Z/4Z-algebra B such
that B/2B is isomorphic to A. (Find the trick! The same example works in
arbitrary characteristic p > 0, except that the computation is more difficult.)
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Exercise 5.7. Let (A,m, k) be a local ring and let k′/k be a finite field extension.
Show there exists a flat, local map of local rings A→ B such that mB = mB and B/mB
is isomorphic to k′ as k-algebra. (Hint: first do the case where k ⊂ k′ is generated by a
single element.)

Remark 5.8. The same result holds for arbitrary field extensions K/k.

6. The Spectrum of a ring

Exercise 6.1. Compute Spec(Z) as a set and describe its topology.

Exercise 6.2. Let A be any ring. For f ∈ A we define D(f) := {p ⊂ A | f 6∈ p}.
Prove that the open subsets D(f) form a basis of the topology of Spec(A).

Exercise 6.3. Prove that the map I 7→ V (I) defines a natural bijection

{I ⊂ A with I =
√
I} −→ {T ⊂ Spec(A) closed}

Definition 6.4. A topological space X is called quasi-compact if for any open cov-
ering X =

⋃
i∈I Ui there is a finite subset {i1, . . . , in} ⊂ I such that X = Ui1 ∪ . . . Uin .

Exercise 6.5. Prove that Spec(A) is quasi-compact for any ring A.

Definition 6.6. A topological space X is said to verify the separation axiom T0 if
for any pair of points x, y ∈ X , x 6= y there is an open subset ofX containing one but not
the other. We say that X is Hausdorff if for any pair x, y ∈ X , x 6= y there are disjoint
open subsets U, V such that x ∈ U and y ∈ V .

Exercise 6.7. Show that Spec(A) is not Hausdorff in general. Prove that Spec(A)
is T0. Give an example of a topological space X that is not T0.

Remark 6.8. Usually the word compact is reserved for quasi-compact and Hausdorff
spaces.

Definition 6.9. A topological space X is called irreducible if X is not empty and
if X = Z1 ∪ Z2 with Z1, Z2 ⊂ X closed, then either Z1 = X or Z2 = X . A subset
T ⊂ X of a topological space is called irreducible if it is an irreducible topological space
with the topology induced from X . This definition implies T is irreducible if and only if
the closure T̄ of T in X is irreducible.

Exercise 6.10. Prove that Spec(A) is irreducible if and only if Nil(A) is a prime
ideal and that in this case it is the unique minimal prime ideal of A.

Exercise 6.11. Prove that a closed subset T ⊂ Spec(A) is irreducible if and only if
it is of the form T = V (p) for some prime ideal p ⊂ A.

Definition 6.12. A point x of an irreducible topological space X is called a generic
point of X if X is equal to the closure of the subset {x}.

Exercise 6.13. Show that in a T0 spaceX every irreducible closed subset has at most
one generic point.

Exercise 6.14. Prove that in Spec(A) every irreducible closed subset does have a
generic point. In fact show that the map p 7→ {p} is a bijection of Spec(A) with the set
of irreducible closed subsets of X .

Exercise 6.15. Give an example to show that an irreducible subset of Spec(Z) does
not necessarily have a generic point.
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Definition 6.16. A topological space X is called Noetherian if any decreasing se-
quence Z1 ⊃ Z2 ⊃ Z3 ⊃ . . . of closed subsets of X stabilizes. (It is called Artinian if any
increasing sequence of closed subsets stabilizes.)

Exercise 6.17. Show that if the ring A is Noetherian then the topological space
Spec(A) is Noetherian. Give an example to show that the converse is false. (The same
for Artinian if you like.)

Definition 6.18. A maximal irreducible subset T ⊂ X is called an irreducible com-
ponent of the space X . Such an irreducible component of X is automatically a closed
subset of X .

Exercise 6.19. Prove that any irreducible subset of X is contained in an irreducible
component of X .

Exercise 6.20. Prove that a Noetherian topological space X has only finitely many
irreducible components, say X1, . . . , Xn, and that X = X1 ∪X2 ∪ . . . ∪Xn. (Note that
anyX is always the union of its irreducible components, but that ifX = R with its usual
topology for instance then the irreducible components of X are the one point subsets.
This is not terribly interesting.)

Exercise 6.21. Show that irreducible components of Spec(A) correspond to minimal
primes of A.

Definition 6.22. A point x ∈ X is called closed if {x} = {x}. Let x, y be points of
X . We say that x is a specialization of y, or that y is a generalization of x if x ∈ {y}.

Exercise 6.23. Show that closed points of Spec(A) correspond to maximal ideals of
A.

Exercise 6.24. Show that p is a generalization of q in Spec(A) if and only if p ⊂ q.
Characterize closed points, maximal ideals, generic points and minimal prime ideals in
terms of generalization and specialization. (Here we use the terminology that a point of a
possibly reducible topological space X is called a generic point if it is a generic points of
one of the irreducible components of X .)

Exercise 6.25. Let I and J be ideals of A. What is the condition for V (I) and V (J)
to be disjoint?

Definition 6.26. A topological space X is called connected if it is nonempty and
not the union of two nonempty disjoint open subsets. A connected component of X is a
maximal connected subset. Any point of X is contained in a connected component of X
and any connected component ofX is closed inX . (But in general a connected component
need not be open in X .)

Exercise 6.27. Let A be a nonzero ring. Show that Spec(A) is disconnected iff A ∼=
B × C for certain nonzero rings B,C.

Exercise 6.28. Let T be a connected component of Spec(A). Prove that T is sta-
ble under generalization. Prove that T is an open subset of Spec(A) if A is Noetherian.
(Remark: This is wrong when A is an infinite product of copies of F2 for example. The
spectrum of this ring consists of infinitely many closed points.)

Exercise 6.29. Compute Spec(k[x]), i.e., describe the prime ideals in this ring, de-
scribe the possible specializations, and describe the topology. (Work this out when k is
algebraically closed but also when k is not.)



9. LENGTH 7193

Exercise 6.30. Compute Spec(k[x, y]), where k is algebraically closed. [Hint: use
the morphism ϕ : Spec(k[x, y]) → Spec(k[x]); if ϕ(p) = (0) then localize with respect
to S = {f ∈ k[x] | f 6= 0} and use result of lecture on localization and Spec.] (Why do
you think algebraic geometers call this affine 2-space?)

Exercise 6.31. Compute Spec(Z[y]). [Hint: as above.] (Affine 1-space over Z.)

7. Localization

Exercise 7.1. Let A be a ring. Let S ⊂ A be a multiplicative subset. Let M be
an A-module. Let N ⊂ S−1M be an S−1A-submodule. Show that there exists an A-
submodule N ′ ⊂ M such that N = S−1N ′. (This useful result applies in particular to
ideals of S−1A.)

Exercise 7.2. Let A be a ring. Let M be an A-module. Let m ∈M .
(1) Show that I = {a ∈ A | am = 0} is an ideal of A.
(2) For a prime p of A show that the image of m in Mp is zero if and only if I 6⊂ p.
(3) Show that m is zero if and only if the image of m is zero in Mp for all primes p

of A.
(4) Show that m is zero if and only if the image of m is zero in Mm for all maximal

ideals m of A.
(5) Show that M = 0 if and only if Mm is zero for all maximal ideals m.

Exercise 7.3. Find a pair (A, f) whereA is a domain with three or more pairwise dis-
tinct primes and f ∈ A is an element such that the principal localizationAf = {1, f, f2, . . .}−1A
is a field.

Exercise 7.4. Let A be a ring. Let M be a finite A-module. Let S ⊂ A be a multi-
plicative set. Assume that S−1M = 0. Show that there exists an f ∈ S such that the
principal localization Mf = {1, f, f2, . . .}−1M is zero.

Exercise 7.5. Give an example of a triple (A, I, S) where A is a ring, 0 6= I 6= A is
a proper nonzero ideal, and S ⊂ A is a multiplicative subset such that A/I ∼= S−1A as
A-algebras.

8. Nakayama’s Lemma

Exercise 8.1. Let A be a ring. Let I be an ideal of A. Let M be an A-module. Let
x1, . . . , xn ∈M . Assume that

(1) M/IM is generated by x1, . . . , xn,
(2) M is a finite A-module,
(3) I is contained in every maximal ideal of A.

Show that x1, . . . , xn generateM . (Suggested solution: Reduce to a localization at a max-
imal ideal of A using Exercise 7.2 and exactness of localization. Then reduce to the state-
ment of Nakayama’s lemma in the lectures by looking at the quotient of M by the sub-
module generated by x1, . . . , xn.)

9. Length

Definition 9.1. Let A be a ring. Let M be an A-module. The length of M as an
R-module is

lengthA(M) = sup{n | ∃ 0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M, Mi 6= Mi+1}.
In other words, the supremum of the lengths of chains of submodules.
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Exercise 9.2. Show that a module M over a ring A has length 1 if and only if it is
isomorphic to A/m for some maximal ideal m in A.

Exercise 9.3. Compute the length of the following modules over the following rings.
Briefly(!) explain your answer. (Please feel free to use additivity of the length function in
short exact sequences, see Algebra, Lemma 52.3).

(1) The length of Z/120Z over Z.
(2) The length of C[x]/(x100 + x+ 1) over C[x].
(3) The length of R[x]/(x4 + 2x2 + 1) over R[x].

Exercise 9.4. Let A = k[x, y](x,y) be the local ring of the affine plane at the origin.
Make any assumption you like about the field k. Suppose that f = x3 + x2y2 + y100

and g = y3 − x999. What is the length of A/(f, g) as an A-module? (Possible way to
proceed: think about the ideal that f and g generate in quotients of the form A/mnA =
k[x, y]/(x, y)n for varying n. Try to find n such thatA/(f, g) +mnA

∼= A/(f, g) +mn+1
A

and use NAK.)

10. Associated primes

Associated primes are discussed in Algebra, Section 63

Exercise 10.1. Compute the set of associated primes for each of the following mod-
ules.

(1) R = k[x, y] and M = R/(xy(x+ y)),
(2) R = Z[x] and M = R/(300x+ 75), and
(3) R = k[x, y, z] and M = R/(x3, x2y, xz).

Here as usual k is a field.

Exercise 10.2. Give an example of a Noetherian ringR and a prime ideal p such that
p is not the only associated prime of R/p2.

Exercise 10.3. Let R be a Noetherian ring with incomparable prime ideals p, q, i.e.,
p 6⊂ q and q 6⊂ p.

(1) Show that for N = R/(p ∩ q) we have Ass(N) = {p, q}.
(2) Show by an example that the module M = R/pq can have an associated prime

not equal to p or q.

11. Ext groups

Ext groups are defined in Algebra, Section 71.

Exercise 11.1. Compute all the Ext groups Exti(M,N) of the given modules in the
category of Z-modules (also known as the category of abelian groups).

(1) M = Z and N = Z,
(2) M = Z/4Z and N = Z/8Z,
(3) M = Q and N = Z/2Z, and
(4) M = Z/2Z and N = Q/Z.

Exercise 11.2. Let R = k[x, y] where k is a field.
(1) Show by hand that the Koszul complex

0→ R

(
y
−x

)
−−−−−→ R⊕2 (x,y)−−−→ R

f 7→f(0,0)−−−−−−→ k → 0
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is exact.
(2) Compute ExtiR(k, k) where k = R/(x, y) as an R-module.

Exercise 11.3. Give an example of a Noetherian ring R and finite modules M , N
such that ExtiR(M,N) is nonzero for all i ≥ 0.

Exercise 11.4. Give an example of a ring R and ideal I such that Ext1
R(R/I,R/I)

is not a finite R-module. (We know this cannot happen if R is Noetherian by Algebra,
Lemma 71.9.)

12. Depth

Depth is defined in Algebra, Section 72 and further studied in Dualizing Complexes, Sec-
tion 11.

Exercise 12.1. Let R be a ring, I ⊂ R an ideal, and M an R-module. Compute
depthI(M) in the following cases.

(1) R = Z, I = (30), M = Z,
(2) R = Z, I = (30), M = Z/(300),
(3) R = Z, I = (30), M = Z/(7),
(4) R = k[x, y, z]/(x2 + y2 + z2), I = (x, y, z), M = R,
(5) R = k[x, y, z, w]/(xz, xw, yz, yw), I = (x, y, z, w), M = R.

Here k is a field. In the last two cases feel free to localize at the maximal ideal I .

Exercise 12.2. Give an example of a Noetherian local ring (R,m, κ) of depth ≥ 1
and a prime ideal p such that

(1) depthm(R) ≥ 1,
(2) depthp(Rp) = 0, and
(3) dim(Rp) ≥ 1.

If we don’t ask for (3) then the exercise is too easy. Why?

Exercise 12.3. Let (R,m) be a local Noetherian domain. LetM be a finiteR-module.
(1) If M is torsion free, show that M has depth at least 1 over R.
(2) Give an example with depth equal to 1.

Exercise 12.4. For every m ≥ n ≥ 0 give an example of a Noetherian local ring R
with dim(R) = m and depth(R) = n.

Exercise 12.5. Let (R,m) be a Noetherian local ring. Let M be a finite R-module.
Show that there exists a canonical short exact sequence

0→ K →M → Q→ 0
such that the following are true

(1) depth(Q) ≥ 1,
(2) K is zero or Supp(K) = {m}, and
(3) lengthR(K) <∞.

Hint: using the Noetherian property show that there exists a maximal submoduleK as in
(2) and then show that Q = M/K satisfies (1) and K satisfies (3).

Exercise 12.6. Let (R,m) be a Noetherian local ring. Let M be a finite R-module of
depth ≥ 2. Let N ⊂M be a nonzero submodule.

(1) Show that depth(N) ≥ 1.
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(2) Show that depth(N) = 1 if and only if the quotient moduleM/N has depth(M/N) =
0.

(3) Show there exists a submodule N ′ ⊂ M with N ⊂ N ′ of finite colength, i.e.,
lengthR(N ′/N) < ∞, such that N ′ has depth ≥ 2. Hint: Apply Exercise 12.5
to M/N and choose N ′ to be the inverse image of K.

Exercise 12.7. Let (R,m) be a Noetherian local ring. Assume that R is reduced, i.e.,
R has no nonzero nilpotent elements. Assume moreover that R has two distinct minimal
primes p and q.

(1) Show that the sequence of R-modules
0→ R→ R/p⊕R/q→ R/p + q→ 0

is exact (check at all the spots). The maps are x 7→ (x mod p, x mod q) and
(y mod p, z mod q) 7→ (y − z mod p + q).

(2) Show that if depth(R) ≥ 2, then dim(R/p + q) ≥ 1.
(3) Show that if depth(R) ≥ 2, then U = Spec(R)\{m} is a connected topological

space.
This proves a very special case of Hartshorne’s connectedness theorem which says that the
punctured spectrum U of a local Noetherian ring of depth ≥ 2 is connected.

Exercise 12.8. Let (R,m) be a Noetherian local ring. Let x, y ∈ m be a regular
sequence of length 2. For any n ≥ 2 show that there do not exist a, b ∈ R with

xn−1yn−1 = axn + byn

Suggestion: First try for n = 2 to see how to argue. Remark: There is a vast generalization
of this result called the monomial conjecture.

13. Cohen-Macaulay modules and rings

Cohen-Macaulay modules are studied in Algebra, Section 103 and Cohen-Macaulay rings
are studied in Algebra, Section 104.

Exercise 13.1. In the following cases, please answer yes or no. No explanation or
proof necessary.

(1) Let p be a prime number. Is the local ring Z(p) a Cohen-Macaulay local ring?
(2) Let p be a prime number. Is the local ring Z(p) a regular local ring?
(3) Let k be a field. Is the local ring k[x](x) a Cohen-Macaulay local ring?
(4) Let k be a field. Is the local ring k[x](x) a regular local ring?
(5) Let k be a field. Is the local ring (k[x, y]/(y2−x3))(x,y) = k[x, y](x,y)/(y2−x3)

a Cohen-Macaulay local ring?
(6) Let k be a field. Is the local ring (k[x, y]/(y2, xy))(x,y) = k[x, y](x,y)/(y2, xy) a

Cohen-Macaulay local ring?

14. Singularities

Exercise 14.1. Let k be any field. Suppose thatA = k[[x, y]]/(f) andB = k[[u, v]]/(g),
where f = xy and g = uv+ δ with δ ∈ (u, v)3. Show thatA andB are isomorphic rings.

Remark 14.2. A singularity on a curve over a field k is called an ordinary double
point if the complete local ring of the curve at the point is of the form k′[[x, y]]/(f),
where (a) k′ is a finite separable extension of k, (b) the initial term of f has degree two,
i.e., it looks like q = ax2 + bxy + cy2 for some a, b, c ∈ k′ not all zero, and (c) q is a
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nondegenerate quadratic form over k′ (in char 2 this means that b is not zero). In general
there is one isomorphism class of such rings for each isomorphism class of pairs (k′, q).

Exercise 14.3. LetR be a ring. Letn ≥ 1. LetA,B ben×nmatrices with coefficients
in R such that AB = f1n×n for some nonzerodivisor f in R. Set S = R/(f). Show that

. . .→ S⊕n B−→ S⊕n A−→ S⊕n B−→ S⊕n → . . .

is exact.

15. Constructible sets

Let k be an algebraically closed field, for example the field C of complex numbers. Let
n ≥ 0. A polynomial f ∈ k[x1, . . . , xn] gives a function f : kn → k by evaluation. A
subset Z ⊂ kn is called an algebraic set if it is the common vanishing set of a collection of
polynomials.

Exercise 15.1. Prove that an algebraic set can always be written as the zero locus of
finitely many polynomials.

With notation as above a subsetE ⊂ kn is called constructible if it is a finite union of sets
of the form Z ∩ {f 6= 0} where f is a polynomial.

Exercise 15.2. Show the following
(1) the complement of a constructible set is a constructible set,
(2) a finite union of constructible sets is a constructible set,
(3) a finite intersection of constructible sets is a constructible set, and
(4) any constructible set E can be written as a finite disjoint union E =

∐
Ei with

eachEi of the formZ∩{f 6= 0}whereZ is an algebraic set and f is a polynomial.

Exercise 15.3. Let R be a ring. Let f = adx
d + ad−1x

d−1 + . . . + a0 ∈ R[x]. (As
usual this notation means a0, . . . , ad ∈ R.) Let g ∈ R[x]. Prove that we can find N ≥ 0
and r, q ∈ R[x] such that

aNd g = qf + r

with deg(r) < d, i.e., for some ci ∈ R we have r = c0 + c1x+ . . .+ cd−1x
d−1.

16. Hilbert Nullstellensatz

Exercise 16.1. A silly argument using the complex numbers! Let C be the complex
number field. Let V be a vector space over C. The spectrum of a linear operator T : V →
V is the set of complex numbers λ ∈ C such that the operator T −λidV is not invertible.

(1) Show that C(X) has uncountable dimension over C.
(2) Show that any linear operator on V has a nonempty spectrum if the dimension

of V is finite or countable.
(3) Show that if a finitely generated C-algebra R is a field, then the map C→ R is

an isomorphism.
(4) Show that any maximal idealm of C[x1, . . . , xn] is of the form (x1−α1, . . . , xn−

αn) for some αi ∈ C.

Remark 16.2. Let k be a field. Then for every integer n ∈ N and every maximal ideal
m ⊂ k[x1, . . . , xn] the quotient k[x1, . . . , xn]/m is a finite field extension of k. This will
be shown later in the course. Of course (please check this) it implies a similar statement
for maximal ideals of finitely generated k-algebras. The exercise above proves it in the
case k = C.
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Exercise 16.3. Let k be a field. Please use Remark 16.2.
(1) Let R be a k-algebra. Suppose that dimk R < ∞ and that R is a domain. Show

that R is a field.
(2) Suppose thatR is a finitely generated k-algebra, and f ∈ R not nilpotent. Show

that there exists a maximal ideal m ⊂ R with f 6∈ m.
(3) Show by an example that this statement fails when R is not of finite type over a

field.
(4) Show that any radical ideal I ⊂ C[x1, . . . , xn] is the intersection of the maximal

ideals containing it.

Remark 16.4. This is the Hilbert Nullstellensatz. Namely it says that the closed
subsets of Spec(k[x1, . . . , xn]) (which correspond to radical ideals by a previous exercise)
are determined by the closed points contained in them.

Exercise 16.5. Let A = C[x11, x12, x21, x22, y11, y12, y21, y22]. Let I be the ideal of
A generated by the entries of the matrix XY , with

X =
(
x11 x12
x21 x22

)
and Y =

(
y11 y12
y21 y22

)
.

Find the irreducible components of the closed subset V (I) of Spec(A). (I mean describe
them and give equations for each of them. You do not have to prove that the equations
you write down define prime ideals.) Hints:

(1) You may use the Hilbert Nullstellensatz, and it suffices to find irreducible locally
closed subsets which cover the set of closed points of V (I).

(2) There are two easy components.
(3) An image of an irreducible set under a continuous map is irreducible.

17. Dimension

Exercise 17.1. Construct a ringAwith finitely many prime ideals having dimension
> 1.

Exercise 17.2. Let f ∈ C[x, y] be a nonconstant polynomial. Show that C[x, y]/(f)
has dimension 1.

Exercise 17.3. Let (R,m) be a Noetherian local ring. Letn ≥ 1. Letm′ = (m, x1, . . . , xn)
in the polynomial ring R[x1, . . . , xn]. Show that

dim(R[x1, . . . , xn]m′) = dim(R) + n.

18. Catenary rings

Definition 18.1. A Noetherian ringA is said to be catenary if for any triple of prime
ideals p1 ⊂ p2 ⊂ p3 we have

ht(p3/p1) = ht(p3/p2) + ht(p2/p1).
Here ht(p/q) means the height of p/q in the ring A/q. In a formula

ht(p/q) = dim(Ap/qAp) = dim((A/q)p) = dim((A/q)p/q)
A topological space X is catenary, if given T ⊂ T ′ ⊂ X with T and T ′ closed and
irreducible, then there exists a maximal chain of irreducible closed subsets

T = T0 ⊂ T1 ⊂ . . . ⊂ Tn = T ′

and every such chain has the same (finite) length.
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Exercise 18.2. Show that the notion of catenary defined in Algebra, Definition 105.1
agrees with the notion of Definition 18.1 for Noetherian rings.

Exercise 18.3. Show that a Noetherian local domain of dimension 2 is catenary.

Exercise 18.4. Let k be a field. Show that a finite type k-algebra is catenary.

Exercise 18.5. Give an example of a finite, sober, catenary topological spaceX which
does not have a dimension function δ : X → Z. Here δ : X → Z is a dimension function
if for x, y ∈ X we have

(1) x y and x 6= y implies δ(x) > δ(y),
(2) x  y and δ(x) ≥ δ(y) + 2 implies there exists a z ∈ X with x  z  y and

δ(x) > δ(z) > δ(y).
Describe your space clearly and succintly explain why there cannot be a dimension func-
tion.

19. Fraction fields

Exercise 19.1. Consider the domain

Q[r, s, t]/(s2 − (r − 1)(r − 2)(r − 3), t2 − (r + 1)(r + 2)(r + 3)).
Find a domain of the form Q[x, y]/(f) with isomorphic field of fractions.

20. Transcendence degree

Exercise 20.1. Let K ′/K/k be field extensions with K ′ algebraic over K. Prove
that trdegk(K) = trdegk(K ′). (Hint: Show that if x1, . . . , xd ∈ K are algebraically
independent over k and d < trdegk(K ′) then k(x1, . . . , xd) ⊂ K cannot be algebraic.)

Exercise 20.2. Let k be a field. LetK/k be a finitely generated extension of transcen-
dence degree d. If V,W ⊂ K are finite dimensional k-subvector spaces denote

VW = {f ∈ K | f =
∑

i=1,...,n
viwi for some n and vi ∈ V,wi ∈W}

This is a finite dimensional k-subvector space. Set V 2 = V V , V 3 = V V 2, etc.
(1) Show you can find V ⊂ K and ε > 0 such that dimV n ≥ εnd for all n ≥ 1.
(2) Conversely, show that for every finite dimensional V ⊂ K there exists a C > 0

such that dimV n ≤ Cnd for all n ≥ 1. (One possible way to proceed: First do
this for subvector spaces of k[x1, . . . , xd]. Then do this for subvector spaces of
k(x1, . . . , xd). Finally, if K/k(x1, . . . , xd) is a finite extension choose a basis of
K over k(x1, . . . , xd) and argue using expansion in terms of this basis.)

(3) Conclude that you can redefine the transcendence degree in terms of growth of
powers of finite dimensional subvector spaces of K.

This is related to Gelfand-Kirillov dimension of (noncommutative) algebras over k.

21. Dimension of fibres

Some questions related to the dimension formula, see Algebra, Section 113.

Exercise 21.1. Let k be your favorite algebraically closed field. Below k[x] and k[x, y]
denote the polynomial rings.

(1) For every integer n ≥ 0 find a finite type extension k[x] ⊂ A of domains such
that the spectrum of A/xA has exactly n irreducible components.
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(2) Make an example of a finite type extension k[x] ⊂ A of domains such that the
spectrum of A/(x− α)A is nonempty and reducible for every α ∈ k.

(3) Make an example of a finite type extension k[x, y] ⊂ A of domains such that
the spectrum of A/(x− α, y − β)A is irreducible1 for all (α, β) ∈ k2 \ {(0, 0)}
and the spectrum of A/(x, y)A is nonempty and reducible.

Exercise 21.2. Let k be your favorite algebraically closed field. Let n ≥ 1. Let
k[x1, . . . , xn] be the polynomial ring. Set m = (x1, . . . , xn). Let k[x1, . . . , xn] ⊂ A
be a finite type extension of domains. Set d = dim(A).

(1) Show that d− 1 ≥ dim(A/mA) ≥ d− n if A/mA 6= 0.
(2) Show by example that every value can occur.
(3) Show by example that Spec(A/mA) can have irreducible components of differ-

ent dimensions.

22. Finite locally free modules

Definition 22.1. Let A be a ring. Recall that a finite locally free A-module M is a
module such that for every p ∈ Spec(A) there exists an f ∈ A, f 6∈ p such that Mf is
a finite free Af -module. We say M is an invertible module if M is finite locally free of
rank 1, i.e., for every p ∈ Spec(A) there exists an f ∈ A, f 6∈ p such that Mf

∼= Af as an
Af -module.

Exercise 22.2. Prove that the tensor product of finite locally free modules is finite
locally free. Prove that the tensor product of two invertible modules is invertible.

Definition 22.3. Let A be a ring. The class group of A, sometimes called the Picard
group ofA is the set Pic(A) of isomorphism classes of invertibleA-modules endowed with
a group operation defined by tensor product (see Exercise 22.2).

Note that the class group ofA is trivial exactly when every invertible module is isomorphic
to a free module of rank 1.

Exercise 22.4. Show that the class groups of the following rings are trivial
(1) a polynomial ring A = k[x] where k is a field,
(2) the integers A = Z,
(3) a polynomial ring A = k[x, y] where k is a field, and
(4) the quotient k[x, y]/(xy) where k is a field.

Exercise 22.5. Show that the class group of the ringA = k[x, y]/(y2−f(x)) where k
is a field of characteristic not 2 and where f(x) = (x− t1) . . . (x− tn) with t1, . . . , tn ∈ k
distinct and n ≥ 3 an odd integer is not trivial. (Hint: Show that the ideal (y, x − t1)
defines a nontrivial element of Pic(A).)

Exercise 22.6. Let A be a ring.
(1) Suppose that M is a finite locally free A-module, and suppose that ϕ : M →M

is an endomorphism. Define/construct the trace and determinant ofϕ and prove
that your construction is “functorial in the triple (A,M,ϕ)”.

(2) Show that if M,N are finite locally free A-modules, and if ϕ : M → N and
ψ : N →M then Trace(ϕ ◦ ψ) = Trace(ψ ◦ ϕ) and det(ϕ ◦ ψ) = det(ψ ◦ ϕ).

(3) In caseM is finite locally free show that Trace defines anA-linear map EndA(M)→
A and det defines a multiplicative map EndA(M)→ A.

1Recall that irreducible implies nonempty.
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Exercise 22.7. Now suppose that B is an A-algebra which is finite locally free as an
A-module, in other words B is a finite locally free A-algebra.

(1) Define TraceB/A and NormB/A using Trace and det from Exercise 22.6.
(2) Let b ∈ B and let π : Spec(B) → Spec(A) be the induced morphism. Show

that π(V (b)) = V (NormB/A(b)). (Recall that V (f) = {p | f ∈ p}.)
(3) (Base change.) Suppose that i : A → A′ is a ring map. Set B′ = B ⊗A A′.

Indicate why i(NormB/A(b)) equals NormB′/A′(b⊗ 1).
(4) Compute NormB/A(b) when B = A×A×A× . . .×A and b = (a1, . . . , an).
(5) Compute the norm of y − y3 under the finite flat map Q[x] → Q[y], x → yn.

(Hint: use the “base change” A = Q[x] ⊂ A′ = Q(ζn)(x1/n).)

23. Glueing

Exercise 23.1. Suppose that A is a ring and M is an A-module. Let fi, i ∈ I be a
collection of elements of A such that

Spec(A) =
⋃
D(fi).

(1) Show that if Mfi is a finite Afi -module, then M is a finite A-module.
(2) Show that if Mfi is a flat Afi -module, then M is a flat A-module. (This is kind

of silly if you think about it right.)

Remark 23.2. In algebraic geometric language this means that the property of “being
finitely generated” or “being flat” is local for the Zariski topology (in a suitable sense). You
can also show this for the property “being of finite presentation”.

Exercise 23.3. Suppose that A → B is a ring map. Let fi ∈ A, i ∈ I and gj ∈ B,
j ∈ J be collections of elements such that

Spec(A) =
⋃
D(fi) and Spec(B) =

⋃
D(gj).

Show that if Afi → Bfigj is of finite type for all i, j then A→ B is of finite type.

24. Going up and going down

Definition 24.1. Let φ : A → B be a homomorphism of rings. We say that the
going-up theorem holds for φ if the following condition is satisfied:

(GU) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ∈ Spec(B) lying over
p, there exists P ′ ∈ Spec(B) lying over p′ such that P ⊂ P ′.

Similarly, we say that the going-down theorem holds for φ if the following condition is
satisfied:

(GD) for any p, p′ ∈ Spec(A) such that p ⊂ p′, and for any P ′ ∈ Spec(B) lying over
p′, there exists P ∈ Spec(B) lying over p such that P ⊂ P ′.

Exercise 24.2. In each of the following cases determine whether (GU), (GD) holds,
and explain why. (Use any Prop/Thm/Lemma you can find, but check the hypotheses in
each case.)

(1) k is a field, A = k, B = k[x].
(2) k is a field, A = k[x], B = k[x, y].
(3) A = Z, B = Z[1/11].
(4) k is an algebraically closed field, A = k[x, y], B = k[x, y, z]/(x2 − y, z2 − x).
(5) A = Z, B = Z[i, 1/(2 + i)].
(6) A = Z, B = Z[i, 1/(14 + 7i)].
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(7) k is an algebraically closed field, A = k[x], B = k[x, y, 1/(xy − 1)]/(y2 − y).

Exercise 24.3. Let A be a ring. Let B = A[x] be the polynomial algebra in one
variable over A. Let f = a0 + a1x + . . . + arx

r ∈ B = A[x]. Prove carefully that the
image of D(f) in Spec(A) is equal to D(a0) ∪ . . . ∪D(ar).

Exercise 24.4. Let k be an algebraically closed field. Compute the image in Spec(k[x, y])
of the following maps:

(1) Spec(k[x, yx−1]) → Spec(k[x, y]), where k[x, y] ⊂ k[x, yx−1] ⊂ k[x, y, x−1].
(Hint: To avoid confusion, give the element yx−1 another name.)

(2) Spec(k[x, y, a, b]/(ax− by − 1))→ Spec(k[x, y]).
(3) Spec(k[t, 1/(t− 1)])→ Spec(k[x, y]), induced by x 7→ t2, and y 7→ t3.
(4) k = C (complex numbers), Spec(k[s, t]/(s3 + t3 − 1))→ Spec(k[x, y]), where

x 7→ s2, y 7→ t2.

Remark 24.5. Finding the image as above usually is done by using elimination the-
ory.

25. Fitting ideals

Exercise 25.1. LetR be a ring and letM be a finiteR-module. Choose a presentation⊕
j∈J

R −→ R⊕n −→M −→ 0.

of M . Note that the map R⊕n → M is given by a sequence of elements x1, . . . , xn of
M . The elements xi are generators of M . The map

⊕
j∈J R→ R⊕n is given by a n× J

matrix A with coefficients in R. In other words, A = (aij)i=1,...,n,j∈J . The columns
(a1j , . . . , anj), j ∈ J of A are said to be the relations. Any vector (ri) ∈ R⊕n such that∑
rixi = 0 is a linear combination of the columns of A. Of course any finite R-module

has a lot of different presentations.
(1) Show that the ideal generated by the (n− k)× (n− k) minors of A is indepen-

dent of the choice of the presentation. This ideal is the kth Fitting ideal of M .
Notation Fitk(M).

(2) Show that Fit0(M) ⊂ Fit1(M) ⊂ Fit2(M) ⊂ . . .. (Hint: Use that a determi-
nant can be computed by expanding along a column.)

(3) Show that the following are equivalent:
(a) Fitr−1(M) = (0) and Fitr(M) = R, and
(b) M is locally free of rank r.

26. Hilbert functions

Definition 26.1. A numerical polynomial is a polynomial f(x) ∈ Q[x] such that
f(n) ∈ Z for every integer n.

Definition 26.2. A graded module M over a ring A is an A-module M endowed
with a direct sum decomposition

⊕
n∈Z Mn into A-submodules. We will say that M is

locally finite if all of the Mn are finite A-modules. Suppose that A is a Noetherian ring
and that ϕ is a Euler-Poincaré function on finite A-modules. This means that for every
finitely generated A-module M we are given an integer ϕ(M) ∈ Z and for every short
exact sequence

0 −→M ′ −→M −→M ′′ −→ 0
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we haveϕ(M) = ϕ(M ′)+ϕ(M ′′). The Hilbert function of a locally finite graded module
M (with respect to ϕ) is the function χϕ(M,n) = ϕ(Mn). We say that M has a Hilbert
polynomial if there is some numerical polynomial Pϕ such that χϕ(M,n) = Pϕ(n) for
all sufficiently large integers n.

Definition 26.3. A gradedA-algebra is a gradedA-moduleB =
⊕

n≥0 Bn together
with an A-bilinear map

B ×B −→ B, (b, b′) 7−→ bb′

that turns B into an A-algebra so that Bn · Bm ⊂ Bn+m. Finally, a graded module M
over a gradedA-algebraB is given by a gradedA-moduleM together with a (compatible)
B-module structure such thatBn ·Md ⊂Mn+d. Now you can define homomorphisms of
graded modules/rings, graded submodules, graded ideals, exact sequences of graded mod-
ules, etc, etc.

Exercise 26.4. Let A = k a field. What are all possible Euler-Poincaré functions on
finite A-modules in this case?

Exercise 26.5. Let A = Z. What are all possible Euler-Poincaré functions on finite
A-modules in this case?

Exercise 26.6. LetA = k[x, y]/(xy) with k algebraically closed. What are all possi-
ble Euler-Poincaré functions on finite A-modules in this case?

Exercise 26.7. Suppose thatA is Noetherian. Show that the kernel of a map of locally
finite graded A-modules is locally finite.

Exercise 26.8. Let k be a field and let A = k and B = k[x, y] with grading deter-
mined by deg(x) = 2 and deg(y) = 3. Let ϕ(M) = dimk(M). Compute the Hilbert
function of B as a graded k-module. Is there a Hilbert polynomial in this case?

Exercise 26.9. Let k be a field and letA = k andB = k[x, y]/(x2, xy) with grading
determined by deg(x) = 2 and deg(y) = 3. Letϕ(M) = dimk(M). Compute the Hilbert
function of B as a graded k-module. Is there a Hilbert polynomial in this case?

Exercise 26.10. Let k be a field and let A = k. Let ϕ(M) = dimk(M). Fix d ∈ N.
Consider the graded A-algebra B = k[x, y, z]/(xd + yd + zd), where x, y, z each have
degree 1. Compute the Hilbert function of B. Is there a Hilbert polynomial in this case?

27. Proj of a ring

Definition 27.1. Let R be a graded ring. A homogeneous ideal is simply an ideal
I ⊂ R which is also a graded submodule of R. Equivalently, it is an ideal generated by
homogeneous elements. Equivalently, if f ∈ I and

f = f0 + f1 + . . .+ fn

is the decomposition of f into homogeneous pieces in R then fi ∈ I for each i.

Definition 27.2. We define the homogeneous spectrum Proj(R) of the graded ring
R to be the set of homogeneous, prime ideals p ofR such thatR+ 6⊂ p. Note that Proj(R)
is a subset of Spec(R) and hence has a natural induced topology.

Definition 27.3. Let R = ⊕d≥0Rd be a graded ring, let f ∈ Rd and assume that
d ≥ 1. We define R(f) to be the subring of Rf consisting of elements of the form r/fn

with r homogeneous and deg(r) = nd. Furthermore, we define
D+(f) = {p ∈ Proj(R)|f 6∈ p}.
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Finally, for a homogeneous ideal I ⊂ R we define V+(I) = V (I) ∩ Proj(R).
Exercise 27.4. On the topology on Proj(R). With definitions and notation as above

prove the following statements.
(1) Show that D+(f) is open in Proj(R).
(2) Show that D+(ff ′) = D+(f) ∩D+(f ′).
(3) Let g = g0 + . . .+gm be an element ofRwith gi ∈ Ri. ExpressD(g)∩Proj(R)

in terms of D+(gi), i ≥ 1 and D(g0) ∩ Proj(R). No proof necessary.
(4) Let g ∈ R0 be a homogeneous element of degree 0. Express D(g) ∩ Proj(R)

in terms of D+(fα) for a suitable family fα ∈ R of homogeneous elements of
positive degree.

(5) Show that the collection {D+(f)} of opens forms a basis for the topology of
Proj(R).

(6) Show that there is a canonical bijection D+(f) → Spec(R(f)). (Hint: Imitate
the proof for Spec but at some point thrown in the radical of an ideal.)

(7) Show that the map from (6) is a homeomorphism.
(8) Give an example of an R such that Proj(R) is not quasi-compact. No proof

necessary.
(9) Show that any closed subset T ⊂ Proj(R) is of the form V+(I) for some homo-

geneous ideal I ⊂ R.
Remark 27.5. There is a continuous map Proj(R) −→ Spec(R0).
Exercise 27.6. IfR = A[X] with deg(X) = 1, show that the natural map Proj(R)→

Spec(A) is a bijection and in fact a homeomorphism.
Exercise 27.7. Blowing up: part I. In this exerciseR = BlI(A) = A⊕ I ⊕ I2⊕ . . ..

Consider the natural map b : Proj(R)→ Spec(A). Set U = Spec(A)− V (I). Show that
b : b−1(U) −→ U

is a homeomorphism. Thus we may think of U as an open subset of Proj(R). Let Z ⊂
Spec(A) be an irreducible closed subscheme with generic point ξ ∈ Z. Assume that ξ 6∈
V (I), in other words Z 6⊂ V (I), in other words ξ ∈ U , in other words Z ∩ U 6= ∅. We
define the strict transform Z ′ of Z to be the closure of the unique point ξ′ lying above
ξ. Another way to say this is that Z ′ is the closure in Proj(R) of the locally closed subset
Z ∩ U ⊂ U ⊂ Proj(R).

Exercise 27.8. Blowing up: Part II. Let A = k[x, y] where k is a field, and let I =
(x, y). Let R be the blowup algebra for A and I .

(1) Show that the strict transforms of Z1 = V ({x}) and Z2 = V ({y}) are disjoint.
(2) Show that the strict transforms of Z1 = V ({x}) and Z2 = V ({x− y2}) are not

disjoint.
(3) Find an ideal J ⊂ A such that V (J) = V (I) and such that the strict transforms

of Z1 = V ({x}) and Z2 = V ({x− y2}) in the blowup along J are disjoint.
Exercise 27.9. Let R be a graded ring.

(1) Show that Proj(R) is empty if Rn = (0) for all n >> 0.
(2) Show that Proj(R) is an irreducible topological space ifR is a domain andR+ is

not zero. (Recall that the empty topological space is not irreducible.)
Exercise 27.10. Blowing up: Part III. Consider A, I and U , Z as in the definition

of strict transform. Let Z = V (p) for some prime ideal p. Let Ā = A/p and let Ī be the
image of I in Ā.
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(1) Show that there exists a surjective ring map R := BlI(A)→ R̄ := BlĪ(Ā).
(2) Show that the ring map above induces a bijective map from Proj(R̄) onto the

strict transform Z ′ of Z. (This is not so easy. Hint: Use 5(b) above.)
(3) Conclude that the strict transform Z ′ = V+(P ) where P ⊂ R is the homoge-

neous ideal defined by Pd = Id ∩ p.
(4) Suppose thatZ1 = V (p) andZ2 = V (q) are irreducible closed subsets defined by

prime ideals such that Z1 6⊂ Z2, and Z2 6⊂ Z1. Show that blowing up the ideal
I = p + q separates the strict transforms of Z1 and Z2, i.e., Z ′

1 ∩ Z ′
2 = ∅. (Hint:

Consider the homogeneous idealP andQ from part (c) and consider V (P+Q).)

28. Cohen-Macaulay rings of dimension 1

Definition 28.1. A Noetherian local ringA is said to be Cohen-Macaulay of dimen-
sion d if it has dimension d and there exists a system of parameters x1, . . . , xd for A such
that xi is a nonzerodivisor in A/(x1, . . . , xi−1) for i = 1, . . . , d.

Exercise 28.2. Cohen-Macaulay rings of dimension 1. Part I: Theory.
(1) Let (A,m) be a local Noetherian with dimA = 1. Show that if x ∈ m is not a

zerodivisor then
(a) dimA/xA = 0, in other words A/xA is Artinian, in other words {x} is a

system of parameters for A.
(b) A is has no embedded prime.

(2) Conversely, let (A,m) be a local Noetherian ring of dimension 1. Show that if
A has no embedded prime then there exists a nonzerodivisor in m.

Exercise 28.3. Cohen-Macaulay rings of dimension 1. Part II: Examples.
(1) Let A be the local ring at (x, y) of k[x, y]/(x2, xy).

(a) Show that A has dimension 1.
(b) Prove that every element of m ⊂ A is a zerodivisor.
(c) Find z ∈ m such that dimA/zA = 0 (no proof required).

(2) Let A be the local ring at (x, y) of k[x, y]/(x2). Find a nonzerodivisor in m (no
proof required).

Exercise 28.4. Local rings of embedding dimension 1. Suppose that (A,m, k) is a
Noetherian local ring of embedding dimension 1, i.e.,

dimk m/m
2 = 1.

Show that the function f(n) = dimk m
n/mn+1 is either constant with value 1, or its

values are
1, 1, . . . , 1, 0, 0, 0, 0, 0, . . .

Exercise 28.5. Regular local rings of dimension 1. Suppose that (A,m, k) is a regular
Noetherian local ring of dimension 1. Recall that this means that A has dimension 1 and
embedding dimension 1, i.e.,

dimk m/m
2 = 1.

Let x ∈ m be any element whose class in m/m2 is not zero.
(1) Show that for every element y of m there exists an integer n such that y can be

written as y = uxn with u ∈ A∗ a unit.
(2) Show that x is a nonzerodivisor in A.
(3) Conclude that A is a domain.
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Exercise 28.6. Let (A,m, k) be a Noetherian local ring with associated gradedGrm(A).
(1) Suppose that x ∈ md maps to a nonzerodivisor x̄ ∈ md/md+1 in degree d of

Grm(A). Show that x is a nonzerodivisor.
(2) Suppose the depth of A is at least 1. Namely, suppose that there exists a nonze-

rodivisor y ∈ m. In this case we can do better: assume just that x ∈ md maps to
the element x̄ ∈ md/md+1 in degree d of Grm(A) which is a nonzerodivisor on
sufficiently high degrees: ∃N such that for all n ≥ N the map of multiplication
by x̄

mn/mn+1 −→ mn+d/mn+d+1

is injective. Then show that x is a nonzerodivisor.

Exercise 28.7. Suppose that (A,m, k) is a Noetherian local ring of dimension 1. As-
sume also that the embedding dimension of A is 2, i.e., assume that

dimk m/m
2 = 2.

Notation: f(n) = dimk m
n/mn+1. Pick generators x, y ∈ m and write Grm(A) =

k[x̄, ȳ]/I for some homogeneous ideal I .
(1) Show that there exists a homogeneous element F ∈ k[x̄, ȳ] such that I ⊂ (F )

with equality in all sufficiently high degrees.
(2) Show that f(n) ≤ n+ 1.
(3) Show that if f(n) < n+ 1 then n ≥ deg(F ).
(4) Show that if f(n) < n+ 1, then f(n+ 1) ≤ f(n).
(5) Show that f(n) = deg(F ) for all n >> 0.

Exercise 28.8. Cohen-Macaulay rings of dimension 1 and embedding dimension 2.
Suppose that (A,m, k) is a Noetherian local ring which is Cohen-Macaulay of dimension
1. Assume also that the embedding dimension of A is 2, i.e., assume that

dimk m/m
2 = 2.

Notations: f , F , x, y ∈ m, I as in Ex. 6 above. Please use any results from the problems
above.

(1) Suppose that z ∈ m is an element whose class inm/m2 is a linear formαx̄+βȳ ∈
k[x̄, ȳ] which is coprime with f .
(a) Show that z is a nonzerodivisor on A.
(b) Let d = deg(F ). Show that mn = zn+1−dmd−1 for all sufficiently large

n. (Hint: First show zn+1−dmd−1 → mn/mn+1 is surjective by what you
know about Grm(A). Then use NAK.)

(2) What condition on k guarantees the existence of such a z? (No proof required;
it’s too easy.)
Now we are going to assume there exists a z as above. This turns out to be a
harmless assumption (in the sense that you can reduce to the situation where it
holds in order to obtain the results in parts (d) and (e) below).

(3) Now show that m` = z`−d+1md−1 for all ` ≥ d.
(4) Conclude that I = (F ).
(5) Conclude that the function f has values

2, 3, 4, . . . , d− 1, d, d, d, d, d, d, d, . . .

Remark 28.9. This suggests that a local Noetherian Cohen-Macaulay ring of dimen-
sion 1 and embedding dimension 2 is of the form B/FB, where B is a 2-dimensional
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regular local ring. This is more or less true (under suitable “niceness” properties of the
ring).

29. Infinitely many primes

A section with a collection of strange questions on rings where infinitely many primes are
not invertible.

Exercise 29.1. Give an example of a finite type Z-algebra R with the following two
properties:

(1) There is no ring map R→ Q.
(2) For every prime p there exists a maximal ideal m ⊂ R such that R/m ∼= Fp.

Exercise 29.2. For f ∈ Z[x, u] we define fp(x) = f(x, xp) mod p ∈ Fp[x]. Give
an example of an f ∈ Z[x, u] such that the following two properties hold:

(1) There exist infinitely many p such that fp does not have a zero in Fp.
(2) For all p >> 0 the polynomial fp either has a linear or a quadratic factor.

Exercise 29.3. For f ∈ Z[x, y, u, v] we define fp(x, y) = f(x, y, xp, yp) mod p ∈
Fp[x, y]. Give an “interesting” example of an f such that fp is reducible for all p >> 0.
For example, f = xv − yu with fp = xyp − xpy = xy(xp−1 − yp−1) is “uninteresting”;
any f depending only on x, u is “uninteresting”, etc.

Remark 29.4. Let h ∈ Z[y] be a monic polynomial of degree d. Then:
(1) The map A = Z[x]→ B = Z[y], x 7→ h is finite locally free of rank d.
(2) For all primes p the map Ap = Fp[x]→ Bp = Fp[y], y 7→ h(y) mod p is finite

locally free of rank d.

Exercise 29.5. Let h,A,B,Ap, Bp be as in the remark. For f ∈ Z[x, u] we define
fp(x) = f(x, xp) mod p ∈ Fp[x]. For g ∈ Z[y, v] we define gp(y) = g(y, yp) mod p ∈
Fp[y].

(1) Give an example of a h and g such that there does not exist a f with the property
fp = NormBp/Ap(gp).

(2) Show that for any choice of h and g as above there exists a nonzero f such that
for all p we have

NormBp/Ap(gp) divides fp.

If you want you can restrict to the case h = yn, even with n = 2, but it is true
in general.

(3) Discuss the relevance of this to Exercises 6 and 7 of the previous set.

Exercise 29.6. Unsolved problems. They may be really hard or they may be easy. I
don’t know.

(1) Is there any f ∈ Z[x, u] such that fp is irreducible for an infinite number of
p? (Hint: Yes, this happens for f(x, u) = u − x − 1 and also for f(x, u) =
u2 − x2 + 1.)

(2) Let f ∈ Z[x, u] nonzero, and suppose degx(fp) = dp + d′ for all large p. (In
other words degu(f) = d and the coefficient c of ud in f has degx(c) = d′.)
Suppose we can write d = d1 + d2 and d′ = d′

1 + d′
2 with d1, d2 > 0 and

d′
1, d

′
2 ≥ 0 such that for all sufficiently large p there exists a factorization

fp = f1,pf2,p
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with degx(f1,p) = d1p+d′
1. Is it true that f comes about via a norm construction

as in Exercise 4? (More precisely, are there a h and g such thatNormBp/Ap(gp)
divides fp for all p >> 0.)

(3) Analogous question to the one in (b) but now with f ∈ Z[x1, x2, u1, u2] irre-
ducible and just assuming that fp(x1, x2) = f(x1, x2, x

p
1, x

p
2) mod p factors for

all p >> 0.

30. Filtered derived category

In order to do the exercises in this section, please read the material in Homology, Section
19. We will sayA is a filtered object ofA, to mean thatA comes endowed with a filtration
F which we omit from the notation.

Exercise 30.1. Let A be an abelian category. Let I be a filtered object of A. Assume
that the filtration on I is finite and that each grp(I) is an injective object of A. Show
that there exists an isomorphism I ∼=

⊕
grp(I) with filtration F p(I) corresponding to⊕

p′≥p grp(I).

Exercise 30.2. Let A be an abelian category. Let I be a filtered object of A. Assume
that the filtration on I is finite. Show the following are equivalent:

(1) For any solid diagram
A

α
//

��

B

��
I

of filtered objects with (i) the filtrations on A and B are finite, and (ii) gr(α)
injective the dotted arrow exists making the diagram commute.

(2) Each grpI is injective.

Note that given a morphism α : A → B of filtered objects with finite filtrations to say
that gr(α) injective is the same thing as saying that α is a strict monomorphism in the
category Fil(A). Namely, being a monomorphism means Ker(α) = 0 and strict means
that this also implies Ker(gr(α)) = 0. See Homology, Lemma 19.13. (We only use the
term “injective” for a morphism in an abelian category, although it makes sense in any
additive category having kernels.) The exercises above justifies the following definition.

Definition 30.3. LetA be an abelian category. Let I be a filtered object ofA. Assume
the filtration on I is finite. We say I is filtered injective if each grp(I) is an injective object
ofA.

We make the following definition to avoid having to keep saying “with a finite filtration”
everywhere.

Definition 30.4. Let A be an abelian category. We denote Filf (A) the full subcat-
egory of Fil(A) whose objects consist of those A ∈ Ob(Fil(A)) whose filtration is finite.

Exercise 30.5. LetA be an abelian category. AssumeA has enough injectives. LetA
be an object of Filf (A). Show that there exists a strict monomorphism α : A → I of A
into a filtered injective object I of Filf (A).

Definition 30.6. LetA be an abelian category. Let α : K• → L• be a morphism of
complexes of Fil(A). We say that α is a filtered quasi-isomorphism if for each p ∈ Z the
morphism grp(K•)→ grp(L•) is a quasi-isomorphism.
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Definition 30.7. LetA be an abelian category. LetK• be a complex of Filf (A). We
say that K• is filtered acyclic if for each p ∈ Z the complex grp(K•) is acyclic.

Exercise 30.8. Let A be an abelian category. Let α : K• → L• be a morphism of
bounded below complexes of Filf (A). (Note the superscript f .) Show that the following
are equivalent:

(1) α is a filtered quasi-isomorphism,
(2) for each p ∈ Z the map α : F pK• → F pL• is a quasi-isomorphism,
(3) for each p ∈ Z the map α : K•/F pK• → L•/F pL• is a quasi-isomorphism,

and
(4) the cone of α (see Derived Categories, Definition 9.1) is a filtered acyclic com-

plex.
Moreover, show that if α is a filtered quasi-isomorphism then α is also a usual quasi-
isomorphism.

Exercise 30.9. Let A be an abelian category. Assume A has enough injectives. Let
A be an object of Filf (A). Show there exists a complex I• of Filf (A), and a morphism
A[0]→ I• such that

(1) each Ip is filtered injective,
(2) Ip = 0 for p < 0, and
(3) A[0]→ I• is a filtered quasi-isomorphism.

Exercise 30.10. Let A be an abelian category. Assume A has enough injectives. Let
K• be a bounded below complex of objects of Filf (A). Show there exists a filtered quasi-
isomorphism α : K• → I• with I• a complex of Filf (A) having filtered injective terms
In, and bounded below. In fact, we may choose α such that each αn is a strict monomor-
phism.

Exercise 30.11. LetA be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

β}}
I•

of complexes of Filf (A). Assume K•, L• and I• are bounded below and assume each In
is a filtered injective object. Also assume that α is a filtered quasi-isomorphism.

(1) There exists a map of complexes β making the diagram commute up to homo-
topy.

(2) If α is a strict monomorphism in every degree then we can find a β which makes
the diagram commute.

Exercise 30.12. Let A be an abelian category. Let K•, K• be complexes of Filf (A).
Assume

(1) K• bounded below and filtered acyclic, and
(2) I• bounded below and consisting of filtered injective objects.

Then any morphism K• → I• is homotopic to zero.
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Exercise 30.13. LetA be an abelian category. Consider a solid diagram

K•
α
//

γ

��

L•

βi}}
I•

of complexes of Filf (A). Assume K•, L• and I• bounded below and each In a filtered
injective object. Also assume α a filtered quasi-isomorphism. Any two morphisms β1, β2
making the diagram commute up to homotopy are homotopic.

31. Regular functions

Exercise 31.1. Consider the affine curve X given by the equation t2 = s5 + 8 in C2

with coordinates s, t. Let x ∈ X be the point with coordinates (1, 3). Let U = X \ {x}.
Prove that there is a regular function onU which is not the restriction of a regular function
on C2, i.e., is not the restriction of a polynomial in s and t to U .

Exercise 31.2. Let n ≥ 2. Let E ⊂ Cn be a finite subset. Show that any regular
function on Cn \ E is a polynomial.

Exercise 31.3. Let X ⊂ Cn be an affine variety. Let us say X is a cone if x =
(a1, . . . , an) ∈ X andλ ∈ C implies (λa1, . . . , λan) ∈ X . Of course, if p ⊂ C[x1, . . . , xn]
is a prime ideal generated by homogeneous polynomials in x1, . . . , xn, then the affine va-
rietyX = V (p) ⊂ Cn is a cone. Show that conversely the prime ideal p ⊂ C[x1, . . . , xn]
corresponding to a cone can be generated by homogeneous polynomials in x1, . . . , xn.

Exercise 31.4. Give an example of an affine variety X ⊂ Cn which is a cone (see
Exercise 31.3) and a regular function f onU = X\{(0, . . . , 0)}which is not the restriction
of a polynomial function on Cn.

Exercise 31.5. In this exercise we try to see what happens with regular functions
over non-algebraically closed fields. Let k be a field. Let Z ⊂ kn be a Zariski locally closed
subset, i.e., there exist ideals I ⊂ J ⊂ k[x1, . . . , xn] such that

Z = {a ∈ kn | f(a) = 0 ∀ f ∈ I, ∃ g ∈ J, g(a) 6= 0}.

A function ϕ : Z → k is said to be regular if for every z ∈ Z there exists a Zariski open
neighbourhood z ∈ U ⊂ Z and polynomials f, g ∈ k[x1, . . . , xn] such that g(u) 6= 0 for
all u ∈ U and such that ϕ(u) = f(u)/g(u) for all u ∈ U .

(1) If k = k̄ and Z = kn show that regular functions are given by polynomials.
(Only do this if you haven’t seen this argument before.)

(2) If k is finite show that (a) every function ϕ is regular, (b) the ring of regular
functions is finite dimensional over k. (If you like you can take Z = kn and
even n = 1.)

(3) If k = R give an example of a regular function on Z = R which is not given
by a polynomial.

(4) If k = Qp give an example of a regular function on Z = Qp which is not given
by a polynomial.
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32. Sheaves

A morphism f : X → Y of a category C is an monomorphism if for every pair of mor-
phisms a, b : W → X we have f ◦ a = f ◦ b⇒ a = b. A monomorphism in the category
of sets is an injective map of sets.

Exercise 32.1. Carefully prove that a map of sheaves of sets is an monomorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks are
injective.

A morphism f : X → Y of a category C is an isomorphism if there exists a morphism
g : Y → X such that f ◦ g = idY and g ◦ f = idX . An isomorphism in the category of
sets is a bijective map of sets.

Exercise 32.2. Carefully prove that a map of sheaves of sets is an isomorphism (in the
category of sheaves of sets) if and only if the induced maps on all the stalks are bijective.

A morphism f : X → Y of a category C is an epimorphism if for every pair of morphisms
a, b : Y → Z we have a ◦ f = b ◦ f ⇒ a = b. An epimorphism in the category of sets is
a surjective map of sets.

Exercise 32.3. Carefully prove that a map of sheaves of sets is an epimorphism (in the
category of sheaves of sets) if and only if the induced maps on all the stalks are surjective.

Exercise 32.4. Let f : X → Y be a map of topological spaces. Prove pushforward
f∗ and pullback f−1 for sheaves of sets form an adjoint pair of functors.

Exercise 32.5. Let j : U → X be an open immersion. Show that
(1) Pullback j−1 : Sh(X) → Sh(U) has a left adjoint j! : Sh(U) → Sh(X) called

extension by the empty set.
(2) Characterize the stalks of j!(G) for G ∈ Sh(U).
(3) Pullback j−1 : Ab(X) → Ab(U) has a left adjoint j! : Ab(U) → Ab(X) called

extension by zero.
(4) Characterize the stalks of j!(G) for G ∈ Ab(U).

Observe that extension by zero differs from extension by the empty set!

Exercise 32.6. Let X = R with the usual topology. LetOX = Z/2Z
X

. Let i : Z =
{0} → X be the inclusion and let OZ = Z/2Z

Z
. Prove the following (the first three

follow from the definitions but if you are not clear on the definitions you should elucidate
them):

(1) i∗OZ is a skyscraper sheaf.
(2) There is a canonical surjective map from Z/2Z

X
→ i∗Z/2Z

Z
. Denote the ker-

nel I ⊂ OX .
(3) I is an ideal sheaf ofOX .
(4) The sheaf I on X cannot be locally generated by sections (as in Modules, Defi-

nition 8.1.)

Exercise 32.7. Let X be a topological space. Let F be an abelian sheaf on X . Show
that F is the quotient of a (possibly very large) direct sum of sheaves all of whose terms
are of the form

j!(ZU )
where U ⊂ X is open and ZU denotes the constant sheaf with value Z on U .
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Remark 32.8. Let X be a topological space. In the category of abelian sheaves the
direct sum of a family of sheaves {Fi}i∈I is the sheaf associated to the presheaf U 7→
⊕Fi(U). Consequently the stalk of the direct sum at a point x is the direct sum of the
stalks of the Fi at x.

Exercise 32.9. Let X be a topological space. Suppose we are given a collection of
abelian groups Ax indexed by x ∈ X . Show that the rule U 7→

∏
x∈U Ax with obvious

restriction mappings defines a sheafG of abelian groups. Show, by an example, that usually
it is not the case that Gx = Ax for x ∈ X .

Exercise 32.10. LetX , Ax, G be as in Exercise 32.9. Let B be a basis for the topology
of X , see Topology, Definition 5.1. For U ∈ B let AU be a subgroup AU ⊂ G(U) =∏
x∈U Ax. Assume that for U ⊂ V with U, V ∈ B the restriction maps AV into AU . For

U ⊂ X open set

F(U) =
{

(sx)x∈U

∣∣∣∣ for every x in U there exists V ∈ B
x ∈ V ⊂ U such that (sy)y∈V ∈ AV

}
Show thatF defines a sheaf of abelian groups onX . Show, by an example, that it is usually
not the case that F(U) = AU for U ∈ B.

Exercise 32.11. Give an example of a topological space X and a functor
F : Sh(X) −→ Sets

which is exact (commutes with finite products and equalizers and commutes with finite
coproducts and coequalizers, see Categories, Section 23), but there is no point x ∈ X such
that F is isomorphic to the stalk functor F 7→ Fx.

33. Schemes

Let LRS be the category of locally ringed spaces. An affine scheme is an object in LRS
isomorphic in LRS to a pair of the form (Spec(A),OSpec(A)). A scheme is an object
(X,OX) of LRS such that every point x ∈ X has an open neighbourhood U ⊂ X such
that the pair (U,OX |U ) is an affine scheme.

Exercise 33.1. Find a 1-point locally ringed space which is not a scheme.
Exercise 33.2. Suppose thatX is a scheme whose underlying topological space has 2

points. Show that X is an affine scheme.
Exercise 33.3. Suppose that X is a scheme whose underlying topological space is a

finite discrete set. Show that X is an affine scheme.
Exercise 33.4. Show that there exists a non-affine scheme having three points.
Exercise 33.5. Suppose that X is a nonempty quasi-compact scheme. Show that X

has a closed point.
Remark 33.6. When (X,OX) is a ringed space and U ⊂ X is an open subset then

(U,OX |U ) is a ringed space. Notation: OU = OX |U . There is a canonical morphisms of
ringed spaces

j : (U,OU ) −→ (X,OX).
If (X,OX) is a locally ringed space, so is (U,OU ) and j is a morphism of locally ringed
spaces. If (X,OX) is a scheme so is (U,OU ) and j is a morphism of schemes. We say
that (U,OU ) is an open subscheme of (X,OX) and that j is an open immersion. More
generally, any morphism j′ : (V,OV ) → (X,OX) that is isomorphic to a morphism
j : (U,OU )→ (X,OX) as above is called an open immersion.
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Exercise 33.7. Give an example of an affine scheme (X,OX) and an open U ⊂ X
such that (U,OX |U) is not an affine scheme.

Exercise 33.8. Given an example of a pair of affine schemes (X,OX), (Y,OY ), an
open subscheme (U,OX |U ) ofX and a morphism of schemes (U,OX |U )→ (Y,OY ) that
does not extend to a morphism of schemes (X,OX)→ (Y,OY ).

Exercise 33.9. (This is pretty hard.) Given an example of a scheme X , and open
subscheme U ⊂ X and a closed subscheme Z ⊂ U such that Z does not extend to a closed
subscheme of X .

Exercise 33.10. Give an example of a schemeX , a fieldK , and a morphism of ringed
spaces Spec(K)→ X which is NOT a morphism of schemes.

Exercise 33.11. Do all the exercises in [?, Chapter II], Sections 1 and 2... Just kidding!

Definition 33.12. A scheme X is called integral if X is nonempty and for every
nonempty affine open U ⊂ X the ring Γ(U,OX) = OX(U) is a domain.

Exercise 33.13. Give an example of a morphism of integral schemes f : X → Y
such that the induced maps OY,f(x) → OX,x are surjective for all x ∈ X , but f is not a
closed immersion.

Exercise 33.14. Give an example of a fibre product X ×S Y such that X and Y are
affine but X ×S Y is not.

Remark 33.15. It turns out this cannot happen withS separated. Do you know why?

Exercise 33.16. Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over Q such that Spec(C)×Spec(Q) V is not integral.

Exercise 33.17. Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over a field k such that Spec(k′)×Spec(k) V is not reduced for some
finite field extension k′/k.

Remark 33.18. If your scheme is affine then dimension is the same as the Krull dimen-
sion of the underlying ring. So you can use last semesters results to compute dimension.

34. Morphisms

An important question is, given a morphism π : X → S , whether the morphism has a
section or a rational section. Here are some example exercises.

Exercise 34.1. Consider the morphism of schemes

π : X = Spec(C[x, t, 1/xt]) −→ S = Spec(C[t]).

(1) Show there does not exist a morphism σ : S → X such that π ◦ σ = idS .
(2) Show there does exist a nonempty open U ⊂ S and a morphism σ : U → X

such that π ◦ σ = idU .

Exercise 34.2. Consider the morphism of schemes

π : X = Spec(C[x, t]/(x2 + t)) −→ S = Spec(C[t]).

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X such that
π ◦ σ = idU .
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Exercise 34.3. LetA,B,C ∈ C[t] be nonzero polynomials. Consider the morphism
of schemes

π : X = Spec(C[x, y, t]/(A+Bx2 + Cy2)) −→ S = Spec(C[t]).

Show there does exist a nonempty open U ⊂ S and a morphism σ : U → X such that
π ◦ σ = idU . (Hint: Symbolically, write x = X/Z , y = Y/Z for some X,Y, Z ∈ C[t]
of degree ≤ d for some d, and work out the condition that this solves the equation. Then
show, using dimension theory, that if d >> 0 you can find nonzero X,Y, Z solving the
equation.)

Remark 34.4. Exercise 34.3 is a special case of “Tsen’s theorem”. Exercise 34.5 shows
that the method is limited to low degree equations (conics when the base and fibre have
dimension 1).

Exercise 34.5. Consider the morphism of schemes

π : X = Spec(C[x, y, t]/(1 + tx3 + t2y3)) −→ S = Spec(C[t])

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X such that
π ◦ σ = idU .

Exercise 34.6. Consider the schemes

X = Spec(C[{xi}8
i=1, s, t]/(1+sx3

1+s2x3
2+tx3

3+stx3
4+s2tx3

5+t2x3
6+st2x3

7+s2t2x3
8))

and
S = Spec(C[s, t])

and the morphism of schemes
π : X −→ S

Show there does not exist a nonempty open U ⊂ S and a morphism σ : U → X such that
π ◦ σ = idU .

Exercise 34.7. (For the number theorists.) Give an example of a closed subscheme

Z ⊂ Spec
(

Z[x, 1
x(x− 1)(2x− 1) ]

)
such that the morphism Z → Spec(Z) is finite and surjective.

Exercise 34.8. If you do not like number theory, you can try the variant where you
look at

Spec
(

Fp[t, x,
1

x(x− t)(tx− 1) ]
)
−→ Spec(Fp[t])

and you try to find a closed subscheme of the top scheme which maps finite surjectively
to the bottom one. (There is a theoretical reason for having a finite ground field here;
although it may not be necessary in this particular case.)

Remark 34.9. The interpretation of the results of Exercise 34.7 and 34.8 is that given
the morphism X → S all of whose fibres are nonempty, there exists a finite surjective
morphism S′ → S such that the base change XS′ → S′ does have a section. This is not a
general fact, but it holds if the base is the spectrum of a dedekind ring with finite residue
fields at closed points, and the morphism X → S is flat with geometrically irreducible
generic fibre. See Exercise 34.10 below for an example where it doesn’t work.
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Exercise 34.10. Prove there exist a f ∈ C[x, t] which is not divisible by t − α for
any α ∈ C such that there does not exist any Z ⊂ Spec(C[x, t, 1/f ]) which maps finite
surjectively to Spec(C[t]). (I think that f(x, t) = (xt − 2)(x − t + 3) works. To show
any candidate has the required property is not so easy I think.)

Exercise 34.11. Let A → B be a finite type ring map. Suppose that Spec(B) →
Spec(A) factors through a closed immersion Spec(B) → Pn

A for some n. Prove that
A→ B is a finite ring map, i.e., that B is finite as an A-module. Hint: if A is Noetherian
(please just assume this) you can argue using thatHi(Z,OZ) for i ∈ Z is a finiteA-module
for every closed subscheme Z ⊂ Pn

A.

Exercise 34.12. Let k be an algebraically closed field. Let f : X → Y be a morphism
of projective varieties such that f−1({y}) is finite for every closed point y ∈ Y . Prove
that f is finite as a morphism of schemes. Hints: (a) being finite is a local property, (b)
try to reduce to Exercise 34.11, and (c) use a closed immersion X → Pn

k to get a closed
immersion X → Pn

Y over Y .

35. Tangent Spaces

Definition 35.1. For any ring R we denote R[ε] the ring of dual numbers. As an
R-module it is free with basis 1, ε. The ring structure comes from setting ε2 = 0.

Exercise 35.2. Let f : X → S be a morphism of schemes. Let x ∈ X be a point, let
s = f(x). Consider the solid commutative diagram

Spec(κ(x)) //

''

**Spec(κ(x)[ε]) //

��

X

��
Spec(κ(s)) // S

with the curved arrow being the canonical morphism of Spec(κ(x)) into X . If κ(x) =
κ(s) show that the set of dotted arrows which make the diagram commute are in one to
one correspondence with the set of linear maps

Homκ(x)(
mx

m2
x + msOX,x

, κ(x))

In other words: describe such a bijection. (This works more generally if κ(x) ⊃ κ(s) is a
separable algebraic extension.)

Definition 35.3. Let f : X → S be a morphism of schemes. Let x ∈ X . We dub
the set of dotted arrows of Exercise 35.2 the tangent space of X over S and we denote it
TX/S,x. An element of this space is called a tangent vector of X/S at x.

Exercise 35.4. For any field K prove that the diagram

Spec(K) //

��

Spec(K[ε1])

��
Spec(K[ε2]) // Spec(K[ε1, ε2]/(ε1ε2))

is a pushout diagram in the category of schemes. (Here ε2i = 0 as before.)
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Exercise 35.5. Let f : X → S be a morphism of schemes. Let x ∈ X . Define
addition of tangent vectors, using Exercise 35.4 and a suitable morphism

Spec(K[ε]) −→ Spec(K[ε1, ε2]/(ε1ε2)).

Similarly, define scalar multiplication of tangent vectors (this is easier). Show that TX/S,x
becomes a κ(x)-vector space with your constructions.

Exercise 35.6. Let k be a field. Consider the structure morphism f : X = A1
k →

Spec(k) = S.
(1) Let x ∈ X be a closed point. What is the dimension of TX/S,x?
(2) Let η ∈ X be the generic point. What is the dimension of TX/S,η?
(3) Consider nowX as a scheme over Spec(Z). What are the dimensions of TX/Z,x

and TX/Z,η?

Remark 35.7. Exercise 35.6 explains why it is necessary to consider the tangent space
of X over S to get a good notion.

Exercise 35.8. Consider the morphism of schemes

f : X = Spec(Fp(t)) −→ Spec(Fp(tp)) = S

Compute the tangent space of X/S at the unique point of X . Isn’t that weird? What do
you think happens if you take the morphism of schemes corresponding to Fp[tp]→ Fp[t]?

Exercise 35.9. Let k be a field. Compute the tangent space of X/k at the point
x = (0, 0) where X = Spec(k[x, y]/(x2 − y3)).

Exercise 35.10. Let f : X → Y be a morphism of schemes over S. Let x ∈ X be a
point. Set y = f(x). Assume that the natural map κ(y)→ κ(x) is bijective. Show, using
the definition, that f induces a natural linear map

df : TX/S,x −→ TY/S,y.

Match it with what happens on local rings via Exercise 35.2 in case κ(x) = κ(s).

Exercise 35.11. Let k be an algebraically closed field. Let

f : An
k −→ Am

k

(x1, . . . , xn) 7−→ (f1(xi), . . . , fm(xi))

be a morphism of schemes over k. This is given by m polynomials f1, . . . , fm in n vari-
ables. Consider the matrix

A =
(
∂fj
∂xi

)
Let x ∈ An

k be a closed point. Set y = f(x). Show that the map on tangent spaces
TAn

k
/k,x → TAm

k
/k,y is given by the value of the matrix A at the point x.

36. Quasi-coherent Sheaves

Definition 36.1. Let X be a scheme. A sheaf F ofOX -modules is quasi-coherent if
for every affine open Spec(R) = U ⊂ X the restriction F|U is of the form M̃ for some
R-module M .

It is enough to check this conditions on the members of an affine open covering ofX . See
Schemes, Section 24 for more results.
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Definition 36.2. Let X be a topological space. Let x, x′ ∈ X . We say x is a special-
ization of x′ if and only if x ∈ {x′}.

Exercise 36.3. Let X be a scheme. Let x, x′ ∈ X . Let F be a quasi-coherent sheaf
of OX -modules. Suppose that (a) x is a specialization of x′ and (b) Fx′ 6= 0. Show that
Fx 6= 0.

Exercise 36.4. Find an example of a scheme X , points x, x′ ∈ X , a sheaf of OX -
modules F such that (a) x is a specialization of x′ and (b) Fx′ 6= 0 and Fx = 0.

Definition 36.5. A scheme X is called locally Noetherian if and only if for every
point x ∈ X there exists an affine open Spec(R) = U ⊂ X such that R is Noetherian. A
scheme is Noetherian if it is locally Noetherian and quasi-compact.

IfX is locally Noetherian then any affine open ofX is the spectrum of a Noetherian ring,
see Properties, Lemma 5.2.

Definition 36.6. Let X be a locally Noetherian scheme. Let F be a quasi-coherent
sheaf ofOX -modules. We sayF is coherent if for every point x ∈ X there exists an affine
open Spec(R) = U ⊂ X such that F|U is isomorphic to M̃ for some finiteR-moduleM .

Exercise 36.7. Let X = Spec(R) be an affine scheme.
(1) Let f ∈ R. Let G be a quasi-coherent sheaf of OD(f)-modules on the open sub-

scheme D(f). Show that G = F|D(f) for some quasi-coherent sheaf of OX -
modules F .

(2) Let I ⊂ R be an ideal. Let i : Z → X be the closed subscheme ofX correspond-
ing to I . Let G be a quasi-coherent sheaf ofOZ -modules on the closed subscheme
Z. Show that G = i∗F for some quasi-coherent sheaf ofOX -modules F . (Why
is this silly?)

(3) Assume that R is Noetherian. Let f ∈ R. Let G be a coherent sheaf of OD(f)-
modules on the open subschemeD(f). Show thatG = F|D(f) for some coherent
sheaf ofOX -modules F .

Remark 36.8. IfU → X is a quasi-compact immersion then any quasi-coherent sheaf
on U is the restriction of a quasi-coherent sheaf on X . If X is a Noetherian scheme, and
U ⊂ X is open, then any coherent sheaf on U is the restriction of a coherent sheaf on X .
Of course the exercise above is easier, and shouldn’t use these general facts.

37. Proj and projective schemes

Exercise 37.1. Give examples of graded rings S such that
(1) Proj(S) is affine and nonempty, and
(2) Proj(S) is integral, nonempty but not isomorphic to Pn

A for any n ≥ 0, any ring
A.

Exercise 37.2. Give an example of a nonconstant morphism of schemes P1
C → P5

C
over Spec(C).

Exercise 37.3. Give an example of an isomorphism of schemes
P1

C → Proj(C[X0, X1, X2]/(X2
0 +X2

1 +X2
2 ))

Exercise 37.4. Give an example of a morphism of schemes f : X → A1
C = Spec(C[T ])

such that the (scheme theoretic) fibre Xt of f over t ∈ A1
C is (a) isomorphic to P1

C when
t is a closed point not equal to 0, and (b) not isomorphic to P1

C when t = 0. We will call



7218 111. EXERCISES

X0 the special fibre of the morphism. This can be done in many, many ways. Try to give
examples that satisfy (each of) the following additional restraints (unless it isn’t possible):

(1) Can you do it with special fibre projective?
(2) Can you do it with special fibre irreducible and projective?
(3) Can you do it with special fibre integral and projective?
(4) Can you do it with special fibre smooth and projective?
(5) Can you do it with f a flat morphism? This just means that for every affine open

Spec(A) ⊂ X the induced ring map C[t] → A is flat, which in this case means
that any nonzero polynomial in t is a nonzerodivisor on A.

(6) Can you do it with f a flat and projective morphism?
(7) Can you do it with f flat, projective and special fibre reduced?
(8) Can you do it with f flat, projective and special fibre irreducible?
(9) Can you do it with f flat, projective and special fibre integral?

What do you think happens when you replace P1
C with another variety over C? (This

can get very hard depending on which of the variants above you ask for.)

Exercise 37.5. Let n ≥ 1 be any positive integer. Give an example of a surjective
morphism X → Pn

C with X affine.

Exercise 37.6. Maps of Proj. Let R and S be graded rings. Suppose we have a ring
map

ψ : R→ S

and an integer e ≥ 1 such that ψ(Rd) ⊂ Sde for all d ≥ 0. (By our conventions this is
not a homomorphism of graded rings, unless e = 1.)

(1) For which elements p ∈ Proj(S) is there a well-defined corresponding point in
Proj(R)? In other words, find a suitable open U ⊂ Proj(S) such that ψ defines
a continuous map rψ : U → Proj(R).

(2) Give an example where U 6= Proj(S).
(3) Give an example where U = Proj(S).
(4) (Do not write this down.) Convince yourself that the continuous map U →

Proj(R) comes canonically with a map on sheaves so that rψ is a morphism of
schemes:

Proj(S) ⊃ U −→ Proj(R).
(5) What can you say about this map if R =

⊕
d≥0 Sde (as a graded ring with Se,

S2e, etc in degree 1, 2, etc) and ψ is the inclusion mapping?

Notation. Let R be a graded ring as above and let n ≥ 0 be an integer. Let X = Proj(R).
Then there is a unique quasi-coherent OX -module OX(n) on X such that for every ho-
mogeneous element f ∈ R of positive degree we have OX |D+(f) is the quasi-coherent
sheaf associated to the R(f) = (Rf )0-module (Rf )n (=elements homogeneous of degree
n in Rf = R[1/f ]). See [?, page 116+]. Note that there are natural maps

OX(n1)⊗OX
OX(n2) −→ OX(n1 + n2)

Exercise 37.7. Pathologies in Proj. Give examples of R as above such that
(1) OX(1) is not an invertibleOX -module.
(2) OX(1) is invertible, but the natural mapOX(1)⊗OX

OX(1)→ OX(2) is NOT
an isomorphism.

Exercise 37.8. Let S be a graded ring. Let X = Proj(S). Show that any finite set of
points of X is contained in a standard affine open.
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Exercise 37.9. Let S be a graded ring. Let X = Proj(S). Let Z,Z ′ ⊂ X be two
closed subschemes. Let ϕ : Z → Z ′ be an isomorphism. Assume Z ∩ Z ′ = ∅. Show
that for any z ∈ Z there exists an affine open U ⊂ X such that z ∈ U , ϕ(z) ∈ U and
ϕ(Z ∩ U) = Z ′ ∩ U . (Hint: Use Exercise 37.8 and something akin to Schemes, Lemma
11.5.)

38. Morphisms from the projective line

In this section we study morphisms from P1 to projective schemes.

Exercise 38.1. Let k be a field. Let k[t] ⊂ k(t) be the inclusion of the polynomial ring
into its fraction field. Let X be a finite type scheme over k. Show that for any morphism

ϕ : Spec(k(t)) −→ X

over k, there exist a nonzero f ∈ k[t] and a morphism ψ : Spec(k[t, 1/f ]) → X over k
such that ϕ is the composition

Spec(k(t)) −→ Spec(k[t, 1/f ]) −→ X

Exercise 38.2. Let k be a field. Let k[t] ⊂ k(t) be the inclusion of the polynomial
ring into its fraction field. Show that for any morphism

ϕ : Spec(k(t)) −→ Pn
k

over k, there exists a morphismψ : Spec(k[t])→ Pn
k over k such thatϕ is the composition

Spec(k(t)) −→ Spec(k[t]) −→ Pn
k

Hint: the image of ϕ is in a standard open D+(Ti) for some i; then show that you can
“clear denominators”.

Exercise 38.3. Let k be a field. Let k[t] ⊂ k(t) be the inclusion of the polynomial ring
into its fraction field. Let X be a projective scheme over k. Show that for any morphism

ϕ : Spec(k(t)) −→ X

over k, there exists a morphism ψ : Spec(k[t])→ X over k such that ϕ is the composition

Spec(k(t)) −→ Spec(k[t]) −→ X

Hint: use Exercise 38.2.

Exercise 38.4. Let k be a field. Let X be a projective scheme over k. Let K be the
function field of P1

k (see hint below). Show that for any morphism

ϕ : Spec(K) −→ X

over k, there exists a morphism ψ : P1
k → X over k such that ϕ is the composition

Spec(k(t)) −→ P1
k −→ X

Hint: use Exercise 38.3 for each of the two pieces of the affine open covering P1
k =

D+(T0) ∪ D+(T1), use that D+(T0) is the spectrum of a polynomial ring and that K
is the fraction field of this polynomial ring.
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39. Morphisms from surfaces to curves

Exercise 39.1. Let R be a ring. Let R → k be a map from R to a field. Let n ≥ 0.
Show that

MorSpec(R)(Spec(k),Pn
R) = (kn+1 \ {0})/k∗

where k∗ acts via scalar multiplication on kn+1. From now on we denote (x0 : . . . :
xn) the morphism Spec(k) → Pn

k corresponding to the equivalence class of the element
(x0, . . . , xn) ∈ kn+1 \ {0}.

Exercise 39.2. Let k be a field. Let Z ⊂ P2
k be an irreducible and reduced closed

subscheme. Show that either (a) Z is a closed point, or (b) there exists an homogeneous
irreducible F ∈ k[X0, X1, X2] of degree > 0 such that Z = V+(F ), or (c) Z = P2

k.
(Hint: Look on a standard affine open.)

Exercise 39.3. Let k be a field. Let Z1, Z2 ⊂ P2
k be irreducible closed subschemes

of the form V+(F ) for some homogeneous irreducible Fi ∈ k[X0, X1, X2] of degree > 0.
Show that Z1 ∩ Z2 is not empty. (Hint: Use dimension theory to estimate the dimension
of the local ring of k[X0, X1, X2]/(F1, F2) at 0.)

Exercise 39.4. Show there does not exist a nonconstant morphism of schemes P2
C →

P1
C over Spec(C). Here a constant morphism is one whose image is a single point. (Hint:

If the morphism is not constant consider the fibres over 0 and∞ and argue that they have
to meet to get a contradiction.)

Exercise 39.5. Let k be a field. Suppose thatX ⊂ P3
k is a closed subscheme given by

a single homogeneous equation F ∈ k[X0, X1, X2, X3]. In other words,

X = Proj(k[X0, X1, X2, X3]/(F )) ⊂ P3
k

as explained in the course. Assume that

F = X0G+X1H

for some homogeneous polynomials G,H ∈ k[X0, X1, X2, X3] of positive degree. Show
that if X0, X1, G,H have no common zeros then there exists a nonconstant morphism

X −→ P1
k

of schemes over Spec(k) which on field points (see Exercise 39.1) looks like (x0 : x1 : x2 :
x3) 7→ (x0 : x1) whenever x0 or x1 is not zero.

40. Invertible sheaves

Definition 40.1. LetX be a locally ringed space. An invertibleOX -module onX is
a sheaf of OX -modules L such that every point has an open neighbourhood U ⊂ X such
that L|U is isomorphic to OU as OU -module. We say that L is trivial if it is isomorphic
toOX as aOX -module.

Exercise 40.2. General facts.
(1) Show that an invertibleOX -module on a scheme X is quasi-coherent.
(2) Suppose X → Y is a morphism of locally ringed spaces, and L an invertible
OY -module. Show that f∗L is an invertibleOX module.

Exercise 40.3. Algebra.
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(1) Show that an invertible OX -module on an affine scheme Spec(A) corresponds
to an A-module M which is (i) finite, (ii) projective, (iii) locally free of rank 1,
and hence (iv) flat, and (v) finitely presented. (Feel free to quote things from last
semesters course; or from algebra books.)

(2) Suppose that A is a domain and that M is a module as in (a). Show that M is
isomorphic as an A-module to an ideal I ⊂ A such that IAp is principal for
every prime p.

Definition 40.4. Let R be a ring. An invertible module M is an R-module M such
that M̃ is an invertible sheaf on the spectrum of R. We say M is trivial if M ∼= R as an
R-module.

In other words, M is invertible if and only if it satisfies all of the following conditions: it
is flat, of finite presentation, projective, and locally free of rank 1. (Of course it suffices for
it to be locally free of rank 1).

Exercise 40.5. Simple examples.
(1) Let k be a field. Let A = k[x]. Show that X = Spec(A) has only trivial invert-

ible OX -modules. In other words, show that every invertible A-module is free
of rank 1.

(2) Let A be the ring
A = {f ∈ k[x] | f(0) = f(1)}.

Show there exists a nontrivial invertibleA-module, unless k = F2. (Hint: Think
about Spec(A) as identifying 0 and 1 in A1

k = Spec(k[x]).)
(3) Same question as in (2) for the ring A = k[x2, x3] ⊂ k[x] (except now k = F2

works as well).

Exercise 40.6. Higher dimensions.
(1) Prove that every invertible sheaf on two dimensional affine space is trivial. More

precisely, let A2
k = Spec(k[x, y]) where k is a field. Show that every invertible

sheaf on A2
k is trivial. (Hint: One way to do this is to consider the corresponding

module M , to look at M ⊗k[x,y] k(x)[y], and then use Exercise 40.5 (1) to find a
generator for this; then you still have to think. Another way to is to use Exercise
40.3 and use what we know about ideals of the polynomial ring: primes of height
one are generated by an irreducible polynomial; then you still have to think.)

(2) Prove that every invertible sheaf on any open subscheme of two dimensional
affine space is trivial. More precisely, let U ⊂ A2

k be an open subscheme where
k is a field. Show that every invertible sheaf on U is trivial. Hint: Show that
every invertible sheaf on U extends to one on A2

k. Not easy; but you can find it
in [?].

(3) Find an example of a nontrivial invertible sheaf on a punctured cone over a field.
More precisely, let k be a field and let C = Spec(k[x, y, z]/(xy− z2)). Let U =
C \{(x, y, z)}. Find a nontrivial invertible sheaf onU . Hint: It may be easier to
compute the group of isomorphism classes of invertible sheaves onU than to just
find one. Note that U is covered by the opens Spec(k[x, y, z, 1/x]/(xy − z2))
and Spec(k[x, y, z, 1/y]/(xy − z2)) which are “easy” to deal with.

Definition 40.7. Let X be a locally ringed space. The Picard group of X is the set
Pic(X) of isomorphism classes of invertible OX -modules with addition given by tensor
product. See Modules, Definition 25.9. For a ring R we set Pic(R) = Pic(Spec(R)).
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Exercise 40.8. Let R be a ring.
(1) Show that ifR is a Noetherian normal domain, then Pic(R) = Pic(R[t]). [Hint:

There is a map R[t] → R, t 7→ 0 which is a left inverse to the map R → R[t].
Hence it suffices to show that any invertibleR[t]-moduleM such thatM/tM ∼=
R is free of rank 1. LetK be the fraction field ofR. Pick a trivializationK[t]→
M ⊗R[t] K[t] which is possible by Exercise 40.5 (1). Adjust it so it agrees with
the trivialization of M/tM above. Show that it is in fact a trivialization of M
over R[t] (this is where normality comes in).]

(2) Let k be a field. Show that Pic(k[x2, x3, t]) 6= Pic(k[x2, x3]).

41. Čech Cohomology

Exercise 41.1. Čech cohomology. Here k is a field.
(1) Let X be a scheme with an open covering U : X = U1 ∪ U2, with U1 =

Spec(k[x]), U2 = Spec(k[y]) with U1 ∩ U2 = Spec(k[z, 1/z]) and with open
immersions U1 ∩ U2 → U1 resp. U1 ∩ U2 → U2 determined by x 7→ z resp.
y 7→ z (and I really mean this). (We’ve seen in the lectures that such an X ex-
ists; it is the affine line with zero doubled.) Compute Ȟ1(U ,O); eg. give a basis
for it as a k-vectorspace.

(2) For each element in Ȟ1(U ,O) construct an exact sequence of sheaves of OX -
modules

0→ OX → E → OX → 0
such that the boundary δ(1) ∈ Ȟ1(U ,O) equals the given element. (Part of the
problem is to make sense of this. See also below. It is also OK to show abstractly
such a thing has to exist.)

Definition 41.2. (Definition of delta.) Suppose that

0→ F1 → F2 → F3 → 0

is a short exact sequence of abelian sheaves on any topological spaceX . The boundary map
δ : H0(X,F3) → Ȟ1(X,F1) is defined as follows. Take an element τ ∈ H0(X,F3).
Choose an open covering U : X =

⋃
i∈I Ui such that for each i there exists a section

τ̃i ∈ F2 lifting the restriction of τ to Ui. Then consider the assignment

(i0, i1) 7−→ τ̃i0 |Ui0i1 − τ̃i1 |Ui0i1 .

This is clearly a 1-coboundary in the Čech complex Č∗(U ,F2). But we observe that
(thinking ofF1 as a subsheaf ofF2) the RHS always is a section ofF1 overUi0i1 . Hence we
see that the assignment defines a 1-cochain in the complex Č∗(U ,F2). The cohomology
class of this 1-cochain is by definition δ(τ).

42. Cohomology

Exercise 42.1. Let X = R with the usual Euclidean topology. Using only formal
properties of cohomology (functoriality and the long exact cohomology sequence) show
that there exists a sheaf F on X with nonzero H1(X,F).

Exercise 42.2. Let X = U ∪ V be a topological space written as the union of two
opens. Then we have a long exact Mayer-Vietoris sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .
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What property of injective sheaves is essential for the construction of the Mayer-Vietoris
long exact sequence? Why does it hold?

Exercise 42.3. Let X be a topological space.
(1) Show that Hi(X,F) is zero for i > 0 if X has 2 or fewer points.
(2) What if X has 3 points?

Exercise 42.4. Let X be the spectrum of a local ring. Show that Hi(X,F) is zero
for i > 0 and any sheaf of abelian groups F .

Exercise 42.5. Let f : X → Y be an affine morphism of schemes. Prove that
Hi(X,F) = Hi(Y, f∗F) for any quasi-coherent OX -module F . Feel free to impose
some further conditions on X and Y and use the agreement of Čech cohomology with
cohomology for quasi-coherent sheaves and affine open coverings of separated schemes.

Exercise 42.6. Let A be a ring. Let Pn
A = Proj(A[T0, . . . , Tn]) be projective space

over A. Let An+1
A = Spec(A[T0, . . . , Tn]) and let

U =
⋃

i=0,...,n
D(Ti) ⊂ An+1

A

be the complement of the image of the closed immersion 0 : Spec(A)→ An+1
A . Construct

an affine surjective morphism
f : U −→ Pn

A

and prove that f∗OU =
⊕

d∈ZOPn
A

(d). More generally, show that for a gradedA[T0, . . . , Tn]-
module M one has

f∗(M̃ |U ) =
⊕

d∈Z
M̃(d)

where on the left hand side we have the quasi-coherent sheaf M̃ associated toM on An+1
A

and on the right we have the quasi-coherent sheaves M̃(d) associated to the graded module
M(d).

Exercise 42.7. LetA be a ring and let Pn
A = Proj(A[T0, . . . , Tn]) be projective space

over A. Carefully compute the cohomology of the Serre twists OPn
A

(d) of the structure
sheaf on Pn

A. Feel free to use Čech cohomology and the agreement of Čech cohomol-
ogy with cohomology for quasi-coherent sheaves and affine open coverings of separated
schemes.

Exercise 42.8. LetA be a ring and let Pn
A = Proj(A[T0, . . . , Tn]) be projective space

over A. Let F ∈ A[T0, . . . , Tn] be homogeneous of degree d. Let X ⊂ Pn
A be the closed

subscheme corresponding to the graded ideal (F ) of A[T0, . . . , Tn]. What can you say
about Hi(X,OX)?

Exercise 42.9. Let R be a ring such that for any left exact functor F : ModR → Ab
we have RiF = 0 for i > 0. Show that R is a finite product of fields.

43. More cohomology

Exercise 43.1. Let k be a field. Let X ⊂ Pn
k be the “coordinate cross”. Namely, let

X be defined by the homogeneous equations
TiTj = 0 for i > j > 0

where as usual we write Pn
k = Proj(k[T0, . . . , Tn]). In other words, X is the closed sub-

scheme corresponding to the quotient k[T0, . . . , Tn]/(TiTj ; i > j > 0) of the polynomial
ring. Compute Hi(X,OX) for all i. Hint: use Čech cohomology.
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Exercise 43.2. Let A be a ring. Let I = (f1, . . . , ft) be a finitely generated ideal
of A. Let U ⊂ Spec(A) be the complement of V (I). For any A-module M write down
a complex of A-modules (in terms of A, f1, . . . , ft, M ) whose cohomology groups give
Hn(U, M̃).

Exercise 43.3. Let k be a field. Let U ⊂ Ad
k be the complement of the closed point 0

of Ad
k. Compute Hn(U,OU ) for all n.

Exercise 43.4. Let k be a field. Find explicitly a scheme X projective over k of
dimension 1 with H0(X,OX) = k and dimkH

1(X,OX) = 100.

Exercise 43.5. Let f : X → Y be a finite locally free morphism of degree 2. Assume
that X and Y are integral schemes and that 2 is invertible in the structure sheaf of Y , i.e.,
2 ∈ Γ(Y,OY ) is invertible. Show that theOY -module map

f ] : OY −→ f∗OX
has a left inverse, i.e., there is an OY -module map τ : f∗OX → OY with τ ◦ f ] = id.
Conclude that Hn(Y,OY )→ Hn(X,OX) is injective2.

Exercise 43.6. LetX be a scheme (or a locally ringed space). The ruleU 7→ OX(U)∗

defines a sheaf of groups denoted O∗
X . Briefly explain why the Picard group of X (Defi-

nition 40.7) is equal to H1(X,O∗
X).

Exercise 43.7. Give an example of an affine schemeX with nontrivial Pic(X). Con-
clude using Exercise 43.6 that H1(X,−) is not the zero functor for any such X .

Exercise 43.8. Let A be a ring. Let I = (f1, . . . , ft) be a finitely generated ideal
of A. Let U ⊂ Spec(A) be the complement of V (I). Given a quasi-coherent OSpec(A)-
module F and ξ ∈ Hp(U,F) with p > 0, show that there exists n > 0 such that fni ξ = 0
for i = 1, . . . , t. Hint: One possible way to proceed is to use the complex you found in
Exercise 43.2.

Exercise 43.9. Let A be a ring. Let I = (f1, . . . , ft) be a finitely generated ideal
of A. Let U ⊂ Spec(A) be the complement of V (I). Let M be an A-module whose I-
torsion is zero, i.e., 0 = Ker((f1, . . . , ft) : M → M⊕t). Show that there is a canonical
isomorphism

H0(U, M̃) = colim HomA(In,M).
Warning: this is not trivial.

Exercise 43.10. Let A be a Noetherian ring. Let I be an ideal of A. Let M be an
A-module. Let M [I∞] be the set of I-power torsion elements defined by

M [I∞] = {x ∈M | there exists an n ≥ 1 such that Inx = 0}
Set M ′ = M/M [I∞]. Then the I-power torsion of M ′ is zero. Show that

colim HomA(In,M) = colim HomA(In,M ′).
Warning: this is not trivial. Hints: (1) try to reduce to M finite, (2) show any element
of Ext1

A(In, N) maps to zero in Ext1
A(In+m, N) for some m > 0 if N = M [I∞] and

M finite, (3) show the same thing as in (2) for HomA(In, N), (3) consider the long exact
sequence

0→ HomA(In,M [I∞])→ HomA(In,M)→ HomA(In,M ′)→ Ext1
A(In,M [I∞])

2There does exist a finite locally free morphism X → Y between integral schemes of degree 2 where the
map H1(Y,OY ) → H1(X,OX) is not injective.
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for M finite and compare with the sequence for In+m to conclude.

44. Cohomology revisited

Exercise 44.1. Make an example of a field k, a curve X over k, an invertible OX -
module L and a cohomology class ξ ∈ H1(X,L) with the following property: for every
surjective finite morphism π : Y → X of schemes the element ξ pulls back to a nonzero
element of H1(Y, π∗L). Hint: construct X , k, L such that there is a short exact sequence
0→ L → OX → i∗OZ → 0 where Z ⊂ X is a closed subscheme consisting of more than
1 closed point. Then look at what happens when you pullback.

Exercise 44.2. Let k be an algebraically closed field. LetX be a projective 1-dimensional
scheme. Suppose that X contains a cycle of curves, i.e., suppose there exist an n ≥ 2
and pairwise distinct 1-dimensional integral closed subschemes C1, . . . , Cn and pairwise
distinct closed points x1, . . . , xn ∈ X such that xn ∈ Cn ∩ C1 and xi ∈ Ci ∩ Ci+1
for i = 1, . . . , n − 1. Prove that H1(X,OX) is nonzero. Hint: Let F be the image
of the map OX →

⊕
OCi , and show H1(X,F) is nonzero using that κ(xi) = k and

H0(Ci,OCi) = k. Also use that H2(X,−) = 0 by Grothendieck’s theorem.

Exercise 44.3. Let X be a projective surface over an algebraically closed field k.
Prove there exists a proper closed subscheme Z ⊂ X such that H1(Z,OZ) is nonzero.
Hint: Use Exercise 44.2.

Exercise 44.4. Let X be a projective surface over an algebraically closed field k.
Show that for every n ≥ 0 there exists a proper closed subscheme Z ⊂ X such that
dimkH

1(Z,OZ) > n. Only explain how to do this by modifying the arguments in Ex-
ercise 44.3 and 44.2; don’t give all the details.

Exercise 44.5. Let X be a projective surface over an algebraically closed field k.
Prove there exists a coherent OX -module F such that H2(X,F) is nonzero. Hint: Use
the result of Exercise 44.4 and a cleverly chosen exact sequence.

Exercise 44.6. Let X and Y be schemes over a field k (feel free to assume X and
Y are nice, for example qcqs or projective over k). Set X × Y = X ×Spec(k) Y with
projections p : X × Y → X and q : X × Y → Y . For a quasi-coherent OX -module F
and a quasi-coherentOY -module G prove that

Hn(X × Y, p∗F ⊗OX×Y q
∗G) =

⊕
a+b=n

Ha(X,F)⊗k Hb(Y,G)

or just show that this holds when one takes dimensions. Extra points for “clean” solutions.

Exercise 44.7. Let k be a field. Let X = P|1 × P1 be the product of the projective
line over k with itself with projections p : X → P1

k and q : X → P1
k. Let

O(a, b) = p∗OP1
k
(a)⊗OX

q∗OP1
k
(b)

Compute the dimensions of Hi(X,O(a, b)) for all i, a, b. Hint: Use Exercise 44.6.

45. Cohomology and Hilbert polynomials

Situation 45.1. Let k be a field. LetX = Pn
k be n-dimensional projective space. Let

F be a coherentOX -module. Recall that

χ(X,F) =
∑n

i=0
(−1)i dimkH

i(X,F)
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Recall that the Hilbert polynomial of F is the function
t 7−→ χ(X,F(t))

We also recall that F(t) = F ⊗OX
OX(t) where OX(t) is the tth twist of the structure

sheaf as in Constructions, Definition 10.1. In Varieties, Subsection 35.13 we have proved
the Hilbert polynomial is a polynomial in t.

Exercise 45.2. In Situation 45.1.
(1) IfP (t) is the Hilbert polynomial ofF , what is the Hilbert polynomial ofF(−13).
(2) If Pi is the Hilbert polynomial ofFi, what is the Hilbert polynomial ofF1⊕F2.
(3) If Pi is the Hilbert polynomial of Fi and F is the kernel of a surjective map
F1 → F2, what is the Hilbert polynomial of F?

Exercise 45.3. In Situation 45.1 assume n ≥ 1. Find a coherent sheaf whose Hilbert
polynomial is t− 101.

Exercise 45.4. In Situation 45.1 assume n ≥ 2. Find a coherent sheaf whose Hilbert
polynomial is t2/2 + t/2− 1. (This is a bit tricky; it suffices if you just show there is such
a coherent sheaf.)

Exercise 45.5. In Situation 45.1 assume n ≥ 2 and k algebraically closed. LetC ⊂ X
be an integral closed subscheme of dimension 1. In other words, C is a projective curve.
Let dt+ e be the Hilbert polynomial ofOC viewed as a coherent sheaf on X .

(1) Give an upper bound on e. (Hints: Use that OC(t) only has cohomology in
degrees 0 and 1 and study H0(C,OC).)

(2) Pick a global section s ofOX(1) which intersects C transversally, i.e., such that
there are pairwise distinct closed points c1, . . . , cr ∈ C and a short exact se-
quence

0→ OC
s−→ OC(1)→

⊕
i=1,...,r

kci → 0

where kci is the skyscraper sheaf with value k in ci. (Such an s exists; please just
use this.) Show that r = d. (Hint: twist the sequence and see what you get.)

(3) Twisting the short exact sequence gives a k-linear map ϕt : Γ(C,OC(t)) →⊕
i=1,...,d k for any t. Show that if this map is surjective for t ≥ d− 1.

(4) Give a lower bound on e in terms of d. (Hint: show thatH1(C,OC(d−2)) = 0
using the result of (3) and use vanishing.)

Exercise 45.6. In Situation 45.1 assume n = 2. Let s1, s2, s3 ∈ Γ(X,OX(2)) be
three quadric equations. Consider the coherent sheaf

F = Coker
(
OX(−2)⊕3 s1,s2,s3−−−−−→ OX

)
List the possible Hilbert polynomials of suchF . (Try to visualize intersections of quadrics
in the projective plane.)

46. Curves

Exercise 46.1. Let k be an algebraically closed field. LetX be a projective curve over
k. Let L be an invertibleOX -module. Let s0, . . . , sn ∈ H0(X,L) be global sections of L.
Prove there is a natural closed subscheme

Z ⊂ Pn ×X
such that the closed point ((λ0 : . . . : λn), x) is in Z if and only if the section λ0s0 +
. . .+ λnsn vanishes at x. (Hint: describe Z affine locally.)
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Exercise 46.2. Let k be an algebraically closed field. Let X be a smooth curve over
k. Let r ≥ 1. Show that the closed subset

D ⊂ X ×Xr = Xr+1

whose closed points are the tuples (x, x1, . . . , xr) with x = xi for some i, has an invertible
ideal sheaf. In other words, show that D is an effective Cartier divisor. Hints: reduce to
r = 1 and use that X is a smooth curves to say something about the diagonal (look in
books for this).

Exercise 46.3. Let k be an algebraically closed field. Let X be a smooth projective
curve over k. Let T be a scheme of finite type over k and let

D1 ⊂ X × T and D2 ⊂ X × T
be two effective Cartier divisors such that for t ∈ T the fibres Di,t ⊂ Xt are not dense
(i.e., do not contain the generic point of the curve Xt). Prove that there is a canonical
closed subscheme Z ⊂ T such that a closed point t ∈ T is in Z if and only if for the
scheme theoretic fibres D1,t, D2,t of D1, D2 we have

D1,t ⊂ D2,t

as closed subschemes ofXt. Hints: Show that, possibly after shrinking T , you may assume
T = Spec(A) is affine and there is an affine open U ⊂ X such that Di ⊂ U × T . Then
show that M1 = Γ(D1,OD1) is a finite locally free A-module (here you will need some
nontrivial algebra — ask your friends). After shrinking T you may assume M1 is a free
A-module. Then look at

Γ(U × T, ID2)→M1 = A⊕N

and you define Z as the closed subscheme cut out by the ideal generated by coefficients of
vectors in the image of this map. Explain why this works (this will require perhaps a bit
more commutative algebra).

Exercise 46.4. Let k be an algebraically closed field. Let X be a smooth projective
curve over k. Let L be an invertible OX -module. Let s0, . . . , sn ∈ H0(X,L) be global
sections of L. Let r ≥ 1. Prove there is a natural closed subscheme

Z ⊂ Pn ×X × . . .×X = Pn ×Xr

such that the closed point ((λ0 : . . . : λn), x1, . . . , xr) is in Z if and only if the section
sλ = λ0s0 + . . . + λnsn vanishes on the divisor D = x1 + . . . + xr , i.e., the section sλ
is in L(−D). Hint: explain how this follows by combining then results of Exercises 46.2
and 46.3.

Exercise 46.5. Let k be an algebraically closed field. Let X be a smooth projective
curve over k. LetL be an invertibleOX -module. Show that there is a natural closed subset

Z ⊂ Xr

such that a closed point (x1, . . . , xr) of Xr is in Z if and only if L(−x1 − . . .− xr) has a
nonzero global section. Hint: use Exercise 46.4.

Exercise 46.6. Let k be an algebraically closed field. Let X be a smooth projective
curve over k. Let r ≥ s be integers. Show that there is a natural closed subset

Z ⊂ Xr ×Xs

such that a closed point (x1, . . . , xr, y1, . . . , ys) ofXr×Xs is inZ if and only if x1+. . .+
xr−y1− . . .−ys is linearly equivalent to an effective divisor. Hint: Choose an auxilliary
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invertible moduleL of very high degree so thatL(−D) has a nonvanshing section for any
effective divisor D of degree r. Then use the result of Exercise 46.5 twice.

Exercise 46.7. Choose your favorite algebraically closed field k. As best as you can
determine all possible grd that can exist on some curve of genus 7. While doing this also
try to

(1) determine in which cases the grd is base point free, and
(2) determine in which cases the grd gives a closed embedding in Pr.

Do the same thing if you assume your curve is “general” (make up your own notion of
general – this may be easier than the question above). Do the same thing if you assume
your curve is hyperelliptic. Do the same thing if you assume your curve is trigonal (and
not hyperelliptic). Etc.

47. Moduli

In this section we consider some naive approaches to moduli of algebraic geometric objects.

Let k be an algebraically closed field. Suppose that M is a moduli problem over k. We
won’t define exactly what this means here, but in each exercise it should be clear what we
mean. To understand the following it suffices to know what the objects of M over k are,
what the isomorphisms between objects of M over k are, and what the families of object
ofM over a variety are. Then we say the number of moduli ofM is d ≥ 0 if the following
are true

(1) there is a finite number of families Xi → Vi, i = 1, . . . , n such that every object
ofM over k is isomorphic to a fibre of one of these and such that max dim(Vi) =
d, and

(2) there is no way to do this with a smaller d.
This is really just a very rough approximation of better notions in the literature.

Exercise 47.1. Let k be an algebraically closed field. Let d ≥ 1 and n ≥ 1. Let us say
the moduli of hypersurfaces of degree d in Pn is given by

(1) an object is a hypersurface X ⊂ Pn
k of degree d,

(2) an isomorphism between two objects X ⊂ Pn
k and Y ⊂ Pn

k is an element g ∈
PGLn(k) such that g(X) = Y , and

(3) a family of hypersurfaces over a variety V is a closed subscheme X ⊂ Pn
V such

that for all v ∈ V the scheme theoretic fibreXv ofX → V is a hypersurfaces in
Pn
v .

Compute (if you can – these get progressively harder)
(1) the number of moduli when n = 1 and d arbitrary,
(2) the number of moduli when n = 2 and d = 1,
(3) the number of moduli when n = 2 and d = 2,
(4) the number of moduli when n ≥ 1 and d = 2,
(5) the number of moduli when n = 2 and d = 3,
(6) the number of moduli when n = 3 and d = 3, and
(7) the number of moduli when n = 2 and d = 4.

Exercise 47.2. Let k be an algebraically closed field. Let g ≥ 2. Let us say the moduli
of hyperelliptic curves of genus g is given by

(1) an object is a smooth projective hyperelliptic curve X of genus g,
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(2) an isomorphism between two objects X and Y is an isomorphism X → Y of
schemes over k, and

(3) a family of hyperelliptic curves of genus g over a variety V is a proper flat3

morphism X → Y such that all scheme theoretic fibres of X → V are smooth
projective hyperelliptic curves of genus g.

Show that the number of moduli is 2g − 1.

48. Global Exts

Exercise 48.1. Let k be a field. Let X = P3
k. Let L ⊂ X and P ⊂ X be a line and

a plane, viewed as closed subschemes cut out by 1, resp., 2 linear equations. Compute the
dimensions of

ExtiX(OL,OP )
for all i. Make sure to do both the case where L is contained in P and the case where L is
not contained in P .

Exercise 48.2. Let k be a field. Let X = Pn
k . Let Z ⊂ X be a closed k-rational

point viewed as a closed subscheme. For example the point with homogeneous coordinates
(1 : 0 : . . . : 0). Compute the dimensions of

ExtiX(OZ ,OZ)
for all i.

Exercise 48.3. Let X be a ringed space. Define cup-product maps

ExtiX(G,H)× ExtjX(F ,G) −→ Exti+jX (F ,H)
forOX -modules F ,G,H. (Hint: this is a super general thing.)

Exercise 48.4. Let X be a ringed space. Let E be a finite locally free OX -module
with dual E∨ = HomOX

(E ,OX). Prove the following statements
(1) ExtiOX

(F ⊗OX
E ,G) = ExtiOX

(F , E∨ ⊗OX
G) = ExtiOX

(F ,G)⊗OX
E∨, and

(2) ExtiX(F ⊗OX
E ,G) = ExtiX(F , E∨ ⊗OX

G).
Here F and G areOX -modules. Conclude that

ExtiX(E ,G) = Hi(X, E∨ ⊗OX
G)

Exercise 48.5. Let X be a ringed space. Let E be a finite locally free OX -module.
Construct a trace map

ExtiX(E , E)→ Hi(X,OX)
for all i. Generalize to a trace map

ExtiX(E , E ⊗OX
F)→ Hi(X,F)

for anyOX -module F .
Exercise 48.6. Let k be a field. Let X = Pd

k. Set ωX/k = OX(−d − 1). Prove that
for finite locally free modules E , F the cup product on Ext combined with the trace map
on Ext
ExtiX(E ,F⊗OX

ωX/k)×Extd−i
X (F , E)→ ExtdX(F ,F⊗OX

ωX/k)→ Hd(X,ωX/k) = k

produces a nondegenerate pairing. Hint: you can either reprove duality in this setting or
you can reduce to cohomology of sheaves and apply the Serre duality theorem as proved
in the lectures.

3You can drop this assumption without changing the answer to the question.
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49. Divisors

We collect all relevant definitions here in one spot for convenience.

Definition 49.1. Throughout, let S be any scheme and let X be a Noetherian, inte-
gral scheme.

(1) A Weil divisor onX is a formal linear combination Σni[Zi] of prime divisorsZi
with integer coefficients.

(2) A prime divisor is a closed subscheme Z ⊂ X , which is integral with generic
point ξ ∈ Z such thatOX,ξ has dimension 1. We will use the notationOX,Z =
OX,ξ when ξ ∈ Z ⊂ X is as above. Note thatOX,Z ⊂ K(X) is a subring of the
function field of X .

(3) The Weil divisor associated to a rational function f ∈ K(X)∗ is the sum ΣvZ(f)[Z].
Here vZ(f) is defined as follows
(a) If f ∈ O∗

X,Z then vZ(f) = 0.
(b) If f ∈ OX,Z then

vZ(f) = lengthOX,Z
(OX,Z/(f)).

(c) If f = a
b with a, b ∈ OX,Z then

vZ(f) = lengthOX,Z
(OX,Z/(a))− lengthOX,Z

(OX,Z/(b)).

(4) An effective Cartier divisor on a scheme S is a closed subscheme D ⊂ S such
that every point d ∈ D has an affine open neighbourhood Spec(A) = U ⊂ S in
S so that D ∩ U = Spec(A/(f)) with f ∈ A a nonzerodivisor.

(5) The Weil divisor [D] associated to an effective Cartier divisor D ⊂ X of our
Noetherian integral schemeX is defined as the sum ΣvZ(D)[Z] where vZ(D) is
defined as follows
(a) If the generic point ξ of Z is not in D then vZ(D) = 0.
(b) If the generic point ξ of Z is in D then

vZ(D) = lengthOX,Z
(OX,Z/(f))

where f ∈ OX,Z = OX,ξ is the nonzerodivisor which definesD in an affine
neighbourhood of ξ (as in (4) above).

(6) Let S be a scheme. The sheaf of total quotient rings KS is the sheaf of OS-
algebras which is the sheafification of the pre-sheaf K′ defined as follows. For
U ⊂ S open we setK′(U) = S−1

U OS(U) where SU ⊂ OS(U) is the multiplica-
tive subset consisting of sections f ∈ OS(U) such that the germ of f in OS,u
is a nonzerodivisor for every u ∈ U . In particular the elements of SU are all
nonzerodivisors. ThusOS is a subsheaf ofKS , and we get a short exact sequence

0→ O∗
S → K∗

S → K∗
S/O∗

S → 0.

(7) A Cartier divisor on a scheme S is a global section of the quotient sheafK∗
S/O∗

S .
(8) The Weil divisor associated to a Cartier divisor τ ∈ Γ(X,K∗

X/O∗
X) over our

Noetherian integral scheme X is the sum ΣvZ(τ)[Z] where vZ(τ) is defined as
by the following recipe
(a) If the germ of τ at the generic point ξ of Z is zero – in other words the

image of τ in the stalk (K∗/O∗)ξ is “zero” – then vZ(τ) = 0.
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(b) Find an affine open neighbourhood Spec(A) = U ⊂ X so that τ |U is the
image of a section f ∈ K(U) and moreover f = a/b with a, b ∈ A. Then
we set

vZ(f) = lengthOX,Z
(OX,Z/(a))− lengthOX,Z

(OX,Z/(b)).

Remarks 49.2. Here are some trivial remarks.
(1) On a Noetherian integral scheme X the sheaf KX is constant with value the

function field K(X).
(2) To make sense out of the definitions above one needs to show that

lengthO(O/(ab)) = lengthO(O/(a)) + lengthO(O/(b))

for any pair (a, b) of nonzero elements of a Noetherian 1-dimensional local do-
mainO. This will be done in the lectures.

Exercise 49.3. (On any scheme.) Describe how to assign a Cartier divisor to an
effective Cartier divisor.

Exercise 49.4. (On an integral scheme.) Describe how to assign a Cartier divisor D
to a rational function f such that the Weil divisor associated toD and to f agree. (This is
silly.)

Exercise 49.5. Give an example of a Weil divisor on a variety which is not the Weil
divisor associated to any Cartier divisor.

Exercise 49.6. Give an example of a Weil divisor D on a variety which is not the
Weil divisor associated to any Cartier divisor but such that nD is the Weil divisor associ-
ated to a Cartier divisor for some n > 1.

Exercise 49.7. Give an example of a Weil divisor D on a variety which is not the
Weil divisor associated to any Cartier divisor and such that nD is NOT the Weil divisor
associated to a Cartier divisor for any n > 1. (Hint: Consider a cone, for example X :
xy − zw = 0 in A4

k. Try to show that D = [x = 0, z = 0] works.)

Exercise 49.8. On a separated schemeX of finite type over a field: Give an example
of a Cartier divisor which is not the difference of two effective Cartier divisors. Hint:
Find some X which does not have any nonempty effective Cartier divisors for example
the scheme constructed in [?, III Exercise 5.9]. There is even an example withX a variety
– namely the variety of Exercise 49.9.

Exercise 49.9. Example of a nonprojective proper variety. Let k be a field. Let L ⊂
P3
k be a line and let C ⊂ P3

k be a nonsingular conic. Assume that C ∩ L = ∅. Choose an
isomorphism ϕ : L → C. Let X be the k-variety obtained by glueing C to L via ϕ. In
other words there is a surjective proper birational morphism

π : P3
k −→ X

and an openU ⊂ X such thatπ : π−1(U)→ U is an isomorphism, π−1(U) = P3
k\(L∪C)

and such that π|L = π|C ◦ ϕ. (These conditions do not yet uniquely define X . In order
to do this you need to specify the structure sheaf ofX along points of Z = X \U .) Show
X exists, is a proper variety, but is not projective. (Hint: For existence use the result of
Exercise 37.9. For non-projectivity use that Pic(P3

k) = Z to show thatX cannot have an
ample invertible sheaf.)
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50. Differentials

Definitions and results. Kähler differentials.
(1) Let R → A be a ring map. The module of Kähler differentials of A over R is

denoted ΩA/R. It is generated by the elements da, a ∈ A subject to the relations:

d(a1 + a2) = da1 + da2, d(a1a2) = a1da2 + a2da1, dr = 0

The canonical universal R-derivation d : A→ ΩA/R maps a 7→ da.
(2) Consider the short exact sequence

0→ I → A⊗R A→ A→ 0

which defines the ideal I . There is a canonical derivation d : A → I/I2 which
maps a to the class of a⊗ 1− 1⊗ a. This is another presentation of the module
of derivations of A over R, in other words

(I/I2, d) ∼= (ΩA/R, d).

(3) For multiplicative subsets SR ⊂ R and SA ⊂ A such that SR maps into SA we
have

ΩS−1
A
A/S−1

R
R = S−1

A ΩA/R.

(4) IfA is a finitely presentedR-algebra then ΩA/R is a finitely presentedA-module.
Hence in this case the fitting ideals of ΩA/R are defined.

(5) Let f : X → S be a morphism of schemes. There is a quasi-coherent sheaf of
OX -modules ΩX/S and aOS-linear derivation

d : OX −→ ΩX/S
such that for any affine opens Spec(A) = U ⊂ X , Spec(R) = V ⊂ S with
f(U) ⊂ V we have

Γ(Spec(A),ΩX/S) = ΩA/R
compatibly with d.

Exercise 50.1. Let k[ε] be the ring of dual numbers over the field k, i.e., ε2 = 0.
(1) Consider the ring map

R = k[ε]→ A = k[x, ε]/(εx)

Show that the Fitting ideals of ΩA/R are (starting with the zeroth Fitting ideal)

(ε), A,A, . . .

(2) Consider the map R = k[t] → A = k[x, y, t]/(x(y − t)(y − 1), x(x − t)).
Show that the Fitting ideals of ΩA/R inA are (assume characteristic k is zero for
simplicity)

x(2x− t)(2y − t− 1)A, (x, y, t) ∩ (x, y − 1, t), A, A, . . .

So the 0-the Fitting ideal is cut out by a single element ofA, the 1st Fitting ideal
defines two closed points of Spec(A), and the others are all trivial.

(3) Consider the map R = k[t] → A = k[x, y, t]/(xy − tn). Compute the Fitting
ideals of ΩA/R.
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Remark 50.2. The kth Fitting ideal of ΩX/S is commonly used to define the singular
scheme of the morphism X → S when X has relative dimension k over S. But as part
(a) shows, you have to be careful doing this when your family does not have “constant”
fibre dimension, e.g., when it is not flat. As part (b) shows, flatness doesn’t guarantee it
works either (and yes this is a flat family). In “good cases” – such as in (c) – for families
of curves you expect the 0-th Fitting ideal to be zero and the 1st Fitting ideal to define
(scheme-theoretically) the singular locus.

Exercise 50.3. Suppose that R is a ring and

A = R[x1, . . . , xn]/(f1, . . . , fn).
Note that we are assuming that A is presented by the same number of equations as vari-
ables. Thus the matrix of partial derivatives

(∂fi/∂xj)
is n × n, i.e., a square matrix. Assume that its determinant is invertible as an element in
A. Note that this is exactly the condition that says that ΩA/R = (0) in this case of n-
generators and n relations. Let π : B′ → B be a surjection of R-algebras whose kernel
J has square zero (as an ideal in B′). Let ϕ : A → B be a homomorphism of R-algebras.
Show there exists a unique homomorphism of R-algebras ϕ′ : A → B′ such that ϕ =
π ◦ ϕ′.

Exercise 50.4. Find a generalization of the result of Exercise 50.3 to the case where
A = R[x, y]/(f).

Exercise 50.5. Let k be a field, let f1, . . . , fc ∈ k[x1, . . . , xn], and letA = k[x1, . . . , xn]/(f1, . . . , fc).
Assume that fj(0, . . . , 0) = 0. This means that m = (x1, . . . , xn)A is a maximal ideal.
Prove that the local ring Am is regular if the rank of the matrix

(∂fj/∂xi)|(x1,...,xn)=(0,...,0)

is c. What is the dimension of Am in this case? Show that the converse is false by giving
an example where Am is regular but the rank is less than c; what is the dimension of Am

in your example?

51. Schemes, Final Exam, Fall 2007

These were the questions in the final exam of a course on Schemes, in the Spring of 2007
at Columbia University.

Exercise 51.1 (Definitions). Provide definitions of the following concepts.
(1) X is a scheme
(2) the morphism of schemes f : X → Y is finite
(3) the morphisms of schemes f : X → Y is of finite type
(4) the scheme X is Noetherian
(5) theOX -module L on the scheme X is invertible
(6) the genus of a nonsingular projective curve over an algebraically closed field

Exercise 51.2. Let X = Spec(Z[x, y]), and let F be a quasi-coherent OX -module.
Suppose that F is zero when restricted to the standard affine open D(x).

(1) Show that every global section s of F is killed by some power of x, i.e., xns = 0
for some n ∈ N.

(2) Do you think the same is true if we do not assume that F is quasi-coherent?



7234 111. EXERCISES

Exercise 51.3. Suppose that X → Spec(R) is a proper morphism and that R is
a discrete valuation ring with residue field k. Suppose that X ×Spec(R) Spec(k) is the
empty scheme. Show that X is the empty scheme.

Exercise 51.4. Consider the projective4 variety
P1 ×P1 = P1

C ×Spec(C) P1
C

over the field of complex numbers C. It is covered by four affine pieces, corresponding to
pairs of standard affine pieces of P1

C. For example, suppose we use homogeneous coordi-
natesX0, X1 on the first factor and Y0, Y1 on the second. Set x = X1/X0, and y = Y1/Y0.
Then the 4 affine open pieces are the spectra of the rings

C[x, y], C[x−1, y], C[x, y−1], C[x−1, y−1].
LetX ⊂ P1×P1 be the closed subscheme which is the closure of the closed subset of the
first affine piece given by the equation

y3(x4 + 1) = x4 − 1.
(1) Show that X is contained in the union of the first and the last of the 4 affine

open pieces.
(2) Show that X is a nonsingular projective curve.
(3) Consider the morphism pr2 : X → P1 (projection onto the first factor). On the

first affine piece it is the map (x, y) 7→ x. Briefly explain why it has degree 3.
(4) Compute the ramification points and ramification indices for the map pr2 :

X → P1.
(5) Compute the genus of X .

Exercise 51.5. Let X → Spec(Z) be a morphism of finite type. Suppose that there
is an infinite number of primes p such that X ×Spec(Z) Spec(Fp) is not empty.

(1) Show that X ×Spec(Z) Spec(Q) is not empty.
(2) Do you think the same is true if we replace the condition “finite type” by the

condition “locally of finite type”?

52. Schemes, Final Exam, Spring 2009

These were the questions in the final exam of a course on Schemes, in the Spring of 2009
at Columbia University.

Exercise 52.1. Let X be a Noetherian scheme. Let F be a coherent sheaf on X . Let
x ∈ X be a point. Assume that Supp(F) = {x}.

(1) Show that x is a closed point of X .
(2) Show that H0(X,F) is not zero.
(3) Show that F is generated by global sections.
(4) Show that Hp(X,F) = 0 for p > 0.

Remark 52.2. Let k be a field. Let P2
k = Proj(k[X0, X1, X2]). Any invertible sheaf

on P2
k is isomorphic toOP2

k
(n) for some n ∈ Z. Recall that

Γ(P2
k,OP2

k
(n)) = k[X0, X1, X2]n

is the degreen part of the polynomial ring. For a quasi-coherent sheafF on P2
k setF(n) =

F ⊗OP2
k

OP2
k
(n) as usual.

4The projective embedding is ((X0, X1), (Y0, Y1)) 7→ (X0Y0, X0Y1, X1Y0, X1Y1) in other words
(x, y) 7→ (1, y, x, xy).
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Exercise 52.3. Let k be a field. Let E be a vector bundle on P2
k , i.e., a finite locally free

OP2
k

-module. We say E is split if E is isomorphic to a direct sum invertibleOP2
k

-modules.

(1) Show that E is split if and only if E(n) is split.
(2) Show that if E is split then H1(P2

k, E(n)) = 0 for all n ∈ Z.
(3) Let

ϕ : OP2
k
−→ OP2

k
(1)⊕OP2

k
(1)⊕OP2

k
(1)

be given by linear forms L0, L1, L2 ∈ Γ(P2
k,OP2

k
(1)). Assume Li 6= 0 for some

i. What is the condition on L0, L1, L2 such that the cokernel of ϕ is a vector
bundle? Why?

(4) Given an example of such a ϕ.
(5) Show that Coker(ϕ) is not split (if it is a vector bundle).

Remark 52.4. Freely use the following facts on dimension theory (and add more if
you need more).

(1) The dimension of a scheme is the supremum of the length of chains of irreducible
closed subsets.

(2) The dimension of a finite type scheme over a field is the maximum of the dimen-
sions of its affine opens.

(3) The dimension of a Noetherian scheme is the maximum of the dimensions of its
irreducible components.

(4) The dimension of an affine scheme coincides with the dimension of the corre-
sponding ring.

(5) Let k be a field and let A be a finite type k-algebra. If A is a domain, and x 6= 0,
then dim(A) = dim(A/xA) + 1.

Exercise 52.5. Let k be a field. Let X be a projective, reduced scheme over k. Let
f : X → P1

k be a morphism of schemes over k. Assume there exists an integer d ≥ 0 such
that for every point t ∈ P1

k the fibre Xt = f−1(t) is irreducible of dimension d. (Recall
that an irreducible space is not empty.)

(1) Show that dim(X) = d+ 1.
(2) Let X0 ⊂ X be an irreducible component of X of dimension d+ 1. Prove that

for every t ∈ P1
k the fibre X0,t has dimension d.

(3) What can you conclude about Xt and X0,t from the above?
(4) Show that X is irreducible.

Remark 52.6. Given a projective scheme X over a field k and a coherent sheaf F on
X we set

χ(X,F) =
∑

i≥0
(−1)i dimkH

i(X,F).

Exercise 52.7. Let k be a field. Write P3
k = Proj(k[X0, X1, X2, X3]). LetC ⊂ P3

k be
a type (5, 6) complete intersection curve. This means that there existF ∈ k[X0, X1, X2, X3]5
and G ∈ k[X0, X1, X2, X3]6 such that

C = Proj(k[X0, X1, X2, X3]/(F,G))

is a variety of dimension 1. (Variety implies reduced and irreducible, but feel free to assume
C is nonsingular if you like.) Let i : C → P3

k be the corresponding closed immersion.
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Being a complete intersection also implies that

0 // OP3
k
(−11)

(
−G
F

)
// OP3

k
(−5)⊕OP3

k
(−6)

(F,G) // OP3
k

// i∗OC // 0

is an exact sequence of sheaves. Please use these facts to:
(1) compute χ(C, i∗OP3

k
(n)) for any n ∈ Z, and

(2) compute the dimension of H1(C,OC).

Exercise 52.8. Let k be a field. Consider the rings
A = k[x, y]/(xy)
B = k[u, v]/(uv)
C = k[t, t−1]× k[s, s−1]

and the k-algebra maps

A −→ C, x 7→ (t, 0), y 7→ (0, s)
B −→ C, u 7→ (t−1, 0), v 7→ (0, s−1)

It is a true fact that these maps induce isomorphisms Ax+y → C and Bu+v → C. Hence
the maps A → C and B → C identify Spec(C) with open subsets of Spec(A) and
Spec(B). LetX be the scheme obtained by glueing Spec(A) and Spec(B) along Spec(C):

X = Spec(A)qSpec(C) Spec(B).
As we saw in the course such a scheme exists and there are affine opens Spec(A) ⊂ X and
Spec(B) ⊂ X whose overlap is exactly Spec(C) identified with an open of each of these
using the maps above.

(1) Why is X separated?
(2) Why is X of finite type over k?
(3) Compute H1(X,OX), or what is its dimension?
(4) What is a more geometric way to describe X?

53. Schemes, Final Exam, Fall 2010

These were the questions in the final exam of a course on Schemes, in the Fall of 2010 at
Columbia University.

Exercise 53.1 (Definitions). Provide definitions of the following concepts.
(1) a separated scheme,
(2) a quasi-compact morphism of schemes,
(3) an affine morphism of schemes,
(4) a multiplicative subset of a ring,
(5) a Noetherian scheme,
(6) a variety.

Exercise 53.2. Prime avoidance.
(1) Let A be a ring. Let I ⊂ A be an ideal and let q1, q2 be prime ideals such that

I 6⊂ qi. Show that I 6⊂ q1 ∪ q2.
(2) What is a geometric interpretation of (1)?
(3) LetX = Proj(S) for some graded ring S. Let x1, x2 ∈ X . Show that there exists

a standard open D+(F ) which contains both x1 and x2.
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Exercise 53.3. Why is a composition of affine morphisms affine?

Exercise 53.4 (Examples). Give examples of the following:
(1) A reducible projective scheme over a field k.
(2) A scheme with 100 points.
(3) A non-affine morphism of schemes.

Exercise 53.5. Chevalley’s theorem and the Hilbert Nullstellensatz.
(1) Let p ⊂ Z[x1, . . . , xn] be a maximal ideal. What does Chevalley’s theorem imply

about p ∩ Z?
(2) In turn, what does the Hilbert Nullstellensatz imply about κ(p)?

Exercise 53.6. Let A be a ring. Let S = A[X] as a graded A-algebra where X has
degree 1. Show that Proj(S) ∼= Spec(A) as schemes over A.

Exercise 53.7. LetA→ B be a finite ring map. Show that Spec(B) is a H-projective
scheme over Spec(A).

Exercise 53.8. Give an example of a schemeX over a field k such thatX is irreducible
and such that for some finite extension k′/k the base change Xk′ = X ×Spec(k) Spec(k′)
is connected but reducible.

54. Schemes, Final Exam, Spring 2011

These were the questions in the final exam of a course on Schemes, in the Spring of 2011
at Columbia University.

Exercise 54.1 (Definitions). Provide definitions of the italicized concepts.
(1) a separated scheme,
(2) a universally closed morphism of schemes,
(3) A dominates B for local rings A,B contained in a common field,
(4) the dimension of a scheme X ,
(5) the codimension of an irreducible closed subscheme Y of a scheme X ,

Exercise 54.2 (Results). State something formally equivalent to the fact discussed in
the course.

(1) The valuative criterion of properness for a morphism X → Y of varieties for
example.

(2) The relationship between dim(X) and the function field k(X) ofX for a variety
X over a field k.

(3) Fill in the blank: The category of nonsingular projective curves over k and non-
constant morphisms is anti-equivalent to . . . . . . . . ..

(4) Noether normalization.
(5) Jacobian criterion.

Exercise 54.3. Let k be a field. Let F ∈ k[X0, X1, X2] be a homogeneous form of
degree d. Assume that C = V+(F ) ⊂ P2

k is a smooth curve over k. Denote i : C → P2
k

the corresponding closed immersion.
(1) Show that there is a short exact sequence

0→ OP2
k
(−d)→ OP2

k
→ i∗OC → 0

of coherent sheaves on P2
k: tell me what the maps are and briefly why it is exact.

(2) Conclude that H0(C,OC) = k.
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(3) Compute the genus of C.
(4) Assume now that P = (0 : 0 : 1) is not on C. Prove that π : C → P1

k given by
(a0 : a1 : a2) 7→ (a0 : a1) has degree d.

(5) Assume k is algebraically closed, assume all ramification indices (the “ei”) are 1
or 2, and assume the characteristic of k is not equal to 2. How many ramification
points does π : C → P1

k have?
(6) In terms of F , what do you think is a set of equations of the set of ramification

points of π?
(7) Can you guess KC?

Exercise 54.4. Let k be a field. LetX be a “triangle” over k, i.e., you getX by glueing
three copies of A1

k to each other by identifying 0 on the first copy to 1 on the second copy,
0 on the second copy to 1 on the third copy, and 0 on the third copy to 1 on the first copy.
It turns out that X is isomorphic to Spec(k[x, y]/(xy(x + y + 1))); feel free to use this.
Compute the Picard group of X .

Exercise 54.5. Let k be a field. Let π : X → Y be a finite birational morphism of
curves with X a projective nonsingular curve over k. It follows from the material in the
course that Y is a proper curve and that π is the normalization morphism of Y . We have
also seen in the course that there exists a dense open V ⊂ Y such that U = π−1(V ) is a
dense open in X and π : U → V is an isomorphism.

(1) Show that there exists an effective Cartier divisorD ⊂ X such thatD ⊂ U and
such thatOX(D) is ample on X .

(2) Let D be as in (1). Show that E = π(D) is an effective Cartier divisor on Y .
(3) Briefly indicate why

(a) the map OY → π∗OX has a coherent cokernel Q which is supported in
Y \ V , and

(b) for every n there is a corresponding map OY (nE) → π∗OX(nD) whose
cokernel is isomorphic to Q.

(4) Show that dimkH
0(X,OX(nD))−dimkH

0(Y,OY (nE)) is bounded (by what?)
and conclude that the invertible sheaf OY (nE) has lots of sections for large n
(why?).

55. Schemes, Final Exam, Fall 2011

These were the questions in the final exam of a course on Commutative Algebra, in the
Fall of 2011 at Columbia University.

Exercise 55.1 (Definitions). Provide definitions of the italicized concepts.
(1) a Noetherian ring,
(2) a Noetherian scheme,
(3) a finite ring homomorphism,
(4) a finite morphism of schemes,
(5) the dimension of a ring.

Exercise 55.2 (Results). State something formally equivalent to the fact discussed in
the course.

(1) Zariski’s Main Theorem.
(2) Noether normalization.
(3) Chinese remainder theorem.
(4) Going up for finite ring maps.



56. SCHEMES, FINAL EXAM, FALL 2013 7239

Exercise 55.3. Let (A,m, κ) be a Noetherian local ring whose residue field has charac-
teristic not 2. Suppose thatm is generated by three elements x, y, z and that x2+y2+z2 =
0 in A.

(1) What are the possible values of dim(A)?
(2) Give an example to show that each value is possible.
(3) Show that A is a domain if dim(A) = 2. (Hint: look at

⊕
n≥0 m

n/mn+1.)

Exercise 55.4. Let A be a ring. Let S ⊂ T ⊂ A be multiplicative subsets. Assume
that

{q | q ∩ S = ∅} = {q | q ∩ T = ∅}.
Show that S−1A→ T−1A is an isomorphism.

Exercise 55.5. Let k be an algebraically closed field. Let

V0 = {A ∈Mat(3× 3, k) | rank(A) = 1} ⊂Mat(3× 3, k) = k9.

(1) Show that V0 is the set of closed points of a (Zariski) locally closed subset V ⊂
A9
k.

(2) Is V irreducible?
(3) What is dim(V )?

Exercise 55.6. Prove that the ideal (x2, xy, y2) in C[x, y] cannot be generated by 2
elements.

Exercise 55.7. Let f ∈ C[x, y] be a nonconstant polynomial. Show that for some
α, β ∈ C the C-algebra map

C[t] −→ C[x, y]/(f), t 7−→ αx+ βy

is finite.

Exercise 55.8. Show that given finitely many points p1, . . . , pn ∈ C2 the scheme
A2

C \ {p1, . . . , pn} is a union of two affine opens.

Exercise 55.9. Show that there exists a surjective morphism of schemes A1
C → P1

C.
(Surjective just means surjective on underlying sets of points.)

Exercise 55.10. Let k be an algebraically closed field. Let A ⊂ B be an extension
of domains which are both finite type k-algebras. Prove that the image of Spec(B) →
Spec(A) contains a nonempty open subset of Spec(A) using the following steps:

(1) Prove it if A→ B is also finite.
(2) Prove it in case the fraction field of B is a finite extension of the fraction field

of A.
(3) Reduce the statement to the previous case.

56. Schemes, Final Exam, Fall 2013

These were the questions in the final exam of a course on Commutative Algebra, in the
Fall of 2013 at Columbia University.

Exercise 56.1 (Definitions). Provide definitions of the italicized concepts.
(1) a radical ideal of a ring,
(2) a finite type ring homomorphism,
(3) a differential a la Weil,
(4) a scheme.
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Exercise 56.2 (Results). State something formally equivalent to the fact discussed in
the course.

(1) result on hilbert polynomials of graded modules.
(2) dimension of a Noetherian local ring (R,m) and

⊕
n≥0 m

n/mn+1.
(3) Riemann-Roch.
(4) Clifford’s theorem.
(5) Chevalley’s theorem.

Exercise 56.3. Let A → B be a ring map. Let S ⊂ A be a multiplicative subset.
Assume that A → B is of finite type and S−1A → S−1B is surjective. Show that there
exists an f ∈ S such that Af → Bf is surjective.

Exercise 56.4. Give an example of an injective local homomorphismA→ B of local
rings, such that Spec(B)→ Spec(A) is not surjective.

Situation 56.5 (Notation plane curve). Let k be an algebraically closed field. Let
F (X0, X1, X2) ∈ k[X0, X1, X2] be an irreducible polynomial homogeneous of degree d.
We let

D = V (F ) ⊂ P2

be the projective plane curve given by the vanishing of F . Set x = X1/X0 and y =
X2/X0 and f(x, y) = X−d

0 F (X0, X1, X2) = F (1, x, y). We denote K the fraction
field of the domain k[x, y]/(f). We let C be the abstract curve corresponding to K. Re-
call (from the lectures) that there is a surjective map C → D which is bijective over the
nonsingular locus of D and an isomorphism if D is nonsingular. Set fx = ∂f/∂x and
fy = ∂f/∂y. Finally, we denote ω = dx/fy = −dy/fx the element of ΩK/k discussed
in the lectures. Denote KC the divisor of zeros and poles of ω.

Exercise 56.6. In Situation 56.5 assume d ≥ 3 and that the curve D has exactly one
singular point, namely P = (1 : 0 : 0). Assume further that we have the expansion

f(x, y) = xy + h.o.t

around P = (0, 0). Then C has two points v and w lying over P characterized by
v(x) = 1, v(y) > 1 and w(x) > 1, w(y) = 1

(1) Show that the element ω = dx/fy = −dy/fx of ΩK/k has a first order pole at
both v and w. (The behaviour of ω at nonsingular points is as discussed in the
lectures.)

(2) In the lectures we have shown thatω vanishes to order d−3 at the divisorX0 = 0
pulled back to C under the map C → D. Combined with the information of (1)
what is the degree of the divisor of zeros and poles of ω on C?

(3) What is the genus of the curve C?

Exercise 56.7. In Situation 56.5 assume d = 5 and that the curve C = D is nonsin-
gular. In the lectures we have shown that the genus of C is 6 and that the linear system
KC is given by

L(KC) = {hω | h ∈ k[x, y], deg(h) ≤ 2}
where deg indicates total degree5. Let P1, P2, P3, P4, P5 ∈ D be pairwise distinct points
lying in the affine open X0 6= 0. We denote

∑
Pi = P1 + P2 + P3 + P4 + P5 the

corresponding divisor of C.

5We get ≤ 2 because d− 3 = 5 − 3 = 2.
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(1) Describe L(KC −
∑
Pi) in terms of polynomials.

(2) What are the possibilities for l(
∑
Pi)?

Exercise 56.8. Write down an F as in Situation 56.5 with d = 100 such that the
genus of C is 0.

Exercise 56.9. Let k be an algebraically closed field. Let K/k be finitely generated
field extension of transcendence degree 1. Let C be the abstract curve corresponding to
K. Let V ⊂ K be a grd and let Φ : C → Pr be the corresponding morphism. Show that
the image of C is contained in a quadric6 if V is a complete linear system and d is large
enough relative to the genus of C. (Extra credit: good bound on the degree needed.)

Exercise 56.10. Notation as in Situation 56.5. Let U ⊂ P2
k be the open subscheme

whose complement is D. Describe the k-algebra A = OP2
k
(U). Give an upper bound for

the number of generators of A as a k-algebra.

57. Schemes, Final Exam, Spring 2014

These were the questions in the final exam of a course on Schemes, in the Spring of 2014
at Columbia University.

Exercise 57.1 (Definitions). Let (X,OX) be a scheme. Provide definitions of the
italicized concepts.

(1) the local ring of X at a point x,
(2) a quasi-coherent sheaf ofOX -modules,
(3) a coherent sheaf ofOX -modules (please assume X is locally Noetherian,
(4) an affine open of X ,
(5) a finite morphism of schemes X → Y .

Exercise 57.2 (Theorems). Precisely state a nontrivial fact discussed in the lectures
related to each item.

(1) on birational invariance of pluri-genera of varieties,
(2) being an affine morphism is a local property,
(3) the topology of a scheme theoretic fibre of a morphism, and
(4) valuative criterion of properness.

Exercise 57.3. Let X = A2
C where C is the field of complex numbers. A line will

mean a closed subscheme of X defined by one linear equation ax + by + c = 0 for some
a, b, c ∈ C with (a, b) 6= (0, 0). A curve will mean an irreducible (so nonempty) closed
subscheme C ⊂ X of dimension 1. A quadric will mean a curve defined by one quadratic
equation ax2 + bxy + cy2 + dx+ ey + f = 0 for some a, b, c, d, e, f ∈ C and (a, b, c) 6=
(0, 0, 0).

(1) Find a curve C such that every line has nonempty intersection with C.
(2) Find a curveC such that every line and every quadric has nonempty intersection

with C.
(3) Show that for every curve C there exists another curve such that C ∩ C ′ = ∅.

Exercise 57.4. Let k be a field. Let b : X → A2
k be the blow up of the affine plane

in the origin. In other words, if A2
k = Spec(k[x, y]), then X = Proj(

⊕
n≥0 m

n) where
m = (x, y) ⊂ k[x, y]. Prove the following statements

(1) the scheme theoretic fibre E of b over the origin is isomorphic to P1
k ,

6A quadric is a degree 2 hypersurface, i.e., the zero set in Pr of a degree 2 homogeneous polynomial.
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(2) E is an effective Cartier divisor on X ,
(3) the restriction ofOX(−E) to E is a line bundle of degree 1.

(Recall thatOX(−E) is the ideal sheaf of E in X .)

Exercise 57.5. Let k be a field. Let X be a projective variety over k. Show there
exists an affine variety U over k and a surjective morphism of varieties U → X .

Exercise 57.6. Let k be a field of characteristic p > 0 different from 2, 3. Consider
the closed subscheme X of Pn

k defined by∑
i=0,...,n

Xi = 0,
∑

i=0,...,n
X2
i = 0,

∑
i=0,...,n

X3
i = 0

For which pairs (n, p) is this variety singular?

58. Commutative Algebra, Final Exam, Fall 2016

These were the questions in the final exam of a course on Commutative Algebra, in the
Fall of 2016 at Columbia University.

Exercise 58.1 (Definitions). Let R be a ring. Provide definitions of the italicized
concepts.

(1) the local ring of R at a prime p,
(2) a finite R-module,
(3) a finitely presented R-module,
(4) R is regular,
(5) R is catenary,
(6) R is Cohen-Macaulay.

Exercise 58.2 (Theorems). Precisely state a nontrivial fact discussed in the lectures
related to each item.

(1) regular rings,
(2) associated primes of Cohen-Macaulay modules,
(3) dimension of a finite type domain over a field, and
(4) Chevalley’s theorem.

Exercise 58.3. Let A→ B be a ring map such that
(1) A is local with maximal ideal m,
(2) A→ B is a finite7 ring map,
(3) A→ B is injective (we think of A as a subring of B).

Show that there is a prime ideal q ⊂ B with m = A ∩ q.

Exercise 58.4. Let k be a field. Let R = k[x, y, z, w]. Consider the ideal I =
(xy, xz, xw). What are the irreducible components of V (I) ⊂ Spec(R) and what are
their dimensions?

Exercise 58.5. Let k be a field. Let A = k[x, x−1] and B = k[y]. Show that any
k-algebra map ϕ : A→ B maps x to a constant.

Exercise 58.6. Consider the ring R = Z[x, y]/(xy − 7). Prove that R is regular.

Given a Noetherian local ring (R,m, κ) for n ≥ 0 we let ϕR(n) = dimκ(mn/mn+1).

7Recall that this means B is finite as an A-module.
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Exercise 58.7. Does there exist a Noetherian local ring R with ϕR(n) = n + 1 for
all n ≥ 0?

Exercise 58.8. LetR be a Noetherian local ring. Suppose thatϕR(0) = 1,ϕR(1) = 3,
ϕR(2) = 5. Show that ϕR(3) ≤ 7.

59. Schemes, Final Exam, Spring 2017

These were the questions in the final exam of a course on schemes, in the Spring of 2017
at Columbia University.

Exercise 59.1 (Definitions). Let f : X → Y be a morphism of schemes. Provide
brief definitions of the italicized concepts.

(1) the scheme theoretic fibre of f at y ∈ Y ,
(2) f is a finite morphism,
(3) a quasi-coherentOX -module,
(4) X is variety,
(5) f is a smooth morphism,
(6) f is a proper morphism.

Exercise 59.2 (Theorems). Precisely but briefly state a nontrivial fact discussed in
the lectures related to each item.

(1) pushforward of quasi-coherent sheaves,
(2) cohomology of coherent sheaves on projective varieties,
(3) Serre duality for a projective scheme over a field, and
(4) Riemann-Hurwitz.

Exercise 59.3. Let k be an algebraically closed field. Let ` > 100 be a prime number
different from the characteristic of k. Let X be the nonsingular projective model of the
affine curve given by the equation

y` = x(x− 1)3

in A2
k. Answer the following questions:
(1) What is the genus of X?
(2) Give an upper bound for the gonality8 of X .

Exercise 59.4. Let k be an algebraically closed field. Let X be a reduced, projec-
tive scheme over k all of whose irreducible components have the same dimension 1. Let
ωX/k be the relative dualizing module. Show that if dimkH

1(X,ωX/k) > 1, then X is
disconnected.

Exercise 59.5. Give an example of a scheme X and a nontrivial invertible OX -
module L such that both H0(X,L) and H0(X,L⊗−1) are nonzero.

Exercise 59.6. Let k be an algebraically closed field. Let g ≥ 3. Let X and X ′ be
smooth projective curves over k of genus g and g + 1. Let Y ⊂ X ×X ′ be a curve such
that the projections Y → X and Y → X ′ are nonconstant. Prove that the nonsingular
projective model of Y has genus ≥ 2g + 1.

Exercise 59.7. Let k be a finite field. Let g > 1. Sketch a proof of the following:
there are only a finite number of isomorphism classes of smooth projective curves over k
of genus g. (You will get credit for even just trying to answer this.)

8The gonality is the smallest degree of a nonconstant morphism from X to P1
k .
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60. Commutative Algebra, Final Exam, Fall 2017

These were the questions in the final exam of a course on commutative algebra, in the Fall
of 2017 at Columbia University.

Exercise 60.1 (Definitions). Provide brief definitions of the italicized concepts.
(1) the left adjoint of a functor F : A → B,
(2) the transcendence degree of an extension L/K of fields,
(3) a regular function on a classical affine variety X ⊂ kn,
(4) a sheaf on a topological space,
(5) a local ring, and
(6) a morphism of schemes f : X → Y being affine.

Exercise 60.2 (Theorems). Precisely but briefly state a nontrivial fact discussed in
the lectures related to each item (if there is more than one then just pick one of them).

(1) Yoneda lemma,
(2) Mayer-Vietoris,
(3) dimension and cohomology,
(4) Hilbert polynomial, and
(5) duality for projective space.

Exercise 60.3. Let k be an algebraically closed field. Consider the closed subset X
of k5 with Zariski topology and coordinates x1, x2, x3, x4, x5 given by the equations

x2
1 − x4 = 0, x5

2 − x5 = 0, x2
3 + x3 + x4 + x5 = 0

What is the dimension of X and why?

Exercise 60.4. Let k be a field. Let X = P1
k be the projective space of dimension 1

over k. Let E be a finite locally freeOX -module. For d ∈ Z denote E(d) = E ⊗OX
OX(d)

the dth Serre twist of E and hi(X, E(d)) = dimkH
i(X, E(d)).

(1) Why is there no E with h0(X, E) = 5 and h0(X, E(1)) = 4?
(2) Why is there no E with h1(X, E(1)) = 5 and h1(X, E) = 4?
(3) For which a ∈ Z can there exist a vector bundle E on X with

h0(X, E) = 1 h1(X, E) = 1
h0(X, E(1)) = 2 h1(X, E(1)) = 0
h0(X, E(2)) = 4 h1(X, E(2)) = a

Partial answers are welcomed and encouraged.

Exercise 60.5. Let X be a topological space which is the union X = Y ∪ Z of two
closed subsets Y and Z whose intersection is denoted W = Y ∩ Z. Denote i : Y → X ,
j : Z → X , and k : W → X the inclusion maps.

(1) Show that there is a short exact sequence of sheaves

0→ ZX → i∗(ZY )⊕ j∗(ZZ)→ k∗(ZW )→ 0
where ZX denotes the constant sheaf with value Z on X , etc.

(2) What can you conclude about the relationship between the cohomology groups
of X , Y , Z , W with Z-coefficients?

Exercise 60.6. Let k be a field. Let A = k[x1, x2, x3, . . .] be the polynomial ring in
infinitely many variables. Denote m the maximal ideal ofA generated by all the variables.
Let X = Spec(A) and U = X \ {m}.
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(1) Show H1(U,OU ) = 0. Hint: Čech cohomology computation.
(2) What is your guess for Hi(U,OU ) for i ≥ 1?

Exercise 60.7. Let A be a local ring. Let a ∈ A be a nonzerodivisor. Let I, J ⊂ A
be ideals such that IJ = (a). Show that the ideal I is principal, i.e., generated by one
element (which will turn out to be a nonzerodivisor).

61. Schemes, Final Exam, Spring 2018

These were the questions in the final exam of a course on schemes, in the Spring of 2018
at Columbia University.

Exercise 61.1 (Definitions). Provide brief definitions of the italicized concepts. Let
k be an algebraically closed field. Let X be a projective curve over k.

(1) a smooth algebra over k,
(2) the degree of an invertibleOX -module on X ,
(3) the genus of X ,
(4) the Weil divisor class group of X ,
(5) X is hyperelliptic, and
(6) the intersection number of two curves on a smooth projective surface over k.

Exercise 61.2 (Theorems). Precisely but briefly state a nontrivial fact discussed in
the lectures related to each item (if there is more than one then just pick one of them).

(1) Riemann-Hurwitz theorem,
(2) Clifford’s theorem,
(3) factorization of maps between smooth projective surfaces,
(4) Hodge index theorem, and
(5) Riemann hypothesis for curves over finite fields.

Exercise 61.3. Let k be an algebraically closed field. Let X ⊂ P3
k be a smooth curve

of degree d and genus≥ 2. Assume X is not contained in a plane and that there is a line `
in P3

k meeting X in d− 2 points. Show that X is hyperelliptic.

Exercise 61.4. Let k be an algebraically closed field. LetX be a projective curve with
pairwise distinct singular points p1, . . . , pn. Explain why the genus of the normalization
of X is at most −n+ dimkH

1(X,OX).

Exercise 61.5. Let k be a field. Let X = Spec(k[x, y]) be affine 2 space. Let
I = (x3, x2y, xy2, y3) ⊂ k[x, y].

Let Y ⊂ X be the closed subscheme corresponding to I . Let b : X ′ → X be the blowing
up of the ideal (x, y), i.e., the blow up of affine space at the origin.

(1) Show that the scheme theoretic inverse image b−1Y ⊂ X ′ is an effective Cartier
divisor.

(2) Given an example of an ideal J ⊂ k[x, y] with I ⊂ J ⊂ (x, y) such that if
Z ⊂ X is the closed subscheme corresponding to J , then the scheme theoretic
inverse image b−1Z is not an effective Cartier divisor.

Exercise 61.6. Let k be an algebraically closed field. Consider the following types of
surfaces

(1) S = C1 × C2 where C1 and C2 are smooth projective curves,
(2) S = C1 × C2 where C1 and C2 are smooth projective curves and the genus of

C1 is > 0,
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(3) S ⊂ P3
k is a hypersurface of degree 4, and

(4) S ⊂ P3
k is a smooth hypersurface of degree 4.

For each type briefly indicate why or why not the class of surfaces of this type contains
rational surfaces.

Exercise 61.7. Let k be an algebraically closed field. Let S ⊂ P3
k be a smooth hyper-

surface of degree d. Assume that S contains a line `. What is the self square of ` viewed
as a divisor on S?

62. Commutative Algebra, Final Exam, Fall 2019

These were the questions in the final exam of a course on commutative algebra, in the Fall
of 2019 at Columbia University.

Exercise 62.1 (Definitions). Provide brief definitions of the italicized concepts.
(1) a constructible subset of a Noetherian topological space,
(2) the localization of an R-module M at a prime p,
(3) the length of a module over a Noetherian local ring (A,m, κ),
(4) a projective module over a ring R, and
(5) a Cohen-Macaulay module over a Noetherian local ring (A,m, κ).

Exercise 62.2 (Theorems). Precisely but briefly state a nontrivial fact discussed in
the lectures related to each item (if there is more than one then just pick one of them).

(1) images of constructible sets,
(2) Hilbert Nullstellensatz,
(3) dimension of finite type algebras over fields,
(4) Noether normalization, and
(5) regular local rings.

For a ring R and an ideal I ⊂ R recall that V (I) denotes the set of p ∈ Spec(R) with
I ⊂ p.

Exercise 62.3 (Making primes). Construct infinitely many distinct prime ideals p ⊂
C[x, y] such that V (p) contains (x, y) and (x− 1, y − 1).

Exercise 62.4 (No prime). Let R = C[x, y, z]/(xy). Argue briefly there does not
exist a prime ideal p ⊂ R such that V (p) contains (x, y − 1, z − 5) and (x− 1, y, z − 7).

Exercise 62.5 (Frobenius). Let p be a prime number (you may assume p = 2 to
simplify the formulas). Let R be a ring such that p = 0 in R.

(1) Show that the map F : R→ R, x 7→ xp is a ring homomorphism.
(2) Show that Spec(F ) : Spec(R)→ Spec(R) is the identity map.

Recall that a specialization x  y of points of a topological space simply means y is in
the closure of x. We say x  y is an immediate specialization if there does not exist a z
different from x and y such that x z and z  y.

Exercise 62.6 (Dimension). Suppose we have a sober topological spaceX containing
5 distinct points x, y, z, u, v having the following specializations

x

��

// u voo

��
y // z
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What is the minimal dimension such an X can have? If X is the spectrum of a finite type
algebra over a field and x u is an immediate specialization, what can you say about the
specialization v  z?

Exercise 62.7 (Tor computation). Let R = C[x, y, z]. Let M = R/(x, z) and N =
R/(y, z). For which i ∈ Z is TorRi (M,N) nonzero?

Exercise 62.8. Let A→ B be a flat local homomorphism of local Noetherian rings.
Show that if A has depth k, then B has depth at least k.

63. Algebraic Geometry, Final Exam, Spring 2020

These were the questions in the final exam of a course on Algebraic Geometry, in the
Spring of 2020 at Columbia University.

Exercise 63.1 (Definitions). Provide brief definitions of the italicized concepts.
(1) a scheme,
(2) a morphism of schemes,
(3) a quasi-coherent module on a scheme,
(4) a variety over a field k,
(5) a curve over a field k,
(6) a finite morphism of schemes,
(7) the cohomology of a sheaf of abelian groups F over a topological space X ,
(8) a dualizing sheaf on a scheme X of dimension d proper over a field k, and
(9) a rational map from a variety X to a variety Y .

Exercise 63.2 (Theorems). Precisely but briefly state a nontrivial fact discussed in
the lectures related to each item (if there is more than one then just pick one of them).

(1) cohomology of abelian sheaves on a Noetherian topological space X of dimen-
sion d,

(2) sheaf of differentials Ω1
X/k of a smooth variety over a field k,

(3) dualizing sheaf ωX of a smooth projective variety X over the field k,
(4) a smooth proper genus 0 curve over an algebraically closed field k, and
(5) the genus of a plane curve of degree d.

Exercise 63.3. Let k be a field. Let X be a scheme over k. Assume X = X1 ∪ X2
is an open covering with X1, X2 both isomorphic to P1

k and X1 ∩ X2 isomorphic to
A1
k. (Such a scheme exists, for example you can take P1

k with ∞ doubled.) Show that
dimkH

1(X,OX) is infinite.

Exercise 63.4. Let k be an algebraically closed field. Let Y be a smooth projective
curve of genus 10. Find a good lower bound for the genus of a smooth projective curveX
such that there exists a nonconstant morphism f : X → Y which is not an isomorphism.

Exercise 63.5. Let k be an algebraically closed field of characteristic 0. Let

X : T d0 + T d1 − T d2 = 0 ⊂ P2
k

be the Fermat curve of degree d ≥ 3. Consider the closed points p = [1 : 0 : 1] and
q = [0 : 1 : 1] on X . Set D = [p]− [q].

(1) Show that D is nontrivial in the Weil divisor class group.
(2) Show that dD is trivial in the Weil divisor class group. (Hint: try to show that

both d[p] and d[q] are the intersection of X with a line in the plane.)
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Exercise 63.6. Let k be an algebraically closed field. Consider the 2-uple embedding

ϕ : P2 −→ P5

In terms of the material/notation in the lectures this is the morphism

ϕ = ϕOP2 (2) : P2 −→ P(Γ(P2,OP2(2)))
In terms of homogeneous coordinates it is given by

[a0 : a1 : a2] 7−→ [a2
0 : a0a1 : a0a2 : a2

1 : a1a2 : a2
2]

It is a closed immersion (please just use this). Let I ⊂ k[T0, . . . , T5] be the homogeneous
ideal of ϕ(P2), i.e., the elements of the homogeneous part Id are the homogeneous poly-
nomials F (T0, . . . , T5) of degree d which restrict to zero on the closed subscheme ϕ(P2).
Compute dimk Id as a function of d.

Exercise 63.7. Let k be an algebraically closed field. Let X be a proper scheme of
dimension d over k with dualizing module ωX . You are given the following information:

(1) ExtiX(F , ωX)×Hd−i(X,F)→ Hd(X,ωX) t−→ k is nondegenerate for all i and
for all coherentOX -modules F , and

(2) ωX is finite locally free of some rank r.
Show that r = 1. (Hint: see what happens if you take F a suitable module supported at a
closed point.)

64. Commutative Algebra, Final Exam, Fall 2021

These were the questions in the final exam of a course on commutative algebra, in the Fall
of 2021 at Columbia University.

Exercise 64.1 (Definitions). Provide brief definitions of the italicized concepts.
(1) a multiplicative subset of a ring A,
(2) an Artinian ring A,
(3) the spectrum of a ring A as a topological space,
(4) a flat ring map A→ B,
(5) the height of a prime ideal p in A, and
(6) the functors TorAi (−,−) over a ring A.

Exercise 64.2 (Theorems). Precisely but briefly state a nontrivial fact discussed in
the lectures related to each item (if there is more than one then just pick one of them).

(1) Artinian rings,
(2) flatness and prime ideals,
(3) lengths of A/mn for (A,m) Noetherian local,
(4) the dimension formula for universally catenary Noetherian rings,
(5) completion of a Noetherian local ring, and
(6) Matlis duality for Artinian local rings.

Exercise 64.3 (Units). What is the structure of the group of units of Z[x, 1/x] as an
abelian group? No explanation necessary.

Exercise 64.4 (Ideals). LetA = F2[x, y]/(x2, xy, y2) and denote x and y the images
of x and y in A. List the ideals of A. No explanation necessary.

Exercise 64.5 (Tor and Ext). Let (A,m, κ) be a Noetherian local ring. Set ϕ(n) =
dimκm

n/mn+1.
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(1) Show that TorA1 (A/mn, κ) has dimension ϕ(n) as a κ-vector space.
(2) Show that Ext1

A(A/mn, κ) has dimension ϕ(n) as a κ-vector space.

Exercise 64.6 (Two vectors). Let A = Z[a1, a2, a3, b1, b2, b3]. Set a = (a1, a2, a3)
and b = (b1, b2, b3) in A⊕3. Consider the set

Z = {p ∈ Spec(A) | a, b map to linearly dependent vectors of κ(p)⊕3}

(1) Prove the Z is a closed subset of Spec(A).
(2) What is the dimension dim(Z) of Z?
(3) What would happen to dim(Z) if we replaced Z by a field?

Exercise 64.7 (Injectives). Let (A,m, κ) be an Artinian local ring. Assume A is in-
jective as an A-module. Show that HomA(κ,A) has dimension 1 has a κ-vector space.

65. Algebraic Geometry, Final Exam, Spring 2022

These were the questions in the final exam of a course on Algebraic Geometry, in the
Spring of 2022 at Columbia University.

Exercise 65.1 (Definitions). Provide brief definitions of the italicized concepts.
(1) a scheme,
(2) a quasi-coherent module on a scheme X ,
(3) a flat morphism of schemes X → Y ,
(4) a finite morphism of schemes X → Y ,
(5) a group scheme G over a base scheme S ,
(6) a family of varieties over a base scheme S ,
(7) the degree of a closed point x on a variety X over the field k,
(8) the usual logarithmic height of a point p = (a0 : . . . : an) in Pn(Q), and
(9) a Ci field.

Exercise 65.2 (Theorems). Precisely but briefly state a nontrivial fact discussed in
the lectures related to each item (if there is more than one then just pick one of them).

(1) morphisms from a scheme X to the affine scheme Spec(A),
(2) cohomology of a quasi-coherent module F on an affine scheme X ,
(3) the Picard group of P1

k where k is a field,
(4) the dimensions of fibres of a flat proper morphism X → S for S Noetherian,
(5) Gm-equivariant modules on a scheme S , and
(6) Bezout’s theorem on intersections (restrict to a special case if you like).

Exercise 65.3 (Cubic hypersurfaces). Let F ∈ C[T0, . . . , Tn] be homogeneous of
degree 3. Given 3 vectors x, y, z ∈ Cn+1 consider the condition

(∗) F (λx+ µy + νz) = 0 in C[λ, µ, ν]

(1) What is the dimension of the space of all choices of x, y, z?
(2) How many equations on the coordinates of x, y, and z is condition (*)?
(3) What is the expected dimension of the space of all triples x, y, z such that (*) is

true?
(4) What is the dimension of the space of all triples such that x, y, z are linearly

dependent?
(5) Conclude that on a hypersurface of degree 3 in Pn we expect to find a linear

subspace of dimension 2 provided n ≥ a where it is up to you to find a.
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Exercise 65.4 (Heights). Let K be a field. Let hn : Pn(K) → R, n ≥ 0 be a
collection of functions satisfying the 2 axioms we discussed in the lectures. Let X be a
projective variety over K. Let L be an invertible OX -module and recall that we have
constructed in the lectures an associated height function hL : X(K)→ R. Let α : X →
X be an automorphism of X over K.

(1) Prove thatP 7→ hL(α(P )) differs from the functionhα∗L by a bounded amount.
(Hint: recall that if there is a morphismϕ : X → Pn withL = ϕ∗OPn(1), then
by constructionhL(P ) = hn(ϕ(P )) and play around with that. In general write
L as a difference of two of these.)

(2) Assume that hL(P ) − hL(α(P )) is unbounded on X(K). Show that hN with
N = L ⊗ α∗L⊗−1 is unbounded on X(K).

(3) AssumeX is an elliptic curve and thatL is a symmetric ample invertible module
onX such that hL is unbounded onX(K). Show that there exists an invertible
module N of degree 0 such that hN is unbounded. (Hints: Recall that X is an
abelian variety of dimension 1. Thus hL is quadratic up to a constant by results
in the lectures. Choose a suitable point P0 ∈ X(K). Let α : X → X be
translation by P0. Consider P 7→ hL(P )− hL(P + P0). Apply the results you
proved above.)

Exercise 65.5 (Monomorphisms). Let f : X → Y be a monomorphism in the cat-
egory of schemes: for any pair of morphisms a, b : T → X of schemes if f ◦ a = f ◦ b,
then a = b. Show that f is injective on points. Does you argument say anything else?

Exercise 65.6 (Fixed points). Let k be an algebraically closed field.
(1) IfG = Gm,k show that ifG acts on a projective varietyX over k, then the action

has a fixed point, i.e., prove there exists a point x ∈ X(k) such that a(g, x) = x
for all g ∈ G(k).

(2) Same withG = (Gm,k)n equal to the product of n ≥ 1 copies of the multiplica-
tive group.

(3) Give an example of an action of a connected group scheme G on a smooth pro-
jective variety X which does not have a fixed point.
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CHAPTER 112

A Guide to the Literature

1. Short introductory articles

• Barbara Fantechi: Stacks for Everybody [?]
• Dan Edidin: What is a stack? [?]
• Dan Edidin: Notes on the construction of the moduli space of curves [?]
• Angelo Vistoli: Intersection theory on algebraic stacks and on their moduli spaces,

and especially the appendix. [?]

2. Classic references

• Mumford: Picard groups of moduli problems [?]
Mumford never uses the term “stack” here but the concept is implicit in
the paper; he computes the picard group of the moduli stack of elliptic
curves.

• Deligne, Mumford: The irreducibility of the space of curves of given genus [?]
This influential paper introduces “algebraic stacks” in the sense which
are now universally called Deligne-Mumford stacks (stacks with repre-
sentable diagonal which admit étale presentations by schemes). There
are many foundational results without proof. The paper uses stacks to
give two proofs of the irreducibility of the moduli space of curves of
genus g.

• Artin: Versal deformations and algebraic stacks [?]
This paper introduces “algebraic stacks” which generalize Deligne-Mumford
stacks and are now commonly referred to as Artin stacks, stacks with
representable diagonal which admit smooth presentations by schemes.
This paper gives deformation-theoretic criterion known as Artin’s cri-
terion which allows one to prove that a given moduli stack is an Artin
stack without explicitly exhibiting a presentation.

3. Books and online notes

• Laumon, Moret-Bailly: Champs Algébriques [?]
This book is currently the most exhaustive reference on stacks contain-
ing many foundational results. It assumes the reader is familiar with
algebraic spaces and frequently references Knutson’s book [?]. There
is an error in chapter 12 concerning the functoriality of the lisse-étale
site of an algebraic stack. One doesn’t need to worry about this as the
error has been patched by Martin Olsson (see [?]) and the results in the
remaining chapters (after perhaps slight modification) are correct.

• The Stacks Project Authors: Stacks Project [?].
You are reading it!

7253
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• Anton Geraschenko: Lecture notes for Martin Olsson’s class on stacks [?]
This course systematically develops the theory of algebraic spaces be-
fore introducing algebraic stacks (first defined in Lecture 27!). In addi-
tion to basic properties, the course covers the equivalence between be-
ing Deligne-Mumford and having unramified diagonal, the lisse-étale
site on an Artin stack, the theory of quasi-coherent sheaves, the Keel-
Mori theorem, cohomological descent, and gerbes (and their relation
to the Brauer group). There are also some exercises.

• Behrend, Conrad, Edidin, Fantechi, Fulton, Göttsche, and Kresch: Algebraic
stacks, online notes for a book being currently written [?]

The aim of this book is to give a friendly introduction to stacks with-
out assuming a sophisticated background with a focus on examples and
applications. Unlike [?], it is not assumed that the reader has digested
the theory of algebraic spaces. Instead, Deligne-Mumford stacks are in-
troduced with algebraic spaces being a special case with part of the goal
being to develop enough theory to prove the assertions in [?]. The gen-
eral theory of Artin stacks is to be developed in the second part. Only
a fraction of the book is now available on Kresch’s website.

• Olsson, Martin: Algebraic spaces and stacks, [?]
Highly recommended introduction to algebraic spaces and algebraic
stacks starting at the level of somebody who has mastered Hartshorne’s
book on algebraic geometry.

4. Related references on foundations of stacks

• Vistoli: Notes on Grothendieck topologies, fibered categories and descent theory
[?]

Contains useful facts on fibered categories, stacks and descent theory
in the fpqc topology as well as rigorous proofs.

• Knutson: Algebraic Spaces [?]
This book, which evolved from his PhD thesis under Michael Artin,
contains the foundations of the theory of algebraic spaces. The book
[?] frequently references this text. See also Artin’s papers on algebraic
spaces: [?], [?], [?], [?], [?], [?], [?], and [?]

• Grothendieck et al, Théorie des Topos et Cohomologie Étale des Schémas I, II,
III also known as SGA4 [?]

Volume 1 contains many general facts on universes, sites and fibered
categories. The word “champ” (French for “stack”) appears in Deligne’s
Exposé XVIII.

• Jean Giraud: Cohomologie non abélienne [?]
The book discusses fibered categories, stacks, torsors and gerbes over
general sites but does not discuss algebraic stacks. For instance, if G
is a sheaf of abelian groups on X , then in the same way H1(X,G)
can be identified with G-torsors, H2(X,G) can be identified with an
appropriately defined set of G-gerbes. When G is not abelian, then
H2(X,G) is defined as the set of G-gerbes.

• Kelly and Street: Review of the elements of 2-categories [?]
The category of stacks form a 2-category although a simple type of 2-
category where are 2-morphisms are invertible. This is a reference on
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general 2-categories. I have never used this so I cannot say how useful
it is. Also note that [?] contains some basics on 2-categories.

5. Papers in the literature

Below is a list of research papers which contain fundamental results on stacks and algebraic
spaces. The intention of the summaries is to indicate only the results of the paper which
contribute toward stack theory; in many cases these results are subsidiary to the main goals
of the paper. We divide the papers into categories with some papers falling into multiple
categories.

5.1. Deformation theory and algebraic stacks. The first three papers by Artin do not
contain anything on stacks but they contain powerful results with the first two papers
being essential for [?].

• Artin: Algebraic approximation of structures over complete local rings [?]
It is proved that under mild hypotheses any effective formal deforma-
tion can be approximated: if F : (Sch/S)→ (Sets) is a contravariant
functor locally of finite presentation with S finite type over a field or
excellent DVR, s ∈ S , and ξ̂ ∈ F (ÔS,s) is an effective formal de-
formation, then for any n > 0, there exists an residually trivial étale
neighborhood (S′, s′) → (S, s) and ξ′ ∈ F (S′) such that ξ′ and ξ̂
agree up to order n (ie. have the same restriction in F (OS,s/mn)).

• Artin: Algebraization of formal moduli I [?]
It is proved that under mild hypotheses any effective formal versal de-
formation is algebraizable. Let F : (Sch/S)→ (Sets) be a contravari-
ant functor locally of finite presentation with S finite type over a field
or excellent DVR, s ∈ S be a locally closed point, Â be a complete Noe-
therian localOS-algebra with residue field k′ a finite extension of k(s),
and ξ̂ ∈ F (Â) be an effective formal versal deformation of an element
ξ0 ∈ F (k′). Then there is a scheme X finite type over S and a closed
point x ∈ X with residue field k(x) = k′ and an element ξ ∈ F (X)
such that there is an isomorphism ÔX,x ∼= Â identifying the restric-
tions of ξ and ξ̂ in each F (Â/mn). The algebraization is unique if ξ̂ is a
universal deformation. Applications are given to the representability
of the Hilbert and Picard schemes.

• Artin: Algebraization of formal moduli. II [?]
Vaguely, it is shown that if one can contract a closed subset Y ′ ⊂ X ′

formally locally around Y ′, then exists a global morphism X ′ → X
contracting Y with X an algebraic space.

• Artin: Versal deformations and algebraic stacks [?]
This momentous paper builds on his work in [?] and [?]. This paper
introduces Artin’s criterion which allows one to prove algebraicity of
a stack by verifying deformation-theoretic properties. More precisely
(but not very precisely), Artin constructs a presentation of a limit pre-
serving stack X locally around a point x ∈ X (k) as follows: assuming
the stack X satisfies Schlessinger’s criterion([?]), there exists a formal
versal deformation ξ̂ ∈ limX (Â/mn) of x. Assuming that formal
deformations are effective (i.e., X (Â) → limX (Â/mn) is bijective),
then one obtains an effective formal versal deformation ξ ∈ X (Â).
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Using results in [?], one produces a finite type scheme U and an ele-
ment ξU : U → X which is formally versal at a point u ∈ U over
x. Then if we assume X admits a deformation and obstruction theory
satisfying certain conditions (ie. compatibility with étale localization
and completion as well as constructibility condition), then it is shown
in section 4 that formal versality is an open condition so that after
shrinking U , U → X is smooth. Artin also presents a proof that any
stack admitting an fppf presentation by a scheme admits a smooth pre-
sentation by a scheme so that in particular one can form quotient stacks
by flat, separated, finitely presented group schemes.

• Conrad, de Jong: Approximation of Versal Deformations [?]
This paper offers an approach to Artin’s algebraization result by ap-
plying Popescu’s powerful result: if A is a Noetherian ring and B a
Noetherian A-algebra, then the map A → B is a regular morphism
if and only if B is a direct limit of smooth A-algebras. It is not hard
to see that Popescu’s result implies Artin’s approximation over an ar-
bitrary excellent scheme (the excellence hypothesis implies that for a
local ring A, the map Ah → Â from the henselization to the comple-
tion is regular). The paper uses Popescu’s result to give a “groupoid”
generalization of the main theorem in [?] which is valid over arbitrary
excellent base schemes and for arbitrary points s ∈ S. In particular,
the results in [?] hold under an arbitrary excellent base. They discuss
the étale-local uniqueness of the algebraization and whether the auto-
morphism group of the object acts naturally on the henselization of the
algebraization.

• Jason Starr: Artin’s axioms, composition, and moduli spaces [?]
The paper establishes that Artin’s axioms for algebraization are com-
patible with the composition of 1-morphisms.

• Martin Olsson: Deformation theory of representable morphism of algebraic
stacks [?]

This generalizes standard deformation theory results for morphisms of
schemes to representable morphisms of algebraic stacks in terms of the
cotangent complex. These results cannot be viewed as consequences
of Illusie’s general theory as the cotangent complex of a representable
morphism X → X is not defined in terms of cotangent complex of a
morphism of ringed topoi (because the lisse-étale site is not functorial).

5.2. Coarse moduli spaces. Papers discussing coarse moduli spaces.
• Keel, Mori: Quotients in Groupoids [?]

It had apparently long been “folklore” that separated Deligne-Mumford
stacks admitted coarse moduli spaces. A rigorous (although terse) proof
of the following theorem is presented here: if X is an Artin stack lo-
cally of finite type over a Noetherian base scheme such that the in-
ertia stack IX → X is finite, then there exists a coarse moduli space
φ : X → Y with φ separated and Y an algebraic space locally of finite
type over S. The hypothesis that the inertia is finite is precisely the
right condition: there exists a coarse moduli space φ : X → Y with φ
separated if and only if the inertia is finite.

• Conrad: The Keel-Mori Theorem via Stacks [?]
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Keel and Mori’s paper [?] is written in the groupoid language and some
find it challenging to grasp. Brian Conrad presents a stack-theoretic
version of the proof which is quite transparent although it uses the
sophisticated language of stacks. Conrad also removes the Noetherian
hypothesis.

• Rydh: Existence of quotients by finite groups and coarse moduli spaces [?]
Rydh removes the hypothesis from [?] and [?] that X be finitely pre-
sented over some base.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic [?]
They define a tame Artin stack as an Artin stack with finite inertia
such that if φ : X → Y is the coarse moduli space, φ∗ is exact on
quasi-coherent sheaves. They prove that for an Artin stack with finite
inertia, the following are equivalent: X is tame if and only if the stabi-
lizers ofX are linearly reductive if and only ifX is étale locally on the
coarse moduli space a quotient of an affine scheme by a linearly reduc-
tive group scheme. For a tame Artin stack, the coarse moduli space is
particularly nice. For instance, the coarse moduli space commutes with
arbitrary base change while a general coarse moduli space for an Artin
stack with finite inertia will only commute with flat base change.

• Alper: Good moduli spaces for Artin stacks [?]
For general Artin stacks with infinite affine stabilizer groups (which
are necessarily non-separated), coarse moduli spaces often do not ex-
ist. The simplest example is [A1/Gm]. It is defined here that a quasi-
compact morphism φ : X → Y is a good moduli space ifOY → φ∗OX
is an isomorphism and φ∗ is exact on quasi-coherent sheaves. This no-
tion generalizes a tame Artin stack in [?] as well as encapsulates Mum-
ford’s geometric invariant theory: if G is a reductive group acting lin-
early on X ⊂ Pn, then the morphism from the quotient stack of the
semi-stable locus to the GIT quotient [Xss/G] → X//G is a good
moduli space. The notion of a good moduli space has many nice geo-
metric properties: (1)φ is surjective, universally closed, and universally
submersive, (2) φ identifies points in Y with points in X up to closure
equivalence, (3) φ is universal for maps to algebraic spaces, (4) good
moduli spaces are stable under arbitrary base change, and (5) a vector
bundle on an Artin stack descends to the good moduli space if and only
if the representations are trivial at closed points.

5.3. Intersection theory. Papers discussing intersection theory on algebraic stacks.
• Vistoli: Intersection theory on algebraic stacks and on their moduli spaces [?]

This paper develops the foundations for intersection theory with ra-
tional coefficients for Deligne-Mumford stacks. If X is a separated
Deligne-Mumford stack, the chow group CH∗(X ) with rational coef-
ficients is defined as the free abelian group of integral closed substacks
of dimension k up to rational equivalence. There is a flat pullback, a
proper push-forward and a generalized Gysin homomorphism for reg-
ular local embeddings. If φ : X → Y is a moduli space (ie. a proper
morphism with is bijective on geometric points), there is an induced
push-forward CH∗(X )→ CHk(Y ) which is an isomorphism.

• Edidin, Graham: Equivariant Intersection Theory [?]
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The purpose of this article is to develop intersection theory with in-
tegral coefficients for a quotient stack [X/G] of an action of an alge-
braic group G on an algebraic space X or, in other words, to develop
a G-equivariant intersection theory of X . Equivariant chow groups
defined using only invariant cycles does not produce a theory with
nice properties. Instead, generalizing Totaro’s definition in the case
of BG and motivated by the fact that if V → X is a vector bun-
dle then CHi(X) ∼= CHi(V ) naturally, the authors define CHG

i (X)
as follows: Let dim(X) = n and dim(G) = g. For each i, choose
a l-dimensional G-representation V where G acts freely on an open
subset U ⊂ V whose complement as codimension d > n − i. So
XG = [X × U/G] is an algebraic space (it can even be chosen to be
a scheme). Then they define CHG

i (X) = CHi+l−g(XG). For the quo-
tient stack, one defines CHi([X/G]) = CHG

i+g(X) = CHi+l(XG). In
particular, CHi([X/G]) = 0 for i > dim[X/G] = n − g but can be
non-zero for i � 0. For example CHi(BGm) = Z for i ≤ 0. They
establish that these equivariant Chow groups enjoy the same functo-
rial properties as ordinary Chow groups. Furthermore, they establish
that if [X/G] ∼= [Y/H] that CHi([X/G]) = CHi([Y/H]) so that the
definition is independent on how the stack is presented as a quotient
stack.

• Kresch: Cycle Groups for Artin Stacks [?]
Kresch defines Chow groups for arbitrary Artin stacks agreeing with
Edidin and Graham’s definition in [?] in the case of quotient stack. For
algebraic stacks with affine stabilizer groups, the theory satisfies the
usual properties.

• Behrend and Fantechi: The intrinsic normal cone [?]
Generalizing a construction due to Li and Tian, Behrend and Fantechi
construct a virtual fundamental class for a Deligne-Mumford stack.

5.4. Quotient stacks. Quotient stacks1 form a very important subclass of Artin stacks
which include almost all moduli stacks studied by algebraic geometers. The geometry of
a quotient stack [X/G] is the G-equivariant geometry of X . It is often easier to show
properties are true for quotient stacks and some results are only known to be true for
quotient stacks. The following papers address: When is an algebraic stack a global quotient
stack? Is an algebraic stack “locally” a quotient stack?

• Laumon, Moret-Bailly: [?, Chapter 6]
Chapter 6 contains several facts about the local and global structure of
algebraic stacks. It is proved that an algebraic stack X over S is a quo-
tient stack [Y/G] with Y an algebraic space (resp. scheme, resp. affine
scheme) and G a finite group if and only if there exists an algebraic
space (resp. scheme, resp. affine scheme) Y ′ and an finite étale mor-
phism Y ′ → X . It is shown that any Deligne-Mumford stack over S
and x : Spec(K) → X admits an representable, étale and separated
morphism φ : [X/G] → X where G is a finite group acting on an
affine scheme over S such that Spec(K) = [X/G]×X Spec(K). The

1In the literature, quotient stack often means a stack of the form [X/G] with X an algebraic space and G
a subgroup scheme of GLn rather than an arbitrary flat group scheme.
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existence of presentations with geometrically connected fibers is also
discussed in detail.

• Edidin, Hassett, Kresch, Vistoli: Brauer Groups and Quotient stacks [?]
First, they establish some fundamental (although not very difficult)
facts concerning when a given algebraic stack (always assumed finite
type over a Noetherian scheme in this paper) is a quotient stack. For an
algebraic stackX : X is a quotient stack if and only if there exists a vec-
tor bundle V → X such that for every geometric point, the stabilizer
acts faithfully on the fiber if and only if there exists a vector bundle
V → X and a locally closed substack V 0 ⊂ V such that V 0 is repre-
sentable and surjects ontoX . They establish that an algebraic stack is a
quotient stack if there exists finite flat cover by an algebraic space. Any
smooth Deligne-Mumford stack with generically trivial stabilizer is a
quotient stack. They show that a Gm-gerbe over a Noetherian scheme
X corresponding to β ∈ H2(X,Gm) is a quotient stack if and only if
β is in the image of the Brauer map Br(X)→ Br′(X). They use this to
produce a non-separated Deligne-Mumford stack that is not a quotient
stack.

• Totaro: The resolution property for schemes and stacks [?]
A stack has the resolution property if every coherent sheaf is the quo-
tient of a vector bundle. The first main theorem is that if X is a nor-
mal Noetherian algebraic stack with affine stabilizer groups at closed
points, then the following are equivalent: (1) X has the resolution
property and (2) X = [Y/GLn] with Y quasi-affine. In the case X
is finite type over a field, then (1) and (2) are equivalent to: (3) X =
[Spec(A)/G] withG an affine group scheme finite type over k. The im-
plication that quotient stacks have the resolution property was proven
by Thomason. The second main theorem is that ifX is a smooth Deligne-
Mumford stack over a field which has a finite and generically trivial
stabilizer group IX → X and whose coarse moduli space is a scheme
with affine diagonal, thenX has the resolution property. Another cool
result states that if X is a Noetherian algebraic stack satisfying the res-
olution property, then X has affine diagonal if and only if the closed
points have affine stabilizer.

• Kresch: On the Geometry of Deligne-Mumford Stacks [?]
This article summarizes general structure results of Deligne-Mumford
stacks (of finite type over a field) and contains some interesting results
concerning quotient stacks. It is shown that any smooth, separated,
generically tame Deligne-Mumford stack with quasi-projective coarse
moduli space is a quotient stack [Y/G] with Y quasi-projective and
G an algebraic group. If X is a Deligne-Mumford stack whose coarse
moduli space is a scheme, then X is Zariski-locally a quotient stack
if and only if it admits a Zariski-open covering by stack quotients of
schemes by finite groups. IfX is a Deligne-Mumford stack proper over
a field of characteristic 0 with coarse moduli space Y , then: Y is pro-
jective and X is a quotient stack if and only if Y is projective and X
possesses a generating sheaf if and only ifX admits a closed embedding
into a smooth proper DM stack with projective coarse moduli space.
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This motivates a definition that a Deligne-Mumford stack is projec-
tive if there exists a closed embedding into a smooth, proper Deligne-
Mumford stack with projective coarse moduli space.

• Kresch, Vistoli On coverings of Deligne-Mumford stacks and surjectivity of the
Brauer map [?]

It is shown that in characteristic 0 and for a fixed n, the following two
statements are equivalent: (1) every smooth Deligne-Mumford stack
of dimension n is a quotient stack and (2) the Azumaya Brauer group
coincides with the cohomological Brauer group for smooth schemes of
dimension n.

• Kresch: Cycle Groups for Artin Stacks [?]
It is shown that a reduced Artin stack finite type over a field with affine
stabilizer groups admits a stratification by quotient stacks.

• Abramovich-Vistoli: Compactifying the space of stable maps [?]
Lemma 2.2.3 establishes that for any separated Deligne-Mumford stack
is étale-locally on the coarse moduli space a quotient stack [U/G] where
U affine andG a finite group. [?, Theorem 2.12] shows in this argument
G is even the stabilizer group.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic [?]
This paper shows that a tame Artin stack is étale locally on the coarse
moduli space a quotient stack of an affine by the stabilizer group.

• Alper: On the local quotient structure of Artin stacks [?]
It is conjectured that for an Artin stack X and a closed point x ∈
X with linearly reductive stabilizer, then there is an étale morphism
[V/Gx] → X with V an algebraic space. Some evidence for this con-
jecture is given. A simple deformation theory argument (based on
ideas in [?]) shows that it is true formally locally. A stack-theoretic
proof of Luna’s étale slice theorem is presented proving that for stacks
X = [Spec(A)/G] withG linearly reductive, then étale locally on the
GIT quotient Spec(AG), X is a quotient stack by the stabilizer.

5.5. Cohomology. Papers discussing cohomology of sheaves on algebraic stacks.
• Olsson: Sheaves on Artin stacks [?]

This paper develops the theory of quasi-coherent and constructible
sheaves proving basic cohomological properties. This paper corrects
a mistake in [?] in the functoriality of the lisse-étale site. The cotan-
gent complex is constructed. In addition, the following theorems are
proved: Grothendieck’s Fundamental Theorem for proper morphisms,
Grothendieck’s Existence Theorem, Zariski’s Connectedness Theorem
and finiteness theorem for proper pushforwards of coherent and con-
structible sheaves.

• Behrend: Derived l-adic categories for algebraic stacks [?]
Proves the Lefschetz trace formula for algebraic stacks.

• Behrend: Cohomology of stacks [?]
Defines the de Rham cohomology for differentiable stacks and singular
cohomology for topological stacks.

• Faltings: Finiteness of coherent cohomology for proper fppf stacks [?]
Proves coherence for direct images of coherent sheaves for proper mor-
phisms.
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• Abramovich, Corti, Vistoli: Twisted bundles and admissible covers [?]
The appendix contains the proper base change theorem for étale coho-
mology for tame Deligne-Mumford stacks.

5.6. Existence of finite covers by schemes. The existence of finite covers of Deligne-
Mumford stacks by schemes is an important result. In intersection theory on Deligne-
Mumford stacks, it is an essential ingredient in defining proper push-forward for non-
representable morphisms. There are several results aboutMg relying on the existence of
a finite cover by a smooth scheme which was proven by Looijenga. Perhaps the first result
in this direction is [?, Theorem 6.1] which treats the equivariant setting.

• Vistoli: Intersection theory on algebraic stacks and on their moduli spaces [?]
If X is a Deligne-Mumford stack with a moduli space (ie. a proper
morphism which is bijective on geometric points), then there exists a
finite morphism X → X from a scheme X .

• Laumon, Moret-Bailly: [?, Chapter 16]
As an application of Zariski’s main theorem, Theorem 16.6 establishes:
ifX is a Deligne-Mumford stack finite type over a Noetherian scheme,
then there exists a finite, surjective, generically étale morphismZ → X
withZ a scheme. It is also shown in Corollary 16.6.2 that any Noether-
ian normal algebraic space is isomorphic to the algebraic space quotient
X ′/G for a finite group G acting a normal scheme X .

• Edidin, Hassett, Kresch, Vistoli: Brauer Groups and Quotient stacks [?]
Theorem 2.7 states: if X is an algebraic stack of finite type over a Noe-
therian ground scheme S , then the diagonal X → X ×S X is quasi-
finite if and only if there exists a finite surjective morphism X → F
from a scheme X .

• Kresch, Vistoli: On coverings of Deligne-Mumford stacks and surjectivity of the
Brauer map [?]

It is proved here that any smooth, separated Deligne-Mumford stack
finite type over a field with quasi-projective coarse moduli space admits
a finite, flat cover by a smooth quasi-projective scheme.

• Olsson: On proper coverings of Artin stacks [?]
Proves that if X is an Artin stack separated and finite type over S ,
then there exists a proper surjective morphismX → X from a scheme
X quasi-projective over S. As an application, Olsson proves coher-
ence and constructibility of direct image sheaves under proper mor-
phisms. As an application, he proves Grothendieck’s existence theorem
for proper Artin stacks.

• Rydh: Noetherian approximation of algebraic spaces and stacks [?]
Theorem B of this paper is as follows. Let X be a quasi-compact al-
gebraic stack with quasi-finite and separated diagonal (resp. a quasi-
compact Deligne-Mumford stack with quasi-compact and separated di-
agonal). Then there exists a scheme Z and a finite, finitely presented
and surjective morphism Z → X that is flat (resp. étale) over a dense
quasi-compact open substack U ⊂ X .

5.7. Rigidification. Rigidification is a process for removing a flat subgroup from the
inertia. For example, if X is a projective variety, the morphism from the Picard stack to
the Picard scheme is a rigidification of the group of automorphism Gm.
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• Abramovich, Corti, Vistoli: Twisted bundles and admissible covers [?]
Let X be an algebraic stack over S and H be a flat, finitely presented
separated group scheme over S. Assume that for every object ξ ∈
X (T ) there is an embedding H(T ) ↪→ AutX (T )(ξ) which is compati-
ble under pullbacks in the sense that for every arrow φ : ξ → ξ′ over
f : T → T ′ and g ∈ H(T ′), g ◦ φ = φ ◦ f∗g. Then there exists an
algebraic stack X/H and a morphism ρ : X → X/H which is an fppf
gerbe such that for every ξ ∈ X (T ), the morphism AutX (T )(ξ) →
AutX/H(T )(ξ) is surjective with kernel H(T ).

• Romagny: Group actions on stacks and applications [?]
Discusses how group actions behave with respect to rigidifications.

• Abramovich, Graber, Vistoli: Gromov-Witten theory for Deligne-Mumford stacks
[?]

The appendix gives a summary of rigidification as in [?] with two al-
ternative interpretations. This paper also contains constructions for
gluing algebraic stacks along closed substacks and for taking roots of
line bundles.

• Abramovich, Olsson, Vistoli: Tame stacks in positive characteristic ([?])
The appendix handles the more complicated situation where the flat
subgroup stack of the inertia H ⊂ IX is normal but not necessarily
central.

5.8. Stacky curves. Papers discussing stacky curves.

• Abramovich, Vistoli: Compactifying the space of stable maps [?]
This paper introduces twisted curves. The moduli space of stable maps
from stable curves into an algebraic stack is typically not compact.
By using maps from twisted curves, the authors construct a moduli
stack which is proper when the target is a tame Deligne-Mumford stack
whose coarse moduli space is projective.

• Behrend, Noohi: Uniformization of Deligne-Mumford curves [?]
Proves a uniformization theorem of Deligne-Mumford analytic curves.

5.9. Hilbert, Quot, Hom and branchvariety stacks. Papers discussing Hilbert schemes
and the like.

• Vistoli: The Hilbert stack and the theory of moduli of families [?]
If X is a algebraic stack separated and locally of finite type over a lo-
cally Noetherian and locally separated algebraic space S , Vistoli de-
fines the Hilbert stack Hilb(F/S) parameterizing finite and unrami-
fied morphisms from proper schemes. It is claimed without proof that
Hilb(F/S) is an algebraic stack. As a consequence, it is proved that
withX as above, the Hom stackHomS(T,X ) is an algebraic stack if T
is proper and flat over S.

• Olsson, Starr: Quot functors for Deligne-Mumford stacks [?]
IfX is a Deligne-Mumford stack separated and locally of finite presen-
tation over an algebraic space S and F is a locally finitely-presented
OX -module, the quot functor Quot(F/X/S) is represented by an al-
gebraic space separated and locally of finite presentation over S. This
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paper also defines generating sheaves and proves existence of a gen-
erating sheaf for tame, separated Deligne-Mumford stacks which are
global quotient stacks of a scheme by a finite group.

• Olsson: Hom-stacks and Restrictions of Scalars [?]
Suppose X and Y are Artin stacks locally of finite presentation over
an algebraic space S with finite diagonal with X proper and flat over
S such that fppf-locally on S , X admits a finite finitely presented flat
cover by an algebraic space (eg. X is Deligne-Mumford or a tame Artin
stack). Then HomS(X ,Y) is an Artin stack locally of finite presenta-
tion over S.

• Alexeev and Knutson: Complete moduli spaces of branchvarieties ([?])
They define a branchvariety of Pn as a finite morphismX → Pn from
a reduced scheme X . They prove that the moduli stack of branchvari-
eties with fixed Hilbert polynomial and total degrees of i-dimensional
components is a proper Artin stack with finite stabilizer. They compare
the stack of branchvarieties with the Hilbert scheme, Chow scheme and
moduli space of stable maps.

• Lieblich: Remarks on the stack of coherent algebras [?]
This paper constructs a generalization of Alexeev and Knutson’s stack
of branch-varieties over a scheme Y by building the stack as a stack of
algebras over the structure sheaf of Y . Existence proofs of Quot and
Hom spaces are given.

• Starr: Artin’s axioms, composition, and moduli spaces [?]
As an application of the main result, a common generalization of Vis-
toli’s Hilbert stack [?] and Alexeev and Knutson’s stack of branchvari-
eties [?] is provided. IfX is an algebraic stack locally of finite type over
an excellent scheme S with finite diagonal, then the stack H parame-
terizing morphisms g : T → X from a proper algebraic space T with
a G-ample line bundle L is an Artin stack locally of finite type over S.

• Lundkvist and Skjelnes: Non-effective deformations of Grothendieck’s Hilbert
functor [?]

Shows that the Hilbert functor of a non-separated scheme is not repre-
sented since there are non-effective deformations.

• Halpern-Leistner and Preygel: Mapping stacks and categorical notions of proper-
ness [?]

This paper gives a proof that the Hom stack is algebraic under some
hypotheses on source and target which are more general than, or at
least different from, the ones in Olsson’s paper.

5.10. Toric stacks. Toric stacks provide a great class of examples and a natural testing
ground for conjectures due to the dictionary between the geometry of a toric stack and the
combinatorics of its stacky fan in a similar way that toric varieties provide examples and
counterexamples in scheme theory.

• Borisov, Chen and Smith: The orbifold Chow ring of toric Deligne-Mumford
stacks [?]

Inspired by Cox’s construction for toric varieties, this paper defines
smooth toric DM stacks as explicit quotient stacks associated to a com-
binatorial object called a stacky fan.

• Iwanari: The category of toric stacks [?]
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This paper defines a toric triple as a smooth Deligne-Mumford stackX
with an open immersion Gm ↪→ X with dense image (and thereforeX
is an orbifold) and an actionX ×Gm → X . It is shown that there is an
equivalence between the 2-category of toric triples and the 1-category
of stacky fans. The relationship between toric triples and the definition
of smooth toric DM stacks in [?] is discussed.

• Iwanari: Integral Chow rings for toric stacks [?]
Generalizes Cox’s ∆-collections for toric varieties to toric orbifolds.

• Perroni: A note on toric Deligne-Mumford stacks [?]
Generalizes Cox’s ∆-collections and Iwanari’s paper [?] to general smooth
toric DM stacks.

• Fantechi, Mann, and Nironi: Smooth toric DM stacks [?]
This paper defines a smooth toric DM stack as a smooth DM stack X
with the action of a DM torus T (ie. a Picard stack isomorphic to
T × BG with G finite) having an open dense orbit isomorphic to T .
They give a “bottom-up description” and prove an equivalence between
smooth toric DM stacks and stacky fans.

• Geraschenko and Satriano: Toric Stacks I and II [?] and [?]
These papers define a toric stack as the stack quotient of a toric variety
by a subgroup of its torus. A generically stacky toric stack is defined
as a torus invariant substack of a toric stack. This definition encom-
passes and extends previous definitions of toric stacks. The first paper
develops a dictionary between the combinatorics of stacky fans and the
geometry of the corresponding stacks. It also gives a moduli interpre-
tation of smooth toric stacks, generalizing the one in [?]. The second
paper proves an intrinsic characterization of toric stacks.

5.11. Theorem on formal functions and Grothendieck’s Existence Theorem. These
papers give generalizations of the theorem on formal functions [?, III.4.1.5] (sometimes re-
ferred to Grothendieck’s Fundamental Theorem for proper morphisms) and Grothendieck’s
Existence Theorem [?, III.5.1.4].

• Knutson: Algebraic spaces [?, Chapter V]
Generalizes these theorems to algebraic spaces.

• Abramovich-Vistoli: Compactifying the space of stable maps [?, A.1.1]
Generalizes these theorems to tame Deligne-Mumford stacks

• Olsson and Starr: Quot functors for Deligne-Mumford stacks [?]
Generalizes these theorems to separated Deligne-Mumford stacks.

• Olsson: On proper coverings of Artin stacks [?]
Provides a generalization to proper Artin stacks.

• Conrad: Formal GAGA on Artin stacks [?]
Provides a generalization to proper Artin stacks and proves a formal
GAGA theorem.

• Olsson: Sheaves on Artin stacks [?]
Provides another proof for the generalization to proper Artin stacks.

5.12. Group actions on stacks. Actions of groups on algebraic stacks naturally appear.
For instance, symmetric groupSn acts onMg,n and for an action of a groupG on a scheme
X , the normalizer of G in Aut(X) acts on [X/G]. Furthermore, torus actions on stacks
often appear in Gromov-Witten theory.
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• Romagny: Group actions on stacks and applications [?]
This paper makes precise what it means for a group to act on an al-
gebraic stack and proves existence of fixed points as well as existence
of quotients for actions of group schemes on algebraic stacks. See also
Romagny’s earlier note [?].

5.13. Taking roots of line bundles. This useful construction was discovered indepen-
dently by Cadman and by Abramovich, Graber and Vistoli. Given a scheme X with an
effective Cartier divisorD, the rth root stack is an Artin stack branched overX atD with
a µr stabilizer over D and scheme-like away from D.

• Charles Cadman Using Stacks to Impose Tangency Conditions on Curves [?]
• Abramovich, Graber, Vistoli: Gromov-Witten theory for Deligne-Mumford stacks

[?]

5.14. Other papers. Potpourri of other papers.
• Lieblich: Moduli of twisted sheaves [?]

This paper contains a summary of gerbes and twisted sheaves. If X →
X is a µn-gerbe with X a projective relative surface with smooth con-
nected geometric fibers, it is shown that the stack of semistable X -
twisted sheaves is an Artin stack locally of finite presentation over S.
This paper also develops the theory of associated points and purity of
sheaves on Artin stacks.

• Lieblich, Osserman: Functorial reconstruction theorem for stacks [?]
Proves some surprising and interesting results on when an algebraic
stack can be reconstructed from its associated functor.

• David Rydh: Noetherian approximation of algebraic spaces and stacks [?]
This paper shows that every quasi-compact algebraic stack with quasi-
finite diagonal can be approximated by a Noetherian stack. There are
applications to removing the Noetherian hypothesis in results of Cheval-
ley, Serre, Zariski and Chow.

6. Stacks in other fields

• Behrend and Noohi: Uniformization of Deligne-Mumford curves [?]
Gives an overview and comparison of topological, analytic and alge-
braic stacks.

• Behrang Noohi: Foundations of topological stacks I [?]
• David Metzler: Topological and smooth stacks [?]

7. Higher stacks

• Lurie: Higher topos theory [?]
• Lurie: Derived Algebraic Geometry I - V [?], [?], [?], [?], [?]
• Toën: Higher and derived stacks: a global overview [?]
• Toën and Vezzosi: Homotopical algebraic geometry I, II [?], [?]

8. Other chapters

Preliminaries

(1) Introduction
(2) Conventions

(3) Set Theory
(4) Categories
(5) Topology
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CHAPTER 113

Desirables

1. Introduction

This is basically just a list of things that we want to put in the stacks project. As we add
material to the Stacks project continuously this is always somewhat behind the current
state of the Stacks project. In fact, it may have been a mistake to try and list things we
should add, because it seems impossible to keep it up to date.
Last updated: Thursday, August 31, 2017.

2. Conventions

We should have a chapter with a short list of conventions used in the document. This
chapter already exists, see Conventions, Section 1, but a lot more could be added there.
Especially useful would be to find “hidden” conventions and tacit assumptions and put
those there.

3. Sites and Topoi

We have a chapter on sites and sheaves, see Sites, Section 1. We have a chapter on ringed
sites (and topoi) and modules on them, see Modules on Sites, Section 1. We have a chapter
on cohomology in this setting, see Cohomology on Sites, Section 1. But a lot more could
be added, especially in the chapter on cohomology.

4. Stacks

We have a chapter on (abstract) stacks, see Stacks, Section 1. It would be nice if
(1) improve the discussion on “stackyfication”,
(2) give examples of stackyfication,
(3) more examples in general,
(4) improve the discussion of gerbes.

Example result which has not been added yet: Given a sheaf of abelian groups F over C
the set of equivalence classes of gerbes banded by F is bijective to H2(C,F).

5. Simplicial methods

We have a chapter on simplicial methods, see Simplicial, Section 1. This has to be re-
viewed and improved. The discussion of the relationship between simplicial homotopy
(also known as combinatorial homotopy) and Kan complexes should be improved upon.
There is a chapter on simplicial spaces, see Simplicial Spaces, Section 1. This chapter briefly
discusses simplicial topological spaces, simplicial sites, and simplicial topoi. We can fur-
ther develop “simplicial algebraic geometry” to discuss simplicial schemes (or simplicial
algebraic spaces, or simplicial algebraic stacks) and treat geometric questions, their coho-
mology, etc.

7269
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6. Cohomology of schemes

There is already a chapter on cohomology of quasi-coherent sheaves, see Cohomology of
Schemes, Section 1. We have a chapter discussing the derived category of quasi-coherent
sheaves on a scheme, see Derived Categories of Schemes, Section 1. We have a chapter
discussing duality for Noetherian schemes and relative duality for morphisms of schemes,
see Duality for Schemes, Section 1. We also have chapters on étale cohomology of schemes
and on crystalline cohomology of schemes. But most of the material in these chapters is
very basic and a lot more could/should be added there.

7. Deformation theory à la Schlessinger

We have a chapter on this material, see Formal Deformation Theory, Section 1. We have
a chapter discussing examples of the general theory, see Deformation Problems, Section
1. We have a chapter, see Deformation Theory, Section 1 which discusses deformations of
rings (and modules), deformations of ringed spaces (and sheaves of modules), deformations
of ringed topoi (and sheaves of modules). In this chapter we use the naive cotangent com-
plex to describe obstructions, first order deformations, and infinitesimal automorphisms.
This material has found some applications to algebraicity of moduli stacks in later chap-
ters. There is also a chapter discussing the full cotangent complex, see Cotangent, Section
1.

8. Definition of algebraic stacks

An algebraic stack is a stack in groupoids over the category of schemes with the fppf topol-
ogy that has a diagonal representable by algebraic spaces and is the target of a surjective
smooth morphism from a scheme. See Algebraic Stacks, Section 12. A “Deligne-Mumford
stack” is an algebraic stack for which there exists a scheme and a surjective étale morphism
from that scheme to it as in the paper [?] of Deligne and Mumford, see Algebraic Stacks,
Definition 12.2. We will reserve the term “Artin stack” for a stack such as in the papers by
Artin, see [?], [?], and [?]. A possible definition is that an Artin stack is an algebraic stack
X over a locally Noetherian scheme S such that X → S is locally of finite type1.

9. Examples of schemes, algebraic spaces, algebraic stacks

The Stacks project currently contains two chapters discussing moduli stacks and their
properties, see Moduli Stacks, Section 1 and Moduli of Curves, Section 1. Over time we
intend to add more, for example:

(1) Ag , i.e., principally polarized abelian schemes of genus g,
(2) A1 =M1,1, i.e., 1-pointed smooth projective genus 1 curves,
(3) Mg,n, i.e., smooth projective genus g-curves with n pairwise distinct labeled

points,
(4) Mg,n, i.e., stable n-pointed nodal projective genus g-curves,
(5) HomS(X ,Y), moduli of morphisms (with suitable conditions on the stacks X ,
Y and the base scheme S),

(6) BunG(X) = HomS(X,BG), the stack ofG-bundles of the geometric Langlands
programme (with suitable conditions on the schemeX , the group schemeG, and
the base scheme S),

1Namely, these are exactly the algebraic stacks over S satisfying Artin’s axioms [-1], [0], [1], [2], [3], [4], [5]
of Artin’s Axioms, Section 14.
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(7) PicX/S , i.e., the Picard stack associated to an algebraic stack over a base scheme
(or space).

More generally, the Stacks project is somewhat lacking in geometrically meaningful ex-
amples.

10. Properties of algebraic stacks

This is perhaps one of the easier projects to work on, as most of the basic theory is there
now. Of course these things are really properties of morphisms of stacks. We can define
singularities (up to smooth factors) etc. Prove that a connected normal stack is irreducible,
etc.

11. Lisse étale site of an algebraic stack

This has been introduced in Cohomology of Stacks, Section 14. An example to show that it
is not functorial with respect to 1-morphisms of algebraic stacks is discussed in Examples,
Section 58. Of course a lot more could be said about this, but it turns out to be very useful
to prove things using the “big” étale site as much as possible.

12. Things you always wanted to know but were afraid to ask

There are going to be lots of lemmas that you use over and over again that are useful but
aren’t really mentioned specifically in the literature, or it isn’t easy to find references for.
Bag of tricks.

Example: Given two groupoids in schemes R ⇒ U and R′ ⇒ U ′ what does it mean to
have a 1-morphism [U/R]→ [U ′/R′] purely in terms of groupoids in schemes.

13. Quasi-coherent sheaves on stacks

These are defined and discussed in the chapter Cohomology of Stacks, Section 1. Derived
categories of modules are discussed in the chapter Derived Categories of Stacks, Section 1.
A lot more could be added to these chapters.

14. Flat and smooth

Artin’s theorem that having a flat surjection from a scheme is a replacement for the smooth
surjective condition. This is now available as Criteria for Representability, Theorem 16.1.

15. Artin’s representability theorem

This is discussed in the chapter Artin’s Axioms, Section 1. We also have an application, see
Quot, Theorem 5.12. There should be a lot more applications and the chapter itself has to
be cleaned up as well.

16. DM stacks are finitely covered by schemes

We already have the corresponding result for algebraic spaces, see Limits of Spaces, Section
16. What is missing is the result for DM and quasi-DM stacks.
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17. Martin Olsson’s paper on properness

This proves two notions of proper are the same. The first part of this is now available in the
form of Chow’s lemma for algebraic stacks, see More on Morphisms of Stacks, Theorem
10.3. As a consequence we show that it suffices to use DVR’s in checking the valuative
criterion for properness for algebraic stacks in certain cases, see More on Morphisms of
Stacks, Section 11.

18. Proper pushforward of coherent sheaves

We can start working on this now that we have Chow’s lemma for algebraic stacks, see
previous section.

19. Keel and Mori

See [?]. Their result has been added in More on Morphisms of Stacks, Section 13.

20. Add more here

Actually, no we should never have started this list as part of the Stacks project itself! There
is a todo list somewhere else which is much easier to update.

21. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves
(25) Hypercoverings

Schemes

(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory

(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
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CHAPTER 114

Coding Style

1. List of style comments

These will be changed over time, but having some here now will hopefully encourage a
consistent LaTeX style. We will call “code1” the contents of the source files.

(1) Keep all lines in all tex files to at most 80 characters.
(2) Do not use indentation in the tex file. Use syntax highlighting in your editor,

instead of indentation, to visualize environments, etc.
(3) Use

\medskip\noindent
to start a new paragraph, and use
\noindent
to start a new paragraph just after an environment.

(4) Do not break the code for mathematical formulas across lines if possible. If the
complete code complete with enclosing dollar signs does not fit on the line, then
start with the first dollar sign on the first character of the next line. If it still
does not fit, find a mathematically reasonable spot to break the code.

(5) Displayed math equations should be coded as follows
$$
...
...
$$
In other words, start with a double dollar sign on a line by itself and end simi-
larly.

(6) Do not use any macros. Rationale: This makes it easier to read the tex file, and
start editing an arbitrary part without having to learn innumerable macros. And
it doesn’t make it harder or more timeconsuming to write. Of course the disad-
vantage is that the same mathematical object may be TeXed differently in differ-
ent places in the text, but this should be easy to spot.

(7) The theorem environments we use are: “theorem”, “proposition”, “lemma” (plain),
“definition”, “example”, “exercise”, “situation” (definition), “remark”, “remarks”
(remark). Of course there is also a “proof” environment.

(8) An environment “foo” should be coded as follows
\begin{foo}
...
...
\end{foo}

1It is all Knuth’s fault. See [?].
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similarly to the way displayed equations are coded.
(9) Instead of a “corollary”, just use “lemma” environment since likely the result will

be used to prove the next bigger theorem anyway.
(10) Directly following each lemma, proposition, or theorem is the proof of said

lemma, proposition, or theorem. No nested proofs please.
(11) The files preamble.tex, chapters.tex and fdl.tex are special tex files. Apart from

these, each tex file has the following structure
\input{preamble}
\begin{document}
\title{Title}
\maketitle
\tableofcontents
...
...
\input{chapters}
\bibliography{my}
\bibliographystyle{amsalpha}
\end{document}

(12) Try to add labels to lemmas, propositions, theorems, and even remarks, exercise,
and other environments. If labelling a lemma use something like
\begin{lemma}
\label{lemma-bar}
...
\end{lemma}
Similarly for all other environments. In other words, the label of a environment
named “foo” starts with “foo-”. In addition to this please make all labels consist
only of lower case letters, digits, and the symbol “-”.

(13) Never refer to “the lemma above” (or proposition, etc). Instead use:
Lemma \ref{lemma-bar} above
This means that later moving lemmas around is basically harmless.

(14) Cross-file referencing. To reference a lemma labeled “lemma-bar” in the file
foo.tex which has title “Foo”, please use the following code
Foo, Lemma \ref{foo-lemma-bar}
If this does not work, then take a look at the file preamble.tex to find the correct
expression to use. This will produce the “Foo, Lemma<link>” in the output file
so it will be clear that the link points out of the file.

(15) If at all possible avoid forward references in proof environments. (It should be
possible to write an automated test for this.)

(16) Do not start any sentence with a mathematical symbol.
(17) Do not have a sentence of the type “This follows from the following” just before

a lemma, proposition, or theorem. Every sentence ends with a period.
(18) State all hypotheses in each lemma, proposition, theorem. This makes it easier for

readers to see if a given lemma, proposition, or theorem applies to their particular
problem.

(19) Keep proofs short; less than 1 page in pdf or dvi. You can always achieve this by
splitting out the proof in lemmas etc.

(20) In a defining property foobar use
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{\it foobar}
in the code inside the definition environment. Similarly if the definition occurs
in the text of the document. This will make it easier for the reader to see what
it is that is being defined.

(21) Put any definition that will be used outside the section it is in, in its own defi-
nition environment. Temporary definitions may be made in the text. A tricky
case is that of mathematical constructions (which are often definitions involving
interrelated lemmas). Maybe a good solution is to have them in their own short
section so users can refer to the section instead of a definition.

(22) Do not number equations unless they are actually being referenced somewhere
in the text. We can always add labels later.

(23) In statements of lemmas, propositions and theorems and in proofs keep the sen-
tences short. For example, instead of “LetR be a ring and letM be anR-module.”
write “Let R be a ring. Let M be an R-module.”. Rationale: This makes it easier
to parse the trickier parts of proofs and statements.

(24) Use the
\section
command to make sections, but try to avoid using subsections and subsubsec-
tions.

(25) Avoid using complicated latex constructions.

2. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Differential Graded Sheaves

(25) Hypercoverings

Schemes

(26) Schemes
(27) Constructions of Schemes
(28) Properties of Schemes
(29) Morphisms of Schemes
(30) Cohomology of Schemes
(31) Divisors
(32) Limits of Schemes
(33) Varieties
(34) Topologies on Schemes
(35) Descent
(36) Derived Categories of Schemes
(37) More on Morphisms
(38) More on Flatness
(39) Groupoid Schemes
(40) More on Groupoid Schemes
(41) Étale Morphisms of Schemes

Topics in Scheme Theory

(42) Chow Homology
(43) Intersection Theory
(44) Picard Schemes of Curves
(45) Weil Cohomology Theories
(46) Adequate Modules
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(47) Dualizing Complexes
(48) Duality for Schemes
(49) Discriminants and Differents
(50) de Rham Cohomology
(51) Local Cohomology
(52) Algebraic and Formal Geometry
(53) Algebraic Curves
(54) Resolution of Surfaces
(55) Semistable Reduction
(56) Functors and Morphisms
(57) Derived Categories of Varieties
(58) Fundamental Groups of Schemes
(59) Étale Cohomology
(60) Crystalline Cohomology
(61) Pro-étale Cohomology
(62) Relative Cycles
(63) More Étale Cohomology
(64) The Trace Formula

Algebraic Spaces
(65) Algebraic Spaces
(66) Properties of Algebraic Spaces
(67) Morphisms of Algebraic Spaces
(68) Decent Algebraic Spaces
(69) Cohomology of Algebraic Spaces
(70) Limits of Algebraic Spaces
(71) Divisors on Algebraic Spaces
(72) Algebraic Spaces over Fields
(73) Topologies on Algebraic Spaces
(74) Descent and Algebraic Spaces
(75) Derived Categories of Spaces
(76) More on Morphisms of Spaces
(77) Flatness on Algebraic Spaces
(78) Groupoids in Algebraic Spaces
(79) More on Groupoids in Spaces
(80) Bootstrap
(81) Pushouts of Algebraic Spaces
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CHAPTER 115

Obsolete

1. Introduction

In this chapter we put some lemmas that have become “obsolete” (see [?]).

2. Preliminaries

Remark 2.1. The information which used to be contained in this remark is now sub-
sumed in the combination of Categories, Lemmas 24.4 and 24.3.

3. Homological algebra

Remark 3.1. The following remarks are obsolete as they are subsumed in Homology,
Lemmas 24.11 and 25.3. Let A be an abelian category. Let C ⊂ A be a weak Serre subcat-
egory (see Homology, Definition 10.1). Suppose that K•,• is a double complex to which
Homology, Lemma 25.3 applies such that for some r ≥ 0 all the objects ′Ep,qr belong to C.
Then all the cohomology groups Hn(sK•) belong to C. Namely, the assumptions imply
that the kernels and images of ′dp,qr are in C. Whereupon we see that each ′Ep,qr+1 is in C.
By induction we see that each ′Ep,q∞ is in C. Hence each Hn(sK•) has a finite filtration
whose subquotients are in C. Using that C is closed under extensions we conclude that
Hn(sK•) is in C as claimed. The same result holds for the second spectral sequence as-
sociated to K•,•. Similarly, if (K•, F ) is a filtered complex to which Homology, Lemma
24.11 applies and for some r ≥ 0 all the objects Ep,qr belong to C , then each Hn(K•) is an
object of C.

4. Obsolete algebra lemmas

Lemma 4.1. Let M be an R-module of finite presentation. For any surjection α :
R⊕n →M the kernel of α is a finite R-module.

Proof. This is a special case of Algebra, Lemma 5.3. �

Lemma 4.2. Let ϕ : R→ S be a ring map. If
(1) for any x ∈ S there exists n > 0 such that xn is in the image of ϕ, and
(2) for any x ∈ Ker(ϕ) there exists n > 0 such that xn = 0,

then ϕ induces a homeomorphism on spectra. Given a prime number p such that
(a) S is generated as anR-algebra by elements x such that there exists an n > 0 with

xp
n ∈ ϕ(R) and pnx ∈ ϕ(R), and

(b) the kernel of ϕ is generated by nilpotent elements,
then (1) and (2) hold, and for any ring map R → R′ the ring map R′ → R′ ⊗R S also
satisfies (a), (b), (1), and (2) and in particular induces a homeomorphism on spectra.

Proof. This is a combination of Algebra, Lemmas 46.3 and 46.7. �
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The following technical lemma says that you can lift any sequence of relations from a fibre
to the whole space of a ring map which is essentially of finite type, in a suitable sense.

Lemma 4.3. Let R → S be a ring map. Let p ⊂ R be a prime. Let q ⊂ S be a prime
lying over p. Assume Sq is essentially of finite type over Rp. Assume given

(1) an integer n ≥ 0,
(2) a prime a ⊂ κ(p)[x1, . . . , xn],
(3) a surjective κ(p)-homomorphism

ψ : (κ(p)[x1, . . . , xn])a −→ Sq/pSq,

and
(4) elements f1, . . . , fe in Ker(ψ).

Then there exist
(1) an integer m ≥ 0,
(2) and element g ∈ S , g 6∈ q,
(3) a map

Ψ : R[x1, . . . , xn, xn+1, . . . , xn+m] −→ Sg,

and
(4) elements f1, . . . , fe, fe+1, . . . , fe+m of Ker(Ψ)

such that
(1) the following diagram commutes

R[x1, . . . , xn+m]

Ψ
��

xn+j 7→0
// (κ(p)[x1, . . . , xn])a

ψ

��
Sg // Sq/pSq

,

(2) the element fi, i ≤ n maps to a unit times f i in the local ring

(κ(p)[x1, . . . , xn+m])(a,xn+1,...,xn+m),

(3) the element fe+j maps to a unit times xn+j in the same local ring, and
(4) the induced map R[x1, . . . , xn+m]b → Sq is surjective, where b = Ψ−1(qSg).

Proof. We claim that it suffices to prove the lemma in case R and S are local with
maximal ideals p and q. Namely, suppose we have constructed

Ψ′ : Rp[x1, . . . , xn+m] −→ Sq

and f ′
1, . . . , f

′
e+m ∈ Rp[x1, . . . , xn+m] with all the required properties. Then there exists

an element f ∈ R, f 6∈ p such that each ff ′
k comes from an element fk ∈ R[x1, . . . , xn+m].

Moreover, for a suitable g ∈ S , g 6∈ q the elements Ψ′(xi) are the image of elements
yi ∈ Sg . Let Ψ be the R-algebra map defined by the rule Ψ(xi) = yi. Since Ψ(fi) is
zero in the localization Sq we may after possibly replacing g assume that Ψ(fi) = 0. This
proves the claim.

Thus we may assume R and S are local with maximal ideals p and q. Pick y1, . . . , yn ∈ S
such that yi mod pS = ψ(xi). Let yn+1, . . . , yn+m ∈ S be elements which generate an
R-subalgebra of which S is the localization. These exist by the assumption that S is essen-
tially of finite type overR. Since ψ is surjective we may write yn+j mod pS = ψ(hj) for
some hj ∈ κ(p)[x1, . . . , xn]a. Write hj = gj/d, gj ∈ κ(p)[x1, . . . , xn] for some common
denominator d ∈ κ(p)[x1, . . . , xn], d 6∈ a. Choose lifts Gj , D ∈ R[x1, . . . , xn] of gj and
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d. Set y′
n+j = D(y1, . . . , yn)yn+j − Gj(y1, . . . , yn). By construction y′

n+j ∈ pS. It is
clear that y1, . . . , yn, y

′
n, . . . , y

′
n+m generate an R-subalgebra of S whose localization is

S. We define
Ψ : R[x1, . . . , xn+m]→ S

to be the map that sends xi to yi for i = 1, . . . , n and xn+j to y′
n+j for j = 1, . . . ,m.

Properties (1) and (4) are clear by construction. Moreover the ideal b maps onto the ideal
(a, xn+1, . . . , xn+m) in the polynomial ring κ(p)[x1, . . . , xn+m].
Denote J = Ker(Ψ). We have a short exact sequence

0→ Jb → R[x1, . . . , xn+m]b → Sq → 0.
The surjectivity comes from our choice of y1, . . . , yn, y

′
n, . . . , y

′
n+m above. This implies

that
Jb/pJb → κ(p)[x1, . . . , xn+m](a,xn+1,...,xn+m) → Sq/pSq → 0

is exact. By construction xi maps to ψ(xi) and xn+j maps to zero under the last map.
Thus it is easy to choose fi as in (2) and (3) of the lemma. �

Remark 4.4 (Projective resolutions). Let R be a ring. For any set S we let F (S)
denote the free R-module on S. Then any left R-module has the following two step res-
olution

F (M ×M)⊕ F (R×M)→ F (M)→M → 0.
The first map is given by the rule

[m1,m2]⊕ [r,m] 7→ [m1 +m2]− [m1]− [m2] + [rm]− r[m].

Lemma 4.5. Let S be a multiplicative set of A. Then the map
f : Spec(S−1A) −→ Spec(A)

induced by the canonical ring map A → S−1A is a homeomorphism onto its image and
Im(f) = {p ∈ Spec(A) : p ∩ S = ∅}.

Proof. This is a duplicate of Algebra, Lemma 17.5. �

Lemma 4.6. Let A → B be a finite type, flat ring map with A an integral domain.
Then B is a finitely presented A-algebra.

Proof. Special case of More on Flatness, Proposition 13.10. �

Lemma 4.7. Let R be a domain with fraction field K. Let S = R[x1, . . . , xn] be a
polynomial ring over R. Let M be a finite S-module. Assume that M is flat over R. If
for every subring R ⊂ R′ ⊂ K , R 6= R′ the module M ⊗R R′ is finitely presented over
S ⊗R R′, then M is finitely presented over S.

Proof. This lemma is true becauseM is finitely presented even without the assump-
tion that M ⊗R R′ is finitely presented for every R′ as in the statement of the lemma.
This follows from More on Flatness, Proposition 13.10. Originally this lemma had an er-
roneous proof (thanks to Ofer Gabber for finding the gap) and was used in an alternative
proof of the proposition cited. To reinstate this lemma, we need a correct argument in case
R is a local normal domain using only results from the chapters on commutative algebra;
please email stacks.project@gmail.com if you have an argument. �

Lemma 4.8. Let A→ B be a ring map. Let f ∈ B. Assume that
(1) A→ B is flat,
(2) f is a nonzerodivisor, and

mailto:stacks.project@gmail.com
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(3) A→ B/fB is flat.
Then for every ideal I ⊂ A the map f : B/IB → B/IB is injective.

Proof. Note that IB = I ⊗A B and I(B/fB) = I ⊗A B/fB by the flatness of B
and B/fB over A. In particular IB/fIB ∼= I ⊗A B/fB maps injectively into B/fB.
Hence the result follows from the snake lemma applied to the diagram

0 // I ⊗A B //

f

��

B //

f

��

B/IB //

f

��

0

0 // I ⊗A B // B // B/IB // 0

with exact rows. �

Lemma 4.9. If R → S is a faithfully flat ring map then for every R-module M the
map M → S ⊗RM , x 7→ 1⊗ x is injective.

Proof. This lemma is a duplicate of Algebra, Lemma 82.11. �

Remark 4.10. This reference/tag used to refer to a Section in the chapter Smoothing
Ring Maps, but the material has since been subsumed in Algebra, Section 127.

Lemma 4.11. Let (R,m) be a reduced Noetherian local ring of dimension 1 and let
x ∈ m be a nonzerodivisor. Let q1, . . . , qr be the minimal primes of R. Then

lengthR(R/(x)) =
∑

i
ordR/qi(x)

Proof. Special (very easy) case of Chow Homology, Lemma 3.2. �

Lemma 4.12. LetA be a Noetherian local normal domain of dimension 2. For f ∈ m
nonzero denote div(f) =

∑
ni(pi) the divisor associated to f on the punctured spectrum

of A. We set |f | =
∑
ni. There exist integers N and M such that |f + g| ≤ M for all

g ∈ mN .

Proof. Pick h ∈ m such that f, h is a regular sequence in A (this follows from Alge-
bra, Lemmas 157.4 and 72.7). We will prove the lemma withM = lengthA(A/(f, h)) and
with N any integer such that mN ⊂ (f, h). Such an integer N exists because

√
(f, h) =

m. Note that M = lengthA(A/(f + g, h)) for all g ∈ mN because (f, h) = (f + g, h).
This moreover implies that f + g, h is a regular sequence in A too, see Algebra, Lemma
104.2. Now suppose that div(f + g) =

∑
mj(qj). Then consider the map

c : A/(f + g) −→
∏

A/q
(mj)
j

where q(mj)
j is the symbolic power, see Algebra, Section 64. SinceA is normal, we see that

Aqi is a discrete valuation ring and hence

Aqi/(f + g) = Aqi/q
mi
i Aqi = (A/q(mi)

i )qi

SinceV (f+g, h) = {m} this implies that c becomes an isomorphism on inverting h (small
detail omitted). Since h is a nonzerodivisor onA/(f+g) we see that the length ofA/(f+
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g, h) equals the Herbrand quotient eA(A/(f + g), 0, h) as defined in Chow Homology,
Section 2. Similarly the length of A/(h, q(mj)

j ) equals eA(A/q(mj)
j , 0, h). Then we have

M = lengthA(A/(f + g, h)
= eA(A/(f + g), 0, h)

=
∑

i
eA(A/q(mj)

j , 0, h)

=
∑

i

∑
m=0,...,mj−1

eA(q(m)
j /q

(m+1)
j , 0, h)

The equalities follow from Chow Homology, Lemmas 2.3 and 2.4 using in particular that
the cokernel of c has finite length as discussed above. It is straightforward to prove that
eA(q(m)/q(m+1), 0, h) is at least 1 by Nakayama’s lemma. This finishes the proof of the
lemma. �

Lemma 4.13. Let A→ B be a flat local homomorphism of Noetherian local rings. If
A and B/mAB are Gorenstein, then B is Gorenstein.

Proof. Follows immediately from Dualizing Complexes, Lemma 21.8. �

Lemma 4.14. Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M be
a finite A-module. Let s be an integer. Assume

(1) A has a dualizing complex,
(2) if p 6∈ V (I) and V (p) ∩ V (I) 6= {m}, then depthAp

(Mp) + dim(A/p) > s.

Then there exists an n > 0 and an ideal J ⊂ A with V (J) ∩ V (I) = {m} such that JIn
annihilates Hi

m(M) for i ≤ s.

Proof. According to Local Cohomology, Lemma 9.4 we have to show this for the
finiteA-moduleEi = Ext−i

A (M,ω•
A) for i ≤ s. The support Z ofE0⊕ . . .⊕Es is closed

in Spec(A) and does not contain any prime as in (2). Hence it is contained in V (JIn) for
some J as in the statement of the lemma. �

Lemma 4.15. Let (A,m) be a Noetherian local ring. Let I ⊂ A be an ideal. Let M be
a finite A-module. Let s and d be integers. Assume

(a) A has a dualizing complex,
(b) cd(A, I) ≤ d,
(c) if p 6∈ V (I) then depthAp

(Mp) > s or depthAp
(Mp) + dim(A/p) > d+ s.

Then the assumptions of Algebraic and Formal Geometry, Lemma 10.4 hold forA, I,m,M
andHi

m(M)→ limHi
m(M/InM) is an isomorphism for i ≤ s and these modules are an-

nihilated by a power of I .

Proof. The assumptions of Algebraic and Formal Geometry, Lemma 10.4 by the
more general Algebraic and Formal Geometry, Lemma 10.5. Then the conclusion of Alge-
braic and Formal Geometry, Lemma 10.4 gives the second statement. �

Lemma 4.16. In Algebraic and Formal Geometry, Situation 10.1 we have Hs
a(M) =

limHs
a(M/InM).

Proof. This is immediate from Algebraic and Formal Geometry, Theorem 10.8. The
original version of this lemma, which had additional assumptions, was superseded by the
this theorem. �
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Lemma 4.17. Let A be a Noetherian ring. Let f ∈ a be an element of an ideal of A.
Let U = Spec(A) \ V (a). Assume

(1) A has a dualizing complex and is complete with respect to f ,
(2) Af is (S2) and for every minimal prime p ⊂ A, f 6∈ p and q ∈ V (p) ∩ V (a) we

have dim((A/p)q) ≥ 3.
Then the completion functor

Coh(OU ) −→ Coh(U, IOU ), F 7−→ F∧

is fully faithful on the full subcategory of finite locally free objects.

Proof. This lemma is a special case of Algebraic and Formal Geometry, Lemma 15.6.
�

5. Lemmas related to ZMT

The lemmas in this section were originally used in the proof of the (algebraic version of)
Zariski’s Main Theorem, Algebra, Theorem 123.12.

Lemma 5.1. Let R be a ring and let ϕ : R[x] → S be a ring map. Let t ∈ S. If t
is integral over R[x], then there exists an ` ≥ 0 such that for every a ∈ R the element
ϕ(a)`t is integral over ϕa : R[y]→ S , defined by y 7→ ϕ(ax) and r 7→ ϕ(r) for r ∈ R.

Proof. Say td +
∑
i<d ϕ(fi)ti = 0 with fi ∈ R[x]. Let ` be the maximum degree

in x of all the fi. Multiply the equation by ϕ(a)` to get ϕ(a)`td +
∑
i<d ϕ(a`fi)ti = 0.

Note that each ϕ(a`fi) is in the image of ϕa. The result follows from Algebra, Lemma
123.1. �

Lemma 5.2. Let ϕ : R → S be a ring map. Suppose t ∈ S satisfies the relation
ϕ(a0) +ϕ(a1)t+ . . .+ϕ(an)tn = 0. Set un = ϕ(an), un−1 = unt+ϕ(an−1), and so on
till u1 = u2t+ ϕ(a1). Then all of un, un−1, . . . , u1 and unt, un−1t, . . . , u1t are integral
over R, and the ideals (ϕ(a0), . . . , ϕ(an)) and (un, . . . , u1) of S are equal.

Proof. We prove this by induction on n. As un = ϕ(an) we conclude from Algebra,
Lemma 123.1 that unt is integral over R. Of course un = ϕ(an) is integral over R. Then
un−1 = unt+ ϕ(an−1) is integral over R (see Algebra, Lemma 36.7) and we have

ϕ(a0) + ϕ(a1)t+ . . .+ ϕ(an−1)tn−1 + un−1t
n−1 = 0.

Hence by the induction hypothesis applied to the map S′ → S where S′ is the integral
closure ofR in S and the displayed equation we see that un−1, . . . , u1 and un−1t, . . . , u1t
are all in S′ too. The statement on the ideals is immediate from the shape of the elements
and the fact that u1t+ ϕ(a0) = 0. �

Lemma 5.3. Let ϕ : R → S be a ring map. Suppose t ∈ S satisfies the relation
ϕ(a0) + ϕ(a1)t + . . . + ϕ(an)tn = 0. Let J ⊂ S be an ideal such that for at least one i
we have ϕ(ai) 6∈ J . Then there exists a u ∈ S , u 6∈ J such that both u and ut are integral
over R.

Proof. This is immediate from Lemma 5.2 since one of the elements ui will not be in
J . �

The following two lemmas are a way of describing closed subschemes of P1
R cut out by

one (nondegenerate) equation.
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Lemma 5.4. Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of degree
d. Assume that for every prime p of R at least one coefficient of F is not in p. Let S =
R[X,Y ]/(F ) as a graded ring. Then for all n ≥ d the R-module Sn is finite locally free
of rank d.

Proof. The R-module Sn has a presentation

R[X,Y ]n−d → R[X,Y ]n → Sn → 0.

Thus by Algebra, Lemma 79.4 it is enough to show that multiplication by F induces an
injective map κ(p)[X,Y ]→ κ(p)[X,Y ] for all primes p. This is clear from the assumption
that F does not map to the zero polynomial mod p. The assertion on ranks is clear from
this as well. �

Lemma 5.5. Let k be a field. Let F,G ∈ k[X,Y ] be homogeneous of degrees d, e.
AssumeF,G relatively prime. Then multiplication byG is injective onS = k[X,Y ]/(F ).

Proof. This is one way to define “relatively prime”. If you have another definition,
then you can show it is equivalent to this one. �

Lemma 5.6. Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of degree d.
Let S = R[X,Y ]/(F ) as a graded ring. Let p ⊂ R be a prime such that some coefficient
of F is not in p. There exists an f ∈ R f 6∈ p, an integer e, and a G ∈ R[X,Y ]e such that
multiplication by G induces isomorphisms (Sn)f → (Sn+e)f for all n ≥ d.

Proof. During the course of the proof we may replace R by Rf for f ∈ R, f 6∈ p
(finitely often). As a first step we do such a replacement such that some coefficient of F is
invertible in R. In particular the modules Sn are now locally free of rank d for n ≥ d by
Lemma 5.4. Pick any G ∈ R[X,Y ]e such that the image of G in κ(p)[X,Y ] is relatively
prime to the image of F (X,Y ) (this is possible for some e). Apply Algebra, Lemma 79.4
to the map induced by multiplication by G from Sd → Sd+e. By our choice of G and
Lemma 5.5 we see Sd ⊗ κ(p) → Sd+e ⊗ κ(p) is bijective. Thus, after replacing R by Rf
for a suitable f we may assume that G : Sd → Sd+e is bijective. This in turn implies that
the image of G in κ(p′)[X,Y ] is relatively prime to the image of F for all primes p′ of R.
And then by Algebra, Lemma 79.4 again we see that all the maps G : Sd → Sd+e, n ≥ d
are isomorphisms. �

Remark 5.7. LetR be a ring. Suppose that we haveF ∈ R[X,Y ]d andG ∈ R[X,Y ]e
such that, setting S = R[X,Y ]/(F ) we have (1) Sn is finite locally free of rank d for all
n ≥ d, and (2) multiplication by G defines isomorphisms Sn → Sn+e for all n ≥ d. In
this case we may define a finite, locally free R-algebra A as follows:

(1) as an R-module A = Sed, and
(2) multiplication A× A→ A is given by the rule that H1H2 = H3 if and only if

GdH3 = H1H2 in S2ed.

This makes sense because multiplication by Gd induces a bijective map Sde → S2de. It is
easy to see that this defines a ring structure. Note the confusing fact that the element Gd
defines the unit element of the ring A.
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Lemma 5.8. Let R be a ring, let f ∈ R. Suppose we have S , S′ and the solid arrows
forming the following commutative diagram of rings

S′′

!!

��

R //

==

��

S

��
Rf // S′ // Sf

Assume that Rf → S′ is finite. Then we can find a finite ring map R → S′′ and dotted
arrows as in the diagram such that S′ = (S′′)f .

Proof. Namely, suppose that S′ is generated by xi over Rf , i = 1, . . . , w. Let
Pi(t) ∈ Rf [t] be a monic polynomial such that Pi(xi) = 0. Say Pi has degree di > 0.
Write Pi(t) = tdi +

∑
j<di

(aij/fn)tj for some uniform n. Also write the image of xi
in Sf as gi/fn for suitable gi ∈ S. Then we know that the element ξi = fndigdii +∑
j<di

fn(di−j)aijg
j
i of S is killed by a power of f . Hence upon increasing n to n′, which

replaces gi by fn
′−ngi we may assume ξi = 0. Then S′ is generated by the elements

fnxi, each of which is a zero of the monic polynomialQi(t) = tdi +
∑
j<di

fn(di−j)aijt
j

with coefficients in R. Also, by construction Qi(fngi) = 0 in S. Thus we get a finite
R-algebra S′′ = R[z1, . . . , zw]/(Q1(z1), . . . , Qw(zw)) which fits into a commutative di-
agram as above. The map α : S′′ → S maps zi to fngi and the map β : S′′ → S′ maps
zi to fnxi. It may not yet be the case that β induces an isomorphism (S′′)f ∼= S′. For
the moment we only know that this map is surjective. The problem is that there could be
elements h/fn ∈ (S′′)f which map to zero in S′ but are not zero. In this case β(h) is an
element of S such that fNβ(h) = 0 for some N . Thus fNh is an element ot the ideal
J = {h ∈ S′′ | α(h) = 0 and β(h) = 0} of S′′. OK, and it is easy to see that S′′/J does
the job. �

6. Formally smooth ring maps

Lemma 6.1. Let R be a ring. Let S be a R-algebra. If S is of finite presentation and
formally smooth over R then S is smooth over R.

Proof. See Algebra, Proposition 138.13. �

Remark 6.2. This tag used to refer to an equation in the proof of Algebraization of
Formal Spaces, Proposition 6.3 which became unused because of a rearrangement of the
material.

Remark 6.3. This tag used to refer to an equation in the proof of Algebraization of
Formal Spaces, Proposition 6.3 which became unused because of a rearrangement of the
material.

Remark 6.4. This tag used to refer to an equation in the proof of Algebraization of
Formal Spaces, Proposition 6.3 which became unused because of a rearrangement of the
material.

Remark 6.5. This tag used to refer to an equation in the proof of Algebraization of
Formal Spaces, Proposition 6.3 which became unused because of a rearrangement of the
material.
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Remark 6.6. This tag used to refer to an equation in the proof of Algebraization
of Formal Spaces, Lemma 9.1 which became unused because of a rearrangement of the
material.

Lemma 6.7. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let t be the minimal
number of generators for I . Let C be a Noetherian I-adically complete A-algebra. There
exists an integer d ≥ 0 depending only on I ⊂ A → C with the following property:
given

(1) c ≥ 0 and B in Algebraization of Formal Spaces, Equation (2.0.2) such that for
a ∈ Ic multiplication by a on NL∧

B/A is zero in D(B),
(2) an integer n > 2tmax(c, d),
(3) an A/In-algebra map ψn : B/InB → C/InC ,

there exists a map ϕ : B → C of A-algebras such that ψn mod Im−c = ϕ mod Im−c

with m = bnt c.

Proof. This lemma has been obsoleted by the stronger Algebraization of Formal
Spaces, Lemma 5.3. In fact, we will deduce the lemma from it.

Let I ⊂ A → C be given as in the statement above. Denote d(GrI(C)) and q(GrI(C))
the integers found in Local Cohomology, Section 22. Observe that t is an upper bound
for the minimal number of generators of IC and hence we have d(GrI(C)) + 1 ≤ t, see
discussion in Local Cohomology, Section 22. We may and do assume t ≥ 1 since otherwise
the lemma does not say anything. We claim that the lemma is true with

d = q(GrI(C))

Namely, suppose that c, B, n, ψn are as in the statement above. Then we see that

n > 2tmax(c, d)⇒ n ≥ 2tc+ 1⇒ n ≥ 2(d(GrI(C)) + 1)c+ 1

On the other hand, we have

n > 2tmax(c, d)⇒ n > t(c+ d)⇒ n ≥ q(C) + tc ≥ q(GrI(C)) + (d(GrI(C)) + 1)c

Hence the assumptions of Algebraization of Formal Spaces, Lemma 5.3 are satisfied and
we obtain an A-algebra homomorphism ϕ : B → C which is congruent with ψn module
In−(d(GrI(C))+1)cC. Since

n− (d(GrI(C)) + 1)c = n

t
+ (t− 1)n

t
− (d(GrI(C)) + 1)c

≥ n

t
+ (d(GrI(C))n

t
− (d(GrI(C)) + 1)c

>
n

t
+ d(GrI(C))2tc

t
− (d(GrI(C)) + 1)c

= n

t
+ 2d(GrI(C))c− (d(GrI(C)) + 1)c

= n

t
+ d(GrI(C))c− c

≥ m− c

we see that we have the congruence of ϕ and ψn module Im−cC as desired. �



7288 115. OBSOLETE

7. Sites and sheaves

Remark 7.1 (No map from lower shriek to pushforward). Let U be an object of a site
C. For any abelian sheaf G on C/U one may wonder whether there is a canonical map

c : jU !G −→ jU∗G
To construct such a thing is the same as constructing a map j−1

U jU !G → G. Note that
restriction commutes with sheafification. Thus we can use the presheaf of Modules on
Sites, Lemma 19.2. Hence it suffices to define for V/U a map⊕

ϕ∈MorC(V,U)
G(V ϕ−→ U) −→ G(V/U)

compatible with restrictions. It looks like we can take the which is zero on all summands
except for the one where ϕ is the structure morphism ϕ0 : V → U where we take 1.
However, this isn’t compatible with restriction mappings: namely, if α : V ′ → V is a
morphism of C , then denoteV ′/U the object of C/U with structure morphismϕ′

0 = ϕ0◦α.
We need to check that the diagram⊕

ϕ∈MorC(V,U) G(V ϕ−→ U)

��

// G(V/U)

��⊕
ϕ′∈MorC(V ′,U) G(V ′ ϕ′

−→ U) // G(V ′/U)

commutes. The problem here is that there may be a morphism ϕ : V → U different
from ϕ0 such that ϕ ◦ α = ϕ′

0. Thus the left vertical arrow will send the summand
corresponding to ϕ into the summand on which the lower horizontal arrow is equal to 1
and almost surely the diagram doesn’t commute.

8. Cohomology

Obsolete lemmas about cohomology.

Lemma 8.1. Let I be an ideal of a ring A. Let X be a scheme over Spec(A). Let
. . .→ F3 → F2 → F1

be an inverse system ofOX -modules such that Fn = Fn+1/I
nFn+1. Assume⊕

n≥0
H1(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then the in-

verse system Mn = Γ(X,Fn) satisfies the Mittag-Leffler condition.

Proof. This is a special case of the more general Cohomology, Lemma 35.1. �

Lemma 8.2. Let I be an ideal of a ring A. Let X be a scheme over Spec(A). Let
. . .→ F3 → F2 → F1

be an inverse system ofOX -modules such that Fn = Fn+1/I
nFn+1. Given n define

H1
n =

⋂
m≥n

Im
(
H1(X, InFm+1)→ H1(X, InFn+1)

)
If
⊕
H1
n satisfies the ascending chain condition as a graded

⊕
n≥0 I

n/In+1-module, then
the inverse system Mn = Γ(X,Fn) satisfies the Mittag-Leffler condition.

Proof. This is a special case of the more general Cohomology, Lemma 35.2. �
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Lemma 8.3. Let I be a finitely generated ideal of a ring A. Let X be a scheme over
Spec(A). Let

. . .→ F3 → F2 → F1

be an inverse system ofOX -modules such that Fn = Fn+1/I
nFn+1. Assume⊕

n≥0
H0(X, InFn+1)

satisfies the ascending chain condition as a graded
⊕

n≥0 I
n/In+1-module. Then the limit

topology on M = lim Γ(X,Fn) is the I-adic topology.

Proof. This is a special case of the more general Cohomology, Lemma 35.3. �

Lemma 8.4. Let (Sh(C),OC) be a ringed topos. For any complex ofOC-modules G•

there exists a quasi-isomorphism K• → G• such that f∗K• is a K-flat complex of OD-
modules for any morphism f : (Sh(D),OD)→ (Sh(C),OC) of ringed topoi.

Proof. This follows from Cohomology on Sites, Lemmas 17.11 and 18.1. �

Remark 8.5. This remark used to discuss what we know about pullbacks of K-flat
complexes being K-flat or not, but is now obsoleted by Cohomology on Sites, Lemma 18.1.

The following lemma computes the cohomology sheaves of the derived limit in a special
case.

Lemma 8.6. Let (C,O) be a ringed site. Let (Kn) be an inverse system of objects of
D(O). Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) Kn is an object of D+(O) for all n,
(2) for q ∈ Z there exists n(q) such that Hq(Kn+1)→ Hq(Kn) is an isomorphism

for n ≥ n(q),
(3) every object of C has a covering whose members are elements of B,
(4) for every U ∈ B we have Hp(U,Hq(Kn)) = 0 for p > d and all q.

Then we have Hm(R limKn) = limHm(Kn) for all m ∈ Z.

Proof. Set K = R limKn. Let U ∈ B. For each n there is a spectral sequence

Hp(U,Hq(Kn))⇒ Hp+q(U,Kn)

which converges as Kn is bounded below, see Derived Categories, Lemma 21.3. If we fix
m ∈ Z, then we see from our assumption (4) that only Hp(U,Hq(Kn)) contribute to
Hm(U,Kn) for 0 ≤ p ≤ d and m − d ≤ q ≤ m. By assumption (2) this implies that
Hm(U,Kn+1)→ Hm(U,Kn) is an isomorphism as soon asn ≥ max n(m), . . . , n(m− d).
The functor RΓ(U,−) commutes with derived limits by Injectives, Lemma 13.6. Thus we
have

Hm(U,K) = Hm(R limRΓ(U,Kn))
On the other hand we have just seen that the complexes RΓ(U,Kn) have eventually
constant cohomology groups. Thus by More on Algebra, Remark 86.10 we find that
Hm(U,K) is equal to Hm(U,Kn) for all n � 0 for some bound independent of U ∈ B.
Pick such an n. Finally, recall that Hm(K) is the sheafification of the presheaf U 7→
Hm(U,K) and Hm(Kn) is the sheafification of the presheaf U 7→ Hm(U,Kn). On the
elements of B these presheaves have the same values. Therefore assumption (3) guarantees
that the sheafifications are the same too. The lemma follows. �
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Lemma 8.7. In Simplicial Spaces, Situation 3.3 let a0 be an augmentation towards a
site D as in Simplicial Spaces, Remark 4.1. Suppose given strictly full weak Serre subcate-
gories

A ⊂ Ab(D), An ⊂ Ab(Cn)
Then

(1) the collection of abelian sheaves F on Ctotal whose restriction to Cn is inAn for
all n is a strictly full weak Serre subcategoryAtotal ⊂ Ab(Ctotal).

If a−1
n sendsA intoAn for all n, then

(2) a−1 sendsA intoAtotal and
(3) a−1 sends DA(D) into DAtotal

(Ctotal).
If Rqan,∗ sendsAn intoA for all n, q, then

(4) Rqa∗ sendsAtotal intoA for all q, and
(5) Ra∗ sends D+

Atotal
(Ctotal) into D+

A(D).

Proof. The only interesting assertions are (4) and (5). Part (4) follows from the
spectral sequence in Simplicial Spaces, Lemma 9.3 and Homology, Lemma 24.11. Then
part (5) follows by considering the spectral sequence associated to the canonical filtration
on an object K of D+

Atotal
(Ctotal) given by truncations. We omit the details. �

Remark 8.8. This tag used to refer to a section of the chapter on cohomology listing
topics to be treated.

Remark 8.9. This tag used to refer to a section of the chapter on cohomology listing
topics to be treated.

Remark 8.10. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.3 pertaining to the situation described in Cohomology on Sites, Lemma 31.9.

Remark 8.11. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.4 pertaining to the situation described in Cohomology on Sites, Lemma 31.9.

Remark 8.12. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.7 pertaining to the situation described in Cohomology on Sites, Lemma 31.9.

Remark 8.13. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.3 pertaining to the situation described in Étale Cohomology, Lemma 100.5.

Remark 8.14. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.4 pertaining to the situation described in Étale Cohomology, Lemma 100.5.

Remark 8.15. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.7 pertaining to the situation described in Étale Cohomology, Lemma 100.5.

Remark 8.16. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.3 pertaining to the situation described in Étale Cohomology, Lemma 102.4.

Remark 8.17. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.4 pertaining to the situation described in Étale Cohomology, Lemma 102.4.

Remark 8.18. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.5 pertaining to the situation described in Étale Cohomology, Lemma 102.4.

Remark 8.19. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.6 pertaining to the situation described in Étale Cohomology, Lemma 102.4.
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Remark 8.20. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.7 pertaining to the situation described in Étale Cohomology, Lemma 102.4.

Remark 8.21. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.3 pertaining to the situation described in Étale Cohomology, Lemma 103.4.

Remark 8.22. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.4 pertaining to the situation described in Étale Cohomology, Lemma 103.4.

Remark 8.23. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.5 pertaining to the situation described in Étale Cohomology, Lemma 103.4.

Remark 8.24. This tag used to refer to the special case of Cohomology on Sites,
Lemma 30.7 pertaining to the situation described in Étale Cohomology, Lemma 103.4.

Remark 8.25. This tag used to be in the chapter on étale cohomology, but is no longer
suitable there because of a reorganization. The content of the tag was the following: Étale
Cohomology, Lemma 77.3 can be used to prove that if f : X → Y is a separated, finite type
morphism of schemes and Y is Noetherian, thenRf! induces a functorDctf (Xétale,Λ)→
Dctf (Yétale,Λ). An example of this argument, when Y is the spectrum of a field andX is
a curve is given in The Trace Formula, Proposition 13.1.

Lemma 8.26. Let f : X → Y be a locally quasi-finite morphism of schemes. There
exists a unique functor f ! : Ab(Yétale)→ Ab(Xétale) such that

(1) for any open j : U → X with f ◦ j separated there is a canonical isomorphism
j! ◦ f ! = (f ◦ j)!, and

(2) these isomorphisms for U ⊂ U ′ ⊂ X are compatible with the isomorphisms in
More Étale Cohomology, Lemma 6.3.

Proof. Immediate consequence of More Étale Cohomology, Lemmas 6.1 and 6.3. �

Proposition 8.27. Let f : X → Y be a locally quasi-finite morphism. There exist
adjoint functors f! : Ab(Xétale) → Ab(Yétale) and f ! : Ab(Yétale) → Ab(Xétale) with
the following properties

(1) the functor f ! is the one constructed in More Étale Cohomology, Lemma 6.1,
(2) for any open j : U → X with f ◦ j separated there is a canonical isomorphism

f! ◦ j! = (f ◦ j)!, and
(3) these isomorphisms for U ⊂ U ′ ⊂ X are compatible with the isomorphisms in

More Étale Cohomology, Lemma 3.13.

Proof. See More Étale Cohomology, Sections 4 and 6. �

Lemma 8.28. Let f : X → Y be a morphism of schemes which is locally quasi-finite.
For an abelian group A and a geometric point y : Spec(k) → Y we have f !(y∗A) =∏
f(x)=y x∗A.

Proof. Follows from the corresponding statement in More Étale Cohomology, Lemma
6.1. �

Lemma 8.29. Let f : X → Y and g : Y → Z be composable locally quasi-finite
morphisms of schemes. Then g! ◦ f! = (g ◦ f)! and f ! ◦ g! = (g ◦ f)!.

Proof. Combination of More Étale Cohomology, Lemmas 4.12 and 6.3. �
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9. Differential graded algebra

Lemma 9.1. Let (A, d) and (B, d) be differential graded algebras. LetN be a differen-
tial graded (A,B)-bimodule with property (P). Let M be a differential graded A-module
with property (P). ThenQ = M⊗AN is a differential gradedB-module which represents
M ⊗L

A N in D(B) and which has a filtration

0 = F−1Q ⊂ F0Q ⊂ F1Q ⊂ . . . ⊂ Q
by differential graded submodules such that Q =

⋃
FpQ, the inclusions FiQ → Fi+1Q

are admissible monomorphisms, the quotients Fi+1Q/FiQ are isomorphic as differential
graded B-modules to a direct sum of (A⊗R B)[k].

Proof. Choose filtrations F• on M and N . Then consider the filtration on Q =
M ⊗A N given by

Fn(Q) =
∑

i+j=n
Fi(M)⊗A Fj(N)

This is clearly a differential graded B-submodule. We see that

Fn(Q)/Fn−1(Q) =
⊕

i+j=n
Fi(M)/Fi−1(M)⊗A Fj(N)/Fj−1(N)

for example because the filtration ofM is split in the category of gradedA-modules. Since
by assumption the quotients on the right hand side are isomorphic to direct sums of shifts
ofA andA⊗RB and sinceA⊗A(A⊗RB) = A⊗RB, we conclude that the left hand side is
a direct sum of shifts ofA⊗RB as a differential gradedB-module. (Warning: Q does not
have a structure of (A,B)-bimodule.) This proves the first statement of the lemma. The
second statement is immediate from the definition of the functor in Differential Graded
Algebra, Lemma 33.2. �

10. Simplicial methods

Lemma 10.1. Assumptions and notation as in Simplicial, Lemma 32.1. There exists a
section g : U → V to the morphism f and the composition g ◦ f is homotopy equivalent
to the identity on V . In particular, the morphism f is a homotopy equivalence.

Proof. Immediate from Simplicial, Lemmas 32.1 and 30.8. �

Lemma 10.2. Let C be a category with finite coproducts and finite limits. Let X be
an object of C. Let k ≥ 0. The canonical map

Hom(∆[k], X) −→ cosk1sk1 Hom(∆[k], X)
is an isomorphism.

Proof. For any simplicial object V we have

Mor(V, cosk1sk1 Hom(∆[k], X)) = Mor(sk1V, sk1 Hom(∆[k], X))
= Mor(i1!sk1V,Hom(∆[k], X))
= Mor(i1!sk1V ×∆[k], X)

The first equality by the adjointness of sk and cosk, the second equality by the adjointness
of i1! and sk1, and the first equality by Simplicial, Definition 17.1 where the lastX denotes
the constant simplicial object with valueX . By Simplicial, Lemma 20.2 an element in this
set depends only on the terms of degree 0 and 1 of i1!sk1V ×∆[k]. These agree with the
degree 0 and 1 terms of V ×∆[k], see Simplicial, Lemma 21.3. Thus the set above is equal
to Mor(V ×∆[k], X) = Mor(V,Hom(∆[k], X)). �
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Lemma 10.3. Let C be a category. Let X be an object of C such that the self products
X× . . .×X exist. Let k ≥ 0 and letC[k] be as in Simplicial, Example 5.6. With notation
as in Simplicial, Lemma 15.2 the canonical map

Hom(C[k], X)1 −→ (cosk0sk0 Hom(C[k], X))1

is identified with the map ∏
α:[k]→[1]

X −→ X ×X

which is the projection onto the factors where α is a constant map.

Proof. This is shown in the proof of Hypercoverings, Lemma 7.3. �

11. Results on schemes

Lemmas that seem superfluous.

Lemma 11.1. Let (R,m, κ) be a local ring. Let X ⊂ Pn
R be a closed subscheme.

Assume that R = Γ(X,OX). Then the special fibre Xk is geometrically connected.

Proof. This is a special case of More on Morphisms, Theorem 53.5. �

Lemma 11.2. Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible closed
subset with generic point ξ. Let P be a property of coherent sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ Z0 ⊂ X , Z 6= Z0 and every quasi-

coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I .
(4) There exists some coherent sheaf G on X such that

(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ , and
(c) property P holds for G.

Then property P holds for every coherent sheaf F on X whose support is contained in
Z0.

Proof. The proof is a variant on the proof of Cohomology of Schemes, Lemma 12.5.
In exactly the same manner as in that proof we see that any coherent sheaf whose support
is strictly contained in Z0 has property P .
Consider a coherent sheaf G as in (3). By Cohomology of Schemes, Lemma 12.2 there exists
a sheaf of ideals I on Z0 and a short exact sequence

0→ ((Z0 → X)∗I)⊕r → G → Q→ 0
where the support of Q is strictly contained in Z0. In particular r > 0 and I is nonzero
because the support of G is equal to Z. Since Q has property P we conclude that also
((Z0 → X)∗I)⊕r has property P . By (2) we deduce property P for (Z0 → X)∗I . Slot-
ting this into the proof of Cohomology of Schemes, Lemma 12.5 at the appropriate point
gives the lemma. Some details omitted. �

Lemma 11.3. LetX be a Noetherian scheme. Let P be a property of coherent sheaves
on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.
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(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ X with generic point ξ there exists

some coherent sheaf G such that
(a) Supp(G) = Z ,
(b) Gξ is annihilated by mξ , and
(c) property P holds for G.

Then property P holds for every coherent sheaf on X .

Proof. This follows from Lemma 11.2 in exactly the same way that Cohomology of
Schemes, Lemma 12.6 follows from Cohomology of Schemes, Lemma 12.5. �

Lemma 11.4. LetX be a scheme. LetL be an invertibleOX -module. Let s ∈ Γ(X,L)
be a section. Let F ′ ⊂ F be quasi-coherentOX -modules. Assume that

(1) X is quasi-compact,
(2) F is of finite type, and
(3) F ′|Xs = F|Xs .

Then there exists an n ≥ 0 such that multiplication by sn on F factors through F ′.

Proof. In other words we claim that snF ⊂ F ′ ⊗OX
L⊗n for some n ≥ 0. In other

words, we claim that the quotient map F → F/F ′ becomes zero after multiplying by a
power of s. This follows from Properties, Lemma 17.3. �

Lemma 11.5. Let f : X → Y be a morphism schemes. Assume
(1) X and Y are integral schemes,
(2) f is locally of finite type and dominant,
(3) f is either quasi-compact or separated,
(4) f is generically finite, i.e., one of (1) – (5) of Morphisms, Lemma 51.7 holds.

Then there is a nonempty open V ⊂ Y such that f−1(V ) → V is finite locally free of
degree deg(X/Y ). In particular, the degrees of the fibres of f−1(V ) → V are bounded
by deg(X/Y ).

Proof. We may choose V such that f−1(V ) → V is finite. Then we may shrink
V and assume that f−1(V ) → V is flat and of finite presentation by generic flatness
(Morphisms, Proposition 27.1). Then the morphism is finite locally free by Morphisms,
Lemma 48.2. Since V is irreducible the morphism has a fixed degree. The final statement
follows from this and Morphisms, Lemma 57.3. �

12. Derived categories of varieties

Some lemma which were originally part of the chapter on derived categories of varieties
but are no longer needed.

Lemma 12.1. Let k be a field. LetX be a separated scheme of finite type over k which
is regular. Let F : Dperf (OX) → Dperf (OX) be a k-linear exact functor. Assume for
every coherent OX -module F with dim(Supp(F)) = 0 there is an isomorphism of k-
vector spaces

HomX(F ,M) = HomX(F , F (M))
functorial in M in Dperf (OX). Then there exists an automorphism f : X → X over
k which induces the identity on the underlying topological space1 and an invertibleOX -
module L such that F and F ′(M) = f∗M ⊗L

OX
L are siblings.

1This often forces f to be the identity, see Varieties, Lemma 32.1.
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Proof. By Derived Categories of Varieties, Lemma 11.2 we conclude that for every
coherentOX -module F whose support is a closed point there are isomorphisms

H0(X,M ⊗L
OX
F) = H0(X,F (M)⊗L

OX
F)

functorial in M .

Let x ∈ X be a closed point and apply the above with F = Ox the skyscraper sheaf with
value κ(x) at x. We find

dimκ(x) TorOX,x
p (Mx, κ(x)) = dimκ(x) TorOX,x

p (F (M)x, κ(x))

for all p ∈ Z. In particular, if Hi(M) = 0 for i > 0, then Hi(F (M)) = 0 for i > 0 by
Derived Categories of Varieties, Lemma 11.3.

If E is locally free of rank r, then F (E) is locally free of rank r. This is true because a
perfect complex K overOX,x with

dimκ(x) TorOX,x

i (K,κ(x)) =
{
r if i = 0
0 if i 6= 0

is equal to a free module of rank r placed in degree 0. See for example More on Algebra,
Lemma 75.6.

IfM is supported on a closed subscheme Z ⊂ X , then F (M) is also supported on Z. This
is clear because we will have M ⊗L

OX
Ox = 0 for x 6∈ Z and hence the same will be true

for F (M) and hence we get the conclusion from Derived Categories of Varieties, Lemma
11.3.

In particular F (Ox) is supported at {x}. Let i ∈ Z be the minimal integer such that
Hi(Ox) 6= 0. We know that i ≤ 0. If i < 0, then there is a morphism Ox[−i]→ F (Ox)
which contradicts the fact that all morphisms Ox[−i] → Ox are zero. Thus F (Ox) =
H[0] whereH is a skyscraper sheaf at x.

Let G be a coherentOX -module with dim(Supp(G)) = 0. Then there exists a filtration

0 = G0 ⊂ G1 ⊂ . . . ⊂ Gn = G

such that for n ≥ i ≥ 1 the quotient Gi/Gi−1 is isomorphic to Oxi for some closed point
xi ∈ X . Then we get distinguished triangles

F (Gi−1)→ F (Gi)→ F (Oxi)

and using induction we find that F (Gi) is a coherent sheaf placed in degree 0.

Let G be a coherent OX -module. We know that Hi(F (G)) = 0 for i > 0. To get a
contradiction assume that Hi(F (G)) is nonzero for some i < 0. We choose i minimal
with this property so that we have a morphism Hi(F (G))[−i] → F (G) in Dperf (OX).
Choose a closed point x ∈ X in the support of Hi(F (G)). By More on Algebra, Lemma
100.2 there exists an n > 0 such that

Hi(F (G))x ⊗OX,x
OX,x/mnx −→ TorOX,x

−i (F (G)x,OX,x/mnx)

is nonzero. Next, we take m ≥ 1 and we consider the short exact sequence

0→ mmx G → G → G/mmx G → 0
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By the above we know thatF (G/mmx G) is a sheaf placed in degree 0. HenceHi(F (mmx G))→
Hi(F (G)) is an isomorphism. Consider the commutative diagram

Hi(F (mmx G))x ⊗OX,x
OX,x/mnx //

��

TorOX,x

−i (F (mmx G)x,OX,x/mnx)

��
Hi(F (G))x ⊗OX,x

OX,x/mnx // TorOX,x

−i (F (G)x,OX,x/mnx)

Since the left vertical arrow is an isomorphism and the bottom arrow is nonzero, we con-
clude that the right vertical arrow is nonzero for all m ≥ 1. On the other hand, by the
first paragraph of the proof, we know this arrow is isomorphic to the arrow

TorOX,x

−i (mmx Gx,OX,x/mnx) −→ TorOX,x

−i (Gx,OX,x/mnx)

However, this arrow is zero for m � n by More on Algebra, Lemma 102.2 which is the
contradiction we’re looking for.

Thus we know that F preserves coherent modules. By Derived Categories of Varieties,
Lemma 12.2 we find F is a sibling to the Fourier-Mukai functor F ′ given by a coherent
OX×X -module K flat over X via pr1 and finite over X via pr2. Since F (OX) is an in-
vertibleOX -module L placed in degree 0 we see that

L ∼= F (OX) ∼= F ′(OX) ∼= pr2,∗K

Thus by Functors and Morphisms, Lemma 7.6 there is a morphism s : X → X ×X with
pr2 ◦ s = idX such that K = s∗L. Set f = pr1 ◦ s. Then we have

F ′(M) = Rpr2,∗(Lpr∗
1K ⊗K)

= Rpr2,∗(Lpr∗
1M ⊗ s∗L)

= Rpr2,∗(Rs∗(Lf∗M ⊗ L))
= Lf∗M ⊗ L

where we have used Derived Categories of Schemes, Lemma 22.1 in the third step. Since
for all closed points x ∈ X the module F (Ox) is supported at x, we see that f induces
the identity on the underlying topological space of X . We still have to show that f is an
isomorphism which we will do in the next paragraph.

Let x ∈ X be a closed point. For n ≥ 1 denote Ox,n the skyscaper sheaf at x with value
OX,x/mnx . We have

HomX(Ox,m,Ox,n) ∼= HomX(Ox,m, F (Ox,n)) ∼= HomX(Ox,m, f∗Ox,n ⊗ L)

functorially with respect to OX -module homomorphisms between the Ox,n. (The first
isomorphism exists by assumption and the second isomorphism because F and F ′ are sib-
lings.) For m ≥ n we have OX,x/mn = HomX(Ox,m,Ox,n) via the action on Ox,n
we conclude that f ] : OX,x/mnx → OX,x/mnx is bijective for all n. Thus f induces iso-
morphisms on complete local rings at closed points and hence is étale (Étale Morphisms,
Lemma 11.3). Looking at closed points we see that ∆f : X → X ×f,X,f X (which is an
open immersion as f is étale) is bijective hence an isomorphism. Hence f is a monomor-
phism. Finally, we conclude f is an isomorphism as Descent, Lemma 25.1 tells us it is an
open immersion. �



13. REPRESENTABILITY IN THE REGULAR PROPER CASE 7297

13. Representability in the regular proper case

This section is obsolete because we improved Derived Categories of Varieties, Theorem 6.3
to apply to all proper schemes over a field (whereas before we only proved it for projective
schemes over a field).

Lemma 13.1. Let f : X ′ → X be a proper birational morphism of integral Noetherian
schemes with X regular. The mapOX → Rf∗OX′ canonically splits in D(OX).

Proof. Set E = Rf∗OX′ in D(OX). Observe that E is in Db
Coh(OX) by Derived

Categories of Schemes, Lemma 11.3. By Derived Categories of Schemes, Lemma 11.8 we
find that E is a perfect object of D(OX). Since OX′ is a sheaf of algebras, we have the
relative cup product µ : E⊗L

OX
E → E by Cohomology, Remark 28.7. Let σ : E⊗E∨ →

E∨ ⊗ E be the commutativity constraint on the symmetric monoidal category D(OX)
(Cohomology, Lemma 50.6). Denote η : OX → E⊗E∨ and ε : E∨⊗E → OX the maps
constructed in Cohomology, Example 50.7. Then we can consider the map

E
η⊗1−−→ E ⊗ E∨ ⊗ E σ⊗1−−−→ E∨ ⊗ E ⊗ E 1⊗µ−−−→ E∨ ⊗ E ε−→ OX

We claim that this map is a one sided inverse to the map in the statement of the lemma.
To see this it suffices to show that the composition OX → OX is the identity map. This
we may do in the generic point of X (or on an open subscheme of X over which f is an
isomorphism). In this case E = OX and µ is the usual multiplication map and the result
is clear. �

Lemma 13.2. Let X be a proper scheme over a field k which is regular. Let K ∈
Ob(DQCoh(OX)). The following are equivalent

(1) K ∈ Db
Coh(OX) = Dperf (OX), and

(2)
∑
i∈Z dimk ExtiX(E,K) <∞ for all perfect E in D(OX).

Proof. The equality in (1) holds by Derived Categories of Schemes, Lemma 11.8. The
implication (1)⇒ (2) follows from Derived Categories of Varieties, Lemma 5.3. The im-
plication (2)⇒ (1) follows from More on Morphisms, Lemma 69.6. �

Lemma 13.3. Let X be a proper scheme over a field k which is regular.
(1) Let F : Dperf (OX)opp → Vectk be a k-linear cohomological functor such that∑

n∈Z
dimk F (E[n]) <∞

for all E ∈ Dperf (OX). Then F is isomorphic to a functor of the form E 7→
HomX(E,K) for some K ∈ Dperf (OX).

(2) Let G : Dperf (OX)→ Vectk be a k-linear homological functor such that∑
n∈Z

dimkG(E[n]) <∞

for all E ∈ Dperf (OX). Then G is isomorphic to a functor of the form E 7→
HomX(K,E) for some K ∈ Dperf (OX).

Proof. This follows from Derived Categories of Varieties, Theorem 6.3 and Lemma
6.4. We also give another proof below.

Proof of (1). The derived category DQCoh(OX) has direct sums, is compactly gener-
ated, andDperf (OX) is the full subcategory of compact objects, see Derived Categories of
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Schemes, Lemma 3.1, Theorem 15.3, and Proposition 17.1. By Derived Categories of Vari-
eties, Lemma 6.2 we may assumeF (E) = HomX(E,K) for someK ∈ Ob(DQCoh(OX)).
Then it follows that K is in Db

Coh(OX) by Lemma 13.2.
Proof of (2). Consider the contravariant functor E 7→ E∨ on Dperf (OX), see Cohomol-
ogy, Lemma 50.5. This functor is an exact anti-self-equivalence ofDperf (OX). Hence we
may apply part (1) to the functor F (E) = G(E∨) to find K ∈ Dperf (OX) such that
G(E∨) = HomX(E,K). It follows that G(E) = HomX(E∨,K) = HomX(K∨, E)
and we conclude that taking K∨ works. �

14. Functor of quotients

Lemma 14.1. Let S = Spec(R) be an affine scheme. LetX be an algebraic space over
S. Let qi : F → Qi, i = 1, 2 be surjective maps of quasi-coherent OX -modules. Assume
Q1 flat over S. Let T → S be a quasi-compact morphism of schemes such that there exists
a factorization

FT
q2,T

""

q1,T

||
Q1,T Q2,Too

Then exists a closed subscheme Z ⊂ S such that (a) T → S factors through Z and (b)
q1,Z factors through q2,Z . If Ker(q2) is a finite type OX -module and X quasi-compact,
then we can take Z → S of finite presentation.

Proof. Apply Flatness on Spaces, Lemma 8.2 to the map Ker(q2)→ Q1. �

15. Spaces and fpqc coverings

The material here was made obsolete by Gabber’s argument showing that algebraic spaces
satisfy the sheaf condition with respect to fpqc coverings. Please visit Properties of Spaces,
Section 17.

Lemma 15.1. Let S be a scheme. Let X be an algebraic space over S. Let {fi : Ti →
T}i∈I be a fpqc covering of schemes over S. Then the map

MorS(T,X) −→
∏

i∈I
MorS(Ti, X)

is injective.
Proof. Immediate consequence of Properties of Spaces, Proposition 17.1. �

Lemma 15.2. Let S be a scheme. Let X be an algebraic space over S. Let X =⋃
j∈J Xj be a Zariski covering, see Spaces, Definition 12.5. If each Xj satisfies the sheaf

property for the fpqc topology then X satisfies the sheaf property for the fpqc topology.
Proof. This is true because all algebraic spaces satisfy the sheaf property for the fpqc

topology, see Properties of Spaces, Proposition 17.1. �

Lemma 15.3. Let S be a scheme. Let X be an algebraic space over S. If X is Zariski
locally quasi-separated over S , then X satisfies the sheaf condition for the fpqc topology.

Proof. Immediate consequence of the general Properties of Spaces, Proposition 17.1.
�

Remark 15.4. This remark used to discuss to what extend the original proof of Lemma
15.3 (of December 18, 2009) generalizes.
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16. Very reasonable algebraic spaces

Material that is somewhat obsolete.

Lemma 16.1. Let S be a scheme. Let X be a reasonable algebraic space over S. Then
|X| is Kolmogorov (see Topology, Definition 8.6).

Proof. Follows from the definitions and Decent Spaces, Lemma 12.3. �

In the rest of this section we make some remarks about very reasonable algebraic spaces.
If there exists a scheme U and a surjective, étale, quasi-compact morphism U → X , then
X is very reasonable, see Decent Spaces, Lemma 4.7.

Lemma 16.2. A scheme is very reasonable.

Proof. This is true because the identity map is a quasi-compact, surjective étale mor-
phism. �

Lemma 16.3. Let S be a scheme. Let X be an algebraic space over S. If there exists
a Zariski open covering X =

⋃
Xi such that each Xi is very reasonable, then X is very

reasonable.

Proof. This is case (ε) of Decent Spaces, Lemma 5.2. �

Lemma 16.4. An algebraic space which is Zariski locally quasi-separated is very rea-
sonable. In particular any quasi-separated algebraic space is very reasonable.

Proof. This is one of the implications of Decent Spaces, Lemma 5.1. �

Lemma 16.5. Let S be a scheme. Let X , Y be algebraic spaces over S. Let Y → X be
a representable morphism. If X is very reasonable, so is Y .

Proof. This is case (ε) of Decent Spaces, Lemma 5.3. �

Remark 16.6. Very reasonable algebraic spaces form a strictly larger collection than
Zariski locally quasi-separated algebraic spaces. Consider an algebraic space of the form
X = [U/G] (see Spaces, Definition 14.4) where G is a finite group acting without fixed
points on a non-quasi-separated scheme U . Namely, in this case U ×X U = U × G and
clearly both projections to U are quasi-compact, henceX is very reasonable. On the other
hand, the diagonal U ×X U → U × U is not quasi-compact, hence this algebraic space is
not quasi-separated. Now, take U the infinite affine space over a field k of characteristic
6= 2 with zero doubled, see Schemes, Example 21.4. Let 01, 02 be the two zeros of U . Let
G = {+1,−1}, and let−1 act by−1 on all coordinates, and by switching 01 and 02. Then
[U/G] is very reasonable but not Zariski locally quasi-separated (details omitted).

Warning: The following lemma should be used with caution, as the schemes Ui in it are
not necessarily separated or even quasi-separated.

Lemma 16.7. Let S be a scheme. Let X be a very reasonable algebraic space over S.
There exists a set of schemes Ui and morphisms Ui → X such that

(1) each Ui is a quasi-compact scheme,
(2) each Ui → X is étale,
(3) both projections Ui ×X Ui → Ui are quasi-compact, and
(4) the morphism

∐
Ui → X is surjective (and étale).
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Proof. Decent Spaces, Definition 6.1 says that there exist Ui → X such that (2), (3)
and (4) hold. Fix i, and setRi = Ui×X Ui, and denote s, t : Ri → Ui the projections. For
any affine openW ⊂ Ui the openW ′ = t(s−1(W )) ⊂ Ui is a quasi-compactRi-invariant
open (see Groupoids, Lemma 19.2). HenceW ′ is a quasi-compact scheme,W ′ → X is étale,
and W ′ ×X W ′ = s−1(W ′) = t−1(W ′) so both projections W ′ ×X W ′ →W ′ are quasi-
compact. This means the family of W ′ → X , where W ⊂ Ui runs through the members
of affine open coverings of the Ui gives what we want. �

17. Obsolete lemmas on algebraic spaces

Lemmas that seem superfluous or are no longer used in the text.

Lemma 17.1. In Cohomology of Spaces, Situation 16.1 the morphism p : X →
Spec(A) is surjective.

Proof. This lemma was originally used in the proof of Cohomology of Spaces, Propo-
sition 16.7 but now is a consequence of it. �

Lemma 17.2. In Cohomology of Spaces, Situation 16.1 the morphism p : X →
Spec(A) is universally closed.

Proof. This lemma was originally used in the proof of Cohomology of Spaces, Propo-
sition 16.7 but now is a consequence of it. �

Remark 17.3. This tag used to refer to an equation in the proof of Formal Spaces,
Lemma 20.4.

Remark 17.4. This tag used to refer to an equation in the proof of Formal Spaces,
Lemma 20.4.

18. Obsolete lemmas on algebraic stacks

Lemmas that seem superfluous or are no longer used in the text.

Lemma 18.1. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf having (RS*). Let x be an object of X over an affine scheme
U of finite type over S. Let un ∈ U , n ≥ 1 be pairwise distinct finite type points such that
x is not versal at un for all n. After replacing un by a subsequence, there exist morphisms

x→ x1 → x2 → . . . in X lying over U → U1 → U2 → . . .

over S such that
(1) for each n the morphism U → Un is a first order thickening,
(2) for each n we have a short exact sequence

0→ κ(un)→ OUn → OUn−1 → 0

with U0 = U for n = 1,
(3) for eachn there does not exist a pair (W,α) consisting of an open neighbourhood

W ⊂ Un of un and a morphism α : xn|W → x such that the composition

x|U∩W
restriction of x→xn−−−−−−−−−−−→ xn|W

α−→ x

is the canonical morphism x|U∩W → x.
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Proof. This lemma was originally used in the proof of a criterion for openness of
versality (Artin’s Axioms, Lemma 20.3) but it got replaced by Artin’s Axioms, Lemma 20.1
from which it readily follows. Namely, after replacing un, n ≥ 1 by a subsequence we
may and do assume that there are no specializations among these points, see Properties,
Lemma 5.11. Then we can apply Artin’s Axioms, Lemma 20.1 to finish the proof. �

19. Variants of cotangent complexes for schemes

This section gives an alternative construction of the cotangent complex of a morphism of
schemes. This section is currently in the obsolete chapter as we can get by with the easier
version discussed in Cotangent, Section 25 for applications.

Let f : X → Y be a morphism of schemes. Let CX/Y be the category whose objects are
commutative diagrams

(19.0.1)

X

��

Uoo

��

i
// A

��
Y Voo

of schemes where
(1) U is an open subscheme of X ,
(2) V is an open subscheme of Y , and
(3) there exists an isomorphismA = V ×Spec(P ) over V where P is a polynomial

algebra over Z (on some set of variables).
In other words, A is an (infinite dimensional) affine space over V . Morphisms are given
by commutative diagrams.

Notation. An object of CX/Y , i.e., a diagram (19.0.1), is often denoted U → A where it is
understood that (a) U is an open subscheme of X , (b) U → A is a morphism over Y , (c)
the image of the structure morphism A → Y is an open V ⊂ Y , and (d) A → V is an
affine space. We’ll write U → A/V to indicate V ⊂ Y is the image of A → Y . Recall
that XZar denotes the small Zariski site X . There are forgetful functors

CX/Y → XZar, (U → A) 7→ U and CX/Y 7→ YZar, (U → A/V ) 7→ V.

Lemma 19.1. Let X → Y be a morphism of schemes.
(1) The category CX/Y is fibred over XZar.
(2) The category CX/Y is fibred over YZar.
(3) The category CX/Y is fibred over the category of pairs (U, V ) where U ⊂ X ,

V ⊂ Y are open and f(U) ⊂ V .

Proof. Ad (1). Given an object U → A of CX/Y and a morphism U ′ → U of XZar

consider the object i′ : U ′ → A of CX/Y where i′ is the composition of i and U ′ → U .
The morphism (U ′ → A)→ (U → A) of CX/Y is strongly cartesian over XZar.

Ad (2). Given an object U → A/V and V ′ → V we can set U ′ = U ∩ f−1(V ′) and
A′ = V ′ ×V A to obtain a strongly cartesian morphism (U ′ → A′) → (U → A) over
V ′ → V .

Ad (3). Denote (X/Y )Zar the category in (3). Given U → A/V and a morphism
(U ′, V ′) → (U, V ) in (X/Y )Zar we can consider A′ = V ′ ×V A. Then the morphism
(U ′ → A′/V ′)→ (U → A/V ) is strongly cartesian in CX/Y over (X/Y )Zar. �
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We obtain a topology τX on CX/Y by using the topology inherited fromXZar (see Stacks,
Section 10). If not otherwise stated this is the topology on CX/Y we will consider. To be
precise, a family of morphisms {(Ui → Ai) → (U → A)} is a covering of CX/Y if and
only if

(1) U =
⋃
Ui, and

(2) Ai = A for all i.
We obtain the same collection of sheaves if we allowAi ∼= A in (2). The functor u defines
a morphism of topoi π : Sh(CX/Y )→ Sh(XZar).

The site CX/Y comes with several sheaves of rings.
(1) The sheafO given by the rule (U → A) 7→ O(A).
(2) The sheafOX = π−1OX given by the rule (U → A) 7→ O(U).
(3) The sheafOY given by the rule (U → A/V ) 7→ O(V ).

We obtain morphisms of ringed topoi

(19.1.1)

(Sh(CX/Y ),OX)
i
//

π

��

(Sh(CX/Y ),O)

(Sh(XZar),OX)

The morphism i is the identity on underlying topoi and i] : O → OX is the obvious
map. The map π is a special case of Cohomology on Sites, Situation 38.1. An important
role will be played in the following by the derived functors Li∗ : D(O) −→ D(OX) left
adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! : D(OX) −→ D(OX) left adjoint to
π∗ = π−1 : D(OX)→ D(OX).

Remark 19.2. We obtain a second topology τY on CX/Y by taking the topology
inherited from YZar. There is a third topology τX→Y where a family of morphisms
{(Ui → Ai) → (U → A)} is a covering if and only if U =

⋃
Ui, V =

⋃
Vi and

Ai ∼= Vi ×V A. This is the topology inherited from the topology on the site (X/Y )Zar
whose underlying category is the category of pairs (U, V ) as in Lemma 19.1 part (3).
The coverings of (X/Y )Zar are families {(Ui, Vi) → (U, V )} such that U =

⋃
Ui and

V =
⋃
Vi. There are morphisms of topoi

Sh(CX/Y ) = Sh(CX/Y , τX) Sh(CX/Y , τX→Y )oo // Sh(CX/Y , τY )

(recall that τX is our “default” topology). The pullback functors for these arrows are
sheafification and pushforward is the identity on underlying presheaves. The diagram
of topoi

Sh(XZar)

f

��

Sh(CX/Y )
π
oo Sh(CX/Y , τX→Y )oo

��
Sh(YZar) Sh(CX/Y , τY )oo

is not commutative. Namely, the pullback of a nonzero abelian sheaf on Y is a nonzero
abelian sheaf on (CX/Y , τX→Y ), but we can certainly find examples where such a sheaf
pulls back to zero on X . Note that any presheaf F on YZar gives a sheaf F on CY/X by
the rule which assigns to (U → A/V ) the set F(V ). Even if F happens to be a sheaf
it isn’t true in general that F = π−1f−1F . This is related to the noncommutativity
of the diagram above, as we can describe F as the pushforward of the pullback of F to
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Sh(CX/Y , τX→Y ) via the lower horizontal and right vertical arrows. An example is the
sheaf OY . But what is true is that there is a map F → π−1f−1F which is transformed
(as we shall see later) into an isomorphism after applying π!.

20. Deformations and obstructions of flat modules

In this section we sketch a construction of a deformation theory for the stack of coher-
ent sheaves for any algebraic space X over a ring Λ. This material is obsolete due to the
improved discussion in Quot, Section 6.

Our setup will be the following. We assume given
(1) a ring Λ,
(2) an algebraic space X over Λ,
(3) a Λ-algebra A, set XA = X ×Spec(Λ) Spec(A), and
(4) a finitely presentedOXA -module F flat over A.

In this situation we will consider all possible surjections

0→ I → A′ → A→ 0
whereA′ is a Λ-algebra whose kernel I is an ideal of square zero inA′. GivenA′ we obtain
a first order thickeningXA → XA′ of algebraic spaces over Spec(Λ). For each of these we
consider the problem of lifting F to a finitely presented module F ′ on XA′ flat over A′.
We would like to replicate the results of Deformation Theory, Lemma 12.1 in this setting.

To be more precise let Lift(F , A′) denote the category of pairs (F ′, α) whereF ′ is a finitely
presented module onXA′ flat overA′ andα : F ′|XA → F is an isomorphism. Morphisms
(F ′

1, α1) → (F ′
2, α2) are isomorphisms F ′

1 → F ′
2 which are compatible with α1 and α2.

The set of isomorphism classes of Lift(F , A′) is denoted Lift(F , A′).

Let G be a sheaf of OX ⊗Λ A-modules on Xétale flat over A. We introduce the category
Lift(G, A′) of pairs (G′, β) where G′ is a sheaf ofOX ⊗Λ A

′-modules flat over A′ and β is
an isomorphism G′ ⊗A′ A→ G.

Lemma 20.1. Notation and assumptions as above. Let p : XA → X denote the
projection. Given A′ denote p′ : XA′ → X the projection. The functor p′

∗ induces an
equivalence of categories between

(1) the category Lift(F , A′), and
(2) the category Lift(p∗F , A′).

Proof. FIXME. �

Let H be a sheaf of O ⊗Λ A-modules on CX/Λ flat over A. We introduce the category
LiftO(H, A′) whose objects are pairs (H′, γ) whereH′ is a sheaf ofO⊗Λ A

′-modules flat
over A′ and γ : H′ ⊗A A′ → H is an isomorphism ofO ⊗Λ A-modules.

Let G be a sheaf of OX ⊗Λ A-modules on Xétale flat over A. Consider the morphisms i
and π of Cotangent, Equation (27.1.1). Denote G = π−1(G). It is simply given by the rule
(U → A) 7→ G(U) hence it is a sheaf of OX ⊗Λ A-modules. Denote i∗G the same sheaf
but viewed as a sheaf ofO ⊗Λ A-modules.

Lemma 20.2. Notation and assumptions as above. The functor π! induces an equiva-
lence of categories between

(1) the category LiftO(i∗G, A′), and
(2) the category Lift(G, A′).
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Proof. FIXME. �

Lemma 20.3. Notation and assumptions as in Lemma 20.2. Consider the object
L = L(Λ, X,A,G) = Lπ!(Li∗(i∗(G)))

of D(OX ⊗Λ A). Given a surjection A′ → A of Λ-algebras with square zero kernel I we
have

(1) The category Lift(G, A′) is nonempty if and only if a certain class ξ ∈ Ext2
OX⊗A(L,G⊗A

I) is zero.
(2) If Lift(G, A′) is nonempty, then Lift(G, A′) is principal homogeneous under Ext1

OX⊗A(L,G⊗A
I).

(3) Given a lift G′, the set of automorphisms of G′ which pull back to idG is canon-
ically isomorphic to Ext0

OX⊗A(L,G ⊗A I).

Proof. FIXME. �

Finally, we put everything together as follows.

Proposition 20.4. With Λ, X , A, F as above. There exists a canonical object L =
L(Λ, X,A,F) of D(XA) such that given a surjection A′ → A of Λ-algebras with square
zero kernel I we have

(1) The category Lift(F , A′) is nonempty if and only if a certain class ξ ∈ Ext2
XA(L,F⊗A

I) is zero.
(2) If Lift(F , A′) is nonempty, then Lift(F , A′) is principal homogeneous under

Ext1
XA(L,F ⊗A I).

(3) Given a liftF ′, the set of automorphisms ofF ′ which pull back to idF is canon-
ically isomorphic to Ext0

XA(L,F ⊗A I).

Proof. FIXME. �

Lemma 20.5. In the situation of Proposition 20.4, ifX → Spec(Λ) is locally of finite
type and Λ is Noetherian, then L is pseudo-coherent.

Proof. FIXME. �

21. The stack of coherent sheaves in the non-flat case

In Quot, Theorem 5.12 the assumption that f : X → B is flat is not necessary. In this
section we modify the method of proof based on ideas from derived algebraic geometry to
get around the flatness hypothesis. An entirely different method is used in Quot, Section
6 to get exactly the same result; this is why the method from this section is obsolete.
The only step in the proof of Quot, Theorem 5.12 which uses flatness is in the application
of Quot, Lemma 5.11. The lemma is used to construct an obstruction theory as in Artin’s
Axioms, Section 24. The proof of the lemma relies on Deformation Theory, Lemmas 12.1
and 12.5 from Deformation Theory, Section 12. This is how the assumption that f is flat
comes about. Before we go on, note that results (2) and (3) of Deformation Theory, Lemmas
12.1 do hold without the assumption that f is flat as they rely on Deformation Theory,
Lemmas 11.7 and 11.4 which do not have any flatness assumptions.
Before we give the details we give some motivation for the construction from derived
algebraic geometry, since we think it will clarify what follows. Let A be a finite type
algebra over the locally Noetherian base S. DenoteX ⊗L A a “derived base change” ofX
toA and denote i : XA → X⊗LA the canonical inclusion morphism. The objectX⊗LA
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does not (yet) have a definition in the Stacks project; we may think of it as the algebraic
space XA endowed with a simplicial sheaf of ringsOX⊗LA whose homology sheaves are

Hi(OX⊗LA) = TorOS
i (OX , A).

The morphismX⊗LA→ Spec(A) is flat (the terms of the simplicial sheaf of rings being
A-flat), so the usual material for deformations of flat modules applies to it. Thus we see
that we get an obstruction theory using the groups

ExtiX⊗LA(i∗F , i∗F ⊗AM)
where i = 0, 1, 2 for inf auts, inf defs, obstructions. Note that a flat deformation of i∗F
to X ⊗L A′ is automatically of the form i′∗F ′ where F ′ is a flat deformation of F . By
adjunction of the functors Li∗ and i∗ = Ri∗ these ext groups are equal to

ExtiXA(Li∗(i∗F),F ⊗AM)
Thus we obtain obstruction groups of exactly the same form as in the proof of Quot,
Lemma 5.11 with the only change being that one replaces the first occurrence of F by
the complex Li∗(i∗F).
Below we prove the non-flat version of the lemma by a “direct” construction of E(F) =
Li∗(i∗F) and direct proof of its relationship to the deformation theory ofF . In fact, it suf-
fices to construct τ≥−2E(F), as we are only interested in the ext groups ExtiXA(Li∗(i∗F),F⊗A
M) for i = 0, 1, 2. We can even identify the cohomology sheaves

Hi(E(F)) =


0 if i > 0
F if i = 0
0 if i = −1

TorOS
1 (OX , A)⊗OX

F if i = −2
This observation will guide our construction of E(F) in the remarks below.

Remark 21.1 (Direct construction). LetS be a scheme. Let f : X → B be a morphism
of algebraic spaces overS. LetU be another algebraic space overB. Denote q : X×BU →
U the second projection. Consider the distinguished triangle

Lq∗LU/B → LX×BU/B → E → Lq∗LU/B [1]
of Cotangent, Section 28. For any sheaf F ofOX×BU -modules we have the Atiyah class

F → LX×BU/B ⊗
L
OX×BU

F [1]

see Cotangent, Section 19. We can compose this with the map to E and choose a distin-
guished triangle

E(F)→ F → F ⊗L
OX×BU

E[1]→ E(F)[1]
in D(OX×BU ). By construction the Atiyah class lifts to a map

eF : E(F) −→ Lq∗LU/B ⊗L
OX×BU

F [1]

fitting into a morphism of distinguished triangles

F ⊗L Lq∗LU/B [1] // F ⊗L LX×BU/B [1] // F ⊗L E[1]

E(F) //

eF

OO

F //

Atiyah

OO

F ⊗L E[1]

=

OO

Given S,B,X, f, U,F we fix a choice of E(F) and eF .
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Remark 21.2 (Construction of obstruction class). With notation as in Remark 21.1
let i : U → U ′ be a first order thickening ofU overB. Let I ⊂ OU ′ be the quasi-coherent
sheaf of ideals cutting out B in B′. The fundamental triangle

Li∗LU ′/B → LU/B → LU/U ′ → Li∗LU ′/B [1]
together with the map LU/U ′ → I[1] determine a map eU ′ : LU/B → I[1]. Combined
with the map eF of the previous remark we obtain

(idF ⊗ Lq∗eU ′) ∪ eF : E(F) −→ F ⊗OX×BU
q∗I[2]

(we have also composed with the map from the derived tensor product to the usual tensor
product). In other words, we obtain an element

ξU ′ ∈ Ext2
OX×BU

(E(F),F ⊗OX×BU
q∗I)

Lemma 21.3. In the situation of Remark 21.2 assume that F is flat over U . Then
the vanishing of the class ξU ′ is a necessary and sufficient condition for the existence of a
OX×BU ′ -module F ′ flat over U ′ with i∗F ′ ∼= F .

Proof (sketch). We will use the criterion of Deformation Theory, Lemma 11.8. We
will abbreviateO = OX×BU andO′ = OX×BU ′ . Consider the short exact sequence

0→ I → OU ′ → OU → 0.
Let J ⊂ O′ be the quasi-coherent sheaf of ideals cutting out X ×B U . By the above we
obtain an exact sequence

TorOB
1 (OX ,OU )→ q∗I → J → 0

where the TorOB
1 (OX ,OU ) is an abbreviation for

Torh
−1OB

1 (p−1OX , q−1OU )⊗(p−1OX⊗h−1OB
q−1OU ) O.

Tensoring with F we obtain the exact sequence

F ⊗O TorOB
1 (OX ,OU )→ F ⊗O q∗I → F ⊗O J → 0

(Note that the roles of the letters I and J are reversed relative to the notation in Defor-
mation Theory, Lemma 11.8.) Condition (1) of the lemma is that the last map above is an
isomorphism, i.e., that the first map is zero. The vanishing of this map may be checked on
stalks at geometric points z = (x, u) : Spec(k) → X ×B U . Set R = OB,b, A = OX,x,
B = OU,u, and C = Oz . By Cotangent, Lemma 28.2 and the defining triangle for E(F)
we see that

H−2(E(F))z = Fz ⊗ TorR1 (A,B)
The map ξU ′ therefore induces a map

Fz ⊗ TorR1 (A,B) −→ Fz ⊗B Iu
We claim this map is the same as the stalk of the map described above (proof omitted;
this is a purely ring theoretic statement). Thus we see that condition (1) of Deformation
Theory, Lemma 11.8 is equivalent to the vanishing H−2(ξU ′) : H−2(E(F))→ F ⊗ I .

To finish the proof we show that, assuming that condition (1) is satisfied, condition (2)
is equivalent to the vanishing of ξU ′ . In the rest of the proof we write F ⊗ I to denote
F ⊗O q∗I = F ⊗O J . A consideration of the spectral sequence

Exti(H−j(E(F)),F ⊗ I)⇒ Exti+j(E(F),F ⊗ I)
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using that H0(E(F)) = F and H−1(E(F)) = 0 shows that there is an exact sequence

0→ Ext2(F ,F ⊗ I)→ Ext2(E(F),F ⊗ I)→ Hom(H−2(E(F)),F ⊗ I)

Thus our element ξU ′ is an element of Ext2(F ,F ⊗I). The proof is finished by showing
this element agrees with the element of Deformation Theory, Lemma 11.8 a verification
we omit. �

Lemma 21.4. In Quot, Situation 5.1 assume that S is a locally Noetherian scheme and
S = B. LetX = CohX/B . Then we have openness of versality forX (see Artin’s Axioms,
Definition 13.1).

Proof (sketch). Let U → S be of finite type morphism of schemes, x an object of
X over U and u0 ∈ U a finite type point such that x is versal at u0. After shrinking U we
may assume that u0 is a closed point (Morphisms, Lemma 16.1) and U = Spec(A) with
U → S mapping into an affine open Spec(Λ) of S. We will use Artin’s Axioms, Lemma
24.4 to prove the lemma. Let F be the coherent module on XA = Spec(A) ×S X flat
over A corresponding to the given object x.

Choose E(F) and eF as in Remark 21.1. The description of the cohomology sheaves of
E(F) shows that

Ext1(E(F),F ⊗AM) = Ext1(F ,F ⊗AM)

for any A-module M . Using this and using Deformation Theory, Lemma 11.7 we have an
isomorphism of functors

Tx(M) = Ext1
XA(E(F),F ⊗AM)

By Lemma 21.3 given any surjection A′ → A of Λ-algebras with square zero kernel I we
have an obstruction class

ξA′ ∈ Ext2
XA(E(F),F ⊗A I)

Apply Derived Categories of Spaces, Lemma 23.3 to the computation of the Ext groups
ExtiXA(E(F),F⊗AM) for i ≤ mwithm = 2. We omit the verification thatE(F) is in
D−

Coh; hint: use Cotangent, Lemma 5.4. We find a perfect objectK ∈ D(A) and functorial
isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(E(F),F ⊗AM)

for i ≤ m compatible with boundary maps. This object K , together with the displayed
identifications above gives us a datum as in Artin’s Axioms, Situation 24.2. Finally, condi-
tion (iv) of Artin’s Axioms, Lemma 24.3 holds by a variant of Deformation Theory, Lemma
12.5 whose formulation and proof we omit. Thus Artin’s Axioms, Lemma 24.4 applies and
the lemma is proved. �

Theorem 21.5. Let S be a scheme. Let f : X → B be morphism of algebraic spaces
overS. Assume that f is of finite presentation and separated. Then CohX/B is an algebraic
stack over S.

Proof. This theorem is a copy of Quot, Theorem 6.1. The reason we have this copy
here is that with the material in this section we get a second proof (as discussed at the
beginning of this section). Namely, we argue exactly as in the proof of Quot, Theorem
5.12 except that we substitute Lemma 21.4 for Quot, Lemma 5.11. �
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22. Modifications

Here is a obsolete result on the category of Algebraization of Formal Spaces, Equation
(30.0.1). Please visit Algebraization of Formal Spaces, Section 30 for the current material.

Lemma 22.1. Let (A,m, κ) be a Noetherian local ring. The category of Algebraization
of Formal Spaces, Equation (30.0.1) for A is equivalent to the category Algebraization of
Formal Spaces, Equation (30.0.1) for the henselization Ah of A.

Proof. This is a special case of Algebraization of Formal Spaces, Lemma 30.3. �

The following lemma on rational singularities is no longer needed in the chapter on re-
solving surface singularities.

Lemma 22.2. In Resolution of Surfaces, Situation 9.1. Let M be a finite reflexive A-
module. LetM⊗AOX denote the pullback of the associatedOS-module. ThenM⊗AOX
maps onto its double dual.

Proof. Let F = (M ⊗A OX)∗∗ be the double dual and let F ′ ⊂ F be the image of
the evaluation map M ⊗A OX → F . Then we have a short exact sequence

0→ F ′ → F → Q→ 0

SinceX is normal, the local ringsOX,x are discrete valuation rings for points of codimen-
sion 1 (see Properties, Lemma 12.5). Hence Qx = 0 for such points by More on Algebra,
Lemma 23.3. ThusQ is supported in finitely many closed points and is globally generated
by Cohomology of Schemes, Lemma 9.10. We obtain the exact sequence

0→ H0(X,F ′)→ H0(X,F)→ H0(X,Q)→ 0

because F ′ is generated by global sections (Resolution of Surfaces, Lemma 9.2). Since
X → Spec(A) is an isomorphism over the complement of the closed point, and since
M is reflexive, we see that the maps

M → H0(X,F ′)→ H0(X,F)

induce isomorphisms after localization at any nonmaximal prime ofA. Hence these maps
are isomorphisms by More on Algebra, Lemma 23.13 and the fact that reflexive modules
over normal rings have property (S2) (More on Algebra, Lemma 23.18). Thus we conclude
thatQ = 0 as desired. �

23. Intersection theory

Lemma 23.1. Let b : X ′ → X be the blowing up of a smooth projective scheme over
a field k in a smooth closed subscheme Z ⊂ X . Picture

E
j
//

π

��

X ′

b

��
Z

i // X

Assume there exists an element of K0(X) whose restriction to Z is equal to the class of
CZ/X in K0(Z). Then [Lb∗OZ ] = [OE ] · α′′ in K0(X ′) for some α′′ ∈ K0(X ′).

Proof. The schemes X , X ′, E , Z are smooth and projective over k and hence we
have K ′

0(X) = K0(X) = K0(Vect(X)) = K0(Db
Coh(X))) and similarly for the other 3.
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See Derived Categories of Schemes, Lemmas 38.1, 38.4, and 38.5. We will switch between
these versions at will in this proof. Consider the short exact sequence

0→ F → π∗CZ/X → CE/X′ → 0

of finite locally free OE-modules defining F . Observe that CE/X′ = OX′(−E)|E is the
restriction of the invertible OX -module OX′(−E). Let α ∈ K0(X) be an element such
that i∗α = [CZ/X ] in K0(Z). Let α′ = b∗α− [OX′(−E)]. Then j∗α′ = [F ]. We deduce
that j∗λi(α′) = [∧i(F)] by Weil Cohomology Theories, Lemma 13.1. This means that
[OE ] ·α′ = [∧iF ] inK0(X), see Derived Categories of Schemes, Lemma 38.8. Let r be the
maximum codimension of an irreducible component of Z inX . A computation which we
omit shows that H−i(Lb∗OZ) = ∧iF for i ≥ 0, 1, . . . , r − 1 and zero in other degrees.
It follows that in K0(X) we have

[Lb∗OZ ] =
∑

i=0,...,r−1
(−1)i[∧iF ]

=
∑

i=0,...,r−1
(−1)i[OE ]λi(α′)

= [OE ]
(∑

i=0,...,r−1
(−1)iλi(α′)

)
This proves the lemma with α′′ =

∑
i=0,...,r−1(−1)iλi(α′). �

Lemma 23.2. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally of
finite type over S. Let X be integral and n = dimδ(X). Let a ∈ Γ(X,OX) be a nonzero
function. Let i : D = Z(a) → X be the closed immersion of the zero scheme of a. Let
f ∈ R(X)∗. In this case i∗divX(f) = 0 in An−2(D).

Proof. Special case of Chow Homology, Lemma 30.1. �

Remark 23.3. This remark used to say that it wasn’t clear whether the arrows of
Chow Homology, Lemma 23.2 were isomorphisms in general. However, we’ve now found
a proof of this fact.

23.4. Blowing up lemmas. In this section we prove some lemmas on representing
Cartier divisors by suitable effective Cartier divisors on blowups. These lemmas can be
found in [?, Section 2.4]. We have adapted the formulation so they also work in the non-
finite type setting. It may happen that the morphism b of Lemma 23.11 is a composition of
infinitely many blowups, but over any given quasi-compact open W ⊂ X one needs only
finitely many blowups (and this is the result of loc. cit.).

Lemma 23.5. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X , Y be locally
of finite type over S. Let f : X → Y be a proper morphism. Let D ⊂ Y be an effective
Cartier divisor. AssumeX , Y integral, n = dimδ(X) = dimδ(Y ) and f dominant. Then

f∗[f−1(D)]n−1 = [R(X) : R(Y )][D]n−1.

In particular if f is birational then f∗[f−1(D)]n−1 = [D]n−1.

Proof. Immediate from Chow Homology, Lemma 26.3 and the fact thatD is the zero
scheme of the canonical section 1D ofOX(D). �

Lemma 23.6. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Assume X integral with dimδ(X) = n. Let L be an invertible
OX -module. Let s be a nonzero meromorphic section of L. Let U ⊂ X be the maximal
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open subscheme such that s corresponds to a section ofL overU . There exists a projective
morphism

π : X ′ −→ X

such that
(1) X ′ is integral,
(2) π|π−1(U) : π−1(U)→ U is an isomorphism,
(3) there exist effective Cartier divisors D,E ⊂ X ′ such that

π∗L = OX′(D − E),
(4) the meromorphic section s corresponds, via the isomorphism above, to the mero-

morphic section 1D ⊗ (1E)−1 (see Divisors, Definition 14.1),
(5) we have

π∗([D]n−1 − [E]n−1) = divL(s)
in Zn−1(X).

Proof. Let I ⊂ OX be the quasi-coherent ideal sheaf of denominators of s, see Di-
visors, Definition 23.10. By Divisors, Lemma 34.6 we get (2), (3), and (4). By Divisors,
Lemma 32.9 we get (1). By Divisors, Lemma 32.13 the morphism π is projective. We still
have to prove (5). By Chow Homology, Lemma 26.3 we have

π∗(divL′(s′)) = divL(s).
Hence it suffices to show that divL′(s′) = [D]n−1−[E]n−1. This follows from the equality
s′ = 1D ⊗ 1−1

E and additivity, see Divisors, Lemma 27.5. �

Definition 23.7. Let (S, δ) be as in Chow Homology, Situation 7.1. LetX be locally
of finite type over S. Assume X integral and dimδ(X) = n. Let D1, D2 be two effective
Cartier divisors inX . LetZ ⊂ X be an integral closed subscheme with dimδ(Z) = n−1.
The ε-invariant of this situation is

εZ(D1, D2) = nZ ·mZ

where nZ , resp. mZ is the coefficient of Z in the (n− 1)-cycle [D1]n−1, resp. [D2]n−1.

Lemma 23.8. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally of
finite type over S. Assume X integral and dimδ(X) = n. Let D1, D2 be two effective
Cartier divisors in X . Let Z be an open and closed subscheme of the scheme D1 ∩ D2.
Assume dimδ(D1 ∩ D2 \ Z) ≤ n − 2. Then there exists a morphism b : X ′ → X , and
Cartier divisors D′

1, D
′
2, E on X ′ with the following properties

(1) X ′ is integral,
(2) b is projective,
(3) b is the blowup of X in the closed subscheme Z ,
(4) E = b−1(Z),
(5) b−1(D1) = D′

1 + E , and b−1D2 = D′
2 + E ,

(6) dimδ(D′
1 ∩D′

2) ≤ n− 2, and if Z = D1 ∩D2 then D′
1 ∩D′

2 = ∅,
(7) for every integral closed subscheme W ′ with dimδ(W ′) = n− 1 we have

(a) if εW ′(D′
1, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n − 1

and
εW ′(D′

1, E) < εW (D1, D2),
(b) if εW ′(D′

2, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n − 1
and

εW ′(D′
2, E) < εW (D1, D2),
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Proof. Note that the quasi-coherent ideal sheaf I = ID1 + ID2 defines the scheme
theoretic intersection D1 ∩ D2 ⊂ X . Since Z is a union of connected components of
D1 ∩ D2 we see that for every z ∈ Z the kernel of OX,z → OZ,z is equal to Iz . Let
b : X ′ → X be the blowup of X in Z. (So Zariski locally around Z it is the blowup of
X in I .) Denote E = b−1(Z) the corresponding effective Cartier divisor, see Divisors,
Lemma 32.4. Since Z ⊂ D1 we have E ⊂ f−1(D1) and hence D1 = D′

1 + E for some
effective Cartier divisor D′

1 ⊂ X ′, see Divisors, Lemma 13.8. Similarly D2 = D′
2 + E.

This takes care of assertions (1) – (5).

Note that ifW ′ is as in (7) (a) or (7) (b), then the imageW ofW ′ is contained inD1∩D2.
IfW is not contained in Z , then b is an isomorphism at the generic point ofW and we see
that dimδ(W ) = dimδ(W ′) = n− 1 which contradicts the assumption that dimδ(D1 ∩
D2 \ Z) ≤ n − 2. Hence W ⊂ Z. This means that to prove (6) and (7) we may work
locally around Z on X .

Thus we may assume thatX = Spec(A) withA a Noetherian domain, andD1 = Spec(A/a),
D2 = Spec(A/b) and Z = D1 ∩ D2. Set I = (a, b). Since A is a domain and a, b 6= 0
we can cover the blowup by two patches, namely U = Spec(A[s]/(as − b)) and V =
Spec(A[t]/(bt−a)). These patches are glued using the isomorphismA[s, s−1]/(as−b) ∼=
A[t, t−1]/(bt − a) which maps s to t−1. The effective Cartier divisor E is described by
Spec(A[s]/(as − b, a)) ⊂ U and Spec(A[t]/(bt − a, b)) ⊂ V . The closed subscheme
D′

1 corresponds to Spec(A[t]/(bt− a, t)) ⊂ U . The closed subscheme D′
2 corresponds to

Spec(A[s]/(as− b, s)) ⊂ V . Since “ts = 1” we see that D′
1 ∩D′

2 = ∅.
Suppose we have a prime q ⊂ A[s]/(as− b) of height one with s, a ∈ q. Let p ⊂ A be the
corresponding prime of A. Observe that a, b ∈ p. By the dimension formula we see that
dim(Ap) = 1 as well. The final assertion to be shown is that

ordAp
(a)ordAp

(b) > ordBq
(a)ordBq

(s)
where B = A[s]/(as − b). By Algebra, Lemma 124.1 we have ordAp

(x) ≥ ordBq
(x) for

x = a, b. Since ordBq
(s) > 0 we win by additivity of the ord function and the fact that

as = b. �

Definition 23.9. Let X be a scheme. Let {Di}i∈I be a locally finite collection of
effective Cartier divisors on X . Suppose given a function I → Z≥0, i 7→ ni. The sum of
the effective Cartier divisorsD =

∑
niDi, is the unique effective Cartier divisorD ⊂ X

such that on any quasi-compact open U ⊂ X we have D|U =
∑
Di∩U 6=∅ niDi|U is the

sum as in Divisors, Definition 13.6.

Lemma 23.10. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally of
finite type over S. Assume X integral and dimδ(X) = n. Let {Di}i∈I be a locally finite
collection of effective Cartier divisors on X . Suppose given ni ≥ 0 for i ∈ I . Then

[D]n−1 =
∑

i
ni[Di]n−1

in Zn−1(X).

Proof. Since we are proving an equality of cycles we may work locally onX . Hence
this reduces to a finite sum, and by induction to a sum of two effective Cartier divisors
D = D1+D2. By Chow Homology, Lemma 24.2 we see thatD1 = divOX(D1)(1D1) where
1D1 denotes the canonical section of OX(D1). Of course we have the same statement for
D2 and D. Since 1D = 1D1 ⊗ 1D2 via the identification OX(D) = OX(D1)⊗OX(D2)
we win by Divisors, Lemma 27.5. �
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Lemma 23.11. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally
of finite type over S. Assume X integral and dimδ(X) = d. Let {Di}i∈I be a locally
finite collection of effective Cartier divisors on X . Assume that for all {i, j, k} ⊂ I ,
#{i, j, k} = 3 we have Di ∩Dj ∩Dk = ∅. Then there exist

(1) an open subscheme U ⊂ X with dimδ(X \ U) ≤ d− 3,
(2) a morphism b : U ′ → U , and
(3) effective Cartier divisors {D′

j}j∈J on U ′

with the following properties:
(1) b is proper morphism b : U ′ → U ,
(2) U ′ is integral,
(3) b is an isomorphism over the complement of the union of the pairwise intersec-

tions of the Di|U ,
(4) {D′

j}j∈J is a locally finite collection of effective Cartier divisors on U ′,
(5) dimδ(D′

j ∩D′
j′) ≤ d− 2 if j 6= j′, and

(6) b−1(Di|U ) =
∑
nijD

′
j for certain nij ≥ 0.

Moreover, if X is quasi-compact, then we may assume U = X in the above.

Proof. Let us first prove this in the quasi-compact case, since it is perhaps the most
interesting case. In this case we produce inductively a sequence of blowups

X = X0
b0←− X1

b1←− X2 ← . . .

and finite sets of effective Cartier divisors {Dn,i}i∈In . At each stage these will have the
property that any triple intersection Dn,i ∩ Dn,j ∩ Dn,k is empty. Moreover, for each
n ≥ 0 we will have In+1 = In q P (In) where P (In) denotes the set of pairs of elements
of In. Finally, we will have

b−1
n (Dn,i) = Dn+1,i +

∑
i′∈In,i′ 6=i

Dn+1,{i,i′}

We conclude that for each n ≥ 0 we have (b0 ◦ . . . ◦ bn)−1(Di) is a nonnegative integer
combination of the divisors Dn+1,j , j ∈ In+1.

To start the induction we set X0 = X and I0 = I and D0,i = Di.

Given (Xn, {Dn,i}i∈In) let Xn+1 be the blowup of Xn in the closed subscheme Zn =⋃
{i,i′}∈P (In) Dn,i ∩ Dn,i′ . Note that the closed subschemes Dn,i ∩ Dn,i′ are pairwise

disjoint by our assumption on triple intersections. In other words we may write Zn =∐
{i,i′}∈P (In) Dn,i ∩ Dn,i′ . Moreover, in a Zariski neighbourhood of Dn,i ∩ Dn,i′ the

morphism bn is equal to the blowup of the schemeXn in the closed subschemeDn,i∩Dn,i′ ,
and the results of Lemma 23.8 apply. Hence setting Dn+1,{i,i′} = b−1

n (Di ∩Di′) we get
an effective Cartier divisor. The Cartier divisorsDn+1,{i,i′} are pairwise disjoint. Clearly
we have b−1

n (Dn,i) ⊃ Dn+1,{i,i′} for every i′ ∈ In, i′ 6= i. Hence, applying Divisors,
Lemma 13.8 we see that indeed b−1(Dn,i) = Dn+1,i +

∑
i′∈In,i′ 6=iDn+1,{i,i′} for some

effective Cartier divisorDn+1,i onXn+1. In a neighbourhood ofDn+1,{i,i′} these divisors
Dn+1,i play the role of the primed divisors of Lemma 23.8. In particular we conclude that
Dn+1,i ∩Dn+1,i′ = ∅ if i 6= i′, i, i′ ∈ In by part (6) of Lemma 23.8. This already implies
that triple intersections of the divisors Dn+1,i are zero.

OK, and at this point we can use the quasi-compactness ofX to conclude that the invariant
(23.11.1)

ε(X, {Di}i∈I) = max{εZ(Di, Di′) | Z ⊂ X, dimδ(Z) = d− 1, {i, i′} ∈ P (I)}
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is finite, since after all each Di has at most finitely many irreducible components. We
claim that for some n the invariant ε(Xn, {Dn,i}i∈In) is zero. Namely, if not then by
Lemma 23.8 we have a strictly decreasing sequence

ε(X, {Di}i∈I) = ε(X0, {D0,i}i∈I0) > ε(X1, {D1,i}i∈I1) > . . .

of positive integers which is a contradiction. Take n with invariant ε(Xn, {Dn,i}i∈In)
equal to zero. This means that there is no integral closed subschemeZ ⊂ Xn and no pair of
indices i, i′ ∈ In such that εZ(Dn,i, Dn,i′) > 0. In other words, dimδ(Dn,i, Dn,i′) ≤ d−2
for all pairs {i, i′} ∈ P (In) as desired.
Next, we come to the general case where we no longer assume that the scheme X is quasi-
compact. The problem with the idea from the first part of the proof is that we may get
and infinite sequence of blowups with centers dominating a fixed point of X . In order to
avoid this we cut out suitable closed subsets of codimension ≥ 3 at each stage. Namely,
we will construct by induction a sequence of morphisms having the following shape

X = X0

U0

j0

OO

X1
b0oo

U1

j1

OO

X2
b1oo

U2

j2

OO

X3
b2oo

Each of the morphisms jn : Un → Xn will be an open immersion. Each of the morphisms
bn : Xn+1 → Un will be a proper birational morphism of integral schemes. As in the
quasi-compact case we will have effective Cartier divisors {Dn,i}i∈In on Xn. At each
stage these will have the property that any triple intersectionDn,i∩Dn,j∩Dn,k is empty.
Moreover, for each n ≥ 0 we will have In+1 = In q P (In) where P (In) denotes the set
of pairs of elements of In. Finally, we will arrange it so that

b−1
n (Dn,i|Un) = Dn+1,i +

∑
i′∈In,i′ 6=i

Dn+1,{i,i′}

We start the induction by setting X0 = X , I0 = I and D0,i = Di.
Given (Xn, {Dn,i}) we construct the open subschemeUn as follows. For each pair {i, i′} ∈
P (In) consider the closed subschemeDn,i∩Dn,i′ . This has “good” irreducible components
which have δ-dimension d−2 and “bad” irreducible components which have δ-dimension
d− 1. Let us set

Bad(i, i′) =
⋃

W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−1
W

and similarly

Good(i, i′) =
⋃

W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−2
W.

Then Dn,i ∩ Dn,i′ = Bad(i, i′) ∪ Good(i, i′) and moreover we have dimδ(Bad(i, i′) ∩
Good(i, i′)) ≤ d− 3. Here is our choice of Un:

Un = Xn \
⋃

{i,i′}∈P (In)
Bad(i, i′) ∩Good(i, i′).
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By our condition on triple intersections of the divisorsDn,i we see that the union is actu-
ally a disjoint union. Moreover, we see that (as a scheme)

Dn,i|Un ∩Dn,i′ |Un = Zn,i,i′ qGn,i,i′

where Zn,i,i′ is δ-equidimensional of dimension d− 1 and Gn,i,i′ is δ-equidimensional of
dimension d − 2. (So topologically Zn,i,i′ is the union of the bad components but throw
out intersections with good components.) Finally we set

Zn =
⋃

{i,i′}∈P (In)
Zn,i,i′ =

∐
{i,i′}∈P (In)

Zn,i,i′ ,

and we let bn : Xn+1 → Xn be the blowup in Zn. Note that Lemma 23.8 applies to the
morphism bn : Xn+1 → Xn locally around each of the loci Dn,i|Un ∩Dn,i′ |Un . Hence,
exactly as in the first part of the proof we obtain effective Cartier divisors Dn+1,{i,i′} for
{i, i′} ∈ P (In) and effective Cartier divisorsDn+1,i for i ∈ In such that b−1

n (Dn,i|Un) =
Dn+1,i +

∑
i′∈In,i′ 6=iDn+1,{i,i′}. For each n denote πn : Xn → X the morphism ob-

tained as the composition j0 ◦ . . . ◦ jn−1 ◦ bn−1.

Claim: given any quasi-compact open V ⊂ X for all sufficiently large n the maps

π−1
n (V )← π−1

n+1(V )← . . .

are all isomorphisms. Namely, if the map π−1
n (V ) ← π−1

n+1(V ) is not an isomorphism,
then Zn,i,i′ ∩ π−1

n (V ) 6= ∅ for some {i, i′} ∈ P (In). Hence there exists an irreducible
component W ⊂ Dn,i ∩ Dn,i′ with dimδ(W ) = d − 1. In particular we see that
εW (Dn,i, Dn,i′) > 0. Applying Lemma 23.8 repeatedly we see that

εW (Dn,i, Dn,i′) < ε(V, {Di|V })− n

with ε(V, {Di|V }) as in (23.11.1). Since V is quasi-compact, we have ε(V, {Di|V }) < ∞
and taking n > ε(V, {Di|V }) we see the result.

Note that by construction the difference Xn \ Un has dimδ(Xn \ Un) ≤ d − 3. Let
Tn = πn(Xn \ Un) be its image in X . Traversing in the diagram of maps above using
each bn is closed it follows that T0 ∪ . . . ∪ Tn is a closed subset of X for each n. Any
t ∈ Tn satisfies δ(t) ≤ d − 3 by construction. Hence Tn ⊂ X is a closed subset with
dimδ(Tn) ≤ d−3. By the claim above we see that for any quasi-compact open V ⊂ X we
have Tn ∩V 6= ∅ for at most finitely many n. Hence {Tn}n≥0 is a locally finite collection
of closed subsets, and we may set U = X \

⋃
Tn. This will be U as in the lemma.

Note that Un ∩ π−1
n (U) = π−1

n (U) by construction of U . Hence all the morphisms

bn : π−1
n+1(U) −→ π−1

n (U)

are proper. Moreover, by the claim they eventually become isomorphisms over each quasi-
compact open of X . Hence we can define

U ′ = limn π
−1
n (U).

The induced morphism b : U ′ → U is proper since this is local on U , and over each
compact open the limit stabilizes. Similarly we set J =

⋃
n≥0 In using the inclusions

In → In+1 from the construction. For j ∈ J choose an n0 such that j corresponds to
i ∈ In0 and define D′

j = limn≥n0 Dn,i. Again this makes sense as locally over X the
morphisms stabilize. The other claims of the lemma are verified as in the case of a quasi-
compact X . �
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24. Commutativity of intersecting divisors

The results of this section were originally used to provide an alternative proof of the lem-
mas of Chow Homology, Section 28 and a weak version of Chow Homology, Lemma 30.5.

Lemma 24.1. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally of
finite type over S. Let {ij : Dj → X}j∈J be a locally finite collection of effective Cartier
divisors on X . Let nj > 0, j ∈ J . Set D =

∑
j∈J njDj , and denote i : D → X the

inclusion morphism. Let α ∈ Zk+1(X). Then

p :
∐

j∈J
Dj −→ D

is proper and
i∗α = p∗

(∑
nji

∗
jα
)

in CHk(D).

Proof. The proof of this lemma is made a bit longer than expected by a subtlety
concerning infinite sums of rational equivalences. In the quasi-compact case the family
Dj is finite and the result is altogether easy and a straightforward consequence of Chow
Homology, Lemma 24.2 and Divisors, Lemma 27.5 and the definitions.

The morphism p is proper since the family {Dj}j∈J is locally finite. Writeα =
∑
a∈Ama[Wa]

with Wa ⊂ X an integral closed subscheme of δ-dimension k + 1. Denote ia : Wa → X
the closed immersion. We assume thatma 6= 0 for all a ∈ A such that {Wa}a∈A is locally
finite on X .

Observe that by Chow Homology, Definition 29.1 the class i∗α is the class of a cycle∑
maβa for certain βa ∈ Zk(Wa ∩ D). Namely, if Wa 6⊂ D then βa = [D ∩ Wa]k

and if Wa ⊂ D, then βa is a cycle representing c1(OX(D)) ∩ [Wa].

For each a ∈ A write J = Ja,1 q Ja,2 q Ja,3 where
(1) j ∈ Ja,1 if and only if Wa ∩Dj = ∅,
(2) j ∈ Ja,2 if and only if Wa 6= Wa ∩D1 6= ∅, and
(3) j ∈ Ja,3 if and only if Wa ⊂ Dj .

Since the family {Dj} is locally finite we see that Ja,3 is a finite set. For every a ∈ A and
j ∈ J we choose a cycle βa,j ∈ Zk(Wa ∩Dj) as follows

(1) if j ∈ Ja,1 we set βa,j = 0,
(2) if j ∈ Ja,2 we set βa,j = [Dj ∩Wa]k , and
(3) if j ∈ Ja,3 we choose βa,j ∈ Zk(Wa) representing c1(i∗aOX(Dj)) ∩ [Wj ].

We claim that
βa ∼rat

∑
j∈J

njβa,j

in CHk(Wa ∩D).

Case I: Wa 6⊂ D. In this case Ja,3 = ∅. Thus it suffices to show that [D ∩ Wa]k =∑
nj [Dj ∩Wa]k as cycles. This is Lemma 23.10.

Case II: Wa ⊂ D. In this case βa is a cycle representing c1(i∗aOX(D)) ∩ [Wa]. Write
D = Da,1 +Da,2 +Da,3 with Da,s =

∑
j∈Ja,s njDj . By Divisors, Lemma 27.5 we have

c1(i∗aOX(D)) ∩ [Wa] = c1(i∗aOX(Da,1)) ∩ [Wa] + c1(i∗aOX(Da,2)) ∩ [Wa]
+c1(i∗aOX(Da,3)) ∩ [Wa].
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It is clear that the first term of the sum is zero. Since Ja,3 is finite we see that the last term
agrees with

∑
j∈Ja,3 njc1(i∗aLj)∩ [Wa], see Divisors, Lemma 27.5. This is represented by∑

j∈Ja,3 njβa,j . Finally, by Case I we see that the middle term is represented by the cycle∑
j∈Ja,2 nj [Dj ∩Wa]k =

∑
j∈Ja,2 njβa,j . Whence the claim in this case.

At this point we are ready to finish the proof of the lemma. Namely, we have i∗D ∼rat∑
maβa by our choice of βa. For each a we have βa ∼rat

∑
j βa,j with the rational

equivalence taking place on D ∩Wa. Since the collection of closed subschemes D ∩Wa

is locally finite on D, we see that also
∑
maβa ∼rat

∑
a,jmaβa,j on D! (See Chow

Homology, Remark 19.6.) Ok, and now it is clear that
∑
amaβa,j (viewed as a cycle on

Dj) represents i∗jα and hence
∑
a,jmaβa,j represents p∗

∑
j i

∗
jα and we win. �

Lemma 24.2. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally of
finite type over S. Assume X integral and dimδ(X) = n. Let D, D′ be effective Cartier
divisors on X . Assume dimδ(D ∩D′) = n− 2. Let i : D → X , resp. i′ : D′ → X be the
corresponding closed immersions. Then

(1) there exists a cycle α ∈ Zn−2(D ∩ D′) whose pushforward to D represents
i∗[D′]n−1 ∈ CHn−2(D) and whose pushforward toD′ represents (i′)∗[D]n−1 ∈
CHn−2(D′), and

(2) we have
D · [D′]n−1 = D′ · [D]n−1

in CHn−2(X).

Proof. Part (2) is a trivial consequence of part (1). Let us write [D]n−1 =
∑
na[Za]

and [D′]n−1 =
∑
mb[Zb] with Za the irreducible components of D and [Zb] the ir-

reducible components of D′. According to Chow Homology, Definition 29.1, we have
i∗D′ =

∑
mbi

∗[Zb] and (i′)∗D =
∑
na(i′)∗[Za]. By assumption, none of the irre-

ducible components Zb is contained in D, and hence i∗[Zb] = [Zb ∩D]n−2 by definition.
Similarly (i′)∗[Za] = [Za ∩D′]n−2. Hence we are trying to prove the equality of cycles∑

na[Za ∩D′]n−2 =
∑

mb[Zb ∩D]n−2

which are indeed supported onD∩D′. LetW ⊂ X be an integral closed subscheme with
dimδ(W ) = n−2. Let ξ ∈W be its generic point. SetR = OX,ξ . It is a Noetherian local
domain. Note that dim(R) = 2. Let f ∈ R, resp. f ′ ∈ R be an element defining the ideal
of D, resp. D′. By assumption dim(R/(f, f ′)) = 0. Let q′

1, . . . , q
′
t ⊂ R be the minimal

primes over (f ′), let q1, . . . , qs ⊂ R be the minimal primes over (f). The equality above
comes down to the equality∑
i=1,...,s

lengthRqi
(Rqi/(f))ordR/qi(f

′) =
∑

j=1,...,t
lengthRq′

j

(Rq′
j
/(f ′))ordR/q′

j
(f).

By Chow Homology, Lemma 3.1 applied with M = R/(f) the left hand side of this
equation is equal to

lengthR(R/(f, f ′))− lengthR(Ker(f ′ : R/(f)→ R/(f)))

OK, and now we note that Ker(f ′ : R/(f)→ R/(f)) is canonically isomorphic to ((f)∩
(f ′))/(ff ′) via the map x mod (f) 7→ f ′x mod (ff ′). Hence the left hand side is

lengthR(R/(f, f ′))− lengthR((f) ∩ (f ′)/(ff ′))

Since this is symmetric in f and f ′ we win. �
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Lemma 24.3. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally of
finite type over S. Assume X integral and dimδ(X) = n. Let {Dj}j∈J be a locally finite
collection of effective Cartier divisors onX . Let nj ,mj ≥ 0 be collections of nonnegative
integers. Set D =

∑
njDj and D′ =

∑
mjDj . Assume that dimδ(Dj ∩Dj′) = n − 2

for every j 6= j′. Then D · [D′]n−1 = D′ · [D]n−1 in CHn−2(X).

Proof. This lemma is a trivial consequence of Lemmas 23.10 and 24.2 in case the sums
are finite, e.g., if X is quasi-compact. Hence we suggest the reader skip the proof.

Here is the proof in the general case. Let ij : Dj → X be the closed immersions Let
p :
∐
Dj → X denote coproduct of the morphisms ij . Let {Za}a∈A be the collection of

irreducible components of
⋃
Dj . For each j we write

[Dj ]n−1 =
∑

dj,a[Za].

By Lemma 23.10 we have

[D]n−1 =
∑

njdj,a[Za], [D′]n−1 =
∑

mjdj,a[Za].

By Lemma 24.1 we have

D · [D′]n−1 = p∗

(∑
nji

∗
j [D′]n−1

)
, D′ · [D]n−1 = p∗

(∑
mj′i∗j′ [D]n−1

)
.

As in the definition of the Gysin homomorphisms (see Chow Homology, Definition 29.1)
we choose cycles βa,j on Dj ∩ Za representing i∗j [Za]. (Note that in fact βa,j = [Dj ∩
Za]n−2 if Za is not contained in Dj , i.e., there is no choice in that case.) Now since p is
a closed immersion when restricted to each of the Dj we can (and we will) view βa,j as a
cycle on X . Plugging in the formulas for [D]n−1 and [D′]n−1 obtained above we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j , D′ · [D]n−1 =

∑
j,j′,a

mj′njdj,aβa,j′ .

Moreover, with the same conventions we also have

Dj · [Dj′ ]n−1 =
∑

dj′,aβa,j .

In these terms Lemma 24.2 (see also its proof) says that for j 6= j′ the cycles
∑
dj′,aβa,j

and
∑
dj,aβa,j′ are equal as cycles! Hence we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j

=
∑

j 6=j′
njmj′

(∑
a
dj′,aβa,j

)
+
∑

j,a
njmjdj,aβa,j

=
∑

j 6=j′
njmj′

(∑
a
dj,aβa,j′

)
+
∑

j,a
njmjdj,aβa,j

=
∑

j,j′,a
mj′njdj,aβa,j′

= D′ · [D]n−1

and we win. �

Lemma 24.4. Let (S, δ) be as in Chow Homology, Situation 7.1. Let X be locally of
finite type over S. Assume X integral and dimδ(X) = n. Let D, D′ be effective Cartier
divisors on X . Then

D · [D′]n−1 = D′ · [D]n−1

in CHn−2(X).
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First proof of Lemma 24.4. First, let us prove this in case X is quasi-compact. In
this case, apply Lemma 23.11 to X and the two element set {D,D′} of effective Cartier
divisors. Thus we get a proper morphism b : X ′ → X , a finite collection of effective
Cartier divisors D′

j ⊂ X ′ intersecting pairwise in codimension ≥ 2, with b−1(D) =∑
njD

′
j , and b−1(D′) =

∑
mjD

′
j . Note that b∗[b−1(D)]n−1 = [D]n−1 in Zn−1(X)

and similarly for D′, see Lemma 23.5. Hence, by Chow Homology, Lemma 26.4 we have

D · [D′]n−1 = b∗
(
b−1(D) · [b−1(D′)]n−1

)
in CHn−2(X) and similarly for the other term. Hence the lemma follows from the equal-
ity b−1(D) · [b−1(D′)]n−1 = b−1(D′) · [b−1(D)]n−1 in CHn−2(X ′) of Lemma 24.3.

Note that in the proof above, each referenced lemma works also in the general case (when
X is not assumed quasi-compact). The only minor change in the general case is that the
morphism b : U ′ → U we get from applying Lemma 23.11 has as its target an openU ⊂ X
whose complement has codimension ≥ 3. Hence by Chow Homology, Lemma 19.3 we
see that CHn−2(U) = CHn−2(X) and after replacing X by U the rest of the proof goes
through unchanged. �

Second proof of Lemma 24.4. Let I = OX(−D) and I ′ = OX(−D′) be the in-
vertible ideal sheaves ofD andD′. We denote ID′ = I ⊗OX

OD′ and I ′
D = I ′⊗OX

OD.
We can restrict the inclusion map I → OX to D′ to get a map

ϕ : ID′ −→ OD′

and similarly

ψ : I ′
D −→ OD

It is clear that

Coker(ϕ) ∼= OD∩D′ ∼= Coker(ψ)

and

Ker(ϕ) ∼=
I ∩ I ′

II ′
∼= Ker(ψ).

Hence we see that

γ = [ID′ ]− [OD′ ] = [I ′
D]− [OD]

in K0(Coh≤n−1(X)). On the other hand it is clear that

[I ′
D]n−1 = [D]n−1, [ID′ ]n−1 = [D′]n−1.

and that

OX(D′)⊗ I ′
D = OD, OX(D)⊗ ID′ = OD′ .

By Chow Homology, Lemma 69.7 (applied two times) this means that the element γ is
an element of Bn−2(X), and maps to both c1(OX(D′)) ∩ [D]n−1 and to c1(OX(D)) ∩
[D′]n−1 and we win (since the map Bn−2(X) → CHn−2(X) is well defined – which is
the key to this proof). �
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25. Dualizing modules on regular proper models

In Semistable Reduction, Situation 9.3 we letω•
X/R = f !OSpec(R) be the relative dualizing

complex of f : X → Spec(R) as introduced in Duality for Schemes, Remark 12.5. Since
f is Gorenstein of relative dimension 1 by Semistable Reduction, Lemma 9.2 we can use
Duality for Schemes, Lemmas 25.10, 21.7, and 25.4 to see that

ω•
X/R = ωX [1]

for some invertible OX -module ωX . This invertible module is often called the relative
dualizing module of X over R. Since R is regular (hence Gorenstein) of dimension 1 we
see that ω•

R = R[1] is a normalized dualizing complex for R. Hence ωX = H−2(f !ω•
R)

and we see that ωX is not just a relative dualizing module but also a dualizing module, see
Duality for Schemes, Example 22.1. Thus ωX represents the functor

Coh(OX)→ Sets, F 7→ HomR(H1(X,F), R)

by Duality for Schemes, Lemma 22.5. This gives an alternative definition of the relative
dualizing module in Semistable Reduction, Situation 9.3. The formation of ωX commutes
with arbitrary base change (for any proper Gorenstein morphism of given relative di-
mension); this follows from the corresponding fact for the relative dualizing complex
discussed in Duality for Schemes, Remark 12.5 which goes back to Duality for Schemes,
Lemma 12.4. Thus ωX pulls back to the dualizing module ωC of C over K discussed in
Algebraic Curves, Lemma 4.2. Note that ωC is isomorphic to ΩC/K by Algebraic Curves,
Lemma 4.1. Similarly ωX |Xk is the dualizing module ωXk of Xk over k.

Lemma 25.1. In Semistable Reduction, Situation 9.3 the dualizing module of Ci over
k is

ωCi = ωX(Ci)|Ci
where ωX is as above.

Proof. Let t : Ci → X be the closed immersion. Since t is the inclusion of an
effective Cartier divisor we conclude from Duality for Schemes, Lemmas 9.7 and 14.2 that
we have t!(L) = L(Ci)|Ci for every invertibleOX -moduleL. Consider the commutative
diagram

Ci t
//

g

��

X

f

��
Spec(k) s // Spec(R)

Observe that Ci is a Gorenstein curve (Semistable Reduction, Lemma 9.2) with invertible
dualizing module ωCi characterized by the property ωCi [0] = g!OSpec(k). See Algebraic
Curves, Lemma 4.1, its proof, and Algebraic Curves, Lemmas 4.2 and 5.2. On the other
hand, s!(R[1]) = k and hence

ωCi [0] = g!s!(R[1]) = t!f !(R[1]) = t!ωX

Combining the above we obtain the statement of the lemma. �

26. Duplicate and split out references

This section is a place where we collect duplicates and references which used to say several
things at the same time but are now split into their constituent parts.



7320 115. OBSOLETE

Lemma 26.1. Let X be a scheme. Assume X is quasi-compact and quasi-separated.
Let F be a quasi-coherent OX -module. Then F is the directed colimit of its finite type
quasi-coherent submodules.

Proof. This is a duplicate of Properties, Lemma 22.3. �

Lemma 26.2. Let S be a scheme. Let X be an algebraic space over S. The map
{Spec(k)→ X monomorphism} → |X| is injective.

Proof. This is a duplicate of Properties of Spaces, Lemma 4.12. �

Theorem 26.3. Let S = Spec(K) withK a field. Let s be a geometric point of S. Let
G = Galκ(s) denote the absolute Galois group. Then there is an equivalence of categories
Sh(Sétale)→ G-Sets, F 7→ Fs.

Proof. This is a duplicate of Étale Cohomology, Theorem 56.3. �

Remark 26.4. You got here because of a duplicate tag. Please see Formal Deforma-
tion Theory, Section 12 for the actual content.

Lemma 26.5. Let X be a locally ringed space. A direct summand of a finite freeOX -
module is finite locally free.

Proof. This is a duplicate of Modules, Lemma 14.6. �

Lemma 26.6. Let R be a ring. Let E be an R-module. The following are equivalent
(1) E is an injective R-module, and
(2) given an ideal I ⊂ R and a module map ϕ : I → E there exists an extension of

ϕ to an R-module map R→ E.

Proof. This is Baer’s criterion, see Injectives, Lemma 2.6. �

Lemma 26.7. Let R be a local ring.
(1) If (M,N,ϕ, ψ) is a 2-periodic complex such thatM ,N have finite length. Then

eR(M,N,ϕ, ψ) = lengthR(M)− lengthR(N).
(2) If (M,ϕ,ψ) is a (2, 1)-periodic complex such that M has finite length. Then

eR(M,ϕ,ψ) = 0.
(3) Suppose that we have a short exact sequence of 2-periodic complexes

0→ (M1, N1, ϕ1, ψ1)→ (M2, N2, ϕ2, ψ2)→ (M3, N3, ϕ3, ψ3)→ 0
If two out of three have cohomology modules of finite length so does the third
and we have

eR(M2, N2, ϕ2, ψ2) = eR(M1, N1, ϕ1, ψ1) + eR(M3, N3, ϕ3, ψ3).

Proof. This follows from Chow Homology, Lemmas 2.3 and 2.4. �

Lemma 26.8. Let A be a ring and let I be an A-module.
(1) The set of extensions of rings 0 → I → A′ → A → 0 where I is an ideal of

square zero is canonically bijective to Ext1
A(NLA/Z, I).

(2) Given a ring map A → B, a B-module N , an A-module map c : I → N , and
given extensions of rings with square zero kernels:
(a) 0→ I → A′ → A→ 0 corresponding to α ∈ Ext1

A(NLA/Z, I), and
(b) 0→ N → B′ → B → 0 corresponding to β ∈ Ext1

B(NLB/Z, N)
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then there is a map A′ → B′ fitting into Deformation Theory, Equation (2.0.1)
if and only if β and α map to the same element of Ext1

A(NLA/Z, N).

Proof. This follows from Deformation Theory, Lemmas 2.3 and 2.5. �

Lemma 26.9. Let (S,OS) be a ringed space and let J be anOS-module.
(1) The set of extensions of sheaves of rings 0→ J → OS′ → OS → 0 where J is

an ideal of square zero is canonically bijective to Ext1
OS

(NLS/Z,J ).
(2) Given a morphism of ringed spaces f : (X,OX) → (S,OS), an OX -module G ,

an f -map c : J → G , and given extensions of sheaves of rings with square zero
kernels:
(a) 0→ J → OS′ → OS → 0 corresponding to α ∈ Ext1

OS
(NLS/Z,J ),

(b) 0→ G → OX′ → OX → 0 corresponding to β ∈ Ext1
OX

(NLX/Z,G)
then there is a morphism X ′ → S′ fitting into Deformation Theory, Equation
(7.0.1) if and only if β andαmap to the same element of Ext1

OX
(Lf∗ NLS/Z,G).

Proof. This follows from Deformation Theory, Lemmas 7.4 and 7.6. �

Lemma 26.10. Let (Sh(B),OB) be a ringed topos and let J be anOB-module.
(1) The set of extensions of sheaves of rings 0→ J → OB′ → OB → 0 where J is

an ideal of square zero is canonically bijective to Ext1
OB

(NLOB/Z,J ).
(2) Given a morphism of ringed topoi f : (Sh(C),O)→ (Sh(B),OB), anO-module
G , an f−1OB-module map c : f−1J → G , and given extensions of sheaves of
rings with square zero kernels:
(a) 0→ J → OB′ → OB → 0 corresponding to α ∈ Ext1

OB
(NLOB/Z,J ),

(b) 0→ G → O′ → O → 0 corresponding to β ∈ Ext1
O(NLO/Z,G)

then there is a morphism (Sh(C),O′)→ (Sh(B,OB′) fitting into Deformation
Theory, Equation (13.0.1) if and only if β and α map to the same element of
Ext1

O(Lf∗ NLOB/Z,G).

Proof. This follows from Deformation Theory, Lemmas 13.4 and 13.6. �

Remark 26.11. This tag used to point to a section describing several examples of de-
formation problems. These now each have their own section. See Deformation Problems,
Sections 4, 5, 6, and 7.

Lemma 26.12. Deformation Problems, Examples 4.1, 5.1, 6.1, and 7.1 satisfy the Rim-
Schlessinger condition (RS).

Proof. This follows from Deformation Problems, Lemmas 4.2, 5.2, 6.2, and 7.2. �

Lemma 26.13. We have the following canonical k-vector space identifications:
(1) In Deformation Problems, Example 4.1 if x0 = (k, V ), then Tx0F = (0) and

Infx0(F) = Endk(V ) are finite dimensional.
(2) In Deformation Problems, Example 5.1 ifx0 = (k, V, ρ0), thenTx0F = Ext1

k[Γ](V, V ) =
H1(Γ,Endk(V )) and Infx0(F) = H0(Γ,Endk(V )) are finite dimensional if Γ is
finitely generated.

(3) In Deformation Problems, Example 6.1 ifx0 = (k, V, ρ0), thenTx0F = H1
cont(Γ,Endk(V ))

and Infx0(F) = H0
cont(Γ,Endk(V )) are finite dimensional if Γ is topologically

finitely generated.
(4) In Deformation Problems, Example 7.1 ifx0 = (k, P ), thenTx0F and Infx0(F) =

Derk(P, P ) are finite dimensional if P is finitely generated over k.
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Proof. This follows from Deformation Problems, Lemmas 4.3, 5.3, 6.3, and 7.3. �
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CHAPTER 116

GNU Free Documentation License

Version 1.2, November 2002
Copyright �2000, 2001, 2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble
The purpose of this License is to make a manual, textbook, or other functional and

useful document ”free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or noncom-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of ”copyleft”, which means that derivative works of the docu-
ment must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals provid-
ing the same freedoms that the software does. But this License is not limited to software
manuals; it can be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The ”Document”, below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as
”you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of

7325
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mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be
at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing editor,
and that is suitable for input to text formatters or for automatic translation to a variety of
formats suitable for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transpar-
ent if used for any substantial amount of text. A copy that is not ”Transparent” is called
”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and JPG.
Opaque formats include proprietary formats that can be read and edited only by propri-
etary word processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the title
page. For works in formats which do not have any title page as such, ”Title Page” means
the text near the most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as ”Acknowledgements”, ”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve the
Title” of such a section when you modify the Document means that it remains a section
”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states
that this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.
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2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you
add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section
3.

You may also lend copies, under the same conditions stated above, and you may pub-
licly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed cov-
ers) of the Document, numbering more than 100, and the Document’s license notice re-
quires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly,
all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than
100, you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network pro-
tocols a complete Transparent copy of the Document, free of added material. If you use
the latter option, you must take reasonably prudent steps, when you begin distribution
of Opaque copies in quantity, to ensure that this Transparent copy will remain thus ac-
cessible at the stated location until at least one year after the last time you distribute an
Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the con-
ditions of sections 2 and 3 above, provided that you release the Modified Version under
precisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
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be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least
five of the principal authors of the Document (all of its principal authors, if it
has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other

copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the pub-

lic permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item

stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled ”History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given
in the Document for previous versions it was based on. These may be placed in
the ”History” section. You may omit a network location for a work that was pub-
lished at least four years before the Document itself, or if the original publisher
of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Ti-
tle of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict
in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their titles
to the list of Invariant Sections in the Modified Version’s license notice. These titles must
be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of peer
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review or that the text has been approved by an organization as the authoritative definition
of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace
the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you in-
clude in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identi-
cal Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or pub-
lisher of that section if known, or else a unique number. Make the same adjustment to the
section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the various
original documents, forming one section Entitled ”History”; likewise combine any sections
Entitled ”Acknowledgements”, and any sections Entitled ”Dedications”. You must delete
all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it indi-
vidually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of that
document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
”aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.
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If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
Cover Texts may be placed on covers that bracket the Document within the aggregate, or
the electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers.
In case of a disagreement between the translation and the original version of this License
or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distrib-
ute the Document is void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns. See
https://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License ”or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

11. ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in
the document and put the following copyright and license notices just after the title page:

Copyright �YEAR YOUR NAME. Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by
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the Free Software Foundation; with no Invariant Sections, no Front-
Cover Texts, and no Back-Cover Texts. A copy of the license is in-
cluded in the section entitled ”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
”with...Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-
Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of
the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend re-
leasing these examples in parallel under your choice of free software license, such as the
GNU General Public License, to permit their use in free software.
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Auto generated index

1. Alphabetized definitions

(−1)-index in 3.8
(−2)-index in 3.16
(2, 1)-category in 30.1
(2, 1)-periodic complex in 2.1
(Fn) canonically extends to X in 16.7
(Fn) extends to X in 16.5
(Fn) satisfies the (a, b)-inequalities in 19.1
(Fn) satisfies the strict (a, b)-inequalities in
19.1
(Spaces/S)étale in 4.5
(Spaces/S)fppf in 7.6
(Spaces/S)ph in 8.5
(Spaces/X)étale in 4.6
(Spaces/X)fppf in 7.7
(Spaces/X)ph in 8.6
(A,B)-bimodule in 12.6
(A,B)-bimodule in 28.1
(Rk) in 157.1
(Rk) in 12.1
(Sk) in 157.1
(Sk) in 12.1
(Sk) in 11.1
(Sk) in 11.1
(U ′, R′, s′, t′, c′) is cartesian over
(U,R, s, t, c) in 21.1
1-morphisms in 29.1
2-category of algebraic stacks over S in 12.3
2-category of categories fibred in groupoids
over C in 35.6
2-category of categories fibred in setoids
over C in 39.3
2-category of categories fibred in sets over C
in 38.3
2-category of categories over C in 32.1
2-category of fibred categories over C in
33.9

2-category of stacks in groupoids over C in
5.5
2-category of stacks in setoids over C in 6.5
2-category of stacks over C in 4.5
2-category in 29.1
2-morphisms in 29.1
2-periodic complex in 2.1
α-small with respect to I in 2.4
δ is compatible with γ in 4.1
δ-dimension of T in 2.5
δ-dimension of Z in 7.6
δ-functor fromA to D in 3.6
δ-functor in 12.1
δ-invariant of A in 39.3
δ-invariant of X at x in 39.7
δ(τ) in 41.2
δnj : [n− 1]→ [n] in 2.1
`-adic cohomology in 18.8
`-adic sheaf in 18.1
ε-invariant in 23.7
Ext-group in 6.2
Hom(U, V ) in 14.1
Hom(U, V ) in 15.1
Hom(U, V ) in 17.1
κ-generated in 23.1
Z`-sheaf in 18.1
A0 in 25.3
CΛ in 3.1
F has length d at x in 4.2
F is flat over S in dimensions ≥ n in 20.10
F is flat over Y in dimensions ≥ n in 11.3
G-torsor in 4.1
G-torsor in 4.1
I is cofinal in J in 17.1
I is initial in J in 17.3
KX in 23.1
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KX in 10.1
O∗ in 32.1
O1-derivation in 28.1
O1-derivation in 33.1
OX -module in 7.1
S is endowed with the topology inherited
from C in 10.2
SF in 36.2
SF in 37.2
X is relatively representable over Y in 42.3
grd in 3.1
QC (A, d) in 33.1
QC (O) in 43.1
φ lies over f in 32.2
Sh(C) in 7.5
σnj : [n+ 1]→ [n] in 2.1
τ G-torsor in 11.3
τ G-torsor in 9.3
τ local on the base in 22.1
τ local on the base in 10.1
τ local on the source in 26.1
τ local on the source in 14.1
τ local on the target in 22.1
τ local on the target in 10.1
τ torsor in 11.3
τ torsor in 9.3
τ -covering in 20.1
Adeq((Sch/S)τ ,O) in 5.7
Adeq(O) in 5.7
Adeq(S) in 5.7
Filf (A) in 30.4
U in 12.3
ϕ-derivation in 28.1
ϕ-derivation in 33.1
ĈΛ in 4.1
A is a wedge of A1, . . . , An in 40.4
A-biderivation in 13.1
B-rational map from X to Y in 47.1
c-adic in 7.1
C in 4.9
Cr in 67.5
CS/R in 149.2
d(M) in 59.8
Dc(Xétale,Λ) in 76.1
Dctf (Xétale,Λ) in 77.1
fs−1 in 27.12
f has relative dimension d at x in 33.1
F is relatively representable over G in 8.2

f -ample in 37.1
f -ample in 14.1
F -crystal on X/S (relative to σ) in 26.2
f -map ϕ : G → F in 18.9
f -map ξ : G → F in 21.7
f -relatively ample in 37.1
f -relatively ample in 14.1
f -relatively very ample in 38.1
f -very ample in 38.1
f−1S in 12.9
f∗ in 4.19
f∗S in 12.4
G-equivariant quasi-coherent OX -module
in 12.1
G-equivariant quasi-coherent OX -module
in 10.1
G-equivariant in 10.1
G-equivariant in 8.1
G-invariant in 3.1
G-module in 57.1
G-set in 2.1
G-torsor in the τ topology in 11.3
G-torsor in the τ topology in 9.3
G-torsor in 11.3
G-trace of f on P in 15.2
G-Sets in 2.1
g!F = (gp!F)# in 16.1
gp!F in 16.1
Hi+k(A•) −→ Hi(A[k]•) in 14.8
H1-regular ideal in 32.1
H1-regular immersion in 21.1
H1-regular immersion in 44.2
H1-regular in 30.1
H1-regular in 20.2
Hi+k(A•)→ Hi(A[k]•) in 14.2
I-adically complete in 96.2
I-adically complete in 96.2
I-depth in 72.1
I-depth in 13.1
I-power torsion module in 88.1
I-projective in 70.4
ith Chern class of E in 28.2
ith Chern class in 38.8
ith Chow group of M in 5.1
ith extension group in 27.1
ith right derived functor RiF of F in 16.2
k-cycle associated to F in 10.2
k-cycle associated to F in 6.1
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k-cycle associated to Y in 5.2
k-cycle associated to Z in 9.2
k-cycle in 8.1
k-cycle in 3.1
k-shifted chain complex A[k]• in 14.1
k-shifted cochain complex A[k]• in 14.7
k-shifted module in 4.3
kth Fitting ideal in 8.3
kth shifted A-module in 11.3
kth shifted A-module in 11.3
L-function of F in 19.1
L-function of F in 19.3
M 7→M∨ in 55.5
M -H1-regular in 30.1
M -Koszul-regular in 30.1
m-pseudo-coherent relative to R in 81.4
m-pseudo-coherent relative to R in 81.4
m-pseudo-coherent relative to S in 59.2
m-pseudo-coherent relative to S in 59.2
m-pseudo-coherent relative to Y in 45.3
m-pseudo-coherent relative to Y in 45.3
m-pseudo-coherent in 64.1
m-pseudo-coherent in 64.1
m-pseudo-coherent in 47.1
m-pseudo-coherent in 47.1
m-pseudo-coherent in 45.1
m-pseudo-coherent in 45.1
M -quasi-regular in 69.1
M -regular sequence in I in 68.1
M -regular sequence in 68.1
m-regular in 35.7
n-simplex of U in 11.1
n-truncated simplicial object of C in 12.1
R-bilinear in 12.1
R-derivation in 131.1
R-equivalent in 5.4
R-invariant in 19.1
R-invariant in 19.1
R-invariant in 19.1
R-invariant in 18.1
R-invariant in 18.1
R-invariant in 18.1
R-invariant in 3.1
R-linear categoryA in 24.1
R-linear functor in 24.2
R-linear in 11.1
R-module of finite presentation in 5.1
R-orbit in 5.1

R-orbit in 5.4
R-perfect in 83.1
R-G-module in 57.1
R(f) in 27.3
S is a finite type R-algebra in 6.1
S-birational in 49.11
S-derivation D : OX/S → F in 12.1
S-derivation in 28.10
S-perfect in 35.1
S-pure in 16.1
S-pure in 16.1
S-rational map from X to Y in 49.1
s−1f in 27.4
T is proper over Y in 7.2
U -admissible blowup in 34.1
U -admissible blowup in 19.1
x is a point of codimension d on X in 10.2
x is an associated point of X in 2.2
x is associated to F in 2.2
X is regular at x in 25.2
x lies over U in 32.2
Xaffine,étale in 18.5
Xspaces,étale in 18.2
Y is cartesian over X in 27.1
Y -derivation in 33.10
Y -perfect in 52.1
Y -pure in 3.1
Y -pure in 3.1
Z is proper over S in 26.2
(additive) Herbrand quotient in 2.2
2-fibre product of f and g in 31.2
2-morphism from f to g in 36.1
2-morphism from f to g in 8.1
étale at q in 143.1
étale at x ∈ X in 36.1
étale at x ∈ X in 11.4
étale at x in 39.1
étale covering of T in 4.1
étale covering of X in 4.1
étale covering in 4.1
étale covering in 27.1
étale equivalence relation in 9.2
étale homomorphism of local rings in 11.1
étale local on source-and-target in 32.3
étale local on the source-and-target in 33.1
étale local ring of S at s in 33.2
étale local ring of X at x in 22.2
étale locally constructible in 8.2
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étale local in 21.1
étale neighborhood in 29.1
étale neighborhood in 19.2
étale neighbourhood of (S, s) in 35.1
étale sheaf in 4.3
étale topos in 21.1
étale topos in 18.7
étale-smooth local on source-and-target in
21.1
étale in 143.1
étale in 36.1
étale in 20.2
étale in 11.4
étale in 26.1
étale in 16.2
étale in 35.1
a Serre functor exists in 3.2
abelian presheaf over X in 4.4
abelian presheaf in 9.1
abelian sheaf on X in 8.1
abelian sheaves in 11.4
abelian variety in 9.1
abelian in 5.1
absolute frobenius of X in 36.1
absolute Galois group in 56.1
absolute ramification index in 113.3
absolute weak normalization in 47.8
absolutely flat in 104.1
absolutely flat in 104.1
absolutely flat in 64.1
absolutely integrally closed in 14.1
absolutely weakly normal in 47.1
absolutely weakly normal in 47.3
abuts to H(K) in 23.6
abuts to H∗(K•) in 24.9
abuts to Hn(Tot(K•,•)) in 25.2
abuts to Hn(Tot(K•,•)) in 25.2
action of G on the algebraic space X/B in
8.1
action of G on the scheme X/S in 10.1
acts freely in 14.4
acyclic for LF in 15.3
acyclic for RF in 15.3
acyclic in 13.4
acyclic in 13.10
additive monoidal category in 17.1
additive in 3.1
additive in 3.8

adequate in 3.2
adequate in 5.1
adic constructible in 28.1
adic constructible in 29.4
adic lisse in 28.1
adic lisse in 29.4
adic morphism in 23.2
adic* in 9.7
adic in 36.1
adic in 6.1
adic in 9.7
admissible epimorphism in 7.1
admissible monomorphism in 7.1
admissible relation in 68.2
admissible short exact sequence in 7.1
admissible in 36.1
admissible in 68.2
affine n-space over R in 5.1
affine n-space over S in 5.1
affine blowup algebra in 70.1
affine cone associated toA in 7.1
affine formal algebraic space in 9.1
affine scheme in 5.5
affine stratification number in 73.4
affine stratification in 73.1
affine variety in 26.1
affine in 11.1
affine in 20.2
affine in 9.1
algebraic k-scheme in 20.1
algebraic closure of k in K in 26.9
algebraic closure in 10.3
algebraic extension in 8.1
algebraic space over S in 6.1
algebraic space structure on Z in 12.5
algebraic stack over S in 12.1
algebraic stack structure on Z in 10.4
algebraic stack in 5.1
algebraically closed in K in 26.9
algebraically closed in 10.1
algebraically independent in 26.1
algebraic in 8.1
algebraic in 28.1
algebraic in 56.1
algebraic in 8.1
almost cocontinuous in 42.3
almost integral over R in 37.3
alteration of X in 51.12



1. ALPHABETIZED DEFINITIONS 7337

alteration of X in 8.3
alternating Čech complex in 23.1
alternating Čech complex in 6.2
amalgamated sum in 5.1
ample family of invertible modules onX in
12.1
ample on X/S in 37.1
ample on X/Y in 14.1
ample in 26.1
an f -power torsion module in 88.1
an ideal of definition of R in 59.1
analytically unramified in 162.9
analytically unramified in 162.9
annihilator of m in 40.3
annihilator of M in 40.3
annihilator in 23.1
approximation by perfect complexes holds
in 14.2
approximation by perfect complexes holds
in 14.2
approximation holds for the triple in 14.1
approximation holds for the triple in 14.1
arithmetic frobenius in 3.8
Artinian in 53.1
Artinian in 9.2
Artinian in 9.2
Artinian in 6.16
associated étale site in 4.1
associated affine étale site in 24.2
associated affine fppf site in 24.2
associated affine site in 24.1
associated affine smooth site in 24.2
associated affine syntomic site in 24.2
associated affine Zariski site in 24.2
associated fppf site in 4.1
associated graded ring in 25.7
associated morphism of fppf topoi in 4.5
associated points of X in 2.1
associated simple complex in 18.3
associated smooth site in 4.1
associated syntomic site in 4.1
associated total complex in 18.3
associated Zariski site in 4.1
associated in 63.1
associated in 2.1
associates in 120.1
at-worst-nodal of relative dimension 1 in
20.2

at-worst-nodal of relative dimension 1 in
55.1
Atiyah class in 17.1
Atiyah class in 19.1
augmentation ε : U → X of U towards an
object X of C in 20.1
auto-associated in 15.1
automorphism functor of x in 19.5
automorphisms of E over F in 15.8
automorphisms of E/F in 15.8
Bézout domain in 124.5
base change of F ′ to S in 16.2
base change in 14.1
base change in 14.1
base change in 18.1
base change in 18.1
base change in 18.1
base change in 3.4
base extension along f in 4.15
base for the topology on X in 5.1
base point in 6.1
basis for the topology on X in 5.1
big τ -site of S in 20.2
big τ -topos in 21.1
big étale site of S in 4.8
big étale site over S in 27.3
big étale site in 4.6
big affine étale site of S in 4.8
big affine fppf site of S in 7.8
big affine h site of S in 34.13
big affine ph site of S in 8.11
big affine pro-étale site of S in 12.8
big affine smooth site of S in 5.8
big affine syntomic site of S in 6.8
big affine Zariski site of S in 3.7
big crystalline site in 8.4
big fppf site of S in 7.8
big fppf site in 7.6
big h site of S in 34.13
big h site in 34.10
big ph site of S in 8.11
big ph site in 8.9
big pro-étale site of S in 12.8
big pro-étale site in 12.7
big smooth site of S in 5.8
big smooth site in 5.6
big syntomic site of S in 6.8
big syntomic site in 6.6
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big Zariski site of S in 3.7
big Zariski site in 3.5
big in 27.3
birational in 49.11
birational in 50.1
birational in 47.7
birational in 22.1
bivariant class c of degree p for f in 33.1
bivariant class c of degree p for f in 26.1
blowing up X ′ → X of X at x in 4.1
blowing up of X along Z in 32.1
blowing up of X along Z in 17.1
blowing up ofX in the ideal sheaf I in 32.1
blowing up ofX in the ideal sheaf I in 17.1
blowup algebra in 70.1
bounded above in 24.7
bounded above in 8.1
bounded below in 24.7
bounded below in 8.1
bounded derived category in 11.3
bounded filtered derived category in 13.7
bounded in 24.7
bounded in 8.1
bounds the degrees of the fibres of f in 57.1
Bourbaki-proper in 17.2
Brauer group in 5.2
Brauer group in 61.4
canonical descent datum in 3.5
canonical descent datum in 2.3
canonical descent datum in 34.10
canonical descent datum in 34.11
canonical descent datum in 3.3
canonical descent datum in 22.10
canonical descent datum in 22.11
canonical scheme structure on T in 26.3
canonical section in 14.1
canonical topology in 47.12
Cartan-Eilenberg resolution in 21.1
cartesian in 6.2
cartesian in 21.1
cartesian in 12.1
cartesian in 12.1
cartesian in 12.1
cartesian in 12.1
cartesian in 13.1
cartesian in 14.1
cartesian in 27.1
Cartier divisor in 49.1

categorical moduli space in C in 12.1
categorical moduli space in 12.1
categorical quotient in C in 4.1
categorical quotient in schemes in 4.1
categorical quotient in the category of
schemes in 4.1
categorical quotient in 4.1
categorically compact in 26.1
category F̂ of formal objects of F in 7.1
category cofibered in groupoids over C in
5.1
category fibred in discrete categories in 38.2
category fibred in setoids in 39.2
category fibred in sets in 38.2
category of (cochain) complexes in 8.1
category of complexes ofA in 26.3
category of cosimplicial objects of C in 5.1
category of finite filtered objects ofA in 13.1
category of graded objects ofA in 16.1
category of groupoids in functors on C in
21.1
category of sheaves of sets in 11.4
category of simplicial objects of C in 3.1
category in 2.1
catenary in 11.4
catenary in 105.1
catenary in 11.1
catenary in 25.1
catenary in 18.1
catenary in 18.1
centered in 50.1
center in 32.1
center in 17.1
central in 2.4
chain of irreducible closed subsets in 10.1
chain of prime ideals in 60.1
change of base of X ′ in 19.3
characteristic in 5.1
Chern classes of E on X in 37.1
Chern classes of E are defined in 46.3
choice of pullbacks in 33.6
Chow cohomology in 34.1
Chow cohomology in 26.2
Chow group of k-cycles modulo rational
equivalence on X in 19.1
Chow group of k-cycles modulo rational
equivalence on X in 15.1
Chow group of k-cycles on X in 19.1
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Chow group of k-cycles on X in 15.1
class group of A in 22.3
classical case in 3.1
classical generator in 36.3
classical Weil cohomology theory in 7.3
classical in 9.7
closed immersion of ringed spaces in 13.1
closed immersion in 43.7
closed immersion in 4.1
closed immersion in 10.2
closed immersion in 12.1
closed immersion in 27.1
closed immersion in 9.1
closed subgroup scheme in 4.3
closed subscheme in 10.2
closed subspace ofX associated to the sheaf
of ideals I in 4.4
closed subspace in 12.1
closed substack in 9.9
closed subtopos in 43.6
closed in 17.2
closed in 9.2
closed in 13.2
closed in 6.22
coarse quotient in schemes in 6.1
coarse quotient in 6.1
coarser in 47.8
cocartesian in 9.2
cocontinuous in 20.1
cocycle condition in 3.1
cocycle condition in 2.1
cocycle condition in 3.1
cocycle condition in 34.1
cocycle condition in 16.1
cocycle condition in 3.1
cocycle condition in 22.1
codimension in 11.1
codirected in 20.1
codirected in 20.1
coefficient ring in 160.4
coequalizer in 11.1
cofiltered in 20.1
cofiltered in 20.1
cofinal in 17.1
Cohen ring in 160.5
Cohen-Macaulay at x in 22.1
Cohen-Macaulay at x in 26.2
Cohen-Macaulay morphism in 22.1

Cohen-Macaulay morphism in 26.2
Cohen-Macaulay in 103.1
Cohen-Macaulay in 103.12
Cohen-Macaulay in 104.1
Cohen-Macaulay in 104.6
Cohen-Macaulay in 8.1
Cohen-Macaulay in 11.4
Cohen-Macaulay in 28.1
coherentOX -module in 12.1
coherent module in 90.1
coherent ring in 90.1
coherent in 23.1
coherent in 12.1
coherent in 17.2
coherent in 36.6
cohomological δ-functor in 12.1
cohomological dimension of f in 96.1
cohomological dimension of I in A in 4.2
cohomological dimension of X in 95.1
cohomological in 3.5
cohomology modules in 2.1
cohomology modules in 2.1
cohomology of K with compact support in
12.1
coimage of f in 3.9
cokernel in 3.9
colimit in 14.2
colimit in 2.3
combinatorially equivalent in 8.2
commutative in 3.3
compact object in 37.1
compactly generated in 37.5
compactly supported cohomology of K in
12.1
compatible with the differential graded
structure in 6.5
compatible with the triangulated structure
in 5.1
complete dévissage of F/X/S at x in 5.2
complete dévissage of F/X/S over s in 5.1
complete dévissage of N/S/R at q in 6.4
complete dévissage of N/S/R over r in 6.2
complete intersection (over k) in 135.5
complete intersection in 8.5
complete local ring in 160.1
completed principal localization in 14.7
completed tensor product in 4.7
completely decomposed in 78.1
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completely decomposed in 78.1
completely normal in 37.3
completion (U,R, s, t, c)∧ of (U,R, s, t, c)
in 22.2
completion of F in 7.3
completion of X along T in 14.3
completion of X along T in 37.3
completion of X along Z in 38.1
complex in 5.7
composition f ◦ g in 15.1
composition of ϕ and ψ in 21.9
composition of morphisms of germs in 20.1
composition of morphisms of ringed sites in
6.1
composition of morphisms of ringed spaces
in 25.3
composition of morphisms of ringed topoi
in 7.1
composition in 29.1
composition in 14.5
compositum of K and L in Ω in 27.1
computes in 14.10
computes in 14.10
condition (RS) in 16.1
condition (RS) in 5.1
condition (RS*) in 18.1
conditions (S1) and (S2) in 10.1
cone π : C → S over S in 7.2
cone associated toA in 7.1
cone in 9.1
cone in 6.1
cone in 22.2
connected component in 7.1
connected component in 6.26
connected in 16.1
connected in 7.1
connected in 6.26
conormal algebra CZ/X,∗ of Z in X in 19.1
conormal algebra CZ/X,∗ of Z in X in 6.1
conormal algebra of f in 19.1
conormal algebra of i in 6.1
conormal module in 149.2
conormal sheaf CZ/X of Z in X in 31.1
conormal sheaf CZ/X of Z in X in 5.1
conormal sheaf of i in 31.1
conormal sheaf of i in 5.1
conormal sheaf of Z over X in 7.2
conormal sheaf of Z over X in 15.5

conservative in 38.1
constant presheaf with value A in 3.2
constant sheaf with value A in 7.4
constant sheaf with value A in 64.1
constant sheaf with value E in 64.1
constant sheaf with value M in 64.1
constant sheaf in 43.1
constant sheaf in 23.1
constant sheaf in 64.1
constant sheaf in 64.1
constant sheaf in 64.1
constructible Λ-sheaf in 28.1
constructible in 15.1
constructible in 71.1
constructible in 71.1
constructible in 71.1
constructible in 27.1
constructible in 29.1
content ideal of x in 24.1
continuous group cohomology groups in
57.2
continuous in 13.1
contravariant in 3.2
converges to H∗(K•) in 24.9
converges to Hn(Tot(K•,•)) in 25.2
converges to Hn(Tot(K•,•)) in 25.2
coproduct in 5.1
coproduct in 14.7
coregular in 24.7
cosimplicial abelian group in 5.1
cosimplicial object U of C in 5.1
cosimplicial set in 5.1
cotangent complex LX/Y of X over Y in
24.1
cotangent complex LX/Y of X over Y in
26.1
cotangent complex in 3.2
cotangent complex in 18.2
cotangent complex in 20.1
cotangent complex in 22.1
countably indexed in 10.2
coverings of C in 6.2
coverings in 10.2
covering in 3.1
covering in 3.1
covers F in 15.3
crystal inOX/S-modules in 11.1
crystal in finite locally free modules in 11.3
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crystal in quasi-coherent modules in 11.3
crystalline site in 9.1
curve in 43.1
curve in 67.9
cycle on X in 8.1
cycle on X in 3.1
de Rham complex of B overA in 30.1
de Rham complex of log poles for Y ⊂ X
over S in 15.3
de Rham complex of log poles is defined for
Y ⊂ X over S in 15.1
de Rham complex in 30.4
decent in 6.1
decent in 17.1
decent in 48.1
decomposition group of m in 112.3
decreasing filtration in 19.1
Dedekind domain in 120.14
defined in a point x ∈ X in 49.8
defined in a point x ∈ |X| in 47.4
defines a nodal singularity in 16.2
defines a nodal singularity in 19.1
defines a rational singularity in 8.3
deformation category in 16.8
degeneracy of x in 11.1
degenerates at Er in 20.2
degenerate in 11.1
degree d finite Hilbert stack of X over Y in
18.2
degree of X over Y in 51.8
degree of X over Y in 5.2
degree of Z with respect to L in 45.10
degree of a zero cycle in 41.1
degree of a zero cycle in 32.1
degree of inseparability in 14.7
degree in 7.1
degree in 48.1
degree in 44.1
degree in 44.1
degree in 46.2
Deligne-Mumford stack in 12.2
depth k at a point in 11.1
depth k at a point in 11.1
depth in 72.1
depth in 13.1
derivation in 131.1
derived category of (A, d) in 26.4
derived category of (A, d) in 22.2

derived category ofA in 11.3
derived category of OX -modules with
quasi-coherent cohomology sheaves in 5.1
derived category of OX -modules with
quasi-coherent cohomology sheaves in 5.1
derived colimit in 33.1
derived complete with respect to I in 6.4
derived complete with respect to I in 91.4
derived complete with respect to I in 91.4
derived equivalent in 18.1
derived internal hom in 29.2
derived limit in 34.1
derived pullback in 28.2
derived pushforward in 29.2
derived tensor product in 59.13
derived tensor product in 26.14
derived tensor product in 17.13
derived tensor product in 28.2
descent datum (Fi, ϕij) for quasi-coherent
sheaves in 2.1
descent datum (Fi, ϕij) for quasi-coherent
sheaves in 3.1
descent datum (N,ϕ) for modules with re-
spect to R→ A in 3.1
descent datum (Vi, ϕij) relative to the fam-
ily {Xi → S} in 34.3
descent datum (Vi, ϕij) relative to the fam-
ily {Xi → X} in 22.3
descent datum (Xi, ϕij) in S relative to the
family {fi : Ui → U} in 3.1
descent datum for V/X/S in 34.1
descent datum for V/Y/X in 22.1
descent datum relative to X → S in 34.1
descent datum relative to Y → X in 22.1
descent datum in 16.1
descent datum in 16.5
descent morphism for modules in 4.15
determinant of (M,ϕ,ψ) in 68.13
determinant of the finite length R-module
M in 68.2
differential dϕ : TF → TG of ϕ in 12.3
differential graded (A,B)-bimodule in 17.1
differential graded (A,B)-bimodule in 28.1
differential gradedA-module in 13.1
differential graded algebra over R in 3.1
differential graded category A over R in
26.1
differential graded direct sum in 26.4
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differential graded module in 4.1
differential graded module in 13.1
differential object in 22.1
differential operator D : F → G of order k
in 29.1
differential operator D : F → G of order k
in 34.1
differential operator D : M → N of order
k in 133.1
differential operator of order k on X/S in
29.8
different in 9.1
dimension function in 20.1
dimension of X at x in 12.2
dimension of X at x in 10.1
dimension of X at x in 9.1
dimension of the local ring of X at x in 6.3
dimension of the local ring ofX at x in 10.2
dimension of the local ring of the fibre of f
at x in 33.1
dimension in 10.1
dimension in 10.1
dimension in 9.2
dimension in 12.3
direct image functor in 25.1
direct image functor in 19.1
direct image with compact support in 3.3
direct image with compact support in 4.4
direct image in 35.1
direct image in 35.3
direct sum dévissage in 84.1
direct sum in 3.5
directed inverse system in 21.4
directed partially ordered set in 21.1
directed set in 21.1
directed set in 2.1
directed system in 21.4
directed system in 8.1
directed in 19.1
directed in 19.1
discrete G-module in 57.1
discrete G-set in 2.1
discrete valuation ring in 50.13
discrete in 38.1
discriminant of L/K in 20.8
distance between M and M ′ in 121.5
distinguished triangle of K(A) in 10.1
distinguished triangles in 3.2

distinguished triangle in 8.2
divided power A-derivation in 6.1
divided power envelope of J in B relative
to (A, I, γ) in 2.2
divided power ring in 3.1
divided power scheme in 7.2
divided power structure γ in 7.1
divided power structure in 2.1
divided power structure in 6.1
divided power thickening of X relative to
(S, I, γ) in 8.1
divided power thickening in 5.2
divided power thickening in 7.3
DM over S in 4.2
DM in 4.1
DM in 4.2
domain of definition in 49.8
domain of definition in 47.4
domain in 2.2
dominant in 8.1
dominant in 49.10
dominant in 18.1
dominant in 47.6
dominates in 50.1
dominates in 88.2
dotted arrow in 39.1
double complex in 18.1
dual numbers in 16.1
dual numbers in 35.1
dualizing complex normalized relative to
ω•
S in 20.5

dualizing complex in 15.1
dualizing complex in 2.2
dualizing complex in 2.2
effective Cartier divisor in 13.1
effective Cartier divisor in 6.1
effective Cartier divisor in 49.1
effective descent morphism for modules in
4.15
effective epimorphism in 12.1
effective in 3.5
effective in 2.3
effective in 3.4
effective in 34.10
effective in 34.11
effective in 8.4
effective in 16.1
effective in 16.6
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effective in 8.1
effective in 3.3
effective in 22.10
effective in 22.11
effective in 9.4
Eilenberg-Maclane object K(A, k) in 22.3
elementary étale localization of the ring
map R→ S at q in 6.1
elementary étale neighbourhood in 35.1
elementary étale neighbourhood in 11.5
elementary distinguished square in 9.1
elementary divisor domain in 124.5
elementary standard in A over R in 2.3
embedded associated point in 4.1
embedded associated primes in 67.1
embedded component in 4.1
embedded point in 4.1
embedded primes of R in 67.1
embedding dimension of X at x in 46.1
embedding dimension of X/k at x in 46.2
embedding in 43.1
enough P objects in 40.2
enough injectives in 27.4
enough projectives in 28.4
enough weakly contractible objects in 40.2
envelope in 22.1
epimorphism in 13.1
equalizer in 10.1
equidimensional in 10.5
equidimensional in 7.1
equivalence of categories in 2.17
equivalence relation on U over B in 4.1
equivalence relation on U over S in 3.1
equivalent types in 3.2
equivalent in 29.4
equivalent in 27.4
equivalent in 49.1
equivalent in 61.3
equivalent in 47.1
equivariant quasi-coherent OX -module in
12.1
equivariant quasi-coherent OX -module in
10.1
equivariant in 10.1
equivariant in 8.1
essential extension of in 2.1
essential surjection in 3.9
essentially constant inverse system in 22.2

essentially constant system in 22.2
essentially constant in 22.1
essentially constant in 22.1
essentially of finite presentation in 54.1
essentially of finite type in 54.1
essentially surjective in 2.9
essential in 2.1
essential in 2.1
Euler characteristic of F in 33.1
Euler characteristic of F in 17.1
Euler-Poincaré function in 26.2
everywhere defined in 14.9
everywhere defined in 14.9
exact at xi in 5.7
exact at y in 5.7
exact complex in 5.7
exact couple in 21.1
exact functor in 3.3
exact sequences of graded modules in 26.3
exact sequence in 5.7
exact in 23.1
exact in 5.7
exact in 2.1
excellent in 52.1
exceptional divisor in 32.1
exceptional divisor in 17.1
exhaustive in 19.1
existence part of the valuative criterion in
39.10
extends in 4.1
extension E of B by A in 6.1
extension j!F of F by 0 in 31.5
extension j!F of F by e in 31.5
extension jp!F of F by 0 in 31.5
extension jp!F of F by e in 31.5
extension by 0 in 31.5
extension by 0 in 31.5
extension by zero in 19.1
extension by zero in 70.1
extension by zero in 70.1
extension by zero in 26.1
extension by zero in 26.1
extension ofF by the empty set j!F in 31.3
extension ofF by the empty set jp!F in 31.3
extension of G by the empty set in 25.1
extension of discrete valuation rings in 111.1
extension of valuation rings in 123.1
extremally disconnected in 26.1
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face of x in 11.1
faithfully flat in 39.1
faithfully flat in 39.1
faithfully flat in 9.1
faithfully flat in 9.3
faithful in 2.9
family of morphisms with fixed target in 6.1
family of morphisms with fixed target in
10.1
fibre category in 32.2
fibre of f over s in 18.4
fibre product of V and W over U in 7.1
fibre product of V and W over U in 10.1
fibre product in 6.1
fibre product in 17.1
fibred category over C in 33.5
fibred in groupoids in 35.1
fibres of f are universally bounded in 57.1
fibres of f are universally bounded in 3.1
field extension in 6.2
field of rational functions in 49.6
field of rational functions in 4.3
field in 2.1
filtered acyclic in 13.2
filtered acyclic in 30.7
filtered complex K• ofA in 24.1
filtered derived category ofA in 13.5
filtered derived functor in 8.1
filtered differential object in 23.1
filtered injective in 26.1
filtered injective in 7.1
filtered injective in 30.3
filtered object ofA in 19.1
filtered quasi-isomorphism in 13.2
filtered quasi-isomorphism in 7.1
filtered quasi-isomorphism in 30.6
filtered in 19.1
filtered in 19.1
final object in 31.1
final in 12.1
finer in 47.8
finite Tor-dimension in 12.1
finite R-module in 5.1
finite free in 17.1
finite global dimension in 109.10
finite injective dimension in 69.1
finite locally constant in 43.1
finite locally constant in 64.1

finite locally constant in 64.1
finite locally free of rank r in 78.1
finite locally free of rank r in 14.1
finite locally free in 78.1
finite locally free in 14.1
finite locally free in 23.1
finite locally free in 48.1
finite locally free in 46.2
finite locally free in 22.1
finite presentation at x ∈ X in 21.1
finite presentation at x in 28.1
finite presentation in 6.1
finite presentation in 11.1
finite presentation in 21.1
finite presentation in 2.8
finite projective dimension in 109.2
finite projective dimension in 68.1
finite tor dimension in 66.1
finite tor dimension in 66.1
finite tor dimension in 48.1
finite tor dimension in 46.1
finite type at x ∈ X in 15.1
finite type at x in 23.1
finite type point in 16.3
finite type point in 25.2
finite type point in 18.2
finite type in 6.1
finite type in 9.1
finite type in 15.1
finite type in 24.1
finitely generated R-module in 5.1
finitely generated field extension in 6.6
finitely presented R-module in 5.1
finitely presented relative to R in 80.2
finitely presented relative to S in 58.1
finite in 7.1
finite in 7.1
finite in 2.1
finite in 19.1
finite in 44.1
finite in 45.2
finite in 10.1
first Chern class in 34.4
first order infinitesimal neighbourhood in
5.1
first order infinitesimal neighbourhood in
12.1
first order thickening in 2.1
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first order thickening in 9.1
first order thickening in 3.3
flabby in 12.1
flasque in 12.1
flat (resp. faithfully flat) in 9.1
flat at x ∈ X in 9.3
flat at x over Y in 31.2
flat at x in 17.3
flat at x in 20.1
flat at x in 30.1
flat at x in 26.2
flat at a point x ∈ X in 25.1
flat base change property in 7.1
flat base change in 3.4
flat group scheme in 4.5
flat local complete intersection over R in
136.1
flat over (Sh(D),O′) in 31.3
flat over S at a point x ∈ X in 25.1
flat over S in 25.1
flat over Y at x ∈ X in 9.3
flat over Y at a point x ∈ X in 20.3
flat over Y in 20.3
flat over Y in 31.2
flat pullback of α by f in 14.1
flat pullback of α by f in 10.1
flat-fppf site in 14.1
flattening stratification in 21.3
flattening stratification in 21.3
flat in 39.1
flat in 39.1
flat in 17.1
flat in 20.1
flat in 28.1
flat in 28.1
flat in 28.1
flat in 28.1
flat in 31.1
flat in 31.1
flat in 25.1
flat in 9.1
flat in 9.3
flat in 30.1
flat in 13.4
flat in 25.1
formal algebraic space in 11.1
formal branches of X through x0 in 4.1
formal modification in 24.1

formal object ξ = (R, ξn, fn) of F in 7.1
formal object in 9.1
formal spectrum in 9.9
formally étale over R in 150.1
formally étale in 8.1
formally étale in 13.1
formally étale in 16.1
formally catenary in 109.1
formally principally homogeneous underG
in 11.1
formally principally homogeneous underG
in 9.1
formally smooth for the n-adic topology in
37.3
formally smooth over R in 138.1
formally smooth over R in 37.1
formally smooth in 11.1
formally smooth in 13.1
formally smooth in 19.1
formally smooth in 8.1
formally unramified over R in 148.1
formally unramified in 6.1
formally unramified in 13.1
formally unramified in 14.1
Fourier-Mukai functor in 8.1
Fourier-Mukai kernel in 8.1
fppf covering of T in 7.1
fppf covering of X in 7.1
fppf sheaf in 4.3
fpqc covering of T in 9.1
fpqc covering of X in 9.1
fpqc covering in 15.1
freeO-module in 17.1
free abelian presheaf on G in 18.4
free abelian presheaf in 4.1
free abelian sheaf in 5.1
free module in 55.5
free in 10.2
free in 8.2
full subcategory in 2.10
fully faithful in 2.9
function field in 49.6
function field in 4.3
functor of R-linear categories in 24.2
functor of differential graded categories
over R in 26.2
functor of graded categories over R in 25.2
functor of monoidal categories in 43.2
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functor of symmetric monoidal categories
in 43.11
functorial injective embeddings in 27.5
functorial projective surjections in 28.5
functor in 2.8
functor in 29.5
fundamental group in 6.1
G-ring in 50.1
G-unramified at q in 151.1
G-unramified at x ∈ X in 35.1
G-unramified at x in 38.1
G-unramified in 151.1
G-unramified in 35.1
G-unramified in 38.1
Galois category in 3.6
Galois cohomology groups of K with coef-
ficients in M in 57.2
Galois cohomology groups in 57.2
Galois group in 21.3
Galois in 21.1
Galois in 28.1
generalizations lift along f in 19.4
generalization in 19.1
generalization in 6.22
generalizing in 19.4
generated by r global sections in 17.1
generated by finitely many global sections
in 17.1
generated by global sections in 4.1
generated by global sections in 17.1
generates the field extension in 6.6
generate in 4.1
generator in 36.3
generator in 10.1
generic point in 8.6
generic point in 6.12
genus in 6.3
genus in 8.1
geometric frobenius in 3.4
geometric frobenius in 3.10
geometric genus in 11.1
geometric point lying over x in 19.1
geometric point in 29.1
geometric point in 19.1
geometric quotient in 10.1
geometrically connected over k in 48.3
geometrically connected in 7.1
geometrically connected in 12.1

geometrically integral over k in 49.1
geometrically integral in 9.1
geometrically integral in 14.1
geometrically irreducible over k in 47.4
geometrically irreducible in 8.1
geometrically irreducible in 13.1
geometrically normal at x in 10.1
geometrically normal in 165.2
geometrically normal in 10.1
geometrically pointwise integral at x in 9.1
geometrically pointwise integral in 9.1
geometrically reduced at x in 6.1
geometrically reduced at x in 11.1
geometrically reduced over k in 43.1
geometrically reduced in 6.1
geometrically reduced in 11.1
geometrically regular at x in 12.1
geometrically regular over k in 12.1
geometrically regular in 166.2
geometrically unibranch at x in 15.1
geometrically unibranch at x in 23.2
geometrically unibranch at x in 13.1
geometrically unibranch in 106.1
geometrically unibranch in 15.1
geometrically unibranch in 23.2
gerbe over in 11.4
gerbe over in 28.1
gerbe in 11.1
gerbe in 28.1
germ of X at x in 20.1
global complete intersection over k in 135.1
global dimension in 109.10
global finite presentation in 17.1
global Lefschetz number in 14.1
global presentation in 17.1
global sections in 45.1
going down in 41.1
going up in 41.1
going-down theorem in 24.1
going-up theorem in 24.1
good quotient in 9.1
good reduction in 14.8
good stratification in 28.2
Gorenstein at x in 25.2
Gorenstein at x in 27.2
Gorenstein morphism in 25.2
Gorenstein morphism in 27.2
Gorenstein in 21.1
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Gorenstein in 21.1
Gorenstein in 24.1
graded (A,B)-bimodule in 8.1
graded (A,B)-bimodule in 28.1
gradedA-module in 4.1
graded A-algebra in 26.3
graded categoryA over R in 25.1
graded direct sum in 25.4
graded functor in 25.2
graded ideals in 26.3
graded injective in 25.2
graded module M over a graded A-algebra
B in 26.3
graded module in 4.1
graded module in 26.2
graded submodules in 26.3
Grassmannian over Z in 22.2
Grassmannian over R in 22.2
Grassmannian over S in 22.2
Grothendieck abelian category in 10.1
Grothendieck group of X in 38.2
Grothendieck group of coherent sheaves on
X in 38.2
group algebraic space over B in 5.1
group cohomology groups in 57.2
group of infinitesimal automorphisms of x′

over x in 19.1
group of infinitesimal automorphisms of x0
in 19.2
group scheme over S in 4.1
groupoid in algebraic spaces over B in 11.1
groupoid in functors on C in 21.1
groupoid over S in 13.1
groupoid scheme over S in 13.1
groupoid in 2.5
Gysin homomorphism in 29.1
Gysin homomorphism in 22.1
gysin map in 59.4
h covering of T in 34.2
H-projective in 43.1
H-quasi-projective in 40.1
has coproducts of pairs of objects in 5.2
has enough points in 38.1
has fibre products in 6.3
has products of pairs of objects in 4.2
has property (β) in 17.1
has property (β) in 17.1
has property P at x in 7.5

has property P at x in 7.5
has property P in 7.2
has property P in 22.2
has property P in 7.2
has property P in 16.2
has property P in 34.2
has propertyQ at x in 22.6
Hausdorff in 6.6
height in 60.3
henselian local ring of X at x in 11.7
henselian pair in 11.1
henselian in 153.1
henselian in 32.2
henselization ofOS,s in 33.2
henselization of S at s in 33.2
henselization in 155.3
higher direct images in 35.4
Hilbert function in 26.2
Hilbert polynomial in 59.6
Hilbert polynomial in 35.15
Hilbert polynomial in 26.2
Hodge filtration in 7.1
homogeneous spectrum Proj(R) in 27.2
homogeneous spectrum ofA over S in 16.7
homogeneous spectrum ofA overX in 11.3
homogeneous spectrum in 57.1
homogeneous spectrum in 8.3
homogeneous in 27.1
homological in 3.5
homology of K in 4.1
homology in 22.3
homomorphism of differential graded
(A,B)-bimodules in 17.1
homomorphism of differential graded A-
modules in 13.1
homomorphism of differential graded O-
algebras in 12.1
homomorphism of differential graded alge-
bras in 3.2
homomorphism of differential graded mod-
ules in 4.1
homomorphism of divided power rings in
3.1
homomorphism of divided power thicken-
ings in 5.2
homomorphism of graded (A,B)-
bimodules in 8.1
homomorphism of gradedA-modules in 4.1
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homomorphism of gradedO-algebras in 3.1
homomorphism of systems in 8.6
homomorphism of topological groups in
30.1
homomorphism of topological modules in
30.10
homomorphism of topological modules in
36.1
homomorphism of topological rings in 30.7
homomorphism of topological rings in 36.1
homomorphisms of graded modules/rings
in 26.3
homotopic in 26.1
homotopic in 28.1
homotopic in 5.1
homotopic in 21.1
homotopy between f and g in 5.1
homotopy between f and g in 21.1
homotopy category ofA in 26.3
homotopy category in 5.3
homotopy category in 21.2
homotopy colimit in 33.1
homotopy equivalence in 13.2
homotopy equivalence in 13.8
homotopy equivalence in 26.6
homotopy equivalent in 13.2
homotopy equivalent in 13.8
homotopy equivalent in 26.6
homotopy from a to b in 26.1
homotopy from a to b in 28.1
homotopy limit in 34.1
horizontal in 28.1
horizontal in 29.1
hypercovering of G in 6.1
hypercovering of X in 3.3
hypercovering in 6.1
ideal of definition in 36.1
ideal sheaf of denominators of s in 23.10
identifies local rings in 3.1
image of ϕ in 3.5
image of f in 3.9
image of the short exact sequence under the
given δ-functor in 3.6
immediate specialization in 20.1
immersion in 10.2
immersion in 12.1
immersion in 9.1
impurity of F above s in 15.2

impurity of F above y in 2.2
in the same homotopy class in 26.1
in the same homotopy class in 28.1
ind-étale in 7.1
ind-quasi-affine in 66.1
ind-quasi-affine in 66.1
ind-Zariski in 4.1
indecomposable in 5.5
induced filtration in 19.1
induced filtration in 23.4
induced filtration in 24.5
inductive system over I in C in 21.2
inertia fibred category IS of S in 34.2
inertia group of m in 112.3
initial in 12.1
initial in 17.3
injective hull in 5.1
injective resolution of A in 18.1
injective resolution of K• in 18.1
injective-amplitude in [a, b] in 69.1
injective in 16.2
injective in 16.2
injective in 3.1
injective in 11.1
injective in 5.3
injective in 27.1
injective in 55.1
inseparable degree in 14.7
integral closure ofOX inA in 53.2
integral closure ofOX inA in 48.2
integral closure in 36.9
integral domain in 2.2
integral over I in 38.1
integral over R in 36.1
integrally closed in 36.9
integral in 36.1
integral in 3.1
integral in 44.1
integral in 45.2
integral in 4.1
integral in 10.1
integral in 50.1
integral in 33.12
interior in 21.1
intersect properly in 13.5
intersect properly in 13.5
intersection number in 45.3
intersection number in 18.3
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intersection with the jth Chern class of E
in 38.1
intersection with the first Chern class of L
in 25.1
intersection with the first Chern class of L
in 18.1
inverse image f−1(Z) of the closed sub-
scheme Z in 17.7
inverse image f−1(Z) of the closed sub-
space Z in 13.2
inverse image in 36.1
inverse system over I in C in 21.2
invertibleOX -module in 25.1
invertibleOX -module in 40.1
invertible module M in 40.4
invertible module in 22.1
invertible sheaf OS(D) associated to D in
14.1
invertible sheaf OX(D) associated to D in
7.1
invertible in 43.4
invertible in 117.1
invertible in 32.1
irreducible component in 8.1
irreducible component in 6.18
irreducible in 8.1
irreducible in 120.1
irreducible in 6.9
irreducible in 6.9
isolated point in 27.2
isomorphism in 2.4
J-0 in 47.1
J-1 in 47.1
J-2 in 47.1
J-2 in 19.1
Jacobson ring in 35.1
Jacobson in 18.1
Jacobson in 6.1
Japanese in 161.1
Japanese in 13.1
K-flat in 59.1
K-flat in 26.2
K-flat in 17.2
K-injective in 31.1
K-injective in 25.7
Kähler different in 7.1
Kan complex in 31.1
Kan fibration in 31.1

Kaplansky dévissage in 84.1
Karoubian in 4.1
kernel of F in 6.5
kernel of H in 6.5
kernel of the functor F in 10.5
kernel in 3.9
Kolmogorov in 8.6
Koszul at x in 62.2
Koszul at x in 48.1
Koszul complex on f1, . . . , fr in 28.2
Koszul complex on f1, . . . , fr in 24.2
Koszul complex in 28.1
Koszul complex in 24.1
Koszul morphism in 62.2
Koszul morphism in 48.1
Koszul-regular ideal in 32.1
Koszul-regular immersion in 21.1
Koszul-regular immersion in 44.2
Koszul-regular in 30.1
Koszul-regular in 20.2
Koszul in 44.1
Krull dimension of X at x in 10.1
Krull dimension in 10.1
Krull dimension in 60.2
lattice in V in 121.3
left acyclic for F in 15.3
left adjoint in 24.1
left admissible in 40.9
left derivable in 14.9
left derived functor LF is defined at in 14.2
left derived functors of F in 15.3
left dual in 43.5
left exact in 23.1
left multiplicative system in 27.1
left orthogonal in 40.1
Leibniz rule in 131.1
Leibniz rule in 28.1
Leibniz rule in 33.1
length in 10.1
length in 52.1
length in 60.1
length in 9.1
lies over in 29.1
lies over in 9.1
lift of x along f in 17.1
lift in 32.2
lift in 32.2
limit preserving in 3.1
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limit preserving in 3.1
limit preserving in 11.1
limit preserving in 3.1
limit in 14.1
limit in 20.2
linear series of degree d and dimension r in
3.1
linearly adequate in 3.2
linearly disjoint over k in Ω in 27.2
linearly topologized in 36.1
linearly topologized in 36.1
lisse-étale site in 14.1
lisse in 28.1
lisse in 18.1
local complete intersection morphism in
62.2
local complete intersection morphism in
48.1
local complete intersection morphism in
44.1
local complete intersection over k in 135.1
local complete intersection over k in 30.1
local complete intersection in 33.2
local complete intersection in 8.5
local homomorphism of local rings in 18.1
local in the τ -topology in 15.1
local isomorphism in 3.1
local Lefschetz number in 14.2
local on the base for the τ -topology in 22.1
local on the base for the τ -topology in 10.1
local on the source for the τ -topology in
26.1
local on the source for the τ -topology in
14.1
local ring map ϕ : R→ S in 18.1
local ring of X at x in 2.1
local ring of the fibre at q in 112.5
local ring in 18.1
localization morphism in 25.1
localization morphism in 30.4
localization morphism in 19.1
localization morphism in 21.2
localization of A with respect to S in 9.2
localization of the ringed site (C,O) at the
object U in 19.1
localization of the ringed topos (Sh(C),O)
at F in 21.2

localization of the site C at the object U in
25.1
localization of the topos Sh(C) atF in 30.4
localization in 9.6
localized pth Chern class in 50.3
localized Chern character in 50.3
locally P in 4.2
locally acyclic at x relative to K in 93.1
locally acyclic relative to K in 93.1
locally acyclic in 93.1
locally adic* in 20.7
locally algebraic k-scheme in 20.1
locally closed immersion in 10.2
locally closed subspace in 12.1
locally closed substack in 9.9
locally connected in 7.10
locally constant in 43.1
locally constant in 64.1
locally constant in 64.1
locally constant in 64.1
locally constructible in 15.1
locally countably indexed and classical in
20.7
locally countably indexed in 20.7
locally finite in 28.4
locally finite in 24.2
locally finite in 26.2
locally free in 78.1
locally free in 14.1
locally free in 23.1
locally generated by r sections in 23.1
locally generated by sections in 8.1
locally generated by sections in 23.1
locally has finite tor dimension in 48.1
locally has finite tor dimension in 46.1
locally nilpotent in 32.1
locally Noetherian in 9.1
locally Noetherian in 5.1
locally Noetherian in 20.7
locally Noetherian in 36.5
locally of finite presentation over S in 3.1
locally of finite presentation in 21.1
locally of finite presentation in 28.1
locally of finite presentation in 3.1
locally of finite presentation in 3.1
locally of finite presentation in 27.1
locally of finite type in 15.1
locally of finite type in 23.1
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locally of finite type in 24.1
locally of finite type in 17.1
locally of type P in 14.2
locally principal closed subscheme in 13.1
locally principal closed subspace in 6.1
locally projective in 21.1
locally projective in 43.1
locally projective in 31.2
locally quasi-coherent in 11.1
locally quasi-coherent in 12.1
locally quasi-compact in 13.1
locally quasi-finite in 20.1
locally quasi-finite in 27.1
locally quasi-finite in 23.2
locally quasi-projective in 40.1
locally ringed site in 40.4
locally ringed space (X,OX) in 2.1
locally ringed in 40.6
locally separated over S in 13.2
locally separated in 3.1
locally separated in 3.1
locally separated in 4.2
locally trivial in 11.3
locally trivial in 9.3
locally weakly adic in 20.7
local in 4.1
local in 14.1
maximal Cohen-Macaulay in 103.8
McQuillan in 9.7
meromorphic function in 23.1
meromorphic function in 10.1
meromorphic section of F in 23.3
meromorphic section of F in 10.3
minimal model in 8.4
minimal polynomial in 9.1
minimal in 3.12
minimal in 14.4
minimal in 27.1
miniversal in 14.4
Mittag-Leffler condition in 31.2
Mittag-Leffler directed system of modules
in 88.1
Mittag-Leffler in 86.1
Mittag-Leffler in 88.7
mixed characteristic in 113.3
ML in 31.2
modification of X in 51.11
modification of X in 8.1

module of differentials in 131.2
module of differentials in 28.3
module of differentials in 33.3
module of Kähler differentials in 131.2
module of principal parts of order k in 133.4
module of principal parts of order k in 29.4
module of principal parts of order k in 34.4
module-valued functor in 3.1
moduli stack of smooth proper curves of
genus g in 16.4
moduli stack of smooth proper curves in
16.4
moduli stack of stable curves of genus g in
22.4
moduli stack of stable curves in 22.4
monoidal category in 43.1
monomorphism in 13.1
monomorphism in 23.1
monomorphism in 10.1
monomorphism in 26.1
monomorphism in 8.1
morphism (A,F ) → (B,F ) of filtered ob-
jects in 19.1
morphism (N,ϕ) → (N ′, ϕ′) of descent
data in 3.1
morphism (U,R, s, t, c)→ (U ′, R′, s′, t′, c′)
of groupoids in functors on C in 21.1
morphism ψ : (Fi, ϕij) → (F ′

i , ϕ
′
ij) of de-

scent data in 2.1
morphism ψ : (Fi, ϕij) → (F ′

i , ϕ
′
ij) of de-

scent data in 3.1
morphism ψ : (G,m)→ (G′,m′) of group
algebraic spaces over B in 5.1
morphism ψ : (G,m)→ (G′,m′) of group
schemes over S in 4.1
morphism ψ : (Vi, ϕij) → (V ′

i , ϕ
′
ij) of de-

scent data in 34.3
morphism ψ : (Vi, ϕij) → (V ′

i , ϕ
′
ij) of de-

scent data in 22.3
morphism ψ : (Xi, ϕij)→ (X ′

i, ϕ
′
ij) of de-

scent data in 3.1
morphism ϕ : F → G of presheaves of O-
modules on B in 30.11
morphism ϕ : F → G of presheaves of O-
modules in 6.1
morphism ϕ : F → G of presheaves of O-
modules in 9.1
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morphism ϕ : F → G of presheaves of sets
on B in 30.1
morphism ϕ : F → G of presheaves of sets
on X in 3.1
morphism ϕ : F → G of presheaves with
value in C in 5.1
morphism ϕ : F → G of presheaves with
values in C on B in 30.8
morphism a : ξ → η of formal objects in
7.1
morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoid schemes over
S in 13.1
morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoids in algebraic
spaces over B in 11.1
morphism f : (V/X,ϕ) → (V ′/X,ϕ′) of
descent data relative to X → S in 34.1
morphism f : (V/Y, ϕ) → (V ′/Y, ϕ′) of
descent data relative to Y → X in 22.1
morphism f : F → F ′ of algebraic spaces
over S in 6.3
morphism f : p→ p′ in 37.2
morphism f : X → Y of schemes over S in
18.1
morphism from U to V in 8.1
morphism of δ-functors fromF toG in 12.2
morphism of G-torsors in 4.1
morphism of G-torsors in 4.1
morphism of G-modules in 57.1
morphism of G-sets in 2.1
morphism of n-truncated simplicial objects
in 12.1
morphism of R-G-modules in 57.1
morphism of étale neighborhoods in 29.1
morphism of étale neighborhoods in 19.2
morphism of étale neighbourhoods in 35.1
morphism of abelian presheaves over X in
4.4
morphism of affine formal algebraic spaces
in 9.1
morphism of affine schemes in 5.5
morphism of cones in 7.2
morphism of cosimplicial objects U → U ′

in 5.1
morphism of differential objects in 22.1
morphism of divided power schemes in 7.2

morphism of divided power thickenings of
X relative to (S, I, γ) in 8.1
morphism of dotted arrows in 44.1
morphism of dotted arrows in 39.1
morphism of elementary étale neighbour-
hoods in 11.5
morphism of exact couples in 21.1
morphism of extensions in 6.1
morphism of families of maps with fixed
target of C from U to V in 8.1
morphism of formal algebraic spaces in 11.1
morphism of formal objects in 9.1
morphism of functors in 2.15
morphism of germs in 20.1
morphism of groupoid schemes cartesian
over (U,R, s, t, c) in 21.1
morphism of lifts in 17.1
morphism of locally ringed sites in 40.9
morphism of locally ringed spaces in 2.1
morphism of locally ringed topoi in 40.9
morphism of module-valued functors in 3.1
morphism of Postnikov systems in 41.1
morphism of predeformation categories in
6.2
morphism of presheaves on X in 3.1
morphism of pseudo G-torsors in 4.1
morphism of ringed sites in 6.1
morphism of ringed spaces in 25.1
morphism of ringed topoi in 7.1
morphism of schemes in 9.1
morphism of sheaves ofO-modules in 10.1
morphism of sheaves ofO-modules in 10.1
morphism of sheaves of sets on B in 30.2
morphism of sheaves of sets in 7.1
morphism of simplicial objects U → U ′ in
3.1
morphism of simplicial systems of the de-
rived category of modules in 14.1
morphism of simplicial systems of the de-
rived category in 13.1
morphism of sites in 14.1
morphism of spectral sequences in 20.1
morphism of thickenings in 2.1
morphism of thickenings in 9.1
morphism of thickenings in 3.1
morphism of topoi in 15.1
morphism of triangles in 3.1
morphism of vector bundles over S in 6.2
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Morphisms of presheaves in 2.1
morphisms of thickenings over Z in 3.1
morphisms of thickenings over B in 9.1
morphisms of thickenings over S in 2.1
morphisms of type P satisfy descent for τ -
coverings in 36.1
morphism in 2.2
morphism in 18.1
multicross singularity in 16.2
multiplicative subset of R in 9.1
multiplicative system in 27.1
multiplicity ofM for the ideal of definition
I in 15.1
multiplicity of Z in F in 6.1
multiplicity of Z in Y in 5.2
multiplicity of Z ′ in F in 10.2
multiplicity of Z ′ in Z in 9.2
multiplicity of a formal branch of X
through x0 in 4.3
multiplicity in 2.2
multiplicity in 3.4
N-1 in 161.1
N-2 in 161.1
Nagata ring in 162.1
Nagata in 13.1
naive cotangent complex of f in 13.1
naive cotangent complex of f in 21.1
naive cotangent complex in 134.1
naive cotangent complex in 31.1
naive cotangent complex in 31.6
naive cotangent complex in 35.1
naive cotangent complex in 35.4
naive obstruction theory in 23.5
naively rig-flat in 15.2
natural transformation in 2.15
nilpotent in 32.1
node in 16.2
node in 19.1
Noetherian in 9.1
Noetherian in 9.3
Noetherian in 9.3
Noetherian in 5.1
Noetherian in 24.1
Noetherian in 9.7
Noetherian in 8.1
Noetherian in 6.16
Noetherian in 36.5
nondegenerate in 26.2

nonsingular projective model of X in 2.7
nonsingular in 9.1
nontrivial solution in 67.5
normal at x in 20.1
normal bundle in 19.5
normal bundle in 6.5
normal closure E over F in 16.4
normal cone CZX in 19.5
normal cone CZX in 6.5
normal crossings divisor in 21.4
normal morphism in 20.1
normalization of X in Y in 53.3
normalization of X in Y in 48.3
normalization in 54.1
normalization in 49.6
normalization in 46.3
normalized blowup of X at x in 5.1
normalized blowup of X at x in 5.1
normalized in 27.1
normal in 15.1
normal in 28.1
normal in 37.1
normal in 37.11
normal in 7.1
norm in 20.1
nowhere dense in 21.1
number field in 7.8
number of branches of A in 106.6
number of branches of X at x in 15.4
number of branches of X at x in 24.4
number of geometric branches of X at x in
13.1
number of geometric branches ofA in 106.6
number of geometric branches of X at x in
15.4
number of geometric branches of X at x in
23.4
numerical polynomial in 58.3
numerical polynomial in 26.1
numerical type associated to X in 11.4
numerical type of genus g in 3.4
numerical type in 3.1
obstruction modules in 22.1
obstruction theory in 22.1
obstruction in 22.1
of finite presentation relative to S in 58.1
of finite presentation in 23.1
of finite presentation in 28.1
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of finite presentation in 27.1
of finite type in 23.1
of finite type in 23.1
of finite type in 17.1
Oka family in 28.2
one step dévissage of F/X/S at x in 4.2
one step dévissage of F/X/S over s in 4.1
open immersion in 43.7
open immersion in 3.1
open immersion in 10.2
open immersion in 12.1
open immersion in 9.1
open subgroup scheme in 4.3
open subscheme in 10.2
open subspace of (X,O) associated to U in
31.2
open subspace of X associated to U in 3.3
open subspace in 12.1
open substack in 9.9
open subtopos in 43.4
openness of versality in 13.1
openness of versality in 13.1
open in 23.1
open in 27.1
open in 6.2
open in 11.2
opposite algebra in 2.5
opposite category in 3.1
opposite differential graded algebra in 11.1
orbit space for R in 5.18
orbit in 5.1
orbit in 5.4
order of vanishing along R in 121.2
order of vanishing of f along Z in 26.3
order of vanishing of f along Z in 6.4
order of vanishing of s along Z in 27.1
order of vanishing of s along Z in 7.1
ordered Čech complex in 23.2
ordinary double point in 16.2
ordinary double point in 19.1
p-basis of K over k in 46.1
p-independent over k in 46.1
parasitic for the τ -topology in 12.1
parasitic in 12.1
parasitic in 9.1
partial order in 21.1
partially ordered set in 21.1
partition in 28.1

parts in 28.1
perfect at x in 47.1
perfect closure in 45.5
perfect relative to R in 83.1
perfect relative to S in 35.1
perfect relative to Y in 52.1
perfect ring map in 82.1
perfect in 45.1
perfect in 74.1
perfect in 74.1
perfect in 49.1
perfect in 49.1
perfect in 47.1
perfect in 47.1
perfect in 61.2
perfect in 10.1
perfect in 47.1
ph covering of T in 8.4
ph covering of X in 8.1
Picard functor in 4.1
Picard group of A in 22.3
Picard group of T in 4.1
Picard group of X in 40.7
Picard group in 25.9
Picard group in 32.6
PID in 120.12
point p of the site C in 32.2
point p in 52.1
point of the topos Sh(C) in 32.1
point in 4.1
point in 4.2
pondération in 75.2
Postnikov system in 41.1
pre-adic in 36.1
pre-admissible in 36.1
pre-equivalence relation in 3.1
pre-equivalence relation in 4.1
pre-relation in 3.1
pre-relation in 4.1
pre-triangulated category in 3.2
pre-triangulated subcategory in 3.4
preadditive in 3.1
predeformation category in 6.2
preordered set in 21.1
preorder in 21.1
presentation of F by (U,R, s, t, c) in 25.1
presentation in 9.3
presentation in 16.5
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preserved under arbitrary base change in
18.3
preserved under arbitrary base change in
18.3
preserved under base change in 18.3
preserved under base change in 18.3
presheaf F of sets on B in 30.1
presheaf F of sets on X in 3.1
presheaf F on X with values in C in 5.1
presheaf F with values in C on B in 30.8
presheaf ofO-modules F on B in 30.11
presheaf ofO-modules in 6.1
presheaf ofO-modules in 9.1
presheaf of abelian groups on X in 4.4
presheaf of isomorphisms from x to y in 2.2
presheaf of modules on X in 7.1
presheaf of morphisms from x to y in 2.2
presheaf of sets on C in 3.3
presheaf of sets in 2.1
presheaf of sets in 9.1
presheaf on X in 3.1
presheaf in 3.3
presheaf in 2.2
prestable family of curves in 20.1
prime divisor in 26.2
prime divisor in 6.2
prime divisor in 49.1
prime subfield of F in 5.1
prime in 120.1
principal divisor associated to f in 17.1
principal divisor associated to f in 13.1
principal homogeneous G-space over B in
9.3
principal homogeneous space in 11.3
principal homogeneous space in 9.3
principal ideal domain in 120.12
principal Weil divisor associated to f in
26.5
principal Weil divisor associated to f in 6.7
pro-étale covering of T in 12.1
product U × V exists in 13.1
product U × V of U and V in 13.1
product category in 2.20
product of U and V in 6.1
product of U and V in 9.1
product in 4.1
product in 14.6
profinite group in 30.5

profinite in 22.1
projective n-space over Z in 13.2
projective n-space over R in 13.2
projective n-space over S in 13.2
projective bundle associated to E in 21.1
projective cover in 4.1
projective dimension in 109.2
projective envelope in 4.1
projective resolution of A in 19.1
projective resolution of K• in 19.1
projective system over I in C in 21.2
projective variety in 26.1
projective-amplitude in [a, b] in 68.1
projective in 77.1
projective in 28.1
projective in 43.1
projective in 7.1
proper relative cycle in 9.1
proper variety in 26.1
property P in 5.1
property P in 4.1
property P in 10.1
proper in 17.2
proper in 41.1
proper in 40.1
proper in 31.1
proper in 37.1
prorepresentable in 6.1
prorepresentable in 22.1
pseudo G-torsor in 4.1
pseudo G-torsor in 11.1
pseudo G-torsor in 9.1
pseudo functor in 29.5
pseudo torsor in 4.1
pseudo-catenary in 5.14
pseudo-coherent at x in 46.1
pseudo-coherent relative to R in 81.4
pseudo-coherent relative to R in 81.4
pseudo-coherent relative to S in 59.2
pseudo-coherent relative to S in 59.2
pseudo-coherent relative to Y in 45.3
pseudo-coherent relative to Y in 45.3
pseudo-coherent ring map in 82.1
pseudo-coherent in 64.1
pseudo-coherent in 64.1
pseudo-coherent in 47.1
pseudo-coherent in 47.1
pseudo-coherent in 45.1
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pseudo-coherent in 45.1
pseudo-coherent in 60.2
pseudo-coherent in 46.1
pullback x−1F of F in 9.2
pullback functor in 33.6
pullback functor in 3.4
pullback functor in 34.7
pullback functor in 34.9
pullback functor in 22.7
pullback functor in 22.9
pullback of S along f in 12.9
pullback of D by f is defined in 13.12
pullback of D by f is defined in 6.10
pullback of S by f in 47.4
pullback of the effective Cartier divisor in
13.12
pullback of the effective Cartier divisor in
6.10
pullbacks of meromorphic functions are de-
fined for f in 23.4
pullbacks of meromorphic functions are de-
fined for f in 10.6
pullback in 26.1
pullback in 13.1
pullback in 3.3
pullback in 36.1
pullback in 4.3
pure above y in 3.1
pure above y in 3.1
pure along Xs in 16.1
pure along Xs in 16.1
pure extension module in 8.8
pure injective resolution in 8.5
pure injective in 8.1
pure projective resolution in 8.5
pure projective in 8.1
pure relative to S in 16.1
pure relative to S in 16.1
pure relative to Y in 3.1
pure relative to Y in 3.1
purely inseparable in 14.1
purely inseparable in 14.1
purely inseparable in 28.1
purely transcendental extension in 26.1
pure in 108.1
pushforward of S along f in 12.4
pushforward in 26.1
pushforward in 44.1

pushforward in 13.1
pushforward in 12.1
pushforward in 35.1
pushforward in 35.3
pushforward in 8.1
pushout of V and W over U in 8.1
pushout in 9.1
qc covering in 31.2
quasi-affine in 18.1
quasi-affine in 13.1
quasi-affine in 21.2
quasi-coherentOX -module in 11.1
quasi-coherent module on (U,R, s, t, c) in
14.1
quasi-coherent module on (U,R, s, t, c) in
12.1
quasi-coherent module on X in 11.1
quasi-coherent sheaf ofOX -modules in 10.1
quasi-coherent in 23.1
quasi-coherent in 17.2
quasi-coherent in 11.1
quasi-coherent in 29.1
quasi-coherent in 36.1
quasi-compact in 12.1
quasi-compact in 12.1
quasi-compact in 17.1
quasi-compact in 17.4
quasi-compact in 17.4
quasi-compact in 19.1
quasi-compact in 5.1
quasi-compact in 8.2
quasi-compact in 17.2
quasi-compact in 17.4
quasi-compact in 6.1
quasi-compact in 7.2
quasi-compact in 6.4
quasi-DM over S in 4.2
quasi-DM in 4.1
quasi-DM in 4.2
quasi-excellent in 52.1
quasi-finite at q in 122.3
quasi-finite at x in 27.1
quasi-finite at a point x ∈ X in 20.1
quasi-finite in 122.3
quasi-finite in 20.1
quasi-finite in 27.1
quasi-finite in 24.1
quasi-inverse in 2.17
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quasi-isomorphism in 13.4
quasi-isomorphism in 13.10
quasi-isotrivial in 11.3
quasi-isotrivial in 9.3
quasi-projective variety in 26.1
quasi-projective in 40.1
quasi-proper in 17.2
quasi-regular ideal in 32.1
quasi-regular immersion in 21.1
quasi-regular immersion in 44.2
quasi-regular sequence in 69.1
quasi-regular in 20.2
quasi-separated over S in 13.2
quasi-separated over S in 4.2
quasi-separated in 21.3
quasi-separated in 21.3
quasi-separated in 3.1
quasi-separated in 3.1
quasi-separated in 4.2
quasi-separated in 16.3
quasi-separated in 30.1
quasi-separated in 4.1
quasi-separated in 4.2
quasi-sober in 8.6
quasi-split over u in 15.1
quasi-splitting of R over u in 15.1
quotient category D/B in 6.7
quotient category cofibered in groupoids
[U/R]→ C in 21.9
quotient filtration in 19.1
quotient functor in 6.7
quotient morphism U → [U/R] in 21.9
quotient of U by G in 14.4
quotient representable by an algebraic space
in 19.3
quotient representable by an algebraic space
in 19.3
quotient sheaf U/R in 20.1
quotient sheaf U/R in 19.1
quotient stack in 20.1
quotient stack in 20.1
quotient in 5.3
radicial in 10.1
radicial in 3.1
ramification index in 111.1
rank r in 32.1
rank in 102.5
rank in 48.1

rank in 46.2
rational function on X in 49.3
rational function on X in 47.2
rational map from X to Y in 49.1
rational map from X to Y in 47.1
rationally equivalent to zero in 19.1
rationally equivalent to zero in 15.1
rationally equivalent in 19.1
rationally equivalent in 15.1
reasonable in 6.1
reasonable in 17.1
reduced induced algebraic space structure in
12.5
reduced induced algebraic stack structure in
10.4
reduced induced scheme structure in 12.5
reduced in 12.1
reduction Xred of X in 10.4
reduction Xred of X in 12.5
reduction Xred of X in 12.5
reduction to rational singularities is possi-
ble for A in 8.3
Rees algebra in 70.1
refinement in 8.1
refines in 28.1
reflexive hull in 23.9
reflexive hull in 12.1
reflexive in 23.1
reflexive in 12.1
regular at x in 21.1
regular ideal in 32.1
regular immersion in 21.1
regular in codimension ≤ k in 157.1
regular in codimension k in 12.1
regular local ring in 60.10
regular locus in 14.1
regular morphism in 21.1
regular section in 14.6
regular section in 7.4
regular sequence in 68.1
regular system of parameters in 60.10
regular in 110.7
regular in 24.7
regular in 41.1
regular in 9.1
regular in 20.2
regular in 23.7
regular in 10.9
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relation in 11.2
relation in 3.1
relation in 4.1
relative H1-regular immersion in 22.2
relative r-cycle on X/S in 6.1
relative assassin of F in X over S in 7.1
relative assassin of N over S/R in 65.2
relative cotangent space in 3.6
relative dimension ≤ d at x in 29.1
relative dimension ≤ d in 29.1
relative dimension ≤ d in 33.2
relative dimension d in 29.1
relative dimension d in 33.2
relative dimension of S/R at q in 125.1
relative dimension of in 125.1
relative dimension in 5.7
relative dualizing complex in 27.1
relative dualizing complex in 28.1
relative dualizing complex in 9.1
relative dualizing sheaf in 19.2
relative effective Cartier divisor in 18.2
relative effective Cartier divisor in 9.2
relative Frobenius morphism of X/S in
36.4
relative global complete intersection in
136.5
relative homogeneous spectrum ofA overS
in 16.7
relative homogeneous spectrum of A over
X in 11.3
relative inertia of S over S ′ in 34.2
relative Proj ofA over S in 16.7
relative Proj ofA over X in 11.3
relative quasi-regular immersion in 22.2
relative sheaf of automorphisms of x in 5.3
relative sheaf of isomorphisms from x1 to
x2 in 5.3
relative spectrum ofA over S in 4.5
relative spectrum ofA over X in 20.8
relative weak assassin of F in X over S in
8.1
relative weak assassin of F in X over Y in
4.5
relatively ample in 37.1
relatively ample in 14.1
relatively limit preserving in 3.1
relatively prime in 11.1
relatively very ample in 38.1

representable by a scheme in 15.1
representable by algebraic spaces in 3.1
representable by algebraic spaces in 9.1
representable by an algebraic space over S
in 8.1
representable by open immersions in 15.3
representable quotient in 20.2
representable quotient in 20.2
representable quotient in 19.3
representable quotient in 19.3
representable sheaves in 12.3
representable in 3.6
representable in 6.4
representable in 8.2
representable in 40.1
representable in 42.3
representable in 15.1
representable in 21.4
residual degree in 111.1
residual degree in 123.1
residual gerbe of X at x exists in 11.8
residual gerbe of X at x in 11.8
residual space of X at x in 13.6
residue degree in 111.1
residue degree in 123.1
residue field of X at x in 2.1
residue field of X at x in 11.2
resolution functor in 23.2
resolution ofM by finite freeR-modules in
71.2
resolution of M by free R-modules in 71.2
resolution of singularities by normalized
blowups in 14.2
resolution of singularities by normalized
blowups in 8.2
resolution of singularities in 14.1
resolution of singularities in 8.1
resolution property in 36.1
resolution property in 28.1
resolution in 71.2
restriction (U,R, s, t, c)|C′ of (U,R, s, t, c)
to C′ in 21.7
restriction of (U,R, s, t, c) to U ′ in 18.2
restriction of (U,R, s, t, c) to U ′ in 17.2
restriction of F to C/U in 25.1
restriction of F to C/U in 19.1
restriction of F to Uétale in 9.2
restriction of G to U in 31.2
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restriction of G to U in 31.2
restriction of G to U in 31.2
restriction to the small étale site in 4.15
restriction to the small étale site in 4.9
restriction to the small pro-étale site in
12.14
restriction to the small Zariski site in 3.15
restriction in 3.3
restriction in 4.3
retrocompact in 12.1
rig-étale over (A, I) in 8.1
rig-étale in 20.1
rig-closed in 14.2
rig-etale in 19.2
rig-flat in 15.4
rig-flat in 16.1
rig-smooth over (A, I) in 4.1
rig-smooth in 17.2
rig-smooth in 18.1
rig-surjective in 21.1
right acyclic for F in 15.3
right adjoint in 24.1
right admissible in 40.9
right derivable in 14.9
right derived functor RF is defined at in
14.2
right derived functors of F in 15.3
right dual in 43.5
right exact in 23.1
right multiplicative system in 27.1
right orthogonal in 40.1
ring of rational functions on X in 49.4
ring of rational functions on X in 47.3
ringed site in 6.1
ringed site in 17.2
ringed space in 25.1
ringed topos in 7.1
satisfies the existence part of the valuative
criterion in 20.3
satisfies the existence part of the valuative
criterion in 41.1
satisfies the sheaf property for the fpqc
topology in 9.12
satisfies the sheaf property for the fpqc
topology in 15.5
satisfies the sheaf property for the given
family in 9.12

satisfies the sheaf property for the V topol-
ogy in 10.11
satisfies the sheaf property for the Zariski
topology in 15.3
satisfies the uniqueness part of the valuative
criterion in 20.3
satisfies the uniqueness part of the valuative
criterion in 41.1
satisfies the valuative criterion in 41.1
saturated in 27.20
saturated in 6.1
scheme over R in 18.1
scheme over S in 18.1
scheme structure on Z in 12.5
scheme theoretic closure of U in X in 7.1
scheme theoretic closure of U in X in 17.3
scheme theoretic fibreXs of f over s in 18.4
scheme theoretic image in 6.2
scheme theoretic image in 16.2
scheme theoretic image in 38.1
scheme theoretic intersection in 4.4
scheme theoretic intersection in 14.4
scheme theoretic support of F in 5.5
scheme theoretic support of F in 15.4
scheme theoretic union in 4.4
scheme theoretic union in 14.4
scheme theoretically dense in X in 7.1
scheme theoretically dense in X in 17.3
scheme in 9.1
sections with compact support in 3.7
semi-representable objects over X in 2.1
semi-representable objects in 2.1
seminormalization of X in Y in 55.6
seminormalization in 47.8
seminormal in 47.1
seminormal in 47.3
semistable family of curves in 21.2
semistable reduction in 14.6
separable degree in 12.6
separable degree in 14.7
separable over k in 42.1
separable solution in 115.1
separable in 12.2
separable in 12.2
separable in 12.2
separable in 28.1
separably generated over k in 42.1
separated group scheme in 4.5
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separated over S in 13.2
separated over S in 4.2
separated presheaf in 11.1
separated in 4.1
separated in 11.2
separated in 10.9
separated in 49.2
separated in 19.1
separated in 21.3
separated in 21.3
separated in 3.1
separated in 3.1
separated in 4.2
separated in 16.3
separated in 30.1
separated in 4.1
separated in 4.2
separates R-orbits in 5.8
separates orbits in 5.8
Serre functor in 3.2
Serre subcategory in 10.1
set-theoretic equivalence relation in 5.13
set-theoretic pre-equivalence relation in
5.13
set-theoretically R-invariant in 19.1
set-theoretically R-invariant in 5.8
setoid in 39.1
sheaf F ofO-modules on B in 30.11
sheaf F of sets on B in 30.2
sheaf F of sets on X in 7.1
sheaf F with values in C on B in 30.8
sheaf associated to F in 10.11
sheaf associated to F in 49.4
sheaf associated to the module M and the
ring map α in 10.6
sheaf associated to the module M in 10.6
sheaf for the étale topology in 4.3
sheaf for the fppf topology in 4.3
sheaf for the smooth topology in 4.3
sheaf for the syntomic topology in 4.3
sheaf for the Zariski topology in 4.3
sheaf ofO-modules associated to F in 8.2
sheaf ofO-modules associated to F in 8.2
sheaf ofO-modules in 10.1
sheaf ofO-modules in 10.1
sheaf ofOX -modules in 7.1
sheaf of R-invariant functions on X in 8.1
sheaf of abelian groups on X in 8.1

sheaf of automorphisms of x in 5.3
sheaf of differential graded O-algebras in
12.1
sheaf of differential graded algebras in 12.1
sheaf of differentials ΩX/S of X over S in
28.10
sheaf of differentials ΩX/S of X over S in
32.1
sheaf of differentials ΩX/Y of X over Y in
33.10
sheaf of differentials ΩX/Y of X over Y in
7.2
sheaf of gradedO-algebras in 3.1
sheaf of graded algebras in 3.1
sheaf of isomorphisms from x1 to x2 in 5.3
sheaf of meromorphic functions on X in
23.1
sheaf of meromorphic functions on X in
10.1
sheaf of total quotient rings KS in 49.1
sheaf theoretically empty in 42.1
sheaf in 9.1
sheaf in 7.1
sheaf in 7.6
sheaf in 47.10
sheaf in 11.1
sheaf in 4.3
shift in 16.4
short exact sequence in 5.7
siblings in 10.1
siblings in 12.1
sibling in 10.1
sibling in 12.1
sieve on U generated by the morphisms fi
in 47.3
sieve S on U in 47.1
similar in 61.3
simple in 52.9
simple in 2.3
simple in 2.3
simple in 9.1
simplicialA•-module in 41.1
simplicial abelian group in 3.1
simplicial object U of C in 3.1
simplicial scheme associated to f in 27.3
simplicial set in 3.1
simplicial sheaf ofA•-modules in 41.1
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simplicial system of the derived category of
modules in 14.1
simplicial system of the derived category in
13.1
singular ideal of A over R in 2.1
singular locus in 14.1
singularities ofX are at-worst-nodal in 19.1
site in 6.2
site in 10.2
size in 11.2
skew field in 2.2
skyscraper sheaf at x with value A in 27.1
skyscraper sheaf in 27.1
skyscraper sheaf in 27.1
skyscraper sheaf in 27.1
skyscraper sheaf in 27.1
skyscraper sheaf in 32.6
small τ -site of S in 20.2
small étale site Xétale in 18.1
small étale site of S in 4.8
small étale site over S in 27.3
small étale site in 34.1
small étale topos in 21.1
small étale topos in 18.7
small affine étale site of S in 4.8
small affine Zariski site of S in 3.7
small extension in 141.1
small extension in 3.2
small pro-étale site of S in 12.8
small Zariski site FZar in 12.6
small Zariski site of S in 3.7
small Zariski sites in 27.3
small Zariski topos in 21.1
smooth at q in 137.11
smooth at x ∈ X in 34.1
smooth at x in 37.1
smooth covering of T in 5.1
smooth covering of X in 5.1
smooth group scheme in 4.5
smooth groupoid in 16.4
smooth local on source-and-target in 20.1
smooth local in 21.1
smooth of relative dimension d in 34.13
smooth sheaf in 4.3
smooth variety in 26.1
smooth in 137.1
smooth in 34.1
smooth in 20.2

smooth in 37.1
smooth in 8.1
smooth in 9.1
smooth in 23.1
smooth in 33.1
smooth in 4.3
sober in 8.6
solution for A ⊂ B in 115.1
special cocontinuous functor u from C toD
in 29.2
specializations lift along f in 19.4
specialization in 19.1
specialization in 6.22
specialization in 36.2
specializing in 19.4
spectral sequence associated to (A, d, α) in
22.5
spectral sequence associated to the exact
couple in 21.3
spectral sequence inA in 20.1
spectral in 23.1
spectral in 23.1
spectrum ofA over S in 4.5
spectrum ofA over X in 20.8
spectrum in 17.1
spectrum in 5.3
split category fibred in groupoids in 37.2
split equalizer in 4.2
split fibred category in 36.2
split node in 19.10
split over u in 15.1
splits in 8.1
splitting field of P over F in 16.2
splitting field in 8.1
splitting of R over u in 15.1
split in 5.9
split in 18.1
split in 18.1
stabilizer of the groupoid in algebraic spaces
(U,R, s, t, c) in 16.2
stabilizer of the groupoid scheme
(U,R, s, t, c) in 17.2
stable family of curves in 22.2
stable under base change in 14.1
stable under composition in 14.1
stable under generalization in 19.1
stable under specialization in 19.1
stably free in 3.1
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stably isomorphic in 3.1
stack in discrete categories in 6.1
stack in groupoids in 5.1
stack in setoids in 6.1
stack in sets in 6.1
stack in 4.1
stalk in 29.6
stalk in 18.6
stalk in 19.6
standard τ -covering in 20.4
standard étale covering in 4.5
standard étale in 144.1
standard étale in 36.1
standard étale in 26.3
standard fppf covering in 7.5
standard fpqc covering in 9.9
standard h covering in 34.11
standard open covering in 5.2
standard open covering in 5.2
standard open covering in 8.2
standard opens in 17.3
standard ph covering in 8.1
standard pro-étale covering in 12.6
standard resolution of B overA in 18.1
standard resolution of B over A in 3.1
standard shrinking in 4.6
standard shrinking in 5.5
standard smooth algebra over R in 137.6
standard smooth covering in 5.5
standard smooth in 34.1
standard syntomic covering in 6.5
standard syntomic in 30.1
standard V covering in 10.1
standard Zariski covering in 3.4
strata in 28.3
stratification in 28.3
strict henselization ofOS,s in 33.2
strict henselization ofRwith respect toκ ⊂
κsep in 155.3
strict henselization of S at s in 33.2
strict henselization of X at x in 22.2
strict henselization in 155.3
strict map of topological spaces in 6.3
strict morphism of thickenings in 3.2
strict morphism of thickenings in 9.2
strict normal crossings divisor in 21.1
strict transform of M along R → R[ Ia ] in
26.1

strict transform in 33.1
strict transform in 33.1
strict transform in 18.1
strict transform in 18.1
strictly commutative in 3.3
strictly full in 2.10
strictly henselian in 153.1
strictly henselian in 32.6
strictly perfect in 46.1
strictly perfect in 44.1
strictly standard in A over R in 2.3
strict in 19.3
strong generator in 36.3
strong splitting of R over u in 15.1
stronger in 47.8
strongly C-cartesian morphism in 33.1
strongly cartesian morphism in 33.1
strongly split over u in 15.1
strongly transcendental over R in 123.7
structure morphism in 18.1
structure of site on S inherited from C in
10.2
structure sheafOSpec(R) of the spectrum of
R in 5.3
structure sheafOProj(S) of the homogeneous
spectrum of S in 8.3
structure sheaf of X in 6.1
structure sheaf of the big site (Sch/S)τ in
8.2
structure sheaf of the small site in 8.2
structure sheaf in 6.1
structure sheaf in 7.1
structure sheaf in 23.3
structure sheaf in 21.2
sub 2-category in 29.2
subbase for the topology on X in 5.4
subbasis for the topology on X in 5.4
subcanonical in 12.2
subcategory in 2.10
subfield in 2.1
subfunctor H ⊂ F in 15.3
submersive in 6.3
submersive in 24.1
submersive in 7.2
submersive in 12.2
subobject in 5.3
subpresheaf in 16.2
subpresheaf in 3.3
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subsheaf generated by the si in 4.5
subsheaf of sections annihilated by I in 24.3
subsheaf of sections annihilated by I in 14.3
subsheaf of sections supported on T in 24.6
subsheaf of sections supported on T in 14.6
subsheaf in 16.2
subtopos in 43.2
sum of the effective Cartier divisorsD1 and
D2 in 13.6
sum of the effective Cartier divisorsD1 and
D2 in 6.6
sum of the effective Cartier divisors in 23.9
support of F in 5.1
support of F in 31.3
support of F in 20.3
support of σ in 31.3
support of σ in 20.3
support of M in 40.1
support of s in 5.1
supported on T in 6.1
supported on T in 3.2
support in 8.3
surjective in 16.2
surjective in 16.2
surjective in 3.1
surjective in 11.1
surjective in 5.3
surjective in 9.1
surjective in 5.2
surjective in 25.1
surjective in 5.1
symbol associated to M,a, b in 68.29
symbolic power in 64.1
symbol in 68.2
symmetric monoidal category in 43.9
syntomic at x ∈ X in 30.1
syntomic at x in 36.1
syntomic covering of T in 6.1
syntomic covering of X in 6.1
syntomic of relative dimension d in 30.15
syntomic sheaf in 4.3
syntomic in 136.1
syntomic in 30.1
syntomic in 36.1
system (Fi, ϕi′i) of sheaves on (Xi, fi′i) in
51.1
system (Mi, µij) ofR-modules over I in 8.1
system of parameters of R in 60.10

system of rings in 2.1
system over I in C in 21.2
tame inertia group of m in 112.6
tame symbol in 68.31
tamely ramified with respect to A in 111.7
tangent space TF of F in 12.1
tangent space TF of F in 11.9
tangent space of X over S at x in 16.3
tangent space of X over S in 35.3
tangent vector in 16.3
tangent vector in 35.3
tautologically equivalent in 8.2
taut in 5.1
tensor power in 25.6
tensor product differential graded algebra
in 3.4
tensor product in 4.7
termwise split exact sequence of complexes
ofA in 9.9
termwise split injection α : A• → B• in
9.4
termwise split surjection β : B• → C• in
9.4
the fibre of f : X → Y at y is geometrically
reduced in 29.2
the fibre of f over y is locally Noetherian in
4.2
the fibre ofX over z is flat atx over the fibre
of Y over z in 23.2
the fibre of X over z is flat over the fibre of
Y over z in 23.2
the fibres of f are locally Noetherian in 4.2
the Fourier-Mukai kernel of a relative
equivalence from X to Y over S in 15.1
the functions on X are the R-invariant
functions on U in 8.1
the gysin map for f exists in 59.4
the relative dimension in 5.2
the restriction of F to its fibre over z is flat
at x over the fibre of Y over z in 23.2
thickenings over Z in 3.1
thickenings over B in 9.1
thickenings over S in 2.1
thickening in 2.1
thickening in 9.1
thickening in 3.1
topological genus of T in 3.11
topological group in 30.1
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topological module in 30.10
topological module in 36.1
topological ring in 30.7
topological ring in 36.1
topological space in 4.7
topological space in 4.8
topologically nilpotent in 4.8
topologically of finite type over in 29.1
topology associated to C in 48.2
topology on C in 47.6
topos in 15.1
tor dimension ≤ d in 66.1
tor dimension ≤ d in 48.1
tor dimension ≤ d in 46.1
Tor independent over B in 20.2
Tor independent over R in 61.1
Tor independent over S in 22.2
tor-amplitude in [a, b] in 66.1
tor-amplitude in [a, b] in 48.1
tor-amplitude in [a, b] in 46.1
torsion free in 22.1
torsion free in 11.2
torsion in 22.1
torsion in 11.2
torsion in 18.6
torsor in 4.1
torsor in 4.1
Tor in 26.15
Tor in 17.14
total Chern class of E on X in 37.1
total Chern class of E in 28.2
total Chern class in 38.8
total left derived functor of G in 6.4
total right derived functor of F in 6.4
totally acyclic in 13.4
totally disconnected in 7.8
totally ramified with respect to A in 111.7
tower in 6.3
trace element in 4.1
trace pairing in 20.6
trace in 20.1
trace in 66.1
trace in 4.1
transcendence basis in 26.1
transcendence degree of x/f(x) in 33.1
transcendence degree in 26.4
transition maps in 21.2

triangle associated to 0 → K → L →
M → 0 in 8.2
triangle associated to the termwise split se-
quence of complexes in 9.9
triangle in 3.1
triangulated category of quasi-coherent ob-
jects in the derived category in 26.1
triangulated category in 3.2
triangulated functor in 3.3
triangulated subcategory in 3.4
trivial G-torsor in 4.1
trivial G-torsor in 4.1
trivial descent datum in 3.5
trivial descent datum in 2.3
trivial descent datum in 34.10
trivial descent datum in 3.3
trivial descent datum in 22.10
trivial Kan fibration in 30.1
trivial in 117.1
trivial in 25.1
trivial in 11.1
trivial in 9.1
trivial in 40.4
twist of the structure sheaf of Proj(S) in
10.1
twist of the structure sheaf in 21.1
two-sided admissible in 40.9
type of algebraic structure in 15.1
UFD in 120.4
underlying presheaf of sets of F in 5.2
unibranch at x in 15.1
unibranch at x in 24.2
unibranch in 106.1
unibranch in 15.1
unibranch in 24.2
uniform categorical moduli space in C in
12.1
uniform categorical moduli space in 12.1
uniform categorical quotient in 4.4
uniformizer in 119.8
uniformly in 7.1
unique factorization domain in 120.4
uniqueness part of the valuative criterion in
39.6
universal δ-functor in 12.3
universal ϕ-derivation in 28.3
universal ϕ-derivation in 33.3
universal S-derivation in 32.1
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universal Y -derivation in 33.10
universal Y -derivation in 7.2
universal categorical quotient in 4.4
universal effective epimorphism in 12.1
universal first order thickening in 149.2
universal first order thickening in 7.2
universal first order thickening in 15.5
universal flattening of F exists in 21.1
universal flattening of F exists in 11.1
universal flattening of X exists in 21.1
universal flattening of X exists in 11.1
universal homeomorphism in 45.1
universal homeomorphism in 53.2
universal homeomorphism in 15.2
universally S-pure in 16.1
universally Y -pure in 3.1
universally catenary in 105.3
universally catenary in 17.1
universally catenary in 25.4
universally closed in 17.2
universally closed in 20.1
universally closed in 9.2
universally closed in 13.2
universally exact in 82.1
universally injective in 82.1
universally injective in 10.1
universally injective in 4.5
universally injective in 19.3
universally injective in 14.2
universally Japanese in 162.1
universally Japanese in 13.1
universally locally acyclic relative to K in
93.1
universally locally acyclic in 93.1
universally open in 23.1
universally open in 6.2
universally open in 11.2
universally pure above y in 3.1
universally pure along Xs in 16.1
universally pure relative to S in 16.1
universally pure relative to Y in 3.1
universally submersive in 24.1
universally submersive in 7.2
universally submersive in 12.2
universally in 7.1
unobstructed in 9.1
unramified at q in 151.1
unramified at x ∈ X in 35.1

unramified at x in 3.5
unramified at x in 38.1
unramified cusp form on GL2(A) with val-
ues in Λ in 31.1
unramified homomorphism of local rings in
3.1
unramified with respect to A in 111.7
unramified in 151.1
unramified in 35.1
unramified in 3.5
unramified in 38.1
unramified in 36.1
V covering of T in 10.7
valuation ring in 50.1
valuation in 50.13
value group in 50.13
value of LF at X in 14.2
value of RF at X in 14.2
value in 22.1
value in 22.1
variety in 3.1
variety in 67.9
vector bundle π : V → S over S in 6.2
vector bundle associated to E in 6.1
versal ring to X at x0 in 2.2
versal in 8.9
versal in 12.1
versal in 12.2
vertical in 29.1
very ample on X/S in 38.1
very reasonable in 6.1
very reasonable in 17.1
viewed as an algebraic space over S′ in 16.2
viewed as an algebraic stack over S′ in 19.2
w-contractible in 11.1
w-local in 2.3
w-local in 2.3
weak R-orbit in 5.4
weak dimension ≤ d in 104.3
weak functor in 29.5
weak generator in 36.3
weak ideal of definition in 4.8
weak normalization of X in Y in 55.6
weak normalization in 55.8
weak orbit in 5.4
weak Serre subcategory in 10.1
weak solution for A ⊂ B in 115.1
weaker than the canonical topology in 12.2
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weaker in 47.8
weakly R-equivalent in 5.4
weakly étale in 104.1
weakly étale in 64.1
weakly adic in 7.1
weakly adic in 9.7
weakly admissible in 4.8
weakly associated points of X in 5.1
weakly associated points of X in 2.2
weakly associated in 66.1
weakly associated in 5.1
weakly associated in 2.2
weakly contractible in 40.2
weakly converges to H(K) in 23.6
weakly converges to H∗(K•) in 24.9
weakly converges to Hn(Tot(K•,•)) in
25.2
weakly converges to Hn(Tot(K•,•)) in
25.2
weakly normal in 55.9
weakly pre-adic in 7.1
weakly pre-admissible in 4.8
weakly unramified in 111.1
weakly unramified in 123.1
weighting in 75.2
Weil cohomology theory in 11.4
Weil divisor [D] associated to an effective
Cartier divisor D ⊂ X in 49.1
Weil divisor associated to L in 24.1
Weil divisor associated to L in 17.1
Weil divisor associated to s in 27.4
Weil divisor associated to s in 24.1
Weil divisor associated to s in 7.4
Weil divisor associated to s in 17.1
Weil divisor associated to a Cartier divisor
in 49.1
Weil divisor associated to a rational func-
tion f ∈ K(X)∗ in 49.1

Weil divisor class associated to L in 27.4
Weil divisor class associated to L in 7.4
Weil divisor class group in 26.7
Weil divisor class group in 6.9
Weil divisor in 26.2
Weil divisor in 6.2
Weil divisor in 49.1
well-nigh affine in 13.1
which associates a presheaf to a semi-
representable object in 2.2
wild inertia group of m in 112.6
Yoneda extension in 27.4
Zariski covering of T in 3.1
Zariski covering of X in 3.1
Zariski covering in 12.5
Zariski locally quasi-separated over S in
13.2
Zariski locally quasi-separated in 3.1
Zariski locally quasi-separated in 3.1
Zariski pair in 10.1
Zariski sheaf in 4.3
Zariski topos in 21.1
Zariski, étale, smooth, syntomic, or fppf cov-
ering in 8.4
Zariski in 17.3
zero object in 3.3
zero scheme in 14.8
zero scheme in 7.6
zeroth K-group ofA in 11.1
zeroth K-group of D in 28.1
zeroth Čech cohomology group in 13.1
Čech cohomology groups in 9.1
Čech cohomology groups in 8.1
Čech cohomology groups in 18.1
Čech complex in 9.1
Čech complex in 8.1
Čech complex in 18.1

2. Definitions listed per chapter

Introduction

Conventions

Set Theory

Categories

In 2.1: category
In 2.4: isomorphism
In 2.5: groupoid
In 2.8: functor
In 2.9: faithful, fully faithful, essentially
surjective
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In 2.10: subcategory, full subcategory,
strictly full
In 2.15: natural transformation, morphism
of functors
In 2.17: equivalence of categories, quasi-
inverse
In 2.20: product category
In 3.1: opposite category
In 3.2: contravariant
In 3.3: presheaf of sets on C , presheaf
In 3.6: representable
In 4.1: product
In 4.2: has products of pairs of objects
In 5.1: coproduct, amalgamated sum
In 5.2: has coproducts of pairs of objects
In 6.1: fibre product
In 6.2: cartesian
In 6.3: has fibre products
In 6.4: representable
In 8.2: representable, F is relatively repre-
sentable over G
In 9.1: pushout
In 9.2: cocartesian
In 10.1: equalizer
In 11.1: coequalizer
In 12.1: initial, final
In 13.1: monomorphism, epimorphism
In 14.1: limit
In 14.2: colimit
In 14.6: product
In 14.7: coproduct
In 16.1: connected
In 17.1: I is cofinal in J , cofinal
In 17.3: I is initial in J , initial
In 19.1: directed, filtered, directed, filtered
In 20.1: codirected, cofiltered, codirected,
cofiltered
In 21.1: preorder, preordered set, directed
set, partial order, partially ordered set, di-
rected partially ordered set
In 21.2: system over I in C , inductive system
over I in C , inverse system over I in C , pro-
jective system over I in C , transition maps
In 21.4: directed system, directed inverse
system
In 22.1: essentially constant, value, essen-
tially constant, value

In 22.2: essentially constant system, essen-
tially constant inverse system
In 23.1: left exact, right exact, exact
In 24.1: left adjoint, right adjoint
In 26.1: categorically compact
In 27.1: left multiplicative system, right
multiplicative system, multiplicative sys-
tem
In 27.4: s−1f
In 27.12: fs−1

In 27.20: saturated
In 28.1: horizontal
In 29.1: 2-category, 1-morphisms, 2-
morphisms, vertical, composition, horizon-
tal
In 29.2: sub 2-category
In 29.4: equivalent
In 29.5: functor, weak functor, pseudo func-
tor
In 30.1: (2, 1)-category
In 31.1: final object
In 31.2: 2-fibre product of f and g
In 32.1: 2-category of categories over C
In 32.2: fibre category, lift, x lies overU , lift,
φ lies over f
In 33.1: strongly cartesian morphism,
strongly C-cartesian morphism
In 33.5: fibred category over C
In 33.6: choice of pullbacks, pullback func-
tor
In 33.9: 2-category of fibred categories over
C
In 34.2: relative inertia of S over S ′, inertia
fibred category IS of S
In 35.1: fibred in groupoids
In 35.6: 2-category of categories fibred in
groupoids over C
In 36.2: split fibred category, SF
In 37.2: split category fibred in groupoids,
SF
In 38.1: discrete
In 38.2: category fibred in sets, category fi-
bred in discrete categories
In 38.3: 2-category of categories fibred in
sets over C
In 39.1: setoid
In 39.2: category fibred in setoids
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In 39.3: 2-category of categories fibred in se-
toids over C
In 40.1: representable
In 42.3: representable, X is relatively repre-
sentable over Y
In 43.1: monoidal category
In 43.2: functor of monoidal categories
In 43.4: invertible
In 43.5: left dual, right dual
In 43.9: symmetric monoidal category
In 43.11: functor of symmetric monoidal
categories
In 44.1: morphism of dotted arrows

Topology

In 4.1: separated
In 5.1: base for the topology on X , basis for
the topology on X
In 5.4: subbase for the topology on X , sub-
basis for the topology on X
In 6.3: strict map of topological spaces, sub-
mersive
In 7.1: connected, connected component
In 7.8: totally disconnected
In 7.10: locally connected
In 8.1: irreducible, irreducible component
In 8.6: generic point, Kolmogorov, quasi-
sober, sober
In 9.1: Noetherian, locally Noetherian
In 10.1: chain of irreducible closed subsets,
length, dimension, Krull dimension, Krull
dimension of X at x
In 10.5: equidimensional
In 11.1: codimension
In 11.4: catenary
In 12.1: quasi-compact, quasi-compact,
retrocompact
In 13.1: locally quasi-compact
In 15.1: constructible, locally constructible
In 17.2: closed, Bourbaki-proper, quasi-
proper, universally closed, proper
In 18.1: Jacobson
In 19.1: specialization, generalization, stable
under specialization, stable under general-
ization
In 19.4: specializations lift along f , special-
izing, generalizations lift along f , general-
izing

In 20.1: immediate specialization, dimen-
sion function
In 21.1: interior, nowhere dense
In 22.1: profinite
In 23.1: spectral, spectral
In 26.1: extremally disconnected
In 27.2: isolated point
In 28.1: partition, parts, refines
In 28.2: good stratification
In 28.3: stratification, strata
In 28.4: locally finite
In 30.1: topological group, homomorphism
of topological groups
In 30.5: profinite group
In 30.7: topological ring, homomorphism of
topological rings
In 30.10: topological module, homomor-
phism of topological modules

Sheaves on Spaces

In 3.1: presheaf F of sets on X , morphism
ϕ : F → G of presheaves of sets on X
In 3.2: constant presheaf with value A
In 4.4: presheaf of abelian groups on X ,
abelian presheaf over X , morphism of
abelian presheaves over X
In 5.1: presheaf F on X with values in C ,
morphism ϕ : F → G of presheaves with
value in C
In 5.2: underlying presheaf of sets of F
In 6.1: presheaf of O-modules, morphism
ϕ : F → G of presheaves ofO-modules
In 7.1: sheaf F of sets on X , morphism of
sheaves of sets
In 7.4: constant sheaf with value A
In 8.1: abelian sheaf on X , sheaf of abelian
groups on X
In 9.1: sheaf
In 10.1: sheaf of O-modules, morphism of
sheaves ofO-modules
In 11.2: separated
In 15.1: type of algebraic structure
In 16.2: subpresheaf, subsheaf, injective, sur-
jective, injective, surjective
In 21.7: f -map ξ : G → F
In 21.9: composition of ϕ and ψ
In 25.1: ringed space, morphism of ringed
spaces
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In 25.3: composition of morphisms of
ringed spaces
In 26.1: pushforward, pullback
In 27.1: skyscraper sheaf at x with value
A, skyscraper sheaf, skyscraper sheaf,
skyscraper sheaf, skyscraper sheaf
In 30.1: presheaf F of sets on B, morphism
ϕ : F → G of presheaves of sets on B
In 30.2: sheaf F of sets on B, morphism of
sheaves of sets on B
In 30.8: presheaf F with values in C on B,
morphism ϕ : F → G of presheaves with
values in C on B, sheaf F with values in C
on B
In 30.11: presheaf of O-modules F on B,
morphism ϕ : F → G of presheaves of O-
modules on B, sheaf F ofO-modules on B
In 31.2: restriction of G to U , restriction of
G to U , open subspace of (X,O) associated
to U , restriction of G to U
In 31.3: extension of F by the empty set
jp!F , extension of F by the empty set j!F
In 31.5: extension jp!F ofF by 0, extension
j!F of F by 0, extension jp!F of F by e,
extension j!F ofF by e, extension by 0, ex-
tension by 0

Sites and Sheaves

In 2.1: presheaf of sets, Morphisms of
presheaves
In 2.2: presheaf, morphism
In 3.1: injective, surjective
In 3.3: subpresheaf
In 3.5: image of ϕ
In 6.1: family of morphisms with fixed tar-
get
In 6.2: site, coverings of C
In 7.1: sheaf
In 7.5: Sh(C)
In 7.6: sheaf
In 8.1: morphism of families of maps with
fixed target of C from U to V , morphism
from U to V , refinement
In 8.2: combinatorially equivalent, tauto-
logically equivalent
In 10.9: separated
In 10.11: sheaf associated to F
In 11.1: injective, surjective

In 12.1: effective epimorphism, universal ef-
fective epimorphism
In 12.2: weaker than the canonical topology,
subcanonical
In 12.3: representable sheaves, U
In 13.1: continuous
In 14.1: morphism of sites
In 14.5: composition
In 15.1: topos, morphism of topoi, composi-
tion f ◦ g
In 17.1: quasi-compact
In 17.4: quasi-compact, quasi-compact
In 20.1: cocontinuous
In 25.1: localization of the site C at the ob-
ject U , localization morphism, direct image
functor, restriction of F to C/U , extension
of G by the empty set
In 29.2: special cocontinuous functor u
from C to D
In 30.4: localization of the topos Sh(C) at
F , localization morphism
In 32.1: point of the topos Sh(C)
In 32.2: point p of the site C
In 32.6: skyscraper sheaf
In 36.1: 2-morphism from f to g
In 37.2: morphism f : p→ p′

In 38.1: conservative, has enough points
In 40.2: weakly contractible, enough
weakly contractible objects, enough P ob-
jects
In 42.1: sheaf theoretically empty
In 42.3: almost cocontinuous
In 43.1: embedding
In 43.2: subtopos
In 43.4: open subtopos
In 43.6: closed subtopos
In 43.7: open immersion, closed immersion
In 44.1: pushforward
In 45.1: global sections
In 47.1: sieve S on U
In 47.3: sieve on U generated by the mor-
phisms fi
In 47.4: pullback of S by f
In 47.6: topology on C
In 47.8: finer, stronger, coarser, weaker
In 47.10: sheaf
In 47.12: canonical topology
In 48.2: topology associated to C
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In 49.2: separated
In 49.4: sheaf associated to F
In 52.1: point p

Stacks

In 2.2: presheaf of morphisms from x to y,
presheaf of isomorphisms from x to y
In 3.1: descent datum (Xi, ϕij) in S relative
to the family {fi : Ui → U}, cocycle condi-
tion, morphism ψ : (Xi, ϕij) → (X ′

i, ϕ
′
ij)

of descent data
In 3.4: pullback functor
In 3.5: trivial descent datum, canonical de-
scent datum, effective
In 4.1: stack
In 4.5: 2-category of stacks over C
In 5.1: stack in groupoids
In 5.5: 2-category of stacks in groupoids
over C
In 6.1: stack in setoids, stack in sets, stack in
discrete categories
In 6.5: 2-category of stacks in setoids over C
In 10.2: structure of site onS inherited from
C ,S is endowed with the topology inherited
from C
In 11.1: gerbe
In 11.4: gerbe over
In 12.4: f∗S , pushforward of S along f
In 12.9: f−1S , pullback of S along f

Fields

In 2.1: field, subfield
In 2.2: domain, integral domain
In 5.1: characteristic, prime subfield of F
In 6.2: field extension
In 6.3: tower
In 6.6: generates the field extension, finitely
generated field extension
In 7.1: degree, finite
In 7.8: number field
In 8.1: algebraic, algebraic extension
In 9.1: minimal polynomial
In 10.1: algebraically closed
In 10.3: algebraic closure
In 11.1: relatively prime
In 12.2: separable, separable, separable
In 12.6: separable degree
In 14.1: purely inseparable, purely insepara-
ble

In 14.7: separable degree, inseparable de-
gree, degree of inseparability
In 15.1: normal
In 15.8: automorphisms of E over F , auto-
morphisms of E/F
In 16.2: splitting field of P over F
In 16.4: normal closure E over F
In 20.1: trace, norm
In 20.6: trace pairing
In 20.8: discriminant of L/K
In 21.1: Galois
In 21.3: Galois group
In 26.1: algebraically independent, purely
transcendental extension, transcendence
basis
In 26.4: transcendence degree
In 26.9: algebraic closure of k in K , alge-
braically closed in K
In 27.1: compositum of K and L in Ω
In 27.2: linearly disjoint over k in Ω
In 28.1: algebraic, separable, purely insepa-
rable, normal, Galois

Commutative Algebra

In 5.1: finite R-module, finitely generated
R-module, finitely presented R-module, R-
module of finite presentation
In 6.1: finite type, S is a finite type R-
algebra, finite presentation
In 7.1: finite
In 8.1: system (Mi, µij) of R-modules over
I , directed system
In 8.6: homomorphism of systems
In 9.1: multiplicative subset of R
In 9.2: localization of A with respect to S
In 9.6: localization
In 11.2: relation
In 12.1: R-bilinear
In 12.6: (A,B)-bimodule
In 14.1: base change, base change
In 17.1: spectrum
In 17.3: Zariski, standard opens
In 18.1: local ring, local homomorphism of
local rings, local ring map ϕ : R→ S
In 28.2: Oka family
In 32.1: locally nilpotent, nilpotent
In 35.1: Jacobson ring
In 36.1: integral over R, integral
In 36.9: integral closure, integrally closed
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In 37.1: normal
In 37.3: almost integral over R, completely
normal
In 37.11: normal
In 38.1: integral over I
In 39.1: flat, faithfully flat, flat, faithfully
flat
In 40.1: support of M
In 40.3: annihilator of m, annihilator of M
In 41.1: going up, going down
In 42.1: separably generated over k, separa-
ble over k
In 43.1: geometrically reduced over k
In 45.1: perfect
In 45.5: perfect closure
In 47.4: geometrically irreducible over k
In 48.3: geometrically connected over k
In 49.1: geometrically integral over k
In 50.1: dominates, valuation ring, centered
In 50.13: value group, valuation, discrete
valuation ring
In 52.1: length
In 52.9: simple
In 53.1: Artinian
In 54.1: essentially of finite type, essentially
of finite presentation
In 57.1: homogeneous spectrum
In 58.3: numerical polynomial
In 59.1: an ideal of definition of R
In 59.6: Hilbert polynomial
In 59.8: d(M)
In 60.1: chain of prime ideals, length
In 60.2: Krull dimension
In 60.3: height
In 60.10: system of parameters ofR, regular
local ring, regular system of parameters
In 63.1: associated
In 64.1: symbolic power
In 65.2: relative assassin of N over S/R
In 66.1: weakly associated
In 67.1: embedded associated primes, em-
bedded primes of R
In 68.1: M -regular sequence, M -regular se-
quence in I , regular sequence
In 69.1: M -quasi-regular, quasi-regular se-
quence
In 70.1: blowup algebra, Rees algebra, affine
blowup algebra

In 71.2: resolution, resolution of M by free
R-modules, resolution of M by finite free
R-modules
In 72.1: I-depth, depth
In 77.1: projective
In 78.1: locally free, finite locally free, finite
locally free of rank r
In 82.1: universally injective, universally
exact
In 84.1: direct sum dévissage, Kaplansky
dévissage
In 86.1: Mittag-Leffler
In 88.1: Mittag-Leffler directed system of
modules
In 88.2: dominates
In 88.7: Mittag-Leffler
In 90.1: coherent module, coherent ring
In 96.2: I-adically complete, I-adically
complete
In 102.5: rank
In 103.1: Cohen-Macaulay
In 103.8: maximal Cohen-Macaulay
In 103.12: Cohen-Macaulay
In 104.1: Cohen-Macaulay
In 104.6: Cohen-Macaulay
In 105.1: catenary
In 105.3: universally catenary
In 108.1: pure
In 109.2: finite projective dimension, projec-
tive dimension
In 109.10: finite global dimension, global di-
mension
In 110.7: regular
In 112.5: local ring of the fibre at q
In 119.8: uniformizer
In 120.1: associates, irreducible, prime
In 120.4: unique factorization domain, UFD
In 120.12: principal ideal domain, PID
In 120.14: Dedekind domain
In 121.2: order of vanishing along R
In 121.3: lattice in V
In 121.5: distance between M and M ′

In 122.3: quasi-finite at q, quasi-finite
In 123.7: strongly transcendental over R
In 125.1: relative dimension of S/R at q, rel-
ative dimension of
In 131.1: derivation, R-derivation, Leibniz
rule
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In 131.2: module of Kähler differentials,
module of differentials
In 133.1: differential operator D : M → N
of order k
In 133.4: module of principal parts of order
k
In 134.1: naive cotangent complex
In 135.1: global complete intersection over
k, local complete intersection over k
In 135.5: complete intersection (over k)
In 136.1: syntomic, flat local complete inter-
section over R
In 136.5: relative global complete intersec-
tion
In 137.1: smooth
In 137.6: standard smooth algebra over R
In 137.11: smooth at q
In 138.1: formally smooth over R
In 141.1: small extension
In 143.1: étale, étale at q
In 144.1: standard étale
In 148.1: formally unramified over R
In 149.2: universal first order thickening,
conormal module, CS/R
In 150.1: formally étale over R
In 151.1: unramified, G-unramified, unram-
ified at q, G-unramified at q
In 153.1: henselian, strictly henselian
In 155.3: henselization, strict henselization
of R with respect to κ ⊂ κsep, strict
henselization
In 157.1: (Rk), regular in codimension ≤ k,
(Sk)
In 160.1: complete local ring
In 160.4: coefficient ring
In 160.5: Cohen ring
In 161.1: N-1, N-2, Japanese
In 162.1: universally Japanese, Nagata ring
In 162.9: analytically unramified, analyti-
cally unramified
In 165.2: geometrically normal
In 166.2: geometrically regular

Brauer groups

In 2.1: finite
In 2.2: skew field
In 2.3: simple, simple
In 2.4: central
In 2.5: opposite algebra

In 5.2: Brauer group
In 8.1: splits, splitting field

Homological Algebra

In 3.1: preadditive, additive
In 3.3: zero object
In 3.5: direct sum
In 3.8: additive
In 3.9: kernel, cokernel, coimage of f , image
of f
In 4.1: Karoubian
In 5.1: abelian
In 5.3: injective, surjective, subobject, quo-
tient
In 5.7: complex, exact at y, exact at xi, exact,
exact sequence, exact complex, short exact
sequence
In 5.9: split
In 6.1: extensionE ofB byA, morphism of
extensions
In 6.2: Ext-group
In 9.1: simple
In 9.2: Artinian, Artinian
In 9.3: Noetherian, Noetherian
In 10.1: Serre subcategory, weak Serre sub-
category
In 10.5: kernel of the functor F
In 11.1: zeroth K-group ofA
In 12.1: cohomological δ-functor, δ-functor
In 12.2: morphism of δ-functors from F to
G
In 12.3: universal δ-functor
In 13.2: homotopy equivalence, homotopy
equivalent
In 13.4: quasi-isomorphism, acyclic
In 13.8: homotopy equivalence, homotopy
equivalent
In 13.10: quasi-isomorphism, acyclic
In 14.1: k-shifted chain complex A[k]•
In 14.2: Hi+k(A•)→ Hi(A[k]•)
In 14.7: k-shifted cochain complex A[k]•
In 14.8: Hi+k(A•) −→ Hi(A[k]•)
In 16.1: category of graded objects ofA
In 16.4: shift
In 17.1: additive monoidal category
In 18.1: double complex
In 18.3: associated simple complex, associ-
ated total complex
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In 19.1: decreasing filtration, filtered ob-
ject of A, morphism (A,F ) → (B,F ) of
filtered objects, induced filtration, quotient
filtration, finite, separated, exhaustive
In 19.3: strict
In 20.1: spectral sequence inA, morphism of
spectral sequences
In 20.2: limit, degenerates at Er
In 21.1: exact couple, morphism of exact
couples
In 21.3: spectral sequence associated to the
exact couple
In 22.1: differential object, morphism of dif-
ferential objects
In 22.3: homology
In 22.5: spectral sequence associated to
(A, d, α)
In 23.1: filtered differential object
In 23.4: induced filtration
In 23.6: weakly converges to H(K), abuts
to H(K)
In 24.1: filtered complex K• ofA
In 24.5: induced filtration
In 24.7: regular, coregular, bounded,
bounded below, bounded above
In 24.9: weakly converges toH∗(K•), abuts
to H∗(K•), converges to H∗(K•)
In 25.2: weakly converges toHn(Tot(K•,•)),
abuts to Hn(Tot(K•,•)), converges to
Hn(Tot(K•,•)), weakly converges to
Hn(Tot(K•,•)), abuts to Hn(Tot(K•,•)),
converges to Hn(Tot(K•,•))
In 27.1: injective
In 27.4: enough injectives
In 27.5: functorial injective embeddings
In 28.1: projective
In 28.4: enough projectives
In 28.5: functorial projective surjections
In 31.2: Mittag-Leffler condition, ML

Derived Categories

In 3.1: triangle, morphism of triangles
In 3.2: triangulated category, distinguished
triangles, pre-triangulated category
In 3.3: exact functor, triangulated functor
In 3.4: pre-triangulated subcategory, trian-
gulated subcategory
In 3.5: homological, cohomological

In 3.6: δ-functor from A to D, image of
the short exact sequence under the given δ-
functor
In 5.1: compatible with the triangulated
structure
In 6.1: saturated
In 6.5: kernel of F , kernel of H
In 6.7: quotient category D/B, quotient
functor
In 8.1: category of (cochain) complexes,
bounded below, bounded above, bounded
In 9.1: cone
In 9.4: termwise split injection α : A• →
B•, termwise split surjection β : B• → C•

In 9.9: termwise split exact sequence of
complexes of A, triangle associated to the
termwise split sequence of complexes
In 10.1: distinguished triangle of K(A)
In 11.3: derived category of A, bounded de-
rived category
In 13.1: category of finite filtered objects of
A
In 13.2: filtered quasi-isomorphism, filtered
acyclic
In 13.5: filtered derived category ofA
In 13.7: bounded filtered derived category
In 14.2: right derived functorRF is defined
at, value of RF at X , left derived functor
LF is defined at, value of LF at X
In 14.9: right derivable, everywhere de-
fined, left derivable, everywhere defined
In 14.10: computes, computes
In 15.3: right derived functors of F , left
derived functors of F , right acyclic for F ,
acyclic forRF , left acyclic forF , acyclic for
LF
In 16.2: ith right derived functor RiF of F
In 18.1: injective resolution of A, injective
resolution of K•

In 19.1: projective resolution of A, projec-
tive resolution of K•

In 21.1: Cartan-Eilenberg resolution
In 23.2: resolution functor
In 26.1: filtered injective
In 27.1: ith extension group
In 27.4: Yoneda extension, equivalent
In 28.1: zeroth K-group of D
In 31.1: K-injective
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In 33.1: derived colimit, homotopy colimit
In 34.1: derived limit, homotopy limit
In 36.3: classical generator, strong genera-
tor, weak generator, generator
In 37.1: compact object
In 37.5: compactly generated
In 40.1: right orthogonal, left orthogonal
In 40.9: right admissible, left admissible,
two-sided admissible
In 41.1: Postnikov system, morphism of
Postnikov systems

Simplicial Methods

In 2.1: δnj : [n−1]→ [n], σnj : [n+1]→ [n]
In 3.1: simplicial objectU of C , simplicial set,
simplicial abelian group, morphism of sim-
plicial objects U → U ′, category of simpli-
cial objects of C
In 5.1: cosimplicial object U of C , cosim-
plicial set, cosimplicial abelian group, mor-
phism of cosimplicial objects U → U ′, cat-
egory of cosimplicial objects of C
In 6.1: product of U and V
In 7.1: fibre product of V and W over U
In 8.1: pushout of V and W over U
In 9.1: product of U and V
In 10.1: fibre product of V and W over U
In 11.1: n-simplex of U , face of x, degener-
acy of x, degenerate
In 12.1: n-truncated simplicial object of C ,
morphism of n-truncated simplicial objects
In 13.1: product U ×V of U and V , product
U × V exists
In 14.1: Hom(U, V )
In 15.1: Hom(U, V )
In 17.1: Hom(U, V )
In 18.1: split, split
In 20.1: augmentation ε : U → X of U to-
wards an object X of C
In 22.3: Eilenberg-Maclane object K(A, k)
In 26.1: homotopy from a to b, homotopic,
in the same homotopy class
In 26.6: homotopy equivalence, homotopy
equivalent
In 28.1: homotopy from a to b, homotopic,
in the same homotopy class
In 30.1: trivial Kan fibration
In 31.1: Kan fibration, Kan complex

More on Algebra

In 3.1: stably isomorphic, stably free
In 8.3: kth Fitting ideal
In 10.1: Zariski pair
In 11.1: henselian pair
In 14.1: absolutely integrally closed
In 15.1: auto-associated
In 22.1: torsion, torsion free
In 23.1: reflexive
In 23.9: reflexive hull
In 24.1: content ideal of x
In 26.1: strict transform of M along R →
R[ Ia ]
In 28.1: Koszul complex
In 28.2: Koszul complex on f1, . . . , fr
In 30.1: M -Koszul-regular, M -H1-regular,
Koszul-regular, H1-regular
In 32.1: regular ideal, Koszul-regular ideal,
H1-regular ideal, quasi-regular ideal
In 33.2: local complete intersection
In 36.1: topological ring, topological mod-
ule, homomorphism of topological mod-
ules, homomorphism of topological rings,
linearly topologized, linearly topologized,
ideal of definition, pre-admissible, admissi-
ble, pre-adic, adic
In 37.1: formally smooth over R
In 37.3: formally smooth for the n-adic
topology
In 41.1: regular
In 46.1: p-independent over k, p-basis of K
over k
In 47.1: J-0, J-1, J-2
In 50.1: G-ring
In 52.1: quasi-excellent, excellent
In 55.1: injective
In 55.5: M 7→M∨, free module
In 59.1: K-flat
In 59.13: derived tensor product
In 61.1: Tor independent over R
In 64.1: m-pseudo-coherent, pseudo-
coherent, m-pseudo-coherent, pseudo-
coherent
In 66.1: tor-amplitude in [a, b], finite tor di-
mension, tor dimension ≤ d, finite tor di-
mension
In 68.1: finite projective dimension,
projective-amplitude in [a, b]
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In 69.1: finite injective dimension, injective-
amplitude in [a, b]
In 70.4: I-projective
In 74.1: perfect, perfect
In 80.2: finitely presented relative to R
In 81.4: m-pseudo-coherent relative to R,
pseudo-coherent relative to R, m-pseudo-
coherent relative toR, pseudo-coherent rel-
ative to R
In 82.1: pseudo-coherent ring map, perfect
ring map
In 83.1: R-perfect, perfect relative to R
In 88.1: I-power torsion module, an f -
power torsion module
In 91.4: derived complete with respect to I ,
derived complete with respect to I
In 104.1: absolutely flat, weakly étale, abso-
lutely flat
In 104.3: weak dimension ≤ d
In 106.1: unibranch, geometrically uni-
branch
In 106.6: number of branches of A, number
of geometric branches of A
In 109.1: formally catenary
In 111.1: extension of discrete valuation
rings, ramification index, weakly unrami-
fied, residual degree, residue degree
In 111.7: unramified with respect to A,
tamely ramified with respect to A, totally
ramified with respect to A
In 112.3: decomposition group of m, inertia
group of m
In 112.6: wild inertia group of m, tame iner-
tia group of m
In 113.3: mixed characteristic, absolute ram-
ification index
In 115.1: weak solution for A ⊂ B, solution
for A ⊂ B, separable solution
In 117.1: invertible, trivial
In 123.1: extension of valuation rings,
weakly unramified, residual degree, residue
degree
In 124.5: Bézout domain, elementary divisor
domain

Smoothing Ring Maps

In 2.1: singular ideal of A over R
In 2.3: elementary standard in A over R,
strictly standard in A over R

Sheaves of Modules

In 4.1: generated by global sections, gener-
ate
In 4.5: subsheaf generated by the si
In 5.1: support of F , support of s
In 8.1: locally generated by sections
In 9.1: finite type
In 10.1: quasi-coherent sheaf of OX -
modules
In 10.6: sheaf associated to the module M
and the ring map α, sheaf associated to the
module M
In 11.1: finite presentation
In 12.1: coherentOX -module
In 13.1: closed immersion of ringed spaces
In 14.1: locally free, finite locally free, finite
locally free of rank r
In 17.1: flat
In 17.3: flat at x
In 20.1: flat at x, flat
In 20.3: flat over Y at a point x ∈ X , flat
over Y
In 23.1: annihilator
In 24.1: Koszul complex
In 24.2: Koszul complex on f1, . . . , fr
In 25.1: invertibleOX -module, trivial
In 25.6: tensor power
In 25.7: associated graded ring
In 25.9: Picard group
In 28.1: O1-derivation, ϕ-derivation, Leib-
niz rule
In 28.3: module of differentials, universalϕ-
derivation
In 28.10: S-derivation, sheaf of differentials
ΩX/S of X over S
In 29.1: differential operator D : F → G of
order k
In 29.4: module of principal parts of order
k
In 29.8: differential operator of order k on
X/S
In 30.1: de Rham complex of B overA
In 30.4: de Rham complex
In 31.1: naive cotangent complex
In 31.6: naive cotangent complex

Modules on Sites

In 4.1: free abelian presheaf
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In 5.1: free abelian sheaf
In 6.1: ringed site, structure sheaf, mor-
phism of ringed sites, composition of mor-
phisms of ringed sites
In 7.1: ringed topos, structure sheaf, mor-
phism of ringed topoi, composition of mor-
phisms of ringed topoi
In 8.1: 2-morphism from f to g
In 9.1: presheaf of O-modules, morphism
ϕ : F → G of presheaves ofO-modules
In 10.1: sheaf of O-modules, morphism of
sheaves ofO-modules
In 13.1: pushforward, pullback
In 16.1: gp!F , g!F = (gp!F)#

In 17.1: freeO-module, finite free, generated
by global sections, generated by r global sec-
tions, generated by finitely many global sec-
tions, global presentation, global finite pre-
sentation
In 19.1: localization of the ringed site (C,O)
at the object U , localization morphism, di-
rect image functor, restriction ofF to C/U ,
extension by zero
In 21.2: localization of the ringed topos
(Sh(C),O) at F , localization morphism
In 23.1: locally free, finite locally free, lo-
cally generated by sections, locally gener-
ated by r sections, of finite type, quasi-
coherent, of finite presentation, coherent
In 28.1: flat, flat, flat, flat
In 31.1: flat, flat
In 31.3: flat over (Sh(D),O′)
In 32.1: rank r, invertible,O∗

In 32.6: Picard group
In 33.1: O1-derivation, ϕ-derivation, Leib-
niz rule
In 33.3: module of differentials, universalϕ-
derivation
In 33.10: Y -derivation, sheaf of differentials
ΩX/Y of X over Y , universal Y -derivation
In 34.1: differential operator D : F → G of
order k
In 34.4: module of principal parts of order
k
In 35.1: naive cotangent complex
In 35.4: naive cotangent complex
In 40.4: locally ringed site
In 40.6: locally ringed

In 40.9: morphism of locally ringed topoi,
morphism of locally ringed sites
In 43.1: constant sheaf, locally constant, fi-
nite locally constant

Injectives

In 2.4: α-small with respect to I
In 10.1: generator, Grothendieck abelian
category
In 11.2: size

Cohomology of Sheaves

In 4.1: torsor, G-torsor, morphism of G-
torsors, trivial G-torsor
In 9.1: Čech complex, Čech cohomology
groups
In 12.1: flasque, flabby
In 23.1: alternating Čech complex
In 23.2: ordered Čech complex
In 24.2: locally finite
In 26.2: K-flat
In 26.14: derived tensor product
In 26.15: Tor
In 46.1: strictly perfect
In 47.1: m-pseudo-coherent, pseudo-
coherent, m-pseudo-coherent, pseudo-
coherent
In 48.1: tor-amplitude in [a, b], finite tor di-
mension, locally has finite tor dimension,
tor dimension ≤ d
In 49.1: perfect, perfect

Cohomology on Sites

In 4.1: pseudo torsor, pseudo G-torsor, mor-
phism of pseudo G-torsors, torsor, G-torsor,
morphism of G-torsors, trivial G-torsor
In 8.1: Čech complex, Čech cohomology
groups
In 13.4: totally acyclic
In 17.2: K-flat
In 17.13: derived tensor product
In 17.14: Tor
In 31.2: qc covering
In 41.1: simplicial A•-module, simplicial
sheaf ofA•-modules
In 43.1: QC (O)
In 44.1: strictly perfect
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In 45.1: m-pseudo-coherent, pseudo-
coherent, m-pseudo-coherent, pseudo-
coherent
In 46.1: tor-amplitude in [a, b], finite tor di-
mension, locally has finite tor dimension,
tor dimension ≤ d
In 47.1: perfect, perfect

Differential Graded Algebra

In 3.1: differential graded algebra over R
In 3.2: homomorphism of differential
graded algebras
In 3.3: commutative, strictly commutative
In 3.4: tensor product differential graded al-
gebra
In 4.1: differential graded module, homo-
morphism of differential graded modules
In 4.3: k-shifted module
In 5.1: homotopy between f and g, homo-
topic
In 5.3: homotopy category
In 6.1: cone
In 7.1: admissible monomorphism, admissi-
ble epimorphism, admissible short exact se-
quence
In 8.2: triangle associated to 0 → K →
L→M → 0, distinguished triangle
In 11.1: opposite differential graded algebra
In 11.3: kth shifted A-module, kth shifted
A-module
In 22.2: derived category of (A, d)
In 24.1: R-linear categoryA
In 24.2: functor of R-linear categories, R-
linear functor
In 25.1: graded categoryA over R
In 25.2: functor of graded categories overR,
graded functor
In 25.3:A0

In 25.4: graded direct sum
In 26.1: differential graded categoryA over
R
In 26.2: functor of differential graded cate-
gories over R
In 26.3: category of complexes ofA, homo-
topy category ofA
In 26.4: differential graded direct sum
In 28.1: (A,B)-bimodule, graded (A,B)-
bimodule, differential graded (A,B)-
bimodule

Divided Power Algebra
In 2.1: divided power structure
In 3.1: divided power ring, homomorphism
of divided power rings
In 4.1: extends
In 6.1: divided power structure
In 6.5: compatible with the differential
graded structure
In 8.5: complete intersection, local complete
intersection
Differential Graded Sheaves
In 3.1: sheaf of graded O-algebras, sheaf of
graded algebras, homomorphism of graded
O-algebras
In 4.1: graded A-module, graded module,
homomorphism of gradedA-modules
In 8.1: graded (A,B)-bimodule, homomor-
phism of graded (A,B)-bimodules
In 12.1: sheaf of differential graded O-
algebras, sheaf of differential graded alge-
bras, homomorphism of differential graded
O-algebras
In 13.1: differential graded A-module, dif-
ferential graded module, homomorphism of
differential gradedA-modules
In 17.1: differential graded (A,B)-
bimodule, homomorphism of differential
graded (A,B)-bimodules
In 21.1: homotopy between f and g, homo-
topic
In 21.2: homotopy category
In 22.2: cone
In 25.2: graded injective
In 25.7: K-injective
In 26.4: derived category of (A, d)
In 28.2: derived tensor product, derived
pullback
In 29.2: derived internal hom, derived push-
forward
In 33.1: QC (A, d)
Hypercoverings
In 2.1: semi-representable objects, semi-
representable objects over X
In 2.2: which associates a presheaf to a semi-
representable object
In 3.1: covering, covering
In 3.3: hypercovering of X
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In 4.1: homology of K
In 6.1: hypercovering of G , hypercovering

Schemes

In 2.1: locally ringed space (X,OX), local
ring of X at x, residue field of X at x, mor-
phism of locally ringed spaces
In 3.1: open immersion
In 3.3: open subspace of X associated to U
In 4.1: closed immersion
In 4.4: closed subspace of X associated to
the sheaf of ideals I
In 5.2: standard open covering, standard
open covering
In 5.3: structure sheafOSpec(R) of the spec-
trum of R, spectrum
In 5.5: affine scheme, morphism of affine
schemes
In 9.1: scheme, morphism of schemes
In 10.2: open immersion, open subscheme,
closed immersion, closed subscheme, im-
mersion, locally closed immersion
In 12.1: reduced
In 12.5: scheme structure on Z , reduced in-
duced scheme structure, reduction Xred of
X
In 15.1: representable by a scheme, repre-
sentable
In 15.3: satisfies the sheaf property for the
Zariski topology, subfunctorH ⊂ F , repre-
sentable by open immersions, covers F
In 17.1: fibre product
In 17.7: inverse image f−1(Z) of the closed
subscheme Z
In 18.1: scheme over S , structure morphism,
scheme over R, morphism f : X → Y of
schemes over S , base change, base change,
base change
In 18.3: preserved under arbitrary base
change, preserved under base change, pre-
served under arbitrary base change, pre-
served under base change
In 18.4: scheme theoretic fibre Xs of f over
s, fibre of f over s
In 19.1: quasi-compact
In 20.1: universally closed
In 20.3: satisfies the existence part of the
valuative criterion, satisfies the uniqueness
part of the valuative criterion

In 21.3: separated, quasi-separated, sepa-
rated, quasi-separated
In 23.1: monomorphism

Constructions of Schemes

In 4.5: relative spectrum of A over S , spec-
trum ofA over S
In 5.1: affine n-space over S , affine n-space
over R
In 6.1: vector bundle associated to E
In 6.2: vector bundle π : V → S over S ,
morphism of vector bundles over S
In 7.1: cone associated to A, affine cone as-
sociated toA
In 7.2: cone π : C → S over S , morphism
of cones
In 8.2: standard open covering
In 8.3: structure sheafOProj(S) of the homo-
geneous spectrum of S , homogeneous spec-
trum
In 10.1: twist of the structure sheaf of
Proj(S)
In 13.2: projectiven-space over Z, projective
n-space over S , projective n-space over R
In 16.7: relative homogeneous spectrum of
A over S , homogeneous spectrum ofA over
S , relative Proj ofA over S
In 21.1: projective bundle associated to E ,
twist of the structure sheaf
In 22.2: Grassmannian over Z, Grassman-
nian over S , Grassmannian over R

Properties of Schemes

In 3.1: integral
In 4.1: local
In 4.2: locally P
In 5.1: locally Noetherian, Noetherian
In 6.1: Jacobson
In 7.1: normal
In 8.1: Cohen-Macaulay
In 9.1: regular, nonsingular
In 10.1: dimension, dimension of X at x
In 11.1: catenary
In 12.1: regular in codimension k, (Rk), (Sk)
In 13.1: Japanese, universally Japanese, Na-
gata
In 14.1: regular locus, singular locus
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In 15.1: unibranch at x, geometrically uni-
branch at x, unibranch, geometrically uni-
branch
In 15.4: number of branches ofX at x, num-
ber of geometric branches of X at x
In 18.1: quasi-affine
In 21.1: locally projective
In 23.1: κ-generated
In 24.3: subsheaf of sections annihilated by
I
In 24.6: subsheaf of sections supported on T
In 26.1: ample

Morphisms of Schemes

In 4.4: scheme theoretic intersection,
scheme theoretic union
In 5.5: scheme theoretic support of F
In 6.2: scheme theoretic image
In 7.1: scheme theoretic closure of U in X ,
scheme theoretically dense in X
In 8.1: dominant
In 9.1: surjective
In 10.1: universally injective, radicial
In 11.1: affine
In 12.1: ample family of invertible modules
on X
In 13.1: quasi-affine
In 14.1: local, stable under base change, sta-
ble under composition
In 14.2: locally of type P
In 15.1: finite type at x ∈ X , locally of finite
type, finite type
In 16.3: finite type point
In 17.1: universally catenary
In 19.1: J-2
In 20.1: quasi-finite at a pointx ∈ X , locally
quasi-finite, quasi-finite
In 21.1: finite presentation at x ∈ X , locally
of finite presentation, finite presentation
In 23.1: open, universally open
In 24.1: submersive, universally submersive
In 25.1: flat at a point x ∈ X , flat over S at
a point x ∈ X , flat, flat over S
In 26.3: canonical scheme structure on T
In 29.1: relative dimension≤ d at x, relative
dimension ≤ d, relative dimension d
In 30.1: syntomic at x ∈ X , syntomic, local
complete intersection over k, standard syn-
tomic

In 30.15: syntomic of relative dimension d
In 31.1: conormal sheaf CZ/X of Z in X ,
conormal sheaf of i
In 32.1: sheaf of differentials ΩX/S of X
over S , universal S-derivation
In 34.1: smooth at x ∈ X , smooth, standard
smooth
In 34.13: smooth of relative dimension d
In 35.1: unramified at x ∈ X , G-unramified
at x ∈ X , unramified, G-unramified
In 36.1: étale at x ∈ X , étale, standard étale
In 37.1: relatively ample, f -relatively ample,
ample on X/S , f -ample
In 38.1: relatively very ample, f -relatively
very ample, very ample onX/S , f -very am-
ple
In 40.1: quasi-projective, H-quasi-
projective, locally quasi-projective
In 41.1: proper
In 43.1: projective, H-projective, locally
projective
In 44.1: integral, finite
In 45.1: universal homeomorphism
In 47.1: seminormal, absolutely weakly nor-
mal
In 47.3: seminormal, absolutely weakly nor-
mal
In 47.8: seminormalization, absolute weak
normalization
In 48.1: finite locally free, rank, degree
In 49.1: equivalent, rational map fromX to
Y , S-rational map from X to Y
In 49.3: rational function on X
In 49.4: ring of rational functions on X
In 49.6: function field, field of rational
functions
In 49.8: defined in a point x ∈ X , domain
of definition
In 49.10: dominant
In 49.11: birational, S-birational
In 50.1: birational
In 51.8: degree of X over Y
In 51.11: modification of X
In 51.12: alteration of X
In 53.2: integral closure ofOX inA
In 53.3: normalization of X in Y
In 54.1: normalization



7380 117. AUTO GENERATED INDEX

In 55.6: seminormalization ofX in Y , weak
normalization of X in Y
In 55.8: weak normalization
In 55.9: weakly normal
In 57.1: bounds the degrees of the fibres of
f , fibres of f are universally bounded

Cohomology of Schemes

In 11.1: depth k at a point, depth k at a point,
(Sk), (Sk)
In 11.4: Cohen-Macaulay
In 26.2: Z is proper over S

Divisors

In 2.1: associated, associated points of X
In 4.1: embedded associated point, embed-
ded point, embedded component
In 5.1: weakly associated, weakly associated
points of X
In 7.1: relative assassin of F in X over S
In 8.1: relative weak assassin ofF inX over
S
In 11.2: torsion, torsion free
In 12.1: reflexive hull, reflexive
In 13.1: locally principal closed subscheme,
effective Cartier divisor
In 13.6: sum of the effective Cartier divisors
D1 and D2
In 13.12: pullback ofD by f is defined, pull-
back of the effective Cartier divisor
In 14.1: invertible sheaf OS(D) associated
to D, canonical section
In 14.6: regular section
In 14.8: zero scheme
In 18.2: relative effective Cartier divisor
In 19.1: conormal algebra CZ/X,∗ ofZ inX ,
conormal algebra of f
In 19.5: normal cone CZX , normal bundle
In 20.2: regular, Koszul-regular,H1-regular,
quasi-regular
In 21.1: regular immersion, Koszul-regular
immersion, H1-regular immersion, quasi-
regular immersion
In 22.2: relative quasi-regular immersion,
relative H1-regular immersion
In 23.1: sheaf of meromorphic functions on
X , KX , meromorphic function
In 23.3: meromorphic section of F

In 23.4: pullbacks of meromorphic func-
tions are defined for f
In 23.7: regular
In 23.10: ideal sheaf of denominators of s
In 26.2: prime divisor, Weil divisor
In 26.3: order of vanishing of f along Z
In 26.5: principal Weil divisor associated to
f
In 26.7: Weil divisor class group
In 27.1: order of vanishing of s along Z
In 27.4: Weil divisor associated to s, Weil
divisor class associated to L
In 32.1: blowing up of X along Z , blowing
up ofX in the ideal sheaf I , exceptional di-
visor, center
In 33.1: strict transform, strict transform
In 34.1: U -admissible blowup

Limits of Schemes

Varieties

In 3.1: variety
In 6.1: geometrically reduced at x, geomet-
rically reduced
In 7.1: geometrically connected
In 8.1: geometrically irreducible
In 9.1: geometrically pointwise integral atx,
geometrically pointwise integral, geometri-
cally integral
In 10.1: geometrically normal at x, geomet-
rically normal
In 12.1: geometrically regular at x, geomet-
rically regular over k
In 16.1: dual numbers
In 16.3: tangent space ofX over S at x, tan-
gent vector
In 20.1: algebraic k-scheme, locally alge-
braic k-scheme
In 26.1: affine variety, projective vari-
ety, quasi-projective variety, proper variety,
smooth variety
In 33.1: Euler characteristic of F
In 35.7: m-regular
In 35.15: Hilbert polynomial
In 36.1: absolute frobenius of X
In 36.4: relative Frobenius morphism of
X/S
In 39.3: δ-invariant of A
In 39.7: δ-invariant of X at x
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In 40.4: A is a wedge of A1, . . . , An
In 43.1: curve
In 44.1: degree, degree
In 45.3: intersection number
In 45.10: degree of Z with respect to L
In 46.1: embedding dimension of X at x
In 46.2: embedding dimension of X/k at x

Topologies on Schemes

In 3.1: Zariski covering of T
In 3.4: standard Zariski covering
In 3.5: big Zariski site
In 3.7: big Zariski site of S , small Zariski site
of S , big affine Zariski site of S , small affine
Zariski site of S
In 3.15: restriction to the small Zariski site
In 4.1: étale covering of T
In 4.5: standard étale covering
In 4.6: big étale site
In 4.8: big étale site of S , small étale site of
S , big affine étale site of S , small affine étale
site of S
In 4.15: restriction to the small étale site
In 5.1: smooth covering of T
In 5.5: standard smooth covering
In 5.6: big smooth site
In 5.8: big smooth site of S , big affine
smooth site of S
In 6.1: syntomic covering of T
In 6.5: standard syntomic covering
In 6.6: big syntomic site
In 6.8: big syntomic site of S , big affine syn-
tomic site of S
In 7.1: fppf covering of T
In 7.5: standard fppf covering
In 7.6: big fppf site
In 7.8: big fppf site of S , big affine fppf site
of S
In 8.1: standard ph covering
In 8.4: ph covering of T
In 8.9: big ph site
In 8.11: big ph site of S , big affine ph site of
S
In 9.1: fpqc covering of T
In 9.9: standard fpqc covering
In 9.12: satisfies the sheaf property for the
given family, satisfies the sheaf property for
the fpqc topology
In 10.1: standard V covering

In 10.7: V covering of T
In 10.11: satisfies the sheaf property for the
V topology

Descent

In 2.1: descent datum (Fi, ϕij) for quasi-
coherent sheaves, cocycle condition, mor-
phism ψ : (Fi, ϕij)→ (F ′

i , ϕ
′
ij) of descent

data
In 2.3: trivial descent datum, canonical de-
scent datum, effective
In 3.1: descent datum (N,ϕ) for modules
with respect to R → A, cocycle condition,
morphism (N,ϕ) → (N ′, ϕ′) of descent
data
In 3.4: effective
In 4.2: split equalizer
In 4.5: universally injective
In 4.9: C
In 4.15: base extension along f , descent
morphism for modules, effective descent
morphism for modules
In 4.19: f∗
In 8.2: structure sheaf of the big site
(Sch/S)τ , structure sheaf of the small site,
sheaf ofO-modules associated toF , sheaf of
O-modules associated to F
In 12.1: parasitic, parasitic for the τ -
topology
In 15.1: local in the τ -topology
In 20.1: germ ofX at x, morphism of germs,
composition of morphisms of germs
In 20.2: étale, smooth
In 21.1: étale local, smooth local
In 22.1: τ local on the base, τ local on the
target, local on the base for the τ -topology
In 26.1: τ local on the source, local on the
source for the τ -topology
In 32.3: étale local on source-and-target
In 33.1: étale local on the source-and-target
In 34.1: descent datum for V/X/S , cocycle
condition, descent datum relative to X →
S , morphism f : (V/X,ϕ) → (V ′/X,ϕ′)
of descent data relative to X → S
In 34.3: descent datum (Vi, ϕij) relative to
the family {Xi → S}, morphism ψ :
(Vi, ϕij)→ (V ′

i , ϕ
′
ij) of descent data

In 34.7: pullback functor
In 34.9: pullback functor
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In 34.10: trivial descent datum, canonical
descent datum, effective
In 34.11: canonical descent datum, effective
In 36.1: morphisms of typeP satisfy descent
for τ -coverings

Derived Categories of Schemes

In 6.1: supported on T
In 14.1: approximation holds for the triple
In 14.2: approximation by perfect com-
plexes holds
In 22.2: Tor independent over S
In 35.1: perfect relative to S , S-perfect
In 36.1: resolution property
In 38.2: Grothendieck group of X ,
Grothendieck group of coherent sheaves
on X

More on Morphisms

In 2.1: thickening, first order thickening,
morphism of thickenings, thickenings over
S , morphisms of thickenings over S
In 5.1: first order infinitesimal neighbour-
hood
In 6.1: formally unramified
In 7.2: universal first order thickening,
conormal sheaf of Z over X
In 8.1: formally étale
In 11.1: formally smooth
In 13.1: naive cotangent complex of f
In 20.1: normal at x, normal morphism
In 21.1: regular at x, regular morphism
In 22.1: Cohen-Macaulay at x, Cohen-
Macaulay morphism
In 35.1: étale neighbourhood of (S, s), mor-
phism of étale neighbourhoods, elementary
étale neighbourhood
In 58.1: finitely presented relative to S , of
finite presentation relative to S
In 59.2: m-pseudo-coherent relative to S ,
pseudo-coherent relative to S , m-pseudo-
coherent relative to S , pseudo-coherent rel-
ative to S
In 60.2: pseudo-coherent
In 61.2: perfect
In 62.2: Koszul at x, Koszul morphism, local
complete intersection morphism
In 64.1: weakly étale, absolutely flat
In 66.1: ind-quasi-affine, ind-quasi-affine

In 73.1: affine stratification
In 73.4: affine stratification number
In 75.2: weighting, pondération
In 78.1: completely decomposed, com-
pletely decomposed

More on Flatness

In 4.1: one step dévissage of F/X/S over s
In 4.2: one step dévissage of F/X/S at x
In 4.6: standard shrinking
In 5.1: complete dévissage ofF/X/S over s
In 5.2: complete dévissage of F/X/S at x
In 5.5: standard shrinking
In 6.1: elementary étale localization of the
ring map R→ S at q
In 6.2: complete dévissage ofN/S/R over r
In 6.4: complete dévissage of N/S/R at q
In 15.2: impurity of F above s
In 16.1: pure along Xs, universally pure
along Xs, pure along Xs, universally S-
pure, universally pure relative to S , S-pure,
pure relative to S , S-pure, pure relative to
S
In 20.10:F is flat over S in dimensions≥ n
In 21.1: universal flattening ofF exists, uni-
versal flattening of X exists
In 21.3: flattening stratification, flattening
stratification
In 34.2: h covering of T
In 34.10: big h site
In 34.11: standard h covering
In 34.13: big h site of S , big affine h site of
S

Groupoid Schemes

In 3.1: pre-relation, relation, pre-
equivalence relation, equivalence relation
on U over S
In 3.3: restriction, pullback
In 4.1: group scheme over S , morphism ψ :
(G,m) → (G′,m′) of group schemes over
S
In 4.3: closed subgroup scheme, open sub-
group scheme
In 4.5: smooth group scheme, flat group
scheme, separated group scheme
In 9.1: abelian variety
In 10.1: action of G on the scheme X/S ,
equivariant, G-equivariant
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In 10.2: free
In 11.1: pseudo G-torsor, formally princi-
pally homogeneous under G, trivial
In 11.3: principal homogeneous space, G-
torsor, G-torsor in the τ topology, τ G-
torsor, τ torsor, quasi-isotrivial, locally triv-
ial
In 12.1: G-equivariant quasi-coherent OX -
module, equivariant quasi-coherent OX -
module
In 13.1: groupoid scheme over S , groupoid
over S , morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoid schemes over
S
In 14.1: quasi-coherent module on
(U,R, s, t, c)
In 17.2: stabilizer of the groupoid scheme
(U,R, s, t, c)
In 18.2: restriction of (U,R, s, t, c) to U ′

In 19.1: set-theoretically R-invariant, R-
invariant, R-invariant, R-invariant
In 20.1: quotient sheaf U/R
In 20.2: representable quotient, repre-
sentable quotient
In 21.1: cartesian, (U ′, R′, s′, t′, c′) is
cartesian over (U,R, s, t, c), morphism
of groupoid schemes cartesian over
(U,R, s, t, c)

More on Groupoid Schemes

Étale Morphisms of Schemes

In 3.1: unramified homomorphism of local
rings
In 3.5: unramified at x, unramified
In 9.1: flat, faithfully flat, flat (resp. faith-
fully flat)
In 9.3: flat over Y at x ∈ X , flat at x ∈ X ,
flat, faithfully flat
In 11.1: étale homomorphism of local rings
In 11.4: étale at x ∈ X , étale
In 21.1: strict normal crossings divisor
In 21.4: normal crossings divisor

Chow Homology and Chern Classes

In 2.1: 2-periodic complex, cohomology
modules, exact, (2, 1)-periodic complex, co-
homology modules

In 2.2: multiplicity, (additive) Herbrand
quotient
In 7.6: δ-dimension of Z
In 8.1: cycle on X , k-cycle
In 8.3: support
In 8.4: effective
In 9.2: multiplicity of Z ′ in Z , k-cycle asso-
ciated to Z
In 10.2: multiplicity of Z ′ in F , k-cycle as-
sociated to F
In 12.1: pushforward
In 14.1: flat pullback of α by f
In 17.1: principal divisor associated to f
In 19.1: rationally equivalent to zero, ratio-
nally equivalent, Chow group of k-cycles
on X , Chow group of k-cycles modulo ra-
tional equivalence on X
In 22.1: envelope
In 24.1: Weil divisor associated to s, Weil di-
visor associated to L
In 25.1: intersection with the first Chern
class of L
In 29.1: Gysin homomorphism
In 33.1: bivariant class c of degree p for f
In 34.1: Chow cohomology
In 34.4: first Chern class
In 37.1: Chern classes of E onX , total Chern
class of E on X
In 38.1: intersection with the jth Chern
class of E
In 38.8: ith Chern class, total Chern class
In 41.1: degree of a zero cycle
In 46.3: Chern classes of E are defined
In 50.3: localized Chern character, localized
pth Chern class
In 59.4: the gysin map for f exists, gysin
map
In 68.2: admissible, symbol, admissible re-
lation, determinant of the finite length R-
module M
In 68.13: determinant of (M,ϕ,ψ)
In 68.29: symbol associated to M,a, b
In 68.31: tame symbol

Intersection Theory

In 13.5: intersect properly, intersect prop-
erly
In 15.1: multiplicity of M for the ideal of
definition I
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Picard Schemes of Curves

In 4.1: Picard functor
In 6.3: genus

Weil Cohomology Theories

In 5.1: ith Chow group of M
In 7.3: classical Weil cohomology theory
In 11.4: Weil cohomology theory

Adequate Modules

In 3.1: module-valued functor, morphism of
module-valued functors
In 3.2: adequate, linearly adequate
In 5.1: adequate
In 5.7: Adeq(O), Adeq((Sch/S)τ ,O),
Adeq(S)
In 8.1: pure projective, pure injective
In 8.5: pure projective resolution, pure in-
jective resolution
In 8.8: pure extension module

Dualizing Complexes

In 2.1: essential, essential extension of, es-
sential
In 4.1: projective cover, projective envelope
In 5.1: injective hull
In 5.5: indecomposable
In 15.1: dualizing complex
In 21.1: Gorenstein, Gorenstein
In 27.1: relative dualizing complex

Duality for Schemes

In 2.2: dualizing complex
In 20.5: dualizing complex normalized rel-
ative to ω•

S

In 24.1: Gorenstein
In 25.2: Gorenstein at x, Gorenstein mor-
phism
In 28.1: relative dualizing complex

Discriminants and Differents

In 4.1: trace element
In 7.1: Kähler different
In 9.1: different

de Rham Cohomology

In 7.1: Hodge filtration
In 15.1: de Rham complex of log poles is de-
fined for Y ⊂ X over S

In 15.3: de Rham complex of log poles for
Y ⊂ X over S
Local Cohomology

In 4.2: cohomological dimension of I in A
In 13.1: I-depth, depth
Algebraic and Formal Geometry

In 6.4: derived complete with respect to I
In 16.5: (Fn) extends to X
In 16.7: (Fn) canonically extends to X
In 19.1: (Fn) satisfies the (a, b)-inequalities,
(Fn) satisfies the strict (a, b)-inequalities
Algebraic Curves
In 2.7: nonsingular projective model of X
In 3.1: linear series of degree d and dimen-
sion r, grd
In 8.1: genus
In 11.1: geometric genus
In 16.2: multicross singularity, node, ordi-
nary double point, defines a nodal singular-
ity
In 19.1: node, ordinary double point, defines
a nodal singularity, singularities ofX are at-
worst-nodal
In 19.10: split node
In 20.2: at-worst-nodal of relative dimen-
sion 1
Resolution of Surfaces
In 5.1: normalized blowup of X at x
In 8.3: defines a rational singularity, reduc-
tion to rational singularities is possible for
A
In 14.1: resolution of singularities
In 14.2: resolution of singularities by nor-
malized blowups
Semistable Reduction
In 3.1: numerical type
In 3.2: equivalent types
In 3.4: numerical type of genus g
In 3.8: (−1)-index
In 3.11: topological genus of T
In 3.12: minimal
In 3.16: (−2)-index
In 4.1: Picard group of T
In 8.4: minimal model
In 11.4: numerical type associated to X
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In 14.6: semistable reduction
In 14.8: good reduction

Functors and Morphisms

Derived Categories of Varieties

In 3.2: a Serre functor exists, Serre functor
In 8.1: Fourier-Mukai functor, Fourier-
Mukai kernel
In 10.1: siblings, sibling
In 12.1: siblings, sibling
In 15.1: the Fourier-Mukai kernel of a rela-
tive equivalence from X to Y over S
In 18.1: derived equivalent

Fundamental Groups of Schemes

In 2.1:G-set, discreteG-set, morphism ofG-
sets, G-Sets
In 3.6: Galois category
In 6.1: fundamental group, base point

Étale Cohomology

In 4.1: étale covering
In 9.1: presheaf of sets, abelian presheaf
In 10.1: family of morphisms with fixed tar-
get
In 10.2: site, coverings
In 11.1: separated presheaf, sheaf
In 11.4: category of sheaves of sets, abelian
sheaves
In 13.1: zeroth Čech cohomology group
In 15.1: fpqc covering
In 15.5: satisfies the sheaf property for the
fpqc topology
In 16.1: descent datum, cocycle condition,
effective
In 16.5: descent datum
In 16.6: effective
In 17.2: ringed site, quasi-coherent
In 18.1: Čech complex, Čech cohomology
groups
In 18.4: free abelian presheaf on G
In 20.1: τ -covering
In 20.2: big τ -site of S , small τ -site of S
In 20.4: standard τ -covering
In 21.1: étale topos, small étale topos, Zariski
topos, small Zariski topos, big τ -topos
In 23.1: constant sheaf
In 23.3: structure sheaf

In 26.1: étale
In 26.3: standard étale
In 27.1: étale covering
In 27.3: big étale site over S , small étale site
over S , big, small Zariski sites
In 29.1: geometric point, lies over, étale
neighborhood, morphism of étale neighbor-
hoods
In 29.6: stalk
In 31.3: support of F , support of σ
In 32.2: henselian
In 32.6: strictly henselian
In 33.2: étale local ring of S at s, strict
henselization ofOS,s, henselization ofOS,s,
strict henselization of S at s, henselization
of S at s
In 35.1: direct image, pushforward
In 35.3: direct image, pushforward
In 35.4: higher direct images
In 36.1: inverse image, pullback
In 51.1: system (Fi, ϕi′i) of sheaves on
(Xi, fi′i)
In 56.1: absolute Galois group, algebraic
In 57.1:G-module, discreteG-module, mor-
phism of G-modules, R-G-module, mor-
phism of R-G-modules
In 57.2: continuous group cohomology
groups, group cohomology groups, Galois
cohomology groups, Galois cohomology
groups of K with coefficients in M
In 61.3: similar, equivalent
In 61.4: Brauer group
In 64.1: constant sheaf with value E , con-
stant sheaf, locally constant, finite locally
constant, constant sheaf with value A, con-
stant sheaf, locally constant, finite locally
constant, constant sheaf with valueM , con-
stant sheaf, locally constant
In 66.1: trace
In 67.5: Cr , nontrivial solution
In 67.9: variety, curve
In 70.1: extension by zero, extension by zero
In 71.1: constructible, constructible, con-
structible
In 76.1: Dc(Xétale,Λ)
In 77.1: Dctf (Xétale,Λ)
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In 93.1: locally acyclic at x relative to K ,
locally acyclic relative toK , universally lo-
cally acyclic relative to K , locally acyclic,
universally locally acyclic
In 95.1: cohomological dimension of X
In 96.1: cohomological dimension of f

Crystalline Cohomology

In 2.2: divided power envelope ofJ inB rel-
ative to (A, I, γ)
In 4.1: δ is compatible with γ
In 5.2: divided power thickening, homo-
morphism of divided power thickenings
In 6.1: divided power A-derivation
In 7.1: divided power structure γ
In 7.2: divided power scheme, morphism of
divided power schemes
In 7.3: divided power thickening
In 8.1: divided power thickening of X
relative to (S, I, γ), morphism of divided
power thickenings ofX relative to (S, I, γ)
In 8.4: Zariski, étale, smooth, syntomic, or
fppf covering, big crystalline site
In 9.1: crystalline site
In 11.1: locally quasi-coherent, quasi-
coherent, crystal inOX/S-modules
In 11.3: crystal in quasi-coherent modules,
crystal in finite locally free modules
In 12.1: S-derivation D : OX/S → F
In 26.2: F -crystal on X/S (relative to σ),
nondegenerate

Pro-étale Cohomology

In 2.3: w-local, w-local
In 3.1: local isomorphism, identifies local
rings
In 4.1: ind-Zariski
In 7.1: ind-étale
In 11.1: w-contractible
In 12.1: pro-étale covering of T
In 12.6: standard pro-étale covering
In 12.7: big pro-étale site
In 12.8: big pro-étale site of S , small pro-
étale site of S , big affine pro-étale site of S
In 12.14: restriction to the small pro-étale
site
In 26.1: extension by zero, extension by zero
In 27.1: constructible

In 28.1: constructible Λ-sheaf, lisse, adic
lisse, adic constructible
In 29.1: constructible
In 29.4: adic lisse, adic constructible

Relative Cycles

In 6.1: relative r-cycle on X/S
In 7.1: equidimensional
In 8.1: effective
In 9.1: proper relative cycle

More Étale Cohomology

In 3.3: direct image with compact support
In 3.7: sections with compact support
In 4.4: direct image with compact support
In 12.1: cohomology of K with compact
support, compactly supported cohomology
of K

The Trace Formula

In 3.4: geometric frobenius
In 3.8: arithmetic frobenius
In 3.10: geometric frobenius
In 4.1: trace
In 6.4: total right derived functor ofF , total
left derived functor of G
In 7.1: filtered injective, projective, filtered
quasi-isomorphism
In 8.1: filtered derived functor
In 10.1: perfect
In 12.1: finite Tor-dimension
In 14.1: global Lefschetz number
In 14.2: local Lefschetz number
In 15.2: G-trace of f on P
In 18.1: Z`-sheaf, `-adic sheaf, lisse, mor-
phism
In 18.6: torsion, stalk
In 18.8: `-adic cohomology
In 19.1: L-function of F
In 19.3: L-function of F
In 27.1: open
In 31.1: unramified cusp form on GL2(A)
with values in Λ

Algebraic Spaces

In 5.1: property P
In 6.1: algebraic space over S
In 6.3: morphism f : F → F ′ of algebraic
spaces over S
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In 9.2: étale equivalence relation
In 9.3: presentation
In 12.1: open immersion, open subspace,
closed immersion, closed subspace, immer-
sion, locally closed subspace
In 12.5: Zariski covering
In 12.6: small Zariski site FZar
In 13.2: separated over S , locally separated
over S , quasi-separated over S , Zariski lo-
cally quasi-separated over S
In 14.4: acts freely, quotient of U by G
In 16.2: base change of F ′ to S , viewed as an
algebraic space over S′

Properties of Algebraic Spaces

In 3.1: separated, locally separated,
quasi-separated, Zariski locally quasi-
separated, separated, locally separated,
quasi-separated, Zariski locally quasi-
separated
In 4.1: point
In 4.7: topological space
In 5.1: quasi-compact
In 7.2: has property P
In 7.5: has property P at x
In 8.2: étale locally constructible
In 9.1: dimension of X at x
In 9.2: dimension
In 10.2: dimension of the local ring of X at
x, x is a point of codimension d on X
In 12.5: algebraic space structure on Z , re-
duced induced algebraic space structure, re-
duction Xred of X
In 16.2: étale
In 18.1: small étale site Xétale

In 18.2: Xspaces,étale

In 18.5: Xaffine,étale

In 18.7: étale topos, small étale topos
In 18.9: f -map ϕ : G → F
In 19.1: geometric point, geometric point ly-
ing over x
In 19.2: étale neighborhood, morphism of
étale neighborhoods
In 19.6: stalk
In 20.3: support of F , support of σ
In 21.2: structure sheaf
In 22.2: étale local ring of X at x, strict
henselization of X at x

In 23.2: geometrically unibranch at x, geo-
metrically unibranch
In 23.4: number of geometric branches ofX
at x
In 24.1: Noetherian
In 25.2: X is regular at x
In 29.1: quasi-coherent
In 31.2: locally projective

Morphisms of Algebraic Spaces

In 4.2: separated, locally separated, quasi-
separated
In 5.2: surjective
In 6.2: open, universally open
In 7.2: submersive, universally submersive
In 8.2: quasi-compact
In 9.2: closed, universally closed
In 10.1: monomorphism
In 13.2: inverse image f−1(Z) of the closed
subspace Z
In 14.4: scheme theoretic intersection,
scheme theoretic union
In 15.4: scheme theoretic support of F
In 16.2: scheme theoretic image
In 17.3: scheme theoretic closure of U inX ,
scheme theoretically dense in X
In 18.1: dominant
In 19.3: universally injective
In 20.2: affine
In 20.8: relative spectrum ofA overX , spec-
trum ofA over X
In 21.2: quasi-affine
In 22.2: has property P
In 22.6: has propertyQ at x
In 23.1: locally of finite type, finite type at
x, of finite type
In 25.2: finite type point
In 27.1: locally quasi-finite, quasi-finite at x,
quasi-finite
In 28.1: locally of finite presentation, finite
presentation at x, of finite presentation
In 30.1: flat, flat at x
In 31.2: flat at x over Y , flat over Y
In 33.1: dimension of the local ring of the
fibre of f at x, transcendence degree of
x/f(x), f has relative dimension d at x
In 33.2: relative dimension ≤ d, relative di-
mension d
In 36.1: syntomic, syntomic at x
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In 37.1: smooth, smooth at x
In 38.1: unramified, unramified at x, G-
unramified, G-unramified at x
In 39.1: étale at x
In 40.1: proper
In 41.1: satisfies the uniqueness part of the
valuative criterion, satisfies the existence
part of the valuative criterion, satisfies the
valuative criterion
In 45.2: integral, finite
In 46.2: finite locally free, rank, degree
In 47.1: equivalent, rational map from X to
Y , B-rational map from X to Y
In 47.2: rational function on X
In 47.3: ring of rational functions on X
In 47.4: defined in a point x ∈ |X|, domain
of definition
In 47.6: dominant
In 47.7: birational
In 48.2: integral closure ofOX inA
In 48.3: normalization of X in Y
In 49.6: normalization
In 53.2: universal homeomorphism

Decent Algebraic Spaces

In 3.1: fibres of f are universally bounded
In 6.1: decent, reasonable, very reasonable
In 11.2: residue field of X at x
In 11.5: elementary étale neighbourhood,
morphism of elementary étale neighbour-
hoods
In 11.7: henselian local ring of X at x
In 13.6: residual space of X at x
In 17.1: has property (β), has property (β),
decent, reasonable, very reasonable
In 22.1: birational
In 24.2: unibranch at x, unibranch
In 24.4: number of branches of X at x
In 25.1: catenary
In 25.4: universally catenary

Cohomology of Algebraic Spaces

In 6.2: alternating Čech complex
In 12.1: coherent

Limits of Algebraic Spaces

In 3.1: limit preserving, locally of finite pre-
sentation, locally of finite presentation over

S , limit preserving, locally of finite presen-
tation, relatively limit preserving
In 14.3: subsheaf of sections annihilated by
I
In 14.6: subsheaf of sections supported on T

Divisors on Algebraic Spaces

In 2.2: weakly associated, weakly associated
points of X , x is associated to F , x is an as-
sociated point of X
In 4.2: the fibre of f over y is locally Noe-
therian, the fibres of f are locally Noether-
ian
In 4.5: relative weak assassin ofF inX over
Y
In 6.1: locally principal closed subspace, ef-
fective Cartier divisor
In 6.6: sum of the effective Cartier divisors
D1 and D2
In 6.10: pullback of D by f is defined, pull-
back of the effective Cartier divisor
In 7.1: invertible sheafOX(D) associated to
D
In 7.4: regular section
In 7.6: zero scheme
In 9.2: relative effective Cartier divisor
In 10.1: sheaf of meromorphic functions on
X , KX , meromorphic function
In 10.3: meromorphic section of F
In 10.6: pullbacks of meromorphic func-
tions are defined for f
In 10.9: regular
In 11.3: relative homogeneous spectrum of
A over X , homogeneous spectrum of A
over X , relative Proj ofA over X
In 14.1: relatively ample, f -relatively ample,
ample on X/Y , f -ample
In 17.1: blowing up of X along Z , blowing
up ofX in the ideal sheaf I , exceptional di-
visor, center
In 18.1: strict transform, strict transform
In 19.1: U -admissible blowup

Algebraic Spaces over Fields

In 4.1: integral
In 4.3: function field, field of rational func-
tions
In 5.2: degree of X over Y
In 6.2: prime divisor, Weil divisor
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In 6.4: order of vanishing of f along Z
In 6.7: principal Weil divisor associated to
f
In 6.9: Weil divisor class group
In 7.1: order of vanishing of s along Z
In 7.4: Weil divisor associated to s, Weil di-
visor class associated to L
In 8.1: modification of X
In 8.3: alteration of X
In 11.1: geometrically reduced at x, geomet-
rically reduced
In 12.1: geometrically connected
In 13.1: geometrically irreducible
In 14.1: geometrically integral
In 17.1: Euler characteristic of F
In 18.3: intersection number

Topologies on Algebraic Spaces

In 3.1: Zariski covering of X
In 4.1: étale covering of X
In 4.5: (Spaces/S)étale
In 4.6: (Spaces/X)étale
In 4.9: restriction to the small étale site
In 5.1: smooth covering of X
In 6.1: syntomic covering of X
In 7.1: fppf covering of X
In 7.6: (Spaces/S)fppf
In 7.7: (Spaces/X)fppf
In 8.1: ph covering of X
In 8.5: (Spaces/S)ph
In 8.6: (Spaces/X)ph
In 9.1: fpqc covering of X

Descent and Algebraic Spaces

In 3.1: descent datum (Fi, ϕij) for quasi-
coherent sheaves, cocycle condition, mor-
phism ψ : (Fi, ϕij)→ (F ′

i , ϕ
′
ij) of descent

data
In 3.3: trivial descent datum, canonical de-
scent datum, effective
In 10.1: τ local on the base, τ local on the
target, local on the base for the τ -topology
In 14.1: τ local on the source, local on the
source for the τ -topology
In 20.1: smooth local on source-and-target
In 21.1: étale-smooth local on source-and-
target
In 22.1: descent datum for V/Y/X , cocycle
condition, descent datum relative to Y →

X , morphism f : (V/Y, ϕ) → (V ′/Y, ϕ′)
of descent data relative to Y → X
In 22.3: descent datum (Vi, ϕij) relative to
the family {Xi → X}, morphism ψ :
(Vi, ϕij)→ (V ′

i , ϕ
′
ij) of descent data

In 22.7: pullback functor
In 22.9: pullback functor
In 22.10: trivial descent datum, canonical
descent datum, effective
In 22.11: canonical descent datum, effective

Derived Categories of Spaces

In 3.2: supported on T
In 5.1: derived category of OX -modules
with quasi-coherent cohomology sheaves
In 7.2: T is proper over Y
In 9.1: elementary distinguished square
In 14.1: approximation holds for the triple
In 14.2: approximation by perfect com-
plexes holds
In 20.2: Tor independent over B
In 28.1: resolution property

More on Morphisms of Spaces

In 3.1: radicial
In 5.1: conormal sheaf CZ/X of Z in X ,
conormal sheaf of i
In 6.1: conormal algebra CZ/X,∗ of Z in X ,
conormal algebra of i
In 6.5: normal cone CZX , normal bundle
In 7.2: sheaf of differentials ΩX/Y ofX over
Y , universal Y -derivation
In 9.1: thickening, first order thickening,
morphism of thickenings, thickenings over
B, morphisms of thickenings over B
In 12.1: first order infinitesimal neighbour-
hood
In 13.1: formally smooth, formally étale,
formally unramified
In 14.1: formally unramified
In 15.5: universal first order thickening,
conormal sheaf of Z over X
In 16.1: formally étale
In 19.1: formally smooth
In 21.1: naive cotangent complex of f
In 23.2: the restriction of F to its fibre over
z is flat at x over the fibre of Y over z, the
fibre ofX over z is flat at x over the fibre of
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Y over z, the fibre of X over z is flat over
the fibre of Y over z
In 26.2: Cohen-Macaulay at x, Cohen-
Macaulay morphism
In 27.2: Gorenstein at x, Gorenstein mor-
phism
In 29.2: the fibre of f : X → Y at y is geo-
metrically reduced
In 44.2: Koszul-regular immersion, H1-
regular immersion, quasi-regular immer-
sion
In 45.3: m-pseudo-coherent relative to Y ,
pseudo-coherent relative to Y , m-pseudo-
coherent relative to Y , pseudo-coherent rel-
ative to Y
In 46.1: pseudo-coherent, pseudo-coherent
at x
In 47.1: perfect, perfect at x
In 48.1: Koszul morphism, local complete
intersection morphism, Koszul at x
In 52.1: perfect relative to Y , Y -perfect
In 55.1: at-worst-nodal of relative dimen-
sion 1

Flatness on Algebraic Spaces

In 2.2: impurity of F above y
In 3.1: pure above y, universally pure above
y, pure above y, universally Y -pure, univer-
sally pure relative to Y , Y -pure, pure rela-
tive to Y , Y -pure, pure relative to Y
In 11.1: universal flattening ofF exists, uni-
versal flattening of X exists
In 11.3: F is flat over Y in dimensions ≥ n

Groupoids in Algebraic Spaces

In 4.1: pre-relation, relation, pre-
equivalence relation, equivalence relation
on U over B
In 4.3: restriction, pullback
In 5.1: group algebraic space over B, mor-
phism ψ : (G,m) → (G′,m′) of group al-
gebraic spaces over B
In 8.1: action of G on the algebraic space
X/B, equivariant, G-equivariant
In 8.2: free
In 9.1: pseudo G-torsor, formally princi-
pally homogeneous under G, trivial
In 9.3: principal homogeneous space, princi-
pal homogeneous G-space over B, G-torsor

in the τ topology, τ G-torsor, τ torsor,
quasi-isotrivial, locally trivial
In 10.1: G-equivariant quasi-coherent OX -
module, equivariant quasi-coherent OX -
module
In 11.1: groupoid in algebraic spaces over
B, morphism f : (U,R, s, t, c) →
(U ′, R′, s′, t′, c′) of groupoids in algebraic
spaces over B
In 12.1: quasi-coherent module on
(U,R, s, t, c)
In 16.2: stabilizer of the groupoid in alge-
braic spaces (U,R, s, t, c)
In 17.2: restriction of (U,R, s, t, c) to U ′

In 18.1: R-invariant, R-invariant, R-
invariant
In 19.1: quotient sheaf U/R
In 19.3: quotient representable by an alge-
braic space, representable quotient, repre-
sentable quotient, quotient representable by
an algebraic space
In 20.1: quotient stack, quotient stack
More on Groupoids in Spaces
In 15.1: strongly split over u, strong split-
ting of R over u, split over u, splitting of R
over u, quasi-split over u, quasi-splitting of
R over u
Bootstrap
In 3.1: representable by algebraic spaces
In 4.1: property P
Pushouts of Algebraic Spaces

Chow Groups of Spaces
In 2.5: δ-dimension of T
In 3.1: cycle on X , k-cycle
In 4.2: F has length d at x
In 5.2: multiplicity of Z in Y , k-cycle asso-
ciated to Y
In 6.1: multiplicity of Z in F , k-cycle asso-
ciated to F
In 8.1: pushforward
In 10.1: flat pullback of α by f
In 13.1: principal divisor associated to f
In 15.1: rationally equivalent to zero, ratio-
nally equivalent, Chow group of k-cycles
on X , Chow group of k-cycles modulo ra-
tional equivalence on X
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In 17.1: Weil divisor associated to s, Weil di-
visor associated to L
In 18.1: intersection with the first Chern
class of L
In 22.1: Gysin homomorphism
In 26.1: bivariant class c of degree p for f
In 26.2: Chow cohomology
In 28.2: ith Chern class of E , total Chern
class of E
In 32.1: degree of a zero cycle

Quotients of Groupoids

In 3.1: R-invariant, G-invariant
In 3.4: base change, flat base change
In 4.1: categorical quotient, categorical quo-
tient in C , categorical quotient in the cat-
egory of schemes, categorical quotient in
schemes
In 4.4: universal categorical quotient, uni-
form categorical quotient
In 5.1: orbit, R-orbit
In 5.4: weakly R-equivalent, R-equivalent,
weak orbit, weak R-orbit, orbit, R-orbit
In 5.8: set-theoretically R-invariant, sepa-
rates orbits, separates R-orbits
In 5.13: set-theoretic pre-equivalence rela-
tion, set-theoretic equivalence relation
In 5.18: orbit space for R
In 6.1: coarse quotient, coarse quotient in
schemes
In 7.1: uniformly, universally
In 8.1: sheaf of R-invariant functions on
X , the functions on X are the R-invariant
functions on U
In 9.1: good quotient
In 10.1: geometric quotient

More on Cohomology of Spaces

Simplicial Spaces

In 12.1: cartesian, cartesian, cartesian, carte-
sian
In 13.1: simplicial system of the derived
category, cartesian, morphism of simplicial
systems of the derived category
In 14.1: simplicial system of the derived cat-
egory of modules, cartesian, morphism of
simplicial systems of the derived category
of modules

In 27.1: cartesian, Y is cartesian over X
In 27.3: simplicial scheme associated to f

Duality for Spaces

In 2.2: dualizing complex
In 9.1: relative dualizing complex

Formal Algebraic Spaces

In 4.7: tensor product, completed tensor
product
In 4.8: topologically nilpotent, weak
ideal of definition, weakly pre-admissible,
weakly admissible
In 5.1: taut
In 6.1: adic
In 7.1: weakly pre-adic, c-adic, weakly adic
In 9.1: affine formal algebraic space, mor-
phism of affine formal algebraic spaces
In 9.7: McQuillan, classical, weakly adic,
adic, adic*, Noetherian
In 9.9: formal spectrum
In 10.2: countably indexed
In 11.1: formal algebraic space, morphism of
formal algebraic spaces
In 14.3: completion of X along T
In 16.3: quasi-separated, separated
In 17.2: quasi-compact
In 17.4: quasi-compact
In 20.7: locally countably indexed, locally
countably indexed and classical, locally
weakly adic, locally adic*, locally Noether-
ian
In 23.2: adic morphism
In 24.1: locally of finite type, finite type
In 25.1: surjective
In 26.1: monomorphism
In 27.1: closed immersion
In 29.1: topologically of finite type over
In 30.1: separated, quasi-separated
In 31.1: proper
In 34.1: small étale site
In 37.3: completion of X along T
In 38.1: completion of X along Z

Algebraization of Formal Spaces

In 4.1: rig-smooth over (A, I)
In 8.1: rig-étale over (A, I)
In 13.4: flat
In 14.2: rig-closed
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In 14.7: completed principal localization
In 15.2: naively rig-flat
In 15.4: rig-flat
In 16.1: rig-flat
In 17.2: rig-smooth
In 18.1: rig-smooth
In 19.2: rig-etale
In 20.1: rig-étale
In 21.1: rig-surjective
In 24.1: formal modification

Resolution of Surfaces Revisited

In 4.1: blowing up X ′ → X of X at x
In 5.1: normalized blowup of X at x
In 8.1: resolution of singularities
In 8.2: resolution of singularities by normal-
ized blowups

Formal Deformation Theory

In 3.1: CΛ, classical case
In 3.2: small extension
In 3.6: relative cotangent space
In 3.9: essential surjection
In 4.1: ĈΛ
In 5.1: category cofibered in groupoids over
C
In 6.1: prorepresentable
In 6.2: predeformation category, morphism
of predeformation categories
In 7.1: category F̂ of formal objects of F ,
formal object ξ = (R, ξn, fn) of F , mor-
phism a : ξ → η of formal objects
In 7.3: completion of F
In 8.1: smooth
In 8.9: versal
In 9.1: smooth, unobstructed
In 10.1: conditions (S1) and (S2)
In 11.1: R-linear
In 11.9: tangent space TF of F
In 12.1: tangent space TF of F
In 12.3: differential dϕ : TF → TG of ϕ
In 14.4: minimal, miniversal
In 16.1: condition (RS)
In 16.8: deformation category
In 17.1: lift of x along f , morphism of lifts
In 19.1: group of infinitesimal automor-
phisms of x′ over x
In 19.2: group of infinitesimal automor-
phisms of x0

In 19.5: automorphism functor of x
In 21.1: category of groupoids in functors
on C , groupoid in functors on C , mor-
phism (U,R, s, t, c) → (U ′, R′, s′, t′, c′) of
groupoids in functors on C
In 21.4: representable
In 21.7: restriction (U,R, s, t, c)|C′ of
(U,R, s, t, c) to C′

In 21.9: quotient category cofibered in
groupoids [U/R] → C , quotient morphism
U → [U/R]
In 22.1: prorepresentable
In 22.2: completion (U,R, s, t, c)∧ of
(U,R, s, t, c)
In 23.1: smooth
In 25.1: presentation of F by (U,R, s, t, c)
In 27.1: normalized, minimal
Deformation Theory
In 3.2: strict morphism of thickenings
In 9.2: strict morphism of thickenings
The Cotangent Complex
In 3.1: standard resolution of B over A
In 3.2: cotangent complex
In 13.1: A-biderivation
In 17.1: Atiyah class
In 18.1: standard resolution of B overA
In 18.2: cotangent complex
In 19.1: Atiyah class
In 20.1: cotangent complex
In 22.1: cotangent complex
In 24.1: cotangent complexLX/Y ofX over
Y
In 26.1: cotangent complexLX/Y ofX over
Y

Deformation Problems

Algebraic Stacks
In 8.1: representable by an algebraic space
over S
In 9.1: representable by algebraic spaces
In 10.1: property P
In 12.1: algebraic stack over S
In 12.2: Deligne-Mumford stack
In 12.3: 2-category of algebraic stacks over
S
In 16.4: smooth groupoid
In 16.5: presentation
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In 19.2: viewed as an algebraic stack over S′

In 19.3: change of base of X ′

Examples of Stacks
In 18.2: degree d finite Hilbert stack of X
over Y
Sheaves on Algebraic Stacks
In 3.1: presheaf on X , morphism of
presheaves on X
In 4.1: associated Zariski site, associated
étale site, associated smooth site, associated
syntomic site, associated fppf site
In 4.3: Zariski sheaf, sheaf for the Zariski
topology, étale sheaf, sheaf for the étale
topology, smooth sheaf, sheaf for the
smooth topology, syntomic sheaf, sheaf for
the syntomic topology, fppf sheaf, sheaf,
sheaf for the fppf topology
In 4.5: associated morphism of fppf topoi
In 6.1: structure sheaf of X
In 7.1: presheaf of modules on X , OX -
module, sheaf ofOX -modules
In 9.2: pullback x−1F ofF , restriction ofF
to Uétale
In 11.1: quasi-coherent module on X , quasi-
coherentOX -module
In 12.1: locally quasi-coherent
In 24.1: associated affine site
In 24.2: associated affine Zariski site, as-
sociated affine étale site, associated affine
smooth site, associated affine syntomic site,
associated affine fppf site
In 26.1: triangulated category of quasi-
coherent objects in the derived category
Criteria for Representability
In 8.1: algebraic
Artin’s Axioms
In 5.1: condition (RS)
In 9.1: formal object, morphism of formal
objects, lies over
In 9.4: effective
In 11.1: limit preserving
In 12.1: versal
In 12.2: versal
In 13.1: openness of versality, openness of
versality
In 18.1: condition (RS*)

In 22.1: obstruction theory, obstruction
modules, obstruction
In 23.5: naive obstruction theory

Quot and Hilbert Spaces

Properties of Algebraic Stacks

In 4.2: point
In 4.8: topological space
In 5.1: surjective
In 6.1: quasi-compact
In 7.2: has property P
In 7.5: has property P at x
In 8.1: monomorphism
In 9.1: open immersion, closed immersion,
immersion
In 9.9: open substack, closed substack, lo-
cally closed substack
In 10.4: algebraic stack structure on Z , re-
duced induced algebraic stack structure, re-
duction Xred of X
In 11.8: residual gerbe ofX at x exists, resid-
ual gerbe of X at x
In 12.2: dimension of X at x
In 12.3: dimension
In 13.1: number of geometric branches of X
at x, geometrically unibranch at x

Morphisms of Algebraic Stacks

In 4.1: DM, quasi-DM, separated, quasi-
separated
In 4.2: DM over S , quasi-DM over S , sep-
arated over S , quasi-separated over S , DM,
quasi-DM, separated, quasi-separated
In 5.3: relative sheaf of automorphisms of
x, relative sheaf of isomorphisms from x1
to x2, sheaf of automorphisms of x, sheaf of
isomorphisms from x1 to x2
In 7.2: quasi-compact
In 8.1: Noetherian
In 9.1: affine
In 10.1: integral, finite
In 11.2: open, universally open
In 12.2: submersive, universally submersive
In 13.2: closed, universally closed
In 14.2: universally injective
In 15.2: universal homeomorphism
In 16.2: has property P
In 17.1: locally of finite type, of finite type
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In 18.2: finite type point
In 23.2: locally quasi-finite
In 24.1: quasi-finite
In 25.1: flat
In 26.2: flat at x
In 27.1: locally of finite presentation, of fi-
nite presentation
In 28.1: gerbe over, gerbe
In 33.1: smooth
In 34.2: has property P
In 35.1: étale
In 36.1: unramified
In 37.1: proper
In 38.1: scheme theoretic image
In 39.1: dotted arrow, morphism of dotted
arrows
In 39.6: uniqueness part of the valuative cri-
terion
In 39.10: existence part of the valuative cri-
terion
In 44.1: local complete intersection mor-
phism, Koszul
In 46.3: normalization
In 48.1: decent
In 50.1: integral

Limits of Algebraic Stacks

In 3.1: limit preserving

Cohomology of Algebraic Stacks

In 7.1: flat base change property
In 9.1: parasitic
In 14.1: lisse-étale site, flat-fppf site
In 17.2: coherent

Derived Categories of Stacks

In 5.1: derived category of OX -modules
with quasi-coherent cohomology sheaves

Introducing Algebraic Stacks

In 4.3: smooth
In 5.1: algebraic stack

More on Morphisms of Stacks

In 3.1: thickening, morphism of thicken-
ings, thickenings over Z , morphisms of
thickenings over Z
In 3.3: first order thickening
In 8.1: formally smooth

In 12.1: categorical moduli space, uniform
categorical moduli space, categorical mod-
uli space in C , uniform categorical moduli
space in C
In 13.1: well-nigh affine

The Geometry of Algebraic Stacks

In 2.2: versal ring to X at x0
In 3.4: multiplicity
In 4.1: formal branches of X through x0
In 4.3: multiplicity of a formal branch ofX
through x0
In 5.2: the relative dimension
In 5.7: relative dimension
In 5.14: pseudo-catenary
In 6.3: dimension of the local ring ofX at x

Moduli Stacks

Moduli of Curves

In 16.4: moduli stack of smooth proper
curves, moduli stack of smooth proper
curves of genus g
In 19.2: relative dualizing sheaf
In 20.1: prestable family of curves
In 21.2: semistable family of curves
In 22.2: stable family of curves
In 22.4: moduli stack of stable curves, mod-
uli stack of stable curves of genus g

Examples

Exercises

In 2.1: directed set, system of rings
In 2.3: colimit
In 2.8: finite presentation
In 6.4: quasi-compact
In 6.6: Hausdorff
In 6.9: irreducible, irreducible
In 6.12: generic point
In 6.16: Noetherian, Artinian
In 6.18: irreducible component
In 6.22: closed, specialization, generaliza-
tion
In 6.26: connected, connected component
In 9.1: length
In 18.1: catenary, catenary
In 22.1: finite locally free, invertible module
In 22.3: class group of A, Picard group of A
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In 24.1: going-up theorem, going-down the-
orem
In 26.1: numerical polynomial
In 26.2: graded module, locally finite, Euler-
Poincaré function, Hilbert function, Hilbert
polynomial
In 26.3: graded A-algebra, graded mod-
ule M over a graded A-algebra B, homo-
morphisms of graded modules/rings, graded
submodules, graded ideals, exact sequences
of graded modules
In 27.1: homogeneous
In 27.2: homogeneous spectrum Proj(R)
In 27.3: R(f)
In 28.1: Cohen-Macaulay
In 30.3: filtered injective
In 30.4: Filf (A)
In 30.6: filtered quasi-isomorphism
In 30.7: filtered acyclic
In 33.12: integral
In 35.1: dual numbers
In 35.3: tangent space of X over S , tangent
vector
In 36.1: quasi-coherent

In 36.2: specialization
In 36.5: locally Noetherian, Noetherian
In 36.6: coherent
In 40.1: invertibleOX -module
In 40.4: invertible module M , trivial
In 40.7: Picard group of X
In 41.2: δ(τ)
In 49.1: Weil divisor, prime divisor, Weil di-
visor associated to a rational function f ∈
K(X)∗, effective Cartier divisor, Weil divi-
sor [D] associated to an effective Cartier di-
visor D ⊂ X , sheaf of total quotient rings
KS , Cartier divisor, Weil divisor associated
to a Cartier divisor
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